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Exploration de techniques d’apprentissage pour l’edge AI exploitant des mémoires
non-volatiles

Résumé: Les systèmes embarqués d’intelligence artificielle (IA) capables d’apprentissage né-
cessitent à la fois des capacités d’inférence et d’apprentissage, tout en étant écoénergétiques.
Cependant, aucune technologie de mémoire existante n’intègre pleinement toutes les caractéris-
tiques souhaitées pour ces systèmes. Les mémoires résistives – memristors – sont idéales pour
l’inférence, mais souffrent d’une endurance limitée et d’une consommation énergétique élevée lors
de la programmation. En revanche, les condensateurs ferroélectriques (FeCAPs) sont adaptés
pour l’apprentissage, mais leur processus de lecture, qui détruit la donnée stockée, les rend in-
adaptés à l’inférence. Un même dispositif à base d’hafnia peut être optimisé pour fonctionner
soit comme un FeCAP, soit comme un memristor, selon ses conditions d’exploitation. Un tel
dispositif à double usage a été réalisé au cours de cette thèse en intégrant un film de 10 nm
d’oxyde d’hafnium dopé au silicium, recouvert d’une couche de titane, entre deux couches de
métallisation d’une technologie CMOS du nœud 130 nm.
Un circuit intégré utilisant cette technologie de mémoire hybride a été validé expérimentalement.
Il inclut à la fois des FeCAPs et des memristors dans le même back-end-of-line du procédé CMOS
130 nm, créant un réseau hybride de FeCAPs et de memristors interconnectés. Cette matrice
hybride permet un transfert direct de données depuis plusieurs cellules FeCAP vers un seul
memristor, sans circuit intermédiaire. Cette technologie est compatible avec un entraînement
par descente de gradient stochastique de réseaux de neurones artificiels embarqués. Les FeCAPs
stockent des poids de plus grande précision pour l’apprentissage, tandis que les memristors stock-
ent des poids analogiques pour l’inférence et l’apprentissage. Les poids cachés (FeCAPs) sont
mis à jour pour chaque échantillon, tandis que les poids analogiques (memristors) sont mis à jour
tous les k entrées via le processus de transfert. Deux versions d’implémentation de ce système
ont été proposées. La première, utilisant des FeCAPs de même taille pour stocker des poids de
plus haute précision et un memristor pour le poids analogique, a des capacités d’apprentissage
limitées. La seconde implémentation utilise des FeCAPs de différentes tailles pour coder un
poids entier de 10 bits, tandis que deux memristors encodent des poids analogiques positifs et
négatifs dans leur conductance différentielle. Cette méthode atteint une précision élevée tout en
réduisant considérablement la consommation énergétique par poids lors de la programmation.
Le nombre d’opérations reste bien en dessous des limites d’endurance des memristors et des Fe-
CAPs. L’évaluation de la robustesse aux erreurs, évaluée en fonction des mesures de transfert
analogique, montre des performances comparables aux modèles logiciels à précision flottante sur
plusieurs benchmarks.
Pour aller plus loin, un second circuit, plus modulable, a été conçu et fabriqué en technologie
CMOS 22 nm pour explorer les avantages de la combinaison des dispositifs de mémoire fer-
roélectrique et résistive pour l’inférence et l’apprentissage dans les réseaux de neurones binaires
(BNNs). Ce design utilise des matrices de mémoire ferroélectrique pour stocker des poids cachés
de haute précision, au format entier ou flottant, avec des largeurs de bits de 8 bits ou multiples.
Les mémoires résistives, stockant les poids binaires en configuration différentielle à travers deux
dispositifs, sont utilisés pour effectuer du calcul proche-mémoire pour l’implémentation de la
multiplication matrice-vecteur dans les BNNs. Les simulations électriques du circuit atteignent
une consommation énergétique de multiplication binaire d’environ 100 fJ, avec un potentiel de
réduction à quelques dizaines de fJ. Plusieurs stratégies algorithmiques sont envisagées en util-
isant ce design de circuit, ouvrant la voie à des dispositifs embarqués capables d’apprentissage
pour des applications d’IA.

Mots-clés : Mémoire non-volatile, Réseaux de neurones artificiels, IC design
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Exploring learning techniques for edge AI taking advantage of non-volatile
memories

Abstract: Learning-capable edge artificial intelligence (AI) systems require both inference and
learning capabilities combined with energy efficiency. However, no existing memory technology
fully integrates all the desirable features for these systems. Resistive memory – Memristor – ar-
rays are ideal for AI inference but suffer from limited endurance and high programming energy. In
contrast, ferroelectric capacitors (FeCAPs) are effective for learning, but their data-destructive
read process makes them incompatible for inference. The same hafnium-based device can be
optimized to function either as a FeCAP or as a memristor, depending on its operating condi-
tions. Such a dual-use device was developed during this thesis by integrating a 10 nm film of
silicon-doped hafnium oxide, with a titanium oxygen-scavenging layer, between two metal layers
of a 130 nm CMOS process.
An application-specific integrated circuit using this hybrid memory technology was experimen-
tally validated. It includes both FeCAPs and memristors in the back-end-of-line of foundry
130 nm CMOS, creating a hybrid array of interconnected FeCAPs and memristors. This hy-
brid array enables direct data transfer from multiple FeCAP cells to a single memristor device
without intermediate circuits. This technology is compatible with on-chip training of artificial
neural networks with stochastic gradient descent. FeCAPs store higher-precision weights for
training, while memristors store analog weights for both inference and training. Hidden weights
(FeCAPs) are updated for each sample, while analog weights (memristors) are updated every
k inputs via the transfer process. Two system implementations were proposed. The first, us-
ing equally sized FeCAPs to store higher-precision weights and a single memristor for the analog
weight, has limited learning capabilities. The second implementation uses FeCAPs with different
areas to encode a 10-bit integer higher-precision weight, while two memristors encode positive
and negative analog weights through their differential conductance. This method achieves high
accuracy while significantly reducing energy consumption per weight during programming. The
number of operations remains well below the endurance limits of memristors and FeCAPs. The
evaluation of error robustness, assessed based on analog transfer measurements, shows perfor-
mance comparable to floating-point precision software models across several benchmarks.
To go further, a second, more flexible circuit was designed and manufactured in a 22 nm CMOS
technology to explore the benefits of combining ferroelectric and resistive memory devices for
inference and training in binarized neural networks (BNNs). This design utilizes ferroelectric
memory arrays to store higher-precision hidden weights in either integer or floating-point for-
mats, with bit-widths of 8 bits or multiples thereof. Resistive memories, which store binary
weights in a differential configuration across two devices, are used to perform near-memory com-
putation for implementing matrix-vector multiplication in BNNs. Electrical simulations of the
circuit achieve an energy consumption of approximately 100 fJ for binary multiplication, with
the potential for reduction to a few tens of fJ. Several algorithmic strategies are envisioned using
this circuit design, paving the way for devices capable of learning for edge AI applications.

Keywords: Non-volatile memory, Artificial neural networks, IC design
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Résumé

Introduction

La mise en œuvre des réseaux de neurones artificiels (ANN) est divisée en deux phases :
l’apprentissage et l’inférence. La phase d’apprentissage consiste à modifier un ensemble
de paramètres du réseau, les poids synaptiques, selon un algorithme d’apprentissage, afin
de les faire converger vers des valeurs permettant au réseau d’accomplir la tâche pour
laquelle il est entraîné avec une précision suffisamment élevée. La phase d’inférence con-
siste à appliquer le modèle appris précédemment à de nouvelles données d’entrée pour
accomplir la tâche. Ainsi, les poids synaptiques sont modifiés plusieurs fois au cours
de la phase d’apprentissage pour converger vers un ensemble optimal de valeurs pour la
tâche souhaitée, tandis qu’ils restent fixes lors de l’opération d’inférence. Le développe-
ment relativement récent et les résultats remarquables des ANN sont dus à la construc-
tion de gigantesques bases de données et à des innovations algorithmiques nécessitant
d’importantes ressources matérielles, ce qui entraîne des consommations d’énergie tout
aussi importantes. Comme l’intelligence artificielle (IA) est de plus en plus intégrée dans
divers objets connectés, allant des implants médicaux aux voitures autonomes, il est clair
que les solutions algorithmiques et matérielles disponibles dans les centres de données ne
pourront pas couvrir tous les besoins d’intégration de l’IA.
Le traitement des données de l’IA, en particulier l’apprentissage, dans les architectures
de calcul de type von Neumann nécessite des échanges d’informations importants entre
la mémoire et l’unité de calcul. Le débit limité, c’est-à-dire la quantité de données trans-
férées par unité de temps, entre les accès à la mémoire et le calcul, est connu sous le nom
de "von Neumann bottleneck". Cette problématique devient de plus en plus pertinente
avec l’avancée des nœuds technologiques CMOS.
S’inspirant de la co-localisation du calcul et du stockage dans le cerveau biologique, les
architectures de calcul en mémoire (IMC) ont émergé comme une solution économe en
énergie pour le traitement des modèles ANN. Ces architectures exploitent un niveau élevé
de parallélisme dans le calcul pour diminuer la complexité temporelle de certaines opéra-
tions et les déplacements de données. Ici, le calcul est effectué directement dans les
matrices de mémoire, les dispositifs mémoires se comportant comme des synapses artifi-
cielles. Combinées à des dispositifs de mémoire non volatile (NVM), les solutions IMC
peuvent considérablement améliorer l’efficacité énergétique des systèmes d’IA, offrant des
opportunités notamment dans les systèmes embarqués.
Parmi les solutions NVM, les memristors sont particulièrement prometteurs pour permet-
tre la prochaine génération de matériel IMC, car ils offrent potentiellement une meilleure
efficacité énergétique, des temps d’accès plus rapides et une plus grande densité par rap-
port aux dispositifs de stockage traditionnels. Néanmoins, ils souffrent de plusieurs non-
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Résumé

idéalités, limitant actuellement leur fiabilité globale. Bien que les technologies memris-
tives à l’état de l’art aient démontré une précision d’inférence proche de celle des logi-
ciels dans de nombreux domaines de l’IA, leur exploitation dans des systèmes capables
d’apprentissage reste un défi. En effet, les exigences de mémoire pour l’entraînement sont
plus exigeantes, car les processus d’apprentissage dans les ANN nécessitent un raffinement
itératif précis des forces synaptiques dans le réseau.
Les dispositifs de mémoire à accès aléatoire résistive (RRAM), également appelés memris-
tors filamentaires, et les mémoires à accès aléatoire ferroélectrique (FeRAM) apparaissent
comme des candidats appropriés pour développer un système d’apprentissage sur puce.
En particulier, la RRAM est une technologie de mémoire résistive, c’est-à-dire stockant
l’information dans la conductance du dispositif, qui peut être contrôlée par des impul-
sions électriques et reste inchangée si l’alimentation est coupée. De plus, les dispositifs
RRAM peuvent être utilisés comme cellules multi-niveaux, car plusieurs états de conduc-
tance peuvent être réglés dans le même dispositif. D’autre part, la technologie FeRAM
repose sur la possibilité de changer la polarisation de dipôles électriques semi-permanents
à l’intérieur d’un matériau ferroélectrique par des impulsions électriques dans deux direc-
tions opposées. Ainsi, les dispositifs FeRAM se présentent comme des dispositifs intrin-
sèquement binaires. La polarisation reste inchangée si l’alimentation est coupée.
L’endurance virtuellement infinie en lecture des dispositifs RRAM et leur faible endurance
en écriture les rendent adaptés aux applications d’inférence uniquement, tandis que la
grande endurance en écriture des dispositifs FeRAM permettrait effectivement de déplacer
l’apprentissage sur puce. Finalement, la migration de l’inférence et de l’apprentissage des
centres de données vers les dispositifs embarqués leur permettra de s’adapter à l’évolution
des données d’entrée, de spécialiser chaque appareil à son utilisateur, de conserver les
données privées et d’offrir un service plus rapide.
Ainsi, les objectifs de cette thèse sont d’étudier la compatibilité de différentes pistes al-
gorithmiques pour l’apprentissage des réseaux neuronaux avec les caractéristiques des
technologies de mémoire ferroélectrique et résistive développées au CEA LETI et les con-
traintes matérielles de l’électronique embarquée, afin de produire sur silicium un circuit
de démonstration combinant dispositifs NVM et technologies CMOS.

Résultats

La fabrication de deux technologies NVM différentes sur le même substrat, bien que poten-
tiellement bénéfique pour l’implémentation matérielle des réseaux de neurones artificiels,
se fait au détriment d’un coût de fabrication élevé et d’une intégration complexe. En
revanche, le même empilemnet de matériaux peut être optimisée pour fonctionner comme
FeRAM ou RRAM dans des conditions de fonctionnement différentes, dans le cas des
dispositifs à base de HfO2.
Cela a été réalisé en intégrant un film d’oxyde de hafnium dopé au silicium de 10 nm
avec une couche d’absorption d’oxygène en titane dans un procédé CMOS de 130 nm.
Cette empilement mémoire combine une couche d’oxyde de hafnium cristallisée dans la
phase orthorhombique – nécessaire pour la commutation ferroélectrique – avec une couche
d’absorption d’oxygène – nécessaire pour une commutation résistive fiable.
La mémoire hybride a été testée dans deux configurations : dans des matrices FeRAM et
dans des matrices RRAM fabriquées dans la back-end-of-line (BEOL) de la technologie
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Résumé

CMOS de 130 nm. En tant que FeRAMs, ces dispositifs ont montré qu’ils fonctionnent
comme des mémoires binaires avec une bonne endurance sur plus de 10 millions de cycles
et une faible énergie de programmation, inférieure à 200 fJ/bit. Après avoir subi un pro-
cessus de formation pour créer des filaments conducteurs, les mêmes dispositifs intégrés
dans le BEOL de matrices RRAM peuvent être utilisés comme des dispositifs de mémoire
resistive à plusieurs niveaux avec une endurance plus faible, environ 100,000 cycles. Ces
résultats soulignent le potentiel de cette approche hybride pour exploiter les avantages
des deux types de mémoire pour les charges de travail en IA.

Un circuit intégré exploitant la technologie de mémoire hybride développée a été validé
expérimentalement. Ce circuit comprend à la fois des condensateurs ferroélectriques (Fe-
CAPs) et des memristors dans le même BEOL de la fonderie CMOS de 130nm, afin de
créer une matrice hybride de FeCAPs et de memristors interconnectés. L’unité fondamen-
tale de la matrice hybride est un circuit synaptique hybride, constitué d’une collection de
cellules une-transistor-un-FeCAP, où la bit-line de chaque cellule est directement connec-
tée à la grille des transistors de sélection dans une cellule une-transistor-un-memristor. Ce
sous-circuit permet le transfert direct de données numérique-à-analogique depuis plusieurs
cellules FeCAP vers un seul dispositif mémristif, sans nécessiter de circuits intermédiaires.
Cette technologie est compatible avec l’entraînement sur puce des ANN. Les dispositifs Fe-
CAP stockent des poids cachés de haute précision qui subissent de nombreuses opérations
de programmation pendant l’entraînement, tandis que les dispositifs memristor stockent
des poids analogiques lus à la fois pendant l’inférence et l’entraînement.
Deux implémentations système ont été proposées. La première utilise des FeCAPs de
même taille pour stocker les poids de haute précision et un seul memristor pour stocker le
poids analogique. Cette approche limite la précision des poids cachés à n+1 états discrets,
où n est le nombre de FeCAPs dans le circuit synaptique. Un réseau de neurones binarisé a
été entraîné sur la tâche de détection d’arythmie ECG. En tenant compte des contraintes
du circuit synaptique, le réseau atteint une précision de 88 %, avec huit FeCAPs stockant
uniquement chaque poids de haute précision et un memristor utilisé pour stocker le poids
binaire.
La deuxième implémentation utilise des condensateurs ferroélectriques de différentes sur-
faces pour encoder les poids de haute précision entiers sur 10 bits dans un format signe-et-
amplitude et deux memristors pour encoder les poids analogiques positifs et négatifs dans
la conductance différentielle des memristors. Des ANN fully-connected ont été entraînés à
l’aide d’un algorithme de descente de gradient stochastique. En particulier, pour chaque
échantillon d’entraînement, les activations des neurones sont calculées par une multiplica-
tion matrice-vecteur en mode feed-forward entre les poids analogiques (memristors) et les
activations de la couche précédente. Les erreurs à la couche de sortie sont rétropropagées
pour évaluer les gradients et mettre à jour les poids cachés. Aucun momentum n’est utilisé
pour minimiser les coûts matériels. Les poids cachés (entiers de 10 bits dans les FeCAPs)
sont mis à jour pour chaque échantillon, tandis que les poids analogiques (memristors)
sont mis à jour tous les k entrées via la procédure de transfert développée. Sur le jeu de
données MNIST, avec k=100, la méthode atteint une précision de 96.7 % avec une con-
sommation totale d’énergie de programmation d’environ 38 nJ par poids, représentant une
réduction de 38 fois sans perte de précision par rapport à k=1. Le nombre d’opérations
de programmation reste 17 fois en dessous de la limite d’endurance des memristors et 75
fois en dessous de la limite des FeCAPs. De plus, la robustesse aux erreurs de mémoire
a également été évaluée à partir de mesures du transfert analogique des FeCAPs vers
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Résumé

les memristors. Les résultats obtenus sur une variété d’applications (détection binaire
des arythmies ECG, classification d’images sur les jeux de données MNSIT et Fashion
MNIST) sont compétitifs par rapport à ceux obtenus par des modèles logiciels en pré-
cision flottante. Enfin, l’approche d’entraînement proposée a été évaluée sur une tâche
d’apprentissage par transfert. Pour créer un scénario d’apprentissage par transfert, un
réseau neuronal adapté aux dispositifs embarqués, MobileNet-V2, a été pré-entraîné sur
le jeu de données CIFAR-100. Les couches convolutionnelles ont été utilisées comme ex-
tracteur de caractéristiques fixe, et une couche entièrement connectée a été ajoutée, qui a
été entraînée sur le jeu de données CIFAR-10 en utilisant la stratégie d’apprentissage adap-
tée aux contraintes du circuit mémoire hybride. L’apprentissage par transfert adaptée au
circuit mémoire hybride ne réduit la précision que d’environ deux points de pourcentage,
à 88 %, confirmant que cette approche fonctionne bien même avec des jeux de données
sophistiqués.

Un deuxième circuit développé vise à étudier les avantages de la combinaison de dis-
positifs mémoire ferroélectriques (Fe) et résistifs (Re), intégrés dans le BEOL de la tech-
nologie FDSOI de fonderie de 22 nm, pour l’implémentation matérielle de l’inférence et
de l’entraînement dans les réseaux de neurones binarisés (BNN), désigné sous le nom de
Fe RNet.
Fe RNet utilise des matrices FeRAM pour stocker des poids cachés de haute précision soit
au format entier, soit au format à virgule flottante, avec des largeurs de bits de 8 bits
ou multiples. Les poids binarisés sont stockés dans une configuration différentielle sur
deux dispositifs mémoire résistifs. Les circuits logiques de transfert permettent le trans-
fert parallèle de jusqu’à seize bits de signe des FeRAMs vers les RRAMs, accélérant la
communication entre les deux matrices.
Les matrices RRAM sont équipées de circuits de lecture qui effectuent des opérations
XNOR entre les poids binarisés stockés dans les dispositifs RRAM et les entrées présen-
tées aux circuits de lecture. Cette opération, combinée avec des circuits de comptage
de population, permet l’évaluation de multiplications matrice-vecteur dans les réseaux
de neurones binarisés, accélérant et améliorant l’efficacité énergétique pendant les passes
avant et arrière de l’entraînement BNN. Les simulations électriques Monte Carlo du cir-
cuit de détection conçu suggèrent la possibilité d’atteindre une énergie de multiplication
binaire d’environ 100 fJ, avec une réduction supplémentaire à quelques dizaines de fJ
possible avec un design de ligne optimisé.
La capacité synaptique, ou le nombre de poids qui peuvent être stockés dans le circuit
Fe RNet, dépend de la précision souhaitée des poids cachés. La capacité maximale est
atteinte avec des poids cachés de 8 bits, ce qui donne 16,000 poids synaptiques ; à mesure
que la largeur de bits des poids cachés double, le nombre de synapses est divisé par deux.
Des mesures préliminaires de la puce Fe RNet valident partiellement la fonctionnalité de la
carte de test développé et du circuit Fe RNet. Des tests supplémentaires sont nécessaires
pour valider pleinement la fonctionnalité des différents blocs. Plusieurs pistes algorith-
miques sont envisagées pour une implémentation utilisant Fe RNet, ce qui permettrait le
développement de systèmes embarqués capables d’apprentissage.
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Preface

Intelligence is defined as: "The faculty of understanding; intellect. Also as a count noun:
a mental manifestation of this faculty, a capacity to understand" 1. Traditionally, in-
telligence was regarded as the exclusive domain of living beings, particularly humans.
Machines were purely mechanical instruments, entirely lacking awareness or autonomous
reasoning capacity. In recent times, the distinction between human cognition and machine
intelligence is becoming increasingly blurred, creating widespread debate across philoso-
phy, theology, law, economics, sociology, and virtually every facet of contemporary life.
Alan Turing, in 1950, was the first to suggest the possibility that machines could think.
In the opening line of his article, Computing Machinery and Intelligence, he asks: "I
propose to consider the question, «Can machines think?»" To answer this, he introduced
the renowned Imitation Game (Figure 1) [1]. His pioneering research in the field of com-
putation and machine intelligence laid the groundwork for other scientists to carry on.
The term artificial intelligence (AI) was later coined by John McCarthy in 1956, in a
proposal that he wrote for the Dartmouth conference, together with Minsky, Rochester
and Shannon, scientists which are regarded among the founding fathers of AI.
The field of AI is vast and ever-changing. The techniques enabling machine intelligence
have significantly changed since the early developments of the field. In general, the main
goals of AI research include – but are not limited to – reasoning, knowledge representation,
planning, learning, natural language processing, perception, and support for robotics. Ul-
timately, the objective is to develop a system able to reach artificial general intelligence
(AGI), i.e. the ability to complete any task performable by a human on an at least equal
level, as dictated for example by the Turing test [2].
Although still far from reaching AGI, it is safe to say that AI is driving the fourth industrial
revolution by transforming industries through automation, data analysis, and advanced
decision-making [3]. Moreover, technological advancements have made AI tools and de-
vices ubiquitous in our daily lives, raising relevant concerns about data collection and
the potential misuse of personal information. This rapid technological progress required,
for the first time in history, regulation on the development of AI systems. The Council
of Europe led the drafting of the Framework Convention on Artificial Intelligence and
Human Rights, Democracy, and the Rule of Law, a treaty defining a risk-based approach
to regulate AI and defining a set of general principles and obligations related to activities
within the entire lifecycle of AI systems. Its general principles include, among others,
respect for human dignity, transparency and oversight, accountability and responsibility,
non-discrimination, and privacy and personal data protection.

1Oxford English Dictionary, s.v. “intelligence (n.), sense 1,” June 2024
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?

Figure 1: How do we define artificial intelligence? The imitation game proposed
by Alan Turing in 1950 consists in a human judge interacting with both a human and a
machine through written communication, without knowing which is which. The judge’s
task is to identify which participant is the machine. If the judge frequently mistakes the
machine for the human, the machine is considered to have passed the test, demonstrating
artificial intelligence.

Data on the cloud, data on the edge. Data is the fuel of AI, particularly in the de-
velopment and training of artificial neural networks (ANNs), systems designed to mimic
the biological brain’s learning processes. These networks rely heavily on large, diverse
datasets to learn patterns, make predictions, and improve over time. The more compre-
hensive the data, the more accurate and powerful these AI models can become. However,
as AI and neural networks’ reliance on data grows, so do concerns about privacy and se-
curity. Indeed, processing this vast amount of data is a power-hungry task that typically
requires data-center hardware solutions, thus necessitating to shuttle data from the user
to the Cloud. On the other hand, the processing capabilities of devices on the edge keep
increasing, suggesting the possibility to incorporate more and more AI features on edge
devices. Edge AI has the potential to offer several advantages compare to cloud-based
solutions: faster response times, reduced latency, improved energy-efficiency, security and
privacy. Currently, edge AI systems focus on inference and lack on-chip training ca-
pabilities. However, for personalized applications in user-specific environments, such as
autonomous driving, smart manufacturing, medical equipment, and home automation,
adaptive on-chip local training and fine-tuning of neural network parameters are essen-
tial. It is commonly agreed that current embedded hardware solutions cannot support the
power-hungry learning process of a neural network, thus necessitating fundamentally new
solutions to improve the energy-efficiency of these systems. With a power consumption
of approximately only 20 W, the human brain is capable of accomplishing remarkable
things, pointing the way of not only algorithmic solutions but also hardware innovations
[4].

Closing the gap between memory and computing. There’s probably never been a
more exciting time to explore the world of microelectronics. With the slowing of Moore’s
law and, more importantly, the already broken down Dennard scaling trend [5], it seems
obvious that the little gain obtained at each newly introduced complementary metal-

2
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Figure 2: Evolutionary and revolutionary paths in microelectronics. CMOS scal-
ing will eventually reach fundamental limits. The exploration of new devices, microarchi-
tectures, and system paradigms aims to extend efficiency and performance, beyond the
ones achievable by following the current evolutionary path.

oxide semiconductor (CMOS) technology node cannot keep the pace with the increasing
demand of computational power required by today’s workloads in classical computing
architectures.
The "lucky" coincidence of AI booming and slowing down of improvements in computing
performance calls for out of the box solutions to get back on track. Indeed, the evolution-
ary path offered by CMOS process scaling will eventually reach a fundamental physical
limit. Revolutionary solutions, beyond CMOS, could ultimately provide an advantage in
terms of efficiency and performance (Figure 2). Nevertheless, this requires novel materi-
als, devices and processes, and system architectures.
AI data processing in von Neumann computing architectures requires significant infor-
mation shuttling between memory and processing unit. In a commercial 45 nm processor
supplied at 0.9V, the energy consumption to perform an 8 bits integer multiplication is
0.2 pJ. In comparison, reading 64 bits from an 8 kilo-byte static random access memory
(SRAM) cache requires 10 pJ, whereas retrieving them from the main memory dissipates
2 nJ, respectively resulting in a factor 50x and 10,000x compared to the cheap multi-
plication operation [6]. Equivalent considerations can be extrapolated in terms of time,
pointing out the fact that communication dominates modern computation [7]. The dif-
ference in throughput, i.e. the amount of data transferred or processed per unit of time,
between memory accesses and computation has become known as von Neumann bottle-
neck. This issue in becoming more and more relevant with advancing CMOS technology
nodes.
Taking inspiration from the co-location of computing and storage in the biological brain,
in-memory computing (IMC) architectures have emerged as an energy-efficient solution
for processing ANN models. These architectures leverage a high-level of parallelism in
computation to decrease time-complexity of specific operations and data-movement. Here,
computation is performed within the memory arrays, with memory devices behaving as
artificial synapses. When combined with non-volatile memory (NVM) devices, IMC solu-
tions can skyrocket energy-efficiency of AI systems, providing opportunities particularly
in edge settings.
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Among NVM solutions, memristors2 are particularly promising to enable next-generation
IMC hardware, because they potentially offer improved energy efficiency, faster access
times and larger density compared to traditional storage devices. Moreover, many mem-
ristive technologies naturally include non-volatility. Nevertheless they suffer from several
device non-idealities, limiting their overall reliability at present. Although state of the art
memristive technologies have proven near software-equivalent inference accuracy in many
AI domains, their exploitation in learning-capable systems remains challenging. Indeed,
memory requirements for training are more demanding, as learning processes in ANNs
requires accurate iterative refinement of the synaptic strengths in the network. A mem-
ory technology simultaneously satisfying the demands for inference and learning does not
yet exist [4]. This thesis seeks to address this challenge, by proposing a novel memory
technology and co-designing hardware and algorithmic solutions for training on-chip.

AI research at CEA LETI and CEA LIST. This thesis was carried out at Com-
missariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) in Grenoble, France.
Artificial intelligence plays a major role in the research axis at CEA. The CEA LETI In-
stitute focuses on the development the technological bricks to enable the development of
future embedded AI systems, such as advanced transistor technologies, three-dimensional
interconnections and emerging memory devices. The CEA LIST Institute creates inno-
vative architectural solutions for frugal and trusted AI, while also offering expertise in
algorithm development and embedded systems design.
This thesis, supported by CEA LETI and CEA LIST, seeks to study the compatibility
of various learning algorithms for ANNs with emerging memory technologies developed
at CEA LETI. The objective is the development of a demonstration integrated circuit on
silicon that combines both emerging memories and conventional electronics, taking into
account hardware constraints in on-board electronics.

Thesis contributions. The main contributions of this thesis are:

• The manufacturing and electrical characterization of a unified ferroelectric/resistive
memory stack, which is based on a silicon-doped hafnia (HfO2) layer sandwiched
between two metal electrodes. The characterization of 16,384-device ferroelectric
and resistive memory arrays evaluates the effectiveness and reliability of this memory
technology for AI workloads.

• The design, manufacturing and test of an embedded circuit, interconnecting ferro-
electric and resistive memory devices based on the unified memory stack, in the
130 nm CMOS technology node. System-level simulations of co-designed algorith-
mic solutions validate the potential of this technology for on-chip learning of ANNs.

• The design of an embedded circuit in the 22 nm CMOS technology node, combining
ferroelectric and resistive memory arrays for near-memory inference and training in
binarized neural networks. Preliminary manufacturing and characterization results
highlight the potential of this technology for edge learning.

2The memristor is the fourth passive circuit element, introduced by Leon Chua in 1971 [8].
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Thesis outline. This thesis is organized as follows:

• Chapter 1 is introductory, it has as objective introducing the vocabulary for both al-
gorithmic and hardware solutions used throughout this thesis. Firstly, learning with
back-propagation of errors are described, discussing the common practice solutions
developed up until now to improve the overall training quality of an ANN and the
challenges and opportunities of embedding these solutions in resource-constrained
hardware. In the second part of this chapter, an overview of the optimal hardware
solutions for ANNs are presented. In particular, in-memory and near-memory com-
puting solutions based on emerging non-volatile memory devices are discussed. The
chapter presents some of the most mature solutions in this field, for both inference
and training, pointing out the need of an hybrid memory technology in the latter
case.

• Chapter 2 presents the technological building block of this thesis, i.e. a hybrid
memory technology based on ferroelectric and resistive devices. The key idea of
the chapter is that the two kind of devices can be obtained with the same memory
stack, a silicon-doped HfO2 layer sandwiched between a bottom electrode and an
active top electrode. Firstly, the chapter describes HfO2-based ferroelectric and
resistive devices in terms of operation, array implementation and process integration.
Then, the developed unified memory stack is presented with extensive electrical
characterization in both operating modes. Finally, insights for device optimization
are discussed.

• Chapter 3 presents a proof-of-concept circuit utilizing the unified ferroelectric / re-
sistive memory stack for implementing back-propagation-based learning algorithms.
The design explores the potential of this memory architecture to enhance perfor-
mance and energy efficiency for the training of binarized and quantized neural net-
works. Two distinct system implementations are presented and analyzed, highlight-
ing their design trade-offs, operational benefits, and potential applications. The
approach is validated on silicon and benchmarked via simulations on several AI
tasks.

• Chapter 4 introduces a second circuit design that combines ferroelectric (Fe) and
resistive (Re) memory devices for hardware implementation of inference and training
in binarized neural networks, Fe RNet. The circuit design is presented alongside
electrical simulations validating some of its components. The developed electrical
characterization setup and some preliminary measurements are presented. Finally,
potential applications are also suggested as future research directions.

• Chapter 5 concludes with a summary of the main findings of this thesis and discusses
potential future directions.
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Chapter 1

Algorithmic and hardware solutions in
artificial neural networks

The AI boom, or AI spring, characterized by the rapid progress of AI methods in the
last decade, has been fueled by the development of machine learning techniques oriented
towards the exploitation of artificial neural network models. As the name suggests, an
artificial neural network is a computational model loosely inspired by the structure and
connectivity of neurons and synapses in a biological brain. Multiple layers of neurons are
connected by artificial synapse in order to create a deep network of connections. This
layered structure is exploited to implement deep-learning methods, which are based on
multiple levels of representation, obtained by composing non-linear modules that each
transform the representation at one level (starting with the raw input data) into a repre-
sentation at a higher, slightly more abstract level [9].
The implementation of ANNs is divided into two phases: learning and inference. The
learning phase involves modifying the values of a set of parameters of the network, the
synaptic weights, according to a learning algorithm. The goal is to make these weights
converge toward values that enable the network to accomplish the task for which it was
trained, achieving a sufficiently high level of accuracy. The inference phase involves ap-
plying the previously learned model to new input data.
Different architectures of ANNs have been developed to solve a variety of problems: con-
volutional neural networks (CNNs) have been used for image recognition [10, 11, 12]
(detection, classification, segmentation) tasks, whereas recurrent neural networks for au-
dio/speech recognition, and text translation [13, 14]. More recently, transformer network
architectures have revolutionized the field of deep learning, in particular for sequence
modeling and generation [15]. Indeed, transformer architectures are the building block
of large language models like Open AI’s GPT series, Google’s Gemini, Meta’s LLaMA,
and many others, which are by now ubiquitous. The trend for most ANN models is to
dramatically scale up in size. GPT models grow in size at each new release, reaching 1.8
trillion parameters with GPT-4 (approximately 10x bigger than its predecessor GPT-3).
Nevertheless, as artificial intelligence is now being embedded more and more into various
connected objects, ranging from medical implants to autonomous cars, it is clear that the
algorithmic and hardware solutions available in data centres will not be able to cover all
the AI integration needs. Different solutions have to be designed to allow also resource-
constrained devices to operate AI tasks, from inference to learning [16].
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Algorithmic and hardware solutions in artificial neural networks

This chapter explores the development of intelligent resource-constrained devices. Ini-
tially, it discusses algorithmic solutions within the context of ANNs, outlining common
practices for training neural network models. The challenges and opportunities associated
with moving the training process to edge devices are also examined. The second part of
the chapter focuses on hardware solutions aiming at enhancing the energy efficiency of AI
systems, highlighting the direction of this thesis with respect to technology and system
architectures.

1.1 Artificial neural network training and inference

Artificial neural networks are computational graphs, whose structure is roughly inspired
by the organization of neuron and synapses in the biological brain. The nodes of such
graph represent the neurons and the connections between these nodes are the synaptic
weights, or simply weights.
Biological and artificial neurons share similarities beyond just their connectivity (Fig-
ure 1.1). At the center of a biological neuron lies the cell body, or soma. The dendrites,
branch-like cellular extensions forming a complex structure often referred to as a dendritic
tree, stem from the soma. This is the primary region where the neuron receives inputs
coming from other neurons. The axon, a thinner, cable-like projection, can extend to
lengths many times greater than the diameter of the soma. Its main function is to trans-
mit signals away from the soma. Typically, a neuron has only one axon, which frequently
branches extensively, allowing it to connect with multiple target cells. At the farthest
end of the axon from the soma lies the axon terminal, where synapses are located. These
synaptic boutons are specialized sites where neurotransmitters are released to facilitate
communication with other neurons. The nature of communication between biological
neurons is electro-chemical. Indeed, the propagation of neurotransmitter travelling across
the neuron, via ion pumps, alters the membrane potential of the neuron, defined as the
difference in electric potential between the interior and the exterior of the neuron. At
some point in time, an action potential can occur, when the membrane potential of a
specific axon location rapidly rises and falls: this depolarisation then causes adjacent lo-
cations to similarly depolarise. The action potential event occurs when the membrane
potential overcomes a threshold voltage. Therefore, action potentials play a central role
in intra-cellular and cell-to-cell communication by providing for the propagation of signals
along the neuron’s axon toward synaptic boutons situated at the ends of an axon; these
signals can then connect with other neurons at synapses. Action potentials in neurons
are also known as “spikes”, and the temporal sequence of action potentials generated by
a neuron is called “spike train”. A neuron that emits an action potential is often said to
“fire” [17]. It is important to point out that this description of the biological neuron is
over-simplified and it does not cover all existing types of neuron structures and observed
phenomena. Nonetheless, it provides a general idea of the working principle of a biological
neuron, inspiring their artificial counterpart.
Neuron elements in artificial neural networks perform similar computation compared to
biological neurons. Indeed, an artificial neuron implements a weighted sum of the inputs.
Then, an activation function is applied to this weighted sum to evaluate the output. The
simplest form of artificial neural network is the perceptron network, introduced by Rosen-
blatt in 1958 [18]. The perceptron network is a single-layer – inputs directly connected
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to the output layer – or multi-layer – inputs are connected to one or more hidden layers,
then connected to the output one – linear network. In the perceptron network, the acti-
vation function is a step Heaviside function, meaning that the output is set to either 0 or
1 according to a threshold value. The similarities between the artificial neuron and the
biological one can be understood here:

• Biological neurons operate based on an all-or-nothing principle [19]. When the
combined input signals (after summing and weighting) exceed a certain threshold,
the neuron "fires", sending an electrical signal down the axon to other neurons. If the
threshold is not reached, the neuron does not fire. The step function in a perceptron
mimics this behaviour by producing a binary output: if the weighted sum of inputs
reaches or exceeds a certain threshold, the perceptron outputs 1 (analogous to the
neuron firing); otherwise, it outputs 0 (analogous to the neuron not firing).

• The concept of a threshold in the step function is directly inspired by the threshold
potential in biological neurons. In a biological neuron, the threshold is the critical
level that the membrane potential must reach for the neuron to activate. Similarly,
in a perceptron, the step function checks whether the input signal exceeds a certain
threshold to determine the output.

While the perceptron and its step function are inspired by biological neurons, they rep-
resent a highly abstract and simplified model of a biological neural network. The step
function abstracts the complex, continuous processes of a biological neuron into a simple,
discrete decision-making rule.

Cell Body

Axon

Axon Terminals

Dendrites Synapse

Biological Neuron

fΣ
...

x1

x2

x3

xn

Inputs

Sum Activation 
Funciton

Output

Artificial Neuron

Figure 1.1: Biological and artificial neurons. The structure of a biological neuron
(left) includes the cell body, the dendritic tree, the axon and the axon terminal where
synapses are located. The inputs, integrated at the dendritic locations can propagate
through the axon to reach the synapses. An artificial neuron (right) performs the mul-
tiplication and accumulation of weights and inputs. An activation function is applied to
the weighted sum to evaluate the output.

As first attempt to emulate a biological neural network, the perceptron network had lim-
ited success, as it could only solve linearly separable problems. A significant milestone
in deep-learning came in 1986 with the publication by Rumelhart, Hinton, and Williams,
which introduced the renowned back-propagation algorithm as we know it today [20].
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This paper marked the first introduction of a learning rule for actual multi-layered net-
works. Indeed, in perceptrons, the "feature analyzers" situated between the input and
output layers are not genuine hidden units since their input connections are manually
set, meaning their states are entirely determined by the input vector, and they do not
learn representations. Learning becomes more complex but also more meaningful when
hidden units are introduced, i.e. units whose states are neither provided nor required by
the task. The back-propagation algorithm allows to determine when these hidden units
should activate to achieve the desired input-output behaviour, essentially deciding what
these units should represent.

1.1.1 The back-propagation algorithm

The back-propagation algorithm is a supervised learning method designed to automati-
cally adjust the parameters, or weights, of an artificial neural network model. It works
by minimizing an objective function, also called a cost function, which measures the error
between the model’s predicted outputs and the expected outputs. This cost function is
computed as the average error across all training examples, and it is an N-dimensional
function where N represents the number of parameters in the model. Thus, the cost func-
tion minimization is obtained by tweaking the model’s parameters. This process is akin
to solving a gradient descent optimization problem, a common approach in unconstrained
mathematical optimization. The key idea is to take repeated steps in the opposite di-
rection of the gradient of the cost function at the current point because this direction
corresponds to the steepest descent. When the cost function is convex, all local minima
are also global minima, meaning that gradient descent can potentially lead to the best
possible solution.
The key finding of the back-propagation algorithm is a simple rule to evaluate this gra-
dients in a multi-layer neural network architecture. Indeed, if the activation functions
used at each layer of the network architecture are differentiable functions, the gradients
of the cost function with respect to the weights, i.e. the weights updates, can be simply
evaluated by exploiting the derivative chain rule. Figures 1.2a and 1.2b elucidate the key
equations for the forward propagation of the inputs from the input to the output layer and
the backward propagation of the errors from the output to the input layer, respectively.
During forward propagation, the activations at each layer are evaluated as the weighted
sum of the previous layer’s activations, passed through the non-linear activation function.
The hidden layer activations can be various, such as the hyperbolic tangent function,
sigmoid function, rectified linear unit (ReLU), leaky ReLU. The hidden layers transform
the input through non-linear distortions, making the categories linearly separable in the
final layer. Finally, the activation function at the output layer defines the output scores
as well as how the errors should be evaluated, for the backward pass.
During the backward pass, for each hidden layer, the error derivative with respect to the
output of each unit are evaluated, as a weighted sum of the error derivatives with respect
to the total inputs to the units in the layer above. Then, the error derivative with respect
to the output are converted into the error derivative with respect to the input by multi-
plying it by the gradient of the layer activation function. At the output layer, the error
derivative with respect to the output of a unit is computed by evaluating the derivative of
the cost function. For example, in binary detection problem a sigmoid function is used at
the output layer, whereas for multi-class classification a softmax function is used to eval-
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uate the output layer predictions. Thus, for a cross-entropy cost functions, which is the
common-practice cost function for classification problems, the errors at the output layer
can simply be calculated as the difference between the expected and predicted outputs.
Once the error derivatives with respect to the input of each layer are known, the error
derivative for the weight wij on the connection from unit i in the layer below is just
yi · ∂E/∂zj. The weight update rule is therefore:

w
(t+1)
ij = w

(t)
ij − η(t)

[
yi
∂E

∂zj

](t)
(1.1)

where η(t) is the learning rate at iteration t. The learning rate is a scaling factor of the
weight update defining the speed of the convergence. Tuning of the learning rate is essen-
tial in order to converge at the right rate, avoiding over- or under-shooting the optimal
solution. Learning rate scheduling techniques exists in order to scale the learning rate as
the training proceeds.
It is important to notice that convergence to poor local minima rarely poses a signifi-
cant problem in large networks. Regardless of starting conditions, the system typically
converges on solutions of similar quality. Theoretical and empirical findings suggest that
local minima are not a major concern overall in deep neural networks [9].
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Figure 1.2: Multi-layer neural networks and back-propagation. a Equations used
during the forward pass in a neural network with two hidden layers and one output layer.
Bias terms are omitted for clarity. b Equations used for computing the backward pass
for the same network. Reproduced from [9].

Setting up an optimization problem

By definition, supervised learning techniques like back-propagation require a ground truth
to evaluate errors and adjust the parameters of a model to minimize the objective function.
In the context of deep-learning, this ground truth is provided by datasets containing a
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list of inputs and their corresponding labels. Datasets for deep learning applications are
usually divided into three subsets:

• Training set: This dataset provides the inputs and labels that are used during
training to evaluate the errors at the output layer and guide the updates to the
model’s parameters.

• Validation set: This subset is used during training to monitor the model’s perfor-
mance on unseen data and fine-tune hyperparameters, such as the learning rate and
network size.

• Test set: The test set is used after the model has been fully trained to assess its gen-
eralization ability. It provides a final, unbiased estimate of the model’s performance
on new, unseen data.

Data from training, validation and test sets should belong to the same distribution for the
training to be well defined. Sometimes, the test set is not used and the validation set acts
as test set too. This practice, although not entirely rigorous, is quite common for smaller,
simpler datasets. Indeed, the validation set indirectly participates in the training phase,
by utilizing the performance information evaluated on this dataset to change the model
hyperparameters accordingly. Common datasets, of increasing complexity, for image clas-
sification tasks are the MNIST [21], Fashion-MNIST [22], CIFAR-10 and CIFAR-100[23],
and ImageNet [24] datasets. Some of these datasets are used later in this thesis, as they
represent a standard benchmark for ANN systems for computer vision. Nevertheless,
many other datasets exist for diverse tasks, which could in principle be more adapted in
edge learning settings.
Assessing a neural network’s accuracy on the training and validation sets helps identify
issues related to the bias-variance trade off. Bias error arises from incorrect assumptions
in the learning algorithm. High bias can lead to underfitting, where the algorithm fails
to capture the underlying relationships between features and target outputs. Variance
error, on the other hand, stems from the model’s sensitivity to minor fluctuations in the
training data. High variance often results in overfitting, where the algorithm captures
random noise rather than the true data patterns. Typically, underfitting can be resolved
by training the network longer, or utilizing bigger networks. Overfitting on the other
hand might require more data to better generalize the training (e.g. techniques of data
augmentation [25]), smaller networks, or other regularization techniques, such as weight
decay [26] or Dropout [27].
After defining the network architecture, the model parameters should be properly initial-
ized to start off training. An optimal initialization is essential to speed up training and
avoid vanishing or exploding gradients. Indeed, the forward and backward propagation
in deeper networks can cause the gradients to either have very small values, thus freezing
the learning process, or large values, thus letting the learning process diverge, depending
on the magnitude of the network weights.

