
HAL Id: tel-04871572
https://theses.hal.science/tel-04871572v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-level architectures and multi-fidelity algorithms for
multidisciplinary optimization in high dimensions.

Yann David

To cite this version:
Yann David. Bi-level architectures and multi-fidelity algorithms for multidisciplinary optimization
in high dimensions.. Mathematics [math]. Université de Toulouse, 2024. English. �NNT : 2024TL-
SEI014�. �tel-04871572�

https://theses.hal.science/tel-04871572v1
https://hal.archives-ouvertes.fr

Doctorat de
l’Université de Toulouse

préparé à l'INSA Toulouse

Architectures bi-niveau et algorithmes multi-délité pour

l'optimisation multidisciplinaire en haute dimension

Thèse présentée et soutenue, le 31 octobre 2024 par

Yann DAVID
École doctorale
EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse

Spécialité
Mathématiques et Applications

Unité de recherche
IMT : Institut de Mathématiques de Toulouse

Thèse dirigée par
Aude RONDEPIERRE

Composition du jury
M. Serge GRATTON, Président, Toulouse INP

M. Michael KOKKOLARAS, Rapporteur, McGill University

M. Fernass DAOUD, Rapporteur, Technische Universität München

M. Christophe BLONDEAU, Examinateur, ONERA

Mme Aude RONDEPIERRE, Directrice de thèse, INSA Toulouse

Membres invités
M. Joel BREZILLON, AIRBUS

M. François GALLARD, IRT Saint Exupéry

Bi-level architectures and multi-fidelity algorithms for
multidisciplinary optimization in high dimensions.

Yann David

Supervised by:

Aude Rondepierre, Institut National des Sciences Appliquées de Toulouse

François Gallard, IRT Saint Exupéry

Remerciements
La thèse pouvant être une entreprise solitaire, elle est aussi le fruit de discussions et de
collaborations. Ces quelques lignes sont l’occasion pour moi de remercier les personnes
qui ont participé, de près ou de loin, à l’élaboration de cette thèse.

Je tiens tout d’abord à remercier les membres du jury. Je remercie Serge Gratton de
m’avoir fait l’honneur de présider celui-ci. Je remercie également Michael Kokkolaras
et Fernass Daoud d’avoir accepté d’être rapporteurs de cette thèse, ainsi que pour leurs
retours constructifs. Je remercie enfin les autres membres du jury, Christophe Blondeau
et Joel Brezillon, pour leurs questions pertinentes et l’intérêt qu’ils ont porté à mes
travaux.

Je remercie chaleureusement Aude Rondepierre et François Gallard pour m’avoir encadré
durant ces quelques années. Je tiens à les remercier pour leur expertise et leurs précieux
conseils sans lesquels cette thèse n’aurait sans doute jamais vu le jour, ainsi que pour
leur grande gentillesse dont ils ont fait preuve à mon égard. J’ai toujours pris grand
plaisir à assister à nos différentes réunions et j’en suis toujours ressorti avec des idées
plein la tête. Je me considère comme quelqu’un de chanceux d’avoir pu travailler sous
leur direction.

Je remercie également Anne Gazaix ainsi que l’ensemble de l’équipe MDA-MDO, qui s’est
bien agrandie depuis mon arrivée, pour les discussions du quotidien et les bons moments
partagés. Travailler à l’IRT a toujours été un plaisir et j’y ai toujours trouvé l’aide dont
j’avais besoin. J’étends ces remerciements à l’ensemble des collaborateurs de l’IRT avec
qui j’ai eu la chance de discuter, en particulier les collègues du club de jeux de société qui
m’ont offert une véritable bouffée d’oxygène pendant la dernière année.

Sur le plan personnel, je remercie mes parents et, plus largement, l’ensemble de ma famille
pour le soutien et l’amour dont ils font preuve à mon égard.

Enfin, je souhaite dédier ces derniers mots de remerciement à mes amis toulousains qui
m’accompagnent depuis maintenant 7 ans. Pour tous les bons moments partagés, ainsi
que pour leur soutien sans faille dans les moments de réussite comme dans les moments
de doute.

1

Contents

Nomenclature 4

Abbreviations 5

1 Introduction 7

2 Preliminaries 14
2.1 Multidisciplinary Design Optimization 15

2.1.1 MDO’s general concepts . 15
2.1.2 MDO architectures . 17

2.2 Mathematical background . 23
2.2.1 The Gauss-Seidel algorithm and local convergence 23
2.2.2 Direct and adjoint methods for gradient computation 29
2.2.3 Optimality conditions . 31
2.2.4 Three analysis theorems . 33

3 A bi-level architecture 37
3.1 Introduction . 39
3.2 State of the art: distributed architectures for large scale MDO problem . 41

3.2.1 Distributed architectures . 41
3.2.2 Bi-level optimization . 51

3.3 From MDF to a bi-level decomposition 57
3.3.1 An equivalent bi-level decomposition 58
3.3.2 Regularity of the system level functions 60

3.4 A solution algorithm for the lower optimization problem 62
3.4.1 The Block Coordinate Descent algorithm 66
3.4.2 Convergence analysis of the BCD-MDF algorithm 70

3.5 Variants of the BCD-MDF algorithm . 80
3.5.1 With linear approximation of the constraints 80
3.5.2 A weakly coupled variant . 81
3.5.3 Adding target values for difficult couplings 85

3.6 Numerical experiments . 86
3.6.1 Discrepancy reduction and local convergence comparisons on SSBJ 86
3.6.2 Scalability study . 92

4 A multi-fidelity framework 95
4.1 Introduction . 97
4.2 State of the art: multi-fidelity in MDO 100

2

4.2.1 The multi-fidelity approaches . 100
4.2.2 Multi-fidelity methods in numerical optimization 103
4.2.3 Multi-fidelity applied to MDO . 106

4.3 Down-selecting fidelity models for MDA 110
4.3.1 Fidelity levels for MDA . 111
4.3.2 Two criteria for error estimation 114
4.3.3 Pareto front and post treatment 122

4.4 Multi-fidelity methodologies validation 123
4.4.1 A multi-fidelity refinement framework 124
4.4.2 Coupled adjoint criterion . 125
4.4.3 Gradient alignment criterion . 130
4.4.4 A multi-fidelity application using bi-level architectures 133

5 Conclusions and perspectives 137
5.1 Contributions . 137
5.2 Perspectives . 139

A The Sobieski Super Business Jet (SSBJ) test case 154

B The Sellar problem and analytical expressions for the two-block variant156
B.1 The original Sellar problem . 156
B.2 Analytical expressions for the two-block Sellar 157

B.2.1 Couplings expressions . 157
B.2.2 Couplings’s first and second derivatives 158
B.2.3 Objective and constraints’s gradient 158
B.2.4 Objective and constraint’s Hessian 158

C Notes on COBYLA 159
C.1 Algorithm . 159
C.2 Convergence properties . 159

3

Nomenclature

Notation Description

p Number of disciplines
x0 Shared variables
xi Local variables of discipline i
y Coupling variables
yt Target value for coupling variable y
ui Internal state of discipline i
ri Residual of the governing state equation of discipline i
f Objective function
g, h Inequality/Equality constraint
ϕi Disciplinary analysis of discipline i, computes yi

Ψ Multi-disciplinary analysis
L Lagrangian
λ, µ Lagrange multipliers
w = [x, λ] Primal-Dual pair, w = [x, λ]
xi:j xi:j = [xi, xi+1, . . . , xj−1, xj] j ≥ i
x ̸=i x ̸=i = [x1, . . . , xi−1, xi+1, . . . , xp]
x∗ Optimal value for variable x
xk kth iterate of variable x
xT Transpose of vector x
A−1 Inverse of matrix A
ϵ Error or tolerance
m̃ Surrogate/approximation of model m
Fi Number of fidelity models for discipline i
V A combination of fidelity models V = [V1, . . . , Vp] ∈ ∏

i∈J1,pKJ1, FiK

ϕ̃i,j Disciplinary analysis of discipline i with fidelity j

4

Abbreviations

MDO
MDO Multi-disciplinary Design Optimization
MDA Multi-disciplinary Analysis
GEMSEO Generic Engine for Multidisciplinary Scenarios Explo-

ration and Optimization
XDSM eXtended Design Structure Matrix
CFD Computational Fluid Dynamics
CSM Computational Structural Mechanics
SSBJ Sobieski Super Business Jet

Architectures
AAO All-At-Once
SAND Simultaneous Analysis and Design
MDF Multi-Disciplinary Feasible
IDF Individual Discipline Feasible
CO Collaborative Optimization
ATC Analytical Target Cascading
BLISS Bi-Level Integrated System Synthesis
BL-IRT Bi-Level IRT
BL-BCD-MDF Bi-Level - Block Coordinate Descent - Multi-

Disciplinary Feasible
BL-BCD-WK Bi-Level - Block Coordinate Descent - WeaKly coupled

Maths
IFT Implicit Function Theorem
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification
MFCQ Mangasarian-Fromovitz Constraint Qualification
SCQ Slater Constraint Qualification
NLP Non-Linear Programming
DFO Derivative-Free Optimization

5

SBO Surrogate Based Optimization
BCD Block Coordinate Descent
UBM Unique Block Minimizer
FOS First Order Separability
MF Multi-Fidelity
HF High-Fidelity
LF Low-Fidelity

6

Chapter 1

Introduction

With the constant need for improvement in aircraft design, whether to maximize the
efficiency of transport aviation or simply to reduce development costs, the need for new
methodological and numerical approaches is ever present. Since aviation is in many ways
a complex and high-stakes field, many numerical and economic challenges are met. This is
all the more true since the field of aeronautics is inherently multidisciplinary, meaning that
a number of fields, with their own experts and constraints, are involved in the elaboration
of the product.

In this context, the so-called multidisciplinary design optimization (MDO) emerged
between the 1970s and 1990s, originally driven by the structural optimization community,
which incorporated models from other disciplines [66, 132]. MDO is a model-based
automated design method that facilitates the integration of different models from multiple
disciplines to account for all interdependencies, commonly called couplings. This method
involves numerous decisions related to the definition of the optimization problem, which
models to run, or in what order, which strongly influence the overall behavior of the
optimization. This highly organizational aspect of optimization led to the definition of the
first MDO architectures [32, 101], strategies for solving multidisciplinary problems. They
are often defined as a combination of a reformulated optimization problem, which changes
the definition of the optimization problem to be solved, a dataflow description, which
shows how data is exchanged between components, and a workflow, which illustrates the
computational sequence. The first MDO results in the field of aeronautics were initially
focused on the design of aircraft wings [8], then rapidly extended to the whole aircraft [82].
The same methods now extend to many areas of engineering, from automotive design [9]
to wind turbine design [77].

While MDO methods were initially designed for coupling simple models, such as pre-
project model optimization, recent advances in numerical optimization are driving the
integration of these methods into more advanced phases of conception where the models
under consideration are more numerous, finer grained, and therefore more costly. This
is all the more true today, with the emergence of high performance solvers that have
reached maturity [133], in particular CFD (Computational Fluid Dynamics) [134] and CSM
(Computational Structural Mechanics) [94] solvers, the problem of their integration into
the MDO process is all the more important to take full advantage of their efficiency.

In 1997, Sobieski [141] already gave an overview of the progress in MDO and future

7

perspectives in the field of aircraft design. These perspectives, which can be generalized
to other fields of engineering, can be summarized in three axes:

1. Sensitivity analysis to enable efficient implementation of gradient-based methods.

2. Advances in problem decomposition methods to accommodate the organizational
constraints of industry.

3. The development of approximate substitution models to reduce restitution costs.

All three of these areas have been the subject of considerable research in recent years,
leading to major advances in the field. In particular, the first point, concerning the efficient
computation of derivatives, has made great strides in MDO in recent years with the advent
of the coupled adjoint [103, 104, 87]. First introduced in MDO within a variant of the
Bi-Level Integrated System Synthesis (BLISS) distributed architecture [139], the coupled
adjoint has been further experimented with in combination with CFD/CSM solvers and
is now increasingly common within high-fidelity MDO frameworks and methods. This
progress is all the more remarkable in high-fidelity optimization, where gradient-based
algorithms combined with the coupled adjoint offer the best scalability [103]. An obstacle
to its systematic use remains the difficulty of implementing the coupled adjoint in an
industrial context involving many disciplines [59]. This is mainly due to the fact that many
powerful models are either sold as black-box Commercial Off-The-Shelf (COTS) software
where gradients are missing (e.g. CAD engine or model generation when morphing is
impossible), or are one of many in-house simulation tools that may be too expensive to
differentiate. In this regard, automatic differentiation may be the next breakthrough for
heavy industrial codes, provided the source code is available [71, 51]. A direct consequence
of these difficulties is that gradient-free optimization techniques must be considered instead
of their gradient counterparts, even though the latter are known to be much more efficient
for large-scale problems. Otherwise, when derivatives are mandatory, finite difference
methods are still widely used by default, despite their high cost and lack of precision.

The second line of research, dedicated to decomposition methods, is also very active
and will lead in particular to so-called ”distributed” architectures [9, 101, 147]. Unlike
more traditional monolithic architectures, these architectures define multiple optimization
subproblems. In this respect, they try to bring their design closer to the industrial
separation of computational tools, in particular by giving more autonomy to each of them.
These approaches greatly facilitate the implementation of MDO processes, generally at
the cost of a loss of efficiency and a deterioration of convergence properties compared
to monolithic architectures [101]. Moreover, the use of gradient-based optimization
algorithms is complicated by the need to compute post-optimal coupled derivatives of
the various subproblems, i.e. the sensitivities of their optimal value with respect to some
parameter, which requires costly or sometimes unavailable second derivatives [139] and
further assumptions on the subproblems and their solutions, such as the uniqueness of
the solution, a constant set of active constraints, or the verification of the second-order
Karush-Kun-Tucker (KKT) conditions [47]. While distributed architectures are used in
the industry for their ease of implementation, to our knowledge there is no consensus on
a distributed architecture that is competitive with monolithic architectures, yet robust
enough to handle a wide range of problems. Such architectures would be highly desirable
in the coming years, but for now, despite efforts in this direction, they are still considered
to lack convergence properties [146, 148, 147].

8

Finally, the development and integration of surrogate models into MDO processes is also
very popular. Surrogate-based optimization (SBO) is gaining ground in MDO as design
methodologies evolve, via the elaboration of increasingly reliable surrogate models that
replace models deemed too costly [135, 137, 140, 136, 115]. Many of these surrogate
based methods within MDO need to be updated during optimization with high-fidelity
model evaluations. Another solution is to use so-called ”one-shot” surrogates [48] that
are built before optimization begins. These models are therefore less reliable than those
built directly into the framework, but this is offset by the fact that, once built, they can
be more easily shared and reused within multiple frameworks or applications. The main
limitation of purely surrogate-based approaches is that they all face, to some extent, the
so-called ”curse of dimensionality” [46, 116], which typically prevents their efficient use on
the high-dimensional and non-linear problems considered in this manuscript, which may
involve thousands of variables and/or constraints [55]. In this regard, even if the training
cost can be reduced [21], the lack of precision of the model is still present. In this context,
and also more recently, multi-fidelity methods have emerged within the MDO community
[45]. These approaches rely on the use of a so-called high-fidelity model, which has the
desired accuracy but a high computational cost, and one or more low-fidelity models,
which trade accuracy for a shorter execution time. They define a model management
framework that describes which model to run and when, as well as what data to exchange,
in order to reduce computation time while achieving the same solution as using only the
high-fidelity model. While multi-fidelity methods [46, 116] have shown great results for
monodisciplinary optimization [116], the literature in MDO on this particular topic is
still sparse [158]. Moreover, most of the existing work does not take into account the
specificity of MDO, such as the disciplinary separation or the organizational aspect with
the so-called MDO architectures.

These three lines of research give us great hope for the future of MDO, as many im-
provements can be expected from them, especially when considering high-dimensional
problems with numerous disciplines and coupling variables. The present work proposes to
contribute to these advances by studying two methodologies for MDO in large dimensions,
with emphasis on the methodological and mathematical aspects of the problems encoun-
tered, while maintaining a link, from the point of view of hypotheses, to the industrial
environment.

The first one is dedicated to the development of a new distributed architecture, the bi-level
- block coordinate descent (BL-BCD) architecture. The proposed architecture has its
origins in the aforementioned BLISS architecture developed by Sobieski and al. [139]
and the further research done at ONERA[2, 84, 131] on the bi-level MDO architectures,
recently continued at IRT Saint Exupéry [55]. In this newly proposed bi-level architecture,
a system optimization problem minimizes the objective with respect to the shared variables
using a derivative-free algorithm, with each iteration requiring the solution of the so-called
lower optimization problem, which is nested within the first optimization problem that
optimizes the local variables. The contributions in this are are multiple:

• The first contribution in this area is the mathematical formalism of this bi-level
approach in the context of MDO, where the regularity of the considered functions
can be proved under the assumption that the lower-level optimization problem
is solved with sufficient precision. In particular, this bi-level framework does not
require system-level derivatives and is based on the correct solution of the lower-level

9

optimization problem.

• The second input is the proposal of an algorithm to solve the lower-level optimization
problem, namely the Block Coordinate Descent (BCD) algorithm. [16, 64, 110, 111,
113, 17, 18], which we prove to be locally convergent under industrially justifiable
assumptions. Since this algorithm is based on a block decomposition, well-chosen
gradient-based algorithms can be used to solve each block of local variables, while
the coupled adjoint for the entire lower-level optimization problem is not necessary.

• Three variants of this newly proposed bi-level architecture are also proposed to
provide some flexibility in both the assumptions and the organizational aspect of
the MDO framework.

• Finally, applications to classical MDO problems are given to illustrate the pros and
cons of the considered approaches and to show the gain in terms of convergence of
the overall architecture and scalability with respect to the size of the lower-level
optimization problem. The scalability test is performed on a newly created scalable
problem that extends the well-known Sellar problem[135] to a two-block version
with n-dimensional local variables, coupling variables, and constraints.

The second methodology considers multi-fidelity approaches within an MDO environment.
Considering the organizational aspects in MDO and the numerous models involved, many
fidelity of the MDO process can emerge from choices on the fidelity for each discipline,
value for hyperparameters such as a thinner, or coarser, tolerances, or a change in the
architecture considered. In particular, the fidelity of a given model is generally unknown
a priori because of the coupling variables. The questions of how many fidelity models to
consider and, if a choice have to be made, how to select the most interesting ones have
raised little interest at the moment within the MDO community. If the former question is
generally assumed to be known beforehand , i.e. fixed by the authors [93, 96, 122], or left
to the reader to consider more general multi-fidelity approaches with an arbitrary number
of levels [108, 156, 158], and hence is generally not considered, the latter, focusing on
the classification of fidelity models, already have some elements of response. Two works
have adapted the classical mono-disciplinary methodology, in which a (cost, error) Pareto
front of the fidelity models is built, to consider more general MDO problems [28, 158].
The considered strategy are promising in which they allow to discriminate several fidelity
models but they either rely on heavy statistics to estimate the error, or this estimation
is directly incorporated within the multi-fidelity framework. This raises a problem in
terms of scalability of the methods if the models are numerous and/or high-dimensional.
Therefore there is a need for new approaches to classify the numerous possible fidelity
models available in a MDO context at an affordable cost. Here the contributions can be
described as follows:

• The main contribution in this area is the introduction of two sensitivity criteria,
one based on the coupled adjoint and the other on the gradient alignment, for
estimating the fidelity of many different models. These two criteria are designed to
be used prior to multi-fidelity optimization, to be non-intrusive except for access
to the gradients, and to be able to approximate the error of an exponentially large
number of fidelity models in a reasonable amount of time. They are subject to
approximation errors, but it is expected that this classification will not prevent a
regular multi-fidelity algorithm, such as the multi-fidelity refinement approach used

10

in [108] and considered in this manuscript, to show some gain compared to using
only the high-fidelity model.

• A methodology for constructing the (cost,error) Pareto front and down-selecting the
fidelity models is also given, as well as a post-processing algorithm that eliminates
selected fidelity models that are deemed to be too similar in their cost-precision
ratio.

• Several application cases are presented to illustrate the benefits of the approach.
Among them is the perturbed Sellar [135] optimization problem, where the fidelity
of the models can be modified by changing one parameter, allowing for numerous
fidelity generations. Then, an application based on the classic Sobieski Super
Business Jet (SSBJ) test case [139] is presented, where low-fidelity models neglect
the backward effects coming from the couplings, hence a fidelity is defined as an
order of execution for the disciplines. In all of the above experiments, the sensitivity
criteria yields a satisfactory fidelity selection that results in a speedup of the multi-
fidelity optimization that is equal to, or at least very close to, the optimal speedup
at a reasonable cost for error estimation.

• In conjunction with the previous chapter, a multi-fidelity optimization is performed
using bi-level architectures as fidelity levels. This last application is intended to
illustrate the various links between all the work presented in this manuscript.

These two methodologies fall into the aforementioned axes of research for improvement
in MDO, more precisely on the last two. Since this work keeps its emphasis on the
high dimensional MDO problem, the availability of the coupled adjoint is still discussed
throughout the manuscript. Alternatives are proposed when it is not possible to benefit
from its efficiency.

Considering the implementation of the aforementioned methodologies, all the experiments
are mainly based on the open source Generic Engine for Multidisciplinary Scenarios,
Exploration and Optimization (GEMSEO) [53] Python library. In particular, both lines
of research have led to their respective GEMSEO packages:

• The first GEMSEO package concerns the bi-level framework presented within the
manuscript. It implements the BL-BCD-MDF architecture and one of its variants,
the BL-BCD-WK architecture, that can be automatically created from a set of
provided disciplines. All aspects of these architectures are highly customizable,
from practical considerations, with the various tolerances, optimization algorithms,
and constraints involved that can be set separately, to a more macro view, with
architectural changes such as the ability to modify the block decomposition of the
lower-level optimization problem. A two-block modification of the original Sellar
problem [135] with the ability to scale any design vector, coupling variables and
constraints is also provided for testing generic bi-level architectures based on a block
decomposition, in particular its ability to handle a high-dimensional lower-level
optimization problem.

• The second embeds the different tools and methods for the multi-fidelity MDO.
Both adjoint-based and gradient-based criteria are implemented, computing an
approximation of the error for each fidelity model provided. The creation of the
Pareto front, the down-selection algorithm and its post-processing are also present

11

in the package. A Sellar optimization problem with configurable fidelity for each
discipline is also provided to generate a high number of fidelities and to illustrate
the capability of the criteria when the combinatorial explosion of the number of
models appends.

These implementations aim to facilitate many aspects of the development, first the testing
of the different methodologies with the various optimization algorithms and application
cases available, as well as the reproducibility of the results presented in this manuscript
by using a unified framework or their industrial transfer. These implementations were
the opportunity to port a previous multi-fidelity package, developed by Romain Olivanti
[108], which already contained several multi-fidelity algorithms and tools for MDO, in
order to be compatible with the latest version of GEMSEO. It is from this package that
comes the multi-fidelity refinement algorithm used within the multi-fidelity application of
this manuscript.

The present manuscript describes the aforementioned development of methodologies and
mathematical tools dedicated to the implementation of MDO strategies for the optimization
of high-dimensional problems. For this purpose, the thesis is divided into 5 chapters.
The Chapter 2 begins with some of the elements that make up MDO, along with a brief
overview of monolithic architectures. The second half deals with the various mathematical
tools and theorems used throughout this manuscript. Classical results and proofs for
the Gauss-Seidel method and its convergence are given in preparation for an important
result within Chapter 3. A brief reminder on the coupled adjoint and classical nonlinear
optimality conditions is also present. The Chapter 3 explores distributed architectures
and in particular their convergence properties. A new bi-level architecture is presented,
following the work of [55] with the introduction of the block coordinate descent algorithm
to solve the lower optimization problem. In the Chapter 4, the fidelity level selection for
multi-fidelity algorithms is discussed. The two aforementioned criteria for fast fidelity
estimation are described and tested on small test cases. The last application illustrates the
implementation and its capabilities by performing a multi-fidelity optimization using bi-
level architectures as fidelity models. Finally, the Chapter 5 lists the various contributions
discussed in the manuscript. A final step back enumerates some perspectives for future
research and improvements.

12

Associated communications

• Yann David, Aude Rondepierre, and François Gallard. Bi-level architectures, ele-
ments of convergence proof (2022, September 20-21). 3rd European Workshop on
MDO ” MDO for Industrial Applications in Aeronautics – Towards Greener Aviation
”.

• Yann David, Aude Rondepierre, and François Gallard. Locally convergent bi-level
MDO architectures based on the block coordinate descent algorithm. Soon to be
submitted at the end of October at Journal of Optimization Theory and Applications
(JOTA).

13

Chapter 2

Preliminaries

Summary: This chapter provides an overview of the main concepts, notations, and
concerns of MDO. A brief overview of classical monolithic architectures is presented at
the end of this reminder.

The second half of the chapter contains a detailed description of the objects, concepts, and
tools used throughout the manuscript. The first section is devoted to classical convergence
results for the Gauss-Seidel method, immediately followed by implicit analytic methods
for gradient computation, optimality conditions for nonlinear programming, and finally
three well-known analysis theorems.

Résumé: Ce chapitre présente une vue d’ensemble des principaux concepts, notations
et préoccupations en MDO. Un bref aperçu des architectures monolithiques classiques est
présenté à la fin de ce rappel.

La seconde moitié du chapitre contient une description détaillée des objets, des concepts
et des outils utilisés tout au long du manuscrit. La première section est consacrée aux
résultats de convergence classiques pour la méthode de Gauss-Seidel, immédiatement
suivie par les méthodes analytiques implicites pour le calcul du gradient, les conditions
d’optimalité pour l’optimisation non linéaire, et enfin trois théorèmes d’analyse bien
connus.

14

2.1 Multidisciplinary Design Optimization
The concept of multidisciplinary design optimization (MDO) emerged during the 1980’s as
a response to the need to design complex systems that require multiple areas of expertise.
Initially introduced in aerospace design for aircraft wing design [8] and then for a whole
aircraft [82], the MDO methodologies have been recently extended to other engineering
fields such as automobile design [9], or wind turbines design [77].

MDO is an engineering domain that integrates numerical methods, engineering tools and
mathematical modeling to address design problems involving multiple fields of expertise,
commonly referred to as disciplines. These disciplines often arise from the various physical
phenomena involved, such as aerodynamics or structures [103, 102]. The underlying
principle of MDO is to leverage the efficiency of existing codes, which have been developed
to operate independently, to enhance the quality of the solution, the robustness of the
process, or to reduce the overall cost.

The different models involved in a MDO process are generally expensive to evaluate and
coupled (interdependent) in terms of the overall design. Consequently, the MDO problems
require efforts to ensure efficient communication and coherence between disciplines, which
increases the cost and complexity of the design process. In this regard, MDO is challenging
in many respects, and the MDO domain has developed its own taxonomy and strategies
to overcome these specific issues.

2.1.1 MDO’s general concepts
As the name suggests, Multidisciplinary Design Optimization (MDO) encompasses design
optimization problems that necessitate the integration of multiple disciplines. A discipline
is a scientific domain or a specialized field that has an impact on the final design. The
disciplines are often regarded as self-sufficient, by the specialists who develop them, and
thus by design. Historically, in aircraft design, considered disciplines have been derived
from the physics involved : common examples are aerodynamics, structure or propulsion.
Recently, disciplines from other domains have also been considered and coupled in MDO
processes. For instance with the emergence of environmental concern, aviation starts to
take into account other metrics (economical, ecological) [125, 123]. Such a compromise
leads to consider multi-objectives functions (e.g. sustainable aviation) and may necessitate
the construction of a Pareto front.

In our context, a discipline can be conceptualized as a black box piece of software that
takes a series of inputs and returns one or multiple outputs. The design variables for the
optimization can be of different natures, with the shared variables (denoted x0) serving
as inputs for several disciplines and the local variables (denoted xi for the ith discipline)
being needed by only one particular discipline.

The coupling variables are of particular interest, as they represent the outputs of a specific
discipline that are considered as inputs for at least one other discipline. In the most simple
scenario, the coupling variables impose an order of execution for the different disciplines
when only forward effects are present. In this case, the disciplines are said to be weakly
coupled and the coupling structure can be represented as a directed acyclic graph as
illustrated in Figure 2.1. Otherwise, the disciplines are said to be strongly coupled: some
outputs of some discipline are inputs for other disciplines, and symmetrically, outputs

15

of the other disciplines are inputs for the first ones considered. Therefore the associated
coupling graph, which summarize the coupling structure, contains cycles as highlighted in
the example given in Figure 2.2.

D1

D2

y_1

D3

y_1

y_2

y_3

Figure 2.1: A weak (acyclic) coupling
structure for 3 disciplines

D1

D2

y_1

D3

y_1

y_2

y_2

y_3

Figure 2.2: A strong coupling structure for
3 disciplines

As complex real-world MDO processes possess numerous disciplines, they typically exhibit
both strongly and weakly coupled disciplines.

Moreover, each discipline has its own state equations, which are solved according to the
supplied inputs and its own state variables. Executing a discipline indexed i at (x0, xi, y̸=i),
with the convention y ̸=i = [y1, . . . , yi−1, yi+1, . . . , yp], is then analogous to solve the implicit
equation in (ui, yi):

ri(x0, xi, y̸=i, yi, ui) = 0 . (2.1.1)

A representation of all variables and dependencies on a generic two disciplines case is
given in Figure 2.3 and Figure 2.4, for weak and strong couplings respectively.

Discipline 1

𝑟1 𝑥0, 𝑥1, 𝑦1, 𝑢1 = 0

Discipline 2

𝑟2 𝑥0, 𝑥2, 𝑦1, 𝑦2, 𝑢2 = 0

𝑥1

𝑥2

𝑢1

𝑢2

𝑦1

𝑥0

Figure 2.3: Example of a 2 weakly coupled
disciplines system

Discipline 1

𝑟1 𝑥0, 𝑥1, 𝑦2, 𝑦1𝑢1 = 0

Discipline 2

𝑟2 𝑥0, 𝑥2, 𝑦1, 𝑦2, 𝑢2 = 0

𝑥1

𝑥2

𝑢1

𝑢2

𝑦1

𝑦2

𝑥0

Figure 2.4: Example of a 2 strongly coupled
disciplines system

16

One of the primary challenges in multidisciplinary design is to ensure that the coupling
variables are consistent across all disciplines at some point in the optimization process,
and especially at the converged solution. This equilibrium is achieved when, for a specific
value of the design variables (x0, x), the vector y satisfies the coupling constraints:

∀i ∈ J1, pK yi − ϕi(x0, xi, y̸=i) = 0 . (2.1.2)

In other words, y is at equilibrium if and only if
y1 − ϕ1(x0, x1, y̸=1)
y2 − ϕ2(x0, x2, y̸=2)

...
yp − ϕp(x0, xp, y̸=p)

 =


0
0
...
0

 . (2.1.3)

In this context, ϕi represents the so-called coupling function of the ith discipline and is
implicitly defined by the ith residual equation (2.1.1). This function explicitly provides
the value of yi, which is related to the discipline’s inputs.

In order to identify such a vector y, two strategies are commonly considered, depending
on the structure of the problem. One approach is to create copies, also known as target
values and generally designated as yt, of the coupling variables and directly provide the
consistency constraints given by Equation (2.1.2) to the optimizer. Conversely, a dedicated
algorithm can be provided to solve the consistency constraints (2.1.2). These algorithms,
referred as Multidisciplinary Analysis (MDA), are implementations of various algorithms,
such as root-finding (Newton, fixed point), least-squares, or less frequently, penalization
of the state equations. Typically, the MDAs are assumed to be solved using iterative
algorithms that loop over disciplines in parallel, namely the non-linear Jacobi method
[112], or sequentially, such as in the non-linear Gauss-Seidel method [112], both processes
are illustrated in Figure 2.5.

𝐷1 𝐷2 𝐷3

𝑦1 𝑦2 𝑦3

𝑦0

𝑦∗

(a) MDA Jacobi

𝐷1

𝐷2

𝐷3
𝑦3

𝑦0

𝑦∗

𝑦2

𝑦1

(b) MDA Gauss-Seidel

Figure 2.5: Multi-disciplinary Analysis (MDA) algorithms

2.1.2 MDO architectures
Given the multitude of approaches to solve the MDO problems and the potential for
significant impact on performance, the MDO community has sought to define a taxonomy

17

of the strategies implemented under the influence of Haftka and al [67] and Cramer and
al [32] in the 1990s. This taxonomy has been further investigated and classified in other
surveys, including those by Martins and al [101], Tosserams and al [147], or Balesdent
and al. [9]. Such strategies are referred to as MDO architectures or MDO formulations,
equivalently [67, 32, 101, 9].

These are meta-strategies employed in the formulation of one or more optimization
problems from a set of disciplines. A MDO architecture applied to a MDO problem is a
combination of computational techniques, including fixed-point solvers, suboptimizations,
and gradient computation techniques such as the coupled adjoint [139, 103]. These
techniques are employed in conjunction to compute the optimization criteria of one or
more optimization problems, namely the objective and constraints. The name of an
architecture is frequently utilized to describe the associated meta-strategy, which describes
a generic solution method for an abstract problem, as-well as to designate an instance of
the strategy’s application to a specific problem, typically by giving a reformulation of the
original optimization problems, as well as an associated workflow and dataflow driving
the optimization.

As the choice of the architecture impacts all aspects of the optimization, this is of primary
importance when facing a specific MDO problem. This is in particularly true as, like in
regular optimization algorithms, the no-free-lunch theorem does hold [150], this means
that the choice of the ”best” architecture, in terms of specified criteria such as the overall
cost or the robustness, is highly dependent on the problem under consideration.

In a formal sense, a MDO architecture is a reformulation of an original optimization prob-
lem into a unique (monolithic architecture) or multiple optimization problems (distributed
architectures), generally smaller, by decomposing, reallocating, or eliminating design
variables, design constraints, or state equations. Consequently, these variables, constraints,
and equations will no longer be handled by the optimizer. Furthermore, in order to
ensure that the architecture is consistent with the original one, in the sense that they
have the same set of solutions, a sequence of computations is attached to define neglected
design variables and constraints as a numerical process and ensure global coherency of
the design. In the context of defining new architectures, we will typically present the
reformulated optimization problem and the associated workflow and dataflow in the form
of an XDSM [83] diagram, if available, where the XDSM diagram representation is a
standard visualization tool used to illustrate both the dataflow (in grey) and the workflow
(in bold) of the manipulated MDO architectures.

Given that each choice of architecture entails a modification to the underlying design
optimization problem and the overall computational process, it is possible to categorize
these according to the nature of the strategies involved. [101] describes four different
types of architecture depending on two criteria and summarized within Figure 2.6.

18

Figure 2.6: A classification of MDO architectures [101]

The first criterion is the governance of couplings. The architecture may rely on the
use of a MDA to solve the disciplines’ interactions (MDF-based architectures), or it
may add target values and consistency constraints (IDF-based architectures). Moreover,
architectures can be classified as either monolithic architectures or distributed architectures.
As the former consists of fundamental MDO architectures that collectively encompass
the most prevalent methodologies for addressing MDO challenges, a brief summary of
the most important monolithic architectures is given hereafter. It should be noted that
distributed architectures, which are derived from the monolithic ones, will be studied in
Section 3.2.1.

Monolithic architectures

Upon initial encounter with a MDO problem, it is probable that the AAO (All-At-Once)
[32, 101, 9] architecture will be encountered first. This architecture is considered the most
generic, since it handles all variables, states variables, constraints, and residuals. This
architecture is defined by the following optimization problem:

min
(x0,x,y,yt,u)

f(x0, x, y) = f0(x0, x, y) +
n∑

k+1
fi(x0, xi, yi)

subject to g0(x0, x, y) ≤ 0
gi(x0, xi, yi) ≤ 0
ri(x0, xi, yt

j ̸=i, yi, ui) = 0
y − yt = 0

(AAO)

The system objective and constraints, designated by f0 and g0, respectively, depend on all
design variables. In contrast, the disciplinary objective and constraints, represented by fi

and gi (i ∈ J1, pK), depend on shared variables and on a particular subset of local variables
and coupling variables. yt are the so-called target values for the coupling variables, they
are used as inputs for the disciplines to evaluate their respective residual equations. At
convergence of the optimization, all residuals should be equals to zero and the design must
be consistent, meaning that the target values vector yt must match the coupling variables
vector y. This is represented by the addition of a consistency constraint y − yt = 0 in

19

addition of other non-linear constraints. In general, bounds constraints, which for the
sake of simplicity will not be shown, are also present for every design variables to restrict
the scope of research, which is typically too large for general MDO problems.

(AAO) is primarily utilized for theoretical purposes, as it ultimately represents the problem
that is to be solved. In practice,(AAO) is the largest of all MDO architectures, in the
sens that all possible functions and design variables are given to the optimizer, and is not
intended to be solved directly. The removal of target values yt and consistency constraints
y − yt = 0, results in the SAND (Simultaneous Analysis and Design) architecture:

min
(x0,x,y,u)

f(x0, x, y)

subject to g0(x0, x, y) ≤ 0
gi(x0, xi, yi) ≤ 0
ri(x0, xi, y̸=i, yi, ui) = 0

(SAN D)

Clearly, by simply injecting yt = y, the (SAN D) and (AAO) architectures are equivalent,
in the sense that they both possess the same set of optimal solutions. The coherency of
the couplings is enforced at convergence by zeroing all disciplinary residuals. Because of
the simplicity of this transformation, the MDO literature often treats both SAND and
AAO designations indifferently when referring to (SAN D) [32, 101]. (SAN D) is a basic
approach that can be used in classical mono-disciplinary optimization where no exact
disciplinary analysis are performed.

Among the known limitations, (SAN D) is potentially a large-scale optimization problem,
as the optimizer must address both state variables ui and residuals ri for each discipline.
Consequently, for high-dimensional problems, especially those with numerous disciplines
and coupling variables, it is possible that convergence may be hindered and/or that
multidisciplinary feasibility may be difficult to achieve when the optimization process
converges. Another limitation is of a practical nature: often, especially in industry and
especially when using COTS software, disciplines are considered in a black-box fashion,
meaning that residuals and state variables are not directly accessible without intrusive
code modifications.

This last observation motivates the use of architectures that do not rely on the availability
of state variables and residuals. Two such architectures are the well-known Individual
Discipline Feasible (IDF) and Multi-Disciplinary Feasible (MDF) architectures [32, 101].
Both architectures rely on the implicit function theorem to rewrite state variables as (at
least) continuously differentiable functions. In particular, each discipline residual equation
allows the definition of the so-called disciplinary analysis yi = ϕi(x0, xi, y̸=i).

Individual Discipline Feasible (IDF) The Individual Discipline Feasible (IDF)
architecture [32, 101] is one of the two classical monolithic architectures in MDO. Each
coupling variable yi is considered to be implicitly defined by the shared design vector x0,
the associated local variables xi, and other couplings y ̸=i through the coupling function
ϕi. To ensure the coherence of the design at the optimum, copies, also called target
values, of the coupling variables are created, denoted as yt. Equality with the output of
the disciplinary analysis is then enforced by consistency constraints. The resulting IDF
optimization problem is as follows:

20

min
(x0,x,yt)

f(x0, x, yt)

subject to g0(x0, x, yt) ≤ 0
gi(x0, xi, ϕi(x0, xi, yt

̸=i)) ≤ 0 ∀i = 1 . . . p

yt
i − ϕi(x0, xi, yt

̸=i) = 0 ∀i = 1 . . . p

(IDF)

A simple illustration of the computational process of the IDF architecture, which involves
two strongly coupled disciplines, is shown in Figure 2.7.

Figure 2.7: XDSM of the IDF architecture

In addition to not relying on the availability of residuals, the introduction of copies of the
couplings allows for parallel computation of the disciplinary analysis, resulting in relatively
fast system function evaluations. However, this approach does not ensure multidisciplinary
feasibility at each iteration of the optimization process. In addition, it generally requires
more system iterations to achieve a fully consistent design. When all derivatives are
available, gradient-based algorithms can be very efficient when considering IDF, especially
in the case of low-dimensional couplings.

However, as the complexity of the system problem increases with the number of coupled
variables, high-dimensional couplings, and non-linear constraints, may result in memory
and time-consuming Jacobian computations. Furthermore, the optimizer may encounter
difficulties in retrieving multidisciplinary feasibility at the end of the optimization process,
leading to an inconsistent design in the event of early termination.

Multi-Disciplinary Feasible (MDF) The other classical monolithic architecture is
the so-called Multi-Disciplinary Feasible (MDF) architecture [32, 101]. Deriving from
the IDF architecture, the MDF architecture incorporates an additional layer of implicit
function theorem to eliminate consistency constraints. Remind that for a specific value of
the design variable (x0, x), the coupling vector y is said to satisfy the coupling constraints
if and only if it is solution of Equation (2.1.3).

Assuming that the implicit function theorem holds (cf. Theorem 2.2.5), there exists a
unique continuously differentiable function, denoted Ψ, such that y = Ψ(x0, x) satisfies
the coupling constraints (2.1.2). In this context, the MDF optimization problem can be
expressed as follows:

21

min
(x0,x)

f(x0, x, Ψ(x0, x))

subject to g0(x0, x, Ψ(x0, x)) ≤ 0
gi(x0, xi, Ψi(x0, x)) ≤ 0 ∀i = 1 . . . p

(MDF)

A straightforward illustration of the MDF architecture computational process, utilizing a
Gauss-Seidel MDA and encompassing two strongly coupled disciplines, is presented in
Figure 2.8.    XDSM v2

1, 7-2:Optimizer

2, 5-3:MDAGaussSeidel

3:Discipline 1

4:Discipline 2

6:Functions

x_1^(0), x_2^(0), x_0^(0)

f^*, g^* x_0, x_1 x_0, x_2 x_0, x_1, x_2

f, g

y_1^*

y_2^*

f, g

y_2

y_1 y_1

y_2

y_1

y_2

Figure 2.8: XDSM of the MDF architecture using a Gauss-Seidel MDA

In contrast to the approach taken by the IDF architecture, the coupling vector y is
required to satisfy consistency constraints (2.1.2) at each stage of the optimization process.
The primary limitations of the MDF architecture pertain to the practical and theoretical
utilization of a MDA. It is assumed that each design vector yells a unique feasible coupling
vector, y = Ψ(x0, x), and that the selected algorithm is capable of successfully attaining
the solution. From experience, it can be observed that the degeneracy of the MDA is rarely
encountered in practice. This is because modern solvers are designed to be as robust as
possible and, in the worst cases, to return an approximate solution instead of a complete
failure. Otherwise, the problem may be considered hill-posed, which increases the risk
of failing to compute a multidisciplinary feasible optimum, even for non-MDA-based
architectures. Furthermore, in the MDF approach, a complete MDA must be carried out
at each iteration. Consequently, the disciplines that are potentially time-consuming will
be executed multiple times per iteration of the system problem, resulting in, on average,
significantly more costly iterations compared to IDF. An overall cost further increased
by the necessity to compute coupled derivatives for the application of gradient-based
optimization algorithms to MDF. Several areas for improvement already exist, such as
the use of acceleration techniques for fixed point solvers [127] or solving both the state
equations and the MDA simultaneously [108].

In contrast, the MDF architecture exhibits several advantageous properties. Primarily,
the system problem is the smallest possible for a monolithic architecture, as the coupled
variables and the consistency constraints are completely handled by the MDA, thus
eliminating the need for the optimizer to consider them explicitly. Consequently, there
are fewer system optimizer calls than in IDF. Finally, although it cannot be guaranteed
that infeasible points will not arise, MDF has the advantage of always returning a fully
consistent system design , since the coupling variables y are enforced to be solution of

22

Equation (2.1.3) at each optimization iteration, which is highly valuable in the event of
early termination of the optimization process.

2.2 Mathematical background
This section is dedicated to the various tools and mathematical results used throughout this
manuscript. The first part is dedicated to the Gauss-Seidel algorithm and its convergence
properties that are treated first in the classical linear case and then extended to the
nonlinear case. Then two classical implicit analytic methods for computing derivatives are
recalled, in particular the so-called adjoint vector is defined. Classical optimality conditions
for general nonlinear programming are given, covering the Lagrangian reformulation of
the problem, the first- and second-order Karush-Kuhn-Tucker (KKT) conditions, and the
considered constraint qualifications. Finally, 3 classical analysis theorems that allow to
define continuously differentiable functions from a set of hypotheses are presented.

2.2.1 The Gauss-Seidel algorithm and local convergence
The Gauss-Seidel method [63] is an iterative algorithm originally designed to solve a system
of linear equations. This method, which is part of a broader family of iterative algorithms
called the Successive Over-Relaxation (SOR) methods [63], has been extensively studied
in the linear case and extended to more general problems, such as nonlinear systems of
equations [113, 111, 110, 112]. These methods and their convergence properties are of
paramount importance in this manuscript, both for the solution of the multidisciplinary
analysis (cf. Section 2.1.1), and for an important local convergence result for a closely
related algorithm within Section 3.4.2.

For these reasons, this section is dedicated to classical convergence results that will be
helpful for the understanding of the manipulated concepts and classical hypotheses that
would be useful along this manuscript.

The linear case

Let A ∈ GLp(R) be non-singular, let b ∈ Rp. Our goal is to find x ∈ Rp that solves the
classical linear algebra problem:

Ax = b . (2.2.1)

To solve (2.2.1), it is common to rely on iterative algorithms of the form

xk+1 = Hxk + b , (2.2.2)

where H depends on the method used and is often referred to as the iteration matrix.
A standard convergence condition for these algorithms is related to the spectrum and
the spectral radius of the iteration matrix H. Often, the properties on H can be directly
deduced from the matrix A when available. An important property lies in A being
positive-definite.

Definition 2.2.1 (Spectrum). Let A ∈ Mn(R). We call spectrum of A, and note Sp(A),
the set of eigenvalues related to A:

Sp(A) ≡ {λ ∈ R | ∃x ̸= 0, Ax = λx} . (2.2.3)
23

Definition 2.2.2 (Spectral radius). Let A ∈ Mn(R). We call spectral radius, and note
ρ(A), the radius of the smallest ball containing all elements of Sp(A). Equivalently:

ρ(A) ≡ max
i

{|λi| | λi ∈ Sp(A)} . (2.2.4)

Definition 2.2.3 (Positive-definite). Let A ∈ Mn(R) be symmetric. We say that A is
positive-definite, and note A > 0, if and only if:

∀x ∈ Rn\{0}, xT Ax > 0 . (2.2.5)

Equivalently:
A > 0 ⇐⇒ λ > 0, ∀λ ∈ Sp(A) . (2.2.6)

Theorem 2.2.1 (Convergent matrix [151]). Assume that ρ(H) < 1, then H is said to be
a convergent matrix, in the sense that lim

k→∞
Hk

i,j = 0 for all (i, j) ∈ J1, pK2.

As a consequence, the iterative procedure given in (2.2.2) is convergent towards the solution
of (2.2.1) for every initial vector, i.e. lim

k→∞
xk = A−1b.

To find a suitable iteration matrix H, it is common to rely on a matrix splitting of the
matrix A, i.e. a rewriting of A as a sum of matrices. The most used matrix splitting of A
is defined as

A = M + D + U , (2.2.7)

where M is the strictly lower triangle of A, D is the diagonal of A, and U is the strictly
upper triangle of A.

