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Abstract

Addressing the global challenge of environmental sustainability in the building sector, this thesis

focuses on advancing methodologies for greenhouse gas (GHG) budget compliance in building

post-occupancy stages. It emphasizes the need for dynamic assessment in the decision-making

processes to enhance the process of ensuring carbon budget compliance.

The research employs a multifaceted approach, beginning with an exploration of current method-

ologies for building GHG budget compliance. This includes a thorough examination of carbon

budgets, Life Cycle Assessment (LCA), and Dynamic Life Cycle Assessment (DLCA). The study

then progresses to refine the DLCA methodology, focusing on reducing simulation times and

optimizing the number of dynamic parameters. Techniques such as linear interpolation, surrogate

modelling, feature selection, sensitivity and uncertainty analysis are tested for these tasks. Then,

through a case-study, the importance of decarbonization of the industrial, waste and energy sectors

in dynamic GWP calculations are highlighted.

Furthermore, the enhanced DLCA methodology is applied in the context of retrofit decision-making,

showcasing its utility in adapting to carbon budget deviations throughout a building’s life cycle.

This application is exemplified through the same case-study of a single-family home in the Paris

region, demonstrating the methodology’s effectiveness in guiding retrofit decisions in alignment

with carbon budgets and broader environmental objectives. However, the findings also reveal

the scenario-dependent nature of these decisions, indicating that budget-compliant buildings can

exhibit diverse characteristics based on different DLCA assumptions.

Overall, this research emphasizes the critical role of integrating dynamic parameters in retrofit

decision-making processes. Simultaneously, it also challenges and assesses the applicability of these

methods within the framework of carbon budget compliance, providing a detailed evaluation of

their impact on sustainable building practices.





Résumé

Le secteur du bâtiment est un des principaux contributeurs de la crise environnementale mondiale

et doit impérativement maitriser ses émissions de gaz à effet de serre (GES). Cette thèse vise à

contribuer à l’atteinte de cet objectif en s’intéressant plus particulièrement à la phase d’occupation

des bâtiments. Il est nécessaire d’agir lors de cette phase pour respecter un budget carbone défini

dès la conception et maintenu sur toute la durée de vie du bâtiment. Cette contribution souligne la

nécessité d’une évaluation dynamique dans les processus de prise de décision afin de tenir compte

des scenarios d’évolution sur les années restantes.

Une analyse des méthodologies actuelles telle que l’Analyse du Cycle de Vie (ACV) nous conduit à

étudier plus spécifiquement l’ACV Dynamique. Nous nous intéressons en particulier à la réduction

des temps de simulation et l’optimisation du nombre de paramètres dynamiques. Des techniques

telles que l’interpolation linéaire, les modèles de substitution, la sélection des caractéristiques

importantes, l’analyse de sensibilité et d’incertitude sont mise en œuvre pour y parvenir. A

travers une étude de cas, l’importance de la décarbonisation des secteurs industriels, des déchets

et de l’énergie est mise en évidence dans les calculs du Potentiel de Réchauffement Planétaire

dynamique.

La méthodologie d’ACV Dynamique que nous proposons est appliquée dans le contexte de la prise

de décision pour la rénovation, démontrant son utilité pour s’adapter aux écarts du budget carbone

tout au long du cycle de vie d’un bâtiment. L’étude de cas d’une maison individuelle dans la région

parisienne montre l’efficacité de la méthodologie pour guider les décisions de rénovation en accord

avec les budgets carbone. Cependant, les résultats révèlent également que ces décisions dépendent

fortement des scénarios envisagés, indiquant que les bâtiments conformes au budget peuvent

présenter une variété de caractéristiques en fonction des différentes hypothèses de modélisation de

l’ACV Dynamique.

Plus globalement, nos travaux apportent une méthode pour rationaliser et faciliter l’utilisation

généralisée de l’ACV en tenant compte des incertitudes et des sensibilités des différents paramètres

dynamiques. Nous montrons que l’ACV Dynamique ainsi mise en œuvre a un impact significatif

dans les processus de prise de décision pour la rénovation afin d’assurer une meilleure adaptation

aux budgets carbone tout au long du cycle de vie des bâtiments.
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The introductory chapter for this thesis serves to define the context,

the problem statements, and the subsequent research objectives

and questions.

1.1 Research Background

With the planet’s warming reaching 0.8°C to 1.2°C since before the

industrial era [1], the United Nations has been regularly organizing

international conferences on the subject. The Climate Change

Conference in 2015 (COP 21) is of particular importance, during

which the Paris Agreement was signed by 196 countries. In it, each

nation proposed its Nationally Determined Contributions (NDCs)

aiming to limit the global average temperature increase to 2°C [2].

This target had been proposed earlier by the Intergovernmental

Panel for Climate Change (IPCC)’s Assessment Report of 2007

[3], identifying the severe consequences to the environment and

human life if this threshold was to be surpassed.

Figure 1.1: The dark orange columns

represent the historic emissions

since the industrial revolution and

in light orange are the remaining

budgets for the respective global

warming targets as of 2023. From

left to right, the targets are 1.5 °C, 2

°C and 2.5 °C with a likelihood of 50

%. Adapted from [4].

In 2018, the IPCC published its Special Report [5], advocating that

limiting global warming to 1.5 °C remains viable and significantly

more beneficial for life on Earth. The report outlines necessary

Greeenhouse Gas (GHG) emission pathways over the coming

decades, utilizing the Global Carbon Budget (GCB). From 2023



2 1 Introduction

onwards, the remaining Carbon Budget (CB) for achieving this

target is 250𝐺𝑡𝐶𝑂2− 𝑒𝑞, which is equivalent to six years of current

emissions [4]. The report also compares CBs for various global

warming targets, as illustrated in Figure 1.1. Additionally, it warns

that adherence to current NDCs will still result in surpassing the

GCB before 2050. Given that the building sector accounts for 34%

of final energy consumption and 37% of global GHG emissions [6],

an extensive effort is underway to decarbonize this sector.

One of France’s responses to this environmental challenge came in

the form of the National Low-Carbon Strategy
1

1: The SNBC, published in August

2015, came right after the Paris

Agreement was signed and it estab-

lishes a target for French national

emissions to be net-zero by 2050.

By 2021, it was found that between

2015 and 2018 the allocated bud-

get had been surpassed by 3.7%,

so the SNBC was revised and new

targets were established. For more

information: ecologie.gouv.fr/suivi-

strategie-nationale-bas-carbone.

or Stratégie Nationale
Bas Carbone (SNBC) [7]. In this documentation, national carbon

reduction targets are set periodically for specific economic sectors

until the year 2050, including agriculture, transportation, industry,

waste and building sectors.

Additionally, to further enhance building environmental perfor-

mance, recent initiatives such as the E+C-
2

2: The E+C- (Positive energy build-

ing and carbon reduction) experi-

mentation evaluated thousands of

French buildings for relative per-

formance per livable area in both

energy and GHG emissions. This

led to the creation of a label and

the RE2020. For more information:

batiment-energiecarbone.fr/.

experimentation and the

RE2020
3

3: In addition to its environmental

efforts, RE2020 (Réglementa-

tions Environnementale 2020)

also emphasizes stricter ther-

mal performance and summer

internal comfort in new build-

ings. For more information:

ecologie.gouv.fr/reglementation-

environnementale-re2020.

regulation are key national initiatives. RE2020, evolving

from the previous RT 2012 regulation, extends its focus beyond

the energy performance of new buildings. It sets more stringent

requirements for energy efficiency and introduces limits on whole

life cycle carbon emissions [8] through CBs at the building level,

aligning operational and embodied carbon considerations with

environmental objectives. This marks a shift from merely consider-

ing energy efficiency to adopting a holistic view of Greeenhouse

Gas (GHG) emissions.

Historically, the building sector prioritized energy consumption

and energy-efficient design, following the oil crisis of 1973 [9]. Re-

cently, considerable efforts have been directed towards accounting

for the embodied impacts of buildings [10], particularly through

Life Cycle Assessment (LCA). This environmental evaluation

methodology, introduced in the 1960s in other sectors [11], was

not applied to buildings until the 1990s [12]. Among various envi-

ronmental impact indicators (e.g., ozone layer depletion, resource

depletion, acidification, water consumption, and eutrophication

[13]), the LCA assesses the Global Warming Potential (GWP) of a

product in equivalent kilograms of carbon dioxide (𝑘𝑔𝐶𝑂2 − 𝑒𝑞),

an indicator particularly relevant in the context of climate change

[12].

The LCA methodology was standardized for general consumer

products by ISO 14040/14044 [13], [14]. In the construction sector,

the EN 15804 [15] standardizes the Environmental Product Decla-

ration (EPD) of building materials, while EN 15978 [16] specifies

an LCA approach detailing the different stages of a building’s life

cycle, which are depicted in Figure 1.2.

The stages include:

https://www.ecologie.gouv.fr/suivi-strategie-nationale-bas-carbone
https://www.ecologie.gouv.fr/suivi-strategie-nationale-bas-carbone
http://www.batiment-energiecarbone.fr/
https://www.ecologie.gouv.fr/reglementation-environnementale-re2020
https://www.ecologie.gouv.fr/reglementation-environnementale-re2020
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▶ Initial Emissions (Phase A1-A5): Occur during material

extraction, manufacturing, construction, and transportation.

These phases are critical due to the high energy consumption

and GHG emissions related to material production and

logistics.

▶ Recurrent Embodied Emissions (B1-B5): Linked to ren-

ovations and maintenance approximately every 50 years,

involving the replacement of building components.

▶ Operational Emissions (B6-B7): Span the building’s us-

age phase, influenced by energy consumption for heating,

cooling, lighting, etc., dependent on the building’s energy

efficiency and occupant behaviour.

▶ End-of-Life Emissions (C1-C4): Associated with disassem-

bly, demolition, and waste processing at the end of the

building’s life cycle.

Figure 1.2: Representation of the GHG emissions profile over the life cycle of a building. Based on [17] and [16].

LCAs also function as a Decision-Making (DM) support tool [18],

facilitating the comparison of various building component options

to identify the most environmentally favourable choices. However,

applying LCA to the building sector presents unique challenges

due to each building’s uniqueness, the long life cycles exceeding

50 years, the complexity arising from numerous components, and

the low digitalisation level of the construction sector, leading to

complexities in establishing the material quantity take off, which

adds significant uncertainty to their assessments [12, 19].

Building on these foundational standards, various European coun-

tries have implemented specific regulations to further integrate

LCA into their construction practices. In the European Union, reg-
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ulations and directives like the Energy Performance of Buildings

Directive (EPBD) and national laws emphasize the integration

of LCA in construction. For instance, France’s RE2020 regula-

tion, Switzerland’s SIA 390 and Denmark mandate LCAs for new

buildings, enforcing specific CO2 emission thresholds.

1.2 Problem Statement

LCA, an essential DM tool for building design, is conducted during

the design phase, where it plays a crucial role in planning and

verifying compliance with GHG budgets. Traditionally, LCA uses

a static model, assuming no significant changes in the building’s

structure or functionality throughout its life cycle. This approach

can lead to significant discrepancies between projected and actual

Environmental Impact (EI).

Recent studies have highlighted a consistent discrepancy between

predicted and actual energy performances in modern, energy-

efficient buildings, questioning the reliability of static LCA methods

[20–23]. As the focus in building assessments shifts from mere

energy consumption to comprehensive life cycle performance, it

becomes evident that a broader range of assumptions and estimates

inherent in LCA outcomes contribute to this unreliability [24–26].

Notably, building LCAs, which are often projected over fifty years

or more, encompass these broad estimates.

The challenge extends beyond the design phase, as there is often a

lack of mechanisms to verify Life Cycle Inventory (LCI) inputs such

as material quantities, transport distances, and energy consumption

once construction begins. Ensuring the completeness of LCA is

crucial to accurately reflect the EI throughout the entire life cycle of

a building. LCA completeness involves capturing all relevant stages

and impacts from raw material extraction to material disposal,

ensuring every stage is represented and all relevant inputs and

outputs are accounted for [27].

Röck et al. [28] noted that buildings constructed before stricter

regulations took effect attributed approximately 80-85% of life cycle

GWP to Operational Emissions (OE), whereas buildings complying

with newer standards showed a reduction in this ratio to about

60-65%. Moreover, Moncaster et al. [29] attributed 64% of Embod-

ied Emission (EE)s to the production phase (A1-5). These works

highlight the amount of emissions that lack supervision at post-

occupancy stages, underscoring the importance of comprehensive

LCA practices to ensure all stages are adequately monitored and

verified.
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The significance of these findings emphasizes the necessity for con-

tinuous assessments and interventions throughout the building’s

life cycle—not just during the design phase—to achieve sustainabil-

ity goals. LCA must evolve from a tool used mainly for compliance

and DM in the initial phase to a dynamic process that tracks

emissions and enables corrective actions during the operational

phases. This approach ensures that buildings consistently meet

their intended CB and can adjust to any deviations from their

projected environmental performance.

Addressing these challenges is critical for advancing LCA’s effec-

tiveness beyond initial compliance, enabling it to function as a

continuous feedback mechanism throughout the building’s lifes-

pan. The following sections will outline research objectives and

questions aimed at refining LCA methodologies to support on-

going environmental improvements and ensure that buildings

achieve their CB commitments over time.

1.3 Research Objectives

Having identified this necessity of scientific production on the

matter of ensuring that buildings respect their budget, this doctoral

thesis’ main objective is to propose a DM support methodology for

managing building CB using LCA. This objective has been divided

into the following sub-objectives:

▶ As LCA becomes a mandatory method in the building design

process, it often involves assumptions and estimations about

future conditions over a 50-year period. The first objective,

therefore, is to propose a methodology that better navigates

these uncertainties for CB compliance verification.

▶ Upon calculating life cycle GHG emissions, it is imperative

to take post-occupancy actions towards reducing future

GHG emissions in case of CB over-expenditure. Thus, the

second objective of this thesis is to propose a methodology

towards decision-making of short and long-term retrofit

actions towards ensuring budgetary compliance.

1.4 Research Questions

With these objectives set, it is now possible to underline the spe-

cific research questions that should be answered throughout the

thesis:

▶ How can long-term uncertainties be taken into account in

building LCA?
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▶ How impactful are long-term dynamic uncertainties in the

context of building carbon budget compliance?

▶ How can decision-makers minimize the impacts of uncer-

tainties and create a robust retrofit plan to ensure carbon

budget compliance?

The broader inquiry regarding the implementation of a more

detailed LCA approach will be addressed through the research

efforts of this thesis. These questions will find answers in the third

and fourth chapters, which are dedicated to the development of

the proposed methodology.

1.5 Thesis Outline

This first introduction chapter has served to give context and justify

the interest in developing these research works.

The following second chapter is the result of an extensive literature

review on the main topics of this thesis. It starts by defining

the primary motivator of this thesis: CBs and the challenge of

translating these global targets to the building scale. Subsequently,

a review of the state of the art of LCA will be conducted, with

a focus on incorporating time-dependence into the assessment

methodology. Chapter 2 then includes a review of complementary

tools to LCA that assist decision-makers in the building sector in

maintaining a certain level of performance at the post-occupancy

stage.

In Chapter 3, a DLCA workflow is built specifically for the chosen

case-study, around which this thesis is developed. This application

allows us to understand the main challenges towards including

long-term dynamics into building LCAs into DM processes. Finally,

a battery of mathematical tools is studied and tested to find

recommendations that facilitate some of the identified challenges

of DLCA.

Subsequently, Chapter 4 explores if and how a DLCA method

improves the DM process, following the improvements presented

in Chapter 3. Applications to the same case-study under different

static and dynamic LCA approaches investigate how different

assumptions affect DM from the perspective of CBs.

The fifth and last chapter includes an outlook for improving the

proposed methodology of this thesis within the topic of building

carbon budget compliance and the conclusion of the entire body

of work.
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This chapter comprises the literature review for this research

work. It is organized into three main topics as illustrated in Figure

2.1, starting with an in-depth analysis of Carbon Budget (CB),

initially introduced in the research background. After establishing

its significance, the chapter describes Life Cycle Assessment (LCA)

as the crucial methodology for advancing the building sector’s

budgetary compliance. However, this alone is insufficient. The

chapter then discusses the need for corrective measures when

deviations from the CBs are detected to ensure alignment with the

Greeenhouse Gas (GHG) trajectory. Finally, the chapter concludes

by identifying and discussing the research gap in the current

literature.

Figure 2.1: Diagram of Chapter 2’s

structure.

2.1 Carbon budgets in buildings

Advocates for Global Carbon Budget (GCB) laud it as an unam-

biguous technique to communicate the nuances of Earth Sciences

to policymakers [30]. Recent reports from the IPCC have incor-

porated GCB, as mentioned in the Chapter 1.1. Defined by the

IPCC [1], to maintain global warming within certain limits, the

accumulation of human-induced GHG emissions since the XVII

century must not surpass specified thresholds. GCBs offer a myriad

of benefits, including simplifying comprehension challenges for

policymakers.

Bridging this concept to practical applications, for decision-makers

in the building sector, having target benchmarks for GHG emissions

throughout the various stages of a building’s life cycle is crucial

for effective sustainable design. Consequently, this creates a need

for target values to evaluate the environmental performance of

individual buildings [31]. However, allocating GCBs to smaller

geographical scales or different sectors is a high complexity task

[32].

In the context of national sector scales, the Stratégie Nationale

Bas Carbone (SNBC) has set bold targets for the building sector,

striving for a reduction in the current levels of emissions of 49%
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1: In France, CITEPA (Technical Ref-

erence Center for Air Pollution and

Climate Change) is responsible for

reporting emissions and it follows

the Secten format for sectorial emis-

sions, much like the SNBC. For more

information: citepa.org/fr/secten/

by 2030, and aiming for a net carbon-neutrality sector by 2050 [33].

However, these targets primarily focus on the operational phase of

residential buildings.

A building’s life cycle, in contrast, encompasses emissions that cut

across various sectors: the manufacturing of products is tied to

the industrial sector; the transportation of components falls within

the transport sector; and the recycling of components is associated

with the waste sector. Despite this, French standards have not yet

assigned a life cycle perspective budget to the building sector.

To admit a Carbon Budget (CB) at the building scale then, two

methodologies can be discerned: top-down and bottom-up ap-

proaches.

2.1.1 Top-Down Approach

A top-down or "externally motivated approach" can serve as a

possible strategy for transforming GCB to the building or even

component scale [34]. This method stems from the calculation of

science-based targets that align with the IPCC’s 1.5 °C targets. For

instance, Priore et al. [35] utilized the 6th IPCC Assessment Report’s

GCB [1] to establish carbon targets at the building’ operational

and embodied emissions for new and renovated constructions in

Switzerland. Horup et al. [36] formulated and computed a method

that investigates and compares different dynamic budget allocation

strategies: by population and by economic affluence of a country.

Rezaei et al. [37] goes even further and determines budgets at the

building component level, with the idea to make them a DM tool.

However, this process of down-scaling global targets into clear

and manageable targets is difficult and is yet to be harmonized [31,

36].

One major difficulty is the fact that buildings aggregate emissions

from different sectors, such as industry, energy and waste. Country-

level CBs, such as in France, are typically defined for each of these

sectors and do not include imported emissions, limiting themselves

to accounting national GHG emissions
1
. In contrast, budgets at the

building level are defined with a LCA approach, where emissions

across all sectors and nations are accounted for [38]. Indeed,

building emissions as per the French SNBC only account for fossil

fuel and biomass emissions at the operational phase.

2.1.2 Bottom-Up Approach

Bottom-up strategies are prevalent in the building sector and

depend on a comprehensive database of existing building perfor-

mances. Targets derived from this method reflect the performance

https://www.citepa.org/fr/secten/
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levels possible when the database was established, enabling a

comparative analysis of an individual building against the broader

building stock.

Zimmermann et al. [39] analyzed 60 buildings to establish bench-

marks for LCA modules and building materials, determining

average and 95th percentile GHG emissions per square meter to

set an emissions budget. Similarly, Lavagna et al. [40] examined 24

statistically-selected European residential building archetypes to

compute average GHG emissions per dwelling, per capita, and per

surface area.

However, this approach faces several challenges. First, it is inher-

ently dynamic as the building stock continuously evolves [31].

Second, there is a significant issue of alignment, as the benchmarks

generated may not consistently correlate with GCB standards [36].

Additionally, whole-building LCA databases are rare and have a

low population of buildings.

2.1.3 Scope of Carbon Budgets in This Study

Defining CB is a complex task and consequently, it is not within the

scope of this thesis, despite being a major input of the methodology

to be developed. Indeed, the entire Decision-Making (DM) process

is set to revolve around CB compliance. However, in the French

context, under which this thesis is being developed, the RE2020 has

recently established GHG budgets for new constructions. These

budgets were defined based on the E+C- experimentation, which

included a national effort to benchmark French constructions that

included over 1200 buildings
2

2: E+C- or "Bâtiments à Énergie

Positive et Réduction Carbone" or

"Positive Energy and Low Carbon

Construction" is an experiment that

aimed at developing a calculation

method and requirement levels for

real buildings’ environmental per-

formance. It was then, used as the

basis for the development of the new

environmental regulation. For more

information: observatoire.batiment-

energiecarbone.fr/statistiques

.

The RE2020 defines GHG budgets for OE and EE separately based

on multiple criteria, including total surface area, climate, building

type, attic surface and parking area. The complexities involved in

the sizing methodology mean they are tailored to the building and

thus, cannot be generalized.

In summary, complying with CBs within the building sector is cru-

cial for fostering sustainable growth and addressing climate change.

The framework provided with GCBs facilitates the reduction of

GHG, but is not enough for decision-makers. Consequently, the

ensuing sections of this chapter will delve into methodologies that

enable practitioners to achieve compliance with CBs, ultimately

pinpointing the methodological gaps that warrant additional in-

vestigation.

http://observatoire.batiment-energiecarbone.fr/statistiques/experimentation-en-chiffres/
http://observatoire.batiment-energiecarbone.fr/statistiques/experimentation-en-chiffres/
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2.2 Life Cycle Assessment

As sustainable development becomes a main requirement towards

limiting climate change and other environmental disasters, evaluat-

ing the Environmental Impact (EI) of products and services is key.

Every product has a "life": from its design, development and raw

material extraction to its production, use and End-Of-Life (EOL)

[41]. All aforementioned steps have an environmental cost, such as

the depletion of natural resources or the emission of substances.

First introduced in the ’60s as a means to reduce waste of soda

bottles, LCA has evolved into a methodological framework that

allows the assessment of environmental costs from each phase

in a product’s "life" [11]. Then, at the turn of the century, the

methodology was standardized by the ISO 14040-43 norms and

officially defined as a "compilation and evaluation of the inputs,

outputs and the potential environmental impacts of a product

system throughout its life cycle" [13].

2.2.1 An Overview of General LCA

The most general and thus incumbent norms are the ISO 14040

[13] and ISO 14044 [42], which encompasses the principles and the

framework of LCA. This framework is summarized in Figure 2.2

and is composed of 4 distinctive steps:

Figure 2.2: LCA framework, as de-

fined by the [13].

I. Goal and scope definition This initial step involves defining the

purpose of the study, the system, and the intended audience.

It sets the boundary and scope of the LCA, including the

functional unit, system boundaries, and data requirements.

II. Inventory analysis This step involves the collection and quan-

tification of inputs and outputs for a product system. It

includes data collection related to raw materials, energy in-

puts, and environmental releases associated with the product

from its production to disposal.

III. Impact assessment Here, the EIs of resource use and emis-

sions identified in the inventory analysis are evaluated. This

phase involves the selection of impact categories, category

indicators, and characterization models, leading to the as-

sessment of the magnitude and significance of the potential

EIs.

IV. Interpretation In this final step, the findings from inventory

analysis and impact assessment are evaluated in relation to

the defined goal and scope. It involves identifying significant

issues, evaluating completeness, sensitivity, and consistency
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checks, and drawing conclusions and making recommenda-

tions based on the study findings.

EIs assessed in LCA are diverse, ranging from resource depletion to

ecological consequences. Among these, Global Warming Potential

(GWP) emerges as a critical factor, especially in the context of

climate change. GWP quantifies the relative radiative forcing of

different greenhouse gases over a specific time horizon, typically

100 years [3], as compared to carbon dioxide (CO2), the reference

gas with a GWP of 1. Methane (CH4), on the other hand, has a

characterization factor of 29.8 [43].

This metric enables the comparison of emissions from various

sources and the assessment of their long-term effects on global

temperatures. Therefore, CBs also are defined in terms of an

equivalent mass of CO2 released into the atmosphere.

2.2.2 Building LCA

Furthermore, due to specific complexities in buildings as compared

to other products and services that are often targets of LCA, the

CEN / TC 350
3

3: The European Committee for

Standardization/Technical Commit-

tee 350 (CEN/TC350) is responsi-

ble for the development of stan-

dardized methods for the assess-

ment of sustainable construction

(EN 15643-1) [44], including en-

vironmental (EN 15643-2), social

(EN 15643-3) and economic (EN

15643-4) performances. For more in-

formation: cencenelec.eu/areas-of-

work/cen-sectors/construction/

developed a Framework for European buildings

that included sustainable practices such as LCA standards, both at

the building and the product levels.

Figure 2.3: Building’s life cycle

stages and modules, as per the EN

15978 [16].

Within the EN 15643-1 [44] standard that defined the framework

for assessment of building environmental performance, two norms

are referred to at the building level (EN 15978) and at the product

level (EN 15804).

Within the building context, the functional unit has to be defined

with the type of building, type of use, technical or functional

requirement, and a service life [45]. For French buildings then, the

RE2020 differentiates the square metre of floor area of commercial

https://www.cencenelec.eu/areas-of-work/cen-sectors/construction/sustainability-safety-and-accessibility/
https://www.cencenelec.eu/areas-of-work/cen-sectors/construction/sustainability-safety-and-accessibility/
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and residential buildings, while setting their life cycle at 50 years

[8].

2.2.2.1 Stages and Modules Life Cycle Assessment

In the temporal dimension, this life cycle is segmented into 5 stages,

as shown in Figure 2.3: production, construction, use, EOL and

benefits. Within each stage, further segmentation is found, totalling

17 distinct modules:

Product stage (A1-3) This stage covers the production of materials

up to the manufacturer’s gate, also known as cradle-to-gate

analysis. These modules, mandatory for all Environmental

Product Declaration (EPD), involve data on raw materials,

transportation to the manufacturing plant, and energy for

production [15]. More detail on EPDs will be given in the

following sub-chapter.

Construction stage (A4-5) The impact of the transportation mod-

ule (A4) varies based on the distance between the construc-

tion site and the manufacturer’s plant, contributing up to

8% of embodied primary energy [46]. Subsequently, the con-

struction module (A5) includes activities such as the energy

consumed by machinery and equipment, concrete pumping

and pouring and in-site transportation. Both of these values

are included in the French EPDs.

Use stage (B1-7) This comprehensive module covers various as-

pects including use (B1), maintenance (B2), repair (B3), re-

placement (B4), refurbishment (B5), operational energy use

(B6), and water use (B7). These modules do not apply to

every component.

End-Of-Life stage (C1-4) This stage includes demolition (C1), trans-

portation to waste processing (C2), waste processing (C3),

and disposal (C4). It relies on current scenarios and technol-

ogy, which may differ significantly from future practices.

Beyond the life cycle (D) This module accounts for benefits be-

yond the system boundaries, such as energy recovery from

waste incineration. However, assessing these benefits intro-

duces complexities, especially considering the long lifespan

of buildings and potential changes in energy mix and waste

management practices over time [47].

These modules highlight the complexities in assessing the EIs of

buildings, considering factors like material production, transporta-

tion, construction, use, and End-Of-Life (EOL). However, thanks

to EPDs, this task has been drastically simplified.



2.2 Life Cycle Assessment 15

2.2.2.2 EPDs and Databases

The EN 15804 [15] norm provides a standardized framework for

EPDs specifically tailored to construction products. It establishes

the rules for the assessment of the environmental performance

of building materials and elements, ensuring consistency and

comparability across different products. EN 15804 covers the entire

life cycle of construction products, from raw material extraction to

EOL, and includes criteria for declaring their EIs. This standard is

crucial for the construction industry, enabling informed decision-

making based on reliable environmental information.

In practice, the application of EN 15804 has led to the development

of several EPD databases, each serving as a repository for the

environmental data of building materials and products. Prominent

examples of these databases include the INIES [48], in France; the

Ökobaudat [49], in Germany; and the KBOB [50], in Switzerland.

These databases play a vital role in providing accessible and

standardized environmental information, fostering sustainable

design and construction practices in line with the principles of EN

15804.

2.2.2.3 Limitations of LCA

LCA is characterized by its holistic approach, which is both its

major strength and limitation [51]. The main limitations identified

by Hollberg [52] of LCA are:

1. Potentials instead of absolute values: LCA results indicate

potential environmental impact rather than predicting pre-

cise impacts [52]. The method relies on models valid within

specific contexts [53].

2. Time independence: LCA models lack temporal dimensions

and are typically linear steady-state models [51]. Dynamic

LCA, which considers changing conditions, adds complexity

and is not a standard part of LCA [54].

3. Limitations of impact categories: Not all relevant environ-

mental aspects are covered by the impact categories [53].

4. Assumptions: LCA involves technical assumptions and value

choices, affecting results [51]. Transparency in these assump-

tions is essential for objectivity.

5. Uncertainties: LCA has various uncertainties, including pa-

rameter, model, and normative uncertainties [53, 55].

Some of the limitations listed above, however, are somewhat over-

lapping, as the lack of time-dependent models could be considered

an uncertainty. Indeed, LCA models describe the future behaviour

of the system, but this can only be an educated guess, at best. In this
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thesis then, we will classify time-dependent parameters as a source

of uncertainty, although many other sources can simultaneously

exist, such as modelling errors, which are not treated here.

The recognition of inherent limitations of traditional LCA sets the

stage for exploring advanced methodologies capable of addressing

these constraints. However, this thesis does not tackle every afore-

mentioned limitation, as it focuses on the uncertainty problem,

mainly in the time-domain.

Therefore, DLCA, which aims to capture the temporal aspects

and variability of environmental impacts [56] will be investigated

Chapter 2.2.3.

2.2.2.4 Buildings’ GHG Emissions Through Time

Figure 2.4: MacLeamy curve of ef-

fort to make design changes over

time. The area painted in red rep-

resents the traditional design ap-

proach, where most effort is put

into the latter, whereas in the IDP,

painted in green, the most effort

is put into the early design stages,

when the cost of changes is lower

and the ability to control cost is

higher. [57].

Time introduces significant uncertainty in LCA. This subsection

explores emissions timelines, emphasizing the design stage’s crit-

ical role in efficient building design via the Integrated Design

Process (IDP). This process incorporates performance targets early

in the design phase, leveraging lower costs for design changes and

enhanced cost control, as illustrated by the MacLeamy curve in

Figure 2.4.

Early integration of LCA empowers decision-makers to optimize

sustainable design. A brief design period can determine a signifi-

cant portion of a building’s environmental impact over its 50-year

lifespan. Techniques like parametric workflows [52], data-driven

methodologies [58] and BIM-integration [59] have been developed

to enhance LCA’s early-stage usability.

However, early design stages are fraught with uncertainties due

to limited detail [60]. Consequently, the LCA process must be

iterative, assisting decision-makers from the initial design through

to the documentation submission for approval. Even so, the final

EI assessments conducted before construction or delivery, which

are crucial for carbon budget compliance, may not fully align

with predicted performances. Indeed, Vuarnoz et al. [25] high-

light deviations in energy demand based on occupant behaviour,

emphasizing that accurate data only becomes available during post-

occupancy, thereby illustrating the discrepancy between expected

and actual building performance.

These insights highlight the dynamic nature of the building sector’s

carbon footprint and the importance of incorporating them to LCA.

Post-occupancy evaluations, capturing actual energy usage and

occupant behaviours, are crucial for refining LCAs. Finally, a DLCA

approach, enriched by post-occupancy data, allows for continuous

optimization of a building’s EI, addressing deviations in GHG
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emissions trajectory and allowing timely correction towards CB

compliance. The following Sub-Chapter 2.2.3 then, will explore

existing DLCA frameworks.