Stochastic gradient descent and batch learning

There are several ways to implement the back-propagation algorithm to train a neural net-
work for a given dataset. The standard gradient descent algorithm takes an optimization
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step after all training examples are processed, by evaluating the average over the updates
evaluated for each training sample. In the context of neural networks, this technique is
called batch gradient descent. The new optimization step is taken by iterating again over
the whole dataset, from the updated starting point.
The speed of convergence to the optimal solution can be adjusted, by splitting the training
dataset in smaller subsets of data, called mini-batches, and taking one optimization step
for each mini-batch. This technique is called mini-batch gradient descent. After all mini-
batches are processed, the training dataset is shuffled before being split again in subsets
for the next iterations. One entire iteration over the full dataset is called training epoch.
If a dataset is composed of N samples and each mini-batch has size m, N/m optimization
steps are taken for each training epoch.
If the size of the mini-batch is equal to one, an optimization step is taken for each training
sample. This technique is called stochastic gradient descent (SGD). The name stochas-
tic gradient descent is somehow misleading, as no stochastic processes occur during the
training. Rather, the optimization procedure becomes more and more noisy as the size of
the mini-batch decreases.
Figure 1.3 qualitatively illustrates the optimization process in the case of a supposed
objective function of two parameters (w1 and w2) in the case of batch, mini-batch and
stochastic gradient descent. The figure highlights the idea that the learning curve in batch
gradient descent is the smoothest, whereas a noisier behaviour is observed for mini-batch
and stochastic gradient descent. Moreover, batch gradient descent is typically the slowest
form of learning. Indeed, even if less steps are required to get to the optimal solution, each
optimization step requires processing the whole dataset each time. Conversely, in mini-
batch gradient descent more optimization steps might be necessary, but less iterations
over the whole dataset. The size of the mini-batches should be optimized according to
the data distribution, the size of the dataset and the training settings. In edge contexts,
SGD-like learning is typically preferred, as it enables real-time adaptation in changing
conditions. Moreover, performing online updates consumes fewer resources compared to
batch learning, which requires larger memory to store and process data in bulk. SGD-like
algorithms are explored later in this thesis for the implementation of ANN learning in
edge environments.
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Figure 1.3: Stochastic gradient descent and batch learning. Optimization process
in the case of a supposed objective function of two parameters (w1 and w2) in the case of
batch, mini-batch and stochastic gradient descent.

Training deep neural networks is challenging because the input distribution to each layer
can shift during training as the parameters of preceding layers are updated. This phe-
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nomenon, known as internal covariate shift, complicates the training process by necessi-
tating lower learning rates and meticulous parameter initialization. To tackle this issue,
normalization techniques are typically used to keep the activation values at each layers
with similar distributions. When working with batches, a common practice is to use batch
normalization. This approach allows to use of higher learning rates and reduces the need
for careful initialization. Additionally, it serves as a regularizer, sometimes removing the
necessity for dropout [28]. It is important to notice that using batch normalization dur-
ing training has a significant impact on the memory budget of the neural network as the
activation for each neuron and each sample should be stored before an update could be
evaluated. Moreover, batch normalization typically exploits trainable shift and scaling
parameters that complexify the training procedure and require additional storage.
Other normalization techniques exist to deal with the problem of the internal covariate
shift, such as layer [29], instance [30] or group normalization [31] techniques. Each tech-
nique presents some advantages over the other in different applications, training settings
or network architectures.

Techniques to improve convergence

When training neural networks, optimization techniques play a crucial role in fine-tuning
the learning process and ensuring that the model converges efficiently and accurately.
Three widely used optimization methods are Momentum, RMSprop, and Adam. Each
of these methods builds upon the standard gradient descent approach by incorporating
additional features to enhance performance.
Momentum [20] is an optimization technique that helps accelerate the convergence of the
gradient descent algorithm by smoothing out oscillations in the gradient updates. Instead
of just moving directly along the negative gradient, Momentum introduces a velocity term
that accumulates the gradients of previous steps. This accumulated velocity is then used
to update the weights, allowing the model to maintain direction even when faced with
small or noisy gradients. By doing this, Momentum helps the optimization process to
navigate through the cost function’s fluctuations more efficiently, reducing the risk of get-
ting stuck in local minima or oscillating around the optimal solution.
RMSprop [32], or Root Mean Square Propagation, takes a different approach by adapting
the learning rate for each parameter individually. It does this by maintaining a mov-
ing average of the squared gradients for each parameter, which is then used to scale the
learning rate. The key idea behind RMSprop is to slow down the learning in dimensions
where the gradients are large while speeding it up in dimensions where the gradients are
small. This adaptive learning rate prevents the model from overshooting minima in steep
directions while allowing it to move faster in flatter regions, ultimately leading to a more
balanced and stable convergence.
Adam [33], short for Adaptive Moment Estimation, combines the benefits of both Momen-
tum and RMSprop. It keeps track of an exponentially decaying average of past gradients
(like Momentum) and an exponentially decaying average of past squared gradients (like
RMSprop). These two components are then used to compute adaptive learning rates for
each parameter. Additionally, Adam includes bias correction terms to counteract the ini-
tial conditions where the moving averages might be biased towards zero. This makes Adam
highly effective in handling noisy gradients and sparse data, providing fast convergence
and often performing well out of the box without the need for extensive hyperparameter
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tuning. As a result, Adam is one of the most popular and widely used optimization algo-
rithms in deep learning today.
These optimization strategies come at the expense of an increased memory cost. Indeed,
Momentum and RMSprop optimizers require storing double the amount of parameters
to keep tracks of both weights and moving averages on gradients and square gradients
respectively. As both components are used for the Adam optimizer, the memory require-
ments are triplicated in this case. Although effective for off-chip training, these techniques
might not be supported on systems with a limited amount of memory.

1.1.2 Embedding artificial neural networks on-chip

With the rapid expansion and widespread adoption of Internet of Things (IoT) devices,
and the continuous rise in connected everyday gadgets, the volume of data being gathered
from the world is skyrocketing. This situation raises several issues:

• Increasing privacy concerns and the security risks linked to access to such vast
amounts of data.

• Costs or limitations associated with transmitting all this data for inference and/or
training purposes.

A question arises: Given the immense data generated by these edge devices, is it really
necessary for the data to leave the device? Why not allow the training process to occur
directly on the edge device? This concept significantly expands on the common notion of
edge AI. Edge AI has the potential to revolutionize healthcare and enhance the security
of individuals, buildings, and industrial setups. This potential has driven considerable
research into developing edge devices capable of performing AI tasks with minimal energy
consumption. Currently, these devices primarily focus on inference and lack on-chip train-
ing capabilities. However, for personalized applications in user-specific environments, such
as autonomous driving, smart manufacturing, medical equipment, and home automation,
adaptive on-chip local training and fine-tuning of neural network parameters are essential.
Embedding AI capabilities at the edge poses significant challenges in terms of power con-
sumption and memory capacity. What is typically called edge refers to systems with
peak power consumption below 10 W approximately [34]. For instance, a typical digital
embedded platform is a micro-controller unit (MCU). MCUs are essential to the au-
tomation of various products and devices, including automobile engine control systems,
implantable medical devices, household appliances, and other embedded systems. By in-
tegrating the microprocessor, memory, and input/output components into a single unit,
micro-controllers significantly reduce the size and cost of designs, making digital con-
trol feasible for a wider range of devices and processes. Mixed-signal micro-controllers,
which incorporate analog components, are especially common for managing non-digital
electronic systems, such as sensors and actuators. In the realm of IoT, micro-controllers
are a cost-effective and widely used solution for collecting data, sensing, and actuating in
the physical world as edge devices. Some micro-controllers are designed with low power
consumption in mind, operating on low-bit formats and frequencies in the order of kHz,
which can result in power usage in the range of milliwatts or even microwatts.
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As an example, AI face identification has been proven to run on a STM32H7 micro-
controller, enabling security-grade applications without compromising performance or
biometric data privacy [35]. The STM32H7 micro-controller series is based on the 32-
bit Arm Cortex-M7 core and offers embedded flash memory ranging from 64 Kbytes to 2
Mbytes, manufactured using a 40 nm process. In the best case, an MCU with 2 Mbytes
memory used exclusively to store a neural network model with 32-bits weights would allow
to store a model with 500,000 parameters, or a million parameters if half-precision repre-
sentation is used. A convolutional neural network architecture specifically conceived for
embedded application for image classification purposes like MobileNet totals 4.2 million
parameters [36], clearly pointing out the need for more compact solutions for the storage
of weights.

Overcoming memory constraints: Quantized neural networks

Deploying a neural network model at the edge requires reducing the numerical precision
of the parameters of the model to lower-bit formats. Quantized neural networks (QNNs)
are a type of neural network where the precision of the network’s parameters is reduced
from the standard floating-point representation (typically 32-bit) to a lower-bit represen-
tation, such as 8-bit, 4-bit, or even 1-bit [37]. This reduction in precision is known as
quantization. Of course, lower precision leads to more significant reductions in model size
and computational load, but it may also affect the model’s accuracy. There are several
strategies to obtain a quantized neural network model to deploy, which can be classified
in three categories:

• Post-training quantization (PTQ): This approach converts a pre-trained full-precision
network to a fixed point one. It takes a trained network and quantizes it with little
or no data, requiring minimal hyperparameter tuning and no end-to-end training.
Several quantization pipelines and techniques have been engineered to reduce the
quantization error, defined as the accuracy difference between the full-precision and
quantized model. In most cases, PTQ is sufficient for achieving 8-bit quantization
with close to floating-point accuracy. On the other hand, moving to lower bits
resolution requires more advanced techniques [38].

• Quantization aware training (QAT): This technique requires fine-tuning and access
to labeled training data but enables lower bit quantization with competitive re-
sults. QAT models the quantization noise source during training. This allows the
model to find more optimal solutions than post-training quantization. However, the
higher accuracy comes with the usual costs of neural network training, i.e., longer
training times, need for labeled data and hyper-parameter search. In QAT, during
the forward pass of back-propagation, the weights (and activations) are quantized
to evaluate the next layer activations. During the backward-pass, the quantization
blocks of the computational graphs are bypassed by using a technique called straight
through estimator (STE), which approximates the gradient of the quantization op-
eration to one. This procedure effectively allows to evaluate the weights gradients
for the current fine-tuning iteration. The fine-tuning is stopped when the accuracy
obtained with the quantized model is close enough to the one obtained with the
floating-point model [38].

16



Algorithmic and hardware solutions in artificial neural networks

A technique similar in principle to QAT consists in training a neural network from
scratch, simulating quantized weights (and activations) during forward propagation
and updating a full-precision copy of the weights. In this case, instead of start-
ing with a pre-trained model, the weights are initialized and a complete training is
performed. Binarized neural networks (BNNs) have emerged in this context as a
technique to obtain an extremely quantized model where only weights [39] or both
activations and weights can only take two values, i.e. ±1 [40, 41]. For image classifi-
cation applications, BNNs have shown nearly state of-the-art accuracy performance
on the MNIST, CIFAR-10 and SVHN datasets [40], as well as on the more complex
ImageNet dataset [41].

• Quantized training (QT): Quantized training (QT) involves updating the model ex-
clusively within the quantized parameter space. The ultimate goal is to develop a
framework where all elements involved in network training – such as weights, activa-
tions, gradients, and errors – are quantized. However, training deep neural networks
with reduced precision poses significant challenges, particularly in preserving the ac-
curacy of gradients during back-propagation.
Various studies explored different levels of quantization. For instance, DoReFa-Net
applies low-bitwidth floating-point quantization to gradients during the backward
pass [42], while TernGrad reduces gradient updates to ternary values to minimize
gradient synchronization overhead in distributed training [43]. Despite these ap-
proaches, DoReFa-Net and TernGrad still store and update weights using 32-bits
floating point precision throughout training. Additionally, these methods do not ad-
dress the quantization of batch normalization or its derivative. On the other hand,
the WAGE framework facilitates a fully low-bitwidth integer dataflow in ANNs for
all parameters during both training and inference. WAGE also eliminates batch
normalization by implementing a novel initialization technique and a layer-specific
constant scaling factor. WAGE achieves satisfying accuracy across multiple datasets
with a 2-8-8-8 bit width configuration for weights, activations, gradients, and errors,
respectively [44].

Figure 1.4 qualitatively summarizes the three quantization strategies in the case of a sup-
posed objective function of two parameters (w1 and w2).
Although the result of all the aforementioned techniques is a quantized neural network
model, PTQ or QAT require a copy of the full-precision neural network model to start
with or during simulation. Therefore, these two methods are effective for training a model
off-chip in order to obtain a portable model to be embedded on a resource-constrained
edge device for inference-only applications. On the other hand, embedded training re-
quires updating the quantized model without having any information of the full-precision
one. Thus, a quantized training strategy should be chosen in this case.
Beside the memory required for weights, embedding training on chip requires additional
memory to store intermediate quantities to evaluate gradients and errors. If batch nor-
malization is used, the amount of supplementary memory required to evaluate the updates
for one iteration is approximately proportional to the number of neurons in the network,
the size of the mini-batch and the number of bits required to store the normalized activa-
tions. Moving to online training strategies, i.e. online stochastic gradient descent, could
be beneficial for embedding training on chip. Moreover it can be argued that an online
learning process is more adapted to an edge setting, where data arrives sequentially rather
than in batches.

17



Algorithmic and hardware solutions in artificial neural networks

C
os

t f
un

ct
io

n

min

max

w
2

w
q 2

/
w

1
wq

1
/

Post - training 
quantization

Quantization aware 
training

Quantized 
training

Figure 1.4: Quantization techniques for artificial neural networks. In the space
of the model parameters (w1 and w2), a grid of quantized values is defined (red dots). In
PQT, the training is performed in the real valued parameter space (solid orange lines).
After the training procedure is terminated, a quantization step occurs (dotted orange
line). In QAT, the quantized weights are simulated during the forward step (dotted brown
lines), while a full-precision latent copy of the weights (solid brown lines) is optimized.
In QT (solid black lines), the parameters optimization during training is constrained to
quantized values only.

Overcoming energy constraints: Application-specific integrated circuits

Quantization of neural networks offers advantages not only from a memory perspective
but also for reducing the energy consumption during inference and training.
Considering deployment on a conventional hardware, compared with 32-bits floating point
representation, 8-bit integer multiplications and additions respectively require 18 and 30
times less energy (estimated on a 45 nm technology at 0.9 V) to be performed [44].
Moreover, having a quantized model reduces the memory accesses costs and memory
size requirements during training, which can greatly benefit mobile devices with on-site
learning capability.
Application-specific integrated circuits (ASICs) can be developed in order to implement
neural networks operations as defined by a training algorithm in the most efficient way,
thus reducing the energy consumption to the bare minimum. In the second part of this
chapter, the focus of the discussion shifts to the hardware implementation of artificial
neural networks, highlighting the advantages of specific hardware architectures for deep-
learning applications, in terms of energy and area efficiency.

1.1.3 Challenges and perspectives on edge artificial intelligence

It is clear by know that the term edge AI, i.e. the possibility to embed artificial intelli-
gence capabilities in low power systems, covers a broad range of applications and tech-
niques. Although still requiring further optimization, edge inference is already present in
some commercial products. As an example, the two best-selling smartphone companies
nowadays, Apple and Samsung, already included neural processing units (NPUs) in their
top-level products to locally process data for some AI tasks. The Apple A16 Bionic sys-
tem on a chip – used in iPhone 14 Pro and 14 Pro Max, and 15 and 15 Plus – includes
a 16 cores NPU for improved computational photography capabilities and for handling
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screen-related features. Similarly, Samsung includes a NPU – Qualcomm Hexagon – for
accelerating AI inference tasks in the Snapdragon 8 Gen 3 processors, used in the latest
Galaxy S24 series. The greatest challenge now is finding a strategy to move training off
the cloud as well, for improved data security and privacy, efficient processing and reduced
latency. This is a challenge from both an algorithmic and hardware perspective, or more
precisely for the hardware-software co-development.
The computational efficiency of edge systems is constantly increasing, feature that is
driving the possibility to include more and more AI features in edge systems. However,
a single edge device still has limited data collection and relatively modest computational
power. In many scenarios, there are numerous devices performing similar training tasks.
If these devices could collaborate and collectively train a shared model — one that bene-
fits from the vast amounts of data they collectively gather – it would be a game changer.
If this could be accomplished while keeping the data on the devices themselves, it would
eliminate the need to store the data in a central data center. This approach, known as
federated learning is an active research area to enable collaborative training at the edge
[45]. Federated learning is not the only decentralized approach used to develop edge AI
systems. Swarm learning is another technique, inspired by the collective behaviours ob-
served in social organisms like birds and insects, to create decentralized and self-organizing
AI systems. In swarm learning-based networks, edge devices collaborate to address com-
plex problems and make decisions by sharing insights in a fully decentralized way. Unlike
federated learning, where data is centralized, swarm learning allows edge devices to share
information without relying on a central cloud. This enables edge AI systems to indepen-
dently adapt, evolve, and enhance their performance and efficiency in real time [46].
Another challenge in the context of edge learning is continual learning, also known as life-
long, sequential or incremental learning, with slightly different interpretations. Generally
speaking, with continual learning, it is meant the ability of a system to continually learn
new information without losing knowledge of previously learned data. This is achieved
by dealing with the stability-plasticity dilemma, i.e. the ability of a system to be stable
enough not to forget previous knowledge, still allowing sufficient plasticity to learn new
tasks. If this is not achieved, a phenomenon known as catastrophic forgetting can occur,
i.e. the fact that a neural network trained for a given task can lose accuracy on the former
task while a new one is learned. The development of continual learning strategies would
be beneficial for both cloud and edge learning, nevertheless it is at the edge that this would
show the greatest advantage, where re-training of the whole network with new information
is more problematic, as previous data is not accessible at all time and energy constraints
pose significant challenges for a complete re-training. Nevertheless, finding lightweight
strategies for continually learning at the edge can be challenging. Several methods have
been proposed for implementing continual learning. These can be grouped into three
categories, i.e. regularization methods, parameter isolation techniques or replay-based
approaches [47]. Regularization methods draw inspiration from synaptic consolidation in
the brain, where frequent activation of certain neural pathways strengthens the connec-
tions between those neurons [48]. From an algorithm perspective, this approach involves
adding a regularization term to the classification loss function to retain previous knowl-
edge, encouraging the mapping function for new tasks to remain close to that of prior tasks
[49, 50, 51]. Parameter isolation methods, analogous to neurogenesis in the brain, involve
the development of new neurons to assimilate and solidify new information. In these
methods, specific parameters that correspond to previously learned tasks are preserved
and frozen while a new set of parameters is adapted to handle the new task [52]. Finally,
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replay-based methods encourage the model to retain previous knowledge by revisiting ear-
lier examples or their approximations. This approach is inspired by the complementary
learning systems theory, which explains memory consolidation in the brain through the
interaction between the hippocampus and the neocortex. From an algorithm perspective,
replaying old examples during the learning of new tasks helps integrate new knowledge
with existing knowledge, similar to the regularization in other methods, preventing the
model from deviating significantly from its correct behaviour. Replay methods utilize the
inherent plasticity of artificial neural networks by reinforcing old knowledge during the
learning of new tasks, rather than suppressing this ability [47, 53].
A third challenge for learning-capable edge systems is data management, in particular
working with unstructured and/or unlabeled data. Standard techniques for supervised
training of neural networks deal with highly structured data with pre-defined labels. More-
over, training is typically performed by re-iterating several times on a whole dataset to
converge to an optimal or near-optimal solution. Nevertheless, edge AI systems face stor-
age constraints that prevent them from fully leveraging large numbers of data points.
Datasets might not be entirely stored in an edge system to perform the iterative training
process. Generally, multiple epochs can help the model generalize better by allowing it to
fine-tune its parameters. If the data points are independently and identically distributed
(iid), each data point is drawn from the same probability distribution and is independent
of others. This means that any given subset of the data should represent the overall
distribution well. It could be argued that, a large enough dataset with independently and
identically distributed data would ensure that the model is exposed to a sufficient amount
of diverse examples covering the entire distribution during just one pass. In this case, the
model could, in theory, learn the underlying patterns in the data from this single pass,
i.e. without the need to store the whole dataset. Moreover, data collected near the sensor
could be highly noisy, unlabeled and sometimes corrupted. In this scenario, data selection
and labeling could be provided by either humans or automated tools. For example, learn-
ing algorithms could actively query the user/teacher for labels. This type of iterative
supervised learning is called active learning [54]. Finally strategies like self-supervised
learning, or a mixture of supervised and unsupervised learning could ultimately provide
a viable solution to effectively learn in typical edge settings. Indeed, according to Bengio,
Hinton and LeCun, unsupervised learning will gain significant importance in the future,
since this method reflects how humans and animals learn, primarily through observation
rather than being explicitly being taught the labels of objects [9].
Indeed, different learning strategies might be more adapted to different settings. The
constraints imposed by embedded electronics might limit the training capabilities of a
system. Training a whole neural network from scratch can be energy expensive, thus
unsuited for edge applications. In this context, techniques like fine-tuning or transfer
learning can be used to exploit larger pre-trained networks to adapt to a specific task,
which can be trained locally with new input data [55].
In other settings, in which a dynamic environments interact with an intelligent agent,
strategies like reinforcement learning can be particularly powerful. This could be often
the case in edge environments, such as an industrial robot learning how to optimize a spe-
cific process, a system able to develop personalized treatment for a patient, or a delivery
drone adjusting its flight trajectory.
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1.1.4 Alternative learning strategies

Error back-propagation is one – yet the most successful – of the many learning strategies
proposed in the context of artificial neural networks. Many training algorithms, super-
vised or unsupervised, have been proposed as possible substitutes to back-propagation.
Two main criticisms usually arise when comparing back-propagation with respect to other
algorithms. First of all, back-propagation is well-suited for digital hardware like graphic
processing units, due to their parallel processing and precision. Co-designing algorithms
with hardware could reduce these the energy cost required to train larger models. In-
deed, alternatives like in-memory computing with emerging memory devices offer energy
efficiency and parallelism but face challenges with device non-idealities that make the
implementation of back-propagation difficult [56]. On a more fundamental, algorithmic
perspective, back-propagation is not believed to be a bio-inspired solution for training,
as no evidence of an error signal back-propagating in the brain to adjust the synaptic
connections has been conclusively observed. A key factor contributing to the biological
implausibility of back-propagation is the weight transport problem. Back-propagation re-
lies on identical forward and feedback paths with matching synaptic weights for effective
training. While biological neural networks might also feature separate forward and feed-
back pathways, transferring weights between these paths is not feasible because it would
require extremely rapid information transmission along the axon from each synapse out-
put [57]. Taking inspiration from the brain has always been a traction force in the field
of deep learning, as the brain effectively processes data with high energy frugality. It is
believed that synaptic adjustments in the brain occur at a more local level, depending
on the neighbouring neuron activities [58]. For this reason more bio-inspired solution are
under investigation for enhanced energy efficiency. In the following, some of the proposed
candidates to replace standard back-propagation are discussed, highlighting the key ideas
behind the various approaches.
Feedback alignment (FA) is similar in principle to back-propagation. It leverages fixed
random weight matrices to transmit error gradient information back to hidden layers,
bypassing the need for symmetric weights [59]. It has been demonstrated that aligning
the sign between forward and feedback weights is sufficient for transmitting effective error
signals. While FA addresses the issue of weight transport, it still requires that the forward
and backward passes to be completed sequentially before parameter updates can occur,
i.e. it is forward pass and backward pass locked.
Direct feedback alignment (DFA) improves upon FA by directly propagating errors from
the output to each hidden layer via random matrices, eliminating the dependency on
the sequential backward pass [60]. DFA has shown comparable performance to back-
propagation on CIFAR-10 for small fully-connected networks with dropout, but it under-
performs on convolutional neural networks. Nevertheless, algorithms based on FA also
depend on systematic feedback connections to layers and neurons, but such extensive re-
ciprocal connectivity has not been observed in the brain.
Local learning (LL) is an alternative that reduces feedback connectivity. These kind of
algorithms train parts of the network – typically layers – independently, calculating a
separate loss for each layer using an auxiliary classifier [61]. LL methods have achieved
results close to back-propagation on CIFAR-10 and are advancing on more complex tasks.
These algorithms still employ back-propagation for training individual layers and classi-
fiers and face the weight transport issue, as they remain dependent on both forward and
backward passes at the layer level. Combining FA with LL can potentially unlock layers
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from the backward pass, meaning that weight updates can be implemented as soon as
the forward pass is completed, and enable greedy learning without relying on a global
learning signal.
Another method, called synthetic gradients (SG), allows independent layer training by
using auxiliary networks to predict the gradient of the backward pass, known as synthetic
gradients [62]. Similar to LL, SG methods use back-propagation to train the auxiliary
networks. Until these networks are sufficiently trained, SG faces the weight transport
problem and is locked in both forward and backward passes, i.e. both forward and back-
ward passes need to be completed before performing weight update.
Signal propagation (Sigprop) is a new approach that is forward unlocked, meaning that
updates can be evaluated as soon as the forward pass is completed for each layer. Sigprop
generates targets from learning signals and reuses the forward path to propagate these
targets to hidden layers for parameter updates. Sigprop has several advantages: it utilizes
the same forward path for inputs and learning signals, eliminating the need for additional
feedback connectivity, weight transport, or a backward pass. Parameters are updated as
soon as the forward pass with the learning signal reaches them, without blocking subse-
quent inputs or storing activations, making Sigprop ideal for parallel training of layers or
modules. Since it relies on a single type of computation, Sigprop effectively addresses all
the constraints posed by other approaches using a global learning signal [57].
Equilibrium Propagation (EP) offers another alternative. It is an energy-based model
employing local contrastive hebbian learning, utilizing the same computational processes
during inference and learning phases. EP operates through a continuous recurrent neural
network that minimizes the difference between two fixed points: one where only the in-
put is received and one where the target is used for error correction. It has been shown
that the signal propagated during the second phase corresponds to the error derivatives
and encodes the gradient of the objective function, when the weight updates align with a
standard form of spike-timing-dependent plasticity (STDP). This method makes it more
plausible that the brain might implement a mechanism similar to back-propagation [63].
Communication in the brain occurs via spiking signals traveling through neurons, with
STDP believed to play a crucial role in synaptic changes. STDP links the difference in
time between post-synaptic and pre-synaptic spikes to the changes in synaptic weights, as
observed in biological neurons. However, its role as part of a learning algorithm requires
further exploration. For instance, while STDP has been demonstrated to approximate
back-propagation update rule [64], by itself it is not the most suitable method for train-
ing deep networks to achieve high accuracy in deep learning applications. Nevertheless,
Spiking neural networks (SNNs) represent a step closer to mimicking the brain’s dynam-
ics, by distributing information over time through binary spikes. Although SNNs have
shown promise in energy efficiency compared to traditional ANNs, they are computation-
ally demanding to train due to added time complexity and the non-differentiable nature
of spiking signals. The most common methods to train deep SNNs directly use back-
propagation or indirectly convert a pre-trained ANN into an SNN format. Conversion
methods struggle with high latency, while direct training increases offline training costs
and reduces accuracy [65].
All of the aforementioned approaches are under active investigation to find a more bio-
inspired, hardware-friendly, and energy-efficient learning strategy capable of providing
performance equivalent to back-propagation in terms of accuracy and the ability to solve
increasingly complex tasks across various contexts. Additionally, it should be noted that
different solutions may be more suitable for different types of hardware, making the "lot-
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tery ticket" in terms of optimal training strategy elusive. The memory technology and
circuit implementations developed in the remainder of this thesis appear better suited for
back-propagation-like learning. For these reasons, the focus of this thesis remains on er-
ror back-propagation-like algorithms. Nevertheless, some of the aforementioned learning
strategies could be adapted to the proposed hardware architectures for further exploration.

1.2 Deep learning hardware accelerators and non-volatile
memory technologies

In the rapidly evolving landscape of artificial intelligence and deep learning, the successful
implementation of neural networks depends not only on the efficacy and performance of
the algorithms but also on the underlying hardware support.
Although many of the key algorithmic elements essential for deep neural networks were
established in the 80s, e.g. the back-propagation of errors coupled with ANNs in 1986,
it was not until thirty years later that these networks gained widespread recognition as
a viable research avenue. The delay between these theoretical breakthroughs and their
practical success was largely due to hardware limitations at the time [66].

1.2.1 A quest for parallelization

Undeniably, the success of AI in recent years is due to the utilization of graphics process-
ing units (GPUs) for both training and inference, rather than the more classical central
processing units (CPUs). Architecturally, when we look at the CPU, we find it typically
comprises a limited number of cores alongside a sufficiently large cache memory. Cache
memory improves locality of data but has limited capacity (Figure 1.5). This design allows
the CPU to efficiently handle a modest number of software threads simultaneously. In
sharp contrast, GPU stands out with its multitude of cores, typically hundreds, enabling
it to manage thousands of threads concurrently. Modern deep learning neural networks
training present a formidable challenge, as it involve adjusting parameters ranging from
millions to well over one billion. Additionally, these networks demand substantial volumes
of training data to achieve the desired high accuracy levels. This implies that hundreds
of thousands to even millions of input samples must traverse both forward and back-
ward passes during training. Neural networks are inherently parallel in structure, as they
consist of numerous identical neurons, and this inherent parallelism aligns perfectly with
the architecture of GPUs. Thus, GPUs offer a remarkable acceleration in computational
speed compared to CPU-only training, making them the preferred choice for training neu-
ral networks. Also, the parallel nature of inference operations also aligns seamlessly with
GPU execution.
Nevertheless, GPUs are still processors that must support a vast number of applications
and software. Thus, in a GPU each calculation necessitates access to registers or shared
memory for reading and storing intermediate results, which brings us back to the enduring
challenge known as the von Neumann bottleneck. For this reason, Google introduced the
tensor processing unit (TPU), a purpose-built matrix processor tailored for the unique
demands of neural network workloads [67]. Indeed, TPUs excel at handling the extensive
multiplications and additions inherent in neural networks. The pivotal breakthrough here
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Figure 1.5: Memory hierarchy in a modern computer micro-architecture. Mem-
ory instances in a modern computer are organized in a register, cache, main memory
configuration to optimize data-handling. Memory capacity and latency data are evalu-
ated for a quad-core desktop CPU at 3 GHz, data retrieved from [68].

is the substantial reduction of the von Neumann bottleneck. In a TPU, thousands of mul-
tipliers and adders are directly interconnected to create a physical matrix of operators.
This architectural approach is known as a "systolic array". To elucidate the operation of
a systolic array in executing neural network computations, the TPU initiates by loading
the neural network parameters from memory into the matrix comprising these multipliers
and adders. Subsequently, input data is fetched from memory. Each multiplication oper-
ation is executed sequentially, with the results propagated to the next set of multipliers
while concurrently undergoing summation. As a result, the output represents the cumu-
lative sum of all multiplication outcomes between the data and parameters. Remarkably,
throughout this extensive computational process and data propagation, there is no need
for memory access whatsoever. This distinctive approach is the very reason why TPUs
can achieve exceptional computational throughput in neural network calculations while
consuming significantly less power and occupying a smaller physical footprint. Although
TPUs significantly reduce the von Neumann bottleneck, a clear separation between mem-
ory and processing elements still stands.

1.2.2 A computational memory as solution to the von Neumann bottleneck

In the pursuit of energy efficiency for the hardware implementation of deep neural net-
works, in-memory computing has emerged in the last decade as an alternative approach to
the compute–storage paradigm of the von Neumann architecture. In-memory computing
is a quite general term, including a variety of strategies. In general, the main difference
between a von Neumann architecture and an in-memory computing approach is that, in
the latter case, data stored in a single device is never requested to perform computation
outside of the memory, rather the result of a computation is transmitted between the
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processor and the computational memory.
The typical computation performed by IMC cores is the matrix-vector multiplication
(MVM), ubiquitous in ANNs implementation. On the other hand, the scenario in which
the computation is performed in close proximity of the memory, but not within the
boundaries of the computational memory, is typically referred to as near-memory com-
puting (NMC). Digital and analog in-memory computing strategies exist, depending on
whether the multiplication between weights and activations and accumulations are per-
formed in the digital domain, exploiting digital multiplier and adder circuits, or in the
analog domain, if multiplication and accumulation are performed by exploiting Ohm’s
and Kirchhoff’s laws respectively. These approaches not only reduces latency and energy
consumption associated with data transfer but also has the potential to dramatically im-
prove the time complexity of specific computational tasks. The main advantage comes
from the high level of parallelism provided by arrays of memory devices simultaneously
performing computation. Therefore, by integrating processing capabilities directly with
memory units, in-memory computing significantly boosts computational efficiency. Nev-
ertheless, this efficiency gain comes with the trade-off of sacrificing the flexibility found
in traditional computing architectures.
Non-volatile memory has emerged as a crucial component in this regard, providing stor-
age solutions that keep data even when power is removed and also in-memory computing
capability. Moreover, NVM technologies offer unique advantages over traditional volatile
memory, such as faster access times, lower power consumption, and enhanced data re-
tention. In particular, emerging NVM technologies revolutionized the field since 2008,
when HP Labs first linked the resistive switching behaviour of a solid-state device to
the conceptual memristor [69]. Memristors were first introduced by Chua in 1971, as
the fourth circuit element, linking the electric charge and the magnetic flux with a non-
linear relationship [8]. Memristors are characterized by a pinched hysteresis loop in the
current-voltage plot. The change in the slope of the pinched hysteresis curves indicates
a transition between distinct resistance states, a key phenomenon in resistive memory
devices. In 2010, a memristive analog device was used to demonstrate synaptic functions,
paving the way for the investigation of neuro-inspired computing based on memristive
devices [70]. Since then, increasing research efforts have been devoted to the devices,
architectures, chips and algorithms for NVM based neuro-inspired computing.
Figure 1.6 offers a schematic representation of the distinction between a von Neumann
architecture and the in-memory computing paradigm. The difference between a standard
CPU architecture, a GPU and a systolic array of processing elements, building block of a
TPU, is shown. These solutions are compared to the implementation of an in-memory ma-
trix vector multiplication on a crossbar array of memristive devices. Here, the memristors
act as artificial synaptic elements, mapping in their conductance the value of a synaptic
weight. The cross-bar array implementation maps the all-to-all connectivity found in the
fully-connected layers of an artificial neural networks. The vector-matrix multiplication,
basic operation to evaluate the activations at successive layers of a neural network, can be
implemented by using the Ohm’s law and the Kirchhoff’s current summation law. Indeed,
if the inputs are mapped as voltage pulses applied to the row lines, the current collected
at each column line corresponds the sum of the products between the applied inputs and
the synaptic weights. It is important to notice that the applied voltage pulses must not
perturb the physical state of the memristor, i.e. it should not change its conductance
value when it is applied. If the voltage pulses are applied to the column lines and the
currents are collected to the row lines, the multiplication between an input vector and

25



Algorithmic and hardware solutions in artificial neural networks

the transposed of the weight matrix is performed. This operation is performed during the
backward pass of the back-propagation algorithm, which can be implemented by means
of the same in-memory computing core.
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Figure 1.6: Von Neumann and in-memory computing architectures.a In a von
Neumann computer architecture memory and processing units are physically separated.
b Central, graphic and tensor processing units are example of von Neumann architectures
with increasing degree of parallelism in computation. c An in-memory computing archi-
tecture performs the computation within the boundaries of the computational memory.
d A crossbar array of memristive devices can perform the matrix vector multiplication
within the memory array. The vector elements are mapped to applied read voltages and
the matrix element are mapped to the memristors conductance values.

It is important to notice that an analog in-memory computing core might include many
other blocks, apart from the array of memristors itself. First of all, the selector tran-
sistors connected in series with each memristors are not shown in Figure 1.6 for clarity,
but they should be included to avoid sneak path currents and add more flexibility. Each
IMC core should also include analog-to-digital converters (ADCs), to provide a digital
results corresponding to the analog summation, on both vertical and horizontal lines if
both forward and backward passes should be performed in-place. Also digital-to-analog
converters (DACs) are necessary to apply the inputs to the array if these are stored as
digital values [71]. The IMC core should also include the circuitry to program the synaptic
weights, which can be quite complex in case of multi-level storage, because of the need of
program-verify schemes [72, 73, 74, 75]. Designing a complete IMC core is therefore a real
challenge, that requires accurate circuit optimization, dependent on the specific device
technology [76].
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1.2.3 Neuromorphic hardware

In- or near-memory computing cores are often classified under the broader category of
hardware accelerators known as neuromorphic processors. The term neuromorphic pro-
cessor generally refers to hardware accelerators that emulate, to varying degrees, processes
observed in the biological brain. Indeed, the possibility to perform the MVM operation
within the memory boundaries is one key similarity, among others, between biological and
neuromorphic systems.
However, neuromorphic systems can emulate biological processes of the nervous system
even more closely. A significant area of research within neuromorphic computing focuses
on the hardware implementation of SNNs. SNNs naturally incorporate the temporal
dynamics observed in the biological brain and enable the development of biologically
plausible learning rules. Several noteworthy research chips demonstrating advancements
in this area have been introduced in recent years, including:

• Loihi chip: Fabricated using Intel’s 14nm process, Loihi comprises 128 neuromorphic
cores, each capable of simulating up to 1,024 neurons. It features a programmable
microcode learning engine that supports STDP-based on-chip learning rules, en-
abling real-time adaptation and self-modification without external supervision. The
chip utilizes an asynchronous network-on-chip (NoC) for efficient spike-based com-
munication [77].

• ODIN: It is a digital spiking neuromorphic processor designed for online learning,
prototyped in a 28nm CMOS process. The chip comprises 256 neurons and 64K
synapses, utilizing stochastic spike-driven synaptic plasticity (SDSP) learning rules
to facilitate real-time adaptation [78].

• ReckOn: It is a spiking recurrent neural network processor developed to enable on-
chip learning and particularly suited for tasks requiring temporal processing such as
navigation and gesture recognition. Implemented in a 28nm CMOS process, ReckOn
occupies a compact area of 0.45mm2, making it suitable for embedded applications
where space and power efficiency are critical. The processor employs a modified
E-prop algorithm for online learning, allowing it to adapt to new information in
real-time without the need for external computation resources [79].

• ROLLS processor: It is a mixed-signal neuromorphic chip, fabricated using a 180 nm
CMOS process and designed to emulate various neural systems through its reconfig-
urable architecture. It contains 256 silicon neurons and 128K plastic synapses, with
an additional 256K programmable synapses, allowing for complex neural network
configurations. The chip implements STDP learning rules [80].

Unlike the aforementioned approaches, the developments presented in this thesis exhibit a
limited degree of emulation of biologically plausible behaviors due to specific algorithmic
choices. Specifically, the implementation of back-propagation-like algorithms in classical
ANNs introduces a key divergence from biologically plausible processes. While back-
propagation has proven effective for training ANNs, it relies on mechanisms – such as
the global error calculation and weight updates based on gradients – that do not natu-
rally align with the distributed, asynchronous, and energy-efficient dynamics observed in
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biological neural systems. This limitation highlights a fundamental trade-off in current
neuromorphic research: achieving high computational performance and training efficiency
often comes at the cost of strict biological realism. Future efforts may focus on developing
alternative learning paradigms that more closely reflect the brain’s adaptive processes. In-
tegrating such bio-inspired algorithms into neuromorphic hardware could bridge the gap
between performance and biological fidelity, advancing the field toward systems capable
of emulating the complexity of biological neural networks while remaining effective across
a wide range of applications.

1.2.4 Overview of commercial AI accelerators and future perspectives

Figure 1.7 presents the announced peak performance, measured as number of operations
per second, of commercially available AI accelerators against the peak dissipated power.
The exhaustive list of accelerators can be found in [34]. The different accelerators are
categorized as chips, cards or systems according to the form factor and they are split
different groups:

• Very Low Power for speech processing, very small sensors, etc.;

• Embedded for cameras, small drones and robots, etc.;

• Autonomous for driver assist services, autonomous driving, and autonomous robots;

• Data Center Chips and Cards;

• Data Center Systems.

In the figure, filled markers define the performance of accelerators with training capabil-
ities, whereas empty markers denote inference-only accelerators. Different markers are
utilized to group accelerators with different computation precision. We can extrapolate
several pieces of information of the general trends for AI accelerators from this plot. In
particular, it can be observed that almost all accelerators with training capabilities re-
quire larger power consumption and they belong therefore to the data center category.
Currently, there is no commercial product at the edge (Very low power and embedded
accelerators) able to train a neural network system. The inference-only accelerators at
the edge typically exploit low-bits integer computing precision (from one to eight bits)
or analog computation, as in the case of the Mythic76 and Mythic108 chips. On the
other hand training requires larger precision representation, such as 16 bits or 32 bits
floating point representations. We can also observe that most of accelerators lie below
the threshold of 100 fJ/Operation, i.e. an energy efficiency of 10 TOps/W. Going beyond
the threshold of 10 TOps/W is proving to be challenging, even for in-memory computing
approaches, such as the chips by Axelera and Mythic.

In this graph, this thesis is positioned in the leftmost part of the plot. No commercial
product exists for comparison to the approaches that are proposed in the rest of the thesis,
not because of the absence of a market for such systems, but rather for the early stage of
its technology readiness level (TRL). Indeed, even though not yet commercialized NVM-
based accelerator hold promise to dramatically increase the energy efficiency of such AI
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Figure 1.7: Trends of commercially available AI hardware accelerators. Peak
power vs peak performance scatter plot of AI accelerators available on the market. Re-
produced from [34].

accelerators, taking advantage of increasing memory density, non-volatility and in-memory
computing capabilities.

1.2.5 Comparison of various NVM solutions

Although not yet commercialized, memristor-based accelerators are highly researched for
a number of reasons. First of all, the intrinsic non-volatility of these devices offers a clear
advantage compared to standard CMOS solutions, which either require larger power con-
sumption to keep the system in the on state or reloading of the neural network parameters
each time the system is shut-off, which results in larger latency. Moreover, conversely to
SRAM, memristors have the potential to be scaled down in size below 2 nm [81] and to be
integrated into high-density three-dimensional arrays [82], thus potentially increasing the
amount of on-chip memory at equivalent surface. Moreover, because of their non-linear
I-V characteristic, memristors offer several other advantages, such as the possibility to
be used for multi-bit storage or to emulate some bio-plausible behaviours. Many flavours
of memristive technologies exist, depending on the physical properties exploited for the
resistive switching. Memristive technologies are anyway a subset of a broader class of
NVM technologies. Sometimes the two terms are used interchangeably, even though they
should not be confused: the first being defined by its pinched-hysteresis current-voltage
loop, whereas the second includes any kind of memory technology with the capability to
retain information when power is shut off. Furthermore, many NVM devices offer manu-
facturing processes compatible with the CMOS back-end of line (BEOL), thus providing
the possibility to offering a more globally packed system solution.
In Figure 1.8, the latest taxonomy update of memory technologies from the International
Roadmap for Devices and Systems is reported [83]. Volatile memories include the classical
SRAM and dynamic random access memory (DRAM), whereas the field of non-volatile
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memories has seen a great expansion in recent years. The baseline flash memories, in
their NAND and NOR configurations, are now accompanied by emerging memory tech-
nologies, some of which are already commercialized for storage applications or in the
prototypical stage. In the following, a brief description of the most promising emerging
NVM technologies is presented, highlighting the strengths and weaknesses of each one of
them.

