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Véri�cation et synthèse de systèmes distribués à synchronisation faible

Résumé Les programmes distribués sont une source de di�culté pour les méthodes
formelles. Les interactions de plusieurs composantes provoquent une explosion combina-
toire qui complexi�e la véri�cation. Dans le cadre de la synthèse de contrôleurs, à cela
s'ajoute le fait que les stratégies d'une composante ne peuvent tenir compte que d'une
vision partielle du système. Ceci a mené à de nombreux résultats d'indécidabilité dans
le domaine et des complexités très élevées dans les cas décidables. Dans cette thèse,
nous proposons une approche permettant de décomposer les problèmes de véri�cation et
de synthèse en instances locales aux processus. Cette approche mène à des résultats de
décidabilité, et même dans certains cas à des algorithmes de complexités su�samment
basses pour envisager des applications. Nous montrons que cette méthode s'applique
dans des systèmes distribués avec une communication restreinte entre les composantes:
d'une part des systèmes où la communication se fait via la prise et le relâchement de
locks, et d'autre part des systèmes où les processus communiquent par broadcast. De
plus, nous utilisons cette approche dans des modèles a priori très di�érents, où le nombre
de processus est constant, évolue dynamiquement, ou encore est paramétré.

Veri�cation and synthesis of distributed systems with weak synchronisation

Abstract Distributed programs are a cause of di�culty for formal methods. The in-
teractions of multiple components lead to a combinatorial explosion, which complicates
veri�cation. In the context of controller synthesis, this is further compounded by the
fact that the strategies of one component can only take into account a partial view of
the system. This has led to numerous undecidability results in the �eld and very high
complexities in decidable cases. In this thesis, we propose an approach that allows the
decomposition of veri�cation and synthesis problems into local instances for individual
processes. This approach leads to decidability results, and in some cases, to algorithms
with low enough complexity to consider practical applications. We show that this method
applies to distributed systems with restricted communication between components: on
the one hand, systems where communication is limited to the acquisition and release
of locks, and on the other hand, systems where processes communicate via broadcast.
Moreover, we apply this approach to models that are quite di�erent, where the number
of processes is constant, evolves dynamically, or is parameterised.
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Résumé étendu en

français

Cette thèse se place dans le cadre de l'étude des systèmes distribués, c'est-à-dire des
systèmes informatiques constitués de plusieurs composantes travaillant en parallèle. Le
problème principal étudié est la synthèse de contrôleurs : on considère un système où
chaque composante peut faire des choix sur ses actios locales, et on cherche à construire
des stratégies qui font ces choix de manière à garantir le bon fonctionnment du système.

Illustrons cette idée avec l'énigme suivante [DK15; DD23; Win24]:

Les prisonniers et l'ampoule

100 prisonniers doivent jouer au jeu suivant : Dans la prison, il y a une
pièce vide à l'exception d'un interrupteur. Chaque jour, un prisonnier
est choisi au hasard et amené dans la pièce. Il peut voir si la lumière est
allumée ou éteinte, et l'allumer ou l'éteindre s'il le souhaite. Il est ensuite
renvoyé dans sa cellule. À tout moment, un prisonnier peut décider de
mettre �n au jeu en a�rmant que tous les prisonniers sont entrés dans la

pièce au moins une fois. S'il a raison, tous les prisonniers sont libérés, sinon aucun
d'entre eux ne l'est.
Les prisonniers ne peuvent pas communiquer pendant le jeu, mais peuvent se met-
tre d'accord sur une stratégie à l'avance. Comment peuvent-ils garantir d'être
�nalement libérés avec une probabilité de 1 ? a

aLes solutions peuvent varier selon que l'on autorise ou non les prisonniers à compter les jours
écoulés depuis le début du jeu. Dans cette thèse, nous considérons des systèmes asynchrones,
nous chercherons donc une solution où les prisonniers ne comptent pas le temps.

Cette énigme illustre parfaitement le genre de problème que nous cherchons à résoudre.
Ici les prisonniers n'ont qu'une vue très limitée du reste du système. Essentiellement, la
seule information qui leur parvient est le fait que l'ampoule soit allumée ou éteinte quand
ils la voient. Le fait que cette énigme a une solution indique que même une communication
très limitée entre les composantes peut avoir des e�ets non triviaux.
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Motivations et histoire de la synthèse distribuée

Le problème de la synthèse trouve son origine dans l'article fondateur d'Alonzo Church
publié en 1957 [Chu57]. Il pose le problème de la construction d'un circuit qui, lorsqu'il
reçoit certaines entrées, produit des sorties satisfaisant une spéci�cation donnée. Quelques
années plus tard, il a introduit une version du problème pour les systèmes réactifs, dans
lesquels le système conçu doit interagir avec un environnement. Ce problème a été traduit
dans un formalisme de jeux et résolu dans ce cadre par Büchi et Landweber [BL69].
Depuis lors, les études sur la synthèse réactive et les jeux se sont multipliées. Cependant,
la plupart de ces travaux ne prennent en compte que les systèmes et les spéci�cations
séquentiels. Dans cette thèse, nous nous intéressons aux systèmes distribués.

Les systèmes distribués sont constitués de plusieurs composants distincts travaillant
dans un but commun et dotés de mécanismes de communication. Ils o�rent de grands
avantages en termes d'e�cacité, car ils permettent de répartir les tâches entre plusieurs
composants. Ces gains sont encore meilleurs lorsque les systèmes peuvent e�ectuer leurs
tâches sans se synchroniser souvent. Toutefois, cet avantage s'accompagne d'un incon-
vénient majeur : ils sont notoirement sujets aux erreurs, car il est facile de ne pas remar-
quer un mauvais entrelacement d'actions lors de leur construction. C'est ce qui a motivé
l'utilisation de méthodes formelles pour véri�er et synthétiser les systèmes distribués dans
les années 80. Le problème de la synthèse distribuée s'est depuis avéré très di�cile. No-
tamment, Pnueli et Rosner [PR89] ont démontré l'indécidabilité de la synthèse distribuée
pour les systèmes à états �nis qui communiquent de manière synchrone par messages en
respectant les spéci�cations LTL, même avec seulement trois processus. Des recherches
ultérieures ont montré que, pour l'essentiel, les seules architectures décidables sont les
pipelines, où chaque processus ne peut envoyer des messages qu'au processus suivant
dans le pipeline. messages qu'au processus suivant dans le pipeline [SF06]. En outre, la
complexité n'est pas élémentaire dans la taille du pipeline. Ces résultats négatifs ont mo-
tivé l'étude de la synthèse distribuée pour le modèle des automates asynchrones [Zie87],
d'abord avec des stratégies locales [MT01; Szn09] puis avec de lamémoire causale [GLZ04;
MTY05]. Dans ce dernier cadre, les processus communiquent en se synchronisant sur les
actions. Lorsqu'ils le font, ils ont accès aux informations des autres sur ce qui s'est passé
dans l'exécution jusqu'à présent. Il a été démontré que le problème de la synthèse dis-
tribuée est décidable dans certains sous-cas très restreints [GLZ04; Gen+13; MW14], mais
même dans ces cas la complexité est non élémentaire. Pire encore, il a été récemment
établi que la synthèse distribuée avec des informations causales est indécidable pour les
architectures non contraintes [Gim22].

La synthèse distribuée pour les réseaux de Petri [FO17] a connu des progrès limités
similaires et, en raison de [Gim22], est également indécidable dans le cas général, puisque
la synthèse distribuée pour les automates asynchrones peut y être réduite [BFH19]. Tout
ceci démontre la di�culté inhérente au problème.

Dans cette thèse, nous présentons une nouvelle approche de la synthèse distribuée,
avec des stratégies locales. Nous démontrons son e�cacité en l'appliquant à trois modèles
di�érents dont le point commun est que la communication entre les processus est très
restreinte. Ces modèles sont décrits à la �n de ce chapitre.

2



Résumé étendu en français

Approche de cette thèse

Nous commençons par discuter de notre dé�nition de la synthèse distribuée. Dans cette
thèse, nous nous concentrons spéci�quement sur la synthèse de contrôleurs : nous con-
sidérons des systèmes préexistants qui incluent à la fois des actions contrôlables et in-
contrôlables, et nous visons à développer des stratégies pour sélectionner des actions
contrôlables d'une manière qui assure qu'une spéci�cation donnée est satisfaite.

En outre, nous supposons que les stratégies sont entièrement locales, c'est-à-dire
qu'elles reposent uniquement sur la séquence d'opérations e�ectuées par le processus lui-
même, sans accès à l'exécution plus large de l'ensemble du système. Cette hypothèse est
justi�ée par le fait que nos modèles sont des abstractions de systèmes réels, où l'ensemble
des exécutions dans le modèle sur-approxime celui du système réel.

Bien que cette approximation soit en principe saine (une mauvaise exécution dans
le système implique une mauvaise exécution dans le modèle), elle n'est pas complète :
l'absence d'erreurs dans le système n'implique pas l'absence d'erreurs dans le modèle. Il
est donc raisonnable de sous-approximer les informations dont disposent les contrôleurs
sur le système. Si nous pouvons trouver un contrôleur qui fonctionne e�cacement avec
des informations limitées dans le modèle, il devrait également fonctionner dans le système
réel.

Nous abordons les dé�s de la synthèse distribuée avec une nouvelle approche qui
passe par l'étude de modèles distribués avec une communication restreinte, où la synthèse
globale peut être décomposée en sous-problèmes locaux. Dans ce contexte, le terme �
local � fait référence au comportement des processus individuels, tandis que le terme �
global � se rapporte au comportement commun de tous les processus. Nous présentons
ici une vue d'ensemble de l'approche.

Description générale de notre méthode

Notre approche peut être résumée par le schéma suivant :

1. Tout d'abord, nous dé�nissons une classe de familles d'exécutions locales, qui
ont une description de taille bornée. Nous identi�ons les � bonnes � familles
d'exécutions comme étant celles pour lesquelles toutes les exécutions globales obtenues
en composant les exécutions locales d'une telle famille satisfont la spéci�cation.

2. Nous montrons ensuite que si une stratégie est gagnante, alors l'ensemble des exécu-
tions locales autorisées par cette stratégie est inclus dans une de ces bonnes familles.

3. Nous montrons que nous pouvons décider, étant donné une telle famille, s'il existe
une stratégie qui n'autorise que des exécutions dans cette famille. Pour ce faire,
nous codons ce problème sous la forme d'un jeu régulier à deux joueurs.

4. Une fois que nous avons tout cela, nous pouvons procéder comme suit : Enumérer
les bons ensembles de runs (qui ont une description bornée), et pour chacun d'entre
eux, véri�er s'il existe des stratégies locales permettant d'appliquer cet ensemble
d'exécutions locales à chaque processus.
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Modèles et problèmes étudiés

Dans cette section nous présentons les trois principaux modèles étudiés dans cette thèse.
Ces modèles sont de natures di�érentes, néanmoins la méthode développée ci-dessus
s'applique dans les trois cas.

Broadcasts et automates à registre

Dans le chapitre 3, nous étudions un modèle paramétré, appelé �Broadcast Networks
of Register Automata� (BNRA), avec un nombre arbitraire d'agents communiquant par
broadcast. Les agents ont des identi�ants uniques qu'ils peuvent s'envoyer les uns aux
autres et stocker dans des registres locaux. Plus précisément, les processus communiquent
au moyen de messages signés de la forme (m, d) avec m une lettre d'un alphabet �ni et
d une donnée d'un alphabet in�ni. Nous supposons que la topologie de communication
évolue arbitrairement tout au long de l'exécution. En d'autres termes, l'ensemble des
processus recevant chaque broadcast est arbitraire.

Chaque processus est modélisé comme un transducteur de registres à état �ni qui
peut di�user le contenu d'un registre, stocker les données entrantes dans ses registres et
comparer les données reçues au contenu de ses registres.

Le chapitre est centré sur le résultat suivant : étant donné un � réseau de broadcast
d'automates de registres � avec certains états contrôlables, il est possible de déterminer
s'il existe une stratégie locale garantissant qu'un état d'erreur qerr ne peut pas être atteint.
Dans un cas particulier, nous obtenons la décidabilité du problème de l'atteignabilité des
états pour ce modèle. Nous construisons ce résultat en le prouvant dans deux sous-cas
de di�culté croissante. Cela devrait aider le lecteur à acquérir une certaine intuition sur
la preuve générale, qui est assez technique.

Le reste du chapitre complète ce résultat de diverses manières : Nous montrons qu'un
problème étroitement lié, dans lequel nous demandons si nous pouvons rassembler tous
les agents dans un état donné, est indécidable. Nous discutons également de diverses
extensions du modèle et donnons des limites de complexité correspondantes en fonction
du nombre de registres que possède chaque processus.

Systèmes à locks

Passons au modèle étudié dans le Chapitre 4.

Deadlocks Un deadlock est une situation où plusieurs agents se bloquent parce que
chacun attend une action des autres pour agir. Un exemple de deadlock est si votre four-
nisseur d'internet vous envoie un mail vous demandant de con�rmer votre abonnement:
Vous attendez d'avoir accès à vos mail pour con�rmer, tandis qu'il attend votre con�r-
mation pour vous donner l'accès internet. En informatique, ce genre de problème peut
notamment arriver dans les systèmes distribués lorsqu'ils partagent des locks. Un lock
est un marqueur utilisé pour contrôler l'accès à une ressource ou une variable partagée.
Lorsqu'un agent veut utiliser cette ressource, il prend le lock associé, ce qui empêche les
autres agents d'y accéder tant qu'il ne l'a pas rendu.

Notre premier modèle pour l'étude de ce genre de phénomènes consiste à considérer
un nombre �xé de processus prenant et relachant des locks, chacun modélisé par un
automate �ni. Initialement ce modèle a été introduit avec des processus modélisés par
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Résumé étendu en français

des automates à piles [KIG05]. On se concentrera ici sur les systèmes à états �nis, mais
la plupart des résultats s'adaptent facilement au cas de processus à piles. Ces systèmes
sont appelés LSS (Lock-Sharing Systems).

Les propriétés à véri�er sont, elles, écrites comme des automates sur des runs in�nis,
ou ω-automates. En e�et, on veut pouvoir exprimer des choses comme �le système peut
s'exécuter indé�niment sans blocage�.

Nous nous intéressons notamment à deux cas particuliers : celui où chaque processus
utilise au plus deux locks (comme dans le célèbre dîner des philosophes), et celui où chaque
processus gère les locks comme dans une pile (un processus ne peut relacher que le lock
pris le plus récemment). Les LSS respectant ces conditions sont appelés respectivement
2LSS et nested LSS.

Nous montrons dans un premier temps que la véri�cation de LSS est PSPACE-
complète, mais NP-complète si on se restreint à des 2LSS ou nested LSS. De même,
la synthèse de contrôleurs est indécidable pour les LSS en général, mais décidable pour
ces deux cas particuliers.

Pour analyser ces systèmes, on montre que les projections d'une exécution sur chaque
processus peuvent être résumées en de petites descriptions contenant toute l'information
nécessaire à la synchronisation, appelées motifs (patterns en anglais). Nous pouvons
encoder les contraintes de locks comme des langages d'automates et résoudre les prob-
lèmes considérés par des méthodes classiques sur les langages réguliers. Dans le cas des
2LSS, nous montrons que les problèmes de deadlocks peuvent se traduire en problèmes de
graphes, où les sommets sont des locks et les arètes des processus. Ceci nous permet de
caractériser plusieurs types de deadlocks et d'obtenir de meilleures bornes de complexité.

Systèmes dynamiques

Au vu des techniques utilisées dans la partie précédente, nous nous sommes demandé si
ces résultats pouvaient être étendus au cas où les processus peuvent créer de nouveaux
locks et d'autres processus pendant l'exécution. Ces systèmes sont alors appelés Dynamic
LSS, ou DLSS [LMW09; Ken22]. C'est le sujet du Chapitre 5.

A�n d'analyser les exécutions de ces systèmes, nous les représentons sous forme
d'arbres. L'exécution du premier processus est écrite le long de la branche gauche partant
de la racine. Si un nouveau processus est créé, nous ajoutons un �ls à droite au point de
création et nous écrivons l'exécution locale du processus créé le long de la branche gauche
à partir de ce �ls. L'ensemble des exécutions d'un tel système peut donc être codé sous
la forme d'un langage d'arbres. Nous nous concentrons sur les exécutions équitables (fair
en anglais), où les processus ne peuvent pas rester inactifs indé�niment à moins qu'ils
n'aient aucune action disponible. Nous montrons que le langage des exécutions équita-
bles est reconnu par un automate de Büchi de taille exponentielle. Cela nous permet
de véri�er les propriétés des arbres réguliers à l'aide d'un simple produit d'automate.
Nous explorons ensuite trois extensions de ce modèle. La première concerne le cas où les
processus sont des systèmes à piles. Nous montrons que cela n'a�ecte pas la complexité
théorique du problème de véri�cation. Ensuite, nous combinons notre caractérisation des
arbres représentant des exécutions équitables du système avec les motifs utilisés dans le
chapitre précédent pour obtenir des motifs étendus. Nous montrons que le fait qu'une
stratégie de contrôle soit gagnante ne dépend que de l'ensemble des motifs étendus qu'elle
autorise, ce qui nous permet de décider le problème de la synthèse de contrôleurs. En-
�n, nous ouvrons une nouvelle ligne de recherche en ajoutant une variable partagée au
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modèle. Nous montrons que la véri�cation devient alors indécidable. Pour récupérer la
décidabilité, nous proposons de limiter le nombre de fois où le processus qui écrit sur la
variable partagée change.
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Chapter 1

Introduction

S'il y a dans le monde trop de

sens incontestable, l'homme suc-

combe sous son poids. Si le

monde perd tout son sens, on ne

peut pas vivre non plus.

Le livre du rire et de l'oubli

Milan Kundera

1.1 Motivations and history of distributed synthesis

The synthesis problem originates in Alonzo Church's seminal 1957 paper [Chu57]. He
poses the problem of constructing a circuit that, when given some inputs, produces out-
puts satisfying a given speci�cation. A few years later, he introduced a version of the
problem for reactive systems, in which the designed system has to interact with an envi-
ronment. This problem was translated into a games formalism, and solved in this setting,
in [BL69]. There has since been a rich history of studies of reactive synthesis and games.
However, most of this body of work considers only sequential systems and speci�cations.

Distributed systems are made of several separate components working towards a com-
mon goal and equipped with communication mechanisms. They come with great gains
in e�ciency, as we can distribute tasks among several components. Those gains are even
better when the systems can conduct their tasks without synchronising often. However,
this advantage comes with a major drawback: they are notoriously prone to errors as it
is easy to miss a bad interleaving of actions when building them. This has motivated
the use of formal methods to verify and synthesize distributed systems in the 80s. For
instance, the CTL logic was introduced with this motivation in mind [CE81; EC82].
The distributed synthesis problem has since proven to be highly challenging. Notably,
Pnueli and Rosner [PR89] demonstrated the undecidability of distributed synthesis for
�nite-state systems that communicate synchronously by messages with respect to LTL
speci�cations, even with as few as three processes. Subsequent research showed that,
essentially, the only decidable architectures are pipelines, where each process can send
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1.1. Motivations and history of distributed synthesis

messages only to the next process in the pipeline [SF06]. In addition, the complexity is
non-elementary in the size of the pipeline. These negative results motivated the study
of distributed synthesis for the model of asynchronous automata [Zie87], �rst with lo-
cal strategies [MT01; Szn09] and then with so called causal memory [GLZ04; MTY05].
In this setting, processes communicate by synchronising over actions. When they do,
they have access to each other's information about what happened in the execution so
far. It was shown that the distributed synthesis problem is decidable for co-graph ac-
tion alphabets [GLZ04], and for tree architectures of processes [Gen+13; MW14]. Yet
the complexity is again non-elementary, this time with respect to the depth of the tree.
Worse, it has been recently established that distributed synthesis with causal information
is undecidable for unconstrained architectures [Gim22]. 1 Distributed synthesis for (safe)
Petri nets [FO17] has encountered a similar line of limited advances, and due to [Gim22],
is also undecidable in the general case, since distributed synthesis for asynchronous au-
tomata can be reduced to it [BFH19]. This history demonstrates the inherent di�culty
of distributed synthesis.

In this thesis we present a new approach to distributed synthesis, with local strategies.
We demonstrate its e�ectiveness by applying it to three di�erent models with the common
point that the communication between processes is very restricted. Let us brie�y describe
them. We will detail the history that led to these models in the related work section.

In Chapter 3 we consider networks of identical processes communicating by broad-
cast. We make the additional assumption that the communication network may evolve
arbitrarily during runtime, meaning that the set of processes receiving each broadcast
is chosen non-deterministically. Since this basic model is already well-understood, we
consider its extension with data, called broadcast networks of register automata. At the
start each process is given a unique datum d, its identi�er. Processes now broadcast mes-
sages of the form (m, d) with m a letter from a �nite alphabet and d a datum. They use
local registers to store the received data, compare them for equality. and broadcast them.
This is a parameterised setting: we consider runs with an arbitrary number of processes.
We mostly consider the simple speci�cation that a given error state qerr should never be
reached.

In Chapter 4 we consider systems with a �nite set of �nite-state processes communi-
cating by taking and releasing locks. We call them lock-sharing systems. This is a static
setting: the set of processes is given, and stays the same throughout the executions.
There we consider more diverse speci�cations: we de�ne a class of objectives that lets us
express several types of deadlocks, local regular conditions, and boolean combinations of
those.

In Chapter 5 we extend the systems from Chapter 4 by allowing processes to spawn
other processes and create new locks. We call the resulting model dynamic lock-sharing
systems. As the name says, this is a dynamic setting: we start with a single process, but
arbitrarily many new processes may be created in a run. As runs of these systems will
be represented as binary trees, we will use regular tree languages as speci�cations.

1At the beginning of this thesis, the goal was to examine the distributed synthesis problem on asyn-
chronous automata. However, shortly after I started my thesis, Hugo Gimbert came up with an unde-
cidability proof [Gim22]. Hugo's proof uses only 6 processes. The problem is decidable with up to 4
processes, and the case of 5 processes is open.
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1. Introduction

1.2 Approach of this thesis

We begin by discussing our de�nition of distributed synthesis. In this thesis, we focus
speci�cally on the synthesis of controllers : we consider pre-existing systems that include
both controllable and uncontrollable actions, and aim to develop strategies for selecting
controllable actions in a way that ensures a given speci�cation is satis�ed.

Furthermore, we assume that strategies are entirely local, meaning they rely solely on
the sequence of operations performed by the process itself, with no access to the broader
execution of the entire system. This assumption is justi�ed by the fact that our models
are abstractions of real systems, where the set of runs in the model over-approximates
those of the actual system.

While this approximation is sound, it is not complete: an absence of errors in the
model should imply an absence of errors in the system, but the reverse is not neces-
sarily true. Thus, it is reasonable to under-approximate the information available to
controllers about the system. If we can �nd a controller that operates e�ectively with
limited information in the model, it should also work in the actual system.

We address the challenges of distributed synthesis with a new approach that involves
identifying distributed models with restricted communication, where global synthesis can
be decomposed into local sub-problems. In this context, �local� refers to the behaviour of
individual processes, while �global� pertains to the joint behaviour of all processes. We
start by illustrating the approach on an example, in which we apply this method to a
simple model. Following this, we provide a high-level overview of the approach.

1.2.1 An illustrating example

Consider the model of Asynchronous Shared-Memory Systems (ASMS), where identical
agents communicate by writing and reading from a shared variable [Dur+15]. It is de-
scribed by a �nite-state transition system where transitions have two kinds of operations:
reading and writing values from a �nite alphabet Σ on a shared variable.

A run of an ASMS starts with an arbitrary number of agents in the initial state. At
each step, one agent moves by either writing a new value in the variable, or reading the
current value of the variable. Importantly, note that agents cannot read and write in one
atomic step.

In addition to previous literature on this model, here we have controllable (rounds)
and uncontrollable states (squares). A (local) strategy is a function σ : ∆∗ → ∆ that,

given a sequence of transitions from ∆, chooses the next one. A local run q0
δ1−→ q1

δ2−→ · · ·
respects σ if for all i such that qi is controllable we have δi+1 = σ(δ1 · · · δi). A global
run respects σ if the local run of every agent does. Suppose we have some controllable
states and we are looking for a strategy guaranteeing that an error message merr is never
written. We call such a strategy winning.

We now go through the steps of our method to check whether a winning strategy
exists.

Step 1: De�ne invariants We consider invariants that are sets of messages I ⊆ Σ.
We say that a strategy satis�es an invariant if all it local runs respecting it are such that
if they only read letters of I then they only write letters of I. A good invariant is one
that does not contain merr. Clearly a strategy satisfying a good invariant is winning:
suppose merr is written at some point in a run respecting σ. Since merr /∈ I, there is a
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A B

wr(b) rd(a) rd(b)

wr(c) rd(c)

wr(merr)

C

wr(a)

rd(b) wr(c)

rd(c) wr(b)

Figure 1.1: Example of an ASMS with controllable states. A winning strategy is to
always pick the upper transition from A, the lower one from B and the lower one from
C. This satis�es the invariant {a, b}: no local run writes c, and a local run writing merr

would need to read c �rst.

�rst agent who writes a letter m /∈ I. Then that agent has written a letter outside of I
without reading one before, a contradiction.

Step 2: Show that winning strategies induce invariants (of bounded size) Let
us show that a winning strategy σ always satis�es a good invariant. Suppose σ is winning.
Let I be the set of letters that are written in some σ-run. As σ is winning, merr /∈ I. We
now show that σ respects I.

Consider a local run u respecting σ and only reading letters of I. We build a global
run respecting σ and in which some agent follows the local run u. For each letter m read
in u, by de�nition of I there is a run ϱm respecting σ in which m is written. We start with
a su�ciently large number of agents and make an agent a execute u. Whenever agent a
needs to read a letter m, we make some other agents execute ϱm until m is written. Then
we make a read m and continue. We stop when u has been fully executed. This de�nes
a run respecting σ such in which every letter written in u is written at some point. As a
consequence, by de�nition of I, every letter written by u is in I.

Step 4: Show that one can check if there is a strategy satisfying an invariant
Given an invariant I, checking if there is a strategy that satis�es it comes down to a
simple reachability game: two players play on the graph of the transition system of the
ASMS. If at some point a letter m /∈ I is read the �rst player (Controller) wins. If at
some point a letter m /∈ I is written the second player (Environment) wins. If those
things never happen then Controller wins.

Step 5: Algorithm We can non-deterministically guess an invariant I ⊆ Σ and check
if there is a strategy satisfying it (see Step 3). This yields an NP algorithm.

As a result, the controller synthesis problem is decidable for ASMS.

We will illustrate this method a second time (more formally) on a closely-related
model in Section 3.3, by proving a similar result on networks of processes communicating
by unreliable broadcasts. We will use the same invariants. See [BW21] for the connection
between the two models.
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1.2.2 General description of our approach

More concretely, our approach can be summarised as the following scheme:

1. First we de�ne a class of families of local runs, that have a bounded description.
We identify �good� families of local runs as the ones such that no global, bad run
can be obtained by composing local runs from such a family.

2. Then we show that if a strategy is winning then the set of local runs allowed by
this strategy is included in a good family.

3. We show that we can decide, given such a family, whether there is a strategy that
only allows runs in it. We do this by encoding this problem as a two-player game
with a regular winning condition.

4. Once we have all of this, we can proceed as follows: Enumerate good sets of runs
up to the bound, and for each one of them, check whether there are local strategies
to enforce this set of local runs over every process.

Note that the good families of local runs described above are not only useful for dis-
tributed synthesis. As they characterise the satisfaction of a speci�cation, they could be
used to produce contracts that processes should satisfy, and build correct-by-construction
systems.

The proofs will not always follow those steps exactly. In particular, in Chapters 4
and 5, a large part of the chapter will be on the veri�cation problem. There, parts of this
approach will be handled in the veri�cation part.

On the way to study synthesis, it turns out that the veri�cation problem is an in-
teresting �rst step to understand the model and the communication mechanisms. We
therefore include in this thesis results on veri�cation as a �rst step towards the synthesis
problem.

As a �nal touch, let us conclude this section by illustrating the distributed synthesis
problem with the following riddle. It is commonly found in riddle books (with some
variations), see for instance [DK15; DD23; Win24]. An interesting aspect of this enigma
is that it is easily modelled as a distributed synthesis problem with a lock and a shared
boolean variable. We will discuss this kind of systems at the end of Chapter 5.

The prisoners and the lightbulb

100 prisoners have to play the following game: In the prison there is a
room, empty except for a light switch. Every day, a prisoner is picked at
random and brought to the room. They can see whether the light is on
or o�, and turn it on/o� if they want. They are then returned to their
cell. At all times a prisoner may decide to end the game by claiming that
every prisoner has been in the room at least once. If they are right, all

prisoners are released, otherwise, none of them is.
Prisoners cannot communicate during the game, but can agree on a strategy be-
forehand. How can they guarantee to be eventually released with probability 1?a

aSolutions may vary depending on whether you allow prisoners to count the days since the
start of the game or not. In this thesis, we consider asynchronous systems, so we would look for
a solution where prisoners do not keep track of time.
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1.3 Overview of models

The choice of model is crucial in the analysis of distributed systems.
A �rst aspect is the means of communication. Among the common choices we have

messages, pairwise interactions (rendezvous), synchronisation over actions, broadcasts,
locks and shared variables.

Then, we also need to de�ne the set of interacting processes. Some models, which we
call static, operate over a �xed architecture, that is, the number of processes is known, and
we also know who can communicate with whom. For instance, in models with message
channels between processes, this would be given by a set of processes and a set of channels
between pairs of processes. We will study such a model in Chapter 4.

Other models, which we refer to as dynamic, allow the creation of new processes
during the execution, in the style of Petri nets. We can also mention for instance Dynamic
Pushdown Networks or Regular model-checking (a general framework which allows one to
represent systems made of many �nite-state processes). The model presented in Chapter 5
�ts in this class.

A third kind of model, which we refer to as parameterised, does not allow process
creation, but the number of processes in the system is unknown. Typically, we consider
a transition system describing a single process and try to check that the speci�cation is
satis�ed by a system made of a composition of N processes with this same transition
system, for all N . The model considered in Chapter 3 is of this kind. This class also
contain population protocols and asynchronous shared-memory systems.

1.3.1 Static models

A long-studied family of models is the communicating �nite-state systems, in which
processes communicate by sending messages to each other. Those messages are not
received immediately: they are stored in an intermediate data structure (often FIFO
channels) and received by the other process after an arbitrary amount of time. The use
of FIFO channels makes veri�cation undecidable for these models, as they can simulate
Turing machines. Several ways have been tried to recover decidability, wee for example
the survey [KM21]. One was to bound various parameters, for instance the maximum
content of channels [GKM07] or the size of so-called exchanges. The idea is to focus on
runs which can be cut into a bounded number of pieces with a particular form [Bou+18;
GLL23; DMS24]. Another example is to bound some graph parameters on the so-called
message communication chart, which describes the messages exchanged in an execution:
see, for instance, [Cyr14].

Finally, one can use abstractions to compute an approximation of the set of reach-
able con�gurations. A popular abstraction are lossy channel systems (LCS) [AJ96]. In
LCS, a �nite set of processes communicate by pushing and popping messages from FIFO
channels. However, at all times messages may get lost and disappear from the channel.
It can be shown that the resulting system has decidable reachability, using the fact that
the subword ordering is a well quasi-order over the set of con�gurations. This will be
explained in Section 3.2.3. Moreover, it has been shown that LCS state reachability is
complete for the complexity class Fωω [CS08; Sch02]. In Chapter 3 we show that the
same is true for state reachability for the central model of the chapter, and prove the
lower bound by simulating LCS, see Proposition 3.44.

Another approach to the modelisation of distributed systems is through distributed
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automata (also known as Zielonka automata) [Zie87]. They are an elegant model to
recognise languages of traces, i.e., words up to permutation of independent actions. As
mentioned before, there is a long line of study on distributed synthesis with causal mem-
ory, from its formal introduction in [GLZ04] to the recent undecidability result [Gim22].
Interestingly, while our approach consists in considering models with very restricted com-
munication, an opposite trend exists. Sound negotiations (which can be seen as a special
case of distributed automata) are a class of systems in which processes know at all times
on which actions they will synchronise with each other process. They thus maintain a lot
of information on the current con�guration of the system, and this makes those systems
much easier to verify [ED13; Esp+18].

As mentioned before, distributed synthesis in the Petri net model, called Petri games,
has been proposed in [FO17]. The idea is that some tokens are controlled by the system
and some by the environment. Note that while the number of tokens may change during
runs, it is commonly assumed that the system has a bounded number of tokens in each
place. This is why we place this model in the static section. For instance, the distributed
synthesis problem is Exptime-complete for one environment token and arbitrary many
system tokens [FO17], over a bounded Petri net.

1.3.2 Dynamic models

As we do not use Petri nets in this work, and as they come with a completely di�erent
set of techniques from ours, we will not dive into their history here. We can brie�y
mention some of the most celebrated results, with many applications in veri�cation of
in�nite-state systems. On the one hand, the combined works of Lipton [Lip76] and
Racko� [Rac78] yield ExpSpace-completeness of the coverability (or state reachability)
problem. Those bounds were recently further re�ned (under some common complexity
assumptions) [Kün+23]. On the other hand, the reachability problem was recently proven
to be Fω-complete (also called Ackerman-complete) [LS19; CO21].

Another way to model dynamic systems is through regular model-checking. In this
framework, a con�guration is a word over a �nite alphabet Σ; it can represent the current
states of �nite-state processes ordered in a line [Bou+00]. The transition relation is given
by a �nite-state transducer, which, given a con�guration, outputs the next one. The
question is then, given two regular languages I, F ⊆ Σ∗, whether we can reach F from a
con�guration of I in a �nite number of steps.

While this problem is undecidable in general, several abstraction techniques exist to
obtain sound (incomplete) algorithms for it, see for instance [ERW22; Cze+24]. Typically,
a way to prove that F is not reachable is to �nd an invariant, i.e., a language containing I,
disjoint from F and stable by application of the transducer. More results on the regular
model-checking problem can be found in the following surveys [Abd+04; Abd21]. In
Chapter 3, a lot of decision procedures will rely on computing similar invariants. In our
case, we will be able to restrict the analysis to downward-closed sets of words, that is,
languages closed under the subword relation. We can rely on the theory of well quasi-
orders to obtain sound and complete algorithms.

The �rst paper about a model similar to the one in Chapter 5 is [BMT05]. It introduces
Dynamic Pushdown Networks (DPNs). These consist of pushdown processes with spawn
but no locks. The main idea is to represent a con�guration as a sequence of process
identi�ers, each identi�er followed by a stack content. Computing Pre∗ of a regular set
of con�gurations is decidable by extending the saturation technique from [BEM97].
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A conceptual step is made in [LMW09] where the authors introduce a tree repre-
sentation of con�gurations. This is essentially the same representation as we use here.
They extend DPNs by a �xed set of locks, and show how to adapt the saturation tech-
nique to compute Pre∗ in this case. Their result is an Exptime decision procedure for
verifying reachability of a regular set of con�gurations. This work has been extended
to incorporate join operations [Gaw+11], or priorities on processes [DT17]. Our work
extends [LMW09] in two directions: it adds lock creation, and considers liveness proper-
ties. The saturation method has been adapted to DPNs with lock creation in the recent
thesis [Ken22]. The approach relies on hyperedge replacement grammars, and gives de-
cidability without complexity bounds. Our liveness conditions can express this kind of
reachability conditions.

In his thesis, Kenter adds to DPNs dynamic lock creation, as we do [Ken22]. Con�g-
urations in [Ken22] are represented as words, and the veri�cation problem is to check if
a system can reach a con�guration in a given regular language. The proof still extends
the saturation method and the approach relies on hyperedge replacement grammars. The
main result is the decidability of con�guration reachability, without complexity bounds.
Compared to [Ken22] we deal with liveness properties and give veri�cation algorithms
with matching complexity bounds.

Actually, the �rst related paper to deal with lock creation is probably [YTK16]. The
authors consider a model of higher-order programs with spawn, joins, and lock creation.
Apart from nested locking, a new restriction of scope safety is imposed. Under these
conditions, reachability of pairs of states is shown to be decidable. The works above have
been followed by implementations [Lam11; YTK16; DT17]. In particular [DT17] reports
on veri�cation of several substantial size programs and detecting an error in xvisor.

Let us comment on shared state and global variables. These are not present in the
above models because reachability for two pushdown processes with one lock and one
global variable is already undecidable. There is an active line of study of multi-pushdown
systems where shared state is modeled as global control. In this model decidability is
recovered by imposing restrictions on stack usage such as bounded context switching
and variations thereof [QR05; TMP07; TNP20; Aks+20]. Observe that these are restric-
tions on global runs, and not on local runs of processes, as we consider here. Finally,
in [Bau+20] a model of threaded pools, without locks, is introduced. There, veri�cation
is decidable, once again assuming bounded context switching. But the complexity of this
model is as high as Petri net coverability [Bau+22].

Note that the study of those models focuses on veri�cation. We are not aware of
existing approaches to controller synthesis that resemble the one of Section 5.6. Some
games have been de�ned on arenas de�ned by systems with dynamic process creations,
for instance in [BLS18], but they are sequential two-player games and require completely
di�erent techniques to be analysed.

1.3.3 Parameterised models

Parameterised veri�cation studies models equipped with a parameter (typically the num-
ber of processes) and questions of the form �Does this speci�cation hold for any value of
the parameter?�.

One of the �rst frameworks in which parameterized veri�cation has been used is
token-passing systems, in which a network of identical processes communicate by passing
a token around from neighbour to neighbour. The �rst result on this kind of system was

14



1. Introduction

negative: In [Suz88] it is shown that veri�cation of systems where an arbitrary number
of processes organised in a ring communicate by passing a token carrying a value is
undecidable. Decidability can be recovered by bounding the number of times the token
changes value [EK04]. Emerson and Namjoshi showed several cut-o� properties when
the token does not carry a value. They consider families of speci�cations which build
upon the CTL* logic (without the X operator). In order to check that a property from
one of those families is satis�ed on all rings, it su�ces to check it on rings with up to
5 agents [EN95]. Cut-o�s were also exhibited for general token graphs, this time with
speci�cations based on LTL without X [Cla+04]. The authors also show that this cannot
be extended to CTL speci�cations. The existence of cut-o�s for general graphs with
CTL*-like speci�cations was further investigated in [Ami+14].

In parallel of this line of research, another type of parameterised model emerged, with
rendezvous communication: the processes interact by pairs. The analysis of parameterised
systems with rendezvous communications was initiated by the seminal work of German
and Sistla [GS92]. The problem of deciding the existence of cut-o�s for this model was
investigated by Horn and Sangnier [HS20], and then by Balasubramanian, Esparza and
Raskin, who improve the complexity bounds [BER23].

In 2004, population protocols were introduced, where the rendezvous communication
is used to compute predicates by consensus [Ang+04]. Most of the time, they are seen as
a model of computation studied from the point of view of expressivity and succinctness.
However, there is a line of research that aims to verify various properties on them, such
as whether they correctly compute some predicate. As those veri�cation problems are
as hard as Petri net reachability [Esp+17], some subclasses are considered, on which
parameterised veri�cation techniques can be used [Esp+21; Wei23].

In parallel of rendezvous communications, another line of research was developed
around broadcasts. In 2010, Delzanno, Sangnier and Zavattaro introduced a formal
veri�cation approach to Ad Hoc networks, which are networks in which the connection
topology is built up dynamically during runtime [DSZ10]. Processes communicate by
broadcasting messages to their neighbours. In their model, all processes are identical
and represented by a �nite-state system with two operations, broadcasts and receptions.
Their initial question is whether a given protocol will avoid a designated error state no
matter the network topology. This problem turns out to be undecidable, justifying an
additional assumption: the topology may change during the execution. The resulting
model is called Recon�gurable broadcast networks, and has been the subject of many
studies since its creation. Other attempts exist to verify Ad Hoc networks: for instance
in [DSZ11] the underlying graph of the network is assumed to belong to some restricted
classes (on which the induced subgraph ordering is a well quasi-order). In [DSZ12] the
authors look at the model when nodes in the communication graph may sometimes fail to
receive messages. In [AAR13] they are restricted to DAGs of bounded depth. In [BBM18]
the number of recon�gurations between broadcasts is bounded. Guillou, Sangnier and
Snajder recently showed decidability when each process can alternate between broadcasts
and receptions at most once [GSS24].

A general model integrating both broadcasts and rendezvous communications was
proposed by Emerson and Namjoshi [EN98]. They present an algorithm computing in-
creasing under-approximations of the set of reachable con�gurations, but do not show
termination in general. In fact, it was proven in [EFM99] that this algorithm may not
terminate. They establish that liveness is undecidable, but safety is decidable thanks to
a well quasi-order argument.
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Let us now switch to a model closely related to recon�gurable broadcast networks.
In 2011, Hague proposed a model where processes communicate by writing and read-
ing from a shared variable2 [Hag11]. Crucially, processes are only allowed to read the
current value of the memory or write a new one, but never both at the same time.
Hague shows that state reachability is decidable for systems made of one leader and
arbitrarily many users, each one being modelled as a pushdown system. Note that in
the non-parameterised case, when we have a �xed set of processes, this non-atomicity
restriction does not help [Ati+14]. Decidability for parameterised systems was later
generalised to a large class of models, which have e�ectively computable downward-
closures [MSW17]. The complexity of safety and liveness for this model was further
investigated in [Dur+15] and [EGM16], both for �nite-state and pushdown processes. It
was later shown in [FMW17] that veri�cation of stutter-free LTL properties is NExp-
Time-complete on this model, with pushdown processes. All those results consider adver-
sarial scheduler; in [Bou+16] the authors initiate a study of the model with randomised
schedulers. The basic model was extended to allow processes to spawn new processes
during the execution, with the restriction that they can only spawn an arbitrary num-
ber of new processes [MSW17]. This allows parameterised veri�cation arguments to be
applied. Some more general criteria on the transition systems of individual processes
yielding decidability are given in [LMW15]. Another extension is with rounds, in which
processes increase their rounds asynchronously, and can access variables in a bounded
window centred on their current round. The authors show that this can be used to model
and verify procedures such as Aspnes' algorithm [Ber+22; Wal23].

As we will study parameterised systems with data, let us review a few related mod-
els. Many approaches exist to de�ne parameterised models with registers. In dynamic
register automata, processes are allowed to spawn other processes with new identi�ers
and communicate integers values [Abd+14]. While basic problems on these models are
in general undecidable, some restrictions on communications allow to obtain decidabil-
ity [Abd+15; Rez17]. We can also mention distributed memory automata, where each
process accesses a local register and a shared register, and can query the number of other
processes sharing its register value. Those can be seen as a model of register automata
with a parameterised number of registers.

Such parameterised veri�cation problems often relate to the theory of well quasi-orders
and the associated high complexities obtained from bounds on �bad sequences� in ordered
sets. In particular, our model is linked to two classical models from this �eld. The �rst
one is data nets, which are Petri nets in which tokens are labelled with natural numbers
and can exchange and compare their labels [Laz+08]. In general, inequality tests are
allowed, but data nets with only equality tests have also been studied [Ros17]. They
do not subsume BNRA as, in data nets, each process can only carry one integer at a
time (problems on models of data nets where tokens have tuples of integers as labels are
typically undecidable).

There are many more formal models for parameterised veri�cation. Let us give a
couple pointers. For more global views of the �eld, see the book [Blo+15], as well as
the chapter on parameterised model-checking from this other book [AST18]. See also Es-
parza's survey on parameterised systems which compares the computational power of such
systems depending on the presence of leaders and the means of communication (broad-
cast or rendezvous) [Esp14]. In [ARZ15], the expressivities of broadcast, rendezvous, and
other primitives are compared.

2This is the model used earlier in Section 1.2.1
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Beyond veri�cation, going to the parameterised version of the strategy synthesis prob-
lem can help regain decidability. Speci�cally, we will see an example of synthesis prob-
lems that are undecidable for a �xed number of agents, but decidable when the number
of agents is arbitrary.

This approach to parameterised distributed synthesis was applied by Jacobs and
Bloem in the case where processes are organised in a ring and communication is made
by passing a token along the ring [JB14].

In [BFS15; Fou15], a decidability frontier is drawn for a problem that can be seen as
an instance of controller synthesis for broadcast networks. The question is the existence
of a bad run, but runs in which agents react di�erently upon receiving the same sequence
of messages are ignored. This essentially comes down to checking the existence of a
losing local control strategy. One of their results is that this problem is NP-complete for
recon�gurable broadcast networks with respect to state reachability and synchronisation
in a state. Another approach was initiated by Stan during his PhD thesis [Sta17], over
broadcast networks with randomised schedulers and some randomised transitions. He
shows that controller synthesis is decidable and even tractable against several natural
properties, for instance reaching a state with positive probability.

We can also mention some parameterised games, which do not �t in the framework
of distributed synthesis but may call for similar techniques. Concurrent parameterised
games were introduced in [BBM20]. Agents operate synchronously, and choose actions
concurrently. A major point is that agents can see the global state of the system after
each action. Population games [Ber+19] also involve an arbitrary amount of agents,
but the games are two-player sequential games. A short section is dedicated to them in
Appendix B.

1.4 Structure and content of the thesis

The content of this thesis is divided in three chapters. Each chapter deals with one model
of distributed systems. In the introduction of each chapter we present the history of the
model and related results from the literature. The chapters can be read independently,
although some aspects of Chapter 5 may be easier to understand in light of Chapter 4.

In Chapter 3 we study a parameterised model, called broadcast networks of regis-
ter automata with arbitrarily many agents communicating using broadcasts. The
agents have unique identi�ers which they can send to each other and store in local
registers. More precisely, processes communicate through signed messages of the
form (m, d) with m a letter from a �nite alphabet and d a datum from an in�nite
alphabet. We assume that the communication topology evolves arbitrarily through-
out the execution. In other words, the set of processes receiving each broadcast is
arbitrary.

Each process is modelled as a �nite-state register transducer that can broadcast
the contents of a register, store incoming data in its registers, and compare received
data against the contents of its registers.

The chapter is centred on the following result: given a broadcast networks of register
automata with some controllable states, it is decidable whether there is a local
strategy guaranteeing that an error state qerr cannot be reached. As a particular
case, we obtain decidability of state reachability problem for this model. We build
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up to this result by proving it in two subcases of increasing di�culty. This should
help the reader gain some intuition on the general proof, which is quite technical.

The rest of the chapter complements this result in various ways: We show that
a closely-related problem, in which we ask whether we can gather all agents in
a given state, is undecidable. We also discuss various extensions of the model,
and give matching complexity bounds depending on the number of registers each
process has. The decidability of the state reachability problem for those systems
was presented in a 2024 paper [GMW24], but most of the chapter is new: the
extension to the synthesis problem requires a very di�erent approach.

In Chapter 4 we consider a simple model with processes communicating only by
taking and releasing locks. First we focus on systems in which each process uses
at most two locks. We show that we can associate with each run a pattern from a
�nite set, and that we can decide whether a family of local runs can be combined
into a global run based solely on their patterns. We use this characterisation to
translate the veri�cation and controller synthesis problems into graph properties.

Then we consider systems where processes may use arbitrarily many locks, but
manage them according to a stack discipline: a process can only release the lock
taken latest among the ones it holds. Once again, we come up with a �nite set
of patterns that let us characterise schedulable families of local runs. Most of the
content of this chapter comes from the combination of a 2022 paper [Gim+22a] and
an unpublished preprint [Mas22], with some minor additions.

In Chapter 5 we extend this model with operations spawning new processes. In
order to analyse the possible executions of such systems, we represent them as trees.
The run of the �rst process is written along the left branch from the root. If a new
process is spawned, we add a right child at the point of the spawn and write the
local execution of the spawned process along the left branch from that child. The
set of executions of such a system can therefore be encoded as a tree language. We
focus on fair executions, where processes cannot stay idle forever unless they have
no available action. We show that the language of fair executions is recognised
by a Büchi tree automaton of exponential size. This lets us verify regular tree
properties through a simple automaton product. We then explore three extensions
of this model. The �rst one is when processes are pushdown systems. We show that
this does not worsen the theoretical complexity of the veri�cation problem. Then,
we combine our characterisation of trees representing fair executions of the system
with the patterns used in Chapter 4 to obtain extended patterns. We show that
whether a control strategy is winning depends only on the set of extended patterns
it allows, which lets us decide the controller synthesis problem. Finally, we open a
new research direction by adding a shared variable to the model. We show that the
state reachability problem then becomes undecidable. To mitigate this result, we
propose to bound the number of times the process writing on the shared variable
changes. The part about veri�cation of (pushdown) dynamic systems is adapted
from a 2023 publication [MMW23]. The two last sections, on synthesis and addition
of variables, are completely new.

In addition to the main content, in Appendix A we show a run reduction technique
for register automata that yields a simpli�ed proof of decidability for one of the
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problems considered in Chapter 3 (where it is derived as a corollary of a more
general theorem).

Furthermore, Appendix B o�ers a brief survey of open problems on population
games. It does not directly relate to the rest of the thesis, which is why it is in the
appendix. It should be of interest to people studying parameterised veri�cation, in
the style of Chapter 3.

Reading tips

This thesis uses the knowledge package. When we de�ne an important term it is coloured
in red. Occurrences of that important term are coloured in blue. The reader can click on
those (or just hover over them on some PDF readers) to see the de�nition.

Although chapters follow a common method, they can be read independently. As we
consider di�erent models in each part, the objects de�ned in a chapter are rarely used in
others. In addition to the three main chapters, we add some appendices which are not
directly relevant to the main results, but may be interesting for the reader.

Wishing you a pleasant read!
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Chapter 2

Preliminaries

Basique, simple, simple, basique

Orelsan

2.1 Terminology for classic objects

Sets. Given a set S, we write |S| for its cardinality and 2S for the set of its subsets.
The intersection of two sets A,B is written A ∩ B. Their union is written A ∪ B, or
sometimes A ⊔ B when A and B are disjoint. The complement of a subset S of A is
written Sc (A will always be clear from the context). Given two integers i, j ∈ N, we
write [i, j] for {k ∈ N | i ≤ k ≤ j}.

Words. A �nite word w = a1 · · · an over A is a �nite sequence of elements of A. Its
length |w| is its number of elements n. The set of �nite words over A is written A∗. We
denote the empty word by ε. Analogously, an in�nite word w = a1a2 · · · over A is an
in�nite sequence of elements of A. The set of in�nite words over A is written Aω. The
union of A∗ and Aω is written A∞.

Given two words u ∈ A∗ and v ∈ A∞, we write u ·v or simply uv for the concatenation
of u and v. We say that u ∈ A∗ is a pre�x of v if there exists u′ ∈ A∞ such that v = uu′.
Similarly, u ∈ A∞ is a su�x of v ∈ A∞ if there exists u′ ∈ A∗ such that v = u′u.

Trees. An ordered tree τ is a subset of N∗ such that for all ν ∈ τ :

If ν ∈ τ then all its pre�xes are in τ .

For all i ∈ N, if ν · i ∈ τ then ν · j ∈ τ for all j ≤ i.

An element of τ is called a node. If a node ν ′ is a pre�x of a node ν, we say that ν ′

is an ancestor of ν, and ν a descendant of ν ′. If furthermore |ν| = |ν ′| + 1 then we say
that ν ′ is the parent of ν, and ν a child of ν ′. If ν ′0k = ν for some k ∈ N we say that ν
is a left descendant of ν ′.
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A branch is a subset of nodes closed by pre�x, totally ordered by pre�x and such that
if a node of the branch has a child, then it has a child in that branch. The root of τ is
the empty word ε. A leaf is a node with no children. The subtree rooted in ν is the set
of descendants of ν.

Graphs. A graph is a pair G = (V,E) with V a set of vertices and E ⊆ V 2 a set of
edges. It is �nite if V is. It is undirected if for all (u, v) ∈ E, we have (v, u) ∈ E. A path
in G is a sequence of edges v0 −→ v1 · · · −→ vn. It is a cycle if vn = v0, and a simple cycle
if furthermore all (vi)0≤i≤n−1 are distinct. We say that t is reachable from s if there is a
path from s to t. We say that G is strongly connected if every vertex is reachable from
every other.

A subgraph of G is a graph (V ′, E ′) with V ′ ⊆ V and E ′ = E ∩ V ′2. A strongly
connected component (SCC) of G is a maximal strongly connected subgraph of G.

Functions. Given a function f : N → N, we call it polynomial if there exist K, d ∈ N
such that f(n) ≤ nd+K for all n ∈ N. We call it exponential if there exist K, d ∈ N such
that f(n) ≤ 2n

d
+K for all n ∈ N. We call it doubly-exponential if there exist K, d ∈ N

such that f(n) ≤ 22
nd

+K for all n ∈ N.
De�ne g : N×N→ N as g(n, 0) = n and g(n, d+ 1) = 2g(n,d) for all n, d ∈ N. We call

f elementary if there exist K, d such that f(n) ≤ g(n, d) +K for all n ∈ N.

2.2 Automata

Finite automata. A �nite automaton is de�ned by a tuple A = (Q,Σ,∆, I, F ) where
Q is a �nite set of states, Σ a �nite alphabet, ∆ ⊆ Q× Σ×Q a set of transitions, which
are written q

a−→ q′, I ⊆ Q a set of initial states and F ⊆ Q a set of �nal states. We will
sometimes view ∆ as a function Q × Σ → 2Q. We say that A is deterministic if |I| ≤ 1
and |∆(q, a)| ≤ 1 for all q ∈ Q, a ∈ Σ. We use the acronyms NFA for non-deterministic
�nite automaton and DFA for deterministic �nite automaton.

A run of A over a word w = a1 · · · ak is a sequence of transitions q0
a1−→ q1

a2−→ · · · ak−→ qk
such that q0 ∈ I. It is accepting if qn ∈ F . The language of A, written L(A) is the set of
words which have accepting runs in A.

Pushdown automata and context-free grammars. A pushdown automaton is de-
�ned by a tuple A = (Q,Σ,Γ,∆, I, F ) where Q is a �nite set of states, Σ and Γ �nite
alphabets, ∆ ⊆ Q× Σ× {push(z), pop(z), nop | z ∈ Γ} ×Q a set of transitions, I ⊆ Q a
set of initial states and F ⊆ Q a set of �nal states.

A con�guration is an element of QΓ∗. A step qy
a−→ q′y′ with q, q′ ∈ Q and y, y′ ∈ Γ∗

is de�ned when either:

(q, a, push(z), q′) ∈ ∆ and y′ = zy, or

(q, a, pop(z), q′) ∈ ∆ and zy′ = y, or

(q, a, nop, q′) ∈ ∆ and y′ = y

A run of A over a word w = a1 · · · ak is a sequence of steps (q0, w0)
a1−→ (q1, w1)

a2−→ · · · ak−→
(qk, wk) such that q0 ∈ I and w0 = ε. It is accepting if qn ∈ F . The language of A,
written L(A) is the set of words which have accepting runs in A.

22



2. Preliminaries

A context-free grammar is de�ned by a tuple G = (NT,Σ, R, S) with NT a �nite
alphabet of non-terminals, Σ a �nite alphabet of terminals, S an initial non-terminal and
R a set of rules of the form X → w with X ∈ NT and w ∈ (NT ∪ Σ)∗. Given two
words u, v ∈ (NT ∪ Σ)∗, we say that u directly yields v, written u⇒ v, if there is a rule
X → w ∈ R and two words u1, u2 ∈ (NT ∪ Σ)∗ such that u = u1Xu2 and v = u1wu2.

We write
∗
=⇒ for the re�exive transitive closure of ⇒. The language of G is the set

L(G) = {v ∈ Σ∗ | S ∗
=⇒ v}.

Proposition 2.1 ▶ Folklore

Pushdown automata and context-free grammars recognise the same languages.

2.3 Automata on in�nite words

When we deal with potentially in�nite runs, we will need to use suitable automata. There
are many ways to de�ne �nite automata reading in�nite words. Here, we will focus on
languages de�ned by a �nite automaton whose acceptance condition is based on the set
of states visited in�nitely often.

A Muller automaton is de�ned by a tuple A = (Q,Σ,∆, init,Γ, col,F) with

Q a �nite set of states,

Σ a �nite alphabet of letters,

∆ ⊆ S × Σ× S a transition relation,

init ∈ S the initial state,

Γ a �nite alphabet of colours,

col : S → 2Γ a colouring of the states1.

F ⊆ 2Γ

A run of A over a word w = a1a2 · · · ∈ Σω is a sequence of transitions q0
a1−→ q1

a2−→ · · ·
such that q0 ∈ I. It is accepting if {c | ∀i, ∃j ≥ i, c ∈ col(qj)} ∈ F , i.e., if the set of
colours seen in�nitely often during the run is in F . The language of A, written L(A) is
the set of words which have accepting runs in A.

We will sometimes deal with languages that contain both �nite and in�nite words. In
this case, we will add an extra component to this tuple, a set of states F . The language
of the automaton is then the language of the Muller automaton plus all �nite words that
have a run ending in F .

An Emerson-Lei automaton (ELA for short) is a Muller automaton where the accep-
tance condition F is described by a Boolean formula φ over variables {infγ | γ ∈ Γ}. The
formula de�nes the accepting condition F(φ) = {G ⊆ Γ | νG satis�es φ} where νG is the
valuation over G mapping infγ to true if γ ∈ G and to false otherwise.

1Apologies to Antonio Casares, who spent a signi�cant amount of time demonstrating to me that
transition-based automata are by far preferable to state-based automata. While there are indeed good
arguments supporting this [Cas23, Chapter VI], in this thesis we will sometimes need to deal with
languages of both �nite and in�nite words, making state-based automata more convenient.
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Parity automata are the subclass of Muller automata where the acceptance condition
(Γ, col,F) is replaced by a function pr : S → N mapping states to priorities. A run is
accepting if the highest priority seen in�nitely often is even, which is easily encoded as a
Muller acceptance condition.

Büchi automata are the subclass of parity automata that only use priorities 1 and 2.
Historically, this was the �rst type of automata on in�nite words to be introduced [Buc62].

These automata all recognise the same class of languages. While Muller and parity
automata can be made deterministic, this is not the case for Büchi automata.

Proposition 2.2 ▶ [McN66; Mos84]

The following types of automata recognise the same languages.

Non-deterministic Muller automata

Deterministic parity automata

Non-deterministic Büchi automata

There has been intensive study on the cost of translating from each of those models
to the others. We refer to Udi Boker's webpage for a survey of state-of-the art automata
translations. In this thesis we will only use the following propositions. The �rst one
follows from the Latest appearance record of Gurevich and Harrington.

Proposition 2.3 ▶ [GH82]

Every Muller automaton with n states and using k colours can be converted into a
parity automaton with k · k! · n states and k priorities. If the initial automaton is
deterministic then so is the resulting one.

The second one gives a determinisation of parity automata with an exponential state
blow-up.

Proposition 2.4 ▶ [Saf88; Pit07]

Every non-deterministic parity automaton with n states and using k priorities can
be converted into a deterministic parity automaton with 2nn(k+1)n(k+1)(n(k+1))!
states and using 2n(k + 1) priorities.

Finally, let us mention that the complexity of checking emptiness of one of those
automata depends on the class considered. The two results below will be used several
times in what follows.

Proposition 2.5 ▶ [EL87]

Given a parity automaton A, checking if L(A) = ∅ is decidable in polynomial time.

Proposition 2.6 ▶ [EL87; Bai+19]

Given an Emerson-Lei automaton A, checking if L(A) = ∅ is NP-complete.
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2.4 Automata on in�nite trees

Given an alphabet A, an A-labelled binary tree is a tree τ along with a labelling function
λ : τ → A. When the alphabet is clear from context, we will simply call (τ, λ) a tree,
since we only consider binary trees in this thesis.

A parity tree automaton is a tuple A = (Q,Σ,∆, qinit, F, pr) with Q a �nite set of
states, Σ a �nite alphabet, ∆ ⊆ Q×Σ× (Q∪Q×Q) a transition function, qinit ∈ Q the
initial state, F ⊆ Q �nal states and pr : Q→ N a function mapping states to priorities.

Let τ be an A-labelled binary tree, a run of A over τ is a Q-labelling ϱ : τ →
Q of the same tree such that the root is labelled qinit for all ν ∈ τ , if ν1 ∈ τ then
(ρ(ν), τ(ν), ρ(ν0), ρ(ν1)) ∈ ∆, and if only ν0 ∈ τ and ν1 /∈ τ then (ρ(ν), τ(ν), ρ(ν0)) ∈ ∆.

A run is accepting if every leaf is labelled with a state of F and for all in�nite branch,
the highest priority seen in�nitely often along that branch is even. The language of A is
the set of trees for which there exists an accepting run.

2.5 Games

2.5.1 Regular games

De�nition 2.7

An ω-regular game G is given by a directed graph G = (V,E) called the arena,
along with a partition of V in two, V = V0 ⊔ V1, an initial vertex vinit, a colouring
function c : V → C mapping vertices to a �nite set of colours C, and an ω-regular
language L ⊆ Cω, called the objective.

The game goes like this: we place a token on the initial vertex vinit. Then two players,
P0 and P1, move the token as follows. When the token is on a vertex v of V0, P0 selects
a transition from v to a vertex v′ and we move the token to v′. P1 does the same from
vertices of V1. Player P0 wins if the resulting sequence of vertices v0v1v2 · · · is so that
c(v0)c(v1) · · · ∈ L. In the literature those two players are often called Eve and Adam, or
sometimes Controller and Environment in the context of reactive synthesis. In this thesis
we will use the latter names.

A (�nite or in�nite path) in G starting in vinit is called a play. A play v0 → v1 → · · ·
is winning for P0 if c(v0)c(v1) · · · ∈ , and losing for P0 otherwise.

A strategy for player Pi is a function σG : V ∗Vi → V . A σG-play is a path v0 → v1 → · · ·
in G such that for all j ≥ 1, if vj−1 ∈ Vi then vj = σG(v0 · · · vj−1). A strategy for P0 (resp.
P1) is winning if all in�nite σG-plays are winning (resp. losing) for P0.

When the objective is described by a deterministic parity (resp. Büchi) automaton
we call G a parity game (resp. Büchi game).

As particular cases, we call G a reachability game (resp. safety game), when the
objective is of the form LV ω (resp. V ω \LV ω) with L a regular language of �nite words.
In both of those cases, we assume that the objective is given by a DFA A recognising L.

It is well-known that all those games are determined, i.e., in every game one of the
two players has a winning strategy.
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Proposition 2.8 ▶ Folklore

One can compute the winner of a �nite reachability game in polynomial time.
Furthermore if P0 has a winning strategy, then she has one that guarantees that
she wins in at most |V | · |A| steps.

A strategy is positional if its output only depends on the current state, that is, for all
w,w′ ∈ V ∗ and v ∈ V we have σ(wv) = σ(w′v).

A celebrated result in the �eld is the following quasi-polynomial algorithm for solving
parity games.

Proposition 2.9 ▶ [Cal+17; Cal+22]

One can compute the winner of a �nite parity game in time |V |O(log(d)). Furthermore
we obtain a positional winning strategy for the winner.

See [Fij+23, Chapter 2] for an overview of results concerning ω-regular games.

2.5.2 Pushdown games

A pushdown game is a two-player ω-regular game over an in�nite arena de�ned as the
con�guration space of a pushdown automaton.

Formally, it is described by a pushdown transition system (Q,Q0, Q1,∆,Γ, q0, c,L)
with

Q a �nite set of states, partitioned into Q = Q0 ⊔Q1

Γ is a �nite alphabet

∆ ⊆ Q× {push(z), pop(z) | z ∈ Γ} ×Q.

q0 ∈ Q the initial state

c : Q→ C a colouring function

L ⊆ Cω an ω-regular language over C

The arena is formed by the set of vertices QΓ∗, and the edges E = {(qyz, q′y) |
(q, pop(z), q′) ∈ ∆} ∪ {(qy, q′yz) | (q, push(z), q′) ∈ ∆}. The initial vertex is q0. The
vertices of player P0 (resp. P1) are the elements of Q0Γ

∗ (resp. Q1Γ
∗). Each vertex qy is

coloured with c(q).

Lemma 2.10 ▶ [Wal01]

Pushdown games with an objective given by a deterministic parity automaton can
be solved in exponential time.
Furthermore, in the particular case of reachability games, if the �rst player wins,
he can do so within an exponential number of steps.
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2.6 Classic decision problems

In this section we present a few decision problems that we will use to show undecidability
and complexity lower bounds in this thesis. The problems are sorted by complexity.

3-SAT A Boolean formula φ is in 3-CNF if it is made of a conjunction of clauses
φ =

∧m
i=1Ci, where each clause Ci is a disjunction of 3 literals Ci = ℓ1i ∨ ℓ2i ∨ ℓ3i , and each

literal is either a variable or its negation.
The 3SAT problem takes as input a Boolean formula in 3-CNF over a set of variables

x1, . . . , xn, and asks if there exists a valuation ν : {x1, . . . , xn} → {⊥,⊤} satisfying the
formula. This problem is NP-complete [Kar72].

Independent set The independent set problem asks, given a �nite undirected graph
G = (V,E) and k ∈ N, if there exists a set of vertices I ⊆ V such that |I| = k for all
(u, v) ∈ E, either u /∈ I or v /∈ I. This problem is NP-complete [GJS76].

3-colouring The graph 3-colouring problem asks, given a �nite undirected graph G =
(V,E), if there exists a function c : V → {1, 2, 3} such that for all (u, v) ∈ E, (u) = (v).
This problem is NP-complete [Sto73].

∃∀ SAT The ∃∀ SAT problem asks, given a boolean formula over variables x1, . . . , xn
and y1, . . . , ym, if there exists a valuation of the xi ν : {x1, . . . , xn} → {⊥,⊤} such that
for all valuation µ : {y1, . . . , ym} → {⊥,⊤}, the valuation mapping each xi to ν(xi)
and each yj to µ(yj) satis�es φ. This problem is ΣP

2 -complete, even if the formula is in
3DNF [SU02].

Intersection of DFAs The intersection emptiness of DFAs problem asks, given DFAs
A1, . . . ,An, whether

⋂n
i=1 L(Ai) is empty. This problem is PSpace-complete [Koz77].

Exponential tiling The exponential grid tiling problem asks, given a set of colours C,
a number N in unary and a set of tiles T ⊆ C{up,down,left,right}, whether there is a tiling
of the 2N × 2N grid, i.e., a function τ : [0, 2N − 1] × [0, 2N − 1] → T such that for all
x, y, x′, y′ ∈ [0, 2N − 1],

if x = x′ and y = y′ + 1 then τ(x, y).down = τ(x, y).up

if x = x′ + 1 and y = y′ then τ(x, y).left = τ(x, y).right

if x = 0 (resp. x = 2N − 1, y = 0, y = 2N − 1) then τ(x, y).left = cborder (resp.
right,down, up)

This problem is NExpTime-complete [Emd19].

In�nite Post correspondence problem The In�nite Post correspondence problem
(IPCP) asks, given a family of pairs of words (ui, vi)i∈I over an alphabet Σ, whether there
exists an in�nite sequence of indices i0i1 · · · ∈ Iω such that ui0ui1 · · · = vi0vi1 · · ·

This problem is undecidable [Ruo85].

27



2.6. Classic decision problems

Emptiness of the intersection of two context-free grammars This problem asks,
given two context-free grammars G1 and G2, if L(G1) ∩ L(G2) = ∅. This problem is
well-known to be undecidable [HMU07].

Halting problem for Minsky machines A Minsky Machine with two counters is a
tuple M = (Loc,∆, X, ℓ0, ℓf ) where

Loc is a �nite set of locations,

X = {x1, x2} is a set of two counters,

∆ ⊆ Loc× {x−−, x++, x = 0? | x ∈ X} × Loc is a �nite set of transitions,

ℓ0 ∈ Loc is an initial location and ℓf ∈ Loc is a �nal location.

A con�guration of a Minsky machine is a tuple (ℓ, v1, v2) ∈ Loc×N×N where v1 (resp.
v2) stands for the value of the counter x1 (resp. x2). We write (ℓ, v1, v2) −→ (ℓ′, v′1, v

′
2) if

there is δ ∈ ∆ such that:

δ = (ℓ, xi++, ℓ′) and v′i = vi + 1, v3−i = v′3−i;

δ = (ℓ, xi−−, ℓ′) and v′i = vi − 1, v3−i = v′3−i;

δ = (ℓ, xi = 0?, ℓ′) and v′i = vi = 0, v3−i = v′3−i.

An execution of the machine is a sequence (ℓ1, v
(1)
1 , v

(1)
2 ) −→ . . . −→ (ℓk, v

(k)
1 , v

(k)
2 ). The

halting problem asks whether there is an initial execution of the machine ending in
location ℓf . This problem is well-known to be undecidable [Min67].
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Chapter 3

Broadcast Networks of

Register Automata

Il y a dans toute foule des

hommes que l'on ne distingue

pas, et qui sont de prodigieux

messagers.

Vol de nuit

Antoine de Saint-Exupéry
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3.1 Introduction

3.1.1 Context and motivation

The chapter dives into the study of the computational model known as Broadcast Net-
works of Register Automata. These networks comprise an arbitrary number of agents,
each equipped with identical transition systems. Agents communicate by broadcasting
messages, which are pairs (m, d), where m is a letter from a �nite alphabet and d denotes
a datum drawn from an in�nite set D. Data of D should be thought of as identi�ers. Each
agent possesses local registers, all initialized with its unique identi�er. Those registers
are used to store and compare the data contained in messages. Consequently, each agent
possesses two primary operations: broadcasting a symbol along with the content of one
of its registers or receiving a message, and comparing its datum with its registers and/or
storing it in them.

We aim to model networks where the communication graph may evolve through time;
the set of processes receiving the messages of a given process is not �xed. In our model,
this is interpreted as non-determinism: when an agent sends a message, each other agent
may or may not receive it; the set of agents receiving the broadcast is non-deterministic.
The most fundamental problem on such models is the coverability problem, which asks
if a system has a run from an initial con�guration to one where at least one agent is in a
designated state.

This model was introduced in [DST13], as a natural extension of Recon�gurable
Broadcast Networks (RBN) [DSZ10]. The key di�erence between the two is that in
RBN the processes are anonymous. By contrast, in BNRA each process is given a unique
identi�er at the start. Those identi�ers are manipulated by processes using registers and
equality tests. That �rst paper claimed that the coverability problem was decidable and
even PSPACE-complete, but the proof turned out to be incorrect [San23]. As we will see,
the complexity of that problem is in fact much higher.

In this chapter we will establish the decidability of the coverability problem, and prove
its completeness for the hyper-Ackermannian complexity class Fωω , thereby showing that
the problem requires a non-primitive recursive (even non multiply-recursive) amount of
time.

Some crucial aspects of the model for decidability are:

The set of con�gurations we try to avoid (those in which an agent is in the er-
ror state) is upward-closed. By contrast, we show that it is undecidable to check
whether we can reach a con�guration where all processes are gathered in a given
state 3.45.

The messages can only contain one datum. It was shown in the paper introducing
this model that if we allow messages to carry more than one datum, the state
reachability problem is undecidable [DST13].
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The lossy broadcast communication: We choose which processes receive each broad-
cast. This gives us a common property called the copycat principle, which is de-
scribed below. Even without data, models which do not allow recon�gurations have
been shown undecidable [DSZ10].

We contrast this result with the undecidability of the synchronisation problem, some-
times referred to as the target reachability problem in the literature. This problem asks
whether there is a run at the end of which all agents are in a given state. It is also a classic
problem on this type of models. Its undecidability highlights the crucial property of cov-
erability, which is that the set of con�gurations we are trying to reach is upwards-closed.
We contrast these results with the NP-completeness of the coverability problem when each
agent has only one register. The aforementioned results were published in [GMW24].

This chapter presents these results, with several improvements:

We characterize (non-)coverability using invariants, which improve our understand-
ing of the problem.

We use this characterisation to prove decidability of the more general problem of
safe strategy synthesis. We also characterise the complexity of those problems in
terms of the number of registers per process.

We discuss several extensions of the results, such as pushdown processes or a leader.

3.1.2 Structure of the chapter and how to read it

Section 3.2 describes our model and the problems we are interested in. We also de�ne
the decision problems that we will study in this chapter.

