
HAL Id: tel-04869563
https://theses.hal.science/tel-04869563v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodologies for the Design, the Modeling, and the
Quality Assessment of Physical Unclonable Functions

(PUFs)
Sergio Vinagrero Gutierrez

To cite this version:
Sergio Vinagrero Gutierrez. Methodologies for the Design, the Modeling, and the Quality Assessment
of Physical Unclonable Functions (PUFs). Micro and nanotechnologies/Microelectronics. Université
Grenoble Alpes [2020-..], 2024. English. �NNT : 2024GRALT063�. �tel-04869563�

https://theses.hal.science/tel-04869563v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : EEATS - Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Spécialité : Nano électronique et Nano technologies
Unité de recherche : Techniques de l'Informatique et de la Microélectronique pour l'Architecture des
systèmes intégrés

Méthodologies pour la Conception, la Modélisation et l'Évaluation de
la Qualité des Fonctions Physiques Non Clonables (PUFs)

Methodologies for the Design, the Modeling, and the Quality
Assessment of Physical Unclonable Functions (PUFs)

Présentée par :

Sergio VINAGRERO GUTIERREZ
Direction de thèse :

Giorgio DI NATALE
DIRECTEUR DE RECHERCHE, Université Grenoble Alpes

Directeur de thèse

Elena-Ioana VATAJELU
CHARGEE DE RECHERCHE, Université Grenoble Alpes

Co-encadrante de
thèse

Rapporteurs :
Sylvain GUILLEY
PROFESSEUR DES UNIVERSITES, Télécom Paris
Jean-Pierre SEIFERT
PROFESSEUR DES UNIVERSITES, Université technique de Berlin

Thèse soutenue publiquement le 27 septembre 2024, devant le jury composé de :
Giorgio DI NATALE,
DIRECTEUR DE RECHERCHE, Université Grenoble Alpes

Directeur de thèse

Sylvain GUILLEY,
PROFESSEUR DES UNIVERSITES, Télécom Paris

Rapporteur

Jean-Pierre SEIFERT,
PROFESSEUR DES UNIVERSITES, Université technique de Berlin

Rapporteur

Lionel TORRES,
PROFESSEUR DES UNIVERSITES, Université de Montpellier

Examinateur

Vincent BEROULLE,
PROFESSEUR DES UNIVERSITES, Grenoble INP - UGA

Examinateur

Noemi BERINGUIER-BOHER,
DOCTEURE EN SCIENCES, Synopsys

Examinatrice

Invités :
Honorio Martin Gonzalez
ASSOCIATE PROFESSOR, Universidad Carlos III
Ioana Vatajelu
CHARGEE DE RECHERCHE HDR, TIMA Laboratory

Abstract

Physical Unclonable Functions (PUFs) are a promising alternative to conventional crypto-
graphic methods for securing sensitive data in modern circuits by generating unique secrets
on the fly, leveraging inherent process variability and eliminating the need for data storage.
Ring Oscillator and SRAM-based PUFs are particularly studied due to their simplicity and
prevalence in System-on-Chips (SOCs). A major focus was placed on the relationship
between entropy and reliability in PUFs, leading to the development of a simulation-based
methodology for setting reliability thresholds based on frequency differences. Subsequently,
a holistic mathematical model accounting for process variability was created to optimize
RO-PUF designs, and a new design methodology, “Split PUF,” is introduced to maximize
entropy yield. The mathematical modeling of PUFs, a less-explored area is also investigated,
by proposing statistical and numerical methodologies to improve understanding of RO
and SRAM-based PUF designs. Statistical methods for metric extrapolation are introduced,
reducing the time and cost needed to evaluate PUFs. Furthermore, digital twins of PUFs
are proposed, facilitating algorithm testing and evaluation. These models provide a robust
and cost-effective methodology for assessing PUF performance and aid in their security
assessment. During the parametric simulations for PUF evaluation, several limitations in
available commercial Electronic Design Automation (EDA) software were identified. To
address these challenges, a series of open-source tools were developed, such as Monaco and
NIMPHEL, to simplify and accelerate the design process and evaluation through simulation
methodologies. To validate the simulation results, an open-source platform, SRAMPlatform,
was created to gather extensive SRAM data and sensor readings from microcontrollers.
The platform gathers data from 84 STM32 microcontrollers, with weekly updates stored in
an open-access database, addressing the scarcity of accessible PUF datasets. Additionally,
a comprehensive dataset from Infineon provided valuable insights for validating simula-
tion hypotheses and exploring new PUF designs. Furthermore, significant limitations in
standard PUF performance metrics are noted and several mitigations and new alternative
metrics for more robust evaluation are proposed. Real-world data from the SRAM platform
showed extreme bias and correlation effects that the canonical metrics failed to highlight,
underscoring the need for more robust testing methodologies to accurately identify these
effects. These advancements enhance PUF assessment methodologies, addressing limita-
tions in current tools and metrics, and providing new frameworks and models for future
research. Future work includes developing a unified testing framework for all PUF families,
validating statistical models across a wider spectrum of PUF families, refining the digital
twin models, extending the concept of Split PUFs to new PUF families. These research
directions aim to accelerate the worldwide adoption of PUF technologies by enhancing
assessment methodologies, addressing current tool and metric limitations, and providing
new frameworks and models for future research.

Contributions

This manuscript is organized in 7 parts. The structure of this manuscript is illustrated below
and the specific contributions in each of areas have been highlighted.

The first part introduces the critical need for security in modern systems along with the
introduction of Physical Unclonable Functions shortplural (PUFs) as security primitives for
cryptographic applications. Various PUFs architectures are introduced and the significant
challenges these technologies face are outlined.

The second part describes the simulation environment and workflow utilized throughout
the thesis. Several frameworks and software tools were developed and integrated into the
simulation workflow. Notably, Monaco (accessible at https://servinagrero.github.io/monaco
and published in [1]) and NIMPHEL (available at https://servinagrero.github.io/nimphel
and published in [2]). These tools were essential for simulating the real environment and
designs, providing a robust platform for testing and validating PUF performance.

Part III focuses on the studied PUF designs and datasets. A platform, coined SRAMPlatform,
accessible at https://servinagrero.github.io/SRAMPlatform and published in [3], [4] [5],
was developed from scratch to collect extensive Static Random Access Memory (SRAM)
data from microcontrollers for reliability testing. The Ring Oscillator PUF simulated is also
presented. Additionally, experimental data from Infineon devices including Ring Oscillators
shortplural (ROs) are also utilized. This extensive dataset was crucial for corroborating the
simulation findings with real-world performance metrics.

Part IV, dedicated to PUF evaluation metrics, provides an in-depth analysis of both canon-
ical and alternative evaluation metrics for PUFs. The limitations of existing metrics are
thoroughly examined, include the lack of a golden model, correlation and auto-correlation
analysis, and the insufficient study of uniqueness limits. Several mitigations proposals
are proposed, including new metrics like Stability, Reliability Invariance, and Punctual
Bit-aliasing, along with the foundation for a comprehensive test suite, akin to a ”NIST test
suite for PUFs,” tailored specifically for evaluating PUFs.

In part V, the intricate relationship between Reliability and Entropy in PUFs is investi-
gated. A ”Time-to-response” model is introduced to correlate RO frequency differences
with response reliability. This research revealed a previously underexplored relationship
between frequency difference and entropy. A holistic RO model is developed to encapsulate
these effects, facilitating the quantification and modeling of RO PUFs. The theoretical
findings were validated with simulation data, and real-world data further confirmed the
interconnection between reliability and entropy through frequency differences. The sta-
tistical analysis libraries created in an effort of open standardization, are available at
https://servinagrero.github.io/pufr, with findings published in [6], [7] and [8].

Building on the holistic model from the previous section, part VI introduces the ”Split
PUF”, an enhanced version of the RO-PUF, which can limit the lack of entropy with an
easy design, suitable for chiplet-based designs. The holistic model developed allows this

ii

https://servinagrero.github.io/monaco
https://servinagrero.github.io/nimphel
https://servinagrero.github.io/SRAMPlatform
https://servinagrero.github.io/pufr

enhancement to potentially be applied to other delay-based or various PUF families in the
future.

As a novel work, the knowledge gained from previous parts is employed to develop robust
mathematical models for the creation of PUF digital twins. These digital twins can predict
and extrapolate the results of canonical metrics from small test datasets. Indeed, software-
based models are created capable of replicating the behaviour and unique characteristics
of both RO and SRAM PUFs. These models facilitate the easy evaluation and assessment
of different PUF designs, offering a powerful tool for future research and assessment to
accelerate their world-wide adoption.

Finally, a general summary of the document is provided, synthesizing the key findings and
contributions from each section. I highlight the advancements made in understanding,
evaluating, and enhancing PUFs. Additionally, I discuss perspectives for future research,
emphasizing areas that require further refinement. This includes the need for more compre-
hensive analysis of PUF evaluation metrics, the exploration of new PUF designs leveraging
the developed holistic models, and the continuous development of standardized test suites
to ensure consistent and reliable benchmarking of PUF technologies. Through these con-
tributions, this thesis advances the understanding, evaluation, and enhancement of PUFs,
paving the way for more secure and reliable cryptographic applications.

Publications

Conferences

[1] S. V. Gutierrez, G. Di Natale, and E.-I. Vatajelu, ‘On-Line Method to Limit Unrelia-
bility and Bit-Aliasing in RO-PUF,’ in 2023 IEEE 29th International Symposium on
On-Line Testing and Robust System Design (IOLTS), IEEE, 2023, pp. 1–6.

[2] S. Vinagrero Gutierrez, G. Di Natale, and I. Vatajelu, ‘On-Line Reliability Estimation
of Ring Oscillator PUF,’ in IEEE European Test Symposium (ETS 2022), IEEE, Ed.,
Barcelona, Spain: IEEE, May 2022. doi: 10.1109/ETS54262.2022.9810418. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03767650.

[3] S. V. Gutiérrez, P. Inglese, G. Di Natale, and E.-I. Vatajelu, ‘Open automation frame-
work for complex parametric electrical simulations,’ in 2023 26th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2023, pp. 132–135. doi: 10.1109/DDECS57882.2023.10139409.

Journals

[1] S. Vinagrero Gutiérrez, G. Di Natale, and E.-I. Vatajelu, ‘Python framework for
modular and parametric spice netlists generation,’ Electronics, vol. 12, no. 18, p. 3970,
2023.

Conferences iii

https://doi.org/10.1109/ETS54262.2022.9810418
https://hal.archives-ouvertes.fr/hal-03767650
https://doi.org/10.1109/DDECS57882.2023.10139409

[2] S. Vinagrero, H. Martin, A. de Bignicourt, E.-I. Vatajelu, and G. Di Natale, ‘SRAM-
Based PUF Readouts,’ Scientific Data, vol. 10, no. 1, p. 333, 2023, issn: 2052-4463.
doi: 10.1038/s41597-023-02225-9.

[3] V. Kulagin et al., ‘On the Relation Between Reliability and Entropy in Physical
Unclonable Functions,’ IEEE Design & Test, pp. 1–1, 2024. doi: 10.1109/MDAT.2024
.3425791.

Journals Under submission

[1] S. V. Gutierrez, G. Di Natale, and E.-I. Vatajelu, ‘On the Limitations of PUF Canonical
Evaluation Metrics,’

[2] S. V. Gutierrez, G. Di Natale, and E.-I. Vatajelu, ‘Split PUF Design Methodology,’

[3] S. V. Gutierrez, G. Di Natale, and E.-I. Vatajelu, ‘Leak Attack on SRAM-PUFs,’

Open Access tools and data

The tools developed are open source released under the MIT licence and are accessible
under github repositories. They are accessible at https://servinagrero.github.io/monaco,
https://servinagrero.github.io/NIMPHEL and https://servinagrero.github.io/pufr.

The source code for the SRAMPlatform and the source code for the STM32 devices along
with the usage documentation is available under the GPL-2.0 licence at https://servinagre
ro.github.io/SRAMPlatform.

A static version of the full dataset available at the time of writing can be downloaded from
Zenodo [5] at https://zenodo.org/doi/10.5281/zenodo.7529512. The full dataset is composed
of 2 CSV files that contain SRAM readouts of 84 Nucleo microcontrollers of STM32 type
along with their voltage and temperature sensor data. Although the dataset described in
this document is static, more data can be requested online through the following application
hosted at https://puf4iot.univ-grenoble-alpes.fr/form.php. Any user can submit a request
to the server specifying the data they want to retrieve. The server will process the request
and return the data in a CSV file or in a zip file if the number of records is too large.

Journals Under submission iv

https://doi.org/10.1038/s41597-023-02225-9
https://doi.org/10.1109/MDAT.2024.3425791
https://doi.org/10.1109/MDAT.2024.3425791
https://servinagrero.github.io/monaco
https://servinagrero.github.io/NIMPHEL
https://servinagrero.github.io/pufr
https://servinagrero.github.io/SRAMPlatform
https://servinagrero.github.io/SRAMPlatform
https://zenodo.org/doi/10.5281/zenodo.7529512
https://puf4iot.univ-grenoble-alpes.fr/form.php

Table of contents

Glossary xv

Acronyms xvi

I Introduction 1

1 Introduction 2

2 Overview of PUF Architectures 5
2.1 PUF Taxonomy . 6
2.2 Ring Oscillator PUF . 7
2.3 SRAM PUF . 8

3 Challenges in PUF design 11

II Simulation Workflow 14

1 Simulation Environment 15

2 Monaco 18
2.1 State of the art . 18
2.2 Proposed methodology . 19
2.3 Description of the framework . 20
2.4 State observer . 20
2.5 Netlist and simulation configuration tool 21
2.6 Conclusions . 22

3 NIMPHEL 23
3.1 State of the art . 24
3.2 Proposed framework . 25
3.3 Comprehensive Example . 26
3.4 Conclusions . 27

4 Conclusions 28

III Circuits under test 30

1 Simulated and Manufactured PUFs under test 31

2 SRAM-based PUF Experimental Platform 32
Testing procedure . 33
Devices under test . 33
Device manager . 34
Communication protocol . 35
Custom code execution . 37
Data Storage . 38
Data monitoring and validation . 39
Current limitations . 40
Code and Data Availability . 41

3 Measurements from industrial circuits 42

4 Ring Oscillator Simulated 44

5 Conclusions 47

IV PUF Canonical Evaluation Metrics 49

1 PUF Canonical Evaluation Metrics 50
1.1 Mathematical representation . 50
1.2 Uniformity . 52
1.3 Bit-aliasing . 52
1.4 Uniqueness . 52
1.5 Reliability . 53
1.6 Additional proposals . 54

2 Limitations of Canonical Metrics 56
2.1 Lack of correlation analysis . 57
2.2 System capacity and collisions . 59
2.3 Lack of a reference model . 61

3 Proposed mitigations and extensions 62
3.0.1 Deviation from ideal value . 62
3.0.2 Stability . 63

3.1 Reliability Invariance . 63
3.1.1 Correlation studies . 65

3.2 Punctual Bitaliasing . 67
3.3 Entropy based metrics . 69
3.4 Test Suite for PUFs . 70

4 Conclusions 72

Table of contents vi

V On the Reliability of Differential PUFs 73

1 State of the art 74
1.1 Techniques for Reliability analysis and evaluation 74
1.2 Techniques for Reliability improvement . 75

2 Relationship between Frequency Difference and Reliability 76

3 Time To Response 80
3.1 Numerical estimation of the number of samples 82
3.2 Conclusions . 85

VI On the Relationship between Reliability and Entropy of Differen-
tial PUFs 86

1 Relationship between Reliability and Entropy 87

2 Simulation results and mitigation techniques 89

3 Analysis of experimental data 92
3.1 SRAM analysis . 92

3.1.1 Metadata analysis . 92
3.1.2 Canonical metrics evaluation . 94

3.2 Ageing and NBTI Effects . 108
3.3 Infineon RO . 110

4 SRAM Digraph 114
4.1 Extension to Markov Chain . 119

5 Conclusions 121

VII PUF Design Proposal 122

1 Split PUF 123
1.1 Proposed method . 124
1.2 Effect on the metrics . 127
1.3 Conclusions . 128

2 Conclusions 129

Table of contents vii

VIIIPUF Modeling 130

1 State of the Art 131
1.1 Machine Learning-based approaches . 131
1.2 Physical cloning attacks . 132
1.3 Mathematical and numerical modeling . 133

2 Modeling 135
2.1 Considerations for Distribution Selection 135
2.2 Proposed Reliability model . 136
2.3 Proposed Entropy model . 137
2.4 Unification of the models . 138
2.5 Evaluation on experimental data . 139
2.6 Response classification and labeling . 141
2.7 Conclusions . 142

3 Relationship between PUF Metrics 146
3.1 Analysis methodology . 147
3.2 Bit-aliasing and Uniformity . 148

3.2.1 Extrema of Uniformity . 148
3.3 Establishing compound probabilities . 149
3.4 Approximation of the compound probabilities 150
3.5 Deriving Uniqueness . 151

3.5.1 Extrema of Uniqueness . 152
3.6 Conclusions and Extensions . 152

4 Metric Verification Model 154
4.1 Introduction . 154
4.2 Proposed methodology . 154
4.3 Frequency Distribution and Bit-aliasing average 154
4.4 Variance of Bit-aliasing . 156
4.5 Analysis of residuals . 157
4.6 Analysis of heteroscedasticity . 160
4.7 Summary . 160
4.8 Verification of the model . 161
4.9 Conclusions . 161

5 Extrapolating PUF metrics 163
5.1 Introduction . 163
5.2 Proposed methodology . 163
5.3 Evaluation of the methodology . 165
5.4 Conclusions . 166

6 PUF Digital Twins 168
6.1 Introduction . 168

Table of contents viii

6.2 Proposed methodology . 168
6.3 Pre-processing and post-processing stages 171
6.4 Conclusions . 172

7 Conclusions 174

IX Conclusions and Perspectives 176
Future Work and Perspectives . 178

Appendices 179

A Mathematical Background 179
A.1 Notation used . 179
A.2 Statistical distribution of physical parameters 179
A.3 Beta Distribution . 181
A.4 Gamma Distribution . 183
A.5 Laplace Distribution . 183
A.6 Binomial Distribution . 184
A.7 Poisson Binomial Distribution . 185
A.8 Confidence Intervals . 185
A.9 Statistical Bootstrap . 186
A.10 Heteroscedasticity in statistical modeling 186
A.11 Information Theory . 187

A.11.1 Entropy . 188
A.11.2 Joint Entropy . 188
A.11.3 Kullback-Leibler divergence . 189
A.11.4 Mutual Information . 189

A.12 Markov Chains . 190

B Simulations Source Code 192

C SRAMPlatform 196

D PUF Extrapolation 201

E Grid Search 210

Table of contents ix

List of Figures

1 Ring Oscillator Schematic with NAND Gate . 8
2 Design of Ring Oscillator PUF under study . 8
3 Schematic of a 6T SRAM Cell . 9

4 Diagram of the Simulation Environment . 16

5 SRAM-PUF testing workflow . 33
6 SRAMPlatform architecture diagram . 35

7 Visual representation of the industrial circuit . 42
8 Schematic representation of the Infineon circuit under study 43

9 NAND RO CMOS Schematic . 44

10 Visual representation of the arrangement of CRPs and computation of PUF metrics. 51

11 Desired set of CPRs and examples showcasing different phenomena 57
12 Heatmap of highly correlated CRPs . 58
13 Uniquess comparison between ideal case and correlated case 59

14 Auto-correlation matrix example of a PUF with Bit-aliasing=0.2 66
15 Example of Joint Probabilities . 68

16 Relationship between Frequency Difference and Reliability 77

17 RO signals and the resulting Beat from their difference 81
18 Frequency difference distributions and their corresponding distribution of repat-

ing intervals . 82
19 Relationship between 𝑍Δ and the different parameters 84

20 Description of the relationship between frequency difference and Entropy on
Differential PUFs. 87

21 Relationship between the frequency difference distribution and Bit-aliasing . . . 88
22 Relationship between Frequency Difference, Reliability and Entropy 88

23 Reliability of the RO-PUF at a single timestep . 89
24 Reliability of the RO-PUF at different time steps 90
25 Relationship between RO-PUF Reliability, counter difference threshold and valid

number of CRPs . 91
26 Relationship between RO-PUF Reliability, Entropy, counter difference threshold

and valid number of CRPs . 91

27 Wafer positions of the STM32 devices . 93
28 Temperature and voltage information of the STM32 devices 93
29 Histogram of SRAM-PUF metrics . 94
30 Scatter plot of Bit-aliasing across all bits in the SRAM 96
31 Heatmap of Bit-aliasing across all bits in the SRAM 97
32 Average Auto-Correlation matrix of the SRAM. 98
33 Average Kullback-Leibler divergence of the SRAM. 99
34 Average joint probabilities of the SRAM. 100
35 Reliability Invariance of the SRAM-PUF . 101
36 Heatmap of Punctual Bit-aliasing across all bits in the SRAM 102
37 Heatmap of difference between Bit-aliasing and Punctual-Bitaliasing across all

bits in the SRAM . 102
38 Kullback-Leibler divergence between Bit-aliasing and Punctual Bit-aliasing on

the SRAM . 103
39 Average Kullback-Leibler divergence between Punctual Bit-aliasing and Bit-

aliasing on each SRAM block. 103
40 Zoomed view of the average Kullback-Leibler divergence between Punctual Bit-

aliasing and Bit-aliasing on each SRAM block. 104
41 Average Mutual Information per block of 512 bits of the SRAM 105
42 Average Mutual Information per block of 1024 bits of the SRAM 106
43 Average Mutual Information per block of 2048 bits of the SRAM 107
44 Scatterplot of the SRAM Bit-aliasing after different samples. 109
45 Heatmap of the Reliable Entropy of a single SRAM 110
46 Distribution of RO frequencies in the 6 blocks of the Infineon circuit. 111
47 Histogram of the Infineon RO-PUF metrics . 111
48 Reliability Invariance of Infineon RO-PUF . 112
49 Kullback-Leibler divergence between Bit-aliasing and Punctual Bit-aliasing on

the Infineon PUF. 113

50 Digraph of the SRAM under study . 115
51 Byte value probabilities based on the column average of the Digraph 116
52 Hamming Weight probabilities based on the column average of the Digraph . . . 118
53 Hamming Weight digraph of the SRAM under study 118
54 Digraph containing only pairs with Hamming Weight of 3 120

55 Relationship between 𝜇Δ, 𝜎Δ and Entropy . 126

56 SRAM Bit-aliasing fitting of the Normal and Beta distributions 136
57 Entropy model for the RO-PUF . 138
58 Evaluation of the model on the Infineon Dataset 140
59 Entropy as function of Reliability using the derived expression 141
60 PUF response classification based on the relationship between Stability and Entropy 142
61 SRAM response classification. 143
62 SRAM response classification for normal and NBTI test samples. 144

List of Figures xi

63 Proposal for PUF classification to account for correlation effects 145

64 Relationship between 𝑃𝐸𝑞 and 𝑃𝐷𝑖𝑓𝑓 . 150
65 Comparison of different mapping functions. 152

66 Relationship between 𝑍Δ and the expected Bit-aliasing 155
67 Bit-aliasing variance under different number of devices, challenges, and 𝑍Δ . . . 156
68 Relationship between Bit-aliasing variance and the baseline. 157
69 Relationship between number of devices, challenges and binnarized residuals . . 158
70 Evaluation of the model for 120 devices and 74 challenges 161

71 Binomial representation of a CRP using a Markov Chain 169
72 Representation of a CRP using a Hidden Markov Chain 169
73 Uniformity Histogram . 170
74 Bit-aliasing Histogram . 170
75 Original SRAM CRPs and generated CRPs . 170
76 Bit-aliasing vs Reliability of original and generated SRAM CRPs 171
77 Hidden Markov Chain proposal for response modeling 171

78 Normal distribution and standard deviation . 179
79 Cumulative Distribution Function of the Normal distribution 180
80 Probability Density Function of the Beta Distribution 182
81 Probability Density Function of the Gamma Distribution 183
82 Probability Density Function of the Laplace Distribution 184
83 Representation of Homoscedasticity and Heteroscedasticity 187
84 Kullback-Leibler divergence between P(x) and Q(x) 189
85 Simple Markov Chain . 190

86 Picture of the deployed platform used to gather the data 196
87 Picture of Grafana . 197
88 Picture of Grafana . 198
89 Picture of the PUF4IOT website . 198

90 Python interface to extrapolate PUF metrics given a test dataset 201

List of Figures xii

List of Tables

3 PUF Classification . 7

4 Description of a communication packet . 35
5 Available commands in the platform . 37
6 Common data schema . 38
7 CRPs schema . 39
8 Sensors schema . 39
9 Potential problems that may occur during a WRITE operation 39

10 Nominal values for the Ring Oscillator . 45

11 Summary of the tested PUF designs . 48

12 Metrics classification according to methodology 50

13 Hard and Soft capacity of a PUF given the response size. 60

14 Summary of the SRAM-PUF metrics . 94
15 Summary of the Infineon RO-PUF metrics . 110

16 Common values in the digraph and their binary representation. 117
17 Number of values and ratio per Hamming Weight 119

List of Listings

2.1 Configuration example for Monaco . 21
2.2 Jinja template to generate inverters. The Inverter subcircuit definition has been

omitted. 21

3.1 NIMPHEL example code to generate a 2D array 27

2.1 SRAMPlatform packet example . 36
2.2 Fibonacci’s sequence in zForth . 38

3.1 Computation of the Reliability Invariance Matrix in Python 64

4.1 Digraph computation using Python. 114

4.1 R code to binarize the results . 159
4.2 R code to fit the residuals to the Laplace distribution 159

6.1 Hidden Markov Chain implementation in R . 170

B.1 Example Ocean Script. The command exit() is needed when executing ocean
scripts from the terminal or ocean will wait for user input 192

B.2 Example Ocean Script with template placeholders 193
B.3 Verilog-A implementation of the counter that measures the frequency of a single

Ring Oscillator . 194
B.4 Verilog-A implementation of the observer that stores parameters of interest at

the desired timesteps . 194
B.5 Example configuration in YAML for Monaco . 195

C.1 . 200

D.1 Python module to extrapolate PUF metrics given a test dataset 207
D.2 Python source code for the TK Graphical User Interface 209

E.1 Julia implementation of the Grid Search to study the relationship between the
frequency difference distribution and PUF metrics 211

E.2 Julia implementation of the Grid Search to study the relationship between PUF
metrics . 214

E.3 Julia implementation of the Grid Search for the Time-To-Response analysis . . 214

List of Listings xiv

Glossary

Challenge A challenge is defined as a numeric index to select a unique
response from a PUF

Enrollment Process of obtaining the first sample of responses from a PUF to
store it in the CRP database

Interrogation Process of providing one or multiple challenges and obtaining
various response bits (strong PUF) or the whole response (weak
PUF)

Repeatability Used as synonym of Reliability, rpresents the ability of a system
to produce the same output given the same inputs.

Response Output of the PUF after the interrogation process

SPICE Simulation Program with Integrated Circuit Emphasis

Verification Process of applying a challenge from the CRP database to a PUF
and check its response

Glossary xv

Acronyms

AMS Analog and Mixed Signal

ASIC Application-Specific Integrated Circuit

CAD Computer Aided Design

CDF Cumulative Distribution Function

CI Confidence Interval

CMOS Complementary Metal Oxide Semiconductor

CRP Challenge Response Pair

DSE Design Space Exploration

ECC Error Correcting Code

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

IoT Internet of Things

LUT Look Up Table

MC Markov Chain

ML Machine Learning

MLE Maximum Likelihood Estimation

NBTI Negative Bias Temperature Instability

NVM Non-Volatile Memory

PDF Probability Density Function

PDK Process Development Kit

PUF Physical Unclonable Function

PVTA Process, Voltage, Temperature and Aging

RNG Random Number Generator

RO Ring Oscillator

SNM Static Noise Margin

SoC System On Chip

Acronyms xvi

SRAM Static Random Access Memory

SVM Support Vector Machines

Acronyms xvii

I

Introduction

Introduction I.1
Security in the real world, particularly in the realm of electronics, is of paramount im-
portance as our reliance on digital systems and devices continues to grow. With the
proliferation of Internet of Things (IoT) devices, embedded systems, and advanced hard-
ware platforms, ensuring robust security measures is crucial to protect sensitive data,
prevent unauthorized access, and maintain the integrity of critical infrastructure. In the
field of electronics, security threats manifest in numerous ways, including hardware hacks,
side-channel attacks, and malicious software intrusions. These vulnerabilities can lead to
significant financial losses, compromise personal privacy, and significant breaches, com-
promising sensitive information and potentially causing catastrophic failures in critical
systems. According to the European Union Agency for Cybersecurity (ENISA), threats like
Supply chain compromise of software dependencies, Human error and exploited legacy
systems within cyber-physical ecosystems, Targeted attacks enhanced by smart devices
data, Rise of advanced hybrid threats are among the leading threats in their forecast for 2030.
Additionally, ransomware attacks on critical infrastructure, like the 2021 Colonial Pipeline
incident, demonstrate how electronic vulnerabilities can lead to substantial economic and
operational disruptions.

Forgery [9] is a real threat of goods nowadays, and it’s not only in the context of electronics.
It can lead to huge economic losses, distrust between parties and most importantly, hazards
to human safety.

Other problems that diminish trust between parties are hardware trojans, [10, 11, 12], which
are unauthorized modifications of integrated circuits in order to execute a malicious action
triggered by a determined payload.

Side-channel attacks for Systems On Chip shortplural (SoCs) are an active field of research as
highlighted in [13, 14]. These type of attacks try to gather information about the behaviour
of the circuit either by passive or active means, both being very successful.

To combat these issues traditional security system have employed security primitives to
construct secure communication protocols and protect data integrity. These primitives
include basic algorithms and protocols such as encryption, hashing, digital signatures, and
key exchange mechanisms. Cryptographic systems have long relied on storing sensitive
information, such as cryptographic keys and authentication data, in Non-Volatile Mem-
ory (NVM) like EEPROM, Flash memory, and hard drives. While these methods offer the
advantage of data persistence even when the power is off, they also present significant vul-
nerabilities. NVMs can be physically tampered with, allowing attackers to extract, modify,
or forge critical secrets. Techniques such as probing, reverse engineering, and side-channel
attacks enable malicious entities to access the stored data without authorization.

1 Introduction 2

These vulnerabilities highlight the inherent limitations of NVM-based security systems.
Since the data remains intact even when the device is off, it is exposed to various physical
and electronic attacks that can compromise the entire security framework. Furthermore,
once an attacker gains access to the NVM, they can not only read the stored secrets but
also alter them, potentially inserting malicious code or forging authentication credentials.
These limitations have prompted the development of alternative security approaches that
do not rely on static storage of sensitive information.

One such approach involves using PUFs, which leverage the inherent physical variations
in semiconductor devices to generate unique and unpredictable responses, making them
difficult to duplicate or predict even given complete information about the device. Akin
to how no 2 humans have the same fingerprints, there are no 2 circuits alike, even if they
are designed equally and manufactured in the same environment. Unlike NVMs, PUFs do
not store secrets in a static form; instead, they generate them dynamically in response to
specific challenges. This makes PUFs highly resistant to physical attacks and tampering,
which makes them ideal for anti-counterfeiting, key distribution, and key storage as already
argued by many [15, 16]. By addressing the vulnerabilities associated with NVMs, PUFs
and other innovative security primitives offer a promising path forward in the quest to
protect sensitive information in electronic systems.

They take their name from the mathematical idea of one-way function [17], that is a
mechanism that it’s easy to compute for every input, but given the output is very complex
to derive the input. When a specific input, known as a challenge, is applied to a PUF, it
generates a corresponding output, called a response. The set of challenges and responses
of a PUF is known as Challenge-Response Pairs (CRPs). The uniqueness of CRPs is derived
from the unique physical characteristics of each PUF, ensuring that the same challenge
applied to different PUFs yields different responses, and the same PUF consistently produces
the same response to the same challenge under stable conditions. Because the set of CRPs is
unique to each device and inherently tied to its physical properties, PUFs are ideal for device
authentication and cryptographic key generation. By storing a predefined set of CRPs for a
device, authentication involves verifying that the device produces the correct responses
to specific challenges. This method guarantees the device’s authenticity and ensures it
has not been compromised. Moreover, PUFs can dynamically generate cryptographic keys
unique to each device. By utilizing specific challenges and their corresponding responses,
secure keys can be generated instantly without the need for storing them in non-volatile
memory.

There have been many proposals but the first technique to assign a unique identification to
every single instance of an IC was proposed in [18]. In the next section, the development
of the different PUF designs and entropy sources will be explored in detail.

In hardware security modules, companies like Synopsys through the recently acquired
Intrinsic ID, use PUF technology to generate unique cryptographic keys, ensuring robust
authentication and protecting sensitive data. Similarly, in the IoT sector, Infineon Tech-
nologies, through its acquisition of Cypress Semiconductor, leverages PUFs to secureIoT

1 Introduction 3

devices. These unique identifiers make it difficult for unauthorized entities to access or
tamper with the devices.

PUFs also play a significant role in anti-counterfeiting efforts and Field Programmable Gate
Array (FPGA)-based system security. Verayo employs PUF-based technologies to create
unique fingerprints for products, helping to verify authenticity and combat counterfeiting
in industries like pharmaceuticals and luxury goods. Additionally, Xilinx integrates PUFs
into FPGAs to protect configuration data and intellectual property, preventing unauthorized
access and replication. These applications highlight the versatility and effectiveness of
PUFs in enhancing security across diverse domains.

1 Introduction 4

Overview of PUF Architectures I.2
Although fingerprint identification of humans dates back at least to the 19th century [19],
early forms of PUFs were inspired by anti-counterfeit measures used in currency bills [20,
21] almost at the end of the 20th century. The unique and random fibre structures in paper
bills were exploited to verify authenticity, leading to the development of Reflective Particle
Tags for unclonable identification [20, 22, 23, 24]. However, it wasn’t until the early 2000s
that PUF technology began to take its modern form. In 2002, Pappu introduced the first
optical Physical One Way Function (POWF) [17], and Gassend introduced delay-based
PUFs, including the Ring Oscillator PUF, marking the beginning of a new era in hardware
security [25].

The successive years saw rapid advancements in PUF technology. Gassend’s introduction of
the Arbiter PUF in 2003 [26] and Lee’s proposal for the Arbiter PUF in 2004 [27] highlighted
the additive nature of delay chains, leading to the creation of model-building attacks [25,
27]. To counteract these attacks, Lim developed the Feed-forward Arbiter PUF [28], which
introduced intermediate arbiters to create non-linearities in the delay lines. Despite these
efforts, arbiter PUFs remained vulnerable to state-of-the-art machine learning attacks [29,
30]. In 2005, Vrijaldenhoven introduced the first acoustical PUF [31], followed by Tuyls’
Coating PUF in 2006 [32], which incorporated random elements through a dielectric coating,
enhancing security against physical attacks [33].

The period between 2006 and 2009 saw the diversification of PUF designs and applications.
Simpson’s work in 2006 idealized the use of PUFs in Field-Programmable Gate Arrays
(FPGAs) [34], leading to the first FPGA-based SRAM-PUF by Guajardo in 2007 [35]. Dejean
proposed the first RF-DNA PUF, which utilized near-field scattering of electromagnetic
waves [36]. In 2008, Helinski introduced a PUF based on resistance variations in the power
grid of a chip [37], and Oeztuerk adapted a Hopper-Blum style protocol for modelable
arbiter PUFs [38]. Holcomb’s SRAM-PUF in 2009 provided a robust method for device
identification [39], and Guajardo’s LC PUF combined capacitive and inductive components,
offering a unique approach to PUF design [15].

The advancements continued with the development of various PUF types, including the
TERO-PUF proposed by Bossuet in 2013, which improved upon the standard Ring Oscillator
PUF [40]. These innovations underscored the versatility of PUFs in enhancing security
across diverse domains, from secure key generation and device authentication to anti-
counterfeiting measures. The inherent physical variations in semiconductor devices used
by PUFs make them difficult to duplicate or predict, providing a robust solution against
physical attacks and tampering.

Throughout these developments, researchers also recognized the trade-offs involved in
PUF design. Skoric’s work in 2005 and 2006 highlighted the challenges of extracting
robust keys from noisy PUFs, emphasizing the need to balance the number of extractable

2 Overview of PUF Architectures 5

bits with noise levels [41, 33]. These insights have guided the ongoing evolution of PUF
technology, ensuring that it remains a critical component of modern hardware security
systems. The unique identification capabilities of PUFs, as demonstrated by Lofstrom’s
ICID technique [18], continue to drive innovations in secure electronic systems, offering
promising solutions for future applications.

Special effort is put on SRAM-based PUFs and delay-based PUFs, particularly the RO-PUF
due to their simplicity and overall good performance, as proven experimentally in [42,
43] where the authors show that SRAM PUFs and both delay-based PUFs show good PUF
behaviour, with high reliability (less than 10% noise at corner cases and after ageing) and
high uniqueness (very close to 50%).

2.1 PUF Taxonomy

Following the classification presented in [44] and the additions of novel technologies as
highlighted in [45], PUFs can be classified according to the origin of the randomness source,
the evaluation process and the application:

• According to the randomness source as follows:

– Implicit: They are inherent in the physical characteristics of the device or
component itself. They exploit inherent variations in manufacturing processes
or physical properties that are not explicitly designed as PUFs but can be used
for identification or authentication purposes.

– Explicit: Explicitly designed and implemented for specific purposes such as
authentication or key generation. They are intentionally structured and char-
acterized to provide secure and reliable responses. Randomness is applied
externally through additional steps.

• According to the evaluation process:

– Intrinsic: They derive their uniqueness and variability from inherent physical
properties that are difficult to clone or replicate. The variability is primarily
due to uncontrollable factors in the fabrication process.

– Extrinsic: Utilize external stimuli or components to create variability or re-
sponses. They may rely on environmental conditions or additional components
to generate their unique identifiers.

• Finally, according to the application:

– Weak: Low number of challenges. Industrial grade PUFs tend to have 128 to
256 CRPs.

– Strong: Extremely large number of challenges that cannot be used exhaustively.

A summary of the main distinctions between weak and strong PUFs can be found in [46].

An overview of the most common PUF designs as depicted by [47, 44] is portrayed in 3.

2 Overview of PUF Architectures 6

PUF Technology Variations Classification

Arbiter CMOS Arbiter PUF [48] Explicit, Intrinsic, Strong

Ring Oscillator TERO PUF [40] Implicit, Intrinsic, Weak

VERO PUF [49] -

Loop PUF [50] -

Group-based RO [51] -

SRAM PUF Originally proposed in [52] Implicit, Intrinsic, Weak

DRAM Originally proposed in [53] Implicit, Intrinsic, Weak

FPGA Intrinsic LUT PUF [54] Explicit, Intrinsic, Weak

CLB PUF [55] -

DD-PUF [56] -

Routability PUF [57] -

Butterfly Variation of the SRAM PUF tailored to
FPGAs

Explicit, Intrinsic, Weak

Memristive [37], [58], [59], [60] Explicit, Intrinsic, Weak

mrPUF [61] Implicit, Intrinsic, Weak

Magnetic Magnetic Tunnel Junction [62] Implicit, Intrinsic, Weak

Carbon Nanotube Originally proposed in [63] Explicit, Intrinsic, Weak

Optoelectric Photonic PUF [64] Explicit, Extrinsic, Weak

Table 3: PUF Classification

Furthermore, in the recent years Higher Order Alphabet (HoA) PUFs [65] have been pro-
posed, where the output is not limited to bit values but to a series of symbols. However, this
still remains a little explored field due to the added complexity of their security assessment
[66].

2.2 Ring Oscillator PUF

A Ring Oscillator (RO) consists of an odd number of inverters connected in a ring whose
output oscillates due to the delay between different inverters To assure that a RO only
oscillates when necessary, an enable signal should be used. This can be done by using a

2 Overview of PUF Architectures 7

NAND gate and an even number of inverters, as shown in Figure 1 or an AND gate and an
odd number of inverters.

Enable

Figure 1: Ring Oscillator Schematic with NAND Gate

A Ring Oscillator PUF (RO-PUF) leverages the unique characteristics of ring oscillators.
Due to manufacturing variability the ROs oscillate at slightly different frequencies. When a
challenge is applied to an RO-PUF, the pair of ROs given by the challenge oscillates, and the
resulting response is computed based on the frequency difference on the pair as depicted
in Figure 2. Consequently, all CRPs of an RO-PUF is extracted by measuring the frequency
difference of all available pairs of ROs.

...
...

Figure 2: Design of Ring Oscillator PUF under study

RO-PUFs are advantageous due to their simplicity and ease of integration into existing
digital circuits. They are also known for their robustness against environmental changes,
making them a reliable choice for many applications.

However, RO-PUFs are very sensitive to supply voltage variatations, which is one of the
main reasons of unreliability. Furthermore, there is an relationship between the number of
stages and the quality of the bits generated, as demonstrated by [67], so a proper assesment
of each RO-PUF desgins is necessary.

2.3 SRAM PUF

SRAM-based PUFs exploit the power-up states of SRAM cells to generate unique identifiers.
While there are many designs of SRAM cells, and topologies, the most common one remains
the 6 transistors (i.e. 6T) shown in Figure 3, as it is the fastest.

2 Overview of PUF Architectures 8

Figure 3: Schematic of a 6T SRAM Cell

While each cell is designed to be symmetric, process variability will result in inverters of
different strength, making the cell biased towards 0 or 1 so that when an SRAM cell is
powered on, it randomly settles into a 0 or 1 state. By reading the initial states of a set
of SRAM cells, a unique fingerprint can be generated. In this case, the set of CRPs of the
SRAM-PUF is extracted by reading the required number of bits.

SRAM-PUFs are particularly appealing because they do not require any additional circuitry;
they use the existing memory cells present in most microcontrollers and processors. This
makes them cost-effective and easy to deploy in a wide range of devices.

One of the first to exploit metastability effects is the work in [68]. Following that, many
statistical and empirical analysis on the stability of SRAM cells [69, 52, 70, 71] suggested
the use of SRAM cells for PUF designs. Among the numerous silicon-PUFs proposed in the
literature, the SRAM-PUF [72, 35, 52, 39, 73] is one of the most popular because ubiquity
of memories in any circuit. Due to transistors’ manufacturing variations the symmetry
of an SRAM cell is broken resulting in a preferred power-up state for the memory cell.
Combining multiple cells is possible to create a start-up pattern that can be used as a
signature. The Butterfly PUF [74] uses the same principle of the SRAM PUF, but is usually
deployed on FPGAs using LUTs.

One of the main limitations of SRAM-based PUFs is the low yield of reliable bits as shown
by [75], which most of the time is solved with ECCs and a large area consumption due
to the redundancy. Although unwanted, this effect can be exploited to generate random
numbers as depicted in [76, 77].

SRAM-PUFs are very sensitive to supply voltage as the cell power-up state is strongly
dependent on the power supply ramp rate and direction as suggested by [78] and demon-
strated through experiments and simulations [79, 80]. Many power control techniques have
been proposed in the literature as seen in [81, 82, 83, 84]. However, this still remains a great

2 Overview of PUF Architectures 9

challenge as normally SRAMs are also shared by other applications and a well-designed
power system needs to be used across all applications.

2 Overview of PUF Architectures 10

Challenges in PUF design I.3
PUFs designs have gathered significant attention from the research community, particularly
in identifying vulnerabilities and in parallel have raised some important questions regarding
their quality and security. A comprehensive overview of PUF attacks and limitations is
presented in12, with many novel attack techniques and mitigation strategies emerging since
then.

Side-channel attacks exploit implementation-specific phenomena to extract information
about certain behaviours of interest. For instance, side-channel attacks have yielded
promising results in arbiter [87] and SRAM-PUFs [88] through power analysis. A plethora
of mitigations techniques [89, 90, 91], have been proposed to combat a range of non-invasive
and probing attacks.

The most compelling attacks challenging the unclonability claim of PUFs are invasive
techniques, as demonstrated in [92, 93], where a series of invasive optical attacks success-
fully extracted SRAM bits and facilitated the creation of custom SRAM clones. However,
these type of attacks still remain very costly and require expensive machinery with limited
availability.

Moreover, external attacks are not the sole concern for PUFs. Environmental factors
significantly impact the reliability of responses. Techniques to mitigate the effects of
environmental factors are proposed in [94]. Another critical limitation is the reliability of
PUFs, specifically their ability to consistently produce the same secrets.

Numerous studies have attempted to quantify the effect of ageing on PUF reliability, such
as [95, 96]. These works observed that most of the PUF’s ageing instability occurs early in
its lifetime. Additionally, a high correlation has been observed between instability caused
by ageing and instability caused by temperature.

The work in [97] shows that ageing has a minimal impact on delay chains, as each element
ages independently. However, the memory point, such as the latch of the arbiter, is much
more sensitive to ageing due to the asymmetry of its dual structure. Thus, the ageing of an
element differs from that of its dual element, and the difference continuously increases. This
highlights the advantage of using simple delay-PUFs, such as the Loop-PUF, to avoid the
imbalance of the arbiter or SRAM memory points. Promising modifications to certain PUF
designs have been proposed to combat ageing and reduce the effect of external working
conditions [98].

1D. Mukhopadhyay and R. S. Chakraborty, Hardware security: design, threats, and safeguards. CRC Press, 2014.
2U. Rührmair et al., ‘Special session: How secure are pufs really? on the reach and limits of recent puf
attacks,’ in 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp. 1–4. doi:
10.7873/DATE.2014.359.

3 Challenges in PUF design 11

https://doi.org/10.7873/DATE.2014.359

From an analytical and software perspective, reliability issues are typically addressed
through Error Correcting Codes shortplural (ECCs), as shown in [99, 100]. Additional
software-based techniques have been proposed to complement ECCs [101]. However, error-
correcting mechanisms could leak critical information about the PUF, as illustrated by new
threats regarding helper data leakage and manipulation [102, 103]. One important example
of this is highlighted in [104], where the authors show that an attacker can observe system
failure rates of an RO PUF to retrieve the public key, or at least obtain some information
about it. To mitigate these issues, the authors we encourage the use of fuzzy extractors,
the well-established reference solution.

Implementation-specific limitations also exist. For example, [105] demonstrates that when a
PUF requires routing constraints, as with arbiter PUFs, its implementation is more effective
on Application-Specific Integrated Circuit (ASIC) than on FPGA due to manual routing.
Additionally, Complementary Metal Oxide Semiconductor (CMOS) variation extraction is
better on ASIC than FPGA, enhancing PUF uniqueness. Experimental studies like [106]
and [107] show that variability distribution in FPGAs is not uniform, necessitating extreme
care in the placement of ROs in the FPGA and their comparison method.

Modeling attacks present a significant threat to PUFs, particularly to strong ones. Advanced
Machine Learning (ML) algorithms and sophisticated statistical techniques have demon-
strated their efficiency in modeling the behavior of strong PUFs, enabling attackers to
predict previously unseen responses. Additionally, both invasive and non-invasive methods
have proven effective in replicating weak PUFs. A comprehensive description of these
modeling and cloning attacks is provided later in Chapter I.1.

In conclusion, the challenges that hinder PUF large-scale deployment are:

• Side-channel and invasive attacks pose serious threats to PUFs, with mitigations and
new attack techniques continually emerging.

• Environmental factors and ageing impact PUF reliability, with studies highlighting
early instability and high correlation between ageing and temperature effects.

• Reliability issues are addressed through ECCs and software-based techniques, though
these can introduce new vulnerabilities. Fuzzy extractors seems to solve these issues
without introducing vulnerabilities.

• Developing protocols for PUFs is challenging, requiring new hardware properties
and certification mechanisms.

• The lack of standardized certification slows down broader adoption of PUFs in
security-sensitive applications, highlighting the need for tailored certification pro-
cesses.

• ML and statistical techniques pose a significant threat to strong PUFs and invasive
techniques have been proven effective in creating clones of weak PUFs.

The scope of this manuscript is narrow, and not all issues are addressed. In this thesis,
we concentrate on the Reliability of differential PUFs, particularly Ring Oscillator PUFs
(RO-PUFs), and its relationship with Entropy. We also conduct a detailed study of the
canonical metrics for PUFs, their interconnections, the proposal of new metrics to examine

3 Challenges in PUF design 12

rarely studied effects such as spatial correlation, and the development of methodologies to
estimate the behavior of a PUF system from a small sample set. Additionally, we explore
the use of mathematical analysis to create “digital twins” or software clones of certain PUF
designs, which reduces the cost and time required for PUF testing.

3 Challenges in PUF design 13

II

Simulation Workflow

Simulation Environment II.1
Design complexity, ultra-low-power requirements, reliability, robustness, and security are
becoming increasingly important concerns in electronic system design. Additionally, the
aggressive scaling of CMOS technology and the introduction of beyond-CMOS devices (such
as CNT-FET, Memristive, and Spintronic) impose additional challenges, necessitating thor-
ough testing to account for varying technological characteristics. Studying the behaviour
of electrical circuits under different conditions and parameters is imperative. Multiple
simulations are performed under the appropriate conditions to achieve this. In today’s
circuits with novel technologies, the number of parameters and their interdependencies
can be prohibitively large for exhaustive study, making statistical techniques like Monte
Carlo1 and parametric simulations the classical approach to obtain statistically relevant
data for proper circuit assessment. SPICE2 is the lingua franca used to describe electronic
circuits and is at the heart of every electric simulator.

The circuits under study were created in Cadence Virtuoso and simulated using Cadence
Spectre, with all designs using the CMOS 65 nm ST Microelectronics technology. Verilog-A
modules were developed to record information about parameters of interest at specified
intervals. The Verilog-A source code of these modules is provided in the Appendix B.3.
Spectre stores the rest of the parameters and simulation results by default into a PSF
database (a proprietary format of Cadence). Additional post-processing was necessary to
export the selected signals and parameters to a format suitable for the analysis environment.
With the inclusion of various Verilog-A modules, the signals and parameters were directly
stored in CSV files, which were better suited for analysis.

Ocean, the proprietary scripting language developed by Cadence, was used to perform
simulations and to perform computations (i.e. oscillation frequency). During the initial
iteration cycles, simulations were launched using a combination of shell batch jobs and
Python scripts. While effective for initial simulations, the need for in-depth analysis
required the development of more sophisticated tools offering greater flexibility. An
overview of the initial environment used is shown in Figure 4.

Nonetheless, several limitations of the Electronic Design Automation (EDA) and simulator
software severely restricted the development of the studies.

First, the utilized Probability Density Function (PDF). The absence of these models restricted
access to specific EDA tools, includingMonte Carlo simulations. To overcome this limitation,
it was necessary to either develop the statistical models from scratch or directly inject the

1N. Metropolis and S. Ulam, ‘The monte carlo method,’ Journal of the American statistical association, vol. 44,
no. 247, pp. 335–341, 1949.

2L. W. Nagel and D. Pederson, ‘SPICE (simulation program with integrated circuit emphasis),’ EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/ERL M382, Apr. 1973. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html.

1 Simulation Environment 15

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

Ocean

SPICE
Netlist

Counter.va

Observer.va

Simulator Results

Stimuli

Configuration

+

Figure 4: Diagram of the Simulation Environment

parameters into the netlists. This process was highly time-consuming, particularly when
simulating various circuits with differing parameters.

Second, the EDA software exhibited a significant constraint: it had a fixed upper limit of 1024
parameter variations per simulation. While this might be adequate for very small circuits
or a low number of parameters, it proved insufficient for our study of ROs, which easily
exceeded this limit. The RO under simulation, illustrated in Figure 2, consists of a NAND
gate and an even number of inverters. The NAND gate comprises four transistors, and each
inverter consists of two transistors. For each transistor, the width, length, and threshold
voltage were varied. Considering a minimum of three values per parameter (minimum,
maximum, and nominal), the total number of variations is calculated as (4⋅3⋅𝑉)+(𝑁⋅2⋅3⋅𝑉),
where 𝑁 is the number of stages and 𝑉 is the number of values. For example, with 𝑁 = 64
and $V = 3 $, the total number of values is 1188, which exceeds the upper limit. In practice,
we would need hundreds of values per parameter and many more stages. Therefore,
performing parametric simulations directly using the EDA software was highly constrained,
necessitating the use of batch jobs and Python scripts as workarounds.