Phase-change memories. Phase change memories (PCMs) are among the most ma-
ture resistive memory technologies. They are based on chalcogenide glasses, typically
compounds of Ge, Sb and Te (GST), which have the characteristic of changing their crys-
talline phase thanks to heat produced during the application of electrical pulses. The
typical structure of a PCM is the so-called mushroom cell, which includes a layer of GST
sandwiched between a top metal electrode and a bottom electrode containing a metallic
heater element. When a large amplitude voltage pulse is applied to the top electrode, the
current flowing in the crystalline GST heats up the material by Joule effect, creating an
amorphous dome on the heater via a melt-quenching process. This results in a larger resis-
tance of the memory device, which is effectively reset. On the other hand, lower amplitude
pulses applied to the top electrode can crystallize the amorphous GST, thus increasing the
conductance of the memory element, bringing it back to a set state. The crystallization
process is typically a cumulative process. Indeed, the application of several set pulses
crystallizes larger portions of the amorphous dome. Therefore intermediate conductance
levels can be created, for multi bit-storage. On the other hand, the reading operation of a
PCM device simply consists in evaluating the cell resistance via small-amplitude voltage
pulses. As all others emerging NVMs, PCMs suffer from several device non idealities,
first of all conductance drift. With conductance drift it is meant the temporal evolution
of the programmed conductance, arising from a spontaneous structural relaxation of the
amorphous phase. Depending on the application, this phenomenon might be more or less
problematic [84].
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Because the operating principle of PCMs requires significant atomic rearrangement in the
active volume of these devices, these are characterized by a limited write endurance (in
the order of 1-10 million cycles) and large write energy consumption (approximately 10
pJ per bit). On the other hand, read endurance is potentially unlimited and the read
energy remains low [85, 86].
Phase-change memory is among the few emerging NVM technologies to have been com-
mercialized to date. Indeed, the 3D XPoint technology, developed by Intel and Micron
Technology, was based on multiple stacked layers of one selector-one resistor devices,
where each resistor was constituted by a phase-change device. Intel Optane, the brand
name of 3D Xpoint memory chips, was announced in July 2015 and was available on
the open market from April 2017 to July 2022. Intel Optane offered itself as one of the
first solutions for the so called storage class memory, a new class of memory aiming at
bridging the performance gap between DRAM and storage solutions. Despite the ex-
cellent performance, it is expected that thermal disturbance and smaller write program
margin will hinder the scalability of PCMs. Therefore chalcogenide-based selector-only
memories are investigated for next generation storage class memory [87]. PCMs are also
explored as an embedded memory solution for automotive micro-controllers applications
by STMicroelectronics [88] or for processing in memory solutions by IBM and others
[89, 90].

Magnetic memories. Magnetic random access memory (MRAM) exploits the tunnel
magnetoresistance effect occurring in a magnetic tunnel junction (MTJ), which is a com-
ponent consisting of two ferromagnets (one with pinned magnetic moment and the other
with a free one) separated by a thin insulator. If the insulator layer is thin enough, elec-
trons can tunnel from one side to the other of the tunneling barrier, producing a current.
The resistance of the MTJ device is low when the magnetic moment of the free layer is
parallel to the fixed layer, whereas it becomes large when the free layer moment is oriented
anti-parallel to the fixed layer one. Therefore two resistance states can occur depending
on the relative orientation of the magnetic moments of the two ferromagnets. The ini-
tial MRAM devices utilized toggle memory switching, where a magnetic field altered the
electron spin. The second generation of MRAM, known as STT-MRAM (Spin-Transfer
Torque MRAM). In STT-MRAM devices, the spin of electrons is flipped using a spin-
polarized current in a MTJ, rather then a magnetic field. The standard STT-MRAM
structure uses an in-plane MTJ (iMTJ), whereas a more optimized configuration exploits
a perpendicular MTJ (pMTJ) structure, where the magnetic moments are perpendicular
to the silicon substrate. Perpendicular STT-MRAM is more scalable and cost-effective
compared to iMTJ STT-MRAM, making it a promising technology for replacing DRAM
and other memory types. Finally, SOT-MRAM (Spin-Orbit Torque MRAM) has the po-
tential to surpass STT-MRAM in speed, density, and efficiency. SOT-MRAM switches
the free magnetic layer by injecting an in-plane current into an adjacent SOT layer, unlike
STT-MRAM where the current is injected perpendicularly into the MTJ, and both read
and write operations occur through the same path [91].
For comparison to other NVM technologies, STT-MRAM is considered, as this is the
most investigated solution at present. For write operations, STT-MRAM offers high en-
durance (from 1011 to more than 1014 cycles) and large energy consumption (in the order
of the pJ per bit) [85, 86]. The large write energy has the potential to scale down due
to the unique current-induced switching mechanism of MRAM [92], nevertheless this still
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remains challenging to realize at chip level. Read endurance is virtually unlimited, but
the small high to low resistance ratio complicates the design of the sensing circuitry.
MRAM technology is currently commercialized by many companies, both for embedded
and stand-alone memory applications [92, 93].

Ferroelectric memories. Ferroelectric RAM (FeRAM) is a memory technology sim-
ilar in principle to DRAM, as it uses a Metal-Insulator-Metal capacitor to store data in
combination with a selector transistor. However, unlike DRAM, FeRAM incorporates a
ferroelectric material instead of a dielectric layer as the insulator, which gives the device
non-volatility by encoding a binary data through the alignment of ferroelectric dipoles in
two opposite directions. Ferroelectric materials are characterized by a polarization-voltage
hysteresis loop, meaning that a residual charge can be measured across the ferroelectric
layer when the power is removed. This residual polarization is due to the creation of semi-
permanent electrical dipoles inside the material, aligning to the direction of an external
electric field. The creation of such dipoles comes from the crystalline structure of the
material, typically a non-centrosymmetrical one. Therefore, the write operation involves
applying a voltage pulse across the device to switch the polarization of the ferroelectric
domains according to the voltage polarity of the pulse. On the other hand, reading is
performed by applying a write pulse to one of the two electrodes and sensing the emitted
charge on the other. The amount of sensed charge indicates whether a polarization switch
has occurred, effectively allowing the information stored in the device to be read. This
makes the reading process data-destructive, requiring a write-back operation each time
information is retrieved from the device.
Historically, the ferroelectric material used for FeRAMs was lead zirconate titanate (PZT)
[94]. Indeed, PZT-based FeRAM was used as early as mid-1990 by Samsung and Hyundai
Electronics (now SKHynix) for the production of the first stand-alone ferroelectric mem-
ories. Still today, PZT-based are the most mature solution for stand-alone FeRAMs,
manufactured by companies as Infineon, Texas Instruments and others. Nevertheless,
scalability issues of PZT materials hampered the utilization of FeRAM for embedded ap-
plications at more advanced technology nodes and for high density memory applications
[95]. On the other hand, in 2011, ferroelectricity was discovered in doped hafnium oxide
thin films [96]. Since then, HfO2 based FeRAM as been highly researched for embedded
applications, because of its high speed, low power usage, and compatibility with CMOS
technology. Different kinds of ferroelectric memories are now being explored, but the
simple one-transistor-one-capacitor (1T-1C) ferroelectric random access memory stands
out due to its moderate write voltage, long retention time, and high endurance (projected
to up to 1015 cycles [97]). Moreover, the low current required to switch the ferroelec-
tric capacitor allows to decrease the programming energy consumption even below 100
fJ per bit [98]. The same energy is required for reading operations. Moreover, because
of the data-destructive read procedure, read endurance is limited and linked to the write
one. In FeRAMs, the read signal weakens as the ferroelectric capacitor area decreases,
limiting its cell scalability for planar capacitors. A solution to this problem sees the ex-
ploitation of cylindrical three-dimensional capacitors. Micron has recently disclosed major
advancement in this direction, by presenting a dual layer 2 Gb memory macro of BEOL
integrated three-dimensional ferroelectric capacitors. The performance of the presented
memory technology achieves DRAM-like latency and endurance and achieves a record
density higher than Micron’s leading DRAM technology [97]. A second major advance-
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ment for 1T-1C cells is related to the possibility to read data stored in the capacitor in a
non-destructive way [99].

In contrast, the ferroelectric field-effect transistor (FeFET) enhances scalability by am-
plifying ferroelectric dipoles via the transistor’s field effect. Despite this, FeFETs suffer
from high write voltage and poor endurance respectively due to the voltage division be-
tween the ferroelectric and channel layer and charge trapping at the ferroelectric/channel
interface [100]. The one-transistor metal–ferroelectric–metal field-effect transistor (1T-
MFMFET) addresses the high write voltage issue by optimizing the area ratio between
the capacitor and the transistor, though its retention is affected by leakage current into
the floating gate node [101]. Recently, a two-transistor MFMFET (2T-MFMFET) has
been introduced to enhance the scalability of embedded ferroelectric memory in advanced
logic nodes. This configuration decouples read and write paths, improving data retention
compared to the 1T-MFMFET solution [102]. At present, small scale macro have been
presented for these technologies, meaning that further study is still necessary to validate
the technology potential.

Finally, ferroelectric tunnel junctions (FTJs) have emerged as a memristive technology
based on ferroelectric thin films, sandwiched between two metal electrodes. FTJs are two
terminal devices where the ferroelectric material is employed as a tunneling barrier. The
effective barrier height and width can be modulated by changing the direction of polariza-
tion, resulting in a high or low conductance state. Moreover, the tunneling barrier can be
gradually switched by partial domain switching of polycrystalline ferroelectric layer, for
multi-bit storage applications. Therefore, FTJs are characterized by a simple fabrication
process, low-power operation, fast switching and nondestructive sensing. Nevertheless,
the practical implementation of arrays remains elusive because of sneak-path currents
during programming as well as low read currents [103, 104].

Resistive memories. Resistive RAM, or RRAM, typically refers to a non-volatile mem-
ory based on an insulating metal oxide resistive switching layer sandwiched between two
metal electrodes. The concept of a resistive memory cell is apparently quite simple; nev-
ertheless, the switching behaviour depends not only on the oxide materials but also on
the choice of metal electrodes and their interfacial properties. In RRAMs, the nominally
insulating layer can switch between a low conductance state (LCS) and a high conduc-
tance state (HCS). The switching event from LCS to HCS is called set operation, whereas
the switching event from HCS to LCS is called reset. Before set/reset cycling, a voltage
larger than the set voltage is needed to trigger the resistive switching behaviours for the
subsequent cycles. This is called the forming process. Recently, forming-free metal-oxide
memory stacks relying on bulk switching have also been investigated for their enhanced
compatibility with more advanced technology nodes, due to the absence of the need for a
larger voltage electroforming step [105]. The switching modes of metal–oxide RRAM can
be broadly classified into two classes: unipolar and bipolar. Unipolar switching means
the switching direction depends on the amplitude of the applied voltage but not on the
polarity of the applied voltage. Thus, set/reset can occur at the same polarity. Bipolar
switching means the switching direction depends on the polarity of the applied voltage.
For either switching modes, a selector device enforces a set compliance current in order to
avoid a permanent dielectric breakdown in the set process. The switching mode depends
on the choice of the resistive switching layer and electrodes [106].
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RRAM devices typically have limited write endurance at array level (up to one million
cycles), even though the intrinsic switching endurance has been proven to be much larger.
Write energy consumption are in the order of the pJ per bit. The read endurance of the
device is virtually unlimited and low-power sensing strategies can be efficiently designed
[85, 86].
RRAM is a promising low-cost solution for next-generation embedded and stand-alone
memory applications. Nevertheless the intrinsic variability of the switching process has
blocked the commercial interest of this memory technology. The pronounced variability
and related resistance distribution spread for high and low resistive states reduces the read
window margin and limits the maximum memory capacity that can be achieved. Cur-
rently, there is no commercial product based on metal-oxide resistive memory technology.
The company WeebitNano has announced to be working on a stand-alone memory based
on HfO2 resistive memories, but no commercial product is yet available. Several proof of
concept have been presented for embedded RRAMs.

1.2.6 Memory requirements for ANN accelerators

The previous description of the different memory technologies aimed at depicting the cur-
rent advancement state of the memory technology panorama, highlighting the concept
that at present, a universal memory technology with optimal properties does not exist.
Each memory technology has advantages and properties that can be partially tuned by
device optimization. Nevertheless some intrinsic characteristic cannot be modified, thus
limiting the application domain for each kind of memory device.
Hardware accelerators for deep learning can be grouped in two main classes depending
on whether such systems have learning capabilities or not, thus limited to inference-only
applications.
As previously mentioned, at inference time, the parameters of a neural network are fixed.
Thus, whatever the strategy to perform the successive multiplications between the vector
of activations and the matrix of weights is, inference does not require any modification
of the network parameters. Therefore, a device with the possibility to perform extensive
read operations reliably and at low energy cost would be optimal in this case.
On the other hand training requires successive modifications of the parameters of the
network with new input data. In most cases, modifying the network parameters requires
knowledge of the parameter value itself. This means that training not only requires reli-
able and efficient write operations, but as-reliable and efficient read operations too.
Implementing both inference and training with a memristive technology requires going
beyond the basic considerations on energy consumption and consider other performance
metrics, i.e. yield, retention, number of analog states, on/off ratio, symmetry, linearity
and endurance (Figure 1.9). For a memristive device, yield can be defined as the aver-
age percentage of manufactured devices that function with analog switching behaviour.
Achieving high yield memristive devices is quite complex, because this not only includes
stuck-at faults but also incorrect intermediate state programming or abrupt conductance
changes. High yield is crucial in inference-only applications as misprogrammed weights
might have significant negative impact on the achievable accuracy of the network. On
the other hand, high yield can be less critical for training as artificial neural networks
can keep into account faulty devices throughout training, by modifying other fully func-
tional synaptic connections. Good retention is also essential for inference-only application,

34



Algorithmic and hardware solutions in artificial neural networks

where for retention it is meant the stability with time of the programmed conductance.
Conversely, for training itself the requirement on retention might be less stringent as
training requires subsequent modification of the programmed state. In order for these
modification to be applied, a sufficiently large number of analog states must be guaran-
teed, whereas inference can run on lower bit equivalent models. Linearity and symmetry
are also important aspects related to the possibility to easily potentiate or depress the
programmed synaptic weights during training. Specifically with linearity it is meant a
direct proportionality between the conductance value and the number of applied pulses.
Symmetry, instead, refers to the different trajectory that the conductance increase might
follow with respect to the conductance depression as function of the number of applied
programming pulses. Finally, endurance is a key property to keep into account when
designing memristive-based training and inference ANN accelerators, for both read and
write operations [4]. Three scenarios can be foreseen for such accelerators:

• Inference-only: An inference-only engine based on a memristive technology needs
to load the parameters of the neural network ideally only once. After this initial
programming, the weights are available on chip indefinitely (in the limit of the
data retention bound). Therefore, a large write endurance is not at all mandatory.
Instead, read operations are be performed for the whole lifetime of the system, thus
requiring sufficiently large read endurance.

• Punctual (one-time) training and inference: A system might be trained only
once in its lifetime for a given task and then perform only inference on new input
data. In this case the write endurance limit of the memristive technology should be
sufficiently high to support the number of updates necessary to train the network
for the desired task. This upper bound write endurance depends on the size of the
training dataset and the weight update strategy. In the context of back-propagation-
like learning, if a maximum of k programming operations are applied to update
the weight stored in each memristor for each update event, and the network is
trained for e epochs with n update events for each epoch, the write endurance limit
should be larger than k ·e·n to support the whole training procedure. As before,
read operations are performed for the whole lifetime of the system, thus requiring
sufficiently large read endurance.

• Continual training and inference: Lifelong training is not only a challenge at the
algorithmic level, as shown earlier in this chapter, but also from an implementation
perspective with memristive-based architectures. This scenario is indeed the most
demanding in terms of endurance requirements for both read and write operations.
Training might be performed several times during the lifetime of the circuit, thus
multiplying the endurance limit evaluated in the case of a one-time training case by
an ulterior factor. A near-sensor learning engine can be envisioned in which training
events are not punctual in time, but are spread across the whole time operating
window of the system, further increasing the write endurance requirements. Again,
read operations must be ensured at all time, calling for a memristive device with
sufficiently large read endurance.

Among the previously analysed memristive technologies, i.e. RRAM, MRAM, PCM,
FeFET and FTJ, none has all the above-mentioned characteristics, therefore allowing the
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deployment of an hardware accelerator with learning capabilities. In the next sections
some examples of ANN accelerators are analysed, either for inference-only applications or
inference and learning, showcasing the need of a hybrid memory technology in the latter
case.
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Figure 1.9: Memory device requirements for ANNs learning and inference.
Ranking of qualitative device requirements ANNs implementation. Higher values along
each axis signify greater demands for the corresponding metric. Reproduced and adapted
from [4].

1.2.7 NVM-based inference accelerators

There is a large amount of research works utilizing NVMs for inference acceleration, ex-
ploiting various memory technologies. Providing a comprehensive listing of all works in
the field is somehow impractical and outside the main focus of this work. Nevertheless,
the implementation of training on-chip with NVMs, which is the goal of this thesis, ne-
cessitates implementing the inference step too. Therefore, in the following, some major
contributions in the field of NVM-based inference accelerators are discussed, presenting
the key ideas of each work, some of which are also relevant for this thesis.

PCM-based in-memory computing architectures. IBM Research has been work-
ing for several years now on the development of IMC architectures exploiting phase-change
memories. These efforts resulted in two main realizations, a mixed-signal solution [107]
and a fully-analog one [108]. The former, i.e. the Hermes project chip, is an analog-
IMC processor based on 64-cores. The chip is developed in the 14 nm CMOS technology
node with BEOL-integrated PCMs. The unit cell includes four PCM devices to encode
a synaptic weight in analog precision. The chip allows to perform highly parallel matrix-
vector multiplications by utilizing one current-controlled oscillator ADC for each unit-cell
row, thus decreasing latency and increasing throughput [109]. The near-software accuracy
proven for several tasks is obtained thanks to a hardware-aware training strategy, taking
into account device non-idealities and a realistic crossbar model [110]. The chip includes
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high-precision digital units for all other computation required by other network architec-
tures, like convolutional and long-short term memory layers. A second solution proposed
an analog-AI chip, combining 35 million PCMs across 34 cores. The communication be-
tween tiles is highly parallel and it is performed in the analog domain, without the need of
ADCs. Finally, the same research group showed the need for synaptic weights to be fully
stationary, meaning that every weight must be pre-programmed once before inference
workload execution begins. Indeed, emerging NVM devices are typically characterized by
finite endurance and slow, power-hungry programming, thus preventing the possibility of
frequent re-programming. Even though a fully-weight-stationary system occupies more
area, compared to a partial-weight-stationary system in which subsets of weights have
to be reloaded, the former offers much more throughput, effectively increasing the area
efficiency [111].

MRAM-based inference engines. MRAM is another candidate for memristor-based
IMC inference accelerators. Nevertheless, compared to other NVMs, MRAM have lower
resistance values and small high-to-low resistance ratios, making the implementation of
standard crossbar-based multiply-accumulate operation energy-consuming, thus reducing
any advantage brought by an in-memory computing implementation. One possible ap-
proach is to use a resistance summation, rather than a current summation in order to
perform the accumulate operation in the analog domain. This was implemented with
a modified bit-cell design in a small scale crossbar array of 64x64 devices. This result
demonstrates for the first time the implementation of an MRAM-based IMC engine for
ANN inference [112]. Most of the other approaches using MRAM devices develop bit-
wise logical operations within the memory for the implementation of digital IMC systems
[113, 114, 115, 116].

FeFET arrays for in-memory computing. FeFET devices were also recently used
for the first time to demonstrate a crossbar multiply accumulate operation between 2-bits
inputs and 2-bits weights. Contrary to analog computing implementations of the multiply-
accumulate macro, the presented approach does not perform direct analog multiplication
of the input and weight, which is highly prone to variations and requires a high degree
of linearity in the stored states. Instead, a current-limited cell is used such that each cell
that is activated has the same current contribution, which limits the impact of variations
and improves operation accuracy. Each cell in the crossbar structure uses a 1FeFET-1R
configuration, which includes a single FeFET and a single resistor. In this macro, the
FeFET cell acts as a memory for the entire weight value. The input is encoded in applied
voltage duration and magnitude, the multi-bit weight is stored in the FeFET, and the
output is accumulated as a capacitor voltage that depends on the activation time and
number of FeFETs activated [117]. Other works with FeFET devices considered only
binary logic operations to compute a single-bit multiplication operations [118, 119, 120].

Filamentary resistive memory for in- and near-memory computing. Filamen-
tary RRAM are highly researched for the implementation of neural network inference,
because they offer a simple, affordable solution for non-volatile weight storage, despite
device non-idealities. For example, high-yield, uniform RRAM crossbar arrays have been
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used for the implementation of CNNs. This solution integrates eight 2,048-device ar-
rays, in the 130 nm CMOS technology node, to improve parallel-computing efficiency.
Moreover, a fine-tuning technique is proposed in order to adapt the system to the de-
vice imperfections. This fine-tuning training is performed in place and it adjusts some
of the synaptic weights in the network in place to recover the accuracy loss after weight
mapping [121]. A solution similar in principle to the previous one, yet more mature,
was proposed by Stanford university. It is a 48-core filamentary RRAM-IMC processor,
with 3 million devices integrated in the 130 nm CMOS BEOL. The neuron circuitry is
designed in such a way to allow a bidirectional transposable neurosynaptic array oper-
ation, for the implementation of forward and backward passes with minimal area and
energy overheads. The need for the forward and backward passes is due to the designed
hardware-algorithm co-optimization technique used to mitigate the impact of hardware
non-idealities on inference accuracy. Indeed, a chip-in-the-loop progressive fine-tuning
technique is used, meaning that weights are progressively mapped onto the chip one layer
at a time. Then, the hardware-measured outputs from layer one are used as inputs to fine-
tune the remaining successive layers, thus requiring both forward and backward passes
to be implemented on the-chip itself [122]. The limited endurance, power-consuming pro-
gramming or RRAMs can in principle support these fine-tuning strategies. Nevertheless,
this procedure would require, in the long-term vision, that any manufactured chip should
undergo this fine-tuning step before deployment, which significantly increases the com-
plexity of the approach.
It is clear that IMC strategies, although appealing, deal with significant challenges due
to device non-idealities and fundamental limitations due to voltage drops on the array
lines, issue exacerbated for filamentary RRAMs because of their larger conductance val-
ues compared to other technologies. For this reason, RRAMs have also been explored
for the implementation of near-memory computing inference accelerators. RRAM arrays,
coupled with specific sense amplifiers can implement the multiplication between binary
inputs and binary weights, which corresponds to a logic XNOR operation [123]. This
approach inspired part of one of the two circuit realizations presented in this thesis and it
is further discussed in chapter 4. This same NMC approach has also been used to prove
image classification in a near-sensor setting. Indeed, the chip was used in conjunction with
a miniature wide-bandgap solar cell optimized for edge applications as energy harvester,
making a step forward in self-powered AI [124].

1.2.8 NVM-based inference and training accelerators

The previous section highlighted the fact that the implementation of inference with IMC
systems can be challenging because of device non-idealities. This problem is less rele-
vant in the case of systems with learning capabilities. By learning on-chip, the network
architecture should automatically learn how to deal with hardware imperfections and
compensate for some of them, up to a point [125]. In the last years, more and more re-
search works started addressing the implementation of training on-chip exploiting NVM
devices, because of their promise for improved energy and area efficiency [4].

ANN training with PCM devices and volatile capacitors cells. One major step
towards the implementation of training on-chip with memristive devices was introduced
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by Ambrogio et al. in [126]. Here, PCM devices were used to store synaptic weights
in analog precision to implement the typical MVM operation at inference time. Device
non-idealities, reduced number of analog states, as well as limited endurance and large
programming power make the implementation of learning with PCM devices only inef-
fective. Therefore, a volatile capacitor is used to store lower significance weights and
to perform near-linear updates. The volatile capacitors are updated for several training
samples, before transferring the lower significance weight updates to the higher signifi-
cance weights stored in PCM devices. Weight-data transfer is performed with polarity
inversion for each update, to cancel out inherent device-to-device variations in the volatile
capacitors. The transfer process is performed in a closed-loop, iterative fashion, resulting
in accurate weight tuning at the expense of increasing energy-cost. One main drawback
of this approach is the need for large capacitors in order to obtain the target of at least
1,000 resolvable states for weight updates [127]. In the proposed implementation of the
capacitive unit cell in 90 nm node uses, the gate capacitance of a metal-oxide semicon-
ductor field-effect transistor (MOSFET) is used, leading to a gate area of 2.2 µm2. Mixed
hardware-software simulations showed test accuracy close to the software baselines for
the MNIST, CIFAR-10 and CIFAR-100 datasets. A similar approach is discussed in [128]
with projections for a system level implementation, confirming the same conclusions.

Edge training with filamentary memristors. A different solution exploiting fila-
mentary resistive memories was proposed by Zhang et al. in [129]. From a device technol-
ogy point of view, the memristor device used a material stack of TiN/HfOx/TaOy/TiN,
compatible with the standard CMOS process. The memristors were integrated in the
CMOS BEOL with an excellent yield (almost 100% over 160,000 devices). The fabricated
memristors exhibited uniform and repeatable bidirectional analog switching with identical
pulse trains. The 160,000 total on-chip memristor cells could be uniformly programmed to
32 conductance states with average success rates of 99.90%. The unit cell includes resis-
tive memories in a differential configuration, i.e. a 2T-2R structure with a shared source
line to implement current summation in the analog domain, effectively reducing the volt-
age drop across the line. The manufactured chip includes controllers for configuration, a
two-transistor-two-resistor (2T-2R) array, line drivers for computing and programming,
low-cost analog-to-digital converters, modules for error and updates evaluation and input
and output buffers. The employed training algorithm features sign-based weight update
calculation, meaning that the differential conductance can be increased or decreased by
discrete amount for each update. This approach requires reliable memristive devices with
sufficiently linear updates and a large-enough dynamic range, for sufficient precision. The
error calculation, which results in ternary values, at different layers is implemented with
reconfigurable thresholds. The tuning of these threshold is essential to improve accuracy
and it impacts the number of updates implemented in the resistive memory arrays. The
updates are implemented in a row-wise parallel fashion. Even though the reconfigurable
thresholds strategy decreases the amount of updates performed on the memristors, it
might not be sufficient for extensive training throughout the device lifetime. Indeed, even
for a small dataset like MNIST, approximately 500,000 programming pulses are applied
to each device, which is already demanding for typical resistive memory devices. The
proposed approach is applied to other training settings, such as a fine-tuning process or
a class-incremental learning task which require less iterations, thus more adapted to the
device technology.
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Combining digital and analog IMC for training on-chip. An alternative solution
to the hybrid memory challenge of learning at the edge would be to combine the high
energy efficiency and storage density of memristors with the high accuracy of digital
SRAM, as SRAM is built from standard transistors. This was proposed by Wen et al.
in [130]. The key idea of this approach is to exploit digital (SRAM-based) and analog
(memristor-based) IMC for different parts of the network, trading off high accuracy of
digital IMC with energy-efficiency of analog IMC, according to the sensitivity of the
network layer to errors.
This fusion-IMC approach has therefore three operating modes, i.e. memristor-IMC,
mixed-device IMC, and SRAM-IMC. Memristor-IMC and mixed-device IMC modes are
suitable for layers that are less sensitive to readout accuracy degradation but require a
massive number of dot product operations, thereby necessitating high energy efficiency
and high computing throughput. The memristor-IMC mode with mult-level memristors
provides the highest energy efficiency. However, it suffers the most computing accuracy
degradation because of process variation and a data-retention time. The mixed-device
IMC mode is suitable for layers that depend on high computing accuracy as well as dot
product operations with high energy efficiency and computing throughput. The pure
SRAM-IMC mode is suitable for layers that require dot product operations of ultrahigh
accuracy, such as fully connected layers. Adaptive local training capabilities are also
included in this chip. This training is supported only in the digital-IMC mode, in order
to remove the need to adjust weights stored in the memristors. After the training is
performed the weights stored in the SRAM are redistributed to the memristors, if required
by the operating mode of the network layer. This work demonstrates that memristor
technology has the potential to be used beyond in-lab development stages and now has
manufacturability for AI edge processors. However, in advanced CMOS nodes, SRAM
has a considerable area footprint, which is problematic for learning systems that require
large amounts of memory. Additionally, as a volatile memory, SRAM presents limitations
for lifelong training, which can require non-volatile storage solutions for weights.

Other approaches. Alternative solutions based on novel, less mature technologies have
been proposed. For example, the 3-D monolithic integration of memristors for in-memory
computing, ternary content-addressable memory arrays, and buffers have been explored
to facilitate one-shot learning [131]. Another approach features a duplex device structure
with a FeFET with a monolayer MoS2 channel, suggested to decouple training and infer-
ence operations, demonstrated in small 8×3 device arrays [132].
Nevertheless, these approaches face significant challenges, including material compatibil-
ity issues, thermal budgets during fabrication and cost issues during the co-integration of
distinct memory technologies on the same die, as well as the integration of novel, more
complex device structures requiring new masks and process steps.

This thesis’s approach to on-chip ANN inference and training. The previous
analysis of the current research landscape regarding memristor-based inference acceler-
ators highlighted that the most mature solutions for such kind of systems are based on
either PCMs or RRAMs. However, the limited endurance, high programming energy, and
intrinsic non-idealities of these devices restrict their suitability for tasks requiring frequent
updates, such as on-chip learning. As a result, the implementation of ANN training often
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demands the integration of memristive elements with complementary technologies that
support frequent updates, such as DRAM-like capacitors or SRAM-based devices.
This thesis builds upon these hybrid approaches by proposing the use of ferroelectric ca-
pacitors in conjunction with resistive memory devices to enable efficient implementation of
both training and inference. Ferroelectric capacitors offer several compelling advantages
for learning applications, including superior endurance, low programming energy, excellent
scalability at advanced technology nodes and non-volatility. However, their destructive
read process makes them unsuitable for inference. For this reason their integration with
resistive memory devices could allow to develop systems with optimal inference and train-
ing capabilities. As shown in the next chapter, these two memory technologies can be
easily co-integrated within the same BEOL of a foundry CMOS process, thus simplify-
ing their co-manufacturing. Proof-of-concept circuit implementations and co-developed
learning strategies are later presented, validating the potential of this approach.

1.3 Summary

This chapter introduces key concepts related to both algorithmic and hardware solutions
in the context of artificial neural networks, that are central to the work presented in this
thesis. The first section focuses on algorithmic approaches, starting with an in-depth ex-
planation of learning through back-propagation of errors. This section explores the foun-
dational principles behind back-propagation, as well as the various common techniques
and best practices that have been developed over time to enhance the overall training
efficiency and quality of artificial neural network models. Additionally, the challenges of
implementing these algorithmic solutions in resource-constrained hardware environments
are examined, emphasizing the trade-offs between computational complexity and hard-
ware limitations. In the second part of this chapter, the focus shifts to the hardware
perspective, where an overview of state-of-the-art hardware solutions for implementing
ANNs is provided. Special emphasis is given to in-memory and near-memory comput-
ing architectures, which have gained significant attention for their potential to overcome
the von Neumann bottleneck and improve energy efficiency in both neural network infer-
ence and training. These solutions are typically based on emerging non-volatile memory
technologies, which offer promising advantages in terms of speed, scalability, and energy
consumption. After comparing the properties of different non-volatile memory technolo-
gies, the current progress in integrating these memory technologies into neural network
hardware accelerators is discussed, highlighting some of the most mature solutions avail-
able today. Exemplary inference and training hardware accelerators are presented, with
particular focus on the latter, where the need for a hybrid memory technology – capa-
ble of handling both low programming energy, large endurance and read stability – is
increasingly recognized as critical to advancing the hardware implementation of neural
networks.
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Chapter 2

Hybrid ferroelectric/resistive memory
technology

The successful implementation of learning-capable deep learning hardware accelerators
requires a memory technology with exceptional performance. However, no current mem-
ory technology combines all the desirable features for these systems. Resistive memory –
also known as memristor – arrays are ideal for inference [121, 122] but suffer from limited
endurance and high programming energy. Conversely, ferroelectric capacitors are ideal
for learning [133], due to their higher endurance and lower programming energy, but their
destructive read process makes them unsuitable for inference.
In this chapter, a unified memory stack which functions as both a memristor and a fer-
roelectric capacitor is presented. This chapter provides a detailed analysis of these two
memory technologies, with a particular focus on ferroelectric and filamentary resistive
memories based on hafnium oxide. First, the operation of hafnia-based ferroelectric ca-
pacitors and resistive memories is examined, highlighting the differences and similarities
between the two technologies in terms of switching phenomena, process technology, device
and array implementations. Next, the unified memory stack is introduced, accompanied
by extensive electrical characterization in both operating modes. Finally, perspectives on
device optimization and future outlooks are discussed.

2.1 Hafnium oxide

Hafnium oxide – HfO2 – appeared in the CMOS technology scene since early 2000’s, when
it was researched as a possible candidate to substitute silicon dioxide (SiO2) for metal
gate dielectrics.
Up to the 45 nm CMOS process technology node, scaling SiO2-based dielectrics was
essential for enhancing transistor performance in line with Moore’s Law. However, as
devices approached sub-45 nm nodes, the required effective oxide thickness for SiO2 had to
be less than 1 nm, which is about 3 monolayers and near the physical limit. This resulted
in significant gate leakage currents due to quantum tunneling effects. To continue scaling
down transistor dimensions, high-κ dielectrics were proposed as a solution to achieve
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comparable transistor performance while maintaining a thicker physical layer. Among the
various candidates to replace SiO2, hafnium-based oxides emerged as the most suitable
dielectric materials due to their superior overall performance [134]. Since 2007, Intel –
followed by other major semiconductor foundries – has been employing HfO2 as high-
κ dielectric for its more advanced technology nodes, making the integration of hafnium
oxide with CMOS technology a standard, well-established practice [135].
Since its introduction as high-κ dielectric in metal gate MOSFETs, HfO2 has also emerged
as one of the most promising candidates for the development of next generation non-
volatile memory devices. In particular, resistive [136] and ferroelectric [96] switching
phenomena have been observed in similar HfO2 films. Despite relying on similar material
substrates, the underlying switching mechanisms of the two memory technologies are
substantially different, as analyzed in the following.

2.2 HfO2-based ferroelectric memory technology

Ferroelectric capacitors, often referred to as FeCAPs, consist of a ferroelectric thin film
sandwiched between two symmetric metal electrodes. The ferroelectric film in FeCAPs can
switch between two polarization states, i.e., up or down polarization, through the appli-
cation of an external electric field, thereby encoding digital information. The polarization
of the ferroelectric dipoles remains unchanged after the power is removed, providing the
device with non-volatility.
The polarization - electric field hysteresis loop (Figure 2.1a) characterizes the operation of
a FeCAP device. It is defined by three quantities: the remanent polarization PR, i.e. the
residual polarization when the applied field is removed; the saturation polarization PS, i.e.
the maximum amount of polarization that can be induced in the material at high electric
field; and the coercitive field EC, i.e. the field value for which the polarization is switched
between negative and positive values. The most standard characterization procedure to
evaluate the hysteresis loop is the double-wave method, also known as PUND (positive
up negative down) technique [137]. It consists in applying triangular voltage pulses to one
of the electrodes of the ferroelectric capacitors, twice for each pulse polarity, and mea-
suring the capacitor current response. Doubling the number of pulses for each polarity
allows to to discriminate undesirable components (dielectric and linear response) from
the ferroelectric one. Indeed, the components that do not participate in the hysteresis
loop are automatically subtracted from the ferroelectric one without assumptions. The
polarization - electric field hysteresis loop is therefore obtained by integrating the current
response of the capacitor.
Several materials that exhibit a polarization-electric field hysteresis loop have been in-
vestigated for memory applications. Among them, HfO2-based ferroelectric materials are
the most promising due to their superior compatibility with advanced CMOS technology
nodes.

2.2.1 Ferroelectricity in HfO2 thin films

In 2011, it was discovered that thin films of hafnium oxide doped with SiO2 can exhibit
ferroelectric behaviour. Among others, two major factors allowing the stabilization of the
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ferroelectric phase in HfO2 are the presence of an encapsulation layer (a top electrode) and
the SiO2 concentration. It has been observed that hafnium oxide has three distinct crystal
phases under ambient pressure: a monoclinic phase at room temperature, a tetragonal
phase above 2050 K, and a cubic phase above 2803 K. In nano-scale crystallites, surface
energy effects lower the temperature range of the stable tetragonal phase. For this reason,
crystallization in thin films often starts with tetragonal phase nucleation, followed by a
transformation to the monoclinic phase as the crystals grow. The three above mentioned
phases are centrosymmetric and they do not allow the creation of semi-permanent dipoles
in hafnium oxide.
It has been observed that larger SiO2 concentration, between 5 and 10 %, stabilizes the
tetragonal phase, whereas mechanical encapsulation during crystallization can hamper
the creation of the monoclinic phase. Therefore, a new phase can be obtained by lowering
the SiO2 concentration below the one stabilizing the tetragonal phase and encapsulat-
ing the material during crystallization. As shown in Figure 2.1b, this transformation
leads to a polar (non-centrosymmetric) orthorombic phase. Specifically, films that are
10 nm thick and contain less than 4 % SiO2 can crystallize into an orthorombic phase.
This orthorhombic phase displays a notable piezoelectric response, with polarization mea-
surements indicating a remanent polarization above 10 µC/cm2 and a coercitive field of
1 MV/cm, thus suggesting ferroelectric characteristics [96].
The hysteresis loop of a FeCAP evolves with cycling, in particular the remanent polar-
ization shows two distinct trends (Figure 2.1c):

• Wake-up phase: the remanent polarization memory window, defined as the differ-
ence between positive and negative remanent polarizations (2PR in Figure 2.1c),
increases with cycling. This increase of the remanent polarization corresponds with
an opening of the pristine hysteresis loop with field cycling;

• Fatigue phase: after a certain number of cycles, the remanent polarization hysteresis
decreases resulting in a closure of the memory window due to aging mechanisms.

A stable phase can occur between the wake-up and fatigue phases, during which the re-
manent polarization memory window remains relatively stable with field cycling.
The wake-up and fatigue phenomena arise from a complex interaction of ferroelectric and
dielectric properties. In the wake-up phase, already existing defects in the ferroelectric
film are redistributed, decreasing the defect induced built-in field and creating a uni-
form field distribution. Additionally, field-induced phase transitions can transform the
initially pristine monoclinic-phase to a woken-up orthorhombic-phase with cycling. Mod-
eling the diffusion mechanisms of ions and vacancies, along with phase transitions, has
demonstrated that these factors contribute to the disappearance of the built-in field, the
formation of a more uniform field within the device, and an increase in the volume fraction
involved in the switching process. Moreover, dielectric degradation has been identified as
the primary cause of limited endurance in doped HfO2-based ferroelectric capacitors. An
increase in trap density with device cycling indicates that trap generation, along with do-
main pinning, is the main mechanism behind the degradation of ferroelectric behaviour.
This trapping occurs both in the interfacial regions near the electrodes and within the
bulk. Electron trapping at these defects alters the field distribution within the stack,
reducing the field in the bulk of the ferroelectric layer. Further generation of vacancies
leads to the creation of leakage paths, eventually resulting in stack breakdown before the
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memory window fully closes [138].
Polarization recovery techniques have been recently proposed in order to extend the en-
durance of ferroelectric devices. Positively charged oxygen vacancies formed at the in-
terface between the ferroelectric film and electrodes can cause domain pinning and the
fatigue can be recovered by applying a high stress field. As a result, the recovery effect is
attributed to domain depinning and the switching of new domains due to the redistribu-
tion of oxygen vacancies [139].

2.2.2 Process technology

HfO2-based ferroelectric capacitors can be integrated in the BEOL of CMOS technology,
for increased integration density. This is possible thanks to the compatibility of the
fabrication process with the thermal budget of the CMOS back-end of line. The process
integration relies on standard deposition techniques in microelectronics, such as physical
vapour deposition (PVD) and atomic layer deposition (ALD), for the metal electrodes and
HfO2 layers. Specifically, the thickness of the HfO2 layer has to be precisely controlled
to ensure the stabilization of the ferroelectric phase. A trade-off between crystallization
temperature in the orthorhombic phase and film thickness exists, preventing significant
scaling of the HfO2 thickness below 10 nm, which would be beneficial to reduce the
switching voltage and, as a consequence, the power consumption of the device. The doping
control is also essential to achieve stable ferroelectric behaviour. Ref [140] reported the
integration of 10 nm Si-doped (1% mean concentration) HfO2 devices, sandwiched between
two titanium nitride (TiN) metal electrodes, between the fourth and fifth metal layers of
a 130 nm foundry process, while keeping the process temperature below 450 ◦C.
Beside Si-doped HfO2, other dopants allow the stabilization of the ferroelectric phase,
such as yttrium (Y) [141], gadolinium (Gd) [142], aluminium (Al) [143], strontium (Sr)
[144], lanthanum (La) [145], and others. Moreover, a mixture of zirconium and hafnium
oxide (HZO) has also shown excellent ferroelectric properties [146]. Ref. [147] reported
for the first time BEOL integrated TiN/HZO/TiN capacitors, in the 130 nm CMOS
node, proving the possibility to scale down the capacitor dimensions to 300 nm diameter.
Excellent performance were reported, such as remanent polarization memory window
larger than 40 µC/cm2, endurance larger than 1011 cycles, switching speeds below 100 ns,
operating voltages below 4 V, and 10-years data retention at 125◦C. Since then, major
advancements have been reported on HZO ferroelectric stacks [148, 97, 149], making HZO
the most optimal ferroelectric material from both performance and reliability perspectives
at present [150].

2.2.3 1T-1C FeRAM arrays

HfO2-based FeCAPs can be serially connected with a selector transistor (one transistor one
capacitor cell, 1T-1C) and organized in an array configuration for memory applications
(Figure 2.2 a). Such arrays are often referred to as FeRAM arrays. A 1T-1C cell can
be accessed via three ports, a word line (WL) connected to the gate of the selector
transistor, a source line (SL) connected to the top electrode of the FeCAP and a bit
line (BL) connected to the source of the selector transistor. The bottom electrode of the
FeCAP device is directly connected to the drain of the selector transistor.
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Figure 2.1: Ferroelectric capacitors concepts. a Polarization - Electric Field hys-
teresis loop of a ferroelectric capacitor. b HfO2 nano-crystallites (hafnium atoms in light
blue, oxygen atoms in red) can be stabilized in a non-centrosymmetric crystalline phase
by metal capping and doping control (Reprinted and adapted from [96]). c Polarization
memory window as a function of cycling. FeCAPs were cycled with square electrical
pulses to mimic the electrical signal waveform used for FeRAM arrays characterization.
The polarization memory window is extracted using PUND methodology (4.8V-10kHz).
Measurements are performed and averaged over five different dies on the same wafer. Fe-
CAPs are made of 10 nm thick Si-doped HfO2 sandwiched between TiN metal electrodes
(Reprinted from [151]).
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Figure 2.2: Programming and read operations of FeRAM arrays. a FeRAM bitcell
consisting of a selector transistor connected to the bottom electrode of a FeCAP device
(1T-1C structure). b Set operation of a 1T-1C cell. c Reset operation of a 1T-1C cell. d
Read operation of a 1T-1C cell.