The central result of this chapter is the decidability of controller synthesis for broad-
cast networks of register automata. We present this in an incremental way:

First, in Section 3.3 we use the simpler case of broadcast networks without data to
illustrate our proof structure for decidability of coverability and strategy synthesis.
The results obtained there already exist in the literature: we reprove them here in
a way that illustrates our technique.

In Section 3.4 we extend this proof structure to the subclass of systems called
signature BNRA where processes can only send messages with their own identi�er.
This allows us to illustrate the proof technique in more details, with some idea which
could not be shown in the too simple previous section. We also prove complexity
lower bounds in this section, as our hardness results for the general case can already
be shown for signature BNRA.

Finally, we present the decidability proofs in the general case in Section 3.5. This
part is quite technical, but we hope that the basis provided by the previous section
mitigates this di�culty.

In Sections 3.3, 3.4 and 3.5 we tried to highlight the common structure by using
similar sequences of de�nitions and lemma (although the number of intermediate steps
increases).

For instance, De�nition 3.11, Lemma 3.12, and Theorem 3.15 have counterparts in
Section 3.4: De�nition 3.19, Lemma 3.20, and Theorem 3.26.
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Section 3.7 is dedicated to extensions of this model: for instance, we discuss how to
adapt previous proofs to systems where processes have access to local stacks, or can test
inequalities between data, with D = N.

To complete the picture, in Section 3.8 we show tight complexity bounds for the
Cover and SafeStrat problems in the case where each process has a single register.

Additionally, in Appendix A we present the proof of a theorem on register automata
and transducers, of independent interest. It shows a run reduction method for register
automata that produces a �cheaper� run, in the sense that for each datum d the sequence
of letters received with datum d is a subword of the one of the original run. This result can
be used to give an alternative decidability proof of the coverability problem for BNRA.

Problem

Nb of registers
r = 0 r = 1 r ≥ 2

Coverability P [DSZ10] NP (Thm 3.53) Fωω (Thm 3.43)

Synchronisation P [Fou15] ??? Undec. (Thm 3.45)

Safe strategy synthesis NP (Thm 3.15) NExpTime (Thm 3.55) Fωω (Thm 3.43)

Table 3.1: Complexity of the three considered problems depending on the number of
registers. All decidable problems are complete for the indicated class. The results of the
last column hold for any �xed r ≥ 2 and when r is part of the input.

Table 3.1 contains the main decidability and complexity results of this chapter1.

3.2 Preliminaries

In this section, we describe the transition system of individual processes, which are register
transducers, a �nite-state model which inputs and outputs messages using registers to
store the data and equality tests to compare them. Then, in Section 3.2.2 we de�ne our
broadcast network model as the composition of a �nite but arbitrary number of processes,
which have identical states and transitions, but with distinct initial data in their registers.
A step of computation consists in one process broadcasting a message and some subset
of other processes receiving it.

3.2.1 Register transducers

In all that follows we �x an in�nite set of data D. We de�ne a notion of register transducer
that is well-suited for the de�nition of our distributed systems.

A register transducer describes the behaviour of an agent in a broadcast network with
data. There are two types of transitions: reception transitions receive messages, test
equality of the datum against the ones in the register, and put the received datum in
some registers. Broadcast transitions send a message with the content of a register as
datum.

1It is always a little frustrating to leave a gap in a table like this. However, I convinced myself that
an algorithm for the synchronisation problem could only be very long and painful. Since this chapter
already contains some pretty technical proofs, we will skip this case and leave it as an open problem.
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De�nition 3.1 ▶ Register transducer

A register transducer with r registers over domain D is given by a tuple
R = (Q,M, qinit,∆) with

Q a �nite set of states, with qinit the initial state,

M a �nite alphabet, and

∆ a set of transitions which are of four kinds:

� q
br(m,i)−−−−→ q′ broadcast transitions that output a message (m, d) with d

the content of register i,

� q
rec(m,=i)−−−−−−→ q′ equality transitions that read a message (m, d) and check

that d is in register i,

� q
rec(m, ̸=)−−−−−→ q′ disequality transitions that read a message (m, d) and check

that d is not in any register,

� q
rec(m,↓i)−−−−−→ q′ record transitions that read a message (m, d) where d is

not in any register and put d in register i.

Transitions of the three last kinds are called reception transitions.

The size of R, written |R|, is |Q|+ |∆|+ r

Formally, a local con�guration of R is an element of Q × Dr, describing the current
state and the content of each register. A local con�guration (q, c) is initial if q = qinit
and all registers have the same content, i.e., there exists d ∈ D such that c(i) = d for all
i ∈ [1, r].

Let (q, c) and (q′, c′) be two local con�gurations, we formalise the conditions required
to go from one to the other.

Given a record transition q
rec(m,↓i)−−−−−→ q′ and a datum d , we can apply δ to go from

(q, c) to (q′, c′) by reading (m, d) if

for all j ∈ [1, r], c(j) ̸= d,

c′(i) = d

for all j ̸= i, c′(j) = c(j).

Given an equality transition q
rec(m,=i)−−−−−−→ q′ and a datum d , we can apply δ to go from

(q, c) to (q′, c′) by reading (m, d) if c(i) = d and c′ = c.

Given a disequality transition q
rec(m, ̸=)−−−−−→ q′ and a datum d , we can apply δ to go from

(q, c) to (q′, c′) by reading (m, d) if c(j) ̸= d for all j ∈ [1, r] and c′ = c.

If one of the three previous cases applies, we write (q, c)
rec(m,d)−−−−−→δ (q

′, c′) and call it a
reception step.

Given a broadcast transition δ = q
br(m,i)−−−−→ q′ and a datum d, we can apply δ to go

from (q, c) to (q′, c′) by broadcasting (m, d) if c(i) = d and c′ = c. If those conditions are
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met we write (q, c)
br(m,d)−−−−→δ (q

′, c′) and call it a broadcast step2.

A local step (q, c)
op(m,d)−−−−→δ (q′, c′) between two local con�gurations is either a re-

ception step or a broadcast step. A local run u of R is a sequence of local steps

u = (q0, c0)
op1(m1,d1)−−−−−−→δ1 (q1, c1)

op2(m2,d2)−−−−−−→δ2 · · ·
opn(mn,dn)−−−−−−−→δn (qn, cn). Its length is its

number of local steps n. It is initial if (q0, c0) is an initial con�guration. In that case the
common datum d of registers in c0 is called is called the initial datum of u.

A

B

D

C

E F

H

G

I J

br(start, 1)

rec(1,= 3)

rec(start, ↓ 2)

rec(0,= 2)
rec(1,= 2)

rec(0,= 3)

rec(1,= 3)

rec(0,= 3)

br(1, 1)

br(0, 1)

rec(start, ↓ 3)

br(start, 1) br(0, 1)

br(1, 1)

Figure 3.1: An example of a register transducer.

Example 3.2.1. Have a look at the register transducer in Figure 3.1. In the upper branch
it broadcasts a word of start01∗ with the initial datum. In the lower branch it receives
start with two di�erent data that it stores in registers 2 and 3, and broadcasts start with
its initial datum. It then receives alternately one bit with the �rst datum and one bit with
the second, and broadcasts their xor, still with its initial datum.

Its input In(u) ∈ (M×D)∗ is the sequence of messages received by input transitions

(qi−1, ci−1)
rec(mi,di)−−−−−−→δi (qi, ci) in u. Similarly, its output Out(u) ∈ (M × D)∗ is the

sequence of messages sent by output transitions (qi−1, ci−1)
br(mi,di)−−−−−→δi (qi, ci) in u.

Its d-input Ind(u) ∈M∗ is the sequence of letters associated to datum d in In(u), and
its d-output Outd(u) ∈M∗ is the sequence of letters associated to datum d in Out(u).

Remark 3.2.1. Note that we require that record transitions can only be taken if the
received value is not already in the registers. This is not a restriction on the expressivity
as we can simulate a system with weak record transitions (where we can store values
that are already in another register) with those operations: Instead of storing the same
datum in several registers, the simulating system uses a function [1, r]→ [1, r], stored in
the states, that maps registers of the simulated systems to the register holding the same
datum in the simulating system.

On the other hand, this requirement will facilitate some proofs: this guarantees that
each datum appears in at most one register (except the initial datum).

2The br notation may look odd for now, but it will be justi�ed later when those automata are used
to model processes broadcasting and receiving messages.
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3.2.2 Broadcast Networks with Data

Let r ∈ N and let R = (Q,M, qinit,∆) be a register transducer with r registers. The
broadcast network of register automata (BNRA for short) described by R is the in�nite
transition system described below. We call register transducer protocols when we use
them to de�ne BNRA. We often identify a BNRA and the protocol describing it.

A con�guration is a function γ : A → Q × Dr with A a �nite set of agents. It maps
each agent to a local con�guration.

We write st(γ) for the state component of γ and data(γ) for its register component. A
con�guration γ is initial if for all a ∈ A, st(γ)(a) = qinit, data(γ)(a, i) = data(γ)(a, i′) for
all i, i′ and data(γ)(a, i) ̸= data(γ)(a′, i′) for all a ̸= a′ and i, i′. Intuitively, each agents
starts with a unique identi�er that is contained in all of its registers.

Given a �nite set of agents A and two con�gurations γ, γ′ over A, a step γ −→ γ′ is
de�ned when there exist a0 ∈ A, m ∈ M, d ∈ D and a transition δ0 ∈ ∆O such that

γ(a0)
br(m,d)−−−−→δ γ

′(a0), and for all a ̸= a0,

either γ′(a) = γ(a),

or there is a transition δ ∈ ∆I such that γ(a)
rec(m,d)−−−−−→δ γ

′(a).

A (global) run ϱ consists of a sequence of steps γ0 −→ γ1 −→ γ2 · · · γn−1 −→ γn. It is
initial if γ0 is an initial con�guration. The projection of ϱ on an agent a ∈ A is the local
run πa(ϱ) made of all transitions taken by a in ϱ. We write ϱ : γ

∗−→ γ′ when ϱ is a run
starting in γ and ending in γ′.

br(b, 1)

rec(a, ↓ 2)

br(a, 1)

rec(b,= 2)

rec(b,= 2)
br(a, 1) rec(ok,= 1)

br(ok, 1)
rec(a, ↓ 1)

Figure 3.2: Two representative behaviours: on the left, a protocol where an agent can
receive a sequence of letters abb while checking that a the messages all come from the
same agent. On the right, a protocol which can receive a message from another agent
and acknowledge reception by sending a message with the other agent's identi�er.

We will study two veri�cation problems on these systems. One asks whether there
is a run in which some given message is broadcast (or, equivalently, some given state is
reached). The other asks for a run leading to a con�guration with all agents in a given
target state.
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De�nition 3.2 ▶ Veri�cation problems

The coverability problem Cover asks, given a protocol R and a state qerr, whether
there is an initial run of R in which at least one agent reaches qerr.
The synchronisation problema Synchro asks, given a protocol R and a state qf ,
whether there is an initial run of R such that all agents are on qf in the last
con�guration.

asometimes called the target reachability problem or target problem

If there is an initial run ϱ in which an agent reaches qerr, then we say that ϱ covers
qerr, and that qerr is coverable. Similarly, if there is an initial run ϱ in which a message
with letter merr is broadcast, then we say that ϱ covers merr, and that merr is coverable.

Remark 3.2.2. It will often be convenient to consider a version of the coverability prob-
lem in which a letter merr is given instead of qerr. The question is then whether there is
an initial run in which merr is broadcast.

The two problems are easily reducible to each other: in one direction it su�ces to
add a loop broadcasting a message merr on qerr, in the other it su�ces to redirect every
transition broadcasting merr towards a new state qerr.

We will also examine the controller synthesis problem on this model. We assume that
We assume that a subset of states within the protocol is controllable, and we consider local
strategies, which select transitions from those controllable states based on the sequence
of transitions executed so far in the local run. The question is whether there is a strategy
that guarantees that a designated state is never reached in a global run. The Cover
problem de�ned earlier corresponds to the particular case in which no state is controllable.

De�nition 3.3 ▶ Broadcast Game with Registers

A Broadcast Game with Registers with r registers G = (R, Qctrl, Qenv, qerr) is de�ned
by a register transducer with r registers R = (Q,M, qinit,∆), a partition of its
states Q = Qctrl ⊔Qenv, and an error state qerr. As noted in Remark 3.2.2, we can
replace qerr with a letter merr that should not be broadcast.

A control strategy for G is a function σ : ∆∗ → ∆ observing a sequence of transitions
and choosing the next one3.

A σ-local run is an initial local run u = (q0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opn(mn,dn)−−−−−−−→δn (qn, cn)
such that for all i ∈ [1, n], if qi−1 ∈ Qctrl then σ(δ1 · · · δi−1) = δi. A σ-run is an initial run
whose projection on every agent a is a σ-local run.

A control strategy is winning if no σ-run covers qerr. In this game and all games we
construct from it the player trying to construct a winning control strategy will be called
Controller and her opponent Environment.

De�nition 3.4 ▶ Controller synthesis problem

The safe strategy problem SafeStrat takes as input a BGR G, and asks whether
there is a winning control strategy for G.

3We choose to not give access to the data to Controller, as we want to be able to rename data at will.
We will discuss the version of the game where Controller can see the data in Section 3.7.1.
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E C

br(a,1) br(b,1)

br(b,1) br(a,1)

rec(a,↓ 2)

rec(a,=2) br(merr,1)

rec(b,↓ 2)

rec(b,=2) br(a,2)

Figure 3.3: An example of BGR. The round state C belongs to Controller, square states
to Environment.

Example 3.2.2. In the BGR displayed in Figure 3.3, Controller has a single winning
control strategy, which is to always choose a di�erent letter from the one chosen by En-
vironment from E.

Indeed, doing otherwise would let an agent broadcast either aa or bb with its initial
datum. In the �rst case, Environment could send an agent in the second row to receive aa
and then broadcast merr. In the second case, Environment could send two agents to the
third row, who receive bb and broadcast a with the same datum. An agent in the second
row could then receive both a broadcasts and then broadcast merr.

By contrast, it is easy to check that if Controller always picks a di�erent letter from
the one chosen by Environment in E, there cannot be two broadcasts of a or of b with the
same datum. Hence agents sent to the second and third row will be unable to broadcast
anything, and in particular merr will never be broadcast.

3.2.3 Well quasi-order toolbox

In this chapter we will rely several times on the theory of well quasi-orders, more pre-
cisely the well quasi-order of subwords over a �nite alphabet. This section is meant as a
summary of the results we will use.

A well quasi-order is a set equipped with a preorder relation (S,⪯) such that in every
in�nite sequence s0, s1, . . . there exist i < j such that si ⪯ sj.

Subwords

Given two words v = a1 · · · am and w = b1 · · · bn in Σ∗, we say that v is a subword of w
and write v⊑ w if v can be obtained from w by removing letters, i.e., there are indices
i1 < · · · im such that v = bi1 · · · bim .

Given a set of wordsW , we de�ne its upward-closureW ↑ = {u ∈ Σ∗ | ∃w ∈ W,w⊑ u}
and its downward-closure similarly W ↓ = {u ∈ Σ∗ | ∃w ∈ W,u⊑ w}.

A set of words I ⊆ Σ∗ is called downward-closed if it is closed under taking subwords,
i.e., I = I ↓. Similarly, I is upward-closed if I = I ↑. Note that the complement of a
downward-closed (resp. upward-closed) set is upward-closed (resp. downward-closed).
The set of minimal elements of an upward-closed set I is called its basis. Clearly ⊑ does
not have in�nite decreasing sequences, from which we can infer that if B is the basis of
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I, we have I = B↑. Given a �nite basis B, we de�ne its norm as the maximum length of
its words: ||B|| = max{|w| | w ∈ B}.

Example 3.2.3. The word abba is a subword of bbaababaa.
The downward-closure of the set {anbn | n ∈ N} is a∗b∗, while the upward-closure

of {aaa, aba} is b∗a(a + b)+ab∗. The set of words that contain at least an a and a b is
upward-closed, and its basis is {ab, ba}.

A seminal result in the study of well quasi-orders is Higman's lemma. It was discovered
independently several times, and is now a common tool in formal veri�cation.

Lemma 3.5 ▶ Higman's lemma [Hig52; Hai69]

Let Σ be a �nite alphabet. Then (Σ∗,⊑ ) is a well quasi-order.

An important corollary (or even reformulation) of this result is

Corollary 3.6 ▶ [Hig52; Hai69]

Let Σ be a �nite alphabet. Every upward-closed set of words I ⊆ Σ∗ has a �nite
basis.

This property will be crucial in the next sections.
Another corollary is that the upwards-closure of any language over a �nite alphabet

is regular. This is a consequence of Corollary 3.6, along with the following fact.

Lemma 3.7 ▶ Folklore

Given a �nite set of words B over a �nite alphabet Σ, one can construct a deter-
ministic automaton AB↑ recognising B↑ with at most (||B||+ 1)|B| states.

This automaton can be constructed simply by using states to keep track of the max-
imal pre�x of each element of B that is a subword of the word read so far. Initially, this
is ε for all words, we accept when one of the words has been fully seen. The transitions
are inferred easily.

Lossy channel systems [AJ93; Fin94]

We now present Lossy Channel Systems (LCS), which will help us illustrate the interest
of well quasi-orders, and which we will later use for lower bounds.

A lossy channel system with a single channel is a �nite-state machine that has the
ability to bu�er symbols in a lossy FIFO queue [Sch02].

Formally, it is a tuple S := (L,Σ, T, linit), where L is a �nite set of locations4, Σ is
a �nite set of symbols, T ⊆ L × {read(x),write(x) | x ∈ Σ} × L is the set of transitions
and linit ∈ L an initial state. The action write(x) corresponds to writing x at the end of
the channel and read(x) to reading x at the beginning the channel. A con�guration of S
is a pair in L×Σ∗ denoting the location and the content of the channel. There is a step
from (l, w) to (l′, w′) using t ∈ T , denoted (l, w)⇝t S (l′, w′), when

4We call them locations and not states to avoid confusion with the states of other systems in the
proofs.
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t = (l,write(x), l′) for some x ∈ Σ and w′⊑ w · x,

t = (l, read(x), l′) for some x ∈ Σ and x · w′⊑ w.

The existence of a step is denoted (l, w)⇝S (l′, w′), and its re�exive-transitive closure
is denoted ⇝∗ S . The (location) reachability problem asks, given an LCS S and a location
lf ∈ L, whether (linit, ε)⇝

∗
S (lf , w) for some w.

Remark 3.2.3. Note that if we have (l, w1) ⇝S (l′, w′
1) and w1⊑ w2 then there exists

w′
2 such that w′

1⊑ w′
2 and (l, w2) ⇝S (l′, w′

2). Transition systems with this property are
called well-structured, and have been studied extensively. See [Fin16] for a survey.

A �nite or in�nite sequence of words w0, w1, . . . is called good if there exist i < j such
that wi⊑ wj, and bad otherwise. Higman's lemma [Hig52] states that every bad sequence
of words over a �nite alphabet is �nite, but there is no uniform bound: bad sequences
of words can be arbitrarily long: take, for instance, the sequence aN , aN−1, . . . for any
N ∈ N.

However, if we add a constraint so that each word can only have �nitely many suc-
cessors, then a uniform bound exists. Suppose we have a function g : N → N and only
consider bad sequences of words w0, w1, . . . such that |wi+1| ≤ g(|wi|). Given an initial
word winit, the set of such sequences starting with winit can be described as a tree. As
all bad sequences are �nite, this tree only has �nite branches. As each word w has less
than |Σ|g(|w|)+1 successors, each node of the tree has �nitely many successors. Hence the
tree is �nite by König's lemma, and its depth bounds the length of those sequences.

In the next part we will see the Length Function Theorem, which bounds the growth
of the function mapping the size of the root winit to the maximal depth of such a tree,
assuming g is primitive recursive.

Remark 3.2.3 implies that if there is a run (l0, w0) ⇝S · · · ⇝S (ln, wn) reaching a
location l = ln then there is one such that l0w0, · · · , lnwn is a bad sequence over L ∪ Σ.

Furthermore, we are only interested in runs that start at the initial con�guration
(ls, ε), and we know that if (l, w)⇝S (l′, w′) then |w′| ≤ |w|+ 1.

Those observations allow us to decide the location reachability problem by guessing
a run yielding a bad sequence of words and checking if it reaches lf .

Theorem 3.8 ▶ [AJ93]

Location reachability is decidable for lossy channel systems.

Length Function Theorem

For α an ordinal in Cantor normal form, we denote by Fα the class of functions cor-
responding to level α in the Fast-Growing Hierarchy. We denote by Fα the associated
complexity class and use the notion of Fα-completeness. All these notions are de�ned
in [Sch16]. We will speci�cally work with complexity class Fωω . For readers unfamiliar
with these notions, Fωω -complete problems are decidable but with very high complexity
(non-primitive recursive, and even much higher than the Ackermann class Fω). We do
not formally de�ne this class here, as it requires many notions that we will not use later.
We will only use the two theorems below, for the upper and lower bounds respectively.

Given a function g : N → N and an integer n ∈ N, we say that a sequence of words
w1, . . . is (g, n)-controlled if |wi| ≤ g(i)(n) for all i ≥ 1 (where g(i) denotes g applied i
times). We will use the following result, known as the Length Function Theorem [SS11]:
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3.3. An introductory case: Broadcast networks without data

Theorem 3.9 ▶ Length Function Theorem [SS11]

Let Σ be a �nite alphabet and g : N → N a primitive recursive function. There
exists a function f ∈ Fω|Σ|−1 such that, for all n ∈ N, every (g, n)-controlled bad
sequence w1, w2, . . . has at most f(n) terms.

This theorem lets us bound the maximal length of a minimal run covering a location
l of an LCS by a function of Fωω . As a consequence, the location reachability problem
for LCS is in Fωω . In [CS08], Chambart and Schoebelen showed a lower bound on the
length of a minimal run reaching a given location, from which we can infer the following
result:

Theorem 3.10 ▶ [CT98; CS08]

Location reachability is Fωω -complete for lossy channel systems.

3.3 An introductory case: Broadcast networks with-
out data

We start by showing the proof principles in an easy case, when processes do not have
registers. In that case communication is made only through letters ofM. In this section
we will forget the data in messages, and only consider letters. We simplify notations:
we write br(m) for a broadcast of letter m and rec(m) for a reception of m. We obtain
Recon�gurable Broadcast Networks, as introduced in [DSZ10]. In all that follows we will
thus use the term RBN for this model.

Cover and Synchro are already known to be decidable in polynomial time for those
systems [DSZ10; Fou15]. I could not �nd a reference stating that SafeStrat is NP-
complete in the literature, but closely-related results were proven in [BFS15] and [Sta17].
We reprove the Cover and SafeStrat upper bounds in a way that illustrates the proof
techniques used in the next parts.

Remark 3.3.1. Formally, BNRA without registers are not well-de�ned: we need data to
put in the messages. However, we can encode them in the model by considering protocols
with no record transitions. Hence all agents broadcast only with their initial data, and
cannot store each other's data. Equality transitions become pointless and can be removed.
The resulting systems can be seen as RBN, where messages carry no data.

To begin with, we show that we can characterise winning control strategies as the
ones which force the set of letters sent to stay within some set I ⊆M\{merr}, called an
invariant.

This lets us turn the distributed game into a sequential one: If we are given an
invariant I, checking whether there is a strategy that maintains it comes down to a two-
player safety game. We obtain an algorithm for strategy synthesis: guess an invariant,
and then solve the resulting safety game, which can be done in polynomial time.
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3. Broadcast Networks of Register Automata

De�nition 3.11 ▶ Invariants for RBN

An invariant for an RBN over alphabetM is a set of letters I ⊆M. We say that
it is su�cient for a control strategy σ if it satis�es the following conditions:

merr /∈ I

If a σ-local run receives only messages of I then it broadcasts only messages
of I.

Lemma 3.12 ▶ Invariants characterise winning control strategies

A control strategy σ is winning if and only if there exists a su�cient invariant
I ⊆M for it.

Proof. We prove the two implications, starting by the left-to-right one.

⇒ Suppose σ is winning. Let I be the set of messages such that there exists a σ-run in
which they are broadcast. As σ is winning, merr can never be broadcast, thus merr /∈ I.

We now prove the second item. Suppose by contradiction that we have a σ-local run

s0
op1(m1)−−−−−→δ1 s1

op2(m2)−−−−−→δ2 · · ·
opk(mk)−−−−−→δk sk with s0 = sinit broadcasting some mout /∈ I and

only receiving messages of I.
Then we can construct a σ-run in which mout is broadcast.
We proceed by induction: for all i ∈ [0, k], we show that there is a run ϱi whose

projection on some agent a is s0
op1(m1)−−−−−→δ1 · · ·

opi(mi)−−−−→δi si. For i = 0 this is immediate.
Let i > 0, suppose we have constructed ϱi−1. We construct ϱi as follows. Let Ai−1 be the
set of agents of ϱi−1.

If si−1
opi(mi)−−−−→δi si is a broadcast step, then we simply execute ϱi−1 and then make

a apply that broadcast, which no other agent receives.

If si−1
opi(mi)−−−−→δi si is a reception step, in which a message type m is received, then

we have m ∈ I, by construction of the σ-local run. Hence there exists a σ-run
ϱm over a set of agents Am in which m is broadcast. Up to renaming agents, we
can assume that Ai−1 and Am are disjoint. We then de�ne ϱi over Ai−1 ⊔ Am by
executing ϱi−1 over Ai−1, then executing ϱm over Am up to the point before an agent
am broadcasts m. Finally, we make am broadcast m and a receive it.

In both cases we obtain a σ-run in which the local run of a is s0
op1(m1)−−−−−→δ1 · · ·

opi(mi)−−−−→δi

si. In particular, for i = k, we get a σ-run in which mout is broadcast. As mout /∈ I, this
contradicts the de�nition of I. Hence I satis�es both items of the lemma.

⇐ Suppose there exists I ⊆ M satisfying the conditions of the lemma. Suppose by
contradiction that there is a σ-run ϱ in which merr is broadcast. Let m be the �rst
message broadcast in ϱ that is not in I, and a the agent broadcasting it. Those are
well-de�ned as merr /∈ I. Let ϱ′ be the pre�x of ϱ stopping right after that broadcast.
Then the projection πa(ϱ′) of ϱ′ on a contains a broadcast of m but no reception of any
message m′ /∈ I, a contradiction.

We have shown both directions, concluding the proof.
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Corollary 3.13 ▶ Characterisation of coverability

A message merr is not coverable if and only if there exists I ⊆M such that:

1. merr /∈ I

2. If a local run receives only messages of I then it broadcasts only messages of
I.

Proof. A BNRA can be seen as a BGR where all states belong to Environment. We can
thus simply apply Lemma 3.12.

Proposition 3.14 ▶ [DSZ10]

Coverability is decidable in polynomial time for BNRA without registers.

Proof. We apply the algorithm described in Algorithm 1.

Algorithm 1 Algorithm for the proof of Proposition 3.14.
J ← ∅
repeat

complete ← True
for m ∈M \ J do

if ∃ an initial local run broadcasting m and only receiving messages of J then
J ← J ∪ {m}
complete ← False

end if
end for

until complete
return merr ∈ J

At each iteration of the while loop we either increase J or exit the loop. As a con-
sequence we make at most |M| iterations. Furthermore, each iteration takes polynomial
time: we can check whether there is an initial run broadcasting m and only receiving
messages of J by removing receptions of messages outside of J from the protocol and
then looking for a path from the initial state to a transition broadcasting m. Thus the
algorithm terminates in polynomial time.

For the correctness, �rst observe that we can apply Lemma 3.12. Observe that the
while loop maintains the invariant that all sets I ⊆M satisfying the second condition of
Corollary 3.13 must contain J . It trivially holds when J = ∅. If J satis�es that invariant
and there is an initial local run broadcasting m and only receiving messages of J , then
by the second item of Corollary 3.13 all such I must also contain m. Hence the invariant
is maintained.

In the end, if J contains merr then there cannot be any I satisfying the conditions
of Corollary 3.13. On the other hand, if J does not contain merr, then it satis�es those
conditions and thus merr is not coverable.

The algorithm is therefore correct.
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v1 v2 vn q· · ·

e, c

qerr.

.

.

for each e = (v, v′) ∈ E

and c ∈ {1, 2, 3}

br(v1, 1)

br(v1, 2)

br(v1, 3)

br(vn, 1)

br(vn, 2)

br(vn, 3)

rec(v, c) rec(v′, c)

Figure 3.4: Illustration of the lower bound proof from Theorem 3.15.

The result is not new, but the proof is not quite the one presented in [DSZ10]. This
version foreshadows the more general decidability proof for BNRA presented in the next
sections.

We can also use this invariant characterisation to recover a result of Bertrand, Fournier
and Sangnier, which is the NP-completeness of SafeStrat on BGR without registers.

Theorem 3.15

Deciding the winner of a BGR without registers is NP-complete.

Proof. For the upper bound, by Lemma 3.12, it su�ces to guess a set I ⊆ Σ such that
merr /∈ I and then check if there is a strategy that guarantees that we can only broadcast
a message outside of I if we received one beforehand. This is easily encoded into a safety
game: Take the states and transitions of the BGR, without the operations, add a sink
state with no outgoing transitions, and redirect every reception of a message m /∈ I to it.
The objective of the �rst player is to avoid transitions broadcasting letters of Σ \ I.

It is clear that there is a winning control strategy for the BGR if and only if there is
an invariant I and a strategy avoiding transitions broadcasting messages outside of I in
this safety game. This can be checked in polynomial time, by Proposition 2.8.

For the lower bound, we reduce from the graph 3-colouring problem.
Consider an undirected graph G = (V,E) with V = {v1, . . . , vn}. We build a BGR

with no registers as in Figure 3.4. From the initial state Controller chooses one of
(vi, 1), (vi, 2), (vi, 3) for each i ∈ [1, n] and broadcasts it. Then Environment picks an
edge e = (v, v′) ∈ E and c ∈ {1, 2, 3} and tries to reach qerr by receiving (v, c) and (v′, c).

A strategy for Controller comes down to a colouring of V . It is winning if Environment
can �nd an edge e and c such that both ends of e are coloured with c. In other words,
Controller wins if and only if the selected colouring of V is a valid 3-colouring of G. In
conclusion, we have a reduction from the graph 3-colouring problem to SafeStrat for
BGR without registers.

To conclude this section, let us present an argument in favour of parameterized dis-
tributed synthesis. The fact that we consider an arbitrary amount of agents makes the
existence of a winning control strategy less likely. One might wonder what happens if
we simply want a strategy that works for a bounded, or even �xed amount of agents.
We show that the problem becomes undecidable in this case, even for 3 agents. This
indicates that considering arbitrary numbers of agents can be a good approximation as
it spectacularly reduces the di�culty of the problem.
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Theorem 3.16

Given a BGR G = (R, Qctrl, Qenv, qerr), it is undecidable whether there is a control
strategy such that no σ-run with 3 agents covers qerr.

let

ind

rec(let)

rec(ind)

br(i)

br(a)

for each i ∈ [1, k]

for each a ∈ Σ

test

u

v

i

i

...

...

rec(a1)br(let)

rec(b1)br(let)

br(let)rec(an)

br(let)rec(bn)

br(ind) rec(i)

br(ind) rec(i)

a1 · · · an = ui

b1 · · · bn = vi

for each i ∈ [1, k]

for each i ∈ [1, k]

Figure 3.5: System used for the proof of Theorem 3.16.

Proof. We adapt the classic reduction from PCP from [PR89].
Let (ui, vi)i∈[1,k] be an In�nite PCP instance over an alphabet Σ.
Consider the protocol displayed in Figure 3.5. From the initial state Environment

decides to go to either let, ind or test.
From state let (resp. ind), Controller chooses and broadcasts an in�nite sequence

of letters of Σ (resp. indices of [1, k]). Before each broadcast the agent must receive a
message let (resp. ind).

From state test, Environment chooses to either test the (ui) or (vi). To check them, he
alternates between a reception of an index i and a sequence of letters that form the word
ui. Before receiving a letter (resp. index) he broadcasts let (resp. ind). If he receives a
letter that does not match the current word, he goes to qerr.

A strategy σ comes down to a choice of two sequences i0i1 · · · and a0a1 · · · , which are
the sequences of broadcasts made by Controller from states let and ind.

It must be the case that a0a1 · · · = ui0ui1 · · · as otherwise Environment can send an
agent in let, another in ind and the third one in u. Then eventually the sequence of indices
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will not match the sequence of letters and the third agent will reach qerr. Similarly, it
must be the case that a0a1 · · · = vi0vi1 · · · Hence a winning strategy must yield a solution
to the In�nite PCP instance.

Conversely, if Controller broadcasts a solution to the In�nite PCP instance, then
Environment cannot reach qerr: he has to send an agent in test to reach it, and an agent
in let and another one in ind to make broadcasts. Note that agents all alternate between a
broadcast and a reception. Further, at all times there is at most one agent who can make
a broadcast, and one agent who can receive the message (no message can be received
by two agents). If at some point a message is not received, the system is stuck with all
agents waiting for a reception, and thus Controller wins. Otherwise, since all messages
are received and the broadcasts from let and ind match on indices and letters, no agent
can reach qerr.

In conclusion, the In�nite PCP instance has a solution if and only if Controller has
a control strategy such that no σ-run with 3 agents covers qerr. This establishes the
undecidability of the problem.

3.4 Signature BGR

In this section we establish decidability of Cover and SafeStrat in a subcase of inter-
est, that illustrates well the decidability proof for the general case, while requiring less
technical complications.

De�nition 3.17

A signature protocol is one where every broadcast is made with the value of register
1, and all receptions are made on other registers.

In other words, there are no transitions of the form
br(m,i)−−−−→ with i ≥ 2 or

rec(m,↓1)−−−−−→
or

rec(m,=1)−−−−−−→ .
We call signature BNRA and signature BGR the BNRA and BGR described by
signature protocols.

In other words, such a protocol keeps its initial datum in register 1 and uses it for
broadcasts, while the other registers are used to store and compare received values. As
processes only broadcast with their initial datum, in this section we will call output the
d-output of a local run u with d its initial datum, and write it Outsign(u).

An interesting property of those systems is that the datum of a message identi�es
its sender: Each agent only sends messages with its initial datum, and since those are
unique, messages containing the same datum necessarily come from the same agent.

In this section we prove the following theorem:

Theorem 3.18

The Cover and SafeStrat problem are decidable and in Fωω for signature BGR.

Let us �x G = (R, Qctrl, Qenv,merr) a BGR with r registers.
To prove the theorem, we once again use a characterisation of winning strategies

in terms of invariants. Here an invariant is a (downward-closed) set of words of M∗,
instead of letters like in the previous section. A witness for non-coverability of a message
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merr is a downward-closed set of words that contains ε and not merr and such that an
agent following whose output is not in that set has a d-input outside that set as well5.
Intuitively, if all agents respect that condition, then we can only obtain runs where all
agents output words in the invariant, and thus no-one broadcasts merr.

The downward-closed property comes from the fact that if an agent outputs a word
w, then other agents can receive any subsequence of letters of that word, as broadcasts
can be lost. It is crucial as it gives us a �nite representation of invariants, their basis.

De�nition 3.19 ▶ Invariants for signature BGR

An invariant for a signature BGR over an alphabet M is a downward-closed set
I ⊆ M∗. We say that it is su�cient for a control strategy σ if it satis�es the
following conditions:

1. ε ∈ I and merr /∈ I

2. For all σ-local run u, if Ind(u) ∈ I for all d ∈ D then Outsign(u) ∈ I.

The next step is to show that if we have a winning strategy we can always �nd a
su�cient invariant for it.

Lemma 3.20 ▶ Invariants characterise winning strategies

A control strategy σ is winning if and only if there exists a su�cient invariant
I ⊆M∗ for it.

Proof. ⇒ Suppose σ is winning. Let I be the set of words such that there exists a σ-run,
an agent a and a datum d such that w is a subword of the d-output of the projection of that
run on a. The empty word is in I as it is the output of a local run of length 0, which is a σ-
run. As σ is winning,merr can never be broadcast, thusmerr /∈ I. For the other condition,
consider a σ-local run u = (s0, c0)

op1(m1,d1)−−−−−−→δ1 (s1, c1)
op2(m2,d2)−−−−−−→δ2 · · ·

opk(mk,dk)−−−−−−→δk (sk, ck)
whose d-input is in I for every datum d.

Then we can construct a σ-run in which some agent has output Outsign(u), thus
proving that Outsign(u) ∈ I. This construction is illustrated in Figure 3.6.

Let D be the set of data appearing in u. For each datum d ∈ D, let wd be the d-input
of u. As wd ∈ I, there exists a σ-run ϱd such that wd is a subword of the output of an
agent ad. Let Ad be the set of agents of that σ-run.

Up to renaming data and agents, we can assume that the initial datum of ad in ϱd is
d, and that the σ-runs (ϱd)d∈D operate over disjoint sets of data and agents.

We take a fresh agent a. We construct a σ-run ϱ over {a} ⊔
⊔

d∈D Ad as follows. We
make a follow the local run u. Whenever a needs to receive a message (m, d), we run
ϱd over Ad until a message (m, d) is broadcast by ad, and make a receive it. Then we
continue running u. As Ind(u) is a subword of the output of πad(ϱd) for all d ∈ D, we
eventually run u in full.

This yields a valid σ-run in which u is fully executed by a. Hence we have a σ-run in
which agent a outputs Outsign(u). By de�nition of I, we thus have Outsign(u) ∈ I.
⇐ Suppose there exists I ⊆ M∗ satisfying the conditions of the lemma. Suppose by
contradiction that there is a σ-run ϱ in which merr is broadcast.

5As I is downward-closed, ε ∈ I is synonymous with I being non-empty.

46



3. Broadcast Networks of Register Automata

ϱ1 :
br(a, d)br(a, d) br(b, d)

ϱ2 :
br(b, d) br(a, d)

u :
rec(b, d) rec(a, d)rec(a, d) rec(a, d)

br(b, d)br(b, d)

ϱ :

rec(b, d) rec(a, d)rec(a, d) rec(a, d)

br(b, d)br(b, d)

br(a, d) br(a, d)br(b, d)

br(b, d) br(a, d)

Figure 3.6: Illustration of the proof of Lemma 3.20. Most information is omitted, we only
represent schematically the relevant broadcasts and receptions. Data are represented by
colours. If we have a local run u outputting bb and for each d a run in which an agent
outputs the d-input of u, then we can rename some data and compose those runs to form
a run in which an agent outputs bb. Local runs of relevant agents are coloured with their
initial datum.

Let ϱ− be the maximal pre�x of ϱ such that the output of each agent is in I. It
is well-de�ned as ε ∈ I, thus the pre�x of ϱ with no step satis�es that condition. As
merr /∈ I and I is downward-closed, I does not contain any word containing merr. Hence
the output of ϱ is not in I, and thus ϱ− is a strict pre�x of ϱ.

Let a be the agent making the broadcast of the step right after ϱ− in ϱ, and let m be
the message it broadcasts. Let ϱ+ be the pre�x of ϱ made of ϱ− and that extra step.

Let w− be the output of a in ϱ−. For all d ∈ D, the d-input of a in ϱ− must be a
subword of the output of another agent. By de�nition of ϱ−, the d-input of a in ϱ− is
thus in I for all d. As the d-input of a in ϱ− and ϱ+ is the same, the d-input of a in ϱ+
is in I for all d. By maximality of ϱ−, the output of a in ϱ+ is not in I.

This contradicts the second condition on I given by the lemma.
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Corollary 3.21 ▶ Characterisation of coverability in signature BNRA

Let R be a register transducer with r registers representing a BNRA. A message
merr is not coverable if and only if there exists a downward-closed set I ⊆M∗ such
that:

1. ε ∈ I and merr /∈ I

2. For all local run u, if Ind(u) ∈ I for all d ∈ D then Outsign(u) ∈ I.

Recall that, as a corollary of Higman's lemma, upward-closed sets of words can be
�nitely described by their �nite basis.

In Appendix A we present a direct proof that Cover is decidable for signature BNRA.
As we can enumerate runs, we know that the problem is recursively enumerable. To show
that it is also co-recursively enumerable, we can enumerate invariants. The catch is that
we need to be able to decide the second condition in De�nition 3.19. This is the main
content of the appendix.

For SafeStrat, we cannot enumerate strategies (there are uncountably many) thus
we need a di�erent technique. Our algorithm enumerates invariants and checks for each
one whether there is a strategy such that the conditions listed in Lemma 3.20 are satis�ed.
While the �rst item is straightforward to check on the invariant, the second is not. To
verify it, we design a game in which the two players construct a local run, and the received
data are chosen by Environment.

Invariant game for signature BGR

Intuitively, the two players pick the transitions from their respective states, and Environ-
ment picks the data received at each step, when they are not already determined by the
chosen transition. If at some point the d-input gets out of I for some d then the game
stops and Controller wins. If the output gets out of I then the game stops and Envi-
ronment wins. If none of the two happen and the game goes on forever then Controller
wins.

This characterises the capacity of Controller to keep outputs within a given invariant,
but if we made the choice of data explicit this game would be in�nite.

We reduce it to a �nite reachability game, called the invariant game which we can
solve by a simple �xpoint computation.

A �rst observation is that it is always in Environment's best interest to choose fresh
data that were never seen before, as they come with the smallest d-input. Thus whenever
we receive a datum that is not in the registers we can assume that the associated d-input
is empty. This means that we do not need to remember the d-inputs associated to every
datum of the local run, but only those that are currently in the registers.

In order to formalise the de�nition of the game, we need to de�ne notions of input
and output on sequences of transitions. The idea is that we can assume that every datum
that disappears from the registers will never appear again. In order to check whether
some d-input gets out of I, we only need to keep track of the sequences of letters received
with the data currently in the registers. We call those the recent inputs. Furthermore,
in our model of register transducers, a received datum always appears in at most one
register at a time, and while it is not forgotten, it stays in that one register. This will
allow us to read the recent inputs directly from the sequence of transitions.
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We �x a signature BGR G = (R, Qctrl, Qenv, qerr) for the rest of this section. Given
a sequence of transitions δ1 · · · δk of R, we de�ne its output as the sequence of letters
sent by broadcasts. For all registers i ∈ [1, r], we also de�ne its recent input on i as the
sequence of letters received with an equality transition with register i since it was last
updated.

Formally, the output of δ1 · · · δk is de�ned inductively as Out(ε) = ε and

Out(δ1 · · · δk+1) =

{
Out(δ1 · · · δk) if δk+1 is a reception,

Out(δ1 · · · δk)m if δk+1 =
br(m,1)−−−−→for some m.

The recent input on i is de�ned as recentIni(ε) = ε and:

recentIni(δ1 · · · δk+1) =


m if δk+1 =

rec(m,↓i)−−−−−→ for some m and i,

recentIni(δ1 · · · δk)m if δk+1 =
rec(m,=i)−−−−−−→ for some m and i,

recentIni(δ1 · · · δk) otherwise.

Note that we always have recentIn1(δ1 · · · δk) = ε, as we assumed that no reception is
made using register 1.

The invariant game IG(R, I) goes as follows. The set of vertices is simply QR. From
each vertex q ∈ QR, players choose a transition from q in ∆R.. Controller chooses the
next transition when the current vertex is in Qctrl, Environment when it is in Qenv.

If at some point the play π = δ1 · · · δk is such that recentIni(π) /∈ I for some i ≥ 2
then Controller wins.

If at some point we see a reception transition receiving a letterm /∈ I then Controller
wins. This case is not covered by the previous one as we may receive messages with
data that do not appear in the registers and not store it. The received letter then
does not appear in the recent inputs.

If at some point the play π = δ1 · · · δk is such that Out(π) /∈ I then Environment
wins.

If the play goes on forever without any of those things happening then Controller
wins.

We start by showing that we can solve this game by considering it as a regular safety
game. We obtain as a corollary that if Environment wins then he can win in a bounded
number of steps.

De�ne φ(R, B) := |R|(||B||+ 1)|R|(|B|+1)

Lemma 3.22 ▶ Decidability of the invariant game

Given a BGR over protocol R and a �nite set of words B, we can decide in expo-
nential time whether Controller has a winning strategy in IG(R, (B↑)c).
Furthermore, if Environment has a winning strategy then he has a strategy to win
in at most φ(R, B) steps.
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Proof. By Lemma 3.7, B↑ is a regular language, recognised by a deterministic �nite
automaton AB↑ = (QB,M,∆B, q

B
0 , FB) with (||B||+ 1)(|B|+1) states.

We can construct a deterministic automaton B over the alphabet ∆R that reads plays
δ1 · · · δk of IG(R, (B↑)c) and accepts exactly the winning plays for Environment.

Its set of states is (QB)
r, plus a rejecting sink state ⊥ and an accepting sink state ⊤,

which is the only accepting state. The �rst component keeps track of the state reached in
AB↑ by the output of the sequence of transitions. The others keep track, for each register
i ≥ 2, of the state reached by the recent input on i in AB↑.

Transitions of that automaton are easy to infer from the de�nition of output and
recent input on i.

The automaton goes to ⊥ if the recent input on i is in B↑ for some i, or if it sees a
reception transition of a message m ∈ B↑.

It goes to ⊤ if the output is in B↑.
By Proposition 2.8, we can solve this game in polynomial time in the size of the

automaton B and the size of the arena of IG(R, (B↑)c) (i.e., |R|), that is, in exponential
time in ||B||+ |B|+ |R|.

Furthermore, if Environment has a winning strategy then he has one that guarantees
that he wins in at most φ(R, B) = |AB↑|r|R| steps.

We have two things to prove: First that a winning strategy for Controller in IG(R, I)
yields a control strategy σ for which I is a su�cient invariant. Then, that a winning
strategy for Environment in IG(R, I) implies that there is no control strategy for which
I is a su�cient invariant.

Lemma 3.23

Let I ⊆ M∗ be a downward-closed set of words containing ε and not merr. If
Controller wins the invariant game IG(R, I) then there is a control strategy σ such
that I is a su�cient invariant for σ.

Proof. Let σIG be a winning strategy for Controller in IG(R, I).
We de�ne σ as the control strategy in which Controller follows σIG. That is, given a

local run u = (s0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opk(mk,dk)−−−−−−→δk (sk, ck), we set σ(u) = σIG(δ1 · · · δk).
We show that I is a su�cient invariant for σ. To do so, we assume by contradiction

that we have a σ-local run u = (s0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opk(mk,dk)−−−−−−→δk (sk, ck) such that u
has an output outside of I, and its d-input is in I for all d ∈ D.

We then show that π = δ1 · · · δk is a losing σIG-play for Controller in IG(R, I). As u
is a σ-local run, by de�nition of σ, δ1 · · · δk is a σIG-play.

For all j ∈ [0, k] let uj be the pre�x of u up to (sj, cj) and πj = δ1 · · · δj.

Claim 3.23.1. For all j ∈ [0, k] and i ∈ [2, r] we have recentIni(πj)⊑ Inuj
(cj(i)) and

Out(πj) = Outsign(uj).

Proof of the claim. By a straightforward induction on j. ■

We can instantiate the previous claim with j = k to obtain Out(π) = Outsign(u). As
we assumed that Outsign(u) /∈ I, we have Out(π) /∈ I.

As the d-input of u is in I for all d ∈ D, and I is downward-closed, the letters of
all messages received in u are in I. Moreover, by the previous claim, for all j ∈ [0, k],
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we have recentIni(πj)⊑ Inuj
(cj(i))⊑ Inu(cj(i)) ∈ I. As I is downward-closed, we have

recentIni(πj) ∈ I for all i, j.
As a result, π is a losing σIG-play for Controller. This contradicts the assumption

that σIG is a winning strategy for IG(R, I). In consequence, there is no σ-local run u
whose output is outside of I, and whose d-input is in I for all d ∈ D.

This means that I is a su�cient invariant for σ.

Lemma 3.24

Let σ be a control strategy. Let I ⊆ M∗ be a downward-closed set of words
containing ε and not merr, and let B be the basis of Ic.
If Environment wins the invariant game IG(R, I) then there is a σ-local run of
length at most φ(R, B) with an output not in I and all d-inputs in I.

Proof. By Proposition 2.8 there exists τIG a winning strategy τIG for Environment in the
invariant game IG(R, I) such that Environment always wins in at most φ(R, B) steps.

We construct a σ-local run of length at most φ(R, B) with an output not in I and all
d-inputs in I. To do so, we apply τIG to choose transitions and we choose data by always
picking a datum never seen before in the run, when the datum is not determined by the
transition.

Let (s0, c0) be an initial con�guration of R. We de�ne iteratively a sequence of steps

(sk−1, ck−1)
opk(mk,dk)−−−−−−→δk (sk, ck) as follows. Suppose we de�ned them up to (sk−1, ck−1),

and let uk−1 be the local run de�ned so far. We �rst choose δk:

If sk−1 ∈ Qctrl then δk = σ(uk−1),

otherwise δk = τIG(δ1 · · · δk−1).

We then choose dk:

If δk is a broadcast transition of letter m, we set dk = ck(1) (the initial datum of
the local run).

If δk is a record transition or a disequality transition, we pick a datum dk that does
not appear in uk−1 before.

If δk = sk−1
rec(m,=i)−−−−−−→ sk is an equality transition of letter m, we set dk = ck−1(i).

Clearly we maintain the fact that uk is a σ-local run and δ1 · · · δk is a τIG-play in
IG(R, I). We stop when δ1 · · · δk is winning for Environment in IG(R, I), which happens
for some k ≤ φ(R, B). Let K be the �nal value of k and u = uK be the local run obtained
at the end.

It remains to show that the output of u is not in I while all its d-inputs are in I. To
do so, we rely on the following claim:

Claim 3.24.1. For all register i and index k, recentIni(δ1 · · · δk) = Inuk
(ck(i)). Further-

more, Out(δ1 · · · δk) = Outsign(uk)

Proof. By a straightforward induction on k.
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By de�nition δ1 · · · δK is a winning τIG-play for Environment, hence its output is not
in I, thus Outsign(u) = Outsign(uK) is not in I either. Let d ∈ D a datum appearing in
u, and let k be such that (sk, ck) is the last con�guration in which d appears. Let i be
the register such that ck(i) = d. Then we have Inu(d) = Inuk

(ck(i)) = recentIni(δ1 · · · δk).
As τIG is winning for Environment, recentIni(δ1 · · · δk) ∈ I, and thus Inu(d) ∈ I.

We have found a σ-local run of length at most φ(R, B) whose output is not in I while
all its d-inputs are.

Our next step is to bound the minimal size of a su�cient invariant for some winning
control strategy σ when there is one. The idea is as follows: Take an invariant I such
that the basis {w1, . . . , wk} of Ic has as few elements as possible. We can assume that
|w1| ≤ · · · ≤ |wk|. Then we know that, for all i, {w1, . . . , wi} is not a su�cient invariant
for σ. Hence by Lemma 3.24 we get a σ-local run of bounded size breaking the invariant
{w1, . . . , wi}, which forces {wi+1, . . . , wk} to contain a word of bounded size. This bounds
the size of wi+1 with respect to w1, . . . , wi, as stated in the lemma below. We will then
be able to leverage the Length Function Theorem to bound the size of the basis of Ic.

De�ne ψ(n) = |R|(n+ 1)|M|n+1+1

Lemma 3.25 ▶ Bounding the size of the invariant

Let G a signature BGR. There is a winning control strategy for G if and only if
there is a sequence of words w0, . . . , wk ∈M∗ such that

Controller wins IG(R, {w1, . . . , wk}↑c),

and for all i ∈ [1, k], |wi| ≤ ψ(|wi−1|).

Proof. By Lemma 3.23, if there is a sequence of words w0, w1, ..., wk such that Controller
wins the invariant game IG(R, ({w0, w1, ..., wk}↑)c) then there is a control strategy such
that ({w0, w1, ..., wk}↑)c is a su�cient invariant for σ. Hence, by Lemma 3.20, σ is a
winning control strategy.

Conversely, suppose there is a winning control strategy σ. By Lemma 3.20 there is a
downward-closed su�cient invariant I ⊆M∗ for σ.

First, by (the contraposition of) Lemma 3.24 Controller wins IG(R, I), so the �rst
condition of the lemma is satis�ed.

For the second condition, as Ic is upward-closed it has a �nite basisB. Let w0, w1, ..., wk

be the elements of B sorted by length, i.e., |wi| ≤ |wi+1| for all i. We can assume that we
took I so that k is minimal. For all j ∈ [1, k], we de�ne Bj = {wi | i < j} and Ij = Bj ↑c.
Note that we have I ⊆ Ik ⊆ . . . ⊆ I0. As I contains ε and not merr, we can assume
w0 = merr. By minimality of k, for all j ∈ [1, k] the set Ij is not a su�cient invariant for
σ.

By Lemma 3.24, there is a σ-local run of length at most φ(R, Bj) whose output is
not in Ij and whose d-inputs are all in Ij. As I is a su�cient invariant for σ, one of those
d-inputs must not be in I. We choose one of those and call it w. As a consequence, there
exists wℓ with ℓ ≥ j such that wℓ⊑ w, and thus |wℓ| ≤ |w| ≤ φ(R, Bj). As |wi| ≤ |wi+1|
for all i, this implies |wj| ≤ φ(R, Bj) = |R|(||Bj|| + 1)(|Bj |+1). As wj−1 is of maximal
length among words of Bj, we have ||Bj|| = |wj−1| and |Bj| ≤ |M||wj−1|+1.

As a result, |wj| ≤ |R|(|wj−1|+1)|M||wj−1|+1+1 = ψ(|wj−1|). Thus the second condition
of the lemma is also satis�ed.
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Theorem 3.26

SafeStrat is decidable and in Fωω for signature BGR.

Proof. Let G a BGR. We apply the Length Function Theorem with Σ =M and g(n) =
n(n + 1)n

n+1+1. We obtain a function f ∈ Fω|M|−1 such that every (g, n)-controlled bad
sequence of words w0, w1, ..., wk has at most f(n) terms.

We use a non-deterministic algorithm that guesses a sequence of words w1, ..., wk such
that w1 = merr and |wi| ≤ |wi+1| ≤ ψ(|wi|) for all i. One can straightforwardly check
that then we have |wi| ≤ g(i)(|R|+ |M|+ 1) for all i.

Let B = {w0, w1, ..., wk}.
The algorithm then checks that there exists a strategy σ such that the comple-

ment of {w0, w1, ..., wk}↑ is a su�cient invariant for σ, by solving the invariant game
IG(R, ({w0, w1, ..., wk}↑)c). This can be done in exponential time in |R| + k + |wk|, by
Lemma 3.22. We accept if there is such a strategy and reject otherwise.

By Lemma 3.25, this algorithm is correct. We can make it deterministic with an
exponential blow-up in the time complexity. The time required by this algorithm is
therefore h(f(|R|+ |M|+1)) with h a primitive recursive function. As Fω|M|−1 is closed
under composition with primitive recursive functions, the algorithm takes a time bounded
by a function of Fω|M|−1 .

As a consequence, the problem is in Fωω .

Corollary 3.27

Cover is decidable and in Fωω for signature BGR.

3.5 General case

In this section we generalise the previous result to all BGR.

Theorem 3.28

The Cover and SafeStrat problem are decidable in Fωω for general BGR.

We �x a BGR G = (R, Qctrl, Qenv,merr) for the rest of this section. Note that we
choose to use an error letter merr instead of an error state qerr: This is more convenient
for the proof, and does not weaken our results in light of Remark 3.2.2.

The general structure of the proof is the same as before, but the removal of the
signature hypothesis makes it signi�cantly more technical. The main di�erence between
the signature and general models is that in the latter a process can send acknowledgements
to a process it received messages from, as in the right protocol in Figure 3.2. As we will
see, this phenomenon requires us to use more complex invariants to extend the proof to
all BGR.

We make the following informal observation: Say an agent receives a message (m, d)
with d its initial datum; this is possible in general BGR but not in signature ones. Then
this means that other agents, which did not have this datum initially, received enough
messages with datum d to be able to broadcast (m, d). Intuitively, we can copy these
agents many times, which allows us to assume that we have an unlimited supply of
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messages (m, d). In sum, we will show that if an agent sends a message (m, d) with d
that is not its initial datum, then from this point on we can assume that messages (m, d)
are for free. This intuition justi�es the de�nition of decomposition, which describes the
sequence of letters sent with a given datum during a run. It details the sequence of letters
sent by the agent with that datum initially, and the points at which each letter is �rst
broadcast with that datum by another agent.

De�nition 3.29

A decomposition is a tuple dec = (v0,m1, . . . , vk−1,mk, vk) with m0, . . . ,mk distinct
letters ofM and vi ∈M∗ for all i.
A word w ∈ M∗ matches dec if w = w0 · · ·wk where each wi can be obtained by
inserting letters from {m1, . . . ,mi} in vi.

Example 3.5.1. Let M = {a, b, c}. Then dec = (abba, a, cbc, b, abc) is a decomposition.
The word abbacabaacbabbc matches dec as we can cut in in three parts abbacabaacabbabca,
and cabaac can be obtained by adding some a to cbc and abbabca can be obtained by adding
some a and b to abc.

We write Ldec for the language of words that match dec.
Given a family of upward-closed sets of words (Jm)m∈M, we de�ne D((Jm)m∈M) as

the set of decompositions

D((Jm)m∈M) = {(v0,m1, . . . , vk−1,mk, vk) | ∀i,L(v0,m1,...,vi−1) ∩ Jmi
̸= ∅}.

With an additional downward-closed set I, we also de�ne

D(I, (Jm)m∈M) = {(v0,m1, . . . , vk−1,mk, vk) | v0 · · · vk ∈ I,∀i,L(v0,m1,...,vi−1) ∩ Jmi
̸= ∅}.

Finally, the set of words producible by I, (Jm)m∈M is

L(I, (Jm)m∈M) =
⋃

dec∈D(I,(Jm)m∈M)

Ldec.

We say that a local run u with initial datum d is compatible with a decomposition dec =
(v0,m1, . . . , vk−1,mk, vk) if u = u0 · · ·uk where vi⊑Outd(ui) and Ind(ui) ∈ {m1, . . . ,mi}∗
for all i.

Let us take a moment to explain those de�nitions. Here I should be thought of as the
set of words overM that can be broadcast by an agent with its initial datum. Meanwhile,
Jm represents the set of words w overM such that an agent can broadcast (m, d) with d
not its initial datum while having received before only (a subword of) w with that datum.
It can be read as the �cost� of a message m: in order to receive a message (m, d) you
should �rst broadcast a sequence of letters of Jm with datum d.

A decomposition (v0,m1, . . . , vk) is a scenario of the sequence of letters broadcast over
a datum d during a run: The agent who has d as initial datum broadcasts v0 · · · vk with
it, while m1, . . . ,mk mark the points at which each of those letters is �rst broadcast with
datum d by another agent.

Then, we can see D(I, (Jm)m∈M) as the set of decompositions (v0,m1, . . . , vk) that
are compatible with the invariant I, (Jm)m∈M. The condition v0 · · · vk ∈ I means that
an agent with d as initial datum should be able to broadcast v0 · · · vk with it. The other
condition says that for all i there is a word w ∈ L(v0,m1,...,vi−1) ∩ Jmi

. This should be read
as follows:

54



3. Broadcast Networks of Register Automata

w ∈ Jmi
means that if we can broadcast the sequence w with datum d, we can make

an agent broadcast (mi, d)

w ∈ L(v0,m1,...,vi−1) means that we can broadcast the sequence w with datum d, as
we can obtain it from v0 · · · vi−1 by adding enough m1, . . . ,mi−1.

3.5.1 Characterisation of winning strategies with invariants

An invariant for general BGR is made of a downward-closed set of words I ⊆ M∗ (the
sequences of letters that may be produced over some datum) and an upward-closed set
of words Jm ⊆M∗ for each letter m (the sequences of letters that allow an agent to send
a message (m, d) with d that is not its initial datum).

De�nition 3.30 ▶ Invariants for BGR

An invariant for general BGR is a pair (I, (Jm)m∈M) with I ⊆ M∗ a downward-
closed set of words and, for all m, Jm ⊆M∗ an upward-closed set of words.
We say that it is su�cient for a control strategy σ if the following conditions hold.

1. ε ∈ I, merr /∈ I and Jmerr ∩ I = ∅

2. L(I, (Jm)m∈M)) ⊆ I

3. For all initial σ-local run u with initial datum d, if:

(i) u is compatible with a decomposition dec ∈ D((Jm)m∈M), and

(ii) for all d′ ̸= d, Ind′(u) ∈ I,

then we have that

(a) Outd(u) ∈ I
(b) for all m ∈ M and d′ ̸= d, if u contains a broadcast of (m, d′) then

Ind′(u) ∈ Jm.

We once again prove that every winning control strategy has a su�cient invariant.

Lemma 3.31 ▶ Invariants characterise winning strategies

A control strategy σ is winning if and only if there exists a su�cient invariant
(I, (Jm)m∈M) for it.

The rest of this section is dedicated to the proof of this lemma. To do so, we need
an argument that resembles the construction illustrated in Figure 3.6. However, the
construction gets more involved in this case.

We can start by proving the easier direction of the equivalence, given by the following
lemma.
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Lemma 3.32

If there exists a su�cient invariant (I, (Jm)m∈M) for a control strategy σ then σ is
winning.

Proof. Suppose σ has a su�cient invariant (I, (Jm)m∈M). Suppose by contradiction that
there is a σ-run ϱ in which merr is broadcast.

Let a be an agent broadcasting merr in ϱ, let u be its local run.
We �rst show that the local run of a in ϱ does not satisfy (a) and (b).
If merr is broadcast in u with its initial datum then, as merr /∈ I and I is downward-

closed, we cannot have Outd(u) ∈ I. On the other hand, if merr is broadcast in u with
another datum d′ then as Jmerr = ∅, Ind′(u) /∈ Jmerr . Hence u does not satisfy (a) and
(b).

Let ϱ− be the maximal pre�x of ϱ such that the local runs of all agents satisfy (a) and
(b). It is well-de�ned: we saw that the full run ϱ does not satisfy this requirement, and
as ε ∈ I, the pre�x of ϱ with no step satis�es it. Furthermore ϱ− must be a strict pre�x
of ϱ.

Let a be the agent making the broadcast of the step right after ϱ− in ϱ, and let m be
the message it broadcasts. Let ϱ+ be the pre�x of ϱ made of ϱ− and that extra step.

By maximality of ϱ−, there must be an agent whose local run in ϱ+ does not satisfy
(a) and (b). This agent can only be a: all agents satis�ed both conditions in ϱ−, an
agent cannot switch from satisfying to not satisfying those conditions without making a
broadcast (for (b), this is due to the fact that all Jm are upward-closed), and a is the
only one who made a broadcast in the last step.

As a consequence, the local run u+ of a in ϱ+ must dissatisfy either (a) or (b). It
remains to show that u+ satis�es both (i) and (ii) to obtain a contradiction.

We start by showing that the local run u− of a in ϱ− satis�es (i) and (ii).

Let d be the initial datum of u−. Let m1, . . . ,mk be the letters such that (mi, d)
is broadcast by an agent that is not a during ϱ−. Let us cut ϱ− into sections
ϱ0 · · · ϱk such that ϱ0 · · · ϱi is the maximal pre�x of ϱ− in which (mi, d) has not
been broadcast by any agent apart from a. For each i let ui be the projection of
ϱi on a. We thus have u− = u0 · · ·uk. Let ami

be the �rst agent di�erent from a
who broadcasts (mi, d) and let umi

be the projection of ϱ− on ami
. Let wi be the

sequence of letters broadcast in ϱi with datum d.

Consider the decomposition dec = (v0,m1, . . . , vk−1,mk, vk) where vi = Outd(ui).
By de�nition u− must be compatible with it. Let i ∈ [1, k]. As umi

satis�es (b),
we have Ind(umi

) ∈ Jmi
. By de�nition, we must have Ind(umi

)⊑ w0 · · ·wi−1 and
thus w0 · · ·wi−1 ∈ Jmi

as Jmi
is upward-closed. Furthermore, each wj (the letters

sent in ϱj with datum d) can be obtained from vj (the ones sent by a) by adding
letters of {m1, . . . ,mj} (the broadcasts of other agents). As a result, we have
w0 · · ·wi−1 ∈ L(v0,m1,...,vi−1). We obtain that w0 · · ·wi−1 ∈ Jmi

∩ L(v0,m1,...,vi−1), thus
Jmi
∩ L(v0,m1,...,vi−1) is not empty. In conclusion, dec ∈ D((Jm)m∈M).

We now show that u− satis�es (ii).

Let d′ ̸= d. If d′ does not appear in ϱ− then Ind′(u−) = ε ∈ L(I, (Jm)m∈M)).
Otherwise, let a′ be the agent whose initial datum in ϱ is d′. We set w′ the sequence
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3. Broadcast Networks of Register Automata

of letters broadcast with datum d′ in ϱ−. Clearly Ind′(u−)⊑ w′. In order to show
that Ind′(u−), it su�ces to show that w′ ∈ L(I, (Jm)m∈M)).

We use the same arguments as for the previous item: we cut ϱ− into sections ϱ′0 · · · ϱ′k
according to the times at which new letters are broadcast with d′ by agents other
than a. We then construct a decomposition dec′ = (v′0,m

′
1, . . . , v

′
k−1,m

′
k, v

′
k) where

m′
i is the message broadcast with d′ at the start of ϱ′i and v′i is the sequence of

letters broadcast by a′ in ϱ′i.

We argue as before that w′ ∈ Ldec′ and dec′ ∈ D(I, (Jm)m∈M).

We have shown that u− satis�ed (i) and (ii). To obtain a contradiction, we must show
that u+ satis�es them as well. By de�nition, u+ is u− with an additional broadcast at
the end.

Let dec = (v0,m0, . . . , vk) ∈ D((Jm)m∈M) be a decomposition such that u− is
compatible with dec. We have u− = u0 · · ·uk where vi⊑ Outd(ui) and Ind(ui) ∈
{m1, . . . ,mi}∗ for all i. Let u+k be uk to which we append the last broadcast in
u+. We obtain u− = u0 · · ·uk−1u

+
k . Since vk⊑ Outd(uk)⊑ Outd(u

+
k ) and Ind(uk) =

Ind(u
+
k ) ∈ {m1, . . . ,mk}∗, we conclude that u+ is compatible with dec. Hence u+

satis�es (i).

As Ind′(u−) = Ind′(u+) for all d′ ∈ D, u+ satis�es (ii).

In conclusion, we have constructed a σ-local run u+ such that u+ satis�es (i) and (ii)
but not (a) and (b), yielding a contradiction.

We must now prove the other implication of Lemma 3.31. Intuitively, the argument
goes as follows.

We de�ne a notion of partial run. This is a run of a set of agents, but some messages
can be received without being broadcast. They are called unmatched receptions. A local
run is a particular case of partial run, with a single agent.

We assume that σ is winning. We take I as the downward-closure of the set of words
w ∈ M∗ such that there is a σ-run ϱ in which the sequence of messages w is broadcast,
all with the same datum. For each m, we set Jm to be the upward-closure of the set
of words w = m1 · · ·mn such that there is a σ-partial run in which the sequence of
unmatched receptions is of the form (m1, d) · · · (mn, d) for some d ∈ D, and (m, d) is
broadcast at some point. This should be understood as follows: if we have a run in which
(m1, d) · · · (mn, d) is broadcast, then we can compose it with the partial run above, match
all the unmatched receptions and obtain an extra broadcast of m.

The di�culty is to show that those sets form a su�cient invariant for σ. In particular,
we need to take a σ-local run u satisfying (i) and (ii) and show that it satis�es (a) and
(b). We do that by building σ-runs in which the local run of some agent is u.

We rely on several technical lemmas. Lemma 3.34, 3.35 and 3.36. Their statements
are involved but they come with illustrations that should give helpful intuition. Before
reading the details of those lemma we recommend that the reader reads the proof of
Theorem 3.31 at the end of this section, to better understand how those lemmas are
used.
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De�nitions for partial runs

For the following proof we need to introduce the notion of partial run, which describes
the projection of a run on a subset of agents. We then show a key technical lemma that
allows us to construct a run from a local run and a set of suitable partial runs.

We will use this lemma to prove a characterisation of winning control strategies using
some invariants, like in the previous sections.

De�nition 3.33

Let γ, γ′ two con�gurations.
A partial step γ −→p γ

′ is de�ned if either γ −→ γ′ (normal step) or there exist

m ∈ M, d ∈ D such that for all agent a either γ(a) = γ′(a) or γ(a)
rec(m,d)−−−−−→δ γ

′(a)
for some reception transition δ (unmatched reception of (m, d)).
A partial run ϱ is a sequence of partial steps. It is initial if it starts in an initial
con�guration. Its d-input Ind(ϱ) is the sequence m0 · · ·mk of letters corresponding
to unmatched receptions with datum d in ϱ. Its d-output Outd(ϱ) is the sequence
of letters corresponding to broadcasts with datum d in ϱ.

Note that a local run can be seen as a partial run with a single agent. Given a control
strategy σ, a σ-partial run is a partial run in which the local runs of all agents are σ-local
runs.

A datum d is initial in ϱ if it appears in the �rst con�guration. We extend the notion
of compatible to partial runs: A partial run ϱ is compatible over d with a decomposition
dec = (v0,m1, . . . , vk) if ϱ = ϱ0 · · · ϱk and for all i ∈ [0, k], vi⊑ Outd(ϱi) and Ind(ϱi) ∈
{m1, . . . ,mi}∗, with d an initial datum of some agent in ϱ.

The following lemmas give us ways to compose partial runs to obtain complete runs.
Suppose we have a partial run ϱ compatible with a decomposition dec = (v0,m1, . . . , vk)

over an initial datum d.
Suppose that we have, for each non-initial datum d′, a run ϱd′ such that Ind′(ϱ)⊑Outd′(ϱd′).
Also suppose that for each j ∈ [1, k] we have a partial run ϱj such that Ind(ϱ

′
j) ∈

L(v0,m1,...,vi−1) and which contains a broadcast of (m, d), and no unmatched receptions on
data other than d.

First, we show that given a word w ∈ Ldec we can use the ϱi to extend ϱ and obtain
a σ-partial run which is still compatible with dec and whose d-output contains w
as a subword. This is done by composing ϱ with many copies of each ϱi to �ll in
the missing broadcasts.

Then, we show that we can again use many copies of the ϱi to eliminate the un-
matched receptions with datum d. We do this by carefully adding the necessary
copies of ϱi, by decreasing i. Each time we �ll in a missing broadcast of mi while
possibly adding new ones for some of the mj with j < i. This terminates as the
number of unmatched receptions of each letter mi decreases with respect to the
lexicographic ordering.

We show that for each non-initial d′ we can eliminate the unmatched receptions
with datum d′ by composing that partial run with the σ-runs ϱd′ . We use the
broadcasts in ϱd′ to match the unmatched receptions in ϱ over d′.
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3. Broadcast Networks of Register Automata

Finally, we combine the two �rst steps to show that given a run compatible with
a decomposition dec over some datum d and a word w ∈ Ldec, we can extend this
run to obtain another run whose d-output contains w.

Extending the output

Lemma 3.34

Let dec = (v0,m1, . . . , vk) be a decomposition, let w ∈ Ldec.
Let d a datum and ϱ an initial σ-partial run compatible with dec over d.
Suppose that for all j ∈ [1, k] there exist an initial σ-partial run ϱ′j such that
Ind(ϱ

′
j) ∈ Ldecj where decj = (v0,m1, . . . , vj−1), Ind′(ϱ

′
j) = ε for all d′ ̸= d and

mj⊑ Outd(ϱ
′
j).

Then, there is a partial run ϱ̃ such that

ϱ̃ is compatible with dec over d,

w⊑ Outd(ϱ̃)

for all d′ ̸= d, either Ind′(ϱ̃) = ε or Ind′(ϱ̃) = Ind′(ϱ)

ϱ′b : rec(a, d)

br(b, d)
ϱ′c : rec(a, d) rec(b, d)

br(c, d)

ϱ :
rec(b, d)

br(a, d)

rec(c, d)

br(a, d)

ϱ̃ :

rec(c, d)rec(b, d)

br(a, d) br(a, d)

rec(a, d)

br(b, d)

rec(a, d)

br(c, d)

rec(b, d)

Figure 3.7: An illustration of the proof of Lemma 3.34. The partial run ϱ is compatible
with decomposition (a, b, a, c, ε). We have Ind(ϱb) = a ∈ L(a) and Ind(ϱb) = ab ∈ L(a,b,a).
We build a partial run ϱ̃ such that aacb⊑ Outd(ϱ̃). Note that ϱ̃ is also compatible with
decomposition (a, b, a, c, ε). We ignore data other than d in this picture.

