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à partir de graphes de données RDF

Rémi FELIN

Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)

UMR7271 UCA CNRS

Présentée en vue de l’obtention

du grade de docteur en Informatique

d’Université Côte d’Azur

Dirigée par : Andrea G. B. TETTAMANZI,

Professeur, Université Côte d’Azur

Co-dirigée par : Catherine FARON, Pro-

fesseure, Université Côte d’Azur

Soutenue le : 22 Novembre 2024

Devant le jury, composé de :
Fabien Gandon, Directeur de

recherche, Inria

Fatiha Sais, Professeure, Université

Paris Saclay

Michael O’Neill, Professeur, Univer-

sity College Dublin

Olivier Curé, Professeur, Université

Gustave Eiffel





DÉCOUVERTE ÉVOLUTIVE DE CONNAISSANCE À PARTIR DE

GRAPHES DE DONNÉES RDF

Evolutionary Knowledge Discovery From RDF Data Graphs

Rémi FELIN

▷◁

Jury :

Président du jury

Fabien Gandon, Directeur de recherche, Inria

Rapporteurs

Fatiha Sais, Professeure, Université Paris Saclay

Michael O’Neill, Professeur, University College Dublin

Examinateurs

Olivier Curé, Professeur, Université Gustave Eiffel

Directeur de thèse

Andrea G. B. Tettamanzi, Professeur, Université Côte d’Azur

Co-directeur de thèse

Catherine Faron, Professeure, Université Côte d’Azur

Université Côte d’Azur



Rémi Felin

Découverte évolutive de connaissance à partir de graphes de données

RDF
xv+142 p.



à ma grand-mère, Ghislain





Découverte évolutive de connaissance à partir de graphes de

données RDF

Résumé

Les graphes de connaissance sont des collections de descriptions interconnectées

d’entités (objets, événements ou concepts). Ils mettent les données en contexte par

le biais de liens sémantiques, fournissant ainsi un cadre pour l’intégration, l’uniőcation,

l’analyse et le partage des données. Aujourd’hui, nous disposons d’un grand nom-

bre de graphes de connaissance riches en données factuelles, dont la construction et

l’enrichissement est une tâche relativement bien maîtrisée. Ce qui est plus difficile et

plus coûteux, c’est de doter ces graphes de schémas, règles et contraintes qui permettent

de vériőer leur cohérence et de déduire des connaissances implicites par raisonnement.

Cette thèse présente une approche basée sur la technique d’évolution grammaticale pour

la découverte automatique de nouvelles connaissances à partir d’un graphe de données

représenté en RDF. Cette approche repose sur l’idée que les connaissances candidates

sont générées à partir d’un mécanisme heuristique (exploitant les données du graphe),

testés contre les données du graphe, et évoluent à travers un processus évolutionnaire de

sorte à ce que seules les connaissances candidates les plus crédibles soient conservées.

Dans un premier temps, nous nous sommes concentrés sur la découverte d’axiomes

OWL qui permettent, par exemple, d’exprimer des relations entre concepts et d’inférer,

à partir de ces relations, de nouvelles informations factuelles. Les axiomes candidats

sont évalués à partir d’une heuristique existante basée sur la théorie des possibilités, per-

mettant de considérer l’incomplétude des informations d’un graphe de données. Cette

thèse présente les limites de cette heuristique et une série de contributions permettant

une évaluation signiőcativement moins coûteuse en temps de calcul. Cela a permis

l’évaluation efficace d’axiomes candidats lors du processus évolutif, nous menant ainsi à

la découverte d’un grand nombre d’axiomes candidats pertinents vis-à-vis d’un graphe

de données RDF. Dans un second temps, nous avons proposé une approche pour la dé-

couverte de shapes SHACL qui expriment des contraintes que les données RDF doivent

respecter. Elles sont utiles pour contrôler la cohérence (par exemple, structurelle) des

données du graphe et facilitent l’intégration de nouvelles données. L’évaluation de

shapes candidates repose sur l’évaluation SHACL des données vis-à-vis de ces formes,

à laquelle nous ajoutons un cadre probabiliste pour prendre en compte les erreurs et

l’incomplétude inhérente des graphes de données lors de l’évaluation de shapes candi-

dates. Enőn, nous présentons RDFminer, une application Web open-source permettant

d’exécuter notre approche pour découvrir des axiomes OWL ou des formes SHACL à

partir d’un graphe de données RDF. L’utilisateur peut contrôler l’exécution et analyser

les résultats en temps réels à travers une interface graphique interactive. Les résultats

obtenus montrent que l’approche proposée permet de découvrir un large ensemble de

nouvelles connaissances crédibles et pertinentes à partir de graphes de données RDF

volumineux.
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Evolutionary Knowledge Discovery From RDF Data Graphs

Abstract

Knowledge graphs are collections of interconnected descriptions of entities (objects,

events or concepts). They provide context for the data through semantic links, provid-

ing a framework for integrating, unifying, analysing and sharing data. Today, we have

many factual data-rich knowledge graphs, and building and enriching them is relatively

straightforward. Enriching these graphs with schemas, rules or constraints that allow

us to check their consistency and infer implicit knowledge by reasoning is more diffi-

cult and costly. This thesis presents an approach based on the Grammatical Evolution

technique for automatically discovering new knowledge from the factual data of a data

graph expressed in RDF. This approach is based on the idea that candidate knowledge

is generated from a heuristic mechanism (exploiting the graph data), is tested against

the graph data, and evolves through an evolutionary process so that only the most cred-

ible candidate knowledge is kept. First, we focused on discovering OWL axioms that

allow, for example, the expression of relationships between concepts and the inference

of new facts previously unknown from these relationships. Candidate axioms are eval-

uated using an existing heuristic based on possibility theory, which makes it possible

to consider the incompleteness of information in a data graph. This thesis presents the

limitations of this heuristic and a series of contributions allowing an evaluation that is

signiőcantly less costly in computation time, thus opening up the discovery of candidate

axioms using this heuristic. Second, we propose discovering SHACL shapes that ex-

press constraints that RDF data must respect. These shapes are useful for checking the

data graph’s consistency (e.g., structural) and facilitating new data integration. The

evaluation of candidate shapes is based on the SHACL evaluation mechanism, for which

we proposed a probabilistic framework to take into account errors and the inherent in-

completeness of the data graphs. Finally, we present RDFminer, an open-source Web

application that executes our approach to discovering OWL axioms or SHACL shapes

from an RDF data graph. Through an interactive interface, the user can also control

the execution and analyse the results in real-time. The results show that the proposed

approach can be used to discover a wide range of new, credible and relevant knowledge

from large RDF data graphs.
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CHAPTER 1
Introduction

1.1 Context

In recent years, we have observed a signiőcant and continuous increase in data over the

Web. This trend results from multiple and varied initiatives aimed at exploiting data by

humans and artiőcial agents by creating methods for structuring them through various

Web standards.

In this context, facts are grouped and contextualized (through semantic links and

metadata) within knowledge graphs (KGs). More speciőcally, KGs are collections of

facts and observations from a universe of discourse structured using the RDF (Resource

Description Framework) data model. Semantic Web standards include various languages:

e.g., Web Ontology Language (OWL), and SPARQL Protocol and RDF Query Language

(SPARQL), which enable the sharing, and querying of structured data on the Web. We

distinguish two essential components in constructing these KGs:

ś Ontologies formally represent a set of concepts within a domain and the relation-

ships between those concepts. They describe the universe of discourse by deőning

the types, properties, and interrelationships of the existing resources in the do-

main. Ontologies are vocabularies that enable both humans and artiőcial agents

to comprehend the structure and the meaning of data: e.g., the FOAF (Friend Of

A Friend) ontology describes people, their activities, and their relations to other

people. OWL is the semantic Web language used for writing ontologies.

ś Data graphs are collections of facts represented in RDF. They represent the fact

instances within the structured context provided by the ontology. These facts are

depicted as nodes (representing entities) and edges (representing relationships) in

a graph structure.

KGs enable the aggregation and interpretation of diverse data sets, facilitating data

integration, discovery and inference capabilities across diverse domains. One of the most

1
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Figure 1.1: Linked Open Data Cloud (LOD-Cloud) and DBpedia in the centre: its connections

with other KGs are in green

signiőcant applications is the Linked Open Data (LOD), which is a collection of freely

accessible RDF knowledge graphs published on the Web, especially through SPARQL

endpoints, covering diverse domains such as social networks, science, media, and publi-

cations. According to the LOD-Cloud catalog,1 the number of integrated datasets has

steadily grown. Fig. 1.1 represents a schema of the LOD-Cloud KGs interconnected be-

tween them, where the DBpedia KG2 is one of the most outstanding graphs due to its

links (in green) with the others. The DBpedia project focuses on automatically extract-

ing data from Wikipedia. It aims to deliver a structured and standardized representation

of Wikipedia’s content and connect facts with other open RDF datasets from the Web

of Data.

Constructing knowledge graphs with large factual information from diverse sources

is well-established. However, elaborating schemes and semantics, in other words, models

representing these data (rules, constraints, relations), is a more challenging and resource-

intensive task. The lack of information in the rules and the constraints that explain the

data leads to different kinds of inconsistencies and incompleteness, which has a negative

impact on the use of these data graphs for various applications.
1https://lod-cloud.net/
2https://www.dbpedia.org/

https://lod-cloud.net/
https://www.dbpedia.org/
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Figure 1.2: Semantic Web standards hierarchy

1.2 Motivations

We understand that the schemes, rules, and constraints that add semantics to the facts

must ensure consistency within a speciőc context, validate them, and infer new facts by

reasoning. Based on the principle that knowledge graphs are rich in factual information,

we believe it is an essential starting point for enriching knowledge graphs: this is why we

assume that a bottom-up approach (i.e., from RDF data to schemes that explain them)

is suited for discovering new knowledge. However, such an approach must consider RDF

facts’ incompleteness and inherent inconsistencies to discover relevant and exploitable

rules and constraints.

In this thesis, we deőne the scope of new knowledge in the form of (1) OWL sub-

sumption axioms and (2) SHACL shapes. On the one hand, subsumption axioms provide

rich information on the relations between concepts described in ontologies, which can in-

fer new facts and enrich the connections between entities and concepts. On the other

hand, SHACL shapes are used to express constraints that RDF facts must respect in a

knowledge graph. These constraints capture the knowledge domain and are used in the

context of model validation, type checking, etc. Moreover, users can use SHACL shapes

to integrate new data continuously.

We propose searching and discovering new knowledge from an RDF data graph using

an evolutionary process. Therefore, the approach must consider how candidate knowledge
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is modelled within this process: we believe that the most pertinent approach should be

based on an Evolutionary Algorithm (EA) and, more speciőcally, on a Grammatical

Evolution (GE) technique.

Finally, we consider Web standards (see Fig. 1.2) essential for discovering credible

knowledge that can be produced and fairly evaluated so that humans and artiőcial agents

can exploit these candidate solutions (i.e., integrate them, infer new facts, . . . ).

1.3 Foundation

1.3.1 Web of Data

1.3.1.1 RDF data graphs

An RDF data graph is a set of interconnected RDF triples whose terms are IRIs, literals

and blank nodes (anonymous resources). The use of RDF to express facts enables in-

teroperability between systems, notably through the addition of standards allowing the

creation and distribution of knowledge graphs through the Web, making them usable

by both humans and artiőcial agents, and it enables interconnection between them. An

RDF triple < s, p, o > expresses a relation p, called predicate, between a subject s and

an object o: s is a resource (an IRI or a blank node); p is an IRI and o is any RDF term.

Fig. 1.3 is an example of an RDF data graph around Johnny Depp, and it describes the

following piece of knowledge:

łJohnny Depp has been an actor in activity since 1984. He starred in several films,

including the film series ’Pirates of the Caribbean’ in which he portrays the character of

Jack Sparrow.ž

As an example, the RDF triples dbr:Johnny_Depp rdf:type dbo:Actor and

dbr:Johnny_Depp dbp:yearsActive "1984"^^xsd:integer models the őrst sen-

tence. Each fact in this graph (which is not literal) is a synthetic representation of

the IRIs through preőxes, simplifying the notation of the IRIs: e.g., dbo:Actor is the

synthetic expression of <http://dbpedia.org/ontology/Actor>. Table 1.1 lists

all the preőxes commonly used in the works presented in this thesis. RDF literals can

be typed in various ways: core types (e.g., xsd:boolean, xsd:decimal, . . . ), time

and date (e.g., xsd:date, xsd:dateTime, . . . ), . . . and the language can be speciőed

as well, e.g., "Capitão Jack Sparrow"@pt means that the sentence is written in

Portuguese. RDF data can be serialized with several syntaxes, Turtle being the simplest

and most readable one.
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Figure 1.3: Example of an RDF data graph

Prefix URI

rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

rdfs <http://www.w3.org/2000/01/rdf-schema#>

owl <http://www.w3.org/2002/07/owl#>

dbo <http://dbpedia.org/ontology/>

dbr <http://dbpedia.org/resource/>

foaf <http://xmlns.com/foaf/0.1/>

sh <http://www.w3.org/ns/shacl#>

psh <http://ns.inria.fr/probabilistic-shacl#>

Table 1.1: Prefixes commonly used in this thesis and their full URI
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1.3.1.2 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) [HSP13] is the RDF query

language used to extract and manipulate RDF facts in a datastore over the Web using

SPARQL endpoints. Moreover, it comprises a representation language for query results:

e.g., in XML, HTML, JSON, . . . . SPARQL enables the modelling of graph pattern as

a set of RDF triples where one or more of the triple components (s, p or o) may be a

variable: each variable starts with a question mark and is named, e.g., ?x. A SPARQL

query can be designed for:

ś extracting bindings between variables and resources: SELECT

ś asking if a query pattern has a solution or not: ASK

ś building others RDF data graphs using RDF facts: CONSTRUCT

ś adding/deleting explicit RDF triples: INSERT DATA/DELETE DATA

ś adding/deleting computed RDF triples: INSERT/DELETE

ś extracting the description of resources: DESCRIBE

Fig. 1.4 presents an example of a SELECT query (Fig. 1.4a) to search the actor who

portrays Jack Sparrow in the RDF data graph presented in Fig. 1.3 and its result is

presented in Fig. 1.4b. Naturally, it is possible to select more than one variable as long

as they are modelled in the graph pattern. Moreover, graph patterns in SPARQL query

may be more complex: it can be a set of basic graph patterns (Group Graph Pattern),

and some can be optional (Optional Graph Pattern).FILTER clauses are used to restrict

solutions (i.e., set of bindings of variables to RDF terms) to those for which the őlter

expression evaluates to true [HSP13], e.g., by adding FILTER(?when > 1990) in the

body of the SPARQL query presented in Fig. 1.4a, we limit the possible solutions to

RDF terms (i.e., integers bound to the variable ?when) whose value is strictly greater

than 1990: this őlter means that the binding shown in Fig. 1.4b is no longer a solution

to the query, so the őnal solution is empty.

Federated queries can compute graph patterns over different SPARQL endpoints.

They allow RDF data (resulting from these queries) from a remote source to be used

with other local (or remote) RDF data sources.3 Furthermore, a wide range of options

and operators enable more in-depth manipulation of RDF data: all those used in this

thesis are presented in Table 1.2.
3Chapter 3 presents some practical uses of federated queries
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# Prefixes definition

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

# Searching the actor (?who) who portrays Jack Sparrow

SELECT ?who ?when WHERE {

# Basic Graph Pattern: set of RDF triples that must match

# ?who must be an actor

?who rdf:type dbo:Actor .

# ?who must portray Jack Sparrow

dbr:Jack_Sparrow dbo:portrayer ?who .

# In what year did ?who start his career?

?who dbp:yearsActive ?when .

# ?when must be greater than 1980

FILTER(?when > 1980)

}

(a) “Which actor portrays Jack Sparrow? In what year did he start his career?” interpretation in SPARQL

?who ?when

<http://dbpedia.org/resource/Johnny_Depp> 1984

(b) Results of the query

Figure 1.4: Example of a SPARQL query on the RDF data graph presented in Fig. 1.3 and its

result

http://dbpedia.org/resource/Johnny_Depp
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1.3.1.3 Ontology Modeling Languages

OWL is the language proposed by the W3C [MvHE04] to formally describe the mean-

ing of the terminology used in documents written in RDF, enhancing interoperability

between agents. It is an extension of the RDF Schema (RDFS), a data-modelling vocab-

ulary for RDF data to describe groups of resources and the relationships between these

resources [BGE14]. OWL has been designed to perform reasoning tasks on RDF docu-

ments and extend vocabulary to describe relations between classes (e.g., subsumption),

class intersection, cardinality, etc. Moreover, OWL ontologies are designed under the

Open-World Assumption (OWA), which assumes that the absence of a statement does

not mean the statement is false.

OWL 2 provides new functionality such as property chains, qualiőed cardinality re-

strictions, etc.; a new syntax (OWL 2 Manchester syntax) and three OWL 2 proőles (in

increasing order of expressiveness) [BFH+12]:

ś OWL 2 EL: enables polynomial computation time for reasoning tasks, suitable for

large ontologies (it is possible to focus on performance instead of expressive power).

ś OWL 2 QL: enables conjunction queries computed in LogSpace, focused on on-

tologies which organise a large set of individuals that must be accessed through

relational queries, e.g., SQL.

ś OWL 2 RL: enables rule-extended database technologies operating directly on RDF

triples.

OWL axioms are used to express factual statements about RDF data (concepts, . . . )

that are accepted as self-evident [BFH+12]. There exist 32 types of axioms divided

into 6 speciőc categories: class expression axioms; object property expression axioms;

data property expression axioms; datatype definition axioms; keys axioms and assertion

axioms.

In Fig. 1.3, the RDF triple dbo:Actor rdfs:subClassOf dbo:Artist is a sub-

sumption axiom (part of the class expression axioms) which can be written in functional

notation: SubClassOf(dbo:Actor dbo:Artist). This axiom means that all ac-

tors are artists, and consequently, it is possible to infer that łJohnny Depp is an artistž:

dbr:Johnny_Depp rdf:type dbo:Artist.
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The OWL 2 functional-style syntax4 allows OWL 2 ontologies to be written in a

compact form and allows to write abbreviated IRIs, facilitating the reading/writing of

ontologies.

4https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Functional-Style_

Syntax

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Functional-Style_Syntax
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Functional-Style_Syntax
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1.3.1.4 Shapes Constraint Language

SHACL (Shapes Constraint Language) is a W3C recommendation for validating RDF

graphs against a deőned set of conditions, i.e., constraints [KK17]. These conditions

are represented as shapes: a set of shapes is called shapes graph while the RDF facts

being validated against a shapes graph are part of the RDF data graphs. In addition to

validation, SHACL shape graphs can describe data graphs satisfying speciőc conditions.

These descriptions can serve various purposes: e.g., data quality control, data integration,

. . .

A shape s is an instance of sh:NodeShape or sh:PropertyShape. Focusing on

node shapes, they must satisfy the following structure: őrst, they must target a speciőc

set of nodes in the RDF data graph. 4 different targets are available as a predicate of

the subject s:

ś sh:targetNode: target nodes directly speciőed as objects

ś sh:targetClass: target nodes that are instances of the speciőed object

ś sh:targetSubjectsOf: target nodes that are subject of the specified predicate

ś sh:targetObjectsOf: target nodes that are object of the specified predicate

Examples of different target types applied to the RDF data graph shown in Fig. 1.3

are presented in Table 1.3. Second, constraints are expressed in a shape using the

parameters of constraint components. Various constraint components are available in

SHACL core5, such as value type constraint components (with parameters sh:class,

sh:datatype, . . . ), cardinality constraint components (with parameters sh:minCount

and sh:maxCount). Additionally, the SPARQL-based constraints, or SHACL-SPARQL6,

can be used to express constraints through SPARQL SELECT query to address use cases

not covered by SHACL core.