Performing a set operation, i.e. writing a 1 in the FeCAP, consists in pulsing the BL of
the 1T-1C cell while the WL is selected and the SL is precharged or connected to ground
(Figure 2.2b). On the other hand, the device can be reset (Writing a 0 in the FeCAP)
by pulsing the SL while the WL is selected and the BL is precharged or connected to
ground (Figure 2.2c). The set and reset pulse amplitude and duration can be optimized
for improving device reliability properties, such as endurance and retention. On the other
hand, the WL is typically connected to the supply voltage when selected, as no accurate
control of the current flowing in the device is required for programming.
The read operation consists in applying a reset pulse to the device and comparing the
BL voltage response to a reference voltage via a sense amplifier (SA), as shown in Figure
2.2d. The output of the sense amplifier (Out) is a 0 or a 1, respectively if the BL voltage
is smaller or larger than the reference one. The voltage obtained on the BL, VBL, when
pulsing the SL depends on several factors and it can be expressed as:

VBL =
C

C + CBL

VSL , (2.1)

where C is the capacitance value of the ferroelectric capacitor, CBL the BL parasitic
capacitance and VSL the amplitude of the SL pulse. The capacitance C can be written as
the sum of a dielectric component (CD) and a ferroelectric one (CF):

C = CD + CF = ϵ0ϵr
S

d
+

2PRS

VSL

δ , (2.2)

where S and d are the area and thickness of the capacitor, ϵ0 is the vacuum permittivity,
ϵr is the relative permittivity of the ferroelectric material, PR is the remanent polarization
of the capacitor, and δ is equal to one or zero depending on the polarization state stored
into the ferroelectric capacitor. In the approximation CF ≪ CD + CBL, equation (2.1)
can be rewritten as:

VBL =
CD

CD + CBL

VSL +
2PRS

CD + CBL

δ . (2.3)

Therefore, the BL response while performing a read operation is the sum of a dielectric
component and a ferroelectric one, if a polarization switching event occurs during the
read operation.
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By considering typical values for ferroelectric capacitors, e.g. area S=0.36µm2, thick-
ness d=10 nm, relative permittivity ϵr=29.7, vacuum permittivity ϵr=8.854·10-15 F/m,
remanent polarization Pr=15 µC/cm2, applied read voltage VSL=3.5 V and BL parasitic
capacitance CBL=200 fF, the error due to the approximation CF ≪ CD + CBL in equa-
tion 2.3 can be evaluated. Indeed, CD=9.5 fF and CF=31 fF, which results in a 15% error
on the BL voltage evaluated with equation (2.3).
This reading scheme is therefore data-destructive, if polarization-switching occurs during
read, and reprogramming to the previous state needs to be performed to restore the initial
information. This can be achieved by dedicated circuitry in the sensing element. There-
fore, the reading procedure of ferroelectric capacitors links and limits the read endurance
to the write one. In the worst case scenario, i.e. reading a 1, a single read operation
requires two polarization switching events in order to read and restore data. Reading a
zero also requires two operations, but no polarization switching occurs in this case, either
during read and write-back.
The typical sensing element for reading the data stored in a ferroelectric device is a clocked
latch sense amplifier (Figure 2.3a). When the sensing element is disabled (en signal is
low), the nodes Vin,a and Vin,b are loaded to VBL and Vref respectively. When the sens-
ing element is enabled (en signal is high), the latch switches depending on the relative
voltage of the two pre-charged nodes (Figure 2.3b). It is important to notice that this
comparator has no dedicated output. Each input Vin,a and Vin,b can be an output once
the comparison is done. In Figure 2.3a, Vin,b is used as output node to which a digital
buffer is connected, because it provides a logical ‘1’ when VBL is higher than Vref.
Therefore, this sensing element directly reads the BL voltage which depends on the BL
parasitic capacitance. This could eventually become a problem for large bank size mem-
ories, as the memory window decreases with increasing bit line capacitance, as shown in
equation (2.3).
A new charge-based sensing scheme for read operation in FeRAM arrays has been re-
cently proposed in order to increase the median memory window and making it quasi-
independent of array size, overcoming the problem of the memory window closure with
bit line capacitance increase, observed in FeRAM arrays with conventional voltage-based
sense. This new scheme relies on a capacitive trans-impedance amplifier (CTIA)-based
sensing, i.e. a two-stage operational amplifier with a feedback capacitance and a reset
switch in parallel [152]. From an area point of view, a cross-coupled inverters comparator
occupies a 40 µm2 area while the CTIA sense occupies 630µm2 in the 130 nm CMOS tech-
nology node, with the possibility to reduce area of a factor 3 for the CTIA-based sense
with an optimized design, as claimed in [152]. Depending on the application domain and
trade-offs between area and latency, one solution might be more optimal than the other.
Neglecting resistive losses, FeRAM arrays have zero static power consumptions. For this
reason, operations in FeRAM arrays can be parallelized, e.g. programming/erasing or
reading (depending on the chosen sensing strategy) an entire line at the same time, with-
out incurring in excessive peak power consumption. Moreover, dynamic power consump-
tion can be minimized by optimizing the array configuration, i.e. the relative orientation
of BLs, SLs and WLs. For instance, the 1T-1C bit cell described in Figure 2.2 in a square
array with N×N bit cells, with one sensing element for each BL, can be analyzed. The
power consumption during any operation performed on the array can be evaluated as the
sum of the power consumption of the different supplies taking part in said operation:

Ptotal = PBL + PSL + PWL, (2.4)
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PBL = CBLV
2
BLfBL (2.5)

PSL = CSLV
2
SLfSL (2.6)

PWL = CWLV
2
WLfWL (2.7)

where CBL, CSL, CWL are the capacitive loads of the supplies VBL, VSL, VWL respectively
and fBL, fSL, fWL the average switching frequencies of the signals propagating through the
three sets of lines. Three different array configurations are possible in terms of relative
line orientation. Each configuration has a different impact on the load of the different
supplies and therefore the total power consumption. Considering the worst case scenario
in terms of peak power consumption, e.g. reading an entire line at the same time, the
three different array configurations are analyzed.

• Parallel WLs and SLs and perpendicular BLs: Performing a read operation requires
charging a single SL to the programming voltage level and a single WL to the supply
voltage.

• Parallel BLs and SLs and perpendicular WLs: Performing a read operation requires
charging N SLs to the programming voltage level and a single WL to the supply
voltage.

• Parallel WLs and BLs and perpendicular SLs: Performing a read operation requires
charging N SLs to the programming voltage level and N WLs to the supply voltage.

Clearly, for each of the three configurations, N BLs switch during a full line read operation.
The first option is more energy efficient than the second and third ones for reading an
entire line of capacitors in parallel.
A ferroelectric memory array with 128 parallel WLs and SLs and 128 perpendicular BLs,
with a clocked latch sense amplifier for each BL is used in section 2.4.3 to evaluate the
performance of the proposed unified memory stack as a ferroelectric memory.

49



Hybrid ferroelectric/resistive memory technology

2.3 HfO2-based resistive memory technology

Resistive memory devices – also known in other contexts as filamentary memristors or
valence change memories – consist of an insulating thin film, made of a metal-oxide
material, sandwiched between two metal electrodes. The insulating material can switch
between two conductive states, a high conductance state and a low conductance state, with
the application of electrical pulses. Typically, devices in their initial pristine state require
a one-off "forming", or "electro-forming", step in order to initiate resistive switching
behaviours for subsequent cycles. The transition low-to-high conductance is called set
operation, whereas the high-to-low conductance transition is called reset operation. The
switching modes of metal-oxide resistive memory devices can be generally divided into
two categories: unipolar and bipolar. In unipolar switching, the switching direction is
influenced by the amplitude of the applied voltage, regardless of its polarity, allowing
set/reset operations to occur at the same polarity (Figure 2.4a). On the other hand, in
bipolar switching, the switching direction is determined by the polarity of the applied
voltage, meaning that set and reset operations occur at opposite polarities (Figure 2.4b).
To prevent permanent dielectric breakdown during the set process in either switching
modes, a set compliance current is typically enforced.

2.3.1 Filamentary switching in HfO2 resistive memory devices

Memory switching in HfO2-based devices relies on the creation or dissolution of a con-
ductive filament of oxygen vacancies. In the forming process, a soft dielectric breakdown
occurs, causing oxygen ions to move towards the top electrode interface under a high elec-
tric field. Here, if the electrode is made of noble metals, the ions are released as neutral
non-lattice oxygen; otherwise, they react with the anode material to form an interfacial
oxide layer. Consequently, the electrode/oxide interface acts as an oxygen reservoir, also
known as oxygen scavenging layer. In a memory cell in the high conductance state, current
travels through the conductive filaments within the bulk oxide. During the reset process,
oxygen ions migrate back into the bulk, recombining with oxygen vacancies, transitioning
the memory cell to the low conductance state. In unipolar switching devices, Joule heat-
ing from the current thermally activates the diffusion of oxygen ions. These ions diffuse
from the interface or surrounding conductive filaments due to the concentration gradient,
hence unipolar switching typically requires a higher reset current to increase the local
temperature around conductive filaments. For bipolar switching devices, the interfacial
oxide layer can act as a significant diffusion barrier, making pure thermal diffusion inad-
equate. Thus, oxygen ion migration must be assisted by the reverse electric field. The
described physical model, summarized in Figure 2.4b, integrates both the thermal model
and ionic migration model, providing a phenomenological explanation of the experimental
observations for hafnia-based devices, as well as other binary metal-oxide devices.
The unipolar or bipolar operation of HfO2-based devices strongly depends on the elec-
trodes interfaces. For instance, unipolar switching was observed in Pt/HfO2/Pt struc-
tures [153], whereas using oxidizable interfaces, such as Ti/TiN, favours bipolar opera-
tion. Bipolar operation is usually favoured for HfO2-based devices because of the simpler
integration of Ti and TiN electrodes and the lower reset current requirements.
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2.3.2 Process technology

Resistive memories can also be integrated in the BEOL of CMOS technology, thanks to the
compatibility of the manufacturing process with the thermal budget of the CMOS back-
end. Standard deposition techniques are used to manufacture the metal/insulator/metal
stack, making the integration of resistive devices cost-effective, and compatible with ex-
isting semiconductor fabrication processes.
Refs. [154, 155, 156] reported similar exemplary manufacturing processes of BEOL-
integrated memory stacks, for Si-implanted 5 nm or 10 nm HfO2 films combined with
a Ti/TiN top electrode. The presence of a Ti layer in the top electrode is essential for
reliable bipolar resistive switching of HfO2 films. As reported in [157], for a 8 nm thick
HfO2 film, devices with thicker Ti layers have larger initial leakage currents, resulting
in smaller forming voltages. It was also observed that with a Ti layer below 3 nm, no
resistive switching could be measured after forming. Indeed, the Ti layer serves as an
oxygen reservoir, not only extracting oxygen during electrical forming, but also facilitat-
ing resistive switching thereafter.
Moreover, larger doping concentrations (mean concentration in the range 0.5-5%) are ben-
eficial to reduce forming forming voltage. In particular, local Si-implantation has shown
to significantly decrease forming, set and reset voltages, improving data retention, while
not being detrimental for endurance [155].
Thickness scaling is also beneficial for reducing the forming voltage. Indeed, 5 nm HfO2

films, combined with 5 nm Ti scavenging layer are nowadays more common in hafnia-
based RRAMs [156, 158]. Although ultra-thin layers (3 nm) of doped HfO2 have been
observed to be forming-free [159], reducing the oxide thickness can lower the oxide layer’s
resistivity, which in turn may increase the conductance of the LCS. As a result, there is
a trade-off between the forming voltage and the memory window.
Contrarily to ferroelectric devices, the crystalline phase of resistive memory devices does
not play a crucial role in the switching mechanism. Nevertheless, it can impact operating
voltages and reliability characteristics [160].

2.3.3 1T-1R RRAM arrays

Resistive memory devices can be serially connected with a selector transistor (one tran-
sistor one resistor cell, 1T-1R) and organized in an array configuration for memory ap-
plications (Figure 2.5a). Such arrays are often referred to as RRAMs. Typically an
n-MOSFET is used as selector device.
A 1T-1R cell can be accessed via three ports, a WL connected to the gate of the selector
transistor, a SL connected to the top electrode of the resistive device and a BL connected
to the source of the selector transistor. The bottom electrode of the RRAM device is
directly connected to the drain of the selector transistor.
In bipolar devices, performing a set operation, i.e. writing a 1 in the resistive device, con-
sists in pulsing the SL of the 1T-1R cell while the WL is pulsed and the BL is connected to
ground (Figure 2.5b). On the other hand, the device can be reset (Write a 0) by pulsing
the BL while the WL is pulsed and the SL is connected to ground (Figure 2.5c). Opti-
mizing the programming conditions of RRAM arrays is essential for improved reliability.
Enforcing the correct compliance current and SL pulse amplitude during forming and set
operations in essential for optimal management of the conductive filament. Indeed, the
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multi-level capability of resistive memory devices relies on the possibility to create several
high conductance states by tuning the compliance current enforced during a set opera-
tion. This is achieved by controlling the selector transistor gate-to-source voltage, with
an n-MOSFET with a grounded source. On the other hand, during reset operations, the
compliance current is not controlled, but finding the optimal BL voltage is of the utmost
importance.
The read operation of a resistive memory cell consists in reading its resistance value by
typically applying a voltage pulse of sufficiently low amplitude, such that the conductive
filament configuration is not altered (Figure 2.5d).
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Figure 2.5: Programming and read operations of RRAM arrays. a RRAM bitcell
consisting of a selector transistor connected to the bottom electrode of a memristive device
(1T-1R structure). b Set operation of a 1T-1R cell. c Reset operation of a 1T-1R cell. d
Read operation of a 1T-1R cell.

This general idea of evaluating the RRAM resistance without altering the device physical
state is the reason that allows RRAM devices to have virtually unlimited read endurance.
Clearly, embedded RRAM arrays require a sensing element translating the analog infor-
mation of the RRAM resistance into a digital information. The design of the sensing
element depends on the intended operation of the RRAM device – i.e. binary or mul-
tilevel operation – and array – digital memory bank, near-memory computing or analog
in-memory computing engine. The design of these sensing elements is a considerably large
research topic that is out of the primary scope of this thesis and it is therefore not be fur-
ther explored here. In chapter 4, the design of a sensing element for the implementation
of a near-memory computing inference engine is presented.

2.4 Unified ferroelectric and resistive memory technology

The previous analysis of HfO2 based ferroelectric and resistive memories shows that even
though the underlying switching mechanism of the two memory technologies relies on
different – and sometimes contrasting – physical properties of the material, the active
memory substrate is very much similar for both technologies. The fabrication processes
of ferroelectric and resistive memories also share many similarities, hinting at the possi-
bility to find common ground between the two in order to produce a single memory stack
enabling both switching phenomena to co-exist in the same memory stack.
Combining ferroelectric and resistive properties within the same memory stack can dras-
tically simplify the integration of these two memory types, which, when combined, offer
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an optimal solution for implementing deep learning hardware with learning capabilities,
as further discussed in the next chapters. In this section, the existing literature on hybrid
ferroelectric and resistive memory technologies is reviewed. Following this, the unified fer-
roelectric/resistive memory technology proposed in this thesis is introduced, along with
its fabrication process and single-device characterization in both operating modes. Fi-
nally, the electrical characterization of ferroelectric and resistive memory arrays based on
this unified stack is presented and discussed.

2.4.1 Existing research on hybrid ferroelectric/resistive memory technology

Interplay between ferroelectric and resistive switching has already been observed in hafnia-
based devices. Ref. [161] explored the underlying principles of combining ferroelectric and
resistive switching within a single capacitor cell. The analysed structure is a polycrys-
talline strontium-doped hafnium oxide sample, with TiN as the bottom electrode and
Pt as the top electrode. To define the capacitors, platinum top electrodes with a diam-
eter of 200µm were evaporated, i.e. capacitor area of of 31 416µm2. It was observed
that crystalline structures – essential requirement for the operation of the capacitor as
a ferroelectric memory – require a higher forming voltage but exhibit a lower reset volt-
age compared to amorphous structures, which are a more standard choice for resistive
memory devices. The switching performance revealed stable bipolar operation with off-
to-on ratios of 10 and 50 for the amorphous and crystalline samples, respectively. The
ferroelectric behaviour of the sample was stable with a remanent polarization of up to
12 µC/cm2. Successful resistive switching was also observed, with filament formation in
the capacitor stack demonstrating a double reset and set operation with a current off-
to-on ratio spanning four orders of magnitude. Additionally, the device’s high resistance
state, achieved through a complete reset of the oxide layer, allowed for further ferroelectric
switching. This second ferroelectric switching operation exhibited a remanent polariza-
tion of 5 µC/cm2. The study further investigated how ferroelectric field cycling impacts
resistive switching performance, given that both memory mechanisms depend on the dis-
tribution and concentration of oxygen vacancies in the oxide layer. The study showed
that different ferroelectric states – pristine, woken-up, and fatigued – affect subsequent
resistive switching behaviour. Specifically, increased field cycling, which induces addi-
tional oxygen defects in the hafnium oxide layer, lowers the forming voltage and makes
filament formation easier. However, the set and reset voltages were not dependent on the
distribution of oxygen vacancies.
Ref. [162] focused on bipolar resistive switching in ferroelectric epitaxial HZO. The inves-
tigation on was performed on Hf0.5Zr0.5O2 epitaxially grown on La0.8Sr0.2MnO3-buffered
SrTiO3. In this crystalline system, filamentary switching was observed without the need
for electroforming and current compliance, alongside symmetric ferroelectric switching
with distinctive hysteresis loops. Alternating between these switching mechanisms is re-
versible and does not affect the subsequent ferroelectric performance. The study explicitly
demonstrates the transition from resistive switching back to ferroelectric switching, en-
abled by the common reset serving as a deep reset to the virgin state. The parallel and
non-interfering nature of these phenomena suggests that the mechanisms operate inde-
pendently on different time and voltage scales within the same device. This study is also
limited to single device structures with relatively large size. Indeed, the smallest investi-
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gated capacitor structure has an area of 49 µm2.
Ref. [163] explored for the first time the ferroelectric and resistive operations of memory
stacks based on TiN/Si:HfO2/Ti/TiN integrated in the BEOL of 130 nm CMOS tech-
nology node, thus paving the way for the integration of such memory devices in denser
array implementations. It was found that the ferroelectric properties of these struc-
tures are modulated by the presence of a Ti oxygen scavenging layer. Stacks based on
TiN/Si:HfO2/Ti/TiN were integrated in 130 nm CMOS BEOL between the fourth and
fifth metal layers, to create 0.28 µm2 memory elements. Bulk chemical analysis revealed
that the amount of oxygen vacancies, already present in Si implanted hafnia films without
Ti, significantly increased with Ti thickness. Moreover, the structural analysis of the film
proved that the increased oxygen vacancies concentration induced by the presence of Ti
increased the orthorombic (o) phase proportion at the expense of the tetragonal (t) one
for 10 nm Si:HfO2 films and also induced partial crystallization in the o/t phase for 5 nm
Si:HfO2 films. These structural observations were validated by electrical characterization
of FeCAPs structures. The presence of Ti increased the remanent polarization memory
window to 40 µC/cm2, double with respect to the same stack without Ti, and reduced
wake-up. Moreover, weak ferroelectricity was induced in thinner 5 nm films, with a re-
manent polarization memory window smaller than 2 µC/cm2. These results obtained at
device level were finally confirmed at array level. Indeed, the increased remanent polar-
ization with Ti-based stack resulted in up to three times memory window with respect to
Ti-free reference arrays. As a result of higher o-phase proportion induced by engineering
of oxygen vacancies, Ti-based FeRAM arrays could be operated at lower voltages while
maintaining a sufficiently large memory window.
This analysis revealed that the presence of Ti in the top electrode can have some positive
effects on the ferroelectric properties of these devices. Some preliminary results on the
resistive operation of such devices were also reported. Indeed, the increase of oxygen va-
cancies through Ti interface engineering was found to facilitate conduction mechanisms,
leading to the creation of a oxygen vacancies-rich filament in the ferroelectric layer, re-
sulting in a resistive memory operation. Nevertheless, resistive operation was proven only
for 5 nm films, which did not show reliable ferroelectric operation.

2.4.2 A novel ferroelectric/resistive memory stack

In this thesis, a single memory stack based on silicon-doped hafnium oxide is introduced,
enabling the fabrication of resistive memories and ferroelectric capacitors in the same
BEOL process. This integration, requires no additional masks, simplifying manufactur-
ing by combining both technologies into a unified memory stack. Initially fabricated
as FeCAP, these devices can be transformed into resistive memory elements through a
unique electrical forming operation, allowing FeCAP and resistive memories to coexist on
the same chip (Figure 2.6).
The memory stack combines a 10 nm ferroelectric silicon-doped HfO2 film with a titanium
scavenging layer. Figure 2.6 illustrates the crystallization of the HfO2 film, along with
the top and bottom electrodes. The inclusion of the Ti layer serves a dual purpose: it
enhances the ferroelectric properties of the structure, leading to a higher remanent po-
larization in the ferroelectric capacitor [164], and it increases the concentration of oxygen
vacancies at the interface. This intentional increase in oxygen vacancies promotes the
formation of conductive filaments within the ferroelectric layer, facilitating the operation
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as a resistive memory, as shown in [163].
For the first time a unified memory stack based on Si-doped hafnia is characterized at
array level, showing state of the art performance for both ferroelectric and resistive op-
erations. For this purpose, FeRAM arrays and RRAM arrays were fabricated and tested
on the same wafer using the developed metal/ferroelectric/metal memory stack.

Fabrication process. Memory devices based on the unified ferroelectric/resistive stack
were fabricated in the BEOL of a 130 nm CMOS foundry process with four metal layers.
The unified memory, based on ferroelectric Si-doped hafnium oxide was fabricated on
tungsten vias on top of metal layer four. The unified memory stack consists of a 150 nm
thick TiN bottom electrode, a 10 nm thick Si-doped HfO2 ferroelectric layer, a 4 nm thick
Ti oxygen scavenging layer, and a 100 nm thick TiN top electrode. TiN electrodes were
deposited by PVD at 350◦C. The HfO2 layer was deposited by ALD at 300◦C with HfCl4
and H2O as precursors. The oxide film was then doped with silicon by ion implantation
to achieve a 1% Si mean concentration. The titanium scavenging layer was deposited
by PVD at the top electrode interface, with no air break between the Ti and TiN top
electrode. The resulting stack was etched to define square capacitors with 600 nm sides.
Capacitors were then encapsulated by SiN and SiO2 deposited at 400◦C, followed by a
planarization step before via opening and metal five deposition at 450◦C.

Single device characterization. Figure 2.6 shows five polarization-electric field hys-
teresis loops measured using the PUND technique at ±3V-10 kHz on 550 nm diameter
capacitors after a wake-up phase of 104 triangular pulses at ±3V-10 kHz. The polariza-
tion - electric field plot is obtained by averaging the measured displacement current of
1,000 capacitors.

Figure 2.6 also shows five quasi-static current-voltage curves for the set and reset oper-
ations of a 1T-1R device, with minimum length and 660 nm wide access transistor and
600 nm side square capacitors. For the set operation, the WL of the access transistor
was set to 1V, the BL was grounded, and the top electrode was swept between 0V and
2.6V in 50mV steps. For the reset operation, the WL of the access transistor was set
to 4.5V, the top electrode was grounded, and the BL was swept between 0V and 1.45V
in 50mV steps. Set operations were always preceded by reset ones. Prior to cycling, the
1T-1R device underwent forming, during which the WL of the access transistor was set
to 1.05V, the bottom electrode was grounded, and the top electrode was swept between
0V and 5.2V in 50mV steps.

2.4.3 FeRAM operation with the unified memory stack

The 10 nm ferroelectric Si:HfO2 film with Ti scavenging layer was integrated in the 130 nm
CMOS BEOL to produce 0.36 µm2 square capacitors in 16,384 1T-1C FeRAM arrays with
sense amplifiers operating from 4.8V down to 2.5V, as in [151]. FeRAM arrays, used to
evaluate the memory performance of the proposed unified memory stack as a binary
ferroelectric device, include shift registers to address different lines, control circuits for
the shift registers, line drivers to connect the addressed lines to an external voltage, and
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Figure 2.6: Unified memory stack enabling the fabrication of memristors and
ferroelectric capacitors. The same BEOL integrated metal-ferroelectric-metal stack
(High-resolution transmission electron microscopy cross section illustrating 10 nm Si:HfO2

film crystallization and tilted scanning electron microscope, SEM, view with focused ion
beam cross section) can be used as either ferroelectric capacitor (showing Polarization-
Electric Field hysteresis loops) or memristor (exhibiting butterfly-shaped Current-Voltage
curve) after undergoing a forming operation.

sense amplifiers for data readout. A clocked latch sense amplifier is used to compare the
bit line voltage to an external reference voltage during the read operation (Figure 2.3).
The digital peripheral circuitry is supplied with 4.8V. A 660 nm wide minimum length
selector transistor is serially connected to the designed capacitor.

Measuring analog distributions of FeRAM arrays. After undergoing wake-up cy-
cling, i.e. alternating 1000 reset-set pulses, the ferroelectric capacitors were characterized.
The distributions of 0 and 1 states (Figure 2.7a) were obtained by alternating program-
ming and read pulses for increasing values of reference voltage Vref, i.e. the voltage to
which the BL potential is compared during a reading operation. The median memory
window, defined as the separation between the median Vref associated with the zero and
one states, is 360 mV. The worst-case memory window, the difference between the Vref

values associated with the least separated zero and one states, is 120 mV. The reference
voltage was swept between 0V and 1V with a 20mV step. Programming and reading
pulses of 3V amplitude and 2 µs duration were employed for this characterization. This
analysis highlights the reliability of the proposed stack as a ferroelectric memory. No bit
error was measured with the described conditions.

Array-level switching efficiency. After performing wake-up cycling with 103 pulses,
the switching efficiency on the 16 kbit array across various pulse amplitudes and durations
was measured. The fixed reading conditions were set to Vref=0.56V and 3V-2 µs pulses to
identify the optimal programming conditions for the FeCAPs. The value Vref=0.56V was
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chosen as the midpoint in the median memory window in Figure 2.7a. Figures 2.7b and
2.7c illustrate the trade-off between pulse width and amplitude for programming a zero
(source line pulse) or a one (bit line pulse) in cells initially programmed to the opposite
state. The two highlighted programming conditions – A and B – both achieved 100%
switching efficiency. All these measurements relied on on-chip embedded delay blocks,
designed to generate pulse timings down to 520 ps.
It is worth noticing that this analysis provides information on the intrinsic switching ef-
ficiency of the ferroelectric capacitors, influenced by the array design. Indeed, the same
analysis evaluated on a different design, might provide slightly different results, in partic-
ular for the smallest pulse widths or lowest pulse amplitudes, i.e. conditions for which the
parasitic contributions introduced by design choices might impact the results the most.

Programming energy estimation. The programming energy to switch one bit (Fig-
ure 2.7d) was evaluated for several programming conditions with 100% switching efficiency
at array level. The programming energy of a ferroelectric memory cell can be evaluated
as

∆E = 2PR · S · Vprog = MW0σ · (CD + CBL) · Vprog, (2.8)

where PR is the remanent polarization, S is the capacitor area, MW0σ is the median
memory window, CD is the dielectric capacitance, CBL is the BL parasitic capacitance,
and Vprog is the programming voltage. The relationship between remanent polarization
memory window (2PR) and array-level memory window (MW0σ) can be derived from
equation 2.3. Indeed, for a ferroelectric capacitor programmed either in the one or zero
states,

VBL,1 =
CD

CD + CBL

VSL +
2PRS

CD + CBL

,

VBL,0 =
CD

CD + CBL

VSL.

The memory window of a capacitor is defined as:

MW = VBL,1 − VBL,0 =
2PRS

CD + CBL

, i.e. 2PRS = MW (CD + CBL) (2.9)

For an array of capacitors, equation 2.9 can be rewritten as:

2PRS = MW0σ(CD + CBL).

The area enclosed by a polarization - electric field hysteresis loop (Figure 2.1a) represents
the energy per unit volume dissipated during one complete cycle of polarization switching.
This is the energy required to switch the polarization state twice. Therefore the energy
to switch the polarization of a ferroelectric capacitor from the 0 to 1 state (or vice-versa)
is equal to the product between the volume of the ferroelectric capacitor (Sd) and half
the area of the hysteresis loop (approximately 2PRVprog/d). Thus,

∆E ≈ 2PRVprog

d
Sd = 2PRSVprog = MW0σ(CD + CBL)Vprog.

Following equation 2.8, the switching energy is obtained from the experimentally mea-
sured median memory window for the different programming conditions and the estimated
capacitance values. For the median memory window extraction, the distributions of the
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zero and one states, with analogous writing and reading pulses for each pulse amplitude-
duration combination, were measured. The dielectric capacitance for the memory element
was estimated as CD=ϵ0ϵrS/d = 9.5 fF, with ϵr = 29.7, and the BL parasitic capacitance
as CBL = 188 fF [165]. A switching energy below 200 fJ/bit is reached for programming
condition B (2.75V - 62.5 ns), approximately 30% smaller than the switching energy of
condition A (3V - 2 µs). The programming energy of ferroelectric capacitors can be fur-
ther reduced by either decreasing the programming voltage to 2.5V or the pulse duration
to approximately 20 ns, without impacting the programming reliability.

Endurance analysis. The median memory window evolution after several cycling
phases was measured (Figure 2.7e), confirming the expected wake-up, stable and fatigue
phases of Si-doped HfO2-based ferroelectric capacitors. A positive MW0σ is ensured for
both programming conditions after 107 cycles, with programming condition A exhibiting
enhanced memory window. Nevertheless, the distribution of 0 and 1 states after 107 cycles
show bit failures occurring for programming condition A. whereas almost no bit failure
is observed for programming condition B, for Vref=0.4V (Figure 2.7f). Indeed, it can be
observed that 0 and 1 state distributions for programming condition A overlap for larger
values of Vref, indicating that approximately 25% of devices in the array are either in soft
or hard breakdown.

2.4.4 RRAM operation with the unified memory stack

A RRAM array with 16,384 1T-1R devices was fabricated, alongside FeRAM array.
0.36 µm2 square resistors were integrated in the BEOL of RRAM arrays, exploiting the
same memory stack used for FeRAM devices. RRAM arrays, used to evaluate the perfor-
mance of the proposed unified memory stack as an analog memory, include line decoders
and drivers to connect the addressed lines to an external voltage. The digital peripheral
circuitry is supplied with 4.8V. A 3.5 µm wide minimum length selector transistor is
serially connected to the designed resistor.

Forming operation. Prior to array operation, a forming step was applied for each
device in the array. A device was considered to be formed if its resistance was below a
target resistance. The most common forming strategy consists in applying an adaptive
pulse staircase to the top electrode (SL) of the devices in the array, while the BL of the
device is grounded and the WL is set to a voltage level limiting the compliance current
flowing in the device [166]. The adaptive pulse staircase consists in alternating program-
ming and read pulses on all devices in the array that are above the target resistance. The
limitation on the compliance current flowing in the device is necessary in order to avoid a
hard breakdown of the device and control the filament formation. Optimizing the current
density during forming is essential in order to optimize other properties of the resistive
memory element, such as window margin, endurance and retention. Indeed, the forming
current controls the radius of the conductive filament. A smaller forming current leads
to a smaller conductive filament radius, which results in an increase in the amplitude of
the random telegraph noise signal in the reset state. This translates to a broadening of
the reset distributions, which eventually reduces the resistance window [167]. A higher
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Figure 2.7: Electrical characterization of the unified memory stack as ferroelec-
tric memory. a Raw distributions of 0 and 1 states in a 16 kbit 1T-1C FeRAM array,
measured after wake-up cycling (3 V-2 µs read and programming pulses). b, c Array-level
switching efficiency measured for programming 0 (a) and 1 (b) states using different pulse
widths and amplitudes. A fixed reference voltage (Vref = 0.56 V) was used for reading (3
V-2 µs read pulses). Two programming conditions (A and B) are highlighted in green. d
Polarization-switching energy as a function of pulse duration and amplitude e Measured
Memory Window at 0σ as a function of cycling. The same conditions were used for read-
ing. f Raw distributions of 0 and 1 states in 16 kbit 1T-1C FeRAM arrays, measured
after 107 endurance cycles, for programming conditions A and B (3 V-2 µs read pulses).
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forming current, would therefore be beneficial in order to improve the window margin,
but it would have a negative impact on both retention [168] and endurance [169].
This forming procedure was applied to the manufactured RRAM array, sweeping the pro-
gramming voltage (VSL) between 3 V and 6 V with 200 mV step. The WL was pulsed with
1.05 V-100µs pulses. This sweep was repeated for 5 times. A read operation (400mV-
70 µs pulses) was performed on the whole array after a programming pulse was applied
to each device to check if the target resistance, which was set to 50 kΩ, was reached.
Figure 2.8a shows the forming statistics of a 16,384 1T-1R array. During the first sweep,
approximately 58% of the devices were formed with pulse amplitudes between 4 V and
6 V. Repeating the adaptive staircase forming slightly decreased the amount of devices
left to form, saturating around 38% of devices not yet formed.
A second strategy used for forming RRAM arrays consists in applying an adaptive pulse
train [166]. It consists in alternating read and programming pulses on devices which have
not yet reached the target resistance. This time, the amplitude of the programming pulses
is fixed to the maximum amplitude used in the case of the adaptive staircase strategy.
This second strategy was applied to a pristine RRAM array, applying programming pulses
of amplitude VSL=6 V. Pulses of 1.05 V amplitude were applied to the WL. The program-
ming pulse duration was 300µs. A read operation (400mV-70 µs pulses) was performed
on the whole array after a programming pulse was applied to each device to check if the
target resistance was attained. Figure 2.8b shows the forming statistics of a 16,384 1T-1R
array. After 20 programming pulses approximately 87% of the devices in the RRAM array
reached the target resistance of 50 kΩ. By increasing the number of pulses to 1,000, only
5% of the devices (less than 900 devices) were not yet formed.
A combination of the two strategies can also be used in order to form the devices. First,
an adaptive staircase forming could be applied in order to stress as little as possible the
devices that require a smaller forming voltage. Then, an adaptive pulse train strategy
could be used to form the devices requiring additional operations.
Devices that are not yet formed, after the limit on number of programming pulses is
reached, can often reach the target resistance after few set-reset cycles.
It should be noted that the maximum programming voltage of 6 V used during the forming
operation goes beyond the nominal operating voltage for the 130 nm CMOS technology
node which is fixed to 4.8 V. Nevertheless, only 50% of the devices in a 16,384 1T-1R
array are formed at VSL=4.8 V after an adaptive staircase cycle (Figure 2.8a). There-
fore, optimization strategies at device level should be designed in order to reduce the
forming voltage, thus improving the compatibility of the proposed technology with more
advanced CMOS technology nodes. Some improvement possibilities are discussed later in
this chapter.

Programming conditions optimization. The programming conditions were opti-
mized to improve the performance of resistive devices in the array. Following the forming
step, cycling tests were conducted under various programming conditions to minimize the
bit error rate (BER) and enhance the memory window. Figures 2.9a and 2.9b illustrate
the BER and the median memory window, after 100 reset-set cycles, as functions of the
word line voltage applied during the reset and set operations, respectively. The BER
is defined as the value of the experimental cumulative distribution function (eCDF) at
the conductance value for which the set and reset distributions cross each other. On the
other hand, the median memory window is defined as the difference between the high
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Figure 2.8: Forming operation of the unified memory stack. a Adaptive staircase
forming statistics repeated five times on a 16,384 1T-1R array. b Adaptive pulse train
statistics repeated five times on a 16,384 1T-1R array.

and low conductance states distributions at the median value of the eCDFs for the set
and reset states respectively. Even though the two quantities are correlated with each
other – typically a low BER corresponds to a larger memory window – they can provide
complementary information. The median memory window provides information on how
far apart the high and low conductance states are globally, whereas the BER specifies
how many outliers are present in the two distributions.
The optimal reset condition was achieved at VBL = 3.0V and VWL = 3.1V, while the
optimal set condition for binary operation was obtained at VSL = 2.3V and VWL = 1.0V.
For analog programming, VWL could be modulated within the range of 0.85V to 1.0V.
1 µs long pulses were employed for both set and reset operations. During sweeping of the
WL reset voltage, optimal set operations were employed. Vice-versa during sweeping of
the WL set voltage, optimal reset operation were employed.
For the sake of clarity, Figures 2.9a and 2.9b show a simplified analysis of the procedure
employed for the optimization of the programming conditions. Indeed, a design of exper-
iment (DOE) routine was used to evaluate the performance of the memory technology
under different programming conditions. The DOE routine loads and executes a condition
table file and applies each condition on a unique subset of devices randomly chosen. The
programming conditions table specifies for each condition:

• rise-time, width and fall-time for the reset operation,

• BL and WL voltage for the reset operation,

• rise-time, width and fall-time for the set operation,

• SL and WL voltage for the set operation.

The rise-time, width and fall-time of the pulses were fixed to 20 ns, 1µs and 20 ns
respectively. On the other hand, several BL and WL voltages for reset and SL and
WL voltages were cross-checked in order to find the optimal conditions. A subset of
approximately 100 devices was used to test each programming condition, in order to
obtain statistical information.
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Low and high conductance states distributions and endurance analysis. The
distributions of the low conductance state and high conductance state after several cycling
phases are shown in Figure 2.9c. The optimal programming conditions described in the
previous paragraph were used for this characterization. The measured 16,384 1T-1R array
underwent 10,000 reset-set cycles and a read operation of the whole array was performed
at each cycling decade.
The median conductance values of the LCS range from 7.3 µS to 2.2 µS, i.e. it decreases
with cycling, whereas the median conductance of the HCS is quite stable (51 µS to 54 µS).
A possible explanation for the shift of the LCS state towards smaller conductance val-
ues with cycling is the synergy between filamentary conduction and modulation of the
Schottky barrier height by the polarization state and oxygen vacancy concentration [163].
Therefore, up to 105 cycles, the median memory window of the resistive memory arrays
increases, as well as the BER, which reaches a value of 1% after 105 reset-set cycles. The
smallest BER is measured after 104 cycles and it is equal to 7·10−3.
Several considerations can be be extrapolated from this analysis:

• The median conductance value of the low conductance state is smaller than typical
values measured on similar stacks [170].

• The median conductance value of the high conductance state is also smaller than
typical values measured on similar stacks, which can go above 100µS, as show in
Refs. [170, 171]. The reason for this is that smaller programming currents are em-
ployed for set operations for optimal BER and median memory window. Indeed,
the compliance current during set operations is kept below the forming current. As
mentioned above larger forming currents, and therefore larger set currents, could be
used for improved window margin. Nevertheless, for the proposed memory stack,
larger compliance currents during forming and set operation were found to be detri-
mental for the global memory performance.

• It can be argued that improvements of the BER for the proposed memory stack are
therefore linked to the optimization of the forming strategy and device engineering.

Conductance stability over time. RRAM devices experience conductance instability
issues primarily due to the localized random diffusion of oxygen vacancies into and out of
the conductive filament. This phenomenon, also known as relaxation, occurs at smaller
time scales, typically in the first seconds after programming. It differs from long-term
retention characteristics, i.e. the reliability of the programmed states according to the
typical industry standard of 10 years at 85◦C [172].
The conductance of 8,192 devices programmed to LCS and HCS was monitored over time,
up to almost one day (7.2·104 s) at room temperature (Figure 2.9d). The 10-year reten-
tion at room temperature was estimated by employing a linear regression model, using
the last five measured conductance values plotted against the logarithm of the cumulative
time. The extrapolated average LCS after 10 years is 3.8 µS, whereas the average HCS is
18.9 µS.
Better retention characteristics have been typically observed for similar resistive mem-
ory stacks. For the hybrid ferroelectric/resistive stack, the measured high conductance
state gradually decreases over time. This could be due to the relatively low value of the
programmed high conductance state. Indeed, the lower the conductance is, the more
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the conductive filaments is unstable, resulting in larger conductance instability over time
[158].

Conductance tuning and multi-level cell operation. Resistive memory devices
can be used not only as binary devices, but also as multi-level cells. Indeed, the cell
conductance can be tuned by controlling the programming current flowing in the device,
thanks to the voltage applied to the gate of the selector transistor, by leaving the top
electrode voltage unchanged. Figure 2.9e shows the average conductance read after a
single programming pulse as function of the imposed programming current. The WL
voltage was swept between 0.85 V up to 1.01 V with 20 mV step. The SL pulse amplitude
was 2.3 V. Each set operation was preceded by a reset one. A subset of 1,489 devices
was tested for each programming condition to obtain statistical information. The inset
in the Figure 2.9e shows the conductance standard deviation as a function of the average
conductance value. Information on the dispersion of the conductance distributions for
various conductance values allows to define the best allocation strategy for multi-level
RRAM cells.
The most common procedure to program a resistive memory device to a specific con-
ductance state consists of a an iterative program-verify scheme. A device, initially in a
reset state, is set with a compliance current defined by the average conductance value of
the bin to which the conductance of the device should belong. After programming, the
conductance of the device is read and its value is compared to the limits of the bin for
the defined conductance level. If the programmed conductance is within the bin limits,
the device is considered to be programmed correctly. Otherwise, the device is reset and
the same operations are repeated until a successful programming occurs or the limit on
the number of iterations is reached.
In order to implement this programming algorithm, the conductance bins and gaps be-
tween the different levels have to be defined. Linear allocation – using equal widths for
all conductance bins and equal widths for all gaps for the various levels – or sigma-based-
allocation – using the standard deviation of conductance values (referred to as sigma) to
allocate the conductance ranges – strategies have been proposed [171, 173]. The inset in
Figure 2.9e shows no significant variations of the conductance standard deviation in the
programmed conductance range. For this reason, a linear based allocation scheme with
equally spaced bins was used for the multi-level cell allocation of four and eight levels,
respectively shown in Figures 2.9f and 2.9g. A program-verify scheme was used, with
a limit of 200 iterations. The programming conditions (conductance bins and gaps and
relative measured programming currents) are summarised in Table 2.1.
A program-verify scheme taking into account RRAM relaxation after programming has
been recently proposed [158]. The iterative procedure includes a wait time between the
conductance programming and reading operation – typically of a few seconds – in order
to take into account conductance instability issues. Thanks to this scheme, improved con-
ductance stability has been proven at the cost of larger global programming time. This
scheme has also been applied to resistive memory arrays with hybrid ferroelectric/resistive
memory stacks but no significant improvement was observed.

64



Hybrid ferroelectric/resistive memory technology

a b

c d e

f g

Figure 2.9: Electrical characterization of the unified memory stack as resis-
tive memory. a, b BER and median memory window (MW) of a 1T-1R ferroelectric
RRAM array for different programming conditions. Orange lines represent the conditions
for binary programming, while the orange area represents the conditions for multi-level
cell programming. c Measured HCS and LCS distributions of 16,384-device RRAM ar-
ray after several set-reset cycling phases. d Measured mean LCS and HCS evolution of
RRAM array over time and extrapolated 10 years retention. Shaded area corresponds
to standard deviation at 1σ. e Average RRAM conductance and standard deviation at
1σ for increasing programming currents. f, g Experimental conductance distributions for
programming 4 and 8 levels per cell.
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Level Iprog (µA) Gmin (µS) Gmax (µS)

1 1 30.3 24.4 20 18 25 20
2 30.8 24 26

2 3 39.5 37.3 30 30 35 32
4 43.8 36 38

3 5 48.7 50.3 40 42 45 44
6 56.8 48 50

4 7 57.9 63.2 50 54 55 56
8 69.7 60 62

Table 2.1: Programming conditions for multi-level programming. Imposed target
conductance ranges for allocating 4 and 8 levels per cell and average programming currents
used for programming each conductance level.

Interplay between ferroelectric and resistive switching. Ferroelectric and resis-
tive switching mechanisms operate at different voltage scales in the developed unified
memory stack. Indeed, ferroelectric switching occurs for voltage pulses below the form-
ing voltage. The amplitude of the applied pulses has to be sufficiently high to ensure
polarization switching, but low enough to decrease the creation and migration of oxygen
vacancies inside the bulk and at the electrodes interfaces. On the other hand, resistive
switching cannot occur if forming operation is not performed, i.e. it requires a conductive
filament of oxygen vacancies.
Once forming is performed, the resistance of the metal-ferroelectric-metal structure de-
creases. This resistance decrease masks the displacement current coming from ferroelectric
switching, which cannot be measured anymore. Refs. [161, 162] proved the possibility to
retrieve ferroelectric switching after resistive operation by either employing a deep reset
– i.e. a dissolution of the conductive filament – or forming-free stacks which could return
to a virgin state when resetting the device, respectively.
The impossibility to measure ferroelectric switching once forming is performed does not
mean that polarization reversal cannot occur in the bulk regions of the device which are
not interested by the conductive filament migration and that are still crystallized in the
orthorombic phase. Indeed, during set and reset operation of the conductive filament,
the polarization state of the ferroelectric domains might be perturbed if the electric field
imposed by the resistive programming pulses is above the ferroelectric coercitive field. It
is possible that the polarization reversal during resistive set-reset operation might have
an impact on the creation and dissolution of the conductive filament. Indeed, during
optimization of the programming conditions, some peculiar switching phenomena were
observed for resistive operation of the unified memory stack.
Figure 2.10a shows ten different cycles of quasi-static current-voltage (applied to the top
electrode) curves measured on a 1T-1R device, with minimum length and 660 nm wide
access transistor and 600 nm side square capacitors. For the set operation, the WL of
the access transistor was set to 1V, the BL was grounded, and the top electrode was
swept between 0V and 2.6V in 50mV steps. For the reset operation, the WL of the
access transistor was set to 3.2V, the top electrode was grounded, and the BL was swept
between 0V and 3.25V in 50mV steps. Set operations were always preceded by reset
ones. Prior to cycling, the 1T-1R device underwent forming, during which the WL of
the access transistor was set to 1.05V, the bottom electrode was grounded, and the top
electrode was swept between 0V and 5.2V in 50mV steps. Cycles 1 to 3 show the typical
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reset-set operation of a bipolar resistive memory. In cycle 4, the reset operation effec-
tively increases the device resistance, but so does the set operation. During cycles 5 to
7, the reset operation decreases the device resistance. Indeed the abrupt increase in the
current flowing into the device, by approximately one order of magnitude, can be clearly
observed. During cycle 8, both set and reset operations decrease the resistance of the
device abruptly. Finally, cycles 9 and 10 have a similar trend to cycle 4.
Similar behaviours were observed at array level with pulsed programming. For instance,
Figure 2.10b shows the set and reset distributions for increasing value of WL voltage
during set after 100 cycles. All other conditions were fixed to the optimal ones defined in
Figure 2.9a,b. For a WL voltage equal to 1 V the typical high and low conductance states
distributions of a bipolar RRAM can be observed. Starting from WL voltages larger than
1 V, an increasing portion of devices programmed with positive pulses applied on the top
electrode shifts towards a low conductance state; conversely, when a reset pulse is applied
– a positive pulse is applied to the BLs of the array – the devices’ conductance increases.
In this setting, set and reset distributions are reversed. The interesting property about
this operating mode is that a large median memory window can be observed, i.e. a factor
greater than 100 between the high and low conductance states. Such a large memory
window was not obtained for the typical bipolar resistive operation.
Further investigation is necessary to understand the physical origin of these phenomena.