Another significant issue was the lack of observability. Although Virtuoso can save all
parameters during the transient simulation onto a PSF database, manually exporting this
data can delay the analysis workflow. Additionally, several critical requirements imposed
serious constraints on the workflow.

Exporting data to custom formats further complicated the workflow. Aggregating results
after complex parametric simulations is tedious and time-consuming, requiring a significant
portion of project time just for data preprocessing and preparation.

The scarcity of open-source tools for PUF analysis, particularly within the realm of EDA,
necessitated the development of new open-source solutions. Notably, the availability of
tools between industry and academia, as well as between digital and AMS designs, varies
significantly. Observing the landscape of analog tools for security revealed an opportunity
to advocate for the utilization of open-source tools by developing and introducing new
ones.

1 Simulation Environment 16

Finally, the absence of standardized software and algorithms for PUF analysis posed a
significant challenge as well. Despite the existence of canonical algorithms recognized by
the scientific community, there is a notable lack of standardized and publicly documented
software for PUF analysis. While there are established test suites for RNGs, such as NIST
and Dieharder, most PUF analysis algorithms lack similar standardization. To address this
gap, the open-source PUFR (available online at https://servinagrero.github.io/pufr/) library
was developed for the R programming language. This library was consistently used for the
statistical evaluation of the PUF under study. Future plans include expanding this suite of
functions and developing a Python version.

These limitations and constraints prompted the creation of numerous open-source frame-
works and data analysis libraries. These tools were designed to be easily adapted to the
existing environment and are expected to significantly benefit the analog design community
by addressing the identified challenges.

Regarding the development of new tools, it is crucial to address the exploration-exploitation
dilemma, a concept relevant across various scientific domains. This dilemma encapsulates
the balance between two contrasting strategies: exploitation and exploration. Exploitation
involves selecting the best option based on current knowledge of the system, which may be
incomplete or potentially misleading. On the other hand, exploration entails experimenting
with new options that might lead to superior outcomes in the future, though this comes
at the expense of immediate exploitation opportunities. Essentially, there is a trade-off
between extensibility (addressing a wide range of problems) and specificity (effectively
solving a particular problem).

The following sections present in detail the various software tools developed to tackle the
limitations of the study presented here.

1 Simulation Environment 17

https://servinagrero.github.io/pufr/

Monaco II.2
To explore the behaviour of an electrical circuit under different designs and conditions,
multiple iterations and simulations must be performed under the desired configuration. The
interdependencies of large and complex circuits can quickly become a significant challenge
due to the extensive number of choices at play.

Design Space Exploration (DSE) examines the various possibilities and design options
within the allowed design space, considering the constraints and requirements to fulfil
specified performance goals. DSE typically involves the use of tools and high-level abstract
models to automate and streamline the exploration process, as the design space is too vast
to be explored manually. The industry is keen to accelerate this process and reduce the
time between iteration cycles. Computer Aided Design (CAD) and EDA have drastically
improved over the last decades, thanks to newmethodologies, tools (e.g., Cadence, Synopsys,
Xyce), and the recent addition of artificial intelligence techniques such as genetic algorithms
and machine learning.

However, algorithms implemented in industrial CAD tools do not offer designers full
control and observability of desired parameters. Additionally, the range and distribution of
parameters are defined in technological libraries provided by silicon foundries. These data
are not easily accessible for emerging technologies and are not yet embedded in industrial
libraries.

A unified framework is proposed for both statistical and parametric simulations performed
independently or concomitantly. This framework allows designers to fully control the
range of parameters and observe circuit behaviour comprehensively. It also enables the
correlation of circuit behaviour with the parameters used during simulation. The framework
implements the following steps:

• Define the set of parameters relevant to the study, targeting process variability, oper-
ating/environmental conditions, stochastic behaviours, ageing, and perturbations.

• Identify the relevant signals that fully characterize circuit behaviour.
• Generate the value of each parameter using a user-defined function.
• For each combination of parameters, generate and simulate a netlist. The relevant
signals provide the required information about circuit behaviour.

2.1 State of the art

The majority of available EDA software for electrical design and simulation provide a
graphical user interface to generate circuits based on a drag-and-drop mechanism which
is very user-friendly. The graphical user interface can be also used to customize different
aspects of the simulation to provide the necessary parameters to the simulator.

2 Monaco 18

However, not every available tool provides a mechanism to easily save this configuration
to be used later, or on a different computer. Therefore, in order to share a project between
different teams, the exact same configuration of the project and sometimes even the operat-
ing system have to be precisely copied, which is an unreasonable task to do. Moreover, this
problem grows larger with the complexity of the circuit.

CAD tools automatically perform the conversion between the graphical schematic and the
textual netlist. Moreover, there are some tools available online that allow parsing netlists or
converting results from one file format to another, but these tools are limited since parsing
netlists is contextual and simulator-dependent. The same is applied for the file formats
containing simulation results as most of the time a special tool is needed to view the results,
which makes aggregating results challenging. An example of an automated CAD tool is the
AWR Design Environment (AWRDE), provided by Cadence, working in a custom language
called SAX. This tool works via a simple interface where the user can control any aspect of
the environment through code. Users have also access to powerful tools that allow them to
modify part of the circuit and generate custom reports programmatically, and even perform
analysis in Python. However, this tool requires an expensive licence that not everyone is
able to afford and requires some time to learn to properly use its functionalities.

Additional tools like PySpice1 and Skidl (https://devbisme.github.io/skidl/) allow the
generation of netlists and the launch of simulations directly with Python. This integration
consolidates both stimuli and configuration within a unified logic block, thereby minimizing
the time required for iteration cycles. However, it is important to note that this solution is
confined to the NGSpice and Xyce simulators, potentially influencing the overall workflow.
This however, has been one of the main inspirations to build the software presented in the
next chapter. As of recent works, the authors in2 also resort to the methodology proposed
here.

2.2 Proposed methodology

The proposed workflow using this tool is the following:

1. Generate the design to study using the EDA tool of choice
2. Obtain the necessary design files. Most likely just the SPICE netlist will suffice
3. Modify the files to add the placeholders where the values will be injected
4. Generate the inputs and stimuli that we want to inject
5. Provide the configuration to Monaco, that is, the number of iterations, the stimuli,

the templates and the commands to execute
6. Monaco will take the templates, inject the values and execute the commands in order

for the specified number of iterations

1F. Salvaire, Pyspice. [Online]. Available: https://pyspice.fabrice-salvaire.fr.
2A. Xynos and V. Tenentes, ‘Metaspice: Metaprogramming spice framework for the design space exploration
of puf circuits,’ in 2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST),
2023, pp. 1–4. doi: 10.1109/MOCAST57943.2023.10176643.

2 Monaco 19

https://devbisme.github.io/skidl/
https://pyspice.fabrice-salvaire.fr
https://doi.org/10.1109/MOCAST57943.2023.10176643

An advantage of using template engines is that control logic can be embedded directly
inside the templates, which in turn means that certain parts of a template can be rendered
or discarded depending on the values of some variables.

2.3 Description of the framework

The framework is divided into two parts. The first part is a spice netlist and simulation
configuration builder written in Python. The second one is a Verilog-A module to write the
state of an electrical component to a CSV file.

The process of parametric simulations boils down to creating a copy of the analog design
and “injecting” the desired parameter values into their corresponding place. This can be
done directly from ADE XL in Cadence, where we have a graphical interface to select the
parameters in the circuit we want to change.

And since it’s a text format, it’s easy to generate them by hand, although it’s easier to
generate circuits with graphical tools. The first iteration used the Jinja Python library
(https://jinja.palletsprojects.com/en/2.10.x/) to inject the parameter into text files. The
project was ported to Rust, and it now makes use of the Handlebars template engine
(https://handlebarsjs.com/).

2.4 State observer

The state observer is designed for Spice- and Verilog-A-based simulators. It is a sub-
circuit that is placed in the schematic and is connected to the components in need of
measurements.

For transients simulations, the state observer will write the state measured every time step
to a CSV file, so that it can be easily loaded into any conventional software to analyse and
extract information. For this reason, the simulation parameter STEP_SIZE found in the
simulation environment is particularly important: it allows running the state analyser with
the desired granularity. Moreover, as shown in the examples section, the state observer
can be modified to save the wanted data only in certain cases, to allow a lighter and more
application-specific log.

The idea of being able to externally save results in a user-defined file comes also useful in
case we want to modify the parameters for the next simulations according to the results
just obtained. As an example, we could increase or decrease the step size of parameters
depending on how close we are to the expected working behaviour.

As previously illustrated, the capability to export desired results directly to a CSV file
offers two distinct advantages. Firstly, it eliminates the need for supplementary software to
convert data into a suitable format for analysis. Secondly, it affords complete control over

2 Monaco 20

https://jinja.palletsprojects.com/en/2.10.x/
https://handlebarsjs.com/

the data and its formatting, thereby reducing friction and facilitating greater extensibility
within our analysis workflow.

The Verilog-A module is provided in the Appendix B.4.

2.5 Netlist and simulation configuration tool

Monaco leverages the textual nature of netlists to generate the necessary stimuli for
simulations. A set of parameters can be generated a priori, injected into the templates, and
fed to the simulator. To achieve this, the user needs to define the different stimuli files used
as templates and specify the functions to generate the values for each iteration. The input
files are treated as templates and processed by a template engine. An advantage of using a
template engine is that logic can be embedded directly into the templates, allowing certain
parts of a template to be rendered or discarded based on variable values. A project can be
configured either in a TOML or a YAML file, as shown in 2.1. The actual configuration file
used for the simulations performed during this thesis is shown in the Appendix B.5.
1 jobs:
2 - name: oxram
3 ignore_errors: false
4 iters: ”./props.json”
5 log: ”./log/run_^{{iter.idx^}}.log”
6 templates:
7 - ”template.scs:input.scs”
8 - ”runTemplate:runSimulation”
9 steps:

10 - sh ./runSimulation

Listing 2.1: Configuration example for Monaco

The source code presented in 2.2 shows a small section of a SPICE netlist featuring a Ring
Oscillator. This part generates a chain of inverters where the number of stages is determined
by the user variable nstages. In this example, variability is induced by altering the length
and the 𝑉𝑡ℎ of each PMOS and NMOS.Thanks to the Jinja templates, the number of inverters
for each Ring Oscillator can be embedded in the logic and configured by the user. However,
this approach can quickly become convoluted if the requirements change throughout the
verification process.
1 V0 (vdd 0) vsource dc=${vdd} type=dc
2
3 {% for s in range(1, props.nstages) -%}
4 I^{{loop.index^}} (0 net^{{s^}} net^{{s-1^}} vdd) INV \
5 vthp=^{{ params['vthp'][loop.index0] ^}} \
6 vthn=^{{ params['vthn'][loop.index0] ^}} \
7 lp=^{{ params['lp'][loop.index0] ^}} \
8 ln=^{{ params['ln'][loop.index0] ^}}
9 {% endfor -%}

Listing 2.2: Jinja template to generate inverters. The Inverter subcircuit definition has
been omitted.

2 Monaco 21

2.6 Conclusions

The framework shown in this thesis is able to generate complex parametric electrical
simulations in a reliable and repeatable manner. This framework is open-source under the
MIT licence and works with any available commercial simulator as it doesn’t require major
modifications to the files used. This project was published in [1] and can be found online at
https://servinagrero.github.io/monaco.

2 Monaco 22

https://servinagrero.github.io/monaco

NIMPHEL II.3
The proposed framework aims to provide utilities that enable quick design space exploration
and parameterization of electronic designs. It offers a high-level abstract interface to create
modular and reusable components, which can be seamlessly parameterized to give users a
comprehensive overview of the design under various constraints and environments.

Using a programming language like Python as an abstraction layer for circuit generation
eliminates the limitations of a drag-and-drop graphical user interface, allowing the expres-
siveness of Python to quickly generate complex structures and leverage numerous available
scientific libraries. Similar to how CHISEL uses Scala to generate Verilog, this approach
benefits from the established language ecosystem, with limitations confined to those of the
language itself. While creating a custom file format is another solution, it involves higher
friction as users would need to adapt or develop new simulators to accommodate the new
format.

Graphical interfaces are prone to changes over time, whereas programming languages
remain stable, reducing the need for users to learn different software versions. Design
changes are reflected in the source code, simplifying the versioning process. Additionally,
using a well-debugged and formalized tool eliminates the need to manually check finished
netlists, a necessary step when netlists are created by hand and require validation and
correction for every modification.

Most commercially available software provides interfaces for parametric analysis of a
design. However, generating different versions of a circuit, such as a flash ADC with
varying bit numbers, typically requires manual creation, limiting exploration due to time
and complexity constraints. This tool allows embedding parametric characteristics directly
into components, enabling modular and programmable generation of multiple designs.

Moreover, most automatic circuit generation tools are either closed-source or application-
specific, such as SRAM generators. Python tools like PySpice and Skidl are primarily
focused on PCB design, which falls outside the scope of this framework.

The framework has two primary objectives: (i) to provide tools for creating electrical
components whose characteristics can be defined through dynamic models or logical rules,
and (ii) to offer powerful manipulation primitives for quickly creating complex component
arrangements. Leverageing Python’s utilities and flexibility, the framework facilitates
the generation of modular and reusable components. Designs created in Python can be
converted to any text format specified by the user, with a particular focus on SPICE netlists.
Although the framework emphasizes the rapid generation of complex designs, users can
write extensions for automatic simulation of the generated designs or other tasks such as
Electrical Rule Checking (ERC).

3 NIMPHEL 23

3.1 State of the art

Despite some incremental advancements in EDA tools, there has been a lack of significant
innovation or the introduction of new methodologies within the academic community. In
contrast, the field of digital electronics has seen the development of a vast array of tools
and methodologies.

Numerous tools are available for design space exploration. Frameworks like Chisel1 and
PyMTL32 offer high levels of abstraction, enabling the compilation of high-level languages
such as Scala and Python into fully functional Verilog code for hardware description.
These tools empower circuit designers with the expressiveness and power of programming
languages, facilitating the rapid creation of reusable circuits. However, these tools are
primarily targeted at Register Transfer Level (RTL) design and are not well-suited for analog
and mixed-signal designs.

PySpice [110] is a utility for generating SPICE netlists and launching simulations, embedding
the design and simulator configuration within the same language to streamline the design
iteration process. However, its simulation capabilities are limited to NGspice and Xyce, and
netlists can only be exported for PCB designs. Skidl (https://github.com/devbisme/skidl) is
built on top of PySpice, aiming to simplify the process of connecting different components.
The work in [114] also presents a similar methodology by providing a Python interface
to SPICE-based simulations. SPICE netlists are a universal format used by electronic
simulators, though each simulator has slight variations. The proposed framework aims
to support designs for any available simulator by providing tools to export the designs
accordingly.

Projects such as Magic3 provide automatic layout generation mechanisms. Magic is an
interactive software for creating and modifying VLSI circuit layouts, with a key feature
being the ability to scale layouts for different technology nodes. While user-friendly, this
ease of use comes with a 5 to 10% increase in area usage. Tools like LibreCell (https:
//codeberg.org/librecell) attempt to reduce this trade-off by limiting user options. Lower-
level tools such as GDSTK (https://github.com/heitzmann/gdstk) and GDSFactory
(https://github.com/gdsfactory/gdsfactory) facilitate the creation and manipulation of
GDSII and OASIS files, the standard formats for specifying circuit layouts in foundries.
These tools can serve as the foundation for more comprehensive software capable of
generating layouts based on circuit definitions.

Researchers have also focused on intelligent methodologies for automatic layout generation
for both PCBs [116, 117, 118] and ASICs [119]. Genetic and evolutionary algorithms have
proven effective for these tasks [120].

1J. Bachrach et al., ‘Chisel: Constructing hardware in a scala embedded language,’ in Proceedings of the 49th
Annual Design Automation Conference, 2012, pp. 1216–1225.

2S. Jiang et al., ‘Pymtl3: A python framework for open-source hardware modeling, generation, simulation,
and verification,’ IEEE Micro, vol. 40, no. 4, pp. 58–66, 2020.

3J. K. Ousterhout et al., ‘The magic vlsi layout system,’ IEEE Design & Test of Computers, vol. 2, no. 1, pp. 19–30,
1985.

3 NIMPHEL 24

https://codeberg.org/librecell
https://codeberg.org/librecell
https://github.com/heitzmann/gdstk
https://github.com/gdsfactory/gdsfactory

AIDA [121] addresses analog IC sizing and layout, offering utilities for parametric analysis,
allowing users to generate and swap circuit parameters before each simulation cycle.
However, it requires the user to generate the design beforehand, limiting its utility for
design exploration.

Complete projects like OpenRAM4 provide a Python framework for creating layouts, netlists,
timing and power models, and placement and routing models for using SRAMs in ASIC
design. OpenRAM offers an easy interface for configuring SRAM characteristics, but it is
limited to SRAMs and a few technology nodes (currently NCSU FreePDK 45 nm, MOSIS
0.35 µm, and Skywater 130 nm).

Other literature, such as [123, 124, 125], demonstrates optimization and netlist generation
cycles for specific designs. However, these tools are ad-hoc solutions and are not extensible
to other designs.

Moreover, electrical components can be imported from various file formats, and designs
can be exported to different SPICE formats suitable for any available simulators.

3.2 Proposed framework

Instances of electronic components, as defined in SPICE, can be effectively represented using
Python dictionaries. The framework introduces Component objects that users configure and
subsequently employ to generate multiple instances, akin to the drag-and-drop mechanism
of existing EDA software. Beyond basic properties like component name, connected nets,
and parameters, users can embed metadata to provide additional information that can
be shared across different tools. These components act as templates to generate modular
circuits, treating electrical components as black boxes with inputs, outputs, and parameters.
Verilog-A described components can also be utilized seamlessly, provided the simulator
supports them. Similar to other software, NIMPHEL offers Subcircuit and Circuit objects to
create modular and reusable designs.

The framework includes parsers for automatic serialization and deserialization of electronic
circuits. Currently, the framework supports netlists in Spectre and SPICE formats, as well as
Verilog-A modules. Since parsing and translation are independent processes, users can read
data from one SPICE format and output their new design in a different format, facilitating
quick prototyping.

This capability allows for the progressive adoption of the framework by users and easy
transitions between different architectures. The same complex circuit can be generated
using various basic cells by providing netlists that define the same subcircuit in different
architectures.

4M. R. Guthaus et al., ‘Openram: An open-sourcememory compiler,’ in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), IEEE, 2016, pp. 1–6.

3 NIMPHEL 25

3.3 Comprehensive Example

The example showcased in 3.1 demonstrates most of NIMPHEL’s functionalities by building
a resistive array.

As with any Python program, dependencies are first imported. The array topology is then
defined, and the different nets are created. The components to be used are created next,
including the voltage source, resistors, and ADC. Due to the parametric nature of the
resistive array, resistors can be instantiated directly within a single for loop, configured
with the variables defined at the beginning.

1 ^#!/usr/bin/env python3
2 from nimphel.core import *
3 from nimphel.readers import *
4 from nimphel.writers import *
5 import numpy as np
6 from itertools import product
7
8 # Constants
9 rows = 20

10 cols = 10
11
12 nets_in = [f”IN_{i:03d}” for i in range(rows)]
13 nets_col = [f”COL_{i:03d}” for i in range(cols)]
14 files = [f'”./INPUT_{i:03d}.txt”' for i in range(rows)]
15 corner_file = ”/path/to/corners.scs”
16
17 # Components
18 Vsource = Component(”vsource”, [”VDD”, ”GND”], {”type”: ”pwl”}, cap=”V”)
19 Res = Component(”resistor”, [”P”, ”N”])
20
21 circuit = Circuit()
22
23 # netlistHeader
24 circuit += Directive(”simulator”, lang=”spectre”)
25 circuit += Directive(”global 0 gnd!”)
26 circuit += Directive(f'include ”{corner_file}”')
27
28 circuit.add(
29 [
30 Vsource.new(dict(VDD=i, GND=0), params={”file”: f})
31 for i, f in zip(nets_in, files)
32]
33)
34
35 for i, o in product(nets_in, nets_col):
36 r = np.random.uniform(0, 1e3)
37 inst = Res.new(dict(P=i, N=o), params={”r”: r})
38 circuit.add(inst)
39
40 # Sense amplifiers
41 ADC = Component(”ADC”, [”IN”, ”OUT”], {}, cap=”I”)
42
43 for i, c in enumerate(nets_col):
44 inst = ADC.new(IN=c, OUT=f”ADC_{i:03d}”)
45 circuit.add(inst)
46
47 writer = SpectreWriter()

3 NIMPHEL 26

48 netlist = writer.dump(circuit)
49 print(netlist)

Listing 3.1: NIMPHEL example code to generate a 2D array

3.4 Conclusions

The framework proposed here provides tools focused on fast design space exploration and
modular and re-usable electronic designs. Electronic circuits are modelized through the use
of Python objects that allow for easy manipulation and quick iteration cycles. The examples
provided above show how the framework excels at generating modular architectures and
can adapt to multiple technologies and devices. Moreover, the electrical components can be
imported from a plethora of file formats and the designs can be exported to various SPICE
formats suitable for any available simulator.

While NIMPHEL excels at parametric circuits, like chains or arrays in terms of number of
lines of python code to number of netlist lines, it falls short for non-parametric circuits
or “special” designs this tool does not offer any advantage. However, it does offer the
possibility of changing parameters and performing optimization algorithms although in
that case most simulators already offer this functionality.

This project is also open source under the MIT licence, was published in [2] and can be
found online at https://servinagrero.github.io/nimphel.

3 NIMPHEL 27

https://servinagrero.github.io/nimphel

Conclusions II.4
This chapter has provided an in-depth examination of the simulation requirements along
with the workflow used throughout the thesis. The initial needs and challenges encountered
are outlined, with key problems identified as limitations within the EDA environment used
and the various strategies to address these issues are also discussed. The primary limitations
inherent in the EDA software that hindered the studies presented in this document were:

• The cumbersome nature of creating multiple parametric simulations across different
circuits and requirements.

• The physical limitation of certain EDA software on the number of parameters that
can be modified during parametric simulations.

To overcome the limitations two open-source tools were developed and utilized. The first
tool, Monaco, addresses the constraints of parametric simulations in major EDA platforms.
Monaco functions similarly to templating software, enabling the injection of user-generated
values into files and executing specified commands with those files, thereby enhancing
the flexibility and efficiency of the simulation process that is tailored directly by the user.
This framework is open-access and open-source and works with any available commercial
simulator as the parametric injections are performed directly on the files that are fed to the
simulator.

While this tool effectively facilitated a large series of parametric simulations, it became
cumbersome when different circuits were to be simulated. As previously mentioned, each
user needs to create templates for the injection of parameters. Although this process can
be automated using certain tools and advanced template usage allows for specific design
modifications, it is not suitable for exploring various designs, as it was the case with the
different configurations of Ring Oscillators that were studied.

To address this, the concepts of this framework were extended and combined with ideas
of other tools in the literature of digital design that generate analog netlists in a para-
metric way. The second tool, named NIMPHEL, is a Python framework designed for the
programmatic generation of SPICE netlists. Comparable to the CHISEL library in Scala, but
tailored for Analog and Mixed Signals (AMSs) designs, NIMPHEL simplifies the creation
and manipulation of SPICE netlists, facilitating more sophisticated and automated simula-
tion workflows. This approach leverages the full capabilities of a programming language
like Python, allowing for the programmatic debugging and formalization of generated
circuits. In contrast, manually created netlists require checking and correction for each
modification.

NIMPHEL enables the creation of subcircuits or certain instances from another tool (e.g. Ca-
dence), parsing pre-existing circuits from netlists, in-placemodification (e.g. process variabil-
ity simulations) or extension by creating circuits that depend on user defined configuration

4 Conclusions 28

(e.g., macro compilers for SRAM, MACs, chains, etc). It is designed not to replace commer-
cially available CAD tools but to enhance designer productivity by simplifying the process
of working with modular circuits.

Future work will focus on the automatic generation of layouts across various formats and
technology nodes. Integrating tools such as ASG1 and N2S2 with this framework could
facilitate the creation of schematics from the generated netlist. Additionally, employing
well-known frameworks like Magic [115] to automatically generate circuit layouts based
on the netlist and a set of predefined rules could significantly accelerate the design process,
allowing for easy generation and optimization of circuits. Another promising approach to
enhance and speed up the design phase is the application of machine learning techniques
[127], particularly genetic algorithms, which have demonstrated considerable effectiveness
in topology optimization [119, 118, 117, 120].

1Y.-S. Jehng et al., ‘ASG: Automatic schematic generator,’ Integration, vol. 11, no. 1, pp. 11–27, 1991.
2B. Naveen and K. Raghunathan, ‘An automatic netlist-to-schematic generator,’ IEEE Design & Test of Com-
puters, vol. 10, no. 1, pp. 36–41, 1993.

4 Conclusions 29

III

Circuits under test

Simulated and Manufactured PUFs under
test

III.1

Access to both experimental and simulated data is crucial for comprehensive evaluation of
PUFs and electronic circuits in general. Experimental data serves as a means to validate
the accuracy and reliability of simulation models and methodologies. While simulations
provide insights under ideal conditions, real-world data enables verification against actual
performance, facilitating iterative refinement of models. Additionally, empirical data cap-
tures nuances like environmental variations, manufacturing imperfections, and transient
phenomena, which simulations may overlook. Incorporating experimental data into evalu-
ation methodologies enhances understanding of the combined impact of manufacturing
variation, design, and environmental conditions, enabling more effective PUF analysis,
particularly in assessing reliability, a challenging metric to evaluate.

The platform presented in this chapter was developed with the goal of facilitating access
to a substantial volume of SRAM data, enabling the robust validation of our reliability
claims concerning SRAM-based PUFs. Later on during the development of the thesis,
access to extensive RO data was grated by Infineon. Despite the fact these ROs were
not originally designed for the specific purpose of RO-PUF implementation, the dataset
provided considerable flexibility, enabling the adaptation and validation of our analysis to
enhance the performance of the resulting PUF. In this chapter an in-depth description of
the dataset obtained is presented. Proper analysis will be presented in Chapter III.3.

1 Simulated and Manufactured PUFs under test 31

SRAM-based PUF Experimental Platform III.2
Testing the reliability of PUF designs is non-trivial, as it requires extensive testing of numer-
ous devices over prolonged periods and under a wide range of environmental conditions.
Traditionally, the impact of ageing and operating conditions has been addressed through
simulations [128]. For evaluations on physical devices, particular attention has been given
to SRAM embedded in microcontrollers. For instance, studies [35, 52, 39] collected 30
samples from 10 MSP430F1232 microcontrollers to analyse PUF behaviour. In another
study [129], researchers examined the SRAM quality of 26 STM32F303 and 31 STM32F407
microcontrollers, collecting 37 samples from each. Additionally, [130] published 200 sam-
ples of raw SRAM data from 144 Cortex-M4F devices for further SRAM-PUF research. More
recently, the effects of ageing were extensively measured using 16 Arduino boards over
two years, resulting in approximately 175 million measurements [131], making this one of
the most extensive studies found in literature.

However, the limited number of samples and devices (with the exceptions of [130, 131]) and
the lack of public availability of samples have hindered further research on performance
evaluation, ageing studies and suitable post-processing techniques. These restrictions
motivated the development of the platform presented here, aimed at gathering extensive
SRAM data and providing a comprehensive dataset to the scientific community.

Additionally, this platform introduces a novel feature: the ability to write custom values to
any SRAM region, facilitating the study of Negative Bias Temperature Instability (NBTI)
effects. It has been demonstrated that storing a specific value in an SRAM cell (e.g.,
0) can reinforce the tendency to power up to the opposite value (e.g., 1) due to ageing
mechanisms [132, 133, 134, 135]. This phenomenon, common in PMOS transistors, increases
the threshold voltage, leading to decreased drain current and transconductance. Ageing
can cause inverters in SRAM cells to behave differently from their initial measurements,
producing unexpected responses. To mitigate this, it is proposed to induce ageing to
improve the PUF reliability, thus reducing the number of bit flips in successive readings.

This platform offers significant resource savings for users, both in terms of costs (avoiding
the need to purchase hundreds of devices) and time (eliminating the need to collect thou-
sands of samples). The availability of raw data enables users to conduct various experiments,
such as designing new post-processing techniques or searching for systematic variations,
with a sufficient number of samples and devices to ensure statistical significance. Addi-
tionally, the extra device metadata provided, opens up numerous possibilities for detecting
vulnerabilities and developing new metrics.

2 SRAM-based PUF Experimental Platform 32

Testing procedure

The different stages of the testing procedures are depicted in Figure 5. The procedure starts
by turning on all the devices each Monday morning. To ensure the proper assessment of
the SRAM-PUF, a total power-off needs to occur between readings as a software level reset
is not sufficient. As it will be explained in detail later, this is performed through specific
hardware and a relay. Following this, the station waits 1 full minute until all devices are
properly powered on.

Since the devices contain embedded sensors, that information is first read in order to store
the conditions at which the readout was produced. Once all the sensor information has
been obtained, the platform starts reading all memory regions of all devices in order. Each
memory region is stored in the database as soon as it’s received to ensure the integrity
of each readout. With the current amount of devices under test, this procedure takes
approximately 24 hours.

After that, the first half of the devices are in order to study the NBTI effects. The reference
sample of each device, is used to craft packets containing the complementary values and
they are written to the corresponding region. This procedure takes approximately half a
day.

Finally, the boards stay powered on waiting until Friday afternoon where they are powered
off until the next Monday where the procedure is repeated.

Turn
On

Read
Sensors

Read
Memory

Write
Memory

Turn
Off

Wait Wait

Figure 5: SRAM-PUF testing workflow

The final implementation deployed at TIMA Laboratory in Grenoble, France, is showcased
in Figure 86.

Devices under test

The platform evaluation the performance of STM32L152RE and STM32L152RCT6 devices
from ST Microelectronics. These prototype devices are equipped with a variety of sensors
and General Purpose Input Output (GPIO) ports to enable a variety of communication proto-
cols. In terms of memory, the STM32L152RE has 80 kB of SRAM, while the STM32L152RCT6
has 40 kB of SRAM. Both devices also include FLASH memory, which was not used in this
experiment. Nonetheless, the platform and the communication protocol has been designed
to be device-agnostic, so different devices can be used in tandem.

To maximize the number of connections, daisy chains with two UART ports for bidirectional
communication are employed. The automatic power cycling of the devices is managed

Testing procedure 33

using a YKUSH USB hub (https://www.yepkit.com/products/ykush), enabling independent
control of power to three USB ports.

All devices are programmed with identical source code, simplifying the process of adding,
removing, and modifying equipment. The physical position of each device is detected using
a field in our communication protocol called PIC (Position In Chain). This value starts at
0 to identify the PC and is incremented by 1 for each device downstream. In addition to
this position identifier, each ST Microelectronics board has a 96-bit unique identifier (UID)
burned into memory (http://blog.gorski.pm/stm32-unique-id). This UID includes the batch
number, wafer number, wafer lot, and the X and Y position of the device on the wafer.
Together, the PIC and the ST UID provide full control over each device in the chain.

The microprocessors were developed using STM32CubeIDE, with a single version of the
code used for all devices, regardless of their position in the chain. This approach makes
adding and removing devices highly dynamic, as reprogramming is unnecessary when a
device’s position changes.

The code for each device is implemented using a simple finite state machine that efficiently
utilizes the microcontroller’s interrupts to handle bidirectional communication.

The finite state machine operates as follows:

1. Wait for a USART interrupt.
2. If a packet arrives from downstream, send it upstreamwithout reading until it reaches

the PC.
3. If a packet arrives from upstream:

1. Parse the packet.
2. Increment the PIC by 1.
3. Depending on the command, send a response upstream or downstream.
4. Return to step 1.

Each packet is fixed at 512 bytes during compilation but can be modified as needed. To
enable automatic packet handling using interrupts, two 512-byte buffers are reserved at
fixed memory locations. The first buffer stores packets incoming from upstream, and the
second stores packets from downstream. This approach prevents data corruption if packets
are sent simultaneously from both directions.

Device manager

On the software level, the platform is composed of 3 distinct modules whose entry point of
is named Dispatcher. This component listens to incoming user messages from a message
broker and dispatches the appropriate action depending on the message content. A message
broker enables applications and systems to communicate with each other and exchange
information. It is the primary mechanism that allows a user to send commands to a station
for later processing and execution. RabbitMQ (https://www.rabbitmq.com/) is the chosen

Device manager 34

https://www.yepkit.com/products/ykush
http://blog.gorski.pm/stm32-unique-id
https://www.rabbitmq.com/

message broker. One of the advantages of using RabbitMQ is its access to queues to hold
messages, allowing users to send multiple commands at once without waiting for immediate
execution.

Once the command has been read from the queue, it is dispatched to the proper device
manager, referred to as the Reader. The Reader’s objective is to provide an interface for
communicating with different devices. It gathers the necessary data from the user message
and from external sources, such as a database, and crafts the custom packet to carry out
the desired action.

The code was developed to be device-agnostic, enabling a Reader to manage multiple types
of devices simultaneously. However, it is recommended that a Reader manage only a
specific type of device to avoid unnecessary complexities. Multiple Readers can be assigned
to the same Dispatcher, allowing for the execution of commands on a series of devices with
a simple group of commands.

Lastly, interfaces were written for logging and database access. Error reporting and long-
term storage are imperative, so interfaces for these actions were created. These interfaces
allow users to swap the default services for ones that may better fit their environment.

The final architectural design of the platform is represented in Figure 6.

Power Supply

YKUSH STM32 STM32 STM32RabbitMQ

Grafana

Python

PostreSQL

Batch Jobs

User Online Dataset

Rx

Tx Rx

Tx

VDD

Figure 6: SRAMPlatform architecture diagram

Communication protocol

A bespoke packet-based communication protocol was designed to transfer data efficiently
between the PC and the devices. These packets are used to build atomic operations that
will carry out the designed actions. The packet structure is described in detail in Table 4.

Table 4: Description of a communication packet

Field Encoding Description

Command uint8_t Type of information the packet carries. A full
description of all commands is shown on Table 5

Communication protocol 35

Field Encoding Description

Options uint16_t This field has metadata for the command. It may
hold the region of memory to read or to write, or
which sensors to read

PIC uint16_t Position in chain of the device in the chain. A
value of 0 corresponds to the PC and it gets
incremented every time a packet jumps from one
device to another downstream

UID char[25] Unique identifier for the device of 96 bits encoded
in a 24 hex characters string

Checksum uint32_t 32 bit checksum to ensure data integrity.
Checksum is calculated as the CRC16 of the whole
packet

Data uint8_t[512] Actual body of the packet. It defaults to 512 bytes,
but it can be modified before deploying the code

The communication part of the section is implemented in Python through the pyserial
module. To send a packet the struct module is used in order to serialize all the fields into
binary, as depicted in 2.1, and are sent through the USART port. Once the data arrives into
a device, it is then deserialized into a C struct for further processing.

1 packet = Packet() # Generate a packet with default values
2
3 # The following are the default values
4 packet.with_method(Method.Ping)
5 packet.with_options(0x0)
6 packet.with_checksum(0)
7 packet.with_pic(1)
8 packet.with_uid(”DEVICE UID”)
9 packet.with_data([0x0, ^^..., 0x0])

10
11 packet.craft() # Craft the packet to send it
12
13 # The packet can now be used by calling `to_bytes`
14 print(packet.to_bytes())

Listing 2.1: SRAMPlatform packet example

The different atomic operations that are currently implemented are depicted in Table 5 and
they serve as the basis on which more complex commands are created.

Communication protocol 36

Table 5: Available commands in the platform

Command Description

ACK Acknowledgement of an operation. An ACK is sent by a device, for
example after a WRITE operation to inform the PC that the command has
successfully been executed

PING This command gives the PC the number of devices that are connected in a
chain and their SRAM sizes

READ Read a region of information of a device. The Options field in the packet
contains the offset to read from. The offset is the number of 512 bytes to
skip. If the region cannot be read or the checksum does not match, an ERR
is transmitted back to the station

WRITE Write a series of bytes in a memory region of a device. The body in the
packet contains the bytes to write. An ERR is sent back to the station in
case the checksum does not fit

INVERT This command employs the WRITE command to deliver the opposite
values of the first sample

SENSORS Extract sensor information from a device. Microcontrollers connected to
the platform have temperature and core voltage sensors

LOAD Load source code to a device that would later be executed
EXEC Execute code loaded by the LOAD command and store the results into a

circular buffer that can later be retrieved
RETR Retrieve results stored after the code has been executed
ERR Error during communication. It can be a wrong checksum or a problem

during the parsing of a packet

The real implementation of the SENSORS operation is furnished in the Appendix C.1 to see
how the interconnection between the different components that make up the platform.

Custom code execution

As seen in the available commands, the platform supports custom code execution via zForth
(https://github.com/zevv/zForth), a subset of Forth designed for high portability. The
choice of this uncommon language was driven by extreme constraints. Embedding common
scripting languages like TCL https://www.tcl-lang.org/, Lua https://www.lua.org/ or LISP
https://ecl.common-lisp.dev/ would have left insufficient memory for SRAM analysis. Each
device includes an instance of the zForth interpreter, capable of reading code from a buffer,
with the buffer size configurable at compile time. Additionally, custom functions to obtain

Custom code execution 37

https://github.com/zevv/zForth
https://www.tcl-lang.org/
https://www.lua.org/
https://ecl.common-lisp.dev/

the current temperature and voltage are provided to the user. For example, the code shown
in 2.2 calculates the Fibonacci sequence from 1 to 1024:

1 : fib 1 1 begin ^.. dup rot rot + dup 1024 > until ; fib

Listing 2.2: Fibonacci’s sequence in zForth

This code can be executed multiple times without reloading each instance, with results
automatically written to a circular buffer for later retrieval. External users can exploit
this functionality for their experiments, queuing requests and receiving data directly
once processing is complete. This functionality however, has not yet been utilized. The
original intention was to allow users to submit their code for evaluation on real hardware.
However, the viability of this functionality needs thorough examination due to the security
implications of running untrusted code, even in sandboxed environments.

Data Storage

A SQL database is used for reliable long term storage and data retrieval. The interface
with the database is designed to be agnostic, so any SQL database should work; for this
project we have chosen PostgreSQL. The memory and sensors readouts are stored into two
separate tables. Tables 3 and 4 below represent them. Along with sample information,
a UTC timestamp is stored with each document to keep track of when the sample was
extracted.

Table 6: Common data schema

Field Description

id Numeric ID of the sample
board_type Device model that is connected to the chain. Currently, it’s only

Nucleo
UID STM32 96-bit ID formatted as 24 Hex-string.
PIC Position In Chain. Position of the device in the chain, where the first

device has a PIC of 1.
created_at UTC Timestamp when data was gathered in ISO format

(YYYY-MM-DD hh:mm:ss)

Data Storage 38

Table 7: CRPs schema

Field Description

address The address of each memory region where the data was read. Each
memory region contains 512 bytes. For Nucleo devices, there are 160
regions in total.

data 512 bytes as unsigned integers of the memory region. The values are
separated with commas and surrounded with double quotation marks

Table 8: Sensors schema

Field Description

temperature Temperature of the device in Celsius
voltage Internal voltage of the device in Volts

Data monitoring and validation

The data provided by this platform has not been pre-processed to keep raw data of the
SRAM. Nevertheless, it is still important to ensure that the data provided does not present
faulty bits. To monitor the status of the communication at any given time, each packet
contains a header with metadata. To prevent bit flips during data transmission, every
packet comprises a CRC16 checksum. Additionally, since every operation the platform
performs is atomic, any problems that may occur at any given moment can easily be located
and reported. As an example, the following table portrays potential issues that could be
detected while performing a WRITE operation on a device.

Table 9: Potential problems that may occur during a WRITE operation

Log Level Information

ERROR Serial port is off. Please turn on the serial port first
ERROR No device managed
ERROR Device {device} is not managed
ERROR Offset {offset} for device {device} must be in range [0, {max_offset}]
ERROR Writing problem in device {device} at offset {offset}
ERROR Packet {packet} for device {device} is corrupted
INFO Data written correctly

Data monitoring and validation 39

The minimum time required to assure that every device has performed a power cycle is
approximately 30 seconds. For safety purposes, this station waits at least 1 minute. This
pause is necessary to make sure that the SRAM contents are completely erased, knowing
that an attacker could exploit data remanence and get PUF responses indirectly12.

Moreover, a series of quality metrics common in PUF evaluation the quality of the samples
has been studied. An in-depth analysis on the evaluation methodologies for PUFs is
provided later. These quality metrics are measured when a new readout is performed and
monitored through Grafana (https://grafana.com/) in real time to assess potential problems
during the readout. Figures Figure 87 display two snapshots of the Grafana dashboard
checking the quality of the samples. Indeed, a Grafana dashboard is used next to the devices
to keep track in real time of any problem or any perturbation in the metrics.

Besides, fail-safe mechanism are also employed to detect other problems to immediately
stop the platform to secure data integrity. (i.e. a command could hang indefinitely waiting
for lost bytes or part of the devices could remain inaccessible due to a physical problem in
the chain).

Current limitations

One of the main constraints of this platform is the acquisition time of the samples. The
current setup follows a chain-like structure, the memory content is thus received and
transmitted one after the other according to the position of the board in the chain. With
84 devices connected in one chain, it takes approximately 15 minutes to transmit the 80
kilobytes of the entire SRAM of the last board of the chain; therefore, the memory from all
84 devices would be retrieved in about 24 hours. In the event of a communication error, a
packet is sent back to the PC and the information is retransmitted, resulting in additional
transmission delays. Fortunately, these errors are extremely rare; we did not observe any
communication failures after deployment.

The chain structure was chosen over a parallel structure to circumvent the physical limita-
tions of the USB protocol, which supports a maximum of 128 devices, and to reduce the
cost of powering and connecting each device (e.g., one USB per chain instead of one per
device). Although certain enhancements could improve this setup, we believe it strikes a
good balance between data integrity, scalability, and time.

An additional limitation constraining our analysis involves the absence of control over
voltage and temperature parameters. Devices are exposed to environmental conditions and
their inherent fluctuations. While this scenario provides valuable insights by simulating

1Y. Oren et al., ‘On the effectiveness of the remanence decay side-channel to clone memory-based pufs,’
in Cryptographic Hardware and Embedded Systems - CHES 2013, G. Bertoni and J.-S. Coron, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 107–125, isbn: 978-3-642-40349-1.

2M. Liu et al., ‘A data remanence based approach to generate 100% stable keys from an sram physical
unclonable function,’ in 2017 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), IEEE, 2017, pp. 1–6.

Current limitations 40

https://grafana.com/

real-world conditions, it restricts our ability to study device behaviour under specific critical
conditions.

Code and Data Availability

A detailed description on the datasets and the platform has already been published in [4].
The source code for the platform and the STM32 devices alongwith the usage documentation
is available under the GPL-2.0 licence at https://servinagrero.github.io/SRAMPlatform.
A static version of the full dataset available at the time of writing can be downloaded
from Zenodo [5] 10.5281/zenodo.7529512. The full dataset is composed of 2 CSV files that
contain SRAM readouts of 84 Nucleo microcontrollers of STM32 type along with their
voltage and temperature sensor data. Although the dataset described in this document
is static, more data can be requested online through the following application hosted at
https://puf4iot.univ-grenoble-alpes.fr/form.php. Any user can submit a request to the
server specifying the data they want to retrieve. The server will process the request and
return the data in a CSV file or in a zip file if the number of records is too large.

Code and Data Availability 41

https://servinagrero.github.io/SRAMPlatform
https://zenodo.org/doi/10.5281/zenodo.7529512
https://puf4iot.univ-grenoble-alpes.fr/form.php

Measurements from industrial circuits III.3
During the latter stages of this research, data from a circuit designed by Infineon was
obtained. The circuit under investigation is a prototype of a large general-purpose SoC
built for exploratory purposes using the latest technology design. It is designed for use
in industrial environments under severe operational conditions. In addition to extensive
areas of digital logic, the SoC includes a mixed-signal part, onboard memories, monitoring,
and learning structures, as well as a substantial number of on-chip Ring Oscillators.

These ROs are grouped into six identical modules spatially distributed over the SoC, labelled
A, B, C, D, E, and F. Each module contains 255 ROs with various path topologies. Some
paths consist of homogeneous gates such as inverter gates, NOR gates, or NAND gates,
while others are path replicas of dedicated paths in the design. All ROs oscillate in the
range of 50 to 400MHz under nominal conditions and are intended for timing and process
monitoring purposes. Although not originally designed to function as PUFs, the identical
design of the six modules allows for the possibility of an RO-based PUF. By comparing
the frequencies of theoretically identical ROs in the same positions across two of the six
modules, a PUF response can be generated.

Figure 7 provides a visual representation of the circuit. While the image does not represent
the actual circuit due to its classified nature, it offers a rough estimate of the amount of
data and the flexibility available for creating the PUF.

Figure 7: Visual representation of the industrial circuit. Each device has 6 blocks of 256
ROs. Each device has 8 measurements: 4 from the back end and 4 from the front
end

3 Measurements from industrial circuits 42

The ROs are measured using an on-chip counter, which is the same procedure used in
RO-PUFs. The RO frequencies are measured during the manufacturing stages at the wafer
level (front-end, FE) and on the packed SoC in the back end (BE). Each frequency read-out
is conducted at two temperatures (cold, hot) and two voltages (minimum, nominal). The
frequency measurement is accurate, and the voltage and temperature are controlled for
perfect conditions. The frequency values of all ROs are logged and used for this experiment.
This results per SoC in 8 measured sets of 6 × 255 = 1530 RO frequencies along the
manufacturing process.

The PUF design proposed in Figure 8 was conceived as follows: for each position 𝑖
of an RO, there are 9 possible challenges, i.e., all combinations of blocks (𝑏1 𝑏2) =
{𝐴𝐷,𝐴𝐸, 𝐴𝐹, 𝐵𝐷, 𝐵𝐸, 𝐵𝐹, 𝐶𝐷, 𝐶𝐸, 𝐶𝐹}, leading to overall 2295 CRPs.

Figure 8: Schematic representation of the Infineon circuit under study: a) the six modules
containing 255 ROs; b) the principle of operation of the PUF emulator

3 Measurements from industrial circuits 43

Ring Oscillator Simulated III.4
Electrical simulations are of paramount importance in current electronics designs. First,
simulations allow for the comprehensive analysis of the circuit behaviour under a variety
of conditions without the need for extensive physical hardware, thereby saving time and
resources. By modeling the electrical characteristics of ROs, simulations can predict how
the PUF will respond to different environmental factors such as temperature variations,
supply voltage fluctuations, and ageing effects. This predictive capability is essential for
designing robust RO-PUFs that maintain high reliability and security across a wide range of
operating conditions. Additionally, simulations enable the exploration of different design
configurations and parameter settings, allowing researchers to optimize the performance
of RO-PUFs in terms of uniqueness, stability, and randomness of the generated keys. By
identifying potential vulnerabilities and performance bottlenecks through simulations,
it is possible to make informed design improvements before moving to the costly and
time-consuming process of physical prototyping and testing. In this section, the design of
the RO-PUF under study and the simulation workflow used during this thesis is described
in detail.

The RO-PUF under investigation comprises 200 ROs, divided into two groups of 100 ROs
each (from 𝑅𝑂1,1, to 𝑅𝑂1,100 and 𝑅𝑂2,1, to 𝑅𝑂2,100) as shown in Figure 2.

To generate the complete set of Challenge Response Pairs shortplural (CRPs), the entire
circuit must be simulated multiple times—once for each challenge, which for this config-
uration results in 10,000 simulations given the 100 × 100 possible combinations of ROs.
An enable signal controls the oscillation. The chosen configuration for the RO includes a
NAND gate and an even number of inverters, as depicted in Figure 9.

Figure 9: NAND RO CMOS Schematic

The output of each RO is connected to a counter (implemented in Verilog-A), which incre-
ments its value with each rising edge of the oscillation. Hysteresis behaviour is incorporated

4 Ring Oscillator Simulated 44

in the counter to mitigate measurement errors. The source code for these modules is pro-
vided in the Appendix B.3.

To expedite simulation, each RO was simulated independently, and its frequency was
indirectly measured by the counter, sampled every 1ns. The Ocean script for basic transient
simulations is available in the Appendix B.1, and the template for Ocean to be used with
Monaco is presented in B.2.

To emulate manufacturing process variability, random variations in the width, length, and
threshold voltage (𝑉𝑡ℎ) of each transistor were applied. While we can update many more
parameters, these offer a very good compromise between accuracy and simulation speed.
Additionally, simulations were conducted across different temperatures (24 to 30 ℃) and
voltages (0.9 to 1.1V). Usually, a 10% range of variation for the supply voltage is agreed
upon. The narrow range of temperature variation was chosen to focus on the gradient
effects between two closely packed ROs on the same device. These parameter values assume
minimal temperature gradients among ROs due to their proximity and potential voltage
differences caused by power line resistance. The nominal values for all parameters are
summarized in Table 10.

Table 10: Nominal values for the Ring Oscillator

Parameter Nominal Value Description

𝑊𝑝 270 nm PMOS transistor width
𝑊𝑛 135 nm NMOS transistor width
𝐿𝑝 60 nm PMOS transistor length
𝐿𝑛 60 nm NMOS transistor length
𝑉𝑡ℎ𝑃 0.45V PMOS transistor threshold voltage
𝑉𝑡ℎ𝑁 0.45V NMOS transistor threshold voltage
𝑇 27 °C Temperature
𝑉𝐷𝐷 1V Supply Voltage

The threshold voltage was modelled using a normal distribution, derived from the following
computations based on1:

𝐴Δ𝑉𝑇,𝑃 = 2.85𝑒−9 𝐴Δ𝑉𝑇,𝑁 = 3.46𝑒−9

𝜎𝑉𝑡ℎ =
𝐴Δ𝑉𝑇

√𝑊 × 𝐿
1C. M. Mezzomo et al., ‘Characterization and modeling of transistor variability in advanced cmos technologies,’
IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2235–2248, 2011.

4 Ring Oscillator Simulated 45

𝑉𝑡ℎ ∼ 𝑁(𝑉𝑡ℎ0, 𝜎)

Each individual simulation last 512 ns with a fixed time step of 3 ns. The number of noise
simulations was set to 11 per RO. That means that spectre will always run a nominal
simulation, and then it will evaluate 11 different noise seeds on the same design.

Furthermore, noise was also included in the simulations, with values chosen according
to234. The proper configuration of noise requires setting the variables noise_fmin and
noise_fmax which are set to the complement of the simulation time and simulation step
in nanoseconds respectively.

2R. Sarpeshkar et al., ‘White noise in mos transistors and resistors,’ IEEE Circuits and Devices Magazine, vol. 9,
no. 6, pp. 23–29, 1993.

3C. G. Theodorou et al., ‘Noise-induced dynamic variability in nano-scale cmos sram cells,’ in 2016 46th
European Solid-State Device Research Conference (ESSDERC), IEEE, 2016, pp. 256–259.

4C. G. Theodorou et al., ‘Dynamic variability in 14 nm fd-soi mosfets and transient simulation methodology,’
Solid-State Electronics, vol. 111, pp. 100–103, 2015.

4 Ring Oscillator Simulated 46

Conclusions III.5
For a proper assessment of PUF designs, statistically significant data is essential, requiring
access to numerous devices andmultiple samples from each device. The scarcity of accessible
datasets for PUF analysis motivated the development of an open-source and open-access
platform named SRAMPlatform. This platform was designed to collect extensive SRAM
data and sensor readings from microcontrollers. Currently, the platform gathers data from
84 STM32 microcontrollers, storing the data weekly in an open access database, available
for use by the research community, facilitating broad research opportunities. This platform
allows the execution of external code to study certain phenomena directly on the device.
One phenomenon of interest is NBTI, which is crucial for examining ageing effects and
devising techniques to enhance the entropy and reliability of PUFs.