Proof. As w ∈ Ldec, we have w = w0 · · ·wk, where each wi can be obtained by adding
some letters of {m1, . . . ,mi} to vi. As u is compatible with dec, u = u0 · · ·uk with
vi⊑ Outd(ui) for all i and Ind(ui) ∈ {m1, . . . ,mi}∗. As a consequence, to obtain a d-
output that contains w, it su�ces to show that we can add a letter from {m1, . . . ,mi} at
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any point of ui. We do so using ϱ̃i: Since Ind(ϱ̃i) ∈ L(v0,m1,...,vi−1)
↓, we can split ϱ̃j into

ϱ̃j,0, . . . , ϱ̃j,j−1 so that Ind(ϱ̃j,i)⊑ w̃j,i where w̃j,i can be obtained by adding letters from
{m1, . . . ,mj} to vi.

We use the following composition operation: consider ϱ and one of the ϱ′j. We can
build a new run in which we execute both runs in parallel over disjoint sets of agents.
We match each ϱ̃i,j with ϱj so that the broadcasts of ϱj with d forming vi are received
in ϱ̃i,j and the only remaining missing broadcasts in that section of the run are with
letters m1, . . . ,mi. We obtain a run section whose d-output still contains vi and whose
d-input only contains m1, . . . ,mi. This lets us get to a point where the next step in ϱ̃j is
a broadcast of (mj, d) and ϱ has been executed up to the beginning of ϱj. We may then
use the (mj, d) broadcast at any moment in the rest of ϱ to extend the d-output. As a
consequence, we can compose ϱ with the ϱ′i as many times as necessary to obtain a run
ϱ̃ whose d-output contains w.

Each composition maintains the fact that the run is compatible with dec. Further,
for all d′ ̸= d, either d′ does not appear in ϱ and Ind(ϱ̃) = ε or d′ appears in ϱ and then
Ind′(ϱ̃) = Ind′(ϱ).

Unmatched receptions with initial data

Lemma 3.35

Let dec = (v0,m1, . . . , vk) be a decomposition, d a datum, ϱ an initial σ-partial run
compatible with dec over d.
Suppose that for all j ∈ [1, k] there exist an initial partial run ϱ′j in which d is not
initial such that Inϱ′j

(d) ∈ Ldecj where decj = (v0,m1, . . . , vj−1), Inϱ′j
(d′) = ε for all

d′ ̸= d and mj⊑ Outd(ϱ
′
j).

Then, there exist a σ-partial run ϱ̃ such that

Ind(ϱ̃) = ε,

Outd(ϱ)⊑ Outd(ϱ̃),

for all d′ ̸= d, Ind′(ϱ̃) = Ind′(ϱ)

Proof. We proceed in the same way as in the previous part: the goal is now to use the
partial runs ϱ′j to eliminate the d-input of ϱ.

As ϱ is compatible with dec over d, we can split ϱ into ϱ0, . . . , ϱk with wi⊑ Outd(ϱi)
and Ind(ϱi) ∈ {m1, . . . ,mi}∗ for all i. Again, we rename agents and data so that the sets
of agents of ϱ and of every ϱ′j are all disjoint and the only shared datum between any two
of these runs is d.

We once again use the composition operation described in the proof of Lemma 3.34:
consider ϱ and one of the ϱ′j. We execute both runs in parallel and match each ϱ̃i,j
with ϱj so that the broadcasts of ϱj with d forming vi are received in ϱ̃i,j, leaving only
unmatched receptions with letters m1, . . . ,mi. We obtain a run section whose d-output
still contains vi and whose d-input only contains m1, . . . ,mi. We can do that until the
next step in ϱ̃j is a broadcast of (mj, d) and ϱ has been executed up to the beginning
of ϱj. We may then use the (mj, d) broadcast at any moment in the rest of ϱ to match
an unmatched reception of ϱ. As a consequence, we can compose ϱ with the ϱ′i as many
times as necessary to obtain a run ϱ̃ with no unmatched receptions on d.
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ϱ′b : rec(a, d)

br(b, d)
ϱ′c : rec(a, d) rec(a, d) rec(b, d)

br(c, d)

ϱ :
rec(b, d)

br(a, d)

rec(c, d)

br(a, d)

rec(b, d) rec(c, d)

br(a, d) br(a, d)

rec(a, d) rec(a, d)

br(c, d)

rec(b, d)

ϱ̃ :

rec(b, d) rec(c, d)

br(a, d) br(a, d)

rec(a, d)

br(b, d)

rec(a, d) rec(a, d)

br(c, d)

rec(b, d)

rec(a, d)

br(b, d)

Figure 3.8: An illustration of the proof of Lemma 3.35. The partial run ϱ is compatible
with decomposition (a, b, a, c, ε). We have Ind(ϱb) = a ∈ L(a) and Ind(ϱb) = aab ∈ L(a,b,a).
We build ϱ̃ such that Ind(ϱ̃) = ε. We start by using ϱ′c to eliminate the unmatched
receptions of c (while adding some unmatched receptions of b), then we use ϱ′b to eliminate
the unmatched receptions of b. We ignore data other than d in this picture.

Each composition maintains the fact that the run is compatible with dec. When we
do a composition with ϱ′j to match a reception of (mj, d), we may add some receptions
of m1, . . . ,mj−1 to the run (the ones of ϱ′j). However, every composition decreases the
number of unmatched receptions of mk, . . . ,m1 for the lexicographic ordering.

As a result, in the end we obtain a run ϱ̃ without any unmatched reception on datum
d. As ϱ is fully contained in ϱ̃, Outd(ϱ)⊑ Outd(ϱ̃). Moreover, for all d′ ̸= d, either d′

does not appear in ϱ and then Ind′(ϱ̃) = ε or d′ appears in ϱ and Ind′(ϱ̃) = Ind′(ϱ)
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Unmatched receptions with non-initial data

Lemma 3.36

Let ϱ be an initial σ-partial run, d′ a datum, ϱ′ an initial σ-run. If Ind(ϱ)⊑Outd′(ϱ
′)

and d′ an initial datum value in ϱ′ but not in ϱ, then there exists an initial σ-partial
run ϱ̃ such that

Ind′(ϱ̃) = ε

for all d′′ ̸= d′, Ind′′(ϱ̃) = Ind′′(ϱ)

for all d′′ ̸= d′, Outd′′(ϱ)⊑ Outd′′(ϱ̃)

ϱ′ :
br(b, d) br(c, d)

ϱ :
rec(b, d)

br(a, d)

rec(c, d)

br(a, d)

ϱ : rec(b, d) rec(c, d)

br(a, d) br(a, d)

br(b, d) br(c, d)

Figure 3.9: An illustration of the proof of Lemma 3.36. Datum d is initial in ϱ′ and not
ϱ. We ignore data other than d in this picture.

Proof. Up to renaming agents, assume that ϱ and ϱ′ have disjoint agents. We rename
data in ϱ′ so that ϱ′ has no shared data with ϱ besides d′.

We build ϱ̃ by running ϱ and ϱ′ over their respective agents separately. We use the
broadcasts made by ϱ′ with d′ to match the unmatched receptions with datum d′ in ϱ: this
gives us a new partial run ϱ with no unmatched reception with datum d′. Furthermore,
for every datum d′′, either the sequence of broadcasts and unmatched receptions is the
same as before, or Ind(ϱ) = ε (if d′′ appears in ϱd′).

The d′′-output can only increase as ϱ is fully executed within ϱ̃.

How to obtain a word w ∈ L(I, (Jm)m∈M)

We now combine Lemmas 3.34 and 3.35 to obtain one last useful technical lemma for the
proof of Lemma 3.31. It will be used to prove the second condition of De�nition 3.30
when showing that an invariant (I, (Jm)m∈M) is su�cient for a strategy σ.
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Lemma 3.37

Let σ be a control strategy, I a downward-closed set of words, and (Jm)m∈M
upward-closed ones.
Suppose that for all w ∈ I there is an initial σ-run and a datum d such that
w⊑ Outd(ϱ). Suppose also that for all m ∈ M and w ∈ Jm there is a σ-partial
run ϱ and a datum d that is not initial in ϱ such that Ind(ϱ)⊑ w, m⊑ Outd(ϱ) and
Ind′(ϱ) = ε for all d′ ̸= d.
Then for all w ∈ L(I, (Jm)m∈M)), there is a σ-run ϱ and a datum d such that
w⊑ Outd(ϱ).

Proof. Let w ∈ L(I, (Jm)m∈M)), w matches a decomposition dec = (v0,m1, . . . , vk) such
that v0 · · · vk ∈ I and, for all j, L(v0,m1,...,vj−1) ∩ Jmj

̸= ∅. Hence we have a σ-run ϱ and
a datum d such that v0 · · · vk⊑ Outd(ϱ). Note that as ϱ has no unmatched reception,
in particular, it is compatible with dec. Also, for all j we have a σ-partial run ϱj and
a datum dj not initial in ϱj such that Indj(ϱj) ∈ L(v0,m1,...,vj−1)

↓, mj⊑ Outdj(ϱj) and
Ind′(ϱj) = ε for all d′ ̸= dj.

By Lemma 3.34, this means that we can obtain a σ-partial run whose d-output con-
tains w, with no unmatched receptions on data other than d, and compatible with dec.

We can then use Lemma 3.35 to eliminate all unmatched receptions and obtain a
σ-run whose d-output contains w.

Proof of the characterisation lemma

Proof of Lemma 3.31. ⇒ Suppose σ is winning. Consider R the set of σ-runs.
Let I = {Outd(ϱ) | ϱ ∈ R, d ∈ D}↓ be the set of all outputs of all σ-runs.
For all m ∈ M, we set Jm as the upward-closure of the set of Ind(ϱ) with ϱ a σ-

partial run such that d is not an initial datum of ϱ, ϱ contains a broadcast of (m, d) and
Ind′(ϱ) = ε for all d′ ̸= d.

Let us now prove that (I, (Jm)m∈M) is su�cient for σ. As σ is winning, merr is never
broadcast, and thus never received, in any σ-run. Hence merr /∈ I. Furthermore, if we
had a word w ∈ I ∩ Jmerr , then we would have a σ-run ϱ and a σ-partial run ϱ′ such that
merr is broadcast in ϱ′, Ind′(ϱ

′)⊑ w⊑ Outd(ϱ) and Ind′′(ϱ
′) = ε for all d′′ ̸= d′. We can

assume d = d′, as we can rename data.
As a result, we could form a σ-run by renaming data and agents such that their sets of

data and agents are disjoint except for d. We then execute the two runs in parallel, and
match the unmatched receptions of ϱ′ with broadcasts in ϱ, to obtain a σ-run, with no
unmatched receptions. This contradicts the fact that σ is winning. Hence I ∩ Jmerr = ∅.
Further, as an empty run is a σ-run, we have ε ∈ I.

For the second point, we can simply apply Lemma 3.37.
It remains to show that a σ-local run satisfying (i) and (ii) also satis�es (a) and (b).

Let u be a σ-local run satisfying (i) and (ii).

First, we construct a σ-run ϱ whose projection on some agent is u, which shows
that u satis�es (a). Let d be the initial datum of u. As u satis�es (i), there is some
dec = (v0,m1, . . . , vk) ∈ D((Jm)m∈M) such that u is compatible with dec.

By de�nition of (Jm)m∈M, for each j we have a σ-partial run ϱj and a non-initial
datum dj such that Indj(ϱj) ∈ L(v0,m1,...,vj−1)

↓, there are no unmatched receptions
with data other than dj, and mj⊑ Outdj(ϱj).
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We can thus apply Lemma 3.35, to obtain a σ-partial run with no unmatched
reception over d such that Outd(u)⊑ Outd(ϱ).

Furthermore, as u satis�es (ii), by de�nition of I, for all d′ ̸= d there is a σ-run ϱd′
such that Ind′(u)⊑ Outd′(ϱd′). We can then apply Lemma 3.36 on ϱ, with every
d′ ̸= d appearing in u to obtain a σ-run ϱ′ such that Outd(u)⊑ Outd(ϱ

′). This
shows that Outd(u) ∈ I, by de�nition.

Let d′ ̸= d and m ∈ M be such that (m, d′) is broadcast in u. We can apply
Lemma 3.35 on u and then Lemma 3.36 on the resulting run, with every d′′ /∈ {d, d′}.
We obtain a σ-partial run in which (m, d′) is broadcast and whose d′-input is the
same as u. As a consequence, u satis�es (b) by de�nition of (Jm)m∈M.

This concludes the proof of that direction.
⇐ By Lemma 3.32.

3.5.2 The invariant game

We have characterised winning control strategies using invariants.The next step is to
consider an invariant (I, (Jm)m∈M) and show that we can construct a game in which
the two players determine whether there is a control strategy for which this invariant is
su�cient.

To do so, we proceed in two steps, as in Section 3.4. First we consider a game played
on R where players pick a sequence of transitions (the next transition is chosen by the
player owning the current state), and Environment picks the data when needed. The goal
of Environment is to eventually obtain a local run u that satis�es either (a) or (b) but
neither (i) nor (ii), i.e., contradicting the invariant. The goal of Controller is to avoid
this forever.

A key observation is that when a record transition or disequality transition is taken,
it is always in Environment's best interest to choose a datum that was never seen before
in the local run. Essentially, this is because in order to satisfy (b) without satisfying
(ii) Environment wants the d′-input to be as small as possible. We will also see that the
second condition in Lemma 3.31 makes it pointless for Environment to choose to receive
its initial datum again after having forgotten it.

The invariant game IG(G, I, (Jm)m∈M) is de�ned as follows: The set of vertices is
QR: the current state in the protocol and a set of registers, which are the ones supposed
to contain the initial datum. The initial vertex is qinit. From each vertex q ∈ QR, players
choose a transition from q in ∆R. Controller chooses the next transition when q is in
Qctrl, Environment when it is in Qenv. The state is updated to the target of the transition.

For all play π, we de�ne reg(π) as the set of registers on which there were no record
transition in π. Intuitively, reg(π) is the set of registers that contain the initial datum
of the local run.

Given a play π, we de�ne its initial input initIn(π) as the sequence of letters received
with equality transitions with registers of reg. This represents the sequence of letters
received with the initial datum. Formally, initIn(ε) = ε, and
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initIn(δ1 · · · δk+1) =


initIn(δ1 · · · δk)m if δk+1 is an equality transition

rec(m,=i)−−−−−−→
with i ∈ reg(δ1 · · · δk),

initIn(δ1 · · · δk)otherwise.

For all registers i, we de�ne its recent input on i, written recentIni(π) like in the
previous section: it is the sequence of messages received with equality transitions over
register i since its last reset.

We de�ne the output Out(π) of π in a di�erent way as in the signature case. It is the
sequence of letters broadcast from registers that were in reg at the time of the broadcast.
Intuitively, this is the sequence of letters that are broadcast with the initial datum in the
local run. Formally,

Out(δ1 · · · δk+1) =


Out(δ1 · · · δk)m if δk+1 is a broadcast transition

br(m,i)−−−−→
with i ∈ reg(δ1 · · · δk),

Out(δ1 · · · δk) otherwise.

Given a decomposition dec = (v0,m1, . . . , vk), we say that a play π is compatible with
dec if π = π0 · · · πk and for all j we have initIn(πj) ∈ {m1, . . . ,mj}∗ and vj⊑ Out(πj).

The objective of the game is then described as follows.

(A) If at some point the play π = δ1 · · · δk is not compatible with any decomposition of
D((Jm)m∈M) then Controller wins.

(B) If at some point the play π = δ1 · · · δk is such that recentIni(π) /∈ I for some i /∈ reg

then Controller wins.

(C) If at some point we see a disequality transition receiving a letter m /∈ I then
Controller wins.

(D) If at some point the play π = δ1 · · · δk is such that Out(π) /∈ I then Environment
wins.

(E) If at some point of the play a broadcast transition with i /∈ reg(π) and
br(m,i)−−−−→ is

taken while recentIni(π) /∈ Jm (with π the play formed so far) then Environment
wins.

(F) If the play goes on forever without any of those things happening then Controller
wins.

Lemma 3.38 ▶ Deciding the invariant game

There is an elementary function φ(N) such that:
Given a protocol R and �nite sets of words B and (Bm)m∈M, we can decide in
time φ(|R|+ ||B||+ |B|+

∑
m∈M ||Bm||+ |Bm|) whether Controller has a winning

strategy in IG(R, (B↑)c, (Bm↑)m∈M).
Furthermore, if Environment has a winning strategy then he has a strategy to win
in at most φ(|R|+ ||B||+ |B|+

∑
m∈M ||Bm||+ |Bm|) steps.
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Proof. By Lemma 3.7, B↑ is a regular language, recognised by a deterministic �nite
automaton AB↑ = (QB,M,∆B, q

B
0 , FB) with (||B|| + 1)(|B|+1) states. Similarly, for each

m we can construct a deterministic automaton ABm↑ = (QBm ,M,∆Bm , q
Bm
0 , FBm)

Let I = B↑c and for each m ∈M, Jm = Bm↑.
We de�ne a deterministic automaton over the alphabet ∆R that reads plays δ1 · · · δk

of IG(R, I, (Jm)m∈M) and accepts exactly the winning plays for Environment.
Consider the alphabetM⊔M̄, where M̄ = {m̄ | m ∈M} is a copy ofM.
We de�ne the useful automata in the following claims. Let us de�ne K = |R|+ |B|+

||B||+
∑

m∈M |Bm|+ ||Bm||

Claim 3.38.1. We can construct an NFA of exponential size in K and recognising the
language {v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈ D((Jm)m∈M)}.

Proof of the claim.
Consider the language of decompositions de�ned as {v0m̄1 · · · vk−1m̄kvk | v0, . . . , vk ∈
M∗, m̄1, . . . , m̄k ∈ M̄ distinct.}
This language is recognised by an automaton of exponential size which simply checks
that each letter of M̄ appears at most once.
We can turn this automaton into a non-deterministic transducer T that reads a de-
composition v0m̄1 · · · vk−1m̄kvk, outputs all the letters of M that it reads, and can
output letters of M̄ arbitrarily as soon at it has read them before. If some letter of M̄
is repeated then the run is rejected. The set of images of v0m̄1 · · · vk−1m̄kvk is exactly
L(v0,m1,...,vk).
By composing this transducer with an automaton recognising Jm, we obtain an au-
tomaton Am recognising decompositions that have an image in Jm by the transducer,
i.e., the language {v0m̄1 · · · vk−1m̄kvk | L(v0,m1,...,vk) ∩ Jm ̸= ∅}.
It is then easy to obtain an automaton recognising {v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈
D((Jm)m∈M)} using a product of the automata (Am)m∈M.
The resulting automaton is of exponential size in K. ■

Claim 3.38.2. We can construct a deterministic automaton of double-exponential size
in K recognising plays compatible with a decomposition of D((Jm)m∈M).

Proof of the claim. We use the automaton recognising {v0m̄1 · · · vk | (v0,m1 · · · , vk) ∈
D((Jm)m∈M)} de�ned in the �rst claim.
We can de�ne a non-deterministic transducer that takes as input a sequence of transi-
tions π = δ1 · · · δp and outputs some decomposition with which it is compatible. The
transducer keeps track of reg(π) while reading the play.
The transducer simply guesses a sequence m̄1 · · · m̄k of distinct letters of M̄. It outputs
them in that order at arbitrary moments while reading π.

When it reads a broadcast transition
br(m,i)−−−−→ over a register currently in reg(π), it

non-deterministically outputs m or not.

When it reads an equality transition
rec(m,=i)−−−−−−→ over a register currently in reg(π), if m̄

has not been broadcast before it goes to a rejecting sink state.
The set of images of a play π are the decompositions it is compatible with. We
compose this transducer with the automaton from the �rst claim to get an automaton
recognising the set of plays compatible with some decomposition of D((Jm)m∈M). ■

We have automata for I and each Jm, as well as for plays compatible with a decompo-
sition of D((Jm)m∈M). From those it is straightforward to de�ne an automaton C reading
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plays and accepting the ones winning for Environment. We can then determinise it at
the cost of an exponential blow-up.

By Proposition 2.8, we can solve this game in polynomial time in the size of the
resulting automaton C and the size of the arena of IG(R, I, (Jm)m∈M) (i.e., |R|), that is,
in double-exponential time in ||B||+ |B|+ |R|.

Furthermore, if Environment has a winning strategy then he has one that guarantees
that he wins in at most double-exponentially many steps in K.

We have to show that Controller wins the invariant game if and only if she has a
winning control strategy.

Lemma 3.39 ▶ From the invariant game to control strategies

Let I ⊆ Σ∗ be a downward-closed set and (Jm)m∈M upward-closed sets such that
I contains ε and not merr, Jmerr ∩ I = ∅, and L(I, (Jm)m∈M)) ⊆ I.
If Controller wins the invariant game IG(R, I, (Jm)m∈M) then there is a control
strategy σ such that (I, (Jm)m∈M) is a su�cient invariant for σ.

Proof. Let σIG be a winning strategy for Controller in IG(R, I, (Jm)m∈M).
We de�ne σ as the control strategy in which Controller follows σIG. That is, given a

local run u = (s0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opk(mℓ,dℓ)−−−−−−→δℓ (sℓ, cℓ), we set σ(u) = σIG(δ1 · · · δℓ). Let
d be the initial datum of u. We show that (I, (Jm)m∈M) is a su�cient invariant for σ.

To do so, we assume by contradiction that we have a σ-local run u = (s0, c0)
op1(m1,d1)−−−−−−→δ1

· · · opℓ(mℓ,dℓ)−−−−−−→δℓ (sℓ, cℓ) such that u satis�es (i) and (ii) but does not satisfy either (a) or
(b). Let d be its initial datum.

We then show that π = δ1 · · · δℓ is a losing σIG-play for Controller in IG(R, I). As u
is a σ-local run, by de�nition of σ, δ1 · · · δℓ is a σIG-play.

For all j ∈ [0, ℓ] let uj be the pre�x of u up to (sj, cj) and πj = δ1 · · · δj.

Claim 3.39.1. For all index j and i /∈ reg(πj) we have recentIni(πj)⊑ Inuj
(cj(i)) and

initIn(πj)⊑ Inuj
(d). Furthermore, if reg(πj) ̸= ∅ then Out(πj) = Outd(uj).

Proof of the claim. By a straightforward induction on j. ■

As u satis�es (i), it is compatible with a decomposition dec = (v0,m1, . . . , vk) ∈
D((Jm)m∈M). We thus have u = u0 · · ·uk with vi⊑Outd(u

i) and Ind(u
i) ∈ {m1, . . . ,mi}∗

for all i.
Let j be the maximal index such that reg(πj) ̸= ∅, and i0 the maximal index such

that π0 · · · πi is a pre�x of πj.
Hence we can cut π in the same way: π = π0 · · · πk where πi is the sequence of

transitions of ui. We can infer using the previous claim that vj⊑ Outd(u
i) = Out(πi) for

all i ≤ i0 and initIn(πj)⊑ Ind(u
i) ∈ {m1, . . . ,mi}∗.

As a consequence, πj is compatible with dec′ = (v0,m1, . . . ,mi0 , ε). Furthermore, we
have initIn(πj) = initIn(π) and we can conclude that π is compatible with dec′, which is
in D((Jm)m∈M).

We can also infer that all its pre�xes π′ are compatible with a decomposition of
D((Jm)m∈M): it su�ces to consider the decomposition (v0,m1, . . . ,mi, ε), with i the
maximal index such that mi is appears in initIn(π′).
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Furthermore, as u satis�es (ii), for all d′ ̸= d, we have Ind(uℓ) ∈ I. For all j,
recentInπj

(i)⊑ Incj(i)(uj)⊑ Incℓ(i)(uℓ). As I is downward-closed, we have recentInπj
(i) ∈ I

for all j ∈ [0, ℓ].
Moreover, π cannot contain a disequality transition receiving a letterm /∈ L(I, (Jm)m∈M))↓:

Otherwise u would also contain it and thus would not satisfy (ii).
We know that either u does not satisfy (a) or does not satisfy (b).
Let us �rst assume that u does not satisfy (b). Let d′ ̸= d and m ∈ M be such

that u contains a broadcast of (m, d′) while Ind′(u) /∈ Jm. Let j be the index of the
�rst broadcast of (m, d′) in u and i the register containing d′ at that point. Then δj is

a broadcast transition
br(m,i)−−−−→, while recentInπj

(i)⊑ Ind′(uj)⊑ Ind′(u). As Jm is upward-
closed, recentInπj

(i) /∈ Jm, which means that π is losing for Controller.
Now we assume that u does not satisfy (a). Let u = u−u+ be such that u− is the

maximal pre�x of u in which d appears at all times. We can cut π = π−π+ the same
way: π− is the sequence of transitions of u−, and is also the maximal pre�x of π such
that reg(π−) ̸= ∅.

Claim 3.39.2. Suppose that π is a winning play for Controller. Then there is a de-
composition dec = (v0,m1, . . . , vk) ∈ D((Jm)m∈M) such that v0 · · · vk⊑ Out(π) and
Outd(u) ∈ Ldec.

Proof. Let dec = (v0,m1, . . . , vk) be a decomposition of D((Jm)m∈M) such that u is
compatible with dec. It exists as u satis�es (i).

Furthermore, we choose it so that |v0 · · · vk| is minimal. Among the ones with minimal
|v0 · · · vk|, we choose one with k maximal.

Suppose v0 · · · vk is not a subword of Out(π). Then, as Out(π) = Out(π−) =
Outd(u−), we get that v0 · · · vk ̸ ⊑ Outd(u−).

Let i be the minimal index such that v0 · · · vi ̸ ⊑ Outd(u−), and let vi− be the
maximal pre�x of vi such that v0 · · · vi−1vi−⊑ Outd(u−), and m the letter right after vi−
in vi. Let vi+ such that vi = vi−mvi+. The letter m must be broadcast with d in u+.
The same broadcast appears in π+, say at step j on register i0. As we assumed that π is
winning, we have recentInπj

(i0) ∈ Jm. Hence Ind(uj) ∈ Jm, as Jm is upward-closed and
recentInπj

(i0)⊑ Ind(uj).
We have three cases:

m ∈ {m1, . . . ,mi−1} : then it is easily checked that we can remove m from vi
without a�ecting the properties of dec, contradicting the minimality of |v0 · · · vk|.

m = mℓ for some ℓ ∈ [i, k] : then we can use the following decomposition:
(v0,m1, . . . , vi−1,mi, vi−,m, vi+, . . . ,mℓ−1, vℓ−1vℓ,mℓ+1, . . . , vk) instead of dec, again
contradicting the minimality of |v0 · · · vk|.

m /∈ {m1, . . . ,mk}. Then we use the following decomposition instead of dec:
(v0,m1, . . . , vi−1,mi, vi−,m, vi+,mi+1, . . . , vk). This contradicts the minimality of
|v0 · · · vk|.

As a consequence, we obtain that v0 · · · vk is a subword of Out(π). It remains to show
that Outd(u) ∈ Ldec. To do that, let us assume that u+ contains a broadcast with d of
a letter that is not in {m1, . . . ,mk}. Let m be the letter in the �rst such broadcast of
u+, i the corresponding register, and j the index of the step. Since we assumed that π
is winning, we have recentInπj

(i) ∈ Jm. Hence Ind(uj) ∈ Jm, as Jm is upward-closed and
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recentInπj
(i)⊑ Ind(uj). Moreover, every letter in Ind(uj) must be in {m1, . . . ,mk}, as u

is compatible with dec.
As a result, Ind(uj) ∈ Jm ∩ Ldec, hence Jm ∩ Ldec ̸= and thus (v0,m1, . . . , vk,m, ε) ∈

D((Jm)m∈M). Moreover, u is compatible with this decomposition. This contradicts the
maximality of k.

In conclusion, we have shown that dec matches all the conditions of the claim.

Suppose π is winning, then by this claim we have a decomposition dec = (v0,m1, . . . , vk) ∈
D((Jm)m∈M) such that v0 · · · vk⊑ Out(π) and Outd(u) ∈ Ldec.

As π is winning, we have Out(π) ∈ I, and thus Outd(u) ∈ L(I, (Jm)m∈M). Since
L(I, (Jm)m∈M) ⊆ I, we get Outd(u) ∈ I, and thus u satis�es (a), a contradiction.

In conclusion, we obtained that π is a losing σIG-play, which contradicts the assump-
tion that σIG is winning. As a consequence, (I, (Jm)m∈M) is a su�cient invariant for
σ.¨

Lemma 3.40 ▶ From control strategies to the invariant game

Let σ be a control strategy.
Let I ⊆ Σ∗ be a downward-closed set and (Jm)m∈M upward-closed sets such that
I contains ε and not merr, Jmerr ∩ I = ∅, and L(I, (Jm)m∈M)) ⊆ I.
Let B be the basis of Ic and Bm the basis of Jm for all m.
If Environment wins the invariant game IG(R, I, (Jm)m∈M) then there is a σ-local
run of length at most φ(|R|+ |B|+ ||B||+

∑
m∈M |Bm|+ ||Bm||) satisfying (i) and

(ii) and dissatisfying either (a) or (b).

Proof. Let N = |R| + |B| + ||B|| +
∑

m∈M |Bm| + ||Bm||. By Lemma 3.38 and Proposi-
tion 2.8 there exists τIG a winning strategy τIG for Environment in the invariant game
IG(R, I, (Jm)m∈M) such that Environment always wins in at most φ(N) steps. We con-
struct a σ-local run of length at most φ(N) satisfying (i) and (ii) and dissatisfying either
(a) or (b). To do so, we apply τIG to choose transitions and we choose data by always
picking a datum never seen before in the run, when the datum is not determined by
the transition. Let (s0, c0) be an initial con�guration of R. We de�ne iteratively a se-

quence of steps (sℓ−1, cℓ−1)
opℓ(mℓ,dℓ)−−−−−−→δℓ (sℓ, cℓ) as follows. Suppose we de�ned them up to

(sℓ−1, cℓ−1), and let uℓ−1 be the local run de�ned so far. We �rst choose δℓ:

If sℓ−1 ∈ Qctrl then δℓ = σ(δ1 · · · δℓ−1),

otherwise δℓ = τIG(δ1 · · · δℓ−1).

We then choose dℓ:

If δℓ is a broadcast transition of letter m, we set dℓ as the initial datum of the local
run.

If δℓ is a record transition or a disequality transition, we pick a datum dk that does
not appear in uℓ−1.

If δℓ = sℓ−1
rec(m,=i)−−−−−−→ sℓ is an equality transition of letter m, we set dℓ = cℓ−1(i).
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Clearly we maintain the fact that uℓ is a σ-local run and δ1 · · · δℓ is a τIG-play in
IG(R, I). We stop when δ1 · · · δℓ is winning for Environment in IG(R, I, (Jm)m∈M),
which happens for some ℓ ≤ φ(N). LetM be the �nal value of ℓ and u = uM be the local
run obtained at the end. Let d be its initial datum. It remains to show that u satis�es
(i) and (ii) and dissatis�es either (a) or (b). To do so, we rely on the following claim:

Claim 3.40.1. For all register i and index ℓ such that i /∈ reg(δ1 · · · δℓ), recentIni(δ1 · · · δℓ) =
Inuℓ

(cℓ(i)). Furthermore, Out(δ1 · · · δℓ) = Outd(uℓ) and initIn(δ1 · · · δℓ) = Ind(uℓ).

Proof of the claim. By a straightforward induction on ℓ. ■

Let πℓ = δ1 · · · δℓ for all ℓ, and let π = πM .

First we show that u satis�es (i): As π is winning for Environment, it is compatible
with some decomposition dec = (v0,m1, . . . , vk) ∈ D((Jm)m∈M). Thus π = π0 · · · πk with
vj⊑ Out(πj) and initIn(πj) ∈ {m1, . . . ,mj}∗, for all j.

We divide u like π, u = u0 · · ·uk. As a consequence of the claim, we obtain vj⊑Outd(u
j)

and Ind(u
j) ∈ {m1, . . . ,mj}∗, for all j. Thus u is compatible with dec.

Now, we show that u satis�es (ii). Let d′ ̸= d. If d′ is stored in a register at some
point in u, let ℓ be the maximal index such that cℓ(i) = d′ for some i. There can be
no step involving d′ after ℓ, as d′ would need to be stored in a register, contradicting
the maximality of ℓ, or received using a disequality transition, which is impossible as
we constructed u so that those are always made with fresh data. As a consequence,
Ind′(u) = recentInπℓ

(i). As π is winning for Environment, we have recentInπℓ
(i) ∈ I . If

Ind′(u) = ε then clearly Ind′(u) ∈ I by assumption on I. If d′ is never stored in a register
and Ind′(u) ̸= ε, the only possibility is that d′ is received once with a disequality transition
with letter m. In that case, since π is winning for Environment, we have Ind′(u) = m ∈ I

We have shown that u satis�es (i) and (ii).

If Out(π) /∈ I then Outd(u) /∈ I, by the claim, hence u does not satisfy (a).

If Out(π) ∈ I, since π is winning for Environment, there must be an index ℓ such that

the ℓth transition of π is a broadcast transition
br(m,i)−−−−→, but recentInπ(i) /∈ Jm. In that

case, we have Incℓ+1(i)(uℓ+1) /∈ Jm and uℓ+1 contains a broadcast of (m, cℓ+1(i)).

As a consequence, we have found a pre�x uℓ+1 of u which does not satisfy (b). As (i)
and (ii) hold for u, it is easy to see that they must also hold for all its pre�xes.

In all cases we have found a σ-local run of length at most φ(N) which satis�es (i) and
(ii) but dissatis�es either (a) or (b).

This concludes our proof.

70



3. Broadcast Networks of Register Automata

Lemma 3.41 ▶ Bounding invariants

There is an elementary function ψ(N) such that the following statement holds.
Let G a BGR. There is a winning control strategy for G if and only if there is a
sequence of words w1, . . . , wk ∈M∗ and subsets B, (Bm)m∈M of {w1, . . . , wk} such
that

B contains merr and not ε and Bmerr
↑ ∩B↑c = ∅

L(B↑c, (Bm↑)m∈M,⊆)B↑c

Controller wins IG(G, B↑c, (Bm↑)m∈M),

B and all Bm are antichains for the subword order ⊑ ,

B ∪
⋃

m∈MBm = {w1, . . . , wk},

for all i ∈ [1, k], |wi| ≤ ψ(|wi−1|).

Proof. By Lemma 3.39, if there are such sets of words B and (Bm)m∈M, then there is
a control strategy such that (B↑c, (Bm↑)m∈M is a su�cient invariant for σ. Hence, by
Lemma 3.31, σ is a winning control strategy.

Conversely, suppose there is a winning control strategy σ. By Lemma 3.31 there is
a su�cient invariant (I, (Jm)m∈M) for σ. As Ic is upward-closed it has a �nite basis B.
Similarly, each Jm has a �nite basis Bm.

The �rst two conditions hold by de�nition, as (I, (Jm)) is a su�cient invariant.
By Lemma 3.40 Controller wins IG(G, I, (Jm)m∈M), so the third condition of the

lemma is satis�ed.
For the third condition, by de�nition, all basis are antichains.
Let w0, w1, ..., wk be the elements of B∪

⋃
m∈MBm sorted by length, i.e., |wi| ≤ |wi+1|

for all i. We can assume that we chose I and (Jm)m∈M so that k would be minimal.
By minimality of k, for all j ∈ [1, k], (B′, (B′

m)m∈M) is not a su�cient invariant for
σ, with B′ = B ∩ {wi | i < j} and for all m, B′

m = Bm ∩ {wi | i < j}. Let I ′ = B′↑c and
J ′
m = B′

m↑ for all m. Note that I ⊆ I ′ while J ′
m ⊆ Jm for all m.

A possibility is that merr ∈ I ′. As merr ∈ B, we then have |wj| ≤ 1.
Another possibility is that I ′∩J ′

merr
̸= ∅. As a consequence, there is a word w ∈ B′

merr

with no subword in B′. As this word is of length at most |wj−1|, we conclude that there
is a word of length at most |wj−1| in B \B′, hence |wj| ≤ |wj−1|.

Thirdly, we may have L(I ′, (J ′
m)m∈M) ⊈ I ′. Then there is a decomposition dec =

(v0,m1, . . . , vk) ∈ D(I ′, (J ′
m)m∈M) and w ∈ Ldec such that w /∈ I ′.

It is easy to construct deterministic automata recognising L(I ′, (J ′
m)m∈M) and I ′

of double-exponential size in |R|, |M|, B′ and (B′
m)m∈M, by using Lemma 3.7 and

Claim 3.38.1.
Hence we can �nd such a w of at most double-exponential size, and thus the decom-

position dec = (v0,m1, . . . , vk) also has at most double-exponential size. Now note that
v0 · · · vk is in I ′, but cannot be in I: otherwise, we would have w ∈ L(I, (J ′

m)m∈M) ⊆
L(I, (Jm)m∈M), while w /∈ I ′ ⊇ I, a contradiction. Hence there is a word of at most
double-exponential size in |G|, B′ and (B′

m)m∈M (thus of at most triple-exponential size
in |wj−1|) that is in B′ but not B. As a consequence, |wj| is at most triply-exponential
in |wj−1|+ |M|+ |R|.
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The last case is when there is a run σ-local run which satis�es (i) and (ii) but dissatis-
�es either (a) or (b), with respect to (I ′, (J ′

m)m∈M). By Lemma 3.40, there is such a σ-local
run u of length at most K = φ(|R|+ ||B′||+

∑
m∈M ||B′

m||) ≤ φ(|R|+ (|M|+ 1)|wj−1|).
As J ′

m ⊆ Jm for all m, we have D((J ′
m)m∈M) ⊆ D((Jm)m∈M). As a consequence, u

satis�es (i) with respect to (I, (Jm)m∈M).
As I ⊆ I ′, if u satis�es (a) with respect to (I, (Jm)m∈M) then it also satis�es it with

respect to (I ′, (J ′
m)m∈M).

Two cases remain: either u satis�es (ii) with respect to (I ′, (J ′
m)m∈M) and not (I, (Jm)m∈M),

or satis�es (b) with respect to (I, (Jm)m∈M) and not (I ′, (J ′
m)m∈M).

We examine the two cases:

Suppose u satis�es (ii) with respect to (I ′, (J ′
m)m∈M) and not (I, (Jm)m∈M). Let d′

be a datum such that Ind′(u) /∈ I. As Ind′(u) ∈ I ′, we found a word of length at
most K that is in I ′ but not I.

Suppose u satis�es (b) with respect to (I, (Jm)m∈M) and not (I ′, (J ′
m)m∈M). Then

there exist m ∈ M and d′ ̸= d such that u contains a broadcast of (m, d′) and
Ind′(u) /∈ J ′

m, while Ind′(u) ∈ Jm. Furthermore, we have |Ind′(u)| ≤ |u| ≤ K

In both cases, there exists wℓ with ℓ ≥ j such that wℓ⊑ w, and thus |wℓ| ≤ |w| ≤ K.
As |wj| ≤ |wℓ|, we have |wj| ≤ K. As ||B′|| ≤ |wj−1| and ||B′

m|| ≤ |wj−1|, we obtain
|wj| ≤ φ(|R|+ (|M|+ 1)|wj−1|).

We can then simply take a suitable elementary function so that |wj−1| ≤ ψ(|R| +
|M|+ |wj|)

Theorem 3.42 ▶ Main theorem of this chapter

SafeStrat is decidable and in Fωω for arbitrary BGR.

Proof. Let G a BGR. We once again apply the Length Function Theorem.
Consider a sequence of words w1, . . . , wk ∈M∗ and subsetsB, (Bm)m∈M of {w1, . . . , wk}

satisfying the conditions of Lemma 3.41.
We use a fresh letter # /∈ M. For each wi we de�ne w′

i = #|R|+|M|wi## if wi ∈ B,
and w′

i = #|R|+|M|wi#m with m such that wi ∈ Bm otherwise.
By the second condition of Lemma 3.41, w′

i is well-de�ned for all i.
Note that the sequence w′

1 · · ·w′
k is an antichain: as # does not appear in any wi,

w′
i⊑ w′

j implies that wi⊑ wj, and that they both belong to B or to some common Bm.
This is impossible as all those sets are antichains.

Furthermore, for all i, we have |w′
i+1| ≤ ψ(|R| + |M| + |wi|) + |R| + |M| + 2 ≤

ψ(|w′
i|) + |w′

i|. As g : n 7−→ ψ(n) + n is a primitive recursive function, by the Length
function theorem we obtain a function f ∈ Fω|M| such that every (g, n)-controlled bad
sequence of words w0, w1, ..., wk has at most f(n) terms.

As merr is in B, |w0| ≤ 1, thus |w′
0| ≤ |R| + |M| + 3 We therefore have |wi| ≤

g(i)(|R|+ |M|+ 3) for all i. As a consequence, we have k ≤ f(|R|+ |M|+ 3).
Our algorithm guesses a sequence of words of sorted by length w1, ..., wk with k ≤

f(|R|+ |M|+3) such that |wi+1| ≤ ψ(|wi|) for all i. The algorithm then guesses subsets
B and (Bm)m∈M that cover {wi | i ∈ [1, k]}.

It checks that Controller wins IG(R, B↑c, (Bm↑)m∈M,). We accept if she does and
reject otherwise.
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3. Broadcast Networks of Register Automata

This can be done in double-exponential time in |R|+k+|wk|, by Lemma 3.38. We can
make this algorithm deterministic with an exponential blow-up in the time complexity.
By Lemma 3.41, this algorithm is correct.

The time required by this algorithm is therefore h(f(|R|+ |M|+ 3)) with h a prim-
itive recursive function. As Fω|M| is closed under composition with primitive recursive
functions, the algorithm takes a time bounded by a function of Fω|M| . As a consequence,
the problem is in Fωω .

3.6 Lower bounds

In this section we prove that the coverability and safe strategy synthesis problems are
Fωω -complete, even when restricted to signature protocols.

The upper bounds were proven in Section 3.5. In this section we show that the Cover
problem is Fωω -hard for signature BNRA. We obtain the hardness for SafeStrat as an
immediate corollary.

Along with the upper bound obtained in the previous section (Proposition 3.28), this
yields the following results.

Theorem 3.43

Cover and SafeStrat are Fωω -complete for (signature) BGR.

We contrast these decidability results with an undecidability one: the target reacha-
bility problem is undecidable, even on signature BGR with only two registers, as stated
in Theorem 3.45.

3.6.1 Coverability lower bound

Proposition 3.44

Cover for signature BNRA is Fωω -hard.

Proof. We reduce from the reachability problem for lossy channel systems. Our reduction
is computable in polynomial-time, proving the proposition.

Let S := (L,Σ, T, linit) be a lossy channel system and lf ∈ L.
We construct a signature protocol R with two registers: all broadcast transitions are

on register 1 and all reception transitions on register 2. It is such that:

R makes sure that all received messages have the same datum,

R only broadcasts messages with its initial datum

Intuitively, we simulate an LCS S by making each agent receive a con�guration of S
from another agent and broadcast a successor con�guration. The fact that some broad-
casts may not be received simulates the lossiness of the LCS.

In some initial phase, each agent may become either a root or a link. If it becomes
a root then it only broadcasts and never receives messages. If it is a link, it stores some
other agent's identi�er (its predecessor); in that case, it will test further messages for
equality so that only messages from the predecessor are accepted.
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3.6. Lower bounds

A root agent simply broadcasts the initial state ls of S and stops. A link agent a
receives from another agent (its predecessor) a location l of the system and a sequence
of letters w, i.e., a channel content. Agent a then picks a transition of S from l and
broadcast the new location of the system and the new content of the channel which a
rebroadcasts on-the-�y letter by letter as it receives it. Agent a only removes a letter at
the beginning of w to encode a read and adds a letter at the end to encode a write.

Finally, the error state of our system is qerr := f(lf ).
See Figure 3.10 for an example of protocol obtained with this reduction.

q0

f(linit)

s(l1)

t(t) f(l2)

t(t′) f(l3)

br(linit, 1)

rec(l1, ↓ 2)
br
(l2
, 1
)

rec(x,=2)

rec(x,=2) br(x, 1)

rec(y,=2) br(y, 1)

br(x, 1)rec(x,=2)

rec(y,=2) br(y, 1)

br(l3, 1)

br(x, 1)

Simulate transition

t = (l1, read(x), l2)

Simulate transition

t = (l1,write(x), l3)

root

Figure 3.10: A depiction of the protocol R built in the lossy channel system reduction of
Proposition 3.44.

We claim that qerr is coverable in R if and only if lf is reachable in S.
First, suppose that there exists a run of S (l0, w0) ⇝S (l1, w1) ⇝S (l2, w2) · · · ⇝S

(ln, wn) with ln = lf . We build an initial run of R that covers qerr as follows. More
precisely, for all i ∈ [0, n], we build a run ϱi with i + 1 agents a0, . . . , an in which agent
ai outputs liw′

i with wi⊑ w′
i.

For i = 0, agent a0 becomes the root and outputs l0. Suppose we constructed ϱi,
we construct ϱi+1. We make agents a0, . . . , ai execute ϱi, while agent ai+1 behaves as
follows. It receives from agent i state li and goes to s(li). Let t ∈ T be such that
(li, wi)⇝

t

S (li+1, wi+1).

if t = (li,write(x), li+1) is a write, then wi+1⊑ wi · x.
Agent ai+1 moves to t(t) and broadcasts li+1. It then receives the sequence of letters
wi from ai (which is possible as wi is a subword of the output of ai) and rebroadcasts
it while looping on t(t). It then broadcasts x to get to f(li+1).

if t = (li, read(x), li+1) is a read then x · wi+1⊑ wi. Agent ai+1 moves to t(t) and
broadcasts li+1. It then receives x ·wi+1 from ai. Upon receiving x it goes to f(li+1)
and then receives and broadcasts each letter of wi+1.
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3. Broadcast Networks of Register Automata

This concludes the induction step. When applied to i = n, this builds an initial run
where agent n ends on f(ln) = qerr, which is a witness that qerr is coverable.

Suppose now that qerr is coverable. Let ϱ : γ0
∗−→ γf where γf covers qerr. Let a0

be an agent in state qerr in γf . We build a sequence of agents by de�ning ai+1 as the
predecessor of ai if it has one. This sequence is �nite as there are �nitely many agents
and the predecessor of each agent sends its �rst broadcast before that agent. We thus
get a subset of agents a0, . . . , an, with an a root agent.

For each i ≥ 1, let wi be the word of letters By structure of the protocol, every agent
ai with i ≥ 1 receives a word liwi. It then su�ces to analyse the behaviour of each ai+1

to prove that (li+1, wi+1) ⇝S (li, wi). In particular, because an is a root, ln = linit and
wn = ε. We can then de�ne l0 = lf and w0 such that a0 outputs l0w0, and observe that
(l1, w1)⇝S (l0, w0). This concludes the proof.

3.6.2 Undecidability of target reachability

The decidability of the coverability problem immediately leads us to ask whether some
other reachability problems are decidable on this model. We show in this section that
there is little hope to �nd in that direction.

Theorem 3.45

Synchro is undecidable for (signature) BNRA.

Proof. We simulate a Minsky machine with two counters. As in Proposition 3.44, at the
start each agent stores some other agent's identi�er, called its �predecessor�. It then only
accepts messages from its predecessor. As there are �nitely many agents, there is a cycle
in the predecessor graph. In a cycle, we use the fact that all agents must reach state
qerr to simulate faithfully a run of the machine: agents alternate between receptions and
broadcasts so that, in the end, they have received and sent the same number of messages,
implying that no message has been lost along the cycle. We then simulate the machine by
having an agent (the leader) choose transitions and the other ones simulate the counter
values by memorizing a counter (1 or 2) and a binary value (0 or 1). For instance, an
increment of counter 1 takes the form of a message propagated in the cycle from the
leader until it �nds an agent simulating counter 1 and having bit 0. This agent switches
to 1 and sends an acknowledgment that propagates back to the leader.

Let us now give a more formal proof. We reduce from the halting problem for Minsky
machines.

Let M = (Loc,∆, X, ℓ0, ℓf ) be a Minsky Machine. We build a signature protocol R
with a state qerr such that (R, qerr) is a positive instance of Synchro if and only if ℓf
is coverable in M . As in the proof of Proposition 3.44, in an initial phase, each agent
broadcasts its identi�er and picks a predecessor by storing its identi�er in register 2. Each
agent only listens to its predecessor afterwards: it only receives messages with equality

transitions
rec(m,=2)−−−−−−→, to check that they all come from its predecessor.

We call cycle a sequence of agents a1, a2, . . . , an = a1 where agent ai is the predecessor
of ai+1 for all i < n. We allow each agent to make the previous broadcast and reception
in any order, as otherwise cycles would never form. As all agents have to reach the end
state, they must all pick a predecessor. As there are �nitely many agents in a run, a cycle
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a1

a2

a3

a4

r1

r1

r1

r1

r2

r2

r2

r2

d1

d2

d3

d4

d4

d1

d2

d3

Figure 3.11: Cycle of 4 agents storing their prdecessors' identi�ers. Each box repre-
sents an agent along with its register values.

q0

qcount

loc(ℓ0) loc(ℓ1)

(x1, 0)

(x2, 0)

(x1, 1)

block

br(init, 1)

rec(init, ↓ 2)

rec((init, ↓ 2))

br(init, 1)

rec((ℓ, x1++, ℓ′),= 2)

br(((ℓ, x1++, ℓ′), 1))

rec((ℓ, x1−−, ℓ′),=2)

br((ℓ, x1−−, ℓ′), 1)

br(δ, 1)

rec(δ,= 2)

rebroadcast loop

rec((ℓ, x1 = 0?, ℓ′),= 2)

rebroadcast loop

Choice of transitions

Simulate
counters

Figure 3.12: Illustration of the protocol constructed in the proof of Theorem 3.45. The
�rebroadcast� loops mean that any letter received with the datum of register 2 (and that
does not match one of the indicated transitions) is broadcast immediately after with the
datum of register 1. `
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will necessarily be formed in any run satisfying the Synchro requirement. Such a cycle
is drawn in Figure 3.11.

The rest of the construction aims at faithfully simulating the machine in a cycle. The
protocol is drawn in Figure 3.12.

At the start, each agent can either enter the Rloc or Rcount part of the protocol. In the
�rst case, the agent starts by broadcasting its initial datum and then receive a message
and store the associated datum. In the second case, it does those two things in the
reverse order. Agents in Rloc send a sequence of instructions and wait after each one
for a con�rmation that it was executed. Agents in Rcount simulate counter values. The
messages circulating in a cycle contain either a transition δ ∈ ∆ or an acknowledgment δ
with δ ∈ ∆. An agent a in Rcount �rst picks a counter xi it simulates, and goes to state
(xi, 0). If a is in (xi, 0) and receives δ corresponding to an increment of xi, it goes to (xi, 1)
and broadcast an acknowledgment δ, and conversely for decrements. If δ is a zero-test
xi = 0? and a is on state (xi, 1) then it stops, making the whole cycle fail. Otherwise it
propagates the message by broadcasting δ. Other messages are rebroadcast as such.

An agent a in Rloc starts in state loc(ℓ0). When in state loc(ℓ), it picks and broadcasts
a transition δ = (ℓ, α, ℓ′) ∈ ∆, waits for the acknowledgment δ and goes to loc(ℓ′). In the
case where δ is a zero-test, we have δ = δ: there is no need for a distinct acknowledgment
because there is no action to perform (if the test fails then no message is transmitted).
When in loc(ℓf ), a broadcasts a special message end that propagates in the cycle and
makes everyone go to qerr. When it receives itself the message end, it goes to qerr.

It is quite easy to see that, if ℓf can be covered in M , one can build a run of R
where all agents end in qerr. Let N the highest counter value in the execution of M
covering qerr. The run of R �rst puts all its agents in the same cycle; exactly one agent
alead goes in Rloc and 2N agents go in Rcount; half of these simulate x1 and half x2, so
that the largest counter value is never exceeded. It then su�ces to faithfully simulate
the execution of M : alead selects the corresponding sequence of transitions, their e�ect
is always applied as we have enough agents simulating each counter. After each round
the number of agents in state (xi, 1) is exactly the value of xi at this point in the run
of the machine, hence zero-tests never cause failure. In the end alead reaches loc(ℓf ) and
broadcasts end, allowing every agent in Rcount to get to qerr.

For the converse implication, suppose that we have a run ϱ of R where all agents
end in qerr. As mentioned before, there must be a cycle of agents a1, . . . , an in this run.
Observe that all agents alternate between broadcasts and receptions, so that to reach qerr
they must all have made the same number of broadcasts and receptions. This implies
that no message was lost along the cycle.

Note that there may be several agents in Rloc along the cycle; however, they must all
broadcast exactly the same sequence of transitions, otherwise one of them would lack an
acknowledgment and would not get to qerr. Let a be the agent that �rst reaches loc(ℓf )
and a′ the �rst agent in Rloc after a in the cycle; there are only agents in Rcount between
a and a′ in the cycle, we call these agents intermediate agents. The intermediate agents
faithfully encode the two counters and all decrements and zero-tests pass, otherwise a′

would lack an acknowledgment. Therefore, the sequence of transitions of a de�nes an
execution of M that covers ℓf , which concludes the proof.
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3.7 Extensions

In this section we discuss several possible extensions of the previous results to other
models of computation.

3.7.1 Allowing agents to see data

In this chapter we only considered control strategies that chose transitions based on the
previous sequence of transitions, and not the sequence of data received. It is natural to
wonder what happens if we use strategies of the form σ : (∆Dr)∗ → ∆. For this section
we will only consider the signature case to make things easier. We conjecture that the
following proof can be adapted to the general case.

A central ingredient in this proof is Ramsey's theorem on in�nite hypergraphs, which
extends naturally Ramsey's theorem on graphs.

Given a set S and k ∈ N, we use the notation
(
S
k

)
for the set of subsets of S of size k.

Theorem 3.46 ▶ Ramsey's theorem on in�nite hypergraphs

Let V be an in�nite set of vertices and k ∈ N. Let col :
(
V
k

)
→ C with C a �nite

set of colours. Then there exists an in�nite subset V ′ ⊆ V and c ∈ C such that
col(

(
V ′

k

)
) = {c}.

Let us �x G = (R, Qctrl, Qenv,merr) a signature BGR. We say that a local run has
organised data if

if whenever a datum is received for the �rst time, it is greater than the initial datum
and all data received previously.

Each datum is recorded at most once in the registers.

Proposition 3.47

There is a function h : N→ N (not depending on R) such that:
If a control strategy is losing then there exists a σ-run ϱ in which every local run
has length at most h(|R|) and has organised data in which merr is broadcast.

Proof. Let us start by de�ning an execution tree as a tree of the following form:

There are two types of nodes, word nodes and run nodes

The children of a word node are run nodes, and the children of a run node are word
nodes.

For all run node ν with a label u and all d ∈ D such that Ind(u) ̸= ε, ν has a child
with a label w such that Ind(u)⊑ w.

For all word node ν labelled w, for all child ν ′ of ν labelled u, w⊑ Outsign(u)

Consider the following algorithm: We start with an execution tree made only of a
root labelled merr. We maintain a set of word nodes O, initially containing only the root.
The word nodes in O are called open, others are called closed

While O is not empty, we apply the following steps:
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If there is a run node ν whose children are all closed, let ν ′ be its parent, labelled
w. We remove every node that was added to the tree after ν ′ (in particular, we
remove all of its descendants). Then, we remove ν from O.

Otherwise, let B be the set of labels of open nodes, we de�ne I = B↑c. By
Lemma 3.24, there exists a σ-local run u of length at most φ(R, B) such that
Outsign(u) /∈ I, Ind(u) ∈ I for all d and no datum is recorded twice. Let ν be an
open node with a label w such that w⊑ Outsign(u). It exists by de�nition of B
and I. We add a child ν ′ to ν, labelled by u. Then, consider the set {Ind(u) | d ∈
D} \ {ε}, let Bu be its set of minimal elements for ⊑ . For each v ∈ Bu we add a
child labelled v to ν ′, and we add all those children to O.

Note that when we remove a node we remove all nodes added after that one. As a
consequence, at all times we can enumerate open nodes O = {ν0, ν1, . . . , νk} in their order
of appearance, and we obtain |wi| ≤ |ui| ≤ φ(R, {w1, . . . , wi−1}) for all i, with w1, . . . , wk

the labels of ν1, . . . , νk and u1, . . . , uk the labels of their respective parents. Additionally,
we maintain the fact that the sequence w1, . . . , wk is a bad sequence. We can then apply
the Length Function Theorem to bound k by f(|R|) with f a function of Fωω .

We also obtain a bound h(|R|) on the length of run node labels. As a consequence,
the number of data appearing in each local run is bounded by that same bound, and thus
the degree of the tree is at most h(|R|).

As every node is a leaf or an open node or the child of an open node, we get a bound
b(|R|) on the size of the tree. As a consequence, the set of trees we see is �nite. In order
to show that the algorithm terminates, we simply have to show that we cannot loop.

Given the tree at some point of the algorithm, let ν0, . . . , νk be the set of word nodes
in their order of creation. For each i, let xi be 0 if νi is open and 1 if it is closed. It is easy
to check that the sequence x0 · · ·xk increases at each step for the lexicographic ordering.
As a result, we never see the same tree twice. The algorithm therefore terminates in at
most c(|R|) steps.

Claim 3.47.1. After each iteration, for all closed node ν labelled w, ν is a leaf and there
is a σ-run in which every local run has organised data and has length at most h(|R|) and
in which the sequence w is broadcast by some agent.

Proof of the claim. We proceed by induction on the number of iterations. This property
is clearly true at the beginning as there are no closed nodes.
For the induction step, note that we never add children to closed nodes and only turn
leaves into closed nodes. Hence we maintain the fact that every closed node is a leaf.
Furthermore, say we turn an open node labelled w into a closed one. We do so when
it has a child ν ′ whose children are all closed. Let u be the label of ν ′ and w1, . . . , wn

the labels of its children. By induction hypothesis, for each i we have a σ-run ϱi in
which each local run has organised data and length at most h(|R|) and in which an
agent broadcasts wi.
For each d received in u, we know that there is an i such that Ind(u)⊑ wi. We de�ne
ϱd as ϱi where data have been renamed so that wi is broadcast with datum d and all
other data are fresh and do not appear in u.
Let d1, . . . , dm be the data received in u, in order of appearance. Let d0 be the initial
datum of u. For all j ∈ [2,m], in increasing order, let Aj−1 be such that all data
appearing in ϱj−1 are below Aj−1. Let A0 = d0+1. De�ne ϱ′j as ϱdj where each datum
d′ has been renamed into d′ + Aj−1. The runs ϱ′j use disjoint sets of data and in each
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ϱ′j an agent broadcasts Indj(u) with datum d′j = dj + Aj−1. In particular we have
d0 < d′1 < · · · < d′m. We have also maintained the fact that all local runs in those runs
have organised data.
We rename each datum dj with in u to d′j and obtain a local run u′ with organised
data and Indj(u) = Ind′j

(u′). We can execute all runs ϱ′j and u over disjoint sets of
agents, and use the broadcasts in each ϱ′j to match the receptions in u. This gives us
a σ-run ϱi in which each local run has increasing data and length at most h(|R|) and
in which an agent broadcasts w (by executing u). ■

As the algorithm terminates, eventually the root is closed. By the claim above, we
have a σ-run ϱ in which each local run has length at most h(|R|) and in which an agent
broadcasts merr.

We have shown that if a control strategy is not winning then there exists a σ-run in
which all local runs have bounded size B in which merr is broadcast, with B depending
only on the size of the system. Furthermore when constructing this run, we have ensured
that in every local run data always appear in increasing order with respect to their order
in N, and each datum is recorded at most once.

We now de�ne data-aware control strategies. They are functions σ : D(∆×D)∗ → ∆.
The choice of the next transition is based on the sequence of transitions seen so far, along
with the initial datum and the data received.

A σ-local run is an initial local run u = (q0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opn(mn,dn)−−−−−−−→δn (qn, cn)
such that for all i ∈ [1, n], if qi−1 ∈ Qctrl then σ(c0(1)δ1d1 · · · δi−1di−1) = δi. A σ-run is an
initial run whose projection on every agent a is a σ-local run. We say that σ is winning
if no σ-run contains a broadcast of merr.

Theorem 3.48

There is a winning data-aware control strategy for G if and only if there is a winning
control strategy for G.

Proof. As a control strategy is a particular case of data-aware control strategy, the right-
to-left direction is clear.

For the left-to-right direction, suppose there is a winning data-aware control strategy
σ for G. Let K = h(|R|) with h as de�ned in Proposition 3.47. Let RK be the set of
σ-local runs with organised data of length at most K.

We de�ne a function col :
( D
K+1

)
→ 2RK as follows. Let D be a set of R+1 data. Let

d0, · · · , dR be the elements of D in increasing order. Then col(D) is the set of σ-local
runs with organised data of length at most R such that the initial datum is d0 the other
data appearing in the run are d1, . . . , dk for some k. With the organised data property
and those conditions, the local run is entirely determined by its sequence of transitions.
As a result, |col(D)| ≤ |∆|K .

In a local run with at most B steps, at most B + 1 data appear. As a result, every
element of RK has an antecedent by col. We can now apply Theorem 3.46. We obtain
an in�nite set D′ ⊆ D of data and a set of local runs R such that col(

( D′

K+1

)
) = {R}.

Let d0, . . . , dK ∈ D′ with d0 < · · · < dK . De�ne the strategy σ′ : ∆∗ → ∆ which,
given a sequence of transitions, takes the same decision as σ over the unique local run
with that sequence of transitions, organised data, and using data {d0, . . . , dk} for some
k, with d0 the initial datum.
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If σ′ was losing, we would have a run in which every local run has length at most K
and organised data in which merr is broadcast. This run is, however, also a σ-run, which
is a contradiction.

As a result, σ′ is winning.

As a consequence, by Theorem 3.43, we obtain the following result.

Corollary 3.49

The existence of a winning data-aware control strategy for a BGR is decidable and
Fωω -complete.

3.7.2 Pushdown protocols

In this section we show that decidability results obtained so far can be generalised to
pushdown BGR, where processes have local stacks. This may at �rst be surprising, as we
saw that we can encode lossy channel systems in BGR, and reachability in LCS with a
stack is a longstanding open problem. In fact, the decidability of reachability in pushdown
VASS (which are much weaker than pushdown LCS) is also wide open.

The subtlety lies in the fact that we cannot encode pushdown LCS into pushdown
BGR: this would require to allow processes to broadcast the full content of their stack,
which is not possible in the model.

The decidability proofs are not hard to extend to the pushdown case: it su�ces to
use Lemma 2.10, which allows us to decide the winner of a pushdown game and bound
the time it takes the �rst player to win if he does.

De�ne a pushdown BGR with r registers over D as a BGR whose protocol has in�nitely
many states, encoded as follows.

Let OpM,r = {br(m, i), rec(m,= i), rec(m, ↓ i), rec(m, ̸=) | m ∈ M, i ∈ [1, r]} be
the set of operations of register transducers over letters ofM and r registers.

We have a pushdown automaton A = (Q,Σ,Γ,∆, qinit) (we do not include �nal states
as they are irrelevant here) and a function op : Σ → OpM,r, as well as a partition of Q
into Qctrl and Qenv. We can assume without loss of generality that A is deterministic, by
extending the alphabet.

The register transducer encoded this way has set of states QΓ∗, with qinit the initial
state. It has a transition qy

α−→ q′y′ with α ∈ OpM,r when qy
α−→ q′y′ is a valid step of A.

The set of states of Controller is QctrlΓ
∗, the set of states of Environment is QenvΓ

∗.

Theorem 3.50

SafeStrat is Fωω -complete for pushdown BGR.

Proof. The lower bound is immediate from Proposition 3.44.
For the upper bound, the proof is essentially the same as the one from Section 3.5.

We simply point out what should be adapted. Lemma 3.31 does not make any �niteness
assumption on the system, thus the same characterisation of winning strategies with
invariants can be applied to pushdown BGR. Lemma 3.38 needs a slight adaptation:
it su�ces to notice that the winning condition of the invariant game solely depends
on the sequence of operations taken. The construction in the proof of Lemma 3.38
can thus be applied to sequences of operations instead of plays. We obtain an NFA
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of exponential size recognising sequences of operations making Environment win. This
immediately yields an NFA of the same size recognising sequences a1 · · · an ∈ Σ∗ such
that op(a1) · · · op(an) makes Environment win. We can determinise this automaton to
obtain a double-exponential automaton B recognising those sequences.

The invariant game is thus a pushdown game played on A with the objective described
by B. By Lemma 2.10, we can solve this game in exponential time in the sizes of A and
B, thus in triple-exponential time in the sizes of A, B and (Bm)m∈M.

Furthermore, if Environment wins, he can do so in triple-exponential time. This gives
the existence of the elementary function φ in the statement of Lemma 3.38.

The rest of the proof can be conducted exactly as for the �nite-state case, yielding
the result.

The entire reduction from the SafeStrat problem to invariant games stays the same.
What remains is to be able to decide the winner of an invariant game, and bound the
length of a winning play for Environment if there is one with an elementary bound. Both
those conditions are provided by the lemma above.

3.7.3 Leader

Another possible extension of the model would be to allow the presence of a leader. To
formalise this, we call a protocol with leader a pair (R, qlead) with R = (Q,M, qinit,∆) a
protocol with r registers and qlead a state of R. The only di�erence in the semantics is
that runs start with one agent in qlead and all others in the initial state of R.

An initial con�guration with leader of (R, qlead) is a con�guration γ : A→ Q× Dr of
R such that:

There exists aℓ ∈ A such that st(γ)(aℓ) = qlead and st(γ)(a) = qinit for all a ∈ A\{aℓ}

for all a ∈ A and i, i′ ∈ [1, r], data(γ)(a, i) = data(γ)(a, i′)

for all a ̸= a′ ∈ A and i, i′ ∈ [1, r], data(γ)(a, i) ̸= data(γ)(a′, i′)

We can then formulate the following problem:

De�nition 3.51 ▶ Cover with leader

The coverability problem with leader asks, given a protocol with leader R and a
state qerr, whether there is a run of R starting in an initial con�guration with
leader in which at least one agent reaches qerr.

This problem is undecidable, as soon as r ≥ 2:

Theorem 3.52

The coverability problem with leader is undecidable.

Proof. We follow the same idea as for the proof of Theorem 3.45. We form a cycle as in
Figure 3.11 and use it to faithfully simulate a Minsky machine.

We use an alphabetM containing a letter start, a letter δ for each transition δ ∈ ∆
in M , and a letter δ̄ if δ is an increment or decrement.
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Let M = (Loc,∆, X, ℓ0, ℓf ) be a Minsky machine. The di�erence is in the way we
form that cycle. The leader starts by broadcasting a message start with its identi�er and
then receiving start and storing the received datum in register 2. It then simulates the
Minsky machine. It has a state loc(ℓ) for each state ℓ ∈ Loc. It selects a sequence of
transitions of M and, for each transition δ, it broadcasts δ with its identi�er and waits
for an acknowledgement: δ̄ if δ is an increment or decrement, and just δ if δ is a zero test.

Other agents start by receiving a message start, storing the received datum in register
2, and then broadcasting start with their own identi�er. Then they choose a counter xi,
with i ∈ {1, 2}, and go to state 0i. During the rest of the run the agent only receives
messages with the datum in its second register. It also only broadcasts messages with
its own identi�er, in register 1. When it receives a message with a letter δ it proceeds as
follows:

if δ is an increment of xi and the agent is in state 0i then it goes to state 1i and
broadcasts δ̄

if δ is a decrement of xi and the agent is in state 1i then it goes to state 0i and
broadcasts δ̄

if δ is a zero-test of xi and the agent is in state 0i then it stays in state 0i and
broadcasts δ

if δ is a zero-test of xi and the agent is in state 1i then it does not broadcast anything

In all other cases the agent stays in the same state and broadcasts the same letter
that it received.

We now argue that ℓf is reachable in M if and only if loc(ℓf ) in coverable in (R, qlead)
⇒ If ℓf can be covered in M , one can build a run of R where th leader ends in loc(ℓf ).
Consider an execution of M covering ℓf . Let N the highest counter value in that exe-
cution. The run of R �rst puts all its agents in the same cycle; exactly one agent alead
goes in Rloc and 2N agents go in Rcount; half of these simulate x1 and half x2, so that the
largest counter value is never exceeded. It then su�ces to faithfully simulate the execu-
tion of M : alead selects the corresponding sequence of transitions, their e�ect is always
applied as we have enough agents simulating each counter. After each round the number
of agents in state (xi, 1) is exactly the value of xi at this point in the run of the machine,
hence zero-tests never cause failure. In the end alead reaches loc(ℓf ) and broadcasts end,
allowing every agent in Rcount to get to qerr.
⇐ For the converse implication, suppose that we have a run ϱ of R where all agents
end in qerr. As mentioned before, there must be a cycle of agents a1, . . . , an in this run.
Observe that all agents alternate between broadcasts and receptions, so that to reach
loc(ℓf ) they must all have made the same number of broadcasts and receptions. This
implies that no message was lost along the cycle.

The key di�erence with the coverability problem without leader model is that if we can
have several agents behaving like the leader, when an agent receives m̄ with an identi�er,
it has no way to know if this comes from a chain of messages that was started by him or
by another leader. There is no way to make sure that we obtain a cycle.
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3.8 The case of one register

In the previous sections we established the theoretical complexity of Cover, Synchro
and SafeStrat for BNRA and BGR. Our constructions for lower bounds in Proposi-
tion 3.44 and 3.45 only require two registers: one to remember the agent's identi�er and
sign messages, and one to ensure that we receive messages from a single other process.

We studied in Section 3.3 the complexity of those problems when protocols do not
have registers. The remaining gap is for protocols with one register. We call BNRA
(resp. BGR) with a single register 1BNRA (resp. 1BGR). They o�er an intermediate
step in terms of tractability and expressivity between the protocols without registers and
the general case. We will also see in Section 3.8.3 that their study connects to a new line
of research on population protocols with data.

Essentially, those protocols can sign messages with their initial identi�er, and check
that several messages have the same datum, but not simultaneously. In order to record a
received datum and be able to compare it with the ones of following messages, an agent
must forget its own identity.

We start by studying the Cover and Synchro problems, and show that they are
both NP-complete. As Cover reduces to Synchro, we simply prove the upper bound
for Synchro and the lower bound for Cover.

We treat the SafeStrat problem separately, as it requires a di�erent approach in
this case.

3.8.1 Coverability

Our aim in this section is to present the following theorem.

Theorem 3.53

Cover is NP-complete on 1BNRA.

The proof is quite tedious, and was already published in [GMW24], therefore we only
include a proof sketch in this document.

The NP lower bound follows from a reduction from 3SAT (an agent a sends a sequence
of messages representing a valuation, with its identi�er, to other agents which broadcast
it back, playing the role of external memory, allowing a to check the satisfaction of a
3SAT formula).

To prove the NP upper bound, we present an abstraction on con�gurations and runs.
The main ingredient of our abstraction is twofold:

First, if there is a run ϱ sending an agent to a state q, then we can construct a run
ϱ′ executing that same run over disjoint sets of agents as many times as we want
to obtain as many agents as we need in q (with di�erent values).

Furthermore, if in a run ϱ an agent a gets in a state q with a datum d that is not its
initial one, it means that at some point in the run, it was in a state q′ and executed
a transition in which it received a message with datum d, stored it in its register
and went to a state q′′. As mentioned before, we can copy the run up to that point
to have an unlimited supply of agents in q′, and thus an unlimited supply of agents
in q′′ with datum d. We can then make all those agents copy the broadcasts of a
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and receive the same messages so that they all reach q with datum d. Hence if we
have an agent in a state q with a datum d that is not its initial one, we can assume
that we have as many agents in q with value d as we need.

This leads us to de�ne an abstraction of runs. We start by de�ning gangs, which are
of the form (s, T ) with s a state and T a set of states. The set of states T represents the
set of agents carrying a datum d, at some point in the run. The �rst component s is the
current state of the agent who had datum d initially, while T is the set of states in which
some agents with datum d are currently.

If the original owner of this value no longer has it, then s = ⊥. Note that we de�ne
the clique as the set of states q such that at some point in the run some agent was in
state q with value v. This is because we can use the copycat principle to add a large
amount of agents that are in state q with value v, and thus we can assume that there is
always one.

