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Abstract xiii

Méthodes géodésiques et Apprentissage pour la Microscopie par Localisation
Ultrasonore

Abstract

La méthode de Microscopie par Localisation Ultrasonore (ULM) est une nouvelle méth-
ode d’imagerie médicale super-résolue qui permet d’outrepasser le compromis préci-
sion/distance de pénétration dans les tissus pour l’imagerie du réseau vasculaire. Ce
nouveau type d’images pose de nouveaux enjeux mathématiques, notamment pour la seg-
mentation et l’analyse de ses images, étapes nécessaires pour arriver à des méthodes pour
le diagnostic. Notre travail se positionne à l’intersection des méthodes géodésiques et des
méthodes de Machine Learning. Dans cette thèse nous apportons trois contributions. Une
première de ces contributions est centrée autour des contraintes liées aux images ULM
et propose le tracking de l’entièreté de l’arbre vasculaire en passant par la détection des
point-clés des vaisseaux sanguins apparaissant sur l’image. La deuxième contribution de
cette thèse porte sur l’apprentissage de la définition de métriques Riemanniennes pour
traiter des tâches de segmentation sur des données d’IRM cérébraux et d’images du fond
de l’oeil. La dernière partie de notre travail porte sur un problème inverse pour la recon-
struction de trajectoires d’agents de contraste dans des images médicales dans le contexte
de la super-résolution sans-grille.

Keywords: Vision par odinateur, Distances géodésiques, Courbes géodésiques, Prob-
lèmes inverses, Machine learning

Geodesic and Learning methods for Ultrasound Localization Microscopy
Résumé

Ultrasound Localization Microscopy is a new method in super-resolved Medical Imaging
that allow us to overcome compromise between precision and penetration distance in the
tissues for the imaging of the vascular network. This new type of images raises new mathe-
matical questions, especially for the segmentaton and analysis, necessary steps to achieve
medical diagnostic of patients. Our work is positioned at the intersection of geodesic and
Machine Learning methods. In this thesis, we make three contributions. The first of these
is centered on the constraints linked to ULM images and proposes the tracking of the
entire vascular tree through the detection of key points of blood vessels appearing on the
image. The second contribution of this thesis deals with learning to define Riemannian
metrics to handle segmentation tasks on brain MRI data and eye fundus images. The
final part of our work focuses on an inverse problem for reconstructing contrast agent
trajectories in medical images in the context of grid-free super-resolution.

Mots clés : Computer Vision, Geodesic distances, Geodesic curves, Inverse Problems,
Machine learning

Centre De Recherche en Mathématiques de la Décision, Université Paris-
Dauphine, UMR CNRS 7534
Place du Maréchal De Lattre De Tassigny – 75016 Paris – France
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Résumé en Français

Les travaux présentés dans cette thèse visent à fournir de nouvelles méthodes
numériques pour l’analyse d’images médicales, la segmentation de structures vas-
culaires et d’autres organes, avec un intérêt particulier pour les applications aux
récentes techniques d’imagerie par microscopie par localisation ultrasonore. Nous
fournirons un formalisme mathématique pour nos résultats théoriques et nos heuris-
tiques. Le but de ce manuscrit est d’être relativement autonome et de permettre aux
lecteurs ayant des connaissances de niveau M2 en mathématiques et en méthodes
numériques de comprendre les contributions à l’état de l’art présentées ici.

Ce travail s’inscrit dans le contexte des méthodes géodésiques utilisées pour
aborder les tâches de vision par ordinateur, et tente de combiner les deux mondes
des modèles mathématiques issus du calcul des variations et des approches modernes
d’apprentissage automatique/apprentissage en profondeur.

Schéma et résumé des contributions
Cette thèse est séparée en 4 chapitres thématiques. Tout d’abord, l’introduction
se concentre sur une présentation générale de la thèse et introduit les méthodes
de microscopie de localisation par ultrasons et les problèmes qui y sont liés. En-
suite, le deuxième chapitre vise à présenter les fondements théoriques des méthodes
géodésiques et leurs pendants numériques, nous voulons également donner une idée
générale des méthodes existantes dans le domaine. Notre troisième chapitre est
une tentative d’introduction rapide et générale au domaine très vaste des méth-
odes d’apprentissage automatique en vision par ordinateur, suivie de la présen-
tation de nos deux premières contributions à l’état de l’art en matière de vision
par ordinateur pour lequel il était nécessaire d’introduire la théorie de la distance
géodésique au chapitre 2 et l’apprentissage automatique au début du chapitre 3. Le
chapitre 4 est peut-être le plus indépendant puisqu’il n’a que peu de liens avec les
autres chapitres, mais il introduit rapidement le Transport Optimal afin de pouvoir
présenter la dernière contribution de notre travail, à savoir une étude de l’extension
d’un modèle récent proposé pour la récupération de courbes à partir d’une suite
d’acquisitions.

Cette thèse a été l’occasion de produire trois travaux différents publiés ou soumis
à revue par les pairs, qui couvrent différentes parties du domaine.

Notre premier travail original est présenté en détail dans la section 3.2, il s’agit
d’une première contribution permettant de réaliser le tracking de vaisseaux sanguins
dans des images ULM dans le contexte particulier où il n’y a pas d’annotation de
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4 Résumé en Français

données pour une tâche de segmentation, et de tirer parti autant que possible de
l’information fournie par les données ULM dans ce contexte. Ce travail est égale-
ment l’occasion de tester certaines des hypothèses sous-jacentes à l’état de l’art
des méthodes de tracking des vasseaux sanguins. En effet, beaucoup de publica-
tions se concentrent sur la définition de bons modèles pour le tracking de struc-
tures curvilignes dans des images naturelles en 2D ou 3D, et fournissent souvent
de bonnes méthodes pour des problèmes bien définis et relativement simples tels
que la recherche de géodésiques entre deux points pour effectuer le tracking, mais
tendent à oublier que le tracking n’est en pratique qu’une partie d’un modèle plus
large. Nous essayons ici de présenter une heuristique explicite pour notre modèle
de bout en bout pour le tracking de l’ensemble de l’arbre vasculaire. Il s’agit d’un
réseau neuronal entraîné à proposer des points de repère de l’arbre vasculaire, on
sélectionne des sous-arbres minimisant la longueur via la définition d’une distance
géodésique dépendant de l’orientation locale des caractéristiques. Notre workflow
est présenté sur 3 ensembles de données différents, dont un composé de très peu
d’images ULM. À la connaissance des auteurs, il s’agit du premier travail dans le
domaine des méthodes géodésiques à tirer parti des informations ULM pour définir
une telle géométrie.

Notre deuxième travail original est présenté en détail dans la section 3.3, il
montre qu’il est possible d’intégrer la distance géodésique et les informations qui en
découlent directement dans un pipeline d’apprentissage automatique. Notre objectif
est de pouvoir générer une géométrie directement à partir des données de l’image
sans que l’utilisateur ait à choisir un modèle. Nous avons utilisé une architecture
CNN classique pour apprendre et généraliser la définition d’une métrique isotrope
pour la segmentation des tumeurs cérébrales, segmentation que nous retrouvons
en prenant une approximation lisse de l’indicatrice de la boule unité pour distance
définie par la métrique. La différentiation de la distance géodésique par rapport au
potentiel est rendue possible par le calcul d’un sous-gradient à l’aide de l’algorithme
de Subgradient Marching (et a été comparée à d’autres méthodes d’approximation
de la distance géodésique). Elle montre des performances similaires à celles obtenues
dans l’état de l’art avec des garanties théoriques supplémentaires sur le masque de
segmentation fourni.

Le troisième et dernier travail original présenté dans ce manuscrit est détaillé
dans la section 4.2. On traite ici des problèmes de recouvrement des déplacements
d’objets dans une pile d’acquisition. En particulier, on est intéressé par le recouvre-
ment de la trajectoire d’agents de contraste dans les méthodes d’imagerie médicale
par super-résolution, dont la Microscopie par Localisation Ultrasonore, mais aussi
plus largement pour le recouvrement de données de trajectoire (données GPS, dé-
placements de cellules,...). Pour la super-résolution, on veut notamment pouvoir
récupérer les trajectoires elles-même, en particulier en ayant de bonnes informations
sur les champs de vitesse qui peuvent permettre (comme on le voit dans notre pre-
mier travail) des applications intéressantes. Les données sont constituées d’une pile
comportant à chaque temps la réponse d’un opérateur linéaire évalué sur les objets à
retrouver, représentés par un ensemble continu de mesures indexées par le temps. Il
s’appuie sur un modèle récent proposé pour récupérer les trajectoires sous-jacentes
d’objets en mouvement dans une pile d’acquisition. Il s’agit d’un problème inverse
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défini dans l’espace des mesures sur les courbes continues. Nos contributions inclu-
ent la proposition d’étendre ce cadre à la géométrie non-euclidienne pour récupérer
avec précision les courbes de croisement en 2D en élevant le problème à l’espace des
positions et des orientations, et en fournissant également un cadre garantissant la
(Γ−)convergence du problème discrétisé vers le problème continu et la proposition
d’autres espaces de discrétisation dans ce cadre. La convergence est également val-
able pour des termes d’attache aux données calculés sur des espaces de dimension
infinie, ce qui est plus général que le cas traité dans la littérature qui s’appuie sur
le théorème du représentant. Nous évaluons notre modèle en exécutant un simple
algorithme de Frank-Wolfe, en résolvant le problème d’optimisation non convexe à
chaque étape à l’aide de la différentiation automatique, et nous comparons les cas
euclidien et position-orientation, ainsi que les espaces de discrétisation.

La Microscopie par Localisation Ultrasonore
La Microscopie par Localisation Ultrasonore (ULM) est une méthode d’imagerie
moderne utilisée pour produire des images du réseau vasculaire. Bien qu’elle utilise
des ondes ultrasonores pour réaliser l’imagerie, elle permet d’obtenir des images très
précises des vaisseaux sanguins, jusqu’à quelques microns. En effet, les techniques
classiques d’imagerie par diffusion inverse des ondes souffrent d’un inconvénient
important : elles ne peuvent pas pénétrer trop profondément dans les tissus sans
que le signal ne devienne trop faible. Il faut donc trouver un compromis entre
l’imagerie de haute précision, qui est possible en utilisant des signaux de plus haute
fréquence, et l’atténuation du signal et la distance de pénétration correspondante,
qui diminuent à mesure que les fréquences augmentent.

L’imagerie par Microscopie par Localisation Ultrasonore contourne ce compro-
mis en introduisant des agents de contraste spéciaux dans le sujet à observer sous
la forme de microbulles de gaz inerte. Ces microbulles peuvent être localisées avec
précision en séparant la réponse non linéaire des bulles par rapport à la réponse
linéaire des tissus. Après la localisation des microbulles, on peut reconstruire une
image en projetant les positions sur une grille et en formant un histogramme 2D ou
3D de la position des microbulles. La résolution des images ULM dépend donc du
nombre de bulles détectées. Elle fait partie d’un ensemble de techniques d’imagerie
appelées techniques de "super-résolution", car elles permettent, dans un certain sens,
de dépasser les limites théoriques des systèmes d’imagerie.

Nous présentons maintenant un peu plus précisément nos trois apports à l’état
de l’art :

Tracking complet de l’arbre vasculaire par détection et clas-
sification de points-clé sur les images de fond d’oeil et ULM
Nous introduisons une nouvelle méthode pour la détection complète de bout en
bout des structures vasculaires sur les images ULM, en utilisant l’apprentissage
profond pour détecter les points caractéristiques permettant le suivi des vaisseaux
en tant qu’arêtes dans un arbre (au sens des graphes) avec des points-clés en tant
que sommets. Notre approche diffère du Regroupement perceptuel classique pour
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Computation of geodesic distance

Definition of seeds and tips

Definition of Metric tensor

Extraction of geodesics/other treatments

Fitting Geodesic Tree

Fast Marching Energy CNN

Figure 1: Schéma stéréotypé de la démarche des méthodes géodésiques. En rouge
nos deux travaux originaux. Les flèches pleines indiquent les étapes revisitées à
l’aide du Machine Learning et en pointillés les étapes revisitées avec un modèle "à
la main".

le suivi des vaisseaux sanguins tel qu’il est effectué dans d’autres travaux E. J.
Bekkers, D. Chen, et al. 2018. En effet, nous essayons de tirer profit des longues
géodésiques qui suivent les vaisseaux sanguins à travers une image, ce qui devrait
bien se comporter compte tenu de la quantité de littérature sur le sujet. Alors que
le Regroupement perceptuel se concentre généralement sur le calcul de géodésiques
courtes entre des points proches répartis dans le réseau de vaisseaux, notre objectif
est de calculer quelques géodésiques longues entre des points de repère clés de la
vascularisation. Nous essayons de tirer parti des informations fournies spécifique-
ment par l’imagerie ULM, mais il convient de noter qu’il est possible de s’adapter à
d’autres types d’images, par exemple les images du fond de l’œil obtenues par pho-
tographie directe. Pour ce faire, il peut être nécessaire d’évaluer les informations
d’orientation locale, comme nous le verrons dans la section 3. À partir d’une image
2D, on peut utiliser des scores d’orientation ou des transformations similaires telles
que celles présentées dans E. Bekkers et al. 2014 pour relever une image 2D dans le
plan à l’espace tridimensionnel des positions et des orientations.

L’imagerie ULM n’ayant pas de base de données comportant des images na-
turelles associées à une annotation de segmentation il est particulièrement pertinent
d’adopter une approche de tracking des vaisseaux sanguins. En effet l’enjeu devient
alors de définir les points particuliers de l’image à relier et un modèle adéquat pour
le calcul de chemins minimaux. L’idée principale est que la structure sous-jacente à
l’agencement des vaisseaux sanguins dans les images médicales est celle d’un arbre.
Celui-ci est composé de vaisseaux sanguins agencés de manière à transporter de
manière efficace les composés chimiques charriés par le sang. Cet agencement en
arbre impose donc qu’il existe des terminaisons aux endroits où le sang est délivré
ou aux endroits ou les vaisseaux sortent de l’image (que ce soit sur les côtés, ou en
profondeur pour les images 2D) ainsi que des bifurcations, zones où un vaisseau se
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sépare en plusieurs vaisseaux. Dans les images 2D on peut également voir apparaître
des vaisseaux qui se chevauchent dans des zones qu’on appelle alors croisements.
Ces trois catégories de points remarquables dans le réseau vasculaire permettent en
fait de définir sa topologie, le reste n’est plus alors qu’une question de savoir relier
correctement les points entre eux. Comme la littérature en méthodes géodésiques
s’est beaucoup attachée à définir des modèles pour le tracking de vaisseaux san-
guins, on a à notre disposition des modèles pour relier deux points en passant par
les vaisseaux appropriés. Le réseau vasculaire étant supposé efficace du point de vue
de l’irrigation des tissus et des organes (c’est-à-dire qu’il permet d’irriguer les zones
à irriguer tout en restant aussi court que possible), on va essayer de le retrouver
en cherchant les arbres passant par les point-clefs et minimisant la longueur totale
pour la notion de distance que l’on aura choisie. Cette heuristique est au coeur
de ce qui se fait historiquement en méthodes géodésiques et de la façon dont on
conçoit les réseaux vasculaires. Ce travail permet d’interroger ces présupposés qui
sont souvent utilisés pour penser les modèles de tracking des vaisseaux sanguins.

On va appliquer notre approche sur trois différents jeux de données. Le premier
est simplement un lot de deux images dessinées à la main qui nous ont permis de
faire un premier essai en imitant la configuration de données ULM : on a deux
images disponibles de haute résolution. Le second jeu de données est un ensemble
de deux grandes images synthétiques, dessinées à la main pour simuler un cas très
simple et semblable aux données ULM disponibles. Pour ces deux jeux de données
on a annoté à la main les terminaisons, les bifurcations et les croisements sur ces
images. Notre motivation étant qu’il est en principe plus facile pour un praticien
non-expert de détecter ces structures que de générer une annotation de segmentation
complète. Notre troisième jeu de données est un jeu de données classique pour la
segmentation, pour lequel les auteurs de Abbasi-Sureshjani et al. 2015 ont mis à
disposition une annotation des point-clés du réseau vasculaire.

La parcimonie des données dans le cas synthétique et le cas ULM est contournée
en découpant de petits morceaux de l’image de manière uniforme afin de former une
base de données plus fournie. L’augmentation de données par application de trans-
formations affines aléatoires aide également beaucoup à éviter le surentraînement.

La sortie du UNet entraîné comporte 4 canaux, un pour chaque classe de point à
trouver et un dernier qui représente le max des autres canaux, faisant ainsi qu’il est
plus intéressant de détecter un point même en prédisant la mauvaise classe plutôt
que de ne rien prédire du tout.

L’entraînement dure quelques heures. Les résultats de la détection des point-clés
sont très convaincaints comme attendu sur les données synthétiques avec des scores
atteints autour de 80%. Sur les données du fond de l’oeil, les scores atteints sont
autour des 40% sur la base de test. Ces résultats sont légèrement décevants par
rapport à ceux annoncés dans la littérature adoptant une approche similaire. On
remarque cependant que c’est la catégorie des terminaisons de vaisseaux sanguins
qui semblent les plus difficiles à détecter, celles-ci n’étant pas détectées dans Hervella
et al. 2019.

Les résultats sur données ULM en revanche n’atteignent qu’environ 20% de score
F1. Il est à noter que l’annotation des données ULM n’est certainement pas parfaite
et permet d’expliquer en partie ces mauvais résultats : il est difficile d’annoter
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de manière systématique les structures intéressantes alors qu’il y a énormément
d’échelles différentes représentées dans une même image ULM.

Le tracking de vaisseaux sanguins se fait ensuite en utilisant un modèle de Reeds-
Shepp relaxé permettant de décroiser les vaisseaux en posant le problème de chemins
minimaux dans un espace de dimension supérieure : on ajoute aux coordonnées de
position une coordonnée correspondant à l’orientation locale. Ce modèle permet
de trouver des vaisseaux sanguins qui se croisent mais ayant deux orientations dif-
férentes, les géodésiques ne doivent en principe pas circuler de l’un à l’autre. Ce
modèle de Reeds-Shepp comporte une fonction de coût en facteur qui est définie
à partir des niveaux de gris de l’image. Pour les données ULM, ce score a été
construit à partir des données ULM de trajectoires en formant une image comme
l’histogramme dans l’espace de position-orientation, en prenant comme orienta-
tion l’estimation de vitesse de chaque particule disponible au sein des trajectoires.
Pour les données synthétiques et du fond l’oeil, on applique des filtres classiques de
relèvement d’images en niveaux de gris, ici en convoluant avec un noyeau gaussien
anisotrope orienté dans Nθ directions différentes.

Une difficulté de notre approche est qu’il n’est pas évident d’évaluer les perfor-
mances du tracking, en tout cas de fournir une base de comparaison pertinente avec
les méthodes de segmentation.

Apprentissage de métrique Riemannienne
Les courbes et distances géodésiques ont été utilisées pour transmettre des pro-
priétés géométriques dans de nombreuses applications différentes. L’approche
présentée dans ce travail tente de se débarrasser du biais introduit dans le choix d’un
tenseur métrique en le générant à partir de données via une architecture de réseau
neuronal dont les paramètres ont été préalablement optimisés dans une approche
d’apprentissage supervisé avec des données d’apprentissage. L’introduction d’un tel
biais n’est pas une mauvaise chose en soi, mais elle nécessite une décision arbitraire
de la part de l’utilisateur et un réglage des paramètres, deux problèmes qui peuvent
être évités en apprenant à générer une métrique à partir de données. En utilisant
la méthode proposée, nous pouvons obtenir des résultats précis par rapport aux
approches traditionnelles, ce qui met en évidence les capacités de cette approche.
La méthode introduite dans ce travail offre un moyen puissant et flexible d’utiliser
les courbes géodésiques et les distances dans une large gamme d’applications dans
un cadre d’apprentissage holistique.

Notre approche a été de s’intéresser à un problème classique de segmentation de
tumeurs dans des images de cerveaux, plus précisément une collection de sections
de cerveaux sur lesquelles sont annotées les tumeurs. Ayant fixé comme objectif
de traiter cette tâche classique, nous avons cherché à générer un masque de seg-
mentation à l’aide d’une distance géodésique, en faisant l’hypothèse qu’un masque
de segmentation pouvait être retrouvé comme la boule unité pour une distance
géodésique associée à un potentiel et un centre bien choisis dans l’image. Pour
respecter cette hypothèse on écarte toutes les images du jeu de données dont le
masque de segmentation comporte plusieurs composantes connexes ainsi que celles
où le masque est identiquement nul.
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Afin de générer la métrique à partir de l’image on va utiliser une architecture
de réseau de neurones classique en vision par ordinateur : le UNet. Celui-ci est
légèrement modifié en lui ajoutant une seconde branche de décodeur. La première
branche est utilisée pour générer le potentiel et la seconde pour générer une carte
de probabilités 2D de présence d’un bon centre pour la boule géodésique. A partir
de l’annotation de segmentation, le centre utilisé comme référence à apprendre
est défini comme le barycentre de l’annotation, c’est une approximation efficace
qui fonctionne car les zones à segmenter dans les images de tumeur sont assez
proches d’être convexes et de ressembler à des boules déformées. L’apprentissage
du potentiel est quasi-découplé en utilisant l’annotation du centre pour le calcul de
la boule au moment de l’apprentissage, mais en évaluant la moyenne de la carte de
probabilité générée par le modèle au moment de la validation et du test.

La fonction objectif optimisée durant l’entraînement est donc :

E(x,y)∼D
[
LS(f 1

θ (x), y) + LB(f 2
θ (x), k ∗ δBar(y)))

]
, (1)

où f 1
θ et f 2

θ sont les sorties des deux branches décodeur du réseau paramétré
par θ ∈ Rp, D la distribution théorique des images d’entrée x et leur annotation
associée y. k est simplement un noyau gaussien utilisé afin de donner une épaisseur
à la position du barycentre et qu’elle soit ainsi plus facile à prédire. LS est une
fonction de coût entre la segmentation prédite et la segmentation à trouver. LB est
une fonction de coût entre le barycentre prédit et le barycentre théorique.

La fonction-coût pour la segmentation est composée d’un coût classique entre
le masque proposé et le masque théorique (distance L2, terme d’entropie croisée)
et d’une façon de transformer la carte de distances en masque pour la proposition,
ici on utilisera une fonction sigmoïde afin de proposer une approximation lisse de
la fonction indicatrice de l’ensemble {d(x0, ·) ≤ 1}.

L’implémentation a été faite en PyTorch et on retrouve des scores de segmen-
tation proches de ce qui apparaît dans l’état de l’art. Les potentiels produits par
notre architecture ressemblent aux sorties d’une méthode de détection de contours,
stoppant la propagation du front avant que celui-ci ne sorte de la zone à segmenter
lors du calcul de la distance. On montre également une réelle disparité parmi les
résultats avec de très bons scores de segmentation sur une grosse majorité du jeu
de données mais de très mauvaises performances sur une petite proportion, tirant
ainsi le score moyen vers le bas.

On va ensuite essayer d’étendre ce cadre à la segmentation de régions et classes
multiples, puis à l’apprentissage de métriques anistropes.

Recouvrement de courbes par un problème variationnel dy-
namique, extension aux espaces de position et d’orientation
Nous considérerons un modèle de problème inverse similaire à celui proposé dans
Bredies et Fanzon 2019 pour lequel Duval et Tovey 2021 ont proposé des méthodes
numériques, tandis que Schmitzer et al. 2019 semble être le premier travail à pro-
poser la régularisation considérée. L’idée principale est de résoudre un problème
inverse en construisant une mesure supportée sur un espace de courbes minimisant
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une fonctionnelle d’énergie avec un terme de données qui pénalise la distance entre
les données et le minimiseur candidat, et un terme de régularisation qui est linéaire
dans la mesure de minimisation candidate. Cette formulation permet à l’utilisateur
de donner des garanties sur la forme des minimiseurs. En effet, ce problème a été
dérivé en gardant à l’esprit l’opportunité d’utiliser des théorèmes des Représen-
tants comme ceux prouvés dans Boyer et al. 2018 ; Bredies et Carioni 2018, car ils
garantissent que la forme du minimiseur est déterminée par les points extrémaux
de la boule unité du régularisateur. L’utilisation de ce théorème du représentant
nécessite la satisfaction de quelques hypothèses, parmi lesquelles la dimensionnalité
finie de l’espace sur lequel la distance aux données est calculée. Dans Bredies et
Carioni 2018, les auteurs donnent une preuve que les points extrémaux des boules
unitaires pour la régularisation considérée sont des mesures de Dirac sur l’espace
des courbes, ce qui garantit la parcimonie de la solution.

La fonctionnelle suivante est l’élément central du cadre dynamique sans-grille
Bredies, Carioni, Fanzon, et al. 2021; Bredies and Fanzon 2019 jusqu’à présent :

E(σ) =
T∑

i=1
∥Aieti♯σ − bti

∥2
H +

ˆ
Γ
w(γ)dσ(γ), (2)

avec
σ ∈M(Γ),

et
w(γ) =

ˆ 1

0
|γ̇|(t)2dt.

H est un espace de Hilbert, et est la forme linéaire et : γ ∈ Γ 7→ γ(t), et les Ai

sont des opérateurs linéaires continus.
Notre première idée a d’abord été de réussir à obtenir des jeux de courbes

croisées dans le cas simple traité dans les publications de l’état de l’art : l’énergie
dans l’espace euclidien comme définie dans l’équation précédente ne permet pas en
théorie d’obtenir deux courbes croisées dans en X comme sur la Figure 2.

Pour cela nous choisissons de passer notre problème dans un espace de dimen-
sion supérieure, l’espace de Position-Orientation afin de pénaliser la courbure des
trajectoires recouvrées.

Pε((x, θ), (ẋ, θ̇))2 = C((x, θ))2(|ẋ · eθ|2 + 1
ε2 |ẋ ∧ eθ|2 + ξ2|θ̇|2).

Après avoir vérifié que notre problème posé dans ce nouvel espace permet bien
d’obtenir le terme de régularisation désiré, on vérifie également que comme dans le
cas euclidien, les points extrêmaux de la boule unité du nouveau terme de régular-
isation correspondent encore aux masses de Dirac sur l’espace des courbes. Ceci
étant posé on sait qu’on pourra appliquer le théorème du représentant si H est bien
de dimension finie, c’est-à-dire qu’on sait alors que la solution au problème varia-
tionnel (2) peut s’écrire comme combinaison linéaire de points extrêmaux du terme
de régularisation, ou dans le cas où H n’est pas de dimension finie, ce résultat est
tout de même utile dans l’application de l’algorithme de Frank-Wolfe.
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Figure 2: Reconstruction of two time dependent curves crossing from

Une autre partie de notre travail a été d’essayer d’élargir les options pour la
dicrétisation du problème. En effet, la littérature sur ce problème s’est en général
concentrée sur la résolution numérique en cherchant des méthodes efficaces pour
la résolution de l’oracle dans la méthode de Frank-Wolfe en cherchant toujours à
approcher les trajectoires à retrouver par des courbes polygonales. Cette approche
est justifiée par le fait que, pour un nombre fini de temps ti dans le terme d’attache
aux données, et étant donnée une mesure σ sur les courbes, modifier cette mesure
en conservant les marginales aux temps ti puis en interpolant les points du support
entre les eti♯σ et eti+1♯σ par les courbes minimisant w permet de trouver un meilleur
candidat.

Formellement on peut l’écrire comme ceci : soit

g : γ 7→ γ̃ ∈ argmin{w(h), h ∈ Γ,∀i, h(ti) = γ(ti)}, (3)
une sélection mesurable de géodésiques entre deux dates (voir Duval and Tovey

2022, Lemme 3.3 pour l’existence), alors on a

E(g♯σ) ≤ E(σ), (4)

ce qui nous dit qu’en fait, la famille des courbes de géodésiques par morceaux
interpolant entre les points définis à chaque date ti est une classe optimale de
courbes pour le problème continu et a fortiori pour le problème discret.

Notre critère pour déterminer qu’une discrétisation de l’espace des courbes est
bonne sera de s’assurer que le problème posé dans l’espace des courbes discrétisées
converge bien vers le problème continu lorsqu’on affine la discrétisation. On cherche
donc à paramétriser les courbes par un ensemble de points de contrôle en définissant
un opérateur P n : Rd×kn −→ Γ tel que chaque courbe γ puisse être approximée
par une suite de paramètres. On définira également un opérateur de sélection
Sn : Γ −→ Rd×kn qui, à une courbe, associe des points de contrôle choisis de
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manière à ce que
∀γ ∈ Γ, P n(Sn(γ)) −−−−−→

n−→+∞
γ. (5)

Le premier terme dans l’énergie étant supposé continu, la Γ−convergence du
problème discret vers le problème continu peut être garantie en imposant une pro-
priété supplémentaire sur les opérateurs que nous venons de définir :

∀γ ∈ Γ, lim sup
n−→+∞

w(P n(Sn(γ))) ≤ w(γ), (6)

cette propriété est en fait à voir comme une relaxation de (4).
On vérifie aisément que les courbes géodésiques par morceaux vérifient

w(P n(Sn(γ))) ≤ w(γ) (7)

dans le cas où w = A2 avec A2(γ) =
´ 1

0 |γ̇|(t)
2dt, et les opérateurs P n, Sn sont

triviaux (c’est-à-dire en échantillonant uniformément le long de la courbe), ce qui
est évidemment une condition plus forte que (6).