2.5 Perspectives on memory technology optimization

The electrical characterization of the memory arrays based on the unified ferroelec-
tric/resistive devices presented just above showcases the great potential of this memory
technology for the dual-mode operation of a single memory stack.
Nevertheless, further optimization is necessary for increasing the reliability of these de-
vices either as ferroelectric capacitors or resistive memory devices.
To do so, two possibilities are conceivable: either finding a good trade-off between ferro-
electric and resistive memory response in a unified ferroelectric memory stack, or optimize
the two memory technologies separately and combine them together in the same back-end
of line with minimal added manufacturing cost. In the following, the two solutions are
discussed.

2.5.1 Optimization of the unified memory stack

The thickness and oxygen vacancies profile of the Si-doped HfO2 layer are crucial for both
ferroelectric and resistive memory technologies and must be optimized through adjust-
ments in deposition parameters and interface design between the active material and the
memory electrodes [174].
An optimized concentration of oxygen vacancies can enhance ferroelectricity by stabi-
lizing the orthorhombic phase but must be carefully managed to avoid promoting non-
ferroelectric phases and increasing leakage currents. On the other hand, the presence
of oxygen vacancies in a resistive switching device greatly influences the formation and
dissolution of conductive filaments, which directly impact the switching between high
conductance state and low conductance state. Finding the sweet-spot in terms of layer
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Figure 2.10: Interplay between ferroelectric and resistive switching. a Quasi-
static current measurement as function of the voltage applied to the top electrode, with
grounded BL in a 1T-1R structure, for 10 different cycles. During set operation, the WL
is set to 1 V, during reset to 3.2 V. b Experimental cumulative distribution functions
of set (purple) and reset (orange) conductance states for different WL voltages applied
during set operation. During set, the top electrode is set to 2.3 V and the array BL
is grounded. During reset, the WL voltage is set to 3.1 V and the BL voltage to 3 V,
whereas the RRAMs’top electrode is grounded.
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deposition control, doping level and interface design in order to enhance at the same time
ferroelectric and resistive properties is not evident, as competing and contrasting phe-
nomena can occur.
The geometry of the device also plays an important role for the optimization of resistive
and ferroelectric switching characteristics. Indeed, the thickness of the Si-doped HfO2

cannot be scaled below 10 nm to ensure the crystallization of the film in the ferroelectric
orthorhombic phase while keeping the annealing temperature compatible with the BEOL
fabrication process [150]. Conversely, the optimal thickness for resistive memory devices
is typically thinner to reduce the forming voltage [175]. Lateral scaling is essential to
increase the memory density of the devices in order to integrate them into an industrial
process. This lateral scaling is expected to reduce the number of interface defects and
provide higher endurance for the FeCAPs [176]. On the other hand, lateral scaling affects
the forming voltage, which decreases with increasing area as a larger area offers more
locations to trigger forming [175].
Finally, switching to more advanced materials, such as hafnium zirconium oxide could al-
low higher endurance for the FeCAPs without affecting the quality of the resistive memory
response.
This qualitative analysis, combined with quantitative estimation of the impact of the dif-
ferent factors in the design of a unified ferroelectric/resistive device geometry and manu-
facturing process could ultimately allow the definition of an optimized device for a specific
application.

2.5.2 Ferroelectric/resistive memory co-integration with minimal mask ad-
ditional cost

An alternative strategy to the unified memory stack is the possibility to have in the same
BEOL two different, yet similar, memory stacks in order to create more reliable ferroelec-
tric and resistive memory devices.
As a general remark, designing a manufacturing process that co-integrates two different
non-volatile memory technologies in the same BEOL is not a straightforward task. Differ-
ent thermal budgets required to deposit various materials might not be compatible with
each other. Moreover, in terms of manufacturing cost, doubling the memory technology
to integrate requires additional masks and processing steps. Let us suppose that the
first memory technology requires N masks and the second memory technology requires M
mask to be manufactured. The total number of masks to co-integrate the two memory
technologies is N+M. If the two memory technologies have to be integrated between the
same metal lines, a supplementary mask is necessary to cover the wafer area where the
first memory technology is developed while the second one is fabricated. Thus, the only
way to decrease the total number of masks in such co-integration is to choose two mem-
ory technologies that share part of the manufacturing process. Luckily, it is the case for
HfO2-based ferroelectric and resistive memory devices.
Ref. [177] delineates a sophisticated process for the simultaneous fabrication of ferroelec-
tric and resistive memory, aiming to streamline production and enhance device integration.
The main processing steps are shown in Figure 2.11 This method starts with the deposi-
tion of a first electrode layer uniformly across both memory zones designated for FeRAM
and RRAM. Following this, a layer of HfO2-based active material is deposited identically
over both zones. The idea behind the invention is indeed that the doping of the hafnium
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Figure 2.11: Double integration with minimal mask additional cost. Main pro-
cess steps for co-manufacturing of ferroelectric and resistive memories based on Si-doped
hafnium oxide with one supplementary mask only [177].
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dioxide active layer, which is necessary for FeRAM, is also sufficient for the resistive oper-
ation. Next, a first conductive layer is applied across both memory zones. To differentiate
the two types of memory during the manufacturing process, a mask is applied over the
FeRAM zone, protecting it while the first conductive layer is selectively removed from
the RRAM zone. This step ensures that the active material layer for the RRAM zone is
exposed and ready for further processing. Once the mask is removed, a second conduc-
tive layer is deposited. This layer is crucial as it makes direct contact with the active
material in the RRAM zone and is engineered to create oxygen vacancies within the HfO2

layer, which is essential for the resistive switching properties. The process concludes with
the deposition of a third conductive layer, applied identically across both memory types.
This third layer ensures robust electrical connectivity and completes the device structure.
Notably, this method eliminates the need for separate doping procedures and additional
masking steps typically required in conventional processes, thereby reducing complexity
and cost. The integration of both FeRAM and RRAM in this manner ensures that each
memory type retains its unique electrical properties, making the combined device highly
efficient and functional.

2.6 Summary

This chapter discussed the development of a hybrid memory device that combines the
features of filamentary resistive memories and ferroelectric capacitors. This was achieved
by integrating a 10 nm silicon-doped hafnium oxide film with a titanium scavenging layer
into a 130 nm foundry CMOS process. This stack combines an active layer of hafnium
oxide crystallized in the orthorombic phase – necessary for ferroelectric switching – with
a scavenging layer – necessary for reliable resistive switching.
The hybrid memory was tested in two configurations: in FeRAM arrays and in RRAM
arrays. As FeRAMs, such devices were shown to work as binary memories with good
endurance over 10 million cycles and low programming energy, below 200 fJ/bit. After
undergoing a forming process to create conductive filaments, the same devices integrated
in the BEOL of RRAM arrays, can be used as analog multi-level memory devices with
lower endurance, about 100,000 cycles. These results highlights the potential of this
hybrid approach to leverage the strengths of both memory types for artificial intelligence
workloads.
The next chapter shows in detail how to leverage this technology in order to create a
synaptic circuit for the implementation of training and inference in deep neural networks.
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Chapter 3

Unified ferroelectric/memristive
memory circuit for neural network
inference and training

Resistive memories, RRAMs, are particularly promising for inference accelerators. Neu-
ral network models learned off-chip, or pre-trained, can be mapped on-chip to perform
inference on previously unseen data. Nevertheless, these devices lack the possibility to
undergo updates effectively because of device non-idealities and, fundamentally, due to
larger programming power consumption and limited endurance. Therefore, they need to
be combined with devices that can be extensively and effectively updated to enable sys-
tems with training capabilities.
In principle, such additional devices can be classical CMOS-based capacitors or SRAM
cells, which offer virtually unlimited endurance. Volatile CMOS-based capacitors (DRAM-
like) have the potential to scale down in size at more advanced technology nodes, but they
require larger power consumption to refresh data. If used as analog devices with suffi-
ciently large number of analog states for training, they require significantly large surface
[128]. On the other hand, SRAM has a relatively large area footprint, in advanced CMOS
nodes, which is problematic for learning systems that require large amounts of memory
[178]. Additionally, as volatile memories, these two solutions present limitations for life-
long training, which can require non-volatile storage solutions for the learning weights.
Ferroelectric memories could be used as a low-power non-volatile alternative, to reliably
perform updates on-chip throughout the whole training procedure. Conversely to SRAM,
FeRAM devices can be packed in dense three-dimensional arrays, to store information in
a digital format. Nevertheless, ferroelectric memories alone cannot enable the efficient
IMC implementation of the matrix-vector-multiplication because of the data-destructive
nature of the read operation.
Thus, the combination of resistive and ferroelectric memories could eventually allow to
merge the IMC inference capabilities of resistive memories with the possibility to per-
form extensive updates on ferroelectric devices (Figure 3.1). Moreover, as observed in the
previous chapter, the integration of the two technologies potentially comes without any
additional manufacturing cost, compared to the integration of a single memory technol-
ogy. These devices can be conceived as a single memory device, which is specialized to
either ferroelectric or resistive operation by an electrical operation, ferroelectric domains
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wake-up or electro-forming respectively.
Application-specific integrated circuits are key enablers for optimizing energy efficiency
in hardware implementations. In this chapter, a proof-of-concept ASIC is presented that
leverages the unified ferroelectric/resistive memory stack for the implementation of back-
propagation-based learning algorithms.
First, the motivations justifying the development of the proposed circuit are outlined.
Then, two different system implementations are discussed. For each implementation,
electrical characterization results and system-level simulations are presented, validating
the potential of the proposed approach.

Cloud training and on-chip inference On-chip training and on-chip inference

New 
input Update

Memristors

New 
input Update

FeCAPs  &  Memristors

Figure 3.1: A single memory stack, which functions both as memristor and
ferroelectric capacitor, for neural network inference and training. High-level
description of the training procedures implemented off-chip (left) and on-chip (right).
For on-chip inference, only pre-programmed memristors are required to store the analog
weights. For on-chip training, each weight is associated with a lower precision value -
used for inference - that is stored in memristors, and a higher-precision hidden value - for
use only during training - that is stored in FeCAPs.

3.1 Assumptions and definition of the training strategy

Before diving into the circuit implementation, it is essential to understand the motivations
supporting the design of this circuit.
In artificial neural networks, the precision requirements for weights and activations vary
depending on whether the network is in the training or inference phase. During train-
ing, small updates are applied to the model parameters to converge toward an optimal
solution for a given dataset. The exact magnitude of these "small" updates remains a
topic of debate. For instance, some studies suggest that tracking only the direction of
these updates may suffice for training various neural network architectures [129, 179, 180].
However, sufficient precision is still necessary for the weights to ensure proper accumula-
tion of gradients throughout the training process.
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On the other hand, lower precision is required for model parameters during inference to
achieve near-equivalent accuracy compared to a high-precision baseline. In fact, train-
ing techniques for quantized neural networks have demonstrated minimal accuracy loss,
even with very low-bit precision down to a single bit for weights and activations. During
the training of quantized neural networks, lower-precision weights are simulated in the
forward pass, while higher-precision weights are used for optimization. This approach
ensures that the final quantized models deployed for inference maintain minimal accuracy
loss.
The memory technology proposed in chapter 2 can be exploited to satisfy the precision
requirements for embedding ANNs training on-chip. On one side, ferroelectric memories
can store data in a digital format – encoding 1-bit information in each FeCAP – resulting
in a numerical precision imposed by the selected data format (integer unsigned, two’s
complement, floating point, etc..). On the other hand, resistive memory devices can be
used in the analog domain to map a weight value into a conductance level. Neverthe-
less device non-idealities, such as time relaxation over time and read noise, can limit the
equivalent precision of these devices, which are used as multi-level cells (MLCs) with few
levels per cell.

Every k 
new inputs

Every 
new input

Forward 
&

 Backward

Hidden weight 
update

Wa

Memristors

Wh

FeCAPs

Transfer

New input Model 
evaluation

Update
evaluation

Figure 3.2: High-level description of the training strategy leveraging the unified
memory technology. The multiply-and-accumulate operations, critical for forward and
backward data propagation to train the artificial neural network, as well as for inference,
are performed in situ using the memristor devices. The higher-precision FeCAP memory
is updated upon receiving each new input, whereas the memristor analog weights are only
periodically updated.

Therefore, taking inspiration from quantized neural networks, the key ideas of the training
strategy (Figure 3.2) used throughout this chapter are the following:

• Each weight is associated with a lower precision value (Wa) – used for inference
– that is stored in one or more memristive devices, and a higher-precision hidden
value (Wh) – for use only during training – that is stored in FeCAPs.

• Each training sample is presented to the network individually. Indeed, moving from
a mini-batch to a stochastic gradient descent implementation reduces the memory
footprint for the accessory information required to evaluate weight updates. More-
over, learning in an online fashion, sample by sample, can be more adapted to edge
applications, where data can be envisioned to arrive sequentially rather than in
batches.
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• The forward and backward propagation operations are performed by means of the
memristive memory array. The activations and error gradients evaluated at different
layers are used to evaluate the weight gradients. Activations and error gradients
evaluation requires performing read operations of the current model, which can be
extensively performed by means of memristive arrays.

• The hidden weights, stored in FeCAPs, are updated for each presented training
sample, whereas the analog weights stored in memristive devices are updated each
k new inputs. This procedure ensures the convergence of the training algorithm,
which also requires updating the weights Wa to reliably perform the forward and
backward steps, while also reducing the overall number of programming operations
on memristive devices by a factor of k.

The circuit implementation described in the following deals with an efficient implementa-
tion of the transfer operation of the hidden weights values, stored in FeCAPs, to analog
weights values, stored in memristors. This circuit takes advantage of the read operation
of FeCAPs to program the memristors, thus removing the need of digital to analog con-
verters for the analog weights programming.
The idea of exploiting ferroelectric and resistive memory technologies for the implementa-
tion of learning algorithms was also introduced in [181]. This patent describes a fully
digital implementation of a generic training algorithm. Here, the weights, stored as
N-bits digital quantities are split into two parts: a high-significance sub-word and a
low-significance sub-word. The high significance sub-word is stored in resistive memories,
updated less frequently during training and used extensively during inference, and the low
significance one in ferroelectric devices, only used during training. Different configura-
tions are discussed according to the overlap between low and high significance sub-words.
The approach proposed in this chapter, although similar in the basic principles to the one
discussed in [181], goes beyond a digital implementation, which could offer more flexibility
at the cost of reduced energy-efficiency.

3.2 The unified ferroelectric/memristive memory circuit

A hybrid array comprising FeCAPs and memristors was designed and fabricated. The
front-end CMOS devices and first four metal lines were fabricated in a 130 nm commercial
technology process and BEOL memories and last metal layer were deposited in the CEA
LETI cleanroom facilities.
The array includes 128 vertical transfer lines (TL), each with 128 FeCAPs and 16 mem-
ristive devices (Figure 3.3a). This circuit also included on-chip CMOS components such
as registers to address each memristor and FeCAP device, drivers to program the devices,
sense amplifiers for the FeCAP devices, and a timing block for automatic pulse genera-
tion for the FeCAPs array. The digital peripheral circuitry of the hybrid memory array is
supplied with 4.8V. A 1 µm wide minimum length selector transistor is serially connected
to the memristors, and a 500 nm wide minimum length access transistor is used for the
FeCAPs. Both FeCAPs and memristors are square structures with 600 nm side. Details
of the whole array design can be found in Appendix B. An optical micrograph of the
circuit is shown in Figure 3.3b.
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The basic building block of the hybrid array is the synapse circuit [182] depicted in Fig-
ure 3.3c. This circuit comprises an ensemble of one-transistor-one-FeCAP cells, where
the bit line of each cell is directly connected to the gate of the selection transistors of a
one-transistor-one-memristor cell. This circuit is used as part of a vertical transfer line:
the right numbers of FeCAPs and memristors in a vertical transfer line can be activated,
using the word lines of the devices access transistors. This sub-circuit allows direct digital-
to-analog data transfer from n FeCAP cells to one memristive device without requiring
intermediate circuits.
The transfer is implemented by directly reading in parallel the n FeCAPs of the hybrid
synapse. This operation loads of the transfer line parasitic capacitance (CTL) to a voltage
level that depends on the data stored in the plurality of ferroelectric capacitors. This
voltage can be expressed as:

VTL =

∑n−1
i=0 CD,i + 2PR

∑n−1
i=0 Siδi/VSL,Fe∑n−1

i=0 CD,i + 2PR

∑n−1
i=0 Siδi/VSL,Fe + CTL

VSL,Fe (3.1)

where CD,i is dielectric component of the i-th capacitance, Si the area of the i-th capac-
itor, δi is equal to one or zero depending on the polarization state stored into the i-th
ferroelectric capacitor, PR the remanent polarization and VSL,Fe the applied read voltage
of FeCAPs. Ferroelectric capacitors with equal thickness of the ferroelectric layer are
considered. All ferroelectric capacitors share the same film thickness, so to have the same
switching voltage, which is an essential requirement for the reliable parallel read opera-
tion.
Thus, this FeCAPs-data-dependent voltage is then used to set the compliance current
flowing into the memristive device, while performing a set operation, effectively adjusting
its conductance. Indeed, the compliance current of the memristor selector transistor is
function of its gate to source voltage, which is the difference between the transfer line
voltage and the bias imposed to the bit line of the 1T-1R cell (BLmem). The tuning of this
bias voltage offers a supplementary degree of freedom to optimize the transfer operation.
This transfer operation can be used in a program-verify scheme to precisely tune the
conductance of the memristor, as depicted in Figure 3.3d. The procedure starts by re-
setting the target memristor. Then, before implementing the transfer operation, the
content of the source FeCAP devices is copied in a temporary/cache memory. Saving
data in a cache memory is necessary because the destructive read operation of ferroelec-
tric capacitors, combined with the summation operation performed during transfer makes
the FeRAM-data unrecoverable. Indeed, polarization reversal occurs simultaneously for
all devices programmed in the 1 state during the parallel read operation, removing the
possibility to discriminate the information stored in each capacitor individually, for an
eventual subsequent write-back. After source FeCAPs data are stored in a cache memory,
the transfer operation is performed, which tunes the memristor conductance. The source
FeCAPs are therefore rewritten with the data stored in the cache memory. Then, the
memristor conductance is compared to the data stored in the cache memory to check
if data is correctly transferred from the FeCAPs to the memristor cell. If not, a new
iteration is performed, otherwise the procedure ends. The iterative transfer can stop if
a maximum number of iterations is reached. Depending on the application, a single it-
eration of the program-verify scheme might be sufficient, removing the need to compare
data in the cache memory to the programmed conductance, hence simplifying the system
implementation.
Although a single transfer iteration might be sufficient to program the memristive device
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effectively, a cache memory is still required to reload the source FeCAPs data after the
transfer. However, the size of the temporary memory needed to store the source FeCAPs
data remains relatively small. When transferring information from FeCAPs to memris-
tors, a set operation is executed. Due to peak power limitations in embedded devices,
the maximum current that can be drawn restricts the number of memristors that can be
programmed in parallel to only a few tens at most. Assuming that M memristors can
be programmed simultaneously and data is transferred from n FeCAPs, the size of the
required cache memory is n × M bits. As it is shown later, for reliable transfer, n is typ-
ically kept below 10, resulting in a maximum cache memory size of only a few hundreds
of bits.
Two circuit implementations and their training strategies are presented in the following.
The first involves transferring data from n equally sized FeCAPs to a single memristor,
taking advantage of the fabricated array as is, where all ferroelectric capacitors have the
same size. The second implementation, more advanced, uses capacitors of varying sizes
to transfer data into a differential memristor cell. This second circuit is reliably emulated
by means of the fabricated array.

3.3 Initial implementation of the hybrid memory circuit

All ferroelectric capacitors in the fabricated hybrid array have the same size. Therefore,
equation 3.1, expressing the transfer line voltage level when reading multiple ferroelectric
capacitors in parallel can be rewritten as:

VTL =
nCD +NSW2PRS/VSL,Fe

nCD +NSW2PRS/VSL,Fe + CTL

VSL,Fe (3.2)

where CD is the dielectric component of each ferroelectric capacitor and NSW is the num-
ber of ferroelectric capacitors programmed in the 1 state, i.e. the number of capacitors
switching during the parallel read operation performed during data transfer. Therefore,
the transfer line voltage and, by consequence the memristor conductance, is function of
the sum of the number of devices programmed in the 1 state, rather than the positional
information of each data stored in the capacitors. Therefore, n capacitors of the same size
can provide n+1 distinct transfer line voltage levels. The array of hybrid synapses was
electrically characterized in this configuration and a learning strategy was co-developed
to train a binarized neural network for detecting heartbeat anomalies [183].

3.3.1 Electrical characterization of the hybrid memory circuit

An hybrid array of synaptic circuits was characterized to validate the reliability of the
transfer operation from n FeCAPs to a memristive device. Figure 3.4 a shows the de-
pendence of the TL voltage on the number of activated WLFe (n), when the respective
SLFe lines are pulsed, for all devices pre-set to the 0 or 1 states. For n=8, the voltage
difference of approximately 200 mV between the configurations with all devices at 0 and 1
states aligns with the required programming range for multilevel operation in memristors
(cf. Figure 2.9b in chapter 2). This graph was obtained by means of the sense amplifier
circuits of FeRAM arrays. As in the case of Figure 2.7a in chapter 2, where the reference
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Figure 3.3: Hybrid FeCAP/memristor memory circuit and array. a. Array-level
organization of the hybrid memories and peripheral circuit, and optical micro-graph of the
fabricated array. b Schematic representation of the hybrid FeCAP/memristor memory
circuit. c Flow-chart describing the steps to implement the transfer operation.
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Figure 3.4: Electrical characterization of the analog transfer operation. a Average
TL voltage measured as a function of the number of activated WLs in 1T-1C cells (n),
with all FeCAPs pre-programmed to either 0 or 1. Shaded area corresponds to standard
deviation at 1σ measured over 126 synaptic circuits. b Average TL voltage for n=8 as a
function of the number of 1 states programmed in the FeCAPs (NSW). The measurements
have been repeated for different SL pulse amplitudes. Vertical lines correspond to the
standard deviation at 1σ measured over 126 synaptic circuits. c Measured data transfer
from 8 FeCAPs to one memristor cell. Median and inter-quartile ranges are shown as
boxplots for 107 synaptic circuits.

voltage of the sense amplifier was ramped to evaluate the bit line voltage when reading a
zero or a one in a FeCAP, the same procedure can be applied for evaluating the transfer
line voltage when reading multiple capacitors in parallel. This characterization was per-
formed with 3 V amplitude, 2 µs long programming and read pulses.
At fixed n, the number of 1s (NSW) and 0s (n-NSW) written in the ferroelectric capacitors
tunes the transfer line voltage, as shown in Figure 3.4b. The amplitude of the SLFe pulse
can be adjusted to change the transfer line voltage level. For this characterization, 2 µs
long programming and read pulses were used.
Figure 3.4c illustrates the measured data transfer from the FeCAPs data to the memristor.
The programmed conductance shows a direct proportionality to the number of 1s stored in
FeCAPs. As the number of stored 1s decreases, the transfer line voltage correspondingly
drops. Lower transfer line voltages lead to reduced gate-to-source voltages associated
with the memristor selector transistor, which in turn result in lower compliance currents
and, consequently, reduced programmed conductance (cf. Figure 2.9e). Data stored in
memristors can be binarized through a low-power binary reading, if this is to be used as
a binary device. This characterization was performed with 3.25 V-10 µs pulses applied
to the SL of the 1T-1FeCAP cells, while the memristor top electrode was pulsed with
2.3 V-10 µs and the memristor BL was grounded. The test setup used to perform these
measurements is presented in Appendix A.

3.3.2 Binarized neural network training for ECG anomaly detection

A training strategy was co-developed with the designed structure, in order to optimize the
overall performance and taking into account the strengths and limitations of the hybrid
memory circuit. A back-propagation-like algorithm was implemented to train a 2-layers
fully connected BNN on the ECG-arrhythmia detection task, with 512 neurons in the
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hidden layer and one sigmoid output neuron was used (Figure 3.5a).
The MIT-BIH heart arrhythmia database [184] was used for the arrhythmic heartbeat
detection task. It includes half-hour dual-channel electrocardiogram recordings from 48
subjects. The Python Numpy FFT function was used to generate a frequency spectrum
of each recording and the 64 features with the highest values for the test chi-squared
statistic [185] were used as input features to train/test the model. Each heartbeat was
labelled as either a healthy or arrhythmic heartbeat. A subset of 18,000 data points were
taken randomly from all subjects and used to train the ANN, whereas a subset of 2,000
previously unseen data points were used to test the model.
Typically, the implementation of training of BNN requires not only binarized weights
(Wb = ±1), but also a full precision (Wh) version of the parameters of the model at
train-time (Figure 3.5a). Nevertheless, the designed synapse is not suitable to store the
full precision synaptic weights in a floating-point format, rather as integer values of very
limited precision. The hybrid synaptic circuit described in the previous section can be
used to store signed integers in FeCAPs. In the case of n FeCAPs connected in parallel,
with even n, the state in which all capacitors are programmed in the 0 state can map the
weight value -n/2, vice versa the state in which all capacitors are programmed in the 1
state can map the weight value +n/2. The transfer operation with the associated binary
reading of the memristor performs the binarization of the hidden weights.
Figure 3.5b schematically describes the training procedure. During the feed-forward and
backward phases of training, the binarized version of the parameters of the model, stored
into the memristor array and read to evaluate the activations (forward cache) and gradi-
ents (errors and backward cache) at different layers of the network. The evaluated error
gradients are clipped and ternarized to either 0 or ±1 with probability proportional to
their relative magnitude. These are then used to evaluate the weight updates implemented
on the hidden weights stored in the FeCAPs array. Hidden weights are initialised to either
0 or ±1. The weight update, equal to the product of the respective binarized activation
and ternarized gradient, is then applied or not with a given probability. In can therefore
assume three different values: 0 or ±1. The hidden weights are updated at each sample
in the FeCAPs array and the sign is transferred every k=100 samples to the binarized
weights in the RRAM array. As the purpose of the designed algorithm and hardware
support is to implement the training on-chip, each training sample is processed just once,
i.e. the dataset is iterated for a single training epoch. Finally, once training is completed,
only the binarized weights are used to evaluate the model and perform inference on pre-
viously unseen samples.
An interesting aspect connected with the probabilistic nature of the weight update is that
it could be applied with or without reading the value of the hidden weight. Two update
strategies are proposed:

• Read and update: Each time an update is prescribed, i.e. the weight update is
equal to ±1, the hidden weight value is read from the FeRAM array, the weight
update is digitally processed, and the updated hidden value is then stored back in
the FeRAM array.

• Blind update: Each time an update is prescribed, i.e. the weight update is equal
to +1 or -1, one randomly picked FeCAP in the synaptic circuit is set or reset
respectively, without knowing if said FeCAP was already set or reset. This could
result in a missed update if the set (or reset) pulse is applied to a FeCAP already
programmed in a set (or reset) state.
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Figure 3.5: Learning to detect ECG anomalies with the hybrid Fe-
CAP/memristor memory circuit. a ECG signals converted into 64 features through
Fast Fourier Transform (FFT), are used as inputs for a two-layer fully-connected bina-
rized neural network. b Detailed flow diagram of the training algorithm implementation
using the hybrid memory circuit: the FeRAM array is utilized to store the hidden values
(Wh) used during training, while the RRAM array is used for the binary weights (Wb). c
Simulated synapse plasticity achieved on n=8 using a probabilistic programming scheme
with p=10−3. The blue lines represent the weight read before being updated, while the
black lines represent the weight updated blindly. Solid lines are evaluated as average over
1000 tests. Five test examples are shown with dotted lines.
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Figure 3.5c shows the simulated plastic response of a synapse, made of 8 probabilistic
binary components, to 5,000 potentiation updates, followed by 5,000 depression updates,
in the cases in which the weight is read before applying the update or this is blindly
applied. Convergence to the saturation value is reached faster in the case in which the
hidden weight is read before being updated, for the same update probability. Updating
the hidden weights blindly during training leverages the properties of each device opti-
mally: FeCAPs devices are written at each training iteration, but read only during weight
transfer operations. Conversely, memristor devices are read at each learning and inference
step, but programmed only during weight transfer operations.
Table 3.1 presents the table of simulated accuracy evaluated on the test set for the two
weight update strategies, with update probability of 5·10−4. The simulations were per-
formed for different number of FeCAPs in the hybrid synapse, i.e. n equal to 4, 8 or 16.
Accuracy values between 85% and 90% were observed, with increasing average accuracy
and decreasing standard deviation for larger values of n. Performing updates blindly re-
sulted in slightly inferior accuracy. Moving from 8 to 16 FeCAPs in the hybrid memory
circuit improves the accuracy of approximately 1.1%, for a "blind update" strategy, and
0.3% only, for a "read and update strategy". Therefore, n=8 could be selected for this
specific application.

Training Method Test accuracy(%)
n=4 n=8 n=16

Read and Update 87.48 ± 1.89 89.03 ± 1.08 89.30 ± 0.89
Blind Update 85.23 ± 3.82 88.04 ± 1.42 89.15 ± 1.22

Table 3.1: Simulated test accuracies for the ECG anomaly detection task. Mean and
standard deviation were evaluated over 10 runs.

3.3.3 Discussion

The proposed training approach is appealing for the implementation of the weight update
strategy. In particular, the blind update strategy could accelerate the weight update step,
as it does not require reading the specific value stored in each FeCAP before applying
the update. With minimal circuit overhead, all potentiation updates could be applied in
parallel across the entire array, and similarly for all depression updates.
Nevertheless, this training strategy was tested on more complex tasks, e.g. the MNIST
digits classification, with unsatisfying results. The reason for this is primarly due to
the extremely limited precision of the hidden weights. Although it could be possible
to increase the number of FeCAPs in the hybrid synaptic circuit in order to increase
the precision of the hidden weights, this would result in an unaffordable memory cost,
because of the impossibility to distinguish the significance of the information stored in each
FeCAP. Moreover, the reliability of the transfer operation could be negatively impacted
by increasing too much the number of FeCAPs in the hybrid synaptic circuit, as the
transfer line voltage range decreases with increasing number of FeCAPs read in parallel,
as shown in Figure 3.4a.
Finally, this implementation does not leverage the multi-level capability of memristive
devices and their implementation in energy-efficient IMC inference engines. Indeed, the
weights used during inference would be binarized with a sensing circuit (not implemented
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in this design), reading each memristor individually.
The optimized implementation of the hybrid memory circuit proposed in the next section
addresses all the aforementioned issues, resulting in satisfying performance across a variety
of benchmarks.

3.4 Optimized implementation of the hybrid memory circuit

This section details an optimized implementation of the hybrid memory circuit, leveraging
more compact data formats for the hidden weight storage. Moreover, the digital to analog
conversion implemented during data transfer in this second implementation leverages the
multi-level capability of memristors to store positive and negative weights in memristors,
to be used in the design of IMC inference engines. As shown in the following, the enabling
idea of this circuit is the exploitation of FeCAPs of various size in the synaptic circuit.
Therefore, the circuit implementation presented here is an extrapolation based on the
designed synapse array described in the previous section, which includes equally sized
capacitors. First, the concept of the optimized memory circuit and the emulated electrical
characterization of the transfer operation are presented. Then, the co-developed training
strategy is presented. For clarity, the main results are discussed in sections 3.4.1 and 3.4.2,
with details of the various procedures reported in section 3.4.3. Finally, a discussion and
outlook is presented to summarize key findings and explore potential future directions.

3.4.1 Concept and electrical characterization

The basic building block of the optimized hybrid FeCAP/memristor array is the synapse
circuit depicted in Figure 3.6a. This circuit comprises an ensemble of one-transistor-
one-FeCAP cells, where the bit line of each cell is directly connected to the gates of the
selection transistors of two one-transistor-one-memristor cells.
In this implementation, the hidden weights used during training are stored in FeCAPs in a
sign-and-magnitude 10-bit integer format, using one bit for the sign and nine for the mag-
nitude. The first three magnitude bits are referred to as the most significant bits (MSBs)
and the last six as the least significant bits (LSBs). The sign-and-magnitude represen-
tation, rather than the more conventional two’s complement representation, facilitates
data transfer operations. The analog weight used for forward and backward propagation
steps, as well as inference, is stored in two memristor cells in a differential configuration,
allowing both positive and negative values to be stored.
An example elucidating data transfer from high-precision hidden weights to analog mem-
ristors is shown in Figure 3.6b. It is carried out through the following steps:

1. Reset the Memristor Cells: The first step is to reset the two memristor cells to
the low conductance state.

2. Read the Sign Bit: The sign bit stored in the first FeCAP cell is read to deter-
mine which memristor cell should be programmed. In this example, the positive
memristor cell is selected.
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Figure 3.6: Improved hybrid FeCAP/memristor memory circuit. a Schematic
representation of the improved hybrid FeCAP/memristor memory circuit. b Example of
a data transfer operation from the FeCAPs to the analog memristors, elucidating all the
steps the FeCAP and memristors devices undergo. c To account for the significance of
the MSBs during the data transfer process, the MSBs are implemented using capacitors
with distinct areas: four times the minimum area, twice the minimum area, and minimum
area, respectively for the first, second, and third MSBs. d Average voltage measurements
after loading the transfer line while reading a zero or a one as a function of the capacitor
area, with standard deviation at 1 σ, measured over 126 transfer lines.
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3. Store the MSBs Temporarily: The three MSBs from the FeCAP cells are tem-
porarily stored elsewhere. Only three additional memory bits are required for this
operation.

4. Read the MSB FeCAP Cells in Parallel: The MSB FeCAP cells are read
in parallel, which loads the transfer line parasitic capacitance to a voltage level
determined by the data stored in the three FeCAPs.

5. Program the Selected Memristor Cell: The selected memristor cell is pro-
grammed to the high conductance state, with a compliance current determined by
the transfer line voltage. A voltage pulse is applied to the to-be-programmed mem-
ristor source line (SLRe) while the memristor bit line (BLRe) is grounded. This
process eliminates the need for symmetrical, linear updates of memristor values,
allowing for reset and set operations with compliance current determined by the
FeCAPs’ stored values. During this operation, the data stored in the FeCAPs are
lost, resulting in all devices being set to zero.

6. Reload the MSBs: The MSBs, which were previously stored elsewhere, should
be reloaded after the transfer operation. This reloading is necessary to resume
training after the transfer operation in the same configuration as before updating
the memristor’s differential pair.

To account for the relative significance of MSBs, capacitors of different areas are used: four
times, twice, and the minimum area for the first, second, and third MSBs, respectively
(Figure 3.6c). This choice results in near-linear spacing between VTL values for different
bit combinations (details in section 3.4.3). A hybrid memory with distinct capacitor sizes
for the three MSBs can be implemented by connecting a 1T-4C, 1T-2C, and 1T-1C to
the same transfer line, all with minimum-sized capacitors (Figure 3.6c). Capacitors for
the sign bit and six LSBs are minimum-sized as they do not participate in the analog
transfer.
The direct transfer from digital words (FeCAPs) to analog conductance values (memris-
tors) was validated using the fabricated hybrid array. Figure 3.6d shows the transfer line
voltage measured when reading a zero or a one for one to four capacitors connected in
parallel. The possibility to emulate the transfer of the improved memory circuit using the
fabricated array is detailed in section 3.4.3. The measured transfer line voltage follows
the equivalent areas, defined as the area of a single capacitor multiplied by the number
of capacitors read in parallel and the state stored in the capacitor, i.e., zero or one. This
curve confirms that capacitors with varied sizes can be exploited to reflect for the signifi-
cance of the MSBs.
Finally, Figure 3.7 presents the measured data for the digital-to-analog transfer of the
sign (green) and the three MSBs (blue) from the FeCAP to the two memristor cells. The
difference in conductance between the two memristors encoding the positive weight (G+)
and the negative weight (G−) was measured for all possible sign and MSBs combinations.
The integer values from -7 to 7, plus zero (represented by two combinations), stored in the
FeCAPs were successfully transferred as 15 distinct differential conductance levels. The
electrical characterization details of the transfer procedure are provided in section 3.4.3.
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Figure 3.7: Electrical characterization of the transfer operation in the improved
hybrid FeCAP/memristor memory circuit. Memristor conductance measured after
transfer as a function of the sign (green) and MSBs (blue) stored in the FeCAP. Interquar-
tile ranges (boxes) and standard deviation at 1σ (error bars) are evaluated for 33 hybrid
memory circuits. The transfer is repeated 6 times for each synapse.

3.4.2 Neural network training with the optimized hybrid memory circuit

The performance and power consumption of the proposed FeCAP/memristor memory
circuit for on-chip training and transfer learning were evaluated using hardware-aware
simulation validated by extensive statistical measurements (Figure 3.7). The core idea
behind this approach is that while the analog precision of memristors suffices for infer-
ence, it falls short for learning, which requires small, progressive weight adjustments.
Inspired by QNNs, a hybrid approach was adopted: Forward and backward passes use
low-precision weights stored in analog in memristors, while updates are done using higher-
precision FeCAPs. Memristors are periodically reprogrammed based on the MSBs stored
in FeCAPs, ensuring efficient and accurate learning.
This approach was implemented in a three-layer fully connected neural network for the
MNIST digit classification task. Figure 3.8a depicts the on-chip training procedure using
SGD. For each training sample, neuron activations are calculated by feed-forward matrix-
vector multiplication between the analog weights (memristors) and the previous layer’s
activations. Errors at the output layer are back-propagated to evaluate loss gradients and
update hidden weights. The hidden weight updates matrix, ∆ Wh, is multiplied by a
binary mask M dictating which weights to update in FeCAPs. Mask elements follow a
Bernoulli distribution with a given probability, p. This stochastic update, loosely inspired
by biophoton emission and propagation in the brain [186], enhances convergence (details
in section 3.4.3)[187, 188]. No momentum is used to minimize hardware costs. Hidden
weights (10-bit integers in FeCAPs) are updated for each sample, while analog weights
(memristors) are updated every k inputs via the digital-to-analog transfer procedure. Fur-
ther details about the training algorithm, network architecture and hyperparameters are
in section 3.4.3. Also, the pseudo-code elucidating the neural network training procedure
is presented in Appendix C.
Accuracy, total programming energy, and number of programming operations (details in
section 3.4.3) were evaluated for FeCAP and memristor devices at the end of training on
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the MNIST task against the parameter k, i.e. the amount of samples between two analog
weights updates. Figure 3.8c shows that test accuracy remains stable for k values up to
100 but drops for larger values. The impact of different update probabilities was evaluated
at fixed k=100, showing that the probabilistic weight update strategy effectively improves
convergence of the training algorithm (Figure 3.8b). Decreasing k increases the number
of both memristor and FeCAP programming operations (Figure 3.8d), which increases
energy consumption (Figure 3.8e). With k values lower than ten, the number of required
memristor programming operations also exceeds the endurance of memristors. For k
values greater than 50, memristor programming energy drops below the one of FeCAP,
stabilizing between 20 nJ and 30 nJ: The programming energy is dominated by hidden
weight updates rather than the transfer operations. At k=100, the method achieves 96.7%
accuracy with approximately 38 nJ total programming energy consumption, representing
a 38-fold reduction with no loss of accuracy with respect to k=1. The number of pro-
gramming operations remains 17 times below the memristor endurance limit and 75 times
below the FeCAP limit. Therefore, k=100 was used for further analysis.
The robustness to memory errors was also assessed. Figure 3.8f compares accuracy for
MNIST, Fashion-MNIST, and ECG detection tasks using classical ANN (FP) and the
hybrid memory (HM) approach, with and without induced transfer errors due to device
variability. Device variability was estimated from the characterization of electrical trans-
fer in Figure 3.8. Details on the architectures and hyperparameters for Fashion-MNIST
and ECG tasks, as well as the procedure to take into account device variability in simula-
tions, are in section 3.4.3. Training with full-precision weights yields the highest accuracy.
For all three datasets, the hybrid memory approach with hidden weight quantization re-
duces accuracy by, approximately, one percentage point, and transfer-induced errors by,
approximately, one additional percentage point.
All these simulations were performed with “online” training, i.e., updating the hidden
weights after each training sample presentation. Figure 3.8f also shows that using mini-
batch training with batch normalization (Figure 3.8f) would improve accuracy and re-
silience to transfer errors, with only a 0.8 percentage point loss on MNIST between full
precision and hybrid memory with errors. However, this approach limits continuous on-
chip learning due to memory costs for storing activation values and batch normalization
parameters.
Finally, the proposed training approach was benchmarked on a transfer-learning task.
To create a transfer-learning scenario, an edge-friendly neural network, MobileNet-V2,
was pre-trained on the CIFAR-100 dataset. The convolutional layers were used as as
a fixed feature extractor, and a fully connected layer was added, which was trained on
the CIFAR-10 dataset using the online learning strategy adapted to the hybrid memory
circuit constraints (Figure 3.9). Table 3.2 presents the accuracy levels obtained for im-
plementation of the classifier using offline training with floating-point and four-bit integer
weights, and those obtained using the proposed learning strategy. In itself, quantifying
the classifier weights using four bits does not impact accuracy, and the online transfer
learning only reduces accuracy by approximately two percentage points, to 88.0%, con-
firming that this approach performs well even with sophisticated datasets. Details of the
transfer learning training methodology are presented in section 3.4.3.
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Figure 3.8: Training at the edge with the improved hybrid FeCAP/memristor
arrays. a Representation of the on-chip probabilistic weight update. The FeCAP array
used to store the hidden weights is stochastically updated with input of each new image,
whereas the memristor array used to store the analog weights is updated after input of
every k images. b MNIST test classification accuracy as function of the training epochs,
for increasing values of update probability. c Accuracy after 10 training epochs as a
function of the k parameter. The average, minimum and maximum test accuracy (points,
error bars in inset) were evaluated for 10 individual training runs. d Number of memristor
and FeCAP programming operations at the end of one training round as a function of k. e
Total programming energy for memristors, and FeCAPs at the end of one training round
as a function of k. A programming energy of 1 pJ and 100 fJ was assumed for a single
memristor and FeCAP programming operation, respectively. f MNIST classification,
Fashion-MNIST classification and ECG detection accuracies obtained with the classical
ANN (FP) and the proposed training strategy based on the hybrid memory (HM) in
both the ideal memory case (w/o Var) and with artificially induced errors in the transfer
operation due to device variability (w/ Var). For the MNIST dataset, a case where
the network was trained with 10-image mini-batches, with batch normalization, is also
included for comparison.
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Figure 3.9: Transfer learning with the improved hybrid FeCAP/memristor
memory circuit. a Schematic showing the transfer-learning strategy with initial
MobileNet-V2 architecture pre-trained on the CIFAR-100 dataset using a quantization-
aware training strategy to obtain a fixed 4-bit integer feature extractor. b The MobileNet-
V2 4-bit feature extractor was used in conjunction with a newly initialized classifier for
transfer learning of the pre-trained model to the CIFAR-10 classification task. The pro-
posed hybrid memory-based training strategy was used to train the classifier.