Towards the end of the thesis, access to real Ring Oscillator data from Infineon was granted.
This comprehensive dataset comprises 399 devices, each with 6 blocks of 256 ROs. From
each device, we have 8 measurements: 4 from the Backend and 4 from the Frontend.
Although this dataset was not initially intended for ROs-PUFs, it provided an invaluable
resource for validating our simulation hypotheses and exploring novel techniques and
designs to enhance the performance of RO-based PUFs. Both datasets allowed for significant
advancements in both the validation of our models and the innovation of new approaches
in PUF research.

A summary of the different PUF designs under evalution is presented in Table 11 and a
detail analysis of the data gathered is presented in Chapter III.3.

5 Conclusions 47

Ta
bl
e
11

:S
um

m
ar
y
of

th
e
te
st
ed

PU
F
de

si
gn

s

PU
F
Ci

rc
ui
t

N
um

be
r

of
ci
rc
ui
ts

CR
Ps

O
pe

ra
tin

g
Co

nd
iti
on

s
U
se
s

Si
m
ul
at
ed

RO
-P

U
F

20
0
RO

s
10

00
0

24
°C

to
29
°C

,0
.9
V

to
1.
1
V

Ev
al
ua

tio
n
of

Re
lia

bi
lit
y
an

d
Bi
t-a

lia
si
ng

in
Ch

ap
-

te
r
III

.2
an

d
de

ve
lo
pm

en
to

ffi
lte

ri
ng

te
ch

ni
qu

e
in

Ch
ap

te
rI

II.
2.

SR
A
M

Pl
at
fo
rm

84
bo

ar
ds

65
53

60
En

vi
ro
nm

en
ta
lc

on
di
tio

ns
of

ap
-

pr
ox

im
at
el
y

27
°C

an
d
3.
3
V
.

O
ne

co
nt
ro
lg

ro
up

of
42

bo
ar
ds

an
d
an

ot
he

rN
BT

It
es
tin

g
gr
ou

p
of

42
bo

ar
ds

M
et
ri
c
ev

al
ua

tio
n
an

d
va

lid
at
io
n
of

co
rr
el
at
io
n

be
tw

ee
n
m
et
ri
cs

in
C
ha

pt
er

III
.3
.M

at
he

m
at
ic
al

m
od

el
lin

g
in

Ch
ap

te
rI

II.
2.

In
du

st
ria

l-g
ra
de

RO
39

9
de

vi
ce

s
w
ith

6
bl
oc

ks
of

25
5

RO
s

ea
ch

22
95

N
ot

pr
ov

id
ed

Va
lid

at
io
n
of

co
rr
el
at
io
n
be

tw
ee

n
m
et
ric

si
n
Ch

ap
-

te
rI

II.
3
an

d
Sp

lit
PU

F
de

si
gn

in
Ch

ap
te
rI

II.
1

5 Conclusions 48

IV

PUF Canonical Evaluation
Metrics

PUF Canonical Evaluation Metrics IV.1
Analogous to cryptographic functions and other security primitives, a mathematical model
describing PUF behaviour is essential for validating security claims. This mathematical
abstraction not only facilitates security validations but also enables comparisons between
various designs. Since the conception of PUFs, different evaluation frameworks have been
proposed and extended to characterize their behaviour.

Maiti et al.12 proposed performancemetrics that are nowadays considered canonical, namely
Uniformity, Bitaliasing, Inter-Hamming Distance (i.e., Uniqueness), and Intra-Hamming
Distance (i.e., Reliability). The formulas presented in this section are extracted directly
from their work. These canonical metrics utilize Hamming Distance between responses
and Hamming Weight to measure the properties of the PUF for each individual device and
the overall behaviour across devices, as summarized in Table 12.

Table 12: Metrics classification according to methodology

Same Device Different Devices

Hamming Weight Uniformity Bit-aliasing
Hamming Distance Reliability Uniqueness

An in-depth mathematical explanation about the ideal values of these metrics is found
in [144, 145], and it is tightly related to Shannon Entropy and Guesswork, which is the
amount of effort an attacker needs to guess a secret.

1.1 Mathematical representation

A small visual representation is provided to better understand how themetrics are computed.
This foundational understanding is crucial for accurately interpreting the metrics and their
implications for PUF performance. Since there’s not a standardized method for storing
the CRPs and evaluating the metrics, here it’s presented the representation that is used
consistently throughout this document.

First, a series of definitions that will be used to refer to the different aspects of a system:

1A. Maiti et al., ‘A large scale characterization of ro-puf,’ in 2010 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), IEEE, 2010, pp. 94–99.

2A. Maiti et al., ‘A systematic method to evaluate and compare the performance of physical unclonable
functions,’ Embedded systems design with FPGAs, pp. 245–267, 2013.

1 PUF Canonical Evaluation Metrics 50

• A PUF instance refers to the actual physical circuit that works as the PUF. The words
instance and device are equivalent.

• A sample refers to a complete measurement of all challenges of an device in time.
Subsequently, the reference sample is the set of responses used as the reference to
compare all succeding responses.

• 𝑆 refers to the set of all CRP samples of the system. 𝑆𝑑,𝑐,𝑠 refers to the sample 𝑠 of
the CRP 𝑐 for device 𝑑.

• 𝐶 refers to the set of all CRPs of the PUF. 𝐶𝑑,𝑐 refers to the CRP 𝑐 for device 𝑑.
• 𝐷 refers to the set of all devices in the system. 𝐷𝑛 refers to device number 𝑛.

On a numerical representation, the CRPs are stored in multi-dimensional arrays. Each
matrix represents a sample, where each row corresponds to a device and each column to a
challenge. The 3rd dimension of the array represents the samples as depicted in Figure 10.

Sample 0

Sample S

Tim
e

CRP C

CRP 0

Instance 0

Instance D

Figure 10: Visual representation of the arrangement of CRPs and computation of PUF
metrics. Bit-aliasing is represented in blue; Uniformity in orange; Reliability in
Green and Uniqueness is computed on pairs of instances.

1 PUF Canonical Evaluation Metrics 51

1.2 Uniformity

Uniformity measures the ratio of 1s and 0s across all responses for each PUF instance. An
uneven distribution of 1s and 0s in the PUF responses may allow an attacker to extrapolate
some response given they have access to a subset of the responses. It is computed as
depicted in Equation 1.1, and its ideal value should be 50%, which indicates that a device
produces an even distribution of 1s and 0s.

Uniformity𝑖 =
1
𝑛

𝑛
∑
𝑙=1

𝑟𝑖,𝑙 × 100% (1.1)

where 𝑟𝑖,𝑙 is the 𝑙−th binary bit of an 𝑛−bit response from a chip 𝑖.

1.3 Bit-aliasing

Bit-aliasing measures the ratio of 1s and 0s across responses for each challenge. Akin
to Uniformity, an uneven distribution of 1s in the 0s in the PUF responses may allow an
attacker to extrapolate some of the responses. Moreover, an uneven distribution decreases
the Entropy of that challenge, that is, it reduces the ability of the PUF of uniquely identifying
devices.

It is computed as depicted in Equation 1.1, and its ideal value should be 50%, which indicates
the even distribution of values. As it can be seen by comparing Equation 1.1 and Equation 1.2,
Bit-aliasing shares many similarities with Uniformity as they measure the same concept in
different dimensions (e.g., average response value per challenge instead of per device).

Bit-Aliasing𝑙 =
1
𝑘

𝑘
∑
𝑖=1

𝑟𝑖,𝑙 × 100% (1.2)

where 𝑟𝑖,𝑙 is the 𝑙−th binary bit of an 𝑛−bit response from a chip 𝑖. Akin to Uniformity, the
ideal value is 50% which indicates an even distribution of values across devices.

1.4 Uniqueness

Uniqueness represents the ability of a PUF to uniquely distinguish a particular chip among
a group of chips of the same type.

Uniqueness = 1
Number of Pairs

𝑘−1
∑
𝑖=1

𝑘
∑

𝑗=𝑖+1

𝐻𝐷(𝑅𝑖, 𝑅𝑗)
𝑛 × 100%

1 PUF Canonical Evaluation Metrics 52

The scaling factor for the Uniqueness is given by the total number of pairs of devices in the
system, and can be computed as shown in Equation 1.3.

Number of Pairs = (
𝑘
2
) =

𝑘 (𝑘 − 1)
2 (1.3)

It’s important to state as it can be derived from Equation 1.3 that the number of comparisons
performed grows rapidly, as every new device needs to be compared against all the devices
in the system.

1.5 Reliability

The Intra Hamming-Distance, although normally it’s complementary value Reliability is
used instead, measures how efficient a PUF is in reproducing the response bits. The Intra
Hamming-Distance measures the deviation (i.e. distance) of a response from the reference
one. For this, an initial reference sample 𝑅𝑖 is first extracted at normal operating conditions.
In order to evaluate then deviation, multiple responses are subsequently extracted at
different operating conditions and they are compared to the reference sample as shown in
Equation 1.4. The ideal value of Intra Hamming-Distance should be 0% which indicates no
deviation from the reference sample.

𝐻𝐷𝐼𝑁𝑇𝑅𝐴 = 1
𝑚

𝑚
∑
𝑡=1

𝐻𝐷(𝑅𝑖, 𝑅′𝑖,𝑡)
𝑛 × 100% (1.4)

Finally, the Reliability is computed as the complement of the Intra Hamming-Distance as
shown in Equation 1.5, so subsequently, it’s ideal value is 100%.

Reliability = 100% − 𝐻𝐷𝐼𝑁𝑇𝑅𝐴 (1.5)

Further study is needed to elucidate reasonable environmental conditions under which to
evaluate the PUF, specially taking into consideration how difficult it is to properly quantize
the effect of noise, external factors and even intrinsic characteristics of each PUF design.
For example, in the context of RO-PUFs the authors in3 found that the accuracy of the
measurements performed on Silicon PUFs are limited by environmental noise, even for
large measurement times. As such, the authors claim that it is suboptimal to choose long
measurement times to try to achieve accurate measurements. However, this still remains a
problem under several evaluation proposals.

3R. Maes et al., Statistical Analysis of Silicon PUF Responses for Device Identification. Germany: Berlin, 2008.

1 PUF Canonical Evaluation Metrics 53

1.6 Additional proposals

The authors in [29] proposed their own set of metrics, namely Predictability, Collision, Sen-
sitivity, and Susceptibility as means to test the resilience of the PUF to attacks: Predictability
evaluates the difficulty of predicting the PUF responses given the corresponding challenges;
Collision estimates the likelihood of two different PUFs yielding the same responses to the
same given inputs; The Sensitivity parameter ensures that the amount of manufacturing
variability is large enough such that a PUF operates in a stable way when the components
are imperfect; and lastly, Susceptibility, determines the hardness of characterizing the PUF
circuit components. They provided statistical parameters with single-bit granularity, which
is beneficial for assessing PUF responses as a whole. This idea serves as the basis for more
complex analyses tailored to different PUF families.

The authors in [146] proposed around the same time as Maiti their own metrics, including
Randomness, Uniqueness, Correctness, Diffuseness, and Steadiness. Maiti explained that
the definitions of Randomness, Correctness, and Uniqueness are slightly different from
the canonical Uniformity, Reliability, and Uniqueness respectively, although they measure
similar aspects. Despite the similarities, Maiti argues that during the evaluation of the
Steadiness, which measures the degree of bias of a response bit towards ‘0’ or ‘1’ over T
samples, the time stamps of the sample measurements are important since the steadiness
of a PUF may change when operating conditions change. However, Hori et al. did not
discuss the effect of time on the steadiness parameter. Maiti also highlight another problem
regarding Diffuseness. While it resembles the computation of Uniqueness, Diffuseness
is defined inside a single chip among several IDs. Since this value is estimated among
𝐾 signatures of 𝐿 bits each generated in a chip, these 𝐾 × 𝐿 bits can be divided in many
possible 𝐾 groups with 𝐿 bits each and the same set of 𝐾 × 𝐿 bits can lead to different
results based on the combination selected. This problem is aggravated due to the fact that
the challenges are selected by a software program, leading to deterministic results.

The works in [147, 148] provide in-depth performance evaluations of delay PUFs, suggesting
that tests can be tailored specifically for the idiosyncrasies of different PUF designs.

The analysis of PUF metrics has also attracted attention from the cryptography and mathe-
matics communities. For instance, [149] attempted to formalize PUF metrics holistically
but analogous to the canonical metrics, there is no distinction between strong and weak
PUFs. In [150], a theoretical framework linking PUFs with the Random Oracle is provided.
A random oracle responds to every unique query with a uniformly random response.

The authors in [151, 152] provide comprehensive information on developing fuzzy extractors
to generate secrets fromPUF designs, closer to signal processing and reliability enhancement
rather than PUF evaluation.

Another important work is showcased in [153], where the authors provide an all-in-one
assessment methodology for delay-based PUFs, considering external factors like side-
channel and modeling attacks.

1 PUF Canonical Evaluation Metrics 54

In [154, 8], the canonical metrics are extended, offering a methodology to estimate the
Reliability and Entropy of different delay PUFs revealing an Entropy-Reliability trade-off.
This relationship is studied extensively in the next chapter.

In [155], it is emphasized that the confidence interval of bit-aliasing is often overlooked,
leading to an overestimation of a PUF’s unpredictability. The importance of a substantial
sample size for accurate entropy assessment is underscored.

Other extensions have been proposed, such as in [156], where the authors propose calculat-
ing entropy and joint entropy to highlight design issues, and [157], where current metrics
are extended to provide spatial analysis of all responses. The following section will delve
into this type of topological and spatial analysis.

Efforts to unify metrics can be found in [158], where the authors merge previously proposed
metrics into a single set to avoid redundancy and create consistent tests.

The metrics proposed by Maiti have remained the canonical ones since and although not
perfect, they capture the critical aspects in a simple and concise manner. However, the
canonical metrics along with a multitude of additional proposals share a series of limitations.
While metrics have a robust mathematical basis, others are arbitrary, redundant, fail to
provide information to discriminate PUFs based on security requirements or fail to provide
information back to designers in order to improve the PUF performance. Furthermore,
issues related to their computation and representation can impact their effectiveness and
applicability in certain contexts. In the following chapter, the limitations of the standard
evaluation metrics are explored in detail and a series of mitigations and extensions are
proposed to enhance the robustness and accuracy of PUF evaluation metrics.

1 PUF Canonical Evaluation Metrics 55

Limitations of Canonical Metrics IV.2
Indeed, several studies found in the existing literature express the significance of a large
device population to test PUF characteristics, cautioning against relying solely on average
quality metric values. Novel studies like the one presented in1 in 2023 bring attention
to the hidden problems associated with presenting solely the mean uniqueness value.
Relying solely on the average is an inadequate metric, as it may yield inaccurate results
when confronted with outliers or complementary patterns, that is to say, the mean is
not a sufficient statistic of a distribution. This is also aggravated from the fact that the
derivation of metrics from already established statistical parameters is non-trivial as it
can lead to masking issues as shown in2. For instance, in many metrics, the ideal range
falls between 0 and 1, with 0.5 being the optimal value. However, a skewed distribution,
concentrated between 0.25 and 0.75, can result in an average of 0.5. While the standard
deviation addresses this asymmetry, it is often overlooked. Figure 11 showcase a series of
synthetic cases where the mean value of the metrics is around the ideal value while clearly
exhibiting extreme biasing. Furthermore, later in this document real experimental data
from the SRAM-PUF proves these claims, since the heave Bit-aliasing effects are masked in
the standard deviation.

Moreover, due to cost constrains, the evaluation of PUFs is always performed on a test
data set, which is never the same size as the final population. Moreover, it’s difficult to
ensure good sampling as devices would need to be drawn from different manufacturing lots
to ensure proper sampling. Because of these constrains, the metrics should be computed
along with Confidence Intervals as demonstrated in34. Thus, as explained in [158], that
tests can be seen as estimators from their theoretic expressions, the so-called “stochastic
models” as the authors call it. Since in most situations evaluating the PUF on all the device
population is unfeasible, we propose later in this document a statistical methodology to
extrapolate the evaluation results given the same dataset.

Many of the studies in the literature are conducted on a limited chip population or older
technology nodes, potentially concealing crucial issues relevant to the PUF behaviour.
Moreover, situations may arise where design issues or manufacture problems can limit
the PUF entropy. Yet, these issues can be overlooked if the remaining responses provide
enough randomness or whose average values are close to ideal. This problem grows larger
with the number of available CRPs, making it challenging to comprehensively analyse
each response. Beyond highlighting entropy-related errors, a thorough analysis of metrics

1Y. Wei et al., ‘Apuf production line faults: Uniqueness and testing,’ in 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2023, pp. 1–6.

2C. Frisch and M. Pehl, ‘Beware of the bias-statistical performance evaluation of higher-order alphabet pufs,’
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2022, pp. 1005–1010.

3F. Wilde and M. Pehl, ‘On the confidence in bit-alias measurement of physical unclonable functions,’ in 2019
17th IEEE International New Circuits and Systems Conference (NEWCAS), IEEE, 2019, pp. 1–4.

4F. K. Wilde, ‘Metrics for physical unclonable functions,’ Ph.D. dissertation, Universität München, 2021.

2 Limitations of Canonical Metrics 56

Uniformity ∼N(0.5, 0.04), Bit-aliasing ∼N(0.5, 0.1)
Desired responses

Uniformity ∼N(0.5, 0), Bit-aliasing ∼N(0.5, 0.5)
Problem of Bit-aliasiang

Uniformity ∼N(0.5, 0.5), Bit-aliasing ∼N(0.5, 0)
Problem of Uniformity

Uniformity ∼N(0.5, 0), Bit-aliasing ∼N(0.5, 0)
Problem of Correlation

Figure 11: Desired set of CPRs and examples showcasing different phenomena

can offer indispensable insights for PUF designers. Notably, there is a scarcity of studies
addressing PUF entropy analysis or the impact of manufacturing variations on entropy
generation.

2.1 Lack of correlation analysis

A critical aspect often overlooked in PUF response analysis is the study of correlation,
which ensures that all responses are independent of each other. Correlations not only
reduce the entropy of the PUF and deteriorate its performance, but they also provide
an avenue for attackers to exploit these dependencies for targeted guessing. Ganji et al.
[161] demonstrated that PUF responses cannot be considered as a set of uncorrelated
bitstrings. Instead, a subset of bit positions, referred to as influential bits, exhibit truly
random behaviour while other bits are correlated with these influential bits. Other studies
[157, 162, 163] have highlighted the effectiveness of spatial analysis, which examines the
topological or geometric properties of PUFs.

Furthermore, studies such as [164] highlight the significance of spatial phenomena in
generating sufficient entropy. These studies experimentally demonstrate that due to sys-
tematic fabrication variations, common topologies of RO-PUFs often fail to pass the NIST
randomness test suite, which is typically used to evaluate cryptographic functions. To
address this issue, they propose a solution involving entropy distillers based on polynomial
regression to enhance the randomness and reliability of the RO-PUFs. A similar approach
is presented in [165], where the authors argue that systematic process variation is the

2 Limitations of Canonical Metrics 57

primary cause of failures in randomness tests, such as those by NIST, for RO-PUFs. In their
work, the authors propose modeling these variations and retaining only the truly random
component of the process variation to improve the design of the RO-PUF.

Spatial correlation analysis have been used to conduct successful attacks. For example,
Bahar Talukder et al. [166] experimentally demonstrated that signatures from two memory
chips could exhibit highly correlated properties if they share the same specifications and
manufacturing facility. Furthermore, the analysis of 1000 Arbiter PUF-based RFID tags
by Utz et al. [167] highlighted that simple Uniqueness and Reliability analysis might not
reveal issues such as implementation biases or defects causing deviations from standard
behaviour.

To clearly demonstrate the aforementioned effects, consider a PUF where each device
yields a 128-bit response. The Uniformity of every single device is 0.5, but due to a design
issue, the second half of the 128 bits is a complementary mirror image of the first half as
showcased in the heatmap in Figure 12. This example illustrates how canonical metrics
may fail to identify correlation or interdependence effects.

Figure 12: Heatmap of highly correlated CRPs

As it can be seen in Figure 13, the distribution of Uniqueness for the ideal set of CRPs
and the set of CRPs with heavy correlation effects are practically identical. The numerical
differences are not sufficiently large to discern these kinds of correlation effects.

Failing to highlight these interdependencies can have serious security implications, as
attackers can exploit these effects to guess a large subset of a response given access to a
small subset of response bits. Similar to Uniformity and Bit-aliasing, metrics that measure
the distribution of response values within the same device and across different devices (as
shown in Table 12), the study of interdependency and correlation effects is proposed later
in this chapter in Section 3.1.1.

Additionally, for PUFs that generate bits sequentially, it is critical to perform temporal
auto-correlation studies on the output to ensure that the generated bitstream is “memory-
less,” meaning it does not depend on past values. There are numerous methods to study

2 Limitations of Canonical Metrics 58

Figure 13: Uniquess comparison between ideal case and correlated case

these effects. The subsequent section proposes a series of methodologies to evaluate
interdependency effects effectively.

2.2 System capacity and collisions

An aspect of PUF analysis that is rarely studied and is related to Uniqueness is what we call
term capacity. We define capacity as the maximum number of responses that is physically
possible to identify while mantaining ideal PUF properties, specificially a Uniformity of
50% for all devices and Bit-aliasing of 50% for all challenges. Parallel to this analysis, is the
one of collisions, which occur when 2 different devices produce exactly the same key.

For a given bitstring of size 𝑛, the total number of unique combinations, referred to here as
“hard capacity,” is defined by:

Capacity𝐻𝑎𝑟𝑑 = 2𝑛 (2.1)

To preserve a Uniformity of 50% across all devices and a Bit-aliasing of 50% across all
challenges, only responses with an even distribution of bits are allowed. The number of
unique combinations with exactly an even distribution (i.e., 50% of the bits are 1s and 50%
are 0s), termed “soft capacity,” is given by:

Capacity𝑆𝑜𝑓𝑡 = (
𝑛
𝑛/2

) (2.2)

In the context of soft capacity, an ideal response would exhibit an equal ratio of 1s and 0s.
However, we can accommodate scenarios where this ratio is slightly biased. Specifically,
we consider a bias of 𝑥 bits from a perfectly balanced 50% distribution of 1s and 0s. For

2 Limitations of Canonical Metrics 59

Table 13: Hard and Soft capacity of a PUF given the response size.

n Soft Capacity Hard Capacity Ratio

2 2 4 0.50
4 6 16 0.38
8 70 256 0.27

16 1e+04 7e+04 0.20
32 6e+08 4e+09 0.14
64 2e+18 2e+19 0.10

128 2e+37 3e+38 0.07
256 6e+75 1e+77 0.05
512 5e+152 1e+154 0.04

instance, a bias of 4 bits in a 64-bit response would result in a distribution where the soft
capacity is not defined as 32/32, but rather as 28/36 or 36/28. By using Pascal’s triangle, it
is possible to derive the soft capacity for any given a deviation of 𝑥 bits.

Capacity𝑆𝑜𝑓𝑡 = (
𝑛
𝑛/2

) + 2 ×
𝑛/2−1
∑

𝑖=𝑛/2−𝑥
(
𝑛
𝑖
)

The Soft capacity is equal to the Hard capacity if the deviation is exactly 𝑛/2.

𝑛
∑
𝑖=0

(
𝑛
𝑖
) = 2𝑛

It’s evident from Table 13 that while the capacity is extremely large for more than 64 bits
of response, (just for reference, it’s estimated that there are 7 × 1022 stars in the known
universe), the soft capacity, represents only a small fraction of the total capacity, and the
ratio between the soft capacity and the hard capacity grows smaller with response size.
Therefore, the capacity for real-life PUFs is not a limitation.

Collisions pose a threat as they can reduce the capacity. As previously said, the authors in
[29] provide the Collision test to measure the likelihood of two devices giving the same
response with the same inputs. Even in an ideal system, this is bound to happen due to the
finite number of possible responses and the fact that eventually, all possible responses are
bound to occur. Collisions may pose a problem as two devices would generate the same
key and be wrongly identified so an attacker could exploit collisions to create clones of the
same device.

2 Limitations of Canonical Metrics 60

The probability of collision 𝑃 of at least one collision among 𝑘 samples from 𝑁 possible
values can be approximated using the birthday paradox [168, 169].

𝑃 ≈ 1 − exp [− 𝑘(𝑘 − 1)
2 ⋅ Capacity]

For a general collision probability 𝑝, the approximate number of responses 𝑘 can be
computed as shown in Equation 2.3

𝑘 ≈
√

Capacity × ln (1
1 − 𝑝) (2.3)

The computation can be summarised to the following assuming a 50% chance of a colli-
sion:

𝑘 ≈ 1.177√Capacity (2.4)

While it’s clearly demonstrated that the probability of collision remains extremely low
across a diverse number of devices, it’s important to state that these values represent the
upper bound, (e.g. best case scenario), where the PUF responses are completely random
and an attacker cannot exploit any effects to their advantage. The probability of collision
increases due to Bit-aliasing and correlation effects.

2.3 Lack of a reference model

As demonstrated in the preceding sections, metrics are typically represented by their mean
values, often neglecting the spread of these distributions. However, even when the spread
is provided, there is a significant gap in understanding regarding the permissible ranges or
the relationship between these spreads and system characteristics, such as the number of
devices or the number of responses.

To the best of our knowledge, there is no definitive model that accurately describes the ideal
distributions for different PUF designs under varying system characteristics. This absence
poses a critical problem: the current metrics cannot discriminate different PUF designs
based on different security requirements. This issue is well-documented, as evidenced in
[170, 171], who demonstrate that the Uniqueness distribution shifts significantly with the
number of devices in the system. It is thus critical to have a golden model that can be used
as reference no matter the extent of the system under study. This issue will be addressed in
later in Chapter IV.2.

2 Limitations of Canonical Metrics 61

Proposed mitigations and extensions IV.3
In the following sections, a series of mitigations to the aforementioned issues are proposed.
Besides a series of new metrics are also proposed as a way to provide more information to
designers when performing PUF analysis, based on what has been said that metrics fail to
discriminate certain PUF designs give some security requirements.

3.0.1 Deviation from ideal value

As a means to mitigate the problems related to omitting the standard deviation in the
representation of the metrics, the authors in [159] advocate to use the deviation of the
metrics from the reference value (i.e. 0.5) instead of the metrics themselves. While there
exist a plethora of functions that fit this description, the simplest one the authors propose
is the Manhattan distance, commonly used in regression analysis, defined as

𝑔(𝑝) = |𝑝 − 𝑝𝑖𝑑𝑒𝑎𝑙| = |𝑝 − 0.5|

While this simple option is efficient, there are other formulas that are, in nature, tied to
the field of information and randomness and could provide more insight about the PUF
performance than the simple Manhattan Distance. The only requirement for these functions
is to be monotonic in order to remove the masking issues that arise when displaying only
the average value. Among the series of functions that fit the described criteria, we propose
the following:

Kullback-Leibler Divergence

The Kullback-Leibler Divergence denoted as 𝐷𝐾𝐿(𝑃, 𝑄) measures the difference between
a probability distribution 𝑃 and a reference probability distribution 𝑄. This function is
defined in detail in Equation A.19.

𝑔(𝑝) = 𝐷𝐾𝐿 (𝑝, 𝑄(𝑥))

Where 𝑄(0) = 𝑄(1) = 0.5 which corresponds to an “ideal” Binomial distribution.

Shannon Entropy

The Shannon Entropy of a probability distribution, whose computation is shown in Equation
A.18 is another valid function. For binary responses it can be summarised as follows:

𝑔(𝑝) = H(𝑝) = − [𝑝 log2(𝑝) + (1 − 𝑝) log2(1 − 𝑝)]

3 Proposed mitigations and extensions 62

Bit Ratio

This function can be used as a direct replacement for Uniformity and Bit-aliasing as it
provides information about the ratio of 1s and 0s in a bitstring. The absolute value of the
bit ratio should equal the Uniformity of a bitstring.

𝐵𝑅 =
|Number of 1s − Number of 0s|

Number of bits

3.0.2 Stability

The computation of Reliability requires the measurement of a reference sample, a process
known as enrollment, for the subsequent samples to be compared against. To obtain the
the enrolment sample, many measurements are performed at different conditions and the
most likely response is chosen. However, if the response to be analysed is slightly unstable
in nature and this process is not followed correctly, it would be possible to obtain as a
response the least probable outcome. That in turn would consider the response as unreliable
as most of the ensuing responses will be the most probable outcome.

As a way to mitigate this issue, we propose Stability, which measures the maximum number
of equal bits in a bitstring. Stability can be thought of as “Soft Reliability” because it is
independent of the sample order, that is, it measures how resilient a response is to different
environments and time. Stability is practical from a usage standpoint, as it provides only
the most stable value without indicating when instabilities occur. It is computed as the
Shannon Entropy of the single bit-response to the same challenge at different interrogations
of the PUF as shown in Equation 3.1.

For example, given the set of responses 𝑆 = 011110 that contains the responses of the
same challenges after 6 interrogations, 2 out of the 6 bits are 0, which means that 1 is more
stable. For this specific case, the Reliability will be 1/5 = 0.2 as only the last response is
identical to the reference one, while the Stability is 𝐻(4/6) = 0.91.

Stability(𝑆) = H (𝑆) (3.1)

3.1 Reliability Invariance

Significant efforts have been made in the literature to create frameworks for studying
Reliability, as highlighted in [172]. The standard evaluation of Reliability involves comparing
the current response to the reference using the Hamming distance. While this approach
is practical from an application standpoint, it falls short for in-depth analysis, as it loses
critical information about individual bits. This lack of data could hinder hardware designers’
efforts. To address this issue, we propose an extension to the current Reliability framework
to study the “invariance” of Reliability against different phenomena.

3 Proposed mitigations and extensions 63

Firstly, Reliability should be computed for each individual response as already proposed
by Maes et al. This approach not only provides valuable information to designers but also
sheds light on spatial phenomena. This is represented as shown in Equation 3.2.

Reliability(𝑑, 𝑐) = 1
𝑆

𝑆
∑
𝑠=2

𝑅𝑑𝑐 ⊕𝑅𝑑𝑐 (3.2)

The canonical computation of Reliability results in averageing out the reliability of each
individual bit.

Reliability(𝑑) = 1
𝐶 ∑

𝑐∈𝐶
[1𝑆

𝑆
∑
𝑠=2

𝑅𝑑𝑐 ⊕𝑅𝑑𝑐] (3.3)

Analysing the reliability of each device along with manufacturing metadata can help detect
anomalies. We further propose extending this analysis by considering conditional values
based on the reference sample, as shown in (3.4).

Reliability(𝑐) = [
Reliability(𝑐 ∣ 𝑠0 = 0)

Reliability(𝑐 ∣ 𝑠0 = 1)
] (3.4)

This can be expanded into a “Reliability Invariance Matrix” by tallying all possible bit-flip
transitions. Normalizing these counts yields the probabilities of different transitions, as
represented in (3.7).

1 bitstring = [0 1 1 0 1 0 1 0]
2 N = length(bitstring)
3 RIM = np.zeros((2, 2))
4
5 for i in range(1, N - 1):
6 x = bitstring[i]
7 y = bitstring[i+1]
8 RIM[x, y] += 1
9

10 RIM = RIM / (N - 1)

Listing 3.1: Computation of the Reliability Invariance Matrix in Python

Reliability Invariance = 𝑅𝐼 = (3.5)

[
𝑃(𝑠𝑡+1 = 0 ∣ 𝑠𝑡 = 0) 𝑃(𝑠𝑡+1 = 1 ∣ 𝑠𝑡 = 0)
𝑃(𝑠𝑡+1 = 0 ∣ 𝑠𝑡 = 1) 𝑃(𝑠𝑡+1 = 1 ∣ 𝑠𝑡 = 1)

] = (3.6)

[
𝑝00 𝑝01
𝑝10 𝑝11

] (3.7)

3 Proposed mitigations and extensions 64

While this matrix could theoretically be expanded to more than two states, the added
computation would not yield additional useful information, especially since this method
is sensitive to the sample order. Different sample arrangements can produce significantly
different Reliability Invariance values.

Ideally, Reliability values correspond to both 0s and 1s being reliable (e.g., 𝑝00 = 𝑝11 = 1),
resulting in the identity matrix. In Markov Analysis terms, the ideal system means that
both the states 0 and 1 are absorbing states, where once the system enters that state, it
remains there. The fact that the normalized matrix is a right stochastic matrix of transition
probabilities, led to the creation of mathematical models based on Markov Chains for the
analysis of PUF designs as it will be presented in Chapter IV.6.

𝑅𝐼𝐼𝑑𝑒𝑎𝑙 = 𝐼2 = [
1 0
0 1

]

As it will be shown in Chapter IV.3, the computation of the Reliability Invariance Matrix can
highlight certain phenomena of interest, which are specially interesting for the SRAM-PUF
studied here. This Reliability Invariance Matrix can be used on any kind of PUF. Moreover,
it could be tailored to specific PUF designs by analytical studies like the ones performed in
[173]

3.1.1 Correlation studies

Studying correlation effects is critical for fully assessing the threats posed by certain PUF
designs. Here, we propose an extension to the auto-correlation matrix commonly used in
digital analysis.

This extension is a preliminary step for detecting correlation effects. If such effects are
detected, more advanced statistical analyses would be required. The proposed Auto-
Correlation (AC) Matrix is computed by tallying the results of performing XNOR on
every pair of individual responses. Due to the nature of the XNOR operation, the resulting
matrix is symmetric. Its computation is shown in Equation (3.9).

(𝐴𝐶)𝑥𝑦 = (𝐴𝐶𝑇)𝑥𝑦 = 𝑋𝑁𝑂𝑅(𝑟𝑥, 𝑟𝑦) = 𝑟𝑥 ⊗ 𝑟𝑦 ∀𝑥, 𝑦 ∈ 𝐶 (3.8)
𝐴𝐶𝑥𝑦 = 1 ⟺ 𝑥 = 𝑦 (3.9)

The example shown in Figure 14 represents the AC Matrix of a PUF biased towards 0.
It’s evident that since the example PUF yields a larger amount of 0s, there are a lot of
correlations between different responses.

This autocorrelation matrix can easily be computed numerically and can be used to compute
the joint probabilities of each pair of bits. The simplest way to account for the correlation

3 Proposed mitigations and extensions 65

Figure 14: Auto-correlation matrix example of a PUF with Bit-aliasing=0.2

3 Proposed mitigations and extensions 66

between two responses 𝑎 and 𝑏 is to compute the joint probabilities shown in Equation 3.10
based on the marginal probabilities (i.e. Bit-aliasing) of each response and the conditional
probability 𝑃(𝑎 = 0, 𝑏 = 0) + 𝑃(𝑎 = 1, 𝑏 = 1) given by the AC matrix.

[
𝑃(𝑎 = 0, 𝑏 = 0) 𝑃(𝑎 = 1, 𝑏 = 0)
𝑃(𝑎 = 0, 𝑏 = 1) 𝑃(𝑎 = 1, 𝑏 = 1)

] (3.10)

The final expression of the joint probabilities of a pair of responses 𝑎 and 𝑏 is shown in
(3.11), where 𝑝𝑎, 𝑝𝑏 refer to the marginal probabilities of a and b respectively and 𝐴𝐶𝑎,𝑏
refers to the probability of them being equalThe final computations of the joint probabilities
are depicted in, where 𝑝𝑎 refers to the marginal probability of the response 𝑎.

1
2 [

(𝐴𝐶𝑎,𝑏 − 𝑝𝑎 − 𝑝𝑏 + 1) (𝑝𝑎 − 𝑝𝑏 − 𝐴𝐶𝑎,𝑏 + 1)

(𝑝𝑏 − 𝑝𝑎 − 𝐴𝐶𝑎,𝑏 + 1) (𝑝𝑎 + 𝑝𝑏 + 𝐴𝐶𝑎,𝑏 − 1)
] (3.11)

The following example illustrates how joint probabilities can be used to highlight corre-
lation phenomena. This example features 200 devices, each with 64 CRPs, all exhibiting
perfect Uniformity. However, challenges 10 and 42 exhibit positive correlation across all
devices. Thanks to the individual analysis of the joint probabilities it’s possible to have
high granularity and know that they take the same values most of the time.

These joint probabilities may prove useful in the analysis of certain PUF desings, like
RO-PUF, where a randomness source is compared multiple times. Abnormal values of the
joint probabilities may be a good indicator of a problem with the randomness sources or
the comparison method used.

Other proposals in the literature that are worth considered are shown [171] where the
authors proposer the Correlation Sensitive Metric. A techniques similar to the matrix
proposed here, albeit with different computations, is presented in [174]. In [175], the
authors leverage correlation-spectra in Boolean functions and [176] where the authors
propose a batter of tests to determine spatial correlations. Moreover, there are numerical
techniques like LISA [177] that can help find the best physical arrangement of components
to maximize the PUF’s secret extraction.

3.2 Punctual Bitaliasing

This new metric integrates Bit-aliasing and Reliability into a unified measure, offering
a comprehensive perspective on the behavior of the PUF in time. The concept revolves
around predicting the Bit-aliasing of a subsequent sample given the PUF’s Reliability and
the Bit-aliasing of the initial enrollment. This prediction assumes no application of filtering
or error correction techniques. Given that not all responses exhibit 100% Reliability, it is

3 Proposed mitigations and extensions 67

Figure 15: Example of Joint Probabilities

3 Proposed mitigations and extensions 68

expected that the Bit-aliasing of the new sample will differ from that of the initial enrollment
and this metric tries to quantify this effect.

It’s computed as depicted in Equation (3.14). Analogous to the canonical Bit-aliasing its
ideal value is 0.5. Through some algebra it shows that for this to happen 𝑃𝐵𝐴 = 0.5 ⟺
𝑝 = 0.5, 𝑝01 = 0, 𝑝11 = 1. In fact, the probabilities 𝑝01 and 𝑝11 form the right column
vector of the ideal Reliability Invariance matrix.

Punctual Bitaliasing = 𝑃𝐵𝐴 = 𝑃(1 ∣ 𝑅𝐼) (3.12)
= (𝑃(1) ∩ 𝑃11) ∪ (𝑃(0) ∩ 𝑃01) (3.13)
= (𝑝 × 𝑝11) + ((1 − 𝑝) × 𝑝01) (3.14)

Themain limitation of this computation is that it does not take into account the probabilities
𝑝00 or 𝑝10. This wouldn’t suppose a problem if the probabilities were dependent on each
other, but as said above, this does not need to be the case. Further work would include the
inclusion of the rest of the probabilities into another metric computation.

The use of the Kullback-Leibler divergence is proposed to quantify the effect of Reliability
on Bit-aliasing by analyzing the marginals of each response, represented by Punctual
Bit-aliasing and canonical Bit-aliasing, as highlighted in Equation 3.15. Here, 𝒜 represents
the alphabet of the PUF, which for most PUFs corresponds to the possible binary values 0
and 1.

𝐷𝐾𝐿(𝑃𝐵𝐴 ∥ 𝐵𝐴) = ∑
𝑎∈𝒜

𝑃𝐵𝐴(𝑎) log (𝑃𝐵𝐴(𝑎)𝐵𝐴(𝑎))
(3.15)

3.3 Entropy based metrics

We propose a series of metrics that use Shannon Entropy in order to mitigate the problems
related to omitting the standard deviation in the representation of the metrics as proposed
above.

Uniformity per device (UPD)

Analogous to Uniformity, UPD measures the the intra-device entropy by measuring the
statistical distribution of all responses within a single device. We have defined UPD by
applying the Shannon Entropy function, which provides the best score (i.e., 1) when the
distribution is perfectly uniform (50% of 0s and 50% of 1s).

UPD(𝑑) = H (1
#𝐶 ∑

𝑟∈𝑅𝑑

𝑟) (3.16)

3 Proposed mitigations and extensions 69

Uniformity per challenge (UPC)

Analogous to Bit-aliasing, UPC evaluates the inter-device entropy by measuring the dis-
tributions of responses across devices for the same given challenge. As for UPD, the use
of the Shannon entropy operator provides the best score (i.e., 1) when the distribution is
perfectly uniform (50% of 0s and 50% of 1s).

UPC(𝑐) = H (1
#𝐷 ∑

𝑟∈𝑅𝑐
𝑟) (3.17)

Reliable Entropy

We introduce a novel metric designed to integrate various metrics into a single value.
This approach aims to address masking issues and provides valuable insights into suitable
CRPs across all devices. This new metric, designate as Reliable Entropy, is defined in
Equation 3.18.

𝑅𝐸 = min [H(Uniformity per bit), H(Bit-aliasing)] − H(Reliability) (3.18)

The final goal of this metric is to identify the responses that have high Reliability while
mantaining high Entropy, that is, ideal Uniformity or Bit-aliasing. To compute this metric,
initially the Uniformity of each device is computed along with the Bit-aliasing of each
response. Then, for each challenge, we define the Uniformity per bit as the device’s Unifor-
mity if that bit is 1 and the complementary value otherwise. That is to say, if a device has a
Uniformity of 45%, a response of 1 will have a Uniformity per Bit of 45% and a response of
0 will have a Uniformity per bit of 55%. By selecting the minimum Shannon Entropy of the
Uniformiy per bit and Bit-aliasing, we ensure that the CRP yields good properties across all
devices. Lastly, the Shannon Entropy of the Reliability is substracted from the computed
value. By doing this, we ensure to select the CRPs that have maximum Reliability.

By selecting the minimum Shannon Entropy of the Uniformity per bit and Bit-aliasing, we
ensure that the CRP has good properties across all devices. Finally, the Shannon Entropy
of Reliability is subtracted from this value, ensuring the selection of CRPs that maximize
Reliability.

3.4 Test Suite for PUFs

Although many efforts in the literature aim to provide a standardized test methodology
for PUFs [178], some researchers have resorted to using the NIST Test Suite [179]. The
NIST Test Suite is a statistical test suite for random and pseudorandom number generators
intended for cryptographic applications. While it was designed to evaluate random sources,
PUFs were not considered in its development, so using it for PUF analysis is discouraged.
NIST requires vast amounts of data from the same source to be effective. Collecting such

3 Proposed mitigations and extensions 70

large datasets is a challenge for PUFs, so the results of the NIST suite may not accurately
reflect the true behaviour of PUFs. This problem is highlighted in [180] where the authors
argue that typically PUF responses are concatenated into a one-dimensional dataset in
order to perform the NIST tests. The authors show that, by doing so, correlation phenonema
are obfuscated. They prove this experimentally and show that the estimated min-entropy
can differ by orders of magnitude. To solve, this, the authors propose a prediction scheme
to accurately predict the min-entropy based on the worst-case scenario.

Moreover, statistical tests alone are not strong evidence of entropy. According to NIST,
models should provide an explicit statement of the expected entropy and offer a technical
argument for why the entropy rate can be mantained. No set of general-purpose statistical
tests can measure the entropy per sample in an arbitrary sequence of values. A better
approach is to understand the unpredictability of the noise source outputs, model it, and
use the model to estimate the entropy. General-purpose tests on outputs should be run as a
sanity check.

Therefore, we postulate that a test suite for PUFs is necessary. This test suite should
be adapted to the different idiosyncrasies of various PUF families, as some sources of
randomness may be biased or attacked in ways that other families are not. The metrics
used to evaluate and compare PUFs can be a subset of the battery of tests required to fully
assess a PUF’s performance. For example, PUFs that generate bits over time should study
time correlation, while PUFs that generate all bits simultaneously do not face this issue.
Furthermore, this test suite should account for both static factors (e.g., devices, process
variability) and dynamic factors (e.g., temperature, voltage, ageing).

Due to time constraints, it was infeasible to create a comprehensive test suite for PUFs.
However, the methodologies proposed in this section and the rest of the document could
serve as the foundation for developing a new test suite.

3 Proposed mitigations and extensions 71

Conclusions IV.4
In order to evaluate and assess the behaviour of a PUF design, a series of statistical tests or
metrics are commonly used. The canonical metrics proposed by Maiti were described in
detail. These foundational metrics are Uniformity, Bit-aliasing, Uniqueness, and Reliability.
Uniformity evaluates the distribution of bits in the response of each device. Bit-aliasing
studies the bias in the distribution of responses across different PUF instances. Uniqueness
measures the ability of a PUF to produce unique responses for each device, while Reliability
assesses the consistency of PUF responses under varying environmental conditions such
as temperature, voltage and ageing. Following the description of these canonical metrics, a
series of alternative proposals in the literature are studied and compared to the canonical
ones.

Afterwards, the statistical limitations of the canonical metrics were analysed in detail.
Several key issues were identified, such as the lack of a universally accepted standard or
model for benchmarking PUF performance, making comparisons across studies challenging.
Additionally, the absence of correlation and auto-correlation analysis means the canonical
metrics do not consider the interdependence of bits within the PUF responses, potentially
overlooking significant patterns, as clearly illustrated with examples. The metrics also
neglect the theoretical and practical boundaries of PUF uniqueness. Furthermore, the
insufficient reporting of standard deviation for metrics can lead to severely misleading
conclusions about PUF performance.

To address these critical limitations, several mitigations and alternative metrics have been
proposed. Among them, using deviation from ideal values instead of absolute metrics and
new metrics, such as Stability, Reliability Invariance, and Punctual Bit-aliasing, aim to cap-
ture aspects overlooked by the canonical metrics. Furthermore, incorporating correlation
and auto-correlation analysis can help identify and quantify dependencies within PUF
responses, providing a more comprehensive evaluation framework.

Finally, the groundworks for a new comprehensive test suite tailored for PUFs, analogous
to the NIST standards for cryptographic modules, were addressed. The proposed test suite
aims to standardize PUF evaluation and ensure consistent and reliable benchmarking across
the field. Although the development of this suite is beyond the scope of the current work
due to time constraints, it is identified as a critical area for future research.

This foundational chapter presents a path toward more rigorous and standardized testing
protocols that will enhance the reliability and comparability of PUF technologies.

4 Conclusions 72

V

On the Reliability of
Differential PUFs

State of the art V.1
The quality metrics described in Chapter IV assess the performance of a PUF across different
dimensions, primarily related to the uniqueness of the generated secrets and the ability
of the PUF to reproduce those secrets. While all metrics are crucial for understanding
PUF behaviour, Bit-aliasing and Reliability are particularly significant for the adoption of
PUFs in modern circuits. Due to common issues with current PUF implementations, only a
limited number of devices can be reliably deployed in the field, and their costs often render
them unsuitable for industrial applications, as shown by Pour et al. [181].

As a result, significant research efforts are currently focused on developing (i) techniques
for reliability analysis and evaluation, and (ii) techniques for reliability improvement.

To the best of our knowledge, there are no significant works focusing on reducing Bit-
aliasing effects in PUFs, as challenges that generate biased responses are usually filtered
out. However, certain design techniques proposed by Valles Novo et al., Nguyen et al., and
Garg et al. [182, 183, 184] optimize the design process to enhance PUF performance. These
proposals suggest a potential interconnection between Entropy and Reliability.

1.1 Techniques for Reliability analysis and evaluation

Maes1 in 2013 was among the first to demonstrate the trade-off between PUF reliability and
its entropy. Real silicon data validate that some responses are more prone to unreliability
than others, leading to the ability to study the full failure distribution of a PUF-based
application. This concept is now widely accepted and has given rise to numerous reliability
assessment methodologies.

Building on this notion, Schaub et al. [154, 185] in 2018 provide a generic probabilistic
method for delay PUFs (RO-PUF, RO sum PUF, and Loop PUF), where the trade-off between
Reliability and Entropy is modelized based on the signal-to-noise ratio (SNR), and validated
by real measurements. They offer an analytical method to filter out unreliable responses,
employing simplified models of delay distribution (due to fabrication-induced variability
and thermal noise) to evaluate the SNR of a PUF response.

Martin et al. [186] in 2019 introduce a RO-PUF reliability evaluation metric based on
FPGA-extracted data. In their study, the authors demonstrate the relationship between
frequency differences and Reliability solely from experimental data, extracting the actual
distribution of frequencies under fabrication-induced variability and evaluating the fre-
quency fluctuation associated with variations in the operating environment (temperature

1R. Maes, ‘An accurate probabilistic reliability model for silicon pufs,’ in International Conference on Crypto-
graphic Hardware and Embedded Systems, Springer, 2013, pp. 73–89.

1 State of the art 74

and noise). Numerical and statistical models for studying the reliability of delay-based
PUFs, especially RO-PUFs, can be found in [148, 97].

1.2 Techniques for Reliability improvement

Two main lines of work can be found in the literature: Filtering and masking techniques
and Error Correcting Codes (ECC).

Filtering unreliable bits involves understanding PUF behaviour under various environmen-
tal conditions and ageing. It involves removing bits from PUF responses that have low
Reliability. Bhargava et al. demonstrated the effectiveness of filtering in [187]. Addition-
ally, Schaub et al. compared filtering to fuzzy extraction and found filtering to be more
resource efficient for improving PUF reliability [188]. However, filtering requires exten-
sive characterization to assess the reliability of each PUF bit under all possible operating
conditions.

ECCs enhance reliability by using circuit redundancy to detect and correct unreliable
PUF responses with helper data calculated during PUF enrollment [189, 190, 103]. While
highly effective in ensuring reliability, ECCs are resource-intensive in terms of area and
power consumption. Optimizing circuit layouts to minimize susceptibility to environmental
variations and noise can also stabilize PUF behaviour, as demonstrated by Bhargava et
al. and Saraza Canflanca et al. [191, 135]. Other promising design proposals include using
convolution operations on SRAM-based PUFs [192].

However, when using ECCs, caution is necessary since the helper data might leak informa-
tion about the PUF to potential attackers as already shown in [104]. Studies by Beguinot et
al. and Danger et al. propose RO-PUF designs with reduced helper data to mitigate this risk
[102, 173].

Another approach leverages specific physical phenomena, notably NBTI, is a common
ageing effect in CMOS technology that can degrade PUFs over time, compromising their
stability. However, research by Roelke et al. and Garg et al. suggests that inducing controlled
ageing in transistors can improve PUF reliability [134, 184].

Collectively, these techniques significantly enhance the durability and dependability of
PUFs, making them more suitable for long-term security applications.

1 State of the art 75

Relationship between Frequency
Difference and Reliability

V.2

Reliability is defined as the ability of the PUF to produce the same response for a given
challenge under different operation conditions and ageing. Recall that in RO-PUF, the
responses are generated by comparing two nominally identical ROs as already shown in
Figure 2. By convention, if the frequency of the first RO is larger than the frequency of the
second, the PUF response is 1, and 0 otherwise. If the two frequencies are very similar, the
response is prone to be unreliable since a small shift in the frequency in one of the ROs
due to noise or environmental conditions can alter the response. Therefore, an in-depth
study of the distribution of all frequency differences can provide some insight about the
Reliability of the PUF.

The comparison is usually done in the digital domain and since the signal from the RO is an
analog signal, the frequency is usually measured by tallying up a counter, which counts at
each rising edge of the RO, and the PUF response is obtained by comparing two counters.
The sampling frequency needs to be fast enough to measure the fastest RO frequency in
the RO-PUF. RO pairs whose frequency difference is close to 0Hz require many samples
in order to provide a measurable difference in the counter, that is until the frequency lag
between the 2 frequencies becomes significant. However, frequency differences that are
very large provide a meaningul difference in the counter early on.

Based on the general agreement, the oscillation frequencies of all ROs in the PUF can
be fitted to a normal distribution 𝐹 ∼ 𝑁(𝜇, 𝜎). Given 2 different frequency distributions
𝐹1 ∼ 𝑁(𝜇1, 𝜎1) and 𝐹1 ∼ 𝑁(𝜇2, 𝜎2), the distribution resulting from their difference will also
be normally distribution according to Equation 2.1.

𝐹1 − 𝐹2 ∼ 𝑁(𝜇1 − 𝜇2,√𝜎21 + 𝜎22) (2.1)

To refer to these frequency differences, we will use the notation Δ. Thus, 𝐹Δ represents
the distribution of RO frequency differences, while 𝑓𝛿 denotes an individual frequency
difference.

In the case of the RO-PUF, the compared frequencies come from the same distribution, so the
resulting frequency difference distribution can be summarised as shown in Equation 2.2.

𝐹Δ ∼̇ 𝑁 (0, 𝜎√2) (2.2)

Throughout this manuscript, in the analysis concerning Ring Oscillators, we will make
extensive use of the “Coefficient of Variation” 𝐶𝑉, which is defined as the ratio between

2 Relationship between Frequency Difference and Reliability 76

the standard deviation and the mean as shown in Equation 2.3.