Dans le cas euclidien on propose également les courbes de Bézier comme classe
de courbes approximantes, qui vérifient également la dernière inégalité.

Reproductibilité
Tous les scripts et le code utilisés afin d’obtenir les résultats présentés dans
ce manuscrit sont/seront disponibles librement à l’adresse https://github.com/
TheoBertrand-Dauphine ou sont référencés via lien disponible via l’adresse précé-
dente lorsque le code est hébergé par un coauteur par exemple.



Chapter 1
Introduction

The works presented in this thesis focus on providing new numerical methods for the
analysis of medical images, segmentation of vascular structures and other organs,
with a particular interest in the applications to the recent Ultrasound Localization
Microscopy imaging techniques. We will provide mathematical formalism for our
theoretical results and heuristics. The aim of this manuscript is to be somewhat self-
contained and to allow readers with graduate-level understanding of mathematics
and numerical methods to grasp the contributions to the state-of-the-art presented
here.

This work fits in the context of Geodesic Methods used to tackle Computer
Vision tasks, and attempts to combine mathematical and variational models and
modern Machine/Deep Learning approaches.

1.1 Outline and Summary of the contributions
This thesis is thematically separated into 4 chapters. First, this Introduction focuses
on a general presentation of the thesis and introduces the Ultrasound Localization
Microscopy methods and related problems. Then, the second chapter aims at
presenting the theoretical foundations of geodesic methods and their numerical
counterparts, we also want to give a somewhat precise idea of the existing methods
in the field. Our third chapter is an attempt at a quick and general introduction
to the very wide field of Machine Learning methods in Computer Vision, followed
by the presentation of our first two contributions to the state-of-the-art, for which
it was necessary to first introduce the theory of Geodesic Distance in Chapter 2
and Machine Learning in the beginning of Chapter 3. Chapter 4 might be the
most independent as it has only slight connections to Chapter 2, but it introduces
quickly Optimal Transport in order to be able to present the last contribution of our
work, namely a study of the extension of a recent model proposed for curve recovery.

As stated before, this thesis has been the opportunity to produce three different
works published or submitted for review, which cover different parts of the domain.

Our first original work is presented in detail in Section 3.2, it carries out the
tracking of blood vessels in ULM images in the peculiar context that there is no
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data annotation for a segmentation task, and an attempt to take advantage as much
as possible of the information provided by ULM data in this context. This work is
also the opportunity to test some of the hypotheses underlying the state-of-the-art
of the vessel tracking methods. Indeed, most publications in the field focus on the
definition of good models for the tracking of curvilinear structures in 2D or 3D
natural images, so they often provide good methods when looking at well-defined
and relatively simple problems such as finding good geodesics between two points to
carry out the tracking, but tend to forget that the tracking is in practice usually only
some part of a larger workflow. Here we try to present an explicit heuristic for our
end-to-end workflow for the tracking of the whole vascular tree. It involves a neural
network trained to propose landmark points of the vascular tree, and we select
the length-minimizing sub-trees via the definition of a geodesic distance depending
on the local orientation of the features. Our workflow is presented on 3 different
datasets, including one consisting of very few ULM images. To the knowledge of
the authors it is the first work in the field of geodesic methods to take advantage
of ULM information to define such a geometry.

Our second original work is presented in detail in Section 3.3. It shows that it is
possible to integrate the geodesic distance and information derived from it directly
in a machine learning pipeline. Our goal is to be able to generate a geometry directly
from the image data without direct model choices from the user. We used a classic
CNN architecture to learn and generalize the definition of an isotropic metric for
the segmentation of brain tumours by matching the unit ball defined by the metric
output by the network to the desired segmentation mask. Differentiation of the
geodesic distance with respect to the potential is made available by the computation
of a subgradient using the Subgradient Marching Algorithm (and was compared to
other geodesic distance approximation methods). It shows performance similar to
what is achieved in the state-of-the-art with additional theoretical guarantees on
the segmentation mask provided.

The third and last of the original work presented in this manuscript is detailed
in Section 4.2. We tackle the tracking of multiple objects moving in the plane as
time evolves. The data consists in a pile of linear noisy data. This is typically
useful in tracking contrast agents in super-resolution imaging methods, and in par-
ticular Ultrasound Localization microscopy, as well as general trajectory recovery
tasks. For super-resolution imaging we want to recover trajectories and have access
to accurate velocity information to be able to build models where for instance the
orientation of the velocity is important (like in the first of our work). It builds on a
recent model proposed to recover the underlying transient curves of moving objects
in a pile of acquisition. It is an Inverse Problem defined on the space of measures on
continuous curves. Our contributions include proposing to extend this framework
to non-euclidean geometry to accurately recover crossing curves in 2D by lifting the
problem to the space of positions and orientations, and also providing a framework
guaranteeing the (Γ−)convergence of the discretized problem to the continuous one
and the proposal of other discretization spaces in that framework. The convergence
is valid also for data terms computed on infinite dimensional spaces which is more
general than the case treated in the litterature which relies on the Representer Theo-
rem. We evaluate our model by performing a simple Frank-Wolfe algorithm, solving
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the non-convex optimization problem at each step using automatic differentiation,
and compare the euclidean and position-orientation cases, and discretization spaces.

1.2 Ultrasound Localization microscopy
The goal of this subsection is to give a broad understanding of the Ultrasound
Localization Microscopy imaging techniques and a brief overview of the methods
involved in the formation of such images.

Ultrasound Localization Microscopy (ULM) is a modern imaging method that is
used to produce images of the vascular network. Although it uses ultrasound waves
to carry out the imaging, it allows for very precise images of the blood vessels,
up to a few microns. Indeed classical imaging techniques via inverse scattering of
waves suffer from an important drawback in that it cannot penetrate two deep in
the tissues without the signal becoming too low. There’s a trade-off to be made
between imaging with high precision, which is possible by using signals with higher
frequencies, and the attenuation of the signal and the related penetration distance,
which diminishes as frequencies increase.

Ultrasound Localization Microscopy imaging circumvents this trade-off by intro-
ducing special contrast agents in the subject to be observed in the form of microbub-
bles of inert gas. Those microbubbles may be accurately localized by detecting the
non-linear response of the bubbles versus the linear response of the tissues. After
the localization of the microbubbles, one may reconstruct an image by projecting
back the positions on a grid and forming a 2D or 3D histogram of the position of
the microbubbles. The resolution of ULM images thus depends on the number of
detected bubbles. It is part of a set of imaging techniques called "super-resolution"
techniques, as they allow, in some sense, to overcome the theoretical limitations of
the imaging systems.

This imaging technique shows many advantages among which are the ease of ac-
cess to the tools. Indeed, ultrasound probes are relatively cheap and most hospitals
are already equipped with them to carry out other types of interventions such as
ultrasound scans for pregnancies, moreover, ultrasound probes are easy to use and
do not necessitate highly trained practitioners to be used efficiently, as opposed to
MRI imaging. It also has a few drawbacks, the main one being that it is intrusive
as the injection of the contrast agent is needed, also the produced images depend
on new parameters such as the concentration of the contrast agents and the time
of measurement.

Couture, Besson, et al. 2011 and Siepmann et al. 2011, both from 2011, are the
two foundational works for ULM imaging.

In the following, we will go a bit more in detail over the different steps of the
process of forming ULM images. For thorough and complete overviews of this
process on may refer to Dencks and Schmitz 2023; Chavignon 2021



16 CHAPTER 1. Introduction

Figure 1.1: ULM image of a section of a rat brain. Data from Chavignon et al.
2020.

1.2.1 Acquisition
After the intraveinous introduction of the contrast agents, the acquisition is per-
formed using an ultrasound probe. The resulting signal consists in the sum of the
responses of both the tissues and the microbubbles.

Extracting the response of the microbubbles from the response of the back-
ground tissues is a task that can be performed because we can separate the linear
response of the tissue from the non-linear response of the microbubbles. Indeed, the
microbubbles generally have harmonic resonances and responses in frequencies that
don’t match the frequency of the incoming signal. Usually, a relatively large band-
with in receptor frequence is necessary (from f0/2 to 2f0 for an initial frequency of
f0, depending of the parameter of the process). Another approach is to make sums
of signals with opposite phases, thus cancelling out the linear responses and leaving
only the non-linear content.

1.2.2 Localization
Localization methods used in ULM imaging generally involve fitting a Point Spread
Function in the neighbourhood of pixels with local maximum intensity. The authors
of Heiles et al. 2022 (from which Figure 1.2 comparing different localization methods
is reproduced here) have benchmarked the different algorithms used in the literature
for localization of the microbubbles. The authors inspect numerous methods that
have been used in the past to locate the microbubbles. Usually they consist in
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Figure 1.2: Comparison on in silico simulated flow of the performance of localization
methods. Directly taken from Heiles et al. 2022

extracting a neighbourhood of a few pixels in size of local maxima in the grey-
level image produced, and then estimating the center of the local distribution of
amplitude in the patch.

The simplest and fastest method proposed is simply to compute the weighted
average deviation from the center in the current patch. Heavier methods include
interpolating the local distribution of amplitude with low order polynomials; also
gaussian deconvolution, which consists in finding the best fitting gaussian kernel
to approximate the local distribution in amplitude. The method which appear
to show the best computation time/efficiency seem to be the "Radial Symmetry"
algorithm which attempts to find the deviation from the central pixel in the patch
by selecting the position minimzing the weighted average distance to the line defined
by the gradient computed on the patch, see Parthasarathy 2012 for further details.

1.2.3 Tracking
Although direct formation of the image after localizing the microbubbles is possi-
ble, it is interesting to infer the trajectory of detected microbubbles to interpolate
their positions between multiple frames and increase the number of points in the
histogram.

Once the localization step is done and one has found a number of points in the
image sequence, one can stop here and form an image like those in Figure 1.1 and
Figure 1.4, but one can see also that we may infer the trajectory of the microbubbles
we have detected even at timestamps that are not directly available to us. Indeed,
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Figure 1.3: Illustration of the application of the Hungarian algorithm to the tracking
of microbubbles. Taken from Song et al. 2018.

due to the time of survival of microbubbles in the blood, we know that it is very
likely that a detected microbubble detected in a first shot would still be alive in
the consecutive picture. Associating detected microbubbles from one acquisition to
the next, one can infer the displacement of those microbubbles from one image of
the sequence to the next. This way one can artificially enhance the total number
of detected events and thus reduce the number of microbubbles to be detected in
order to get a satisfying resolution of the image.

The tracking may be done using the Hungarian algorithm. This algorithm is usu-
ally used to find the best allocation of ressources, meaning in mathematical terms
that we will be looking for the best assignement on a bipartite graph. The way that
is applied to Ultrasound Localization Microscopy is by considering the weighted bi-
partite graph of distances of detected microbubbles between two subsequent frames
of the acquisition. One solves the matching problem on every consecutive pair of
images and the two-by-two association of microbubbles defines chains that may be
interpreted as trajectories. Those trajectories allow us to estimate velocity fields
and flow rates.

Figure 1.3 shows the application of this method to the imaging of a rat’s kidney
(full picture shown in Figure 1.4).

The interpolation is then done by defining where the microbubble should be
between two frames, usually it is defined by a straight line joining each pair of
consecutive positions in the trajectory.
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Figure 1.4: ULM image of a section of a rat’s kidney. Data from Chavignon et al.
2020.

1.2.4 Mathematicians in ULM : What is to be done ?
There are still few works from applied mathematicians and computer scientist fo-
cusing in particular on ULM imaging. For instance, the authors in Pham et al. 2023
tried to improve the tissue filtering step by including a more sophisticated PCA in
the ULM pipeline.

The literature seems to mainly focus on improving the imaging process with a
few applications of deep learning aimed at specific steps of the process : for instance
X. Chen, Lowerison, Dong, A. Han, et al. 2022; Youn, Ommen, Bo Stuart, et al.
2019; Harput et al. 2019; Youn, Ommen, Stuart, et al. 2020 focus on reducing the
localisation error, on the other hand X. Chen, Lowerison, Dong, Chandra Sekaran,
et al. 2023 is interested in recovering a velocity map directly from raw ultrasound
data and without a localization step.

In Leconte et al. 2023 the authors show an interesting approach where the track-
ing is essentially performed before the localization, by using a classical tubularity
filter on ULM data seen as three-dimensional 2D+t data.

This is approximately all there is to know in terms of the mathematics involved
in the analysis of ULM images. As one can see, the field is still green and there
is huge room for the development of new and original methods. One of the first
things for the field to develop would be the availability of well annotated datasets
for interesting and/or standard tasks on ULM images. Although the authors Chav-
ignon et al. 2020 made the first step in this direction, the volume of available data
is very important in the modern world, and the state-of-the-art machine learning
techniques will not be accessible for ULM if practitioners don’t play their role in
the ecosystem. Although the lack of data is problematic, there still are steps to be
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taken by engaging with machine learning that don’t necessitate annotation of data
such as unsupervised techniques in Machine Learning. On a more mathematical
side, it looks like approaches directly involving trajectory data are rather under-
developped and only a few papers focus on this type of data, usually for describing
the movements of individuals or cells, but there seems to be, at least to our knowl-
edge, no imaging technique or image analysis method focusing on using such data
to describe medical images.



Chapter 2
Geodesic distances and curves

The following definitions and properties are a minimum for the understanding of
geodesic distances and curves for the analysis of images.1

2.1 Definitions and properties
The determination of the geodesic equation is one of the most famous illustrations
of Calculus of Variations and the application of Euler-Lagrange Equations. This
variational framework is the one we are really interested in, although it may be
necessary to go back to the formalism of Riemannian geometry.

First of all we introduce the geodesic distance and related optimization problems,
first taking the very general point of view of Finsler metrics.

In the following, M is at least a smooth path-connected manifold.

Definition 2.1 (Length and Minimal paths). A minimal path curve is a curve
γ ∈ Lip([0, 1],M) minimizing a length functional of the form

LF(γ) =
ˆ 1

0
F(γ(t), γ′(t))dt, (2.1)

with constraints γ(0) = x and γ(1) = y for chosen x, y ∈ M, and with F ≥ 0
continuous in the first variable and positively one-homogeneous in the second.

We may define the sub-Riemannian geodesic "distance" associated to F by con-
sidering the minimum of the former objective functional :

dF(x, y) = inf
γ∈Lip([0,1],M),γ(0)=x,γ(1)=y

LF(γ), (2.2)

To proceed and prove some of the properties of the former objects and charac-
terize the case when it defines a distance, we need the following lemma.

1Curves and geodesics are fundamental ideas in the theory of Riemannian Geometry. Although
we will sometimes need to refer to the formalism of Riemannian geometry and Calculus of Vari-
ation, when defining geodesic models we will generally use simple analytical expressions as it is
often the case that we don’t need to define standard objects from the theory of Riemannian geom-
etry such as atlases, charts or connections. In general, applying geodesic models will only consist
in considering a change from the euclidean metric tensor on Rd as a sub-manifold of itself.

21
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Figure 2.1: Illustration of minimal paths optimizing for different objectives. Source
: https://xkcd.com/.

Lemma 2.2. LF is caracterized by

LF(γ) = sup
t0=0<t1···<tn=1

n−1∑
k=0

dF(γ(tk), γ(tk+1)),

with the supremum taken over the set of all finite subdivisions of the interval [0, 1]
and LF is a lower semicontinuous functional and parameterization independent.

Proof. Let’s write LF(γ) = supt0=0<t1···<tn=1
∑n−1

k=0 dF(γ(tk), γ(tk+1)), first it is
pretty straightforward to notice that, for any subdivision (tk)0≤k≤n,

∑n−1
k=0 dF(γ(tk), γ(tk+1)) ≤´ 1

0 |γ
′(t)|dt, thus yielding LF(γ) ≤ LF(γ).

The inequality on the other side is proven by noticing that

d(γ(0), γ(1)) ≤ LF(γ) ≤ LF(γ),

and that s 7→ LF(γ|[a,s]) is absolutely continuous and also

LF(γ|[a,s+h]) ≥ LF(γ|[a,s]) + d(γ(s), γ(s+ h))

which yields
d
dsLF(γ|[0,s]) ≥ |γ′|(s),
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which means
LF(γ) ≥ LF(γ).

And the supremum of the continuous maps γ 7→ ∑n−1
i d(γ(ti), γ(ti+1)) taken over

all subdivisions of the interval is lower semicontinuous, see Ambrosio, Brué, et al.
2021.

For parameterization independence, it is easy to see using any reparametrization
ϕ, an increasing, bijective, C1 function from [0, 1] to [0, 1], the equality LF(γ ◦ ϕ) =
LF(γ) follows from change of variable and 1-homogeneity of the integrand.

Note that the definition of parametrization invariance used in the former
proposition is only considering reparametrization which conserve the direction of
travel of the original curve. For symmetric metrics one may consider decreasing
reparametrizations.

Proposition 2.3. If F(x, ·) is definite, then dF is a quasimetric (i.e. a distance
without the symmetry axiom). Furthermore, if F(x, ·) is symmetric (or reversible)
then dF is a proper distance.

Proof. • Positivity of dF is obvious from the positivity of F

• Separability : let γn be a minimizing sequence of curves, allowing dF(x, y) = 0
we have that for almost every t ∈ [0, 1], limnF(γn(t), γn′(t)) = 0. Let us notice
that definiteness of F implies that ∀(x, v) ∈ TM, β∥v∥ ≤ F(x, v), thus
limn ∥γn′(t)∥ = 0 and with dominated convergence theorem we easily get that
x = y.

• For the triangular inequality, let x, y, z ∈ M, and take γn
1 , γ

n
2 minimizing

sequences of curves between respectively x and z, and z and y. Then we build
γ̃n by concatenation of γn

1 and γn
2 , which means γ̃n is an admissible curve

in (2.2), and by minimality we obtain dF(x, y) ≤
´ 1

0 F(γ̃n(t), γ̃n′)(t)dt. Then
separating the integral and by change of variable we obtain

dF(x, y) ≤
ˆ 1

0
F(γ̃n

1 (t), γ̃1
n′(t))dt+

ˆ 1

0
F(γn

2 (t), γn′
2 (t))dt

and sending n to infinity we have that

dg(x, y) ≤ dg(x, z) + dg(z, y).

• Symmetry in the case where F is reversible: Let γ be an optimal path, re-
turning it in time we define γ̃(t) = γ(1− t), then

ˆ 1

0
F(γ̃(t), γ̃′(t))dt =

ˆ 1

0
F(γ(1− t),−γ′(1− t))dt

=
ˆ 1

0
F(γ(1− t), γ′(1− t))dt

=
ˆ 1

0
F(γ(t), γ′(t))dt
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and by minimality of γ, γ̃ is indeed a minimal path from y to x and the values
correspond : dF(x, y) = dF(y, x).

Proposition 2.4. If M is compact, there is at least one curve γ achieving the
minimum in (2.2).

Proof. By Arzela-Ascoli theorem we have that {γ : [0, 1] −→M, γ ∈ K − Lip} is a
compact set with respect to the uniform topology (because the sets [0, 1] andM are
both compact and K−Lipschitz curves are equicontinuous). Taking a minimizing
sequence, eventually reparameterizing so that every curve has constant speed equal
to its length, we have that for any ϵ > 0, ∀n ≥ n0 for some n0 ∈ N, LF(γn) ≤
(1 + ϵ)dg(x, y).

Thus we have that

∀s < t ∈ [0, 1], dg(γn(s), γn(t)) ≤
ˆ t

s

∥γ′
n(u)∥gdu ≤ (1 + ϵ)dg(x, y)|t− s|,

which means that the sequence is compact for the uniform topology and thus
converges up to a subsequence to a curve γ.

We conclude with the lower semicontinuity of the length functional that LF(γ) ≤
lim infn−→+∞ LF(γn) = dg(x, y).

The map F and distance dF are usually called Finsler metrics and Finsler
distances as opposed to the following Riemannian case.

Definition 2.5 (Riemannian Geodesic Distance). The Riemannian geodesic dis-
tance associated with the metric tensor field g ∈ C(M,S++

d ), where S++
d denotes

the set of symmetric definite positive matrices, is defined as follows :

dg(x, y) = inf
γ∈Lip([0,1],M),γ(0)=x,γ(1)=y

ˆ 1

0

√
gγ(t)(γ′(t), γ′(t))dt, (2.3)

The following corollary is a direct consequence of proposition 2.3.

Corollary 2.6. The functional dg in Definition 2.5 is a distance equivalent to the
euclidean norm when the metric tensor is continuous and bounded below (i.e. there
exist α, β > 0 such that α∥v∥ ≤

√
gx(v, v) ≤ β∥v∥).

Proof. There are α, β > 0 such that, ∀v ∈ TxM, α∥v∥ ≤
√
gx(v, v) ≤ β∥v∥, inte-

grating over any curve γ ∈ Γx,y, x, y ∈ M and taking the infimum : α∥x − y∥ ≤
dg(x, y) ≤ β∥x− y∥.

Note that the compactness of M is a sufficient condition for the boundedness
of g.

Proposition 2.7. The restriction of a minimal path is also a minimal path.
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Proof. Let γ be a minimal path for the Finsler functional F joining x to y. Then

γ̃ : t 7→ γ(t0 + t(t1 − t0))

is an admissible path between γ(t0) and γ(t1). If it were to not be minimal, then
we could find η ∈ Lip([0, 1],M) with

ˆ 1

0
F(η(t), η′(t))dt <

ˆ 1

0
F(γ̃(t), γ̃′(t))dt

and concatenation with γ would contradict minimality of γ.

The following result illustrates the link between the class of Riemannian metrics
and the more general Finsler metrics (on Rd) :

Proposition 2.8 (Braides et al. 2002). Any Finsler distance defined on Rd may
be approached by a sequence of Riemannian distances, with smooth and isotropic
metric tensor, in the uniform topology. Furthermore, the sequence of isotropic Rie-
mannian length functionals approximate the Finsler length functional in the sense
of Γ−convergence.

Let’s take a few easy examples to show what geodesic distances look like :

Example 1. The easiest example is the Euclidean manifold Rd equipped
with the metric tensor gx(u, v) = ⟨u, v⟩Rd . Minimal paths are segments and
the associated distance is simply the euclidean distance dg(x, y) = ∥x− y∥Rd .

Example 2. Another simple example that is important for this manuscript
is the Riemannian isotropic metric tensor defined simply by giving a posi-
tive potential ϕ, thus defining gx(v, v) = ϕ(x)∥v∥2

Rd . This kind of isotropic
model takes into account only the current position of the curve and not the
orientation of the velocity vector. Geodesics derived from such a potential
may be thought of as the trajectory of light in an isotropic milieu with Snell
coefficient ϕ.

For what follows, the Eikonal equation and to have the ability to write dual
problems related to the geodesic distances, it is useful to introduce the notion of
dual to a metric :

Definition 2.9 (Dual Metric). The dual metric F∗ of a Finsler metric F is defined
by

∀v ∈ TxM,F∗(x, v) = sup
u∈TxM∗

⟨u, v⟩
F(x, u) (2.4)

Example 3. In the Riemannian case with metric g, the dual metric is simply
g−1 :

F∗
g = Fg−1 .
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Let us show a small result ensuring the existence of a very handy parametrization
under very few assumptions.

Proposition 2.10 (Constant Speed Parametrization). For any curve γ ∈
C1([0, 1],M) with nonzero velocity almost everywhere, there exist a reparametriza-
tion ϕ such that γ ◦ ϕ has constant speed.

Proof. Let ψ : t 7→ 1
Lg(γ)

´ t

0 ∥γ
′(s)∥gds, it is a C1 function mapping [0, 1] to [0, 1],

strictly monotone, it is thus bijective with C1 inverse.
Defining ϕ = ψ−1 as the inverse of ψ, is is easy to verify that

∀t ∈ [0, 1], (γ ◦ ϕ)′(t) = ψ−1′(t)γ′ ◦ ψ−1(t) = Lg(γ) γ′ ◦ ψ−1(t)
∥γ′ ◦ ψ−1(t)∥g

. (2.5)

It is now easy to see that γ ◦ ϕ has constant speed equal to its length.

The following proposition ensures that we can recover the geodesic curves di-
rectly after the computation of the distance function.

Proposition 2.11. Given u : x 7→ dg(y, x), we can recover the geodesic curve
joining y (for almost every y ∈ Ω) to x ∈ Ω by solving the ODE :

dγ
dt

(t) = − 1
dg(x,y)g

−1∇u(γ(t)),
γ(0) = x

(2.6)

Proof. Let γ be a length-parameterized geodesic from γ(0) = x to γ(1) = y, then
we have that dg(γ(t), y) = dg(y, x) − dg(y, x)t. Taking the time derivative of the
former, we have that dγ

dt
(t) · ∇xu(γ(t)) = −dg(y, x) i.e.
√
g

dg(y, x)
dγ
dt (t) ·

√
g−1∇xu(γ(t)) = −1.

In the former euclidean scalar product, as both sides in the product are of
euclidean norm 1(on the right side because of the Eikonal Equation verified by the
geodesic distance, see further section, and on the left side of the scalar product
because of the parametrization of the curve we have that ∀t ∈ [0, 1], ∥γ′(t)∥g =
dg(x, y)), the case of equality in Cauchy-Schwarz allows us to conclude that

dγ
dt = − 1

dg(x, y)g
−1∇xu(γ(t)),

that will be associated with the initial value γ(0) = x.
Having verified that a length-parameterized geodesic solves (2.6), we conclude

by uniqueness.

Numerically the former ODE is quite easy to solve and stop when one has
reached a small euclidean neighbourhood of target point y. What that means is
that in general it is sufficient to compute the Riemannian distance via the methods
shown in section 2.2
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2.1.1 A very short introduction to Riemannian geometry
Let us define properly the notion of Riemannian Manifold and the vocabulary and
tools that will be useful in the last chapter of this thesis.

Definition 2.12 (Riemannian Manifold). A Riemannian Manifold is a manifold
M equipped with a Riemannian Metric g ∈ C2(M,S++

d ).

Now let’s define the Tangent Space to a manifold, which is where the derivatives
and vector fields will live in the framework of Riemannian manifolds.

Definition 2.13 (Tangent space, Tangent Bundle). The tangent space TpM toM
at point p ∈M may be defined as the space of all velocities at that point of curves
passing by p.

The Tangent Bundle TM is the space of couples (x, v) where x ∈ M and
v ∈ TxM.

Now we define Vector fields formally.

Definition 2.14 (Vector fields). A vector field X is a map from the manifold M
to its tangent bundle i.e.

X : p ∈M 7→ X(p) ∈ TpM,

the set of all vector fields on M will be noted X(M).

Such vector fields define differentiations over the manifolds, but it is useful to
define how those vector fields vary with respect to one another. This is the purpose
of the following definition of Connections :

Definition 2.15 (Connection). A connection ∇ is a map from X(M)× X(M) to
X(M) with the following properties :

letting f, g ∈ C∞(M) and X, Y, Z ∈ X(M),

• ∇X(Y + Z) = ∇XY +∇XZ,

• ∇fX+gYZ = f∇XZ + g∇YZ,

• ∇X(fZ) = f∇XY + (Xf)Y.

Usually we note Γk
ij its coordinates in a local frame (E1, . . . , Ed), that is to say

∇Ei
Ej =

d∑
k=0

Γk
ijEk. (2.7)

Among Connections that we may define over the manifold there are some that
are more interesting than others. This is the case of the Levi-Civita connection
which is one the most commonly used connection in Riemannian geometry :
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Proposition 2.16 (Levi-Civita). There is a unique connection ∇ that is both
adapted to the metric g :

∂Xg(Z, Y ) = g(∇XZ, Y ) + g(Z,∇XY ), (2.8)

and torsion-free :
∇XY −∇YX = [X, Y ]. (2.9)

Note that these two properties allow us to compute explicitly the coefficients
of the connection (also called the Christoffel symbols), indeed the second equality
gives us (taking X = Ei and Y = Ej) the symmetry of the symbols Γk

ij = Γk
ji and

the first equation yields ∂kgij = ∑
m Γm

kjgmi +∑
m Γm

kigjm

We may now define geodesics in the sense of Riemannian geometry

Definition 2.17 (Riemannian geodesic). A Riemannian geodesic is a curve parallel
to itself or a straight curve, meaning analitically that it solves the following ODE :

∇γ′γ′ = 0 ⇐⇒ Dγ′
k

dt (t) +
∑

0≤i,j≤d

Γk
ijγ

′
i(t)γ′

j(t) = 0, (2.10)

Associated with initial conditions (γ(0), γ′(0)) = (x, v), there is a unique max-
imal solution and we may define the Riemannian Exponential map as Expx(v) def.=
γ(1), where γ(1) is the unique solution evaluated at time 1 of the geodesic equation
with initial values (x, v) when it is defined.