2.2.3 Building Dynamic LCA

Dynamic Life Cycle Assessments have emerged as a response to

the limitations of traditional static LCA approaches in capturing

the temporal variability of EIs in the building sector [61, 62]. While

static LCAs provide a snapshot of a building’s EIs throughout

its life cycle, they often fail to account for their time-dependent

nature, which can vary due to changes in material properties,

energy use, and other factors [63]. DLCA addresses this issue

by incorporating time-dependent input variables and dynamic

EI factors, providing a more comprehensive understanding of a

building’s environmental performance over its life cycle [64].

By considering the temporal variability of EIs, DLCA allows for

a more informed decision-making process when designing, con-

structing and operating buildings, ultimately leading to more

sustainable and low-carbon solutions [62].

2.2.3.1 Considering Time in the LCA Framework

As demonstrated in the framework shown in Figure 2.2, LCA is

comprised of different methodological steps. Thus, the temporal

dimension can be independently included into each of them [65]:

Dynamic scope Dynamism included in the goal and scope defini-

tion phase of LCA can impact product lifetime and functional

unit [66]. For instance, Hoxha et al. [67] investigates the im-

pact varying a building’s service life on GWP per year.

Dynamic process inventory This refers to the process of captur-

ing and incorporating time-dependent variations in material

and energy flows, as well as emissions and other environmen-

tal exchanges, that occur during the life cycle of a product

or system. This approach contrasts with traditional LCA,

which often uses static or average data, failing to account for

temporal changes [65].

Dynamic systems inventory Dynamic systems inventory refers

to the inclusion of time-dependent changes in the back-

ground systems that support the product’s life cycle but are

not directly part of it. This includes changes in the electricity

grid mix, transportation systems, waste management prac-

tices, and other external systems that indirectly influence

the environmental impacts of the product’s life cycle [68].

By incorporating these dynamics, the LCA can capture the
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4: In France, the building life cycle

has been determined at 50 years by

the RE2020 regulation [74].

broader temporal shifts in the systems that the product inter-

acts with. Vuarnoz and Jusselme [69], for instance, compared

the use of hourly conversion factor for electricity in a building

LCA to the traditional yearly average.

Dynamic characterization This aspect involves applying time-

dependent factors during the Life Cycle Impact Assessment

(LCIA). Dynamic characterization accounts for the varying

significance of EIs at different times, as it considers the tem-

poral distribution of emissions, and the varying sensitivity of

ecosystems and human health to impacts at different times

[70]. In [71], Negishi et al. assess three dynamic indicators:

instantaneous radiative forcing, cumulative radiative forcing

and global mean temperature change instead of GWP100

(equivalent mass of 𝐶𝑂2 over a 100-year time horizon).

Dynamic weighting This refers to a methodological approach

where the relative importance or weight given to different

environmental impacts is allowed to vary over time [72]. This

step systematically comes last, after LCIA, and incorporates

social, political and ethical values [73].

In this thesis, however, a deliberate decision was made to limit

the methodology to dynamic inventories (for both process and

system). The reason to leave dynamic scope and characteriza-

tion aside was due to the objective of this thesis to improve CB

compliance strategies. Indeed, CBs are defined in GWP100 for a

pre-determined life cycle of 50 years
4
. Since the focus is on aligning

with these compliance strategies, only the dynamic inventories

were considered relevant. As for Dynamic Weighting, it could

be argued the RE2020’s dynamic approach involves a weighting

mechanism, which will be described in the following chapter on

the existing methodologies.

2.2.3.2 Dynamic LCA Methodologies

DLCA is still in its developmental stages, with the earliest schol-

arly articles appearing around 2010 [68]. Consequently, various

methodological proposals are currently being explored in aca-

demic research. This brief section will focus on describing three

methodologies that have been applied specifically to buildings.

These are outlined in the only building-focused DLCA literature re-

view known to date by Su et al. [64], along with the methodological

proposal from the RE2020 regulation.
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(a) Dynamic Matrix model

Dynamic matrix modelling, spearheaded by Collinge et al. [63],

has significantly advanced DLCA research. Collinge et al.’s model

integrates four matrices: 𝐶𝑡 , 𝐵𝑡 , 𝐴𝑡 , and 𝑓𝑡 , which represent tempo-

ral characterization factors, environmental interventions, upstream

process changes, and varying materials and energy requirements,

respectively. The model’s formula, ℎ𝑡 =
∑𝑡𝑒
𝑡0
𝐶𝑡 × 𝐵𝑡 × 𝐴−1

𝑡 × 𝑓𝑡 ,

encapsulates the dynamic interactions among these components.

This methodology facilitates dynamic assessments by quantifying

the effects of temporal and environmental variables on life cycle

phases, encompassing everything from raw material extraction

to EOL processes. Collinge applied this dynamic approach to

diverse studies, including human health impact quantification

[75] and comparisons of green and net zero energy buildings [76].

Moreover, other researchers like Hu [77] adapted this framework,

introducing alternative matrices, such as the "M" matrix for user-

specific value assessments, and analyzing different environmental

priority archetypes. Simplifications of this model by Fouquet et

al. [78] and Pittau et al. [79] focused on dynamic global warming

impacts using GHG emission vectors and environmental system

dynamics.

(b) Data Transformation–Based Model

This dynamic model, established with Su et al. [80] and further

explored in subsequent studies, emphasizes the transformation of

calculation data in EI assessment. The core concept of the model is

the data transformation pathway, which is essential for calculating

the final dynamic impact results.

The methodology involves a series of steps. Initially, data on build-

ing materials and energy consumption throughout the life cycle

are gathered annually. This dynamic consumption data is then

transformed into dynamic inventory results, incorporating time-

dependent variations in the energy mix. The next stage involves the

adoption of dynamic characterization factors, which consider the

timing of pollutant release, leading to the creation of dynamic im-

pact category indicators. The final step employs dynamic weighting

factors to quantify the impact severities at different times, resulting

in the output of annual impact assessments.
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(c) Static Model + Dynamic Variables

Negishi et al. [81] proposed an innovative approach for EI assess-

ment, combining a static LCA model with dynamic variables, aptly

named the “static model + dynamic variables”. This methodology

was then applied to a case-study in [71] and it involves integrating

dynamic factors into a traditionally static LCA framework to better

capture the temporal aspects of EI.

The dynamic model comprises five key steps. Initially, it involves

the collection of building data, focusing on identifying and dis-

cussing dynamic aspects. The second step entails the development

of a static model that represents the life cycle system. Subsequently,

dynamic variables relevant to the model are thoroughly analyzed

and modelled, considering various scenarios to simulate different

conditions. The fourth and fifth steps involve conducting a dy-

namic inventory analysis and a dynamic characterization process,

respectively, to determine temporal EI.

This hybrid approach maintains the static LCA system as a foun-

dational structure, with the addition of various dynamic variables.

These dynamic elements are seamlessly integrated into the static

framework, enabling a more comprehensive and temporally sensi-

tive dynamic assessment.

(d) RE2020

The RE2020 methodology is defined in the most recent French

building environmental regulation. In this method, a "weighting

factor" is applied to building emissions year-by-year. These are the

DPs that are linked to social and policy developments. Su et al.

[62] defined the weighting factor as the DP linked to governmental

environmental policy and planning reports [62] or to a population’s

willingness to pay to avoid climate change [82].

France’s weighting factor then, is built as a linear reduction of

GHG emissions with time. Effectively, the further in the future an

action is taken, the lower its EI. This weighting factor represents

the decarbonization process that will occur in all building-adjacent

sectors in the next few decades. In practice, the weighting factor

linearly decreases from 1 to 0.58 from year "zero" until the building’s

EOL. This weighting factor is not a variable, however, meaning

this method, unlike the others, is not inherently parametric.

Equation 2.1 summarizes the calculations, where 𝐺𝑊𝑃𝑡𝑜𝑡𝑎𝑙 repre-

sents the overall life cycle GWP, 𝐺𝑊𝑃𝑦 is the GWP at a given year

𝑦 and 𝐹 is the weighting factor, which is itself calculated as per

Equation 2.2.
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𝐺𝑊𝑃𝑡𝑜𝑡𝑎𝑙 =
50∑
𝑦=0

𝐺𝑊𝑃𝑦 × 𝐹𝑦 (2.1)

𝐹𝑦 = 1 − (1 − 0.58

50

× 𝑦) (2.2)

Note that both OE and EE are treated equally in this methodology

and thus multiplied by the same factor. Also note that upfront

emissions linked to production and construction phases (A1-5, as

per [15]) are not affected by 𝐹.

Consequently, this method of calculating GWP favours some types

of components over others by reducing the importance of EOL

emissions, notably, it incentivizes the use of bio-based materials.

(e) Comparing Methodologies

The aforementioned DLCA methods have distinct strengths and

limitations. The dynamic matrix model is valued for its general

applicability and clear structure, but it lacks depth in represent-

ing the dynamic specifics of buildings and in detailed temporal

analysis. The data transformation–based model effectively links

temporal data with traditional assessment methods, allowing easy

integration of dynamic variables into existing frameworks. How-

ever, it falls short when deeply analyzing the temporal aspects of

these variables.

Finally, the RE2020 offers the simplest approach deal with dy-

namics, however, this comes with many limitations, such as the

strict applicability to French buildings and the fact that it’s not

parametric. Since this thesis also uses the CBs by the RE2020, it

also will explore its DLCA method.

For a more holistic approach, it was found that the static model +

dynamic variables method had the best compromise between the

detail of time-dependent variables and the associated complexities.

Therefore, this method will also be included in the methodological

development.

2.2.4 Advantages and Disadvantages of Dynamic LCA

DLCA offers a nuanced approach to environmental impact analysis,

particularly in forecasting GHG emissions over a product’s life

cycle. This section explores the advantages and disadvantages

of DLCA in the context of its application and role in the DM

processes.
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2.2.4.1 Advantages of DLCA

▶ Enhanced Forecast and Comprehensive Overview: DLCA en-

ables more holistic forecasting and a more complete overview

of future GHG emissions. By taking into account the tempo-

ral variation and evolution of processes, DLCA allows for

an educated guess of the life cycle GHG, leading to a more

nuanced understanding of EIs over time [55].

▶ Parametric Flexibility: The parametric nature of DLCA pro-

vides flexibility in modelling. It accommodates various sce-

narios and changing conditions, making it a versatile tool for

assessing EIs under different circumstances [71].

2.2.4.2 Disadvantages of DLCA

▶ Computational Intensity: The parametric nature of DLCA

necessitates multiple computing simulations to account for

various scenarios and temporal changes. This can be resource-

intensive and time-consuming, limiting its practicality in

certain contexts [83].

▶ Frequent Calculation of Energy Needs: DLCA requires the

frequent calculation of annual energy needs for dynamic

operational emissions. This process is often iterative and

complex, posing challenges in terms of data accuracy and

processing time [83].

▶ Complexity in Modeling Dynamic Parameters: The mod-

elling of dynamic parameters in DLCA is complex, often

hindered by a lack of comprehensive data and a unified

database [63].

▶ DLCA as One of Many Adaptations: DLCA represents just

one of the adaptations of the traditional LCA methodol-

ogy. While it offers depth in temporal analysis, it may not

fully address all aspects of EI, necessitating complementary

approaches [84].

Clearly, DLCA comes with significant complexity and resource re-

quirements. Therefore, its integration with other tools and method-

ologies presents notable challenges. However, the amalgamation

of long-term uncertainties to a CB compliance method seems

particularly relevant and necessary advancement.

Indeed, up until now, the use of LCA towards CB compliance

has been restricted to the design stages of building, despite LCA

method already being commonly integrated into renovations [85].

Thus, a post-occupancy DM method, informed by DLCA, plays

a potentially pivotal role in aligning building performance with

budgetary goals.
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For this reason, Sub-Chapter 2.3 will explore DM methods in build-

ing design that could also inform decision-makers of retrofitting

plans towards budgetary compliance.

2.3 Building Post-Occupancy Decision-Making

The preceding sections established CBs as important instruments

towards the future of the built environment and LCA as a crucial

methodology to assess the budgetary compliance of buildings. Now,

this section will explore methodologies in the current literature that

support decision-makers towards ensuring building energy and

environmental performance at post-occupancy stages. To start then,

some terms first need to be defined, starting with post-occupancy.

2.3.1 Post-Occupancy

2.3.1.1 Definition of Post-Occupancy

In line with the LCA framework, a building’s life cycle is categorized

into 17 modules across 5 stages (see Figure 2.3). The product and

construction stages (A1-5) contribute to the upfront Embodied

Emission (EE). Post-occupancy starts after delivery, encompassing

the building’s utilization until its life cycle concludes [5]. Hereafter

then, post-occupancy emissions will correspond to the use (B1-7)

and end-of-life (C1-4) stages, including Operational Emissions (OE)

(B6 and B7) and EE (B1-5 and C1-4).

2.3.1.2 The Relevance of Post-Occupancy Evaluation

Post-Occupancy Evaluation is pivotal in managing the uncertainty

inherent in the assessment of a building’s GWP over a complete

life cycle. Such evaluation allows for the actual measurement and

correction of performance gaps that emerge with time, thereby

addressing the limitations of predictive assessments.

Defined by Li et al. as "the general approach of obtaining feed-

back about a building’s performance in use" [5], POEs involve

comprehensive audits and evaluations throughout the building’s

lifespan [86]. These evaluations generate both subjective feedback,

through interviews and surveys with occupants, and objective

data, from measurements of indoor air quality, energy usage, water

consumption, etc. [5].

Importantly, the true measure of a building’s sustainability is re-

flected in its operational performance, not just its intended design

[5]. To this end, certification and rating systems like the Energy
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Results Guarantee
5

5: In French, the Garantie de Ré-

sultats Energétique (GRE) mech-

anism is a part of the Garantie

de Performance Energétique (GPE)

plan. This 2-part plan consists of

ensuring the intrinsic quality of

the work realized during construc-

tion or renovation, then ensuring a

maximum level of energy consump-

tion. For more information: exper-

tises.ademe.fr/batiment/

in France serve to ensure ongoing energy per-

formance through continuous monitoring and recommendations

for energy savings.

Another key example is the International Performance Measure-

ment and Verification Protocol (IPMVP)
6

6: The International Perfor-

mance Measurement and

Verification Protocol (IPMVP).

For more information: evo-

world.org/en/products-services-

mainmenu-en/protocols/ipmvp

, which offers an approach

for validating and calculating the effectiveness of energy saving

measures in buildings.

These certifications and protocols underscore the role of building

experts in analyzing performance data to identify and rectify

deviations. This process not only supports the immediate goal

of optimizing building performance but also contributes to the

broader objective of sustainable development. In this context, the

inclusion of DM processes becomes crucial as these evaluations

inform strategies to address performance issues.

2.3.2 Decision-Making in Building Renovations

During post-occupancy, as defined in Chapter 2.3.1.1, the building

has already been constructed and is being occupied. Therefore,

the design choices available at this stage are now restricted to

refurbishment, maintenance, replacement and EOL measures.

Indeed, when considering the life cycle modules in Figure 2.3, all

A-phase emissions have now passed and the focus to ensure CB

compliance is on B- and C-phase emissions: usage and EOL stages.

To manage the post-occupancy CB then, design decisions can still

be made to curb emission trajectories in renovations.

Within Europe, 80% of the occupied buildings in 2050 have already

been built [87]. Therefore, renovating the current building stock

will be an essential stepping stone towards respecting the CBs of

the sector. Indeed, annual renovation rates in Europe are expected

to jump from 1% to 2% in the next years [88]. This less ambitious

goal was set after a target of 3% by 2020 had not been achieved

[89].

Given the relevance of renovations, methodological developments

towards supporting the DM process at this crucial life cycle stage are

important. Despite the DM process during pre- and post-occupancy

stages being fundamentally similar, the main differential between

them being the number of constraints [90].

Bazerman and Moore [91] have defined a general workflow for

DM in building renovations, which includes the following: prob-

lem definition, identification of objectives and criteria, criteria

weighting, generation of alternatives, rating each alternative on

each criterion and lastly computing the optimal solution. In the

context of building renovations then, Nielsen et al. [90] assembled

https://expertises.ademe.fr/batiment/passer-a-laction/outils-services/garantie-performance-energetique
https://expertises.ademe.fr/batiment/passer-a-laction/outils-services/garantie-performance-energetique
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
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the works of Ferreira et al. [92] and Alanne [93] in a literature

review to summarize the DM process for building renovations

into six areas displayed in Figure 2.5. Within each of the six areas

then, the methodological steps, together with the primary actors

responsible have been included.

Figure 2.5: The six areas towards DM in building renovations [90].

2.3.3 Techniques for Solution Exploration

Decision-Making methodologies encompass various methods aid-

ing building decision-makers to achieve better-performing build-

ings. These methods consider factors such as cost, energy consump-

tion, indoor air quality, and intervention times [94]. Østergård et

al. [95] identify the following DM support techniques for building

design: statistical methods, optimizations, and CAD-BPS
7

7: BPS, or Building Performance

Simulation, is a process that uses

computer-based models to simulate

the performance of a building under

various conditions.

inter-

operability, which integrates CAD
8

8: CAD, or Computer-Aided De-

sign, software allows the building

geometry to be visualized by the

decision-maker.

with building performance

simulations to streamline the design process.

For existing buildings, statistical methods, optimizations, and

CAD-BPS interoperability are particularly useful. The last method,

however, falls outside this research’s scope and is reviewed in

detail by Tan et al. [96], focusing on BIM integration into the DM

process.

2.3.3.1 Statistical Methods in Building Design

Statistical methods, as Østergård et al. [95] outline, utilize exten-

sive energy simulations alongside statistical techniques for design

support. This approach encompasses uncertainty analysis, sensi-

tivity analysis, multivariate analysis, and visualization techniques,

forming a comprehensive framework for analyzing building design

data.
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Building on this foundation, Hollberg [52] introduces a parametric

LCA method. By parametrizing inputs like building geometry

and materials, this approach facilitates real-time EI calculations,

allowing for swift adjustments to enhance environmental perfor-

mance.

Jusselme [58] further refines this by applying a data-driven method-

ology to early-stage low-carbon building design. His method over-

comes traditional barriers to LCA application through tools such as

parametric assessment, enabling the exploration of myriad design

alternatives to assess their carbon impact.

(a) Uncertainty Analysis

Uncertainty analysis is used to assess the impact of potential

uncertainty in the input parameters, model structure, and data on

the outputs of a model or system. In building energy simulations,

it’s already been established that reality can differ from prediction

for multiple different reasons: thermal properties of materials,

air-tightness, weather data, occupant behaviour, etc [97].

In the context of building design though, uncertainty analysis

brings better insight into the robustness of decisions, as well

as a range of possible results [95]. Several studies that apply

uncertainty analysis have focused on HVAC sizing. Kim et al.

[98], for instance, propose a stochastic approach to evaluate and

compare two HVAC system alternatives under uncertainty. In their

conclusion, the authors highlight the importance of the occupant’s

preferences in choosing the correct system. Sun et al. [99] propose

a framework based on uncertainty analysis and sensitivity analysis

that includes five groups of uncertainty sources: meteorological

weather, microclimate, building, system, and occupant. They then

find that occupants have the largest impact on heating system sizing,

whereas, for cooling systems, building materials’ characteristics

are the major contributors.

Within building LCAs, uncertainties have also been instrumental

for the improvement of the methodology. Pannier et al. [100], for

instance, identifies the major sources of uncertainties for different EI

indicators with SA methods. Meanwhile, Hoxha et al. [101] focused

on studying the impact of uncertainties linked to construction

materials (notably their expected service lives, quantities and

characterization factors) on non-renewable energy, waste and

GWP.

Galimshina et al. [102] also recognizes that selecting a renovation

strategy involves many uncertainties due to the long service life of

buildings and the variability in design and external parameters
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(like climate and energy costs). To address these uncertainties, the

paper defines probability distributions for 74 uncertain parameters

related to renovation scenarios.

In broader building design, outside HVAC sizing, uncertainties

are more often integrated into optimizations, through robustness

analysis. Therefore, this topic will be investigated further ahead.

Within the scope of DLCA, which acknowledges temporal changes

as a form of uncertainty, there emerges an intriguing application

of this mathematical tool, which will be explored in Chapter 3.

(b) Sensitivity Analysis

As seen above, studies investigating both sensitivity and uncer-

tainty analysis often overlap, much like in [103], [102] and [104].

Indeed, SA is a technique used to determine how variations of an

input variable affect a particular output variable. Therefore, it is

a common application of SA to define the input variance as an

uncertainty interval, together with a probability function.

However, SAs still are directly used in building design. For instance,

Jusselme [58] calculated the Sobol indices of 14 design parameters,

such as window-to-wall ratio, insulation quantity, heating system,

floor and wall covering and PV surface. In a case study application,

the author ranked these parameters in order of most to least

influential, concluding that the choice of horizontal elements had

the greatest impact on GWP.

Rezaei et al. [105] use SA to rank the impact of the design parameter

on the embodied GWP and on daylight performance. The authors

find that wall type has the highest impact on embodied carbon

emissions, while window head height has the highest impact

on daylight factor. Gauch et al. [106] also applies SA to design

parameters to find their impacts on heating and cooling loads,

embodied GWP and construction costs. Additionally, they also

investigate how different climates, from Singapore to London,

impact this SA results.

Then, when applied to DM, SA indicates to the decision-maker,

which design choice requires more focus by ranking the param-

eters that are most sensitive in the output, thereby reducing the

complexity of the multi-parameter problem [105]. In addition, SA

can also "help to identify trade-offs and synergies between different

design objectives and to find optimal or near-optimal solutions"

[106].
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Therefore, to assess the impact of various parameters GWP, SA is

incredibly powerful. For this reason, a couple of techniques have

been identified and described hereafter.

Morris Method

The Morris Method [107], a global sensitivity analysis technique,

efficiently screens for the most influential parameters in a model.

This method, also known as the Elementary Effects Test, involves a

systematic alteration of input parameters to observe corresponding

output changes. By evaluating the mean and standard deviation of

these changes, the method distinguishes between parameters with

significant, negligible, or no impact on the output. Furthermore,

it identifies factors causing non-linear effects or interactions with

other parameters. This method is particularly useful in the prelim-

inary stages of model analysis, as it provides a broad overview of

parameter influence without the need for extensive computational

resources.

Sobol Method

The Sobol Method [108], another prominent global sensitivity

analysis approach, provides a more detailed and quantitative as-

sessment of parameter influences. It decomposes the variance of

the model output into fractions attributable to each input parame-

ter, including their higher-order interactions. This variance-based

method allows for a comprehensive understanding of how individ-

ual parameters and their combinations affect the model’s results.

By quantifying the total, first-order, and higher-order effects, the

Sobol Method delivers an in-depth analysis of parameter inter-

actions, crucial for complex, non-linear models. This approach

is especially valuable when precise quantification of parameter

impacts is required for model optimization or decision-making

processes.

(c) Multivariate Analysis

Multivariate analysis is used to analyze data that involves multiple

variables to understand relationships among them. It helps exam-

ine how variables interact with each other. Applications include

methods like principal component analysis, factor analysis, cluster

analysis, multivariate regression, and discriminant analysis.
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Olofson et al. [109] applied Principal Component Analysis and

Partial Least Squares to Latent Structures to a dataset of 112 mul-

tifamily buildings in Sweden, and obtained various results and

insights about the impact of different building design parameters

on energy performance measures. Meanwhile, Bilous et al. [110]

created a multivariate regression model for predicting the internal

air temperature of a building, depending on various internal and

external factors.

Most commonly in building design though, multivariate analysis

methods are used to simplify and quicken energy simulations.

Hygh et al. [111], for instance, used multivariate linear regression to

build a Surrogate Model (SM) with around 2% average prediction

error with 1000 training inputs. Therefore, for methodologies that

require thousands of iterations of a complex model’s simulation,

such as building energy performance and, subsequently, in LCA,

SM becomes an important tool. For instance, while optimizing

retrofitting solutions, Asadi et al. [112] used Artificial Neural

Networks to drastically reduce simulation time.

As mentioned as one of its key disadvantages, DLCA is associated

with significant computational costs. However, multivariate anal-

ysis hold the potential to mitigate the computational burden of

50-year OE calculations with SM.

(d) Visualization Techniques

Ritter et al. [113] advocate for the integration of human-computer

interaction in informed DM. This integration allows decision-

makers to adjust to constraints that might not be accounted for

in simulations. An exemplary tool for this interaction is the Paral-

lel Coordinates Plot (PCP), a prevalent exploration technique in

building design.

Indeed, Jusselme et al. [114] compare different visualization tech-

niques, notably PCP and decision trees. They then conclude on

the former’s flexibility and effectiveness for data exploration and

filtering and the latter’s ease of use while being more limited in

data representation and interaction.

Additionally, the extra information provided by DLCA necessitates

careful management to avoid overwhelming the decision-maker

[52]. Thus, developing visualization and exploration tools becomes

critical. Indeed, DLCA enhances the decision-making process by

incorporating a time dimension, which static LCA did not offer.
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(e) Statistical Methods Within this Thesis

The utilization of statistical methods in the realm of building

design and renovation stands as a testament to their indispens-

ability in enhancing DM processes. These methods, through their

multifaceted applications, provide complementary information

for decision-makers. They enable the exploration of diverse de-

sign solutions while navigating the complexities and uncertainties

inherent in building performance considerations.

Furthermore, by integrating advanced statistical tools with DM

methodologies, this thesis aims to not only streamline the integra-

tion of DLCA into the DM landscape with SMs, but also to directly

bolster the DM process itself.

However, a more efficient way to navigate the solution space is with

optimizations, which will be explored in the following Sub-Chapter

2.3.3.2.

2.3.3.2 Optimizations in Building Design

Figure 2.6: Optimization process

[115]

Where the inputs of the statistical methods are determined by a

sampling method, independently from the outputs, optimizations

use the output of each iteration to inform the next iteration’s

input and thus approach a predetermined objective: to maximize

or minimize a given performance indicator [116]. This process is

repeated until a stopping criterion is met [116]. Figure 2.6 depicts

the iterative nature of the optimization process and so, in the

following sub-chapters, these presented bricks will be explored.

(a) Objective Functions

Objective functions determine the target of the optimization, such

as minimizing life cycle cost and EIs [117]. Indeed, optimizations

can have a single or multiple objective functions. When dealing

with Multi-Objective Optimization (MOO), the different design

criteria then, usually have conflicting behaviours, such as minimum

energy consumption and maximum indoor comfort hours [116].

A common method to deal with MOO is known as scalarization,

where a weighting factor is given to the different objectives and

a sum of all targets [118]. However, another way of dealing with

multiple objectives is through a Pareto front, where a set of optimal

trade-off solutions are identified, as shown in Figure 2.7.

In the context of building renovations, Asadi et al. [119] apply MOO

with two criteria: maximize energy savings and minimize retrofit
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costs. Asadi et al. [112] then expand the framework by including

total hours of discomfort as a criterion.

Figure 2.7: Example of a Pareto plot

[116]

Shao et al. [115] apply an MOO to an office building to identify

retrofitting strategies that aim to minimize operational GWP, initial

investment cost, and operational energy. They discovered a Pareto

relationship between operational indicators and investment costs.

In contrast, a positive and linear relationship was observed between

GWP and energy. This implies that in the absence of antagonistic

objectives, a unique optimal solution exists. Rosso et al. [120] also

considered carbon emissions in their criteria selection process,

delineating a Pareto front between GWP and investment costs in a

European multi-family residential building.

Shadram et al. [121] explore the relationship between embodied

and operational energy through a MOO and find that a conflicting

relationship exists between the two: larger embodied investments

usually render lower operational burden. This trade-off relation-

ship is true in some design decisions, but for certain parameters, a

different relationship appears. Indeed, we showed in our publica-

tion [122] that, for certain bio-based insulation materials, greater

insulation thickness does not necessarily yield greater embodied

GWP, while still reducing OEs. In fact, when considering the

stored carbon in these materials, the optimizer will recommend the

maximum insulation thickness possible, since it reduces energy

needs while serving as carbon sequestration [123].

Thorel [94] proposes an even more holistic methodology towards

retrofit DM, by including criteria often left aside for their complex-

ity, such as the time and intrusiveness of an intervention, acoustic

quality and fire safety.

Additionally, Abbass Raad et al. [124] introduce a hybrid discrete-

continuous multi-criterion optimization approach for building
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design. The first key idea is the use of a weak coupling approach

between the optimization algorithm and the simulation model,

which is defined as a web service, allowing the model to be accessed

without being directly provided. The second idea involves a bi-

objective CAPEX/OPEX optimization of a building, analyzing the

impact of considering the discrete nature of components.

Building upon the insights from previous studies on optimization

in building design, this thesis recognizes this tool as a key DM

tool. Drawing from the comprehensive review of optimization

techniques and their application in various contexts, this work

should refine the intersection between retrofitting and carbon

budget management. Specifically, it intends to integrate a nuanced

understanding of trade-offs, namely those between embodied

and operational emission, into the DM process of ensuring CB

compliance.

(b) Optimization Algorithms

Optimization algorithms are pivotal in determining how a function

will converge through successive iterations. These algorithms can

be broadly classified into enumerative, stochastic and deterministic

approaches [125].

Enumerative

Enumerative methods are the most primitive, as it involves evaluat-

ing the objective function for every point in a discretized solution

space [125]. This is of course very limited in the case of an en-

tire building’s design, so it is only applied to specific building

components’ sizing, such as insulation thickness and materials

[122].

Deterministic

Deterministic algorithms "are based on the rigorous mathematical

expression of objectives, or their gradients" [125]. This means they

always provide the same output for a given set of inputs, ensuring

reproducibility and predictability.

Several deterministic algorithms are instrumental in various opti-

mization problems:

LP and MILP: Linear Programming (LP) deals with the optimiza-

tion of a linear objective function, subject to linear equality

and inequality constraints. Mixed-Integer Linear Program-

ming (MILP) extends LP by allowing some or all of the
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decision variables to take on integer values, adding com-

plexity and expanding its applicability to discrete problems.

Hodenq et al. [126] uses Gurobi, a MILP optimization tool, to

optimize PV and storage systems’ GWP and self-sufficiency

rates in energy communities. Ashouri et al. [127] employed a

MILP approach for optimizing the sizing of heating systems,

thermal energy storage, and ice storage systems.

Gradient Descent: For problems with differentiable objective func-

tions, it iteratively moves towards the minimum of the func-

tion by taking steps proportional to the negative gradient

of the function at the current point. Indeed, to optimize

insulation thickness, Bolatturk [128] uses the life cycle cost

function’s mathematical expression to calculate its deriva-

tive’s equality to zero. Due to its limitations, its use in build-

ing design is rare, however, it’s widely applied in machine

learning for minimizing loss functions.

Dynamic Programming (DP): This method breaks down a prob-

lem into simpler sub-problems and solves each of these sub-

problems just once, storing their solutions. The approach is

effective for problems exhibiting the property of overlapping

sub-problems, as seen in the optimization of resource alloca-

tion and inventory management. Favre and Peuportier [129]

use DP to optimize electricity costs and EI with load-shifting

strategies of the heating system thanks to the case-study’s

thermal mass.

Quasi-Newton: This is a powerful method for solving constrained

nonlinear optimization problems. It also operates by solv-

ing a series of quadratic programming sub-problems, each

aiming to approximate the nonlinear problem more closely.

Hodenq et al. [130] uses an open-source optimization tool

with sequential quadratic programming to find the optimal

sizing of PV and battery systems while minimizing GWP

and maximizing locally produced energy coverage rate.

Stochastic

Conversely, stochastic algorithms incorporate randomness, leading

to different outcomes for the same initial conditions on different

executions.

Genetic Algorithm (GA): GA is notably prevalent in performance-

driven design, with Nguyen et al. [116] observing its applica-

tion in 40 out of over 200 studies. GA begins with a population

of potential solutions, evolving iteratively to select and re-

combine the "fittest" solutions for subsequent iterations. This

process helps circumvent local minima with a sufficiently

large population. Asadi et al. [119], Wright et al. [118], and
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Abbasi et al. [131] have utilized GA for optimizing renovation

design choices, energy cost and thermal comfort, and life

cycle embodied and operational energy, respectively.

Particle Swarm Optimization (PSO): This class of algorithms op-

erate with a swarm of candidate solutions moving according

to mathematical rules based on their position and velocity,

influenced by their best-known positions and those of the

swarm. This mechanism aims to guide the swarm towards

optimal solutions. Delgarm et al. [132] applied PSO to mini-

mize energy use in heating, cooling, and lighting through

design choices.

Simulated Annealing: Drawing inspiration from the process of

annealing in metallurgy, this is a probabilistic technique

for approximating the global optimum of a given function.

