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Résumé

Le cancer reste l’une des maladies les plus complexes et mortelles auxquelles la médecine mod-
erne est confrontée. En raison de sa nature hétérogène, chaque type de cancer est unique non seule-
ment entre les individus, mais aussi au sein même des tumeurs d’un même patient. Les multiples
mutations génétiques, les altérations moléculaires et les interactions entre les cellules cancéreuses
et leur microenvironnement rendent difficile une approche uniforme pour tous les patients. Ainsi,
l’émergence de la médecine de précision constitue une avancée significative dans le traitement du
cancer. Plutôt que d’administrer des thérapies standards, cette approche vise à personnaliser les
soins en fonction des caractéristiques spécifiques de chaque patient, en s’appuyant sur l’analyse de
données complexes et hétérogènes issues de sourcesmultiples, telles que les donnéesmulti-omiques
(génomiques, transcriptomiques, protéomiques, etc.) et les images histopathologiques sous forme
de Whole Slide Images (WSIs). Cependant, l’un des principaux défis de la médecine de précision reste
l’intégration efficace et l’analyse approfondie de ces données hétérogènes pour extraire des informa-
tions cliniquement exploitables.

Cette thèse s’inscrit dans ce cadre enproposant de nouvellesméthodes basées sur l’apprentissage
profond pour l’intégration des données multi-omiques et des WSIs, tout en garantissant une expli-
cabilité essentielle à leur adoption dans la pratique clinique. L’objectif principal de ce travail est de
développer des modèles capables d’améliorer non seulement les prédictions concernant les sous-
types tumoraux et la survie des patients, mais aussi de rendre ces modèles interprétables pour les
cliniciens, assurant ainsi une véritable utilisation en clinique dans le cadre de la médecine personnal-
isée.

Le premier défi auquel cette thèse répondest la gestionde l’intégrationdes donnéesmultimodales.
Les données omiques, issues de technologies avancées telles que la génomique, la transcriptomique
ou la protéomique, offrent une vision détaillée du profil moléculaire des tumeurs, mais manquent
souvent de la dimension spatiale etmorphologiquequepeuvent fournir les images histopathologiques.
Inversement, les WSIs capturent des informations sur la structure et l’organisation des tissus tu-
moraux, mais n’apportent pas d’informations moléculaires. L’un des grands défis est donc de com-
biner ces deux types de données, en intégrant à la fois les caractéristiques moléculaires fines et les
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informations morphologiques complexes des tumeurs, de manière à offrir une vision plus globale et
plus complète du cancer.

Un autre défi important est la complexité et la grande dimensionnalité de ces données. Les don-
nées multi-omiques peuvent contenir des milliers de variables, chacune représentant un aspect dif-
férent de l’état biologique de la tumeur. De plus, les WSIs sont des images de très haute résolution,
contenant des millions de pixels et des détails spatiaux complexes. Le traitement simultané de ces
donnéesmassives et hétérogènes pose donc des défis considérables enmatière de calcul, d’efficacité
et d’interprétation biologique.

L’une des contributions majeures de cette thèse est le développement de CustOmics, un cadre
d’apprentissage profond spécifiquement conçu pour intégrer et analyser les donnéesmulti-omiques.
CustOmics répond au défi de la grande dimensionnalité des données en utilisant des autoencodeurs
variationnels (VAE) pour capturer des représentations latentes compactes, mais informatives, des
donnéesmulti-omiques. Cela permet de conserver les informations biologiquement pertinentes tout
en réduisant la complexité des données. En mettant l’accent sur la réduction dimensionnelle, Cus-
tOmics est capable d’améliorer la classification des sous-types tumoraux ainsi que la prédiction de
la survie des patients en se basant sur des ensembles de données omiques massives. Appliqué aux
données du projet The Cancer Genome Atlas (TCGA), CustOmics a montré des résultats prometteurs,
notamment dans le cas du cancer du poumon, en identifiant des sous-types tumoraux spécifiques
et en améliorant la précision des prédictions de survie par rapport aux méthodes d’intégration tra-
ditionnelles. En plus de ses performances prédictives, CustOmics offre une flexibilité qui lui per-
met d’intégrer d’autres types de données, telles que des données cliniques ou des informations sur
l’environnement tumoral, permettant ainsi une analyse plus globale du cancer.

Les avantages de CustOmics sont doubles : d’une part, il permet de tirer parti de la richesse des
données multi-omiques en identifiant des biomarqueurs pertinents et des caractéristiques molécu-
laires spécifiques qui peuvent guider la personnalisation des traitements. D’autre part, il réduit le
risque de sur-apprentissage et de confusion souvent associés à l’utilisation de données massives et
de grande dimensionnalité, tout en offrant des résultats interprétables et fiables.

L’analyse des images histopathologiques joue un rôle fondamental dans le diagnostic et la classifi-
cation des cancers. Cependant, les Whole Slide Images (WSIs), en raison de leur taille et de leur com-
plexité, sont difficiles à analyser de manière automatisée. Pour résoudre ce problème, cette thèse
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propose Hyper-AdaC, un modèle basé sur une représentation hypergraphique des WSIs. Hyper-
AdaC permet de segmenter les WSIs en sous-structures significatives, ce qui facilite l’analyse et la
compréhension des relations morphologiques complexes au sein des tissus tumoraux. L’une des
forces de cette approche est qu’elle capture les relations spatiales fines au sein des tumeurs, perme-
ttant ainsi de mieux comprendre comment l’organisation des cellules et des tissus peut influencer la
progression du cancer et la réponse aux traitements. Hyper-AdaC amontré des résultats impression-
nants, notamment dans la classification des sous-types de cancer et dans la prédiction de la survie
des patients, en exploitant des informations qui échappent souvent aux méthodes d’analyse tradi-
tionnelles.

L’un des aspects les plus importants de l’adoption des modèles d’apprentissage profond dans la
pratique clinique est leur explicabilité. Les médecins doivent être en mesure de comprendre com-
ment et pourquoi un modèle a pris une décision spécifique pour pouvoir s’y fier en toute confiance.
Pour répondre à cette nécessité, nous avons développé deux outils d’explicabilité : H&Explainer et
GMM-CeFlow.

H&Explainer permet d’offrir des explications interprétables des prédictions réalisées par des
modèles d’apprentissage profond appliqués aux WSIs et aux données omiques. Grâce à des tech-
niques telles que les valeurs SHAP (Shapley Additive exPlanations), H&Explainer identifie les régions
des images ou les caractéristiques moléculaires qui influencent le plus les prédictions, fournissant
ainsi aux cliniciens une compréhension claire des décisions prises par le modèle. Cela est partic-
ulièrement utile pour des cas comme le cancer du sein ou du poumon, où H&Explainer a permis de
mettre en évidence des régions de la tumeur initialement jugées non significatives, mais qui se sont
révélées critiques dans la classification tumorale.

GMM-CeFlow, quant à lui, introduit une approche d’analyse contre-factuelle pour explorer les
scénarios "et si". Il permet de modifier certaines caractéristiques des données (WSIs ou données
omiques) et d’observer comment ces modifications affecteraient les prédictions dumodèle. Ce cadre
offre aux cliniciens la possibilité de comprendre les limites et les sensibilités des modèles, tout en
testant des scénarios alternatifs pour optimiser les décisions thérapeutiques. Par exemple, il est
possible de simuler l’ajout ou la suppression de mutations spécifiques pour évaluer leur impact sur
le pronostic ou les résultats cliniques.

Une autre contribution importante de cette thèse est Multimodal CustOmics, une extension
16



de CustOmics qui permet l’intégration simultanée des données omiques et des WSIs dans un cadre
unique. Cette approchemultimodale combine les réseauxdeneurones convolutifs (CNN) pour l’analyse
des images histopathologiques et les autoencodeurs variationnels pour les données omiques. Cela
permet de capturer à la fois les caractéristiques microscopiques (via les WSIs) et moléculaires (via
les données omiques), offrant ainsi une vue d’ensemble plus complète du cancer. Les expérimenta-
tions montrent que cette approche améliore de manière significative la classification des sous-types
tumoraux et la prédiction de la survie des patients, en particulier dans les cas de cancer du poumon.

Malgré les avancées réalisées dans cette thèse, certains défis demeurent. L’un des principaux dé-
fis est la généralisation des modèles à d’autres types de cancers et à des ensembles de données plus
diversifiés. L’intégration de nouvelles modalités de données, telles que la transcriptomique spatiale
ou les données de biopsie liquide, pourrait également contribuer à améliorer encore davantage la
précision des modèles.

Enfin, l’un des grands défis futurs sera de traduire ces avancées méthodologiques en outils di-
rectement utilisables en pratique clinique. Cela nécessitera des collaborations étroites entre infor-
maticiens, cliniciens et biologistes afin de valider ces modèles dans des environnements cliniques
réels.

En conclusion, cette thèse apporte des contributions dans le domaine de l’intégration des données
multi-omiques et desWSIs, ouvrant ainsi la voie à unemédecine de précision plus performante et per-
sonnalisée. Les outils développés, tels que CustOmics,Hyper-AdaC,H&Explainer, GMM-CeFlow, et
Multimodal CustOmics, offrent des solutions
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Preface

This manuscript presents the findings of my PhD research, conducted in collaboration with the
Oncostat and MICS teams. The focus is on exploring howmethodological advances and clinical appli-
cations intersect to develop computational models for precisionmedicine, with a particular emphasis
onmultimodality. The work aims to bridge the fields of data science and applied oncology, offering in-
sights for professionals in both areas by highlighting the role of multimodal approaches, their impact,
challenges, and potential benefits, helping data scientists and clinicians better navigate this evolving
field.

Outline

The first chapter of this thesis lays the groundwork by providing a detailed overview of how artifi-
cial intelligence (AI) can be applied to understand cancer biology. It explores fundamental principles
in both fields, showing how they interact and complement each other. The goal of this chapter is to
equip professionals from various disciplines with the knowledge needed to grasp how AI can be of
use to understand the complexities of cancer biology. By introducing key concepts, it prepares the
reader for a deeper exploration of AI’s role and application in cancer biology throughout the thesis.

In the second chapter, we explore the process of creating representations for complex data sets
and their application in integrating multiple modalities. This chapter concludes a review of the litera-
ture and classification, analyzing different approaches to representation learning. The objective is to
explain the methods used to derive meaningful insights from intricate data structures. Additionally,
we examinemultimodal integration, evaluating various techniques for combining data from different
sources. By assessing the strengths and weaknesses of each approach, we aim to gather insights that
will inform future developments.

The third chapter addresses the challenge of merging multi-omics data, which is crucial for un-
derstanding and tackling this complex task. We begin by outlining the different types of data in-
volved, then discuss the challenges of integrating multiple omics data. This chapter introduces new
approaches for effectively combining various molecular data sets, offering strategies to overcome
challenges related to data diversity and size. The chapter’s main focus is on CustOmics, an approach
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introduced in a 2023 paper in PLoS Computational Biology. We analyze CustOmics, highlighting its
ability to combine multiple omics datasets. To illustrate its practical application, we present a clinical
case study onMyelodysplastic Syndrome (MDS), conducted in collaboration with Dr. Elsa Bernard and
colleagues from the Karolinska Institute and the MDS Consortium.

The fourth chapter shifts focus to histopathology imaging, examining its complexities, challenges,
and promising developments. It beginswith an analysis of howhistopathology slides are represented,
laying the foundation for further discussion. This chapter forms the basis for a forthcoming article
for the ML4H symposium, where we aim to clarify the core principles of histopathology slide visual-
ization, which is crucial for applying machine learning techniques in this area. Additionally, we ex-
plore explainability in histopathology imaging, comparing different approaches, including attention
mechanisms and human-understandable features. By evaluating these methods, we discuss their
effectiveness in terms of explainability, outlining their respective strengths and limitations.

The fifth chapter concludes this investigation by focusing on the integration of multi-omics and
histopathology data to enhance predictive models and improve our understanding of the biological
mechanisms underlying cancer. The chapter expands on the methodology from the original paper,
developing it into a broader framework called Multimodal CustOmics. This approach uses biological
data to create robust and interpretable representations, ultimately advancing our understanding of
diseasemechanisms and supporting personalized treatment strategies. The primary aim of this study
is to explore the levels of interpretability offered by the Multimodal CustOmics framework. By exam-
ining the methodology, we highlight how it can provide valuable insights into the biological mecha-
nisms driving disease progression. The chapter centers on the application of Multimodal CustOmics
in the International Adjuvant Lung Cancer Trial (IALT). By using real clinical data, we demonstrate
the method’s practical and clinical significance, showcasing its potential to improve prognostic and
diagnostic outcomes.

Leveraging the progress inmultimodal integration, I explored new spatial technologies to broaden
the range of imaging and molecular interaction analysis. This effort resulted in a collaboration with
Quentin Blampey to develop Novae, a model focused on spatial domain assignment and analysis,
where I contributed by benchmarking state-of-the-art models and revealed issues in terms of batch-
effect correction and clustering when dealing with multiple gene panels. Novae will serve as a key
foundation for expanding its application to histopathology slide analysis and will eventually be inte-
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grated into CustOmics to further advance multimodal integration capabilities.

Contributions

Published Papers

• CustOmics: A versatile deep-learning based strategy for multi-omics integration:
– PLoS Computational Biology, 2023, 19(3), e1010921
– Authors: Hakim Benkirane, Yoann Pradat, Stefan Michiels, Paul-Henry Cournède
– DOI: https://doi.org/10.1371/journal.pcbi.1010921

• Hyper-AdaC: adaptive clustering-based hypergraph representation ofwhole slide images

for survival analysis:
– Machine Learning for Health, 2022, PMLR, 405-418.
– Authors: Hakim Benkirane, Maria Vakalopoulou, Stergios Christodoulidis, Ingrid-Judith
Garberis, Stefan Michiels, Paul-Henry Cournède

– DOI: https://proceedings.mlr.press/v193/benkirane22a.html
• Multimodal CustOmics: A Unified and Interpretable Multi-Task Deep Learning Frame-

work for Multimodal Integrative Data Analysis in Oncology:
– Biorxiv, 2024, Cold Spring Harbor Laboratory.
– Authors: HakimBenkirane,Maria Vakalopoulou, David Planchard, JulienAdam, KenOlaussen,
Stefan Michiels, Paul-Henry Cournède

– DOI: https://doi.org/10.1101/2024.01.20.576363
• Novae: a graph-based foundation model for spatial transcriptomics data:

– Biorxiv, 2024, Cold Spring Harbor Laboratory.
– Authors: Quentin Blampey, Hakim Benkirane, Nadège Bercovici, Fabrice André, Paul-
Henry Cournède

– DOI: https://doi.org/10.1101/2024.09.09.612009
20

https://doi.org/10.1371/journal.pcbi.1010921
https://proceedings.mlr.press/v193/benkirane22a.html
https://doi.org/10.1101/2024.01.20.576363
https://doi.org/10.1101/2024.09.09.612009


Communications

• Réseaux de neurones et intégrationmulti-omique pour la survie: quelles stratégies pour

un meilleur apprentissage de représentation?:
– EPICLIN, 2022, 70, Revue d’Épidémiologie et de Santé Publique.
– Type: Poster Presentation
– Authors: Hakim Benkirane, Yoann Pradat, Stefan Michiels, Paul-Henry Cournède

• Counterfactual Analysis forDigitalHistopathology SlidesUsingHuman Interpretable Fea-

tures:
– MIDL, 2024, Paris.
– Type: Poster Presentation
– Authors: Hakim Benkirane, Maria Vakalopoulou, Stefan Michiels, Paul-Henry Cournède,
William Lotter

• Multimodal CustOmics: A Unified and Interpretable Multi-Task Deep Learning Frame-

work for Multimodal Integrative Data Analysis in Oncology:
– TIA Seminar, 2024, Warwick University.
– Type: Oral Presentation
– Authors: HakimBenkirane,Maria Vakalopoulou, David Planchard, JulienAdam, KenOlaussen,
Stefan Michiels, Paul-Henry Cournède

21



Introduction

Contents

1.1 Introduction to Cancer: A multi-faceted disease . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.1 About Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.2 Multiple Levels of the Biological System . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.3 Precision medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Multiple Modalities for Precision Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.1 Multi-Omics Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.2 Histopathology Slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Introduction to Artificial Intelligence & Statistical Learning . . . . . . . . . . . . . . . . . 36
1.3.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.2 A myriad of tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.3 Application to Biomedical Sciences . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.4 The Clinical Interpretability Challenge . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Abstract

Cancer is a complex disease influenced by genetic and environmental factors. By leveraging ad-
vanced technologies to analyze traditional tissue samples and diverse biological data, we can
gain new insights into the molecular processes driving cancer formation, ultimately leading to
the development of personalized treatment strategies. Statistical learning is crucial for decipher-
ing complex datasets, enabling the identification of patterns, and making predictions. However,
ensuring that these models are explainable is essential to gain acceptance in clinical settings.
This overview delves into how deep learning can tackle these challenges by enhancing the in-
terpretability of models, thus bridging the gap between data integration and practical clinical
application. We focus on presenting a framework that enhances cancer diagnosis and treatment
while meeting the demands for clinical relevance and transparency.

1.1 . Introduction to Cancer: A multi-faceted disease

Cancer remains one of the most complex and challenging illnesses for modern medicine to ad-
dress due to its wide variety of causes, symptoms, and effects on human health [113]. Essentially,
cancer involves the uncontrolled growth of cells, leading to the formation of tumors that can become
cancerous, invade nearby tissues, and sometimes spread to other parts of the body [77]. Benign
tumors are less harmful as they do not invade surrounding tissues. In contrast, malignant tumors
pose a serious health risk, potentially causing body dysfunction and leading to fatal consequences [?
]. The complexity of understanding cancer results from its occurrence in various tissues and organs
in mammals and the diverse symptoms and progression it presents. However, collaboration among
clinicians, biologists, statisticians, and researchers from different fields has led to significant progress
in our understanding of cancer, aiding in categorizing the disease, clarifying its processes, and im-
proving treatment options. Decades of research and clinical practice have substantially transformed
our approach to cancer care, significantly improving numerous patients’ outlook, life expectancy, and
well-being. By continually researching and developing new treatments, there is a growing sense of
hope for achieving long-term remission and even curing more types of cancer, signaling a positive
direction in the fight against this challenging illness.
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1.1.1 . About Cancer

Cancer affects communities in every country to varying extents, as reported by cancer registries
around the world [224]. Sadly, each year, millions of new cases of cancer are diagnosed, resulting in a
substantial number of deathsworldwide. The occurrence of this disease is not uniform; it varies signif-
icantly due to factors such as location, environment, lifestyle, genetic predispositions, and economic
status [145]. The most prevalent types of cancer in a specific area may indicate a complex interplay of
these factors, which can provide valuable insights for public health strategies and research priorities.

The critical aspect of cancer’s biological process is the occurrence of oncogenesis or tumorigene-
sis, which is the transformation of healthy cells into cancerous ones [146]. This transformation takes
place through a series of steps, often referred to as a progression through different stages, beginning
with initiation, then promotion, and ending with progression. The initial phase involves DNA changes
in normal cells due to environmental factors, inherited mutations, or errors in DNA replication. The
next step is promotion, during which these initial cells multiply excessively due to additional genetic
alterations or in response to hormonal or growth factors. Finally, in the progression phase, cancer
cells develop more aggressive characteristics, such as the ability to invade nearby tissues and create
metastases.

Cancer disrupts normal cellular functions in variousways. One of its primarymethods is bypassing
the body’s growth control mechanisms, leading to uncontrolled cell division. Additionally, cancer cells
are capable of evading apoptosis, allowing them to survive beyond their expected lifespan [80]. They
also stimulate angiogenesis, forming new blood vessels to nourish the growing tumor with necessary
nutrients and oxygen. Furthermore, cancer cells employ immune evasion strategies, preventing de-
tection and destruction by the body’s immune system. These abilities highlight the intricate nature of
cancer, which affects individual cells and disrupts the body’s overall biological systems.

The influence of cancer goes beyond the cellular level, impacting tissues, organs, and complete
biological systems. It disrupts the regular operation of body systems like circulation, lymphatic, and
immune systems, playing a part in the systemic characteristics of the illness. This complex interrup-
tion highlights the essential need for a holistic strategy in cancer research and treatment, considering
the complex interaction of genetic, molecular, cellular, and systemic elements. As we explore further
into the biological systems impacted by cancer, it is clear that comprehending and addressing this
illness necessitates a comprehensive perspective that incorporates information from various aspects

24



of the biological system.

Figure 1.1: Figure [45] The process of cancer development/carcinogenesis, (A) Cancer initiation (B). Cancer
Progression (C). Metastasis and Cancer development.

1.1.2 . Multiple Levels of the Biological System

Cancer’s impact on the body extends from DNA-level changes to visible symptoms in patients
[111]. This complex series of events, from genetic mutations to tissue damage, provides a clearer
understanding of the disease’s progression and manifestations.

The DNA is where cancer develops, with mutations changing the genetic makeup. These genetic
changes can switch off tumor suppressor genes or turn on oncogenes, leading to uncontrolled cell
growth seen in cancer. DNA mutations are not independent; instead, they increase complexity at
the RNA level. In this case, the transcription process may increase these genetic abnormalities, as
mRNAmolecules contain mutated guidelines that interfere with typical gene expression patterns and
cellular operations [250].

As cancer progresses, the impact becomes stronger as the modified genetic material is used to
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make proteins. Proteins, responsible for carrying out numerous cellular tasks, function according to
incorrect guidance, leading to errors in critical signaling pathways and cellular activities [194]. A clear
example of this misdirection in cancer cells is seen as abnormal protein activity leading to constant
cell multiplication and infiltration of neighboring tissues.

The metabolic landscape extends beyond proteins and is altered by cancer to fulfill the needs of
rapid cell growth. This change inmetabolism is a hallmark of cancer, not only promoting tumor growth
but also creating a unique environment for the tumor [42]. The diverse changes in metabolites play
a crucial role in the survival and proliferation of cancer cells, reinforcing the presence of the disease.

The combined effects of these molecular and metabolic disturbances are noticeable on a cellular
level. Cancer cells come together to form tumors as they acquire the capability to multiply continu-
ously and avoid death. However, these tumors do not exist alone. They engage with and change the
structure of the nearby tissue, disturbing regular organ operation and setting off a series of harmful
consequences [11].

This disruption at the tissue level causes cancer to affect not only the tumor but the entire or-
ganism, resulting in clinical symptoms that affect the quality of life of the patient and may eventually
lead to the patient’s death. The impact of cancer on individual patients, which includes symptoms
like fatigue and pain, as well as organ dysfunction, highlights the disease’s ability to affect the body’s
systems and overall well-being.

This progression is done from DNA to the patient, with each level closely linked and impacting
the succeeding one. This exploration of the biological stages of cancer highlights the importance of
taking a thorough approach in research and treatment, which recognizes the complex nature of the
disease and aims to intervene at various stages of its progression. By comprehending and focusing
on the various effects of cancer, we get closer to creating treatments that are just as adaptable and
complex as the disease, providing optimism for improved and individualized therapies.

1.1.3 . Precision medicine

Precision medicine represents a revolutionary evolution in healthcare, especially in oncology, as
personalized treatments can provide better care and enhance patient results [5]. Precision medicine
seeks to personalize healthcare by utilizing information about a person’s genetics, lifestyle, and en-
vironment to tailor treatments and prevention strategies to their needs. This method differs signif-
icantly from the traditional one-size-fits-all approach, providing a more detailed insight into disease
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processes and treatment outcomes.
The rapid advancement of sequencing technologies is driving the growth of the precisionmedicine

field. These advancements have opened up new possibilities by offering vast data in various areas
such as genomics, transcriptomics, proteomics, and metabolomics, in addition to conventional clin-
ical information [180]. Sequencing a person’s genome rapidly and affordably is now a vital part of
precision medicine, allowing us to pinpoint genetic mutations linked to different types of cancer. This
abundance of diverse omic data provides a comprehensive molecular perspective on the patient’s
illness, establishing the foundation for individualized treatment plans when combined with compre-
hensive patient health records and histopathological images.

Nevertheless, the challenges of managing complex and high-dimensional data come with note-
worthy obstacles despite the opportunities brought forth by technological advancements [167]. The
extensive data produced by advanced sequencing and other omic technologies have positives and
negatives, providing critical insights into cancer’s molecular basis yet creating difficulties in storing,
managing, analyzing, and interpreting the data. Novel methods are required to effectively analyze the
massive amount of complex data that surpasses the capabilities of traditional tools and techniques.

In this context, AI offers new crucial tools andmethods to enhanceprecisionmedicine in oncology[126].
AI, utilizing its sophisticated machine learning algorithms and deep learning frameworks, provides
the computational power and expertise required to analyze the intricacies of multi-omics data. AI
algorithms are very good at recognizing patterns and connections in large datasets that would be
impossible for humans to analyze. AI-powered tools are leading advancements in cancer care, from
predicting disease risk using genetic information to finding potential treatment targets and predicting
how patients will respond to therapies. They assist in examining high-dimensional data and incorpo-
rate various data types, providing a more thorough comprehension of cancer’s molecular landscape
and its relationship with environmental and lifestyle factors.

Themove towards AI-poweredprecisionmedicine in cancer caremirrors amore significant change
in healthcare, highlighting the importance of sophisticated computational resources for handling and
analyzing the intricate nature of contemporary biomedical information. Advancing, the collaboration
of AI and precisionmedicine offers the potential to discover uncharted territories in cancer treatment,
bringing personalized, effective, and efficient care to patients globally. This fusion of fields marks a
forthcoming era in which extensive data and advanced computing capabilities come together, open-
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ing pathways for innovations that seek to revolutionize cancer treatment.

Figure 1.2: Figure extracted from [52] The interactive multi-molecular layer systems and the vital role of
multi-omics variations in tumor immunity and immunotherapy.

1.2 . Multiple Modalities for Precision Medicine

1.2.1 . Multi-Omics Data

Multi-omics provides a powerful approach to biological research and medical diagnostics by in-
tegrating various biological data types to understand an organism’s functions comprehensively. This
approach comprises several "omics" disciplines: genomics focuses on DNA; transcriptomics analyzes
messenger RNA molecules; proteomics examines proteins, including their expression and functions;
and epigenomics studies epigenetic changes in the genetic material of cells.

Genomic Data

Genomic data encompasses the comprehensive study of an organism’s DNA, including its genes.
In cancer research, genomic data provides crucial insights into the genetic alterations driving tumor
development, progression, and response to treatment. By analyzing genomic sequences, researchers
can identifymutations, structural variations, and other genetic abnormalities contributing to the com-
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plex landscape of cancer biology. The advent of high-throughput sequencing technologies has rev-
olutionized the field, enabling large-scale projects like The Cancer Genome Atlas (TCGA) to generate
vast amounts of genomic data across diverse cancer types [90, 197, 183].

Mutation data refers to identifying and characterizing changes in the DNA sequence that can lead
to cancer. These mutations can be categorized as somatic or germline, with somatic mutations oc-
curring in the DNA of individual cells during a person’s lifetime and germline mutations being inher-
ited. High-throughput sequencing technologies, such aswhole-genome sequencing (WGS) andwhole-
exome sequencing (WES), are employed to detect these mutations. WGS provides a comprehensive
view of all genetic alterations across the entire genome, while WES focuses on the coding regions
of the genome, where most disease-causing mutations occur. By analyzing mutation data, we can
pinpoint driver mutations that play a critical role in tumorigenesis and identify potential therapeutic
targets [90, 187].

Copy number variations (CNVs) are a type of structural genetic alterationwhere genome segments
are duplicated or deleted, leading to changes in the number of copies of particular genes. CNVs can
significantly impact gene expression and contribute to cancer development and progression. Tech-
nologies such as array comparative genomic hybridization (aCGH) and next-generation sequencing
(NGS) are commonly used to detect CNVs. aCGH involves comparing the DNA of cancer cells with nor-
mal cells to identify regions of genomic gain or loss. At the same time, NGS provides a high-resolution
view of CNVs across the genome. Analyzing CNV data helps researchers understand the genomic in-
stability of tumors, identify oncogenes and tumor suppressor genes affected by these variations, and
develop targeted therapies to address these genetic abnormalities [90, 203].

Figure 1.3: Figure extracted from [6] Types of Genomic Variants: Genomic variants, such as CNVs, can
be categorized into deletions, duplications, segmental duplications, and inversions. These variations may
affect an entire gene or just a portion of a gene, as illustrated in the figure.

By integratingmutation and CNV data, we can gain a comprehensive understanding of the genetic
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landscape of cancer, enabling the identification of novel biomarkers and the development of precision
medicine strategies tailored to individual patient’s genomic profiles [90, 41].

Transcriptomic Data

Transcriptomic data characterize the RNA transcripts produced by the genome under specific cir-
cumstances or in specific cell types. This data provides insights into gene expression patterns, regu-
latory mechanisms, and the functional state of cells. In cancer research, transcriptomics is essential
for understanding how changes in gene expression contribute to tumor development, progression,
and response to treatment. High-throughput technologies like RNA sequencing (RNA-seq) have sig-
nificantly advanced the field, allowing researchers to capture the complexity of the transcriptome in
unprecedented detail [252, 106, 183].

Transcriptomic data can be collected at different scales: bulk RNA-seq captures average gene
expression across many cells, single-cell RNA-seq (scRNA-seq) reveals gene expression in individual
cells, and spatial transcriptomics provides gene expression data within the spatial context of the tis-
sue. Each scale offers unique insights, enhancing our understanding of gene expression dynamics in
cancer.

One type of transcriptomics data is RNA sequencing (RNA-seq). It is a powerful technique to ana-
lyze a sample’s complete RNA transcripts, including coding and non-coding RNAs. RNA-seq provides a
quantitative and qualitative snapshot of gene expression, enabling the identification of differentially
expressed genes between normal and cancerous tissues. This technology involves converting RNA
into complementary DNA (cDNA), sequenced using high-throughput sequencing platforms. RNA-seq
data allows researchers to detect gene fusions, alternative splicing events, and novel transcripts, of-
fering a comprehensive view of the transcriptomic alterations in cancer. By analyzing RNA-seq data,
researchers can uncover vital regulatory pathways, identify potential therapeutic targets, and under-
stand the molecular mechanisms driving cancer [252, 179].

Another type ismicroRNAs (miRNAs). Small, non-coding RNAsplay critical roles in post-transcriptionally
regulating gene expression. miRNAs bind to messenger RNAs (mRNAs) and either degrade them or
inhibit their translation, thereby controlling the expression of target genes. In cancer, dysregulation
of miRNAs can contribute to tumorigenesis, metastasis, and resistance to therapy. Techniques such
as miRNA sequencing (miRNA-seq) and microarray profiling are used to study miRNA expression pat-
terns. miRNA-seq involves sequencing the small RNA fraction of a sample to identify and quantify
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miRNAs, while microarray profiling uses hybridization techniques to measure miRNA levels. Analyz-
ing miRNA data provides insights into the regulatory networks that influence cancer progression and
offers potential biomarkers for diagnosis, prognosis, and therapeutic intervention [19, 114, 88].

By integrating RNA-seq andmiRNAdata, we can gain a holistic understanding of the transcriptomic
landscape of cancer. This integrative approach allows for the identification of complex regulatory in-
teractions between coding and non-coding RNAs, enhancing our ability to develop precisionmedicine
strategies that target specific molecular pathways and improve patient outcomes [252, 106, 88].

Epigenomic Data

Epigenetic changes like DNA methylation are vital in regulating gene activity without altering the
genetic code. DNA methylation involves adding a methyl group to cytosine bases, primarily at CpG
dinucleotides, and can either activate or silence genes by affecting transcriptional access [21, 128].

In cancer, abnormal methylation patterns, such as tumor suppressor genes’ hypermethylation
or oncogenic pathways’ hypomethylation, contribute to tumor development and progression. These
reversible changes in gene regulation are promising targets for cancer detection and treatment [21,
73].

Advances in bisulfite sequencing and array-basedmethods havemade it possible to analyzemethy-
lation patterns across entire cancer genomes, leading to the identification of epigenetic markers for
early diagnosis, prognosis, and personalized treatment [143, 28].

Integrating epigenetic data with genomic, transcriptomic, and proteomic information enhances
our understanding of the molecular interactions in cancer, paving the way for precision medicine
approaches that target specific epigenetic modifications to restore normal gene function [4, 20].

However, challenges remain in interpreting DNA methylation data, as patterns can vary across
tissues and environmental contexts. Establishing transparent cause-and-effect relationships between
methylation changes and cancer characteristics requires robust experimental designs and long-term
studies to understand the role of epigenetics in cancer fully [78, 217].

1.2.2 . Histopathology Slides

Examining tissue at a microscopic level to observe disease manifestations, known as histopathol-
ogy, is a crucial component of diagnostic pathology, particularly in oncology. This careful practice
requires a thorough examination of tissue specimens, usually obtained through biopsies or surgery,
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allowing oncologists to evaluate the existence, spread, and type of neoplastic (cancerous) conditions.
Histopathological evaluation allows pathologists to give essential diagnostics, provide prognostic in-
sights, and offer guidance for strategic therapeutic decisions, making them essential in cancer patient
care.

The fundamental aspect of histopathology involves directly observing andexamining cellular struc-
ture and tissue organization through a microscope. These observations are crucial for various pur-
poses: diagnosis and classification, grading and staging, assessment of tumor margins, evaluation of
cell differentiation, or detection of molecular biomarkers.

Understanding the distinct features of cancer on histopathology slides can help tailor treatments
to match the individual patient’s disease profile more effectively, thus enhancing effectiveness while
reducing unwanted side effects. For example, if hormone receptors are not present, hormone therapy
may not be the best option, but if a patient has high levels of HER2/neu protein, theymay benefit from
HER2-targeted therapies.

Figure 1.4: Figure [166] An example of WSI format including multiple magnification levels. The size of each
image of the pyramid is reported under the magnification level in terms of pixels.

Clinical Extraction of Histopathological Slides

Extracting and digitalizing histopathological slides is essential in transitioning from traditional mi-
croscopy to digital pathology, enabling enhanceddiagnostics, collaboration, and analytical capabilities
[189, 162].

Tissue samples are typically obtained through surgical excisions or biopsy procedures, ensuring
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sufficient material for comprehensive evaluation while maintaining patient safety. Post-collection,
samples are fixed, usually with formalin, to preserve cellular and molecular integrity. They are then
embedded in paraffin wax, facilitating the sectioning of thin tissue layers necessary for microscopic
analysis [142, 98].

Thin tissue sections are prepared using amicrotome, placed on slides, and stained to enhance vis-
ibility. Staining techniques in histopathology are essential for enhancing the visualization of cellular
and tissue structures, facilitating the diagnosis and understanding of various diseases. These meth-
ods selectively color different components of tissue specimens, allowing pathologists to distinguish
between cellular elements and identify pathological changes [200].

Hematoxylin and Eosin (H&E) staining is the most widely used technique due to its effectiveness
in delineating tissue morphology. Hematoxylin imparts a blue hue to cell nuclei, emphasizing DNA
and RNA contents, while eosin stains the cytoplasm and extracellular matrix in shades of pink and
red. This contrast is invaluable for routine histological examination and is foundational in pathology
[81].

Immunohistochemistry (IHC) provides a more targeted approach by detecting specific antigens in
the tissues using antibodies. This method is crucial in oncology for identifying protein expressions,
such as hormone receptors in breast cancer, that directly influence treatment decisions. IHC employs
chromogenic labels or fluorescent tags that bind to antibodies, making the antigen-antibody reaction
visible under a microscope [135, 91].

Other special stains address the need to highlight particular tissue components not adequately
displayed by H&E. For instance, the periodic acid-schiff (PAS) stain detects polysaccharides, coloring
themmagenta, and helps identify fungal organisms and glycogen deposits. Masson’s Trichrome stain
differentiates between muscle (stained red), collagen (blue), and cytoplasm (pink or light red), com-
monly applied in connective tissue disease assessments. Another proper stain, Giemsa, enhances the
visibility of blood cells and is extensively used in hematology and for detecting parasites [206, 222].

Whole-Slide Images

Whole slide images (WSIs) are digital versions of complete biopsy slides with a multi-resolution,
pyramidal structure for viewing at different magnifications, replicating the traditional microscope ex-
perience. This structure is pyramid-shaped and includes tiers, each representing the same tissue
space at varying levels of detail. This enables pathologists to quickly move through the entire slide at
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a lower level of detail and then focus on specific areas at higher levels for thorough analysis. Stan-
dard magnifications vary from 5x to 40x, with premium scans at 20x and 40x offering the precision
essential for precise cellular examination. The extensive scans produce big files, usually between 100
MB and 1 GB, depending on resolution and tissue complexity, requiring ample storage and robust IT
systems [76, 140].

The significant sizes of WSIs present particular obstacles, particularly when applying deep learn-
ing techniques for image examination. Training deep learningmodels on such huge images demands
substantial memory and computational resources. The limited RAM in typical computer systems hin-
ders the ability to load severalWSIs at once, making it challenging to trainmodels effectively with large
batches of data. In order to address these problems, researchers frequently use patch-based train-
ing methods, breaking down every image into smaller, more manageable sections. This approach
decreases the memory burden by enabling consecutive training on image patches, though it requires
advanced methods to uphold the image’s contextual coherence. Furthermore, reducing resolution
through down-sampling methods is employed in training, which may lead to missing important diag-
nostic information at times [102, 38].

