
HAL Id: tel-04874798
https://theses.hal.science/tel-04874798v1

Submitted on 8 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum walk search algorithm on hypercube :
eigenanalysis and calculation of the probability of

success in polynomial time
Hugo Pillin

To cite this version:
Hugo Pillin. Quantum walk search algorithm on hypercube : eigenanalysis and calculation of the
probability of success in polynomial time. Emerging Technologies [cs.ET]. Université de Bretagne
occidentale - Brest, 2024. English. �NNT : 2024BRES0024�. �tel-04874798�

https://theses.hal.science/tel-04874798v1
https://hal.archives-ouvertes.fr

Par

Hugo PILLIN

THÈSE DE DOCTORAT DE

L'UNIVERSITÉ
DE BRETAGNE OCCIDENTALE

ÉCOLE DOCTORALE N° 644
Mathématiques et Sciences et Technologies
de l'Information et de la Communication en Bretagne Océane
Spécialité : Télécommunications

Quantum walk search algorithm on hypercube

Eigenanalysis and calculation of the probability of success in polynomial time

Thèse présentée et soutenue à Brest, le 5 avril 2024
Unité de recherche : CNRS UMR 6285 Lab-STICC et CNRS UMR 6205 LMBA

Rapporteuses avant soutenance :

Claire GOURSAUD Maître de Conférences HDR, INSA Lyon
Jingbo WANG Professor, University of Western Australia

Composition du Jury :

Président : Yannick DEVILLE Professeur, Université Toulouse III Paul-Sabatier
Examinateurs : El-Houssaïn BAGHIOUS Maître de Conférences, Université de Bretagne Occidentale

 Olivier BERDER Professeur, IUT Lannion
 Claire GOURSAUD Maître de Conférences HDR, INSA Lyon
Dir. de thèse : Gilles BUREL Professeur, Université de Bretagne Occidentale
Co-dir. de thèse : Paul BAIRD Professeur, Université de Bretagne Occidentale

Invités
Roland GAUTIER Professeur, Université de Bretagne Occidentale
Jean-Marie NICOLAS Professeur, Université de Bretagne Occidentale
Yannick SAOUTER Chargé de recherche CNRS, IMT Atlantique
Jingbo WANG Professor, University of Western Australia

Acknowledgments

And here is the traditional thank-you page. The first page for you and the last for me.
The end of the last four years of my life. Four paradoxical years, simultaneously very
long and too short, surrounded by colleagues, yet a bit lonely in front of my screen. Four
years from which I emerge both proud and tired. Four years to finally arrive at this point,
my tiny contribution to science, my thesis. But my thesis is not just mine, because at
every stage, from my first steps in the bibliography to the writing of this manuscript,
there have been people to guide me, to teach me, to support me, to listen to me. And to
all these people, all essential in their own way to the existence of this thesis, and although
I am not very good at expressing it, I would simply like to say thank you.

Of course, there can be no thesis without thesis directors, so it is only logical to start
with the two initiators of this adventure, Professors Gilles Burel and Paul Baird. To both
of you, a huge thank you, for proposing this project, for trusting me more than I trust
myself, for proofreading all my mistakes, for redirecting me when I was at a dead end,
and above all for inspiring me throughout this thesis. And if the thesis has not been easy
for me, it probably has not been for you either. Thank you for your patience in the face
of my absolute inability to meet a deadline, and thank you for refocusing me every time I
wandered off (that is, very often). Of course, thanks also to my two other supervisors,
Roland Gautier and El-Houssain Baghious, for all your help and ideas over the last four
years. This thesis is as much yours as it is mine.

Although we do not know each other, I would like to thank the members of the jury,
and in particular the reviewers, for agreeing to travel to the depths of Brittany to assess the
results of this work, and to examine this manuscript (sorry in advance for the headaches).

I would also like to thank my roommates in office C113, Clément, Cristina, Jean-
Baptiste and Zaynab, for the cakes, for the overlong coffee breaks, for the debates that
the whole floor could hear and for the moral support when faced with piles of exam
papers to correct or when the printer went on strike. Many thanks also to the colleagues
in the Informatics department, Alan, Aymeric, Manele, Morgane and Yoann, for this
oasis of relaxation every lunchtime. I will miss our Thursday blind tests and our (often
fruitless) expeditions in search of a working coffee machine. We will see each other
again to celebrate the end of our respective theses.

Next, I would like to thank Dakodoc, the Brest PhD students’ association, for getting
me out of my home after the difficult period of confinement, for all the people I would
never have met, for organizing all these events, from the exceptional popular science
event "Science en theizh" to the simplest of gatherings over a drink. There are too many

4

of you to mention here, but I know you will recognize each other.
More generally, thanks to all my long-time friends, former classmates and role-playing

partners, and even those from before, who have seen a lot less of me lately. Hopefully, I
will have more time to see you now.

Many thanks to (almost) all the students I have had the pleasure of teaching over the
past four years. Over that time, I probably learned as much as you did, and even if I
did not always give the easiest or most interesting lessons, I hope that, despite my slight
sadism, you will remember our lectures as fondly as I do. In the end, you were my
favorite part of the job.

Finally, a huge thank you to my mother (who has put up with me since I was born,
which is no mean feat) and my little sister for everything the three of us have been
through. Even though we see each other all too rarely, I certainly would not be who I
am today without your support. I send you my love. And finally, a word to Lotus, who
cannot read these rows (because she is a cat), but whose presence has been vital to me
and who quickly realized that her daddy could not work if she was lying on the keyboard.

Contents

Notations 13

Introduction 17

1. Notions of quantum information 19
1.1. Fundamentals of quantum physics . 19
1.2. Quantum bits . 21

1.2.1. Qubit definition . 21
1.2.2. Qubit representation . 21
1.2.3. Qubit association . 23
1.2.4. Quantum entanglement . 23

1.3. Quantum operations . 24
1.3.1. Quantum gates and circuits . 24
1.3.2. Usual quantum gates . 25

1.4. Quantum state measurement . 29
1.4.1. Measurement principles . 29
1.4.2. Examples of measurements . 31
1.4.3. Measurement of entangled states 34

1.5. No-cloning theorem . 36

2. Quantum walks 37
2.1. Formalism and walk on an axis . 38
2.2. Walk on hypercube . 45

3. Quantum search algorithm 53
3.1. Quantum Oracle and Grover iteration 53
3.2. Grover’s algorithm execution . 58
3.3. Hypercube search algorithm . 63

4. Eigenanalysis of the hypercube search algorithm 69
4.1. Search operator eigenspaces . 70

4.1.1. Shift operator . 70
4.1.2. Coin operator . 70
4.1.3. Oracle . 72

6 Contents

4.2. Generator matrices . 73
4.2.1. Generators G1, G2, G3 . 73
4.2.2. Generator G 03 and its submatrices 75

4.3. Joint eigenspaces . 76
4.3.1. Joint eigenspaces of operators C and O 76
4.3.2. Joint eigenspaces of operators S and C 78
4.3.3. Joint eigenspaces of operators S , C and O 79

4.4. Eigenanalysis of the uniform walk . 81
4.4.1. Overview of the uniform walk eigenanalysis 81
4.4.2. Detail of the eigenanalysis of the uniform walk 83

4.5. Dimension of the space of interest . 88
4.5.1. Overview of the computation of the dimension of the space of

interest . 88
4.5.2. Detail of the computation of the dimension of the space of interest 89

4.6. Summary of the eigenanalysis . 93

5. Search algorithm probability of success calculation 95
5.1. Space of interest eigenanalysis . 96

5.1.1. Overview of the space of interest eigenanalysis 96
5.1.2. Detail of the space of interest eigenanalysis 97

5.2. Eigenvalue search in polynomial time 101
5.3. Vector components in the space of interest 103

5.3.1. Overview of the vector component calculation 103
5.3.2. Detail of the vector component calculation 104

5.4. Summary of the probability of success calculation 112

6. Results and perspectives 115
6.1. Probability of success computation procedure 115
6.2. Improvements and applications . 118

Conclusion 123

A. Dirac notation 125
A.1. Definition . 125
A.2. Properties . 126

B. Kronecker tensor product 127

C. Permutation matrices 129

D. SAT problem 131

Contents 7

E. Singular value decomposition 133

List of Figures

1.1. Bloch sphere representation of the qubit 0:8j0i C 0:6ei�=4j1i 22
1.2. Succession of quantum gates . 25
1.3. Association of quantum gates . 26
1.4. Symbol and effect of Hadamard gate 26
1.5. Symbol and effect of the Pauli gate . 27
1.6. Symbol and effect of the CNOT gate 28
1.7. Symbol and effect of the SWAP gate 29
1.8. Bell circuit . 34

2.1. Position probability on the axis after 100 iterations of the walk initialized
with j0ij#i . 41

2.2. Comparison of the exact and asymptotic position probabilities of the
equation on the axis after 100 iterations 43

2.3. Comparison of the slow position probability Pslow and asymptotic posi-
tion probability on the axis after 100 iterations 44

2.4. Position probability on axis after 100 iterations of the symmetrical walk 45
2.5. 4-dimensional hypercube with numbered vertices and directions 47
2.6. Shift operator SCS for n D 4 . 48
2.7. Diagonalized shift operator zSCS for n D 4 49
2.8. Shift operator S for n D4 . 50
2.9. Diagonalized shift operator zS for n D 4 51

3.1. Oracle of a N D 16 element problem whose solutions are 0, 3 and 6 . . 55
3.2. Grover iteration circuit . 56
3.3. Effect of the Grover iteration GO on an arbitrary state jsi in the plane

directed by jsi and jNsi . 57
3.4. Circuit for Grover’s algorithm . 58
3.5. Probability of success P.s/ of Grover’s algorithm as a function of M=N 61
3.6. Evolution of the system during Grover’s algorithm with N D 1 024 and

M D 25, in the plane directed by jsi and jNsi 62
3.7. Evolution over 50 iterations of the probability of success of the hypercube

search algorithm for n D 6 with a single solution 65
3.8. Evolution over 50 iterations of the probability of success of the hypercube

search algorithm for n D 6 with a solution 66

10 List of Figures

3.9. Oracle of a search problem on a hypercube of dimension n D 4 with
solutions 0, 3 and 6 . 67

4.1. Operator of the spatial Fourier transform F in H for n D 4 71
4.2. Generator matrix G1;2;3 of a hypercube search problem of dimension

n D 4 with solutions 0, 3, and 6 . 74
4.3. Generator matrix G 03 for n D 4 . 75
4.4. Operator of the uniform walk U for n D 4 84
4.5. Diagonalized uniform walk operator zU for n D 4 85

6.1. Search for the eigenvalues of U 0 associated with eigenspaces in E . . . 116
6.2. Evolution of the probability of success in function of the number of

iterations . 118
6.3. Comparison of the original and modified hypercube search algorithms

for n D 8 and M D 3 . 120
6.4. Comparison of the original and modified hypercube search algorithms

for n D 8 and M D 12 . 121

List of Tables

4.1. Generator matrices . 77
4.2. Eigenspaces of walk operators . 81
4.3. Eigenspaces of the uniform walk operator 87
4.4. Eigenspaces of the search algorithm operator 92

6.1. Non-zero components of vectors jsi and jui in E 117

Notations

Symbol Introduction Definition

R Set of real numbers

C Set of complex numbers

Z Set of relative integers

ZN Set of relative integers in Œ0; N � 1�

dim.E/ Dimension of vector space E

span.V / Sect. 2.1 Space generated by the vectors or columns of the ma-
trices of the set V

H Hilbert space

HS Shift space

HC Coin space

wt.p/ Sect. 4.2 Hamming weight of the binary word corresponding to
position p

˚ Sect. 3.1 Modulo 2 addition, exclusive OR

CC Sect. 4.2 Horizontal matrix concatenation

z� Complex conjugate of z

A| Transpose matrix of A

A� Adjoint matrix of A, i.e. transpose and conjugate

˝ Ann. B Kronecker tensor product

A˝n Eq. (B.3) Tensor power of A, equivalent to A˝ A˝ � � � ˝ A, n
times

14 Notations

Symbol Introduction Definition

n Sect. 2.2 Hypercube dimension for a given problem, length of
binary words

N Sect. 2.2 Number of positions on the n-dimensional hypercube,
dimension of the HS shift space

M Sect. 3.1 Number of solutions to a given problem

G Eq. (2.64) Grover diffusion operator

S Sect. 2.2 Shift operator

C Eq. (2.66) Coin operator

O Eq. (3.50) Oracle of a given problem

U Sect. 2.2 Operator of an oracle-less quantum walk iteration

U 0 Eq. (3.55) Operator of an iteration of the hypercube quantum walk
search algorithm

I Identity matrix of size 2 � 2
IN Identity matrix of size N �N
H Eq. (1.13) Hadamard matrix of size 2 � 2
HN Sect. 2.2 Tensor power of the Hadamard matrix, equivalent to

H˝n with N D 2n
I
.s/
N Tab. 4.1 Submatrix of IN obtained by keeping only the M

columns associated with solutions

H
.s/
N Tab. 4.1 Submatrix of HN obtained by keeping only the M

columns associated with solutions

H
.s;w/
N Tab. 4.1 Submatrix of H .s/

N obtained by keeping only the
�
n

w

�
rows associated with positions of Hamming weight w

xHN Sect. 5.2 Unnormalized Hadamard matrix, containing onlyC1
and �1, equivalent to

p
NHN

X Eq. (1.17) Pauli X matrix, quantum equivalent of the logical NO

F Eq. (2.59) Spatial Fourier transform operator

FC Sect. 4.1.1 Submatrix of F constructed by keeping only the
columns with signature &i D 1

F� Sect. 4.1.1 Submatrix of F constructed by keeping only the
columns with signature &i D �1

15

Symbol Introduction Definition

� Eq. (4.16) Matrix defined by hunj� D 0 and �|� D In�1
juni Eq. (2.65) Uniform superposition of n basis states of a n-

dimensional Hilbert space

jsi Eq. (3.7) Uniform superposition of a problem solution elements

jNsi Eq. (3.8) Uniform superposition of a problem non-solution ele-
ments

P.s/ Eq. (3.23) Probability of success, i.e. of measuring an element of
the superposition jsi

EA˛ Eq. (4.5) Eigenspace of operator A associated with eigenvalue ˛

E
A;B

˛;ˇ
Eq. (4.6) Joint eigenspace of operators A and B associated with

eigenvalues ˛ and ˇ

&i Eq. (4.7) Signature associated with the i -th dimension of H

Introduction

Since the work of Turing [Tur37] and Von Neumann on the first electronic calculators in
the first half of the 20th century, the concept at the core of computers has been the same:
the manipulation of units of information, bits, materialized by voltages, currents, light
intensity or even magnetization in two distinct states. With the invention of the transistor,
followed by the integrated circuit, the use of semiconductors, mainly silicon, became the
standard for almost all components.

During the same period, the field of quantum mechanics developed, but it was not
until 1980 that Benioff proposed the first quantum Turing machine [Ben80]. Shortly
afterwards, faced with the difficulty of simulating quantum phenomena on a computer,
physicists like Feynman proposed the use of calculators exploiting the properties of
quantum mechanics [Fey82]. This was the birth of quantum computing.

Today, quantum computing is still at an early stage. Computers are very limited
and expensive, and algorithms are mostly very specific. There are, however, some
concrete applications of quantum computing, such as Bennett and Brassard’s BB84
quantum cryptography protocol [BB14], which is used in several secure networks and
has inspired other quantum cryptography protocols. Another example is Shor’s famous
algorithm [Sho94], capable of breaking RSA encryption, the most widely used on the
Internet. This algorithm opens up new possibilities for cryptological attack, leading to
the emergence of the field of "post-quantum" cryptography.

Quantum physics marks a major rupture with previous theories, and implies a complete
re-imagining of the computer, from components to algorithms. As the medium of
quantum information is subject to different physical laws from classical information,
we redefine the bit and the operations that can be performed on it in chapter 1. Readers
familiar with quantum information can start directly with chapter 2.

The main subject of study in this work is the hypercube quantum search algorithm,
a quantum walk adaptation of Grover’s algorithm, one of the most impactful quantum
algorithms. The quantum walk concept is presented in chapter 2, Grover’s algorithm
in chapter 3. These two chapters also introduce many of the notations that will be used
later.

As we will see in chapters 1 and 3, a quantum operation is represented by a unitary op-
erator, and the algorithm consists of the repetition of the same operator. An eigenanalysis
of the algorithm, presented in chapter 4, is therefore suited to understanding its behavior
over the course of iterations. We will see in chapter 5 that this analysis allows us to evalu-
ate the evolution of the probability of success of the algorithm, an essential characteristic

18 Introduction

of any quantum algorithm, effectively with a classical computer. This procedure for
computing the probability of success was presented in [PBBC23]. The eigenanalysis and
computation of the success probability of the hypercube quantum search algorithm form
the core of this thesis. As is often the case in quantum algebra, these two chapters are
relatively heavy on linear algebra and are summarized in sections 4.6 and 5.4. Readers
wishing to avoid mathematical developments can limit themselves to these summaries

One might wonder why such a theoretical study was undertaken. As is often the case, it
was originally a detour. One of the ideas we have been working on is the improvement of
the hypercube quantum search algorithm, a subject quickly touched on at the end of the
chapter 6. With this in mind, we felt the need for an analysis tool to compare the original
version of the algorithm with our variation. Despite the existence of simulation options
like Qiskit [Cro18] or more specialized Python libraries like QuOp_MPI [MW22], being
able to compute the algorithm’s probability of success in polynomial time is necessary
for the study of high-dimensional problems.

1. Notions of quantum information

1.1. Fundamentals of quantum physics

In this work, we will quickly move away from the physical aspects of quantum phenom-
ena. However, it is essential to talk about the main principles of quantum physics to
explain where the mathematical formalism comes from and the often counter-intuitive
rules that govern the field of quantum information.

In a few words, quantum physics is a set of theories born in the 20th century that
radically changes our description of natural properties and behaviors at the particle scale.
Physics prior to this break with the past is often described as classical. By abuse of
language, we use the term "classical" to designate everything that is not "quantum".

A number of experiments, such as Young’s slit, Stern-Gerlach [GS22] and later As-
pect [Asp76], highlighted the limits of so-called classical physics at the microscopic
scale, and the need for a new model of particle behavior. Among the observed phe-
nomena incompatible with classical physics is the principle of quantum superposition.
Described by Dirac in The Principles of Quantum Mechanics [Dir35], this principle
can be summarized as the possibility of a quantum system being in several classically
incompatible states. Here are two examples:

� at any given moment, an electron may be in a superposition of several positions
around the nucleus of its atom. This is not a consequence of the experimenter’s
lack of information about the electron’s state, but rather of "existence", that is, the
possibility of measuring the electron’s position in an entire region of space around
the nucleus.

� in the Young’s slit experiment, the particle studied passes through both slits at the
same time, in proportions that depend on the nature of the slits. Furthermore, it is
the component passing through one slit that interferes with that of the other slit,
leading to the formation of interference patterns even when the slits are crossed by
only one particle at a time.

When we measure superimposed states, we only have access to one of these states,
and we return to a classical case. For example, if we measure the position of a particle in
a superposition of two positions A and B , the measurement will be randomly either A
or B , and not an average of the two. We will see that the behavior of the measurement

20 1. Notions of quantum information

of a quantum state is random but predictable. Surprisingly, if the particle’s position
is measured again, all the measurements will give the same result as the first. The
conclusion is that the initial measurement conditions all subsequent measurements. This
result, known as wave-packet reduction, implies that the observation modifies the state of
the system in such a way as to conform to the measurement. In Young’s slit experiment,
if we observe which slit the particle passes through, we lose the interference patterns, as
it ceases to pass through both slits at the same time.

The main principles of quantum physics are usually summarized in six postulates:

� principle de superposition : superposition principle: the state of a quantum system
is fully described by a state vector in a Hilbert space H, often denoted j .t/i, itself
a complex linear combination of orthogonal basis states representing classically
exclusive states.

� correspondence principle: observables (we do not use the term quantities in quan-
tum physics) are represented by Hermitian operators.

� quantization principle: the possible results of measuring an observable are the
eigenvectors of the operator associated with the measured observable.

� Born rule: the outcome of a measurement is probabilistic, and the associated
probabilities can be calculated from the state vector and operator of the measured
observable.

� wave-packet reduction principle: the measurement retains only the state that has
occurred, and causes the others to disappear. The measured state is changed to
conform to the measurement result.

� Schrödinger equation: the evolution of a system over time is determined by the
following differential equation :

i„ d
dt
j .t/i D yH j .t/i; (1.1)

where „ is the reduced Planck constant and yH is the Hamiltonian of the system,
an operator corresponding to the total energy of that system.

In this work, we restrict ourselves to the study of discrete-time quantum information
systems. These postulates will reappear in forms adapted to this particular framework of
quantum physics. We will see in section 1.2 how we exploit the superposition principle
to define a quantum bit, in section 1.4 how the principles of correspondence, quantization
and wave packet reduction, as well as Born’s rule, condition measurement, and in section
1.3 the implications of Schrödinger’s equation on the modeling of quantum operations.

1.2. Quantum bits 21

1.2. Quantum bits

1.2.1. Qubit definition

In classical computing, the properties of electronics are exploited to form bits, mathemat-
ical objects that can take on two values, noted 0 and 1. Similarly, the quantum bit, or
"qubit", is defined as the superposition of two orthogonal states denoted j0i and j1i. The
notion and term qubit were formalized by Schumacher [Sch95]. Although the qubit was
first thought of for electron spins, the physical nature of these orthogonal states is of no
importance in the theoretical study of quantum information. The j0i and j1i states can
refer to spins, polarizations, energy levels and so on. If the reader is unfamiliar with j0i
and j1i notation, he can refer to appendix A. Alternatively, they can simply consider that
jxi is a column vector and hxj is the vector obtained by the Hermitian transpose of jxi
(i.e. a row vector).