Nielsen [133] uses simulated annealing to optimize the dis-

crete design variables of the building design problem.

Wetter and Wright [134] compared nine algorithms using Energy-

Plus building models. In this study, they note the inadequacy of

methods requiring function smoothness due to large discontinu-

ities in the models’ cost functions. They found that a hybrid PSO

and Hooke-Jeeves algorithm yielded the best results, whereas GA

required the fewest simulations. Therefore, stochastic algorithms

have been predominantly favoured in building simulations for

their independence from initial predictions, objective function

regularity, and reduced risk of local minima [135].

(c) Optimization Within this Thesis

In the exploration of optimization algorithms, particular atten-

tion has been paid to their ability to navigate complex, multi-

dimensional, and non-linear problems, characteristic of this field.

Among these, the robustness of GA in handling discrete variables

and their capability to avoid local optima through mechanisms of

selection, crossover, and mutation are noteworthy. Therefore, after

thorough consideration, GA was chosen as the primary method

for this thesis.

This decision stems from the method’s flexibility and broad search

capabilities, positioning it as a potent tool for uncovering innovative

solutions that enhance the sustainability and resilience of the built

environment. The scope of this thesis does not extend to comparing

it with other algorithms; rather, it concentrates on demonstrating

the effectiveness of MOO within the specific context of sustainable

building retrofits.
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(d) Optimization Constraints

Optimization constraints are conditions or limitations that define

the boundaries within which an optimization problem must be

solved. In the context of buildings, common performance con-

straints are: physical and cost limits; performance standards; mate-

rial availability and regulatory compliance.

In this thesis then, CB will clearly be defined as a constraint for the

output EE and OE.

2.3.3.3 Robust Optimization

As alluded to before, uncertainty is often attached to optimizations

to aid in robustness analysis. By now in this Chapter 2, the reason

why deviations from predicted performance are expected should

be clear. Nevertheless, these uncertainties are rarely taken into

account in design or renovation by decision-makers [136].

For Homaei and Hamdy [137] then, "robustness is defined as the

ability of a building to perform effectively and remain within

the acceptable margins under the majority of possible changes

in internal and/or external environments". They then propose a

methodology to produce robust designs under climate and occu-

pant uncertainties on energy consumption and internal discomfort

with an innovative key performance indicator.

Robustness analysis can be carried out through probabilistic- and

scenario-based approaches. However, for the former, probability

density functions are necessary, information that is unavailable

in the context of deep uncertainty, meaning the latter approach is

preferable [138].

Galimshina et al. [102] uses a robust optimization approach to min-

imize the sensitivity of renovation strategies to uncertainties. This

involves multi-objective optimization using the Genetic Algorithms

to find a balance between life cycle costs and GHG emissions. In

addition, they perform a probabilistic assessment of the optimal

solutions to evaluate their performance under different scenarios,

including heating system replacements and renovation scenarios.

This probabilistic approach ensures resilience to uncertainties.

Walker et al. [139] investigate the effects of global warming and

electricity grid decarbonization in the retrofit decision-making

process. To do so, they evaluate the performance of different retrofit

strategies for residential buildings in six European contexts under

future scenarios through a method that calculates the embodied

and operational GHG emissions of retrofit measures under multi-

ple scenarios and then transforms them into a robustness value.
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They end up concluding that heating system choice is the most

decisive factor for retrofit robustness, followed by the envelope

insulation. The paper recommends using heat pump systems in

most contexts, except for those with very low grid CI, where EE

become dominant.

Effectively then, given that DLCA has been characterized by the

assessment of uncertainties over time, integrating DPs into the DM

methodology for architectural design constitutes a robust analytical

approach. This thesis specifically seeks to incorporate long-term

uncertainties into GWP estimations to enhance the likelihood of

achieving CB compliance over by the end of the building’s life

cycle through retrofitting actions.

2.4 Research Gaps

The exploration into current methodologies for ensuring CB com-

pliance in the construction sector reveals discernible research gaps,

particularly during the post-occupancy phase.

Although LCA stands as a robust method for evaluating a product’s

environmental impact and is crucial for ensuring CB adherence,

its application alone falls short in guaranteeing compliance over a

building’s entire life cycle, especially during post-occupancy. This

shortfall underscores a knowledge gap that merits attention.

Figure 2.8: Illustration of the re-

search gap identified throughout

Chapter 2.

This chapter has outlined two primary research gaps, shown in

Figure 2.8. First, while LCA serves as a fundamental approach

for sustainable design, it alone does not suffice to confirm CB

compliance due to anticipated discrepancies between projections

and actual outcomes. With the pressing climate crisis, ensuring
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buildings adhere to their CBs, despite uncertainties, is paramount.

Moreover, when buildings fail to meet their CBs, there is currently

no methodology to support the DM process to mitigate and correct

GHG effectively.

To this end, incorporating Dynamic Life Cycle Assessment (DLCA)

emerges as a vital enhancement to a CB compliance methodology.

It addresses uncertainties associated with the long-term life cycle

of buildings and fosters a more nuanced understanding of GHG

emissions over time.

Nonetheless, the integration of DLCA into a CB compliance frame-

work presents its challenges, marked by its inherent complexity.

Thus, identifying and mitigating factors that could hinder its

widespread adoption becomes crucial.

Moreover, the identification of deviations from budgetary con-

straints necessitates corrective measures. Current post-occupancy

DM methods, especially those focusing on renovations, often

overlook these temporal uncertainties. Incorporating these un-

certainties can enhance the robustness of the DM process, thus

ensuring a building’s compliance with its CB, despite unforeseeable

futures.

Numerous methods, such as sensitivity and uncertainty analysis,

optimizations, and meta-models, have been identified as potent

tools in the DM process for performance-driven design. However,

the integration of these tools into DLCA and their influence on

DM during retrofitting remain unclear.

2.5 Conclusion

This chapter has examined building GHG threshold compliance,

DLCA, and post-occupancy DM processes in sustainable building

design and operation.

The analysis highlighted the significance of CBs in promoting

sustainable practices within the building sector and the challenges

involved in their effective allocation and interpretation. It was

established that LCA is a critical tool for assessing the EIs of

buildings, though its static nature and limitations necessitate

the incorporation of DLCA to address temporal uncertainties in

environmental impact assessment.

In the post-occupancy phase, the importance of continuous mon-

itoring and adaptive DM was underscored as vital for ensuring

ongoing compliance with GHG budgets. Despite the availability of

various techniques, such as statistical methods and optimization

strategies, the review identified significant gaps, particularly the
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lack of methodologies that fully integrate temporal dynamics into

the decision-making process.

The key conclusion drawn is that while existing methodologies

provide a strong foundation for sustainable building practices,

they fall short in addressing the complexities of post-occupancy

performance and the dynamic nature of environmental impacts.

Specifically, LCA alone is inadequate for ensuring CB compliance,

and current post-occupancy DM approaches are insufficiently

equipped to handle temporal variability.

Moving forward, the development of more integrated and dynamic

methodologies that incorporate DLCA and robust decision-making

frameworks is crucial. Such advancements will better address the

temporal uncertainties and enhance the effectiveness of strategies

aimed at achieving GHG budget compliance.

The subsequent chapters, Chapter 3 and Chapter 4, will delve

deeper into these identified gaps and propose solutions to bridge

them. Furthermore, the outlook section of Chapter 5 will outline

areas for future research not fully covered in this study.
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Chapter 3 explores the introduction of Dynamic Life Cycle As-

sessment (DLCA) as a more nuanced approach to Environmental

Impact (EI) assessment and, more specifically, for Carbon Budget

(CB) verification. However, in the preceding chapter, potential

difficulties have been highlighted, such as computational intensity

and the complexity of Dynamic Parameters (DP) modelling.

Figure 3.1: Methodology for the

identification of DLCA simplifica-

tion strategies.

To structure this exploration, this chapter is organized into five

steps, as described in the methodological framework shown in

Figure 3.1.

First, it is paramount to establish and gather the foundational

requirements of DLCA together with a workflow proposal for

dynamic calculations. Thereafter, a feasibility test rooted in a

case study will be conducted to gauge the intricacies involved in

implementing it, detailing the difficulties of DLCA.

Given the complexities identified in the literature review, the next

step is to identify strategies that would simplify and thus facilitate

the inclusion of DPs in GWP calculations. Finally, by applying these

strategies to the case study, a simplified DLCA will be proposed

towards CB verification.
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3.1 Building the DLCA workflow

3.1.1 Workflow Inputs

This section will define the different pre-requisites of a DLCA

workflow and will highlight the intricacies that come with bringing

dynamics to environmental calculations over static LCAs.

3.1.1.1 Dynamic Parameters

The modelling of DPs emerge as a notably intricate aspect of DLCA,

predominantly due to data scarcity and the absence of a unified

database [62, 63]. To address this, a comprehensive literature review

is essential, encompassing both scholarly articles and documents

from governmental agencies. This is a step not required of current

building LCA practitioners.

In accordance with this observation, the present Sub-Chapter 3.1.1.1

will offer an overview of the DPs incorporated into this DLCA

workflow based on other works. Initially, these parameters are

categorized based on their levels: external, building, and occu-

pant. This taxonomical work draws inspiration from the schema

proposed by Negishi et al. [71], as delineated in Figure 3.2.

Figure 3.2: Categorization of Dy-

namic Parameters (DP) by perimeter,

adapted from [71]

3.1.1.2 Energy Model and Weather Data

Energy modelling and simulation is a crucial component of

LCAs, more specifically, in Operational Emissions (OE) calcula-

tion. In DLCA, energy modelling enhances precision by modelling

building-level and occupant-level changes, as exemplified in the

preceding Sub-Chapter 3.1.1.1. However, to the best the author’s

knowledge, no study on DLCA has created a workflow that allows
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energy simulations to be executed at a yearly time step. For instance,

[56] realises 2 energy simulations over the building life span, while

[140] realises them at 10-year time-steps.

Another pre-requisite closely associated with the energy model

is the weather data. This requirement is no different from a static

approach. However, the intricacy of DLCA lies in the necessity for

future weather forecasts, driven by the imperative to model climate

change and its inevitable impact on the built environment.

3.1.1.3 Building Components

The final requirement for the DLCA methodology involves the Bill

of Quantities (BOQ) of building components used in construction,

which are linked to their respective Environmental Product Dec-

laration (EPD)s, similar to a static LCA approach. However, the

DLCA diverges from the static method in calculating recurrent Em-

bodied Emission (EE)s, despite the majority of EEs being emitted

during construction.

A further requirement for the BOQ is detailed information on

emission modules as defined by the component’s EPDs. Since

A1-A3 emissions occur at a different time than C1-C4 emissions,

they are accounted for differently in the overall GWP, unlike in

static LCA methodologies.

Having identified the inputs of DLCA, the following sections will

be dedicated to building the workflow, starting by defining its

perimeter.

3.1.2 Workflow Perimeter

This research emphasizes compliance with the GHG budget, de-

fined in terms of equivalent emissions of carbon dioxide (𝐶𝑂2−𝑒𝑞).

Consequently, the only EI incorporated in the methodological work-

flow is the GWP, also measured in 𝐶𝑂2 equivalent emissions.

Furthermore, certain modules within the EN 15804 framework

were excluded from the calculations. Specifically, only the modules

marked in red in Figure 3.3 were not included in the scope of this

workflow: B1 - Use, B3 - Repair and B7 - Operational Water Use.

This selection was primarily influenced by the completeness of

French Environmental Product Declaration (EPD)s available on

the INIES database [48].

Additionally, the DLCA developed in this chapter does not encom-

pass a dynamic Life Cycle Impact Assessment (LCIA), meaning

the characterization factors of various GHGs are not considered.
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Figure 3.3: LCA modules defined by the EN 15804 [15] not included in this workflow marked in red.

1: In the French regulation RE2020,

buildings have a reference life cycle

of 50 years, hence, the same number

of yearly simulations are realized.

To include this step, with GWP calculations based on radiative

forcing, for instance, would require converting CBs accordingly.

Dynamic LCIA also demands information on each type of GHG

(e.g., 𝐶𝑂2, 𝐶𝐻4, 𝑁𝑂2, refrigerants). However, such details are not

mandated in EPDs as per EN15978 and the French EPD database

follows suit. In building LCA then, where Life Cycle Inventory

(LCI) and Life Cycle Impact Assessment (LCIA) merge into one

phase, other DLCA studies in literature do not utilize EPDs. To

render both phases dynamic, as proposed by [81], they must be

conducted separately.

3.1.3 Workflow Description

Having defined its inputs and perimeter, Figure 3.4 demonstrates

the proposed workflow for dynamic GWP calculation. This ap-

proach combines all the aforementioned pre-requisites, establish-

ing the DLCA workflow of this thesis. The process starts with

the DP, positioned on the left side of the diagram. It is crucial to

note that the DPs are integrated into the calculations at different

stages.

The "Calculations" section begins by modifying the energy model

and weather data. Here, 50 yearly simulations
1

are executed, cov-

ering the complete life cycle of the building. After this 50-year

energy simulation, the building’s hourly energy consumption is

utilized in the post-processing stage of the OE assessment. In this

phase, system efficiency is evaluated, and energy is converted into

carbon emissions.
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Figure 3.4: DLCA parametric workflow, depicting how various DPs models influence the dynamic GWP calculation at

distinct stages.

Simultaneously, the Embodied Emission (EE)s calculations involve

the Life Cycle Inventory (LCI) of the building, which includes

associating component quantities with EPDs and incorporating

DPs. The final step is the aggregation of the 50-year vectors for EE

and OE, culminating in the overall dynamic GWP result.

3.2 Preparing Case-Study Application and
Testing Feasibility

With the framework established, the objective of this sub-chapter

is to evaluate the feasibility of the DLCA workflow and to identify

the main hurdles associated. Through a feasibility study then, we

will better understand the problems that create impedance in the

way of making DLCA a core part of the DM process in building

design.
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This application will also serve as a baseline for the simplification

strategies that will be investigated hereafter. Indeed, this first case-

study application will be used as a reference in terms of both

simulation time and GWP accuracy.

3.2.1 Case-study Presentation

Figure 3.5: 3D rendering of a sim-

ilar house as described in this sub-

chapter. Picture from [141].

The case study illustrated in Figure 3.5 is a single-family French

home in the Parisian region, as they represent 55% of dwellings

in the country [142]. Thanks to previous research works at the

same institution, the necessary information about the building,

including an energy model and a Bill of Quantities (BOQ), was

readily available.

In this particular building, constructed in 2017, this BOQ of the

components was associated with EPDs found in the INIES database

[143]. The resulting LCI can be found in Appendix B. The LCA tool

used for this building is Vizcab
2

2: Vizcab is a French building LCA

SaaS (Software as a Service) tool

capable of executing static and dy-

namic assessments according to the

RE2020 regulation. This software

uses the French INIES database for

EPDs. For more information: viz-

cab.io/.

, as it allows the user to export

the building’s components list and LCA results to be acquired

through an Excel file. This drastically facilitated the automation of

the workflow.

Table 3.1 then, summarizes the main characteristics of the building,

including RE2020 DLCA results in terms of GWP. An EE of 569

𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
and an OE of 261 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

were obtained,

meaning this relatively recent building has an overall GWP of 701

𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
, 69% of which embodied.

For energy simulations, a detailed profile of the wall compositions

modelled is illustrated in Figure A.1, Figure A.2 and Figure A.3 in

Appendix A. In summary, this building has around 10 cm of PU

insulation in vertical opaque surfaces and in its flooring. A thicker

https://vizcab.io/
https://vizcab.io/
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layer of 14 cm of PU is installed on the roof. As for glazed surfaces,

double-glazed and PVC-framed windows are found.

Characteristics Value

Year of construction 2017

Horizontal structure Cast concrete

Façade structure Cinder block

Insulation material Polyurethane (PU)

Insulation Conductivity 0.03 W/(m.K)

Opaque surface conductance 0.23 W/(m2.K)

Thermal Bridging 0.1 W/(m.K)

Glazing type Double-glazing

Glazing frame PVC + Aluminium

Glazed surface conductance 1.2 W/(m2.K)

Ventilation system Simple-flow

Infiltration (n50) 0.6 ac/h

Heating system Electrical radiators

Domestic Hot Water Production Thermodynamic Tank

Indoor surface area 160 m2

Building life cycle 50 years

Embodied Emission 569 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

Operational Emissions 261 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

Table 3.1: The main characteristics

of the case-study.

This is a relatively low thermal performance, especially consid-

ering the inefficient heating system that is found in the building:

Joules-effect electrical radiators. For Domestic Hot Water (DHW)

production, however, a much more efficient heat-pump, or ther-

modynamic tank, is used.

RE2020 Lot

Static

Emission

[𝑘𝑔𝐶𝑂2/𝑚2
]

Share of All

Lots [%]

Lot 1: Roads and Miscellaneous Net-

works

13.49 2.01%

Lot 2: Foundations and Infrastructure 23.22 3.47%

Lot 3: Superstructure - Masonry 176.42 26.33%

Lot 4: Roofing - Waterproofing - Fram-

ing - Zinc Work

18.26 2.73%

Lot 5: Partitioning - Lining - Sus-

pended Ceilings - Interior Carpentry

31.03 4.63%

Lot 6: Facades and Exterior Carpen-

try

96.56 14.41%

Lot 7: Coverings - Screed - Paints -

Decorative Products

92.27 13.77%

Lot 8: HVAC 21.08 3.15%

Lot 9: Sanitary Installations 108.10 16.13%

Lot 10: Energy Networks - High Cur-

rent

87.83 13.11%

Lot 11: Energy Networks - Low Cur-

rent

1.74 0.26%

Total 700.82

Table 3.2: Embodied emission per

lot, as defined by the French RE2020

regulation.

To categorize the EE of the case study, the RE2020 divides it
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into "lots". These lots include various elements from construction

materials that have been included in Table 3.2.

3.2.2 Defining Case Study’s RE2020 Carbon Budget
Threshold

Ensuring adherence to a carbon threshold is a primary focus of

this research. However, the task of establishing a science-based

carbon budget for buildings and the broader building industry is

a highly complex endeavour, one that extends beyond the scope of

this thesis.

Consequently, this research adopts the carbon threshold as defined

at the building scale by the French RE2020. This regulation pro-

vides a methodology for calculating CBs, considering factors such

as geographical location, terrain, indoor surface areas, parking

facilities, etc. [74]. For this case-study, the budgets have been calcu-

lated in accordance with these parameters and are presented in

Table 3.3. However, it is important to note that the RE2020 is only

applicable to new construction and its application to this residence

built in 2017 is theoretical.

Table 3.3: RE2020 carbon budgets

for the case-study. Carbon Budget Value
(𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2)

Current Embodied Budget 610

2025 Embodied Budget 550

2028 Embodied Budget 453

2031 Embodied Budget 396

Operational Budget 150

The RE2020 regulation defines four embodied CBs, as it intends

to reduce the French building sector’s GHG emissions over the

next decades. The current budget applies to buildings constructed

before 2024. Then, three additional budgets are set for buildings

constructed during the following periods: 2025-2027, 2028-2030,

and from 2031 onwards. In contrast, a single operational budget is

defined, which will remain in effect until the introduction of the

next regulation.

A discrepancy between the embodied CBs and the GWP values

in Table 3.1 has been manifested, indicating that while the current

embodied budget is compliant, the operational budget does not

align with the expected values. This discrepancy will be thoroughly

explored and questioned in Chapter 4.
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3.2.3 Dynamic Parameter Modeling for Case Study

Having established the case-study, various DPs will be modelled

hereafter. This Sub-Chapter is divided into the perimeters identified

in Figure 3.2.

3.2.3.1 External-level

External-level DPs are those that fall outside the direct influence

and control of the building and its occupants. These parameters

encompass a range of external variables, including shifts in regu-

latory and policy frameworks, the evolving dynamics of climate

change, and changes in the composition of the electrical grid. The

following discussion will offer a detailed examination of five key

parameters.

(a) Global Warming

The inexorable advance of global warming over the forthcom-

ing decades is a settled scientific fact; what remains uncertain,

however, is the magnitude of its impact on global temperatures

and the efficacy of existing and prospective policies to mitigate

Greeenhouse Gas (GHG) emissions. The Intergovernmental Panel

for Climate Change (IPCC)’s Fifth Assessment Report employed

Representative Concentration Pathways (RCPs) to outline distinct

scenarios that capture the prospective impact of anthropogenic

activities on global warming by the end of the century [144], as

depicted in Figure 3.6.

These RCP scenarios are correlated with projected temperature

elevations [1]:

▶ RCP 2.5: Envisions a 67% probability of constraining global

warming to 2°C.

▶ RCP 4.5: Constitutes an intermediate scenario with a 50%

probability of capping global warming at 3°C.

▶ RCP 8.5: Represents a pessimistic outlook, positing a 50%

likelihood of global temperatures exceeding the 4°C thresh-

old.

In order to contextualize global climate changes for a specific area,

namely the Parisian territory in this case, future weather data was

procured using Meteonorm software
3

3: Meteonorm is a comprehensive

global weather database that of-

fers both historical and current cli-

mate data. It enables the extrac-

tion of time-series weather files for

any location and simulates future

weather based on the IPCC’s RCP

scenarios. For more details: me-

teonorm.meteotest.ch/.

. This data is derived from

the CMIP5 (Coupled Model Intercomparison Project)
4

4: CMIP5 data can be ac-

cessed at climateknowledgepor-

tal.worldbank.org/cmip5.

. The CMIP5

incorporates a diverse array of models, including atmosphere-

ocean and Earth system models, to simulate various climate system

variables for each RCP scenario. These simulations are conducted

https://meteonorm.meteotest.ch/assets/downloads/mn82_software.pdf
https://meteonorm.meteotest.ch/assets/downloads/mn82_software.pdf
https://climateknowledgeportal.worldbank.org/cmip5
https://climateknowledgeportal.worldbank.org/cmip5
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for different time horizons and locations globally, with a resolution

of approximately 100 km by 100 km [145].

Figure 3.6: (a) The different Repre-

sentative Concentration Pathways

(RCPs) scenarios in terms of annual

𝐺𝑡𝐶𝑂2 emissions. The values of the

RCP scenarios relate to the expected

radiative forcing in 2100 in W/m2.

(b) The second graph illustrates the

correlation between the increasing

surface temperature and the concen-

tration of 𝐶𝑂2 in the atmosphere.

These plots were obtained from the

5th IPCC Assessment Report [144]

Meteonorm effectively generates weather files at ten-year intervals

from 2020 to 2100, covering each of the RCP scenarios mentioned.

Other studies on climate change implications for long-term build-

ing energy simulations have employed a technique known as

’morphing.’ This method involves altering a reference weather file,

with changes observed on a monthly scale as noted in [146] and on

a daily scale in [140].

To gain a deeper understanding of the projected weather changes

over the coming decades under these scenarios, Table 3.4 was

created using the obtained data. This table provides a compara-

tive analysis of temperature and humidity across different RCP

scenarios, with a typical meteorological year (TMY) serving as the

baseline for current climatic conditions. The data indicates a signif-
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icant increase in temperature, with average dry-bulb temperatures

expected to rise by 0.44°C to 2.5°C.

Table 3.4: Comparison of weather parameters for different RCP scenarios. The table shows the averages of the meteorological

years and compares the difference with the reference weather data: a TMY (typical meteorological year).

TMY 2070-RCP2.6 2070-RCP4.5 2070-RCP8.5

Avg Avg Diff Avg Diff Avg Diff

Dry-Bulb Temp (°C) 13.89 14.33 +0.44 15.14 +1.25 16.39 +2.50

Wet-Bulb Temp (°C) 7.33 8.19 +0.86 8.98 +1.65 10.14 +2.81

Relative Humidity (%) 67.98 68.26 +0.28 68.26 +0.28 68.11 +0.13

Additionally, to investigate how climate change might impact

energy needs, the heating degree-days (HDD) and cooling degree-

days (CDD) were calculated for 2070 under the same 3 RCP

scenarios in Figure 3.7. HDD will decrease in every scenario by

2070, while CDD increases slightly. This suggests that climate

change is expected to reduce energy needs in the Parisian region,

even for those equipped with air-conditioning units.

Figure 3.7: A comparison between

today’s TMY and 2070’s data under

different climate change scenarios

of cooling degree-days (CDD) and

heating degree-days (HDD), with a

base temperature of 18°C.

𝑇(𝑦, 𝑚) = 𝑇(𝑦𝑇𝑀𝑌 , 𝑚) +
𝑇(𝑦𝑇𝑀𝑌 , 𝑚 + 10) − 𝑇(𝑦𝑟𝑒 𝑓 , 𝑚)

10

× (𝑦 − 𝑦𝑇𝑀𝑌) (3.1)

The strategy implemented here is similar to what has been imple-

mented in [140], where the average monthly temperatures seen in

Figure 3.8 are used to gradually modify the TMY weather data. In

this plot, it is evident that global warming affects temperature the

most during the summer seasons. Since weather data is available

every ten years, this monthly interpolation is done between the

available years. This process is merely executed for dry-bulb and
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wet-bulb temperatures, as is shown in (3.1), where 𝑇(𝑦, 𝑚) repre-

sents the hourly temperature vector for the year 𝑦 and month 𝑚,

with 𝑦𝑇𝑀𝑌 serving as the baseline temperature vector.

Figure 3.8: Monthly average temper-

ature variation for TMY and 2070,

under the different scenarios

(b) Electricity Electricity Mix

Hourly Variations

The Carbon Intensity (CI) of electricity fluctuates as a function

of the instantaneous energy mix supplying the grid, adjusting

dynamically in response to variations in demand. Within the ambit

of the Continental Europe Synchronous Area
5

5: Comprised of 24 countries, most

European countries and some parts

of Africa and Asia are intercon-

nected by the largest synchronous

electrical grid, known as the Conti-

nental Europe Synchronous Area.

, which includes

France, the power grid integrates multiple energy sources. Typically,

static LCA workflows rely on annual average values that can lead

to over- and under-estimations of up to 10% for operational GHG

calculations [147]. The CI for such a complex grid reflects on

short-term variations. To model these variations, historical data on

electricity CI and fuel-based power generation, provided by the

French transmission system operator, RTE (Réseau de Transport

d’Electricité)
6

6: This data, available from 2012

to 2020 and aggregated in 30-

minute intervals, as of writing this

manuscript in Excel format on RTE’s

website: rte-france.com/eco2mix/.

were employed.

It is important to note that the CI values calculated by RTE solely

take into account direct emissions. Consequently, sources like solar

(PV), nuclear, and wind are treated as zero-emission power sources.

However, this interpretation is inconsistent with an LCA approach.

Therefore, the CI for each energy source was recalculated to include

life cycle emissions, as detailed in Table 3.5. This adjusted data is

grounded on research by Scarlat et al. [148] and an IPCC report’s

Annex [149]. The "Eco2mix" column in Table 3.5 represents the CI

values provided by RTE [150], which accounts emissions through

a different methodology, most noticeably, assuming zero OE for

renewable and nuclear energies.

Upon completing this data manipulation, a striking revelation

emerged concerning the electricity’s CI in France from 2012 until

https://www.rte-france.com/eco2mix/telecharger-les-indicateurs
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2020. When life cycle emissions were factored in, the average CI was

more than double compared to calculations solely based on direct

emissions. This discrepancy is vividly illustrated in Figure 3.9. The

figure further underscores the high volatility of carbon intensity,

ranging from sub-40𝑔𝐶𝑂2/𝑘𝑊ℎ to exceeding 140𝑔𝐶𝑂2/𝑘𝑊ℎ.

The dynamic nature of electricity’s CI exerts a noticeable influence

on a building’s Operational Emissions. Consequently, the study

will account for this variable characteristic in its forthcoming

analyses.

.

Electricity source Carbon Intensity (𝑔𝐶𝑂2 − 𝑒𝑞/𝑘𝑊ℎ)

Eco2mix

[150]

[148, 149]

Coal 986 990

Oil 777 790

Natural Gas 429 480

Biomass 494 65

Solar PV 0 41

Nuclear 0 24

Hydroelectric 0 19

Offshore wind 0 16.5

Wind 0 11

Germany and Belgium - 410

Italy - 371

England - 282

Spain - 262

Switzerland - 78

Table 3.5: Life cycle emission inten-

sity of electricity sources, including

from exchanges with bordering na-

tions of France [148, 149]

Figure 3.9: Electricity carbon inten-

sity in France over the year 2020.

This plot compares the different

methodologies, the life cycle ap-

proach and the direct emissions ap-

proach.

Moreover, a closer examination during April and May 2020 re-

vealed peaks in the blue line that do not exist in the red curve.

This indicates complexities beyond a direct emission multiplica-

tion. Such discrepancies arise because certain technologies, such
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as nuclear, wind, and solar power, have no direct emissions con-

tribution. Therefore, during mid-season—when the combined

cooling and heating degree-days are at their lowest—the electric-

ity demand is met predominantly by these low-direct-emission

sources. Nevertheless, these sources are associated with substan-

tial EEs. Consequently, applying the life cycle method introduces

significantly greater variability to the CI.

Production Mix Evolution

Nevertheless, the CI is not a static year-over-year either; it is

anticipated to undergo significant transformation in the coming

decades, principally due to escalated investments in renewable

energy sources that typically boast lower CI, as substantiated

in Table 3.5. To forecast the future electricity grid landscape,

various organizations have developed forecasting scenarios. For

instance, the International Energy Agency (IEA) has outlined a

global 2050 roadmap that substantially leans on wind and solar

energy, planning to entirely phase out coal and natural gas [151].

However, for this study, another alignment is found with the

roadmap also provided by RTE. This roadmap delineates six

distinct scenarios, each with its own set of assumptions and impli-

cations for France’s energy landscape [152]. Three of these scenarios

posit that France’s existing nuclear power plants will not be re-

placed upon reaching the end of their operational lifetimes, while

the remaining three scenarios project the contrary—namely, that

these nuclear facilities will be displaced by new installations in

the ensuing decades. These divergent futures are quantitatively

expressed in terms of the sectorial energy production percentages

for the year 2050, as detailed in Table 3.6. Further elucidation is

provided through calculated metrics, as articulated in Equations

3.2 and 3.3.

The naming conventions in Table 3.6 are explicitly delineated by

RTE in 2021 [152], with the energy mix scenario carrying its unique

implications listed below.

M0 No nuclear power is anticipated by 2050. Existing nuclear

plants that could potentially function in the next three

decades are projected to commence decommissioning by

2030.

M1 Only extant nuclear facilities will remain operational through

2050, with the majority of energy needs met by distributed

solar PV systems.

M23 This scenario aligns closely with M1, but with a heightened

emphasis on investment in both onshore and offshore wind

power.
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N1 Construction of new nuclear plants would be limited, with a

new installation every five years commencing in 2035. Re-

newable energy sources would still account for the majority

of the energy supply.

N2 Analogous to N1, but a new plant would be established every

three years starting from 2035. Two-thirds of the energy

production would still originate from renewable sources.

N03 This scenario envisions the most extensive investment in

nuclear power, which would contribute to half of the energy

production, while the remaining half would be sourced from

renewables.

To predict the CI in 2050 for each of these scenarios, the pro-

portionality assumption is employed: each energy source would

contribute proportionally to its production to the CI. For assessing

the changes in CI from the present day to 2050, a linear trajectory

of improvement is assumed. This progression is graphically repre-

sented in Figure 3.10 via a CI multiplier. After 2050, this reduction

factor is presupposed to remain constant until the conclusion of

the building’s life cycle, given the 2050 endpoint of the roadmap.

Equation 3.2 details how the production shares specified in the

roadmap will be leveraged to approximate the CI for each 2050

scenario. Equation 3.3 calculates the anticipated improvement in

CI for each scenario in comparison to today’s grid, which, as seen

in Figure 3.9, has an average of 78 𝑔𝐶𝑂2 − 𝑒𝑞/𝑘𝑊ℎ.

𝐶𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =
∑

𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝐶𝐼𝑠𝑜𝑢𝑟𝑐𝑒 × 𝑆ℎ𝑎𝑟𝑒_𝑜 𝑓 _𝑃𝑟𝑜𝑑𝑠𝑜𝑢𝑟𝑐𝑒 (3.2)

𝐶𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(2050)
𝐶𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(2020) (3.3)

The scenarios proposed by RTE have varying implications for the

evolution of the CI of electricity in France. By taking into account

the energy mix projected for 2050 under each scenario, we can

better understand how the electricity CI will shift over time, which

is of paramount importance for LCAs in the building sector.