In a concrete run of our system, gangs of distinct values may only interact with
one another by covering states q which are needed by the other gang (in the form of a
broadcast or of a ‘ ↓ ’ reception from q); therefore our abstraction also keeps track of the
set of coverable states, which may only grow. However, it only needs to keep track of one
gang at a time.

This leads us to a natural abstract semantics based on gangs. An abstract con�g-
uration consists of a set of states S (states covered so far by some agents) and a gang
(b,K) (the agent who carried d initially and the states reached by other agents with that
datum). If the original owner of d stores a new datum we set b = ⊥. Abstract transitions
are de�ned by applying transitions of the protocol while assuming that we have unlim-
ited supplies of agents in every state of S and of agents with datum d in all states of
K. At any time, we can apply a gang reset, which maintains S but reinitializes (b,K) to
(q0, ∅) (we track a new value). To bound the length of relevant abstract runs, we impose
that S should grow between two gang resets (otherwise they reset to the same abstract
con�guration) and that there may be at most O(|Q|2) abstract steps between two resets
(as K can only increase and there are only |Q| + 1 possibilities for b). This means that
if there is an abstract run covering a state, there is one of size O(|Q|3), proving the NP
upper bound.

We leave the decidability and complexity of the Synchro problem in the 1BGR case
as an open problem.

Open problem 3.54

Is Synchro decidable for 1BNRA? If so, what is its complexity?

We conjecture that we can use an abstraction similar to the one used for Cover to
show that the problem is NP-complete.

3.8.2 Strategy synthesis

We investigate the complexity of safe strategy synthesis in the case of 1BGR. In this case,
a record transition essentially resets the memory of the process. This allows to split the
invariant game used in the general case into simpler games: the output game and the
echo games. The output game concerns processes that still have their original datum in
their register. In that game, we show that Controller always has an optimal positional
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strategy. The echo game starts when a process records a new datum in their register.
There, we show that Environment always has an optimal positional strategy.

Those facts allow us to reduce the class of invariants we have to consider: We show
that we can restrict ourselves to invariants whose basis only contain words of length
polynomial in the size of the system. This means that we can guess in NExpTime

an invariant and check that Controller wins all associated games. The last part of the
upper bound proof justi�es that we can verify that Controller wins all those games in
NExpTime. Finally, we show the lower bound by a reduction from the exponential grid
tiling problem.

Theorem 3.55

SafeStrat is NExpTime-complete on 1BGR.

We start with the upper bound. In what follows we will rely on the existence of
memoryless, or positional, strategies in some games. In particular, we will rely on the
following criterion, which can be used to show that some player can win with a positional
strategy.

We say that an objective L is submixing (sometimes called concave) if whenever we
have words u0, u1, . . . and v0, v1, · · · such that

u0u1 · · · /∈ L
v0v1 · · · /∈ L

then u0v0u1v1 · · · /∈ L.

Proposition 3.56 ▶ [Kop06]

If an objective is submixing then player P0 has a positional optimal strategy in all
games with this objective.

Proposition 3.57

SafeStrat is in NExpTime on 1BGR.

To prove this statement, we rely on the characterisation of winning control strategies
by the invariant game, as stated in Lemma 3.39 and 3.40. It turns out that for 1BGR,
the invariant game can be split into several simpler games. Essentially, we consider the
recording of a new value in the register as a reset of the game.

We de�ne two di�erent games: in the output game the players build the part of the
local run before the �rst record transition. In the echo game the players build an interval
of the local run between two record transitions.

We show that in the �rst game Controller can always use a positional strategy while
in the second one it is Environment who can stick to positional strategies. In both cases
we use the submixing property of their objectives to prove it.

We show that the winners of those games determine the winner of the 1BGR. The
positionality of Environment's strategy in the echo game then lets us bound the size of the
invariants necessary to witness the existence of a winning control strategy for Controller.

Finally, we exhibit an NExpTime algorithm, in which the non-deterministic guess is
the invariant and a positional strategy for Controller in the output game.
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For the rest of this section we �x a 1BGR G = (R, Qctrl, Qenv, qerr).
The output game is played on R, with players picking transitions from their respective

states. It has two parameters: an invariant (I, (Jm)m∈M), and a set of record transitions
T ⊆ ∆. We will use the term (I, (Jm)m∈M, T )-output game for the output game with
those parameters.

The winning condition is de�ned as follows:

(O1) If at some point the play is not compatible with any decomposition of D((Jm)m∈M),
then Controller wins.

(O2) If at some point we see a disequality transition receiving a letter m /∈ I then
Controller wins.

(O3) If the output of the play is not in I then Environment wins.

(O4) If we reach a record transition then Controller wins if it is in T and Environment
wins otherwise.

(O5) If the play goes on forever without any of the previous things happening then
Controller wins.

Lemma 3.58

If Controller wins an output game then she has a positional winning strategy.

Proof. We show that Controller's objective in an output game is submixing. This proves
the lemma by applying [Kop06, Theorem 4.5].

Consider two losing plays for Controller π and π′, and a third play π̄ = π0π
′
0π1 · · ·

obtained by shu�ing the two. We show that π̄ is also losing for Controller. As π and π′

are losing for Controller, we can consider them as �nite: the victory of Environment is
witnessed by a �nite pre�x. We can cut π and π′ into π = π0π1 · · · πm and π′ = π′

0π
′
1 · · · π′

m

so that π̄ = π0π
′
0π1 · · · πmπ′

m (note that π′
m can be empty).

Clearly no transition of T is seen in π or π′, thus not in π̄ as well. Let π̃ a pre�x of π̄,
we show that it is compatible with some decomposition of D((Jm)m∈M). Let m̃1, . . . , m̃k

be the set of letters received along π̃, in that order. Let π̃ = π̃0 · · · π̃k so that for each i
the �rst step of π̃i is the �rst reception of mi. Let ṽi be the sequence of letters broadcast
in π̃i, for all i. Let ˜dec = (ṽ0, m̃1, . . . , ṽk). Clearly π̃ is compatible with dec.

It remains to show that ˜dec ∈ D((Jm)m∈M). Let i ∈ [1, k], we need to �nd a word in
L(ṽ0,m̃1,...,ṽi−1) ∩ Jmi

. For that, we observe that the reception of m̃i happens in either a
segment from π or from π′. We assume that it is from π, the other case is symmetric. Since
every pre�x of π is compatible with some decomposition of D((Jm)m∈M), in particular
the pre�x of π up to that reception of m̃i is compatible with one. Thus there exists
dec = (v0,m1, . . . , vℓ) such that Ldec ∩ Jm̃i

̸= ∅ and with which π is compatible. Let
w ∈ Ldec ∩ Jm̃i

, w can be obtained from v0 · · · vℓ by adding letters from {m1, . . . ,mj} to
each vj.

As this pre�x of π is fully contained in π̃, we can �nd the same sequence of broadcast
v0 · · · vℓ in π̃. Moreover, for each j, the �rst reception of mj can only be earlier in π̃ than
in π, hence ˜dec allows us to �nd v0 · · · vℓ and to add the same letters at the same places.
As a consequence, w ∈ L(ṽ0,m̃1,...,ṽi−1).
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It follows that every pre�x of π̄ is compatible with some decomposition ofD((Jm)m∈M).
As a consequence, Controller does not win at any point in π̄.

If some record transition outside of T is seen in π or π′ then in π̄ as well. Otherwise,
it means the output of some pre�x of π is not in I. As the output of that pre�x must be
a subword of the output of π̄, and I is downward-closed, we obtain that the output of π̄
is not in I.

In conclusion, Controller does not win at any point in π̄ while Environment does. As
a consequence, Controller's objective is submixing and thus if Controller wins she can
win with a positional strategy.

The echo game is also played on R, with players picking transitions from their respec-
tive states. It has as parameters an invariant (I, (Jm)m∈M), a set of record transitions

T ⊆ ∆ and a record transition t = q
rec(m,↓1)−−−−−→ q′. The play starts by taking transition t,

and continues from q′.

(E1) If at some point the recent input on 1 is not in I, Controller wins.

(E2) If at some point we see a disequality transition receiving a letter m /∈ I then
Controller wins.

(E3) If at some point we make a broadcast with letter m while the recent input on 1 is
not in Jm, then Environment wins.

(E4) If we reach a record transition the game stops: If that transition is in T then
Controller wins, otherwise Environment does.

(E5) If the play goes on forever without any of those things happening then Controller
wins.

Lemma 3.59

If Environment wins an echo game then he has a positional winning strategy.

Proof. We show that Environment's objective in an echo game has the submixing prop-
erty, and again apply [Kop06, Theorem 4.5].

Consider two losing plays for Environment π and π′, and π̄ a submixing of the two.
We can cut π and π′ into π = π0π1 · · · and π′ = π′

0π
′
1 · · · so that π̄ = π0π

′
0π1 · · · .

At all times in π̄ if we make a broadcast with letter m while the recent input is w,
then that broadcast was made in π or π′ with a recent input that is a subword of w. As
Environment loses in π and π′, and as Jm is upward-closed, w ∈ Jm.

Every record transition seen in π̄ must be seen in π or π′, hence must be in T .
As a consequence, Environment cannot win π̄, hence Controller wins. The objective

of Environment is therefore submixing, and thus if Environment wins he can win with a
positional strategy.

Lemma 3.60

Controller wins the (I, (Jm)m∈M)-invariant game if and only if there is a set of
record transitions T such that she wins the (I, (Jm), T )-output game and the
(I, (Jm), T, t)-echo game for all t ∈ T .
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Proof. Suppose Controller wins the (I, (Jm)m∈M)-invariant game with a strategy σ. Let
T be the set of record transitions taken in a σ-play in which no player has won yet.

We start with the (I, (Jm), T )-output game : let Controller apply the same strategy
σ in that game.

Claim 3.60.1. Let π be a play such that no record transition has been seen yet.
Then π is winning for a player in the invariant game if and only if it is winning for

that player in the output game.

Proof of the claim. Take a look at the winning conditions in the invariant game.
Condition (A), (C) and (D) are the same as (O1), (O2) and (O3). Condition (B) and
(E) cannot happen: as we have not seen any record transition, reg(π′) = {1} for all
pre�xes π′ of π. ■

As a consequence, a σ-play can only be winning for Environment if we reach a record
transition t /∈ T while Controller has not won. However, this means that the play
obtained before reaching t is not winning for Controller in the invariant game either, by
the previous claim. This contradicts the de�nition of T . Hence σ is winning for Controller
in the (I, (Jm), T )-output game.

Let t ∈ T . We now show that we have a winning strategy for Controller in the
(I, (Jm), T, t)-echo game.

Claim 3.60.2. Let tπ+ be a play in the (I, (Jm), T, t)-echo game such that no record
transition has been seen yet (apart from the �rst step). Let π−t be a play ending with t
in the (I, (Jm))-invariant game such that no player wins in it.

Then π+ is winning for a player in the echo game if and only if π−tπ+ is winning for
that player in the output game.

Proof of the claim. First of all note that reg(π−t) = ∅ as t updates the only register.
As π−t is not winning for either player, no pre�x of it ful�ls either (A) or (D). We
can then conclude that there is no play starting with π−t that ful�ls either of those
conditions.
Furthermore, since no player wins in π− and t updates the only register, conditions (B),
(C), (E) are satis�ed by π−tπ+ if and only if they are satis�ed by tπ+ if and only if
tπ+ satis�es (E1), (E2), (E3) respectively.
This proves the claim. ■

By de�nition of t there exists a play reaching t in the invariant game in which no
player has won yet. Let π− be the pre�x of that play before reaching t. We de�ne the
strategy σE as σE(π) = σ(π−π).

Let us consider a σE-play tπ+ in the echo game and show that it cannot be winning
for Environment.

By the claim above, a σE-play can only be winning for Environment if we reach a
record transition t′ /∈ T while Controller has not won. However, this means that the
play π obtained before reaching t′ is such that π−π is not winning for Controller in the
invariant game either, by the previous claim. This contradicts the de�nition of T .

We have established that a winning strategy in the (I, (Jm)m∈M)-invariant game yields
a set of record transitions T and winning strategies in the (I, (Jm), T )-output game and
the (I, (Jm), T, t)-echo game for all t ∈ T .

For the reverse direction, let us consider a set of record transitions T , σO a winning
strategy in the (I, (Jm), T )-output game and, for all t ∈ T , σt a winning strategy in the
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(I, (Jm), T, t)-echo game.
We de�ne a strategy σ in the invariant game as follows: If π does not contain any

record transition then σ(π) = σO(π). Otherwise, let π′ be the largest su�x of π with no
record transition and t the record transition just before π′. We set σ(π) = σt(tπ

′).
It remains to show that σ is a winning strategy in the invariant game. Suppose by

contradiction that there exists a �nite σ-play winning for Environment. Let π be such a
σ-play of minimal size. If π contains no record transition then by the �rst claim it is also
winning for Environment in the output game. As σ mimics σO while no record transition
has been seen, this is a contradiction with the fact that σO is winning.

On the other hand, if π contains a record transition, then we can decompose it as
π = π−tπ+ with t a record transition and π+ the maximal su�x of π with no record
transition.

Then by minimality of π, no player wins in π−. As a result, by the second claim, tπ+
is winning for Environment in the (I, (Jm), T, t)-echo game. This is a contradiction as by
de�nition of π, tπ+ is a σt-play, and σt is winning for Controller.

This concludes our proof.

Lemma 3.61

If there exists a winning control strategy for a BGR then there exist I such that
every word in the basis of Ic is of length≤ |R|(|M|+1) and (Jm)m∈M in which every
word in the basis has length ≤ |R| for all m and T a set of record transitions such
that Controller wins the I, (Jm), T -output game and the I, (Jm), T, t-echo game for
all t ∈ T .

Proof. Suppose there exists a winning control strategy σ, then we have some I, (Jm) such
that Controller wins I, (Jm), T -output game and the I, (Jm), T, t-echo game for all t ∈ T .
We can assume that the sum of the lengths in the basis of the Jm is minimal.

We remove a word w from the basis of Jm. By minimality of Jm the resulting invariant
is not su�cient. Hence Environment wins one of the games. Since I has not changed but
(Jm) has decreased, Controller still wins the output game. As a consequence, Environ-
ment wins the I, (Jm), T, t-echo game for some t ∈ T . Let σecho be a positional winning
strategy for Environment in the new instance of that game. There must be a σecho-play
that is losing for him in the previous instance. As we have decreased L(I, (Jm))↓, the
only possibility is that there is a play in which we broadcast m while the recent input is
not in Jm. As Jm is upward-closed and σecho is positional, we can cut all cycles from this
play: We obtain a σecho-play whose recent input is not in Jm, of length at most |R|. As
a consequence, |w| ≤ |R|.

We have shown that all words in the basis of all Jm have length at most |R|. Let us
now bound the words in the basis of Ic.

Consider I with a basis of minimal size such that I, (Jm) is a su�cient invariant for
σ. We remove a word w from the basis of Ic, thus increasing I. By minimality of Ic,
Environment wins one of the games. It cannot be the output game as I has increased and
the Jm are the same. If it is an echo game then let σecho be a positional winning strategy
for Environment in the new instance of that game. There must be a play whose recent
input was previously out of L(I, (Jm))↓ but is now in it. We can once again cut cycles on
that play. Once we do so, we obtain a play of length ≤ |R| whose recent input win is in
L(I, (Jm))↓ but was not previously. As a consequence, there exists dec = (v0,m1, . . . , vk)
such that win ∈ Ldec↓ and for all i, L(v0,m1,...,vi−1) ∩ Jmi

̸= ∅. As we have bounded the
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lengths of words in the basis of each Jm by |R|, there exist u1, . . . , uk, all of size at most
|R|, such that ui ∈ Jmi

and ui ∈ L(v0,m1,...,vi−1)
↓.

For each ui and for win at most |R| letters from v0, · · · , vk su�ce to maintain these
properties. We de�ne v′0, . . . , v

′
k as the words obtained by removing all other letters. Let

dec′ = (v′0,m1, . . . , v
′
k). We therefore have |v′0 · · · v′k| ≤ |R|(|M|+1), and (v′0,m1, . . . , v

′
k) ∈

D(I, (Jm)) and win ∈ Ldec′ ↓.
As a consequence, we must have that v′0 · · · v′k is in I but was previously not. As a

result, w⊑ v′0 · · · v′k and thus |w| ≤ |R|(|M|+ 1).

Proposition 3.62

SafeStrat is in NExpTime for 1BGR.

Proof. We guess a positional strategy σ for Controller in the output game. We also guess
a set of record transitions T , a set of words B of length ≤ |R|(|M|+ 1) and a family of
sets of words (Bm)m∈M, where all words have length at most |R|.

We then try to check if Environment has a winning strategy in one of the games. For
the output game, we enumerate all positional strategies for Controller. As the size of
words in the basis of I is bounded by |R|(|M|+1), if such a strategy allows a losing play,
it allows one of length at most |R|(|R|+1)(|M|+1). As a consequence, we can check in
exponential time whether one of those strategies is winning.

For the echo games, we enumerate all positional strategies for Environment.

Claim 3.62.1. We can check that a positional strategy σecho is not winning for Environ-
ment in an echo game in non-deterministic exponential time.

Proof of the claim. Let π be a play won by Controller, at all times if we make a
broadcast with letter m, the recent input on 1 is in Jm. For each m broadcast in the
play, we can select a sequence of at most |R| preceding receptions forming an element
of the basis of Jm. Those elements witness the fact that the recent input is in Jm.
We can thus easily construct an NFA of exponential size recognising �nite plays in
which Environment does not win.
Since σecho is positional, there is an automaton with |R| states recognising the set of
σecho-plays. We �rst check whether there is an in�nite word whose pre�xes are all
accepted by the NFA.
If not, we check whether the NFA accepts a play ending with a transition of T .
Finally, we project it to obtain an NFA A recognising the recent inputs of σecho-
plays not won by Environment. We also build an exponential-size NFA B recognising
L(I, (Jm)m∈M). As shown in [BLS15], if there is a word in L(A)↓ that is not in L(B)↓,
then there is one of polynomial size in |A| and |B|.
As a consequence, we can check that non-inclusion in non-deterministic exponential
time.
In sum, we can check in non-deterministic exponential time that the given strategy is
not winning for Environment. ■

This lets us decide in non-deterministic exponential time if there exist I, (Jm), T such
that Controller wins the output game and all the echo games. As a result, SafeStrat
is in NExpTime.

It remains to show the lower bound.
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Proposition 3.63

SafeStrat is NExpTime-hard on 1BGR.

Proof. We reduce from the exponential grid tiling problem.
Let C be a set of colours containing a border colour B, let T = {t1, . . . , tk} be a set of

tiles and N an integer in unary. We use the alphabet of lettersM = {0, 1, 0̄, 1̄} ∪ T ∪ T̄ ,
where T̄ = {t̄1, . . . , t̄k} is a copy of T .

We design a 1BGR in which Controller wins if and only if there is a valid tiling of the
2N × 2N grid with those tiles.

Essentially, Environment may use some agents to broadcast coordinates (x, y) and
(x̄, ȳ) in the grid, respectively using letters {0, 1} and {0̄, 1̄}. Environment can also
make an agent receive coordinates (x, y) (resp. (x̄, ȳ)), while checking that they all
have the same datum. He then makes Controller choose a tile t (resp. t̄), which is
broadcast with that same identi�er. A strategy for Controller amounts to two functions
τ, τ̄ : [0, 2N − 1]× [0, 2N − 1]→ T .

The agents that broadcast coordinates (x, y) and (x̄, ȳ) can then receive tiles t and t̄
with their own identi�er, and check that:

If x = x̄ and y = ȳ then t = t̄

If x+ 1 = x̄ and y = ȳ then t.right = t̄.left

If x = x̄ and y + 1 = ȳ then t.up = t̄.down

If x = 0 (resp. y = 0, x = 2N − 1, y = 2N − 1) then t.left = B (resp. down, left,
right).

The �rst item forces Controller to choose τ = τ̄ . The other items make sure that she
picks a valid tiling of the grid.

From the initial state Environment chooses between three modes:

He can receive a sequence of 2N bits in {0, 1} with the same datum and then let
Controller broadcast a letter of T with that same identi�er.

He can receive a sequence of 2N bits in {0̄, 1̄} with the same datum and then let
Controller broadcast a letter of T̄ with that same identi�er.

He can broadcast a sequence of letters of the form x1x̄1 · · ·xN x̄Ny1ȳ1 · · · yN ȳN with
x1, y1, . . . , xN , yN ∈ {0, 1}, all with his initial datum. He then receives one letter t′

of T and one letter t̄ of T̄ with his initial datum. If t = t′ then he stops, otherwise
he goes to qerr.

He can broadcast a sequence of letters of the form x1x̄1 · · ·xN x̄Ny′1ȳ1 · · · y′N ȳN with
x1, y1, y

′
1, . . . , xN , yN , y

′
N ∈ {0, 1}, all with his initial datum. He makes sure that

⟨y1 · · · yN⟩2 = ⟨y′1 · · · y′N⟩2 +1. He then receives one letter t′ of T and one letter t̄ of
T̄ with his initial datum. If up(t′) ̸= down(t) or ⟨y′1 · · · y′N⟩2 = 0 and down(t′) ̸= B
or ⟨y1 · · · yN⟩2 = 2N − 1 and up(t) ̸= B, he goes to qerr. Otherwise he stops without
going to qerr.
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Similarly, he can broadcast a sequence of letters of the form x′1x̄1 · · ·x′N x̄Ny1ȳ1 · · · yN ȳN
with x1, x

′
1, y1, . . . , xN , x

′
N , yN ∈ {0, 1}, all with his initial datum. He makes sure

that ⟨x1 · · ·xN⟩2 = ⟨x′1 · · ·x′N⟩2 + 1. He then receives one letter t′ of T and one
letter t̄ of T̄ with his initial datum. If right(t′) ̸= left(t) or ⟨x′1 · · ·x′N⟩2 = 0 and
left(t′) ̸= B or ⟨x1 · · ·xN⟩2 = 2N − 1 and right(t) ̸= B, he goes to qerr. Otherwise
he stops without going to qerr.

If there is a valid tiling, Controller can play the corresponding strategy. In order
to reach qerr, Environment must make an agent a broadcast coordinates with its initial
datum, and then receive two tiles that do not satisfy the conditions mentioned above.
The agents that send those tiles must receive exactly 2N letters from a, as they are
signed by its initial datum. Thus their broadcasts are the tiles of the valid tiling at those
coordinates, and the agent will not be able to reach qerr, as they match all the conditions.

If there is no valid tiling, Controller's strategy will either induce two di�erent tilings or
two identical invalid ones. In both cases Environment can detect the mistake by making
an agent a broadcast the coordinates corresponding to the mistake, making two agents
answer with the faulty tiles, and make a reach qerr by observing the mistake.

3.8.3 Connection to population protocols with data

Population protocols are a popular model of distributed computation. In a population
protocol, an arbitrary number of �nite-state agents interact by rendezvous. When two
agents meet, they exchange information about their states and update their states accord-
ingly. The agents collectively compute whether their input con�guration, i. e., the initial
distribution of agents in each state, satis�es a certain predicate. When every fair compu-
tation reaches a consensus eventually, and fair runs from the same initial con�guration
produce the same answer, we say that the protocol is well-speci�ed. It was shown that
population protocols compute exactly the predicates of Presburger arithmetic [Ang+07].
Moreover, well-speci�cation is known to be decidable but as hard as the reachability
problem for Petri nets [Esp+17].

Population protocols with unordered data (PPUD) were introduced by Blondin and
Ladouceur as a means to compute predicates over arbitrarily large domains [BL23]. In
this setting, each agent holds a single datum from a set D. When interacting, agents
may check (dis)equality of their data. While PP can compute properties like �there are
more than 5 agents in state q1�, PPUD can express, e. g., �there are more than 2 data
with 5 agents each in state q1�. In [BL23], the authors construct a PPUD computing
the absolute majority predicate, i. e., whether a datum is held by more than half of the
agents.

For population protocols, the most prominent problem is the design of protocols
realising some predicates. This can be seen as a closed synthesis problem, where we
try to build a system satisfying a speci�cation without any adversarial interactions with
the environment. Formally, such a problem is solved by the constructive characterisation
of realisable predicates. In the case of population protocols, an important challenge is to
�nd small (few states) and e�cient (converging quickly) protocols for predicates.

However, for population protocols with data, the �rst step is not yet understood:
it is an open question to characterise predicates computable by PPUD. In [Ber+24] it
was shown that well-speci�cation is undecidable for this model, but this does not imply
anything about potential characterisations.
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By contrast, in [BL23] the authors characterise the expressive power of immediate
observation PPUD (IOPPUD), a subclass of interest in which interactions are restricted
to observations. That is, in every interaction, one of the two agents is passive and does
not change its state. Interestingly, this mode of communication can be simulated by
rendezvous (one of the two agents stays in the same state) and by broadcasts (agents
broadcast their current state at all times, and move by receiving those broadcasts). This
restriction was already de�ned on population protocols without data, and it was shown
that the complexity of verifying protocols decreases spectacularly when restricted to this
case [Esp+21]. Furthermore, in this subcase the well-speci�cation problem is decidable.
In fact, it is shown in [Ber+24] that a much more general problem is decidable, namely
the satisfaction of a generalised reachability expressions.

Let us de�ne those expressions on 1BNRA.

Let S be a �nite set. A simple interval predicate over S is a formula ψ of the form
∃̇d1, . . . , dm,

∧
q∈S

∧m
j=1#(q, dj) ∈ [Aq,j, Bq,j] where, for all q ∈ S and j ∈ [1,m], we have

Aq,j ∈ N and Bq,j ∈ N ∪ {+∞}. The dotted quanti�ers quantify over pairwise distinct
data. Formally, given a protocol R with set of states Q such that S ⊆ Q, the predicate
ψ is satis�ed by a con�guration γ if there exist pairwise distinct data d1, . . . , dm ∈ D
such that for all q ∈ S and j ∈ [1,m], the number of agents with datum dj in state q is
in [Aq,j, Bq,j] (resp. [Aq,j,+∞[ in the case that Bq,j = +∞). An interval predicate over
S is a Boolean combination φ of simple interval predicates over S; we de�ne that φ is
satis�ed by a con�guration γ if the simple interval predicates satis�ed by γ satisfy the
Boolean combination.

Let R = (Q,M,∆, qinit) be a protocol with one register. Given a set C of con�gura-
tions, Pre∗(C) is the set of con�gurations from which C is reachable, and Post∗(C) the
set of con�gurations reachable from C.

Generalised Reachability Expressions (GRE) over R are produced by the grammar

E ::= φ | E ∪ E | Ec | Post∗(E) | Pre∗(E),

where φ ranges over interval predicates over Q.

Given a GRE E, we de�ne the set of con�gurations de�ned by E, denoted JEKR, as
the set containing all con�gurations of R that satisfy the formula, where the predicates
are interpreted as above and the other operators are interpreted naturally.

It is then natural to wonder if we can extend the positive results obtained on IOPPUD
to 1BNRA. More precisely, the question is whether generalised reachability expressions
is decidable on 1BNRA.

Open problem 3.64

Is it decidable, given a 1BNRA R and a GRE E over R, whether JEKR = ∅?

Note that the set of initial con�gurations of a BNRA and the set of con�gurations
with all agents in a given state are expressible with interval predicates. It is therefore
not di�cult to express the Synchro problem as a particular case of this one. A positive
answer to this open problem would thus imply a positive answer to Open problem 3.54.
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3.9 Conclusion

In this chapter we presented a powerful model of computation, and showed decidability
of veri�cation and strategy synthesis with respect to state reachability. Here are the main
takeaways.

First, we showcased our method for distributed controller synthesis by using it for
increasingly complex versions of the model. We are always able to match the resulting
complexity class with a lower bound, which tends to show that this method makes sense
for this model. Then, we found two interesting decidability barriers in systems with lossy
broadcasts. We showed that the parameterisation is in a sense forced, as the synthesis
problem is undecidable for a �xed set of agents. We also exhibited two seemingly close
problems, Cover and Synchro, and proved that one is decidable on BNRA but not
the other. We also tested the robustness of our understanding of the model by exploring
several natural extensions. Finally, we investigated the case of 1BGR, by relying on the
characterisation by invariants obtained in Section 3.5. We also made a connection with
existing literature.

In conclusion, this chapter presents a compelling argument in favour of our method.
It advances our understanding of networks with unreliable broadcasts by introducing a
new perspective, based on the invariants presented throughout the chapter.
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Chapter 4

Lock-Sharing Systems

I have six locks on my door all in

a row. When I go out, I lock ev-

ery other one. I �gure no matter

how long somebody stands there

picking the locks, they are always

locking three.

Elayne Boosler
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4.1 Introduction

In this chapter we study lock-sharing systems (LSS for short), which are a simple model
of concurrent programs whose only means of communication is locks. Processes have
access to a pool of locks. Each process is represented by a �nite-state automaton whose
transitions acquire and release locks. Locks restrict the behaviours of the system, as a
process cannot take a lock already held by another process. It is then an interesting
challenge to understand the shape of the set of runs of such a system. A similar model
was introduced by Kahlon, Ivanci¢ and Gupta in [KIG05], with only two processes, each
being a pushdown system. They proved that the veri�cation of regular constraints relating
local runs was undecidable, and provided a �ne-grained analysis of the decidable cases in
that paper and later ones [Kah09; KG06]. They also showed that detecting deadlocks is
decidable under some restrictions. This exact approach contrasts with other ones, which
tackle more general systems but use approximations of the set of possible runs.

Here we will focus on �nite-state processes. We study the complexity of verifying
if a given LSS has a run satisfying a given property. To express those properties, we
de�ne regular objectives, which de�ne boolean combinations of local regular constraints.
In particular, regular objectives let us express deadlock properties. In the case of �nite-
state processes, the number of con�gurations is at most exponential in the size of the
system. Consequently, verifying regular objectives is in PSPACE. We will see that even
basic decision problems on LSS are PSPACE-complete, (Proposition 4.11).

We present an analysis of restrictions on lock-sharing systems that su�ce in order
to obtain more tractable complexities than PSPACE for veri�cation. The goal of this
part of the chapter is to give a complete picture of complexities for the veri�cation of
regular objective and two natural subproblems, which we will present later. The systems
we consider are LSS with various restrictions which all prove useful to make some of the
problems more tractable.

We mainly focus on two restrictions, 2LSS and nested LSS. The �rst one demands
that each process only accesses two di�erent locks, the second one that each process
takes and releases locks as if they were stored in a stack: the process can only release the
lock taken latest. Nested locking is assumed in most papers on veri�cation of dynamic
systems with synchronization over locks, see for instance [Bro+21; KIG05]. It is also
considered as good programming practice, sometimes even enforced syntactically, as in
Java through synchronized blocks. The contribution of [Bro+21] consists in an NP al-
gorithm for detecting deadlocks (more speci�cally, con�gurations where some subset of
processes is blocked as they all try to acquire locks held by other processes of that subset)
in concurrent programs. They use a syntax for programs that can be translated to what
we call sound nested exclusive LSS in this chapter. As for the systems with two locks
per process, they can already exhibit a variety of behaviours. Dijkstra's famous dining
philosophers problem matches this constraint.

The 2LSS and nested restrictions have a common point: local runs can be summarised
in short descriptions, called patterns. Patterns contain enough information to determine
whether local runs can be interleaved to form a global run. Some form of patterns for �nite
runs of nested systems, called acquisition history, was already considered in [KIG05], but
was only focused on systems with two processes, on �nite runs, and with no considerations
of complexity. We show that we can extend the techniques to handle much larger classes
of speci�cations, in the framework of veri�cation.

In order to do this, we de�ne the notion of patterns for �nite and in�nite local runs.
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We show that we can check if a set of local runs can be interleaved to form a (fair) global
run simply by checking a short list of conditions on their patterns (Lemma 4.28 for 2LSS).
This allows us to verify the system against local speci�cations with the following steps:

First we guess for each process a pattern, and check that the process has a bad
local run with that pattern.

Then we check that those local runs can be scheduled into a global run by checking
the aforementioned conditions on their patterns.

Thus we avoid exploring the product of all processes.
This approach yields NP algorithms for the veri�cation of (boolean combinations of)

local speci�cations for 2LSS and nested LSS. For 2LSS, with additional constraints, we
even obtain Ptime algorithms for some speci�c objectives. More precisely, we show that
we can check in polynomial time if there is a run in which a given process p gets blocked
inde�nitely (process deadlock problem), on 2LSS where whenever a process may acquire a
lock, that is the only thing it can do (exclusive). We also show that we can decide if there
is a run in which every process gets blocked (global deadlock problem) in polynomial time
for 2LSS where processes always have an available action (locally live). The complexity
results for veri�cation are summarised in Table 4.1. We provide matching lower bounds
for all complexities above P.

We also tackle controller synthesis for this model. We show that for general LSS this
is an undecidable problem. On the other hand, for 2LSS and nested LSS, we use once
again the patterns de�ned in the veri�cation part of the chapter. This time the procedure
follows those lines:

First we guess for each process a set of patterns (called a behaviour) and check that
there is a local strategy guaranteeing that the patterns of all possible bad local runs
are in this set. The existence of that strategy is checked using a two-player regular
game.

Then we make a universal guess of a pattern in the behaviour of each process.

Finally, we check that those patterns represent local runs that can be scheduled
into a global run.

This yields an NExpTime algorithm in general for regular objectives. This bound is
unfortunately tight. In front of this high complexity, we present some subcases which are
more tractable. We show that the complexity can be improved to ΣP

2 for 2LSS for some
subproblems, and even to P when we consider the global deadlock problem for locally
live exclusive 2LSS.

4.1.1 Structure of the chapter

In Section 4.2, we will start by de�ning the central model of this chapter, lock-sharing
systems. We will also introduce the speci�cations considered in this chapter, which we
call regular objectives. We also introduce two central sub-problems, the global deadlock
problem and the process deadlock problem. The �rst one asks whether all processes
may end up blocking each other, and the second one whether some give process p may
get blocked forever. Finally, we de�ne several restrictions on LSS, which we will use to
mitigate the complexity of the problems at hand.
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In Section 4.3 we study the veri�cation of regular objectives on LSS. We show that
in general the problem is PSPACE-complete. Then, we restrict ourselves to LSS in which
each process uses at most two locks (2LSS). We �rst give a representative example of
the method we use in this case, using the dining philosophers. We then de�ne a central
tool of this chapter, called patterns. Those are a classi�cation of local runs into �nitely
many classes. We show that knowing the patterns of some local runs is enough to decide
whether they can be combined into a global run. We use this fact to prove an NP upper
bound on the veri�cation of regular objectives for 2LSS.

Sections 4.4 and 4.5 are respectively dedicated to the study of the process deadlock
problem and the global deadlock problem in the case of 2LSS. Both problems are NP-
complete, but we can �nd subcases with a polynomial-time complexity.

In Section 4.6 we focus on a di�erent restriction on LSS, called nested locking. In
this case also, we can de�ne stair patterns with which we characterise schedulability of
local runs. We conclude that the veri�cation of regular objectives is NP-complete in that
case. We also show that the restrictions considered for the 2LSS case do not improve this
complexity for nested LSS.

Finally, in Section 4.7 we lift our results from veri�cation to the synthesis problem,
where some states are controllable and we try to �nd local strategies ensuring that no
global run has an undesired behaviour. We show that this problem is undecidable for LSS.
By contrast, for 2LSS and nested LSS, we can use sets of patterns as local speci�cations
to guarantee the global objective. We reduce the synthesis problem to a two-player game.

Our results concerning veri�cation are summarised in Table 4.1.

Regular objectives Global deadlock Process deadlock

LSS PSpace (Prop. 4.11) PSpace (Prop. 4.11) PSpace (Prop. 4.11)

Nested NP (Thm. 4.53) NP (Thm. 4.53) NP (Thm. 4.53)

2LSS NP (Thm. 4.18) NP (Thm. 4.29) NP (Thm. 4.19)

Locally live 2LSS NP (Thm. 4.18) P (Thm. 4.30) NP (Thm. 4.19)

Exclusive 2LSS NP (Thm. 4.18) NP (Thm. 4.29) P (Prop. 4.20)

Table 4.1: A summary of complexities of verifying LSS in the cases we consider in this
work. All problems are proven complete for the indicated complexity class, except the
ones solvable in polynomial time.

The PSpace complexity in the �rst column comes from the fact that three locks
su�ce to allow processes to synchronise and progress in lock-step manner. In the case of
2LSS and nested LSS we can classify runs with respect to their patterns, and characterise
schedulability using those patterns. This lets us verify those systems by guessing short
patterns describing the local runs, and then check that they represent local runs that
can be tangled into a global run satisfying the speci�cation, Moreover, with some extra
assumptions, we can represent patterns of 2LSS as a graph and characterise the existence
of deadlocks on that graph, giving us polynomial-time algorithms.
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4.2 De�nitions

In this section we de�ne the model at hand in this chapter, the decision problems we will
study, and some restrictions that we will consider in order to lower the complexities.

Given a set L of locks, we de�ne the set of operations on L as

Op(L) = {acqℓ, relℓ, nop | ℓ ∈ L}.

De�nition 4.1 ▶ Lock-sharing system

A lock-sharing system (LSS for short) is a tuple S = (Proc, (Ap)p∈Proc,L, op), made
of

Proc a �nite set of processes,

(Ap)p∈Proc a family of deterministic automata,

L a set of locks,

op : Σ → Op(L) a function mapping letters to operations, with Σ the set of
letters used by the automata (Ap)p∈Proc.

Each transition system Ap is given as a tuple (Sp,Σp, δp, initp) with Sp a �nite set
of states, initp the initial state and δp : Sp × Σp → Sp the transition function.

For all p ∈ Proc we de�ne Lp = {ℓ ∈ L | ∃a ∈ Σp, op(a) = acqℓ} the set of locks
p may acquire. We assume that the Σp are disjoint for convenience, and we de�ne
Σ =

⊔
p∈Proc Σp. A 2LSS is an LSS where every Lp has two elements.

We �x an LSS S = (Proc, (Ap)p∈Proc,L) for the rest of this section.
A local con�guration of process p is a state from Sp together with the locks p currently

owns: (s, B) ∈ Sp × 2Lp . The initial con�guration of p is (initp, ∅), namely the initial
state with no locks. A transition between con�gurations (s, B)

a−→ (s′, B′) exists when
δp(s, a) = s′ and one of the following holds:

op(a) = nop and B = B′;

op(a) = acqℓ, ℓ /∈ B and B′ = B ∪ {ℓ};

op(a) = relℓ, ℓ ∈ B, and B′ = B \ {ℓ}.

A local run of Ap is de�ned as a �nite or in�nite sequence of transitions of the form
ϱp = (s0, B0)

a1−−→p (s1, B1)
a2−−→p · · · . It is initial if (s0, B0) = (initp, ∅). Because a local

run is determined by its sequence of letters, we will identify local runs of p and words
over Σp. A local run is neutral if it is �nite and the locks held at the end and at the
beginning are the same, and are not released during the run.

For instance, in the LSS from Figure 4.1, the local run (B, {1}) → (C, {1, 2}) →
(B, {1}) → (D, {1, 3}) → (F, {1}) is neutral. However, (C, {1, 2}) → (B, {1}) →
(C, {1, 2}) is not.

A global con�guration is a family of local con�gurations C = (sp, Bp)p∈Proc provided
the sets Bp are pairwise disjoint: Bp ∩ Bq = ∅ for p ̸= q. This is because a lock can
be held by at most one process at a time. The initial con�guration is the tuple of
initial con�gurations of all processes (initp, ∅)p∈Proc.
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Runs of such systems are asynchronous, with transitions between two consecutive

con�gurations done by a single process: C
(p,a)−−→ C ′ if we have (sp, Bp)

a−−→p (s′p, B
′
p)

and (sq, Bq) = (s′q, B
′
q) for every q ̸= p. A global run (or just run) is a sequence of

transitions between global con�gurations. The projection of a global run ϱ on process p
is the sequence of transitions taken by p in ϱ, written ϱp or ϱ|p.

In what follows we will assume that each process keeps track in its state of the set
of locks it owns. Note that this assumption does not compromise the complexity results
provided there is a bound on the number of locks a process can access: the number of
states is then multiplied by a constant factor.

De�nition 4.2

A process of an LSS is sound if its transition system Ap keeps track of the set of
locks it has in its states. Formally, let Ap = (Sp, δp, initp), p is sound if there exists
a function holdsp : Sp → 2Lp such that:

for all local run ϱp = a1a2 · · · an ending in a state s, we have (initp, ∅)
a1−→

· · · an−→ (s, holdsp(s)).

for all states s ∈ Sp, there is no outgoing transition of s that acquires a lock
in holdsp(s) or releases a lock that is not in holdsp(s).

An LSS is sound if all its processes are.

Remark 4.2.1. Soundness can be easily checked in polynomial time on a given LSS: it
su�ces to set holds(initp) to ∅, apply a DFS to compute candidates for holds(s) for all
states, and then check consistency of holds with respect to each transition.

Example 4.2.1. Take a look at the LSS displayed in Figure 4.1. This LSS is sound as
both its processes are. However, it is not nested, as the upper process is not: for instance
the local run (A1, ∅) → (B1, {1}) → (C1, {1, 2}) → (E1, {1, 2, 3}) → (D1, {1, 3}) does
not satisfy the nested discipline.

We want to be able to de�ne deadlocks in terms of languages of runs. To this end, we
have to restrict our attention to process-fair runs, in which every process is either blocked
after some point or executes an action in�nitely many times. This is often called strong
fairness in the literature. This way if a process stops doing anything after some point in
a run, it means it is blocked.

De�nition 4.3 ▶ Process-fairness

A run ϱ is called process-fair if for all p ∈ Proc, either ϱ contains in�nitely many
actions of Sp, or there is a point after which no action of p can ever be executed at
any moment in the run.

De�nition 4.4 ▶ Deadlocks

A process-fair run yields a global deadlock if it is �nite, i.e., at some point there
are no actions that can be executed in any of the processes, and the system cannot
advance any more.
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A1

B1

C1

D1

E1

F1 G1

acq1

acq2

rel2
acq3

acq3

rel2

rel3
rel1

nop

A2 B2 C2

E2

D2
acq2 acq3

rel3rel2

nop

rel1

acq1

Figure 4.1: Example of an LSS made of two processes. For readability the transitions are
not labelled with letters of Σ but with the associated operations.

Example 4.2.2. In the LSS from Figure 4.1, we can obtain a global deadlock as follows:
First make the upper process go to B1 while taking lock 1, then make the other process
go to D2 while taking locks 2 and 3. After this, no process can take any action and thus
we have a global deadlock.

Adding a transition from B1 to A1 releasing lock 1 would prevent this: The upper
process could then always release a lock or do nop from any state except A1. Furthermore,
in a process-fair run, after acquiring 1 and getting to E2 the lower process would have to
eventually release 1 by going to C2. As a consequence, the upper process could not get
stuck in A1 either.

In all that follows we will have to work with �nite and in�nite words simultaneously
as LSS executions may be �nite or in�nite. To lighten notations, we will consider that we
work with automata on in�nite words. We implicitly assume that we use a dummy letter
□, and that �nite words are padded with an in�nite su�x □ω, so that we can express
objectives as languages of in�nite words.

We will now de�ne the set of properties we aim to verify. This class of objectives is
inspired by deterministic Emerson-Lei automata, introduced in [EL87], which we will use
in several proofs. These automata have advantageous properties, such as the ability to
be easily intersected and complemented in polynomial time.

Our objectives are de�ned with one automaton per process and a single formula
expressing a condition on which states (among the ones of all automata) are seen in�nitely
often.
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De�nition 4.5

A regular objective is a pair ((Bp)p∈Proc, φ) such that each Bp is a deterministic
automaton with a set of states Qp over the alphabet Σp, and φ is a boolean formula
over the set of variables {infp,q | p ∈ Proc, q ∈ Qp}.
Let ϱ be a process-fair run, and for each p let ϱp be its projection on Sp. We say
that ϱ satis�es a regular objective ((Bp)p∈Proc, φ) if φ is satis�ed by the valuation
evaluating infp,q to ⊤ if and only if the unique run of L(Bp) on ϱp goes through q
in�nitely many times.

We argue that these speci�cations are quite expressive and at the same time allow us
to stay in reasonably low complexity classes.

Regular objectives are expressive. They can express properties such as reachability
(with local or global con�gurations) or safety, as well as properties related to deadlocks,
such as global deadlock: As we focus on process-fair runs, a local projection of a run is
�nite if and only if the corresponding process is blocked at some point and has no available
action for the rest of the run. Hence, we can express for instance a global deadlock
with an objective requiring the local run of every process p to be �nite. Moreover, the
�exibility of boolean formulas allows us to relate con�gurations between processes: say
each process has to decide between 0 and 1, then we can express agreement by demanding
that they all select 0 or all 1. Regular objectives are furthermore closed under boolean
combinations. They can be complemented by simply taking the negation of the formula
φ, and intersected in polynomial time by taking the product automaton for each process
and adapting the formula.

Complexity blows up quickly with more expressive objectives Regular objec-
tives only restrict the shape of local runs without any requirement on their interleaving.
Restrictions on interleavings would lead to PSPACE-hardness very quickly. For instance,
an objective expressing that processes should operate in rounds in which they all use the
same letter would let us reduce the problem of emptiness of the intersection of a family
of DFAs easily.

We study the problem of �nding a run satisfying some given regular objective.

De�nition 4.6 ▶ Regular veri�cation problem

Input: a sound LSS S and a regular objective ((Bp)p∈Proc, φ)
Output: Is there a process-fair run of S satisfying the objective?

Note that we de�ne the problem existentially: we are looking for a bad run, hence the
given objective should express the set of runs that we want to avoid. We use this formu-
lation as it simpli�es a bit our proofs, and as regular objectives are easy to complement.

We will also study two speci�c cases of this problem: global deadlocks and process
deadlocks. We consider those as the simplest interesting objectives in this framework.
We will demonstrate that these problems can be decided in Ptime in some subcases.
Additionally, we will use these cases for complexity lower bounds, showing that the com-
plexities do not arise from complicated speci�cations.
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De�nition 4.7 ▶ Process deadlock problem

Input: a sound LSS S and a process p.
Output: Is there a process-fair run of S whose projection on p is �nite?

De�nition 4.8 ▶ Global deadlock problem

Input: a sound LSS S.
Output: Is there a process-fair run of S whose projection on every process is �nite?

In addition to restrictions on the decision problem, we will consider two assumptions
on the model, which will also let us improve the complexity. The �rst one is locally live
processes. It forbids processes to block by themselves because they are in a state with no
outgoing transition. This makes sense as a deadlock occurring only because some process
is in a state with no outgoing transitions can be considered a degenerate case. However,
it can be interesting to study the model without this restriction as we can then easily
model processes that can crash during the execution.

De�nition 4.9 ▶ Locally live

An LSS is locally live if it is sound and all states have an outgoing transition. In
other words, the process cannot be blocked by itself: the only cause of blockage is
waiting for locks that are never released.

As our last de�nition in this part, we introduce exclusive LSS, in which a process that
can acquire a lock cannot do any other operation from the same state.

De�nition 4.10 ▶ Exclusive

A process is exclusive if its transition system Ap is such that for all states s, if s has
an outgoing transition acquiring some lock ℓ, then all other outgoing transitions
from s acquire that same lock ℓ. An LSS is exclusive if all its processes are.

This restriction can be satis�ed easily when translating programs into LSS: it su�ces
to replace every acqℓ transition from a state s with a nop transition to an intermediate
fresh state and a acqℓ transition from there. The drawback is that this transformation
makes deadlocks more likely to appear in the model. Note that the locally live and
exclusive restrictions are orthogonal, in the sense that neither of them implies the other.

4.3 Veri�cation of regular objectives

In this section we address the general problem of veri�cation of 2LSS against regular
objectives.

4.3.1 An introductory case study

To understand the interest of 2LSS, let us have a look at the Dining philosophers problem.

105



4.3. Veri�cation of regular objectives

Example 4.3.1. The dining philosophers problem can be formulated as control problem
for a lock-sharing system. We set Proc = {1, . . . , n} and Locks = {ℓ1, . . . , ℓn} as the set
of locks. For every process p ∈ Proc, process Ap is as in Fig. 5.1, with the convention
that ℓn+1 = ℓ1. When a philosopher p is hungry, she has to get both the left (ℓp) and the
right (ℓp+1) fork to eat. She may however take them in two ; actions left and right are
controllable.

hungry

think

left

right

acqℓp+1

acqℓp

acqℓp

acqℓp+1

relℓp
relℓp+1

Figure 4.2: A dining philosopher p.

Since each process uses only two locks, we can draw the lock distribution as a graph,
where locks are vertices and process label edges. In this example we obtain a cycle.

Let us take the following speci�cation: Every philosopher that takes the action hungry
should later come back to the initial state (meaning that she managed to eat). Let us
furthermore consider only fair runs: a philosopher can stay idle inde�nitely only if she
has no available action from some point on.

We can show that the satisfaction of that speci�cation by a strategy over fair runs
depends only on one thing: which local strategies only take left, which ones only take
right, and which ones may take both depending on the run seen so far. We draw this as
a graph, as in Figure 4.3.

p1

p2

p3

p4ℓ1

ℓ2

ℓ4

ℓ3

Figure 4.3: A graph representing the choices of each philosopher, with n = 4. Each pi
chooses either one or both edges, which indicate orders in which locks are taken.

Once we do that, we translate the previous problem into a graph problem: We want
to choose for each pi either one or two edges so that a cycle can be formed with the chosen
edges. This is easy to do, for instance by making each pi select the edge from ℓi to ℓi+1.

We can thus conclude that there is a run leading to a deadlock.
Let us now illustrate an idea for controller synthesis. Now suppose that the square

state in Figure 5.1 is controllable. Then the graph in Figure 4.3 is interpreted di�erently.
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Each process may always take the left lock �rst, always the right one, or sometimes one
and sometimes the other. In the graph this is represented by a subset of edges between
the two locks. Each process picks either just the edge from its left to its right lock, just
the edge from right to left, or both. If the edges that were picked contain a cycle, then
we can create a deadlock.

To get a winning strategy, we must select a subset of edges for each process such
that no cycle is formed. This is easily done by making one process go clockwise, another
anticlockwise, and the rest in any direction. So a winning strategy is for instance to make
one of the processes always take its left then right locks, another one always take its right
lock �rst, and pick any strategy for the others. This guarantees the absence of deadlocks.

4.3.2 Veri�cation of general LSS

In order to justify the restriction to 2LSS, we prove that the general veri�cation of LSS
against regular objectives is PSPACE-complete, even for locally live exclusive LSS. This
proof also shows how we can use locks to communicate between processes. A similar
technique was used in [KIG05] to show that the veri�cation of systems made of two push-
down processes communicating with locks is undecidable. We will use this mechanism
again in other proofs.

u1

u2

Figure 4.4: A way to have two local runs with only one possible interleaving.

Example 4.3.2. Take a look at the two local runs in Figure 4.4. They use the same three
locks, each corresponding to one colour.

There is only one way to interleave them, assuming the upper one starts while already
holding the red and blue locks (we need a few more details if all runs start with no locks).

In the following we develop this idea to force processes to choose a common sequence
of letters {a, b}∗ during the execution.

We use two extra locks a and b, initially held by the upper process. After each round
of lock acquisitions, the �rst process releases and acquires either a or b. Similarly, after
each round the second process acquires and releases a or b.

As the two processes are forced to make rounds in a lockstep manner, in order to
continue the run, the two processes must agree on the sequence of letters they choose.
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Proposition 4.11

The regular veri�cation problem is PSPACE-complete for LSS in general. PSPACE-
hardness already holds for the process deadlock problem for sound locally live
exclusive LSS even with a �xed number of locks per process.

Proof. The PSPACE upper bound is easy to obtain: It su�ces to guess a state sp in each
Ap and s′p in each Bp, and then guess a sequence of letters in S while keeping track of
the states reached by that sequence in the Ap and Bp.

If we reach a con�guration with each Ap in state sp and each Bp in s′p, we start
memorising the set of visited states in each Bp. If we reach that con�guration again, we
stop and accept if and only if the set of visited states in the Bp satis�es φ.

The di�culty is to obtain the PSPACE-hardness with a �xed number of locks per
process. To do so we reduce the emptiness problem for the intersection of a set of
deterministic automata. Without loss of generality we will assume that there are at least
two automata and that they are all over the alphabet {a, b}. We will furthermore assume
that all languages are subsets of aa(ba + bb)∗. The problem stay PSPACEcomplete with
this restriction: take any family of DFAs, replace every transition reading a (resp. b) by
a sequence of two transitions reading ba (resp. bb), and then make all automata read aa
at the start. The intersection of the languages of the resulting automata is empty if and
only if the intersection of the initial languages was.

Let A1, · · · ,An (with n ≥ 2) be automata, with, for each 1 ≤ i ≤ n, Ai =
(Si, {a, b}, δi, initi, Fi). We construct a sound locally live exclusive LSS S as follows:

For each 1 ≤ i ≤ n we have a process pi which is in charge of simulating Ai, plus an
extra process q. The set of locks is L = {a, b} ∪ {xi, yi, zikeyi | 1 ≤ i ≤ n} ∪ {ti | 1 ≤
i ≤ n+ 1}. Locks a and b will be used to transmit sequences of letters, the xi and yi to
synchronise all processes in a lockstep manner, and the keyi to handle the initialisation
of the system. The locks ti are used to enable a global deadlock when all processes have
reached a �nal state.

For all i, pi accesses locks a, b, xi, yi, zi, keyi, ti, as well as xi+1, yi+1, zi+1, keyi+1, ti+1 if
i < n and x1, y1, z1, tn+1 if i = n. Process q only uses locks tn+1 and t1. Thus a process
uses at most 12 locks in total 1.

For all 1 ≤ i ≤ n and ℓ accessed by pi, we have two actions acqiℓ and reliℓ, with which
pi acquires and releases lock ℓ.

For all i we de�ne the following two sequences of actions. For i = n the i+ 1 indices
are replaced by 1.

sendi = relixi
acqizirel

i
yi
acqnxi

reliziacq
i
yi

reci = acqixi+1
relizi+1

acqiyi+1
relixi+1

acqizi+1
reliyi+1

They allow us to synchronise processes in a lockstep manner.
The transition system of each process pi is designed as follows: For each i < n, we start

with Ai, and we replace every transition labelled a with a sequence of transitions labelled
by the sequence of actions recisendiacq

i
arel

i
a. Similarly, we replace each b transition

with the sequence recisendiacq
i
brel

i
b. Furthermore we add transitions so that process pi

1This can be improved: a proof using 6 locks per process can be found in [Mas22], but we allow a
couple more locks here to simplify the proof.
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starts by executing starti = acqikeyi+1
acqixi

acqiyiacq
i
zi+1

relikeyi+1
acqikeyi before entering

the initial state of Ai.
If i = n, we proceed similarly, but we replace a transitions with sendirecirel

i
aacq

i
a

(and similarly for b) and add the sequence startn = acqnxn
acqnynacqz1acqaacqbacq

n
keyn

.
Finally, for each i we add an extra state si and put a transition labelled nop from each

state of Fi to si. From si we add transitions taking ti and then ti+1, and then releasing
both. Process q simply has an initial state sq, from which it takes tn+1 and then t1 and
then releases both.

This system is sound and locally live, but not exclusive as it is: if there is a state of
Fi in Ai with both a and b transitions, the corresponding state of pi will have transitions
acquiring xi+1 and another transition nop going to si. We can solve this by adding an
intermediate transition with no e�ect before each acquisition. This does not a�ect the
following reduction.

Let us start by observing that in this system we can reach a global deadlock if and
only if we can block process q. This will allow us to use a single reduction for the
PSPACE-completeness of the global deadlock problem and the process deadlock problem.

Claim 4.11.1. There is a process-fair run leading to a global deadlock if and only if there
is a process-fair run with a �nite projection on q.

Proof of the claim. Clearly a process-fair run yielding a global deadlock must have a
�nite projection on q.
On the other hand, if we have a process-fair run ϱ with a �nite projection on q, then
q must be unable to take tn+1 or t1. In the �rst case, it means that pn holds tn+1,
but since the run is process-fair and pn is able to release this lock, it must release it
eventually. Therefore q must be holding tn+1 and waiting for t1. Hence p1 must be
holding t1 forever. The only way this can happen is if t2 is held forever by p2, and so
on. We conclude that all pi hold ti and wait for ti+1: this is a global deadlock. ■

Now we claim that there is a word accepted by all Ai if and only if there is a run of
this LSS with a �nite projection on q.

One direction is easy. Say there is a word u = c1c2 · · · cm in the intersection of the
languages of the Ai. Then we apply the following steps:

we start by executing all starti sequences for all i in increasing order.

After that, for each 1 ≤ j ≤ m in increasing order, we do the following: we make
p1 execute rec1 while pn executes sendn. This is feasible by alternating one step
of each process, starting with pn.

Then, for each 1 ≤ i ≤ n− 1 (in increasing order), we make pi execute sendi and
pi+1 execute reci. Like before, this can be done by making them alternate.

Then, pn releases cj and all other pi acquire and release cj. Finally, pn acquires
back cj.

This run projects on pi as startirecisendiacqc1relc1 · · ·recisendiacqcmrelcm if
i < n and startnsendnrecnrelc1acqc1 · · · sendnrecnrelcmacqcm if i = n. For all i, as
u is in the language of Ai, pi can execute this run locally. It can be easily checked that
this sequence of operations is a valid run, hence we have a run with no process blocked.

As u is accepted by all Ai, after executing the sequence above each process pi ends
up in a state of Fi, and thus they can all go to si one after the other.
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We make each pi acquire ti and q acquire tn+1. Then all pi are blocked as they can
only acquire ti+1, which is held by pi+1 (resp. q if i = n). Process q is also blocked as it
tries to acquire t1, held by p1.

For the other direction, suppose there is a process-fair run ϱ with a �nite projection
on q. As we saw in the proof of Claim 4.11.1, this is only possible if all pi hold ti and
wait for ti+1.

As a consequence, for all i < n the projection ϱ|pi must be of the form

startirecisendiacqci1
relci1 · · ·recisendiacqcimi

relcimi
nop acqti

with ci1 · · · cimi
∈ L(Ai).

Meanwhile, the projection ϱ|pn must be of the form

startnsendnrecnrelcn1 acqcn1
· · · sendnrecnrelcnmn

acqcnmn
nop acqtn

with cn1 · · · cnmn
∈ L(An).

We prove the following claim:

Claim 4.11.2. For all i, ci1 · · · cimi
= cn1 · · · cnmn

.

Proof of the claim. First of all note that for all i ≤ n− 1 if pi+1 has �nished executing
starti+1 then it holds keyi+1 and will never release it, hence pi either has executed
starti in full or has not begun executing it. In the second case, pi will never be able
to advance, which is impossible as ϱ|p is not empty. As a result, after pi+1 has executed
starti+1, pi must have executed starti.
Consider the moment of the run when pn �nishes executing startn. Then all other
processes pi have executed their starti. In particular, from this point on each pi
always holds one of xi, yi, zi and at least one of xi+1, yi+1, zi+1.
In consequence, it is clear that whenever pi+1 executes sendi+1, pi must execute reci

and whenever pi executes reci, pi+1 must execute sendi+1

Whenever pn executes sendnrecn, each other pi is forced to execute recisendi.
This means that the sequence of locks cn1 · · · cnmn

released by pn between rounds of
sendnrecn must be a su�x of ci1 · · · cimi

for all i.
Recall that we assumed that the languages of all automata are included in aa(ba+bb)∗.
This means that the only way a word from those languages can be a su�x of another
one is if they are equal.
As a consequence, ci1 · · · cimi

= cn1 · · · cnmn
for all i. ■

We have shown that this system had a run in which each q is blocked inde�nitely if
and only if there is a word accepted by all Ai. This proves the PSPACE-completeness of
the process deadlock problem. Furthermore, by Claim 4.11.1, the same reduction shows
that the global deadlock problem is PSPACE-complete.

4.3.3 Veri�cation of 2LSS using locking patterns

In this section we de�ne patterns for 2LSS. These are summaries of bounded size of the
operations executed during a run, which contain enough information to tell if local runs
can be combined into a global one.
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De�nitions for locking patterns

A �nite run is risky if it ends in a state where all outgoing transitions acquire a lock.

De�nition 4.12 ▶ Main functions

Given a �nite local run ϱp of a process p, Holds(ϱp) is the set of locks held after
executing ϱp.
If ϱp is risky we de�ne Blocks(ϱp) as the set of locks that can be acquired from
the last state reached by ϱp. Formally, if ϱp ends in state sp, then we de�ne
Blocksp = {ℓ | ∃a, s′, δ(sp, a) = s′ and op(a) = acqℓ}.
We extend Holds to in�nite runs by setting Holds(a1a2 · · · ) as the set of locks
kept inde�nitely by p after some point. Formally, we de�ne Holds(a1a2 · · · ) =⋃

i∈N
⋂

j>iHolds(a0 · · · aj).
We also de�ne Inf(ϱ) as the set of sets of locks that p owns in�nitely often when
executing ϱp:

Inf(a1a2 · · · ) = {A ⊆ Lp | A = Holds(a1 · · · ai) for in�nitely many i}

We also de�ne the trace of a local run ϱ = a1a2 · · · as the sequence of sets of locks
held by p in this run, i.e., tr(ϱ) = Holds(ε)Holds(a0)Holds(a0a1) · · · .

We start by de�ning patterns of �nite runs.

De�nition 4.13 ▶ Finitary patterns

Let p be a process, Lp = {ℓ1, ℓ2} its locks. Let ϱp = a1a2 · · · an be a �nite local run
of p. The pattern of ϱp is de�ned as one of the following expressions:

∗ ∅ if tr(ϱp) ∈ (2Lp)∗∅
∗ {ℓ1, ℓ2} if tr(ϱp) ∈ (2Lp)∗{ℓ1, ℓ2}
∗ ∅{ℓi} if tr(ϱp) ∈ (2Lp)∗∅{ℓi}∗

∗ {ℓ1, ℓ2}{ℓi} if tr(ϱp) ∈ (2Lp)∗{ℓ1, ℓ2}{ℓi}∗

In the last cases we say that ϱp has a strong pattern, otherwise we say that it has
a weak pattern.

We also de�ne patterns of in�nite runs, which summarize the local runs of processes
that do not get blocked.
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De�nition 4.14 ▶ In�nitary patterns

Let p be a process, Lp = {ℓ1, ℓ2} its locks. Let ϱp = a1a2 · · · an be a �nite local run
of p. The pattern of ϱp is de�ned as one of the following expressions:

∗ ∅ω if tr(ϱp) ∈ (2Lp)∗∅ω

∗ ∅{ℓi}ω if tr(ϱp) ∈ (2Lp)∗∅{ℓi}ω

∗ {ℓ1, ℓ2}{ℓi}ω if tr(ϱp) ∈ (2Lp)∗{ℓ1, ℓ2}{ℓi}ω

∗ {ℓ1, ℓ2}ω if tr(ϱp) ∈ (2Lp)∗{ℓ1, ℓ2}ω

∗ (∅{ℓi})ω if tr(ϱp) ∈ (2Lp)∗(∅+{ℓi}+)ω

∗ ({ℓ1, ℓ2}{ℓi})ω if tr(ϱp) ∈ (2Lp)∗({ℓ1, ℓ2}+{ℓi}+)ω

∗ ({ℓ1, ℓ2}∅)ω if tr(ϱp) ∈ ((2Lp)∗{ℓ1, ℓ2}(2Lp)∗∅)ω

∗ ({ℓ1, ℓ2}{ℓ1}{ℓ2})ω if tr(ϱp) ∈ (2Lp)∗({ℓ1, ℓ2}∗{ℓ1}∗{ℓ1, ℓ2}∗{ℓ2}∗)ω

In the third case we say that ϱp has a strong pattern, otherwise we say it has a
weak pattern. In the last case we say that ϱp is switching: after some time, p never
releases both locks, but releases each one in�nitely often.

Remark 4.3.1. Note that for both �nite and in�nite local runs, the set Holds(ϱp) is
determined by the pattern of ϱp. We will therefore use the notation Holds(πp) with πp a
pattern to mean the set of locks held inde�nitely by a run with pattern πp.

Given a �nite or in�nite local run ϱp, its pattern is written π(ϱp). If ϱp is �nite risky,
we de�ne its blocking pattern as the pair (π(ϱp),Blocks(ϱp)).

A behaviour is a set of blocking patterns and in�nitary patterns. The behaviour of a
process is the set of blocking patterns of its risky local runs and in�nitary patterns of its
in�nite local runs. The behaviour of a 2LSS is the family (Πp)p∈Proc of behaviours of its
processes.

A B C

D

E

Facqℓ1 acqℓ2

relℓ1 acqℓ1

relℓ2acqℓ2

Figure 4.5: Example of a process of a 2LSS.

Example 4.3.3. The process in Figure 4.5 has a single in�nite run whose pattern is
∗({ℓ1, ℓ2}{ℓ1}{ℓ2})ω (it is switching). It also has �nite runs of patterns ∗∅, ∗∅{ℓ1},
∗{ℓ1, ℓ2}, {ℓ1, ℓ2}{ℓ2} and ∗{ℓ1, ℓ2}{ℓ1}, but not all of them are risky. Its behaviour is
{∗({ℓ1, ℓ2}{ℓ1}{ℓ2})ω, (∗∅, {ℓ1}), (∗∅{ℓ1}, {ℓ2}), ({ℓ1, ℓ2}{ℓ2}, {ℓ1}), (∗{ℓ1, ℓ2}{ℓ1}, {ℓ2})}.

Note that for each of the patterns de�ned above, the set of runs matching that pattern
is a regular language.
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Lemma 4.15

Let p ∈ Proc be a process and Ap its transition system. Let Πp be a behaviour.
We can de�ne a deterministic parity automaton with O(1) priorities and O(|Ap|)
states over Σp recognizing local runs ϱ whose pattern is in Πp

a.

aAgain, we implicitly assume that �nite runs are padded with a dummy letter to form in�nite
words, so that the desired set of runs can be expressed as a language of in�nite words

Proof. We de�ne a transition system which keeps track of the pattern of the �nite run
read so far. It is described in Figure 4.6 with Lp = {ℓ1, ℓ2}. We label edges with
operations instead of actions as in this automaton the transitions of an action a depend
only on the sequence of operations applied. For �nite runs, the last visited state indicates
the pattern of the run. We can thus de�ne a DFA for the desired pattern by taking a
product of this structure with the transition system of p. This immediately gives a DFA
for any blocking pattern, as the second component is given by the last state visited in
the transition system of p.

For in�nite runs, it su�ces to observe that the set of states seen in�nitely often while
reading such a run determines its pattern.

As a result, the acceptance condition can be expressed as an Emerson-Lei condition.
The acceptance condition associated to Πp is the disjunction of the acceptance conditions
associated to all of its patterns. This yields an Emerson-Lei automaton with bounded
numbers of states and colours, which can be converted into a deterministic parity au-
tomaton with bounded states and priorities (by Proposition 2.3). The product of this
automaton with the transition system of the process gives an automaton for the desired
property.

Corollary 4.16

Given a 2LSS, we can compute the behaviour of each process in polynomial time.

We now present the key2 proposition on locking patterns for 2LSS. It provides nec-
essary and su�cient list of conditions for a set of local runs to be schedulable into a
global run. Note that the criterion depends only on patterns of local runs and last states
reached by �nite local runs. This will be the crucial ingredient in the proof that the
regular veri�cation problem is in NP for 2LSS.

2Pun intended
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∅

∅{ℓ1} {ℓ1, ℓ2}{ℓ1}∅{ℓ2}{ℓ1, ℓ2}{ℓ2}

{ℓ1, ℓ2}

acqℓ2

relℓ1

acqℓ2

relℓ2

acqℓ1

relℓ2

acqℓ1

relℓ1

acqℓ1

relℓ2relℓ1

acqℓ2

nop

nop

nop

nop

nop

nop

Figure 4.6: The automaton structure for pattern recognition.

Characterisation of schedulability using patterns

Proposition 4.17 ▶ Characterisation of schedulable local runs

Consider a family of �nite or in�nite local runs (ϱp)p∈Proc of a sound 2LSS.
We write GInf for the undirected graph whose vertices are locks and with a p-
labelled edge between ℓ1 and ℓ2 whenever p uses locks ℓ1 and ℓ2 and ϱp is switching.
The local runs (ϱp)p∈Proc can be scheduled into a process-fair global run if and only
if the following conditions are all satis�ed.

1. Every �nite ϱp is risky.

2. All sets Holds(ϱp) are disjoint.

3. For all �nite ϱp, Blocks(ϱp) is included in
⋃

q∈ProcHolds(ϱq).

4. The set
[
Holds(ϱp) ∩

⋃
S∈Inf(ϱq) S

]
is empty for all pairs of processes p ̸= q

such that ϱq is in�nite.

5. There is a total order ≤ on locks such that for all p whose run ϱp has a strong
pattern ∗{ℓ1, ℓ2}{ℓ1} (for �nite runs) or ∗{ℓ1, ℓ2}{ℓ1}ω (for in�nite runs) we
have ℓ1 ≤ ℓ2; where ℓ2 is the other lock used by p.

6. There is no process p such that (1) {ℓ1, ℓ2} ∈ Inf(ϱp) and (2) there is a path
in GInf between ℓ1 and ℓ2 not using a p-labelled edge.

Proof. ⇒ We start with the left-to-right implication. Let (ϱp)p∈Proc be a family of local
runs, suppose they can be scheduled into a process-fair global run ϱ.

For all �nite local runs ϱp, since ϱ is process-fair, there exists a point after which
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process p is permanently unable to execute any action. As a consequence, the state
reached after executing ϱp cannot have any outgoing transition executing rel or
nop, as those can always be executed (given that the 2LSS is sound). Furthermore,
the locks of Blocksp are never released after some point; otherwise, process p would
be able to execute the action of acquiring them in�nitely often during the run, which
would contradict the condition of process-fairness. This shows condition 1.

All �nite runs ϱp stop while holding the locks in Holds(ϱp). All in�nite ϱp eventu-
ally acquire and never release the locks of their Holds(ϱp). Hence the Holds(ϱp)
sets need to be pairwise disjoint, proving condition 2.

Furthermore, if a lock is not in some Holds(ϱp) then it is free in�nitely often,
and thus cannot be in Blocks(ϱp) for any p, as ϱ is process-fair. This proves
condition 3.

Let p ̸= q be two processes. All locks of
⋃
Inf(ϱq) are held by q in�nitely often,

while locks of Holds(ϱp) are held by p inde�nitely after some point, hence those
sets must be disjoint. This shows condition 4.

If a run ϱp of a process p using locks ℓ1, ℓ2 has a strong pattern ∗{ℓ1, ℓ2}{ℓ1} or
∗{ℓ1, ℓ2}{ℓ1}ω then the last operation on ℓ1 (when p acquires it for the last time)
is followed by at least one operation on ℓ2 in the run ϱ. We satisfy condition 5 by
setting ≤ as an order on locks such that ℓ ≤ ℓ′ whenever there is an operation on
ℓ′ after the last operation on ℓ in ϱ.

We demonstrate condition 6 by contradiction. Say there exist such locks and pro-
cesses, i.e., there exist ℓ = ℓ1, . . . , ℓn = ℓ′ and p1, . . . , pn−1 without p such that for
all 1 ≤ i < n, pi has pattern ∗({ℓi, ℓi+1}{ℓi}{ℓi+1})ω. Then all pi are always holding
a lock after some point, hence ∅ /∈ Inf(ϱpi) for all i.
Furthermore, as {ℓn, ℓ1} ∈ Inf(ϱp), this means that p holds ℓn and ℓ1 simultaneously
in�nitely often. Whenever that happens, processes p1, . . . , pn−1 have to share the
remaining (n − 2) locks, hence one of them holds no lock, contradicting the fact
that ∅ /∈ Inf(ϱpi) for all i.

⇐ For the other direction, suppose (ϱp)p∈Proc satis�es all the conditions of the list. We
construct a process-fair global run whose local projections are the ϱp.

To do so, we will construct a sequence of �nite runs v0, v1, . . . such that v0v1 · · · is
such a global run. We will ensure that the following property is satis�ed for all i ∈ N:

For all processes p, after executing v0 · · · vi,
if Holds(ϱp) ∈ Inf(ϱp) then Holds((v0 · · · vi)|p) = Holds(ϱp) (4.1)

otherwise ϱp is switching and p holds one lock.