Target type Example Targeted nodes

sh:targetNode :s sh:targetNode dbr:Jack_Sparrow dbr:Jack_Sparrow

sh:targetClass :s sh:targetClass dbo:Actor dbo:Johnny_Depp

sh:targetSubjectsOf :s sh:targetSubjectsOf dbp:portrayer dbr:Jack_Sparrow

sh:targetObjectsOf :s sh:targetObjectsOf dbp:portrayer dbo:Johnny_Depp

Table 1.3: Example of targets applied on RDF data graph presented in Fig. 1.3

5https://www.w3.org/TR/shacl/#core-components
6https://www.w3.org/TR/shacl/#sparql-constraints

https://www.w3.org/TR/shacl/#core-components
https://www.w3.org/TR/shacl/#sparql-constraints
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PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX sh: <http://www.w3.org/ns/shacl#>

# Shape definition

:s a sh:NodeShape ;

# targeting instances of dbo:Film

sh:targetClass dbo:Film ;

sh:property [

# focusing object of the dbo:starring predicate

sh:path dbo:starring ;

# testing if (at least) one value is an instance

# of dbo:Actor

sh:class dbo:Actor ;

] .

Figure 1.5: Example of a SHACL shape with a class constraint component

PREFIX sh: <http://www.w3.org/ns/shacl#>

[

a sh:ValidationReport ;

sh:conforms true

] .

Figure 1.6: SHACL validation report obtained from the assessment of the RDF data graph pre-

sented in Fig. 1.3 against the SHACL shape presented in Fig. 1.5

Let us consider the assessment of the RDF data graph presented in Fig. 1.3 with the

SHACL shape presented in Fig. 1.5 expressing the fact that łall film stars must be actorsž.

A focus node conforms to a shape if and only if the validation of the focus node against the

shape results in an empty set and does not report any failure. In this example, the focus

node is <http://dbpedia.org/resource/Pirates_of_the_ Caribbean_(film_series)>
7

and it is the only instance of dbo:Film in the RDF data graph to be validated during

the SHACL validation process. Next, the object of the predicate dbo:starring is con-

sidered, i.e., dbr:Johnny_Depp, and a test is done to check whether it is an instance

of dbo:Actor.

As dbr:Johnny_Depp rdf:type dbo:Actor exists in the RDF data graph, the

data graph conforms to the shape, producing the SHACL validation report presented

in Fig. 1.6.
7The prefix cannot be used because of the parentheses “(” “)” in the URI
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1.3.2 Evolutionary Algorithms and Grammatical Evolution

Evolutionary Algorithms (EA) are a family of population-based stochastic optimisation

algorithms that simulate natural selection mechanisms to solve complex problems by pro-

ducing individuals as łcandidate solutionsž to the considered problem. The principles of

Darwinian evolution heavily inŕuence evolutionary algorithms. Genetic algorithms, evo-

lutionary programming, evolution strategies and Genetic Programming (GP) are the four

subdomains of evolutionary algorithms. Concerning the genetic programming approach,

individuals in a population are represented as symbolic expressions, e.g., sets of binary

values, that can be interpreted and executed by a computer system [BFM00]. The aim is

to solve the given problem by obtaining local optimum solutions (that approximate the

solution) or global optimum solution (the most satisfying ones).

Figure 1.7: Evolutionary algorithms pipeline

In Figure 1.7, the fundamental steps of the algorithm are presented and described as

follows:

1. Randomly generates a population composed of candidate solutions to the problem:

they are individuals of this population.

2. Each individual is assessed against a fitness function, a mathematical expression

that describes how well an individual őts as a solution to the problem. Depending

on the objectives, we may want to maximise this őtness value, minimise it or

converge towards a precise value.

3. Checking the algorithm’s stopping criterion:
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4. If the stop criterion is reached, it returns the őnal solutions found during the

evolutionary process.

5. Else (the stop criterion is not reached), we select the best fitted individuals to

preserve them from the evolutionary process: they are part of the elitist sub-

population and have a great chance of producing new solutions (i.e., offsprings)

that łlook likež them.

6. Non-elitist individuals are subject to the process of evolution, in which most will

transform into new solutions and, in rare cases, will be kept as they are. We select

(in a pseudo-random way) a sub-population (from the whole population) that will

reproduce with each other and become a new subset of solutions: i.e., offspring.

7. Selected individuals for reproduction undergo crossover and mutation phasis with

a certain probability of occurrence. Crossover occurs fairly often and involves

swapping one or more segments of genetic information between two individuals. In

contrast, mutation occurs less frequently and results in a random alteration of one

or more characteristics of an individual.

8. Obtained individuals from the recombination phasis replace non-elitist individuals

in the population (i.e., replacement).

9. Repeat step 2 and so on until the stop criterion is reached (Step 4).

The population will evolve through several generations, and natural selection, de-

scribed in this way, progressively improves the quality and credibility of the solutions in

a population. The challenge is, therefore, to őnd the optimal parameters for discovering

the best solutions at a reasonable computing cost.

Grammatical Evolution (GE) is a particular type of genetic programming (GP),

an evolutionary algorithm. This approach automatically makes it feasible to generate

variable-length expressions in any language [OR01]. This technique is based on the ex-

pression of grammar, and more speciőcally BNF grammar (Backus-Naur Form), which

is used for the genotype/phenotype mapping: the Grammatical Evolution architecture

is presented in Fig. 1.8. A BNF grammar is a context-free grammar composed of termi-

nals and non-terminals, allowing instantiating of expressions that conform to the rules

expressed using a sequence of integers. A genotype is a set of integers, i.e., a set of

codons, corresponding to the unique identiőer of the information it characterises, which

is used in the evolutionary process. Each codon translates a chunk of information that
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Figure 1.8: Grammatical Evolution pipeline

forms a human-readable individual, whose information is expressed in the phenotype. In

other words, the genotype/phenotype mapping relies on a derivation process to select

the adequate production rule (replacing non-terminal). In GE, the wrapping parameter

enables a maximum number of iterations to produce a well-formed expression, e.g., useful

for grammar rich in derivation rules with a limited number of codons (resulting in an

incomplete phenotype).

To illustrate this, let us consider the BNF grammar in Fig. 1.9 to produce math

formulas as individuals in an evolutionary process: e.g., łx + yž, ł2ž, ł9 - xž, . . . .

Each codon corresponds to the rule to be selected for production (and so on for as long

as it is a non-terminal): the result of the modulo between the codon and the number

of productions for the current rule determines the index of the rule be considered at

each step (until a terminal is reached). Considering the example in Fig. 1.10, the rule

<Formula> is the starting point to produce a phenotype, and 18 is the őrst integer in the

codons set. As the number of productions for this rule is 2 (<ope> <exp> <exp> or

<exp>), the chosen production is the first one: <ope> <exp> <exp> (18 mod 2 = 0,

i.e., the őrst rule).
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<Formula> := <exp> <ope> <exp> | <exp>

<ope> := "+" | "-" | "*"

<exp> := <letter> | <digit>

<digit> := "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |

"9" | "10"

<letter> := "x" | "y" | "z"

Figure 1.9: Example of BNF grammar

Figure 1.10: Applied example of genotype/phenotype mapping using the BNF grammar pre-

sented in Fig. 1.9

1.4 Research Questions

Motivations presented in Section 1.2 led us to consider the discovery of knowledge from

RDF data using an evolutionary process. This is why we tackle the following research

questions:

RQ1: How to overcome computation time issue to assess subsumption axioms

in the Open-World Assumption?

RQ2: How to automatically discover class subsumption axioms from RDF

data?

RQ3: How to design a validation process considering physiological errors in

real-life data?

RQ4: How to automatically discover SHACL shapes from RDF data?

The computation time issue for assessing candidate subsumption axioms is crucial

because it is an obstacle to the scalability of the proposed method: this is why RQ1

underlies RQ2. Regarding the discovery of SHACL shapes representative of an RDF data

graph (RQ4), we suggest that inherent inconsistencies from an RDF data graph should

be considered when validating an RDF data graph against candidate shapes (RQ3).
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1.5 Contributions

In this thesis, we propose an evolutionary method for the discovery of new knowledge

(described in Section 1.2) based on the use of standard semantic Web technologies com-

bined with a Grammatical Evolution algorithm to (1) produce candidate solutions (i.e.,

new knowledge assumed), (2) fairly assess these candidate solutions using RDF facts and

(3) discover a large set of credible solutions by retaining the best individuals through the

evolutionary process.

We propose to focus on the evolutionary discovery of OWL subsumption axioms

SubClassOf that can be composed of complex class expressions. The foundations of

this work are based on the evolutionary discovery of disjointness class axioms [NT19b]

and the possibilistic assessment of SubClassOf axioms [TFG17]. This route required

a two-stage approach: (1) we tackle the computation time issue for retrieving exceptions

of candidate subsumption axioms, and (2) we propose an adaptation of the Grammatical

Evolution to produce candidate subsumption axioms representative of RDF data graph

(that can be composed of complex class expressions) and assess them using RDF data

graph and the possibilistic framework [TFG17].

Second, we propose a framework for including and exploiting probabilistic information

in SHACL validation reports. This framework considers inherent errors and incomplete-

ness in RDF data graphs when validating them against SHACL constraints.

We studied the evolutionary discovery of candidate SHACL shapes regarding an RDF

data graph using the proposed probabilistic framework adapted for the candidate shapes

assessment.

Finally, we developed the RDFminer software as a user interface to perform the

evolutionary discovery of candidate shapes or candidate axioms: it is a tool to (1) create

projects through an interactive dashboard, (2) analyse the results of their projects on

the dashboard in real-time, and (3) control their execution.

1.6 Publications

In relation to the research questions presented in Section 1.4, the following contributions

have been published:8

1. [RQ2] [FT21] Rémi Felin and Andrea G. B. Tettamanzi. "Using grammar-based

genetic programming for mining subsumption axioms involving complex class

8They are available on HAL: https://cv.hal.science/remi-felin

https://cv.hal.science/remi-felin
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expressions". In: WI-IAT 2021 - 20th IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology. Melbourne,

Australia

2. [RQ1] [FCFT22] Rémi Felin, Olivier Corby, Catherine Faron and Andrea G.

B. Tettamanzi. "Optimizing the Computation of a Possibilistic Heuristic to

Test OWL SubClassOf Axioms Against RDF Data". In: WI-IAT 2022 - 21th

IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-

gent Agent Technology, Nov 2022, Niagara Falls, Canada

3. [RQ3] [FFT23a] Rémi Felin, Catherine Faron and Andrea G. B. Tettamanzi. "A

Framework to Include and Exploit Probabilistic Information in SHACL Validation

Reports". In: ESWC 2023 - 20th European Semantic Web Conference, May 2023,

Hersonissos, Greece

4. [RQ3] [FFT23b] Rémi Felin, Catherine Faron and Andrea G. B. Tettamanzi. "Un

cadre pour inclure et exploiter des informations probabilistes dans les rapports

de validation SHACL". In: IC 2023 - 34es Journées francophones d’Ingénierie

des Connaissances @ Plate-Forme Intelligence Artiőcielle (PFIA 2023), Jul 2023,

Strasbourg, France

5. [RQ4] [FMFT24b] Rémi Felin, Pierre Monnin, Catherine Faron and Andrea G.

B. Tettamanzi. "Extraction probabiliste de formes SHACL à l’aide d’algorithmes

évolutionnaires". In: EGC 2024 - Extraction et Gestion de la Connaissance, Jan

2024, Dijon, France

6. [RQ4] [FMFT24a] Rémi Felin, Pierre Monnin, Catherine Faron and Andrea G.

B. Tettamanzi. "An Algorithm Based on Grammatical Evolution for Discovering

SHACL Constraints". In: EuroGP 2024 - 27th European Conference on Genetic

Programming, Apr 2024, Aberystwyth, United Kingdom

7. [RQ2 & RQ4] [FMFT24c] Rémi Felin, Pierre Monnin, Catherine Faron and Andrea

G. B. Tettamanzi. "RDFminer: an Interactive Tool for the Evolutionary Discovery
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of SHACL Shapes". In: ESWC 2024 - 21st European Semantic Web Conference.

Hersonissos, Greece

1.7 Outline

The remainder of this thesis is organised as follows:

ś Chapter 2 is a literature review that presents existing works in the scope of Ontology

Learning techniques, SHACL shapes mining, and the existing works related to

Grammatical Evolution.

ś Chapter 3 presents (1) optimisations to address the problem of computation time

for retrieving exceptions of candidate subsumption axiom (RQ1) and (2) the evo-

lutionary discovery of SubClassOf axioms composed of complex class expression

(RQ2).

ś Chapter 4 introduces the probabilistic framework (RQ3): the mathematical founda-

tions of the model, the associated vocabulary for expressing probabilistic measures

in SHACL validation reports and how to accept RDF data against shapes using

hypothesis testing.

ś Chapter 5 presents the evolutionary discovery of candidate SHACL shapes (RQ4):

a description of the BNF grammar to produce candidate shapes, an adaptation of

the probabilistic framework to assess candidate shapes, an extended recombination

and GE operators.

ś Chapter 6 presents the RDFminer software: its architecture and a comprehensive

description of the features needed to discover candidate SHACL shapes or candidate

axioms.

ś Chapter 7 is a general conclusion to this thesis, with an overview of the perspectives.





CHAPTER 2
Literature Review

2.1 Ontology Learning

Developing structured and consistent ontologies for a given domain is a resource-intensive

task, as this task often requires in-depth analysis by domain experts and knowledge en-

gineers to ensure consistency and interoperability of ontologies. Furthermore, ontologies

are built under the OWA, where not knowing a given information does not make it false.

In this way, knowledge engineers are also faced with incompleteness issues, which impact

the coverage of the domain within ontologies. Lehmann and Völker deőne these issues as

the knowledge acquisition bottleneck [LS11] which must be addressed by the community.

Ontology Learning (OL) is a multifaceted research area focused on (semi-)automating

the creation, enhancement, and maintenance of ontologies [MS04] from various data

sources: e.g., text, databases, structured data, . . . . This research area addresses the

knowledge acquisition bottleneck issues and can be seen as a pipeline from (un)structured

data (e.g., plain text) to the őnal ontology, where ontology learning techniques are succes-

sively used to parse data, extract information and organize it in a structured knowledge

base [AWK+18]: Figure 2.1 presents an overview of the OL pipeline. From a literature

review, we distinguish three sub-domains (although some of the presented approaches

are hybrid).

2.1.1 Linguistic Techniques

Methods based on linguistic techniques, part of Natural Language Processing (NLP),

are commonly used on unstructured text as the őrst steps of the whole process: i.e.,

pre-processing. The idea is to give machines the ability to process complex grammatical

structures and the semantics of sentences, enabling the development of artiőcial agents for

various real-world applications, including ontology building and knowledge enrichment.

First, the speech tagging, or POS tagging (Part-Of-Speech tagging), technique is used

to annotate each word in a sentence with its corresponding part of speech (i.e., nouns,

21
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Figure 2.1: Ontology Learning pipeline presented by Asim et al. [AWK+18]

verbs, adjectives, adverbs, pronouns, conjunctions, prepositions, and interjections) to

provide the grammatical structure (in other words, a grammatical classiőcation) of sen-

tences and make it understandable by machines. Recently, many Deep Learning and Ma-

chine Learning-based approaches have been proposed for POS tagging tasks to tackle am-

biguity issues and overcome the tagging of complex words over different domains [ZY22].

The second aspect to consider is the identiőcation of concepts and their relations in

sentences, namely entity extraction or Named-Entity Recognition (NER) and relation ex-

traction. NER algorithms classify named entities in pre-deőned categories, e.g., Person,

Organisation, Animal, . . . . Nowadays, several software packages are available to perform

NER algorithm through unstructured text: e.g., SpaCy 1, Stanford Named Entity Rec-

ognizer 2 or DBpedia Spotlight 3, . . . and their performance ŕuctuates depending on the

corpus of texts under consideration [SKR+19].

The ever-increasing volumes of data (here: unstructured text) drive the need for

high-performance tools to create and enrich knowledge in highly complex domains, such
1https://spacy.io/api/entityrecognizer
2https://nlp.stanford.edu/software/CRF-NER.shtml
3https://www.dbpedia-spotlight.org/api

https://spacy.io/api/entityrecognizer
https://nlp.stanford.edu/software/CRF-NER.shtml
https://www.dbpedia-spotlight.org/api
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as biomedical. Research is trending towards models based on transformers or Large

Language Models (LLMs) that perform better than conventional Deep Learning models

(e.g., Recurrent Neural Networks RNN, Long-Short Term Memory LSTM, . . . ) because

they allow very large volumes of data to be learned efficiently. For a comprehensive

overview of research based on these models for ontology construction, see [ZVFD24].

However, Mai et al. [MCP24] empirically demonstrate that LLMS does not adapt as well

as hoped to arbitrary domains and perform less well on relation extraction and taxonomy

discovery tasks.

Interestingly, some Deep Learning-based approaches have been proposed to extract

axioms from text which, in the meantime, performs all the intermediate tasks (detec-

tion of entities, concepts, . . . ): Petrucci et al. [PGR16] proposed an RNN model for

a transduction task, associating sentence transduction and sentence tagging, to trans-

form a sentence to a DL-formula (that can be written with OWL). Cai et al. [CKXS17]

proposed a Deep Neural Network (DNN) model, combining symbolic manipulation and

reasoning for axiom discovery. Neural Reasoner [PLLW15] is a framework for neural

network-based reasoning over natural language sentences to extract axioms and rules.

2.1.2 Statistical Techniques

Most statistical-based approaches, mainly focus on probabilistic models, aimed to address

the concepts, terms and relations extraction from semi-structured text or structured

datasets.

As a hybrid approach, the C/NC value combines linguistic techniques and statis-

tical information for automatic recognition of multi-word terms [FAT98]. Similarly,

OntoLearn [NVG03] is an architecture based on NLP and ML techniques to auto-

matically translate multi-word terms from English to Italian.

Subsequently, clustering methods have been used for concept and term extraction:

Karoui et al. [KAB06] proposed an unsupervised hierarchical clustering algorithm based

on K-means and guided by a structural context to extract concepts from HTML doc-

uments. More recently, Xu et al. [XHGI20] combined word embeddings and clustering

techniques (K-means, K-medoids, affinity propagation, DBscan and co-clustering algo-

rithms) as a term clustering method for building modular ontologies. OntoGain [DZP10]

is a framework that exploits inherent multi-word terms lexical information, hierarchical

clustering and Formal Concept Analysis (FCA) methods to extract taxonomic relations

and association rules mining (and probabilistic) techniques for non-taxonomic relations.
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FCA algorithms combine statistics and concept analysis to identify conceptual structures

among datasets, producing graphical visualisations of the structures among data.

Association Rules Mining (ARM) methods are exclusively used for relation extraction

based on the co-occurrence of elements (or items) in the dataset. Let us consider I the

item set and T the transaction set, an Association Rule (AR) between X , called the

antecedent, and Y, i.e., the consequent (considering X ∈ T , Y ∈ T and X ∩ Y = ∅)

is written as follows: X → Y, reŕecting co-occurrence rather than causality. Many

algorithms have been proposed for AR learning from data: one of the most impactful is

the Apriori algorithm [AIS93], whose behaviour (i.e., exploiting frequent item-sets) is

still used as a basis for optimising this algorithm, especially its time consumption on large

datasets [POP01,YC06]. The ARs are generally assessed using confidence and support

measures. However, some research aims to extend these metrics to őt more complex use

cases: e.g., for assessing ARs extracted from OWL ontologies [TdTN19] or deőning an

interestingness metric [TKS02,CT20] aimed to highlight surprising and relevant ARs.

Interestingly, some research has been conducted in the context of Linked Data

to extract association rules from RDF facts: AMIE [GTHS13] (more recently

AMIE+ [GTHS15]) is a scalable framework to mine Horn-like rules on large RDF

knowledge bases under the OWA; Cadorel and Tettamanzi [CT20] proposed an ARM

method based on clustering and community detection to extract association rules from

a large RDF knowledge graph related to the scientiőc domain.