One of the most popular methods to solve (2.2.1) is the Jacobi method [63], where each
diagonal term is solved in parallel. Assume that D is non-singular, by using previous
splitting (2.2.7), (2.2.1) can be rewritten as

Ax = b (2.2.8)
⇐⇒ (M + D + U)x = b (2.2.9)
⇐⇒ Dx = b − (M + U)x (2.2.10)
⇐⇒ x = D−1(b − (M + U)x) , (2.2.11)

from which we can deduced the well-known Jacobi updates:

xk+1 = D−1(b − [M + U]xk) = D−1b − D−1[M + U]xk . (Jacobi)

It is well known that a sufficient condition for the said iteration method to be convergent is
that ρ(D−1[M + U]) < 1 according to Theorem 2.2.1. This is ensured, for example, if the
matrix A is strictly or irreducibly diagonally dominant [63]. These classical convergence
results may be too restrictive in general and, when convergence is not certain, other
methods may be preferred.

One way to strengthen these convergence results is to recycle the information more
frequently. For example, the Gauss-Seidel method solves each equation sequentially,

24

from the first equation to the last, with each solution being injected into the subsequent
equations to speed up convergence. Let L = M + D and assume that L is non-singular.
(2.2.1) can be rewritten as

Ax = b (2.2.12)
⇐⇒ (L + U)x = b (2.2.13)
⇐⇒ Lx = b − Ux (2.2.14)
⇐⇒ x = L−1(b − Ux) . (2.2.15)

Thus, two successive iterations are linked trough the relation

Lxk+1 + Uxk = b , (2.2.16)

which leads to the well-known Gauss-Seidel iteration scheme

xk+1 = −L−1Uxk + L−1b . (Gauss-Seidel)

Theorem 2.2.2 (Convergence of the Gauss-Seidel method). Let the following linear system
Ax = b as described in (2.2.1). Consider the splitting given in (2.2.7), A = L + U and
assume that L is non-singular. Then the Gauss-Seidel iteration sequence (Gauss-Seidel)
given by:

xk+1 = −L−1Uxk + L−1b ,

converges to the solution of Ax = b if and only if ρ(L−1U) < 1.

Proof: Let xp be the pth iterate obtained by using (Gauss-Seidel) with p ∈ N. The next
iterate xp+1 is then defined as

xp+1 = −L−1Uxp + L−1b . (2.2.17)

Developing xp gives the following expression:

xp+1 = −L−1U [−L−1Uxp−1 + L−1b] + L−1b . (2.2.18)

Repeating this process, an immediate induction gives the following formula for any
p ∈ N:

xp+1 = (−L−1U)px0 +
(p∑

k=0
(−L−1U)k

)
L−1b , (2.2.19)

where x0 is the initial guess.

This iteration scheme converges if and only if lim
p→∞

∥(−L−1U)p∥ is finite for any induced
norm ∥.∥ and that the series ∑(−L−1U)p is convergent which is true if and only if
ρ(L−1U) < 1.

Assume now that ρ(L−1U) < 1. Let us show that the Gauss-Seidel iteration scheme
converges to the solution of Ax = b.

In this case, it follows that lim
p→∞

(−L−1U)p = 0 and that ∑(−L−1U)p = (In + L−1U)−1.
Therefore the iteration scheme converges to

x∗ = (In + L−1U)−1L−1b . (2.2.20)
25

Multiplying each side by A = L + U , it leads to

Ax∗ = (L + U)(In + L−1U)−1L−1b

= L(In + L−1U)(In + L−1U)−1L−1b

= b

. (2.2.21)

Finally the iteration scheme converges if and only if ρ(L−1U) < 1, and it converges to x∗

the solution of the system Ax = b.

Since the Gauss-Seidel method uses all available information at each step, it is indeed
faster, in the sense that it takes fewer iterations to converge, and more robust than the
Jacobi method. This is due to the inequality ρ(L−1U) ≤ ρ(D−1[M +U]) being strict in the
vast majority of events, equality happening for some limit cases such as A being diagonal
[63]. The Gauss-Seidel method belongs to the more general category of the Successive
Over-Relaxation (SOR) methods. Let ω > 1, the generic SOR iteration rewrites (2.2.1)
as

(D + ωM)x = ωb − [ωU + (ω − 1)D]x , (2.2.22)

which is solved using the following updates:

xk+1 = (D + ωM)−1[ωb − [ωU + (ω − 1)D]xk] . (2.2.23)

It has been proved that the SOR method is convergent for every 0 < ω < 2 whenever A is
symmetric positive-definite by showing that we necessarily have ρ(−(D + ωM)−1[ωU +
(ω − 1)D]) < 1 [63].

In particular, this is also true for the Gauss-Seidel algorithm, obtained with the special
case ω = 1. Therefore the choice of ω has no effect on the convergence properties compared
to the classical Gauss-Seidel method [63]. However, the introduction of the parameter ω is
often considered to speed-up the convergence. Unfortunately, it is not straightforward to
find the optimal relaxation parameter that guarantees the best convergence speed, since
it requires knowledge of the spectral radius of the Jacobi iteration matrix D−1[M + U] =
I − D−1A [63].

The Gauss-Seidel method is easy to understand and implement, so it is widely used in
practice for a variety of applications. For MDO problems, since most of the functions
encountered in industry are nonlinear, the nonlinear Gauss-Seidel method is generally
considered instead. Classical results for the nonlinear Gauss-Seidel approach are presented
below in the context of minimizing a nonlinear function.

The non-linear case as a local solution of an unconstrained problem

Let f : ∏p
i=1 Rni 7→ R be a nonlinear continuously differentiable function with p input

vectors xi ∈ Rni to be minimized. It is well-known that local minimizers of f are
characterized by zeroing its gradient. Therefore all locally optimal points x ∈ ∏p

i=1 Rni

are characterized by the following condition:

∇f(x1, . . . , xp) = 0 . (2.2.24)

This is a nonlinear system of equations, that we want to solve by using the nonlinear
Gauss-Seidel approach [113, 111, 110]. The method is also known in the literature as the

26

Block Coordinate Descent (BCD) algorithm [16], the Block Gauss-Seidel (BGS) method
[64] or the Alternating Optimization (AO) method [17, 18]. For the minimization of an
unconstrained function, or equivalently for the solution of a nonlinear system of equations,
our preference goes to the denomination nonlinear Gauss-Seidel, as it translates that it is
a direct application of the linear algorithm in the nonlinear case. For the constrained case,
as encountered in Chapter 3, the term Block Coordinate Descent (BCD) is used instead
to emphasize the consideration of constraints.

The nonlinear Gauss-Seidel method is derived directly from the original linear approach.
Let xk, with k ∈ N, be the actual iterate, xk+1 is obtained by successively defining xk+1

i ,
from i = 1 to i = p, as the solution of

∂f

∂xi

(xk+1
1 , . . . , xk+1

i−1 , xi, xk
i+1, . . . , xk

p) = 0 . (2.2.25)

The following theorem, given by Ortega [110], expresses sufficient conditions for the
nonlinear Gauss-Seidel method to be locally convergent:

Theorem 2.2.3 (Local convergence of non-linear Gauss-Seidel). Let x∗ be a local minimizer
of f . Let N be a neighborhood of x∗ where f is at least C2, strictly convex and ∇2f(x∗) is
positive-definite. Assume that every block have a unique minimizer.

Then the non-linear Gauss-Seidel method is locally convergent towards x∗ q-linearly, i.e.
there exist q ∈ [0, 1[and k0N such that for all k ≥ k0, ∥xk+1 − x∗∥≤ q∥xk − x∗∥.

Proof: Let xk be the current iterate. First observe that defining xk+1
i as the solution of

(2.2.25) for all i ∈ J1, pK is equivalent as finding a vector u such that for an already known
xk

g(u, xk) = 0 , (2.2.26)
where g : ∏p

i=1 Rni ×∏p
i=1 Rni → ∏p

i=1 Rni , the gradient of f where components of v are
replaced by the components of u at each partial derivative computation, similar to the
Gauss-Seidel pattern, is defined as

g(u, v) ≡



∂f
∂x1

(u1, v2, . . . , vp)
∂f
∂x2

(u1, u2, v3, . . . , vp)
...

∂f
∂xp−1

(u1, . . . , up−1, vp)
∂f
∂xp

(u1, . . . , up)


. (2.2.27)

As f is at least C2, g is at least C1 with respect to both u and v. Furthermore, x∗ being
a local minimizer of f , it follows that g(x∗, x∗) = ∇f(x∗) = 0.

After a direct computation at the optimum x∗, we observe that ∂g
∂u

(x∗, x∗) is a p × p lower
triangular matrix filled with the second derivatives of f at x∗. Similarly, ∂g

∂v
(x∗, x∗) is a

p × p strictly upper triangular matrix composed with the upper-triangular part of the
Hessian of f at x∗.

Let H(x∗) be the Hessian of f at x∗, it directly follows that

H(x∗) = ∂g

∂u
(x∗, x∗) + ∂g

∂v
(x∗, x∗) . (2.2.28)

27

Therefore, the Hessian of f at x∗ can be decomposed as:

H(x∗) = L(x∗) − U(x∗) , (2.2.29)

with the direct identifications L(x∗) = ∂g
∂u

(x∗, x∗) and U(x∗) = −∂g
∂v

(x∗, x∗).

Since every block has a unique minimizer, every diagonal block of L(x∗) is positive definite.
Hence L(x∗) = ∂g

∂u
(x∗, x∗) is invertible, therefore the Implicit Function Theorem implies

the existence of a unique continuous differentiable function T such that for every point xk

near x∗, we have
g(xk+1, xk) = 0 ⇐⇒ xk+1 = T (xk) . (2.2.30)

Note that, in particular, at the solution x∗

g(T (x∗), x∗) = g(x∗, x∗) = 0 . (2.2.31)

The Taylor expansion at xk near the solution x∗ gives

T (xk) − x∗ = ∇T (x∗)(xk − x∗) + r(xk − x∗) . (2.2.32)

Hence:
xk+1 − x∗ = ∇T (x∗)(xk − x∗) + r(xk − x∗) , (2.2.33)

with ∥r(xk−x∗)∥
∥xk−x∗∥ → 0 , when ∥x∥→ 0

It follows, according to Theorem 2.2.1, that the sequence {xk}k∈N converge to x∗ if and
only if ρ(∇T (x∗)) < 1.

To compute the spectral radius of ∇T (x∗), we first compute the total derivative of g:

dg

dv
= ∂g

∂v
+ ∂g

∂u

dT

dv
= ∂g

∂v
+ ∂g

∂u
∇T . (2.2.34)

Hence at x∗, as dg
dv

(x∗) = 0, it follows:

∇T (x∗) =
[

∂g

∂T
(x∗)

]−1
∂g

∂v
(x∗) . (2.2.35)

According to previous notations

∇T (x∗) = [L(x∗)]−1U(x∗) . (2.2.36)

It should be noted that, near the solution x∗, for a particular iterate xk and its successor
xk+1, previous equation indicates that g can be rewritten as:

g(xk+1, xk) = L(x∗)xk+1 − U(x∗)xk = 0 , (2.2.37)

in which we recognize the form of the linear (Gauss-Seidel) as expected.

Hence, to finish the proof, we need to show that ρ([L(x∗)]−1U(x∗)) < 1.

From now on, the end of the demonstration relies on a corollary of Householder John’s
theorem (see [110, Corollary 2.11]), the statement of which is given below:

28

Lemma 2.2.1 (Householder–John corollary). Let H be a non-singular matrix. Split H
into: H = D − L − U where D, −L and −U respectively denote the diagonal, the strictly
lower and the strictly upper triangular parts of H. Assume that H is Hermitian and that
its block diagonal matrix D is positive definite. Then ρ((D − L)−1U) < 1 if and only if H
is positive definite.

By assumption H(x∗) = L(x∗) − U(x∗) is hermitian and non-singular. Moreover, we
already shown that L(x∗) is also non-singular as a lower-triangular matrix in which all
diagonal blocks admits a unique minimizer, i.e. the block diagonal matrix of H(x∗) is
definite positive.

Therefore, as H(x∗) is definite positive by assumption, by Householder–John corollary,
ρ([L(x∗)]−1U(x∗)) < 1, so Theorem 2.2.1 applies which completes the proof on the
convergence of the method towards x∗.

This well-known and classical result, as well as the associated proof, are of primary
importance for understanding the local convergence result given in Chapter 3, where
the nonlinear equations are replaced by nonlinear, constrained and strongly coupled
optimization problems. In particular, Lemma 2.2.1 will no longer apply due to the
presence of constraints that break the positive definiteness of the block diagonal matrix
D.

2.2.2 Direct and adjoint methods for gradient computation
Let f : Rnx × Rny 7→ Rnf be a continuously differentiable function computing some
quantity of interest f(x, y), such as objectives or constraints, for some inputs x and y.
Let us recall the Implicit Function Theorem:

Theorem 2.2.4 (Implicit Function Theorem). Let R : Rn+m → Rm be a continuously
differentiable function, and let Rn+m have coordinates (x, y).

Fix a point (a, b) such that R(a, b) = 0Rm. If the Jacobian matrix
[

∂Ri

∂yj
(a, b)

]
(i,j)∈[|1,m|]2

is
invertible , then there exists an open set U ⊂ Rn and a unique continuously differentiable
function Ψ : U → Rm such that Ψ(a) = b and R(x, Ψ(x)) = 0 for all x ∈ U .

Suppose there exists a point (x̄, ȳ) where a continuously differentiable residual equation
R(x̄, ȳ) = 0 is satisfied and the Jacobian of R with respect to the coordinate y is
invertible at (x̄, ȳ). Thus, by Implicit Function Theorem, there exists a neighborhood
of x̄ and a unique continuously differentiable function Ψ such that for every x in this
neighborhood

R(x, y) = 0 ⇐⇒ y = Ψ(x) . (2.2.38)

This section explores two classical implicit analytic methods related to the computation
of the gradient of f with respect to x in the considered neighborhood, by exploiting the
implicit relation described above.

Two different approaches

We restrict ourselves to the neighbourhood of x̄ in which the relation (2.2.38) is verified.
As Equation (2.2.38) is always verified for every selected x, then the state equation’s

29

derivatives along x is zero:
dR

dx
(x, Ψ(x)) = ∂R

∂x
(x, Ψ(x)) + ∂R

∂y
(x, Ψ(x))dΨ

dx
(x) = 0 , (2.2.39)

from which we can use the invertibility ∂R
∂y

to express the total derivative of the implicitly
defined function Ψ with respect to x:

dΨ
dx

(x) = −
[

∂R

∂y
(x, Ψ(x))

]−1
∂R

∂x
(x, Ψ(x)) . (2.2.40)

By injecting this expression in f ’s total derivative, it follows that
df

dx
(x, Ψ(x)) = ∂f

∂x
(x, Ψ(x)) + ∂f

∂y
(x, Ψ(x))dΨ

dx
(x) (2.2.41)

= ∂f

∂x
(x, Ψ(x)) − ∂f

∂y
(x, Ψ(x))

[
∂R

∂y
(x, Ψ(x))

]−1
∂R

∂x
(x, Ψ(x)) , (2.2.42)

where all terms are partial derivatives. The computation of the total derivative given in
Equation (2.2.42) can be done in two distinct manners described below.

• The first approach, often referred as the direct method, consists in computing the
total derivative of the implicit function with respect to x:

α(x) ≡
[

∂R

∂y
(x, Ψ(x))

]−1
∂R

∂x
(x, Ψ(x)) = −dΨ

dx
(x) , (2.2.43)

by solving first the related linear system:
∂R

∂y
(x, Ψ(x))α(x) = ∂R

∂x
(x, Ψ(x)) . (2.2.44)

The obtained result can then be directly injected onto Equation (2.2.42):
df

dx
(x, Ψ(x)) = ∂f

∂x
(x, Ψ(x)) − ∂f

∂y
(x, Ψ(x))α(x) . (2.2.45)

• The adjoint approach (also known as the reverse method), contrary to the former
strategy, first compute the adjoint vector β:

βT (x) ≡ ∂f

∂y
(x, Ψ(x))

[
∂R

∂y
(x, Ψ(x))

]−1

, (2.2.46)

which is obtained as the solution of the related linear system
∂R

∂y

T

(x, Ψ(x))β(x) = ∂f

∂y

T

(x, Ψ(x)) . (2.2.47)

The adjoint vector βT (x) can be interpreted as the effect of a perturbation of
the residual R on f , which can be written, with a notation abuse, as df

dR
(xΨ(x)).

Injecting the adjoint vector β into Equation (2.2.42) allows to write
df

dx
(x, Ψ(x)) = ∂f

∂x
(x, Ψ(x)) − βT (x)∂R

∂x
(x, Ψ(x)) . (2.2.48)

30

Choice of the method

Both approaches seem similar at first hand, both strategies imply the computation of the
partial derivative of f , the resolution of a linear system and a matrix multiplication and
both methods have the advantage of approximating the total derivative with a precision
matching that of the considered functions.

However the cost of solving the linear system changes drastically depending on the chosen
method. As the direct method involves the partial derivatives of the residual with respect
to x: ∂R

∂x
, the cost of solving Equation (2.2.44) scales with the number of design variables

nx. On the other hand, Equation (2.2.47) depends on the partial derivatives of the
objective with respect to the implicitly defined set of variables: ∂f

∂y
, and therefore scales

with the number of functions (or the size of f) nf .

This indicates that the choice of using one method or the other depends above all on
dimensions of the design variables nx and functions nf . In the event where the number
of functions is higher than the number of variables (i.e. nf > nx), it is best to use the
direct approach summarized in Equation (2.2.45). Otherwise (i.e. nx > nf), the adjoint
approach (cf. Equation (2.2.48)) should be considered instead. This is mainly why the
adjoint method is generally preferred, as it is common for many applications to have much
more design variables than functions.

However, they also require implementation efforts, often intrusive ones, since they require
the derivatives of the residuals with respect to the state variables y. This explains in
part why the use of the adjoint method in this industry is not necessarily systematic
for complex problems with many disciplines [59], despite the fact that for high-fidelity
optimization, gradient-based approaches with the coupled adjoint offer the best scalability
[103].

2.2.3 Optimality conditions
In this manuscript, most considered optimization problems are nonlinear and subject
to constraints. This section is dedicated to classical results on nonlinear programming
on sufficient and necessary conditions for a design point to be locally optimal. Given a
generic optimization problem:

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, i ∈ {1, ...m}
hj(x) = 0, j ∈ {1, ...r}

, (2.2.49)

with f : Rn → R is the objective function, gi : Rn → R, i = 1, . . . , m denotes the
inequality constraints and hj : Rn → R, j = 1, . . . , r are the equality constraints.

It is possible to define its Lagrangian,

L(x, u, v) = f(x) +
m∑

i=1
uigi(x) +

r∑
j=1

vjhj(x) , (2.2.50)

with u ∈ Rm and v ∈ Rr be the so-called Lagrange multipliers. Solving the original
problem (2.2.49) is related to the search for saddle points of L where each components of

31

u are positive, or in other words, to the solutions of the following primal problem

min
x

[
max

u,v:ui>0;∀i
L(x, u, v)

]
, (2.2.51)

and dual problem:
max

u,v:ui>0;∀i

[
min

x
L(x, u, v)

]
. (2.2.52)

It should be noted that for every fixed x, the function (u, v) 7→ L(x, u, v) is an affine
function of u and v.

Assuming that all the considered functions are at least C1 functions, optimallity conditions
for general non-linear optimization problems are given by the well-known first order
Karush–Kuhn–Tucker (KKT) conditions:

Definition 2.2.4 (1st order KKT condition). (x, u, v) is said to verify the first order
Karush–Kuhn–Tucker (KKT) conditions if and only if

(Stationarity) 0 = ∇f(x) +
m∑

i=1
ui∇gi(x) +

r∑
j=1

vj∇hj(x)

(Complementary slackness) uigi(x) = 0 ∀i

(Primal feasibility) gi(x) ≤ 0, hj(x) = 0 ∀i, j

(Dual feasibility) ui ≥ 0 ∀i

. (KKT)

In order to use KKT conditions as necessary 1st order conditions for optimality, a feasible
point x must satisfy some assumptions, otherwise an optimization problem may have a
solution that does not satisfy the 1st order KKT condition. Since there are many ways to
define a feasible set using constraints, it is advisable to define them in such a way that
the KKT conditions hold. These assumptions are known as constraint qualification, and
they ensure that the feasible set is well approximated by the actual formulation of the
constraints. Let us introduce the two most popular ones:

Definition 2.2.5 (MFCQ). A design point x is said to satisfies the Mangasarian Fromovitz
Constraint Qualification (MFCQ) if and only if

• The gradients of the equality constraints hj are linearly independent at the point x.

• Their is a vector d ∈ Rn such that ∇hj(x)T d = 0 for all equality constraints and
∇gi(x)T d ≤ 0 for all active inequality constraints.

Definition 2.2.6 (LICQ). A design point x is said to satisfies the Linear Independence
Constraint Qualification (LICQ) if and only if the gradients of the active constraints,

∇hj(x) for all j

∇gi(x) for all i such that gi(x) = 0
, (2.2.53)

are linearly independent.

For every feasible point x there is the well-known relationship:

LICQ(x) =⇒ MFCQ(x) . (2.2.54)
32

The LICQ is generally considered to be the strongest constraint. It guarantees the
existence and also the uniqueness of the Lagrange multipliers at the solution. The MFCQ
is also often used instead of the LICQ, although this results in the loss of the desired
uniqueness of the Lagrange multipliers. Throughout the manuscript we will mostly rely
on LICQ for most of the results given, MFCQ will eventually be mentioned for classical
results within Chapter 3. In some cases, such as in the convex case (or more generally
for the wider class of type 1 invex functions), 1st order KKT condition are also sufficient
[100].

Let us now assume that LICQ is verified on some design point x, by further assuming that
the involved functions are at least C2 functions, second order conditions can be considered
to ensure that the previous solution is a minimizing point. These second order conditions,
also referred as second order KKT conditions, can take different forms depending on
the problem considered. One of the most classic 2nd order sufficient conditions will be
considered in this manuscript.

Definition 2.2.7 (2nd order KKT conditions). Assume that (x, u, v) verifies LICQ and
the first order KKT conditions. (x, u, v) is said to verify the 2nd order KKT conditions if
and only if every direction d ̸= 0 such that

• ∇hj(x)T d = 0 for all j

• ∇gi(x)T d = 0 for all i such that gi(x) = 0 and ui > 0

• ∇gi(x)T d ≤ 0 for all i such that gi(x) = 0 and ui = 0

also verifies:
dT ∇2L(x, u, v)d > 0 , (2.2.55)

where ∇2L(x, u, v) denotes the bordered Hessian of (2.2.49) at (x, u, v):

∇2L(x, u, v) =
[

∇2
x,xL(x, u, v) [∇g(x) ∇h(x)]T

[∇g(x) ∇h(x)] 0(r+m)2

]
. (2.2.56)

According to the definition of the admissible direction d, the 2nd order KKT condition
described above is strictly equivalent to

dT ∇2
x,xL(x, u, v)d , (2.2.57)

being positive definite. In other words, the Hessian of L along x must be positive
definite when considering feasible directions. Moreover it is known that if the Hessian
of the Lagrangian with respect to x, ∇2

x,xL(x, u, v), is positive definite, then the matrix
dT ∇2

x,xL(x, u, v)d is positive definite even though the converse is not necessarily true.

2.2.4 Three analysis theorems
Here are 3 analysis theorems related to the definition of continuously differentiable
functions from a set of hypotheses, namely the Implicit Function Theorem (IFT), Fiacco’s
Theorem, and the Envelope Theorem. Each of these is relevant and used at some point in
the manuscript.

33

The implicit function theorem

A classical result lies in the already introduced Implicit Function Theorem (IFT):

Theorem 2.2.5 (Implicit Function Theorem). Let R : Rn+m → Rm be a continuously
differentiable function, and let Rn+m have coordinates (x, y).

Fix a point (a, b) such that R(a, b) = 0Rm. If the Jacobian matrix
[

∂Ri

∂yj
(a, b)

]
(i,j)∈[|1,m|]2

is
invertible , then there exists an open set U ⊂ Rn and a unique continuously differentiable
function Ψ : U → Rm such that Ψ(a) = b and R(x, Ψ(x)) = 0 for all x ∈ U .

The Implicit Function Theorem is a classical theorem in analysis that allows to define
a subset of variables as a continuously differentiable function from a set of equations
that must be satisfied. This is of primary importance in MDO, as most architectures are
based on using one or more layers of this theorem to eliminate variables. For example,
it allows to eliminate state variables in classical MDO architectures, or, in MDF-based
architectures, to redefine the coupling variables as an implicit function of the design, which
is later solved by a dedicated algorithm called multidisciplinary analysis (or MDA). This
is discussed in greater detailed in Section 2.1.1, dedicated to general MDO concepts.

Fiacco’s theorem

Considering the aforementioned Implicit Function Theorem, it is possible to apply it
to the optimality conditions of a parameterized nonlinear optimization problem. Under
certain regularity conditions of the solution on a neighborhood of the parameter, the
optimal primal and dual variables, with respect to a change in the parameter, are in fact
continuously differentiable functions of the parameter in said neighborhood. This result is
known as Fiacco’s theorem [47]:

Theorem 2.2.6 (Fiacco’s theorem). Let the following parameterized optimization problem:

min
x

f(x, α)

s.t. gi(x, α) ≤ 0 i = 1, . . . , ng

hj(x, α) = 0 j = 1, . . . , nh

, (P (α))

with x ∈ Rn be the design variable and α ∈ Rp be a parameter vector.

Without loss of generality, consider the case α = 0 and the resulting optimization problem
P (0). Assume that there exist x∗ such that x 7→ f(x, 0), x 7→ gi(x, 0), i = 1, . . . , ng and
x 7→ hj(x, 0), j = 1, . . . , nh are all twice continuously differentiable in a neighborhood of
x∗.

Further assume that:

1. f , gi, i = 1, . . . , ng and hj, j = 1, . . . , nh are all twice continuously differentiable in
(x, α) in a neighborhood of (x∗, 0).

2. x∗ be a local minima of the problem P (0), hence there exist λ∗
i , i = 1, . . . , ng and

µ∗
j , j = 1, . . . , nh be the so-called Lagrange multipliers associated with gi, i =

1, . . . , ng and hj, j = 1, . . . , nh respectively such that (x∗, λ∗, µ∗) verifies both 1st

order KKT condition and 2nd order KKT conditions.

3. The gradients of the active constraints at (x∗, 0) are linearly independent (cf. LICQ).
34

4. Strict complementary slackness holds at (x∗, 0)

Hence it follows that:

1. x∗ is a local minimizer of P (0) and the associated Lagrange multipliers, λ∗ and µ∗

are unique.

2. For α in a neighborhood of 0 there exist a unique triplet of once continuously
differentiable function [x(α), λ(α), µ(α)] satisfying 2nd order KKT conditions of
problem P (α) such that [x(0), λ(0), µ(0)] = (x∗, λ∗, µ∗). In other words, x(α) is the
unique local minimum of P (α) with associated unique Lagrange multipliers λ(α) and
µ(α).

3. Strict complementarity (with respect to λ(α) and the inequality constraints) and
LICQ hold at x(α) for α near 0.

As noted, Fiacco’s theorem is a direct application of Implicit Function Theorem, which
gives a first-order sensitivity analysis of a second-order local solution with respect to a
parameter. This is a very strong theorem because it guarantees that the arg min operator
is indeed a continuously differentiable function with respect to the parameter. However,
this result comes at the cost of strong hypotheses. Apart from verifying both LICQ and
2nd order KKT conditions, which is not always the case, Fiacco’s theorem requires that
the set of active constraints remains constant as the parameter varies in the neighborhood
considered.

The envelope theorem

The third theorem is the so-called envelope theorem [144]:

Theorem 2.2.7 (Envelope theorem). Let f and gi, i ∈ [|1, m|] be continuously differen-
tiable functions. We consider the optimization problem for a given α:

min
x

f(x, α)
s.t gi(x, α) = 0 i = 1, . . . , m

, (2.2.58)

with x ∈ Rn and α ∈ Rp, and the associated Lagrangian,

L(x, λ, α) ≡ f(x, α) + λT g(x, α) , (2.2.59)

where λ ∈ Rm are the Lagrange multipliers.

We denote x∗(α) and λ∗(α) the solution that minimize the objective function f .

Thus we define
L∗(α) ≡ f(x∗(α), α) + λ∗(α).g(x∗(α), α) , (2.2.60)

and the value function:
V (α) ≡ f(x∗(α), α) . (2.2.61)

Then if V and L are continuously differentiable, if follows that

∂V

∂αk

(α) = ∂L∗

∂αk

(α) = ∂f

∂αk

(x∗(α), α) + λ∗(α). ∂g

∂αk

(x∗(α), α) for k ∈ [|1, p|] . (2.2.62)

35

The Envelope theorem, mostly known and used in economics, is an important result
about the differentiability properties of the value function of a parameterized optimization
problem. Given a certain regularity stated in the theorem, this result allows to derive the
derivative of the optimal value of an optimization problem with respect to a parameter,
stating that this partial derivative is equal to that of the optimal Lagrangian value
with respect to the same parameter. In other words, it allows to ignore the dependence
of the optimal design variables x∗ and the optimal Lagrangian multipliers λ∗ on said
parameter.

36

Chapter 3

A bi-level architecture

Summary: This chapter examines so-called ”distributed” MDO architectures where
multiple optimization problems are present. In particular, bi-level architectures are
considered, where one optimization problem (the lower-level problem) is nested within
another (the system optimization problem), and their convergence properties are discussed.
A pre-existing bi-level architecture, the BL-IRT architecture, is considered with respect
to the target applications. A first mathematical model of the bi-level decomposition
used is presented, and the equivalence of the solution between this decomposition and
the monolithic MDF problem is established. Sufficient assumptions on the solutions of
the lower optimization problem, given by Fiacco’s theorem, are made to ensure that the
system-level functions are continuously differentiable and do not degrade the convergence
properties of standard algorithms. Since these properties can only be verified if the
lower-level optimization problem is solved with sufficient accuracy, we propose to solve the
lower-level optimization problem by block decomposition using a well-known algorithm,
the Block Coordinate Descent (BCD) algorithm. It is shown that the BCD guarantees
that a fixed point is necessarily feasible and that, under certain assumptions such as
the unique block minimizer and the first-order separability, the local convergence of the
algorithm can be proved. Several variants of the newly introduced bi-level architecture
are also presented. These variants propose slight changes to the overall architecture
to relax certain assumptions that are considered too restrictive, typically by using a
different block decomposition that reallocates the block constraints or the coupling
variables. Finally, numerical experiments on a classical benchmark MDO problem (SSBJ)
demonstrate a significant reduction in the error on system functions and the resulting
improved convergence properties of these architectures. A final experiment illustrates the
value of so-called bi-level architectures in terms of scalability when coupled derivatives
are not available and the number of local variables, coupling variables, and constraints
increases.

37

Résumé: Ce chapitre examine les architectures MDO dites ”distribuées” où plusieurs
problèmes d’optimisation sont présents. En particulier, les architectures classifiées comme
bi-niveaux sont étudiées, dans lesquelles un problème d’optimisation (le sous-problème)
est imbriqué dans un autre (le problème d’optimisation système), et leurs propriétés
de convergence sont discutées. Une architecture bi-niveaux préexistante, l’architecture
BL-IRT, est examinée en ce qui concerne les applications cibles. Un premier modèle
mathématique de la décomposition à deux niveaux utilisée est présenté, et l’équivalence
de la solution entre cette décomposition et le problème MDF monolithique est établie.
Des hypothèses suffisantes sur les solutions du sous-problème d’optimisation, données
par le théorème de Fiacco, sont faites pour garantir que les fonctions du niveau système
sont continuement différentiables et ne dégradent pas les propriétés de convergence des
algorithmes standard. Comme ces propriétés ne peuvent être vérifiées que si le sous-
problème d’optimisation est résolu avec une précision suffisante, nous proposons de
résoudre le sous-problème d’optimisation par une décomposition en blocs à l’aide d’un
algorithme bien connu, l’algorithme BCD (Block Coordinate Descent). Il est démontré
que le BCD garantit qu’un point fixe est nécessairement faisable et que, sous certaines
hypothèses telles que l’unicité du minimiseur des blocs et leur séparabilité au premier
ordre, la convergence locale de l’algorithme peut être prouvée. Plusieurs variantes de
l’architecture bi-niveaux nouvellement introduite sont également présentées. Ces variantes
proposent de légères modifications de l’architecture globale afin d’assouplir certaines
hypothèses jugées trop restrictives, généralement en utilisant une décomposition en blocs
différente qui réaffecte les contraintes des blocs ou les variables de couplage.Enfin, des
expériences numériques sur un problème MDO classique de référence (SSBJ) démontrent
une réduction significative de l’erreur sur les fonctions du système et des propriétés de
convergence améliorées qui en résultent pour ces architectures. Une dernière expérience
illustre l’intérêt des architectures bi-niveaux en termes de scalabilité lorsque les dérivées
couplées ne sont pas disponibles et que le nombre de variables locales, de variables de
couplage et de contraintes augmente.

38

3.1 Introduction
In the context of MDO problems, the choice of the architecture is of particular importance,
as it drives the overall optimization process, the data exchanges, and the allocation of
computational resources [150]. In particular, when large-scale problems are encountered,
these considerations become even more pronounced. Among the MDO architectures
presented in Section 2.1.2, the distributed architectures have not yet been introduced.
Contrary to their monolithic counterparts, the distributed architectures reformulate the
original problem into several optimization problems, generally smaller, by exploiting the
inherent separation within MDO problems.

The decomposition aligns with the design environment, restoring greater autonomy to each
discipline and ensuring greater flexibility of the design as a whole, as evidenced by the fact
that the discipline’s code is developed with the goal of achieving autonomy for most of the
optimization process while incorporating updates from external sources. This is achieved
by allowing for better load balancing and the use of different, well-chosen algorithms and
optimization tools to solve the multiple optimization problems, possibly in parallel. These
factors contribute to the continued investigation of distributed architectures in MDO,
despite the perception that they are less efficient and exhibit less convergence properties
than their monolithic counterparts [101]. This is largely attributed to the division of
optimization problems into multiple components, necessitating the implementation of
costly coordination mechanisms to ensure design coherence. In addition, the use of
gradient-based approaches often requires costly post-optimal analysis due to the presence
of multiple optimization problems, and the presence of strong assumptions to ensure the
feasibility of the design or ill-posed problems is not uncommon. In practice, however, these
architectures are still used in many industrial applications. Since monolithic architectures
impose many constraints on their tools, such as access to the fully coupled adjoint, it is
often preferred to use a distributed architecture that is less constraining. In other words,
it may be reasonable to pay higher computational costs and lose robustness rather than
aim for a theoretical computational cost of a fully coupled process by having access to a
fully coupled adjoint that may never arrive.

We are interested in a particular subset of distributed architectures, the multi-level
architectures, and more specifically the bi-level architectures, which rely on a hierarchical
structure of the different optimization problems and their convergence properties. In
practice, the computation of the objective and constraints of the system optimization
problem requires the solution of another optimization problem, called the lower-level
optimization problem, which is parametrized by the system design variables. These
nested architectures, reminiscent of Bender’s decomposition [57], include architectures
such as the Collaborative Optimization (CO) architecture [24] or the Bi-Level Integrated
System Synthesis (BLISS or BLISS98) architecture [139] and its, quite different successor,
BLISS2000 [140].

As part of this category, the Bi-Level IRT (BL-IRT) [56] architecture has been developed
with the specific intention of addressing the challenges posed by large-scale MDO problems,
where the shared design variables are considered to be relatively low-dimensional in
comparison to the number of couplings and local variables. The BL-IRT architecture
is strongly inspired by the BLISS architecture, wherein the distinction between shared
and local variables is achieved through a system and a lower optimization problem. This
latter aspect is further decomposed into multiple block optimizations, each driven by a

39

single discipline and its own set of local variables. This approach effectively eliminates
the necessity to have access to all coupled derivatives at the system level while allowing
its use at the lower levels. However, there are two key differences between the two
architectures. Firstly, the BL-IRT architecture involves purely non-linear sub-optimization
problems, rather minimizing linear approximations of the objective. Secondly, the system
optimization problem is expected to be solved using a gradient-free approach, which
eliminates the necessity for costly post-optimal derivatives.

If this newly proposed architecture has been successfully applied to a large-scale, high-
fidelity aircraft pylon optimization using industrial simulation software [55], it also en-
counters convergence problems due to the lack of coordination mechanisms between the
block optimizations within the lower-level optimization problem, which is handled by
only two MDAs before and after the block optimizations, respectively. This results in the
emergence of noisy system functions (cf. Section 3.6.1) due to the high dependency of
the lower-level resolution on the path taken by the local variables, potentially preventing
convergence of the system optimizer (cf. Section 3.6.1).

This is the main reason for developing a novel bi-level architecture, which is closely
related to the aforementioned BL-IRT architecture, with the objective of addressing these
convergence issues. The overall goal is to replace the lower optimization problem resolution
method to a more robust one, potentially ensuring convergence properties of the entire
bi-level optimization problem if certain sets of hypothesis are met. This chapter presents
a new bi-level architecture, which builds upon the aforementioned BL-IRT architecture.
The objective is to replace the lower optimization problem resolution method with a more
robust one, which may ensure convergence properties of the entire bi-level optimization
problem if certain sets of hypotheses are met. The Block Coordinate Descent (BCD)
[16, 64, 110, 111, 113, 17, 18] algorithm has been selected to achieve this goal, leading to
the newly proposed MDF-based bi-level architecture that we will name Bi-Level - Block
Coordinate Descent - Multi-Disciplinary Feasible (or BL-BCD-MDF in short) architecture
(cf. Section 3.4.1).

The selection of the BCD algorithm to solve the lower optimization problem is motivated
by the fact that the Gauss-Seidel approach, which shares the same underlying principles
but differs in its application to non-linear system of equations, is well-known in the MDO
community. Therefore, the BCD algorithm benefits from the already abundant literature
on the Gauss-Seidel method, which, to some extent, can be directly applied to the first
order optimality conditions of block optimizations. Similarly, acceleration techniques for
fixed point solvers [127] that have already been developed and/or implemented require
only minor adaptations. Finally, the BCD algorithm does not rely on coupled derivatives
to solve the lower optimization problem in the same way that gradient-based approaches
such as MDF do. This is consistent with the objective of employing a block decomposition
approach to solve the lower optimization problem. The joint problem is characterized
by a considerable number of local and coupling variables, rendering even gradient-based
algorithms ineffective due to the prohibitive computational cost associated with the
coupled Jacobian.

One of the principal objectives behind the deployment of the BCD algorithm is to improve
the overall convergence properties of the proposed bi-level decomposition. These include
enhanced regularity for system functions (cf. Section 3.3.2) and better convergence
properties for both the system and lower optimization problems (cf. Section 3.4.2).

40

This chapter is partitioned as follows: the first section (cf. Section 3.2.1) presents a brief
overview of the different classical distributed architectures, with a focus on the BL-IRT to
tackle the targeted use cases. This is directly followed by the presentation of the usual
formalization for bi-level programming. This investigation led to the conclusion that an
implicit reformulation of the lower-optimization problem would be the most appropriate
approach. Once both the bi-level strategy and formalism have been established, Section 3.3
presents the decomposition steps to transition from a generic MDF optimization problem
to the desired bi-level framework, as presented in the original paper [56]. This section
demonstrates the equivalence of the solutions of the two optimization problems. It also
provides sufficient conditions for ensuring that all system functions are continuously
differentiable. Section 3.4 examines two approaches to the block resolution of the lower
optimization problem: the distributed method employed in BL-IRT and the newly proposed
BCD algorithm. The well-definiteness of the BCD algorithm, the feasibility of the solution,
and a local convergence result are demonstrated under a series of assumptions that can be
justified by industry standards. The following section, Section 3.5, proposes three variants
for the BL-BCDMDF architecture, allowing the assumptions to be modified according
to specific requirements and prior expertise. Finally, in Section 3.6, two classical MDO
problems are considered to evaluate the noise reduction and enhanced robustness of the
presented bi-level framework in comparison to the previous BL-IRT. A scalability study is
also performed on a newly created scalable problem that extends the well-known Sellar
problem [135], which now considers two blocks of local variables, to demonstrate the
capacity of bi-level decomposition when the number of shared variables is significantly
smaller than the number of local variables, coupling variables, and constraints.

3.2 State of the art: distributed architectures for
large scale MDO problem

3.2.1 Distributed architectures
Due to their composite nature, the distributed architectures appear to be well-suited to
solve high-dimensional problems: difficulties are divided among several computational
resources and each subproblem is solved with an appropriate algorithm, potentially in a
distributed manner, one could expect these architectures to be, a priori, faster than their
monolithic counterparts when solving high-dimensional MDO problems. Furthermore, the
inherent structure of general MDO problems readily suggests methods for decomposing
the problem into several subproblems, according to disciplinary, variable type, or gradient
availability.

For all these reasons, and because of the vast possibilities it offers to reformulate the
original optimization problem, distributed architectures have been the subject of extensive
research over the past decades. A direct classification of such architectures can be
derived from the monolithic one [101]. The distributed-MDF architectures regroup the
distributed architectures which solve couplings through MDAs, while the distributed-
IDF architectures regroup the ones which rely on defining target values and consistency
constraints. Another classification, introduced by Tosserams and al. [147], distinguishes
the distributed architectures on three distinct factors.

• The first factor depends on the interactions between the subproblems. One approach

41

is to solve the optimization subproblems in a nested fashion. This involves estab-
lishing a hierarchy, as seen in the multilevel methods, where each new iterate of
an optimization problem triggers a complete optimization of the ones just below
it in the hierarchy. Alternatively, the subproblems can be solved in an alternating
fashion, with each subproblems solved entirely one after the other until convergence.

• Secondly, distributed architectures can be classified according to whether the opti-
mizers exert control over the entire design vector (open design) or whether some
parameters are beyond the optimizer’s control (closed design) and are typically
handled by another component of the process other than the optimization algorithm
directly.

• Finally, the distributed architectures may also be categorized as to whether the
optimizers have control over the consistency constraints (open consistency, e.g. IDF)
or not (closed consistency, e.g. MDF) similarly as in the previous classification.

As with the monolithic architectures, the choice of a particular distributed architecture
is highly problem dependent [150]. A multitude of considerations must be taken into
account when choosing the optimal architecture, including the number of strongly coupled
disciplines, the separability assumptions, and the mathematical properties of the considered
functions and equations. One of the main objectives of this work is to provide a theoretical
framework for the study of hypotheses, on the different models/functions involved, as
well as on the structure of the problem addressed and the results that could be obtained,
especially in terms of convergence.

The formulation of multiple optimization problems in an MDO architecture typically
exploits the separation between the shared variables (the variables that are inputs for
multiple disciplines) and the local variables (the variables that are inputs for a single
discipline) by assigning them to different optimization problems. In the following sections,
the subproblem responsible for handling the linking variables (the shared design variables
and potentially the couplings) will be referred to as the system subproblem, while the
subproblems responsible for the local variables and the disciplinary analysis will be referred
to as the disciplinary subproblems. The choice of whether to rely on an MDA or on
consistency constraints to solve the couplings has a significant impact on the design, due
to the differing approaches taken in each case. In the former, the variables are considered
as a linking implicit function, with the consistency constraint therefore being closed. In
the latter, the variables are considered as linking variables, necessitating a coordination
mechanic.

In order to illustrate the vast possibilities offered by the distributed architectures, a brief
overview of the most well-known examples is presented hereafter. For more exhaustive
overviews on classical MDO distributed architectures and their particularities, see [101,
147, 9].

Distributed-IDF architectures

In the context of IDF-based distributed architectures, the linking variables are considered
as coupling variables. These distributed architectures are more extensively considered
than the MDF-based ones, primarily due to the advantageous properties of making copies
of the linking variables on separability.

42

Collaborative Optimization (CO) The Collaborative Optimization (CO) architecture
is a straightforward architecture for general MDO problems. Introduced by Braun [24],
copies of the shared variables x0 and couplings y are made, the so-called target values
xt

0 and yt respectively. The former is shared to every disciplinary subproblem, while the
latter is shared to the disciplinary subproblem in charge of computing the corresponding
disciplinary analysis. Each disciplinary subproblem is responsible for controlling its own
local design variables, xi (i ∈ 1 . . . p), for computing its own disciplinary analysis and
coupling variables, ϕi(x0, xi, yt

̸=i). It is also responsible for ensuring the satisfaction of
its own disciplinary constraints and for minimizing the system inconsistency in both xi

and yi. The system subproblem is tasked with minimizing the objective function in both
the linking variables (x0 and y) and coordinating the activities of all the disciplinary
subproblems.

The CO system subproblem is defined as follows:

min
(x0,xt,yt)

f(x0, xt, yt)

subject to g0(x0, xt, yt) ≤ 0
J∗

i (x0, xt
i, yt) = 0 i = 1 . . . p

(P 0
CO)

while the disciplinary subproblems (i ∈ 1 . . . p) are given by:

J∗
i (x0, xt

i, yt) = min
(xt

0,i,xi)
Ji(xt

0,i, xi, ϕi(xt
0,i, xi, yt

̸=i); x0, xt
i, yt

i)

subject to gi(xt
0,i, xi, ϕi(xt

0,i, xi, yt
̸=i)) ≤ 0

(P i
CO(x0, xt

i, yt))

where
Ji(xt

0,i, xi, yi; x0, xt
i, yt

i) = ∥xt
0,i − x0∥2

2+∥xi − xt
i∥2

2+∥yi − yt
i∥2

2 . (3.2.1)

It has been shown that (P 0
CO) is equivalent to (IDF) [24] in the sense that it has the

same set of optimal solutions. For its simplicity and flexibility, CO has been the subject of
extensive studies, with numerous variations developed to address the main issues. The main
one is that each design variable is assigned to the system subproblem, there is a significant
number of equality constraints to be handled by the system, which can lead to instability
at convergence. In addition, without further assumptions, disciplinary subproblems may
be infeasible and the process would fail. Finally, the efficiency of the CO method decreases
as the number of coupling variables increases. Among the variants, [137] proposed the use
of surrogates to approximate the post-optimal derivatives of the disciplinary subproblems,
[23] relaxed the system subproblem’s consistency constraints by using a penalty parameter.
In the latter approach, the management of the penalty parameter has been improved
in [86] and [160]. The Enhanced Collaborative Optimization (ECO) [130] architecture
switches roles between the system and the disciplinary subproblems. The former is now
an unconstrained optimization problem, tasked with minimizing inconsistency. The latter
minimizes a quadratic approximation of the objective and inconsistency along its own set
of variables. Linear approximations of other disciplinary subproblems are also added to
increase awareness.

BLISS-2000 Another prevalent nested IDF-based distributed architecture lies in the
BLISS-2000 architecture presented in [140]. This approach entails minimizing the objective

43

along the system-wise variables x0 while the coupling functions ϕi are replaced by surrogates
models. Additionally, target values for the coupling variables are incorporated to enforce
the consistency constraints.