We will also make sure that all p with an in�nite ϱp execute an action in in�nitely
many vi.

The �rst run v0 has to be constructed separately as we require it to satisfy some extra
conditions. We construct v0 such that for all p:

If ϱp is �nite then v0|p = ϱp.
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If ϱp is in�nite then ϱp = v0|pup with up such that for every pre�x u′p of up,
Holds(v0|pu′p) ∈ Inf(ϱp). Furthermore if ∅ ∈ Inf(ϱp) then Holds(v0|p) = ∅.
In other words, we execute a pre�x of each in�nite run such that what follows
matches its asymptotic behaviour.

Construction of v0

First, for all in�nite ϱp such that ∅ ∈ Inf(ϱp), there exist arbitrarily large �nite
pre�xes of ϱp ending with p having no lock. Hence we can select one of those pre�xes
v0|p, large enough for p to never hold a set of locks not in Inf(ϱp) later in the run.
We execute all such v0|p at the start. All locks are free afterwards.

We then execute for all other ϱp, their maximal pre�x ending with p having no lock.
All locks are still free.

Then we consider all ϱp with strong patterns. For each one of them we have a lock
ℓp such that Holds(ϱp) = {ℓp}. We consider the total order ≤ given by condition 5.
We take those runs one by one in increasing order of ℓp. We execute in full the �nite
ones, while for the in�nite ones we execute a pre�x v0|p such that in the end p owns
only ℓp and never acquires the other lock afterwards.

Say we executed some of those local runs, let p be a process with a strong pattern
accessing locks ℓ1 ≤ ℓ2. By condition 2, all Holds(ϱp) are disjoint, hence there is
no other process q with Holds(ϱq) = {ℓ1}. The only locks that are not free at that
point are the ℓ such that ℓ < ℓ1 and Holds(ϱq) = {ℓ} for some q with a strong
pattern. Therefore, both ℓ1 and ℓ2 are free, and the run can be executed. In the
end the locks held inde�nitely by processes with strong patterns are taken and all
others are free.

Then we consider the �nite ϱp with weak patterns of the form ∗{ℓ1, ℓ2} or ∗∅{ℓi}.
For those, we can execute the rest of the run (we already executed the maximal
pre�x leading to them holding no lock), as all they do is take the locks inHolds(ϱp),
which are free by conditions 2 and 4.

We then consider the in�nite ϱp with non-empty Holds(ϱp) and weak patterns of
the form ∗∅{ℓi}ω or ∗{ℓ1, ℓ2}ω. Clearly we can just execute the run until we reach
a point after which p only ever holds locks of Holds(ϱp) forever. We can do this
as all locks taken so far are in Holds(ϱq) for some q. Thus all locks from those
Holds(ϱp) are free by conditions 2.

Then, we look at runs ϱp with patterns of the form ∗({ℓ1, ℓ2}{ℓi})ω. At that point
all locks that are taken are in some Holds(ϱq), thus by condition 4 both locks of p
are free. Hence we can execute enough steps of ϱp to reach a point at which p holds
Holds(ϱp) and will only hold sets of locks of Inf(ϱp) afterwards.

Finally we consider the in�nite switching runs ϱp. All those processes must have
Lp ∈ Inf(ϱp), hence by condition 4 all their locks are free, given that all locks
held before belong to some Holds(ϱq). Note that condition 6 implies that GInf is
acyclic: suppose there is a cycle, pick some edge between two locks ℓ1, ℓ2 along that
cycle, let p be its label. Then p would witness a violation of condition 6.

As GInf is acyclic, we can apply the following algorithm.
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� We de�ne a graph G initially equal to GInf . We �rst remove from G all isolated
locks.

� While G has an edge, we pick a lock ℓ with exactly one neighbour in G. Let
p be the label of the edge connecting it to its neighbour.

We execute a pre�x of ϱp such that p only owns ℓ at the end and p only owns
sets of locks of Inf(ϱp) afterwards. Then we remove the p-labelled edge and ℓ
from G.

As we only remove edges from G, it stays acyclic, hence that lock ℓ always exists.
As we remove all isolated locks from G at the start, the remaining locks are all
used by a switching local run, and are thus free as all locks taken so far are in some
Holds(ϱq) and by condition 4. In the loop we maintain the fact that all locks still
in G are free. As a consequence, the pre�x of ϱp considered can always be executed.

In the end we have executed a suitable pre�x of all ϱp. We have constructed a �nite
run v0 whose projection v0|p on Sp is such that:

for all �nite ϱp, ϱp = v0|p ,

for all in�nite ϱp, v0|p is a pre�x of ϱp such that all local con�gurations seen later
in the run are in Inf(ϱp),

v0 satis�es property 4.1.

We now construct the remaining parts of the run. If all ϱp are �nite then v0 proves
the lemma (we can set all other vi as ε). Otherwise we must describe the rest of the
process-fair global run whose projections are the ϱp. We start with a small construction
that will help us de�ne the vi.

Suppose we constructed v0, . . . , vi so that property 4.1 is satis�ed for all j ≤ i. Now
suppose some lock ℓ0 is not in any Holds(ϱp) and is not free after executing v0 · · · vi.
Then there exists a switching ϱp1 with ℓ0 ∈ Lp1 .

Let ℓ1 be the other lock of p1, say it is not free. By property 4.1, p1 does not hold ℓ1.
By condition 4 ℓ1 cannot be in some Holds(ϱp), thus there exists a switching ϱp2 such
that ℓ1 ∈ Lp2 . Let ℓ2 be the other lock of p2.

We construct this way a sequence of processes p1, p2, . . . and of locks ℓ0, ℓ1, . . . such
that Lpj = {ℓj−1, ℓj} and ϱpj is switching for all j. This sequence cannot be in�nite as
each pj labels an edge in GInf , which is �nite and acyclic.

Hence there exists k such that ℓk is free. We can therefore execute ϱpk until pk holds
ℓk and not ℓk−1, then execute ϱpk−1

until pk−1 holds ℓk−1 and not ℓk−2, and so on until ℓ1
is free.

Hence if a lock ℓ is not in any Holds(ϱp) but is not free after executing v0 · · · vi then
we can prolong the pre�x run so that ℓ is free and some lock from the same connected
component in GInf is not. For all such ℓ and i we name this prolongation of the run πℓ,i.

Now that we have this construction, let us assume that we already de�ned v0, . . . , vi,
and that property 4.1 is satis�ed for all j ≤ i. We construct vi+1. Let p be either a process
that never executed an action, or if there are no such processes, the process whose last
action in v0 · · · vi is the earliest.

We extend the current run to include the execution of some actions from ϱp. If the
next action in ϱp is a nop operation, it can be executed immediately. The next action
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cannot execute a rel operation: after executing v0, all processes with in�nite ϱp only
hold sets of locks from Inf(ϱp). As a consequence, by property 4.1, if ϱp is switching
then after executing v0 · · · vi the process p holds one lock and will not release it as it
would be left with no lock and ∅ /∈ Inf(ϱp). On the other hand, if p is not switching then
after executing v0 · · · vi it holds Holds(ϱp) and cannot release any lock as it keeps those
forever.

We are left with the case where the next action of p acquires a lock ℓ. If ℓ is not
free we apply πℓ,i to free it (and block another lock of the same connected component of
GInf ). Note that after executing πℓ,i all processes with switching runs still hold one lock,
and the others have not moved.

If ϱp is switching then p was already holding a lock ℓ′, and it can then take ℓ and
then run ϱp until it holds only one lock again, thus respecting property 4.1.

Otherwise p was holding Holds(ϱp) (by Property 4.1) and we have to run ϱp to let
him take ℓ and then continue until p holds exactly Holds(ϱp) again.

� If we can do it right away we do so.

� Otherwise it means that p needs its other lock ℓ′ to reach that next step, and
that this lock is taken. More precisely, it means that Holds(ϱp) = ∅ and the
pattern of ϱp is ∗({ℓ, ℓ′}∅)ω.
As {ℓ, ℓ′} ∈ Inf(ϱp), by condition 6, ℓ and ℓ′ are not in the same connected
component of GInf . Hence we can execute πℓ′,i, without locking ℓ back, as πℓ,i
and πℓ′,i use disjoint sets of locks and processes.

This ensures that both ℓ and ℓ′ are free, which allows p to take ℓ and proceed
to the next point at which it holds ∅.

In both cases we end up in a con�guration where p owns Holdsp, all processes with
switching runs hold exactly one lock, and the other processes did not move, thus
respecting property 4.1.

We have constructed vi+1, ensuring that property 4.1 is satis�ed for i+1. Furthermore
vi+1|p is non-empty for p a process with in�nite ϱp which either never executed anything
before or executed its last action the earliest. This ensures that all p with in�nite ϱp
execute in�nitely many actions in v0v1 · · · . Hence we obtain a global run v = v0v1 · · ·
such that for all p we have v|p = ϱp.

Furthermore we ensured that v is process-fair as all p with �nite runs are blocked: all
such ϱp lead to a state from which only locks of Blocksp can be taken, by condition 1,
and by condition 3 all Blocksp are included in

⋃
p∈ProcHolds(ϱp), the set of locks that

are never free from some point on.
As a result, there exists a process-fair run whose local projections are the ϱp, proving

the right-to-left implication.

An NP upper bound for 2LSS

Then we prove that the complexity falls to NP when we demand that each process uses
at most two locks.
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Theorem 4.18

The regular veri�cation problem is NP-complete for 2LSS. The lower bound already
holds for locally live exclusive 2LSS.

Proof. We start with the upper bound. Let S = ((Ap)p∈Proc,L, op) be a 2LSS and
((Bp)p∈Proc, φ) a regular objective. Our NP algorithm goes as follows: we guess a pattern
πp for each process p, as well as a valuation ν of the (infp,q)p∈Proc,q∈Qp . For each p let
Holdsp be the set of locks kept inde�nitely by a run respecting πp. Then we check that
those patterns satisfy the conditions of Proposition 4.17 and that this valuation satis�es
the formula φ.

For each p we construct the product C of Ap, Bp and Aπp (from Lemma 4.15) to
obtain a DELA recognising runs of p that match pattern πp and are in the language of
Bp. We guess an ultimately periodic run of the form uvω with u and v of polynomial
size in the number of states of C and check that it is accepting (otherwise we stop). It
is well-known that a DELA either has an empty language or accepts a run of that form.
Then we accept.

We accept if and only if there is a valuation ν satisfying φ and a family of patterns
(πp)p∈Proc such that there exist local runs (ϱp)p∈Proc of the processes matching those pat-
terns and producing words whose runs in the (Bp)p∈Proc match ν, and such that the �nite
ones end in states from which they can only take locks of Holdsp. By Proposition 4.17,
this is true if and only if there is a global run of the system satisfying the given objective.
Hence the problem is in NP.

The lower bound is immediate: For a trivial 2LSS with a single process p with a single
state and just a self-loop labelled a with op(a) = nop, the problem becomes the emptiness
of the Emerson-Lei automaton (Bp, φ). The NP-hardness follows from Proposition 2.6.

We will see that the problem is NP-complete already in some restricted subcases in
Theorems 4.19 and 4.29.

4.4 Process deadlocks

Here we are interested in the process deadlock problem. We provide a polynomial-time
algorithm based on a key lemma that lists the di�erent ways a process can be blocked,
in the case of exclusive 2LSS.

By contrast, the process deadlock problem becomes NP-complete when we remove
the exclusive requirement.

Theorem 4.19

The process deadlock problem is NP-complete for 2LSS. The lower bound holds
already for locally live 2LSS.

Proof. The upper bound follows from the one on regular objectives given by Theo-
rem 4.18. The lower bound (which already holds for locally live systems) will be shown
later, see Corollary 4.63.
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4.4.1 A polynomial-time algorithm for process deadlocks in ex-

clusive 2LSS

This section is dedicated to the proof of the following proposition:

Proposition 4.20

The process deadlock problem is in Ptime for sound exclusive 2LSS.

We will start with a small technical lemma stating that, given some suitable local runs,
we can construct a process-fair run in which we execute those local runs in full or up to
a deadlock. After this, we will de�ne a graph G with locks as vertices and whose edges
describe the possible patterns of each process. Then, we will establish some su�cient
conditions for a process deadlock to exist in Lemmas 4.24, 4.25, 4.26. In Lemma 4.27 we
will group those conditions to obtain a characterisation of process deadlocks on the graph
G. We will conclude by arguing that we can compute G and check the characterisation
in polynomial time

Throughout this section we �x a sound exclusive 2LSS S.

Lemma 4.21

Let (sp, Bp)p∈Proc be a global con�guration and for each process p let up be a local
run starting in (sp, Bp) and such that up is either in�nite or leads to a state with
no outgoing transitions.
There exists a process-fair global run ϱ from (sp, Bp)p∈Proc such that for all p its
projection ϱp on Sp is a pre�x of up.

Proof. We construct ϱ by iterating the following step: For each p we set up = vpwp with
vp the pre�x of up executed so far. We select uniformly at random a process p ∈ Proc. If
it can execute the �rst action of wp then we let it do so, otherwise we do nothing.

We iterate this procedure inde�nitely. This produces a (possibly �nite) global run
of the system such that its local projections are pre�xes of the up. We prove that it is
process-fair.

Let p ∈ Proc, assume that p has an available action at in�nitely many steps. As our
LSS is exclusive, whenever p has an available action and is in some state s, either all
outgoing transitions are executing an operation nop or rel (and thus can all be executed
as the system is sound), or they all acquire the same lock ℓ (as the system is exclusive).
Hence if one outgoing transition can be executed , they all can. In particular the next
action of up is available. As a result, p can execute the next action of up at in�nitely
many steps, and thus will progress in�nitely many times in up with probability 1.

In conclusion, by following this procedure, with probability 1 we either reach a global
deadlock, or we always have an available action. In the second case, at least one process
will be able to progress in�nitely many times and thus the resulting run ϱ is in�nite.
Hence, all processes that can execute an action at in�nitely many steps of the run will
do so, proving that the run is process-fair. As we obtain a process-fair run satisfying the
requirement of the lemma with probability 1, in particular such a run must exist.

120



4. Lock-Sharing Systems

De�nition 4.22

De�ne the graph G whose vertices are locks and with an edge ℓ1
p−→ ℓ2 if and only

if the process p has a local run ϱp ending in a state where all outgoing transitions
acquire ℓ2 and such that Holds(ϱp) = {ℓ1}. We say that ϱp witnesses the edge
ℓ1

p−→ ℓ2.

Before we start showing necessary conditions on G for the existence of a process
deadlock, we make an observation on its structure.

Lemma 4.23

For all p ∈ Proc, if there is a p-labelled edge ℓ1
p−→ ℓ2 in G then either ℓ1

p−→ ℓ2
is witnessed by a run with a weak pattern or its reverse ℓ2

p−→ ℓ1 is in G and is
witnessed by a run with a weak pattern.

Proof. As p has an edge ℓ1
p−→ ℓ2 in G, there is a local run which has both locks of p at

the same time. Let ϱp be such a run of minimal length. The last operation in ϱp must
be a acq, by minimality. Let ϱ′p be the local run obtained by removing the last step
in ϱp. Suppose the last operation in ϱ′p besides nop is a rel, then there is a previous
con�guration in ϱp in which p holds both of its locks, contradicting the minimality of
ϱp. Hence ϱ′p has a weak pattern, and it leads to a state where p may acquire ℓ, thus
has to acquire ℓ as the system is exclusive. Furthermore p is then holding its other lock,
therefore ϱ′p witnesses an edge in G.

We can now show the three main necessary conditions.

Lemma 4.24 ▶ First condition

If p has a reachable transition acquiring some lock ℓ and there is a path from ℓ to
a cycle in G then there is a process-fair global run with a �nite projection on p.

Proof. Let ℓ = ℓ0
p1−→ ℓ1

p2−→ · · · pk−→ ℓk be such a path in G and let ℓk = ℓ′1
p′1−→ · · · ℓ′n

p′n−→
ℓ′n+1 = ℓ′1 = ℓk be such a cycle.

For all 1 ≤ i ≤ k we choose a run ϱi witnessing ℓi−1
pi−→ ℓi. Similarly for all 1 ≤ j ≤ n

we choose a run ϱ′j witnessing ℓ
′
j

p′i−→ ℓ′j+1, and we choose it so that it has a weak pattern
whenever possible.

If there exists j such that ϱ′j has a weak pattern, then we proceed as follows: Let
ϱj = ϱ−j ϱ

+
j so that ϱ−j is the maximal neutral pre�x of ϱ′j. We execute ϱ−j . Let m be

the maximal index such that ℓm ∈ {ℓ′1, · · · , ℓ′n}. We execute all ϱi in increasing order for
1 ≤ i ≤ m.

Then we execute ϱ′j+1 · · · ϱ′nϱ′1 · · · ϱ′j−1 and then ϱ′′j . Then we end up in a con�guration
where all pi with i ≤ m are holding ℓi−1 and need ℓi to advance, while all p′i are holding
ℓ′i and need ℓ′i+1 to advance. As ℓj ∈ {ℓ′1, . . . , ℓ′n}, all those processes are blocked, and in
particular ℓ = ℓ0 is held by a process which will never release it.

As p has a reachable transition taking ℓ, we can de�ne ϱp as a run that ends in a state
where some outgoing transitions takes a lock of {ℓ0, . . . , ℓm, ℓ′1, . . . , ℓ′n}. By minimality
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this run can be executed, as all other locks are free. By exclusiveness, it reaches a state
where all transitions take the same non-free lock.

By Lemma 4.21 we can extend this run into a process-fair one, whose projection on p
can only be ϱp, as p will never be able to advance further.

Now suppose there is no j such that ϱ′j has a weak pattern, then as we took all ϱ′j
with weak patterns whenever possible, it means there is no local run with a weak pattern

witnessing any of the ℓ′j
p′j−→ ℓ′j+1. We can then apply Lemma 4.23 to show that the reverse

cycle ℓ′1 = ℓ′n+1

p′n−→ ℓ′n · · ·
p′1−→ ℓ′1 exists in G and all its edges are witnessed by runs with

weak patterns. Hence we can apply the arguments from the previous case using this cycle
to conclude.

Lemma 4.25 ▶ Second condition

If p has a reachable transition acquiring some lock ℓ and

there is a path in G from ℓ to some ℓ′ and

there is a process q with an in�nite local run ϱq acquiring ℓ′ and never releasing
it,

then there is a process-fair global run with a �nite projection on p.

Proof. Let ℓ = ℓ0
p1−→ ℓ1

p2−→ · · · pk−→ ℓk = ℓ′ be the shortest path from ℓ to ℓ′. Let ϱp be
a local run of p acquiring ℓ at some point, either in�nite or leading to a state with no
outgoing transition. For each 1 ≤ i ≤ k we select a local run ϱi of pi witnessing ℓi−1

pi−→ ℓi.
Furthermore we select those ϱi with weak patterns whenever possible. Let ℓq be the other
lock used by q besides ℓ′, and let ϱq be an in�nite run of q in which ℓ′ is eventually taken
and never released. We can decompose ϱq as ϱ′qϱ

′′
q where ϱ

′
q is the largest pre�x of ϱq such

that q holds no lock at the end. We distinguish several cases:

Case 1: ℓq /∈ {ℓ0, . . . , ℓk}, or ℓq is not used in ϱ′′q . Then we can execute ϱ′q, leaving all
locks free, then ϱ1 · · · ϱk, which can be done as the execution of ϱ1 · · · ϱi leaves ℓi, . . . , ℓk
free and thus ϱi+1 can be executed. Then as no ℓi is used in ϱ′′q , we can execute a pre�x
of ϱ′′q large enough so that ℓ′ is held by q and never released later. Let ϱ be the run
constructed so far. Then by Lemma 4.21 we can construct a process-fair run ϱ′ starting
in the last con�guration of ϱ whose projection on q is a pre�x of ϱ′′q (thus ℓk is never
released and thus neither are ℓ0, . . . , ℓk−1) and whose projection on p is a pre�x of ϱp
(and thus �nite as ϱp tries to acquire ℓ, which is never free). As a consequence, ϱϱ′ is a
process-fair run whose projection on p is �nite.

Case 2: ℓq = ℓj for some 0 ≤ j ≤ k and ϱq acquires ℓj at some point and never
releases it. Then we apply the same reasoning as in the previous case for the path
ℓ = ℓ0

p1−→ · · · pj−→ ℓj.

Case 3: ℓq = ℓj for some 0 ≤ j ≤ k and ℓj is used in ϱ′′q but not kept inde�nitely.

122



4. Lock-Sharing Systems

Subcase 3.1: there is an edge ℓ′
q−→ ℓj. Then we have a path from ℓ to a cycle ℓj

pj+1−−→
· · · pk−→ ℓ′

q−→ ℓj. Hence by Lemma 4.24, there is a process-fair global run with a �nite
projection on p.

Subcase 3.2: One of the runs ϱi has a weak pattern ∗∅ℓi. We decompose ϱi as ϱ
−
i ϱ

′
i

with ϱ−i its largest neutral pre�x. We execute ϱ−i , and then ϱi+1 · · · ϱk. After that we
execute a pre�x ϱ′q of ϱq such that at the end q holds only ℓ′, and does not release it
later. This pre�x exists as q never keeps ℓj inde�nitely in ϱq. We decompose ϱq as ϱ′qϱ

′′
q .

Then we execute ϱ1 · · · ϱi−1ϱ
′
i. All those runs can be executed as before executing each

ϱi′ both locks of pi′ are free, and before executing ϱ′i, ℓi−1 is free, which is all that is
needed to execute ϱ′i as ϱi has a weak pattern. Let ϱ be the run constructed so far. Then
by Lemma 4.21 we can construct a process-fair run from the con�guration reached by ϱ
whose projection on q is a pre�x of ϱ′′q and whose projection on p is a pre�x of ϱp. As a
consequence, ℓ′ = ℓk is never released in ϱ′′q and thus neither are ℓ0, . . . , ℓk−1. As ϱp tries
to take ℓ = ℓ0 at some point, its pre�x executed in ϱ′ is �nite. Hence ϱϱ′ is a process-fair
run with a �nite projection on p.

Subcase 3.3: There is no edge ℓ′
q−→ ℓj and all ϱi have strong patterns. We once again

decompose ϱq as ϱ′qϱ
′′
q , with ϱ

′
q such that at the end q holds only ℓ′, and does not release

it later. When executing the ϱ′′q part of ϱq, q holds a lock at all times, and holds ℓj at
some point and ℓ′ at some point, hence it has to have both at the same time at some
moment. Hence there is a moment at which q holds one of the locks and is about to
get the other. As the system is exclusive, it means all its available transitions take that
lock. Hence there is an edge ℓ′

q−→ ℓj or ℓj
q−→ ℓ′ in the graph. As we assumed that there

is no edge ℓ′
q−→ ℓj, there is one ℓj

q−→ ℓ′. Furthermore, as we selected the ϱi so that
they had weak patterns whenever possible, it means that for all i there is no run with
a weak pattern witnessing ℓi−1

pi−→ ℓi. By Lemma 4.23 this means that there are edges
ℓk

pk−→ ℓk−1
pk−1−−→ · · · pj+1−−→ ℓj. With the edge ℓj

q−→ ℓ′, we obtain a cycle in G with a path
from ℓ to it. By Lemma 4.24, there is a process-fair global run with a �nite projection
on p.

This concludes our case distinction, proving the lemma.

Lemma 4.26 ▶ Third condition

If p has a reachable transition acquiring some lock ℓ and

there is a path in G from ℓ to some ℓ′ and

there is a process q with a local run ϱq with ℓ′ ∈ Holds(ϱq) and going to a
state with no outgoing transitions,

then there is a process-fair global run with a �nite projection on p.

Proof. Let sq be the state reached by ϱq, we add a self-loop on it with a fresh letter #.
Then ϱq#ω is an in�nite run acquiring ℓ′ and never releasing it.

Hence by Lemma 4.25, there is a process-fair run ϱ in this new system whose projection
on p is �nite. Let h be the morphism such that h(#) = ε and h(a) = a for all other
letters a. Then h(ϱ) is a process-fair run of the original system: it is a run as # does not
change the con�guration, meaning that all actions of h(ϱ) can be executed. For the same
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reason, if a process p′ other than q only has �nitely many actions in h(ϱ), then the same
is true in ϱ, thus there is a point after which no con�guration allows p′ to move in ϱ, and
thus in h(ϱ) as well. As for q, either it only executes # from some point on, meaning it
has reached sq and will be immobilised in h(ϱ), or it never executes any #, in which case
h(ϱ) = ϱ and it follows the same con�gurations in both.

We gather the conditions listed above to characterise process deadlocks in exclusive
2LSS.

Lemma 4.27 ▶ Characterisation of process deadlocks

There is a process-fair run whose projection on p is �nite if and only if there is a
local run ϱp of p leading to a state where all outgoing transitions take some lock ℓ
and either

1. p has a local run leading to a state with no outgoing transitions.

2. or there is a path from ℓ to a cycle in G

3. or there is a path in G from ℓ to some lock ℓ′ and there is a process q with a
local run ϱq with an in�nitary pattern with ℓ′ ∈ J for all J in Inf(ϱq).

4. or there is a path in G from ℓ to some lock ℓ′ and there is a process q with a
local run ϱq such that ℓ′ ∈ Holds(ϱq) and leading to a state with no outgoing
transitions.

Proof. We start with the left-to-right implication: Say there is a run ϱ whose projection
on p is �nite. For each process p′ ∈ Proc let ϱp′ be its local run.

Then ϱp has to end in a state where all available transitions acquire a lock ℓ. If there
are no transitions at all, condition 1 is satis�ed. If there is at least one such transition,
then ℓ is held forever by some other process p1.

We construct a path ℓ = ℓ0
p0−→ ℓ1

p1−→ · · · in G so that all ℓi are held inde�nitely by
some process after some point in the run. Say we already constructed those up to i.

There is a process pi holding ℓi inde�nitely. If ϱpi is in�nite, then condition 3 is
satis�ed. Otherwise, ϱpi is �nite, and with a �nitary pattern such that ℓi ∈ Holds(ϱpi).

If this local run ends up in a state with no outgoing transition then condition 2 is
satis�ed, otherwise it must have no choice but to acquire some lock ℓ′i+1. Hence we

construct an in�nite path ℓ′0
p′0−→ ℓ′1

p′1−→ · · · in G.
The set of processes is �nite, hence there exist i < j such that ℓi = ℓj, meaning we

have reached a cycle. Thus condition 4 is satis�ed.
For the other direction, suppose there exists ℓ as in the statement of the lemma, so

that one of the conditions is satis�ed.
If condition 1 is satis�ed, then we have a �nite run ϱp leading to a state with no

outgoing transition. We execute it and then prolong it into a global process-fair run by
choosing a process uniformly at random and executing one of its available actions if there
is any (similarly to the proof of 4.21). We obtain a process-fair run in which p only has
�nitely many actions. If condition 2 is satis�ed then we have the result by Lemma 4.24. If
condition 3 is satis�ed then we have the result by Lemma 4.26. If condition 4 is satis�ed
then we have the result by Lemma 4.25.

124



4. Lock-Sharing Systems

To conclude, by Lemma 4.27, we only have to check the conditions listed in its state-
ment.

We start by looking, in the transition system of process p, for a reachable local state
with no outgoing transition. If there is one, we accept. Otherwise, we compute the
behaviour of each process (which is computable in polynomial time by Lemma 4.16), and
compute G from those behaviours. The conditions listed in the lemma above are then
straightforward to check in polynomial time, proving Proposition 4.20.

4.5 Global deadlocks

We describe how to solve the global deadlock problem for 2LSS. As a �rst step, we
characterise global deadlocks for 2LSS in terms of patterns. This characterisation is
simpler than previous ones as we only have to deal with �nite local runs. .1 In this
section we will show that the global deadlock problem is NP-complete on 2LSS, but falls
in Ptimeover locally live 2LSS, a mild assumption that prevents processes from blocking
by themselves.

The next lemma gives a characterization of systems with reachable global deadlocks
in terms of patterns.

Lemma 4.28

Let S = (Proc, (Ap)p∈Proc,L) be a 2LSS and Π = (Πp)p∈Proc its behaviour. There
is a run leading to a global deadlock if and only if there exists a family of blocking
patterns (πp, Bp) ∈ Πp for each process p, such that all conditions below hold.

for all p,
⋃

p∈ProcBp ⊆
⋃

p∈ProcHolds(πp),

the sets Holds(πp) are pairwise disjoint,

there exists a total order < on L such that for all p, if πp is a strong pattern
∗{ℓ1, ℓ2}{ℓ1} then ℓ1 < ℓ2.

Proof. For each p, let ϱp be a risky local run such that (πp, Bp) = (π(ϱp),Blocks(ϱp)).
We simply apply Proposition 4.17

4.5.1 Global deadlocks for general 2LSS

In this section we �x a 2LSS S = (Proc, (Ap)p∈Proc,L) over the set of processes Proc. We
assume that the 2LSS is sound. This is not a restriction on our results as the number of
locks per process is bounded: we can make the system sound with a constant blow-up in
the number of states.

Thanks to Lemma 4.28, in order to decide if there is a global deadlock for a given
system it is enough to compute the behaviour Πp of each process p and show that the
sets of patterns Πp meet the conditions given by Lemma 4.28.

Theorem 4.29

The global deadlock problem for 2LSS is NP-complete. The lower bound holds
even for exclusive 2LSS.
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Proof. The upper bound follows from Theorem 4.18. The lower bound (which holds
already for exclusive systems) will come as a by-product of a later proof, as stated in
Corollary 4.65.

4.5.2 Global deadlocks for locally live systems in polynomial

time

We now consider the case of locally live 2LSS. Recall that with this condition, a process
can only block if all its available transitions need to acquire a lock, but all these locks are
taken. In the last subsection we showed that we could check in NP if the conditions from
Lemma 4.28 hold. Here we show that this check can be done in Ptime in the locally live
case.

Theorem 4.30

The global deadlock problem for locally live 2LSS is in Ptime.

The argument is unfortunately quite lengthy. We represent a behaviour as a lock
graph GΠ, with vertices corresponding to locks and edges to patterns. Then, thanks to
local liveness, instead of Lemma 4.28 we get Lemma 4.35 characterizing when a strategy
is not winning by the existence of a subgraph of GΠ, called su�cient deadlock scheme.
The main part of the proof is a polynomial time algorithm for deciding the existence of
su�cient deadlock schemes.

Remark 4.5.1. Let ϱ be a run leading to a global deadlock. In particular, at the end of
this run every process is in a state where all available actions take a lock. Furthermore,
as we are in a locally live framework, they must all have at least one available action. In
consequence, we have Blocks(ϱp) ̸= ∅ for all p.

In light of this remark, we have two types of local runs which can result be the
projection of a run leading to a global deadlock: Those that hold no lock at the end and
those which hold a lock ℓ1 and are trying to acquire the other one at the end.

We represent those of the second type as a graph. An edge labelled by p from ℓ1 to
ℓ2 means that p has a local run in which it tries to take ℓ2 while holding ℓ1.

De�nition 4.31 ▶ Lock graph GΠ

For a behaviour Π = (Πp)p∈Proc, we de�ne a labelled graph GΠ = (L, EΠ), called
lock graph, whose nodes are locks and whose edges are either weak or strong. Edges
are labelled by processes.
There is a weak edge ℓ1

p
99Kℓ2 in GΠ whenever there is a blocking pattern

(∗∅{ℓ1}, {ℓ2}) in Πp. There is a strong edge ℓ1
p
=⇒ℓ2 whenever there is a strong

pattern (∗{ℓ1, ℓ2}{ℓ1}, {ℓ2}) in Πp and there is no blocking pattern (∗∅{ℓ1}, {ℓ2})
in Πp. We write ℓ1

p−−→ ℓ2 when the type of the edge is irrelevant.

A path (resp. cycle) in GΠ is simple if all its edges are labelled by di�erent processes.
A cycle is weak if it contains some weak edge, and strong otherwise.

Note that the information contained in the graph does not say anything about runs
holding no lock at the end. The next de�nition provides some notions to incorporate
them next to our graph representation.
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De�nition 4.32

For a behaviour Π = (Πp)p∈Proc, a process p is called solid if there is no blocking
pattern of the form (∗∅, B) in Πp; otherwise it is called fragile.
A process p is Z-lockable in Π if there is a blocking pattern (∗∅, B) in Πp with
B ⊆ Z. Note that a process is fragile if and only if it is Z-lockable for some Z.
A solid edge of GΠ is one that is labelled by a solid process. A solid cycle is one
that only has solid edges.

What the previous de�nition says is that a solid process needs to take a lock to be
blocked, whereas a fragile one can be blocked without owning a lock. So solid processes
must be taken into account in the deadlock schemes de�ned next:

De�nition 4.33 ▶ Z-deadlock scheme

Consider a behaviour Π = (Πp)p∈Proc, and the associated lock graph GΠ. Let Z ⊆ L
be a set of locks. We set ProcZ as the set of processes whose accessible locks are
both in Z.
A Z-deadlock scheme for Π is a partial function dsZ : ProcZ → EΠ∪{⊥} assigning
an edge of GΠ to some processes of ProcZ such that:

C1 For all p ∈ ProcZ , if dsZ(p) ̸= ⊥ then dsZ(p) is a p-labelled edge of GΠ.

C2 If p ∈ ProcZ is solid then dsZ(p) ̸= ⊥.

C3 For all ℓ ∈ Z there is a unique p ∈ ProcZ such that dsZ(p) is an outgoing edge
of ℓ.

C4 The subgraph of GΠ restricted to dsZ(ProcZ) does not contain any strong
cycle.

The idea of the previous de�nition is that a Z-deadlock scheme witnesses a way to
reach a con�guration in which all locks of Z are taken, and all processes using those locks
are blocked. Each process from ProcZ is mapped to an edge telling which lock it holds in
the global deadlock con�guration and which one it needs in order to advance. A process
which is not holding any lock is mapped to ⊥. For every lock in Z there is a unique
outgoing edge in dsZ , corresponding to the process owning that lock. Note that this
implies that the subgraph induced by dsZ is a union of cycles, with some trees rooted in
these cycles, and all edges towards the roots in those trees.

De�nition 4.34 ▶ Su�cient deadlock scheme

A su�cient deadlock scheme for a behaviour Π is a Z-deadlock scheme dsZ for Π
such that for every process p ∈ Proc either dsZ(p) is an edge of the lock graph GΠ,
or p is Z-lockable in Π.

We now prove a key result: a 2LSS admits a global deadlock if and only if the lock
graph of its behaviour admits a su�cient deadlock scheme. We will then show that those
conditions can be checked in polynomial time.
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Lemma 4.35

Consider a locally live 2LSS and Π = (Πp)p∈Proc its behaviour. There is a run
leading to a global deadlock if and only if there is a su�cient deadlock scheme for
Π.

Proof. Suppose there is a run ϱ leading to a global deadlock. Then there exist blocking
patterns (πp, Bp) ∈ Πp for each p such that the three conditions of Lemma 4.28 are met.
Let Z =

⋃
p∈ProcHolds(πp) , and for all p ∈ ProcZ , de�ne ds(p) as:

⊥ if Holds(πp) = ∅,

ℓ1
p−−→ ℓ2 if Holds(πp) = {ℓ1} Bp = {ℓ2} (whether πp is strong or weak is irrelevant

for now). This edge exists by de�nition of GΠ.

Once again note that there are no other possible cases above, as the system is locally
live and thus Bp cannot be empty.

We show that ds is a su�cient deadlock scheme for Π by checking the four conditions
from De�nition 4.33.

The �rst condition C1 holds by de�nition of ds .

For the second condition C2 let p ∈ ProcZ and suppose p is solid with respect to
Π. Then, Holds(πp) is not empty and ds(p) ̸= ⊥.

For the third condition C3 let ℓ ∈ Z. As Z is the disjoint union of the sets
Holds(πp) there exists a unique p ∈ ProcZ such that ℓ ∈ Holdsp, so a unique
edge ds(p) outgoing from ℓ.

For the last condition C4 note that for all strong edges ℓ
p
=⇒ℓ′, πp must be a strong

pattern, hence ℓ ≤ ℓ′. As ≤ is a total order on locks, there cannot be any strong
cycle.

It remains to show that ds is a su�cient deadlock scheme for Π. Suppose that p /∈
ProcZ or ds(p) = ⊥. In both cases Holds(πp) = ∅, thus p is Bp-lockable, and hence
Z-lockable as Bp ⊆ Z. As a consequence, ds is a su�cient deadlock scheme for Π.

For the other direction, suppose we have a su�cient Z-deadlock scheme ds for Π. As
ds(ProcZ) does not contain any strong cycle (by C4), we can pick a total order ≤ on
locks such that for all strong edges ℓ1

p
=⇒ℓ2 belonging to ds(ProcZ), we have ℓ1 ≤ ℓ2.

By de�nition of su�cient Z-deadlock scheme, for each process p ∈ Proc we can �nd a
blocking pattern (πp, Bp) ∈ Πp with the following properties.

If ds(p) = ⊥ or p /∈ ProcZ then p is Z-lockable. Hence we can choose Bp ⊆ Z such
that (∗∅, Bp) ∈ Πp.

If ds(p) = ℓ1
p−−→ ℓ2 then there exists a blocking pattern (πp, {ℓ2}) ∈ Πp. If moreover

ds(p) is a weak edge then we can take πp = ∗∅{ℓ1} a weak pattern.
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As all locks of Z have exactly one outgoing edge in ds(ProcZ), and as all Holds(πp)
with p /∈ ProcZ or ds(p) = ⊥ are empty, the sets Holds(πp) are pairwise disjoint and⋃

p∈ProcBp ⊆ Z ⊆
⋃

p∈ProcHolds(πp).
By de�nition of ≤, for all p such that πp is a strong pattern ∗{ℓ1, ℓ2}{ℓ1} we have

ℓ1 ≤ ℓ2.
By Lemma 4.28, the properties shown above imply that there is a reachable global

deadlock.

From now on we �x a behaviour Π. We will show how to decide if there is a su�cient
deadlock scheme for Π in Ptime. De�nition 4.33. Our approach will be to eliminate
edges from GΠ and construct a Z-deadlock scheme incrementally, on bigger and bigger
sets of locks Z. We show that this process either exhibits a set Z that is big enough
to provide a su�cient deadlock scheme for Π, or it fails, and then there is no su�cient
deadlock scheme for Π.

The next lemma shows that a Z-deadlock scheme can be constructed incrementally.
Suppose we already have a set Z on which we know how to construct a Z-deadlock
scheme. Then the lemma says that in order to get a su�cient deadlock scheme for Π it
is enough to focus on GΠ \ Z.

Lemma 4.36

Let Z ⊆ L be such that there is no solid edge from Z to L \ Z in GΠ. Suppose
that dsZ : ProcZ → E ∪ {⊥} is a Z-deadlock scheme for Π. If there exists some
su�cient deadlock scheme for Π then there is one which is equal to dsZ over ProcZ .

Proof. Suppose ds is a su�cient deadlock scheme for Π, so ds is a B-deadlock scheme for
some B ⊆ L such that for every p ∈ Proc either ds(p) is an edge in GΠ or p is B-lockable
in Π. We construct a (B ∪ Z)-deadlock scheme ds′ which is equal to dsZ over ProcZ .
Then we show that the deadlock scheme is su�cient.

For every process p ∈ Proc, we de�ne ds′(p) as:

dsZ(p) if p ∈ ProcZ ,

⊥ if p labels an edge from Z to L \ Z,

ds(p) otherwise.

We check that ds′ is a (B∪Z)-deadlock scheme. The assumption is that there are no solid
edges from Z to L \Z, thus all processes mapped to ⊥ are fragile. Every lock ℓ ∈ B ∪Z
has at most one outgoing edge in ds′, since it can only come from dsZ , if ℓ ∈ Z, or from
ds, if ℓ ∈ B \ Z. We verify that there is at least one outgoing edge. By de�nition of
Z-deadlock scheme there is one outgoing edge from every lock in Z. A lock ℓ ∈ B \Z has
exactly one outgoing edge in ds(Proc), and this edge in conserved in ds′. Finally, there
cannot be any strong cycle in ds′(Proc) as there are none within Z or B \ Z and there
are no edges from Z to L \ Z in ds′.

It remains to show that ds′ is a su�cient deadlock scheme for Π. Let p ∈ Proc be an
arbitrary process. We make a case distinction on the locks of p. The �rst case is when
both locks are in Z. If p is solid then ds′(p) = dsZ(p) ̸= ⊥. If p is fragile then it is
Z-lockable by de�nition of fragile. The second case is when one lock is in B \ Z and the
other in B∪Z. If p is solid then ds(p) must be de�ned because ds is a su�cient deadlock
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scheme. We must have ds′(p) = ds(p) as there are no solid edges from Z to L \ Z. If p
is fragile then p is B ∪ Z-lockable. The �nal case is when one lock of p is not in B ∪ Z.
Since ds is a su�cient deadlock scheme, p is B-lockable, so it is B ∪ Z-lockable.

Recall that we have �xed a behaviour Π, and that GΠ is its lock graph. We will
describe several polynomial-time algorithms operating on a graph H = (L, EH) and a set
Z of locks. Graph H will be obtained by erasing some edges from GΠ. We will say that
H has a su�cient deadlock scheme to mean that there is a deadlock scheme using only
edges in H that is su�cient for Π. Each of those algorithms will either eliminate some
edges from H or extend Z, while maintaining the following three invariants.

Invariant 1. GΠ has a su�cient deadlock scheme if and only if H does.

Invariant 2. There are no solid edges from Z to L \ Z in H.

Invariant 3. There exists a Z-deadlock scheme in GΠ.

Invariant 1 expresses that the edges we removed from GΠ to get H were not useful for
the deadlock scheme. Invariant 2, along with Lemma 4.36, guarantees that we can always
extend a deadlock scheme over Z to a su�cient one if it exists. Invariant 3 maintains the
existence of a deadlock scheme over Z.

We extend Z as much as we can while maintaining those. In the end we either obtain
a su�cient deadlock scheme (that is, Z is large enough so that all processes outside of
ProcZ are Z-lockable), or a non-su�cient one that we cannot extend anymore.

We may also at some point observe contradictions in the edges of H that forbid any
su�cient deadlock scheme, in which case we can conclude thanks to Invariant 1.

We start with H being the given GΠ and Z = ∅. The invariants are clearly satis�ed.

De�nition 4.37 ▶ Double and solo solid edges

Consider a solid process p. We say that there is a double solid edge ℓ1
p←→ ℓ2 in H

if both ℓ1
p−→ ℓ2 and ℓ1

p←− ℓ2 exist in H. We say that ℓ1
p−→ ℓ2 in H is a solo solid

edge if there is no ℓ1
p←− ℓ2 in H.

Our �rst algorithm looks for a solo solid edge ℓ1
p−→ ℓ2 and erases all other outgoing

edges from ℓ1. It is correct as a deadlock scheme for H has to map p to the edge ℓ1
p−→ ℓ2

and there must be at most one outgoing edge from every lock.
We repeat this algorithm until no more edges are removed. If some call of the algo-

rithm fails then there is no su�cient deadlock scheme for H. Otherwise the resulting H
satis�es the property:

(Trim) if a lock ℓ in L \ Z has an outgoing solo solid edge then it has no
other outgoing edges in H.

We call H trimmed if it satis�es property (Trim).

Lemma 4.38

Suppose (H,Z) satis�es Invariants 1 to 3. If Algorithm 2 fails then H has no
su�cient deadlock scheme. After a successful execution of the algorithm all the
invariants are still satis�ed. If a successful execution does not remove an edge from
H then H satis�es (Trim).
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Algorithm 2 Trimming the graph

1: Look for ℓ ∈ H \Z with a solo solid edge ℓ
p−→ ℓ′ ∈ EH and some other outgoing edges

2: If there is no such edge then stop and report success.
3: for every edge ℓ

q−→ ℓ′′ ∈ EH from ℓ with q ̸= p do
4: if q is solid and ℓ

q←− ℓ′′ /∈ EH then
5: return �no su�cient deadlock scheme for H�
6: else
7: Erase ℓ

q−→ ℓ′

8: end if
9: end for

Proof. Let H ′ be the graph after an execution of Algorithm 2. Observe that the algorithm
does not change Z. If H = H ′ then (Trim) holds. If the algorithm fails then there is a lock
ℓ with two outgoing solo solid edges, labelled by processes p and q. Thus it is impossible
to �nd a su�cient deadlock scheme for H, as p and q would have to be assigned to those
edges (item C1 and C2) and ℓ would then have two outgoing edges, contradicting item C3.

Finally, if the algorithm succeeds but H ′ is smaller than H, we must show that all the
invariants hold. Since the algorithm does not change Z, Invariants 2 and 3 continue to
hold. For Invariant 1, suppose ℓ

p−→ ℓ′ is the edge found by the algorithm. Observe that
if H has a su�cient deadlock scheme dsH then dsH(p) must be this edge, as it is a solo
solid edge (by items C1 and C2). So dsH is also a su�cient deadlock scheme for H ′. In
the other direction, a su�cient deadlock scheme for H ′ is also su�cient for H, as H ′ is a
subgraph of H and ProcH = ProcH′ . The latter holds because H ′ has the same locks as
H.

Our second algorithm searches for cycles formed by solid edges and eventually adds
them to Z. If such a cycle is weak then it can be added to Z. If the cycle is strong, it
may still be the case that its reversal is weak (see p1, p2, p3 in Figure 4.7). More precisely
it may be the case that for every solid edge ℓi

pi−−→ ℓi+1 in the cycle there is also a reverse
edge ℓi

pi←−− ℓi+1 (which is solid by de�nition, since pi is so). If the reversed cycle is also
strong then there is no su�cient deadlock scheme for H. Otherwise, it is weak and it can
be added to Z. The result still satis�es the invariants thanks to the (Trim) property of
H.

Figure 4.7 presents a case where an application of Algorithm 3 allows us to detect an
inconsistency in the solid edges, proving the absence of any deadlock scheme.

Lemma 4.39

Suppose (H,Z) satis�es the Invariants 1 to 3 and H is trimmed. If the execution
of Algorithm 3 does not fail then the resulting H and Z also satisfy the invariants
and (Trim). If the execution fails then there is no su�cient deadlock scheme for
H.

Proof. Suppose that the algorithm �nds a simple cycle ℓ1
p1−→ ℓ2 · · ·

pk−→ ℓk+1 = ℓ1 where
all pi are solid processes, and all ℓi are distinct. By de�nition of a simple cycle, all pi are
distinct as well. If there is a su�cient deadlock scheme for H then it should assign either
ℓi

pi−→ ℓi+1 or ℓi
pi←− ℓi+1 to pi.
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Algorithm 3 Find solid cycles and add them to Z if possible.

1: Look for a simple cycle of solid edges ℓ1
p1−→ ℓ2 · · ·

pk−→ ℓk+1 = ℓ1 not intersecting Z
and all ℓi distinct

2: If there is no such cycle, stop and report success.
3: if all the edges on the cycle are strong then
4: if for some j there is no reverse edge ℓj

pj←− ℓj+1 ∈ EH then
5: return �no su�cient deadlock scheme for H�
6: else if all edges ℓj

pj←− ℓj+1 are strong then
7: return �no su�cient deadlock scheme for H�
8: end if
9: end if
10: Z ← Z ∪ {ℓ1, . . . , ℓk}
11: For every ℓi remove from EH all edges outgoing from ℓi except for ℓi

pi←− ℓi+1.
12: if some solid process p has no edge in H then
13: return �no su�cient deadlock scheme for H�
14: end if
15: repeat
16: Apply Algorithm 2
17: until no more edges are removed from H
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ℓ6

ℓ7 ℓ8

This graph does not have a suf-
�cient deadlock scheme (all pro-
cesses are solid, weak edges are
displayed in red). However a
�rst execution of Algorithm 2
has no e�ect as all edges are
double.
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We apply Algorithm 3, which
�nds solid cycles, erases all other
edges going out of those cycles,
and makes sure that those cycles
are weak.
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p7
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p9

We now apply Algorithm 2
again. It detects that ℓ8

p9−→ ℓ5
is a solo solid edge and it erases
the other outgoing edge ℓ8

p8−→ ℓ7.
It then concludes that there is
no su�cient deadlock scheme as
ℓ7 has two outgoing solo solid
edges.

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5
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ℓ7 ℓ8!
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Figure 4.7: An example of application of Algorithm 2 and Algorithm 3.
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We examine the cases when the algorithm fails. The �rst reason for failure may
appear when all the edges on the cycle are strong. If for some j there is no reverse edge
ℓj

pj←− ℓj+1 in EH then a su�cient deadlock scheme for H, call it dsH , should assign the

edge ℓj
pj−→ ℓj+1 to pj. In consequence, as dsH has to give each ℓi at most one outgoing

edge, all the edges in the cycle should be in the image of dsH . This is impossible as the
cycle is strong. When there are reverse edges ℓi

pi←− ℓi+1 ∈ EH for all i, the algorithm
fails if all of them are strong. Indeed, there cannot be a su�cient deadlock scheme for
H in this case. The last reason for failure is when there is some solid process p and all
p-labelled edges were removed by the algorithm. These must be edges of the form ℓi

p−−→ t
that are not on the cycle, for some i = 1, . . . , k. Those edges cannot belong to a deadlock
scheme as it has to contain the cycle in one direction or the other and thus cannot contain
other outgoing edges from that cycle. As a deadlock scheme cannot assign any edge to
p, and p is solid, there cannot be a su�cient deadlock scheme in that case.

If the algorithm does not fail then either the cycle ℓ1
p1−→ ℓ2 · · ·

pk−→ ℓk+1 = ℓ1 is weak,
or its reverse is. Thanks to Lemma 4.38, we only need to show that our three invariants
hold after line 11. Let (H ′, Z ′) be the values at that point. So Z ′ = Z ∪ {ℓ1, . . . , ℓk}, and
H ′ is H after removing edges in line 11. We show that the invariants hold.

For Invariant 2, we observe that thanks to (Trim) for every lock in Z ′ there is exactly
one outgoing edge in H ′. So there is no solid edge from Z ′ to H \ Z ′ as there was none
from Z.

For Invariant 3, we extend our Z-deadlock scheme to Z ′. We choose the cycle found
by the algorithm or its reversal depending on which one is weak. For every pi we de�ne
dsZ′(pi) to be the edge in the chosen cycle. We set dsZ′(p) = ⊥ for all p ∈ ProcZ′ \ProcZ
other than p1, . . . , pk. We must show that such a p is necessarily fragile. Indeed, in this
case p must have one of its locks ℓ in Z, and the other one, ℓ′, in Z ′ \ Z. By Invariant 2,
there is no solid edge from ℓ to ℓ′ in H. In H ′ all edges from ℓ′ to ℓ are removed. So p is
fragile as the algorithm does not fail at line 12.

For Invariant 1 suppose there is a su�cient deadlock scheme for H ′. Then it is also
a su�cient deadlock scheme for H, as H ′ is a subgraph of H over the same set of locks.
For the other direction take dsH , a su�cient deadlock scheme for H. By Lemma 4.36,
as we showed that Invariant 2 is maintained, we can assume that dsH is equal to dsZ′

on Z ′. We de�ne a deadlock scheme dsH′ for H ′. If dsH(p) = ⊥ then dsH′(p) = ⊥. If
the source edge of dsH(p) is in H \ Z ′ then dsH′(p) = dsH(p). This edge is guaranteed
to exist in H ′. If the two locks of p are both in Z ′ let dsH′(p) = dsH(p) = dsZ′(p). The
remaining case is when ds(p) is an edge ℓ

p−→ ℓ′ with ℓ ∈ Z ′ and ℓ′ ∈ H \ Z ′. In this case
p is fragile as Z ′ has no solid edges leaving it. We can then set dsH′(p) = ⊥. It can be
veri�ed that dsH′ is a su�cient deadlock scheme for H ′.

Lemma 4.40

If Algorithm 3 succeeds but does not increase Z nor decreaseH then (H,Z) satis�es
three properties:

H1 H is trimmed.

H2 H has no solid cycle that intersects L \ Z.

H3 Every solid process has an edge in H.
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Proof. Since H was not modi�ed, Algorithm 2 did not �nd any solo solid edge ℓ
p−→ ℓ′

with other outgoing edges from ℓ, hence property H1 is satis�ed.
By Lemma 4.39, Invariant 2 is satis�ed, hence any solid cycle intersecting L \ Z in

H must be entirely in L \ Z. However if such a cycle existed then Algorithm 3 would
not have stopped in line 2, and thus would have either failed or increased Z. There is
therefore no such cycle intersecting L \ Z, hence property H2 is also satis�ed.

If H3 were not satis�ed then Algorithm 3 would have failed on lines 12-13.

Since in the rest of the algorithm we increase Z but do not modify H, the three
properties stated in the previous lemma will continue to hold.

De�nition 4.41

For any pair (H,Z) we de�ne an equivalence relation between locks: ℓ1≡Hℓ2 if
ℓ1, ℓ2 ∈ L \ Z and there is a path of double solid edges in H between ℓ1 and ℓ2.

Intuitively, once we have trimmed the graph and eliminated simple cycles of solid edges
with Algorithm 3, the equivalence classes of ≡H are �trees� made of double solid edges
(c.f. Lemma 4.43 below) with no outgoing edges (except for singletons, c.f. Lemma 4.42).

Lemma 4.42

If H satis�es property H1 and ℓ1
p−→ ℓ2 is in H for a solid process p then either the

≡H-equivalence class of ℓ1 is a singleton, or ℓ1
p←− ℓ2 is in H, hence ℓ1≡Hℓ2.

Proof. If the ≡H-equivalence class of ℓ1 is not a singleton then there is a double solid
edge from ℓ1. By the (Trim) property, there cannot be any outgoing solo solid edge from
ℓ1, so ℓ1

p←− ℓ2 must be in H, too.

Lemma 4.43

Suppose that H satis�es properties H1 and H2. Let ℓ1, ℓ2 ∈ L \ Z. If ℓ1≡Hℓ2 then
H has a unique simple path of solid edges from ℓ1 to ℓ2.

Proof. If ℓ1 = ℓ2 then any non-empty simple path of solid edges from ℓ1 to ℓ2 would
contradict property H2, hence the empty path is the only simple path from ℓ1 to ℓ2.

If ℓ1 ̸= ℓ2 then by de�nition of ≡H there is a path of double solid edges from ℓ1 to ℓ2,
hence there is a simple path from ℓ1 to ℓ2.

Suppose there exist two distinct simple paths from ℓ1 to ℓ2, then by Lemma 4.42 all
the locks on those paths are in the ≡H-equivalence class of ℓ1 and ℓ2. Hence as ℓ1 /∈ Z,
there is a cycle of double solid edges intersecting H \ Z, contradicting property H2.

Our third algorithm looks for an edge ℓ1
p−→ ℓ2 with ℓ1 /∈ Z and ℓ2 ∈ Z, and adds the

full ≡H-equivalence class C of ℓ1 to Z. This step is correct, as we can extend a Z-deadlock
scheme to (Z ∪C)-deadlock scheme by orienting edges in C, as displayed in the example
in Figure 4.8.
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Algorithm 4 Extending Z by locks that can reach Z

1: while there exists ℓ1
p−→ ℓ2 ∈ EH with ℓ1 /∈ Z and ℓ2 ∈ Z do

2: Z ← Z ∪ {t ∈ L | ℓ≡Hℓ1}
3: end while

Lemma 4.44

SupposeH satis�es properties H1, H2 and H3, and (H,Z) satis�es Invariants 1 to 3.
After executing Algorithm 4, the new H and Z also satisfy all these properties, and
H has no edges from L \ Z to Z.

Proof. Let (H ′, Z ′) be the pair obtained after executing Algorithm 4. Observe that
H ′ = H, hence Invariant 1 holds. For the same reason H1 and H3 are still satis�ed.
Furthermore, as Z can only increase, H2 continues to hold.

Let Zm+1 be the value of Z at the end of the m-th iteration. So Zm+1 = Zm ∪ {t ∈
L | ℓ≡Hℓ1}, where ℓ1

p−→ ℓ2 is the edge found in the guard of the while statement. We
verify that Zm+1 satis�es Invariants 2 and 3 if Zm does.

For Invariant 2, Lemma 4.42 says that there are no outgoing solid edges from the
≡H-equivalence class of ℓ1, unless that class is a singleton. If it is a singleton, there are
no outgoing solid edges from ℓ1 or ℓ1

p−→ ℓ2 is the only outgoing edge of ℓ1. In both cases,
there are no solid edges from Zm+1 to L \ Zm+1 in H.

For Invariant 3 we extend a Zm-deadlock scheme to Zm+1. So we are given dsm and
construct dsm+1. If the two locks of some process q are in Zm then dsm+1(q) = dsm(q).
We set dsm+1(p) to be the edge ℓ1

p−→ ℓ2 found by the algorithm, so here ℓ1 ∈ Zm+1 \ Zm

and ℓ2 ∈ Zm. Let C be the ≡H-equivalence class of ℓ1: C = {t ∈ L | ℓ≡Hℓ1}. By
Lemma 4.43 there is a unique simple path from ℓ ∈ C to ℓ1. Let ℓ

q−→ ℓ′ be the �rst edge
on this path. We set dsm+1(q) to be this edge. We set dsm+1(q) = ⊥ for all remaining
processes q.

We verify that dsm+1 is a Zm+1-deadlock scheme. By the above de�nition every lock
in C has a unique outgoing edge in dsm+1, hence every lock in Zm+1 does. It is also
immediate that the image of dsm+1 does not contain a strong cycle as it would need to be
already in the image of dsm (every lock has exactly one outgoing edge in dsm+1 and the
path obtained by following those edges from an element of C leads to Zm). It is maybe less
clear that dsm+1 ̸= ⊥ for every solid q ∈ ProcZm+1 . Let q be a solid process in ProcZm+1 ,
and suppose dsm+1 is not de�ned by the procedure from the previous paragraph. If both
locks of q are in Zm then dsm+1(q)must be de�ned because dsm(q) is. If q = p, the process
labeling the transition chosen by the algorithm, then dsm+1(q) is de�ned. Otherwise both
locks of q are in C. Say these are ℓ and ℓ′. If neither ℓ

q−→ ℓ′ is on the shortest path from
ℓ to ℓ1, nor is ℓ

q←− ℓ′ on the shortest path from ℓ′ to ℓ1 then there must be a cycle in
C. But this is impossible as we assumed that there are no solid cycles intersecting L \Z
(property H2) and Z ⊆ Zm. Hence dsm+1(q) is de�ned, and dsm+1 is a Zm+1-deadlock
scheme.

All that is left to prove is that H has no edges from L \ Z to Z, which is immediate
as otherwise Algorithm 4 would not have stopped.

Our last algorithm looks for weak cycles in the remaining graph. If it �nds one, it
adds to Z not only all locks in the cycle but also their ≡H-equivalence classes.
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Figure 4.8: Illustration of Algorithm 4. The thick edges in the lower picture are those
used in the deadlock scheme.

Algorithm 5 Incorporating weak cycles

1: if there exists a weak cycle ℓ1
p1−→ ℓ2 · · ·

pk−→ ℓk+1 = ℓ1 with ℓk
pk−→ ℓ1 weak and ℓi /∈ Z

for some i, then
2: Z ← Z ∪

⋃k
i=1{t | t≡Hℓi}

3: end if
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Lemma 4.45

Suppose H satis�es H1, H2 and H3, (H,Z) satis�es Invariants 1 to 3, and moreover
there are no edges from L \ Z to Z. After an execution of Algorithm 5, H still
satis�es H1, H2 and H3, and the new (H,Z) satis�es Invariants 1 to 3.

Proof. Let (H ′, Z ′) be the pair obtained after execution of Algorithm 4. Observe that
H ′ = H, hence Invariant 1 holds. For the same reason H1 and H3 are still satis�ed.
Furthermore, as Z can only increase, so is H2. It remains to verify Invariants 2 and 3.

Consider the weak cycle found by the algorithm ℓ1
p1−→ ℓ2 · · ·

pk−→ ℓk+1 = ℓ1, and note
that ℓi /∈ Z for all i. Let Z ′ = Z ∪

⋃k
i=1{t | t≡Hℓi} as in line 2.

For Invariant 2, consider some ℓi on the cycle. Lemma 4.42 says that there are no
outgoing solid edges from the ≡H-equivalence class of ℓi, unless that class is a singleton.
If this class is a singleton, there are no outgoing solid edges from ℓi or ℓi

p−→ ℓi+1 is the
only outgoing edge of ℓi. In both cases, there are no solid edges from Z ′ to L \ Z ′ in H.

For Invariant 3 we extend a Z-deadlock scheme dsZ to Z ′. For every lock ℓ ∈ Z ′ \ Z
let j be the biggest index among 1, . . . , k with ℓ≡Hℓj. If ℓ = ℓj then set dsZ′(pj) to be

the edge ℓj
pj−→ ℓj+1. Otherwise, take the unique path from ℓ to ℓj in the ≡H-equivalence

class of the two locks; this is possible thanks to Lemma 4.43. If the path starts with
ℓ

p−→ ℓ′ then set dsZ′(p) to this edge. Then set dsZ′(p) = ⊥ for all remaining processes p.
We claim that dsZ′ is a Z ′-deadlock scheme. First, there is an outgoing dsZ′ edge

from every lock in Z ′ because of the de�nition. Moreover it is unique.
We need to show that dsZ′(p) is de�ned for every solid process p. This is clear if the

two locks, ℓ and ℓ′, of p are in Z. If both locks are not in Z then either ℓ≡Hℓ
′ or there is

a solo solid edge between the two, say ℓ
p−→ ℓ′. In the latter case this is the only edge from

ℓ, as H is trimmed. As the ≡H-equivalence class of ℓ is then a singleton, this must be
an edge on the cycle and dsZ′(p) is de�ned to be this edge. Suppose ℓ≡Hℓ

′ and dsZ′(p)
is not de�ned. Let j be the biggest index among 1, . . . , k such that ℓ≡Hℓj. If neither
ℓ

p−→ ℓ′ is on the shortest path from ℓ to ℓj, nor ℓ
p←− ℓ′ is on the shortest path from ℓ′

to ℓj then there must be a cycle in C. But this is impossible as we assumed that there
are no solid cycles intersecting L \ Z in H (Property H2). The remaining case is when
one of the locks of p is in Z and another in Z ′ \ Z. There is no solid edge leaving Z by
Invariant 2. There is no solid edge entering Z by the assumption of the lemma. So p is
a solid process labeling no edge in H which contradicts H3.

The last thing to verify for a Z ′-deadlock scheme is that there is no strong cycle in
dsZ′ . We �rst check that dsZ′ contains ℓk

pk−→ ℓ1. This is because ℓk is necessarily the last
from its ≡H-equivalence class. A strong cycle cannot contain locks from Z as there are

no edges entering Z in dsZ′ . Let ℓ′1
p′1−→ ℓ′2 . . .

p′l−→ ℓ′l+1 = ℓ′1 be a hypothetical strong cycle
in Z ′ \ Z using transitions in dsZ′ .

Consider x such that ℓ′1≡Hℓ
′
j for j ≤ x but ℓ′1 ̸≡H ℓ′x+1. By de�nition of dsZ′ we must

have that ℓ′x is the last lock among ℓ1, . . . , ℓk equivalent to ℓ′1, say it is ℓy. As each lock
only has one outgoing transition in the image of dsZ′ , and as there is a path from ℓy to
ℓk in that image, ℓk must be on that cycle, and thus the weak edge ℓk

pk−→ ℓ1 as well,
contradicting the assumption that this is a strong cycle.

We conclude with our complete algorithm (if one of our sub-algorithms returns a
result, then the entire algorithm stops):
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Algorithm 6 Algorithm to check the existence of a su�cient deadlock scheme
1: H ← GΠ

2: Z ← ∅
3: repeat
4: Apply Algorithm 2
5: until No more edges are removed from H
6: repeat ▷ H is trimmed
7: Apply Algorithm 3
8: until No more edges are removed from H
9: repeat ▷ From now on H satis�es properties H1, H2 and H3
10: Apply Algorithm 4 ▷ no edges from L \ Z to Z
11: Apply Algorithm 5
12: until Z does not increase anymore
13: if there is a process p ∈ Proc \ ProcZ that is not Z-lockable then
14: return �No global deadlock�
15: else
16: return �Global deadlock�
17: end if

Lemma 4.46

Algorithm 6 terminates in polynomial time, and fails if and only if there is no
su�cient deadlock scheme for Π.

Proof. Let (H ′, Z ′) be the values at the end of the execution of the algorithm.
Suppose the algorithm fails. If it is before line 13 then using the previous lemmas and

Invariant 1 we get that GΠ does not have a su�cient deadlock scheme. If the algorithm
fails in line 14 then there exists a process p with one of its locks outside of Z and not
Z-lockable. Suppose towards a contradiction H has a su�cient deadlock scheme dsH . It
must have an edge from a lock of p that is not in Z, say from ℓ. By de�nition, every lock
with an incoming edge in dsH must also have an outgoing edge in dsH . Following these
edges we get a cycle in H. During the last iteration of lines 9-12, Z was not increased,
hence by Lemma 4.44 there are no edges from L \Z to Z. This cycle is therefore outside
Z. It has to be a weak cycle by de�nition of a deadlock scheme, which is a contradiction
because Algorithm 5 did not increase Z in its last application.

If the algorithm succeeds then there is a Z-deadlock scheme, say dsZ (c.f. Invariant 3).
We construct a su�cient deadlock scheme (Z, ds) for GΠ as follows. First, we set ds(p) =
dsZ(p) for all p ∈ ProcZ . Consider p ∈ Proc \ ProcZ , as the algorithm did not fail in
lines 13-14, p is Z-lockable, thus we set ds(p) = ⊥.

Finally, this algorithm operates in polynomial time as all steps of all loops in the
algorithms either decrease H or increase Z. Furthermore, the condition on line 13 is
easily veri�able by checking in the behaviour (Πp)p∈Proc whether there exists (∗∅, B) ∈ Πp

such that B ⊆ Z.

Proof of Theorem 4.30. We start by computing the behaviour Π = (Πp)p∈Proc of the
system. We can do this in polynomial time by Lemma 4.16.

Then, we compute the lock graph GΠ for Π and check if there is a su�cient deadlock
scheme for Π in polynomial time thanks to Lemma 4.46.
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By Lemma 4.35, this algorithm answers yes if and only if the system has a reachable
global deadlock.

4.6 Veri�cation of nested LSS

In this section we address the veri�cation problem for systems with a restricted lock
acquisition policy, but no bound on the number of locks used by each process. We
require that each process acquires and releases locks as if they were stored in a stack.
This is a classical restriction, as this way of managing locks is considered to be sound
and suitable in many contexts.

An LSS is nested if all its runs are such that a process can only release the lock it
acquired the latest among the ones it holds.

In [Bro+21, Theorem 5.5] the authors proved an NP upper bound for a type of system
which corresponds to our sound nested exclusive LSS on the complexity of the following
problem: Is there a reachable con�guration where there are some processes p1, . . . , pk ∈
Proc and locks ℓ1, . . . , ℓk+1 = ℓ1 ∈ L with each pi holding lock ℓi and needing to get
ℓi+1 to keep running? We will call such con�gurations circular deadlocks. They leave the
question of a matching lower bound open.

We generalise their result by proving an NP upper bound on the regular veri�cation
problem for nested LSS (note that the problem above can be solved by guessing a con�g-
uration with such a circular deadlock and using our NP algorithm to check reachability of
that con�guration). We then prove an NP lower bound on the process deadlock problem
for sound nested exclusive LSS, and show a matching NP lower bound to the existence
of circular deadlocks simultaneously.

This shows that the nested requirement signi�cantly improves the complexity of the
regular veri�cation problem. On the other hand, the NP-hardness is di�cult to avoid: it
holds even for a very restricted class of systems and for very simple objectives.

Lemma 4.47

Every local run of a in a nested LSS can be decomposed as

ϱ = ϱ0a1ϱ1a2 · · · ϱk−1akϱkϱk+1 · · ·

where a1, . . . , ak are the actions acquiring a lock that is not released later in the
run.
Furthermore, all ϱi are neutral. Finally, for all i ≥ k + 1, all locks acquired in ϱi
are acquired in�nitely many times in ϱ. If ϱ is �nite, all ϱi are empty for i ≥ k+1.
We call such a decomposition a stair decomposition of ϱ.

Proof. Let ϱ be a local run of some process p. We start by decomposing it as

ϱ = ϱ0a1ϱ1a2 · · · ϱk−1akϱ∞

with a1, . . . , ak the actions getting a lock that is not released later in the run. For all i
let ℓi be the lock taken while executing ai.

We check that all ϱ0, . . . , ϱk−1 are neutral. Consider some ϱi. If a lock ℓ is taken in
ϱi then it must be released somewhere in the run because ai+1 is the next operation that
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4.6. Veri�cation of nested LSS

takes a lock and does not release it. But because of the nesting discipline ℓ cannot be
released after ai+1. So it must be released in ϱi.

Now we look at ϱ∞. Every lock acquired in it must be released eventually. Thus if
the run is �nite we can set ϱk = ϱ∞ and ϱi = ε for all i ≥ k + 1.

If the run is in�nite then we proceed as follows: Before executing ϱ∞, p holds ℓ1, . . . , ℓk.
We construct a sequence of neutral runs ϱ′j such that ϱ∞ = ϱ′1ϱ

′
2 · · · . Say we constructed

ϱ′1 · · · ϱ′j. As they are all neutral after executing them p holds ℓ1, . . . , ℓk. The next action
a in ϱ∞ cannot release a lock as none of those locks are ever released. If a is neutral then
we can simply set ϱj+1 = a If a acquires lock ℓ then let ϱj+1 be the in�x of ϱ∞ starting
with a and ending with the next action releasing ℓ. This run is neutral as the system
is nested. Then let j be such that ϱ′1 · · · ϱ′j contains all acqt operations with ℓ acquired
�nitely many times in ϱ∞. We set ϱk = ϱ′1 · · · ϱ′j and for all i ≥ k + 1, ϱi = ϱ′j−k+i. We
obtain our decomposition.

We now de�ne patterns of local runs in a similar manner as in Section 4.3.3. While the
principle of patterns stays the same, the presentation is a little di�erent: as the number
of locks per process is not bounded, notations like the ones of De�nition 4.13 are not
convenient.

Patterns for nested LSS describe three things:

the set of locks that are held inde�nitely in the run after some point

the order of the last operations on each lock

the set of locks taken and released in�nitely many times

We will see that this information su�ces to characterise sets of local runs that can
be interleaved into a global one. This can be understood as follows. Clearly we cannot
have two processes where one keeps a lock inde�nitely after some point while the other
one keeps taking and releasing it inde�nitely. Hence we need to know which locks each
process takes forever and which ones it takes in�nitely often. Then, observe that if a
process takes lock ℓ and never releases it later, and if it takes ℓ′ after taking ℓ, then in
the global run the last operation on ℓ′ happens after the last operation on ℓ. Every local
run thus induces a partial order on locks. To be able to schedule local runs, they must
be consistent with each other on that order. This explains the second component in this
de�nition of patterns.

De�nition 4.48

Consider a (�nite or in�nite) local run ϱ of process p, and a stair decomposition
ϱ = ϱ0a1 · · · ϱk−1akϱkϱk+1 · · · . For each 1 ≤ i ≤ k let ℓi be the lock acquired by ai.
We say that ϱ matches a stair pattern (H,≤, SW ) if H = {ℓ1, . . . , ℓk}, the set of
locks acquired in�nitely many times is included in SW , and ≤ is a total order on
L satisfying two conditions:

if ℓ is acquired only �nitely many times and ℓ′ in�nitely many times then
ℓ ≤ ℓ′,

if ℓ = ℓi for some i and ℓ′ is acquired at some point after ai then ℓ ≤ ℓ′.
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Note that unlike the patterns de�ned for 2LSS, here a run may have several di�er-
ent patterns. We could de�ne unique patterns but this would cause some problems for
Lemma 4.50, as it would require automata of exponential size to recognise them.

Our next lemma characterises when local runs can be combined into a process-fair
global. Once again the characterization uses only patterns and last states of the local
runs.