Addressing these challenges is essential for successfully implementing machine learning in digital
pathology. Continuing research focuses on improving data processing and training algorithms that
can handle large image datasets while preserving relevant details. These developments are crucial
for maximizing the diagnostic capabilities of WSIs in pathology, improving precision, and facilitating
the progression of personalized medicine [68, 35].

Regions of Interest

Histopathology slides contain a variety of cellular structures and complex tissue architectures,
each offering important information about diseases. Identifying and analyzing certain areas of in-
terest (ROIs) in these slides is essential for diagnosing and comprehending pathological conditions.
Below is a summary of the main ROIs found in histopathology slides, including their descriptions and
importance in medical diagnosis.

The tumor region is typically the primary focus in oncologic histopathology. This area contains
the cancerous cells and is critical for determining the type of cancer, its aggressiveness, and potential
response to treatment [177]. Pathologists look for features such as the size and shape of the tumor
cells, the pattern of their arrangement, and the presence of necrosis ormitotic figures to assess tumor

34



grade and stage [140].
Stromal regions refer to the supportive tissue around cancer cells, composed mainly of connec-

tive tissues and blood vessels. The stromal region is essential for understanding the tumor microen-
vironment, including how cancer interacts with surrounding tissues and the extent of angiogenesis
(formation of new blood vessels), which is often a prerequisite for tumor growth andmetastasis [267].
Changes in the stroma can indicate tumor invasion and aggressiveness [186].

Inflammatory regions, characterized by a high concentration of immune cells, are crucial in con-
ditions such as chronic inflammation and autoimmune diseases. In cancer, these regions reflect the
immune system’s response to the tumor [122]. Assessing the type and level of immune cell infiltration
can offer valuable information about the prognosis and help guide immunotherapy treatments [59].

Necrotic regions within a tumor indicate areas where cancer cells have died, often due to insuffi-
cient blood supply. The presence and extent of necrotic tissue can be a marker of tumor progression
and is generally associated with a more aggressive disease state [193]. Necrotic regions are also im-
portant in treatment planning, especially in predicting the response to radiation therapy [130].

Marginal regions are the boundaries between the tumor and normal tissues. Marginal regions
are critical in surgical pathology to ensure that the surgical resection margins are free of cancer cells,
which is essential for reducing the risk of recurrence [242]. The characteristics of the tumor at these
margins can provide information about its invasiveness and the likelihood of complete surgical re-
moval [268].

Lymphoid structures, such as lymph nodes, often appear in histopathology slides, especially in
cancer cases where they are assessed for metastasis. Cancer cells in lymph nodes are a critical factor
in cancer staging, directly impacting treatment decisions and prognosis [205].

Each of these regions of interest provides specific information contributing to the overall disease
diagnosis and management. In oncology, understanding these regions’ distinct roles and features
helps pathologists provide detailed and accurate reports that guide effective treatment strategies. As
digital pathology and image analysis technology advance, the precision in identifying and interpreting
these regions continues to improve, offering deeper insights and enhancing personalized medicine
approaches in cancer care [162].
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A diversity of cell types

In histopathology, tissue samples are examined under a microscope to identify and characterize
different cell types. Tumor or cancer cells are a primary focus due to their abnormal behavior, includ-
ing uncontrolled growth and resistance to cell death [106, 87]. These cells are identified by features
like enlarged nuclei, increasedmitosis, and disorganized tissue structure [140]. Immunohistochemical
staining and molecular profiling provide further insights into these cells’ characteristics and potential
treatment targets [135].

Stratified epithelial cells, organized in layers, form protective tissues in areas subjected to me-
chanical stress, such as skin and the esophagus. Histopathological assessment of these cells focuses
on the structure and integrity of each layer, which is critical for diagnosing conditions like squamous
cell carcinoma [81, 165].

Necrotic cells, which result from tissue injury, are identified by features like cellular swelling and
membrane rupture [72]. Their presence indicates tissue damage and inflammation, making them
crucial for assessing the extent of the injury and guiding treatment [219].

Connective tissue cells, including fibroblasts, adipocytes, chondrocytes, and osteocytes, maintain
the tissue’s structural and functional integrity. Histopathological evaluation of these cells aids in di-
agnosing disorders like fibrosis and skeletal abnormalities [139, 208, 198].

Tumor-infiltrating lymphocytes (TILs) are immune cells within tumors that can influence tumor
growth and response to therapy [84]. Their presence and activity are critical indicators of prognosis
and can guide immunotherapy decisions [59, 238].

1.3 . Introduction to Artificial Intelligence & Statistical Learning

Artificial Intelligence (AI), a crucial advancement in contemporary technology, is transforming dif-
ferent industries, such as healthcare, by being able to carry out tasks that usually demand human
intelligence [62]. At its core, artificial intelligence allows machines to learn from information, make
choices, and resolve problems by imitating cognitive abilities like reasoning, learning, and compre-
hending language. AI is especially significant for healthcare providers and doctors in diagnostics,
personalized medicine, and drug discovery.

In diagnostics, AI improves the precision and effectiveness of analyzing medical images [195]. By
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utilizing sophisticated algorithms, AI technology can rapidly examine X-rays, MRIs, and CT scans, rec-
ognizing patterns that suggest illnesses like cancer or neurological disorders more quickly and pre-
cisely than conventional techniques. This ability assists radiologists not only in detecting conditions
early but also in handling their heavy workload.

AI’s impact on personalized medicine is just as significant. AI models can utilize genetic infor-
mation and detailed clinical data to forecast how individuals respond to treatments. This method is
particularly advantageous in oncology, as AI-powered information can guide customized treatment
strategies that enhance patient results and reduce adverse effects.

Moreover, AI speeds up the process of drug discovery and development, which has historically
been both lengthy and expensive [7]. AI tools can predict the effectiveness of chemical compounds,
simulating their impacts to identify potential drug candidates sooner in the process, from lab research
to clinical trials, making the journey more efficient.

Figure 1.5: Figure [164] Proposed Classification model of Deep Learning by Manimaran et al.

1.3.1 . General Idea

AI and statistical learning are fundamental to modern biostatistics, enabling data interpretation,
prediction, and decision-making by uncovering patterns within complex datasets.

Basic statistical models, such as linear and logistic regression, are crucial tools in analyzing data.
Linear regression predicts continuous outcomes based on one or more predictors, while logistic re-
gression is used for binary outcomes [83]. The Cox proportional hazardsmodel is essential in survival
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analysis, providing insights into treatment effects on time-to-event data. However, these models re-
quire specific assumptions about the data structure, which can limit their flexibility in exploratory
analysis and hypothesis testing.

As the complexity of data increases, machine learning (ML) methods have become powerful al-
ternatives to traditional statistical approaches. Techniques like decision trees, random forests, and
support vector machines excel at extracting patterns and making predictions from large datasets
[29]. These methods are precious in biomedicine, where they are used for disease diagnosis, predict-
ing patient outcomes, and identifying new therapeutic targets from genetic, proteomic, and clinical
data.

Deep learning further enhances the capabilities of ML by utilizing neural networks with multiple
layers, enabling the analysis of intricate data patterns. Convolutional Neural Networks (CNNs) are
particularly effective in image analysis, as they detect spatial features like edges and textures, making
them ideal for tasks such as tumor detection and tissue classification [101]. Recurrent Neural Networks
(RNNs) and Long Short-TermMemory (LSTM) networks are designed to handle sequential data, main-
taining information across time steps, which is essential for applications like language modeling and
time-series forecasting [99, 243]. Meanwhile, Transformers, which use attention mechanisms to pro-
cess sequential data and capture long-range dependencies, have driven significant advancements in
natural language processing and genomic data analysis, exemplified by models like GPT and BERT
[246, 263, 65].

Foundation models represent a significant leap forward, as they are trained on diverse datasets,
providing a comprehensive understanding of various data types. These models can be fine-tuned for
specific biomedical applications, enhancing personalized medicine, drug discovery, and patient care
by enabling detailed analysis of complex biological information.

1.3.2 . A myriad of tasks

In artificial intelligence (AI) andmachine learning, data analysis techniques are categorized into un-
supervised, supervised, and self-supervised learning, eachwith specific applications in the biomedical
field.

Unsupervised learning identifies patterns and structures in data without labeled outcomes. It is
particularly effective for clustering anddimensionality reduction,making it valuable in biomedicine for
analyzing large genomic datasets to uncover new disease subtypes and potential therapeutic targets
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[173, 257, 234].
Supervised learning, on the other hand, uses labeled data to train models to make predictions on

new inputs. This approach is crucial in diagnostic imaging, where algorithms are trained on labeled
images to detect pathologies in new scans. It is also used in predictive modeling, where patient data,
including clinical and molecular biomarkers, is analyzed to forecast disease progression or treatment
response, thereby improving diagnostic accuracy and optimizing therapeutic strategies [153, 75, 239].
Representation learning, an essential aspect of supervised learning, enables the model to automati-
cally discover the features needed for these tasks, further enhancing its predictive capabilities.

Self-supervised learning bridges the gap between unsupervised and supervised methods by gen-
erating labels from the data. This approach is auspicious in biomedicine, where large amounts of un-
labeled data, such as genomic sequences or patient records, can be used to discover meaningful pat-
terns. Self-supervised learning can accelerate the identification of biomarkers or therapeutic targets,
even without extensively annotated datasets [125, 15]. Additionally, it supports multimodal integra-
tion, where different types of biomedical data—such as imaging, genomics, and clinical records—are
combined to provide a more comprehensive understanding of complex biological processes and im-
prove the precision of predictive models.

1.3.3 . Application to Biomedical Sciences

Incorporating AI into biomedicine is fundamentally changing how medical issues are addressed,
from general clinical applications to the specific challenges of cancer treatment. Researchers and clin-
icians leverage AI to significantly advance diagnosis, treatment, and personalized healthcare through
supervised, unsupervised, and self-supervised learning techniques. This integration of AI is enhanc-
ing medical procedures and paving the way for new approaches in patient care, particularly in the
realm of precision medicine [124, 239].

In generalmedicine, AI plays a vital role in diagnostic imaging, patientmonitoring, and the analysis
of electronic health records. AI algorithms are now indispensable in accurately diagnosing diseases
by analyzingmedical images such as X-rays, MRIs, and CT scans [153]. Beyond diagnostics, AI is used in
predictive analytics to forecast patient outcomes based on clinical data, thereby improving treatment
plans through insights derived from past patient data [75, 185].

In oncology, AI transforms cancer treatment by identifying genetic mutations and biomarkers as-
sociated with various cancers. This aids in early detection and the development of precise treatments
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through the analysis of large genomic datasets [218, 169, 214]. AI also personalizes chemotherapy
plans, predicts patient responses to treatments, and monitors disease progression, leading to better
outcomes [141]. Moreover, AI accelerates the discovery of new therapeutic targets and streamlines
drug development by predicting the interactions between drugs and biological pathways, thereby
reducing the time and cost associated with traditional drug development methods [251, 47].

A crucial aspect of AI in biomedicine is its application in survival analysis, particularly in oncol-
ogy. Traditional models like the Cox proportional hazards model have been essential for predicting
patient survival and treatment outcomes. However, advancements like DeepSurv and Cox-net have
enhanced these predictions by incorporating deep learning to manage complex, non-linear relation-
ships in survival data. These models provide more accurate survival predictions and can integrate
high-dimensional data, making them especially valuable in omics data analysis, further refining per-
sonalized treatment strategies.

The intersection of AI and precision medicine leads to highly individualized medical care based
on the unique characteristics of each patient. AI offers the computational power to analyze diverse
data types—including genomics, transcriptomics, proteomics, histopathology images, and clinical
records—allowing for the identification of distinct disease patterns and the prediction of the most
effective treatments for individual patients [148]. This approach is particularly beneficial in cancer
care, where AI-driven analysis can match treatments to a patient’s specific tumor profile, minimizing
side effects and improving overall outcomes [239, 144].

1.3.4 . The Clinical Interpretability Challenge

AI revolutionizes clinical practice by enhancing diagnostics, personalizing treatments, and improv-
ing patient outcomes. AI systems are particularly adept at analyzing complex data, such as medical
images and genetic sequences, making them indispensable tools for clinicians. However, a significant
challenge is the interpretability of these AI systems, especially those using deep learning, which of-
ten operate as "black boxes" [236]. This lack of transparency can undermine trust, as clinicians must
understand the reasoning behind AI-generated decisions to ensure they alignwithmedical standards.

To address this, explainable AI (XAI) techniques are being developed to make AI models more
transparent. These techniques help clarify the data features that influence AI decisions, bridging the
gap between complex algorithms and clinical expertise.

Interpretability refers to the degree to which a human can understand the internal workings of
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Figure 1.6: An overview of multimodal integration for precision medicine

an AI model and the rationale behind its decisions. This is essential in medical contexts where clin-
icians must grasp how AI systems arrive at their predictions to ensure trust and informed decision-
making. On the other hand, explainability focuses onmaking the AI model outputs—its decisions and
predictions—clear and understandable to humans. This is often achieved through visualizations or
feature importance scores highlighting which factors influenced the model’s decision [89]. While in-
terpretability deals with the transparency of the model’s inner processes, explainability ensures that
the end user can comprehend the reasoning behind specific outcomes. These concepts are crucial
for integrating AI into healthcare while maintaining ethical and patient-centered care.

Explainability methods can be categorized as model-agnostic or model-specific. Model-agnostic
methods, like LIME and SHAP, can be applied to any AI model to explain its predictions. In contrast,
model-specific methods are tailored to specific models, such as saliency maps for deep learning or
attention mechanisms in transformers. Additionally, explainability can be global, providing insights
into the overall model behavior, or local, focusing on individual predictions. Post-hocmethods explain
decisions after the model is trained, whereas intrinsic methods involve naturally transparent models,
such as decision trees.
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Balancing AI’s advanced analytical capabilities with the need for interpretability is essential to fully
leverage AI in clinical practice, ensuring that these technologies enhance patient care without sacri-
ficing clarity and trust.

Black-Box 
Model

Visualisation

Text Explanations

Local Explanation

Feature Importance

The output is … because…

Modelxi yi

Perturbation

Figure 1.7: Forms of Explainability

1.4 . Contributions

This thesis adds to thedeveloping field of precisionmedicine by introducing innovative approaches
andmodels designed to improve the incorporation andunderstandability of intricate biomedical data.
This work aims to tackle the crucial issue of integrating and analyzing data from various omics sources
and histopathology to understand cancer mechanisms better. The thesis’s contributions can be out-
lined in the following way:

Firstly, we present novel approaches for effectively combining information from various omic
sources using an understandable artificial intelligence framework. Our approach combines various
types of data from genomics and transcriptomics to create a comprehensive andmultifacetedmolec-
ular depiction of cancer, acknowledging the abundant yet intricate information in these fields. Through
the utilization and development of explainable AI methods, the incorporation procedure helps im-
prove our models’ predictive capabilities and precision. It maintains clarity and comprehensibility for
clinicians and researchers. This combination of integration and explainability helps bridge a signifi-
cant gap in current methods, allowing for a better grasp of biological processes and building confi-
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dence in AI-based findings.
Additionally, the thesis contributes to the digital histopathology field by creating innovative ap-

proaches to designing histopathology slide representations. These techniques focus on integrating
crucial details, like spatial connections and interactions in the tumor microenvironment, into the ex-
amination. Acknowledging the significance of these elements in grasping tumor behavior and patient
prognosis, our strategy utilizes advanced image analysis and deep learningmethods to extract and in-
terpret these essential data points. In addition to these advances, we are launching new explainability
tools designed explicitly for histopathology analysis. These tools should help users navigate and com-
prehend the intricate decision-making processes required for diagnosing and characterizing tumors
from slide images. This advancement is a significant step towards incorporating and understanding
histopathology better in cancer research and treatment planning.

Ultimately, we introduce an all-encompassing structure to combine omics data and histopathol-
ogy analyses in a transparent AI system. This structure is created to provide various levels of com-
prehensibility, matching the diverse levels of the biological system, including molecular interactions,
cellular processes, tissue organization, and overall patient health. In this way, it meets an essential
requirement in precisionmedicine for tools that can efficiently integrate different data types and offer
an understanding of how they are interpreted across multiple biological levels. This comprehensive
method guarantees that the analyses produced are technically robust and closely linked to biological
things, improving the effectiveness of AI-based techniques in clinical decision-making and customized
treatment.

Collectively, these contributions highlight the capability of AI andmachine learning to revolutionize
how we conduct cancer research and treatment. This thesis sets the foundation for future progress
in precisionmedicine by integratingmulti-omics data and histopathology and creating an explainable
framework. It aims to improve cancer care bymaking itmore personalized, effective, and understand-
able.
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Abstract

This chapter provides a comprehensive state-of-the-art review of representation learning tech-
niques and benchmarks current multimodal integration strategies for multi-omics data. By eval-
uating essential methods such as feature-level fusion, decision-level fusion, and intermediate
integration, we assess their effectiveness in capturing the relationships and complementarities
between different data types. Our comparative analysis highlights the strengths and weaknesses
of each approach, emphasizing the need for improved integration strategies. This foundational
assessment sets the stage for developing novel strategies, which will be the focus of the subse-
quent chapters.

Representation learning is a fundamental concept in machine learning. It focuses on creating
algorithms that can autonomously identify the necessary representations for detecting features or
classifying data from its raw form. This method is essential in various machine learning domains,
such as deep learning, as it allows a machine to recognize and best utilize the inherent patterns in
the data. We will show how representation learning is essential in precision medicine within the field
of oncology as it helps combine various forms of data, like multi-omics and histopathology data, to
improve a patient’s prognosis.

The primary goal of representation learning is to convert raw data into a more understandable
format by further processing layers or machine learning models. This transformation is intended
to reveal significant characteristics frequently concealed in the raw data, rendering the data more
suitable for analysis and decision-making procedures. This could involve transforming detailed gene
expression profiles or complex patterns in histopathology images into more relevant characteristics
from a biological or clinical perspective.

2.1 . Representation Learning

Representation learning primarily focuses on identifying an appropriate series of processing steps
for input data, often utilizing a mix of linear and non-linear transformations. Representation learning
techniques can be divided into supervised, unsupervised, and semi-supervised methods.

2.1.1 . Supervised Representation Learning
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Supervised learning methods focus on effectively learning from labeled data to map inputs to
outputs.

Deep learning models, particularly neural networks like Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), are standard in this category. They learn hierarchical repre-
sentations through layers, where each layer captures increasingly abstract data features. The math-
ematical model can be represented as:

ϕ(x) = h(n)(. . . h(2)(h(1)(x)))

where h(i)(x) = σ(Wix+ bi), σ is a non-linear activation, andWi, bi are layer parameters [144, 216,
93].

2.1.2 . Unsupervised Representation Learning

Unsupervised methods focus on understanding the structure of unlabeled data and identifying
patterns without reference to known outcomes.

Principal Component Analysis (PCA) reduces dimensionality by finding orthogonal projection di-
rections that maximize variance:

W ∗ = arg max
W∈Rd×k

{Tr(W TXTXW )} subject to W TW = I

This technique is effective for initial data exploration and simplifying complex datasets with min-
imal loss of information [127].

Autoencoders

In the same vein, we have autoencoders. It is an architecture that can be seen as a non-linear
extension of PCA. We consider our data to be a matrix X ∈ RN×D and we want to represent it as
a matrix Z ∈ RN×d with d < D. The autoencoder is composed of two parts, an encoder function
q : RN×D → RN×d, X → q(X) = Z and a decoder function p : RN×d → RN×D, Z → p(Z) = X̂ [116].

The encoder and decoder function are a sequence ofmultiple non-linear layers of the form f(u) =

σ(Wu+ b)where u is the layer input,W is the weight matrix,b is the bias and σ is called an activation
function. This means that both the encoder and decoder have a set of parameters such that Z =

q(X; θe) and X̂ = p(Z; θd) [249].
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The goal of the architecture is to optimize θe and θd in order to minimize the reconstruction error
through a reconstruction loss function:

Lrecon(X; θe, θd) =
1

N
||X − X̂||22 =

1

N
||X− p(q(X; θe); θd)||22 (2.1)

For the rest of the thesis, we consider that both the encoder and decoder are symmetric, meaning
that they have the same number of layers, L, and units in each layer. We denote by (ql)l∈J1,LK the set
of encoding layers such that q1 ◦ q2 ◦ ... ◦ qL = q and by (pl)l∈J1,LK the set of encoding layers such that
p1 ◦ p2 ◦ ... ◦ pL = p [93].

A standard autoencoder can be enhanced by introducing an additional constraint, as in [248]. The
idea is to add a reconstruction constraint on the intermediate layers.

Lrecon =

L∑
l=1

αl||ql(X; θe)− pL+1−l(q(X; θe); θd)|| (2.2)
Where αl is the weight of the constraint at layer l.

However, it is essential to avoid constraining on too many layers in order to avoid overfitting. We
will further discuss this when presenting the design protocol.

Variational Autoencoders

Another example is Variational Autoencoders (VAEs). It is a deep generative model that can learn
meaningful data representation from high-dimensional input data. This study will see this architec-
ture as an extension of standard autoencoders in which the encoder encodes the input as a distribu-
tion over a latent space instead of a single point.

In this case, the encoding function q represents a variational distribution (known as encoding
distribution) qϕ(Z|X) in which ϕ is the learning parameter (denoted θe previously) and the decoding
function p represents the posterior pθ(X|Z).

As told before, the particularity of a VAE is the ability to encode a distribution, which is represented
by the fact that after the encoding phase, there is a sampling phase in which we sample points from
the distribution qϕ(Z|X) [136, 201].

Traditionally, the distributions in the VAE architecture are estimated as Gaussian: the encoder
function will learn the two parameters µ and σ (respectively the mean and covariance) of the distri-
bution qϕ(Z|X) and will then reconstruct the input matrix using a reparametrization trick z = µ+ σϵ
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where ϵ ∼ N (0, I).
The loss function for this architecture can be written as the sum of two distinct losses. First, a

reconstruction loss that focuses on the autoencoder’s ability to reconstruct the data:

Lrecon = Eqϕ(Z|X)[pθ(X|Z)] (2.3)
This loss can be interpreted as the conditional entropy ofX over Z, which quantifies the amount

of uncertainty that one has over the joint distribution X,Z knowing Z. More practically, it is related
to the quantity of information ofX that we can obtain from Z (qualifying a reconstruction potential).

Second, there is a regularization loss that aims at getting the encoding distribution as close as
possible to the actual distribution of the latent vector. Traditionally, a Kullback-Leibler divergence is
used:

Lreg = DKL(qϕ(Z|X)||pθ(Z)) (2.4)
The total loss will benefit from the framework introduced in [115], which added weight to the reg-

ularization term to balance the two parts of the loss function depending on what we want to achieve.

L = Lrecon + βLreg (2.5)
2.1.3 . Multimodal Representation Learning

Representation learning has become a cornerstone in multimodality, enabling the integration of
diverse data types into cohesive models that capture complex, cross-modal relationships. Represen-
tation learning is pivotal in the context of multimodal data because it transforms raw data from dif-
ferent modalities—such as images, text, and various omics data—into meaningful, low-dimensional
representations that can be effectively combined and analyzed. This process facilitates a more com-
prehensive understanding of complex biological systems and improves the predictive power of mod-
els in biomedical research.

Autoencoders, particularly in their multimodal forms, are at the forefront of integrating differ-
ent data types into a unified latent space. These models have been instrumental in learning joint
representations from heterogeneous data sources, capturing the shared information across modali-
ties while preserving unique characteristics. For instance, Multimodal Deep Denoising Autoencoders
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(MDDA) havebeen effectively employed to integrate genomic, transcriptomic, and imaging data, thereby
enhancing the accuracy of disease classification and patient outcome prediction [184, 17].

Deep generativemodels, such as Generative Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs), have recently gained significant success in the unsupervised learning of latent repre-
sentations fromhigh-dimensional and structured data like images, audio, and text [94, 136, 201]. These
models are crucial for data synthesis and play a fundamental role in data analysis and transformation.
An effective learned representation must capture high-level characteristics that remain invariant to
small, local changes in the input data and should be as disentangled as possible for enhanced explain-
ability. Hierarchical and disentangled generativemodels have shown their effectiveness in addressing
downstream learning tasks, demonstrating the potential to improve predictive accuracy and model
interpretability [23, 244]. Furthermore, introducingmore advancedmodels, such asMDVAE proposed
in [209], which leverages hierarchical disentanglement in generative processes, has further pushed
the boundaries of generative models in unsupervised learning.

Convolutional Neural Networks (CNNs) have significantly contributed to multimodal representa-
tion learning, mainly when one of the modalities is image-based. CNNs are adept at extracting high-
level features from visual data, which can be combined with other modalities, such as text, to create
comprehensive joint representations. These combined representations have led to advances in can-
cer subtype classification, where integrating histopathology images with gene expression data has
significantly improved diagnostic accuracy [144, 281].

Beyond individual model types, specialized multimodal architectures have been developed to ad-
dress the challenges of integrating diverse data sources. These architectures typically involve parallel
processing networks for each modality, followed by a fusion layer that combines the representa-
tions into a unified model. Techniques such as Deep Canonical Correlation Analysis (DCCA) [9], Multi-
modal Factorization Models (MFM) [240], and Regularized Generalized Canonical Correlation Analysis
(RGCCA) [92] have shown promise in capturing the intricate correlations between modalities, thus
enhancing the overall predictive performance of multimodal systems. RGCCA, in particular, extends
the classical CCA by incorporating regularization and generalization components, making it highly
effective in scenarios where data is complex and possibly incomplete.

Despite the significant advancements, challenges remain in multimodal representation learning,
particularly in effectively aligning disparate modalities and managing incomplete data. Furthermore,
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the interpretability of these complex models is crucial, especially in clinical applications where under-
standing the rationale behind predictions is vital. Addressing these challenges will require the devel-
opment of more interpretable models and novel strategies for seamless data integration, setting the
stage for the next generation of multimodal learning techniques.

2.2 . Multimodal Integration Strategies

Combining different data types or modalities is fundamental in various machine learning appli-
cations, as integrating information from sources such as text, images, and audio can significantly
improve model accuracy and robustness. This multimodal integration is crucial in fields like multi-
media processing, robotics, natural language processing, and medicine, where complex and diverse
data sources are shared. The primary strategies for merging these diverse data types include early,
late, and joint integration, each offering distinct advantages and facing unique challenges depending
on the specific context and objectives. Importantly, all three multimodal integration approaches can
be applied effectively to predictive modeling and representation learning tasks.

Figure 2.1: An overview of the different integration strategies

2.2.1 . Early Integration (Feature-Level Integration)
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Early or feature-level integrationmerges various data types prior to analysis or modeling. This ap-
proach combines various datasets into one thorough feature space right at the start of the processing
pipeline.

Suppose we have datasets X1, X2, . . . , Xn corresponding to different modalities. The integrated
datasetX can be represented as:

X = [X1 X2 . . . Xn]

where [·] denotes the concatenation of features across different modalities [18].
This method enablesmodels to learn the relationships between features from variousmodalities,

resulting in a more detailed and insightful representation. However, the main problem is the large
number of dimensions, which may lead to overfitting and higher computational costs. Moreover,
compatible preprocessing is required for concatenating all modalities [199].

For representation learning with autoencoders and VAEs, for example, data from all modalities
are concatenated and input into the network:

X = [X1 X2 . . . Xn]

The encoder transformsX into a latent space Z:

Z = Encoder(X)

The decoder then attempts to reconstructX from Z:

X̂ = Decoder(Z)
The loss function typically used is themean squared error (MSE) for autoencoders or the evidence

lower bound (ELBO) for VAEs (more details about its computation are found in Appendix A.4), incor-
porating both reconstruction loss and KL divergence. Early integration for autoencoder architectures
is exemplified through the SDAE architecture. In the rest of the study, we will denote by EI-AE and
EI-VAE, respectively, the early integration autoencoder and variational autoencoder.

2.2.2 . Late Integration (Decision-Level Integration)
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Late integration, or decision-level integration, entails training distinct models for individual data
types and merging their outputs or decisions during a subsequent phase. Each model extracts infor-
mation separately from its type, and the final result combines all outputs.

Let f1, f2, . . . , fn be the models trained on datasets X1, X2, . . . , Xn respectively. The final output
y can be derived from:

y = Combine(f1(X1), f2(X2), . . . , fn(Xn))

Where Combine could be a function such as averaging, a weighted sum, or a more complex deci-
sion function like a neural network or a voting scheme [18, 210].

This method reduces the chance of overfitting by handling each data type separately, enabling
freedom in choosing and optimizing models for each data type. However, it might not be able to
encompass crucial connections between various modes necessary for complete comprehension or
accurate forecasting [199].

For representation integration, we can imagine separate autoencoders/VAEs trainedoneachmodal-
ity:

Zi = Encoderi(Xi), X̂i = Decoderi(Zi)

The encoded representations Z1, Z2, . . . , Zn are combined using a model g that predicts the final
output Y :

Y = g(Z1, Z2, . . . , Zn)

The model g could be trained to optimize a specific task-related performance metric, integrating
insights from each modality. Late integration is exemplified for autoencoder architectures through a
hierarchical approach, as introduced by [225] and represented in Fig. 2.2.

2.2.3 . Joint Integration (Model-Level Integration)

Joint integration, also known as model-level integration, refers to models created to consider in-
teractions between various data types during the learning process. This approach uses designs inte-
grating multi-task learning or common layers to deal with several modalities simultaneously.
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Figure 2.2: H-VAE Architecture : This figure depicts the Hierarchical Variational Autoencoder (H-VAE), which
utilizes a late integration approach for multimodal representation learning. Each modality X1, . . . , XK is
first encoded into separate latent variables Z1, . . . , ZK . These are then combined into a shared latent
variable Z , capturing the joint distribution across all modalities. The shared latent representation is used
to reconstruct each modality through respective decoders.

Consider a model with shared parameters θ and modality-specific parameters θ1, θ2, . . . , θn. The
model can be formulated as:

y = g(X1, X2, . . . , Xn; θ, θ1, θ2, . . . , θn)

Where g is a complex architecture that processes and integrates information from all modalities,
either sequentially or in parallel [184].

This method can effectively learn complex connections between different aspects, leading to bet-
ter results when these connections are precious. However, this method necessitates complex model
structures and usually larger datasets to be trained successfully without falling into overfitting [276].

For representation learning, a multi-branch architecture is used where each branch processes
inputs from one modality and feeds into a shared encoder:

Zi = BranchEncoderi(Xi)

The shared encoder learns a joint representation:

Z = Merge(Z1, Z2, . . . , Zn)
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The decoder reconstructs combined or separate modal outputs:

X̂ = Decoder(Z)
The merging function Merge could be as simple as concatenation or involve more complex inter-

actions such as feature fusion through addition or multiplication layers. Examples of joint integration
for autoencoder architectures include the Disjointed Deep Autoencoder (DDAE) [248] and the X-VAE
architecture [225].

Figure 2.3: DDAE Architecture : The figure illustrates the DDAE architecture, which employs a joint in-
tegration strategy for multimodal representation learning. In this model, data from different modalities
X1, . . . , XK are encoded through respective layers into a shared latent space Z , facilitating the integration
of multimodal information. Additionally, the architecture incorporates intermediate reconstruction losses
Lrecon,1, . . . ,Lrecon,L at various stages of the encoding process, ensuring that meaningful representations
are learned at each layer. These losses help maintain the integrity of the information as it passes through
the network, ultimately improving the quality of the reconstructed outputs X̂1, . . . , X̂K .

The choice of a multimodal integration approach depends on the specific task, data characteris-
tics, and application goals. Each method has its strengths and limitations, and selecting the right one
can significantly influence the effectiveness and efficiency of the learning process. Our objective is to
identify the most effective strategies for integrating and interpreting data across different modalities,
particularly in the context of representation learning. This analysis will guide the selection of optimal
integration techniques for specific use cases. To do this, we will evaluate each integration strategy in
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Figure 2.4: X-VAE Architecture : The figure illustrates the architecture of a Variational Autoencoder (VAE)
designed for multimodal representation learning using a joint integration strategy. In this model, data from
different modalities X1, . . . , XK are encoded into respective latent representations Z1, . . . , ZK through
modality-specific encoders. These latent representations are then combined in a shared latent space Z ,
characterized by the mean µ and standard deviation σ, which captures the joint distribution of all modal-
ities. The shared latent variable Z is used to reconstruct each modality X̂1, . . . , X̂K via their respective
decoders.

the context of multi-omics integration.

2.3 . Application to Multi-Omics Integration

We aim to systematically assess and contrast various multimodal integration approaches, such as
early, late, and joint integration. This involves utilizing two representation learning models: factorial
techniques like Principal Component Analysis (PCA) and deep learning techniques such as autoen-
coders and variational autoencoders (VAEs) in the context of multi-omics integration.

2.3.1 . Related Work on Multi-Omics Integartion

Multi-omics integration has become a critical research focus in health sciences and precision
medicine, offering new insights into complex biological processes, particularly in cancer research. The
integration of diverse omics data types is essential for understanding the intricate molecular mech-
anisms underlying diseases. Various statistical and deep learning methods have been developed to
address the challenges of multi-omics integration, each offering unique advantages and facing dis-
tinct challenges.

One of the foundational approaches in this field is Principal Component Analysis (PCA), exten-
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sively explored in various studies, including its adaptations such as Multiple Factor Analysis (MFA),
Consensus PCA, and multi-block PCA [127, 215, 112]. MFA is particularly suited for integrating multi-
ple data tables, each representing a different modality. It extends PCA by simultaneously analyzing
several datasets, preserving the structure of each modality while capturing common patterns across
them. MFA can be applied in both early and joint integration strategies, depending on the desired out-
come. Kernel Multiple Factor Analysis (KFA) further enhances MFA by incorporating kernel methods,
enabling the analysis of nonlinear relationships between modalities [1, 188, 223, 82, 278].

Another significant method is Non-negative Matrix Factorization (NMF), which, unlike PCA, im-
poses a non-negative constraint rather than an orthogonality one. NMF has been widely used for
multi-omics data integration, particularly in cancer research, where it aids in uncovering meaningful
biological patterns [272]. Additionally, Joint Dimensionality Reduction (jDR) methods have emerged
as a valuable extension of traditional factorial methods, with applications in clustering and module
identification in disease-associated mechanisms [39, 245, 32]. These methods include Bayesian ap-
proaches that rely on assumptions about data distributions and network-based methods that use
graph representations to identify modules within complex biological systems.

Deep learning has increasingly been applied to multi-omics integration, driven by its success in
other medical applications such as imaging and diagnostics. Autoencoders, for instance, have been
extensively used for multi-omics data integration. Chaudhary et al. utilized autoencoders for survival
prediction, while other approaches like OmiVAE and OmiEmbed have improved representation and
multitask learning, respectively [207, 44, 274, 273]. Simidjievski et al. explored variational frameworks
for various tasks, highlighting the flexibility of deep learning architectures in handling multi-omics
data [225]. Other notable models include the Salmon framework, which integrates multi-omics data
using neural networks for survival analysis [118], and the OmiVAE framework, which was specifically
applied to study ovarian cancer [117].

Recent advancements have introduced sophisticated models like MOGONET (Multi-Omics Graph
Convolutional Network), which uses graph convolutional networks for supervised classification tasks,
demonstrating significant promise in biomedical classification by integrating multiple omics types
[253]. Another notable development is the Knowledge Distillation and Supervised Variational Autoen-
coders (KD-SVAE-VCDN), which combines knowledge distillation with supervised variational autoen-
coders to handle incomplete multi-omics data, making it particularly useful for disease progression
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prediction [255]. Additionally, the Weighted Affinity and Self-Diffusion Network Integration method
has been developed to enhance network connections and improve clustering performance for cancer
subtype identification [155].

2.3.2 . Experimental Setup

Classification on Ovarian Subtypes

Ovarian cancer is one of the most common gynecological cancers with the highest mortality rate
due to the absence of early-stage symptoms. It is molecularly heterogeneous and can be classified
into four molecular subtypes: Mesenchymal (C1), Immunoreactive (C2), Differentiated (C4), and Prolif-
erated (C5). A better understanding of these subtypes is essential for improved prognosis and ther-
apy.

We used the TCGA-OV cohort to evaluate the classification performance of our models by clas-
sifying the samples according to the ovarian molecular subtypes. The dataset includes CNV, miRNA,
and DNA methylation data. More details of TCGA are present in appendix B.1.

Table 2.1: Classification on Ovarian Subtypes: Data Description
Omic Type Omic Data Feature Size Sample SizeGenomics CNV 24,776 579Transcriptomics mRNA 12,042 593Epigenomics DNA methylation 21,666 616

For molecular subtypes, we used the ConsensusOV R package and a neural network classifier
optimized for each design.

Survival Analysis for Breast Cancer

We used the ovarian cancer TCGA cohort, TCGA-OV, for this test case. We utilized omics data and
clinical annotations to perform survival prediction using the DeepSurv model, a non-linear approach
to the Cox Proportional Hazard model.