To estimate the CI in 2050, an approach that factors in the pro-

portionate contributions of each energy source to the total energy

production is utilized. Equation 3.2 formalizes this by summing

up the products of the CI for each source and its share of total

production.

Additionally, to evaluate the rate of improvement in the CI, Equa-

tion 3.3 is employed. This equation represents the ratio of the

estimated CI in 2050 to the current value, which is approximately

78 𝑔𝐶𝑂2 − 𝑒𝑞/𝑘𝑊ℎ, as evidenced in Figure 3.9.
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Table 3.6: Roadmap of electricity production mix in terms of percentage energy production over a year. Based on [152].

The CI is the same as shown in Table 3.5 in addition to tidal turbine, obtained from [153] and offshore wind, obtained

from [154].

Source

Carbon Intensity

(𝑔𝐶𝑂2 − 𝑒𝑞/𝑘𝑊ℎ)

Current Mix

(2020)

M0 M1 M23 N1 N2 N03

PV 41 2.5% 36% 35% 23% 20% 16% 13%

Hydro 19 13.6% 9% 9% 9% 9% 10% 10%

Offshore Wind 16.5 1.98% 31% 23% 31% 24% 19% 12%

Wind 11 8.06% 21% 17 % 21% 17% 15% 13%

Nuclear 12 68.08% 0% 13% 13% 27% 38% 50%

Tidal Turbine 33.8 0% 1% 1% 1% 1% 0% 0%

Biomass 65 1.97% 2% 2% 2% 2% 2% 2%

Oil 790 0.19% 0% 0% 0% 0% 0% 0%

Coal 990 0.28% 0% 0% 0% 0% 0% 0%

Gas 480 7% 0% 0% 0% 0% 0% 0%

Estimated CI (𝑔𝐶𝑂2 − 𝑒𝑞/𝑘𝑊ℎ) 78.3 25.5 24.9 21.8 20.6 19.1 17.9

Improvement to CI in 2050 in relation to 2020 (%) 33% 32% 28% 26% 24% 23%

Yearly reduction in average CI (%/year) 2.32% 2.35% 2.49% 2.54% 2.61% 2.66%

The proposed method assumes a linear trend in CI improvements

from the present day to 2050, depicted as a reduction factor

in Figure 3.10. After the year 2050, this factor is assumed to

remain constant, serving as a reasonable estimate for any lifecycle

assessments extending beyond that year. This framework provides

a structured approach to factor in future electricity CI changes,

thereby enhancing the robustness of this study.

Figure 3.10: Improvement factor

of electricity CI between 2020 and

2050.

To incorporate the improvement factor into building LCA, it is

applied as a multiplier to the hourly CI vectors, exemplified by the

red line in Figure 3.9. Given that this vector only represents the

year 2020, an average over the past 5 years of data should provide

a more accurate representation of the current grid.
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The procedure for this calculation is outlined in Equation 3.4. Here,

𝐶𝐼 refers to the hourly CI vector spanning one year, and 𝐶𝐼𝑟𝑒 𝑓 is

the average reference vector over the past 5 years and 𝑦𝑟𝑒 𝑓 is the

reference year, which in this case, is defined as 2020. This approach

ensures that the OE calculations are not solely based on a snapshot

of a single year but take into account a more extended period,

therefore providing a more reliable estimate.

𝐶𝐼(𝑦) = 𝐶𝐼𝑟𝑒 𝑓 × (1 −
1 − 𝐶𝐼𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

2050 − 𝑦𝑟𝑒 𝑓
) × (𝑦 − 𝑦𝑟𝑒 𝑓 ) (3.4)

(c) Industrial Sector Evolution

The transformational shift towards sustainability is not confined

solely to the energy sector. Multiple sectors, including indus-

try—which encompasses raw material extraction and the man-

ufacturing of building components—are undergoing significant

metamorphoses. In France, such prospective advancements have

been formally articulated through the National Low-Carbon Strat-

egy, denoted as SNBC. This framework delineates sector-specific

national emission budgets for the coming decades.

Figure 3.11: Historic and predicted emissions of the industry sector between 1990 and 2050 in 𝑀𝑡𝐶𝑂2 − 𝑒𝑞. Figure

obtained from [155]
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Clearly, the industrial sector, responsible for 17% of France’s total

GHG emissions [155], aims to reduce its emissions by a substantial

81% from 2015 levels, decreasing from 81 to 16 𝑀𝑡𝐶𝑂2 − 𝑒𝑞 in

line with SNBC objectives. The arduous path toward this target

is graphically depicted in Figure 3.11 in the dotted orange line.

In contrast, the grey dotted line represents forecasts based on

current trends, showing a much less noticeable improvement of

13.6% by 2050, when yearly emissions would still be around 70

𝑀𝑡𝐶𝑂2 − 𝑒𝑞.

Figure 3.12: The reduction factor

in production processes of building

components in order to follow the

SNBC target for the industrial sector.

Amongst the pivotal mechanisms to attain the dramatic reduction

proposed by the SNBC and improve on current trends are the

enhancement of energy efficiency, the incorporation of circular

economy frameworks, and the deployment of innovative solutions

such as carbon sequestration.

In this study, the DLCA workflow incorporates the assumption that

the reduction in GHG emissions within the industrial sector will

have a downstream impact on the environmental footprint of all

building components across their production cycles. Consequently,

replacement components incorporated over the lifespan of a build-

ing will exhibit a different emission profile than those used in the

initial construction. It should be noted that this 81% reduction is

benchmarked to emission levels recorded in 2015. This equates

to a linear annual reduction rate of 2.31% over a 35-year timeline,

culminating in the year 2050. Beyond 2050, the model presupposes

that no additional reductions will occur, effectively stabilizing the

reduction factor at zero. This temporal evolution is depicted in

Figure 3.12, where the reduction factor serves as a multiplicative

coefficient for the material and product-related emissions (A1-3)

of building components as a function of the emission year.

(d) Waste Sector Evolution

The waste sector emissions are analogous to the aforementioned

industry sector, as they are projected to decrease by 66% by 2050

in relation to 2015 levels, from 17 to 6 𝑀𝑡𝐶𝑂2 − 𝑒𝑞 [7], as shown

in Figure 3.14 in the dotted orange curve. Then, similar to the

industry sector, a reduction factor is also assumed to follow a linear

reduction trajectory, resulting in -1.89%/year until 2050, as shown

in Figure 3.13.

Figure 3.13: The reduction factor

in production processes of building

components to follow the SNBC tar-

get for the industrial sector.

However, Figure 3.14 also identifies the current trends in the dotted

grey line. If existing measures are maintained, a reduction of 47.1%

in waste-sector emissions is still expected. This highlights a more

positive trend than the industry sector, but it falls short of the SNBC

targets. This gap can be observed in Figure 3.13, where the current

trends are compared to the SNBC scenario assuming a linear
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reduction between 2015 and 2050. This waste reduction factor is

then used as a multiplier for EOL emissions of all components

(C1-4).

Figure 3.14: Histroric and predicted emissions of the waste sector between 1990 and 2050 in 𝑀𝑡𝐶𝑂2 − 𝑒𝑞. Figure obtained

from [155]

(e) Limitation of External-Level DPs

Now, having identified external-level parameters throughout Sub-

Chapter 3.2.3.1, it is worth taking a step back to recognize the

limitations of these parameters, where each have been modelled

independently from one other. However, in reality, these parame-

ters are all intertwined and could be modelled with greater levels

of detail. Meanwhile, it is relevant to recognize the inherent com-

plexity of forecasting the evolution of entire economic sectors over

half a century and the inherent need to simplify it.

With that said, the following section zooms into building-level

parameters, which are associated with the equipment, materials

and performance of the building itself.

3.2.3.2 Building Level

At the building-level, a further differentiation can be made amongst

the DPs: ageing and technological advancements. The technolog-
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ical advancement can be seen in multiple components, such as

insulation material and glazed surfaces. Indeed, new and inno-

vative equipment and materials have contributed to the energy

efficiency improvements of recent decades. However, in this study,

only the evolution of the heating system was included.

(a) Heat-pump Technological Improvement

The evolution of Heat-pump COP has been modeled in accordance

with [156], assuming a compound improvement rate of 0.15%/year

to the efficiency of these heating systems until 2052. Meanwhile, [71]

uses an improvement rate much higher of 1% a year. Therefore, in

this parametric approach, the DP will vary from 0.15% to 1%. Since

the building requires a new heat-pump every 15 to 20 years and

thus, this performance improvement only comes into play when it

is replaced. Equation 3.5 demonstrates the compound efficiency

improvement to COP, where 𝐶𝑂𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑦) is the nominal COP of

the system when new at year 𝑦, 𝐶𝑂𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the COP that current

heat-pump technology allows, 𝑖𝑚𝑝 is the rate of improvement

discussed earlier in this paragraph and 𝑦𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 is the year the

building is built, making the exponent is the age of the building.

𝐶𝑂𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑦) = 𝐶𝑂𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑖𝑚𝑝(𝑦−𝑦𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) (3.5)

(b) Heat-pump Performance Degradation

Meanwhile, these same heat-pump are also expected to lose per-

formance with time. Negishi et al. [71] and Eleftheriadis et al. [157]

have modelled this parameter at much higher values than the rate

of improvement found above, with both studies modelling this

degradation process as a 1% to 3% yearly reduction to COP. The

yearly COP due to degradation is calculated in similar fashion as

the improvement, as shown in Equation Equation 3.6.

𝐶𝑂𝑃(𝑦) = 𝐶𝑂𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 × (1 − 𝑑𝑒𝑔)(𝑦−𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙) (3.6)

Where 𝐶𝑂𝑃(𝑦) is the efficiency of the heat-pump calculated yearly

for year 𝑦, 𝐶𝑂𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal efficiency of the heat-pump

when new, calculated in Equation 3.5, 𝑑𝑒𝑔 is the yearly degradation

rate and 𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the year when the heat-pump was last replaced.

This means the exponent of 𝑑𝑒𝑔 is simply the age of the heat-pump

being used.

Finally, the yearly COP profile of a heat-pump assuming it has a

service life of 17 years and a current COP of 3, with both parameters
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affecting its performance is illustrated in Figure 3.15. This plot

includes 2 scenarios to illustrate its impact:

▶ Worst case (in orange), combining the highest degradation

of 3% degradation and lowest improvement rate of 0.15%

improvement.

▶ Best case (in blue), combining 1% degradation and 1% im-

provement.

Figure 3.15: Heat-pump’s COP pro-

file for two scenarios over a build-

ing’s life cycle of 50 years, consider-

ing a product service life of 17 years

and an initial coefficient of 3.

(c) Insulation’s Thermal Conductivity Degradation

The heating system is not the only building component to be

affected by the ageing process. The insulation material is also

expected to evolve. However, it is important to note that the

commercial U-value given to the product by its manufacturers

already includes some of the degradation that naturally occurs at

the beginning of a material’s life cycle, which includes testing for

the material-specific norms. For instance, the EN 13163 defines the

measurement guidelines of the thermal insulation for Expanded

Polystyrene (EPS) [158] and the EN 13162 does the same for mineral

wool products [159]. Therefore, in this study, only the degradation

after the insulation material settles will be taken into account, in

practical terms, only the degradation that occurs after 5 years was

taken into account from the literature found on the subject. The

result of this work is shown in Table 3.7.

As presented in Table 3.1, the insulation material used in the case-

study building is Polyurethane and thus, the insulation degradation

parameter varies from 0.43%/year to 1.1%/year.
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Table 3.7: Insulation degradation in

terms of linear yearly increase to

thermal conductivity after the first

5 years of operation. The table is

the result of a literature review that

included multiple materials, mostly

petroleum-based closed-cell foam.

Insulation Material Yearly Degradation (%/y) Source

EPS #1 0.37 [160]

EPS #2 0.23 [160]

EPS #3 0.71 [160]

EPS #4 0.27 [160]

EPS 1.65 [161]

PU 40K 1.10 [160]

PU 50K 0.43 [160]

XPS 0.04 [157]

Average 0.65

7: For French single-family homes,

air renovation and infiltration repre-

sent around 20% and 25% of thermal

losses [162].

(d) Air Tightness Degradation

As air infiltration is a large contributor to thermal losses in building

energy simulation
7
, it was important to include it in this study.

Research on the durability of building air-tightness has been

assembled quite comprehensively in the International Energy

Agency (IEA) Energy in Buildings and Communities (EBC)’s AIVC

Technical Note 71 [163]. This publication included real case-study

testing, where most buildings were found to degrade in terms of

air-tightness over time. However, there is a high variability amongst

the buildings found. In addition, it was found that neither the

initial air-tightness nor the construction material correlates with

this degradation in terms of relative increase to infiltration. Due

to the variability and lack of established correlations, infiltration

degradation is defined to be between 0% and 1% per year, based

on [164] and [61].

(e) PV Performance Degradation

Finally, the last building-level DP to be included in this work is the

performance degradation of the PV panels’ power production rela-

tive to the same insulation, as it relates to ageing. The median value

for this long-term degradation rate of over 2000 panels is around

0.5%/year while the mean was found to be around 0.8%/year

[165]. Moreover, for monocrystalline Silicium technology, the 95%

confidence interval for annual degradation ranges around 0.3%

to 0.7% and for our analysis, we will use these values for the DP

modelling.

3.2.3.3 User-Level

As explained in the Chapter 2.2.3, occupancy is the largest source

of uncertainty in a building’s energy simulation results. This trend

should continue in GWP, especially in terms of OE. Four types of
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user-level parameters were identified, although many others could

be included:

▶ Occupant behaviour: when, what and how much energy

is consumed and internal gains are produced by the users

in activities such as cooking, reading, watching TV, indoor

exercising, etc.

▶ Occupant density: how many people occupy a given space

or building nominally and hourly.

▶ Heating temperature setpoint: The temperature setpoint for

the heating systems.

▶ Cooling temperature setpoint: The temperature setpoint for

the cooling system.

Defining these parameters dynamically at an hourly time-step is

far from innovative, with national regulations such as the RE2020,

standardizing daily occupancy profiles. However, to start consid-

ering these user-level uncertainties in a dynamic LCA approach,

one might start thinking about how a building’s occupants evolve

through the decades. As individuals age and start families, their

behaviors and household density naturally evolve. One might

also consider how a population will become more sustainably

conscious and thus be aware of energy and resource sufficiency.

This behaviour change might also stem from policy incentives.

In some of the other DLCA applications in the literature, the defini-

tion of this parameter was strictly qualitative. Notably, Negishi et

al. [71] used a Japanese single-family home to tell the story of how a

couple eventually had children and thus, expanded their house to

build extra rooms. These bedrooms would then be emptied as the

kids moved out for their studies. On the other hand, Su et al. [166]

used Chinese demographic forecasts to build user-level scenarios

of occupancy and energy consumption. For the French context,

data on usage behaviour for energy modelling, such as appliances,

lighting and other devices is available. This data has been largely

investigated by Vorger et al. [167], leading to the development of a

stochastic method for sub-hourly occupant behaviour modelling.

Although this study does not include forecasting.

The difficulty of making this parameter dynamic, due to insufficient

data and extensive research on uncertainties in building energy

simulations, led to a further simplification of this category of

parameters. Instead of allowing them to evolve, they are simulated

statically in this thesis, essentially being treated as uncertainties.

The modelling stage in this chapter aims to be comprehensive,

enabling the exploration of simplification techniques. It is particu-

larly conducive to examining the edge cases in parameter intervals.

Consequently, the modelling of user-level parameters is defined as
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a static uncertainty, as demonstrated in the presence hours density

model in Figure A.4.

After establishing the residential case study, including its char-

acteristics and context in the French Parisian region, the DP is

modelled as closely as possible to the specific case. To summarize

the findings, Table 3.8 was constructed.

Table 3.8: Table summarizing all the included Dynamic Parameters (DP) in this chapter.

Dynamic parameter name Dimension Time-
Step

Form Value Interval Data
Source

Global warming

Outdoor

temperature

yearly

RCP models

(2.6, 4.5, 8.5)

+0.016°C,

+0.037°C and

+0.063°C

[1]

Electricity mix’s CI evolution CI Yearly Linear -2.6% to -2.3% [152]

Electricity Production CI CI Hourly - - [150]

Industrial sector’s evolution. A1-3 GWP Yearly Linear

-2.31% to

-1.85%

[155]

Waste sector’s evolution. C1-4 GWP Yearly Linear

-1.89% to

-1.34%

[155]

Heat-pump technology im-

provement

COP Yearly Exponential 0.15% to 1% [61, 156,

168]

PU insulation ageing

Thermal

conductivity

Yearly Exponential 0.43% to 1.1% [169]

Air tightness ageing

Infiltration

airflow

Yearly Linear 0% to 1% [71]

Heat-pump ageing COP Yearly Exponential -3% to -1% [71, 157]

Photovoltaic system ageing Efficiency Yearly Linear -0.2 to -1% [165]

Occupant density Persons Static - 2 to 8 -

Presence hours Hours Static - 13h to 20h [170]

Heating temperature setpoint Temperature Static - 18°C to 22°C [106, 171]

Cooling temperature setpoint Temperature Static - 23°C to 27°C [106]

3.2.4 Energy Model and Reference Weather Data

Having defined the case-study and the appropriate DPs, we must

assemble all other requirements listed in Chapter 3.1. The energy

model, as mentioned, must be in a flexible and adaptable format

that would allow its automated manipulation. EnergyPlus
8

8: EnergyPlus is an open-source

building simulation engine devel-

oped by the U.S. Department of En-

ergy’s (DOE) Building Technologies

Office (BTO). For more information:

energyplus.net/.

was

found to be the most suitable option given these constraints along

with python libraries that facilitate this process: EPPY
9

9: For EPPY’s documentation:

eppy.readthedocs.io/.

, which

is used to modify EnergyPlus energy models in the .idf format

and launch parallel simulations, and OpyPlus
10

10: For OpyPlus’ documentation:

opyplus.readthedocs.io.

, which is used to

modify the weather files in .epw format.

https://energyplus.net/
https://eppy.readthedocs.io/en/latest/index.htm
https://opyplus.readthedocs.io/en/stable/
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12: PVGIS, or Photovoltaic Geo-

graphical Information System, is

a tool developed and maintained

by the European Commission Joint

Research Center for solar resource

assessment. For more information:

re.jrc.ec.europa.eu/pvg_tools.

However, EnergyPlus alone is not well-suited for the geometric

modelling of buildings. Thus, DesignBuilder
11

11: DesignBuilder’s product page:

designbuilder.co.uk/.

, a building design

and assessment tool, utilises EnergyPlus as its Dynamic Thermal

Simulation (DTS) engine and features a graphical user interface

for the 3D modeling of building geometry. DesignBuilder subse-

quently creates an .idf file, the energy model standard used by

EnergyPlus.

The EE calculations in this thesis were strictly based on the RE2020

methodology. This, of course, includes the use of French EPDs.

Meanwhile, the OE calculations have been done based on an Ener-

gyPlus model. This choice to deviate from the energy simulation

methods described by the norm was based on the extra flexibility

that an open-source calculation engine afforded.

As specific as the building model is the weather data for the

DTS. EnergyPlus simulations require the weather data in "EPW"

format and to generate representative weather information about

the building’s location, the PVGIS
12

tool was used. It enables the

export of EPW files with typical meteorological year (TMY) data

for a given geographical location, which is then used as a reference

for the remainder of the building life cycle.

3.2.5 Preliminary Case-study Application

Having presented the case-study information and all requirements

established in Chapter 3.2.1, we can now apply it to the DLCA

workflow.

But first, it is important to understand the inputs used in this

simulation, which have been listed in Table 3.9, as the inputs

shown in Table 3.8 give an interval instead of an absolute value.

Hereafter, for simplification purposes, we assume that the building

starts operating on the 1st of January 2020 and the EEs are also

indexed to the year 2020. Indeed, Figure 3.16 displays the yearly

carbon emissions from 2020 until 2070, with two vertical axes.

To the left, represented in green, is the yearly overall GWP in

𝑘𝑔𝐶𝑂2 − 𝑒𝑞 and to the right, in red, is the cumulative sum of these

same emissions.

From this profile, a major peak in emission is observed at year zero,

due to the building’s construction and another GHG emission

peak is seen at year 50, due to the building’s EOL. Between them, a

"plateau" of emissions can be seen linked to the building’s operation

with some noticeable peaks that are explained by the replacement

of the following components, which are also highlighted in Figure

3.16:

https://re.jrc.ec.europa.eu/pvg_tools/en/
https://designbuilder.co.uk/
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1. (Orange) Both the heating and ventilation systems have a

service life of 17 years, prompting replacements after 17 and

then 34 years of operation.

2. (Purple) A lot of components in the bathroom and kitchen

of the residence have a 20-year service life, resulting in two

replacements.

3. (Yellow) Plenty of components linked to the electrical instal-

lation have a service life of 25 years, requiring replacement

during the building’s lifetime.

4. (Blue) The double-glazing windows have a service life of 30

years, thus undergoing replacement only once.

Table 3.9: List of inputs used for the feasibility study.

Dynamic Parameter Dimension Value

Global warming Outdoor temperature +0.037 °C/year

Electricity mix evolution Carbon Intensity -2.45 %/year

Industry evolution A1-3 GWP -2.08 %/year

Waste evolution C1-4 GWP -1.62 %/year

Heat-pump improvement COP +0.58 %/year

Insulation degradation Thermal conductivity +0.94 %/year

Air tightness degradation Infiltration airflow -0.5 %/year

Heat-pump degradation COP -2 %/year

PV degradation Efficiency -0.6 %/year

Occupant density Persons 5 occupants

Daily presence Hours 16h30 / 24h

Heating setpoint Temperature 20°C

In addition, the dotted horizontal lines in Figure 3.16 have been

drawn to represent the carbon budgets defined for the case-study,

according to the RE2020. As shown in Table 3.3, this regulation

defines different budgets depending on when the building is built.

This is why the 2025 budget was also included in the dotted orange

line.

Most importantly for this preliminary application to a case-study

are the following identified issues:

Dynamic Parameters modelling: This issue has been identified

in the literature review and the experience for this French

case-study was no different. Determining which parameters

to consider and the appropriate values for these parameters

is a complex task, so that results are more reliable than the

static workflow.
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Simulation time: This is an inherent issue of DLCA as it deals

with more data and more calculations. This issue is even more

relevant when considering that the accuracy of dynamic GWP

comes from its parametric nature, which is particularly useful

in decision-making. The simulation took 3min7s
13

13: This simulation was run in a

40-core, 80-threads Intel Xeon E5-

2498 server running at 2.2 GHz and

256GB of memory RAM. Current

laptop-grade CPUs with 8 to 12 cores

would require some EnergyPlus sim-

ulations to be run in series

with all

50 simulations being executed in parallel simultaneously.

Additionally, this is the time required for a single simulation.

Optimisation and sensitivity analysis algorithms require

thousands of iterations to be run and this would cause

simulation times to quickly jump to days.

Figure 3.16: Overall dynamic GWP

results of the DLCA applied to the

case-study in 𝑘𝑔𝐶𝑂2−𝑒𝑞 from 2020

until 2070, in terms of yearly and

cumulative emissions.

An important addition to the simulation time discussion is that

186s of the 187s it took to obtain these results, were dedicated

to the OE calculation. Only 1s was related to EE calculation, as

it simply involves adding and multiplying values in a table at a

yearly time-step. This discrepancy in calculation times is inversely

proportional to the relative impacts of OEs and EEs, where 75% of

the overall GWP was embodied.

Depending on the application, these simulation times are accept-

able. However, this thesis delves into the topic of DM in build-

ing design, particularly at post-occupancy stages. In this context

shorter simulation times are highly desirable, allowing exploration

of design options and a better understanding of the alternatives.
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3.3 Proposing a DLCA simplification
methodology

For the two problems identified then, this sub-chapter is subdivided

into proposing a solution to each of them: reducing simulation

times and simplifying the DP modelling process.

3.3.1 Reducing Simulation Times

As found in Chapter 2, other DLCA applications have steered away

from making life-cycle energy simulations. Indeed, most research

has been limited to 2 to 5 interpolated simulations for OE [56, 140].

The workflow developed in this thesis though, executed 50-year

hourly energy simulations, offering the flexibility to test different

regression techniques, linear or otherwise, while evaluating the

simulation times.

In a first approach, as done in other works, a linear interpolation

will be applied where the number of simulations for life cycle oper-

ational GHG is reduced to a given time-step. The second approach

involves meta-models. Using model regression algorithms, other

research has been successful in the context of building energy

simulations, most notably for optimisations.

In this comparison of techniques, three indicators will be used to

identify the optimal strategy: simulation time, Root Mean Square

Error (RMSE)
14

14: Root Mean Square Error (RMSE)

is a measure of the differences be-

tween predicted and observed val-

ues, calculated as the square root of

the average of squared differences.

Lower values indicate better fit. and Coefficient of Determination (R2)
15

15: R-squared (R2) is the proportion

of variance in the dependent vari-

able that is predictable from the in-

dependent variable(s). Higher val-

ues indicate a better fit.

. The latter

two indicators are commonly used in the context of evaluating

the performance of computational models [172]. To calculate the

RMSE and R2 a representative sample of the inputs and outputs

are needed. Thus, a Monte Carlo sample of the input parameters

with a uniform probability distribution between the intervals was

created.

3.3.2 Reducing the Number of Dynamic Parameters

As established in Chapter 2, another issue commonly identified in

the literature towards including DPs to the LCA process is their

modelling, due to the absence of a unified database Thus, reducing

the number of parameters should also reduce the barrier of entry

to building DLCA.

Based on this logic, we decided to find the parameters with the

largest impact on the results of the dynamic GWP results in two

main studies. The first study investigates the impact of turning

each parameter of the LCA from static to dynamic, thus identifying

which of them should be prioritized if a decision-maker does
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16: This portable PC with only 4

cores and 8 threads can run up to

8 EnergyPlus simulations at once.

However, to avoid errors, a maxi-

mum of 6 simulations were executed

simultaneously.

decide to model them dynamically. The second study investigates

the uncertainty with each of the identified DPs found throughout

this chapter, determining which ones contribute the most variance

in the GWP.

3.4 Case Study Application I: Reducing
Calculation Times

With the simplification strategies established towards reducing

simulation times, we shall now apply them to the same case-study

presented in Chapter 3.2.1.

3.4.1 Interpolation

3.4.1.1 Interpolation Framework

This approach aims to reduce the simulation time of the DLCA

method discussed previously. The energy simulation is the most

time-consuming part of the workflow. To address this, we modified

the method to perform simulations every few years and use linear

interpolation to estimate values for the intervening years. Only

the OE suffers from decreased accuracy, as DTS times are the

most time-consuming, making interpolation unnecessary for the

embodied calculations.

In this study, the time step is variable and its impact on accuracy

and simulation times is analyzed. The latter depends on the number

of parallel energy simulations that can be executed. During the

feasibility study, all 50 simulations were executed simultaneously

on a server. However, on less powerful machines, the differences

in time steps would be more pronounced. Thus, simulation times

referenced here are based on a portable computer
16

instead of a

calculation server.

The following interpolation periods were studied:

Full workflow Energy simulations were executed every year of

the building’s life cycle. The portable computer divided the

simulations into 9 batches of up to 6 running in parallel,

serving as the reference baseline.

Every 5 years Executing 10 simulations, spaced every 5 years, with

linear interpolation between these points. This reduced the

number of batches to 2.

Every 10 years Increasing the sampling period to 10 years, reduc-

ing the number of simulations to 5, necessitating only one

batch.
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Every 24 years Ensuring 3 simulations in a single batch at years 1,

24, and 49.

Every 49 years Simulating only the first and last years of OEs,

with interpolation between these points.

The OE calculations between these simulations are performed using

the linear interpolation described in Equation 3.7 and illustrated

in Figure 3.17:

𝑂𝐸𝑡 = 𝑂𝐸𝑡0 +
𝑂𝐸𝑡1 − 𝑂𝐸𝑡0

𝑡1 − 𝑡0
· (𝑡 − 𝑡0) (3.7)

where:

▶ 𝑂𝐸𝑡 is the interpolated operational emissions at time 𝑡

▶ 𝑂𝐸𝑡0 and 𝑂𝐸𝑡1 are the operational emissions at the nearest

simulated times 𝑡0 and 𝑡1
▶ 𝑡 is the time at which the interpolation is being calculated

Subsequently, the life cycle OE is assessed as per Equation 3.8,

where 𝑂𝐸𝐿𝐶 is the total life cycle OE and 𝑇 is the total number of

years in the building’s life cycle.

𝑂𝐸LC =

50∑
𝑡=0

𝑂𝐸𝑡 (3.8)

Figure 3.17: Illustration of two inter-

polation scenarios showing 24-year

steps and their impact on OE.

This approach was applied to 100 different scenarios, each with

a unique set of DPs. The interpolated results were compared to

actual values simulated for each year to assess the accuracy and

efficiency of this method. By choosing time steps of 1, 25, and 49

years, we balanced reducing computational load with maintaining

the accuracy of the interpolated OE.
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17: When comparing the portable

computer to the server used in the

feasibility study, for the same dy-

namic GWP calculation, the smaller

PC took 2min30s longer than the

server.

To exemplify the framework, considering the 24-year interpolation,

the following steps were undertaken:

1. Simulate the operational emissions for the 1
𝑠𝑡

, 25
𝑡ℎ

, and 49
𝑡ℎ

years.

2. Apply the interpolation from Equation 3.7 to estimate emis-

sions for the intermediate years.

3. Calculate the life cycle OE with Equation 3.8.

4. Compare the interpolated values against yearly simulation

results to evaluate interpolation accuracy.

5. Repeat steps 1 through 4 for all scenarios.

6. Calculate the relative RMSE and R2 to quantify interpolation

accuracy.

3.4.1.2 Interpolation Results

The results demonstrated that linear interpolation using these key

points provides a good approximation of operational emissions

while significantly reducing the number of required simulations.

The results are shown in Table 3.10.

Interpolation period

Relative

RMSE

R2

Simulation

time

1 year 0% 1 5min 47s

5 years 0.6692% 0.9973 1min 10s

10 years 0.8143% 0.9960 38s

24 years 4.075% 0.8988 23s

49 years 21.27% -1.760 19s

Table 3.10: Comparison of interpo-

lation results.

For an interpolation period of 1 year, the baseline, RMSE and R2

are 0% and 1, respectively.

Reducing the sampling period from yearly to every 5 or 10 years

negligibly impacts accuracy, with RMSE smaller than 1% and R2

greater than 0.99.

Reducing the number of simulations to only 3, with 24-year time-

steps, significantly decreases performance, with an R2 value below

the recommended 0.9 for energy simulations [173].

Executing only 2 simulations (49-year time-step) continues this

trend, presenting a relative RMSE in the double digits and a

negative R2. A negative R2 indicates that the interpolation is a

worse representation of yearly OE than a simple average of the two

available true values, due to non-linear DP models.

Simulation times, dependent on the computer’s capabilities
17

,

showed significant improvements when reducing the time-step

from yearly to every 5 years, as the number of batches of parallel

EnergyPlus simulations reduced from 9 to 2. Increasing the time
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step to 10 or 24 years led to diminishing returns as the number of

batches reduced to one.

Figure 3.18 compares simulation times with R2 and RMSE, helping

determine the ideal simulation time step for this case study. Each

point in the orange and blue curves defines a simulation time-step

from 1 to 49 years, as per Table 3.10. The curves show that the point

of diminishing returns is reached quickly, at one simulation every

10 years, allowing a single batch of 5 simulations and preserving

good fidelity to the original calculations.

Figure 3.18: Comparing simulation

times, R2 and relative RMSE of full

and interpolated operational emis-

sions. Longer simulation times cor-

respond to more simulations due to

decreasing time steps.

The results in this sub-chapter vary based on the case study,

the DP models, and the computer used for simulations. Linear

interpolation has proven accurate with at least 4 simulations, but

simulation times are still somewhat long, at 38 seconds, especially

in the context of parametric simulations and optimizations.