Let it be noted that this equation is the one that is obtained when applying
Euler-Lagrange equations to the functional

γ 7→
ˆ 1

0
gγ(t)(γ′(t), γ′(t))dt,

which is equivalent to looking at critical points of the length functional. This
ensures that looking at Riemannian geodesics for the Levi-Civita connection means
finding (locally) minimizing curves of length.
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2.2 The Eikonal equation
The Eikonal equation is a non-linear first order Hamilton-Jacobi-Bellman PDE
that describes how the geodesic distance functions behave. It is very important in
this manuscript as it is essential to the computation of the distance functions and
geodesic curves for the main methods used in imaging. Indeed it is at the basis of
the numerical methods described in subsection 2.3 and subsection 2.4.

In the general case of a Finsler metric the eikonal equation may be written

∀x ∈ Ω \ S, F∗(x,∇u(x)) = 1, (2.11)
with F∗ the dual metric of F and S a chosen set where u = 0 is fixed.

In particular, for the case of a Riemannian metric g, the Eikonal equation be-
comes :

∀x ∈ Ω \ S, ∥∇u(x)∥g−1(x) = 1, (2.12)
In the following we will expose in a bit more detail the theoretical foundation

of the existence and uniqueness results for the solutions of the Eikonal equation.
The first definitions presented are necessary to the definition of Viscosity solutions
of PDEs.

Definition 2.18 (Tangent functions). • Let u ∈ C(Ω,R), we say that ϕ ∈
C1(Ω,R) is tangent from above at point x ∈ Ω if ϕ ≥ u on Ω and u(x) = ϕ(x).

• We say that ϕ ∈ C1(Ω,R) is tangent from below at point x ∈ Ω if ϕ ≤ u on Ω
and u(x) = ϕ(x).

Definition 2.19 (Degenerate Elliptic operators). Let L be an operator on C(Ω,R),
we say that it is degenerate elliptic if there exists a function L : (x, u, p,H) ∈
Ω× R× Rd × Sd 7→ L(x, u, p,H) such that

∀u ∈ C2(Ω,R), Lu(x) = L(x, u(x),∇u(x),∇2u(x)),

with L non-decreasing with respect to its second variable and non-increasing with
respect to its fourth (for the usual order on semi-definite positive matrices).

Definition 2.20 (Viscosity sub-/super-/ solutions). Let u ∈ C(Ω,R) and L a de-
generate elliptic operator.

• We say that u is a viscosity sub-solution of L if ∀x ∈ Ω,∀ϕ ∈ C2(Ω,R) such
that ϕ is tangent from above to u at x, Lϕ(x) ≤ 0.

• We say that u is a viscosity super-solution of L if ∀x ∈ Ω,∀ϕ ∈ C2(Ω,R) such
that ϕ is tangent from below to u at x, Lϕ(x) ≥ 0.

• u is a viscosity solution if it is both a viscosity super-solution and sub-solution.

Theorem 2.21. There is a unique positive viscosity solution to the Riemannian
Eikonal Equation (2.12) in (Rd, g), see Mirebeau 2023.
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Proof. (Viscosity Sub-solution) Let v0(x) = dg(x0, x) be the distance function from
point x0 ∈ Ω̄ ⊂ Rd. Let x ∈ Ω, and let ϕ ∈ C1(Ω) be tangent superior to v0 at x.
Then for h small enough x+ h ∈ Ω and

ϕ(x)− ϕ(x+ h) ≤ v0(x)− v0(x+ h) ≤ dg(x, x+ h) = ∥h∥g + o(∥h∥),

first applying the definition of a tangent from above function and then the
triangular inequality.

Now sending h to zero yields ∥∇ϕ(x)∥g−1 ≤ 1.
(Viscosity Super-solution) Now let ϕ be tangent inferior to v0 at x ∈ Ω, let γ be

a geodesic with unit parameteurization ∥γ′(t)∥g = 1 with γ(0) = x.
Using the following Taylor expansion for γ around 0:

γ(t) = x+ ẋt+ o(t),

we now have
v0(γ(t)) = v0(x)− t,

and taking the Taylor expansion of the composition now :

ϕ(γ(t)) = ϕ(x) + t ⟨∇ϕ(x), ẋ⟩+ o(t),

and in the end :

t = v0(x)− v0(γ(t)) ≤ ϕ(x)− ϕ(γ(t)) = −t ⟨∇ϕ(x), ẋ⟩+ o(t).

Noticing | ⟨∇ϕ(x), ẋ⟩ | ≤ ∥∇ϕ(x)∥g−1∥ẋ∥g = ∥∇ϕ(x)∥g−1 , and combining with
the former yields :

1 ≤ ∥∇ϕ(x)∥g−1 .

Remark. The existence and uniqueness result is true also for wider classes of Finsler
Metric. One may refer to Bardi and Capuzzo-Dolcetta 1997.

2.2.1 The Fast Marching Algorithm
The Fast Marching method is the classic technique to compute geodesic distances
on 2D or 3D domains in numerical applications. It is for instance ubiquitous in
vessel tracking on medical images as we will see in Section 2.3.

Its first introduction is somewhat old, see J. A. Sethian 1996, but it has since
seen many iterations Rickett and Fomel 1999; Popovici and J. A. Sethian 2002;
Zhao 2004; Zhao 2006; Potter and Cameron 2021.

It is a single-pass method derived from Dijkstra’s algorithm. The method is
described in Algorithm 1. The idea is to start from the "Seed" set S and enumerate
the nodes in the order of increasing distances until the "Target" set is reached or
any other stopping criterion.

The key here is the estimation of the increment in the distance among neighbours
on the grid : this is done using discretization schemes for the Eikonal Equation.
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Figure 2.2: Level sets of the euclidean distance from the center of the grid computed
with the Fast Marching algorithm, with scheme of order 1 (Left) and of order 2
(Right)

Example 4. In the case of isotropic metric tensor g(x) = ϕ(x)2Id, the Eikonal
equation may be written ∥∇u∥ = ϕ. The first idea for the local discretization
is to apply finite differences directly : letting a ∈ hZd the "parent" of the
point i considered in the grid, then the Eikonal equation becomes

(ui − ua)2

h2 = ϕ2
i ,

and thus
ui = ua + hϕi.

This case in particular corresponds immediatly to Dijkstra’s algorithm on the
grid with edge weights determined by ϕ. This approximation is too simple
though, and introduces a huge bias in the computation of the distance on the
grid (see Figure 2.2 left).
The upwind discretization scheme, introduced for the Eikonal equation in
L. D. Cohen and Kimmel 1997, provides much more satisfying results for the
Fast Marching algorithm :(up − up±e1)2 + (up − up±e2)2 = h2ϕ2

p if p has 2 parents,
up = mini up±ei

+ hϕp if p has only 1 parent or h2ϕ2
p < (up±e1 − up±e2)2.

This scheme if of order 2 and it allows us to compute distances with less bias
due to the grid approximation of the space (see Figure 2.2 right).
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Example 5. For general Riemannian metrics g in dimension d, we may use
the eigenvalue decomposition method for positive definite operators. This
way we have access to the eigenvalues and eigenvectors (ρi(x), vi(x))1≤i≤q of
gx at every point x from the grid. From this, the adaptation of the upwind
scheme is direct :

d∑
i=1

1
h2ρi

max(up − up±vi
, 0)2 = 1.

Note that in general the (vi)i in the former expression will not be supported
on the grid, so one can resort to more sophisticted decompositions such as
the Selling’s decompostion or Voronoi’s second decomposition, see Mirebeau
2019.

Figures 2.4 and 2.5 show resulting distance computations in the square 2D do-
main for the standard euclidean distance and the distance computed in a labyrinth
via the Fast Marching method.

Algorithm 1 : Fast Marching Algorithm
Result : U, the geodesic distance from the set S

1 Initialization : each point in Ω are labeled Far, the points in S are Accepted;
2 Initialization of U : U(x) = 0 in S, +∞ otherwise.
3 while Points are still labeled Trial or Far do
4 Find a new point q minimizing U among the points labeled as Trial;
5 Label q as Accepted;
6 for p in the neighbourhood of q labeled as Trial or Far do
7 Update U(p);
8 if p is labeled as Far then
9 Label p as Trial ;

10 end
11 end
12 end

The subgradient marching algorithm

The subgradient marching algorithm is an interesting part of the litterature, as it
is now a well established method, but not so widely used in practice. We introduce
the method here as it will be very interesting for one of our applications shown in
Section 3.4. It was first introduced in Benmansour, Carlier, et al. 2010.

Let dϕ be the geodesic distance on the plane associated with potential ϕ as in the
former examples focusing on isotropic metrics. Once we know how to compute said
geodesic distance, we may be interested in optimizing the choice of ϕ for certain
tasks. To tackle such optimization or inverse problems, one needs to study the
properties of the map associating a metric tensor to its corresponding geodesic
distance function.

Proposition 2.22. ∀x, y ∈ Ω, ϕ 7→ dϕ(x, y) is a concave map.
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Start

Target

Figure 2.3: Representation of the Fast Marching Algorithm. Green points : nodes
already Accepted. Blue points : nodes marked Trial. Black points : nodes that are
not visited yet.
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Figure 2.4: Fast Marching algorithm in Euclidean case. Left : Potential used for
computation of (Isotropic) geodesic distance. Center : Distance field computed.
Right : sinus of the Distance field to show level-sets.

Figure 2.5: Fast Marching algorithm in Labyrinth. Left : Potential used for com-
putation of (Isotropic) geodesic distance. Center : Distance field computed. Right
: sinus of the Distance field to show level-sets.

Proof. Simply dϕ(x, y) = infγ∈Γx,y{
´

γ
ϕ} is the infinimum over a class of linear

forms.

We can derive a "super-gradient" (that will be called "subgradient" again, by
imitation of convex analysis) for such a concave function by perturbating ϕ and
differentiating :

ddϕ+ϵξ(x, y)
dϵ

∣∣∣∣∣
ϵ=0

=
ˆ

γ∗
ξ,

where γ∗ is a minimizer for the ϕ-length functional.
It is then sufficient to extract a geodesic curve to have access to an element of

the subdifferential, but it is sometimes hard to get in a robust discretized manner,
which is why Benmansour, Carlier, et al. 2010 propose this alternative method.

Instead of discretizing the continuous expression of the subdifferential, they
simply first consider the approximation of the distance given by the Fast Marching
Algorithm described above, and then they differentiate through the iterations.

Differentiating with respect to ϕ in the two cases of update, we get


(up − up±e1)(Dϕup −Dϕup±e1) + (up − up±e2)(Dϕup −Dϕup±e2) = h2ϕp

if p has 2 parents,
Dϕup = Dϕup±ei

+ h1p if p has only 1 parent or h2ϕ2
p < (up±e1 − up±e2)2,

(2.13)
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with 1p ∈ Rn2 the vector filled with zero except at coordinate p, which gives the
update:Dϕup = (up−up±e1 )Dϕup±he1 +(up−up±e2 )Dϕup±e2 +h2ϕp

(up−up±e1 )+(up−up±e2 ) if p has 2 parents,
Dϕup = Dϕup±ei

+ h1p if p has only 1 parent or if h2ϕ2
p < (up±e1 − up±h2)2,

(2.14)
This update can then be used to compute the gradient of the geodesic distance
with respect to the metric tensor during the Fast Marching iterations, with time
complexity inO(n2 log(n)) (as in (2.14), n additions along theO(n log(n)) iterations
of Fast Marching).

2.2.2 Heat Method
The Heat Method is another method to approximate numerically the solution to the
Eikonal equation, it leverages mathematical properties relating the heat equation
to the Eikonal equation. It was recently popularized by the work of Crane et al. in
Crane et al. 2013, which proposed a simple adaptation of the Heat Method. The
method was then extended to anisotropic Riemannian metrics and Finsler metrics
in Yang and L. D. Cohen 2016; Yang, Chai, et al. 2018.

The main idea of the method comes from the works of Varadhan 1967b and
Varadhan 1967a where the author has studied respectively the asymptotic behaviour
of the solutions of the heat equation when time nears 0 and the behaviour of the
fundamental solution of the elliptic heat equation as transition probablity as time-
scaling goes to 0. Those two works have very close results, but they use two different
approaches, one analytic and the second, with a more general result, pobabilistic.

Indeed, let p : (t, x, y) 7→ p(t, x, y) be the solution to the heat equation, for some
x ∈ Ω,

∀(t, y) ∈ I × Ω, ∂p(t, x, y)
∂t

= ∇y · (D(y)∇yp(t, x, y)), (2.15)

p(0, x, ·) = δx, (2.16)
where ∇y is the gradient with respect to the variable y ∈ Ω, then we have the
asymptotic behaviour :

lim
t−→0+

−2t log p(t, x, y) = dD−1(x, y)2. (2.17)

This formula is very useful as it links the geodesic distance to the solution of
a very general PDE that is well known and whose solutions can be approximated
accurately on a variety of domains. As pointed out in Crane et al. 2013, this result
is to be understood as selecting trajectories of brownian motions that arrive at point
y from point x in very short time i.e. with very little deviation from the minimal
path. And more importantly than the formula itself, it is the fact that p and dD−1

follow the same gradients that is useful.
Indeed, directly using formula dD−1(x, y) ≃

√
−2t log p(t, x, y) will often yield

numerical instabilities, and the great value from Crane et al. 2013 comes from the
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idea of using only the gradient of the solution to the heat method, and in a second
time taking advantage of the Eikonal equation to recover the norm of the field.

This method is very practical because it boils down the problem to solving a
numerical PDE and discretizing classic operators on a given domain. For instance
the discretization of the Laplacian on the grid is a very well studied problem and
we have many available discretizations for the grid, and different kinds of boundary
conditions (see for instance Atkinson and W. Han 2009 for reference on numerical
analysis). For surfaces and discretized manifolds in general it is also very easy to
compute an approximation of the geodesic distance along the manifold as long as
one knows how to discretize the Laplacian (see Figure 2.8 for an example of such
computation on a mesh).

Such discretized operators are usually represented by sparse matrices which is
very useful as we can take advantage of well-studied factorizations and make great
economies in terms of memory and computational time.

Figures 2.6 and 2.7 show resulting distance computations in the square 2D do-
main for the standard euclidean distance and the distance computed in a labyrinth
via the Heat method.

Figure 2.8 show the computation of the geodesic distance on the mesh of an
elephant in 3D via the Heat method.

Algorithm 2 : Heat Method
Result : u∗, solution to (2.12)

1 Initialization : intialize δS with S the set from which we want to compute
the distance, choose n the number of steps in the backward Euler scheme,
t the time limit, ∆D the Laplacian matrix associated to the metric tensor
D

2 Compute ϕ = (I − t
n
∆D)−nδS

3 Let X = ∇ϕ
∥∇ϕ∥

4 Solve u∗ ∈ arg minu ∥∇u−X∥2
L2

5 return u∗

Algorithm 2 sums up the different steps of the algorithm described in Crane
et al. 2013 for the Heat Method.
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Example 6. An easy example to look at to understand (2.17) is when solv-
ing on the euclidean space : we know that (2.15) can be solved using the
convolution with a gaussian kernel, thus

p(t, x, y) = 1√
4tπ

exp
(
−∥x− y∥2

4t

)
,

and the Varadhan formula is not only true in the asymptotics but is exact at
all times:

−4t log p(t, x, y)− 2t log(4tπ) = ∥x− y∥2,

Figure 2.6: Heat Method algorithm in Euclidean case. Left : Potential used for
computation of (Isotropic) geodesic distance. Center : Distance field computed.
Right : sinus of the Distance field to show level-sets.

Figure 2.7: Heat Method algorithm in Labyrinth. Left : Potential used for compu-
tation of (Isotropic) geodesic distance. Center : Distance field computed. Right :
sinus of the Distance field to show level-sets.

2.2.3 Other methods
Multiple other algorithms have been proposed to compute the geodesic distance on
finite dimensional domains.

For instance in the recent work Ennaji et al. 2022, the authors propose to use
dual formulations of the geodesic distance in order to compute it via a classic
primal-dual algorithm.
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Figure 2.8: Geodesic distance computed on a 3D mesh of an elephant.

Indeed, geodesic distance may be reformulated in a dual problem :

sup
u∈C0

{ˆ
Ω
u, ∀x, y ∈ Ω, u(x)− u(y) ≤ dF(x, y), u = 0 on S

}
, (2.18)

and equivalently

sup
u∈W 1,∞

{ˆ
Ω
u, ∀x ∈ Ω, F∗(x,∇u(x)) ≤ 1, u = 0 on S

}
, (2.19)

with S a set of points from which we compute the distance map.
These types of problems are named Beckmann problems.
As stated before, we have efficient algorithms to solve such problems. Refor-

mulating as a minimization problem and putting constraints as indicatrix, we can
rewrite :

inf
u∈W 1,∞

{ˆ
Ω
−u+ χBF∗ (∇u), u = 0 on S

}
, (2.20)

where BF∗ = {v ∈ TxΩ, F∗(v) ≤ 1} .
This is a minimization problem of the form

inf
u
E(u) + G(∇u), (2.21)

which can be put into a primal-dual form

inf
u

sup
ϕ
E(u) + ⟨ϕ,∇u⟩ − G∗(ϕ), (2.22)
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The classic Primal Dual Algorithm can be easily rewritten in the context of our
poblem :

Algorithm 3 : Primal Dual Algorithm
Result : u∗, solution to (2.22)

1 Initialization : take u0 = û0, ϕ0 = ∇u0 and choose η, τ > 0
2 for k ≤ kmax do
3 ϕk+1 = ProxηG∗(ϕk + η∇ûk);
4 uk+1 = ProxτE(uk − τ∇∗ϕk+1);
5 ûk+1 = 2uk+1 − uk

6 end

Using Moreau’s identity we deduce the Prox operator related to G∗ :

ProxηG∗(ψ) = ψ − ηProjBF∗ (ψ/η)

and the computation for E is easy :

ProxτE(v) = (v + τ)1Ω\S + uS1S.

From what precedes, the reader may see that numerical computations are en-
tirely dependant on our ability to compute the projection map associated to BF∗ .

Classic results in the theory of numerical methods in convex analysis ensure that
Algorithm 3 converges towards a solution to (2.22). See for instance Chambolle and
Pock 2011.

Figures 2.9 and 2.10 show resulting distance computations in the square 2D
domain for the standard euclidean distance and the distance computed in a labyrinth
via the Heat method.

Figure 2.9: Primal Dual algorithm in Euclidean case. Left : Potential used for
computation of (Isotropic) geodesic distance. Center : Distance field computed.
Right : sinus of the Distance field to show level-sets.
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Figure 2.10: Primal Dual algorithm in Labyrinth. Left : Potential used for compu-
tation of (Isotropic) geodesic distance. Center : Distance field computed. Right :
sinus of the Distance field to show level-sets.

2.3 Geodesic Methods in Image Processing
There is quite a long history now of geodesic methods being used to tackle segmen-
tation, tracking of vascular structures and other image processing tasks. Here we
may provide a short tour of existing methods involving geodesic methods, but the
main resource around this subject is Peyré, Péchaud, et al. 2010.

Geodesic methods play a crucial role in image segmentation and object recogni-
tion by providing a robust framework for capturing the intrinsic geometry of visual
data. Geodesic distances enable the delineation of object boundaries, facilitating
more accurate and context-aware segmentation. This is particularly beneficial in
scenarios with complex or irregular shapes where traditional methods may struggle.

Among the first works involving geodesic distance in applications, one may cite
L. D. Cohen and Kimmel 1997, they use the Fast Marching Method in order to
minimize an energy and find contours, boundaries or roads in natural images.

Li and Yezzi 2007; Benmansour and L. D. Cohen 2011; D. Chen, Mirebeau, and
L. D. Cohen 2016; D. Chen, Mirebeau, Shu, et al. 2023 are among the first works
to propose augmenting the dimension of the problem in order to add information,
here by adding vessel width information. E. Bekkers et al. 2014; Duits, Meesters,
et al. 2018 use orientation lifts in order to avoid shortcut problems in vessel tracking
tasks.

L. Cohen 2001 allows one to segment regions by enclosing it inside the union of
multiple well chosen geodesics.

Tasks in 3D have already been tackled for instance in Deschamps and L. D.
Cohen 2001; Ardon and L. D. Cohen 2006, for vessel tracking in 3D.

Figure 2.11 shows an application of the process described in E. Cohen et al. 2018
with ULM data lifted in the space of position and orientation as done in Section
3.2, reimplementing this method in the peculiar context of ULM imaging was one
of the first idea during our journey.
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Figure 2.11: Segmentation method from E. Cohen et al. 2018 applied on ULM rat
brain image with isotropic cost computed via Jerman filter.
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Chapter 3
Machine Learning for Computer Vision

Machine Learning and Deep Learning are nowadays the main paradigm to treat
many problems that used to be mainly tackled from an Inverse Problem perspective.
This is due to accessibility to a very large quantity of data and the will to produce
it by practitioners of different fields in order to take advantage of the nice properties
of models relying on data. It is also the availability of easy-to-use and relatively
efficient autodifferentiation engines such as PyTorch or Tensorflow that allowed
wider access to these Machine Learning techniques for a wide range of application
fields.

3.1 Machine Learning, Deep Learning : First
Principles

In the following we will introduce briefly the main principles of Machine Learning
and related tasks.

3.1.1 Supervised Learning
Depending on the task at hand, the theoretical framework of Machine Learning
(ML) problems may vary widely. For now, let us consider only tasks that are said
to be supervised.

A ML task is said to be supervised when one has access to the theoretical answer
to the problem that one tries to solve. Generally, the task will be set as follows :
the practitioner has access to a number (finite or infinite) of observable variables
{xi}i∈I = X (which can be seen as realizations of a random variable) and the goal is
to predict the associated labels {yi}i∈I = Y . As we try to be as general as possible,
we do not specify the properties of the spaces of X and Y. The role of the ML
practitioner is to determine a class of functions {fθ}θ∈Θ parameterized by θ living
in a parameter space Θ, that will be appropriate to map the observable variables
{xi}i∈I to the labels {yi}i∈I .

Usually the supervised setting allows one to have access to a finite number of
both variables and labels. The couple (X, Y ) is called the dataset and it is almost
always split into a training set and a validation set.

43
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Once the model fθ is defined, we want our model to have the right values for the
examples known in our dataset; namely we want ∀i ∈ I, fθ(xi) ≈ yi. In practice,
it is not exactly what one wants, and we will rather only try to approach in some
sense the labels on our dataset, as ML attempts to achieve models that have a more
interesting property than simply interpolating the data : we want our model to be
good at generalizing i.e. to be able to give good predictions for new data which was
not available during training. Here we see the need to form a validation dataset :
we want to avoid using all the data available for the computation of a good set of
parameters θ∗, this way we can control if our trained model fθ∗ is able to generalize
beyond data available at training time and thus avoid simply interpolating data.
Often the dataset will be split one more time into a test set along the training
and validation set, as the practitioner may want to modify the class of functions
{fθ} according to the performance evaluated on the validation set (we may speak
of meta-optimization), in which case the optimal parameters are not independent
of the validation set and fair evaluation requires that we have a third set.

The search for the optimal set of parameters is then performed by trying to fit
the predicted values fθ(xi) to the labels yi, which is done by minimizing a notion
of discrepancy between the predictions and the labels.

The training process is then performed by minimizing some objective function

min
θ∈Θ

∑
(x,y)∈(X,Y )

L(fθ(x), y),

where (X, Y ) is the training set of variable-labels pairs, and L is an appropriate
function that compares the predictions to the labels (usually some notion of dis-
tance). One may sometimes add a regularization term R(θ) implementing some a
priori on the parameters and the form of the solution.

One may interpret this minimization problem as the Maximum Likelihood esti-
mation of the optimal parameter θ, with

p(θ|(x, y)) ∝ p(θ)p((x, y)|θ),

and
p(θ) ∝ exp(−R(θ)),

and
p((x, y)|θ) ∝ exp(−L(fθ(x), y)).

Then Maximum Likelihood and our objective are equivalent

arg min
θ

∑
(x,y)∈(X,Y )

L(fθ(x), y) +R(θ) = arg max
θ

∏
p(θ|(x, y))
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Classical loss functions include for instance :

• (p-norms) L(z, y) = ∥y − z∥p
p, z, y ∈ Rd, p ∈ [1,+∞],

• (Binary Cross Entropy) L(z, y) = (1− y) log(1− z) + y log(z),

• (Kullback-Liebler Divergence) L(z, y) = y log
(

y
z

)
,

Once our framework is set up, one can notice for instance that some of the most
classical statistical tasks may be put into this framework. For instance the choice
fθ(x) = θTf(x) where f : x ∈ Rd 7→ Rd′ and L(z, y) = ∥z − y∥2

2 yields the Linear
Regression, additionally the regularisation term R(θ) = ∥θ∥1 yields the LASSO
model.

One may note that the objective function is not convex in general, and as we
will see next, the architectures fθ defined are, more often than not, very far from
making it convex. For models that are very far from the simple linear one, the
general understanding of how everything works is "The optimization landscape is
very complex, there are many local minima, but they are all relatively good".

3.1.2 Optimization : automatic differentiation and gradient
descent

Automatic Differentiation (AD) is a computational technique widely used in nu-
merical optimization, machine learning, and scientific computing for efficiently and
accurately computing derivatives of functions. The main objective of AD is to eval-
uate the derivatives of a given function with respect to its input variables, which is
essential for tasks like gradient-based optimization.

AD is grounded in the fundamental principles of calculus, specifically the chain
rule. The chain rule states that the gradient of a composition of functions is the
product of the Jacobian and/or gradients of those functions. In the context of AD,
this rule is systematically applied to decompose complex functions into a sequence
of elementary operations.

Written for the composition of two differentiable functions f : Rm −→ R and
g : Rd −→ Rm, the chain rule reads :

∀x ∈ Rd,
∂(f ◦ g)
∂xi

(x) =
∑

j

∂f

∂yj

(g(x))∂gj

∂xi

(x). (3.1)

Automatic Differentiation is a procedure to compute recursively the derivative of
a function with respect to some input, the idea being that the function in question
should be expressed as the composition of many simple functions. Usually, the
different steps to compute a function of the inputs with respect to which the function
is to be derived are stored in a computational graph. The graph is then read
backwards to compose the gradients.

The step of computing the objective function is called the forward pass and the
second step of computing the gradient is called the backward pass.
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The concrete implementation in PyTorch requires each function called to have
both a forward and backward method implemented, at the backpropagation step
each backward method is called recursively and the result is multiplied with the
former backward calls from further down in the graph.

3.1.3 Neural Network architectures
The successes of Machine Learning in recent years comes both from the rise in access
to a big amount of data, the accessibility and efficiency of automatic differentiation
libraries and the development of a wide variety of architectures of Neural Networks.

Indeed, in the setup presented above, a type of approximating class in particular
has received a lot of attention lately, that is the Neural Network. Originally thought
of as a replica of the way signals propagate through the brain and neural plasticity,
Neural Networks try to mimic the travel of an input signal into a network of neurons.
That is done by applying successive linear transformations, whose coefficients are
parameters to be optimized (they model the way neurons interact between each
other), and non-linear transformations also called activation functions (thought as
the way neurons communicate or not to the next neurons depending on whether the
input intensity attains a certain threshold level or not). To stick to the biological
analogy, activation functions used to be chosen as some kind of approximation of a
Heaviside function such as sigmoids, arctan or tanh, but experience has shown that
using simpler ("least non-linear") activation functions such as the ReLU = max(0, ·)
and its variations gives better results (in part because of their non-zero gradient
away from 0).

Let n ∈ N, (hk)k be a set of activation functions and ∀1 ≤ i ≤ n,Wi, bi be a
collection of weights and biases, in general Neural Networks with n layers taking
input in Rd can be written as :

∀x ∈ Rd, fθ(x) = hn(Wnhn−1(Wn−1h(. . . h1(W1x+ b1) . . . ) + bn−1) + bn). (3.2)

Such architectures are usually called Multilayer Perceptrons, and most neural
network achitectures may be written like this, or as a combination of such percep-
trons or with additional structural conditions over the weights. This architecture
is interesting because we have theoretical guarantees that, for different sets of con-
ditions over their width and depth, and hypothesis over the activation functions,
they can approximate any continuous function. This class of theorems are called
Universal Approximation Theorems. Figure 3.1 illustrates one neuron i.e. one of
the units in the former composition.