The classical hazard function is defined as follows:

µ(t, xi) = µ0(t)Ψ(xi)

WhereΨ(xi) = exp(ψ(xi)), withψ being a nonlinear risk function. Themodel uses Efron’s negative
log-likelihood formula:
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L(θ) = −
∑

i:Ei=1

(µ̂(t, xi; θ)− log
∑

j∈R(Ti)

eµ̂(xi;θ))

Where µ̂(x; θ) is the risk function estimated by the output layer of the network. R(t) is the risk set,
the set of patients still at risk of failure after time t. More details on Survival Analysis can be found in
Appendix A.3

Evaluation Strategy

To rigorously assess the performance of the different models, we employ a 5-fold cross-validation
strategy. This involves partitioning the dataset into five equal-sized folds, ensuring each fold is used
as a test set once while the remaining four folds serve as the training set. This process is repeated
five times, enabling every data point to be included in both the training and test phases.

As there are missing samples in each modality, we only consider samples that have all the modal-
ities for the evaluation.

For each fold, we compute several evaluation metrics to ensure a comprehensive analysis of
model performance. The metrics considered include balanced accuracy, which provides a balanced
measure of accuracy accounting for imbalanced class distributions, and the area under the curve
(AUC), which evaluates the model’s ability to distinguish between classes.

For survival analysis, we use the concordance index (C-index), measuring the model’s discrimi-
native power by quantifying the concordance between the predicted and actual event times, and the
integrated Brier score (IBS), which assesses the accuracy of probabilistic predictions bymeasuring the
mean squared differences between the observed survival outcomes and the predicted probabilities
over time (Details of those metrics can be found in Appendix A.3). After performing 5-fold cross-
validation, we aggregate the results by calculating the mean and standard deviation of each metric
across all folds. This approach provides a robust estimate of model performance, accounting for vari-
ability and ensuring the reliability of our evaluation, thereby facilitating informed improvements and
refinements.

2.3.3 . Results

The evaluation of multimodal integration strategies for classifying ovarian subtypes and predict-
ing survival outcomes in the TCGA-OV cohort, shown in tables 2.2 and 2.3 reveals a clear hierarchy of
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Table 2.2: Classification of Ovarian subtypes : Evaluation of multimodal integration startegies using
multiple models evaluated on the classification of ovarian subtypes in the TCGA-OV cohort. The evaluation
is done using balanced accuracy along with the Area under ROC curve (AUC)

Model Accuracy AUCMFA 0.743± 0.053 0.941± 0.024Kernel MFA 0.754± 0.041 0.942± 0.022EI-AE 0.793± 0.038 0.953± 0.018EI-VAE 0.822± 0.029 0.963± 0.016DDAE 0.844± 0.034 0.971± 0.012
X-VAE 0.872± 0.021 0.981± 0.014H-AE 0.613± 0.081 0.865± 0.032H-VAE 0.844± 0.033 0.962± 0.013

Table 2.3: Survival Analysis on Ovarian cancer : Evaluation of multimodal integration startegies using
multiple models evaluated on the survival outcome prediction in the TCGA-OV cohort. The evaluation is
done using concordance index (C-index) along with the Integrated Brier Score (IBS).

Model C-Index IBSMFA 0.535± 0.064 0.243± 0.046Kernel MFA 0.541± 0.056 0.213± 0.041EI-AE 0.601± 0.048 0.192± 0.032EI-VAE 0.631± 0.039 0.176± 0.027DDAE 0.651± 0.034 0.162± 0.024
X-VAE 0.672± 0.044 0.143± 0.034H-AE 0.553± 0.085 0.242± 0.036H-VAE 0.622± 0.041 0.181± 0.022

model performance, with joint integration models, particularly those employing variational autoen-
coders (VAEs), emerging as the most effective. Among these, the X-VAE model exhibits the highest
accuracy and AUC for classification and the best C-index and lowest IBS for survival analysis, show-
casing its superior capability in handling complex multimodal data.

Early integration models, such as EI-AE and EI-VAE, demonstrate moderate performance, with
EI-VAE outperforming EI-AE. This suggests that while early integration captures some inter-modality
relationships by merging data at the input level, it may need to exploit the rich interactions present
across modalities fully. VAEs enhance this by providing a more sophisticated representation of the
integrated data, leading to better outcomes than standard autoencoders.

Late integration models, like H-AE and H-VAE, generally show poorer performance, with H-AE be-
ing the least effective across all metrics. H-VAE, however, shows a marked improvement over H-AE,
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underscoring the advantages of using VAEs. The main shortcoming of late integration is its failure to
capture inter-modality interactions effectively. By processing each modality separately before com-
bining their outputs, late integration strategies often miss the synergistic information that could be
leveraged if the modalities were integrated earlier. This separate processing can result in losing com-
plementary information crucial for accurate predictions.

The good performance of joint integration models, such as DDAE and X-VAE, can be attributed to
their ability to integrate data modalities simultaneously. This approach allows for extracting compre-
hensive and correlated features, significantly enhancing predictive accuracy. Joint integration models
can dynamically capture interactions between different data modalities during learning, leading to a
more holistic understanding of the data. VAEs, in particular, are adept at learning complex data distri-
butions and generating informative latent spaces, further boosting their performance in classification
and survival prediction.

Additionally, the ability of joint integration models to leverage inter-modality relationships more
effectively than early and late integration methods could explain their superior performance. In early
integration, the data modalities are merged at the input level, which can obscure the distinct contri-
butions of each modality and lead to suboptimal feature extraction. Conversely, late integration pro-
cesses each modality independently, failing to capture the synergistic interactions that occur when
modalities are considered together from the outset. This independent processing can diminish the
potential predictive power derived from the complementary nature of multimodal data.

Moreover, the distinct advantage of variational autoencoders over traditional autoencoders is
evident across all integration strategies. VAEs can learn richer, more nuanced data representations,
which translates to improved performance in classification and survival analysis tasks. Their ability to
model complex distributions and generate informative latent spaces allows for better capture of the
underlying data structure, leading tomore accurate and robust predictions. This highlights the critical
role of advanced modeling techniques in enhancing the efficacy of multimodal integration strategies.

To further test the limits of each integration strategy, an additional experiment was conducted
using multiple combinations of omics data. The results displayed in Tables 2.4 and 2.5 reveal that late
integration models, like H-VAE, achieved their best performance with single omic data, particularly
mRNA, rather than with combinations of multiple omics. This suggests that late integration strategies
are not well-suited to capturing cross-modality signals, highlighting a significant limitation in their
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Table 2.4: Classification of Ovarian Subtypes: Evaluation of different integration strategies using VAEs
on multiple combinations of omics data.

Model Data Combination Accuracy AUC
EI-VAE CNV 0.713± 0.043 0.921± 0.022mRNA 0.819± 0.029 0.961± 0.018Methyl 0.753± 0.034 0.941± 0.021CNV + mRNA 0.809± 0.031 0.931± 0.019CNV + Methyl 0.772± 0.038 0.943± 0.020

mRNA + Methyl 0.822± 0.029 0.963± 0.016CNV + mRNA + Methyl 0.821± 0.033 0.953± 0.018
X-VAE CNV 0.741± 0.032 0.931± 0.020mRNA 0.871± 0.021 0.979± 0.013Methyl 0.782± 0.029 0.951± 0.018CNV + mRNA 0.864± 0.023 0.972± 0.015CNV + Methyl 0.792± 0.031 0.952± 0.017

mRNA + Methyl 0.872± 0.021 0.981± 0.014CNV + mRNA + Methyl 0.861± 0.022 0.973± 0.015
H-VAE CNV 0.641± 0.048 0.891± 0.025

mRNA 0.844± 0.033 0.962± 0.013Methyl 0.693± 0.044 0.911± 0.023CNV + mRNA 0.802± 0.037 0.943± 0.021CNV + Methyl 0.722± 0.041 0.913± 0.022mRNA + Methyl 0.813± 0.032 0.943± 0.019CNV + mRNA + Methyl 0.813± 0.035 0.944± 0.021

design.
Moreover, joint integrationmodels like X-VAE, while generally performing well, showed decreased

performance when CNV data was included. This indicates that classical integration strategies may
need help effectively integrating CNV data with other omics data. The reduced efficacy of CNV inte-
gration suggests that these strategies may need to be fully equipped to simultaneously handle the
complexities and nuances of all types of omics data.

Additionally, as illustrated in Figure 2.5, the loss function for RNAseq data exhibits a more rapid
convergence than that for CNV data. This disparity in convergence rates impacts the multimodal
loss, which appears to align more closely with the RNAseq convergence trajectory. This observation
suggests that the CNV data may not be adequately integrated within the multimodal framework, po-
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Table 2.5: Survival Analysis on Ovarian Cancer: Evaluation of different integration strategies using VAEs
on multiple combinations of omic data

Model Data Combination C-Index IBS
EI-VAE CNV 0.571± 0.053 0.233± 0.041

mRNA 0.631± 0.039 0.176± 0.027Methyl 0.601± 0.048 0.192± 0.032CNV + mRNA 0.612± 0.042 0.182± 0.029CNV + Methyl 0.591± 0.047 0.194± 0.031mRNA + Methyl 0.621± 0.037 0.176± 0.026CNV + mRNA + Methyl 0.621± 0.041 0.181± 0.028
X-VAE CNV 0.611± 0.041 0.203± 0.032mRNA 0.662± 0.044 0.143± 0.034Methyl 0.621± 0.038 0.183± 0.031CNV + mRNA 0.662± 0.043 0.153± 0.033CNV + Methyl 0.631± 0.042 0.184± 0.030

mRNA + Methyl 0.672± 0.044 0.143± 0.034CNV + mRNA + Methyl 0.661± 0.040 0.154± 0.032
H-VAE CNV 0.551± 0.057 0.243± 0.041

mRNA 0.642± 0.041 0.181± 0.022Methyl 0.572± 0.052 0.212± 0.036CNV + mRNA 0.612± 0.046 0.191± 0.033CNV + Methyl 0.581± 0.049 0.213± 0.035mRNA + Methyl 0.632± 0.042 0.182± 0.031CNV + mRNA + Methyl 0.611± 0.045 0.192± 0.033

tentially due to insufficient convergence time within the joint integration strategy.
This observation raises concerns about the robustness and adaptability of current integration

methods. Suppose joint integration, otherwise the most effective strategy, fails to improve or main-
tain performance by adding CNV data. In that case, it underscores the need for developing more
sophisticated or tailored integration approaches that can better accommodate the diverse nature of
omics data. The results clearly show that while variational autoencoders and joint integration offer
substantial benefits, they also have limitations that must be addressed to achieve genuinely compre-
hensive and effective multimodal data integration.

2.3.4 . Conclusion

62



Figure 2.5: Comparison of the loss evolution between CNV, RNAseq and Multimodal model for Joint Inte-
gration for the TCGA-OV classification task

This chapter highlighted the superior performance of variational autoencoders (VAEs) over tradi-
tional factorial methods and autoencoders for multimodal data integration, particularly in classifying
ovarian subtypes and predicting survival outcomes in the TCGA-OV cohort. Joint integration models,
like X-VAE, consistently outperformed early and late integration approaches, especially with mRNA
and methylation data. However, challenges were noted with late integration strategies and the ef-
fective incorporation of CNV data, indicating limitations in current methodologies. These findings
underscore the need for more sophisticated integration techniques that can handle the complexity
of diverse omics data. The next chapter will expand this investigation to include a broader range
of datasets and tasks, aiming to test the robustness of these integration strategies and develop im-
proved methods to overcome the limitations identified.
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Abstract

Integrating multi-omics data presents significant challenges due to the complexity and volume
of datasets across genomics, transcriptomics, proteomics, and epigenomics. To address these
challenges, we introduced CustOmics, a deep learning framework designed to efficiently and
effectively integrate multi-omics data and validate it using multiple TCGA data. This chapter also
details the application of CustOmics to Myelodysplastic Syndromes (MDS), which has enabled
the identification of novel biomarkers and potential therapeutic targets that were not detectable
through traditional methods. Our findings demonstrate the potential of CustOmics to enhance
the accuracy of multi-omics data interpretation and advance precision medicine in oncology.
Multi-omics integration in oncology seeks to combine various data types—such as genomics, tran-

scriptomics, proteomics, andmetabolomics—to enhance disease understanding anddevelop person-
alized treatment plans. This approach holds great promise for advancing personalized medicine by
identifying novel biomarkers, unraveling complex disease pathways, and tailoring treatments to indi-
vidual patients. However, as demonstrated in the previous chapter, classical multimodal integration
techniques—including early, joint, and late integration—fail to optimally integrate multi-omics data,
highlighting significant limitations in current methodologies.

These challenges are substantial: the vast amount of data and its intricate nature demand ad-
vanced computational resources and sophisticated analytical methods for effective handling and
processing. Additionally, the diversity in data types, scales, and biological variability complicates stan-
dardization efforts, making comparisons and integrations difficult. Widespread missing data, often
resulting from varying experimental techniques and detection limits, further complicates analyses,
necessitating reliable methods to address these gaps without introducing bias. Consequently, there
is a pressing need for novel integration techniques to overcome these challenges and advance preci-
sion oncology by ensuring the biological interpretability of integrated data.

Numerous research initiatives have generated valuable data from various molecular sources. For
example, The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) has analyzed numer-
ous tumor samples using diverse molecular assays, providing data such as genome sequencing, RNA
sequencing, DNAmethylation, and proteomics. Integrating this diverse data is crucial to minimize the
uncertainty of different experimental conditions and uncover interactions that a single data source
cannot reveal.
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This broad spectrum of data presents two significant challenges. The first relates to the data’s
high dimensionality. Due to the complex genetic makeup of human molecular profiles, omics data
often suffers from the ’curse of dimensionality,’ where the number of features exceeds the number of
samples [174]. In such high-dimensional spaces, interrelated features can lead to significant overlap,
reducing the predictive accuracy of algorithms. The second challenge is data heterogeneity, which
arises from various sources and represents different aspects of biological systems in human omics
data [27]. For instance, transcriptomics and proteomics data are normalized and scaled differently,
resulting in varying data ranges and distributions; metabolomics data can also exhibit sparsity due to
variables falling below detection limits and being recorded as null values.

To address these challenges andmitigate overfitting in predictive tasks, conventional approaches
often involve handpicking a limited number of molecular features based on domain expertise [37]
or applying dimensionality reduction methods before further analysis. Other methods also incorpo-
rate penalties when building the model [25]. However, these methods risk missing critical underlying
patterns across the genome due to the significant disparities between data sources. This highlights
the urgent need for more flexible and advanced integration methods. Building on the observations
from the previous chapter, this chapter focuses on the conception, evaluation, and application of a
novel integration technique designed to overcome the shortcomings of classical methods, aiming to
improve the robustness and effectiveness of multi-omics data integration in precision oncology.

3.1 . CustOmics: A versatile deep-learning based strategy for multi-omics integra-

tion

The vast potential ofmulti-omics data in cancer research involves different omic data types to offer
a thorough understanding of the molecular processes involved in cancer. However, existing methods
for combining these various data formats frequently need to improve their capability to manage the
intricacy and size of the data efficiently. This difference highlights the urgent requirement for better
approaches to utilize the full scope of multi-omics data effectively.

As highlighted in Section 2.3, all existing multimodal integration techniques struggle to effectively
integrate RNAseq data with other omics data because of the significant differences in predictive sig-
nals. To tackle this problem, we introduce one of this thesis’s main contributions, CustOmics, an
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innovative deep learning system explicitly created to combine multi-omics information. CustOmics
seeks to address the constraints of current methods by utilizing an integration strategy tailored to
leverage various types of data effectively.

3.1.1 . Method

To address the limitations inherent in joint and late integration strategies, we propose a new
approach, "mixed integration." This strategy is designed to harness the strengths of both joint and
late integration while mitigating their respective weaknesses. By combining elements of each, mixed
integration aims to create a more robust and practical framework for data analysis, capitalizing on
the synergies between the two while addressing their shortcomings.

This integration strategy will be the foundation for building a customizable architecture for multi-
omics integration, CustOmics. The proposed method is a hierarchical mixed-integration consisting
of an autoencoder for each source, creating a sub-representation that will then be fed to a central
variational autoencoder. This new integration strategy benefits from two training phases. The first
phase will act as a normalization process: each source will train separately to learn a more compact
representation that synthesizes its information with less noise. This will help the integration as we
will lose all imbalance issues between the sources and avoid losing focus when a source has an infe-
rior dimensionality or weaker signal than the others. The second phase will constitute a simple joint
integration between the learned sub-representations while still training all the encoders to fine-tune
those representations, as some signals are enhanced in the presence of other sources.

Regarding the regularization loss for the central layer, the KL divergence can be an obstacle to
generalization. As stated in [277], the KL divergence suffers from various problems. First, the model
can fail to learn a meaningful input representation. Indeed, the KL divergence can sometimes be too
restrictive and naturally tends to make the latent code a random sample from pθ(z). The second is
that the KL divergence can make the model overfit and learn a latent code with variance tending to
infinity.

So, instead, we will use the Maximum Mean Discrepancy (MMD) to assess the distance between
the distributions. This distance stands on the foundation that two distributions are identical if their
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Figure 3.1: Mixed Integration : This figure illustrates a mixed integration strategy for multimodal learning,
introduced in two distinct phases. In Phase 1, each modality is trained separately, with the merging layer
(yellow) kept frozen. This phase focuses on optimizing the individual modality-specific networks, resulting
in two separate loss functions (Loss 1 and Loss 2) that are independently minimized. In Phase 2, the merging
layer is unfrozen, allowing themodalities to be trained jointly. In this phase, the loss functions are combined
into a single loss (Loss = Loss 1 + Loss 2), facilitating the integration of information across modalities and
improving the overall model’s performance by capturing inter-modality interactions.

moments are the same. Let p, q be two distributions; the MMD distance is given as follows:

MMD(p(x)||q(x)) =Ep(x),p(x′)(κ(x, x
′)) + Eq(x),q(x′)(κ(x, x

′))

− 2Ep(x),q(x′)(κ(x, x
′))

where κ is a kernel function and where x and x′ are two sample points. We will choose a Gaussian
kernel κ(x, x′) = e

−||x−x′||2

2σ2 .
Whereas all the models mentioned previously build the latent representation unsupervised, we

also create latent features adapted to specific tasks like classification or survival. This idea has been
usedmultiple times in the literature, for example, in [273]. The solution relies on adding a task-related
loss to the autoencoder objective function. Therefore, we denote by Ltask the loss such that the total
loss function would be expressed as follows: Ltot = LAE + αLtask, where LAE is the autoencoder
loss.

For the classification task, we use a categorical cross-entropy loss defined byLclass =
∑
i

yilog(ŷi),
where yi is the ground truth for the ith sample, and ŷi its estimation with the downstream model.
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Figure 3.2: This figure illustrates different integration strategies using Variational Autoencoders (VAEs) for
multi-omics data: Early Integration : All omics data (CNV, RNAseq, Methylation) are concatenated into a
single input and processed by a shared encoder-decoder network, producing a unified latent representa-
tion z. Joint Integration : Each omic modality is encoded separately, and the resulting latent represen-
tations are merged in a central encoder-decoder network to learn a shared latent space z, capturing both
shared andmodality-specific features. Late Integration : Modality-specific latent spaces (e.g., zCNV , zRNA,
zmethyl) are learned independently and then combined by an aggregation network to form a joint repre-
sentation z, retaining modality-specific information. Mixed Integration (CustOMICS) : Combines phases
of independent modality training with frozen central layers (Phase 1) and joint training with unfrozen layers
(Phase 2), aiming to balance modality-specific learning with effective multimodal integration.

We use the deep learning survival framework, DeepSurv, loss function for the survival task. This
nonlinear proportional hazard model has been introduced in [133]. The model is built by using the
negative partial log-likelihood formula that translates, in our case, into:

L(θ) = −
∑

i:Ei=1

(µ̂(xi; θ)− log
∑

j∈R(Ti)

eµ̂(xj ;θ)) (3.1)

where Ei is the event for patient I, µ̂(x; θ) is the risk function associated with the risk score estimated
by the output layer of the network, R(t) is the risk set, that is the set of patients still at risk of failure
after time t.
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This task-related loss will also be assigned to each omic-specific network in the first training phase
to create adequate sub-representations before the joint integration phase.

Multi-Omics Explainability

To build a more interpretable architecture, we adapt the method introduced in [256] to compute
Shapley Additive explanations values, SHAP values [160], for deep variational autoencoders (More
details can be found in Appendix A.5). Whereas thismethod has only been conceived for single-source
inputs, we expand it to the multi-source setting of CustOmics by adapting it to any deep autoencoder
and applying it to each source autoencoder thanks to the dual-phase approach characterizing the
mixed-integration strategy.

After training the CustOmics network, we analyze the importance of features (such as genes) using
SHAP (SHapley Additive exPlanations) values. Grounded in cooperative game theory, SHAP values
explain the output of machine learning models by attributing the prediction to each input feature.

Each omic modality is trained independently during the first phase of CustOmics training. Specifi-
cally, each autoencoder learns a latent representation for its corresponding omic source. LetX(m) ∈

Rn×dm represent the input data matrix for them-th omic modality, where n is the number of samples
and dm is the number of features (genes) in that modality. The encoder for each modality transforms
X(m) into a latent representation Z(m) ∈ Rn×km , where km is the dimensionality of the latent space
for them-th modality:

Z(m) = f
(m)enc (X(m); θ

(m)enc )

where θ(m)enc represents the parameters of the encoder network for modalitym.
We then pass the latent representation Z(m) or the prediction output from each autoencoder to

a DeepSHAP explainer. This explainer computes the SHAP values ϕ(m)
i for each gene i in modalitym

with respect to a given prediction ŷ:

ϕ
(m)
i = SHAP

(
∂ŷ

∂Z(m)

)
The SHAP values measure the contribution of each gene i in them-th modality to the prediction.

By averaging the SHAP values over a group of samples with similar features, we estimate the overall
importance of each gene when considering only that specific omic source.
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In the second phase of CustOmics training, the network is jointly trained by unfreezing the central
integration layer, allowing the latent representations from all modalities to interact and contribute to
the final prediction. The latent vectors from different modalities are combined to form a joint latent
space Z , which is used to make the final prediction ŷ:

Z = fjoint
(
Z(1), Z(2), . . . , Z(M); θjoint

)
whereM is the total number of omic modalities, and θjoint represents the parameters of the joint

network. The combined latent representation Z is used to compute the final prediction.
After this phase, SHAP values ϕ(m)

i are computed again, but this time the interactions between
different modalities influence them:

ϕ
(m)
i = SHAP

(
∂ŷ

∂Z

)
This allows us to observe how the importance of a feature (gene) changes when other modalities

are introduced. For example, a gene i in modalitym that had a particular importance in Phase 1 may
see its importance increase or decrease in Phase 2 due to the additional context provided by other
modalities.

By comparing the SHAP values from Phase 1 and Phase 2, we can gain insights into the robustness
and interdependence of features across different modalities. The mixed integration approach en-
ables us to assess the standalone importance of genes within a single modality and how these genes’
contributions are modulated when other biological layers are considered.

For instance, a gene that was moderately important in the transcriptomic data alone might be-
come highly important when combined with genomic data like CNV, suggesting that the gene’s func-
tion is closely linked with its number of copys. Alternatively, a highly important gene in isolation may
become less important in the joint context, indicating redundancy or interaction effects with other
data types.

3.1.2 . Experimental Setup

Test Cases and Datasets

This study uses datasets extracted from the Genomic Data Commons (GDC) pan-cancer multi-
omics study [100]. It is one of the most comprehensive datasets for multi-omics analysis, with high-
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dimensional omics data and corresponding phenotype data from The Cancer Genome Atlas (TCGA).
Our experiments use three types of omics data: Copy Number Variations (CNV), RNA-Seq gene

expressions, and DNA methylation. The CNV dataset comprises Gistic2 measurements on a total of
19,729 genes. The RNA-Seq expression dataset profile comprises around 60,484 identifiers referring
to corresponding exons and measuring log2 transformed Fragments Per Kilobase of transcript per
Million mapped reads, FPKM. Finally, the DNA methylation dataset was produced using the Infinium
HumanMethylation450 BeadChip (450K) arrays with 485,578 probes in which beta values of probes
indicate the methylation ratio of corresponding CpG sites.

Moreover, we also evaluate our method on five smaller cohorts from TCGA: Bladder Urothelial
Carcinoma (BLCA, n=437), Breast Invasive Carcinoma (BRCA, n=1022), Lung Adenocarcinoma (LUAD,
n=498), Glioblastoma & Lower Grade Glioma (GBMLGG, n=515) and Uterine Corpus Endometrial Car-
cinoma (UCEC, n=538). Appendix B.1 shows more details on the different datasets used.

We will perform in this study 4 different evaluations on 4 test cases for classification and survival.
The first task in our set of experiments is classifying the different tumor types in the pan-cancer study.
The classification performance was measured using five metrics: Accuracy, Macro-averaged F1 score,
precision, recall, and ROC-AUC [259]. We also perform a second classification task to validate our
findings on a smaller dataset and test the robustness of our method. This task aims to perform
a tumor subtype classification based on the PAM50 classification (LuminalA, LuminalB, Basal, and
HER2). We use the same setup as the pan-cancer case. The third test case will be a survival study
of the Pancancer dataset. Finally, the fourth test case will evaluate the survival performances of the
five datasets presented earlier. For all those test cases, We compare the CustOmics model to several
reference methods for multi-omics integration: first with a combination of dimensionality reduction
methods, Multiple Factor Analysis, MFA [215], UniformManifold Approximation and Projection, UMAP
[170], and non-negativematrix factorization, NMF [272], and alsowith different deep learningmethods
corresponding to the various strategies described in the first chapter.

Data Preprocessing

The data required some preprocessing before analysis.
• For RNA gene expression profiles, 594 exons located on the Y chromosome were removed to
avoid sex-specific expression, along with 1,904 ones with zero expression and 248 with missing
values.
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• For DNA methylation data, the same strategy as with gene expression profiles was used, in
addition to removing probes that cannot bemapped to the human reference genome. It leaves
us with 438,831 CpG sites.

We then intersected the samples across all combinations of omics data to maximize the num-
ber of samples available for each test case. After this, we identified and removed any features that
had missing values, consistently zero values, or NA entries across the other omic datasets. Finally, to
ensure that each omic source was equally weighted during integration, we applied min-max normal-
ization to the non-normalized datasets, such as CNVs and RNA-Seq data, so that all omic data sources
were scaled consistently.

Implementation Details

The CustOmics framework is based on the Pytorch deep-learning library [192]. It can be applied
to any combination of high-dimensional datasets and incorporates different integration strategies
depending on the type of data and task to perform. As done in Zhang et al. [273], DNAmethylation data
can be divided into 23 separate blocks, each feeding a hidden layer corresponding to a chromosome
to avoid overfitting and save GPU memory.

The whole architecture is built using fully connected blocks with weights initialized following a
uniform distribution U(− 1√

k
, 1√

k
) where k is the number of weight parameters. We use a batch nor-

malization technique in each layer composing the neural network to address the internal covariate
shift problem[121]. Also, to avoid overfitting problems, we use dropout [228]; its rate is considered a
hyperparameter.

The input dataset was randomly split into training, validation, and testing sets (60-20-20%) using
stratified 5-fold cross-validation so that the proportion of samples in each tumor type between the
different sets is preserved in all the folds. We performBayesian optimization [227] using the validation
set to find our model’s best possible combination of hyperparameters.

All models were trained using an Nvidia Tesla V100S with 32 GB memory.
The CustOmics framework is open-source and available in Github.

3.1.3 . Results
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Classification Results

We first perform the classification task on the pan-cancer dataset. Each architecture is coupled
with an artificial neural network classifier composed of two hidden layers with 256 and 128 neurons.
This network is trained using a categorical cross-entropy loss with ReLU activation function on the
hidden layer and a Softmax activation function on the output layer.
Table 3.1: The classification performance for the pan-cancer dataset is evaluatedwith 5 standardmetrics for
UMAP, NMF, MFA, Unsupervised Customics with SVM, and supervised deep-learning methods. We evaluate
the performances on the final predicted output of the downstream classifier. Best results are in bold.

Model Accuracy F1-score Precision Recall ROC-AUCUMAP 0.7598± 0.0036 0.7149± 0.0029 0.7200± 0.0031 0.7598± 0.0032 0.8740± 0.0012NMF 0.8599± 0.0017 0.8406± 0.0013 0.8460± 0.0018 0.8599± 0.0021 0.9266± 0.0019MFA 0.9167± 0.0012 0.9025± 0.0014 0.8945± 0.0008 0.9167± 0.0013 0.9565± 0.0003Unsup. Cust. 0.9335± 0.0038 0.9323± 0.0039 0.9342± 0.0043 0.9335± 0.0038 0.9689± 0.0019Early Int. VAE 0.9337± 0.0079 0.9314± 0.0086 0.9367± 0.0067 0.9337± 0.0079 0.9655± 0.0041Joint Int. VAE 0.9610± 0.0032 0.9600± 0.0032 0.9631± 0.0043 0.9610± 0.0032 0.9898± 0.0005Late Int. VAE 0.9492± 0.0115 0.9464± 0.0111 0.9498± 0.0079 0.9492± 0.0115 0.9737± 0.0060Mix Int. AE 0.9453± 0.0056 0.9423± 0.0063 0.9452± 0.0050 0.9453± 0.0056 0.9717± 0.0029
CustOmics 0.9788± 0.0025 0.9705± 0.0033 0.9728± 0.0041 0.9685± 0.0034 0.9918± 0.0001

Table 3.2: Classification performances for multiple combinations of omics data using joint integration on
the pan-cancer dataset.

Omics Accuracy F1-score Precision Recall ROC-AUCCNV 0.47± 0.03 0.47± 0.03 0.47± 0.03 0.48± 0.01 0.75± 0.02RNAseq 0.92± 0.01 0.93± 0.01 0.93± 0.01 0.92± 0.01 0.96± 0.00methyl 0.68± 0.02 0.68± 0.02 0.68± 0.02 0.68± 0.02 0.82± 0.01CNV + RNAseq 0.90± 0.02 0.89± 0.02 0.90± 0.02 0.88± 0.03 0.93± 0.00CNV + methyl 0.70± 0.02 0.69± 0.02 0.70± 0.02 0.70± 0.02 0.85± 0.01
RNAseq + methyl 0.96± 0.01 0.96± 0.01 0.96± 0.01 0.96± 0.0132 0.99± 0.00CNV + RNAseq + methyl 0.94± 0.01 0.94± 0.01 0.95± 0.01 0.94± 0.01 0.97± 0.00

Table 3.3: Classification performances for multiple combinations of omics data using CustOMICS on the
pan-cancer dataset. We can see that RNAseq data bring the best performances, but adding other omics
data increases the performances, suggesting that the integration is relevant.

Omics Accuracy F1-score Precision Recall ROC-AUCCNV 0.47± 0.03 0.47± 0.03 0.47± 0.03 0.48± 0.01 0.75± 0.02RNAseq 0.92± 0.01 0.93± 0.01 0.93± 0.01 0.92± 0.01 0.96± 0.00methyl 0.68± 0.02 0.68± 0.02 0.68± 0.02 0.68± 0.02 0.82± 0.01CNV + RNAseq 0.93± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01 0.96± 0.00CNV + methyl 0.71± 0.02 0.69± 0.02 0.70± 0.02 0.69± 0.02 0.85± 0.01RNAseq + methyl 0.94± 0.01 0.94± 0.01 0.94± 0.01 0.94± 0.0132 0.97± 0.00
CNV + RNAseq + methyl 0.98± 0.01 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.99± 0.00
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Figure 3.3: a. pan-cancer and PAM50 classification results: Overall classification results for the pan-
cancer tumor classification test case and the PAM50 subtype classification for breast cancer. b. T-SNE
vizualization for each omic source separately, along with the latent representation constructed by Cus-
tOmics. We see that the constructed layer representation succeeds at separating the data into four distinct
clusters that we couldn’t distinguish with each omic source alone. c. PAM50 gene importance: Computed
SHAP values on the RNA-Seq data of the most relevant genes responsible for discriminating between sub-
types against the others using CustOmics for both integration phases.
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Fig 3.3, Table 3.1 and Table 3.4 show the overall classification results.
Among the factorial methods, the MFA achieved the best results, so we coupled this method with

the same ANN classifier used with the deep-learning representation methods as a basis for compari-
son. However, it does not perform as well as most deep-learning methods. This is because MFA can-
not uncover nonlinear relationships between different sources, unlike deep-learning architectures.
Moreover, as the MFA is an early integration, it suffers from problems of signal imbalance related to
early integration.

We also assessed the performance of an unsupervised representation given by our CustOmics
network by plugging it into the same ANN classifier as used for the factorial methods. This unsuper-
vised setting performs quite well compared to similar unsupervised methods like the factorial ones,
which show the robustness of the representation learned by CustOmics, evenwithout adding the task
loss. Moreover, we can see in Table 3.1 that, generally, Variational Autoencoders perform better than
standard autoencoders, which comforts us in choosing a variational setup for CustOmics.

As hinted earlier, we can see that for the deep learning strategies, early integration is behind
the others in terms of performance. It can be explained by the fact that RNA-Seq data hold more
signals when determining tumor types or subtypes. Thus, concatenating the sources before feeding
them to the VAE overshadows the other sources, and the learned representation depends mostly on
RNA-Seq data without leveraging the other modalities. It is illustrated in Table 3.3, showing that the
classification results using RNA-Seq data only are very close to those obtained with early integration,
indicating that the model may overlook the interactions between sources. Late integration is not
optimal since interactions between sources are not adequately learned as the predictors are trained
separately. Joint integration performs well in most cases, but we see that the best results displayed
in 3.2 are achieved by the combination of only two sources, RNA-Seq and Methylation data, as it
seems that CNV data only adds noise to the latent representation, meaning that its information is not
handled well with this strategy.

These results confirm the interest in the CustOmics architecture, as it gives the best performances
for all the test cases while being able to converge without apparent overfitting, as suggested by Figure
C.2. Moreover, it also takes advantage of the complementarity and interactions between sources: As
shown in Appendix B3, all sources bring additional information. We can witness that even though
transcriptomics data gives the best performances, other omics sources succeed at bringing additional
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Table 3.4: Classification performance for PAM50 breast cancer subtype classification on the TCGA-BRCA
dataset, with 5 standard metrics. We compare machine-learning methods like UMAP, NMF, and MFA with
deep-learning methods. We evaluate the performances on the final predicted output of the downstream
classifier. Best results are in bold.

Model Accuracy F1-score Precision Recall ROC-AUCUMAP 0.6815± 0.0152 0.6612± 0.0140 0.6637± 0.0157 0.6815± 0.0151 0.8482± 0.0055NMF 0.7025± 0.0132 0.6955± 0.0135 0.7032± 0.0110 0.7025± 0.0131 0.8576± 0.0119MFA 0.7532± 0.0164 0.7460± 0.0160 0.7562± 0.0162 0.7531± 0.0165 0.8884± 0.0037Unsup. Cust. 0.8133± 0.0172 0.8044± 0.0168 0.8322± 0.0144 0.8112± 0.0150 0.9674± 0.0031Early Int. VAE 0.8063± 0.0152 0.7840± 0.0167 0.8228± 0.0167 0.8063± 0.0150 0.9552± 0.0077Joint Int. VAE 0.8518± 0.0184 0.8488± 0.0189 0.8589± 0.0161 0.8518± 0.0151 0.9734± 0.0035Late Int. VAE 0.8312± 0.0174 0.8124± 0.0201 0.8429± 0.0215 0.8312± 0.0176 0.9689± 0.0066Mix Int. AE 0.8452± 0.0168 0.8322± 0.0214 0.8477± 0.0234 0.8417± 0.0181 0.9709± 0.0051
CustOmics 0.8758± 0.0162 0.8728± 0.0141 0.9012± 0.0137 0.8758± 0.0130 0.9828± 0.0022

information. The high performance of transcriptomics data is predictable as most information about
tumor types and molecular subtypes is expressed in RNA data. It is also interesting to see that in
Appendix B1, transcriptomics data need not only a few layers to converge to their best results, but
other data types do not.

Regarding the computational cost of all those methods, we see in Table C.1 that they all have
around the same number of trainable parameters. The slight increase in the number of parameters
in CustOmics is due to the intermediate networks necessary for phase 1, similar to the late integration
setup. Figure 3.3 gives a visualization of the different sources: Even though the initial sources are quite
entangled, the CustOmics latent representation separates the clusters using the mutual information
between modalities.

We also use the interpretability property of CustOmics introduced in the Methods section to high-
light the most relevant features for discriminating between PAM50 subtypes by computing their re-
spective SHAP values for each source. We do it for both phases: in phase 1, we retrieve the relevant
genes considered when using a single omic source, whereas, in phase 2, we investigate how adding
other sources’ signals changes the genes’ importance. Fig 3.3 references the results of such explana-
tions on RNA-Seq data, Figure C.3 and Fig C.4 show the results for CNV and methylation data. We ob-
serve some well-referenced biomarkers for breast cancer like TFF1 [264], suggesting that our method
can retrieve relevant biological information.
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Survival Analysis

The second task in this study is survival analysis, where the objective is to predict the risk score
associated with each patient based on the corresponding high-dimensional omics data. To evaluate
the performance of this downstream task, two standard metrics are used: the Concordance Index
(C-index), which generalizes the AUC metric for censored survival data [110], and the Integrated Brier
Score (IBS) [95].