3.4.2 Surrogate Modelling

3.4.2.1 Surrogate Modelling in Building Simulations

To further improve simulation times, this section investigates surro-

gate modelling techniques. As building data has massively grown

over the past few decades, the models that are used to describe them

have also evolved. This leads to an increased computational com-

plexity and, consequently, simulation times [174]. This is especially

problematic in the context of parametric workflows, which are

essential to DM processes and DLCA. Surrogate- or meta-models

offer a solution to these long computational times of high-fidelity

models by replacing them with statistical models trained on a set

of in- and output data of the original building physics [175].
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In the context of building simulations, Surrogate Model (SM) is far

from an innovative concept, being used for many applications. For

early-design stage [59, 174, 176–178], for variance-based sensitivity

analysis applications [59, 179–181], for uncertainty analysis in

energy performance [178, 182], for optimisations [176, 181, 183–185]

and many other applications, which has been summarized in a

literature review on the matter by Westermann and Envins [175].

3.4.2.2 Modelling Techniques

In addition to seeing many applications in the building simulation

sphere, a wide range of SM techniques have been explored. This sub-

chapter then, will list the most commonly found in the literature.

Most common of all SMs techniques are linear regressions [175].

They are used to model the relationship between a dependent

variable and one or more independent variables by fitting a linear

equation. As SMs, they are computationally efficient and easy to

interpret, making them good choices for problems with a linear or

nearly linear relationship between variables. However, they per-

form poorly when the underlying system is nonlinear or complex,

and they lack the flexibility to capture intricate patterns in the data

[173], similar to what was observed in the in Sub-Chapter 3.4.1.

Artificial neural networks (ANNs) are also frequently used in

building simulations. They are computational models for machine

learning, consisting of interconnected layers of artificial neurons.

They excel at complex pattern recognition and nonlinear function

approximation [184]. ANNs are often effective as SM for high-

dimensional and complex systems where traditional methods

may struggle. However, they can be computationally expensive to

train, require large datasets for accuracy, and may become "black

boxes," making it difficult to interpret or to explain their predictions

[186].

Additionally, Support Vector Machines (SVMs) are supervised

learning algorithms used for classification and regression tasks.

As SM, they are effective for high-dimensional spaces and can

handle nonlinear relationships through kernel trick. However,

they may require careful tuning of hyperparameters and can be

computationally intensive for large datasets [173].

Meanwhile, Multivariate Adaptive Regression Splines (MARS) is

a form of non-linear regression that uses piecewise linear basis

functions to model complex relationships. As SM, MARS is good

for capturing non-linearities and interactions between variables,

while still being relatively interpretable. However, the model can

become complex and overfit if not properly regularized [173].
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18: The Surrogate Modelling Tool-

box is a complete open-source li-

brary with plenty of modelling

algorithms.For more information

smt.readthedocs.io/

Finally, Gaussian Processes (GPs) are probabilistic models used

for regression and classification. They are particularly strong as

SM for capturing uncertainty and complex, smooth relationships

in the data. They are computationally expensive (like SVMs and

MARS), especially for large datasets, but offer the advantage of

providing confidence intervals for predictions [173].

3.4.2.3 Dealing with Integer and Categorical Variables

Numerous techniques are available, yet when dealing with build-

ings, an additional challenge arises when working with SMs due to

the presence of categorical and integer variables. Garrido-Merchán

and Hernández-Lobato [187] proposed a solution that includes

rounding the prediction to the nearest integer with a Kriging

algorithm, which is a GP-based process. This method is applied

in the SMT
18

python library. Although integer problems are not

addressed in this chapter, they will become relevant in Chapter

4.

3.4.2.4 Sampling and Training Surrogate Models

Out of all the options listed above, the Kriging technique was

selected as the best alternative for the application in this thesis,

demonstrating consistent superior performance in terms of R2

across training sample sizes ranging from 64 to 1024 [186] and its

capability to handle mixed-integer problems. While GP does have

its disadvantages, such as long training times for large datasets, this

is a one-time process and the prediction times remain fast, making

the trade-off worthwhile for achieving high-fidelity results.

In the scope of this study, a parametric DLCA workflow, the SM is

trained with the input being the different DPs, while the output is

the OEs of a given year. In other words, from the perspective of the

SM, this is a single-year OE calculation. However, before training

the model, there must be conversion of the DPs into modifiable

building characteristics. For instance, instead of training the model

with the insulation degradation, it will be trained on the range of

thermal conductivity within which it is expected to operate, even

after 50 years. This same process is repeated for all 10 parameters,

and the results of this work are shown in Table 3.11.

As a result, the SM has 10 inputs for the single output, as illustrated

in Figure 3.19. Thus, for the DLCA simulation, 50 iterations of the

SM must be executed.

Prior to operating this model, a sample of 1100 input vectors was

created with the Latin Hyper-Cube method (LHS), 100 of which

were reserved for the model validation. The true outputs of the

https://smt.readthedocs.io/
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Table 3.11: The inputs for the surrogate model training.

Dynamic Parameters Training Parameter

Parameter

Type

Training

Interval

Unit

Insulation Degradation Material Conductivity ℝ 0.02 to 0.07 W/(m2.K)

Occupant Density Number of occupants ℤ 2 to 8 person

Presence Hours Average number of hours

daily with occupancy

ℝ 13 to 20 hours

Heating Setpoint Heating Temperature Set-

point

ℝ 18 to 22 °C

Cooling Setpoint Cooling Temperature Set-

point

ℝ 23 to 27 °C

Air tightness Degradation Infiltration ℝ 0.6 to 0.9 ac/h

Global Warming Modified Weather File Categorical

RCP 2.6, 4.5

and 8.5

-

PV degradation PV efficiency ℝ 100 to 70 %

Heat-pump Degradation

and Improvements

Heat-pump Coefficient of Per-

formance (COP)

ℝ 2.6 to 5 COP

Electricity Mix Evolution Average Carbon Intensity ℝ 17.9 to 78.3 𝑔𝐶𝑂2/𝑘𝑊ℎ

19: This simulation was also exe-

cuted on a server equipped with

a 40-core CPU, allowing many sim-

ulations to be run in parallel.

1000 samples were calculated over 1h44min
19

, resulting in a 1000-

point single-dimension array with the resulting OEs. Additionally,

for the Surrogate Model training, an extra 8 minutes need to be

accounted for.
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Figure 3.19: Meta-modelling method employed to reduce simulation times.

3.4.2.5 Results

With the input and output arrays prepared, we trained multiple

SM models to examine how the number of samples affects the meta-

model’s accuracy in replicating the original system’s behaviour.

We varied the sample size from 100 to 1000. For each model, we

used the same validation sample to evaluate the Relative RMSE

and the R2. The outcomes of this study are detailed in Table 3.12

and visualized in Figure 3.20.

These findings reveal that with just 200 samples, the model

achieved an R2 value greater than 0.98. This high degree of linearity

is particularly pronounced within the bounds of the DPs modelled

earlier. As a result, the newer, faster statistical model significantly

reduces simulation times from 38 seconds to between 0.5 and 0.7

seconds, depending on the machine’s capabilities. This is a 98.15%

to 98.68% improvement. Despite this improvement, Embodied

Emission (EE) calculations remain time-consuming compared to
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Operational Emissions (OE) calculations, which now take only 117

milliseconds to run 50 times with 1000 samples.

Number of sam-

ples

Relative RMSE R2

Prediction

time

100 20.14% 0.9517 60 µs

200 13.03% 0.9797 110 µs

300 11.03% 0.9855 150 µs

400 9.264% 0.9897 240 µs

500 7.945% 0.9925 579 µs

600 7.352% 0.9935 1.05 ms

700 7.130% 0.9940 1.13 ms

800 6.701% 0.9947 9.50 ms

900 6.129% 0.9955 12.5 ms

1000 6.103% 0.9955 15.0 ms

Table 3.12: The results in terms of

R2 and RMSE of varying the number

of samples used in the training of a

surrogate model.

Figure 3.20: Comparing R2 and rela-

tive RMSE of the surrogate models

trained with 100 to 1000 samples.

The more points available for train-

ing, the more accurate the surrogate

model will be, but there is a point

of diminishing returns debatably be-

yond 500 samples.

This experiment also highlights that the most accurate models

require longer simulation times, which increase linearly due to the

Kriging method used in training. It is important to consider the time

needed for collecting training data, training, and validating the

model. If a practitioner or researcher does not require thousands

of iterations, it may be more efficient to interpolate OE values

throughout the building’s life cycle.

However, for extensive iterative use of this Surrogate Model in

variance-based Sensitivity Analysis (SA), the rapid simulation

times provided by this model are highly advantageous.
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3.5 Case Study Application II: Reducing the
Number of Parameters

In Chapter 3.3, the complexities associated with modelling DPs

were identified as significant challenges within DLCA. This sub-

section aims to determine the parameter that has the greatest

impact on GWP. Accordingly, the investigation is divided into

two separate analyses, outlined in Table 3.13: the first analysis is

detailed in Chapter 3.5.1, and the subsequent uncertainty analysis

is conducted in Chapter 3.5.2.

Table 3.13: This table compares the two approaches to classifying the most affluent parameters.

Criteria GWP Sensitivity to Static and Dy-
namic LCA approaches

Uncertainty in Dynamic GWP re-
sults

Objective Identify parameters to prioritize in a

dynamic approach

Identify largest source of uncertainty

in DLCA

Comparison Methods Best feature selection, difference of

means and Sobol analysis

Sampling Method Full factorial design of static and dy-

namic parameters

Random sampling of inputs defined

by uniform probability functions

Parameters Variation Binary: static or dynamic Operating intervals of DPs

To further clarify the differences between these analyses, we focus

on the electricity mix evolution parameter. Previous discussions

anticipated a reduction in the CI of electricity, with an annual

decrease of 2.3% to 2.6% in France until 2050, contrasting with

static LCA methods that assume no change.

In the "GWP’s Sensitivity to Static and Dynamic LCA approaches"

analysis, we examine the impact of modelling CI as either constant

or reducing at an average rate of 2.45% per year. Conversely,

the "Uncertainty in Dynamic GWP Results" analysis explores the

impact of varying the reduction rate of CI between 2.3% and 2.6%

per annum on GWP results. This nuanced comparison sheds light

on how static and dynamic modelling choices, as well as parameter

uncertainties, uniquely influence GWP outcomes.

3.5.1 GWP Sensitivity to Static and Dynamic LCA
approaches

To facilitate a comparative analysis between static and dynamic

LCA methodologies, two distinct sets of parameters have been

developed. These will be detailed in the following section. Subse-

quently, the GWP results derived from each set will be rigorously
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calculated and juxtaposed. The primary objective of this compari-

son is to identify the parameters that exhibit the most significant

impact when transitioning from a static to a dynamic LCA ap-

proach.

Upon the completion of this sub-section, a hierarchical ranking of

parameters, in terms of their significance for the case study, will

be established. It is important to note, however, that while this

ranking is specific to the case study and may not be universally

applicable, the underlying methodology developed for this com-

parison possesses broader applicability and can be generalized to

other studies.

3.5.1.1 Dynamic and Static Scenarios

To build a representative set of dynamic LCA scenarios, the inter-

vals identified in Table 3.8 were used to build an average dynamic

scenario, which will be referred to as a "representative dynamic

scenario". However, not all parameters of the table were included

here, since user-level inputs were modelled statically. Indeed, since

they do not evolve through time, an average value already is used

for the static scenario. This limitation could be amended simply by

turning these parameters dynamic, which, due to lack of pertinent

data, remained stationary in this thesis.

Table 3.14 then, displays the set of parameters: (1) a representative

dynamic scenario, which was built with the exact mean between

the bounds defined in Chapter 3.2.3, with the only exception being

the global warming scenario, where the RCP 4.5 was chosen and

(2) the static inputs, which were much simpler to define, as the LCI

remains unchanged from year zero to 50 and for the weather data,

the TMY dataset is used.

Parameter
Dynamic

LCA
[%/year]

Static LCA
[%/year]

Global warming RCP 4.5 TMY

Electricity mix’s evolution -1.87% 0%

Industrial sector’s evolution -2.08 0%

Waste sector’s evolution -1.62 0%

Heat pump technology improvement 0.58% 0%

Insulation degradation 0.94% 0%

Air tightness degradation 0.5% 0%

Heat-pump ageing 2% 0%

PV system ageing 0.6% 0%

Table 3.14: Defining representative

dynamic and static LCA calculation

hypothesis.
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20: These 512 simulations ran with

all 50 one-year EnergyPlus simula-

tions in parallel over 7h38min, aver-

aging around 50.7s per iteration

3.5.1.2 Full Factorial Sampling

To comprehensively assess the impact of varying parameters, an

exhaustive sampling approach was adopted. This involved running

a full factorial design, thereby calculating all possible combinations

of dynamic and static parameters. This method ensures a thorough

exploration of the solution space, albeit within the constraints of

the nine selected parameters.

The 512 (2
9
) iterations required were then executed with the full

workflow
20

, without interpolations or the SM explored in Chapter

3.4.

3.5.1.3 Methods to Rank Parameter’s Influence

The ranking of parameters based on their influence on the GWP

was conducted using several statistical techniques. The goal was to

establish a hierarchical understanding of each parameter’s relative

impact on the dynamic GWP results.

(a) Pick and Freeze

The Pick and Freeze analysis consists of generating pairs of outputs

by holding the value of a variable of interest (frozen variable) and

sampling the other variables (picked variables) [188]. For example,

by choosing the industrial evolution parameter as the frozen

variable, the remaining 8 parameters are the picked variables.

Consequently, the first group of 256 results comprises all outcomes

assuming a 0% yearly emission reduction, while the second group

includes outcomes with a -2.08% yearly reduction rate, as detailed

in Table 3.14. Thereafter, averages for each group are calculated,

and the difference between them is analyzed in Table 3.15.

The differences highlight the influence of each parameter on GWP.

A higher value indicates a more significant impact, as depicted

in Figure 3.21. It becomes evident that the waste, electricity, and

industrial sector’s decarbonization are the most influential, by a

substantial margin, compared to system-level parameters or global

warming itself. The evolution of the waste sector alone accounts

for a difference of 129 𝑘𝑔𝐶𝑂2−𝑒𝑞/𝑚2
, representing about 20% of

the total embodied budget outlined in Table 3.3. Further, more

comprehensive conclusions will be drawn after the subsequent

studies.
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Table 3.15: Analysis of Parameter Influence on LCA Results.

Parameter Dynamic (𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
) Static (𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

)

Difference

(𝑘𝑔𝐶𝑂2 −
𝑒𝑞/𝑚2

)

Mean Std Dev Mean Std Dev

Industrial sector’s

evolution

839.97 79.66 777.95 79.66 -62.03

Insulation degrada-

tion

807.26 85.65 810.66 85.32 +3.40

Infiltration Deg 809.83 86.45 808.09 84.54 -1.74

Global warming 812.39 85.37 805.54 85.51 -6.85

Heat-pump ageing 805.45 84.77 812.47 86.10 +7.02

Electricity mix’s evo-

lution

763.31 72.08 854.61 72.40 +91.31

Heat pump technol-

ogy improvement

812.90 86.22 805.02 84.60 -7.88

Waste sector’s evolu-

tion

873.63 55.80 744.30 55.80 -129.33

PV system ageing 811.03 85.68 806.89 85.29 -4.14

Figure 3.21: Results from the pick

and freeze method. The plot shows

the ranking of the difference be-

tween dynamic and static mean val-

ues.

(b) Feature Selection

Feature selection, a widely used technique in machine learning,

aims to select a subset of input variables by eliminating irrelevant

or non-predictive features [189]. It has been applied in building

simulations for predicting energy consumption [190–193], man-

aging smart buildings [194], and identifying key parameters in

simulations [195].
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Figure 3.22: Results from feature

regression using f-scores.

Feature selection techniques are broadly classified based on the

output type of the function: categorical outputs utilize classifi-

cation algorithms, while continuous outputs apply regression

algorithms. In this study, addressing GWP as a continuous value,

the "f_regression" technique from the Python library SciKitLearn
21

21: SciKit Learn is an open-source

machine learning library in Python.

More information at scikit-learn.org

was employed. This method utilizes the F-statistic from ANOVA

(Analysis of Variance) to assess the linear relationship between

each feature and the target variable in regression analysis. The

ranking of F-scores applied to DPs are shown in Figure 3.22.

3.5.1.4 Comparing Results

After evaluating two distinct studies, the same factors consistently

impact GWP when transitioning from static to dynamic mod-

elling in the case-study’s LCA: waste sector’s emissions reduction,

electricity mix decarbonization, and industrial sector’s emissions

reduction. These findings align with expectations, as this DPs

indicate substantial decarbonization efforts, even though they are

not the most optimistic scenarios.

https://scikit-learn.org/stable/about.html
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Conversely, system-level DPs show minimal impact in the shift

from static to dynamic modelling. This is expected since they pri-

marily affect OEs and do not evolve as significantly as, for example,

the electricity mix. Interestingly, global warming is among the least

influential parameters, which is surprising given its common con-

sideration in building performance studies [139, 146, 196–199], often

more so than parameters like waste sector’s decarbonization.

However, this analysis overlooks user-level parameters, widely

recognized in the literature as a significant source of uncertainty in

building energy performance [200]. To incorporate these impacts,

the discussion will progress to the next sub-chapter.

When juxtaposing these findings with existing studies, such as

those by Walker et al. [201], there’s a consensus on the critical role

of electricity and construction materials decarbonization in the

future of the building sector. Similarly, comparable observations

are noted regarding global warming.

3.5.2 Uncertainty in Dynamic GWP results

In Chapter 2, the use of Uncertainty and Sensitivity analysis

have been identified and highlighted in the context of building

simulations.

3.5.2.1 Defining Objective

In this study specifically, the objective is to identify the most

influential DPs on the dynamic GWP results so that the modelling

process of these parameters can be focused on the ones that generate

the most variance.

In the previous sub-chapter, we identified the parameters that

gain the most from dynamic modelling, as opposed to being

treated statically. These parameters are represented with a range

of plausible values in Table 3.8. This analysis aims to determine

which of these parameters, within their plausible ranges, have the

greatest impact on the variance of the resulting dynamic GWP.

3.5.2.2 Sampling Input Parameters

The Sobol method, recognized for its comprehensive quantitative

results, was chosen for this study. However, before the Sobol indices

can be computed, it is essential to generate a representative sample

of the solution space. Typically, for accurate results, about 1000

iterations per parameter are needed [173]. Given this requirement,

at least 13,000 samples were deemed necessary for our case study. To
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meet and slightly exceed this threshold, the quasi-random Saltelli

sampling method [202] was employed, generating a total of 14,336

samples. This number is derived from the formula 2
𝑁 × (2 ∗𝐷 + 2),

where 2
𝑁

represents the base sample size (with N=13 for our study)

and D is the number of parameters being analyzed.

Because of the drastically higher number of samples than in the

preceding Sub-Chapter 3.5.1, the SM trained in Chapter 3.4.2 was

re-used. These simulations took around 3h14min, with an average

of 0.81s per resulting dynamic GWP.

3.5.2.3 Sobol Results

Figure 3.23: Sobol sensitivity anal-

ysis results of the dynamic parame-

ters.

Figure 3.23 illustrates the resulting Sobol indices obtained for the

DLCA, where we can observe that the occupant-level parameters

are the most impactful with heating setpoint temperature and

presence hours. This seems reasonable as the main source of

uncertainty between energy simulations and reality is occupant

behaviour [21, 203].
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Third to this parameter is the waste sector’s decarbonization, which

seems to align with other DLCA studies, such as [83, 166] since,

especially in bio-based materials, most EOL emissions occur at

the end of the building’s life cycle. This gives this sector ample

time to evolve, highlighting a great deal of pressure on recycling

technologies and on circularity as the current building stock ages.

Fourth is CI evolution, despite the French electricity grid already

being quite low-carbon. This is supported by Walker’s study on

LCA assumptions’ impact on decision-making [204].

Assuming the building is equipped with a cooling system, the

other 2 occupant-level parameters also appear in the top half of the

parameters. This significant impact of cooling is tied to the consid-

erations of global warming and the poor thermal performance of

the building. This is evidenced by the fact that this parameter has,

relatively, the highest interdependence of any other parameter, as

the sum of the Sobol indices for "Cooling setpoint" is much greater

than the first order index (𝑆𝑇𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡 » 𝑆1𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑒𝑡𝑝𝑜𝑖𝑛𝑡).

To round up the top half though, is global warming, which is

somewhat unexpected, given that other studies, such as [204] have

found it to be quite irrelevant towards building GWP.

The 8
𝑡ℎ

-ranked parameter is the decarbonization of the industrial

sector, which has a high impact, despite only affecting component

replacements. Indeed, in the feasibility study, 66% of the EE were

upfront emissions in the A1-5 modules of the building life cycle.

Still, the remaining 44% emitted in renovation and replacements

are then heavily impacted by the decarbonization prospects of the

sector. The remaining Sobol results are all building-level param-

eters, including all the degradation and individual equipment’s

technological improvements.

Another point to emphasize from these Sobol results is the very

low interactivity between the DP, as evidenced by the very close

values of the total and first-order Sobol indices. This observation

suggests minimal interaction effects among the parameters, except

the cooling setpoint, as highlighted above.

For the context of this analysis, a difference of less than 5% between

the total and first-order indices has been considered negligible,

indicating insignificant interactivity. This low level of interactivity

is explained by how the DPs have been modelled. For example,

the decarbonization of the energy sector has been considered in

isolation from the evolution of waste and industry sectors, despite

the potential for improvements in one sector to influence the others

in reality.
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22: Loss of information here is be-

ing defined as the reduction of the

dynamic GWP range (light red in

Figure 3.24) relative to the interval

calculated with all parameters.

3.5.3 Comparing Results

Comparing the results of Sub-Chapter 3.5.1’s ranking to Sub-

Chapter 3.5.2’s, the lack of occupant-level parameters is imme-

diately obvious, as heating setpoint and presence hours together

represent around 60% of the total variance observed in the dynamic

GWP results.

However, even when ignoring the lack of occupant-level parameters

in preceding studies, the rankings still are different, most notably,

with the industrial sector’s decarbonization being less relevant than

global warming. This difference is explained by the very different

nature of inputs from each study. While Chapter 3.5.1 compared the

sensitivity of the resulting GWP to each parameter being modelled

dynamically or statically, Chapter 3.5.2 studied the influence of

the different parameters on the variance of dynamic GWP results.

Then, the operating range for industry decarbonization, identified

in Table 3.8, is tighter than for global warming.

3.5.4 The Impact of Reducing the Number of Parameters

Now, having identified the most influential parameters in the

dynamic GWP calculation, we can compare what the results look

like if instead of simulating all 13 parameters, only top parameters

identified in Figure 3.23 were included. To do that, the maximum

and minimum results were calculated with varying quantities of

DP. The results are illustrated in Figure 3.24, where dynamic GWP

is given by an interval of values. Notably, we highlight that, by

cutting down to 7 of the original 13 parameters, a 46% reduction

in DPs, the range of values is cut by 26 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
, or an 13%

loss of information
22

.

Figure 3.24: Comparing static and

dynamic results and the impact of

reducing the number of DPs from

13 to 7 and 5 on dynamic GWP.
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Reducing the number of DPs to 5 still showed comparable results,

with a loss of information of 15% (31 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
) despite a

62% cut in Dynamic Parameters.

It is also important to note that the static GWP does not fall within

the range of the maximum and minimum values derived from

DLCA calculations. This outcome aligns with expectations, as even

the conservative forecasts for DPs indicate some level of improve-

ment in aspects like the decarbonization of building-related sectors.

This observation is consistent with existing literature, which shows

dynamic LCA generally results in lower GWP outcomes, reflecting

ongoing policy trends. This occurs even though certain parame-

ters, such as degradation decrease energy performance thereby

increasing OE. However, as the SA results indicate, building-level

parameters do not significantly impact the overall findings.

One can also see that RE2020 is conservative, yielding a result

comparable to the Maximum GWP, but with greater efficiency

in terms of calculation length and complexity. However, this effi-

ciency comes at the cost of reduced transparency and detail in the

regulatory calculation, since the weighting factor hides the nuance

of the different DPs.

3.6 Limitations of the Methodology

This methodology has many limitations and they will be identified

in this section. To start, an attributional approach is used in the

DLCA application, as opposed to a consequential one. This means

that this study does not affect global environmental burdens. How-

ever, an interesting development would be to study the effect that

a widened application specifically of external level DP would have

on the parameters themselves. For instance, with reducing CI of

electricity versus the electrification observed in recent years. A con-

sequential approach should take into account the limited capacity

of renewable energy. Furthermore, electricity mix scenarios do not

impact industry and waste sector decarbonization in this research,

as aforementioned.

In addition, the Dynamic Parameters modeling is a major topic

when it comes to the limitations of this DLCA application seen

in this thesis. A great deal of work is needed to homogenize and

facilitate the integration of dynamism into LCA, however, this

study does little to advance that subject. Indeed, only DPs for the

context of the case-study were modeled, making them difficult

to generalize. Specifically, the integration of prospective LCA,

which includes the evaluation of the environmental performance

of current and emerging technologies [205], remains inadequately
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addressed. This aspect is crucial for accurately predicting long-

term environmental impacts and ensuring that future innovations

align with sustainability goals. Future research should focus on

developing universal dynamic parameters that can be applied

across various industries and regions to enhance the adaptability

and predictive accuracy of LCA methodologies.

When it comes to the simplification techniques demonstrated in

this chapter, it is important to highlight that the results obtained

do not serve as direct recommendations to future DLCA studies.

Instead, this research provides a methodology to identify the

ideal simplification approach to each case-study and context. The

application to a plethora of distinct buildings would be required

for generalised recommendations.

3.7 Conclusions

After identifying Dynamic Life Cycle Assessment (DLCA) as a

necessary accuracy-improving methodology to ensure building

carbon threshold compliance, this chapter has explored strategies

to simplify it in two key ways: by reducing simulation times and

by reducing the number of Dynamic Parameters (DP)s.

To identify these improvements, a preliminary case-study was

necessary. A workflow based on the literature found in Chapter 2

was built and a research of DPs for the case-study building was

executed. This led to 13 total parameters, each of them having an

operating interval of uncertainty. The probability density function

was assumed constant.

The proposed DLCA workflow was built with an LCI based on

the French EPD database (INIES) for the EE calculation. The OE

was based on the EnergyPlus calculation engine at an hourly time

step for the 50 years of operation of the building. In this DLCA

workflow then, 99% of the simulation time was dedicated to OE,

despite operational impact representing 25% of total GWP.

To speed up simulation times, two techniques were studied: a linear

interpolation between different time steps and the use of Surrogate

Model (SM) for the Operational Emissions (OE) calculations. SM

emerged as a scientifically sound and efficient option. It substan-

tially reduces simulation times by 98% while RMSE is kept below

7% and R2 above 0.99. Additionally, the model’s uncertainty pri-

marily manifests in the operational emissions calculations, which

represent approximately 25% of the overall GWP.

Concerning the modelling of Dynamic Parameters (DP), a battery

of analysis aimed at identifying the most impactful parameters

was executed. Thanks to this analysis, the number of parameters
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could be simplified while keeping a similar level of uncertainty

calculation with the dynamic GWP. Indeed, after ranking the pa-

rameters in order of impact on dynamic GWP, cutting the number

of parameters by 63% resulted in a loss of information of 13%.

Thus, the methodology successfully identified some parameters

on which more detailed modelling should be focused for this

case-study. Indeed, additional parameters such as the building

lifecycle and that of the different building components could also

be integrated and have shown to be great contributors towards

GWP, as demonstrated in [67, 102].

Now, with flexible and manageable simulation times, DLCA can

be brought to the decision-making process more easily, which shall

be explored in the following chapter.
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Chapter 3 highlighted some of the uncertainties associated with

the multi-decade lifespan of buildings and their impacts on Life

Cycle Assessment (LCA). It also discussed the simplification of

these dynamic variables in relation to Global Warming Potential

(GWP) assessment.

This fourth chapter builds upon the established knowledge and

framework, proposing a method to guide the Decision-Making

(DM) process towards compliance to French regulation carbon

threshold. It involves developing action plans that take into account

the main Dynamic Parameters (DP) identified in Chapter 3, thereby

enhancing the robustness of decisions.

4.1 Building the Framework for
Decision-Making Support

As buildings age, it becomes crucial to consider their maintenance

as a part of their lifespans. Given the high prevalence of energy-

inefficient buildings requiring substantial renovations, and with

European renovation rates projected to rise to between 2 and

3% [89], post-occupancy DM methods become essential develop-

ments.

In this section, a post-occupancy DM methodology will be devel-

oped, starting with the process of identifying potential Carbon

Mitigation Measure (CMM)s for CB compliance.

4.1.1 Identifying Carbon Mitigation Measures in
Post-Occupancy Stages

4.1.1.1 Carbon-Mitigation Measures and Its Perimeter

CMMs encompass actions that enhance a building’s environmen-

tal performance, including system and envelope improvements,

changes in occupant behaviour, etc. CMMs during post-occupancy

then, impact only the B and C modules.
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For example, encouraging lower scheduler setpoints tempera-

tures in heating systems is a CMM. However, this thesis excludes

occupant-related measures from the DM process, focusing solely

on refurbishments - actions that enhance an existing building’s

performance through renovations and the addition of renewable

energy production [206]. The reason to leave occupant-level mea-

sures aside is due to the intricacies of optimizing such actions,

which only impact Operational Emissions (OE)s. Since this study

fails to consider other performance indicators, such as indoor

comfort, the outcome of a DM process that only evaluates GWP

would be unsurprising.

4.1.1.2 Distinguishing Renovation and Replacement

In addition, the terminology in the field of building adaptation

projects in the literature (ie. retrofit, renovation, replacement) is

not very consistent [206]. Then, to maintain accordance with the

EN 15978 norm, we propose to define and distinguish the terms

renovation and replacement as per Table 4.1, while retrofit will be

used an umbrella term including both.

Table 4.1: Comparison of renovation and replacement in building adaptation projects.

Aspect Renovation Replacement

Definition Addition of building components

that change the building’s energy and

environmental performance.

Substitution of building components

that have a reference service lives in-

ferior to that of the buildings.

Purpose To enhance energy and environmen-

tal performance of the building.

To maintain the functional integrity

while improving the environmental

performance of the building.

Examples Installing renewable energy systems

on an unequipped building

Replacing existing HVAC systems.

To identify the possible replacement actions a three-step filtering

process of the building components was executed:

1. Identify the building components that have a service life that

is less than the building’s life cycle.

2. Identify the components that have an impact on both the

building’s operational and embodied emissions.

3. Rank the remaining components in terms of overall Global

Warming Potential.

The first step filters out all components that are not replaced during

the building’s reference service life. The second is introduced to

simplify the DM process, as comparing components that only
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impact Embodied Emission (EE), which do not require a Multi-

Objective Optimization (MOO). Indeed, the difficulty of the DM

process comes from the intricate relationships that exist between

EEs and OEs. The third step helps to prioritise the components

that contribute the most to the building’s CB and, since this is a

permutation problem, reducing the number of variables is a crucial

step towards reasonable simulation times.

As for identifying renovation measures, the process is less generic

and more building-dependent. In the literature, the most typical

renovation choices relate to improvements to the thermal enve-

lope’s performance together (ie. thermal insulation of opaque and

glazed surfaces) and with the production of local renewable energy,

namely with photovoltaic (PV) panels.

Keeping with the trend of this thesis of including time as a variable,

another CMM included in this work is supporting decision-makers

in choosing when these actions should be implemented.

4.1.1.3 Scheduling Carbon-Mitigation Measures

As discussed in Chapter 3, incorporating time into building GWP

evaluations significantly impacts LCA results, warranting its inclu-

sion in CB assessments. This chapter now argues for integrating

this temporal aspect into the DM process, especially concerning

renovations and replacements.

This integration utilizes the reference service lives of building

components from their EPDs, as defined by EN 15804 [207]. These

service lives are set by manufacturers and, in typical LCA ap-

proaches, components are replaced by identical ones at the end of

their lifespans.

However, in reality, they can be replaced by any functionally

equivalent component, not only at the end of their lifespan but

at any point until then. Therefore, the timing of replacements is

incorporated into the CMM as defined in Equation 4.1, where

𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denotes the current year and 𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑂𝐿 the year the

component reaches its End-Of-Life.

𝑦𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ∈ [𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐸𝑂𝐿[ , 𝑦 ∈ ℤ (4.1)

Conversely, for renovations, the upper bound is nonexistent since

they involve adding new components, thereby modifying building

performance. Thus, 𝑦𝑟𝑒𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 is defined in Equation 4.2, where

𝑦𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐸𝑂𝐿 is the building’s EOL.