Feature Extractor Classifier Test Accuracy (%)
Wa

Format
Training
Method

Wa

Format
Training
Method

4b / INT Offline 32b / FP Offline 89.7± 0.1
4b / INT Offline 4b / INT Offline 90.0± 0.2
4b / INT Offline 4b / INT HM - online 88.0±0.1

Table 3.2: Comparison of the accuracy performance on the CIFAR-10 classification task
for different formats of inference weights and training strategies. Offline refers to standard
training via mini-batch with the Adam optimizer, while HM-online refers to the proposed
training strategy adapted to the hybrid memory circuit.
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3.4.3 Supplementary information

Optimizing FeCAP area ratios for precise transfer line voltage level control.
In this note, the optimization of FeCAP area ratios to ensure precise control of transfer
line voltage levels is explored. Different FeCAPs are used with varying areas to account
for the significance of each MSB. Specifically, the ratio between the areas of two adjacent
FeCAPs is set to two. This configuration allows the combined state of the n MSBs
stored in these capacitors to generate 2n distinct voltage levels on the transfer line, VTL.
Each combination of MSBs corresponds to a unique voltage level with near-linear spacing
between the VTL values, which is essential for programming the memristors. This result
can be demonstrated analytically.
For n capacitors connected to the same transfer line, the VTL can be expressed as

VTL =

∑n−1
i=0 Ci∑n−1

i=0 Ci + CTL

VSL, (3.3)

where Ci is the capacitance of the i-th ferroelectric capacitor, CTL the transfer line parasitic
capacitance and VSL the applied read voltage on the source line.
The capacitance of the FeCAPs is the sum of a dielectric and ferroelectric component

Ci = CD,i + CF,i = ϵ0ϵr
Si

d
+ δi

2PRSi

VSL

, (3.4)

where Si and d are the area and thickness of the i-th FeCAP, ϵ0 is the vacuum permittivity,
ϵr the relative permittivity of the ferroelectric material, PR is the remanent polarization
of the capacitor, and δi is equal to one or zero depending on the state stored into the
ferroelectric capacitor.
Under the approximation:

n−1∑
i=0

CF,i ≪
n−1∑
i=0

CD,i + CTL, (3.5)

equation (3.3) can be rewritten as:

VTL ≈
∑n−1

i=0 CD,i +
∑n−1

i=0 CF,i∑n−1
i=0 CD,i + CTL

VSL. (3.6)

By combining Equation (3.4) and (3.6)

VTL =

∑n−1
i=0 CD,i +

∑n−1
i=0 CF,i∑n−1

i=0 CD,i + CTL

VSL = VTL,D +
2Pr∑n−1

i=0 CD,i + CTL

n−1∑
i=0

δiSi. (3.7)

The transfer line voltage is the sum of a fixed dielectric component VTL,D and a component
dependent on the data stored into the ferroelectric capacitors.
As an example, the case n=2 is analyzed, in which the VTL can assume 4 different values
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depending on the stored data:

VTL,00 = VTL,D (3.8)

VTL,01 = VTL,D +
2Pr∑n−1

i=0 CD,i + CTL

S0 (3.9)

VTL,10 = VTL,D +
2Pr∑n−1

i=0 CD,i + CTL

S1 (3.10)

VTL,11 = VTL,D +
2Pr∑n−1

i=0 CD,i + CTL

(S0 + S1). (3.11)

To ensure equal spacing between VTL values corresponding to adjacent bit combinations
in the FeCAPs, the condition VTL,01-VTL,00=VTL,10-VTL,01 is imposed. Therefore

2Pr∑n−1
i=0 CD,i + CTL

S0 =
2Pr∑n−1

i=0 CD,i + CTL

S1 −
2Pr∑n−1

i=0 CD,i + CTL

S0, (3.12)

which simplifies to
S1 = 2S0. (3.13)

By setting S0=Smin, the four VTL levels are

VTL,00 = VTL,D (3.14)

VTL,01 = VTL,D +
2Pr∑n−1

i=0 CD,i + CTL

Smin (3.15)

VTL,10 = VTL,D + 2
2Pr∑n−1

i=0 CD,i + CTL

Smin (3.16)

VTL,11 = VTL,D + 3
2Pr∑n−1

i=0 CD,i + CTL

Smin. (3.17)

In conclusion, if the two FeCAPs have areas S1=2S0 four equally spaced transfer line
voltage levels are obtained. This approach easily extends to larger values of n.
The error in the calculated transfer line voltage levels (Eqs. 3.14-3.17) under the Eq. 3.5
approximation depends on the data stored in the capacitors as well as their area. The
transfer line voltage levels without the Eq. 3.5 approximation for the case n=2 are:

VTL,00 = VTL,D (3.18)

VTL,01 =

[
VTL,D +

2Pr

CTL

Smin

]
/α01 , α01 = 1 +

CF,0

CD,0 + CD,1 + CTL

(3.19)

VTL,10 =

[
VTL,D + 2

2Pr

CTL

Smin

]
/α10 , α10 = 1 +

CF,1

CD,0 + CD,1 + CTL

(3.20)

VTL,11 =

[
VTL,D + 3

2Pr

CTL

Smin

]
/α11 , α11 = 1 +

CF,0 + CF,1

CD,0 + CD,1 + CTL

. (3.21)

Considering S0=0.36µm2 and S1=2S0=0.72 µm2, thickness d=10 nm, relative permittiv-
ity ϵr=29.7, remanent polarization Pr=15 µC/cm2, applied read voltage VSL=3.5 V and
transfer line parasitic capacitance CTL=200 fF, the correction coefficients can be evalu-
ated. For n=2,

∑n-1
i=0CD,i ≈ 28 fF and

∑n-1
i=0CF,i is equal to 0 fF, 31 fF, 62 fF, 93 fF for data

00, 01, 10 and 11 stored in the capacitors, respectively. The corresponding correction
coefficients are α01=1.14, α10=1.27, α11=1.41.
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Impact of selector transistors on 1T-1C cells with different FeCAPs area. In
this note, the impact of selector transistors on 1T-1C cells is investigated for FeCAPs with
varying areas. The three MSBs are stored in capacitors of sizes 4Smin, 2Smin, and Smin to
ensure near-linear spacing between the transfer line voltage values and the different bit
combinations, as demonstrated in the previous paragraph. Since each FeCAP bit cell in
the fabricated array (Figure 3.6a) is a 1T-1C cell, the MSBs were stored using 1T-1C,
2T-2C, and 4T-4C cells configurations.
SPICE simulations were performed to check if the supplementary selector transistors
in the manufactured array affect the transfer line voltages achieved during the transfer
operation. Specifically, the circuits in Figure 3.10a and Figure 3.10c were simulated
and compared, for several durations of parallel read pulses applied to the 1T-2C/2T-
2C and 1T-4C/4T-4C cells. Prior to the parallel read operation, FeCAP devices were
programmed to either one or zero by applying 1µs long pulses. The pulse amplitude for
read and write operations was set to 4.8V. Thick gate oxide transistors with a length
and width of 500 nm were used as selector transistors. A fixed transfer line capacitance
CTL=200 fF was used. For simulations, a Verilog-A model for the FeCAPs was employed,
modeling devices with a remanent polarization of 19 µC/cm2, a saturation polarization
of 20 µC/cm2, a coercive field of 1.5MV/cm, a leakage resistance of 1MΩ, a capacitor
thickness of 10 nm, a capacitor surface area of 0.25 µm2, and a relative permittivity of the
ferroelectric material of 30.
The simulation results shown in Figure 3.10b for the comparison of the 1T-2C and 2T-2C
cells, as well as the results for the 1T-4C and 4T-4C cells comparison in Figure 3.10d,
indicate a negligible difference in the transfer line voltage levels for sufficiently long read
pulse durations. For read pulses of 1 µs, the worst-case difference between the transfer
line voltage levels achieved with single or multiple access transistors is approximately
20mV, confirming that the 1T-2C cells and 1T-4C cells can be reliably emulated by the
fabricated array with minimal-area 1T-1C cells.

Weight transfer electrical characterization. For the weight transfer characteriza-
tion in Figure 3.7, the manufactured hybrid memory array was employed to transfer data
from seven minimum-sized 1T-1C cells, corresponding to the three MSBs of the hidden
weight, to one 1T-1R cell. The first MSB is represented by 4T-4C cells, the second by
2T-2C cells, and the third by 1T-1C cell. This is equivalent to the transfer from three
1T-1C cells with sizes 4Smin, 2Smin, and Smin (see previous paragraph).
Before each transfer operation, the memristor device is reset to a low conductance state,
and the data to transfer is written into the seven FeCAPs. The transfer line is then
precharged to 0V. During the transfer operation, the source lines (SLs) of the seven
FeCAP devices are pulsed with a 3.5V-10 µs pulse, the WLs are set to 4.8V, and the
transfer line is floating. At the same time, a 2.3V-10 µs pulse is applied to the memristor
source line. The memristor BL is set to −0.9V. This negative voltage setting for the
memristor was necessary to obtain a gate-source voltage (Vgs) suitable for the RRAM’s
selector transistor during the transfer operation. Nevertheless, accurate co-design of the
BL parasitic capacitance, material stack, and device geometry could eliminate the need
to set any bias voltage on the memristor’s bottom electrode, simplifying the transfer
procedure. Finally, the memristor’s conductance is externally read with 400mV voltage
pulses.
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Figure 3.10: Comparison of 1T-2C vs 2T-2C cells and 1T-4C vs 4T-4C cells. a
Schematic of 1T-2C and 2T-2C cells connected to transfer lines with parasitic capacitance
CTL. b Electrical simulations of the transfer line voltage as function of the parallel read
pulse duration for capacitors programmed to either zero (Data 0) or one (Data 1) for the
1T-2C/2T-2C cells. c Schematic of 1T-4C and 4T-4C cells connected to transfer lines
with parasitic capacitance CTL. b Electrical simulations of the transfer line voltage as
a function of the parallel read pulse duration for capacitors programmed to either zero
(Data 0) or one (Data 1) for the 1T-4C/4T-4C cells.
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Justification for the probabilistic weight update. Learning with integer quantized
hidden weights is challenging for convergence. The main reason is the fact that the
quantized space of parameters might not allow to capture weight updates that are small
in magnitude. For this reason larger learning rates need to be used to trigger the updates.
Nevertheless, excessively large learning rates might cause weight updates to be overly
large, resulting in the exploding gradients problem.
The stochastic weight update introduced in the context of the hybrid memory training
provides an effective way to reduce, in average, the learning rate and ensure convergence.
Indeed, each hidden weight between neuron i and neuron j in a network layer is updated
with the following rule:

w
(t+1)
ij = w

(t)
ij − η(t)∆w

(t)
ij (p) = w

(t)
ij − η(t)∆w

(t)
ij X(p). (3.22)

where η(t) is the learning rate at iteration t and X(p) is a random variable distributed
according to a Bernoulli distribution with probability p. The weight update is therefore
a random variable with expected value:

E[∆w
(t)
ij (p)] = E[∆w

(t)
ij X(p)] = ∆w

(t)
ij E[X(p)] = p∆w

(t)
ij . (3.23)

The variance of the weight update can be analogously evaluated:

V ar[∆w
(t)
ij (p)] = V ar[∆w

(t)
ij X(p)] = ∆w

(t)
ij V ar[X(p)] = p(1− p)∆w

(t)
ij . (3.24)

Therefore, the stochastic update implements an average scaling of the weight update
and improves the convergence of training algorithm. Moreover, the stochastic nature
of the update introduces noise in the weight updates, which can be seen as a form of
regularization, thus improving overfitting issues.

Neural networks simulations. A three-layer fully connected neural network was
trained to address the MNIST dataset [21]. 60,000 images were used for each train-
ing epoch, and the MNIST test set of 10,000 images was used for validation. The network
has one input layer with 784 neurons, two hidden layers with 200 and 100 neurons each,
and one output layer with 10 neurons. The inputs are gray-scale images with values
from 0 to 255, normalized between -1 and 1. For the online training simulations (details
in Appendix C, Algorithms 1-4), each hidden layer undergoes layer normalization [29]
(where scale and shift trainable parameters γ and β are set to one and zero, respectively),
followed by ReLU activation. The activation function of the output layer is a softmax
function, preceded by a layer normalization. The ANN with hybrid memories was trained
for 10 epochs, with a learning rate of 0.1. The calculated hidden weight updates matrix is
multiplied by a binary mask M that dictates whether a hidden weight should be updated
or not. Each element of the mask is independently drawn for each example during train-
ing, following a Bernoulli distribution with a given probability of 20%. For full-precision
floating-point hidden weight simulations, the same update strategy and hyperparameter
values were used. For the mini-batch training simulations (details in Appendix C, Algo-
rithms 2-5) the normalization layer was replaced by a batch normalization layer (scale
and shift trainable parameters γ and β set to one and zero respectively). The same hy-
perparameters are used, as in the online training case. The mini-batch size is 10 and the
number of training epochs is increased to 100.
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A four-layer fully connected neural network architecture was used for the Fashion-MNIST
dataset[22] with 784-200-100-100-10 neurons. As in the previous case, the inputs are
gray-scale images with values from 0 to 255, normalized between -1 and 1. Again, 60,000
images were used for each training epoch, and the test set of 10,000 images was used
for validation. The network was trained for 10 epochs at a learning rate of 0.1 and a
hidden weight update probability of 10%. The same hyperparameters were used for the
full-precision floating-point hidden weight simulations.

For the ECG binary detection task, a fully connected neural network with one hidden
layer of 200 neurons was used. No normalization layers were added. A ReLU activation
function was used for the hidden layer, and a sigmoid activation function was used for
the output neuron. Data from the MIT-BIH heart arrhythmia database[184] were used
for this study. The dataset consists of half-hour dual-channel electrocardiogram record-
ings from 48 subjects. Individual heartbeats were extracted from each recording, forming
700 ms time series centered on the R-wave peak. Using the FFT function from NumPy, a
frequency spectrum was generated for each time series. The ten lowest frequency compo-
nents were selected from each channel, resulting in 20 features characterizing each heart-
beat as a static data point. Heartbeats were categorized as either normal and healthy
("N" label) or exhibiting signs of arrhythmia ("L", "R", "e", "j", "A", "a", "J", "S", "V",
"E", "F", "/", "f", and "Q" labels). A subset of 20,000 data points (10,000 healthy and
10,000 unhealthy heartbeats) was randomly sampled from 47 subjects for model train-
ing. Subsequently, models were tested using data points from a previously unseen subject
(patient 208). The network was trained for 10 epochs, with a learning rate of 0.3 and an
update probability of 20%. For the floating-point hidden weight simulations, the same
hyperparameters were used.

The parameters in the hybrid memory circuit consist of FeCAP and memristor devices,
which are not as precise as their 32-bit floating-point counterparts. Therefore, to emulate
the training when using the hybrid memory operation, the representation of the hidden
and analog weights is set to 10-bit and 4-bit integers, respectively, to match the proposed
hybrid memory circuit. The hidden weights are stored in ten binary FeCAP cells, and
the analog weights are stored in two memristor cells with eight conductance values each.
During inference, the 10-bit values are truncated to their 4-bit approximations (Algo-
rithm 3, Appendix C,), thereby mimicking the operation applied during the proposed
digital-to-analog transfer procedure in the unified memory. Furthermore, memristors and
FeCAPs suffer from other types of non-idealities such as device-to-device and cycle-to-
cycle variability. The method by which device non-idealities are taken into account and
their impact on the transfer operation is described in the following paragraph and in
Appendix C, Algorithm 4.

Hardware-aware neural networks simulations. The statistical electrical character-
ization of the transfer operation on the hybrid memory circuit was used to account for
the device non-idealities in the hardware-aware neural network simulations. The 10-bits
hidden weights (Wh) were approximated to their 4-bit equivalent analog version (Wa)
each time a transfer operation was performed. For each analog weight, a random number
was sampled from a normal distribution with average value µW equal to the corresponding
Wa value and standard deviation σW. The profile of the analog weight is based on statis-
tical characterization of the hybrid memory circuit (Figure 3.7). The detailed simulated
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procedure is described below.
The conductance of the memristor device in the differential pair undergoing the analog
transfer was modeled as a random variable with normal probability distribution:

G = σGX + µG (3.25)

where σG is the conductance standard deviation, µG the average conductance of a trans-
ferred level and X a standard normal random variable. Moreover, a linear relationship
was considered between the mapped conductance and the weight value:

G = αWa + β =
µG,max − µG,min

Wa,max −Wa,min

Wa + µG,min (3.26)

where µG,max and µG,min are the average conductance values of the corresponding av-
erage maximum (Wa,max) and minimum (Wa,min) transferred weights in absolute value
respectively. By equating the first member of equations (3.26) and (3.25):

σGX + µG = αWa + β . (3.27)

For three MSBs, Wa,max = 7 and Wa,min = 0. Therefore,

Wa = σWX + µW =
σG

α
X +

µG − β

α
=

7σG

µG,max − µG,min

X +
7(µG − µG,min)

µG,max − µG,min

. (3.28)

Therefore the analog weight values are sampled from a normal distribution with standard
deviation 7σG/(µG,max− µG,min) and average value 7(µG− µG,min)/(µG,max− µG,min). The
average conductance for each transferred value were obtained experimentally from the
characterization in Figure 3.7. In particular the average conductance values for the 8
levels are µG,min=µG,0=1.4 µS, µG,1=11.9 µS, µG,2=36.5 µS, µG,3=58.3 µS, µG,4=73.9µS,
µG,5=85.5 µS, µG,6=95.9 µS, µG,max=µG,7=103.9 µS. For each level, a constant standard
deviation equal to the average of the standard deviations of the 8 levels was considered,
i.e. σG=8.7 µS. Consequently, the σW parameter is

σW =
7σG

µG,max − µG,min

≈ 0.6

Since two separate memristors were used to encode either positive or negative weights, no
sign error could occur during the transfer operation. This approach was also implemented
in the hardware-aware simulations. The same hyperparameters mentioned above for each
dataset were used for the hardware-aware simulations.

Number of memristor and FeCAP programming operations and programming
energy evaluation. To estimate the number of programming operations and corre-
sponding programming energy in FeCAPs and memristors during training, as reported
in Figures 3.8d and 3.8e in the Results section, the following procedure was used. The
number of updates for each hidden weight were counted, taking into account the prob-
abilistic weight update scheme. The number of operations on FeCAPs was defined as
twice the maximum number of hidden weight updates because each time the weight is
read, it has to be rewritten. Indeed, the encoding of the hidden weights in a sign and
magnitude configuration does not allow to perform blind updates, as was possible in the
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initial implementation of the hybrid memory circuit described in section 3.3.2. Moreover,
for each transfer operation, each FeCAP incurs four additional programming operations:
reading and rewriting data to save it in another FeCAP cell for further reloading, and
then actually transferring (reading) and reloading (writing) the weight.
For the memristors, the number of operations is defined by the parameter k, i.e., the
number of inputs after which the weights are transferred from FeCAPs to memristors.
For each transfer operation, each memristor requires two programming operations: one
for resetting the device and one to write the analog weight.
The programming energy consumption of the two arrays was evaluated by multiplying
the number of programming operations by the estimated switching energy for FeCAPs
and memristors. The energy required for FeCAP and memristor programming operations
was set to 100 fJ and 1 pJ[85, 86] respectively.

CIFAR-10 transfer-learning simulations. The MobileNet-V2 neural network archi-
tecture [189] was trained on the CIFAR-100 dataset[23] to obtain a weight quantized
model (4b/INT) using a learned step size quantization method[190]. The images con-
tained in the CIFAR-100 dataset were resized to 128×128 pixels before being fed to the
network. The hyperparameters used during this step were: batch size 128, 500 epochs,
Adam optimizer, learning rate 10−4, and weight decay 10−5. The full-precision model
achieved a top-1 test accuracy of 79.5% on the CIFAR-100 dataset, whereas the quan-
tized model achieved a top-1 test accuracy of 77.4%.
The MobileNet-V2 architecture 4-bit feature extractor was used in connection with a
newly initialized classifier for transfer learning from the pre-trained model for the CIFAR-
10 classification task. During this step, the feature extractor was fixed, and only the clas-
sifier parameters were updated. For the offline transfer-learning simulations (Offline in
Table 3.2), a standard optimizer (Adam), batch size 128, learning rate 10−4, and learned
step size quantization of the inference weights (4b/INT) were used. For the online transfer
learning with the hybrid memory training strategy developed (HM-online in Table 3.2),
the hidden weights were updated for each training sample with an update probability of
1. The inference weights were updated after 256 new inputs, the learning rate was set
to 10−2 with a learning rate decay of 0.1. The classifier was trained for 50 epochs. For
the transfer learning experiments, the images of the CIFAR-10 dataset were resized to
128×128 pixels before being fed to the network.
The number of updates for each hidden weight at the end of training was 2.5 · 106, and
the number of transfer operations from hidden to analog weights was 9.8 · 103. Therefore,
the maximum number of programming operations was 5 · 106 for FeCAPs and 2 · 104 for
memristors. Thus, the online transfer-learning strategy is compatible with the endurance
constraints of both ferroelectric and resistive devices.

3.4.4 Discussion

The proposed approach leverages the high programming endurance/low programming
energy of FeCAPs and the near-infinite read endurance and analog IMC compatibility
of memristors. This dual memory approach addresses the limitations associated with
using a single memory technology. The data-disruptive nature of reading from FeCAP
devices makes them inefficient for inference once the training has been completed. In
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addition, it causes the read endurance to be limited by the write endurance and therefore
restricts the useful lifetime of trained devices. In contrast, a full memristor implemen-
tation would benefit from the read stability of conductance states and energy efficient
in-memory computing, allowing lifelong inference. However, the limited write endurance
and considerable programming energy of memristors are incompatible with meaningful
applications for training. Even with a small dataset like MNIST, the number of pro-
gramming operations – 1.2×106 write operations (k=1 case in Figures 3.8d, e) – exceeds
the endurance limit of the memristor devices in the proposed stack. In the following of
this discussion, outlooks in terms of device optimization, scalability enhancement and the
implementation of a full system based on the proposed technology are examined.

Device optimization. Optimizing the unified memory stack to function as both fer-
roelectric memory and memristor was essential for the success of this approach. The
thickness and oxygen-vacancy profile of the Si-doped HfO2 layer are crucial for both tech-
nologies and must be optimized by adjusting deposition parameters and through interface
design. To ensure crystallization of the film in the ferroelectric orthorhombic phase while
maintaining an annealing temperature compatible with the BEOL fabrication process, the
Si-doped HfO2 cannot be scaled to less than 10 nm [150]. However, to reduce the forming
voltage, memristor devices typically have a thinner optimal thickness. For this reason,
a thickness of exactly 10 nm was adopted. An optimized oxygen-vacancy concentration
can enhance ferroelectricity by stabilizing the orthorhombic phase and at the same time
reduce the forming voltage, but vacancies must be carefully managed to avoid promoting
non-ferroelectric phases. To increase memory density, devices will undergo lateral scaling
when integrated into an industrial process. This lateral scaling is expected to reduce the
number of interface defects and provide higher endurance for the FeCAPs [176]. Addi-
tionally, switching to more advanced materials, such as hafnium zirconium oxide (HZO),
could further enhance the endurance of FeCAPs without compromising the quality of the
memristor response.

Enhancing scalability with 3-D memory structures. A significant cost of the op-
timized hybrid memory circuit is the need for FeCAPs with distinct areas or multiple
capacitors per bit to store the MSBs of the hidden weights. This solution allows for the
transfer and conversion of digital data, stored in a sign and magnitude configuration,
into multi-level analog conductance values without requiring dedicated digital-to-analog
converters. The number of MSBs requiring larger capacitors is determined by the maxi-
mum number of analog conductance levels that can be reliably programmed in memristor
devices. The presented technology can store a maximum of eight distinct analog lev-
els in memristors, corresponding to three bits, or four bits per weight when including
the sign. This represents a good compromise: four-bit is a classic weight resolution in
highly quantized neural networks, providing high accuracy even on advanced AI tasks
[191]. To enhance scalability, high aspect-ratio 3-D FeCAPs could be a viable solution
[97, 149, 192]. A unified FeCAP bitcell can be proposed, integrating up to four 3-D ferro-
electric cylindrical capacitor structures on the same selector transistor to achieve different
equivalent areas without increasing the bitcell’s current area. Figure 3.11a illustrates the
main process steps for fabricating 3-D capacitors. The critical steps include the cylinder
etching and the conformal deposition of both the electrodes and the ferroelectric layer.
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3-D ferroelectric capacitors have been demonstrated at the 130 nm technology node, with
an aspect ratio of three, indicating the ratio between the cylinder height and its diameter
[149]. In the following analysis, an aspect ratio of three is imposed. This aspect ratio is
quite conservative: Larger aspect ratios, ranging between 15 and 20, have been achieved
at more advanced technology nodes, suggesting the possibility of further increasing the
integration density [97]. For an aspect ratio of three, to achieve an area equivalent to the
one in the measured array in Figure 3.6d, a cylindrical capacitor with a radius of 190 nm
and a height of 570 nm should be fabricated, as shown in Figure 3.11b. Neglecting the
flange contribution to the area of the cylindrical capacitor, capacitors with area equal to
four and two times that of the minimum-sized one can be obtained by connecting mul-
tiple minimum-area capacitors in parallel in the BEOL. As shown in Figure 3.11b, four
capacitors fit in the same space occupied by a planar minimum area capacitor structure,
with a spacing between the 3-D structures of 220 nm. Figure 3.11c shows the side view of
the capacitors to be fabricated over the same access transistor, sharing the same top and
bottom electrode for parallel connection of the minimum surface 3-D structures.

Towards a full system implementation. The manufactured test scribe of hybrid
synapses allowed to validate and emulate the transfer procedure from different sized ca-
pacitors to a memristor device. Nevertheless, a complete system able to learn on-chip
would require the integration of further computing blocks. For the implementation of
an in-memory computing inference engine, the arrangement of the memristors array lines
should be appropriately designed to allow the matrix-vector multiplication implementa-
tion via Ohm’s and Kirchhoff’s laws. The array dimensions should be properly sized
taking into account the IR drops on the accumulation lines for the given memristor con-
ductance dynamic. The memristor array periphery should be re-configurable in order to
perform the matrix-vector multiplication also during the backward step. A complete sys-
tem would require the implementation of DACs to provide the inputs to the array in an
analog format and ADCs for the current readout of the forward and backward accumu-
lation lines. Finally, a digital processing unit should be designed in order to evaluate the
weight gradients to add to the weights stored in the FeCAPs. For the proposed approach,
one or multiple pseudo random number generators should be designed for the probabilistic
weight update. Thanks to the designed hybrid synaptic circuit, there would be no need
of a DAC for the weight programming of the RRAM array, as this would be implemented
thanks to the proposed transfer procedure.
The impact of device variability during the transfer operation has to be taken into account
when designing a complete reliable system. To further investigate this aspect, the test
accuracy on the MNIST dataset was evaluated for different number of MSBs, stored in
FeCAPs in the optimized hybrid synaptic circuit, to be transferred to the analog weights,
stored in memristors (Figure 3.12). This analysis compared the transfer of three, two
and one MSBs, plus the sign bit, to 15 (MLC 15), 7 (MLC 7) and 3 (MLC 3) differential
conductance values of memristors, respectively. The total number of bits for the hidden
weights was kept equal to ten. It should be noted that data transfer was actually measured
only in the case of transferring three MSBs. The simulations utilizing two MSBs and one
MSB considered the conductance states corresponding to the first two MSBs and first
MSB, respectively, in Figure 3.7. The analysis was performed for an online and 10-images
mini-batch learning strategy, using the same training configurations and hyperparameters
described in section 3.4.3. The same conclusions can be extracted for both the online and
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Figure 3.11: Unified memory bitcell with 3-D capacitors. a Process flow high-
lighting the key steps in the fabrication of 3-D ferroelectric cylindrical capacitors. b
Bitcell layout with equal 0.36 µm2 planar capacitors (red squares) and potential parallel-
connected 3-D capacitors (teal circles) with cylinder diameter of 190 nm and aspect ratio
of three, for an open cylinder area of 0.37 µm2. Either four or two 3-D capacitors can be
connected in parallel to achieve larger effective surfaces to store the MSBs of the proposed
hybrid memory circuit. c Schematic side view of the cylindrical capacitors fabricated over
the same selector transistor. The top and bottom electrodes are shared to connect either
four or two capacitors in parallel.
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mini-batch approaches. Without considering device variability, increasing the number of
MSBs from one to three in the hybrid memory circuit increases the accuracy, even though
no significant difference can be measured between the accuracy results for two and three
MSBs. If device variability is considered, training with one, two or three MSBs results
in approximately equivalent accuracy. This analysis highlights the fact that until the
reliability of memristive devices is not improved, their use for storing multiple levels per
cell might not provide a significant overall advantage compared to binary devices. This is
true for the analyzed use case, but it is reasonable to assume that similar considerations
apply to more complex tasks. Beyond weight quantization, the impact of activations and
gradients quantization should be eventually considered for further development.

Finally, this technology also holds potential for other forms of on-chip learning, par-

Figure 3.12: Comparative study of the hybrid memory training for different
equivalent precision of the analog weights. The average test accuracy and standard
deviation were evaluated for 10 individual training runs.

ticularly continuous, adaptive learning, which was not explored here. Hidden weights
in binarized and quantized neural networks have been shown to function as metaplas-
tic variables, and modifying their training techniques can mitigate forgetting [51, 193].
The proposed hybrid memory circuit is the first to harness the unique properties of two
memory technologies for non-volatile storage of both hidden and analog weights. It could
naturally enable continuous learning and offer robust solutions for adaptive and lifelong
learning applications.

3.5 Summary

This chapter experimentally demonstrated an application-specific integrated circuit lever-
aging the hybrid memory technology introduced in chapter 2, hence including both Fe-
CAPs and memristors within the same BEOL of foundry 130 nm CMOS, in order to
create an hybrid array of interconnected FeCAPs and memristors.
The fundamental unit of the hybrid array is an hybrid synapse circuit, consisting of a
collection of one-transistor-one-FeCAP cells, where the bit line of each cell is directly
connected to the gate of the selection transistors in a one-transistor-one-memristor cell.
This sub-circuit enables direct digital-to-analog data transfer from multiple FeCAP cells
to a single memristive device, without the need for intermediate circuitry.
This technology is compatible with on-chip training of ANNs. FeCAP devices store higher-
precision hidden weights that undergo numerous programming operations during training,
while memristor devices store analog weights read during both inference and training.
Two system implementations were proposed. The first uses equally sized FeCAPs to store
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the higher-precision weights and a single memristor to store the analog weight. This ap-
proach limits the precision of the hidden weights to n+1 discrete states, where n is the
number of FeCAPs in the synaptic circuit. A binarized neural network was trained on
the ECG-arrhythmia detection task. Taking into account the constraints of the synap-
tic circuit, the network achieves 88% accuracy, with eight FeCAPs only storing each
higher-precision weight and one memristor used to store the binary weight. The second
implementation uses ferroelectric capacitors with different areas to encode the 10-bit in-
teger higher-precision weights in an sign-and-magnitude format and two memristors to
encode positive and negative analog weights in the memristors’ differential conductance.
Fully-connected ANNs were trained using a stochastic gradient descent algorithm. Based
on measurements of analog transfer from FeCAPs to memristors, the results obtained
across a variety of edge benchmarks are competitive with those achieved by floating-point
precision software models, without the endurance limitations associated with hardware
constraints.
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Chapter 4

Fe RNet: Ferroelectric and resistive
memory circuits for near-memory
inference and training

The hybrid memory circuit presented in the previous chapter showcases the potential of
combining ferroelectric and resistive memories for implementing ANN learning on-chip.
The key idea of the hybrid memory circuit, in its optimized implementation, relies on
transferring information from weights stored in a signed integer format in ferroelectric
devices to differential conductance levels stored in memristive, or resistive, devices with-
out the need of any digital to analog converter. In this approach, ferroelectric memories
are exclusively used to accumulate weight gradients during training and resistive memo-
ries are used for forward and backward passes, and periodically updated during training.
Potentially, the matrix-vector multiplication performed on memristive devices is imple-
mented in an in-memory computing fashion for improved energy-efficiency. This approach
was benchmarked on several tasks with promising results.
Nevertheless, several considerations have to be taken into account for further develop-
ments:

• Despite the theoretical advantages of in-memory computing systems, the practical
realization of these systems faces several technical hurdles. A significant challenge
is the high variability of memristors. Variability affects the precise resistance states
of the memristors, which are critical for analog computation, leading to inaccuracies
in the MVM operations, impacting the final system accuracy [194]. In addition to
device variability, the imperfections of analog CMOS circuits used in the periph-
eral circuitry can reduce the overall system performance. Voltage drop effects also
play a significant role in degrading the performance of memristor-based in-memory
computing. In large crossbar arrays, the voltage applied to the memristors is not
uniformly distributed across the array due to resistive paths in the interconnects.
This voltage drop results in reduced computation accuracy, particularly for deep
neural networks where precise MVM operations are essential for maintaining model
accuracy. To mitigate these issues, smaller crossbar arrays are used and complex
peripheral circuits are designed to enhance the overall reliability and accuracy of
the computation [195]. These peripheral circuits include ADCs, DACs, and sense
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amplifiers, which facilitate the interface between the analog memristor array and
digital control logic, but at the same time limit the energy-efficiency potential of a
full-analog system.

• The hybrid memory circuit architecture limits the representation of the hidden
weights stored in FeCAPs to integer values only. Fundamentally, the hybrid memory
circuit imposes that the equivalent-representation of the weights stored in the mem-
ristors’ conductance levels has to be the same of the representation of the weights
stored in FeCAPs in a digital format. Although training with integer hidden weights
might be appealing for improved energy-efficiency, its scalability to more complex
tasks is not at all certain. It could be envisioned to store the hidden weights in
FeCAPs in a floating-point – sign, exponent and mantissa – format and transferring
the sign only, for the implementation of binarized neural networks. Nevertheless,
transferring information from one FeCAP only to a single memristor, with the de-
veloped analog procedure, would be less advantageous than reading the content of
the FeCAP digitally and subsequently programming the memristors, because of the
need for storing and reloading of data to be transferred. On the other hand, us-
ing the proposed analog procedure for transferring information from one FeCAP to
two memristors in a differential configuration, as in the case of the optimized hybrid
memory circuit, would be equivalent to perform a digital read of the FeCAP content
and subsequently programming the memristors accordingly.

Based on these considerations, this chapter explores a second circuit design aimed at
investigating the advantages of combining ferroelectric (Fe) and resistive (Re) memory
devices for the hardware implementation of inference and training in binarized neural
networks (Net), referred to as Fe RNet (Figure 4.1). In the following sections, the concept
of binarized neural networks is presented in more detail, highlighting the key operations
performed during training and inference to explain some design choices and considerations.
Next, the designed circuit is introduced, along with electrical simulations validating some
of its components. Then, the development of the electrical characterization setup is
discussed, followed by preliminary measurements confirming the communication between
the designed circuit and the test support. Finally, some potential use cases are explored
as possible directions for future research.

2.
05

 m
m

Figure 4.1: Layout view of the Fe RNet chip.
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4.1 Binarized neural networks

In traditional neural networks, weights and activations use continuous values, requiring
significant memory and computational power. By constraining these values to +1 or -1,
during forward propagation, binarized neural networks drastically reduce the computa-
tional complexity, allowing for faster and more efficient implementations, particularly on
hardware with limited resources. To address the challenge of training with binary weights
and activations, specialized techniques for both forward and backward propagation are
introduced [39, 40, 41].
Although the weights in BNNs are constrained to binary values during inference, training
requires a full-precision version of the model’s parameters, often referred to as hidden
weights. The binarization of hidden weights and activations is achieved using the sign
function. Hence, real-valued variables (hidden weights and activations) are converted into
their binary counterparts by applying:

xb =

{
1 xh ≥ 0

−1 xh < 0
(4.1)

where xb is the binarized variable and xh the real-valued one.
Thus, in the forward pass for training BNNs, both weights and activations are constrained
to binary values, +1 or -1. This binarization reduces the computational complexity by
replacing traditional multiplications with efficient XNOR and bit-count operations.
One of the challenges with training binarized networks arises in the backward pass, since
the sign function is not differentiable. To enable gradient flow, a straight-through esti-
mator is introduced. The STE approximates the gradient of the non-differentiable sign
function by effectively passing the gradient unchanged, treating the gradient as if it came
from real-valued activations or weights. The STE technique proposed for BNNs makes
the assumption

gh = gb1|h<1|, (4.2)

where gh and gb represent the weight (activation) gradient of the loss function with respect
to the hidden weight (real-valued activation) and binarized weight (binarized activation)
respectively, and 1|h<1| cancels the gradient value if the hidden weight is outside the ±1
range, for improved performance. Therefore, STE technique effectively allows to evaluate
the hidden weight updates from the gradients evaluated on the binary weights.
After the backward pass, the hidden weights are updated based on the computed gradients.
The weight update follows the standard rule used in stochastic gradient descent, such as:

W
(t+1)
h = W

(t)
h − η(t)g

(t)
Wb

(4.3)

where η(t) is the learning rate at iteration t. After updating the hidden weights, the
binarized weights are evaluated using the sign function for the next forward pass.
To stabilize training, batch normalization is typically applied after each binarized con-
volution or fully connected layer. This technique helps normalize the activations, which
would otherwise be highly irregular due to binarization. By normalizing the interme-
diate outputs, batch normalization reduces the risk of gradient explosion or vanishing,
improving the convergence and generalization of the network. Nevertheless, as previously
mentioned, batch normalization has a significant memory and computing overhead. Alter-
native solutions should be evaluated for more efficient data processing in edge constrained
devices.
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The Fe RNet circuit takes advantage of RRAM arrays to establish a near-memory com-
puting system, aimed at enhancing the speed and energy-efficiency of both the forward
and backward passes during training. In particular the XNOR operation evaluating the
multiplication between 1-bit activations and 1-bit weights is performed within the RRAM
array sensing circuitry. This operation takes advantage of the virtually unlimited read
endurance of RRAM devices. At the same time, the FeRAM array stores the higher-
precision hidden weights optimized during training. By exploiting training techniques
similar to the ones developed in the previous chapter, the hidden weights in the FeRAM
arrays could be updated for each presented training sample, while updating the binarized
weights in the RRAM array only periodically. This procedure can effectively reduce the
number of programming operation performed on RRAMs and take advantage of the larger
programming endurance and lower programming energy of ferroelectric devices.

4.2 Fe RNet design

Two versions of the Fe RNet system were designed, sharing the same core architecture, but
different Input/Output (I/O) interfaces, for processing with two different manufacturing
flows. The Fe RNet core is either connected to an I/O pad ring, if the complete manufac-
turing flow is processed, or to two 25-pads test scribes, if only the partial manufacturing
flow is processed. Either manufacturing flows consist of a hybrid process, based on a
22 nm fully-depleted silicon on insulator (FDSOI) CMOS foundry technology. FDSOI is
a planar CMOS technology that relies on the deposition of a very thin silicon film, which
forms the transistor channel, on top of an ultra-thin layer of insulator, called the buried
oxide, positioned above the base silicon. FDSOI is designed to offer significantly improved
transistor electrostatic properties compared to traditional bulk technology. The buried
oxide layer reduces parasitic capacitance between the source and drain. It also effectively
confines the electron flow between the source and drain, substantially minimizing leakage
currents that can degrade performance [196].
In the full manufacturing flow, the CMOS front-end, plus the first four metal layer are
developed by the CMOS technology supplier. The NVM elements are subsequently de-
veloped in the CEA LETI cleanroom facilities, between the fourth and the fifth metal
layer. Finally, the last seven metal layers are processed by the foundry, in order to obtain
the complete stack, counting a total of eleven metal layers. This full process allows the
manufacturing of a complete I/O subsystem, responsible for communicating data between
the chip and the external world. The design and specifications of the I/O pad ring are
detailed in Appendix D. The development of a complete I/O subsystem allows to wire-
bond the designed chip to a package. Thus, the packaged chip can be tested by means of
a printed circuit board (PCB), interfacing the chip and a work station (Figure 4.2a).
The partial manufacturing flow shares the first two steps depicted in the previous case,
i.e. the CMOS front-end development by the foundry, plus the NVM elements developed
in-house. Differently than the previous case, the partial manufacturing flow is terminated
in the CEA LETI cleanroom facilities, with the deposition of the fifth, last, metal layer.
The 25-pads test scribes are therefore developed up to the fifth metal layer. The pads in
each test scribe do not include the circuitry that can be found in the I/O subsystem pads,
rather they directly connect the core to the external world via metal lines. The pin listing
of the two test scribes used to address the Fe RNet core is presented in Appendix D. The
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purpose of this manufacturing flow is to have faster access to the testing of the core, via
an automatic or semi-automatic probe station. The test scribes on the silicon wafer are
addressed via probe card (Figure 4.2b).
Each Fe RNet core, in either designs, is made of two sub-cores (Figure 4.2c). The two sub-
cores can be operated exclusively, according to an input control signal. Architecturally,
the two sub-cores are identical, but different selector transistors were used for 1T-1C cells
and 1T-1R cells in the ferroelectric and resistive memory arrays of the two sub-cores. In
the "left" sub-core, thick gate oxide (referred to as GO2) selector transistors were used,
whereas on the "right" sub-core thin gate oxide (referred to as GO1) transistors were
used as selector devices. Transistors with thinner gate oxide layer generally have better
control over the channel, leading to faster switching speeds and lower gate drive voltages.
However, thinner gate oxides can make the transistor more susceptible to issues like gate
leakage current and reduced reliability due to the increased electric field strength, result-
ing less robust under high-voltage conditions. Indeed, the nominal supply voltage of GO1
transistors in the 22 nm FDSOI technology is 0.8 V. A thicker gate oxide layer improves
the transistor’s ability to handle higher voltages and enhances reliability, as it provides
better insulation and reduces leakage currents. It can be more robust against stress and
long-term wear. On the other hand, a thicker oxide layer might lead to slower switching
speeds and higher gate drive voltages compared to transistors with thinner oxides. The
nominal supply voltage of GO1 transistors in the 22 nm FDSOI technology is 1.8 V.
GO1 transistors also have smaller minimal channel length compared to GO2 transistors,
allowing for more compact array density implementations. Therefore, the two sub-cores
were developed in order to evaluate the impact of the selector transistor on the system
performance and reliability.

Bit-cells and arrays The basic building blocks of the Fe RNet core are the ferroelectric
and resistive memory arrays, which store the weights optimized during training and their
corresponding binarized values, respectively.
The arrays, based on 1T-1C and 1T-1R structures, are organized with parallel bit lines
and source lines, and perpendicular word lines, as shown in Figure 4.3. Each FeRAM
and RRAM array contains 16,384 bit-cells, arranged in a grid of 128 word lines and 128
bit/source lines.
Table 4.1 summarizes the physical dimensions of the selector transistors used in the two
designed sub-cores. In both sub-cores, the same non-volatile memory elements were used,
i.e. square memory devices with 170 nm side. The designed resistive and ferroelectric
memory arrays with GO1 selector transistors have 141% and 18% larger density, respec-
tively, compared to their GO2 counterparts.
While both 1T-1C and 1T-1R bit-cell configurations are used in FeRAM and RRAM
arrays, resistive arrays employ two 1T-1R bit-cells (2T-2R unit cell) in a differential con-
figuration to store one bit of information. In a resistive unit-cell, data is encoded as
follows:

• For a given word line (WLRe), if the resistive device in BLRe,i (SLRe,i) is in a low-
conductance state and BLRe,i+1 (SLi+1) is in a high-conductance state, the cell en-
codes a logic 1.

• Vice versa, if the resistive device in BLRe,i (SLRe,i) is in HCS and the device in
BLRe,i+1 (SLRe,i+1) is in LCS, the cell encodes a logic 0.
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Figure 4.2: Designs of the Fe RNet circuit. The same Fe RNet architecture is either
connected to an input/output pad ring, for testing with a PCB support (a), or to a double
test scribe input/output interface for testing with a automatic or semi-automatic probe
station (b). c Each Fe RNet core is made of two architecturally analogous sub-cores.
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Here, the index i refers to an even-numbered bit line or source line. In contrast, ferroelec-
tric memory arrays store a single bit using a 1T-1C cell.
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Figure 4.3: Ferroelectric and resistive bit-cell arrays in the Fe RNet architecture.
a Ferroelectric and resistive arrays are based on 1T-1C and 1T-1R structures. b The
memory arrays are organized with parallel bit lines and source lines and perpendicular
word lines. Each memory arrays has 16,384 bit-cells.

Bit-cell type Selector transistor NVM area (µm2) Bit-cell area (µm2)Length (nm) Width (nm)
1T-1C (GO1) 28 252 0.029 0.11
1T-1C (GO2) 150 320 0.029 0.14
1T-1R (GO1) 28 880 0.029 0.11
1T-1R (GO2) 150 880 0.029 0.28

Table 4.1: Bit-cell size specifications for the Fe RNet sub-cores. List of the selector
transistors (1T) dimensions, memory element (1C or 1R) area and bit-cell (1T-1C or 1T-
1R) area for both sub-cores (GO1 or GO2 bit-cell types).

Non-volatile memory integration The memory stack presented in chapter 2 shows
promise for the realization of a unified memory that can be used either as ferroelectric
and resistive memory. Nevertheless, at present, its scalability at more advanced tech-
nology nodes is prevented by the large forming voltage applied to the memristor top
electrode (approximately 6 V). The primary feature that allows to reduce the forming
voltage is reducing the oxide thickness. Nevertheless, thickness scaling is incompatible
with ferroelectric operation, which is hampered by excessively thin oxides. Therefore,
further research at material and device level is necessary to induce ferroelectricity in thin-
ner films at BEOL-compatible temperature, for integrating this stack at more advanced
technology nodes, such as the 22 nm FDSOI technology.
For this reason, the flow described in section 2.5.2 is envisioned for the manufacturing
of Fe RNet. This memory co-integration flow allows to have slightly different processing
for FeRAMs and RRAMs developed in the same BEOL with the addition of a single
mask. This supplementary cost might be essential for the successful co-integration of
high-performance ferroelectric and resistive memories.
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Architecture of a Fe RNet sub-core The top level schematic view of each sub-core
is shown in Figure 4.4. Each sub-core includes four FeRAM arrays and one RRAM array.
One out of four FeRAM arrays can be operated at the same time and, simultaneously,
one RRAM array. This is possible thanks to independent pads used to address the two
array types (see Appendix D).
The Fe RNet circuit leverages the RRAM array to create a near-memory computing sys-
tem, accelerating both the forward and backward passes during training. Meanwhile, the
FeRAM array is used to store the hidden weights in either integer or floating-point for-
mats, with widths of 8 bits or multiples thereof. 8-bits floating point formats – based on a
sign, exponent, mantissa representation similar to the standard half- and full-precision for-
mats – have been proposed to train neural networks in order to improve energy-efficiency
and reduce memory requirements. Refs.[197, 198] train deep neural networks with 8-bit
minifloat numbers achieving the same accuracy levels as the full-precision across a wide
spectrum of benchmarks and datasets. At present, no research paper analysed the possi-
bility to train quantized neural networks, thus BNNs, with 8-bit mini-float representation
for the hidden weights. The Fe RNet core was also designed for this purpose.
Transfer logic circuits are included to transfer the signs of the hidden weights from the
FeRAM arrays to the RRAM array. The logic is designed to transfer the signs stored in a
full word line from one out of four FeRAM arrays to the RRAM array, completing a total
of sixteen transfers per programming step, in the case of 8-bit hidden weights. During
each programming step, thirty-two 1T-1R devices are reset, followed by the parallel set
of sixteen devices. Additional details are provided in section 4.2.3.
The synaptic capacity, or the number of weights that can be stored in each Fe RNet sub-
core, depends on the desired precision of the hidden weights. The maximum capacity is
achieved with 8-bit hidden weights, allowing each sub-core to store up to 8,000 synapses
(16,000 parameters in a full Fe RNet core). As the bit-width of the hidden weights doubles,
the number of synapses is halved.