For the Pancancer analysis, where different cancer types have varying weights andmortality rates,
we implemented a weighted C-index to ensure a fair evaluation across all tumor types. In this ap-
proach, the trained model is first evaluated on each tumor type individually to compute the C-index
for that specific type. We then perform a weighted average of these C-indices, with the weights re-
flecting each cancer type’s relative importance or prevalence. This method ensures that the overall
performance metric fairly represents the model’s effectiveness across diverse tumor types.

Fig 3.4, Table 3.5, and Table 3.7 show the results for the differentmethods for the survival task. The
same observations regarding the differences between integration strategies can be made regarding
the classification task. Here again, we also evaluated the performance of the CustOmics method for
each combination of omics sources as shown in Table 3.6.
Table 3.5: The survival analysis performance for the pan-cancer dataset is evaluatedwith two standardmet-
rics, C-index and IBS. We compare classical methods like UMAP, NMF, and MFA with deep-learning methods
and evaluate the performances on the final predicted output of the downstream survival network. Best
results are in bold.

Model C-index IBSUMAP 0.5948± 0.0231 0.2486± 0.0327NMF 0.6012± 0.0204 0.2207± 0.0264MFA 0.6127± 0.0164 0.2192± 0.0203Unsup. Cust. 0.6329± 0.0144 0.2087± 0.0207Early Int. VAE 0.6578± 0.0103 0.2106± 0.0117Joint Int. VAE 0.6709± 0.0041 0.1802± 0.0072Late Int. VAE 0.6629± 0.0086 0.2112± 0.0088Mix Int. AE 0.6618± 0.0051 0.1815± 0.0074
CustOmics 0.6841± 0.0033 0.1745± 0.0052

The last task consists in evaluating the model performances for survival analysis for several spe-
cific cancer types of the TCGA datasets described in the dataset section. The objective is to evaluate
the robustness of the models when dealing with smaller datasets.
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Figure 3.4: a. Survival Analysis Performances: We evaluate the performances of the survival model
for the pan-cancer dataset using both the C-index and the Integrated Brier Score (IBS). Here again, our
model outperforms the other integration strategies on both metrics. b. Log-rank test: We compute the
p-value associated with the log-rank test between high and low-risk groups for every integration strategy on
a validation set for the pan-cancer survival test case and compare it to mono-omic survival predictions. c.
Kaplan Meier Curves : We draw the Kaplan Meier curves and display the p-value associated with the log-
rank test as computed previously for each dataset using the predicted hazard from the CustOmics model
and stratify the population into high and low risk on the test set for the predicted hazard ratio. This figure
shows that our method successfully stratifies the patients into risk subgroups.

Finally, we perform a more thorough analysis of the survival results we display in Fig 3.4. We
leave out 20% of our datasets for validation purposes, and we perform 5-fold cross-validation on the
remaining 80% to compute the p-values associated with the log-rank test for different combinations
of the Pan-cancer test case. We show the ability of CustOmics to stratify the patients into distinct risk
groups using the predicted hazard ratio. This stratification ability was also measured quantitatively
using the p-value associated with the log-rank test between the different categories. Even though the
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Table 3.6: Survival performances for multiple combinations of omics data using CustOMICS on the pan-
cancer dataset. We can see that the best performances are obtained with RNAseq data, but the addition of
other omics data increases the performances, suggesting that the integration is relevant.

Omics Accuracy F1-scoreCNV 0.54± 0.05 0.25± 0.06RNASeq 0.63± 0.02 0.20± 0.02methyl 0.59± 0.02 0.23± 0.03CNV + RNAseq 0.64± 0.02 0.19± 0.02CNV + methyl 0.61± 0.03 0.21± 0.03RNAseq + methyl 0.64± 0.02 0.19± 0.02
CNV + RNAseq + methyl 0.68± 0.01 0.17± 0.01

Table 3.7: Survival performances of state-of-the-art integrationmethods for survival analysis, using concor-
dance index on 5 TCGA cohorts: Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA),
Glioblastoma & Lower Grade Glioma (GBMLGG), Lung Adenocarcinoma (LUAD) and Ulterine Corpus En-
dometrial Carcinoma (UCEC).

Model BLCA BRCA GBMLGG LUAD UCEC OverallUMAP 0.527± 0.048 0.524± 0.039 0.557± 0.028 0.530± 0.017 0.543± 0.025 0.536NMF 0.553± 0.060 0.560± 0.036 0.584± 0.067 0.589± 0.052 0.570± 0.068 0.571MFA 0.591± 0.052 0.599± 0.043 0.605± 0.036 0.597± 0.058 0.586± 0.020 0.596Unsup. Cust. 0.599± 0.062 0.624± 0.048 0.633± 0.032 0.606± 0.049 0.622± 0.023 0.617Early Int. VAE 0.603± 0.054 0.618± 0.039 0.628± 0.056 0.612± 0.041 0.609± 0.032 0.614Joint Int. VAE 0.616± 0.072 0.627± 0.030 0.635± 0.020 0.608± 0.038 0.630± 0.021 0.624Late Int. VAE 0.610± 0.055 0.620± 0.057 0.621± 0.067 0.595± 0.012 0.627± 0.022 0.615Mix Int. AE 0.611± 0.049 0.625± 0.061 0.609± 0.047 0.594± 0.031 0.615± 0.020 0.611
CustOmics 0.637± 0.050 0.633± 0.018 0.642± 0.028 0.625± 0.037 0.667± 0.022 0.640

comparison between joint, late, and mixed integration is not evident in this case, it is interesting to
note that the addition of multiple omics sources has dramatically affected the p-value as it was nearly
multiplied by a factor 10−5 for CNV data and 10−2 for RNA-Seq and methylation data. Those results
also show that early integration is the strategy withminimal enrichment from other sources. This cor-
roborates our previous intuition and is coherent with the results found in the different experiments.

3.2 . An Application of Multi-Omics Integration to Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are diverse hematopoietic disorders characterized by ineffec-
tive blood cell production, resulting in low blood cell counts and an increased chance of developing
acute myeloid leukemia (AML). The development and function of bone marrow stem cells in MDS are
influenced by various genetic, epigenetic, and environmental factors, making the pathogenesis com-
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plex. In a clinical setting, diagnosing and treating MDS is difficult because of its various symptoms
and results.

The primary basis for diagnosing MDS is examining the bone marrow and peripheral blood mor-
phology, along with cytogenetic studies. However, these customary approaches frequently need to
capture the complex molecular makeup of MDS. The diversity of genetic changes in MDS patients
is highlighted by gene mutations involved in RNA splicing, DNA methylation, and histone modifica-
tion. The diverse characteristics of these changes make the prediction and treatment planning more
difficult, underscoring the urgent need for enhanced diagnostic instruments.

3.2.1 . Context

Myelodysplastic Syndromes (MDS) represent a heterogeneous group of hematopoietic stem cell
disorders characterized by ineffective hematopoiesis, dysplasia in one or more of the significant
myeloid cell lines, and an increased risk of progression to acute myeloid leukemia (AML). Over the
past few decades, substantial research has been conducted to understand the pathophysiology, clas-
sification, diagnosis, and treatment of MDS.

The pathophysiology of MDS involves a complex interplay of genetic and epigenetic alterations.
Mutations in genes such as TP53, RUNX1, ASXL1, and SF3B1have been identified as key drivers inMDSde-
velopment and progression. These mutations often affect crucial cellular processes, including DNA
methylation, histone modification, and RNA splicing, leading to aberrant hematopoiesis and clonal
evolution [190]. Recent studies using next-generation sequencing (NGS) have provided more pro-
found insights into the mutational landscape of MDS, revealing that multiple mutations are often
present in a hierarchical order, contributing to the disease’s heterogeneity [104].

TheWorld Health Organization (WHO) classification system for MDS, updated in 2016, emphasizes
the importance of cytogenetic andmolecular abnormalities in addition tomorphological criteria. This
classification distinguishes MDS from related myeloid neoplasms such as chronic myelomonocytic
leukemia (CMML), which has myelodysplastic and myeloproliferative features [10]. The revised Inter-
national Prognostic Scoring System (IPSS-R) incorporates cytogenetic findings and clinical parameters
to stratify patients based on risk, aiding prognosis and treatment decisions [97].

Integrating multi-omics approaches, including genomics, transcriptomics, and epigenomics, has
revolutionized the diagnosis and understanding ofMDS. Copy number variations (CNVs), variant allele
frequencies (VAFs), and RNA sequencing (RNA-seq) provide comprehensive molecular profiles that
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enhance disease classification and reveal potential therapeutic targets. For instance, the application
of NGS and single-cell RNA-seq has uncovered clonal architecture and evolutionary dynamics, offering
insights into disease progression and resistance mechanisms [70].

Therapeutic strategies for MDS have evolved significantly, with options ranging from support-
ive care to disease-modifying treatments. Hypomethylating agents (HMAs) such as azacitidine and
decitabine have improved survival and delayed progression to AML [79]. Additionally, lenalidomide
has been effective inMDSwith del(5q) cytogenetic abnormalities [152]. Allogeneic hematopoietic stem
cell transplantation (HSCT) remains the only curative option, though it is limited by patient age and co-
morbidities [63]. The development of targeted therapies, including inhibitors of mutant proteins and
immune checkpoint inhibitors, holds promise for more personalized treatment approaches [270].

Identifying reliable biomarkers for prognosis and treatment response is a critical area of research
in MDS. Studies have shown that specific gene mutations and cytogenetic abnormalities are associ-
ated with distinct clinical outcomes. For example, mutations in TP53 are linked to poor prognosis,
while mutations in SF3B1 often indicate a more favorable outcome [22]. Comprehensive mutational
profiling in clinical practice can guide therapeutic decisions and risk stratification.

The Molecular International Prognostic Scoring System (IPSS-M), developed by Elsa Bernard et al.
[26], enhances the risk stratification ofMyelodysplastic Syndromes (MDS) by integratingmolecular ge-
netic data with traditional clinical and cytogenetic parameters. This system incorporates mutations
from 31 essential genes, providing a more accurate and personalized risk assessment. Compared
to the previous IPSS-R, the IPSS-M reclassified 46% of patients into different risk categories, improv-
ing prognostic precision and treatment decision-making. The IPSS-M also addresses therapy-related
MDS, offering a versatile and comprehensive tool for guiding patient care and clinical trial design.

Despite these advances, challenges still need to be addressed in managing MDS. The heteroge-
neous nature of the disease, variability in patient responses, and the development of resistance to
existing therapies highlight the need for ongoing research. Future directions include integrating ad-
vanced multi-omics techniques to uncover novel therapeutic targets, developing more effective com-
bination therapies, and exploring the tumor microenvironment’s role in disease progression [171].

This studywill focus on assessing the use and performance of amulti-omics analysis forMyelodys-
plastic Syndromes.

3.2.2 . Data Description & Preprocessing
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Figure 3.5: A. Cohort Overview: Overview of the MDS cohort with the available molecular sources (VAF,
CNV, RNAseq). B. Data Processing: Processing Pipeline for the RNAseq Data. C. Mulit-Omics Represen-
tation learning: Use of the CustOmics Model to create a latent representation of multi-omics data. D.
Predictive Tasks: For this study, we will perform classification, survival and unsupervised clustering tasks.
E. Multi-Level Interpretations: CustOmics offers explainability at different levels of the biological system.

The dataset includes information on clinical andmolecular aspects of 556MDS patients with Copy
Number Variations (CNV), Gene expression & VAFs (More details can be found in Appendix B.2). Pa-
tients were obtained from three distinct centers, providing a wide range of the disease. The group
consists of male and female patients, with slightly more males.

The data contains various hematologic measurements, such as the Revised International Prog-
nostic Scoring System (IPSS-R) factors like blast percentages and hemoglobin levels. These factors
are essential for evaluating the seriousness and advancement of the illness.

The WHO 2016 criteria categorize patients into different subgroups, including various MDS sub-
types. MDS with multilineage dysplasia (MDS_MLD) and MDS with ring sideroblasts and multilineage
dysplasia (MDS_RS_MLD) are prevalent subtypes that demonstrate the various and intricate nature
of the disease in this group.

Data on survival, such as overall survival (OS) and event-free survival (EFS) times, offer information
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on patient outcomes and treatment effectiveness. In addition, information on using erythropoiesis-
stimulating agents (EPO) and azacitidine (AZA) is provided, focusing on treatment methods and how
long they were used in this group.

Initially, the dataset of 63,677 adjusted RNAseq reads undergoes a filtering process to retain En-
sembl IDs with more than 50 copies in at least 10 cases, resulting in 19,207 genes. This step is crucial
for excluding low-abundance transcripts and reducing noise. Following this, the data is normalized
using Variance Stabilizing Transformation (VST), stabilizing the variance across different expression
levels, making the dataset more comparable across samples while maintaining the same number of
genes.

To address potential technical variations arising from different experimental conditions, batch ef-
fect correction on the center variable is performed using the Limma method [202]. This correction
ensures that the observed gene expression differences are biological rather than technical artifacts,
refining the dataset to 19,136 genes. Additionally, ribosomal andmitochondrial genes, which can dom-
inate the RNAseq data and obscure relevant biological signals, are removed, maintaining focus on
nuclear gene expression and keeping the gene count consistent.

The final preprocessing step involves filtering the remaining genes based on their variance, retain-
ing only those with a variance greater than 0.5. This step further refines the dataset to 14,494 genes,
ensuring that only genes with significant variability and potential biological relevance are included in
the final processed dataset.

3.2.3 . Methods

This study employed the CustOmics framework for supervised and unsupervised tasks, as out-
lined previously.

Unsupervised Clustering

For unsupervised clustering, we adopted a methodology inspired by DeepCluster [40], utilizing
self-supervised learning to improve the clustering of multi-omics data. The process begins with the
initial clustering of integrated omics data using k-means, a widely used algorithm for partitioning
data into k clusters. Given a dataset X = {x1, x2, . . . , xn} where each xi represents a multi-omics
data point, k-means aims to minimize the within-cluster sum of squares (WCSS) by solving:
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min
C1,...,Ck

k∑
j=1

∑
xi∈Cj

∥xi − µj∥2

where Cj denotes the j-th cluster and µj is the centroid of Cj .
These initial clusters serve as the foundation for training the CustOmics framework, which is de-

signed to learn a latent space representation Z of the data. The latent space representation Z is
parameterized by a neural network fθ : X → Z , where θ represents the learnable parameters of the
network. The goal is to find a representation Z such that when the data is re-clustered in this space,
the clusters are more compact and distinct.

The training process is iterative, involving the following steps:
1. Clustering Step: Given the current latent space representation Z = fθ(X), apply k-means

clustering to Z , resulting in new cluster assignments {C1, C2, . . . , Ck}.
2. Feature Learning Step: Using the cluster assignments as pseudo-labels, update the parame-

ters θ of the neural network by minimizing a self-supervised loss function L. A common choice for L
is a contrastive loss or a cross-entropy loss defined as:

L(θ) = −
n∑

i=1

logP (ci|xi; θ)

where ci is the pseudo-label (cluster assignment) for data point xi, andP (ci|xi; θ) is the probability
of assigning xi to cluster ci given by the neural network.

3. Latent SpaceUpdate: After updating θ, recompute the latent space representationZ = fθ(X).
4. Iteration: Repeat the clustering step with the updated Z and iterate the process until conver-

gence, typically when the change in cluster assignments or the loss L becomes negligible.
Through this iterative refinement, the CustOmics framework enhances the clustering by ensuring

that the latent space representation Z evolves to better reflect the underlying structure of the multi-
omics data. The objective is to reduce the intra-cluster variance and increase inter-cluster separation,
which is formally expressed as:

min
θ

k∑
j=1

∑
zi∈Cj

∥zi − µZj ∥2 + λL(θ)

where µZj is the centroid of cluster Cj in the latent space, and λ is a regularization parameter.
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Ultimately, these refined latent space representations are used to classify data points into dis-
tinct clusters, revealing underlying biological patterns that might be missed by supervised methods
alone. This approach provides a robust framework for interpreting complexmulti-omics datasets and
uncovering novel biological insights, consistent with other applications of self-supervised learning in
omics data analysis.

Pathway Analysis

Additionally, to further enhance the interpretability of our results, we utilized SHAP values derived
from the CustOmics framework as the basis for Gene-Set Variation Analysis (GSVA). SHAP (SHapley
Additive exPlanations) values, denoted as ϕi,j , quantify the contribution of each feature j to the pre-
diction for a particular sample i. These values are computed based on Shapley values from coopera-
tive game theory, ensuring a fair allocation of importance among the features.

Inspired by the work of Lundberg et al. [160], we replaced the traditional GSVA scores with individ-
ual SHAP values. Given a gene set S consisting of genes g1, g2, . . . , gm, the traditional GSVA method
calculates an enrichment score ESS for each gene set S and each sample i, which reflects the extent
to which the genes in S are coordinately up- or down-regulated.

In our modified approach, we calculate a SHAP-based enrichment scoreESSHAPS for each gene set
S and each sample i as follows:

ESSHAPS (i) =
∑
j∈S

ϕi,j

where ϕi,j is the SHAP value for gene j in sample i. This score represents the cumulative contri-
bution of the genes in set S to the model’s prediction for sample i.

This integration of SHAP values intoGSVAprovides a nuancedunderstanding of gene-set variation,
enhancing the explainability of our findings. By utilizing SHAP values instead of traditional expression
values, we can directly interpret the impact of gene sets onmodel predictions, thereby offering amore
transparent and interpretable analysis of gene-set activity in the context of the multi-omics data.

3.2.4 . Experimental Setup

To evaluate the effectiveness of our proposed method, we conducted three distinct experiments:
subtype classification, survival analysis, and unsupervised clustering. Each experiment is designed to
assess different aspects of the model’s performance.
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The first experiment involves a binary classification task aimed at distinguishing between two
specific subtypes within the dataset (Details on the dataset are available in Appendix B.2). This task
is performed using a 5-fold cross-validation approach to ensure the robustness and generalizability
of the results. The dataset is split into five folds, where in each iteration, four folds are used for
training, and the remaining fold is used for testing. The process is repeated five times, and the final
performance metrics are averaged across all folds.

The evaluation metrics for this classification task include balanced accuracy, F1-score, Precision-
Recall, and ROC-AUC. These metrics provide a comprehensive assessment of the model’s ability to
accurately classify the subtypes, particularly in scenarios where class imbalance may be present. Our
method is primarily compared to a penalized logistic regression model, which serves as a baseline.
Additionally, we benchmark our approach against several state-of-the-art methods. Detailed results
and further analysis of this experiment can be found in the Appendix C.2.2.

The second experiment focuses on evaluating the Leukemia Free Survival (LFS) prediction. For
this task, the dataset is divided into an 80% training set and a 20% test set. The goal is to predict the
time until a patient experiences a relapse or death, which is a critical aspect of treatment planning
and prognosis.

The model’s performance in this survival task is assessed using survival analysis techniques, in-
cluding the Kaplan-Meier estimator and concordance index (C-index). These metrics help determine
how well the model can predict the LFS, thus providing insights into its potential clinical applicability.

The third experiment involves unsupervised clustering applied to the entire dataset. This task is
designed to assess the model’s ability to discover inherent patterns and groupings within the data
without prior labels. The unsupervised clustering results are evaluated based on cluster purity, sil-
houette score, and other relevant clustering metrics.

This experiment aims to uncover underlying biological insights and identify potential new sub-
types or groupings within the data that may not have been previously recognized. The clustering
results are analyzed in the context of known clinical and biological characteristics, providing a deeper
understanding of the data’s structure.

3.2.5 . Subtypes Classification

Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML) are distinct
hematological disorders, each with unique characteristics, as classified by the 2016 World Health Or-
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Figure 3.6: a. Comparison Study between CustOmics and Logistic Regression for the discrimination between
MDS and CMML subtypes withmulti-omics data. b. Pathway Enrichement Analysis in single andmulti-omics
setup with gene importances of the top 2 pathways. c. Gene importance for CNV and VAF sources in single
and multi-omics setup.

ganization (WHO) criteria. MDS is primarily marked by ineffective hematopoiesis, which leads to a
reduced production of blood cells and an increased risk of progression to acute myeloid leukemia
(AML). On the other hand, CMML is a hybrid disorder that exhibits both myelodysplastic and myelo-
proliferative features. Myelodysplastic features in CMML include abnormal blood cell production and
dysplasia (abnormal development of blood cells), while myeloproliferative features involve an exces-
sive production of certain blood cells, particularly persistent monocytosis (an elevated number of
monocytes in the blood). Accurately distinguishing between MDS and CMML is essential, as it guides
the appropriate treatment strategies and informs the prognosis for the patient.

Figure 3.6 illustrates the performance of the CustOmics framework compared to a standard lo-
gistic regression model across various metrics, including accuracy, macro F1-score, and area under
the curve (AUC). The box plots indicate that CustOmics consistently outperforms logistic regression
as more modalities are integrated. For instance, while logistic regression shows marginal improve-
ments with adding each data type, CustOmics substantially increases performance metrics, particu-
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larly when combining CNV, VAF, and RNA-seq data. This suggests that CustOmics is better equipped
to leverage the complex, high-dimensional data from multiple omics sources, resulting in the more
accurate and robust classification of MDS and CMML.

The pathway analysis reveals significant differences between using RNA-seq data alone and inte-
grating it with other omics data. When considering RNA-seq only, key pathways such as epithelial-
mesenchymal transition, inflammatory response, and TNF signaling via NFB are highlighted. These
pathways are critical in the pathophysiology of myeloidmalignancies and reflect underlying biological
processes driving disease progression.

However, when RNA-seq data is combined with other omics data (multi-omics), additional path-
ways such as inflammatory response and IL2 STAT5 Signaling emerge as more significant than in the
single-omic setup. This indicates that integrating multiple data types reinforces the understanding of
known pathways and uncovers new biological insights that may be missed when analyzing RNA-seq
data alone. For example, identifying glycolysis pathways highlights metabolic alterations that could
be pivotal in disease mechanisms and therapeutic targeting [26, 182].

The SHAP value plots for CNV and VAF highlight the most important genes contributing to the
classification model. For CNV data, critical chromosomal abnormalities such as deletions and dupli-
cations (e.g., del5q, del20q, upd7q) are emphasized. These genetic alterations are well-documented
as significant factors in MDS and CMML pathogenesis. For example, del5q is associated with a distinct
MDS subtype with specific clinical and therapeutic implications [26].

For VAF data, key mutations in genes such as TET2, ASXL1, and SF3B1 are highlighted. These genes
are commonly mutated in myeloid malignancies and play crucial roles in epigenetic regulation, splic-
ing, and transcriptional control. Mutations in TET2 and ASXL1 are particularly prevalent in CMML, where
they contribute to clonal hematopoiesis and disease progression [182].

3.2.6 . Survival Outcome Prediction

We conducted survival outcome predictions using various combinations of omics data to assess
the impact of multi-omics integration on risk stratification based on Leukemia-Free Progression (LFS).
Figure 3.7 illustrates the Kaplan-Meier survival curves for patients classified as high-risk and low-risk
based on our predictive models. The integration of multi-omics data demonstrated a marked im-
provement in distinguishing between high and low-risk patients compared to models using single-
omics data alone. This is evidenced by the significantly lower log-rank p-value observed in the multi-
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Figure 3.7: Multi-Omics Kaplan Meier: Kaplan-Meier survival curves comparing the impact of different
omics data combinations on Leukemia Free Survival (LFS). The three panels represent the survival analysis
for different sets of omics data: (1) CNV + VAF, (2) RNAseq, and (3) Multi-Omics. For each dataset, patients are
stratified into high-risk and low-risk groups based on the median of the risk score generated by the model.
The blue curves represent the survival probability of the low-risk group, while the red curves represent the
high-risk group. The associated p-values indicate the statistical significance of the differences between the
high and low-risk groups. The corresponding tables below each Kaplan-Meier plot detail the number of
patients at risk, censored, and the number of events (relapse or death) over time for both risk groups.

omics integration approach, indicating amore robust and statistically significant separation of survival
curves.

To further explore this difference in survival, we analyze the explainability results of this study. Fig-
ure 3.8 shows that the hallmark pathway enrichment analysis from RNA sequencing data, both alone
and combined with other omics, highlights significant pathways such as EPITHELIAL MESENCHYMAL
TRANSITION, ALLOGRAFT REJECTION, and KRAS SIGNALING UP, which have been previously implicated in
cancer progression and immune response [149, 230]. These pathways are crucial in influencing LFS,
indicating that cell migration, immune system modulation, and oncogenic signaling play vital roles in
disease progression and patient outcomes.

The SHAP (Shapley Additive exPlanations) values for copy number variations (CNVs) reveal that
deletions in chromosomes 5q, 7q, and 20q are significant predictors of LFS. These CNVs have been
extensively studied and are known to be associated with poor prognosis in MDS [191, 131]. Their iden-
tification underscores their critical role in the pathogenesis and prognosis of the disease, as deletions
in these regions often result in the loss of tumor suppressor genes and other regulatory elements
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Figure 3.8: Multi-Omics Survival Analysis: Explainability results for survival outcome prediction at the
pathway and gene levels across RNAseq-only and multi-omics models. (Left) Pathway-level analysis iden-
tifies significantly enriched hallmark pathways (adjusted p-value < 0.05), such as "Epithelial Mesenchymal
Transition" and "IL2/STAT5 Signaling," highlighting their importance in survival prediction. (Right) Gene-level
SHAP value plots illustrate the contributions of key features to the model’s predictions. Notable genetic al-
terations, including TP53, TET2, and SF3B1 mutations, as well as CNVs (e.g., del5q and del7q), demonstrate
distinct patterns of importance. Multi-omics models exhibit superior interpretability and feature relevance
compared to RNAseq-onlymodels, reinforcing the utility of integrative approaches in survival outcomemod-
eling.

crucial for maintaining cellular homeostasis.
Similarly, the SHAP values for variant allele frequency (VAF) data, both alone and in a multi-omics

context, identify critical mutations in genes like TP53, SF3B1, ASXL1, and additional significant features
such as TET2, NRAS, and PHF6 when multi-omics data is included. Mutations in these genes are well-
documented as pivotal in the development and progression of MDS [103, 191]. For instance, TP53
mutations are associated with adverse outcomes due to their role in genomic instability, while muta-
tions in SF3B1 and ASXL1 influence splicing and epigenetic regulation, respectively, contributing to the
complex molecular landscape of MDS.
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3.2.7 . Unsupervised Exploration

Figure 3.9: Multi-Omics Unsupervised Exploration: We perform Unsupervised clustering on the latent
space of CustOmics built in single and multi-omics setup. a. Latent Representation of single and multi-
omics data along with overlay of the different clusters. b. We also display the mutation frequencies of
target genes for each cluster against the rest.

In this study, we conducted unsupervised clustering analysis on a cohort of myelodysplastic syn-
drome (MDS) patients using three different omics data setups: CNV + VAF, RNAseq, and Multi-Omics.
The clustering results are presented in Figure 3.9a, with corresponding mutation frequency distribu-
tions shown in Figure 3.9b.

The latent space visualizations in Figure 3.9a reveal the clustering patterns for each omics setup.
Three distinct clusterswere identified for theCNV+VAFdata, though therewas someoverlap between
clusters 1 and 2. In contrast, the RNAseq and Multi-Omics data demonstrated better discrimination
between clusters, indicating that these data types are more effective at capturing distinct biological
subgroups. This enhanced clustering resolution with RNAseq andMulti-Omics likely reflects themore
prosperous and detailed molecular information these approaches provide.

Figure 3.9b compares the mutation frequencies of six essential genes (TET2, SRSF2, SF3B1, ASXL1,
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RUNX1, TP53) across the three identified clusters for each omics setup. For the CNV + VAF data, TET2
mutations are predominantly found in cluster 0, indicating that this mutation is a significant driver in
this subgroup. Additionally, a cluster with distinctly higher frequencies of SRSF2 and SF3B1 mutations
suggests a co-occurrence or synergistic role in this group, while ASXL1 and RUNX1mutations aremore
common in cluster 2. The RNAseq data reveal that TET2 mutations remain most frequent in cluster
0, and similar to the CNV + VAF setup, SRSF2 and SF3B1 mutations are again highly prevalent in a
distinct cluster. In the Multi-Omics data, TET2 mutations are the most frequent in cluster 0. However,
in this setup, the cluster with widespread ASXL1mutations is no longer prominent, and there is amore
balanced distribution of mutations across clusters, except for SF3B1, which remains frequent in one
cluster.

3.3 . Discussion

In this work, we presented a range of integration strategies for multi-source data that can handle
high dimensionality and data heterogeneity. To leverage the strengths of these strategies, we intro-
duced the mixed-integration approach and the CustOmics framework to overcome the limitations of
existing methods. This new framework achieves superior latent representations, leading to a more
robust and generalizable architecture, as demonstrated by the consistently better results against var-
ious integration strategies.

CustOmics adapts to each omic source by handling the training independently in the first phase,
addressing the issue of unbalanced signals by standardizing the representations before learning
cross-modality interactions. Our fusion model improved classification and survival outcome predic-
tion performance across all test cases. Notably, CustOmics excelled not only on pan-cancer data but
also on smaller datasets for specific cohorts, underscoring the robustness of ourmethod in situations
with fewer samples.

The application of CustOmics to integratingmulti-omics data inMyelodysplastic Syndromes (MDS)
highlighted the enhanced signal provided by combining multiple omics layers. The integration of
RNAseq andMulti-Omics data provided better discrimination between clusters than single-omics data
alone, reflecting the richer molecular information provided by these approaches.

CustOmics significantly outperformed traditional methods and other deep learning strategies
in classification tasks. When distinguishing between MDS and CMML subtypes, CustOmics consis-
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tently showed superior performance metrics, demonstrating its capability to leverage complex, high-
dimensional data from multiple omics sources. In survival outcome predictions, integrating multi-
omics data significantly improved the stratification of high-risk and low-risk patients, as evidenced by
the lower log-rank p-values and improved separation of survival curves. This enhanced stratification
can lead to more personalized treatment plans and better patient outcomes in clinical settings.

By adapting the SHAPmethod to our architecture, we highlighted essential genes for specific tasks,
providing valuable biological insights. However, the computational cost of this interpretabilitymethod
remains high, suggesting the need for further optimization.

Our findings suggest several future directions to enhance CustOmics. Incorporating prior knowl-
edge into the intermediate autoencoders, such as introducing a negative binomial prior in the RNA-
Seq autoencoder, could improve performance. Studying the benefits of per-source transfer learning
during phase 1 could help pick upweaker signals and reducenoise. Further exploring the interpretabil-
ity component of CustOmics could make the framework more actionable for clinical use. Including
larger and more diverse cohorts in future studies could validate the generalizability of CustOmics
across different populations and cancer types, and incorporating additional omics layers could pro-
vide a more comprehensive molecular profile.

In conclusion, our generic and interpretable multi-source deep learning framework, CustOmics,
improves state-of-the-art integration strategies by proposing a hybrid approach that fits well with
multi-omics data. The framework is available on GitHub: https://github.com/HakimBenkirane/

CustOmics.
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Abstract

Histopathology slides have long been the cornerstone of pathology diagnostic, providing essen-
tial insights into disease states’ cellular and morphological characteristics, particularly in oncol-
ogy. The digitization of these slides into whole-slide images (WSIs) marks a significant technologi-
cal advancement, enablingmore detailed and comprehensive analysis using computational tools.
However, despite these advancements, the field faces substantial challenges, particularly in effi-
ciently processing the vast data contained in WSIs and extracting clinically relevant information
that can aid in precision medicine.

This chapter introduces three significant contributions to the field of histopathology slide
analysis. First, it presents Hyper-AdaC, a novel hypergraph-based representation for whole-slide
images (WSIs) that enhances traditional image analysis by modeling complex spatial and mor-
phological relationships within tissues, thereby improving survival models’ predictive power and
clinical relevance. Second, the chapter introduces H&Explainer, a new tool designed to make
deep learning models more transparent and interpretable, facilitating their integration into clin-
ical workflows and improving the explainability of hypergraph-based models. Lastly, it proposes
a new method for counterfactual analysis using explainable features, offering a better under-
standing and validation of model decisions, which is crucial for advancing precision medicine.
Together, these contributions address the challenges of processing and extracting clinically rele-
vant information from the vast data inWSIs, paving theway formore effective precision oncology.

4.1 . Related Work & Challenges

Computational pathology has undergone significant advancements in the last decade, propelled
by the introduction of whole-slide image (WSI) scanners. These technologies have transformed tradi-
tional histopathology slides into high-resolution digital images. They facilitate their use in cancer di-
agnosis and prognosis through advanced gigapixel image analysis and statistical learning techniques
[271, 150]. Notably, WSIs have been increasingly applied to various predictive tasks within oncology,
with survival prediction emerging as a particularly complex challenge [282, 283]. Survival prediction
models aim to estimate the time until an event, such as death or relapse, occurs, requiring a nuanced
understanding of the disease processes depicted in WSIs.

96



The literature reveals diverse methodologies addressing the challenge of processing these large-
scale images to develop robust survival models. Among these, Multiple Instance Learning (MIL) has
gained prominence. MIL is a variant of supervised learning where the model is trained on sets, or
"bags," of instances, with labels assigned only to the entire bag rather than individual instances. This
approach is convenient in scenarios where precise instance-level annotations are unavailable or im-
practical, such as in medical imaging, where a whole slide image may contain malignant and benign
regions. However, only a slide-level label (e.g., cancerous or non-cancerous) is provided. By lever-
aging the inherent variability within the instances of a bag, MIL can learn to identify patterns that
contribute to the overall label, making it a powerful tool for developing survival models based on
large-scale image data. (More details on the MIL framework can be found in Appendix A.1)

MIL employs a weakly-supervised learning framework where small patches fromWSIs are treated
as independent instances within larger, unordered groups known as bags [231, 176, 157, 260]. While
MIL has shown effectiveness in tasks like cancer grading [280] and subtyping [8], its application to
survival prediction is complex. Traditional MIL models often overlook the crucial integration of local
and global features from WSIs, treating each instance or bag independently, which limits their ability
to capture comprehensive contextual information about tumor characteristics and the surrounding
microenvironment that are vital for assessing patient mortality risk [212].

To address these limitations, there has been an increased interest in employing graph-based rep-
resentations (More details on Graphs can be found in Appendix A.2). These methods model the re-
lationships between image patches using networks that facilitate interactions, potentially capturing
broader tumor characteristics [2, 147, 49]. However, the practical application of graph neural networks
(GNNs) in this domain faces significant challenges. The scalability of GNNs is often restricted by the
computational demands of processing large graphs, which can affect their ability to generalize across
different datasets [262]. Moreover, the sampling technique used to manage these large graphs can
exclude critical pathological information by covering only a subset of the WSI [56, 67]. Additionally,
the inherent limitation of graph structures in representing only pairwise relationships can lead to in-
sufficient modeling of local structures, especially when there is considerable variability among the
instances within a slide [86].

Recent studies have proposed several innovativemethods to overcome these limitations. Amethod
using Variational GraphAuto-encoder (VGAE) forWSI representation learning involves sampling patches,
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constructing a fully connected graph from these patches, and then training this graph using GNNs.
This approach efficiently usesmemory and effectively captures the complex relationshipswithinWSIs,
leading to robust classification performance [69]. In recent studies, Graph Convolutional Networks
(GCNs) have been extensively used to model the spatial relationships among image patches. For
instance, GCNs have been applied to fully connected graphs created from WSI patches to capture
the intricate interactions between different regions, enhancing the overall representation of the WSI
[226]. Furthermore, heterogeneous GNNs, designed to handle different types of nodes and edges, are
suitable for modeling histopathology data’s diverse and complex nature. These models improve the
ability to distinguish between various tissue types and cancer subtypes by leveraging the heteroge-
neous information present in WSIs [34]. Graph-based MIL models have been proposed to overcome
the limitations of traditional MIL by incorporating the relationships between instances (patches) in a
more structured way. This approach leads to better performance in tasks such as cancer detection
and subtype classification [69]. Deep graph convolutional layers, including spectral and spatial meth-
ods, have been employed to process WSI graphs. These layers transform the feature space of each
node (patch) and pool them into a final vector representation, which is then used for downstream
tasks like classification and survival prediction [226].

Several methods have refined the MIL approach by employing clustering algorithms like K-Means
to group patches before sampling to further enhance the robustness and data coverage. This strategy
helps to identify distinct morphological phenotypes within WSIs and reduces dimensionality, thereby
enhancingmodel robustness and data coverage [283, 260]. Additionally, recent studies have begun to
explore correlations between small instances and the broader contexts within gigapixel images, chal-
lenging the initial assumptions ofMIL [49, 221]. These innovations include hypergraph representations
that extend beyond pairwise interactions, providing a more nuanced and comprehensive framework
for capturing complex morphological and spatial features [66, 67].