Any qubit can be expressed as

j i D ˛j0i C ˇj1i; (1.2)

with .˛; ˇ/ 2 C2 and j˛j2 C jˇj2 D 1. The coefficients ˛ and ˇ are complex to reflect a
possible phase shift between the j0i and j1i states, and must be normalized so that j i
has a norm equal to 1. We will see that the unit norm condition ensures that the sum of
all probabilities at measurement is equal to 1.

The only condition on j0i and j1i is that they form an orthonormal basis of C2. We
can then set

j0i D
�
1

0

�
; j1i D

�
0

1

�
: (1.3)

The choice of basis is not unique. Any pair of orthogonal unit vectors may be suitable,
and changing the basis is even a frequent tool in quantum physics. For example, we often
use the jCi and j�i states, defined as

jCi D 1p
2
.j0i C j1i/ D 1p

2

�
1

1

�
; j�i D 1p

2
.j0i � j1i/ D 1p

2

�
1

�1
�
: (1.4)

1.2.2. Qubit representation

The qubit is made up of two complex values, which may suggest that it is a 4-dimensional
object, but it is subject to two constraints:

� the qubit must have a unit norm, that is kj ik D 1.

� the qubit is equivalent to itself up to a phase factor, that is j i � �j i, with
j�j D 1.

22 1. Notions of quantum information

The qubit is therefore an object of dimension 2, and we show that the set of all possible
qubits is isomorphic to a sphere. We can rewrite any qubit j i D ˛j0i C ˇj1i as

j i D ˛j0i C ˇj1i; (1.5a)

D ei'a j˛jj0i C ei'b jˇjj1i; (1.5b)

D j˛jj0i C ei.'b�'a/jˇjj1i; (1.5c)

D cos
�

2
j0i C ei' sin

�

2
j1i; (1.5d)

with 0 6 � 6 � , cos.�=2/ D j˛j, sin.�=2/ D jˇj, 0 6 ' < 2� and ' D 'b � 'a C
2k�; k 2 Z. Any qubit is therefore a function of two angles � and ', and can therefore
be placed on the surface of a sphere of radius 1 with spherical coordinates .1; �; '/. We
call this sphere the Bloch sphere. It provides a unique visual representation of a qubit.
Figure 1.1 shows the example of the qubit j i D 0:8j0i C ei�=4 0:6j1i placed on the
Bloch sphere.

Figure 1.1 Bloch sphere representation of the qubit 0:8j0i C 0:6ei�=4j1i

1.2. Quantum bits 23

1.2.3. Qubit association

A quantum information system is obviously made up of several qubits. The system is
also fully represented by a state vector, defined by the qubits that compose it.

If we use two qubits, there are four exclusive states: the two qubits are at j0i, the first
is at j0i and the second at j1i, the first is at j1i and the second at j0i, and finally the
two qubits are at j1i. These four states are denoted j00i, j01i, j10i and j11i respectively.
They form an orthonormal basis of C4, and are therefore called basis states. The state of
any two-qubit quantum system can be expressed as

j i D ˛j00i C ˇj01i C j10i C ıj11i; (1.6)

still with the norm condition j˛j2 C jˇj2 C j j2 C jıj2 D 1.
To calculate the state vector j i of a two-qubit system with state qubits j Ai and j Bi,

we use the Kronecker tensor product, that is

j i D j Ai ˝ j Bi: (1.7)

If required, a summary of the properties of the Kronecker tensor product is available
in appendix B. In this work, the Kronecker tensor product will be referred to simply as
"tensor product". Note that the tensor product ensures that the global state has a unitary
norm: as shown by the equation (B.9), the norm of the tensor product of two vectors
is equal to the product of their norms. Equivalently, we use the notations j Ai ˝ j Bi,
j Aij Bi and j A Bi to designate the tensor product of two state vectors.

The basis vectors of the two-qubit system can be calculated as tensor products of j0i
and j1i. We then obtain

j00i D

2664
1

0

0

0

3775 ; j01i D
2664
0

1

0

0

3775 ; j10i D
2664
0

0

1

0

3775 ; j11i D
2664
0

0

0

1

3775 ; (1.8)

and we can see that these vectors have unit norms and form a basis of C4.
Generally speaking, a system of n qubits is represented by a complex vector of size

2n, itself a linear combination of 2n basis states. This exponential growth in the size of
the system, and therefore in the quantity of information, partly explains the potential
processing power of quantum computers.

1.2.4. Quantum entanglement

The state vector of a system on n qubits cannot always be decomposed into tensor
products of n distinct qubits. This means that the qubits of the system are entangled.

24 1. Notions of quantum information

Entanglement is a quantum phenomenon that links the states of separate particles, un-
constrained by distance or time. Mathematically, this means that there is a fundamental
correlation between the states of the entangled particles, and the existence of such a phe-
nomenon has strong implications for our interpretation of the laws of nature. Moreover,
the qubits of such a system cannot be described by state vectors. We speak of mixed
states, but this notion will not be explored in this work.

Entanglement is proving to be a very powerful tool, providing the basis for such things
as quantum teleportation and superdense coding.

The states that best illustrate the phenomenon of entanglement are Bell states, also
known as EPR pairs (for Einstein, Podolsky, and Rosen) or maximally entangled pairs.
These states are

1p
2
.j00i C j11i/; 1p

2
.j00i � j11i/; 1p

2
.j01i C j10i/; 1p

2
.j01i � j10i/: (1.9)

If we take as an example the state j i D .j00iC j11i/=
p
2, we can see that there is no

combination of two qubits j Ai and j Bi such that j i D j Aij Bi. In section 1.4.3, we
will see how to create such a state. In j i, we find a superposition of the j00i and j11i
states, but no j01i or j10i. This implies that the two qubits can be observed at j0i or j1i
in an equiprobable way, but that both are necessarily observed at the same value, and that
there is therefore a correlation between the states of the two qubits: the measurement of
one conditions that of the other.

1.3. Quantum operations

1.3.1. Quantum gates and circuits

Schrödinger’s famous equation (1.1) is a differential equation whose solutions depend on
the Hamiltonian yH of the system under study. According to this equation, the evolution
of the system between two times t1 and t2 is

j .t2/i D exp
�
� i
„
yH.t2 � t1/

�
j .t1/i; (1.10)

and the operator of this evolution is

U.t1; t2/ D exp
�
� i
„
yH.t2 � t1/

�
: (1.11)

Since the Hamiltonian is an observable, yH is a Hermitian operator. For any Hermitian
operator X , exp.iX/ is a unitary operator. We therefore conclude that U.t1; t2/ is unitary
and that any evolution of a quantum system is modeled by a unitary operator. This

1.3. Quantum operations 25

result is consistent with the unit norm criterion for state vectors: an operator that always
preserves the norm of a vector is necessarily unitary.

In the context of quantum information, we restrict ourselves to finite-dimensional
cases. We can then represent a unitary operator by a square matrix U such that UU � D
U �U D I , where U � denotes the adjoint matrix of U and I is the identity matrix. In
other words, U � D U �1.

When we apply an operator U to a state j i, we obtain the state U j i. Note that the
matrix multiplies the state vector on the left, as it is in column form. Consequently, if we
apply U and then V successively, we obtain V U j i. Figure 1.2 shows a basic circuit
illustrating the sequence of two gates. A quantum circuit is read from left to right.

j i U V V U j i

Figure 1.2 Succession of quantum gates

When working on an n qubit system, an operator U must be of size 2n � 2n. In
practice, it is unrealistic to design a different component for each U operation you wish
to perform. As in electronics, we use elementary components called quantum gates, by
analogy with logic gates. These gates act on a limited number of qubits, usually one
or two, and are associated with unitary matrices. To perform operations on large-scale
systems, quantum circuits are designed from these gates.

Quantum gates are applied locally to one or more qubits, and the global operator can
be calculated from the matrices of each gate. When no gate is applied to a qubit, we note
that it undergoes an operation I whose matrix is the identity. This does not mean that
the qubit will be unchanged by the operation, as applying an operation to a qubit can
affect all the other qubits with which it is entangled. In general, the state of a single qubit
cannot be defined independently of the rest of the system. For this reason, we need to be
able to calculate the global operator from the individual gates. Like state vectors, gate
matrices are associated by tensor product. For example, let us assume a 5-qubit system.
We apply a gate A to qubit 2 and a gate B to qubits 4 and 5. Such gates are sometimes
referred to as A2 and B4;5 to specify the qubits affected. This example is illustrated in
figure 1.3. The global operation matrix will be

U D I1 ˝ A2 ˝ I3 ˝ B4;5: (1.12)

1.3.2. Usual quantum gates

There are a number of regularly encountered quantum gates, with which most operators
are composed. In this work, we will study just a few of them.

26 1. Notions of quantum information

j i .I1 ˝ A2 ˝ I3 ˝ B4;5/ j i
A

B

� j i U U j i

Figure 1.3 Association of quantum gates

Hadamard gate

The Hadamard gate is one of the most common gates in quantum circuits, as it transforms
a basis state into a superposition. Its matrix is

H D 1p
2

�
1 1

1 �1
�
: (1.13)

Its effect on the j0i and j1i states is as follows:

H j0i D 1p
2
.j0i C j1i/ D jCi; (1.14)

H j1i D 1p
2
.j0i � j1i/ D j�i: (1.15)

We find the jCi and j�i states defined by equation (1.4).

˛ j0i C ˇ j1i H ˛ jCi C ˇ j�i

Figure 1.4 Symbol and effect of Hadamard gate

It is common to see Hadamard gates on each qubit at the input and output of a quantum
circuit. When the Hadamard gate is repeated n times, the global operator is H˝n (see
(B.3) for notation). Applying H˝n to the system creates a uniform superposition of all
states on n qubits. Indeed, we have

H˝nj0i˝n D H˝n

2666664
1

0
:::

0

0

3777775 D
1p
2n

2666664
1

1
:::

1

1

3777775 (1.16)

1.3. Quantum operations 27

Pauli gates

Pauli gates are represented by the Pauli matrices X , Y and Z, which are used, for
example, in spintronics or in modeling errors in quantum transmissions. Their matrices
are

X D
�
0 1

1 0

�
; (1.17)

Y D
�
0 �i
i 0

�
; (1.18)

Z D
�
1 0

0 �1
�
: (1.19)

The X gate causes a bit-flip, inverting j0i and j1i, that is

X.˛j0i C ˇj1i/ D ˛j1i C ˇj0i: (1.20)

The Z gate causes a phase-flip. It transforms j0i into j0i and j1i into �j1i, meaning it
reverses the phase between the superimposed states, that is

Z.˛j0i C ˇj1i/ D ˛j0i � ˇj1i: (1.21)

This means that the Z gate has no effect on the basis states j0i and j1i :

Zj0i D j0i; (1.22)
Zj1i D �j1i � j1i: (1.23)

The Y gate combines the effects of the other two gates. It is equivalent (up to a phase
factor) to the sequence of the other two Pauli gates. Indeed, we have

Y.˛j0i C ˇj1i/ D i.˛j1i � ˇj0i/ � ˛j1i � ˇj0i: (1.24)

˛ j0i C ˇ j1i X ˛ j1i C ˇ j0i

˛ j0i C ˇ j1i Y ˛ j1i � ˇ j0i

˛ j0i C ˇ j1i Z ˛ j0i � ˇ j1i

Figure 1.5 Symbol and effect of the Pauli gate

A property of Pauli matrices that will be used later is

X D HZH; (1.25)
Z D HXH: (1.26)

28 1. Notions of quantum information

CNOT gate

The Controlled-NOT gate, or CNOT, is by far the most widespread gate capable of
causing two qubits to interact. It is found in almost all quantum circuits, as it enables
conditional relationships to be established in a system. In a way, it is the analog of the
"if" in classical programming.

The CNOT gate affects two qubits. It inverts the second if the first is j1i, that is,
it applies X to it, and does nothing otherwise. Note that the first qubit may be in a
superposition of j0i and j1i, so the second qubit may be partially inverted. Its matrix is

CNOT D

2664
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3775 : (1.27)

Its effect on the basis states is as follows:

CNOTj00i D j00i; (1.28a)
CNOTj01i D j01i; (1.28b)
CNOTj10i D j11i; (1.28c)
CNOTj11i D j10i: (1.28d)

These relationships can be summarized as

CNOT.jxijyi/ D jxijx ˚ yi; (1.29)

where˚ denotes Boolean exclusive OR. On any state, we have

CNOT.˛j00i C ˇj01i C j10i C ıj11i/ D ˛j00i C ˇj01i C j11i C ıj10i: (1.30)

jxi jxi
jyi jx ˚ yi

Figure 1.6 Symbol and effect of the CNOT gate

We will see in section 1.4.3 that applying the CNOT gate to superimposed states
creates entanglement between the two qubits concerned.

1.4. Quantum state measurement 29

SWAP gate

The SWAP gate simply inverts the position of two qubits in a system. Its existence is
important, as it demonstrates that it is possible to make two non-adjacent qubits interact.
Its matrix is

SWAP D

2664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3775 : (1.31)

Its effect on the basis states is as follows:

SWAPj00i D j00i; (1.32a)
SWAPj01i D j10i; (1.32b)
SWAPj10i D j01i; (1.32c)
SWAPj11i D j11i: (1.32d)

These relationships can be summarized as

SWAP.jxijyi/ D jyijxi; (1.33)

which corresponds to the exchange of qubit positions.

jxi jyi

jyi jxi

Figure 1.7 Symbol and effect of the SWAP gate

1.4. Quantum state measurement

1.4.1. Measurement principles

Measuring a quantum state is a delicate operation, as it can modify or destroy the
measured state. It is therefore irreversible, unlike all other quantum operations. The
behavior of quantum measurement is unique, and has its own mathematical formalism.

First, we need to define what we are measuring. In quantum physics, we don’t talk
about quantities, but about "observables". An observable is not a scalar, as a quantity
is in classical physics, but a Hermitian operator. From this observable, we can predict
all possible results of a measurement on a given state, as well as their probabilities of
occurrence.

30 1. Notions of quantum information

An observable yM , like any Hermitian operator, can be decomposed into

yM D
X
m

mj mih mj; (1.34)

where m represents the eigenvalues of yM and j mi the associated eigenvectors. This
matrix representation is called the "spectral decomposition", and exists for all normal
matrices, including Hermitian and unitary matrices.

When yM is measured on a state j i, the possible results of the measurement are the
values of m, that is, the eigenvalues of the observable. We define Pm D j mih mj as the
projector on the j mi state. Indeed, we have

Pmj i D j mih mjj i D j mih mj i D h mj ij mi; (1.35)

which corresponds to the orthogonal projection of j i onto j mi. The probability of
measuring m is the square of the norm of this orthogonal projection, that is

P.m/ D jh mj ij2 D h jPmj i: (1.36)

After measurement, the state is modified to conform to the realization, that is

j i yM�! j mi D Pmj ip
P.m/

: (1.37)

If yM is normal, then its eigenvectors j mi form an orthonormal basis of Cn, and
hence X

m

Pm D In; (1.38)

where In is the identity of size n � n. This explains the unit norm condition for state
vectors: since the sum of probabilities must be 1, we haveX

m

P.m/ D
X
m

h jPmj i; (1.39)

D h j
X
m

Pmj i; (1.40)

D h jInj i; (1.41)
D h j i; (1.42)

D kj ik2 (1.43)

and since
P
m P.m/ D 1, we must have kj ik D 1.

1.4. Quantum state measurement 31

It is possible to study the statistical behavior of projective measurements. Knowing that
a measurement returns a valuemwith probability P.m/, the mean value of a measurement
of the observable yM is

E. yM/ D
X
m

mP.m/; (1.44)

D
X
m

mh jPmj i; (1.45)

D h j
X
m

mPmj i; (1.46)

D h j yM j i: (1.47)

We often note h j yM j i D h yM i. In the same way, we can calculate the variance and
standard deviation, or any other statistical property. For example, the variance of yM will
be

var. yM/ D h yM 2i � h yM i2: (1.48)

When we apply the same measurement several times, we will always obtain the same
thing as the first time. If one measurement gives us m, then the output state is j mi, and
the next measurement will give m with a probability of

P.m/ D h mjPmj mi; (1.49)
D h mjj mih mjj mi; (1.50)

D jh mj mij2; (1.51)
D 1: (1.52)

1.4.2. Examples of measurements

Example of measurement on a single qubit

Assume we receive a qubit j i D 0:8j0i � 0:6ij1i and perform a measurement that can
give j0i or j1i. The projectors of the measure are P0 D j0ih0j, and P1 D j1ih1j. We can
check that P0 C P1 D I2 :

P0 C P1 D
�
1

0

� �
1 0

�C �0
1

� �
0 1

� D �1 0

0 0

�
C
�
0 0

0 1

�
D
�
1 0

0 1

�
; (1.53)

and therefore that our measurement is correctly defined.
In this case, as is often the case in quantum information, we are not concerned with the

result m of the measurement, but only with the observed vector j mi and the probability

32 1. Notions of quantum information

of its realization P.m/. In this case, we do not use the observable yM but only the
projectors Pm. The probability of measuring j0i is

P.0/ D h jP0j i; (1.54)
D .0:8h0j C 0:6ih1j/.j0ih0j/.0:8j0i � 0:6ij1i/; (1.55)
D .0:8h0j/.j0ih0j/.0:8j0i/; (1.56)
D 0:64h0j0ih0j0i; (1.57)
D 0:64: (1.58)

Here, j1i disappears, as j0i and j1i are orthogonal, and so h0j1i D h1j0i D 0. Further-
more, as with any state vector, h0j0i D kj0ik2 D 1. In the end, P.0/ D 0:64. The
calculation of P.1/ is similar, except that we use P1 instead of P0 :

P.1/ D h jP1j i; (1.59)
D .0:8h0j C 0:6ih1j/.j1ih1j/.0:8j0i � 0:6ij1i/; (1.60)
D .0:6ih1j/.j1ih1j/.�0:6ij1i/; (1.61)
D 0:36h1j1ih1j1i; (1.62)
D 0:36: (1.63)

We verify that P.0/C P.1/ D 1. After measurement, the state becomes, according to the
realization

j 0i D P0j ip
P.0/

D j0ih0j.0:8j0i � 0:6ij1i/
0:8

D j0i; (1.64)

j 1i D P1j ip
P.1/

D j1ih1j.0:8j0i � 0:6ij1i/
0:6

D j1i: (1.65)

This means that when we measure j0i, the state j i becomes j 0i D j0i. Similarly,
when we measure j1i, the state j i becomes j 1i D j1i.

In this measurement example, we can directly find the probabilities of each realization:
the state vector being of the form j i D ˛j0i C ˇj1i, the probabilities of measuring j0i
and j1i are respectively P.0/ D j˛j2 D 0:64 and P.1/ D jˇj2 D 0:36. For this reason, if
we wish to make a measurement that can give two results jxi and jyi, we can choose
to express j i as a superposition of jxi and jyi, that is, j i D ˛0jxi C ˇ0jyi (provided
that jxi and jyi are orthogonal).

For example, we perform a measurement which may result in jCi and j�i. Since
jCi D .j0i C j1i/=

p
2 and j�i D .j0i � j1i/=

p
2, we can write

j i D 0:8j0i C 0:6ij1i D 0:8C 0:6ip
2
jCi C 0:8 � 0:6ip

2
j�i; (1.66)

1.4. Quantum state measurement 33

and therefore

P.C/ D
ˇ̌̌̌
0:8C 0:6ip

2

ˇ̌̌̌2
D 1

2
; (1.67)

P.�/ D
ˇ̌̌̌
0:8 � 0:6ip

2

ˇ̌̌̌2
D 1

2
: (1.68)

A direct calculation with the projectors would, of course, produce the same result.

Example of measurement on two qubits

Assume we have two qubits j Ai D 0:6j0iC0:8j1i and j Bi D .j0iCj1i/=
p
2, and that

in both cases we wish to make a measurement that can give j0i or j1i. We can show that
the probabilities of measuring j0i and j1i on the first qubit are respectively PA.0/ D 0:36
and PA.1/ D 0:64. Similarly, on the second qubit, they are PB.0/ D PB.1/ D 0:5.

Consider the system composed of these two qubits. Its state vector is j ABi D
j Ai˝j Bi D .0:6j00iC0:6j01iC0:8j10iC0:8j11i/=

p
2. If we perform a measurement

with the states j00i, j01i, j10i and j11i as possible outcomes, the projectors will be
P00 D j00ih00j, P01 D j01ih01j, P10 D j10ih10j, and P11 D j11ih11j. Once again, we
can check that P00CP01CP10CP11 D I4, which means that our measure is correctly
defined. The probabilities of each possible outcome are

P.00/ D h jP00j i D 0:18; (1.69)
P.01/ D h jP01j i D 0:18; (1.70)
P.10/ D h jP10j i D 0:32; (1.71)
P.11/ D h jP11j i D 0:32: (1.72)

As in the one-qubit case, since the measured state is expressed as ˛j00i C ˇj01i C
 j10i C ıj11i, we can directly deduce that P.00/ D j˛j2, P.01/ D jˇj2, P.10/ D j j2
and P.11/ D jıj2. Moreover, as the two qubits in the system are not entangled, their
measurements are independent of each other, and we observe that P.00/ D PA.0/PB.0/,
P.01/ D PA.0/PB.1/, P.10/ D PA.1/PB.0/ and that P.11/ D PA.1/PB.1/.