Proposition 4.49

Consider a family of (�nite or in�nite) local runs (ϱp)p∈Proc of a nested LSS. For
each p ∈ Proc we consider a stair decomposition of ϱp:

ϱp = ϱp,0ap,1 · · · ϱp,kp−1ap,kpϱp,kpϱp,kp+1 · · ·

and for each ap,i let ℓp,i be the lock taken while reading ap,i.
Runs (ϱp)p∈Proc can be scheduled into a process-fair global run if and only if there
exist for each p a stair pattern (Hp,≤p, SWp) that ϱp matches and the following
conditions are satis�ed.

1. The sets Hp are pairwise disjoint.

2. All ≤p orders are the same.

3. For all p, if ϱp is �nite then it leads to a state where all outgoing transitions
acquire a lock from

⋃
p∈ProcHoldsp.

4. The set
⋃

p∈ProcHp is disjoint from
⋃

p∈Proc SWp.

Proof. ⇒ Suppose we have a process-fair global run ϱ whose local projections are the
(ϱp)p∈Proc. For each p let Hp be the set of locks kept inde�nitely in ϱp and Swp the set
of locks acquired in�nitely often in ϱp. Let ≤ be a total order on locks such that for all
ℓ, ℓ′ ∈ L, if in ϱ there is an operation on ℓ′ after the last operation on ℓ then ℓ ≤ ℓ′.
In particular, a lock acquired in�nitely often is always greater than one acquired �nitely
many times. Further, for all p, i the action ap,i acquires ℓp,i, and it is not released it
later. Thus ap,i is the last action with an operation on ℓp,i in ϱ. Hence if another lock ℓ
is used after ap,i in ϱp, it is also used after ap,i in ϱ, and therefore ℓp,i ≤ ℓ. As a result,
(Hp,≤,Swp) is a pattern of ϱp for all p, and condition 2 is immediately satis�ed.

As each p eventually holdsHp and keeps those locks forever, theHp have to be disjoint,
thus condition 1 is satis�ed.

For condition 3, we use the fact that ϱ is process-fair. For all p, if ϱp is �nite then
it leads to a state where after some point in the run none of the outgoing transitions
can be taken. Hence all these transitions all acquire a lock that is never released after
some point. This is the case for locks of

⋃
p∈ProcHp but not for the others, which are free

in�nitely often. Hence condition 3 holds.
Finally, as all locks from

⋃
p∈ProcHp are eventually never freed while the locks from⋃

p∈Proc Swp are free in�nitely often, the two sets are necessarily disjoint, proving condi-
tion 4.
⇐ For the other implication, suppose that we have patterns (Hp,≤p,Swp) for each p
such that all conditions are satis�ed. Let ≤ be the total order on locks common to all
patterns, which exists by condition 2.
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We start by executing one by one for each run ϱp its pre�x ϱp,0. After executing each
ϱp,0 all locks are free, therefore we can execute all of them and end up in a con�guration
will all locks free.

We use the notation H for the set
⋃

p∈ProcHp. We number the locks of H so that
H = {ℓ1, . . . , ℓm} and ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓm. For each ℓi ∈ H there is a pair (pi, ji) such
that op(api,ji) = acqℓi . Furthermore that pair is unique as a process p cannot have ap,j
take ℓi for two di�erent j (by de�nition of a stair decomposition) and as the Hp are
disjoint (by condition 1).

We execute, for all ℓi ∈ H, in increasing order on i, api,jiϱpi,ji .
At �rst all locks are free. Then, for each i, just before we execute api,jiϱpi,ji , the locks

that are not free are exactly {ℓi′ | i′ ≤ i− 1}. Hence for every lock ℓi′ that is not free, we
have ℓi′ ≤ ℓi and ℓi′ ̸= ℓi.

By de�nition of ≤p, all locks ℓ′ acquired in api,jiϱpi,ji are such that ℓi ≤p ℓ
′, hence

ℓi ≤ ℓ′ by condition 2. As a result, they are all free just before we execute api,jiϱpi,ji .
After we execute it, the set of non-free locks becomes {ℓi′ | i′ ≤ i}.

The projection of the resulting run on each p is ϱp,0ap,1 · · · ϱp,kp−1ap,kpϱp,kp . All that is
left to do is to execute the ϱp,i for i ≥ kp + 1 for each p. They only contain operations
on locks that are acquired in�nitely many times which are thus in Swp as ϱp matches
pattern (Holdsp,≤p,Swp), and therefore free by condition 4. As furthermore all ϱp,i are
neutral by de�nition of stair decomposition, we can execute the next ϱp,i for each p again
and again inde�nitely, to obtain an in�nite global run of the system.

This run is furthermore process-fair as the �nite ϱp lead to states whose outgoing tran-
sitions acquire locks of H, which are eventually all taken forever. Hence those processes
do not have an available action in�nitely often.

Before we can present our NP algorithm, we need one last technical lemma to show
that we can recognise runs with a given pattern using a small automaton.

Lemma 4.50

Given a process p of a nested LSS and a stair pattern π we can construct a DELA
Ap

π such that a local run ϱp is accepted if and only if ϱp matches pattern π. The
automaton Ap

π has at most |Lp| + 1 states and a formula of constant size for the
accepting condition.

Proof. Let π = (Hp,≤p,Swp). We set Hp = {ℓ1, . . . , ℓk} so that ℓ1 ≤p · · · ≤p ℓk. We
de�ne the automaton Ap

π = (Sπ,Σp, δ
p
π, initπ, φπ) as follows: The states of the automaton

are Sπ = {0, . . . , k,∞}, with initπ = 0.
This automaton keeps track of the largest index i such that the run read so far is of

the form ϱ0a1ϱ1 · · · aiϱi with ϱj neutral for all j < i, op(aj) = acqℓj for all aj and all locks
ℓ′ used after aj are such that ℓj ≤ ℓ′.

For instance, say we have taken ℓ1, ℓ2, ℓ3 in that order, then we are in state 3, but
then if we acquire ℓ′ with ℓ1 ≤ ℓ′ ≤ ℓ2 then we go back to state 1.

For each action a ∈ Σp we have the following transitions:

If op(a) = nop then δ(s, a) = s for all s ∈ Sπ \ {k} and δ(s, k) =∞.

If op(a) = acqℓi for some 1 ≤ i ≤ k then δ(s, a) = i if s ∈ {i − 1, . . . , k,∞} and
δ(s, a) = s otherwise.
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If op(a) = relℓi for some 1 ≤ i ≤ k then δ(s, a) = min{i− 1, s}.

If op(a) ∈ {acqℓ, relℓ} for some ℓ /∈ Swp ∪Hp then let j = max{i | ℓi ≤p ℓ} (j = 0
if that set is empty). We set δ(s, a) = min{j, s}.

If op(a) ∈ {acqt, relt} for some ℓ ∈ Swp then δ(k, a) = δ(∞, a) =∞ and δ(s, a) = s
for all s ̸= k.

The acceptance condition φπ is simply to see ∞ in�nitely many times and all other
states �nitely many times.

Let ϱ be a local run of p matching the given stair pattern π, and consider its stair
decomposition ϱ = ϱ0a1 · · · ϱk−1akϱkϱk+1 · · · . For all i < kp there is a path in the au-
tomaton reading ϱp,i from state i to itself: every letter acquiring ℓi+1 is followed by one
releasing it and going back to state i, letters using a lock lower than ℓi for ≤p cannot
appear in ϱp,i as otherwise ϱp would not match π.

As a result, the run ϱ0a1 · · · ϱk−1ak labels a path from 0 to k in the automaton. Then
all letters that appear in the ϱi for i ≥ k are greater than ℓk, otherwise ϱp would not
match π. Hence the rest of ϱp is read between states k and ∞. If ϱp is �nite then we
stay in ∞ forever. If ϱp is in�nite then eventually we only see letters using locks of Swp

or nop and we stay in ∞ forever. In both cases the run is accepting.
Now let ϱ be a local run of p such that ϱ is accepted by Aπ. Then we decompose ϱ as

ϱ = ϱ0a1 · · · ϱk−1akϱ∞ with ai the last letter in the run such that the pre�x ϱ0a1 · · · ϱi−1ai
labels a path in the automaton from 0 to i. By de�nition of the automaton, we must
have op(ai) = acqℓi for all i and all locks used after ai must be greater than ℓi for ≤.
Similarly, all locks used in ϱ∞ must be greater than ℓk.

If ϱ is �nite, then so is ϱ∞ and by the previous arguments we obtain that ϱ matches
π. Otherwise, ϱ has a su�x that labels a path that stays in ∞ forever, hence after some
point ϱ only contains letters using locks of Swp or applying nop. As a result, ϱ matches
π.

We can �nally give an NP upper bound for the problem over sound nested LSS.

Proposition 4.51

The regular veri�cation problem is decidable in NP for sound nested LSS.

Proof. Let S = ((Ap)p∈Proc,L) be a sound nested LSS, and ((Bp)p∈Proc, φ) a regular ob-
jective.

The algorithm is similar to the one for Theorem 4.18: we guess a pattern πp = (Hp,≤p

,Swp) for each process p, and a valuation ν of the (infp,q)p∈Proc,q∈Qp (the variables of φ, see
De�nition 4.5). We check that ν satis�es φ. We also equip each Bp with an Emerson-Lei
accepting condition expressing that the run matches ν.

We then guess, for each process p, a run in the product of Bp, Ap and Aπp (as described
in Lemma 4.50) that matches valuation ν. It is folklore that if an Emerson-Lei automaton
has an accepting run then it has one of the form uvω with u and v of polynomial size in
the number of states of the automaton. Thus we can guess an accepting run within NP.
An accepting run is one that respects ν in Bp, and follows a run of Ap of pattern πp (and
ends in a state with all outgoing transitions getting a lock of

⋃
p∈ProcHp if it is �nite).

By Proposition 4.49, we accept if and only if there is a process-fair global run of the
LSS satisfying the objective.
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We give a matching lower bound, robust to many restrictions. The reduction also
solves a question left open in [Bro+21], as explained at the beginning of the section.

Proposition 4.52

The global deadlock problem, the process deadlock problem and the circular dead-
lock problem are NP-hard for sound nested locally live exclusive LSS.

Proof. We reduce from the independent set problem.
Let G = (V,E) be an undirected graph, and k ∈ N. We can assume that V =

{1, . . . , n} for some n ∈ N. We set E = {e1, . . . , em}, i.e., we put an arbitrary order on
edges in E. Our set of processes is Proc = {p1, . . . , pk}. For each 1 ≤ j ≤ m we have a
lock ℓj. We write L for the set {ℓj | 1 ≤ j ≤ m}. Our set of locks is L ∪ {t1, . . . , tk}. For
each v ∈ V we write Ev for the set of edges adjacent to v and Lv for {ℓj | ej ∈ Ev}. Each
process pi uses locks of L ∪ {ti, ti+1}, with the convention tk+1 = ℓ1.

Each process pi has n transitions from its initial state, with operation nop, which lead
to states s1, . . . , sn. From each sv a sequence of transitions (with no choice) acquires all
locks ℓj ∈ Lv in increasing order of indices, then acquires ti, then ti+1, and then releases
all those locks in reverse order (thus ensuring the nested property). We end up in a state
endi with a local self-loop. This system is clearly exclusive, as the only state with several
outgoing transitions is the initial one, and none of them acquire any lock.

In order to prove that the global deadlock problem, the process deadlock problem
and the circular deadlock problem are NP-hard, we �rst pick an arbitrary process pi. We
prove the two following implications:

If there is an independent set of size k then there is a run leading to a global
deadlock that is also a circular deadlock (and thus also a process deadlock on pi).

If there is a process-fair run whose projection on some process is �nite, then we can
build an independent set of size k.

Proving these two implications allows us to show hardness for all three deadlock
problems at once.

Suppose that this LSS has a process-fair run ϱ whose projection on some process is
�nite. The structure of the LSS imposes that when executing ϱ we eventually stay in
the same con�guration forever, with some processes blocked because they cannot acquire
some lock and some looping inde�nitely on their state endi.

Let C be that con�guration. If some pi is stuck at some point after acquiring ti, then
it cannot have acquired ti+1, as otherwise it could release all of its locks and loop in
endi. Hence some other process holds ti+1, and it can only be pi+1 (with pk+1 = p1). By
iterating this reasoning, we conclude that all processes pi are blocked while holding ℓi, as
they cannot acquire ti+1. They must be holding disjoint sets of locks. By construction,
each pi is holding ti, plus the locks of some Lv, v ∈ V . Hence we have a set of k vertices
whose sets of adjacent edges are disjoint, i.e., an independent set of size k.

Now suppose no pi is stuck after acquiring ti. Then all pi that have acquired ti have
reached endi, and released all their locks, thus all ti are free. There must be at least one
process blocked when trying to acquire an element of some Lv. Let j be the highest index
in {1, . . . ,m} such that there is a process pi blocked because it cannot acquire ℓj. Then
there is a process pi′ which is holding ℓj, and is itself unable to acquire some ℓj′ (as all
locks ℓr are free). However, as all processes acquire elements of L in increasing order of
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index, we must have j′ > j, contradicting the maximality of j. Thus this case cannot
happen, concluding the �rst part of our reduction.

Conversely suppose we have an independent set of vertices S = {v1, . . . , vk} ⊆ V of
size k. Then we construct the run ϱ in which, one by one, each pi �rst goes to svi and
then acquires {ℓi} ∪ Lvi . This is possible as they all acquire disjoint sets of locks. We
end up in a con�guration where each pr needs ℓr+1 to advance, but cannot do so as ℓr+1

is held by pr+1. Hence ϱ yields a circular deadlock (and even a global deadlock, which
shows that it is process-fair). This ends our reduction.

Theorem 4.53

The regular veri�cation problem is NP-complete for sound nested. The lower bound
holds even for locally live exclusive LSS.

4.7 From veri�cation to synthesis

Now that we have studied the veri�cation problem, we can leverage our previous results
to prove complexity bounds for the synthesis problem, de�ned below.

De�nition 4.54 ▶ Lock-sharing game

A lock-sharing game (LSG for short) (S, (SC
p , S

E
p )p∈Proc,B) is an LSS S where the

set of states of each process p is partitioned in two SC
p , S

E
p , the Controller states

and the Environment states, along with a regular objective B.
We additionally require that all actions from Controller states have operation nop.

Remark 4.7.1. The assumption that all actions from Controller states have operation
nop is purely technical: we need it to keep the notion of deadlock natural. Suppose we had
a Controller state s with two outgoing transitions taking locks ℓ1 and ℓ2, and the strategy
of Controller went for ℓ1. Then, if ℓ1 is never freed by other processes, but ℓ2, it is not
clear if we should consider that the process is blocked or not.

We call 2LSG and nested LSG the LSG where the underlying system is a 2LSS and
nested LSS, respectively.

A control strategy is a family of functions σ = (σp)p∈Proc with σp : Σ∗
p → Σp for all p.

The functions σp are called local strategies
A σ-local run of process p is a local run ϱp = a1 · · · ak of p such that for all pre�x

a1 · · · ai of ϱp, if the state reached by ϱ′p belongs to Controller then ai+1 = σp(a1 · · · ai). A
σ-run is a run ϱ whose projection on each process p is a σ-local run. A control strategy
is winning if no process-fair σ-run is accepted by the regular objective.

De�nition 4.55 ▶ Regular control problem for LSG

Given an LSG (S, (SC
p , S

E
p )p∈Proc,B), decide if there is a winning control strategy.

We also de�ne two subproblems, analogous to the ones in the veri�cation part. The
global deadlock avoidance problem asks, given an LSG whether there is a control strategy σ
such that no process-fair σ-run leads to a global deadlock. The process deadlock avoidance
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problem asks, given an LSG and a process p, whether there is a control strategy σ such
that no process-fair σ-run has a �nite projection on p.

4.7.1 Undecidability in the general case

In an extended version of [Gim+22a], available on Arxiv [Gim+22b], we showed that the
global deadlock avoidance problem is already undecidable on systems where each process
accesses at most 4 locks. As the proof is quite long, we present here a lightweight version,
where processes use a larger (but still �xed) number of locks.

Theorem 4.56

The global deadlock avoidance problem for LSG is undecidable, even for a �xed
number of locks.

Undecidability with initialisation

In a lock-sharing system all locks are assumed to be initially free. We consider now the
variant where some of the locks are initially owned by some processes.

The input is a lock-sharing system S = ((Ap)p∈Proc,Ss,Se,L) and an initial con�gu-
ration Cinit = (initp, Ip)p∈Proc with pairwise disjoint sets Ip ⊆ L. The question is whether
there exists a control strategy that guarantees that no run from Cinit deadlocks.

It turns out that this generalization of the deadlock-avoidance control problem is not
more di�cult than our original problem, as we will later see in Lemma 4.59.

Theorem 4.57

The control problem for LSG with initial con�guration and at most 7 locks per
process is undecidable.

We reduce from the question whether a PCP instance has an in�nite solution. Let
(αi, βi)

m
i=1 be a PCP instance with αi, βi ∈ {0, 1}∗. We construct below a system with

three processes P, P̄ , C, using locks from the set

{c, s0, s1, p, s̄0, s̄1, p̄} .

Process P will use locks from {c, s0, s1, p}, process P̄ from {c, s̄0, s̄1, p̄}, and C all seven
locks.

Processes P, P̄ are supposed to synchronize over a PCP solution with the process C.
That is, P and C synchronize over a sequence αi1αi2 . . . , whereas P̄ and C synchronize
over a sequence βj1βj2 . . . . The environment tells C at the beginning whether she should
check index equality i1i2 · · · = j1j2 . . . or word equality αi1αi2 · · · = βj1βj2 . . . .

For the initial con�guration we assume that P owns p, P̄ owns p̄ and C owns
c, s0, s1, s̄0, s̄1.

We describe now the three processes P, P̄ , C. De�ne �rst for b = 0, 1:

ϱP (b) = acqsbrelp acqc relsbacqprelc

ϱP̄ (b) = acqs̄brelp̄ acqc rels̄bacqp̄relc
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The automaton of AP (AP̄ , resp.) allows all possible action sequences from (ϱP (0) +
ϱP (1))

ω ((ϱP̄ (0) + ϱP̄ (1))
ω, resp.). If e.g. process P manages to execute a sequence

ϱP (b1)ϱP (b2) . . . then this means that C,P synchronize over the sequence b1, b2, . . . .
Process C's behaviour for checking word equality consists in repeating the following

procedure: she chooses a bit b through a controllable action, then tries to do ϱC(P, b)ϱC(P̄ , b),
with:

ϱC(P, b) = relsb acqp relc acqsbrelp acqc

ϱC(P̄ , b) = rels̄bacqp̄ relc acqs̄brelp̄ acqc

For index equality C's behaviour is similar: she chooses an index i and then tries to
do ϱC(P, b1) . . . ϱC(P, bk)ϱC(P̄ , b′1) . . . ϱC(P̄ , b

′
r), where αi = b1 . . . bk, βi = b′1 . . . b

′
r.

The next lemma is the key property showing that the system has a deadlock-avoiding
strategy if and only if the PCP instance has a solution.

Lemma 4.58

Assume that C owns {s0, s1, c}, P owns {p}, C wants to execute uC(P, b), and
P wants to execute uP (b′). Then the system deadlocks if and only if b ̸= b′. If
b = b′ then C and P �nish executing ϱC(P, b) and ϱP (b), respectively, and the lock
ownership is the same as before the execution.

Proof. If, say, b = 0 and b′ = 1 then C releases s0 but P wants to acquire s1, so that P
deadlocks. Since C wants to acquire p as second step, she deadlocks, too. Process P̄ will
deadlock as well, because he is waiting for either s̄0 or s̄1.

Suppose now that b = b′, say with b = 0. Then there is only one possible run
alternating between steps of ϱC(P, 0) and ϱP (0), until C �nally acquires c. Then both
C and P have �nished the execution of ϱC(P, 0) and ϱP (0), respectively. Moreover, C
re-owns {c, s0, s1} and P re-owns {p}.

Elimination of the initialisation

We aim to prove the following lemma:

Lemma 4.59

There is a polynomial-time reduction from the control problem for lock-sharing
systems with initial con�guration to the control problem where all locks are initially
free. The reduction adds |Proc| new locks.

Proof. The system S = ((Ap)p∈Proc,Ss,Se,L) with initial ownership (Ip)p∈Proc is trans-
formed into a new system S∅ with additional locks. The transformation introduces one
extra lock per process, denoted kp and called the key of p. Each process uses in addition
to Lp the |Proc| extra locks.

The transition system Ap of process p is extended with new states and transitions,
which de�ne a speci�c �nite run called the init sequence. The new states and transitions
can occur only during the init sequence. When a process p completes his init sequence in
S∅, he owns precisely all locks in Ip, plus the key kp, and has reached his initial state initp
in Ap. After that, further actions and transitions played in S∅ are actions and transitions
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of S, unchanged. All the new actions are uncontrollable, thus there is no strategic decision
to make for the controller of a process p until his init sequence is completed.

The init sequence. For process p, the init sequence consists of three steps.

1. First, p takes one by one (in a �xed arbitrary order) all locks in Ip.

2. Second, p takes and releases, one by one (in a �xed arbitrary order) all the keys of
the other processes (kq)q ̸=p.

3. Finally, p acquires his key kp and keeps it forever.

After acquiring kp process p reaches the initial state initp in Ap.
In order to prevent the init sequence to create extra deadlocks, every state used in the

initialisation sequence is equipped with a local self-loop on the nop operation. This way,
a deadlock may only occur if all processes have �nally completed their init sequences.

Linking runs in S∅ and S. When a process completes his init sequence, he has been
until that point the sole owner of its initial locks:

Claim 4.59.1. Let p be a process and ϱ∅ a run of S∅ such that the last action of ϱ∅ is
acqkp by process p. Let ℓ ∈ Ip, then p is the only process to acquire ℓ in ϱ∅.

Proof. By contradiction, let ℓ ∈ Ip and q ̸= p and assume that ϱ∅ factorizes as ϱ∅ =
ϱ0 · (acqt, q) · ϱ1 · (acqkp , p) (we abuse the notation and denote (acqt, q) and (acqkp , p)
the transitions where q and p respectively acquire ℓ and kp). Process p must take and
release kq before taking kp, thus the transition δ = (acqkq , p) occurs either in ϱ0 or in ϱ1.
However δ cannot occur in ϱ0: the init sequence of p requires that p owns ℓ permanently
in the interval between the occurence of δ and the occurence of (acqkp , p), thus (acqt, q)
cannot occur in the meantime. Hence δ occurs in ϱ1. But this leads to a contradiction:
since ℓ is not an initial lock of q, process q is not allowed to acquire ℓ during his init
sequence, hence q has completed his init sequence in ϱ0. After ϱ0, q owns permanently
kq, but then it is impossible that δ = (acqkq , p) occurs during ϱ1.

There is a tight link between runs in S∅ and runs in S.

Claim 4.59.2. Let ϱ∅ be a global run in S∅ in which all processes have completed their
init sequences. There exists a global run ϱ in S (with initial lock ownership (Ip)p∈Proc)
with the same local runs as ϱ∅, except that the init sequences are deleted.

Proof. The proof is by induction on the number N of transitions in ϱ∅ which are not
transitions of the init sequence. In the base case N = 0, then ϱ∅ is an interleaving of the
init sequences of all processes and ϱ is the empty run. Assume now N > 0. Let δ be
the last transition played in ϱ∅ which is not part of an init sequence, and Z ⊆ Proc the
set of processes that have not yet completed their init sequence when δ occurs. Then ϱ∅
factorizes as

ϱ∅ = ϱ′∅ · δ · ϱ′′∅
where ϱ′′∅ is an interleaving of in�xes of the init sequences of processes in Z.

Assume �rst that ϱ′′∅ is empty. We apply the inductive hypothesis to ϱ′∅, get a global
run ν and set ϱ = ν · δ. Then ϱ has the same local runs as ϱ∅, after deletion of init
sequences.
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We now reduce the general case to the special case where ϱ′′∅ is empty. Let q be the
process operating in δ and (a, op) the corresponding pair of action and operation on locks.
Since δ is not part of an init sequence, then q ̸∈ Z and op is not an operation on one of
the keys. Moreover, according to Claim 4.59.1, neither is op an operation on one of the
initial locks of processes in Z. Thus (a, op) can commute with all transitions in ϱ′′∅ and
become the last transition of the global run, while leaving the local runs unchanged, and
we are back to the case where ϱ′′∅ is empty.

We turn now to the proof of the theorem.

Claim 4.59.3. The system wins in S∅ if and only if it wins in S with initial lock ownership
(Ip)p∈Proc.

Since in S∅ there is no strategic decision to make during the init sequence, the strate-
gies in S∅ are in a natural one-to-one correspondence with strategies in S. For a �xed
strategy we show that there is some deadlock in S if and only if there is some deadlock
in S∅.

If there is a deadlock in S then there is also one in S∅, by executing �rst all init
sequences, and then the deadlocking run of S. The execution of all init sequences is in
two steps: �rst each process p acquires its initial locks Ip and acquires and releases the
keys kq, q ̸= p of other processes. Second, each process p acquires (de�nitively) its key kp.

Suppose now that there is a deadlocking run ϱ∅ in S∅. Observe �rst that all processes
p ∈ Proc have completed their init sequences in ϱ, because all states used in this sequence
have local nop self-loops. By Claim 4.59.2 there exists a global run ϱ of S which has the
same local runs as ϱ∅ (apart from the init sequences). Since ϱ∅ is deadlocking, so is ϱ.

4.7.2 Synthesis for 2LSS and nested LSS

Conceptually, extending our framework from veri�cation to synthesis is not di�cult when
we consider the cases where we have patterns. Indeed, it su�ces to guess a family of
behaviours, check that there is a strategy that only allows runs within that behaviour,
and �nally check that the behaviour guarantees the speci�cation.

Unfortunately, the nature of the regular objectives we de�ned for veri�cation yield an
NExpTime-complete control problem, even without locks.

Proposition 4.60

The regular control problem is NExpTime-complete for 2LSG and nested LSG. In
fact, the lower bound does not require the use of locks.

Proof sketch. We only sketch this proof as this is a minor result and we will have sev-
eral other opportunities to see the encoding of the exponential grid tiling problem in
distributed synthesis problems in this manuscript.

For the upper bound, just guess a set of pairs (π, I) with π a pattern and I a set of
states, for each process. Then check that there are local strategies σp that only allow
local runs such that the pair made of the pattern of that run and the set of states it
sees in�nitely often is in the guessed set. This check comes down to solving a game
with an objective given by a deterministic Emerson-Lei automaton with a polynomial
number of states and colours and a formula of exponential size, which can be done in
exponential time (we can turn the automaton into a deterministic parity automaton with
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exponentially many states and polynomially many colours by Proposition 2.3, and then
apply Proposition 2.9). Finally, check that we can pick in each set a pair such that
the resulting patterns satisfy the schedulability conditions given by Proposition 4.17 and
Proposition 4.49, and the sets of states seen in�nitely often satisfy the formula in the
regular objective.

For the lower bound, we can reduce the exponential grid tiling problem. Take two
identical processes with sets of states {0x1 , 1x1 , . . . , 0xn, 1xn, 0

y
1, 1

y
1, . . . , 0

y
n, 1

y
n} ∪ Tiles. The

states outside of Tiles are called the binary states. The transitions are so that Environ-
ment goes through a sequence of binary states, then lets Controller pick a tile, and go
back to the initial state.

We can express the following conditions as Emerson-Lei conditions of polynomial size.
They are listed by priority, the most important is the �rst.

For all i and z ∈ {x, y}, if a process sees both of 0zi , 1
z
i in�nitely many times, or

neither, then Controller wins.

If a process sees two tiles in�nitely often then Environment wins.

If the set of binary states seen by both processes is the same, they see the same tile
in�nitely often.

If the binary states of the two processes describe adjacent tiles, then they match
on their shared side.

The �rst condition forces Environment to pick a single coordinate for each process,
the second condition makes Controller answer with a single tile. The other conditions
make sure that the two processes must describe the same tiling, and that this tiling has
to be consistent.

Of course, Controller cannot know in advance which set of binary states will be seen
in�nitely often. However, if she has a valid tiling she can simply pick the tile corresponding
to the latest coordinates given by Environment. As he has to eventually repeat the same
coordinates inde�nitely, she will end up picking the correct tile inde�nitely. □

On the other hand, the simpler problems can be solved in ΣP
2 as they only depend on

patterns and do not yield a combinatorial explosion on the sets of states.
We say that a local strategy σp admits a blocking pattern (πp, Bp) if there is a �nite

σ-local run ϱp such that π(ϱp) = πp and σp(ϱp) = a with op(a) = acqℓ and Bp = {ℓ}.
Similarly, σp admits an in�nitary pattern πp there is an in�nite σ-local run ϱp such that
π(ϱp) = πp.

Lemma 4.61

Given a 2LSS and a family of behaviours (Pp)p∈Proc, it is decidable in Ptime whether
there exists a control strategy σ = (σp)p∈Proc such that every blocking pattern and
every in�nitary pattern admitted by σp is in Πp.

Proof. For each p we check whether there is a strategy σp that only allows runs whose
patterns are in Πp.

To do so, we simply observe that by Lemma 4.15, we can construct a parity automaton
of polynomial size recognising runs whose patterns are in Πp. Checking the existence of
σp thus comes down to computing the winner of a parity game of polynomial size and
with a constant number of priorities, which we can do in polynomial time [Zie98].
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We de�ne the behaviour of a strategy (σp)p∈Proc as the family (Πp)p∈Proc where Πp is
the set of in�nitary patterns and blocking patterns admitted by σp.

Theorem 4.62

The global deadlock avoidance problem is ΣP
2 -complete on 2LSG.

Proof. A strategy allows a global deadlock if and only if there exist local runs ϱq for each
q ∈ Proc whose patterns satisfy the conditions given by Lemma 4.28.

In order to check the existence of a winning strategy, we can guess a family of be-
haviours (Πq)q∈Proc (note that all behaviours are of bounded size), and check that there is
a strategy (σq)q∈Proc whose local runs on each q all have patterns in Πq, by Lemma 4.61.
Then, we can make a universal guess to check that there do not exist blocking patterns
(πq, Bq) ∈ Πq for each q ∈ Proc satisfying the conditions given by Lemma 4.28.

This yields a ΣP
2 algorithm for the problem.

For the lower bound we reduce from the ∃∀ SAT problem. Suppose we are given a
formula in 3-disjunctive normal form

∨k
i=1 αi, so each αi is a conjunction of three literals

li1 ∧ li2 ∧ li3 over a set of variables {x1, . . . , xn, y1, . . . , ym}. The question is whether the
formula φ = ∃x1, . . . , xn∀y1, . . . , ym,

∨k
i=1 αi is true.

We construct a 2LSG for which there is a winning strategy i� the formula is true.
The 2LSG will use locks:

{ℓi | 1 ≤ i ≤ k} ∪ {xi, x̄i | 1 ≤ i ≤ n} ∪ {yj, ȳj | 1 ≤ j ≤ m} .

For all 1 ≤ i ≤ n we have a process pi with four states, as depicted in Fig. 4.9. In
that process the system has to take both xi and x̄i, and then may release one of them
before being blocked in a state with no outgoing transitions. Similarly, for all 1 ≤ j ≤ m
we have a process qj, in which the environment has to take yj or ȳj, and then is blocked.

For each clause αi we have a process p(αi) which just has one transition acquiring
lock ℓi towards a state with a local loop on it. Hence to block all those processes the
environment needs to have all ℓi taken by other processes. Those processes are not
necessary but help to clarify the proof.

She can do that with our last kind of processes. For each clause αi and each literal l of
αi there is a process pi(l). There the process has to acquire ℓi and then l before entering
a state with a self-loop.

In order to block all processes p(αi), each ℓi has to be taken by a process pi(l) for
some literal l of αi. For process pi(l) to be blocked, lock l has to be taken before, by some
pi or qj.

A control strategy for the system amounts to choosing whether pi should release xi
or x̄i, for each i = 1, . . . , n. It may also choose to release neither. Since the environment
has a global view of the system, it can afterwards choose one of yj, ȳj in process qj, for
each j = 1, . . . ,m. Those choices represent a valuation, the free lock remaining being the
satis�ed literal.

If the formula φ is true, then the system chooses the valuation of the xi's in order to
make φ true. As soon as processes pi, qj have reached their �nal state, we also have a
valuation for the yj's. At this point there is at least one clause αi true, so with all its
literals li1, l

i
2, l

i
3 true. Observe that among the 4 processes p(αi) and pi(l

i
j) at least one

can reach its self-loop, namely the one that acquires ℓi �rst. Hence, the system does not
deadlock.
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pi
acqxi

acqx̄i

qj
acqyi

acqȳi

p(αi)
acqℓi

pi(l)
acqℓi acql

Figure 4.9: The processes used in the reduction in Theorem 4.62. Transitions of the
system are dashed.

Otherwise, if the formula φ is not true, then for each choice of the system for the
xi's, the environment can chose afterwards a suitable valuation of the yj's that falsi�es
φ (�afterwards� means that we look at a suitable scheduling of the acquire actions). For
such a valuation, for every αi there is some literal li of αi that is false. Consider the
scheduling that lets pi(li) acquire ℓi �rst. Since li is taken, this implies that pi(li) is
blocked. Also, p(αi) is blocked because of ℓi. The other two processes pi(l) with l ̸= li
are also blocked because of ℓi. So overall the entire system is blocked.

Corollary 4.63

The reduction above can be applied on formulas with no xi variables. This becomes
a reduction from the 3SAT problem to the global deadlock problem for exclusive
2LSS.

Theorem 4.64

The process deadlock avoidance problem is ΣP
2 -complete on locally live 2LSG.

Proof. We start with the upper bound: A strategy allows a process deadlock on p if and
only if there exist local runs ϱq for each q ∈ Proc whose patterns satisfy the conditions
given in Lemma 4.27.

To check the existence of a winning strategy, we can guess a family of behaviours
(Πq)q∈Proc, and check that there is a strategy (σq)q∈Proc whose local runs on each q all
have patterns in Πq, thanks to Lemma 4.61. Then, we can make a universal guess to
check that there do not exist patterns πq ∈ Πq for each q ∈ Proc satisfying the conditions
given by Lemma 4.27). This yields a ΣP

2 algorithm.
For the lower bound, we reduce once again from the ∃∀ SAT problem. Let φ =∨k

i=1 αi, so each αi is a conjunction of three literals li1 ∧ li2 ∧ li3 over a set of variables
{x1, . . . , xn, y1, . . . , ym}.

We construct a system with processes Proc = {p, p′} ∪ {pCi | 1 ≤ i ≤ m} ∪ {pli,j | 1 ≤
i ≤ m, 1 ≤ j ≤ 3} ∪ {pxk | 1 ≤ k ≤ n} ∪ {pyk | 1 ≤ k ≤ m}, and locks L = {t, ℓ} ∪ {t(Ci) |
1 ≤ i ≤ m} ∪ {t(xk), t(¬xk) | 1 ≤ k ≤ n} ∪ {t(yk), t(¬yk) | 1 ≤ k ≤ m}. The transition
systems of these process are described in Figure 4.10.

In order to block process p Environment needs to block it in its �rst state by having
another process keep ℓ forever. The only other process accessing ℓ is p′. As a consequence,
a process-fair run blocks p if and only if p′ eventually keeps ℓ forever.
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4. Lock-Sharing Systems

Consider such a run ϱ. Then eventually p′ has to stop visiting its state 1. Furthermore,
as ϱ is process-fair, p′ can never stay inde�nitely in one of the other two states as it is
always possible to execute a rel action. Hence p′ goes through states 2 and 3 in�nitely
many times, meaning it takes and releases ℓ in�nitely often.

This implies that none of the pCi keep ℓ inde�nitely, which is only possible if all the
ℓ(Ci) are taken and never released by other processes (if some ℓ(Ci) is free in�nitely often,
as ϱ is process-fair pCi has to take ℓ(Ci) at some point, and then ℓ cannot be free in�nitely
often as pCi would have to take it eventually).

As a consequence, for each Ci there has to be a lji such that pli,j keeps ℓ(Ci) forever,
which is only possible if ℓ(li,j) is free in�nitely often.

This means that the process pxk (with xk the variable appearing in li,j) must have
taken the lock associated with the negation of lji (it cannot stay in its initial state as the
run is process-fair and lji is free in�nitely often).

In conclusion, Environment can �nd a run in which p is blocked if and only if he can
make sure that for all clause Ci there is a literal in Ci whose lock is free in�nitely often.

The strategy of Controller comes down to choosing a valuation mapping each xk to
⊤ if xk is taken by pxk and ⊥ otherwise. As we saw above, such a strategy is losing for
Controller if and only if Environment can answer with a valuation of the yk such that for
all clause, one of the literals is mapped to ⊥.

This corresponds exactly to the satisfaction of the input ∃∀ formula. As a result, the
problem is ΣP

2 -complete.

1 2 3

pxk

pyk

pℓi,j

pCi

p′p

acqℓ

acqℓ(Ci) acqℓ′

acqℓ(xk)

acqℓ(¬xk)

acqℓ(yk)

acqℓ(¬yk)

acqℓ

relℓ

acqℓ′

relℓ′

acqℓ(Ci)

relℓ(Ci)

acqℓ(ℓi,j)

relℓ(ℓi,j)

Figure 4.10: Processes for the reduction in Theorem 4.64

Once again, the lower bound transfers to veri�cation by simply considering formulas
without xk.
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Corollary 4.65

The reduction above can be applied on formulas with no xi variables. This becomes
a reduction from the 3SAT problem to the global deadlock problem for exclusive
2LSS.

4.7.3 A polynomial-time algorithm for locally live exclusive 2LSS

Finally, we consider the restriction of the global deadlock avoidance problem to locally
live exclusive 2LSG. We give this as an example of distributed synthesis problem solvable
in polynomial time. The exclusive condition means that whenever a process can execute
an action acquiring a lock it is the only thing it can do. This means that a process gets
blocked whenever it tries to get a lock and the lock is not free.

In an exclusive system, if a state has an outgoing acqℓ transition, then all its outgoing
transitions are labelled with acqℓ. So in such a state the process is necessarily blocked
until ℓ becomes available.

Behaviours of exclusive systems have some special properties, see Lemma 4.68. First,
whenever a control strategy allows a strong edge {ℓ1}

p
=⇒{ℓ2} for a process p, it also allows

a reverse weak edge {ℓ2}
p
99K{ℓ1}. This will imply that the strong cycle condition in our

deadlock schemes can be satis�ed automatically, because any strong cycle can be replaced
by a reverse cycle of weak edges. Second, all processes that have some pattern are fragile.

The above observations simplify the analysis of the lock graph. First, we get a much
simpli�ed NP argument (Proposition 4.69). This allows us to eliminate guessing and
obtain a Ptime algorithm (Proposition 4.73).

Throughout this section we �x a locally live exclusive 2LSG. We will use the tools
of Section 4.5.2. We de�ne the behaviour of a local strategy σp as the set of blocking
patterns of risky σp-local runs and the patterns of in�nite σp-local runs.

Lemma 4.66

Let σ = (σp)p∈Proc be a control strategy, and Π = (Πp)p∈Proc its behaviour.
Then there is a σ-run leading to a global deadlock if and only if there is a su�cient
deadlock scheme for Π.

Proof. We can see each process p with σp as a (possibly in�nite) process. Lemma 4.35
makes no �niteness assumption, hence it applies on the 2LSS obtained by applying σ on
the 2LSG.

As the behaviour of the resulting 2LSS is clearly the behaviour of σ, we obtain the
result.

Our �rst step is to observe that in the exclusive case Pσ has some special properties.
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De�nition 4.67

We call a behaviour Π = (Πp)p∈Proc exclusive if

whenever Πp contains (∗{ℓ1, ℓ2}{ℓ1}, {ℓ2}) then it contains either
(∗∅{ℓ1}, {ℓ2}) or (∗∅{ℓ2}, {ℓ1}), and

whenever Πp contains (πp, {ℓ2}) with Holds(πp) = {ℓ1} then p is {ℓ1, ℓ2}-
lockable in P.

Remark 4.7.2. Say we have a strong cycle ℓ1
p1
=⇒ℓ2

p2
=⇒· · · pk=⇒ℓk+1 = ℓ1 in the lock graph

GΠ of an exclusive behaviour Π, then all pi have a blocking pattern (∗{ℓi, ℓi+1}{ℓi}, {ℓi+1})
but not (∗∅{ℓi}, {ℓi+1}). Then by de�nition of exclusive behaviour, they all have a blocking

pattern (∗∅{ℓi+1}, {ℓi}), hence there is a weak cycle ℓ1 = ℓk+1

pk
99K · · ·

p2
99Kℓ2

p1
99Kℓ1.

Lemma 4.68

If σ is a locally live strategy in an exclusive 2LSS and Πσ = (Πp)p∈Proc is its
behaviour, then Πσ is exclusive.

Proof. Consider the �rst condition. Suppose there is a blocking pattern (∗{ℓ1, ℓ2}{ℓ1}, {ℓ2}) ∈
Pp, then there is a process p and a local σ-run of p of the form

ϱ = ϱ1a1ϱ2a2ϱ3(a3, acqℓ3) ,

with op(a1) = acqℓ1 , op(a2) = relℓ2 and op(a3) = acqℓ3 with no relℓ1 in ϱ2 or ϱ3. Hence,
there is a point in the run at which p holds both locks.

If there were always a release between two acquire operations in ϱp then p would
acquire and then release each lock without ever holding both. In consequence, there
must be two acquires in ϱ with no release in-between. As the process is exclusive, the
state from which the second lock is taken only has outgoing transitions taking it. Thus
there is a weak edge between the �rst lock taken and the second one.

For the second statement, suppose that ℓ1
p−→ ℓ2 is an edge in GΠ. Thus there exists a

local σ-run ϱ of p acquiring ℓ1. The run ϱ is of the form ϱ1(a, acqℓi)ϱ2 for some i ∈ {1, 2}
and ϱ1 containing only local actions. As S is exclusive, this means that ϱ1 makes p reach
a con�guration where all outgoing transitions acquire ℓi, and p owns no lock. Since the
system is locally live this means that p is {ℓi}-lockable, hence also {ℓ1, ℓ2}-lockable.

Now consider a decomposition of the lock graph GΠ into strongly connected compo-
nents (SCC for short).

An SCC of GΠ is a direct deadlock if it contains a simple cycle. A deadlock SCC is a
direct deadlock SCC or an SCC from which a direct deadlock SCC can be reached.

Figure 4.11 illustrates these concepts: the left graph has a direct deadlock SCC formed
by the three locks at the top. The two remaining locks form a deadlock SCC, because
there is a path towards a direct deadlock SCC. Observe that the two locks at the bottom
are not a direct deadlock SCC because there is only one process between the two locks
and thus no simple cycle within the SCC.

Let BLΠ be the set of all locks appearing in some deadlock SCC.
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Proposition 4.69

Consider an exclusive behaviour Π. There is a su�cient deadlock scheme for Π if
and only if all processes are BLΠ-lockable.

The proof follows from the lemmas below.

Lemma 4.70

If all processes are BLΠ-lockable then there is a su�cient deadlock scheme for Π.

Proof. We construct a deadlock scheme for GΠ as follows: For all direct deadlock SCCs
we select a simple cycle inside. By Remark 4.7.2 and Lemma 4.68, this cycle is weak or
has a reverse weak cycle. We select a direction in which the cycle is weak, and for all ℓ
in the cycle we set pt as the process labeling the edge from ℓ in the cycle.

Then while there is an edge ℓ
p−→ ℓ in GΠ such that pt is not yet de�ned but pℓ is,

we set pt = p. When this ends we have de�ned pt for all locks in BLΠ. We de�ne ds as
ds(pt) = ℓ

pt−→ ℓ̄ for all ℓ ∈ BLΠ, and ds(p) = ⊥ for all other p ∈ Proc. We show that ds
is a su�cient deadlock scheme for P.

Clearly, for all p ∈ Proc, the value ds(p) is either ⊥ or a p-labelled edge of GΠ.
Furthermore, as all processes are BLΠ-lockable, in particular the ones mapped to ⊥ by
ds are. It is also clear that all locks of BLΠ have a unique outgoing edge. By construction
of ds we ensured that we had no strong cycle in it.

Lemma 4.71

If dsZ is a su�cient deadlock scheme for Π then Z ⊆ BLΠ.

Proof. Suppose there is some ℓ ∈ Z \BLΠ, then there exists p such that dsZ(p) = ℓ
p−→ ℓ,

for some ℓ ∈ Z. By de�nition of BLΠ, there are no edges from L \ BLΠ to BLΠ in GΠ,
hence ℓ ∈ Z \ BLΠ. By iterating this process we eventually �nd a simple cycle in GΠ

outside of BLΠ, which is impossible, as this cycle should be part of a direct deadlock
SCC, and thus included in BLΠ.

Lemma 4.72

If some process p is not BLΠ-lockable then there is no su�cient deadlock scheme
for P.

Proof. Suppose there exists p that is not BLΠ-lockable. Towards a contradiction assume
that there is some su�cient deadlock scheme dsZ for Π.

As p is not BLΠ-lockable, then by Lemma 4.71 it is not Z-lockable either. Hence,
ds(p) is an edge ℓ1

p−→ ℓ2 in GΠ, with ℓ1, ℓ2 ∈ Z, and thus ℓ1, ℓ2 ∈ BLΠ.
By Lemma 4.68, p is {ℓ1, ℓ2}-lockable, and therefore also BLΠ-lockable, yielding a

contradiction.

This concludes the proof of Proposition 4.69. We have simpli�ed the conditions for
the existence of a su�cient deadlock scheme.
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Figure 4.11: An illustration of semi-deadlock SCCs. The blue double edge is not in Gu,
but every strategy of the system will induce one of those two edges.

Deciding the existence of a winning strategy for exclusive systems. Now we
want to decide if there is a winning strategy. We use the insights above, but we cannot
simply enumerate all exclusive behaviours, as there can be exponentially many.

For every process p and every set of edges between two locks of p we can check if there
is a local strategy inducing only edges within this set, as a consequence of Lemma 4.61.

We call an edge ℓ1
p−→ ℓ2 unavoidable if all local strategies of p induce this edge. Let

Gu be the graph whose nodes are locks and whose edges are the unavoidable edges.
We will compute a set of locks BLu in a similar way as BLΠ in the previous section

except that we will use slightly more general basic SCCs of Gu.
A direct semi-deadlock SCC ofGu is either a direct deadlock SCC or an SCC containing

only double edges, and two locks ℓ1 and ℓ2 such that for some process p using ℓ1 and ℓ2,
every strategy for p induces at least one edge between ℓ1 and ℓ2. Then a semi-deadlock
SCC of Gu is either a direct semi-deadlock SCC or an SCC from which a direct semi-
deadlock SCC can be reached.

Let BLu be the set of locks appearing in semi-deadlock SCCs.
In the graph on the right part of Figure 4.11 the black edges are in Gu, the double

blue ones are not, but indicate that every local strategy of process p2 induces one of the
two edges in GΠ. The four locks do not form a direct deadlock SCC of Gu as there is no
simple cycle. However they do form a direct semi-deadlock one, as p2 will induce an edge
no matter its strategy, forming a simple cycle.

Proposition 4.73

There is a winning strategy if and only if there exists some process p and a local
strategy σp that prevents p from acquiring a lock from BLu.

Proof. ⇒ We proceed by contraposition. We show that if all control strategies make all
processes acquire a lock from BLu then there is no winning strategy.

Let σ be a control strategy, P its behaviour and GΠ its lock graph. Note that Gu is
a subgraph of GΠ, hence every SCC in GΠ is a superset of an SCC in Gu. Observe that
if an SCC in GΠ contains a direct semi-deadlock SCC of Gu then it is a direct deadlock
SCC. Indeed, if an SCC in Gu is a direct semi-deadlock but not a direct deadlock one
then σ adds an edge ℓ1

p−→ ℓ2 to this SCC in GΠ. As ℓ1, ℓ2 are in that SCC of Gu, there is
a simple path from ℓ2 to ℓ1 not involving p. Hence, a direct semi-deadlock SCC becomes
a direct deadlock SCC. This implies BLu ⊆ BLΠ.

Let p ∈ Proc, as there is a σ-run of p acquiring a lock of BLu, either p is BLu-lockable
(and thus BLΠ-lockable) or there is an edge labelled by p towards BLu, meaning that
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both locks of p are in BLu ⊆ BLΠ and thus that p is BLΠ-lockable by Lemma 4.68. As
a consequence, all processes are BLΠ-lockable. We conclude by Proposition 4.69.
⇐ We suppose that there exists a process p and a strategy σp forbidding p to acquire
any lock of BLu. We construct a strategy σ such that p is not BLΠ-lockable. This will
show that σ is winning by Proposition 4.69.

Let FLu = L \ BLu be the set of locks not in BLu. By de�nition of BLu, in Gu

no node of FLu can reach a direct semi-deadlock SCC. In particular, there is no direct
semi-deadlock SCC in Gu restricted to FLu. We construct a control strategy σ such that,
when restricted to FLu, the SCCs of GΠ and Gu are the same, where Π = Πσ.

Let us linearly order the SCC ofGu restricted to FLu in such a way that if a component
C1 can reach a component C2 then C1 is before C2 in the order.

We use strategy σp for p. For every process q ̸= p we have one of the two cases: (i)
either there is a local strategy σq inducing only the edges that are already in Gu; or (ii)
every local strategy induces some edge that is not in Gu. In the second case there are
no q-labelled edges in Gu, and for each of the two possible edges there is a local strategy
inducing only this edge.

For a process q from the �rst case we take a local strategy σq that induces only the
edges present in Gu.

For a process q from the second case,

If both locks of q are in BLu then take any local strategy for q.

If one of the locks of q is in BLu and the other in FLu then choose a control strategy
inducing an edge from the BLu lock to the FLu lock.

If both locks of q are in FLu then choose a control strategy inducing an edge from
a smaller to a bigger SCC of Gu.

In the last case, both locks cannot be in the same SCC of Gu: As they are in FLu,
this would have to be an SCC with no simple cycles, i.e., a tree of double edges. But
then the existence of q implies that this is a direct semi-deadlock SCC, which contradicts
the fact that those locks are in FLu.

Consider the graph GΠ of the resulting strategy σ. Restricted to FLu this graph
has the same SCCs as Gu. Moreover, there are no extra edges in GΠ added to any
SCC included in FLu, and there are no edges from FLu to BLu. As a result, we have
BLu = BLΠ. As p acquires no lock from BLu, it is not BLu-lockable and thus not
BLΠ-lockable either.

Theorem 4.74

The global deadlock avoidance problem is in Ptime for locally live exclusive 2LSS.

Proof. We can compute BLu in polynomial time and then check the condition from
Proposition 4.73.

Remark 4.7.3. As a �nal remark, we can note that many of our results can be straight-
forwardly adapted to pushdown automata, using the three following facts:

Emptiness of a pushdown automaton is decidable in polynomial time.

Emptiness of a pushdown automaton with an Emerson-Lei acceptance condition is
decidable in non-deterministic polynomial time [Esp+00; Lei+17].
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Reachability games played on the con�guration graph of a pushdown automaton are
decidable in exponential time, see Theorem 2.10.

4.8 Conclusion

In this chapter we conducted a detailed study of the veri�cation and controller synthesis
problems for LSS against regular objectives. We established PSPACE-completeness for the
general problem, and presented several subcases where the veri�cation problem becomes
more tractable. We used restrictions on the systems, for instance by considering 2LSS and
nested LSS, and on the problem, by considering the particular cases of global deadlocks
and process deadlocks. The general takeaway is that the veri�cation of regular objectives
is NP-complete on 2LSS and nested LSS. There are two subcases in which we obtain a P
complexity: the global deadlock problem for locally live 2LSS and the process deadlock
problem for exclusive 2LSS. Apart from those two, we show that the NP lower bound is
very robust and thus justify our choice of speci�cations: the associated complexity is not
worse than some of the very restricted cases.

We then tackle the more general problem of controller synthesis with local strategies.
Mostly, we show that the problem is undecidable for general LSS, and decidable with
a relatively high complexity (NExpTime) in 2LSS and nested LSS. Lastly, we exhibit
three cases where the complexity improves: We obtain SP

2 -completeness for the existence
of strategies avoiding global deadlocks and process deadlocks, and a polynomial-time
algorithm for locally live exclusive 2LSS with respect to global deadlocks. While this last
case cumulates many restrictions, it is a non-trivial instance of distributed synthesis that
can be solved in polynomial time.

At the time when this document is written, we are working with Romain Delpy
towards implementing the algorithms described in this chapter (using a SAT solver for
the NP-hard problems).

In terms of techniques, the main ingredient of this chapter is the de�nition of patterns.
Sets of patterns play the same role in this chapter as invariants in the previous one: they
are local speci�cations which characterise the non-existence of bad global runs. The stair
patterns used for nested will be generalised in Section 5.6 in the next chapter. Another
important aspect is the translation of problems on 2LSS into graph problems. This yields
a new view on veri�cation of LSS: we could look for other ways to interpret LSS in graphs
or hypergraphs to prove the absence of deadlocks.

Future work Concerning future work, as noted in Remark 4.7.3, most of our results
can easily be extended to the case when processes are pushdown systems (except for the
general case, which is undecidable instead of PSPACE-complete, see [KIG05, Theorem 8]).
Another easy extension is to replace nested with bounded lock chains, a weaker condition
de�ned in [Kah09]. We chose to not include them to avoid unnecessary details and
highlight the key ingredients. Of course, one could also complete the detailed complexity
table presented in Table 4.1 with synthesis instead of veri�cation.

About open problems, probabilistic algorithms have proven useful in distributed sys-
tems (see, for instance, the Lehmann-Rabin algorithm [LR81]), hence one may want to
add probabilities to the model, for instance by allowing randomised strategies. This could
be especially interesting when dealing with in�nite runs.

Finally, versions of the problem with shared variables in addition to the locks could
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be of interest. This extension of systems with locks with variables will be discussed in
a more general setting in Section 5.7. We will give there some ideas on the analysis of
systems with locks and variables.
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5.1 Introduction

5.1.1 Context and motivation

In this chapter, our system model is based on Dynamic Pushdown Networks (DPNs)
as introduced in [BMT05], where processes are pushdown systems that can spawn new
processes. The DPN model was extended in [LMW09] by adding synchronization through
a �xed number of locks. Here we take a step further and allow dynamic lock creation:
when spawning a new process, the parent process can pass some of its locks, and new locks
can be created for the new thread. This way we model recursive programs with creation
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of threads and locks. We call such systems dynamic lock-sharing systems (DLSS). In
Kenter's thesis [Ken22], a similar model is presented, where processes can additionally
make recursive calls while passing new locks as arguments. The main result is decidability
of reachability of sets of con�gurations de�ned through MSO formulas, but no complexity
aspect is considered. The model considered in this chapter is weaker: We will see that we
can allow processes to use a stack, which models recursive calls, but they cannot create
new locks locally. On the other hand, we present a much simpler approach, and prove
stronger results: we provide complexity bounds, handle in�nite runs, and study synthesis.

The focus in both [BMT05] and [LMW09] is computing the Pre∗ of a regular set
of con�gurations, and they achieve this by extending suitably the saturation technique
from [BEM97]. Here we consider not only reachability but also in�nite behaviours of
DLSS under fairness conditions. For this we propose a di�erent approach than saturation
from [BMT05; LMW09] as saturation is not suited to cope with liveness properties.

We begin by showing that verifying regular properties of DLSS is decidable if every
process follows nested lock usage, as de�ned in the previous chapter. This means that
locally every process acquires and releases the locks according to the stack discipline.
Without any restriction on lock usage we show that our problem is undecidable, even for
�nite state processes and reachability properties that refer to a single process. Then we
use the tools de�ned in the veri�cation work to de�ne a new form of patterns to prove
that controller synthesis is decidable.

5.1.2 Structure of the chapter.

Our starting point is to use trees to represent con�gurations of DLSS. This representation
was introduced in [LMW09]. The advantage is that it does not require to talk about
interleavings of local runs of processes. Instead it represents every local run as a left
branch in a tree and the spawn operations as branching to the right. At each computation
step one or two nodes are added below a leaf of the current con�guration. Thus, the result
of a run of DLSS is an in�nite tree that we call a limit con�guration. Our �rst observation
is that it is easy to read out from a limit con�guration of a run if the run is strongly
process-fair (Proposition 5.1).

An important step is to characterize those trees that are limit con�gurations of runs
of a given �nite state DLSS, namely where every process is a �nite state system. This is
done in Lemma 5.8. To deal with lock creation this lemma refers to the existence of some
global acyclic relation on locks. We show that this global relation can be recovered from
local orderings in every node of the con�guration tree (Lemma 5.9). Finally, we show
that there is a nondeterministic Büchi tree automaton verifying all the conditions of
Lemmas 5.8 and 5.9. This is the desired tree automaton recognizing limit con�gurations
of process-fair runs. Our veri�cation problem is solved by checking if there is a tree
satisfying the speci�cation and accepted by this automaton. This way we obtain the
upper bound from Theorem 5.5. Surprisingly the size of the Büchi automaton is linear
in the size of DLSS, and exponential only in the arity of the DLSS, which is the maximal
number of locks a process can access.

The extension of our construction to pushdown processes requires one more idea to get
an optimal complexity. In this case, ensuring that the limit tree represents a computation
requires using pushdown automata. Hence, the Büchi tree automaton as described in the
previous paragraph becomes a pushdown Büchi automaton on trees. The emptiness of
pushdown Büchi tree automata is Exptime-complete, which is an issue as the automaton
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constructed is already exponential in the size of the input. However, we observe that
the automata we obtain are right-resetting, since new threads are spawned with empty
pushdown. Intuitively, the pushdown is needed only on left paths of the con�guration tree
to check correctness of local runs. A right-resetting automaton resets its stack each time
it goes to the right child. We show that the emptiness of right-resetting parity pushdown
tree automata can be checked in Ptime if the biggest priority in the parity condition is
�xed (if it is not �xed then the problem is at least as complex as solving parity games).
This gives the upper bound from Theorem 5.6. We obtain the matching lower bound
by proving Exptime-hardness of checking if a process of the DLSS has an in�nite run
(Proposition 5.19). This holds even for �nite state processes. We also show that even for
�nite state processes the DLSS veri�cation problem is undecidable if we allow arbitrary
usage of locks (Theorem 5.3).

In Section 5.6, we leverage the characterisation of limit con�gurations to show de-
cidability of the controller synthesis problem for those systems. More precisely, we con-
struct extended patterns, similarly to De�nition 4.13 by combining the characterisation
of Lemma 5.8 with the acceptance condition of the objective, given by a parity automa-
ton. We construct patterns for local runs with enough information to characterise the
existence of a bad global run (Lemma 5.27). The synthesis problem is then solved by
enumerating sets of extended patterns and checking for each one if there is a strategy
to ensure that all local runs only have patterns in this set. We show that the controller
synthesis problem is 2ExpTime-complete and NExpTime-hard. The gap can be closed
by considering objectives given by deterministic tree automata. Interestingly, we observe
that by �xing the objective and the arity of processes we obtain an NP upper bound.

Finally, in Section 5.7 we discuss the extension of this model with shared variables.
We show that this causes undecidability of state reachability even with nested locks
(Theorem 5.33). However, we point towards an exciting research direction, in which the
process writing on the variable can only change a bounded number of times.

5.2 De�nitions and results

A dynamic lock-sharing system is a set of processes, where each process has access to a
set of locks and can spawn other processes. A spawned process can inherit some locks
of the spawning process and can also create new locks. All processes run in parallel. A
run of the system must be fair, meaning that if a process can move in�nitely many times
then it eventually does.

More formally, we start with a �nite set of process types Proc. Each process type
p ∈ Proc has an arity ar(p) ∈ N telling how many locks the process uses. The process
can refer to these locks through the variables Var(p) = {xp1, . . . , x

p
ar(p)}. At each step a

process can do one of the following operations:

Op(p) ={nop} ∪ {acqx, relx | x ∈ Var(p)}
∪ {spawn(q, θ) | q ∈ Proc, θ : Var(q)→ (Var(p) ∪ {new})}

Operation nop does nothing. Operation acqx acquires the lock designated by x, while
relx releases it. Operation spawn(q, θ) spawns an instance of process q where every
variable of q designates a lock determined by the substitution θ; this can be a lock of the
spawning process or a new lock, if θ(x) = new.
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pinit : spawn(first , new, new)

first(xl, xr) : spawn(phil , xl, xr); spawn(next , xr, new, xl)

next(xl, xr, xl�rst) : or

spawn(phil , xl, xl�rst)

spawn(phil , xl, xr); spawn(next , xr, new, xl�rst)

phil(xl, xr) : repeat-forever or

acqxl
; acqxr

; eat; relxr ; relxl

acqxr
; acqxl

; eat; relxl
; relxr

Figure 5.1: Dining philosophers: process first starts the �rst philosopher and an iterator
process next starts successive philosophers. The forks, modelled as locks, are passed via
variables xl and xr. The third variable xl�rst of next is the left fork of the �rst philosopher
used also by the last philosopher. The system is nested as phil takes and releases forks
in the stack order. The arity of the system is 3.

We require that the mapping θ is injective on Var(p). That is, for all x ̸= y, if θ(x) =
θ(y) then θ(x) = θ(y) = new. This is to ensure that two variables of a process never point
to the same lock.

A dynamic lock-sharing system (DLSS for short) is a tuple

S = (Proc, ar , (Ap)p∈Proc, pinit ,Locks)

where Proc, and ar are as described above. We write ar(S) for maxp∈Proc ar(p) and call
it the arity of S. For every process type p, Ap is a transition system describing the
behaviour of p. Process type pinit ∈ Proc is the initial process type. Finally, Locks is an
in�nite pool of locks.

Each transition system Ap is a tuple (Sp,Σp, δp, opp, initp) with Sp a �nite set of states,
initp the initial state, Σp a �nite alphabet, δp : Sp×Σp → Sp a partial transition function,
and opp : Σp → Op(p) an assignment of an operation to each action. We require that the
Σp are pairwise disjoint, and de�ne Σ =

⋃
p∈Proc Σp. We write op(b) instead of opp(b) for

b ∈ Σp, as b determines the process type p.
For simplicity, we require that pinit is of arity 0. In particular, pinit has no acq or rel

operations.
An example in Figure 5.1 presents a DLSS modeling an arbitrary number of dining

philosophers. The system can generate a ring of arbitrarily many philosophers, but can
also generate in�nitely many philosophers without ever closing the ring.

A con�guration of S is a labelled tree representing the runs of all active processes.
The leftmost branch represents the run of the initial process pinit , the left branches of
nodes to the right of the leftmost branch represent runs of processes spawned by pinit etc.
So a leaf of a con�guration represents the current situation of a process that is started
at the �rst ancestor above the leaf that is a right child. A node of a con�guration is
associated with a process, and tells in what state the process is, which locks are available
to it, and which of them it holds.

More formally, a con�guration is a, possibly in�nite, labelled tree (τ, λ), where for
each node ν ∈ τ the label λ(ν) is a tuple of the form (p, s, a, L,H) where:
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p ∈ Proc is the process type of the process executing in ν,

s ∈ Σp is the current state of that process,

a ∈ Σp is the action executed by the process at ν or ⊥ ̸∈ Σ if ν is a root,

L : Var(p)→ Locks is an assignment of locks to variables of p, and

H ⊆ L(Var(p)) the set of locks p holds before executing a.

We use p(ν), s(ν), a(ν), L(ν) and H(ν) to address the components of the label of ν (λ
will always be clear from the context). When there is no risk of confusion we will write
Var(ν) instead of Var(p(ν)) to simplify notations.

We write H(τ) for the set of locks ultimately held by some process in τ , that is,
H(τ) = {ℓ : ∃ν, for all ν ′ on the leftmost path from ν, ℓ ∈ H(ν ′)}. If τ is �nite this is
the same as to say that H(τ) is the union of H(ν) over all leaves ν of τ .

The initial con�guration is the tree (τinit , λinit) consisting only of the root ε labelled
by (pinit , initpinit

,⊥, ∅, ∅). Suppose that ν is a leaf of τ labelled by (p, s, b, L,H), and
there is a transition s

a−−→ s′ for some s′ in Ap. A transition between two con�gurations
(τ, λ)

ν,a−−→ (τ ′, λ′) is de�ned by the following rules.

τ ⊆ τ ′ and for all ν ∈ τ , λ′(ν) = λ(ν), that is we do not remove or relabel any node.

If op(a) = spawn(q, θ) then τ ′ is obtained from τ by adding two children ν0, ν1 of
ν. The label of the left child ν0 is (p, s′, a, L,H). The label of the right child ν1
is (q, init q,⊥, L′, ∅) where L′(xq) = L(θ(xq)) if θ(xq) ̸= new and L′(xq) = ℓν,xq is a
fresh lock, otherwise.

Otherwise, τ ′ is obtained from τ by adding a left child ν0 to ν. The label of ν0
must be of the form (p, s′, a, L,H ′) subject to the following constraints:

� If op(a) = nop then H ′ = H,

� If op(a) = acqx and L(x) ̸∈ H(τ) then H ′ = H ∪ {L(x)},
� If op(a) = relx and L(x) ∈ H then H ′ = H \ {L(x)}.

Note that we do not allow a process to acquire a lock it already holds, or release
a lock it does not have. We assume that the transition system of each process
keeps track of the set of locks it holds currently, and that it does not contain any
transition contradicting this rule. We call this property soundness.

A run is a (�nite or in�nite) sequence of con�gurations (τ0, λ0)
ν1,a1−−−→ (τ1, λ1)

ν2,a2−−−→ · · · .
As the trees in a run are growing we can de�ne the limit con�guration of that run as its
last con�guration if it is �nite, and as the limit of its con�gurations if it is in�nite.

Remark 5.2.1. Note that in a run, at every moment distinct variables of a process are
associated with distinct locks: L(νi)(x) ̸= L(νi)(y) for all x, y ∈ Var(νi) with x ̸= y. This
is because we require that the mapping θ is injective in spawn transitions.

Remark 5.2.2. The labels L and H can be computed out of the other three labels in
the tree just following the transition rules (up to renaming locks). We could have de�ned
con�gurations as trees with only three labels (p, s, a), but we preferred to include L and
H for readability. Yet, later we will work with tree automata recognizing con�gurations
and there it will be important that the labels come from a �nite set.
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A con�guration (τ, λ) is fair if for no leaf ν there is a transition (τ, λ)
ν,a−−→ (τ ′, λ′)

for some a and (τ ′, λ). We show that this compact de�nition of fairness captures strong
process fairness of runs. As in Chapter 4, a run is process-fair if whenever from some
position in the run a process is enabled in�nitely often then it moves after this position.

Proposition 5.1

Consider a run (τ0, λ0)
ν1,a1−−−→ (τ1, λ1)

ν2,a2−−−→ · · · and its limit con�guration (τ, λ).
The run is process-fair if and only if (τ, λ) is fair.

Proof. ⇒ Suppose towards a contradiction that (τ, λ) is not fair. So there is a transition
(τ, λ)

ν,a−−→ (τ ′, λ′) for some leaf ν. Let p be the process moving in ν, and let (τi, λi) be the
�rst con�guration where ν appears in τi. We show that p moves after this con�guration,
contradicting the fact that ν is a leaf.

If op(a) is not an acq operation then (ν, a) is enabled in every con�guration (τj, λj)
for j > i. By process-fairness, p must move after i.

A more interesting case is when op(a) is acqx for some x. Let ℓ = L(ν)(x) be the
lock taken by the transition. As (ν, a) is enabled in τ , we have that ℓ ̸∈ H(τ). We show
that this implies that process p is enabled in�nitely often after position i. By soundness,
as ν, a is enabled, p cannot hold ℓ: so ℓ ̸∈ H(ν). If ℓ ∈ H(τi) and ℓ is never released
afterwards then there is a node ν ′ in τi (and thus in τ) such that for every left descendant
ν ′′ of ν ′ we have ℓ ∈ H(ν ′′). But this is impossible since we have assumed ℓ ̸∈ H(τ).
Hence, either ℓ is free in τi or it is free in some later con�guration (τi1 , λi1) such that

(τi1 , λi1)
ν′,b−−→ (τi1+1, λi1+1) and op(b) = acqy with L(ν ′)(y) = ℓ. So, (ν, a) is enabled in

(τi1 , λi1). If ℓ is never taken after i1 then (ν, a) is enabled always after i1, and we get a
move of p by strong fairness as before. If ℓ is taken after i1 then by the same argument
as above there must be also a position i2 when ℓ is released. So, (ν, a) is enabled in
(τi2 , λi2). This argument shows that (ν, a) must be enabled in�nitely often after i, so by
process-fairness there must be a move by p after i.
⇐ Suppose that (τ, λ) is process-fair, and the process p is enabled in�nitely often after
position i. By contradiction, assume that p does not move after position i and let ν be
the last node of p's local run. If the action a of p that is enabled in�nitely often is not
a acq then a is enabled in every (τj, λj) with j ≥ i, and (τ, λ)

ν,a−−→ (τ ′, λ′), contradicting
process-fairness. Else, op(a) is acqx with L(ν)(x) = ℓ. Since a is enabled in�nitely often,
ℓ /∈ H(τ). Again we have τ

ν,a−−→ τ ′, contradicting process-fairness.

Objectives. Instead of using some speci�c temporal logic we stick to a most general
speci�cation formalism and use regular tree properties for speci�cations. A regular objec-
tive is given by a nondeterministic parity tree automaton B over Σ ∪ {⊥}, which de�nes
a language of accepted limit con�gurations. Recall that our notion of parity tree au-
tomata allows both �nite and in�nite branches, and has a transition function of the form
∆ ⊆ Q× (Q∪Q×Q). We say that a con�guration τ satis�es B when B accepts the tree
obtained from τ by restricting only to action labels.

Regular objectives can express many interesting properties. For example, �for every
instance of process p its run is in a regular language C�. Or more complicated �there is
an instance of p with a run in a regular language C1 and all the instances of p have runs
in the language C2�. Of course, it is also possible to talk about boolean combinations
of such properties for di�erent processes. Observe that the resulting automaton B for
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5. Dynamic lock-sharing systems

these kinds of properties can be a parity automaton with priorities 1, 2, 3 (properties
of sequences can be expressed by Büchi automata, and priority 3 is used to implement
existential quanti�cation on process instances).

Regular objectives can express deadlock properties. Since we only consider process-
fair runs, a �nite branch in a limit con�guration indicates that a process is blocked forever
after some point. Hence, we can express properties such as �there is an instance of p that
is blocked forever after a �nite run in a regular language C�. We can also express that
all branches are �nite, which is equivalent to a global deadlock since we are considering
only process-fair runs.

Reachability properties are also expressible with regular objectives. We can check
simultaneous reachability of several states in di�erent branches, for instance �there is a
reachable con�guration in which some process p reaches s while some process p′ reaches s′�.
There are ways to do it directly, but the shortest argument is through a small modi�cation
of the DLSS. We can simply add transitions to stop processes non-deterministically in
desired states: adding new nop transitions from s and s′ to new deadlock states. Using
ideas from [Lam+13] we can also check reachability of a regular set of con�gurations.

Going back to our dining philosophers example from Figure 5.1, we can see also other
types of properties we would like to express. For example, we would like to say that there
are �nitely many philosophers in the system. This can be done simply by saying that
there are not in�nitely many spawns in the limit con�guration. (In this example it is
equivalent to saying that there is no branch turning in�nitely often to the right.) Then
we can verify a property like �if there are �nitely many processes in the system and some
philosopher eats in�nitely often then all philosophers eat in�nitely often�. This property
holds under process-fairness, as philosophers release both their forks after eating.

De�nition 5.2 ▶ DLSS veri�cation problem

Given a DLSS S and a non-deterministic parity tree automaton A decide if there
is a process-fair run of S whose limit con�guration (τ, λ) is accepted by A.

Without any further restrictions we show that our problem is undecidable. This result
is obtained by creating an unbounded chain of processes simulating a Turing machine.
Each process memorizes the content of a position on the tape, and communicates with
its neighbours by interleaving lock acquisitions. The trick for processes to exchange
information by interleaving lock acquisitions was already used in [KIG05], and requires a
non-nested usage of locks.

Theorem 5.3

The DLSS veri�cation problem is undecidable. The result holds even if the DLSS
is �nite-state and every process uses at most 4 locks.

Proof. The proof idea is to simulate an accepting run of TMM using n cells by spawning a
chain of n processes, P0, . . . , Pn−1. We assume thatM accepts when the head is leftmost.