The analysis of gigapixel whole-slide images (WSIs) presents significant challenges, particularly in
the context of survival prediction. The immense size and complexity of WSIs make it challenging to
process and extract clinically relevant information efficiently, often leading to computational limita-
tions and loss of essential details. Traditional methods, such as random patch sampling, need help
with these challenges, frequently resulting in suboptimal performance due to the random exclusion
of potentially critical image regions. Additionally, conventional graph-based approaches are often
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constrained by the limitations imposed by local structures and the sheer scale of the data.
In response to these challenges, we have developed Hyper-AdaC, a novel hypergraph-based rep-

resentation designed to improve survival prediction from WSIs. Hyper-AdaC addresses these issues
through three key innovations. First, it utilizes hierarchical clustering based onmorphological similar-
ity and spatial proximity to effectively summarize the information contained in WSIs, overcoming the
limitations of graph size while avoiding restrictive assumptions such as a fixed number of clusters.
This approach is also an efficient alternative to random patch sampling, selectively filtering the most
relevant patches and reducing information loss.

Second, Hyper-AdaC leverages hypergraph representations to capture the complex local struc-
tures within WSIs more effectively than traditional graph-based methods by incorporating morpho-
logical and spatial features of the clustered instances. Finally, the method generates high-resolution
attention maps that adapt to the tissue’s morphology through agglomerative clustering, providing
deeper insights into specific elements of theWSI, such as immunological responses, and linking these
directly to survival outcomes.

4.2 . Hyper-AdaC: Adaptive clustering-based hypergraph representation of whole

slide images for survival analysis

Within the scope of this study, we design, implement, and evaluate a hypergraph-based survival
network for survival outcome prediction. For 1 ≤ i ≤ N , let us denote byWi, the WSI of a patient, Ti
its event time, and Ci its censoring status. The goal of this study is to build and train a survival neural
network S and to determine a function ϕ that maps the WSI into a hypergraph representation, such
that S(ϕ(Wi),Θ) = ri, withΘ a set of trainable parameters and ri the hazard rate of the time-to-event
outcome of interest.

4.2.1 . Method

Hypergraph Construction

We denote by Gi a hypergraph representation ofWi such that ϕ(Wi) = Gi. Before constructing
the hypergraph, we performed automatic tissue and background separation using Otsu Binarization
[157]. We then extract non-overlapping 256 × 256 patches xj at 20× magnification that are fed to a
ResNet-18 trained using the same contrastive learning strategy (SimCLR) as in [55] that represents a
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Figure 4.1: Overview of the Hyper-adaC model

1024-dimensional feature vector h ∈ R1024 each patch. The set of (hj)1≤j≤n associated to aWi with
n patches will be stacked into a feature matrix Xi ∈ Rn×1024. Each patch xj is characterized by its
ResNet-18 feature representation hj that embeds the morphological properties of the patch and a
set of coordinates gj = (gx,j , gy,j) that represents the spatial position of the center of the patch.

Since the hypergraph should not be too large for the generalizability of the GNN [262], we per-
form the first step of Adaptive Agglomerative Clustering on the different patches. For that, we com-
pute two similarity matrices Kh ∈ Rnp×np and Kg ∈ Rnp×np such that Kh = (κh(xi, xj))1≤i,j≤np and
Kg = (κg(xi, xj))1≤i,j≤np where κh(xi, xj) = e−λh||hi−hj ||2 is a morphological similarity metric and
κg(xi, xj) = e−λg ||gi−gj ||2 is a spatial proximity metric.

Following the ideas presented in [159], we use the kernel κ(xi, xj) = κh(hi, hj)κg(gi, gj) as a sim-
ilarity kernel for agglomerative clustering. This kernel will be computed for each pair of patches
from the same WSI. All patches for which similarity will be greater than a threshold δ will be consid-
ered to belong to the same cluster Ck and merged hierarchically into a single patch representation
pk = (h̃k, g̃k) where h̃k = 1

|Ck|
∑

j∈Ck
hj and g̃k = 1

|Ck|
∑

j∈Ck
gj .
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Now that we have a reduced set of points Pi, a hypergraph denoted by Gi =< Vi, Ei,Xi > is
constructed. For a single WSI, we consider each clustered patch as a vertex of the hypergraph such
that Vi = [pj ]j∈Pi . Each hyperedge is associated with the neighborhood of each node Vi. This neigh-
borhood is defined as γ(pj) = {pk ∈ Pi;κh(pk, pj) ≥ δh}, where δh is a threshold value to fine-tune.
Those hyperedges are indicated by an incidence matrixH ∈ R|Pi|×|Ei| such that,

h(k, j) =

 1 if pj ∈ γ(pk)

0 else (4.1)

Compared to a regular graph, the exciting aspect of a hypergraph is that each node’s neighbor-
hood is depicted as a single hyperedge. This allows us to train our model with fewer parameters and
thus decrease the time complexity of the convolution. In addition, it creates a community effect that
gives more importance to bigger hyperedges, representing denser regions of our WSI.

Construction of the Graph Neural Network

Hypergraph Convolutions: In our proposed GNN, we employ hypergraph convolution opera-
tions [16] to capture the complex relationships within whole-slide images (WSIs). Unlike traditional
graph convolutions, which operate on pairwise relationships between nodes, hypergraph convolu-
tions extend this concept to multi-way relationships, allowing for the modeling of interactions among
groups of nodes (i.e., hyperedges) rather than just pairs.

Formally, let G = (V,E) represent a hypergraph, where V is the set of nodes and E is the set
of hyperedges. Each hyperedge e ∈ E connects a subset of nodes e ⊆ V . The incidence matrix
H ∈ R|V |×|E| represents the hypergraph, where hve = 1 if node v is connected to hyperedge e, and
hve = 0 otherwise.

Given a node feature matrixX ∈ R|V |×d, where each row corresponds to a node’s feature vector,
the hypergraph convolution operation can be defined as:

X′ = σ
(
D−1/2

v HWeH
TD−1/2

e XW
)

where:
• Dv ∈ R|V |×|V | is the diagonal node degree matrix with dv =

∑
e∈E hve,

• De ∈ R|E|×|E| is the diagonal hyperedge degree matrix with de = ∑
v∈V hve,
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• We ∈ R|E|×|E| is a learnable weight matrix associated with hyperedges,
• W ∈ Rd×d′ is a learnable weight matrix associated with node features, and
• σ is a non-linear activation function, such as ReLU.
This operation aggregates features across the hyperedges, enabling the network to learn high-

level representations that capture the multi-way relationships present in the hypergraph.

Hypergraph Attention Mechanism: To enhance the expressiveness of the hypergraph convo-
lution, we incorporate a hypergraph attention mechanism [16] that allows the network to learn the
relative importance of different nodes within a hyperedge. This attention mechanism assigns varying
weights to the contributions of neighboring nodes, enabling the model to focus on the most relevant
features during the convolution process.

Given the feature vector xi of node i and the feature vectors xj of its neighboring nodes j within
a hyperedge e, the attention coefficient αe

ij between node i and j within hyperedge e is computed as
follows:

αe
ij =

exp
(LeakyReLU (

aT [Wxi∥Wxj ]
))∑

k∈N (i,e) exp (LeakyReLU (aT [Wxi∥Wxk]))

where:
• a ∈ R2d′ is a learnable attention vector,
• ∥ denotes the concatenation operation,
• W ∈ Rd×d′ is a learnable weight matrix shared across nodes,
• N (i, e) denotes the set of neighboring nodes of i within hyperedge e, and
• LeakyReLU is the activation function applied to the linear transformation of the concatenated
node features.

The attention coefficients αe
ij are then used to compute the updated feature representation for

node i as follows:
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x′
i = σ

∑
e∈Ei

∑
j∈N (i,e)

αe
ijWxj


where Ei denotes the set of hyperedges containing node i.
This attentionmechanism allows themodel to dynamically adjust the influence of different nodes

based on their relevance to the task, leading to more accurate and interpretable feature representa-
tions.

FinalNodeRepresentationandPooling: Each layer consists of batch normalization anddropout
layers to avoid instability during training. We also use the idea introduced in [159] of accumulating
the feature representations of the convolution layers in the GNN. Those node-level representations
are then pooled to generate a graph-level representation. This representation is then fed to a survival
network composed of multi-layer perceptrons that predict the hazard rate used for survival outcome
prediction.

Network’s Loss Function: The entire network is trained using the Cox proportional hazard loss
introduced in [53]; it uses the partial log-likelihood as the cost function, defined as follows:

pl(Θ) =
1

|{i : Ci = 1}|
∑

i:Ci=1

[S(ϕ(Wi),Θ))

−log
∑
Ti≥Tj

exp(S(ϕ(Wj),Θ))] (4.2)

where ϕ is a neural network modelling the hazard ratio andΘ are the network’s parameters. The
cost function to train the model, to which we use a L2 regularization, is therefore defined by:

L(Θ) = pl(Θ) + λ||Θ||22 (4.3)

4.2.2 . Experimental Setup
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Table 4.1: A detailed description of the cohorts used for the study. The table includes the different cancer
types, as well as the number of patients and WSIs per type.

Cancer Type # of Patients # of WSIs
Bladder Urothelial Carcinoma (BLCA) 437 457Breast Invasive Carcinoma (BRCA) 1022 1133Glioblastoma & Lower Grade Glioma (GBMLGG) 1011 1704Lung Adenocarcinoma (LUAD) 515 541Ulterine Corpus Endometrial Carcinoma (UCEC) 538 566

Dataset Description

For this study, we performed extensive experiments using five different cohorts from The Cancer
Genome Atlas (TCGA) detailed in Table 4.1. We chose those five datasets based on size and censoring
rate. On average, each WSI contains approximately 12691 patches at 20×magnification that are then
reduced by hierarchical clustering to around 3147 points.

Implementation Details

The architecture of the GNN is constructed using three hypergraph convolution layers of 256 neu-
rons, each followed by a three layers survival network of respectively 256, 128, and 64 neurons with
ReLU activation that outputs the hazard ratio using a sigmoid activation function in the output layer.
The entire architecture is built using fully-connected blocks. For each layer, we use a batch normal-
ization layer to address the problem of internal covariate shift. Also, to avoid overfitting problems,
we use dropout with a rate of 0.2.

For the graph construction, we select a similarity threshold of 80% with λh = 3λg to give more
importance to morphological features during the clustering. This choice of hyperparameters has
been validated with the experiments presented in Appendix A. To train Hyper-AdaC, we used Adam
optimization with a learning rate of 10−3 with an exponential scheduler, a weight decay of 10−5, and
20 epochs.

All models were trained using an Nvidia Tesla V100S with 32 GB of memory.
Evaluation

To evaluate Hyper-AdaC, we perform 5-fold cross-validation for each cancer type. We compute
the concordance index (C-index) [241] across all the validation folds to measure the predictive per-
formance of the method. We also compare our proposed method to other state-of-the-art methods
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for the same task. For all our experiments and a fair comparison, we used the same survival loss
function, the exact SimCLR feature embeddings, and training hyperparameters for all methods. The
benchmark methods we consider are the following::

• DeepAttnMISL [260]: Performs standard Multiple-Instance Learning by applying the K-Means
algorithm to cluster instance-level features and then processing each cluster using Siamese
networks.

• DeepGraphSurv [147]: A graph-based representation over sampled patches, which uses spec-
tral graph convolution [54] to consider the topological relationships between them. We also
integrate K-Means before sampling in another setup, presented as C.DeepGraphSurv on the
result session.

• Patch-GCN [49]: Current state-of-the-art for GNN for the survival task. It performs graphmulti-
ple instance learning by considering theWSI as a 2D-point cloud, building a k-nearest neighbors
graph.

• knn-hypergraph [66]: k-nearest neighbors hypergraph construction using sampling of patches.
We use the same pipeline as Hyper-AdaC.
4.2.3 . Results

When comparing our approach to other methods, we note that Hyper-AdaC outperforms most
of these in terms of C-index (Table 4.2 and Figure 4.2). Our approach generally outperforms by
at least 1.6% the overall C-index on all datasets and, more specifically, in most individual datasets
(except for BLCA and GBMLGG). When comparing these results with DeepGraphSurv’s results, we can
immediately identify the limitations of sampling patches from WSIs, as this method is the weakest in
these comparisons. It only covers around 20% of the WSI and fails to train GNNs due to significant
discrepancies between sampled patches. We also witnessed a clear improvement by adding context
information, as almost all the graph representations outperformed the multiple-instance learning
method DeepAttnMISL.

Apart from the superior performance, our method reports better robustness, highlighted by the
standard deviation between the C-index values across the five folds. One can observe that Hyper-
AdaC reports the lowest standard deviation, suggesting a more robust model due to the compact
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Table 4.2: Survival prediction of state-of-the-art methods using the concordance index (C-index) on 5
TCGA cohorts: Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Glioblastoma &
Lower Grade Glioma (GBMLGG), Lung Adenocarcinoma (LUAD) and Ulterine Corpus Endometrial Carcinoma
(UCEC).

Model BLCA BRCA GBMLGG LUAD UCEC
DeepAttnMISL [260] 0.514± 0.052 0.564± 0.050 0.781± 0.037 0.558± 0.060 0.595± 0.067DeepGraphSurv [147] 0.495± 0.045 0.551± 0.077 0.816± 0.031 0.563± 0.050 0.614± 0.052C.DeepGraphSurv [147] 0.504± 0.042 0.564± 0.043 0.787± 0.028 0.559± 0.036 0.625± 0.057Patch-GCN [49] 0.561± 0.042 0.587± 0.043 0.834± 0.029 0.570± 0.050 0.632± 0.059k-nn Hypergraph [66] 0.611± 0.049 0.545± 0.071 0.805± 0.044 0.584± 0.061 0.615± 0.020Hyper-AdaC (ours) 0.564± 0.034 0.592± 0.025 0.778± 0.024 0.595± 0.012 0.667± 0.022

Figure 4.2: Survival prediction performances across all datasets. They are computed by taking the C-indices
on all folds of the evaluation, for all datasets.

form of its representation. Moreover, as the representation is more miniature on Hyper-AdaC, the
computing time is lower than considering the entire WSI graph since the graph convolution has the
worst-case complexity of O(n3) where n is the number of nodes. However, this reduction comes
with a trade-off since the graph construction part is heavier due to the hierarchical clustering step
that comes with the additional complexity of O(kn2), where k is the final number of clusters and n is
the initial number of patches. In practice, our method is about 30% slower than graphs constructed
using the whole WSI like Patch-GCN or random sampling like DeepGraphSurv. On the other hand, we
are almost 20% faster during training due to more compact representations and fewer parameters.

106



Finally, when we compare the adaptive clustering to k-means through C.DeepGraphSurv, we observe
that the adaptive property of the hierarchical clustering compared to K-means provides us with more
information as it sums up quite well the discrepancies in the tissue without having to include the
number of clusters as it can be adapted one slide to another, depending on the texture.

Our experiments indicate lower performances on BLCA and GBMLGG datasets. We performed
additional experiments detailed in Appendix C.3.1 to analyze this point more. In fact, for the BLCA
dataset, the number of elements retained after agglomerative clustering remains too high, leading to
a larger andmore complex graph. This increased graph size ultimately results inweaker performance.
This reasoning can be inverted for GBMLGG, for which agglomerative clustering conserves only very
little information, meaning that the morphological structure of this particular cancer is more homo-
geneous than others, and we lose much information as this clustering disregards local variability. To
alleviate these issues, dataset-specific hyperparameter tuning can be performed (while we initially
preferred common hyperparameters for all datasets to enhance the generalizability of our model).
In practice, we add more constraints on the graph construction for the BLCA dataset by setting the
similarity threshold δ to 85% and relax them on the GBMLGG dataset where δ was set to 70%. We
also set λh = 2λg for the GBMLGG dataset to focus less on morphological properties since the tissue
is generally highly homogeneous and the clustering will be more uniform across the WSI. By doing
this, we can witness a spike in performance as the C-index for our method in the BLCA dataset gets
to 0.619± 0.037 and 0.812± 0.025 for the GBMLGG dataset, similar to the state-of-the-art results.

Examples of WSIs annotated by a pathologist and the corresponding model attention heatmaps
are presented in Figure 4.6. We can observe that ourmodel succeeds in discriminating zones based on
theirmorphological and spatial features. Agglomerative clustering, by being able to adapt the number
of clusters to the WSI, enables us to output attention maps that adapt well to the morphology of the
slide, focusing on more relevant information and thus providing more precise information on critical
local regions.

Moreover, the tumoral zone indicated by the pathologist in the first column of Figure 4.6 matches
the regions where attention is at its highest. In addition, the model focused on dense inflammatory
cell regions for patients with low predicted risk, which are signs of good immunity response. The
multiple purple dots highlight those inflammatory cell regions in high-attention regions for the two
low-risk patients (third column of Figure 4.6 showing a zoom of the attended patches). For high-risk
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Figure 4.3: Comparison between the model attention heatmaps and manual annotations of tumor regions
for three different patients from the TCGA-LUAD dataset (blue for low-risk patients and red for high-risk
patients). First column: annotations of tumor regions (in red) are superimposed in the WSI. Second column:
attention heatmaps. Third column: sampled patches from 3 different attention regions; high attention (red
border), medium attention (green border), and low attention (blue Border).

patients, regions of tumor cells contain more attention due to their density. This is where the hy-
pergraph construction presents its advantage: it creates a community behavior with hyperedges. It
can assess the density of small regions through their weights. Thanks to messages passing between
hyperedges, areas with more significant communities have a more decisive influence on survival pre-
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diction.
However, even though our method can explain slides at high-resolution thanks to adaptive clus-

tering, attention heatmaps can sometimes be challenging to interpret due to the high dimensionality
of whole-slide images (WSIs). The complexity and vast scale of these images can obscure the clarity
of the insights provided by the heatmaps, making it challenging for medical professionals to extract
meaningful information. To address this issue and enhance the transparency of histopathology re-
sults, it is essential to develop methods that incorporate human-explainable features.

By leveraging human-explainable features—those that are directly interpretable by pathologists
and align with established medical knowledge—we can improve the interpretability of the model’s
outputs. Integrating these features into the analysis of WSIs allows for a more intuitive understand-
ing of the tissue characteristics and the model’s decision-making process. This approach facilitates
the transition from purely computational insights to those that clinicians can easily understand and
validate, ultimately leading to more transparent and clinically applicable results in histopathology.

4.3 . Explainability Analysis on Histopathology Slides

Multiple Instance Learning (MIL)models are essential forWhole Slide Image (WSI) analysis but face
significant challenges regarding interpretability. Traditional MIL methods often aggregate instance-
level features for slide-level predictions without providing clear insights into which instances (patches)
are most critical. This lack of fine-grained interpretability hampers their clinical utility. Conventional
MIL techniques struggle with coarse attention mechanisms without detailed pathological interpreta-
tions. SI-MIL [14] attempts to address this by integrating modules that select and focus on the most
relevant patches, thus enhancing interpretability by highlighting significant pathological features.

To tackle the problem of spurious associations, a counterfactual inference-based MIL framework
improves interpretability by distinguishing between causal and spurious features, thereby enhancing
both bag and instance-level prediction accuracy [151]. The CaMIL framework refines this approach
by using causal inference techniques to block spurious associations, ensuring that the features the
model learns are genuinely relevant to the pathology [48].

Attention mechanisms have notably improved the interpretability of MIL models by highlighting
the most relevant patches, making the models’ decisions more understandable to pathologists. Pro-
posed by Ilse et al., attention-based MIL assigns weights to patches based on their importance, which
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are then visualized to show which regions are most influential for the classification [120]. These meth-
ods have improved interpretability by clearly indicating which patches contribute most to themodel’s
decisions.

Gradient-based explanations, as employed in the CHOWDER model, attribute features to specific
patches, helping to visualize which areas are crucial for the classification [196]. This method aids in
understanding the model’s decision process at a granular level.

While attention-based approaches have been prominent in the literature for state-of-the-artmod-
els [221, 49], these methods generally need more detailed interpretability due to the impracticality of
focusing on specific regions or cells in large images. Consequently, there is a need for more quanti-
tative methods and tools to analyze WSIs, offering a better understanding of class differences within
slides at a larger scale.

Transforming WSIs into tabular data containing human-interpretable features is crucial for en-
hancing the model’s utility in clinical settings. As detailed in [220], this involves extracting features
from densely mapped cancer pathology slides and representing them in a format that pathologists
can readily understand and use for predictive tasks. This transformation makes the model’s outputs
more interpretable and facilitates the integration of these predictive tools into routine clinical work-
flows, thereby enhancing their practical applicability.

4.3.1 . H&Explainer: A Human-Interpretable Tool for Histopathology Analysis

In precision medicine, accurately analyzing Whole Slide Images (WSIs) is essential, but their size
and complexity present challenges for traditional methods. While deep learning has proven effective
in extracting features from these images, its "black-box" nature complicates interpretation.

To overcome this, we developed H&Explainer, a tool for explainable feature extraction fromWSIs.
This tool aims to clarify the deep learning models’ decision-making processes, making the analysis
more transparent and interpretable. By integrating multi-omics data, H&Explainer enriches the fea-
ture set, enhancing its application in oncology. This development bridges the gap between complex
computational models and clinical practice, ensuring that profound learning advancements are un-
derstandable and actionable in medical contexts.
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Figure 4.4: Overview of the H&Explainer workflow

Methods

The H&Explainer tool, as illustrated in Figure 4.4, initiates its process by performing patch extrac-
tion on whole slide histopathology images using the CellViT framework [119]. This framework employs
Vision Transformers, which excel at precise cell segmentation and classification by leveraging atten-
tion mechanisms that focus on relevant parts of the image. The patch extraction process utilizes
the OpenSlide library, enhanced by the RAPIDS cuCIM framework, to efficiently extract overlapping
square patches (e.g., 256x256 pixels with a 64-pixel overlap) from the whole slide images. These over-
laps ensure comprehensive coverage and smooth transitions between patches, reducing boundary
artifacts that could compromise segmentation and classification accuracy.

For each cell identified within these patches, H&Explainer computes a range of histomic features,
categorized into four principal groups: Fourier shape descriptors, Haralick features, gradient features,
and morphological features [161].

1. Fourier Shape Descriptors: These features analyze the shape characteristics of cells by trans-
forming their boundary into the frequency domain. Mathematically, if C(t) represents the contour of
a cell parameterized by t, the Fourier descriptors Fn are computed as the coefficients of the Fourier
series expansion ofC(t). This allows for the compact representation of shape characteristics invariant
to translation, rotation, and scaling.

Fn =
1

T

∫ T

0
C(t)e−j2πnt/T dt

2. Haralick Features: These texture features are derived from the Gray-Level Co-occurrence Ma-
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trix (GLCM), which captures the frequency of pixel pairs with specific values and spatial relationships
within the cell image. Given the GLCM P (i, j, d, θ), where i and j represent pixel intensity values at a
distance d and angle θ, Haralick features such as contrast, correlation, energy, and homogeneity are
computed to quantify the texture.

Contrast = ∑
i,j

(i− j)2P (i, j)

3. Gradient Features: These features measure the intensity changes and edges within the cell
images. The gradient∇I(x, y) at each pixel is computed using finite differencemethods, and features
such as gradient magnitude and direction are derived. The gradient magnitude is given by:

|∇I(x, y)| =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

4. Morphological Features: These include basic geometrical properties such as area, perimeter,
eccentricity, and solidity of the cells. For instance, the area A of a cell is computed as the number
of pixels within its boundary, while the perimeter P is the total length of the boundary. Eccentricity
e is computed as the ratio of the distance between the foci of the cell’s boundary and its major axis
length.

e =
distance between foci
major axis length

In addition to cell-level analysis, H&Explainer provides an interactive feature for selecting Regions
of Interest (ROIs) within the whole slide image. Users can specify ROIs to compute region-level fea-
tures based on the aggregated histomic features of cells within these areas. This functionality is handy
for analyzing specific areas of interest, such as tumor margins, stromal regions, or necrotic zones,
where cellular characteristics may differ significantly from the rest of the tissue.

Moreover, the tool supports the computation of slide-level features by contrasting cell populations
across predefined regions. For example, by comparing the histomic features of cells in tumoral versus
stromal regions, researchers can identify patterns associated with disease progression, treatment
response, or other clinically relevant outcomes. This multi-scale approach—from individual cells to
entire tissue regions—enables a comprehensive analysis of the histopathology slides, providing deep
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insights into the underlying biology and pathology.
Histopathology Slide Analysis

The analysis of histopathology slides in H&Explainer is multifaceted, providing detailed compar-
isons between different Regions of Interest (ROIs) and comprehensive assessments at the slide level.
When ROIs are selected, differential analysis between cell populations in these regions can be per-
formed by computing the differences in the distribution of each computed cell feature using a t-test.
For each featureXi, the distribution is characterized by statistical measures such as mean, standard
deviation, kurtosis, skewness, and entropy. To compare the distributions of a featureXi between two
ROIs, the t-test evaluates whether the means of the two distributions are significantly different:

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

where X̄1 and X̄2 are the means, s21 and s22 are the variances, and n1 and n2 are the sample sizes
for the two ROIs. This type of analysis is particularly beneficial for interpreting attention heatmaps
generated by deep learning models, as it allows researchers to assess differences in cell populations
between high and low-attention regions. By understanding these differences, insights can be gained
into the areas of the slide critical for themodel’s decision, potentially uncovering underlying biological
phenomena.

Characterizing homogeneous cluster regions within the slide provides valuable information about
tissue architecture and the spatial organization of different cell types. Identifying regions with similar
cellular compositions can correlate with specific pathological states or responses to treatment. Clus-
tering algorithms, such as k-means or hierarchical clustering, can be applied to a slide’s feature set
{Xi} to identify these homogeneous regions, revealing patterns indicative of disease or treatment
response.

At the slide level, H&Explainer facilitates the analysis of the entire slide’s dynamics for predictive
tasks. By performing a t-test on each slide-level feature Xi across different classes, we can identify
significantly different features between a specific class and others. For a featureXi, this involves com-
paring its distribution between a target class and all other classes, helping to identify distinguishing
characteristics of the tissue associated with specific clinical outcomes or disease states.
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tclass = X̄class − X̄others√
s2class
nclass +

s2others
nothers

Such comprehensive analyses provide a deeper understanding of the histopathological character-
istics of the tissue, aiding in diagnosis, prognosis, and treatment planning. The ability to analyze and
interpret these features at both the ROI and slide levels allows H&Explainer to offer valuable insights
into the cellular and structural landscape of the tissue, facilitating more informed clinical decision-
making.

Experimental Setup

To demonstrate the capabilities of the H&Explainer tool, we conducted two distinct tasks designed
to highlight its versatility in different analytical contexts. The first task aimed to illustrate the single-
slide analysis setup. In this task, we utilized Tumor Infiltrating Lymphocytes (TIL) maps, which were
predicted in the context of the study by Saltz et al. [213]. TILs are a crucial component of the tu-
mor microenvironment and are associated with the immune response to cancer. By performing a
differential analysis, we compared regions within single histopathology slides that exhibited high TIL
density with those showing low TIL density. This analysis enabled us to identify significant differences
in the histopathological features between these regions, showcasing the H&Explainer tool’s ability to
pinpoint localized variations within a single slide.

The second task was designed to showcase the cohort analysis setup, focusing on the classifica-
tion and prediction of TP53 mutations. TP53 is a critical tumor suppressor gene, and its mutations
are prevalent in various cancers, often associated with poor prognosis. In this setup, we aimed to
provide a deeper understanding of the attention heatmaps generated by state-of-the-art deep learn-
ing models, specifically CLAM [157] and TransMIL [221]. These models are known for their efficacy in
processing whole-slide images and making accurate predictions. By performing a differential anal-
ysis between high and low-attention regions identified during the TP53 classification task, we could
dissect and compare the specific histopathological features that each model finds critical.

Results

Figure 4.5 presents the outcomes of H&Explainer for both single slide and cohort analyses.
In the single slide analysis, high TIL regions are distinctly characterized by a high lymphocyte pop-

ulation, a high tumoral population, and a high ratio between the cell’s major and minor axes. These
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Figure 4.5: H&Explainer Results: a. The single slide approach shows a TIL map for a histopathology slide.
In this setup we compare, using a t-test, the explainable cell-level features between high and low TIL regions.
b. The cohort analysis compares two models, CLAM and TransMIL for the prediction of TP53 mutations. For
each model, we perform the comparison between high and low attention regions in the beginning and end
of the training.

findings highlight significant histological differences between high and low TIL regions, providing in-
sights into the tumor microenvironment. This aligns with existing literature, demonstrating that high
TIL regions are associated with an increased lymphocyte presence and tumoral activity, indicative of
an active immune response against the tumor [211, 64].

In the cohort analysis, which focuses on classifying TP53 mutations using CLAM and TransMIL
models, the first epoch shows no significant differences between high and low-attention regions.
However, as themodels train, the final epoch reveals significant differences. The CLAMmodel, in par-
ticular, focuses on proportional and shape attributes, such as the proportion of tumor cells and the
mean area of cells, indicating its ability to capture morphological nuances associated with TP53 mu-
tations. This observation is supported by prior research, which suggests that tumor cell morphology
and size are critical indicators of genetic mutations and tumor behavior [279, 254].
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In contrast, the TransMIL model emphasizes clustering properties, like the Ball-Hall Index for tu-
mor cells, due to its approach of incorporating instance-wise correlations within a bag, unlike CLAM’s
independent patch instance approach. This difference enables TransMIL to capture more complex
spatial relationships and clustering characteristics. Such clustering properties are significant as they
correlate with tumor aggressiveness and mutation status in previous studies [3, 175]. Overall, the
results demonstrate that both models improve their ability to distinguish histological features linked
to TP53 mutation status with training, reflecting their adaptation to and refinement of pertinent his-
tological attributes, thereby aligning with the training tendencies of deep learning models. These
findings corroborate the growing body of evidence showing that deep Learning has the capaicty to
identify and classify genetic mutations based on histopathological features [57, 74].

4.3.2 . Counterfactual Explanations For Digital Histopathology Slides Using Human In-

terpretable Features

Counterfactual analysis generates "what-if" scenarios by identifyingminimal changes to input data
that would alter a model’s prediction. This technique is instrumental in enhancing the interpretability
of machine learning models, particularly in high-stakes fields like healthcare, where understanding
the reasoning behind model predictions is crucial.

Recent advancements in counterfactual analysis have focused on improving the efficiency and
interpretability of generated explanations. For instance, MACE [258] introduces a model-agnostic
framework that optimizes for minimal feature changes while ensuring plausibility. DICE [181] em-
phasizes diversity in counterfactuals, providing multiple plausible explanations to enhance user un-
derstanding. LACE [31] leverages latent space transformations to generate transparent and efficient
counterfactuals for tabular data.

Despite these advancements, high-dimensional data remains a challenging frontier. Methods
such as those by [258] and [181] often rely on greedy search algorithms, which can be prohibitively
slow and may not scale well with the increasing dimensionality of data. Addressing these limita-
tions requires novel approaches that can efficiently navigate the high-dimensional feature spacewhile
maintaining the interpretability and plausibility of the generated counterfactuals.

In response to these challenges, the use of generative models has emerged as a promising ap-
proach for counterfactual analysis, particularly in handling high-dimensional data. For example, the
approach discussed in [43] utilizes generative models to construct counterfactual explanations by
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modeling the distribution of the data and generating plausible counterfactuals that are close to the
original input. This method demonstrates the potential of generative models to overcome the limita-
tions of traditional greedy search techniques, providing a more scalable and efficient framework for
counterfactual generation in complex, high-dimensional spaces.

In this work, we leverage human-interpretable features derived from the HExplainer tool to per-
form counterfactual analysis on histopathology slides. We introduce a novel method, GMM-CeFlow,
which utilizes normalizing flows to map these features into a distinguishable latent space. This ap-
proach provides tractable and easily computable formulas for class transport, effectively addressing
the challenge of searching for counterfactual examples in high-dimensional spaces. The integration
of generative models further enhances the robustness and efficiency of our method, allowing for the
generation of plausible and interpretable counterfactuals even in complex data environments.

Methods

Normalizing flows provide a powerful framework for transforming complex data distributions
into simpler ones through a series of invertible mappings. In our approach, we train a mapping
fθ : Rd → Rd that transforms the original data x into a latent vector z. This mapping comprises
multiple invertible functions, typically implemented using the RealNVP architecture. The likelihood of
the original data pX(x) is defined using the change of variables formula:

pX(x; θ) = pZ(fθ(x))

∣∣∣∣det(∂fθ(x)∂x

)∣∣∣∣
Where pZ is the density in the latent space, often chosen to be a simple distribution such as a

Gaussian, the associated loss function is the negative log-likelihood:

− log(pX(x; θ)) = − log(pZ(z; θ))−
K∑
k=1

log

∣∣∣∣det(∂fk∂zk

)∣∣∣∣
In our method, GMM-CeFlow, we employ a Gaussian Mixture Model (GMM) to model the latent

space, where each class corresponds to a different Gaussian distribution. This setup provides a
tractable representation of decision boundaries between classes. The probability density function
in the latent space conditioned on class c is given by:

pZ(z|y = c) = N (z|µc,Σc)
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Figure 4.6: Overview of the Counterfactual Explanation Model’s Architecture: The figure illustrates
a framework for counterfactual explanation in histopathology slide analysis using Human Interpretable
Features (HIFs). The process starts with the extraction of patches and nuclei maps from the whole-slide
image, which are subsequently used to derive Tissue and Cell Population Descriptors. These descriptors,
encompassing features such as the tumor-to-lymphocyte ratio, tumor area, and lymphocyte proportion,
are aggregated into Human Interpretable Features (HIFs). The HIFs feed into a counterfactual transporta-
tion framework where the original feature representation xorg is transformed into a counterfactual feature
representation xtarg using an encoder-decoder architecture. The bar chart at the bottom left highlights
the differences between the original and counterfactual HIFs, demonstrating how variations in these in-
terpretable features could lead to different model predictions. This methodology offers a transparent and
interpretable means of understanding how specific histopathological features influence the model’s predic-
tions, thereby enhancing the transparency and applicability of the results in clinical settings.

For balanced classes, the overall density is defined as:

pZ(z) =
1

nc

nc∑
c=1

N (z|µc,Σc)

For general cases, it is:

pZ(z) =

nc∑
c=1

πcN (z|µc,Σc)
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where πc are the mixture weights, and each GaussianN (z|µc,Σc) is isotropic, meaningΣc = σcId.
To generate counterfactual examples, we first encode the original sample into the latent space

using the trained normalizing flow, zorg = fθ(xorg). The decision boundary between classes in this
latent space is represented by a quadric hypersurface, defined by the equation:

xTAx+ bTx+ c = 0

Where the parameters are given by:

A = −1

2
(Σ−1

1 −Σ−1
2 ), b = µ1Σ

−1
1 −µ2Σ−1

2 , c = −1

2
(µT1 Σ

−1
1 µ1−µT2 Σ−1

2 µ2)+log

(
απ1
π2

)
+
1

2
log

(
|Σ2|
|Σ1|

)

The counterfactual generation process involves projecting the encoded point zorg onto this deci-
sion boundary. This projection ensures that the new point lies as close to the original while crossing
into the desired class region. The projected point ztarg is then transformed back into the original data
space using the inverse of the normalizing flow, yielding the counterfactual example xcf = f−1

θ (ztarg).
Results

We evaluate our method on a public breast cancer dataset (TCGA-BRCA, n = 1187) to predict
molecular subtypes using the PAM50 classifier, demonstrating the model’s capability to generate
multi-task counterfactual explanations. To rigorously assess the performance of our approach, we
employ a set of evaluationmetrics, which allows for a comprehensive comparison against other state-
of-the-art methods, as outlined in [31].

The evaluation criteria encompass the following metrics:
• Proximity between Counterfactual and Original Sample (PROX): This metric measures how
close the generated counterfactual instance is to the original sample in the feature space. A
lower proximity value indicates that the counterfactual is minimally altered from the original
instance, making the explanation more plausible and easier to understand in a clinical setting.

• Average Feature Changes in Counterfactuals (CNT): This metric quantifies the average num-
ber of features that are modified to generate a counterfactual. It provides insight into the com-
plexity of the counterfactual, with a lower number of changes being preferable, as it suggests
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that fewer modifications are required to achieve a desired outcome, thus maintaining the orig-
inal instance’s integrity.

• Implausibility of Counterfactual Explanations (IMP): IMP evaluates the biological or clinical
plausibility of the generated counterfactuals. This metric checks whether the changes made
to features result in realistic and meaningful explanations. High implausibility scores indicate
counterfactuals that are less likely to occur in real-world scenarios, which could reduce their
utility in clinical decision-making.

• Counterfactual Success Rate in Class Change (SR): SR assesses the effectiveness of the coun-
terfactual in altering the predicted class. This metric reflects the percentage of counterfactuals
that successfully change the classification outcome, which is crucial for the method’s ability to
provide actionable insights. A high success rate indicates that the counterfactuals are effective
in achieving the intended outcome, thereby validating the method’s utility in practical applica-
tions.

• Average Counterfactual Generation Time (TIM): TIMmeasures the computational efficiency
of the counterfactual generation process, calculated as the average time taken across 10 runs.
This metric is particularly important in clinical settings, where timely decision-making is critical.
Faster generation times are preferable, as they enable quicker feedback and integration into
clinical workflows.

Table 4.3: Assessment of counterfactual methods using various criteria: a) Proximity between counterfac-
tual and original sample (PROX), b) Average feature changes in counterfactuals (CNT), c) Implausibility of
counterfactual explanations (IMP), d) Counterfactual success in class change (SR), e) Average counterfactual
generation time across 10 runs (min) (TIM).