4.2.1 FeRAM arrays

Each FeRAM array includes the bit-cells array and the peripheral circuitry. The periphery
of FeRAM arrays is completely designed with GO2 transistors and standard cells, with
nominal supply voltage of 1,8 V. Scaling the operating voltage of FeCAPs devices is
essential for integrating FeRAMs at more advanced nodes. Reliable ferroelectric array
operation at 2 V was for example obtained through thickness-scaling of a HZO material
from 10 to 8 nm [199]. Further scaling the operating voltage requires decreasing the
thickness of the ferroelectric film. Nevertheless, a clear trade-off between the BEOL
crystallization temperature and the ferroelectric film thickness exits.
In the following, a top level description of the FeRAM array is presented, with a detailed
description of the different sub-blocks (Figure 4.5).

Top level description Each FeRAM array features independent line drivers, input
scan chains, sense amplifiers, and an output scan chain. Scan chains, scan chain control
circuitry, BL drivers and sense amplifiers are supplied by the supply voltage VDD_Fe (pad
7 and 42, Table D1). Word line and source line drivers are supplied by supply voltages
VDD_WL_Fe (pad 5 and 44, Table D1) and VDD_SL_Fe (pad 6 and 43, Table D1),
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Figure 4.4: Schematic architecture of a Fe RNet sub-core. Each sub-core includes
four FeRAM arrays (light blue boxes), one RRAM array (orange boxes), array selection
logic and transfer logic circuits (green boxes). The transfer logic takes as input a bit from
the FeRAM output scan chain, representing the sign of a hidden weight, and outputs two
complementary bits to the input/output scan chain of the RRAM array, defining which
device to set in the 2T-2R unit cell.
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respectively. VDD_Fe, VDD_WL_Fe and VDD_SL_Fe should be optimized according
to device technology and should preferably stay as close as possible to 1,8 V.
Inputs to the FeRAM array are introduced via a selection logic block, necessary to bring
the input signals to the default value, when a specific FeRAM array is not selected for
operation. For active-high signals, the selection logic is simply an AND gate between the
input signal and the enabling signal for such array. For active-low input signals, a NAND
gate is used as selection logic. In this way, all input signals provided by the input pads
are active-high. The array enable signal is decoded starting from the sub-core selection
signal (Left_RightB, pad 15, Table D1) and the Matrix_sel[1:0] signals (pad 55 and 56,
Table D1).
FeRAM arrays have a serial output provided by the output of the last flip-flop in the
output scan chain. The serial output of each FeRAM array can be connected to the
SC_OUT_Fe pad (pad 58, Table D1), according to the array enable signal. Also, each
FeRAM array has sixteen parallel outputs, provided by the output of sixteen registers
equally spaced in the output scan chain. Further details on the usage of these signals are
provided in section 4.2.3.

FeRAM array 
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WLFe 
scan chain

WLFe 
drivers

FeRAM array
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scan chain

Array 
enable

FeRAM
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Serial 
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drivers
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Inputs to scan chains
 and drivers
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VDD_WL_Fe

VDD_SL_Fe VDD_FeVDD_FeVDD_FeVDD_Fe

Figure 4.5: Schematic architecture of a FeRAM array in the Fe RNet design.
The inputs dedicated to FeRAM arrays, provided by the I/O subsystem, are input to each
FeRAM array selection block. Only the active FeRAM array receives the inputs. Each
FeRAM array has a serial output, provided by the last flip-flop in the output scan chain
and demultiplexed according to the array enable signal, and sixteen parallel outputs. The
supply voltages for the different blocks are indicated in the figure.

Scan chain system. The inputs to the array drivers, defining the active and inactive
lines of the circuit are provided to the circuit via scan chains. A single scan chain at
the time can be used by the enabled FeRAM array. In order to select the active scan
chain, a 2-bit input signal is provided, SC_Sel_Fe[1:0] (pads 50 and 49, Table D1). The
SC_Sel_Fe[1:0] signal is decoded with a 2-to-4 decoder in order to select the desired scan
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chain. A schematic of the scan chain system for each FeRAM array is shown in Figure 4.6.
The four scan chains have three common signals, that are the clock (Ck_SC_Fe, pad 48
in Table D1), the input (SC_In_Fe, pad 53 in Table D1) and the reset (Rst_Fe, pad
47 in Table D1). The size of each scan chain, i.e. the number of flip flops composing
it, is indicated in Figure 4.6. As the same inputs are provided to SLFe and BLFe, their
respective scan chain share the same enabling signal.
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Figure 4.6: Scan chain system of FeRAM arrays in the Fe RNet design.

Word line and source line drivers. The WLFe (SLFe) drivers are simply implemented
as the AND operation of the value written in the respective scan chain element and an
external trigger signal, WL_Pulse_Fe (SL_Pulse_Fe), pad 64 in Table D1 (pad 59 in
Table D1). The output of the AND cells are buffered in order to provide sufficiently
large driving capability. The buffers and AND gates are supplied by VDD_WL_Fe
(VDD_SL_Fe). Thus, a WLFe (SLFe) can be connected to VDD_WL_Fe (VDD_SL_Fe)
only if a 1 is inserted in the scan chain for said WLFe (SLFe) and the trigger signal is active.
Otherwise, the WLFe (SLFe) is grounded.

Sensing elements and bit line drivers. The BLFe block comprises both the bit line
drivers as well as the sense amplifiers for the FeRAM array (circuit in Figure 4.7). The
supply voltage of the BLFe block is VDD_Fe. The BLFe block also requires a reference
voltage for the sensing operation (Vref_Fe, provided by pad 45, Table D1), which is
implemented by a clocked latch sense amplifier. The input signals to the BLFe block of
the enabled FeRAM array are:

• The precharge trigger signal, Pre_Pulse_Fe, pad 1 in Table D1. This trigger signal
allows to ground the BLFe, if the sense amplifier is not activated. It is necessary
to set the BLFe to ground before performing a read operation, in order to obtain a
reliable reading.

• The sense amplifier enable signal, SA_Pulse_Fe (pad 61 in Table D1), to connect
or disconnect each latch sense to BLFe. Specifically, the two inputs of the latch
are pre-charged to the BLFe voltage and the reference voltage, until the sensing
operation is enabled. When the sense operation is enabled, the latch toggles.
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• The write back trigger signal, WB_Pulse_Fe (pad 60 in Table D1). This trigger
signal allows automatic write-back of the value stored in the FeRAM device after
destructive reading. This is possible as the output obtained during the reading
operation stays unchanged unless the BLFe is pre-charged to ground.

• The write enable signal, WE_Pulse_Fe (pad 63 in Table D1), and the data written
in the BLFe scan chain element. The NAND operation of these two signals allows to
connect the BLFe to the supply voltage VDD_Fe, thus programming the ferroelectric
device.

The BLFe block outputs the result of the sense operation. The outputs of the sensing
elements are connected to the inputs of the respective registers in the output scan chain.
The Set_Parallel_Fe (pad 54, Table D1) signal has to be activated for copying the outputs
of the sensing circuits in the output scan chain.

Supply

Out

CBL,Fe

BLFe[i]

WLFe[j]

SLFe[i]

NOT(SA_Pulse_Fe)

Pre_Pulse_Fe

NOT(WB_Pulse_Fe)

Vref_Fe

NOT(SA_Pulse_Fe)

SA_Pulse_Fe

NOT(SA_Pulse_Fe)WE_Pulse_Fe
SC_BL_Fe[i]

Figure 4.7: Schematic of the bit line block of FeRAM arrays in the Fe RNet
design. Circuits of a bit line block connected to a 1T-1C cell in the FeRAM array. The
BLFe parasitic capacitance is shown as CBL,Fe.

Layout view. The layout view of each designed FeRAM array is shown in Figure 4.8.
The different blocks are highlighted in green boxes.

4.2.2 RRAM arrays

Each RRAM array includes the bit-cells array and the peripheral circuitry. The periphery
of RRAM arrays is designed with GO2 transistors and standard cells, and laterally-diffused
metal-oxide semiconductor (LDMOS) devices [200]. In the 22 nm FDSOI technology, LD-
MOS can support larger drain-to-source voltages, up to 3.3 V thanks to a drain extension
region that makes them non-symmetric devices. They can be used in combination with
GO2 logic to supply the various lines with voltages larger than 1.8 V. Indeed, a voltage
larger than 1.8 V is typically necessary for the forming operation of RRAM devices. For
this reason LDMOS were used together with standard CMOS devices. In the following, a
top level description of the RRAM array is presented, with a detailed description of the
different sub-blocks (Figure 4.9).
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Figure 4.8: Layout view of FeRAM arrays in the Fe RNet design. The different
blocks in the layout are highlighted in green boxes.

Top level description The RRAM array includes its own line drivers and logic, scan
chains, and sense amplifiers. The sense amplifiers in RRAM arrays are used to to sense
the binary information stored in the 2T-2R RRAM unit cells and to perform the XNOR
operation in-place, between the data stored in the memory and a binary logic input.
An input/output scan chain in the RRAM array is used at the same time to present
the inputs to the sensing elements and to collect the outputs, as explained later in this
section. All scan chains and scan chain control circuity, as well as lines logic blocks are
supplied by the supply voltage VDD_Re (pads 10 and 39, Table D1), typically set to
1.8 V. Word line drivers are supplied by supply voltages VDD_WL_Re (pads 11 and 38,
Table D1), whereas both bit line and source line drivers are supplied by supply voltage
VDD_BL_SL_Re (pads 12 and 37, Table D1). VDD_WL_Re and VDD_BL_SL_Re
are optimized according to the device technology. The sensing element is supplied by
VDDC (pads 9, 25, 41, 57 in Table D1), typically set at 0.8 V.
Inputs to the RRAM array are introduced via a selection logic block, as in the case
of the FeRAM array, in order to bring the input signals to the default value, when a
specific array is not selected for operation. The array enable signal is the same as the
sub-core selection signal (Left_RightB, pad 15 in Table D1). Moreover, inputs provided
to the input/output scan chain can also come from the transfer logic block, if the transfer
operation from FeRAM arrays to RRAM array is enabled via the Transfer signal (pad 2,
Table D1).
RRAM arrays have a serial output provided by the output of the last flip-flop in the
input/output scan chain. The serial output of each RRAM array can be connected to the
SC_OUT_Re pad (pad 24, Table D1), according to the array enable signal.
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Figure 4.9: Schematic architecture of a RRAM array in the Fe RNet design.
The inputs dedicated to the RRAM arrays, provided by the I/O subsystem, are input to
each RRAM array selection block. Parallel inputs can be provided to the input/output
scan chain by the transfer logic circuits. Only the active RRAM array receives the inputs.
Each RRAM array has a serial output, provided by the last flip-flop in the output scan
chain and demultiplexed according to the array enable signal. The supply voltages for
the different blocks are indicated in the figure.

Scan chain system. The RRAM array includes three different Scan Chains, the in/out
scan chain, the WLRe scan chain, the BLRe scan chain. Each one is composed of 128
registers. Therefore, three enable signals are necessary to select all different scan chains,
which are obtained with a two-to-four decoder (Figure 4.10a). The three scan chains
have two common input signals, that are the clock (Ck_SC_Re, pad 27 in Table D1)
and the input (SC_In_Re, pad 23 in Table D1). An independent reset signal is used
for BLRe (Rst_BL_Re, pad 18 in Table D1), WLRe (Rst_WL_Re, pad 16 in Table D1)
and SLRe (Rst_SL_Re, pad 17 in Table D1) scan chains. A common output is shared
among the all scan chains (SC_Out_Re, pad 24 in Table D1). The scan chain outputs
are de-multiplexed according to the enabling signals of each scan chain.
The operation of the in/out scan chain is described in Figure 4.10b. As the name suggests,
the same scan chain is used to push data inside the scan chain or to pull data from it.
The in/out scan chain can be used as input scan chain in two different configurations:

• Serial mode: When using the RRAM array alone, it is necessary to select the SLRe

that should be read or programmed. This is possible with the in/out scan chain, if
the Set_Parallel_Re (pad 26 in Table D1) command signal is low.
Data that are input in a serial mode can also be used to provide inputs to the
sensing elements. Indeed, as shown in the following, the differential sensing element
performs an XNOR operation in place between the provided inputs and the values
stored inside the memory. Whether data in the in/out scan chain are used as input
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to the sensing element is determined by the Sense_Re signal (pad 58 in Table D1),
as shown in Figure 4.10b. If the Sense_Re signal (pad 32 in Table D1) is high, the
output of the registers in even positions along the chain are input to the sensing
elements. It should be noted that the in/out scan chain has 128 registers, in order
to address all devices. Nevertheless, each sensing element is connected to two 1T-1R
devices. Therefore, if the scan chain is used to load inputs for the sense, the inputs
should be loaded by skipping one clock cycle between two provided inputs.
If the Sense_Re signal is low, the in/out scan chain can be used to provide infor-
mation about which BL to activate.

• Parallel mode: Inputs to the scan chain registers can also be provided in paral-
lel. This functionality was implemented in order to allow a parallel transfer of
information from FeRAM to RRAM arrays. This transfer operation is detailed in
section 4.2.3. For now, it is sufficient to know that if the Set_Parallel_Re signal
is high and the Sense_Re command is low, all 128 registers of the chain receive
parallel input data from the transfer logic block.

The in/out scan chain can be used as Output scan chain. In this configuration data from
the sensing elements are transferred as inputs to the scan chain, to be collected at the
output pad SC_OUT_Re. The transfer of data from the sense to the in/out scan chain
occurs only if both the Set_Parallel_Re and Sense_Re signals are high. If this condition
is met, the output of the sensing is loaded in the registers in the odd positions of the scan
chain, as shown in Figure 4.10b.

Word line logic and drivers. The WLRe block includes a logic block, designed with
GO2 transistors and supplied by VDD_Re, and the drivers block, designed with LDMOS
devices and supplied by VDD_WL_Re. The WLRe logic block controls the operation
performed by the WLRe drivers.
Each WLRe logic block takes as input the logic value in the respective WLRe scan chain
element (SC_WL_Re[i]) and outputs two signals:

• Ctrl_VDD_WL[i] = SC_WL_Re[i]

• Ctrl_GND_WL[i] = SC_WL_Re[i]

Each WLRe driver takes as input the respective Ctrl_VDD_WL[i] and Ctrl_GND_WL[i]
signals to either connect the WLRe to VDD_WL_Re or to ground. Figure 4.11a shows the
WLRe driver circuit. In order to connect the WL to ground, a n-LDMOS is used, controlled
by the active-high signal Ctrl_GND_WL[i]. On the other hand, if the CTRL_VDD_WL[i]
signal is high, the WL is connected to VDD_WL_Re.
This circuit implementation creates a connection between VDD_WL_Re and ground,
through the resistor, when Ctrl_VDD_WL[i] is high, resulting in large power consump-
tion. The reason preventing to use a simple inverter circuit, controlled by the signal
Ctrl_GND_WL[i], which would result in zero static power consumption is the following.
The high level of the logic block is VDD_Re, which is set to 1.8 V. This value might not be
sufficiently high to open the p-LDMOS in an inverter circuit, when the Ctrl_GND_WL[i]
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Figure 4.10: Scan chain system of FeRAM arrays in the Fe RNet design. a Global
description of the scan chain system and decoding table. b Detailed schematic description
of two registers in the in/out scan chain of the RRAM array. The same blocks are repeated
for each couple of registers.

input is high, depending on the magnitude of VDD_WL_Re, preventing to effectively
ground the word line. Therefore, a properly sized resistor and an n-LDMOS (controlled
by the Ctrl_VDD_WL[i]) are used to control the gate of the p-LDMOS.

Bit line and source line logic and drivers. The BLRe and SLRe blocks includes logic
blocks, designed with GO2 transistors and supplied by VDD_Re, and the drivers block,
designed with LDMOS devices and supplied by VDD_BL_SL_Re. The BLRe logic block
controls the operation performed by the BLRe drivers, and the same applies to SLRe.
Each BLRe logic block takes as input the SC_BL_Re[i] signal, i.e. the data loaded in the
scan chain element corresponding to the driver under consideration, and two more control
signals, i.e. Reset_Re (pad 29 in Table D1) and Probe_Re(pad 28 in Table D1). The
block has three output signals:

• Ctrl_VDD_BL[i] = SC_BL_Re[i] · Reset_Re

• Ctrl_GND_BL[i] = SC_BL_Re[i] + SC_BL_Re[i] · Reset_Re · Probe_Re

• Ctrl_Probe_BL[i] = SC_BL_Re[i] · Probe_Re

Each SLRe logic block takes as input the SC_SL_Re[i] signal, i.e. the data loaded in
the scan chain element corresponding to the driver under consideration, and three more
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control signals, i.e. Set_Re (pad 31 in Table D1), Probe_Re and Sense_Re. The block
has three output signals:

• Ctrl_VDD_SL[i] = SC_SL_Re[i] · Set_Re · Sense_Re

• Ctrl_GND_SL[i] = (SC_SL_Re[i] + SC_SL_Re[i] · Set_Re · Probe_Re) · Sense_Re

• Ctrl_Probe_SL[i] = SC_SL_Re[i] · Probe_Re · Sense_Re

Each BLRe, or SLRe, driver takes as input the respective signals defined just above to
either connect the BLRe, or SLRe, to VDD_BL_SL_Re, ground or to the external pads
to probe the resistance (BL_Probe_Re and SL_Probe_Re, pads 13 and 36 in Table D1
respectively). Figure 4.11b shows the BLRe and SLRe driver circuit. In order to connect
the BLRe (SLRe) to ground, a n-LDMOS is used, controlled by the active-high signal
Ctrl_GND_BL[i] (Ctrl_GND_SL[i]). If the Ctrl_VDD_BL[i] (Ctrl_VDD_SL[i]) sig-
nal is high, the BLRe (SLRe) is connected to VDD_BL_SL, via the coupled n-LDMOS-
resistor and p-LDMOS structure explained before for the WLRe drivers. A third path is
possible in the BLRe and SLRe drivers, conversely to the WLRe driver. This path connects
the BLRe (SLRe) to the BL_Probe_Re (SL_Probe_Re) pads via a n-LDMOS activated
by the active-high signal Ctrl_Probe_BL[i] (Ctrl_Probe_SL[i]).
Finally, it should be noted that the SLRe logic includes also a configuration in which none
of the three driver command signals is active. This means that none of the three paths
previously defined are active and the SLRe is left in a high-impedance mode. This config-
uration occurs when the Sense_Re signal is high, thus when it is necessary to perform a
read operation via the sense amplifiers.

a

Ctrl_VDD_WL[i]

Ctrl_GND_WL[i]

VDD_WL_Re

WLRe[i]

R R

b

Ctrl_VDD_BL[i]
(Ctrl_VDD_SL[i]) Ctrl_GND_BL[i]

(Ctrl_GND_SL[i])
Ctrl_Probe_BL[i]

(Ctrl_Probe_SL[i])

VDD_BL_SL_Re

BLRe[i] (SLRe[i])

BL_Probe_Re
(SL_Probe_Re)

Figure 4.11: Driver circuits of RRAM arrays in the Fe RNet design. Word line
drivers (a) and bit line and source line drivers (b). The resistance value is R=8 kΩ.

Near-memory computing sensing element. A differential sense amplifier (DSA)
circuit was designed to sense the binary information stored in the 2T-2R RRAM cells
[201]. Each sensing element is connected to two consecutive SLRe. Thus, 64 DSAs are
present for each RRAM array. The designed DSA also allows to perform the XNOR
operation in-place, between the data stored in the array (a logic 0 or 1) and a binary logic
input signal presented to the DSA. The XNOR operation between two 1-bit logic values
maps the arithmetic multiplication between two quantities which can assume only two
values, -1 (mapped to the logic value 0) and 1 (mapped to the logic value 1). The XNOR
operation performed by the DSA is summarised in Table 4.2.
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xi Xi wij Wij xi·wij XNOR(Xi,Wij)
-1 0 1 1 -1 0
-1 0 -1 0 1 1
1 1 1 1 1 1
1 1 -1 0 -1 0

Table 4.2: Equivalence between the exclusive-NOR (XNOR) logic operation
(0/1) and multiplication between binarized values (±1). In the table, Xi and Wij

represent binary values (0/1), while xi and wij represent their binarized equivalents (±1).
The XNOR result corresponds to the arithmetic multiplication.
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Figure 4.12: Schematic of the differential sense amplifier with in-place XNOR
operation. This sensing circuit enables the implementation of the XNOR operation
between a binary input and data stored in a differential 2T-2R unit cell. The signals
Precharge_Re (pad 33 in Table D1) and Cmd_Sense_Re (pad 34 in Table D1) define
when to precharge the output of the latch circuit to the supply and when to activate the
sense.

The designed DSA circuit, shown in Figure 4.12, is made of several blocks:

• The isolation stage connects the two SLRe, thus the two resistive devices, to the sens-
ing element via n-LDMOS controlled by the input signal Cmd_Sense_Re_int_b.
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• The XNOR stage includes four GO1 high-threshold voltage n-MOSFET transistors
an it implements the XNOR operation between the data stored in the 2T-2R bitcell
and the input presented to the DSA, by switching or not the two SLRe with respect
to the sensing latch. The inputs are presented to the gates of the MOSFETs in this
stage, via the signals Sense_In_l[i] and Sense_In_l_b[i]. The signal Sense_In_l[i]
is the output of a level-shifter circuit (supplied by VDDC), taking as input the
Sense_In[i] signal provided by the in/out scan chain (supplied by VDD_Re).

• The sense stage includes the latch circuit, the pre-charge transistors and the out-
put buffers. The pre-charge transistors, GO1 high-threshold voltage p-MOSFET,
connect the supply voltage and the output nodes of the latch, with gates controlled
by the signal Precharge_Re_int_b. The latch is implemented with high-threshold
voltage n-MOSFET p-MOSFET. The output nodes of the latch are then buffered
with inverter circuits.

• The output stage takes as input one of the buffered outputs of the DSA. This
signal is input to a level-shifter circuit that is supplied with VDD_Re. The output
of the level shifter circuit is the input provided to the in/out scan chain if the
Set_Parallel_Re and Sense_Re signals are high.

The operation of the DSA occurs in three phases. First, the sense amplifier is disconnected
from the two SLRe, i.e. the command Cmd_Sense_Re_int_b is low, and the output
nodes of the sense latch are connected to VDDC, i.e. the Precharge_Re_int_b signal is
low. During this time the input can be provided to the sense amplifier. Then, the sense
amplifier is connected to the two SLRe, i.e. the Cmd_Sense_Re_int_b becomes high.
While Cmd_Sense_Re_int_b is high and Precharge_Re_int_b is low, the parasitic
SLRe capacitors are partially charged, at different speeds, depending on the resistance
of the resistive memory devices. Finally, the Precharge_Re_int_b signal is switched
and the latch performs the comparison between the SLRe voltage values, toggling in the
VDDC/Ground or Ground/VDDC configuration. Figures 4.13a and 4.13b show the
weight encoding in the 2T-2R structure and the transient simulations of one DSA circuit,
performing the four possible operations between inputs and weights. During the second
phase, a direct path is created between VDDC and ground, resulting in static power
consumption. By decreasing the time during which the SLRe parasitic capacitors are
charged, the energy consumption can be reduced. SPICE Monte Carlo simulations in the
nominal design corner were performed to evaluate the energy consumption of the designed
sensing element, considering a fixed LCS of 50 µS and a HCS of 100µS (HCS/LCS ratio
of 2) and SLRe parasitic capacitance of 640 fF at supply voltage of 0.8 V. For a phase two
duration of 15 ns, the average sensing element energy consumption is 153 fJ with standard
deviation of 8.8 fJ, and a yield estimate of 100% evaluated over 200 runs. Decreasing
the phase two delay to 10 ns results in an average energy consumption of 111 fJ and
standard deviation of 6.4 fJ, with 98.5% yield. Decreasing the SLRe parasitic capacitance
and increasing the HCS/LCS ratio allows to decrease the phase two delay, resulting in
reduced average energy consumption down to few tens of fJ. Indeed, the assumption of a
HCS/LCS ratio of 2 is quite conservative and typically larger on/off ratios are observed for
filamentary resistive memories. For instance, considering an HCS/LCS ratio of 10 (125µS
for the HCS and 12.5 µS for the LCS) and a source line parasitic capacitance of 384 fF –
evaluated from the process design kit (PDK) specifications for a SL in the GO1 RRAM
array – the phase two duration can be reduced to 4 ns for a reliable sense operation.
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This results in an average energy consumption of 50.7 fJ per binary multiplication, with
a standard deviation of 2.3 fJ and perfect yield evaluated over 200 runs.
A similar sensing circuit was proposed in [123] and [202] for the implementation of the
MVM in binarized and ternary neural networks, respectively. In this implementation, the
isolation stage is removed and the differential sense amplifier is directly connected to the
resistive devices. In this strategy, the sensing is performed in two phases. First, the lines
parasitic capacitors are pre-charged to the supply voltage of the sense. Then, they are
discharged at different rates according to the resistance of the resistive memory devices,
toggling the latch outputs [203]. This implementation potentially has zero static power
consumption, but it requires to charge the parasitic capacitors to the supply voltage, each
time a sense operation is performed. Depending on the size of the array, the parasitic
capacitors can be relatively large, resulting in increased dynamic power consumption.
The proposed DSA partially removes this limitation by charging the parasitic capacitors
sufficiently enough to detect the difference between the two resistance values, using a
charging time sufficiently long.
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Figure 4.13: Electrical simulations of the differential sense amplifier with in-
place XNOR operation. a Two WLRe encoding the logic states 1 and 0 in differential
conductance configurations are simulated. The SLRe parasitic capacitance is set to 640 fF.
b Transient simulations of the DSA circuit. The DSA operation occurs in three phases.
The XNOR operation is simulated for the four different input (yellow trace) and weight
(green and red traces) configuration.

Layout view. The layout view of each designed RRAM array is shown in Figure 4.14.
The different blocks are highlighted in green boxes.
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Figure 4.14: Layout view of RRAM arrays in the Fe RNet design. The different
blocks in the layout are highlighted in green boxes.

4.2.3 Transfer logic

Transfer logic circuits were designed in order to optimize the communication between
FeRAM and RRAM arrays. In particular, the transfer logic enables to transfer the signs
of the hidden weights from the FeRAM arrays to the RRAM array in each sub-core. The
signs in FeRAM arrays are stored in a 1T-1C cell, whereas binary weights in RRAM
arrays are stored in 2T-2R cells encoding information in a differential configuration. The
purpose of the transfer logic block is to set a logic one in the correct registers of the
RRAM in/out scan chain, for programming 1T-1R devices accordingly.
A full word line from one out of four FeRAM arrays is transferred to the RRAM array,
resulting in the parallel transfer of 16 signs (for 8-bit hidden weights) each time. The full
transfer logic block takes as input data in pre-defined positions in the output scan chains
of the four FeRAM arrays (i.e. the output of 16 out of 128 registers for each array) and
outputs logic values to be stored in the 128 registers of the RRAM in/out scan chain.
Only the registers of the RRAM in/out scan chain corresponding to the RRAM array
section related to the active FeRAM array are modified according to the elements of the
FeRAM output scan chain. The remaining registers in the RRAM in/out scan chain are
set to zero by the transfer logic. The full transfer logic block is made of four sub-blocks,
corresponding to the four FeRAM arrays. Each sub-block takes as input the outputs
from the FeRAM output scan chain registers, the respective FeRAM array enable signal
and a trigger signal enabling the transfer. Each sub-block is made of 16 equal instances,
allowing the transfer from one FeRAM output scan chain register to two RRAM in/out
scan chain registers, as shown in Figure 4.15. Each transfer logic block is supplied by the
supply voltage VDD_Re.
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Figure 4.15: Schematic of a transfer logic instance in the Fe RNet design. Each
transfer logic instance takes as input one element of the output scan chain of a FeRAM
array, the array enable signal for said FeRAM array and the Transfer signal (pad 2, Table
D1). Each transfer logic instance outputs two complementary logic signals.

An example is provided for a single instance of the transfer logic circuit, illustrating the
operations occurring during transfer. If a 0 is written into a 1T-1C cell, storing the sign
of a hidden weight, a read operation results in a logic 0 being transferred in one of the
FeRAM output scan chain elements. A logic 0 in the differential RRAM unit cell is
encoded in the HCS / LCS configuration for resistive devices in SLRe[i] / SLRe[i+1], with
i index of an even SLRe. Then:

1. Before transferring the sign between FeRAM and RRAM scan chains, both resistive
devices in the 2T-2R unit cell are programmed to LCS.

2. The transfer logic, taking as input the logic 0 in the FeRAM output scan chain,
outputs a 1, provided as input to RRAM in/out scan chain element correspond-
ing to SLRe[i], and a zero, provided as input to RRAM in/out scan chain register
corresponding to SLRe[i+1].

3. Finally a set operation is initiated for the RRAM array, effectively setting the re-
sistive device in SLRe[i], since a 1 is inserted in the respective scan chain element,
and leaving the resistive device in SLRe[i+1] in the LCS.

Vice-versa, if a 1 is written to a 1T-1C cell that stores the sign of a hidden weight, the
transfer results in setting the RRAM unit cell in the LCS / HCS configuration, encoding
a logic 1.
The proposed transfer circuits allow up to sixteen sign bits to be transferred from FeR-
AMs to RRAM arrays, enabling the parallel programming of up to sixteen RRAM devices
simultaneously. However, programming multiple resistive memory devices in parallel may
strain the current delivery capability of an embedded system, potentially reducing the
programming current for each device. Ref. [123] evaluated the impact of bit errors on
fully-connected and convolutional binarized neural networks in the MNIST and CIFAR-10
classification tasks, respectively, demonstrating negligible accuracy loss for bit error rates
up to 10−3. The resilience of BNNs to such errors, combined with the enhanced reliability
provided by differential encoding in the 2T-2R cell, allows for programming resistive de-
vices under weaker conditions, while also improving the endurance of RRAM devices. This
could be achieved in the Fe RNet design by properly decreasing the compliance current
during the parallel set operation, using a smaller word line voltage.
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4.3 Characterization support for Fe RNet

A printed circuit board was designed and manufactured by an external company to test
the Fe RNet design. Support in defining the hardware and software specifications and
requirements was provided.
Besides the PCB, the provided test system includes a socket to install the packaged chips
and a field-programmable gate array (FPGA) to manage the PCB elements and the digital
inputs/outputs to the chip. The socket and FPGA are mounted on the PCB. The elements
designed on the PCB are:

• Low-dropout regulator circuits and buffers for the power supplies;

• Digital-to-analog converters to tune the power supplies;

• Analog-to-digital converters to measure the current and voltages provided by the
power supplies;

• A resistance measurement circuit to evaluate the resistance of RRAM devices via
the pads BL_Probe_Re and SL_Probe_Re;

The FPGA manages the communication between the elements on the PCB in order to
power on the supplies, set specific voltage levels for the supplies, collect data from ADCs,
enable the resistance evaluation circuit and collect the results. Moreover, the FPGA
enables the communication with the chip via the thirty-three digital input/output signals.
Digital inputs of the chip are classified as either pseudo-static or dynamic inputs. Pseudo-
static inputs are inputs that need to be set to a given value, which is fixed until a new
value is set. Pseudo-static signals need to be set to either 0 or 1 manually without any
specific timing requirement. On the other hand, dynamic inputs need to be controlled
with logic sequences requiring precise timing between each other. Digital outputs are
dynamic signals. All commands are sent to the FPGA via a python interface.

4.4 Current progress and future outlook

The Fe RNet circuit was manufactured with a purely RRAM BEOL process and subse-
quently packaged for validation with the produced test PCB. Preliminary measurements
were conducted to validate the functionality of the test setup and the communication
with the chip. As an initial test, the ability to push data into a specific scan chain of
the circuit and retrieve the input data at the output pad was verified. In particular, the
following test protocol was implemented to confirm proper communication with the word
line scan chain of one RRAM array:

1. Power on the pad ring and core supplies (VDDIO = 1,8 V, VDDC = 0,8 V).

2. Power on all other supplies (VDD_Re, VDD_WL_Re, VDD_BL_SL_Re,
VDD_WL_Fe, VDD_SL_Fe, VDD_ Fe = 1,8 V).
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3. Set pseudo-static digital inputs (unspecified signals are set to 0), in the following
order:

(a) Rst_BL_Re ← 1 (Activate reset of the BLRe scan chain.)

(b) Rst_SL_Re ← 1 (Activate reset of the SLRe scan chain.)

(c) Rst_WL_Re ← 1 (Activate reset of the WLRe scan chain.)

(d) Rst_BL_Re ← 0 (Deactivate reset of the BLRe scan chain.)

(e) Rst_SL_Re ← 0 (Deactivate reset of the SLRe scan chain.)

(f) Rst_WL_Re ← 0 (Deactivate reset of the WLRe scan chain.)

(g) SC_Sel_Re[0] ← 1 (Select the WLRe scan chain.)

4. Send a dynamic sequence of digital inputs (unspecified signals are set to 0) to write
a random pattern in the selected scan chain and collect digital output. In particular:

(a) Send a random pattern to SC_In_Re (common input pad of the scan chains
of the RRAM array) for the at least first 128 clock cycles of the scan chain.

(b) Input the scan chain clock signal (i.e. 010101010...) to Ck_SC_Re to propa-
gate the input sent to SC_In_Re within the scan chain.

(c) At the output pad SC_Out_Re, the signal remains low for the firs 128 clock
cycles of the scan chain, since it was initially reset. Then, the random pattern
input at SC_In_Re is retrieved.

The results of this test are shown in Figure 4.16. For these measurements, a logic analyzer
was connected to the test PCB to visualize the signal waveforms. It can be observed that
the SC_Out_Re signal (blue) replicates the pattern of the SC_In_Re signal (red) after
128 clock cycles of the scan chain (yellow). This result partially validates the functionality
of both the test PCB and the manufactured chip. Further tests will be necessary to
validate the functionality of the RRAM arrays in the Fe RNet design.
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Figure 4.16: Experimental validation of a scan chain in the Fe RNet chip. "L"
and "H" represent the low and high voltage levels for the three signals, respectively.

Additionally, a partial manufacturing flow up to the fifth metal layer was implemented
using a purely FeRAM BEOL process. Testing of the double-scribe version of the Fe RNet
design will help validate the functionality of the FeRAM arrays.
The manufacturing flow that enables the co-integration of ferroelectric and resistive mem-
ories, described in section 2.5.2, is currently under development and is expected to be
completed by 2025. Once the manufacturing flow is finalized, the complete design will be
tested either using the double-scribe version or the test PCB.
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The test of the designed chip is still an ongoing work that will be carried on in the future.
Beyond validating the current design of the Fe RNet chip, further development is neces-
sary to evaluate the efficiency of the proposed system. For example, the current design
includes the near-memory sensing elements to perform the bit-wise multiplication, but
it still lacks the circuits to perform the accumulation. In BNNs, accumulation can be
efficiently implemented using digital popcount circuits, which may be realized with adder
trees or counter circuits, depending on the trade-offs between area, power, and time effi-
ciency. Moreover, further work at software level will point out the need for ulterior circuits
for the implementation of a complete neural network system. Finally, it should be noted
that the designed periphery still require further optimization. In particular, in a neural
network system a different addressing strategy will likely be necessary, substituting the
scan chains with decoding circuits, as well as optimized driver circuits.

4.4.1 System use cases

From an application standpoint, the Fe RNet circuit was designed to enable on-chip train-
ing of binarized neural networks , where both weights and activations are constrained
to 1-bit precision. Beyond vanilla BNN training, various strategies have emerged that
leverage BNNs to tackle a wide range of AI challenges.
One such approach highlights the potential of BNNs for implementing lifelong learning.
Specifically, it has been demonstrated that by introducing a minor modification to the
standard stochastic gradient descent weight update rule, the hidden weights within BNNs
can act as metaplastic variables. Under this framework, the absolute value of a hidden
weight serves as an indicator of the consolidation strength of its corresponding binary
weight. A larger absolute value implies stronger consolidation, making the synapse less
likely to flip to the opposite sign. This behaviour is implemented by scaling the weight
update using a metaplastic function, which is parameterized by a scalar value and de-
pends on the hidden weight’s magnitude. The chosen function ensures that the likelihood
of a binary weight switch decreases exponentially as the hidden weight increases, while
the switching behaviour remains unaffected when the hidden weight is close to zero. A
key advantage of this method is its flexibility, as it eliminates the need for explicitly par-
titioning tasks, thus enabling more continuous learning of a single task. This technique
has been benchmarked across several datasets and continual learning scenarios, including
multitask and stream learning, and has proven effective in mitigating catastrophic forget-
ting [51]. However, the current training strategy relies on full-precision hidden weights
and employs mini-batch learning with batch normalization. Optimizing this approach in
conjunction with the Fe RNet circuit could pave the way for a continual learning solution
that is better aligned with the hardware constraints of embedded devices.
This approach draws inspiration from the synapse cascade model, initially proposed in
[204]. In this model, each synapse is characterized by a synaptic strength, equivalent to
its synaptic weight. Furthermore, each synaptic strength is represented by a cascade of n
states, reflecting the metaplasticity of the synaptic weight. In the model, a synapse that
undergoes repeated potentiation does not simply increase its weight. Instead, it becomes
more resistant to subsequent depression. The cascade levels are discrete, and the probabil-
ity of a synapse shifting to the opposite strength decreases exponentially with increasing
depth in the plasticity levels. This exponential scaling introduces a broad spectrum of
transition rates: fast synapses at the top of the cascade transition easily, while slower
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synapses deeper in the cascade are less likely to switch. Additionally, the study demon-
strates that the memory lifetime of a collection of synapses—defined by the number of
candidate plastic events before the signal-to-noise ratio of the memory trace drops below
one—depends on both the number of synapses and the optimal number of cascade states.
The optimal memory lifetime is directly influenced by these two factors. The process of
transitioning between states with a given probability recalls the weight update strategy
proposed in chapter 3. Drawing inspiration from [204] and adapting the weight update
rule proposed in the previous chapter – originally designed to improve convergence in
quantized neural networks with integer hidden weights – to include update probabilities
based on the hidden state of the synaptic strength, it is likely possible to mitigate the
effects of catastrophic forgetting, even in binarized neural networks with discrete integer
hidden weights. A similar approach was recently explored in [205, 206].
The success of BNNs relies on the possibility of training them with gradient descent meth-
ods, despite it being a discrete optimization problem. This was originally possible thanks
to the introduction of the STE technique. Nevertheless, the reason why this is the case
is not entirely clear. It has been recently proven that the Bayesian learning rule, when
applied to estimate a Bernoulli distribution over the binary weights, results in an algo-
rithm which justifies some of the algorithmic choices made by the previous approaches,
the STE in particular, starting from principled assumptions. This algorithm not only
obtains state-of-the-art performance but, as a Bayesian method, it enables uncertainty
estimation, which can be useful for decision making and for continual learning [207, 208].
The Fe RNet circuit could provide a platform to investigate and evaluate these algorithms
taking into account the constraints of embedded electronics.

4.5 Summary

This chapter presented the design of a circuit aimed at investigating the advantages of
combining ferroelectric (Fe) and resistive (Re) memory devices, embedded in the BEOL
of foundry 22 nm FDSOI technology, for the hardware implementation of inference and
training in BNNs, referred to as Fe RNet.
The Fe RNet design uses FeRAM arrays to store higher-precision hidden weights in either
integer or floating-point formats, with bit-widths of 8-bits or multiples thereof. Binarized
weights are stored in a differential configuration across two resistive memory devices.
Transfer logic circuits enable the parallel transfer of up to sixteen sign bits from FeRAMs
to RRAMs, speeding up communication between the two arrays.
The RRAM arrays are equipped with sensing elements that perform XNOR operations
between the binarized weights stored in RRAM devices and the inputs presented to the
sensing elements. This operation, combined with population count circuits, allows the
evaluation of matrix-vector multiplications in binarized neural networks, accelerating and
improving energy efficiency during the forward and backward passes of BNN training.
Monte Carlo electrical simulations of the designed sensing circuit suggest the potential to
achieve binary multiplication energy of approximately 100 fJ, with further scaling down
to a few tens of fJ possible with optimized line design.
The synaptic capacity, or number of weights that can be stored in the Fe RNet design,
depends on the desired precision of the hidden weights. Maximum capacity is achieved
with 8-bit hidden weights, resulting in 16,000 synaptic weights; as the bit-width of the
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hidden weights doubles, the number of synapses is halved.
Preliminary measurements of the Fe RNet chip partially validate the functionality of the
developed test PCB and the Fe RNet design. Further testing is required to fully validate
the functionality of the various blocks. Several algorithmic tracks are envisioned for
implementation using the Fe RNet design, which would enable the development of learning-
capable devices for edge applications.
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Chapter 5

Conclusion

Summary

This thesis deals with the hardware implementation of artificial neural networks with non-
volatile memory devices. Among NVM solutions, memristors are particularly promising
to enable next-generation IMC hardware, because they potentially offer improved energy
efficiency, faster access times and larger density compared to traditional storage devices.
Nevertheless they suffer from several device non-idealities, limiting their overall reliability
at present. Although state of the art memristive technologies have proven near software-
equivalent inference accuracy in many AI domains, their exploitation in learning-capable
systems remains challenging. Indeed, memory requirements for training are more demand-
ing, as learning processes in ANNs requires accurate iterative refinement of the synaptic
strengths in the network.
RRAM, also known as filamentary memristor, and FeRAM devices appear as suitable
candidates to enable on-chip learning systems. The virtually unlimited read endurance
of RRAMs and their poor write endurance makes them suitable for inference-only appli-
cations, whereas the reported large write endurance of FeRAMs would effectively allow
to move training on-chip as well. The manufacturing of two NVM technologies on the
same substrate, although beneficial for the hardware implementation of ANNs, comes at
the expense of a large manufacturing cost and complex integration. On the other hand,
the same material stack can be optimized to work as FeRAM or RRAM under different
operating conditions, in the case of HfO2-based devices.

In this thesis, this was achieved by integrating a 10 nm silicon-doped hafnium oxide film
with a titanium scavenging layer between two metal lines of a 130 nm foundry CMOS pro-
cess. This stack combines an active layer of hafnium oxide crystallized in the orthorombic
phase – necessary for ferroelectric switching – with a scavenging layer – necessary for
reliable resistive switching. The hybrid memory was tested in two configurations: in
FeRAM arrays and in RRAM arrays manufactured in the back-end of line of 130 nm
CMOS foundry technology. As FeRAMs, such devices were shown to work as binary
memories with good endurance over 10 million cycles and low programming energy, be-
low 200 fJ/bit. After undergoing a forming process to create conductive filaments, the
same devices integrated in the BEOL of RRAM arrays, can be used as analog multi-level
memory devices with lower endurance, about 100,000 cycles. These results highlights
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the potential of this hybrid approach to leverage the strengths of both memory types for
artificial intelligence workloads.