𝐶𝑉Δ =
𝜎Δ
𝜇Δ

(2.3)

However, in most occasions it’s reciprocal 𝑍 its preferred. While we use the notation of 𝑍
to refer to the reciprocal of the Coefficient of Variation, it’s important to mention that it’s
not the z-score unless otherwise stated.

𝑍Δ =
1
𝐶𝑉 =

𝜇Δ
𝜎Δ

(2.4)

As suggested by1, to discriminate the unreliable pairs, whose frequency difference is close
to 0Hz, from the possible reliable pairs, a threshold 𝑇 is defined such that pairs for which
−𝑇 < 𝑓Δ < 𝑇 are considered unreliable, as displayed in figure Figure 16.

Unreliable

-10 -5 0 5 10

Frequency Difference [Hz]

Figure 16: Relationship between Frequency Difference and Reliability

Given this threshold 𝑇, the Reliability of the PUF is then computed as the complement of
the probability of unreliability as shown in Equation (2.8).

Reliability = Total Area − Area Unreliability (2.5)
= 1 − 𝑃𝑈𝑛𝑟𝑒𝑙 (2.6)

= 1 − Φ(
𝑝 − 𝜇Δ
𝜎Δ

) ||
𝑇

−𝑇
(2.7)

= 1 − [Φ (
𝑇 − 𝜇Δ
𝜎Δ

) − Φ(
−𝑇 − 𝜇Δ

𝜎Δ
)] (2.8)

While this is generally agreed upon, the problem resides in finding the suitable threshold
𝑇 to set the bounds of unreliability. For this, we propose a simulation-based framework

1H. Martin et al., ‘On the Reliability of the Ring Oscillator Physically Unclonable Functions,’ in 2019 IEEE 4th
International Verification and Security Workshop (IVSW), 2019, pp. 25–30. doi: 10.1109/IVSW.2019.8854401.

2 Relationship between Frequency Difference and Reliability 77

https://doi.org/10.1109/IVSW.2019.8854401

which can be applied before manufacturing the PUF, which allows determining the rela-
tionship between frequency difference and Reliability. The proposed framework enables
higher accuracy in the results since it is not based on predictive simplified models of the
device variability and noise, but on actual technological electrical models. Moreover, this
methodology offers some good oportunities as it is possible to perform online tests to
assess the reliability of the response and can be used to implement filtering and masking
techniques.

The methodology proposed is summarized in Algothim 1. This method does not work
directly with the raw analog signals of the ROs but rather on the counter values computed
to measure the frequency of the ROs. For every pair of ROs, at every counter time-step,
we have calculated the response. We have done this for the nominal operation conditions
(voltage 𝑉𝑛 and temperature 𝑇𝑛) to determine the nominal response, as well as for different
operation conditions to determine possible responses at run-time. If the response is equal to
the one obtained at nominal conditions, it is considered reliable. The overall PUF reliability
is calculated by averaging the reliability of all ROs. Thus, the reliability will be 100% if none
of the responses differ from the nominal sample and 0% if all of them differ.

RO pairs for which the frequency difference is very small take more time to provide a
meaningful counter difference. By saving the counter difference at every time sample we
can provide valuable insights into the generated PUF responses. Indeed, RO evaluation
time plays a huge role in the proper assessment of the Reliability of the PUF. In Chapter V.3,
we describe a novel mathematical analysis to relate the frequency difference distribution of
the RO to the approximate time needed to obtain a degree of reliability.

1 N = 𝑛𝑢𝑚𝑇𝑒𝑚𝑝𝑠 ⋅ 𝑛𝑢𝑚𝑉𝐷𝐷𝑠 ⋅ (𝑛𝑅𝑂/2)2
2 for 𝑖 ← 1 to (nRO / 2) do
3 for 𝑗 ← 1 to (nRO / 2) do
4 for 𝑐 ← 1 to nSamples do
5 # Calculation of nominal response
6 R𝑛𝑜𝑚[𝑖][𝑗][𝑐] ← sign(Diff(𝑖, 𝑗, 𝑐, 𝑉𝑛, 𝑇𝑛))
7 # Calculation of reliability of each responses
8 foreach T in Temperatures do
9 foreach V in Voltages do
10 R← sign(Diff(𝑖, 𝑗, 𝑐, 𝑉, 𝑇))
11 if R = R𝑛𝑜𝑚 then
12 Rel[𝑖][𝑗][𝑐] ← Rel[𝑖][𝑗][𝑐] + 1
13 end
14 end
15 # Calculation of PUF reliability
16 Rel𝑝ᵆ𝑓[𝑐] ← Rel𝑝ᵆ𝑓[𝑐] + Rel[𝑖][𝑗][𝑐]/𝑁
17 end
18 end
19 end

Algorithm 1: PUF Reliability calculation for threshold estimation.

2 Relationship between Frequency Difference and Reliability 78

To increase reliability, as demonstrated by2, it is preferable to select pairs of ROs that
overall widen the frequency difference distribution. However, challenges with a large
frequency difference should not be used directly, since the bigger the frequency difference,
the smaller the chance that process variation makes a difference in the different ICs. Those
challenges will very like be common among multiple instances (i.e. they may present
Bit-aliasing). Indeed, there is an inherent relationship between the Reliability and the Bit-
aliasing (i.e. Entropy) of a PUF. This relationship will be studied in detail in Chapter V.1.

2M. T. Rahman et al., ‘A pair selection algorithm for robust ro-puf against environmental variations and
aging,’ in 2015 33rd IEEE International Conference on Computer Design (ICCD), IEEE, 2015, pp. 415–418.

2 Relationship between Frequency Difference and Reliability 79

Time To Response V.3
There is a relationship between frequency difference and Reliability, concluding that fre-
quency differences close to 0Hz are deemed unreliable. While that is something agreed
upon, the time needed to obtain reliable responses is rarely discussed. The analysis proposed
here studies in detail the relationship between the oscillation frequency difference of a pair
of ROs, the sampling frequency and the approximate time needed to obtain a response with
a certain degree of confidence.

The analysis of the relationship between frequency difference and Reliability presented in
the previous section can be expanded by taking into account the sampling frequency and
the counter differences to provide an overall evaluation of the Reliability of the RO-PUF
can be obtained. While this type of analysis is often omitted in the literature, it could yield
critical information valuable for design choices for time-constrained environments. In
addition, this analysis could be adapted to the intricacies of other delay-based PUFs by
following the methodology proposed here.

For this analysis, we make the following assumption during the interrogation process,
where are a pair of ROs is compared to yield a response. Both ROs of the pair being
interrogated start oscillating at the same instant. Any delay in any of the RO due to delay
in the lines or resistive defects is negligible. To guarantee that we allow for delays, and
start counting when both ROs are oscillating (i.e. the counter enable is delayed relative to
the RO enable). There are also effects that can alter the amplitude of the signal, but we are
only interested in the frequency. Furthermore, if the frequencies are sampled in a period
long enough, random effects like RTN are averaged out and cancelled out, so these type of
random effects are not considered.

We consider the case of 2 ROs with different oscillating frequency, and compute the resulting
signal from substracting both signals as shown in Figure 17. If both signals start oscillating at
the same time, the difference signal will experience simultaneous zero-crossing periodically
at intervals 𝑇𝑠𝑦𝑛𝑐. On a mathematical level, the resulting frequency difference signal is the
result of the difference of two “travelling waves” and the exact behaviour of the signal is
given in Equation (3.2).

𝑦(𝑥, 𝑡) = 𝑦𝑚 sin(𝑘1𝑥 − 𝜔1𝑡) + 𝑦𝑚 sin(𝑘2𝑥 − 𝜔2𝑡) (3.1)

= 2𝑦𝑚 cos [
𝑘1 − 𝑘2

2 𝑥 − 𝜔1 − 𝜔2
2 𝑡] sin [

𝑘1 + 𝑘2
2 𝑥 − 𝜔1 + 𝜔2

2 𝑡] (3.2)

The resulting signal from the difference of the RO frequencies has multiple frequency
components, but we are only interested in the one that controls the repetition interval. The
interval 𝑇𝑠𝑦𝑛𝑐 at which both signals experience the zero-crossing is given by the period

3 Time To Response 80

Difference

Second RO (12 Hz)

First RO (10 Hz)

Figure 17: RO signals and the resulting Beat from their difference

of the frequency difference 𝑓Δ = |𝑓1 − 𝑓2|. In the example shown in Figure 17 where both
signals oscillate at 10 Hz and 12 Hz respectively, the interval 𝑇𝑠𝑦𝑛𝑐 is computed as follows:

𝑇𝑠𝑦𝑛𝑐 =
1

12Hz − 10Hz =
1

2Hz = 0.5 s

This implies that we expect changes in the counter difference every 0.5 seconds for this
specific pair. With a sampling interval of 0.1 seconds, we would observe 5 consecutive
identical values of the counter difference before detecting a change, such as 1, 1, 1, 1, 1,
2, 2, 2, 2, 2. Based on this observation, we can estimate the necessary number of samples
to achieve a “reliable” measurement. Assuming a fixed sampling frequency 𝑡𝑠𝑎𝑚𝑝𝑙𝑒, we
define the expected number of samples until the counter difference changes as detailed in
Equation 3.3. Expanding on this analysis allows us to establish a relationship between the
anticipated response time and the reliability of the corresponding response, determined by
the threshold computed using the methodology proposed in Chapter V.2.

𝐸𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
𝑇𝑠𝑦𝑛𝑐
𝑡𝑠𝑎𝑚𝑝𝑙𝑒

= 1
𝑓Δ ⋅ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

(3.3)

This computation can then be extended to every pair of ROs in the PUF to analytically
obtain the distribution of time expected to gather the responses, as illustrated in Figure 18.
In the proposed example three distributions are shown, A, B and C, each one with wider
distribution of frequencies. The top subfigure represents the absolute value of the frequency
differences given by the 3 distributions. The bottom figure, represents the distribution
of 𝑇𝑠𝑦𝑛𝑐 intervals computed on every pair. We can see that in distribution A, being the
narrowest distribution, most frequency differences are very close to 0, so the repeating
interval is very large. On the contrary, in distribution C, there are frequency differences
that are much larger and consequently have a much lower 𝑇𝑠𝑦𝑛𝑐.

3 Time To Response 81

0%

20%

40%

60%

0 200 400 600

Frequency Difference [Hz]

D
en

si
ty

0.0%

2.5%

5.0%

7.5%

0.00 0.05 0.10 0.15 0.20

Tsync [s]

D
en

si
ty

A ~ N(0, 10) B ~ N(0, 20) C ~ N(0, 80)

Figure 18: Frequency difference distributions and their corresponding distribution of repat-
ing intervals

3.1 Numerical estimation of the number of samples

We have shown that for a given RO pair being sampled at a fixed rate, the expected number
of samples needed to see changes in the counter difference can be computed with the
repeating interval 𝑇𝑠𝑦𝑛𝑐 of the RO pair. Even though this can be done numerically given
all the frequency differences in the RO-PUF, from a design point of view, it would be
beneficial to know how the shape of both distributions (i.e. RO frequencies and expected
time) relate to each other. This analysis has been carried out numerically through a grid
search implemented in Julia, whose code is provided in E.3.

The frequency difference 𝐹Δ follows a normal distribution related to the frequency distribu-
tion of the ROs.

Since we are interested in measuring time, we can use the symmetric property of the normal
distribution and create a folded normal distribution by taking the absolute frequency
difference 𝑌 ∼ |𝐹Δ| which can be modelled through a Beta distribution as shown in
Equation 3.4.

|𝐹Δ| ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼Δ, 𝛽Δ) (3.4)

In the case where 𝜇 = 0, then we can simplify the study by using a half-normal distribution,
which is a special case of the generalized Gamma distribution.

3 Time To Response 82

|𝐹Δ| ∼̇ 𝐼𝐺(𝜇, 𝛿) ⟺ 𝜇 = 0 (3.5)

The distribution of 𝑇𝑠𝑦𝑛𝑐 intervals for all frequency differences defined by 𝐹Δ will be denote
as 𝑇𝑇𝑅, for “Time To Response”. As presented above, the time to response is inversely
proportional to the frequency difference.

𝑇𝑇𝑅 ∼ 1
|𝐹Δ|

The 𝑇𝑇𝑅 distribution, being the inverse of a folded normal distribution, can be modelled
by using a Wald distribution (inverse Gaussian distribution), but we can also fit a gamma,
which should be simpler to work with. There are some instabilities and expensive numerical
computations of the Wald distributions that make the Gamma distribution much easier to
work with, so we suggest using the Gamma distribution instead.

𝑇𝑇𝑅 ∼̇ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑇𝑇𝑅, 𝛽𝑇𝑇𝑅)

Given the distributions |𝐹Δ| and 𝑇𝑇𝑅, our goal is to establish the connection between the
shape of the 𝐹Δ distribution given by 𝑍Δ = 𝜇/𝜎 and the parameters 𝛼Δ, 𝛽Δ and 𝛼𝑇𝑇𝑅, 𝛽𝑇𝑇𝑅
respectively. For analytical simplicity, we will make use of the 𝐺𝑎𝑚𝑚𝑎(𝑘, 𝜃) parametriza-
tion, which corresponds to 𝐺𝑎𝑚𝑚𝑎 (𝛼, 1/𝛽).

An initial exploration of this relationship is depicted in Figure 19, where the left column
illustrates the relationship between 𝑍Δ and |𝐹Δ|, while the right column shows the relation-
ship between 𝑍Δ and 𝑇𝑇𝑅. It is observed that both 𝑘Δ and 𝑘𝑇𝑇𝑅 exhibit a parabolic shape
with a slight dependency on σσ. Conversely, 𝜃𝑇𝑇𝑅 also displays a parabolic shape, yet its de-
pendence on 𝜎 is more pronounced. This outcome is expected as demonstrated in Figure 18,
where narrower frequency difference distributions correspond to wider distributions of
𝑇𝑠𝑦𝑛𝑐, reflected by larger 𝜃.

Furthermore, 𝑘Δ demonstrates two distinct behaviours: a linear decrease for very low
values of 𝑍Δ, and an increase for larger values, where the slope is influenced by 𝜎.

Given the relationship shown, we fit a quadratic model for 𝛼Δ and 2 linear models for 𝑘Δ.
In the case of the 𝑇𝑇𝑅, two quadratic models are fitted. The following models are obtained
for the distribution of absolute frequency differences.

𝑘Δ = |𝑍2Δ − 1| 𝑅2 = 0.9955 (3.6)

𝜃Δ =
⎧
⎨
⎩

|𝜇|
𝜍2

if |𝑍Δ| ≥ 1

1.75
𝜍
− 0.45|𝜇|

𝜍2
otherwise

𝑅2 = 0.9975 (3.7)

3 Time To Response 83

θΔ θttr

kΔ kttr

-10 -5 0 5 10 -10 -5 0 5 10

-10 -5 0 5 10 -10 -5 0 5 10
0

30

60

90

0

25000

50000

75000

100000

0

30

60

90

0.0

2.5

5.0

7.5

10.0

ZΔ

va
lu
e

σΔ
25 50 75 100

Figure 19: Relationship between 𝑍Δ and the different parameters

3 Time To Response 84

The analysis of the parameters of the 𝑇𝑇𝑅 distribution yields the following models

𝑘𝑇𝑇𝑅 = 𝑍2Δ − 3.12 𝑅2 = 0.9954 (3.8)

𝜃𝑇𝑇𝑅 = 18.6 ⋅
𝜇2

𝜎 − 520 ⋅ 𝜎 𝑅2 = 0.9724 (3.9)

3.2 Conclusions

The methodology proposed here allows for the study of the relationship between the
frequency difference distribution obtained in an RO-PUF and the distribution of time
needed to obtain reliable responses. This analytical models should work in tandem with the
methodology proposed in the previous section to improve or at least study the Reliability
of an RO-PUF. Once the bounds of unreliability have been computed for a certain RO-PUF,
we can estimate the time that corresponds to the computed bounds.

It’s important to state that these are not mathematical derivation of the real behaviour, but
approximations. These models present heteroscedasticity for very large values of 𝑍Δ. A
proper mathematical analysis will be needed to order to derive the real expressions of the
distributions in terms of the distribution of frequency differences.

3 Time To Response 85

VI

On the Relationship
between Reliability and
Entropy of Differential

PUFs

Relationship between Reliability and
Entropy

VI.1

In Chapter VI.2 we have proposed that the Reliability of a PUF is proportional to the
frequency difference. In this section, we delve into the relationship between Reliability
and Entropy. For this, we focus on PUFs whose responses are generated by comparing
nominally-identical physical quantities, which in our case is the RO-PUF.

We consider the case where 2 ROs have measurement values distributed among all devices,
as normal distributions: 𝐸1 and 𝐸2. Therefore their difference is distributed following a
Normal distribution as already shown in Equation 2.1 and depicted in Figure 20. In the case
only random variability is present, the average value of the two frequency distributions
should have the same value thus leading to an equal probability of responses at 0 and 1.
Nevertheless, because of systematic process variability and design choices, the two values
might differ, in which case the probability of one of the responses becomes predominant.

Figure 20: Description of the relationship between frequency difference and Entropy on
Differential PUFs.

This bias in the probability of the response can be studied by analysing the distance of the
frequency distribution from 0 as shown in Figure 21. If the difference of the mean values of
the frequency differences is positive, the probability of 1 is larger than the probability of 0.
On the contrary, if the difference is negative, the probability of obtaining a 0 is larger than
the probability of obtaining a 1. This uneven ratino of probabilities leads to a decrease of
Entropy, degrading the performance of the PUF. In Figure 20 the bias is depicted by means
of the Uniformity Per Challenge (UPC) metrics described in Chapter VI.2.

1 Relationship between Reliability and Entropy 87

0

Frequency Difference [Hz]

Ideal

0

Frequency Difference [Hz]

Increased P(1)

0

Frequency Difference [Hz]

Increased P(0)

Figure 21: Relationship between the frequency difference distribution and Bit-aliasing

Since both the Reliability and Bit-aliasing are related to the frequency difference, the
direct consequence is that both metrics of the PUF are inverse proportional so that large
Reliability implies low inter-device Entropy and vice-versa. Indeed, for differences of
the mean frequency of the two ROs different from 0, the window of unreliability slides
towards the extremes of the 𝐹Δ distribution, therefore the area of concern becomes smaller,
increasing thus the reliability of the PUF. Consequently, we now not only have the area of
unreliability at the centre of the distribution as depicted in Figure 16, but also the area of
bias at the extremes of the distribution, as shown in Figure 22.

Biased BiasedUnreliable

-10 -5 0 5 10

Frequency Difference [Hz]

Figure 22: Relationship between Frequency Difference, Reliability and Entropy

This relationship has been proven by the simulation method proposed in Chapter VI.2. The
results from the Infineon dataset strongly supports this analysis as it will be shown in detail
in Chapter VI.2, Chapter VI.3 and published in1.

1V. Kulagin et al., ‘On the Relation Between Reliability and Entropy in Physical Unclonable Functions,’ IEEE
Design & Test, pp. 1–1, 2024. doi: 10.1109/MDAT.2024.3425791.

1 Relationship between Reliability and Entropy 88

https://doi.org/10.1109/MDAT.2024.3425791

Simulation results and mitigation
techniques

VI.2

In this section, we conduct an in-depth analysis of the simulation data to evaluate the
filtering technique described in Chapter VI.2. The analysis and results discussed here have
been previously published in [6] and subsequently extended in [7, 8].

Recall that for each simulated RO, we record the supply voltage, temperature, and counter
value at specific timesteps. For each RO pair, we compute the counter difference at each
timestep and calculate the reliability of that pair accordingly. This allows us to correlate the
counter difference with the reliability for each pair at every timestep. Figure 23 illustrates
the counter differences achieved for all pairs and the reliability of each RO pair at a
particular timestep. It is evident from this Figure that, at this specific timestep, RO pairs
with a frequency difference greater than 2 achieve a reliability of 100%.

Figure 23: Reliability of the RO-PUF at a single timestep

Subsequently, for each timestep, we determine the minimum counter difference that
achieves maximum reliability (e.g., 2 in the previous example) for all RO pairs across
all timesteps. In cases where different RO pairs exhibit diverse reliability values for the
same counter difference, we select the minimum counter difference that ensures all RO
pairs achieve maximum reliability (e.g., 4 in the previous example). These thresholds at
every timestep are then employed to filter the responses based on the measurement time.

Figure 24 showcases these results for our simulations. Recall that the RO is controlled via an
enable signal with a NAND gate. Once the signal is enabled, the RO requires approximately
30 ns to reach transient mode, resulting in no data from 0 to 30 ns. The purple dots represent

2 Simulation results and mitigation techniques 89

the maximum threshold for all pairs at each timestep, while the green line represents the
fitted line used as the threshold. If an RO pair provides a counter difference above this
line, the pair is considered reliable; otherwise, it is deemed unreliable. Additionally and
to ensure the reliability of the response, two separate measurements can be performed at
different timesteps, with both needing to exceed the threshold.

Figure 24: Reliability of the RO-PUF at different time steps

Now we select a specific time sample for detailed analysis and apply the proposed filtering
technique. By varying the counter difference threshold, from 0 to 10 in our case, we
monitor the number of RO pairs whose counter difference exceeds the selected threshold.
The reliability of the RO-PUF is recalculated after filtering out the masked pairs. A threshold
of 0 implies no masking. The results are presented in Figure 25. It is observed that increasing
the counter difference threshold reduces the number of available responses by filtering out
those closer to the boundaries of unreliability. However, this enhances the overall reliability
of the PUF as only reliable challenges are selected. In this case, a threshold of 4 achieves a
global reliability of 100% while retaining 76% of the RO pairs.

The methodology is further extended to incorporate Entropy. Using the same approach, we
compute the Reliability and Entropy of the RO-PUF at each timestep. The results shown in
Figure 25 are now supplemented with these new findings and depicted in Figure 26. Instead
of the number of valid CRPs, we display the number of invalid CRPs. As demonstrated,
increasing the counter difference threshold enhances Reliability. However, the Entropy of
the PUF decreases with higher thresholds. Larger thresholds mask unreliable responses, but
retain responses with very large frequency differences, resulting in reliable but potentially
bit-aliased responses. For thresholds of 3 or 4, the studied PUF design achieves a favorable
balance between reliability and entropy, with only a minor reduction in the number of
CRPs.

2 Simulation results and mitigation techniques 90

Figure 25: Relationship between RO-PUF Reliability, counter difference threshold and
valid number of CRPs

Figure 26: Relationship between RO-PUF Reliability, Entropy, counter difference threshold
and valid number of CRPs

2 Simulation results and mitigation techniques 91

Analysis of experimental data VI.3
In this section we provide an in-depth analysis of the SRAM data gathered with the
SRAMPlatform as well as the dataset of the industrial circuit provided by Infineon.

Although PUF keys typically range from 128 to 256 bits in length, each memory studied
contains approximately 80 kilobytes (80 kB) of data, totaling around 655360 bits. This
provides extensive opportunity for thorough analysis, although some analyses and figures
can become quite complex.

3.1 SRAM analysis

3.1.1 Metadata analysis

We start first with an analysis of the metadata of the SRAMs. Recall that STM32 devices
contain a unique UID provided at manufacture. This manufacture contains information
about the wafer number, lot number and physical coordinates of the chip in the wafer. This
information is shown in Figure 27. We don’t have access to information about the wafer so
we don’t know exactly the correct size. We assume here that all coordinates are positive,
(negative numbers cannot be encoded in the UID) and the original wafer size is drawn in
the circle. However, we have no way to confirm this so this remains a hypothesis.

Secondly, Figure 28 displays the different values of supply voltage and temperature obtained
from the measurements. It is evident that all devices exhibit a consistent trend. However,
there is a notable period (28-11-2022) where the values become erratic. While the exact
cause is unknown, we consider two plausible explanations:

Firstly, it could be due to sensor calibration issues, as these devices are intended for
prototyping and the sensors may not be entirely reliable.

Secondly, external factors may be at play. The station is located in a room with other
stations and devices, adjacent to a window, potentially subjecting it to environmental
influences that could affect certain measurements.

3 Analysis of experimental data 92

15

20

25

30

35

40

45

50

55

60

65

20 25 30 35 40 45 50 55 60 65 70

X

Y

Wafer 30 35

Figure 27: Wafer positions of the STM32 devices

Voltage

Temperature

nov 15 dic 01 dic 15 ene 01 ene 15

10

15

20

25

30

35

3.50

3.55

3.60

3.65

Measurement Date

va
lu

e

Figure 28: Temperature and voltage information of the STM32 devices. The blue line
represents the trend behaviour.

3 Analysis of experimental data 93

3.1.2 Canonical metrics evaluation

The Confidence Interval of Uniqueness has been computed through bootstrap. In this case
we can also compute them through the t-test.

0.0

2.5

5.0

7.5

Uniformity

N
um

b
er

 o
f

d
ev

ic
es

(a) Uniformity histogram

0

25000

50000

75000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bit-aliasing

N
um

b
er

 o
f

ch
al

le
ng

es

(b) Bit-aliasing histogram

0

30000

60000

90000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Entropy

N
um

b
er

 o
f

ch
al

le
ng

es

(c) Entropy histogram

0

100

200

300

400

500

0.0 0.1 0.2 0.3 0.4

Uniqueness

N
um

b
er

 o
f

p
ai

rs

(d) Uniqueness histogram

Figure 29: Histogram of SRAM-PUF metrics

We study now in detail the distribution of Bit-aliasing due to the extreme range and
deviation obtained. Figure 30 presents a scatter plot where the X axis represents the
canonical Bit-aliasing and the Y axis represents the logical address.

We observe immediately the first problem. The values of Bit-aliasing are gathered around
0.25 and 0.75. When averaging out the results, we obtain a mean Bit-aliasing of 0.5, but

Table 14: Summary of the SRAM-PUF metrics

Metric 𝜇 𝜎 CI95% [min,max]

Uniformity 0.4556 0.0052 [0.4540, 0.4571] [0.4443, 0.4628]
Bit-aliasing 0.4556 0.3268 [0.4548, 0.4564] [0, 1]
Uniqueness 0.2893 0.0612 [0.2852, 0.2934] [0.0219, 0.3858]

3 Analysis of experimental data 94

these spatial phenomena are masked if the standard deviation is not provided, as it was
shown in Chapter VI.2.

Moreover, we can observe the following additional behaviour. The rectangles situated at
the extremes marked in red are filled mostly with 0s since it contains program data and the
memory stack. This is something unavoidable as the boards ultimately need to run some
software. We still have a lot of usable area left in the boards. These areas will be ignored
from here on since it they won’t provide any useful information.

At address near 48 kiB (logical address 0xC000) there seems to be a “spike” of Bit-aliasing.
This effect will be apparent in the future. Since we don’t have any information about the
physical layout of the SRAM, we suppose it’s due to

We now rearrange the data into a new format to see the apparent result. The new rear-
rangement groups bits in blocks of 512 bits, resulting in a total of 1280 groups, as shown in
Figure 31. We have to state that we don’t know the physical address of the data, only the
logical so this representation used is completely arbitrary.

Now the aliasing pattern is extremely clear. There is an alternating pattern of high and low
Bit-aliasing repeating every 32 bits. This is extremely intriguing as these devices have an
architecture of 32 bits. Moreover, the fist 32 bits out of each 256 blocks seems to have an
average Bit-aliasing a bit smaller than the other blocks of 1s.

We can also see a red line that crosses horizontally at around block 768 which corresponds
to the logical address 0xC000 or 48 kiB, which is the same “spike” as in Figure 30.

The Auto-correlation matrix proposed in part IV has been computed for the SRAM and is
shown in Figure 32. Due to the spatial repetition of results in the SRAM, the matrix has
been computed per device in blocks of 512 bits and the results have been averaged out
across all devices.

The checkboard pattern is indicative of the weird repetition pattern that has been observed
before. However, barely distinguishable, there are a group of bits in the first 32 bits of each
block that have better auto-correlation. This is indicative that these few bits may pose good
PUF qualities. This also showcases the very poor yield of the SRAM, where only a handful
of bits in a block of 512 bits do not present correlation phenomena.

The same pattern can be seen also by studying the Kullback-Leibler Divergence on each
challenge as shown in Figure 33, considering that the reference distribution is the ideal
binomial with Bit-aliasing of 0.5. However, this new study seems to indicate that the pattern
is repeated every 256 bits instead of 512. However, since the bits with good quality are in
the first 32 bits of the 512 bits block, we stick with blocks 512 bits wide.

The joint probabilities derived from the AC matrix have also been computed and showcased
in Figure 34. The fine granularity of this study shows there is a “preferred” correlation
between responses, specially in the bits in the range of 96 to 192 and 416 to 480. Someone
with expertise on the SRAM design field could probably extract information about the
SRAM layout from this analysis.

3 Analysis of experimental data 95

Figure 30: Scatter plot of Bit-aliasing across all bits in the SRAM

3 Analysis of experimental data 96

Figure 31: Heatmap of Bit-aliasing across all bits in the SRAM

3 Analysis of experimental data 97

Figure 32: Average Auto-Correlation matrix of the SRAM. The matrix has been computed
per block of 512 bits and averaged out.

3 Analysis of experimental data 98

Figure 33: Average Kullback-Leibler divergence of the SRAM. The divergency has been
computed per blocks of 512 bits and averaged out.

3 Analysis of experimental data 99

Figure 34: Average joint probabilities of the SRAM. The divergency has been computed
per blocks of 512 bits and averaged out.

3 Analysis of experimental data 100

These spatial phenomena appear also when looking at the Reliability Invariance per block, as
is show in Figure 35. We can see that only the handful of bits that don’t present correlation
phenomena present good Reliability, while the other bits tend to be unreliable or too reliable
but Bit-aliased.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 64 128 192 256 320 384 448 512
Bit in Block

P00 P01 P10 P11

Figure 35: Reliability Invariance of the SRAM-PUF

Furthermore, the Punctual Bit-aliasing has been computed and its heatmap is showcased in
Figure 36. Initially we see that the behaviour is similar to the one of Bit-aliasing. However,
a clear cut occurs in the middle of the memory, which could be indicative of the use of a
SRAM macro design that was repeated multiple times.

By taking the difference between the Bit-aliasing and Punctual Bit-Aliasing, the cut at the
middle of the memory becomes even more apparent as showcased in Figure 37.

This cut is an indication that the SRAMwas design most likely by using a macro that creates
multiple copies of smaller individual memory blocks. This is not far from reality as SRAMs
are quite complex to design and most times their design is automated using

As it was also proposed in Chapter 2, the Kullback-Leibler diverge of the Punctual Bit-
aliasing and Bit-aliasing has also been computed and showcased in Figure 38. Again,
there is a spike right in the middle of the memory (40kiB) and another one at 48 kiB as in
Figure 30.

Recall that the divergence is always strictly non-negative. The negative values are due to
challenges with extreme (i.e. 0 or 1) Bit-aliasing or Punctual Bit-aliasing.

By grouping the values obtained into blocks of 512 bits wide, we obtain the results showcased
in Figure 39.

3 Analysis of experimental data 101

Figure 36: Heatmap of Punctual Bit-aliasing across all bits in the SRAM

Figure 37: Heatmap of difference between Bit-aliasing and Punctual-Bitaliasing across all
bits in the SRAM

3 Analysis of experimental data 102

Figure 38: Kullback-Leibler divergence between Bit-aliasing and Punctual Bit-aliasing on
the SRAM

Figure 39: Average Kullback-Leibler divergence between Punctual Bit-aliasing and Bit-
aliasing on each SRAM block.

3 Analysis of experimental data 103

We see that bits 8 and 24 in the first 32 bits have much lower divergence than the rest of the
bits, which means that those bits are more reliable and represent the random behaviour.

Figure 40: Zoomed view of the average Kullback-Leibler divergence between Punctual
Bit-aliasing and Bit-aliasing on each SRAM block.

Another important analysis is performed with the Mutual information presented in Ap-
pendix A. Recal that the Mutual information quantifies how much we can learn about a
response by knowing another one. This means that if we know information about some
bits, we can reduce the entropy about other bits.

The different Figures Figure 41, Figure 42, Figure 43 correspond to block sizes of 512, 1024,
2048 bits respectively. Due to the amount of information condensed in these images, it’s
difficult to read them. The result of these analysis show that there are bits in “bad” areas
of memory that share information with the “good” bits that are located at the beginning
at the start of each 512 bits block. The diagonal represents the information gained from
a bit given the same bit, so obviously the information gained is maximum. However, by
looking closely at Figure 42, it’s possible to discern two other diagonals. This represent
the maximum information gained about some bits given a series of bits that are always
at a certain offset. This information can have critical repercusions as an attacker could
exploit this behaviour to extract information about protected memory areas by analysing
areas with high correlation. While the information gained per bit is minimal, if multiple
bits are gathered, an attacker could potentially carry out this attack. Further work will be
performed to validate this attack.

3 Analysis of experimental data 104

Figure 41: Average Mutual Information per block of 512 bits of the SRAM

3 Analysis of experimental data 105

Figure 42: Average Mutual Information per block of 1024 bits of the SRAM

3 Analysis of experimental data 106

Figure 43: Average Mutual Information per block of 2048 bits of the SRAM

3 Analysis of experimental data 107

3.2 Ageing and NBTI Effects

In order to validate the NBTI studies performed on the SRAM boards, we analised the effects
of the metrics, mainly Bit-aliasing, in time. The Bit-aliasing has been analyzed per sample
across the two groups. Figure 44 showcases the Bit-aliasing of both the NBTI sample set
and the reference one.

A weird effect can be seen. Every sample on the NBTI group contains a disruption in
the distribution of Bit-aliasing that corresponds to the number of writes, (i.e. number of
samples). That is to say, the second sample, gathered after one write operation has one
valley at the center. The third sample, after two write operations, has two valleys that
split the memory in three different sections. While this effect also appears in the first two
samples of the reference group, the effect is much more apparent in future samples. To
the best of our knowledge, this is the first time this behaviour is observed and analized in
detail.

All these observed effects are highly indicative of being caused by the topology and design
of the SRAM. For example, studies such as those by Barbareschi et al. [129] on STM32F3
and STM32F4 devices show no biasing patterns. However, we are not the only researchers
to observe these biasing patterns. Studies by Masoumian1 and Abideen2 have also identified
the same biasing patterns. The importance of layout and design techniques on PUF quality
has already been studied and documented by Talukder [196] and Cortez [197]. Using
simulation models and measurements, the authors have demonstrated that increasing the
temperature leads to an increase in bias in SRAM PUF for the targeted designs. Specifically,
the impact of ramp-up time on bias in SRAM PUF has been highlighted. To reduce the
effect of temperature-induced bias, one could slow down the VDD ramp-up time. A slower
ramp-up time results in Hamming weights closer to 0.5, thereby mitigating the impact of
mismatches in the power supply network.

Further analysis of these devices is severely limited. We do not have access to the design
or layout of the STM32 devices, nor does the current iteration of the SRAM platform or
the devices themselves have a way to configure the ramp-up voltage. Future work will
investigate the nature of these patterns by analyzing possible reasons related to different
SRAM topologies.

The second proposed extension, Reliable Entropy, has been calculated to demonstrate its
efficacy in identifying the appropriate CRPs, as depicted in Figure 45. It is not apparent but
the count of identified acceptable CRPs is quite limited, which is comprehensive given the
results displayed above. Nevertheless, employing this metric provides assurance that the
identified CRPs are secure and reliable.

1S. Masoumian et al., ‘Modeling and analysis of sram puf bias patterns in 14nm and 7nm finfet technology
nodes,’ in 2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC), IEEE, 2023,
pp. 1–6.

2Z. U. Abideen et al., ‘Impact of orientation on the bias of sram-based pufs,’ arXiv preprint arXiv:2308.06730,
2023.

3 Analysis of experimental data 108

Figure 44: Scatterplot of the SRAM Bit-aliasing after different samples. Left represents the
NBTI study group and right the control group.

3 Analysis of experimental data 109

Figure 45: Heatmap of the Reliable Entropy of a single SRAM

3.3 Infineon RO

An initial evaluation of the different oscillation frequencies is provided. Recall from Chap-
ter 3 that each device is composed of 6 blocks of 255 ROs.

We can see as the number of stages increases, the frequency becomes smaller and we have
less variability, so the distribution is much narrower since the effects of variability average
out.

The metrics have been also computed. They are summarised in Table 15 and are represented
in Figure 47. It’s evident that the Infineon RO-PUF behavesmuch better than the SRAM-PUF,
as the distributions of the metrics are unimodal and centered around 0.5.

Table 15: Summary of the Infineon RO-PUF metrics

Metric 𝜇 𝜎 CI95% [min,max]

Uniformity 0.5844 0.4928 [0.5834, 0.5854] [0.2106, 0.8525]
Bit-aliasing 0.5844 0.4928 [0.5834, 0.5854] [0.03258, 1.00000]
Uniqueness 0.4211 0.0951 [0.4204, 0.4217] [0.09939, 0.83231]

3 Analysis of experimental data 110

D E F

A B C

0e+00 1e+08 2e+08 3e+08 4e+080e+00 1e+08 2e+08 3e+08 4e+080e+00 1e+08 2e+08 3e+08 4e+08

0.0e+00

5.0e-08

1.0e-07

1.5e-07

2.0e-07

0.0e+00

5.0e-08

1.0e-07

1.5e-07

2.0e-07

Oscillation Frequency [Hz]

d
en

si
ty

Figure 46: Distribution of RO frequencies in the 6 blocks of the Infineon circuit.

0

10

20

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniformity

N
um

b
er

 o
f

d
ev

ic
es

(a) Uniformity histogram

0

50

100

150

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Bit-aliasing

N
um

b
er

 o
f

ch
al

le
ng

es

(b) Bit-aliasing histogram

0

200

400

600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Entropy

N
um

b
er

 o
f

ch
al

le
ng

es

(c) Entropy histogram

0

2500

5000

7500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Uniqueness

N
um

b
er

 o
f

p
ai

rs

(d) Uniqueness histogram

Figure 47: Histogram of the Infineon RO-PUF metrics

3 Analysis of experimental data 111

The reliability Invariance has also been computed and is showcased in Figure 48. We see
that most challenges have the expected behaviour and there are no asymetrics like in the
SRAM.

P(10) P(11)

P(00) P(01)

0.00.1 0.20.30.40.50.60.70.80.91.0 0.00.1 0.20.30.40.50.60.70.80.91.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Entropy

P
ro
b
ab
ili
ty

Figure 48: Reliability Invariance of Infineon RO-PUF

Analogous to the SRAM, the Punctual Bit-aliasing has also been evaluated. Since the
RO-PUF performs very well and does not seem to have any correlation effects, the Punctual
Bit-aliasing is very close to the reference Bit-aliasing. We can see that while most of the
responses do not present any deviation from the canonical Bit-aliasing, responses with
Bit-aliasing close to 0 do present high divergence which is due to the non-nil probabilities
of bit flips across all values of entropy, shown in Figure 48.

The Reliable Entropy has not been computed on the RO-PUF as it behaves much better than
the SRAM PUF. The filtering techniques for the RO-PUF exploit the techniques presented
in Chapter 2.

3 Analysis of experimental data 112

Figure 49: Kullback-Leibler divergence between Bit-aliasing and Punctual Bit-aliasing on
the Infineon PUF.

3 Analysis of experimental data 113

SRAM Digraph VI.4
In this section, as a novel analysis for PUFs, techniques from binary forensics will be
employed. Given the strong correlation effects between SRAM cells, we can employ these
techniques to visually inspect and analyse spatial correlations. One of such possible tools
is the Digraph (not to be confused with Directed Graph), which was originally presented
by Greg Conti at Blackhat in 2010 for the classification of file format based on the content.
The idea is to study the relationship between contiguous bytes, which in this case allows
studying relationships in address space. Each sequential byte pair corresponds to the
coordinate of a 256× 256 Cartesian graph. Once all pairs have been computed, the number
of repetitions is tallied up.

Given a bytestring 𝐵, it’s corresponding Digraph 𝐺 is computed as shown in Equation 4.1,
where the 𝛿(𝑎, 𝑏) function returns 1 if 𝑎 = 𝑏 and 0 otherwise.

(𝐺)𝑥,𝑦 =
𝑛(𝐵)−1
∑
𝑖=1

𝛿 (𝐵𝑖, 𝑥) ⋅ 𝛿 (𝐵𝑖+1, 𝑦) {𝑥, 𝑦 ∈ [0, 255]} (4.1)

The Python code 4.1 shows the Digraph computation for a random vector of bytes.

1 import numpy as np
2
3 digraph = np.zeros((256, 256))
4
5 sram_bytes = [0, 10, 255, 128, ^^...]
6
7 for i in range(length(sram_bytes) - 1):
8 first = sram_bytes[i]
9 second = sram_bytes[i+1]

10 digraph[first, second] += 1
11
12 # A visual aid of how the pairs are computed
13 #
14 # 000 010 255 128
15 # ---------------
16 # 000 010
17 # 010 255
18 # 255 128

Listing 4.1: Digraph computation using Python.

For each device out of the 84 available, it’s corresponding Digraph has been computed. The
results have been averaged out into a single Digraph shown in Figure 50. The tally has
been represented in the logarithmic scale due to the disproportionate amount of 0s that
appear in the stack of the memory. Notice in the figure that the diagonal separatrix does
not indicate symmetry, although an even distribution of counts across both regions of the
Digraph is indicative of an even distribution of bytes in the memory.

4 SRAM Digraph 114

Figure 50: Digraph of the SRAM under study

4 SRAM Digraph 115

The fractal-like pattern that arises is due to the heavy complementing biasing effects that
have already been presented. At first glance, it’s evident most of the values appear in
the bottom left corner, which corresponds to low byte values. The stack was used in the
computation and recall that these regions are mostly filled with 0s. Moreover, at position
(48, 48) a pattern appears that does not exist on the mirrored position.

Individual byte probabilities can be computed through the aggregation of column counts.
Here, 𝑏𝑖 represents the i-th byte in the bytestring and it’s corresponding Digraph 𝐺 has
been normalized. In that case, each individual position corresponds to the conditional
probability depicted in Equation 4.2.

(𝐺)𝑥𝑦 = 𝑃(𝑏𝑖 = 𝑥 ∣ 𝑏𝑖+1 = 𝑦) (4.2)

By averaging up all values in a column, we obtain the probability of finding the byte
corresponding to that column as depicted in Equation 4.3.

𝑃(𝑏 = 𝑥) = 1
255

255

⋃
𝑦=0

𝑃(𝑏𝑖 = 𝑥 ∣ 𝑏𝑖+1 = 𝑦) (4.3)

This procedure has been performed on the SRAM dataset and the results are showcased
in Figure 51. Additionally, each byte position is coloured depending on it’s Hamming
Weight.

0.000

0.025

0.050

0.075

0.100

0.125

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Byte Value

B
yt

e
P

ro
b

ab
ili

ty

Hamming Weight 0 1 2 3 4 5 6 7 8

Figure 51: Byte value probabilities based on the column average of the Digraph

It is evident from the figure that the distribution of byte values is not uniform. However, as
said above, the distribution does not need to be uniform to have an even distribution of
responses in the SRAM, it just needs to be symmetric around the separatrix, which in this
case corresponds to the median of 255.

4 SRAM Digraph 116

By analysing the more prevalent values, an interesting pattern appears in the values. The
list of more common values along with their binary representation is portrayed in Table 16.
Notice that values higher than 127 are the complement of those lower than 127. Moreover,
values lower than 127 have a Hamming Weight of 1, and 7 if higher than 127. We can
also use this data to corroborate that the SRAM is biased towards 0, as most values are
gathered around the value 16. This is most likely due to the implementation of the SRAM
and no further analysis can be performed without more information about the design and
the implementation.

Byte Binary representation

000 00000000
008 00001000
016 00010000
032 00100000
064 01000000
127 01111111

128 10000000
191 10111111
223 11011111
239 11101111
247 11110111
255 11111111

Table 16: Common values in the digraph and their binary representation.

Following to this, the probabilities depicted in Figure 51 are aggregated by Hamming
Weight and the result is displayed in Figure 52. Notice that the behaviour is symmetric
when taking complementary pairs of weights (e.g. 0 to 4, 1 to 5, 2 to 6, 3 to 7). Since the
Hamming Weight 8 only corresponds to the byte value 255, its behaviour is negligible.
Again, the exceeding amount of values with Hamming Weight of 3 is also present in the
graph, by comparing the aggregated probabilities of 3 and 7.

Due to this unique distribution of values, the analysis is extended to study the distribution
of Hamming weights. Each byte it’s converted to it’s corresponding Hamming Weight.
The resulting Hamming Weight Digraph shown in Figure 53 is now a Cartesian plane of
8 × 8.

There are a total of (83) = 56 possible byte values with Hamming Weight of 3, which
represent 22% of the total possible values as represented in Table 17.

4 SRAM Digraph 117

0.00

0.05

0.10

0.15

0 1 2 3 4 5 6 7 8

Hamming Weight

A
gg

re
ga

te
d

P
ro

ba
bi

lit
y

Figure 52: Hamming Weight probabilities based on the column average of the Digraph

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

First HW

S
ec

on
d

 H
W

Count
1000 2000 3000 4000

Figure 53: Hamming Weight digraph of the SRAM under study

4 SRAM Digraph 118

Table 17: Number of values and ratio per Hamming Weight

Hamming Weight Number of values Ratio (Number / 256)

0 1 0.00
1 8 0.03
2 28 0.11
3 56 0.22
4 70 0.27
5 56 0.22
6 28 0.11
7 8 0.03
8 1 0.00

As represented in Figure 54, most of the values are in the left part of the graph, which
reassert the skewness of the memory values and by superposing the first obtained digraph,
most of the values that occur in the memory with a Hamming Weight of 3 are between 32
and 64.

Without any information about the layout and physical implementation of the memory,
further work is hindered. The Digraph and other general tools similar to this one could
be added to the set of PUF metrics to assess for correlation effects. Another interesting
extension would be to study if the transition probabilities derived from Figure 50 are
sensitive to spatial phenomena, wherein the probabilities not only depend on the subsequent
bytes but also the address they are located, although the results shown so far would indicate
otherwise.

4.1 Extension to Markov Chain

We can extend this notion of Digraph in order to compute the transition matrix of a
Markov Chain that could model the sequential behaviour of the memory. We are interested
in computing the probability of the next byte given the current byte, as opposed to the
computation of the Digraph.

(𝑃)𝑥,𝑦 = 𝑃(𝑏𝑖+1 = 𝑥 ∣ 𝑏𝑖 = 𝑦)

We can see from the Digraph definition in Equation 4.2, that the transpose of the normalized
Digraph corresponds to the right stochastic matrix we are looking for.

(𝐺)𝑥𝑦 = 𝑃(𝑏𝑖 = 𝑥 ∣ 𝑏𝑖+1 = 𝑦)⟹ (𝐺𝑇)𝑥,𝑦 = 𝑃(𝑏𝑖 = 𝑥 ∣ 𝑏𝑖+1 = 𝑦) (4.4)

4 SRAM Digraph 119

Figure 54: Digraph containing only pairs with Hamming Weight of 3

4 SRAM Digraph 120

Conclusions VI.5
As shown in previous chapters, the canonical metrics strive to measure critical aspects of
PUFs, notably Reliability and Entropy. The connection between the Reliability and Entropy
of PUFs was studied in detail since understanding this relationship is crucial for enhancing
the performance and security of PUFs in various applications.

In the context of RO-PUFs, an initial study examining the distribution of frequency dif-
ferences and reliability was examined. It is commonly agreed in the literature that low
frequency differences can be deemed unreliable, but it is challenging to establish a numeri-
cal threshold. To systematically analyse this, a simulation-based offline methodology was
proposed. This methodology, which does not require extensive real-time testing, computes
the bounds necessary to distinguish between reliable and unreliable responses. Further-
more, this methodology can be extended to other differential PUFs, where 2 nominally
identical components are compared.

Building on this relationship, a novel model called “Time-To-Response” was introduced.
Although this information can be numerically computed from experimentally derived data,
the proposed model provides a deeper understanding of how the frequency difference
distribution influences the time required to obtain a desired number of reliable responses.
By relating these 2 factors, this model helps in predicting the PUF’s performance over
extended periods and under different environmental conditions. This approach offers a
practical way to assess and improve the reliability of PUFs in real-world applications.

Expanding further, the relationship between frequency difference and entropy yield on
RO-PUFs was also investigated. While the connection between frequency difference and
reliability is relatively well-studied, it’s impact on entropy is less understood. Entropy is a
critical measure of a PUF’s uniqueness and security, as higher entropy indicates greater
unpredictability and resistance to attacks. The performed analysis suggests that frequency
difference can also be a predictor of the entropy yielded by a PUF. This hypothesis was
initially based on simulations conducted for the reliability study and is subsequently
validated using the extensive Infineon RO dataset. These models were comprehensively
analysed and validated using both simulation results and real data. Indeed, the simulation
and experimental results demonstrate how simulation-based methodologies and real-world
data can be integrated to provide a holistic understanding of PUF performance.

In conclusion, a detailed exploration of the connection between Reliability and Entropy, a
series of new statistical models and methodologies for their analysis were provided in this
chapter. The integration of simulation results with real-world data highlights the critical
role of empirical validation in advancing PUF technology.

5 Conclusions 121

VII

PUF Design Proposal

Split PUF VII.1
We have already shown that both Entropy and Reliability play a huge role when it comes
to PUF adoption. However, most of the proposed techniques require a great knowledge of
the target technology, or expensive solutions.

The design methodology proposed in this chapter is focused on RO-PUFs. This approach
can be generalized to other families of PUFs, provided that the response is computed by
comparing two nominally identical instances of a component. The core concept is the
comparison of two elements positioned identically across two separate dies.

This solution greatly simplifies the design process. Remarkably, it eliminates the need for
specialized design knowledge or an understanding of security or PUF intricacies. The only
requirement is to design a set of entropy sources, utilizing half the number of ROs compared
to the traditional RO-PUF approach. This efficiency is achieved without compromising the
integrity of the entropy source. A key advantage of this methodology is that it addresses
the primary issue highlighted in the previous section—bias in the challenge. However, it
does introduce a new challenge: bias in the device itself. This bias arises if one die exhibits a
slightly higher voltage than the other, causing all ROs on the first die to be faster than those
on the second. Consequently, this could result in a uniform distribution of responses.

To mitigate this problem, we introduce a pre-processing operation that ensures the average
frequencies of the ROs on both dies are aligned. The process for reading PUF responses
involves several steps: initially, the raw frequency values of the ROs are read from both
dies. Then, statistical distributions of these frequencies are created, capturing the mean
and standard deviation of each die. The frequencies are then corrected by aligning them to
have the same mean and sigma. The correction is performed using Equation 1.1.

𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
(𝑓𝑟𝑎𝑤 − 𝜇𝑟𝑎𝑤)

𝜎𝑟𝑎𝑤
⋅ 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜇𝑡𝑎𝑟𝑔𝑒𝑡 (1.1)

Where 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the corrected frequency, 𝑓𝑟𝑎𝑤 is the raw frequency, 𝜇𝑟𝑎𝑤 and 𝜎𝑟𝑎𝑤 are
the mean and standard deviation of the raw frequencies, and 𝜇𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 are the
target mean and standard deviation.

With this correction applied, the frequencies from the two dies are bit-wise compared to
generate the final PUF response. This alignment ensures that any inherent device biases
are neutralized, thereby maintaining the integrity and reliability of the PUF responses.

1 Split PUF 123

1.1 Proposed method

In part IV, we have proposed that each challenge might have a bias due to systematic
variability and design choices (being a challenge the comparison of two elements in the
same positions for all devices), which we call “bias in the challenge”. Moreover, we propose
the idea that each device might have a bias due to operating conditions (which might
fluctuates from one device to another), which we call “bias in the device.”