It may happen that we wish to measure only part of a system. Assume we keep the
same state j ABi as in the previous example, and perform a measurement that may give
j0i or j1i on the first qubit, leaving the second intact. We will note the two projectors of
this measure P0� and P1�, the "�" in second position indicating that we ignore the state
of the second qubit. These projectors are

P0� D j00ih00j C j01ih01j D j0ih0j ˝ I2; (1.73)
P1� D j10ih10j C j11ih11j D j1ih1j ˝ I2: (1.74)

34 1. Notions of quantum information

In matrix form, we have

P0� D

2664
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3775 ; P1� D
2664
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

3775 ; (1.75)

and we verify that P0� C P1� D I4.
In the end, the probabilities of each possible outcome are

P.0�/ D h jP0�j i D 0:36; (1.76)
P.1�/ D h jP1�j i D 0:64; (1.77)

and we find the probabilities PA.0/ and PA.1/. This is a logical but reassuring result:
measuring a qubit in a system is equivalent to measuring it in isolation.

It is possible to design measurements that are not concerned with the states of each
qubit independently, but only in some of their properties. For example, the projec-
tors PD D j00ih00j C j11ih11j and P¤ D j01ih01j C j10ih10j correspond to a measure
whose results are "the two qubits are identical" or "the two qubits are different", without
knowing the state of these qubits.

1.4.3. Measurement of entangled states

Introduced in equation (1.9), Bell states are the most strongly entangled two-qubit
systems, resulting in total correlation between the measurements of the two qubits.

jxi H j0yiC.�1/x j1 Nyip
2jyi

Figure 1.8 Bell circuit

These states can be obtained from the Bell circuit shown in figure 1.8. Each of the two
input qubits, jxi and jyi, can be initialized to j0i or j1i. For the four possible inputs, the
successive transformations are :

j00i H˝I���! .j0i C j1i/j0i=
p
2

CNOT���! .j00i C j11i/=
p
2; (1.78a)

j01i H˝I���! .j0i C j1i/j1i=
p
2

CNOT���! .j01i C j10i/=
p
2; (1.78b)

j10i H˝I���! .j0i � j1i/j0i=
p
2

CNOT���! .j00i � j11i/=
p
2; (1.78c)

j11i H˝I���! .j0i � j1i/j1i=
p
2

CNOT���! .j01i � j10i/=
p
2: (1.78d)

1.4. Quantum state measurement 35

These four states are then denoted j“xyi, with the general equation

j“xyi D j0yi C .�1/
xj1 Nyip

2
: (1.79)

Assume that we have the state j“00i D .j00i C j11i/=
p
2 and that we perform a

measurement on each of its qubits that can give the result j0i or j1i. If we start by
measuring the first qubit, we use the projectors P0� D j0ih0j˝ I2 and P1� D j1ih1j˝ I2,
and we have the measurement probabilities

PA.0/ D 1p
2
.h00j C h11j//.j0ih0j ˝ I2/ 1p

2
.j00i C j11i//; (1.80)

D 1

2
.h0j C h1j/j0ih0j.j0i C j1i/; (1.81)

D 1

2
h0j0ih0j0i D 1

2
; (1.82)

PA.1/ D 1p
2
.h00j C h11j//.j1ih1j ˝ I2/ 1p

2
.j00i C j11i//; (1.83)

D 1

2
.h0j C h1j/j1ih1j.j0i C j1i/; (1.84)

D 1

2
h1j1ih1j1i D 1

2
: (1.85)

Here, we simplify the expressions using the mixed product (see equation (B.8)) and
the fact that hxjI2jxi D kjxik2 D 1 for all jxi. In the end, we obtain, quite logically,
PA.0/ D PA.1/ D 0:5.

By symmetry, if we start with the measurement of the second qubit with projectors P�0
and P�1, we will find PB.0/ D PB.1/ D 0:5. However, if the two measurements are
made one after the other, the behavior of the second is conditioned by the first. Assume
that the first qubit has been measured first. We can have, equiprobably, one of the states

j 0�i D P0�j“00iq
PA.0/

; (1.86)

D
p
2.j0ih0j ˝ I2/.j00i C j11i/=

p
2; (1.87)

D j00i; (1.88)

j 1�i D P1�j“00iq
PA.1/

; (1.89)

D
p
2.j1ih1j ˝ I2/.j00i C j11i/=

p
2; (1.90)

D j11i: (1.91)

36 1. Notions of quantum information

This means that if the measurement of the first qubit gave j0i, then the second will be
on state j00i, and if the measurement of the first qubit gave j1i, then the second will be
on state j11i. If we measure the second qubit of j00i, we will still get j0i and therefore
PB.0/ D 1. Similarly, if we measure the second qubit of j11i we will always get j1i and
therefore PB.1/ D 1. In the end, the second measurement will always give the same
result as the first.

We can deduce from these results that the measurements of the two qubits are not in-
dependent. In this case, they are even totally correlated. This correlation is an expression
of the entanglement phenomenon, and can be exploited, for example, in teleportation,
since the two qubits of an entangled pair are not necessarily close to each other.

1.5. No-cloning theorem

In classical computing, one of the most common operations is copying information.
Whether to save data or to add redundancy to a message, cloning bits is considered an
elementary manipulation. In quantum computing, it turns out that it is impossible to
clone any quantum state. More precisely, a given device can only clone orthogonal states.

Let a system be defined by a state vector jsi, where jsi is the location reserved for
copying jsi. We are looking for a unitary operation U capable of making this copy. We
must then have

U.j ijsi/ D j ij i: (1.92)

Then, assume that this operation U can clone another state j'i. In the same way

U.j'ijsi/ D j'ij'i: (1.93)

The inner product of these expressions is, on either side of the equalities�
.h jhsj/U �

��
U.j'ijsi/� D .h jh j/.j'ij'i/; (1.94)
h j'ihsjsi D h j'ih j'i; (1.95)

h j'i D h j'i2; (1.96)

which implies that h j'i D 0 or that h j'i D 1. Consequently, the operator U that
clones j i and j'i only exists if these two states are orthogonal, and U cannot, for
example, clone a superposition ˛j i C ˇj'i. This is known as the no-cloning theorem,
and is a major constraint in quantum information.

2. Quantum walks

In classical computer science, random walk algorithms form a family of probabilistic
algorithms that consist of a succession of random moves in a given space. Because of their
"organic" nature, random walks are used in a wide variety of fields, including biology
and economics. It turns out that they are also suitable for solving several important
algorithmic problems, such as estimating the volume of a convex body [DFK91], or
calculating the permanent of a matrix [JSV04]. In particular, random walks can be used
to solve an important family of problems: Boolean satisfiability problems, or "SAT", in a
relatively short time [Sch99], including 3-SAT with a complexity O.1:334n/. This is an
important result, because according to Cook’s theorem [Coo71], SAT is a NP-complete
problem, and we can reduce any SAT problem to 3-SAT [Kar72]. This means that we
can theoretically reduce any NP problem to 3-SAT, and thus solve it with a random walk
algorithm. A quick overview of the SAT problem and its importance in algorithmics is
available in appendix D.

The notion of quantum random walk originates from the work of physicists Aharonov,
Davidovich and Zagury [ADZ93]. The concept of quantum walks is to move a particle
according to a position-independent parameter, such as the spin. The difference between
quantum walks and classical quantum walks lies in the possibility of superposition of
positions and directions of motion, leading to the appearance of interference. In this work,
we will only consider the case of discrete time quantum walks, which are analogous to
classical random walks.

The question of how to implement quantum walks is still open. A quantum computer
could simulate such walks, just as a classical computer simulates random walks on a
graph. Pending the arrival of a universal quantum computer, various implementation solu-
tions have been rapidly proposed, such as ion traps [TM02] or optical lattices [DRKB02].
There are also proposed implementations on modern quantum processors [AAMP20],
[QWXC21].

As with classical walks, the potential applications of quantum walks are multiple. In
addition to their interest in the study of search algorithms, which will be covered in
section 3.3, they can be used, for example, to solve various combinatorial optimization
problems [MW19], [MW20], such as portfolio optimization problems [SMMW21].

In this chapter, we first look at the case of walk on an axis in order to present the
concepts common to every quantum walk and to illustrate their particular behaviors in
section 2.1. Then, in section 2.2, we will focus on the hypercube walk, which will serve
as the basis for the search algorithm studied in this work, presented in section 3.3.

38 2. Quantum walks

2.1. Formalism and walk on an axis

In this section, we will introduce the formalism of quantum walks with the example of
the simplest of them all, the walk on an axis. For illustrative purposes, we will limit
ourselves to a superficial analysis of the behavior of this walk. A more complete analysis
of this walk can be found in [NV00]. We assume that we have a particle placed on an
infinite axis and that this particle is endowed with a property that can take two values
(for example, its spin), which we will denote as j"i and j#i. We write j i D j4ij#i the
state of a particle placed at position x D 4 with a spin j#i.

In a quantum walk, the state of a particle is represented in a composite Hilbert space
H D HS ˝HC, where HS is the shift space, representing the positions, and HC is the
coin space, representing the directions of motion. The term "coin" refers to the random
drawing of the direction at each stage of a classical random walk, such as a coin toss. A
basic state in H can therefore be written as

j i D jpijd i; (2.1)

where jpi is a basis state in HS designating a position on the graph and jd i is a base
state in HC designating a direction of motion. In the case of the walk on an infinite axis,
the spaces HS and HC are defined as

HS D span.fjpi j p 2 Zg/; (2.2)

HC D span.fj#i; j"ig/; (2.3)

where span.V / denotes the vector space spanned by the set of vectors V . Often, a
matrix M is used instead of the set V . In this case, span.M/ designates the vector space
spanned by the columns of M . If required, all the notations used in this work can be
found on page 13.

The displacement of the particle on the axis will depend on jd i: if jd i D j"i, then
the particle moves from position p to position p C 1, and if jd i D j#i, then the particle
moves from position p to position p � 1. We define the shift operator S by

S jpij#i D jp � 1ij#i: (2.4)
S jpij"i D jp C 1ij"i; (2.5)

Before each move, we "mix" the directions in which the particle will move. This
is equivalent to a random draw for the next move in the classical random walks. The
operator responsible for this action is the coin operator C , and is defined in terms of the
walk we wish to obtain. On the axis, to obtain a balanced walk, we use the Hadamard
matrix H defined in equation (1.13), considering that j#i � j0i and j"i � j1i. We then

2.1. Formalism and walk on an axis 39

have

C jpij#i D jpi.H j#i/ D jpi j#i C j"ip
2

; (2.6)

C jpij"i D jpi.H j"i/ D jpi j#i � j"ip
2

: (2.7)

We start the walk on the axis in the central position jp0i D j0i, and in this first
example with jd0i D j#i. The initial state is therefore

j 0i D j0ij#i: (2.8)

The walk consists of the repeated application of the operators C and S . The uniform
walk operator is U D SC . The first iteration is therefore

j 1i D U j 0i; (2.9)
D SC j0ij#i; (2.10)

D S j0i j#i C j"ip
2

; (2.11)

D S j0ij#i C j0ij"ip
2

; (2.12)

D j�1ij#i C j1ij"ip
2

: (2.13)

The result obtained after one iteration is identical to what a classic walk would produce,
that is, a symmetrical distribution between the �1 and 1 positions. Similarly, the second
iteration produces an intuitive result:

j 2i D U j 1i; (2.14)

D SC j�1ij#i C j1ij"ip
2

; (2.15)

D S j�1i.j#i C j"i/C j1i.j#i � j"i/
2

; (2.16)

D j�2ij#i C j0ij#i C j0ij"i � j2ij"i
2

: (2.17)

We have a probability of 0:5 of measuring position p D 0, and a probability of 0:25
of measuring position p D 2 or p D �2. It is at the third iteration that the particular

40 2. Quantum walks

behavior of the walk becomes apparent:

j 3i D U j 2i; (2.18)

D SC j�2ij#i C j0ij#i C j0ij"i � j2ij"i
2

; (2.19)

D S j�2i.j#i C j"i/C 2j0ij#i � j2i.j#i � j"i/
2
p
2

; (2.20)

D j�3ij#i C j�1ij"i C 2j�1ij#i � j1ij#i C j3ij"i
2
p
2

: (2.21)

We observe that the probability of measuring position p D �1 is 0:625, that is 5 times
more than positions p D �3, p D 1 and p D 3. An asymmetry therefore arises during
the process. The probability of finding the particle in a particular location on the axis
after 100 iterations is shown in figure 2.1. This figure shows that the distribution of the
probability of finding the particle in a particular location is remarkably irregular.

Its shape is very different from the bell-shaped curve you would get with a conventional
random walk (drawn in orange dotted lines), that is going right or left with a probability
of 0:5 at each step. Note that on this curve, only even positions are plotted, since after an
even number of iterations, only even positions can be obtained. To study the behavior of
this walk, we can decompose the position probability function into two components with
opposite directions. At position p and iteration t , if we denote these components #.p; t/
and ".p; t/, we can represent the system by the vector

	.p; t/ D
�
 #.p; t/
 ".p; t/

�
: (2.22)

The evolution of the system can then be expressed as

	.p; t C 1/ DMC	.p � 1; t/CM�	.p C 1; t/; (2.23)

with

MC D
24 0 0
1p
2

�1p
2

35 ;M� D
24 1p

2

1p
2

0 0

35 :
In this representation, the initial state of the walk is

	.0; 0/ D
�
1

0

�
; (2.24)

8n ¤ 0; 	.n; 0/ D
�
0

0

�
: (2.25)

2.1. Formalism and walk on an axis 41

-80 -60 -40 -20 0 20 40 60 80

Position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
o
si

ti
o
n
 p

ro
b
ab

il
it

y

Asymmetrical walk on the axis

Classical random walk

Figure 2.1 Position probability on the axis after 100 iterations of the walk initialized
with j0ij#i. Only even-numbered positions are plotted

We can calculate the spatial Fourier transform z	.k; t/ of 	.p; t/, defined as

z	.k; t/ D
X
p

	.p; t/eikp; (2.26)

with k 2 Œ��; ��. In the Fourier domain, the system evolves as follows:

z	.k; t C 1/ D
X
p

.MC	.p � 1; t/CM�	.p C 1; t//eikp; (2.27)

D .eikMC C e�ikM�/ z	.k; t/; (2.28)

DMk
z	.k; t/; (2.29)

with

Mk D eikMC C e�ikM� D 1p
2

�
e�ik e�ik

eik �eik

�
: (2.30)

42 2. Quantum walks

The state of the system at iteration t is thus

M t
k
z	.k; 0/: (2.31)

If �k;1jmk;1ihmk;1j C �k;2jmk;2ihmk;2j is the spectral decomposition of Mk , where �k;1
and �k;2 are its eigenvalues and jmk;1i and jmk;2i its eigenvectors, then we can write

M t
k D �tk;1jmk;1ihmk;1j C �tk;2jmk;2ihmk;2j: (2.32)

According to Nayak and Vishwanath [NV00], we have �k;1 D e�i!k , �k;2 D ei.�C!k/
and

jmk;1i D 1p
2

�
1C cos2 k � cos k

p
1C cos2 k

�� 1
2

�
e�ikp

2e�i!k � e�ik

�
; (2.33)

jmk;2i D 1p
2

�
1C cos2 k C cos k

p
1C cos2 k

�� 1
2

�
e�ik

�
p
2ei!k � e�ik

�
; (2.34)

with !k 2 Œ��=2; �=2� such that

sin!k D sin kp
2
: (2.35)

In the Fourier domain, the initial state is

8k; z	.k; 0/ D
�
1

0

�
: (2.36)

We then have

z ".k; t/ D 1

2
.1C cos kp

1C cos2 k
/e�i!kt C .�1/t

2
.1 � cos kp

1C cos2 k
/ei!kt ; (2.37)

z #.k; t/ D ieik

2
p
1C cos2 k

.e�i!kt � .�1/tei!kt/: (2.38)

Inverting the Fourier transform, we finally obtain

 ".p; t/ D 1C .�1/pCt
4�

Z �

��

�
1C cos kp

1C cos2 k

�
e�i.!ktCkp/ dk; (2.39)

 #.p; t/ D 1C .�1/pCt
4�

Z �

��
eikp

1C cos2 k
e�i.!ktCkp/ dk: (2.40)

The probability of finding the particle at position p D ˛t at iteration t is

P.˛; t/ D j #.p; t/j2 C j ".p; t/j2: (2.41)

2.1. Formalism and walk on an axis 43

These expressions show that the probability of finding the particle at position is zero
when p C t is odd, that is every other point. It is also possible to find an asymptotic
expression that approximates the behavior of the walk when t becomes large. The
asymptotic asymptotic position probability is expressed as

P.˛; t/ � 1C .�1/.˛C1/t
�t j!00

k˛
j

�
.1 � ˛/2 cos2.�˛t C �

4
/C .1 � ˛2/ cos2.�˛t C �

4
C k˛/

�
;

(2.42)
where !0

k
and !00

k
are the first and second derivatives of !k, k˛ is the root of equation

!0
k
C ˛ in Œ0; �� and �˛ D �!k˛ � ˛k˛. A comparison of the exact probability of

presence and its asymptotic approximation is shown in figure 2.2.

-80 -60 -40 -20 0 20 40 60 80

Position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
o
si

ti
o
n
 p

ro
b
ab

il
it

y

Asymptotic approximation

Exact simulation

Figure 2.2 Comparison of the exact and asymptotic position probabilities of the equation
(2.42) on the axis after 100 iterations. Only even positions are plotted

It is possible to extract from the asymptotic approximation the non-oscillating compo-
nent, generally called Pslow :

Pslow.˛; t/ D 1 � ˛
�t j!00

k˛
j : (2.43)

44 2. Quantum walks

The Pslow approximation, shown in figure 2.3, is useful in the study of the walk on the
axis, as it contributes more strongly than the oscillating component to the statistical
properties of the distribution.

-80 -60 -40 -20 0 20 40 60 80

Position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
o
si

ti
o
n
 p

ro
b
ab

il
it

y

Non-oscillating approximation

Asymptotic approximation

Figure 2.3 Comparison of the slow position probability Pslow and asymptotic position
probability on the axis after 100 iterations. Only even-numbered positions are plotted.
Pslow is multiplied by 2 as it also contains odd-numbered points.

Different presence probability distributions can be obtained by choosing different
initial states j 0i. For example, a distribution symmetrical to the one studied above is
obtained if we initialize with j 0i D j0ij"i. To obtain a symmetrical distribution with
respect to the walking origin, initialize with

j 0i D j0i j#i C ij"ip
2

: (2.44)

The resulting probability distribution is symmetrical, but still very different from the
classical case, as shown in figure 2.4.

2.2. Walk on hypercube 45

-80 -60 -40 -20 0 20 40 60 80

Position

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
o
si

ti
o
n
 p

ro
b
ab

il
it

y

Symmetrical walk on the axis

Classical random walk

Figure 2.4 Position probability on axis after 100 iterations of the symmetrical walk.
Only even positions are plotted

2.2. Walk on hypercube

Hypercube graphs are particularly suitable for representing binary words. On a hypercube
of dimension n, the N D 2n vertices of all n-bit binary words can be assigned in such a
way that each binary word is adjacent to n words located at a Hamming distance equal
to 1, that is, differing by a single bit. They are therefore widely used in information
theory.

As in the case of the walk on the axis, the state vector of the system lies in a composite
Hilbert space H D HS˝HC. In the case of the n-dimensional hypercube, these subspaces
are

HS D span.fjpi j p 2 Zn2g/; (2.45)

HC D span.fjd i j d 2 f1; 2; : : : ; ngg/; (2.46)

46 2. Quantum walks

The dimensions of these spaces are

dim.HS/ D N; (2.47)

dim.HC/ D n; (2.48)

which implies that the dimension of the global space H is

dim.H/ D nN: (2.49)

As on the axis, the walk on the hypercube consists of the repeated application of a
uniform walking operator U D SC , where S is the shift operator and C is the coin
operator. These two operators are defined in a similar way to those used for walking on
the axis.

In this work, the position p on the dimension n hypercube will be designated as
needed by a binary word in Zn2, or by its decimal representation in ZN . For example, the
state corresponding to the vertex 0010 of the dimension 4 hypercube could be written
as j0010i or j4i. Note that the most significant bit is always located to the right of the
binary word. The vertices of the hypercube are numbered so that a move along the d -th
dimension of the hypercube corresponds to an inversion of the d -th bit from the right in
the binary word of the position. For example, after moving in the second direction, the
state j0010ij2i will become j0000ij2i.

To construct the operator S capable of performing this shift, we build n operators Sd
of size N �N , each performing the shift in direction d . To invert a bit, we locally apply
the operator X , defined by equation (1.17). As a reminder, X j0i D j1i and X j1i D j0i.
An operator Sd must therefore apply X to the d -th qubit from the right, and I to all the
others. The result is

Sd D I˝.n�d/ ˝X ˝ I˝.d�1/: (2.50)

From the operators Sd , it is simpler to construct the shift operator in HC ˝HS space.
The shift operator in this space, which we will denote SCS, can be expressed as

SCS D
nX

dD1
jd ihd j ˝ Sd : (2.51)

This is a block-diagonal matrix where the blocks are the n matrices Sd arranged in
ascending order of d . The SCS matrix is shown in figure 2.6 for n D 4.