The surrogates constructed for the ϕi are designed to minimize the objective along xi by
minimizing a weighted sum of their outputs with a well-chosen weight vector wi. Each
weight is selected to reflect the impact of the disciplinary output on the system objective.
The real coupling analysis ϕi is used in the disciplinary subproblems to construct the
corresponding surrogate ϕ̃i by a user-defined construction method.

Consequently, the disciplinary subproblems are supplanted by sets of response surface-
based models that approximate their optimized outputs along the xi from the inputs
provided by the system optimizer. Throughout the optimization process, the response
surfaces can be enhanced by the addition and removal of points.

The BLISS-2000 system subproblem is defined as follows:

min
(x0,yt,w)

f(x0, x, ϕ̃1:p(x0, x, yt, w))

subject to g0(x0, x, ϕ̃1:p(x0, x, yt, w)) ≤ 0
yt − ϕ̃i(x0, xi, yt

̸=i) = 0 i = 1 . . . p

(P 0
BLISS−2000(x))

while the disciplinary subproblems (i ∈ 1 . . . p), that compute the local variables xi, are
given by:

min
(xi)

wT
i ϕi(x0, xi, yt

̸=i)

subject to gi(x0, xi, ϕi(x0, xi, yt
̸=i)) ≤ 0

(P i
BLISS−2000(x0, yt

̸=i, wi))

The BLISS-2000 architecture is highly dependent on the surrogates constructed during
the optimization process, which may require manual validation by experts to be effective.
Consequently, the optimization process is significantly influenced by the quality of the
response surfaces that approximate the solutions of the disciplinary subproblems. There-
fore, BLISS-2000 reaches its limits when problems with large numbers of functions and/or
design variables are encountered.

Analytical Target Cascading (ATC) In the absence of a specific hierarchy in the
subproblems, the penalty relaxation methods may be employed instead. One such method
is the Analytical Target Cascading (ATC) approach [146, 148], which is a multi-level MDO
method that hierarchically propagates system and sub-system level targets through the
different subsystem levels. The specified design targets are propagated from the system
level to the lower levels and are also sent back to the higher levels after being optimized
at the lower levels. At each level of the design process, a specific optimization problem is
formulated to minimize the discrepancies between the level outputs and the propagated
objectives. This ensures the consistency of the coupling variables between the upper and
lower optimization levels.

The ATC system subproblem is defined as follows:

min
(x0,yt)

f0(x0, x1, . . . , xp, yt) +
p∑

i=1
ϵi(xt

0,i − x0, yt
i − ϕi(x0, xi, yt

̸=i)) +

ϵ0(g0(x0, x1, . . . , xp, yt))
(P 0

AT C(xt
0, x))

44

while the disciplinary subproblems (i ∈ 1 . . . p), which compute their own set of local
variables xi and shared variables xt

0,i, are given by:

min
(xt

0,i,xi)
f0(xt

0,i, x, yt
<i, ϕi(xt

0,i, xi, yt
̸=i), yt

>i) +

fi(xt
0,i, xi, ϕi(xt

0,i, xi, yt
̸=i)) +

ϵi(yt
i − ϕi(xt

0,i, xi, yt
̸=i), xt

0,i − x0) +
ϵ0(g0(xt

0,i, x, yt
<i, ϕi(xt

0,i, xi, yt
̸=i), yt

>i))
subject to gi(xt

0,i, xi, ϕi(xt
0,i, xi, yt

̸=i)) ≤ 0

(P i
AT C(yt

̸=i))

where ϵi (i ∈ 1 . . . p) is a penalty relaxation for the discipline i consistency constraints
and ϵ0 a penalty relaxation of the global design constraint.

The Exact and Inexact Penalty Decomposition (EPD and IPD) architectures [36] can
be considered as nested version of the ATC architecture. In these architectures, a L1
and quadratic penalty function are used, respectively, to ensure that all copies of a given
variable converge to the same value.

The convergence properties of these two types of architectures have been extensively
studied in the context of quasi-separable problems, which are defined as problems in which
the system-wide objective function (f0) or the constraints (g0) are absent. It has been
demonstrated that the EPD/IPD architectures are capable of converging to a first-order
KKT point under certain conditions, including the LICQ. The convergence results for
quasi-separable problems presented in [146] demonstrate the efficacy of an augmented
Lagrangian strategy involving the creation of copies of all linking variables (x0, y) for each
subproblem. For each of these copies, an affine constraint is added to enforce coherence,
which can be computed in parallel.

The objective is set in the form of an augmented Lagrangian, where a relaxation of
the coupling constraint is added. The augmented Lagrangian is solved by ADMM [15].
For each penalty parameter, a one-pass Block Coordinate Descent [16] (also known as
Alternating Optimization [17, 18] or Block Gauss Seidel [113, 111]) is executed over a
subproblem that minimizes the relaxed consistency constraints (P0) and the minimization
of p disciplinary subproblems in parallel (Pi), each of which yields a new value of xi and
yi. The disciplinary subproblems are responsible for minimizing the objective along the
disciplinary variables (xi and yi) while satisfying the corresponding disciplinary constraints.
These subproblems are penalized by the relaxed consistency constraints over yi and are
made independent by the copies and coordination mechanics in P0. The proposed method
has been generalized to the case with coupling objective and constraints [148]. This
generalization comes at the price of more costly inner loop, which is necessary to ensure
convergence towards a KKT point.

A common limitation of the IDF-based architectures is the generation of copies of the
linking variables for each subproblem. As the number of coupling variables increases,
the number of consistency constraints and added design variables (referred to as target-
values) can become a significant challenge for most optimization algorithms, even for
gradient-based ones [34, 150]. The objective of this study is to address the challenges posed
by large-scale MDO problems, which include a significant number of coupling variables.
Consequently, the focus has been placed on the investigation of the MDF-based strategies
for coupling management.

45

Distributed-MDF architectures

In contrast, distributed-MDF architectures employed fixed-point algorithms to guarantee
the feasibility of the design under consideration.

Concurrent Subspace Optimization (CSSO) One of the oldest distributed-MDF
architectures is the Concurrent Subspace Optimization (CSSO) architecture proposed by
Sobieski [138]. The fundamental principle of this approach is to utilize approximations
of the disciplinary analysis to optimize the original optimization problem component by
component in parallel.

The attached algorithm alternates between solving the system subproblem in the entire
design variable vector x using an approximation of the coupling variables and the parallel
optimization of disciplinary subproblems, which are solved with respect to the shared
design variables x0 and its local variable block xi (i ∈ 1 . . . p). The consistency constraints
are guaranteed to be feasible by employing a MDA between the system and the disciplinary
subproblems optimization, as well as by utilizing the real disciplinary analysis function
for the corresponding coupling variable in each disciplinary subproblem. Ultimately,
the results of the system analysis are employed to enhance the disciplinary analysis
approximation.

The CSSO system subproblem is defined as follows:

min
(x0,x)

f(x0, x, Ψ̃(x0, x, ỹ))

subject to g0(x0, x, Ψ̃(x0, x, ỹ)) ≤ 0
(P 0

CSSO(ỹ))

while the disciplinary subproblems (i ∈ 1 . . . p), which consider both the shared variables
x0 and its own set of local variables xi, are given by:

min
(x0,xi)

f(x0, xi, ỹ1:i−1, ϕi(x0, xi, ỹ ̸=i), ỹi+1:p)

subject to g0(x0, xi, Ψ̃(x0, x, ỹ)) ≤ 0
gi(x0, xi, ϕi(x0, xi, ỹ ̸=i)) ≤ 0
gj(x0, xj, Ψ̃j(x0, x, ỹ)) ≤ 0 j ̸= i

(P i
CSSO(ỹ ̸=i))

where Ψ̃ is an approximation of the real MDA, that uses all the real coupling functions
ϕi i ∈ (1, . . . , p), and ỹi (i ∈ 1 . . . p) are the approximations of the coupling variables yi,
whose dependencies, similar to ϕi, have been hidden to simplify the notation. The MDA
was originally approximated by linear approximations, using post-optimal analysis at
each iteration [138]. More general surrogates with a higher degree of information can be
used instead [135], eventually the system analysis evaluations are used to improve their
accuracy during the optimization process.

The CSSO has a number of inherent limitations. One such limitation is that the system
level problem deals with all the design variables and constraints simultaneously, while
each disciplinary subproblem also considers all constraints. This indicates that the
approximation of the coupling variables may not be worth the introduction of a two
optimization alternating process in terms of scalability, which can be observed in practice
[145]. Furthermore, the CSSO architecture is susceptible to a lack of convergence properties,
particularly when the utilized surrogates are inadequately constructed [33].

46

Bi-Level Integrated System Synthesis (BLISS) A more popular approach within
the distributed-MDF family, also proposed by Sobieski, is the well-known Bi-Level In-
tegrated System Synthesis (BLISS or BLISS98) architecture [139, 147, 101, 9]. This
BLISS architecture, also proposed by Sobieski and al. [139], is markedly distinct from the
BLISS-2000 architecture proposed two years later.

The BLISS98 architecture assigns the shared design variables x0 to the system subproblem
and the local variables xi (i ∈ 1 . . . p) to the disciplinary subproblems. Each subproblem
handles its set of local variables xi and constraints ci with an additional bound constraint,
which is analogous to a trust region mechanism. In contrast to CSSO, each disciplinary
subproblem considers only the linking constraints and the constraints that depend directly
on its set of local variables.

The workflow is based on an alternating method, as follows: the sub-problems (i ∈ 1 . . . p)
first optimize, in parallel, the contribution of each of the local design variables xi (i ∈ 1 . . . p)
on the objective for a fixed value of x0. This is followed by a post-optimal analysis, which
is used to build a linear approximation of the objective in x0 which is then optimized.
The process is repeated until convergence is achieved. The overall workflow is given in
Figure 3.1:

A generic XDSM diagram is also provided in Figure 3.2.

Initially, two methods were proposed to obtain the post-optimal derivatives, i.e. , the
derivatives of the optimal value function of the local variables x∗

i with respect to the
shared variables x0. The first method employs the Generalization of Global Sensitivity
Equation (BLISS-A), while the second method is based on the Lagrange multipliers as
prices (BLISS-B). It should be noted that this is, to our knowledge, the first appearance
of the coupled adjoint in a generic MDO architecture.

The disciplinary subproblems separation, regarded as black boxes by the system subprob-
lem, permits the utilization of specific optimization tools for each one of them without
modification of the overall design. Each subproblem minimizes a linear approximation of
the objective over a non-linearly constrained feasible set, resulting in a generally low reso-
lution cost for the subproblems. However, the non-linear constraints may be challenging
to satisfy.

One of the inherent drawbacks of the BLISS architecture is that it heavily relies on linear
approximations, which must be kept up to date. In the event of strong non-linearity, this
can result in a slowdown in the convergence process. Moreover, in addition to running
MDAs, numerous costly post-optimal derivatives are necessary, which is why BLISS is
expected to be more effective in cases where there is a small number of global design
variables x0 [9]. The overall cost can be reduced by using surrogates to replace the
disciplinary and post-optimal analysis [79, 80].

Building upon these observations on BLISS, [56] proposed a Bi-Level distributed MDO
architecture, termed the bi-level IRT architecture. This architecture employs a similar
separation as BLISS with nested optimization problems but no longer relies on linear
approximations for the sub-optimizations. Instead, each subproblem minimizes the original
objective function along its own block of variables. The optimization process is as follows:
at each system choice x0, the objective is minimized along all block directions xi (i ∈ 1 . . . p)
in parallel. Prior to and/or subsequent to the optimization of the disciplinary subproblems,

47

Figure 3.1: Workflow for the BLISS architecture

MDAs are employed to guarantee consistency.

As only the bi-level decomposition and the computational process were given in the original
paper [56], we propose to modelize the BL-IRT system subproblem as follows:

min
(x0)

f(x0, x∗(x0), Ψ(x0, x∗(x0)))

subject to g0(x0, x∗(x0), Ψ(x0, x∗(x0))) ≤ 0
(P 0

IRT)

where each disciplinary subproblem (i ∈ 1 . . . p) gives x∗
i (x0) as the solution of:

min
(xi)

f(x0, xi, y<i, ϕi(x0, xi, y̸=i), y>i)

subject to gi(x0, xi, ϕi(x0, xi, y̸=i)) ≤ 0
(P i

IRT (x0))

As mentioned before, all coupling variables yi (i ∈ 1 . . . p), other than the one under
consideration, are kept fixed in each block optimization (P i

IRT (x0)), their current values
being the solution of an MDA computed on the previous iterate of the design variable

48

χ(0) y(t,0) z xi

(no data)

0, 11→1:
Termina-

tion
criterion

1,3→2 :
MDA

6 : w(x, z) 6,9 : w(x, z) 6 : w(x, z) 2,5 : w(x, z)

z∗ 11 : z

8, 10:
System-level
optimization i

6,9 : z∗ 6,9 : z∗ 9 : z∗ 6: z∗ 2,5: z∗

x∗i 11 : xi

4,7:
Disciplinary
optimization i

6, 9 : x∗i 6, 9 : x∗i 9 : x∗i 6 : x∗i 2, 5 : x∗i

10 : f0, g 7 : f0, g
6,9:

System
Functions

10 : fi, gi 7 : fi, gi

6,9:
Discipline i
Functions

10 : df0/dz, dg/dz

9:
Shared
Variable

Derivatives

7 : df0,i/dxi, dc0,i/dz

6:
Discipline i
Variable

Derivatives

y∗i 3:yi 6, 9 : yi 6, 9 : yi 9 : yi 9 : yi
2,5:

Analysis i

Figure 3.2: A general XDSM diagram for the BLISS architecture [101]

(x0, x). This dependency is not shown in the optimization problems are it is completely
hidden from the system’s perspective. Similar to BLISS, the BL-IRT architecture benefits
from low-dimensional shared variables x0. This allows the use of gradient-based algorithms
for solving the disciplinary subproblems and derivative-free algorithms for solving the
system subproblem, where the number of design variables is reduced. This eliminates the
need for post-optimality analysis.

In contrast to BLISS, the primary advantages of the BL-IRT architecture are its lower
complexity and its flexibility: at the disciplinary level, truly non-linear optimization
problems are solved without the imposition of a search direction from the system level.

One of the variants of the BL-IRT architecture, which employs a design of experiment
strategy at the system subproblem level, has been successfully applied to a large-scale,
high-fidelity aircraft pylon optimization using industrial simulation software [55].

One of main pitfall of the BL-IRT architecture is its lack of convergence properties. The
coordination between disciplines is only achieved through MDAs before and after each pass
of disciplinary subproblems optimization and warm-start strategies between two different
system iterates. Consequently, for specific value of x0 the obtained design and coupling
vectors may not be a solution of the lower optimization problem. In the most severe cases,
the fulfilled disciplinary constraints can be broken after the coupling resolution. This can
results in instances where the subproblems disagree on the feasibility of the design (cf.
Section 3.6.1).

As a final recourse, the disciplinary constraints can be aggregated and addressed at the
system level to preclude the acceptance of non-feasible designs [55]. However, it does not
address the noise-induced impact on the system functions and the potential for convergence
to be slowed down or completely prevented. Indeed, reliability and performance are often
linked. The continuity of the functions of interest is often necessary for the gradient-

49

free optimizer convergence results, being in addition continuously differentiable is often
beneficial when it is not necessary in certain cases [1, 62].

Choice of the distributed architecture

As previously stated, the targeted applications are the non-linear large-scaled MDO
problems. In other words, the researched architecture must be capable of handling a large
amount of constraints and couplings while taking advantage of the natural separability
between the different components involved.

The choice has been made to explore the BL-IRT architecture in greater depth for several
reasons:

• It is derived from the MDF strategy: as the coupling variables are considered to
be numerous, it is anticipated that the MDF-based strategies will be more robust
than the IDF-based methodologies. This is even more true for some of the targeted
applications, such as aerostructure problems, where very effective MDAs exist due
to couplings between CFD and CSM solvers that are well industrialized [81, 128, 27].
Furthermore, the multidisciplinary feasibility is enforced at each system iteration,
which is a highly desirable property, especially in case of early termination of the
algorithm.

• It shared some assets with the BLISS architecture:

– The size of the system subproblem is minimized, simplifying its resolution.
This is of primary importance when considering nested optimizations problems.

– Well suited for MDO problems where shared variables are few in number.

– It is possible to rely on already existing very efficient disciplinary solvers such
as structure sizing [66, 132] or aerodynamic optimizations [73, 118].

• But also differs in several manners:

– There is no linear approximations to be kept updated. Each disciplinary
subproblem is non longer linearized and can be processed independently with
well-chosen optimization algorithms and optimization tools, offering more
flexibility for the overall design. A direct consequence is that a search direction
is no longer imposed, allowing to handle strongly non-linear problems more
effectively at the disciplinary level.

– Post-optimal analysis are not necessary, derivative-free optimization algorithms
may be employed when it is advisable, particularly at the system subproblem.

• For practical reasons: the said architecture is already implemented within the
GEMSEO framework, allowing for easy extension and reproducible research results.

However, in this bi-level framework, the shared design variables at the system subproblem
level imply that the lower optimization problem, which contains all disciplinary subprob-
lems, must ensure both the design variables convergence and the consistency. Moreover,
since no coordination mechanism or relaxation is done at the system level, the lower
optimization problem must ensure the coordination itself and be solved as precisely as
possible. Indeed, continuity of the functions of interest is often necessary for gradient-free
optimizer convergence results. Demonstrating that the functions of interest are also

50

continuously differentiable is often advantageous when it is not necessary in certain cases
[1, 62].In accordance with the two preceding classifications, the proposed distributed
architecture would be categorized as a distributed-MDF [101] and Nested, Closed Design,
Closed Consistency [147], respectively.

The BL-IRT architecture does not provide these guarantees by design, and it is unclear
when the potentially poor resolutions of the lower optimization problem can prevent
convergence of common derivative-free optimization algorithms. The objective of this
chapter considering the BL-IRT architecture are plural:

1. To propose a mathematical modelization for the BL-IRT architecture, allowing
for a better comprehension of its mathematical behavior concerning the sufficient
conditions for convergence, its equivalence with MDF and the regularity of the
functions of interest.

2. To highlight the benefits and limitations of the approach, in particular in term of
convergence properties.

3. To propose novel algorithmic solutions that preserves both the bi-level and block
decomposition, while enhancing the robustness of the methodology.

As the proposed architecture is part of the bi-level programming, a brief overview of its
definition, modelization choices and convergence properties is provided herewith.

3.2.2 Bi-level optimization
The bi-level optimization problems have been extensively studied over the past decades.
The concept was first introduced in market economy and game theory in 1934 through the
well-known Stackelberg’s games [142] (or leader-follower games), which were subsequently
extended beyond the scope of game theory to other scientific disciplines due to their
practical and theoretical interest.

Due to research in numerical optimization, the bi-level programming emerged within
this field during the 70’s with one of the first work by [22]. This is a mathematical field
that emerged from hierarchical (or nested) optimization problems involving two or more
players. Formally, a bi-level optimization problem consists of a parametric optimization
problem where the parameters are handled by another optimization problem. These two
optimization problems are known by many names depending on the field of study, it has
been chosen to refer to the former as the lower optimization problem (the follower) and
the latter as the system optimization problem (the leader).

In its most general form, this can be expressed as follows:

min
x∈X ,y∈Y

f(x, y)

s.t. g(x, y) ≤ 0

with y ∈
{

arg min
y∈Y

{F (x, y) s.t G(x, y) ≤ 0}
} (Bi-level)

where X ⊂ Rnx and Y ⊂ Rny are the design spaces for the system and the lower-
optimization problem, respectively. f : X × Y → R and F : X × Y → R the respective
objective functions and g : X × Y → Rncu , G : X × Y → Rncl the respective constraints.

51

All the system level variables that appear in the lower optimization problem constraints
are designated as linking variables.

In the form given in Equation (Bi-level), the lower problem may have more than one
optimal response to a certain selection of the system problem. This implies that the lower
problem is a set-valued map, and that the system’s objective function is one as well. To
circumvent this issue, the bi-level programming literature typically constrains the lower
problem’s possible outputs to two options: either the best or the worst lower problem’s
solution with respect to the system’s objective function is assumed. In other words, it
is assumed that the lower problem acts either in a cooperative manner (as described in
(Bi-level)) or in an aggressive manner ((Bi-level) if the system objective f is no longer
minimized but maximized with respect to y). The resulting bi-level problem is designated
as either an optimistic bi-level programming problem or a pessimistic bi-level programming
problem, respectively. Another pessimistic version of the bi-level programming emerges
when the system level constraints, g, are explicitly dependent on the lower optimization
problem set of variables, y. These joint constraints (or coupling constraints) are considered
to be part of the pessimistic paradigm, as they permit the lower problem’s response to
contravene the system’s feasibility.

In order to limit the possibilities and to evacuate the most difficult cases, it is common
to consider only the case where the lower optimization problem always yields a unique
output and there are no joint constraints in the system optimization problem. This is all
the more true for the targeted MDO problems, where the uniqueness of the minimizer
is often considered, and where all components are designed to act cooperatively toward
minimizing a common objective. Note that the uniqueness of the response of the lower
problem makes the optimistic and pessimistic paradigms equivalent, so that the variable
y can be retrieved from the system’s perspective. This leads to the optimistic bi-level
optimization problem, which can be rewritten as follows:

min
x∈X

f(x, y∗(x))

s.t. g(x) ≤ 0
with y∗(x) = arg min

y∈Y
{F (x, y) s.t G(x, y) ≤ 0}

(Bi-level Opt)

Even in this commonly acknowledged form, the bi-level optimization problems are consid-
ered to be difficult to solve. Consequently, a significant portion of the classical literature
considers bi-level problems that are mathematically well-behaved. This typically involves
the assumptions that all the functions are linear, quadratic or convex, and that strong
assumptions such as continuous differentiability and lower semi-continuity are made.

Indeed, the bi-level optimization problem has been demonstrated to be NP-hard even
in the case where all the functions involved are linear [26]. This is evidenced by [153],
who showed that even verification of local optimality for a feasible solution is in general
NP-hard. Furthermore, most used constraint qualifications are violated in every feasible
point [90]. Finally, the bi-level optimization problems are typically nonconvex and non-
differentiable optimization problems, even when all the functions satisfy these assumptions.
This renders the computation of an optimal solution a challenging task.

When considering the characterization of optimal solutions and the convergence of nested
optimization problems, the bi-level optimization problems are often reformulated as a single

52

optimization problem [40]. This approach permits the application of a substantial body of
literature in numerical optimization, where there is a unique optimization problem.

Enforcing lower level optimality as a constraint

If the lower optimization problem is assumed to be convex for all feasible system choices
x ∈ X , it is possible to replace the lower optimization problem optimality constraint with
its generalized equation [40]:

min
x∈X ,y∈Y

f(x, y)

s.t. g(x) ≤ 0
0 ∈ ∇yF (x, y) + NK(x)(y)

(Pvar)

where NK(x)(y) denotes the normal cone in the sense of convex analysis. This variational
reformulation has been studied by [41] and shown to be equivalent to (Bi-level Opt).

Given that the approximation of NK(x)(y) is inherently complex, the conventional approach
entails substituting the generalized constraint equation with its first-order KKT optimality
conditions:

min
x∈X ,y∈Y,u∈Rncl

f(x, y)

s.t. g(x) ≤ 0
∇yF (x, y) + uT ∇yG(x, y) = 0
G(x, y) ≤ 0, u ≥ 0, uT G(x, y) = 0

(Pkkt)

which introduces u as the Lagrange multipliers of the lower problem’s constraints G.

The obtained single optimization problem is an instance of Mathematical programming
with equilibrium constraints (or MPEC), which are non-smooth, non-convex optimiza-
tion problems. These problems violate common constraint qualifications such as the
Mangasarian-Fromowitz constraint qualification (MFCQ) at any feasible point of the
problem [90] and that is an important (and minimalist) assumption for NLP. The failure
of the MFCQ is straightforward and can be found in [90, 40]:

Proposition 3.2.1. Consider an MPEC in the general form:

min
z

f(z)

s.t. g(z) ≤ 0, h(z) = 0,

0 ≤ G(z)⊥H(z) ≥ 0
(MPEC)

with 0 ≤ G(z)⊥H(z) ≥ 0 being a rewriting of the equilibrium constraints G(z) ≥
0, H(z) ≥ 0, G(z)⊺H(z) = 0.

Then MFCQ does not hold at any feasible points.

Proof. Let z be a feasible point of (MPEC). Suppose I := {1 ≤ i ≤ n : Gi(z) = 0} ̸= ∅.
The complementary slackness condition implies that Hi(z) = 0 ∀i ∈ Ic := {1 ≤ i ≤ n :
Gi(z) ̸= 0}. Let ϕ(z) := G(z)⊺H(z).

53

Suppose that there exists d ∈ Rn such that:

∇Gi(z)⊺d =
n∑

j=1
dj∇jGi(z) < 0, ∀i ∈ I

and
∇Hi(z)⊺d =

n∑
j=1

dj∇jHi(z) < 0, ∀i ∈ Ic

Hence:
∇ϕ(z)⊺d =

∑
i∈I

Hi(z)
n∑

j=1
dj∇jGi(z) +

∑
i∈Ic

Gi(z)
n∑

j=1
dj∇jHi(z) < 0

which implies that the MFCQ does not hold.

Failure of the MFCQ implies, among other things, that the Lagrange multipliers set is
unbounded, that the constraint gradients are linearly dependent. (since LICQ(x) implies
MFCQ(x)), and that the central path does not exist.

Moreover, [39] shows that the relation between Bi-level Opt and Pkkt is not straight-
forward and requires verification on the set of admissible Lagrange multipliers. For the
enunciation of the theorem, let us first consider the following constraints qualification for
bi-level programming with a convex lower optimization problem:

Definition 3.2.1 (SCQ). A design point x of (Bi-level Opt) is said to satisfies the
Slater Constraint Qualification (SCQ) if and only if

{y ∈ Y|G(x, y) < 0} ≠ ∅ , (3.2.2)

i.e. (Bi-level Opt)’s lower optimization problem, parameterized by x, admits at least on
strictly feasible point y.

Let Λ(x, y) be the set of Lagrange multipliers for the lower optimization problem:

Λ(x, y) =
{

u

∣∣∣∣∣∇yF (x, y) + uT ∇yG(x, y) = 0
u ≥ 0, G(x, y) ≤ 0, u⊺G(x, y) = 0

}
(3.2.3)

Theorem 3.2.1 ([39]). Assume that the (Bi-level Opt)’s lower optimization problem is
convex.

Let (x, y) be a global (resp. local) optimal solution of (Bi-level Opt) and assume that
SCQ is satisfied at x. Then, for each u ∈ Λ(x, y), the point (x, y, u) is a global (resp.
local) optimal solution of problem (Pkkt). Conversely, let SCQ (3.2.1) hold at all x ∈ X
(resp. at x).

Further assume that (x, y, u) is a global optimal solution (resp. local optimal solution for
all u ∈ Λ(x, y)) of problem (Pkkt). Then, (x, y) is a global (resp. local) optimal solution
of (Bi-level Opt)

It follows that under the right assumptions the global solution of (Bi-level Opt) and
(Pkkt) are equal. However, if a local solution of (Bi-level Opt) can be readily identified
as a local solution of (Pkkt), the converse is not necessarily true. This is because the
triplets (x, y, u) must be local solutions of (Pkkt) for all u ∈ Λ(x, y). This last condition

54

is not only difficult to verify in practice, as it results in a combinatorial problem best
handled by enumeration algorithms such as branch-and-bound methods [30], it is also
necessary [39]. In more precise terms, the primal KKT reformulation, which incorporates
the introduction of the multipliers u, has the effect of breaking the direct equivalence
between the local solution of (Bi-level Opt) and (Pvar).

Another popular approach to reformulating nested optimization problems into a single
one is to introduce the optimal value function of the lower optimization problem.

Let V : X → R be the optimal value function of the lower optimization problem:

V (x) := inf
y

{F (x, y)| G(x, y) ≤ 0} (3.2.4)

with R := R ∪ {+∞} ∪ {−∞} the extended real line.

The bi-level problem (Bi-level Opt), can be reformulated into the value function problem
[114]:

min
x,y

f(x, y)

s.t. F (x, y) − V (x) ≤ 0
G(x, y) ≤ 0
g(x) ≤ 0

(Pvf)

For all possible x ∈ X , assume that V (x) is well defined. This implies that the lower
optimization problem always admits at least one feasible point, regardless of the system’s
choice. Under this unique assumption, it can be demonstrated that (Pvf) is strictly
equivalent to (Bi-level Opt) [114].

Nevertheless, even with strong assumptions, V is not differentiable in general. The
classical constraint qualifications such as the MFCQ, still fail at every feasible point [42].
Furthermore, evaluating V implies solving the lower optimization problem entirely.

A less frequently considered reformulation is the implicit reformulation. This is achieved
by applying the assumptions needed by the implicit function theorem (cf Theorem 2.2.5)
to hold to the optimality conditions. This allows the lower optimization problem’s design
variables to be rewritten as an implicit function of the system variables optimization
problem [37].

min
x∈X

f(x, y∗(x))

s.t. g(x) ≤ 0
with y∗(x) = arg min

y∈Y
{F (x, y) s.t G(x, y) ≤ 0}

(Bi-Level implicit)

This rewriting, which is based on the field of parametric optimization, facilitates the
convergence analysis of the (Bi-level Opt) by replacing the solution of the lower opti-
mization problem entirely by a (at least) continuous function. Both (Bi-level Opt) and
(Bi-Level implicit) are in fact identical, as shown by their definitions, but the latter
is generally assumed to make more regularity assumptions on its mapping function y∗,
typically provided by the Implicit Function Theorem. However, this reformulation is
often overlooked as the assumptions needed on the problem’s structure for the implicit

55

theorem to hold are very strong, especially for non-linear constrained optimization. In
addition to the objective and constraints of the lower optimization problem being at
least C2 functions, for each value of x, the unique solution y∗(x) must be continuously
differentiable in a neighborhood of x, meaning that, in the said neighborhood, y∗(x) must
satisfies the LICQ, the strict complementarity, and the second-order KKT conditions
[47]. In particular, this implies that in the considered neighborhood, the set of active
constraints remains unchanged, which is a also very strong assumption, as optimality often
occurs at constraints intersections. In practice, since we aim at using a derivative-free
optimization algorithm at the system-level, it is reasonable to expect that with few and
punctual changes to the active constraint set, the process can still reach a satisfactory
solution.

Among the advantages of this formalism are its ease of implementation and the fact that
the resolution of the lower optimization problem is fully embedded within a mathemat-
ical function from the system’s perspective. Consequently, the burden of verifying the
optimality of the lower level does not fall on the system optimizer. In contrast, other
methodologies typically add constraints to check the optimality of the lower level, leading
to the failure of common constraints qualification as seen before.

For a comprehensive examination of the one-level reformulation, a characterization of
their respective solutions throughout variational analysis, and a delineation of the link
between their respective solutions, see the manuscript from [162].

For a comprehensive bibliography encompassing all facets of bi-level optimization problems,
see [38]. Another bibliography can be found in [154]. See [40] for a global perspective
on the bi-level programming and [88] for a survey on multilevel decision-making. [30]
enumerates classical applications and approaches to solve bi-level problems.

Choice of the bi-level formalization

As just shown, the reformulation into a single optimization problem and the character-
ization of the solutions are not straightforward. The initial three reformulations failed
the classical constraints qualifications and necessitate the use of variational analysis and
generalized differentiation for further characterization of the solutions. Furthermore,
due to the inherent difficulty of manipulating the mathematical objects involved in all
these optimality conditions, they have few practical uses [30]. Conversely, in the case of
implicit reformulation, the underlying assumptions are quite strong and may not be true
in many applications. Furthermore, these assumptions are typically presumed without
further examination, as they are not susceptible to empirical verification. However, using
a derivative-free optimization algorithm at the system-level can help overcome these
difficulties, especially if these discontinuities are not very frequent. In addition to these
considerations, it illustrates that single-level reformulation must be approached with
caution. Even with strong assumptions, the characterization of the solutions is complex,
and standard NLP results do not hold, eventually the equivalence of the solutions with
the original bi-level optimization problem can be lost.

In every case, the use of a gradient-based optimizer at the system level is complex. In
the majority of instances, the problem is non-smooth, necessitating the use of costly
directional derivatives to approximate the sensitivities of the lower-problem solution
mapping. When considering first-order conditions for optimality in the case where

56

derivatives are available or can be approximated, it is necessary to verify the validity
of the solution. As highlighted before, this is an NP-hard problem [153] which present
combinatorial issues [39, 40]. Considering that for the targeted real-life applications, the
derivatives along the upper-level variables may be either missing or extremely costly to
obtain or approximate, this further push toward the avoidance of KKT conditions and
most variational analysis tools for the upper-level.

For this reason, the initial three one-level reformulations of the optimistic bi-level will
not be further investigated in this manuscript, as the implicit reformulation seems to
be the best methodology when considering a derivative-free algorithm at the system
level, which is in accordance with the choice of the BL-IRT architecture. The implicit
reformulation alleviates such issues, provided that strong assumptions are made about
the lower optimization problem. These assumptions serve as a baseline for a considered
perfect behavior. In practice, experiments on several applications have shown that strong
assumptions such as strong convexity are not mandatory [146] for these algorithms to
converge to a satisfactory solution.

3.3 From MDF to a bi-level decomposition
Consider the MDF reformulation of a generic MDO problem:

min
(x0,x)∈X0×X

f(x0, x, Ψ(x0, x))

subject to G(x0, x, Ψ(x0, x)) ≤ 0
(PMDF)

where X0 ⊂ Rn0 and X ⊂ Rn denote the design spaces of the shared and local variables
respectively, f : X0 × X × Rm → R the objective, and G : X0 × X × Rm → Rnc the
constraints. The function Ψ : Rn0+n → Rm denotes the MDA function defined by the
implicit function theorem (cf. Theorem 2.2.5) which computes the couplings at equilibrium
for some design vectors x0 and x.

As the (MDF) architecture is the most widely used architectures in the MDO community,
it will be our reference for elaborating a multidisciplinary feasible strategy based bi-level
architecture. In particular, all assumptions typically made to ensure the validity and
convergence of the (MDF) architecture for gradient-based optimizers are assumed to
be true. In particular the MDA Ψ is assumed to be well-defined, so that the existence
and uniqueness of fixed point for the MDA is true for every design vector x0, x. Apart
from considering the MDA iteration map as a contraction map for the Banach fixed-point
theorem [10] to hold, all disciplines are considered as C2 bounded functions, so that
the implicit function theorem (cf. Theorem 2.2.5) holds at each design point (x, x0)
to eliminate the coupling constraints from the optimization problem. Note that these
assumptions ensure that the objective and constraints are also at least C2 bounded
functions.

This section is dedicated to the presentation of the bi-level decomposition. Starting from
the MDF architecture’s optimization problem (PMDF), a transformation is carried out
to obtain the same decomposition as in the IRT-BL architecture. This decomposition
further assumes that the local variables x are implicitly defined by the value x0 through
the resolution of the lower optimization problem. To ensure that the said mapping is at

57

least continuously differentiable, sufficient regularity conditions are given on the lower
optimization problem.

3.3.1 An equivalent bi-level decomposition
In order to exploit the separation of the design variables between the shared variables
x0 and the local ones x = (x1, . . . , xp), a straightforward bi-level reformulation of the
previous optimization problem is proposed:

min
x0∈X0

f(x0, x∗(x0), Ψ(x0, x∗(x0)))

s.t. gup(x0) ≤ 0
x∗(x0) = arg min

x∈X
{f(x0, x, Ψ(x0, x)) s.t g(x0, x, Ψ(x0, x)) ≤ 0}

(PBi−level)

where:

• the function gup defined on Rn0 , gathers the constraints from G(x0, x, y) that depend
only on the shared variables x0. They are handled by the system level optimization
problem.

• the function g defined on Rn0 × Rn × Rm, gathers the constraints from G that
depend on the shared variables x0, the coupling variables y and at least one block
xi(i ∈ J1, pK)) of the local design variable x. They are handled by the lower
optimization problem:

min
x∈X

{f(x0, x, Ψ(x0, x)) s.t g(x0, x, Ψ(x0, x)) ≤ 0}. (Plow(x0))

By definition, by rearranging the components of G, we have:

G(x0, x, y) = [gup(x0), g(x0, x, y)], (3.3.1)

Schematically, at the higher-level the bi-level process is as follow:

Algorithm 1: Bi-level algorithm
Data: x0

0, x0, y0

Result: x∗
0, x∗, y∗

k = 0 ;
while xk

0 not solution of PBilevel do
choose next system iterate: xk+1

0 ;

Solve Plow(xk+1
0): xk+1 = arg minx

 f(xk+1
0 , x, Ψ(xk+1

0 , x))
s.t. g(xk+1

0 , x, Ψ(xk+1
0 , x)) ≤ 0

 ;

Retrieve couplings value: yk+1 = Ψ(xk+1
0 , xk+1) ;

Compute the system objective: fk+1 = f(xk+1
0 , xk+1, yk+1) ;

Compute the system constraints: gup k+1 = gup(xk+1
0) ;

k = k + 1;
end
x∗

0, x∗, y∗ = xk
0, xk, yk;

58

This reformulation addresses the optimization problem by decomposing the optimization
of the design vector (x0, x) into two optimization processes. The first process is a system
level optimization problem that optimizes with respect to the shared variable x0 under
constraints that do not depend on x. The second process is a lower optimization problem
that minimizes the same objective function according to the local design variable x for
a particular value of x0 under constraints that depend on at least one block of local
constraints.

This bi-level reformulation is driven by the practical observation that shared variables x0
are expected to be low-dimensional and thus manageable by a gradient-free algorithm,
while local variables (xi i ∈ J1, pK) and couplings (Ψ(x0, x)) are expected to be much
more numerous, justifying the combination of a gradient-based optimizer and fixed-point
algorithm to handle them effectively. Furthermore, coupled derivatives with respect to
the shared variables x0 (∂Ψ

∂x0
) may not be available, so that gradient-based optimization is

only possible if the shared variables are eliminated.

One of the main assumptions underlying (PBi−level) is that the mapping x∗(x0) is, in fact,
a function. Consequently, it is postulated that for each value of x0, there exists a unique
minimizer x∗(x0) for the lower optimization problem. It is important to note that for this
assumption to be valid in practice, it is essential to solve (Plow(x0)) as precisely as possible.
Without further assumptions, we prove that (PBi−level) and (PMDF) are equivalent.

Proposition 3.3.1. Assume that the lower optimization problem (Plow(x0)) admits a
unique solution denoted by x∗(x0) for all the possible values of x0 ∈ X0. Then the two
architectures (PBi−level) and (PMDF) are said equivalent in the sense that:

• If x0 is a solution of the (PBi−level) problem, then (x0, x∗(x0)) is a solution of the
(PMDF) problem.

• If (x0, x) is a solution of the (PMDF) problem then x0 is a solution of the (PBi−level)
problem and x = x∗(x0).

Proof Let x0 be a solution of the (PBi−level) optimization problem and let

x∗(x0) = arg min
x∈X

{f(x0, x, Ψ(x0, x)) s.t g(x0, x, Ψ(x0, x)) ≤ 0} (3.3.2)

be the unique solution of the (PMDF) optimization problem. Let us prove that the point
(x0, x∗(x0)) is solution of the (PMDF) problem.

By definition of x0 and x∗(x0), we easily check that (x0, x∗(x0)) is an admissible point for
the (PMDF) optimization problem. Let (x′

0, x) ∈ X0 × X be any admissible point for the
(PMDF) problem i.e. such that: G(x′

0, x, Ψ(x′
0, x)) ≤ 0, which means that:

gup(x′
0) ≤ 0, g(x′

0, x, Ψ(x′
0, x)) ≤ 0. (3.3.3)

In particular observe that the point x is admissible for the lower level optimization problem
computed at x′

0, hence:

f(x′
0, x, Ψ(x′

0, x)) ⩾ f(x′
0, x∗(x′

0), Ψ(x′
0, x∗(x′

0))), (3.3.4)

Remembering that x0 is an optimal solution of the problem (PBi−level), we finally get:

f(x′
0, x, Ψ(x′

0, x)) ⩾ f(x′
0, x∗(x′

0), Ψ(x′
0, x∗(x′

0))) ⩾ f(x0, x∗(x0), Ψ(x0, x∗(x0))), (3.3.5)
59

proving that (x0, x∗(x0)) is an optimal solution of the (PMDF) problem.

Conversely, let (x0, x) be an optimal solution of the (PMDF) problem. Let us verify that
x0 is an optimal solution of the (PBi−level) problem. Let x′

0 be an admissible point for the
problem (PBi−level) i.e. such that: gup(x′

0) ≤ 0. By definition of x∗(x′
0), we have:

g(x′
0, x∗(x′

0), Ψ(x′
0, x∗(x′

0))) ≤ 0 (3.3.6)

so that the point (x′
0, x∗(x′

0)) is an admissible point for the (PMDF) problem. Remembering
that (x0, x) is an optimal solution of the (PMDF) problem and then using the definition
of x∗(x0), we finally get:

f(x′
0, x∗(x′

0), Ψ(x′
0, x∗(x′

0))) ⩾ f(x0, x, Ψ(x0, x)) ⩾ f(x0, x∗(x0), Ψ(x0, x∗(x0))) (3.3.7)

proving that x0 is an optimal solution of the (PBi−level) optimization problem as expected.

In the event that gup also depends on the coupling variable y, the equivalence property
is undermined. More precisely, if (x0, x) is a solution of the (PMDF) problem, it cannot
be guaranteed that x = x∗(x0) and that gup(x0, Ψ(x0, x∗(x0))) ⩽ 0. Consequently, x0 is
not guaranteed to be a feasible point for (PBi−level). However it should be noted that the
bi-level architecture remains relevant as any solution of the bi-level problem remains a
solution of the (PMDF) problem.

Choice have been made to exclude this potential dependency of the system level constraints
on the coupling vector to ensure Proposition 3.3.1 and as real-life applications generally
fulfill this requirement (See for instance Section 3.6). Otherwise, equivalency is lost but
as a solution of (PBi−level) is still guaranteed to be a solution for (PMDF), this bi-level
optimization may still be relevant to find a (PMDF) solution.

3.3.2 Regularity of the system level functions
As previously stated, the (PBi−level) reformulation of the (PMDF) optimization problem
can be used to find the solution of the original problem. However, this reformulation may
have altered the mathematical properties of the problem, deteriorating the convergence
properties of common optimization algorithms when applied directly to (PBi−level). Among
the most crucial assumptions in non-linear optimization is the continuity of the functions
of interest. This is highly desirable, and in many cases, it is even necessary for the
convergence of most algorithms. Similarly, the assurance that these same functions are
also continuously differentiable is a key factor, even for gradient-free optimizers. For
these reasons, the following results aim to provide sufficient conditions to ensure that
all functions of interest are, from the perspective of the system optimization problem,
continuously differentiable with regard to the shared variables x0.

The main difference between the (PMDF) and the (PBi−level) architecture lies in the map-
ping x∗ : x0 7→ x∗(x0) of the optimal local design variable according to each shared design
variable x0. For the system optimizer, the objective function (x0, x) 7→ f(x0, x, Ψ(x0, x))
is recast as x0 7→ F (x0) = f(x0, x∗(x0), Ψ(x0, x∗(x0))), which is no longer guaranteed to be
C1 with respect to the shared variables x0. The introduction of x∗ may therefore result in a
deterioration of the convergence properties for the (PMDF) architecture, particularly when
regularity conditions are required on the functions of interest. The following proposition

60

establishes the continuity and the differentiability with respect to the shared variables
x0 by applying Fiacco’s theorem [47, Theorem 2.1], [143, Theorem 6.7] to the lower
optimization problem Plow(x0) defined by (Plow(x0)).

Proposition 3.3.2. Let f : Rn0 × Rn × Rm 7→ R and G : Rn0 × Rn × Rm 7→ Rnc be at
least C2 functions. Let x̄0 ∈ Rn0 be a particular value of the shared variables x0 such that
the constraint qualification holds at x̄0 for Plow(x̄0), in the sense that the gradients of the
active constraints at x̄0 are linearly independent.

Let x∗(x̄0) be a Karush-Kuhn-Tucker (KKT) point of the problem Plow(x̄0) and λ∗(x0)
the associated Lagrange multiplier. Assume that strict complementary slackness holds
(component-wise):

λ∗
i (x̄0) > 0 when gi(x̄0, x∗(x̄0), Ψ(x̄0, x∗(x̄0))) = 0 ,

and that the second order sufficient KKT conditions holds at x∗(x̄0) i.e. that for every
direction d ̸= 0 satisfying

∇gi(x̄0, x∗(x̄0), Ψ(x̄0, x∗(x̄0)))⊤d = 0 ∀i s.t. gi(x̄0, x∗(x̄0), Ψ(x̄0, x∗(x̄0))) = 0 ,

we have: d⊤∇2L(x∗(x̄0), λ∗(x̄0))d > 0 where L denotes the Lagrangian associated to the
problem Plow(x̄0). Then there exists a neighborhood V̄0 of x̄0 such that:

1. x∗(x̄0) is a local isolated minimum point of Plow(x̄0) and the associated multiplier,
denoted by λ∗(x̄0), is uniquely defined.

2. For all shared variables x0 in V̄0, there exist unique continuously differentiable
functions x0 7→ (x∗(x0), λ∗(x0)) satisfying the second order sufficient conditions for a
local minimum of Plow(x0), and x∗(x0) is a unique local minimizer of Plow(x0) with
associated unique Lagrange multiplier λ∗(x0).

3. Strict complementarity and linear independence of the binding constraint gradients
hold at x∗(x0) for x0 in V̄0.

Proposition 3.3.2 can be viewed as a direct application of the implicit function theorem
(cf. Theorem 2.2.5) on the first order KKT conditions (cf. Definition 2.2.4) of (Plow(x0)),
a parametrized (in x0) and constrained optimization problem. It should be noted that
although Fiacco’s theorem is a strong result, it implies the verification of assumptions
that are difficult to verify and obtain. In particular, the existence of continuously
differentiable functions (x∗, λ∗) implies that, in the considered neighborhood, the set of
active constraints remains unchanged. Consequently, in the vicinity of the solution point
(x∗

0, x∗), the inequality-constrained optimization problems (Plow(x0)) need to be reducible
to an equality-constrained one, where only active inequality constraints are considered.
In practice, however, it is expected that most derivative-free algorithms will be able to
handle a few and punctual discontinuities of the functions whenever the set of active
constraints is changed by a system design x0 update. Considering this set of hypotheses,
in the aforementioned vicinity, the strict complementarity constraint of the first order
KKT conditions no longer needs to be verified, which will be useful when we come to
study the resolution of the lower-problem (cf. Section 3.4.2).

From this point forward, it will be assumed that this result is valid for any value of the
shared variables x0. In other words, the bi-level reformulation (PBi−level) can be reduced
to a generic non-linear optimization problem in which all the functions of interest are

61

continuously differentiable, a particularly well-known field. The presented bi-level problem
can be directly utilized to solve the original MDF problem, provided two optimization algo-
rithms are available to solve the system optimization problem and the lower optimization
problem, respectively.