𝑦𝑟𝑒𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 ∈ [𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑦𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐸𝑂𝐿[ , 𝑦 ∈ ℤ (4.2)
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4.1.2 Full Workflow Proposal

The Decision-Making support methodology in this thesis is based

on the diagram shown in Figure 4.1.

Figure 4.1: Full workflow for the Decision-Making process.

The DM parametric workflow evaluates EE and OE separately since

the budgets for these values are defined separately. The solution

space will be explored through two methods: a Multi-Objective

Optimization (MOO) and a statistical evaluation, following the

recommendations from the literature uncovered in Chapter 2.3.3.

Of course, the DLCA approach is also integrated into the method-

ology, so the next sub-section will be dedicated to detailing the

dynamic scenarios listed in Figure 4.1.

4.1.3 The Dynamic Parameter Integration in the
Decision-Making Process

DLCA involves accounting for uncertainties related to temporal

factors. When it comes to uncertainties in DM, robustness analysis

is crucial. It aims "to identify strategies that perform well and are

minimally affected by uncertain future conditions" [204].
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Robustness analysis is generally divided into two categories:

probability-based and scenario-based. Probabilistic methods need

detailed information about uncertainties, such as probability den-

sity functions, enabling evaluation in terms of probabilities and

confidence intervals [208]. However, in cases like this, where the

probabilities of DP are unknown, scenario-based methods are

more appropriate [208], as it was established in Chapter 2.

4.1.3.1 The Scenarios for Decision-Making

This part of the thesis then, will be dedicated to constructing said

scenarios. However, before implementing the DM workflow with

all DPs, came the recognition that only a few of them represent

the most variance in terms of the results obtained. Indeed, thanks

to the Sensitivity Analysis (SA) demonstrated in Figure 3.23, only

the most influential parameters will be included in this study,

those being: electricity mix evolution, waste sector evolution, heat-

ing setpoint temperature, daily presence hours, industrial sector

evolution, occupant density and global warming.

The choice to include 7 parameters, instead of fewer was partially

due to the willingness to include climate change in this study, as

global warming is often included in long-term building simulations

such as this one. Despite this being relatively low in the rankings

(in 7
𝑡ℎ

).

(a) Edge-Case Dynamic Scenarios

Table 4.2: The dynamic and static scenarios to be used in the decision-making methodology application.

Dynamic Parameters Lower-Edge Upper-Edge Static

Yearly Electricity mix’s evolution -2.3% -2.6% 0%

Yearly Waste sector evolution -1.34% -1.89% 0%

Heating temperature setpoint 22°C 18°C 19°C

Presence Hours 20h 13h 16h30

Yearly Industrial sector evolution -1.85% -2.31% 0%

Number of occupants 8 persons 2 persons 5 persons

Global warming RCP8.5 RCP2.6 TMY

Upon choosing the DPs then, with two single-objective optimiza-

tions, the overall GWP was maximized and minimized to find the

combination of DPs that yield the lowest and highest results within

the intervals defined in Table 3.8. The parameter’s values were

then used to construct edge case scenarios shown in Table 4.2. The
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upper-edge case produces the highest GWP and the lower-edge

produces the lowest.

(b) Dynamic RE2020 Scenario

In addition to these two dynamic scenarios, another DLCA ap-

proach included in this work is based on RE2020, which follows the

French regulatory framework. This method, described in Chapter

2.2.3.2, is unique to France, as it is the only country to incorporate

Dynamic Life Cycle Assessment in its building performance regula-

tions. However, the RE2020 DLCA framework differs significantly

from the one implemented in this thesis, as it proposes only one

scenario for its single DP.

(c) Static Scenario

Finally, to be able to compare aforementioned DLCA approaches

to a baseline, a static LCA has been included. Since the RE2020

also includes such a methodology, this thesis largely follows this

regulation.

Consequently, this LCA approach bears no changes to the building

or its environment throughout its life cycle. This assumption

also has been quantified in Table 4.2. However, for user-level

parameters, which already are static, a simple mean value has been

taken between the bounds.

4.1.4 Exploring the Solution Space

In the building DM process, identifying the most suitable solution

is intricate and time-intensive, as this combinatorial challenge

grows exponentially with each added parameter. For instance,

a comprehensive parametric study aiming to minimize energy

consumption across 5 parameters, each with 4 options, necessitates

4
5

(or 1024) simulations. Consequently, exhaustive simulations

are impractical for complex DM processes typical in building

design. Indeed, such extensive parametric workflows can lead to

an overwhelming amount of information [58].

To manage this complexity, two approaches have been previously

outlined in Chapter 2.3.3. The first approach involves a statistical

sampling of input parameters to gain a representative understand-

ing of the solution space. The second approach focuses on optimiz-

ing variables to minimize OE and EE, thus efficiently navigating

the solution space.
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In this section, the utility of these approaches will be detailed and in

the case-study application, a comparison between the approaches

will be made. A secondary objective of this chapter then, is to

identify appropriate techniques for DM process in the way of CB

compliance.

4.1.4.1 Statistical evaluation

As observed in Chapter 2, statistical evaluations serve various

purposes. In addition to visualization techniques such as Parallel

Coordinates Plot (PCP), they are instrumental for conducting

sensitivity, uncertainty, and multivariate analyses. Employing the

same random sample creates an extensive knowledge database

that can be leveraged by various DM assistance methods [58].

Two methods incorporated into this work include the PCP for

interactive exploration of design solutions and the calculation of

Sobol indices for CMMs. This dual functionality enhances the DM

process by providing a comprehensive tool for exploring solution

spaces and gaining insights into the impact of different design

choices.

However, despite being constructed with a statistically representa-

tive set of input parameters, a large sample size remains necessary.

An alternative method for navigating the solution space more

efficiently is the use of optimization algorithms, which also present

their own set of challenges and drawbacks.

4.1.4.2 Optimization

While optimizations may not provide a comprehensive exploration

of the entire solution space, they are a widespread tool in building

design, particularly when employing Multi-Objective Optimization

(MOO), which assemble a subspace of optimal solutions that can

be explored.

(a) Multi-Objective Optimization Algorithm

In building design and renovation, a variety of optimization al-

gorithms are available. However, as discussed in Chapter 2.3.3,

genetic algorithm (GA) is most often used in studies of this field,

as it is particularly suitable for handling non-linear and non-

differentiable objective functions while circumventing local minima

issues [117].
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(b) Objective Functions

The MOO in this study focuses on two objectives: Embodied

Emission and Operational Emissions. The decision to optimize

these objectives separately is based on how they are typically

defined and measured in different contexts.

The calculation of EE involves straightforward arithmetic based on

the BOQ presented in Appendix B. While OE will be reliant on the

same energy simulations detailed in Chapter 3.

4.2 Preparing the Case-Study for the
Methodology

Now that the methodology has been delineated, it is essential to

delve into the specifics of the case study that will serve as the initial

testing ground for this approach.

4.2.1 Introduction to the Case Study

The case study for this DM support methodology is consistent

with the one detailed in Table 3.1 of Chapter 3. In this section, we

will examine the building’s envelope and systems more closely

to pinpoint potential CMMs. Subsequently, a Busisness-As-Usual

(BAU) scenario will be formulated.

4.2.1.1 Determining the Building’s Age

Similar to Chapter 3, the case-study’s life cycle is set at 50 years,

which corresponds to the French regulation for new buildings but

is used also for this recent building.

To identify the CMMs, the building’s age needs to be determined

first. As previously mentioned in Chapter 4.1.1.3, the timing of

applying the methodology is a crucial factor in shaping the retrofit

plan’s schedule. The current workflow allows for renovations and

replacements to begin from the methodology’s implementation

date. The building’s GWP is evaluated annually, so it’s presumed

that the CMMs influence the OE at the start of each year. For

simplicity, the EEs are also tallied in the same year.

Referring to Table 3.1, the building was erected in 2017. Given that

the DPs in Chapter 3 were identified using data and insights from

between 2020 and 2022, it’s assumed for this case study that the

building has been operational for 4 years, when the owners opt to

implement this thesis’s methodology. Consequently, the earliest
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feasible time for retrofit actions to have an impact of yearly GWP

is from the building’s 5
𝑡ℎ

year.

With this critical temporal variable in the DM process at post-

occupancy stages established, we can now define the CMMs perti-

nent to this particular case study.

4.2.1.2 Carbon Mitigation Measures for the Case Study

Reflecting on Chapter 4.1.1, the identification of suitable CMM is di-

vided into renovations and replacements. These will be delineated

separately for this case-study.

(a) Replacements

An analysis of the building’s BOQ revealed 4 components that

meet the criteria in Chapter 4.1.1.2: a service life shorter than the

building’s life cycle, impact on both operational and embodied

emissions, and highest overall GWP. These components, detailed

in Table 4.3, require replacement and have both embodied and

operational impacts.

Table 4.3: The components listed in this table were chosen to be included in the replacement measures. These components

are taken from the INIES database [143] and represent a slice of the components listed in Table B.1

Component Functional Unit Quantity
Service

Life
Interval
(years) LC phases (kgCO2-eq/unit)

(years) A B C

Joules Effect Elec-

trical Radiator

1 unit providing up

to 1 kW of heating

9 17 [5, 17] 512 1800 6.61

Thermodynamic

Water Heater

1 heat-pump produc-

ing DHW with a

200L tank

1 17 [5, 17] 2320 4880 347

Humidity-

Controlled

Simple-Flow

Ventilation

1 ventilation unit

ensuring up to 59

𝑚3/ℎ of fresh air

3 17 [5, 17] 46 97 4.17

Double-Glazed

Windows with

Aluminium/PVC

Framing

1 m2 of opening with

U = 1.2 W/(m2.K)

10 30 [5, 30] 304 0 9.7

It’s important to note that the heating and Domestic Hot Water

(DHW) systems are linked to energy and water consumption in

their use phases (modules B6 - Operational water use - and B7 - Op-

erational energy use). These emissions, stated in the components’

EPDs, are based on standardized usage values and are used here to

identify the major contributors to the building’s EIs. However, these
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emission values are not used in this thesis’ OE calculations. Indeed,

B6 emissions are calculated through an EnergyPlus simulation,

while B7 is outside the scope of this LCA.

With the identification of components for potential replacement,

alternatives were explored. The next three tables present alternative

options, starting with heating and DHW systems, which are closely

linked. The chosen systems will be evaluated together, as illustrated

in Table 4.4. This includes considering a shared air-water heat-

pump for both heating and DHW, in contrast to other options that

require separate systems.

All components and associated values listed in this section have

been taken from the INIES database of EPDs. The unitary values

and specific component names can be found in Appendix C.

Table 4.4: Heating and DHW production systems considered to improve the buildings’ environmental performance.

Specific information about the EPDs used can be found in Table C.1.

Heating System DHW System Unit Efficiency /
COP

Embodied GWP
(kgCO2-eq)

Joules Effect Radiator

(BAU)

Thermodynamic

Water Heater

1 unit producing up

to 1 kW of heat

1.00 / 3.5 826

Wood-pellet Boiler Thermodynamic

Water Heater

1 unit producing up

to 1 kW of heat

0.93 / 3.5 1645

Air-Water Heat-Pump Same Heat-

Pump

1 unit producing up

to 1 kW of heat

3.72 1940

Air-Air Heat Pump Thermodynamic

Water Heater

1 unit producing up

to 1 kW of heat

3.15/3.5 1923

For Controlled Mechanical Ventilation (CMV), the choice was

between maintaining the existing single-flow system or upgrading

to a more material-intensive double-flow system with heat recovery

is shown in Table 4.5. The latter system, while having a higher

embodied GWP, offers significant thermal energy recovery. The EE

costs are linked to the extensive air distribution system required

to extract and supply air in a double-flow arrangement. However,

the associated intervention that is required to install those ducts

has not been taken into account.

Table 4.5: Ventilation systems stud-

ied to improve the buildings’ envi-

ronmental performance. Specific in-

formation about the EPDs used can

be found in Table C.1.

Ventilation System Functional
Unit

Heat
recovery

Embodied GWP
(kgCO2-eq)

Single-flow CMV

(BAU)

1 unit No 792

Double-flow CMV +

PVC ducts

1 unit 85% 4450

Lastly, the case study considers replacements for glazed surfaces.
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Initially equipped with double-glazed PVC windows, various alter-

native options with different thermal performances and materials

were identified, as listed in Table 4.6.

Table 4.6: Glazing alternatives studied to improve the buildings’ environmental performance. In this table, in addition to

the glazing type, frame material and embodied GWP, are the U-value and the Solar Heat Gain Coefficient (SHGC) of each

design alternative. Specific information about the EPDs used can be found in Table C.2.

Glazing type Funcitonal Unit Frame
Material

U-value
(W/(m2.K) SHGC Embodied GWP

(kgCO2-eq/m2)

Double-glazed

(BAU)

1m2 of glazed

surface

Alu + PVC 1.2 0.8 128

Triple-glazed

1m2 of glazed

surface

Alu + PVC 1.0 0.5 170

Double-glazed

1m2 of glazed

surface

Wood 1.4 0.7 51

Triple-glazed

1m2 of glazed

surface

Wood 1.2 0.5 66

Double-glazed

1m2 of glazed

surface

Wood + Alu 1.1 0.7 195

Triple-glazed

1m2 of glazed

surface

Wood + Alu 0.8 0.5 368

This detailed examination of potential replacements paves the way

for pinpointing the optimal CMM for enhanced environmental per-

formance and adherence to carbon budgets. However, to complete

the picture, it is essential to consider renovations as well.

(b) Renovations

For renovations, two key measures frequently examined in the

literature are identified: enhancing the building’s thermal insula-

tion and incorporating renewable energy generation, particularly

photovoltaic (PV) panels. The former aims to reduce heating en-

ergy requirements, while the latter decreases the average electricity

Carbon Intensity (CI). In addition, we also study the installation of

a scheduler for the heating system.

Following the approach used for replacements, the renovation

alternatives will also be presented in tabular format. The first table,

Table 4.7, includes all a combination of materials and thicknesses

for external insulation. For each combination, the table lists the

thickness and embodied GWP per square meter of installation.

This approach ensures a comprehensive overview of the insulation

options, allowing for an informed decision on the most effective

and sustainable choice. The environmental cost of the intervention

and wall coverings for the new external insulation is not taken into

account.
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The exploration of PV systems and schedulers as part of the

renovation measures adds another layer to the building’s potential

for energy efficiency and carbon mitigation.

Table 4.7: Insulation materials and thicknesses alternatives studied to improve the buildings’ environmental performance.

Specific information about the EPDs used can be found in Table C.3.

Material Embodied
GWP [𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2]

PU Cotton
Wool

Glass
Wool

Wood
Fibre

Compressed
Straw
Panel

Wood
Straw

𝜆 (W/m.K) 0.026 0.038 0.035 0.036 0.039 0.052

Thinnest

BAU

(10cm)

6 cm |

-0.30

14 cm |

3.2

4 cm |

-0.13

10 cm |

0.22

10 cm | -11

Thin

5.4 cm |

14

8 cm |

-0.39

16 cm |

3.8

8 cm |

-0.48

20 cm |

0.44

20 cm | -17

Thick 10 cm | 17

10 cm |

-0.45

20 cm |

5.2

10 cm |

-0.84

30 cm |

0.66

30 cm | -24

Thickest

14 cm |

20

16 cm |

-0.78

22 cm |

6.4

20 cm |

-2.6

40 cm |

0.88

40 cm | -30

For the PV system, an EPD detailing the EI of a square meter of

roof-mounted PV panels was identified. This includes not just the

panels themselves but also associated components like converters,

cables, connectors, and mounting systems. The inclusion of these

components provides a comprehensive view of the PV system’s

environmental footprint.

As for the OE of the renewable energy production, the energy that

is produced and consumed locally has no net impact on GWP.

However, for excess energy exported to the grid, a symmetrical

value was assumed, where exported energy assumes the grid’s

negative CI at that given time. This is a simple, but often criticized

method [126].

In contrast, Walker et al. recommended the pro-rata method [201],

where the EEs of the PV panels are allocated to the building’s LCA

in proportion to the self-consumption rate [209].

However, in this thesis’ dynamic OEs calculations, energy demand

as well as PV production and electricity CI vary not only hourly,

but also at an yearly time-steps. This renders the calculation of

dynamic self-consumption rate another methodological hurdle to

be investigated. Since this additional complexity lies outside the

scope of the thesis, the more simplistic approach was chosen.

Additionally, the production location of PV panels significantly

affects their EE. For instance, the Voltec panels considered here

involve a complex supply chain: silicon is sourced from Norway,

upgraded in Germany, then returned to Norway for monocrystal
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formation, and finally processed into cells in Taiwan. Each step’s

energy mix and transport impacts the panels’ EE.

Alongside the PV system, the potential benefits of installing a

scheduler are also considered. This tool can facilitate more effective

management by occupants during unoccupied hours of the heating

system, allowing for a reduction in the heating setpoint by 4°C.

Without a scheduler, it is assumed that the temperature setpoint

remains constant, potentially leading to unnecessary energy usage

and increased emissions.

Given their interrelated benefits and impacts, the PV system and

scheduler options are combined in Table 4.8.

Table 4.8: Information on the PV panel and scheduler installation as renovation measures. Specific information about the

EPDs used can be found in Table C.4.

Added
Component Functional Unit Service Life Embodied GWP

[𝑘𝑔𝐶𝑂2 − 𝑒𝑞]

PV system 1 m2 of PV installation and associated converter

and mounting system

30 years 137

Scheduler 1 wall-mounted scheduler to control a zone’s set-

point temperature

10 years 134

The scheduling of the identified CMMs is a critical aspect of the

DM process, especially for renovations. As outlined in Equation

4.3, the timeline for implementing these measures in the case-study

extends from the 5
𝑡ℎ

year of the building’s life cycle up to the 49
𝑡ℎ

year, just before its EOL.

𝑦𝑟𝑒𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 = [5, 50[ , 𝑦 ∈ ℤ (4.3)

This Equation 4.3 sets the framework within which renovations can

be undertaken. A crucial assumption here is that any renovations

implemented will influence the timing of subsequent replacements.

For example, if a PV system is installed in the building’s 5
𝑡ℎ

year, the life cycle of this addition will be factored into future

replacement schedules. In this instance, the PV system would be

due for replacement after 30 years, in the building’s 35
𝑡ℎ

year.

This past Sub-Chapter 4.2.1.2, detailed then, the EE calculations for

the DM. However, OE calculations are the most time-consuming

step in DLCA and thus, in the following section, a technique to

solve this issue will be explored.

4.2.1.3 Surrogate Model for Decision-Making

In the Chapter 3 application of DLCA, the advantages of using

a Surrogate Model (SM) in building energy simulations were
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demonstrated and thus, this tool’s use is extended to this chapter

on DM support as well. These statistical models are used differently

in the field, as noted in Chapter 2, however here, its purpose is to

accelerate simulation times so that the statistical and optimization

results are obtained in a matter of minutes rather than days.

(a) Modelling Inputs

To enhance the complexity of modelling various design alterna-

tives, this thesis incorporates DPs identified in preceding chapters.

A new model is proposed, expanding the number of input pa-

rameters beyond those initially listed in Table 3.11. Concurrently,

the refinement process in Chapter 3 has led to the exclusion of

certain parameters, ensuring that only the most pertinent DPs are

integrated into the DM process. The selected input variables and

their training intervals are detailed in Table 4.9, distinguishing DPs

from inputs specific to the DM process in the "Input Classification"

column.

Newly incorporated inputs include insulation design options. The

SM ideally considers two factors: insulation thickness and thermal

properties. To maintain thermal resistance comparability, markedly

different thicknesses were assigned to each material, as outlined

in Table 4.7. Modelling diverse material conductivities require

training across a broad thickness range, from 5 cm to 50 cm.

Therefore, the model would include 40 cm of EPS insulation, an

unrealistic amount. To avoid this impractical scenario, the model

is trained using varied thicknesses of a single insulation material:

EPS. Subsequent additions of other materials are converted to an

equivalent PU thickness for the same thermal conductivity.

For example, adding 16 cm of cotton fibre insulation to an existing

10 cm PU layer (10cm, thermal conductivity 0.03 W/(m.K)) involves

separate thermal resistance calculations for each layer, later com-

bined to determine the new resistance. This process, detailed in

Equation 4.4 through Equation 4.7, simplifies training by reducing

the parameter count and necessary sample size for achieving the

same coefficient of determination.

As a consequence of this methodological choice, it does not con-

sider the difference in the new material’s heat capacity. However,

considering this extra insulation is installed in the exterior of the

walls, this inertia would not play a big role in the building’s indoor

temperature.

𝑅𝑃𝑈 = 𝑙𝐵𝐴𝑈/𝜆𝑃𝑈 = 3.33𝑚2.𝐾/𝑊 (4.4)
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1: For more information:

salib.readthedocs.io/

𝑅𝐶𝑜𝑡𝑡𝑜𝑛𝐹𝑖𝑏𝑟𝑒 = 𝑙𝑎𝑑𝑑𝑒𝑑/𝜆𝐶𝑜𝑡𝑡𝑜𝑛𝐹𝑖𝑏𝑟𝑒 = 4.21𝑚2.𝐾/𝑊 (4.5)

𝑅𝑟𝑒𝑛𝑜𝑣𝑎𝑡𝑒𝑑 = 𝑅𝑃𝑈 + 𝑅𝐶𝑜𝑡𝑡𝑜𝑛𝐹𝑖𝑏𝑟𝑒 = 7.54𝑚2.𝐾/𝑊 (4.6)

𝑙𝐸𝑃𝑆𝑒 𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 𝑅𝑟𝑒𝑛𝑜𝑣𝑎𝑡𝑒𝑑 ∗ 𝜆𝑃𝑈 = 0.22𝑚 (4.7)

Meanwhile, glazing alternatives have 2 input parameters associated

with them: the glazing surface’s U-value and Solar Heat Gain

Coefficient (SHGC), since these two variables impact the thermal

performance of the building differently, through conduction and

radiation, respectively.

As for ventilation and scheduler modelling, both are boolean

decisions, as defined in the preceding sub-section. Finally, for PV

system modelling, the installation’s surface is varied from zero

to 32 m2. This upper value has been defined by analysing the

case-study and identifying the maximum roof surface facing the

southernmost orientation. This simplification assumption is the

optimization of the panel’s orientations and positions to maximize

self-sufficiency rates is not the objective of this work.

(b) Model Sampling and Training

Having defined the inputs, we can now initiate the sampling pro-

cess. The "Parameter Type" column in Table 4.9 indicates whether

a parameter’s intervals are continuous (ℝ) or integers (ℤ). This

distinction is crucial during sampling, particularly for variables

like ventilation, which are boolean; in such cases, floating points

between 0 and 1 are not applicable.

From this point forward then, the choices in tools for this work

will be important due to the mixed-integer nature of the problem.

For this reason, Surrogate Modelling Toolbox was chosen for this

important methodological step. SAlib
1

Python library bases on

the work by Saves et al. [210], where the authors propose a new

kernel-based Gussian Process approach to handling mixed-integer

problems, denoted Exponential Homoscedastic Hypersphere.

Associated to a Latin Hypercube Sampling (LHS) also capable of

handling mixed-integer sampling, the resulting model achieved an

Coefficient of Determination (R2) and relative Root Mean Square

Error (RMSE) of 0.992 and 8.06%, respectively, with 1000 training

samples.

https://salib.readthedocs.io/en/latest/index.html
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Table 4.9: List of the training inputs and intervals for the second SM of this thesis, which excludes some half of the DPs,

but includes the different design alternatives. The purpose of each parameter is differentiated in the column "Input

Classification", where DP represents parameters used in the DLCA calculation and DM represents the different design

choices simulated.

Input Clas-

sification

Paramater Name Model Variable

Parameter

Type

Training

Interval

Unit

DP Electricity Mix Evolu-

tion

Average Carbon In-

tensity

ℝ [17.9, 78.3] 𝑔𝐶𝑂2/𝑘𝑊ℎ

DP Heating Setpoint Heating Tempera-

ture Setpoint

ℝ [18, 22] °C

DP Presence Hours Average number of

hours daily with oc-

cupancy

ℝ [13, 20] hours

DP Occupant Density Number of occu-

pants

ℝ [2, 8] person

DP Global Warming Modified Weather

File

ℤ
RCP 2.6, 4.5

and 8.5

-

DM Heat+DHW Replace-

ment

Efficiency/COP &

CI

ℤ [0, 3] -

DM Ventilation Sys. Re-

placement

Heat Recovery Boolean (0, 1) W/(m2.K)

DM Glazing Replacement U-Value ℝ [0.5, 0.8] -

DM Glazing Replacement SHGC ℝ [0, 5] -

DM Insulation Renovation Thickness ℝ [10, 50] cm

DM PV Renovation PV panel surface ℤ [0, 32] m2

DM scheduler Renovation Unoccupied Heat-

ing Setpoint

Boolean (0, 1) -

This sample is not to be confused with the sample used directly in

the DM process. Here, the LHS is used strictly to create the sample

for the SM training.

4.3 Results of Case-study Application Under
Different Scenarios

In this section, the results of applying the methodology to the upper-

edge case scenario will be presented and thoroughly discussed.

The other scenarios have also been simulated and their results have

been included in Appendix D.
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4.3.1 Upper-Edge Scenario

4.3.1.1 Statistical Evaluation Results

For a representative overview of the solution space, statistical

methods are an appropriate exploration tool. The Monte-Carlo

Saltelli method was chosen for this application, similar to Chapter

3, with 13,000 samples to create a representative array of the

solution space. Given the presence of 12 CMMs, there are more

than 1,000 samples per DM parameter. With the sampling method

established, the first graphical representation to be explored in this

results section is a PCP.

Parallel coordinates, effective in representing multi-dimensional

data [211], allow for the visualization of complex datasets across

various fields [212]. This method displays data as polylines intersect-

ing parallel axes, enabling the assessment of multiple parameters

simultaneously [114]. Interactive features like brushing facilitate

data filtering, crucial in building design.

In Figure 4.2 then, the 12 CMMs are drawn along the horizontal

space in addition to OE, EE and overall emissions. Each vertical

line has all values that a given parameter can assume, both for

continuous values, such as the resulting emissions, and for discrete

values, such as the choice of insulation material.

To test the interactivity aspect of PCP, the CBs have been applied

to OE and EE in Figure 4.3, represented by the pink intervals.

Accordingly, thousands of lines that were visible before, have been

greyed out, leaving only a couple of combinations of parameters

left.

Further analysis indicates that some measures are no longer feasible

options, starting with the heating system. In the first vertical line,

no solution is available neither with wood pellet boiler nor with

electrical radiators. Additionally, it seems that this replacement

of this component needs to be made before year 11, or in 6 years.

There is, of course, the possibility that a solution is possible by

replacing the heating at year 13 or after, since this PCP was not

built by exhaustively simulating all possible combinations.



106 4 Integrating Dynamic LCA into Retrofit Decision-Making Methods

Figure 4.2: This PCP includes over 13k simulations under the Upper-Edge scenario, allowing the decision-makers to find

solutions that follow their own constraints.
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Figure 4.3: This PCP includes over 13k simulations under the Upper-Edge scenario with the carbon budgets appearing as

filters.
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Indeed, a random sample of the parameters was used. But given

the significant number of simulations realized, this graphical rep-

resentation gives the ability for the decision-maker to explore the

parameters and find combinations that answer to other limitations,

that an optimization might not consider. An example of a constraint

that is not taken into account in this thesis is cost or architectural

limits, such as wall thickness. For instance, the optimization always

recommended the installation of 40 cm of wood straw which could,

for instance, present architectural challenges. In a PCP though, the

decision-maker can filter out solutions that rely on such practice,

according to their needs and constraints.

To make more conclusions on this dataset, Figure 4.4 was built.

In it, the reader will find the frequency each design choice ap-

pears among all 42 carbon-compliant solutions, of the 13k simu-

lations initially executed. This analysis provides a more holistic

understanding of which measures most often contribute towards

budgetary compliance.

When analyzing these results, the same conclusion on the heating

system can be made as before: heat-pump should be installed before

year 11. Although now, the decision-maker doesn’t know which

combination of parameters corresponds to a budget-compliant

result, unlike with the PCP. Indeed, there is no indication as to

which heat-pump is to be installed if the decision to wait 6 more

years before is preferred.

In the CMV, some preference is observed towards the simple flow

solution to be replaced at year 10, whereas the triple-glazed win-

dows are preferred. Amongst the renovation CMMs, a preference

for larger PV surface is also seen from years 5 to 11, while having a

scheduler is slightly preferred over not having one at all.

The most surprising of the results in Figure 4.4 however, is the

glass wool insulation material that is much more likely to satisfy

the budgets than others, despite having neither the highest thermal

resistivity nor the lowest embodied GWP. The reason behind this

is the good balance between these two performances, which results

in good, if unexceptional, OE and EE. To that point, PU has even

better thermal performance, but clearly, its embodied cost does not

compensate the energy savings, unlike for glass wool.

In this context, it is also important to note that the EOL process

plays a critical role in these assessments. For materials like wood

fibre and other bio-based materials, incineration or landfill might be

considered standard practices. However, for these materials, their

performance could be significantly influenced by the EOL scenario.

Incineration of bio-based materials can lead to high emissions,

which impacts their overall impact unfavorably. If recycling or

long-term storage is considered instead, the environmental impact
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could be reduced, suggesting a potential improvement area for

future decision-making strategies.

Then, it is evident that Figure 4.4 allowed new insights to be drawn,

but this graphical form is not explanatory. In fact, it is clear that

this graphic only supplements and facilitates conclusions to be

made on the results given in Figure 4.2.

Figure 4.4: Solution frequency of budget compliant solutions under Upper-Edge scenario.

The sampling method chosen for this quasi-random evaluation

was inspired. Indeed, by using a Saltelli sampling, we are now

able to calculate the Sobol indices with the same sample. This

Sobol application then, will indicate which CMMs have the most

influence in the resulting overall GWP. But before presenting

the results, it is important to highlight that the CMMs related to

scheduling are defined by Equation 4.1 and Equation 4.2
2

2: For both renovations then, PV

and insulation installations, the

boundaries for their scheduling is

defined between years [5, 50[.

.
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Consequently, as shown in Figure 4.5, the PV addition year was

found to be the most influential parameter in the variance found in

the resulting overall GWP. The reason for this is the large influence

is the wide range of values considered. In an optimization, the

algorithm should avoid renovations too close to the building’s

EOL, but in a quasi-random evaluation with uniform probability

through the entire range, some of the simulations will be run with

PV installations happening at year 49. Thus, the Sobol index of

this CMM has been inflated.

Figure 4.5: Sobol indices of CMMs

under Upper-Edge Scenario.

Second to that is the heating system replacement is considered

almost as influential as the PV addition year, with the surface of

the PV installation being a far third place in terms of influence in

overall GWP variance. Heating replacement scheduling, insulation

material choice and insulation addition year round up the top

half of influential parameters. The impact of all remaining CMMs

is somewhat negligible, but as shown in Table 4.10, glazing- and

scheduler-related choices can still represent the difference between

carbon budget compliance and over-expenditure.
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These results shown in the form of the Sobol indices highlight

to the decision-makers, which CMMs should be prioritized and

require more attention.

Statistical methods then, are useful for interactive DM and pri-

oritizing CMMs with PCP and Sobol SA, respectively. However,

the sampling required is an inefficient way to explore the solution

space, unlike optimizations. For this reason, the next sub-chapter

will present results from an optimization application.

4.3.1.2 Optimization Results

To start, the optimization’s results will be shown in a Pareto plot.

Each point then, represents what will be referred to as a "Solution

Set": a combination of CMMs that result in the pair of values plotted

on the Cartesian plane. Here, the trade-off between objectives can

be identified through the Pareto front: the set of solutions that best

minimize the optimization functions.

Since the objective of this optimization workflow is to ensure CB

compliance, the RE2020 budgets have been added to the plot as

dotted horizontal and vertical lines. To better compare the results

with the budgets, the GWP values have been normalized to the

m2 of habitable indoor area. In addition, a colour scale was added

based on the sum of both values, also known as the overall GWP.

For the first scenario then, the Pareto plot is shown in Figure 4.6.

Here, both vertical and horizontal axis have been defined between

0 and 800 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
, to give a holistic perspective of where

the solutions are with respect to the budgets. Based on the fact

that the solutions are agglomerated in the bottom right corner

demonstrates that OEs and EEs operate at 2 very different scales.

To reflect this, a closer plot is shown to the right of Figure 4.6.