2.1.3 Inductive Logic Programming

Methods based on Inductive Logic Programming (ILP) techniques are used at the end

of the ontology learning process (before the ontology assessment) to extract rules and

axioms from previously established concepts and relations. The idea is to use concepts

and their relations, i.e., examples and background knowledge, to logically infer facts

(i.e., hypothesis) that can be exploited as a top-level schema. In other words, ILP is

a type of ML that uses logic programming techniques to derive logical theories (i.e.,

őrst-order rules) from knowledge representation [VN11]. However, ILP techniques are

used for logical inference (from knowledge representation), whereas ML techniques rely

on statistical inference [CD22]. As notable advantages of ILP techniques, they (1) do

not need many examples for the training phase, (2) provide high-level explainable rules

from assertions, and (3) easily allow knowledge transfer methods [CD22].

As a hybrid ILP approach, Lima et al. [LEO+13] proposed a method that combines

text preprocessing techniques (lexico-syntactic analysis, . . . ) to parse a given corpus
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and then induce rules (as Horn clauses) to populate ontologies from the corpus. More

recently, Lima et al. proposed OntoILPER [LEF18], which exploits an ontology and

rules induction for extracting entities and relations from unstructured text.

The First-Order Inductive Learner (FOIL) algorithm, introduced by Quinlan [Qui90]

in 1990, is one of the most signiőcant contributions in the ILP őeld: FOIL learns function-

free Horn rules based on positive and negative examples, i.e., these rules express rela-

tions between concepts supported by examples in the dataset. Many works have been

proposed as an extension of the FOIL algorithm to tackle scalability and performance

issues: Fanizzi et al. [FdE08] proposed DL-FOIL, a FOIL-like algorithm, to learn con-

cept description expressed in description logics (more speciőcally the OWL-DL language)

by considering background knowledge and inherent incompleteness from data, i.e., un-

der the OWA, through different gain function exploited in their algorithm. For the

same purpose, QuickFOIL [ZPP14] has been proposed to tackle the scalability of the

FOIL algorithm on large datasets. They proposed a generic top-down greedy algorithm,

combining pruning heuristics and database optimizations, to discover function-free Horn

clauses. However, it appears that QuickFOIL is unsuitable to mine Horn clauses under

the OWA.

Several works in the literature consider the discovery of axioms (and particularly

subsumption axioms) as a crucial task to enrich and/or align ontologies: Spiliopoulos

et al. [SVV08] proposed a method for discovering subsumption relations among con-

cepts from a supervised classiőcation-based learning technique (part of ML techniques)

using evidence in the training dataset. Lehmann proposed DL-Learner [Leh09], a

framework exploiting top-down reőnement approaches, reasoners, SPARQL queries and

genetic programming to learn subclass axioms and deőnitions from different knowledge

sources (OWL őles, SPARQL endpoints, knowledge bases, . . . ). Bühmann and Lehmann

extend the proposed method to learn OWL 2 axioms from large KGs [BL12].

We remark that the community widely explores ILP and ARM tasks to leverage ontol-

ogy enrichment issues: Völker et Niepert [VN11] proposed the Statistical Schema

Induction framework for the induction of schemas (axioms) from large RDF data

graphs. By applying terminology acquisition on named classes, class expressions, object

properties and property chains, they build transaction tables and perform an ARM task

based on the Apriori algorithm to discover subsumption axioms composed of atomic

classes, domain restriction axioms and range restriction axioms. To the best of our knowl-

edge, they do not mine association rules under the OWA, but they use a conődence

threshold to assess association rules instead. The same year, Fleischhacker et Völker

suggested a set of inductive methods, both instance-based and schema-based methods,
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including ARM and correlation techniques, to learn disjoint class axioms from large

knowledge repositories [FV11]. Naturally, AMIE [GTHS13] (presented in Section 2.1.2)

is a part of an ILP technique, able to mine logical rules (ARM) from knowledge graphs

despite the absence of explicit counter-examples for candidate rules. They perform the

mining tasks under the Partial Completeness Assumption (PCA) introduced to perform

ARM tasks under the OWA, őnd counterexamples for rules, and estimate their quality

with the PCA-conődence measure.

EDMAR [TDdNT17] is an evolutionary approach for discovering multi-relational as-

sociation rules using OWL ontologies: the search strategy is supported by reasoners

and evolutionary algorithm operators. The discovered association rules are expressed in

SWRL (Semantic Web Rule Language): it is a syntax to express Horn-like rules that

combines OWL DL and OWL Lite (sub languages of OWL) [HPSB+04] and can be in-

tegrated into ontologies. They assess individuals (i.e., ARs) using a őtness function that

considers facts (from ontologies) under the OWA.

2.2 SHACL Constraints Mining

SHACL (presented in Section 1.3.1.4) is a recent W3C recommendation (2017) which

has motivated intensive research in both the academic and industrial domains for di-

verse purposes: e.g., checking access policies [RIV23], expressing constraints against

skills [KdSF21], construction scheduling constraints [KS19], . . . . Most research tends to

focus on the SHACL semantics to describe its features [BJVdB22, PK22], methods to

decide about shapes containment [LSR+20] whereas [ACO+20], [CRS18] and [PKM22]

address issues on the semantics of recursive shapes (not deőned yet).

SHACL engines are implemented on various semantic Web applications, e.g., in

Protégé [EL16], Corese [Cé23], Schimatos [WRMH+20] and Trav-SHACL [FRV21].

Interestingly, some research focuses on the usability of the SHACL validator for evaluat-

ing remotely accessible data graphs: [CFRS19b] and [FRV21] proposed SHACL engines

for validating nodes against shapes (that can be recursive) through SPARQL endpoints

enabling validation of remote RDF data graphs, e.g., KGs from the LOD-Cloud.

Producing relevant SHACL shapes (expressing the domain’s constraints) is one of

the most challenging research areas that tackle data quality and integration issues. A

recent state-of-the-art proposed by Rabbani et al. [RLH22] shows that most validating

shapes are extracted manually. However, this method is not scalable for very large RDF

data graphs or very complex RDF data, e.g., medical data (requiring domain experts).
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They discussed the usefulness and reliability of shapes extracted by (semi-)automatic

approaches: most of the extracted shapes are limited to speciőc shapes and are not

entirely reliable since spurious data support some shapes. Lieber et al. [LDV20] have

studied statistics of widely used data shapes found on GitHub, and they shared the same

conclusion about speciőcation limit: most shapes implement cardinality, class, datatype

and disjunction constraints, whereas very few shapes implement literal values constraints.

2.2.1 Extracting SHACL Shapes From Ontologies

Knublauch compared OWL and SHACL [Knu17], suggesting that both can be used

successively to (1) infer new facts (i.e., RDF triples) from existing ontology with an

OWL inferencing engine and (2) assess these triples against deőned shapes with a SHACL

validator engine. Moreover, syntactic translation between OWL components to SHACL

Core constraints is generally straightforward (see the Table presented in [Knu17]). Pandit

et al. [POL18] argue that Ontology Design Pattern (ODP) axioms can be translated into

SHACL shapes, suggesting that ODP axioms are more suitable than OWL axioms for

capturing domain constraints. However, they do not propose an implementation of the

proposed framework (i.e., ODP axioms are manually translated into SHACL shapes),

and the mapping between OWL axioms and SHACL shapes remains for future work.

Cimmino et al. proposed Astrea [CFG20], a framework for automatically generating

SHACL shapes from ontologies: they convert ontology constraint patterns to SHACL

constraints through mappings and SPARQL queries. In the same direction, Duan et al.

proposed mappings to automatically translate XSD constraints for XML data sources

in SHACL shapes [DCFD23]. More recently, SCOOP [DCFDD24] has been developed

to merge existing approaches [CFG20,DDSMO+21,DCFD23] to automatically generate

SHACL shapes from three RDF graph construction artefacts: OWL ontologies, XSD

constraints and RML rules.

Ontology-based approaches are limited to the degree of coverage of the ontologies re-

garding the RDF data graph, which impacts the type of constraints that can be extracted:

e.g., Astrea does not scale to large ontologies [RLH22].

2.2.2 Extracting SHACL Shapes From Instances

Considering that knowledge graphs are rich in facts, instance-based approaches appear

to address this limitation. However, one of the most signiőcant challenges (in addition

to the lack of comprehensive constraint coverage) in extracting SHACL shapes is scaling

these methods to handle substantial data graphs.
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The shaclgen library [Kee] has been developed in that sense: it is a Python library

that automatically generates shape őles from both RDF data graphs and ontologies.

Despite its versatility, it appears difficult to assess the validity and usefulness of produced

shapes, and shaclgen do not scale on large datasets and ontologies [RLH22].

Fernandez-Àlvarez et al. proposed Shexer [FÀLGGA22] (which is also a Python

library) to automatically extract both SHACL and ShEx [PLGS14] shapes from RDF

data. It takes an RDF dataset, target shapes and shape features as input to perform

a mining strategy. They proposed a trustworthiness score to assess shapes, considering

errors and incompleteness from RDF data. Moreover, they tackle the scalability issue

on large RDF data graphs by optimizing machine memory consumption and limiting

the number of instances during the mining process. Similarly, Rabbani et al. proposed

the Quality Shapes Extraction (QSE) [RLH23a] approach, consisting of entity extraction,

followed by the extraction of entity constraints for which support and conődence measures

are computed. Finally, QSE extracts shapes from the most relevant constraints. The

proposed method considers incompleteness and spurious data through shape pruning

(based on their support and conődence measures). Moreover, they proposed a dynamic

reservoir-sampling technique to store and process large RDF datasets. More recently,

the same authors proposed SHACTOR [RLH23b], a GUI to exploit extracted shapes from

the QSE algorithm to analyse data shapes validation against existing KGs.

A work very close to ILP techniques has been proposed by Omran et al. to learn

Inverse Open Path (IOP) rules through the SHACLearner framework [OTRMH22]. The

framework learns IOP rules by adapting an Open Path Rule Learner (OPRL) and őltering

spurious rules using quality measures. However, SHACLearner is limited to extracting

a speciőc type of rules: e.g., they do not extract any constraints on RDF literals.

ShapeDesigner [BDFAG19] is a semi-automatic method to extract both SHACL

and ShEx shapes that are not intended to be deőnitive: Users provide an RDF data

graph in input, the system generates shapes based on pre-deőned queries, then generated

shapes can be modiőed through an interactive GUI. They address the scalability issues

by limiting the number of query results.

Some of the research focuses on data proőling: Mihindukulasooriya et al. [MRR+18]

proposed an approach inspired by existing ILP methods, as they induce SHACL shapes

from data proőling information using ML algorithms. However, they limit their experi-

ment to cardinality constraints; the others remain as future work. Interestingly, ABSTAT

is a hybrid approach based on an ontology-driven data abstraction method to summarise

datasets [SPP+16]; they extend this framework to transform obtained semantic proőles

into SHACL shape graphs [SMP18]. More recently, Principe et al. extended this frame-
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work: ABSTAT-HD [PMP+21] to address scalability issues (on ABSTAT) in proőling large

knowledge graphs.

2.3 Grammatical Evolution

Relying on the Grammatical Evolution [OR01] (GE) presented in Section 1.3.2, the

problem deőnition and the boundaries of the search space are designed with BNF gram-

mar, and the GE operators are used to explore the search space. The versatility of this

approach enables a very wide range of optimisation problems to be tackled [ROC18]:

symbolic regression problems [OR04, LPC16b], code generation [CMRRI24], time se-

ries forecasting [RKCJ20], hyper-parameter optimisation on Deep Learning models (e.g.,

CNN models) [VIK+22,VKR23], cryptography [RKV+22], etc. Many implementations of

GE are available over different development environments: e.g., GEVA in Java [OHG+11]

(used in this thesis), PonyGE2 in Python [FMF+17] or gramEvol in R [NdSL16].

Some of the literature is focused on methods that extend standard GE techniques.

O’Neill and Ryan proposed an extension of GE by introducing a co-evolution of the BNF

grammar and the genetic code: ł(GE2)ž [OR04]. They consider meta-grammar (i.e.,

grammars’ grammar) and optimal solution grammars to őnd (as well as the genetic code

relying on these grammars) through the evolutionary process. They demonstrated the

feasibility of (GE2) over the study of symbolic regression problem instances. The same

year, O’Neill et al. proposed a Position-Independent variation on GE: πGE [OBN+04],

which impacts the genotype-phenotype mapping by extending the deőnition of a codon

to become the pair (nont,rule) where nont is used in the genotype and rule selects which

production rule should be used from nont. Thus, they remove the positional dependence

observed during the derivation phasis in standard GE.

However, some recent work discusses GE limitations, in particular limitations on

grammar design [DW22], their complexity and a łpoor ž initialisation of individu-

als [Har10]. Some contributions address these limitations by proposing general guide-

lines for grammar design [NA18], automated techniques for őnding optimal GE hyper-

parameters [AKNR21], or new methods for improving the population initialisation (i.e.,

non-random initialisation), e.g., in [NOB12]. We distinguish two issues from GE tech-

niques: the redundancy between individuals, implying a decreasing diversity of solutions,

and low locality [LFPC17,Med17], i.e., łhow well-neighbouring genotypes correspond to

neighbouring phenotypesž, which is a limitation in particular use cases [RO06].

Lourenço et al. address the locality issue by proposing an extension of GE called Struc-

tured Grammatical Evolution (SGE) [LPC16b,LPC16a], a novel genotypic representation
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for GE that enables one-to-one mapping between genes and non-terminals belonging to

the grammar. Consequently, changes do not affect the derivation options of other non-

terminals, limiting the number of recursions during the derivation. In [LAP+18], they

extend SGE by proposing a dynamic approach, i.e., Dynamic SGE (DSGE), to limit the

derivation during the mapping process, thus avoiding the whole grammar being pre-

processed at the beginning. Some works suggest that probabilistic approaches address

some criticisms in GE: Kim et Ahn proposed an extended GE relying on a Probabilis-

tic Context-Free Grammar (PCFG) [KA15], where each production rule has a certain

chance of being selected. Moreover, the population evolution is based on a probabilis-

tic model relying on the relationship between production rules. Similarly, Mégane et

al. proposed Probabilistic Grammatical Evolution (PGE) based on a PCFG. In con-

trast to [KA15], their experiments showed that PGE is signiőcantly better than GE and

comparable to SGE. More recently, Mégane et al. suggested (1) the Probabilistic Struc-

tured Grammatical Evolution (PSGE) [MLM22b], a framework that combines SGE and

PGE and outperforms them, and (2) an extension of PSGE, i.e., Co-evolutionary PSGE

(Co-PSGE) [MLM22a] where the genotype and the grammar evolve through generations.

As [MLM22b], Co-PSGE outperforms PGE and SGE.

Considering the discovery of new knowledge from RDF data, Nguyen and Tettamanzi

proposed a method based on grammar-based genetic programming method for mining

OWL class disjointness axioms composed of atomic classes [NT19c, NT19b] and non-

atomic classes [NT20b, NT20d]. The framework relies on BNF grammars in input to

build candidate class disjointness axioms dynamically through SPARQL queries. More-

over, they assess candidate axioms against RDF data based on generality and possibility

measures (their computation relies on SPARQL queries) under the OWA [NT19c]. Inter-

estingly, in [NT19b], they proposed a deterministic crowding method [M+92] as a survival

selection to preserve an appropriate population diversity across generations. First, they

perform a genotypic comparison between pairs of parents (p1 and p2) and their respec-

tive offspring pairs (o1 and o2) to estimate distance D(x, y) measures (where x and y

are candidate class disjointness axiom genotypes). Second, they preserve the maximum

value of the sum of the computed distances d1 and d2 such as d1 = D(p1, o1) +D(p2, o2)

and d2 = D(p1, o2) + D(p2, o1). Finally, if d1 > d2, they compare the őtness f(x) val-

ues of pairs (p1, o1) and (p2, o2) and return the best-suited individuals, e.g., the pair

(p1,o2) if and only if f(p1) > f(o1) and f(p2) ≤ f(o2). Same process if d1 ≤ d2. They

address the scalability issue by proposing a method for extracting a reduced sub-graph,

i.e., a training dataset, of the whole RDF data graph: in [NT20b], they collect 1% of

the RDF triples from DBpedia 2015-04 (English version) which contains 665, 532, 306
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RDF triples, resulting in a sub-graph of 6, 739, 240 RDF triples used to discover class

disjointness axioms through the evolutionary process.

2.4 Conclusion

In this literature review, we studied works related to the Ontology Learning research

őeld in Section 2.1 and presented three sub-domains: linguistic techniques, statistical

techniques and ILP techniques. The approach proposed in this thesis is one of the

ILP techniques, where background knowledge is the fundamental basis for the induction

of schemes that explain data. However, the exploration strategy, i.e., the search of

all possible solutions in the hypothesis space, differs from traditional methods in this

domain [CD22].

Then, we studied existing work on SHACL constraint mining in Section 2.2: our ap-

proach őts in with the approaches for extracting SHACL shapes from RDF data, where

scalability and incompleteness/inconsistencies issues are predominant and our main con-

cerns in the scope of this work.

Finally, we studied existing work based on GE, where the ŕexibility of this technique

makes it possible to answer a wide range of research questions in a multitude of do-

mains, allowing it to be applied widely. Relying on the framework proposed by Nguyen

and Tettamanzi and analysed in Section 2.3 (which is the most closely related work), the

proposed deterministic crowding method tends to limit the algorithm’s exploratory capa-

bilities for two reasons: (1) the comparison between individuals is limited to a genotypic

comparison instead of a phenotypic comparison (which appears to be more accurate),

and (2) the selection of the best őtness score between parents-offspring makes it possi-

ble to preserve a good overall őtness score to the detriment of a broader exploration of

the solution space (even if it means accepting less suitable individuals). This is why we

propose a novel approach focusing on an expansive exploration of the solution space: we

assume this research strategy uncovers a more comprehensive set of credible and relevant

knowledge from RDF data graphs. Moreover, we propose novel optimisations related to

SPARQL queries, process parallelization, etc., to consider using our approach with large

RDF data graphs, e.g., DBpedia.





CHAPTER 3
Evolutionary Discovery
of Subsumption Axioms

From RDF Data
3.1 Introduction

In this chapter, we focus on the ontology enrichment issue, especially the lack of axioms

in ontologies, by proposing the discovery of SubClassOf subsumption axioms involving

class expression (see Deőnition 3.1), providing domain knowledge from existing RDF

data. The considered class expressions are extended to complex class expressions. We

tackle the research question RQ2: łHow to automatically discover class subsumption

axioms from RDF data? ž

Definition 3.1: SubClassOf axiom [BFH+12]

Let C and D be two class expressions. SubClassOf(C D) is satisfied if all the

individuals x of the subclass C are also instances of the superclass D:

C(x) ⊆ D(x) (a)
ahttps://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_

Expressions

Considering the DBpedia 2015-04 ontology1 whose statistics are given in Table 3.1,

we observe that there are only few OWL axioms explicitly included in the ontology.

Although classes are well represented (i.e., 1 subsumption axiom per class), each class is

involved in at most 3 subsumption axioms.The owl:DisjointWith (disjointness class

1https://downloads.dbpedia.org/wiki-archive/Downloads2015-04.html
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Table 3.1: DBpedia 2015-04 ontology and class expressions axioms (owl:Thing class is not

considered)

Metrics Value

#owl:Class 735

#rdfs:subClassOf 692

#owl:equivalentClass 356

#owl:disjointWith 24

axiom) is the most rarely represented class axiom: this motivated research to discover

these axioms over RDF data using an implementation of Grammatical Evolution [NT19b,

NT19c,NT20b,NT20d,NT20a] but these works did not consider subsumption axioms.

We started from an implementation of Grammatical Evolution proposed by Nguyen

and Tettamanzi [NT19b] to extract disjointness axioms from an RDF data graph by

extending the framework for discovering subsumption axioms composed of complex class

expressions. We consider a possibilistic framework to assess candidate subsumption

axioms over RDF data graph under the Open-World Assumption (OWA), considering

ignorance about RDF facts [TFG17]. Tettamanzi et al. demonstrate that such a heuris-

tic leads to high computation times, requiring time-restricted solutions [TFG15]. As a

matter of fact, they tested 5, 050 subsumption axioms over the DBpedia 3.9 RDF data

graph (+400M RDF triples) by setting a time-cap at 20 minutes: only 12.51% of them

do not exceed this time-cap. Consequently, we acknowledge that these performances do

not allow the evolutionary discovery of these axioms from large RDF data graphs in

reasonable computation time.