On the hypercube, the Fourier transform is equivalent to the application of Hadamard
matrices. Indeed, the unit matrix performing the Fourier transform is

UF D 1p
k

26664
!0�0
k

!0�1
k

: : : !
0�.k�1/
k

!1�0
k

!1�1
k

: : : !
1�.k�1/
k

:::
:::

: : :
:::

!
.k�1/�0
k

!
.k�1/�1
k

: : : !
.k�1/�.k�1/
k

37775 ; (2.52)

2.2. Walk on hypercube 47

(0)

0000

(1)

1000

(2)

0100

(3)

1100

(4)

0010

(5)

1010

(6)

0110

(7)

1110

(8)

0001
(9)

1001

(10)

0101

(11)

1101

(12)

0011

(13)

1011

(14)

0111

(15)

1111

d
D

1

d
D

2

d D
3

d D 4

Figure 2.5 4-dimensional hypercube with numbered vertices and directions

with !k D e�i2�=k. Since there are only two elements per dimension, we have k D 2

and this implies UF D H , where H is the Hadamard matrix defined in equation (1.13).
We define HN the N �N Hadamard matrix that performs the N -dimensional Fourier
transform, such that, for N D 2n, we have HN D H˝n. It can be shown that the Sd
blocks are diagonalizable by Fourier transform. Let zSd be the Fourier transform of Sd .
We have

zSd D HNSdHN ; (2.53)

D H˝n�I˝.n�d/XI˝.d�1/�H˝n; (2.54)

D .HIH/˝.n�d/ ˝ .HXH/˝ .HIH/˝.d�1/; (2.55)

D I˝.n�d/ ˝Z ˝ I˝.d�1/; (2.56)

because H 2 D I , and where Z is the Pauli matrix defined in equation (1.19). Since I
and Z are diagonal, then the zSd matrices are also diagonal. Each of them has, on its

48 2. Quantum walks

0 16 32 48

0

16

32

48 0

1

Figure 2.6 Shift operator SCS for n D 4. The Sd blocks are delimited by red lines.

diagonal, 2n�d repetitions of a diagonal block consisting of 2d�1 coefficients 1 followed
by 2d�1 coefficients �1, as shown in figure 2.7.

The Fourier transform preserves the block-diagonal character of a matrix. We can
therefore construct zSCS the spatial Fourier transform of SCS made up of zSd blocks. This
is equivalent to defining zSCS by

zSCS D .In ˝HN /SCS.In ˝HN /: (2.57)

The shift operator has a simple structure in HC ˝ HS, but we will also need its
representation in H D HS ˝HC. We can switch from one representation to the other
using permutation matrices. We will use the matrix PN;n defined in appendix C. We have

S D PN;nSCSP
|

N;n: (2.58)

We can then see that the structure of the operator S is more complex in HS ˝HC than
in HC ˝HS, as illustrated in figure 2.8, but as the opposite is true for the operator C ,
there is no representation better than the other. We therefore arbitrarily choose to use

2.2. Walk on hypercube 49

0 16 32 48

0

16

32

48

-1

0

1

Figure 2.7 Diagonalized shift operator zSCS for n D 4. The zSd blocks are delimited by
red lines.

H D HS ˝ HC as the reference space, but it is always possible to switch from one
representation to the other.

It is also possible to diagonalize the shift operator in H by spatial Fourier transform.
Let us call F the spatial Fourier transform operator in H, such that

F D HN ˝ In: (2.59)

The zS D FSF matrix is shown in figure 2.9. This is a diagonal matrix with a
remarkable structure that can be split into N diagonal blocks zS .p/ containing the terms 1
and �1. If we associate the values 1 and �1 respectively with bits 0 and 1, we can read
in each block zS .p/ the binary word b associated with position p.

The choice of the coin operator C is more complex for the walk on a hypercube than
on an axis. As C has no action in HS, it can be decomposed into

C D IN ˝ C0; (2.60)

where C0 is a n�nmatrix acting in HC. We can lay down two criteria for the operator C0,
namely that it be unitary, but also that it be symmetrical to dimension permutations.

50 2. Quantum walks

0 16 32 48

0

16

32

48 0

1

Figure 2.8 Shift operator S for n D4

Indeed, the numbering of the hypercube dimensions is arbitrary, and changing it should
not alter the walk. As shown in [MR02], an operator that satisfies these conditions is
necessarily of the form

C0 D

2666664
a b b : : : b

b a b : : : b

b b a � � � b
:::
:::
:::
: : :

:::

b b b : : : a

3777775 ; (2.61)

with jaj2C .n� 1/jbj2 D 1 and ja� bj2 D 1. Solutions exist only if 1� 2=n 6 jaj 6 1,
with two possible values of b per value of a. Among the matrices in this family, we
choose the one that is furthest from a diagonal unit matrix, i.e. that mixes the directions
the most. Let cIn be a diagonal unit matrix with jcj D 1. We have

kC0 � cInk D 2n.1 � Re.ac�//; (2.62)
> 2n.1 � jaj/; (2.63)

2.2. Walk on hypercube 51

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

-1

0

1

Figure 2.9 Diagonalized shift operator zS for n D 4. The zS .p/ blocks are delimited by
red lines.

where kAk D tr.A�A/ denotes the operator norm of the matrix A. We can see that
2n.1 � jaj/ is maximized when jaj becomes small. We therefore choose the smallest
possible value, jaj D 1 � 2=n. This gives us the Grover G diffusion operator, named
after Grover’s algorithm presented in chapter 3. By choosing a to be a negative real
number, we can write this operator as

G D 2junihunj � In; (2.64)

where juni is the uniform superposition of all HC basis states, that is

juni D 1p
n

nX
xD1
jxi: (2.65)

Finally, the expression for the coin operator in H is

C D IN ˝G: (2.66)

52 2. Quantum walks

The suitability of a graph for random walks can be gauged by studying certain charac-
teristic times, such as mixing or reaching times. Although these notions are not explored
in this work, we may note that Kempe has shown in [Kem05] that the time to go from a
vertex to its opposite is polynomial in the dimension of the hypercube, which is expo-
nentially faster than classical walks. This is an encouraging result, suggesting that some
classical hypercube walk algorithms could be accelerated by quantum computing.

3. Quantum search algorithm

Introduced in A Fast Quantum Mechanical Algorithm for Database Search [Gro96] by
Grover, the quantum search algorithm, or simply Grover’s algorithm, can find with high
probability an element in a database that meets a given criterion faster than a classical
algorithm. In a database of N unsorted elements, a classical algorithm requires O.N /
operations to find an element that satisfies any given criterion. For example, if we have
1 000 words scrambled and are looking for one that begins with the letter "A", we need
to read them one by one until we find one that matches. In the worst case, there is only
one, and it is at the end of the list, so you have to perform 1 000 operations.

Grover’s algorithm is able to perform this task in O
�p
N
�
, which represents a quadratic

gain in time. Unlike other quantum algorithms, such as Shor’s famous algorithm for prime
factorization in polynomial time [Sho94], Grover’s algorithm offers no exponential gain
compared with its classical equivalent. However, such a gain is not negligible, especially
when N becomes large. According to Nielsen and Chuang [NC10], Grover’s algorithm
could speed up the resolution of NP-complete problems. It is also possible to use Grover’s
algorithm to speed up brute force attacks, as shown in Grover vs. McEliece [Ber10].

3.1. Quantum Oracle and Grover iteration

The element at the heart of Grover’s algorithm is the oracle, an operator capable of
recognizing whether or not an element is a solution to the problem associated with it.
Any n-bit problem contains at most N D 2n elements that can be numbered from 0 to
N � 1. Let f .x/ D 1 if x is a solution to the problem and f .x/ D 0 otherwise, with
x 2 ZN . The problem is equivalent to finding the antecedents of 1 by f .

From the function f , we can devise an operator capable of recognizing solutions, the
oracle. Let the operator O be such that

jxijqi O�! jxijq ˚ f .x/i; (3.1)

where jxi is the state corresponding to the element under test, jqi is an arbitrary fixed
qubit and˚ denotes modulo 2 addition . Such an operator O is involutive, meaning that
it is its own inverse. Indeed, we have

jxijq ˚ f .x/i O�! jxijq ˚ f .x/˚ f .x/i D jxijqi: (3.2)

54 3. Quantum search algorithm

Furthermore, we can determine the 2N eigenvectors of O , all of the form jxijCi and
jxij�i. We have

O
�
jxi j0i C j1ip

2

�
D jxi j0i C j1ip

2
; (3.3)

O
�
jxi j0i � j1ip

2

�
D .�1/f .x/jxi j0i � j1ip

2
: (3.4)

We observe that the eigenvectors jxijCi are all associated with eigenvalue 1, and that
the eigenvectors jxij�i are associated with eigenvalues 1 or �1 depending on f .x/.
The distribution of eigenvalues therefore depends on the problem, but the eigenvectors
are always the same, and are all orthogonal to each other. We deduce that O is a
normal operator as well as being involutive, which means that it is Hermitian and, more
importantly, unitary. The oracle O is a valid quantum operator, and can theoretically be
implemented.

The case of eigenvectors jxij�i is especially useful: if we consider that we always
initialize with jqi D j�i, the action of the oracle becomes

jxij�i O�! .�1/f .x/jxij�i; (3.5)

and we observe that the qubit jqi remains unchanged. Consequently, it is often omitted,
and the action of the oracle can be summarized by

jxi O�! .�1/f .x/jxi: (3.6)

The oracle is then able to "mark" solutions to the problem.
We generally denoteM the number of solutions to a given problem. We also define jsi

the uniform superposition of these M solutions and jNsi the uniform superposition of
the N �M non-solutions. We then have

jsi D 1p
M

X
x2ZN
f .x/D1

jxi; (3.7)

jNsi D 1p
N �M

X
x2ZN
f .x/D0

jxi; (3.8)

Consider the plane generated by the vectors jsi and jNsi. Once projected into this
plane, any state j i can then be expressed as ˛jsi C ˇjNsi, and the application of the
oracle O will result in

˛jsi C ˇjNsi O�! �˛jsi C ˇjNsi; (3.9)

which corresponds to a reflection of the j i state with respect to jNsi.

3.1. Quantum Oracle and Grover iteration 55

According to its definition, the oracle can be represented by a diagonal matrix consist-
ing of �1 at the positions of the solutions and 1 elsewhere. As an example, the oracle of
a problem with N D 16 elements and solutions at positions 0,3 and 6, is represented is
represented in figure 3.1.

0 3 6 9 12 15

0

3

6

9

12

15

-1

0

1

Figure 3.1 Oracle of a N D 16 element problem whose solutions are 0, 3 and 6

From the definition of an oracle, we might think that designing one requires prior
knowledge of the solutions to the problem it is solving. In reality, it is only necessary to
be able to check quickly whether a given element is a solution or not, which is always
possible when working on NP problems. The difference with the classical case comes
from quantum superposition: if we build a superposition of N elements, then the oracle
is capable of evaluating them all at once.

The implementation of an oracle is generally not an easy task, and the number of
quantum gates required varies from problem to problem. In this work, we will consider
the oracle as a black box, and we will count the number of calls to the oracle to evaluate
the complexity of Grover’s algorithm.

Grover’s algorithm consists of the repeated application of the oracle associated with the
problem O followed by the Grover diffusion operator G, defined in the equation (2.64).

56 3. Quantum search algorithm

A Grover iteration is therefore the application of GO .

j i

O

G

jqi

x .�1/f .x/x

q q

Figure 3.2 Circuit of a Grover iteration. The qubit jqi ignored in the equations is
depicted

The effect of the operator G on any state j i DPx ˛xjxi is

Gj i D G
X
x2ZN

˛xjxi; (3.10)

D .2juNihuNj � IN /
X
x2ZN

˛xjxi; (3.11)

D
X
x2ZN

.2juNihuNj˛x � ˛x/jxi; (3.12)

D
X
x2ZN

.2h˛i � ˛x/jxi: (3.13)

where h˛i denotes the average value of the ˛x coefficients. This term appears because

huNjxi D 1p
N
; (3.14)

therefore X
x2ZN

juNihuNj˛xjxi D
X
x2ZN

˛xp
N
juNi; (3.15)

D �X
x2ZN

˛x
� 1p
N
juNi; (3.16)

D
p
N h˛ijuNi: (3.17)

According to equation (2.65), we thus haveX
x2ZN

juNihuNj˛xjxi D h˛i
X
x2ZN

jxi: (3.18)

3.1. Quantum Oracle and Grover iteration 57

We then see that

1

2
.j i CGj i/ D 1

2

�X
x2ZN

.2h˛i � ˛x/jxi C
X
x2ZN

˛xjxi
�
; (3.19)

D 1

2

X
x2ZN

.2h˛i/jxi; (3.20)

D h˛i
X
x2ZN

jxi; (3.21)

D h˛i
p
N juNi; (3.22)

which means that j i and Gj i are symmetrical with respect to juNi, and therefore that
G applies a reflection with respect to it.

�

�=2

jsi

jNsi

juNi

j i

Oj i

GOj i

Figure 3.3 Effect of the Grover iteration GO on an arbitrary state jsi in the plane
directed by jsi and jNsi

In the plane directed by jsi and jNsi, the Grover iteration GO is therefore the sequence
of two reflections: with respect to jNsi and then with respect to jui. In a plane, the

58 3. Quantum search algorithm

application of two reflections is equivalent to a rotation, as illustrated in figure 3.3. Each
iteration therefore rotates the j i state by a constant angle over the iterations, which will
be defined in the next section. When we measure j i, the probability of success will be

P.s/ D jhsj ij2: (3.23)

We need to determine the number of iterations GO that maximizes P.s/, that is, the one
that gets the states jsi and j i as close as possible.

3.2. Grover’s algorithm execution

For a given n-bit problem, there areN D 2n elements. We start by constructing a uniform
superposition of all these elements. To do this, we initialize n qubits to j0i and apply
Hadamard gates to them. We then obtain the initial state j 0i D H˝nj0i˝n D juNi.

: : :

: : :

j0i˝n
H˝n

O

G

O

G

jqi

O.
p
N/ times

Figure 3.4 Circuit for Grover’s algorithm. The jqi qubit ignored in the equations is
depicted on the bottom wire

We then apply R Grover iterations to j 0i and measure it. The result of this measure-
ment is jxRi, one of the N states jxi. It now remains to determine R to maximize the
probability that xR is a solution.

We can express juNi as a superposition of states jsi and jNsi. We have

juNi D
r
M

N
jsi C

r
N �M
N

jNsi; (3.24)

where M is the number of solutions. We consider only the case where M < N=2. We
can define an angle � such that

sin
�

2
D
r
M

N
; (3.25)

cos
�

2
D
r
N �M
N

; (3.26)

3.2. Grover’s algorithm execution 59

which is equivalent to

sin � D 2
p
M.N �M/

N
; (3.27)

cos � D N � 2M
N

: (3.28)

We can then express the juNi state as

juNi D sin
�

2
jsi C cos

�

2
jNsi: (3.29)

The state vector juNi is therefore oriented at an angle �=2 2 Œ0; �=4� with respect to jNsi.
As the oracle O applies a reflection with respect to jNsi, we have

OjuNi D � sin
�

2
jsi C cos

�

2
jNsi; (3.30)

and OjuNi is oriented at an angle ��=2 with respect to jNsi.
The operator G then applies a reflection with respect to juNi, of orientation �=2,

yielding GOjuNi oriented by 3�=2 with respect to jNsi. After the first iteration, we obtain
the state

j 1i D cos
�3
2
�
�
jNsi C sin

�3
2
�
�
jsi: (3.31)

By repeating the k operation, we obtain

j ki D cos
�2k C 1

2
�
�
jNsi C sin

�2k C 1
2

�
�
jsi: (3.32)

Each iteration rotates the state by an angle � in the plane directed by jsi and jNsi.
According to the equations (3.24) and (3.29), the initial state of the algorithm is oriented
by �=2 with respect to jNsi. To maximize the chances of finding a solution, the state
must be orthogonal to jNsi. We therefore need to apply a rotation of �=2 � �=2, i.e.
arccos

p
M=N . The number of iterations to be applied is therefore

R D
arccos

r
M

N

�
; (3.33)

rounded to the nearest integer. We have arccos
p
M=N < �=2. Furthermore, as � > 0,

we have �=2 > sin �=2 D
p
M=N and thus

R 6

&
�

4

r
N

M

'
; (3.34)

60 3. Quantum search algorithm

where dxe denotes the rounding up of x. This gives an upper bound on the number of
iterations R that is easier to interpret than its exact definition. We can therefore confirm
that Grover’s algorithm makes O

�p
N
�

calls to the oracle. It is shown that Grover’s
algorithm is optimal, in the sense that no quantum algorithm can perform the same task
in fewer than O

�p
N
�

calls to an oracle.
In order to estimate the number of iterations R of the algorithm, the number of

solutions M must be known in advance, without actually knowing them. Fortunately,
there is a "quantum counting" algorithm [BHT98], which makes it possible to estimate
the number of solutions to a problem from the oracle. We can therefore consider that M
is always known.

If we apply Grover’s algorithm when M > N=2, we have �=2 2 Œ�=2; ��, and by
applying the equation (3.33), we always find that the number of iterations is zero. This is
equivalent to randomly picking one of the N elements, and the probability of finding a
solution is P.s/ DM=N > 1=2. One way of increasing the probability of success is to
double the number of elements by adding N non-solutions. This ensures that less than
half the elements are solutions, but requires the addition of a qubit.

As the state of the system rotates by an angle � at each iteration, the angle between
the state j Ri obtained after R iterations and jNsi is at most �=2, meaning �=4. The
probability of success of Grover’s algorithm is therefore bounded by

P.s/ >
ˇ̌̌
cos

�

4

ˇ̌̌2
D 1

2
: (3.35)

This minimum success probability of 1=2 is reached when M D N=2. Generally
speaking, performance is much better. We can show that when M D N=2, we have

P.s/ > 1 � M
N
: (3.36)

The probability of success curve for Grover’s algorithm is shown in figure 3.5. The curve
maintains the same pattern for all values of N .

Example with a 10-bit problem

Suppose we are looking for the solutions of a problem on n D 10 bit elements, that is
N D 1 024 elements, having M D 25 solutions. We consider the plane directed by jsi
and jNsi. The initial state j 0i is

j 0i D
r

25

1 024
jsi C

r
999

1 024
jNsi: (3.37)

If we now measure, the probability of success is

P0.s/ D jhsj 0ij2 D 25

1 024
� 0:024: (3.38)

3.2. Grover’s algorithm execution 61

0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

M=N

Figure 3.5 Probability of success P.s/ of Grover’s algorithm as a function of M=N .
The lower bound of the equation (3.36) is drawn in dotted lines

Applying an iteration of GroverGO will produce a rotation in the plane directed by jsi
and jNsi of

� D arcsin
2
p
M.N �M/

N
� 0:314: (3.39)

The number of iterations will therefore be

R D
arccos

r
25

1 024

0:314
� 4:506; (3.40)

which rounds up toR D 5 iterations. We can check that this result is correct by adding 5�
to the starting angle �=2. The result is�

5C 1

2

�
� � 0:549�; (3.41)

62 3. Quantum search algorithm

which is close to a �=2 rotation. The resulting state is

j Ri D cos
11

2
� jNsi C sin

11

2
� jsi � �0:154jNsi C 0:988jsi; (3.42)

and so the probability of obtaining a solution when measuring is

PR.s/ D jhsj Rij2 D
�

sin
11

2
�
�2
� 0:976: (3.43)

We observe that the probability of success of the algorithm is very high after only
5 iterations, whereas it would take on average N=M � 41 evaluations for a classical
algorithm to find a solution. Furthermore, this is an unfavorable case, where the chances
of error are almost maximal. Indeed, as we round up to R � 5, we induce an error, as
the state vector rotates a little more than necessary in the plane directed by jsi and jNsi.
Figure 3.6 illustrates how this example works.

0

1

2

3

4

5

It
e
ra

ti
o
n

�

�=2

jsi

jNsi

Figure 3.6 Evolution of the system during Grover’s algorithm with N D 1 024 and
M D 25, in the plane directed by jsi and jNsi

3.3. Hypercube search algorithm 63

3.3. Hypercube search algorithm

The subject of this work is the quantum walk search algorithm on hypercube graphs. As
explained in 2.2, uniform walk on hypercube consists in the repeated application of a
coin operator C to mix the directions assigned to each vertex of the hypercube, and a
shift operator S to move along these directions. In 2003, Shenvi, Kempe and Whaley
presented in A Quantum Random Walk Search Algorithm [SKW03] the hypercube search
algorithm in question, sometimes referred to as the "SKW" algorithm, after the initials
of its creators. Note that there are other adaptations of the search algorithm to quantum
walks, on other types of graphs, for example star graphs [QMWC22], or in continuous
time, such as the Childs and Goldstone’s algorithm [CG04], or the more recent Marsh
and Wang’s algorithm [MW21].

The idea behind this algorithm is to use a C operator that behaves differently on the
vertices of the hypercube that correspond to solutions. This operator C 0 acts on each
position p as

C 0 D
(
IN ˝G if p is not solution;
IN ˝�In if p is solution:

(3.44)

This cancels the action of the C operator on the solution vertices, and we can express
the new C 0 operator as

C 0 D IN ˝G �
X
p2ZN
f .p/D1

jpihpj ˝ .In CG/; (3.45)

D IN ˝G �
X
p2ZN
f .p/D1

jpihpj ˝ .2junihunj/ (3.46)

where f is the binary function defined in section 3.1, such that f .p/ D 1 if p is a
solution and f .p/ D 0 otherwise.