However, reconsidering the initial problem, namely high-dimensional applications where
numerous local and coupling variables are present and where the fully coupled derivatives
are inaccessible, the MDF architecture cannot be directly utilized on the lower optimization
problem (Plow(x0)). Indeed, the problem typology indicates that a gradient-based approach
is mandatory, but is impeded by the unavailability of the coupled gradients, which is a
common situation due to the substantial implementation effort required [95].

As previously stated, the resolution of the lower optimization problem (Plow(x0)) must be
achieved with sufficient precision and in a reasonable amount of time for previous results
to hold. Therefore there is a need for a dedicated strategy to obtain the solution of the
lower-problem (Plow(x0)). The subsequent section is thus dedicated to demonstrating
that the lower optimization problem can be solved in practice without the fully coupled
gradients. In order to achieve this objective, a block decomposition, analogous to the
one utilized in the original IRT architecture [56], is proposed and an algorithmic solution,
designated as the Block Coordinate Descent (BCD) algorithm, is presented.

3.4 A solution algorithm for the lower optimization
problem

Let us now consider the lower-problem independently from the bi-level architecture:

min
x∈X

f(x0, x, Ψ(x0, x)) s.t g(x0, x, Ψ(x0, x)) ≤ 0 (Plow(x0))

for given shared variables x0. Assume that the design vector x can be partitioned in
p non overlapping blocks denoted by xi ∈ Rni , i = 1, . . . , p, such that omitting the
dependence on the shared variables x0 to lighten the notations, the problem (Plow(x0))
can be reformulated as:

min
x∈
∏p

i=1 Xi

f(x, Ψ(x)) s.t gi(xi, Ψ(x)) ≤ 0 i = 1, . . . , p (Plow)

where, reordering if necessary the components of x:

x = (x1, . . . , xp) ∈ X1 × . . . × Xp (3.4.1)

and Xi denotes the box-constrained subspace of Rni where lies the ith block xi. The
functions gi : Rni × Rm 7→ Rnci define the constraints which directly depend on the block
variable xi and indirectly on the others block variables x ̸=i = (x1, . . . , xi−1, xi+1, . . . , xp)
through the coupling function Ψ.

This partitioning of the local variable and constraints allows for the definition of p
optimization sub-problems that consider only a subset of the local variable and constraints.
For i ∈ J1, pK, the ith optimization sub-problem is defined by:

min
t∈Xi

f(x1:i−1, t, xi+1:p, Ψ(x1:i−1, t, xi+1:p))

s.t gi(t, Ψ(x1:i−1, t, xi+1:p)) ≤ 0.
(PBi(x ̸=i))

62

This block decomposition of (Plow) serves several purposes. Primarily, this separation
in blocks aligns with the industry standard, matching the decomposition in terms of
disciplines. It allows for greater flexibility in the use of specific optimizers or algorithms
to handle each subset of local variables, while dealing with much smaller optimization
problems (PBi(x ̸=i)). Second, the full coupled derivatives ∂Ψ

∂x
(x) may not be available,

preventing the use of a gradient approach that considers all local variables at once.
Although the full vector of coupled derivatives is not directly available, each block can
have access to the partial derivatives of the coupled gradient

(
∂Ψ
∂xi

(x)
)

i=1..p
along its own

subset of variables. This is because, in practice, each block may have a disciplinary solver
that already includes its own approximations to other couplings as well as the gradients
associated with its block of local variables, thus allowing gradient-based approaches. An
example of such block decomposition with well-chosen disciplinary solvers could be to solve
a CFD aeroelasticity problem in a particular block with a low-fidelity structure model
coupled to a structure block using a CSM solver that incorporates its own approximation
of the aero couplings and their gradients. This type of approach is typically done in the
doublet-lattice method [3] and further motivates the block decomposition.

Considering back the BL-IRT architecture [56], the proposed distributed-MDF bi-level
architecture assumes that each block has a unique solution and that the objective function
is minimized block by block, in parallel. The constraints gi are handled by the block i that
optimize f in xi, as the aforementioned subset of variables is directly dependent on this
subset. Considering an initial guess x is provided to solve (Plow), the solving algorithm
proposed in [56] can be summarized by the following block optimizations:

x∗
i (x ̸=i) = arg min

t∈Xi

{f(x1:i−1, t, xi+1:p, Ψ(x)) s.t gi(t, Ψ(x)) ≤ 0} i ∈ J1, pK. (3.4.2)

All of these block optimizations are being computed in parallel. Two MDAs are employed
to ensure that couplings are at equilibrium before (y = Ψ(x)) and after (y = Ψ(x∗(x)))
the block updates. The overall process is illustrated for a generic two strongly coupled
disciplines in Figure 3.3, with the associated disciplinary block optimizations gathered in
Figure 3.4.

Since all blocks are solved in parallel, they do not exchange information about the
solution found with the others until the next system iteration. Consequently, the only
synchronization mechanism between the block optimizations are the two MDAs that
compute the couplings and the system iterations that warm start each block optimization
with the previous optimal value of each subset of local variables. This results in a significant
dependence of x∗ on the initial guess x, which is at the heart of BL-IRT’s convergence
issues. This dependency could result in disparate solutions for the same shared variables
x0 vector, depending on the initial guess x. Since the local variables x are hidden from
the system optimizer, it introduces noise into the system objective and constraints with
respect to x0. In addition to the high dependence of system functions on the path taken
by the design variables, Fiacco’s Theorem (Proposition 3.3.2) is unlikely to hold due to
the noise introduced in the resolution of (Plow).

However, these observations are counterbalanced by the fact that, upon convergence
of the system level optimizer, the two terms become equal, eliminating any induced
error on the optimum. Additionally, in practice, the system-level optimization algorithm

63

does not propose the same value for the design variables twice, resulting in noise on
the system functions instead of pure randomness. Some algorithms are more robust to
noise than others. Therefore, in [56], the COBYLA algorithm was utilized [120]. This
algorithm makes first-order approximations of the function and constraints, rendering it
more tolerant to noisy functions in practice.

While solving (Plow) using Equation (3.4.2) as a block update may be highly effective in
terms of time consumption when convergence occurs at the system level, it is challenging
to predict in advance the range of problems it can solve and/or if the discrepancy will
circumvent a typical optimization algorithm to converge towards an acceptable solution.
Referring this bi-level architecture as bi-level-IRT (BL-IRT), the following presents new
architectures which aim to extend the range of problems this bi-level approach can solve
by providing more stability on the resolution of the lower optimization problem, thus
lowering the discrepancy and allowing for convergence proofs in certain cases. The choice
fell on a Block Gauss-Seidel approach to solve the lower optimization problem (Plow),
namely a BCD-MDF algorithm, a Block Coordinate Descent algorithm using a MDF
resolution at each step.

64







XD
SM

v2

1,
 1

2-
2:

O
pt

im
iz

er
 S

ys
te

m

2,
 5

-3
:M

D
AG

au
ss

Se
id

el

3,
 8

:D
is

ci
pl

in
e

1

4,
 9

:D
is

ci
pl

in
e

2

6:
O

pt
im

iz
at

io
n

Bl
oc

k
1 6:

O
pt

im
iz

at
io

n
Bl

oc
k

2

7,
 1

0-
8:

M
D

AG
au

ss
Se

id
el

11
:F

un
ct

io
ns

x_
sh

ar
ed

^(
0)

ob
j^

*,
g_

1_
g_

2^
*

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

g_
2,

 o
bj

, g
_1

y_
1^

*

y_
2^

*

y_
1^

*

y_
2^

*

ob
j,

g_
1,

 g
_2

x_
1

x_
1

x_
1^

*
x_

1
y_

1

x_
2

x_
2

y_
2

x_
2

x_
2^

*

y_
2

y_
1

y_
1

y_
2

y_
1

y_
2

y_
2

y_
1

y_
1

y_
2

y_
2

y_
1

O
pt

im
iz

at
io

n
B

lo
ck

 1 1,
 4

-2
:O

pt
im

iz
er

2:
D

is
ci

pl
in

e
1

3:
Fu

nc
tio

ns

x_
1^

(0
)

x_
1^

*
x_

1
x_

1

ob
j,

g_
1

y_
1^

*

ob
j,

g_
1

y_
1

Fi
gu

re
3.

3:
X

D
SM

of
th

e
BL

-IR
T

ar
ch

ite
ct

ur
e

65

    XDSM v2

1, 12-2:Optimizer System

2, 5-3:MDAGaussSeidel

3, 8:Discipline 1

4, 9:Discipline 2

6:Optimization Block 1

6:Optimization Block 2

7, 10-8:MDAGaussSeidel

11:Functions

x_shared^(0)

obj^*, g_1_g_2^* x_shared x_shared x_shared x_sharedx_shared x_shared x_shared

g_2, obj, g_1

y_1^*

y_2^*

y_1^*

y_2^*

obj, g_1, g_2

x_1 x_1x_1^* x_1 y_1

x_2 x_2y_2 x_2x_2^*

y_2

y_1 y_1

y_2

y_1

y_2

y_2

y_1y_1

y_2y_2

y_1

Optimization Block 1

1, 4-2:Optimizer

2:Discipline 1

3:Functions

x_1^(0)

x_1^* x_1 x_1

obj, g_1

y_1^*

obj, g_1

y_1

Optimization Block 2

1, 4-2:Optimizer

2:Discipline 2

3:Functions

x_2^(0)

x_2^* x_2 x_2

g_2, obj

y_2^*

obj, g_2

y_2

Figure 3.4: XDSM of disciplinary block optimizations executed in parallel within the
BL-IRT architecture

3.4.1 The Block Coordinate Descent algorithm
Once the local variables x have been partitioned into p component vectors xi ∈ Rni , a
widely used approach to solve (Plow) is the block coordinate descent (BCD) method
[16], which is also known as the Block Gauss-Seidel (BGS) method [64, 110, 111, 113] or
alternating optimization (AO) method [17, 18]: at a given iteration k, for a particular
value of i, the BCD algorithm computes a solution xk+1

i of the following optimization
problem:

min
t∈Xi

f(xk+1
1:i−1, t, xk

i+1:p, Ψ(xk+1
1:i−1, t, xk

i+1:p))

s.t. gi(t, Ψ(xk+1
1:i−1, t, xk

i+1:p)) ≤ 0
(PBi(xk+1

1:i−1, xk
i+1:p))

where: xk+1
1:i−1 = (xk+1

1 , . . . , xk+1
i−1) and xk

i+1:p = (xk
i+1, . . . , xk

p). In other words, at each
iteration of this iterative algorithm, the objective function is minimized with respect
to a single block (or component), xi, of variables while the rest of the blocks, x ̸=i, are
held fixed. The iterative scheme loops over each block successively until convergence.
The BCD method is assumed to be well-defined in the sense that every block (PBi)
has a unique optimal solution. The Jacobi version of this algorithm, where each block
optimization are solved in parallel instead of sequentially, can be seen as an in-between
between the BL-IRT updates Equation (3.4.2) and the BCD algorithm but will not be
considered. The main reason for this choice is that the method we’re looking for should
be as robust as possible for solving (Plow), and Jacobi-based methods are known to have
poorer convergence properties than their Gauss-Seidel counterparts, as well as being less
efficient at satisfying the constraints [15].

The proposed BCD algorithm for solving the lower optimization problem (Plow) is described
by Algorithm 2. It should be noted that Algorithm 2 will be referred to as the BCD-MDF
algorithm, as each sub-optimization problem (PBi(xk+1

1:i−1, xk
i+1:p)) is solved using a MDF

architecture. The bi-level architecture using the BCD-MDF algorithm will be referred
to as BL-BCD-MDF (Bi-level - Block Coordinate Descent - MDF architecture) and is
illustrated in Figure 3.5 which depicts a generic XDSM diagram for two strongly coupled
disciplines. The disciplinary optimizations are represented within Figure 3.6.

66

Algorithm 2: Block Coordinate Descent - (BCD-MDF) algorithm
Data: x0, x0, εvar, εfun

Result: x∗

k, i = 0, 1;
f 0 = f(x0, x0, Ψ(x0, x0));
while ∥xk−1−xk∥

∥xk∥ > εvar OR ∥fk−1−fk∥
∥fk∥ > εfun do

xk+1 = xk ;
for i ∈ [1, p] do

Optimize ith Block: compute the solution xk+1
i solution of:

min
t∈Xi

{
f(xk+1

1:i−1, t, xk
i+1:p, Ψ(xk+1

1:i−1, t, xk
i+1:p)) s.t. gi(t, Ψ(xk+1

1:i−1, t, xk
i+1:p)) ≤ 0

}
;

Update the ith local data: xk+1[i] = xk+1
i ;

end
Compute the objective value: fk+1 = f(x0, xk+1, Ψ(x0, xk+1));
k = k + 1;

end
x∗ = xk;

Convergence issues for the block GS method have been widely explored under suitable
convexity assumptions, both in the unconstrained and constrained case [16, 64, 91, 110,
111, 113, 149] and the reference therein. In [64], Grippo and Sciandrone consider the
separable case i.e. where the feasible set is the Cartesian product of p closed convex sets.
They prove that the block GS method is globally convergent for p = 2, and that for
p > 2 convergence still holds provided that f is pseudoconvex, or componentwise strictly
quasiconvex with respect to p − 2 components.

Definition 3.4.1 (Pseudoconvex function). A continuously differentiable function f :
X ⊆ Rn 7→ R defined on a (nonempty) convex open set X is said to be pseudoconvex if
and only if:

∀(x, y) ∈ X 2, ∀t ∈ (0, 1) : ∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x) (3.4.3)

Definition 3.4.2 (Quasiconvex function). A function f : X ⊆ Rn 7→ R defined on a
convex subset X is said to be quasiconvex if and only if:

∀(x, y) ∈ X 2, ∀t ∈ (0, 1) : f(tx + (1 − t)y) ≤ max {f(x), f(y)} (3.4.4)

Both pseudoconvexity and quasiconvexity assumptions are relaxations of the classical
convexity assumption:

convexity =⇒ pseudoconvexity =⇒ quasiconvexity . (3.4.5)

Note that in the nonconvex case it is proved [64, 119], using counterexamples, that the
GS method can cycle indefinitely without converging to a critical point if p ⩾ 3, even if
the objective function is componentwise convex but not strictly quasiconvex with respect
to each component.

67







XD
SM

v2

1,
 1

5-
2:

O
pt

im
iz

er
 S

ys
te

m

2,
 5

-3
:M

D
AG

au
ss

Se
id

el

3,
 1

1:
D

is
ci

pl
in

e
1

4,
 1

2:
D

is
ci

pl
in

e
2

6,
 9

-7
:B

C
D

 lo
op

7:
O

pt
im

iz
at

io
n

Bl
oc

k
1 8:

O
pt

im
iz

at
io

n
Bl

oc
k

2

10
, 1

3-
11

:M
D

AG
au

ss
Se

id
el

14
:F

un
ct

io
ns

x_
sh

ar
ed

^(
0)

ob
j^

*,
g_

1_
g_

2^
*

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
1^

*

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

y_
1^

*

y_
2^

*

y_
1^

*

y_
2^

*

ob
j,

g_
1,

 g
_2

y_
2

y_
1

y_
1

y_
1

y_
2

y_
2

x_
2

x_
1,

 y
_2

x_
2,

 y
_1

x_
1

x_
2

x_
1

x_
1,

 y
_1

, y
_2

x_
2

y_
1,

 y
_2

x_
2^

*

y_
2

y_
1

y_
2

y_
1

y_
1

y_
2

y_
2

O
pt

im
iz

at
io

n
B

lo
ck

 1

1,
 7

-2
:O

pt
im

iz
at

io
n

Bl
oc

k
1

2,
 5

-3
:M

D
AG

au
ss

Se
id

el

3:
D

is
ci

pl
in

e
1

4:
D

is
ci

pl
in

e
2

6:
Fu

nc
tio

ns

x_
1^

(0
)

x_
1^

*
x_

1
x_

1
x_

1

g_
1,

 o
bj

y_
1^

*

y_
2^

*

ob
j,

g_
1

y_
1

y_
2

y_
2

y_
1

y_
1

y_
2

Fi
gu

re
3.

5:
X

D
SM

of
th

e
BL

-B
C

D
-M

D
F

ar
ch

ite
ct

ur
e

68

    XDSM v2

1, 15-2:Optimizer System

2, 5-3:MDAGaussSeidel

3, 11:Discipline 1

4, 12:Discipline 2

6, 9-7:BCD loop

7:Optimization Block 1

8:Optimization Block 2

10, 13-11:MDAGaussSeidel

14:Functions

x_shared^(0)

obj^*, g_1_g_2^* x_shared x_shared x_shared

x_1^*

x_sharedx_shared x_shared x_shared

y_1^*

y_2^*

y_1^*

y_2^*

obj, g_1, g_2

y_2

y_1y_1 y_1

y_2y_2

x_2

x_1, y_2

x_2, y_1

x_1

x_2

x_1 x_1, y_1, y_2

x_2 y_1, y_2x_2^*

y_2

y_1

y_2

y_1 y_1

y_2 y_2

Optimization Block 1

1, 7-2:Optimization Block 1

2, 5-3:MDAGaussSeidel

3:Discipline 1

4:Discipline 2

6:Functions

x_1^(0)

x_1^* x_1x_1 x_1

g_1, obj

y_1^*

y_2^*

obj, g_1

y_1

y_2

y_2

y_1 y_1

y_2

Optimization Block 2

1, 7-2:Optimization Block 2

2, 5-3:MDAGaussSeidel

3:Discipline 1

4:Discipline 2

6:Functions

x_2^(0)

x_2^* x_2 x_2 x_2

g_2, obj

y_1^*

y_2^*

obj, g_2

y_1

y_2

y_2

y_1 y_1

y_2

Figure 3.6: XDSM of the MDF block optimizations within the BCD loop of the
BL-BCD-MDF architecture

However, special cases ensure convergence for non-convex and non-pseudo-convex objective
functions [13], for example when the objective function is quadratic [91] or has a unique
minimum in each coordinate block xi [89]. This last assumption implies that there is a
unique disciplinary solution for each shared variable x0, which is the most likely assumption
in MDO practice.

In the non-separable case, where there is overlap between some of the variables between
the blocks, as is the case for the (Plow) problem due to the couplings introduced by the
MDA, there are few results in the literature. One way of making the problem separable is
to include the coupling constraints in the function to be minimized, using a well-chosen
penalty: Tosserams et al. propose in [146] a method based on augmented Lagrangian
relaxation and block coordinate descent. In [159], Xu and Yin suggest to incorporate
the constraints into the objective using the indicator function, but this solution requires
precise computation of the projection operator on the set of constraints, which can be as
difficult as solving the original problem or simply not possible in practice.

Without further assumptions, we can easily check that, by construction, any fixed point of
the BCD-MDF algorithm is necessarily a feasible point for the lower optimization problem
(Plow), but unfortunately not necessarily a solution of (Plow) as explained in [19]:

Proposition 3.4.1. Let x̄ be a fixed point for the BCD-MDF algorithm which means
that each block x̄i is solution of PBi(x̄ ̸=i). Then x̄ is a feasible point of Plow.

In order to guarantee that the solutions of the lower optimization problem are indeed
fixed points of the BCD-MDF algorithm (and vice versa), additional assumptions must
be made regarding the block decomposition itself. First of all, it is assumed that every
block optimization has a unique minimizer.

Definition 3.4.3 (Unique Block Minimizer). The optimization problem (Plow) is said
to verify the Unique Block Minimizer (UBM) property if for every block coordinate i
and for every parameterization vector x ̸=i = (x1:i−1, . . . , xi+1:p), the optimization problem
PBi(x ̸=i) has a unique minimizer and no local minimum point.

This is a reasonable assumption for MDO problems when distributed architectures are
being considered and when convergence guarantees are sought. Indeed, it emphasizes
that each disciplinary domain may be considered in an autonomous manner, finding their
optimal design provided that any parameterization is utilized. This property can be
regarded as a relaxation of the strict convexity of f and gi over the entire domain on each
block.

69

3.4.2 Convergence analysis of the BCD-MDF algorithm
In this section, we propose a series of assumptions designed to ensure the convergence of
the BCD-MDF algorithm. It is important to note that, while a block decomposition may
be employed, it does not guarantee that a fixed point in the BCD-MDF algorithm is, in
fact, a solution to the lower optimization problem (Plow). For the block decomposition to
be meaningful, the blocks should depend primarily on the optimized block exerting only a
minor influence on the constraints via the coupling variables. There are several potential
ways of expressing this hypothesis.

First-Order Separability

A first approach is to assume that the constraints in each sub-blocks optimization are inde-
pendent of the couplings in the neighborhood of the solution x∗ of the lower optimization
problem:

Definition 3.4.4 (First Order Separability). Let x∗ be the MDF solution of (Plow) at
which the constraints are assumed to be qualified in the sense that the gradients of
the active constraints at x∗ are linearly independent. The optimization problem (Plow)
is said to have the First Order Separability (FOS) property at x∗ if for every block
coordinate i, and for every parameterization vector x ̸=i, the effects of the other blocks
k = 1, . . . , p, k ̸= i, upon the optimization of the ith block are negligible in the following
sense:

∀i ∈ J1, pK, ∀k ̸= i ,
∂gk

∂y
(x∗

k, Ψ(x∗))∂Ψ
∂xi

(x∗) = 0. (3.4.6)

In other words, each block x∗
i of a Karush-Kuhn-Tucker point x∗ of the MDF problem

(Plow) is in turn a Karush-Kuhn-Tucker point of PBi(x∗
̸=i). Under this assumption,

exploiting the optimality conditions associated to each optimization problems at stake, we
prove that the solution of the lower optimization problem is a fixed point of the BCD-MDF
algorithm.

Proposition 3.4.2. Assume that the lower optimization problem (Plow) has a unique
solution x∗ and satisfies the Unique Block Minimizer property. Assume also that (Plow)
has the First Order Separability property at x∗. Then x∗ is a fixed point of the BCD-MDF
algorithm i.e. for all i = 1, . . . , p,

x∗
i = arg min

t∈Xi

{
f(x∗

1:i−1, t, x∗
i+1:p, Ψ(x∗

1:i−1, t, x∗
i+1:p)) s.t gi(t, Ψ(x∗

1:i−1, t, x∗
i+1:p)) ≤ 0

}
.

(3.4.7)

Proof Let x∗ be the unique solution of the lower optimization problem (Plow). Let
i ∈ {1, . . . , p}. Let us prove that x∗

i is solution of:

min
t∈Xi

{
f(x∗

1:i−1, t, x∗
i+1:p, Ψ(x∗

1:i−1, t, x∗
i+1:p)) s.t gi(t, Ψ(x∗

1:i−1, t, x∗
i+1:p)) ≤ 0

}
. (3.4.8)

Let L be the Lagrangian function associated to the optimization problem (Plow):

L(x, λ) = f(x, Ψ(x)) +
p∑

i=1
λ⊤

i gi(xi, Ψ(x)) (3.4.9)

70

where λ = (λ1, . . . , λp) ∈ Rnc1 × . . . × Rncp denotes the vector of Lagrange multipliers,
and Li the Lagrangian function associated to (3.4.8):

Li(t, µ) = f(x∗
1:i−1, t, x∗

i+1:p, Ψ(x∗
1:i−1, t, x∗

i+1:p)) + µ⊤gi(t, Ψ(x∗
1:i−1, t, x∗

i+1:p)) (3.4.10)

where: µ ∈ Rni . Since x∗ is the unique solution of (Plow) whose constraints are assumed
to be qualified at x∗, there exist Lagrange multipliers λ ∈ Rnc1 × . . . × Rncp such that:
∇L(x∗, λ) = 0, and thus: ∇xi

L(x∗, Ψ(x∗), λ) = 0. Applying now the FOS assumption at
x∗, a straightforward computation provides:

∇xi
Li(x∗

i , λi) = ∇xi
L(x∗, λ) = 0. (3.4.11)

and: ∇2
xi

Li(x∗
i , λi) = ∇2

xi
L(x∗, λ).

Furthermore, let d ̸= 0Rn be a feasible direction for (Plow) at x∗, then for every constraints gi

and every component j ∈ J1, nci
K such that (gi)j(ui, Ψ(x∗

1:i−1, x∗
i , x∗

i+1:p)) = 0 we have:

∇x(gi)j(x∗
i , Ψ(x∗))T d = 0 (3.4.12)

As the FOS assumption holds at x∗, we also know that for all k ̸= i, and every active
component j ∈ J1, nck

K of gk at x∗:

∇xi
(gk)j(x∗

k, Ψ(x∗)) = 0 (3.4.13)

Hence d is a feasible direction of (Plow) at x∗ if and only if all its components di (i ∈ J1, pK)
are feasible directions for their respective block PBi(x∗

̸=i).

Putting all together and considering the case i = i0, as x∗ is the solution of (Plow), we
have that for all feasible direction di0 of PBi0(x∗

̸=i0),

d⊤
i0∇2

xi0
L(x∗, λ)di0 = d⊤

i0∇2
xi0

Li0(x∗
i0 , λi0)di0 ≥ 0 . (3.4.14)

Hence x∗
i0 is a constrained solution of PBi0(x∗

̸=i0) which admits two different solutions
and contradicts the Unique Block Minimizer assumption.

The First Order Separability assumption is not always satisfied in practice, as it is
a relatively strong assumption that is not easily verified beforehand. However, FOS
acts as a sufficient assumption to ensure that the required solution is a fixed point for
BCD-MDF. One might inquire whether a relaxed assumption exists, assuming that the
effect of the blocks x ̸=i on the constraints of a particular block i (PBi(x ̸=i)) (throughout
the MDA function Ψ) is negligible in comparison to the direct effect of the blocks’
own disciplinary variables xi around the solution x∗. In other words, consider cases
where the first-order perturbation of block i resulting from the removal of g̸=i, given
by

∥∥∥∑k ̸=i λ∗
k∇xi

gk(x∗
k, Ψ(x∗))

∥∥∥ is either very small or negligible prior to the first-order
lagrangian of the considered block ∥∇xi

Li(x∗
i , λi)∥. This is equivalent to the assumption

that for each subproblem PBi(x ̸=i), near its solution and with respect to its block of
variable xi, the cross derivatives of the constraints of other blocks g̸=i, through the coupling
variables, are negligible in comparison to the total derivatives of f and gi.

These relaxed assumptions, which are not considered here, may result in situations where
each block does reach its corresponding block of the joint optima, i.e. x∗

i (x∗
̸=i) = x∗

i , the
ith block of the MDF optimal solution of (Plow(x0)), with a sufficient precision. This may
be a promising direction for improvement of the following results.

71

Local convergence of the BCD-MDF algorithm

Let us now state one of the main theoretical results of this chapter, namely the local
convergence of the BCD-MDF algorithm in the non-linear, coupled, and constrained case,
extending the results given by Ortega and al. in [111, 113]:

Proposition 3.4.3. Let x∗ be the unique solution of the lower level problem (Plow) at
which the constraints are assumed to be qualified in the gradients of the active constraints
at x∗ are linearly independent. Let λ∗ be the associated Lagrange multiplier.

Assume that strict complementary slackness holds (component-wise) i.e. for any i =
1, . . . , p,

λ∗
i > 0 when gi(x∗

i , Ψ(x∗)) = 0, (3.4.15)
and that the second order sufficient KKT conditions holds at x∗ i.e. that for every direction
d ̸= 0 such that:

∇gi(x∗, Ψ(x∗))⊤d = 0 for all i such that gi(x∗
i , Ψ(x∗)) = 0, (3.4.16)

we have: d⊤∇2L(x∗, λ∗)d > 0 where L denotes the Lagrangian associated to the problem
Plow.

Assume that the Unique Block Minimizer assumption and the First Order Separability
at x∗ holds. Then there exists a neighborhood V (x∗, λ∗) of (x∗, λ∗) such that for every
(x0, λ0) ∈ V (x∗, λ∗), the sequence of iterates generated by the BCD-MDF algorithm
converges q-linearly to (x∗, λ∗).

In order to show the local convergence result, we first need to introduce the notion of
eigenset, strongly quadratic form sign equivalent (SQFSE) matrices, and a key theorem,
all of coming from [110].

Definition 3.4.5 (Eigenset). Let A ∈ Mn(R) for some integer n > 0. A subset E of Cn

is said to be an eigenset [110] of A if E consists of only eigenvectors (hence nonzero) of A,
with at least one eigenvector corresponding to each distinct eigenvalue of A.

Definition 3.4.6 (SQFSE). Let S be an arbitrary non-empty subset of Cn, the complex
n-space. Then two n × n hermitian matrices P and Q are said to be strongly quadratic
form sign equivalent (SQFSE) [110] on S if for all x ̸= 0 in S the following condition is
satisfied

(xT Px)(xT Qx) > 0 (3.4.17)

The key theorem for the proof [110, Theorem 2.6.] takes the following form:

Theorem 3.4.1. Let H ∈ Mn(R), n ∈ N∗, be an hermitian matrix and have a block
splitting of the form H = D − L − U with L being a block strictly lower-triangular matrix,
U a block strictly upper-triangular matrix, and D a block diagonal matrix. Assume that
D − L is non-singular and defines ∇T = [D − L]−1U .

If xT Dx ̸= 0 for all x on some eigenset E of ∇T then ρ(∇T) < 1 if and only if
(xT Dx)(xT Hx) > 0 for all x ∈ E , (3.4.18)

i.e. D and H are strongly quadratic form sign equivalent (SQFSE) on E.

Since the proof of Proposition 3.4.3 is a bit long, a sketch of the proof is given before the
full proof, describing the main ideas and how to proceed.

72

Sketch of proof of Proposition 3.4.3

1. First, it is shown that the BCD-MDF algorithm, under the said assumptions, takes
the form of an at least C1 operator, denoted T , around the solution w∗. Hence there
exists a neighborhood of w∗ such that for all wk:

wk+1 = T (wk) . (3.4.19)

2. Then, by a first order Taylor extension of T around the solution, successive iterations
are shown to be locally convergent towards w∗ if and only if its gradient’s at x∗

is a contraction mapping. Hence the BCD-MDF algorithm converges q-linearly to
(x∗, λ∗) if and only if

ρ(∇T (w∗)) < 1 . (3.4.20)

3. Next, G the non-linear system of equations composed of each block first order KKT
conditions is introduced:

G(W, V) =



G1(W1, V2:p)
G2(W2, W1, V3:p)
G3(W3, W1:2, V4:p)

...
Gp(Wp, W1:p−1)

 (3.4.21)

where for all i ∈ J1, pK:

Gi(W, V) = ∇Li(Wi, W1:i−1, Vi+1:p) =
[

∇xi
Li(Wi, W1:i−1, Vi+1:p)

gi(Wi, Φ(W1:i−1, Wi, Vi+1:p))

]
. (3.4.22)

By construction, we have
G(wk+1, wk) = 0 . (3.4.23)

4. As
G(T (wk), wk) = 0 , (3.4.24)

there exists a neighborhood N(w∗) of w∗ such that

∀w ∈ N(w∗) G(T (w), w) = 0 (3.4.25)

5. It implies that within this neighborhood ∇T (w∗) can be rewritten as:

∇T (w∗) = −
[

∂G
∂W

(w∗, w∗)
]−1

∂G
∂V

(w∗, w∗) = [L(w∗)]−1 U(w∗) , (3.4.26)

where L(w∗) is a block lower triangular matrix and U(w∗) a block strictly upper
triangular matrix.

6. To show that the spectral radius of ∇T (w∗) is strictly inferior to 1, we’ll rely on
Theorem 3.4.1, i.e. we will show that there exist an eigenset of ∇T (w∗) such that,
for all vector W in this eigenset, we have

(W T DW)(W T HW) > 0 , (3.4.27)

where D = L(w∗)T + U(w∗) is the block diagonal matrix composed of the Hessian of
the Lagrangian of (PBi(xk+1

1:i−1, xk
i+1:p)) at w∗ and H = L(w∗) − U(w∗) is the Hessian

of the Lagrangian of (Plow) at w∗:
73

(a) First we characterize all the eigenvectors of ∇T (w∗).

(b) Given an eigenvector W = [x1, λ1, . . . , xp, λp] of ∇T (w∗), we use this charac-
terization to show that, necessarily, for all i ∈ J1, pK, xi is a feasible direction
for (PBi(xk+1

1:i−1, xk
i+1:p)). Consequently, x is a feasible direction for (Plow) by

construction.

(c) Taking advantage of the fact that H and all Di i ∈ J1, pK are, by assumption,
positive-definite along their respective feasible directions, we can easily show
by direct computation that both W T DW and W T HW are strictly positive
quantities.

(d) Therefore, by Theorem 3.4.1:

ρ([L(w∗)]−1 U(w∗)) < 1 . (3.4.28)

7. Finally T (w∗) is a contraction mapping around w∗ which proves the local convergence
of the BCD-MDF algorithm towards w∗.

Let us now describe all these steps in more detail:

Proof: Let x∗ be the unique solution of the lower level problem (Plow) and λ∗ be the
associated Lagrange multiplier. In this proof, we use the following block notation:

w∗ = (w∗
1, . . . , w∗

p)

where w∗
i = (x∗

i , λ∗
i), i = 1, . . . , p.

1st step: Defining the BCD-MDF operator. First we introduce the BCD-MDF operator
i.e. the operator defining a complete iteration of the BCD-MDF algorithm (see Algo-
rithm 2). More precisely, let wk

i = (xk
i , λi,k) be the unique primal-dual pair associated

to PBi(xk+1
1:i−1, xk

i+1:p) (which is consistent according the Unique Block Minimizer (UBM)
assumption). Any complete iteration k of the BCD-MDF algorithm is of the form:

wk+1 = T
(
wk
)

= Sp ◦ Sp−1 ◦ . . . ◦ S2 ◦ S1
(
wk
)

(3.4.29)

where the mapping Si : Rn×Rnc 7→ Rn×Rnc describes the result of the ith sub-optimization
of the BCD-MDF algorithm. Roughly speaking, Si will update the ith block as the solution
to the problem PBi parameterized by x ̸=i, leaving the other blocks unchanged:

∀j ∈ N, (Si(w))j = wj if j ̸= i. (3.4.30)

According to Fiacco’s theorem (see Proposition 3.3.2) at x∗ with multiplier λ∗, we
easily check that each mapping Si is well-defined and continuously differentiable in a
neighborhood of w∗ = (w∗

1, . . . , w∗
p). By composition, the BCD-MDF operator is at least

of class C1 around w∗. Note that in the considered neighborhood of w∗ the set of active
constraints for each block is therefore constant. This is a direct consequence of Fiacco’s
theorem for the existence of continuously differentiable functions Si. By construction, the
set of active constraints for (Plow) in this neighborhood is also constant, more precisely
it is equal to the union of the active constraints of each (PBi(x ̸=i)) in the considered
neighborhood.

2nd step: the BCD-MDF algorithm, a fixed-point algorithm. Assuming that the UBM
property and the first order separability hold, Proposition 3.4.2 ensures that x∗ is actually

74

a fixed point of the BCD-MDF operator T i.e. T (w∗) = w∗. Near the solution w∗, the
Taylor expansion at wk gives:

T (wk) − T (w∗) = ∇T (w∗)(wk − w∗) + o(wk − w∗) (3.4.31)

where ∇T (w∗) denotes the Jacobian matrix of the operator T . Since w∗ is a fixed point
for the operator T :

wk+1 − w∗ = ∇T (w∗)(wk − w∗) + o(wk − w∗) (3.4.32)

the sequence {wk}k∈N is locally convergent (towards w∗) if the spectral radius of the
Jacobian matrix ∇T (w∗) satisfies: ρ(∇T (w∗)) < 1.

Since the T operator is defined implicitly, the next step is to seek an analytical characteri-
zation of this operator so that its spectral radius can be calculated. Let us now introduce
the Lagrangian function Li associated to the problem PBi(xk+1

1:i−1, xk
i+1:p):

Li(xi, λi; x ̸=i) = f(x1:i−1, xi, xi+1:p, Ψ(x1:i−1, xi, xi+1:p))
+ (λi)T gi(xi, Ψ(x1:i−1, xi, xi+1:p))

(3.4.33)

where x ̸=i = (x1:i−1, xi+1:p) denotes the vector parameterizing PBi. According to Propo-
sition 3.4.3, the unique solution xk+1

i of PBi(xk+1
1:i−1, xk

i+1:p) and its associated Lagrange
multiplier λk+1

i are fully characterized by the Karush-Kuhn-Tucker optimality condi-
tions:

G(wk+1, wk) = 0 . (3.4.34)
where the i blocks of G(wk+1, wk) are defined by:

Gi(wk+1, wk) =
[

∂
∂xi

Li(xk+1
i , λk+1

i ; xk+1
1:i−1, xk

i+1:p)
gi(xk+1

i , Ψ(xk+1
1:i−1, xk+1

i , xk
i+1:p))

]
, i = 1, . . . , p. (3.4.35)

In other words, the fixed point iterations of the BCD-MDF algorithm are of the form:

wk+1 = T (wk) ⇐⇒ G(wk+1, wk) = 0, (3.4.36)

hence for all k ∈ N:
G(T (wk), wk) = 0.

According to Proposition 3.3.2, there exists a neighborhood V∗ of w∗ in which the operator
G is actually at least of class C1 and:

∀w ∈ V∗,
d

dw
(G(T (w), w)) = ∂1G(T (w), w)∇T (w) + ∂2G(T (w), w),

where, to lighten the notations, ∂jG, j ∈ {1, 2}, denotes the partial derivative of G with
respect to its jth block of variables w ∈ Rn+nc .

Observe now that by construction, we have: dG
dw

(T (w∗), w∗) = 0, hence:

∇T (w∗) = − [∂1G(T (w∗), w∗)]−1 ∂2G(T (w∗), w∗) (3.4.37)
= − [∂1G(w∗, w∗)]−1 ∂2G(w∗, w∗) (3.4.38)

75

Denoting by L(w∗) = ∂1G(w∗, w∗) and U(w∗) = −∂2G(w∗, w∗) a more compact form is
obtained :

∇T (w∗) = [L(w∗)]−1 U(w∗) (3.4.39)
and the iterative process converges towards w∗ if ρ([L(w∗)]−1 U(w∗)) < 1.

3nd step: Computing the spectral radius of ∇T (w∗). Let us start by defining more explicitly
the operators L and U . By definition the operator L(w∗) is actually block lower triangular
since each block optimization does not depend on the block variables w that have not yet
been updated. Similarly, the operator U(w∗) is strictly upper triangular since each block
optimization only depends these same variables. More precisely:

L(w∗) = ∂1G(w∗, w∗) =



D1 0 0 . . . 0
L2,1 D2 0 . . . 0
L3,1 L3,2 D3 . . . 0

...
Lp,1 Lp,2 Lp,3 . . . Dp

 (3.4.40)

and

U(w∗) = −∂2G(w∗, w∗) = −



0 L1,2 L1,3 . . . L1,p

0 0 L2,3 . . . L2,p

0 0 0 . . . L3,p
...
0 0 0 . . . 0

 (3.4.41)

where for any (i, j) ∈ J1, pK2, j ̸= i:

Di =

 ∂2Li

∂x2
i

(w∗
i ; w∗

̸=i) ∂2Li

∂λi∂xi
(w∗

i ; w∗
̸=i)

∂2Li

∂xi∂λi
(w∗

i ; w∗
̸=i) ∂2Li

∂λ2
i

(w∗
i ; w∗

̸=i)

 =
 ∂2Li

∂x2
i

(w∗
i ; w∗

̸=i) ∂2Li

∂λi∂xi
(w∗

i ; w∗
̸=i)

∂2Li

∂xi∂λi
(w∗

i ; w∗
̸=i) 0

 (3.4.42)

Li,j =
 ∂2Li

∂xj∂xi
(w∗

i ; w∗
̸=i) ∂2Li

∂λj∂xi
(w∗

i ; w∗
̸=i)

∂2Li

∂xj∂λi
(w∗

i ; w∗
̸=i) ∂2Li

∂λj∂λi
(w∗

i ; w∗
̸=i)

 =
 ∂2Li

∂xj∂xi
(w∗

i ; w∗
̸=i) 0

∂2Li

∂xj∂λi
(w∗

i ; w∗
̸=i) 0

 .

Observe now that by the First Order Separability, we have for all i,

∂L
∂xi

(x∗; λ∗) = ∂Li

∂xi

(w∗
i ; x ̸=i) (3.4.43)

so that:

∀j ̸= i, Li,j =
 ∂2L

∂xj∂xi
(w∗) 0

0 0

 , Di =
 ∂2L

∂x2
i
(x∗; λ∗) ∂2L

∂λi∂xi
(x∗; λ∗)

∂2L
∂xi∂λi

(x∗; λ∗) 0

 , (3.4.44)

where L denotes the Lagrangian function associated to the lower level problem (Plow):

L(x; λ) = f(x, Ψ(x)) +
p∑

k=1
λT

k gk(xk, Ψ(x)) . (3.4.45)

76

Consider now the matrix H defined as

H = L(w∗) − U(w∗) =



D1 LT
2,1 LT

3,1 . . . LT
p,1

L2,1 D2 LT
3,2 . . . LT

p,2
L3,1 L3,2 D3 . . . LT

p,3
...

Lp,1 Lp,2 Lp,3 . . . Dp

 , (3.4.46)

by construction H is hermitian, and denote as H∗ the bordered Hessian of (Plow) at w∗,
i.e. the Hessian matrix of (3.4.45) with respect to x and λ. We then observe that H∗

is obtained after a row-column reordering of the matrix H. More precisely, reordering
the basis of H, which follows the coordinates [x1, λ1, . . . xp, λp], into the new system of
coordinates [x1, . . . xp, λ1, . . . , λp] yields the matrix H∗. Hence, by defining P as the 2p×2p
block permutation matrix, P is defined as

Pi,j =


Ini×ni

if i = 0[2] and j = p + i

2
Inci ×nci

if i = 1[2] and j = i + 1
2

0 Else

, (3.4.47)

and it follows that
H∗ = P T HP . (3.4.48)

To show that ρ(∇T (w∗)) < 1, we will establish the connection between the bordered
Hessian of (Plow) at w∗, i.e. H∗, and the block decomposition of its permutation H.

Now let us note that

L(w∗)T + U(w∗) =


D1

. . .
Dp

 ≡ D . (3.4.49)

To apply Theorem 3.4.1, given our notation, the goal of this part of the proof is to
show that there exists an eigenset of ∇T (w∗) such that H and D = L(w∗)T + U(w∗) are
SQFSE. Since these eigensets are difficult to characterize in our case, we will consider
the most general case, i.e. we will show that H and D are SQFSE on the whole space of
eigenvectors of ∇T (w∗).

First, for the sake of readability, let us introduce new notations for the block decomposition.
For all i ∈ J1, pK, let

Di =
[
Ai BT

i

Bi 0

]
, (3.4.50)

and for all j ̸= i,

Li,j =
[
Ci,j 0
0 0

]
. (3.4.51)

In other words, Ai is the Hessian of the Lagrangian of (PBi(xk+1
1:i−1, xk

i+1:p)) at x∗, Li, with
respect to xi, Bi is the Jacobian of the active constraints among gi at w∗, and Ci,j are the
cross derivatives of the Lagrangian of (Plow) at w∗ with respect to the block xi and xj . We

77

also know, that each matrix Di is the bordered Hessian of (PBi(xk+1
1:i−1, xk

i+1:p)) at x∗, which
is by nature indefinite. An easy way to see this property is to pick a vector d ∈ Rni+nci

such that the only non-zero elements are on the λi coordinates, which necessarily leads to
dT Did = 0. Following the new notations, we also have a new expression for H∗:

H∗ = P T HP =
[
A BT

B 0

]
(3.4.52)

with

A =


A1 CT

2,1 . . . CT
p,1

C2,1 A2 . . . CT
p,2

...
Cp,1 Cp,2 . . . Ap

 , (3.4.53)

and

B =


B1

. . .
Bp

 . (3.4.54)

Let us characterize the eigenvectors of ∇T (w∗).

Let W = [w1, . . . , wp] = [x1, λ1, . . . , xp, λp] be an eigenvector of ∇T (w∗) associated to an
eigenvalue µ. Then:

U(w∗)W = µL(w∗)W (3.4.55)

⇐⇒ ∀i ∈ J1, pK −
p∑

k=i+1
Li,kwk = µ

(
−

i−1∑
k=1

(Li,kwk) + Diwi

)
. (3.4.56)

A straightforward calculation shows that

∀i ∈ J1, pK Diwi =
[
Aixi + BT

i λi

Bixi

]
, (3.4.57)

and that
∀(i, k) ∈ J1, pK × J1, pK, k ̸= i, Li,kwk =

[
Ci,kxk

0

]
. (3.4.58)

There is two possible cases for the value of µ: either µ = 0 or either µ is nonzero. Let us
first consider the case µ = 0. By reconsidering (3.4.55),we have W ∈ ker(U(w∗)), which
combined with (3.4.49) and (3.4.46) yields directly:

W T HW = W T (L(w∗) − U(w∗))W (3.4.59)
= W T L(w∗)W (3.4.60)
= W T (DT − UT (w∗))W (3.4.61)
= W T DW + (U(w∗)W)T W (3.4.62)
= W T DW . (3.4.63)

Hence for µ = 0,
(W T DW)(W T HW) = (W T DW)2 > 0 . (3.4.64)

78

Assume now that the eigenvalue µ is nonzero, so the second block line of (3.4.56) implies
that

∀i ∈ J1, pK Bixi = 0 , (3.4.65)

which is equivalent to
∀i ∈ J1, pK xi ∈ ker(Bi) . (3.4.66)

Hence x = [x1, . . . , xp] ∈ ker(B) by construction.

Let us now study the sign of (W T DW)(W T HW). First we calculate W T DW :

W T DW =
[
wT

1 . . . wT
p

] 
D1

. . .
Dp



w1
...

wp

 =
p∑

i=1
wT

i Diwi , (3.4.67)

with
∀i ∈ J1, pK wT

i Diwi = xT
i Aixi + xT

i BT
i λi + λT

i Bixi . (3.4.68)

Since for all i ∈ J1, pK, we have xi ∈ ker(Bi), then

∀i ∈ J1, pK wT
i Diwi = xT

i Aixi > 0 , (3.4.69)

as each Di i ∈ J1, pK are positive-definite along the feasible direction of (PBi(xk+1
1:i−1, xk

i+1:p))
at w∗. So we have shown that

W T DW > 0 . (3.4.70)

We then observe via a straightforward calculation that W T HW = xT Ax. Since x ∈ ker(B),
i.e. since x is an admissible direction for (Plow), we necessarily have xT Ax > 0 and

W T HW > 0 . (3.4.71)

Finally, by (3.4.64) for µ = 0, and by (3.4.70) and (3.4.71) for µ being nonzero, it follows
for all eigenvectors W of ∇T (W ∗)

(W T DW)(W T HW) > 0 . (3.4.72)

Hence D and H are SQFSE on the set of all eigenvectors of ∇T (w∗), and according to
Theorem 3.4.1, it follows that ρ(∇T (w∗)) < 1. This concludes on the local convergence of
the BCD operator towards w∗ q-linearly.

Discussion on the local convergence result The previous result, presented in
Proposition 3.4.3, provides sufficient conditions to solve (Plow) exactly. In addition, if
Fiacco’s theorem holds for (Plow) (cf. Proposition 3.3.2), it makes all functions of interest
in (PBi−level), namely the objective and the constraints, at least C1 functions with respect
to the shared variables x0. Consequently, general gradient-free algorithms, even those
whose convergence properties are enhanced by the C1 property, may be employed to solve
(PBi−level) and obtain the same result as solving (PMDF).