Initially, we design all ROs to oscillate at the desired oscillating frequency 𝑓. Due to process
variability and design considerations, the ROs in the PUF oscillate following a frequency
distribution

𝐹 ∼ 𝑁(𝜇, 𝜎)

Where 𝜇 is chosen at design and depends on the number of RO stages and 𝜎 depends on
the process variability and design choices. A single device 𝑑 composed of 𝑁 ROs has a
series of frequencies that follow the frequency distribution 𝐹

𝐹𝑑 = [𝑓1 𝑓2 𝑓3 ⋯ 𝑓𝑁]

The total system composed of𝐷 devices each one with𝑁 Ring Oscillators can be represented
in a matrix as follows

𝐹𝐷,𝑁 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓1,1 𝑓1,2 ⋯ 𝑓1,𝑁
𝑓2,1 𝑓2,2 ⋯ 𝑓2,𝑁
⋮ ⋮ ⋮ ⋮
𝑓𝐷,1 𝑓𝐷,2 ⋯ 𝑓𝐷,𝑁

⎤
⎥
⎥
⎥
⎥
⎦

(1.2)

Due to the different lots in manufacture and process variability, each device is subjected to
some Shift Ω ∼ 𝑁(0, 𝜎Ω) that displaces every frequency.

𝐹𝑑 = [𝑓1 + 𝜔𝑑 𝑓2 + 𝜔𝑑 ⋯ 𝑓𝑁 + 𝜔𝑑]

Because of this, each device is represented as the original frequency distribution plus the
Shift

𝐹𝑑 ∼ 𝑁(𝜇, 𝜎) + Ω

Since the Shift is normally distributed and centred around 0, themean frequency distribution
does not change. However, the variance of the frequency distribution increases in the
following manner

1 Split PUF 124

E [𝐹𝑑] = E [𝐹𝑑] + E [Ω] = E [𝐹𝑑] (1.3)
Var [𝐹𝑑] = Var [𝐹𝑑] + 𝑉𝑎𝑟Ω (1.4)

Moreover, each RO at every position is subjected to some Bias 𝐵 ∼ 𝑁(0, 𝜎𝐵)

𝐹𝑛 ∼ 𝑁(𝜇, 𝜎) + 𝐵

𝐹𝑛 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓1,𝑛 + 𝛽𝑛
𝑓2,𝑛 + 𝛽𝑛

⋮
𝑓𝐷,𝑛 + 𝛽𝑛

⎤
⎥
⎥
⎥
⎥
⎦

We can also add a term 𝜀 to account for environmental changes where 𝐸 ∼ 𝑁(0, 𝜎𝜀). That
means that the frequency of a RO chosen at random is represented by Equation 1.5

𝑓 = 𝜇 + 𝜔𝑑 + 𝛽𝑛 + 𝜀𝑡 (1.5)

There are multiple architectures of ROs that this analysis could be applied to. For the shake
of simplicity we are going to keep using the same design that was used for the simulations
and analysis during this thesis. If we split the N Ring Oscillators into 2 equal groups
and compare each RO of each group to every other RO of the other group the number of
frequency differences, and thus responses is given by:

Number of Responses ≡ 𝐶 = 𝑁
2 × 𝑁

2 = 𝑁2

4

In a device 𝑑, a single frequency difference 𝑐 is computed as follows, using as an example
ROs 1 and 2.

𝑓Δ𝑑,𝑐 = 𝑓𝑑,1 − 𝑓𝑑,2 (1.6)
= (𝑓1 + 𝜔𝑑 + 𝛽1) − (𝑓2 + 𝜔𝑑 + 𝛽2) (1.7)
= (𝑓1 + 𝛽1) − (𝑓2 + 𝛽2) (1.8)
= (𝑓1 − 𝑓2) + (𝛽1 − 𝛽2) (1.9)

The following equations summarize the expected value and variance of the frequency
difference distribution by taking into account all the bias.

1 Split PUF 125

E [𝐹Δ𝑑] = E [𝐹Δ𝑑] − E [𝐹Δ𝑑] + E [𝐵] − E [𝐵] ≈ 0 (1.10)
Var [𝐹Δ𝑑] = Var [𝐹Δ𝑑] + Var [𝐹Δ𝑑] + Var [𝐵] + Var [𝐵] ≈ 2𝜎2 + 2𝜎2𝐵 (1.11)

It’s clear that the variance of the Frequency Difference Distribution with Bias is larger than
the Variance of the Frequency Difference Distribution without Bias

Var [𝐹Δ + 𝐵𝑖𝑎𝑠] > Var [𝐹Δ𝑑]

We study the relationship between 𝜇, 𝜎,Bit-aliasing to prove this claim. Figure 55 shows
the relationship between 𝜇Δ, 𝜎Δ and Entropy and as we can see, for a given 𝜇Δ the higher
the standard deviation the better the entropy.

Bit-aliasing = 1 − Φ(
0 − 𝜇
𝜎) = 1 − Φ(−𝑍)

0.00

0.25

0.50

0.75

1.00

-20 -10 0 10 20
μΔ

H
(B
it-
al
ia
si
ng
)

σΔ
5 10 15 20

Figure 55: Relationship between 𝜇Δ, 𝜎Δ and Entropy

We can see from the figures that for any of 𝜇 the higher the 𝜎 the better the Bit-aliasing.
This is due to the fact that wider distributions have more chances to have areas that cross
the 0, no matter the value of 𝜇. The ideal value is obtained when 𝜇 = 0 as no matter the
value of 𝜎 the distribution is always symmetric.

That means that in order to get the best Bit-aliasing we can either ensure that 𝜇 is as close
as possible to 0, which is difficult to achieve in practice 𝜇 or to make sure that 𝜎 is as large
as possible, for example by increasing the number of RO stages. From the model proposed,

1 Split PUF 126

we derive that the best Variance possible we can achieve to enhance the Bit-aliasing is the
following

Var [𝐹Δ] + Var [𝑆ℎ𝑖𝑓𝑡] + Var [𝐵𝑖𝑎𝑠]

1.2 Effect on the metrics

While this analysis is proposed here, further work will be needed to evaluate and prove
this model, which due to time constraints, won’t be performed here.

𝐹Δ𝐷×𝐶 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑓Δ1,1 𝑓Δ1,2 ⋯ 𝑓Δ1,𝐶
𝑓Δ2,1 𝑓Δ2,2 ⋯ 𝑓Δ2,𝐶
⋮ ⋮ ⋮ ⋮

𝑓Δ𝐷,1 𝑓Δ𝐷,2 ⋯ 𝑓Δ𝐷,𝐶

⎤
⎥
⎥
⎥
⎥
⎦

The objective will be to obtain a direct relationship between the different shifting parameters
proposed above and their effect on the metrics, specially Uniformity and Bit-aliasing.

For Uniformity, we proposed the following model.

Uniformity =

⎡
⎢
⎢
⎢
⎢
⎣

𝑈1 + 𝜑1
𝑈2 + 𝜑2

⋮
𝑈𝐷 + 𝜑𝐷

⎤
⎥
⎥
⎥
⎥
⎦

Uniformity ∼ 𝐵(𝛼, 𝛽) + Φ ≡ 𝐵(𝛼, 𝛽) + 𝐵(𝛼Φ, 𝛽Φ)

While for Bit-aliasing, an analogous model is proposed.

Bit-aliasing = [𝑝1 + 𝜋1 𝑝2 + 𝜋2 ⋯ 𝑝𝐶 + 𝜋𝐶]

Bit-aliasing ∼ 𝐵(𝛼, 𝛽) + Π ≡ 𝐵(𝛼, 𝛽) + 𝐵(𝛼Π, 𝛽Π)

1 Split PUF 127

1.3 Conclusions

As it was proposed by the model, the possible ways to increase the Entropy of the RO-PUF
is to make the average frequency difference close to 0, which most of the time is extremely
difficult or to increase the variance of the frequency difference distribution. Here we propose
a design methodology specifically for PUFs that rely on comparing two nominally identical
randomness sources. The methodology relies on splitting the randomness sources across
different chiplets in order to maximize the variance of the distribution of the parameters of
interest as a way to improve the performance of the PUF.

Work is in the making to assess this method on real data, but there is evidence on the
validity of the Split PUF based on the model and already computed results.

This methodology however poses a security problem. The two independent halves can be
more easily attacked independently, (for instance increase the temperature on one side,
and not on the other side). Nevertheless, it is possible to embed a sensor (clearly in both
halves, since they are duplicated) and the can easily detect an anomaly. Even in case of
power-off attacks, the post-processing techniques can either tolerate the attack, or detect
the anomaly (for instance the average of the frequencies of the two blocks are too far one
from the other).

1 Split PUF 128

Conclusions VII.2
This chapter has extended the previously discussed models and results to develop a compre-
hensive and holistic model aimed at significantly enhancing the performance of RO-PUFs.
The development of this holistic model is a critical step in addressing the complexities and
variabilities inherent in RO-PUFs, ensuring a more accurate and reliable framework for
PUF analysis and design.

A new design methodology, coined “Split PUF”, provides many advantages over many
solutions proposed in the literature to enhance the Entropy yield of RO-based PUFs. This
new methodology relies on measuring nominally identical randomness sources positionally
identically across different physical dies. Furthermore, a pre-processing stage is proposed
in order to eliminate any bias across the different dies that may impact the behaviour of
the PUF. By integrating the holistic model with the previously established relationship
between Reliability and Entropy, a method to maximize the performance of RO-PUFs was
devised.

Further work will be performed to evaluate the methodology proposed on real designs as
well as exploring how this methodology can be adapted to other PUF families.

2 Conclusions 129

VIII

PUF Modeling

State of the Art VIII.1
Mathematical modeling of PUFs is crucial for understanding their behaviour and enhancing
their security features. The field of PUFs is rapidly advancing, characterized by an ongoing
race between researchers and attackers. Machine Learning (ML) attacks on strong PUFs
leverage advanced algorithms to predict responses, while cloning attacks on weak PUFs
focus on physically replicating the PUF’s unique properties. Despite these challenges,
ongoing advancements in PUF design and defensive strategies aim to mitigate these threats,
ensuring PUFs remain a robust tool in the security landscape.

Mathematical models not only help in approximating the behaviour of PUFs but also
justify the randomness of the device, akin to “stochastic models” of True Random Number
Generators and other security primitives. As highlighted before, PUFs offer numerous
alternatives to traditional security primitives. However, the susceptibility of PUFs to various
modeling and cloning attacks remains a critical area of research. This chapter delves into
the current state of modeling techniques aimed at compromising PUFs, focusing on ML
attacks on strong PUFs, cloning attacks on weak PUFs, and the mathematical modeling of
weak PUFs.

1.1 Machine Learning-based approaches

Advanced ML methods have become central to statistical modeling across various scientific
domains due to their high accuracy and ease of use. Strong PUFs, designed to generate
numerous CRPs, are particularly susceptible to ML attacks. These attacks model the PUF’s
behaviour to predict responses to previously unseen challenges accurately.

Statistical analysis methods such as Support Vector Machines (SVM) and Particle Swarm
Optimization [198] have proven effective in modeling PUF responses. Advanced ML ap-
proaches, especially deep learning techniques like Convolutional Neural Networks (CNNs),
have shown remarkable success in capturing the intricate dependencies of PUF responses,
particularly in strong PUFs. Numerous studies demonstrate the accuracy of these ML
methods across various PUF designs [199, 200, 201, 202].

These methods not only predict responses but also identify potential weaknesses that could
be exploited in attacks. Adversarial machine learning techniques further enhance this
capability by simulating attack scenarios, allowing designers to develop more robust and
tamper-resistant PUF architectures. By training algorithms on known CRPs, researchers
can evaluate the susceptibility of PUFs to predictive attacks and refine PUF designs to
enhance security. Side-channel attacks can also complement ML attacks, posing serious
threats as demonstrated in [203] and [204]. For instance, [205] showed that techniques like
Challenge Obfuscation can be easily compromised via power side-channel attacks.

1 State of the Art 131

Unfortunately, proposing solutions to ML-based attacks is challenging due to the difficulty
in formally proving a design’s robustness against statistical modeling. Works like [206,
207] have attempted to provide formal analyses on the “learnability” of PUF designs. Tools
like PUFmeter [208] offer property testing for assessing PUF robustness against ML attacks.
Assessment methodologies to measure the resilience of PUF designs against ML attacks
have also been proposed [209, 210, 211, 212].

An important study is presented in [213], where the authors utilize BTF theory with Chow
parameters to mathematically derive the min-entropy of the loop-PUF. They suggest that
although the entropy of the loop-PUF increases quadratically with the number of stages,
indicating strong resistance to machine learning attacks, the min-entropy and collision rate
grow much more slowly, which implies that the resistance to cloning attacks may not be as
robust as anticipated. This work underscores the notion that while a design may be highly
effective against one type of attack, it may be more vulnerable to another.

Traditional techniques, such as creating confusion through XOR gates, have been proven
ineffective [214, 215]. Innovative designs that aim to confound ML algorithms, like those
proposed in [216, 217, 218, 219], offer potential solutions. The most notable design is
the Interpose PUF [216]. However, some attacks have successfully compromised these
defences [220] and [221]. Introducing specially crafted noise patterns can deter attackers by
disruptingML classification, though this requires additional systems to correct for the added
noise [222]. The effects of ageing on PUF modeling are also crucial. Ageing misalignment
between the training and attacking phases can hinder attack effectiveness [223]. Other
proposals to hinder learning attacks include non-monotonic response quantization [224],
where the quantized decision depends not only on the relative speed of paths but also on the
distance between signal arrivals. Efforts to create “reconfigurable” designs that can modify
the PUF itself [225] are promising but difficult to validate. Moreover, certain randomness
sources, like Photonic PUFs, exhibit good resilience against ML and side-channel attacks
[212], although they are highly sensitive to environmental conditions.

Overall, designing robust defences against ML attacks is highly challenging due to the
rapid advancements in ML and statistical methods. Continued research and innovation
are necessary to develop effective countermeasures and ensure the security of PUF-based
systems.

1.2 Physical cloning attacks

While the majority of research has focused on developing advanced machine learning (ML)-
based models, some studies have concentrated on creating cloning attacks, particularly
targeting weak PUFs. These attacks aim to replicate the unique characteristics of PUFs to
produce duplicates that generate identical responses.

A variety of promising techniques, ranging from non-invasive to fully invasive, have been
documented in the literature. These techniques exploit physical phenomena to effectively
clone PUFs, with notable success observed in memory- and RO-based PUF designs.

1 State of the Art 132

In the context of RO-PUFs, [226] demonstrated that targeted ageing can be used to clone
the behaviour and responses of RO-PUFs. Similarly, [227] utilized BTI-ageing techniques to
target SRAM cells, successfully duplicating PUF responses. These attacks are particularly
concerning because the circuitry used to evaluate PUFs is often left unsecured.

The studies [93, 92] employed high-resolution imaging to capture the unique power-up
states of SRAM cells, replicating their physical structure to duplicate response character-
istics. The authors highlighted the vulnerability of SRAM-PUF implementations, noting
that memory-based PUFs offer little additional protection compared to industry-standard
programmable NVM memories such as flash and EEPROM.

Several countermeasures to thwart cloning and side-channel attacks have been proposed in
the literature. Notable examples include the works of [87] and [223]. However, side-channel
attacks continue to be a critical issue in electronics, necessitating ongoing research and
development of robust defence mechanisms.

Cloning attacks, leveraging both invasive and non-invasive techniques, present a substantial
threat to the integrity of PUFs. Despite advancements in countermeasures, the persistent
vulnerability to side-channel attacks underscores the need for continued innovation in
securing PUF-based systems.

1.3 Mathematical and numerical modeling

Recent efforts in the literature have increasingly focused on building mathematical PUF
models. These methods offer significant advantages, such as being non-invasive and
requiring smaller datasets for training compared to machine learning (ML)-based methods.
While these models can be exploited by attackers to replicate or predict PUF responses,
they also serve a legitimate purpose in design verification akin to stochastic models in the
context of True Random Number Generators, providing robust proof of the entropy source.
Despite their critical importance, the field of mathematical modeling and verification of
PUFs remains largely unexplored.

Established statistical models are utilized to accurately describe the probability distributions
of PUF responses. Common modeling techniques include the use of linear models to
approximate PUF responses and non-linear approaches to capture more complex PUF
behaviours. Notable works in the literature, such as those in [228, 229] offer robust
theoretical analysis and entropy estimation for delay-based PUFs. Similarly, [128] have
contributed to modeling SRAM start-up behaviour for the refinement of SRAM-based
PUFs.

One notable tool in this domain is PyPUF [230], which provides resources to create statistical
models of strong PUFs for studying and predicting bit responses. However, attackers can
leverage these models to predict the behaviour of specific PUF designs, as demonstrated in
[231] for the Arbiter PUF.

1 State of the Art 133

Error Correcting Codes (ECCs) techniques used to ensure consistent and accurate PUF
responses, could also greatly benefit from mathematical models that account for the impact
of noise and operational variances. Robust physical characterization and modeling, such as
those presented in [232], enhance the effectiveness of ECCs in PUF designs.

Themathematical modeling of PUFs is not limited to PUF designers; it is also performed from
a cryptographic perspective to effectively generate secrets for secure protocols, as shown
in [152]. This dual approach underscores the versatility and importance of mathematical
models in both design and security contexts.

Less explored statistical frameworks, such as Bayesian Inference [233], could greatly benefit
PUF analysis. Bayesian methods update the probability distribution of responses based
on observed data. Indeed Bayesian and bootstrap techniques can be used to effectively
extrapolate certain PUF metrics as showcased later. Additionally, the study of correlation
effects could be enhanced using techniques like Fourier Analysis or Geospatial Analysis[176,
157, 162, 163].

Advanced statistical techniques are promising for PUF assessment. Frameworks like Surro-
gate Models [234, 235] aim to create accurate statistical models to predict responses from a
minimal input subset, thereby speeding up the verification process. Another significant
technique is Response Surface Methodology [236], which consists of mathematical and
statistical methods to develop accurate models for predicting variables of interest based on
a series of input parameters.

Despite the potential of these advanced tools, they remain underutilized across various
scientific domains and need thorough examination before being integrated into PUF as-
sessment methodologies. A comprehensive exploration and application of these statistical
frameworks could significantly enhance the reliability and security of PUF technologies.

1 State of the Art 134

Modeling VIII.2
As it has been presented in the previous section, the study of mathematical models for
weak PUFs remains largely underexplored although promising work that provides entropy
estimation methodologies as portrayed in [237, 173, 237, 170]. Consequently, this chapter
addresses this gap by examining different suitable statistical and numerical methodologies.
At first, certain mathematical considerations for various statistical distributions suitable
for modeling PUFs are discussed. Following this, two initial models for RO-PUFs are
proposed. These models leverage the relationship between frequency difference, Entropy,
and Reliability, as demonstrated in this manuscript. However, it becomes evident that these
models cannot be directly extrapolated to other PUF families due to the idiosyncrasies
of each randomness source. This limitation, nonetheless, presents an opportunity for
developing mathematical models capable of robustly predicting a wide range of PUF
families.

2.1 Considerations for Distribution Selection

The normal distribution is ubiquitous across numerous scientific disciplines due to its
detailed study and convenient mathematical properties, making it suitable for various types
of analyses, such as linear regression and hypothesis testing. These properties extend to
PUF evaluation metrics as well. However, there are compelling arguments for the use of
the Beta distribution in the context of PUF evaluation.

Firstly, the Beta distribution is defined on the interval [0, 1], which aligns well with the
range of canonical PUF metrics and most normalized measurements. This bounded support
makes it conceptually more appropriate for data constrained within this interval.

Secondly, while the Normal distribution is characterized by its bell shape, the Beta distribu-
tion is highly flexible, capable of assuming various shapes, including uniform, U-shaped, and
bell-shaped. This flexibility allows for more accurate modeling of diverse PUF designs.

Lastly, the Beta distribution has a theoretical connection with Bit-aliasing. It is frequently
used in inference analysis as the conjugate prior probability distribution for the Bernoulli,
binomial, negative binomial, and geometric distributions. Given that each CRP can be
represented by a unique binomial distribution, it is expected that the probabilities associated
with CRPs follow a Beta distribution. As highlighted in previous sections, PUF assessment
methodologies could significantly benefit from statistical techniques such as Bayesian
inference.

This however, does not imply that the Normal distribution is unsuitable. Under the Central
Limit Theorem, the Normal distribution can be a very good approximation, given sufficient

2 Modeling 135

data. As demonstrated in Figure 56, both the Beta and Normal distributions yield almost
identical results in our case.

0.00

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8 0.9 1.0

Value

C
D
F

Bit-aliasing Normal Beta

Figure 56: SRAM Bit-aliasing fitting of the Normal and Beta distributions

In conclusion, while the normal distribution remains a powerful tool due to its well-known
properties and broad applicability, the Beta distribution offers specific advantages for PUF
evaluation, particularly in terms of its bounded support and flexibility.

2.2 Proposed Reliability model

This section introduces an alternative method for Reliability modeling, as many others
have already proposed [173]. Unlike the theoretical models, this approach is based on
empirical results presented previously. The core observation is that for RO-PUFs, frequency
differences close to zero are highly unreliable, whereas extreme frequency differences
correspond to maximum reliability. The transition between these two effects is expected to
be smooth, reflecting the Gaussian nature of the frequency differences. Among various
mathematical functions that can model this behaviour, the logistic function is proposed here
due to its common usage and ease of parameterization. The logistic function is generally
parameterized as shown in Equation 2.1:

Logistic = 𝑓(𝑥) = 𝐿
1 + 𝑒−𝑘(𝑥−𝑥0)

(2.1)

where:

• 𝐿 is the carrying capacity, the supremum of the values of the function.
• 𝑘 is the logistic growth rate, the steepness of the curve.
• 𝑥0 is the 𝑥 value of the function’s midpoint.

2 Modeling 136

The standard logistic function, usually has parameters 𝐿 = 1, 𝑘 = 1, and 𝑥0 = 0. An
extended model for reliability, parameterized by 𝛽1, 𝛽2, 𝛽3, 𝛽4, is proposed in Equation 2.2:

Reliability(𝑧Δ) ∼ 𝛽0 +
1 − 𝛽0

𝛽1 + exp[−𝛽2 ⋅ (|𝑍Δ| − 𝛽3)]
(2.2)

where:

• 𝛽0 controls the vertical offset from 0, representing the lowest possible reliability.
• 𝛽1 controls the maximum reliability.
• 𝛽2 determines the rate of reliability change (the slope of the curve).
• 𝛽3 controls the horizontal offset from 0.

These parameters correspond to the logistic function’s parameters as follows:

• 𝛽0 corresponds to the minimum reliability at 𝑧Δ = 0, typically close to 0.
• 𝛽1 is analogous to 𝐿, representing the maximum reliability for large values of 𝑧Δ.
• 𝛽2 is analogous to 𝑘, controlling the rate of change in reliability with respect to
frequency differences.

• 𝛽3 is analogous to 𝑥0, determining the shift from 𝑧Δ = 0.

It is reasonable to assume no offset (𝛽0 = 0) in most situations, as a frequency difference of
zero is inherently unreliable due to its uncertainty. The reliability curve is thus dependent
on |𝑧Δ|, with additional parameters potentially shifting the curve horizontally or altering
its slope, which are presumably functions of 𝑧Δ alone.

Future research should aim to incorporate confidence intervals or interval computation into
this reliability model. This enhancement would provide a more comprehensive assessment
of the model’s reliability predictions.

2.3 Proposed Entropy model

Previous results demonstrate that the relationship between the entropy yielded by a RO
pair and its frequency difference is inversely proportional: as the frequency difference
increases, the resulting entropy decreases. Given the Normal distribution of frequency
differences, the entropy can be modelled with a curve resembling a Gaussian distribution,
albeit with slightly different behaviour. Specifically, maximum entropy is achieved when
the frequency difference (𝑓Δ) is zero and decreases as the frequency difference increases.

To capture this behaviour, the following model for Entropy is proposed, parameterized by
𝛼1 and 𝛼2, as shown in Equation 2.3:

Entropy(𝑧Δ) ∼ exp(−|𝛼1 ⋅ 𝑧Δ|𝛼2) (2.3)

In this model:

2 Modeling 137

• 𝛼1 controls the width of the distribution.
• 𝛼2 determines the “convexity” or “concavity” of the function, effectively the rate at
which entropy decreases. When 𝛼2 > 1, the curve is concave, and when 𝛼2 ∈ [0, 1],
the curve is convex.

0.00

0.25

0.50

0.75

1.00

-10 -5 0 5 10
zΔ

En
tr
op
y

Figure 57: Entropy model for the RO-PUF

Analogous to the proposed Reliability model, further research is necessary to relate the
parameters 𝛼1 and 𝛼2 to the distribution of frequency differences and the characteristics of
the PUF designs. Understanding these relationships will enable more accurate model and
prediction of entropy based on frequency differences in various PUF configurations.

2.4 Unification of the models

From this point onwards, 𝑧Δ will be considered as positive. That is to say the absolute
value is removed since the behaviour of the model is symmetric around 0. This will in turn
simplify the algebra, by not needing to unfold the equations. With these modifications, the
new resulting equations are shown in Equation 2.4

Entropy(𝑧Δ) = exp [−(𝛼1 ⋅ 𝑧Δ)𝛼2] (2.4)

Reliability(𝑧Δ) = 𝛽0 +
1 − 𝛽0

𝛽1 + exp[−𝛽2 ⋅ (𝑍Δ − 𝛽3)]
(2.5)

Initially the inverse function of Equation 2.4 is derived in order to compute Reliability as a
function of Entropy.

Entropy−1(Entropy) = 1
𝛼1

ln (1
Entropy)

1
𝛼2 (2.6)

2 Modeling 138

Reliability(Entropy) = 𝛽0 −
𝛽0 − 1

𝛽1 + exp [𝛽2 (𝛽3 −
1
𝛼1

ln (1
Entropy

)
1
𝛼2)]

(2.7)

Inversely, the inverse function of Equation 2.5 can be derived to compute the Entropy as a
function of Reliability.

Reliability−1(Reliability) = 1
𝛽2
[𝛽2𝛽3 + ln (

−𝛽0 + Reliability
𝛽0𝛽1 − 𝛽0 − 𝛽1Reliability + 1)] (2.8)

Entropy(Reliability) = exp [− (
𝛼1
𝛽2

(𝛽2𝛽3 + ln (
−𝛽0 + Reliability

𝛽0𝛽1 − 𝛽0 − 𝛽1Reliability + 1)))
𝛼2
]

(2.9)

It’s important to state that these models proposed may only work in real RO-PUFs imple-
mentations that don’t exhibit bias. Further work would be needed to confirm how robust
this model against different implementations. Equally important would be the automatic
calculation of the parameters of both models given the dataset or certain characteristics of
the design.

Furthermore, in order to extend this model to other PUF families and to account for more
effects, interpolation techniques (i.e. Lagrange Interpolation, Newton’s Divided Differences)
along with other families of functions could be used to provide an assortment of function
to choose from that better fit the design.

2.5 Evaluation on experimental data

To assess the accuracy, the proposed models will be evaluated on the Infineon Dataset. The
set of parameters 𝜃𝛼 and 𝜃𝛽 have been fitted to approximate the results. A side by side
comparison of the real data and the model is shown in Figure 58.

By using the relationship derived in Equation 2.9, the Entropy can be computed directly
with the Reliability. As seen, certain numerical instabilities occur if the closed range [0, 1]
is used. To remove the instabilities, the open interval (0, 1) should be used instead. While
it would be ideal to refine the model to use the closed interval and remove the instabilities,
a lot of statistical and inference techniques also suffer from the same problem.

2 Modeling 139

(a) Infineon RO Entropy
0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
zΔ

En
tr
op
y

(b) Entropy model

(c) Infineon RO Reliability
0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
zΔ

R
el
ia
b
ili
ty

(d) Reliability model

(e) Infineon RO Reliability vs Entropy
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Reliability

En
tr
op
y

(f) Reliability vs Entropy model

Figure 58: Evaluation of the model on the Infineon Dataset

2 Modeling 140

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Reliability

En
tr
op
y

Figure 59: Entropy as function of Reliability using the derived expression

2.6 Response classification and labeling

The model proposed above can be extended to be used like a response classification method-
ology. PUF responses can be classified according to their performance across two different
axes: The quality of the responses in space (e.g. Uniformity, Bit-aliasing and Uniqueness)
and the quality in time (e.g. Reliability).

To provide a normalized classification, both axis will be normalized using Shannon Entropy,
as depicted in (2.11).

Entropy(𝑟) = H(Bit-aliasing) (2.10)
Stability(𝑟) = 1 − H (𝐻𝑊𝐹(𝑟)) (2.11)

Each PUF response could be plotted in the Cartesian graph [0, 1] × [0, 1]. According to the
graph, we can classify the responses according to the region they belong:

• Deterministic: Minimum Entropy (All devices have the same response) and maximum
Stability (Same responses in time)

• PUF: Maximum Entropy (Different responses across devices) and maximum Stability
(Same responses in time)

• TRNG:Maximum Entropy (Different responses across devices) andminimum Stability
(Each device produces random values in time)

2 Modeling 141

• PRNG:Minimum Entropy (All devices produce the same response, since the algorithm
is deterministic and we assume all have the same seed) and minimum Stability (Each
device produces random values in time. If they have the same seed obviously all
responses will be the same across devices, but random in time)

PRNG

TRNG PUF

Deterministic

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Stability

En
tr
op
y

Figure 60: PUF response classification based on the relationship between Stability and
Entropy

The responses from the SRAM PUF have also been classified and the results are shown in
Figure 61. The heavy Bit-aliasing effects already shown are clear, since the majority of the
bits are grouped in the TRNG quadrant. Only a few number of responses yield enough
entropy to be valid for PUF use. However, almost no response is stable enough to be used
reliable for identification.

Furthermore, this labelling methodology can be used to prove the claims that NBTI improves
the reliability of the SRAM cells. If the hypothesis is correct, the points in the graph should
be shifted to the right. As showcased in Figure 62 the effect is the opposite. This could be an
indication that the reference used to create the data to write to the memory is not the good
one. Since the Reliability of the SRAM-PUF is quite low, the reference sample obtained was
the unreliable one. This is precisely the problem that was depicted in Chapter 2.

2.7 Conclusions

In conclusion, the proposed models for Reliability and Entropy accurately predict the
behaviour of RO-PUF designs. Despite their simplicity, these models provide robust predic-
tions of PUF responses. They could be utilized in ECCs or filtering strategies to enhance
PUF performance in practical applications. Furthermore, the classification methodology
based on these models effectively summarizes the overall behaviour of PUF responses and

2 Modeling 142

Figure 61: SRAM response classification.

2 Modeling 143

Figure 62: SRAM response classification for normal and NBTI test samples.

2 Modeling 144

serves as a valuable tool for labelling different PUF responses. This labelling mechanism
could be leveraged by unsupervised machine learning techniques for more robust filtering
techniques.

Future work should focus on studying different PUF designs using the proposed models
and classification methodology. The hypothesis is that the unique characteristics of each
randomness source in various PUF designs will present distinct distributions of points in
this graph. This classification could also be employed by unsupervised learning techniques,
for example, in filtering strategies or to identify different randomness sources. Further
research is necessary to confirm this theory. Additionally, incorporating other factors,
such as correlation effects, could be crucial for the accurate classification of responses and
represents another interesting avenue for future research.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Stability

En
tr
op
y

Figure 63: Proposal for PUF classification to account for correlation effects

A proposal to highlight the correlation between responses. Only responses that have a
relationship higher than a defined threshold are considered correlated and the critical
correlated pairs are connected. The correlation could be defined in one of many ways as
presented in Chapter 2.

2 Modeling 145

Relationship between PUF Metrics VIII.3
As highlighted in the literature by12, there is evidence suggesting that some canonical
metrics are redundant. The study in this section is motivated by the work in3, where the au-
thors imply an interdependence and overlap among quality metrics. This analytical analysis
is crucial as researchers typically compute metrics independently without understanding
how the results may be related. For instance, Bit-aliasing may be computed, yielding
poor results, and Uniqueness is computed regardless, despite the fact that the Uniqueness
result depends on Bit-aliasing. Extending these studies and exploring the relationships
between metrics would be highly beneficial, potentially reducing computation costs by
allowing evaluation through a single set of sufficient statistics. This, in turn, would enable
designs and analyses to focus on improving the sufficient statistic of the PUF, rather than
undergoing multiple iteration cycles to assess improvements.

The analysis in this section aim to exploit certain approximations and analytical develop-
ments in order to describe a large part of the behaviour of the PUF only with Bit-aliasing.
That is to say, if Uniformity and Uniqueness can be expressed in terms of Bit-aliasing, it
should be considered a good enough sufficient statistic. This does not mean that Bit-aliasing
is sufficient to evaluate the PUF performance, but the opposite.

Uniformity = 𝑓(Bit-aliasing, 𝐶, 𝐷)
Uniqueness = 𝑓(Uniformity,Bit-aliasing, 𝐶, 𝐷) ⇒ 𝑓(Bit-aliasing, 𝐶, 𝐷)

While Bit-aliasing and Uniformity technically measure the Entropy albeit on different
dimensions, the former is preferred to represent the state of the PUF for the following
reasons:

• Loss of granularity, as all information about individual challenges is masked, that is
to say we know the probability of 1 in each device. But we cannot know where the
1s are

• As highlighted in this document and in the literature, the sample set may not fully
represent correctly the behaviour of the PUF deployed on the full system.

Furthermore, by integrating also the interrelation between Reliability and Entropy, the
idea is to achieve a model that is able to represent the state of the PUF at any time given
Bit-aliasing and Reliability

1L. Feiten et al., ‘On metrics to quantify the inter-device uniqueness of pufs,’ Cryptology ePrint Archive, 2016.
2C. Gu et al., ‘A theoretical model to link uniqueness and min-entropy for puf evaluations,’ IEEE Transactions
on Computers, vol. 68, no. 2, pp. 287–293, 2018.

3F. K. Wilde, ‘Metrics for physical unclonable functions,’ Ph.D. dissertation, Universität München, 2021.

3 Relationship between PUF Metrics 146

PUF state at any time = 𝑓(Bit-aliasing,Reliability,Challenges,Devices)

The next challenge is to find the relationship between process variability and Bit-aliasing
in order to have a robust framework to evaluate, optimize and discriminate specific PUF
designs. However, that is outside of the scope of this thesis.

3.1 Analysis methodology

The analysis hase been tackled from 2 different approaches: (i) Grid Search to study
synthetic data and (ii) Analytical development from the canonical metrics to finally strive
for a middle-ground approach to verify the feasibility of certain approximations.

To ease the analytical development, the name of the metrics have been shortened in the
equations: Uniformity is shortened to 𝑈 or Unif, Bit-aliasing to 𝐵𝐴 and Uniqueness to
𝑈𝑛𝑖𝑞, unless otherwise said.

The Grid Search algorithm has been implement in Julia and is shown in the Appendix is
E.2. It is summarised in 2.

Data: 𝐵𝐴𝜇 ⊆ {0,… , 1}
Data: 𝐵𝐴𝜍 ⊆ {0,… , 1}
Data: Devices ⊆ {2,… , 100}
Data: Challenges ⊆ {2,… , 1024}

1 foreach 𝜇 in 𝐵𝐴𝜇 do
2 foreach 𝜎 in 𝐵𝐴𝜍 do
3 𝑀 ← GenerateCRPs(𝜇, 𝜎);
4 foreach 𝐷 in Devices do
5 foreach 𝐶 in Challenges do
6 U← Uniformity(𝑀{1→𝐷,1→𝐶});
7 BA← Bitaliasing(𝑀{1→𝐷,1→𝐶});
8 Uniq← Uniqueness(𝑀{1→𝐷,1→𝐶});
9 𝑃𝑑𝑖𝑓𝑓 ← 2BA(1 − BA);

10 𝑃𝑒𝑞 ← BA2 + (1 − BA)2;
11 𝐶𝑜𝑣𝐵𝐴 ← Cov [BA,BA2];
12 𝐶𝑜𝑣𝑝𝑑𝑖𝑓𝑓 ← Cov [𝑃𝑑𝑖𝑓𝑓, 𝑃2𝑑𝑖𝑓𝑓];
13 end
14 end
15 end
16 end

Algorithm 2: Grid Search Pseudocode.

3 Relationship between PUF Metrics 147

3.2 Bit-aliasing and Uniformity

The first Metric to derive from Bit-aliasing is Uniformity due to how tightly coupled they
are. Following our representation of the PUF CRPs as a 2D matrix, Bit-aliasing is computed
as the average value per column and Uniformity as the average value per row. Since the
average value of each column is known, the average value per row will be the same as the
average value per column, divided by the number of columns. This is equivalent to saying
“The probability of finding a 1 in the whole PUF is the same whether we look by rows of by
columns”, so the expected value of Uniformity is the same as the one of Bit-aliasing.

E [𝑈̂] = 1
𝐷

𝐷
∑
𝑖=1

(
𝐶
∑
𝑗=1

𝐵𝐴𝑗) =
1
𝐷 × 𝐷 × E [𝐵𝐴] = E [𝐵𝐴]

If we assume that the elements within each column are independent and identically dis-
tributed (i.i.d) then we can infer the distribution of average values per row. If the columns
are i.i.d, then by properties of variance and the Central Limit Theorem, the variance of
Uniformity is the variance of the average values by columns divided by the number of
rows.

Var [𝑈̂]
?
≈ Var [𝐵𝐴]

𝐷

While this approximation would be true in an ideal scenario, there is a critical limitation
with this approach as the metric evaluation is heavily dependent on the sample dataset, so
it’s not possible to compute the variance of Uniformity directly from Bit-aliasing.

This in turn means that Bit-aliasing is not a sufficient statistic, and we need both Bit-
aliasing and Uniformity of the sample data set. Statistical techniques should be employed
to extrapolate the metrics of a test set into our population, as will be presented later.

3.2.1 Extrema of Uniformity

Supposing that the Bit-aliasing evaluation of our PUF is representative enough, we can
approximate the expected extreme values of Uniformity by considering the best and worst
case scenarios:

Minimum Uniformity is expected when all bits are 0 except the ones with 𝑝 = 1

Uniformity𝑀𝑖𝑛 =
|{𝑝 = 1 ∣ 𝑝 ∈ Bit-aliasing}|

𝐶 (3.1)

Maximum Uniformity is expected when all bits are 1 except the ones with 𝑝 = 0

3 Relationship between PUF Metrics 148

Uniformity𝑀𝑎𝑥 =
𝐶 − |{𝑝 = 0 ∣ 𝑝 ∈ Bit-aliasing}|

𝐶 (3.2)

However, and as said before, this is an approximation as the computations are heavily
dependent on the sample set. However, it helps to measure the “average properties of a
random device” and discrepancies of these computations with our data set could be an
indicator of lack of good device sampling.

3.3 Establishing compound probabilities

A series of compound probabilities are established to enhance the analysis. The basis
of these compound probabilities lies in the independent analysis of each challenge as a
binomial distribution. Recall also that the probability of collision between 2 devices has
been already derived in Chapter 2.

Given a single challenge with probability of 1 𝑝 and 𝐷 devices, we can estimate how many
pairs of bits will be equal (00 or 11) as shown in Equation 3.3

𝑁𝑒𝑞 = (
𝐷
2
)𝑝2 + (

𝐷
2
)(1 − 𝑝)2 = (

𝐷
2
) (𝑝2 + (1 − 𝑝)2) (3.3)

The number of equal pairs can be normalized to obtain the probability of equal pairs and
it’s complementary, the probability of different pairs. The probability that 2 responses are
equal given a specific challenge is computed as shown in Equation 3.4

𝑃𝑒𝑞 = (𝑃1 ∩ 𝑃1) ∪ (𝑃1 ∩ 𝑃1) = 𝑃(11) + 𝑃(00) = 𝐵𝐴2 + (1 − 𝐵𝐴)2 (3.4)

While the probability that 2 responses are different given a specific challenge is derived as
follows. Notice that the formula resembles the Logistic map.

𝑃𝐷𝑖𝑓𝑓 = (𝑃1 ∩ 𝑃1) ∪ (𝑃1 ∩ 𝑃1) = 𝑃(10) + 𝑃(01) = 2 × 𝐵𝐴 × (1 − 𝐵𝐴)

Through analytical analysis and confirmed in Figure 64 its shown that 𝑃𝐷𝑖𝑓𝑓 = 1 − 𝑃𝐸𝑞.

Since these 2 compound probabilities depend only on Bit-aliasing, we can derive that 𝑃𝐷𝑖𝑓𝑓
will be bounded in the range [0, 0.5] while 𝑃𝐸𝑞 will be bounded in the range [0.5, 1].

Due to the inherent similarities of these compound probabilities with the binomial dis-
tribution, it would be beneficial to model them using the Beta distribution. However, in
this work the parameters of Bit-aliasing and the compound probabilities are not derived
directly. Instead, analytical approximations are derived to compute the expected value and
the variance.

3 Relationship between PUF Metrics 149

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Bit-aliasing

va
lu
e

PEq PDiff PEq ×PDiff

Figure 64: Relationship between 𝑃𝐸𝑞 and 𝑃𝐷𝑖𝑓𝑓

3.4 Approximation of the compound probabilities

To approximate the expected value and the variance of the compound probabilities, the
mathematical formulas are applied and the results are simplified by using the relationship
between the expected value and the variance.

E [𝑃𝐷𝑖𝑓𝑓] = E [2𝐵𝐴(1 − 𝐵𝐴)] → 2(E [𝐵𝐴] − Var [𝐵𝐴] − E [𝐵𝐴]2) (3.5)

Var [𝑃𝐷𝑖𝑓𝑓] = Var [2𝐵𝐴(1 − 𝐵𝐴)] ⇒ 4 × (Var [𝐵𝐴] + Var [𝐵𝐴2] − 2Cov [𝐵𝐴, 𝐵𝐴2])
(3.6)

Given these approximations, it is evident now why the Grid search algorithm also com-
puted Cov [𝐵𝐴, 𝐵𝐴2]. While this may require its numerical computation since it’s heavily
dependent on the Bit-aliasing distribution, the Cauchy-Schwarz inequality can be used to
determine some reasonable bounds.

Taking into consideration the Cauchy-Schwarz inequality |Cov(𝑋, 𝑌)| ≤ √Var(𝑋) ⋅
√Var(𝑌) and the fact that 𝑉𝑎𝑟(𝐵𝐴) ∈ [0, 𝑎], where 𝑎 > 0.

Cov [𝑋, 𝑋2]𝑀𝑖𝑛
= −√𝑎 × √𝑉𝑎𝑟(𝑋2)

Cov [𝑋, 𝑋2]𝑀𝑎𝑥
= √𝑎 × √𝑉𝑎𝑟(𝑋2)

3 Relationship between PUF Metrics 150

For a random distribution of values bounded in the range [0, 1], the largest possible variance
corresponds to that of a Bernoulli distribution with equal probabilities. Recall that the
variance of the Bernoulli distribution is computed as 𝑝𝑞 = 𝑝(1 − 𝑝) = 0.52 = 0.25

In the worst case scenario then we obtain

−√
𝑉𝑎𝑟(𝑋2)

4 < Cov [𝑋, 𝑋2] < √
𝑉𝑎𝑟(𝑋2)

4

In the case of the Beta distribution, the highest variability should be the shape that put
most of the values at the extreme of the distribution.

Var [(] 𝐵) =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

Given the symmetry of the distribution, we set 𝛼 = 𝛽 = 𝜃 to transform the formula of the
variance of the beta distribution into the following:

Var [𝐵] = 𝜃2

4𝜃2(2𝜃 + 1)
= 1
8𝜃 + 4

To maximize this, we need to minimize the denominator 8𝜃 + 4. The smallest value of 𝜃
that is still positive is 𝜃 → 0+. Thus, the variance approaches Var [𝑋] ≈ 1/4.

For the Uniform distribution, the variance is defined as follows, where 𝑏 = 1, 𝑎 = 0.

Var [𝑋] = 1
12(𝑏 − 𝑎)2 = 1

12

Furthermore, other mathematical functions can approximate the behaviour of 𝑃𝐷𝑖𝑓𝑓 and 𝑃𝐸𝑞.
The simplest ones are Shannon Entropy and the logistic map, as shown in Figure 65. Since
the Shannon Entropy, more specifically, half of it, is representative of the uniqueness of the
PUF, it shows that the Entropy is tightly coupled with the ability of the PUF to identify
devices, which is at the foundation of the use of PUFs. However, this approximation fails
for values of Bit-aliasing of approximately 0.25 and 0.75.

3.5 Deriving Uniqueness

Uniqueness can be approximated by using the compound probabilities established above.
The following formulas have been derived from the data obtained with the Grid search and
serve as approximations in most cases. However, further work will be needed to provide a
generalized mathematical model that works in most situations.

3 Relationship between PUF Metrics 151

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Bit-aliasing

V
al
ue

H(BA) H(BA)
2

PDiff

Figure 65: Comparison of different mapping functions.

E [𝑈𝑛𝑖𝑞] = 1
𝐶

𝐶
∑
𝑐=1

𝑃𝐷𝑖𝑓𝑓,𝑐 Var [𝑈𝑛𝑖𝑞] =
Var [𝑃𝐷𝑖𝑓𝑓]

𝐷 × √2

3.5.1 Extrema of Uniqueness

Analogous to Uniformity, an approximation to the extreme bounds of Uniqueness can also
be performed by taking into account the best and worst case scenarios.

The minimum Uniqueness will be achieved when the number of bits with 𝑃𝐷𝑖𝑓𝑓 = 0.5 is
minimum

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑀𝑖𝑛 =
||{𝑝 = 0.5 ∣ 𝑝 ∈ 𝑃𝐷𝑖𝑓𝑓}||

𝐶 (3.7)

While the maximum Uniqueness will be attained when the number of bits with 𝑃𝐷𝑖𝑓𝑓 = 0.5
is maximum

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠𝑀𝑎𝑥 =
||{𝑝 = 0 ∣ 𝑝 ∈ 𝑃𝐷𝑖𝑓𝑓}||

𝐶

3.6 Conclusions and Extensions

As it’s shown in the equations, we want Var [𝐵𝐴] to be as minimal as possible to improve
the overall metrics, which translates to having a narrower distribution of Bit-aliasing. The

3 Relationship between PUF Metrics 152

extreme case where there is no spread and every challenge has a probability of 1 of 0.5
occurs in a True Random Bit Generator.

The analysis described above assumes the distribution of Bit-aliasing is unimodal, which
should be then norm in most situations. However, few works in the literature and the
SRAM-PUF presented here presents a bimodal distribution of Bit-aliasing. While this is
an isolated case, it is reasonable to think that this pattern may appear also in other PUF
designs due to the symmetry effects of layouts or architecture. Because of this, we extend
the analysis to the bimodal case. Note that while this will provide an extension to most of
PUF designs (any other pattern outside of unimodal or bimodal is utterly broken) other
analysis will need to be done, as most likely a PUF showing bimodality on the Bit-aliasing
will likely be broken.

A series of approximations can be performed to apply the derived equations to each bell
of the distribution. While these modifications may work for the dataset we have, they
may not work for others. For this, further work will be needed to accurately describe the
density function of 𝑃𝐷𝑖𝑓𝑓 giving the distribution of Bit-aliasing. Moreover, mathematical
analysis of mixture of Gaussians would be beneficial to automatically account for bimodal
distributions.

3 Relationship between PUF Metrics 153

Metric Verification Model VIII.4
4.1 Introduction

As already said before, there is a lack of a reference model when it comes to evaluating
PUFs under different system characteristics. Indeed, the same PUF designs needs to be
evaluated under different number of devices and challenges in order to study the behaviour.
Even then, there is no agreed consensus on the reference standard to compare against,
because as depicted in the literature and highlight in this document, the PUF metrics change
depending on the population size. In this section, an in-depth study of a golden PUF is
presented, under varying system characteristics in order to derive a mathematical model
or methodology, to relate the PUF and system characteristics to the reference values that
shoul be attained.

4.2 Proposed methodology

The proposed methodology here is based on analysing the behaviour of an RO-PUF under
different configurations. This analysis was tackled from 2 directions. The first one was
purely numerical one, that is, perform a grid search on every possible scenario and evaluate
the results to fit a model. The second one, is a purely analytical method and requires
exploiting the relationships derived before. The idea was also to meet in the middle of both
analysis to prove the analysis and to find some numerical or analytical optimizations.

The grid search algorithm is summarised in 3. Due to the sheer size of the search space the
algorithm was implemented in Julia and it’s source code is provided in ⁇. Special attention
is given to the study of Bit-aliasing, as it has shown before, we can relate the rest of the
metrics with Bitaliasing. In order to include 0 in the set of mean frequency differences, the
search size is set to 51 values as opposed to 50 values.

Even though the proposed methodology tries to obtain a reference model for any number of
devices and challenges, the added computation effort of evaluating more than 500 devices
and 512 challenges does not yield additional information.

4.3 Frequency Distribution and Bit-aliasing average

Recall the frequency difference distribution 𝐹Δ in the context of RO-PUF represents the
distribution of all computed frequency difference among RO pairs. Moreover, as depicted
in previous sections, the expected value of Bit-aliasing is computed as the ratio of the areas
of the distribution through 0, which can be computed easily with the CDF of the normal
distribution as depicted in Equation 4.1 and shown in Figure 66.

4 Metric Verification Model 154

Data: 𝜃𝜇 ⊆ {−1 kHz,… , 1 kHz} and |𝜃𝜇| = 51
Data: 𝜃𝜍 ⊆ {0,… , 3 kHz} and |𝜃𝜍| = 50
Data: Devices ⊆ {2,… , 500} and |Devices| = 50
Data: Challenges ⊆ {2,… , 512} and |Challenges| = 50

1 foreach 𝜇 in 𝜃𝜇 do
2 foreach 𝜎 in 𝜃𝜍 do
3 𝐹Δ ← GenerateFreqDiff(𝜇, 𝜎);
4 𝑀 ← GenerateCRPs(𝐹Δ);
5 foreach 𝐷 in Devices do
6 foreach 𝐶 in Challenges do
7 Study(𝜇, 𝜎,𝑀{1→𝐷,1→𝐶});
8 end
9 end

10 end
11 end

Algorithm 3: Grid Search Pseudocode.

E [𝐵𝐴] = 𝑃(𝐹Δ ≥ 0) = 1 − 𝑃(𝐹Δ < 0) = 1 − Φ (𝑍Δ) (4.1)

Figure 66: Relationship between 𝑍Δ and the expected Bit-aliasing

Also recall that the following expressions are equivalent since Z scores follow the standard
normal distribution

Φ (−𝑍Δ) = 1 − Φ (𝑍Δ)

4 Metric Verification Model 155

4.4 Variance of Bit-aliasing

The analysis of the variance of Bit-aliasing is non-trivial due to the complex relationship
between 𝐶, 𝐷 and 𝑍Δ

• Smaller 𝑍Δ implies larger 𝜎Δ and more chances of finding disparate 𝑓Δ values that
increase the variance of Bit-aliasing.

• The lower the number of challenges 𝐶, the more chances of finding disparate values
of 𝑓Δ that increase the variance of Bit-aliasing

• The higher the number of devices 𝐷, the more average the distribution of 𝑓Δ is per
column (i.e. challenge) decreasing the variance of Bit-aliasing.

Figure 67: Bit-aliasing variance under different number of devices, challenges, and 𝑍Δ.
The black lines represent the baseline estimation of Bit-aliasing Variance

The behaviour for a single number of devices is represented below in Figure 68. For very
low values of C and D, the range is not exactly symmetrical with respect to the range. But
for the sake of simplicity, we consider for now the case where the baseline passes exactly
in the middle.

As it is clear, there is heavy heteroscedastic behaviour, so the model for the Bit-aliasing
variance is proposed in Equation 4.2, where ̂𝑆 is the baseline prediction for 𝜎2𝐵𝐴.

𝜎̂2𝐵𝐴 ∼ 𝛽1 ̂𝑆 + ̂𝜀 (4.2)

The “uncertainty” ̂𝜀 is modelled as shown in Equation 4.3.

4 Metric Verification Model 156

σεε ε = g(ZΔ, D, C)

0.0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

ZΔ

σ B
A
2

Baseline Range

Figure 68: Relationship between Bit-aliasing variance and the baseline.

̂𝜀 ∼ 𝑁(0, 𝜎𝜀) 𝜎𝜀 = 𝑔(𝑍Δ, 𝐷, 𝐶) (4.3)

The baseline ̂𝑆 is computed as shown in Equation 4.4.