The algorithm is initialized in a uniform state on all vertices and all directions, that is
to say

j 0i D 1

nN

nX
dD1

N�1X
pD0
jpijd i; (3.47)

to which we apply the operator U 0 D SC 0, repeated R times. The final state is therefore
j Ri D U 0Rj 0i.

Shenvi, Kempe and Whaley have shown that in the case where there is only one
solution among the N elements, the probability of success after a number of iterations

R D �

2

r
N

2
(3.48)

64 3. Quantum search algorithm

is
PR.s/ D 1

2
�O

�1
n

�
: (3.49)

The probability of finding the solution is greater than that of finding another given
element. We can therefore obtain an accuracy arbitrarily close to 1 by repeating the
algorithm. The evolution of the probability of success over the iterations of the algorithm
is shown in Figure 3.7, for a one-solution problem on a hypercube of dimension n D 6.
We can then verify that the maximum probability of success is close to 0:5 and is reached
for the value of R D .�=2/

p
N=2 � 9.

The number of iterations required is equivalent, by a factor, to that of Grover’s original
algorithm. Since the latter is optimal, we can say that the hypercube quantum search
algorithm is too. As in the original algorithm, the probability of success curve shows a
sinusoidal trend as a function of the number of iterations, except that it remains constant
one iteration out of two. However, this sinusoidal, regular aspect is lost as the number of
solutions increases. As an example, consider the hypercube of dimension n D 6, for a
problem whose solution set is 0, 3, 4, 8, 9, 11 and 16. The probability of success after
9 iterations is about P.s/ � 0:119. This is hardly better than a random draw, which
would give us a probability of success of P.s/ D 7=64 � 0:109. However, as shown in
figure 3.8, it is possible to achieve a probability of success greater than 1=2. The central
problem of this work is to determine the maximum success probability of the hypercube
search algorithm, and the number of iterations required to achieve it.

It is possible to transform the uniform direction coin C into its modified analogue for
search C 0 defined in equation (3.44) by product with a block-diagonal matrix O whose
structure is reminiscent of Grover’s oracle. Indeed, if we have

O D IN ˝ In �
X
p2ZN
f .p/D1

jpihpj ˝ .In CG/; (3.50)

we notice that

CO D .IN ˝G/
�
IN ˝ In �

X
p2ZN
f .p/D1

jpihpj ˝ .In CG/
�

(3.51)

D IN ˝GIn �
X
p2ZN
f .p/D1

jpihpj ˝G.In CG/; (3.52)

D IN ˝G �
X
p2ZN
f .p/D1

jpihpj ˝ .In CG/; (3.53)

D C 0: (3.54)

We can therefore rewrite the equation of the hypercube search algorithm to show an oracle
in the manner of Grover’s original algorithm, such that an iteration of the hypercube

3.3. Hypercube search algorithm 65

0 10 20 30 40 50

Iteration

0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

Figure 3.7 Evolution over 50 iterations of the probability of success of the hypercube
search algorithm for n D 6 with a single solution

search algorithm becomes
U 0 D SCO; (3.55)

where O is the oracle of a hypercube search problem. Thus, for a hypercube of a given
dimension, the operators S and C are constant for all problems, and only the oracle O
changes, as is the case for Grover’s algorithm. According to equation (3.50), this oracle
is made up of N blocks Op, such that

Op D
(
In if p is not solution;
�G if p is solution:

(3.56)

An example oracle for a search problem on a hypercube of dimension n D 4 with
solutions 0, 3 and 6 is shown in figure 3.9.

66 3. Quantum search algorithm

0 10 20 30 40 50

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

Figure 3.8 Evolution over 50 iterations of the probability of success of the hypercube
search algorithm for n D 6 with solutions 0, 3, 4, 8, 9, 11 and 16

3.3. Hypercube search algorithm 67

0 12 24 36 48 60

0

12

24

36

48

60

-0.5

0

0.5

1

Figure 3.9 Oracle of a search problem on a hypercube of dimension n D 4with solutions
0, 3 and 6

4. Eigenanalysis of the hypercube
search algorithm

The iteration of the search algorithm is the sequence of an oracle O and the uniform
walk operator U . Let xE denote their joint eigenspace, and OxE and UxE their respective
components in this eigenspace. Since two operators commutate in their joint eigenspace,
every two iterations in xE gives

.UxEOxE/
2 D UxEOxEUxEOxE ; (4.1)
D UxEOxEOxEUxE ; (4.2)

D UxEO2
xEUxE ; (4.3)

D U 2
xE ; (4.4)

that is, the search algorithm is equivalent to the uniform walk in xE without the oracle.
Consequently, the effective part of the algorithm takes place in the complement of xE ,
which we will denote E . In this section, following the algorithm eigenanalysis, we will
show that this space of interest E is of very small dimension compared to that of the
global space H.

In this work, we denote the eigenspace of an operator A associated with the eigenvalue
˛ by

EA˛ D fjai 2 H j Ajai D ˛jaig; (4.5)

and the joint eigenspace of two operators A and B associated with the eigenvalues ˛ and
ˇ respectively by

E
A;B

˛;ˇ
D EA˛ \EBˇ : (4.6)

For reasons of clarity, the very common˙1 eigenvalues will only be represented by their
signs. For example, we will write EA;BC;� rather than EA;B1;�1. We also use the notation EA˙
to designate the spaces EAC and EA� at the same time. For example, ES˙ D span.F˙/
is equivalent to ESC D span.FC/ and ES� D span.F�/, where FC and F� are matrices
defined in the next section.

As the analysis presented in this chapter is relatively dense, it is summarized in section
4.6. It may be useful to consult it before or during the reading of this chapter. Readers
may also wish to consult beforehand the tables 4.2, 4.3 and 4.4, which contain all the
non-empty eigenspaces studied in this chapter.

70 4. Eigenanalysis of the hypercube search algorithm

4.1. Search operator eigenspaces

As seen previously, an iteration of the hypercube search algorithm, represented by the
unit operator U 0, consists of the succession of three operators O , C and S , such that
U 0 D UO D SCO . This section is the first step in the analysis of the algorithm itself,
in which we will study the eigenvalue and eigenvector decompositions of these three
operators.

4.1.1. Shift operator

Defined in section 2.2, the shift operator S is diagonalizable by spatial Fourier transform.
Indeed, the matrix zS D FSF is diagonal and has only ˙1 coefficients. As observed
earlier, these coefficients are arranged so that allN binary words can be read in ascending
order. This ordering of coefficients will be useful later in this work, and we will call
them "signatures", which we will define as

&i D zSi;i ; i 2 ZnN : (4.7)

We deduce from the diagonalization of S D F zSF that its eigenvalues �Si D &i are all
equal to˙1 and that its eigenvectors are the columns of F , shown in figure 4.1. Since
the sum of the eigenvalues is equal to the trace, and since tr.S/ D 0, there are as many
eigenvalues �1 and 1. We therefore have

dim.ESC/ D dim.ES�/ D
nN

2
: (4.8)

We define FC and F�, two submatrices of F , respectively constructed by keeping
only the columns of F of signatures &i D 1 and &i D �1. According to equation (4.8),
these two matrices are of size nN � nN=2. We have

ESC D span.FC/; (4.9)

ES� D span.F�/: (4.10)

4.1.2. Coin operator

Also introduced in section 2.2, the coin operator C is constructed from the Grover
scattering operator G defined in equation (2.64). We can therefore simply link their
respective diagonalizations C D VCDCV

�
C and G D VGDGV

�
G . We then have

C D IN ˝G; (4.11)

D .IN IN I �N /˝ .VGDGV
�
G/; (4.12)

D .IN ˝ VG/.IN ˝DG/.IN ˝ VG/�; (4.13)

4.1. Search operator eigenspaces 71

0 16 32 48

0

16

32

48

-0.25

0

0.25

Figure 4.1 Operator of the spatial Fourier transform F in H for n D 4

that is

VC D IN ˝ VG; (4.14)
DC D IN ˝DG : (4.15)

To diagonalize G, we introduce �, a n � .n � 1/ matrix such that(
hunj� D 0;
�|� D In�1;

(4.16)

that is, whose n � 1 columns form the kernel of hunj. Note that

Gjuni D .2junihunj � In/juni; (4.17)
D 2junihunjuni � juni; (4.18)
D juni; (4.19)

72 4. Eigenanalysis of the hypercube search algorithm

and that

G� D .2junihunj � In/�; (4.20)
D 2junihunj� � In�; (4.21)
D ��: (4.22)

Consequently, juni is an eigenvector of G associated with eigenvalue 1, and the
columns of� are n� 1 eigenvectors associated with eigenvalue �1. We then deduce that
the columns of IN ˝ juni are the eigenvectors of C associated with the 1 eigenvalue and
that the columns of IN ˝� are those associated with the �1 eigenvalue, that is to say

ECC D span.IN ˝ juni/; (4.23)

EC� D span.IN ˝�/: (4.24)

The dimensions of these eigenspaces are

dim.ECC / D N; (4.25)

dim.EC� / D .n � 1/N: (4.26)

4.1.3. Oracle

As shown in section 3.3, the oracleO is a block-diagonal matrix, made up ofN blocksOp
of size n � n, equal to �G at solution positions, and In elsewhere. Since we know the
eigenvalue and eigenvector decomposition of G, that of O is straightforward.

The blocks In are, of course, associated with n eigenvalues equal to 1, and we can
choose the columns of In as the set of eigenvectors. We can repeat the contents of
the previous section for the eigenanalysis of �G blocks. Each of these blocks has
eigenvectors juni and columns of �, associated with eigenvalues �1 and 1 respectively.

The eigenvectors of the oracle O can be found from those of the blocks Op by tensor
product with jpi. The eigenspaces of the oracle O are

EOC D H nEO� ; (4.27)

EO� D span.fjpi ˝ juni j f .p/ D 1g/; (4.28)

where f .p/ D 1 if p is a solution. With M solutions, the dimensions of these
eigenspaces are

dim.EOC / D nN �M; (4.29)

dim.EO� / DM: (4.30)

4.2. Generator matrices 73

4.2. Generator matrices

In this section, we will define a set of matrices and submatrices known as "generators",
which will simplify notation in the rest of this work. These are listed in table 4.1.

In particular, we will use several submatrices of IN and HN . First, we define
I
.s/
N and H .s/

N , submatrices respectively of IN and HN , of size N � M , formed by
the columns corresponding to the solutions. From H

.s/
N , we construct the submatrix

H
.s;w/
N of size

�
n

w

� �M , formed by the rows at positions corresponding to binary words
with Hamming weights equal to w. In the following, we will refer to the Hamming
weight of the binary word associated with a position p as wt.p/. We also define I .Ns/N , a
submatrix of IN constructed from columns not corresponding to solutions.

4.2.1. Generators G1, G2, G3
In addition to the columns of the FC and F� matrices, we will use those of three specially
constructed matrices to characterize the eigenspaces

G1 D I .s/N ˝ juni; (4.31)

G2 D I .Ns/N ˝ juni; (4.32)
G3 D IN ˝�; (4.33)

of sizes nN �M , nN � .N �M/ and nN � .n� 1/N respectively. We also define the
matrices

G1;2 D G1 CCG2; (4.34)
G2;3 D G2 CCG3; (4.35)
G1;3 D G1 CCG3; (4.36)
G1;2;3 D G1 CCG2 CCG3; (4.37)

whereCC denotes the horizontal concatenation of two matrices, so that

span.ACC B/ D span.A/ [span.B/: (4.38)

The matrix G1;2;3 is shown in figure 4.2. As span.I .s/N CC I .Ns/N / D HS and span.juni CC
�/ D HC, the columns of G1;2;3 form an orthonormal basis of H. We can also express
the eigenspaces of the operators C and O as

ECC D span.G1;2/; (4.39)

EC� D span.G3/; (4.40)

EOC D span.G2;3/; (4.41)

EO� D span.G1/: (4.42)

74 4. Eigenanalysis of the hypercube search algorithm

0 3 16 25 34 43 52 61

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60
-0.577

-0.289

-0.211

0

0.5

0.789

0.866

Figure 4.2 Generator matrix G1;2;3 of a hypercube search problem of dimension n D 4
with solutions 0, 3, and 6. The matrices G1, G2 and G3 are separated by red lines.

We can show that the matrices G1;2 and G3 each generate the same spaces before and
after spatial Fourier transform. For example, sinceG3 D IN˝�, we have FG3 D HN˝
�. Since we can multiply on the right by any non-singular matrix without changing the
vector space generated, we know that span.FG3/ D span.FG3F / D span.G3/. More
generally, this is true for any matrix whose component in HS is IN . The demonstration
for G1;2 is the same, since span.G1;2/ D span.IN ˝ juni/. We therefore have

span.FG3/ D span.G3/; (4.43)
span.FG1;2/ D span.G1;2/: (4.44)

We also define the vector jg�i as the spatial Fourier transform of the column of G1;2
having all its signatures &i D �1, which corresponds to the last position p D N � 1,
that is

jg�i D F.jN � 1ijuni/: (4.45)

4.2. Generator matrices 75

4.2.2. Generator G 03 and its submatrices

We construct the matrixG 03, a variant ofG3 in which most of the columns are eigenvectors
of zS . To do this, we replace each � block with a �.p/ block. Each of these blocks is
itself the concatenation of three matrices �.p/� , �.p/C and �.p/ı , whose sizes depend on
the associated position p, and the Hamming weight w D wt.p/ of the corresponding
binary word. An example of the G 03 matrix is shown in figure 4.3.

0 10 20 30 40

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60
-1

-0.866

-0.707

-0.577

-0.5

-0.289

-0.211

-0.167

0

0.289

0.5

0.707

0.789

0.833

0.866

1

Figure 4.3 Generator matrix G 03 for n D 4. The signatures of each row are attached on
the left.

The blocks �.p/� are n � .w � 1/ matrices with non-zero coefficients only in the w
rows of signature &i D �1. These non-zero coefficients are chosen to form w� 1 vectors
orthogonal to juwi and to each other. So the columns of �.p/� are all orthogonal to juni.
If w 6 1, then �.p/� is an empty matrix.

Similarly, the blocks �.p/C are n � .n � w � 1/ matrices, with non-zero coefficients
only at the n � w rows of signature &i D 1. These non-zero coefficients are chosen to
form n � w � 1 vectors orthogonal to jun�wi and to each other. The columns of �.p/C
are therefore also all orthogonal to juni. If n � w 6 1, then �.p/C is an empty matrix.

76 4. Eigenanalysis of the hypercube search algorithm

If w D 0 or w D n, �.p/ı is an empty matrix. Otherwise, it is a column vector
orthogonal to juni and to the columns of �.p/� and �.p/C which completes the block �.p/

so that its columns generate the same vector space as those of the original � matrix. The
elements of such a vector are

‚r
n � w
nw

if &i D �1;

�
r

w

n.n � w/ if &i D 1:
(4.46)

The N blocks �.p/ are formed by concatenating the three submatrices

�.p/ D �.p/� CC�.p/C CC�.p/ı : (4.47)

We also define G 0�, G 0C and G 0ı as submatrices of G 03, made up respectively of columns
containing the blocks �.p/� , �.p/C and �.p/ı . The matrices G 0� and G 0C are of size nN �
.nN=2 �N C 1/ and the matrix G 0ı is of size nN � .N � 2/.

4.3. Joint eigenspaces

Using the generators defined in the previous section, we can characterize the joint
eigenspaces of the walk operators S , C and O to prepare the eigenspace analysis of the
operators U D SC and U 0 D UO . The table 4.2 at the end of this section summarizes
the analysis of the operators S , C and O .

4.3.1. Joint eigenspaces of operators C and O

First we look at the joint eigenspaces of the operators C and O . Recall that ECC D
span.G1;2/, EC� D span.G3/, EOC D span.G2;3/, and EO� D span.G1/. Thus we have

E
C;O
C;C D ECC \EOC ; (4.48)

D span.G1;2/ \ span.G2;3/; (4.49)
D span.G2/; (4.50)

E
C;O
C;� D ECC \EO� ; (4.51)

D span.G1;2/ \ span.G1/; (4.52)
D span.G1/; (4.53)

D EO� ; (4.54)

4.3. Joint eigenspaces 77

Table 4.1 Generator matrices

Notation Dimension Definition

I
.s/
N N �M Submatrix of the identity matrix IN obtained by

keeping only the columns associated with solu-
tions

H
.s/
N N �M Submatrix of the Hadamard matrix HN obtained

by keeping only the columns associated with so-
lutions

H
.s;w/
N

�
n

w

� �M Submatrix of H .s/
N obtained by keeping only

the rows associated with positions of Hamming
weight w

F� nN � nN=2 Submatrix of the spatial Fourier transform oper-
ator F , obtained by keeping only the columns
associated with signatures &i D �1

FC nN � nN=2 Submatrix of the spatial Fourier transform oper-
ator F , obtained by keeping only the columns
associated with signatures &i D 1

G1 nN �M I
.s/
N ˝ juni, generates the space of solution posi-

tions

G2 nN � .N �M/ I
.Ns/
N ˝ juni, generates the space of non-solution

positions

G3 nN � .n � 1/N IN ˝ �, generates the complementary space to
those generated by G1 and G2

G 0 nN � .n � 1/N Variant of G3, generates the same space

G 0� nN �.nN=2�NC1/ Submatrix of G 0, made up of blocks ��
G 0C nN �.nN=2�NC1/ Submatrix of G 0, made up of blocks �C
G 0ı nN � .N � 2/ Submatrix of G 0, made up of blocks �ı
jg�i nN � 1 F.jN � 1ijuni/, spatial Fourier transform of the

column of G1;2 with all its signatures &i D �1

78 4. Eigenanalysis of the hypercube search algorithm

E
C;O
�;C D EC� \EOC ; (4.55)

D span.G3/ \ span.G2;3/; (4.56)
D span.G3/; (4.57)

D EC� ; (4.58)

EC;O�;� D EC� \EO� ; (4.59)

D span.G3/ \ span.G1/; (4.60)
D ;: (4.61)

The dimensions of these joint eigenspaces are directly deduced as

dim.EC;OC;C/ D N �M; (4.62)

dim.EC;OC;� / DM; (4.63)

dim.EC;O�;C / D .n � 1/N; (4.64)

dim.EC;O�;� / D 0; (4.65)

and the eigenvalue and eigenvector decomposition of the CO operator.

ECOC D EC;OC;C [EC;O�;� D G2; (4.66)

ECO� D EC;OC;� [EC;OC;� D G1;3: (4.67)

4.3.2. Joint eigenspaces of operators S and C

Because of its complex structure, direct analysis of S joint eigenspaces is difficult. We
therefore use its spatial Fourier transform zS , defined in section 2.2, whose diagonal
structure makes eigenanalysis trivial. Note also that the coin operator is invariant under
the spatial Fourier transform, since it acts only in HC. Indeed, we have

zC D FCF; (4.68)
D .HN ˝ In/.IN ˝G/.HN ˝ In/; (4.69)
D .HN INHN /˝ .InGIn/; (4.70)
D IN ˝G; (4.71)
D C: (4.72)

We can therefore determine the spaces ES;C˙;˙ from the spaces E
zS;C
˙;˙.

By definition of signatures &i , a vector contained in E zS˙ has as non-zero elements only
those whose signature is˙1. Since EC� D span.G3/ D span.G 03/, we have

E
zS;C
˙;� D span.F˙/ \ span.G 03/; (4.73)

D span.G 0˙/: (4.74)

4.3. Joint eigenspaces 79

We deduce
E
S;C
˙;� D span.FG 0˙/; (4.75)

and
dim.ES;C˙;�/ D dim.span.G 0˙// D

nN

2
�N C 1: (4.76)

We have ECC D span.G1;2/ and therefore

E
zS;C
˙;C D E

zS
˙ \ECC ; (4.77)

D E zS˙ \ span.G1;2/: (4.78)

A vector of E zS˙ must have non-zero elements only in the rows with signature &i D ˙1.
The only element of span.G1;2/ having only elements with signatures &i D C1 is the
column of G1;2 corresponding to the first position j0ijuni. Similarly, the only element
of span.G1;2/ having only elements with signatures &i D �1 is the column of G1;2
corresponding to the last position jN � 1ijuni. Therefore

E
zS;C
C;C D span.j0ijuni/; (4.79)

E
zS;C
�;C D span.jN � 1ijuni/: (4.80)

The spatial Fourier transforms of these vectors are

F j0ijuni D junNi; (4.81)
F jN � 1ijuni D jg�i; (4.82)

where jg�i is the vector defined in equation 4:45. We then have

E
S;C
C;C D span.junNi/; (4.83)

E
S;C
�;C D span.jg�i/; (4.84)

and
dim.ES;CC;C/ D dim.ES;C�;C/ D 1: (4.85)

4.3.3. Joint eigenspaces of operators S , C and O

Noting that junNi and jg�i contain no zero values, we can conclude that they do not
belong to span.G1/ nor to span.G2/, we find that the only eigenspace common to the
three operators S , C and O is span.G3/. We have

E
S;C;O
˙;�;C D ES˙ \EC;O�;C ; (4.86)

D ES˙ \EC� ; (4.87)

D ES;C˙;�; (4.88)

D span.FG 0˙/; (4.89)

80 4. Eigenanalysis of the hypercube search algorithm

and all other joint eigenspaces of the three operators are empty.
We therefore have ES;C;OC;�;C D ES;CC;� and we know that ES;COC;� � ES;CC;� . In order to

find the dimension of ES;COC;� , we switch to the Fourier domain to exploit the diagonal
structure of zS . We have E

zS;C
C;� D span.G 0C/ and E zSC ? span.G 0�/. The eigenvectors that

generate the complement of E
zS;C
C;� in E

zS;CO
C;� are therefore of the form

j"i D FG1j"1i CG 0ıj"ıi; (4.90)

where the vectors j"1i and j"ıi are of lengths M and N � 2 respectively. Recall that by
definition, the first and last rows of G 0ı are empty, since the blocks �.0/ı and �.N�1/ı are
empty.