The initial process P0 uses three locks, called a, b, c1, and acquires a, b before spawning
P1. Process P1 uses locks a, b, c1, plus a fresh lock c2. It acquires c1 before spawning P2.
More generally, process Pk (1 ≤ k < n − 1) uses locks a, b, ck, ck+1, and it acquires ck
before spawning the next process Pk+1. The last process Pn−1 uses only three locks,
a, b, cn−1.

167



5.2. De�nitions and results

A con�guration (p, k, A0 . . . An−1) of the TM corresponds to each Pj storing Aj, with
process Pk storing in addition state p. A TM step to the right, from cell k to k+1, needs
to communicate the next state q.

In the following we denote the process that currently owns locks a and b, as �sender�.
The notation S+, S− used below indicates that the sender tries to send the state to the
right or left neighbour, respectively. Similarly, R+, R− indicates that a �receiver� is ready
to receive from the right or the left neighbour, respectively.

Sending q from Pk to Pk+1 is implemented by Pk using the following sequences of
actions:

S+
a = relaacqck+1

relb acqarelck+1
acqb

S+
b = relbacqck+1

rela acqbrelck+1
acqa

Process Pk+1 (�receiver�) uses matching sequences:

R−
a = acqarelck+1

acqb relaacqck+1
relb

R−
b = acqbrelck+1

acqa relbacqck+1
rela

Suppose now that the sender Pk wants to send state q to receiver Pk+1. This will be
done by Pk by trying to execute the sequence (S+

a )
q S+

b . Every process Pj with j > k is
ready to execute either R−

a or R−
b . Symmetrically, every process Pj with j < k is ready

to execute either R+
a or R+

b .
We show next that the DLSS deadlocks if Pk, Pk+1 do not execute (S+

a )
q S+

b and
(R−

a )
q R−

b , resp., in lockstep manner:

Claim 5.3.1. Assume that Pk owns {a, b}, every Pj, j < k, owns cj+1, and every Pj,
j > k, owns cj. Moreover, Pk wants to send a to Pj+1. Then either Pk, Pk+1 execute S+

a

and R−
a , resp., in lockstep manner, or all processes deadlock.

Proof of the claim. Process Pk is the only process who can start, since all other
processes wait for acquiring either a or b.
After releasing a, process Pk needs ck+1. It can only proceed and take ck+1 if Pk+1

starts executing R−
a , taking a and releasing ck+1. Then Pk releases b, and waits to get

back a. If b is taken by another process than the receiver, say Pj, j ̸= k + 1, then Pj

will release its lock c ̸= cj+1, and c is now the only available lock. Lock a will never
become available because Pj+1 will not release it, so all processes deadlock.
Assume that Pj+1 takes b, and releases a. If a is taken by another process than the
sender, say Pj, j ̸= k, then Pj will release its lock c ̸= cj+1, and c is now the only
available lock. Lock a will never become available because Pj+1 does not release b, so
all processes deadlock.
Assume that Pj takes a back. Then it releases cj+1, which can be taken only by Pj+1,
who releases also b. If b is taken by another process than the sender, say Pj, j ̸= k,
then Pj will release its lock c ̸= cj+1, and c is now the only available lock. Lock b
will never become available because Pj does not release a anymore. Once again, all
processes deadlock. ■

We conclude the proof by noting that P0 reaches a �nal state of M if and only if M
accepts.
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The situation improves signi�cantly if we assume nested usage of locks.

De�nition 5.4

A process Ap is nested if it takes and releases locks according to a stack discipline,
i.e., for all x, y ∈ Var(p), for all paths s0

a1−→ · · · an−→ sn in Ap, with op(a1) = acqx,
op(an) = relx, op(am) ̸= relx for all m < n: if op(ai) = acqy for some i < n
then there exists i < k < n such that op(ak) = rely. A DLSS is nested if all its
processes are nested.

We can state the �rst main result of this chapter. Its proof is outlined in the next
two sections.

Theorem 5.5

The DLSS veri�cation problem for nested DLSS is Exptime-complete. It is in
Ptime when the number of priorities in the speci�cation automaton, and the max-
imal arity of processes is �xed.

We can extend this result to DLSS where transition systems of each process are given
by a pushdown automaton (see de�nitions in Section 5.5). The complexity remains the
same as for �nite state processes.

Theorem 5.6

The DLSS veri�cation problem for nested pushdown DLSS is Exptime-complete.
It is in Ptime when the number of priorities in the speci�cation automaton, and
the maximal arity of processes is �xed.

5.3 Characterizing limit con�gurations

A con�guration is a labelled tree. We give a characterization of such trees that are limit
con�gurations of a process-fair run of a given DLSS. In the following section we will show
that the set of limit con�gurations of a given DLSS is a regular tree language, which will
imply the decidability of our veri�cation problem.

De�nition 5.7

Given a con�guration (τ, λ) with nodes ν, ν ′ and variables x ∈ Var(ν), x′ ∈ Var(ν ′),
we write x∼τ,λx

′ if L(ν)(x) = L(ν ′)(x′), so if x and x′ are mapped to the same lock.
We will often omit the subscript and simply write x∼x′ when (τ, λ) is given by the
context.
The scope of a lock ℓ is the set {ν : ℓ ∈ L(ν)(Var(ν))}.

Remark 5.3.1. It is easy to see that in any con�guration, the scope of a lock is a subtree.

We say that a node ν is labelled by an unmatched acq if it is labelled by some acqx
and there is no relx operation in the leftmost path starting from ν. Recall that H(τ) is
the set of locks ℓ for which there is some node ν with an unmatched acqx and L(ν)(x) = ℓ.
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We de�ne a relation ≺H on H(τ) by letting ℓ ≺H ℓ′ if there exist two nodes ν, ν ′ such
that ν is an ancestor of ν ′, ν is labelled with an unmatched acq of ℓ, and ν ′ is labelled
with a acq of ℓ′.

After these preparations we can state a central lemma giving a structural character-
ization of limit con�gurations of process-fair runs. The intuitions behind some of the
conditions are illustrated in Figure 5.2.

spawn(p, ℓ1, ℓ2, ℓ3)

spawn(p, ℓ1, ℓ2, ℓ3)

acq(ℓ1)

acq(ℓ2)

rel(ℓ2)

acq(ℓ1)

acq(ℓ2)

rel(ℓ2)

acq(ℓ1)

acq(ℓ2)

rel(ℓ2)

acq(ℓ1)

spawn(p, ℓ1, ℓ2)

spawn(p, ℓ1, ℓ2)

acq(ℓ1)

acq(ℓ2)

rel(ℓ2)

spawn(p, ℓ1, ℓ2)

acq(ℓ1)

acq(ℓ2)

rel(ℓ2)

acq(ℓ1)

spawn(p, ℓ1)

acq(ℓ1)

rel(ℓ1)

Figure 5.2: Some trees that cannot be obtained as the limit of a run.

Example 5.3.1. In Figure 5.2 we draw examples of trees that are not limit con�gurations
of runs of a DLSS. Locks are represented by colours: lock variables are coloured with the
lock assigned to them.

In the top left one, the lock ■ is taken before the second process is created, and never
released, making it impossible for the second process to acquire it. In the top right one,
we see an in�nite sequence of locks and processes. Observe that lock ■ is acquired and
never released by a process that later acquires ■. Thus in a run yielding that tree the
last operation on ■ would have to be before the last operation on ■. Similarly, the last
operation on ■ would have to be before the last operation on ■, and so on.

In the bottom tree, we see a cycle of three locks that have to be taken (and never
released) before each other.
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Lemma 5.8

A labelled tree (τ, λ) is the limit con�guration of a process-fair run of a nested
DLSS S if and only if all the following conditions hold

F1 The node labels in (τ, λ) match the local transitions of S.

F2 For every leaf ν every possible transition from s(ν) has operation acqx for some
x with L(ν)(x) ∈ H(τ).

F3 For every lock ℓ ∈ H(τ) there are �nitely many nodes with operations on ℓ,
and there is a unique node labelled with an unmatched acq of ℓ.

F4 The relation ≺H is acyclic.

F5 The relation ≺H has no in�nite descending chain.

Before presenting the proof of the previous lemma note that the main di�culty is
the fact that some locks can be taken and never released. If H(τ) = ∅ then from τ we
can easily construct a run with limit con�guration τ by exploiting the nested lock usage.
This is because any local run can be executed from a con�guration where all locks are
available.

Proof. ⇒ Suppose that we have a process-fair run (τ0, λ0)
ν1,a1−−−→ (τ1, λ1)

ν2,a2−−−→ · · · with
limit con�guration (τ, λ).

With every lock ℓ ∈ H(τ) we associate the maximal position m = mℓ such that
op(am) = acqx and L(νm)(x) = ℓ, so the position mℓ where ℓ is acquired for the last time
(and never released after).

It remains to check the conditions of the lemma. The �rst one holds by de�nition
of a run. The second condition is due to process-fairness and soundness, since a process
can always execute transitions other than acquiring a lock, and locks not in H(τ) are
free in�nitely often. All actions involving ℓ ∈ H(τ) must happen before position mℓ,
hence there are �nitely many of them. Moreover, a lock cannot be acquired and never
released more than once. This shows condition F3. Conditions F4 and F5 are both
satis�ed because if ℓ ≺H ℓ′ then mℓ < mℓ′ . Thus ≺H is acyclic and it cannot have in�nite
descending chains.
⇐ Let (τ, λ) satisfy all conditions of the lemma. In order to construct a run from (τ, λ) we
�rst build a total order < on H(τ) that extends ≺H and has no in�nite descending chain.
Let ℓ′0, ℓ

′
1, . . . be some arbitrary enumeration of H(τ) (which exists as τ is countable, thus

so is H(τ)). For all i let ↓ ℓ′i = {ℓ′ ∈ H(τ) | ℓ′ ≺+
H ℓ′i}. As (τ, λ) satis�es condition

F3, the set of nodes that are ancestors of a node with an operation on ℓ′i is �nite. Since
additionally by condition F5 there are no in�nite descending chains for ≺H , the set ↓ ℓ′i
is �nite as well (by König's lemma). As ≺H is acyclic by condition F4, we can chose
some strict total order <i on ↓ ℓ′i that extends ≺H . We de�ne for all ℓ ∈ H(τ) the index
mℓ = min{i ∈ N | ℓ ∈↓ ℓ′i}. Finally, we set ℓ < ℓ′ if either mℓ < mℓ′ or if mℓ = mℓ′

and ℓ <mℓ
ℓ′. By de�nition < is a strict total order on H(τ) with no in�nite descending

chains. Moreover it is easy to see that if ℓ ≺H ℓ′ then ℓ < ℓ′. This is the case because
ℓ ≺H ℓ′ and ℓ′ ≺+

H ℓi implies ℓ ≺+
H ℓi, so mℓ ≤ mℓ′ .

Using the order < on H(τ) we construct a process-fair run (τ0, λ0)
+−−→ (τ1, λ1)

+−−→ · · ·
with τ as limit con�guration. During the construction we maintain the following invariant
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for every i:

There exists ki ∈ N such that all operations on locks ℓj with j < ki are already
executed in τi (there is no operation on these locks in τ \ τi). Moreover, all
other locks are free after executing τi: Hi := H(τi) = {ℓ0, . . . , ℓki−1}.

For i = 0 the invariant is clearly satis�ed as all locks are free (k0 = 0).

For i > 0 we assume that there is a run τ0
+−−→ τi and τi satis�es the invariant. Thus,

all locks ℓj with j < ki are ultimately held and all other locks are free in τi.
We say that a leaf ν of τi is available if one of the following holds:

1. either there is a descendant ν ′ ̸= ν on the leftmost path from ν in τ with H(ν ′) =
H(ν) in τ ,

2. or the left child ν ′ of ν in τ is labelled with an unmatched acq of ℓki , and there is
no further operation on ℓki in τ \ τi.

In particular, leaves of τ cannot be available. The strategy is to �nd the smallest
available node ν in BFS order, and execute the actions on the left path from ν to ν ′. The
execution is possible as on this path there are no actions using locks from Hi and all other
locks are free. Let τi+1 denote the con�guration thus obtained from τi. The invariant
is satis�ed after this execution, with Hi+1 = Hi in the �rst case above, resp. Hi+1 =
Hi ∪ {ℓki} in the second case.

It remains to show that if a node is a leaf in τi for all i after some point, then it is a
leaf in τ . This shows, in particular, that there always exists some available node.

Suppose that ν and i0 are such that ν is a leaf of τi for all i ≥ i0. If ν becomes
available at some point then it stays available in all future con�gurations, and there are
�nitely many nodes before ν in the BFS order. Thus ν cannot be available in some τi, as
otherwise it would eventually be taken. Note that by the invariant (and soundness), no
leaf of τi has the left child labelled by some rel operation in τ . Moreover, every leaf ν
of τi with left child ν ′ in τ labelled by nop, spawn, or by some matched acq, is available
(the latter because we consider nested DLSS). Hence, the left child of ν must be labelled
with an unmatched acq of some ℓ ∈ H(τ). Thus there is some unmatched acq on a lock
of H(τ) that is never executed.

Let m be the minimal index in the enumeration of H(τ) such that an unmatched acq

of ℓm in τ is never executed. By minimality of m, there exists i1 such that m = ki for all
i ≥ i1. After i1, all operations on locks ℓ < ℓm have been executed. Thus, as < extends
≺H , all unmatched acq operations that have some descendant in τ with operation on ℓm,
have been executed. By the previous argument, the nodes with left child not labelled
with an unmatched acq cannot stay leaves forever. Hence, all nodes whose left child has
some operation on ℓm eventually become leaves. The ones with matched acq or other
operations are then available and eventually executed.

Hence, after some point the only remaining operations on ℓm are unmatched acq.
Furthermore by the condition F3 of the lemma there is exactly one. As a result, when it
is reached and all other operations on ℓm have been executed, it becomes available, and
is thus eventually executed, contradicting the de�nition of m.

This proves that the limit of the run we have constructed is (τ, λ). Observe �nally
that the run is process-fair because of condition F2 of the lemma.

The next lemma is an important step in the proof as it simpli�es condition F4 of
Lemma 5.8. This condition talks about the existence of a global order on some locks.
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The next lemma replaces this order with local orders in each of the nodes. These orders
can be guessed by a �nite automaton.

Lemma 5.9

Suppose that (τ, λ) satis�es the �rst three conditions of Lemma 5.8. The relation
≺H is acyclic if and only if there is a family of strict total orders <ν over a subset
of variables from Var(ν) such that:

F4.1 x is ordered by <ν if and only if L(ν)(x) ∈ H(τ).

F4.2 if x <ν x
′, ν ′ is a child of ν, and y, y′ ∈ Var(ν ′) are such that x∼y and x′∼y′

then y <ν′ y
′.

F4.3 if x, x′ ∈ Var(ν) and L(ν)(x) ≺H L(ν)(x′) then x <ν x
′.

Proof. ⇒ We �x a strict total order < on H(τ) that is compatible with ≺H (for instance
the strict order < de�ned in the proof of Lemma 5.8). Then we order the variables
x ∈ Var(ν) with L(ν)(x) ∈ H(τ) according to <. The three conditions of the lemma
then follow directly.
⇐ We de�ne ≺ on H(τ) by ℓ ≺ ℓ′ if for some node ν with variables x ̸= x′ such that
L(ν)(x) = ℓ and L(ν)(x′) = ℓ′ we have x <ν x

′.
We start by showing that ≺ is acyclic. Assume by contradiction that ℓ0 ≺ ℓ1 · · · ≺

ℓk ≺ ℓ0 is a cycle of minimal length, so the locks ℓi ∈ H(τ) are all distinct. We use indices
modulo k + 1, so k + 1 ≡ 0. Note that k > 1 because of condition F4.2.

By assumption, the scopes of ℓi and ℓi+1 intersect, for every i. Since scopes are
subtrees of τ (Remark 5.3.1) this means that two scopes that intersect have roots that
are ordered by the ancestor relation in τ .

Assume �rst that k > 2. Let i be such that the depth of the root of the scope of
ℓi is maximal. So the roots of the scopes of ℓi−1 and ℓi+1 are ancestors of the root ν
of the scope of ℓi. In the scope of ℓi there exist nodes that belong to the scope of ℓi−1

and of ℓi+1, respectively. This means that ν is in the scope of ℓi−1, ℓi and ℓi+1. So the
scopes of ℓi−1 and ℓi+1 intersect, and we have either ℓi−1 <ν ℓi+1 or ℓi+1 <ν ℓi−1. Thus
we get from the de�nition of ≺ either ℓi−1 ≺ ℓi+1 or ℓi+1 ≺ ℓi−1. In both cases the cycle
ℓ0 ≺ ℓ1 · · · ≺ ℓk ≺ ℓ0 is not minimal, a contradiction.

It remains to consider the case ℓ0 ≺ ℓ1 ≺ ℓ2 ≺ ℓ0. With a similar argument as before
there exists a node ν which is in the scope of all of ℓ0, ℓ1, ℓ2, so this node gives a total
order on these locks and there cannot exist a cycle.

We now show that ≺H is acyclic as well.
Like before, suppose there exists a cycle of distinct nodes ℓ0 ≺H ℓ1 ≺H · · · ≺H ℓk ≺H

ℓk+1 = ℓ0 with k > 0. We consider such a cycle of minimal size. Hence every ℓi is
comparable with ℓi−1, ℓi+1 and incomparable with all the other ℓj (as otherwise we would
obtain a shorter cycle).

Given ℓ, ℓ′ ∈ H(τ) such that ℓ ≺H ℓ′, let ν be the node with an unmatched acq

of ℓ. By condition F3, this node is unique. By the de�nition ≺H this node has some
descendant ν ′ with an operation on ℓ′. There are two possibilities, one is that the scopes
of ℓ, ℓ′ intersect, in which case by condition F4.3 we have ℓ ≺ ℓ′. The other possibility
is that the two subtrees do not intersect, in which case the root of θ(ℓ′) is strictly below
the unmatched get of ℓ.
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As ≺ is acyclic, there exists some i such that the scopes of ℓi−1 and ℓi are disjoint,
hence all nodes of the scope of ℓi are below the unmatched acq of ℓi−1. In particular the
unmatched acq of ℓi−1 is an ancestor of the unmatched acq of ℓi. As a result, by the
de�nition of ≺H , ℓi−1 ≺H ℓi+1.

If k ≥ 2 then the above argument shows that the cycle was not minimal, yielding a
contradiction.

If k = 1 then we have a contradiction as well, as either the scopes intersect, so we
cannot have both ℓ0 ≺ ℓ1 and ℓ1 ≺ ℓ0. Or they do not intersect, but then there is a node
ν in the intersection with either ℓ0 <ν ℓ1 or ℓ1 <ν ℓ0, but not both.

As a result, the relation ≺H is acyclic.

5.4 Recognizing limit con�gurations

Recall that a con�guration is a possibly in�nite labelled tree with a labelling that consists
of �ve labels p, s, a, L,H. As we have mentioned in Remark 5.2.2, con�gurations need
actually only three labels p, s, a. The other two can be calculated from the tree. Hence,
in this section we consider con�gurations are labelled trees with node labels coming from
a �nite alphabet. Our goal in this section is to de�ne a tree automaton recognizing limit
con�gurations of process-fair runs of a given DLSS.

Our plan is to check the conditions (F1-5) of Lemma 5.8. Actually we will check
(F1-3,5) and the conditions of Lemma 5.9 that are equivalent to F4 of Lemma 5.8.

We �rst observe that since our processes are �nite state it is immediate to construct a
nondeterministic tree automaton B1 verifying condition F1. This automaton just veri�es
local constraints between the labelling of a node and the labellings of its children. The
constraints talk only about the labels p, s, a. The automaton does not need any acceptance
condition, every run is accepting. We will say τ is process-consistent if it is accepted by
B1.

Checking condition F2 is more complicated because it refers to a set H(τ) of locks
that are ultimately held by some process. Our approach will be to de�ne four types of
predicates and colour the nodes of τ with these predicates. From a correct colouring of
τ it will be easy to read out H(τ). Then we will show that the correct colouring can be
characterized by conditions veri�able by �nite tree automata. The colouring will be also
instrumental in checking the remaining conditions F3, F4, F5.

For a con�guration (τ, λ), a node ν and a variable x ∈ Var(ν) we de�ne four predicates.

ν |= keeps(x) if at ν process p(ν) holds the lock ℓ = L(ν)(x) and never releases it:
ℓ ∈ H(ν ′) for every left descendant ν ′ of ν.

ν |= ev-keeps(x) if ν ̸|= keeps(x) and there is a descendant ν ′ of ν and a variable
x′ ∈ Var(ν ′) with x∼x′ and ν ′ |= keeps(x′).

ν |= avoids(x) if neither p(ν) nor any descendant takes ℓ = L(ν)(x), namely ℓ ̸∈
H(ν ′) for every descendant ν ′ of ν (including ν).

ν |= ev-avoids(x) if ν ̸|= avoids(x) and on every path from ν there is ν ′ such that
ν ′ |= avoids(x).

Observe a di�erent quanti�cation used in ev-keeps and ev-avoids . In the �rst case we
require one ν ′ to exist, in the second we want that such a ν ′ exists on every path.
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The next lemma shows how we can use the colouring to determine H(τ).

Lemma 5.10

Let τ be a process-consistent con�guration. A lock ℓ ∈ H(τ) if and only if there is
a node ν of τ and a variable x ∈ Var(ν) such that ν |= keeps(x) and L(ν)(x) = ℓ.

Proof. Follows from the de�nitions, since ν |= keeps(x) if and only if ℓ ∈ H(ν ′) for every
left descendant ν ′ of ν.

The above conditions de�ne a semantically correct colouring of nodes of a con�guration
τ by sets of predicates

C(ν) = {P (x) : x ∈ Var(ν), ν |= P (x)}

where P (x) is one of keeps(x), ev-keeps(x), avoids(x), ev-avoids(x). Observe that the four
predicates are mutually exclusive, but it may be also the case that none of them holds.
We say that a variable x ∈ Var(ν) is uncoloured in ν if C(ν) contains no predicate on x.

We now describe consistency conditions on a colouring of con�gurations guaranteeing
that a colouring is semantically correct.

Before moving forward we introduce one piece of notation. A node that is a right child,
namely a node of a form ν1 is due to spawn(q, θ) operation. More precisely op(ν0) =
spawn(q, θ). We refer to this θ as θ(ν1).

A colouring of τ is branch-consistent with respect to a con�guration (τ, λ) if for every
node ν of τ and every variable x ∈ Var(ν) the following conditions are satis�ed.

If ν has one successor ν0 then ν0 inherits the colours from ν except for two cases
depending on op(ν0), i.e, the operation used to obtain ν0:

� If ev-keeps(x) is in C(ν) and the operation is acqx then C(ν0) must have either
ev-keeps(x) or keeps(x).

� If ev-avoids(x) is in C(ν) and the operation is relx then C(ν0) must have either
ev-avoids(x) or avoids(x).

If ν has two successors ν0, ν1, and there is no y with θ(ν1)(y) = x then ν0 inherits
x colour from ν and there is no constraint due to x on colours in ν1.

If ν has two successors and x = θ(ν1)(y) for some y ∈ Var(ν1 ) then

� If keeps(x) in C(ν) then keeps(x) in C(ν0) and avoids(y) in C(ν1).
� If avoids(x) in C(ν) then avoids(x) in C(ν0) and avoids(y) in C(ν1).
� If ev-keeps(x) in C(ν) then either

* ev-keeps(x) in C(ν0) and either avoids(y) or ev-avoids(y) in ν1, or

* ev-keeps(y) in C(ν1) and either avoids(x) or ev-avoids(x) in ν0.

� If ev-avoids(x) is ν then ev-avoids(x) in C(ν0) and ev-avoids(y) in C(ν1).

Next we describe when a colouring is eventuality-consistent. An ev-trace is a sequence
of pairs (ν1, x1), (ν2, x2), . . . where :

ν1, ν2, . . . is a path in τ ,
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xi ∈ Var(νi); moreover xi+1 = xi if νi+1 is the left successor of νi, and θ(νi+1)(xi+1) =
xi if νi+1 is the right successor of νi.

ev-keeps(xi) or ev-avoids(xi) is in C(νi).
Observe that it follows that it cannot be the case that we have ev-keeps(xi) and ev-avoids(xi+1)
or vice versa. A colouring is eventuality-consistent if every ev-trace in the colouring of a
con�guration is �nite.

Finally, a colouring is recurrence-consistent if for every ν and uncoloured x ∈ Var(ν)
the lock ℓ = L(ν)(x) is taken and released in�nitely often below ν.

A colouring is syntactically correct if it is branch-consistent, eventuality-consistent,
and recurrence-consistent. We show that syntactically correct colourings characterize
semantically correct colourings. The two implications are stated separately as the state-
ments are slightly di�erent.

Lemma 5.11

If (τ, λ) is a limit con�guration and C is a semantically correct colouring of τ then
C is syntactically correct.

Proof. Suppose C is a semantically correct colouring of τ . Clearly τ is process-consistent.
Branch consistency follows from Lemma 5.8 (condition F3). Indeed, all the clauses for
keeps(x) and ev-keeps(x) hold because of the third condition of this lemma. The clauses
for avoids(x) and ev-avoids(x) follow directly from the semantics. Directly from de�nition
of the correct colouring it follows that it is also eventuality-consistent. It is slightly more
di�cult to verify that it is recurrence-consistent.

To verify recurrence consistency of C consider an arbitrary node ν of τ and an un-
coloured variable x ∈ Var(ν). We �nd an in�nite sequence:

(ν, x) = (ν0, x0), (ν1, x1), . . .

such that

xi ∈ Var(νi) and xi is uncoloured in νi,

ν0, ν1, . . . is a path,

xi∼xi+1.

Let us see why it is possible. Since every leaf satis�es either ν |= keeps(x) or ν |=
avoids(x), node ν is not a leaf. If ν0 satis�es keeps(x) or ev-keeps(x) then so does ν. If
ν0 satis�es avoids(x) or ev-avoids(x) and is the unique successor then so does ν. Hence,
if ν0 is the unique successor of ν then x cannot be coloured in ν0. If ν1 exists, but there
is no y with x = θ(ν1)(y) then the same veri�cation shows that x cannot be coloured in
ν0. Finally, if x = θ(ν1)(y) and y is coloured in ν1 then x must be coloured too. Hence,
y is not coloured in ν1 in this last case. This shows how to �nd (ν1, x1). Repeating this
argument we obtain the desired sequence.

To terminate we show why the existence of the above sequence implies the recurrence
condition. First note that xi∼xj for all i, j ≥ 0. Let ℓ = L(ν)(x). We observe that since
νi does not satisfy avoids(xi) then there must be an operation on ℓ below νi, and since it
does not satisfy ev-keeps(x) it must be a release. So we have found an in�nite path such
that in the subtree of every node of this path there is a release operation. This means
that there are in�nitely many get and release operations on ℓ in the tree below ν
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For the other direction, we prove a more general statement without assuming that
τ is a limit con�guration. This is important as ultimately we will use the consistency
properties to test if τ is a limit con�guration.

Lemma 5.12

If τ is a con�guration and C a syntactically correct colouring of τ , then C is seman-
tically correct.

Proof. Process-consistency guarantees that labels follow the transition relations locally.
Branch-consistency on keeps(x) and avoids(x) labels guarantees that if ν is labelled by
one of these predicates then the predicate holds in ν. To get the same property for
ev-keeps(x) and ev-avoids(x) we need the eventuality-consistent condition. Finally, if x
is uncoloured at ν then the recurrence-consistency condition implies that x satis�es none
of the four predicates.

Having a correct colouring will help us to verify all conditions of Lemma 5.8. Condition
F2 refers to L(ν)(x) ∈ H(τ). We need another labelling to be able to express this.

A syntactic H-labelling of τ assigns to every node ν a subset Hs(ν) ⊆ Var(ν). We
require the following properties:

For the root ε we have Hs(ε) = ∅.

If ν0 exists: x ∈ Hs(ν0) if and only if x ∈ Hs(ν).

If ν1 exists: y ∈ Hs(ν1) if and only if either θ(ν1)(y) = new and ν1 |= ev-keeps(y),
or θ(ν1)(y) = x and ν |= ev-keeps(x).

It is clear that every con�guration tree has a unique Hs labelling.

Lemma 5.13

Let (τ, λ) be a process-consistent con�guration with a syntactically correct colour-
ing. For every node ν and variable x ∈ Var(ν) we have: L(ν)(x) ∈ H(τ) if and
only if x ∈ Hs(ν).

Proof. Suppose ℓ = L(ν)(x) and ℓ ∈ H(τ). Take the node ν ′ that is closest to the root
and has ℓ = L(ν ′)(x′) for some x′. We have ν ′ |= ev-keeps(x′) and ν ′ is a right child (it
cannot be the root as Var(ε) = ∅). Hence, x′ ∈ Hs(ν ′). By induction on the length of
the path from ν ′ to ν we show that x ∈ Hs(ν).

For the other direction, if ν |= ev-keeps(x) then L(ν)(x) ∈ H(τ). It is also easy to see
that membership in H(τ) is preserved by all the rules.

Thanks to Lemma 5.13 we obtain

Corollary 5.14

Let τ be a process-consistent con�guration with a syntactically correct colouring.
Condition F2 of Lemma 5.8 holds for τ if and only if for every leaf ν of τ , every
possible transition from s(ν) has some acqx operation with x ∈ Hs(ν).

Proof. By Lemma 5.13.
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Lemma 5.15

Let τ be a process-consistent con�guration with a syntactically correct colouring.
Then condition F3 of Lemma 5.8 holds for τ .

Proof. Consider ℓ ∈ H(τ). By Lemma 5.10 there is a node ν and x ∈ Var(ν) with
ν |= keeps(x), ℓ = L(ν)(x). Let ν ′ be the root of the scope of ℓ. We have ν ′ |= ev-keeps(x′)
for x′ ∈ Var(ν ′) with x′∼x. By consistency conditions on the colouring:

for every node ν ′′ on the path from ν ′ to ν we have ν ′′ |= ev-keeps(x′′) for x′′∼x,
and for every right child ν ′′′ of ν ′′ we have ν ′′′ |= ev-avoids(x′′′) for x′′′∼x.

Observe that ν ′′′ |= ev-avoids(x′′′) guarantees that there are only �nitely many operations
on ℓ below ν ′′′, and that there is no unmatched get of ℓ below ν ′′′. Since there are no
operations on ℓ below ν, we are done.

It remains to deal with conditions F4 and F5 of Lemma 5.8. Condition F4 is more
di�cult to check as it requires to �nd an acyclic relation with some properties. Fortu-
nately Lemma 5.9 gives an equivalent condition talking about a family of local orders
<ν for every node ν of a con�guration. An automaton can easily guess such a family of
orders. We show that it can also check the required properties.

A consistent order labelling assigns to every node ν of τ a total order <ν on some
subset of Var(ν). The assignment must satisfy the following conditions for every node ν:

1. x is ordered by <ν if and only if x ∈ Hs(ν),

2. if x <ν x
′ then x <ν0 x

′,

3. if x <ν x
′, ν1 exists, and θ(ν1)(y) = x, θ(ν1)(y′) = x′ then y <ν1 y

′,

4. if ν |= keeps(x) and y <ν x then ν |= keeps(y) or ν |= avoids(y).

Lemma 5.16

Let (τ, λ) be a process-consistent con�guration with a syntactically correct colour-
ing. A family of local orders <ν is a consistent order labelling of τ if and only if it
satis�es the conditions of Lemma 5.9.

Proof. Let us take a family of orders<ν satisfying conditions F4.1, F4.2, F4.3 of Lemma 5.9.
We show that it is a consistent order labelling of τ . By Lemma 5.13 the �rst con-
dition is satis�ed. The next two conditions follow from condition F4.2. The fourth
condition requires some veri�cation. Consider ν as in that condition, so with y <ν x
and ν |= keeps(x). It follows that there is some ancestor ν ′ of ν, together with some
x′∼x, x′ ∈ Var(ν ′), such that the action at ν ′ is an unmatched acqx′ of the lock
ℓ = L(ν ′)(x′) = L(ν)(x). If there were some operation on ℓ′ = L(ν)(y) below or at
ν then ℓ ≺H ℓ′, implying x <ν y by F4.3. Thus there is no operation on ℓ′ below or at ν,
meaning that ν |= keeps(y) or ν |= avoids(y).

For the other direction, take a consistent order labelling <ν . We show that it satis�es
the conditions F4.1, F4.2, F4.3 of Lemma 5.9. From the �rst condition on <ν and
Lemma 5.13 we see that <ν orders only variables associated with locks from H(τ); this
gives us F4.1. Condition F4.2 follows directly from the second and third property of
consistent order labelling.
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It remains to show F4.3. For this take a node ν and two locks ℓ = L(ν)(x) and
ℓ′ = L(ν)(y) for some x, y ∈ Hs(ν). Suppose ℓ ≺H ℓ′. This means that there is an
unmatched get of ℓ, say in a node ν ′, and an operation on ℓ′ at some node ν ′′ below ν ′.

We show below that we can �nd some node ν1 in the scope of both ℓ and ℓ′, and such
that ν1 |= keeps(x1) and ν1 ̸|= keeps(y1) and ν1 ̸|= avoids(y1), with x∼x1 and y∼y1. This
will show that we cannot have y1 <ν1 x1, so it must hold that x1 <ν1 y1, thus also x <ν y
by local consistency.

If either ν, ν ′ are incomparable, or ν is an ancestor of ν ′, or ν = ν ′, then ν ′ and ν ′0
are in the scope of both ℓ and ℓ′ (note that ν ′0 is an ancestor of ν ′′, or they can be
equal). We choose ν1 = ν ′0.

If ν ′ ̸= ν is an ancestor of ν, but ν and ν ′′ are either incomparable, or ν is an
ancestor of ν ′′, then we chose ν1 as the least common ancestor of ν ′′ and ν. Note
that ν1 is below or equal to ν0, and belongs to the scope of both ℓ and ℓ′.

If ν ′′ is an ancestor of ν then ν ′′ is in the scope of both ℓ and ℓ′, so we chose ν1 to
be ν ′′.

We consider now condition F5. We say that a consistent order labelling of τ admits
an in�nite descending chain if there exist a sequence of nodes ν1, ν2, . . . and variables
(xi)i, (yi)i such that for every i > 0: (i) νi is an ancestor of νi+1, (ii) yi∼xi+1, and (iii)
yi <νi xi.

Lemma 5.17

Let τ be a process-consistent con�guration with a syntactically correct colouring.
If ≺H has no in�nite descending chain then there is a consistent order labelling of
τ with no in�nite descending chain. If ≺H has an in�nite descending chain then
every consistent order labelling of τ admits an in�nite descending chain.

Proof. The �rst statement is easy: take the well-founded strict order on locks < de�ned
in the proof of Lemma 5.8, and for each node ν take as <ν the order given by < on
L(ν)(Var(ν)). The well-foundedness of < implies that there is no in�nite descending
chain in the order labelling.

For the second part, assume ≺H has an in�nite descending chain and let (<ν)ν∈τ be
a consistent order labelling of τ . Let ℓ0 ≻H ℓ1 ≻H · · · be an in�nite descending chain for
≺H .

For all i ≥ 1 let µi be a node with an unmatched acq of ℓi and with a descendant
with a acq of ℓi−1. Let ci be the root of the scope of ℓi in τ . As µi+1 is an ancestor of
a node where ℓi appears, it is comparable with ci (two nodes are comparable if one is an
ancestor of the other). As ci+1 is an ancestor of µi+1, it is comparable with ci.

Claim 5.17.1. For all a ≤ b, there exists i ∈ {a, . . . , b} such that ci is an ancestor of all
(ck)a≤k≤b.

Proof of the claim. We proceed by induction on b − a. If b − a = 0 this is clear. If
b − a > 0, by induction hypothesis there exists i ∈ {a, . . . , b − 1} such that ci is an
ancestor of all (cj)a≤k≤b−1. As cb is comparable with cb−1, which is a descendant of
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ci, cb is comparable with ci. If cb is a descendant of ci, then ci is an ancestor of all
(ck)a≤k≤b. If cb is an ancestor of ci, then cb is an ancestor of all (ck)a≤k≤b. ■

Consider the subtree of τ formed by all ci and their ancestors. It is an in�nite, but
�nitely-branching tree, thus it has an in�nite branch by König's lemma. We �rst argue
that there must be in�nitely many ci on that branch. Let a ∈ N, let νa be the lowest
ancestor of ca on the branch. Let ν ′ be lower on the branch than νa, then ν ′ has some
descendant cb. Note that νa is the lowest common ancestor of ca and cb. We can assume
a < b (the case b < a is symmetric), then by Claim 1 there is some i ∈ {a, . . . , b} such
that ci is an ancestor of all (ck)a≤k≤b, and in particular of ca and cb. Further, as νa is the
lowest common ancestor of ca and cb, ci is an ancestor of νa and is thus on the branch.
As a result, for all a ∈ N we can �nd i ≥ a such that ci is on the branch.

We pick a sequence of ci as follows: we start with the highest ci0 on the branch, and
then de�ne cij+1

as the highest ci on the branch with i > ij, for all j. By de�nition for
all j we have that no ci with i > ij is a strict ancestor of cij+1

.
As a consequence of Claim 1, there exists i ∈ {ij + 1, . . . , ij+1} such that ci is an

ancestor of all (ck)ij+1≤k≤ij+1
. As noted above, as i > ij we cannot have ci as a strict

ancestor of cij+1
, hence i = ij+1. As a result, cij+1

is an ancestor of all (ck)ij<k<ij+1
.

For the remaining of the proof we �x a consistent order labelling (<ν)ν for τ .

Claim 5.17.2. For all a < b, if node ν is in the scope of both ℓa and ℓb, and if ν is
ancestor of all (ck)a<k<b, then x >ν y, with x, y such that L(ν)(x) = ℓa and L(ν)(y) = ℓb.

Proof of the claim. Let x, y be such that L(ν)(x) = ℓa and L(ν)(y) = ℓb. We proceed
by induction on b− a.
If b = a+ 1 then ℓa ≻H ℓb. Since we assume that (<ν)n is a consistent order labelling,
by Lemma 5.16 and F4.3 of Lemma 5.9 we have x >ν y as claimed.
If b− a ≥ 2, by Claim 1, there exists i ∈ {a+ 1, . . . , b− 1} such that ci is an ancestor
of all (ck)a<k<b. In particular, ci is an ancestor of ca+1, itself an ancestor of µa+1, itself
an ancestor of a node ν ′ with a acq of ℓa. Recall that ν itself is an ancestor of ci, by
assumption. As the scope of a lock is a subtree, ℓa appears in all nodes between ν and
ν ′, thus in particular in ci.
Moreover, µb is an ancestor of some node with a acq of ℓb−1, which is a descendant of
cb−1, thus of ci, hence µb and ci are comparable. If µb is an ancestor of ci, then as ν ′ is
a descendant of ci, ν ′ is also a descendant of µb, hence ℓa ≻H ℓb. As a result, x >ν y as
the consistent order labelling satis�es F4.3 (Lemma 5.16). If µb is a descendant of ci
then as the scope of a lock is a subtree, ℓb appears in all nodes between ν and µb, thus
in particular in ci. We set x′, y′, z′ ∈ Var(ci) such that L(ci)(x′) = ℓa, L(ci)(y′) = ℓb
and L(ci)(z

′) = ℓi and by induction hypothesis we have x >ci z and z >ci y thus
x >ci y as >ci is total. Finally, as we have a consistent order labelling, x >ν y holds
as well. ■

Recall that cij+1
is an ancestor of all (ck)ij<k<ij+1

. In particular, cij+1
is an ancestor of

cij+1, thus of µij+1, itself an ancestor of some node ν ′ with a acq of ℓij . Thus ℓij appears
in cij+1

, because cij+1
is between cij and ν

′.
Let xj, yj be such that L(cij+1

)(xj) = ℓij and L(cij+1
)(yj) = ℓij+1

. By Claim 2, we have
xj >ν yj. The sequences (cij+1

)j>0, (xj)j>0 and (yj)j>0 thus form an in�nite descending
chain, proving the lemma.

The next proposition summarizes the development of this section stating that all the
relevant properties can be checked by a Büchi tree automaton.
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Proposition 5.18

For a given DLSS, there is a non-deterministic Büchi tree automaton B̂ accepting
exactly the limit con�gurations of process-fair runs of DLSS. The size of B̂ is linear
in the size of the DLSS and exponential in the maximal arity of the DLSS.

Proof. Given a tree τ labelled with p, a, s the automaton B̂ guesses a colouring C, labelling
Hs and an ordering labelling O. It then checks if C, Hs and O satisfy all the consistency
conditions. This automaton is a product of the following automata:

B1 recognizing process-consistent trees,

BC checking if the colouring is syntactically correct,

BH checking if Hs is a syntactic H-labelling,

B2 checking the conditions of Corollary 5.14,

BO checking if O is a consistent order labelling.

B5 checking the absence of in�nite descending chains (Lemma 5.17).

Apart from BC and B5 the other automata only check relations between a node and its
children and some additional conditions local to a node. So they are automata with
trivial acceptance conditions. Automaton BC needs a Büchi condition to check that C is
eventuality-consistent and recurrence-consistent. The number of labels is polynomial in
the size of DLSS and exponential in the maximal arity as we have sets of predicates and
orderings on variables as labels. Automaton B5 can be obtained by �rst constructing an
automaton for its complement: one can easily de�ne a non-deterministic Büchi automaton
guessing a branch and following a sequence of variables along that branch witnessing an
in�nite decreasing sequence of locks. As it only needs to remember a pointer to one of
the variables of a node, its number of states is the maximal arity of the DLSS. Thus we
can complement it to get a non-deterministic Büchi automaton checking the absence of
such sequence, of size exponential in the maximal arity of the DLSS, and polynomial in
the alphabet (itself exponential in the arity and polynomial in the DLSS).

We need to check that τ is a fair limit con�guration if and only if it is accepted by B̂.
If τ is a limit con�guration then it is process consistent, so it is accepted by B1. Guess-

ing C to be semantically correct colouring ensures that BC accepts τ with this colouring
(Lemma 5.11). As we have observed, given the colouring there is unique syntactic H-
labelling, so BH can accept it. By Lemma 5.8, con�guration τ satis�es properties F1-5.
So τ is accepted by B2. Finally, by Lemma 5.9, τ satis�es properties F4.1, F4.2, F4.3, so
τ is accepted by BO thanks to Lemma 5.16. By Lemma 5.17, the automaton B5 accepts
τ as well.

For the other direction suppose τ is accepted by B̂. Thanks to Lemma 5.8 it is
su�cient to check properties F1-5. Property F1 is veri�ed by automaton B1. Thanks to
BC we know that the guessed colouring is syntactically correct. Then B2 ensures that τ
satis�es F2 thanks to Corollary 5.14. Lemma 5.15 ensures that τ satis�es F3. Finally,
automaton BO checks that the guessed orderings are a consistent order labelling. Hence,
Lemma 5.16 guarantees that τ satis�es the conditions of Lemma 5.9 giving us F4. Finally,
by Lemma 5.17 automaton B5 veri�es condition F5.
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We will show that the previous proposition yields an Exptime algorithm. We match
it with an Exptime lower bound to obtain completeness. The hardness proof involves
a reduction from the problem of determining whether the intersection of the languages
of k deterministic tree automata over binary trees is empty. To achieve this, we create
a DLSS that simulates all the tree automata concurrently. Each node of the tree in the
intersection is simulated by a process, which encodes a state for each automaton through
the locks it holds. So each process creates two children with whom it shares locks. The
children are able to access the states of the parent by the following technique: Suppose
processes p and q share locks 0 and 1, and p acquires one lock and retains it inde�nitely.
In this scenario, q can guess the lock chosen by p and try to acquire the other lock. If q
guesses incorrectly, the system deadlocks. However, if the guess is correct, the execution
continues, and q knows about the lock held by p.

Proposition 5.19

The DLSS veri�cation problem for nested DLSS and Büchi objective is Exptime-
hard. The result holds even if the Büchi objective refers to a single process.

Proof sketch. A detailed proof can be found in [MMW23]. We provide a proof sketch
here.

We show that the di�culty of the problem stems from the systems and not the speci-
�cation, by proving that checking if some process has an in�nite run is already Exptime-
hard.

We give a reduction from the emptiness problem for the intersection of top-down deter-
ministic tree automata (over �nite trees). This problem is ExpTime-complete [Gou94].
Let A1, . . . ,Ak be �nite deterministic tree automata over an alphabet A, with Ai =
(Qi, δi, s0,i, Fi). We are going to construct a DLSS that simulates their computations
simultaneously on the same tree T , by using locks to memorize their states. We use three
processes, proot, pleft and pright.

The idea is to have a new process copy for each node of T . Each such copy uses the
variables xqi , y

q
i and zqi for all 1 ≤ i ≤ k and q ∈ Qi. Variable xqi is supposed to encode

the information about the state of the parent node in the run of Ai, while y
q
i and z

q
i will

encode the state of Ai at the current node. The y
q
i are meant to give that information to

the left child and zqi to the right child.
Each process does the following steps. First for each i it chooses some s and takes all

xq
′

i with q′ ̸= q. Then it chooses a letter a ∈ A. Let δ(q, a) = (q′, q′′), the process takes
yq

′

i and zq
′

i if it is pleft and y
q′′

i and zq
′′

i if it is pright.
After doing this for each i, it can either just stop or spawn two processes pleft and

pright. It passes to them the locks corresponding to respectively yqi and z
q
i as their x

q
i and

fresh locks for their yqi and zqi .
The speci�cation is that there should be �nitely many processes, and all processes that

do not spawn other processes should be in a �nal state of all Ai. This is only possible if
the state q chosen by each process matches the state q′ chosen by their parent process.
If q ̸= q′, the child process will be blocked while trying to get xq

′

i . From the states and
letters chosen by the processes we can reconstruct a full labelled binary tree accepted by
all Ai.

If we want a sound system, we have to modify it: as it is, processes would have to
remember a state s for each i, and thus have exponentially many states. This can be
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�xed: instead of taking a lock, processes spawn an auxiliary process which takes that
lock and stops. We add in the speci�cation that those auxiliary processes should all take
their lock.

The DLSS we constructed is clearly nested, which shows the claim. □
Now we have all ingredients for the proof of Theorem 5.5:

Proof of Theorem 5.5. The lower bound follows from Proposition 5.19.
For the upper bound we use the Büchi tree automaton B̂ recognizing limit con�gura-

tions of the DLSS (Proposition 5.18).
We build the product of B̂ with the regular objective automaton A, which is a parity

tree automaton. From B̂ × A we can obtain with a bit more work an equivalent parity
tree automaton C with the same number of priorities, plus one. For this we modify the
rank function in order to only store in the state the maximal priority seen between two
consecutive occurrences of Büchi accepting states, and make the maximal priority visible
at the next Büchi state. When the state of the B̂ component is not a Büchi state, the
priority is odd and lower than all the ones of A.

By Proposition 5.18, C is non-empty if and only if there exists a limit con�guration
of the system that satis�es the regular objective A. Moreover, we know that B̂ has size
linear in the size of the DLSS and exponential only in arity of the DLSS. So C has size
that is exponential w.r.t. the DLSS and the objective, and polynomial size if the maximal
arity is �xed.

Finally, non-emptiness of C amounts to solve a parity game of the same size as C:
player Automaton chooses transitions of C, and player Path�nder chooses the direction
(left/right child). To sum up, we obtain a parity game of exponential size, so solving
the game takes exponential time since the number of priorities is polynomial. If both
the number of priorities and the arity of the DLSS is �xed, the game can be solved in
polynomial time.

5.5 Pushdown systems with locks

Till now in this chapter every process has been a �nite state system. Here we consider the
case when processes can be pushdown automata. The de�nition of a pushdown DLSS is
the same as before but now each automaton Ap is a deterministic pushdown automaton.

We will reduce our veri�cation problem to the emptiness test of a nondeterministic
pushdown automata on in�nite trees. These automata will have parity acceptance con-
ditions. While in general testing emptiness of such automata is Exptime-complete, we
will notice that the automata we construct have a special form allowing to test emptiness
in Ptime for a �xed number of ranks in the parity condition.

We start by de�ning pushdown tree automata. Our automaton will be quite standard
but for an additional stack instruction. Apart standard pop(a) and push(a), we have
a reset instruction that empties the stack. A pushdown tree automaton is a tuple
(Q,Σ,Γ,∆, init, F, pr), where Q is a �nite set of states, Σ an input alphabet, Γ a stack
alphabet, qinit ∈ Q an initial state, F a set of �nal states and pr : Q → [0, d] a parity
condition. Finally, D is a partial transition function taking as the arguments the current
state q, the current input letter a, and the current stack symbol γ. The transitions in
D are of the form either δ(q, a, γ) = (q′, instr) or δ(q, a, γ) = ((ql, instrl), (qr, instrr)),
where instr, instrl, instrr are stack instructions.
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A run of such an automaton on a Σ-labelled tree is an assignment of con�gurations to
nodes of the tree; each con�guration has the form (q, z) where q ∈ Q is a state and z ∈ Γ+

is a sequence of stack symbols representing the stack (top symbol being the leftmost).
The root is labelled with (qinit, ε). The labelling of children must depend on the labelling
of the parent according to the transition function δ. A run is accepting if every leaf is
labelled with a state of F and for every in�nite branch the sequence of assigned states
satis�es the max parity condition given by pr: the maximum of ranks of states seen on
the path must be even.

We say that a pushdown tree automaton is right-resetting if for every transition
δ(q, a, γ) = ((ql, instrl), (qr, instrr)) we have that instrr is reset.

Proposition 5.20

For a �xed d, the emptiness problem for right-resetting pushdown tree automata
A with a parity condition over ranks {1, . . . , d} can be solved in Ptime.

Proof. We consider the representative case of d = 3. Suppose we are given a right-
resetting pushdown tree automaton A = (Q,Σ,Γ, q0,⊥, δ,W).

The �rst step is to construct a pushdown word automaton Al(G1, G2, G3) depending
on three sets of states G1, G2, G3 ⊆ Q. The idea is that Al simulates the run of A on the
leftmost branch of a tree. When A has a transition going both to the left and to the right
then Al goes to the left and checks if the state going to the right is in an appropriate
Gi. The states of Al(G1, G2, G3) are Q×{1, 2, 3} with the second component storing the
maximal rank of a state seen so far on the run. The transitions of Al(G1, G2, G3) are
de�ned according to the above description. We make precise only the case for a transition
of A of the form δ(q, a, γ) = ((ql, instrl), (qr, instrr)). In this case, Al has a transition
δl((q, i), a, γ) = ((ql,max(i,W(ql))), instrl) if qr ∈ Gmax(i,W(qr)). Observe that instrr is
necessarily reset as A is right-resetting.

What the �xpoint computation does can be described at high-level as follows. While
the word pushdown automaton Al takes care of the parity condition on tree paths that
are ultimately left paths, the sets Gi do this for paths that branch to the right in�nitely
often. For such paths we need for example to guarantee through set G3 that priority 3 is
seen �nitely often. We do this through a least �xpoint computation for G3. For G2 we
compute a greatest �xpoint since we want priority 2 to be seen in�nitely often. Finally,
for G1 we compute a least �xpoint since priority 1 should be seen �nitely often before
seeing priority 2.

The next step is to observe that for given sets G1, G2, G3 we can calculate in Ptime
the set of states from which Al(G1, G2, G3) has an accepting run.

The last step is to compute the following �xpoint expression in the lattice of subsets
of Q:

W = LFPX3. GFPX2. LFPX1. P (X1, X2, X3) where

P (X1, X2, X3) ={q : Al(X1, X2, X3) has an accepting run from q} .

Observe that P : P(Q)3 → P(Q) is a monotone function over the lattice of subsets of
Q. Computing W requires at most |Q|3 computations of P for di�erent triples of sets of
states.

We claim that A has an accepting run from a state q, if and only if, q ∈ W .
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Let us look at the right-to-left direction of the claim. For this we recall how the
least �xpoint is calculated. Consider any monotone function R(X) over P(Q), and its
least �xpoint Rω = LFPX. R(X). This �xpoint can be computed by a sequence of
approximations:

R0 = ∅ Ri+1 = R(Ri)

The sequence of Ri is increasing and Rω = Ri for some i ≤ |Q|.
Now we come back to our set W . Observe that W = LFPX3. R where R(X) =

GFPX2.LFPX1. P (X1, X2, X). As in the previous paragraph we can de�ne

W 0 = ∅ and W i+1 = GFPX2.LFPX1. P (X1, X2,W
i) .

So, if q ∈ W then q ∈ W i for some i. Now observe that W i = LFPX1.P (X1,W
i,W i−1),

since W i is a �xpoint of GFPX2. By similar reasoning we de�ne

W i,0 = ∅ and W i,j+1 = P (W i,j,W i,W i−1) .

Now, q ∈ W i implies q ∈ W i,j for some j. We write sig(q) for the lexicographically
smallest (i, j) such that q ∈ W i,j.

We examine what sig(q) = (i, j) means. By de�nition q ∈ P (W i,j−1,W i,W i−1), so
there is an accepting run of Al(W i,j−1,W i,W i,j−1) from q. Looking at the run of A that
Al simulates we can see that whenever this run branches to the right with some q′ and e
is the maximal rank on the run till this branching then

if e = 1 then q′ ∈ W i,j−1,

if e = 2 then q′ ∈ W i,k for some k,

if e = 3 then q′ ∈ W i−1,k for some k.

With this observation we can construct an accepting run of A from every state in
W . If sig(q) = (i, j) then consider an accepting run of Al on the left path given by
P (W i,j−1,W i,W i−1). For every state branching to the right from this left path we re-
cursively apply the same procedure. By construction, every path that is eventually a left
path is accepting. A path branching right in�nitely often is also accepting by the previous
paragraph since signatures cannot go below 0. More precisely, the path cannot see 3 in-
�nitely often because the �rst component of the signature decreases. If it sees 1 in�nitely
often then it needs to see also 2 in�nitely often, because of the second component that
decreases.

Let us now look at the left-to-right direction. Take an accepting run of A from q0.
We construct something that we call a skeleton tree of this run. As the nodes of the
skeleton tree we take the root and all the nodes that are a right child; so these are the
nodes of the tree of the form (0∗1)∗. The skeleton has an edge ν

e−−→ ν0k1 if e is the
maximal rank of a state of A on the path from ν to ν0k1. Observe that a node can have
in�nitely many children. As we have started with an accepting run, every path in this
skeleton tree satis�es the parity condition. In particular, for every node, on every path
from this node there is a �nite number of 3 edges. Thus, to every node ν we can assign
an ordinal θ3(ν) such that if ν

e−−→ ν ′ then θ3(ν ′) ≤ θ3(ν) and the inequality is strict if
e = 3. It is also the case that on every path from ν there is a �nite number of 1 edges
before some 2 or 3 edge. This allows to de�ne θ1(ν) with the property that if ν

1−−→ ν ′

then θ1(ν ′) < θ1(ν). Now we can show that for every node ν of the skeleton tree, if q is
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the state assigned to ν then q ∈ W θ3(ν),θ1(ν) for W i,j as de�ned in the computation of W
(putting W θ3 = W for every θ3 > |Q|, and W θ3,θ1 = W θ3 for every θ1 > |Q|). The proof
is by induction on the lexicographic order on (θ3(ν), θ1(ν)).

Proof of Theorem 5.6. The lower bound follows already from Theorem 5.5.
For the upper bound we reuse the Büchi tree automaton B̂ from Proposition 5.18. This

time B̂ is a pushdown tree automaton, however it is right-resetting because processes are
spawned with empty stack. We follow the lines of the proof of Theorem 5.5, building the
product of B̂ with the regular objective automaton A, and constructing an equivalent
parity, right-resetting pushdown tree automaton C. Proposition 5.20 concludes the proof.

5.6 Synthesis of DLSS

In this section we leverage our understanding of the veri�cation of DLSS to study the
synthesis problem on them. We introduce dynamic lock-sharing games, which are DLSS
in which states are split between controllable and uncontrollable ones.

De�nition 5.21

A dynamic lock-sharing game (DLSG) is described by a tuple (S, (SC
p , S

E
p )p∈Proc,B),

where S = (Proc, ar , (Ap)p∈Proc, pinit,Locks) is a DLSS, B is a parity tree automaton
and for all p ∈ Proc, SC

p ⊔ SE
p is a partition of the states of Ap.

Just like in the previous chapter, we assume that all actions from Controller states
have operation nop.

See Remark 4.7.1 for an explanation for the last assumption. We call a DLSG nested
when the underlying DLSS is.

A control strategy is a family of functions σ = (σp)p∈Proc with σp : Σ∗
p → Σp for all

p. A σ-run is a run τ0
ν1,a1−−−→ τ1

ν2,a2−−−→ · · · where for all i ≥ 1, if st(νi) ∈ SC
pr(νi)

then
ai = σpr(νi)(a1 · · · ai−1). A control strategy is winning if no process-fair σ-run is in L(B).
Note the negation here: we assume that L(B) describes a set of runs that we want to
avoid.

We can now de�ne the problem, which is to decide if there exists a winning control
strategy for a given DLSG.

De�nition 5.22 ▶ Regular control problem for DLSG

Given a DLSG (S, (SC
p , S

E
p )p∈Proc,B), decide if there is a winning control strategy.

The undecidability of that problem immediately follows from Theorem 5.3. Our main
results of this section are the following complexity bounds on that problem in the case of
nested DLSG.

Theorem 5.23

The regular control problem for DLSG is in 2ExpTime and NExpTime-hard over
nested DLSG.
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We will comment on the gap between the bounds at the end of the section. For now
let us simply remark that a deterministic procedure for a NExpTime-hard problem may
also take double-exponential time. We start by showing the lower bound.

Proposition 5.24

The regular control problem for DLSG is NExpTime-hard over nested DLSG.

Proof sketch. We reduce from the exponential grid tiling problem. The idea is as follows:
The initial process pinit has 8n locks ℓα1 , . . . , ℓ

α
n for each α ∈ {x, y, x′, y′}, plus 2|T |

locks ℓt, ℓ′t for each tile.
Environment encodes coordinates (x, y) and (x′, y′) in the locks: he takes ℓxi if he wants

the ith bit of x to be one, and ℓ̄xi otherwise. Doing so, he can choose those coordinates
one of three ways:

either x′ = x and y′ = y

or x′ = x+ 1 and y′ = y

or y′ = y + 1 and x′ = x

He can make sure of that using O(n) states by choosing x, x′ and y, y′ simultaneously.
Note that this system is not sound: there are exponentially many possible sets of locks

taken in n, much more than the number of states. However, we can avoid this by replacing
the single process pinit with a chain of processes, each choosing one bit and spawning the
next (and carrying the necessary information by choosing which next process to spawn).

After the coordinates have been chosen, two processes p, p′ are spawned. In p, En-
vironment starts by taking and releasing one of ℓxi , ℓxi and one of ℓyi , ℓyi, before going
to a state controlled by Controller. Controller must then choose a tile t, and take the
associated lock ℓt. The actions taken by Environment just before allow her to know x
and y. The speci�cation forbids that Controller stays stuck there: she must take the lock
she picked.

Similarly, Controller picks a lock ℓ′t′ in p
′.

The speci�cation is that Environment wins if either:

x = x′, y = y′ and t ̸= t′.

x′ = x+ 1, y = y′ and t.right ̸= t′.left

x′ = x+ 1, y = y′ and t.up ̸= t′.down

x = 0 (resp. x = 2n− 1, y = 0, y = 2n− 1) and t.left ̸= B (resp. right, down, up).

This condition can be expressed as a parity tree automaton of polynomial size: The
automaton guesses one of the above conditions and checks them on the branches corre-
sponding to pinit, p and p′. For instance, the automaton may guess that we are in the
second case, and guess di�erent values for t.right and t′.left. It then checks that those
values are indeed the tiles selected in p and p′, and that the choice made in pinit matches
the second case.

The strategy of Controller comes down to two tilings of the exponential grid. The
speci�cation forces both tilings to be the same, and to be locally consistent.
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Hence a winning strategy for Controller induces a valid tiling. Conversely a valid
tiling gives Controller a winning strategy. The problem is therefore NExpTime-hard. □

For the upper bound, we rely on our characterisation of runs in a DLSS in terms
of limit con�gurations. In all that follows we �x a nested DLSG (S, (SC

p , S
E
p )p∈Proc,B),

where we have

S = (Proc, ar , (Ap)p∈Proc, pinit,Locks),

Ap = (Sp,Σp, δp, initp) for all p, and

B = (Q,Σ,∆, qinit, F, pr)

.
In order to characterise winning strategies we will need the notions of local runs, which

are left branches of con�gurations. We will also de�ne labelled local runs, which are local
runs annotated with states of B. They will allow us to reduce the regular control problem
for DLSG to a usual two-player game.

An agent in a tree (τ, λ) is a node that is either the root or the right child of another
node. We call them agents as they are the starts of left branches in the tree, so we identify
them with agents executing local runs.

A local run on process p is a sequence of the form

up = (s0, B0, a0) −−→p (s1, B1, a1) −−→p · · ·

so that s0, s1, . . . ∈ Sp, a0, a1, a2, . . . ∈ Σp, δp(si, ai+1) = si+1, for all i and (s0, B0) =
(initp, ∅). Furthermore it should be consistent with lock acquisitions, i.e., for all i:

If op(ai+1) = spawn(q, θ) then Bi+1 = Bi.

If op(ai+1) = acqx then x /∈ Bi and Bi+1 = Bi ∪ {x}.

If op(ai+1) = relx then x ∈ Bi and Bi+1 = Bi \ {x}.

A local run of a con�guration (τ, λ) is the local run de�ned by the left branch from
an agent in τ . Formally, it is a local run of the form up = (s(ν), H(ν), a(ν)) −−→p(ν)

(s(ν0), H(ν0), a(ν0)) −−→p(ν) · · · with ν an agent.
It is a σ-local run if for all i such that si ∈ SC

p , ai+1 = σ(a1 · · · ai).
We also de�ne a labelled local run on process p as a local run annotated with states

of the objective automaton B: it is a sequence of the form ūp = (s0, B0, q0, a0)
d1−−→p

(s1, B1, q1, a1)
d2−−→p · · · so that (s0, B0, a0) −−→p (s1, B1, a1) −−→p · · · is a local run on p,

q0, q1, . . . ∈ Q, and for all i, di ∈ ∆ and either op(ai) is not a spawn di = (qi−1, ai−1, qi)
or it is a spawn and there exists q such that di = (qi−1, ai−1, qi, q).

We say that ūp is accepting if either it is �nite and the last state qi is in F , or it is
in�nite and min({pr(q) | ∀i,∃j > i, q = qj}) is even.

Now that we have a notion of local run, the next step is to characterise winning control
strategies. To begin with, we need to adapt Lemma 5.8 a little to characterise trees that
are limit con�gurations of σ-runs.
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Corollary 5.25

Let σ be a control strategy. A tree τ is the limit con�guration of a process-fair
σ-run if and only if all the following conditions hold

F1 The node labels in τ match the local transitions of the system, and for all ν
that is a right child or the root, the left branch starting from ν is a σ-local
run.

F2 For every leaf ν every possible transition from s(ν) has operation acqx for some
x with L(ν)(x) ∈ H(τ).

F3 For every lock ℓ ∈ H(τ) there are �nitely many nodes with operations on ℓ,
and there is a unique node labelled with an unmatched acq of ℓ.

F4 The relation ≺H is acyclic.

F5 The relation ≺H has no in�nite descending chain.

Proof. For each process p, we can obtain an in�nite transition system by applying the
strategy σ in p to choose actions from states of SC

p . We can then apply Lemma 5.8 to
the resulting DLSS and we get this corollary.

Item F2 simply translates item F2 using the assumption that all actions from Con-
troller states have operation nop (by de�nition of DLSG).

We once again go through a de�nition of patterns, which are summaries of local runs
of bounded length. We will show that we can determine whether a set of local runs can
be combined to form a limit con�guration in L(B) from the set of their patterns.

De�nition 5.26

We de�ne Σspawn = {a ∈ Σ | ∃p′, θ, op(a) = spawn(p′, θ)}. We call an annotated
spawn of p an element of Q × Σspawn × pr(Q). Let ASp be the set of annotated
spawns.
An extended pattern is a tuple (p, q, SP0T0x1SP1T1 · · ·xkSPkTk, IT ) where

p ∈ Proc

q ∈ Q

x1 · · · xk is a sequence of distinct lock variables of Var(p)

For each i, SPi : ASp → [0, ar(p) + 1] ∪ {+∞}

IT ⊆ Var(p)

Those patterns describe the sequence of unmatched acq happening in a labelled local
run, and the numbers of spawn operations made between each pair of consecutive events.
Spawn operations are annotated with the maximal priority seen so far and the current
state of B. We count the number of occurrences of each spawn operation between two
events up to ar+1. We also have a set of lock variables IT , representing the set of locks
taken in�nitely many times.
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We now formally de�ne the extended pattern associated with a labelled local run. Let

up = (s0, B0, a0, q0)
d1−−→p (s1, B1, a1, q1)

d2−−→p · · · be a �nite or in�nite labelled local run.

Let {i1, . . . , ik} be the set of indices i such that op(ai) = acqx and op(ai′) ̸= relx
for all i′ > i. For each j ∈ [1, k], we de�ne xj so that op(aij) = acqxj

. Those are
the indices corresponding to the unmatched acq.

Then for each j ∈ [0, k − 1], we de�ne Tj = {x ∈ Var(p) | ∃i ∈ [ij + 1, ij+1 −
1], op(ai) = acqx}. Those are the sets of locks acquired temporarily between two
unmatched acq.

We also set, for each j ∈ [0, k − 1], q ∈ Q, a ∈ Σspawn and pr ∈ pr(Q),

Ij(q, a, pr) = {i ∈ [ij, ij+1−1] | di = (qi−1, ai−1, qi, q), ai = a, pr = max({pr(qi′) | i′ < i})}.

We then set SPj(q, a, pr) = min(|Ij|, ar(p) + 1).

For j = k we do the same but take into account that there may be in�nitely many
spawns. Let

Ik(q, a, pr) = {i > ik | qi−1 = q, ai = a, pr = max({pr(qi′) | i′ < i})}.

We then set SPk(q, a, pr) as min(|Ik|, ar(p) + 1) if Ik(s, q, a, pr) is �nite and +∞
otherwise.

Let IT = {x ∈ Var(p) | ∀i, ∃i′ > i, op(ai′) = acqx}.

The extended pattern of up is π(up) = (p, q0, SP0x1SP1 · · ·xkSPk, IT ).
Given a (non-labelled) local run up, a state q ∈ Q and an extended pattern π, we

say that π is an extended pattern of up if there is an accepting labelled local run whose
sequence of transitions is up and whose extended pattern is π.

We now go through a sequence of de�nitions that resemble the one from Section 4.3.3
in the previous chapter. A �nite local run u is risky if it ends in a state where all outgoing
transitions acquire a lock. If u is risky then we de�ne B(u) as the set of locks that can
be acquired from its last state.

An extended blocking pattern is a pair (π,B) where π is an extended pattern and
B ∈ Var(p) for some p ∈ Proc. Given a risky local run u, we say that (π,B) is a extended
blocking pattern if π is a extended pattern of u, u is �nite and risky and B(u) = B.

We now show that given a strategy σ, the extended patterns of σ-local runs by a
control strategy determine whether it is winning or not.

Given a control strategy σ, we write Πb(σ) for the set of extended blocking patterns
of �nite risky accepting labelled σ-local runs ū. We write Π∞(σ) for the set of extended
patterns of accepting in�nite labelled σ-local runs ū. We call the pair (Πb(σ),Π∞(σ)) the
behaviour of σ.

We now prove a lemma justifying these de�nitions. It states that whether a strategy
is winning depends only on its behaviour.

Lemma 5.27

Let (τ, λ) ∈ L(B) be a limit con�guration accepted by B. Let Πb be the set of
extended blocking patterns of risky local runs of (τ, λ), and Π∞ the set of extended
patterns of its in�nite local runs.
Then for all control strategy σ′ such that Π(σ′) ⊆ Π and Π∞(σ′) ⊆ Π∞, σ′ is losing.
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Proof. As τ is in L(B), we can annotate it τ with the states of an accepting run of B. In
what follows we will consider that every leftmost branch from an agent in τ is a labelled
local run.

We construct a tree (τ ′, λ′) from (τ, λ) using the σ′-local runs and show that is in
L(B) and that it is the limit of a σ′-run. We will write pr ′, st ′, act ′,L′,H ′ for the labelling
functions of (τ ′, λ′).

A node of a labelled tree is called important if it is either

a right child of its parent

or the root

or labelled with an unmatched acq.

We write IN(τ) for the set of important nodes of τ .
We present this construction in the form of an algorithm, that constructs this tree

�layer by layer�. While we construct (τ ′, λ′), we also de�ne a mapping β : IN(τ ′)→ IN(τ),
which maps each important node in τ ′ to a node in τ that it mimics.

We start with a tree τ ′ that is just the root, which we map to the root of τ .
We apply the following step inde�nitely:

First we pick an agent ν ′ in τ ′ that is of minimal depth among the ones that have
not been treated yet. The minimal depth condition is there to make sure that every
agent is eventually treated.

Then we consider the labelled local run ū that is the left branch rooted in β(ν ′).
Let p be the corresponding process. There exists an accepting labelled σ-local run
ū′ whose extended pattern is π(u) and such that if u is �nite then so is u′ and
B(u) = B(u′). We add u′ to τ ′ as a left branch rooted in ν ′.

As π(u) = π(u′), they have unmatched acq on the same lock variables in the same
order. For each node ν with an unmatched acq in this branch of τ ′ we de�ne β(ν)
as the corresponding unmatched acq in τ .

Then, for each interval between two unmatched acq, we give a right sibling to each
node with a spawn operation. We label them as follows. Let q ∈ Q, a ∈ Σspawn and
pr ∈ pr(Q). Between each pair of unmatched acq, u and u′ have the same number
of spawns corresponding to those parameters, or both have more than ar. In the
�rst case, we de�ne β on those children in τ ′ as a one-to-one matching with the
corresponding right children in τ .

In the second case, let L be the set of locks that are used in u and passed to the
children. Those are the same locks for all those children, as they are spawned from
the same process using the same action a. Let C be the set of those children in τ
which have an unmatched acq of a lock of L in their descendants. As |L| ≤ ar(p),
we can pick one of the children in τ ′ for each element of C and make β map it to
that element. Then we pick a child in τ that is not in C and map the rest of the
children in τ ′ to it.

After the last unmatched acq, we have three cases. Either u and u′ have the same
number of spawns corresponding to those parameters, or both have more than ar
but �nitely many, or both have in�nitely many. We handle the �rst two cases as
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before. For the third case, we pick a one-to-one mapping from the right children in
τ ′ to those in τ .

We start by showing that every branch of τ ′ either ends with an accepting state of B
or is such that the minimal priority seen in�nitely often is even.

First of all, every left branch is accepting, by construction. As a consequence, every
�nite branch ends with an accepting state of B. It remains to consider branches that
go to the right in�nitely many times. Consider such a branch, let ν0, ν1, ν2 . . . be the
sequence of right children along that branch. By construction, in τ we have an in�nite
branch that goes in�nitely many times to the right and whose sequence of right children is
β(ν0), β(ν1), . . .. By de�nition of β, the maximal priority seen between β(νi) and β(νi+1)
is the same as the maximal priority between νi and νi+1. As a consequence, the maximal
priority seen in�nitely often is the same in the two branches. Since we labelled τ with an
accepting run of B, we conclude that this priority is even.

As we build τ ′ using only σ′-local runs, it su�ces to show that τ is a limit con�guration
to show that it is the limit con�guration of a σ′-run and thus prove the lemma.

Claim 5.27.1. The construction satis�es the following properties:

(1) For all ν ′ ∈ IN(τ ′), pr ′(ν ′) = pr(β(ν ′))

(2) For all ν ′ ∈ IN(τ ′), ν is labelled with an unmatched acq of x if and only if β(ν ′) is.

(3) For all ν1, ν2 ∈ IN(τ ′), if β(ν1) is a strict ancestor of β(ν2) then ν1 is a strict
ancestor of ν2.

(4) For all ν1, ν2 ∈ IN(τ ′), and x1 ∈ Var(ν1 ) and x2 ∈ Var(ν2 ), if x1, ν1∼x2, ν2 then
x1, β(ν1)∼x2, β(ν2).

(5) For all ν ′ ∈ IN(τ ′) and x ∈ Var(ν ′), L(ν ′)(x) ∈ H ′(τ ′) if and only if L(β(ν ′))(x) ∈
H(τ).