However, this result is highly theoretical and several limitations must be acknowledged.
First and foremost, this can be seen as an extension of the results given in [64] by

79

Grippo and Sciandrone in the non-separable case, therefore stronger assumptions are
made and may be challenging to verify, particularly the Unique Block Minimizer and
the First Order Separability assumptions, these two hypothesis are made without further
investigations.

While the Unique Block Minimizer assumption may seem reasonable for the considered
applications, and can be tested to some extent by multi-starting the block optimizations,
this is not necessarily the case for the second, the First Order Separability hypothesis,
which assumes, among other things, that the separation of constraints does not affect
each block solution. In other words, it implies that at convergence, the reunion of all
solutions of (PBi(xk+1

1:i−1, xk
i+1:p)), x∗

i (x∗
̸=i), is strictly equal (or at least very close) to the

joint solution x∗ of (Plow). It is likely that the First Order Separability assumption is
too strict for the results we have shown in this manuscript, and that it may not even be
necessary. Finding better, less restrictive assumptions is one of the important areas of
improvement for the work presented.

In addition to these theoretical considerations, the demonstrated properties are also
highly susceptible to practical implementation and setup. Indeed, this implies the optimal
resolution of all sub-optimization problems, including all block optimizations and (Plow)
(through the BCD loop). In practice, however, this may not be the case due to numerical
errors or sub-optimal hyper-parameters (such as all the tolerances). If these issues typically
necessitate expertise on the specific problem and implementation to be resolved, one might
inquire whether there are potential avenues for action on a more abstract level, involving
modifications to the underlying architecture.

3.5 Variants of the BCD-MDF algorithm
In consideration of the First Order Separability assumption and to a lesser extent the
Unique Block Minimizer hypothesis, it is possible to modulate the block decomposition
in order to lighten the assumptions. The newly proposed architectures, which will be
presented in this section and referred to as variants, illustrate the adaptability of the
original bi-level architecture. Two of these variants only impact the resolution of the
lower-optimization problem (Plow). The first variant focuses on improving each block’s
robustness by providing surrogates of other blocks’ complicating constraints. The second
variant mitigates the utilization of costly MDAs within each block optimization, albeit
at the cost of worst convergence properties. Finally a more macro variant is proposed
that impacts the entire bi-level architecture. Once again, the objective is to lighten the
First Order Separability assumption, but this time by directly addressing the coupling
variables by bringing them up to the system level, thereby eliminating them from the
lower optimization problem.

3.5.1 With linear approximation of the constraints
If the First Order Separability hypothesis does not hold, meaning that some constraints
depend too much on the other block variables, a linearization of these constraints can
be added to the corresponding blocks to enforce it. In this case, the iteration scheme

80

become:

xk+1
i = arg min

t∈Xi


f(xk+1

1:i−1, t, xk
i+1:p, Ψ(xk+1

1:i−1, t, xk
i+1:p))

s.t. gi(t, Ψ(xk+1
1:i−1, t, xk

i+1:p)) ≤ 0
g̃j(t) ≤ 0 j ∈ Si

 (3.5.1)

Where Si is the set of index of constraints which do not respect the First Order Separability
assumption along ith block optimization and g̃j : Rni 7→ Rncj the corresponding linear
approximation of constraint j along xi.

This variant suggests that the overall BCD algorithm process becomes more complex as
the linear approximation must be updated with greater frequency. Furthermore, if the
considered constraints exhibit significant non-linearity, it is reasonable to anticipate that
the BCD loop will require a greater number of iterations to achieve convergence. These
functions approximate the constraints of the other disciplines in the current block, in
order to avoid their violation.

Nevertheless, this variant retains the quality of the previously demonstrated properties (e.g.
the feasibility of the fixed point and the local convergence) on the BCD. These proofs remain
valid under the same set of assumptions, with the replacement of Equation (PBi(x ̸=i)) by
Equation (3.5.1). In particular, the hypothesis in the First Order Separability assumption
can be relaxed, as each constraint in each Si is guaranteed to satisfy this assumption.

The architecture resulting from this novel variant of the BL-BCD-MDF algorithm is
designated BL-BCD-MDF-LC (Bilevel - Block Coordinate Descent - MDF - Linearized
Constraints architecture). It should be noted that the linear approximations of the
constraints can be equivalently replaced by surrogates that maintain first-order consistency
(i.e. the value of the functions and their gradients) at the points under consideration.

If first-order surrogates are not feasible in practice, it may indicate that the disciplinary
separation is not physically pertinent. In such a scenario, the effect of the couplings within
block j may dominate the impact of xi on the disciplinary optimization of block i. In this
case, the corresponding blocks would need to be merged and optimized together in (xi, xj).
This approach would effectively eliminate the discrepancy between blocks i and j. In the
most extreme case where all the blocks are too interdependent, merging all the blocks
leads to the original MDF architecture, which is convergent towards x∗ by assumption.
However, this necessitates the fully coupled derivatives with respect to all the local design
variables.

3.5.2 A weakly coupled variant
The BCD-MDF algorithm addresses the issue of coupling by running MDAs in each
sub-optimization. This approach ensures that couplings are coherent and at equilibrium at
each step of the overall process. However, depending on the problem’s structure, solving
an entire MDA at each iteration of a sub-optimization algorithm may not be feasible
in practice for various reasons. Firstly, obtaining the coupling variables at convergence
through a MDA is typically time-consuming. Consequently, looping on block optimizations
sequentially that rely heavily on such algorithms may be prohibited. Secondly, from
an architectural viewpoint, some blocks may not be given access to all other coupling
functions, or at least to the coupled derivative of the MDA with respect to their block of
variables.

81

As a result, we propose a weakly-coupled version of the previous BCD-MDF algorithm,
releasing the couplings constraints in each sub-optimization at the price of degraded
convergence properties for the overall procedure.

Consider the following (IDF) reformulation of (Plow):

min
x,y,yT

f(x, y) s.t. g(x, y) ≤ 0 and yi − ϕi(xi, yT
̸=i) = 0 ∀i ∈ J1, pK (3.5.2)

where ϕi is the coupling function computed by discipline i and in which the dependency
on the shared variables x0 have been avoided. This optimization problem is equiva-
lent to the previous optimization problem (Plow) by equivalence of the MDF and IDF
architectures.

The proposed variant of the BCD-MDF algorithm does not longer solves the whole coupling
vector by solving a complete MDA, but now only compute its own block of coupling
variables. Similarly as the design vector x, the coupling vector y is decomposed by blocks
and updated by sequentially running each sub-optimization. The weak BCD procedure
(BCD-WK) is described as:

xk+1
i = arg min

t∈Xi

 f(xk+1
1:i−1, t, xk

i+1:p, yk+1
1:i−1, ϕi(t, yk+1

1:i−1, yk
i+1:p), yk

i+1:p)
s.t. gi(t, yk+1

1:i−1, ϕi(t, yk+1
1:i−1, yk

i+1:p), yk
i+1:p) ≤ 0


s.t. yk+1

i = ϕi(xk+1
i , yk+1

1:i−1, yk
i+1:p)

(BCD-WK)

The weak BCD procedure can be viewed as the merge of both the design variables loop
and the MDA loop, updating both of them at the end of each sub-optimization, with
the expectation that the coupling vector will converge as long as the local variables are
converging towards x∗. It is important to note that the block of coupling variables, yi, is
not considered a design variable by the optimizer. This is due to the availability of the
coupling function, ϕi, which is employed directly to compute the functions of interest,
thereby ensuring the individual feasibility of discipline i by design. The optimal value
yk+1

i is thus recovered at the conclusion of the block optimization process, as it has already
been computed at the corresponding optimal design xk+1

i .

This architecture will be referred as BL-BCD-WK (Bi-Level - Block Coordinate Descent
- WeaKly coupled architecture). A generic XDSM diagram on a two strongly coupled
disciplines problem is given by Figure 3.7. The disciplinary optimizations are represented
within Figure 3.8.

Similarly as the MDF counterpart, the BCD-MDF algorithm, adding linearization (or
if available surrogates verifying the first-order consistency) of the constraints to certain
blocks when the First Order Separability assumption isn’t verified is highly recommended.
The resulting architecture follows the same convention of naming and is referred, for the
whole bi-level architecture, as BL-BCD-WK-LC (Bi-Level - Block Coordinate Descent -
WeaKly coupled - Linearized Constraints architecture).

The BCD-WK algorithm is outlined in detail in Algorithm 3. To illustrate the versatility
of the proposed methodologies, the preceding variant, which incorporates linearized
constraints on specific blocks, is also included.

82

Algorithm 3: Block Coordinate Descent - WeaKly coupled (BCD-WK) algorithm
Data: x0, x0, y0, εvar, εfun

Result: x∗

k, i = 0, 1;
f 0 = f(x0, x0, y0);
while ∥xk−1−xk∥

∥xk∥ > εvar OR ∥yk−1−yk∥
∥yk∥ > εvar OR ∥fk−1−fk∥

∥fk∥ > εfun do
xk+1, yk+1 = xk, yk ;
for i ∈ [1, p] do

Optimize ith Block: ;
if FOS holds for ith Block then

xk+1
i =

arg mint

 f(xk+1
1:i−1, t, xk

i+1:p, yk+1
1:i−1, ϕi(t, yk+1

1:i−1, yk
i+1:p), yk

i+1:p)
s.t. gi(t, yk+1

1:i−1, ϕi(t, yk+1
1:i−1, yk

i+1:p), yk
i+1:p) ≤ 0


end
else

xk+1
i =

arg mint


f(xk+1

1:i−1, t, xk
i+1:p, yk+1

1:i−1, ϕi(t, yk+1
1:i−1, yk

i+1:p), yk
i+1:p)

s.t. gi(t, yk+1
1:i−1, ϕi(t, yk+1

1:i−1, yk
i+1:p), yk

i+1:p) ≤ 0
g̃j(t) ≤ 0 j ∈ Si


end
yk+1

i = ϕi(xk+1
i , yk+1

1:i−1, yk
i+1:p) ;

Update the ith local data: xk+1[i], yk+1[i] = xk+1
i , yk+1

i ;
end
Compute the objective value: fk+1 = f(x0, xk+1, yk+1);
k = k + 1;

end
x∗, y∗ = xk, yk;

83







XD
SM

v2

1,
 1

5-
2:

O
pt

im
iz

er

2,
 5

-3
:M

D
AG

au
ss

Se
id

el

3,
 1

1:
D

is
ci

pl
in

e
1

4,
 1

2:
D

is
ci

pl
in

e
2

6,
 9

-7
:B

C
D

 lo
op

7:
O

pt
im

iz
at

io
n

Bl
oc

k
1 8:

O
pt

im
iz

at
io

n
Bl

oc
k

2

10
, 1

3-
11

:M
D

AG
au

ss
Se

id
el

14
:F

un
ct

io
ns

x_
sh

ar
ed

^(
0)

ob
j^

*,
g_

1_
g_

2^
*

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

x_
sh

ar
ed

g_
1,

 o
bj

, g
_2

y_
1^

*

y_
2^

*

y_
1^

*

y_
2^

*

ob
j,

g_
1,

 g
_2

y_
2

y_
1

y_
1

y_
1

y_
2

y_
2

x_
2,

 y
_2

x_
2

x_
1

x_
1^

*

x_
2^

*

y_
1

y_
2

x_
1

x_
2

x_
1,

 y
_1

x_
1,

 y
_1

x_
2,

 y
_2

y_
2

y_
1

y_
1

y_
2

y_
1

y_
1

y_
2

O
pt

im
iz

at
io

n
B

lo
ck

 1

1,
 4

-2
:O

pt
im

iz
at

io
n

Bl
oc

k
1

2:
D

is
ci

pl
in

e
1

3:
Fu

nc
tio

ns

x_
1^

(0
)

x_
1^

*
x_

1
x_

1

g_
1,

 o
bj

y_
1^

*

ob
j,

g_
1

y_
1

O
pt

im
iz

at
io

n
B

lo
ck

 2

1,
 4

-2
:O

pt
im

iz
at

io
n

Bl
oc

k
2

2:
D

is
ci

pl
in

e
2

3:
Fu

nc
tio

ns

x_
2^

(0
)

x_
2^

*
x_

2
x_

2

ob
j,

g_
2

y_
2^

*

ob
j,

g_
2

y_
2

Fi
gu

re
3.

7:
X

D
SM

of
th

e
BL

-B
C

D
-W

K
ar

ch
ite

ct
ur

e

84

    XDSM v2

1, 15-2:Optimizer

2, 5-3:MDAGaussSeidel

3, 11:Discipline 1

4, 12:Discipline 2

6, 9-7:BCD loop

7:Optimization Block 1

8:Optimization Block 2

10, 13-11:MDAGaussSeidel

14:Functions

x_shared^(0)

obj^*, g_1_g_2^* x_shared x_shared x_shared x_sharedx_shared x_shared x_shared

g_1, obj, g_2

y_1^*

y_2^*

y_1^*

y_2^*

obj, g_1, g_2

y_2

y_1 y_1 y_1

y_2y_2

x_2, y_2

x_2

x_1x_1^*

x_2^*

y_1

y_2

x_1

x_2

x_1, y_1x_1, y_1

x_2, y_2

y_2 y_1

y_1

y_2

y_1y_1

y_2

Optimization Block 1

1, 4-2:Optimization Block 1

2:Discipline 1

3:Functions

x_1^(0)

x_1^* x_1 x_1

g_1, obj

y_1^*

obj, g_1

y_1

Optimization Block 2

1, 4-2:Optimization Block 2

2:Discipline 2

3:Functions

x_2^(0)

x_2^* x_2 x_2

obj, g_2

y_2^*

obj, g_2

y_2

Figure 3.8: XDSM of the disciplinary block optimizations within the BCD loop of the
BL-BCD-WK architecture

3.5.3 Adding target values for difficult couplings
In case the previous variants are not sufficient to guarantee a satisfactory block decom-
position for the purpose of solving the lower-level optimization problem, it is possible to
intervene in the bi-level decomposition itself. Suppose that there is a subset of coupling
variables that threatens the coherence of the block decomposition. This may be due to the
failure of either the First Order Separability or the Unique Block Minimizer assumptions.
The management of this subset of coupling variables can be handled by the system problem.
Similar to the IDF approach, copies of these couplings, also known as target values, can
be added to the system-level optimizer and held fixed for the lower-level optimization
problem. The set of indices of these couplings is denoted as C0, and the following bi-level
decomposition is obtained:

min
x0∈X0,yT

0

f(x0, x∗(x0, yT
0), Ψ̃(x0, x∗(x0, yT

0), yT
0))

s.t. gup(x0) ≤ 0
(3.5.3)

where the lower-optimization problem is reformulated as follows:

x∗(x0, yT
0) = arg minx∈X


f(x0, x, Ψ̃(x0, x, yT

0))
s.t g(x0, x, Ψ̃(x0, x, yT

0)) ≤ 0
yT

0,i − ϕi(x0, x∗
i (x0, yT

0), Ψ̸̃=i(x0, x∗(x0, yT
0), yT

0)) = 0 ∀i ∈ C0

 (3.5.4)

where Ψ̃ is a slight modification of the complete MDA Ψ where all couplings in C0 are
held fixed at yT . In other words Ψ̃(x0, x, yT) is the unique solution of the following system
of equations :

∀i ∈ C0 yi − yT
i = 0

∀i ∈ J1, pK \ C0 yi − ϕi(x0, xi, y̸=i) = 0
(3.5.5)

This modification alleviates the block decomposition assumptions by making each block
independent from the ith block optimization ∀i ∈ C0. This is due to the ith disciplinary
analysis ϕi being fixed leading to ∂Ψ̃

∂xi
= 0 for each block optimization.

Similarly to the previous variants, the choice to introduce target variables, and which ones,
is the result of a compromise. On one side, adding targets for coupling variables enforce
each block’s autonomy, making it easier to obtain the solution of (Plow) and continuity,

85

differentiability of the x∗ mapping. On the other side, each added targets makes the
system level optimization problem heavier similarly as in the classical IDF architecture:
retrieving multidisciplinary feasibility at the end of the optimization may be difficult and
take, in average, more system-level iteration, including more resolution of (Plow).

3.6 Numerical experiments
In this section, numerical experiments are carried out on small test cases to illustrates the
theoretical results. Three bi-level architectures are considered: the BL-IRT architecture,
the BL-BCD-MDF architecture and one of its variants, the BL-BCD-WK architecture. A
fourth architecture, the MDF architecture, is also present to have a point of comparison
with a classical monolithic architecture.

First the Sobieski’s Super-Sonic Business Jet (SSBJ) test case [139] (cf. Appendix A) is
considered. First of all, the noise reduction on the system function is studied. Next a
benchmark is considered to study the relative robustness of all these architectures on the
choice of the starting point.

Finally, a slightly modified Sellar optimization problem [135] (cf. Appendix B.1) is
considered. A second block of local variables has been added to the optimization problem
to allow a two-block decomposition, and all local variables, coupling variables, and
constraints have been vectorized to be scalable on demand. Its particular simplicity allows
for an affordable scalability study comparing a gradient-free approach for both monolithic
and distributed architectures when faced with high-dimensional local variables, couplings,
and constraints.

3.6.1 Discrepancy reduction and local convergence comparisons
on SSBJ

In this section, the Sobieski’s Super-Sonic Business Jet (SSBJ) test case [139] is considered.
This test case, which is summarized within Appendix A, was originally designed for the
development of the BLISS architecture. Consequently, this test case is a primary choice
for the testing of more general bi-level architectures, such as those described in this
chapter.

Discrepancy measurement

From the perspective of the system level, the objective function of the previous BL-IRT
architecture is not a function in practice, in the sense that its response is not deterministic
with respect to the choice of the shared variables x0. In fact, evaluating the objective,
f , triggers the lower optimization problem’s resolution, which was previously assumed
to be highly dependent on the previous value of the local and coupling variables. It has
been postulated that an approximated solution of Plow will have a significant impact on
the subsequent optimization, as it parameterizes each block optimization process, each
of which is executed in parallel only once. The objective of this initial application is to
quantify this discrepancy (or equivalently this noise) on the BL-IRT system objective and
ascertain whether the BCD-based bi-level architectures are capable of reducing it to a
tolerable level from the optimization algorithm perspective.

86

To quantify the discrepancy, a set of n randomly generated values for the shared variables
x0 are employed as sample points using the classical Latin Hypercube Sampling (LHS)
method [105]. Subsequently, the objective function, f , is evaluated at each of the sample
points in a fixed sequence, referred to as the forward order {(x0)fd

k }k∈[1..n]. Upon evaluating
the objective function, the lower optimization problem is resolved, and a sequence is
generated {(x∗)fd

k }k∈[1..n] that is concealed from the system optimizer. This sequence is
defined by (x∗)fd

k = x∗((x0)fd
k , (x∗)fd

k−1, (y∗)fd
k−1), where x∗

(k−1) and y∗
(k−1) are the previous

values taken by the local and coupling variables, respectively, which are obtained from
the evaluation of f at xk−1

0 .

Concurrently, the identical process is executed in reverse order, designated as the backward
order {(x0)bd

k }k∈[1..n]. Similarly, a sequence {(x∗)bd
k }k∈[1..n] of local variables is generated.

By definition, (x0)fd
k = (x0)bd

n+1−k ∀k ∈ [1..n]. However, the same is not true for the
local variables, as their values depend on the path taken by their previous evaluations.
Consequently, the noise introduced into the function f by the process can be quantified
using the following formula:

Ek = log10

(
||f((x0)fd

k , (x∗)fd
k) − f((x0)bd

n+1−k, (x∗)bd
n+1−k)||

||f((x0)fd
k , (x∗)fd

k))||

)
(3.6.1)

Figure 3.9 shows the distribution of the relative discrepancy error computed on 500
randomly generated values of x0, using the aforementioned LHS algorithm, for the three
bi-level architectures investigated in this paper.

15 10 5 00.0

0.1

0.2

0.3

0.4

0.5 BL BCDMDF
Optimization precision

15 10 5 0

BL IRT

15 10 5 0

BL BCDWK

Normalized log error

De
ns

ity
 o

f p
oi

nt
s

Figure 3.9: Measure of the discrepancy of the objective function for a randomly generated
x0 for SSBJ.

Figure 3.9 demonstrates that the BCD-based architectures exhibit a lower discrepancy in
the objective function compared to the IRT bi-level architecture. The latter exhibited
approximately 20% of the 500 randomly generated shared design values that generated a
noise level exceeding the required precision (of 10−4 on both the objective and design)
on the lower-problem resolution. The BL-BCD-MDF architecture was unable to reduce

87

the discrepancy below the requested precision for all the considered design points, with
approximately 5% of cases resulting in failure. The remaining errors that exceed the
required precision are attributable to the settings of some hyperparameters that prevent a
proper convergence towards the unique minimum of (Plow). In contrast, the BL-BCD-
WK architecture demonstrated success in this specific application. The most probable
explanation for its superior performance relative to BL-BCD-MDF is that, in contrast to
the previous approach, the BCD-WK algorithm is now free to explore a wider range of
design variables, including both the local x and coupling y variables, which allows it to
produce a more robust solution based on the initial parameterization.

The application was done with all recycling mechanics, namely warm-start of the MDAs,
BCD loop and block optimization, being enabled for all the considered architectures.
Deactivating all these mechanisms allows the precision to be fully controlled by the
tolerances given to the architecture. Indeed, this forces (x∗)fd

k = (x∗)bd
n+1−k ∀k ∈ [1..n] as

(x∗)fd
k = x∗((x0)fd

k , (x∗)0, (y∗)0), where the latter terms are now deterministic if the values
that compose (x0)fd

k are already known.

It is important to note that this remark is only relevant when considering BCD-based
bi-level architectures. Indeed, in contrast to the other bi-level architectures, the recycling
mechanics, particularly warm starting each block optimization, is essential for any nu-
merical optimization at the system level. Without the warm start of each block between
each system iteration, each block optimization would ignore the evolution of other blocks’
variables. One of the direct consequences is that the discrepancy problem is harder to
control for the functions of interest to the IRT bi-level architecture than for the BCD-based
functions. Since the warm-start mechanism cannot be disabled, the discrepancy cannot be
fully controlled and is therefore inherent in the design of the BL-IRT architecture.

A first optimization on a suitable starting point

The objective is now to maximize the range of the SSBJ test case. The gradient-free
algorithm COBYLA [119, 120, 121]) is employed to solve the system level optimization, and
the state of the art SQP gradient-based SNOPT [58] algorithm, wrapped in pyoptsparse
[157], is utilized to solve the blocks optimizations.

The selection of COBYLA is based on the premise that gradients with respect to the
shared variables x0 are not available at the system level. Moreover, as the g2 constraint
computed by the Aerodynamics discipline only depends on the shared variables x0, the
system level optimization problem is constrained. Note that, in particular, the SSBJ’s
system constraint (i.e. g2) matches the definition of gup given in Equation (PBi−level).
Finally, based on experience, the first-order approximations of the functions of interest
utilized by COBYLA render the bi-level convergence more robust to the noise introduced
by discrepancy errors.

As the considered problem is relatively small and that the optimal values for all considered
functions and design variables are already known (see Table A.1 within Appendix A), it
is possible to study beforehand if the chosen application is well-suited for the presented
bi-level architectures.

In consideration of the hypothesis, at the shared variables’ optimal value x∗
0, the MDF

solution for Plow is well-obtained in x∗ = [x∗
1, x∗

2, x∗
3], verifies LICQ and the First and

Second order KKT necessary conditions for problem Plow. Both the Aerodynamics and
88

the Propulsion blocks satisfy the Unique Block Minimizer assumption in the vicinity of x∗
0.

The solutions obtained by each block correspond to the coupled optimal primal-dual pair
of MDF, thereby validating the 3.4.4 assumption. The block Structure’s optimal solution
reaches the upper bound of x1, rather than merely approaching it. Consequently, slight
alterations in x∗

1 result in the activation of the upper bound, accompanied by a non-zero
Lagrange multiplier. Although this has a negligible impact on the objective (the error
being approximately 10−2).

Considering the initial design point, recalled in Table A.1 within Appendix A and that
is considered as a ”good” starting point, a first optimization is carried out. Figure 3.10
gather all the objective values during the aforementioned optimization, for each block’s
perspective.

0 1000 2000 3000
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 Propulsion

0 1000 2000 3000

Aerodynamics

0 1000 2000 3000

Structures
BCDMDF
BCDWK
IRT
Optimum

Iterations

Ob
je

ct
iv

e

Figure 3.10: Block evolution for all considered bi-level architectures, the represented
objective being scaled with a factor −1e−3

From this initial optimization, several observations can be made. First, all architectures
were able to reach the MDF optima with the corresponding optimal objective being
f ∗ = 3963.88. Both BL-IRT and BL-BCDMDF’s optimization curves exhibited similar
overall behavior, with the latter demonstrating the expected over-cost due to the BCD
loop. The bi-level architecture that relies on the BCDWK algorithm encountered greater
challenges in reaching the optimal solution. Frequently, retrieving a multidisciplinary
feasible design led to a deterioration in the objective. Moreover, it can be observed that the
number of discipline calls for both the Aerodynamics and Structure disciplines is similar
for both the BL-IRT and BL-BCDMDF architectures. This indicates that both blocks
converged rapidly to their optimal values, suggesting that the BCD loop did not result in
additional discipline calls for either of them. Conversely, the propulsion block exhibited
a longer convergence time, indicating that this discipline’s optimization is particularly
influenced by extra variables, in contrast to the two others.

89

Robustness in the choice of the starting point

To illustrate the effect of the discrepancy reduction on convergence properties, a complete
optimization benchmark is performed on the SSBJ test case with the three bi-level ar-
chitectures, with the MDF architecture being present for comparison with a monolithic
architecture. In order to address the potential bias introduced by the algorithm perfor-
mance on the starting point, and to generate performance profiles that are the main
standard methodology for comparison of optimization algorithms [44], the computational
cost and objective values are computed on 150 random starting points (x0)0.

The true optima for SSBJ being at f ∗ = 3963.88, three targets are defined for the perfor-
mance profiles at respectively 3000, 3900 and 3957 the later, if reached, being considered
as fully converged considering a gradient-free approach is used (ie 0.2% error).

103 104 105 106

Total number of disciplines calls
0

20

40

60

80

100

Pe
rc

en
t o

f c
on

ve
rg

ed
 o

pt
im

iza
tio

n BCDMDF
BCDWK
MDF
IRT

Figure 3.11: Percents of targets reached relating to the total number of disciplines calls
for each considered architectures, BCD loop converge at 10−3

Results from Figure 3.11 illustrates that both BL-BCD-MDF and BL-BCD-WK reached
at least 90% of the above defined targets while BL-IRT reached around 30%. Note that the
MDF architecture reached the SSBJ optima for every starting points as expected.

The BL-IRT architecture’s low percentage of targets reached and hugh dependency to
the starting point can be attributed, at least to some extent, to the fact that the first
n0 + 1 iterations of the COBYLA algorithm are dedicated to the sampling of the functions
of interest around the starting point. Consequently, the approximations are built on
the points where the discrepancy error is high, due to the fixed distance between these
points.

The average 10% of targets that have not been reached by BCD-based architectures can
be attributed to numerical issues related to a conflict between the optimizer’s stopping
criteria and requested tolerances for each aspect of the bi-level architectures. Experiments
have demonstrated that non-converging starting points can be converted into converging
ones when tolerances for either the block optimization or the BCD loop are modified,
although this may result in previous convergent starting points no longer reaching the

90

optimum. An excessively wide BCD loop tolerance may result in the local variables x
remaining unchanged, despite a low impact on the block optimization. This can lead to
the system optimizer prematurely halting the optimization process. Conversely, a BCD
loop tolerance that is excessively restrictive may be impossible to converge in practice due
to the effects of couplings, i.e. the First Order Separability assumption does not hold for
every value of x0. By repeating the failed starting points for both BCD-based architectures
with another BCD loop tolerances (between 10−3 and 10−8), one can reduce the impact
on the convergence. These results are indicated with the suffix corr in Figure 3.12.

103 104 105 106

Total number of disciplines calls
0

20

40

60

80

100

Pe
rc

en
t o

f c
on

ve
rg

ed
 o

pt
im

iza
tio

n MDF
IRT
BCDMDFcorr
BCDWKcorr

Figure 3.12: Percents of targets reached relating to the total number of disciplines calls
for each considered architectures, BCD loop converge between 10−3 and 10−8

In the case of BL-BCD-MDF, all optimizations reached the optimal solution, once the
tolerances were adjusted for each of them. However, BL-BCD-WK failed to reach the final
target for some starting points, regardless of the choice made regarding the BCD loop
tolerance. The specific challenge for BL-BCD-WK is that the BCD loop simultaneously
controls the couplings and the local design variables convergence. It is typical that coupling
variables require a higher level of accuracy than design variables. Consequently, achieving
a high convergence accuracy for optimizations is more challenging than for couplings by a
MDA.

With regard to the computational cost of utilizing the newly proposed bi-level architec-
tures, the BCD variant necessitates 10 times more discipline calls than the bi-level IRT
architecture. However, this is justified by its enhanced robustness. In comparison to
gradient-free MDF, the cost may be multiplicative by 100 to 1000. However, the SSBJ
test case is a small MDO problem that was selected for its relevance in terms of block
decomposition. It is not representative of the dimensions of real MDO problems, in which
hundreds of design variables and thousands of constraints are involved. In the latter, a
derivative-free MDF resolution is expected to fail, in contrast to bi-level strategies using
disciplinary gradients such as in [55]. A further benchmark is then proposed in order to
address the question of scalability with respect to the number of local variables, coupling
variables, and constraints. This is discussed in the next section.

91

Another drawback of the presented benchmark problem is the high cost of the different
MDAs used within the block optimizations; better performances can be expected by
using more optimized MDAs that are specific to each disciplinary optimization. These
modifications, in line with the justifications for the block decomposition in the first place,
would allow to use solvers that converge both the design and the couplings, while avoiding
to run all the disciplines in each block optimization.

This benchmark illustrates the capabilities of the newly proposed BCD-based architectures.
The discrepancy error reduction allows for a much wider range of convergence, but at the
cost of significantly higher computational complexity. It also shows that a dynamic update
of the tolerances for the BCD loop and the nested block optimization should be present
to avoid unnecessary block optimization. This should lead to further research.

3.6.2 Scalability study
A scalable two-block decomposition of the Sellar problem

The original Sellar problem [135], also described with Appendix B.1, has been slightly
modified to allow for a block decomposition in the local variables. A dependency on a
newly created variable x2 has been added to the objective function and the y2 analysis
function. This modification has been made in order to create a symmetry in both blocks,
and does not change the optimum in the shared variables x0. The obtained two-blocks
Sellar problem is defined as follow:

minimize f(x0,1, x0,2, x1, x2, y1, y2) = x2
1 + x2

2 + x0,2 + y2
1 + e−y2

with respect to x0,1, x0,2, x1, x2, y1, y2

subject to :
−10 ≤ x0,1 ≤ 10

0 ≤ x0,2 ≤ 10
0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 10

c1(y1) = 3.16 − y2
1 ≤ 0

c2(y2) = y2 − 24 ≤ 0
y1 − y1(x0,1, x0,2, x1, y2) = 0
y2 − y2(x0,1, x0,2, x2, y1) = 0

. (3.6.2)

With the disciplinary analysis being given by:

Discipline 1: y1(x0,1, x0,2, x1, y2) =
√

x2
0,1 + x1 + x0,2 − 0.2y2 (3.6.3)

Discipline 2: y2(x0,1, x0,2, x2, y1) = |y1|+x0,1 + x0,2 − x2 (3.6.4)

The unique MDF solution of the block Sellar problem Equation (3.6.2), outside of the
introduction of the block x2, stays unchanged. This is illustrated in Table 3.1.

The coupling solution and the total derivatives with respect to all the design variables
(x0, x1, x2), near the MDF solution, for the two-block Sellar are detailed within Ap-
pendix B.2.1

92

Sellar Block Sellar
Objective f ∗ = 3.1833 f ∗ = 3.1833

Shared variables [x∗
0,1, x∗

0,2] = [0.0, 1.977639] [x∗
0,1, x∗

0,2] = [0.0, 1.977639]
Local variables x∗

1 = 0 [x∗
1, x∗

2] = [0, 0]
Coupling variables [y∗

1, y∗
2] = [0.8, 1.8] [y∗

1, y∗
2] = [0.8, 1.8]

Table 3.1: Optimal design for Sellar and Block Sellar

We now propose a new extension of the aforementionned problem by adding an additional
parameter that controls the size of all the local variables, the coupling variables, and the
constraints. Each local variable, constraint and coupling variable are vectorized to be now
considered as an n-dimensional vector. This modified n-dimensional block Sellar problem
is described by the following set of equations:

minimize f(x0,1, x0,2, x1, x2, y1, y2) = ∥x1∥2

n
+ ∥x2∥2

n
+ x0,2 + ∥y1∥2

n
+ e−ȳ2

with respect to x0,1, x0,2, x1, x2, y1, y2

subject to :
−10 ≤ x0,1 ≤ 10

0 ≤ x0,2 ≤ 10
0 ≤ x1,i ≤ 10 i = 1, . . . , n

0 ≤ x2,i ≤ 10 i = 1, . . . , n

c1,i(y1,i) = 3.16 − y2
1,i ≤ 0 i = 1, . . . , n

c2,i(y2,i) = y2,i − 24 ≤ 0 i = 1, . . . , n

y1,i − y1,i(x0,1, x0,2, x1,i, y2,i) = 0 i = 1, . . . , n

y2,i − y2,i(x0,1, x0,2, x2,i, y1,i) = 0 i = 1, . . . , n

(3.6.5)

Discipline 1: y1,i(x0,1, x0,2, x1,i, y2,i) =
√

(x0,1)2 + x1,i + x0,2 − y2,i (3.6.6)
Discipline 2: y2,i(x0,1, x0,2, x2,i, y1,i) = |y1,i|+x0,1 + x0,2 − x2,i (3.6.7)

This transformation preserves the global minimum of the one-dimensional version (in R2n

for the local variables) and the optimal objective value (f ∗ = 3.1833) and constraints.
The global optimal design for the MDF architecture is obtained in x∗

0 = [0.0, 1.977639]
and x∗

1 = x∗
2 = 0Rn .

A scalable study

In consideration of the aforementioned hypothesis, at the shared variables’ optimal value
x∗

0, the MDF solution for Plow is well-obtained at x∗ = [x∗
1, x∗

2]. This solution is an
over-constrained optimum, as all lower bounds are active, as well as the constraint
c1. Consequently the LICQ is not verified. Nevertheless, the MFCQ is satisfied and
a Lagrange multiplier vector that verifies both the first- and the second-order KKT
necessary conditions for (Plow) can be readily identified. Both blocks verify the Unique

93

Block Minimizer assumption in the vicinity of x∗
0. Moreover, the solution yielded by each

block corresponds to the coupled optimal primal-dual pair of MDF, thereby validating
the First Order Separability assumption.

Figure 3.13 depicts the average total number of disciplines required to reach the final
target, which is fixed at 3.19 with n ∈ [1, 5, 20, 50]. The true optimal value is found to
be at f ∗ = 3.1833. It should be noted that the original Sellar problem has two coupling
variables, two local variables, and two constraints. Consequently, for a specific value of
n, the abscissa represents the total number of local variables, coupling variables, and
constraints that are all equal to 2 ∗ n. A total of 150 distinct starting points were utilized
in the testing process.

2 10 40 1002 10 40 1002 10 40 1002 10 40 1000

5000

10000

15000

20000

25000 BCD

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

WK

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

IRT

2 10 40 1002 10 40 1002 10 40 1002 10 40 100

MDF

Total size of the couplings, local variables and constraints (2*n)

To
ta

l n
um

be
r o

f d
isc

ip
lin

e
ca

ll

Figure 3.13: Scalability study on Sellar

The results indicate that the average number of disciplines executed to reach the final
target remains relatively consistent for BCD-based architectures. This is attributed to the
relatively low dimensions of the sub-problems addressed with gradient-based optimizers.
Conversely, the MDF architecture exhibits the expected curse of dimensionality for
gradient-free approaches. This results in a rapid increase in computational cost with the
problem size.

The variance for BCD-based architectures is significantly higher than that of the two others
in the number of discipline executions for low-dimensional problems (2 ∗ n ≤ 40). These
variations are attributed to the overall BCD-loop convergence, which could be enhanced
through further work on the algorithms. For higher-dimensional problems, exceeding 40
variables, the trend is reversing between MDF and BL-BCD-MDF architectures.

In general, bi-level architectures are more efficient than gradient-free MDF in terms of
both mean and variance of CPU cost when the number of local design variables exceeds 40,
which is always the case for the type of applications targeted (e.g. aircraft aerostructure
optimization).

94

Chapter 4

A multi-fidelity framework

Summary - This chapter covers topics related to extending multi-fidelity methods, which
aim to obtain a high-precision (or high-fidelity) solution to a problem by taking advantage
of other models of lower precision but lower computational cost, commonly known as
low-fidelity models, to multidisciplinary design optimization (MDO). We address one of the
distinctive characteristic of the composite nature of MDO problems: given a large number
of disciplines, each with several levels of fidelity, we face a combinatorial explosion of the
number of possible fidelity models, and the interest of integrating each of them into the
multi-fidelity process is not known a priori, in particular due to the presence of coupling
variables. The need then arises to roughly sort this very large number of models in terms
of cost and precision in order to select the most relevant models for integration into a
multi-fidelity process. In this context, two sensitivity criteria, one based on coupled adjoint
and the other on gradient alignment, are proposed for the rapid classification of low-fidelity
models. These criteria are tested on simple cases, demonstrating their ability to efficiently
approximate the error of these models. A multi-fidelity refinement approach is used to
compare the impact of different model choices on the convergence speed, showing that the
presented criteria offer an interesting alternative to more precise but also more expensive
methods, while still providing an interesting acceleration of the considered multi-fidelity
approach. In addition, a small application is made to illustrate the capabilities of the
implementation within GEMSEO and how the presented multi-fidelity methodologies can
be intertwined with the bi-level architecture presented in Chapter 3.

95

Résumé - Ce chapitre couvre les sujets liés à l’extension des méthodes multifidélité,
qui visent à obtenir une solution de haute précision (ou haute fidélité) à un problème
en tirant parti d’autres modèles de moindre précision, mais de moindre coût de calcul,
communément appelés modèles de basse fidélité, à l’optimisation multidisciplinaire (MDO).
Nous abordons l’une des caractéristiques distinctives de la MDO, qui est liée à la nature
composite des problèmes traités : étant donné un grand nombre de disciplines, chacune
avec plusieurs niveaux de fidélité, nous sommes confrontés à une explosion combinatoire
du nombre de modèles de fidélité possibles et l’intérêt d’intégrer chacun d’entre eux dans
le processus multifidélité n’est pas connu a priori, en particulier en raison de la présence de
variables de couplage. Il est donc nécessaire de trier grossièrement ce très grand nombre
de modèles en termes de coût et de précision afin de sélectionner les modèles les plus
pertinents pour l’intégration dans un processus multifidélité. Dans ce contexte, deux
critères de sensibilité, l’un basé sur l’adjoint couplé et l’autre sur l’alignement du gradient,
sont proposés pour la classification rapide des modèles de basses fidélité. Ces critères sont
testés sur des cas simples, démontrant leur capacité à approximer efficacement l’erreur
de ces modèles. Une approche de raffinement multi-fidélité est utilisée pour comparer
l’impact des différents choix de modèles sur la vitesse de convergence. Elle montre que
les critères présentés offrent une alternative intéressante à des méthodes plus précises,
mais aussi plus coûteuses, tout en fournissant une accélération intéressante de l’approche
multi-fidélité considérée. En outre, une petite application est présentée pour illustrer les
capacités de l’implémentation dans GEMSEO, ainsi que la manière dont les méthodologies
multi-fidélité peuvent être imbriquées aux architectures à bi-niveaux présentées dans le
précédent chapitre.

96

4.1 Introduction
As models involving physics become more accurate in their predictions and results, they
tend to become increasingly complex. This directly leads to a significant increase in the
computational cost of these models, which may prevent numerical experiments that rely
heavily on their use. As MDO typically involves the integration of multiple coupled physical
phenomena, for instance with the integration of CFD/CSM solvers in the optimization
process, it is particularly sensitive to these limitations.

As these models, which have been qualified as high-fidelity models, are still necessary
to perform high-quality optimization, research have been conducted on strategies to
reduce the computational cost while taking advantage of these models’ high accuracy.
Multi-fidelity approaches [46, 116] represent a set of methodologies designed to enhance
the efficiency and the precision of high-computational numerical problems. These methods
rely on the incorporation of one or multiple low-fidelity models, of varying cost and
approximation qualities, that emulates the high-fidelity model with much less time, but at
the price of a lower accuracy. The objective is to achieve the same outcomes as if only the
high-fidelity model were employed, while reducing the reliance on high-fidelity executions,
typically by reducing the number of high-fidelity model calls.

Following the general success of multi-fidelity in mono-disciplinary optimization, it is
reasonable to expect that the extension of such approaches to multidisciplinary design
optimization could be beneficial. Initial attempts combine different modeling levels
[115, 135, 137, 136, 140, 161], such as performing CFD and CSM solvers for both the
aerodynamics and structures with analytical models for other physics/components. This
is typically done in overall aircraft design [161]. Several classical multi-fidelity approaches
can also be directly applied within a MDO framework with few adaption from the
mono-disciplinary case [161].

However, despite recent efforts in this direction, the multi-fidelity MDO literature remains
sparse. In particular, most of the proposed methodologies, even if often successful, typically
do not take into account MDO-specificities. This indicates that further MDO-specific
improvements can be expected for generic multi-fidelity frameworks. Some promising
works that do address these special features do exist. Some of these acknowledge the
discipline decomposition, as evidenced in [6, 29, 54] where Bayesian approximation of
the error induced by each disciplinary fidelity level are constructed. This allows for
the dynamic increase of the fidelity level of the discipline that contributed most to the
error. Another example is provided by Wang and al. [156], who propose a multi-fidelity
framework that considers a change in the overall MDO architecture as a change in fidelity
and provides a suitable switching criterion.

In particular, this chapter focuses on one of the MDO-specific features when considering
multi-fidelity approaches: the combinatorial explosion of the number of possible fidelity
models. By considering multiple disciplinary models and several fidelity levels for each
one of them, it is possible to create combinations of these disciplinary fidelity models.
Each combination yields a new fidelity level of the overall optimization problem. As all
these models are coupled models of different disciplinary fidelity models, it is not known,
a priori, which coupled fidelity models should be incorporated within a multi-fidelity
framework to maximize its efficiency.

This observation calls for dedicated methodologies for assessing the suitability of a specific
97

fidelity model in relation to the other fidelity models. In the traditional approach, each
fidelity model is evaluated on two criteria: the cost of execution and its accuracy relative
to the high-fidelity model. This naturally leads to the construction of the well-known (cost,
error) Pareto front, which characterizes for each fidelity model if it is Pareto dominant or
not. A Pareto-dominant model is of interest as it is guaranteed to be at least as good as
any other model, in terms of both speed and accuracy.

However, considering the large amount of fidelity models, the construction of the said
Pareto front is challenging, especially as the estimation of the error for every fidelity
models is costly. A direct consequence is that strategies that heavily rely on statistics
to discriminate fidelity models may meet their limits. To the best of our knowledge,
there exist two already existing works that tackle this specific challenge within a MDO
context.

The first one is the work by Charayron and al. [28] in which a multi-fidelity Bayesian
optimization process is considered. To rank the fidelity models emerging from the
aforementioned combination of disciplinary fidelity models, a (cost, error) Pareto front is
constructed. Both criteria are estimated by evaluating each model on a set of sampling
points issued from a unique design of experiments. The mean cost is then computed,
as well as a criterion measuring and aggregating the mean error on both the objective
and constraints. The selection of fidelity models from this Pareto front yielded promising
outcomes in the optimization of a drone design comprising 19 design variables, with 5
fidelity levels and 100 sampling points for the design of experiments. These interesting
results, however, are unlikely to be transposable to our targeted applications, which
encompass several thousand design variables and non-linear constraints, as well as more
than one hundred fidelity models. In particular, we cannot rely on a design of experiments
for the ranking of the different fidelity levels.

The second work, which is more closely related to our case of application, is the one
by Wu and al. [158] that employs a comparable approach to fidelity ranking within
a gradient-based sequential multi-fidelity framework. The approach presented by the
authors addresses the potential combinatorial explosion through the use of two distinct
steps:

• The first step involves the construction of multiple (cost, error) Pareto fronts, one
for each discipline and for each considered output. For each discipline, each fidelity
model is executed once on a specific design point, and the outputs of interest, such
as coupling variables or constraints, are compared to the corresponding high-fidelity
outputs. Any fidelity model that produces a non-Pareto optimal output is excluded
from the subsequent multi-fidelity optimization process. The multi-fidelity method
is then initiated with the combination of all the lowest fidelity models.

• The second step happens at the end of each fidelity optimization. Once a switching
criterion, based on the first-order KKT conditions, is met, another combination of
disciplinary fidelity models must be selected for the subsequent optimization. To
accomplish this, an error propagation is performed on the current solution to identify
the next combination with the highest normalized error reduction. Each disciplinary
output is considered a multivariate normal random variable, with each output of
a single discipline being considered highly correlated. However, the correlation
between different disciplines, as implied by the couplings, is not considered. Given

98

that the considered system functions of interest are analytic and relatively simple,
the Monte Carlo method is employed to perform the error propagation, with an
average of 106 models executions for the considered application. All errors for a
specific combination are then aggregated together using the Lagrangian multipliers
as weights for the constraints errors. The error reduction is normalized by the cost
of the fidelity combination. This process is repeated until the combination of all
high-fidelity models is considered and fully optimized.

The presented methodology addresses the same typology of problems that we aim to
solve with multi-fidelity approaches, making it of great interest. Our position on the
presented work is that the first step might have deleted interesting disciplinary fidelity
models, which are suboptimal when considered on their own, but might also be useful
when combined with other disciplinary fidelity models. Furthermore, we do the hypothesis
that if the initial ranking of fidelity models is sufficiently accurate, typically through a
more exhaustive analysis than that proposed in [158], the subsequent optimization process
may be avoided, thereby conserving significant computational resources.

This chapter is thus devoted to a methodology for approximating the quality of a large
number of fidelity levels within the context of MDO, while avoiding models intrusive-
ness. The results are expressed in the form of two sensitivity criteria, which provide an
approximation of the error induced by each model. These criteria were designed to be
directly applicable to generic multi-fidelity approaches. In particular, the criteria were
developed with the intention of facilitating the down-selection of the most suitable fidelity
models for use within the multi-fidelity refinement framework proposed in [108]. Given
the considerable number of models that require ranking, it is not an option to employ
highly computationally intensive methods. Instead engineering tools and methodologies
based on local information, meaning that they are computed at a single design point,
are considered. This implies that these two criteria will undoubtedly yield an imperfect
ranking of the different fidelity combinations. Consequently, non-dominant models can be
selected for inclusion in the multi-fidelity framework. This is a price we are willing to pay
for several reasons. First, given the number of models and their potentially high cost of
execution, an exact ranking of all fidelity models would be more costly than running the
high-fidelity model as a standalone. Second, global approximations of model errors could
lead to penalization of overall poor but locally interesting models. Finally, despite the
approximations, the resulting ranking is expected to preserve the overall model hierarchy.
This implies that two fidelity models will have the same relative ranking according to
both the criteria and the true classification. In particular, since we intend to rely on the
refinement approach, convergence to the high-fidelity optimum of the MDO problem is
guaranteed as soon as the combination of all high-fidelity models is integrated into the
multi-fidelity refinement framework.