For the vector j"i to belong to E zSC, all its coefficients of signature &i D �1 must be
zero. This means that the n values of the block corresponding to position p D N � 1
must be zero, since they all have signature �1. As G 0ı is already zero at this position, we
only need to cancel the j"1i component. We define hhj as the last row of the matrix H .s/

N ,
that is to say

hhj D 1p
N

�
.�1/w1 .�1/w2 � � � .�1/wM � ; (4.91)

where wi is the Hamming weight of the binary word associated with the i-th solution.
We must have hhj"1i D 0, and since hhj is of length M , we can find M � 1 orthogonal
vectors j"1i.

It can also be shown that each vector j"1i corresponds to a unique j"ıi. Consider a
column �.p/ı of G 0ı. At each block of position p, the coefficients of signature &i D �1
have the value

p
.n � w/=.nw/. We also have

FG1j"1i D .H .s/
N ˝ juni/j"1i; (4.92)

D .H .s/
N j"1i/˝ juni: (4.93)

and FG1j"1i is a vector of length nN composed of N blocks each associated with a
position p, containing n coefficients equal to the p-th value of H .s/

N j"1i=
p
n, which we

will denote .H .s/
N j"1i/.p/=

p
n. We must then have

1p
n
.H

.s/
N j"1i/.p/C

r
n � w
nw
j"ı.p/i D 0; (4.94)

that is

j"ı.p/i D �
r

w

n � w.H
.s/
N j"1i/.p/; (4.95)

and we check that each coefficient of j"ıi is always uniquely defined for p ¤ 0 and
p ¤ N for each of the M � 1 vectors j"1i. We conclude that the dimension of the
complement of E

zS;C
C;� in E

zS;CO
C;� is M � 1. Since dim.ES;CC;�/ D nN=2�N C 1, we have

dim.ES;COC;� / D nN

2
�N CM: (4.96)

4.4. Eigenanalysis of the uniform walk 81

In a similar way, we prove that

dim.ES;CO�;� / D nN

2
�N CM; (4.97)

using the H .s/
N row corresponding to p D 0, that is huj instead of hhj.

Table 4.2 Eigenspaces of walk operators

Eigenspace Generator Dimension

ES˙ F˙ nN=2

EC� G3 nN �N
ECC G1;2 N

EO� G1 M

EOC G2;3 nN �M
E
C;O
�;C G3 nN �N

E
C;O
C;� G1 M

E
C;O
C;C G2 N �M

ECO� G1;3 nN �N CM
ECOC G2 N �M
E
S;C
˙� FG 0˙ nN=2 �N C 1

E
S;C
�;C jg�i 1

E
S;C
C;C junNi 1

E
S;C;O
˙;�;C FG 0˙ nN=2 �N C 1

E
S;CO
˙;� G1;3 ? F� nN=2 �N CM

? F� denotes an orthogonality constraint

4.4. Eigenanalysis of the uniform walk

4.4.1. Overview of the uniform walk eigenanalysis

In this section, we exploit the analyses of the elementary uniform walk operators S and C
to determine the eigenvalues and eigenspaces of the uniform walk operator U D SC . As
summarized in table 4.2, operators S and C have only eigenvalues˙1. This is therefore

82 4. Eigenanalysis of the hypercube search algorithm

also the case for their joint eigenspaces, and we have

EU� � ES;CC;� [ES;C�;C; (4.98)

EUC � ES;C�;� [ES;CC;C; (4.99)

which allows us to establish an upper bound on the dimension of these spaces:

dim.EU� / >
nN

2
�N C 2; (4.100)

dim.EUC / >
nN

2
�N C 2: (4.101)

To find the other eigenvalues of U , we use its spatial Fourier transform zU , with a
block-diagonal structure much simpler to study. The p-th block of zU is expressed as

zU .p/ D zS .p/G; (4.102)

where zS .p/ is the p-th block of the diagonal of zS , introduced in 2.2, and G is the Grover
diffusion operator. This block-diagonal structure makes it possible to study zU block by
block, as the eigenvalues of a block-diagonal matrix are those of each of its blocks.

Since the sum of the eigenvalues of a matrix is equal to its trace, and the trace of each
block is known, we determine that in each block there is a pair of complex eigenvalues
�w and ��w , with

�w D 1 � 2w
n
C i

2

n

p
w.n � w/; (4.103)

where w is the Hamming weight of the binary word associated with position p. It can
be seen that the eigenvalues of the zU .p/ blocks do not depend on position p but only
on the associated Hamming weight w. Furthermore, we note that at positions p D 0

and p D N � 1, we have �w D ��w D ˙1. Since there are
�
n

w

�
words of n bits of

Hamming weight w, we have

dim.EU�w/ D dim.EU��
w
/ D

n

w

!
: (4.104)

Given that
n�1X
wD1

n

w

!
D N � 2; (4.105)

with N D 2n, and that we have a total of nN eigenvalues, we determine that

dim.EU� / D dim.EUC / D
nN

2
�N C 2; (4.106)

4.4. Eigenanalysis of the uniform walk 83

and we can then easily determine the eigenspaces of U associated with the eigenvalues
˙1 based on the table 4.2. We have

EU� D span.FG 0C CC jg�i/; (4.107)

EUC D span.FG 0� CC junNi/: (4.108)

The eigenvalues �w and ��w are associated with eigenvectors jpijvpi and jpijv�pi, with

jvpi D 1p
2w
jbi � i

1p
2.n � w/

j Nbi; (4.109)

where jbi denotes the vector formed by the binary word associated with position p on
the hypercube and j Nbi that formed by its negation.

4.4.2. Detail of the eigenanalysis of the uniform walk

The uniform walk without the oracle is represented by the operator U D SC , shown in
figure 4.4. This gives us

EU� � ES;CC;� [ES;C�;C; (4.110)

EUC � ES;C�;� [ES;CC;C; (4.111)

which implies

dim.EU� / >
nN

2
�N C 2; (4.112)

dim.EUC / >
nN

2
�N C 2: (4.113)

As with the shift operator S , the structure of the operator U is simpler in the Fourier
domain. In fact, we have

zU D F UF; (4.114)
D .FSF /.FCF /; (4.115)

D zS zC ; (4.116)

D zSC; (4.117)

and we see, as shown in figure 4.5, that zU has a block-diagonal structure, with N blocks
zU .p/ such that

zU .p/ D zS .p/G; (4.118)

where the blocks zS .p/ are those defined in section 2.2. These blocks zS .p/ are diagonal
matrices containing w coefficients equal to 1 and n � w coefficients equal to �1, where

84 4. Eigenanalysis of the hypercube search algorithm

0 16 32 48

0

16

32

48

-0.5

0

0.5

Figure 4.4 Operator of the uniform walk U for n D 4

w D wt.p/. At positions p D 0 and p D N � 1, we have zS .p/ D ˙In, and therefore
zU .p/ D ˙G, which corresponds only to eigenvalues equal to˙1.

Since all coefficients on the diagonal of G are equal to �1C 2=n, we have

tr. zU .p// D ..n � w/ � w/
�
�1C 2

n

�
; (4.119)

D .n � 2w/
�
�1C 2

n

�
; (4.120)

D �nC 2w C 2
�
1 � 2w

n

�
: (4.121)

A matrix zU .p/ has n � w � 1 eigenvalues equal to �1 and w � 1 eigenvalues equal
to 1, making n � 2 eigenvalues, the sum of which is �n C 2w. Since the sum of the
eigenvalues of a matrix is equal to its trace, the sum of the two remaining eigenvalues is
equal to 2.1 � 2w=n/. Since zU .p/ is unitary, all its eigenvalues have modulus equal to
1. We conclude that the two missing eigenvalues �w and ��w form a pair of conjugate

4.4. Eigenanalysis of the uniform walk 85

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

-0.5

0

0.5

Figure 4.5 Diagonalized uniform walk operator zU for n D 4

complex numbers, with

Re.�w/ D 1 � 2w
n
: (4.122)

We deduce

�w D 1 � 2w
n
C i

2

n

p
w.n � w/: (4.123)

We construct the vector

jvpi D 1p
2w
jbi � i

1p
2.n � w/

j Nbi; (4.124)

where jbi denotes the vector formed by the binary word associated with position p on
the hypercube and j Nbi that formed by its negation. For example, for n D 4 and p D 3,
we have w D 2 and

�2 D 1 � 22
4
C i

2

4

p
2.4 � 2/ D i; (4.125)

86 4. Eigenanalysis of the hypercube search algorithm

and

jv3i D 1p
2 � 2

2664
1

1

0

0

3775 � i
1p

2.4 � 2/

2664
0

0

1

1

3775 D 1

2

2664
1

1

�i
�i

3775 : (4.126)

We will show that jvpi is the eigenvector of zU .p/ associated with the eigenvalue �w . We
first note that

zS .p/jvpi D �jvpi�; (4.127)

and that
zS .p/juni D j

Nbi � jbip
n

: (4.128)

We also have

hunjvpi D 1p
n

� wp
2w
� i

n � wp
2.n � w/

�
; (4.129)

D 1p
2n
.
p
w � i

p
n � w/; (4.130)

D 1p
2n
.n
1 � �w
2
p
w
/; (4.131)

D 1

2
p
2

r
n

w
.1 � �w/: (4.132)

Thus, we have

zU .p/jvpi D zS .p/Gjvpi; (4.133)

D zS .p/.�In C 2junihunj/jvpi; (4.134)

D
�
�zS .p/ C 2p

n
.j Nbi � jbi/hunj

�
jvpi; (4.135)

D �zS .p/jvpi C 2p
n
hunjvpi.j Nbi � jbi/; (4.136)

D 1p
2w
jbi C i

1p
2.n � w/

j Nbi C 1p
2n

r
n

w
.1 � �w/.j Nbi � jbi/; (4.137)

D
�
1 � 2w

n
C i

2

n

p
w.n � w/

�� 1p
2w
jbi � i

1p
2.n � w/

j Nbi
�
; (4.138)

D �w jvpi: (4.139)

We therefore conclude that for N � 2 blocks zU .p/ with p ¤ 0 and p ¤ N � 1, we have
two eigenvectors jvpi and jvpi�. This means that we have .N � 2/ pairs of eigenvectors

4.4. Eigenanalysis of the uniform walk 87

of U associated with the eigenvalues �w and ��w , which are of the form F jpijvpi
and F jpijv�pi. Added to the 2.nN=2 �N C 2/ eigenvectors from the ES;C˙;˙ spaces, we
obtain all nN eigenvectors of U . We can therefore rewrite the equations (4.112) and
(4.113) as

dim.EU� / D
nN

2
�N C 2; (4.140)

dim.EUC / D
nN

2
�N C 2: (4.141)

Moreover, since there are
�
n

w

�
binary words of n bits and Hamming weight w, we have

dim.EU�w/ D dim.EU��
w
/ D

n

w

!
: (4.142)

We define matrices Vw and V �w of size N � �n
w

�
, whose columns are the eigenvectors

of zU corresponding to the positions where wt.p/ D w, that is

span.Vw/ D fjpijvpi j p 2 ZN g; (4.143)
span.V �w / D fjpijv�pi j p 2 ZN g: (4.144)

Table 4.3 summarizes the eigenvalue and eigenvector decomposition of the uniform
walk operator U .

Table 4.3 Eigenspaces of the uniform walk opera-
tor

Eigenspace Generator Dimension

EU� FG 0C CC jg�i nN=2 �N C 2
EUC FG 0� CC junNi nN=2 �N C 2
EU
�w

FVw
�
n

w

�
Eu
��
w

FV �w
�
n

w

�
CC denotes a horizontal concatenation

88 4. Eigenanalysis of the hypercube search algorithm

4.5. Dimension of the space of interest

4.5.1. Overview of the computation of the dimension of the space
of interest

The search algorithm operator U 0 is defined from the uniform walk operator U and
the problem oracle O , such that U 0 D UO . We have shown that the algorithm has no
specific effect in the joint eigenspace of U and O , and is therefore only effective in the
complement of this eigenspace, a space qualified "of interest", denoted E . In this section,
we will define and calculate the dimension of all the eigenspaces associated with U and
O , in order to best define E .

We first study the case of joint eigenspaces associated with the eigenvalue �1 of O ,
and show that this space is always empty, i.e.

E
U;O

�;� D ;: (4.145)

Next, we study the eigenspaces associated with the real eigenvalues of U and the
eigenvalue 1 of O . We show that

E
U;O
˙;C D ES;C�;�; (4.146)

and therefore
dim.EU;O˙;C/ D

nN

2
�N C 1: (4.147)

Finally, we study the eigenspaces associated with the complex eigenvalues of U and
the eigenvalue 1 of O . We show that

dim.EU;O
�w;C/ D dim.EU;O

��
w;C/ D

n

w

!
� rk.H .s;w/

N /; (4.148)

where H .s;w/
N is a submatrix of HN defined in table 4.1.

This gives us the exact dimension of the space of interest E

dim.E/ D 2C 2
n�1X
wD1

rk.H .s;w/
N /; (4.149)

as well as a simpler upper bound

dim.E/ 6 2.n � 1/M C 2; (4.150)

which shows that the dimension of the space of interest grows linearly with the dimen-
sion n of the hypercube.

In the process, we also show that the initial state of the algorithm junNi and the solution
vector jsi are completely included in the space of interest, allowing us to calculate exactly
the probability of success of the algorithm from their components in E .

4.5. Dimension of the space of interest 89

4.5.2. Detail of the computation of the dimension of the space of
interest

The primary aim of the analysis presented in this chapter is to determine the dimension
of the space of interest E , in which the operators U and O do not commute, and where
the algorithm converges to a solution. To do this, we will calculate the dimension of xE ,
the space where the operators U and O commute. We have

xE D
[
�U ;�O

E
U;O

�U ;�O
; (4.151)

and thus

dim.E/ D dim.H/ � dim.xE/; (4.152)

dim.E/ D nN �
X
�U ;�O

dim.EU;O
�U ;�O

/: (4.153)

Case of the joint eigenspaces EU;O
�;�

We can show that the joint eigenspaces of U and O where �O D �1 are all empty. We
showed earlier that EO� � ECC , and therefore, for any eigenvalue �

E
U;O

�;� � EU;C�;C : (4.154)

Furthermore, since U D SC , EU;C
�;C D ES;C�;C , and we have EU;O

�;� � ES;C�;C , which means
that � D ˙1, as S has no other eigenvalues. We then have

EU;O�;� � ES;C�;C; (4.155)

E
U;O
C;� � ES;CC;C; (4.156)

that is

EU;O�;� � span.jg�i/; (4.157)

E
U;O
C;� � span.junNi/; (4.158)

As previously mentioned, the vectors jg�i and junNi do not belong to span.G1/, and
therefore not to EO� . Therefore

E
U;O

�;� D ;: (4.159)

90 4. Eigenanalysis of the hypercube search algorithm

Case of the joint eigenspaces EU;O˙;C
We are now looking at the joint eigenspaces of U and O where �O D C1. Consider first
the spaces EU;O˙;C. We have

EUC D ES;C�;� [ES;CC;C; (4.160)

EU� D ES;CC;� [ES;C�;C; (4.161)

soit

EUC D span.FG 0C/ [span.junNi/; (4.162)

EU� D span.FG 0�/ [span.jg�i/: (4.163)

The vectors junNi and jg�i do not belong to G2 either. Since span.FG 0˙/ � span.G3/
and EOC D span.G2;3/, we have

E
U;O
˙;C D ES;C�;�; (4.164)

that is
dim.EU;O˙;C/ D

nN

2
�N C 1: (4.165)

We also note the important fact that junNi does not belong to any eigenspace of
O , which means that junNi is in E , and that the state of the system at any iteration
j ti D U 0t junNi remains in E . Moreover, since jsi belongs to G1, the superposition
of solutions is also in E . We will see that these properties enable us to calculate the
algorithm probability of success in polynomial time.

Case of the joint eigenspaces EU;O
�w;C and EU;O

��
w;C

The last case to be treated is that of the spaces EU;O
�w;C and EU;O

��
w;C. To do this, we define

zO as the spatial Fourier transform of O . Since H D span.G1/ [span.G2;3/, we can
reformulate EOC D span.G2;3/ to EOC D ker.G1|/, and thus

E
zO
C D ker..FG1/

|/: (4.166)

Since we have

FG1 D .HN ˝ In/.I .s/N ˝ juni/; (4.167)

D H .s/
N ˝ juni; (4.168)

where H .s/
N is the submatrix of HN of size N �M defined in section 4.2, formed by

keeping only those columns of HN corresponding to solutions. We then have

E
zO
C D ker

�
H
.s/
N

| ˝ hunj
�
: (4.169)

4.5. Dimension of the space of interest 91

Since E zU
�w
D span.Vw/, we have

E
zU; zO
�w;C D span.Vw/ \ ker

�
H
.s/
N

| ˝ hunj
�
: (4.170)

Any vector jpijvwi of span.Vw/ can be expressed Vw j�i, where j�i is a unit vector of
length

�
n

w

�
. Since we work in ker

�
H
.s/
N

| ˝ hunj
�
, we must also have�

H
.s/
N

| ˝ hunj
�
.Vw j�i/ D 0; (4.171)

that is, j�i is orthogonal to all columns of
�
H
.s/
N

| ˝ hunj
�
Vw . These columns are�

H
.s/
N

| ˝ hunj
�
.jpi ˝ jvwi/ D hunjvwi

�
H
.s/
N

|�jpi: (4.172)

Here,
�
H
.s/
N

|

/jpi corresponds to the column of H .s/
N

|

associated with position p, and
hunjvwi to a scalar that we will denote ˛w , such that

˛w D
r
w

2
� i
r
n � w
2

: (4.173)

It follows that �
H
.s/
N

| ˝ hunj
�
Vw D ˛wH .s;w/

N

|

; (4.174)

where H .s;w/
N is the submatrix of H .s/

N defined in section 4.2, formed by keeping only
the rows of H .s/

N corresponding to positions associated with binary words of Hamming
weight w. Since ˛w ¤ 0, we must have

H
.s;w/
N

|j�i D 0; (4.175)

that is
j�i 2 ker

�
H
.s;w/
N

|�
: (4.176)

We therefore deduce

E
U;O

�w;C D fFVw j�i j j�i 2 ker.H .s;w/
N /g; (4.177)

E
U;O

��
w;C D fFV

�
w j�i j j�i 2 ker.H .s;w/

N /g; (4.178)

and

dim.EU;O
�w;C/ D dim.EU;O

��
w;C/ D dim

�
ker
�
H
.s;w/
N

|��
; (4.179)

D

n

w

!
� rk.H .s;w/

N /: (4.180)

The table 4.4 summarizes the eigenvalue and eigenvector decomposition of the search
algorithm operator U 0.

92 4. Eigenanalysis of the hypercube search algorithm

Table 4.4 Eigenspaces of the search algorithm operator

Eigenspace Expression Dimension

E
U;O
˙;C span.FG 0�/ nN=2 �N C 1

E
U;O

�w;C fFVw j�i j j�i 2 ker.H .s;w/
N /g �

n

w

� � rk.H .s;w/
N /

E
U;O

��
w;C fFV �w j�i j j�i 2 ker.H .s;w/

N /g �
n

w

� � rk.H .s;w/
N /

Dimension of the space of interest

We now know all the eigenspaces of xE and their respective dimensions. Then

dim.xE/ D 2
�nN
2
�N C 1

�
C 2

n�1X
wD1

�
n

w

!
� rk.H .s;w/

N /

�
; (4.181)

D nN � 2N C 2C 2.N � 2/ � 2
n�1X
wD1

rk.H .s;w/
N /; (4.182)

D nN � 2 � 2
n�1X
wD1

rk.H .s;w/
N /: (4.183)

This gives us the dimension of the space of interest

dim.E/ D nN � dim.xE/; (4.184)

D 2C 2
n�1X
wD1

rk.H .s;w/
N /: (4.185)

We know that xE � EOC , so

dim.xE/ 6 nN �M: (4.186)

Moreover, as 1 6 rk.H .s;w/
N / 6 min.M;

�
n

w

�
/, we have

max.2n;M/ 6 dim.E/ 6 2.n � 1/M C 2: (4.187)

We can see that the dimension of the space of interest E grows linearly with the
dimension of the hypercube n, while the total space H grows exponentially (remember
that dim.H/ D n2n). For example, in the case of a hypercube of dimension n D 100, the
total space is of dimension dim.H/ D 1:27 � 1032, whereas that of the space of interest,
in which the algorithm acts, is dim.E/ 6 198M C 2. This doesn’t mean that we can
simulate the search algorithm on a conventional computer, but we will see that it at least
allows us to predict its probability of success as it is iterated.

4.6. Summary of the eigenanalysis 93

4.6. Summary of the eigenanalysis

The hypercube quantum search algorithm is an iterative algorithm consisting of the
repetition of the same operator U 0 a certain number of times R, the determination of
which is one of the subjects of this work. This operator U 0 is decomposed into an
oracle O , capable of "marking" the solutions of the problem studied, and a uniform walk
operator U , depending only on the dimension n of the hypercube. The uniform walk U
is itself the combination of two operators, the coin operator that mixes the directions of
displacement on the hypercube C , and the shift operator S which moves the particles
along these directions. We have

U 0 D UO D SCO: (4.188)

In this chapter, we first showed that in the joint eigenspace of U andO , the application
of two iterations of the algorithm, that is U 02, was equivalent to that of two iterations of
the walk without the oracle, that is U 2. In this space, the algorithm then has no reason
to converge to a solution, and we deduce that its useful component takes place in the
complement of this joint eigenspace, which we call E .