An application-specific integrated circuit leveraging the developed hybrid memory tech-
nology was experimentally validated. This circuits includes both ferroelectric capacitors
and memristors within the same BEOL of foundry 130 nm CMOS, in order to create
an hybrid array of interconnected FeCAPs and memristors. The fundamental unit of
the hybrid array is an hybrid synapse circuit, consisting of a collection of one-transistor-
one-FeCAP cells, where the bit line of each cell is directly connected to the gate of the
selection transistors in a one-transistor-one-memristor cell. This sub-circuit enables direct
digital-to-analog data transfer from multiple FeCAP cells to a single memristive device,
without the need for intermediate circuitry [182]. This technology is compatible with on-
chip training of ANNs. FeCAP devices store higher-precision hidden weights that undergo
numerous programming operations during training, while memristor devices store analog
weights read during both inference and training. Two system implementations were pro-
posed. The first uses equally sized FeCAPs to store the higher-precision weights and a
single memristor to store the analog weight. This approach limits the precision of the
hidden weights to n+1 discrete states, where n is the number of FeCAPs in the synaptic
circuit. A binarized neural network was trained on the ECG-arrhythmia detection task.
Taking into account the constraints of the synaptic circuit, the network achieves 88%
accuracy, with eight FeCAPs only storing each higher-precision weight and one memris-
tor used to store the binary weight [183]. The second implementation uses ferroelectric
capacitors with different areas to encode the 10-bit integer higher-precision weights in an
sign-and-magnitude format and two memristors to encode positive and negative analog
weights in the memristors’ differential conductance. Fully-connected ANNs were trained
using a stochastic gradient descent algorithm. In particular, for each training sample,
neuron activations are calculated by feed-forward matrix-vector multiplication between
the analog weights (memristors) and the previous layer’s activations. Errors at the output
layer are back-propagated to evaluate loss gradients and update hidden weights. Hidden
weights (10-bit integers in FeCAPs) are updated for each sample, while analog weights
(memristors) are updated every k inputs via the digital-to-analog transfer procedure. On
the MNIST dataset, at k=100, the method achieves 96.7% accuracy with approximately
38nJ total programming energy consumption per weight, representing a 38-fold reduction
with no loss of accuracy with respect to k=1. The number of programming operations re-
mains 17 times below the memristor endurance limit and 75 times below the FeCAP limit.
Moreover, the robustness to memory errors was also assessed based on measurements of
analog transfer from FeCAPs to memristors. The results obtained across a variety of
edge benchmarks (ECG arrhythmia binary detection, image classification on MNSIT and
Fashion MNIST datasets) are competitive with those achieved by floating-point precision
software models, without the endurance limitations associated with hardware constraints.
Finally, the proposed training approach was benchmarked on a transfer-learning task.
To create a transfer-learning scenario, an edge-friendly neural network, MobileNet-V2,
was pre-trained on the CIFAR-100 dataset. The convolutional layers were used as as
a fixed feature extractor, and a fully connected layer was added, which was trained on
the CIFAR-10 dataset using the online learning strategy adapted to the hybrid memory
circuit constraints. The online transfer learning only reduces accuracy by approximately
two percentage points, to 88.0%, compared to the full-precision baseline, confirming that
this approach performs well even with sophisticated datasets.
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A second circuit was developed with the aim of investigating the advantages of combining
ferroelectric (Fe) and resistive (Re) memory devices, embedded in the BEOL of foundry
22 nm FDSOI technology, for the hardware implementation of inference and training in
binarized neural networks, referred to as Fe RNet. The Fe RNet design uses FeRAM arrays
to store higher-precision hidden weights in either integer or floating-point formats, with
bit-widths of 8-bits or multiples thereof. Binarized weights are stored in a differential con-
figuration across two resistive memory devices. Transfer logic circuits enable the parallel
transfer of up to sixteen sign bits from FeRAMs to RRAMs, speeding up communication
between the two arrays. The RRAM arrays are equipped with sensing elements that
perform XNOR operations between the binarized weights stored in RRAM devices and
the inputs presented to the sensing elements. This operation, combined with population
count circuits, allows the evaluation of matrix-vector multiplications in binarized neural
networks, accelerating and improving energy efficiency during the forward and backward
passes of BNN training. Monte Carlo electrical simulations of the designed sensing circuit
suggest the potential to achieve binary multiplication energy of approximately 100 fJ, with
further scaling down to a few tens of fJ possible with optimized line design. Preliminary
measurements of the Fe RNet chip partially validate the functionality of the developed test
PCB and the Fe RNet design. Further testing is required to fully validate the functionality
of the various blocks. Several algorithmic tracks are envisioned for implementation using
the Fe RNet design, which would enable the development of learning-capable devices for
edge applications.

Future outlook

Combining ferroelectric and resistive switching within the same memory stack is advan-
tageous in terms of process technology, as it does not require any additional cost with
respect to integrating a single memory device in the BEOL of CMOS. In this case, dif-
ferentiation from a ferroelectric to a resistive memory operation can occur by means of
an irreversible electro-forming process. Additionally, to facilitate scaling down to more
advanced CMOS technology nodes, a slightly modified BEOL integration is proposed for
ferroelectric and resistive devices, allowing for lower forming voltages. This modification
further differentiates the two technologies at the manufacturing level [177]. Both these
approaches rely on the assumption that two physically separated sets of devices should
be embedded in the system: one functioning as a ferroelectric device and the other as a
resistive device. At system level this means that ferroelectric and resistive memory arrays
are physically apart, not sharing any programming or reading circuitry. However, this is
not the only available option.
A unified array of memory elements could be conceived, with a unified memory stack in-
tegrated in the BEOL, where the programming and reading circuitry is designed in order
to function for both ferroelectric and resistive memory operation. Indeed, in terms of
write operations, FeRAM and RRAM technologies require generally similar circuits. To
increase or decrease the conductance value in RRAMs, voltage pulses must be applied
to the SL or BL. Similarly, to reset or set a FeRAM device. Therefore, RRAM drivers
could also be repurposed to polarize FeRAM devices. Nevertheless, as explained in chap-
ter 2, the current levels involved during programming are notably different for RRAM and
FeRAM technologies. Hence, the significantly higher write currents required for RRAM
would require larger transistors, for programming and selection, compared to a purely
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FeRAM implementation, resulting in a relatively less dense array. The sense circuitry
could also be shared in this scenario. For instance, the clocked latch sense amplifier in
Figure 2.3 developed for FeRAM arrays could be used to evaluate the the time constant
when charging the BL with the application of a voltage pulse on the source line, allowing
to distinguish a RRAM device in a set or reset state [209]. The approach of co-locating
FeRAM and RRAM operation within the same array could potentially allow globally
denser solution in the case of a learning-capable systems. For instance, in the case of
back-propagation-like algorithms, it would not require having separate devices to perform
the forward/backward steps and the weight update one, as proposed instead in this thesis.
Nevertheless, this approach appears more suited to a fully-digital implementation, where
FeRAM and RRAM devices are used to store weights in a digital format [181]. A system,
initially trained with the array in FeRAM mode, could be switched to an RRAM mode to
perform inference-only. Going back to a FeRAM operation could allow to perform other
learning cycles throughout the lifetime of the system. This approach would require a uni-
fied memory stack with optimal performance in both FeRAM and RRAM modes to fully
leverage the potential of the systems. Nevertheless, as discussed in chapter 2, optimizing
ferroelectric and resistive properties simultaneously in HfO2-based devices presents a chal-
lenge, as it requires careful engineering of the oxygen vacancy profile in the memory stack.
On one hand, reducing oxygen vacancies generation improves ferroelectric performance
by boosting device endurance, while on the other hand, enhancing vacancies generation
is crucial for lowering the forming voltage and achieving reliable resistive switching. Al-
though combined optimization might be difficult to achieve, a satisfactory compromise
between ferroelectric and resistive performance is certainly possible. Moreover, further
study at device level is necessary to explore the possibility to go back to a ferroelectric
operation after an electro-forming step. Figure 2.10 showed the possibility to program
devices exploiting the unified memory stack in a conductance state comparable to the
pristine state. This operation could allow to retrieve the ferroelectric operation after an
electro-forming step. Still, further characterization is necessary to explore this behaviour.
This thesis marked a first step towards the development of this hybrid memory technology
for the implementation of embedded AI systems. The circuit implementation described
in chapter 3 allowed to tackle some key issues of embedding back-propagation on-chip
exploiting emerging non-volatile memory devices. Dealing with imperfect devices and
finding strategies to overcome their limitations is a necessity is this context. Sometimes,
taking advantage of these limitations is possible and beneficial for the implementation of
more exotic learning strategies [210]. The circuit implementation described in chapter 4
has the potential to further explore some of these algorithms while taking advantage of
a technology that is inherently well-suited to learning systems and showing promise for
further optimization.
More fundamentally, further study at the algorithmic level is necessary to unlock the
true potential of edge AI. This thesis relies solely on supervised learning; however, edge
devices are typically interfaced with an unlabelled world. To develop more adaptive,
learning-capable systems, it is crucial to explore unsupervised or semi-supervised learning
approaches, enabling edge AI to learn autonomously from its environment. Additionally,
edge AI systems need the ability to learn new types of data without forgetting previ-
ously acquired knowledge, a critical feature for lifelong learning in dynamic environments.
Moreover, given the limited computational power of individual edge devices, distributed
intelligence across multiple devices could offer a promising solution. By sharing resources
and processing tasks collaboratively, these systems could handle more complex tasks that
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would otherwise be beyond the capabilities of a single device. Ultimately, distributed
intelligence would help realize a more efficient, connected world where edge AI systems
work together to process data in real time, driving smarter decision-making and enhanced
user experiences.

134



Appendix A

Electrical characterization setup

This appendix specifies the experimental setup used to perform the electrical character-
ization on single device structures, ferroelectric and resistive memory arrays, as well as
the hybrid memory circuit based on the unified memory stack, presented in chapter 2 and
chapter 3.

PUND measurements on ferroelectric capacitors and quasi-static characterization of mem-
ristors (Figure 2.6) were performed using signals generated by a Keysight B1530 waveform
generator/fast measurement unit module and analyzed by a Keysight B1500A semicon-
ductor parameter analyzer, which is controlled by a Python-coded interface.

The same setup was used to characterize FeCAP arrays (Figure 2.7, Figure 3.4a,b and
Figure 3.6d). The Keysight B1530 module was connected to a custom-made PCB with a
co-integrated Arduino microcontroller for signal and instruction management.

To program and read the memristor arrays (Figure 2.8, Figure 2.9, Figure 2.10), voltage
pulses were produced externally using a RIFLE NplusT engineering test system. This sys-
tem is equipped with a 100 MHz arbitrary waveform generator and a C++ programmable
computer. The computer controlled the pulses generated by the arbitrary waveform gen-
erator, which were applied to the memristor arrays.

The hybrid memory array characterization(Figure 3.4c and Figure 3.7) was performed via
external power supplies (Rohde & Schwarz HMP4040, Keysight E3631A), a pulse pattern
generator (Anritsu MP1763C), an arbitrary waveform generator (Tektronix AFG1062),
and a digital multimeter (Keysight 34470A). The instruments are managed by a Python
interface, and communication with the computer occurs via GPIB connections.

All signals were connected to a 200 mm wafers through a 25-pin probe card, interfacing
with 25 metal pads.
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Unified ferroelectric/memristive
memory circuit design

This appendix describes the design of the manufactured hybrid memory circuit presented
in chapter 3. The building blocks of the design are shown in Figure 3.3. This circuit
was designed in a 130 nm foundry CMOS technology node up to metal layer four. The
non-volatile memory stack and the fifth, last, metal layer were fabricated in CEA LETI.
The circuit can be accessed by 25 pads on the last metal layer. Table B5 describes the
pad listing to communicate with the circuit. The design developed in this Thesis is based
on a previously validated design including an array of FeCAPs, in a 1T-1C configuration,
and its peripheral circuitry. This design was modified in order to add the memristors
array, in a 1T-1R configuration, so to obtain the array of hybrid memory circuits.

B.1 Design specifications

In the following, the various blocks composing the whole test scribe design will be detailed
in the following order: Scan chain system, FeCAPs array source line (SLFe) and word
line (WLFe) drivers, memristors array bit line (BLmem) and source line (SLmem) drivers,
FeCAPs sense and transfer line drivers, and timing block.

B.1.1 Scan chain system

The inputs to the array drivers, defining the active and inactive lines of the circuit, as well
as the inputs to the timing block, describing its operating mode and the pulse properties,
are provided to the circuit via scan chains. As shown in the pad listing, data introduced
in the scan chains are input with the SC_IN pad (pad 20) and output via the SC_OUT
pad (pad 21). Therefore, a single scan chain at the time can be used. In order to select the
active scan chain, a 3-bits input signal is provided, SC_SEL. The three bits (SC_SEL[2],
SC_SEL[1], SC_SEL[0]) are independently provided with three different pads (pads 22,
23 and 24). The SC_SEL signal is decoded with a 3-to-8 decoder in order to select
the desired scan chain. A schematic of the scan chain system is shown in Figure B1.
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The active scan chains according to the SC_SEL signal configurations are described in
Table B1. The five scan chains have two common signals, that are the clock (CK_SC,
pad 19) and the input (SC_IN, pad 20). The size of each scan chain, i.e. the number
of flip flops composing it, is indicated in Figure B1. As the same inputs are provided to
SLFe and WLFe, their respective scan chain share the same enabling signal. The same is
done for SLmem and BLmem scan chains. All scan chains are supplied by VDD, pad 14.
The ground is provided via pads 13/25, GND.

Active Scan
Chain

SC_SEL[2] SC_SEL[1] SC_SEL[0]

SC_OUT 1 1 1
SC_CONTROL 1 1 0

SC_SL_Fe 1 0 1SC_WL_Fe
SC_TL 1 0 0

SC_SL_mem 0 1 1SC_BL_mem
Unused 0 1 0
Unused 0 0 1
Unused 0 0 0

Table B1: Scan chain selection in the hybrid memory circuit.

SC_OUT(128) 0127EN[7]

SC_CONTROL(32) 031EN[6]

SC_SL_Fe(128) 0127EN[5]

SC_WL_Fe(128) 0127EN[5]

SC_TL(128) 0127EN[4]

SC_SL_mem(16) 015EN[3]

SC_BL_mem(16) 015EN[3]

32b

128b

128b

128b

16b

16b

SC_OUT[0]

SC_CONTROL[0]

SC_SL_Fe[0]

SC_WL_Fe[0]

SC_TL[0]

SC_SL_mem[0]

SC_BL_mem[0]

D
E
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X

SC_OUT

SET_PARALLEL

8b128b

DEC 3x8SC_SEL[2:0]
3b 8b

EN[7:0]
SC_IN

CK_SC

COMMON INPUTS
FOR ALL SCAN CHAINS

Figure B1: Scan chain system in the hybrid memory circuit.

B.1.2 FeRAM drivers

The WLFe and SLFe drivers are simply implemented as inverter gates, with command
signals provided by the NAND operation of the value written in the respective scan
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chain element and an external trigger signal (WL_Fe, pad 6, and SL_Fe, pad 5, respec-
tively). The inverter and NAND gates are supplied by the VDD_WL_Fe (pad 15) and
VDD_SL_Fe (pad 17) external supply voltages . Therefore, the WLFe/SLFe can be con-
nected to VDD_WL_Fe/VDD_SL_Fe only if a 1 is inserted in the scan chain for a given
WLFe/SLFe and the trigger signal is high. Otherwise, the WLFe/SLFe is grounded. The
ground is provided via pads 13/25, GND. The WLFe/SLFe drivers operation is summarized
in Table B2.

SC_WL_Fe[i]
(SC_SL_Fe[i])

WL_Fe (SL_Fe) WLFe (SLFe)

1 1 VDD_WL_Fe
(VDD_SL_Fe)

1 0 GND
0 1 GND
0 0 GND

Table B2: WLFe and SLFe drivers operation in the hybrid memory circuit.
SC_WL_Fe[i] and SC_SL_Fe[i] are the elements written in the scan chains SC_WL_Fe
and SC_SL_Fe in poition i. WL_Fe and SL_Fe are the trigger signals provided by pads
6 and 5 respectively.

B.1.3 RRAM drivers

The BLmem/SLmem drivers are implemented as transmission gates controlled by a com-
mand signal cmd and its negate version cmd_b. The command signal cmd for the
BLmem/SLmem drivers is obtained as AND (NAND + INV) of the value inserted in the
scan chain and an external trigger signal (WL_Fe/BL_mem, pad 6, for the BLmem and
SL_Fe/SL_mem, pad 5, for the SLmem). The transmission gates are correctly sized in or-
der to be able to provide a sufficiently high current during the memristor write operations.
Therefore, if a 1 is inserted in a scan chain element of a certain BLmem/SLmem and the
trigger signal is activated, the BLmem/SLmem are respectively connected to the external
voltages VDD_BL_mem/VDD_SL_mem (pads 12 and 18). Let us notice that the same
pads for the trigger signals used for the WLFe and SLFe drivers are used for BLmem and
SLmem respectively. This pad sharing is not an issue and it does not require to empty
the scan chains of one of the arrays since independent supply voltages are used for the
different drivers. In particular if the FeCAPs array has to be programmed independently,
the VDD_BL_mem/VDD_SL_mem voltages can be left at 0 V, thus not changing the
programmed resistance values in the memristors array regardless of the values in the scan
chains. On the other hand, if the memristors array has to be programmed independently,
the supply voltages of the FeCAPs array drivers can be set to 0 V, thus not changing the
programmed values in the FeCAPs array even if a trigger signal is sent to the WLFe and
SLFe, regardless of the values in the scan chains. The hybrid operation mode, allowing
the analog transfer of the values programmed into the FeCAPs to the memristor requires
both FeCAPs and memristors drivers to be active, for the parallel reading of FeCAPs and
writing of the memristor, respectively. In this case, the external trigger signal controls
both the timing of the FeCAPs reading and the writing of the memristor at the same
time. The BLmem/SLmem drivers operation is summarized in Table B3.
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SC_BL_mem[i]
(SC_SL_mem[i])

BL_mem (SL_mem) BLmem (SLmem)

1 1 VDD_BL_mem
(VDD_SL_mem)

1 0 GND
0 1 GND
0 0 GND

Table B3: BLmem and SLmem drivers operation in the hybrid memory cir-
cuit. SC_BL_mem[i] and SC_SL_mem[i] are the elements written in the scan chains
SC_BL_mem and SC_SL_mem in position i. BL_mem and SL_mem are the trigger
signals provided by pads 6 and 5 respectively.

B.1.4 Sensing elements and transfer line drivers

The block related to the transfer lines (TLs) comprises both the TL drivers and the sense
amplifiers for the FeCAPs array. A driver element and a sense amplifier are connected
to each TL of the array. The TL block is directly connected to the TLs, TL scan chain
and output scan chain. The supply voltage of the TL block is provided by pad 16, i.e.
VDD_TL. The ground is provided via pads 13/25, GND. The TL block also requires a
reference voltage for the sense operation, provided by pad 11, VREF.
The input signals to the TL block are:

• WB, i.e. the write-back trigger signal, provided by pad 3. This signal allows au-
tomatic write-back of the value stored in a FeCAP device after reading. This is
possible as the output obtained during the reading operation stays unchanged un-
less the TLs are precharged to 0 V.

• PRE, i.e. the precharge trigger signal, provided by pad 8. This trigger signal allows
to ground the TLs, if the sense amplifiers are not activated. Typically, it is necessary
to set the TLs to 0 V before performing a read operation, to obtain a reliable read.

• SA, i.e. the sense amplifier trigger signal, allowing to connect or disconnect the
sensing element to the TLs, provided by pad 4. The same sensing elements as
in Figure 2.3 were used in this design. The signals en and enb in Figure 2.3 are
the buffered and negate version of the input SA. The 2 inputs, Vin,a and Vin,b in
Figure 2.3, are precharged to the TL voltage and the reference voltage respectively,
if the sense amplifier is disabled.

• set_write: obtained as NAND operation between the write enable signal (WE,
provided by pad 9) and the data written in the TL scan chain element (SC_TL[i]).
The set_write signal is active-low and allows to connect the TL to the supply voltage
VDD_TL.

• set_write_0: obtained as AND operation between mem_MODE, WE and the
negate of SC_TL[i]. The signal mem_MODE is provided by pad 7. The signal
set_write_0 is active-high and it allows to ground the TL if a zero is written in
SC_TL[i] and the mem_MODE signal is high.
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The operation of the TL block is summarized Table B4. Other signal combinations that
differ from the ones specified in Table B4 could lead to short circuits. In particular, it
is important to do not connect the TL to both VDD_TL and GND at the same time,
by enabling together the set_write and PRE signals, as well as to do not allow the
precharging of the TL while the sensing is enabled.

WE/TL WB PRE SA mem_MODE SC_TL[i] TL
1 0 0 0 0 1 VDD_TL
1 0 0 0 1 0 GND
0 0 1 0 0 * GND
0 * 0 1 0 * HZ
0 1 0 * 0 * HZ

Table B4: Typical operation of the TL block in the hybrid memory circuit.

B.1.5 Timing block

The inputs to the timing block are provided by the control scan chain and two bias
voltages respectively, i.e. PW_TUNE_ANA and PW_TUNE_ANA_D (pads 1 and 2
respectively), used to control the pulse and delay generators. The supply voltage VDD
(pad 14) and ground connection GND (pads 13 and 25) are also provided to the timing
block. The outputs are the trigger signals for the word and source lines, write back and
sense amplifiers. The whole FeCAPs array can be driven in 3 different ways, with or
without pulse generators. The enabling of the pulse generators are handled by the control
scan chain. To sum-up, the 3 modes are:

• The "auto" mode, triggered by a single pad (WL_Fe), where pulse generators are
successively activated in a specific order with internally controlled widths and delays.

• A "semi-auto" mode, where the pulse generators are enabled, but not the auto mode.
In this configuration, each pulse generator can be separately triggered. Hence, the
pulse widths are internally controlled, but the delays between each pulses and the
order of the pulses is defined externally by the way the pads 3 to 6 are activated. If
a pulse generator is enabled (1 in the correct position of the scan chain), the pulse
will be triggered by the corresponding signal, e.g. the SLFe pulse generators pulse
will be triggered by the pad 5 “SL_Fe”.

• An “external” mode, where both pulse generators and auto mode are not enabled.
In this configuration, the signals sent to the enabling pads 3 to 6 are the ones seen
by the array, i.e. the widths and delays are monitored directly by the software.

The detailed description defining the functionality of each configuration bit in the control
scan chain is not reported here. It is available in internal documentation.
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B.2 Layout view

The layout view of the designed circuit, with the description of the different blocks com-
posing it is shown in Figure B2.

PADS

Timing 
Block

SC_OUT

SC_TL

SC_CONTROL

TL block

FeCAPs array 
1T-1C

Memristors array 
1T-1R

WLFe

drivers
SLFe

drivers

SLmem

drivers
BLmem

drivers

SC_BL_mem SC_SL_mem

SC_WL_Fe SC_SL_Fe

Figure B2: Layout view of the designed hybrid memory circuit. The leftmost pad
in the layout corresponds to pad 1 in Table B5.
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pad
number

pad name Type Description

1 PW_TUNE_ANA BIAS Constant voltage bias for
pulse/delay generator.

2 PW_TUNE_ANA_D BIAS Constant voltage bias for
pulse/delay generator.

3 WB DIGITAL IN Write back for FeCAPs.
4 SA DIGITAL IN Sense enable for FeCAPs.
5 SL_Fe / SL_mem DIGITAL IN SLFe and SLmem trigger.
6 WL_Fe / BL_mem DIGITAL IN WLFe and BLmem trigger.
7 mem_MODE DIGITAL IN Enable grounding of

unselected TLs.
8 PRE DIGITAL IN Precharge TLs.
9 WE/TL DIGITAL IN Write enable / TL trigger.
10 SET_PARALLEL DIGITAL IN Set parallel input for

output scan chain.
11 VREF BIAS Reference voltage for

FeCAPs sense amplifier.
12 VDD_BL_mem SUPPLY BLmem drivers supply

voltage.
13 GND SUPPLY Connection to ground.
14 VDD SUPPLY FeCAPs periphery supply

voltage.
15 VDD_WL_Fe SUPPLY WLFe drivers supply

voltage.
16 VDD_TL SUPPLY FeCAPs sense amplifier

supply voltage / TL
drivers supply voltage.

17 VDD_SL_Fe SUPPLY SLFe drivers supply
voltage.

18 VDD_SL_mem SUPPLY SLmem drivers supply
voltage.

19 CK_SC DIGITAL IN Scan chain clock.
20 SC_IN DIGITAL IN Scan chain input.
21 SC_OUT DIGITAL

OUT
Scan chain output.

22 SC_SEL<2> DIGITAL IN Scan chain selection bit.
23 SC_SEL<1> DIGITAL IN Scan chain selection bit.
24 SC_SEL<0> DIGITAL IN Scan chain selection bit.
25 GND SUPPLY Connection to ground.

Table B5: Pin listing of the hybrid memory circuit.
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Training algorithms: Pseudo-code

This appendix details the different training algorithms used in Section 3.4.

Algorithm 1.1: Train an ANN (online hybrid-memory implementation) with
L layers for multi-class classification. The function LayerNorm() specifies how to
layer-normalize the activations. LayerNormBackward() specifies how to backpropagate
through the normalization. ReLU() and Softmax() specify how to apply respectively
ReLU and Softmax functions to the activations. ReLUBackward() specifies how to back-
propagate through ReLU. Update() specifies how to update the weights when their gradi-
ents are known, function described in Algorithm 2. Quantize() and Transfer() functions
(Algorithms 3 and 4 respectively) specify how to quantize the hidden weights or evalu-
ate analog weights respectively. k is the counter limit after which the analog/quantized
weights are updated, η is the learning rate, p is the hidden weights update probability,
V ariabilityF lag defines whether variability during transfer is considered.
Require: One input and target (a0, a∗), previous hidden weights (W (h)), previous analog
weights (W (a)), counter state (count)
Ensure: Updated weights (W (h),t+1 and W (a),t+1), updated counter (countt+1)

{1. Computing the parameters gradients}

{1.1 Forward Propagation:}
for i = 1 to L do

si ← W
(a)
i ai−1

ai, µi, σi ← LayerNorm(si)
if i < L then

ai ← ReLU(ai)
else

ai ← SoftMax(ai)
end if

end for

{1.2 Backward Propagation:} for i = L to 1 do
if i = L then

gai ← ai − a∗
else
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gai ← ReLUBackward(gai , ai)
end if
gsi ← LayerNormBackward(gai , si, µi, σi)

gai−1
← W

(a)⊤
i gsi

gWi
← gsia

⊤
i−1

end for

{2. Accumulating the parameters gradients}

for i = 1 to L do
W

(h),t+1
i ← Update(W

(h)
i , η, p, gWi

)
if count = k then

if V ariabilityF lag = True then
W

(a),t+1
i ← Transfer(W

(h),t+1
i )

else
W

(a),t+1
i ← Quantize(W

(h),t+1
i )

end if
end if
countt+1 = count+ 1

end for

Algorithm 1.2: Train an ANN (online hybrid-memory implementation) with L
layers for binary detection. The function ReLU() and Sigmoid() specify how to apply
respectively ReLU and Sigmoid functions to the activations. ReLUBackward() specifies
how to backpropagate through ReLU. Update() specifies how to update the weights when
their gradients are known, function described in Algorithm 2. Quantize() and Trans-
fer() functions (Algorithms 3 and 4 respectively) specify how to quantize the hidden
weights or evaluate analog weights respectively. k is the counter limit after which the
analog/quantized weights are updated, η is the learning rate, p is the hidden weights
update probability, V ariabilityF lag defines whether variability during transfer is consid-
ered.
Require: One input and target (a0, a∗), previous hidden weights (W (h)), previous analog
weights (W (a)), counter state (count)
Ensure: Updated weights (W (h),t+1 and W (a),t+1), updated counter (countt+1)

{1. Computing the parameters gradients}

{1.1 Forward Propagation:}
for i = 1 to L do

ai ← W
(a)
i ai−1

if i < L then
ai ← ReLU(ai)

else
ai ← SoftMax(ai)

end if
end for
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{1.2 Backward Propagation:} for i = L to 1 do
if i = L then

gai ← ai − a∗
else

gai ← ReLUBackward(gai , ai)
end if
gai−1

← W
(a)⊤
i gai

gWi
← gsia

⊤
i−1

end for

{2. Accumulating the parameters gradients}

for i = 1 to L do
W

(h),t+1
i ← Update(W

(h)
i , η, p, gWi

)
if count = k then

if V ariabilityF lag = True then
W

(a),t+1
i ← Transfer(W

(h),t+1
i )

else
W

(a),t+1
i ← Quantize(W

(h),t+1
i )

end if
end if
countt+1 = count+ 1

end for

Algorithm 2: Update integer hidden weights (W (h)) of one ANN layer (online
hybrid-memory implementation). Binomial() specifies how to generate a binary
mask for a given layer. Clip() specifies how to clip the weights. Round() specifies how
to round the integer weights to the closest integer value. η is the learning rate, p is the
hidden weights update probability, Nh is the number of bits of the hidden weights, j is
the layer index. ◦ denotes the element-wise multiplication.
Require: Previous hidden weights (W (h)) and weights gradients (gW )
Ensure: Updated hidden weights (W (h),t+1)

M ← Binomial(p, j)
W (h),t+1 ← Clip(Round((W (h) − ηgW ◦M)2Nh−1), 1− 2Nh−1, 2Nh−1 − 1)/2Nh−1

Algorithm 3: Quantize integer hidden weights (W (h)) of one ANN layer to
their low bit-version (W (a)). Sign() specifies the sign of the weight. Trunc() returns
the greatest integer less than or equal to its input. Abs() evaluates the absolute value.
Nh is the number of bits of the hidden weights and Na is the number of bits of the analog
weights.
Require: Previous hidden weights (W (h))
Ensure: Updated analog weights (W (a),t+1)

W (a),t+1 ← Sign(W (h))Trunc(Abs(W (h))2Na−1)/2Na−1
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Algorithm 4: Transfer integer hidden weights (W (h)) of one an ANN to their
analog version (W (h)) considering transfer operation variability. Quantize()
performs the operations described in Algorithm 3. Round() specifies how to round the
integer weights to the closest integer value. Normal() samples random numbers from a
probability distribution for a given layer. Sign() specifies the sign of the weight. Clip()
specifies how to clip the weights. Nh is the number of bits of the hidden weights and Na

is the equivalent number of bits of the analog weights. j is the layer index, µ and σ are
the average and standard deviation of the different analog weights levels.
Require: Previous hidden weights (W (h))
Ensure: Updated analog weights (W (a),t+1)

x← Quantize(W (h))2Na−1

y ← σNormal(j) + µ
Mask ← Sign(x)Sign(y) > 0
W (a),t+1 ← y ·Mask/2Na−1

Algorithm 5: Train an ANN (minibatch hybrid-memory implementation) with
L layers. The function BatchNorm() specifies how to batch-normalize the activations.
BatchNormBackward() specifies how to backpropagate through the normalization. ReLU()
and Softmax() specify how to apply respectively ReLU and Softmax functions to the
activations. ReLUBackward() specifies how to backpropagate through ReLU. Update()
specifies how to update the weights when their gradients are known, function described
in Algorithm 2. Quantize() and Transfer() functions (Algorithms 3 and 4 respectively)
specify how to quantize the hidden weights or evaluate analog weights respectively. k is
the counter limit after which the analog/quantized weights are updated, η is the learning
rate, p is the hidden weights update probability, V aribilityF lag defines whether variabil-
ity during transfer is considered, ϵ is the moving average coefficient.
Require: One input and target (a0, a∗), previous hidden weights (W (h)), previous analog
weights (W (a)), counter state (count), previous moving average values (µtest and σtest).
Ensure: Updated weights (W (h),t+1 and W (a),t+1), updated counter (countt+1), updated
moving averages for test (µt+1

test and σt+1
test)

{1. Computing the parameters gradients}

{1.1 Forward Propagation:}
for i = 1 to L do

si ← W
(a)
i ai−1

ai, µi, σi ← BatchNorm(si)
if i < L then

ai ← ReLU(ai)
else

ai ← SoftMax(ai)
end if

end for

{1.2 Backward Propagation:} for i = L to 1 do
if i = L then
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gai ← ai − a∗
else

gai ← ReLUBackward(gai , ai)
end if
gsi ← BatchNormBackward(gai , si, µi, σi)

gai−1
← W

(a)⊤
i gsi

gWi
← gsia

⊤
i−1

end for

{2. Accumulating the parameters gradients}

for i = 1 to L do
W

(h),t+1
i ← Update(W

(h)
i , η, p, gWi

)
µt+1
test ← ϵµtest + (1− ϵ)µtest

σt+1
test ← ϵσtest + (1− ϵ)σtest

if count = k then
if V ariabilityF lag = True then

W
(a),t+1
i ← Transfer(W

(h),t+1
i )

else
W

(a),t+1
i ← Quantize(W

(h),t+1
i )

end if
end if
countt+1 = count+ 1

end for
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Appendix D

Fe RNet: Input/output interface design

This appendix provides a detailed description of the Input/Output (I/O) interface of the
Fe RNet design. Two versions have been designed of the whole system, sharing the same
core design, but different I/O interfaces, according to the manufacturing flow and, there-
fore, the subsequent characterization strategy. The Fe RNet core is either connected to
an I/O pad ring, if the complete manufacturing flow is processed, or to two 25-pads test
scribes, if only the partial manufacturing flow is processed.

D.1 I/O pad ring design

An I/O pad ring subsystem was developed for the design version intended to be packaged
and tested with a printed circuit board (PCB) support. The purpose of this I/O subsystem
is to create an interface between the external world, i.e. the electrical signals provided
to the pins of the package, and the chip, which is wire-bonded to the package. The pad
ring has twenty-three cells on each side, plus four corner cells. Sixteen cells for each side,
out of twenty-three, are to be wire-bonded to the package. The remaining ones are either
connected to the ground grid of the package or do not require to be connected. The
pad ring description, detailing all the cells composing it, is shown in Figure D1. The
pin listing, detailing the function of each signal is presented in Table D1 All the cells in
the pad ring are taken from the internally developed PDK. Indeed, because of the hybrid
process technology – foundry CMOS front-end and BEOL integrated memory devices at
CEA LETI – the cells provided by the foundry PDK had to be modified in order to take
into account the processing of NVMs between the fourth and fifth metal lines. The cells
used in the I/O subsystem are the following:

• Bias generator: This cell is used to provide command signals to the digital input
and output cells, according to the supply voltage used for the ring. This cell was
set in auto-detection mode, meaning that it can automatically detect if the supply
voltage of the pad ring is either 3.3 V or 1.8 V. One bias generator was used to drive
at most four digital cells. This cell is not wire-bonded to the package.

• Control break: This cell is used to break the command signals coming from one
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Figure D1: Schematic view of the I/O pad ring design of the Fe RNet circuit.
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bias generator. A control break is necessary between two bias generators. This cell
is not wire-bonded to the package.

• Digital input cell: This cell provides digital inputs from the package pins to the
core.

• Bidirectional cell: This cell is configured for digital outputs provided to the pack-
age pins from the core.

• VSSIO: This cell is used to provide the ground connection of the ring. Some cells
are connected to the package power grid, whereas, some others are wire-bonded to
the package pins.

• VDDIO: This cell is used for the supply voltage connection of the ring (1.8 V or
3.3 V). This cell is wire-bonded to the package.

• VSSC: This cell is used to provide the ground connection of the core. Some cells
are connected to the package power grid, whereas, some others are wire-bonded to
the package pins.

• VDDC: This cell is used for the supply voltage connection of the core (0.8 V). This
cell is wire-bonded to the package.

• Analog cell: This cell is used for the input/output analog signals. This cell is
wire-bonded to the package.

• External power supply: This cell is used to provide a supply voltage different
from the one of the ring (1.8 V or 3.3 V) or the one of the core(0.8 V). This cell is
wire-bonded to the package.

The layout view of the I/O subsystem and a power grid is shown in Figure D2. The ring
size is 1969µm×1981µm.

Figure D2: Layout view of the I/O pad ring of the Fe RNet circuit. Eight metal
grids (one for each supply voltage in the chip) were interleaved over the whole area defined
by the pad ring to optimize the power distribution across the whole chip.

150



Fe RNet: Input/output interface design

pad
number

pad name Type Description

1 Pre_Pulse_Fe DIGITAL IN Precharge FeRAM BL to
ground.

2 Transfer DIGITAL IN Transfer data from output
FeRAM scan chain to I/O

RRAM scan chain.
3 VDDIO SUPPLY Pad ring supply voltage.
4 Test_Ring DIGITAL

OUT
Output test pad. Directly

connected to pad 14.
5 VDD_WL_Fe SUPPLY FeRAM WL supply

voltage.
6 VDD_SL_Fe SUPPLY FeRAM SL supply voltage.
7 VDD_Fe SUPPLY FeRAM BL and logic

supply voltage.
8 VSSC GROUND Core Ground.
9 VDDC SUPPLY Core Supply.
10 VDD_Re SUPPLY RRAM logic supply

voltage.
11 VDD_WL_Re SUPPLY RRAM WL supply voltage.
12 VDD_BL_SL_Re SUPPLY RRAM BL and SL supply

voltage.
13 BL_Probe_Re ANALOG RRAM SL current test

pad.
14 VDDIO SUPPLY Pad ring supply voltage.
15 Left_RightB DIGITAL IN Select left (GO2) or right

(GO1) sub-core.
16 Rst_WL_Re DIGITAL IN Reset RRAM WL scan

chain to all 0s.
17 Rst_SL_Re DIGITAL IN Reset RRAM BL scan

chain to all 0s.
18 Rst_BL_Re DIGITAL IN Reset RRAM SL scan

chain to all 0s.
19 VSSIO GROUND Pad ring ground.
20 VDDIO SUPPLY Pad ring supply voltage.
21 SC_Sel_Re[0] DIGITAL IN RRAM scan chain

selection bit.
22 SC_Sel_Re[1] DIGITAL IN RRAM scan chain

selection bit.
23 SC_In_Re DIGITAL IN RRAM scan chain input.
24 SC_Out_Re DIGITAL

OUT
RRAM Scan chain output.

25 VDDC SUPPLY Core supply voltage.
26 Set_Parallel_Re DIGITAL IN Set parallel input to I/O

RRAM scan chain
27 Ck_SC_Re DIGITAL IN RRAM scan chain clock.
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pad
number

pad name Type Description

28 Probe_Re DIGITAL IN RRAM drivers in probe
mode. Use pads 13 and 36

for read.
29 Reset_Re DIGITAL IN Reset pulse for RRAM.
30 VDDIO SUPPLY Pad ring supply voltage.
31 Set_Re DIGITAL IN Set pulse for RRAM.
32 Sense_Re DIGITAL IN RRAM drivers in sense

mode. Use RRAM sense
for read.

33 Precharge_Re DIGITAL IN Precharge RRAM sense
latch to ground.

34 Cmd_Sense_Re DIGITAL IN Connect RRAM sense
latch to BLs.

35 VDDIO SUPPLY Pad ring supply voltage.
36 SL_Probe_Re ANALOG RRAM BL read voltage for

probe mode.
37 VDD_BL_SL_Re SUPPLY RRAM BL and SL supply

voltage.
38 VDD_WL_Re SUPPLY RRAM WL supply voltage.
39 VDD_Re SUPPLY RRAM logic supply

voltage.
40 VSSC GROUND Core ground.
41 VDDC SUPPLY Core supply voltage.
42 VDD_Fe SUPPLY FeRAM BL and logic

supply voltage.
43 VDD_SL_Fe SUPPLY FeRAM SL supply voltage.
44 VDD_WL_Fe SUPPLY FeRAM WL supply

voltage.
45 Vref_Fe ANALOG FeRAM read reference

voltage.
46 VDDIO SUPPLY Pad ring supply voltage.
47 Rst_Fe DIGITAL IN Reset all FeRAM scan

chains to all 0s.
48 Ck_SC_Fe DIGITAL IN FeRAM scan chain clock.
49 SC_Sel_Fe[1] DIGITAL IN FeRAM scan chain

selection bit.
50 SC_Sel_Fe[0] DIGITAL IN FeRAM scan chain

selection bit.
51 VSSIO GROUND Pad ring ground.
52 VDDIO SUPPLY Pad ring supply voltage.
53 SC_In_Fe DIGITAL IN FeRAM scan chain input.
54 Set_Parallel_Fe DIGITAL IN Set parallel input for

FeRAM output scan chain.
55 Matrix_Sel[0] DIGITAL IN FeRAM array selection bit.
56 Matrix_Sel[1] DIGITAL IN FeRAM array selection bit.
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pad
number

pad name Type Description

57 VDDC SUPPLY Core supply voltage.
58 SC_Out_Fe DIGITAL

OUT
FeRAM scan chain output.

59 SL_Pulse_Fe DIGITAL IN SL trigger FeRAM.
60 WB_Pulse_Fe DIGITAL IN Write-back trigger FeRAM.
61 SA_Pulse_Fe DIGITAL IN Sensse trigger FeRAM.
62 VDDIO SUPPLY Pad ring supply voltage.
63 WE_Pulse_Fe DIGITAL IN BL trigger FeRAM.
64 WL_Pulse_Fe DIGITAL IN WL trigger FeRAM.

Table D1: Pin listing of the I/O pad ring of the Fe RNet circuit.

D.2 Double test scribes I/O

The following two tables detail the pin listing for the double test-scribe implementation
of the Fe RNet circuit.

pad
number

pad name Type Description

1 GND GROUND Ground reference.
2 VDD_Fe SUPPLY FeRAM BL and logic

supply voltage.
3 GND GROUND Ground reference.
4 VDD_Fe SUPPLY FeRAM BL and logic

supply voltage.
5 VDD_SL_Fe SUPPLY FeRAM SL supply voltage.
6 VDD_WL_Fe SUPPLY FeRAM WL supply

voltage.
7 Transfer DIGITAL IN Transfer data from output

FeRAM scan chain to I/O
RRAM scan chain.

8 Pre_Pulse_Fe DIGITAL IN Precharge FeRAM BL to
ground.

9 WL_Pulse_Fe DIGITAL IN WL trigger FeRAM.
10 WE_Pulse_Fe DIGITAL IN BL trigger FeRAM.
11 SA_Pulse_Fe DIGITAL IN Sensse trigger FeRAM.
12 Matrix_Sel[0] DIGITAL IN FeRAM array selection bit.
13 SC_Out_Fe DIGITAL

OUT
FeRAM scan chain output.

14 Matrix_Sel[1] DIGITAL IN FeRAM array selection bit.
15 WB_Pulse_Fe DIGITAL IN Write-back trigger FeRAM.
16 SL_Pulse_Fe DIGITAL IN SL trigger FeRAM.
17 Set_Parallel_Fe DIGITAL IN Set parallel input for

FeRAM output scan chain.
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pad
number

pad name Type Description

18 SC_In_Fe DIGITAL IN FeRAM scan chain input.
19 Vref_Fe ANALOG FeRAM read reference

voltage.
20 SC_Sel_Fe[1] DIGITAL IN FeRAM scan chain

selection bit.
21 SC_Sel_Fe[0] DIGITAL IN FeRAM scan chain

selection bit.
22 Rst_Fe DIGITAL IN Reset all FeRAM scan

chains to all 0s.
23 Ck_SC_Fe DIGITAL IN FeRAM scan chain clock.
24 VDD_Buff_Fe SUPPLY FeRAM input level shifters

and output buffers supply
voltage.

25 VDD_Fe SUPPLY FeRAM BL and logic
supply voltage.

Table D2: Pin listing of the first I/O test scribe of the Fe RNet circuit.

pad
number

pad name Type Description

1 BL_Probe_Re ANALOG RRAM SL current test
pad.

2 VDD_0p8_Re SUPPLY RRAM sense supply
voltage.

3 VDD_WL_Re SUPPLY RRAM WL supply voltage.
4 VDD_BL_SL_Re SUPPLY RRAM BL and SL supply

voltage.
5 VDD_Re SUPPLY RRAM logic supply

voltage.
6 GND GROUND Ground reference.
7 Left_RightB DIGITAL IN Select left (GO2) or right

(GO1) sub-core.
8 Rst_WL_Re DIGITAL IN Reset RRAM WL scan

chain to all 0s.
9 Rst_BL_Re DIGITAL IN Reset RRAM BL scan

chain to all 0s.
10 Rst_SL_Re DIGITAL IN Reset RRAM SL scan

chain to all 0s.
11 SC_Sel_Re[0] DIGITAL IN RRAM scan chain

selection bit.
12 SC_Sel_Re[1] DIGITAL IN RRAM scan chain

selection bit.
13 SC_Out_Re DIGITAL

OUT
RRAM Scan chain output.

14 SC_In_Re DIGITAL IN RRAM scan chain input.
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pad
number

pad name Type Description

15 Set_Parallel_Re DIGITAL IN Set parallel input to I/O
RRAM scan chain

16 Ck_SC_Re DIGITAL IN RRAM scan chain clock.
17 Probe_Re DIGITAL IN RRAM drivers in probe

mode. Use pads 13 and 36
for read.

18 Reset_Re DIGITAL IN Reset pulse for RRAM.
19 Set_Re DIGITAL IN Set pulse for RRAM.
20 Sense_Re DIGITAL IN RRAM drivers in sense

mode. Use RRAM sense
for read.

21 Cmd_Sense_Re DIGITAL IN Connect RRAM sense
latch to BLs.

22 Precharge_Re DIGITAL IN Precharge RRAM sense
latch to ground.

23 GND GROUND Ground reference.
24 VDD_Buff_Re SUPPLY RRAM input level shifters

and output buffers supply
voltage.

25 SL_Probe_Re ANALOG RRAM BL read voltage for
probe mode.

Table D3: Pin listing of the second I/O test scribe of the Fe RNet circuit.
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