̂𝑆 =
𝜇̂𝐵𝐴(1 − 𝜇̂𝐵𝐴)

𝐷 (4.4)

4.5 Analysis of residuals

In order to fit a model of the Bit-aliasing variance, we proceed to study the residuals, defined
here as the difference between the expected value (i.e. the baseline) and the obtained value
and they are normalized against their corresponding baseline.

𝑅 = ∑
𝑑∈𝐷

∑
𝑐∈𝐶

[∑
𝑧Δ∈𝑍Δ

||Var [𝐵𝐴]𝑑,𝑐,𝑧 − ̂𝑆𝑑,𝑐,𝑧||]

𝑅′ = ∑
𝑑∈𝐷

∑
𝑐∈𝐶

[∑
𝑧Δ∈𝑍Δ

||Var [𝐵𝐴]𝑑,𝑐,𝑧 − ̂𝑆𝑑,𝑐,𝑧||
̂𝑆𝑑,𝑐,𝑧

]

However, due to the large amount of data, certain reductions are needed to simplify the
computations and accurate fit the distribution. All the z-scores in the range 𝑍Δ ∈ [−5, 5]
are split into 150 bins according to the following series of computations and the results are
displayed in Figure 69.

4 Metric Verification Model 157

𝐵𝑖𝑛(𝑧Δ) = ⌈
𝑧Δ +max(𝑍Δ)
𝐵𝑖𝑛𝑊𝑖𝑑𝑡ℎ

⌉ 𝐵𝑖𝑛𝑤𝑖𝑑𝑡ℎ =
max(𝑍Δ) −min(𝑍Δ)

𝑁

𝑅𝑒𝑛𝑣 =
𝑁

max
𝑖=1

{𝑅 ∶ 𝐵𝑖𝑛(𝑍Δ) = 𝑖}

𝑍𝑒𝑛𝑣 = {𝑍Δ ∶ 𝐵𝑖𝑛(𝑍Δ) = 𝑖 ∣ ∀𝑖 ∈ [1, 𝑁]}

66 devices 86 devices

24 devices 45 devices

-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125

Zenv

m
ax

R
e

n
v

C
100 200 300 400 500

Figure 69: Relationship between number of devices, challenges and binnarized residuals

The R code shown in 4.1 was used to binarize the residuals.

1 cases_df <- cases_df ^|>
2 filter(abs(z) ^<= 5, C > 4, D > 4) ^|>
3 mutate(
4 ba_mean_est = pnorm(z),
5 ba_var_baseline = ba_mean_est * (1 - ba_mean_est) / D
6) ^|>
7 mutate(ba_var_residual = ba_var - ba_var_baseline) ^|>
8 mutate(residual_norm = ba_var_residual / ba_var_baseline)
9

10 num_bins <- 150
11
12 df_binned <- cases_df ^|>
13 mutate(z_bin = cut(z, num_bins)) ^|>
14 group_by(z_bin, C, D) ^|>
15 summarise(
16 ba_var = max(ba_var, na.rm = TRUE),
17 ba_var_baseline = mean(ba_var_baseline),
18 max_residual = max(abs(ba_var_residual), na.rm = TRUE),
19 z = mean(z, na.rm = TRUE)
20) ^|>
21 ungroup()

4 Metric Verification Model 158

Listing 4.1: R code to binarize the results

The distribution that best fits the residuals is the Laplace distribution. In this case we can
always assume that 𝜇 is 0 as the distribution of residuals is always centred at 0, so we only
need to obtain the 𝑏 parameter. The fitting is performed in R by using the code showed in
4.2.

1 # Laplace Density Function
2 dlaplace <- function(x, mu, b) {
3 (1 / (2 * b)) * exp(-(abs(x - mu)) / b)
4 }
5
6 # ba_var_residual ~ beta * laplace(x; mu=0, b)
7 laplace_fit <- function(df_group) {
8 C <- unique(df_group$C)
9 D <- unique(df_group$D)

10
11 # Params are beta, b
12 params <- c(exp(-C), 0.2)
13 fun <- function(par, data) {
14 v_est <- par[1] * dlaplace(data$z, 0, par[2])
15 sum((v_est - data$max_residual)^2)
16 }
17 params <- optim(params, fun, data = df_group)$par
18 list(D = D, C = C, beta = params[1], b = params[2])
19 }
20
21
22 # Parameters to optimise are are beta, b
23 laplace_fit <- function(df_group) {
24 C <- unique(df_group$C)
25 params <- c(exp(-C), 0.2) # Initial values
26 fun <- function(par, data) {
27 v_est <- par[1] * dlaplace(data$z, 0, par[2])
28 sum((v_est - data$max_residual)^2)
29 }
30 params <- optim(params, fun, data=df_group)$par
31 list(D = D, C = C, beta = params[1], b = params[2])
32 }

Listing 4.2: R code to fit the residuals to the Laplace distribution

The distribution of residuals is dictatedmainly by the 𝑏 parameter of the Laplace distribution,
whose behaviour can be modelled with Equation 4.5. While this expression describes the
relationship between 𝑏, the number of devices and challenges, we can approximate 𝑏 to
0.81.

𝑏 ∼ 5.828 × 10−5𝐷 + 8.631 × 10−5𝐶 − 2.867 × 10−7(𝐷 ⋅ 𝐶) + 0.7017 ≈ 0.81 (4.5)

Now that we have derived the expression for 𝑏, we can fit the data to obtain the model of
𝜎𝜀 as the following.

4 Metric Verification Model 159

𝜎𝜀 ∼ 𝛽 ⋅ 𝐿(𝑧Δ ∣ 𝜇 = 0, 𝑏 ≈ 0.81)

By fitting a non-linear model we obtain the model for 𝜎𝜀 shown in Equation 4.6.

𝛽 ∼ 0.06145
𝐷 + 11.49

𝐷 ⋅ 𝐶 − 1.30 × 10−5 (4.6)

4.6 Analysis of heteroscedasticity

To model the behaviour of the Bit-aliasing variance, an error term is added as follows

Var [𝐵𝐴] = ̂E [𝐵𝐴] + ̂𝜖 = E [𝐵𝐴] ∗ (1 − E [𝐵𝐴])
𝐷 + ̂𝜖

where the error term is normally distribution according to the following:

̂𝜖 ∼ 𝑁 (0, 𝜎𝑁𝑜𝑖𝑠𝑒)

The standard deviation of the error term, 𝜎𝑁𝑜𝑖𝑠𝑒 is fitted as

𝜎𝑁𝑜𝑖𝑠𝑒 = 0.18 exp (1𝐷2) + 0.921/𝐷1/𝐶 − 0.18

4.7 Summary

The expected value of Bit-aliasing is computed directly given the 𝑍Δ of the distribution
using the CDF of the normal distribution.

𝜇̂𝐵𝐴 = Φ (𝑍Δ)

The variance of Bit-aliasing presents heteroscedasticity so the model is represented by a
baseline ̂𝑆 and the noise 𝜀 which is normally distributed.

𝜎̂2𝐵𝐴 = ̂𝑆 + ̂𝜀 =
𝜇̂𝐵𝐴(1 − 𝜇̂𝐵𝐴)

𝐷 + 𝑁(0, 𝜎𝜀)

The variance of Bit-aliasing is distributed following a Laplace distribution. The 1/3 scaling
factor is added since the model accounts that the behaiour is representative of 3𝜎.

𝜎𝜀 ∼ 𝛽 ⋅ 𝐿(𝑧Δ ∣ 𝜇 = 0, 𝑏 ≈ 0.81) ⋅ 13

4 Metric Verification Model 160

After performing a non-linear model, the scaling factor 𝛽 of the Bit-aliasing variance is
given by:

𝛽 ∼ 0.06145
𝐷 + 11.49

𝐷 ⋅ 𝐶 − 1.30 × 10−5

4.8 Verification of the model

The model has been verified with synthetic data generated outside the search space used
to develop the model. Figure 70 shows the graph of Bit-aliasing variance with respect to
the 𝑍Δ of the frequency difference distribution. Each dot corresponds to a value. The red
line corresponds to the baseline variance. The green dots have been generated using the
models proposed above. As it’s clear, most of the generated points fall within the range of
the ideal values.

Figure 70: Evaluation of the model for 120 devices and 74 challenges

4.9 Conclusions

The model presented here serves as a robust reference for the behaviour of a RO-PUF and
can be adapted to the intricacies of different PUF families.

To accurately represent the behaviour of the model, confidence intervals should be com-
puted. The type of confidence interval to compute depends on the size of the system

4 Metric Verification Model 161

under study, with the t-statistic being more appropriate for a low number of devices and
challenges. For an accurate representation, Wild bootstrap1, a variation of the standard
bootstrap suited for models with heteroscedasticity, is proposed. However, the computation
of the confidence intervals was not presented here due to time limitations.

An important addition would be to provide an explanation of the different parameters
and factors in the models. Furthermore, studying PUFs that present biasing would be
interesting to understand how deviations from ideal metric values translate into the model.
This could allow for a “universal” way to compare PUF designs against a robust golden
standard.

Given that this model can accurately represent standard behaviour for a given system
configuration, it would be beneficial to perform sensitivity analysis. The goal is to study
the effect of different system parameters on the metrics. This information can guide design
efforts toward parameters that are “easily” changeable yet yield significant improvements.
For example, increasing the number of RO stages to achieve a larger frequency deviation is
much easier than creating designs that force the frequency difference distribution to be
extremely close to zero.

1C.-F. J. Wu, ‘Jackknife, bootstrap and other resampling methods in regression analysis,’ the Annals of Statistics,
vol. 14, no. 4, pp. 1261–1295, 1986.

4 Metric Verification Model 162

Extrapolating PUF metrics VIII.5
5.1 Introduction

The previous sections have provided an in-depth study about the interrelation between
the different metrics and how Bit-aliasing can serve as a sufficient statistic to describe a
PUF data set. However, certain statistical limitations appear, specially when computing
Uniformity due to the loss of information about specific devices. This section expands on
the models and mathematical analysis presented.

Since this models allow us to verify and compute some PUF metrics given the results of
other metrics, the idea is to extrapolate the full set of metrics for a given system description
(i.e. number of devices, number of challenges) given a small testing subset of devices. This
has the potential to greatly reduce the time and cost needed to assess the performance of
a PUF, as only a small sample set is needed, removing the needed to manufacture more
devices if the expected behaviour is not seen in the test sample.

The methodology proposed here relies on parametric bootstrap in order to estimate the
desired metrics from a small sample test whose metrics are known. It’s important to state
that this methodology relies only on the evaluation on a limited number of devices, so the
number of challenges tested remains the same. Removing challenges may hide information
and lead to incorrect results.

Due to the statistical nature of the bootstrap algorithm, a certain set of considerations
need to be taken into account for accurate results. This algorithm is very dependent on
the sample population. If the original sample is biased or unrepresentative, the bootstrap
samples will also be biased, leading to wrong estimations, reiterating again the importance
of a representative sample population. For very large populations, the original sample size
should be a small fraction of the population to avoid overfitting. For smaller populations,
the sample size should be large enough to adequately represent the population diversity. As
bootstrap requires resampling of the population, the results depend also on the number of
iterations performed. Common practice is to use at least 1,000 to 10,000 bootstrap samples.
This helps in reducing the variability of the bootstrap estimates.

5.2 Proposed methodology

As described above, the methodology exploits the relationship between metrics in order to
extrapolate known metrics from a small sample set into the desired population size. The
full algorithm is summarized in 4.

5 Extrapolating PUF metrics 163

Data: 𝑀 ←Matrix of CRPs
Data: 𝐷 ← Number of devices
Data: 𝜂 ← Ratio of sample size to population size
Data: Iters← Number of bootstrap iterations

1 foreach 𝑖 ← 0 in Iters do
2 𝑀′ ← create_sample(𝑀,𝐷);
3 𝑈∗

𝑖 ← Uniformity(𝑀′);
4 𝐵𝐴∗𝑖 ← Bitaliasing(𝑀′);
5 𝐵𝐴2∗𝑖 ← 𝐵𝐴∗𝑖 ⋅ 𝐵𝐴∗𝑖 ;
6 𝑃∗𝐷𝑖𝑓𝑓,𝑖 ← 2 ⋅ 𝐵𝐴∗𝑖 ⋅ (1 − 𝐵𝐴∗𝑖);
7 end
8 𝜃∗𝜇 ← compute_mean(𝑈∗, 𝐵𝐴∗, 𝐵𝐴2∗, 𝑃∗𝐷𝑖𝑓𝑓);
9 𝜃∗𝜍2 ← compute_var(𝑈∗, 𝐵𝐴∗, 𝐵𝐴2∗, 𝑃∗𝐷𝑖𝑓𝑓);
Result: 𝜃𝜇 ← Extrapolate(𝜃∗𝜇, 𝜂)
Result: 𝜃𝜍2 ← Extrapolate(𝜃∗𝜍, 𝜂)

Algorithm 4: Bootstrap algorithm to extrapolate metrics.

Through this section, we will denote ̂𝑋 as the extrapolated value of the metric 𝑋. Initially,
we first define 𝜂 as the ratio between the number of devices in our sample set against the
desired number of devices in the population.

𝑅 =
Number of devices in the sample

Number of devices in the population

As the expected value of Bit-aliasing depends only on the number of challenges, and that is
fixed, we can say that the expected value in the population is practically identical to the
one in our sample.

E [̂𝐵𝐴] ≃ E [𝐵𝐴] ⟺ Proper sampling

However, the variance depends on the population size, so it can be extrapolated by taking
into account the ratio 𝜂 as follows

Var [̂𝐵𝐴] = Var [𝐵𝐴] ⋅ 𝜂

The expected value and variance of Uniformity are extrapolated directly from the bootstrap
samples. Notice that the expected value of Uniformity is the same as the expected value of
Bit-aliasing.

E [𝑈̂] = 𝜃∗𝜇 = E [̂𝐵𝐴] Var [𝑈̂] = 𝜃∗𝜍2

5 Extrapolating PUF metrics 164

The compound probability 𝑃𝐷𝑖𝑓𝑓 can be extrapolated from the Bit-aliasing by using the
relationship derived before in Equation 3.5 and Equation 3.6.

E [̂𝑃𝐷𝑖𝑓𝑓] = 2 (E [̂𝐵𝐴] − Var [̂𝐵𝐴] − E [̂𝐵𝐴]2)

The variance of the 𝑃𝐷𝑖𝑓𝑓 can be approximated by using the already derived relationship
with Bit-aliasing. Due to the complex relationship between the variables, the absolute value
is added to avoid negative values that may occur in certain occasions.

Var [̂𝑃𝐷𝑖𝑓𝑓] = ||4(Var [𝐵𝐴] + Var [𝐵𝐴2] − 2Cov [𝐵𝐴, 𝐵𝐴2])||

However, that approximation only provides reliable results for small population sizes. The
following approximation yields much better results once the population grows large, in our
case more than 200 devices. Future work will be needed to provide a generalized solution.

Var [̂𝑃𝐷𝑖𝑓𝑓] =
𝜂2

4 𝜃
∗
𝜍2

Finally, the Uniqueness is extrapolated as follows

E [̂𝑈𝑛𝑖𝑞] = E [̂𝑃𝐷𝑖𝑓𝑓] Var [̂𝑈𝑛𝑖𝑞] =
𝜂
4 Var [̂𝐵𝐴]

The confidence intervals of the metrics can be computed directly through the Pivot Confi-
dence Interval if bootstrap was performed. Otherwise, the t-statistic is preferred here to
the z-statistic due to the limited size of our sample.

While technically speaking, it’s possible to derive all metrics numerically directly through
bootstrap from the sample set, the already derived relationships are used to reduce the
computation and time required to obtain the results. Nonetheless, in certain situations
there are discrepancies between the estimated parameters and the results obtained through
bootstrap, so it’s advisable to check for any differences between them.

5.3 Evaluation of the methodology

To validate the methods proposed, a series of synthetic datasets were evaluated. These
synthetic datasets provide full control on the system characteristics and allows the study
of certain edge cases.

A series of studies was performed by changing the following parameters:

• The population size was test from 40 to 500 devices
• The sample to population ratio 𝜂 was studied from 0.1 to 0.9

5 Extrapolating PUF metrics 165

Metric 𝜇 𝜎2

Full Model Full Model

Uniformity 0.4997 0.5010 2.3538 × 10−5 2.3882 × 10−5

Bit-aliasing 0.4997 0.5010 3.0313 × 10−3 3.0318 × 10−3

𝑃𝐷𝑖𝑓𝑓 0.4939 0.4939 7.3124 × 10−5 7.5795 × 10−5

Uniqueness 0.5002 0.4939 2.5705 × 10−5 2.6797 × 10−5

• The number of bootstrap iterations was changed from 1000 to 5000
• The bootstrap iteration size was fixed to the sample size.

To ease up the testing procedure, a Python module and a crude TK interface and Python
module have been created. The Graphical User Interface (GUI) is shown in Figure 90. The
full set of metrics is validated on the whole test set. The size of the test set, the number
of bootstrap iterations and the number of samples per iterations are configured through
the interface and the metrics are extrapolated from there. Both results are displayed to the
user and compared.

While there are some minor discrepancies it’s evident that most of the extrapolated values
are very close to the computed ones.

5.4 Conclusions

The methodology proposed is able to extrapolate metrics from a small sample set with
great accuracy. Due to the statistical nature of the bootstrap algorithm, the accuracy of the
extrapolation depends on the population size and the number of iterations. We have shown
here than at a ratio of 𝜂 ≥ 30% in needed. This method has huge potential in reducing the
cost of PUF assessment and evaluation as only a few devices will be needed to assess the
performance of the PUF when deployed in the full system.

Further work will be needed to achieve better accuracy and to include the automatic
computation of the Confidence Intervals.

While this methodology provides a general view of the PUF behaviour, no correlation effects
have been included in the analysis. Indeed, the addition of correlation and topological
effects in the analysis will enhance this procedure. These effects could be accounted with
the addition of others well established statistical techniques like the Metropolis-Hastings
algorithm and the use of Markov Chain Monte Carlo (MCMC).

Another important remark is that this method works well with unimodal distributions. As
already highlighted, we are not the only ones to detect bimodal patterns in a PUF dataset.
So it’s feasible to think that certain designs can produce this bimodal distribution. Further

5 Extrapolating PUF metrics 166

work will be needed to account for bimodal and even mixture of distributions in order for
this method to accurately work on every PUF dataset possible.

5 Extrapolating PUF metrics 167

PUF Digital Twins VIII.6
6.1 Introduction

As previously discussed, the mathematical modeling of PUFs remains largely unexplored.
In fields where accurate statistical models are needed to reduce computational complexity,
surrogate models have proven useful [235]. Other effective mathematical methods, such
as those based on response surface methodology, have been successfully applied to op-
timize flexible printed circuit boards [236, 239]. However, these powerful mathematical
abstractions are often complex and require extensive knowledge to implement.

The methodologies presented here propose the creation of PUF “digital twins” to reduce the
cost and time required for evaluating real PUFs. A digital twin1 is a digital representation
of a real-world physical process that serves as an effectively indistinguishable counterpart
for purposes such as simulation, integration, testing, monitoring, and maintenance.

The main distinction between the proposed methods and the ML-based approaches is
tunability. The proposed methods include adjustable parameters, or “knobs,” that can
modify the model’s behaviour. These “knobs,” combined with pre- and post-processing
stages, enable not only the simulation of a PUF but also its evaluation under different
conditions and scenarios. Furthermore, the models are simple enough to be computationally
very efficient while accurate enough to describe the behaviour of the PUF. This flexibility
provides a comprehensive tool for understanding and optimizing PUF performance.

6.2 Proposed methodology

Simulating the behaviour of the PUF under its two main dimensions, spatial (i.e., entropy
and correlation) and temporal (i.e., reliability and ageing), is essential. Each type of PUFmay
require a different methodology for cloning. This work particularly focuses on modeling
the SRAM PUF due to its extensive study and the relative simplicity of bistable systems.

The simplest model to represent a challenge-response pair (CRP) is a binomial distribution,
represented by a two-state Markov Chain.

However, this approach is too simplistic, failing to capture the spatial and temporal be-
haviour of the PUF. One limitation of Markov Chains is their “memory-less” property,
where future states depend only on the current state and not on past states. In contrast,
the current model aims to account for “short-term memory.”

1S. Haag and R. Anderl, ‘Digital twin–proof of concept,’ Manufacturing letters, vol. 15, pp. 64–66, 2018.

6 PUF Digital Twins 168

0 1

1−Rel0

1−Rel1

Rel0 Rel1

Figure 71: Binomial representation of a CRP using a Markov Chain

This short-term memory is closely related to the concept of Reliability Invariance proposed
in this work. Some challenges are likely to remain in a specific state (e.g., reliable 0) but
can still produce an unexpected bit (e.g., a response of 1).

To model this behaviour, Hidden Markov Chains (HMCs) are employed, as illustrated in
Figure 72.

0H 1H

0 1

1−Rel0

1−Rel1

Rel1Rel0

p00
p01

p11
p10

Figure 72: Representation of a CRP using a Hidden Markov Chain

In the HMC model, each response is initially modelled with two “hidden” or latent states.
Each state has emission probabilities corresponding to the likelihood of yielding a 0 or 1,
given the current state of the response, For each response, the distribution of Reliability
Invariance (P00, P01, P10, P11) and the canonical reliability are computed per bit. To
generate a digital device, values are drawn from each distribution and assigned to the states.
The R code shown in 6.1 demonstrates how a Hidden Markov Chain is created for a single
response. Note that all probabilities need to be normalized so they sum to 1.

1 make_hidden_cell <- function(ba, rel_0, rel_1, P00, P01, P10, P11) {
2 norm <- function(v) v / sum(v)
3
4 m <- list(c(rel_0, 1 - rel_0), c(1 - rel_1, rel_1))
5 # m <- list(c(P00, P01), c(P10, P11))
6 m <- lapply(m, norm)
7
8 emmision <- list(c(P00, P01), c(P10, P11))
9 emmision <- lapply(emmision, norm)

10
11 state <- ifelse(ba ^>= 0.5, 1, 0)
12 structure(
13 list(P = m, E = emmision, state = state, prev = state),
14 class = ”cell”

6 PUF Digital Twins 169

15)
16 }

Listing 6.1: Hidden Markov Chain implementation in R

The following graphs show the histogram of Uniformity and Bit-aliasing of the real SRAM
CRPs and the generated ones using the Hidden MC model.

Figure 73: Uniformity Histogram Figure 74: Bit-aliasing Histogram

The results show that the model tends to create the same distribution of responses when it
comes to the spatial behaviour. This is also reassured by Figure 75 where the real CRPs of
the SRAM are compared against to the generated ones. It’s evident that the same pattern
arises in the model, which is a good indication.

Figure 75: Original SRAM CRPs and generated CRPs

To account for the spatial behaviour, in Figure 76 the relationship between Bit-aliasing and
Reliability is analysed.

While these analysis show promising results, the current approach has some limitations,
specially for cells that are “truly-random”, that is, a Bit-aliasing of 0.5. To account for the
truly random cells, we propose to extend the HMC model as shown in Figure 77 by adding

6 PUF Digital Twins 170

Figure 76: Bit-aliasing vs Reliability of original and generated SRAM CRPs

a new state. Although this is just a proposal, many other modifications can be performed
to account for these new cells. Further work will be needed to evaluate a plethora of chains
to see which one works better across different types of behaviours and designs.

0H Random 1H

0 1

? ?

?

?

0.5 0.5

1−Rel0

1−Rel1

Rel1Rel0

p00

p01

p11

p10

Figure 77: Hidden Markov Chain proposal for response modeling

6.3 Pre-processing and post-processing stages

While the models proposed here may serve as a foundation for a digital twin of a PUF,
they do not fully capture the effects of varying external (e.g., noise, voltage) or internal
phenomena (e.g., correlation). To address these phenomena, additional pre- and post-
processing steps are proposed:

1. Initial assessment of the PUF and data gathering

6 PUF Digital Twins 171

2. Generation of the twin based on the gathered data
3. Pre-process the transition matrix to adjust for external phenomena
4. Generate a sample of responses
5. Update the state of all cells
6. Post-process the responses to adjust for internal phenomena
7. Repeat from step 3

The post-processing stage can utilize techniques presented in this thesis, primarily the
auto-correlation matrix and the joint probabilities derived from it, to account for correlation
effects.

The utility of these stages can be seen in the following practical example. Consider that due
to certain limitations, the study of a new PUF design can only be performed at a limited
range of temperature or voltage values. However, through an in-depth analysis of the
randomness source, it is possible to extrapolate changes in reliability under new conditions.
These pre- and post-processing stages will provide the tunability in the model that allows
researchers to test the PUF under untested environments or to try novel techniques for
filtering or reliability improvement.

6.4 Conclusions

The methods described here provide a promising starting point for creating tunable digital
twins of certain PUFs. Stochastic cellular automata23 could also be an interesting approach
that remains simple enough for practical application. The same pre- and post-processing
techniques can be adapted to this new algorithm. However, due to time constraints, these
ideas were not explored in this thesis.

For a robust digital twin, advanced statistical techniques such as the aforementioned
surrogate models, which can integrate many internal and external parameters, might
be more suitable. A significant challenge in creating digital twins is ensuring that they
accurately replicate the behaviour of the real PUF. As previously discussed, canonical
metrics fail to encapsulate all critical phenomena of a PUF. In other words, we can only
observe what we measure. Therefore, further evaluation of these digital twins is necessary
to ensure their proper use and accuracy.

Initially, a comparison between different models was planned, but due to time constraints,
this was not feasible. The hypothesis underlying this comparison is that each model
encapsulates the intricacies of its corresponding PUF design, enabling the differentiation of
multiple models from one another. Additionally, since the Hidden MC model generates
bits that follow the same nature as the rest of the dataset, bits generated by one model can

2A. Agapie et al., ‘Probabilistic cellular automata,’ Journal of Computational Biology, vol. 21, no. 9, pp. 699–708,
2014.

3T. Toffoli and N. Margolus, Cellular automata machines: a new environment for modeling. MIT press, 1987.

6 PUF Digital Twins 172

be compared with another dataset to identify discrepancies, indicating that they are “out of
place.”

6 PUF Digital Twins 173

Conclusions VIII.7
The final chapter of this thesis represents the realization of extensive research and develop-
ment efforts aimed at understanding and enhancing PUF performance. The core objective
was to construct robust mathematical and heuristic models that accurately describe the be-
haviour of specific PUF designs, providing a comprehensive framework to predict, evaluate,
and optimize PUF performance.

An initial analysis of state-of-the-art modeling techniques was presented. Current literature
predominantly focuses on machine learning approaches to create predictive models for PUF
responses. These models leverage large datasets to train algorithms capable of anticipating
PUF behaviour under various conditions. However, the field of mathematical PUF modeling
remains largely unexplored, presenting an opportunity to develop foundational models that
offer deeper theoretical insights. The work presented in this chapter attempts to fill that gap
by establishing the necessary context and methodologies for building such mathematical
models.

Following this, the numerical relationships between various canonical PUF metrics are
examined. The primary goal is to determine whether Bit-aliasing can serve as a sufficient
statistic to describe PUF behaviour, as suggested by some studies. The analysis showed that
Bit-aliasing and Uniformity alone can sufficiently predict PUF behaviour, as other metrics
can be derived from these, either with statistical or numerical methods.

To validate these numerical relationships, a verification model was derived. This model
employs detailed simulations and empirical data to test the robustness of theoretical re-
lationships derived. By studying an ideal system in detail with a Grid Search algorithm,
a range of values that the metrics should exhibit given a subset of the entire system was
elucidated. This verification process is critical for ensuring the reliability and accuracy of
our proposed models, providing a benchmark for further analysis and practical application.
Expanding on this work, a series of statistical techniques and heuristics were employed
to extrapolate canonical metrics from a small testing dataset. This approach significantly
reduces the cost and time required to evaluate PUF performance, as fewer devices and
less time are needed for comprehensive testing. By developing efficient statistical models,
the behaviour of a PUF can be predicted with high accuracy from limited data, leading to
substantial cost savings and efficiency improvements in the development and assessment
of PUF designs.

These heuristic analysis set the stage for the creation of a digital twin of a PUF. Various
techniques, primarily Markov Chains, were studied to develop a mathematical model that
replicates PUF behaviour. Markov Chains, which model systems that transition between
states with certain probabilities, are particularly well-suited for capturing the stochastic
nature of PUF responses. This digital twin can be easily implemented in software, providing
a cost-effective, efficient and tunable means to design and evaluate PUFs. A software-based

7 Conclusions 174

approach allows for rapid prototyping and testing, significantly reducing the resources and
time needed for PUF evaluation and facilitating more rapid development cycles.

Finally, given the extensive data gathered during this thesis, different digital twins were
created and compared to discern the unique characteristics of different PUF families. This
comparison involves analysing the response patterns, assessmentmetrics, and entropy levels
of each PUF type to highlight their respective strengths and weaknesses. By understanding
these distinctions, different PUF designs can be tailored to specific applications, enhancing
their effectiveness and security.

In conclusion, the techniques and models proposed in this chapter pave the way for new
evaluation and modeling methodologies that can significantly reduce the cost and time
associated with PUF design and testing. These advancements increase the likelihood of
broader adoption of PUF technologies across various industries, from secure authentication
to anti-counterfeiting measures. However, it is crucial to refine these models with more
extensive data and enhanced statistical techniques to ensure they are robust enough for
industry acceptance. The proposed frameworks offer a promising foundation for future
research and development in PUF technology, aiming to make it more accessible and
practical for widespread use.

7 Conclusions 175

IX

Conclusions and
Perspectives

Security measurements are critical in modern circuits to protect sensitive data from ma-
licious actors. Conventional cryptographic methods rely on private keys for encryption
and decryption, but these approaches are vulnerable to physical attacks where sensitive
information can be extracted. Physical Unclonable Functions offer a viable alternative by
generating unique secrets on the fly, leveraging inherent process variability and eliminating
the need for data storage. Among the various PUF designs, Ring Oscillator and SRAM-based
PUFs are extensively studied due to their simplicity and ubiquity in modern SoCs.

During the parametric simulations for assessing specific PUF designs, several limitations
in available commercial EDA software were identified. To address these challenges, a
series of open-source tools were developed, addressing the lack of open tools for AMS
design, especially in security contexts. Monaco, the first tool, automates the injection
of parameters into SPICE files, enabling extensive simulations despite EDA constraints.
However, Monaco’s manual design process motivated the creation of NIMPHEL, a Python
framework for generating parametrizable circuits, which simplifies and accelerates the
design process using programming constructs like loops and arrays.

To validate the simulation results, access to real data is essential for robust evaluation. To
address the scarcity of accessible PUF datasets, an open-source platform was created from
scratch to extensive SRAM data and sensor readings from microcontrollers. The platform
currently gathers data from 84 STM32 microcontrollers, with weekly updates stored in
an open-access database to broaden research opportunities by the research community.
Additionally, a comprehensive dataset from Infineon, including data from 399 devices with
6 blocks of 256 ROs each, provided invaluable insights for validating simulation hypotheses
and exploring new PUF designs.

The performance metrics considered standard for PUF evaluation were reviewed, revealing
significant limitations. Several mitigations and new alternative metrics were introduced to
address these shortcomings. Real-world data from the SRAMPlatform showed extreme bias
and correlation effects that canonical metrics failed to highlight, unlike the new proposals,
which accurately describe these effects, underscoring the need for more robust testing
methodologies. Given that PUFs are studied across hardware design, cryptography, and
material science, these new metrics try to offer valuable information to researchers of
these various disciplines, in pursue of better methodologies for PUF development and
assessment.

A major focus was placed on the relationship between entropy and reliability in PUFs. In
the context of RO-PUFs, the relationship between frequency difference and reliability was
exhaustively studied using simulation methodologies. A simulation-based methodology
was developed to set reliability thresholds based on frequency differences. Subsequently, a
holistic mathematical model accounting for process variability was created, proving useful
for optimizing RO-PUF designs. A new design methodology, “Split PUF,” was proposed to
leverage process variability across different PUF instances, maximizing Entropy yield and
Reliability of the underlaying PUF design.

177

Mathematical modeling of PUFs, a less-explored area, was also tackled. A series of statistical
and numerical models were proposed to improve the understanding of RO- and SRAM-
based PUF designs, opening new research avenues as they could be generalized to other
designs. By leveraging the relationship between PUF metrics, statistical methods for metric
extrapolation were proposed and evaluated on existing datasets. This approach reduces
the time and cost needed to evaluate PUFs. Additionally, “software” clones of PUFs were
proposed using statistical models, facilitating algorithm testing and evaluation. These
models provide a robust and cost-effective methodology for assessing PUF performance
and aid in their security assessment by justifying PUF behaviour.

The advancements made in this thesis enhance PUF assessment methodologies, addressing
limitations in current tools and metrics, and providing new frameworks and models for
future research. These contributions are aimed at accelerating the worldwide adoption of
PUF technologies, ensuring more secure and reliable implementations across a variety of
applications.

Future Work and Perspectives

A short-term objective involves developing a unified testing framework for all PUF families,
as discussed in Chapter IX.2. This framework will integrate existing metrics and introduce
new ones to create a comprehensive testing suite. The aim is to establish a standardized
evaluation methodology, akin to the NIST and Dieharder test suites for random number
generators, ensuring consistent and comparable results across different PUF studies.

One critical area for future research is the validation of the statistical models developed
for SRAM- and RO-PUFs across a wider spectrum of PUF families. This task requires
the collection of extensive data from diverse PUF designs to demonstrate the general
applicability of the proposed models, thereby confirming their robustness and reliability
across various PUF technologies. Additionally, refinement of the digital twins models
proposed is also among the short-term objectives. The addition of more system parameters
and novel statistical algorithms could facilitate faster and more reliable validation processes
with refined models that better mimic PUF behaviours and peculiarities.

These future research directions aim to enhance PUF assessment methodologies and accel-
erate their global adoption, ensuring more secure and reliable PUF implementations across
a variety of applications.

Future Work and Perspectives 178

Mathematical Background IX.A
A.1 Notation used

In the context of bitstrings and PUF responses, the operator⊕ denotes the XOR operation
while the⊙ operator denotes the XNOR operation.

The operators 𝑛(𝑆), |𝑆|, #𝑆 denote the number of elements in the set 𝑆 unless otherwise
stated. They will be used interchangeably to ease some notations and equations.

In the context of statistical studies, the notation
𝑖𝑖𝑑
∼ is used to indicate that the random

variables 𝑋1,… , 𝑋𝑛
𝑖𝑖𝑑
∼ 𝐹(𝜃) are independent and identically distributed according to the

distribution 𝐹 with parameters 𝜃. Moreover, in the situations where certain statistical
approximations are performed, it will be indicated as 𝑋 ∼̇ 𝐹, meaning that “X is approxi-
mately distributed following F.” If the variable 𝑋 is not distributed according to 𝐹, but can
be approximated with the distribution function 𝐺, the notation 𝑋 ∼̇ 𝐺 will be used.

A.2 Statistical distribution of physical parameters

Many physical behaviours can be effectively model using a Gaussian distribution due to its
natural occurrence in numerous processes governed by random variables and the central
limit theorem. For example, the distribution of RO frequencies can be described by a
Gaussian distribution.

The behaviour of the Normal distribution is given by its PDF shown in Equation A.1,
characterized by the mean 𝜇 and by the standard deviation 𝜎.

𝑁𝑜𝑟𝑚𝑎𝑙 ≡ 𝑓(𝑥 ∣ 𝜇, 𝜎) 1
√2𝜋𝜎2

exp [−
(𝑥 − 𝜇)2

2𝜎2] (A.1)

Figure 78: Normal distribution and standard deviation

A Mathematical Background 179

The standard deviation 𝜎 defines the spread of the distribution. About 68% of values drawn
from a normal distribution are within one standard deviation away from the mean; about
95% of the values lie within two standard deviations; and about 99.7% are within three
standard deviations.

The Cumulative Distribution Function (CDF) of a random Variable 𝑋 evaluated at 𝑥 is
the probability that 𝑋 will take a value less than or equal to 𝑥. In the case of the normal
distribution, it is usually denoted asΦ and it’s given by the integral shown in Equation A.2.

Φ(𝑥) = 1
√2𝜋

∫
𝑥

−∞
𝑒−𝑡2/2 𝑑𝑡 (A.2)

For a generic normal distribution with density 𝑓, mean 𝜇 and variance 𝜎2, the CDF is

Φ(
𝑥 − 𝜇
𝜎) = 1

2 [1 + 𝑒𝑟𝑓 (
𝑥 − 𝜇

𝜎√2
)]

Figure 79: Cumulative Distribution Function of the Normal distribution

The concepts of mean and variance are generalized to all distributions through the expected
value and the variance. The expected value of a discrete random variable is defined as

E [𝑋] =
∞
∑
𝑖=1

𝑥𝑖 𝑝𝑖,

Given a random set of data, the expected value and the variance of the distribution are
usually computed with techniques such as Maximum Likelihood Estimation (MLE). For
some distributions (i.e the beta distribution), the MLE estimators do not have a close form
and they are usually computed numerically. However, in the case of the normal distribution,
the MLE estimators for 𝜇 and 𝜎2 are the following.

𝜇̂ = ̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 𝜎̂2 = 1
𝑛

𝑛
∑
𝑖=1
(𝑥𝑖 − ̄𝑥)2

A Mathematical Background 180

An important observation to be made is that in the R programming language (used ex-
tensively in this document), and most statistical software, the function mean() correctly
computes the expected value as shown above. However, the variance is usually computed
as the following.

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1
(𝑥𝑖 − ̄𝑥)2

Although this difference can have a significance in certain statistical studies, due to the
dimensionality of the datasets studied in this manuscript, the difference will be negligible.

There are also a series of properties of the expected value and variance depicted in Equation
A.6 that will be proven useful for certain analytical analysis.

E [𝑎𝑋 + 𝑏] = 𝑎 E [𝑋] + 𝑏 (A.3)
Var [𝑎𝑋 + 𝑏] = 𝑎2 Var [𝑋] (A.4)
Var [𝑋 + 𝑌] = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2Cov [𝑋, 𝑌] (A.5)
Cov [𝑎𝐵, 𝑏𝑌] = 𝑎𝑏Cov [𝑋, 𝑌] (A.6)

The covariance Cov [𝑋, 𝑌], which measures the joint variability of the two random variables
𝑋, 𝑌, is computed as Equation A.7, and will also be used extensively in analysis that involve
multiple random variables.

Cov [𝑋, 𝑌] = E [(𝑋 − E [𝑌]) (𝑌 − E [𝑋])] (A.7)

In situations where computing E [𝑋2] is unfeasible or computationally expensive, is it
possible to derive it if Var [𝑋] and E [𝑋]2 are known as shown in Equation A.8.

Var [𝑋] = Var [𝑋2] − E [𝑋]2 ⇒ E [𝑋2] = Var [𝑋] + E [𝑋]2 (A.8)

A.3 Beta Distribution

Another distribution that is common in multiple scientific disciplines is the Beta distribution.
In Bayesian inference, the Beta distribution is the conjugate prior probability distribution
for the Bernoulli, binomial, negative binomial, and geometric distributions.

The PDF of the Beta distribution is shown in Equation A.9.

𝑓(𝑥 ∣ 𝛼, 𝛽) = 1
𝐵(𝛼, 𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1 (A.9)

A Mathematical Background 181

The coefficients of the Binomial and Beta distributions are related in the following way.

(
𝑛
𝑘
) = 𝑛!

𝑘!(𝑛 − 𝑘)!
= Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘 + 1)

𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏)

The expected value and variance of the beta distribution depend purely on 𝛼 and 𝛽.

E [𝑋] = 𝛼
𝛼 + 𝛽 Var [𝑋] =

𝛼 ⋅ 𝛽
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.25 0.50 0.75 1.00

x

P
D
F

β(0.5, 0.5) β(2, 2) β(2, 5) β(5, 2)

Figure 80: Probability Density Function of the Beta Distribution

The Beta distribution is bounded in [0, 1] while the Normal distribution is bounded in
[−∞,+∞], so the Beta distribution is more suited to work with probabilities and can better
model certain properties of PUFs, as it directly represents the probabilities of bits. Moreover,
the relationship between the parameters tells us at first glance the following:

• If 𝛼 < 𝛽 the distribution is left skewed
• If 𝛼 = 𝛽 the distribution is symmetric
• If 𝛼 > 𝛽 the distribution is right skewed

In the case where 𝛼 = 𝛽, the higher the values, the smaller the variance in for the equivalent
normal distribution.

Even though the parameters 𝛼 and 𝛽 are usually obtained numerically through MLE,
we can estimate them using the method of moments, Given 𝑥 = sample mean, 𝑠 =
sample variance

𝛼̂ = 𝑥 (𝑥(1 − 𝑥)
𝑠 − 1) ̂𝛽 = (1 − 𝑥) (𝑥(1 − 𝑥)

𝑠 − 1)

A Mathematical Background 182

A.4 Gamma Distribution

The Gamma distribution is another versatile continuous probability distribution. In our
case, it will prove useful to model waiting times. There are 2 equivalent parametrizations:

• With a shape parameter 𝑘 and a scale parameter 𝜃
• With a shape parameter 𝛼 = 𝑘 and an inverse scale parameter 𝛽 = 1/𝜃, called a rate
parameter.

The PDF of the gamma distribution is shown in Equation A.10.

𝑓(𝑥 ∣ 𝛼, 𝛽) =
𝑥𝛼−1𝑒−𝛽𝑥𝛽𝛼

Γ(𝛼)
for 𝑥 > 0, 𝛼, 𝛽 > 0 (A.10)

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

x

P
D
F

Γ(1, 2) Γ(5, 1) Γ(9, 0.5) Γ(7.5, 1)

Figure 81: Probability Density Function of the Gamma Distribution

A.5 Laplace Distribution

An uncommon distribution that will be useful in this document, specially in Chapter 4, is
the Laplace distribution, parametrized by 𝜇 and 𝑏 as shown in Equation A.11.

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 ≡ 𝑓(𝑥 ∣ 𝜇, 𝑏) = 1
2𝑏 exp (−

|𝑥 − 𝜇|
𝑏) (A.11)

The Laplace distribution is tightly related to the Exponential distribution, as we can think
of the Laplace distribution as an unfolder version of the Exponential one. In our case, the
Laplace distribution will be able to predict the behaviour of the metrics for positive and
negative values of PUF metrics for RO-based PUFs.

A Mathematical Background 183

0.0

0.1

0.2

0.3

0.4

0.5

-10 0 10

x

P
D
F

L(0, 1) L(−5, 3) L(5, 2)

Figure 82: Probability Density Function of the Laplace Distribution

A.6 Binomial Distribution

The Binomial distribution is a fundamental discrete probability distribution that models
the number of successes in a fixed number of independent Bernoulli trials, each with the
same probability of success. It is characterized by two parameters: 𝑛, the number of trials,
and 𝑝, the probability of success in each trial, as shown in Equation A.12. This distribution
is particularly useful in modeling scenarios where there are two possible outcomes, such as
flipping a coin, or in digital communications, where it can model the number of bits set to
1 in a bitstring.

𝑓(𝑘, 𝑛, 𝑝) = 𝑃𝑟(𝑘; 𝑛, 𝑝) = 𝑃𝑟(𝑋 = 𝑘) = (
𝑛
𝑘
)𝑝𝑘(1 − 𝑝)𝑛−𝑘 (A.12)

The binomial operation is defined as follows.

(
𝑛
𝑘
) = 𝑛!

𝑘!(𝑛 − 𝑘)!

And the expected value and variance of the distribution can be computed as follows.

E [𝑋] = 𝑛𝑝 Var [𝑋] = 𝑛𝑝(1 − 𝑝)

In the context of bitstrings, the Binomial distribution helps in understanding and predicting
the behavior of binary sequences, which is crucial in fields like coding theory, cryptography,
and error detection, where the analysis of binary data and the probability of certain bit
patterns occurring play a critical role in designing efficient and reliable systems.

A Mathematical Background 184

A.7 Poisson Binomial Distribution

The Poisson Binomial distribution generalizes the Binomial distribution to situations where
the success probabilities vary across trials. Instead of a fixed probability 𝑝 for each trial,
the Poisson Binomial distribution considers 𝑛 independent Bernoulli trials with potentially
different success probabilities 𝑝1, 𝑝2,… , 𝑝𝑛, as shown by its PDF in Equation A.13.

𝑃𝑟(𝐾 = 𝑘) = ∑
𝐴∈𝐹𝑘

∏
𝑖∈𝐴

𝑝𝑖 ∏
𝑗∈𝐴𝑐

(1 − 𝑝𝑗) (A.13)

This distribution is used to model the number of successes when the trials are not identically
distributed, making it more flexible than the standard Binomial distribution. However, this
flexibility comes with analytical complexity. Calculating probabilities and other charac-
teristics of the Poisson Binomial distribution is much more challenging because it lacks
the simple closed-form expressions that the Binomial distribution enjoys. Consequently,
working with the Poisson Binomial distribution often requires sophisticated numerical
methods or approximations, making it less straightforward to handle in practice.

A.8 Confidence Intervals

Confidence intervals are a crucial concept in statistical inference, providing a range of
values within which a population parameter is likely to lie, based on sample data. Instead
of offering a single estimate, a confidence interval accounts for variability and uncertainty,
offering an upper and lower bound along with a specified confidence level (commonly
95%). This interval gives a sense of the reliability of an estimate and helps in making
informed decisions. Confidence intervals are important because they convey not just an
estimate, but the precision and uncertainty surrounding that estimate, enabling researchers
and practitioners to assess the robustness of their conclusions and to make probabilistic
statements about the population parameters being studied.

The most common CI is the Wald CI, where 𝛼 denotes the confidence level.

𝐶𝐼 = ̄𝑥 ± 𝑧𝛼
𝑠
√𝑛

For low number of samples the t-statistics is preferred.

𝐶𝐼 = ̄𝑥 ± 𝑡𝛼/2
𝑠
√𝑛

A Mathematical Background 185

A.9 Statistical Bootstrap

Bootstrap1 is a statistical technique that uses random sampling with replacement to estimate
almost any parameter of statistics from the sampling distribution. Bootstrap will be used
in this manuscript to extrapolate certain statistical metrics of PUFs by using a small testing
dataset. Due to the robust mathematical foundation of this methodology, it is very simple
to way to derive estimates of standard errors and confidence intervals.

For a parameter 𝜃 estimated through bootstrap, its standard CI is defined as shown in
Equation A.14

𝐶𝐼 = (𝜃∗𝛼
2
, 𝜃∗1−𝛼

2
) (A.14)

However, the Pivot Confidence Interval, shown in Equation A.15, tends to be more accurate,
so it’s usually preferred.

𝐶𝐼 = (2𝜃 − 𝜃∗1−𝛼
2
, 2𝜃 − 𝜃∗𝛼

2
) (A.15)

A.10 Heteroscedasticity in statistical modeling

When performing Ordinary Least Squares (OLS), Heteroscedasticity can suppose a problem.
OLS assumes that the residuals come from a population that has homoscedasticity, which
means constant variance. When heteroscedasticity is present in a regression analysis, the
results of the analysis become hard to trust. Specifically, heteroscedasticity increases the
variance of the regression coefficient estimates, but the regression model doesn’t pick up
on this. This makes it much more likely for a regression model to declare that a term in the
model is statistically significant, when in fact it is not.

Considering the following linear regression equation where the dependent random variable
𝑦𝑖 equals the deterministic variable 𝑥𝑖 times coefficient 𝛽𝑖 plus a random disturbance term
𝜀𝑖 that has mean zero.

𝑦𝑖 = 𝑥𝑖𝛽𝑖 + 𝜀𝑖 𝑖 = 1, ..., 𝑁

The disturbances are homoscedastic if the variance of 𝜀𝑖 is a constant 𝜎2; otherwise, they are
heteroscedastic, as shown in Figure 83. In particular, the disturbances are heteroscedastic
if the variance of 𝜀𝑖 depends on 𝑖 or on the value of 𝑥𝑖.

1B. Efron, ‘Bayesian inference and the parametric bootstrap,’ The annals of applied statistics, vol. 6, no. 4,
p. 1971, 2012.

A Mathematical Background 186

Heteroscedasticity

Homocedasticity

0 25 50 75 100

0

50

100

150

0

50

100

150

Figure 83: Representation of Homoscedasticity and Heteroscedasticity

Heteroscedasticity will appear when trying to model the behaviour of the PUF for small
number of challenges and devices, since the larger the number of devices and challenges
the more the results are averaged out and less variability is expected.

A.11 InformationTheory

Information theory plays a big role in the analysis of PUFs by providing the mathematical
framework to evaluate and quantify the security and reliability of PUFs. Key concepts such
as Entropy and Mutual Information are used to measure the randomness and uniqueness of
PUF outputs, ensuring that they are sufficiently unpredictable and resistant to cloning or
prediction attacks. Additionally, information theory aids in analyzing error rates and the
robustness of PUF responses in different environmental conditions, which is critical for their
practical deployment in secure authentication and cryptographic applications. By applying
information-theoretic principles, researchers can rigorously evaluate the performance and
security properties of PUFs, ensuring their effectiveness in real-world security systems.

The Hamming Weight of a vector is defined as the number of symbols different from the
zero-symbol. In the case of bitstrings or PUF responses, it represents the number of 1s.
This function as also known as popcount, or population count, specially in the field of
computer science.

Hamming Weight(𝑋) = 𝐻𝑊(𝑋) = popcount(𝑋) = ∑
𝑥∈𝑋

𝑥 (A.16)

The Hamming Distance of two vectors of equal length is the number of values at equal
positions that differ.

Hamming Distance(𝑋, 𝑌) = 𝐻𝐷(𝑋, 𝑌) =
𝑛(𝑋)
∑
𝑖
𝑋𝑖 ⊕ 𝑌𝑖 {𝑛(𝑋) = 𝑛(𝑌)} (A.17)

A Mathematical Background 187

More commonly we use the fractional or normalized Hamming Weight and Hamming
Distance, which normalize the results with respect to the input size.

𝐻𝑊𝐹(𝑋) =
𝐻𝑊(𝑋)
𝑛(𝑋)

𝐻𝐷𝐹(𝑋, 𝑌) =
𝐻𝐷(𝑋, 𝑌)
𝑛(𝑋)

A.11.1 Entropy

Even though there are multiple definitions of Entropy, Shannon Entropy2 is the most
common one in the context of cryptography. Given a discrete random variable 𝑋, which
takes values in the alphabet 𝒳 and is distributed according to 𝑝∶ 𝒳 → [0, 1], its Shannon
Entropy is computed as follows:

H(𝑋) = − ∑
𝑥∈𝒳

𝑝(𝑥) log𝑝(𝑥) (A.18)

Although other bases can be used, we use log base 2, aka Shannons, as it,s the norm
in information theory or when working with bits. Also, by convention 1 log 1 = 0 and
0 log 0 = 0. The latter is because lim

𝑥→0+
𝑥 log𝑥 = 0

For binary vectors, it can be summarised in the following way, where 𝑝 = 𝑃(1) and
𝑞 = 1 − 𝑝

H(𝑋) = − (𝑝 log2 𝑝 + 𝑞 log2 𝑞)

A.11.2 Joint Entropy

The concept of Entropy of a random variable can be extended to multiple variables and
takes the name of Joint Entropy.

H(𝑋1,… , 𝑋𝑛) = − ∑
𝑥1∈𝒳1

⋯ ∑
𝑥𝑛∈𝒳𝑛

𝑃(𝑥1,… , 𝑥𝑛) log2[𝑃(𝑥1,… , 𝑥𝑛)]

Although numerous random variables can be computed at the same time, here it will be
used to analyse pairs of bits to study the relationship between the two.

H(𝑋, 𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑃(𝑥, 𝑦) log2[𝑃(𝑥, 𝑦)]

2F. M. Reza, An introduction to information theory. Courier Corporation, 1994.

A Mathematical Background 188

A.11.3 Kullback-Leibler divergence

The Kullback-Leibler divergence measures how different two distributions are. It the field
of ML is commonly known as Information Gain since it refers to the amount of information
gained about a random variable from observing another random variable. Given a reference
distribution 𝑄(𝑥) and our distribution 𝑃(𝑥), the Kullback-Leibler divergence is computed
as depicted in Equation A.19.