First, we address these limitations (RQ1) and propose an optimisation [FCFT22]

consisting of three axes:

(A) a multi-threading system to parallelize axiom assessment,

(B) an extension of the original heuristic to avoid redundant computation, with an

explanation of the computational problem,

(C) an optimisation of SPARQL query chunking relying on an extension of SPARQL

federated query [CFG+21] to automatically iterate a federated query service call.

Second, we proposed a BNF grammar to build subsumption axioms over an RDF

data graph: each individual represents candidate subsumption axiom φ where its OWL
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functional-style syntax, e.g., SubClassOf(dbo:Cat dbo:Animal) which states that

łall cats are animalsž, represents the phenotype.

In Section 3.2, we introduce the background for these contributions. In Section 3.3,

we present the optimisations and an analysis of the integrity of the obtained results

and its impact in terms of CPU time saving, using the previous work [TFG15] as a

benchmark. In Section 3.4, we discover candidate subsumption axioms over the DBpedia

2015-04 RDF data graph using the proposed optimisations and an implementation of

Grammatical Evolution discussed in Chapter 5. Finally, we conclude in Section 3.5.

3.2 Preliminaries

3.2.1 A Possibilistic Heuristic to Assess Subsumption Axioms

Possibility theory is a mathematical theory of epistemic uncertainty which uses the

events, variables, . . . denoted ω of a universe of discourse Ω (ω ∈ Ω) where each ω

has a degree of possibility such that π : Ω→ [0, 1]. π(ω) = 0 means that ω is impossible

and π(ω) = 1 means that ω is fully possible [Zad99]. Let S a set of events from a universe

of discourse Ω, i.e., S ⊆ Ω and a possibility distribution π, the possibility (Π) measure

is deőned in Eq. (3.1). The necessity N (deőned in Eq. (3.2)) measures the impossibility

of its complement S̄.

Equation 3.1: Possibility measure [Zad99]

Π(S) = max
ω∈S

π(ω), Π(S) ∈ [0, 1]

Equation 3.2: Necessity measure [Zad99]

N(S) = 1−Π(S̄) = min
ω∈S̄
¶1− π(ω)♢, N(S) ∈ [0, 1]

Here are some properties of the possibility and necessity measures:

empty set and universe of discourse: Π(∅) = N(∅) = 0, Π(Ω) = N(Ω) = 1

duality: Π(S) = 1−N(S̄)

values: N(S) > 0 =⇒ Π(S) = 1, Π(S) < 0 =⇒ N(S) = 0
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total ignorance on S: Π(S) = Π(S̄) = 1

Tettamanzi et al. [TFG17] proposed a heuristic to assess the possibility and the

necessity of an axiom φ. They consider υ+
φ , the number of conőrmations observed among

the RDF facts υφ, the support of φ, and υ−
φ , the number of exceptions observed. They

deőne the possibility Π(φ) in Eq. (3.3) and the necessity measure N(φ) in Eq. (3.4).

Remark 3.1

Under the OWA, RDF facts from υφ can be neither a conőrmation nor an exception

to an axiom φ:

♣υ+
φ ♣+ ♣υ

−
φ ♣ ≤ ♣υφ♣

Equation 3.3: Possibility measure (Π) of an axiom φ [TFG17]

Π(φ) = 1−

√︄

1−

⎤

υφ−υ−
φ

υφ

⎣2

Equation 3.4: Necessity measure (N ) of an axiom φ [TFG17]

N(φ) =

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

√︄

1−

⎤

υφ−υ+

φ

υφ

⎣2

, if Π(φ) = 1,

0, otherwise.

To decide the acceptance of an axiom φ, Tettamanzi et al. proposed the Accep-

tance/Rejection Index criterion (ARI) deőned in Eq. (3.5).

Equation 3.5: Acceptance/Rejection Index measure (ARI) of an axiom φ [TFG17]

ARI(φ) = N(φ) + Π(φ)− 1, ARI(φ) ∈ [−1, 1].

The implementation of the above formulas was carried out in SPARQL. The queries

presented in Fig. 3.1 and 3.2 return (respectively) the number of conőrmations υ+
φ and

the number of exceptions υ−
φ for a given subsumption axiom C ⊑ D. The conőrmations
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SELECT (COUNT(DISTINCT ?x) AS ?n) WHERE {

?x a <C>, <D> .

}

Figure 3.1: Counting confirmations ♣υ+
φ ♣ of an axiom φ: SubClassOf(<C> <D>) in

SPARQL

SELECT (COUNT(DISTINCT ?x) AS ?n) WHERE {

?x a <C>, ?t .

FILTER NOT EXISTS { ?y a ?t, <D> . }

}

Figure 3.2: Counting exceptions ♣υ−
φ ♣ of an subsumption axiom φ in SPARQL

cardinality computation is quite simple: we count the number of instances belonging to

the subclass C and the superclass D.

The exceptions υ−
φ , using the possibilistic heuristic, are instances of C and another

class denoted T that does not share any instance with the superClass D (see Fig. 3.2).

This SPARQL query, which gives of course still an approximation, even though a much

őner one, of the actual number of true exceptions, turns out to be computationally quite

expensive.

3.2.2 A Fitness Function for SubClassOf Axiom Assessment

To assess candidate subsumption axioms and deőne their őtness value, Nguyen and

Tettamanzi proposed the following őtness function based on the possibility (Eq. (3.3))

and the necessity (Eq. (3.4)) measures. This function is deőned in Eq. (3.6).

Equation 3.6: Fitness function for candidate axioms [NT19b]

f(ϕ) = ♣υφ♣ ×
Π(φ)+N(φ)

2

SELECT (COUNT(DISTINCT ?t) AS ?nic) WHERE {

?x a <C>, ?t .

}

Figure 3.3: SPARQL query used to compute the number of intersecting classes (nic) for a

subclass C.
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3.3 Optimizing the Computation of a Possibilistic Heuristic to Test

Subsumption Axioms Against RDF Data

3.3.1 Multi-Threading System

We implemented a multi-threading system to parallelize the evaluation of the candi-

date axioms, which allows to signiőcantly reduce the overall computation time. Fig. 3.4

presents the architecture of the multi-threading system. Its general operating principle

is as follows: Let Φ a stack of candidate axioms (i.e., Φ = ¶φi, i ∈ [1, n]♢) to assess using

SPARQL queries presented in Fig. 3.1, 3.2 and 3.3. While Φ ̸= ∅, the threads manager

allocates the axioms φ ∈ Φ to assess to each available threads ti (e.g., t1 assess φ1, t2

assess φ3, . . . ).

The higher the number of available CPU cores, the greter the execution time gain,

since the program creates threads depending on the number of cores available on the

machine on which the software is run. Nevertheless, while this optimization can reduce

the latency of axiom evaluation if a large number of cores is available, it does not reduce

the overall cost of the task.

Figure 3.4: Overview of the multi-threading system

3.3.2 A Heuristic to Avoid Redundant Computation

Considering the implementation of the exceptions query presented in Fig. 3.2, we schema-

tized it in Fig. 3.5 to highlight the possible and useless repetition of the same types ?t (in

red and yellow) for different instances ?x of a subclass <C> satisfying a őlter condition

that does not depend on ?x.

The same types are likely found many times for different individuals, implying the

repetition of these same computations. Considering the RDF data graph DBpedia 3.9,

these redundant computations are not negligible: Table 3.2 shows that the most represen-
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Figure 3.5: Overview of the redundant computation issue

Table 3.2: The 5 most representative concepts in the DBpedia 3.9 RDF data graph

dbo concepts # instances

dbo:Agent 1, 472, 369
dbo:Person 1, 124, 388
dbo:Place 754, 415
dbo:CareerStation 577, 196
dbo:PopulatedPlace 531, 228

tative concepts in the DBpedia 3.9 RDF dataset can count up to millions of individuals

which can be computed more than once (?y layer in Fig. 3.5).

We propose to split the SPARQL query presented in Fig. 3.2 to compute the excep-

tions υ−
φ in two phases:

1. Querying distinct types (i.e., classes) assessed as potentially containing exceptions

to an axiom (Fig. 3.6).

2. Querying instances that belong to both subclass <C> and at least one of the classes

retrieved by the previous query, i.e., exceptions of an axiom (Fig. 3.7).

However, the computational cost of FILTER NOT EXISTS grows more than linearly

with the number of instances that have to be őltered. Therefore, we have also developed
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SELECT DISTINCT ?t WHERE {

{

# We retrieve the other classes

# of subclass <C> instances.

SELECT ?t WHERE {

SELECT DISTINCT ?t WHERE {

?x a <C> , ?t .

} ORDER BY ?t

} LIMIT $limit OFFSET $offset

}

# From these classes, we remove those

# sharing instances with superclass <D>.

FILTER NOT EXISTS {

?z a ?t, <D> .

}

}

Figure 3.6: Retrieval of the classes t for which instances are possible exceptions of an axiom in

SPARQL

SELECT DISTINCT ?x WHERE {

?x a <C>, ?t

VALUES ?t { <t1> <t2> ... <tn> }

} LIMIT $limit OFFSET $offset

Figure 3.7: Retrieval of the exceptions υ−
φ of an axiom φ in SPARQL (using the classes ti

computed in Fig. 3.6)
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SELECT DISTINCT ?t WHERE {

SERVICE <$url/sparql?loop=true&limit=$limit> {

SELECT DISTINCT ?t WHERE { ?x a <C>, ?t . }

}

SERVICE <$url/sparql> {

VALUES ?t {undef}

FILTER NOT EXISTS { ?z a <D>, ?t . }

}

}

Figure 3.8: Implementation of our optimized heuristic with a SPARQL federated query using

parameters loop and limit: querying classes for which instances are possible exceptions to

an axiom.

a chunking technique for SPARQL queries to split SPARQL queries into several steps

using pagination (LIMIT ... OFFSET). We proposed an implementation of this approach

in Algorithm 1.

3.3.3 Optimizing the Chunking of SPARQL Queries

In general, it is quite tedious to implement chunking of SPARQL queries. Moreover,

one may still want to resort to chunking for a SPARQL query with a VALUES clause,

since some servers limit the number of elements handled in such a clause. Consequently,

we proposed a generic SPARQL operator to automatically integrate the pagination of

the results with an iteration system, using URL parameters in SPARQL federated query

services [CFG+21]. We set the following parameters: loop=true and limit to the

chosen number of őrst results (denoted $limit) to be returned by a SPARQL query.

First, this syntax makes it easier to code the iteration and chunking of SPARQL queries.

Second, the iteration and chunking are delegated to the SPARQL engine [Cé23], assuming

that this method is more efficient.

By using this novel loop+page operator, both the query to retrieve the classes

potentially containing exceptions (Fig. 3.8) and the query to retrieve the exceptions

(Fig. 3.9) are SPARQL federated queries using the parameters loop and limit in the

URL of the remote query service in the SERVICE clause. The resulting algorithm is

detailed in Algorithm 3.

3.3.4 Experiences

We conducted the scoring of 722 candidate axioms against the DBpedia 3.9 RDF dataset

comprising 463, 343, 966 RDF triples and 532 OWL classes. In previous works [TFG15],
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Algorithm 1 Compute exceptions υ−
φ to a SubClassOf axiom according to the contribution

B.

Output: υ−
φ

Require: ♣υ+
φ ♣ ≠ ♣υφ♣

1: q1 ← SPARQL query presented in Fig. 3.3

2: q2 ← SPARQL query presented in Fig. 3.6

3: offset← 0
4: limit← 1000
5: υ−

φ ← ¶♢
6: types← ¶♢
7: nic← eval(q1)
8: while offset ̸= nic do
9: q2 ← q2 + LIMIT limit OFFSET offset

10: types← types ∪ eval(q2)
11: offset← offset + min(nic− offset, limit)
12: end while
13: start← 0
14: step← 100
15: limit← 10000
16: while start ̸= ♣types♣ do
17: offset← 0
18: end← start + min(step, ♣types♣)
19: while true do
20: q3 ← SPARQL query presented in Fig. 3.7

21: using VALUES { ti ∈ types, i ∈ [start, end] }

22: q3 ← q3 + LIMIT limit OFFSET offset
23: e← eval(q3)
24: υ−

φ ← υ−
φ ∪ e

25: if ♣e♣ = limit then
26: offset← offset + limit
27: else break
28: end if
29: end while
30: start← start + min(♣types♣ − start, step)
31: end while
32: return υ−

φ
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Algorithm 2 Iterate and page a SPARQL query

1: S ← ¶♢
2: q← the body of a SPARQL query

3: for i=$start; i<=$until; i++ do
4: q← q+LOOP=$true&LIMIT=$limit&OFFSET=i*$limit

5: res← eval(SERVICE url{q})

6: if ♣res♣ == 0 then
7: break
8: end if
9: S ← S ∪ res

10: end for
11: return S

SELECT DISTINCT ?x WHERE {

SERVICE <$url/sparql?loop=true&limit=$limit> {

?x a <C>, ?t VALUES ?t { <t1> <t2> ... <tn> }

}

}

Figure 3.9: Implementation of our optimized heuristic with a SPARQL federated query using

parameters loop and limit: querying exceptions υ−
φ of an axiom φ (using the classes ti

computed in Fig. 3.8).

Algorithm 3 Compute exceptions υ−
φ to a SubClassOf axiom using contributions B and C.

Output: υ−
φ

Require: ♣υ+
φ ♣ ≠ ♣υφ♣

1: limit← 1000
2: q1 ← SPARQL query presented in Fig. 3.8

3: types← eval(q1)
4: start← 0
5: step← 50
6: limit← 10000
7: while start ̸= ♣types♣ do
8: end← start + min(step, ♣types♣)
9: q2 ← SPARQL query presented in Fig. 3.9

10: using VALUES { ti ∈ types, i ∈ [start, end] }

11: υ−
φ ← υ−

φ ∪ eval(q2)
12: start← start + min(♣types♣ − start, step)
13: end while
14: return υ−

φ



44 CHAPTER 3 — Evolutionary Discovery of Subsumption Axioms From RDF Data

the computation times for assessing these axioms could take hours and sometimes days!

First, we analysed the reliability of the results obtained: are the evaluation results the

same as those obtained in previous works? [TFG15]. Finally, we discuss the computation

time savings obtained.

The experiments were performed on a server equipped with an Intel(R) Xeon(R) CPU

E5-2637 v2 processor at 3.50GHz clock speed, with 172 GB of RAM, 1 TB of disk space

running under the Ubuntu 18.04.2 LTS 64-bit operating system.

3.3.5 Results

Fig. 3.10 show that the computation time is signiőcantly reduced, with a maximum

computation time reduced from 71, 699 to 489 minutes. The ARIs values computed for

each axiom remain unchanged, giving the same average ARI value (∼ −0.1936) and

sharing the same conclusion: the number of accepted axioms φ, i.e., φ ≥ 1/3, is only 197

against 525 rejected.

We compared the computation times of the ARI of each of the 722 candidate axioms

using the original heuristic and our proposed optimization: Fig. 3.11 presents the initial

computation time of the axioms ARIs using the original heuristic compared to the com-

putation time using our proposed optimization. The average CPU computation time for

evaluating an axiom is 30 minutes with our proposed optimization against 578 minutes

with the original heuristic, with a signiőcant average time saving of 548 minutes. For

most axioms, we observe a lower computation time: 593 axioms are faster to assess using

the optimisation (Algorithm 1), i.e., 82% of the candidate axioms tested. This solves

the problem of extremely long CPU computation times for some axioms: up to 71, 699

minutes (!) using the original heuristic (see Fig. 3.10a) against 489 minutes, a reduction

by a factor of ∼ 150.

Some axioms involve the assessment of instances that do not have common types.

Consequently, the execution of the initial single SPARQL query (Fig. 3.2) is faster than

the execution of the two SPARQL queries in our optimisation. However, only 129 ax-

ioms are longer to assess with our optimised queries, increasing the average computation

time by around 57 minutes and a maximum increase of 244 minutes: this represents a

reasonable cost compared with the computation time saved.

To assess the contribution presented in Section 3.3.3 using a loop+page operator,

we compared the computation times obtained against the previous one and present the

results in Fig. 3.12: 94.6% of the axioms are assessed more quickly, reducing the average

computation time by ∼ 12 minutes. This suggests that the implementation of this
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(a) Original heuristic

(b) Results obtained with contributions A+B

Figure 3.10: Comparison of the ARI values of 722 axioms computed against DBpedia 3.9 using

the original heuristic against our contributions A+B
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Figure 3.11: Comparison of the computation times (CPU) of axioms ARIs with the original

heuristic and with our proposed optimization (A+B), highlighting the proportion of axioms for

which our optimization saves time (in green) or loose time (in red). Both axes are logarithmic.

operator optimises the chunking of queries in the Corese semantic web factory [Cé23],

making the computation cost less important than the chunking technique presented in

the Algorithm 1.

3.4 Discovering Subsumption Axioms Involving Complex Class Ex-

pressions

The proposed optimisations tackle the bottleneck issues due to the approach itself: not

scalable over the largest RDF data graph (e.g., DBpedia) due to the previous imple-

mentation of the possibilistic heuristic to compute exceptions of candidate subsumption

axioms. We are interested in the discovery of subsumption axioms composed of complex

class expressions, assessing them over the proposed optimisation, more speciőcally with

the Algorithm 1. We limit the scope of class expression to the existential quantification,

universal quantification and the intersection of classes.
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Figure 3.12: Comparison of the computation times (CPU) of axioms ARIs with our first (A+B)

and second (A+B+C) proposed optimizations, highlighting the proportion of axioms for which

our last optimization saves (in green) or loose (in red) time with A+B+C. Both axes are logarith-

mic.
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Definition 3.2: Existential quantification [BFH+12]

Let OPE an object property expression and CE a class expression,

ObjectSomeValuesFrom(OPE CE) deőnes all the individuals x that are con-

nected by OPE to an individual y (OPE(x, y)) that is an instance of CE:

¶x ♣ ∃y(OPE(x, y)) ∧ CE(y)♢ (a)
a
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_

Expressions

Definition 3.3: Universal quantification [BFH+12]

Let OPE an object property expression and CE a class expression,

ObjectAllValuesFrom(OPE CE) contains all the individuals x that are con-

nected by OPE only to individuals y (OPE(x, y)) that are instances of CE:

¶x ♣ ∀y(OPE(x, y)) =⇒ CE(y)♢ (a)
a
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_

Expressions

Definition 3.4: Intersection of two class expressions [BFH+12]

Let CE1 and CE2 two class expressions, ObjectIntersectionOf(CE1 CE2)

deőnes all the individuals x that are instances of CE1 and CE2:

¶x ♣ CE1(x) ∧ CE2(x)♢ (a)
a
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_

Expressions

3.4.1 A BNF Grammar for SubClassOf Axioms

The purpose is to discover SubClassOf subsumption axioms between class expressions

C and D, where C and D can represent an atomic class, an existential quantification class

expression (Deőnition 3.2), an universal quantification class expression (Deőnition 3.3)

or the intersection of two atomic class (Deőnition 3.4).

Nguyen and Tettamanzi proposed an implementation to extract instances of these

class expressions in SPARQL [NT20d]. We reuse it for extracting OWL classes deőned

https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/#Class_Expressions


3.4 – 3.4.2 Experiences 49

SELECT DISTINCT ?Class WHERE {

?Class a owl:Class .

}

Figure 3.13: Extracting OWL classes from the DBpedia 2015-04 ontology in SPARQL

SELECT DISTINCT ?Property WHERE {

?s ?Property ?o .

} LIMIT 1000

Figure 3.14: Extracting predicates from the DBpedia 2015-04 RDF data graph in SPARQL

in the ontology and the predicates from the RDF data graph. The SPARQL query

presented in Fig. 3.13 is used to extract classes and the SPARQL query presented in

Fig. 3.14 is used to extract predicates. For the last one, we limit the number of query

results to the őrst 1, 000 properties because of the large set of resources that can be

retrieved with this query (which is time-consuming).