By eigenanalysis of the elementary operators S , C andO and of their joint eigenspaces,
we find that the dimension of E grows only linearly in the dimension n of the hyper-
cube, while that of the global space H grows exponentially. To facilitate this analysis,
we use several generator matrices whose columns generate eigenspaces from which
we can express the eigenspaces of the operators. These matrices are defined in equa-
tions from (4.31) to (4.37). We also use the spatial Fourier transform defined by equa-
tion (2.59), which allows us to diagonalize S , and thus obtain a block-diagonal structure
when studying the U operator.

Finally, we determine three eigenspaces common to U andO , as well as the dimension
of their union in equation (4.183). This gives us an upper bound on the dimension of the
space of interest E .

dim.E/ 6 2.n � 1/M C 2; (4.189)

where M is the number of solutions to the problem.
In addition, we have shown that the states junNi and jsi belong to the space of

interest E , which will allow us to calculate the probability of success in the next chapter.

5. Search algorithm probability of
success calculation

In the previous chapter, we showed that the dimension of the space of interest E grows
linearly in n and that the uniform state junNi, which serves as the initial state of the
algorithm, belongs to E . As each column of G1 corresponds to a solution position, the
uniform superposition of solution elements jsi is the sum of these M columns, that is to
say

jsi D 1p
M

X
p2ZN
f .p/D1

jpijuni: (5.1)

Since span.G1/ D EO� and EO� � E , we have jsi 2 E . Furthermore, since

jNsi D
s

nN

n.N �M/
junNi �

s
nM

n.N �M/
jsi; (5.2)

then we also have jNsi 2 E . The rules of measurement in quantum physics allow us to
establish that the probability of success at iteration t is

Pt.s/ D
ˇ̌hsjU 0t junNiˇ̌2: (5.3)

It can be calculated solely from the system component in E . In a basis formed by the
eigenvectors of U 0, we can represent its component in E by a diagonal matrix U 0E of size
dim.E/ � dim.E/, whose coefficients are the eigenvalues eiu'k of U 0 in E .

We denote u.k; l/ and s.k; l/ the components of the vectors junNi and jsi in E
associated with the eigenvalue ei'k , the parameter l being used to distinguish components
associated with the same eigenvalue. The state vector of the system at iteration t being
j ti D U 0t junNi, its components in E are

 t.k; l/ D ei'ktu.k; l/: (5.4)

We then have

Pt.s/ D
ˇ̌̌X
k;l

s.k; l/� t.k; l/
ˇ̌̌2
; (5.5)

D
ˇ̌̌X
k;l

ei'kts.k; l/�u.k; l/
ˇ̌̌2
; (5.6)

96 5. Search algorithm probability of success calculation

and we can then calculate the algorithm probability of success with only the dim.E/
eigenvalues of U 0 in E and the associated components of the junNi and jsi vectors.

This chapter, like the previous one, involves a significant amount of mathematical
development. A summary of the method for calculating the probability of success is
therefore given in section 5.4. It may be useful to use this summary as a guide while
reading the chapter.

5.1. Space of interest eigenanalysis

5.1.1. Overview of the space of interest eigenanalysis

In this section, exploiting the results of chapter 4, we study the component of the
algorithm operator U 0 in the space of interest E to determine its eigenvalues. We denote
by j"i an eigenvector of U 0 in E , and represent it by its components in ECOC and ECO� ,
respectively noted j"Ci and j"�i. We then have

j"i D j"Ci C j"�i: (5.7)

We then show that for a given eigenvalue �k D ei'k , we can express j"Ci as a function
of j"�i, and vice versa. We have

j"Ci D i
�

cot
'k

2
P SC � tan

'k

2
P S�

�
j"�i; (5.8)

j"�i D �i
�

tan
'k

2
P SC � cot

'k

2
P S�

�
j"Ci; (5.9)

where the matrices P SC and P S� are projectors into the spaces ESC and ES� .
We create a matrix z�'k which allows the passage between the vectors j Q"Ci and j Q"�i,

the spatial Fourier transforms of the vectors j"Ci and j"�i, defined as

z�'k D cot
'k

2
zP SC C tan

'k

2
zP S� : (5.10)

We then have

j Q"Ci D i z�'k j Q"�i; (5.11)

j Q"�i D �i z� �1'k j Q"Ci: (5.12)

From the matrix z�'k , we create a matrix D'k , defined by the inverse of its spatial
Fourier transform, the diagonal matrix zD�1'k , whose p-th coefficient is

zD�1'k .p/ D
�
1 � w

n

�
tan

'k

2
� w
n

cot
'k

2
; (5.13)

5.1. Space of interest eigenanalysis 97

where w denotes the Hamming weight of the binary word associated with position p.
We then create D.s/

'k , the submatrix of D'k obtained by keeping only the rows and
columns associated with solution positions. If ei'k is an eigenvalue of U 0 in E , then the
matrix D.s/

'k is singular. This means that for any angle � , if the matrix D.s/

�
is singular,

then ei� is probably an eigenvalue of U 0 in E .
Thanks to singular value decomposition (see appendix E), it is easy to test whether a

matrix D.s/

�
is singular or not. Indeed, if at least one of the singular values of a matrix is

zero, then it is singular. We therefore have a criterion for identifying eigenvalues. We
also show that it suffices to test angles � in the interval Œ0; �=2Œ to find all the eigenvalues
by symmetry. Moreover, in our case, the number of zero singular values tells us the
dimension of the eigenspace associated with a given eigenvalue.

5.1.2. Detail of the space of interest eigenanalysis

Expressions for the vectors j"Ci and j"�i
In this section, we study the component of U 0 in E to determine its eigenvalues. Since
we have H D ECOC [ECO� , any eigenvector j"i of U 0 in E can be decomposed into a
sum of vectors j"Ci and j"�i belonging to ECOC and ECO� respectively, that is

j"i D j"Ci C j"�i: (5.14)

Let �k D ei'k be an eigenvalue of U 0. We have

U 0j"i D �kj"i D �k.j"Ci C j"�i/; (5.15)

but also

U 0j"i D SCO.j"Ci C j"�i/; (5.16)
D S j"Ci � S j"�i: (5.17)

We therefore have
S j"Ci � S j"�i D �k.j"Ci C j"�i/; (5.18)

that is, as S2 D InN ,
j"Ci � j"�i D �kS.j"Ci C j"�i/: (5.19)

We define P SC and P S� as projectors to the spaces ESC and ES� , operators with the
property

8jxi 2 H; P S˙ jxi 2 ES˙: (5.20)

Since S is a unit operator such that S2 D InN , we show

P SC D
InN C S

2
; (5.21)

P S� D
InN � S

2
; (5.22)

98 5. Search algorithm probability of success calculation

and

P SCS D P SC ; (5.23)

P S� S D �P S� : (5.24)

We deduce

P SC j"Ci � P SC j"�i D �kP SC j"Ci C �kP SC j"�i; (5.25)

�P S� j"Ci C P S� j"�i D �kP S� j"Ci C �kP S� j"�i; (5.26)

that is

.1 � �k/P SC j"Ci D .1C �k/P SC j"�i; (5.27)

.1C �k/P S� j"Ci D .1 � �k/P S� j"�i: (5.28)

When �k ¤ ˙1, we have

1 � �k
1C �k D �

ei
'k
2 � e�i

'k
2

ei
'k
2 C e�i

'k
2

D �i tan
'k

2
; (5.29)

and
1C �k
1 � �k

D i
1

tan 'k
2

D i cot
'k

2
; (5.30)

therefore

P SC j"Ci D i cot
'k

2
P SC j"�i; (5.31)

P S� j"Ci D �i tan
'k

2
P S� j"�i: (5.32)

Since P SC C P S� D InN , we finally obtain

j"Ci D i
�

cot
'k

2
P SC � tan

'k

2
P S�

�
j"�i; (5.33)

j"�i D �i
�

tan
'k

2
P SC � cot

'k

2
P S�

�
j"Ci: (5.34)

We denote zP S˙ the spatial Fourier transform of P S˙ . From the eigenanalysis of S
performed in section 4:1, we know that zP S˙ is a diagonal matrix whose coefficients of
signature &i D ˙1 are equal to 1 and the others, of signature &i D �1, are 0. We define

z�'k D cot
'k

2
zP SC C tan

'k

2
zP S� ; (5.35)

5.1. Space of interest eigenanalysis 99

so as to have

j Q"Ci D i z�'k j Q"�i; (5.36)

j Q"�i D �i z� �1'k j Q"Ci; (5.37)

where j Q"Ci and j Q"�i are the spatial Fourier transforms of j"Ci and j"�i.
We have

j"Ci 2 ECOC D span.G2/; (5.38)

j"�i 2 ECO� D span.G1;3/; (5.39)

and since FG 0˙ generates a space orthogonal to E , we have

j"�i 2 span.G1/ [span.G 0ı/: (5.40)

These vectors can be expressed as

j"Ci D G2j"2i; (5.41)
j"�i D G1j"1i C FG 0ıj"ıi; (5.42)

that is

j"Ci D I .Ns/N j"2i ˝ juni; (5.43)

j"�i D I .s/N j"1i ˝ juni C FG 0ıj"ıi; (5.44)

where j"1i, j"2i and j"ıi are vectors of sizes M , N �M and .n� 1/N respectively. We
define the vectors

jeCi D I .Ns/N j"2i; (5.45)

je�i D I .s/N j"1i: (5.46)

Since FG 0ıj"ıi is a vector made up of N blocks of n values of zero mean, we have

je˙i D .IN ˝ hunj/j"˙i: (5.47)

We can decompose z� �1'k into

z� �1'k D zD�1'k ˝ In C �'k ; (5.48)

where zD�1'k is a diagonal N �N matrix whose elements are the averages of n blocks of
z� �1'k , and �'k is another diagonal matrix made up of N blocks of size n � n and of zero

average. The coefficients of the diagonal of zD�1'k are

zD�1'k .p/ D
�
1 � w

n

�
tan

'k

2
� w
n

cot
'k

2
; (5.49)

100 5. Search algorithm probability of success calculation

with w D wt.p/. Let jeCi and je�i be the spatial Fourier transforms of jeCi and je�i.
Since all blocks of �'k have zero mean, we have �'k.jxi ˝ juni/ D 0 for any jxi vector
of size N . According to equation (5.37), we therefore have

j Qe�i D �i zD�1'k j QeCi: (5.50)

If none of the coefficients of the diagonal of zD�1'k is zero, we also have

j QeCi D i zD'k j Qe�i; (5.51)

with
zD'k.p/ D

��
1 � w

n

�
tan

'k

2
� w
n

cot
'k

2

��1
: (5.52)

We can see that the values of zD'k.p/ are identical for positions associated with binary
words of the same Hamming weight w. We denote the value common to these positions
by zD.w/

'k . The case where zD�1'k is singular, that is, its diagonal contains zero terms, will
be dealt with later in the chapter. Leaving the Fourier domain, we have

D'k D HN zD'kHN ; (5.53)

and
jeCi D iD'k je�i: (5.54)

We define D.s/
'k the M �M submatrix of D'k obtained from the rows and columns

associated with the solutions, that is to say

D.s/
'k
D H .s/

N
zD'kH

.s/
N : (5.55)

For each eigenvalue ei'k , the vectors j"1i form an orthogonal basis of ker.D.s/
'k /. We can

therefore find the eigenvalues of E , by constructing matrices D.s/

�
for different angles

� 2 Œ0; 2�Œ. For each angle � , we define

d� D dim.ker.D.s/

�
//: (5.56)

If d� > 1, then ei� is probably an eigenvalue of E , associated with d� eigenvectors. As
the eigenvalues come in complex conjugate pairs, we can restrict the search to Œ0; �Œ.
Furthermore, since we have

D
.s/

�
D �D.s/

�� ; (5.57)

and that
ker.D.s/

�
/ D ker.D.s/

��/; (5.58)

research can still be reduced to Œ0; �=2Œ.

5.2. Eigenvalue search in polynomial time 101

We can calculate d� using the singular value decomposition, or SVD (see appendix
E), of D.s/

�
, since the number of zero singular values of a matrix equals the dimension

of its kernel. Since the matrix D.s/

�
has size M �M , the search for eigenvalues by

SVD has polynomial complexity in M , the number of solutions. We denote �� the last,
and therefore smallest, singular value of D.s/

�
. By testing a set of angles � 2 Œ0; �=2Œ,

it is unlikely to find a case where at least one singular value is exactly equal to zero.
We therefore look for local minima of the function ��.�/, corresponding to probable
eigenvalues of ei� .

5.2. Eigenvalue search in polynomial time

As the method of finding eigenvalues by locating the minima of ��.�/ is based on the
SVD of matrices D.s/

�
of size M �M , it is feasible in polynomial time provided that we

can calculate these matrices quickly. Indeed, equation (5.55) involves zD� and H .s/
N , two

N � N matrices, that is, that grow exponentially with respect to the dimension of the
hypercube. Direct calculation of D.s/

�
is therefore impossible when n is large. However,

since zD� is diagonal, we have

D
.s/

�
D

nX
wD0
zD.w/

�
H
.s;w/
N

|

H
.s;w/
N : (5.59)

We define the matrix �w D H .s;w/
N

|

H
.s;w/
N of size M �M , so as to have

D
.s/

�
D

nX
wD0
zD.w/

�
�w : (5.60)

We define xHN , the unnormalized Hadamard matrix

xHN D
p
NHN ; (5.61)

containing only coefficients˙1, and jhii the column of xHN corresponding to position i .
We have

�w.i; j / D 1

N
hhi jhj i; (5.62)

D 1

N

X
p2ZN

wt.p/Dw

hi.p/hj .p/: (5.63)

Let jbii be the binary representation of position i . Hadamard matrices have the property

xHN .i; j / D .�1/hbi jbj i; (5.64)

102 5. Search algorithm probability of success calculation

therefore

hi.p/hj .p/ D .�1/hbp jbi i.�1/hbp jbj i; (5.65)

D .�1/hbp jbi˚bj i; (5.66)
D hi˚j .p/; (5.67)

where i ˚ j designates the position associated to the binary word jbi ˚ bj i.
We define �.w/i as the sum of the elements of jhii at positions p where wt.p/ D w,

that is

�
.w/
i D

X
p2ZN

wt.p/Dw

hi.p/; (5.68)

D
X
p2ZN

wt.p/Dw

.�1/hbp jbi i: (5.69)

The elements of this sum are positive when hbpjbii is even, which happens when jbpi
contains an even number of bits equal to 1 among the Hamming weight positions
wi D wt.i/. We denote this even number 2k, and there is

�
wi
2k

�
possible placement for

these 1, and
�
n�wi
w�2k

�
for the remaining w � 2k coefficients equal to 1. The total number

of positive terms in the sum is therefore

�
.w/
i D

X
k

wi

2k

!
n � wi
w � 2k

!
; (5.70)

for all values of k where these two binomial coefficients are defined, that is

0 6 k 6
wi

2
; (5.71)

wi C w � n
2

6 k 6
w

2
: (5.72)

In jhii, there are
�
n

w

�
positions associated with elements of weight w whose �.w/i

coefficients are positive. There are therefore
�
n

w

�� �.w/i negative coefficients and the sum
of these coefficients is

�
.w/
i D �.w/i �

�
n

w

!
� �.w/i

�
; (5.73)

D 2�.w/i �

n

w

!
: (5.74)

5.3. Vector components in the space of interest 103

Note that since �.w/i does not depend on i but on wi , we can calculate it for several values
of i and save calculation time.

In the end
�w.i; j / D 1

N
�
.w/
i˚j ; (5.75)

and we can calculate D.s/

�
without using the matrices zD� and H .s/

N .

5.3. Vector components in the space of interest

5.3.1. Overview of the vector component calculation

In this section, we compute the components of the vectors jsi and junNi in the space
of interest E in order to calculate the exact value of the probability of success of the
algorithm from a reduced number of values.

From the results of chapter 4, we show that any eigenvector j"i of the algorithm
operator U 0 in E can be expressed as

j"i D G1j"1i CG2j"2i C FG 0ıj"ıi; (5.76)

For each eigenvalue �k D ei'k we have as many vectors j"1i as the associated
eigenspace has dimensions, and as jsi 2 span.G1/, for each of these vectors j"1i

h"jsi D h"1jG|

1 jsi; (5.77)
D h"1juMi: (5.78)

Similarly, as junNi 2 span.G1;2/, we show that

h"junNi D
r
M

N

�
1 � i cot

'k

2

�h"jsi: (5.79)

We denote s.k; l/ and u.k; l/ the components of the vectors jsi and junNi associated
with the eigenvalue �k , where the parameter l is used to distinguish multiple components
corresponding to the same eigenvalue associated with an eigenspace of dimension greater
than 1. In most cases, we have

s.k; l/ D h"1juMi; (5.80)

u.k; l/ D
r
M

N

�
1 � i cot

'k

2

�
s.k; l/: (5.81)

There are, however, eigenvalues �k for which the matrix D.s/
'k is not defined, as zD�1'k

is not invertible. This happens either when �k D ˙1 or when �k is an eigenvalue of the
uniform walk operator U .

104 5. Search algorithm probability of success calculation

Of the two real eigenvalues, only �k D �1 is of interest because �k D 1 is always
associated with zero components in E . We then show that in this case

s.k; l/ D h"1juM i; (5.82)

with
j"i D G1j"1i C FG 0ıj"ıi; (5.83)

where

j"ı.p/i D �
r

w

n � w.H
.s/
N j"1i/.p/; (5.84)

and

u.k; l/ D h"junNi D
r
M

N
h"jsi: (5.85)

To deal with the case where �k is an eigenvalue of the operator U , we construct
the matrix zD. Np/

�
, a variant of zD� where we replace the undefined coefficients on the

diagonal (because we have inverted zero values) by 0. This allows us to determine a new
vector j"1i, from which we can calculate the associated components of the vectors jsi
and junNi.

In cases where an eigenvalue �k is associated with an eigenspace of dimension greater
than 1, there is no guarantee that the vectors j"1i are orthogonal. One way to overcome
this problem is to form a vector js.k/i with all the s.k; l/ values associated with the
eigenvalue �k, and apply a correction matrix C . This matrix C is defined differently
according to the type of eigenvalue.

5.3.2. Detail of the vector component calculation

Typical case

As shown in equation (5.6), we can calculate the probability of success of the hypercube
search algorithm from the eigenvalues of U 0 and the components of the vectors jsi
and junNi in the space E .