Equivariant networks

Some of the Neural Networks architectures that receive the most attention in the
literature have particular properties of invariance, or rather equivariance, to specific
transformation groups.

Convolutional Neural Networks (CNN) were proposed and have since revealed
to be very useful in various signal processing tasks and other ML tasks. The main
idea of this architecture is to have each of the linear transformations in (3.2) be
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h(wTx+ b)

w1

w4

w3

w2

w5

x1

x5

x4

x3

x2

b

Figure 3.1: Illustration of a theoretical neuron, the xi are the inputs, wi are weights,
b is a bias and h is the activation function.

convolutions with a kernel function (which is usually to be learnt from data). We
may cite the foundational works LeCun et al. 1989; W. Zhang et al. 1990 who were
the first to apply such an architecture to computer vision problems.

Let us write such a transform for a signal defined on an open set of the real line
(representing e.g. an audio signal) :

Let f : R −→ R ∈ L2(R), be our signal the linear transform W : L2(R) −→ L2(R)
defined by the kernel k ∈ L2(R),

∀x ∈ R, Wf(x) =
ˆ

R
k(x− y)f(y)dy, (3.3)

the group related to these linear transforms is that of translations of the real
line. This group acts on R and on L2(R) through τux = x − u and τuf(x) =
f(τux) = f(x − u), and it is easy to see that ∀u ∈ R,Wτuf = τuWf. Choosing
such linear transforms ensures the network to be equivariant (i.e. transformation of
the input results in the same transformation of the outputs, as long as each of the
transformations in the network is equivariant). This is interesting because it allows
to reduce the dimension of the features to be learned : for instance the detection of
a subject in a part of an image is independent from the location of the subject in
the image. Figure 3.2 illustrates the equivariance property.

One may note that the discrete counterpart to (3.3) fits into the framework of
(3.2) :

(Wf)i =
∑

i

ki−jfj, (3.4)

as this discretized operator may be written as a specific type of matrix, namely
Toeplitz matrices. Indeed a Toeplitz matrix A is defined by the equation :

∀i, j, Aij = ki−j.
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Figure 3.2: Illustration of the Equivariance property for translation applied to a
brain tumour segmentation task (see dataset Pedano et al. 2016). The map Φ is
equivariant with respect to the action of the group G if the diagram commutes.

One might want to note that the ReLU function is also equivariant for transla-
tions :

∀x ∈ R, max(0, f(x− u)) = max(0, f)(x− u).
In recent years there have been many works focusing on extending this setup

to new group structures and have equivariant architectures available. We refer to
the foundational works T. S. Cohen and Welling 2016; T. Cohen and Welling 2016;
T. S. Cohen, Geiger, et al. 2018 on equivariant CNN architectures and the book
Bronstein et al. 2021 for an overview of the subject. We may also cite Smets et
al. 2023 for a different approach considering each linear transform as applying an
equivariant PDE on an input.

The Encoder-Decoder architecture

A very common way to conceptualize Neural Networks is to think of them as learn-
ing representations of data with low intrinsic dimension but living in high dimen-
sional spaces. The Auto Encoder expands on this notion by having two successive
branches, the first "Encoder" branch takes data as input in a high dimension space
and sends it to a lower dimensional space (one that we can think near the intrinsic
dimension of the data), and a second "Decoder" branch that sends this representa-
tion back to the original high dimensional space.

The theoretical space described by the decoder is called the latent space. It is
extremely useful when there is no natural way to describe the data, for instance
this concept has seen many successful applications in unsupervised learning applied
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Figure 3.3: UNet CNN architecture.

to Natural Language Processing. One of the main problematic in the processing
of language is to be able to give a useful and efficient representation of chains of
characters in a way that conveys meaning. Once a proper representation of words is
possible, one can simply see speech as walking in the abstract space that accurately
represents language.

The UNet Architecture

The UNet architecture is a CNN model that is widely used in Computer Vision tasks
and in Biomedical Imaging treatments. It reproduces the classical Encoder-Decoder
architecture with small convolutional layers, maxpooling operations to reduce the
size of the images along the network at the encoding stage, and up-convolution at
the encoding stage. There are also skip-connections between the encoding layers
and the decoding layers to pass large scale information that get lost during the
encoding phase, reducing dimensionality of the features. Figure 3.3 represents the
UNet architecture.
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3.2 Tracking vascular trees on medical images

This is a joint work with Laurent D. Cohen. Accepted at the IMPROVE
2024 conference, it has been published online as part of the Proceedings of
the 4th International Conference on Image Processing and Vision Engineering
(IMPROVE 2024).

3.2.1 Introduction
As stated in the Introduction of this manuscript, ULM is a novel imaging tech-
nique that allows users to bypass the compromise between precision and depth of
penetration in ultrasound imaging.

It allows one to make highly resolved images of the vascular network deeper in
the skin tissues with the help of micro bubbles used as contrast agents. We refer to
Couture, Hingot, et al. 2018 for an overview of the super resolution method.

In the present work, we introduce a new workflow for complete end-to-end detec-
tion of vascular structures on ULM images, using deep learning to detect landmarks
(see Figure 3.4) allowing tracking of vessels as edges in a tree graph with landmarks
as vertices. Our approach differs from classical Perceptual Grouping for blood ves-
sel tracking as performed in E. J. Bekkers, D. Chen, et al. 2018; Benmansour and
L. D. Cohen 2009a. Indeed we are trying to take advantage of long geodesics track-
ing blood vessels across an image, that should behave well given the amount of
literature on the subject. While Perceptual Grouping usually focuses on computing
short geodesics between close points spread across the vessel network, we aim to
compute few long geodesics between key landmarks of the vasculature. We try to
take advantage of the information specifically given by ULM imaging, but it must
be noted that it is possible to adapt on other types of images, for instance eye
fundus images obtained via direct photography. To do so, one may need to evalu-
ate local orientation information as we will see in section 3. From a 2D image it
can be done using Orientation Scores as in Duits, Felsberg, et al. 2007 or similar
transforms such as the ones presented in J. Zhang et al. 2016 to lift a 2D image set
in the plane to the 3-dimensional space of positions and orientations.

Detection, segmentation or tracking tasks on medical images are widely studied
problems.

The contributions of our work include :
• working with ULM data, defining a Riemannian metric in order to track

vessels in ULM images,
• dealing with scarcity of data : 2 different high resolution images to make both

the training and validation set,
• carrying out detection of vascular landmarks in such context,
• fitting a tree model with geodesics as edges to take into account geometric

and topological aspects into the tracking, thus investigating the efficiency of
using the tree-like nature of vasculature to perform the tracking,

• comparing results on synthetic data (hand-made black and white images to
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fit the framework used for ULM data, i.e. few big images) and eye fundus
images (more images, but smaller).

Vessel segmentation is usually performed by computing scores of vesselness on
the image, see the seminal work Frangi et al. 1998 and more recent work Jerman
et al. 2016. The main idea in these works being that high vesselness corresponds to
regions in the image where one orientation is dominant. Vesselness is then defined
as a function of the eigenvalues of the Hessian (in dimension 2, one eigenvalue being
significantly higher than the other indicates a tubular region). Modern methods of
transposing the image in a higher dimensional setting of Position-Orientation space
were used in J. Zhang et al. 2016.

Other methods of vascular segmentation include machine and deep learning
methods that have become accessible thanks to the availability of annotated data.
We can cite for instance Oliveira et al. 2018 that uses a fully-convolutional U-
net for segmentation task on eye fundus images. Even more recent ideas include
adding Attention mechanisms inside neural network architectures as it is one of
the main paradigm in Machine Learning these days. One may cite the Vision
Transformer Dosovitskiy et al. 2021 and the Swin-UNet architecture as much more
recent architectures used to tackle segmentation problems that may seem similar
to the processing presented here. In fact the reader may note that here we are
indeed realizing a tracking of the blood vessels, i.e. we are trying to find curves
that represent accurately blood vessels present in the image, but it has to be noted
that this is quite far from the most common approach in modern vessel detection
methods. Indeed the problem usually considered in the literature is not to find
vessels as curves but simply to indicate pixels in the image where the vessels are
supposed to be. In Section 3.2.5 we attempt to give a good assessment of the
performance of our method and to compare its performance against segmentation
scores in the same fashion as it is commonly done in the literature. This is of course
at the disadvantage of the geodesic methods as it is already a non trivial task to
project and widen curves in order to get a segmentation mask from a parameterized
curve.

A few works have already approached the problem of localizing vascular land-
marks in eye fundus images Abbasi-Sureshjani et al. 2015; Pratt et al. 2017; Wang
et al. 2023; Calvo et al. 2011; Tetteh et al. 2020 but they usually first focus on
providing a segmentation mask of the blood vessels in the image before carrying
post-processing on the segmentation to infer the positions of the landmarks (end-
points, crossings of bifurcations of blood vessels). Hervella et al. 2019 tries to tackle
the problem of finding landmarks directly from input data, and we will be building
on this method here.

The second part of our workflow makes use of geodesic curves to track vascular
structures in the input images. Tracking vascular structures using geodesics has
been done multiple times for instance in Deschamps and L. D. Cohen 2000; Ben-
mansour and L. D. Cohen 2011, those methods have had multiple extensions, for
instance taking advantage of roto-translation group E. Bekkers et al. 2014 or adding
vessel width information Li and Yezzi 2007.
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Figure 3.4: Top : Patches are made from a high resolution image by cropping
patches taken uniformly from each brain half. Bottom Left : eye fundus image
overlayed with heatmap of vascular landmarks. Bottom Right : ULM image over-
layed with heatmap of vascular landmarks.



3.2. Tracking vascular trees on medical images 53

3.2.2 Detecting vascular landmarks
The approach to detect the vascular landmarks is very much like the one used in
Hervella et al. 2019. The novelty of our approach is the scarcity of ULM data we
use for learning, the integration of endpoints in the detection task, and the tracking
described further down.

Indeed, we want to generate heatmaps with multiple channels indicating prob-
able locations of vascular landmarks.

We train a single U-net architecture to learn the localization and classification
of interesting points in a 2D ULM image of brain vessels. The network outputs 4
channels : 3 for different types of landmarks (endpoints, bifurcations, crossings) and
a last one to relax classification, by predicting the maximum across all three other
channels, we allow the network to miss the classification of the landmarks but still
detect a point nonetheless. The heatmap predicted by the CNN is then filtered to
get the position of local maxima (after thresholding at level r of output of network
to reduce noise). See Figure 3.5 for an illustration of the thresholding and local
maxima detection in the heatmap output by the CNN.

ULM Data

Our data is composed of few highly resolved images of rat brains obtained via ULM
imaging. The scarcity of data is a usual problem in medical images processing. We
were provided with two such images of rat brains (two similar plans were imaged) by
Chavignon et al. 2020, we then proceeded to uniformly cut those big (3210× 2675)
images into smaller square patches. This way, we aggregate around 42 ULM images,
making a training dataset of 21 and another set for validation of 21 images. We
make sure that there are patches from both original images in both sets. We also
make sure that there is no overlapping between the training and validation datasets
by using different brain halves to make those patches (see Figure 3.4 top).

As there is no available dataset annotation for segmentation task of ULM data
nor for the landmark localization and classification task, annotation for the latter
was produced by one of the authors. The dataset annotation was made by selecting
the point landmarks by hand with the appropriate tool Skalski 2019. One great
difficulty of our approach is that we are highly dependent on the accuracy of the
initial annotation of the data which can be hard given that there are multiple visible
vessel sizes on ULM images.

To prove the efficency of our method, we also apply it to two other datasets : one
that consists in two synthetic images of tubular structures arranged into a network,
for training and validation, they are very big and are used to imitate the case of
ULM images (high resolution, few images, thus cut into smaller patches); the other
one is simply a dataset using both images and groundtruth from the retina image
DRIVE and IOSTAR datasets, much like in the previously cited work Hervella et al.
2019.
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Figure 3.5: Illustration of the localisation process on one of the image from the
training set. Top left : input image. Top right : output of the network. Bottom left
: output of the network thresholded at the value 0.2. Bottom right : points detected
as local maxima scattered over the input image. For the output and the scattered
points, red indicates the endpoint class, green bifurcation and blue crossing.

Training

The training loss is defined as L(θ, x, y) = ∥fθ(x) − y∥2
2 the mean squared error

(MSE), where y is the position of the labeled features in the input images in our
dataset convolved with a gaussian kernel y = ∑

y∈D kσ ∗ δy, fθ is our CNN architec-
ture with parameters θ, applied on the x input image. kσ is a gaussian kernel with
chosen standard σ.

Going through our data we minimize the loss evaluated on the training set over
the space of parameters θ ∈ Θ. We may recall that the U-net architecture (see Fig-
ure 3.3 is an encoder-decoder architecture composed of multiple convolution layers
(3 × 3 filters and leaky ReLU activation) and with skip-connections. Ronneberger
et al. 2015 is the fundamental work introducing this architecture.

To make up for the small size of our dataset, we perform data augmentation via
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horizontal symmetries, translations, rotations, all randomly applied with predefined
parameters. It allows us to artificially expand our training dataset, leveraging
equivariance of our task by the action of those transformations.

Evaluation Metrics

We evaluate the performance of our CNN on the validation set by evaluating Pre-
cision, Recall and F1-score.

We say that some point that was found is a True Positive (TP) if it is located at
a distance to any labeled landmark less than some threshold λtol (that we usually
take around 7 pixels width), and that it is a False Positive (FP) otherwise or if
another point has already been detected in the vicinity of the same landmark. The
same way a point in the labeled data set that was not found is said to be a False
Negative (FN).

Then, we get that Pr = T P
T P +F P

, R = T P
T P +F N

and F1 = 2P r·R
P r+R

is the harmonic
mean between Precision and Recall.

3.2.3 Finding appropriate geodesics
Geodesics have been used for tracking vessels in vascular images for a long time
now. The works Deschamps and L. D. Cohen 2000; Benmansour and L. D. Cohen
2011 laid good basis for such work, and the book Peyré, Péchaud, et al. 2010 that is
a good introduction to the use of geodesics for image analysis. These works leverage
our knowledge of geodesic curves and numerical algorithms allowing us to compute
them to track tubular structures on medical images.

Geodesics for vessel tracking

Vessel tracking can be performed by finding geodesics on an image of the vessels.
To do so, we simply need to define a metric that is well adapted.

For now, we will restrict ourselves to Riemannian metrics defined on the homoge-
nous space of positions and orientations Md = Rd×Pd−1 with Pd−1 ≃ Sd−1/{−1, 1},
Pd−1 allows us to assimilate features that have the same direction but not the same
sign. we will use the relaxed Reeds-Shepp metric that is well-studied, Riemannian
and penalizes curves that are not planar. Indeed the curves we want to recover
should be planar i.e. such that (in the case d = 2) the local orientation coordinate θ
corresponds to the orientation of the curve : let ∀t ∈ [0, 1], η(t) = (x(t), y(t), θ(t)) ∈
R × R × (R/2πZ) then η is planar if and only if θ(t) = arg(x′(t) + iy′(t)). We can
see that such planar curves are simply the curves that canonically are 2D curves
lifted in the position-orientation space.

The original Reeds-Shepp model was built to model the movements of a car in
the plane which means the movements considered are constrained by the orientation
of the car and that it is only allowed for the car to move in the direction of the wheels
represented by the orientation coordinate θ. The first model Reeds and Shepp 1990
completely forbids any movement orthogonal to the orientation of the car. It can
only be considered in our framework as a sub-Riemannian model, and the original
publication by Reeds and Shepp breaks down the optimal paths for such a car into
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sequences of words ("go left", "go right" and "go straight"). The optimal trajectories
described in this model have "cusps" i.e. times at which the trajectory’s velocity has
a discontinuity and it is with the ambition to build an approximation of the Reeds-
Shepp car without one of these cusps that the relaxed Riemannian Reeds-Shepp car
model was proposed in Duits, Meesters, et al. 2018.

(a) Lifting in position-orientation space
(b) 1−level sets of relaxed Reeds-Shepp met-
ric

Figure 3.6: Illustrations of the Lifting in the position and orientation space and of
the relaxed Reeds-Shepp metric (1−level sets of relaxed Reeds-Shepp metric in the
tangent spaces at θ = 0, π/4, π/2 for C ≡ 1, ϵ = 1/

√
2 and ξ =

√
5).

The relaxed Reeds-Shepp metric is the one associated with the metric tensor
defined by :

Pε((x, θ), (ẋ, θ̇))2 = C((x, θ))2(|ẋ · eθ|2 + 1
ε2 |ẋ ∧ eθ|2 + ξ2|θ̇|2), (3.5)

with ξ, ε ∈ R, eθ the unit vector with orientation θ. C is a cost function, in the
following it will be defined as

C = 1
1 + λW 2

with λ = 103 and W a [0, 1]-valued score built from the image.
Figure 3.6 illustrates both the lifting of points in the orientation-lifted domain

and the behaviour of the anisotropic part of the metric defined.
This vesselness score W is important because it allows us to associate a θ co-

ordinate to all the detected landmarks by finding the orientation θ maximizing the
score at its position. As detailed further down this section, the vesselness score for
ULM images is built by making an histogram of the position and orientation and
orientations in a discretized 3d space, see Figure 3.7 for a sample of such vesselness
score.

We also look to enrich our orientation-dependent score by adding information
from the detection of vascular landmarks by imposing ∀θ,W (x, θ) = 1 if a bifurca-
tion has been detected at position x, so that the landmark point is accessible from
any orientation. Figure 3.8 shows this on a real sample from ULM images.

Similarly, if a landmark has been found and classified as a crossing, we add a
new point to our set of detected points located at this position but with second
maximum intensity in the vesselness score.

Figure 3.9 shows an example of the final vesselness map used in (3.5).
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Figure 3.7: ULM image lifted in the space of positions and orientations, used as
vesselness map in the distance model.

Figure 3.8: X − θ Slice of the final vesselness map used for the computation of
the cost for ULM data in the distance model around a detected landmark classified
as "bifurcation". The gray image in background is the vesselness map, red points
are the detected points. As one can see, the red point on the right classified as
"bifurcation" has allowed us to modify the vesselness map by saturating the map at
the position of the point and for all orientations around this point.
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Figure 3.9: Final vesselness map on ULM image (shown in viridis colormap for
easier visualization)

Geodesics defined through this relaxed Reeds-Shepp model are well-studied and
have already been used in previous works to accurately track blood vessels (for
instance in Duits, Meesters, et al. 2018). The main asset of this model is that it
helps avoid shortcuts in the case where two different vessels cross in a 2D image.
Also, as noted before, it is essential in order to have the geometry accurately allowing
the retrieval of the connected landmarks as trees.

The geodesic distance can be computed efficiently and fast using the Fast March-
ing Algorithm, we refer to Duits, Meesters, et al. 2018 and the attached library for
efficient computational tools used in the present work.

Clustering landmarks using the geodesic graph

Once we have defined a proper geodesic distance and we are able to effectively
compute it, we can build a matrix D = (d(xi, xj))1≤i,j≤nl

of pairwise distance,
where the xi are the nl detected landmarks.

This step is the computational bottleneck as it requires to compute nl(nl− 1)/2
coefficients, meaning solving nl times the Fast Marching algorithm to iteratively fill
the lines of the matrix, computing the map d(xi, ·) at every iteration i. Thus the
complexity is around O(nlN log(N)) with N the number of points. Although it is
a long computation to make, it has to be noted that it is very easily parallelizable
which allows us to mitigate the impact on the time of inference.

The computed pairwise distance matrix thus defines a complete weighted graph
that we call the geodesic graph. On a single image there may be many different
groups of vessels that appear, with the computation of the pairwise distance we have
already computed the geodesic curves between each pair of points. We then need to
keep only the groups of points that are relevant for representation of the vessels. To
cut the complete graph into smaller connected components, we will simply perform
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hierarchical clustering on the graph. Indeed, if the metric is well chosen to make
landmarks linked by the vascular network near for the distance d, and landmarks
not connected by the vascular network far, we simply group aggregate points that
are near and separate them from the others under some condition of threshold
distance scluster.

Hierarchical Clustering : We will be performing Hierarchical clustering over
our landmarks in order to group them into cluster. Here we go into a bit more
detail on the Hierarchical Clustering method. Given a set of N elements X =
{x1, . . . , xN} and a distance d between those elements, we want to build classes Ci,
subsets of X. We will build them recursively, and to do so, we need to define a
dissimilarity metric between two given classes : common ways to define such metric
are dissmin(C1, C2) = minx∈C1,y∈C2 d(x, y), dissmax(C1, C2) = maxx∈C1,y∈C2 d(x, y)
and dissmean(C1, C2) = 1

|C1||C2|
∑

x∈C1,y∈C2 d(x, y).
We can notice that we have dissmin ≤ dissmean ≤ dissmax, larger dissimilarity

metric meaning smaller classes for a given distance threshold between classes in the
end.

Let be N classes in the first step : ∀1 ≤ i ≤ N,C0
i = {xi}, using one of the

dissimilarity seen before, we have diss(C0
i , C

0
j ) = d(xi, xj).

We proceed to build recursively, from a given set of 0 ≤ k < N classes
CN−k

1 , . . . , CN−k
k , a new set of k − 1 classes by simply taking (i∗, j∗) =

arg min(i,j) diss(CN−k
i , CN−k

j ), we define CN−k+1
1 = CN−k

i∗
⋃
CN−k

j∗ and then add
the other classes renamed as CN−k+1

i , 2 ≤ i ≤ k − 1.
Initializing as seen, each of our step decreases the size of the problem by one,

after N iterations we’ve constructed all C l
i , 0 ≤ l ≤ N, 1 ≤ i ≤ N − l.

To choose which level of classes we want to keep, we can simply fix the number
i.e. if we want k classes our clustering is given by the set {CN−k

i , 1 ≤ i ≤ k}.
If we are agnostic relatively to the number of classes we need in the end, we sim-

ply use a threhsold scluster and take k∗ = max1≤k≤N,min(diss(CN−k
i ,CN−k

j ))≥scluster
k i.e.

the smallest number of classes such that classes are separated of at least scluster for
the chosen dissimilarity metric (if {1 ≤ k ≤ N,min(diss(CN−k

i , CN−k
j )) ≥ scluster}

is empty, we take k∗ = 1).
This algorithm simply corresponds to cutting the dendrogram tree at a given

height (as illustrated in Figure 3.10).
We may cite the work Müllner 2011 as a reliable source for theory and algorithms

for hierarchical clustering.

Linking landmarks through the geodesic graph

Our landmarks are now separated into multiple groups. Each of these group sup-
posedly represents one connected component of the visible vascular network in the
2D image.

Those smaller groups represent smaller complete graphs, but we still need to
select which of the computed geodesics represent the vessels.

Now the objective is to only keep the curves that accurately represent blood
vessels in the image. This can be done by removing some of the edges in each
smaller graph.
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Figure 3.10: Example of the way we cut to define the clusters as groups below
the threshold scluster = 1.0. Each index at the bottom represents one point and
the dendogram tree shows which pairs of points are clustered together. The red
lign shows the distance threshold at which we cut the tree, separating it into two
connected components (yellow and green). The blue part of the dendogram shows
edges in the initial complete graph that are deleted after the clustering.
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Figure 3.11: Illustration of the 2 steps on a 8−complete graph : in the first step we
separate clusters of points (in red), an then we find the minimum spanning tree in
each connected component (in blue).

We need a few properties for the target graph, inferred from the idea we have
of the representation of blood vessels :

• As it should represent vessels, it needs to be "1−dimensional" i.e. it is repre-
sented by a planar graph.

• It does not have cycles.
• It is small for the geodesic distance (if previously well chosen metric).
A good heuristic to have these properties is to look for the minimum spanning

tree in each smaller complete cluster graphs. The minimum spanning tree in a
connected weighted graph is defined as a subset of the edges of the initial graph that
defines a connected and acylic subgraph, connecting every vertices and minimizing
for the sum of the weights.

A few algorithms are available to perform this computation efficiently. For
Kruskal’s algorithm, time complexity is of the order of the sorting of the edges’
weights O(e log(e)) with e the number of edges in the graph. With a complete
graph we have e = (V − 1)! with V the number of vertices, thus e can get very
large. In general we don’t have a lot of vertices in each small graph, so it does not
pose a problem to use Kruskal’s algorithm. For the sake of completeness, we cite
Prim’s algorithm for which the time complexity is O(V 2). See Cormen et al. 2009
for further reading on the Minimum Spanning Tree problem and algorithms.

3.2.4 Results and Discussion
In this subsection we present the results of our method on our different datasets.

Synthetic data

To test our framework we can execute our algorithm on synthetic hand drawn
data. The main difference is that if we use 2D images to simulate our network,
there is no straightforward way to define orientation-lifted images as we do with
ULM microbubble trajectories data. To generate such orientation-lifted images, we
leverage our knowledge of Orientation score techniques.

We define a simple transformation by convolution with the help of anisotropic
gaussian kernels : the anisotropy in a direction θ of the kernel will allow us to select
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only the parts where the local features are aligned with this direction. The kernel
is given by :

∀x ∈ R2, klift
θ (x) def.= e−⟨e⊥

θ ,x⟩2/σ2
e−∥x∥2/ϵ2

with e⊥
θ the unitary vector with orientation perpendicular to θ, and σ, ϵ positive con-

stants defining the level of anisotropy and the spread of the kernel (bigger support
of the kernel means we get lower frequency features and blurring of discontinuities,
whereas a small support retains higher frequency information).

This kernel defines the lifting operator Φ :

∀u ∈ L2(Ω), ∀(x, θ) ∈ Ω× [0, π[, ulifted(x, θ) = (Φu)(x, θ) = (klift
θ ∗ u)(x),

As it can be seen in Figure 3.12, the image that we’ve used are very simple
and try to imitate the behaviour of a vascular tree in smaller patches included in
a bigger image (typically eye fundus image). This dataset will allow us to test our
workflow and understand its behaviour in a very simple test case.

To train the CNN to detect landmarks, we use two synthetic images : one for
the training set and the other for the validation and apply the same approach as in
the case of ULM data.

Results : At the landmark-detection task level, we were able to attain an F1
score of about 77% on the validation dataset with hyper-parameters selected by
hand and recall scores of 80% and 75% respectively) as evaluated on the whole
validation image. During the training process, validation is made on a set of images
taken as random crops from the original big image. The validation scores obtained
on those smaller (256 × 256) patches tend to give similar scores on average along
the dataset, although the scores oscillate a lot along epochs. Figure 3.13 shows the
resulting tracking of synthetic vessels and the corresponding geodesic graph.

Eye fundus image

To reinforce our methodology, we apply our workflow to a classical dataset of eye
fundus images, as a middle ground between synthetic and ULM data.

The data came from the IOSTAR and DRIVE dataset Abbasi-Sureshjani et al.
2015, it was split into a training set (30 images), a validation set (10 images) and
a test set (21 images).

For the training, we perform random data augmentation with translations and
rotations, as to avoid overfitting and take advantage of equivariance properties of
the task at hand, and also random crops of fixed size.

We built the vesselness score W for the computation of minimal paths by first
applying a classical Frangi filter Frangi et al. 1998 on the input images and then
lifting the filtered images via Orientation Score as described in the previous sub-
section. See Figure 3.14 for an example of the application of such a vesselness filter
and its lifting in the position-orientation space.

Results : We were able to achieve satisifying results of about 60% in F1 score
on both validation dataset and test dataset (after hyper-parameter searching on the
validation data). These results on the landmarks detection task is not as good as the
ones presented in Hervella et al. 2019 but they predict only two classes of landmarks
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Figure 3.12: Top left : lifting kernel in the plane. Top right : volume of orientation
dependent kernels. Center : example synthetic image used as training set. Bottom
: Orientation-lifting of previous image with thresholding at 50% of max intensity.
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Figure 3.13: Geodesic graph on half of the synthetic validation image, with Nθ =
128. Left image shows detected landmarks points and the geodesics linking them,
right image shows the input image. Down is the underlying geodesic graph.
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Figure 3.14: Examples of a vesselness score on IOSTAR data used to define the
Riemannian metric in the distance model. Top image : a sample (same as in Figure
3.5) from IOSTAR data with Frangi filter applied. Bottom : same image lifted to
the position-orientation space (only the isomap is plotted for easier visualization of
the 3D volume).
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Figure 3.15: Geodesic tracking performed on four validation images from the
DRIVE and IOSTAR dataset, with Nθ = 64. Red points are the detected land-
marks and curves are the selected tree structures.

(crossings and bifurcations) whereas we also added the additional endpoint class.
Figure 3.15 shows a sample of our tracking performed on eye fundus data.