The BNF grammar to build SubClassOf subsumption axioms between complex

class expressions is presented in Fig. 3.15.

3.4.2 Experiences

We consider a subset of the DBpedia 2015-04 RDF data graph and its ontology to discover

a large set of subsumption axioms. This dataset is composed of 124, 698, 021 RDF triples,

i.e., 29.87% of the whole RDF data graph. These RDF data have been taken from a

public repository 2 and focus on instance types, same-as URI, infobox properties (and

their deőnitions) and mapping-based properties.

The Grammatical Evolution parameters are presented in Table 3.3. They are inspired

by previous work on discovering subsumption axioms composed of complex class expres-

sions [FT21]. We deőne the effort value to fairly compare the impact of the population

size ♣P♣, renewing 60% of the whole population on each generation to support a wide

exploration of the solution space. As some candidates can unavoidably result in very high

computation time, we used the time-cap limit [TFG15], deőning its value at 1 minute

in order not to have a major impact on the computation time of the whole evolutionary

process.

Since the implementation of Grammatical Evolution (and described in Chapter 5)

differs from the algorithm used in previous work [FT21], we cannot fairly compare the

2https://downloads.dbpedia.org/wiki-archive/Downloads2015-04.html

https://downloads.dbpedia.org/wiki-archive/Downloads2015-04.html
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<Axiom> := <ClassAxiom>

<ClassAxiom> := <SubClassOf>

<SubClassOf> := "SubClassOf(" <ClassExpression> " "

<ClassExpression> ")"

<ClassExpression> := <ObjectSomeValuesFrom> |

<ObjectAllValuesFrom> |

<ObjectIntersectionOf> |

<Class>

# Class expressions :

<ObjectIntersectionOf> := "ObjectIntersectionOf("

<Class> " " <Class> ")"

<ObjectSomeValuesFrom> := "ObjectSomeValuesFrom("

<Property> " " <Class> ")"

<ObjectAllValuesFrom> := "ObjectAllValuesFrom("

<Property> " " <Class> ")"

# Rules exploiting RDF nodes:

<Class> := "SPARQL ?Class a owl:Class ."

<Property> := "SPARQL ?s ?Property ?o ."

Figure 3.15: BNF grammar used to build candidate subsumption axioms composed of complex

class expression

Parameter Values

#run per settings 10
|P | 100 ; 200 ; 500
Total effort E 10, 000
|chromosome| 6
% Selection (elitism) 25%

Selection (recombination) Tournament (60%)

Tournament size 25% of P
Type crossover - P Single point - 80%

Type mutation - P Int flip - 5%

Time-cap 1 min.

Table 3.3: Parameters of Grammatical Evolution
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obtained results with the previous ones. Moreover, previous work [FT21] has focused on

the discovery of candidate SubClassOf axioms on a reduced RDF data graph of DBpedia

2015-04 which contains 6, 534, 658 RDF triples (i.e., 1.57% of the whole data graph) and

the population is assessed over the whole RDF data graph at the last generation with a

very low time-cap (30 seconds).

In addition to an in-depth analysis of the discovered subsumption axioms, we will

discuss the computation time of the candidate subsumption axioms to assess the impact

of the optimized computation of exceptions.

The experiments were performed on a server equipped with an Intel 11th Gen Core

i7-11850H processor (16 threads), with 32 GB of RAM, 2 TB of disk space running under

the Fedora Linux 35 operating system.

3.4.3 Results

Fig. 3.16 presents the discovered axioms according to their ARI value (see Eq. (3.5)) and

the CPU time spent to assess them. It appears that the best average value of the ARI is

observed for ♣P♣ = 100, but it is not very signiőcant compared to the other ARI values.

Moreover, we observed a non-negligible set of axioms with a null ARI value (i.e., total

ignorance): 65.4% of the 995 distinct discovered axioms for ♣P♣ = 100 against 47.5%

(1, 999 distinct axioms) for ♣P♣ = 200 and 52.3% (4, 976 distinct axioms) for ♣P♣ = 500.

The evolution of the CPU time conőrms that it is directly correlated to the number of

exceptions: it is presented in Fig. 3.17. However, it appears to be negligible: we observe

an average of 58.84 ms. to assess axioms for ♣P♣ = 100 (with a maximum value of 5, 297

ms.), 12.71 ms. for ♣P♣ = 200 (max: 5, 549 ms.) and 14.8 ms. for ♣P♣ = 500 (max:

4, 709 ms.). The time-cap limit appears unavoidable because of a high number of axioms

that reach the limit on each execution: on average, 45 axioms for ♣P♣ = 100 reach the

time-cap against 27.6 axioms for ♣P♣ = 200 and 58.3 for ♣P♣ = 500. Surprisingly, one of

the execution (with ♣P♣ = 100) has led to 263 axioms that reach the time-cap, impacting

the average value (without it, the average is about 20.78 axioms for ♣P♣ = 100) as we

can see on Fig.3.18a (the "light green" line, on the right).
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Figure 3.17: Number of exceptions ♣υ−
φ ♣ of discovered subsumption axioms φ and the CPU time

(in ms.)

The őtness evolution and the sum of CPU times are presented in Fig. 3.18 and

highlight some trends: őrst, we observe that the "best" őtness evolution does not imply

the "worst" evolution of the CPU times, which suggests that the higher the őtness value

is, the lower the expected computation time be. Second, the őtness evolution gradually

becomes less pronounced as the size of the population ♣P♣ increases but the sum of

CPU times evolution suggests that a large population size leads to a wider exploration,

involving the discovery of more or less credible candidate axioms.

Tettamanzi et al. [TFG17] suggest to accept subsumption axioms φ regarding its ARI

value such as ARIφ ≥ 1/3. Applying this acceptance criterion, we report the accepted

discovered subsumption axioms in Table A.1 (The őrst part). They are composed of

atomic classes, and 4 of them already exist in the DBpedia 2015-04 Ontology. However,

the following candidate axioms do not exist in the ontology and seem highly credible:

SubClassOf(dbo:Baronet dbo:Person)

SubClassOf(dbo:Historian dbo:Agent)
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SubClassOf(dbo:ScreenWriter dbo:Agent)

All the discovered axioms that do not exist in the ontology are subject to a certain

proportion of instances that we do not know if they are exceptions to these candidates.

However, most of them seem to be consistent, e.g., the following axiom:

SubClassOf(ObjectAllValuesFrom(dbo:artist dbo:TelevisionShow)

dbo:Work)

which states that łinstances where the artist is a television show are worksž is fully

possible because no evidence contradicts this fact, but only 2 facts conőrm this candidate

axiom. This demonstrates that our approach effectively discovers subsumption axioms

that express subtle relationships between domain concepts and RDF graph properties.

The following candidate axiom:

SubClassOf(ObjectSomeValuesFrom(dbp:seasonTopscorer

dbo:SoccerPlayer) dbo:SportsTeamMember)

which states that łinstances that have at least one top scorer in the season who is a

football player are members of a sports team.ž is widely contradicted by 1, 534 facts. This

is inconsistent with the expectation that a top scorer is a member of a sports team and

a sports team is a subset of a sports structure. The 37 conőrmations of this candidate

axiom are about their end-of-season review.

3.5 Conclusion

In this chapter, we tackle the computation time issues due to the possibilistic heuris-

tic for subsumption axiom assessment by proposing some optimisations based on (1) a

mult-threading system to assess axioms simultaneously, (2) a heuristic to avoid redundant

computation for the candidate subsumption axiom assessment and (3) an optimisation of

the federated query for SPARQL query chunking. The conducted experiments show that

these contributions signiőcantly reduce the computation time allocated for SubClassOf

axiom assessment. Consequently, they opened up the perspectives of discovering candi-

date subsumption axioms using an adaptation of the Grammatical Evolution.

Secondly, we proposed a BNF grammar to build candidate subsumption axioms com-

posed of complex class expressions. The evolutionary process has been carried out over

a large RDF data graph (+100M RDF triples) using the Grammatical Evolution im-

plementation and the proposed optimisations. The results show that this approach is
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effective in discovering credible candidate subsumption axioms expressing subtle domain

knowledge.
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(a) ♣P ♣ = 100

(b) ♣P ♣ = 200

(c) ♣P ♣ = 500

Figure 3.16: ARI values of the candidate axioms assessed with the optimized algorithm (Algo-

rithm 1) against DBpedia 2015-04
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(a) ♣P ♣ = 100

(b) ♣P ♣ = 200

(c) ♣P ♣ = 500

Figure 3.18: Evolution of average fitness (on the left) and the sum of CPU times for the individ-

ual assessment (on the right) over 10 executions



CHAPTER 4
A Framework to Include

and Exploit
Probabilistic

Information in SHACL
validation Reports

4.1 Introduction

The notable growth of RDF data is driven by the development of automatic or semi-

automatic techniques for extracting data from different sources (e.g., DBpedia is built

from Wikipedia data), constructing and enriching RDF data graphs. This dynamic has

led to the need to control the RDF data quality, as it directly impacts its use by humans

or artiőcial agents. We consider it essential to recognise that errors and inconsistencies

are inherent in RDF data graphs.

In this chapter, we focus on SHACL: the language recommended by the W3C 1

to express constraints that RDF data must respect. SHACL shapes are instances of

sh:NodeShape that target a speciőc set of nodes in an RDF data graph and assess

them against a set of SHACL constraints. The shapes graph is used to search nodes in

the RDF data graph that do not conform to the shapes through the SHACL validation.

Therefore, SHACL addresses the requirements for RDF data quality control and helps

reduce the inherent inconsistencies in RDF data graphs.
1https://www.w3.org/TR/shacl/

57
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We observe that violations generated during a SHACL validation of a shape are a sig-

niőcant factor: any violation indicates that the whole validation report is not compliant.

Considering a large collaborative RDF dataset with a massive and constant increase of

RDF triples (e.g., DBpedia), we assume that many RDF data violations against a set of

shapes seem inevitable due to incomplete and/or incorrect data. Regarding the perspec-

tive of discovering relevant and representative SHACL shapes of an RDF data graph,

we suggest that these errors (which are inherent) should be taken into account when

validating an RDF data graph against candidate shapes.

Considering the state-of-the-art presented in Section 2.2, no contribution addresses

the extension of the standard to include additional information in validation reports,

considering a proportion of inherent errors. However, recent work considers the incon-

sistencies in RDF data graphs when automatically extracting different kinds of SHACL

shapes. This work will be rigorously discussed in Chapter 5, which focuses on the evolu-

tionary discovery of SHACL shapes.

Here, we tackle the following research question (RQ3): łHow to design a validation

process considering physiological errors in real-life data? ž by proposing a framework

based on a probabilistic model to consider a rate of violations, denoted p, which is as-

sumed to be inherent in an RDF data graph, overcoming the ‘binary ’ nature of the

validation process. Moreover, we extend the validation report to include probabilistic in-

formation considering the assumption that the validation of RDF data follows a binomial

distribution, and we assess this assumption using hypothesis testing [FFT23a].

First, we present the probabilistic framework in Section 4.2: the probabilistic model of

the validation process in Section 4.2.1, the extended validation report (and an extended

vocabulary to express probabilistic results) in Section 4.2.2 and a method based on

hypothesis testing to assess validation results in Section 4.2.3. Section 4.3 focuses on the

conducted experiments, and the obtained results are discussed in Section 4.4. Finally,

we conclude this chapter in Section 4.5.

4.2 A Probabilistic Framework for Shape Assessment

4.2.1 Probabilistic Model

We propose to extend the validation of RDF data against SHACL shapes by considering

a physiological error proportion p in real-life RDF data (see Deőnition 4.1). We suggest

that the mathematical modelling of the SHACL evaluation process, considering p, is

based on a probabilistic model.
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Definition 4.1: Physiological error in RDF data graphs

In a real-life context, RDF datasets are imperfect and incomplete (in the sense that

expected data is missing). There are various reasons for this statement, e.g., from

the collaborative building of large RDF graphs (e.g., Wikidata) or automatically

constructed RDF graphs (e.g., DBpedia) [FBMR17]. We deőne p ∈ [0, 1] as the

physiological error proportion of an RDF data graph.

Let υ an RDF data graph, S the SHACL shapes graph and s a shape contained in

this graph (s ∈ S)

Definition 4.2: Support (or reference cardinality) of a SHACL shape

The cardinality (or support) of a shape s, denoted υs, is the set of RDF triples in

the RDF data graph υ targeted by s and tested during the validation. We deőne its

cardinality ♣υs♣ as the reference cardinality.

Definition 4.3: Confirmation(s) and violation(s) of a SHACL shape

The conőrmations denoted υ+
s , and violations denoted υ−

s of a shape s are the

disjoint sets (i.e., υ+
s ∩ υ−

s = ∅) that correspond, respectively, to the RDF triples t

(t ∈ υ) that are consistent with s and those that violate s (i.e., inconsistent):

∀t ∈ υ+
s , t ∧ s ⊭ ⊥

∀t ∈ υ−
s , t ∧ s ♣= ⊥

The conőrmations and the violations of a shape s (Deőnition 4.3) compose the set of

RDF triples targeted by s:

υs = υ+
s ∪ υ−

s

Remark 4.1

We consider triples instead of nodes to ensure the consistencies of the reference

cardinality deőnition (Deőnition 4.2) for shapes containing more than 1 constraint:

i.e., one node is assessed against all constraints and can involve more than one

violation.
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The modelling based on the SHACL validation process is deőned as follows: let X

a random variable which conceptualises a set of observations (i.e., RDF triples) from

the SHACL validation of a shape s. A single tested triple t ∈ υs for which the SHACL

validation deőnes whether t is consistent. Considering the assumption that a SHACL

validation is a set of n experiences (and so n = υs) and p the physiological error propor-

tion, an RDF triple t that violates s is a success of the considered experience, otherwise

it is a failure:

∀t ∈ υs, t ∧ s ♣= ⊥ =⇒ X = 1

∀t ∈ υs, t ∧ s ⊭ ⊥ =⇒ X = 0

Consequently, applying a Bernoulli distribution seems an intuitive idea for computing

the probability of a triple t being a success or a failure when validated against a shape s

considering a physiological error proportion p:

x ∈ ¶0, 1♢, P(X = x) = px(1− p)(1−x)

Considering the SHACL validation of RDF triples targeted by a shape s i.e., υs, the

Binomial distribution models this probabilistic approach. Let assume n experiences, p

the probability of success and X ∼ B(n, p), the probability to obtain k success among n

experiences is:

∀k ∈ ¶0, 1, . . . , n♢, P(X = k) =
)︄n

k

[︄

· pk · (1− p)n−k

Considering the SHACL validation of a shape s, X ∼ B(♣υs♣, p) for which we deőne

the likelihood measure Lk as the plausibility to obtain exactly k violations is presented

in Deőnition 4.4.

Definition 4.4: The likelihood of a shape

The likelihood to observe a number of violations ♣υ−
s ♣ among the RDF triples targeted

by a shape s, i.e. ♣υs♣, considering X ∼ B(♣υs♣, p) is:

L♣υ−
s ♣ = P(X = ♣υ−

s ♣) =
⎞

♣υs♣

♣υ−
s ♣

⎡

· p♣υ−
s ♣ · (1− p)♣υ+

s ♣, L♣υ−
s ♣ ∈ [0, 1]
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[ a sh:ValidationReport ;

sh:conforms boolean ;

[...]

# Probabilistic SHACL extension

psh:summary [

a psh:ValidationSummary ;

psh:referenceCardinality ♣υs♣ ;
psh:numConfirmation ♣υ+

s ♣ ;
psh:numViolation ♣υ−

s ♣ ;
psh:generality G(s) ;

psh:likelihood L|υ−
s

| ;

psh:focusShape s
] ;

] .

Figure 4.1: Structure of the extended SHACL validation report of a shape s

4.2.2 Extension of the SHACL Validation Report Model

We propose an enriched model of the SHACL validation report to express additional

information for each shape considered in the report. We deőned an extension to the

SHACL validation report vocabulary denoted by preőx psh.2

As a SHACL validation report considers the conformity of an RDF data graph against

a shapes graph S and possibly ♣S♣ > 1, we deőne the focus shape property presented

in Deőnition 4.5. For each source shape s considered in the validation of an RDF data

graph, we generate a psh:summary property that links the validation report to a blank

node of type psh:ValidationSummary. This blank node is the subject of several

properties whose values result from probabilistic metrics.

Definition 4.5: Focus shape property

The focus shape is the value of property psh:focusShape. It is the source shape

s of the validation result further described in the validation summary.

Regarding the assessment of a shape s, the blank node of type psh:ValidationSummary

includes the following properties:

ś the reference cardinality ♣υs♣ (Deőnition 4.2) is the value of the property

psh:referenceCardinality

2prefix psh: <http://ns.inria.fr/probabilistic-shacl/>

http://ns.inria.fr/probabilistic-shacl/
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ś the number of confirmations ♣υ+
s ♣ and the number of violations ♣υ−

s ♣ (Deőnition 4.3)

are the values of properties psh:numConfirmation and psh:numViolation

ś the likelihood L♣υ−
s ♣ (Deőnition 4.4) is the value of property psh:likelihood

ś the generality G(s) (Deőnition 4.6) is the value of property psh:generality

Fig. 4.1 presents the structure of the extended SHACL validation report, i.e., how

the extension works with other standard information in the validation report.

Definition 4.6: The generality of a shape

The generality G(s) measures the representativeness of a shape s, i.e., the number

of RDF triples targeted by a shape ♣υs♣ divided by the number of triples in the RDF

data graph ♣υ♣:

G(s) = ♣υs♣
♣υ♣

, G(s) ∈ [0, 1]

An extended example of an extended SHACL validation report is presented in the

Appendix (Fig. B.1): it considers the validation of a shape s1 (represented by the IRI

:s1) against an RDF data graph υ where ♣υ♣ = 1, 000 under the assumption that the

physiological error proportion of υ is 10%, i.e., p = 0.1. We assume υs1
= 200 and 22

violations against the shape (i.e., ♣υ−
s1
♣ = 22 and so ♣υ+

s1
♣ = 178). Consequently, the

extended SHACL validation computes the likelihood metric:

L♣υ−
s1

♣ = P(X = 22) =
)︄200

22

[︄

· 0.122 · (0.9)178 ≈ 0.081

At the same time, it deőnes the generality value:

G(s1) = 200
1000 = 0.2

The proposed ontology, describing the extended SHACL validation report vocabulary,

has been published in Linked Open Vocabulary 3 and the documentation is available

here. 4

4.2.3 Data Graph Validation Against a Shape as a Hypothesis Test

The previous section relies on a probabilistic model of the standard SHACL validation as

the assumption that the validation follows a binomial distribution, i.e., X ∼ B(♣υs♣, p).

3https://lov.linkeddata.es/dataset/lov/vocabs/psh
4https://ns.inria.fr/probabilistic-shacl/

https://lov.linkeddata.es/dataset/lov/vocabs/psh
https://ns.inria.fr/probabilistic-shacl/


4.2 – 4.2.3 Data Graph Validation Against a Shape as a Hypothesis Test 63

However, this assumption on the SHACL validation, implying the estimation of the

physiological error proportion p in an RDF data graph (possibly deőned empirically),

must be assessed to ensure the consistency of our assumption (as it can lead to incorrect

conclusions). We propose an approach based on hypothesis testing, more speciőcally the

testing for Goodness of Fit, to assess the obtained validation results of a shape s against

the physiological error proportion estimation. Consequently, we deőne the null hypothesis

H0: łthe RDF data υs follow a binomial distribution with the given error ratež and the

alternate hypothesis H1: łthe RDF data υs do not follow a binomial distributionž:

H0 : X ∼ B(♣υs♣, p)

H1 : X ≁ B(♣υs♣, p)

Let pŝ be the observed proportion of violations from the SHACL validation of a shape

s, i.e., pŝ = ♣υ−
s ♣

♣υs♣ . We assess the proportion pŝ against the estimated physiological error

proportion p and we propose to accept H0 if the observed error proportion of a shape pŝ

is lower than or equal to the physiological error proportion,

pŝ ≤ p =⇒ υ ♣= s

Regarding the case for which the proportion of violations observed pŝ is higher than

the estimation, we are interested in the signiőcance of this gap: is the difference significant

enough to reject the null hypothesis H0?