Model PROX CNT IMP SR TIM

MACE [258] 0.79± 1.00 10.54± 2.89 0.67± 0.45 91% 103, 9± 7, 0

DICE [181] 0.81± 0.54 9.27± 2.51 0.42± 0.38 87% 91, 2± 10, 0

T-LACE [31] 0.90± 0.30 9.31± 3.12 0.44± 0.12 97% 82, 4± 9, 7

Ours 0.85± 0.44 9.74± 3.14 0.39± 0.22 99% 14,7± 3,5
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As shown in Table 4.3.2, our method delivers performance comparable to other state-of-the-art
approaches while significantly reducing computation time. This efficiency is achieved by leveraging
straightforward, easily computable formulas, rather than relying on the more complex and time-
consuming greedy search methods often used in other counterfactual explanation techniques.

However, it is important to highlight a limitation of our approach: we estimate the classifier’s
behavior using a Gaussian Mixture Model (GMM) in the latent space, which is trained alongside the
classifier instead of directly using the original black-box classifier. This approach, while effectivewithin
the scope of our study, may affect the generalizability of our results. To address this concern, further
validation across multiple datasets is necessary to confirm the robustness and applicability of our
method in different contexts.

Moreover, while this study focuses on using interpretable histopathology features to enhance
the clarity of counterfactual examples, future research should also consider exploring counterfactual
analyses directly within the original image space. This could provide additional insights and further
extend the applicability of our method in real-world clinical scenarios.

4.4 . Discussion

In this chapter, we introduced Hyper-adaC, a novel method employing hypergraph representa-
tion to enhance the characterization of the tumor microenvironment in histopathology slides. This
innovative approachwasmotivated by the need to capture histopathological data’s complex and high-
dimensional nature more effectively. Hyper-adaC demonstrated not only promising results in terms
of predictive performance but also showed robust explainability, addressing a critical gap in the cur-
rent methodologies.

Despite the success of Hyper-adaC, we encountered significant challenges related to the interpre-
tation of attention heatmaps. Histopathology slides are inherently high-dimensional, and the result-
ing attention heatmaps often lack clarity and interpretability. This ambiguity can hinder the practical
utility of the method; as evident, actionable insights are paramount in medical decision-making.

To address this limitation, we developed two complementary methods. The first is H&Explainer, a
tool designed to extract human-interpretable features and utilize them to analyze different regions of
interest (ROIs) in histopathology slides. HExplainer bridges the gap between complex computational
models and clinical applicability by transforming abstract attention maps into features that patholo-
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gists and researchers can readily understand and evaluate. This tool significantly enhances the inter-
pretability of hypergraph-based representations, making the insights derived from Hyper-adaCmore
accessible and actionable.

The second method we conceived is based on counterfactual analysis, leveraging the human-
interpretable features extracted by H&Explainer. Counterfactual analysis provides a robust frame-
work for understanding model predictions by considering alternative scenarios—asking "what if"
questions. By applying this method, we can offer deeper explanations for predictive outcomes, clari-
fying how specific features influence themodel’s decisions and highlighting potential areas for clinical
intervention or further investigation.

Together, these two methods enhance the interpretability and applicability of our hypergraph-
based approach to analyzing histopathology slides. They allow for a more nuanced understanding of
the tumormicroenvironment and provide clinicians and researchers with clear, interpretable insights
that can inform treatment decisions and guide further research.

In conclusion, this chapter presents significant advancements in histopathology slide analysis
through the development of Hyper-AdaC, a hypergraph-based model that accurately captures the
spatial andmorphological complexities of the tumormicroenvironment. By incorporatingH&Explainer,
our approach provides interpretable insights into model decisions and generates counterfactual ex-
planations that highlight critical features driving classification outcomes. These contributions specif-
ically address the challenges of working with high-dimensional whole-slide images, offering a more
transparent approach to understanding the relationships between tissue structures and survival out-
comes.

Future work will involve further optimizing Hyper-AdaC by testing it on a wider range of cancer
types and datasets from sources like The Cancer Genome Atlas (TCGA) and beyond. Additionally, ef-
forts will be made to seamlessly integrate these methods into clinical workflows, enabling real-time
decision support in pathology labs. Improving the explainability of the generated insights will make
the model more actionable for clinicians, ultimately contributing to more personalized treatment
strategies and better patient care. This work lays a foundation for more interpretable and clinically
useful applications of computational pathology.
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Abstract

This chapter introduces a novelmethodology,Multimodal CustOmics, designed to integratemulti-
omics and histopathology data. By combining diverse data types, CustOmics provides a compre-
hensive framework for enhanced precision medicine in oncology. We detail the methodology’s
development, underlying algorithms, and integration strategies, highlighting its potential to un-
cover complex biological insights. A significant application of CustOmics is demonstrated using a
lung cancer dataset, showcasing its effectiveness in real-world scenarios. This work underscores
the transformative potential of multimodal data integration in advancing personalized cancer
treatment.

5.1 . Related Work & Challenges of Multimodal Integration

In our previous work, we developed CustOmics for the integration of multi-omics data and Hyper-
AdaC for modeling Whole-Slide Images (WSIs) in computational pathology. Each of these frameworks
addresses specific challenges in their respective domains, with CustOmics focusing on the effective
combination of variousmolecular data sources, and Hyper-AdaC leveraging hypergraph-based repre-
sentations to model the complex spatial relationships within WSIs. Building on these advancements,
our current goal is to combine thesemodalities into a unified framework that can seamlessly integrate
multi-omics and histopathological data, enabling a more comprehensive and interpretable approach
to cancer diagnosis, prognosis, and therapeutic response prediction.

In recent years, integrating whole slide images (WSIs) and omics data has garnered significant at-
tention in computational pathology. Models that merge these diverse data types aim to leverage the
complementary information from histopathological images and molecular profiles to improve diag-
nostic accuracy, prognostic predictions, and therapeutic decisions. Notable approaches have been
proposed to harness the power of multimodal data integration. For instance, Courtiol et al. [58] pro-
posed a method that combines deep features from histology images with transcriptomic data using
a multimodal approach to enhance cancer diagnosis. Similarly, Lu et al. [158] developed a model that
integrates genomic and histopathological data using a unified deep-learning architecture to predict
patient outcomes in lung cancer. These studies underscore the potential of multimodal models to
transform precision medicine by providing more comprehensive insights into disease mechanisms.
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One of the most critical advances in the field is the work of Chen et al. [50], which presents a
transformer-based model with a co-attention mechanism to merge WSIs with genomic data. This
approach represents a significant leap in enhancing histopathological and genomic information inte-
gration. More recently, Jaume et al. [123] utilized the segmentation of transcriptomics data by path-
ways to better focus on relevant biological functions, demonstrating another innovative approach to
multimodal integration.

Despite these advancements, existing methods often need help with proper multi-omics integra-
tion. Many techniques focus on single-omics integration, failing to harness the true potential of com-
bining multiple omics data types. For example, while some studies, such as those by Porpoise [51],
attempt multi-omics integration, they typically use early-integration techniques and standard feed-
forward networks, which fails to exploit the rich information provided by multi-omics data fully. In
chapter 3, we highlighted these limitations and advocated for more advanced integration strategies
to unlock the full potential of multi-omics data.

Furthermore, a significant challenge that needs to be addressed is the issue of multimodal in-
tegration with missing modalities. In practical clinical settings, incomplete datasets are expected to
be encountered where one or more modalities may need to be included. Developing robust models
that can effectively handle such incomplete data is crucial for the practical application of multimodal
integration techniques. Addressing these challenges will be essential for advancing the field of com-
putational pathology and realizing the full potential of integrating WSIs and omics data for improved
diagnostic and prognostic capabilities.

5.2 . Multimodal CustOmics: A Unified and Interpretable Multi-Task Deep Learning

Framework for Multimodal Integrative Data Analysis in Oncology

To tackle the challenges of integrating multimodal data, we propose a deep-learning framework
to create an interpretable image-omic representation, represented in 5.1, that captures interactions
at multiple levels of the biological system. Named Multimodal CustOmics, this integration method
builds upon the strategy introduced in chapter 3. The original network optimally integrated hetero-
geneous data from different omics sources while preserving the specificity of eachmodality. The new
version of our multimodal network can jointly integrate H&E slides and molecular profile features
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(mutation status, copy-number variation, RNA sequencing [RNA-seq] expression, DNA methylation,
etc.). Additionally, it can interpret how the interaction between all those sources correlates with spe-
cific supervised tasks such as molecular subtype identification or survival prediction. Furthermore,
thismethod facilitates the assessment of feature importance atmultiple levels through ad-hoc scores.
At the gene level, the method outputs the importance score of each gene for each molecular source,
both independently and in association with other modalities. At the pathway level, a Multimodal
Pathway Enrichment Score (MPES) is computed to assess the importance of a specific pathway for
a specific prediction task, such as molecular subtype classification or survival prediction. This score
has also been extended to account for spatial correlations in the histopathology slide and reflects
the importance of the interaction between spatial regions of the WSI and pathways. We compare
CustOmics to four other methods integrating omics and histopathology data. For this comparison,
we follow the study conducted by Chen et al. [50] and use as a basis of comparison the engineered
baselines introduced for omics, histopathology, and multi-omics integration:

• SNN:We train a feed-forward self-normalizing network architecture [138] as amulti-omics base-
line, where we concatenate multi-omics data before feeding them to the network. This archi-
tecture, used in [50, 51], is state-of-the-art for histology-genomic integration.

• DeepSets: One of the first neural architectures for set-based deep-learning problems [269]
proposes sum pooling over instance-level features. Its multimodal extension is presented in
Chen et al. [50], where it processes omics data with an SNN and integrates them with bilinear
pooling.

• AttentionMIL:A set-based network similar toDeepSets replaces sumpoolingwith an attention
pooling technique [120].

• DeepAttnMISL: A set-based network that first applies K-Means clustering to instance-level fea-
tures, processes each cluster using Siamese networks, and then aggregates the cluster features
using global Attention pooling [261].

• MCAT: In Chen et al. [50], researchers present MCAT as the current state-of-the-art in multi-
modal histology-genomics integration. It is a transformer-based set-based network that com-
bines modalities with bilinear attention-based pooling.
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• SurvPATH: Jaume et al. [123] presents a new transformer-based architecture that embeds tran-
scriptomics information in the form of biological pathways, similarly to the method presented
in this paper. The omics layer in this paper consists of an SNN architecture that we will adapt
to take into account multi-omics data.

This study employed a multi-level interpretability approach focusing on gene and spatial levels.
We further explain spatial interpretability results by extracting high-attention image patches and an-
alyzing them using the pre-trained Hover-Net model for cell instance segmentation and classification
[96]. This analysis categorized cells into tumors, lymphocytes, stromal, necrosis, and epithelial cells.
Wequantitatively assessed the frequency of these cell types in high-attention patches for eachpatient.
Additionally, we estimated the proportion of Tumor Infiltrating Lymphocytes (TILs) in these patches
using the methodology developed by Saltz et al. [213], thus providing a deeper understanding of the
tumor microenvironment.

5.2.1 . Method

Within the scope of this study, we design, implement, and evaluate a multimodal integration net-
work for integrating histopathology slides and multi-omics data. For 1 ≤ i ≤ N , let us denote byWi

and Oi, respectively, the WSI and multi-omics bag for patient i. The goal of this study is to build and
train amulti-task networkM that takes as input the twobags and creates an interpretablemultimodal
representation zi for each patient such thatM(Wi, Oi) = zi.

Building upon the original Hyper-AdaC framework introduced in 4, we refine the approach to
Whole Slide Image (WSI) analysis by employing a hard clustering method to delineate distinct tissue
regions. In this approach, each patch is assigned to a single cluster, ensuring that the clusters repre-
sent well-defined and non-overlapping regions within the tissue. This process enables the creation of
per-region embeddings that effectively capture the morphological and spatial characteristics of the
tissue, while maintaining the clarity and simplicity of distinct cluster boundaries.

These hard-clustered regions are then used to construct a hypergraph, where the patches serve
as nodes, and hyperedges represent relationships based on bothmorphological similarity and spatial
proximity. This hypergraph is processed by a Graph Neural Network (GNN), which incorporates hy-
pergraph convolutions and attention mechanisms as detailed in previous work. The resulting feature
vectors for each region are pooled to create a finalWSI representation. This enhanced representation,
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Figure 5.1: Modality Encoding: Each modality undergoes encoding using a specific methodology. For
histopathology slides, spatial regions are extracted using a hypergraph encoder to obtain an embedding
for each region. Genes are segregated into gene sets in multi-omic integration, resulting in a multi-omics
embedding per set. Multimodal Dropout: Dropout Layer for modalities to deal with missing modalities by
relaxing the constraint of needing all modalities at once. Latent Representation: The latent representation
comprises multiple blocks, each representing the embedding of the interaction between a region and a
pathway. Hierarchical Mixture of Experts: Prediction Model based on MoE architecture on the different
block embeddings. Phase 1 learns the weights of each region inside a pathway while phase 2 learns the
weights of each pathway for the final prediction. Multi-Task Predictions: The latent representation is then
utilized for supervised tasks such as classification or survival analysis or unsupervised tasks for tasks like
clustering. Multi-Level Interpretations: Interpretation results are extracted at various levels: gene, gene-
set, and spatial levels.

based on hard-clustered region embeddings, provides a more structured and interpretable analysis
of the histopathology data.

For themulti-omics integration part, we use the original CustOmics framework introduced in chap-
ter 3. We consider S omic sources, denoted as the set Oi = {Oi,s}1≤s≤S . Each omic source is initially
partitioned into P gene sets, where each set represents distinct functional properties, denoted as
Oi,s = {Oi,s,p}1≤p≤P . For each gene set, we employ a Variational Autoencoder (VAE)-based approach
for representation learning, as originally introduced in [24]. The encoding networks, {Cp}1≤p≤P , are
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designed to integrate inputs from all omic sources related to each specific gene set, producing a latent
representation zOi,p ∈ Rzdim through the operation Cp(Oi,1,p, . . . , Oi,S,p) = zOi,p.

The novel enhancement in our current work involves not only concatenating these representa-
tions to form the final matrix OP

i ∈ RP×zdim , but also incorporating a hierarchical fusion strategy.
This strategy dynamically weighs the importance of each gene set across different omic sources, pro-
viding a more nuanced integration of multi-omics data. The resulting fused representation captures
both the shared and unique information across the various omic sources, thereby enabling a more
robust and interpretable model for downstream predictive tasks.

Multimodal Representation and Prediction

Upon acquiring theWhole Slide Image (WSI) bagXK
i and themulti-omics bagOP

i , the subsequent
phase involves constructing the final multimodal representation. This representation is crafted via a
bilinear operation between each pair of elements from both bags, generating a 3-dimensional tensor
Z ∈ RK×P×zdim where zk,p = B((XK

i )k, (O
P
i )p) and B signifies the bilinear fusion operator.

To effectively capture the complex interactions between the multimodal features from the WSI
andmulti-omics data, we adopt the Multimodal Factorized Bilinear (MFB) pooling method introduced
by Yu et al. [266]. MFB is designed to efficiently model second-order interactions between different
feature spaces while reducing computational complexity and the number of parameters required.

The MFB method begins by projecting the feature vectors from the WSI bag XK
i and the multi-

omics bagOP
i into a common low-dimensional space. Specifically, for a region feature vector (XK

i )k

and a pathway feature vector (OP
i )p, the projections are computed as follows:

x′
k = Wx(X

K
i )k and y′

p = Wy(O
P
i )p

whereWx ∈ Rk×zdim andWy ∈ Rk×zdim are learnable weight matrices, and k is the dimension of
the common space.

Next, the element-wise product of these projected vectors is computed:

z′k,p = x′
k ⊙ y′

p

where ⊙ denotes the Hadamard (element-wise) product. This operation captures the interac-
tion between corresponding elements of the WSI and multi-omics feature vectors in the reduced-
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dimensional space.
To further refine the multimodal representation, MFB employs a sum-pooling operation over m

different instantiations (factors) of the linear projections. Each factor generates a vector z′k,p,i, and
the final output vector zk,p is obtained by summing these vectors:

zk,p =
m∑
i=1

z′k,p,i

This sum-pooling step aggregates the information from multiple factors, resulting in a compact
and informative feature representation zk,p ∈ Rk. Finally, the resulting multimodal tensor Z ∈

RK×P×zdim encapsulates the complex interactions between theWSI regions and themulti-omics path-
ways.

Once the final multimodal tensorZ is constructed, it is fed into a downstream networkD, respon-
sible for producing the model’s final prediction. This downstream network comprises a hierarchical
mixture of expert networks, which operates in twodistinct stages. In the initial stage, for each pathway
p, all the regions are inputted into a mixture of experts network [129]. This network yields a pathway
representation zmoe

p =
∑K

k=1w
p
kzp,k, where (wp

k)k with∑K
k=1w

p
k = 1 are trainable parameters. These

pathway representations are then individually directed into single linear layers, each responsible for
producing predictions specific to their respective pathways.

In the second stage, the pathway representations are consolidated by inputting them into a sec-
ond Mixture-of-Experts (MoE) network. This network aims to aggregate the pathway-specific repre-
sentations into a unified representation zmoe =

∑P
p=1wpz

moe
p , where (wp)p with ∑P

p=1wp = 1 are
trainable parameters. The aggregated representation zmoe is then passed through a final linear layer
to generate the overall model prediction.

This hierarchical approach, combined with the MFB pooling method, allows the model to effec-
tively leverage the rich, multimodal information from both WSI and multi-omics data, ultimately en-
hancing the predictive power and interpretability of the model.

Multimodal Dropout

Tobetter enforce the robustness of ourmethod tomissing data, we implementmultimodal dropout
introduced in Cheerla et al.[46] to deal with missing modalities under the assumption of modalities
missing at random. Instead of dropping single neurons, the idea is to drop entire feature vectors
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corresponding to specific modalities so that it scales up the weights of the others. This is applied to
each sample data with a probability p for each modality. The dropout rate is a hyperparameter that
needs to be tuned.

Downstream Task

CustOmics accommodates training for two distinct tasks. Firstly, a supervised classification task
aims to predict the probability of each class occurrence. This task requires training by employing
a standard categorical cross-entropy loss computed between the predicted classes and the ground
truth labels.

The second task involves predicting survival outcomes, trained using the DeepSurv loss function
outlined in Katzman et al. [133]. The model adopts the negative partial log-likelihood formula, ex-
pressed in our context as:

L(θ) = −
∑

i:Ei=1

µ̂(xi; θ)− log
∑

j∈R(Ti)

eµ̂(xj ;θ)

 (5.1)

where Ei represents the event for patient i, µ̂(x; θ) denotes the risk function associated with the risk
score estimated by the network’s output layer, and R(t) defines the risk set, signifying the patients
still susceptible to failure after time t.

5.2.2 . Multi-level Interpretability

To make the results of the CustOmics model interpretable, we implement multiple scores to un-
derstand the predictions at different levels of the integration process.

Gene Importance & Pathway Enrichment

In pursuit of enhancing gene-level interpretability, we adapt themethod introduced byWithnell et
al. [256] to compute SHAP (Shapley Additive Explanations) values for deep variational autoencoders,
as described in chapter 3.

After training the Multimodal CustOmics network, we compute SHAP values (similarly to chapter
3) for genes or latent dimensions within the multi-omics embedding part. SHAP values are a game-
theoretic approach that attributes the contribution of each feature (in this case, each gene or latent
dimension) to the prediction made by the model.

For a given patient i, let zi represent the latent embedding generated by the network, where
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zi ∈ Rzdim . The SHAP value si,g for a gene g is calculated by averaging the marginal contributions of
the gene across all possible feature subsets, defined as:

si,g =
∑

S⊆zi\{g}

|S|!(zdim − |S| − 1)!

zdim!

[
f(zi,S∪{g})− f(zi,S)

]
where S is a subset of features excluding g, and f(·) represents the model’s predictive function.

This value measures the average contribution of the gene g to the model’s prediction for patient i,
when considered across all possible subsets of genes.

To generalize this to themultimodal setting, we compute SHAP values for eachmodality separately
and then aggregate them acrossmodalities to obtain a comprehensive view of the gene’s importance.
The SHAP values si,g are averaged across samples with similar features, providing insights at various
training phases, thereby highlighting gene importance in single-omic, multi-omic, and multimodal
integration. Detailed explanations of these processes can be found in Appendix A.5.

To further enhance biological interpretability, we propose the derivation of a Pathway Enrichment
Score (PES) to assess the impact of specific pathway activations on prediction tasks. This is achieved
by leveraging theweights learned by the gating networks in theMixture of Experts (MoE)model within
the CustOmics framework.

For each patient i, let wip denote the weight assigned by the gating network to pathway p. The
ranking score rip for patient i and pathway p is defined as:

rip = (wp)i

This score rip quantifies the overall contribution of pathway p to the final prediction for patient i.
This pathway ranking forms the basis for subsequent pathway enrichment analysis.

At the population level, and inspired by the work of Lundberg et al. [108], we use the computed
SHAP values and the pathway importance scores to conduct gene set variation analysis (GSVA). For
each patient i, let si,g represent the SHAP value for gene g. To generalize these values across all
pathways, we normalize the SHAP values by the importance score of the pathway associated with the
gene, resulting in the normalized SHAP value s̃i,g:

s̃i,g = rip(g) · si,g
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where p(g) represents the pathway associated with gene g. Some genes can belong to multiple
pathway, in this case we take a mean value of all the corresponding scores.

These normalized scores s̃i,g are then used as rankings for computing associated p-values for each
pathway using the Kolmogorov-Smirnov (K-S) test. The K-S test compares the distribution of genes
within a pathway against the distribution of all other genes, enabling the identification of pathways
that are significantly enriched in the context of the patient’s profile.

The resulting p-values provide a statistical measure of the impact of each pathway on the predic-
tion task, facilitating the identification of biologically relevant pathways that contribute to the model’s
decisions.

Spatial-level

To evaluate the importance of the interaction between a spatial region and a functional group,
we compute a Multimodal Interaction Score (MIS). This score is directly obtained from the weights of
the gating network such that for a specific patient i, we haveMISi,k,p = (wp

k)i. The score measures
the impact of a multimodal interaction between a spatial region and a functional group on the final
prediction.

5.2.3 . Experimental Setup

Dataset Description

This study uses the pan-cancer dataset from the Genomic Data Commons (GDC) [100], comprising
11,768 patients across 33 tumor types and encompassingmulti-omics data, histopathology slides, and
clinical data. We assess the performance of our model on both the entire pan-cancer dataset and
smaller cohorts of specific tumor types to demonstrate the robustness of our approach concerning
varying patient numbers. The objective is to evaluate CustOmics for tumor type classification and
survival outcome prediction. For the survival prediction task, we selected eight cohorts based on
patient numbers and censoring rates, as outlined in Table S1. Three of these eight cohorts were also
utilized to assess classification into molecular subtypes: TCGA-BRCA, TCGA-COAD, and TCGA-STAD.

Implementation Details

The CustOmics framework is based on the Pytorch deep-learning library [192]. It can be applied to
any combination of high-dimensional datasets and histopathology images with multitask training. As
done in Zhang et al. [273], DNA methylation data can be divided into 23 separate blocks, each feeding
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a hidden layer corresponding to a chromosome to avoid overfitting and save GPU memory.
Inspired by the work in [24], we adopt a multiphase training strategy to ensure the optimal in-

tegration of all modalities. During the first phase, we train each modality independently to obtain
unsupervised sub-representations for the different bags. The second phase consists of unfreezing
the central encoding network that learns the supervised representation of the final bag.

The whole architecture is built using fully connected blocks with weights initialized following a
uniform distribution U(− 1√

k
, 1√

k
) where k is the number of weight parameters. We use a batch nor-

malization technique in each layer composing the neural network to address the internal covariate
shift problem[121]. Also, to avoid overfitting problems, we use dropout [228]; its rate is considered a
hyperparameter.

The input dataset was randomly split into training, validation, and testing sets (60-20-20%) using
stratified 5-fold cross-validation so that the proportion of samples in each tumor type between the
different sets is preserved in all the folds. We performBayesian optimization [227] using the validation
set to find our model’s best possible combination of hyperparameters.

5.3 . Results

5.3.1 . Prediction Results

We executed multiple test cases in a comprehensive evaluation of CustOmics within a multitask
framework encompassing classification and survival analyses. The performances across survival and
classification tasks are presented in Tables 5.1 and 5.2. We initially assessed cancer-type classification
within the TCGA Pancancer cohort, revealing CustOmics’ superior performance in terms of AUC com-
pared to other benchmarked methods [107]. This notable performance can be attributed to the sub-
stantial patient cohort size and the rich information embeddedwithinmolecular data, a phenomenon
well-documented across multiple studies [274, 273, 24].

To underscore the method’s robustness concerning sample size, we evaluated smaller datasets,
focusing on predicting molecular subtypes within three specific TCGA cohorts: TCGA-BRCA, TCGA-
COAD, and TCGA-STAD. Across all classification tasks (as detailed in Table 5.1), CustOmics consistently
outperformed other comparablemethods. Notably, inmulti-omics integration, themixed-integration
VAE within CustOmics demonstrated superior performance compared to the SNN utilized by other
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methods. An additional assessment showcased the significance ofmulti-omics integration, delineated
in Table 5.3, emphasizing the impact on performance when replacing the VAE encoder in CustOmics
with a standard SNN. Further exploration into the integration strategies revealed the advantage of
CustOmics in exploiting diverse molecular data sources. Comparative analyses in Table 5.4 demon-
strated that while SNN performed best with RNAseq alone, CustOmics exhibited enhanced perfor-
mancewhen integrating RNAseqwith CNVandmethylation data. This divergence in integration strate-
gies suggests CustOmics’ capacity to augment predictive power and unveil novel interactions among
disparate data sources.

The evaluation extended to survival outcome prediction across eight TCGA cohorts, consistently
showcasing CustOmics’ superior predictive capabilities compared to alternative methods.

Notably, in survival analysis based solely on Whole Slide Images (WSI), CustOmics exhibited com-
paratively weaker performance in specific cohorts than the transformer architecture employed in
MCAT. An ablation study (detailed in Table S4) replaced CustOmics’ hypergraph encoding for WSI em-
beddings with a visual transformer. While this configuration works better for WSI only, CustOmics
yields superior performance with the hypergraph embeddings for multimodal representation learn-
ing. Despite the inferior results in a WSI-only setting, those results show that a hypergraph-based
embedding is better suited for multimodal integration than visual transformers.

In survival tasks, particularly inmulti-omics scenarios (withoutWSI), CustOmics displayed substan-
tially more significant differences in performances, especially as othermethods like SNN showed con-
cordance indices approaching randomness (Table 5.2). CustOmics’ lower standard deviation across
folds underscores its enhanced robustness compared to other state-of-the-art approaches.

5.3.2 . Multi-level Explainability: Classification

CustOmics can conduct pathway enrichment analysis across multiple tasks. Figure 5.2 presents
interpretability findings concerning the PAM50 subtype classification within the TCGA-BRCA dataset.
The objective is to elucidate the determinants driving the discrimination of specific subtypes, notably
the Her2 subtype, within a multimodal context.

The initial layer of interpretability operates at the gene level, utilizing a Multi-Omics Pathway En-
richment Score (MPES) and conducting Gene Set Variation analysis using normalized gene importance
scores (details in the methods section). Figure 5.2b delineates essential pathways in Her2 subtype
discrimination, notably highlighting the significance of estrogen response and KRAS signaling down
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Table 5.1: Classification Performances: Comparison of the classification performances for the 4 tasks
with respect to the area under ROC (AUC %).

Methods PANCAN BRCA COAD STAD
SNN (Multi-Omics) 94.1± 2.7 92.0± 3.3 79.2± 3.3 84.6± 3.3CustOmics (Multi-Omics) 98.9± 1.4 98.3± 1.0 88.1± 1.9 98.4± 1.2DeepSets (WSI Only) 84.7± 3.3 68.6± 4.1 55.2± 4.3 58.9± 4.6AttnMIL (WSI Only) 88.4± 2.0 71.2± 4.9 56.2± 4.4 61.4± 4.4DeepAttnMISL (WSI Only) 89.8± 2.5 71.1± 3.3 55.7± 4.0 62.1± 4.5MCAT (WSI Only) 90.4± 1.8 72.3± 3.3 61.7± 3.3 69.4± 3.5CustOmics (WSI Only) 92.5± 1.2 73.2± 3.1 62.2± 2.0 71.4± 2.2DeepSets (WSI + Multi-Omics) 96.7± 1.5 84.9± 2.0 58.6± 2.2 67.1± 2.7AttnMIL (WSI + Multi-Omics) 97.1± 1.2 86.6± 2.1 60.0± 2.5 69.4± 2.7DeepAttnMISL (WSI + Multi-Omics) 97.8± 1.1 88.3± 2.7 65.4± 2.7 66.6± 2.2MCAT (WSI + Multi-Omics) 98.9± 1.1 95.4± 2.0 93.3± 1.2 88.7± 2.3CustOmics (WSI + Multi-Omics) 99.5± 0.9 98.7± 1.1 94.7± 1.0 96.3± 2.4

Table 5.2: Survival Performances: Comparison of the survival performances for the 8 TCGA cohorts with
respect to the Concordance Index (C-index %).

Methods BLCA BRCA COAD GBMLGG KIRC LUAD STAD UCEC
SNN (Multi-Omics) 54.6± 2.7 47.5± 4.9 50.8± 3.4 60.5± 3.1 59.0± 5.7 54.2± 5.4 51.1± 4.6 49.6± 8.3
CustOmics (Multi-Omics) 64.1± 1.5 63.4± 1.8 58.6± 1.8 78.4± 1.6 66.5± 2.3 63.7± 1.2 55.6± 1.4 68.5± 2.8DeepSets (WSI Only) 50.6± 5.1 50.1± 6.5 50.2± 3.9 50.9± 3.5 49.6± 5.4 50.7± 7.5 50.0± 7.5 50.3± 7.5AttnMIL (WSI Only) 54.8± 4.8 57.0± 5.7 59.6± 3.9 79.0± 3.2 56.9± 6.1 56.3± 6.8 57.8± 6.1 63.± 7.DeepAttnMISL (WSI Only) 50.3± 5.5 52.1± 5.9 53.1± 3.3 73.8± 3.9 56.9± 6.6 55.0± 6.1 58.8± 5.3 60.0± 7.2MCAT (WSI Only) 55.5± 3.2 57.1± 5.6 59.9± 2.5 79.4± 2.0 56.0± 3.4 55.0± 6.1 57.7± 3.9 63.4± 6.7
CustOmics (WSI Only) 56.7± 3.9 59.4± 3.7 58.5± 2.1 78.7± 2.0 61.3± 2.2 60.0± 5.5 59.6± 2.3 67.9± 2.2DeepSets (WSI + Multi-Omics) 59.6± 4.7 52.1± 7.1 61.4± 3.6 81.8± 3.3 54.2± 5.4 56.8± 7.3 52.9± 5.8 59.0± 7.4AttnMIL (WSI + Multi-Omics) 57.4± 5.3 54.8± 6.4 61.9± 3.5 81.3± 3.0 62.0± 6.2 58.5± 6.7 54.0± 6.2 56.9± 6.1DeepAttnMISL (WSI + Multi-Omics) 58.5± 5.4 58.0± 7.6 61.0± 3.2 81.4± 3.3 60.7± 7.1 55.0± 6.1 53.8± 5.7 59.1± 6.6MCAT (WSI + Multi-Omics) 62.4± 3.6 58.3± 5.5 62.8± 2.9 82.5± 2.3 66.5± 3.9 62.5± 4.5 56.2± 3.1 62.2± 2.7
CustOmics (WSI + Multi-Omics) 67.2± 2.5 65.2± 3.6 64.5± 2.2 84.2± 2.3 68.2± 2.1 64.9± 3.7 58.0± 1.5 68.0± 2.2

hallmarks. The interrelation between the Her2 subtype and estrogen response has been extensively
investigated [172], emphasizing their coexpression’s multifaceted impact on breast carcinogenesis,
invasive behavior, and cellular growth.

Further exploration into gene-level importance is depicted in Figure 5.2c, spotlighting the predom-
inant genes responsible for discriminating the Her2 subtype and contrasting their importance across
other subtypes. Notably, the FOXA1 gene emerges with substantial importance, aligning with its sug-
gested role as a transcription factor for Her2, as indicated in Cruz et al. [61]. Beyond multi-omics
pathway enrichment analysis, CustOmics extends interpretability to encompass multimodal enrich-
ment, revealing spatial interactions within histopathology slides that correlate with specific pathways
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Table 5.3: Ablation Study Performance comparison between CustOmics and the state of the art for classifi-
cation tasks by replacing different instances of the model: a. Multi-Omics Ablation: CustOmics A1 replaces
the multi-omics VAE with an SNN. b. Hypergraph Ablation: CustOmics A2 replaces the hypergraph encoder
with a visual transformer and CustOmics A3 replaces the hypergraph representation with a regular graph
embedding. c. DownstreamNetwork Ablation: CustOmics A4 replaces the hierarchicalmixture-of-experts
approach with a regular mixture-of-experts network, CustOmics A5 replaces it with a transformer classifier.

Methods PANCAN BRCA COAD STAD
SNN (Multi-Omics) 94.1± 2.7 92.0± 3.3 79.2± 3.3 84.6± 3.3CustOmics (Multi-Omics) 98.9± 1.4 98.3± 1.0 88.1± 1.9 98.4± 1.2DeepSets (WSI Only) 84.7± 3.3 68.6± 4.1 55.2± 4.3 58.9± 4.6AttnMIL (WSI Only) 88.4± 2.0 71.2± 4.9 56.2± 4.4 61.4± 4.4DeepAttnMISL (WSI Only) 89.8± 2.5 71.1± 3.3 55.7± 4.0 62.1± 4.5MCAT (WSI Only) 90.4± 1.8 72.3± 3.3 61.7± 3.3 69.4± 3.5CustOmics A1 (WSI Only) 85.1± 3.8 70.5± 5.5 57.7± 4.1 59.4± 4.4CustOmics A2 (WSI Only) 90.4± 1.8 72.3± 3.3 61.7± 3.3 69.4± 3.5CustOmics A3 (WSI Only) 88.7± 1.2 69.4± 3.6 55.1± 3.5 61.9± 5.0CustOmics A4 (WSI Only) 89.4± 2.1 71.0± 3.3 58.8± 3.3 67.2± 3.7CustOmics A5 (WSI Only) 87.1± 1.9 70.4± 3.6 55.2± 3.9 66.4± 4.1DeepSets (WSI + Multi-Omics) 96.7± 1.5 84.9± 2.0 58.6± 2.2 67.1± 2.7AttnMIL (WSI + Multi-Omics) 97.1± 1.2 86.6± 2.1 60.0± 2.5 69.4± 2.7DeepAttnMISL (WSI + Multi-Omics) 97.8± 1.1 88.3± 2.7 65.4± 2.7 66.6± 2.2MCAT (WSI + Multi-Omics) 98.9± 1.1 95.4± 2.0 93.3± 1.2 88.7± 2.3CustOmics A1 (WSI + Multi-Omics) 96.1± 1.7 85.2± 2.4 59.5± 1.9 67.7± 2.9CustOmics A2 (WSI + Multi-Omics) 99.0± 1.3 98.4± 2.2 94.1± 1.2 95.3± 2.4CustOmics A3 (WSI + Multi-Omics) 99.9± 1.1 98.2± 2.5 93.9± 1.9 94.1± 2.7CustOmics A4 (WSI + Multi-Omics) 99.4± 0.8 98.0± 1.2 94.2± 1.1 96.1± 2.2CustOmics A5 (WSI + Multi-Omics) 98.5± 1.9 97.3± 3.4 93.8± 2.0 94.2± 2.9

Table 5.4: Modality Combinations Performance comparison between multiple combination of modalities
for CustOmics for the Pancancer classification task. The evaluation is done using the Area Under ROC-curve
(AUC).

Omics Combinations SNN CustOmics
CNV 74.3± 3.0 75.1± 2.7RNAseq 94.0± 2.6 96.0± 1.4Methyl 81.1± 1.7 82.3± 1.3CNV + RNAseq 94.3± 2.9 96.9± 0.8CNV + Methyl 81.4± 1.8 85.7± 2.1RNAseq + methyl 93.2± 1.0 97.3± 0.7CNV + RNAseq + Methyl 94.1± 2.7 98.9± 1.4

for discriminating Her2 subtypes. Figure 5.2d showcases such interpretability outcomes for the es-
trogen response and KRAS pathways. Different cell populations within high-importance regions for
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each pathway are described to help biological interpretation. Notably, regions associated with the
KRAS pathway exhibit increased proportions of stromal cells, suggesting potential regulation of tu-
mor cell signaling via these stromal cells [235]. Conversely, the estrogen response demonstrates a
strong interaction with regions featuring elevated densities of Tumor-Infiltrating Lymphocytes (TILs)
and lymphocytes, corroborated by multiple sources [71, 156]. This interaction holds particular signifi-
cance when stratifying between ER- and ER+ patients.

Figure 5.2: PAM50 Explainability Analysis: a. Pathway enrichment scores and associated p-values from
the gene set variation analysis. b. SHAP values for the most influential genes affecting the stratification of
the Her2 subtype and their impact on other subtypes. c. Spatial Enrichment Analysis for the top 2 pathways
and their key genes. d. Gene importance within the considered pathways. e. Cell distribution in the top 10%
attention regions.