The chapter is structured as follows: first, a review of the multi-fidelity approaches is
provided, with a focus on numerical optimization. The existing multi-fidelity MDO
framework and applications are presented at this point, followed by the observation
that the number of fidelity models and their selection is rarely addressed. Next, the
theoretical framework is presented, describing the methodology and the need or a fast
approximation of the error associated with a certain level of fidelity. Two criteria are
presented as a response to the need of a fast ranking of numerous fidelity models, both of
which are designed to be low-cost and mostly non-intrusive estimators, as derivatives, or

99

at least an approximation, are required. Both criteria are then tested on small test cases,
among them a perturbed Sellar [135] problem, an ordering problem on SSBJ [139] and
a multi-point profile optimization problem are considered. For all of these applications,
different model selections are considered and compared, in terms of convergence speed,
with the multi-fidelity refinement approach proposed in [108]

4.2 State of the art: multi-fidelity in MDO

4.2.1 The multi-fidelity approaches
Multi-fidelity approaches rely on the utilization of a combination of a reference model,
the so-called high-fidelity (HF) model, and a set of low-fidelity (LF) models. The former
is considered to be sufficiently precise for the targeted application but also too costly,
in terms of both the computation time and the necessary computational resources, to
be executed too many times. The latter, the so-called low-fidelity models, are far less
expensive than the high-fidelity one, but also less accurate. Multi-fidelity approaches are
outer-loop strategies that incorporate both type of models in order to identify a solution
of the high-fidelity model while reducing the restitution time of the overall numerical
experiment. The distinction between single- and multi- fidelity outer-loop applications is
illustrated in Figure 4.1.

Figure 4.1: From single fidelity towards multi-fidelity approaches [116]

A substantial corpus of literature exists on multi-fidelity approaches. Two surveys, among
others, namely [116] and [46], provide an overview of such methods across several numerical
domains. In particular, [116] describes multi-fidelity approaches as outer-loops using a
HF model and one or more LF models. These approaches have the particular interest of
regrouping major areas of research in numerical science, namely inference, uncertainty
quantification, and optimization. Furthermore, they determine a useful categorization of
multi-fidelity approaches, which we will summarize right after. In contrast, [46] focuses

100

on surrogate modeling, i.e. substitution models based on sampling points of an original
model, and in particular multi-fidelity surrogates models, which are surrogates built on
samples coming from both HF and LF models, and their construction.

This section presents a summary of the main concepts and categorizations presented
in [116]. Readers are encouraged to consult the original paper for a more detailed and
exhaustive review.

Model Management

As defined by the survey conducted in [116], a multi-fidelity method is primarily defined
by the model management considered. Model management is the process of defining
the manner in which the various models interact with one another, it encompasses the
determination of which models are executed, when they are executed, and which data
are exchanged. It must balance model evaluations among the models (i.e. to decide
which model to evaluate when) and must guarantee the same accuracy in the outer-loop
result as if only the high-fidelity model were used. Three methods of model management,
illustrated in Figure 4.2, are described by the survey conducted in [116]:

• The adaptation method: entails the updating of low-fidelity models with informa-
tion from the high-fidelity model as the computation proceeds. The Efficient Global
Optimization (EGO) algorithm [75] is a well-known example of this approach. This
model management adaptively constructs a low-fidelity model by interpolating the
objective function corresponding to the high-fidelity model with Gaussian process
regression. Another example is the model correction approach [76].

• The fusion method: entails the evaluation of high and low-fidelity models, after
which the information from all outputs is combined. For instance, the control
variate frameworks [69], in which low-fidelity models serve as control variates for the
estimation of statistics on random variables of the high-fidelity model, are part of
this paradigm. Another example could be the co-kriging techniques [31, 50, 98], that
extend the classical kriging techniques to the multivariate case by relying on the
variance and covariance of several models. For example, in numerical optimization
when the high-fidelity derivatives are accessible, it is common to learn both the
output of interest and its derivative [49, 50].

• The filtering method: entails invoking the high-fidelity model following subsequent
to the evaluation of the low-fidelity models. This may entail evaluating the high-
fidelity model exclusively if the low-fidelity model is deemed inaccurate, or if the
candidate point meets certain criteria based on the low-fidelity evaluation. Good
representatives of this category are the refinement approach [108] and the Trust-
Region Model Management (TRMM) algorithm [5]. The refinement approach
employs an optimization process at each fidelity level, from the lowest to the highest.
The objective is to identify a more optimal starting point for the subsequent level,
thereby reducing the reliance on that level. The Trust-Region Model Management
(TRMM) algorithm represents an adaptation of the classical trust-region SQP
algorithm, wherein the local quadratic model is replaced by a generic low-fidelity
model. Both of these methods are subsequently elucidated in greater detail.

101

Figure 4.2: A categorization of MF model management [116]

Multi-fidelity approaches also encompass multilevel methods, such as multi-grid methods
[65], which describe a natural hierarchy between fidelity models by varying some parameters.
Multi-fidelity methods are more generic in that they do not necessarily rely on models
that can be generated on request by varying a parameter, such as a discretization. The
quality and costs of these models are typically determined by already-known rates, which
are not necessarily accessible in more generic multi-fidelity processes.

Model management techniques studied in [46] highly rely on Multi-fidelity surrogate
models, also known as data-fit models, and are consequently classified as belonging to the
fusion category in contrast to the definition of multi-fidelity hierarchical models where
models are invoked on some criterion and no surrogates are built on several fidelity models.
The latter category encompasses both the adaptation and filtering methods. Additionally,
in this same review, it is posited that multi-fidelity arises only when at least two physical
models are involved in the process. Consequently, well-known methods, such as The
Efficient Global Optimization (EGO) algorithm [75] (cf. Section 4.2.2), which employs a
single physics-based model for optimization, are not regarded as a multi-fidelity approach
in the sens of [46].

Methods that merely replace the high-fidelity model with a low-fidelity model, such as
model reduction, are rejected by both surveys [46, 116] as multi-fidelity approaches. This
is because they lower the accuracy of the solution, by typically providing error bounds,
when multi-fidelity methods should establish accuracy and convergence guarantees.

Low-fidelity models

In addition to model managements, multi-fidelity approaches also rely on one or several
low-fidelity models. [116] describes three primary sources of low-fidelity models :

• Simplified models : are created by applying expertise and in-depth knowledge to
create a simpler model. This can be done by defining an early stopping criterion or
a natural problem hierarchy such as RANS and Euler equations [70], by using linear
approximations of the considered models [117], or even by using coarser meshes [85].

• Projection based reduced models : utilize the mathematical structure of the
problem, such as a low-dimensional subspace. Proper Orthogonal Decomposition
(POD), Krylov subspace, or reduced basis methods are representative of this category.
See [14] for a detailed survey.

• Data-fit models : a sample of inputs and outputs is employed to generate an

102

approximation of the model. These models, also known as response surface models
or surrogates models, can be further delineated into several categories, including
interpolation and regression models, Kriging/Cokriging [50, 98], Support Vector
Machine (SVM) [68, 107] and Radial Basis Functions (RBF) [49].

The construction of low-fidelity models is contingent upon the nature of the problem. In
some instances, the construction is straightforward and intuitive, such as a coarser grid
for PDE resolution or Krylov subspaces. However, in other cases, a data-fit method is
necessary to build low-fidelity models with sufficient accuracy. For non-linear models,
Radial Basis Functions (RBF) are a popular choice due to their simplicity, while Kriging
and Cokriging [50, 98] as Bayesian estimators are more accurate but require a good a
priori estimation to be effective [31].

Figure 4.3: Categorization of Low-fidelity models [116]

4.2.2 Multi-fidelity methods in numerical optimization
One of the main areas where multi-fidelity approaches are particularly effective is numerical
optimization. This is particularly true for high-dimensional problems but also when
computationally intensive PDE solvers are necessary, in CFD or structure, for instance.
A multi-fidelity method is deemed to be efficient if it is capable of converging to the HF
solution with the same degree of accuracy that would be achieved by employing solely the
high-fidelity model, while simultaneously reducing the CPU time required (typically by
lowering the number of high-fidelity model evaluations).

As in classical optimization, in which there is a unique fidelity level, multi-fidelity opti-
mization approaches can be categorized into global or local methods.

Global methods are employed to identify the optimal design within the entire design
space. As they do not typically necessitate the gradient and frequently operate with black-
box models, Bayesian optimization techniques are frequently utilized for the construction of
surrogate models. These methods seek a minimum with respect to an adaptive refinement
of a low-fidelity model throughout the optimization search, utilizing information from
high-fidelity model evaluations. The Efficient Global Optimization (EGO) algorithm [75]
is based on this principle: during the optimization process, it builds a kriging model of
the objective, and the next sample point is selected by maximizing an infill criterion,
such as the expected improvement function, as shown in Figure 4.4. This approach is the
most popular when searching for a global multi-fidelity optimization algorithm. EGO
can be made globally convergent and does not require high-fidelity model derivatives [74].

103

However, EGO is sensitive to the initial points used to build the kriging model [74, 96].
This implies that a fairly exhaustive search around the initial points might be necessary
before a more global search can begin. Building a kriging model can therefore be time
consuming, depending on the model dimension, and may be prohibitive in practice.

Figure 4.4: EGO optimization workflow [25]

Variants of EGO exist, including a multi-objective version [126], and an EGO algorithm
that fuses information from several kriging models [6]. Other global methods include
gaussian process-based optimization [60] and multi-fidelity optimization methods based
on pattern search [124].

Local methods, in contrast, seek solutions that are locally optimal, i.e. the best point in
a restricted part of the design space. Consequently they may yield to a worse solution than
their global counterparts when the considered problem has multiple local minima and they
generally rely heavily on gradient information. However, these methods typically require far
fewer model evaluations than the global ones, which makes them increasingly attractive as
the dimensions of the optimization problem increase. Indeed, when considering more than
a thousand design variables and non-linear constraints, most derivative-free algorithms
will fail, and having access to the derivatives typically accelerates computation time
significantly [34, 145]. They also handle non-linear constraints much better than heuristics
[99].

Among the set of local multi-fidelity methods, the Trust-Region Model Management
(TRMM), introduced in [5], is one of the most frequently utilized. This is an enhanced
version of the Trust Region (TR) method that can use generic low-fidelity models instead
of the classical quadratic model. In practice, each iterate is chosen after the optimization
of an approximation model with a particular trust region radius. The overall workflow is
summed up by Figure 4.5. The primary distinction between the classical Trust Region
algorithm (which employs a quadratic approximation) and the TRMM lies in the fact
that the accuracy of the solution is no longer solely contingent upon the trust region
radius. Instead, it is also influenced by the fidelity level utilized for the approximation. If
the optimization was successful and the predicted improvement is considered sufficiently
accurate, the trust region radius can be increased or the fidelity level of the approximation
model can be decreased to accelerate convergence. In the event that the accuracy of the
approximation is deemed insufficient, the fidelity level can be increased or the radius can
be decreased.

104

Figure 4.5: TRMM outer loop [5]

It has been demonstrated that the method is globally convergent towards a local minimum
of the HF model under the simple assumption that the low-fidelity model satisfies first-
order consistency at each HF evaluated point [4]. This assumption is not difficult to
obtain in practice, as it is based on the equality of the objective function and its gradient
of the low-fidelity model with that of the high-fidelity model at the center of the trust
region. In the case of an unconstrained optimization problem, the zero-order consistency,
equality of the objective functions at the center of the trust region, may be sufficient to
ensure convergence [43].

There are several variants of the TRMM algorithm. [35] and [45] designed a multi-
objective version, [4] modifies TRMM to include strategies from other optimization
methods (Lagrangian, Sequential Quadratic Programming (SQP)), while [129] extends the
TRMM to handle variable parametrization problems (multi-fidelity problems where each
model has a different parametrization). A recursive version (with an arbitrary number
of fidelity levels), introduced in [61] as the Recursive Multiscale Trust-Region (RMTR)
method, has been used for Adjoint-Based CFD applications in [109] in conjunction with
an asynchronous validation criterion. This framework permits recursive infinity norm
trust region optimization, allowing the approximation model to be either a quadratic
model or a already specified lower-fidelity model with a possible variable parametrization
through full rank linear prolongation and restriction. As gradients are available for all
the considered models, a first-order criterion based on gradient alignment is employed.
The asynchronous validation, illustrated in Figure 4.6, permits optimization to continue
while ensuring the validity of a given design point. For the considered Adjoint-Based CFD
applications the results demonstrate that this trust region approach exhibits comparable
effectiveness to a purely hierarchical multilevel refinement approach [109]. The latter
approach, which optimizes successively from the lowest to the highest fidelity level, is
further considered and investigated in [108].

105

Figure 4.6: Asynchronous validation for recursive TRMM, figure from [109]

[98] combines both approaches to develop a provably convergent multi-fidelity optimization
method that employs Cokriging Bayesian model calibration and first-order consistent trust
regions. In the unconstrained case, without high-fidelity derivatives, [97] demonstrates
that the same results can be achieved despite the high number of function evaluations
required given the lack of gradient information.

MDO problems are typically complex and time-consuming to solve, which makes the
multi-fidelity approaches promising. However, although the multi-fidelity domain is widely
studied, the previous results are presented in the context of the classic monodisciplinary
problem and rarely explore the specific aspects of MDO. This is despite the fact that
there is a wealth of potential in exploiting MDO architectures, disciplinary separation or
the handling of coupling variables. The subsequent section is devoted to an examination
of MDO-specific features and their exploitation in the construction of multi-fidelity
processes.

4.2.3 Multi-fidelity applied to MDO
The preceding works were general multi-fidelity approaches designed for general monodisci-
plinary optimization problems. While these references are directly applicable to MDO (e.g.
at the disciplinary level), they do not address MDO-specific multi-fidelity strategies that
can be developed. In the following section, we present work that takes into account the
organization of the disciplines, the coupling variables, and the different MDO architectures
that have been developed to date.

The MDO community initially attempted to employ Surrogates-Based Optimization (SBO)
methods to address MDO problems. The fundamental concept is to substitute high-fidelity
models and costly components to surrogate models. This was the case for the majority
of distributed architectures, as the multitude of models involved and the substantial
volume of information exchanges render the replacement of costly models or those that
are intensively executed a necessity. For instance, [135] and [137] utilize response surface-
based models for CSSO (Concurrent Subspace Optimization), which is summarized in
Figure 4.7, and CO (Collaborative Optimization) architectures respectively. BLISS-2000
[140] follows this philosophy of design by nature, as every communications between system
and disciplinary sub-problems are made trough a set of response surface-based models
that approximate their optimized coupling value with respect to a block of local variable.
Those three distributed architecture are discussed in more detail in Section 3.2.1. Some
approaches address monolithic architectures by employing surrogates and comparing them.

106

Among them, there is the MDF architecture where costly components such as MDA
are replaced using Kriging, Gaussian processes, neural networks or polynomial response
surfaces [136, 115]. Most of these approaches rely on surrogates that must be kept up
to date during optimization with high-fidelity model evaluations. For these reasons, the
creation and updating of the surrogate must be integrated into the optimization framework,
which adds cost during optimization and organizational issues in enforcing the training
method. As an answer, [48] proposed to use to use so-called ”one-shot” surrogates, which
are built beforehand within their adjoint based optimization framework. Since they are
not kept up to date, these surrogates are less reliable, but since they are built before
optimization begins, the training cost is already paid. It also allows for more modular
approaches where any surrogate of interest can be plugged directly into the optimization
framework, which is very valuable when considering distributed architectures.

Figure 4.7: CSSO framework using a neural network based surrogate for couplings [135]

The aforementioned SBO approaches demonstrate the potential for low-fidelity models to
be integrated into complex MDO processes, thereby reducing the time required for com-
putation. However, as they do not align with the aforementioned multi-fidelity methods,
they will not be further discussed. Alternatively, they may be regarded as analogous to
SBO methods, in that they entail the substitution of models with a meticulously selected
approximation. Moreover, these methods are highly reliant on surrogate models [161] to
serves as proxy and merely replacing costly components. This is not an ideal choice in our
case as their construction is often complex and generally require high expertise and prior
knowledge on the original model subject to the approximation [49, 50, 6, 161]. In particular,
this is all the more true for high-fidelity and high-dimensional models, as all surrogates

107

are subject to the curse of dimensionality to some extent, despite recent advances in this
area [7]. Therefore, for the targeted applications, such as the pylon optimization in [55]
where 840 design variables and 200 000 nonlinear constraints are considered, building
surrogates may not be the best choice, simplified models, for instance using an early
stopping criterion or a change in the architecture, will be preferred instead.

The literature on more in-depth multi-fidelity frameworks that address multiple fidelity
levels and model management is relatively scarce, with few examples emerging lately.
Bayesian approaches are a popular choice [46]. [6] proposed a probabilistic quantification
of the model discrepancy, which they utilized to solve a MDO problem with fixed fidelity
levels for each model. At a certain point in the optimization process, an estimated optimal
design is evaluated in terms of its performance and the variance of its constraints. If
the variance is deemed to be excessive, further investigation is conducted using Sobol
indices, which reveal the models with the greatest influence on the error. These models
are then replaced by the next fidelity level. In order to improve the method, the approach
is extended by [29] to encompass interdisciplinary couplings. However this approach only
considers feedforward effects. More recently, [54] employed Cokriging by Linear Model of
Coregionalisation (LMC) in order to address feedback effects and reduce uncertainties in
the coupling variable. However, these approaches do not account for the computational
cost of each fidelity, nor do consider the effect of discipline errors on constraints.

[156] presents a multi-fidelity MDO framework with a switching mechanism that enables
the fidelity level of the model to be incrementally increased during optimization. This
filtering framework has the distinctive feature of allowing both the models and the
MDO architecture to be updated from the lowest fidelity level to the highest whenever a
criterion is met as illustrated in Figure 4.8. The switching mechanism is derived from
the adaptive model switching (AMS) [106] approach, which determines whether the
uncertainty associated with the current model output outweighs the latest improvement
in the relative fitness function. The proposed variant of AMS no longer necessitates a
population-based algorithm and instead generates a distribution of the relative fitness
function improvements throughout the optimization iterations. However, the methodology
is highly reliant on surrogate modeling and error quantification, and it is illustrated on
a Battery Thermal Management System (BTMS) [155] with only 4 disciplines and 17
optimization variables. Consequently, it is unlikely that such results can be extended to
large-scale problems.

Some rare works (See e.g. [93, 96]) employ multi-fidelity approaches in a distributed
context. For instance, [93] presents a CO architecture that utilizes a corrected low-fidelity
model at the disciplinary level. This low-fidelity model is computed offline and is an
aggregation of low- and high-fidelity level simulations. The exploitation of parallelism in
conjunction with low-fidelity models can result in a significant reduction in restitution
time. However, due to the distributed architecture, which is known for exhibiting poor or
non-existent convergence properties, these methods must be employed with caution, as
they rarely reach the HF optimum.

[122] proposes a novel approach to the MDO organization of an aero-structure problem.
Their hypotheis is that the optimization problem can be simplified by focusing on the
structure discipline alone. To this end they introduced an Individual Disciplinary Op-
timization (IDO) process, where only the structure runs high-fidelity simulations. The
aerodynamic discipline is replaced by a low-fidelity version obtained by a combination of

108

Figure 4.8: Illustration of the Filtering Model Management [156]

Kriging and POD. The said process is shown in Figure 4.9. It should be noted that the
authors do not consider multiple low-fidelity models.

Figure 4.9: Flowchart of the IDO MF process [122]

In their study, [158] proposes a gradient-based sequential multi-fidelity approach based
on successive single-fidelity MDF optimization derived from the multi-level optimization

109

acceleration technique [20, 92] in the mono-disciplinary case. The approach addresses the
potential combinatorial explosion of the number of fidelity levels in MDO problems by
first performing an error quantification for each model and selecting the fidelity levels that
lie on the cost-error Pareto front. A criterion based on the first-order KKT conditions
indicates when the current system fidelity level is no longer relevant. Error propagation
is performed on the current solution to select the next system fidelity level with the
highest normalized error reduction. It should be noted that the error propagation takes
into account the correlation between the outputs of the same discipline but not the ones
between different disciplines implied by the couplings.

Considerations on the number of low-fidelity models

It is notable that the optimal number of fidelity levels for a model to perform a multi-
fidelity optimization is seldom addressed. The number of fidelity levels is typically fixed
by the authors (typically two or three)[93, 96, 122] or left to the reader to consider more
general multi-fidelity approaches with an arbitrary number of levels [108, 156, 158]. This
complex issue may become essential in the future as the sources for generating fidelity
levels become more numerous. This is particularly true when dealing with large-scale MDO
problems. It is anticipated that a large number of fidelity levels could impede the entire
process, either by selecting non-relevant fidelity levels or by complicating the architecture
to an unprofitable level of time consumption. Furthermore, the selection criteria to be
computed also typically scale poorly with the number of design and coupling variables.
Conversely, an insufficient number of fidelity levels may result in the under-utilization
of the full capacity of multi-fidelity approaches, with the consequence that high-fidelity
models are over-exploited.

Related to the previous observation, provided fidelity models are typically considered to
be all useful and already ranked from the lowest to the highest fidelity. This may not be
true in practice, considering the numerous possible fidelity models and their interactions
through couplings. This problem, already highlighted and partly addressed in [158], is
still open and the following is dedicated to a first step toward an answer.

4.3 Down-selecting fidelity models for MDA
The composite nature of MDO presents a multitude of opportunities for the creation of
novel fidelity models. If it is common in practice to simply replace certain components,
such as disciplinary codes, with surrogate models in order to generate new fidelity models.
In this context MDO offers a plethora of new implementation and engineering choices.
Among these, hyperparameters are more numerous than in the mono-disciplinary case,
allowing the generation of new fidelity models with a combination of changes to algorithm
tolerances (e.g. optimizer, constraints, or MDA convergence) or more disciplinary-specific
(such as grid precision) and others. Furthermore, more drastic changes can be considered,
such as a complete modification of the architecture.

In order to narrow down the possibilities while still treating MDO-specific fidelity creation,
several fidelity models for each discipline have been considered, as well as the effect of
their combination on the multidisciplinary resolution fidelity.

110

4.3.1 Fidelity levels for MDA
As previously stated, MDAs are iterative algorithms that, at each iteration, typically
execute all the disciplines’ analysis until the coupling variables have converged, i.e. until
the coupling variables verifies the consistency constraints (2.1.2). Consequently, MDAs
are highly time-consuming and represent the main cost in the MDA-based architectures
such as the MDF architecture and its derivatives. Hence, in a multi-fidelity framework for
MDO where MDAs are mandatory the creation and the study of lower-fidelity models
of MDAs is of paramount importance for performance. A straightforward method for
generating an MDA fidelity level is to rely on the lower-fidelity levels of the disciplines
and, thus on their respective disciplinary analysis approximations.

For the purposes of this study, p disciplines are defined whose respective coupling functions
are computed for all possible designs as solution of:

yi = ϕi(x0, xi, y̸=i) ∀i ∈ J1, pK (4.3.1)

Assume that each coupling function ϕi possesses Fi − 1 low-fidelity levels and denote
the jth low-fidelity level of discipline i as ϕ̃i,j. Assume that, outside of the high-fidelity
model, the origins of the low-fidelity models are unknown a priori, hence there is no clear
hierarchy between them. For the sake of consistency, the high-fidelity model for discipline
i will be referenced either as ϕ or as ϕ̃i,Fi

.

In this framework, it is possible to define a fidelity level for the MDA, Ψ, as a combination
of p fidelity level choices, one for each discipline. Therefore, a fidelity level for the
MDA is uniquely identified by a vector V of p integers with the ith component lying in
J1, FiK (∀i ∈ J1, pK).

Given a specific value of V ∈ ∏
i∈J1,pKJ1, FiK, the low-fidelity MDA Ψ̃V is defined implicitly

as the continuously differentiable function that associates a design point (x0, x) to the
solution of the following system of equations in y:

∀(x0, x), y = Ψ̃V(x0, x) ⇐⇒


y1 − ϕ̃1,V1(x0, x1, y̸=1)
y2 − ϕ̃2,V2(x0, x2, y̸=2)

...
yp − ϕ̃p,Vp(x0, xp, y̸=p)

 =


0
0
...
0

 (4.3.2)

By convention, the highest fidelity MDA is defined as Ψ̃VHF (or alternatively by Ψ) with
VHF = [F1, F2, . . . , Fp].

Clearly, the number of potential MDA fidelity levels increases exponentially as the number
of disciplines, p, and fidelity levels Fi (i ∈ J1, pK) increase, following the classical Cartesian
product of p sets. Let #FMDA the number of MDA fidelity levels that can be generated,
i.e; the total number of possible coupling function combinations, it follows that:

#FMDA =
p∏

i=1
Fi (4.3.3)

By further adding the possibility of ”removing” a discipline from the MDA (i.e. the
disciplinary analysis is not done during the process, hence outputs of the considered

111

discipline are held fixed), which can be seen as another fidelity level indexed as 0, and
after removing the MDA with no disciplines at all (and therefore of poor interest), it
follows that:

#FMDA =
[p∏

i=1
Fi + 1

]
− 1 (4.3.4)

The considerable number of potential fidelity levels indicates that the majority of them are
contraindicated. This is particularly evident in the context of multi-fidelity frameworks,
which typically assume that the different models involved are significantly disparate,
both in terms of cost and/or precision. Moreover, all fidelity disciplinary models are
coupled, which results in hard-to-predict coupling effects on the fidelity of the resulting
MDA. Consequently, it is not evident whether a particular fidelity combination would be
considered a higher or lower-fidelity level than another combination, with the exception of
the high-fidelity MDA. This observation raises the question of how to rank and select the
most relevant models for an effective multi-fidelity optimization.

To this aim, the proposed methodology approximate the two primary factors to be
considered in evaluating the quality of a fidelity level : its cost (i.e. the time required
to perform the multidisciplinary analysis) and its precision (i.e. the distance between
the response and the output of the high-fidelity model). It is evident that a fidelity level
of interest, denoted by Ψ̃V , where V is the vector identifying which fidelity is used for
each discipline, must be situated on the Pareto front (cost(Ψ̃V), error(Ψ̃V)) illustrated
in Figure 4.10 and defined by the cost and error metrics, in order to be considered as
an interesting model to be incorporated in a multi-fidelity strategy. This is not the first
occurrence of a (cost, error) Pareto front to classify different fidelity models, see [116] for
general multi-fidelity frameworks, or [28, 158] for more MDO-oriented examples.

Figure 4.10: Modelization of a (cost, error) Pareto front

In order to construct the cost-error Pareto front and therefore select the optimal fidelity
levels to retain, it is necessary to compute the time consumption and the error introduced
by each fidelity level. This typically implies the use of costly statistics to estimate how
well a low-fidelity model approximates the high-fidelity one. In [28] each fidelity model is
evaluated on a set of points issued from a Design of Experiment. An error aggregating
both objective and constraints inconsistencies is made. In [158] this Pareto front is utilized
for eliminating suboptimal disciplines fidelity models, where the error is supposed to be
independent of the design variables (x0, x). Nevertheless, it is important to acknowledge

112

that the selected models are not necessarily employed in the multi-fidelity optimization
process. The optimization strategy, using a refinement approach, must determine which
fidelity model must be optimized after each low-fidelity optimization. To this end, an
error propagation is performed towards system objective and constraints and subsequently,
a Monte Carlo approach is employed to estimate the next fidelity level that exhibits the
best error reduction - cost ratio.

As previously highlighted, as the number of possible fidelity levels increases for each
discipline, the number of possible fidelity levels for the coupling resolution model grows
exponentially. Consequently, this combination forces a reconsideration of the use of costly
statistics to rank each fidelity model. Instead, this study aims to explore and propose
criteria based on local information, trading off the accuracy of the estimations with the
capacity to treat a large number of models, sharing computational costs as much as
possible.

Let Ψ̃V be an approximation model of the high-fidelity MDA Ψ, where all high-fidelity
disciplinary analysis ϕi have been replaced by their low-fidelity approximations ϕ̃i,Vi

. It is
possible to obtain a fast approximation of the cost of Ψ̃V by calculating the cost of an
iteration of the fidelity level times the average number of iterations n∗

HF of the high-fidelity
MDA:

cost(Ψ̃) = n∗
HF × costiter(Ψ̃V) (4.3.5)

The selection of the MDA algorithm influences both the cost of an iteration and the average
number of iterations required to reach convergence. It is generally anticipated that n∗

HF will
be lower when Gauss-Seidel MDAs are considered than when Jacobi MDAs are employed.
This is due to the slower rate of convergence of the Jacobi algorithm in comparison to
the Gauss-Seidel one [113]. With regard to the function costiter, which quantifies the
cost of a single iteration of the specified MDA, the computational methodology varies
slightly depending on the selected algorithm. This is illustrated in (4.3.6) and (4.3.7)
which pertain to MDA Jacobi and MDA Gauss-Seidel, respectively. It should be noted
that these costs are theoretical restitution time. In particular for the MDA Jacobi, this
restitution time is typically restrained by the CPU cost and the number of available
computational units.

MDA Jacobi: costiter(Ψ̃V) = max
i∈J1,pK

(cost(ϕ̃i,Vi
)) (4.3.6)

MDA Gauss-Seidel: costiter(Ψ̃V) =
p∑

i=1
cost(ϕ̃i,Vi

) (4.3.7)

As the approximation of the error induced by each model is typically a more challenging
task, necessitating numerous model evaluations, good approximations of all the terms
involved in the previous equations are readily available at no additional cost after the
aforementioned error approximation.

With regard to the discrepancy between models, as just hinted, the error introduced by
a fidelity level is more challenging to quantify. For a specific design point (x0, x), the
error associated with the coupling resolution can be determined by converging both the

113

low- and high-fidelity MDAs and comparing their outputs: Ψ̃V(x0, x) − Ψ(x0, x). Without
even considering statistics over the set of design variables (x0, x), given the multitude of
fidelity levels and the necessity to perform a complete MDA for each one of them, i.e.
compute Ψ̃V(x0, x) for every possible combination V , it is not conceivable to hope for an
estimation of the errors in a reasonable amount of time.

The subsequent section is devoted to numerical tools or criteria that have been devised
with the objective of providing an estimate of the error introduced by each fidelity level
in a reasonable amount of time.

4.3.2 Two criteria for error estimation
Two criteria for a fast approximation of the error introduced by low-fidelity MDAs are
presented hereafter. Considering the large number of fidelity models, these criteria are
made to give a rough approximation of the true hierarchy between the different models.
This comes from the assumption that even a rough approximation of the ranking, even if
it leads to the consideration of sub-optimal models, is expected to yield some gain when
using multi-fidelity approaches. Therefore, both criteria are based on local information at
a specific design point (x0, x) and they do not necessitate costly statistics to be computed
similarly as in [158]. They estimate the magnitude of the error induced by each model,
which is assume to remains globally the same on the entirety of the research domain. The
overall ranking of all models should not be significantly affected, thus maintaining the
relative positioning of each model in terms of error.

A coupled adjoint based criterion

The first proposed criterion is based on the coupled adjoint (cf. Section 2.2.2). This
criterion assume that a change in fidelity for one or more disciplines only disturbs the
high-fidelity optimization problem with a constant error on the multidisciplinary feasibility
constraints. Therefore, by only considering an initial design (x0, x), the said criterion
approximates the error on the functions of interest at the optimal design.

Settings Let us consider the following high-fidelity optimization problem:

min
x0∈X0,x∈X ,y∈Rm

f(x0, x, y)

s.t. g(x0, x, y) = 0
yi − ϕi(x0, xi, y̸=i) = 0 i ∈ J1, pK,

(P HF)

where X0 ⊂ Rn0 and X ⊂ Rn denote the design spaces of the shared and local variables
respectively, f : X0 × X × Rm → R the objective, and g : X0 × X × Rm → Rnc the
constraints. The functions ϕi : Rn0+ni → Rmi denotes the coupling function associated
with discipline i, i = 1, . . . , p. All these functions are considered to be at least twice
continuously differentiables.

Making a change on the fidelity level of one or more disciplines, i.e. merely replacing those
computational components by low-fidelity ones, has the effect of perturbing their respective
outputs for the same input (x0, x). This impact is reflected in the coupling resolution,
with the disturbed disciplinary analysis of discipline i, with fidelity j being denoted as ϕ̃i,j .
Let V be the p-dimensional vector such that for all i ∈ J1, pK, the chosen fidelity level for

114

discipline i is Vi. Hence, the choice of V defines the fidelity level for the MDA as a direct
consequence of the replacement of the functions that compute the coupling variables in the
previous optimization problem (P HF). These new coupling functions ϕ̃i,Vi

are replacing
the high-fidelity ones, ϕi, leading to a newly defined low-fidelity problem:

min
x0∈X0,x∈X ,y∈Rm

f(x0, x, y)

s.t. g(x0, x, y) = 0
yi − ϕ̃i,Vi

(x0, xi, y̸=i) = 0 i ∈ J1, pK

(P LF
V)

Similarly as in the MDF architecture, one can define a multidisciplinary analysis algorithm
as an implicit continuously differentiable function from as set of coupling functions by
using the Implicit function theorem (cf. Theorem 2.2.5).

Let Ψ : X0 × X → Rm be the high-fidelity MDA function:

∀(x0, x) ∈ X0 × X y = Ψ(x0, x) ⇐⇒ ∀i ∈ J1, pK yi − ϕi(x0, xi, y̸=i) = 0 (4.3.8)

and let Ψ̃V : X0 × X → Rm be the low-fidelity MDA function described by V :

∀(x0, x) ∈ X0 × X y = Ψ̃V(x0, x) ⇐⇒ ∀i ∈ J1, pK yi − ϕ̃i,V(x0, xi, y̸=i) = 0 (4.3.9)

In other words, both Ψ and Ψ̃V are twice continuously differentiable functions which gives
the coupling solution with respect to (x0, x) for the disciplinary analysis system created
from the ϕi’s (or ϕ̃i,VHF

i
or ϕ̃i,Fi

equivalently) and ϕ̃i,Vi
’s respectively.

By definition of the consistency constraints, they can be rewritten as:

yi − ϕ̃i,Vi
(x0, xi, y̸=i) = 0 i ∈ J1, pK

⇐⇒ y − Ψ̃V(x0, x) = 0
⇐⇒ y − Ψ(x0, x) = Ψ̃V(x0, x) − Ψ(x0, x)

(4.3.10)

Where cV = Ψ̃V(x0, x) − Ψ(x0, x) ∈ Rny denotes the error on the coupling resolution
induced by the fidelity level change, defined by V , in the disciplines and is assumed to be
independent of (x0, x). Therefore the newly obtained optimization problem (P LF

V) can be
rewritten as a parameterized version of (P HF):

min
x0∈X0,x∈X ,y∈Rm

f(x0, x, y)

s.t. g(x0, x, y) = 0
y − Ψ(x0, x) = cV

(P LF
cV

)

The parameter cV = Ψ̃V(x0, x) − Ψ(x0, x) being the error on the consistency constraints
introduced by the change of fidelity in the disciplines defined by V. In particular, it
should be noted that in the event where cV = 0 (which should append only if V = VHF),
(P LF

cV
) reduces to (P HF). The proposed criterion is designed to determine the impact of

a potential change in discipline on the objective’s precision at the solution (x∗
0, x∗) with

minimal computational cost. In other words, given a combination of fidelity levels V

115

and an estimation of cV , the criterion should provide an estimate of the impact on the
optimum of (P LF

cV
).

As the consistency constraints, y − Ψ(x0, x) = cV , are also continuously differentiable with
respect to cV by assumption, the following result is a direct application of the envelope
theorem (cf. Theorem 2.2.7) to deduce the impact of a fidelity change on the optimal
objective function value.

Impact on the objective value at the optimal design Let the following optimization
problem

min
x0∈X0,x∈X ,y∈Rm

f(x0, x, y)

s.t. g(x0, x, y) = 0
R(x0, x, y; c) = 0

(P LF
res)

with R : X0 × X × (Rm)2 → Rm being the consistency constraints on y, solved with an
error c. This is equivalent to (P LF

cV
) (with R(x0, x, y; c) = y − Ψ(x0, x) − c) but consistency

constraints are given in a residual form R which is clearly twice continuously differentiable
with respect to all of its variables.

Let L be the Lagrangian function of (P LF
res):

L(x0, x, y, µ, λ; c) = f(x0, x, y) + µT g(x0, x, y) + λT R(x0, x, y; c) (4.3.11)

where µ ∈ Rnc and λ ∈ Rm being the so-called Lagrange multipliers associated with g and
R respectively.

For all value c in a small neighborhood of 0, assume that Fiacco’s theorem holds,
i.e. there exist 5 continuously differentiable functions x∗

0, x∗, y∗, µ∗ and λ∗ such that
(x∗

0(c), x∗(c), y∗(c), µ∗(c), λ∗(c)) is the optimal primal-dual pair, such as defined in 1st order
KKT condition, for (P LF

res) and define

L∗(c) ≡ L(x∗
0(c), x∗(c), y∗(c), µ∗(c), λ∗(c); c) (4.3.12)

the Lagrangian value at this solution. By definition, L∗(c) is given as follows:

L∗(c) = f(x∗
0(c), x∗(c), y∗(c))

+ µ∗(c)T g(x∗
0(c), x∗(c), y∗(c))

+ λ∗(c)T R(x∗
0(c), x∗(c), y∗(c); c)

(4.3.13)

L∗ is clearly continuously differentiable with respect to c and a direct derivation of (4.3.13)
gives:

dL∗

dc
(c) = ∂f

∂x0

dx∗
0

dc
+ ∂f

∂x

dx∗

dc
+ ∂f

∂y

dy∗

dc

+ µ∗(c)T

[
∂g

∂x0

dx∗
0

dc
+ ∂g

∂x

dx∗

dc
+ ∂g

∂y

dy∗

dc

]

+ λ∗(c)T

[
∂R

∂x0

dx∗
0

dc
+ ∂R

∂x

dx∗

dc
+ ∂R

∂y

dy∗

dc
+ ∂R

∂c

] (4.3.14)

116

By reordering terms, (4.3.14) can be rewritten as follows:

dL∗

dc
(c) =

[
∂f

∂x0
+ µ∗(c)T ∂g

∂x0
+ λ∗(c)T ∂R

∂x0

]
dx∗

0
dc

+
[

∂f

∂x
+ µ∗(c)T ∂g

∂x
+ λ∗(c)T ∂R

∂x

]
dx∗

dc

+
[

∂f

∂y
+ µ∗(c)T ∂g

∂y
+ λ∗(c)T ∂R

∂y

]
dy∗

dc

+ λ∗(c)T ∂R

∂c
(c)

(4.3.15)

The first three terms between brackets in (4.3.15) correspond to the first order 1st order
KKT condition respectively, all of them being evaluated in (x∗

0(c), x∗(c), y∗(c), µ∗(c), λ∗(c); c),
the optimal primal-dual pair. Therefore:

∂L
∂x0

(x∗
0(c), x∗(c), y∗(c), µ∗(c), λ∗(c); c) = ∂f

∂x0
+µ∗(c)T ∂g

∂x0
+λ∗(c)T ∂R

∂x0
= 0 (4.3.16)

∂L
∂x

(x∗
0(c), x∗(c), y∗(c), µ∗(c), λ∗(c); c) = ∂f

∂x
+µ∗(c)T ∂g

∂x
+λ∗(c)T ∂R

∂x
= 0 (4.3.17)

∂L
∂y

(x∗
0(c), x∗(c), y∗(c), µ∗(c), λ∗(c); c) = ∂f

∂y
+µ∗(c)T ∂g

∂y
+λ∗(c)T ∂R

∂y
= 0 (4.3.18)

Consequently, (4.3.15) can be simplified as:

dL∗

dc
(c) = λ∗(c)T ∂R

∂c
(c) = −λ∗(c) , (4.3.19)

with ∂R
∂c

(c) = −Iny recalling that R(x0, x, y; c) = −c for all design variables (x0, x, y) and
parameters c.

Let f ∗ : c 7→ f(x∗
0(c), x∗(c), y∗(c)), be the value function which associates for any c the,

unique, optimal value of (P LF
cV

). Assume that f ∗ is continuously differentiable with respect
to c, then, according to the envelope theorem (Theorem 2.2.7), for all possible value of c,
it follows that:

∂f ∗

∂c
(c) = ∂L∗

∂c
(c) = −λ∗(c) . (4.3.20)

Therefore the first order Taylor expansion can be applied to the value function with
respect to c:

f ∗(c) = f ∗(0) + ∂f ∗

∂c
(0)c + ϵ(c) where lim

c→0
ϵ(c) = 0 . (4.3.21)

Denoting λHF = λ∗(0), the high-fidelity optimal Lagrange multipliers at (x∗
0(0), x∗(0), y∗(0)),

it follows that
f ∗(c) − f ∗(0) ≈ −λHF c . (4.3.22)

In other words, the dot product between the high-fidelity optimal Lagrange multipliers
associated with the coupling constraints residuals, and the coupling error, gives a first

117

order approximation of the error on the objective function. However, as it stands, the said
criterion necessitates to perform the high-fidelity optimization, to compute the optimal
Lagrange multipliers, which depends, among other things, on the set of active constraints.
As this criterion do not intend to complete any optimization to be computed, there is a
need to approximate both λHF and c without being at the optimum. Instead, these terms
should be computed at any design point.

Recall that at any design point the multidisciplinary constraint R admits a unique
solution:

R(x0, x, y; c) = 0 ⇐⇒ y = Ψ(x0, x) + c . (4.3.23)

As this residual is enforced to be equal to zero at each design choice by the computational
process, the adjoint equations state that there exists a unique vector λf (see Section 2.2.2),
the so-called adjoint vector associated with objective function, solution of the linear
system

∂R

∂y

T

λf = ∂f

∂y

T

(4.3.24)

which can be seen as the computation of the total derivative of the objective with respect
to a perturbation of the residual, i.e. λf = df

dc
with f : (x0, x) 7→ f(x0, x, Ψ(x0, x)+c).

Recall that c is assumed to preserve its magnitude on the whole space of research, or in
other words that the fidelity error remains essentially the same and does not depend on
the design variables. Therefore, the proposed methodology approximates the sensibility of
the value function f ∗ by the total derivative of the objective at any design point:

∂f ∗

∂c
(c) ≈ df

dc
(x0, x; 0) = ∂f

∂c
− (λf)T ∂R

∂c
= −(λf)T . (4.3.25)

In practice, this is equivalent to make the approximation (λf)T ≈ λHF , where (λf)T is
computed on any design point.

Indeed, this is a rough approximation, as the constraints g and their related Lagrange
multipliers at the optimum µ∗(c) are completely neglected in the sense that this result
implicitly implies that the set of active constraints remains the same at (x, x0) and at
(x∗

0(c), x∗(c)). This is obviously false for most optimization problems whenever inequality
constraints are presents. This is, however a price we are willing to pay considering the
high amount of models to rank, the hypothesis being that the resulting classification
stays globally unchanged compared to the one we should have obtained with more
computationally intensive approximations.

In some cases, this approximation is more reliable. For the following unconstrained case,
for instance:

min
x0∈X0,x∈X ,y∈Rm

f(x0, x, y)

s.t. R(x0, x, y; c) = 0
, (4.3.26)

this is a known result [52] that, at the optimum (x∗
0(0), x∗(0), y∗(0)) of (4.3.26) for c = 0,

both λHF , the optimal Lagrange multipliers vector, and (λf)T , the adjoint vector associated
with the objective function, are equal to ∂f∗

∂c
where f ∗ is the value function of (4.3.26)

that associates c to f(x∗
0(c), x∗(c), y∗(c)). In other words, they are equal to the first order

approximations of the impact on the optimum for a perturbation of the residual:

118

f ∗(c) − f ∗(0) ≈ ∂f ∗

∂c

T

(0)c = (λHF)T c = (λf)T c . (4.3.27)

Consequently, this approximation is expected to exhibit superior performance in the
unconstrained case, even if a non-optimal design point is considered, and especially when
considering that the error on the model stays globally of the same magnitude in the whole
space of research.

Definition of the criterion Given previous results, a criterion to measure the accuracy
of a given model defined by a fidelity combination V is given by:

ϵadj = −
p∑

i=1
λf

i [ϕ̃i,Vi
(x0, xi, yHF

̸=i) − yHF
i] (4.3.28)

where yHF is the high-fidelity coupling solution at (x0, x), i.e. yHF = Ψ(x0, x).

This criterion is inspired by previous adjoint correction based methods for grid fidelity
estimation [12, 11, 152]. It assumes that most of the error on models comes from a
deterioration of the coupling resolution and gives a first-order approximation of the error
on the considered functions. Both λf and yHF necessitate the execution of the high-fidelity
model for a specific design value (x0, x), this computation is done a unique time for
all fidelity models. To avoid the computation of the residual at convergence for each
model, i.e. Ψ̃V(x0, x) − Ψ(x0, x), it is approximated using the discrepancy between the
high-fidelity solution and a unique disciplinary analysis computed on the high-fidelity
solution yHF .

Let us consider a design point (x0, x), a high-fidelity MDA Ψ, and list a low-fidelity
disciplinary analysis Lϕ̃. Further assume that the adjoint equation (4.3.24) admits a unique
solution, i.e. ∂R

∂y

T (x0, x, Ψ(x0, x)) is non-singular.Algorithm 4 describes the overall process
to compute the adjoint based criterion given in Equation (4.3.28) for each combination
V ∈ ×i∈J1,pKJ1, FiK of disciplinary fidelity:

Algorithm 4: Adjoint correction based criterion
Data: (x0, x), Ψ, Lϕ̃

Result: [ϵadj
V]

Compute HF solution : yHF = Ψ(x0, x) ;
Compute λf as the solution of ∂R

∂y

T (x0, x, yHF)λf = ∂f
∂y

T (x0, x, yHF) ;
do in parallel

foreach ϕ̃i,j ∈ Lϕ̃ do
Compute the couplings on HF solution: ỹi,j = ϕ̃i,j(x0, xi, yHF) ;

end
end
do in parallel

foreach V ∈ ×i∈J1,pKJ1, FiK do
Compute adjoint correction based criterion : ϵadj

V = −∑p
i=1 λf

i [ỹi,Vi
− yHF

i]
end

end

119

This algorithm has two major costs, the first one is the necessity to converge the high-
fidelity MDA Ψ to obtain the reference coupling values yHF , the second is the computation
of the coupled adjoint λf , that necessitates the solution of the related linear system. The
second step of the algorithm is highly parallelized, each disciplinary fidelity model can
be treated independently and only necessitate a unique execution to be evaluated at
(x0, x, yHF). Considering that the high-fidelity disciplines have already been executed
to obtain both yHF and λf , and recall that discipline i has Fi fidelity models, the total
number of model execution for step 2 is given by:

ncalls =
[p∑

i=1
Fi

]
− p (4.3.29)

A gradient alignment criterion

As the fully coupled adjoint is not guaranteed to be available, a second criterion, based on
the gradient information is explored. A way to quickly estimate the error of a fidelity level
is to compute the angle between the high-fidelity model’s gradient, denoted as ∇fHF ,
and the low-fidelity model’s gradient ∇fLF on a specific design point (x0, x) and the
high-fidelity’s couplings yHF = Ψ(x0, x). This estimator, which is refereed to as the
gradient alignment criterion is defined by:

ϵalign
f ≈ 1 − align(∇fHF , ∇fLF , x0, x) (4.3.30)

where

align(∇fHF , ∇fLF , x0, x) =



−1, if ∥∇fHF (x0, x, Ψ(x0, x))∥= 0
−1, if ∥∇fLF (x0, x, Ψ(x0, x))∥= 0

∇fHF (x0, x, Ψ(x0, x)).∇fLF (x0, x, Ψ(x0, x))
∥∇fHF (x0, x, Ψ(x0, x))∥∥∇fLF (x0, x, Ψ(x0, x))∥ , Else

(4.3.31)

The alignment operator, which was introduced in [108] as a validation criterion, assesses
whether both fidelity levels suggest the same descent direction at (x0, x). The error, which
lies by definition within the interval [0, 2], is simply obtained by penalizing the discrepancy
between the two descent directions. Purely aligned descent directions yields a zero error,
while orthogonal ones result in an error of 1. In the event that both gradients point in
opposite directions, or that the low-fidelity gradient vanishes, the upper bound, 2, is
reached. It should be noted that, by definition of the alignment, the chosen design point
(x0, x) should not be on where the high-fidelity gradient vanishes.