The testing of Goodness of Fit is deőned as follows: let X2
s the test statistic for a

shape s which follows a Chi-square distribution assuming H0, i.e. X2
s ∼ χ2

k−1,α with

k−1 degrees of freedom and a level of signiőcance 1−α. This test is performed at the α

level of signiőcance deőned at 5%. It considers k the total number of groups, i.e. k = 2,

ni the observed number of individuals for each group and Ti the theoretical number of

individuals for each group:

X2 =
√︂k

i=1
(ni−Ti)

2

Ti
∼ χ2

k−1;α

Let n1 be the observed number of violations ♣υ−
s ♣, T1 the theoretical number of viola-

tions denoted ♣υ−
s ♣
ˆ , n2 the observed number of conőrmations ♣υ+

s ♣ and T2 the theoretical

number of conőrmations denoted ♣υ+
s ♣
ˆ where the Ti values strictly depend on the reference

cardinality of a shape and the physiological error rate:

T1 = ♣υ−
s ♣
ˆ = p× ♣υs♣
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T2 = ♣υ+
s ♣
ˆ = (1− p)× ♣υs♣

Finally, we deőne X2
s the test statistic of a shape s in Eq. (4.1).

Equation 4.1: Test statistic of a shape

X2
s =

√︂k
i=1

(ni−Ti)
2

Ti
= ♣υ−

s ♣−♣υ−
s ♣ˆ

♣υ−
s ♣ˆ + ♣υ+

s ♣−♣υ+
s ♣
ˆ

♣υ+
s ♣
ˆ

Remark 4.2

The testing for Goodness of Fit (Formula (4.1)) is applicable if and only if:

∀i ∈ [1, k], Ti ≥ 5

i.e., ♣υ−
s ♣
ˆ ≥ 5 and ♣υ+

s ♣
ˆ ≥ 5

The critical region, i.e. the rejection region of H0, is deőned by the value χ2
k−1;α.

Considering α = 0.05 and k = 2, we deőne the critical value:

χ2
k−1;α = χ2

1;α=0.05 = 3.84

Let Ia the acceptance interval of a χ2 distribution with k = 2 and α = 0.05, i.e.

Ia = [0, χ2
k−1;α] = [0, 3.84] which accepts H0 if X2

s ∈ Ia (or X2
s ≤ χ2

k−1;α), the acceptance

of H0 implies the acceptance of a shape. The criteria are presented in Deőnition 4.7.

Definition 4.7: Acceptance of a shape

The acceptance of H0, i.e., X ∼ B(♣υs♣, p), relies on the observed violations propor-

tion pŝ and the test statistic value X2
s (i.e., Ia ∈ [0, 3.84]):

pŝ ≤ p or X2
s ∈ Ia =⇒ υ ♣= s

If the Remark 4.2 is not satisőed, the testing for Goodness of Fit cannot be estab-

lished and pŝ is the only criterion used:

pŝ ≤ p =⇒ υ ♣= s

pŝ > p =⇒ υ ⊭ s
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Figure 4.2: Acceptance zone of shape s1, considering X ∼ B(♣υs1
♣, p) where ♣υs1

♣ = 200 and

p = 0.1.

The Fig. 4.2 presents a practical example of the acceptance zone of the SHACL shape

s1 presented in Fig. B.1: we observe that the observed proportion of violations is slightly

higher than the physiological error proportion, i.e., ps1
ˆ =

♣υ−
s1

♣

♣υs1
♣ = 0.11 and so ps1

ˆ > p.

The testing for Goodness of Fit is applicable for s1 because ♣υ−
s1
♣ˆ = 0.1 × 200 = 20 ≥ 5

and ♣υ+
s1
♣ˆ = 0.9× 200 = 180 ≥ 5 (see Remark 4.2).

Let X2
s1

be the test statistic of shape s1. We accept H0 (and accept the shape) if

X2
s1
∈ Ia (with α = 0.05), we reject it otherwise:

X2
s1

= (22−20)2

20 + (178−180)2

180 = 4
20 + 4

180 ≈ 0.222

The test statistic demonstrated that X2
s1
≤ 3.84 and so X2

s1
∈ Ia. Consequently, we

accept H0 with a level of signiőcance of 95% and we accept the shape s1.

4.3 Experiments

The probabilistic framework assumes that the RDF triples tested during the validation of

a shape follow a binomial distribution. Hypothesis testing (i.e., testing for Goodness of

Fit) validates the consistency of these assumptions. At the same time, we are exploring

whether this approach can capture the knowledge domain more comprehensively, i.e.,

a wider range of accepted shapes that are consistent despite observed violations from

validation reports. Considering a shape graph representative of an RDF dataset, we are
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proposing the search for a physiological error proportion p for which it is reasonable to

consider the acceptance of shapes on a subset of the global RDF dataset.

We conducted the experiments on a subset of the Covid-on-the-Web RDF

dataset5 [MGAK+20] against a set of 377 SHACL shapes obtained from a translation of

the experimental results of Cadorel et al. [CT20] which are considered as representative

shapes of the global Covid-on-the-Web dataset.

We run the probabilistic SHACL validation engine implemented in the Corese se-

mantic web factory [Cé23] to assess the shapes graph against the considered RDF data

subgraph, conducting an analysis of the theoretical error rate to őnd an optimal rate.

We assume the values of p empirically such that p ∈ ¶0.05, 0.1, 0.15, . . . , 0.95, 1♢, i.e., 20

values for p to be tested.

The experiments were performed on a Dell Precision 3561 equipped with an Intel(R)

11th Gen Core i7-11850H processor, with 32 GB of RAM running under the Fedora Linux

35 operating system. The source code is available in a public repository.6

4.3.1 Covid-on-the-Web Dataset

Covid-on-the-Web is an RDF knowledge graphs produced from COVID-19 Open Re-

search Dataset (CORD-19). It contains 1, 361, 451, 364 RDF triples relying on 111, 256

scientific articles, described by URIs and named entities (NE) identiőed in these articles,

disambiguated by Entity-Fishing and linked to Wikidata [MGAK+20].

Table 4.1: Summary of the Covid-on-the-Web RDF subgraph.

♣υ♣ #distinct articles #distinct NE avg. #NE per article

226, 647 20, 912 6, 331 10.52

We exploited the results obtained in previous works [CT20] by extracting articles

URIs, their related named entities and labels: scientiőc articles are associated with their

NE by the predicate rdf:type. Fig. 4.3 shows a subset of RDF triples contained in the

subgraph (in turtle format), and the characteristics of the RDF dataset are presented in

Table 4.1. The RDF dataset contains 18.79% of the global set of scientiőc articles and

0.01% of the global set of named entities.
5https://github.com/Wimmics/CovidOnTheWeb
6https://github.com/RemiFELIN/RDFMining/tree/eswc_2023

https://github.com/Wimmics/CovidOnTheWeb
https://github.com/RemiFELIN/RDFMining/tree/eswc_2023
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@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix covid: <http://ns.inria.fr/covid19/> .

@prefix entity: <http://www.wikidata.org/entity/> .

# Scientific articles

covid:ec1...2c5 rdf:type entity:Q4407 .

covid:fff...86d rdf:type entity:Q10876 .

[...]

# Labels of named entities

entity:Q4407 rdfs:label "methyl"@en .

entity:Q10876 rdfs:label "bacteria"@en .

Figure 4.3: Example of RDF data extracted from Covid-on-the-Web in turtle format.

4.3.2 Shapes Graph

From the experimental results of Cadorel et al. (i.e., association rules that we consider

as representative of the whole RDF dataset), we extracted the named entities corre-

sponding to the antecedent and the consequent labels of these association rules. We

have carried out a treatment7 allowing the conversion of these rules into SHACL shapes.

First, we target scientiőc articles belonging to an NE, representing the antecedent, with

the property sh:targetClass. Among the targeted articles, we assessed their affili-

ation to another NE, representing the consequent : We apply a constraint to the article

type by targeting an NE using the property sh:hasValue. Any violation will invoke a

sh:HasValueConstraintComponent violation. Figure 4.4 presents an example of a

used shape.

4.4 Results

The global results (i.e., non-dependant of the physiological error proportion p) are pre-

sented in Table 4.2. We observe that the average number of triples tested during the

validation of the subgraph against the shapes graph is very low, impacting the average

generality value: it represents 0.05% of the whole graph. Moreover, 68.9% of tested

triples are violations: it supports the assumption that the sub-graph is incomplete and

highlights the interest of a probabilistic evaluation of the RDF data by varying p error

rates and understanding what we can consider a reasonable error rate.
7The treatment is extensively detailed in the public repository:

https://github.com/RemiFELIN/RDFMining/tree/eswc_2023/AR-SHACL

https://github.com/RemiFELIN/RDFMining/tree/eswc_2023/AR-SHACL
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@prefix : <http://www.example.com/myDataGraph#> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix entity: <http://www.wikidata.org/entity/> .

:1 a sh:NodeShape ;

sh:targetClass entity:Q10295810 ;

sh:property [

sh:path rdf:type ;

sh:hasValue entity:Q43656 ;

] .

Figure 4.4: Example SHACL shape representing an association rule with

entity:Q10295810 ("hypocholesterolemia"@en) as an antecedent and

entity:Q43656 ("cholesterol"@en) as a consequent.

Table 4.2: Results obtained from the probabilistic validation report

Metric Value

avg. ♣υs♣ 106.69
avg. ♣υ+

s ♣ 33.19
avg. ♣υ−

s ♣ 73.50

As the likelihood and the test statistic values depend on the physiological error pro-

portion p, they are represented, respectively, in Fig. 4.5a and Fig. 4.5b. Intuitively, the

evolution of the likelihood value suggests a "bell-shaped curve" for which the maximal

average value (0.036%) is obtained with a physiological error proportion p = 0.5 (50%),

which appears to be the most reasonable error rate.

Fig. 4.6 shows the decisions made regarding shapes (acceptance or rejection) based

on the theoretical error proportion p, highlighting the signiőcance of hypothesis testing:

the number of tests conducted increases until p = 0.3, after which it begins to decrease.

Similarly, hypothesis testing tends to reject shapes for łsmallž values of p, but as p

increases, the number of accepted shapes rises, and the test statistic value decreases

(refer to Fig. 4.5b).

Considering the physiological error proportion that maximises the likelihood value,

i.e., p = 0.5, it appears that 245 shapes require a hypothesis test to decide their accep-

tance: most of them are rejected (182) whereas shapes that are accepted with a hypothesis

test represent 33.7% of the total accepted shapes (187 accepted shapes).

In addition, the extended SHACL validation reports are presented in HTML format

with an STTL transformation [CF15]. STTL is an extension to the SPARQL query
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(a) L|υ−
s

| average (b) X2
s average

Figure 4.5: Average value of (a) likelihood measures and (b) statistic test as functions of the

theoretical error proportion p.

language to transform RDF in any template-speciőed text result format (e.g., CSV,

HTML, . . . ), which is populated with the results of a SPARQL query. Consequently, we

extract values from the extended validation reports to produce an HTML page, presenting

the report’s results in a table. Fig. 4.7 presents an excerpt of 20 out of 377 results obtained

for a theoretical error proportion p = 0.5.

As a őrst step in comparing computation times of the probabilistic validation against

the standard validation, we measure the time spent (wall clock) to assess the Covid-on-

the-Web subgraph against the shapes graph using both probabilistic and standard vali-

dation methods. We notice that the probabilistic validation framework took 95 seconds

to complete, while the standard validation took 89 seconds: the probabilistic framework

takes 6.31% more time than standard validation. Despite the fact that this increased

time appears to be linear, a more in-depth analysis (e.g., CPU time analysis) is needed

to come to a conclusion on this question.

4.5 Conclusion

In this chapter, we have introduced a probabilistic framework for SHACL validation.

We extend the SHACL validation report by proposing a probabilistic model and an

extended vocabulary to express additional information, such as the likelihood measure.

Additionally, we propose a decision model for the acceptance of probabilistic assumptions.

The experiments demonstrated the approach’s capabilities to validate a real-world RDF

dataset against a set of SHACL shapes while accepting a reasonable error rate of p.

As future work, we plan to extend our proposed framework to complex shapes: e.g.,

recursive shapes which are the focus of ongoing research [CRS18, ACO+20], SHACL
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Figure 4.6: Shapes acceptance as a function of the theoretical error proportion p (HT= Hypoth-

esis Testing).

Figure 4.7: SHACL validation report in HTML format for p = 0.5.
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shapes that express more than one constraints, . . . . We also plan to investigate the

automatic extraction or generation of SHACL shapes from reference RDF datasets to

capture domain knowledge as constraints.

This probabilistic framework has opened up the perspective of an evolutionary dis-

covery of candidate shapes (to capture domain knowledge as constraints) that takes into

account physiological errors in RDF data graphs. This is further discussed in the next

chapter.





CHAPTER 5
An Algorithm Based on
Grammatical Evolution
for Discovering SHACL

Constraints
5.1 Introduction

We are interested in discovering SHACL shapes that express domain constraints from

RDF data graphs. As SHACL is a relatively new language, real-world data graphs

have few associated SHACL shapes, which motivated the following research question

(RQ4): How to discover SHACL shapes from RDF data automatically? We suggest that

a generative approach for the automatic construction of candidate shapes using RDF

data is one of those that can fulől this purpose. To this end, we propose an evolutionary

discovery of candidate shapes based on Grammatical Evolution using the probabilistic

framework presented in Chapter 4 for assessing candidate shapes during the SHACL

validation, which is required because of the heterogeneity and incompleteness inherent

in open RDF data.

This chapter focuses on an algorithm based on Grammatical Evolution for generating

candidate SHACL shapes using BNF grammar and RDF data as input. The approach

addresses the limitations regarding the kind of SHACL shapes that can be extracted

from an RDF data graph.

While the GE approaches presented in Section 2.3 have been tested on well-known

benchmarks, e.g., Santa Fe Trail, Boston Housing, . . . their applicability on RDF data

mining has not yet been demonstrated. Only Nguyen and Tettamanzi have proposed

73
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an adaptation of GE for discovering OWL disjointness axioms [NT19a] and complex

disjointness axioms [NT20c], with some promising results.

The remainder of this chapter is organized as follows: Section 5.2 presents the BNF

grammar design to build well-formed candidate SHACL shapes. Section 5.3 focuses on

the őtness function (Section 5.3.2) based on the probabilistic framework by deőning an

acceptability measure (Section 5.3.1). A recombination operator responding to the redun-

dancy problem and variation operators is presented in Section 5.4. Section 5.5 presents

the experiments carried out on the Covid-on-the-Web subgraph (see Section 4.3.1). The

results of our experiments are presented in Section 5.6, and we conclude the chapter in

Section 5.7.

5.2 BNF Grammars of SHACL Shapes

We propose an extensive method for writing BNF grammars in order to produce and

exploit well-formed SHACL shapes as individuals in an evolutionary process. We deőned

a BNF grammar compliant with the SHACL W3C recommendation [KK17] in Fig. 5.1 to

produce shapes targeting nodes of a speciőed class (sh:targetClass) and constraining

them to be linked through the predicate rdf:type to another speciőed class.1 This

grammar provides both the phenotypic and genotypic characterization for each individual

through a set of static rules and dynamic rules. The dynamic rules system, proposed by

Nguyen and Tettamanzi [NT19a, NT20c], allows the mapping between rules and RDF

data using SPARQL queries to build candidate disjointness axioms.

The static rules are the immutable components of the phenotypic character. In con-

trast, the dynamic rules are the problem instance-dependent components of the pheno-

typic character, where each rule has one or many possible values (i.e., RDF nodes), and

a genotype identiőes each value. However, the dynamic rules (proposed by Nguyen and

Tettamanzi) were hard-coded in their system, limiting their approach to speciőc kinds

of RDF nodes in the RDF data graph. For this reason, we extended the dynamic rules

design by directly enabling the user to write embedded SPARQL queries as values of

one or more production rules in the grammar to perform the mapping with the desired

granularity. The whole process is presented in Fig. 5.2.

To illustrate, in Fig. 5.1, the <Class> non-terminal is deőned by a dynamic rule to

extract all possible classes from the RDF dataset using a SPARQL query: the keyword

SPARQL is used to specify the query graph pattern to be matched on RDF data. The

query results are the set of nodes in the RDF data graph C bound to variable ?Class
1It should be noted that the two classes may be the same
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<Shape> := "a " <NodeShape>

<NodeShape> := "sh:NodeShape; " <ShapeBody>

<ShapeBody> := "sh:targetClass " <Class> "; "

<ShapeProp>

<ShapeProp> := "sh:property [ " + <PropBody> " ] ."

<PropBody> := "sh:path rdf:type ; sh:hasValue " <Class> " ;"

<Class> := "SPARQL ?x rdf:type ?Class"

Figure 5.1: An extract of the BNF grammar for SHACL shapes

in the query graph pattern: C = ¶ci, i ∈ [1, n]♢. Finally, the initial rule (i.e., "SPARQL

?x rdf:type ?Class") is replaced by the SPARQL results C, i.e., c1 ♣ c2 ♣ · · · ♣ cn.

Using the BNF grammar presented in Fig. 5.1, the genotype of an individual is a

pair of codons [i, j], which are decoded into two classes (ci, cj) from the dataset using a

classic genotype-phenotype mapping, and produce the following phenotype structure:

"a sh:NodeShape ; sh:targetClass ci ; sh:property [ sh:path rdf:type ;

sh:hasValue cj" ; ] ."

It is noteworthy that the proposed grammar can be extended to produce a wider array

of SHACL shapes using a variable-length template, e.g. replacing the rule <ShapeProp>

from Fig. 5.1 by:

<ShapeProp> := <Prop> <ShapeProp> | <Prop>

<Prop> := "sh:property [ " + <PropBody> " ] ."

Such an extended grammar would produce SHACL shapes specifying one or more

constraints (depending on the chosen length). Every kind of target declarations2 can be

exploited as well (see Fig 5.3).

5.3 Probabilistic SHACL Validation as a Fitness Function

5.3.1 Acceptability Function of Candidate Shapes

In order to iteratively produce a őnal population of SHACL shapes expressing some

domain constraints that are implicit in an RDF dataset, we propose a őtness function
2https://www.w3.org/TR/shacl/#targets

https://www.w3.org/TR/shacl/#targets
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Figure 5.2: Dynamic rules process based on the BNF grammar presented in Fig. 5.1

<ShapeBody> := <ClassTarget> | <SubjOfTarget> |

<ObjOfTarget> | <NodeTarget>

<ClassTarget> := "sh:targetClass " <Class> "; " <ShapeProp>

<SubjOfTarget> := "sh:targetSubjectsOf " <Property> "; " <ShapeProp>

<ObjOfTarget> := "sh:targetObjectsOf " <Property> "; " <ShapeProp>

<NodeTarget> := "sh:targetNode " <Node> "; " <ShapeProp>

Figure 5.3: Extended BNF grammar: build candidate shapes with different types of targeting
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based on an acceptability measure of a shape combined with the probabilistic framework

discussed in Chapter 4 to assess the credibility of candidate shapes using RDF facts.

The acceptability of a SHACL shape s, denoted A(s), depends on the observed error

proportion p̂s (Deőnition 4.1) when validating an RDF dataset against s: A(s) ∈ [0, 1]

is deőned in Eq. (5.1).

Equation 5.1: Acceptance of a candidate shape

A(s) =

∏︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋃︂

1 if pŝ ≤ p or X2
s ∈ Ia (Deőnition 4.7)

L
|υ−

s |

P(X=♣υs♣×p)
otherwise (Deőnition 4.4)

In the case where the null hypothesis is rejected: A(s) ̸= 1, which means that s

is not acceptable, but it may be considered in the grammatical evolution algorithm for

crossover or mutation operations. In this context, A(s) represents the likelihood of s

(L♣υ−
s ♣) normalised by the maximal value of the probability mass function for a binomial

distribution X ∼ B(♣υs♣, p). This normalisation ensures a more balanced distribution of

A(s) values between 0 and 1, in contrast to the sole likelihood value L♣υ−
s ♣ and therefore

avoids excessively penalising individuals who are łclosež to being acceptable but for

whom the likelihood is very low, as depicted in Fig. 5.4.