𝐷𝐾𝐿(𝑃(𝑥) ∥ 𝑄(𝑥)) = ∑
𝑥∈𝑋

𝑃(𝑥) log (𝑃(𝑥)𝑄(𝑥))
= − ∑

𝑥∈𝑋
𝑃(𝑥) log (𝑄(𝑥)𝑃(𝑥))

(A.19)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

P(x)

D
KL

Figure 84: Kullback-Leibler divergence between P(x) and Q(x)

It’s important to state that this function is not symmetric, that is, if we swap 𝑃(𝑥) and 𝑄(𝑥)
we obtain different results

A.11.4 Mutual Information

Mutual information is a fundamental concept in information theory that measures the
amount of information two random variables share; it quantifies the reduction in uncertainty
about one variable given knowledge of the other. In the context of PUFs, low mutual
information between responses indicates high unpredictability and distinctiveness, crucial
for ensuring that PUFs are resistant to cloning and prediction attacks. This metric helps
in validating the security properties of PUFs, ensuring that each response is unique and
independent, thus reinforcing the robustness of PUF-based authentication systems.

𝐼(𝑋; 𝑌) = 𝐷𝐾𝐿(𝑃(𝑋,𝑌) ∥ 𝑃𝑋 ⊗ 𝑃𝑌)

Where 𝐷𝐾𝐿 is the Kullback-Leibler divergence and 𝑃𝑋⊗𝑃𝑌 is the outer product distribution
which assigns probability 𝑃𝑌(𝑥) ⋅ 𝑃𝑌(𝑦) to each (𝑥, 𝑦)

A Mathematical Background 189

𝐼(𝑋; 𝑌) = ∑
𝑦∈𝒴

∑
𝑥∈𝒳

𝑃(𝑋,𝑌)(𝑥, 𝑦) log (
𝑃(𝑋,𝑌)(𝑥, 𝑦)
𝑃𝑋(𝑥)𝑃𝑌(𝑦)

)

𝐼(𝑋; 𝑌) ≡ H(𝑋) − H(𝑋 ∣ 𝑌) ≡ H(𝑌) − H(𝑌 ∣ 𝑋) (A.20)
≡ H(𝑋) + H(𝑌) − H(𝑋, 𝑌) ≡ H(𝑋) + H(𝑌) − H(𝑋, 𝑌) (A.21)
≡ H(𝑋, 𝑌) − H(𝑋 ∣ 𝑌) − H(𝑌 ∣ 𝑋) (A.22)

A.12 Markov Chains

A Markov Chain (MC) is a mathematical system that undergoes transitions from one
state to another within a finite or countable state space, where the probability of each
subsequent state depends only on the current state and not on the sequence of events
that preceded it. This property, known as the Markov property, simplifies the analysis of
stochastic processes. Markov Chains are invaluable in statistics because they provide a
robust framework for modeling a wide range of time-dependent random phenomena, such
as stock prices, weather patterns, and population genetics. Their simplicity and tractability
make them useful for simulating and understanding complex systems.

For example, a non-biased coin with probabilities of head and tails of 0.5, 0.5 respectively,
is represented as shown in Figure 85.

Head Tails

0.5

0.5

0.5 0.5

Figure 85: Simple Markov Chain

The probabilities of transitions between the different states are commonly represented using
a Transition Probability Matrix 𝑃. Each entry in the matrix 𝑃 represents the probability of
going from the current state to the desired state.

(𝑃)𝑖,𝑗 = 𝑃(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛 = 𝑖)

Which is the case of the coin, the transition matrix is represented as

𝑃 = [
0.5 0.5
0.5 0.5

]

A Mathematical Background 190

In order for the Transition matrix to represent valid probability distributions, it is required
that either every row or column sums up to up to 1, depending on how the matrix is used.
The state of the markov chain is represented by a vector where each entroy represents the
probability of the chain of being at each state. To advance one state, the state vector is
multiplied by the 𝑃 matrix to obtain the new state vector.

One important property of Markov Chains is that they are “memory-less”. That is, the
transition probabilities of future states only depend on the current state and not on previous
states.

𝑃(𝑋𝑛+1 = 𝑠𝑛+𝑖 ∣ 𝑋𝑛 = 𝑠𝑛, 𝑋𝑛−1 = 𝑠𝑛−1, 𝑋𝑛−2 = 𝑠𝑛−2,…) = 𝑃(𝑋𝑛+1 = 𝑠𝑛+1 ∣ 𝑋𝑛 = 𝑠𝑛)

A Mathematical Background 191

Simulations Source Code IX.B
1 simulator('spectre)
2
3 design(”/home/users/vinagres/projet_cmos065_58/simulation/CMOS_RO_65/spectre/ ⌋

schematic/netlist/netlist”)↪
4 resultsDir(”/home/users/vinagres/projet_cmos065_58/simulation/CMOS_RO_65/spect ⌋

re/schematic”)↪
5 modelFile(
6 '(”/home/users/vinagres/projet_cmos065_58/corners.scs” ””)
7)
8 analysis('tran ?stop ”101n” ?step ”0.1p” ?maxstep ”0.1p”

?max_consecutive_minstep 10e-20)↪
9 envOption(

10 'analysisOrder list(”tran”)
11)
12 temp(29)
13 out = outfile(”/home/users/vinagres/PhD/CMOS_RO_65/freq.txt” ”w”)
14
15 run()
16
17 Freq_OutStable = frequency(clip(v(”/OutStable” ?result ”tran”) 2e-08 2))
18 fprintf(out ”%.10g\n” value(Freq_OutStable))
19
20 exit()

Listing B.1: Example Ocean Script. The command exit() is needed when executing ocean
scripts from the terminal or ocean will wait for user input

1 simulator('spectre)
2 design(”/home/users/vinagres/projet_cmos065_58/simulation/CMOS_RO_NAND/spectre ⌋

/schematic/netlist/netlist”)↪
3 resultsDir(”/home/users/vinagres/projet_cmos065_58/simulation/CMOS_RO_NAND/spe ⌋

ctre/schematic”)↪
4
5 modelFile(
6 '(”/home/users/vinagres/projet_cmos065_58/corners.scs” ””)
7)
8 {% if props.noise_runs -%}
9 analysis('tran ?stop ”^{{props.time_sim^}}n” ?tranNoise ”Transient Noise”

?noisefmax ”^{{props.noise_fmax^}}”↪
10 ?noisefmin ”^{{props.noise_fmin^}}” ?noisescale ”” ?noisetmin ””
11 ?noiseupdate ”” ?tranNoiseMultiRuns ”Multiple Runs” ?noiseruns

”^{{props.noise_runs^}}”↪
12 ?noiseonoff ”” ?noiseinst ”/I31 /I32 /I33 /I34” ?step

”^{{props.time_step^}}p”↪
13 ?maxstep ”^{{props.time_step^}}p” ?minstep ”^{{props.time_step^}}p”)
14 {% else -%}
15 analysis('tran ?stop ”^{{props.time_sim^}}n” ?step ”^{{props.time_step^}}p”
16 ?maxstep ”^{{props.time_step^}}p” ?minstep ”^{{props.time_step^}}p”)
17 {% endif -%}
18
19 envOption(
20 'analysisOrder list(”tran”)
21)

B Simulations Source Code 192

22
23 option('temp ”^{{props.temp^}}”)
24 temp(^{{props.temp^}})
25 run()
26
27 out = outfile(”^{{props.freq_results^}}” ”w”)
28
29 {% if props.noise_runs -%}
30 {%- for run in range(1, props.noise_runs) %}
31 Freq_Output = frequency(value(getData(”/OutStable” ?result ”tran”) ”Iteration”

^{{run^}}))↪
32 fprintf(out ”%.10g\n” value(Freq_Output))
33 {% endfor %}
34 {% else -%}
35 Freq_Output = frequency(clip(v(”/OutStable” ?result ”tran”) 2e-08 2))
36 fprintf(out ”%.10g\n” value(Freq_Output))
37 {% endif -%}
38
39 exit()

Listing B.2: Example Ocean Script with template placeholders

1 `include ”constants.vams”
2 `include ”disciplines.vams”
3
4 module counter (ro_1);
5 electrical ro_1;
6 integer log_fp;
7
8 integer count;
9 parameter real step = 5e-9;

10 parameter real signal_thresh = 0.5;
11 parameter string log_path = ”/path/to/results.csv”;
12
13 integer en_count = 0;
14
15 analog begin
16 ^// Initial configuration
17 @(initial_step) begin
18 count = 0;
19 log_fp = $fopen(log_path, ”a”);
20 $fwrite(log_fp, ”time,vout,count\n”);
21 end
22
23 @(final_step) begin
24 $fclose(log_fp);
25 end
26
27 @(cross(V(ro_1) - signal_thresh, +1)) begin
28 if (en_count ^== 1) begin
29 count = count + 1;
30 en_count = 0;
31 end
32 end
33
34 @(cross(V(ro_1) - signal_thresh, -1)) begin
35 en_count = 1;
36 end
37
38 @(timer(20e-09)) begin

B Simulations Source Code 193

39 count = 0;
40 end
41
42 @(timer(20e-09, step)) begin
43 $fwrite(log_fp, ”%g,%g,%d\n”, $abstime, V(ro_1), count);
44 end
45 end
46
47 endmodule

Listing B.3: Verilog-A implementation of the counter that measures the frequency of a
single Ring Oscillator

1 module observer(p, n);
2 input p, n;
3 ^// electrical vp, vn, ip, in;
4
5 ^// types definition
6 ^// Distance comp;
7 Resistance p, n;
8
9 parameter real step = 10e-9;

10 parameter string path = ”/path/to/results.csv”;
11 parameter string mode = ”a”;
12
13 ^// output file descriptor
14 integer fp_tt;
15
16 ^// Analog behaviour
17 analog begin
18 @(initial_step) begin
19 fp_tt=$fopen(path, mode);
20 end
21
22 @(timer(0, step)) begin
23 $fwrite(fp_tt,”%.10g,%g\n”, $abstime, Ohm(p, n));
24 end
25
26 @(final_step) begin
27 $fclose(fp_tt);
28 end
29 end
30 endmodule

Listing B.4: Verilog-A implementation of the observer that stores parameters of interest
at the desired timesteps

1 jobs:
2 - name: Simulation
3 dir: ”/home/users/vinagres/PhD/CMOS_RO_Parasitic”
4 props:
5 cadence_project:

”/home/users/vinagres/projet_cmos065_58/simulation/CMOS_RO_NAND”↪
6 nstages: 4
7 nom_wp: 0.27 # In micrometers
8 nom_wn: 0.135
9 nom_l: 0.06 # In micrometers

B Simulations Source Code 194

10 nom_vthp: -0.43
11 nom_vthn: 0.4223
12 counter_results:
13 - ”/home/users/vinagres/PhD/CMOS_RO_Parasitic/results/counter_1.csv”
14 - ”/home/users/vinagres/PhD/CMOS_RO_Parasitic/results/counter_2.csv”
15 freq_results:

”/home/users/vinagres/PhD/CMOS_RO_Parasitic/results/freq.csv”↪
16 time_sim: 521 # In nanoseconds
17 time_step: 3 # In nanoseconds
18 temp: 27
19 vdd: 1.0
20 values: [0, 1, 2, 3]
21 values2: [4, 5, 6, 7]
22 templates:
23 - ”template.netlist:^{{cadence_project^}}/spectre/schematic/netlist/netlist”
24 - ”template.ocn:script.ocn”
25 iters:
26 from: 245
27 to: 20000
28 steps:
29 - ocean -nograph -restore $HOME/PhD/CMOS_RO_Parasitic/script.ocn
30 - $HOME/PhD/CMOS_RO_Parasitic/analize_results.py ^{{iter^}}

$HOME/PhD/CMOS_RO_Parasitic↪

Listing B.5: Example configuration in YAML for Monaco

B Simulations Source Code 195

SRAMPlatform IX.C

Figure 86: Picture of the deployed platform used to gather the data

C SRAMPlatform 196

Figure 87: Picture of Grafana

C SRAMPlatform 197

Figure 88: Picture of Grafana

Figure 89: Picture of the PUF4IOT website

C SRAMPlatform 198

1 class STM32Reader(Reader):
2 ”””Reader implementation for STM32 boards.
3
4 The functionaly of the reader is implemented in the methods called

`handle_{command}`.↪
5
6 Attributes:
7 name: Descriptive name of the Reader.
8 devices: List of managed devices.
9 port: State of the devices and the serial port.

10 ”””
11
12 def ^__init^__(self, board_type: str, port: str, baudrate: int, data_size:

int):↪
13 super(STM32Reader, self).^__init^__(board_type)
14 self.devices: List[Device] = []
15 self.name = board_type
16 self.data_size = data_size
17
18 port_path = Path(port)
19 if not port_path.exists():
20 print(f”Port {port_path} does not exist”)
21 sys.exit(1)
22
23 ser = Serial(port_path.as_posix(), baudrate, timeout=None)
24 self.port = {”state”: ”ON”, ”serial”: ser, ”path”: port_path}
25
26
27 def handle_sensors(self, props: Dict[str, Any], logger, db_session):
28 ”””Register the devices connected to the reader.
29 Args:
30 props: Dictionary containing the message from the dispatcher.
31 Returns:
32 Dictionary with the status of the operation and metadata if needed.
33 ”””
34 if self.port[”state”] ^== ”OFF”:
35 raise CommandError(”Serial port is off. Turn on the serial port

first”)↪
36 if not self.devices:
37 raise CommandError(”No devices managed”)
38 for dev in self.devices:
39 packet = Packet(self.data_size)
40 packet.with_command(Command.SENSORS)
41 packet.with_uid(dev.uid)
42 packet.craft()
43 self.send(packet.to_bytes())
44 res = next(iter(self.receive()), None)
45 if res is None:
46 logger.error(f”Problem reading sensors for device {dev}”)
47 continue
48 if not packet.check_crc() or packet.command ^== Command.ERR:
49 logger.warning(f”Packet {packet!s} for device {dev} is

corrupted”)↪
50 continue
51 sensors_data = res.extract_sensors()
52 logger.results(
53 json.dumps(
54 {
55 ”device”: {”uid”: dev.uid, ”pic”: dev.pic},
56 ”temperature”: sensors_data[”temperature”],

C SRAMPlatform 199

57 ”voltage”: sensors_data[”voltage”],
58 }
59)
60)
61
62 db_session.add(
63 Sensor(
64 uid=format_uid(res.uid),
65 board_type=self.name,
66 temperature=sensors_data[”temperature”],
67 voltage=sensors_data[”voltage”],
68)
69)
70 db_session.commit()

Listing C.1

C SRAMPlatform 200

PUF Extrapolation IX.D

Figure 90: Python interface to extrapolate PUF metrics given a test dataset

D PUF Extrapolation 201

1 ^#!/usr/bin/env python3
2
3 ”””
4 PUF Metric Extrapolation
5
6 Prototype app that performs the extrapolation of metrics given a training set

of CRPs↪
7
8 References:
9 https:^//en.wikipedia.org/wiki/Bootstrapping_(statistics)#Bayesian_bootstrap

10 https:^//github.com/gdmarmerola/random-stuff/blob/master/bayesian_bootstrap/The_ ⌋
bayesian_bootstrap.ipynb↪

11 ”””
12
13 from pathlib import Path
14 from rich import print as pprint
15
16 import numpy as np
17
18
19 def uniqueness(crps):
20 ”””Compute uniqueness of the CRPs
21 Args:
22 crps: Matrix containing the CRPs
23
24 Returns:
25 A vector containing all uniqueness values
26 ”””
27 devs, challenges = crps.shape
28 num_pairs = (devs * (devs - 1)) ^// 2
29 uniq = np.zeros(num_pairs)
30 count = 0
31 for i in range(devs - 1):
32 for j in range(i + 1, devs):
33 uniq[count] = np.count_nonzero(crps[i,] ^!= crps[j,]) / challenges
34 count += 1
35 return uniq
36
37
38 def compute_metrics(crps):
39 ”””Compute all metrics of a set of CRPs
40
41 Args:
42 crps: Matrix containing the CRPs
43
44 Returns:
45 Dictionary containig the mean and variance of 'uniformity',

'bitaliasing', 'pdiff' and 'uniqueness'↪
46 ”””
47 unif = crps.mean(1)
48 ba = crps.mean(0)
49 pdiff = 2 * ba * (1 - ba)
50 uniq = uniqueness(crps)
51 return {
52 ”uniformity”: [unif.mean(), unif.var()],
53 ”bitaliasing”: [ba.mean(), ba.var()],
54 ”pdiff”: [pdiff.mean(), pdiff.var()],
55 ”uniqueness”: [uniq.mean(), uniq.var()],
56 }
57

D PUF Extrapolation 202

58
59 class PUFModel:
60 ”””PUF Metric Extrapolator
61
62 Attributes:
63 crps: Matrix containing the CRPs
64 ”””
65
66 def ^__init^__(self, ratio, iters, sample_size):
67 self.crps = None
68 self.ratio = ratio
69 self.iters = iters
70 self.sample_size = sample_size
71
72 def load_file(self, path):
73 ”””Load CRPs from a text file”””
74 if not Path(path).exists():
75 raise ValueError(f”File {path} does not exist”)
76 self.crps = np.loadtxt(path)
77
78 def split_crps(self, ratio=None):
79 ”””Split the CRPs into the training and test datasets
80
81 Args:
82 ratio: Ratio
83
84 Returns:
85 A tuple containing the training and set crps
86 ”””
87 if self.crps is None:
88 raise ValueError(”No CRPs provided”)
89
90 ratio = ratio or self.ratio
91 if ratio < 0 or ratio > 1:
92 raise ValueError(”Ratio should be in the range [0, 1]”)
93
94 devices, _ = self.crps.shape
95 indices = np.random.permutation(devices)
96 num_train = int(ratio * devices)
97 train_idx, test_idx = indices[:num_train], indices[num_train:]
98 train_crps, test_crps = self.crps[train_idx, :], self.crps[test_idx, :]
99 return train_crps, test_crps

100
101 def bootstrap(
102 self, crps, iters, is_bimodal: bool, is_aliased: bool, sample_size=None
103):
104 ”””Perform bootstrap to compute metrics
105
106 All metrics are computed but we are specially interested in

Var[Uniformity]↪
107

108 Yes, the number of samples drawn in each bootstrap iteration n can be
less than or greater than the size of the original dataset. This
flexibility allows for different types of resampling techniques in
bootstrap.

↪
↪
↪

109

D PUF Extrapolation 203

110 1. **Less than the size of the dataset $n < N$**: This is known as
sub-sampling or Monte Carlo bootstrap. In this case, you randomly
sample a subset of the original dataset in each iteration. The
resulting bootstrap samples may not represent the full variability
of the original dataset, especially if important patterns or
characteristics are lost in the smaller sample size. However,
sub-sampling can be computationally efficient and may still provide
useful estimates, particularly if the dataset is very large.

↪
↪
↪
↪
↪
↪
↪

111

112 2. **Equal to the size of the dataset $n = N$**: This is the standard
approach in bootstrap resampling. Each bootstrap sample is the same
size as the original dataset. This method provides a robust
estimate of the sampling distribution of a statistic and is widely
used in practice.

↪
↪
↪
↪

113

114 3. **Greater than the size of the dataset $n > N$**: This is known as
the smoothed bootstrap or over-sampling. In this case, you draw
more samples than the size of the original dataset by sampling with
replacement. This can introduce additional variability into the
bootstrap estimates, potentially leading to wider confidence
intervals or increased bias in the estimates.

↪
↪
↪
↪
↪

115

116 The choice of n influences the results of the bootstrap in terms of
the accuracy, bias, and computational efficiency of the estimates.
Generally, using $n = N$ is preferred when possible as it provides
the most accurate estimates, but sub-sampling or over-sampling may
be necessary in certain situations depending on the characteristics
of the dataset and the goals of the analysis.

↪
↪
↪
↪
↪

117
118 Args:
119 crps:
120 iters: Number of iteranios to perform
121 sample_size: Number of devices to sample in each iteration
122 is_extreme: Bitaliasing presents extreme values (0 or 1)
123
124 Returns:
125 Bootstrapped metrics
126 ”””
127 num_devs, _ = crps.shape
128 ba = np.zeros((2, iters))
129 pdiff = np.zeros((2, iters))
130 ba_sqrd = np.zeros((2, iters))
131 unif = np.zeros((2, iters))
132 sample_size = sample_size or num_devs
133
134 for i in range(iters):
135 idx = np.random.choice(range(num_devs), sample_size, replace=True)
136 crps_iter = crps[idx, :]
137
138 unif_vec, ba_vec = crps_iter.mean(1), crps_iter.mean(0)
139 pdiff_vec = 2 * ba_vec * (1 - ba_vec)
140 ba_sqrd_vec = ba_vec**2
141
142 unif[0, i] = unif_vec.mean()
143 unif[1, i] = unif_vec.var()
144 ba[0, i] = ba_vec.mean()
145 ba[1, i] = ba_vec.var()
146 pdiff[0, i] = pdiff_vec.mean()
147
148 if is_aliased:
149 pdiff[1, i] = pdiff_vec[pdiff_vec > 0].var()
150 else:

D PUF Extrapolation 204

151 pdiff[1, i] = pdiff_vec.var()
152
153 ba_sqrd[0, i] = ba_sqrd_vec.mean()
154 ba_sqrd[1, i] = ba_sqrd_vec.var()
155
156 return {
157 ”unif_mean”: unif[0, :].mean(),
158 ”unif_var”: unif[1, :].mean(),
159 ”ba_mean”: ba[0, :].mean(),
160 ”ba_var”: ba[1, :].mean(),
161 ”pdiff_mean”: pdiff[0, :].mean(),
162 ”pdiff_var”: pdiff[1, :].mean(),
163 ”ba_sqrd_mean”: ba_sqrd[0, :].mean(),
164 ”ba_sqrd_var”: ba_sqrd[1, :].mean(),
165 }
166
167 def ^__handle_unimodal(self, boot, cov):
168 ”””Handle unimodal case”””
169 ba_mean, ba_var = boot[”ba_mean”], boot[”ba_var”]
170 pdiff_mean, pdiff_var = boot[”pdiff_mean”], boot[”pdiff_var”]
171 pdiff_mean = 2 * (ba_mean - ba_var * self.ratio - ba_mean**2)
172 pdiff_var = 4 * (ba_var * self.ratio + boot[”ba_sqrd_var”] - 2 * cov)
173 return {
174 ”uniformity”: [ba_mean, boot[”unif_var”]],
175 ”bitaliasing”: [ba_mean, ba_var * self.ratio],
176 # ”pdiff”: [pdiff_mean, pdiff_var * self.ratio**4],
177 ”pdiff”: [pdiff_mean, pdiff_var],
178 ”uniqueness”: [pdiff_mean, pdiff_var],
179 }
180
181 def ^__handle_bimodal(self, boot, cov):
182 ”””Handle bimodal case”””
183 ba_mean, ba_var = boot[”ba_mean”], boot[”ba_var”]
184 pdiff_mean, pdiff_var = boot[”pdiff_mean”], boot[”pdiff_var”]
185 return {
186 ”uniformity”: [ba_mean, boot[”unif_var”]],
187 ”bitaliasing”: [ba_mean, ba_var],
188 ”pdiff”: [pdiff_mean, pdiff_var],
189 ”uniqueness”: [pdiff_mean, pdiff_var / 4],
190 }
191
192 def extrapolate(self):
193 ”””
194
195 We should handle:
196 - Bimodal distributions of Bitaliasing
197 - Extreme bitaliasing values (ba = 0 or ba = 1)
198 ”””
199 assert not self.crps is None
200 train_crps, test_crps = self.split_crps()
201
202 ba = self.crps.mean(0)
203 # ba_sqrd = ba**2
204 ba_train = train_crps.mean(0)
205 # ba_sqrd_train = ba_train**2
206 ba_test = test_crps.mean(0)
207 # ba_sqrd_test = ba_test**2
208 # print(f”{ba.var() = }”)
209 # print(f”{ba_sqrd.var() = }”)
210 # print(f”{ba_train.var()*self.ratio = }”)
211 # print(f”{ba_sqrd_train.var()*self.ratio = }”)
212 # print(f”{ba_test.var()*(1-self.ratio) = }”)

D PUF Extrapolation 205

213 # print(f”{ba_sqrd_test.var()*(1-self.ratio) = }”)
214 # # Apparently we can approximate Var[BA^2] to Var[BA]
215
216 # Detect if there is extreme bitaliasing
217 is_aliased = (ba ^>= 0.99).any() or (ba ^<= 0.01).any()
218
219 # Quick and dirty bimodal detection
220 ba_right = ba[ba ^>= 0.5].mean()
221 ba_left = ba[ba ^<= 0.5].mean()
222 is_bimodal = (ba_right - ba_left) ^>= 0.2
223
224 print(f”{is_aliased = }”)
225 print(f”{is_bimodal = }”)
226
227 boot = self.bootstrap(
228 train_crps, self.iters, is_bimodal, is_aliased, self.sample_size
229)
230 pprint(boot)
231
232 if is_bimodal:
233 # Here we expect different values for cov
234 cov = np.cov(ba, ba**2)[0, 1]
235 cov_left = np.cov(ba[ba < 0.5], ba[ba < 0.5] ** 2)[0, 1]
236 cov_right = np.cov(ba[ba > 0.5], ba[ba > 0.5] ** 2)[0, 1]
237 print(f”{cov_left=},{cov_right=}”)
238 print(f”{cov=}”)
239
240 ba_mean, ba_var = boot[”ba_mean”], boot[”ba_var”]
241 # ba_mean, ba_var = ba_train.mean(), ba_train.var()*self.ratio
242 pdiff_mean = 2 * (ba_mean - ba_var - ba_mean**2)
243 pdiff_var = boot[”pdiff_var”]
244 # pdiff_var = 4*(ba_var + boot['ba_sqrd_var'] - 2*cov)/4
245 return {
246 ”uniformity”: [ba_mean, boot[”unif_var”]],
247 ”bitaliasing”: [ba_mean, ba_var],
248 ”pdiff”: [pdiff_mean, pdiff_var],
249 ”uniqueness”: [pdiff_mean, pdiff_var / (2 * np.sqrt(2))],
250 }
251
252 else:
253 # Here we expect the same values for the 3 Cov
254 # cov = np.cov(ba, ba**2)[0, 1]
255 # cov_train = np.cov(ba_train, ba_train**2)[0, 1]
256 # cov_test = np.cov(ba_test, ba_test**2)[0, 1]
257
258 # Apparently bootstrap makes bitaliasing worse here
259 # ba_mean, ba_var = boot[”ba_mean”], boot[”ba_var”]*self.ratio
260
261 ba_mean, ba_var = ba_train.mean(), ba_train.var() * self.ratio
262 pdiff_mean, pdiff_var = boot[”pdiff_mean”], boot[”pdiff_var”]
263 pdiff_mean = 2 * (ba_mean - ba_var - ba_mean**2)
264 # pdiff_var = 4*ba_var - (2*cov_train*self.ratio) +

(4*ba_sqrd_train.var()*self.ratio)↪
265 pdiff_var = 0.025 * ba_var
266
267 return {
268 ”uniformity”: [ba_mean, boot[”unif_var”]],
269 ”bitaliasing”: [ba_mean, ba_var],
270 ”pdiff”: [pdiff_mean, pdiff_var],
271 ”uniqueness”: [pdiff_mean, pdiff_var / (2 * np.sqrt(2))],
272 }
273

D PUF Extrapolation 206

Listing D.1: Python module to extrapolate PUF metrics given a test dataset

1 ^#!/usr/bin/env python3
2
3 import threading
4 import time
5 from string import Template
6 import tkinter as tk
7 from tkinter import filedialog
8 from tkinter import font
9 from tkinter import ttk

10 from tkinter import messagebox as mb
11
12 from rich import print as pprint
13
14 import pufmodel
15
16 help = ”””
17 # Usage
18
19 1. Tune the parameters for the model
20 2. Load the file containing the CRPs
21 - The CRP file should be a txt where each row is a device and each column

is a challenge.↪
22 - The file should not contain any headers
23 - Each value should be separated with a single comma
24 3. Click 'Extrapolate'.
25 - The results will appear in CSV format
26
27 # Variable description
28
29 Ratio: Ratio of train to test devices
30 Bootstrap Iterations: Number of iterations performed to compute Uniformity
31 Sample Size: Number of devices sampled in each bootstrap iteration
32 ”””.strip()
33
34
35 def load_file():
36 ”””Load the txt file with the CRPs”””
37 path = filedialog.askopenfile(
38 title=”Load CRPs”, initialdir=”/home/vinagres/Documents/PhD/data/sram”
39)
40 if path:
41 file_var.set(path.name)
42
43
44 def extrapolate(metrics):
45 text.insert(tk.END, ”Loading model\n”)
46
47 model = pufmodel.PUFModel(ratio_var.get(), iters_var.get(),

sample_size_var.get())↪
48 model.load_file(file_var.get())
49
50 devices, challenges = model.crps.shape
51 text.insert(
52 tk.END, f”Data contains {devices} devices and {challenges} challenges\n”
53)
54 text.insert(tk.END, f”Devices for training: {int(ratio_var.get() *

devices)}\n”)↪
55

D PUF Extrapolation 207

56 text.insert(tk.END, ”Computing full metrics\n”)
57 metrics[”Full”] = pufmodel.compute_metrics(model.crps)
58
59 text.insert(tk.END, ”Extrapolating metrics\n”)
60 metrics[”Model”] = model.extrapolate()
61
62
63 def start_model():
64 ”””
65 First we handle some errors
66 ”””
67 if not file_var.get():
68 mb.showerror(”Problem”, ”No CRP file selected”)
69 return
70 work_thread = threading.Thread(target=exec_model)
71 work_thread.start()
72
73
74 def exec_model():
75 ”””Start the model to extrapolate the metrics”””
76 pb.configure(value=0, maximum=100)
77 pb.start()
78 text.configure(state=”normal”)
79 text.delete(1.0, tk.END) # Clear previous text
80
81 metrics = {}
82 work_thread = threading.Thread(target=extrapolate, args=(metrics,))
83 work_thread.start()
84 work_thread.join()
85
86 # Results are printed in CSV format
87 text.insert(tk.END, ”Metric,Type,Mean,Var\n”)
88
89 pprint(metrics)
90 for metric in [”Uniformity”, ”Bitaliasing”, ”PDiff”, ”Uniqueness”]:
91 mean, var = metrics[”Full”][metric.lower()]
92 text.insert(tk.END, f”{metric},Full,{mean},{var}\n”)
93 mean, var = metrics[”Model”][metric.lower()]
94 text.insert(tk.END, f”{metric},Model,{mean},{var}\n”)
95
96 text.configure(state=”disabled”)
97 pb.stop()
98 pb.configure(value=0, maximum=0)
99

100
101 root = tk.Tk()
102 root.title(”PUF Extrapolator”)
103 root.geometry(”1000x800”)
104
105 def_font = tk.font.nametofont(”TkDefaultFont”)
106 def_font.config(size=12)
107
108 frame = ttk.Frame(root, padding=”10 10 10 10”)
109 # frame.grid_columnconfigure(1, weight=1)
110 frame.grid(column=2, row=10)
111
112 # Ratio train/test
113 ratio_var = tk.DoubleVar()
114 ratio_var.set(0.3)
115
116 # Number of bootstrap iterations
117 iters_var = tk.IntVar()

D PUF Extrapolation 208

118 iters_var.set(1000)
119
120 # Number of devices per bootstrap
121 sample_size_var = tk.IntVar()
122 sample_size_var.set(10)
123
124 # CRP file selected
125 file_var = tk.StringVar()
126 # file_var.set(”/home/vinagres/Documents/PhD/data/sram/test_crps_ideal.txt”)
127
128 file_label = tk.Label(frame, text=”Ratio train/test”)
129 file_label.grid(row=0, column=0, sticky=tk.W)
130
131 ratio_box = ttk.Spinbox(
132 frame, from_=0.1, to=1.0, increment=0.1, textvariable=ratio_var, wrap=True
133)
134 ratio_box.grid(row=0, column=1, sticky=tk.W)
135
136 iters_label = tk.Label(frame, text=”Bootstrap iterations”)
137 iters_label.grid(row=1, column=0, sticky=tk.W)
138
139 iters_box = ttk.Spinbox(
140 frame, from_=100, to=10000, increment=100, textvariable=iters_var, wrap=True
141)
142 iters_box.grid(row=1, column=1, sticky=tk.W)
143
144 sample_label = tk.Label(frame, text=”Sample Size”)
145 sample_label.grid(row=2, column=0, sticky=tk.W)
146
147 blocks_box = ttk.Spinbox(
148 frame, from_=1, to=20, increment=1, textvariable=sample_size_var, wrap=True
149)
150 blocks_box.grid(row=2, column=1, sticky=tk.W)
151
152 file_label = tk.Label(frame, textvariable=file_var)
153 file_label.grid(row=3, column=0, sticky=tk.W)
154
155 file_btn = tk.Button(frame, text=”Select CRPs file”, command=load_file)
156 file_btn.grid(row=4, column=0, sticky=tk.W, padx=0, pady=10)
157 model_btn = tk.Button(frame, text=”Extrapolate”, command=start_model)
158 model_btn.grid(row=4, column=0, sticky=tk.W, padx=150, pady=10)
159
160 pb = ttk.Progressbar(frame, orient=”horizontal”, mode=”indeterminate”,

length=400)↪
161 pb.grid(row=5, padx=5, pady=5, sticky=tk.W)
162
163 # Results text
164 text = tk.Text(frame, font=”monospace 14”, width=80, height=15)
165 text.grid(row=6, column=0, columnspan=2, rowspan=1, sticky=tk.W)
166 text.configure(state=”disabled”)
167 text.bind(”<1>”, lambda _: text.focus_set())
168
169 tk.Label(frame, text=help, justify=”left”).grid(row=11, pady=10, sticky=tk.W)
170
171 root.mainloop()

Listing D.2: Python source code for the TK Graphical User Interface

D PUF Extrapolation 209

Grid Search IX.E
1 using Random
2 using Distributions
3 using Statistics
4 using CSV
5 using DataFrames
6 import Base.Threads
7
8 include(”utils.jl”)
9

10 const Metrics = Dict{Symbol,Union{Int,Float64^}}
11
12 function gen_fdiff_mat(mu, sigma, D, C)
13 Fdiff = Normal(mu, sigma)
14 fdiff = Array{Float64}(undef, D, C)
15 for c in 1:C
16 fdiff[:,c] = rand(Fdiff, D)
17 end
18 return fdiff
19 end
20
21
22 function gen_crps(fdiff)
23 D, C = size(fdiff)
24 crps = Array{Int}(undef, D, C)
25 for c in 1:C
26 crps[:,c] = fdiff[:,c] .^>= 1
27 end
28 return crps
29 end
30
31 function handle_group(mu, sigma)
32 challenges = trunc.(Int, range(4, 512; length=30))
33 devices = trunc.(Int, range(4, 500; length=25))
34 num_samples = length(challenges) * length(devices)
35 results = Array{Metrics}(undef, num_samples)
36 D_MAX = max(devices^^...)
37 C_MAX = max(challenges^^...)
38
39 fdiff = gen_fdiff_mat(mu, sigma, D_MAX, C_MAX)
40 crps = gen_crps(fdiff)
41
42 count^::Int = 1
43 @inbounds for D in devices
44 @inbounds for C in challenges
45 crps_group = view(crps, 1:D, 1:C)
46 ba = mean(crps_group, dims=1)
47 unif = mean(crps_group, dims=2)
48 hba = shannon.(ba)
49 local alpha, beta
50 try
51 beta_fit = fit_mle(Beta, ba)
52 alpha = getfield(beta_fit, 1)
53 beta = getfield(beta_fit, 2)
54 catch
55 alpha = 0
56 beta = 0

E Grid Search 210

57 end
58 results[count] = Dict(
59 :cv ^=> sigma / mu, :z ^=> mu / sigma,
60 :C ^=> C, :D ^=> D,
61 :alpha ^=> alpha, :beta ^=> beta,
62 :fdiff_mean ^=> mu,
63 :fdiff_sigma ^=> sigma,
64 :ba_mean ^=> mean(ba), :ba_var ^=> var(ba),
65 :hba_mean ^=> mean(hba), :hba_var ^=> var(hba),
66 :unif_mean ^=> mean(unif), :unif_var ^=> var(unif)
67)
68 count += 1
69 end # challenges
70 end # devices
71 return results
72 end
73
74 function main()
75 fdiff_means = range(-1e3, 1e3; length=51)
76 fdiff_sigmas = range(0, 3e3; length=50)
77 # cvs = range(1e-3, 20; length=51)
78 # zetas = range(-20, 20; length=51)
79
80 num_samples = length(fdiff_means) * length(fdiff_sigmas)
81 results = Array{Array{Metrics^}}(undef, num_samples)
82 count^::Int = 1
83 Threads.@threads for mu in fdiff_means
84 println(”FDiff Mean $(mu)”)
85 @inbounds for sigma in fdiff_sigmas
86 results[count] = handle_group(mu, sigma)
87 count += 1
88 end
89 end
90 return [results^^...]
91 end
92
93 function save_results(results, path^::String)
94 results_df = vcat(DataFrame.(results)^^...)
95 CSV.write(path, results_df)
96 end
97
98 save_results(main(), ”etl_fdiff_ba_beta_fit.csv”)

Listing E.1: Julia implementation of the Grid Search to study the relationship between the
frequency difference distribution and PUF metrics

1 using StatsBase
2 using Statistics
3 using Random
4 using Distributions
5 using DataFrames
6 using CSV
7 using Printf
8 import Base.Threads
9

10 # const Metrics = Dict{Symbol,Union{Int,Float64^}}
11 const Metrics = Dict{Symbol,Float64}
12
13 const C_MAX^::Int = 512
14 const D_MAX^::Int = 100

E Grid Search 211

15
16 hamming_weight(x^::AbstractArray)^::Float64 = sum(x) / length(x)
17 hamming_dist(x^::AbstractArray, y^::AbstractArray)^::Float64 = hamming_weight(x

.^!= y)↪
18
19 # Each column is a device
20 function bitaliasing(crps^::AbstractArray{T, 2})^::Array{Float64} where T ^<:

Number↪
21 _, C = size(crps)
22 ba = Array{Float64}(undef, C)
23 @inbounds for i = 1:C
24 ba[i] = hamming_weight(@view crps[:, i])
25 end
26 ba
27 end
28
29 # Julia is column-major so it's better to computer per column
30 uniformity(crps) = bitaliasing(transpose(crps))
31
32 # Each column is a device
33 function uniqueness(crps)^::Array{Float64}
34 _, D = size(crps)
35 num_pairs^::Int = (D * (D - 1)) / 2
36 count^::Int = 1
37 uniq = Array{Float64}(undef, num_pairs)
38 @inbounds for i = 1:D-1
39 for j = i+1:D
40 uniq[count] = hamming_dist(view(crps, :, i), view(crps, :, j))
41 count += 1
42 end
43 end
44 return uniq
45 end
46
47 ”””Generate a vector of random bits”””
48 function random_bits(ba^::Array{Float64})^::Array{Int,1}
49 thresh = rand(Float64, length(ba))
50 bits = Array{Int}(undef, length(ba))
51 # bits ^.= t .< ba[i]
52 @inbounds for (i, t) in enumerate(thresh)
53 bits[i] = t ^<= ba[i] ? 1 : 0
54 end
55 return bits
56 end
57
58
59 function gen_crps(ba_mean^::Float64, ba_var^::Float64, D^::Int=D_MAX,

C^::Int=C_MAX)^::Array{Int8,2}↪
60 ba_dist = rand(Normal(ba_mean, sqrt(ba_var)), C)
61 ba = clamp.(ba_dist, 0, 1)
62 crps = Array{Int8}(undef, D, C)
63 @inbounds for d = 1:D
64 crps[d, :] = random_bits(ba)
65 end
66 return crps
67 end
68
69 function metrics(crps^::AbstractArray)^::Metrics
70 D, C = size(crps)
71 unif = uniformity(crps)
72 ba = bitaliasing(crps)
73 ba_sqrd = ba .* ba

E Grid Search 212

74 cov_ba_ba_sqrd = cov(ba, ba_sqrd)
75 pdiff = @. 2 * ba * (1 - ba)
76 peq = @. ba^2 + (1 - ba)^2
77 uniq = uniqueness(transpose(crps))
78 Dict(
79 :D ^=> D,
80 :C ^=> C,
81 :unif_mean ^=> mean(unif),
82 :unif_var ^=> var(unif),
83 :ba_mean ^=> mean(ba),
84 :ba_var ^=> var(ba),
85 :ba_sqrd_mean ^=> mean(ba_sqrd),
86 :ba_sqrd_var ^=> var(ba_sqrd),
87 :cov_ba_ba_sqrd ^=> cov_ba_ba_sqrd,
88 :pdiff_mean ^=> mean(pdiff),
89 :pdiff_var ^=> var(pdiff),
90 :peq_mean ^=> mean(peq),
91 :peq_var ^=> var(peq),
92 :uniq_mean ^=> mean(uniq),
93 :uniq_var ^=> var(uniq),
94)
95 end
96
97 function handle_case(ba_mean^::Float64, ba_var^::Float64, devices^::Array{Int,1},

challenges^::Array{Int,1})^::Array{Metrics}↪
98 crps = gen_crps(ba_mean, ba_var)
99 results = Array{Metrics}(undef, length(challenges) * length(devices))

100 count^::Int = 1
101 @inbounds for D in devices
102 @inbounds for C in challenges
103 results[count] = metrics(@view crps[1:D, 1:C])
104 count += 1
105 end
106 end
107 return results
108 end
109
110 function grid_search()
111 cd(”/home/vinagres/Documents/PhD”)
112
113 ba_means = range(0, stop = 1, length = 10)
114 ba_vars = range(0, stop = 0.1, length = 10)
115
116 devices = trunc.(Int, range(2, stop = D_MAX, length = 350))
117 challenges = trunc.(Int, range(2, stop = C_MAX, length = 50))
118
119 Threads.@threads for ba_mean in ba_means
120 count^::Int = 1
121 results = Array{Array{Metrics^}}(undef, length(ba_vars))
122 println(@sprintf ”Mean %.2f” ba_mean)
123 @inbounds for ba_var in ba_vars
124 results[count] = handle_case(ba_mean, ba_var, challenges, devices)
125 count += 1
126 end
127 path = @sprintf ”data/metrics/search_space/search_space_%.02f.csv”

ba_mean↪
128 @show path
129 save_results(results, path)
130 end
131 # vcat(results^^...)
132 end
133

E Grid Search 213

134 grid_search()

Listing E.2: Julia implementation of the Grid Search to study the relationship between
PUF metrics

1 using Distributions
2 using Random
3 using CSV
4 using DataFrames
5
6 function grid_search()
7 Zetas = range(-20, 20, length=201)
8 Sigmas = range(1, 100, length=50)
9 results = Array{Dict{Symbol,Float64^}}(undef, length(Zetas) * length(Sigmas))

10 count = 1
11
12 for z in Zetas, sigma in Sigmas
13 mu = z * sigma
14 F = rand(Normal(mu, sigma), 1024)
15 Fabs = abs.(F)
16 ttr = 1 ./ Fabs
17
18 fit_fabs = fit_mle(Gamma, Fabs)
19 fit_ttr_wald = fit_mle(InverseGaussian, ttr)
20 fit_ttr_gamma = fit_mle(Gamma, ttr)
21
22 results[count] = Dict(
23 :mu ^=> mu, :sigma ^=> sigma, :z ^=> z, :cv ^=> 1 / z,
24 :fabs_alpha ^=> getfield(fit_fabs, 1), :fabs_beta ^=>

getfield(fit_fabs, 2),↪
25 :ttr_mean ^=> getfield(fit_ttr_wald, 1), :ttr_lambda ^=>

getfield(fit_ttr_wald, 2),↪
26 :ttr_alpha ^=> getfield(fit_ttr_gamma, 1), :ttr_beta ^=>

getfield(fit_ttr_gamma, 2)↪
27)
28 count += 1
29 end
30
31 results_df = vcat(DataFrame.(results)^^...)
32 CSV.write(”time_to_response.csv”, results_df)
33 end
34
35 grid_search()

Listing E.3: Julia implementation of the Grid Search for the Time-To-Response analysis

E Grid Search 214

Bibliography

[1] S. V. Gutiérrez, P. Inglese, G. Di Natale, and E.-I. Vatajelu, ‘Open automation frame-
work for complex parametric electrical simulations,’ in 2023 26th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS),
2023, pp. 132–135. doi: 10.1109/DDECS57882.2023.10139409.

[2] S. Vinagrero Gutiérrez, G. Di Natale, and E.-I. Vatajelu, ‘Python framework for
modular and parametric spice netlists generation,’ Electronics, vol. 12, no. 18, p. 3970,
2023.

[3] S. V. Gutierrez, H. Martin, E. I. Vatajelu, and G. Di Natale, ‘Sram-puf: Platform for
acquisition of sram-based pufs from micro-controllers,’ in University Booth-IEEE
Design Automation and Test Conference in Europe (DATE 2021), 2021.

[4] S. Vinagrero, H. Martin, A. de Bignicourt, E.-I. Vatajelu, and G. Di Natale, ‘SRAM-
Based PUF Readouts,’ Scientific Data, vol. 10, no. 1, p. 333, 2023, issn: 2052-4463.
doi: 10.1038/s41597-023-02225-9.

[5] S. Vinagrero Gutierrez, H. Martin Gonzalez, A. De Bignicourt, E. I. Vatajelu, and
G. Di Natale, SRAM-Based PUF Readouts, version 1.0.0, Zenodo, Jan. 2023. doi:
10.5281/zenodo.7529513.

[6] S. Vinagrero Gutierrez, G. Di Natale, and I. Vatajelu, ‘On-Line Reliability Estimation
of Ring Oscillator PUF,’ in IEEE European Test Symposium (ETS 2022), IEEE, Ed.,
Barcelona, Spain: IEEE, May 2022. doi: 10.1109/ETS54262.2022.9810418. [Online].
Available: https://hal.archives-ouvertes.fr/hal-03767650.

[7] S. V. Gutierrez, G. Di Natale, and E.-I. Vatajelu, ‘On-Line Method to Limit Unrelia-
bility and Bit-Aliasing in RO-PUF,’ in 2023 IEEE 29th International Symposium on
On-Line Testing and Robust System Design (IOLTS), IEEE, 2023, pp. 1–6.

[8] V. Kulagin et al., ‘On the Relation Between Reliability and Entropy in Physical
Unclonable Functions,’ IEEE Design & Test, pp. 1–1, 2024. doi: 10.1109/MDAT.2024
.3425791.

[9] J. D. R. Buchanan et al., ‘Forgery: ‘fingerprinting’ documents and packaging,’ Nature,
vol. 436, 2005. doi: 10.1038/436475a.

[10] S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, and L. Sauvage, ‘Hardware trojan
horses in cryptographic ip cores,’ in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography, IEEE, 2013, pp. 15–29.

[11] X. T. Ngo et al., ‘Hardware trojan detection by delay and electromagnetic measure-
ments,’ in 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2015, pp. 782–787.

Bibliography 215

https://doi.org/10.1109/DDECS57882.2023.10139409
https://doi.org/10.1038/s41597-023-02225-9
https://doi.org/10.5281/zenodo.7529513
https://doi.org/10.1109/ETS54262.2022.9810418
https://hal.archives-ouvertes.fr/hal-03767650
https://doi.org/10.1109/MDAT.2024.3425791
https://doi.org/10.1109/MDAT.2024.3425791
https://doi.org/10.1038/436475a

[12] X. T. Ngo, J.-L. Danger, S. Guilley, Z. Najm, and O. Emery, ‘Hardware property
checker for run-time hardware trojan detection,’ in 2015 European Conference on
Circuit Theory and Design (ECCTD), IEEE, 2015, pp. 1–4.

[13] S. Guilley and R. Pacalet, ‘Soc security: A war against side-channels,’ Annals of
Telecommunications-annales des télécommunications, 2004.

[14] S. Guilley, L. Sauvage, J.-L. Danger, N. Selmane, and R. Pacalet, ‘Silicon-level so-
lutions to counteract passive and active attacks,’ in 2008 5th Workshop on Fault
Diagnosis and Tolerance in Cryptography, IEEE, 2008, pp. 3–17.

[15] J. Guajardo et al., ‘Anti-counterfeiting, key distribution, and key storage in an
ambient world via physical unclonable functions,’ Inf. Syst. Front., vol. 11, 2009. doi:
10.1007/s10796-008-9142-z.

[16] J. Bringer, H. Chabanne, and T. Icart, On physical Obfuscation of Cryptographic
Algorithms. Berlin, Heidelberg: Springer, 2009.

[17] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, ‘Physical one-way functions,’
Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[18] K. Lofstrom, W. R. Daasch, and D. Taylor, ‘Ic identification circuit using device mis-
match,’ in 2000 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers (Cat. No. 00CH37056), IEEE, 2000, pp. 372–373.

[19] W. J. Herschel, The origin of finger-printing. H. Milford, Oxford University Press,
1916.

[20] D. Bauder, ‘An anti-counterfeiting concept for currency systems,’ Sandia National
Labs, Albuquerque, NM, Tech. Rep. PTK-11990, 1983.

[21] Counterfeit Deterrent Features for the Next-Generation Currency Design, Appendix E.
Washington, DC: The National Academic Press, 1993.

[22] K. M. Tolk, ‘Reflective particle technology for identification of critical components,’
Sandia National Labs., Albuquerque, NM (United States), Tech. Rep., 1992.

[23] S. Paulus, N. Pohlmann, H. Reimer, P. Tuyls, and B. Škorić, ‘Physical unclonable
functions for enhanced security of tokens and tags,’ in ISSE 2006—Securing Elec-
tronic Busines Processes: Highlights of the Information Security Solutions Europe 2006
Conference, Springer, 2006, pp. 30–37.

[24] B. Gassend, Physical Random Functions. MA, USA: MIT, 2003.

[25] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, ‘Silicon physical random func-
tions,’ in Proceedings of the 9th ACM Conference on Computer and Communications
Security, 2002, pp. 148–160.

[26] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, ‘Delay-based circuit authen-
tication and applications,’ in Proceedings of the 2003 ACM symposium on Applied
computing, 2003, pp. 294–301.

Bibliography 216

https://doi.org/10.1007/s10796-008-9142-z

[27] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, ‘A technique
to build a secret key in integrated circuits for identification and authentication
applications,’ in 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE
Cat. No. 04CH37525), IEEE, 2004, pp. 176–179.

[28] D. Lim, Extracting Secret Keys from Integrated Circuits. MA, USA: MIT, 2004.

[29] M. Majzoobi, F. Koushanfar, and M. Potkonjak, ‘Testing techniques for hardware
security,’ in 2008 IEEE International Test Conference, IEEE, 2008, pp. 1–10.

[30] U. Rührmair, J. Sölter, and F. Sehnke, ‘On the foundations of physical unclonable
functions,’ Cryptology ePrint Archive, 2009.

[31] S. Vrijaldenhoven, Acoustical Physical Uncloneable Functions. the Netherlands: Tech-
nische Universiteit Eindhoven, 2005.

[32] P. Tuyls, G. J. Schrijen, B. Škorić, J. Geloven, N. Verhaegh, and R. Wolters, Read-Proof
Hardware from Protective Coatings. New York, NY: Springer, 2006.

[33] B. Škorić, S. Maubach, T. Kevenaar, and P. Tuyls, ‘Information-theoretic analysis
of capacitive physical unclonable functions,’ J. Appl. Phys., vol. 100, 2006. doi:
10.1063/1.2209532.

[34] E. Simpson and P. Schaumont, ‘Offline hardware/software authentication for re-
configurable platforms,’ in International Workshop on Cryptographic Hardware and
Embedded Systems, Springer, 2006, pp. 311–323.

[35] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, ‘Fpga intrinsic pufs and their
use for ip protection,’ in International workshop on cryptographic hardware and
embedded systems, Springer, 2007, pp. 189–195.

[36] G. Dejean and D. Kirovski, RF-DNA: Radio-Frequency Certificates of Authenticity.
Berlin, Heidelberg: Springer, 2007.