(6) For all ν1, ν2 ∈ IN(τ ′), and x1 ∈ Var(ν1 ) and x2 ∈ Var(ν2 ), if L(ν1)(x1) ≺H

L(ν2)(x2) then L(β(ν1))(x1) ≺H L(β(ν2))(x2).

(7) For all ν ′ ∈ τ ′, ν ′ and β(ν ′) have the same number of ancestors that are right
children.

(8) For all ν ′1 ̸= ν ′2 ∈ τ ′, if β(ν ′1) = β(ν ′2) then let ν ′ be their closest common ancestor
in τ ′, for all x ∈ Var(ν ′), there is no unmatched acq of any y in a descendant ν ′′

of ν ′ such that ν ′, x∼ν ′′, y.

(9) For all ν ′ ∈ IN(τ), β−1(ν ′) is �nite

Proof of the claim.

Items (1) to (3) are immediate from the construction.

Item (4) results from a straightforward induction on the number of steps of the
algorithm.

For item (5), we prove the two directions:

� If L(ν ′)(x) ∈ H ′(τ ′) then there is a node µ′ ∈ τ ′ and y ∈ Var(ν ′) with
µ′, y∼ν ′, x and µ′ is labelled with an unmatched acqy. By item (4) we have
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β(µ′), y∼β(ν ′), x and by item (2) β(µ′) is labelled with an unmatched acqy,
hence L(β(ν ′))(x) ∈ H(τ).

� Suppose L(β(ν ′))(x) ∈ H(τ). Let ν ′1, . . . , ν
′
k be the right children on the

branch from the root to ν ′. By construction, β(ν ′1), . . . , β(ν
′
k) are the right

children on the branch from the root of τ to β(ν ′). Let i be the small-
est index such that β(ν ′i), y∼β(ν ′), x. Let µ1, . . . , µr be the sequence of
right children between β(ν ′i) and the node µ with the unmatched acq of
L(β(ν ′))(x). Note that they all use lock L(β(ν ′))(x), with a descendant
that has an unmatched acq of it. In the algorithm de�ned above, we make
sure that all important nodes in τ with a descendant who has an unmatched
acq have a predecessor by β. A simple induction shows that there is a se-
quence of nodes µ′

1, . . . , µ
′
r, µ

′ such that β(µ′
j) = µj for all j and β(µ′) = µ.

Let z be the variable such that µ is labelled with acqz. As β(ν ′), x∼µ, z
and µ = β(µ′), by items (2) and (4) we have L(ν ′), x ∈ H ′(τ ′).

For (6), let ℓ′1 = L′(ν1)(x1) and ℓ′2 = L′(ν2)(x2), suppose ℓ′1 ≺H ℓ′2. There exist
µ′
1, µ

′
2 ∈ τ ′ such that µ′

1 has an unmatched acq of ℓ′1 and µ
′
2 has an acq of ℓ′2 and

µ′
1 is an ancestor of µ′

2. Let µ
′′ be the closest ancestor of µ′

2 that is a right child.

� If µ′′ is an ancestor of µ′
1 then the left branch from µ′′ contains an un-

matched acq of x and later an acq of y, with L′(µ′′)(x) = ℓ′1 and
L′(µ′′)(y) = ℓ′2. Hence the left branch from β(µ′′) also contains an un-
matched acq of x and later an acq of y, as the two have the same extended
pattern. Therefore L(β(µ′′))(x) ≺H L(β(µ′′))(y). Using item (4) we obtain
L(ν1)(x1) ≺H L(ν2)(x2).

� If µ′′ is a descendant of µ′
1 then β(µ

′′) is a descendant of β(µ′
1). Furthermore

as the left branches from µ′′ and β(µ′′) have the same extended pattern, the
one from β(µ′′) contains an operation acqy with L

′(µ′′)(y) = ℓ′2.

Let x be the variable such that β(µ′
1) is labelled acqx, then we have

L(β(µ′
1))(x) ≺H L(β(µ′′)(y)). Using item (4) we again obtain L(ν1)(x1) ≺H

L(ν2)(x2).

Item (7) is immediate from the construction.

For (8), let µ′
1, µ

′
2 be the �rst right children on the branches from ν ′ to ν ′1 and ν

′
2

respectively. They must exist as two nodes on the same left branch cannot have
the same image and (7) implies that there are as many right nodes from ν ′ to ν ′1
and ν ′2.

Then β(µ′
1) and β(µ

′
2) must both be ancestors of β(ν ′1) = β(ν ′2), thus they are

comparable for the ancestor relation. As ν ′ is the closest ancestor of ν ′1 and ν
′
2,

µ′
1 and µ′

2 must be incomparable, thus by (3) we have β(µ′
1) = β(µ′

2). As µ′
1

and µ′
2 must be added to τ ′ on the same step of the algorithm, the construction

guarantees that β(µ′
1) and β(µ

′
2) have no descendant with unmatched acq of a

lock used by β(ν ′). By (2) and (4), this means that µ′
1 and µ

′
2 have no descendant

with unmatched acq of a lock used by ν ′, which implies the same property for
ν ′1 and ν

′
2.

Item (9) follows by induction on the depth of ν ′. It clearly holds for the root.
Let ν ′ be a node, let µ′ be its closest strict ancestor that is a right node or the
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root. By induction hypothesis β−1(µ′) is �nite. We only add preimages to ν ′

when we treat leaves that are in β−1(µ′), and we can only add �nitely many ones
each time. Hence β−1(ν ′) is �nite.

■

In the rest of the proof, we show that (τ ′, λ′) satis�es all conditions in Lemma 5.25.
As (τ, λ) is the limit con�guration of a σ-run, it satis�es those conditions.

F1 is straightforwardly satis�ed: we built τ ′ while respecting the transitions of the
DLSG.

For F2, consider a leaf ν of τ ′. Let ν ′ be its closest ancestor that is an agent: ν
must be a left descendant of ν ′. By construction, β(ν ′) has a left descendant in τ
that is a leaf labelled with the same state s as ν. Hence every operation from s
does an acqx with L(ν)(x) ∈ H(τ), and thus by (5) L′(ν ′)(x) ∈ H ′(τ ′).

For F3, let ℓ′ ∈ H ′(τ ′). There is a node ν ′ with an unmatched acq of x, with
L′(ν ′)(x) = ℓ′. Then by (2), the node ν = β(ν ′) also has an unmatched acq of x.
Therefore we have a lock ℓ ∈ H(τ) with L(ν)(x) = ℓ. Let N ′ be the set of agents
µ′ of τ ′ which have a acqy operation in a left descendant and with x, ν ′∼y, µ′. For
all µ′ ∈ N ′, the left branch from β(µ′) and µ′ have the same extended patterns.
Hence all µ′ ∈ N ′ have �nitely many left descendants with operations on ℓ′. Thus all
µ ∈ β(N ′) have a left descendant with a acqy operation and are such that x, ν∼y, µ.
Hence β(N ′) must be �nite, and as β−1(ν ′′′) is �nite for all ν ′′′ (by (9)), N ′ must
be �nite. As a result, there are �nitely many operations on ℓ′ in τ ′.

We now show that there cannot be ν ′1, ν
′
2 with both unmatched acq of ℓ. Suppose

it is the case, let x1, x2 be the variables acquired in ν ′1 and ν ′2. Then we have
ν ′1, x1∼ν ′2, x2, and β(ν ′1), x1∼β(ν ′2), x2 by (4). Assume that β(ν ′1) ̸= β(ν ′2), then we
obtain a contradiction as τ would not satisfy F3. On the other hand, if β(ν ′1) =
β(ν ′2), then by (8) we get a contradiction.

By (6), if ≺H has a cycle or an in�nite descending chain then so does ≺H′ . Thus
F4 and F5 hold.

We have veri�ed all the conditions.

As a consequence of the previous lemma, we can use behaviours as invariants to solve
distributed synthesis, as in the previous chapter. Furthermore, the size of a behaviour is
only exponential in ar(S) and |Q| (and linear in Proc). They can thus be enumerated in
double-exponential time.

Remark 5.6.1. The number of extended patterns is at most

φ(S,B) = |Proc||Q|(ar(S)(|Q| · |Σspawn| · |pr(Q)|)ar(S)+22ar(S))ar(S)+12ar(S).

This formula is obtained directly from the de�nition. The number of extended blocking
patterns can be assumed to be at most that bound times 2ar(S).

It remains to show that we can decide, given a behaviour, if there is a strategy
To do so, we show that we can construct a non-deterministic Muller automaton recog-

nising the set of local runs whose extended patterns are in a given set. The size of the

194



5. Dynamic lock-sharing systems

automaton is exponential in the size of the DLSG but only polynomial in the size of Π.
We then determinise this automaton and use it to check both conditions of the previous
lemma.

Lemma 5.28

Let Πb be a set of extended blocking patterns. For all p ∈ Proc there is a DFA
with

∑
p∈Proc |Sp|2|Q|φ(S,B) states recognising �nite local runs of p with an extended

blocking pattern in Πb.

Proof. We start by building a DFA which reads labelled local runs, checks consistency and
keeps track of their extended patterns and the last state of Q they visit. This information
is easy to update. Its number of states is exponential in |Q| and ar(S).

By removing the states of Q from the input, we obtain an NFA reading local runs,
guessing an execution of B on it and keeping track of the extended pattern and the last
state of Q reached by the resulting labelled local run. We can then determinise it to get
a DFA reading a local run u and keeping track of the set of extended patterns of labelled
local runs whose underlying local run is u, and the subset of accepting ones.

Finally, it su�ces to additionally keep track of the state reached in Sp and restrict
the �nal states to the ones that contain an extended pattern π of an accepting labelled
local run such that (π,B) ∈ Πb with B the set of locks that can be taken from the last
state of Sp visited, assuming all outgoing transitions take a lock.

Remark 5.6.2. Importantly, in the following construction, we consider local runs simply
as sequences of actions without restricting them to the ones that can be produced by S.
This ensures that the size of the resulting automaton does not depend on the number of
states of the processes but only on their arity and the number of states of B.

Lemma 5.29

Let Π∞ be a set of extended patterns, let p ∈ Proc and q ∈ Q.
There is a deterministic Muller automaton with φ(S,B) states, and with∑

p∈Proc 2ar(S)2 + |AS|(ar(p) + 2)ar(p) colours recognising in�nite accepting la-
belled local runs which have an extended pattern that is in Π∞.

Proof. We consider labelled local runs as �nite or in�nite words over the �nite alphabet⋃
p∈Proc(QΣ).
It is easy to check that the sequence of states of Q is a run of B by simply keeping

track of the current state reached. We will ignore this part in the rest of the proof. The
fact that the labelled local run is accepting is a parity condition, easily encoded as a
Muller condition.

We now build an automaton checking whether a labelled local run has an extended
pattern that is not in Π.

States are of the form SP0T0x1SP1T1 · · ·xkSPkTk. The xi are lock variables that were
acquired and not released so far, in the order in which they were last acquired. The Ti
are the sets of locks acquired and released between the last acquisitions of the xi. The
SPi count the number of each annotated spawn between the last acquisitions of the xi,
up to ar(p) + 1. This information is easy to keep track of, and the number of states is
less than the number of extended patterns.
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We have colours of the form (x, i) ∈ Var(p)× [1, |Var(p)|], (as, j, i) ∈ AS× [0, ar(p)+
1] × [1,Var(p)] and (y, i) ∈ Var(p) × [1, |Var(p)|]. We colour the states with the corre-
sponding colours as follows:

Colour (x, i) indicates that x = xi

Colour (as, j, i) indicates that SPi(as) = j

Colour (y, i) indicates that y ∈ Ti

It is then easy to check that each set of colours seen in�nitely many times determines
the extended pattern of the labelled local run. We can thus express the fact that this
extended pattern is in Π as a Muller condition. It su�ces to take the conjunction of
that Muller condition with the parity condition expressing that the labelled local run is
accepting to get the result.

Lemma 5.30

Let Π∞ be a set of extended patterns. There is a deterministic parity automa-

ton with 22
(|Proc|+|Q|+ar(S)+|Σspawn|)O(1)

states and with 2(|Proc|+|Q|+ar(S)+|Σspawn|)O(1)
many

priorities recognising in�nite local runs which have an extended pattern π ∈ Π∞.

Proof. Consider the Muller automaton obtained in Lemma 5.29. Let N be its number of
states and K its number of colours.

We can obtain a non-deterministic Muller automaton recognising in�nite local runs
which have an extended pattern π /∈ Π by additionally guessing a sequence of transitions
of B to turn the input local run into a labelled local run. Doing so, we only multiply the
number of states by |Q|.

We can then apply Proposition 2.3 to turn the resulting automaton into a non-
deterministic parity automaton, with M = N |Q| ·K ·K! states and K priorities.

It then su�ces to apply Proposition 2.4 to turn the resulting automaton into a de-
terministic parity automaton, with 2MM(K + 1)M(K+1)(M(K + 1))! states and using
2M(K + 1) priorities. A little computation shows the lemma.

Now that we have a deterministic parity automaton, we can use it to decide a two
player game characterising the existence of a strategy satisfying a behaviour.

Lemma 5.31

Let Πb be a set of extended blocking patterns and Π∞ a set of extended patterns.
We can check double-exponential time whether there is a control strategy σ such
that Πb(σ) ⊆ Πb and Π∞(σ) ⊆ Π∞.

Proof. Suppose there is a winning control strategy σ. Let p ∈ Proc, consider the following
two-player game: First Environment picks a process p ∈ Proc. Then we play on the
transition system of p, each player picks the next transition from their state. The objective
for Environment is that either:

at some point the local run u constructed so far has an extended blocking pattern
that is not in Πb.
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the play is in�nite and the local run u constructed has an extended pattern that is
not in Π∞.

By Lemma 5.30, this objective is recognised by a deterministic parity automaton
with double-exponentially many states and exponentially many priorities in the size of
the system.

We can solve this game in double-exponential time by Proposition 2.9.

We can then infer the following result.

Proposition 5.32

The regular control problem for DLSG is in 2ExpTime over nested DLSG.

Proof. It su�ces to enumerate behaviours, and for each one (Πb,Π∞), check that there is a
strategy σ such that Πb(σ) ⊆ Πb and Π∞(σ) ⊆ Π∞, and that there is a limit con�guration
(τ, λ) accepted by B and such that Πb(τ, λ) ⊆ Πb and Π∞(τ, λ) ⊆ Π∞.

If the �rst answer is yes and the other one is no, then the strategy computed is
winning. If this is never the case, then every strategy is losing by Lemma 5.27.

The existence of the limit con�guration (τ, λ) can be checked using a product of B with
the automata constructed in Proposition 5.18, Lemma 5.28 and Lemma 5.29. We obtain
a Muller tree automaton with exponentially many colours and double-exponentially many
states, whose emptiness can be checked in double-exponential time.

By Lemma 5.31, the existence of the strategy can also be checked in double-exponential
time. As a consequence, we have a 2ExpTime algorithm to check if Controller wins a
DLSG.

Finally, let us comment on the results obtained in this section. The complexity of our
algorithm arises mostly from the determinisation step in 5.30. Everything else can be
done in non-deterministic exponential time: in particular we can guess sets of extended
patterns (Πa)a∈Σ and Π∞, since they have at most exponential size.

If the regular objective is given by a deterministic automaton, then we do not need
the determinisation step and we end up with an automaton of exponential size only. As
a consequence, when B is deterministic the problem is in NExpTime.

Furthermore, the size of Σspawn can be bounded by |Proc|2ar(S)!. Indeed, we can
replace each spawn transition by two consecutive transitions, one doing nop and the
other the spawn. This ensures that every spawn transition is the only transition from its
source state. We can then have a unique letter for each spawn(p′,Σ) while keeping the
system deterministic. Thus, if we �x both ar(S) and B, as well as the number of process
types, we obtain an NP algorithm.

In particular, deadlock objectives like �A process is blocked forever�, or �In�nitely
many processes get blocked� or �Every process ends up in a deadlock� can be expressed
with tree automata of constant size. Thus checking if there is a control strategy against
one of those objectives can be done in non-deterministic polynomial time when the arity
and the number of process types are �xed.

5.7 Towards integrating variables

In this section we study the addition of shared variables in the model at hand. We show
several undecidability results, but also highlight a research direction that may lead to
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positive results.
A dynamic lock-sharing system with variables (DLSSV for short) is de�ned similarly

to a DLSS:
S = (Proc, ar , (Ap)p∈Proc, pinit ,Locks ,Γ, αinit)

Each transition system Ap is again a tuple (Sp,Σp, δp, opp, initp).
The only two di�erences are: a �nite alphabet Γ, which is the set of values taken

by the shared variable, and the set of available operations Op(p) which is extended with
{rd(α),wr(α) | α ∈ Γ}.

Con�gurations are con�gurations of DLSS, extended with a letter of Γ, indicating the
current value of the shared variable: (τ, λ), α with (τ, λ) a con�guration of S and α ∈ Γ.
There is a step (τ1, λ1), α1

ν,a−→ (τ2, λ2), α2 if either

op(a) is nop, a spawn or a lock operation and (τ1, λ1)
ν,a−→ (τ2, λ2)

or (τ1, λ1) = (τ2, λ2) and op(a) = rd(α1) and α2 = α1,

or (τ1, λ1) = (τ2, λ2) and act(a) = wr(α2)

A run is, as usual, a sequence of steps (τ0, λ0), α0
ν1,a1−−−→ (τ1, λ1), α1

ν2,a2−−−→ · · · . It is
initial if (τ0 is just the root ε with λ0(ε) = (pinit, initpinit

,⊥, ∅, ∅) and α0 = αinit.
This extension of the system with a shared variable turns out to yield an undecidable

state reachability problem (given a DLSSV and a state, is there a reachable con�guration
in which a node is labelled with that state?).

Theorem 5.33

The state reachability problem for DLSSV is undecidable.

Proof. We reduce from the emptiness of intersection of two context-free grammars. Let
G1,G2 be two context-free grammars over a common alphabet A. We can assume that in
both grammars every rule is of the form X → Y b, X → aY or X → x.

We start by de�ning a system simulating a single grammar, and then extend it to a
system in which two grammars are simulated in parallel, while interleaving their runs to
make sure that they produce the same word.

Let G be a context-free grammar of that form. We construct a DLSSV such that the
set of sequences of letters of A written by runs reaching a designated state qf is exactly
L(G).

For each rule X → α of G we have a process pX→α ∈ Proc, of arity 2. Process
pX→α(ℓ1, ℓ2) starts by taking locks ℓ1 and ℓ2. It then goes through α from left to right
as follows. When it encounters a terminal a, it writes a on the shared variable. When
it encounters a non-terminal Y , it picks a rule Y → β, writes start, releases ℓ2, spawns
pY→β(ℓ2, new), reads done and takes back ℓ2.

After going through the whole rule, it writes done, releases ℓ2, then ℓ1, and stops.
Figure 5.3 displays an example.
We add an initial process pinit(ℓ1) that picks a rule I → α, writes start, spawns

pI→α(ℓ, new), reads done, takes ℓ and releases ℓ, then goes to qf .
We call a leaf active if it holds all its locks.
We show both directions in two separate claims, that are formulated in a way that

makes the inductive proof more direct. The �rst one states that we only produce words
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qf

spawn(pI→aX , ℓ, new)

(done)

(ℓ)

(ℓ)

(ℓ1)

(ℓ2)

(a)

(start)

(ℓ2)spawn(pX→b, ℓ2, new)

(done)

(ℓ2)

(done)

(ℓ2)

(ℓ1)

(ℓ1)

(ℓ2)

(a)

(ℓ2)

(ℓ1)

Figure 5.3: A run of a DLSSV S as in the proof of Theorem 5.33, simulating the rules
I → aX, X → b.

that are in the language of the grammar, and that there is at most one active leaf at all
times.

Claim 5.33.1. Let τ be a con�guration with a leaf ν such that st(ν) = qX→α
init , with

X a non-terminal of G, and locks of ν are both free. Consider a non-empty run ϱ :
(τ, λ), start

∗−→ (τ ′, λ′), α with τ ′ a tree obtained from τ by replacing ν with a subtree, and
so that the �rst lock of ν is free. Then α = done, all descendant processes of ν in τ ′ have
reached the end of their local run, and the sequence of letters of A written during the run
is a word w ∈ L(X).

Further, at all times of ϱ there is at most one active node in the descendants of ν.

Proof of the claim. Suppose α is of the form aY , the cases Y b and x are similar. The
�rst steps of ϱ must consist in a left branch from ν that takes ℓ1 and ℓ2, writes a,
then writes start, releases ℓ2 and spawns a node ν̄ labelled pY→β(ℓ2, new) for some
rule Y → β.
We are then in a con�guration τ̄ , start. Consider the run section from τ̄ , start to the
con�guration just before the process takes back ℓ2. During that part of the run, it
read done and did nothing else. Furthermore it is not active, as it is not holding ℓ2.
This means that, by removing this read, we obtain a run τ̄ , start to τ̄ ′, ᾱ where the
only actions taken are by descendants of ν̄.
We can apply the lemma inductively on this part of the run. We obtain that ᾱ = done
and the sequence of writes of letters of A made during that part of the run is a word
w̄ ∈ L(Y ). Also, all processes in the tree rooted in ν̄ have �nished their local run, and
there was at most one active leaf below ν̄ during that part of the run.
Then the �rst process takes ℓ2, then writes done, releases ℓ2, and then ℓ1 and stops.
We must therefore have α = done, and the sequence of letters of A written during the
run is w = aw̄, which is in L(X). All processes below ν have stopped, and at all times
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there were at most one active process. ■

The second claim shows that every word of the language of the grammar can be
produced by a run of our DLSSV.

Claim 5.33.2. Let τ be a limit con�guration with a leaf ν such that st(ν) = qXinit, with
X a non-terminal of G and locks of ν are both free.

Let w ∈ L(X), there is a run (τ, λ)start
∗−→ (τ ′, λ′)done such that locks of ν are both

free at the end, τ ′ is obtained from τ by replacing ν with a subtree whose leaves are all
labelled by �nal states, and the sequence of letters of A written during the run is w.

Proof of the claim. Let X → aY be a rule such that w = av with v ∈ L(Y ). We build
a run as follows.
From ν we make the process take ℓ1 and ℓ2, write a, then write start, release ℓ2 and
spawn a node ν̄ labelled pY (ℓ2, new).
We are then in a con�guration τ̄ , start. We apply the induction to get a run to τ̄ ′, done
during which v has been written, and only descendants of ν̄ have been created. Further,
ℓ2 is free.
Then the �rst process takes ℓ2, then writes done, releases ℓ2, and then ℓ1 and stops.
We have a run (τ, λ)start

∗−→ (τ ′, λ′)done, and the sequence of letters of A written
during the run is indeed w = av. Moreover, ℓ1 and ℓ2 are free. ■

As a consequence of those claims, we obtain that:

The sequences of letters of A that can be written by runs of this DLSSV are exactly
the words of L(G).

At all times of the run there is at most one active leaf. As processes only write
while holding all of their locks. this implies that at most one process is able to write
on the shared variable at all times.

We construct the �nal system by applying this construction for both grammars G1
and G2. We obtain two DLSSV S1 and S2.

We then modify both systems as follows: Let A1 and A2 be two disjoint copies of A.
We write a1 and a2 for the copies of a in A1 and A2.

We replace every wr(a) in S1 by two actions rd(a2)wr(a1) , while in S2 we replace
them with wr(a2)rd(a1). We also rename the letters start and done in S1 (resp. S2) by
start1 and done1 (resp. start2 and done2).

The �nal system is obtained by making an initial process spawn the initial processes
of those two systems with distinct locks.

The speci�cation is simply that both initial processes end in qf .
Suppose we have a run satisfying it. We saw previously that this the sequence of letters

of A1 written by S1 must lie in L(G1). We showed that there is at most one active leaf in
the run of S1 at all times. Furthermore, the rd(a2)wr(a1) actions are made consecutively
by a process holding both of its locks. Therefore the sequence of writes and reads of S1
in A1 ∪ A2 must be of the form rd(a12)wr(a11) · · · rd(ak2)wr(ak1) with a

1 · · · ak ∈ L(G1).
As a result, the sequence of values taken by the shared variable in A1 must be a

subword of the one in A2. A symmetric argument shows that the sequence in A2 is also a
subword of the one in A1, thus the two are equal. As a result, we obtain a word generated
by both grammars.
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Now suppose we have a word w generated by both grammars. Then we can simply
take the two runs of S1 and S2 corresponding to w and interleave them so that for each
letter a �rst S2 writes a2 then S1 reads a2 and writes a1 and then S2 reads a1.

There are no other interactions between the two parts of the run as they use disjoint
locks and letters apart from A1 ∪ A2.

As a result there is a run satisfying the speci�cation if and only if the two grammars
produce a common word.

We can observe that the construction above requires processes to take turns writing on
the shared variable an unbounded amount of times. This invites the following restriction,
which requires that the process writing on the shared variable only changes a bounded
number of times.

De�nition 5.34

Let K ∈ N, let ϱ be a run. We say that ϱ has K writer reversals if we can cut
ϱ into K runs ϱ0, . . . , ϱK such that in each ϱi every wr operation happens on the
same left branch.

We can therefore rede�ne the problems seen so far with bounded writer reversals, that
is, we are given a bound K in the input and only consider runs with at most K writer
reversals.

It is already known that this restriction does not let us recover decidability when
processes have stacks. Here we call pushdown DLSSV the systems obtained by extending
pushdown DLSS with a shared variable.

Theorem 5.35

The state reachability problem for pushdown DLSSV is undecidable even with
bounded writer reversals.

Proof. It was shown in [Ati+14] that the state reachability problem is undecidable for
three pushdown processes communicating via a shared variable, even with only three
phases (which they call stages).

It su�ces to build a system in which three processes are spawned and apply their
construction to obtain the undecidability.

However, we conjecture that the problems at hand in this chapter are decidable on
DLSSV with bounded writer reversals and �nite-state processes.

Conjecture 5.36

The veri�cation of DLSSV against regular objectives is decidable with bounded
writer reversals.

Conjecture 5.37

The controller synthesis problem for DLSSV against regular objectives is decidable
with bounded writer reversals.
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The problem above asks for a strategy σ such that limit con�gurations of runs re-
specting σ are all accepted by a given parity tree automaton. There is a closely-related
question, stated below, which has the advantage of providing a winning control strategy
when the answer is yes. The previous problem only asks for a strategy that is winning
on runs with bounded writer reversals.

Conjecture 5.38

Given a DLSSV, a parity tree automaton B and a bound K, is there a control
strategy σ such that every σ-run has at most K writer reversals and has a limit
con�guration (τ, λ) /∈ L(B)?

5.8 Conclusions

We have considered veri�cation of parametric lock sharing systems where processes can
spawn other processes and create new locks. Representing con�gurations as trees, and the
notion of the limit con�guration, are instrumental in our approach. We believe that we
have made stimulating observations about this representation. It is very easy to express
fairness as a property of a limit con�guration. Many interesting properties, including
liveness, can be formulated very naturally as properties of limit trees (cf. page 166).
Moreover, there are structural conditions characterizing when a tree is a limit con�gura-
tion of a run of a given system (Lemma 5.9).

As the dining philosophers example suggests, for many systems the maximal arity
should be quite small (cf. Figure 5.1). Indeed, the maximal arity of the system corresponds
to the tree width of the graph where process instances are nodes and edges represent
sharing a lock. The maximal priority will be often 3. In our opinion, most interesting
properties would have the form �there is a left path such that� or �all left paths are such
that�, and these properties need only automata with three priorities. So in this case our
veri�cation algorithm is in Ptime.

Our handling of pushdown processes is di�erent from the literature. Most of our
development is done for �nite state processes, while the transition to pushdown process
is handled through right-resetting concept. Proposition 5.20 implies that in our context
pushdown processes are essentially as easy to handle as �nite processes.

We leveraged our results on veri�cation to reach our �nal goal of this chapter, i.e.,
handle synthesis of local controllers. There is a complexity gap there. It would be
interesting to �nd a way to avoid the determinisation step in Lemma 5.30.

We observed that the extension of the model with a shared variable (with only write
and read operations) is undecidable. We suggest an approach, which requires that the
writer changes only a bounded number of times. As further work it would be interesting
to see if it is possible to extend our approach to treat join operation [Gaw+11]. An
important question is how to extend the model with some shared state in addition to the
locks and still retain decidability for the pushdown case.
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Chapter 6

Conclusion and

Perspectives

I was working on the proof of one

of my poems all the morning and

took out a comma. In the after-

noon�well, I put it back again.

Oscar Wilde

Overview of the thesis

This work aims at presenting a fresh approach to the distributed controller synthesis prob-
lem. We study three a priori di�erent models. Surprisingly, a common proof structure
emerges in the three cases for the decidability of controller synthesis.

Let us reformulate it once again:

1. We de�ne �good� sets of local runs: invariants in Chapter 3, behaviours in Chap-
ters 4 and 5. They come with a �nite description: behaviours are �nite sets of
patterns, while invariants can be �nitely described using bases.

2. Then we show that if a strategy is winning then the set of local runs allowed by
this strategy is included in a good set. Additionally, for invariants we have to show
a bound on the size of the description. For behaviours, this is clear.

3. We show that we can decide, given such a family, whether there is a strategy that
only allows runs in it. We do this by encoding this problem as a two-player game
with a regular winning condition.

4. The resulting algorithms enumerate or guess good sets of runs up to the computed
bound, and for each one of them, look for local strategies which only allow local
runs within this set.
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This is a step in the right direction, which gives us a path towards synthesizing
controllers for increasingly powerful models. A simpli�ed version of this approach can be
used for veri�cation.

Let us now go over what we learned in each chapter.

Broadcast networks of register automata This chapter introduces a very pow-
erful model of networks of processes communicating by unreliable broadcasts of signed
messages. The main theorem is the decidability of controller synthesis for this model.
However, we think that the simpler case of signature BGR already improves considerably
our understanding of the problems at hand. It also illustrates very well the idea of in-
variants, which is central in this work. We now understand quite well the general model
of BGR. This is illustrated in the section discussing extensions: the fact that we can
easily handle extensions of the model shows that our understanding is robust. The study
of 1BGR also brings some interesting points: �rst of all in the literature many models
give each process a single datum, such as data VASS or population protocols with data.
We may thus build connections between 1BGR and these other works. In addition, the
complexity of the problems we study in this chapter drop dramatically between BGR and
1BGR.

Lock-sharing systems The point of this chapter is to explore a framework where
distributed veri�cation and synthesis are not only non-trivial and decidable but even
tractable. The central results are the NP-completeness of veri�cation for 2LSS and nested
LSS, along with the ΣP

2 -completeness of synthesis for both of those cases. This strongly
contrasts with the undecidability of synthesis in general LSS. The decidability results
stem from the use of patterns, with which we describe local runs and strategies. The
other important tool in our approach is the graph representation of deadlocks in 2LSS.
This lets us reduce the veri�cation and synthesis with respect to deadlock avoidance to
the exploration of a graph. This yields surprisingly good results when we add some extra
requirements: Many of the results assume that the systems are locally live or exclusive
(or both). Those are not strong requirements: an abstraction from a program to an LSS
can easily be made to satisfy both those conditions.

Dynamic lock-sharing systems As LSS with a �xed number of processes are quite
well understood, we extend them to be able to model less restricted programs. We make
the nested assumption once again, and obtain mainly two decidability results: veri�cation
of nested against regular tree languages (even with pushdown processes) and synthesis of
that same model. This is promising for several reasons. First, we obtain low complexities
for the problems studied when the arity of the processes are �xed. Second, this provides
solid ground on which to build increasingly powerful models, as suggested in the section
about addition of variables. Third, we brought down the veri�cation and synthesis of
those systems to questions on tree automata. The remaining problems (for instance
about the exact complexity of synthesis) can be formulated as motivating questions for
the tree automata community.
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Future directions

The most exciting open problems from this thesis are Conjectures 5.36 and 5.37. The ver-
i�cation and synthesis of dynamic systems with nested locks and variable with bounded
writer reversal would be a big step in the study of those systems. As a side note, it would
let us solve the Prisoners and lightbulb problem presented in the introduction automat-
ically, since this problem admits a solution with bounded writer reversal. Of course,
the addition of variables (with bounded writer reversals) is also possible in LSS. We are
however quite optimistic and hope that we can make this work directly for DLSS. The
ultimate goal would be to obtain an NP algorithm for the controller synthesis of DLSSV
and a P algorithm for the veri�cation, when the adequate parameters are bounded. It
would also be interesting to analyse the parameterised complexity of all problems con-
sidered in Chapter 5 with respect to the arity of processes.

For LSS, the most tractable cases call for an implementation. We are currently work-
ing on a project with Romain Delpy to implement some of the algorithms presented in
this thesis in C. We use SAT solvers for the NP-complete problems. Experimental re-
sults will let us validate or not the theoretical gains in e�ciency. From the theoretical
standpoint, the interplay of randomisation with this model would be very interesting: for
instance we could strengthen the fairness assumption on the scheduler to only consider
randomised schedulers.

Concerning broadcast networks, we now have a reasonably good understanding of po-
tential extensions of the model. What could be interesting to investigate is the connection
to immediate-observation population protocols with data, as presented in Section 3.8.3.
In particular we think that proving Open problem 3.64 requires some new abstraction
techniques. Indeed, common tools like the so-called copycat property (which allows us
to duplicate agents as many times as needed and still obtain a valid run) fail here. Dis-
tributed systems with data are promising and we hope to be able to build connections
with other models.

Overall, we expect that we will be able to apply the methods developed here in many
other frameworks, in particular distributed systems with other means of communication
such as rendezvous or shared variables. We may then obtain an even stronger breach in
the challenging problem of distributed synthesis.
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Appendix A

Run reduction of

register automata

This appendix follows Chapter 3. Our aim is to prove Theorem A.1, which states that
given a local run u, we can always �nd a local run v with the same start and end local
con�gurations, of length bounded by a function of |R|, and �cheaper� in the sense that
the d-input required by v is a subword of the one required by u, for all data d.

In addition to this new run reduction technique, we obtain the decidability of Cover
for signature BNRA as a corollary, yielding a simpler proof than the one presented in
Section 3.4. In fact, the decidability of Cover for general BNRA can also be inferred in
a similar way.

Theorem A.1 ▶ Register transducer run reduction

Let R be a register transducer with r registers. Let u : (qstart, cstart)
∗−→ (qend, cend)

be a local run of R. Then there exists v : (qstart, cstart)
∗−→ (qend, cend) of length at

most φ(R, r, r) and such that for all d ∈ D, Ind(v)⊑ Ind(u).

The function φ will be de�ned later. The main di�culty is that the set of con�gura-
tions is in�nite, since the set of data is. Usually, in register automata we allow ourselves
to switch or rename data at will throughout the local run, which allows us to shorten
runs more easily. However, here, as we want the resulting d-input to be a subword of the
previous one, we cannot replace data with other data arbitrarily. Finally, it may be the
case that some data appear in many or even all local con�gurations throughout the local
run, while others appear sporadically.

First let us describe informally how we prove the theorem. We consider a very long
local run u and attempt to reduce it. We call a register active if its content is modi�ed
at some point during the local run.

We proceed by induction over the number of active registers. If there are no active
registers, then the number of di�erent local con�gurations in u is bounded by |Q|. If u is
of length more than Q, we can reduce it.

Now assume that we can reduce all runs with at most p active registers to runs of
length at most M . We consider a run u with p + 1 active registers. If there is a section
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of u of length more than M with ≤ p active registers, then we can reduce that section
to reduce u. Otherwise, every section of at least M steps has p + 1 active registers. In
other words, in every section of M steps, all p + 1 active registers of u are updated at
some point. The trick is then to look for two such sections with the same sequence of
transitions, in which the persistent data appear at the same places and such that the
sections �look the same up to renaming data�. We are then able to merge those two
pieces of run by replacing data one by one when registers are updated (see Figure A.2).

To prove this theorem, an important step is to be able to �merge� two pieces of local
runs that have the same transitions and other similarities, but may contain di�erent data.
To do so, we use, amongst other things, a combinatorial lemma of Erdös and Rado, often
called the sun�ower lemma.

De�nition A.2 ▶ Sun�ower

A sun�ower is a family of sets S such that there exists a set Y (the kernel) such
that A ∩B = Y for all A ̸= B ∈ S. Its size is the number of sets in S

Lemma A.3 ▶ Sun�ower lemma [ER60]

Let r, s ∈ N, and let F be a family of subsets of a set U , such that each set F ∈ F
is of cardinality s. If |F| > s!(r − 1)s then F contains a sun�ower of size r.

We start by slightly modifying the statement to make it more convenient for us. We
want to allow sets of cardinality at most k and to allow a set to appear several times.

Corollary A.4

Let r, s ∈ N, and let F1, . . . , Fm be a family of subsets of a set U , such that each set
Fi is of cardinality at most s. If m > (s+1)!(r− 1)s+1 then there exists I ⊆ [1,m]
and Y ⊆ U such that |I| ≥ r and for all i ̸= j ∈ I, Fi ∩ Fj = Y .

Proof. We simply add fresh distinct elements to each Fi to obtain a family of distinct
sets, all of cardinality s+ 1, and then apply the sun�ower lemma.

Formally, let U ′ = U ⊔ {xp,q | i ∈ [1,m], j ∈ [1, s + 1]} be a set containing U and
(s+ 1)m fresh extra elements.

For all i ∈ [1,m], we de�ne F ′
i = Fi ∪ {xi,j | j ∈ [|Fi| + 1, s + 1]}. Note that for all

i ̸= k ∈ [1,m], F ′
i ∩ F ′

k = Fi ∩ Fk.

As the F ′
i are all distinct and of cardinality s+1, we can apply the sun�ower lemma.

We obtain a set I ⊆ [1,m] such that |I| ≥ r and there exists Y ⊆ U ′ such that for all
i, k ∈ I, Fi ∩ Fk = F ′

i ∩ F ′
k = Y (thus Y ⊆ U). This concludes our proof.

We use the sun�ower lemma to demonstrate a key lemma for our main result on
register transducers. The lemma states that in a large family of functions from a �nite
set we can �nd two that are akin, as de�ned below and illustrated in Figure A.1.
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A. Run reduction of register automata

De�nition A.5 ▶ Akin functions

Let S be a �nite set. Two functions f, g ∈ DS are akin if:

1. for all s ∈ S, either f(s) = g(s) or f(s) /∈ g(S) and g(s) /∈ f(S).

2. for all s, s′ ∈ S, f(s) = f(s′) if and only if g(s) = g(s′).

f4 :

f3 :

f2 :

f1 :

S ={s1 s2 s3 s4 s5 s6 }
f1 and f3
are akin, as
well as f1
and f4.

f3 and f4 are not akin
as they both use red but
do not map the same el-
ements to it.

f2 is not akin to any
of the others as it maps
s4 and s5 to the same
colour, while the others
do not.

Figure A.1: Four functions from a set S with 6 elements to D (data are represented by
colours), illustrating the de�nition of akin.

The intuition of the next corollary is as follows: We have a family of functions T from
a �nite set S to D. We show that if that family is large enough then two of those functions
are akin. To do so, we start by considering the family (f(S))f∈T . If T is large enough,
then that family contains a large sun�ower with a kernel Y . We then apply pigeonhole
arguments to �nd two functions which agree on elements mapped to Y (condition 1) and
whose set of preimages is the same (condition 2).

De�ne ψ(n) = (n+ 1)!2(n+1)3(n+ 1)(n+1)2

Lemma A.6 ▶ Akin functions lemma

Let S be a �nite set and T ⊆ DS. If |T | ≥ ψ(|S|) then there exist f, g ∈ T such
that f and g are akin.

Proof. We apply Lemma A.3 on (f(S))f∈T , with s = |S| and r = 2|S|
2
(|S|+ 1)|S|.

As |T | ≥ (|S|+1)!2(|S|+1)3(|S|+1)(|S|+1)2 > (s+1)!(r− 1)|S|+1, we obtain a subfamily
U ⊆ T and a set Y ⊆ S such that |U| ≥ r and for all f ̸= g ∈ U , f(S) ∩ g(S) = Y . Note
that |Y | ≤ |S|.

We then construct a large subset of functions of U that are equal on elements mapped
to Y : for all f ∈ U let f̃ : S → Y ∪{⊥} be the function such that f̃(s) = f(s) if f(s) ∈ Y
and f̃(s) = ⊥ otherwise.
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As there are (|Y |+1)|S| ≤ (|S|+1)|S| possibilities for f̃ , and as |U| ≥ r = 2|S|
2
(|S|+1)|S|,

there exists V ⊆ U such that |V| ≥ 2|S|
2
and f̃ = g̃ for all f, g ∈ V .

As a last step, for all f ∈ V we de�ne ≡f⊆ S × S as the relation such that s ≡f s
′ if

and only if f(s) = f(s′). There are less than 2|S|
2
possibilities for ≡f , hence V contains

two functions f and g such that ≡f and ≡g are equal.
To sum up, we have found two functions such that:

f(S) ∩ g(S) = Y and f̃ = g̃: as a consequence, for all s ∈ S, either f(s) = g(s) or
f(s) /∈ g(S) and g(s) /∈ f(S).

≡f and ≡g are equal: in other words, for all s, s′ ∈ S, f(s) = f(s′) if and only if
g(s) = g(s′).

This concludes our proof.

We can now see how to �merge� very similar local runs.
We say that a register i is active in local run u if its content changes at some point in

u. A register that is not active is called passive. We also say that a datum d is persistent
in u if it appears in every local con�guration in u. Otherwise we say that d vanishes in
u.

The next lemma is quite technical, but can be visualised relatively easily, see Fig-
ure A.2.

Lemma A.7 ▶ Merging akin runs

Let u, u′ be two local runs of length n with the same sequence of transitions.

u = (q0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opn(mn,dn)−−−−−−−→δn (qn, cn)

u′ = (q0, c
′
0)

op1(m1,d′1)−−−−−−→δ1 · · ·
opn(mn,d′n)−−−−−−−→δn (qn, c

′
n)

Let f, f ′ : [0, r]× [1,M ]→ D be such that f(i, p) = cp(i) and f ′(i, p) = c′p(i) for all
(i, p) ∈ [1, r]× [1,M ] and f(0, p) = dp and f ′(0, p) = d′p.
If f and f ′ are akin, and every datum that does not appear in u′ vanishes in u
then there is a local run w of length M from (q0, c0) to (q′M , c

′
M) with the same

sequence of transitions and such that for all d ∈ D, either Ind(w)⊑ Ind(u) or
Ind(w)⊑ Ind(u

′).

Proof. For each d appearing in u but not u′, since d vanishes in u we can de�ne k(d) as
an index such that d does not appear in ck(d).

For all ℓ ∈ [0, n] we de�ne dwℓ as dℓ if dℓ appears in u′ or ℓ ≤ k(dℓ) and d′ℓ otherwise.
We also de�ne, for all ℓ ∈ [0, n], cwℓ as follows: for all i ∈ [1, r], cwℓ (i) = cℓ(i) if cℓ(i)

appears in u′ or ℓ ≤ k(cℓ(i)) and cwℓ (i) = c′ℓ(i) if ℓ ≥ k(cℓ(i)). Note that this de�nition is
consistent as we cannot actually have that cℓ(i) does not appear in u′ and ℓ = k(cℓ(i)),
by de�nition of k(cℓ(i)).

We now prove that (qℓ−1, c
w
ℓ−1)

opℓ(mℓ,d
w
ℓ )

−−−−−−→δℓ (qℓ, c
w
ℓ ) is a valid local step for all ℓ ∈

[1,M ].
We do so using the following claims. The �rst one ensures that a the datum dwℓ

involved in a transition appears at the same places before and after the transition in w
as dℓ in u.

Claim A.7.1. For all ℓ ∈ [1,M ], cwℓ−1(i) = dwℓ ⇔ cℓ−1(i) = dℓ and cwℓ (i) = dwℓ ⇔ cℓ(i) =
dℓ
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u :

u′ :

w :

1
2
3
4

1
2
3
4

1
2
3
4

δ1 δ2 δ3 δ4 δ5 δ6 δ7
q1 q2 q3 q4 q5 q6 q7 q8

4 is updated. 3 is updated. 2 is updated.

Figure A.2: Illustration of Lemma A.7. The functions mapping positions and registers
to the data in u and u′ are akin: white, green and red appear at the same places in both,
and the purple, blue and gray positions in u match respectively the pink, yellow and
orange positions in u′.
We construct w by picking a position where purple (resp. blue, gray) does not appear,
and use it to switch from purple to pink (resp. blue to yellow, gray to orange) without
causing con�icts in the equality tests.

Proof of the claim. First, note that for all p, by de�nition if cwp (i) = d then either
cp(i) = d or c′p(i) = d.

If dwℓ appears in both u and u′, then as f and f ′ are akin f(i, p) = dwℓ ⇔ f ′(i, p) =
dwℓ for all i, p, by 1 of the de�nition of akin. Hence cp(i) = dwℓ ⇔ c′p(i) = dwℓ for
all i, p.

As a consequence, if cp(i) = d then cwp (i) = d (by de�nition) and if cwp (i) = d
then cp(i) = d or c′p(i) = d and as cp(i) = d⇔ c′p(i) = d, cp(i) = d. Thus, for all
i, p, cwp (i) = d⇔ cp(i) = d.

If dwℓ appears in u but not u′ then dwℓ = dℓ and ℓ ≤ k(dℓ). As a consequence, for
all p ≤ ℓ, if cp(i) = dwℓ then cwp (i) = dwℓ (by de�nition) and if cwp (i) = dwℓ then
cp(i) = dwℓ or c′p(i) = dwℓ and as dwℓ does not appear in u′, cp(i) = dwℓ . Thus, for
all i and p ≤ ℓ, cwp (i) = dwℓ ⇔ cp(i) = dℓ.

Similarly, if dwℓ appears in u′ but not u then dwℓ = d′ℓ and ℓ > k(dℓ). As a
consequence, for all p ≥ ℓ− 1, if cp(i) = dℓ then cwp (i) = d′ℓ = dwℓ (by de�nition)
and if cwp (i) = dwℓ then cp(i) = dwℓ or c′p(i) = dwℓ and as dwℓ does not appear in u′,
c′p(i) = dwℓ . Thus, for all i and p ≥ ℓ− 1, cwp (i) = dwℓ ⇔ cp(i) = dℓ.
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In particular, in all three cases we have that cwℓ−1(i) = dwℓ ⇔ cℓ−1(i) = dℓ and that
cwℓ (i) = dwℓ ⇔ cℓ(i) = dℓ. ■

The second claim states that if the content of a register stays the same before and
after a step in u then it does so also in w.

Claim A.7.2. For all ℓ ∈ [1,M ], if cℓ−1(i) = cℓ(i) then cwℓ−1(i) = cwℓ (i).

Proof of the claim. By de�nition we cannot have k(cℓ−1(i)) = ℓ − 1. Thus either
k(cℓ−1(i)) ≥ ℓ or k(cℓ−1(i)) < ℓ− 1.
In the �rst case we have cwℓ−1(i) = cℓ−1(i) = cℓ(i) = cwℓ (i).
In the second case, since f and f ′ are akin and f(i, ℓ − 1) = f(i, ℓ), we obtain that
f ′(i, ℓ−1) = f ′(i, ℓ), hence c′ℓ−1(i) = c′ℓ(i). As a result, c

w
ℓ−1(i) = c′ℓ−1(i) = c′ℓ(i) = cwℓ (i).

This concludes our proof ■

Now let ℓ ∈ [1,M ], we must show that (qℓ−1, cℓ−1)
opℓ(mℓ,dℓ)−−−−−−→δℓ (qℓ, cℓ).

If δℓ is a record transition δℓ = qℓ−1
rec(mℓ,↓i)−−−−−−→ qℓ then, by the previous claim, for all

j ∈ [1, r],

cℓ−1(j) ̸= dℓ and by Claim A.7.1, cwℓ−1(j) ̸= dwℓ

cℓ(i) = dℓ and by Claim A.7.1, cwℓ (i) = dℓ

if j ̸= i then cℓ(j) = cℓ−1(j) and by Claim A.7.2, cwℓ (j) = cℓj

If δℓ is an equality transition δℓ = qℓ−1
rec(mℓ,=i)−−−−−−→ qℓ then, by the previous claim, for

all j ∈ [1, r],

cℓ−1(i) = dℓ and by Claim A.7.1, cwℓ−1(i) = dwℓ

cℓ(j) = cℓ−1(j) and by Claim A.7.2, cwℓ (j) = cℓj

If δℓ is a disequality transition δℓ = qℓ−1
rec(mℓ, ̸=)−−−−−−→ iqℓ then, by the previous claim, for

all j ∈ [1, r],

cℓ−1(j) ̸= dℓ and by Claim A.7.1, cwℓ−1(j) ̸= dwℓ

cℓ(j) = cℓ−1(j) and by Claim A.7.2, cwℓ (j) = cℓj

If δℓ is a broadcast transition qℓ−1
br(mℓ,i)−−−−−→ qℓ then:

As cℓ−1(i) = dℓ, by Claim A.7.1, cwℓ−1(i) = dwℓ .

For all j ∈ [1, r], cℓ−1(j) = cℓ(j) thus by Claim A.7.2, we have cℓ−1(j) = cℓ(j).

As a consequence, we have (qℓ−1, cℓ−1)
opℓ(mℓ,dℓ)−−−−−−→δℓ (qℓ, cℓ), for all ℓ.

Hence w is a valid local run, of length M and with the same transitions as u and u′.
Finally, let d ∈ D, if d appears in u and u′ then Ind(w) = Ind(u) = Ind(u

′). If d
appears in u and not u′ then Ind(w)⊑ Ind(u) (as dwℓ = d implies dℓ = d). Similarly, if d
appears in u′ and not u then Ind(w)⊑ Ind(u

′). This concludes our proof.
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Now that we know how to merge similar local runs, we can prove our main theorem
of this section. Intuitively, we proceed as follows: We reason by induction on the number
of active registers. Let A be the set of active registers.

If there is a datum d that appears continuously throughout a long part of the local
run, then by the de�nition of local steps it stays in the same register throughout that
part of the run. This register is thus passive. This gives a long local run with |A| − 1
active registers, which we can reduce by induction hypothesis. If every register outside
of A is active in every su�ciently long part of the local run, then if the local run is long
enough we can cut it into many long parts. We will then be able to �nd two sections of
the local run that satisfy the conditions of Lemma A.7, allowing us to shorten the local
run by removing the part between those two sections and pasting them together.

De�ne φ as follows:

φ(R, r, j) =

|R| if j = 0

ψ(rφ(R, r, j − 1))|R|φ(R,r,j−1)φ(R, r, j − 1) if j > 0

Proof of Theorem A.1. We set u = (q0, c0)
op1(m1,d1)−−−−−−→δ1 (q1, c1)

op2(m2,d2)−−−−−−→δ2 · · ·
opn(mn,dn)−−−−−−−→δn

(qn, cn).
Let A be the set of active registers in u. We prove the theorem by induction on |A|.

Base case: suppose u has no active register. This implies that no register is ever
updated, hence all ci are equal.

As a consequence, if |u| > |Q| then there exist k < ℓ ∈ [0, n] such that qk = qℓ

and ck = cℓ. Hence we can de�ne the local run v = (q0, c0)
op1(m1,d1)−−−−−−→δ1 · · ·

opk(mk,dk)−−−−−−→δk

(qk, ck)
opℓ+1(mℓ+1,dℓ+1)−−−−−−−−−−→δℓ+1

· · · opn(mn,dn)−−−−−−−→δn (qn, cn), which is shorter than u and clearly
satis�es Ind(v)⊑ Ind(u) for all d ∈ D.

Induction: suppose the statement holds for all local run with at most a active
registers and suppose u has a+ 1 active registers.

We distinguish two cases. The �rst case is when there exist indices k, ℓ ∈ [0, n]
and i /∈ A such that ℓ − k > φ(|∆|, r − p − 1) and i is passive in the local run u′ =

(qk, ck)
opk+1(mk+1,dk+1)−−−−−−−−−−−→δk+1

· · · opℓ(mℓ,dℓ)−−−−−−→δℓ (qℓ, cℓ).
As a consequence, u′ has at most a active registers. By induction hypothesis, we

have a run v′ : (qk, ck)
∗−→ (qℓ, cℓ) shorter than u′. We can set u− = (q0, c0)

op1(m1,d1)−−−−−−→δ1

· · · opk(mk,dk)−−−−−−→δk (qk, ck) and u+ = (qℓ, cℓ)
opℓ+1(mℓ+1,dℓ+1)−−−−−−−−−−→δℓ+1

· · · opn(mn,dn)−−−−−−−→δn (qn, cn). We
then de�ne v as the concatenation of u−, v′ and u+. Clearly v is a local run from (q0, c0)
to (qn, cn). Furthermore for all d ∈ D,

Ind(v) = Ind(u−)Ind(v
′)Ind(u+)⊑ Ind(u−)Ind(u

′)Ind(u+) = Ind(u).

It remains to tackle the other case, in which every register i ∈ A is active in every
sequence of more than φ(|∆|, r − p + 1) local steps. Let M = φ(|∆|, r − p − 1). If
|u| > φ(|∆|, r − p) = ψ(rM)|R|MM then we can cut u into ψ(rM)|R|M intervals of size
M : For all k ∈ [0, ψ(rM)|R|M − 1] we de�ne uk as the section of u between (qkM , ckM)
and (q(k+1)M−1, c(k+1)M−1).
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As each uk is of length M , there are less than |R|M possibilities for its sequence
of transitions. We can thus �nd ψ(rM) intervals which all have the same sequence of
transitions: there is a setK ⊆ [0, ψ(rM)|R|M−1] such that |K| ≥ ψ(rM) and all (uk)k∈K
have the same sequence of transitions.

For each k ∈ K we de�ne fk : [0, r]× [0,M − 1]→ D as fk(i, p) = ckM+p(i) for i ≥ 1
and fk(0, p) = dkM+p. We apply Lemma A.6 with S = [0, r] × [0,M − 1]: as there are
|K| ≥ ψ(rM) such functions there are two indices k, ℓ ∈ K such that uk and uℓ have the
same transitions and fk, fℓ are akin functions.

To apply Lemma A.7 we need to show that every datum that does not appear in uℓ
vanishes in uk. We do this by contraposition: take d a datum that does not vanish in uk.
Then, as record transitions require that the recorded datum is not already in a register,
no record transition has stored d in uk. Hence there is a register i that contains d in all
con�gurations of uk. This means i is passive in uk, and thus i ∈ A. As a consequence, i
contains the same datum in all of u, and in particular in all of uℓ, hence d appears in uℓ.

By Lemma A.7 there exists a run w of length M from (qkM , ckM) to (q(ℓ+1)M , c(ℓ+1)M)
such that for all d ∈ D, either Ind(w)⊑ Ind(uk) or Ind(w)⊑ Ind(uℓ). In particular, for all
d ∈ D, we have Ind(w)⊑ Ind(uk)Ind(uℓ).

Let u<k and u>ℓ be respectively the pre�x of u up to (qkM , ckM) and the su�x of u
from (q(ℓ+1)M , c(ℓ+1)M).

By concatenating u<k, w and u>ℓ, we obtain a run v from (q0, c0) to (qn, cn) which is
shorter than u and such that for all d ∈ D,

Ind(v) = Ind(u<k)Ind(w)Ind(u>ℓ)⊑ Ind(u<k)Ind(uk)Ind(uℓ)Ind(u>ℓ)⊑ Ind(u)
This concludes our proof.

We can now extend the previous result with little di�culty to preserve a part of the
output. Say we have a local run in which a sequence of messages dw is broadcast. Then
we can apply the previous result to reduce the runs between two broadcasts of dw. The
resulting run still outputs dw, and is of size at most |dw|φ(|∆|, r).

Recall that ⊑ is the subword relation over words.

Corollary A.8 ▶ Register transducer run reduction with output

Let R be a register transducer with r registers.
Let u be a local run of R and dw a word overM× D such that dw⊑ Out(u).
Then there exists a local run v of length at most |dw|φ(R, r, r) such that
dw⊑ Out(v) and for all d ∈ D, Ind(v)⊑ Ind(u).

Proof. Let dw = (m1, d1) · · · (mk, dk). We can decompose u as

u = (q−0 , c
−
0 )

u0−→ (q+0 , c
+
0 )

br(m1,d1)−−−−−→δ1 (q
−
1 , c

−
1 ) · · ·

br(mk,dk)−−−−−−→δk (q−k , c
−
k )

uk−→ (q+k , c
+
k ).

By Theorem A.1, for all ℓ ∈ [0, k− 1] there is a run vℓ of length at most φ(|∆|, r, r) from
(q−ℓ , c

−
ℓ ) to (q+ℓ , c

+
ℓ ) such that Ind(vℓ)⊑ Ind(uℓ) for all d ∈ D.

We then de�ne

v = (q−0 , c
−
0 )

v0−→ (q+0 , c
+
0 )

br(m1,d1)−−−−−→δ1 (q
−
1 , c

−
1 )

v1−→ (q+1 , c
+
1 ) · · ·

br(mk,dk)−−−−−−→δk (q−k , c
−
k ).

Note that we replaced every uℓ by vℓ except for uk, which we removed.
Clearly v is a valid run and dw⊑ Out(v). Furthermore, for all d ∈ D, we have

Ind(v) = Ind(v0) · · · Ind(vk−1)⊑ Ind(u0) · · · Ind(uk−1)⊑ Ind(u).
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Finally, we obtain the decidability of Cover for signature BNRA as a by-product of
the construction.

Corollary A.9

Cover is decidable for signature BNRA.

Proof. The problem is clearly recursively enumerable, as it su�cesto enumerate runs until
we �nd one that covers the error state (or broadcasts the error message).

It remains to show that it is co-recursively enumerable. Consider Corollary 3.21. To
show that a message cannot be broadcast, it su�ces to �nd an invariant satisfying both
conditions. As invariants are downward-closed, their complement have a �nite basis. We
can thus enumerate �nite sets of words B, and check each time if B↑c satis�es both
conditions.

Let I = B↑c. The �rst condition is straightforward to check. For the second one, if
the condition is not satis�ed then there is a local run u such that Ind(u) ∈ B↑c for all d
and Outsign(u) /∈ I.

As a consequence, there is a word w ∈ B such that w⊑ Outsign(u). By Corollary A.8,
there is a local run v of length at most |w|φ(R, r, r) such that w⊑ Outsign(v) and for all
d, Ind(v)⊑ Ind(u).

As I is downward-closed and does not contain w, we have Outsign(v) /∈ I and for all
d, Ind(v) ∈ I.

In conclusion, if B↑c does not satisfy the second condition of Corollary 3.21 then
there is a local run of size at most ||B||φ(R, r, r) witnessing it. This means that we can
enumerate sets of words B and check the second condition. This proves that Cover for
signature BNRA is co-recursively enumerable, and thus decidable.
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Appendix B

Population games

The line of research surrounding the Population control problem is very dear to me, as
one of the �rst research problems I worked on came from it, and I kept encountering it
throughout my research years. This is why this section is dedicated to the history of the
model, the problems solved so far, the work in progress, and the most prominent open
problems.

The story starts in 2017: Bertrand, Dewaskar, Genest and Gimbert introduce a
population games, inspired by questions from biology on the control of yeast popula-
tions [Ber+17].

A population game is described by an NFA with one initial and one �nal state. There
are two players, Laetitia (who chooses letters) and Terrence (who chooses transitions).
Some number N of tokens are placed on an initial state of an NFA. The two players then
play alternately: Laetitia chooses a letter x, then Terrence moves each token along an
x-labelled transitions. Laetitia wins if all tokens end up on the same �nal state eventually.
The question is then: does Laetitia have a winning strategy against any number of tokens?
The authors showed that this problem is ExpTime-complete, by converting this question
into an ω-regular game using an involved automaton construction.

See an example below.

a

c

b
ac

b

a, b, c

a

c

b
ac

b

a, b, c

a

c

b
ac

b

a, b, c

Figure B.1: Example of a population game where Laetitia wins no matter the number of
tokens. She plays a, Terrence splits the tokens in two, and Laetitia picks b or c to send
the larger half to the �nal state. Iterating this strategy lets her win in O(log(N)) steps.
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Since this model was meant to represent populations of yeasts, the adversarial setting
seemed too restrictive: it is unlikely that yeasts would apply a complex strategy to avoid
synchronisation. A natural question arose: what if Terrence simply picks the transition
taken by each token at random, independently? Then we want to know if Laetitia can
win with probability 1 against any number of tokens? This game is quite di�erent as
Laetitia can now repeat sequences of actions many times until tokens behave a certain
way.

shsh

a

c

a

b

sh, a, b, c

sh

sh, a, b, c

shsh

a

c

a

b

sh, a, b, c

sh

sh, a, b, c

shsh

a

c

a

b

sh, a, b, c

sh

sh, a, b, c

Figure B.2: Example of a randomised population game where Laetitia wins. She plays sh
until exactly one token is in the second state (which happens eventually with probability
1), and then plays a and b or c to send that token to the �nal state. This is the only
way to progress: if she plays a while more than one tokens are in the second state, then
tokens may be sent to the left and right states, and she is stuck. Iterating this strategy
lets her win in 2O(N) steps, which is optimal.

In 2019, this was the subject of a paper by Colcombet, Fijalkow and Ohlmann. They
showed that the problem is decidable, by translating it into a two-player game which
they solve using well quasi-orders and distance automata [CFO20]. However, the use
of well quasi-orders induces a non-elementary (maybe even Ackermanian) complexity.
Meanwhile, we showed with Mahsa Shirmohammadi and Patrick Totzke that the problem
is ExpTime-hard [MST19].

We made various attempts to close the complexity gap at the time, making several
conjectures on the form of winning strategies, which were all eventually disproved (with
increasingly large counter-examples).

We started working again on this problem in 2022, during a visit to Liverpool, with
Hugo Gimbert and Patrick Totzke. We then found a new structure for strategies, in
which we try to go to the �nal con�guration by moving around large crowds of tokens
and isolated tokens. If we get unlucky and move away from the path, we try to recover the
isolated tokens by bringing them back into a crowd. Once they are recovered, we attempt
again a lucky path. This new strategy shape was very convincing, but it was only over a
year later that we were able to prove it, thanks to a key probabilistic argument from Hugo.
From what we have so far, it appears that the problem is in fact ExpTime-complete,
closing this line of research.
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B. Population games

Another natural question, suggested by Blaise Genest, is the speed of victory : since
Laetitia may require exponential expected time in the number of tokens, we may want
to look for more e�cient strategies. From the examples of games that we have, it seems
that we can classify NFAs for which Laetitia wins in four categories:

The ones that can be won in constant time. It is not hard to prove that those are
exactly the ones for which there is a word w such that every path reading w from
the initial state ends in the �nal state.

The ones that require log(N)O(1) steps.

The ones that require NO(1) steps.

The ones that require 2N
O(1)

steps.

a

b

a

b

a

c

b
ac

b

a, b, c

shres

a

c

a

b

sh, a, b, c

sh

sh, a, b, c

shsh

a

c

a

b

sh, a, b, c

sh

sh, a, b, c

Figure B.3: Four randomised population games won by Laetitia. Sink states are omitted.
The �rst one requires O(1) steps, as the word ab synchronises all tokens to the �nal state.
The second one requires O(log(N)) steps. The third one takes O(Nlog(N)) steps: play
res and then sh until there is one token left in the second state (if all tokens leave at
once before one remains, play res to reset). After O(log(N)) steps, one token remains in
the second state, and we can play a and b or c to take it to the �nal state. We need to
do this for each token, hence O(Nlog(N)) steps. The last one takes 2O(N) steps.
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Conjecture B.1

Let A be an NFA. Consider the associated randomised population game. Let
f : N → N be such that f(N) is the optimal winning time for Laetitia against N
tokens. Then one of the following properties holds:

f ∈ O(1)

f = log(N)O(1) and f = Ω(log(N))

f = NO(1) and f = Ω(Nα) for some α > 0

f = 2N
O(1)

and f = 2Ω(N)

f(N) = +∞ for some N .

Furthermore this classi�cation is decidable.

We also conjecture that a similar classi�cation exists in the adversarial setting, with
NFAs requiring either constant, polylogarithmic or polynomial time. It was shown
in [Ber+19] that whenever Laetitia wins she has a polynomial-time strategy. Take a
look at Figure B.4. The intuition is that in the second game, when tokens split, Laetitia
can choose the part of tokens that makes progress. By contrast, in the third game she
can make part of the tokens progress, but she does not pick that part.

a

b

a

b

a

c

b
ac

b

a, b, c

a

c

b
a

b

a, b, c

Figure B.4: Three population games won by Laetitia. The �rst one requires O(1)
steps, as the word ab synchronises all tokens to the �nal state. The second one requires
O(log(N)) steps. The third one takes O(N) steps: play a, if all tokens go left play c, if
some go right play b. In the worst case this takes 2N steps.
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B. Population games

Conjecture B.2

Let A be an NFA. Consider the associated adversarial population game. Let f :
N → N be such that f(N) is the optimal winning time for Laetitia against N
tokens. Then one of the following properties holds:

f ∈ O(1)

f = log(N)O(1) and f = Ω(log(N))

f = NO(1) and f = Ω(N)

f(N) = +∞ for some N .

Furthermore this classi�cation is decidable.

Explorable automata Hazard and Kuperberg introduced explorable automata, which
can be seen as an extension of both history-deterministic automata and population
games [HK23]1. Consider an automaton on in�nite words, say a parity automaton. An
automaton is N -explorable if Terrence wins the following game:

N tokens are placed on the initial state (we can assume that there is only one)

at each turn, Laetitia picks a letter x and Terrence moves each token along an
x-transition

Laetitia wins if:

� the sequence of letters she picked is in the language of the automaton, and

� for all tokens, the sequence of transition taken by that token is not an accepting
run.

An automaton is explorable if it is N -explorable for some N .
Hazard and Kuperberg showed that explorability is decidable for [0,2]-automata, and

that the explorability for [i,j]-automata reduces to explorability for [1,3]-automata for all
i, j such that j − i > 2. Solving the [1,3] case would thus yield a complete picture.

They also de�ned ω-explorability: an automaton id ω-explorable if Terrence wins the
game above with an in�nite countable set of tokens. The ω-explorability property is
decidable for [0,1]-automata (co-Büchi), and the explorability for [i,j]-automata reduces
to explorability for [1,2]-automata for all i, j such that j − i > 1. Here, solving the [1,2]
case would thus yield a complete picture.

Open problem B.3

Is explorability decidable for [1,3]-parity automata?

Open problem B.4

Is ω-explorability decidable for Büchi automata?
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a : 0b : 0

a : 0c : 0b : 1

c : 1

a : 1

a, b : 0

a : 1

a : 1

a : 1b : 1

a : 1c : 1b : 2

c : 2

Figure B.5: The left automaton is 2-explorable, the middle one is not explorable but is
ω-explorable, the third one is not ω-explorable. These examples are taken from [HK23].

Another open problem concerns the strategies for Terrence: In general, in population
games, we allow him to have a global view of the system. If we want to strengthen
the link to distributed synthesis, we could allow only local strategies. Of course, if all
tokens follow the same deterministic strategy, then the game is trivial. However, if we
allow randomisation, then we obtain an intermediate case between the fully-randomised
setting and the adversarial one with full view of the con�guration.

1The mentioned results do not all appear in the cited paper, some of them are from personal com-
munication and a presentation, see here
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Other projects

During my PhD I worked on several projects that are not included in this manuscript.
Here is a list of the most fruitful ones.

Simplifying ω-regular conditions with the Alternating Cycle Decomposition
In a joint work with Antonio Casares, following his PhD thesis [Cas23], we investigated
the complexity of simplifying the acceptance condition of various automata classes, such
as Muller, Rabin or parity, without changing their structure [CM24]. We studied two
modes of simpli�cation: one is replacing conditions with ones from a more restricted
class (e.g. Muller conditions by parity ones), the other is replacing a condition with one
that uses less colours. We considered those problems in two versions: either we try to
�nd a simpler condition that is equivalent on all automata, or we try to �nd one that
is equivalent on a given automaton structure. Our conclusions were that if we do not
take into account the automaton structure all those problems can be solved in P. In the
case where we are given an automaton structure, we can simplify the condition type in
polynomial time using the Alternating Cycle Decomposition (ACD), which is an object
introduced by Casares, Colcombet and Fijalkow in 2021 [CCF21]. We showed that the
ACD of a Muller automaton can be computed in polynomial time. By contrast, we
showed that reducing the number of colours used on a given automaton is NP-hard for
Rabin and Muller conditions.

Minimisation of (history-)deterministic (co-)Büchi automata An automaton is
history-deterministic (HD) if its non-determinism can be resolved by a controller based
only on the sequence of transitions seen so far. In 2019, Abu Radi and Kupferman
showed that transition-based HD coBüchi automata can be minimised in polynomial
time [RK22]. In a joint work with Antonio Casares, Denis Kuperberg, Olivier Idir and
Aditya Prakash (conducted in part at Highlights 2023), we extended the result of Abu
Radi and Kupferman to HD generalised coBüchi automata [Cas+24]. On the other hand,
we showed that state minimisation is NP-complete for (history-)deterministic generalised
Büchi automata and deterministic coBüchi automata. This helps us understand the
di�culties in minimising ω-automata.

LTL learning In 2021, Fijalkow and Lagarde started to investigate the complexity of
the following problem: given two �nite sets of words P and N and a bound k ∈ N,
is there an LTL formula of size at most k that is satis�ed by all words of P and no
word of N? They showed that the problem is NP-hard in some cases, and gave tight
bounds on the polynomial-time approximations in the case where one only has X and
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∧ operators [FL21]. We later extended their results by showing that this problem is
NP-complete and hard to approximate in almost all fragments of LTL, even over a �xed
alphabet. While this result is not so surprising, the techniques we use to prove it lead us
to understand much better the power of separation of many fragments of LTL [MFL23].

Immediate-observation population protocols with unordered data Population
protocols are a model of distributed computation in which a crowd of anonymous �nite-
state agents communicate via pairwise interactions. Together they decide whether their
initial con�guration, i. e., the initial distribution of agents in each state, satis�es a
property. In 2023, Blondin and Ladouceur extended this model by introducing Population
Protocols with Unordered Data (PPUD) [BL23]. In PPUD, each agent carries a �xed
data value, and the interactions between agents depend on the equality of their data.
Blondin and Ladouceur also identi�ed the interesting subclass of Immediate Observation
PPUD (IOPPUD), where in every transition one of the two agents remains passive and
does not move, and they characterised its expressive power. In a collaboration with
Ste�en van Bergerem, Roland Gutenberg, Sandra Kiefer, Nicolas Waldburger and Chana
Weil-Kennedy, following the Autobóz 2023 workshop, we studied the decidability and
complexity of formally verifying these protocols [Ber+24]. We showed that checking if a
PPUD is well-speci�ed, i. e., whether it correctly computes some function, is undecidable
in general. By contrast, for IOPPUD, we exhibited a large yet natural class of problems,
which includes well-speci�cation among other classic problems, and establish that these
problems are decidable in ExpSpace.

A trichotomy on the number of necessary samples needed for property-test-
ing regular languages Property testing is a class of problems where we look for very
e�cient algorithms that distinguish objects with a given property from ones which are
very far from having it. More precisely, we consider a class of structures (for instance
graphs) equipped with a distance (for instance the edit distance) and a property (for
instance being bipartite). We �x a threshold ε ∈ [0, 1[ and search for an algorithm
that, given an object of size n, answers yes if that object has the property, and an-
swers no with probability at least 1

3
if that object is at distance > εn from all objects

with that property. In 2001, Alon, Krivelevich, Newman, and Szegedy showed that all
regular languages could be tested using O(ε−1log3(1/ε)) samples, with the Hamming dis-
tance [Alo+00]. Those bounds were later improved and generalised to other distances,
such as the edit distance. In 2021, Bathie and Starikovskaya provided an algorithm using
only O(ε−1log(1/ε)) samples with the edit distance, and showed that for some languages
this could not be improved [BS21].

In a collaboration with Gabriel Bathie and Nathanaël Fijalkow, we built upon these
results to show that, for the Hamming distance, every regular language falls into one of
three categories: those testable with Θ(1) samples, those testable with Θ(ε−1) samples,
and those testable with Θ(ε−1log(1/ε)). Given an NFA, it is PSPACE-complete to decide
which class it belongs to.
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