(a) with A(s) = L|υ−
s

| (b) with A(s) =
L

|υ
−
s

|

P(X=p×|υs|) (normalisation)

Figure 5.4: Example of the acceptance A(s) values definition

5.3.2 Fitness Function of Candidate Shapes

The fitness function of a SHACL shape s, F (s) combines its acceptability A(s) (see

Eq. (5.1)) and the cardinality of its conőrmations ♣υ+
s ♣ as a łsupportž: it is deőned in
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Eq. (5.2). Consequently, the best individuals are those that have been accepted with

many RDF facts conőrming the candidate shape. Fig. C.2 presents a candidate shape’s

overall őtness computation process.

Equation 5.2: Fitness function of a candidate shape

F (s) = ♣υ+
s ♣ × A(s)

5.4 Variation and Recombination Operators

In this paper, we adapt the main components of the GE variation operators to discover

SHACL shapes over RDF facts to consider the issues of the redundancy and low locality.

(a) Swap Crossover of Pi and Pj

(b) Int Flip Mutation of parent Pi

Figure 5.5: Representation of GE operators and their probabilities of occurrence
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The redundancy is observed when many genotypes map the same phenotype expres-

sion [LFPC17]. Based on this fact, we adapt the recombination phase to őlter every

offspring by performing a phenotypic comparison: Algorithm 4 presents the recombi-

nation of selected individuals S among the whole population P (E represents the elite

individuals). Line 12 of the Algorithm 4 depicts the criteria: an offspring i is integrated

into R if the phenotypic expression of i is not already observed among the elitist individ-

uals E and the replacement individuals R. As a consequence, we overcome the reŕection

of the redundancy issue in the őnal population: ∀i ∈ P,∄j ∈ P : i ≡ j.

Algorithm 4 Recombination of a population P

Input: elite individuals E and selected individuals S
Output: replacement populationR

1: R ← ¶♢
2: while ♣R♣ ≠ ♣P♣ − ♣E♣ do
3: C ← ¶♢
4: p1 ← S[random() ∗ ♣S♣]
5: p2 ← S[random() ∗ ♣S♣] # random() ∗ ♣S♣ as integer

6: if p1 ̸= p2 then
7: C ← p1 ∪ p2

8: C ← crossover(C) # Figure 5.5a

9: C ← mutation(C) # Figure 5.5b

10: for i ∈ C do
11: # Phenotypic comparison

12: if i /∈ E ∪ R and ♣R♣ ≠ ♣P♣ − ♣E♣ then
13: R ← R∪ i
14: end if
15: end for
16: end if
17: end while
18: returnR

The locality issue relies on the relationship between the selected rules from parent

to offspring. As illustrated in Fig. 5.5, certain results from the variation operators may

result in a low locality, meaning a signiőcantly different offspring, while others may lead

to a relatively strong locality. Considering the grammar in Fig. 5.1, a change in the őrst

codon, impacting the target class value (sh:targetClass) ci, can have a signiőcant

impact on the meaning of the phenotypic trait. This is because SHACL validation is

carried out on the nodes instantiating ci: replacing ci with a new production rule (e.g.,

c′
i) leads to a locality as low as the proximity between ci and c′

i (e.g., common instances).

On the other hand, modifying the last codon has a lower impact on SHACL validation,
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as the targeted nodes remain the same, leading to a reasonably strong locality, even if

the meaning of the phenotype differs.

To measure the evolution of the population through each recombination phase, we

propose the population development rate metric Pdev
i : Let Pi−1 and Pi the population

at generations i− 1 and i (i.e., measurable after the őrst recombination of the evolution-

ary process), the population development rate Pdev is the rate of different individuals

(phenotypic comparison) between Pi−1 and Pi (see Eq. (5.3)).

Equation 5.3: Population development rate

Pdev
i = ♣Pi\Pi−1♣

♣Pi♣
, Pdev

i ∈ [0, 1]

5.5 Experiments

To validate the proposed approach, we consider the discovery of credible candidate shapes

representing association rules (see Section 4.3.2) between Wikidata named entities, i.e.,

rules of the form X → Y, from the Covid-on-the-Web RDF data graph presented in Sec-

tion 4.3.1. We use the BNF grammar presented in Fig. 5.1 to generate candidate shapes:

each candidate involves a őrst Wikidata entity, i.e., the antecedent called X , and target

nodes n (referring to scientiőc articles) instances of X using the sh:targetClass prop-

erty. The proposed constraint veriőes if these nodes are also typed by a second Wikidata

entity, i.e., the consequent, called Y, using the sh:hasValue constraint applied on the

rdf:type property. A concrete example of candidate shape is presented in Fig. 4.4.

In these experiments, our main focus was on achieving various acceptable shapes

through the discovery process. Although it is clear that using resource-intensive param-

eters (like large population size and high effort) would provide the best results, we opted

for a more balanced set of parameters to minimize computation time.

We used an implementation of the presented algorithm combined with the probabilis-

tic SHACL validation engine implemented in the Corese semantic Web factory [Cé23].

We considered a theoretical error proportion p = 0.5 (i.e., physiological error) according

to the experimental results discussed in Chapter 4: this value p maximises the average

value of the likelihood measure L.

The experiments have been performed on a server equipped with an Intel(R) Xeon(R)

CPU E5-2637 v2 processor at 3.50GHz clock speed, with 172 GB of RAM, 1 TB of disk

space running under the Ubuntu 20.06.4 LTS 64-bit operating system.
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5.5.1 A Recall Measure for Acceptable Shapes Coverage

The recall R of our algorithm is deőned to assess the ability of our approach to őnd

acceptable candidates in the solution space of the deőned problem. The recall provides

the rate of distinct and acceptable solutions found by our algorithm over the total number

of acceptable solutions, denoted A. Let Ω be the set of all possible pairs (X , Y) of

distinct named entities extracted from the Covid-on-the-web dataset. Considering the

dataset characteristics presented in Table 4.1, the total number of possible solutions is

deőned as:

♣Ω♣ = 6, 331× 6, 330 = 40, 075, 230

We sample a random subset of Ω, denoted Ω′ (i.e., Ω′ ⊆ Ω), to estimate the number of

acceptable shapes in Ω. The Cochran formula is used to compute the minimal cardinality

♣Ω′♣ while ensuring the representativity of the subset:

♣Ω′♣ = z2×p×(1−p)
m2 = 2.582∗0.52

0.022 ≈ 4, 161

where z ≈ 2.58 is the standard normal z-table with a conődence level of 99%, m = 0.02

(2%) is the tolerated margin of error and p = 0.53 the probability that the candidate

shape is acceptable. 4, 161 distinct candidate shapes have been randomly generated

and evaluated against the Covid-on-the-Web subgraph using the probabilistic SHACL

validation with a physiological error rate p = 0.5: the results show that only 2 shapes in

Ω′ have been accepted, i.e., 0.05% of the total. The total number of acceptable shapes

♣A♣ is thus estimated:

♣A♣ ∼= ♣Ω♣ × 0.0005 = 20, 037.6

The recall of our algorithm, denoted R(x), measures how effectively the acceptable

shapes x cover the set of acceptable solution space A, as deőned in Eq. (5.4).

Equation 5.4: Recall measure

R(x) = x
♣A♣
× 100, R(x) ∈ [0, 1]

3which is unknown in this context, so p = 0.5
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5.6 Results

5.6.1 ♣P♣/E choice

We assessed our approach with manually deőned small population sizes (i.e., ♣P♣) and

quite low effort values E, and we analysed the effects of the ratio ♣P♣/E. This corresponds

to verifying if our algorithm can őnd credible and surprising candidate shapes using a

minimum investment of CPU time. Consequently, we performed 10 executions of our

algorithm using the different parameter settings presented in Table 5.1 (i.e., 90 in total)

and analyzed the őnal whole population P and the őnal elitist subset E (E ⊆ P). Each

conőguration has been assessed regarding the following metrics:

ś the average őtness value: F

ś the average rate of accepted shapes: %A

ś the average CPU time (in ms) for evaluating an individual: T

ś the average recall: R

Table 5.1: Used parameters to analyse the impact of ♣P♣/E choice.

Parameters Value(s)

GE

♣P ♣ {100; 200; 500}

E {5, 000; 10, 000; 20, 000}

% Selection (E) 20%
% Selection (R) 40%
Selection type Tournament

% Tournament 25%
Crossover type - P Swap (Fig. 5.5a) - 75%
Mutation type - P Int Flip (Fig. 5.5b) - 5%

Probabilistic SHACL validation

Confidence level 1− α 95%
Physiological error rate p 50%

The results presented in Table 5.2 show that a gradual increase of the effort E tends

to enhance the global quality of candidate shapes into P: This is evident regarding the

metrics related to individual quality (F , %A, L and R) regardless of the population size

♣P ♣. This trend is clearer regarding the elitist part E . The evolution of the population
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development rate at each generation Pdev
i , presented in Fig. C.3, suggests that its value

tends to stabilise as the population size increases (regardless of effort E).
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Table 5.3: Mann-Whitney-Wilcoxon test: comparison between the results obtained for (♣P ♣ =
100; E = 20, 000) and (♣P ♣ = 200; E = 20, 000) with α = 5%.

From P From E
Metrics P-value Metrics P-value

F 0.528 F 0.529

%A 0.198 %A 0.210

L 0.684 L 0.796

T 0.631 T 0.076

R 0.037 R 0.028

Globally, it appears that smaller values of ♣P♣ with higher effort lead to the best

results. When comparing the results obtained with (♣P♣ = 100; E = 20, 000) and (♣P♣ =

200; E = 20, 000), there are many similarities, except for the proportion of acceptable

shapes in E (49.5% and 39.5% respectively). This is why a Mann-Withney-Wilconox test

was conducted for each metric to identify any differences in the results (see Table 5.3): the

test demonstrated that only the average recall R values from P and E were signiőcantly

different (< 0.05), indicating that the choice of (♣P♣ = 200; E = 20, 000) is the best one

for this measure.

5.6.2 Selection (R) pressure

We believe that analyzing selective pressure and understanding its impact on metrics

is best achieved by examining the population with the smallest size and the highest

effort, i.e. (♣P♣ = 100; E = 20, 000). As a result, we have explored various selection

types, including Scaled Roulette Wheel and Tournament, with the settings outlined in

Table 5.4.

The results obtained through the use of the Scaled Roulette Wheel selection are shown

in Table 5.5 and demonstrate that the metrics improve with a high selection rate (S =

60%), despite the scarcity of highly promising candidates. A high selection rate expands

the exploration of the solution space, leading to a notable disparity between the results

from P and the elitist subset E .

On the other hand, the results obtained with the Tournament selection, presented in

Table 5.6, highlight the same trend. With a selection rate of S = 20%, there is a minimal

overall difference in results between populations P and E , enhancing the homogeneity of

the population P. Conversely, a higher selection rate (S = 60%) signiőes a more diverse
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Table 5.4: Used parameters to analyse the impact of the selective pressure onR.

Parameters Value(s)

GE

♣P ♣ 100
E 20, 000
% Selection (E) 20%

Selection type {Scaled Roulette Wheel; Tournament}

% Selection (R) {20%; 40%; 60%}

% Tournament (Tour) {10%; 25%; 50%}

Crossover type - P Swap (Fig. 5.5a) - 75%

Mutation type - P Int Flip (Fig. 5.5b) - 5%

Probabilistic SHACL validation

Confidence level 1− α 95%
Physiological error rate p 50%

population (i.e., more heterogeneous), as the overall difference in results between P and

E is substantial. Comparing the average CPU time for the whole population P with

the average CPU time for the elite E demonstrates that a higher selection rate S leads

to signiőcant population diversity while maintaining an outstanding elite population.

This ensures high-quality elite shapes and a broad exploration of the overall population,

enabling the discovery of diverse and potentially interesting shapes.

Table 5.5: Results obtained using the Scaled Roulette Wheel selection and parameters presented

in Table 5.4: best result for each metric is in bold and second best underlined.

S = 20% S = 40% S = 60%

F 0.86± 1.06 1.78± 2.99 0.56± 0.16

%A 8.7± 3.83 7.3± 5.33 11.7± 3.06

L 7.85± 2.46 8.85± 1.89 8.25± 2.6
T 20.25± 6.26 19.86± 8.61 19.83± 5.78F

ro
m
P

R 0.04± 0.02 0.04± 0.03 0.06± 0.02

F 4.27± 5.29 8.87± 14.97 2.74± 0.8

%A 43.5± 19.16 36± 25.47 58± 14.94

L 24.33± 4.36 25.25± 5.5 23.94± 4.31
T 8.49± 1.29 7.77± 1.46 7.38± 1.19F

ro
m
E

R 0.04± 0.02 0.04± 0.03 0.06± 0.02
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Table 5.7: Overview of the distinct and acceptable shapes discovered from all the performed

experiments.

Metrics F L T R

Values 19.49 19.14 7.93 8.91

5.6.3 Acceptable shapes

We discovered a set of 1, 766 distinct and acceptable shapes among all the experiments we

conducted: an overview of these results is presented in Table 5.7. Some of these shapes

have been accepted despite a high violation rate (> 50%), but they can still be easily

validated: e.g., the candidate shape implying the following rule (gene expression

profiling → gene expression)4 is easily understandable and acceptable, despite

having a violation rate of 52.6%. Furthermore, 46.38% of the whole acceptable shapes has

been accepted after performing hypothesis testing, translating a signiőcant impact on the

acceptance of shapes and the mining process. However, some acceptable shapes require

validation from experts due to their complexity: e.g., the following rule (chemokine →

cytokine) has been manually validated after some research: łChemokines [...] are a

family of small cytokinesž5. However, some of them require an in-depth domain knowl-

edge to be validated: e.g., the rule (tlr9 → toll-like receptor).

Some discovered łvery well fitž candidate shapes impacts the standard deviation of

many values, e.g., F and %A (some of these are higher than the mean value): this is corre-

lated to some trivial shapes discovered with identical classes for the sh:targetClass

and the constraint sh:hasValue, which implies a perfect acceptance of these trivial

candidates (i.e., no possible violations), impacting their őtness values. These shapes

can be generated because of the selection of production rules using a modulo operator

and a quasi-infinite range for codon deőnition. However, this is a fairly rare occurrence:

we observe it among (only) 132 candidates from the 1, 766 acceptable shapes, which is

approximately 7.47%. This is why we suggest accepting a low occurrence of these shapes

being discovered (even if they are meaningless) to avoid any negative impact on exploring

the solution space.

The T value presented in Table 5.7 and the correlation between the number of vi-

olations and the CPU time presented in Fig. 5.6 suggest that the CPU time required

to invest in an evolutionary process is maximal at the beginning, then decreases as the
4Obtained results are SHACL shapes similar to the one presented in Fig. 4.4, this notation is used to simplify the

reading.
5https://en.wikipedia.org/wiki/Chemokine

https://en.wikipedia.org/wiki/Chemokine
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Figure 5.6: CPU time spent for the probabilistic SHACL validation of each discovered shape

considering the number of violations

average number of violations decreases (and therefore when the shapes become more and

more acceptable). Considering this expected evolution and the low average time, this

evolution demonstrates the relevance of this evolutionary approach to the discovery of

SHACL shapes over an RDF data graph and appears suitable for scalability.

5.7 Conclusion

In this chapter, we have presented a framework using an evolutionary algorithm based on

Grammatical Evolution to discover candidate SHACL shapes from a real-world RDF data

graph based on a manually deőned BNF grammar. The proposed algorithm effectively

responds to the redundancy issue by proposing an adaptation of the recombination phase,

but the low locality issue appears to be problem-dependent. The proposed approach aims

to tackle the requirement of a broad exploration of the wide search space of possible

SHACL shapes (discussed in Section 5.5.1) to discover acceptable ones. The framework

uses a probabilistic SHACL validation process with an acceptability measure and a őtness

function to assess candidate shapes and retain the best ones through the evolutionary

process while considering the physiological error proportion. The conducted experiments

have led to the discovery of a large set of acceptable candidate shapes while considering

a high physiological error rate. The őrst experiments show that a low population size
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and a high effort provide the best statistics on the discovered candidate shapes (average

őtness, average likelihood, . . . ). Based on these results, we analysed the selection pressure

by varying the type and the proportion of selected individuals for the recombination

phase. We have observed that these variations signiőcantly impact the homogeneity of

the population and its elite. Finally, our approach is able to capture credible SHACL

shapes, describing domain constraints from the Covid-on-the-Web RDF dataset.

In the next chapter, we present the web application we developed to set up and

manage the process of SHACL shape mining.



CHAPTER 6
RDFminer: a Tool to

Automatically Discover
Knowledge From RDF

Data Graph
6.1 Introduction

RDFminer is an open-source Web application that enables the automatic discovery of

SHACL shapes and OWL axioms through an evolutionary process. It takes an RDF data

graph and a BNF grammar as input, from which candidate individuals (i.e., axioms or

shapes) are randomly generated and assessed using the possibilistic framework presented

in Chapter 3 for candidate axiom assessment or the probabilistic framework presented in

Chapter 5 for candidate shape assessment. RDFminer provides an interactive interface

enabling users to launch, monitor and analyse their shape discovery projects in real-time.

This chapter is organized as follows: Section 6.2 presents the evolutionary discovery

of candidate shapes and axioms implemented in the RDFminer-core component. In

Section 6.3, we present the RDFminer Web application for monitoring the evolutionary

process. We conclude this chapter in Section 6.4.

6.2 Evolutionary Discovery of SHACL Shapes or OWL axioms

RDFminer-core is an API that exploits the evolutionary approach based on Gram-

matical Evolution presented in Chapter 5: its implementation relies on the GEVA

2.0 [OHG+11] Java library to exploit GE basic features and operators and on the

91
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Figure 6.1: RDFminer dashboard overview

Corese [Cé23] semantic Web factory to query and exploit RDF data throughout the

evolutionary process. Additionally, we use the multi-threading system presented in Sec-

tion 3.3.1 to assess individuals simultaneously.

GEVA is an open-source implementation of GE developed by UCD’s Natural Com-

puting Research & Applications group.1 Along with the typical genotype-phenotype

mapping feature, GEVA also includes a search engine and a basic GUI.2

The experiments presented in Section 3.4.2 and Section 5.5 have been performed with

RDFminer. Although the discovery of axioms is limited to subsumption SubClassOf

and disjointness DisjointClasses axioms (that can involve complex class expres-

sions), RDFminer can discover a wide range of constraints (i.e., shapes): it is only

limited by the type of constraints that the probabilistic framework can support.
1Documentation: http://ncra.ucd.ie/GEVA/geva.pdf
2GEVA GUI is not used.

http://ncra.ucd.ie/GEVA/geva.pdf
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Figure 6.2: Global architecture of RDFminer

6.3 A Web Application to Discover SHACL Shapes and OWL Ax-

ioms

Exploiting the RDFminer-core engine to discover SHACL shapes or OWL axioms is

essentially a łtrial-and-error ž process. That is why we developed a Web application

to provide the user with an interface that allows them to control the mining process

interactively: it enables them to parameterize and launch the discovery process, monitor

its execution, and inspect and analyze its results. The global view is depicted in Fig. 6.1.

The overall architecture of the application is depicted in Fig. 6.2. The components

are docker services that operate together within a docker-compose ecosystem.

* RDFminer-core3 is an API that exploits the evolutionary algorithm implemented

in Java. The server relies on implementing a RESTful web service using the JAX-

RS framework (i.e., Jetty4 server).