The associated algorithm, which compute the gradient based criterion for each low-fidelity
models, is given in Algorithm 5.

120

Algorithm 5: Gradient alignment criterion
Data: (x0, x), LΨ
Result: [ϵalign

f]
Compute HF solution : yHF = Ψ(x0, x) ;
Compute HF gradients : ∇fHF = ∇fHF (x0, x, yHF) ;
do in parallel

foreach Ψ̃ ∈ LΨ do
Compute LF gradients : ∇fLF = ∇fLF (x, yHF) ;
Compute gradient alignment criterion : ϵalign

f = 1 − align(∇fHF , ∇fLF)
end

end

Considering the cost of computing the alignment criterion, there is a unique costly
operation : converging the high-fidelity MDA to obtain the high-fidelity coupling values,
i.e. computing yHF = Ψ(x0, x). The gradients for each models are computed separately
(preferably in parallel) and the criterion computation follows directly at an affordable
cost.

The alignment criterion (4.3.30) is defined for the objective function but constraints can
also be considered, contrary to the adjoint-based criterion presented earlier, which is
based on the envelope theorem (cf. Theorem 2.2.7). If multiple functions are accounted
for, a natural way to describe the resulting Pareto front is to extend (4.3.30) to a multi-
dimensional error, where each error is considered as a minimization criterion. In this case,
each Pareto-optimal model is guaranteed to be be Pareto-optimal for every considered
functions at once. However, this is rarely done in practice as, if too many objective are
taken into account, the obtained Pareto front is likely to be degenerated [72]. Instead, the
errors on a set of functions S ⊆ {f, gi i = 1, . . . , p} can be aggregated using a weighted
sum:

ϵalign =
∑
h∈S

wh × ϵalign
h with wh > 0 ∀h ∈ S and

∑
h∈S

wh = 1 (4.3.32)

The error, in this case, represents the weighted average discrepancy between gradient
alignments for all considered functions.

This method is typically preferred to extending the Pareto front for its simplicity of
implementation and visualization. However, the choice of the weight is problem specific
and must be given a priori. Moreover, in the event where the Pareto front is not
convex, certain Pareto optimal points may not be seen, depending on the choice for the
weights.

In [158], a similar strategy considering all functions of interest, i.e. the objective and all
the constraints, is used to find the next fidelity model. As the error propagation is done
after the previous fidelity optimization, Lagrange multipliers can be accessed directly
from the optimizer and used as weight, as they act as shadow prices, for scaling the
constraints.

121

4.3.3 Pareto front and post treatment
Once the costs and errors associated with each model have been successfully approximated,
a (cost,error) Pareto front can be constructed. However, when only considering models
on the aforementioned Pareto front, it is possible that not all models may be relevant for
the optimization process. Therefore, a procedure is required to select the optimal fidelity
levels on the Pareto front.

Once a desired number of fidelity levels is provided, a greedy algorithm is executed for
the purpose of down-selecting relevant fidelity levels. Given a number of fidelity levels to
be down-selected, the greedy algorithm comprises two steps :

• Step 1: The initial selection of models is conducted to ensure an even distribution
along one of the two axis. Given the anticipated variability in cost estimates, the
cost selection is typically based on the logarithmic transformation of the costs.
Regardless of the requested number of fidelity levels, the high-fidelity model is
always included in the selection. For instance, for a two fidelity models selection, the
chosen models are the two extremes of the Pareto front. A three fidelity selection is
illustrated by Figure 4.11 for both axis. Figure 4.11a illustrate a three models evenly
spread selection along the cost axis, while Figure 4.11b shows the same selection
but considering the error axis instead. It should be noted that the selection of the
in-between low-fidelity models, i.e. not the lowest fidelity model nor the highest, can
be greatly affected by the choice of the axis.

Cost

Error

Unselected point

Selected point

𝑑2

𝑑1

𝑑1 = 𝑑2

(a) Evenly spread costs

Cost

Error

Unselected point

Selected point

𝑑1 = 𝑑2

𝑑1 𝑑2

(b) Evenly spread errors

Figure 4.11: Evenly spread fidelity selection

• Step 2: The preceding step proposes models that may not be relevant for a multi-
fidelity optimization process as it is often assumed that all selected fidelity models
should be different enough in terms or cost and error. Therefore, if two selected
models have a cost and/or an error that are considered to be too similar, one
should be removed. A post-processing algorithm is dedicated to the elimination of
redundant models. This is done with a minimal user-defined minimal slope, or a

122

threshold Tr > 0, for one of the two criterion between two selected Pareto points. In
its default configuration, the post-selection algorithm selects the Pareto point that
minimizes the error over the cost. In other words, if two selected Pareto point P
and P ′ are such that cost(P) > cost(P ′) and error(P) < error(P ′), then P should
be preferred over P if:

−error(P) − error(P ′)
cost(P) − cost(P ′) < Tr (4.3.33)

An example of the removal of an already selected Pareto point is illustrated in
Figure 4.12. In this case, the closest neighbor under the threshold is preferred
instead, as it minimizes the error.

Cost

Error

Unselected point

Selected point

Threshold

(a) Before post-process

Cost

Error

Unselected point

Selected point

Threshold

(b) After post-process

Figure 4.12: Example of the application of the post-treatment: the second selected point
is removed from the selection and replaced with a similar point that minimizes the error.

4.4 Multi-fidelity methodologies validation
This section collects experiments and applications to test the proposed multi-fidelity
methods.

First, the multi-fidelity framework, based on a refinement approach and in continuity with
Romain Olivanti’s work [109, 108], is introduced and implemented in a MDO context.
This multi-fidelity approach is considered for all the following applications.

Then, several applications are performed to test the two sensitivity criteria presented
in Section 4.3 with simple models where fidelity levels are easily generated to illustrate
the proposed methodology in a multi-fidelity context, from the definition and ranking of
fidelity models to complete multi-fidelity optimizations. The adjoint-based criterion is
tested on a perturbed Sellar test case where the fidelity models are generated by varying
a couple of parameters. The 441 fidelity models are ranked with the said criterion and
the resulting choice of fidelity models is compared in terms of discipline calls reduction
with other selections on the refinement multi-fidelity approach. The gradient alignment

123

criterion is tested on the SSBJ test case (see Appendix A) where low-fidelity levels are
generated by reordering disciplines and neglecting backward effects.

Finally, to illustrate more complex fidelity construction and to make the connection with
the previous chapter on bi-level architectures, a multi-fidelity application is performed
on the SSBJ test case by considering bi-level MDO architectures as fidelity models.
The goal of this relatively small application is to show the capabilities of the different
implementations and how they can be intertwined to create more complex optimization
processes.

4.4.1 A multi-fidelity refinement framework
Given an arbitrary number of already ranked fidelity levels, a generic multi-fidelity (or
multilevel) refinement approach is considered. This framework optimizes each fidelity
model sequentially, from the lowest to the highest fidelity level, each optimization being
warm-started with the best point of the previous suboptimization. In consideration of
the pre-established hierarchy, it is hoped that each suboptimization will approach the
high-fidelity solution as the fidelity increases, thereby reducing the necessity for costly
calls from subsequent levels. This model management strategy may be classified as a
filtering approach, as suboptimizations are terminated according to criteria contingent
upon the current low-fidelity model [116].

The choice of using the multi-fidelity refinement approach has been motivated by several
factors. Firstly, the method is shown to be locally convergent as long as it is ensured that
the process switches to the high-fidelity model, and that the algorithm that optimizes
the high-fidelity model is itself locally convergent for this model. Moreover, the multi-
fidelity refinement approach is a generic and non-intrusive method in that is makes no
assumptions on the problem’s structures, the nature of the low-fidelity models nor their
number. Last but not least, the multi-fidelity refinement method is well-adapted to deal
with high-dimensional and high-fidelity applications, it has been shown to be promising
in multiple occasions, for instance for adjoint-based aerodynamic shape optimization
[92, 109, 108] or for an aerostrutural problem within [158].

The multi-fidelity framework based on the refinement approach has been implemented
within a GEMSEO [53] multi-fidelity package. This implementation is based on an
earlier multi-fidelity package originally developed by Romain Olivanti’s [108] in Python2,
compatible with GEMS V3, and designed to tackle multi-fidelity MDO problems. The
original framework already allows for variable parameterization between levels through
full rank linear prolongation and restriction. As gradients are considered to be available
for all the fidelity models, a first-order criterion based on gradient alignment is employed
to decide whether or not it is time to switch to the next fidelity level. The asynchronous
validation mechanism permits the current optimization to continue while verifying the
validity of a given design point.

The extension of this package to include sensitivity criteria and Pareto selection, and
the porting of this code is now fully compatible with python3 and the latest version of
GEMSEO, and benefits from all the latest features of GEMSEO in terms of workflow
generation and data exchange.

124

4.4.2 Coupled adjoint criterion
A toy test case: a disturbed Sellar case

To test the coupled adjoint criterion, the Sellar [135] test case have been considered for
its simplicity. This optimization problem and its guiding equations are given in more
details within Appendix B.1. To quickly generate low-fidelity models of the two disciplines
involved, we propose a multi-fidelity variant of the Sellar problem where each disciplinary
analysis has been perturbed by scaling the coupling input by a user-defined factor. These
factors, K1 and K2, are user-defined hyperparameters that intervene in the coupling
functions of the Sellar1 and Sellar2 disciplines, respectively. These scaling factors affect
the design in the following ways:

Sellar 1: ϕ1(x0, x1, y2) =
√

x2
0,1 + x1 + x0,2 − 0.2K1y2 (4.4.1)

Sellar 2: ϕ2(x0, y1) = K2|y1|+x0,1 + x0,2 (4.4.2)

By varying the value of the couple (K1, K2), the fidelity of the resulting MDA changes.
The couple (K1, K2) = (1, 1) is considered as the high-fidelity MDA.

The cost is simulated by delaying the discipline computation depending on how far the
pair (K1, K2) is from the high-fidelity pair (1, 1). Typically, in the following, a quadratic
model is built for each value Ki i ∈ {1, 2} within the interval [0, 2] for both disciplines.
This quadratic model, given by Equation (4.4.3), is constructed such that the maximum
cost is reached for Ki = 1 i ∈ {1, 2}, and such that a discipline with a value of Ki that
reaches its extreme values, i.e. Ki ∈ {0, 2}, has a cost of zero.

cost(Ki) = −νK2
i + 2νKi i ∈ {1, 2} . (4.4.3)

The constant ν is user-defined in order to simulate sensible cost discrepancy between
models without being too demanding when converging all MDAs for computing the true
error. In the following, ν is arbitrarily set to be equal to 7 for both disciplines Sellar1 and
Sellar2.

Both disciplines, Sellar1 and Sellar2, are treated equally for the undergoing study. The
previous methodology can be utilized to discriminate both disciplines in terms of the
availability of their respective low-fidelity models. It would have been possible to consider
more asymmetrical cases, where one discipline has a greater number of low-fidelity models
than the other, or where a different cost model than (4.4.3) is utilized.

Error of the fidelity models on the initial design

As the high-fidelity, noted ΨHF = Ψ1,1, is defined for the couple (K1, K2) = (1, 1), low-
fidelity MDAs, noted ΨK1,K2 , are generated using evenly spaced values in the interval [0, 2]
with a gap of 0.1 between values. Therefore 21 models are available for both disciplines
Sellar1 and Sellar2. Using all the possible combinations for the MDA fidelity models,
there is a total of 212 = 441 models to discriminate. Figure 4.13 shows the estimated error
using the coupled adjoint criterion, as-well as the analytical Taylor approximation and
the true error obtained by converging all MDAs fidelity at the initial design point.

125

ϵtaylor = −∇k1,k2f(x0, x1, x1, Ψ1,1(x0, x1, x1))
[
K1
K2

]
. (4.4.4)

All models are considered to be solved using the non-linear Jacobi algorithm and are
ranked in ascending true error. Figure 4.14 offers a new outlook of the previous results,
tracing both analytical Taylor error and adjoint criterion with respect to the true error
for each fidelity model.

0 100 200 300 400
Index of the Mda ordered by ascending True error

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Es
tim

at
ed

 e
rro

r o
n

th
e

ob
je

ct
iv

e

Adjoint correction
Taylor error
True error

Figure 4.13: MDAs, (K1, K2) ∈ [0, 2]2, ranked with the coupled adjoint criterion

0.6 0.4 0.2 0.0 0.2 0.4 0.6
True Error

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Ap
pr

ox
im

at
ed

 e
rro

r

Adjoint correction error
Taylor error

Figure 4.14: Distance from true error

Both figures show that the computed adjoint correction criterion is capturing the true
error evolution trend, similarly as the first order Taylor approximation, as expected. The
maximum discrepancy between the first order approximation and the true error is of the

126

order of 0.2, which is, considering the large amount of models to rank and the total range
of 1.2, regarded as an acceptable bias. One can observe that the highest discrepancy
between the predicted error and the real one appends when K1 and/or K2 take the more
extreme values, typically below 0.3 or more than 1.8. In particular, the worst prediction is
reached for (K1, K2) = (0, 2), which, surprisingly, is far from being one of the worst models
in terms of couplings perturbation, further confirming that the fidelity of combination of
coupled models is not straightforward.

To illustrate that the quality of the prediction depends on how strong the perturbation
is, Figure 4.15 shows the same graph but only considering the models issued from
(K1, K2) ∈ [0.5, 1.5]2. In this example, where extremes disciplinary perturbations are
avoided, the error prediction never exceeds 0.06 and is far more reliable. Again, the
worst prediction is reached when the worst fidelity models are combined, namely for
(K1, K2) = (0.5, 1.5).

0 20 40 60 80 100 120
Index of the Mda ordered by ascending True error

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Es
tim

at
ed

 e
rro

r o
n

th
e

ob
je

ct
iv

e

Adjoint correction
Taylor error
True error

Figure 4.15: MDAs, (K1, K2) ∈ [0.5, 1.5]2, ranked with the coupled adjoint criterion

Considering the computation time, results are gathered in Table 4.1, that shows the large
amount of time saved for the estimation. The high-fidelity convergence takes approximately
one minute for 9 iterations. The adjoint vector computation, which takes approximately
14 seconds, and the execution for each disciplinary fidelity models is a bit more expensive
but still relatively small considering that the criterion is applied on 441 different models.
If all MDA fidelity models needed to be converged, a simple rule of thumb can give us a
good approximation of the time needed by making the small assumption that all MDAs
take, on average, 9 iterations to converge (similarly as the high-fidelity model). Hence,
as each disciplinary fidelity models appears in exactly 21 models, and that executing all
these disciplinary models a unique time took 3.16 minutes, converging all the MDA fidelity
models should take approximately 9∗21∗3.16 ≈ 635 minutes for the whole approximation,
which represents more than 10 hours of computation.

127

Elapsed time (min)
HF model convergence 0.94

LF models with Adjoint correction 3.36
LF models with True error 635.04

Table 4.1: Computation time for error estimation

Error at the optimum

The aforementioned errors were computed on the initial design point, one can ask ourselves
whether these errors can be directly used as good approximations of the errors at the
optimal design. In this respect, a full MDF optimization is performed for each possible
model selection V . Hence all 441 MDF models are optimized together and the resulting
objective values f ∗

V are compared to the high-fidelity one f ∗
HF . For each model, Figure 4.16

shows the estimated error using the coupled adjoint criterion on the initial design point
and the error on the objective obtained after a full optimization, i.e. f ∗

V −f ∗
HF . As expected,

the coupled adjoint criterion make numerous classifications whenever the fidelity on the
optimal value function is considered. However, it catches the global trend of the true error
on the optimal objective value, as the average error is also strictly increasing.

0 100 200 300 400
Index of the Mda ordered by ascending error on f^*

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Es
tim

at
ed

 e
rro

r o
n

th
e

ob
je

ct
iv

e

Adjoint correction
Linear regression on Adjoint correction
error on f^*

Figure 4.16: MDAs, (K1, K2) ∈ [0, 2]2, ranked with the coupled adjoint criterion and
error on f ∗

Pareto front and model selection

Reporting both cost and error for each low-fidelity model results in the Pareto front
illustrated in Figure 4.17. The obtained Pareto front, where both axis are normalized,
is coherent with how the fidelity models have been constructed. The quadratic cost
function used to define the cost for each fidelity is clearly observable and the high-fidelity
model posses a zero error and the highest precision. The selection algorithm was asked
for the selection of 3 different Pareto front models among 10 Pareto optimal fidelity
models. It should be noticed that the post-processing algorithm the lowest-fidelity model

128

as its neighbor is judged as having a too similar, nearly 0, cost for a slightly better
precision.

0.0 0.2 0.4 0.6 0.8 1.0
Error

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

Not on the Pareto front
Pareto point
Selected Pareto point

Figure 4.17: Sellar Pareto front with an approximated error using the adjoint criterion,
MDAs created with (K1, K2) ∈ [0, 2]2 and Tr = 0.7

Figure 4.18 shows the true Pareto front obtained by converging all MDA fidelity models
and comparing their output to the high-fidelity one. It should be noted that, similarly as
with the adjoint based criterion, the lowest-fidelity level is not considered, in fact It not
even on the Pareto front. On the other hand, the resulting Pareto font is more compressed,
a consequence is that the post-process algorithm found out that a third fidelity model is
not necessary. Hence the in-between fidelity model has been eliminated.

0.0 0.2 0.4 0.6 0.8 1.0
Error

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

Not on the Pareto front
Pareto point
Selected Pareto point

Figure 4.18: Sellar Pareto front after convergence of all models, MDAs created with
(K1, K2) ∈ [0, 2]2 and Tr = 0.7

129

A refinement optimization

Next, the multi-fidelity refinement algorithm is applied to multiple fidelity model selections.
The objective of this numerical experiment is to measure the gain, in terms of total
discipline execution time, of using each considered model selection within the multi-fidelity
refinement framework.

Table 4.2 shows the computed time ratio between the multi-fidelity approach and the single-
fidelity approach for different selection strategies. The considered models are represented
by their pair of perturbation parameters (K1, K2), where the notation (i, j) → (i′, j′)
means that the fidelity model (i′, j′) is optimized after model (i, j) and warm-started by
the found optimal design of model (i, j). Obviously, the high-fidelity model, represented
by the pair (1, 1), is always presents as the last computed model.

Among the considered strategies, two naive selections are used, where the fidelity models
are chosen by selecting the extreme values of (K1, K2) as the lowest fidelity level and their
average values for the intermediate fidelity model. Both selections shown in Figure 4.17
and Figure 4.18 are also considered based on the adjoint criterion and fully converged
errors, respectively. To see if the addition of a third fidelity model has an impact on the
multi-fidelity optimization, the adjoint based selection where the intermediate model is
retrieved and the fully converged errors selection with 3 models, i.e. the selection before
the post-process algorithm, are also considered.

Choice of the LF models Selected models w.r.t. (K1, K2) Time ratio (MF/HF)
Naive selection no1 (0, 0) → (0.5, 0.5) → (1, 1) 1.19
Naive selection no2 (2, 2) → (1.5, 1.5) → (1, 1) 1.25

3 fidelity adjoint criterion (0, 1.8) → (0, 2) → (1, 1) 0.87
2 fidelity adjoint criterion (0, 1.8) → (1, 1) 0.87

3 fidelity true error (0, 2) → (0.1, 1.1) → (1, 1) 1.24
2 fidelity true error (0, 2) → (1, 1) 0.83

Table 4.2: Computation time for the multi-fidelity refinement algorithm

We can observe that both naive selections have poor results, in particular that both
multi-fidelity approaches are slower than using only the high-fidelity model. Both Pareto
selections show a speedup over the multi-fidelity refinement approach, with a slight
advantage for the true error selection, as expected. If the removal of the intermediate
fidelity model from the adjoint-based selection has no effect on the recovery time of the
multi-fidelity algorithm, this is not the case for the addition of a third model within the
true error-based selection, which becomes much worse. This indicates that the post-process
algorithm, which removes fidelity models judged to be detrimental to the multi-fidelity
optimization, was beneficial.

4.4.3 Gradient alignment criterion
For the gradient alignment criterion, an application measures the impact of the discipline
order of execution when backward effects are neglected on the SSBJ test case.

130

Impact of architecture and the disciplines order on the optimization

In the context of MDO, one potential approach to developing a low-fidelity model of the
process is to disregard the backward effects of coupled disciplines. This is accomplished
by initiating the computation of each discipline in a sequential order at each evaluation of
the objective and constraints. This can be regarded as a one-pass Gauss-Seidel algorithm.
The consequence of the absence of a loop is that the backward effects are neglected. This
is because a particular discipline will not have information from the subsequent disciplines
until the next optimization iteration. Consequently, the result of the process is highly
influenced by the sequence of execution of the disciplines. It is therefore pertinent to
consider which sequence is most suitable for the low-fidelity model to be used in a more
generic multi-fidelity approach.

To illustrate let us consider the Sobieski Super Business Jet (SSBJ) [139] test case
presented in Appendix A. This test case is composed of 3 strongly coupled disciplines,
namely Structure, Propulsion and Aerodynamics and a fourth, weakly coupled, discipline
Mission in charge of the computation of the objective, here, the range. Since the latter is
always executed last, there are 6 possible sequence of the 3 strongly coupled disciplines and
thus 6 possible low-fidelity models to consider. Figure 4.19 shows the XDSM diagram for
one of the low-fidelity models, namely the one with the sequence Structure → Propulsion
→ Aerodynamics.

Figure 4.19: An example of XDSM diagram for SSBJ with no backward effects

The high-fidelity model, represented in Figure 4.20, is defined by the classic MDF architec-
ture using a Gauss-Seidel MDA. It always yield a consistent solution for all designs (x0, x)
in the sense that the computation of the coupling variables, objective and constraints are
not affected by the sequence of execution of the disciplines.

131

Figure 4.20: The XDSM diagram for SSBJ with a MDA based strategy using a
Gauss-Seidel MDA

It is important to note that the objective is to select a single low-fidelity model for the
refinement approach. Indeed, by design, every low-fidelity models have the same cost.
This cost is ensured to be lower than the high-fidelity one, due to the absence of the MDA
loop.

Since backward effects are neglected, and since the order of the disciplines is important
for the choice of low-fidelity architecture, gradient alignment is used to approximate the
error introduced by a given order of disciplines by simply applying the chain rule for each
possible order. The chosen criterion takes into account the objective and the constraint
g3, computed by the Propulsion discipline, with equal weights:

ϵalign = 1
2[ϵf

align + ϵg3
align] (4.4.5)

Both g1 and g2, computed by the Structure discipline and the Aerodynamics discipline
respectively, are not considered in the criterion. This is due to the fact that these two
constraints does not depend on the couplings, as a result their computation and derivatives
are not affected by disregarding the backward effects. This criterion is computed on a
unique point, the initial design point for the SSBJ test case (cf. Table A.1), we do not find
that varying the evaluation point has a particular impact on the estimated error.

As we have few low-fidelity models, it is possible to compute the gradient alignment
criterion for each one of them and perform the multi-fidelity refinement approach. To
do not depend on the starting point for the optimization, a design of experiment is
performed on the SSBJ’s design space to generate 300 different stating point using the
Latin Hypercube Sampling (LHS) method [105]. Table 4.3 shows, for each low-fidelity
model, the error approximated via the gradient alignment criterion and the average ratio
of the number of discipline calls between the multi-fidelity approach and the original MDF
method on the 300 optimizations.

These results show that the considered criterion is efficient in giving an approximation of
the fidelity ranking for the considered refinement multi-fidelity approach. Each low-fidelity
model is well ranked with respect to the benefits of its inclusion in the multi-fidelity
algorithm in terms of discipline calls. Considering the error estimation ϵalign, three groups
of models can be distinguished. The first one is uniquely represented by the sequence
Structure → Aerodynamics → Propulsion and has the lowest estimated error with an

132

Choice of the LF model ϵalign Time ratio (MF/HF)
Structure → Aerodynamics → Propulsion 4.94 ∗ 10−5 0.46
Aerodynamics → Structure → Propulsion 1.82 ∗ 10−3 0.53
Aerodynamics → Propulsion → Structure 2.08 ∗ 10−3 0.82
Structure → Propulsion → Aerodynamics 4.67 ∗ 10−1 0.92
Propulsion → Structure → Aerodynamics 4.67 ∗ 10−1 0.98
Propulsion → Aerodynamics → Structure 4.69 ∗ 10−1 0.95

Table 4.3: Computation time for the multi-fidelity refinement algorithm

order of 10−5. It also provides the best benefits for the multi-fidelity approach, the total
number of discipline calls being cut-off by more than a half. The second group gather the
two last sequences, both starting with the Aerodynamics discipline, with an estimated
error or the order of 10−3. The criterion made no mistakes, as the sequence Aerodynamics
→ Structure → Propulsion is well considered as a better sequence of execution than the
other one, but the difference between the two error does not represent the gap between
the potential gain for the multi-fidelity algorithm. Indeed, even if ϵalign has the same
order for both sequences, the total number of discipline calls saved varies greatly, passing
from 47% calls saved to only 18%. Nonetheless they are both better than the low-fidelity
models within group 3. This last group is composed of the remaining models with an an
estimated error or the order of 10−1. These tree sequences exhibit less than 10% discipline
calls saved, and their relative ordering is not well-approximated by the gradient alignment
criterion.

To summarize, the presented criterion allows to distinguished three groups of models in
terms of benefits for the multi-fidelity approach, all groups are easily ranked from the
worst to the best. Discrimination within a same group, however, are less reliable, ranking
of the models is subject to errors and interpretation of the benefits of the inclusion of
a model compared to another is unclear. This is coherent with the reason behind the
existence of this criterion and the expected behavior: having a rough approximations
with minor errors for closely related models, but the global ranking for all the considered
models is kept unchanged.

4.4.4 A multi-fidelity application using bi-level architectures
This section contains a multi-fidelity optimization on the previously introduced SSBJ
test case [139], utilizing the BL-BCD-MDF architecture, presented in Chapter 3, as a
high-fidelity model of the BL-IRT architecture.

The objective of this application is to illustrate the capabilities and the flexibility of the
methodologies, and their implementation within GEMSEO, to quickly build complex
MDO processes.

Definition of the process

Considering the SSBJ test case [139], the goal of this application is to build a multi-fidelity
refinement approach using the newly introduced BL-BCD-MDF architecture introduced
in Chapter 3 as a high-fidelity model and the BL-IRT architecture as a low-fidelity model.
The main argument for considering the BL-IRT architecture as a low-fidelity model of the

133

BL-BCD-MDF is its lower restitution time for the lower-level optimization problem, which
is obtained at the cost of the discrepancy error on the system functions as highlighted in
Chapter 3.

Table 4.4 shows the differences between the high and low-fidelity models. As shown, the
system level of the BL-BCD-MDF is solved using NLOPT’s BOBYQA [121] algorithm.
This is a DFO algorithm based on quadratic approximations of the objective, which we
believe works better with the BL-BCD-MDF architecture than with the BL-IRT because of
the discrepancy error reduction. Since BOBYQA does not handle constraints natively, they
are added to the system objective function under a penalized form with a fixed external
penalty factor. Because of the discrepancy error, NLOPT’s COBYLA [121] algorithm
is considered for the system optimization problem, since the linear approximations of
the functions used are less sensitive to noise. All block optimizations are solved using
NLOPT’s SLSQP algorithm. An MDF-based strategy using a Gauss-Seidel MDA is
implemented within the block optimization of the BL-BCD-MDF architecture.

The only difference between the BL-BCD-MDF architecture strategy used in the multi-
fidelity framework and that used in the mono-fidelity optimization is the init step parame-
ter, which controls the range for the initial DOE that builds the approximations. The
reason for this change is that the high-fidelity model is assumed to start closer to the
optimum in the multi-fidelity framework, since the low-fidelity optimization has already
been performed. For this reason, the init step is lowered to 1e−2 to avoid searching in
uninteresting regions, otherwise there would be a high chance that the initial DEO would
degrade the solution found by the low-fidelity optimization and thus we would lose the
interest of the multi-fidelity approach.

High-fidelity model Low-fidelity model
Architecture name BL-BCD-MDF BL-IRT
System optimizer BOBYQA COBYLA

Disciplinary block optimizer SLSQP SLSQP
MDA within block optimizations YES (Gauss-Seidel) NO
MDA before block optimizations YES (Jacobi) YES (Jacobi)
MDA after block optimizations NO YES (Jacobi)

Init step 0.25 (MONO), 1e−2 (MF) 0.25

Table 4.4: A summary of the differences between the high-fidelity model and the
low-fidelity model.

A comparison between the mono-fidelity optimization and the multi-fidelity
approach

First, we run the high-fidelity model as a standalone, which gives us a mono-fidelity
optimization for comparison with the multi-fidelity framework. The evolution of the
objection with respect to the system iterations is illustrated with Figure 4.21.

134

1 9 17 25 33 41 49 57 65
Iterations

4

3

2

1

0

Ob
je

ct
iv

e
va

lu
e

Evolution of the objective value

Figure 4.21: The reference mono-fidelity optimization on SSBJ using the BL-BCD-MDF
architecture

For the multi-fidelity optimization, we again consider the multi-fidelity refinement al-
gorithm. Figure 4.22 shows the evolution of the objective function for the IRT-BL
optimization, while Figure 4.23 illustrates the system objective of the high-fidelity model
warm-started by the low-fidelity’s found solution.

1 9 17 25 33 41 49 57 65 73
Iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Ob
je

ct
iv

e
va

lu
e

Evolution of the objective value

Figure 4.22: The low-fidelity optimization on SSBJ using the BL-IRT architecture within
the multi-fidelity framework

135

1 4 7 10 13 16 19 22 25
Iterations

3.950

3.925

3.900

3.875

3.850

3.825

3.800

Ob
je

ct
iv

e
va

lu
e

Evolution of the objective value

Figure 4.23: The high-fidelity optimization on SSBJ using the BL-BCD-MDF
architecture within the multi-fidelity framework

Both the mono-fidelity and multi-fidelity approaches reached the correct solution for
f ∗ = 3963. The mono-fidelity optimization, which only runs the high-fidelity model,
reached the correct solution with a total of 22235 discipline calls, while the multi-fidelity
algorithm only requires a total of 11542 discipline calls, split between the high-fidelity
and low-fidelity models, to reach the same accuracy. This represents a reduction of
approximately 48% in discipline calls saved by using the multi-fidelity framework. It
should be noted that the number of discipline calls does not take into account the
parallelization of the block optimization within the BL-IRT architecture, and therefore
serves as a lower bound on the time savings.

136

Chapter 5

Conclusions and perspectives

The present manuscript contains several contributions related to methodologies for high-
dimensional MDO. These contributions are related to the two main thrusts of this thesis:
first, the bi-level MDO architectures and their convergence properties, and second, an
efficient fidelity model selection for the application of multi-fidelity algorithms in MDO.
This concluding chapter first summarizes the various contributions in each of these two
areas, and then discusses the prospects for future research and improvements.

5.1 Contributions
Following the chapter structure, the various contributions in this manuscript can be
divided into two subsets.

A new bi-level MDO architecture, namely the BL-BCD-MDF architecture, inspired by
previous works from Sobieski, with the BLISS architecture [139], ONERA [2, 84, 131]
and IRT Saint Exupéry [55], is proposed in the context of distributed architectures
for high-dimensional MDO. First, the present manuscript presents a new mathematical
formalization of the IRT bi-level decomposition and a mathematical framework for studying
it. This bi-level architecture assumes that the number of shared variables is limited and
a gradient-free optimization algorithm can be used at the system level, as opposed to
the local variables, more numerous, that must be managed with the gradients within the
so-called lower optimization problem. In this framework, it is shown that the correct
behavior of the architecture, in terms of regularity of the system function and hence
convergence, depends first and foremost on the correct solution of the subproblem, a
guarantee that the aforementioned architecture cannot provide. In order to enforce such
behavior by solving the lower level as precisely as possible, a new solution algorithm is
proposed, the Block Coordinate Descent (BCD) algorithm, which, combined with the
bi-level framework, gives rise to the aforementioned BL-BCD-MDF architecture. The
BCD algorithm respects the specifications given in the preamble, i.e. it is based on a
block decomposition close to the disciplinary decomposition, where gradient information
can be used, allows the resolution of a high-dimensional lower level, and does not require
the coupled adjoint. Several properties of the said algorithm are shown, among which
the main result of this chapter is the establishment of a proof of the local convergence of
the BCD algorithm under certain assumptions considered to be industrially justifiable,
namely the Unique Block Minimizer (UBM) assumption and the First Order Separability

137

(FOS) hypothesis. This makes the entire bi-level architecture locally convergent for all
derivative-free algorithms that only require functions to be continuously differentiable to
converge. The same proof philosophy could be used to show the convergence of other
bi-level architectures, under the hypothesis that a solution algorithm is provided that
solves the lower-level optimization problem with sufficient accuracy. The verification of
these assumptions is not an easy task, the Unique Block Minimizer (UBM) assumption
could be tested, to some extent by multi-starting the block optimizations, and the First
Order Separability (FOS) hypothesis would typically necessitate the coupled adjoint on
the MDF solution and thus can only be known for applications where the solution is
already known. Considering this, several variants, three in number, are proposed to
allow flexibility in the assumptions and in the construction of the architecture. These
variants are presented here to allow a trade-off between the convergence properties of
the chosen architecture and the computational burden of extending these assumptions.
The resulting architecture, the BL-BCD-MDF architecture, and one of its variants, the
BL-BCD-WK architecture, are compared with the IRT-BL architecture and a gradient-free
MDF architecture on several test cases. First results on the classical SSBJ test case
show that the newly defined architectures indeed increase the regularity of the functions
by reducing the noise induced by the distributed optimization of the blocks within the
solution of the lower-level optimization problem. One of the consequences is a much
better robustness with respect to the starting point of the BCD-based architectures
compared to the BL-IRT, as demonstrated by the benchmark. The same benchmark also
emphasizes that these architectures are very sensitive to hyperparameters such as the
tolerances on the BCD loop or on the block convergence; further research on this topic
should be pursued, in particular towards more adaptive approaches. Finally, a 2-block
modified scalable Sellar test case was introduced and considered for scalability comparison.
As expected, the bi-level architectures show much better scalability as the number of
local variables, coupling variables, and constraints increases than the gradient-free MDF
architecture.

With respect to multi-fidelity MDO methods, the choice has been made to study the
classification of fidelity models, whose number of possibilities follows a combinatorial
explosion, in order to select the most appropriate fidelity models for a multi-fidelity refine-
ment approach. The main contribution of this chapter is the definition, the mathematical
formalization, the hypothesis study as well as the validation on several applications, of two
sensitivity criteria, an adjoint based one and a gradient based one, to quickly estimate the
fidelity of multiple fidelity MDO models. Since both criteria use local information to esti-
mate fidelity, they are both subject to misclassification compared to more computationally
intensive methods that rely heavily on statistics. However, these two criteria are both
much cheaper to compute and are still expected to outperform methods based on heuristics.
In this respect, they represent an intermediate step between generally unreliable heuristics
based on intuition and more precise but also too costly estimation methods considering
the large number of models to be ranked. The hypothesis is that the misclassifications
occur for closely related models, and that the choice of one model over the others should
not affect a generic multi-fidelity approach too much. Furthermore, a methodology to con-
struct a (cost,error) Pareto front and to down-select the most interesting fidelity models is
presented, as well as a post-processing algorithm to eliminate irrelevant models, i.e. models
that offer a cost-precision ratio that is not considered sufficiently interesting compared
to the preceding and subsequent fidelity models in the hierarchy. The above hypotheses

138

and expected behaviors are observed by the applications shown in the manuscript. All
considered applications show improved performance by using the multi-fidelity refinement
approach with the fidelity selection described in the manuscript. The ranking given by
the criteria is indeed noisy, as a consequence the ”best” fidelity selection, in the sense
that it provides the best speedup for the considered multi-fidelity optimization, may be
missed. However, the resulting classification always yields a satisfactory fidelity model
selection, where the selected fidelity models are not far from the real best fidelity selection
in terms of performance under multi-fidelity optimization, and the worst fidelity models
are avoided. It is confirmed that these two criteria represent an interesting trade-off
between computational time and gain from the multi-fidelity refinement approach. First,
we introduced a multi-fidelity Sellar application where the fidelity of each discipline can be
controlled by a user-defined parameter. We were able to effectively classify 441 different
fidelities of MDF architectures for the Sellar problem with the adjoint criterion, yielding
a small speed-up of the multi-fidelity over the mono-fidelity for a small computational
cost. Second, by using the gradient-based criterion, we were able to reduce by more
than half the total number of discipline calls required to compute the optimal design of
the SSBJ. This was done by warm-starting a high-fidelity MDF architecture with the
solution of a well-chosen sequence of discipline computations, where backward effects are
neglected.

These two contributions led to the development of a dedicated package within the open
source (GEMSEO) [53] python library. The bi-level package contains implementations of
both the BL-BCD-MDF and BL-BCD-WK architectures. An effort has been made to
make the implementations more automated than other in-house implementations, in the
sense that the bi-level and disciplinary decompositions, as well as the assignment of design
variables/constraints, are fully automated. This package also includes the block-modified
Sellar problem described in Section 3.6.2, which allows a two-block decomposition of
the disciplinary level of generic bi-level architectures for testing purposes, as well as
its scalable version for the scalability study discussed above. The multi-fidelity criteria
package regroups the two sensitivity criteria, a Pareto front modification that allows the
fidelity selection presented in the manuscript, as well as the multi-fidelity Sellar problem.
Within the framework of this thesis, there was the opportunity to update the previous
multi-fidelity package originally developed by Romain Olivanti’s [108] in Python2 and
compatible with GEMS V3, to the latest version of GEMSEO. The extension and porting
of this code is now fully compatible with python3 and the current version of GEMSEO,
including the generic multi-fidelity refinement approach used in this manuscript, as well as
all the tools and methods mentioned in his thesis [108], such as trust-region mechanisms,
Hessian approximations, or asynchronous validation. As it is, it is possible to benefit from
all the latest features of GEMSEO in terms of workflow generation and data exchange,
as well as the implementation of all the work described in this manuscript. Therefore,
a great flexibility is allowed on the approaches considered, possibly combining all these
methodologies to treat different applications.

5.2 Perspectives
Even if the newly defined bi-level architecture with the Block Coordinate Descent algorithm,
the BL-BCD-MDF architecture, represents a step towards a more sophisticated distributed
strategy in which no separability is imposed on functions, the assumptions made in this

139

manuscript for the local convergence result are, however, not given in many applications
and hard to verify a priori, i.e. without any prior knowledge of the targeted application
and the desired discipinary division. These assumptions can be tested to some extent,
e.g. by multi-starting the block optimizations for the UBM assumption, or, if coupled
derivatives are available and several high-fidelity optimizations can be preformed, one
can test the FOS hypothesis for several parameterizations of the lower-level optimization
problem. We believe that a smaller set of assumptions for the local convergence result
may be found in the future, especially since several experiments on applications that do
not verify these hypotheses still find the expected local optima. In other words, these
hypotheses are shown to be sufficient, but not necessarily necessary. Another limitation
of the BCD algorithm is that a fixed point of the BCD operator is not necessarily a
local optimum for the lower optimization problem. More importantly, the presented
architectures do not handle infeasible blocks, i.e. whenever a block optimization is unable
to find a feasible point, the process continues, but all guarantees of local convergence and
feasibility are lost. Switching to a least-squares minimization of the constraint violation
could be considered as a lesser evil, the block optimization thus returns the least infeasible
point. Alternatively, relaxation and/or penalty methods can be considered to prevent the
whole process from failing. It has also been observed that the described architectures
are strongly influenced by the tolerances of both the block optimizer and the BCD loop,
which affect both the convergence to the optima and the time required to solve the
suboptimization problem. One solution may be to incorporate strategies based on similar
architectures, such as those used by Tosseram et al. [146, 148] in their own BCD loop,
where the tolerances are tightened as the optimization proceeds, allowing for faster initial
system iterations where accuracy may not be essential, depending on the optimization
algorithm. Finally, experiments should be conducted on more complex real-world problems
within the targeted applications, including high-dimensional/high-fidelity aerostructure
applications [78], as well as a comparison with other classical distributed architectures
such as BLISS98 [139], or the Augmented Lagrangian coordination method proposed by
Tosseram and al. [146, 148]. The question arises of the limitations of the approach of this
thesis with respect to the limitations:

• The proof of convergence is given with hypotheses that are difficult to test on real
cases.

• Numerical experiments are performed on the SSBJ case, which is a standard bench-
mark but may have different properties from the real cases in question, so the
robustness gains may not be found in real applications. However, our experience
is that it is surprisingly representative of real multilevel applications, which makes
benchmarking algorithms on this test case a good compromise given the relatively
low cost of the disciplines involved.

Further tests have been carried out at IRT on high-fidelity aerostructure cases, and gains
in convergence robustness have been observed with the BL-BCD architecture, particularly
with regard to the starting point, compared with the BL-IRT architecture. This confirms
the overall relevance of the approach.

The contributions on multi-fidelity criteria for the down-selection of fidelity models are
currently promising, but must still be considered as preliminary results. Further validation
tests need to be conducted by varying the application cases. For example, it is not clear
whether these criteria are applicable and/or relevant to classify more complex fidelity

140

models, such as a change in architecture as seen in [156], or whether the resulting selection
is relevant to other local multi-fidelity optimization methods than the considered multi-
fidelity refinement approach [108], such as those based on trust region mechanisms [5, 61].
Furthermore, it may be interesting to consider more design points within the available
computational resources for the computation of the two criteria, as was considered during
the SSBJ application within Section 4.4.3. It is expected to reduce the ranking error when
the fidelity of the considered models varies over the entire definition space. Of course, by
considering more design points and averaging the error, the cost of computing the criteria
increases linearly, leading to a trade-off between sufficient accuracy and an affordable
computational budget. The question of how many points to consider, their impact on the
classification, and the resulting multi-fidelity optimization is completely open.

Finally, in continuity with the work started in Section 4.4.4, it is envisaged to pursue
strategies that combine all that has been seen in this manuscript. Indeed, since both contri-
butions aim at facilitating the resolution of high-fidelity/high-dimensional MDO problems
with numerous disciplines and coupling variables, it is expected that improvements can
emerge from a multi-fidelity approach in which MDO architectures are considered as
different fidelity models. In particular, distributed architectures that exhibit more co-
ordination and convergence problems than their monolithic counterparts, such as the
bi-level ones presented in this thesis, can be considered as highly adaptable low-fidelity
models. Especially since distributed architectures, by nature, exhibit many design choices
at different levels:

• The choice of the fidelity for each discipline.

• Choices related to organizational aspects, such as the choice of the coordination
mechanisms or on the order of execution of the different models.

• The choice of the, potentially numerous, hyperparameters settings, such as the
different tolerances.

It would allow many low-fidelity architectures to be defined, and then further classified
and down-selected by adapting the methodology presented in Chapter 4 to account for this
wider range of fidelity sources. Finally, an already known robust monolithic architecture,
such as MDF, can be considered as a high-fidelity model to ensure convergence to the
correct optimal design at the end of the multi-fidelity process.

Considering the development within GEMSEO, these implementations allow faster and
easier experiments. Since GEMSEO is already used in industry, and the included al-
gorithms are well integrated and validated, they are now available for testing on more
representative industrial problems.