5.3.3 . Multi-level Explainability: Survival

In a similar vein, interpretability analysis extends to survival analysis. Figure 5.3 delineates the
varying degrees of enrichment analysis for predicting survival outcomes within the TCGA Pancancer
dataset.

Specifically, Figure 5.3b underscores the predominant influence of the inflammatory response
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pathway on survival outputs, a finding consistent with existing literature [275].
Demonstrating the relevance of employingmultimodal integration in pan-cancer survival analysis,

Figure 5.3c illustrates the impact of incorporating multiple data sources on stratifying low and high-
risk patients, as evidenced by Kaplan-Meier curves and their corresponding log-rank p-values.

Further investigation into the effect of essential pathways is portrayed in Figure 5.3d, showcasing
the significance of interactions between the two most crucial pathways. Notably, heightened impor-
tance is observed within the inflammatory response pathway, characterized by increased lymphocyte
densities and Tumor-Infiltrating Lymphocytes (TILs). In contrast, the epithelial-mesenchymal transi-
tion pathway manifests greater densities of stromal cells.

Delving deeper into the Epithelial-Mesenchymal Transition pathway, the primary influential gene
appears to be FBN2, renowned for its inhibition of cancer cell invasion and migration, as stated in
Mahdizadehi et al. [163], thereby explaining its inclination toward lower risk outcomes.

Figure 5.3: Explainability Analysis for Pan-Cancer Survival Outcome Prediction Task: a. Pathway
enrichment analysis. b. Kaplan Meier curve associated with the survival outcome prediction task, showing
the high and low risk for death event stratification with a computed log-rank p-value. c. Spatial Enrichment
Analysis for the top 2 pathways and their most important genes. d. Gene importance within the considered
pathways. e. Cell distribution in the top 10% attention regions.
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5.3.4 . Application to the Integration of Multi-Omics Data & Histopathology Slides for

Survival Analysis in Lung Cancer

Lung cancer remains one of the most prevalent and deadly forms of cancer worldwide, posing
significant challenges to effective diagnosis and treatment. Its complex molecular landscape and
varied histopathological features necessitate advanced strategies for accurate characterization and
personalized therapeutic approaches. Traditional methods often fall short of capturing the complex-
ity of lung cancer, highlighting the need for more comprehensive and integrativemethodologies. This
short study serves as a validation for our method’s explainability results.

This study uses the International Adjuvant Lung Cancer Trial (IALT) dataset. It is a comprehen-
sive collection of clinical data from large-scale, randomized controlled trials to evaluate adjuvant
chemotherapy’s efficiency in patients with resected non-small cell lung cancer (NSCLC). We study a
subset of this trial comprised of 544 patients with histopathology slides, mutation status, and Copy
Number Variation (CNV) data. A detailed description of the dataset is presented in Appendix B.3.

We performed survival outcome prediction on the TCGA and IALT cohorts to validate explainability
results. The comprehensive analysis of C-index values for different models, as shown in Figure 5.4b,
further illustrates the superiority ofmultimodal approaches integrating omics andwhole slide images
(WSI). Specifically, the multimodal model significantly outperformed individual omics or WSI models
in both datasets, suggesting that combining these data types can enhance predictive accuracy for
survival outcomes.

The pathway enrichment analysis, illustrated in Figure 5.4, revealed congruent outcomes between
the TCGA and IALT datasets, identifying KRAS signaling down as the foremost pathway. This finding
aligns with established literature [232], which underscores the prevalence of oncogenic KRAS muta-
tions in approximately 25%

Subsequently, we explored the interactions between the KRAS signaling-down pathway and spa-
tial regions within histopathology images. Figure 5.4b depicts that regions of high attention in both
datasets exhibit similar distributions of cell types, indicating the robustness of ourmethod across dis-
tinct datasets of the same cancer type. Notably, this distribution underscores the association between
the KRAS pathway and tumor-infiltrating lymphocytes (TILs) heightened densities and marginally in-
creased tumoral cell counts in predicting survival outcomes. This consistent association echoes pre-
vious findings in [154], highlighting a solid correlation between KRAS mutation status and tumor

140



Figure 5.4: Comparison of interpretations between the TCGA-LUAD/TCGA-LUSC datasets and IALT regarding
the distinction between high and low survival risk. a. Pathway Enrichment analysis highlights the task’s top
pathways. b. Spatial Importance of the KRAS signaling-down pathway, illustrating regions of high impor-
tance in interaction with this pathway. c. Comparison of cell populations within the Whole Slide Image (WSI)
high-importance regions.

immunity-related characteristics, notably CD8+ TILs.

5.4 . Discussion

The CustOmics framework is a comprehensive toolset to bridge prediction and interpretation
within biological systems across multiple levels: genes, pathways, and spatial orientations. This mul-
tifaceted system generates three distinct interpretability scores concurrent with predictions, unrav-
eling the biological knowledge underlying model outcomes. Empirical assessments underscore Cus-
tOmics’ robust predictive capabilities, outperforming state-of-the-art methodologies in integrating
multi-omics and histopathology data across eight diverse datasets. However, despite its efficiency
with smaller datasets in this study, CustOmics’ reliance on deep learning methodologies might re-
strict efficiency when confronted with limited training data availability.
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Furthermore, CustOmics stands out for its interpretability, facilitating a broader spectrum of anal-
yses and enriching understanding across diverse biological modalities. Notably, although this study
centered on three omics data types, CustOmics exhibits versatility in seamlessly integrating varied
omics data without necessitating framework alterations. This adaptability originates from an initial
phase that independently trains on each source, serving as a normalization layer for heterogeneous
sources.

The strategic segmentation of inputs into interpretable entities for spatial and molecular data
mitigates challenges arising from the high dimensionality of whole slide images and multi-omics
datasets. This partitioning augments interpretability and broadens the method’s applicability to un-
charted pathways or spatial regions beyond this study’s scope.

CustOmics places significant emphasis on expansive interpretability functionalities. This aims to
unveil predominant biological functions steering specific predictions across diverse data sources and
scales. This comprehensive approach fosters collaboration between biologists and computational
pathologists, offering a framework for in-depth analyses through enrichment analysis for omics and
spatial data. Themethod extracts coherent insights from diverse data sources, unveiling a panoramic
view of interconnected biological processes influencing the outcome of interest. By integrating omics
and spatial data within enrichment analysis, CustOmics enables a deeper understanding of the in-
terplay between molecular information and spatial contexts, enriching investigative pathways for re-
searchers in the field.

Despite its potential and performance, ourmethod has a few noteworthy limitations. Firstly, while
this study successfully delineates interactions between omics and histopathology data, a method to
effectively discern and capitalize on the individual contributions of each omic source to a patient’s
molecular profile still needs to be present. It prevents a comprehensive understanding of each omic
source’s distinct impact on the molecular landscape. Secondly, the link established between the gen-
erated representation and phenotype data, beyond mere predictive labels, solely relies on the condi-
tioning of the latent space. While this conditioningmethodology effectively incorporates phenotypical
signals into the multimodal representation, it lacks a mechanism to unveil interactions between dif-
ferent modalities and diverse clinical variables explicitly. This omission presents an avenue for future
development, potentially enhancing the interpretability of multimodal interactions and their associ-
ations with clinical factors.
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Abstract

The conclusion of this thesis synthesizes the advancements made in integratingmulti-omics data
and histopathology for precision oncology. It highlights the challenges of multimodal data inte-
gration, particularly the high-dimensional nature of bulk omics and whole-slide imaging (WSI).
The role of spatial transcriptomics is briefly discussed as a powerful tool for enhancing the spa-
tial resolution ofmolecular data, particularly when combinedwithWSI andmulti-omics bulk data.
The concluding section also addresses future perspectives, including the potential of deep learn-
ing and foundation models in overcoming the challenges of multimodal data integration and
advancing personalized cancer treatment.

6.1 . High-Dimensional Multimodal Representation Learning

The work presented in this thesis introduces innovative methodologies to address the challenges
associated with the integration and analysis of high-dimensional multimodal data, particularly in the
domain of precision oncology. The integration of multi-omics data and histopathology enables re-
searchers to gain a comprehensive understanding of the complex biological processes that drive can-
cer, yet poses significant technical and analytical challenges due to the scale, complexity, and differing
nature of the data involved. The primary contributions of this thesis center on overcoming these chal-
lenges through the development of novel computational frameworks: CustOmics and a hypergraph
representation for whole-slide images (WSIs) and a mixture of both through Multimodal CustOmics.

6.1.1 . Interest in Multimodal Data Integration for Oncology

The integration of multiple data modalities—such as genomic, transcriptomic, proteomic, and
histopathological data—holds transformative potential in cancer research. Each of these modalities
provides unique insights into the biological processes at play, butwhen studied independently, impor-
tant interactions and relationships between different levels of biological information may be missed.
For instance, omics data provide detailed molecular signatures of the tumor, while histopathology
provides spatial context and visual insights into the cellular and tissue architecture.

Thework in this thesis is of particular interest because it goes beyond simply combining these data
types. It seeks to integrate them in a way that preserves biological relevance and captures complex,
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non-linear relationships between the modalities, leading to more meaningful biological interpreta-
tions. The contributions of this research are crucial for making precision oncology more actionable
by providing the tools needed to analyze complex datasets and derive insights that aremore reflective
of the intricate nature of cancer biology.

6.1.2 . CustOmics: Capturing Complex Interactions in Multi-Omics Data

One of the core contributions of this thesis is the development of CustOmics, a tailored frame-
work designed specifically for the high-dimensional nature of multi-omics data. Unlike traditional
methods, CustOmics is built to handle the complexity and variability of multi-omics datasets, which
often include thousands of features that capture different layers of biological information.

The key strength of CustOmics lies in its ability to preserve biological relevance. CustOmics em-
ploys advanced machine learning techniques, such as non-linear models and deep learning architec-
tures, to ensure that the learned representations capture biologicallymeaningful relationships across
different omics layers. This is critical in avoiding the simplifications that often arise from traditional
linear integration methods.

In addition, CustOmics is designed to overcome the challenges associated with high-dimensional
data. By using techniques such as dimensionality reductionwith Variational Autoencoders, CustOmics
reduces the complexity of the data while retaining key biological signals. This allows for the extraction
of actionable insights from large datasets without succumbing to overfitting or losing critical informa-
tion.

Furthermore, CustOmics enhances integration across multiple omics layers by learning shared
latent spaces that reflect the common biological processes between the different types of omics data.
This multi-layered integration provides researchers with the ability to explore deeper interactions
between molecular features, resulting in more comprehensive insights into cancer biology.

The biological explainability of the CustOmics framework ensures that the results can be directly
applied to understand cancer progression, heterogeneity, and treatment responses. By addressing
the limitations of traditional integration techniques, CustOmics represents a significant advancement
in how high-dimensional multi-omics data is utilized for personalized medicine.

6.1.3 . HypergraphRepresentation forWhole-Slide Images (WSIs): Preserving Spatial and

146



Community Information

In addition to multi-omics data, histopathology data, particularly whole-slide images (WSIs), play
a pivotal role in understanding tumor structure and cellular morphology. However, analyzing these
large, complex images presents significant challenges, as traditionalmethods often fail to fully capture
the spatial relationships and contextual information that are critical for understanding tumor biology.

To address this issue, a key contribution of this thesis is the development of a hypergraph-based
representation for WSIs. This method is innovative in several ways. First, unlike traditional graph rep-
resentations that rely on pairwise relationships between image features, the hypergraph approach
captures higher-order interactions. These interactions are crucial for representing community struc-
tures and spatial relationships between different regions of the tissue, which are often essential for
identifying pathological features such as immune cell infiltration or stromal architecture.

Furthermore, the hypergraph representation preserves the spatial integrity of the tissue by en-
coding the geometric and spatial relationships between different regions of the WSI. This is particu-
larly important in cancer research, where the spatial arrangement of cells and tissues provides crucial
insights into tumor progression and microenvironmental interactions.

Additionally, the hypergraph model is computationally efficient and scalable, making it suitable
for large-scale histopathological datasets. Its robustness in maintaining both structural and spatial
integrity ensures that the analyses remain biologicallymeaningful and applicable to a variety of clinical
and research contexts.

The introduction of the hypergraph representation method is a major contribution of this thesis,
as it allows for a more detailed analysis of WSIs in a way that enhances integration with molecular
data. This provides a more complete picture of the tumor, linking molecular alterations with the
physical structures observed in the tissue.

6.1.4 . Synthesis: Integrating Multi-Omics and Histopathology Data

The synthesis of CustOmics and the hypergraph representation forWSIs creates a powerful frame-
work for multimodal data integration in precision oncology. The combination of thesemethodologies
addresses the critical need for tools capable of handling both the high-dimensional nature of multi-
omics data and the spatial complexity of histopathology. This integration offers several important
benefits.
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Firstly, the integrated framework provides cross-modal biological insights by allowing researchers
to connect molecular alterations detected in multi-omics data with specific spatial features observed
in histopathology. For example, CustOmics can identify genetic mutations or transcriptomic signa-
tures associated with aggressive cancer phenotypes, while the hypergraph model can localize these
alterations to specific regions of the tumor, such as the invasive front or areas of immune infiltration.

Secondly, this framework enhances theunderstanding of tumor heterogeneity by combiningmolec-
ular and spatial data. The ability to linkmolecular changes with specific regions of tissue facilitates the
identification of distinct subpopulations within the tumor, which may respond differently to therapy.
This is a crucial step toward the development ofmore targeted and personalized treatment strategies.

Finally, the integration ofmulti-omics data andWSIs has direct clinical relevance. It can improve di-
agnostic accuracy, guide treatment decisions, and enhance prognostic assessments. The framework
developed in this thesis provides a foundation for translating complex multimodal data into action-
able insights for clinical practice, ultimately contributing to more effective and personalized cancer
care.

6.1.5 . Contributions to the Field of Precision Oncology

The contributions of this work are significant both from amethodological and an applied perspec-
tive. Methodologically, the introduction of CustOmics and the hypergraph representation represents
a major step forward in the field of multimodal data integration. These methods address the key
challenges of high-dimensionality, biological relevance, and computational scalability, and provide
solutions that are both innovative and effective.

From an applied perspective, the ability to integrate multi-omics data with histopathology helps
offer a more holistic understanding of cancer biology. This work not only enhances the ability to
study cancer heterogeneity and progression but also has the potential to impact clinical practice by
providing more accurate diagnostics and better-informed treatment strategies.

6.2 . Explainability

In the field of precision oncology, ensuring that complex computational models and analyses are
interpretable is of critical importance. Clinicians and researchers rely not only on the accuracy of
predictions but also on their understanding of howandwhy amodel arrived at a particular conclusion.

148



This thesis contributes significantly to the field by developing methods that prioritize explainability
at various levels of analysis. The methods presented in this work ensure that the outputs of high-
dimensional multimodal data integration can be understood by human experts, frommolecular-level
features to tissue-level spatial patterns. Key contributions include the development of H&Explainer,
GMM-CeFlow, as well as the explainability features of the CustOmics framework and the hypergraph
representation for WSIs.

6.2.1 . The Critical Role of Explainability in Precision Medicine

Explainability is a fundamental requirement in precision medicine, especially in oncology, where
decisions regarding diagnosis, treatment, and prognosis must be made with a high degree of con-
fidence. The integration of multimodal data—such as genomics, transcriptomics, proteomics, and
histopathology—often involves complex computational models that act as “black boxes.” While these
models can achieve high predictive accuracy, their lack of transparency can limit their utility in clinical
practice.

This thesis addresses this challenge by developing methods that explicitly focus on making com-
plex data analysis and model outputs interpretable. These methods allow medical professionals to
not only understand the predictions but also trust the underlying logic, enhancing their ability tomake
informed, data-driven decisions.

6.2.2 . H&Explainer: Human-Interpretable Analysis of Whole-Slide Images

A significant contribution of this thesis is the development of H&Explainer, a tool specifically
designed to enhance the interpretability of whole-slide images (WSIs) used in histopathology. Tra-
ditional deep learning models used for WSI analysis often lack interpretability, making it difficult for
pathologists to understand how predictions are derived from complex visual data.

H&Explainer addresses this issue in several ways. First, it decomposes thewhole-slide images into
clinically relevant components. Instead of treating WSIs as a monolithic image, H&Explainer breaks
them down into meaningful regions that are directly relevant to clinicians, such as areas of immune
infiltration or necrosis. Additionally, it provides layered explainability by offering interpretability at
both the micro (cell-level) and macro (tissue-level) perspectives, allowing clinicians to explore model
outputs in a way that aligns with their own expertise. Finally, H&Explainer translates model outputs
into human-readable formats by generating visual and textual explanations that correspond to clin-
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ical interpretation, making the predictions of complex models accessible and actionable for medical
professionals.

6.2.3 . GMM-CeFlow: Counterfactual Analysis for Explainable Histopathology

This thesis also introducesGMM-CeFlow, a novelmethoddesigned to enhance explainability through
counterfactual analysis. Counterfactual explanations are vital for understanding how small changes
in features could lead to different outcomes, which is particularly important in precision oncology.

Key features of GMM-CeFlow highlight its strengths in this regard. First, it generates human-
interpretable features by using Gaussian Mixture Models (GMMs) to produce features that patholo-
gists can easily interpret and relate to clinical outcomes. In addition, GMM-CeFlow produces clinically
relevant counterfactuals by generating scenarios directly linked to real-world clinical questions, such
as how altering cell density or architecture could impact treatment predictions. Lastly, GMM-CeFlow
supports actionable decision-making by offering insights into how specific morphological changes in-
fluence outcomes, helping clinicians explore various treatment pathways and make more informed
decisions based on the analysis.

6.2.4 . Explainability in CustOmics: Understanding Multi-Omics Integration

While CustOmics is primarily designed to integrate and analyze high-dimensional multi-omics
data, it places a strong emphasis on explainability to ensure that the insights it generates are ac-
cessible and useful in both clinical and research contexts.

CustOmics offers several key explainability features. One of the most important is its feature-
level interpretability. CustOmics uses dimensionality reduction techniques that preserve biologically
meaningful features, ensuring that critical omics elements, such as key genetic mutations or disease-
driving pathways, are clearly highlighted and presented in a way that can be easily interpreted by
researchers and clinicians. Another essential aspect is its multi-modal contribution analysis, which
provides insights into how each omics layer, such as genomics or transcriptomics, influences the
overall model predictions. This allows for a transparent understanding of how various molecular
layers interact and contribute to the final outcomes, offering a clear and interpretable view of the
data integration process.

6.2.5 . Explainability in the Hypergraph Representation for WSIs
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The hypergraph representation for WSIs is another important contribution of this thesis, offering
a way to represent complex tissue architecture and spatial relationships while maintaining biological
interpretability.

Several key explainability features highlight the value of the hypergraph approach. First, it enables
the visualization of community and spatial structures, capturing higher-order relationships between
different regions of tissue. This makes it easier to understand and visualize how various areas of a
tumor interact, helping pathologists and researchers focus on specific regions of interest, such as
cellular clusters or areas with immune cell activity. Additionally, the hypergraph approach enhances
the interpretability of pathological features by concentrating on spatial and community structures
within WSIs. This provides clear explanations for how these features contribute to tissue pathology,
offering a transparent understanding of how spatial patterns impact disease progression.

6.2.6 . Synthesis: The Role of Explainability in Multimodal Data Integration

The various methods developed in this thesis demonstrate a clear commitment to making com-
plex data analysis both explainable and interpretable. By emphasizing transparency throughout the
process, from the integration ofmolecular-level multi-omics data to tissue-level spatial analysis, these
methods ensure that clinicians and researchers alike can access and understand the results.

The contributions to explainability can be seen in several key areas. First, these methods serve to
bridge the gap between computational models and clinical expertise, ensuring that the sophisticated
models used to analyze multimodal data are comprehensible to clinical experts, thereby facilitating
their application in real-world decision-making. Additionally, the focus on explainability enhances
trust in the outputs of machine learning models, which is crucial for their acceptance and integration
into medical practice. Lastly, by making the results explainable, these methods provide actionable
insights that can directly inform clinical decisions. This is particularly important in precision oncol-
ogy, where a deep understanding of patient-specific features is essential for developing personalized
treatment strategies.

The contributions of this thesis to the field of explainability are diverse and impactful. Method-
ologically, the development of tools such as H&Explainer and GMM-CeFlow represents a significant
advancement in computational pathology, ensuring that the complex analyses of high-dimensional
data are transparent and easy to interpret. Clinically, these methods offer the potential to improve
cancer diagnostics, prognostics, and treatment planning by providing explainable and actionable in-
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sights from multimodal data, ultimately enhancing patient outcomes.

6.3 . Challenges & Opportunities for Multimodal Integration

Integrating bulk omics data, such as genomics or transcriptomics, with histopathology slides presents
several significant challenges. One of the primary limitations stems from the inherent differences in
data localization between these modalities. Bulk omics data typically provide averaged molecular
profiles across a heterogeneous mixture of cells, offering a global view of the biological processes
within a sample. However, this averaging effect obscures the spatial context and cellular heterogene-
ity, making it difficult to relate specific molecular signals to localized tissue structures observed in
histopathology slides.

Histopathology slides, on the other hand, offer high-resolution visual representations of tissue
architecture, revealing the spatial organization of cells, tissue morphology, and microenvironmental
context. While these images provide rich information about the structural and morphological as-
pects of the tissue, they need the detailed molecular characterization provided by omics data. The
challenge, therefore, lies in bridging the gap between these twomodalities—one that captures global
molecular profiles without spatial resolution and the other that offers detailed spatial information
without the associated molecular data.

The lack of localization in bulk omics data limits the ability to accuratelymapmolecular changes to
specific regions or cell typeswithin the tissue. This disconnect can lead to difficulties in interpreting the
biological significance of the integrated data, particularly when trying to understand complex inter-
actions between different cell populations or microenvironmental factors that contribute to disease
progression. For instance, the molecular signatures derived from bulk omics might not correspond
directly to any single histological region, making it challenging to draw meaningful conclusions from
the multimodal integration.

Emerging technologies like spatial transcriptomics have been developed to overcome these limi-
tations. Spatial transcriptomics enables the measurement of gene expression across tissue sections
while preserving spatial context, effectively combining the strengths of omics data and histopathol-
ogy. This technology allows for the localization of gene expression patterns within specific regions of a
tissue section, providing amore granular view of themolecular landscape about the tissue’s structural
features.
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6.4 . Spatial Data for Precision Oncology

Spatial omics, particularly spatial transcriptomics, has emerged as a transformative technology
in precision oncology, enabling the simultaneous capture of molecular and spatial data at the single-
cell resolution. By integrating spatial information with traditional high-throughputmolecular profiling
(such as genomics, transcriptomics, proteomics, and metabolomics), this approach provides a more
comprehensive understanding of tumor biology. When combined with whole-slide imaging (WSI) and
bulk omics data, spatial omics offers novel insights into tissue architecture, tumor heterogeneity, and
microenvironment interactions, which are critical for advancing personalized medicine in oncology
[168, 178].

One of the key advantages of spatial transcriptomics is its ability to retain the spatial context of
tissue samples, which is often lost in traditional bulk omics approaches. This spatial resolution is cru-
cial for studying the intricate organization of tumors, where different cell populations and molecular
features are distributed across diverse microenvironments. In combination with WSI, spatial tran-
scriptomics enables researchers to map molecular data directly onto tissue morphology, creating a
multimodal view of the tissue that links molecular alterations to specific histopathological features
[229].

For instance, spatial transcriptomics can identify which regions of a tumor exhibit specific gene
expression patterns, helping to pinpoint areas of interest such as regions of high cell proliferation,
immune cell infiltration, or necrosis. When this spatial data is integrated with bulk omics, it provides
a layered approach where bulk data offers a global molecular snapshot, while spatial transcriptomics
zooms in to provide local insights, revealing the heterogeneous nature of the tumor. This combina-
tion is particularly powerful for precision oncology, as it allows clinicians and researchers to connect
molecular data to specific tissue regions, guiding targeted therapeutic strategies and improving prog-
nosis [13].

6.5 . Applications in WSI and Histopathology

Whole-slide imaging (WSI) provides high-resolution visual representations of tissue architecture,
capturing critical information about the spatial organization of cells, tissue morphology, and the mi-
croenvironmental context. While WSIs offer detailed structural information, they need the molecular
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characterization provided by omics data. This is where spatial transcriptomics steps in, bridging the
gap by mapping gene expression profiles onto the visual features seen in histopathology [204].

Researchers can better understand the spatial relationships between cellular phenotypes and
molecular states by combining WSI and spatial transcriptomics. For example, in a tumor sample, spa-
tial transcriptomics can help delineate regions of active immune response by identifying areas where
immune-related gene expression is heightened. At the same time, WSIs can provide complementary
insights into the structural features of these regions, such as immune cell clustering or infiltration
into the tumor. This multi-layered analysis helps identify spatial patterns critical for understanding
disease progression and making more informed treatment decisions [85].

Moreover, the study of niches—spatially distinct cellular microenvironments in tissues—has been
significantly advanced through spatial transcriptomics. Transposing niche detection from spatial tran-
scriptomics to histopathology allows for the detailed characterization of molecular heterogeneity
within tissue architecture. The collaboration on Novae with Quentin Blampey arose from this need to
strengthen niche detection, leveraging graph-based models to identify and model spatial domains in
ST data accurately. By encoding spatial andmolecular relationships, Novae enhances our ability to de-
tect andmap cellular niches. These advancements can be transposed back into histopathology, where
the combination of Novae’s insights with WSI along with the human interpretable features presented
in chapter 4 can refine the identification of tissue niches, providing a more nuanced understanding
of disease progression.

This integration also supports the development of new diagnostic tools. Correlating molecular
profiles with histopathological features and spatial transcriptomics, augmented by niche detection
models like Novae, could enhance the accuracy of automated pathology systems. This allows for
more precise segmentation of tumor regions, identification of specific cell types, and prediction of
patient outcomes based on molecular and spatial data [36].

6.6 . Enhancing Bulk Omics with Spatial Data

Traditional bulk omics analyses provide an averaged molecular profile from a mixture of cells
within a sample. While valuable for understanding generalmolecular trends, bulk data often obscures
a tissue’s spatial and cellular heterogeneity, making it difficult to distinguish which cells or regions are
driving specificmolecular changes. This limitation becomes particularly significant in oncology, where
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tumors are highly heterogeneous, with different regions exhibiting distinct genetic and phenotypic
profiles [237].

By integrating bulk omics data with spatial transcriptomics, researchers can overcome this lim-
itation and disaggregate the bulk molecular data into more meaningful, spatially resolved compo-
nents. Spatial transcriptomics identifies spatially distinct molecular subpopulations within the tumor,
enabling researchers to pinpoint where specific molecular signals originate within the tissue archi-
tecture. This is especially useful for understanding how different cell populations (e.g., cancer cells,
immune cells, stromal cells) interact within the tumor microenvironment [233].

Moreover, integrating spatial transcriptomics with bulk multi-omics data—such as genomics, pro-
teomics, and metabolomics provides a more holistic view of the biological processes within a tumor.
For example, bulk proteomic data may reveal dysregulation in signaling pathways. At the same time,
spatial transcriptomics can localize these changes to specific cell types or regions within the tumor,
offering more profound insights into the molecular drivers of cancer [30]. This multi-modal approach
is critical for understanding tumor heterogeneity, identifying novel therapeutic targets, and improving
treatment strategies [134].

6.7 . Future Directions

While the integration of spatial transcriptomics with whole-slide imaging (WSI) and bulk omics of-
fers immense potential for precision oncology, several significant challenges must be addressed to
fully harness the power of these technologies. The future ofmultimodal integration lies not only in re-
fining existing approaches but also in overcoming critical obstacles such as computational complexity,
data harmonization, model generalization, and handling missing data. Addressing these issues will
be essential to drive innovation in both research and clinical applications.

6.7.1 . Computational Complexity and Scalability

One of the most pressing challenges in multimodal integration is the computational complexity
involved in analyzing high-dimensional spatial data alongside other omics modalities. Spatial tran-
scriptomics generates vast datasets, combining molecular and spatial information at the single-cell
level. When this is integrated with bulk omics data and WSIs, the data volume increases dramatically,
requiring sophisticated computational frameworks that can scale to meet these demands.
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Current methods for multimodal integration often struggle to process these large and diverse
datasets efficiently. This issue is exacerbated by the need to correct batch effects, align data from
different modalities, and ensure that biological meaning is preserved during the integration process.
Developing more scalable algorithms and frameworks capable of handling these computational chal-
lenges is essential. These tools must address efficient data storage and retrieval, particularly given
the high dimensionality of spatial transcriptomics and omics data. Additionally, incorporating paral-
lelized or distributed computing techniques is necessary to reduce processing times, making real-time
clinical applications more feasible. Moreover, advanced machine learning and deep learning models,
including foundationmodels, are required to integratemultiple data types without compromising the
biological signal or predictive power.

Exploring the use of graph-based models and tensor decomposition techniques for multimodal
integration could also help reduce the computational burden while maintaining high accuracy in de-
tecting complex interactions between data layers.

6.7.2 . Standardization and Data Harmonization

As spatial transcriptomics technologies continue to advance, a significant hurdle remains the lack
of standardization across platforms. Different technologies, such as 10x Genomics Visium andNanoS-
tring GeoMx, produce data with varying spatial resolutions, gene panel sizes, and technical charac-
teristics. These differences make it difficult to integrate data across studies and platforms, thereby
complicating large-scale comparative analysis and clinical translation.

To overcome this challenge, the research community will need to focus on several key areas. First,
developing harmonization techniqueswill be essential to align data fromdifferent platforms, ensuring
consistency in the processing and integration of spatial transcriptomics data with other modalities.
Additionally, establishing standard operating procedures (SOPs) for data collection, processing, and
analysis will be crucial to ensuring reproducibility and comparability across different studies. Achiev-
ing consensus on data formats andmetadata requirements will also facilitate more seamless sharing
and collaboration among research groups and institutions.

Furthermore, the creation of open-source tools and repositories for spatial omics data would
support broader adoption of best practices and allow the research community to take full advantage
of large, well-curated multimodal datasets.
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6.7.3 . Generalization of Foundation Models

Foundationmodels—large-scale, pre-trainedmodels that learn from vast, diverse datasets—have
significant transformative potential for precisionmedicine, especially in the integration ofmultimodal
data. These models can capture complex relationships across various biological layers, such as ge-
nomic, transcriptomic, proteomic, and spatial data, to provide highly accurate predictions regarding
disease progression, treatment responses, and patient outcomes.

However, a key limitation of foundation models is their lack of generalizability when trained on
datasets that are not sufficiently diverse or representative. In healthcare, where patient populations
differ greatly in terms of genetics, demographics, and environmental factors, this limitation can result
in biased models that may not perform well across all clinical scenarios.

Addressing this issue requires a concerted effort in several areas. First, expanding training datasets
to include more diverse patient populations, disease types, and clinical settings is essential. This will
help ensure that foundation models generalize well across a wide range of biological contexts, mak-
ing them applicable to a broader spectrum of patients. Additionally, techniques for transfer learning
need to be developed, allowing foundationmodels to be fine-tuned on smaller, more specific datasets
without sacrificing the general knowledge acquired from large-scale training. Finally, building robust
evaluation frameworks is critical to assess the performance of foundation models across different
clinical settings, patient populations, and diseases. These frameworks should also incorporate fair-
ness metrics to ensure that predictions are equitable across diverse demographic groups.

6.7.4 . Handling Missing Modalities

A common issue in multimodal integration is the presence of missing data, as not all patients may
have complete datasets for everymodality (e.g., genomic, transcriptomic) due to technical limitations,
cost, or clinical circumstances. This challenge affects foundation models and machine learning tech-
niques that rely on multiple data types for accurate predictions.

To enhance the robustness of multimodal integration in real-world applications, future efforts
must concentrate on several key areas. First, developing advanced imputation techniques is essen-
tial, allowing models to infer missing data based on available modalities. For instance, deep learning
models could predict absent transcriptomic or genomic information using spatial or histopathological
data. Additionally, creating flexiblemodels capable of dynamically adapting to the availablemodalities
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is critical. Such models should deliver accurate predictions even when certain data types are miss-
ing, possibly through hierarchical models that prioritize specific data modalities or ensemble learning
techniques that combine predictions from different data subsets. Furthermore, incorporating uncer-
tainty quantification methods will be vital to indicate when predictions may be less reliable due to
missing data. This will help clinicians better interpret model outputs and make informed decisions,
even in the absence of certain modalities.

6.7.5 . Ethical Considerations and Data Privacy

As the integration of multimodal data becomes more widespread in clinical practice, ethical con-
siderations surrounding data privacy, ownership, and the use of sensitive patient information will
take on increasing importance. The detailed insights provided by spatial transcriptomics and omics
data, often at the single-cell level, raise concerns about how this highly sensitive information is stored,
shared, and used.

Future research and clinical applications must address several key aspects. First, there is a need
to establish robust data privacy frameworks that ensure patient confidentiality while still facilitating
the sharing of valuable multimodal datasets for research purposes. In addition, it is essential to en-
sure the ethical use of data in AI-driven healthcare systems, preventing the exploitation of patient
information for commercial gain without proper consent and safeguards. Finally, transparency and
explainability in the use of these advanced models must be prioritized, ensuring that both patients
and clinicians have a clear understanding of how predictions are generated and can trust the outputs
of these systems.

6.8 . Final Words

In this thesis, we have explored the complexities and opportunities presented by the integration
of multi-omics and histopathological data in the field of precision oncology. By developing novel
frameworks such as CustOmics and the hypergraph-based representation for WSIs, we have taken
significant steps toward addressing the challenges posed by high-dimensional data and the intricate
spatial relationships within tumors. These contributions not only enhance the ability to analyze and
interpret complex biological datasets but also provide a foundation for more personalized and effec-
tive cancer treatments.
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The integration ofmulti-modal data has proven to be a powerful approach for gaining a deeper un-
derstanding of cancer biology, as demonstrated by the innovative methodologies introduced in this
work. From capturing biologically meaningful relationships across various omics layers to improv-
ing the interpretability of whole-slide images, these methods bridge the gap between computational
models and clinical practice, ensuring that advanced technologies are both accessible and actionable
in real-world healthcare settings.

As precision medicine continues to evolve, the frameworks and tools developed in this thesis lay
the groundwork for future advancements in cancer research. However, significant challenges remain,
particularly in terms of scalability, data diversity, and the ethical use of sensitive patient information.
Addressing these challenges will be essential as we move toward a more integrated, data-driven ap-
proach to oncology.

In closing, this work represents a meaningful contribution to the field of precision oncology, ad-
vancing both the science of multimodal data integration and its practical application in personalized
healthcare. It is my hope that the innovations presented here will inspire further research, leading
to improved outcomes for cancer patients worldwide and contributing to the ongoing evolution of
precision medicine.
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Additional Details & Mathematical

Frameworks

A.1 . Multiple Instance Learning

Multiple Instance Learning (MIL) is a variation of supervised learning where the training set is com-
posed of labeled bags (sets) of instances, rather than individually labeled instances. In traditional su-
pervised learning, each instance is labeled and used for training, but MIL addresses situations where
labels are assigned to groups of instances (bags) without specifying which instance within the group
is responsible for the label. This learning paradigm is particularly useful in domains where obtaining
detailed annotations is challenging or expensive.

A.1.1 . Problem Formulation

In Multiple Instance Learning, the primary goal is to train a model using a dataset consisting of
bags, each labeled as positive or negative. A bag is labeled as positive if it contains at least one positive
instance, and negative if all instances within it are negative. Formally, let X = {X1, X2, . . . , Xn} be a
set of bags, where each bagXi contains instances {xi1, xi2, . . . , ximi}. Each bagXi is associated with
a label Yi ∈ {0, 1}. The challenge is to learn a function f that predicts the label of new bags based on
the instances they contain.

MIL assumes that while the individual instances within a positive bag might not all be positive,
there is at least one instance that contributes to the bag’s positive label. Conversely, a negative bag
has no positive instances. This assumption is crucial in many real-world applications where fine-
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grained labels are impractical to obtain.
A.1.2 . Theory

The theory behind Multiple Instance Learning involves understanding how to aggregate informa-
tion from instances within a bag to make predictions about the bag’s label. One common approach
is to use an instance-level classifier to evaluate each instance and then aggregate these evaluations
to predict the bag’s label. For example, a maximum function might be used, where the bag is labeled
positive if any instance is predicted to be positive.

Another approach is to use a specialized MIL model, such as MIL-based support vector machines
(SVM), neural networks, or ensemble methods. These models are designed to handle the ambiguity
of instance labels within bags and can learn more complex relationships between instances and bag
labels. For instance, the Diverse Density (DD) algorithm aims to find a region in the instance space
where positive instances from positive bags are densely clustered and negative instances are sparse.

A.1.3 . Applications in Biomedical Data

Multiple Instance Learning has found significant applications in the biomedical field, particularly
in histopathology. Histopathology involves the examination of tissue samples to diagnose diseases,
such as cancer. Obtaining pixel-level annotations of pathological images is extremely labor-intensive
and requires expert knowledge, making MIL a valuable approach.