* RDFminer-front is built with VueJS 5, a Javascript framework, allowing for in-

teractive control of the mining process. Users can customize and initiate the dis-

covery process, supervise its progress, and examine results.
3RDFminer-core can be used independently of the other components through its API:

https://github.com/Wimmics/RDFminer/tree/main/RDFminer-core
4https://jetty.org/
5https://vuejs.org/

https://github.com/Wimmics/RDFminer/tree/main/RDFminer-core
https://jetty.org/
https://vuejs.org/
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* RDFminer-server provides web services for interaction between front and

core (with socket.io server for WebSockets transport that allows interactions

in real-time), and interactions with databases:

ś mongo: a MongoDB6 instance to store users data, projects settings and results

ś Redis-server: a Redis7 DB instance to manage the project execution queue

on the production server, i.e., one run at a time (for performance reasons)

The architecture has been deployed on a server equipped with an Intel(R) Xeon(R)

CPU E5-2637 v2 processor at 3.50GHz clock speed, with 172 GB of RAM, 1 TB of disk

space running under the Ubuntu 20.06.4 LTS 64-bit operating system.

6.3.1 Monitoring Dashboard

The connected user can discover axioms or shapes from a given RDF data graph by

creating a project and deőning the parameters of the mining process: the data graph, the

BNF grammar to be considered, and the hyper-parameters of the Grammatical Evolution

algorithm. The form8 is presented in Fig. 6.3, and the conőguration is inspired by

conducted experiments discussed in Section 5.5. As depicted in Fig. 6.1, the status of

the running project is updated in real-time and can be interrupted if needed, and the user

can access the Results view as well. At the end of the execution, the user can download

the SHACL shapes or OWL axioms in Turtle format and/or the complete results őle

(including individuals, their statistics and the algorithm’s statistics) in JSON format for

post-processing.

6.3.2 Result Analysis Dashboard

Due to the nature of the evolutionary mining process, the population of candidate shapes

or axioms evolves continuously. This dashboard enables users to consult and analyse

results in real-time, whether the evolution is ongoing or completed. In more detail, each

active project produces real-time results that can be examined using this dashboard.

Additionally, users can access completed projects through the dashboard. Throughout

each generation, the individuals and their statistics are displayed in a table (see Fig. 6.5),

which is composed of the following columns:
6https://www.mongodb.com/
7https://redis.io/
8the form parameters are rigorously detailed in the readme:

https://github.com/Wimmics/RDFminer/tree/main/RDFminer-core

socket.io
https://www.mongodb.com/
https://redis.io/
https://github.com/Wimmics/RDFminer/tree/main/RDFminer-core
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Figure 6.3: RDFminer project creation form popup
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Figure 6.4: RDFminer project details popup

ś the individual’s phenotype: Entity

ś its reference cardinality

ś its number of violations (or exceptions)

ś its number of confirmations

ś its likelihood measure if and only if the algorithm is used to discover SHACL

shapes

ś its fitness score: based on Eq. (3.6) for axioms and Eq. (5.2) for shapes

ś the acceptance decision: based on ARI measure (Eq. (3.5)) for axioms and A

measure (Eq. (5.1)) for shapes

The visualisations that enable an in-depth analysis of the algorithm’s performance

are shown in Fig. 6.6 and are organised as follows:

(A) The population evolution line chart describes the rate of individuals that differ

from one generation to the next one, i.e., the population development rate Pdev
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Figure 6.5: Entities (axioms or shapes) table

(see Eq. (5.3)), and the proportion of distinct individuals (i.e., distinct phenotypes)

within the population, respectively in blue and in yellow.

(B) The characteristics of the entities bubble chart provides information on the quality

of the individuals: a colour gradient from red to green indicates the degree to which

RDF data conforms to the candidate shape or axiom.

(C) The individuals with non-null fitness bar chart enables checking the number of

individuals with non-zero őtness over the generations.

(D) The fitness evolution line chart shows the average őtness value (in green) for each

generation and the median (in yellow) and maximum (in red) őtness values as well:

this makes it a more detailed analysis of the individual őtness evolution (and its

dispersion).

By providing these metrics to the user on demand, RDFMiner enables a real-time

analysis of the mining process, and therefore an effective way of supervising its execu-

tion: e.g., the user can decide to stop it if it appears to be stuck in a local optimum,

which means that the chosen hyper-parameters (e.g., those chosen in Fig. 6.3) of the

evolutionary algorithm do not lead to the discovery of a large set of relevant individuals.

6.4 Conclusion

In this chapter, we presented the RDFminer software for the evolutionary discovery of

OWL axioms and SHACL shapes from an RDF data graph. Its architecture enables the



98CHAPTER 6 — RDFminer: a Tool to Automatically Discover Knowledge From RDF Data Graph

Figure 6.6: Visualisation of the algorithm’s results

conőguration of the discovery process, launching a project, supervising its progress, and

inspecting the results in real-time. The presented charts provide a clear idea of the state

of progress of the algorithm in real-time, which can be further developed: e.g., bar chart

of recombination statistics for each generation (#crossover, #mutation, . . . ).

In addition, user tests are to be carried out to assess the software’s ergonomics and

how well the tool works in the main use cases, enabling us to identify improvement needs

and new functionalities arising from discussions.

The source code is available in a public repository9 and an RDFminer service is

available online.10 A tutorial video is available on the RDFminer website.11

9Source code: https://github.com/Wimmics/RDFminer
10Web application: https://ns.inria.fr/rdfminer/
11Tutorial video: https://ns.inria.fr/rdfminer/tutorial

https://github.com/Wimmics/RDFminer
https://ns.inria.fr/rdfminer/
https://ns.inria.fr/rdfminer/tutorial


CHAPTER 7
Conclusions &

Perspectives
7.1 Conclusions

In this thesis, we studied knowledge discovery from RDF data graphs, assuming that

this task could be done using a bottom-up approach. To this end, we have proposed an

evolutionary approach based on the use of standard semantic Web technologies combined

with evolutionary algorithms to:

* construct the new knowledge as individuals representing candidate solutions to the

given problem,

** fairly assess these candidate solutions using RDF facts,

*** discover a large set of credible solutions by retaining the best individuals over

iterations (or generations).

The proposed approach demonstrated that the algorithms based on Grammatical

Evolution were suited to the study, and their adaptation to semantic web standards

was a relevant working direction. We have deőned the research scope of this knowledge

in two speciőc categories: (1) Subsumption SubClassOf axioms, for which their class

expressions can be complex, and (2) SHACL shapes, composed of one hasValue con-

straint. It is important to note that the expressiveness of BNF grammars, a fundamental

component of GE, allows the framework of this knowledge to be extended much further.

Chapter 3 focuses on the evolutionary discovery of SubClassOf axioms. We started

by addressing the central issue of computing exceptions to a subsumption axiom under

the łopen-world ž assumption: this assumption signiőcantly limits the use of this heuris-

tic in assessing candidate subsumption axioms and, as a consequence, the evolutionary

99
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discovery of candidate subsumption axioms from large RDF data graph. First, we demon-

strated that the computation time issue for subsumption axiom exceptions is mainly due

to a large number of duplicate computations during the SPARQL query processing for

computing exceptions to a subsumption axiom: the higher the number of instances com-

puted by the SPARQL query, the greater the duplication can be. To respond efficiently

to this problem, we have proposed (1) a multi-threading system to reduce the global

computation time for axiom assessment, (2) an extended heuristic to avoid redundant

computations, and (3) an optimised SPARQL query chunking technique to iterate on

a query service call and, by doing so, divide the computation into several tasks. The

comparative study we have carried out demonstrates that this approach signiőcantly

reduces the computation time for axiom assessment, both globally and locally. This

opened up new perspectives for the evolutionary discovery of subsumption axioms. We

have, therefore, proposed a BNF grammar for producing candidate subsumption axioms

whose class expressions can be complex. The evolutionary algorithm used is presented in

Chapter 5 and uses the optimisations presented before to assess candidate axioms. The

experiments have led to the discovery of a large set of candidate subsumption axioms ac-

ceptable through the evolutionary process across a very large RDF data graph. We also

observed that some of these candidate axioms are poorly supported by RDF data (i.e.,

few instances conőrm them), which suggests that our algorithm is robust in discovering

axioms with few RDF facts to conőrm them.

Chapter 4 opens up the prospect of discovering SHACL shapes from RDF facts

through a similar evolutionary process. We proposed a framework to include and ex-

ploit probabilistic information in SHACL validation reports to take into account inher-

ent errors and incompleteness in RDF data graphs when validating them against SHACL

constraints. First, we proposed a probabilistic model based on the assumption that the

SHACL validation process follows a binomial distribution: from this model, we deőned

the likelihood measure, i.e., the likelihood of the validation results of nodes against a

SHACL shape, taking into account the physiological error rate estimated beforehand.

Second, we extended the SHACL validation report model to include this likelihood mea-

sure and additional metrics computed while validating nodes against SHACL shape(s)

for subsequent use through an extended validation report. Lastly, we proposed an ac-

ceptance decision model of RDF data based on hypothesis testing to validate or not the

null hypothesis H0, i.e., łthe RDF data υs follow a binomial distribution with the given

error ratež, through the testing for Goodness of Fit. The experiments carried out enabled

the physiological error rate of a real-world RDF data graph to be estimated empirically.

Moreover, performance testing suggests a slight increase in computation time, which ap-
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pears linear. This led to research on the evolutionary discovery of SHACL shapes using

the probabilistic framework for assessing candidate shapes.

Regarding the SHACL shapes discovery task, we proposed an algorithm based on

Grammatical Evolution in Chapter 5 to discover credible SHACL shapes regarding an

RDF data graph. First, we presented an extended method to write BNF grammars that

dynamically inject RDF facts as productions by writing SPARQL queries into rules to

produce representative candidate shapes1 as individuals. Second, we deőne (1) an ac-

ceptance function of a shape A(s) based on the likelihood measure deőned in Chapter 4,

and (2) a őtness function F (s) that uses the acceptance measure and the number of

conőrmations as łsupportž to fairly assess candidate shapes while taking into account

the physiological errors in the data graph. Finally, we have presented GE operators and

a recombination algorithm to guarantee the diversity of individuals in the population by

őltering individuals (based on a phenotypic comparison) and the population development

rate to measure their impact on the discovery of candidate shapes. The experiments show

that the proposed approach enables the discovery of a large set of acceptable candidate

shapes from a real-world RDF data graph, considering a physiological error rate. More-

over, the approach can highlight very fine-grained candidate shapes that bring relevant

conclusions on RDF facts despite low support and some violations (for most of them).

Finally, Chapter 6 focuses on the RDFminer software, which is the main tool used

to perform every evolutionary task presented in Chapter 3 and Chapter 5. We presented

the architecture of the software and how users can use it to discover candidate shapes or

axioms by creating projects through an interactive dashboard, analysing the results of

their projects on the dashboard in real-time, and controlling their execution.

Our work shows that an evolutionary approach is relevant for discovering new knowl-

edge from an RDF data graph, considering the scalability, errors, and incompleteness

issues. Our results show that the generated candidate axioms or shapes are diverse,

from very general individuals to individuals with limited representation, leading to some

surprising conclusions. It is essential to remember that the results require domain ex-

pert validation to rigorously validate the discovered shapes that have been automatically

accepted.
1This approach is also suitable for the evolutionary discovery of axioms
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7.2 Perspectives

Our research work opens up many perspectives, which we present according to three

different perspectives: related to evolutionary algorithms, SHACL shapes assessment,

and the RDFminer software.

7.2.1 On the Evolutionary Discovery of Knowledge

Novelty Search

Considering our ambition to discover a wide set of credible knowledge from the RDF data

graph, the Novelty Search technique appears essential to explore. Novelty Search aims

to reward candidate solutions for their credibility and originality, i.e., the characteristics

distinguishing them from others in a population, resulting in different conclusions about

individuals among generations [DLC19]. In the context of subsumption axiom discovery,

a őtness function which measures the credibility of an axiom (see Eq. (3.6)) and the

distance of an axiom from the other candidate axioms in the current population appears

to be the most relevant idea. Moreover, the distance between two candidates SubClassOf

axioms can be designed in different way [MdCPT20], and we suggest that a data-driven

based approach provides the most credible similarity explanation between subsumption

axioms.

Assess by Predicting the Score of Candidate Axioms or Shapes

Despite the contributions presented in Chapter 3 to reduce the computation time of sub-

sumption axiom’s exceptions, some axioms unavoidably involve high computation times,

which is related to the number of nodes in an RDF data graph. In the same way, this

issue affects the evolutionary discovery of SHACL shapes when the number of nodes

to be tested for candidate shapes is very large. Consequently, we assume that another

heuristic should perform the individual’s assessment task: e.g., Ballout et al. proposed

a scalable heuristic to predict the acceptability (i.e., ARI) of atomic subsumption ax-

ioms [BdCPT24]. A promising perspective is to use their model to automatically assess

the ARI score of candidate axioms and use the possibilistic heuristics in combination to

assess the őnal population. The search for models to predict the acceptability and őtness

of candidate shapes is an interesting perspective.
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Advanced Grammatical Evolution Heuristics

To conclude, we believe that it would be interesting to explore an adaptation of our ap-

proach with other extended Grammatical Evolution algorithms discussed in Section 2.3:

e.g., the structured GE [LPC16b] and/or (more recent) the probabilistic structured

GE [MLM22b]. Moreover, searching for RDF data-driven-based heuristics for crossover

and mutation operators could signiőcantly improve the exploratory capabilities.

7.2.2 On the Assessment of SHACL Shapes

Shape Assessment at the Constraint Level

The probabilistic measure applies at the level of the shape. When a given shape ex-

presses more than one constraint, this measure considers the violations of nodes for each

constraint of the shape and expresses a łglobalž measure. We believe that a likelihood

measure expressed at the constraint level is a promising perspective: e.g., it should enable

a more precise understanding of the impact of constraints in shape.

Probabilistic or Possibilistic Models

When analysing the limitations concerning the probabilistic assessment framework, it be-

comes evident that validating nodes against cardinality constraints implies a dependence

between RDF facts: this contradicts the data independence principle within a binomial

distribution. Therefore, modelling other probabilistic models (or a possibilistic model)

appears crucial to extend its use for cardinality constraints and (overall) to improve the

quality of the expressed probabilistic information.

7.2.3 On the Evolution of the RDFminer software

Discovering new Knowledge on distant SPARQL Endpoints

The proposed architecture allows the user to discover candidate axioms or shapes from

RDF data graphs that are loaded in the Corese semantic Web factory [Cé23] data store.

We believe that one of the future challenges is to enable the discovery of axioms or shapes

from remote data graphs available from SPARQL endpoints, using SPARQL Federated

queries to assess axioms against RDF facts [FCFT22]. Concerning the candidate shapes

assessment, Corman et al. proposed a method to assess RDF facts from SPARQL end-

points against shapes [CFRS19b,CFRS19a], and the Trav-SHACL engine can be used

to evaluate remote graphs [FRV21], but does not implement a probabilistic framework.
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Towards an implementation of RDFminer-core in Python

Considering the proposals for future work, the question of a technological change,

i.e., an implementation of our evolutionary algorithm and therefore of the module

RDFminer-core appears natural and becomes important. First, we noticed that GEVA

2.0 is no longer maintained, in favour of the PonyGE2 [FMF+17] Grammatical Evolu-

tion toolkit2, developed in Python. Second, most of the advanced GE algorithms, e.g.,

Dynamic Structured Grammatical Evolution [LAP+18]3, have been developed in Python.

Finally, most of the advanced AI toolkits (e.g., TensorFlow toolkit for Machine Learn-

ing4) are available in Python: this would open up new perspectives in the development

of heuristics using these models, in particular, the possibility of using models to predict

the score of candidate axioms [BdCPT24].

2Source code: https://github.com/PonyGE/PonyGE2
3Source code: https://github.com/nunolourenco/dsge
4https://www.tensorflow.org/

https://github.com/PonyGE/PonyGE2
https://github.com/nunolourenco/dsge
https://www.tensorflow.org/
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B Extension of the SHACL Validation Report Model

@prefix sh: <http://www.w3.org/ns/shacl#> .

@prefix psh: <http://ns.inria.fr/probabilistic-shacl/> .

@prefix : <http://www.example.com/myDataGraph#> .

:v1 a sh:ValidationResult ;

sh:focusNode :n1 ;

[...]

sh:sourceShape :s1 .

:v2 a sh:ValidationResult ;

sh:focusNode :n2 ;

[...]

sh:sourceShape :s1 .

[ a sh:ValidationReport ;

sh:conforms false ;

sh:result :v1 ;

sh:result :v2 ;

[...]

# SHACL Extension

# shape s1

psh:summary [

a psh:ValidationSummary ;

psh:generality "0.2"^^xsd:decimal ;

psh:numConfirmation 178 ;

psh:numViolation 22 ;

psh:likelihood "0.081"^^xsd:decimal ;

psh:referenceCardinality 200 ;

psh:focusShape :s1

] ;

] .

Figure B.1: Example of an extended SHACL validation report for a shape :s1with ♣υ♣ = 1, 000
and p = 0.1
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C An algorithm based on Grammatical Evolution for Discovering

SHACL Constraints

Figure C.2: Overview of the fitness computation process for candidate shapes
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Figure C.3: Evolution of the population development rate P dev over 10 executions







Découverte évolutive de connaissance à partir de graphes

de données RDF

Rémi Felin

Résumé

Les graphes de connaissance sont des collections de descriptions interconnectées

d’entités (objets, événements ou concepts). Ils mettent les données en contexte par

le biais de liens sémantiques, fournissant ainsi un cadre pour l’intégration, l’uniőcation,

l’analyse et le partage des données. Aujourd’hui, nous disposons d’un grand nom-

bre de graphes de connaissance riches en données factuelles, dont la construction et

l’enrichissement est une tâche relativement bien maîtrisée. Ce qui est plus difficile et

plus coûteux, c’est de doter ces graphes de schémas, règles et contraintes qui permettent

de vériőer leur cohérence et de déduire des connaissances implicites par raisonnement.

Cette thèse présente une approche basée sur la technique d’évolution grammaticale pour

la découverte automatique de nouvelles connaissances à partir d’un graphe de données

représenté en RDF. Cette approche repose sur l’idée que les connaissances candidates

sont générées à partir d’un mécanisme heuristique (exploitant les données du graphe),

testés contre les données du graphe, et évoluent à travers un processus évolutionnaire de

sorte à ce que seules les connaissances candidates les plus crédibles soient conservées.

Dans un premier temps, nous nous sommes concentrés sur la découverte d’axiomes

OWL qui permettent, par exemple, d’exprimer des relations entre concepts et d’inférer,

à partir de ces relations, de nouvelles informations factuelles. Les axiomes candidats

sont évalués à partir d’une heuristique existante basée sur la théorie des possibilités, per-

mettant de considérer l’incomplétude des informations d’un graphe de données. Cette

thèse présente les limites de cette heuristique et une série de contributions permettant

une évaluation signiőcativement moins coûteuse en temps de calcul. Cela a permis

l’évaluation efficace d’axiomes candidats lors du processus évolutif, nous menant ainsi à

la découverte d’un grand nombre d’axiomes candidats pertinents vis-à-vis d’un graphe

de données RDF. Dans un second temps, nous avons proposé une approche pour la dé-

couverte de shapes SHACL qui expriment des contraintes que les données RDF doivent

respecter. Elles sont utiles pour contrôler la cohérence (par exemple, structurelle) des

données du graphe et facilitent l’intégration de nouvelles données. L’évaluation de

shapes candidates repose sur l’évaluation SHACL des données vis-à-vis de ces formes,

à laquelle nous ajoutons un cadre probabiliste pour prendre en compte les erreurs et

l’incomplétude inhérente des graphes de données lors de l’évaluation de shapes candi-

dates. Enőn, nous présentons RDFminer, une application Web open-source permettant

d’exécuter notre approche pour découvrir des axiomes OWL ou des formes SHACL à

partir d’un graphe de données RDF. L’utilisateur peut contrôler l’exécution et analyser

les résultats en temps réels à travers une interface graphique interactive. Les résultats

obtenus montrent que l’approche proposée permet de découvrir un large ensemble de

nouvelles connaissances crédibles et pertinentes à partir de graphes de données RDF

volumineux.
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