Rat Brain ULM data

The main ideas of the data processing for ULM data has already been described in
Section 3.2.2.

We want to make full use of ULM data and use the initial set of microbubbles
path from the available data Chavignon et al. 2020 to construct the cost function
C in the relaxed Reeds-Shepp model as detailed in Section 3.2.3. With this goal in
mind we define W by building directly the Orientation score from the histogram of
microbubbles in the dataset just like it is done for the input 2D image, but this time
we add the orientation of the given velocity vector for the orientation coordinate.
After renormalization it gives us a function W (x, θ) with values beteween 0 and 1.
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Figure 3.16: Illustration of the process to make the cost C in the position-orientation
domain : red points indicate the position of bubbles, the arrows their velocity
vectors and the blue grid is the pixels or voxels over which we count the bubbles.
After the discretisation of the space of position and orientation we count the number
of detected microbubbles in each "voxel" with explicit position from the position of
the microbubble and orientation by taking the angle of the velocity.

See Figure 3.16 for an illustration of the process used in computing the vesselness
score on ULM data.

Results : With the described approach to learning the detection of landmarks,
we were only able to reach low mean F1 scores of around 20 % (computed on
512× 512 patches). Even with such a low score on the detection-classification task,
we are able to track a few of the vessels in the image, as shown in Figure 3.17. Still,
some big vessels remain untracked because some points were not found at their tips.

Discussion

Application to real world data does not seem to work in a very satisfying way.
We may note the following behaviours observed after training with different

hyper-parameters :

• The recovery of the geodesic tree structure is highly sensitive to change in
hyper-parameters (in the definition of the metric tensor or the dependance on
the position of the detected points).

• Our framework is thought for ULM images and does not necessarily adapt well
to the eye fundus images dataset considered in the tracking step, although
results might get better if one can tune the Orientation Score well enough
such that orientation are well separated and landmarks can be linked i.e.
reasonably close for the geodesic distance.

• Defining the Orientation-dependent cost function from the position of the
microbubbles and their estimated velocity vector seems to be a good approach
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Figure 3.17: Geodesic graph on patches cropped from the ULM validation dataset
(taken respectively from left and right parts of rat brain), with Nθ = 64. Red points
are the detected landmarks and curves are the selected tree structures.

to perform tracking on ULM data as we can see from recovered geodesics in
Figure 3.17

• The results on the synthetic images tend to show that if we can provide a good
enough segmentation it would be relatively easy to provide a good detection
of landmarks and retrieve a good geodesic tree tracking.

3.2.5 Evaluation on segmentation score and discussion
To better understand the role of each part of our method, let’s try to see what
kind of result we can get, still looking at in vivo data, but in the ideal cases where
we have access to the segmentation of the vascular network and the location of the
landmarks. To assess the results to be expected from our approach, we will compute
a F1 segmentation score that we deduce from naive and straightforward transfor-
mation of our tracking into a candidate segmentation mask. In the formation of
the Riemannian metric model, what differs here is that instead of lifting a vessel-
ness map computed directly from the input image, we use the segmentation mask
available in the IOSTAR dataset which should help a lot to find the right geodesics.
Samples of the results obtained on the eye fundus images is shown in Figures 3.18
and 3.19. A segmentation mask is proposed by adding a width to the computed
geodesic curves forming our minimizing trees. Assessment of the result is done by
computing an F1 score between the proposed segmentation and the ground truth.
As we don’t really want to get into the trouble of determining a complex model
of the width to be taken, we simply compute many F1 scores for each image with
many different widths (uniformly sampled in the log domain) and take whichever
width maximizes the score each time.

To put it formally, we investigate the efficiency of our approach by evaluat-
ing a slightly modified F1 score. Indeed, here we hope to establish what kind of
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performance it is reasonable to expect when comparing to classical segmentation
approaches.

Let’s note F1(Ŷ , Y ) the F1 similarity score computed between an attempt seg-
mentation Ŷ ∈ RD and the annotation Y ∈ RD. We will note Ps the operator
converting a set of curves Γ into a segmentation mask in RD for suitable compari-
son to an annotation, by inflating the curves with uniform width s, and let us define
Γσ(X, I) the map associating the set of landmarks X and the input image I with
the set of curves defined through the process described above, i.e. computing the
pairwise distance matrix, clustering the landmarks and finding the minimal tree
among each cluster. σ is the threshold needed at the clustering step.

In this subsection we will be evaluating the score

max
s∈S,σ∈Σ

F1((Ps ◦ Γσ)(Xth, Yth), Yth),

with Xth, Yth being respectively the landmarks and Segmentation mask anno-
tations, S and Σ being sets of widths and thresholds over which we evaluate the
maximum. We hope that such a score will be as fair as possible in terms of what
can be achieved with the algorithm, not advantaging too much our method but still
giving it its chance as it is not the same in nature as usual segmentation approaches.
Another remark is that instead of applying the same width over all curves, we could
have designed P to select a width corresponding to each γ ∈ Γ, but this quickly
becomes very costly.

The reader may note that there are still many hyperparameters hidden in the
map Γσ, choice of those hyperparameters is highly important especially for the
definition of a good metric tensor inside the geodesic distance.

Average F1 score found on the 24 IOSTAR images of our dataset is around
63% which is to be compared with the scores easily attainable with simple CNN
architectures to more complex ones of 80 to 90 %. Indeed this result is quite low
but one should also keep in mind that segmentation is not really the task originally
at hand. (Also one may note, if it was not clear from the start of this subsection,
that here there is absolutely no learning happening.)

Figures 3.18, 3.19 and 3.20 show a few examples of execution of our method with
parameters ϵ = 0.5, ξ = 1 and the cost C is defined using a naive Orientation Score
using anisotropic gaussian kernels. One can see that if most of the vacular tree can
be recovered, shortcuts problem still happen even in the position-orientation setting
which shows that improvement can be made on the definition of an appropriate cost
function C.

Once we have seen the kind of Tracking results one may hope to attain with our
model, we will now carry out the study to find out whether it is the lack of a good
Metric model or the bad detection and/or classification of landmarks that yields
mitigated tracking results.

Let it be noted that in the results reported in the following table, a small grid
search on the hyper parameters of the metric model has been performed. Indeed we
used the case with cost computed from input image/landmarks detected with our
CNN and tried to find the best set of hyperparameters for the computation of the
Cost in the metric. We performed around 100 runs of our geodesic tree selection
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method, thus covering only a small part of the domain of the hyperparameters,
the research was done with the Bayesian research method available on the Weights
and Biases platform, Biewald 2020. We then proceeded to use the hyperparameters
determined by the research to evaluate the other cases.

maxσ,s F1 Cost from GT Cost computed from input image
GT Landmarks 64% 58%
Landmarks detected with model 61% 56%

Table 3.1: Summary of F1 score results

As one can see from Table 3.1 one of the main reason for our low results is the
lack of a better cost in our model directly computed from the input image.

3.2.6 Partial Conclusion
In this work we have investigated the possibility to recover a complete tracking of the
vessels in 2D images of vascular networks. It was done using CNN techniques from
the literature to extract vascular landmarks that define the main points of interest
defining the network. Our method is interesting because it fits a length-minimizing
tree model to the image (using geodesics in a certain geometry to represent vessels)
and thus includes both topological (tree-like structure) and geometrical (fitting
geodesics) information to our tracking.

Although results on real world data are not satisfying for a complete recovery of
the vasculature, we have shown the potential of using ULM data and the information
they carry can be used to accurately track vessels.

Further research prospects include incorporating scale information or scale
equivariance to distinguish vessels and help the localization process and also provide
width information
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Figure 3.18: Examples of our method applied on the IOSTAR dataset. Left column :
selected curves superimposed with the input image. Right column : curves projected
on the grid with width, red region is the proposed segmentation, green region is
ground truth, and white region is the intersection. 1st row : metric built from
GT/GT landmarks. 2nd row : metric built via input image/GT landmarks. 3rd
row : metric built via GT/model landmarks. 4th row : metric built via input
image/model landmarks.
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Figure 3.19: Examples of our method applied on the IOSTAR dataset. Left column :
selected curves superimposed with the input image. Right column : curves projected
on the grid with width, red region is the proposed segmentation, green region is
ground truth, and white region is the intersection. 1st row : metric built from
GT/GT landmarks. 2nd row : metric built via input image/GT landmarks. 3rd
row : metric built via GT/model landmarks. 4th row : metric built via input
image/model landmarks.
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Figure 3.20: Examples of our method applied on the IOSTAR dataset. Left column :
selected curves superimposed with the input image. Right column : curves projected
on the grid with width, red region is the proposed segmentation, green region is
ground truth, and white region is the intersection. 1st row : metric built from
GT/GT landmarks. 2nd row : metric built via input image/GT landmarks. 3rd
row : metric built via GT/model landmarks. 4th row : metric built via input
image/model landmarks.
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3.3 Riemannian metric learning

This work is a collaboration with Nicolas Makaroff and Laurent Cohen and
was published first in the proceedings of the conference SSVM 2023.

Geodesic curves and distances have been used to convey geometric properties
in many different applications. The usual approach of those methods is to rely on
prior knowledge of the task at hand to build a Riemannian metric g explicitly from
data.

The approach presented in this work tries to get rid of the bias introduced in
the choice of a metric tensor by generating it from data via a Neural Network
architecture which parameters were previously optimized in a supervised learning
approach with training data. Introducing such a bias is not a bad thing in itself,
however, it requires an arbitrary decision from a user and parameter tuning, two
issues that can be avoided by learning to generate a metric from data.

To demonstrate the effectiveness of this framework, we apply it to a segmentation
task using a brain tumour MRI images dataset. By using our proposed method,
we can obtain accurate results compared to traditional approaches, highlighting the
capabilities of this approach. Furthermore, we also observe that our method has a
remarkable ability to learn from data and somewhat generalize to unseen data.

The approach presented here is simply to recover the region to be segmented as
a sublevel set of a distance function defined with respect to a Riemannian metric, or
rather a unit geodesic ball. Extensive literature on the subject allows us to compute
efficiently both the distance field on the grid from a set of points and to provide
(sub)gradients to perform the optimization. The question of which points are taken
as centers of the geodesic ball is also non-trivial and we will treat this problem by
making the network to be optimized find them himself. Figure 3.21 shows examples
of distance functions and their associated unit geodesic ball.

Figure 3.21: Examples of geodesic balls.

The method introduced in this work offers a powerful and flexible way of using
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geodesic curves and distances in a wide range of applications in a holistic learning
framework.

The rest of this section is organised as follows. In Section 3.3.1 we present the
computation of geodesic distances and their gradient. In Section 3.3.2 we present
the main results of our experiments and provide a discussion around our work.

Related Works

The use of geodesic distances in segmentation tasks has a long history. To the
authors’ knowledge, the first article to segment an image’s region using a minimal
path distance and fast marching is Malladi and J. Sethian 1998, with application on
a 3D brain image. In the case of the segmentation of tubular tasks we can refer to D.
Chen and L. D. Cohen 2016 for instance, a method that segments the 3D vascular
tree by propagating the front of the minimal path distance computation. Similarly,
L. D. Cohen and Deschamps 2007 segments vascular structures by introducing an
anisotropic metric, determined dynamically by evaluating local orientation scores
during the Fast Marching computations. Those 3 articles already use the level sets
of the geodesic distance (or "geodesic balls") to provide the segmentation mask. We
may also mention Benmansour and L. D. Cohen 2009b that uses geodesic curves
in an higher dimensional space to track vessels (as curves with an additional width
component). These works generally aren’t interested in treating the task in an
holistic manner and focus on providing a good model for the structures to segment,
whereas this work tries to treat the problem end-to-end and generalize to a large
dataset of input images.

Only a few previous methods are interested in learning a metric from data.
We may mention recent works such as Scarvelis and Solomon 2022 and Heitz et
al. 2021 that try to find metric tensors that fit spatio-temporal data in order to
capture the velocity fields and underlying geometry of the data. The first paper is
modelling trajectories as the solutions of a dynamical system generated by a Neural
Network and also taking into account the dynamics of the whole population by
penalizing an optimal transport cost between two consecutive timestamps. However
Heitz et al. 2021 tries to interpolate a sequence of histograms with Wasserstein
barycenters by optimizing over the metric tensor appearing in the ground cost. Also,
there are important links between the Wasserstein optimal transport, its dynamical
formulation and geodesics, for further reading, we refer to Ambrosio, Brué, et al.
2021. These works propose interesting frameworks to work with, but they are not
focused on generalizing the generation of the metric tensors.

As previously seen in Chapter 2, Benmansour, Carlier, et al. 2010 laid the ground
for the differentiation of the geodesic distance with respect to the metric in the
Fast Marching algorithm. They then proceed to apply it in the setting of inverse
problems to retrieve the metric from distance measurements. Its only concerns
were to solve inverse problems involving the geodesic distance, whereas we go one
step further by including a Fast Marching module in a deep learning segmentation
procedure. The sub-gradient marching algorithm is briefly described in section 2
as it is essential to our framework to propagate through the Fast Marching module
and carry the learning step.

In terms of Deep Learning, we might add a few references such as the classical
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Ronneberger et al. 2015 and He et al. 2015 that respectively introduce the UNet and
ResNet architectures, which are used for our method and as baseline comparisons.
For a review of deep learning methods in medical imaging one might refer to Zhou et
al. 2021. The very general methods directly producing segmentation from medical
images are already quite efficient, but they suffer from a lack of robustness and do
not impose a lot of structure on the segmentation that comes out of the network.
Contrary to this, our work allows us to impose a lot of constraint on the topology
of the segmented region (namely a set with trivial topology).

3.3.1 Model
The proposed method presented in this study uses a neural network, specifically
a modified version of the UNet architecture, to segment regions of an image as
geodesic balls with respect to a metric. The metric is obtained by training a convo-
lutional neural network (CNN) to provide both the metric and the center or seed of
the geodesic ball. The framework, as shown in Figure 3.22, processes the input im-
age using the encoder component of the UNet, resulting in a vector representation
of the image. This vector is then passed through two separate decoders to perform
distinct tasks.

Figure 3.22: Diagram of the framework from the input image to the loss.

The first decoder predicts the potential ϕ to be used by the fast marching mod-
ule, which can be computed using the HFM library. The second decoder predicts
a Gaussian potential that represents the probability of the presence of the region’s
barycenter in a given area, which is also provided as a seed to the fast marching
module. The distance map generated by the fast marching procedure is then used
to find a geodesic ball for segmentation. The expected segmentation is compared
to the predicted segmentation, and the theoretical barycenter is compared to the
predicted Gaussian potential to compute the error.

The distance computation module can be written as a function of both seed
points and input metric. The metric ϕ is defined as the output of a CNN architec-
ture, such as the widely used UNet, with θ being in the space of parameters. We
enforce positive and non-zero properties of the metric by taking ϕ = fθ(u)2 + ϵ,
with u being the input image and fθ being a CNN, with θ ∈ Θ and Θ the space of
parameters. To avoid solutions that distribute a lot of mass everywhere, as noted
in Benmansour, Carlier, et al. 2010, we ensure that the total mass of the metric is
reasonable by applying a transformation ϕ 7→ ϕ

max( 1
λ

∥ϕ∥1,1) that bounds from above
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the L1 norm at a fixed level λ (We chose in this work to empirically bound the total
mass at 5).

UNet

In this study, we focus on the task of potential generation and employ two different
architectures commonly used for image segmentation: the UNet Ronneberger et al.
2015 and a combination of the UNet and ResNet He et al. 2015.

The depth of CNNs can cause the problem of vanishing gradients, which can
affect model performance. To address this, we propose the use of ResNet-UNet,
a combination of the UNet and ResNet-34 model in the encoder portion of the
network. ResNet-34 benefits from deep residual learning and comprises of a 7x7
convolutional layer, a max pooling layer, and 16 residual blocks.

By combining these architectures, ResNet-UNet can capture fine and coarse
features of input images and learn deeper and more complex representations. This
results in a more accurate and robust model for image segmentation tasks, as demon-
strated by our experimental results. Additionally, we introduced modifications to
the expansive path of both networks, implementing a dual expansive path system to
predict potential energy and a Gaussian potential for the prediction of barycenter.
These modifications are illustrated in Figure 3.22. Overall, our proposed model
demonstrates promising results for potential generation tasks.

Generating masks with geodesic balls

Applications may take advantage of topological priors on the label to reconstruct.
For instance one may need to recover regions in an image that we know to be path-
connected and of trivial topology. Such regions might be modelled as balls related
to a specific distance and recovered as indicator function of such a ball. Formally,
we expect for a set E to recover an indicator function as χdϕ(x0,·)≤1 for well chosen
x0 ∈ Rd and ϕ ∈ L1(Ω).

With this method of building masks for specific tasks, we can try to generalize
using a neural network architecture and find good potential ϕ to segment interesting
regions in images. To do this we would need to compute the gradient of a chosen
loss function and thus would need to differentiate the mask, that is why we will
replace the indicator function on the unit ball, that would yield zero gradients
almost everywhere, by a sigmoid that will smoothly interpolate between the value
1 in the region inside the unit ball and 0 outside. Given the distance map dϕ(x0, ·),
our mask then becomes

χδ(dϕ(x0, ·)) = 1− 1
1 + exp(−(dϕ(x0, ·)− 1)/δ) ,

which approaches the characteristic function of the unit ball as the parameter δ
approaches 0. δ will be taken typically of the order of the size of pixel, i.e. approx-
imately the inverse of the image size.

Figure 3.23 shows how it is possible to approach the characteristic function of
different sets with this formulation. This problem is not convex, so solutions may
vary depending on the initialization for instance, but it seems that most of the time
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Figure 3.23: Example of recovery of an isotropic metric fitting two regions by
minimizing ∥χδ ◦ dϕ2 − y∥2

2 with respect to ϕ, where y is the ground truth mask,
δ = 0.01. x0 is taken as the center of the mask to be recovered.

potentials converge to a solution that puts a lot of mass on the edges of the mask
to recover. The seed here is fixed to x0 the center of the balls to be fitted, and the
potential ϕ is directly optimized using automatic differentiation and ADAM with a
"learning rate" equal to 0.01. ϕ2 is taken as input for the fast marching algorithm
instead of ϕ as an easy way to smoothly enforce positivity of the potential.

3.3.2 Experiments
As announced before, our experiments were led on tumour segmentation task.

Data

To conduct our experiments we have used a dataset of Brain MRI segmentation task
that is the TCGA_LGG database openly available on the internet Pedano et al.
2016. This database contains MRI scans of patients with brain tumours. They cor-
respond to 110 patients (resulting in 1189 images) included in The Cancer Genome
Atlas (TCGA) lower-grade glioma collection with at least fluid-attenuated inversion
recovery (FLAIR) sequence and genomic cluster data available. We removed tu-
mour with multiple connected components. This dataset is composed of the data of
110 patients. We have used the set of 2D MRI images as our learning and training
datasets. We have set aside 5 patients’ data to form a test set as independent as
possible (whereas two images from the same patient can be separated in the train-
ing and validation set, test data are always the result of a different acquisition from
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the training and validation set). We applied data augmentation on the training
images to increase the diversity of the training set and improve the generalization
of the model. The data augmentation techniques used were: horizontal flipping
with probability p=0.5, vertical flipping with probability p=0.5, random 90-degree
rotation with probability p=0.5, transpose with probability p=0.5, and a combi-
nation of shifting, scaling, and rotating with probability p=0.25. We respectively
set the shift limit, scale limit and rotation limit to 0.01, 0.04, and 0 (as we already
perform rotation). We computed the tumour seed using a Euclidean barycenter of
the mask region.

Model Training Procedures

The UNet architecture was employed for the task of image segmentation in this
study. The model was initialized with Kaiming distribution and trained using the
Adam optimizer, which has been widely used in literature due to its capability to
adjust the learning rate during training. The learning rate was set to 1e-3, which
is a commonly used value in CNNs, as it provides a balance between achieving
convergence and avoiding overshooting the optimal solution. In order to optimize
the model’s performance, to penalize the error between the prediction mask and the
groundtruth mask we used a combination of Dice loss and Binary Cross-Entropy
(BCE) loss (Equation (3.6)).

LS(x, y) = 2×∑N
i=1 xiyi∑N

i=1 xi +∑N
i=1 yi

+ 1
N

N∑
i=1

(yi log(xi) + (1− yi) log(1− xi)) (3.6)

To control the error on the seed prediction a Binary Cross-entropy LH loss was
used.

The final loss is:

L(x, y, h1, h2) = LS(x, y) + LH(h1, h2) (3.7)

The Dice loss function, which is known for its ability to handle imbalanced data,
was combined with the BCE loss function, which provides stability during training.

In order to determine the distance between two barycenters, a transformation
of the position coordinates into a Gaussian potential is used, based on the following
formulation:

f(x, y) = 1√
2πσ

exp
(
−(x− b1)2 + (y − b2)2

2σ2

)
(3.8)

Here, (b1, b2) represent the coordinates of the barycenter. At inference time, the pre-
dicted potential is used to identify the maximum location, from which the barycen-
ter coordinates can be extracted.

The model’s architecture was initialized with 64 feature maps, which has been
shown to be a suitable number for high resolution images, and a batch size of 16 was
used during the training process. This combination of hyperparameters allowed the
model to effectively use detailed information from the input image while maintaining
a balance between generalization and overfitting, as demonstrated by the results
presented in this paper. Perhaps it should be clarified that since the two decoders
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(a) Epoch 1 (b) Epoch 10 (c) Epoch 50 (d) Epoch 100 (e) Epoch 150

Figure 3.24: Evolution of the predicted potential taken as input in the Fast March-
ing Module.

are different and predict two different things, these new parameters do not assist
the segmentation compared to the direct method.

Potential Analysis

The potential generated by the neural network was analyzed with respect to the
number of training epochs. Results show on Figure 3.24 that the output distribution
quickly converged towards the boundaries of the tumour to be segmented. However,
as training progressed, the contour of the tumour sharpened and boundaries became
more distinct and at the same time we can see the brain edges removed. The
potential in the end only holds detailed information of the contours in a small area
around the tumour.

3.3.3 Segmentation Experiments

(a) Input Image (b) Groundtruth (c) Predicted (d) Potential

Figure 3.25: Results of the segmentation on validation data. On the input image,
the blue and green dots are respectively the groundtruth and predicted seed.

We compared our method to a standard UNet segmentation approach. As can
be seen in the results plotted in Figure 3.25, our method demonstrates clear edge
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Table 3.2: Segmentation results (IOU) on the TGCA_LGG brain MRI database.

Name Dice IOU Hausdorff FPR FNR
UNet 0.862 0.869 2.313 0.007 0.05
ResNet UNet 0.873 0.877 2.257 0.006 0.07
FM UNet (ours) 0.825 0.823 2.505 0.011 0.064
FM Resnet UNet (ours) 0.863 0.866 2.248 0.009 0.04

detection. The well-defined contours produced by our method are a result of its
ability to take into account the morphology of the image, which traditional filters
are not able to do. Furthermore, the problem-specific nature of our method al-
lows for improved performance in image segmentation. Classical metrics allows us
to compare quantitatively the results of our segmentation. Overall we recover the
same precision on the segmentation mask with minimal improvements of the sym-
metric Hausdorff distance. However the convergence towards an acceptable solution
is faster when combined with the Fast Marching Module since with only a approxi-
mate potential the method converge to a relatively close segmentation. Time gives
the neural network to more precisely learn the filter and sharpens the edge of the
tumour. A general observation from the segmentation in Figure 3.25 is that the
method when failing to predict correctly a pixel tends to create false positive rather
than true false. The Table 3.2 shows how our method has a high recall control-
ling that there is a very low number of false negative. We performed the training
with the library HFM and the heat method and recorded same results. Overall
the UNet architecture shows difficulties to precisely learn the potential while from
a metric point of view the ResNet-UNet performs comparatively as the classical
segmentation technique using CNNs.

Figure 3.26: Results of the Fast Marching Energy CNN for images outside the
scope of the training database.Top row: segmentation of outside the training scope.
Bottom row: Potential output by the CNN before fast marching.

We further studied the properties of the generated potential of our CNN by
testing it with dissimilar MRI images found randomly through an image search
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on Figure 3.26 where activated areas correspond to the segmentation ranging from
yellow to green for confidence. The results for the last two MRI images show
that while the algorithm does not properly segment the tumour (as the predicted
barycenter for initialization of the Fast Marching is not correctly placed), the learned
filter detects small contours similar to tumours, focusing on the shape of the different
objects.

3.3.4 More examples
In Figure 3.27 and Figure 3.28 we show images where our trained model achieves
its best and worst performances for the F1 score.

One might note that the best scores seem to be obtained when the target mask
is large and looks like a simple ball.

In the worst cases, usually our model fails because the zone to be segmented is
very narrow and/or it fails to provide a good seed inside the zone to be segmented.

Figure 3.29 shows that for a large part of our dataset we achieve high F1 scores
and for a small part of it the score is very low. This analysis is consistent with
what is shown in the worst cases in Figure 3.28 where the scores achieved in the
worst cases are basically 0 because we completely fail to locate a good seed point
from which to compute the geodesic distance. In fact, contrary to what one would
expect, it is almost easier to learn to provide good potential for the segmentation
than to accurately predict the barycenter of the target segmentation mask as we
are trying to do here (which is essentially a projection of the mask in R2, a very
low dimension space. We also compare two different approaches to selecting a seed
between choosing the mean predicted value and the maximum probability value,
and as one can see, the second approach reduces the proportion of images where
our trained model performs very badly (the bin indicating almost 0 score goes down
from ∼ 7.5% to around 0.25%), and the overall performance on the dataset is also
higher (83% vs 85%).

For the sake of completeness we also show a few samples of our result on the
test set only in Figures 3.30 and 3.31.

And also the density of the F1 score over the test set in Figure 3.32
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Figure 3.27: Examples where our FMECNN model achieves its highest scores. From
Left to Right, figures show the input image, the target segmentation mask, the po-
tential computed by our trained model, and the proposed segmentation (superposed
with the target, red canal is the proposed, green canal is the target, and blue is the
intersection).
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Figure 3.28: Examples where our FMECNN model achieves its lowest scores. From
Left to Right, figures show the input image, the target segmentation mask, the
potential computed by our trained model, and the proposed segmentation (super-
posed with the target, red canal is the proposed, green canal is the target, and blue
is the intersection).



3.3. Riemannian metric learning 85

Figure 3.29: Density plot of the F1 score of our model over the whole dataset
(training + validation + test set). Left : the center of the ball is selected as the
mean of the predicted position of the barycenter of the segmentation. Right : the
center is taken as the maximum value point of the prediction for the position of the
barycenter.
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Figure 3.30: Examples where our FMECNN model achieves its highest scores. From
Left to Right, figures show the input image, the target segmentation mask, the po-
tential computed by our trained model, and the proposed segmentation (superposed
with the target, red canal is the proposed, green canal is the target, and blue is the
intersection).
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Figure 3.31: Examples where our FMECNN model achieves its lowest scores. From
Left to Right, figures show the input image, the target segmentation mask, the
potential computed by our trained model, and the proposed segmentation (super-
posed with the target, red canal is the proposed, green canal is the target, and blue
is the intersection).
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Figure 3.32: Density plot of the F1 score of our model over the test dataset.
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3.3.5 Segmenting blood vessels by learning anisotropy
Now we try to tackle the segmentation on another class of images : blood vessels
images from the DRIVE dataset. Applying simply the same approach yields results
that are not as good as what is expected on such a task. See Figure 3.33 for instance,
it shows the kind of output we get, it is easy to see that small vessels aren’t properly
detected.

Our guess is that including anisotropy in our model might help the model in
segmenting those regions. As there is no available algorithm to compute the subgra-
dient in the fashion of the subgradient marching algorithm, we need to use another
method for the computation of the geodesic distance and its gradient with respect
to the metric tensor. As described in Chapter 2, we can solve the Heat Equation in
order to find a kernel explicitly related to the geodesic distance in the small time
asymptotic. We used the approximation of the Laplacian operator as the graph
Laplacian on the grid like in Heitz et al. 2021.

Also, one should notice the added difficulty to find a point belonging to the
vascular network to define as the "seed" and from which to compute the distance
map. The regions to segment are very far from being convex and there is no
unique way to choose a point in particular. At first, we considered using a database
of points of interest like the ones used in our work on landmark detection and
geodesic fitting, and it is with those seed points in particular that we achieved the
segmentation result shown in Figure 3.33.