In histopathology, a tissue sample (bag) is divided into smaller patches (instances), which are then
analyzed. The entire sample might be labeled as cancerous or non-cancerous based on the presence
of cancerous cells in any of the patches. MIL models can be trained to predict the overall diagnosis
based on the patches without needing each patch to be individually labeled. This significantly reduces
the annotation burden while still leveraging the detailed information within the tissue.

For example, in breast cancer diagnosis, whole-slide images (WSIs) of tissue samples can be di-
vided into smaller tiles. An MIL approach can be used to classify these WSIs as benign or malignant
based on the presence ofmalignant cells in any of the tiles. Similar applications are seen in identifying
metastases in lymph nodes, grading of tumors, and detecting other pathological conditions.

The use of MIL in biomedical imaging extends beyond histopathology to areas like radiology,
where similar challenges of detailed labeling exist. MIL models can assist in analyzing complex medi-
cal images by focusing on regions that contribute to the overall diagnosis, thereby improving accuracy
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and efficiency in medical decision-making.
In conclusion, Multiple Instance Learning addresses the challenge of learning fromweakly labeled

data by focusing on the relationship between bags and their instances. Its theoretical foundations and
practical applications, particularly in biomedical data and histopathology, demonstrate its potential
to handle complex real-world problems where detailed annotations are scarce or costly to obtain.

A.2 . Generalities on Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful tool for analyzing and learning from
data structured as graphs. Unlike traditional neural networks that operate on grid-like data such
as images or sequences, GNNs are designed to work with graph data, capturing the dependencies
between nodes through their connections. This capability makes GNNs highly suitable for a variety
of applications, including social network analysis, molecular chemistry, recommendation systems,
and more. The core idea behind GNNs is to leverage the graph structure to improve learning by
propagating and aggregating information across nodes and edges.

A.2.1 . Problem Formulation

A graph G = (V,E) consists of a set of nodes V and a set of edges E. Each node vi ∈ V can have
a feature vector xi, and each edge (vi, vj) ∈ E can have an edge feature eij . The goal of a GNN is to
learn a representation hi for each node vi that captures its structural and feature information. This
learned representation can be used for various tasks such as node classification, graph classification,
and link prediction.

Formally, letX be the matrix of node features whereX ∈ R|V |×d andA be the adjacency matrix
of the graph whereA ∈ R|V |×|V |. The objective is to learn a function f : X,A → HwhereH ∈ R|V |×d′

is the matrix of node embeddings.
A.2.2 . Graph Neural Network Models

Graph Neural Networks can be broadly categorized based on how they propagate and aggregate
information. Some popular models include Graph Convolutional Networks (GCNs) [137], Graph Atten-
tionNetworks (GATs) [247], andGraph Recurrent Neural Networks (GRNNs). Each of thesemodels has
its unique way of processing the graph structure and node features to learn meaningful representa-
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tions.
A.2.3 . Message Passing

The message-passing framework is a general approach for designing GNNs. In this framework,
each node vi aggregates messages from its neighbors and updates its representation accordingly.
This process can be iterated multiple times to allow information to propagate further across the
graph. The general message-passing update can be written as:

h
(t)
i = UPDATE(h(t−1)

i ,AGGREGATE({h(t−1)
j , eij |j ∈ N (i)}

))
where h

(t)
i is the representation of node vi at iteration t, N (i) is the set of neighbors of vi, and

UPDATE and AGGREGATE are functions specific to the GNN model used.
A.2.4 . Graph Convolutions

Graph Convolutional Networks (GCNs) extend the concept of convolutions from grid-like data to
graph-structured data [137]. The core idea is to perform a convolution operation on the graph by
aggregating features from a node’s neighbors. The graph convolution operation for a single layer can
be written as:

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W(l)

)
where Â = A+I is the adjacencymatrix with added self-loops, D̂ is the degreematrix of Â,H(l) is

the node feature matrix at layer l,W(l) is the trainable weight matrix, and σ is a non-linear activation
function.

A.2.5 . Graph Pooling

Graph pooling methods are used to reduce the size of the graph, making it more manageable for
tasks like graph classification. Pooling operations aim to downsample the graph by selecting a subset
of nodes and edges or by coarsening the graph. Popular graph pooling methods include GraphSAGE
pooling [105], Top-K pooling, and DiffPool [265]. These methods aggregate node features and struc-
ture information to create a smaller, more informative graph representation.

In conclusion, GraphNeural Networks provide a robust framework for learning fromgraph-structured
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data by leveraging the relational information between nodes and edges. Their ability to performmes-
sage passing, graph convolutions, and pooling operations makes them highly effective for a wide
range of applications, from social network analysis to biomedical data processing.

A.2.6 . About Hypergraphs

A Hypergraph is a generalization of the graph structure that extends the interaction between in-
stances to a higher level. To describe this complex relationship where an edge can connect to more
than two nodes, we define a hypergraph G = (V,E) as a hypergraph with M vertices and N hyper-
edges. The hypergraph can then be generated using an incidence matrixH ∈ RN×M . For each vertex
i, the vertex degree is defined asDii =

∑
e∈E Hie and the hyperedge degree will be Bee =

∑
i∈V Hie.

Hypergraph Convolution

This hypergraph can be associated to a featurematrixX ∈ RN×F where F is the feature dimension
of one node. In the context of our study, this node feature will represent the aggregated Resnet-18
features of one cluster. A step of this convolution is defined in [16] as follows:

X(l+1) = σ(D− 1
2HWB−1HTD− 1

2X(l)P) (A.1)
whereW is the weight matrix, σ a non-linear transformation andP is the weight matrix between

layer l and l+1.
Hypergraph Attention

To build the attention visualization, we use an attention mechanism for hypergraphs described in
[16] as:

αij =
exp(σ(sim(xiP, xjP)))∑

k∈Ni
exp(σ(sim(xiP, xkP)))

(A.2)
where the similarity function computes similarity between two vertices as follows:

sim(xi, xj) = aT [xi||xj ] (A.3)
where a is a weight vector and [.||.] denotes concatenation.
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A.3 . Generalities on Survival Analysis

Survival analysis is a branch of statistics that deals with the analysis of time-to-event data. The
primary objective is to model and predict the time until an event of interest occurs, such as death,
relapse, or failure. This type of analysis is widely used in various fields including medicine, biology,
engineering, and social sciences. The distinctive feature of survival data is the presence of censor-
ing, which occurs when the event has not been observed for some subjects during the study period.
Survival analysis methods account for this censoring to provide accurate estimates and predictions.

A.3.1 . Problem Formulation

In survival analysis, the data typically consists of pairs (Ti, δi) for i = 1, . . . , n, where Ti is the
observed time for the i-th individual and δi is an indicator of whether the event occurred (δi = 1) or
the data is censored (δi = 0). The primary goal is to estimate the survival function S(t) = P (T > t),
which gives the probability that the event occurs later than time t, and the hazard function λ(t) =

lim∆t→0
P (t≤T<t+∆t|T≥t)

∆t , which describes the instantaneous rate of occurrence of the event at time t.
Formally, let Xi be a vector of covariates for the i-th individual. The objective is to model the

relationship between the survival time Ti and the covariatesXi, often through the hazard function.
A.3.2 . Kaplan-Meier Curves

The Kaplan-Meier estimator is a non-parametric statistic used to estimate the survival function
from the observed data. It provides a step function that jumps at each event time. The Kaplan-Meier
survival function is given by:

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
where ti are the ordered event times, di is the number of events at time ti, and ni is the number

of individuals at risk just before ti. The Kaplan-Meier curve is a plot of Ŝ(t) against t, providing a visual
representation of the survival experience of the cohort under study [132].

Cox Proportional Hazards Model

The Cox proportional hazardsmodel is a semi-parametricmodel that assesses the effect of covari-
ates on the hazard function. The Cox model assumes that the hazard function for the i-th individual
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can be expressed as:

λi(t | Xi) = λ0(t) exp(X
⊤
i β)

where λ0(t) is the baseline hazard function, Xi is the vector of covariates, and β is the vector of
coefficients to be estimated. The Cox model does not assume any specific form for λ0(t), making it
flexible in modeling various types of hazard functions. The coefficients β are estimated using partial
likelihood, which maximizes the likelihood of the observed ordering of event times [60].

A.3.3 . Evaluation Metrics

Evaluating the performance of survival models involves metrics that can handle censored data.
Two commonly used metrics are the concordance index (C-index) and the Brier score.

Concordance Index (C-index)

The C-index is a measure of the model’s discriminative power, i.e., its ability to correctly rank the
survival times based on predicted risk scores. It is defined as:

C =

∑
i,j I(ĥi > ĥj)I(Ti < Tj)δi∑

i,j I(Ti < Tj)δi

where ĥi and ĥj are the predicted risk scores for individuals i and j, I is the indicator function,
and δi indicates whether Ti is an observed event. A C-index of 0.5 indicates random prediction, while
a C-index of 1 indicates perfect prediction [109].

Brier Score

The Brier score measures the accuracy of probabilistic predictions and is adapted for survival
analysis to account for censoring. It is defined as:

BS(t) =
1

n

n∑
i=1

(
Ŝ(t | Xi)− I(Ti > t)

)2

where Ŝ(t | Xi) is the predicted survival probability for individual i at time t. The Integrated Brier
Score (IBS) is obtained by integrating the Brier score over a range of time points:

IBS =
1

τ

∫ τ

0
BS(t) dt
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where τ is a pre-specified time horizon [33].
In conclusion, survival analysis provides a comprehensive framework for modeling time-to-event

data, accommodating censored observations through various methods. Core concepts like Kaplan-
Meier curves, Cox proportional hazards models, and evaluation metrics like the C-index and Brier
score are essential for understanding and applying survival analysis in practice.

A.4 . Variational Autoencoders

Variational Autoencoders (VAEs) are a class of generative models that combine principles from
deep learning and Bayesian inference. They are designed to model complex distributions and gen-
erate new data points similar to those in the training dataset. Unlike traditional autoencoders, which
map inputs directly to a latent space and back, VAEs introduce a probabilistic approach to latent vari-
able modeling.

A.4.1 . Key Components of VAEs

• Encoder Network: This neural network maps an input data point x to a distribution over the
latent space qϕ(z|x). The output is typically a mean and a variance, parameterizing a Gaussian
distribution.

• Latent Space: The latent variables z are sampled from the distribution qϕ(z|x).
• Decoder Network: This neural network maps the latent variable z back to a distribution over
the input space pθ(x|z).

A.4.2 . The Variational Lower Bound (ELBO)

To train VAEs, we aim to maximize the likelihood of the data pθ(x). However, directly optimizing
this likelihood is intractable due to the integral over the latent variables. Instead, VAEs maximize a
variational lower bound on the log likelihood, known as the Evidence Lower Bound (ELBO).

The log likelihood of the data can be decomposed as follows:

log pθ(x) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
+ Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

]
(A.4)
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The second term is the Kullback-Leibler (KL) divergencebetween the approximate posterior qϕ(z|x)
and the true posterior pθ(z|x), which is always non-negative. This gives us:

log pθ(x) ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
(A.5)

The ELBO is thus:

L(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)∥pθ(z)) (A.6)
A.4.3 . Deriving the ELBO Loss

To derive the ELBO, we start with the marginal likelihood of the data:

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x|z)pθ(z) dz (A.7)

Given the intractability of this integral, we introduce the variational approximation qϕ(z|x) and
use Jensen’s inequality:

log pθ(x) = log

∫
qϕ(z|x)

pθ(x, z)

qϕ(z|x)
dz ≥

∫
qϕ(z|x) log

pθ(x, z)

qϕ(z|x)
dz (A.8)

This simplifies to the ELBO:

L(θ, ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)∥pθ(z)) (A.9)

• Reconstruction Term: The first term, Eqϕ(z|x) [log pθ(x|z)], measures how well the decoder re-
constructs the input data from the latent variables.

• KL Divergence Term: The second term,KL(qϕ(z|x)∥pθ(z)), measures the divergence between
the approximate posterior qϕ(z|x) and the prior pθ(z).

The ELBO is maximized to train the VAE, ensuring a balance between accurate reconstruction and
regularization of the latent space.

By maximizing the ELBO, VAEs learn both to encode data into a meaningful latent space and to
generate new data samples that resemble the training data.
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A.5 . SHAP Values: Mathematical Framework and Computation

SHAP (SHapley Additive exPlanations) values are a powerful tool for interpreting the output of
machine learning models by attributing the contribution of each feature to the model’s predictions.
Rooted in cooperative game theory, SHAP values are derived from the concept of Shapley values,
which were originally designed to distribute payouts fairly among players based on their contribution
to the total payout.

A.5.1 . Mathematical Framework

The SHAP value for a feature is computed as the average marginal contribution of that feature
across all possible feature combinations. Given a model f and a set of featuresX = {x1, x2, . . . , xn},
the SHAP value ϕi for feature xi is defined as:

ϕi =
∑

S⊆X\{xi}

|S|!(|X| − |S| − 1)!

|X|!
(f(S ∪ {xi})− f(S))

Here:
• S represents a subset of all features excluding xi.
• f(S ∪ {xi}) is the model’s prediction when feature xi is included in the subset S.
• f(S) is the model’s prediction when feature xi is excluded from the subset S.
• The term |S|!(|X|−|S|−1)!

|X|! is a weighting factor that accounts for the different permutations of
features.

This equation effectively computes the weighted average of the changes in the prediction when
the feature xi is added to every possible subset of features. The SHAP value, therefore, captures the
importance of feature xi by considering all possible interactions with other features.

A.5.2 . Computation of SHAP Values

Computing SHAP values exactly using the above formula can be computationally expensive, es-
pecially for models with a large number of features, as it involves evaluating themodel on all possible
subsets of features. However, several efficient algorithms have been developed to approximate SHAP
values, making them feasible for practical use.
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Kernel SHAP

This is a model-agnostic approach that approximates SHAP values using a weighted linear regres-
sion. It samples subsets of features and fits a weighted linear model to estimate the contributions of
each feature.

Tree SHAP

Specifically designed for tree-basedmodels, this algorithm exploits the structure of decision trees
to compute SHAP values efficiently. It uses dynamic programming to traverse the tree and calculate
the contributions of each feature without needing to evaluate all possible subsets.

Deep SHAP

This method adapts SHAP values for deep learning models by combining ideas from DeepLIFT
(Deep Learning Important FeaTures) and Shapley values. It backpropagates contributions through
the network layers to estimate feature importance.

A.5.3 . Example Calculation

Consider a simple linear model f(x) = w0+w1x1+w2x2 with two features, x1 and x2. To compute
the SHAP value for x1:

1. Subset S = {}: The model prediction without x1 is f({}) = w0.
2. Subset S = {x2}: The model prediction with x2 is f({x2}) = w0 + w2x2.
The marginal contributions for x1 are:
• When added to S = {}: f({x1})− f({}) = (w0 + w1x1)− w0 = w1x1.
• When added to S = {x2}: f({x1, x2})− f({x2}) = (w0 + w1x1 + w2x2)− (w0 + w2x2) = w1x1.
Averaging these contributions, the SHAP value for x1 is:

ϕ1 =
1

2
w1x1 +

1

2
w1x1 = w1x1

This example demonstrates how SHAP values attribute the model’s output to each feature, pro-
viding a clear and interpretable measure of feature importance.
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A.5.4 . Insights and Applications

SHAP values offer several advantages in model interpretability:
• Consistency: They provide consistent and fair feature attributions.
• Local Interpretability: They explain individual predictions by decomposing them into contri-
butions from each feature.

• Global Interpretability: Aggregating SHAP values across multiple samples provides insights
into the overall importance of features in the model.

By leveraging SHAP values, researchers and practitioners can gain a deeper understanding of their
models, ensuring transparency and trustworthiness in their predictions.
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Datasets

B.1 . The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) is a landmark project initiated by the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI) aimed at cataloging genetic mu-
tations responsible for cancer. Since its launch in 2006, TCGA has provided an extensive dataset
that significantly enhances our understanding of cancer genomics, facilitating the development of
improved diagnostics, treatments, and preventive strategies.

TCGAhas collected and analyzed tumor samples fromover 11,000 patients acrossmore than 33dif-
ferent cancer types. Each type is represented by a cohort, a group of patient samples studied to unveil
the unique genetic and molecular characteristics of that cancer. Major cohorts include Breast Inva-
sive Carcinoma (BRCA), Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Colon
Adenocarcinoma (COAD), GlioblastomaMultiforme (GBM), Ovarian Serous Cystadenocarcinoma (OV),
Prostate Adenocarcinoma (PRAD), Skin CutaneousMelanoma (SKCM), Thyroid Carcinoma (THCA), and
Kidney Renal Clear Cell Carcinoma (KIRC). These cohorts collectively provide a detailed landscape of
genetic alterations, gene expression patterns, epigenetic modifications, and othermolecular features
defining each cancer type.

To generate its comprehensive dataset, TCGA utilized a variety of advanced technologies and
methodologies. High-throughput sequencing technologies, includingwhole genome sequencing (WGS)
andwhole exome sequencing (WES), were employed to identify somaticmutations, copy number vari-
ations, and structural rearrangements in cancer genomes. RNA sequencing (RNA-Seq) was used to
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analyze gene expression profiles, providing insights into transcriptional activity within cancer cells.
DNA methylation profiling techniques, such as Infinium HumanMethylation450 BeadChip and Bisul-
fite sequencing, assessed DNAmethylation patterns, contributing to the understanding of epigenetic
changes in cancer. MicroRNA sequencing (miRNA-Seq) was employed to profilemicroRNA expression,
which plays a crucial role in the post-transcriptional regulation of gene expression. Comparative ge-
nomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays were utilized to identify
genomic regions with copy number gains or losses, while reverse-phase protein array (RPPA) technol-
ogy quantified the expression levels of key proteins andphosphoproteins, aiding in the understanding
of signaling pathways involved in cancer. Additionally, TCGA integrated clinical and histopathological
data with molecular profiles, providing a comprehensive view of each cancer type.

The data generated by TCGA is publicly available and has been instrumental for researchersworld-
wide. It includes genomic data such as raw sequencing reads, processed mutation calls, and copy
number alterations; transcriptomic data from RNA-Seq and miRNA-Seq; epigenomic data with DNA
methylation profiles; proteomic data from RPPA; clinical data including detailed patient demograph-
ics, treatment protocols, andoutcomes; andhistopathological data comprising digital images of stained
tissue sections and related annotations. Researchers can access TCGAdata through various platforms
such as the Genomic Data Commons (GDC) Data Portal, the cBioPortal for Cancer Genomics, and the
UCSC Cancer Genomics Browser.

B.2 . The MDS Dataset

B.3 . The International Adjuvant Lung Cancer Trial

The International Adjuvant Lung Cancer Trial (IALT) was a pivotal study that evaluated the efficacy
of adjuvant chemotherapy in patients with resected non-small cell lung cancer (NSCLC). Conducted
between 1995 and 2000, the trial involved 1,867 patients from 33 countries who were randomized
to receive either cisplatin-based chemotherapy or no further treatment after surgical resection of
their tumors. The results, published in 2004, demonstrated a significant improvement in overall sur-
vival for patients who received chemotherapy compared to those who did not, establishing adjuvant
chemotherapy as a standard treatment for resected NSCLC [12].
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Table B.1: Datasets Description Description of the TCGA datasets used in this study for both classification
and survival tasks. We show the number of patients available for each modality along with the censoring
rate of the cohort.

Missing Mutations CNV RNAseq Methylation WSI Overalln 19188program, n (%) TARGET 0 4666 (24.3)TCGA 14522 (75.7)sample_type, n (%) Additional - New Primary 71 11 (0.1)Additional Metastatic 2 (0.0)Blood Derived Normal 2 (0.0)Bone Marrow Normal 845 (4.4)Buccal Cell Normal 5 (0.0)FFPE Scrolls 10 (0.1)Human Tumor Original Cells 2 (0.0)Metastatic 411 (2.1)Primary Blood Derived Cancer - Bone Marrow 1054 (5.5)Primary Blood Derived Cancer - Peripheral Blood 616 (3.2)Primary Tumor 13060 (68.3)Recurrent Blood Derived Cancer - Bone Marrow 208 (1.1)Recurrent Blood Derived Cancer - Peripheral Blood 14 (0.1)Recurrent Tumor 103 (0.5)Solid Tissue Normal 2774 (14.5)project_id, n (%) TARGET-ALL-P3 234 0 0 0 0 0 341 (1.8)TARGET-AML 0 0 0 0 0 2029 (10.7)TARGET-CCSK 0 0 0 0 0 19 (0.1)TARGET-NBL 0 0 0 0 0 1109 (5.9)TARGET-OS 0 0 0 0 0 288 (1.5)TARGET-RT 0 0 0 0 0 61 (0.3)TARGET-WT 0 0 0 0 0 789 (4.2)TCGA-ACC 89 89 80 80 227 97 (0.5)TCGA-BLCA 408 408 426 431 457 454 (2.4)TCGA-BRCA 1082 1082 1179 881 1133 1283 (6.8)TCGA-CESC 284 284 299 299 279 317 (1.7)TCGA-CHOL 36 36 45 45 39 71 (0.4)TCGA-COAD 442 442 436 335 459 571 (3.0)TCGA-DLBC 47 47 46 47 44 52 (0.3)TCGA-ESCA 184 184 197 201 158 251 (1.3)TCGA-GBM 606 606 151 860 671 (3.5)TCGA-HNSC 523 523 568 579 472 612 (3.2)TCGA-KICH 65 65 89 65 121 184 (1.0)TCGA-KIRC 532 532 587 478 519 985 (5.2)TCGA-KIRP 284 284 321 316 300 381 (2.0)TCGA-LAML 170 170 164 120 697 (3.7)TCGA-LGG 528 528 525 529 844 538 (2.8)TCGA-LIHC 372 372 419 424 379 469 (2.5)TCGA-LUAD 508 508 541 482 541 877 (4.6)TCGA-LUSC 490 490 511 399 512 765 (4.0)TCGA-MESO 85 85 85 85 87 88 (0.5)TCGA-OV 587 587 494 10 107 758 (4.0)TCGA-PAAD 184 184 182 194 209 223 (1.2)TCGA-PCPG 169 169 187 187 196 189 (1.0)TCGA-PRAD 502 502 551 553 449 623 (3.3)TCGA-READ 157 157 156 98 166 192 (1.0)TCGA-SARC 261 261 260 266 600 290 (1.5)TCGA-SKCM 458 458 439 461 475 477 (2.5)TCGA-STAD 408 408 444 382 442 544 (2.9)TCGA-TGCT 139 139 139 139 254 156 (0.8)TCGA-THCA 511 511 572 570 519 615 (3.2)TCGA-THYM 123 123 125 125 181 139 (0.7)TCGA-UCEC 538 538 558 465 566 606 (3.2)TCGA-UCS 54 54 55 55 91 63 (0.3)TCGA-UVM 80 80 80 80 80 80 (0.4)Age at Diagnosis in Years, mean (SD) 511 46.5 (26.0)Gender, n (%) Female 450 9386 (48.9)Male 9350 (48.7)Unknown 1 (0.0)not reported 5 (0.0)
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Table B.2: MDS Dataset Overview: Overview of the MDS cohort

Variable Category Missing Overall
n 556
CENTER, n (%) FI 0 29 (5.2)KI 510 (91.7)MLL 17 (3.1)
PAT_GENDER, n (%) F 3 224 (40.5)M 329 (59.5)
R_IPSS_BLAST, mean (SD) 42 1.2 (1.1)
R_IPSS_HB, mean (SD) 74 0.6 (0.7)
WHO_2016, n (%) AML_MRC 0 24 (4.3)CMML_0 14 (2.5)CMML_1 43 (7.7)CMML_2 34 (6.1)JMML 1 (0.2)MDS_EB_1 55 (9.9)MDS_EB_2 65 (11.7)MDS_MLD 101 (18.2)MDS_MPN 1 (0.2)MDS_MPN_RS_T 8 (1.4)MDS_MPN_U 10 (1.8)MDS_RS_MLD 90 (16.2)MDS_RS_SLD 46 (8.3)MDS_SLD 11 (2.0)MDS_UNS 10 (1.8)MDS_del5q 10 (1.8)NBM 26 (4.7)Z_NOT_MDS 6 (1.1)aCML 1 (0.2)
SUR_OS_cens_Event, n (%) 0.0 40 268 (51.9)1.0 248 (48.1)
SUR_OS_cens, mean (SD) 40 899.1 (863.6)
SUR_H_Blast_P_cens, mean (SD) 250 1619.5 (1188.4)
SUR_H_Blast_P_cens_Event, n (%) 0.0 250 287 (93.8)1.0 19 (6.2)
SUR_AML_t_cens_Event, n (%) 0.0 67 456 (93.3)1.0 33 (6.7)
SUR_AML_cens, mean (SD) 67 1548.7 (1214.0)
EPO_duration, mean (SD) 399 639.3 (705.1)
AZA_duration, mean (SD) 390 261.0 (329.1)
SUR_EPO_cens, mean (SD) 399 639.3 (705.1)
SUR_EPO_cens_Event, mean (SD) 0 0.3 (0.5)
SUR_AZA_cens, mean (SD) 390 261.0 (329.1)
SUR_AZA_cens_Event, n (%) 0 0 390 (70.1)1 166 (29.9)
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Table B.3: IALT OverviewOverview of the IALT cohort with details about the different clinical andmolecular
features involved.

Variable Category Missing Overall
n 544
Age, n (%) 55-64 0 241 (44.3)< 55 160 (29.4)>=65 143 (26.3)
Sex, n (%) Female 0 114 (21.0)Male 430 (79.0)
PS, n (%) 0 0 276 (50.7)1-2 268 (49.3)
Surgery, n (%) Lobectomy/Other 0 324 (59.6)Pneumonectomy 220 (40.4)
T, n (%) T1 0 85 (15.6)T2 340 (62.5)T3/T4 119 (21.9)
N, n (%) N0 0 245 (45.0)N1 166 (30.5)N2 133 (24.4)
Arm, n (%) Chemotherapy 0 277 (50.9)Control 267 (49.1)
Histology, n (%) Adenocarcinoma 0 186 (34.2)Other 61 (11.2)Squamous Cell Carcinoma 297 (54.6)
stime, mean (SD) 0 1608.7 (1052.5)
status, n (%) Alive 0 208 (38.2)Dead 336 (61.8)
dfstime, mean (SD) 0 1016.8 (706.7)
dfs, n (%) Any event (relapse or death) 0 310 (57.0)No event 234 (43.0)
dcause, n (%) Alive 0 271 (49.8)Chemotherapy toxicity 2 (0.4)Other 37 (6.8)Progression 213 (39.2)Unknown 21 (3.9)
tnfail, n (%) No 0 441 (81.1)Yes 103 (18.9)
mfail, n (%) No 0 368 (67.6)Yes 176 (32.4)
MAPD, mean (SD) 0 0.3 (0.1)
ndSNPQC, mean (SD) 0 23.5 (8.8)
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Supplementary Materials

C.1 . Multimodal Representation Learning for High-Dimensional Data

C.2 . Multi-Omics Integration for Precision Medicine

C.2.1 . CustOmics: A versatile deep-learning based strategy for multi-omics integration

Table C.1: Number of trainable parameters for each model used for the downstream tasks

Method Number of ParametersEarly Int. VAE 4, 754, 963Joint Int. VAE 4, 997, 702Late Int. VAE 5, 045, 478Mix Int. AE 4, 457, 236CustOmics 5, 112, 119

C.2.2 . An Application of Multi-Omics Integration to Myelodysplastic Syndromes

Model Accuracy Macro F1-Score AUC
CustOmics 0.9223 ± 0.0157 0.9221 ± 0.0134 0.9245 ± 0.0098
OmiEmbed 0.8901 ± 0.0143 0.8905 ± 0.0118 0.8912 ± 0.0105
MFA 0.8857 ± 0.0172 0.8720 ± 0.0141 0.8808 ± 0.0112
Logistic Regression 0.8012 ± 0.0185 0.7987 ± 0.0159 0.8123 ± 0.0121
Table C.2: Comparison of multi-omics integration models for MDS vs CMML classification

C.3 . Analysis of Histopathology Slides
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Figure C.1: Evolution of the AUC score with the network’s depth: We first assess the evolution of the
performance on the tumor classification task for each source using the intermediate autoencoders, then
we evaluate the effect of the depth on the central encoder using the best results for the intermediate autoen-
coders for each source. We see that RNAseq data does not need as many layers as CNV and methylation
data, suggesting that its convergence may be simpler as it holds most of the signal for tumor-type predic-
tion.

C.3.1 . Hyper-AdaC: Adaptive clustering-based hypergraph representation ofwhole slide

images for survival analysis

Patch Clustering

We compute the average number of elements remaining after the hierarchical clustering step
for each dataset separately, the results along with the ratio between initial and filtered patches are
represented in Table C.3. We observe that, in general, approximately 14% of the WSI is used (see
C.3), and as shown in Figure 4.6, those elements are well spread across the WSI. However, we can
see that both BLCA and GBMLGG datasets behave differently from the others. For BLCA, the ratio of
remaining elements over the total number of patches is higher than all the other datasets, whereas
for GBMLGG it is the opposite. Our method does not perform well for those particular test cases.
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Figure C.2: Evolution of the loss function: We display the evolution of both training and validation losses
before and after the phase switch for the tumor classification task.

Table C.3: Average number of nodes after the hierarchical clustering step for each dataset. Due to our
selection criteria, the GBMLGG dataset had a significantly lower number of nodes (as the ratio is also lower,
it may indicate higher homogeneity among tissues), which may explain the lower performance with respect
to the other cancer types. In this study, we selected the same hyperparameters for all the cancer types to
prove the generalizability of our method, outperforming the other state-of-the-art methods. Some specific
hyperparameters tuning for the GBMLGG and BLCA may resolve this issue.

Cancer Type # of patches # of nodes # of nodes
# of patchesBladder Urothelial Carcinoma (BLCA) 58586 9187 0.16Breast Invasive Carcinoma (BRCA) 38107 5304 0.14Glioblastoma & Lower Grade Glioma (GBMLGG) 15855 961 0.06Lung Adenocarcinoma (LUAD) 43445 6003 0.14Ulterine Corpus Endometrial Carcinoma (UCEC) 56162 7748 0.14

Ablation Study

We perform an ablation study on the different graph hyperparameters to justify our construction
choices. In Figure C.5, we can see the effect of the similarity threshold δh on the survival performances.
The stricter the constraint, the better the performance, indicating that larger graphs fail at learning
generalizable properties. This idea is also supported by the standard deviation across the 5-folds that
decreases, suggesting that the model is less robust with larger graphs. A similarity threshold of 80%
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Figure C.3: PAM50 gene importance: Computed SHAP values on the CNV data of the most relevant genes
responsible for discriminating between subtypes against the others using CustOmics for both integration
phases.

achieves the peak performance; past that point, the performances start to decrease again because
we tend to oversimplify the WSI and start neglecting information.

Figure C.6 highlights the relationship between morphological features and geographical proper-
ties with respect to the survival prediction performance. We see that, in general, focusing onmorpho-
logical properties is more beneficial to the performances than spatial properties as they hold more
information about the structure of the tissue (including, to a certain extent, spatial information be-
cause similar patches tend to be close). However, focusing too much on morphological features can
hinder the accuracy of our survival predictions, as sometimes the homogeneity of specific tissues can
make the filtering biased and overlook chunks of WSIs that may hold vital information.
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Figure C.4: PAM50 gene importance: Computed SHAP values on the methylation data of the most relevant
genes responsible for discriminating between subtypes using CustOmics for both integration phases.

C.4 . Multimodal Integration of Multi-Omics Data & Histopathology Slides
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Table C.4: Modality Combinations Performance comparison between multiple combination of modalities
for CustOmics for the Pancancer classification task. The evaluation is done using the Area Under ROC-curve
(AUC).

Omics Combinations SNN CustOmics
CNV 74.3± 3.0 75.1± 2.7RNAseq 94.0± 2.6 96.0± 1.4Methyl 81.1± 1.7 82.3± 1.3CNV + RNAseq 94.3± 2.9 96.9± 0.8CNV + Methyl 81.4± 1.8 85.7± 2.1RNAseq + methyl 93.2± 1.0 97.3± 0.7CNV + RNAseq + Methyl 94.1± 2.7 98.9± 1.4

Table C.5: Ablation Study Performance comparison between CustOmics and the state of the art for classifi-
cation tasks by replacing different instances of the model: a. Multi-Omics Ablation: CustOmics A1 replaces
the multi-omics VAE with an SNN. b. Hypergraph Ablation: CustOmics A2 replaces the hypergraph encoder
with a visual transformer and CustOmics A3 replaces the hypergraph represnetation with a regular graph
embedding. c. DownstreamNetwork Ablation: CustOmics A4 replaces the hierarchicalmixture-of-experts
approach with a regular mixture of experts network, CustOmics A5 replaces it with a transformer classifier.

Methods PANCAN BRCA COAD STAD
SNN (Multi-Omics) 94.1± 2.7 92.0± 3.3 79.2± 3.3 84.6± 3.3CustOmics (Multi-Omics) 98.9± 1.4 98.3± 1.0 88.1± 1.9 98.4± 1.2DeepSets (WSI Only) 84.7± 3.3 68.6± 4.1 55.2± 4.3 58.9± 4.6AttnMIL (WSI Only) 88.4± 2.0 71.2± 4.9 56.2± 4.4 61.4± 4.4DeepAttnMISL (WSI Only) 89.8± 2.5 71.1± 3.3 55.7± 4.0 62.1± 4.5MCAT (WSI Only) 90.4± 1.8 72.3± 3.3 61.7± 3.3 69.4± 3.5SurvPATH (WSI Only) 89.7± 2.4 71.4± 3.6 60.2± 4.1 69.1± 3.2CustOmics A1 (WSI Only) 85.1± 3.8 70.5± 5.5 57.7± 4.1 59.4± 4.4CustOmics A2 (WSI Only) 90.4± 1.8 72.3± 3.3 61.7± 3.3 69.4± 3.5CustOmics A3 (WSI Only) 88.7± 1.2 69.4± 3.6 55.1± 3.5 61.9± 5.0CustOmics A4 (WSI Only) 89.4± 2.1 71.0± 3.3 58.8± 3.3 67.2± 3.7CustOmics A5 (WSI Only) 87.1± 1.9 70.4± 3.6 55.2± 3.9 66.4± 4.1DeepSets (WSI + Multi-Omics) 96.7± 1.5 84.9± 2.0 58.6± 2.2 67.1± 2.7AttnMIL (WSI + Multi-Omics) 97.1± 1.2 86.6± 2.1 60.0± 2.5 69.4± 2.7DeepAttnMISL (WSI + Multi-Omics) 97.8± 1.1 88.3± 2.7 65.4± 2.7 66.6± 2.2MCAT (WSI + Multi-Omics) 98.9± 1.1 95.4± 2.0 93.3± 1.2 88.7± 2.3SurvPATH (WSI + Multi-Omics) 98.1± 1.7 94.8± 2.2 93.5± 1.1 87.9± 2.1CustOmics A1 (WSI + Multi-Omics) 96.1± 1.7 85.2± 2.4 59.5± 1.9 67.7± 2.9CustOmics A2 (WSI + Multi-Omics) 99.0± 1.3 98.4± 2.2 94.1± 1.2 95.3± 2.4CustOmics A3 (WSI + Multi-Omics) 99.9± 1.1 98.2± 2.5 93.9± 1.9 94.1± 2.7CustOmics A4 (WSI + Multi-Omics) 99.4± 0.8 98.0± 1.2 94.2± 1.1 96.1± 2.2CustOmics A5 (WSI + Multi-Omics) 98.5± 1.9 97.3± 3.4 93.8± 2.0 94.2± 2.9

210



Figure C.5: Ablation Study for the similarity threshold δ used in the hierarchical clustering step. We evaluate
for each hyperparameter the 5-fold cross-validated C-index on the overall 5 TCGA datasets used in this study.

Table C.6: Multiple Gene Sets Study Classification: CustOmics’ classification perfomances across all
tasks for multiple gene sets.

Methods PANCAN BRCA COAD STAD
Hallmarks 99.5± 0.9 98.7± 1.1 94.7± 1.0 96.3± 2.4Oncologic Signatures 99.5± 1.1 98.1± 2.8 95.1± 1.6 94.8± 2.0Reactome 99.5± 1.1 98.1± 2.8 95.1± 1.6 94.8± 2.0

Table C.7: Multiple Gene Sets Study Survival: CustOmics’ survival perfomances across all tasks for
multiple gene sets.

Methods BLCA BRCA COAD GBMLGG KIRC LUAD STAD UCEC
Hallmarks 67.2± 2.5 65.2± 3.6 64.5± 2.2 84.2± 2.3 68.2± 2.1 64.9± 3.7 58.0± 1.5 68.0± 2.2Oncologic Signatures 67.6± 2.3 63.2± 3.0 63.5± 2.6 85.8± 4.0 66.2± 4.7 62.9± 4.2 60.0± 4.2 69.4± 1.7Reactome 67.7± 4.2 67.2± 4.6 62.5± 1.9 82.7± 2.7 69.4± 1.0 66.8± 3.0 56.0± 1.5 66.1± 2.4
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Figure C.6: Ablation study for λh
λg

used in the hierarchical clustering step. We evaluate for each hyperpa-
rameter the 5-fold cross-validated C-index on the overall 5 TCGA datasets.
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