Another immediate observation from this plot is that, in this lower-

edge case scenario, compared to the budgets, a number of viable

solutions exist. Indeed, every solution simulated has a lower EE

than the current budget of 610 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
and in fact, the

BAU case follows even the 2025 embodied budget. Indeed, the

future embodied budgets have been added to demonstrate the

decarbonization pathway set by the RE2020 over the next decade.

The operational budget of 150 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
is another story

though, with the BAU case exceeding the budget by 40%.

Despite this, the CMMs prove to be enough to curb the operational

emissions trajectory, while keeping the embodied budget within

bounds.

On the Pareto front, highlighted with the red contour, 3 clusters

of solutions have been identified with dark red rings and named
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from A to C. These clusters can be largely differentiated by the

following characteristics:

A. This first cluster involves keeping the heating system as is,

the electrical radiators. These are the solutions with the

lowest EE, since this is the lowest embodied GWP heating

system considered, but these are the least efficient options,

as the high OEs suggest. The variation within this cluster

exists from measures such as adding heat recovery to the

ventilation and PV panels.

B. Cluster B consists of replacing the BAU heating system with

the most efficient option investigated: the air-water heat

pump, despite it being the most emissive in terms of EE. The

variation within this cluster originates from the scheduling

of this replacement. The earlier the radiators are replaced,

the lower the life cycle OEs will be. Conversely, delaying this

intervention reduces the EOL of the current system and the

embodied GWP of the new component. This reduction stems

from the DPs included in this analysis. Both clusters B and

C include PV installations, with variations primarily due to

the PV surface area.

C. Cluster C also involves replacing the heating system with the

air-water heat pump. However, all solutions in this cluster

advocate for transitioning to the heat pump as early as

possible, specifically by year 5. The variation within this

cluster is also is linked to the size of the PV system. The

greater the PV surface, the higher the EEs and the lower the

OEs. Both clusters B and C include PV installations, with

most variation due to the PV surface area.

Figure 4.6: Pareto plot of the optimization solution found in the Upper-Edge case-study. The points with a red contour

represent the Pareto front and the one with a green contour is the BAU case. To the right are the same points at a different

scale.
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From Figure 4.6, it is also clear that there’s more flexibility in terms

of OE than EE, as the interval of possible values in the Pareto front

for the former is 120 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
and only 53 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

for the latter.

This is explained by the fact that only five years have passed since

construction, meaning only 22% of the operational budget has

been used. Therefore, plenty of solutions exist that help align

the operational carbon trajectory with the blue horizontal line,

despite the OE of the BAU being more than 80 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

over budget.

Another factor relates to the selected case study, which, while

not particularly energy-efficient, has a low life-cycle embodied

GWP. If a net-zero energy building were considered instead, the

main challenge would likely shift to meeting the embodied budget.

In essence, the starting point threshold compliance will highly

depend on the building characteristics.

Meanwhile, for EE, by the same year, 55 % of the embodied budget

(green vertical line) has already been depleted, since construction

represents the largest share of embodied GWP. This suggests the

importance of ensuring first and foremost the EE’s compliance to

the embodied budget, as fewer CMMs will be available to correct

an eventual deviation in its trajectory.

Of the 50 solutions found in the Pareto Front, 3 can have been

highlighted in Table 4.10. The solutions that minimize: (1) overall

GWP; (2) OE and (3) EE. As a reminder, replacement year measures

are indexed to the building’s age. Therefore, if a value reads 5,

this represents that at year 5 (the current age of the case-study,

as-soon-as possible), the intervention should be made.

When comparing the optimal EE solution with the BAU, it is clear

that the 2 solutions are not far from each other, with the MOO

recommending only the installation of thickest wood-straw insula-

tion as-soon-as possible. The minimal overall solution however, is

closer to the minimal OE solution, indicating how CMM are, in

general, worth the investments, aside from PV surface, which is

the only difference between these two solutions.

To compare how the recommended CMMs affect emissions over

time, a plot of cumulative emissions was built to show carbon

emissions trajectories. In this fan plot, emissions between years 0

and 4 are the same for all solutions, as those emissions are assumed

to have already occurred. It is only after year 5 that the CMMs can

start taking effect. In Figure 4.7, the four scenarios described in

Table 4.10 are included. The first thing to notice in this figure is

that the minimal overall solution is very similar to the minimal

operational solution, as the green and yellow curves almost overlap.
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Table 4.10: This table includes 3 sets of solutions found in the Pareto front under Upper-Edge Case scenario and identifies

all CMMs to achieve the resulting GWP displayed.

CMM Best Overall
Solution

Minimal OE
Solution

Minimal EE
Solution BAU

1 2 3

Heat recovery CMV

Simple flow

Ventilation

Simple flow

Ventilation

Simple flow

Ventilation

Simple flow

Ventilation

CMV replacement year 17 17 17 17

Glazing type

Triple Glaz

Wood

Triple Glaz PVC

Double Glaz

Wood

Double Glaz

PVC

Glazing replacement year 16 14 30 30

Insulation material Wood Straw Wood Straw Wood Straw EPS

Insulation thickness Thickest Thickest Thickest Thinnest

Insulation addition year 5 5 7 5

Heating system Air-water HP Air-water HP Electric rad Electric rad

Heating replacement year 5 5 17 17

PV surface [m2] 19.2 32.0 0.0 0.0

PV addition year 5 5 - -

Scheduler Scheduler Scheduler No scheduler No scheduler

Operational GWP 128.62 116 224.54 250.44

Embodied GWP 576.10 589.81 536.18 545.76

Overall GWP 704.71 706.21 760.72 796.20

The only difference between them is the replacement year of the

windows and the ventilation system.

However, as useful as the illustration of the carbon trajectories is,

only 4 solutions were visible at a time. Including more solutions

makes the figure very hard to read. Therefore, to better understand

the solutions proposed by the Pareto front as a whole, the next

graphical interpretation will be extremely useful.

To identify the patterns within the Pareto front, another analysis

was made: a frequency analysis for each measure. Figure 4.8 then,

shows how often each parameter is selected for the 12 CMMs

studied.

For some CMMs, the benefits of realizing a given action are so

beneficial, that all Pareto solutions include said action. In the case

of ventilation, for instance, the optimizer never found the extra

investments in EE for a double-flow system never compensated

the heating energy savings that it causes. However, upon further

analysis of the energy balance, these energy savings in heating

performance does not compensate even the energy used to run
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the additional fans of the double-flow installation. This result is a

testament of how important the appropriate sizing of this type of

ventilation system is, which was clearly not well executed enough

in this case-study application.

Figure 4.7: This fan plot shows the

cumulative OE, on top, and EE, un-

derneath. The different lines repre-

sent the different trajectories future

emissions could take, depending on

which set of CMM, as identified by

the different colours.

In the meantime, for insulation, 100% of the solutions included the

addition of carbon-absorbing wood-straw as soon as possible, at

year 5. This is simply explained by the fact that this measure reduces

both OE and EE by improving thermal resistance and storing carbon

in the envelope, respectively. This raises the question of whether to

include this material in a MOO, but it is worth emphasizing how

beneficial and useful these materials are for CB compliance. In fact,
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the use of bio-based materials is the only way to correct towards

compliance.

Figure 4.8: Frequency of solutions for each variable in the Pareto front under Upper-Edge scenario.

For other parameters, it is more difficult to see patterns, where a

more even distribution exists, such as for glazing type. For instance,

in close to 80% of solutions, wood framing was preferred, again

highlighting the use of bio-based materials, however, in some other

20%, PVC frames are more beneficial, as they have better thermal

performance. Concerning the scheduling aspect of this component,

no replacement is ever recommended before year 20 and 40% of

them take place at the current window’s EOL, at year 30.

Heating systems seem to come down to only two choices: elec-

trical radiators and air-water heat-pump. Although it might be
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surprising to see a system as inefficient as electrical radiators in this

Pareto front, it is important to highlight that these are extremely

inexpensive solutions in terms of EEs, since no distribution system

is required, except for the electrical installation. Additionally, elec-

tricity in France is relatively low-carbon and its CI is comparable to

wood pellets. The scheduling of the replacement seems to be arbi-

trary, but in fact, it largely depends on the heating system of choice

and the priority given to each objective by the decision-maker.

When considering local renewable energy production, around 35%

of solutions find it unnecessary, however, when it is installed, this

action should be realized as soon as possible, by year 6. In fact, the

addition of PV panels can still reduce OE, as shown in cluster C of

Figure 4.6.

4.4 Comparing and Discussing Scenario-Based
Results

To start this section then, a rundown on the results will be made, so

that results can be compared more directly between the different

scenarios, whose results have been listed in Appendix D.

4.4.1 Comparing the Impact on GWP Values

It is unquestionable, from Chapter 4.3, that in terms of raw GWP

results, the different dynamic scenarios produced extremely differ-

ent values. To drive this point home then, Table 4.11 compares the

results of BAU under the 4 scenarios. Additionally, we can observe

how the different scenarios affect OE and EE differently.

First, it is worth highlighting quantitatively that the lowest overall

GWP in Table 4.11 is upwards of 39% lower than the highest

value. This interval that ranges from 629 to 1030 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2

demonstrates the importance of further evolving and improving

the DLCA methodology for more accurate EI assessment, which

will, subsequently, strengthen the process of ensuring carbon

budget compliance.

Visibly, the RE2020 scenario is the closest to the static values, with

an overall GWP around 20% lower. Additionally, since the weight-

ing factor impacts the operational and embodied GWP equally,

their relative reductions are close at 21% and 19%, respectively.

However, it is important to note that RE2020 is closer to the upper

edge of the range than any other scenario.

In contrast, under the Lower-Edge case, the different DPs affect

OE and EE very disproportionately. The former is reduced by 58%
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Table 4.11: Comparison of GWP metrics across different scenarios in the ’Business-as-usual’ solution, including percentage

reductions relative to the Static scenario. The reduction columns are the reference to the static values in the last row.

Scenario OE EE Overall

Value

(𝑘𝑔𝐶𝑂2 −
𝑒𝑞/𝑚2

)

Reduction

(%)

Value

(𝑘𝑔𝐶𝑂2 −
𝑒𝑞/𝑚2

)

Reduction

(%)

Value

(𝑘𝑔𝐶𝑂2 −
𝑒𝑞/𝑚2

)

Reduction

(%)

Upper-Edge 250.44 -23.9 545.76 -22.1 796.20 -22.7

Lower-Edge 138.54 -57.9 490.27 -30.1 628.81 -38.9

RE2020 260.58 -20.9 568.99 -18.8 829.57 -19.5

Static 329.31 - 700.82 - 1030.13 -

relative to the equivalent static value, while the latter is reduced by

30%. Of course, this is highly dependent on how the different DPs

are modelled and on their contexts. In this scenario’s case then,

the improvements to the electricity CI seem to be very effective.

The Upper-Edge case’s overall GWP is close to the RE2020 results,

being 23% lower than the static value, as shown in Figure 4.9.

Figure 4.9: Resulting GWP of BAU

under different scenarios. The per-

centage values in red are the reduc-

tion in overall GWP from the static

scenario.

It is worth highlighting again that these results are particular to

this case-study. The results are not only affected by the modelling

of the DPs, but also by its technical characteristics, such as the

electrical radiator heating system, which will be more sensitive to

the electricity mix evolution. Meanwhile, bio-based materials will

benefit most from improvements in the waste sector.

With this caveat established, it is still pertinent to question the im-

pact that the different approaches have on building carbon budget

compliance and DM. Indeed, the LCA method chosen and the DP
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models established can make the difference between no interven-

tions being needed to major renovations being imperative.

4.4.2 Comparing the Impact on Decision-Making

It is still unclear, however, if and how these different scenarios

impact the DM. Thus, this sub-section is dedicated to comparing

the solutions provided under the 4 scenarios and discourse on the

differences and similarities.

The first comparison to be made is between static and RE2020

results and here, the differences are hard to notice, as the optimiza-

tion yielded very similar Pareto solutions. One big particularity

of the static approach, when compared to all other dynamic ones,

relates to the scheduling-related CMMs. Again, since no change

is accounted for in the EEs, as long as the measure improves

energy efficiency, the optimizer will simply suggest performing

said measure as early as possible, since there is no benefit to wait-

ing to realize said intervention. However, in all other dynamic

approaches, there are increasing benefits to waiting for the current

component’s EOL before it is replaced, either in the form of the

weighting factor or in the DPs linked to industry and waste sector

evolution.

At the same time though, OEs also evolve through time in DLCA,

making the energy savings less valuable with each year that passes,

since the electricity sector will never be more carbon intensive than

it is today. This makes the DM process all the more interesting and

unpredictable.

Aside from this difference however, the other CMMs saw little

change, which is somewhat disappointing, as one of the objectives

of the RE2020’s weighting factor was to incentivize the use of bio-

based materials. These were recommended in the RE2020’s Pareto

front, but so it was in the static’s. The similarities in optimization

solutions can be explained by the fact that OE and EE are equally

impacted by the weighting factor.

The solutions for the Upper-Edge scenario were also very simi-

lar to the ones above, especially the RE2020’s, also because the

ratio between operational and embodied GWP was similar to the

aforementioned ones.

Finally, the Lower-Edge case had the most distinguished results,

correlating to the balance between OE and EE being most affected

under this scenario. Under these assumptions, the optimizer deems

the EE for PV installation not worth the reduction in grid electricity

needs, unlike all other scenarios. For example, under the Lower-

Edge case scenario, a building with no local renewable energy
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production and an electric radiator heating system results in a 15%

lower overall GWP compared to a building equipped with 32 m2

of PV panels and an air-water heat pump under the Upper-Edge

case scenario.

When putting the carbon budget into perspective, the difference

in raw values make a big difference. It is a much simpler task to

curb the emission trajectories of the RE2020 approach than the

static, of course. This poses the question if DLCAs in the context

of carbon budgets are simply a way to make buildings more easily

compatible with them.

Figure 4.10: Waterfall plot of step-

by-step CMMs applied to the case-

study under the Upper-Edge case:

(1) replacement of heating system,

(2) addition of PV panels and (3)

anticipating the replacement of the

heating system by 12 years.
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CMM Lower-Edge
Case

Upper-Edge
Case

Heat recovery CMV

Simple flow

Ventilation

Simple flow

Ventilation

CMV replacement year 17 17

Glazing type

Double Glaz

PVC

Double Glaz

PVC

Glazing replacement year 30 30

Insulation material PU PU

Insulation thickness Thinnest Thinnest

Insulation addition year - -

Heating system Electric rad Air-water HP

Heating replacement year 17 5

PV surface [m2] 0.0 32.0

PV addition year - 5

Scheduler Yes Yes

Operational GWP 138.54 146.67

Embodied GWP 490.27 595.51

Overall GWP 628.81 742.18

Table 4.12: This table includes 2

sets of solutions: in lower-edge and

upper-edge scenarios. These solu-

tions represent the minimal number

of CMMs for ensuring carbon bud-

get compliance.

To highlight how different a budget-compliant building looks like

under different dynamic scenarios, Table 4.12 was built. It shows

two solutions, one in lower-edge and the other under upper-edge

case. To find these solutions, a step-wise approach was applied

following the order of CMM shown in Figure 4.5. By applying

one CMM at a time and verifying carbon budget compliance, the

number of interventions is minimized, since the most impactful

measures are being prioritized.

For the Upper-Edge case, a couple of measures had to be introduced,

as shown in the waterfall plot in Figure 4.10, where steps 1 through

3 represent the following:

1. Replacement of heating system (electrical radiators) for an

air-water heat-pump.

2. Addition of 32 𝑚2
of PV panels at year 5.

3. Anticipating replacement of heating system by 12 year: from

year 17 to year 5.

These 3 measures represent the minimum amount of interven-

tion under this dynamic scenario that ensured carbon-budget

compliance, whereas under the lower-edge scenario, the BAU solu-

tion already complies with budgetary constraint, making this, the

lowest-effort solution possible.
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Under the lower-edge case scenario, a building with no local

renewable energy production and an electric radiator heating

system results in a 15% lower overall GWP compared to a building

equipped with 32 m2 of PV panels and an air-water heat pump

under the upper-edge case scenario.

To evaluate the viability of following the French regulation’s carbon

thresholds under the different scenarios, Table 4.13 compares

the number of budget-compliant solutions in the quasi-random

evaluation out of the 13,312 samples. The number of solutions

from Lower-Edge case to Upper-Edge case reduces from 8124 to

only 42 solutions, showcasing how distinct these two scenarios are.

The reduced number of solutions suggests that carbon compliance

requires a more specific set of CMMs.

Table 4.13: Comparison of GWP met-

rics across different scenarios in the

’Business-as-usual’ solution, includ-

ing percentage reductions relative

to the Static scenario. The reduction

columns are the referenced static val-

ues in the last row.

Scenario
Number of

Carbon-Compliant

Solutions

Percentage of

Carbon-Compliant

Solutions (%)

Upper-Edge 42 0.32

Lower-Edge 8124 61.03

RE2020 110 0.83

Static 0 0

4.5 Conclusions

This Chapter has explored the integration of Dynamic Life Cycle

Assessment into retrofit Decision-Making processes, a crucial step

towards carbon budget-compliant buildings. The research has

been anchored in the understanding that buildings, due to their

long lifespans, are subject to a myriad of uncertainties that can

significantly impact their environmental performance. The devel-

opment and application of a comprehensive DM methodology that

incorporates Dynamic Parameters offer a robust and future-proof

approach to building retrofits, ensuring long-term environmental

sustainability.

The methodology proposes a distinction between renovations and

replacement, the former being the addition of building compo-

nents while the latter is the substitution of existing ones. This

differentiation is crucial towards creating a workflow that consid-

ers the current context of the building at post-occupancy stages

and institutes the prerequisite for the iterative and continuous

GHG budget compliance.

Moreover, this study extends beyond just identifying replacement

and renovation measures. It delves into the timing of these interven-

tions, using dynamic parameters to determine the most appropriate
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schedules for implementation. This aspect of the research is par-

ticularly innovative, as it integrates temporal considerations into

the decision-making process, a crucial element given the evolving

nature of building performance and environmental impact over

time.

Upon determining a case-study, its specific renovation and re-

placement measures were identified, based on which components

have the most potential impact in life cycle Global Warming Po-

tential. To assist Decision-Making in building design, statistical

and optimization methods were found to be ideal. However, these

are computationally expensive and so the Dynamic Life Cycle

Assessment simplification techniques explored in Chapter 3 were

brought over into this chapter. Indeed, reducing the number of

Dynamic Parameters and the training of Surrogate Model were

crucial steps towards building an easy to use methodology.

Through a scenario-based integration of long-term dynamic un-

certainties, two scenarios were built: an upper-edge case and a

lower-edge case. With the case-study application, drastically differ-

ent life cycle GWPs were obtained, ranging from 796 𝑘𝐶𝑂2−𝑒𝑞/𝑚2

to 629 𝑘𝐶𝑂2 − 𝑒𝑞/𝑚2
. This variation, driven by changes in the

Dynamic Parameters modelling assumptions, including electricity

mix evolution, industrial and waste sector decarbonization, etc.,

could represent the difference between remaining comfortably

within budget and irreparably surpassing it. Compared to the

static GWP, these results indicate an up to 39% reduction.

These differences in the resulting GWP will influence DM re-

garding CMM. In other words, two buildings that comply with

carbon standards may exhibit significantly different characteris-

tics depending on the dynamic scenario. For example, under a

lower-bound scenario, a building without local renewable energy

production and using an electric radiator heating system can still

achieve a 15% lower overall GWP compared to a building equipped

with 32 m2 of photovoltaic panels and an air-water heat pump

under the upper-bound scenario.

Importantly, this research also takes into account the French reg-

ulatory framework, particularly the RE2020, to ensure that the

proposed methodology is not only academically sound but also

somewhat coherent with current regulations. The proposed dy-

namic LCA approach was compared to the French regulation and

the resulting GWP appears to be somewhat close to the upper-

edge case scenario, only a 33 𝑘𝑔𝐶𝑂2 − 𝑒𝑞/𝑚2
difference in overall

GWP.

When it comes to the optimization results, very little difference

was observed between the CMMs that appeared in each scenario’s

Pareto fronts. The major difference was in where these solutions
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were located in the Cartesian plane, particularly relative to the

RE2020 life cycle GHG emissions. Indeed, a recommendation that

appears throughout is the use of bio-based insulation for carbon

storage and the replacement of the existing electrical radiators for

air-water heat-pumps as early as possible.

This chapter represents a step forward in the integration of dy-

namic LCA into building retrofit decision-making. It provides

a comprehensive framework that can guide decision-makers in

retrofitting buildings in a manner that follows pre-established

carbon budgets. As the building industry continues to grapple

with the challenges of climate change and its uncertainties, the

findings and methodologies presented in this research offer valu-

able insights and tools for advancing towards a more sustainable

future.
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5.1 Conclusions

In this thesis, strides in advancing methodologies for GHG emission

evaluation in the building sector were made, with a focus on low-

carbon building retrofit decision-making.

The state of the art of methods towards building GHG threshold
compliance

The journey began in Chapter 2, where an exploration of the state

of the art is carried out. It starts by emphasizing the importance

of carbon thresholds, towards limiting global warming to 1.5°C or

2°C targets. As buildings represent a significant portion of current

yearly global emissions, a major effort is necessary in the task of

rendering the sector net zero GHG emissions by 2050.

Within this context of climate emergency, Life Cycle Assessment

(LCA) appears as a key methodology for all products and services,

including buildings. Throughout the review presented in this

chapter, however, it becomes clear that buildings are particularly

difficult to calculate life cycle environmental impacts for, due to

their inherently long lifespans. Indeed, within the context of carbon

emission targets, long-term uncertainties can cause deviations from

predicted GHG emissions.

Dynamic Life Cycle Assessment (DLCA) is then identified as key

research area for GHG threshold-compliant buildings. Indeed, this

methodological framework takes into account long-term dynamics

of the building and its associated systems, such as the electricity

grid’s decarbonization or climate change. This methodology offers

a more detailed and comprehensive result, but it comes with

its challenges. Nonetheless, in Chapter 2, the inclusion of these

uncertainties is judged necessary.

But as comprehensive as DLCA is, it is not enough to simply assess

budgetary deviations. For this reason, Chapter 2 also investigates

post-occupancy Decision-Making (DM) methods as possible tools
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to correct carbon threshold over-expenditure. These methods in-

clude sensitivity analysis, uncertainty analysis, optimizations, and

visualization techniques often associated with building design

DM.

Exploring Dynamic Life Cycle Assessment Simplification Strate-
gies

Building on these conclusions, Chapter 3 presents an examination

of the DLCA as an essential methodology for enhancing accu-

racy in ensuring building carbon threshold compliance. It details

strategies aimed at simplifying DLCA through two primary means:

reducing simulation times and the number of Dynamic Parameters

(DP)s. The DLCA workflow incorporates the French Environmental

Product Declaration (EPD) database INIES for Embodied Emission

(EE) calculation and EnergyPlus for Operational Emissions (OE)

calculations over a 50-year operational period, revealing that 99%

of simulation time was dedicated to OE, which represents only

25% of the total Global Warming Potential (GWP).

To address the challenge of lengthy simulation times, the chapter

explores two solutions: linear interpolation between different time

steps and a Surrogate Model (SM) for OE calculations. Linear

interpolation with a modest setup capable of 6 parallel simulations

reduced simulation times by 90% with a minor accuracy compro-

mise while SM drastically cut down simulation time to less than a

second for both operational and embodied GWP calculations. This

efficiency was achieved with only 500 simulations, which took 52

minutes to simulate.

To address the challenge of lengthy simulation times, the chapter

explores two solutions: linear interpolation between different time

steps and a Surrogate Model (SM) for OE calculations. Linear

interpolation with modest computing power capable of 6 paral-

lel simulations reduced simulation times by 90% with a minor

accuracy compromise. Meanwhile the SM drastically cut down

simulation times by 98% to less than a second.

Furthermore, the chapter discusses the refinement of DP mod-

elling through an analysis aimed at identifying the most impactful

parameters for dynamic GWP. By focusing on the parameters with

the greatest impact, 47% of the DPs were responsible for 87% of the

variance in dynamic life cycle GWP. Thus, a strategic selection of

DPs can significantly simplify the modelling process by focusing

only on the most impactful DPs, which, in the case-study were:

occupant behaviour and decarbonization of industry, waste and

electricity sectors.
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With these advancements, DLCA’s integration into the DM process

is significantly facilitated, setting the stage for further exploration

in the subsequent chapter. This progress underscores the potential

for more accessible and efficient DLCA applications. However, it

is important to note that each new project requires reapplying

the methodological framework, as it is case-specific. In contrast,

the interpolation of GWP is less challenging, as it can be quickly

applied to each new building.

Integrating Dynamic LCA into Retrofit Decision-Making Meth-
ods

Chapter 4 advanced the discourse by integrating DLCA into retrofit

DM processes, aiming to align building’s emission trajectories with

threshold requirements. It highlights the critical role of under-

standing the long-term uncertainties buildings face, which signifi-

cantly influence their environmental performance. By developing

a comprehensive DM methodology that includes DP, the research

provides a data-driven approach to ensure buildings follow long-

term environmental objectives. This methodology differentiates

between renovations (adding components) and replacements (sub-

stituting components), essential for creating a workflow that adapts

to the building’s post-occupancy stage and facilitates ongoing GHG

threshold compliance verification.

The study extends its analysis to the timing and scheduling of

retrofit measures, employing dynamic parameters to optimize

intervention schedules. This consideration is innovative, as it incor-

porates temporal dynamics into retrofit decisions, acknowledging

the evolving nature of a building’s performance and its context. In

addition, this approach aligns with the limited investment capac-

ity of building owners, who often cannot implement all retrofit

measures simultaneously.

Through a case study, specific renovation and replacement mea-

sures were identified based on their potential to impact the life cycle

GWP, acknowledging the computational intensity of statistical and

optimization methods implemented. This was facilitated by the

DLCA simplification techniques, emphasizing the importance of

streamlining methodologies.

As scenario-based analysis reveal significant differences in life cycle

GWP outcomes, demonstrating the impact of dynamic parameter

assumptions on retrofit decisions. For example, changing DP

modelling assumptions resulted in life cycle GWP variations from

796 𝑘𝑔𝐶𝑂2/𝑚2
to 629 𝑘𝑔𝐶𝑂2/𝑚2

. Furthermore, the research

acknowledges the French RE2020 regulatory framework, ensuring

the proposed methodology’s relevance to current standards.
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The choice to base the methodology on the RE2020 carbon thresh-

old was made to ensure compatibility with current regulatory

standards, though no weighting factor was applied in this study.

It is also recognized that carbon budgets (e.g., IPCC) exist, which

are calculated using different assumptions. Despite its design for

building construction, the RE2020 threshold was applied to an

existing building (recently built), with the focus placed on dynamic

modeling and uncertainties.

As a general conclusion, this thesis presents arguments for the

integration of dynamic LCA into building design and retrofit

decision-making. The methodologies proposed include a method

to streamline and facilitate the widespread use of DLCA and a

framework to guide decision-makers towards ensuring threshold

compliance, despite long-term uncertainties in calculating building

life cycle GWP.

As the world grapples with the imperatives of climate change, the

insights and tools presented in this research are small contributions

to the pursuit of a sustainable future in the building industry.

5.2 Outlook: Towards a Post-Occupancy
Decision-Making Methodology for Carbon
Threshold Compliance

Despite proposing a general methodology, this work has drawn

many conclusions based on a single case-study application. How-

ever, as highlighted before, they are not "extrapolatable" to other

buildings in other contexts. Therefore, a straightforward, but de-

manding follow-up to this thesis would be to apply the same

Dynamic Life Cycle Assessment (DLCA) methodology to a dataset

that is representative of the building stock to draw a general

conclusion about the future of the building sector.

Additionally, the case-study used in Chapter 3 and in Chapter 4

was somewhat specific, since the building wasn’t, in fact, subject

to the RE2020 carbon threshold. This choice came down simply to

the accessibility to this particular building’s data. This thesis then,

assumes that the owner of this house built in 2017 willingly decided

to follow this new carbon threshold. However, another interesting

scenario is comprised of buildings that are initially designed to

follow their imposed thresholds and require CMMs to be enacted

due to post-occupancy deviations. Nevertheless, as years pass

by, they end up surpassing their budgets from premature and

excessive renovations, from over-consumption of energy or several

other uncertainties or DPs that were studied in this work.
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Therefore, it would be interesting to apply this methodology

to an occupied case-study and, together with Post-Occupancy

Evaluation (POE), iteratively evaluate, at a reasonable time-step,

carbon threshold compliance. Such a workflow has been drafted

in Figure 5.1 are:

1. Assessment of Threshold Expenditure: This step, not cov-

ered in this thesis, involves gathering extensive real-world

data from a case-study building. The objective is to create an

as-built material bill of quantities and a calibrated energy

model. This area of research, though beyond the scope of

this thesis, is explored by researchers in large dimensional

BIM (Building Information Modelling) [213–215] and digital

twins [216, 217].

2. Assessment of Threshold Compliance: As detailed in Chap-

ter 3, this step involves using DP modeling to verify compli-

ance with long-term budgetary constraints. The key addition

here would be integrating real-world data and calibrated

models for more accurate forecasts. Moreover, re-calibrating

DPs as uncertainties decrease over time is a developing area

that requires a standardized database for consistent updates.

For the French residential building in this thesis, 3 years of

energy consumption data is available, therefore this step is

was not viable.

3. Post-Occupancy Decision-Making Support: Defined in

Chapter 4, this step involves applying the DM support

method once budgetary deviations are identified. The main

difference in this advanced outlook would be the utilization

of more accurate data and models.

In future works then, to study this complete workflow through a

case-study is essential. However, due to time constraints during

the making of this thesis, it was not executed for the developments

of Chapter 4.



130 5 Conclusions and Outlook

Figure 5.1: Proposal of methodology for the inclusion of POE into the methodological developments of this thesis.
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Appendix





A
Case-Study Model

Figure A.1: Floor composition of the

case-study. U-value: 0.19 W/m2·K.

Figure A.2: Roof composition of the

case-study. U-value: 0.17 W/m2·K.
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Figure A.3: Wall composition of the

case-study. U-value: 0.23 W/m2·K.
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Figure A.4: In the the columns are the hours of the day and in the rows are how many hours, on average, the occupants is

present in the building. The cells in green represent the hours of the day someone is present. For instance, if a building

is occupied 22 hours in a day, the only hours it is unoccupied are 13:00 and 16:00 This variable is therefore, defined

categorically.





B
Case-Study Inventory

This appendix intends to give the information on the case-study

used in this thesis. Indeed, in Table B.1 the reader will find all the

information used on the components and their respective EPDs as

taken from the French INIES database [143]. As consequence, the

component names in this table are in French.
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Table B.1: Table containing the PV and thermostat EPDs used in the DM process.

ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D

26899 Dalles de voirie et revêtements extérieurs en béton

préfabriqué [ép. = 5 cm] - DONNEE ENVIRON-

NEMENTALE PAR DEFAUT

50 50 m2 14.46 8.69 0 1.68 0

31707 Réseaux d’adduction d’eau en PVC [Diam entre 110

et 200 mm] - DONNEE ENVIRONNEMENTALE

PAR DEFAUT (v.1.2)

50 40 Unit(s) 35.1 2.54 0 0 0

31707 Réseau d’adduction d’eau en cuivre [Diam. 18 mm]

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 40 Unit(s) 1.08 0.28 0 0.13 0

30551 Béton pour fondations en milieu agressif 100 25 m2 178.73 14.58 -0.72 4.4814 -3.84

26899 Entrevous LEADER EMS EcoVS sans Isorupteur 100 61 m2 8.50 0.43 0 0.31 0

26899 Chapes / chapes flottantes en béton et mortier à

base de ciment [ép.5cm] - DONNEE ENVIRON-

NEMENTALE PAR DEFAUT

50 61 m2 32.64 1.99 0 1.03 0

26899 Chapes / chapes flottantes en béton et mortier à

base de ciment [ép.5cm] - DONNEE ENVIRON-

NEMENTALE PAR DEFAUT

50 61 m2 32.64 1.99 0 1.03 0

26899 Entrevous LEADER EMS EcoVS sans Isorupteur 100 61 m2 8.5 0.43 0 0.31 0

26899 Entrevous LEADER EMS EcoVS sans Isorupteur 100 5.79 m2 8.5 0.43 0 0.31 0

26899 Bloc de coffrage en béton - avec béton de remplis-

sage

100 120 m2 9.48 25.2 -3.47 5.56 -0.88

26899 Bloc de coffrage en béton - avec béton de remplis-

sage

100 120 m2 9.48 25.2 -3.47 5.56 -0.88

26899 Bloc de coffrage en béton - avec béton de remplis-

sage

100 120 m2 9.48 25.2 -3.47 5.56 -0.88

28731 GR 32 Revêtu Kraft 60 mm 50 18 m2 1.37 0.22 0 0.03 0

28731 GR 32 Revêtu Kraft 100 50 18 m2 2.7 0.46 0 0.03 0

28256 Mur ossature bois avec montant d’une largeur de

145 mm et un entraxe de 60 cm non isolé, fabriqué

en France

100 90 m2

-

13.40

3.13 0 19.1 -3.58

28731 Isoconfort 32 100mm 50 90 m2 2.49 0.36 0 0.03 0

26899 Complexe de doublage SIS REVE SI® constitué

d’un panneau en mousse rigide de polyuréthane

de 50 mm d’épaisseur et d’une plaque de plâtre de

13 mm d’épaisseur, R= 2,35 m2.K/W

50 90 m2 7.56 1.35 0 1.18 0

26899 Escalier droit en béton armé [larg. = 80 cm] - DON-

NEE ENVIRONNEMENTALE PAR DEFAUT

100 3.78 m2 367.69 59.45 0 13.27 0

31707 Tuile de terre cuite à emboitement 100 22 Unit(s) 12.1 1.46 0 0.23 -2.39

28256 Membrane synthétique en PVC-P pour étanchéité

de toiture - DONNEE ENVIRONNEMENTALE

PAR DEFAUT

20 22 m2 12.2 6.5 36.45 5.32 0

26899 Charpente en bois reconstitué [Gestion durable] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

100 40 m2

-

349.93

104 0 813 0

31707 Voligeage en bois massif ep 26 mm [gestion durable]

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 22 Unit(s)

-

14.87

5.15 0 19.87 0

26899 Entrevous LEADER EMS EcoVS sans Isorupteur 100 61 m2 8.5 0.43 0 0.31 0

26899 Chapes / chapes flottantes anhydrite [ép. 5 cm] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 61 m2 2.97 0.44 0 0.07 0

28256 Monospace 35 Revêtu Kraft 75 mm 50 25 m2 0.99 0.13 0 0.02 0

28256 Monospace 35 Revêtu Kraft 75 mm 50 6 m2 0.99 0.13 0 0.02 0

26899 Complexe de doublage SIS REVE SI® constitué

d’un panneau en mousse rigide de polyuréthane

de 50 mm d’épaisseur et d’une plaque de plâtre de

13 mm d’épaisseur, R= 2,35 m2.K/W

50 6 m2 7.56 1.35 0 1.18 0

26899 Complexe de doublage SIS REVE SI® constitué

d’un panneau en mousse rigide de polyuréthane

de 50 mm d’épaisseur et d’une plaque de plâtre de

13 mm d’épaisseur, R= 2,35 m2.K/W

50 25 m2 7.56 1.35 0 1.18 0

28256 Panneau d’isolation en mousse rigide de

polyuréthane TMS® 48 mm d’épaisseur, R= 2,20

m2.K/W (hors accessoires de pose)

50 61 m2 5.38 0.37 0 0.41 0

28256 Monospace 35 revetu kraft 45 mm 50 140 m2 0.78 0.10 0 0.01 0
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ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D
28256 Panneau d’isolation en mousse rigide de

polyuréthane EFIMUR® 97 mm d’épaisseur, R= 4,5

m2.K/W (hors accessoires de pose)

50 140 m2 9.55 0.76 0 0.70 0

28731 Isolant thermique et acoustique sous chape en laine

de roche [R=2,5m2.K/W] - DONNEE ENVIRON-

NEMENTALE PAR DEFAUT

50 220 m2 21.20 1.72 0 0.32 0

26899 Bloc porte métallique (porte de locaux techniques,

de caves, de service) [ép.42mm] - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

25 5.22 m2 99.33 13.25 115.65 3.06 0

28256 Porte extérieure en bois massif [Gestion durable] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

35 1.935 m2 29.36 8.09 40.46 51.31 0

28256 Porte extérieure en bois massif [Gestion durable] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

35 1.963 m2 28.94 7.98 39.8 50.58 0

31582 Fenêtres et portes fenêtres mixtes Aluminium/PVC

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

30 0.57 m2 180.6 28.26 0 9.71 0

31582 Fenêtres et portes fenêtres mixtes Aluminium/PVC

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

30 2.1 m2 49.04 7.67 0 2.63 0

31582 Fenêtres et portes fenêtres mixtes Aluminium/PVC

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

30 2.58 m2 180.69 28.26 0 9.71 0

31582 Fenêtres et portes fenêtres mixtes Aluminium/PVC

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

30 4.73 m2 98.55 15.41 0 5.29 0

28256 Motorisation de volets roulants - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

15 4 m2 30.55 3.34 127.91 7.954 0

28256 Motorisation de volets roulants - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

15 6 m2 30.55 3.34 127.91 7.95 0

28256 Portes intérieures de communication en bois avec

huisserie bois [Gestion durable] - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT (v.1.3)

30 12 m2 26.1 17.7 12.6 22.2 -3.28

31707 Revêtement de sol dur en céramique [ép. 7mm] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 61 Unit(s) 20.58 6.13 5.42 0.64 0

31707 Revêtement de sol dur en céramique [ép. 7mm] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 61 Unit(s) 20.58 6.13 5.42 0.64 0

26899 Cloisonnement en plaque de plâtre [ép. entre 12.5 et

18 mm] - DONNEE ENVIRONNEMENTALE PAR

DEFAUT

50 90 m2 9.96 3.16 0.60 0.81 0

26899 Cloisonnement en plaque de plâtre [ép. entre 12.5 et

18 mm] - DONNEE ENVIRONNEMENTALE PAR

DEFAUT

50 18 m2 9.96 3.16 0.60 0.81 0

26899 Cloisonnement en plaque de plâtre [ép. entre 12.5 et

18 mm] - DONNEE ENVIRONNEMENTALE PAR

DEFAUT

50 140 m2 9.96 3.16 0.60 0.81 0

26899 Enduit de peinture extérieure - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

30 145 m2 7.69 1.90 6.99 0.89 0

26899 Enduit de peinture extérieure - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

30 90 m2 7.69 1.90 6.99 0.89 0

26899 Enduit de peinture extérieure - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

30 18 m2 7.69 1.90 6.99 0.89 0

28256 Membrane synthétique en PVC-P pour étanchéité

de toiture - DONNEE ENVIRONNEMENTALE

PAR DEFAUT (v.1.3)

20 70 m2 12.1 6.5 0.16 5.35 0

31707 Radiateur électrique [P=1kW] - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

17 12 Unit(s) 25.39 0.90 0 1.46 0

31707 VMC simple flux Hygro B [Débit = 59m3/h] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

17 1 Unit(s) 44.33 1.51 97.09 4.173 0

31707 Réseaux d’adduction d’eau en PVC [Diam 110mm] -

DONNEE ENVIRONNEMENTALE PAR DEFAUT

50 40 Unit(s) 9.67 0.70 0 0 0

28105 Baignoire en matériau de synthèse - DONNEE

ENVIRONNEMENTALE PAR DEFAUT

20 1 m2 377.40 19.15 61.61 4.08 0

26899 Colonne de douche avec robinet mitigeur - DON-

NEE ENVIRONNEMENTALE PAR DEFAUT

16 2 m2 17.44 0.85 298.09 0.22 0

31707 Receveur de douche en matériau de synthèse [Long.

90 cm Larg. 90 cm] - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

20 2 Unit(s) 163.70 17.18 296.54 16.79 0

31707 Robinetterie (non électronique) en laiton - DON-

NEE ENVIRONNEMENTALE PAR DEFAUT

12 4 Unit(s) 35.84 2.11 395.08 4.23 0
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ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D
26899 Evier en acier inoxydable [Long. 860 mm Larg. 500

mm Haut. 140 mm] - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

20 1 m2 52.72 6.07 99.17 3.83 0

28256 Lavabo en céramique (robinetterie et vidange non

inclus) - DONNEE ENVIRONNEMENTALE PAR

DEFAUT

20 3 m2 124 22.8 225.62 0.69 0

31707 WC en céramique - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

20 3 Unit(s) 173.4 13.5 500 6.1 0

31707 Réseaux d’évacuation et d’assainissement en PVC

[Diamètre 315 mm] - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

50 30 Unit(s) 25.94 9.08 0 4.99 0

28731 Interrupteurs - DONNEE ENVIRONNEMENTALE

PAR DEFAUT

10 26 m2 3.37 0.13 14.08 0.02 0

31884 Prises de courant fort - DONNEE ENVIRON-

NEMENTALE PAR DEFAUT

20 10 Unit(s) 1.41 0.02 2.18625 0.03 0

31707 Prises diverses (TV, HP, informatique...) - DONNEE

ENVIRONNEMENTALE PAR DEFAUT

20 25 Unit(s) 3.44 0.10 5.39 0.05 0

26899 Chemin de câble dalle en PVC - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT

20 50 m2 22.54 0.31 3.55 0.83 0

26899 Câble basse tension 0,6/1kV [Section conductrice de

5 mm2 à 120 mm2] - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

30 100 m2 13.47 3.56 12.65 1.95 0

26899 Coupe-circuit - DONNEE ENVIRONNEMENTALE

PAR DEFAUT

20 8 m2 0.39 0.14 0.88 0.05 0

31707 Relais différentiel - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT

10 4 Unit(s) 15.74 0.08 64.55 0.31 0

26899 Encastrés intérieurs linéaires pour éclairage terti-

aire [P=20W] - DONNEE ENVIRONNEMENTALE

PAR DEFAUT

25 20 m2 90.56 14.64 11.20 6.81 0

26899 Cadre et portes pour coffrets encastrés - DONNEE

ENVIRONNEMENTALE PAR DEFAUT

20 1 m2 11.50 1.93 20.98 0.54 0
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Renovation and replacement components

This annex is dedicated to listing the components that are used in Annex 4 in the investigation of

renovation and replacement measures. Much like in the case-study LCI, these components were

found in the INIES database [143].

Table C.1: Table containing the HVAC-related EPDs used in the DM process.

ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D

31811 Chaudière bois granulés assurant le chauffage seul

[P = 17 kW]

17 unit 0.53 1520 113 0 386 0

36623 LG PAC Air-Eau 6kW 17 1.5 unit 1118.8 9.67 138.5 119 0

36698 LG PAC Air-Air 7kW 17 1.3 unit 1016.3 14.0 201.82 212E 0

33725 Chauffe-eau thermodynamique sur air extrait

T.Flow®

17 1 unit 414.02 9.76 97 55.38 0

28379 Réseau d’adduction d’eau en cuivre [Diam. entre

18 et 40 mm] - DONNEE ENVIRONNEMENTALE

PAR DEFAUT (v.1.2)

100 40 m 2.4 0.631 0 0.293 0

32040 Conduits rigides PVC [DN=160mm] - DONNEE

ENVIRONNEMENTALE PAR DEFAUT (v.1.3)

30 30 m 4.73 1.62 0 0.931 0

32081 Diffuseur d’air circulaire sur plénum [débit =

100m3/h] - DONNEE ENVIRONNEMENTALE

PAR DEFAUT (v.1.3)

17 9 unit 24.2 5.16 0 0.933 0

36713 ARTIS décor classique vertical (v.1.2) 50 9 kW 75.19 0.309 0 3.83 0

Table C.2: Table containing the glazing EPDs used in the DM process.

ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D

31582 Fenêtres et portes fenêtres mixtes Aluminium/PVC

- DONNEE ENVIRONNEMENTALE PAR DEFAUT

30 14 m2 180.69 28.26 0 9.71 0

30583 Fenêtre et porte-fenêtre double vitrage, fabriquée

en France, en Bois d’essence tempérée européen

(v.1.3)

30 14 m2 30.1 10.6 1.82 12.3 -4.33

30584 Fenêtre et porte-fenêtre triple vitrage, fabriquée en

France, en Bois d’essence tempérée européen (v.1.3)

30 14 m2 42.7 11 1.82 15.9 -5.75

28196 Fenêtre double vitrage en bois-aluminium [Uw =

1,3 W/(m2.K)] [Gestion durable] - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT (v.1.3)

30 14 m2 129 17.6 19.6 30.3 -1.3

28211 Fenêtre triple vitrage en bois-aluminium [Uw =

0,8 W/(m2.K)] [Gestion durable] - DONNEE ENVI-

RONNEMENTALE PAR DEFAUT (v.1.2)

30 14 m2 313 30.8 4.77 22.9 -3.63

Table C.3: Table containing the insulation EPDs used in the DM process.

Component DVR Quantity A1-3 A3-5 B1-3 C1-4 D

Panneaux Rigides Isolants en Polyuréthane Ep 100 mm

KNAUF Thane Mur B2i

50 1 12.6 1.11 0 0.0114 0

Panneaux Rigides Isolants en Polyuréthane Ep 120 mm

KNAUF Thane Mur B2i

50 1 15.9 1.28 0 0.0135 0

Panneaux Rigides Isolants en Polyuréthane Ep 140 mm

KNAUF Thane Mur B2i

50 1 18.8 1.42 0 0.0155 0

Isolant Biofib’ Trio épaisseur 60 mm (v.1.1) 50 1 -1.44 0.178 0 1.66 -0.7

Isolant Biofib’ Trio épaisseur 80 mm (v.1.1) 50 1 -1.92 0.241 0 2.22 -0.93
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Component DVR Quantity A1-3 A3-5 B1-3 C1-4 D
Isolant Biofib’ Trio épaisseur 100 mm (v.1.1) 50 1 -2.37 0.311 0 2.77 -1.16

Isolant Biofib’ Trio épaisseur 160 mm (v.1.1) 50 1 -3.83 0.481 0 4.43 -1.86

KNAUF INSULATION Laine de Verre ECOSE Acousti-

laine 035 140 mm

50 1 2.27 0.47 0 0.47 0

KNAUF INSULATION Laine de Verre ECOSE Acousti-

laine 035 160 mm

50 1 2.67 0.536 0 0.563 0

KNAUF INSULATION Laine de Verre ECOSE Acousti-

laine 035 220 mm

50 1 3.67 0.784 0 0.766 0

KNAUF INSULATION Laine de Verre ECOSE Acousti-

laine 035 280 mm

50 1 4.52 0.955 0 0.919 0

FLEX 40 40 mm 50 1 -0.504 0.212 0 0.777 -0.614

FLEX 40 80 mm 50 1 -1.187 0.3725 0 1.5935

-

1.2615

FLEX 55 100 mm 50 1 -1.87 0.533 0 2.41 -1.909

FLEX 55 200 mm 50 1 -4.5 1.05 0 4.88 -3.875

FBT PR (v.1.4) 100mm 50 1 -2.6 0.508 0 3.92 -1.61

FBT PR (v.1.4) 200mm 50 1 -5.2 1.016 0 7.84 -3.22

FBT PR (v.1.4) 300mm 50 1 -7.8 1.524 0 11.76 -4.83

FBT PR (v.1.4) 400mm 50 1 -10.4 2.032 0 15.68 -6.44

Table C.4: Table containing the PV and thermostat EPDs used in the DM process.

ID Component DVR Quantity Unit A1-3 A3-5 B1-3 C1-4 D

25861 VOLTEC SOLAR TARKA 120 30 1 m2 135.895 0.0247 1.37 0.128 0

31866 Inters horaires - DONNEE ENVIRONNEMEN-

TALE PAR DEFAUT (v.1.2)

10 1 unit 134 0.108 0 0.145 0
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Complementary Results

In Chapter 4, the results of the DM methodology were presented

only for the upper-edge scenario. In this Annex D, the optimization

and statistical simulation results will be shown under the lower-

edge and the RE2020 scenarios.

D.0.1 Lower-Edge Scenario

Having presented all results for DM support under the "Upper-

Edge" scenario, this section of the thesis will now be dedicated

to the "Lower-Edge" case, as defined in Table 4.2. As a reminder,

in this scenario, the building is expected to have the lowest GWP

results due to the DP assumptions.

D.0.1.1 Optimization Results

The Pareto solution of under this scenario then, is presented in

Figure D.1. The first takeaway is the overall position of the solutions

in relation to the thresholds. Most importantly, the BAU case, with

a green contour is within both the operational budget and the

future 2025 embodied budget, indicating that no measures are

required for threshold compliance. This recommendation is true

even though the case-study building relies on electrical radiators

for heating, since in this scenario, the average CI of electricity goes

down to 17 𝑔𝐶𝑂2/𝑘𝑊ℎ.

Another detail worth highlighting from the Pareto plot is that

the minimal overall emissions solution (represented by the red

+) has distanced itself from the minimal OE solution. Indeed, by

looking at the solutions’ details in Table D.1, the addition of PV

is not worth the EE investments and the best overall solution has

no renewable energy generation at all. The same solution in the

preceding scenario recommended 29 m2 of panels to be installed,

positioning it much closer to minimal OE solution.

This phenomenon, again, is explained by the low-carbon electricity,

making CMMs that reduce consumption of energy from the grid,

either from energy efficiency improvements or renewable energy

production, less interesting.
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Figure D.1: Pareto solutions of the optimization solution found in the Lower-Edge case-study.

In fact, this trend can also be seen in glazing, where all solutions

chosen are double glazed, again supporting the idea that improving

energy performance is not as much a priority under this scenario

than it was with the Upper-Edge case.

At the same time however, some CMM remained invariably the

same when compared to the other scenario, namely the ventilation

system replacement and the insulation renovation: Double-flow

ventilation was never judged necessary and wood straw is always

recommended. This can be observed in the solution frequency plot

in Figure D.2.

The fact that these solutions appear in the Pareto front under the

Upper and Lower-Edge scenarios, lead to the conclusion that these

are pretty robust decisions that will perform well independently

of the external factors represented by the DPs.

D.0.1.2 Quasi-Random Evaluation

An optimization does not tell the whole story, however. In this

Saltelli sampling then, the Sobol indices and the measures’ frequen-

cies that appear in threshold compliant solutions will be made.

The PCP is shown in Figure D.3.

The Sobol results in this Lower-Edge scenario is displayed in

Figure D.4 and it differs a lot from the one presented in Figure

4.5. Clearly, heating system choice is much much more influential

here, which is justified by the fast and drastic decarbonization

process of electricity, which, of course, does not affect the wood-

pellet heating system’s CI. This means the variance caused by

the change from an electrified to a biomass system is accentuated
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Table D.1: This table includes 3 sets of solutions found in the Pareto front and identifies all CMMs to achieve the resulting

GWP displayed.

CMM Best Overall
Solution

Minimal OE
Solution

Minimal EE
Solution BAU

1 2 3

Heat recovery CMV

Simple flow

Ventilation

Simple flow

Ventilation

Simple flow

Ventilation

Simple flow

Ventilation

CMV replacement year 17 17 17 17

Glazing type

Double Glaz

PVC

Double Glaz

PVC

Double Glaz

PVC

Double Glaz

PVC

Glazing replacement year 30 30 30 30

Insulation material Wood Straw Wood Straw Wood Straw EPS

Insulation thickness Thickest Thickest Thickest Thinnest

Insulation addition year 5 5 5 5

Heating system Air-water HP Air-water HP Electric rad Electric rad

Heating replacement year 5 5 17 17

PV surface [m2] 0 32.0 0.0 0.0

PV addition year - 5 5 5

Thermostat Thermostat Thermostat No Thermostat No Thermostat

Operational GWP 84.89 68.30 140.04 138.54

Embodied GWP 502.39 530.40 481.52 490.27

Overall GWP 587.28 598.70 621.57 628.81

1: Of the 13312 samples evaluated,

8161 were found to follow current

embodied and operational budgets,

simultaneously. For the 2025 embod-

ied budget, that number is not very

heavily affected, jumping down to

8124.

under this scenario. All other indices are in a similar order as in

the Upper-Edge scenario.

Another interesting plot that should aggregate information here

is the solution frequency analysis for threshold compliant CMMs.

However, as observed in the Pareto plot, even the BAU solution

already follows the current embodied carbon budgets
1
. Thus, such

an analysis should yield a somewhat uniform frequency for most

measures. In order to validate this, the analysis was done for this

threshold and it has been included in Figure D.5.

More interesting though, should be to analyse the solution fre-

quency in the solutions that follow operational and 2025 embodied

budgets instead and that is what Figure D.6 shows. Here, although

subtle, some tendencies are observable, namely in heating system

replacement and scheduling, where electric radiators are clearly

unpreferred, with wood pellet appearing the most likely to satisfy

the future embodied budget. This can be explained by the higher

EEs of the heat pump alternatives, despite being more interesting

in terms of OE. The tendency of realizing earlier heating system
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Figure D.2: Solution Frequency of Pareto front under Lower-Edge scenario.

replacement is also notable.

In terms of PV installation, 15% of threshold-compliant solutions

recommend no PV installation, however, when it is recommended,

it clearly should be done as early as possible.

The two spikes at year 5 in "Insulation Addition Year" and in "PV

Addition Year" merit some more explaining as well. In fact, when

no insulation or PV is added, the renovation year for these CMMs

have no meaning, since no renovation is recommended. Therefore,

in the DLCA workflow, when BAU is selected for either of these

measures, insulation and PV addition years are automatically

set to 5. Of course this number doesn’t represent anything, since

no intervention will be realized at year 5, but this justifies the
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Figure D.3: Pareto solutions of the

optimization solution found in the

Lower-Edge case-study.

aforementioned peaks in the frequency.
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Figure D.4: Sobol indices of CMMs

under lower-edge case.

D.0.2 RE2020’s Dynamic LCA

Finally, with the results of the upper and lower-edge scenarios

visualized, we can now explore the solutions given by the RE2020

DLCA methodology.

D.0.2.1 Optimization Results

In this short subsection then, the optimization results with the

RE2020’s weighting factor will be presented, starting with the

Pareto in Figure D.7.

The immediate observable conclusion is the fact that much fewer

solutions follow the current embodied and operational budgets

under this new scenario than in the Lower-Edge case, with the

Pareto front being close to where the Upper-Edge case used to

be.

Indeed, Figure 4.6 and Figure D.7 are very similar, however, a

key distinction from the preceding optimization results is the
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Figure D.5: Pareto solutions of the optimization solution found in the Lower-Edge case-study.

2: As a reminder, the weighting fac-

tor is defined by the RE2020 and is

a multiplier for all GWP values as a

function of the year, affecting both

OE and EE.

fact that the minimal OE solution (represented by the "x") also is

the minimal overall GWP solution. This indicates that, under the

RE2020 scenario, the EE investments in the form of CMMs, are

more often compensated by the subsequent OE savings.

The solution frequency plot of the Pareto solutions, displayed in

Figure D.8, was found to also resemble the Upper-Edge scenario’s,

with exception to the wood pellet boiler appearing in close to 20%

of solutions here. This increased in interest in the bio-mass fuel is

due to the fact that the weighting factor
2

affect all emission values,

while in the preceding scenarios, the DPs only accounted for the

improvement of the electricity grid’s mix, thus not affecting the CI

of burning wood pellets.
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Figure D.6: Pareto solutions of the optimization solution found in the Lower-Edge case-study.

D.0.2.2 Quasi-Random Evaluation

After the Saltelli sample was evaluated, the Sobol indices were

calculated leading to the results in Figure D.9. But much like

the optimization results, no substantial difference was identified

neither here, in the Sobol results nor in any other result of the

quasi-random evaluation.
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Figure D.7: Pareto solutions of the optimization solution found in the Lower-Edge case-study.

D.0.3 Static Scenario

D.0.3.1 Optimization Results

The last scenario to be investigated is the static LCA, where the

building’s environment and its conditions do not evolve with

time and thus, the first year of operation are subject to the same

assumptions of the last. The same DM workflow was applied to this

scenario and so we will start again with the optimization results.

In the Pareto plot found in Figure D.10, the most notable difference

is that now, all solutions are much farther than before from the

carbon thresholds, most notably the embodied budget. Indeed,

no combination of CMMs is capable of amending the deviation

in EE. This highlights how pessimistic a static LCA approach is.

Indeed, despite having modelled DPs that assume deterioration

of the building’s performance, in Annex 3 we found that these

parameters have little to no impact in overall GWP when compared

to the decarbonization processes of the building-adjacent sectors.

This result also highlights the importance of getting the EEs of

a building right from design and conception stage, since there is

very little "room for corrections" once the building is constructed.

Another significant chunk is emitted at the building’s EOL, which

also is largely determined by the material and components chosen

during design-stage.

Another interesting point from Figure D.10 is the fact that OEs

does not seem to have been as heavily impacted as EE from not

taking any dynamic factors into account. In fact, some Pareto front

solutions still allow compliance with the operational budget. This
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Figure D.8: Solution frequency of Pareto solutions under RE2020 case.

is also linked to the aforementioned peak in emission at year 50,

when DPs have the most impact in the resulting GWP. Meanwhile,

OEs are more evenly spread throughout the building’s life cycle,

meaning its impact by the various DPs are attenuated.

To study more closely the results, the three solutions identified in

Figure D.10 have been detailed in Table D.2. However, despite the

grossly different results in terms of raw GWP values from dynamic

to static LCA, the solutions are identical to the RE2020 approach.

This is explained by the fact that the weighting factor multiplies

OE and EE the same value indiscriminately, unlike in the Upper

and Lower-Edge scenarios.

The solution frequency of the Pareto solutions shown in Figure D.11
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Figure D.9: Sobol indices of CMM

under RE2020 scenario.

Figure D.10: Pareto plot under static scenario.

also are very similar to the RE2020’s, the only notable difference

being the glazing replacement year not unanimously being recom-
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Table D.2: This table includes 3 sets of solutions found in the Pareto front and identifies all CMMs to achieve the resulting

GWP displayed.

CMM Minimal OE & Overall
Solution

Minimal EE
Solution BAU

1 2

Heat recovery CMV Simple flow Ventilation

Simple flow

Ventilation

Simple flow

Ventilation

CMV replacement year 17 17 17

Glazing type Double Glaz PVC

Double Glaz

Wood

Double Glaz

PVC

Glazing replacement year 25 30 30

Insulation material Wood Straw Wood Straw PU

Insulation thickness Thickest Thickest Thinnest

Insulation addition year 5 5 5

Heating system Air-water HP Electric rad Electric rad

Heating replacement year 5 17 17

PV surface [m2] 32.0 0.0 0.0

PV addition year 5 5 5

Thermostat Thermostat No Thermostat No Thermostat

Operational GWP 98.92 310.35 329.31

Embodied GWP 749.11 690.24 700.82

Overall GWP 848.04 1000.59 1030.13

mended to be done at year 30, going back to year 24. This is because

the weighting factor used to incentivizes delaying replacements, as

emissions have reduced impact with time. However, in this static

approach, the only thing the optimizer will avoid is increasing the

number replacements further down the line. Otherwise, the earlier

an energy efficiency improvement is implemented, the greater to

OE savings.

D.0.3.2 Quasi-Random Evaluation

To continue this investigation of the static solutions, the PCP has

been plotted in Figure D.12, where it is clear, by the range available

under the EE axis, that no solution comes close to the embodied

budget of 610 𝑘𝑔𝐶𝑂2/𝑚2
. The OE can still be corrected though and

so the operational budget has been brushed under the resulting

operational axis.

A much more limited array of solutions is available here, despite

there being only one filter. In fact this PCP informs that, no electrical



173

Figure D.11: Solution frequency of Pareto front under static scenario.

radiator solution is threshold-compliant and at least 10 m2 of PV

surface will be necessary.

A Sobol analysis was also deemed interesting application in this

scenario, and so the results are displayed in Figure D.13. Here, the

largest gap can be observed between the PV addtion year and the

heating system replacement choice. This confirms the superfluity

of including the renovation and replacement years as CMMs in

a static approach. Indeed, since the EE investments and OE have

constant values, there’s no real need to calculate year-by-year

emissions. Thus, a simple "payback" time analysis would be as

useful for a less intensive computational cost.

With all the results under the four established scenarios presented,
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Figure D.12: Pareto solutions of the

optimization solution found in the

Lower-Edge case-study.

we will now move on to the comparison and discussion section of

this fourth chapter.
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Figure D.13: Pareto solutions of the

optimization solution found in the

Lower-Edge case-study.




	Acknowledgement
	Abstract
	Résumé
	Contents
	Glossary
	Introduction
	Research Background
	Problem Statement
	Research Objectives
	Research Questions
	Thesis Outline
	Publications

	The State of the Art of Methods Towards Post-Occupancy GHG Budget Compliance of Buildings
	Carbon budgets in buildings
	Top-Down Approach
	Bottom-Up Approach
	Scope of Carbon Budgets in This Study

	Life Cycle Assessment
	An Overview of General LCA
	Building LCA
	Stages and Modules Life Cycle Assessment
	EPDs and Databases
	Limitations of LCA
	Buildings’ GHG Emissions Through Time

	Building Dynamic LCA
	Considering Time in the LCA Framework
	Dynamic LCA Methodologies

	Advantages and Disadvantages of Dynamic LCA
	Advantages of DLCA
	Disadvantages of DLCA


	Building Post-Occupancy Decision-Making
	Post-Occupancy
	Definition of Post-Occupancy
	The Relevance of Post-Occupancy Evaluation

	Decision-Making in Building Renovations
	Techniques for Solution Exploration
	Statistical Methods in Building Design
	Optimizations in Building Design
	Robust Optimization


	Research Gaps
	Conclusion

	Exploring Dynamic Life Cycle Assessment Simplification Strategies
	Building the DLCA workflow
	Workflow Inputs
	Dynamic Parameters
	Energy Model and Weather Data
	Building Components

	Workflow Perimeter
	Workflow Description

	Preparing Case-Study Application and Testing Feasibility
	Case-study Presentation
	Defining Case Study's RE2020 Carbon Budget Threshold
	Dynamic Parameter Modeling for Case Study
	External-level
	Building Level
	User-Level

	Energy Model and Reference Weather Data
	Preliminary Case-study Application

	Proposing a DLCA simplification methodology
	Reducing Simulation Times
	Reducing the Number of Dynamic Parameters

	Case Study Application I: Reducing Calculation Times
	Interpolation
	Interpolation Framework
	Interpolation Results

	Surrogate Modelling
	Surrogate Modelling in Building Simulations
	Modelling Techniques
	Dealing with Integer and Categorical Variables
	Sampling and Training Surrogate Models
	Results


	Case Study Application II: Reducing the Number of Parameters
	GWP Sensitivity to Static and Dynamic LCA approaches
	Dynamic and Static Scenarios
	Full Factorial Sampling
	Methods to Rank Parameter's Influence
	Comparing Results

	Uncertainty in Dynamic GWP results
	Defining Objective
	Sampling Input Parameters
	Sobol Results

	Comparing Results
	The Impact of Reducing the Number of Parameters

	Limitations of the Methodology
	Conclusions

	Integrating Dynamic LCA into Retrofit Decision-Making Methods
	Building the Framework for Decision-Making Support
	Identifying Carbon Mitigation Measures in Post-Occupancy Stages
	Carbon-Mitigation Measures and Its Perimeter
	Distinguishing Renovation and Replacement
	Scheduling Carbon-Mitigation Measures

	Full Workflow Proposal
	The Dynamic Parameter Integration in the Decision-Making Process
	The Scenarios for Decision-Making

	Exploring the Solution Space
	Statistical evaluation
	Optimization


	Preparing the Case-Study for the Methodology
	Introduction to the Case Study
	Determining the Building's Age
	Carbon Mitigation Measures for the Case Study
	Surrogate Model for Decision-Making


	Results of Case-study Application Under Different Scenarios
	Upper-Edge Scenario
	Statistical Evaluation Results
	Optimization Results


	Comparing and Discussing Scenario-Based Results
	Comparing the Impact on GWP Values
	Comparing the Impact on Decision-Making

	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook: Towards a Post-Occupancy Decision-Making Methodology for Carbon Threshold Compliance

	Bibliography
	Appendix
	Case-Study Model
	Case-Study Inventory
	Renovation and replacement components
	Complementary Results
	Lower-Edge Scenario
	Optimization Results
	Quasi-Random Evaluation

	RE2020's Dynamic LCA
	Optimization Results
	Quasi-Random Evaluation

	Static Scenario
	Optimization Results
	Quasi-Random Evaluation