Computing the geodesic distance via the heat equation is relatively easy but gets
more complicated if we want to compute the distance from a set of points. Indeed
our approach can be seen as recovering regions to be segmented yth ∈ {0, 1}n as
exp(−dM(x0, xi)2/4t) ≃ (yth)i, with x0 a seed point and xi a point on the grid.
The problem is that even though the region segmented around one of our seed is
normalized to sum to 1, it is not clear that the region near a seed will bear the
same mass around it. Thus to be able to represent yth as the output of our model,
it would be required to have an appropriate renormalization constant at hand for
every which is not trivial at all, or to compute the geodesic distance by solving the

Figure 3.33: First example of generating an isotropic metric with the help of a UNet
on an image from the validation set. Left : Ground Truth Segmentation. Center :
Proposed Segmentation. Right : Associated Potential output by the UNet.
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Figure 3.34: Workflow for our segmentation method using Anisotropy.

heat equation for each seed separately and taking the minimum over all the distance
maps thus computed, which would be numerically very intensive and long.

Rather, instead of explicitly trying to predict good seeds from the image as
the output of the second branch of our UNet, we can simply replace δx in the
initialisation of the heat flow, instead of simply replacing the position x.

We will thus have a first branch in our network predicting the map x 7→ D(x)
defining the heat flow (D(x) here is the inverse of our classic metric tensor) and a
second branch predicting a 2d probability map µ supposedly indicating the location
of vascular landmarks or at least points of interest for which the heat flow maps us
to an accurate segmentation.

Let (x, y) be couples of input images and associated (normalized) ground truth
mask, then the loss we evaluate reads, denoting Dθ the metric tensor output by the
first branch of the network and µθ the probability map output by the second branch,
and also ΦD

t (ν) the heat flow defined by diffusion tensor D applied to ν ∈ P(Ω)
until time t :

Lseg(ΦDθ(x)
t (µθ(x)), y)− λ∥µθ(x)∥2

L2 ,

with Lseg a chosen loss function for segmentation. As ΦD
t (x) is meant to be

a probability distribution, we choose a distance function adapted to such object,
for instance here we will consider the Kullback-Liebler divergence, other options
would include Optimal Transport distances and other such distances that metrize
weak-* convergence which is the natural topology for the convergence of (compactly-
supported) measures.

We proceed by training our CNN architecture on the DRIVE dataset split into a
training and a validation set (60%/40% split) and also test on the IOSTAR dataset,
applying random affine transformations and flips on the input image (taking only
the green channel) we can avoid overfitting our training set (necessary as there are
only 24 images in total in the DRIVE dataset). During our assessment we found
that a small batch size of 2 images perform better.

After 250 epochs we reach a DICE score at validation step of 77% which is still
lower compared to the state-of-the-art for this task, but already allows to circumvent
some of the limitations seen in Figure 3.33.

In Figure 3.35 we show some outputs of the methods. One might notice that
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the proposed barycenter is not in fact similar to the barycenter map predicted in
the original FMECNN model, but instead it tends to predict a segmentation of the
vascular network. This is due to the fact that we don’t supervise the second branch
of our network to predict seed points directly and the penalizing term in the loss
promoting sparsity of the barycenter doesn’t collapse the output to a set of a few
points (even at larger values of λ). The way we might interpret the computation
of the solution to the heat equation from the two outputs of our network, is that
it works like an attention mechanism refining the proposed segmentation in the
barycenter map.

3.3.6 Partial Conclusion
We have proven that it was possible to generate Riemannian metrics directly from
data and to apply geodesic methods in Machine Learning pipelines. We have seen
that it is possible to rely on isotropic as well as anisotropic metrics and that the lat-
ter present an interest for tasks involving data showing local spatial anisotropy such
as vessel segmentation. We hope to open new research questions with these works
as it allows the definition of new building blocks for Machine Learning methods.
Further works might include the definition of "heat flow" blocks for the definition
of ML architectures as we have seen earlier in order to investigate the properties of
such an operation as some kind of "geometric" equivalent to the convolution (in the
line of what has already been tried with Geodesic Convolutional Networks).
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Figure 3.35: Output of our method on a sample from the IOSTAR dataset. Left :
Comparison of proposed segmentation versus Ground Truth. Center Left : Barycen-
ter map output by the network. Center Right : Sum of the metric elements in both
directions. Right : (log of) Anisotropy factor.



Chapter 4
Analysis on the space of paths and
Optimal Transport

Optimal Transport and its many faces has seen a huge raise in interest over the last
few years.

This chapter is built as a way to naturally lead to our application of Benamou-
Brenier regularization in the last sub-sections. Its goal is to quickly introduce
the theory of Optimal Transport of mass in order to give a taste of the general
context for the definition of the Inverse Problem studied in the second section of
this Chapter, by introducing the different point of views on the transport of mass
and the relationships between those point of views.

In the following we will consider probability measures on the set Ω, the set of
probability measures will be noted P(Ω) and the set of Radon measures on Ω will
be written M(Ω).

If not specified otherwise, one may assume that we will be working with the
Borel σ−algebra on Ω.

Measures are usually defined through the axioms of Measure Theory, and Radon
measures as a certain level of regularity of such measures. Another point of view
that is common among the literature in Analysis is to use the topological dual of
evanescent continuous functions on the set Ω. The two definition are related via the
Riesz-Markov-Kakutani Representation Theorem.

Given µ ∈ M(Ω), and a measurable map T : x ∈ Ω 7→ T (x) ∈ Y we denote by
T♯µ ∈M(Y ) the push-forward measure of µ by T. Usually its is defined in Measure
Theory or Probability textbooks via the inverse image of measurable set as : for
any measurable U ⊂ Y, T♯µ(U) def.= µ(T−1(U)). Alternatively and in the context
of duality between Radon measures and Continuous functions, it may be defined as
the adjoint map to right-side composition : ∀φ ∈ C0(Y ), ⟨T♯µ, φ⟩

def.= ⟨µ, φ ◦ T ⟩ .

4.1 Introduction to Optimal Transport
Optimal Transport is usually introduced first via the Monge Problem and its gen-
eralization into the Monge-Kantorovitch problem. We will quickly overview the

93
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definition of Optimal Transport, its dynamic formulation and its relation to curves,
underlying the idea of transport of matter.

4.1.1 The Monge and Kantorovitch problem
First, let us introduce the Monge problem :

Definition 4.1. Let µ, ν ∈ P(Ω) be two probability measures on Ω, a measurable
map T : x ∈ Ω 7→ T (x) ∈ Ω is said to be a solution to the Monge Problem if it is a
minimizer for the optimization problem :

inf
T♯µ=ν

ˆ
Ω
c(x, T (x)) dµ(x), (4.1)

with c the ground cost. It is called the Transport map.

Remark 4.2. Of course, in Gaspard Monge’s time, measure theory and many other
concepts were not yet formalized, and the problem was not defined in terms of source
and target measure but rather in terms of source and target sets (with uniform
density). Formally in our framework it would correspond to solving the former
problem with µ = 1A

|A|L
d and ν = 1B

|B|L
d with A and B the source and target sets,

and Ld the classic Lebesgue measure of dimension d.

Now we introduce the more general Kantorovich problem :

Definition 4.3 (Kantorovitch Problem and Optimal Plan). Let µ, ν ∈ P(Ω), be
two probabilty measures on Ω, let Π(µ, ν) ⊂ P(Ω × Ω) be the set of couplings
between µ and ν, i.e. the measures π ∈ Π(Ω × Ω) such that for every measurable
set A,

´
A

´
Ω dπ(x, y) = µ(A) and

´
Ω

´
A

dπ(x, y) = ν(A). Then we say that π is
an optimal transport plan between µ and ν if it is a minimizer for the following
optimization problem :

inf
π∈Π(µ,ν)

ˆ
Ω×Ω

c(x, y)dπ(x, y), (4.2)

with c the ground cost.

We will usually ask for c to be continuous, which is sufficient hypothesis to ensure
existence of a minimizer : compactness of Π(µ, ν) and continuity of the objective
function are all we need.

We immediately notice that if T is a solution to (4.1), it is also a solution to
(4.2) by the transformation π = (id, T )♯µ. It is not true in general that there is
an Optimal Transport map defining the plan as we will see further when stating
Brenier’s theorem.

Now let’s look at two very easy examples. The first one gives a case where there
is no solution to the Monge problem but the solution is obvious in the context of
the Kantorovich problem.
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Figure 4.1: Illustration of the OT problem between two probability distributions.
Left : the continuous case. α and β are source and target distributions, π is the
optimal coupling. Right : the discrete case. Taken from Peyré and Cuturi 2020.

Example 7. Let Ω = R,, let µ = δ0 and ν = 1
2δ−1 + 1

2δ1, then there’s no
optimal transport map in the sense of the Monge Problem, but it is easy
to see that the transport plan π = 1

2δ(0,−1) + 1
2δ(0,1) is a minimizer for the

Kantorovich problem with cost c = ∥ · − · ∥2.

We see that the Monge Problem does not allow to split mass between two
locations.

Our second example is simply here to illustrate the non-uniqueness of the solu-
tions to the Kantorovich formulation.

Example 8. Let Ω = R2, let µ = 1
2δ(0,0) + 1

2δ(1,1) and ν = 1
2δ(1,0) + 1

2δ(0,1) two
measures supported symmetrically on the opposite corners of the unit square.
We consider the Kantrorovitch problem with c(x, y) = ∥x − y∥2. Then any
of the couplings between µ and ν will achieve the minimum. One may also
notice that if we restrict ourselves to Monge maps, we get only two different
solutions.

The Optimal Transport problem is important because it allows us to define a
good distance between measures and is very useful to compare geometric objects
represented by measures. It also allows us to define some PDEs as gradient flows in
the space of measures equipped with the Wasserstein distance (i.e. the Kantorovich
problem with cost d(x, y)p where d is a distance on the ground space, see Ambrosio,
Gigli, et al. 2008 for a textbook on the subject).

To conclude our tour of the definiton of "static" Optimal Transport we can state
a theorem by Brenier in Brenier 1991 that will give sufficient condition for the
existence a Monge map in the case of 2-Wasserstein Optimal Transport (which will
be our main interest). It was later extended to more general cases in Ambrosio and
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Rigot 2004; Bertrand 2008; Gigli et al. 2012; Ambrosio and Rajala 2014; Cavalletti
and Huesmann 2015.

Theorem 4.4 (Brenier 1991). Let Ω = Rd and c(x, y) = ∥x−y∥2, let one of the two
marginals µ = ρLd be absolutely continuous with respect to the Lebesgue measure,
then there exists a unique optimal transport plan between µ and ν, and it is given
as a Monge map T solving (4.1) (i.e. the transport plan is given by π = (id, T )♯µ).

Furthermore, this Monge map is unique and given as the gradient of a unique
convex function (up to an additive constant).

Now that we have further explained the relationship between the two former op-
timization problem, we will state two results motivating our interest for the Optimal
Transport distances in Machine Learning.

First, for completeness we introduce the weak-∗ topology

Definition 4.5. Let (µn) ∈ M(Ω)N be a sequence of Radon Measures, it is said
to be convergent in the weak-∗ topology towards µ ∈ M(Ω) if and only if ∀ϕ ∈
C0(Ω), ⟨µn, ϕ⟩ −→ ⟨µ, ϕ⟩ where C0(Ω) is the set of continuous evanescent functions
defined formally as :

C0(Ω) def.=
{
ϕ ∈ C(Ω,R), ∀ϵ > 0,∃Kϵ compact s.t. ∥ϕ∥∞,Ω\Kϵ ≤ ϵ

}
Theorem 4.6. Let W2 be the Optimal Transport cost between measure with ground
cost c(x, y) = d(x, y)2 for a distance d on the set Ω.
Then W2 is a distance on P(Ω) and if Ω is a compact set, it metrizes the weak-∗
topology.

Lemma 4.7. δ· : x ∈ (ω, d) 7→ δx ∈ (P(Ω),W2) is an isometry.

One can refer to Villani 2021; Villani 2009 for a complete overview of the prop-
erties of Optimal Transport.

4.1.2 The Dynamic Formulation
One of the most interesting property of the Optimal Transport problem for applied
mathematicians and physicists is its relation to mechanics through the dynamic
formulation that we will be introducing next.

Indeed the 2-Wasserstein Optimal Transport problem may be reformulated in
terms of the minimization of a velocity field coupled with a transient measure via
the continuity equation. This result was first proven in Benamou and Brenier 2000.
Here we cite Theorem 5.28 from Santambrogio 2015 which is more general (but
restrained to the case of compact and convex domains).

Theorem 4.8 (Santambrogio 2015, Theorem 5.28). Let Ω be a compact and convex
domain, µ, ν ∈ P(Ω), we have

W p
p (µ, ν) = min{Bp(ρ, E), ∂tρ+∇ · E = 0, ρ0 = µ, ρ1 = ν}, (4.3)
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with (ρ, E) ∈ C([0, 1],M(Ω)×M(Ω)d) and

Bp(ρ, E) = 1
p

ˆ 1

0
∥vt∥p

Lp(ρt)dt

if E = vρ and +∞ elsewhere.

In Equation (4.3), the equaton is to be understood in the weak sense.
This formulation ressembles classic problems in physics and mechanics of dis-

placement of solids where particles tend to minimize their kinetic energy. The
continuity equation appearing in the constraints in (4.3) is ubiquitous in the mod-
elization of the mechancis of matter (be that in Fluid Mechanics or Mechanics of
the solid).

4.1.3 Optimal Transport as measures on the space of paths
To show the formulation of interest of the Optimal Transport problem, we will need
a few notions from the theory of Length and Geodesic Spaces.

Definition 4.9 (Absolutely Continuous curves). Absolutely Continuous curves are
curves γ ∈ C([0, 1], X) with values in a Length Space (X, d) for which there exist a
function h ∈ L1([0, 1],R) such that :

∀0 ≤ s ≤ t ≤ 1, d (γ(t), γ(s)) ≤
ˆ t

s

h(u)du. (4.4)

The set of such curves is denoted AC([0, 1], X), moreover if one of the functions
h satisfying (4.4) is also an element of Lp([0, 1],R) for some p ∈ [1,+∞], we may
write that γ ∈ ACp([0, 1], X).

Common absolulety continuous curves include Lipschitz and C1 curves. Let us
now define the metric analog to the norm of the derivative.

Definition 4.10 (Metric derivative). We may define the metric derivative of a
curve γ ∈ AC([0, 1], X) by

∀t ∈ [0, 1], |γ̇|(t) = lim
η→0

d(γ(t), γ(t+ η))
|η|

∈ [0,+∞], (4.5)

and it is the optimal function satisfying (4.4) as in definition 4.9.

It is easy to see that for a differentiable curve this definition indeed corresponds
to the definition

Definition 4.11 (Length and Geodesic Space). A Length Space is a metric space
(X, d) such that

∀x, y ∈ X, d(x, y) = inf
γ∈AC,γ(0)=x,γ(1)=y

ˆ 1

0
|γ̇|(t)dt. (4.6)
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Let Geo(X) be the set of minimizing curves between its two endpoints in the former
objective function, and arc-parameterized, thus entirely caracterized by

ˆ 1

0
|γ̇|(t)2dt = d(γ(0), γ(1))2. (4.7)

A Geodesic Space is a Length pace (X, d) such that for all x, y ∈ X, there exist
γ ∈ Geo(X) with γ(0) = x and γ(1) = y.

Remark. Please note that in metric theory geodesics are not solutions of any ODE
like in Riemannian Geometry, but simply length-minimizing curves. In Riemannian
Geometry on the contrary, geodesics are defined as solutions of a particular ODE
and are only locally minimizing in general. We will try to be as clear as possible
when confusion might arise.

Let X be a geodesic space, then for any (x, y) ∈ X2, we know there is a geodesic
curve with constant time parametrisation γ linking x to y. Then the square of the
distance function may be written again in terms of the Quadratic action or Kinetic
Energy of γ :

d(x, y)2 =
ˆ 1

0
|γ̇|(t)2 dt.

Integrating against any probability measure π on X × X we write again the
Optimal Transport objective function :

ˆ
X

ˆ
X

d(x, y)2 dπ(x, y) =
ˆ

X

ˆ
X

ˆ 1

0
|Γ̇(x, y)|(t)2 dt dπ(x, y),

with Γ : (x, y) 7→ Γ(x, y) ∈ Geo(X) a map selecting a geodesic curve between x and
y.1

Then writing A2(γ) =
´ 1

0 |γ̇|(t)
2 dt the quadratic action,one can write again the

objective function as ˆ
Γ
A2(γ) dΓ♯π,

where Γ♯π ∈M(Γ).
The Optimal Transport may thus be rewritten :

W 2
2 (µ, ν) = min

σ∈P(Γ),(e0,e1)♯σ=(µ,ν)

ˆ
Γ
A2(γ) dσ(γ),

This means that, implicitly when tryin to find an optimal transport plan from
one source measure to another target measure, we are in fact considering every
possible continuous path (if the base space allows) from the support of the first
measure to the other one.

Let us cite directly Theorem 9.13 from Ambrosio, Brué, et al. 2021 to have a
formal statement to the former :

1Existence of such a geodesic seletcion map is ensured by Theorem 6.9.13 in Bogachev 2007,
and the fact that the multi-valued map (x, y) 7→ γx,y has a closed graph.
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Theorem 4.12 (Ambrosio, Brué, et al. 2021, Theorem 9.13). If (X, d) is a Polish
space and a Geodesic Space, then

min
π

ˆ
X×X

d(x, y)2dπ(x, y) = min
σ∈P(X)

ˆ
Γ
A2(γ)dσ(γ).

Additionally, σ ∈ P(Γ) is optimal if and only if it is supported on Geo(X) and
(e0, e1)♯σ ∈ Γo(µ, ν).

The relationships between the three formulations are summarized in 4.2. For a
proper definition of the map Θ that relates the Transport problem set in the Length
space to the dynamic problem, we refer to Duval and Tovey 2022, Theorem 2.2.

min
π

ˆ
∥x− y∥2dπ

min
σ

ˆ
A2(γ) dσ min

(ρ,v)

ˆ ˆ
∥vt(x)∥2 dρtdt

π = (e0, e1)♯σ

σ = Γ♯π

(v, ρ) = Θ(σ)

Benamou−Brenier

ρt = et♯σ

Figure 4.2: Summary of the relationships between problems related to 2-Wasserstein
Optimal Transport
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4.2 Benamou-Brenier regularization for off-the-
grid Curve recovery in the space of positions
and orientations

The following section exposes an ongoing work carried out jointly with Bastien
Laville, Laure Blanc-Féraud and Gilles Aubert.

4.2.1 Introduction and contributions
This work introduces a functional designed for off-the-grid tracking of point sources.
In the context of inverse problems, this involves recovering dynamic Dirac measures.
The interest in this area stems from recent advancements in the off-the-grid com-
munity, as seen in studies by Bredies, Carioni, Fanzon, et al. 2021; Bredies, Carioni,
Fanzon, et al. 2022; Duval and Tovey 2022 and Duval and Tovey 2022, which have
introduced methods for recovering moving point trajectories and their numerical
implementation.

However, current literature lacks a tractable off-the-grid framework for com-
plex paths where spikes cross each other. Existing state-of-the-art methods fail
to accurately reconstruct these scenarios, instead producing separate paths. Such
situations naturally occur in various fields, including biomedical imaging, where ob-
jects used in super-resolution, like air bubbles, may intersect. An example of these
curves in a practical setting is shown in Figure 4.3.

We propose a method to recover point source paths even when crossings occur.
Additionally, we present a general theoretical framework for the numerical aspects,
ensuring convergence of the discretized problem to the continuous problem under
fewer assumptions. To the best of our knowledge, this is the first attempt to recover
tangled paths of dynamic Dirac measures in an off-the-grid manner.

Figure 4.3: Curves arise genuinely in several biological structures or data applica-
tion, such as cell nucleus, blood vessels, GPS tracks, etc.

Figure 4.4 shows an example of an output of the methods in the literature for
the simple case of two curves crossing in the middle of the domain. Usually, those
failures to properly reconstruct the support of the curves are overlooked, as the
projection on the space-time cylinder ρt = et♯σ is not far from the ground truth
projection. But as we have seen in the contributions presented in the manuscript, it
might be interesting for some tasks to have access to properly reconstructed supports
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Figure 4.4: Reconstruction of the first phantom of Bredies and Fanzon 2019; Duval
and Tovey 2022 consisting of a stack of 21 images showing two crossing curves at
constant speed, passed through the acquisition process and then altered by 60% of
Gaussian noise. Result from Bredies and Fanzon 2019, as reported in Duval and
Tovey 2022, the crossing cannot be recovered.

in order to define (for instance) orientation-dependent features, which would fail in
the center of the domain shown in Figure 4.4.

We will consider an inverse problem model similar to the one proposed in Bredies
and Fanzon 2019 for which Duval and Tovey 2022 proposed numerical recipes, on
the other hand Schmitzer et al. 2019 seems to be the first work to propose the
considered regularization. The main idea is to solve an inverse problem by building
a measure supported on a space of curves minimising an energy functional with a
data term that penalises distance between data and the candidate minimiser, and a
regularisation term that is linear in the candidate minimising measure. Such formu-
lation allows the user to yield guarantees over the shape of the minimisers. Indeed,
this problem was derived having in mind the opportunity to use a representer theo-
rem as the ones proven in Boyer et al. 2019; Bredies and Carioni 2019 as it ensures
that the shape of the minimiser is determined by the extreme points of the unit
ball of the regulariser. The use of the representer theorem requires the fulfilment of
a few hypotheses, among which are the finite-dimensionality of the space on which
the distance to data is computed. In Bredies and Carioni 2019, the authors give a
proof that the extreme points of the unit balls for the considered regularisation are
Diracs measures on the space of curves, this ensures the sparsity of the solution.
One may note that if Bredies and Carioni 2019 and Bredies, Carioni, Fanzon, et al.
2021 express the problem in terms of a time-dependent density (represented as a
measure-valued continuous function of time) and a velocity field, coupled via the
continuity equation, and that realise the optimal transport between two marginal
distributions. If the correspondence is not one-to-one, one can associate a measure
paths to a density and velocity field couple, and conversely, at least under suitable
smoothness conditions.
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On the numerical side, a few works have been trying to propose numerical meth-
ods to recover curves from a temporal series of measurements. For instance, Bredies,
Carioni, Fanzon, et al. 2022 proposes a conditional gradient method or Frank-Wolfe
algorithm Frank and Wolfe 1956 for solving the considered inverse problem. Frank-
Wolfe type algorithms are typical algorithms to solve an optimisation problem under
constraints, in an iterative manner and in order to exploit the nature of the con-
sidered problem. The idea is to iteratively minimise the linearised version of the
objective function on a compact set. Classic theory tells us that such minimizers
will be located on extreme points of this compact set. Latest developments Du-
val and Tovey 2022 extends on the idea of using Frank-Wolfe to solve the inverse
problem and leverage a dynamical programming approach to speed up the compu-
tation. They also extend the numerics to the ’unbalanced’ case where each curve
has a time-dependent amplitude associated.

Contributions

Our main contributions in this article are listed below:

• Lift the curve recovery problem in the position-orientation space;

• Introduce a new regularisation term for dynamic Dirac measure recovery, in
particular for crossing trajectories;

• Propose an efficient greedy algorithm, with several numerical examples to
illustrate the capabilities of our proposed method.

• Prove the Γ-convergence of the discretised curve problem to the global one,
thus showing the interest of discretising the space of curves using Bézier curves
as approximations in the practical context;

Outline

This section is organised as follows : the first subsection introduces the subject with
as little mathematics and jargon as possible and gives an idea of what has been
done and what we contribute to the literature, the second subsection introduces
the variational problem, formulation and first numerical results on synthetic data,
then subsection 3 gives theoretical insights as to why the proposed discretisations
work. Finally, the last subsection show our attempts to bring our method to real
world data in biomedical task.

4.2.2 An energy for trajectory recovery
An inverse problem aims to recover some physical quantities, from a low-pass fil-
tered observation. This is typically the localisation of sources, from a blurred or
downgraded image. The off-the-grid variational methods, also called gridless meth-
ods, are a rather recent addition to the literature Bredies and Pikkarainen 2012;
Castro and Gamboa 2012; Duval and Peyré 2014; Denoyelle et al. 2016, designed
to overcome the limitations of the discrete methods and more precisely by the fine
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grid. Indeed, in the discrete framework such as the Basis Pursuit/LASSO, a fine
grid is introduced and the sources are estimated within this setting: the point (also
called spikes) are thereby constrained on this grid, further yielding discretisation
discrepancies. On the contrary, off-the-grid methods do not rely on such grid and
rather consist in the optimisation of a measure in terms of amplitude, position and
number of the point sources. Moreover, they offer several theoretical results, such
as a quantitative bound characterising the discrepancies between the source and
the reconstruction.

Let’s describe the Inverse Problem setup for the trajectory recovery of contrast
agents. We suppose we have access to noisy measurements bt ∈ H , indexed by
time t ∈ [0, 1] and lying in a finite-dimensional Hilbert space H and that they were
obtained through an acquisition process defined by a linear operator Φ that maps
M(Ω) to H .

Let T ∈ N∗ be the number of time samples, further defining (ti)1≤i≤T the time
slices ranging from 0 to 1. The following functional is the core component of the
dynamic off-the-grid framework Bredies, Carioni, Fanzon, et al. 2021; Bredies and
Fanzon 2019 so far:

argmin
σ∈M(Γ)

E(σ) = argmin
σ∈M(Γ)

T∑
i=1
∥Aieti♯σ − bti

∥2
H +

ˆ
Γ
w(γ)dσ(γ), (4.8)

• Γ ⊂
{
γ = (h, ξ), h ∈ C([0, 1],R), ξ : [0, 1] −→ Ω, ξ|h̸=0 is continuous

}
the

space of curves considered,

• With et the measurable map of evaluation at time t, et(γ) = γ(t) i.e. et♯σ ∈
M(Ω),

• Ai :M(Ω) −→ H a linear operator, pertaining to the physical context,

• w : Γ −→ R+, a lower semicontinuous map, in this work we will only consider
w(γ) =

´ T

0 α+ β|γ̇|2(t)dt for α, β > 0 where |γ̇| denotes the metric derivative
of γ.

• t 7→ bt ∈H are the acquired data called the observation.

The first term is a data term, controlling the distance from the acqusisition bt in
the acquisition space H . The second term is the regularization term enforcing the
structure upon the minimizer by mean of the Representer Theorem and selecting
particular solutions of the inverse problems, favoring "regular" solutions.

In this work we will not depart from the setting used in the literature that uses
H = Rn, and ∀i ∈ J1, T K, Ai : ρ ∈ M(Ω) 7→

(´
Ω a

j
i (x)dρ(x)

)
1≤j≤n

∈ H . Such
finite dimensional space for the data term is of course motivated by the use of the
Representer Theorem (Theorem 4.13) as it ensures that the final minimizer will be
composed of a finite set of extreme points.

In the following we will be only focusing on the case where Γ is a subspace
of {γ = (1, ξ), ξ : [0, 1] −→ Ω ∈ C0} (which is a complete space for the uniform
convergence), curves with constant amplitude equal to 1, which corresponds to the
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Benamou-Brenier case in Duval and Tovey 2022. Although, for the specific case
of w(γ) = α +

´ 1
0 |γ̇|(t)dt (either in the Euclidean or Riemannian setting), one

can restrict Γ to the set of Absolutely Continuous curves, adding the condition
ξ ∈ AC2([0, 1]), else w(γ) = +∞.

As described in the introduction of this Chapter, the problem (4.8) is related to
the time-space cylinder definition of the problem through the relationships between
the different formulations of the Optimal Transport problem as illustrated in Figure
4.2.

A general Representer Theorem

Representer Theorems are common results in Inverse Problems, usually allowing
to derive some structure of the solutions to the optimization problem at hand.
Quite recently the authors of Boyer et al. 2019 have been able to establish a very
general statement for a Representer Theorem that allows to deal with many different
problems.

Theorem 4.13 (Representer Theorem, Bredies and Carioni 2019). Assuming that
the space E is locally convex, f : H −→ R and R : E −→ [0,+∞] are convex,
that Φ : E −→H verifies Φ(domR) = H and R is coercive on the Quotient Space
E/{R(u) = 0},

min
u∈E

f(Φu) +R(u),

has minimizers decomposable as a finite convex combinations of extreme points of
{u ∈ E, R(u) ≤ 1} (up to scaling if necessary).

This result is very important as it relates the properties - and in particu-
lar geometries - of the minimizers to the regularizer R, more specifically to the
extreme points of its balls (or sublevel sets). Immensely popular examples in-
clude the L1 regularization of the problem that promotes sparsity of the solu-
tion (associated with dirac measures as extreme points) and TV regularization
(TV : u 7→ supϕ≤1 ⟨div ϕ, u⟩ yields characteristic functions of regular sets, up to
normalization). More recently the authors of Laville et al. 2021 have proposed a
regularizer that also selects curves, this time in the static framework.

As explained before, Theorem 4.13 is to be understood as a general result among
a diverse family of Representer Thorems that allow to find such sparse decompo-
sitions. Another very general formulation, and important to mention, is the one
presented in Boyer et al. 2019, with slightly different hypotheses.