141

Bibliography

[1] Mark A Abramson and Charles Audet. Convergence of mesh adaptive direct search
to second-order stationary points. SIAM Journal on Optimization, 17(2):606–619,
2006. 50, 51

[2] A Bi-Level High Fidelity Aero. Methodology-a focus on the structural sizing process.
9, 137

[3] Edward Albano and William P Rodden. A doublet-lattice method for calculating lift
distributions on oscillating surfaces in subsonic flows. AIAA journal, 7(2):279–285,
1969. 63

[4] Natalia M Alexandrov, Robert Michael Lewis, Clyde R Gumbert, Lawrence L Green,
and Perry A Newman. Approximation and model management in aerodynamic
optimization with variable-fidelity models. Journal of Aircraft, 38(6):1093–1101,
2001. 105

[5] Dennis J. E. Lewis R. M. Torczon V. Alexandrov N. M. A trust-region framework
for managing the use of approximation models in optimization. 1998. 101, 104, 105,
141

[6] Douglas Allaire and Karen Willcox. A mathematical and computational framework
for multifidelity design and analysis with computer models. International Journal
for Uncertainty Quantification, 4(1), 2014. 97, 104, 107, 108

[7] Mohamed Amine Bouhlel, Nathalie Bartoli, Rommel G Regis, Abdelkader Otsmane,
and Joseph Morlier. Efficient global optimization for high-dimensional constrained
problems by using the kriging models combined with the partial least squares method.
Engineering Optimization, 50(12):2038–2053, 2018. 108

[8] Holt Ashley. On making things the best-aeronautical uses of optimization. Journal
of Aircraft, 19(1):5–28, 1982. 7, 15

[9] Mathieu Balesdent, Nicolas Bérend, Philippe Dépincé, and Abdelhamid Chriette. A
survey of multidisciplinary design optimization methods in launch vehicle design.
Structural and Multidisciplinary optimization, 45:619–642, 2012. 7, 8, 15, 18, 19, 42,
47

[10] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales. Fundamenta mathematicae, 3(1):133–181, 1922. 57

[11] Arnaud Barthet. Amélioration de la prévision des coefficients aérodynamiques
autour de configurations portantes par méthode adjointe. PhD thesis, 2007. Thèse de

142

doctorat dirigée par Braza, Marianna et Airiau, Christophe Mécanique des fluides
Toulouse, INPT 2007. 119

[12] Arnaud Barthet, Christophe Airiau, Marianna Braza, and Löıc Tourrette. Adjoint-
based error correction applied to far-field drag breakdown on structured grid. In
24th AIAA Applied Aerodynamics Conference, page 3315, 2006. 119

[13] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent
type methods. SIAM journal on Optimization, 23(4):2037–2060, 2013. 69

[14] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based
model reduction methods for parametric dynamical systems. SIAM review, 57(4):483–
531, 2015. 102

[15] Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numer-
ical methods. Athena Scientific, 2015. 45, 66

[16] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997. 10, 27, 40, 45, 66, 67

[17] James C Bezdek and Richard J Hathaway. Some notes on alternating optimization.
In AFSS international conference on fuzzy systems, pages 288–300. Springer, 2002.
10, 27, 40, 45, 66

[18] James C Bezdek, Richard J Hathaway, DB Fogel, and CJ Robinson. Two new
convergence results for alternating optimization. Computational Intelligence: The
Experts Speak, pages 149–164, 2003. 10, 27, 40, 45, 66

[19] James C Bezdek, Richard J Hathaway, Michael J Sabin, and William T Tucker. Con-
vergence theory for fuzzy c-means: counterexamples and repairs. IEEE Transactions
on Systems, Man, and Cybernetics, 17(5):873–877, 1987. 69

[20] Nicolas P Bons and Joaquim RRA Martins. Aerostructural design exploration of a
wing in transonic flow. Aerospace, 7(8):118, 2020. 110

[21] Mohamed Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, and Joseph
Morlier. Improving kriging surrogates of high-dimensional design models by partial
least squares dimension reduction. Structural and Multidisciplinary Optimization,
53:935–952, 2016. 9

[22] Jerome Bracken and James T McGill. Mathematical programs with optimization
problems in the constraints. Operations research, 21(1):37–44, 1973. 51

[23] Robert Braun, Peter Gage, Ilan Kroo, and Ian Sobieski. Implementation and perfor-
mance issues in collaborative optimization. In 6th symposium on multidisciplinary
analysis and optimization, page 4017, 1996. 43

[24] Robert David Braun. Collaborative optimization: an architecture for large-scale
distributed design. Stanford University, 1996. 39, 43

[25] Jasper H Bussemaker, Nathalie Bartoli, Thierry Lefebvre, Pier Davide Ciampa, and
Björn Nagel. Effectiveness of surrogate-based optimization algorithms for system
architecture optimization. In AIAA Aviation 2021 forum, page 3095, 2021. 104

143

[26] W. Candler and R.D. Norton. Multi-level Programming. Discussion Papers, Devel-
opment Research Center, International Bank for Reconstruction and Development.
World Bank, 1977. 52

[27] Marco Carini, Christophe Blondeau, Nicolo Fabbiane, Michael Meheut, Mohammad
Abu-Zurayk, Johan M Feldwisch, Caslav Ilic, and Andrei Merle. Towards industrial
aero-structural aircraft optimization via coupled-adjoint derivatives. In AIAA
Aviation 2021 Forum, page 3074, 2021. 50

[28] Remy Charayron, Thierry Lefebvre, Nathalie Bartoli, and Joseph Morlier. Pareto
optimal fidelity level selection for multi-fidelity bayesian optimization applied to
drone design. In 12 th EASN International conference on” Innovation in Aviation
& Space for opening New Horizons”, 2022. 10, 98, 112

[29] Daniel Erik Christensen. Multifidelity methods for multidisciplinary design under
uncertainty. PhD thesis, Massachusetts Institute of Technology, 2012. 97, 108

[30] Benôıt Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel opti-
mization. Annals of operations research, 153:235–256, 2007. 55, 56

[31] Jean-Pierre Costa, Luc Pronzato, and Eric Thierry. A comparison between kriging
and radial basis function networks for nonlinear prediction. In NSIP, pages 726–730,
1999. 101, 103

[32] Evin J. Cramer, J. E. Dennis, Jr., Paul D. Frank, Robert Michael Lewis, and
Gregory R. Shubin. Problem Formulation for Multidisciplinary Optimization. SIAM
Journal on Optimization, 4(4):754–776, November 1994. 7, 18, 19, 20, 21

[33] Albert de Wit and Fred van Keulen. Numerical comparison of multi-level optimiza-
tion techniques. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, page 1895, 2007. 46

[34] Scott Delbecq, Marc Budinger, and Aurélien Reysset. Benchmarking of monolithic
mdo formulations and derivative computation techniques using openmdao. Structural
and Multidisciplinary Optimization, 62(2):645–666, 2020. 45, 104

[35] Jean Demange, A Mark Savill, and Timoleon Kipouros. A multifidelity multiobjective
optimization framework for high-lift airfoils. In 17th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, page 3367, 2016. 105

[36] Victor DeMiguel and Walter Murray. A local convergence analysis of bilevel decom-
position algorithms. Optimization and Engineering, 7:99–133, 2006. 45

[37] Stephan Dempe. An implicit function approach to bilevel programming problems.
In Multilevel Optimization: Algorithms and Applications, pages 273–294. Springer,
1998. 55

[38] Stephan Dempe. Bilevel optimization: theory, algorithms and applications, volume 3.
TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik Freiberg . . . ,
2018. 56

[39] Stephan Dempe and Joydeep Dutta. Is bilevel programming a special case of a math-
ematical program with complementarity constraints? Mathematical programming,
131:37–48, 2012. 54, 55, 57

144

[40] Stephan Dempe, Vyacheslav Kalashnikov, Gerardo A Pérez-Valdés, and Nataliya
Kalashnykova. Bilevel programming problems. Energy Systems. Springer, Berlin,
10:978–3, 2015. 53, 56, 57

[41] Stephan Dempe and Alain B Zemkoho. The generalized mangasarian-fromowitz
constraint qualification and optimality conditions for bilevel programs. Journal of
optimization theory and applications, 148:46–68, 2011. 53

[42] Stephen Dempe, Nguyen Dinh, and Joydeep Dutta. Optimality conditions for a
simple convex bilevel programming problem. Variational Analysis and Generalized
Differentiation in Optimization and Control: In Honor of Boris S. Mordukhovich,
pages 149–161, 2010. 55

[43] JE Dennis and Virginia Torczon. Managing approximation models in optimization.
Multidisciplinary design optimization: State-of-the-art, 5:330–347, 1997. 105

[44] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical programming, 91:201–213, 2002. 90

[45] Ali Elham and Michel JL van Tooren. Multi-fidelity wing aerostructural optimiza-
tion using a trust region filter-sqp algorithm. Structural and Multidisciplinary
Optimization, 55(5):1773–1786, 2017. 9, 105

[46] M Giselle Fernández-Godino, Chanyoung Park, Nam-Ho Kim, and Raphael T Haftka.
Review of multi-fidelity models. arXiv preprint arXiv:1609.07196, 2016. 9, 97, 100,
102, 108

[47] Anthony V Fiacco. Sensitivity analysis for nonlinear programming using penalty
methods. Mathematical programming, 10(1):287–311, 1976. 8, 34, 56, 61

[48] Joshua E Fontana, Pat Piperni, Zhi Yang, and Dimitri J Mavriplis. Aerostructural
wing optimization using a structural surrogate in a coupled adjoint formulation.
AIAA Journal, pages 1–18, 2024. 9, 107

[49] Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based
optimization. Progress in aerospace sciences, 45(1-3):50–79, 2009. 101, 103, 107

[50] Alexander I.J Forrester, András Sóbester, and Andy J Keane. Multi-fidelity opti-
mization via surrogate modelling. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 463(2088):3251–3269, December 2007. Publisher:
Royal Society. 101, 103, 107

[51] Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning
programs via high-level tracing. Systems for Machine Learning, 4(9), 2018. 8

[52] François Gallard. Aircraft shape optimization for mission performance. PhD thesis,
Institut National Polytechnique de Toulouse-INPT, 2014. 118

[53] Francois Gallard, Charlie Vanaret, Damien Guenot, Vincent Gachelin, Rémi Lafage,
Benoit Pauwels, Pierre-Jean Barjhoux, and Anne Gazaix. GEMS: A Python Library
for Automation of Multidisciplinary Design Optimization Process Generation. In
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Kissimmee, Florida, January 2018. American Institute of Aeronautics
and Astronautics. 11, 124, 139

145

[54] Nicolas Garland, Le Riche Rodolphe, Richet Yann, and Nicolas Durrande. Multi-
fidelity for mdo using gaussian processes. 2020. 97, 108

[55] Anne Gazaix, François Gallard, Vincent Ambert, Damien Guénot, Maxime Hamadi,
Stéphane Grihon, Patrick Sarouille, Thierry Y Druot, Joël Brézillon, Vincent
Gachelin, et al. Industrial application of an advanced bi-level mdo formulation to
aircraft engine pylon optimization. In AIAA Aviation 2019 Forum, page 3109, 2019.
9, 12, 40, 49, 91, 108, 137

[56] Anne Gazaix, Francois Gallard, Vincent Gachelin, Thierry Druot, Stéphane Grihon,
Vincent Ambert, Damien Guénot, Rémi Lafage, Charlie Vanaret, Benoit Pauwels,
Nathalie Bartoli, Thierry Lefebvre, Patrick Sarouille, Nicolas Desfachelles, Joel
Brézillon, Maxime Hamadi, and Selime Gurol. Towards the Industrialization of
New MDO Methodologies and Tools for Aircraft Design. In 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Denver, Colorado, June
2017. American Institute of Aeronautics and Astronautics. 39, 41, 47, 48, 62, 63, 64

[57] Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization
theory and applications, 10(4):237–260, 1972. 39

[58] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM review, 47(1):99–131, 2005. 88

[59] Stefan Goertz, Caslav Ilic, Jonas Jepsen, Martin Leitner, Matthias Schulze, Andreas
Schuster, Julian Scherer, Richard Becker, Sascha Zur, and Michael Petsch. Multi-
level mdo of a long-range transport aircraft using a distributed analysis framework.
In 18th AIAA/ISSMO multidisciplinary analysis and optimization conference, page
4326, 2017. 8, 31

[60] Robert B Gramacy and Herbert KH Lee. Adaptive design and analysis of super-
computer experiments. Technometrics, 51(2):130–145, 2009. 104

[61] Serge Gratton, Mélodie Mouffe, Annick Sartenaer, Philippe L. Toint, and Dimitri
Tomanos. Numerical experience with a recursive trust-region method for multilevel
nonlinear bound-constrained optimization. Optimization Methods and Software,
25(3):359–386, 2010. 105, 141

[62] Serge Gratton and Luis Vicente. A merit function approach for direct search. SIAM
Journal on Optimization, 24(4):1980–1998, 2014. 50, 51

[63] Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997. 23, 24,
26

[64] Luigi Grippo and Marco Sciandrone. On the convergence of the block nonlinear gauss–
seidel method under convex constraints. Operations research letters, 26(3):127–136,
2000. 10, 27, 40, 66, 67, 79

[65] Wolfgang Hackbusch. Multi-grid methods and applications, volume 4. Springer
Science & Business Media, 2013. 102

[66] Raphael T Haftka. Optimization of flexible wing structures subject to strength and
induced drag constraints. Aiaa Journal, 15(8):1101–1106, 1977. 7, 50

146

[67] Raphael T Haftka, Jaroslaw Sobieszczanski-Sobieski, and Sharon L Padula. On
options for interdisciplinary analysis and design optimization. Structural optimization,
4:65–74, 1992. 18

[68] S Louis Hakimi. Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations research, 12(3):450–459, 1964. 103

[69] John Michael Hammersley, David Christopher Handscomb, JM Hammersley, and
DC Handscomb. General principles of the monte carlo method. Monte Carlo
Methods, pages 50–75, 1964. 101

[70] Zhong-Hua Han, Stefan Görtz, and Ralf Zimmermann. Improving variable-fidelity
surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge
function. Aerospace Science and technology, 25(1):177–189, 2013. 102

[71] Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool:
principles, model, and specification. ACM Transactions on Mathematical Software
(TOMS), 39(3):1–43, 2013. 8

[72] Hisao Ishibuchi, Hiroyuki Masuda, and Yusuke Nojima. Pareto fronts of many-
objective degenerate test problems. IEEE Transactions on Evolutionary Computa-
tion, 20(5):807–813, 2015. 121

[73] Antony Jameson. Aerodynamic design via control theory. Journal of scientific
computing, 3:233–260, 1988. 50

[74] Donald R Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of global optimization, 21:345–383, 2001. 103, 104

[75] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global optimization, 13(4):455,
1998. 101, 102, 103

[76] Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex
computer code when fast approximations are available. Biometrika, 87(1):1–13,
2000. 101

[77] Gaetan Kenway and Joaquim RRA Martins. Aerostructural shape optimization
of wind turbine blades considering site-specific winds. In 12th AIAA/ISSMO
multidisciplinary analysis and optimization conference, page 6025, 2008. 7, 15

[78] Gaetan KW Kenway and Joaquim RRA Martins. Multipoint high-fidelity aerostruc-
tural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1):144–
160, 2014. 140

[79] Hongman Kim, Scott Ragon, Grant Soremekun, Brett Malone, and Jaroslaw
Sobieszczanski-Sobieski. Flexible approximation model approach for bi-level in-
tegrated system synthesis. In 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, page 4545, 2004. 47

[80] Srinivas Kodiyalam and Jaroslaw Sobieszczanski-Sobieski. Bilevel integrated system
synthesis with response surfaces. AIAA journal, 38(8):1479–1485, 2000. 47

147

[81] Norbert Kroll, Ralf Heinrich, W Krueger, and Björn Nagel. Fluid-structure coupling
for aerodynamic analysis and design: a dlr perspective. In 46th AIAA Aerospace
Sciences Meeting and Exhibit, page 561, 2008. 50

[82] Ilan Kroo, Steve Altus, Robert Braun, Peter Gage, and Ian Sobieski. Multidisci-
plinary optimization methods for aircraft preliminary design. In 5th symposium on
multidisciplinary analysis and optimization, page 4325, 1994. 7, 15

[83] Andrew B Lambe and Joaquim RRA Martins. Extensions to the design structure
matrix for the description of multidisciplinary design, analysis, and optimization
processes. Structural and Multidisciplinary Optimization, 46:273–284, 2012. 18

[84] Thierry Lefebvre, Peter Schmollgruber, Christophe Blondeau, and Gérald Carrier.
Aircraft conceptual design in a multi-level, multi-fidelity, multi-disciplinary optimiza-
tion process. In Proceedings of the 28th International Congress of The Aeronautical
Sciences, Brisbane, Australia, pages 23–28, 2012. 9, 137

[85] Leifur Leifsson and Slawomir Koziel. Aerodynamic shape optimization by variable-
fidelity computational fluid dynamics models: A review of recent progress. Journal
of Computational Science, 10:45–54, 2015. 102

[86] Xiang Li, Weiji Li, and Chang’an Liu. Geometric analysis of collaborative optimiza-
tion. Structural and Multidisciplinary Optimization, 35:301–313, 2008. 43

[87] Jacques Louis Lions and Pierre Lelong. Contrôle optimal de systèmes gouvernés par
des équations aux dérivées partielles. (No Title), 1968. 8

[88] Jie Lu, Jialin Han, Yaoguang Hu, and Guangquan Zhang. Multilevel decision-making:
A survey. Information Sciences, 346:463–487, 2016. 56

[89] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2.
Springer, 1984. 69

[90] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical programs with
equilibrium constraints. Cambridge University Press, 1996. 52, 53

[91] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible
descent methods: a general approach. Annals of Operations Research, 46(1):157–178,
1993. 67, 69

[92] Zhoujie Lyu, Gaetan KW Kenway, and Joaquim RRA Martins. Aerodynamic shape
optimization investigations of the common research model wing benchmark. AIAA
journal, 53(4):968–985, 2015. 110, 124

[93] Parviz M. Zadeh and Vassili Toropov. Multi-fidelity multidisciplinary design op-
timization based on collaborative optimization framework. In 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, page 5504, 2002. 10,
108, 110

[94] Richard MacNeal. The NASTRAN theoretical manual, volume 221. Scientific and
Technical Information Office, National Aeronautics and Space . . . , 1970. 7

[95] Charles A Mader, Joaquim RRA Martins, Juan J Alonso, and Edwin Van Der Weide.
Adjoint: An approach for the rapid development of discrete adjoint solvers. AIAA
journal, 46(4):863–873, 2008. 62

148

[96] Andrew March and Karen Willcox. Multifidelity approaches for parallel multi-
disciplinary optimization. In 12th AIAA Aviation Technology, Integration, and
Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, page 5688, 2012. 10, 104, 108, 110

[97] Andrew March and Karen Willcox. Provably convergent multifidelity optimization
algorithm not requiring high-fidelity derivatives. AIAA journal, 50(5):1079–1089,
2012. 106

[98] Andrew March, Karen Willcox, and Qiqi Wang. Gradient-based multifidelity
optimisation for aircraft design using bayesian model calibration. The Aeronautical
Journal, 115(1174):729–738, 2011. 101, 103, 106

[99] Andrew Irving March. Multidelity methods for multidisciplinary system design. PhD
thesis, Massachusetts Institute of Technology, 2012. 104

[100] DH802390 Martin. The essence of invexity. Journal of optimization Theory and
Applications, 47:65–76, 1985. 33

[101] Joaquim Martins and Andrew Lambe. Multidisciplinary design optimization: A
survey of architectures. AIAA Journal, 51:2049–2075, 09 2013. 7, 8, 18, 19, 20, 21,
39, 41, 42, 47, 49, 51

[102] Joaquim RRA Martins. Aerodynamic design optimization: Challenges and perspec-
tives. Computers & Fluids, 239:105391, 2022. 15

[103] Joaquim RRA Martins, Juan J Alonso, and James J Reuther. A coupled-adjoint
sensitivity analysis method for high-fidelity aero-structural design. Optimization
and Engineering, 6:33–62, 2005. 8, 15, 18, 31

[104] Joaquim RRA Martins and John T Hwang. Review and unification of methods for
computing derivatives of multidisciplinary computational models. AIAA journal,
51(11):2582–2599, 2013. 8

[105] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of
three methods for selecting values of input variables in the analysis of output from
a computer code. Technometrics, 42(1):55–61, 2000. 87, 132

[106] Ali Mehmani, Souma Chowdhury, and Achille Messac. Managing variable fidelity
models in population-based optimization using adaptive model switching. In 15th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page 2436,
2014. 108

[107] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applica-
tions, 9(1):141–142, 1964. 103

[108] Romain Olivanti. Multi-fidelity aerodynamic shape optimization considering flexible
adjoint at multiple operating conditions. PhD thesis, Toulouse, ISAE, 2021. 10, 11,
12, 22, 99, 100, 101, 105, 110, 120, 123, 124, 139, 141

[109] Romain Olivanti, François Gallard, Joël Brézillon, and Nicolas Gourdain. Compari-
son of generic multi-fidelity approaches for bound-constrained nonlinear optimization
applied to adjoint-based cfd applications. In AIAA Aviation 2019 Forum, page 3102,
2019. 105, 106, 123, 124

149

[110] James M Ortega and Robert J Plemmons. Extensions of the ostrowski-reich theorem
for sor iterations. Linear algebra and its applications, 28:177–191, 1979. 10, 23, 26,
27, 28, 40, 66, 67, 72

[111] James M Ortega and Werner C Rheinboldt. Monotone iterations for nonlinear
equations with application to gauss-seidel methods. SIAM Journal on Numerical
Analysis, 4(2):171–190, 1967. 10, 23, 26, 40, 45, 66, 67, 72

[112] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations
in several variables. SIAM, 2000. 17, 23

[113] James M Ortega and Maxine L Rockoff. Nonlinear difference equations and gauss-
seidel type iterative methods. SIAM Journal on Numerical Analysis, 3(3):497–513,
1966. 10, 23, 26, 40, 45, 66, 67, 72, 113

[114] Jǐŕı V Outrata. A note on the usage of nondifferentiable exact penalties in some
special optimization problems. Kybernetika, 24(4):251–258, 1988. 55

[115] Ricardo M Paiva, André RD Carvalho, Curran Crawford, and Afzal Suleman.
Comparison of surrogate models in a multidisciplinary optimization framework for
wing design. AIAA journal, 48(5):995–1006, 2010. 9, 97, 107

[116] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of multifidelity
methods in uncertainty propagation, inference, and optimization. arXiv:1806.10761
[cs, math, stat], June 2018. arXiv: 1806.10761. 9, 97, 100, 101, 102, 103, 112, 124

[117] P Piperni, A DeBlois, and R Henderson. Development of a multilevel
multidisciplinary-optimization capability for an industrial environment. AIAA
journal, 51(10):2335–2352, 2013. 102

[118] Olivier Pironneau. On optimum profiles in stokes flow. Journal of Fluid Mechanics,
59(1):117–128, 1973. 50

[119] Michael JD Powell. On search directions for minimization algorithms. Mathematical
programming, 4(1):193–201, 1973. 67, 88, 159

[120] Michael JD Powell. A direct search optimization method that models the objective
and constraint functions by linear interpolation. In Advances in optimization and
numerical analysis, pages 51–67. Springer, 1994. 64, 88, 159

[121] Michael JD Powell. A view of algorithms for optimization without derivatives.
Mathematics Today-Bulletin of the Institute of Mathematics and its Applications,
43(5):170–174, 2007. 88, 134, 159

[122] Lisa Pretsch, Ilya Arsenyev, Catharina Czech, and Fabian Duddeck. Interdisciplinary
design optimization of compressor blades combining low-and high-fidelity models.
Structural and Multidisciplinary Optimization, 66(4):70, 2023. 10, 108, 109, 110

[123] Pieter-Jan Proesmans and Roelof Vos. Comparison of future aviation fuels to
minimize the climate impact of commercial aircraft. In AIAA Aviation 2022 Forum,
page 3288, 2022. 15

[124] Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar
Vaidyanathan, and P Kevin Tucker. Surrogate-based analysis and optimization.
Progress in aerospace sciences, 41(1):1–28, 2005. 104

150

[125] Kaushik Radhakrishnan, KT Deck, P Proesmans, Florian Linke, Feijia Yin, Volker
Grewe, Roelof Vos, Benjamin Lührs, Malte Niklaβ, and IC Dedoussi. Minimizing
the climate impact of the next generation aircraft using novel climate functions for
aircraft design. In 33rd Congress of the International Council of the Aeronautical
Sciences, ICAS 2022, page ICAS2022 0602. International Council of the Aeronautical
Science (ICAS), 2022. 15

[126] Dev Gorur Rajnarayan. Trading risk and performance for engineering design
optimization using multifidelity analyses. Stanford University, 2009. 104

[127] Isabelle Ramière and Thomas Helfer. Iterative residual-based vector methods to
accelerate fixed point iterations. Computers & Mathematics with Applications,
70(9):2210–2226, 2015. 22, 40

[128] James Reuther, Juan Alonso, Joaquim RRA Martins, and Stephen Smith. A coupled
aero-structural optimization method for complete aircraft configurations. In 37th
Aerospace sciences meeting and exhibit, page 187, 1999. 50

[129] TD Robinson, MS Eldred, KE Willcox, and R Haimes. Surrogate-based optimiza-
tion using multifidelity models with variable parameterization and corrected space
mapping. Aiaa Journal, 46(11):2814–2822, 2008. 105

[130] Brian D Roth and Ilan M Kroo. Enhanced collaborative optimization: a
decomposition-based method for multidisciplinary design. In International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, volume 43253, pages 927–936, 2008. 43

[131] Itham Salah El Din, Antoine Dumont, and Christophe Blondeau. Transonic wing-
body civil transport aircraft aero-structural design optimization using a bi-level
high fidelity approach-a focus on the aerodynamic process. In 51st AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace Exposition, page
144, 2013. 9, 137

[132] Lucien A Schmit. Structural design by systematic synthesis. In Proceedings of the
Second National Conference on Electronic Computation, ASCE, Sept., 1960, 1960.
7, 50

[133] Gerd Schuhmacher, Fernaß Daoud, Ogmundur Petersson, Markus Wagner, R Straße,
G Schuhmacher, and O Petersson. Multidisciplinary airframe design optimization.
In 28th international congress of the aeronautical sciences, volume 1, pages 44–56,
2012. 7

[134] Dieter Schwamborn, Thomas Gerhold, and Ralf Heinrich. The dlr tau-code: recent
applications in research and industry. In ECCOMAS CFD 2006: Proceedings of
the European Conference on Computational Fluid Dynamics, Egmond aan Zee,
The Netherlands, September 5-8, 2006. Delft University of Technology; European
Community on Computational Methods . . . , 2006. 7

[135] R Sellar, S Batill, and J Renaud. Response surface based, concurrent subspace
optimization for multidisciplinary system design. In 34th aerospace sciences meeting
and exhibit, page 714, 1996. 9, 10, 11, 41, 46, 86, 92, 97, 100, 106, 107, 125, 156, 157

151

[136] Timothy W Simpson, Timothy M Mauery, John J Korte, and Farrokh Mistree.
Kriging models for global approximation in simulation-based multidisciplinary design
optimization. AIAA journal, 39(12):2233–2241, 2001. 9, 97, 107

[137] Ian P Sobieski and Ilan M Kroo. Collaborative optimization using response surface
estimation. AIAA journal, 38(10):1931–1938, 2000. 9, 43, 97, 106

[138] Jaroslaw Sobieszczanski-Sobieski. Optimization by decomposition: a step from
hierarchic to non-hierarchic systems. In Second NASA/Air Force Symposium on
Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA,
NASA CP, volume 3031, pages 51–78, 1988. 46

[139] Jaroslaw Sobieszczanski-Sobieski, Jeremy Agte, and Jr. Sandusky, Robert. Bi-level
integrated system synthesis (BLISS). In 7th AIAA/USAF/NASA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, Multidisciplinary Analysis
Optimization Conferences. American Institute of Aeronautics and Astronautics,
September 1998. 8, 9, 11, 18, 39, 47, 86, 100, 131, 133, 137, 140, 154

[140] Jaroslaw Sobieszczanski-Sobieski, Jeremy S Agte, and Robert R Sandusky Jr. Bilevel
integrated system synthesis. AIAA journal, 38(1):164–172, 2000. 9, 39, 43, 97, 106

[141] Jaroslaw Sobieszczanski-Sobieski and Raphael T Haftka. Multidisciplinary aerospace
design optimization: survey of recent developments. Structural optimization, 14:1–23,
1997. 7

[142] Heinrich von Stackelberg. Marktform und gleichgewicht. (No Title), 1934. 51

[143] Georg Still. Lectures on parametric optimization: An introduction. Optimization
Online, page 2, 2018. 61

[144] Knut Sydsæter and Peter J Hammond. Essential mathematics for economic analysis.
Pearson Education, 2008. 35

[145] Nathan P Tedford and Joaquim RRA Martins. Benchmarking multidisciplinary
design optimization algorithms. Optimization and Engineering, 11:159–183, 2010.
46, 104

[146] S. Tosserams, L. F. P. Etman, and J. E. Rooda. An augmented Lagrangian decompo-
sition method for quasi-separable problems in MDO. Structural and Multidisciplinary
Optimization, 34(3):211–227, July 2007. 8, 44, 45, 57, 69, 140

[147] Simon Tosserams, LF Pascal Etman, and JE Rooda. A classification of methods
for distributed system optimization based on formulation structure. Structural and
Multidisciplinary Optimization, 39:503–517, 2009. 8, 18, 41, 42, 47, 51

[148] Simon Tosserams, LFP Etman, and JE Rooda. Augmented lagrangian coordination
for distributed optimal design in mdo. International journal for numerical methods
in engineering, 73(13):1885–1910, 2008. 8, 44, 45, 140

[149] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, 117(1-2):387–423, March 2009.
67

[150] Charlie Vanaret, François Gallard, and Joaquim RRA Martins. On the consequences
of the” no free lunch” theorem for optimization on the choice of an appropriate mdo

152

architecture. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, page 3148, 2017. 18, 39, 42, 45

[151] Richard S Varga. Iterative analysis. New Jersey, 322, 1962. 24

[152] David Venditti and David Darmofal. Grid adaptation for functional outputs of 2-d
compressible flow simulations. In Fluids 2000 Conference and Exhibit, page 2244,
2000. 119

[153] Luis Vicente, Gilles Savard, and Joaquim Júdice. Descent approaches for quadratic
bilevel programming. Journal of Optimization theory and applications, 81(2):379–399,
1994. 52, 57

[154] Luis N Vicente and Paul H Calamai. Bilevel and multilevel programming: A
bibliography review. Journal of Global optimization, 5(3):291–306, 1994. 56

[155] Xiaobang Wang, Mao Li, Yuanzhi Liu, Wei Sun, Xueguan Song, and Jie Zhang.
Surrogate based multidisciplinary design optimization of lithium-ion battery thermal
management system in electric vehicles. Structural and Multidisciplinary Optimiza-
tion, 56:1555–1570, 2017. 108

[156] Xiaobang Wang, Yuanzhi Liu, Wei Sun, Xueguan Song, and Jie Zhang. Multidis-
ciplinary and multifidelity design optimization of electric vehicle battery thermal
management system. Journal of Mechanical Design, 140(9):094501, 2018. 10, 97,
108, 109, 110, 141

[157] Neil Wu, Gaetan Kenway, Charles A Mader, John Jasa, and Joaquim RRA Martins.
pyoptsparse: A python framework for large-scale constrained nonlinear optimization
of sparse systems. Journal of Open Source Software, 5(54):2564, 2020. 88

[158] Neil Wu, Charles A Mader, and Joaquim RRA Martins. A gradient-based sequential
multifidelity approach to multidisciplinary design optimization. Structural and
Multidisciplinary Optimization, 65(4):131, 2022. 9, 10, 98, 99, 109, 110, 112, 114,
121, 124

[159] Yangyang Xu and Wotao Yin. A Globally Convergent Algorithm for Nonconvex
Optimization Based on Block Coordinate Update. Journal of Scientific Computing,
72(2):700–734, August 2017. 69

[160] Lili Yang and Deyu Wang. Modified collaborative optimization for feasibility problem
of final solution. Structural and Multidisciplinary Optimization, 56(5):1109–1123,
2017. 43

[161] Raul Yondo, Esther Andrés, and Eusebio Valero. A review on design of experiments
and surrogate models in aircraft real-time and many-query aerodynamic analyses.
Progress in aerospace sciences, 96:23–61, 2018. 97, 107

[162] Alain B Zemkoho. Bilevel programming: reformulations, regularity, and stationarity.
PhD thesis, Dissertation, Freiberg, TU Bergakademie Freiberg, 2012, 2012. 56

153

Appendix A

The Sobieski Super Business Jet
(SSBJ) test case

The Sobieski Super Business Jet (SSBJ) test case, illustrated by Figure A.1, was first intro-
duced in [139] to present the Bi-Level Integrated System Synthesis (BLISS) architecture
(Figure 3.1). It is a well-known conceptual design code for the MDO community, conceived
to test the different architectures at an affordable cost. As it has been originally designed
for the BLISS architecture, it is well suited to test more general bi-level architecture such
as the ones considered in this paper.

(a) The planform variables (b) The airfoils variables

Figure A.1: Graphical representation of the SSBJ test case

The SSBJ model is composed of three strongly coupled disciplines: Structures (discipline
1), Aerodynamics (discipline 2), and Propulsion (discipline 3). This MDO problem
aims to maximize the range of the business jet which is computed by a fourth, non-
coupled, discipline (Mission). Considering the dimensions of the problem, there is 6 shared
variables,4 local variables, 10 coupling variables and 12 inequality constraints. The MDF
XDSM diagram on the SSBJ test case is given in Figure A.2.

154

Figure A.2: MDF XDSM diagram on SSBJ test case

The description of all design variables, with their initial and optimal values for the
MDF architecture are given in Table A.1. At the optimal design point, there is 2 active
constraints, g2 (computed by Aerodynamics), which represents the constraint about the
pressure gradient, and g3[2] (computed by Propulsion), the throttle constraint.

Variable Block Initial Optimum
Range (nm) None f (0) = 535.79 f ∗ = 3963.88

λ x1,1 0.25 0.38757
x x1,2 1 0.75

Cf x2 1 0.75
Th x3 0.5 0.15624
t/c x0,1 0.05 0.06

h(ft) x0,2 45000 60000
M x0,3 1.6 1.4
AR x0,4 5.5 2.5

Λ(deg) x0,5 55 70
SW (ft2) x0,6 1000 1500

Table A.1: MDF design variables for SSBJ test case

155

Appendix B

The Sellar problem and analytical
expressions for the two-block
variant

Here we present the equations for the original Sellar optimization problem [135] from
which several variants, resulting from slight modifications of the problem, are created for
the sake of the numerical experiments in the manuscript.

One of these variants is a two-block modification of the original Sellar problem to allow
block decomposition of the lower optimization problem. Considering points around the
MDF solution to avoid discontinuity and non-differentiability, the analytical expression of
the coupling variables at equilibrium is given. In addition, the first and second derivatives
of all functions and coupling expressions are given.

B.1 The original Sellar problem
The original Sellar optimization problem [135] is a simple MDO problem with two strongly
coupled disciplines. The original Sellar problem is given in the following form:

minimize f(x0,1, x0,2, x1, y1, y2) = x2
1 + x0,2 + y2

1 + e−y2

with respect to x0,1, x0,2, x1, y1, y2

subject to :
−10 ≤ x0,1 ≤ 10

0 ≤ x0,2 ≤ 10
0 ≤ x1 ≤ 10

c1(y1) = 3.16 − y2
1 ≤ 0

c2(y2) = y2 − 24 ≤ 0
y1 − y1(x0,1, x0,2, x1, y2) = 0

y2 − y2(x0,1, x0,2, y1) = 0

(B.1.1)

156

Discipline 1: y1(x0,1, x0,2, x1, y2) =
√

x2
0,1 + x1 + x0,2 − 0.2y2 (B.1.2)

Discipline 2: y2(x0,1, x0,2, y1) = |y1|+x0,1 + x0,2 (B.1.3)

B.2 Analytical expressions for the two-block Sellar
The manuscript contains a two-blocks modification of the already existing Sellar optimiza-
tion problem [135]. This modified problem, described by (3.6.2) within Section 3.6.2, is
mainly used to benchmark the bi-level architectures presented in Chapter 3 by allowing
the block decomposition of the lower optimization problem.

Here, the computation of the coupling variables at equilibrium, i.e. after the execution of
an MDA, is reunited for all possible design vectors that are sufficiently closed to the MDF
solution to avoid discontinuities and complex values. First and second derivatives for the
couplings, the objective, and the constraints are also provided.

B.2.1 Couplings expressions
As we are interested in studying the problem in a vicinity of the unique MDF solution of
the original sellar problem, cases where y1 and y2 take negative and/or complex values
are not considered.

Considering a design vector (x0,1, x0,2,x1, x2) near the unique MDF solution of Equa-
tion (3.6.2), the design is feasible if and only if:


y2

1 = x2
0,1 + x1 + x0,2 − 0.2y2

y2 = y1 + x0,1 + x0,2 − x2

(y1, y2) ∈ (R+)2
⇐⇒


y2

1 + 0, 2y1 + C = 0
y2 = y1 + x0,1 + x0,2 − x2

(y1, y2) ∈ (R+)2
(B.2.1)

Let ∆ = 0, 04 − 4C with C = −x1 − 0.2x2 + x0,1(0.2 − x0,1) − 0.8x0,2

The direct formula which explicitly compute the coupling variable at equilibrium, with
relates to the design variables, is given by:

y1(x0,1, x0,2, x1, x2) = −0.2+
√

∆
2

y2(x0,1, x0,2, x1, x2) = −0.2+
√

∆
2 + x0,1 + x0,2 − x2

(B.2.2)

157

B.2.2 Couplings’s first and second derivatives

∇y1 = 1
4
√

∆
(∇∆) = 1

4
√

∆
(−4∇C) = −1√

∆
∇C (B.2.3)

∇y2 = −1√
∆

∇C +


0

−1
1
1

 = ∇y1 +


0

−1
1
1

 (B.2.4)

∇2y1 = ∇2y2 = −1√
∆



0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 0

+ 2
∆∇C∇CT

 (B.2.5)

B.2.3 Objective and constraints’s gradient

∇f =


2x1
2x2
0
1

+ 2y1∇y1 − e−y2∇y2 (B.2.6)

∇c1 = −2y1∇y1 (B.2.7)
∇c2 = ∇y2 (B.2.8)

B.2.4 Objective and constraint’s Hessian

∇2f =
[
2 ∗ I2 02,2
02,2 02,2

]
+ 2[(∇y1∇yT

1) + y1∇2y1] + e−y2 [∇y2∇yT
2 − ∇2y2] (B.2.9)

∇2c1 = −2[(∇y1∇yT
1) + y1∇2y1]” (B.2.10)

∇2c2 = ∇2y2 (B.2.11)

158

Appendix C

Notes on COBYLA

This section briefly describes the main principle of Powell’s COBYLA algorithm [119,
120, 121]. This is the derivative free optimization algorithm that is considered in this
manuscript to handle the system level of the presented bi-level architectures.

C.1 Algorithm
Let the following nonlinear optimization problem :

min
x∈Rn

f(x)

subject to ci(x) ≤ 0 i = 1, 2, . . . , m
(C.1.1)

Given n + 1 vertices {x(j) : j = 0, 1, . . . , n} of a non-degenerate simplex in Rn, there
are unique linear functions f̂ and {ĉi : i = 0, 1, . . . , m} that interpolate f and {ci : i =
0, 1, . . . , m}. Considering the following linear programming problem :

min
x∈Rn

f̂(x)

subject to ĉi(x) ≤ 0 i = 1, 2, . . . , m
(C.1.2)

COBYLA defines a merit function Φ̂(x) = f̂(x) + µ[max{0} ∪ {ĉi(x) : i = 0, 1, . . . , m}]
and order all the vertices such that Φ̂(x(0)) < Φ̂(x(1)) < · · · < Φ̂(x(n)).

At each iterate, COBYLA finds the best point x(∗) such that ∥x(∗) − x(0)∥≤ ρ. With ρ
being the trust region radius.

Either x(∗) is considered good enough and replace x(n) as a vertex, or we decrease the
trust region radius ρ and/or increase the penalization parameter µ.

C.2 Convergence properties
No global convergence proof is given for COBYLA, however the 4 assumptions ensure
termination of the algorithm:

1. µ the penalization parameter is bounded.
159

2. ρ the trust region radius decrease a finite number of time.

3. As µ and ρ remain constant, x(0) (the best point yet) must changed in a finite
number of iteration.

4. As µ and ρ remain constant, the number of replacement of x(0) is finite.

As the algorithm ensure that (2) and (3) are ensured through the updating rules, it is
however complex to show that (1) and (4) hold in the scope of COBYLA and/or may
need too much restrictions to be considered.

160

Titre : Architectures bi-niveau et algorithmes multi-fidélité pour l'optimisation multidisciplinaire en haute dimension.
Mots clés : Optimisation, MDO, Bi-niveau, Multifidélité, Adjoint
Résumé : L’optimisation multidisciplinaire est un domaine de l’ingénierie impliquant l’intégration de méthodes numériques, d’outils d’ingénierie et de
modèles mathématiques afin de résoudre des problèmes d’optimisation impliquant plusieurs champs disciplinaires. Les approches MDO visent à
améliorer la qualité de la solution, la robustesse et si possible réduire les coûts de calculs du processus global en prenant en compte les
interdépendances et l'aspect organisationnel des différents modèles impliqués. Si les méthodes MDO ont montré leur intérêt dans plusieurs
domaines d’ingénierie, tout d’abord en aéronautique puis dans d’autres domaines tels que l’automobile ou le dimensionnement d’éoliennes,
plusieurs verrous restent à lever pour profiter pleinement des capacités MDO en haute dimension. Parmi ces verrous, on retrouve la formalisation
mathématique d’architectures MDO, c’est-à-dire une reformulation du problème d’optimisation et une suite de calcul associée. En particulier pour les
architectures distribuées, dans lesquels plusieurs sous-problèmes d’optimisation sont définis, qui sont réputées pour avoir de moins bonnes
propriétés de convergence. Un autre verrou important est l’intégration efficace de modèles de substitution, moins couteux, pour réduire les temps
de calcul globaux.

La première partie de la thèse porte sur l’élaboration d’une nouvelle architecture bi-niveau, dans lequel deux problèmes d’optimisation sont
imbriqués. Dans celle-ci, les variables partagées, entrées pour toutes les disciplines et peu nombreuses, sont optimisées avec un algorithme sans
gradient, tandis que les variables locales, entrées d’une unique discipline et plus nombreuses, sont laissées à un sous-problème d’optimisation
imbriqué dans le premier. L’originalité de cette architecture étant de résoudre le sous-problème par blocs, en utilisant un algorithme de minimisations
alternées, le block-coordinate-descent (ou BCD). Sous certaines hypothèses de bonne définition et séparabilité des blocs, un résultat de convergence
locale de l’algorithme est obtenu, améliorant les propriétés de régularité des fonctions et la convergence. Plusieurs applications sur des cas test
classiques de MDO illustrent ces propriétés, ainsi que la meilleure scalabilité en fonction du nombre de couplages, contraintes et variables locales des
approches bi-niveau par rapport aux architectures monolithiques quand les dérivées couplées de l'ensemble du système ne sont pas disponibles, tel
que dans certains contextes industriels.

La seconde partie du manuscrit se porte sur l’application des méthodes multi-fidélités dans des processus MDO. Ces méthodes exploitent à la fois un
modèle haute-fidélité, de grande précision mais au coût élevé, et un ou plusieurs modèles approchés, de basses fidélités, moins couteux mais à la
précision amoindrie. Pour le bon fonctionnement de ces méthodes il est souvent nécessaire de choisir des niveaux de basse-fidélité adéquats, c’est-
à-dire des modèles possédant un rapport coût/précision intéressant. Ceci est d’autant plus critique dans le cadre de la MDO étant donné les
nombreux moyens de générer ces modèles de basse-fidélité dont l’impact de leur introduction dans l’optimisation n’est pas connu a priori. Les
contributions de ce chapitre portent sur la classification d’un grand nombre de modèles de basse-fidélité, notamment par l’introduction de deux
critères d’estimation d’erreur ne nécessitant pas de statistiques couteuses. Le parti pris étant que, étant donné le très grand nombre de modèles à
classer, une approximation grossière est suffisante pour espérer un gain en temps de la multi-fidélité. De petits cas test de MDO sont considérés pour
illustrer ces critères en exploitant les spécificités de la MDO pour rapidement générer des modèles de basse-fidélité. Les modèles de fidélité sont
ensuite choisis selon les critères proposés et une optimisation multi-fidélité, basée sur une approche de raffinement, démontre l’impact de ces choix
sur son efficacité.

Title: Bi-level architectures and multi-fidelity algorithms for multidisciplinary optimization in high dimensions.
Key words: Optimization, MDO, Bi-level, Multi-fidelity, Adjoint
Abstract: Multidisciplinary Optimization is a field of engineering that integrates numerical methods, engineering tools, and mathematical models to
solve optimization problems involving multiple disciplines. MDO approaches aim to improve the quality and robustness of the solution and, if
possible, reduce the computational cost of the overall process by taking into account the interdependencies and organizational aspects of the
different models involved. While MDO methods have been proven in a number of engineering fields, starting with aeronautics and then moving to
other areas such as automotive and wind turbine design, there are still a number of hurdles to overcome before we can take full advantage of the
high-dimensional MDO capabilities. These include the mathematical formalization of MDO architectures, i.e. a reformulation of the optimization
problem and an associated computational sequence. This is especially true for distributed architectures, where multiple optimization sub-problems
are defined, which are known to have worse convergence properties. Another important issue is the efficient integration of less costly substitution
models to reduce the overall computation time.

The first part of the thesis deals with the development of a new bi-level architecture in which two optimization problems are nested. In this
architecture, the shared variables, inputs for all disciplines and few in number, are optimized with a gradient-free algorithm, while the local variables,
inputs for a single discipline and more numerous, are left to an optimization sub-problem nested within the first. The originality of this architecture
lies in the fact that the sub-problem is solved in blocks, using an alternating minimizations algorithm, the block-coordinate-descent (BCD) algorithm.
Under certain assumptions of good block definition and separability, a local convergence result of the algorithm is obtained, which improves the
regularity properties of the functions and the convergence. Several applications to classical MDO test cases illustrate these properties, as well as the
better scalability as a function of the number of couplings, constraints, and local variables of bi-level approaches compared to monolithic
architectures when coupled derivatives of the whole system are not available, as in some industrial contexts.

The second part of the manuscript focuses on the use of multi-fidelity methods in MDO processes. These methods make use of both a high-fidelity
model, with high accuracy but high cost, and one or more low-fidelity approximate models, with lower cost but lower accuracy. For these methods
to work properly, it is often necessary to choose appropriate low-fidelity levels, i.e., models with an attractive cost/accuracy ratio. This is all the more
critical in the context of MDO, since there are many ways to generate these low-fidelity models, the impact of which on optimization is not known a
priori. The contributions in this chapter focus on the classification of a large number of low-fidelity models, in particular through the introduction of
two error estimation criteria that do not require costly statistics. The assumption is that given the very large number of models to be classified, a
rough approximation is sufficient to hope for a gain in time from the multifidelity. Small MDO test cases are considered to illustrate these criteria,
exploiting the specificities of MDO to quickly generate low-fidelity models. Fidelity models are then chosen according to the proposed criteria, and a
multi-fidelity optimization based on a refinement approach demonstrates the impact of these choices on its efficiency.

	Nomenclature
	Abbreviations
	Introduction
	Preliminaries
	Multidisciplinary Design Optimization
	MDO's general concepts
	MDO architectures

	Mathematical background
	The Gauss-Seidel algorithm and local convergence
	Direct and adjoint methods for gradient computation
	Optimality conditions
	Three analysis theorems

	A bi-level architecture
	Introduction
	State of the art: distributed architectures for large scale MDO problem
	Distributed architectures
	Bi-level optimization

	From MDF to a bi-level decomposition
	An equivalent bi-level decomposition
	Regularity of the system level functions

	A solution algorithm for the lower optimization problem
	The Block Coordinate Descent algorithm
	Convergence analysis of the BCD-MDF algorithm

	Variants of the BCD-MDF algorithm
	With linear approximation of the constraints
	A weakly coupled variant
	Adding target values for difficult couplings

	Numerical experiments
	Discrepancy reduction and local convergence comparisons on SSBJ
	Scalability study

	A multi-fidelity framework
	Introduction
	State of the art: multi-fidelity in MDO
	The multi-fidelity approaches
	Multi-fidelity methods in numerical optimization
	Multi-fidelity applied to MDO

	Down-selecting fidelity models for MDA
	Fidelity levels for MDA
	Two criteria for error estimation
	Pareto front and post treatment

	Multi-fidelity methodologies validation
	A multi-fidelity refinement framework
	Coupled adjoint criterion
	Gradient alignment criterion
	A multi-fidelity application using bi-level architectures

	Conclusions and perspectives
	Contributions
	Perspectives

	The Sobieski Super Business Jet (SSBJ) test case
	The Sellar problem and analytical expressions for the two-block variant
	The original Sellar problem
	Analytical expressions for the two-block Sellar
	Couplings expressions
	Couplings's first and second derivatives
	Objective and constraints's gradient
	Objective and constraint's Hessian

	Notes on COBYLA
	Algorithm
	Convergence properties