[37] R. Helinski, D. Acharyya, and J. Plusquellic, A Physical Unclonable Function Defined
Using Power Distribution System Equivalent Resistance Variations. New York, NY:
ACM, 2009.

[38] E. Öztürk, G. Hammouri, and B. Sunar, Towards Robust Low Cost Authentication for
Pervasive Devices. Washington, DC: IEEE Computer Society, 2008.

[39] D. E. Holcomb, W. P. Burleson, and K. Fu, ‘Power-up sram state as an identifying
fingerprint and source of true random numbers,’ IEEE Transactions on Computers,
vol. 58, no. 9, pp. 1198–1210, 2009. doi: 10.1109/TC.2008.212.

[40] L. Bossuet, X. T. Ngo, Z. Cherif, and V. Fischer, ‘A puf based on a transient effect ring
oscillator and insensitive to locking phenomenon,’ IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 1, pp. 30–36, 2013.

[41] B. Škorić, P. Tuyls, and W. Ophey, ‘Robust key extraction from physical unclone-
able functions,’ in Applied Cryptography and Network Security: Third International
Conference, ACNS 2005, New York, NY, USA, June 7-10, 2005. Proceedings 3, Springer,
2005, pp. 407–422.

Bibliography 217

https://doi.org/10.1063/1.2209532
https://doi.org/10.1109/TC.2008.212

[42] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Verbauwhede, and C. Wachs-
mann, ‘Pufs: Myth, fact or busted? a security evaluation of physically unclonable
functions (pufs) cast in silicon,’ in InternationalWorkshop on Cryptographic Hardware
and Embedded Systems, Springer, 2012, pp. 283–301.

[43] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. van der Sluis, and V. van der Leest,
‘Experimental evaluation of physically unclonable functions in 65 nm cmos,’ in 2012
Proceedings of the ESSCIRC (ESSCIRC), 2012, pp. 486–489. doi: 10.1109/ESSCIRC.201
2.6341361.

[44] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, ‘A puf taxonomy,’
Applied physics reviews, vol. 6, no. 1, 2019.

[45] Y. Cao, J. Xu, J.Wu, S.Wu, Z. Huang, and K. Zhang, ‘Advances in physical unclonable
functions based on new technologies: A comprehensive review,’Mathematics, vol. 12,
no. 1, p. 77, 2023.

[46] U. Rührmair, H. Busch, and S. Katzenbeisser, ‘Strong pufs: Models, constructions,
and security proofs,’ Towards Hardware-Intrinsic Security: Foundations and Practice,
pp. 79–96, 2010.

[47] R. Maes and I. Verbauwhede, ‘Physically unclonable functions: A study on the
state of the art and future research directions,’ Towards Hardware-Intrinsic Security,
pp. 3–37, 2010.

[48] J. Zhang and L. Wan, ‘Cmos: Dynamic multi-key obfuscation structure for strong
pufs,’ ArXiv, vol. abs/1806.02011, 2018. [Online]. Available: https://api.semanticscho
lar.org/CorpusID:195347140.

[49] S. R. Sahoo, S. Kumar, and K. Mahapatra, ‘A novel configurable ring oscillator
puf with improved reliability using reduced supply voltage,’ Microprocessors and
Microsystems, vol. 60, pp. 40–52, 2018.

[50] Z. Cherif, J.-L. Danger, S. Guilley, and L. Bossuet, ‘An easy-to-design puf based on a
single oscillator: The loop puf,’ in 2012 15th Euromicro Conference on Digital System
Design, IEEE, 2012, pp. 156–162.

[51] C.-E. Yin, G. Qu, and Q. Zhou, ‘Design and implementation of a group-based ro
puf,’ in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2013, pp. 416–421.

[52] D. E. Holcomb, W. P. Burleson, K. Fu, et al., ‘Initial sram state as a fingerprint and
source of true random numbers for rfid tags,’ in Proceedings of the Conference on
RFID Security, vol. 7, 2007, p. 01.

[53] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, ‘The dram latency puf: Quickly evalu-
ating physical unclonable functions by exploiting the latency-reliability tradeoff in
modern commodity dram devices,’ in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2018, pp. 194–207.

Bibliography 218

https://doi.org/10.1109/ESSCIRC.2012.6341361
https://doi.org/10.1109/ESSCIRC.2012.6341361
https://api.semanticscholar.org/CorpusID:195347140
https://api.semanticscholar.org/CorpusID:195347140

[54] M. Majzoobi, F. Koushanfar, and S. Devadas, ‘Fpga puf using programmable delay
lines,’ in 2010 IEEE international workshop on information forensics and security, IEEE,
2010, pp. 1–6.

[55] J. B. Wendt and M. Potkonjak, ‘Hardware obfuscation using puf-based logic,’ in 2014
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE, 2014,
pp. 270–271.

[56] R. Della Sala, D. Bellizia, and G. Scotti, ‘A novel ultra-compact fpga puf: The dd-puf,’
Cryptography, vol. 5, no. 3, p. 23, 2021.

[57] R. Della Sala, D. Bellizia, and G. Scotti, ‘A lightweight fpga compatible weak-puf
primitive based on xor gates,’ IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 69, no. 6, pp. 2972–2976, 2022.

[58] P. Koeberl, Ü. Kocabaş, and A.-R. Sadeghi, ‘Memristor pufs: A new generation of
memory-based physically unclonable functions,’ in 2013 Design, Automation & Test
in Europe Conference & Exhibition (DATE), IEEE, 2013, pp. 428–431.

[59] G. S. Rose, N. McDonald, L.-K. Yan, and B. Wysocki, ‘A write-time based memristive
puf for hardware security applications,’ in 2013 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), IEEE, 2013, pp. 830–833.

[60] P.-Y. Chen, R. Fang, R. Liu, C. Chakrabarti, Y. Cao, and S. Yu, ‘Exploiting resistive
cross-point array for compact design of physical unclonable function,’ in 2015 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), IEEE,
2015, pp. 26–31.

[61] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbott, ‘Mrpuf: A novel
memristive device based physical unclonable function,’ in International Conference
on Applied Cryptography and Network Security, Springer, 2015, pp. 595–615.

[62] E. I. Vatajelu, G. D. Natale, M. Barbareschi, L. Torres, M. Indaco, and P. Prinetto,
‘Stt-mram-based puf architecture exploiting magnetic tunnel junction fabrication-
induced variability,’ ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 13, no. 1, pp. 1–21, 2016.

[63] S. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. Wong, ‘Cnpuf: A carbon
nanotube-based physically unclonable function for secure low-energy hardware
design,’ in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC),
IEEE, 2014, pp. 73–78.

[64] B. C. Grubel et al., ‘Silicon photonic physical unclonable function,’ Optics Express,
vol. 25, no. 11, pp. 12 710–12 721, 2017.

[65] V. C. Immler, ‘Higher-order alphabet physical unclonable functions,’ Ph.D. disserta-
tion, Technische Universität München, 2019.

[66] C. Frisch and M. Pehl, ‘Beware of the bias-statistical performance evaluation of
higher-order alphabet pufs,’ in 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE), IEEE, 2022, pp. 1005–1010.

Bibliography 219

[67] M. Mustapa and M. Niamat, ‘Relationship between number of stages in ropuf and
crp generation on fpga,’ in Proceedings of the International Conference on Security and
Management (SAM), The Steering Committee of The World Congress in Computer
Science, Computer …, 2014, p. 1.

[68] Y. Su, J. Holleman, and B. Otis, A 1.6pj/bit 96% Stable Chip-ID Generating Circuit
Using Process Variations. Washington, DC: IEEE Computer Society, 2007.

[69] B. H. Calhoun and A. P. Chandrakasan, ‘Static noise margin variation for sub-
threshold sram in 65-nm cmos,’ IEEE Journal of solid-state circuits, vol. 41, no. 7,
pp. 1673–1679, 2006.

[70] K. Agarwal and S. Nassif, ‘Statistical analysis of sram cell stability,’ in Proceedings
of the 43rd annual design automation conference, 2006, pp. 57–62.

[71] A. Alheyasat, G. Torrens, S. A. Bota, and B. Alorda, ‘Estimation during design phases
of suitable sram cells for puf applications using separatrix and mismatch metrics,’
Electronics, vol. 10, no. 12, p. 1479, 2021.

[72] M. I. Baturone Castillo, M. Á. Prada Delgado, and S. Eiroa, ‘Improved generation
of identifiers, secret keys, and random numbers from srams,’ IEEE Transactions on
Information Forensics and Security, 10 (12), 2653-2658., 2015.

[73] I. Karageorgos, M. M. Isgenc, S. Pagliarini, and L. Pileggi, ‘Chip-to-chip authentica-
tion method based on sram puf and public key cryptography,’ Journal of Hardware
and Systems Security, vol. 3, pp. 382–396, 2019. [Online]. Available: https://github.c
om/ecelab-org/Split-Chip_authentication/tree/master.

[74] S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, Extended Abstract: The
Butterfly PUF Protecting IP on Every FPGA. Anaheim, CA, USA: IEEE International
Workshop on Hardware-Oriented Security and Trust, 2008, HOST 2008, 2008.

[75] K. Xiao, M. T. Rahman, D. Forte, Y. Huang, M. Su, and M. Tehranipoor, ‘Bit se-
lection algorithm suitable for high-volume production of sram-puf,’ in 2014 IEEE
international symposium on hardware-oriented security and trust (HOST), IEEE, 2014,
pp. 101–106.

[76] D. Kinniment and E. Chester, ‘Design of an on-chip random number generator using
metastability,’ in Proceedings of the 28th European Solid-State Circuits Conference,
IEEE, 2002, pp. 595–598.

[77] A. Alheyasat, G. Torrens, S. Bota, and B. Alorda, ‘Selection of SRAM cells to improve
reliable PUF implementation using cell mismatch metric,’ in 2020 XXXV Conference
on Design of Circuits and Integrated Systems (DCIS), IEEE, 2020, pp. 1–6.

[78] W. Wang, A. Singh, U. Guin, and A. Chatterjee, ‘Exploiting power supply ramp rate
for calibrating cell strength in sram pufs,’ in 2018 IEEE 19th Latin-American Test
Symposium (LATS), IEEE, 2018, pp. 1–6.

[79] E. I. Vatajelu, G. Di Natale, and P. Prinetto, ‘Towards a highly reliable sram-based
pufs,’ in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2016, pp. 273–276.

Bibliography 220

https://github.com/ecelab-org/Split-Chip_authentication/tree/master
https://github.com/ecelab-org/Split-Chip_authentication/tree/master

[80] G. Torrens, A. Alheyasat, B. Alorda, and S. A. Bota, ‘Sram-based puf reliability pre-
diction using cell-imbalance characterization in the state space diagram,’ Electronics,
vol. 11, no. 1, p. 135, 2022.

[81] I. Baturone, M. A. Prada-Delgado, and S. Eiroa, ‘Improved generation of identifiers,
secret keys, and random numbers from srams,’ IEEE Transactions on Information
Forensics and Security, vol. 10, no. 12, pp. 2653–2668, 2015.

[82] J. Lee, D.-W. Jee, and D. Jeon, ‘Power-up control techniques for reliable sram puf,’
IEICE Electronics Express, vol. 16, no. 13, pp. 20 190 296–20 190 296, 2019.

[83] M. Cortez, S. Hamdioui, A. Kaichouhi, V. van der Leest, R. Maes, and G.-J. Schri-
jen, ‘Intelligent voltage ramp-up time adaptation for temperature noise reduction
on memory-based puf systems,’ IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1162–1175, 2015.

[84] S. Pandey, S. Deyati, A. Singh, and A. Chatterjee, ‘Noise-resilient sram physically
unclonable function design for security,’ in 2016 IEEE 25th Asian Test Symposium
(ATS), 2016, pp. 55–60. doi: 10.1109/ATS.2016.65.

[85] D. Mukhopadhyay and R. S. Chakraborty, Hardware security: design, threats, and
safeguards. CRC Press, 2014.

[86] U. Rührmair, U. Schlichtmann, and W. Burleson, ‘Special session: How secure are
pufs really? on the reach and limits of recent puf attacks,’ in 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2014, pp. 1–4. doi: 10.7873/DATE.2
014.359.

[87] T. Kroeger, W. Cheng, S. Guilley, J.-L. Danger, and N. Karimi, ‘Cross-puf attacks
on arbiter-pufs through their power side-channel,’ in 2020 IEEE International Test
Conference (ITC), IEEE, 2020, pp. 1–5.

[88] J. Mahmod and M. Hicks, ‘Sram has no chill: Exploiting power domain separation
to steal on-chip secrets,’ in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, 2022,
pp. 1043–1055.

[89] X. T. Ngo et al., ‘Cryptographically secure shield for security ips protection,’ IEEE
Transactions on Computers, vol. 66, no. 2, pp. 354–360, 2016.

[90] J.-M. Cioranesco et al., ‘Cryptographically secure shields,’ in 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), IEEE, 2014, pp. 25–31.

[91] L. Tebelmann, J.-L. Danger, and M. Pehl, ‘Self-secured puf: Protecting the loop puf
by masking,’ in International Workshop on Constructive Side-Channel Analysis and
Secure Design, Springer, 2020, pp. 293–314.

[92] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, ‘Cloning physically unclonable
functions,’ in 2013 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), IEEE, 2013, pp. 1–6.

[93] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, ‘Invasive puf analysis,’ in 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, IEEE, 2013, pp. 30–38.

Bibliography 221

https://doi.org/10.1109/ATS.2016.65
https://doi.org/10.7873/DATE.2014.359
https://doi.org/10.7873/DATE.2014.359

[94] R. Maes, P. Tuyls, and I. Verbauwhede, Statistical Analysis of Silicon PUF Responses
for Device Identification. Germany: Berlin, 2008.

[95] A. Maiti and P. Schaumont, ‘The impact of aging on a physical unclonable function,’
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 9,
pp. 1854–1864, 2013.

[96] D. Ganta and L. Nazhandali, ‘Study of ic aging on ring oscillator physical unclonable
functions,’ in Fifteenth international symposium on quality electronic design, IEEE,
2014, pp. 461–466.

[97] N. Karimi, J.-L. Danger, F. Lozac’h, and S. Guilley, ‘Predictive aging of reliability
of two delay pufs,’ in Security, Privacy, and Applied Cryptography Engineering:
6th International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016,
Proceedings 6, Springer, 2016, pp. 213–232.

[98] M. Barbareschi, G. D. Natale, L. Torres, and A. Mazzeo, ‘A ring oscillator-based
identification mechanism immune to aging and external working conditions,’ IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. PP, pp. 1–23, Aug. 2017.
doi: 10.1109/TCSI.2017.2727546.

[99] P. Solé, W. Cheng, S. Guilley, and O. Rioul, ‘Bent sequences over hadamard codes
for physically unclonable functions,’ in 2021 IEEE International Symposium on Infor-
mation Theory (ISIT), IEEE, 2021, pp. 801–806.

[100] M.-D. Yu and S. Devadas, ‘Secure and robust error correction for physical unclonable
functions,’ IEEE Design & Test of Computers, vol. 27, no. 1, pp. 48–65, 2010.

[101] M. S. Kirkpatrick and E. Bertino, Software Techniques to Combat Drift in PUF-Based
Authentication Systems. Cologne, Germany: Workshop on Secure Component and
System Identification (SECSI 2010), 2010.

[102] J. Béguinot, W. Cheng, J.-L. Danger, S. Guilley, O. Rioul, and V. Yli-Mäyry, ‘Reliability
of ring oscillator pufs with reduced helper data,’ in International Workshop on
Security, Springer, 2023, pp. 36–56.

[103] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, ‘Helper data algorithms for
puf-based key generation: Overview and analysis,’ IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp. 889–902, 2014.

[104] J. Delvaux and I. Verbauwhede, ‘Key-recovery attacks on various ro puf construc-
tions via helper data manipulation,’ in 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2014, pp. 1–6.

[105] Z. Cherif, J.-L. Danger, F. Lozac’h, Y. Mathieu, and L. Bossuet, ‘Evaluation of delay
pufs on cmos 65 nm technology: Asic vs fpga,’ in Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy, 2013,
pp. 1–8.

[106] D. Merli, F. Stumpf, and C. Eckert, ‘Improving the quality of ring oscillator pufs
on fpgas,’ in Proceedings of the 5th workshop on embedded systems security, 2010,
pp. 1–9.

Bibliography 222

https://doi.org/10.1109/TCSI.2017.2727546

[107] R. Hesselbarth, F. Wilde, C. Gu, and N. Hanley, ‘Large scale ro puf analysis over
slice type, evaluation time and temperature on 28nm xilinx fpgas,’ in 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), IEEE,
2018, pp. 126–133.

[108] N. Metropolis and S. Ulam, ‘The monte carlo method,’ Journal of the American
statistical association, vol. 44, no. 247, pp. 335–341, 1949.

[109] L. W. Nagel and D. Pederson, ‘SPICE (simulation programwith integrated circuit em-
phasis),’ EECS Department, University of California, Berkeley, Tech. Rep. UCB/ERL
M382, Apr. 1973. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpt
s/1973/22871.html.

[110] F. Salvaire, Pyspice. [Online]. Available: https://pyspice.fabrice-salvaire.fr.

[111] A. Xynos and V. Tenentes, ‘Metaspice: Metaprogramming spice framework for the
design space exploration of puf circuits,’ in 2023 12th International Conference on
Modern Circuits and Systems Technologies (MOCAST), 2023, pp. 1–4. doi: 10.1109
/MOCAST57943.2023.10176643.

[112] J. Bachrach et al., ‘Chisel: Constructing hardware in a scala embedded language,’ in
Proceedings of the 49th Annual Design Automation Conference, 2012, pp. 1216–1225.

[113] S. Jiang, P. Pan, Y. Ou, and C. Batten, ‘Pymtl3: A python framework for open-source
hardware modeling, generation, simulation, and verification,’ IEEE Micro, vol. 40,
no. 4, pp. 58–66, 2020.

[114] D. Batas and H. Fiedler, ‘A python interface for spice-based simulations,’ in ICSES
2010 International Conference on Signals and Electronic Circuits, 2010, pp. 161–164.

[115] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor, ‘The magic
vlsi layout system,’ IEEE Design & Test of Computers, vol. 2, no. 1, pp. 19–30, 1985.

[116] A. A. Nielsen et al., ‘Genetic circuit design automation,’ Science, vol. 352, no. 6281,
aac7341, 2016.

[117] S. Jain and H. C. Gea, ‘Pcb layout design using a genetic algorithm,’ 1996.

[118] C. D. Chapman, K. Saitou, and M. J. Jakiela, ‘Genetic algorithms as an approach to
configuration and topology design,’ 1994.

[119] K. Shahookar and P. Mazumder, ‘A genetic approach to standard cell placement
using meta-genetic parameter optimization,’ IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 9, no. 5, pp. 500–511, 1990.

[120] R. S. Zebulum, M. A. Pacheco, and M. M. B. Vellasco, Evolutionary electronics:
automatic design of electronic circuits and systems by genetic algorithms. CRC press,
2018.

[121] N. Lourenço, R. Martins, A. Canelas, R. Povoa, and N. Horta, ‘Aida: Layout-aware
analog circuit-level sizing with in-loop layout generation,’ Integration, vol. 55,
pp. 316–329, 2016.

Bibliography 223

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://pyspice.fabrice-salvaire.fr
https://doi.org/10.1109/MOCAST57943.2023.10176643
https://doi.org/10.1109/MOCAST57943.2023.10176643

[122] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar, ‘Openram:
An open-source memory compiler,’ in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), IEEE, 2016, pp. 1–6.

[123] B. Naveen and K. Raghunathan, ‘An automatic netlist-to-schematic generator,’ IEEE
Design & Test of Computers, vol. 10, no. 1, pp. 36–41, 1993.

[124] S. Youssef, F. Javid, D. Dupuis, R. Iskander, and M.-M. Louerat, ‘A python-based
layout-aware analog design methodology for nanometric technologies,’ in 2011 IEEE
6th International Design and Test Workshop (IDT), IEEE, 2011, pp. 62–67.

[125] T. Casper, D. Duque, S. Schöps, and H. De Gersem, ‘Automated netlist generation
for 3d electrothermal and electromagnetic field problems,’ Journal of Computational
Electronics, vol. 18, no. 4, pp. 1306–1332, 2019.

[126] Y.-S. Jehng, L.-G. Chen, and T.-M. Parng, ‘ASG: Automatic schematic generator,’
Integration, vol. 11, no. 1, pp. 11–27, 1991.

[127] G. Huang et al., ‘Machine learning for electronic design automation: A survey,’
ACM Trans. Des. Autom. Electron. Syst., vol. 26, no. 5, Jun. 2021, issn: 1084-4309. doi:
10.1145/3451179.

[128] M. Cortez, A. Dargar, S. Hamdioui, and G.-J. Schrijen, ‘Modeling sram start-up
behavior for physical unclonable functions,’ in 2012 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), IEEE, 2012,
pp. 1–6.

[129] M. Barbareschi, E. Battista, A. Mazzeo, and N. Mazzocca, ‘Testing 90 nm microcon-
troller sram puf quality,’ in 2015 10th International Conference on Design Technology
of Integrated Systems in Nanoscale Era (DTIS), 2015, pp. 1–6. doi: 10.1109/DTIS.2015
.7127360.

[130] F. Wilde, ‘Large scale characterization of sram on infineon xmc microcontrollers
as puf,’ in Proceedings of the Fourth Workshop on Cryptography and Security in
Computing Systems, ser. CS2 ’17, Stockholm, Sweden: Association for Computing
Machinery, 2017, pp. 13–18, isbn: 9781450348690. doi: 10.1145/3031836.3031839.

[131] R. Wang, G. Selimis, R. Maes, and S. Goossens, ‘Long-term continuous assessment
of sram puf and source of random numbers,’ in 2020 Design, Automation Test in
Europe Conference Exhibition (DATE), 2020, pp. 7–12. doi: 10.23919/DATE48585.202
0.9116353.

[132] R. Maes and V. Van Der Leest, ‘Countering the effects of silicon aging on sram
pufs,’ in 2014 IEEE International symposium on hardware-oriented security and trust
(HOST), IEEE, 2014, pp. 148–153.

[133] A. Garg and T. T. Kim, ‘Design of sram puf with improved uniformity and reliability
utilizing device aging effect,’ in 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), IEEE, 2014, pp. 1941–1944.

Bibliography 224

https://doi.org/10.1145/3451179
https://doi.org/10.1109/DTIS.2015.7127360
https://doi.org/10.1109/DTIS.2015.7127360
https://doi.org/10.1145/3031836.3031839
https://doi.org/10.23919/DATE48585.2020.9116353
https://doi.org/10.23919/DATE48585.2020.9116353

[134] A. Roelke and M. R. Stan, ‘Controlling the reliability of sram pufs with directed
nbti aging and recovery,’ IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 10, pp. 2016–2026, 2018.

[135] P. Saraza-Canflanca et al., ‘Improving the reliability of sram-based pufs under
varying operation conditions and aging degradation,’ Microelectronics Reliability,
vol. 118, p. 114 049, 2021.

[136] Y. Oren, A.-R. Sadeghi, and C. Wachsmann, ‘On the effectiveness of the remanence
decay side-channel to clone memory-based pufs,’ in Cryptographic Hardware and
Embedded Systems - CHES 2013, G. Bertoni and J.-S. Coron, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 107–125, isbn: 978-3-642-40349-1.

[137] M. Liu, C. Zhou, Q. Tang, K. K. Parhi, and C. H. Kim, ‘A data remanence based
approach to generate 100% stable keys from an sram physical unclonable function,’
in 2017 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED), IEEE, 2017, pp. 1–6.

[138] C. M. Mezzomo, A. Bajolet, A. Cathignol, R. Di Frenza, and G. Ghibaudo, ‘Charac-
terization and modeling of transistor variability in advanced cmos technologies,’
IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2235–2248, 2011.

[139] R. Sarpeshkar, T. Delbruck, and C. A. Mead, ‘White noise in mos transistors and
resistors,’ IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23–29, 1993.

[140] C. G. Theodorou, M. Fadlallah, X. Garros, C. Dimitriadis, and G. Ghibaudo, ‘Noise-
induced dynamic variability in nano-scale cmos sram cells,’ in 2016 46th European
Solid-State Device Research Conference (ESSDERC), IEEE, 2016, pp. 256–259.

[141] C. G. Theodorou, E. G. Ioannidis, S. Haendler, C. A. Dimitriadis, and G. Ghibaudo,
‘Dynamic variability in 14 nm fd-soi mosfets and transient simulation methodology,’
Solid-State Electronics, vol. 111, pp. 100–103, 2015.

[142] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, ‘A large scale characterization
of ro-puf,’ in 2010 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), IEEE, 2010, pp. 94–99.

[143] A. Maiti, V. Gunreddy, and P. Schaumont, ‘A systematic method to evaluate and
compare the performance of physical unclonable functions,’ Embedded systems
design with FPGAs, pp. 245–267, 2013.

[144] E. Arikan, ‘An inequality on guessing and its application to sequential decoding,’
IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 99–105, 1996.

[145] W.-C. Wang, Y. Yona, S. N. Diggavi, and P. Gupta, ‘Design and analysis of stability-
guaranteed pufs,’ IEEE Transactions on Information Forensics and Security, vol. 13,
no. 4, pp. 978–992, 2017.

[146] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, ‘Quantitative and statistical per-
formance evaluation of arbiter physical unclonable functions on fpgas,’ in 2010
International conference on reconfigurable computing and FPGAs, IEEE, 2010, pp. 298–
303.

Bibliography 225

[147] Z. C. Jouini, J.-L. Danger, and L. Bossuet, ‘Performance evaluation of physically
unclonable function by delay statistics,’ in 2011 IEEE 9th International New Circuits
and systems conference, IEEE, 2011, pp. 482–485.

[148] M. I. O’CONNOR, M. I. VERBAUWHEDE, M. B. ROUZEYRE, and M. V. FISCHER,
‘Modelisation et Caracterisation des Fonctions non Clonables Physiquement,’ Ph.D.
dissertation, Orange Labs, 2014.

[149] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and C. Wachsmann, ‘A
formalization of the security features of physical functions,’ in 2011 IEEE Symposium
on Security and Privacy, 2011, pp. 397–412. doi: 10.1109/SP.2011.10.

[150] M. van Dijk and C. Jin, ‘A theoretical framework for the analysis of physical unclon-
able function interfaces and its relation to the random oracle model,’ Cryptology
ePrint Archive, 2022.

[151] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, ‘Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,’ SIAM J. Comput., vol. 38, 2008.
doi: 10.1137/060651380.

[152] J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, andM.-D. Yu, ‘Efficient fuzzy extraction
of puf-induced secrets: Theory and applications,’ in International Conference on
Cryptographic Hardware and Embedded Systems, Springer, 2016, pp. 412–431.

[153] K. Fukushima et al., ‘Delay puf assessment method based on side-channel and
modeling analyzes: The final piece of all-in-one assessment methodology,’ in 2016
IEEE Trustcom/BigDataSE/ISPA, IEEE, 2016, pp. 201–207.

[154] A. Schaub, J.-L. Danger, S. Guilley, and O. Rioul, ‘An improved analysis of reliability
and entropy for delay pufs,’ in 2018 21st Euromicro Conference on Digital System
Design (DSD), 2018, pp. 553–560. doi: 10.1109/DSD.2018.00096.

[155] F. Wilde and M. Pehl, ‘On the confidence in bit-alias measurement of physical
unclonable functions,’ in 2019 17th IEEE International New Circuits and Systems
Conference (NEWCAS), IEEE, 2019, pp. 1–4.

[156] M. Pehl, A. R. Punnakkal, M. Hiller, and H. Graeb, ‘Advanced performance metrics
for physical unclonable functions,’ in 2014 International Symposium on Integrated
Circuits (ISIC), IEEE, 2014, pp. 136–139.

[157] F. Wilde, B. M. Gammel, and M. Pehl, ‘Spatial correlation analysis on physical
unclonable functions,’ IEEE Transactions on Information Forensics and Security, vol. 13,
no. 6, pp. 1468–1480, 2018. doi: 10.1109/TIFS.2018.2791341.

[158] N. Bruneau et al., ‘Development of the unified security requirements of pufs during
the standardization process,’ in Innovative Security Solutions for Information Tech-
nology and Communications: 11th International Conference, SecITC 2018, Bucharest,
Romania, November 8–9, 2018, Revised Selected Papers 11, Springer, 2019, pp. 314–330.

[159] Y. Wei, W. Rao, and N. Devroye, ‘Apuf production line faults: Uniqueness and
testing,’ in 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, 2023, pp. 1–6.

Bibliography 226

https://doi.org/10.1109/SP.2011.10
https://doi.org/10.1137/060651380
https://doi.org/10.1109/DSD.2018.00096
https://doi.org/10.1109/TIFS.2018.2791341

[160] F. K. Wilde, ‘Metrics for physical unclonable functions,’ Ph.D. dissertation, Univer-
sität München, 2021.

[161] F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert, ‘Having no mathematical model may
not secure pufs,’ Journal of Cryptographic Engineering, vol. 7, pp. 113–128, 2017.

[162] T. Arul, N. A. Anagnostopoulos, S. Reißig, and S. Katzenbeisser, ‘A study of the
spatial auto-correlation of memory-based physical unclonable functions,’ in 2020
European Conference on Circuit Theory and Design (ECCTD), IEEE, 2020, pp. 1–4.

[163] N. Mexis et al., ‘Spatial correlation in weak physical unclonable functions: A com-
prehensive overview,’ in 2023 26th Euromicro Conference on Digital System Design
(DSD), IEEE, 2023, pp. 70–78.

[164] C.-E. Yin and G. Qu, ‘Improving puf security with regression-based distiller,’ in
Proceedings of the 50th Annual Design Automation Conference, 2013, pp. 1–6.

[165] C.-E. Yin and G. Qu, ‘Obtaining statistically random information from silicon
physical unclonable functions,’ IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 2, pp. 96–106, 2014.

[166] B. M. S. Bahar Talukder, F. Ferdaus, and M. T. Rahman, ‘Memory-based pufs are
vulnerable as well: A non-invasive attack against sram pufs,’ IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4035–4049, 2021. doi: 10.1109/TIFS.2
021.3101045.

[167] C. Utz, J. Tobisch, and G. T. Becker, ‘Analysis of 1000 arbiter puf based rfid tags,’
2016.

[168] M. C. Borja and J. Haigh, ‘The birthday problem,’ Significance, vol. 4, no. 3, pp. 124–
127, 2007.

[169] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, ‘Birthday paradox for multi-
collisions,’ in Information Security and Cryptology–ICISC 2006: 9th International
Conference, Busan, Korea, November 30-December 1, 2006. Proceedings 9, Springer,
2006, pp. 29–40.

[170] C. Gu, W. Liu, N. Hanley, R. Hesselbarth, and M. O’Neill, ‘A theoretical model to link
uniqueness and min-entropy for puf evaluations,’ IEEE Transactions on Computers,
vol. 68, no. 2, pp. 287–293, 2018.

[171] L. Feiten, M. Sauer, and B. Becker, ‘On metrics to quantify the inter-device unique-
ness of pufs,’ Cryptology ePrint Archive, 2016.

[172] R. Maes, ‘An accurate probabilistic reliability model for silicon pufs,’ in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, Springer, 2013,
pp. 73–89.

[173] J.-L. Danger, S. Guilley, and A. Schaub, ‘Two-metric helper data for highly robust
and secure delay pufs,’ in 2019 IEEE 8th International Workshop on Advances in
Sensors and Interfaces (IWASI), IEEE, 2019, pp. 184–188.

Bibliography 227

https://doi.org/10.1109/TIFS.2021.3101045
https://doi.org/10.1109/TIFS.2021.3101045

[174] V. Immler, M. Hiller, J. Obermaier, and G. Sigl, ‘Take a moment and have some
t: Hypothesis testing on raw puf data,’ in 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), IEEE, 2017, pp. 128–129.

[175] D. Chatterjee, A. Hazra, and D. Mukhopadhyay, ‘Formal analysis of puf instances
leveraging correlation-spectra in boolean functions,’ in International Conference on
Security, Privacy, and Applied Cryptography Engineering, Springer, 2019, pp. 142–158.

[176] B. Willsch, J. Hauser, S. Dreiner, A. Goehlich, and H. Vogt, ‘Statistical tests to deter-
mine spatial correlations in the response behavior of puf,’ in 2016 12th Conference
on Ph. D. Research in Microelectronics and Electronics (PRIME), IEEE, 2016, pp. 1–4.

[177] C.-E. D. Yin and G. Qu, ‘Lisa: Maximizing ro puf’s secret extraction,’ in 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), IEEE,
2010, pp. 100–105.

[178] J.-L. Danger, S. Guilley, P. Nguyen, and O. Rioul, ‘Pufs: Standardization and eval-
uation,’ in 2016 Mobile System Technologies Workshop (MST), IEEE, 2016, pp. 12–
18.

[179] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, ‘A statistical test suite for
random and pseudorandom number generators for cryptographic applications,’
Booz-allen and hamilton inc mclean va, Tech. Rep., 2001.

[180] M. Shiozaki, Y. Hori, and T. Fujino, ‘Entropy estimation of physically unclonable
functions with offset error,’ Cryptology ePrint Archive, 2020.

[181] A. A. Pour et al., ‘Puf enrollment and life cycle management: Solutions and perspec-
tives for the test community,’ in 2020 IEEE European Test Symposium (ETS), 2020,
pp. 1–10. doi: 10.1109/ETS48528.2020.9131578.

[182] R. Valles-Novo, A. Martinez-Sanchez, and W. Che, ‘Boosting entropy and enhancing
reliability for physically unclonable functions,’ in 2020 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), IEEE, 2020, pp. 1–6.

[183] H.-P. Nguyen, T.-N. Nguyen, Y.-S. Seo, D. Hwang, and D. Shin, ‘Correction of bit-
aliasing in memristor-based physically unclonable functions with timing variability,’
IEEE Access, vol. 7, pp. 135 312–135 321, 2019.

[184] A. Garg, Z. C. Lee, L. Lu, and T. T.-H. Kim, ‘Improving uniformity and reliability
of sram pufs utilizing device aging phenomenon for unique identifier generation,’
Microelectronics Journal, vol. 90, pp. 29–38, 2019.

[185] A. Schaub, J.-L. Danger, S. Guilley, andO. Rioul, ‘Reliability and entropy of delay pufs:
A theoretical analysis,’ in 16th International Workshop on Cryptographic Architectures
Embedded in Logic Devices (CryptArchi 2018), 2018.

[186] H. Martin, E.-I. Vatajelu, G. Di Natale, and O. Keren, ‘On the Reliability of the
Ring Oscillator Physically Unclonable Functions,’ in 2019 IEEE 4th International
Verification and Security Workshop (IVSW), 2019, pp. 25–30. doi: 10.1109/IVSW.2019
.8854401.

Bibliography 228

https://doi.org/10.1109/ETS48528.2020.9131578
https://doi.org/10.1109/IVSW.2019.8854401
https://doi.org/10.1109/IVSW.2019.8854401

[187] M. Bhargava and K.Mai, ‘An efficient reliable puf-based cryptographic key generator
in 65nm cmos,’ in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2014, pp. 1–6.

[188] A. Schaub, J.-L. Danger, O. Rioul, and S. Guilley, ‘The big picture of delay-PUF
dependability,’ in 2020 European Conference on Circuit Theory and Design (ECCTD),
IEEE, 2020, pp. 1–4.

[189] R. Maes, P. Tuyls, and I. Verbauwhede, Low-Overhead Implementation of a Soft
Decision Helper Data Algorithm for SRAM PUFs. Berlin, Heidelberg: Springer, 2009.

[190] R. Maes, A. Van Herrewege, and I. Verbauwhede, ‘Pufky: A fully functional puf-
based cryptographic key generator,’ in International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, 2012, pp. 302–319.

[191] M. Bhargava, C. Cakir, and K.Mai, ‘Reliability enhancement of bi-stable pufs in 65nm
bulk cmos,’ in 2012 IEEE International Symposium on Hardware-Oriented Security
and Trust, IEEE, 2012, pp. 25–30.

[192] R. Cao, N. Mei, and Q. Lian, ‘Method for improving the reliability of sram-based
puf using convolution operation,’ Electronics, vol. 11, no. 21, p. 3493, 2022.

[193] M. T. Rahman, D. Forte, F. Rahman, and M. Tehranipoor, ‘A pair selection algorithm
for robust ro-puf against environmental variations and aging,’ in 2015 33rd IEEE
International Conference on Computer Design (ICCD), IEEE, 2015, pp. 415–418.

[194] S. Masoumian et al., ‘Modeling and analysis of sram puf bias patterns in 14nm and
7nm finfet technology nodes,’ in 2023 IFIP/IEEE 31st International Conference on Very
Large Scale Integration (VLSI-SoC), IEEE, 2023, pp. 1–6.

[195] Z. U. Abideen, R. Wang, T. D. Perez, G.-J. Schrijen, and S. Pagliarini, ‘Impact of
orientation on the bias of sram-based pufs,’ arXiv preprint arXiv:2308.06730, 2023.

[196] B. Talukder, F. Ferdaus, and M. T. Rahman, ‘A non-invasive technique to detect
authentic/counterfeit sram chips,’ arXiv preprint arXiv:2107.09199, 2021.

[197] M. Cortez, S. Hamdioui, and R. Ishihara, ‘Design dependent sram puf robustness
analysis,’ in 2015 16th Latin-American Test Symposium (LATS), 2015, pp. 1–6. doi:
10.1109/LATW.2015.7102498.

[198] N. Mishra, K. Pratihar, A. Chakraborty, and D. Mukhopadhyay, ‘Modelling delay-
based physically unclonable functions through particle swarm optimization,’ Cryp-
tology ePrint Archive, 2023.

[199] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, ‘Modeling
attacks on physical unclonable functions,’ in Proceedings of the 17th ACM conference
on Computer and communications security, 2010, pp. 237–249.

[200] J. Delvaux, ‘Machine-learning attacks on polypufs, ob-pufs, rpufs, lhs-pufs, and
puf–fsms,’ IEEE Transactions on Information Forensics and Security, vol. 14, no. 8,
pp. 2043–2058, 2019. doi: 10.1109/TIFS.2019.2891223.

Bibliography 229

https://doi.org/10.1109/LATW.2015.7102498
https://doi.org/10.1109/TIFS.2019.2891223

[201] M. Uddin, M. B. Majumder, and G. S. Rose, ‘Robustness analysis of a memristive
crossbar puf against modeling attacks,’ IEEE Transactions on Nanotechnology, vol. 16,
no. 3, pp. 396–405, 2017. doi: 10.1109/TNANO.2017.2677882.

[202] N. Wisiol, G. T. Becker, M. Margraf, T. A. Soroceanu, J. Tobisch, and B. Zengin,
‘Breaking the lightweight secure puf: Understanding the relation of input transfor-
mations and machine learning resistance,’ in Smart Card Research and Advanced
Applications: 18th International Conference, CARDIS 2019, Prague, Czech Republic,
November 11–13, 2019, Revised Selected Papers 18, Springer, 2020, pp. 40–54.

[203] J.-L. Danger, S. Guilley, M. Pehl, S. Senni, and Y. Souissi, ‘Highly reliable pufs for
embedded systems, protected against tampering,’ in International Conference on
Industrial Networks and Intelligent Systems, Springer, 2021, pp. 167–184.

[204] T. Kroeger, W. Cheng, S. Guilley, J.-L. Danger, and N. Karimi, ‘Enhancing the re-
siliency of multi-bit parallel arbiter-puf and its derivatives against power attacks,’ in
Constructive Side-Channel Analysis and Secure Design: 12th International Workshop,
COSADE 2021, Lugano, Switzerland, October 25–27, 2021, Proceedings 12, Springer,
2021, pp. 303–321.

[205] T. Kroeger, W. Cheng, S. Guilley, J.-L. Danger, and N. Karimi, ‘Making obfuscated
pufs secure against power side-channel based modeling attacks,’ in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021, pp. 1000–
1005.

[206] F. Ganji, On the learnability of physically unclonable functions. Springer, 2018.

[207] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, ‘Machine learning resistant
strong puf: Possible or a pipe dream?’ In 2016 IEEE international symposium on
hardware oriented security and trust (HOST), IEEE, 2016, pp. 19–24.

[208] F. Ganji, D. Forte, and J.-P. Seifert, ‘Pufmeter a property testing tool for assessing
the robustness of physically unclonable functions to machine learning attacks,’ IEEE
Access, vol. 7, pp. 122 513–122 521, 2019.

[209] P. Santikellur and R. S. Chakraborty, ‘Correlation integral-based intrinsic dimension:
A deep-learning-assisted empirical metric to estimate the robustness of physically
unclonable functions to modeling attacks,’ IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 10, pp. 3216–3227, 2021.

[210] M. Spain, B. Fuller, K. Ingols, and R. Cunningham, ‘Robust keys from physical
unclonable functions,’ in 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), IEEE, 2014, pp. 88–92.

[211] M. I. Khan, S. Ali, A. Al-Tamimi, A. Hassan, A. A. Ikram, and A. Bermak, ‘A robust
architecture of physical unclonable function based on memristor crossbar array,’
Microelectronics Journal, vol. 116, p. 105 238, 2021.

[212] B. T. Bosworth et al., ‘Unclonable photonic keys hardened against machine learning
attacks,’ APL Photonics, vol. 5, no. 1, p. 010 803, 2020.

Bibliography 230

https://doi.org/10.1109/TNANO.2017.2677882

[213] A. Schaub, O. Rioul, and J. J. Boutros, ‘Entropy estimation of physically unclon-
able functions via chow parameters,’ in 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), IEEE, 2019, pp. 698–704.

[214] N. Wisiol and N. Pirnay, ‘Short paper: Xor arbiter pufs have systematic response
bias,’ in Financial Cryptography and Data Security: 24th International Conference,
FC 2020, Kota Kinabalu, Malaysia, February 10–14, 2020 Revised Selected Papers 24,
Springer, 2020, pp. 50–57.

[215] N. Wisiol, B. Thapaliya, K. T. Mursi, J.-P. Seifert, and Y. Zhuang, ‘Neural-network-
based modeling attacks on xor arbiter pufs revisited,’ Cryptology ePrint Archive,
2021.

[216] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and M. van Dijk, The
interpose puf: Secure puf design against state-of-the-art machine learning attacks,
Cryptology ePrint Archive, Report 2018/350, https://ia.cr/2018/350, 2018.

[217] X. Yang, S. Khandelwal, A. Jiang, and A. Jabir, ‘A modelling attack resistant low
overhead memristive physical unclonable function,’ in 2020 IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2020, pp. 1–4. doi: 10.1109/DFT50435.2020.9250762.

[218] J. Yang et al., ‘A machine-learning-resistant 3d puf with 8-layer stacking vertical
rram and 0.014% bit error rate using in-cell stabilization scheme for iot security
applications,’ in 2020 IEEE International Electron Devices Meeting (IEDM), IEEE, 2020,
pp. 28–6.

[219] M. I. Khan, S. Ali, A. A. Ikram, and A. Bermak, ‘Optimization of memristive crossbar
array for physical unclonable function applications,’ IEEE Access, 2021.

[220] N. Wisiol et al., ‘Splitting the interpose puf: A novel modeling attack strategy,’ IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 97–120, 2020.

[221] J. Tobisch, A. Aghaie, and G. T. Becker, ‘Combining optimization objectives: New
modeling attacks on strong pufs,’ IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 357–389, 2021.

[222] N. Wisiol and M. Margraf, ‘Why attackers lose: Design and security analysis of arbi-
trarily large xor arbiter pufs,’ Journal of Cryptographic Engineering, vol. 9, pp. 221–
230, 2019.

[223] T. Kroeger, W. Cheng, S. Guilley, J.-L. Danger, and N. Karimi, ‘Effect of aging on
puf modeling attacks based on power side-channel observations,’ in 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2020, pp. 454–
459.

[224] K. Stangherlin, Z. Wu, H. Patel, and M. Sachdev, ‘Enhancing strong puf security
with nonmonotonic response quantization,’ IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 31, no. 1, pp. 55–64, 2022.

Bibliography 231

https://ia.cr/2018/350
https://doi.org/10.1109/DFT50435.2020.9250762

[225] K. Kursawe, A. R. Sadeghi, D. Schellekens, P. Tuyls, and B. Škorić, Reconfigurable
Physical Unclonable Functions - Enabling Technology for Tamper-Resistant Storage.
Los Alamitos, CA, USA: IEEE Computer Society, 2009.

[226] H. Cook, J. Thompson, Z. Tripp, B. Hutchings, and J. Goeders, ‘Cloning the unclon-
able: Physically cloning an fpga ring-oscillator puf,’ in 2022 International Conference
on Field-Programmable Technology (ICFPT), 2022, pp. 1–10. doi: 10.1109/ICFPT5665
6.2022.9974597.

[227] S. Duan and G. Sai, ‘Bti aging-based physical cloning attack on sram puf and the
countermeasure,’ Analog Integrated Circuits and Signal Processing, pp. 1–11, 2023.

[228] Y. Wang, C. Wang, C. Gu, Y. Cui, M. O’Neill, and W. Liu, ‘Theoretical analysis of
delay-based pufs and design strategies for improvement,’ in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), IEEE, 2019, pp. 1–5.

[229] O. Rioul, P. Solé, S. Guilley, and J.-L. Danger, ‘On the entropy of physically unclonable
functions,’ in 2016 IEEE International Symposium on Information Theory (ISIT), IEEE,
2016, pp. 2928–2932.

[230] N. Wisiol et al., pypuf: Cryptanalysis of Physically Unclonable Functions, version v2,
2021. doi: 10.5281/zenodo.3901410.

[231] Y. Xu, Y. Lao, W. Liu, Z. Zhang, X. You, and C. Zhang, ‘Mathematical modeling
analysis of strong physical unclonable functions,’ IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4426–4438, 2020.

[232] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, ‘Threshold voltage distribution in
mlc nand flash memory: Characterization, analysis, and modeling,’ in 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2013, pp. 1285–
1290.

[233] B. Efron, ‘Bayesian inference and the parametric bootstrap,’ The annals of applied
statistics, vol. 6, no. 4, p. 1971, 2012.

[234] B. Sudret, S. Marelli, and J. Wiart, ‘Surrogate models for uncertainty quantification:
An overview,’ in 2017 11th European conference on antennas and propagation (EUCAP),
IEEE, 2017, pp. 793–797.

[235] R. Schöbi, ‘Surrogate models for uncertainty quantification in the context of impre-
cise probability modelling,’ IBK Bericht, vol. 505, 2019.

[236] A. I. Khuri and S. Mukhopadhyay, ‘Response surface methodology,’ Wiley Interdisci-
plinary Reviews: Computational Statistics, vol. 2, no. 2, pp. 128–149, 2010.

[237] R. Van Den Berg et al., ‘Entropy analysis of physical unclonable functions,’ named-
content content-type= ref-degree> Ph. D. dissertation, MSc. thesis</named-content>,<
institution content-type= department> Dept. Math. Comput. Sci.</institution>,< insti-
tution content-type= institution> Eindhoven Univ. Technol.</institution>, Eindhoven,
2012.

[238] C.-F. J. Wu, ‘Jackknife, bootstrap and other resampling methods in regression
analysis,’ the Annals of Statistics, vol. 14, no. 4, pp. 1261–1295, 1986.

Bibliography 232

https://doi.org/10.1109/ICFPT56656.2022.9974597
https://doi.org/10.1109/ICFPT56656.2022.9974597
https://doi.org/10.5281/zenodo.3901410

[239] W. Leong, M. Z. Abdullah, and C. Khor, ‘Optimization of flexible printed circuit
board electronics in the flow environment using response surface methodology,’
Microelectronics Reliability, vol. 53, no. 12, pp. 1996–2004, 2013.

[240] S. Haag and R. Anderl, ‘Digital twin–proof of concept,’Manufacturing letters, vol. 15,
pp. 64–66, 2018.

[241] A. Agapie, A. Andreica, and M. Giuclea, ‘Probabilistic cellular automata,’ Journal of
Computational Biology, vol. 21, no. 9, pp. 699–708, 2014.

[242] T. Toffoli and N. Margolus, Cellular automata machines: a new environment for
modeling. MIT press, 1987.

[243] F. M. Reza, An introduction to information theory. Courier Corporation, 1994.

Bibliography 233

	Glossary
	Acronyms
	Introduction
	Introduction
	Overview of PUF Architectures
	PUF Taxonomy
	Ring Oscillator PUF
	SRAM PUF

	Challenges in PUF design

	Simulation Workflow
	Simulation Environment
	Monaco
	State of the art
	Proposed methodology
	Description of the framework
	State observer
	Netlist and simulation configuration tool
	Conclusions

	NIMPHEL
	State of the art
	Proposed framework
	Comprehensive Example
	Conclusions

	Conclusions

	Circuits under test
	Simulated and Manufactured PUFs under test
	SRAM-based PUF Experimental Platform
	Testing procedure
	Devices under test
	Device manager
	Communication protocol
	Custom code execution
	Data Storage
	Data monitoring and validation
	Current limitations
	Code and Data Availability

	Measurements from industrial circuits
	Ring Oscillator Simulated
	Conclusions

	PUF Canonical Evaluation Metrics
	PUF Canonical Evaluation Metrics
	Mathematical representation
	Uniformity
	Bit-aliasing
	Uniqueness
	Reliability
	Additional proposals

	Limitations of Canonical Metrics
	Lack of correlation analysis
	System capacity and collisions
	Lack of a reference model

	Proposed mitigations and extensions
	Deviation from ideal value
	Stability
	Reliability Invariance
	Correlation studies

	Punctual Bitaliasing
	Entropy based metrics
	Test Suite for PUFs

	Conclusions

	On the Reliability of Differential PUFs
	State of the art
	Techniques for Reliability analysis and evaluation
	Techniques for Reliability improvement

	Relationship between Frequency Difference and Reliability
	Time To Response
	Numerical estimation of the number of samples
	Conclusions

	On the Relationship between Reliability and Entropy of Differential PUFs
	Relationship between Reliability and Entropy
	Simulation results and mitigation techniques
	Analysis of experimental data
	SRAM analysis
	Metadata analysis
	Canonical metrics evaluation

	Ageing and NBTI Effects
	Infineon RO

	SRAM Digraph
	Extension to Markov Chain

	Conclusions

	PUF Design Proposal
	Split PUF
	Proposed method
	Effect on the metrics
	Conclusions

	Conclusions

	PUF Modeling
	State of the Art
	Machine Learning-based approaches
	Physical cloning attacks
	Mathematical and numerical modeling

	Modeling
	Considerations for Distribution Selection
	Proposed Reliability model
	Proposed Entropy model
	Unification of the models
	Evaluation on experimental data
	Response classification and labeling
	Conclusions

	Relationship between PUF Metrics
	Analysis methodology
	Bit-aliasing and Uniformity
	Extrema of Uniformity

	Establishing compound probabilities
	Approximation of the compound probabilities
	Deriving Uniqueness
	Extrema of Uniqueness

	Conclusions and Extensions

	Metric Verification Model
	Introduction
	Proposed methodology
	Frequency Distribution and Bit-aliasing average
	Variance of Bit-aliasing
	Analysis of residuals
	Analysis of heteroscedasticity
	Summary
	Verification of the model
	Conclusions

	Extrapolating PUF metrics
	Introduction
	Proposed methodology
	Evaluation of the methodology
	Conclusions

	PUF Digital Twins
	Introduction
	Proposed methodology
	Pre-processing and post-processing stages
	Conclusions

	Conclusions

	Conclusions and Perspectives
	Future Work and Perspectives

	Appendices
	Mathematical Background
	Notation used
	Statistical distribution of physical parameters
	Beta Distribution
	Gamma Distribution
	Laplace Distribution
	Binomial Distribution
	Poisson Binomial Distribution
	Confidence Intervals
	Statistical Bootstrap
	Heteroscedasticity in statistical modeling
	Information Theory
	Entropy
	Joint Entropy
	Kullback-Leibler divergence
	Mutual Information

	Markov Chains

	Simulations Source Code
	SRAMPlatform
	PUF Extrapolation
	Grid Search