4.2.3 The orientation-position space
As we mentioned earlier, the original curve reconstruction model struggles to recover
multiple crossing curves in 2D. Indeed, the regularising term in (4.8) selects solutions
with minimal length in the 2D plane, thus preferring couples of nearly-touching
curves to crossing curves. To prevent such issue, we propose an approach consisting
in lifting our problem in the space of position and orientation, adding an orientation
coordinate to our 2D variable.
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Hence, we lift the problem in the so-called roto-translation space, inspired by
the variational approach proposed by Chambolle and Pock 2019. The orientation-
position space, also called the roto-translation space in the literature, is understood
as homogeneous space upon which the Special Euclidean group SE(d) acts transi-
tively and faithfully, and further identified here as Md

def.= X × Sd−1. As mentioned
earlier, X ⊂ Rd is then the spatial domain where the acquisition is defined, and Sd−1

thereby parametrises the local orientation of the curve. Let us introduce SO(d) the
d-dimensional rotation group, i.e. the group of all rotations about the origin of
d-dimensional Euclidean space Rd under the operation of composition. Then, we
introduce:

Definition 4.14. The homogeneous space of position-orientations in Rd is denoted
Md:

Md
def.= Rd ⋊ SO(d)/{0}⋊ SO(d− 1).

It is (2d − 1)-dimensional and exhibits the nice property that SE(d) acts tran-
sitively and faithfully on it. In the following we use d = 2, given our problem is set
on 2-dimensional images. This space is useful because it allows one to differentiate
objects with the same position but with different orientations, which is a common
feature in 2D vessel images, as the projection in a 2D image of an inherently tree-like
structure gives rise to crossings.

If needed, we will identify n = (cos(θ), sin(θ)) ∈ S1 ←→ θ ∈ R/Z ←→ Rθ ∈
SO(2). As of now, N ∈ N∗ control points will be no longer on the XN but rather
in the (Md)N to further incorporate the orientation information in the curve. The
roto-translational curve space is now:

Υ def.=
{
γ = (h, ξ), h ∈ C([0, 1],R), ξ : [0, 1] −→ Md, ξ|h̸=0 is continuous

}
and the measure spaceM(Υ) follows naturally. Eventually, note that the origi-

nal roto-translational space Md can also be seen as a Riemannian manifold equipped
with a metric tensor, which ought to be defined in the following to further implement
the regularisation on curves crossing.

In this manuscript we only treat the "Benamou-Brenier" case where the mass or
amplitude transported along the curve, denoted by h, is constant and equal to 1.
We will only work in the subset of Υ of curves (h, ξ) with ∀t ∈ [0, 1], h(t) = 1.

A relaxed Reeds-Shepp metric

Multiple models have taken advantage of the space of roto-translation Md, among
which applications we could quote computing geodesics taking into account orien-
tation features and penalising curvature. Usually used to model the movements of
vehicles or oriented objects in Rd, the Reeds-Shepp metric Reeds and Shepp 1990
has numerous applications in various context. It is a sub-Riemannian metric that
prevents curves to not be planar and penalises changes of direction (meaning pe-
nalising curvature of the trajectory). We will use a relaxed Riemannian version Fε
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of the Reeds-Shepp metric F here that only penalises velocities orthogonal to. This
model continuously converges to the standard sub-Riemannian Reeds-Shepp metric
Duits, Meesters, et al. 2018 as the relaxation parameter ε yields 0.

We may cite applications of the roto-translational space in medical images, such
as in E. Bekkers et al. 2014 which applies filters on lifted images to help track
blood vessels in vascular imaging and in E. J. Bekkers, Duits, et al. 2015 for the
computation of geodesics in SE(2). The following definition of Fε is peculiar to the
biomedical application, formulated with some cost functions introducing another
scaling parameter.

Definition 4.15 (Relaxed Reeds-Shepp metric). The relaxed Reeds-Shepp metric
tensor field Duits, Meesters, et al. 2018 can be written as a Euclidean norm at each
point in M2. Let 0 < ε ≤ 1 be the relaxation parameter, ξ > 0 a scaling parameter,
consider (x, θ) ∈ M2 while (ẋ, θ̇) ∈ T (M2) lies in the tangent bundle, then:

∥∥∥(ẋ, θ̇)∥∥∥2

g

def.= |ẋ · eθ|2 + 1
ε2 |ẋ ∧ eθ|2 + ξ2|θ̇|2

=
〈
Rθ(ẋ, θ̇), diag

(
1, 1
ε2 , ξ

2
)
Rθ(ẋ, θ̇)

〉
,

where eθ is the unit vector in the direction defined by the angle θ. The idea
of this relaxation boils down to, the increasing penalisation of non-planarity of the
lifted path as ε nears 0.

The problem further writes down to the optimisation of the following energy:

argmin
σ∈M(Υ)

E(σ) = argmin
σ∈M(Υ)

T∑
i=1
∥Aieti♯σ − bti

∥H + β

ˆ
Γ

ˆ 1

0
∥γ′(t)∥gdtdσ(γ). (4.9)

The relaxed version of Reeds-Shepp accurately approaches the sub-Riemannian
case with infinite cost for non-planar curves. The

∣∣∣θ̇∣∣∣2 term penalises steering the
prescribed orientation of the curve, and acts as a penalisation of the local curvature
of the curve.

An Unravelling Frank-Wolfe algorithm

In the continuity of the literature on our model of curve recovery, we will use the
Frank-Wolfe algorithm to find the minimizer. It is a numerical algorithm proposed
1956 by Marguerite Frank and Philip Wolfe Frank and Wolfe 1956.

The Frank-Wolfe algorithm, also known as the conditional gradient method, is
an iterative optimization technique designed for solving constrained convex opti-
mization problems. It operates by linearizing the objective function at the current
point and then solving a linear subproblem to find a search direction within the
feasible region. This linear subproblem is typically easier to solve than the original
nonlinear problem. The algorithm then moves towards the solution of the linear
subproblem, updating the current solution iteratively. The key principles of the
Frank-Wolfe algorithm are its simplicity in handling constraints and its ability to
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exploit the geometry of the feasible region, making it particularly useful for large-
scale problems where traditional methods might be computationally infeasible.

Algorithm 4 shows pseudo-code for the Frank-Wolfe algorithm. In the following
we will be mostly interested in looking at the curves we are able to find in the Oracle
step (line 4 in the algorithm) and we will not use any stopping criterion other than
simply after accepting a set number of curves, neither will we focus on determining
the amplitude of the Dirac measures to be added to the solutions and we will make
the hypothesis that they all have the same weight in the solution.

The Frank-Wolfe algorithm is particularly adapted to optimization over spaces
of measures and the use of the Representer Theorem. In our case the structure of
the solution of this Linear Optimisation Oracle is again directly related to the ex-
treme points of the regularizer (Duval and Tovey 2022, Lemma 4.2, to ensure those
nice properties we use D = {γ/w(γ) ≤ λ} a sub-level set of w with sufficiently large
constant λ) and we need to find a solution to the linearized problem as a dirac dis-
tribution on a single curve δγ. Thus the LMO turns into a non-convex optimization
problem of the curve γ, that we propose to approximate by parametrizing the space
of curves.

Algorithm 4 : Frank-Wolfe algorithm for curve recovery
Data : Acquisition t 7→ bt ∈H , number of iterations K, regularisation

weight β > 0.
1 Initialisation: m[0] = 0.
2 for k, 0 ≤ k ≤ K do
3 For m[k] = ∑k

i=1 a
[k]
i δγi

such that a[k]
i ∈ R,

η[k](x) def.= 1
α

Φ∗(Φm[k] − y).

4 Find γ∗ ∈ Γ such that :

γ∗ ∈ argmin
γ∈D

〈
η[k], δγ

〉
+ w(γ).

5 Find corresponding weight a[k]
i+1

6 m[k+1] = m[k] + a
[k]
k+1δγk+1

7 Compute the amplitudes a[k+1] ←− argminE(∑i aiδγi
)

8 Prune the amplitudes
9 Check Stopping Criterion

10 end
Result : Discrete measure m[k] where k is the stopping iteration.
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4.2.4 Discretisation of the space of curves, beyond polygo-
nal curves

Focusing only on the case of a finite number of timestamps in the data term, and
as pointed out in Duval and Tovey 2022, Lemma 3.3, one can always define the
following map

g : γ 7→ γ̃ ∈ argmin{w(h), h ∈ Γ,∀i, h(ti) = γ(ti)}, (4.10)

which leads to the inequality

E(g♯σ) ≤ E(σ). (4.11)
This means that there is a theoretically optimal discretization of the space, as

any proposed solution to the optimization problem can be replaced by a better
one, only conserving the location of the curve at the timestamps where error in the
data term is computed. Namely the optimal curves are simply the curves that are
piecewise "geodesic" with respect to w beteween each of the timestamps ti.

We will now consider how to discretize the space of curves in order to find a
good approximation of the solution of the problem (4.8). In this section we provide
a formulation for the approximation of absolutely continuous curves by families of
curves defined by finite-dimensional control points.

Let P n be a map from the space of control points Rd×kn , and Pn = P n(Rd×kn)
the n-th order discretisation of the space of curves. Let µ ∈ M(Rd×kn), then we
have that P n

♯ µ ∈M(Γ).
Here what we need to ensure in order to guarantee that our notion of discretiza-

tion is suitable to approximate the theoretical minimizer of the variational problem
is to ensure that the problem set in the discretization space effectively converges
towards the original problem. The right notion of convergence is Γ-convergence, as
defined in the following.

Definition 4.16 (Γ-convergence). Let Fn : x ∈ E 7→ R
⋃{+∞} be a sequence of

functionals on topological space E.
We say that the sequence Fn converges towards F in the sense of Γ-convergence

if and inly if :

• ∀x ∈ E, (xn)n∈N ∈ EN, xn −→ x =⇒ F (x) ≤ lim infn Fn(xn).

• ∀x ∈ E,∃(xn)n∈N ∈ EN, s.t. xn −→ x and lim supn Fn(xn) ≤ F (x).

This is a very weak notion of convergence that guarantees that, given a sequence
minimizers, if it converges its limit will be a minimizer of the target functional. It is
very common in Calculus of Variations and allow to approximate hard or for instance
non-convex problems by ones that are much easier to solve, and its applications are
both theoretical and numerical.

The following result ensures that, with a few assumptions, the sequence of ap-
proximation spaces Pn are good approximations to find the minimizers of (4.8).



4.2. Benamou-Brenier regularization for off-the-grid Curve recovery in the space of positions and orientations109

Theorem 1. Let P n : c ∈ Rd×kn 7→ P n(c) ∈ Γ, Sn : γ ∈ Γ 7→ Sn(γ) ∈ Rd×kn be
measurable maps, P n(Rd×kn) = Pn ⊂ Γ be an increasing sequence of subsets of Γ,
such that ⋃n Pn is dense in Γ. Suppose that for every γ ∈ Γ P n(Sn(γ)) −→ γ for
the unform convergence, and w(P n(Sn(γ))) ≤ w(γ). Then the functional E defined
earlier constrained to Pn Γ-converges to E, formally : Γ-limn(E + χPn) = E.

Proof. Let σn
∗−⇀ σ, then as we already have that

E(σn) ≤ En(σn),

by lower semicontinuity we conclude that

E(σ) ≤ lim inf
n

En(σn).

For the lim sup inequality, choosing σn = (P n ◦ Sn)♯σ
∗−⇀ σ,

we have that ˆ
w(γ)dσn ≤

ˆ
w(γ)dσ,

and thus
lim sup

n

ˆ
w(γ)dσn ≤

ˆ
w(γ)dσ,

and by continuity of F we then get that :

lim sup
n

En(σn) ≤ E(σ).

It is also straightforward to see that we can even lower our hypothesis to sim-
ply having lim supn w(P n ◦ Sn(γ)) ≤ w(γ), but for the scope of this chapter the
hypothesis presented here is sufficient.

Remark. We may notice that the former proof defines an approximation map on
Pn. Let Sn : γ 7→ Sn(γ) be a measurable map, then γn = P n(Sn(γ)), and we retrieve
σn = (P n ◦ Sn)♯σ. If we have Sn ◦ P n = Id as in the case of polygonal lines, it is
even a projection.

Remark. The latter result requires no more than very general hypotheses and can
be extended to more general settings. For instance, we may consider the continu-
ous time setting where the data term is changed to

´ 1
0 ∥Aet♯σ − bt∥2

H dt, although
we lose the application of the Representer theorem that guarantees the shape of
the minimizer. Moreover, the only hypothesis on the integrand w(γ) is its lower
semicontinuity, so we may consider many different regularisers as well.

The former convergence result is to be understood as a kind of criterium in order
to answer to the question "what are the minimal assumptions for a discretization
of our problem?". Another way to interpret the condition w(P n ◦ Sn(γ)) ≤ w(γ) or
lim supn w(P n ◦ Sn(γ)) ≤ w(γ) is as a relaxation of (4.11). In a way the inequality
is the same, but the important part is that it holds on the "difficult" lower semicon-
tinuous part (the data term being continuous, it does not pose any problem).
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Lemma 4.17. The following operators verify the property w(P n(Sn(γ))) ≤ w(γ)
with w(γ) = α + β

´ 1
0 |γ̇|

2(t)dt:

• Polygonal lines

∀c ∈ Rd×kn , P n(c)(t) = t̃k+1 − t
t̃k+1 − t̃k

ck + t− t̃k
t̃k+1 − t̃k

ck+1, if t ∈ [t̃k, t̃k+1[

where the kn are such that kn|kn+1, that way we ensure that Pn ⊂ Pn+1, and
t̃k = k

kn
. We use also Sn(γ)k = γ(k/kn) for k ∈ J0 , knK,

• Bézier curves P n(c)(t) = ∑n
k=0 t

k(1−t)n−k
(

n
k

)
ck, with kn = n+1 and Sn(γ)k =

γ(k/n) for k ∈ J0 , n+ 1K,

• Geodesic by parts ∀c ∈Mkn , P n(c)(t) = Expck
(kn(t− k

kn
)Logck

(ck+1)), if t ∈
[ k

kn
, k+1

kn
] and Sn(γ)k = γ(k/kn) for k ∈ J0 , knK, with kn|kn +1 to ensure mono-

tonicity.

Proof. • Polygonal curves case :
Taking (Sn(γ))k = γ(t̃k),

ˆ 1

0
∥P n(Sn(γ))′(t)∥2 dt

=
ˆ 1

0

∥∥∥∥∥∥
kn−1∑
k=0

1[t̃k,t̃k+1[(t)(γ(t̃k+1)− γ(t̃k))
∥∥∥∥∥∥

2

/(t̃k+1 − t̃k)2dt

=
kn−1∑
k=0

(t̃k+1 − t̃k)
∥∥∥∥∥∥
ˆ t̃k+1

t̃k

γ′(s)ds
∥∥∥∥∥∥

2

/(t̃k+1 − t̃k)2

≤
kn−1∑
k=0

ˆ t̃k+1

t̃k

∥γ′(s)∥2 ds

=
ˆ 1

0
∥γ′(s)∥2 ds.

• Bézier curves :
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Taking (Sn(γ)) ∈ Rd×(n+1), (Sn(γ))k = γ(k/n),
ˆ 1

0
∥P n(Sn(γ))′(t)∥2 dt

=
ˆ 1

0

∥∥∥∥∥
n−1∑

0

(
n− 1
k

)
tk(1− t)n−1−k(γ((k + 1)/n)− γ(k/n)

1/n )
∥∥∥∥∥

2

dt

≤
Jensen

n−1∑
k=0

(
n− 1
k

)ˆ 1

0
tk(1− t)n−1−k

∥∥∥∥∥γ((k + 1)/n)− γ(k/n)
1/n

∥∥∥∥∥
2

dt

=
n−1∑
k=0

(
n− 1
k

)ˆ 1

0
tk(1− t)n−1−k

∥∥∥∥∥∥∥
´ (k+1)/n

k/n
γ′(s)ds

1/n

∥∥∥∥∥∥∥
2

dt

≤
Jensen

n−1∑
k=0

(
n− 1
k

)ˆ 1

0
tk(1− t)n−1−k


´ (k+1)/n

k/n
∥γ′(s)∥2 ds
1/n

 dt

=
n−1∑
k=0

(1/n)
´ (k+1)/n

k/n
∥γ′(s)∥2 ds
1/n = w(γ).

where we used the properties of the Bernstein polynomial basis :∑
k

(
n
k

)
tk(1− t)n−k and

´ 1
0

(
n
k

)
tk(1− t)n−k = 1

n+1 .

• Piecewise geodesic curves :
with t̃k = k/kn

ˆ 1

0
∥P n(Sn(γ))′(t)∥2 dt

=
ˆ 1

0

∥∥∥∥∥∥
kn−1∑
k=0

1[t̃k,t̃k+1[(t)Logγ(t̃k)(γ(t̃k+1))
∥∥∥∥∥∥

2

g

/(t̃k+1 − t̃k)2dt

=
kn−1∑
k=0

(t̃k+1 − t̃k)
∥∥∥Logγ(t̃k)(γ(t̃k+1))

∥∥∥2

g
/(t̃k+1 − t̃k)2

=
kn−1∑
k=0

dg(γ(t̃k), γ(t̃k+1))2/(t̃k+1 − t̃k)

≤
kn−1∑
k=0

(
ˆ t̃k+1

t̃k

∥γ′(s)∥g ds)2/(t̃k+1 − t̃k)

≤
Jensen

kn−1∑
k=0

ˆ t̃k+1

t̃k

∥γ′(s)∥2
g ds

=
ˆ 1

0
∥γ′(s)∥2

g ds.

Remark. One may note that the former result is related to Lemma 3.3 and 3.4 in
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Duval and Tovey 2022, that states that the minimizer σ∗ should be supported on
the minimizers of w interpolating points prescribed at the timestamps appearing in
(4.8). The corresponding discretisations are the polygonal lines and more generally
the piecewise geodesic curves in the case where w(γ) = α+ β

´ 1
0 |γ̇|

2(t)dt. However,
it is still worth looking for other discretisations as it may be numerically helpful
during the optimization.

4.2.5 Numerical Results
In this section we will be presenting numerical results associated with the different
ideas introduced above. In the interest of transparency, a wider study of the influ-
ence of hyperparameters has been carried out as systematically as possible. Section
4.2.10 contains table with the results from experiments carried out with varying
parameters of noise, size of the domain, number of timestamps in the data, penal-
ization levels, dimension of discretization etc. These results might be referred to in
the commentary that follows directly under this paragraph.

Now let us define more precisely the framework chosen to highlight the prop-
erties of our work. First, let’s note that we have made a particular choice of ac-
quisition model. Indeed, the acquisition operator still has the shape Φ : ρ 7→
(
´

Ω ϕi(x)dρ)1≤i≤N , with the choice of function ϕi : x 7→ exp(−∥x− xi∥2/σ2) with
the xi points on a N × N uniform grid. This particular choice of test functions
defining our acquisition is motivated by the aim of our work towards application
to dynamic deconvolution of the trajectories of contrast agents in medical imag-
ing. It is also very accomodating as this can simply be interpreted as a discretized
convolution with a PSF and it is also easy to plot.

The first two synthetic examples we will be interested in are the ones that are
usually presented in the literature Duval and Tovey 2022; Bredies, Carioni, Fanzon,
et al. 2022.

Gradient descents were performed using Pytorch and the associated automatic
differentiation framework. To compute the exponential maps needed to define piece-
wise geodesic curves and to carry out the Riemannian gradient descent, we need to
use numerical integration. To do so we used the torchdiffeq package R. T. Q. Chen
2018 that defines numerous integration schemes and provides automatic differen-
tiation capabilities. We used the default dopri5 which is a adaptative timestep
version of Runge-Kutta method at the order 5 (see Hairer et al. 2008 for more
information).

For the Euclidean case we used the Adam solver with learning rate equal to
1e − 2 to perform gradient descent. Bezier curves were computed using a naive
implementation of de Casteljau’s algorithm.

For every result presented here we have used a multistart strategy for each atom
to be added to the solution, similarly as what is performed in Bredies, Carioni,
Fanzon, et al. 2022. Each time we have sampled control points according to the
density Q(−ηt) where Q = exp, we perform gradient descent for each of these curves
individually and keep only the one that yields the smallest energy value.

As the reader will notice when looking at these results, we are not yet interested
in estimating the number of diracs to be found or the associated
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Figure 4.5: Acquisition used as an example at three tiemsteps t=0.,0.5,1. (left to
right), clean (top) and with 10% noise.

Crossing curves

Our first example is the same as one of the most commonly used in the literature.
It simply consists in two straight symmetric curves crossing each other in the center
of the domain. The underlying curves are easily described as parametrized curves
: γ0(t) = (−0.8 + 1.6t,−0.8 + 1.6t) and γ1(t) = (−0.8 + 1.6t, 0.8− 1.6t) with time
t taking values in [0, 1].

For our acquisition operator we have chosen the vertices of the uniform 8 × 8
grid taken on the domain [−1, 1]× [−1, 1].

We set the standard deviation of the gaussian test functions in the acquisition
process to σ = 0.2.

We have sampled 128 sets of values for the control points of the for each case
according to the strategy described above.

We can see in Figures 4.6 and 4.7 that we can retrieve the first two atoms like
in the literature. Subsection 4.2.10 further down shows tables of results for various
parameters. As one can see in Table 4.1, it is in fact possible to find the two crossing
curves for example when noise is much higher compared to what is shown in the
Figures here and acquisition in higher dimension. We can also see that in those
examples, the choice of discretization has consequences over the selected curves,
and for instance Table 4.1 clearly shows that Bezier curve discretization makes
it much easier to find crossing curves versus not finding them. Bezier curves are
smooth curves and has some non-local properties as any point sampled inside the
curve depends on all of the control points defining the curve, these properties seem
to be

Figure 4.8 shows the result for the piecewise geodesic curve. The curves are
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effectively untangled and a good support is recovered for both our curves. It may
be noted though that the computation time is highly increased.

Figure 4.6: Output of our method using the Polygonal discretization of curves in
the Euclidean setting with β = 0.4 and 10% noise.
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Figure 4.7: Output of our method using the Bézier discretization of curves in the
Euclidean setting with β = 0.4 with 10% noise.
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Figure 4.8: Output of our method using the Piecewise geodesic discretization of
curves in the relaxed Reeds-Shepp in the Euclidean setting with β = 0.4 and 10%
noise.
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Three curves

Now we show our results on the second example that is commonly studied in the
literature, it is composed of three curves to be recovered with one that is a fraction
of a circle, a straight line and another more complex curve that is tangent to the
straight line.

As one can see on Figures 4.10 and 4.11 for the case with 10% noise, 16 times-
tamps and a 16 × 16 grid domain, it is usually hard to recover the right support
for the curves. We have sampled 128 sets of values for the control points of the for
each case according to the strategy described above. In both of these outputs we
can notice huge entangling of the supports of the different recovered curves. It is
not the desired result as our motivation for this work was the ability to recover the
right support, but it can be said at least that the projection ρt = et♯σ seems to be a
good approximation of the "density-velocity field" parametrization of the evolving
densities. Once again, the model is highly sensitive to variations in hyperparame-
ters and for different levels of noise and dimensions of the acquisition it is possible
to recover very accurate curves as in Figure 4.13.

On this particular example, the Piecewise Geodesic model performs better as it is
able to accurately separate the three curves, although the support is not completely
exact as one can see on Figure 4.12.

Figure 4.9: Acquisition used as an example at five timesteps t=0.,0.25,0.5,.75,1.
(left to right), clean (top) and with 10% noise.
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Figure 4.10: Output of our method using the Polygonal discretization of curves in
the Euclidean setting with β = 0.08 and 10% noise.
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Figure 4.11: Output of our method using the Bezier discretization of curves in the
Euclidean setting with β = 0.05 and 10% noise.
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Figure 4.12: Output of our method using the Piecewise geodesic discretization of
curves in the Euclidean setting with β = 0.05, ϵ = 0.3, ξ = 2. and 10% noise.



4.2. Benamou-Brenier regularization for off-the-grid Curve recovery in the space of positions and orientations121

4.2.6 Partial Conclusion and outlook
We have successfully extended the model for curve recovery with Benamou-Brenier-
like regularization to the Riemannian manifold framework. We have also investi-
gated new methods to parametrize the problem and find the curves that achieve the
minimum of our problem. We have proposed a naive criterium to find such suitable
discretizations.

This work is not yet complete and we still need to propose a discretization that
is both suitable and realistic for numerical computations. We have investigated
the methods in a very simple way by simply trying to look for the first atoms
discovered for our models, a more accurate evaluation would also take into account
the need to estimate the number of atoms in the decomposition of the minimizer.
The implementation of a good stopping criterion relying on the properties of the
problem is needed to be really relevant. Going forward we want to investigate
the possibility to generalize Bezier curves on metric spaces, either by using de
Casteljau’s algorithm or parametrizing such a curve as the Fréchet mean of control
points with weights depending smoothly on time. Such discretization needs further
study as guaranteeing their suitability is not straightforward and will need some
analytical work taking advantage of comaparison theorems in Riemannian geometry
in order to provide the necessary bounds on the energy.

In future works, it could be interesting to consider the extension of this method
to an off-the-grid static context, namely the reconstruction (and untangling) of
curves from one image Laville et al. 2023 rather than a stack. Both problems,
dynamic path and static curves, share a lot of similarities and could benefit from
each other improvements. Also, our proposed algorithm could be tested on real
data images and delivered in a so-called ’off-the-shelf’ package, which may come
handy for biologists and applicative researchers with a GUI.
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4.2.7 Appendix : Extreme points of the Benamou-Brenier
Energy (Riemannian case)

Here we gather a few results to ensure the relationships between the analytic and
metric definitions of length, distance and (metric) derivatives in order to verify
that the nature of extreme points of the regularizer doesn’t change when setting
the problem in manifolds. For more detail on manifolds geodesic distance and their
length structure we refer to Burtscher 2015.

Lemma 4.18. If the distance d is the Euclidean distance, and γ ∈ Γ is differ-
entiable, then the metric derivative corresponds to the norm of the classical (or
analytic) derivative : ∀t ∈ [0, 1], |γ̇|(t) = ∥γ′(t)∥.

Similarly, if d is the geodesic distance associated with the metric tensor g, then
the metric derivative corresponds to the metric applied to the classical derivative :
∀t ∈ [0, 1], |γ̇|(t) =

√
gγ(t)(γ′(t), γ′(t)).

Proof. The euclidean case comes directly from the definition of the derivative, and
the Riemannian case is proven via a short computation :

d(γ(t), γ(t+ η))
|η|

=

√
gγ(t)

(
Logγ(t)(γ(t+ η)),Logγ(t)(γ(t+ η))

)
|η|

=

√√√√gγ(t)

(Logγ(t)(γ(t+ η))− Logγ(t)(γ(t))
η

,
Logγ(t)(γ(t+ η))− Logγ(t)(γ(t))

η

)

−→η−→0
√
gγ(t)(dLogγ(t)γ(t) · γ′(t), dLogγ(t)γ(t) · γ′(t)) =

√
gγ(t)(γ′(t), γ′(t))

Lemma 4.19. The functional w : γ ∈ ΓM 7→
´ 1

0 α+β ∥γ′(t)∥g dt, with g ∈ C2(M),
is lower semi-continuous.

Proof. w may be rewritten as the supremum of a family of continuous functions of
γ :

w(γ) = sup
t0=0<t1···<tn=1

α + β
n−1∑
k=0

dg(γ(tk), γ(tk+1))
tk+1 − tk

,

thus ensuring lower semi-continuity of w.

Lemma 4.20. Let w : Γ −→]0,+∞] a lower semi-continuous function and D ={
σ ∈M(Γ)/

´
Γ wdσ ≤ 1

}
. D is closed and:

Ext(D) = {0} ∪ {w(γ)−1δγ|w(γ) < +∞}
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Proof. For any convex decomposition σ = λσ1 + (1 − λ)σ2, if σ = w(γ)−1δγ

for any γ ∈ Γ, then σ1 and σ2 are supported only on γ, σ1 = α
w(γ)δγ, σ2 =

β
w(γ)δγ, α, β ∈ R+.

And then, as
´
wdσ = 1 = λα + (1 − λ)β and α + β = 1, we have α = β = 1 and

σ = σ1 = σ2. In the end, w(γ)−1δγ is indeed an extremal point of D.

Let σ ∈ Ext(D), and make the assumption that there are at least 2 curves γ0 and
γ1 in the support of σ. Let Γ0 = {dΓ(γ, γ0) ≤ 1

2dΓ(γ1, γ0)}, and Γ1 = Γc
0, defining

σ0 = 1Γ0σ and σ1 = σ − σ0.
If
´
wdσi ̸= 0 and

´
wdσi ≤

´
wdσ ≤ 1, then with λ =

´
wdσ0, we get that

σ = λσ0
λ

+ (1− λ) σ1
1−λ

and we have written σ as a convex combination of elements
of D, so either σ /∈ Ext(D) or for a certain i ∈ {0, 1},

´
wdσi = 0. In the last

case we have that by positivity of w, σ = 0 and then we can’t have γi ∈ Γi, which
contradicts the assumption.
In the end, we have that σ has at most 1 curve in its support which means either
σ = 0 or σ = 1

w(γ)δγ for some γ ∈ Γ.

4.2.8 Appendix : Computations for the relaxed Reeds-
Shepp

With the help of the SageMath software, we carry out explicit computations of the
chrystoffel symbols for the relaxed Reeds-Shepp metric model.

Let p = (x, y, θ) ∈ M2 a rototranslation, the metric tensor g at p is defined by:

gij =

 cos(θ)2 + ε−2 sin(θ)2 (1− ε−2) cos(θ) sin(θ) 0
(1− ε−2) cos(θ) sin(θ) sin(θ)2 + ε−2 cos(θ)2 0

0 0 ξ2

 ,
with constants ε, ξ > 0 while its inverse reads:

gij =

 cos(θ)2 + ε2 sin(θ)2 (1− ε2) cos(θ) sin(θ) 0
(1− ε2) cos(θ) sin(θ) sin(θ)2 + ε2 cos(θ)2 0

0 0 ξ−2

 .
The Christoffel symbols, up to the symmetries2 Γk

ij = Γk
ji and the null symbols,

2The Levi-Civita connection ∇ is by definition torsion-free.
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of the Levi-Civita connection ∇ of g write down:

Γx
x,θ = − 1

2ε2 (ε4 − 1) cos(θ) sin(θ)

Γx
y,θ = − 1

2ε2 (ε4 − (ε4 − 1) cos(θ)2 − ε2)

Γy
x,θ = 1

2ε2 ((ε4 − 1) cos(θ)2 − ε2 + 1)

Γy
y,θ = ε4 − 1

2ε2 cos(θ) sin(θ)

Γθ
x,x = ε2 − 1

ε2ξ2 cos(θ) sin(θ)

Γθ
x,y = − 1

2ε2ξ2 (2(ε2 − 1) cos(θ)2 − ε2 + 1)

Γθ
y,y = −ε

2 − 1
ε2ξ2 cos(θ) sin(θ).

4.2.9 Appendix : Riemannian optimization on Manifold
and Tangent bundle

For first order optimization, there is a simple adaptation of gradient descent on Rie-
mannian manifold. The Riemannian gradient descent simply consists in a gradient
descent, but we take into account the non-Euclidean nature of the manifold by lever-
aging the Riemannian exponential map to update the elements of the minimizing
sequence. The procedure is described in the Algorithm 4.

Algorithm 5 : Riemannian gradient descent
Data : Objective function f : x ∈M 7→ f(x) ∈ R, initialisation point

x0 ∈M, number of timesteps T ∈ N∗

1 for t = 0, 1, 2, . . . , T − 1 do
2 Compute the Riemannian gradient ∇Mf(x).
3 Update the iterate by:

x = Expx(−η∇Mf(x))

where Expx denotes the Riemannian exponential map at point x.
4 end

Result : Point x of the manifold

Usually, we replace the use of the exponential map by a retraction i.e. a first
order approximation of this mapping. Now we want to carry out Riemannian gra-
dient descent, not only on the base manifold itself but on the tangent bundle, which
means the objective function is now a map f : (x, v) ∈M× TxM 7→ f(x, v) ∈ R.

The tangent bundle TM is itself a 2d–dimensional manifold with tangent bun-
dle TTM. For any base point (p, u) ∈ TM, T(p,u)TM has a particular struc-
ture as it can be decomposed into Horizontal and Vertical subspaces T(p,u)TM =
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H(p,u)
⊕V(p,u), both d−dimensional. There is a natural lift from TpM to the Hor-

izontal and Vertical subspaces, let X ∈ TpM we write Xh the horizontal part and
Xv the vertical part of X.

A natural choice of metric for the Tangent bundle manifold is called the Sasaki
metric. It simply consists in using the base metric and imposing perpendicularity
of the Horizontal and Vertical subspaces :

1. ĝ(p,u)(Xh, Y h) = gp(X, Y ),

2. ĝ(p,u)(Xv, Y v) = gp(X, Y ),

3. ĝ(p,u)(Xh, Y v) = 0,

Computing the Riemannian exponential might be hard or inefficient, as we usu-
ally don’t have access to any closed form formulae. Retractions are a good way to
circumvent the difficulty of computing the Riemannian exponential map. On the
Sasaki manifold (TM, ĝ) we will define the map

R(p,u)((v, w)) = (Exppv,Ξ
Exppv
p (u+ w)).

This map is a retraction over the Sasaki manifold Rentmeesters 2011. It is to
be interpreted as simply : point p is sent following the geodesic defined

Replacing the exponential map by a retraction R in the gradient descent algo-
rithm

Algorithm 6 : Retraction gradient descent on the tangent bundle
Data : Objective function f : (x, v) ∈M 7→ f(x, v) ∈ R, initialisation

point (x0, v0) ∈ TM, number of timesteps T ∈ N∗

1 for t = 0, 1, 2, . . . , T − 1 do
2 Compute the Riemannian gradient ∇T Mf(x, v).
3 Update the iterate by:

(xk+1, vk+1) = R(xk,vk)(−η∇T Mf(xk, vk))

where Rx denotes the Riemannian exponential map at point x.
4 end

Result : Point (xT , vT ) on the tangent bundle of the base manifold M.

Energy in the piecewise geodesic framework on the Sasaki metric

For ease of implementation we consider, instead of the straightforward piecewise
geodesic model, a set of points on the Sasaki Manifold associated with the base
Reeds-Shepp manifold (xi, vi)1≤i≤n−1. The piecewise geodesic curve interpolating
the points (xi) corresponds to the condition Expxi

vi = xi+1∀1 ≤ i ≤ n− 1.
We bring slight modifications of the energy to be optimized by simply adding

a penalization to the unconstrainded problem in order to avoid having to compute
the Riemannian Log map which would be very expensive.



126 CHAPTER 4. Analysis on the space of paths and Optimal Transport

In the end, the energy we minimize in the Oracle step is the following :

F ((xi, vi)) =
∑

i

〈
δγ(xi,vi)(ti), η

[k]
〉

+ β
∑

i

(ti+1 − ti)∥vi∥2
xi

+ λ
∑

i

∥Expxi
vi − xi+1∥2,

If we have the same number of timestamps and points defining the curve piece-
wise geodesic curve, the objective becomes :

F ((xi, vi)) =
∑

i

η[k](xi) + β
∑

i

(ti+1 − ti)∥vi∥2
xi

+ λ
∑

i

∥Expxi
vi − xi+1∥2,

4.2.10 Appendix : Numerical results in the detail
In this subsection we present tables showing the results of the implemented methods
presented above. We have performed a wide variety of experiments for different sets
of parameters and also varying the setup of our problem in terms of dimension of
the acquisition (by changing the size of the grid covering the domain) and level
of noise. In the following tables we evaluate our result in terms of the distance
between the recovered curves and the ground truth. Specifically we evaluate

∑
i

min
j

(∥γi − γ̃j∥2
L2(0,1)).

Notice that, for the case of the two crossing curves, it is very easy to evaluate
when we have been able to accurately recover the support of both curves as the
value of the evaluation is one or two orders of magnitude lower.

For more clarity let us be very explicit on the meaning of each of the variable
names for each column in the following tables :

• Method : name of the parametrization used,

• epochs : number of iterations in the gradient descent scheme,

• lr : learning rate or rather the size of the steps used in the gradient descent
scheme,

• noise : noise leveml in the input,

• n : number of timestamps in the input,

• nc : number of control points for the parametriztion of the curves,

• n_start : number of curves used for multistart,

• regularization : value of the parameter β,

• nb_pics : number of curves to recover,

• epsilon and xi : parameters in the Reeds-Shepp metric model,

• Runtime : total run time in seconds to carry out the gradient descents to
find the set number of curves,
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• evaluation : value of the squared euclidean distance computed between the
output and the ground truth curves, as described bove.

Figure 4.13: Reconstruction corresponding to the best result (for the evaluation
metric) shown in Table 4.2.
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Method epochs lr noise n nc n_start regularization Runtime (s) evaluation
bezier 500 0.01 0.6 32 8 64 0.01 49 0.0024
bezier 500 0.01 0.6 32 16 8 0.1 22 0.0026
bezier 500 0.01 0.6 32 16 64 0.1 55 0.0026
bezier 500 0.01 0.6 32 16 64 0.05 52 0.0028
bezier 500 0.01 0.6 32 16 8 0.05 21 0.0029
polygonal 500 0.01 0.6 32 8 8 0.05 16 0.0032
bezier 500 0.01 0.6 32 32 64 0.1 75 0.0033
polygonal 500 0.01 0.6 32 16 64 0.1 39 0.0035
bezier 500 0.01 0.6 32 4 64 0.01 57 0.0035
bezier 500 0.01 0.6 32 4 8 0.01 21 0.0035
bezier 500 0.01 0.6 32 32 8 0.05 29 0.0038
bezier 500 0.01 0.6 32 32 64 0.05 74 0.0038
bezier 500 0.01 0.6 32 16 64 0.01 56 0.0038
bezier 500 0.01 0.6 32 16 8 0.01 21 0.0038
bezier 500 0.01 0.6 32 32 64 0.01 77 0.0106
polygonal 500 0.01 0.6 32 4 8 0.01 16 0.0151
polygonal 500 0.01 0.6 32 4 64 0.01 42 0.0174
polygonal 500 0.01 0.6 32 4 64 0.05 43 0.0304
polygonal 500 0.01 0.6 32 16 8 0.05 16 0.0328
polygonal 500 0.01 0.6 32 32 64 0.05 40 0.1269
bezier 500 0.01 0.6 32 64 8 0.1 46 0.2102
bezier 500 0.01 0.6 32 64 8 0.05 50 0.2387
polygonal 500 0.01 0.6 32 32 8 0.1 16 0.2859
polygonal 500 0.01 0.6 32 16 8 0.1 16 0.3092
polygonal 500 0.01 0.6 32 4 8 0.05 16 0.3141
polygonal 500 0.01 0.6 32 4 8 0.1 17 0.3229
polygonal 500 0.01 0.6 32 4 64 0.1 40 0.3230
bezier 500 0.01 0.6 32 4 64 0.05 48 0.3342
bezier 500 0.01 0.6 32 4 8 0.05 17 0.3343
bezier 500 0.01 0.6 32 64 64 0.05 156 0.3403
bezier 500 0.01 0.6 32 64 64 0.01 151 0.3459
bezier 500 0.01 0.6 32 8 8 0.1 18 0.3608
bezier 500 0.01 0.6 32 8 64 0.1 46 0.3612
polygonal 500 0.01 0.6 32 32 8 0.05 16 0.3710
bezier 500 0.01 0.6 32 8 8 0.05 18 0.3782
bezier 500 0.01 0.6 32 8 64 0.05 59 0.3782
polygonal 500 0.01 0.6 32 8 64 0.1 41 0.3791
polygonal 500 0.01 0.6 32 8 8 0.1 17 0.3791
bezier 500 0.01 0.6 32 4 64 0.1 42 0.3838
bezier 500 0.01 0.6 32 4 8 0.1 20 0.3838
polygonal 500 0.01 0.6 32 8 64 0.05 39 0.3875
polygonal 500 0.01 0.6 32 8 8 0.01 16 0.3902
polygonal 500 0.01 0.6 32 8 64 0.01 40 0.3903
bezier 500 0.01 0.6 32 8 8 0.01 18 0.3938
bezier 500 0.01 0.6 32 32 8 0.1 30 0.3960
polygonal 500 0.01 0.6 32 16 8 0.01 16 0.3963
bezier 500 0.01 0.6 32 64 8 0.01 52 0.4020
bezier 500 0.01 0.6 32 64 64 0.1 148 0.4051
polygonal 500 0.01 0.6 32 16 64 0.05 42 0.4070
bezier 500 0.01 0.6 32 32 8 0.01 30 0.4111
polygonal 500 0.01 0.6 32 16 64 0.01 41 0.4177
polygonal 500 0.01 0.6 32 32 64 0.1 42 0.4280
polygonal 500 0.01 0.6 32 64 64 0.1 39 0.4548
polygonal 500 0.01 0.6 32 64 8 0.1 16 0.5003
polygonal 500 0.01 0.6 32 64 64 0.05 41 0.5549
polygonal 500 0.01 0.6 32 32 64 0.01 41 0.5712
polygonal 500 0.01 0.6 32 32 8 0.01 16 0.6063
polygonal 500 0.01 0.6 32 64 8 0.05 16 0.6206
polygonal 500 0.01 0.6 32 64 8 0.01 17 0.6632
polygonal 500 0.01 0.6 32 64 64 0.01 42 0.7006

Table 4.1: Results in euclidean geometry for multiple sets of hyperparameters for
two crossing curves to recover and 60% noise, n=32



4.2. Benamou-Brenier regularization for off-the-grid Curve recovery in the space of positions and orientations129

method epochs lr noise n n_start nb_pics nc regularization Runtime(s) evaluation
bezier 500 0.01 0.4 32 64 3 8 0.01 91 0.0019
polygonal 500 0.01 0.4 32 64 3 8 0.05 69 0.0720
bezier 500 0.01 0.4 32 64 3 8 0.05 91 0.1344
bezier 500 0.01 0.4 32 64 3 32 0.1 143 0.1603
polygonal 500 0.01 0.4 32 64 3 16 0.1 72 0.1867
bezier 500 0.01 0.4 32 64 3 16 0.05 83 0.1928
polygonal 500 0.01 0.4 32 64 3 8 0.01 64 0.1991
bezier 500 0.01 0.4 32 64 3 32 0.01 279 0.2036
polygonal 500 0.01 0.4 32 64 3 16 0.05 57 0.2038
bezier 500 0.01 0.4 32 64 3 64 0.1 592 0.2571
bezier 500 0.01 0.4 32 64 3 64 0.05 638 0.2731
bezier 500 0.01 0.4 32 64 3 64 0.01 623 0.2736
bezier 500 0.01 0.4 32 64 3 32 0.05 141 0.2779
polygonal 500 0.01 0.4 32 64 3 8 0.1 56 0.2811
bezier 500 0.01 0.4 32 64 3 16 0.01 82 0.3040
bezier 500 0.01 0.4 32 64 3 16 0.1 129 0.3190
polygonal 500 0.01 0.4 32 64 3 32 0.1 66 0.3390
bezier 500 0.01 0.4 32 64 3 8 0.1 91 0.3610
polygonal 500 0.01 0.4 32 64 3 64 0.1 62 0.4633
polygonal 500 0.01 0.4 32 64 3 64 0.05 62 0.4870
polygonal 500 0.01 0.4 32 64 3 16 0.01 66 0.5154
polygonal 500 0.01 0.4 32 64 3 64 0.01 62 0.7673
polygonal 500 0.01 0.4 32 64 3 32 0.01 65 0.8804

Table 4.2: Results in the euclidean setting for 3 curves to recover with various
parameters, with 40% noise, on a 16× 16 grid domain and 32 timestamps.

method nb_pics n noise epochs n_start lr nc regularization epsilon xi Runtime (s) evaluation
exponential_RS 2 16 0.4 1500 128 0.01 16 0.1 0.3 2 2332 0.0089
exponential_RS 2 16 0.4 1500 128 0.01 16 0.1 0.3 1 2274 0.0357
exponential_RS 2 16 0.4 1500 128 0.01 32 0.1 0.3 2 3363 0.1284
exponential_RS 2 16 0.4 1500 128 0.01 32 0.05 0.3 1 4724 0.1297
exponential_RS 2 16 0.4 1500 128 0.01 16 0.01 0.3 2 4995 0.1620
exponential_RS 2 16 0.4 1500 128 0.01 16 0.01 0.3 0.5 18934 0.2842
exponential_RS 2 16 0.4 1500 128 0.01 16 0.05 0.3 2 2942 0.3299
exponential_RS 2 16 0.4 1500 128 0.01 32 0.1 0.3 1 3384 0.3461
exponential_RS 2 16 0.4 1500 128 0.01 16 0.005 0.3 0.5 22878 0.3467
exponential_RS 2 16 0.4 1500 128 0.01 64 0.05 0.3 0.5 25217 0.3559
exponential_RS 2 16 0.4 1500 128 0.01 16 0.1 0.3 0.5 9284 0.3621
exponential_RS 2 16 0.4 1500 128 0.01 16 0.05 0.3 0.5 11015 0.3642
exponential_RS 2 16 0.4 1500 128 0.01 64 0.1 0.3 0.5 17279 0.3646
exponential_RS 2 16 0.4 1500 128 0.01 16 0.01 0.3 1 8323 0.3673
exponential_RS 2 16 0.4 1500 128 0.01 16 0.05 0.3 1 3438 0.3695
exponential_RS 2 16 0.4 1500 128 0.01 32 0.005 0.3 2 8724 0.3704
exponential_RS 2 16 0.4 1500 128 0.01 32 0.01 0.3 1 10102 0.3725
exponential_RS 2 16 0.4 1500 128 0.01 32 0.1 0.3 0.5 12294 0.3816
exponential_RS 2 16 0.4 1500 128 0.01 32 0.05 0.3 0.5 17566 0.3934
exponential_RS 2 16 0.4 1500 128 0.01 64 0.05 0.3 1 6893 0.3983
exponential_RS 2 16 0.4 1500 128 0.01 32 0.005 0.3 1 13867 0.4118
exponential_RS 2 16 0.4 1500 128 0.01 32 0.005 0.3 0.5 31475 0.4133
exponential_RS 2 16 0.4 1500 128 0.01 64 0.1 0.3 2 5242 0.4304
exponential_RS 2 16 0.4 1500 128 0.01 32 0.01 0.3 0.5 27784 0.4525
exponential_RS 2 16 0.4 1500 128 0.01 16 0.005 0.3 2 6396 0.4590
exponential_RS 2 16 0.4 1500 128 0.01 16 0.005 0.3 1 9231 0.4677
exponential_RS 2 16 0.4 1500 128 0.01 32 0.05 0.3 2 4412 0.5189
exponential_RS 2 16 0.4 1500 128 0.01 32 0.01 0.3 2 7521 0.5400
exponential_RS 2 16 0.4 1500 128 0.01 64 0.01 0.3 1 12569 0.5697
exponential_RS 2 16 0.4 1500 128 0.01 64 0.05 0.3 2 6358 0.5807
exponential_RS 2 16 0.4 1500 128 0.01 64 0.005 0.3 0.5 41941 0.5915
exponential_RS 2 16 0.4 1500 128 0.01 64 0.1 0.3 1 4711 0.6270
exponential_RS 2 16 0.4 1500 128 0.01 64 0.01 0.3 2 8616 0.6746
exponential_RS 2 16 0.4 1500 128 0.01 64 0.005 0.3 2 12949 0.7008
exponential_RS 2 16 0.4 1500 128 0.01 64 0.005 0.3 1 17875 0.7184
exponential_RS 2 16 0.4 1500 128 0.01 64 0.01 0.3 0.5 41185 0.7366

Table 4.3: Results for the case with 2 crossing curves to recover, with 40% noise on
a 16× 16 grid domain and 16 timestamps.
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method nb_pics n noise epochs n_start lr nc regularization epsilon xi Runtime (s) evaluation
exponential_RS 3 16 0.4 1500 128 0.01 16 0.05 0.3 2 3946 0.0749
exponential_RS 3 16 0.4 1500 128 0.01 16 0.1 0.3 2 3425 0.0822
exponential_RS 3 16 0.4 1500 128 0.01 16 0.1 0.3 0.5 12559 0.0986
exponential_RS 3 16 0.4 1500 128 0.01 16 0.05 0.3 0.5 17024 0.1009
exponential_RS 3 16 0.4 1500 128 0.01 16 0.05 0.3 1 5407 0.1279
exponential_RS 3 16 0.4 1500 128 0.01 16 0.1 0.3 1 3408 0.1566
exponential_RS 3 16 0.4 1500 128 0.01 32 0.1 0.3 1 5571 0.1720
exponential_RS 3 16 0.4 1500 128 0.01 32 0.05 0.3 0.5 25187 0.2482
exponential_RS 3 16 0.4 1500 128 0.01 16 0.005 0.3 2 9419 0.2537
exponential_RS 3 16 0.4 1500 128 0.01 16 0.01 0.3 1 11225 0.2586
exponential_RS 3 16 0.4 1500 128 0.01 64 0.1 0.3 2 8011 0.2594
exponential_RS 3 16 0.4 1500 128 0.01 32 0.1 0.3 0.5 17091 0.2960
exponential_RS 3 16 0.4 1500 128 0.01 16 0.01 0.3 0.5 29425 0.3035
exponential_RS 3 16 0.4 1500 128 0.01 64 0.1 0.3 1 7402 0.3077
exponential_RS 3 16 0.4 1500 128 0.01 32 0.1 0.3 2 5175 0.3365
exponential_RS 3 16 0.4 1500 128 0.01 32 0.05 0.3 2 6305 0.3488
exponential_RS 3 16 0.4 1500 128 0.01 32 0.05 0.3 1 7914 0.3586
exponential_RS 3 16 0.4 1500 128 0.01 16 0.01 0.3 2 6679 0.3600
exponential_RS 3 16 0.4 1500 128 0.01 16 0.005 0.3 0.5 30225 0.3658
exponential_RS 3 16 0.4 1500 128 0.01 64 0.1 0.3 0.5 22640 0.3780
exponential_RS 3 16 0.4 1500 128 0.01 16 0.005 0.3 1 14377 0.3994
exponential_RS 3 16 0.4 1500 128 0.01 32 0.01 0.3 2 9666 0.4394
exponential_RS 3 16 0.4 1500 128 0.01 64 0.05 0.3 2 9298 0.4420
exponential_RS 3 16 0.4 1500 128 0.01 32 0.005 0.3 0.5 44748 0.4580
exponential_RS 3 16 0.4 1500 128 0.01 32 0.01 0.3 1 16640 0.4661
exponential_RS 3 16 0.4 1500 128 0.01 32 0.005 0.3 1 19784 0.4916
exponential_RS 3 16 0.4 1500 128 0.01 32 0.01 0.3 0.5 47193 0.5502
exponential_RS 3 16 0.4 1500 128 0.01 32 0.005 0.3 2 12620 0.6930

Table 4.4: Results for the case with 3 curves to recover and Piecewise geodesic
parametrization in the Reeds-Shepp geometry, 40% noise,32× 32 grid domain and
16 timestamps.



Conclusion and Future Works

The work presented in this thesis has been the opportunity to journey through
a wide variety of different fields of Applied Mathematics and Computer Science.
Our aim was to work at the intersection of at least two of them : Geodesic and
Variational models on the one hand, and Machine Learning on the other. With this
in mind we have been able to make modest contributions to the state-of-the-art of
Computer Vision applied to medical images. Efficient models are becoming more
and more attainable as automatic differentiation is now very accessible through
efficient libraries and the interest in gathering data into well annotated datasets has
been understood by the medical sector (although it is often still very expensive).

Ultrasound Localization Microscopy is a rising imaging technique that shows
promising results on imaging the vascular network which could in turn allow for
quick diagnostic of stroke and help save lives. Although it has now been around for
roughly ten years, its is still almost uncharted territory for applied mathematicians,
and it still needs more annotated data out for the Machine Learning community to
get invested in the domain.

Geodesic methods on the other hand, although dating back at least to the 90’s
for its applications in Computer Vision, are rarely regarded as a good option for the
segmentation of medical images. Our first two works show that they are capable
of being incorporated in Machine Learning workflows in order to add knowledge
and structure to segmentation tasks. Future works might include finding a way to
fairly compare results of geodesic tracking of vascular structures to segmentation
output masks from neural networks. Also, including this tracking in a larger Ma-
chine Learning pipeline might yield interesting results as it did for the segmentation
of tumours with geodesic balls, though this would require to be able to properly
compute a gradient for geodesic curves during the automatic differentiation. Look-
ing at the literature involving the computation of Jacobi fields may be a first step
to carry out optimization involving directly the points along geodesics.

As to Variational Methods, the last contribution presented here shows that
they can still help build the future of imaging and allow great versatility as well
as reliatbility, by mean of theoretical results on the solutions of the variational
problems.
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Geodesic and Learning methods for Ultrasound Localization Microscopy
Résumé

La méthode de Microscopie par Localisation Ultrasonore (ULM) est une nouvelle méth-
ode d’imagerie médicale super-résolue qui permet d’outrepasser le compromis préci-
sion/distance de pénétration dans les tissus pour l’imagerie du réseau vasculaire. Ce
nouveau type d’images pose de nouveaux enjeux mathématiques, notamment pour la seg-
mentation et l’analyse de ses images, étapes nécessaires pour arriver à des méthodes pour
le diagnostic. Notre travail se positionne à l’intersection des méthodes géodésiques et des
méthodes de Machine Learning. Dans cette thèse nous apportons trois contributions. Une
première de ces contributions est centrée autour des contraintes liées aux images ULM
et propose le tracking de l’entièreté de l’arbre vasculaire en passant par la détection des
point-clés des vaisseaux sanguins apparaissant sur l’image. La deuxième contribution de
cette thèse porte sur l’apprentissage de la définition de métriques Riemanniennes pour
traiter des tâches de segmentation sur des données d’IRM cérébraux et d’images du fond
de l’oeil. La dernière partie de notre travail porte sur un problème inverse pour la recon-
struction de trajectoires d’agents de contraste dans des images médicales dans le contexte
de la super-résolution sans-grille.
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Geodesic and Learning methods for Ultrasound Localization Microscopy
Résumé

Ultrasound Localization Microscopy is a new method in super-resolved Medical Imaging
that allow us to overcome compromise between precision and penetration distance in the
tissues for the imaging of the vascular network. This new type of images raises new mathe-
matical questions, especially for the segmentaton and analysis, necessary steps to achieve
medical diagnostic of patients. Our work is positioned at the intersection of geodesic and
Machine Learning methods. In this thesis, we make three contributions. The first of these
is centered on the constraints linked to ULM images and proposes the tracking of the
entire vascular tree through the detection of key points of blood vessels appearing on the
image. The second contribution of this thesis deals with learning to define Riemannian
metrics to handle segmentation tasks on brain MRI data and eye fundus images. The
final part of our work focuses on an inverse problem for reconstructing contrast agent
trajectories in medical images in the context of grid-free super-resolution.

Mots clés : Computer Vision, Geodesic distances, Geodesic curves, Inverse Problems,
Machine learning
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RÉSUMÉ

La méthode de Microscopie par Localisation Ultrasonore (ULM) est une nouvelle méthode d’imagerie médicale super-résolue
qui permet d’outrepasser le compromis précision/distance de pénétration dans les tissus pour l’imagerie du réseau vasculaire.
Ce nouveau type d’images pose de nouveaux enjeux mathématiques, notamment pour la segmentation et l’analyse de ses
images, étapes nécessaires pour arriver à des méthodes pour le diagnostic. Notre travail se positionne à l’intersection des
méthodes géodésiques et des méthodes de Machine Learning. Dans cette thèse nous apportons trois contributions. Une
première de ces contributions est centrée autour des contraintes liées aux images ULM et propose le tracking de l’entièreté
de l’arbre vasculaire en passant par la détection des point-clés des vaisseaux sanguins apparaissant sur l’image. La deuxième
contribution de cette thèse porte sur l’apprentissage de la définition de métriques Riemanniennes pour traiter des tâches de
segmentation sur des données d’IRM cérébraux et d’images du fond de l’oeil. La dernière partie de notre travail porte sur un
problème inverse pour la reconstruction de trajectoires d’agents de contraste dans des images médicales dans le contexte de
la super-résolution sans-grille.

ABSTRACT

Ultrasound Localization Microscopy is a new method in super-resolved Medical Imaging that allow us to overcome compromise
between precision and penetration distance in the tissues for the imaging of the vascular network. This new type of images
raises new mathematical questions, especially for the segmentaton and analysis, necessary steps to achieve medical diagnostic
of patients. Our work is positioned at the intersection of geodesic and Machine Learning methods. In this thesis, we make
three contributions. The first of these is centered on the constraints linked to ULM images and proposes the tracking of the
entire vascular tree through the detection of key points of blood vessels appearing on the image. The second contribution of
this thesis deals with learning to define Riemannian metrics to handle segmentation tasks on brain MRI data and eye fundus
images. The final part of our work focuses on an inverse problem for reconstructing contrast agent trajectories in medical
images in the context of grid-free super-resolution.
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