Each eigenvector is of the form

j"i D G1j"1i CG2j"2i C FG 0ıj"ıi; (5.86)

therefore, as jsi 2 span.G1/,

h"jsi D h"1jG|

1 jsi; (5.87)
D h"1juMi: (5.88)

5.3. Vector components in the space of interest 105

Similarly, as junNi 2 span.G1;2/,

h"junNi D h"1jG|

1 junNi C h"2jG|

2 junNi; (5.89)

D
r
M

N
h"1juMi C h"CjunNi; (5.90)

and as

h"CjunNi D heC ˝ unjuN ˝ uni; (5.91)
D heCjuN i; (5.92)

we have

h"junNi D
r
M

N
h"jsi C heCjuN i: (5.93)

Recall that, as with any vector, heCjuN i D hQeC.0/j, and thus

heCjuN i D hQeC.0/j; (5.94)

D �i zD'k.0/h Qe�.0/j; (5.95)

D �i cot
'k

2
he�juni; (5.96)

D �i cot
'k

2

r
M

N
h"1juMi; (5.97)

D �i cot
'k

2

r
M

N
h"jsi; (5.98)

and the equation 5.93 becomes

h"junNi D
r
M

N

�
1 � i cot

'k

2

�h"jsi: (5.99)

We can therefore calculate the components of the vectors jsi and junNi in E for all
eigenvalues �k D ei'k , with the exception of real eigenvalues and those associated with
singular zD�1'k matrices, which will be dealt with later. For each vector j"1i, we have

s0.k; l/ D h"1juMi; (5.100)

u0.k; l/ D
r
M

N

�
1 � i cot

'k

2

�
s0.k; l/: (5.101)

Correction matrices

Here, the notations s0.k; l/ and u0.k; l/ refer exactly to the components of the vectors jsi
and junNi in E only if the vectors j"1i form an orthonormal basis. This is usually the

106 5. Search algorithm probability of success calculation

case, as there is often only one vector j"1i per eigenvalue. If not, these coefficients need
to be corrected. To do this, we first define the � transformation, identical to that presented
in equation (5.59), that is to say

�.A/ D
nX

wD0
A.w/H

.s;w/
N

|

H
.s;w/
N ; (5.102)

where A is a diagonal matrix whose coefficients A.p; p/ depend only on wt.p/. Since
the vectors j Q"Ci and j Q"�i are orthogonal, for two vectors j Q"i and j Q"0i we have

hQ"j Q"0i D hQ"Cj Q"0Ci C hQ"�j Q"0�i; (5.103)

and so, for each pair of vectors j"1i and j"01i
hQ"Cj Q"0Ci D hQeC ˝ unj Qe0C ˝ uni; (5.104)

D heCje0Ci; (5.105)

D he�j zD2
'k
je0�i; (5.106)

D h"1jH .s/
N

| zD2
'k
H
.s/
N j"01i; (5.107)

D h"1j�. zD2
'k
/j"01i; (5.108)

and

hQ"�j Q"0�i D hQ"Cj z� �2'k j Q"0Ci; (5.109)

D hQeC ˝ unj z� �2'k j Qe0C ˝ uni; (5.110)

D heCjT'k je0Ci; (5.111)

D he�j zD'kT'k
zD'k je0�i; (5.112)

D h"1jH .s/
N

| zD'kT'k
zD'kH

.s/
N j"01i; (5.113)

D h"1j�. zD2
'k
T'k/j"01i; (5.114)

where T'k is a diagonal N � N matrix such that the coefficient T'k.p/ is the average
value of the n coefficients of the p-th block of z� �2'k , that is

T'.p/ D
�
1 � w

n

�
tan2

'k

2
C w

n
cot2

'k

2
: (5.115)

We finally have
hQ"j Q"0i D h"1j�. zD2

'k
C zD2

'k
T'k/j"01i: (5.116)

For each eigenvalue �k associated with several vectors j"1i, we define the matrix C1
whose columns are these vectors j"1i. We can construct the correlation matrix

C �C D C �1 �. zD2
'k
C zD2

'k
T'k/C1; (5.117)

5.3. Vector components in the space of interest 107

where each column of C is a vector j Q"i of the eigenspace associated with �k. We can
diagonalize C as

C �C D VC˙2
CV

�
C ; (5.118)

where ˙2
C is a diagonal matrix containing the eigenvalues of C �C . This gives the SVD

of the C matrix.
C D UC˙CV �C : (5.119)

We therefore have
s0.k; l/ D hc.l/jsi; (5.120)

where jc.l/i denotes the l-th column ofC . Since the columns ofUC form an orthonormal
basis of the eigenspace associated with the eigenvalue �k , we have

js.k/i D UC jsi; (5.121)

where js.k/i is the vector formed by all s.k; l/ coefficients associated with the eigen-
value �k. However, UC is a matrix of size nN � dim.ker.D.s/

'k //, and is exponentially
large with respect to the dimension of the hypercube. Its calculation can be avoided,
however, as we also have

js.k/i D ˙�1C V �1C js0.k/i; (5.122)

and the matrices ˙C and VC are of size dim.ker.D.s/
'k // � dim.ker.D.s/

'k //. Finally, we
calculate the components of junN i in E

u.k; l/ D
r
M

N

�
1 � i cot

'k

2

�
s.k; l/: (5.123)

Case of real eigenvalues

As explained above, this method of calculating the components s.k; l/ and u.k; l/ only
concerns complex �k eigenvalues associated with invertible zD�1'k matrices. When �k D 1,
we must have

P S� j"Ci D 0; (5.124)

P SC j"�i D 0; (5.125)

and therefore j"Ci 2 ES;COC;C and j"�i 2 ES;CO�;� . Since dim.ES;COC;C / D 0, we have
j"i 2 ES;CO�;� , and we know that the intersection of ES;CO�;� and E is of dimension M � 1.
Similarly, if �k D �1, we must have

P SC j"Ci D 0; (5.126)

P S� j"�i D 0; (5.127)

108 5. Search algorithm probability of success calculation

and therefore j"Ci 2 ES;CO�;C and j"�i 2 ES;COC;� . Since dim.ES;CO�;C / D 0, we have
j"i 2 ES;COC;� , whose intersection with E is also of dimension M � 1. In the following,
we will not study the case �k D 1, as it is similar to the case �k D �1 and only concerns
zero components of jsi and junNi in E . We have

j"i D G1j"1i C FG 0ıj"ıi; (5.128)

with constraint h"1jhi D 0, hhj being the last row of the matrix H .s/
N defined in equa-

tion (4.91). We also have

j"ı.p/i D �
r

w

n � w.H
.s/
N j"1i/.p/: (5.129)

Since the vectors junNi and jsi do not belong to G 0ı, we have

h"jsi D h"1jG�1 jsi; (5.130)
D h"1juM i; (5.131)

and

h"junNi D h"1jG�1 junNi; (5.132)

D
r
M

N
h"1juM i; (5.133)

D
r
M

N
h"jsi: (5.134)

As was the case previously for complex �k eigenvalues, the vectors obtained are not
orthogonal and a similar correction must be applied. For two vectors j"i and j"0i, we
have

h"j"0i D h"1j"01i C h"ıj"0ıi: (5.135)

Let W be the diagonal matrix whose coefficients are W.p/ D w=.n � w/. We have

h"ıj"0ıi D h"1jH .s/
N

|

WH
.s/
N j"01i; (5.136)

D h"1j�.W /j"01i: (5.137)

The correlation matrix obtained is

C �C D C �1 �.IN CW /C1; (5.138)

where C1 is defined in the same way as in the previous case. The method for correcting
the components of the vectors jsi and junNi in E is the same as in the case of complex
eigenvalues, using the new matrix C �C .

5.3. Vector components in the space of interest 109

Case of eigenvalues of U

It still remains to deal with the case of angles � associated with singular zD�1
�

matrices,
that is, matrices containing at least one zero coefficient on their diagonals. According to
equation (5.49), this happens when�

1 � w
n

�
tan

�

2
� w
n

cot
�

2
D 0; (5.139)

for a given Hamming weight w that is,�
1 � w

n

�
tan2

�

2
D w

2
; (5.140)�

1 � w
n

� 1 � cos �
1C cos �

D w

2
; (5.141)

meaning

cos � D 1 � 2w
n
; (5.142)

which corresponds to the case where � is one of the eigenvalues �w of U . In this case,
the zero terms on the diagonal of zD�1

�
are those at positions p such that wt.p/ D w, and

so we have zD.w/

�
D 0. This implies that j Qe�.p/i D 0 at these p positions, and since

j Qe�i D H .s/
N j"1i; (5.143)

we have the new constraint on j"1i

j"1i 2 ker.H .s;w/
N /: (5.144)

The matrix H .s;w/
N is large, but for any matrix A, we have

ker.A/ D ker.A�A/; (5.145)

and therefore
j"1i 2 ker.�w/; (5.146)

still with �w D H .s;w/
N

|

H
.s;w/
N .

We will now define a second constraint. We designate by Np the positions associated
with binary words of Hamming weight different from w, that is wt. Np/ ¤ w. Equation
(5.51) is only valid at these positions Np, so

j QeC. Np/i D i zD�. Np/j Qe�. Np/i: (5.147)

We define j Qe. Np/C i the vector whose elements at positions p are zero and those at Np positions
are defined by the above equation. In the same way, we define the matrix zD. Np/

�
, obtained

110 5. Search algorithm probability of success calculation

by replacing the terms of zD� at the positions p by 0. If we denote jxi the vector of length�
n

w

�
which contains the non-zero elements of j QeCi, which are located at positions p, we

have
j QeCi D j Qe. Np/C i C I .w/N jxi: (5.148)

Sincej QeCi 2 span.H .Ns/
N /, its M coefficients corresponding to the solutions are zero, and

H
.s/
N

|j QeCi D 0; (5.149)

and

iH .s/
N

| zD. Np/
�
j Qe�i CH .s;w/

N

|jxi D 0; (5.150)

iD.s; Np/
�
j"1i CH .s;w/

N

|jxi D 0: (5.151)

We therefore have the constraint�j"1i
jxi

�
2 ker

�
iD.s; Np/

�
CCH .s;w/

N

|�
: (5.152)

As the matrix H .s;w/
N is large, the calculation of kerH .s;w/

N

|

becomes too complex as
the hypercube dimension grows. However, if we define the SVD of H .s;w/

N as

H
.s;w/
N D Uw˙wV �w ; (5.153)

we have
H
.s;w/
N

| D Vw˙wU �
w ; (5.154)

and any vector jai belonging to span
�
H
.s;w/
N

|�
can be written as

jai D H .s;w/
N

|jbi; (5.155)

D Vw˙wU �
w jbi; (5.156)

D Vw˙w jbki; (5.157)

where jbki denotes the component of jbi in span.U �
w/. Let jb?i denote the component

of jbi orthogonal to span.U �
w/, such that

jbi D Uw jbki C jb?i: (5.158)

Since jb?i has no impact on jai, it can be considered as zero, and we simply have

jbi D Uw jbki; (5.159)

5.3. Vector components in the space of interest 111

and thus
span

�
H
.s;w/
N

|� D span.Vw˙w/: (5.160)

Since
�w D Vw˙2

wV
�
w ; (5.161)

matrices Vw and ˙w can be calculated from the SVD of �w .
We define the matrix Yw whose columns form an orthonormal basis of ker.�w/. We

have
j"1i D Yw j Q"1i: (5.162)

The equation (5.152) thus becomes�j Q"1i
j Pxi

�
2 ker

�
iD.s; Np/

�
Y CC Vw˙w

�
; (5.163)

where j Pxi D U �
w jxi is a vector of length rk.�w/. We then have

hQ"Cj Q"0Ci D hQeCj Qe0Ci; (5.164)

D hQe. Np/C j Qe0. Np/C i C h Pxj Px0i; (5.165)

D hQe�j zD.s; Np/2
�
j Qe0�i C h Pxj Px0i; (5.166)

D h"1j�
� zD.s; Np/2

�

�j"01i C h Pxj Px0i; (5.167)

and,

hQ"�j Q"0�i D hQ"Cj z� �2� j Q"0Ci; (5.168)

D hQeC ˝ unj z� �2� j Qe0C ˝ uni; (5.169)

D hQeCjW� j Qe0Ci C h PxjI .w/N

|

W�I
.w/
N j Px0i: (5.170)

Since cos � D 1 � 2w=n,

tan
�

2
D
r

w

n � w; (5.171)

cot
�

2
D
r
n � w
w

; (5.172)

(5.173)

we have, at each position p

W�.p/ D n � w
n

tan2
�

2
C w

n
cot2

�

2
; (5.174)

D w

n
C n � w

n
; (5.175)

D 1; (5.176)

112 5. Search algorithm probability of success calculation

and therefore

hQ"�j Q"0�i D hQe�j zD. Np/
�
W� zD. Np/

�
j Qe0�i C h Pxj Px0i; (5.177)

D h"1j�
� zD. Np/2

�
W�
�j"01i C h Pxj Px0i: (5.178)

We define PX as the matrix whose columns are the vectors j Pxi. The correlation matrix
E�E is

E�E D E�1�
� zD. Np/2

�
C zD. Np/2

�
W�
�
E1 C 2 PX� PX: (5.179)

The computation method for the s.k; l/ and u.k; l/ components is identical to that of the
standard case, with the new definition of the vector j"1i and the correction matrix C .

5.4. Summary of the probability of success calculation

At iteration t , the probability of success can be calculated from the inner product of
the system state vector j ti and the solution vector jsi, as determined by equation
(5.3). Calculating the probability of success in this way would take too long, since to
obtain j ti, we must first calculate U 0t , knowing that U 0 is a matrix n2n�n2n. However,
we showed in the previous chapter that the vectors j ti and jsi belong to the space of
interest E defined in the previous chapter, whose size is linear in n. We can therefore
calculate the same inner product by restricting ourselves to the components of junNi
and jsi in E . To do this, we also need the eigenvalues �k D ei'k of U 0 associated with
eigenspaces in E .

The first step is to determine these eigenvalues, which will then enable us to calculate
the components of the vectors junNi and jsi in the E space. Although we cannot calculate
these eigenvalues directly, we can check whether a term ei� is an eigenvalue or not, by
constructing a specific D.s/

�
matrix as shown in section 5.1. If this matrix is singular,

that is, the dimension of its kernel is non-zero, then ei� is an eigenvalue. We can quickly
calculate the dimension of a matrix kernel using its singular value decomposition, or
SVD: if at least one of the singular values ofD.s/

�
is zero, then we’ve found an eigenvalue

of U 0 in E .
Calculating theD.s/

�
matrix according to its definition involves matrices of exponential

size in n, but it is possible to use the properties of Hadamard matrices to restrict ourselves
to matrices �w of size M �M , where M is the number of solutions to the problem
under study. We can therefore find the eigenvalues ei� for � 2 Œ0; �=2� by testing enough
matrices D.s/

�
. We then deduce by symmetry the eigenvalues associated with values of �

in ��=2; 2�Œ.
Most of the time, the components of junNi and jsi are calculated directly from the

eigenvalues, according to the equations (5.100) and (5.101). However, some particular
eigenvalues need to be treated differently: those equal to ˙1 and those producing
singular zD�1'k matrices.

5.4. Summary of the probability of success calculation 113

In addition, each eigenvalue is associated with one or more vectors j"1i, one for each
dimension of the corresponding eigenspace. If there are several vectors j"1i for the same
eigenvalue, their orthogonality must be ensured, which is done by applying a correction
matrix C to the vectors formed by all the jsi components associated with the eigenvalue.

6. Results and perspectives

6.1. Probability of success computation procedure

In this section, we will detail the steps of the procedure with the example of a problem
on a hypercube with n D 8 dimensions, where the solutions are at positions 3 and 6. We
therefore have M D 2 and

jsi D 1p
2
.j3i C j6i/ju8i: (6.1)

According to equation (4.185), the dimension of the space of interest E is exactly 30.
The upper bound (4.187) gives us dim.E/ 6 30, which is perfectly consistent. Most of
the time, the upper bound of dim.E/ is a little higher than the exact dimension, which
means that we will be looking for more eigenvalues than necessary. This poses no
problem, since any supernumerary eigenvalues outside the space of interest E have no
influence on the calculation of the probability of success. The important point is that
we obtain very few eigenvalues compared with the n2n D 2048 required for the direct
calculation using the entirety of the U 0 operator.

The first step in the calculation is to find the eigenvalues of U 0 associated with
eigenspaces in E . To do this, we create the matrices D.s/

�
in accordance with section 5.2

for a set of angles in Œ0; �=2�. Several strategies of choice of the tested angles � are
possible. One that has given good results is a two-pass search, first over the entire
interval Œ0; �=2�, then around each local minimum. The eigenvalue search in our example
is shown in figure 6.1. To obtain the curve shown in figure 6.1, each of the two passes
uses 10 000 values of � , evenly spaced, which is much more than necessary. Generally,
500 values of � are enough.

Once the eigenvalues whose phases 'k are in Œ0; �=2� have been identified, we find
those whose phases 'k are in ��=2; �� then in � � �; 0Œ by symmetry around �=2 then 0.
By adding the 1 and �1 eigenvalues, we obtain a total of 42 eigenvalues, 12 more than
the 30 we were looking for. In figure 6.1, we can see three � values marked with ��.�/
values above the others, close to 1, which are "false-positives". After the two symmetries,
this corresponds to 12 mistakenly identified eigenvalues. As mentioned above, we can
choose to keep these few eigenvalues in later calculations, as they correspond to zero
components in E .

As shown in section 5.3, if one of the eigenvalues we are looking for is equal to one
of the �w or ��w eigenvalues of U , we cannot construct the corresponding D.s/

�
matrix.

116 6. Results and perspectives

0 0.5 1 1.5
10

-4

10
-2

10
0

10
2

�

�
�
.�
/

Figure 6.1 Search for the eigenvalues of U 0 associated with eigenspaces in E for � 2
Œ0; �=2�. The eigenvalues found are marked by the circles

During the simulations, this case never arose, perhaps because the computational tools at
our disposal do not allow us to study high-dimensional cases. As a precaution, we may
choose to always include these 2n eigenvalues with those found.

Once the 30 eigenvalues have been identified, we calculate the s.k/ and u.k/ compo-
nents of the jsi and junN i vectors in the space of interest E . Of these 30 eigenvalues,
we find that 14 are associated with zero components. This leaves 16 useful eigenvalues,
which are presented in table 6.1.

The evolution of the probability of success can then be calculated from equation (5.6).
Figure 6.2 shows a comparison between the proposed method and direct simulation using
the entire operator U 0. Both methods give almost identical results, and the number of
iterations that maximizes the probability of success is found to be R D 12.

In this example, the maximum probability of success is about 0:4 over the first 50
iterations. We can also find an upper bound on the probability of success. By triangular

6.1. Probability of success computation procedure 117

Table 6.1 Non-zero components of vectors jsi and jui in E with n D 8,M D 2 solutions
at positions 3 and 6.

'k s.k/ u.k/

0:1127 0:4487 0:0397 � 0:7033i

0:7649 �0:1300 �0:0115C 0:0286i

1:1200 0:1267 0:0112 � 0:0179i

1:4250 0:1255 0:0111 � 0:0128i

1:7166 �0:1255 �0:0111C 0:0096i

2:0216 �0:1267 �0:0112C 0:0070i

2:3766 0:1300 0:0115 � 0:0046i

3:0289 �0:4487 �0:0397C 0:0022i

�3:0289 �0:4487 �0:0397 � 0:0022i

�2:3766 0:1300 0:0115C 0:0046i

�2:0216 �0:1267 �0:0112 � 0:0070i

�1:7166 �0:1255 �0:0111 � 0:0096i

�1:4250 0:1255 0:0111C 0:0128i

�1:1200 0:1267 0:0112C 0:0179i

�0:7649 �0:1300 �0:0115 � 0:0286i

�0:1127 0:4487 0:0397C 0:7033i

inequality, we have

Pt.s/ D
ˇ̌̌X
k;l

s.k; l/�ei'ktu.k; l/
ˇ̌̌2
; (6.2)

6
�X
k;l

js.k; l/�ei'ktu.k; l/j
�2
; (6.3)

6
�X
k;l

js.k; l/jju.k; l/j
�2
; (6.4)

and as from equation (5.123)

ju.k; l/j D
r
M

N

r
1C cot2

'k

2
js.k; l/j; (6.5)

118 6. Results and perspectives

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
P

ro
b
ab

il
it

y
 o

f
su

cc
es

s

0 10 20 30 40 50

Iteration

Figure 6.2 Evolution of the probability of success as a function of the number of
iterations. Circles correspond to the method proposed in this work, crosses to exact
values obtained by direct simulation

we finally have

Pt.s/ 6
M

N

�X
k

r
1C cot2

'k

2

X
l

js.k; l/j2
�2
: (6.6)

In our example, this upper bound is 0:4839, which is an overestimate of around 20 % of
the maximum probability of success.

6.2. Improvements and applications

Although the procedure presented produces an excellent approximation of the exact prob-
ability of success, there is still room for improvement. Firstly, we need to determine the
optimum method for choosing the angles � to be tested when searching for eigenvalues,

6.2. Improvements and applications 119

which involves studying how the eigenvalues are distributed according to the problem.
Then, the question of the exact complexity of the method could be resolved. It should
also be verified that the error between the exact probability and that calculated by the
method remains zero, in accordance with theory, as the dimension n of the problem
grows.

Practical applications of the method presented are limited by the need to know the
solutions in advance before simulating. However, it should be noted that it is sufficient to
know the relative positions of the solutions, not the absolute positions. For example, all
problems with the same number of bits and two opposite solutions behave in the same
way, and we can determine the optimal number of iterations R by testing just one of
these problems, chosen arbitrarily. We can therefore deal with families of problems for
which we have some prior knowledge of how their solutions are distributed, such as on a
face of the hypercube, in a hypersphere of known radius centered on any position, etc.

The proposed method and the algorithm eigenanalysis are mainly of theoretical interest,
and provide a slightly more detailed understanding of its functioning. The observation at
the root of the method, that the useful part of the algorithm occupies a small subspace of
the workspace, could be transposed to other quantum walks, for other algorithms or even
other types of graphs, such as planar walks.

It is also planned to study the impact of the number and relative positions of solu-
tions on the probability of success, in order to better understand the phenomenon of
"interferences" between solutions related to the graph, which exists neither in classical
walks, nor in the original Grover algorithm. Understanding these interferences could
help us to understand the globally irregular appearance of the probability of success
curve, and thus maximize the probability of success. In particular, in a study prior to this
paper, we developed a variant of the hypercube walk search algorithm using a modified
oracle. Without going into detail, this version of the algorithm generally gives a much
higher probability of success than the original algorithm, at a seemingly low cost in time.
Figures 6.3 and 6.4 show a comparison of the two algorithms. However, as it is difficult
to simulate realistic cases, with for example a few thousand qubits, with a conventional
computer, the proposed eigenanalysis technique could possibly show and quantify the
superiority of one of the versions.

120 6. Results and perspectives

0 10 20 30 40 50

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

Standard algorithm

Modified algorithm

Figure 6.3 Comparison of the original and modified hypercube search algorithms, for
n D 8, with M D 3 solutions, at positions 2, 49, 99

6.2. Improvements and applications 121

0 10 20 30 40 50

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
ab

il
it

é
d
e

su
cc

ès

Standard algorithm

Modified algorithm

Figure 6.4 Comparison of the original and modified hypercube search algorithms, for
n D 8, with M D 12 solutions, at positions 0, 5, 9, 10, 29, 31, 49, 50, 53, 54, 69, 77

Conclusion

The study of the hypercube quantum walk search algorithm presented in this paper is
organized around a simple observation: the algorithm does nothing useful in most of
the H workspace. We therefore began by showing that the useful space E was of very
low dimension (see equation (4.187)), exponentially smaller than that of the workspace.
To achieve this result, we carried out a joint eigenanalysis of the three elementary search
operators S , C and O in chapter 4, using specially constructed generator matrices and
the spatial Fourier transform.

In addition to refining our general understanding of the algorithm, this analysis allows
us to show that the initial state of the system junN i and the solution state jsi are both
part of the space of interest E . This means that at any iteration of the algorithm, the
state of the system is completely included in E , and above all, that we can calculate the
probability of success of the algorithm from just the few components of the vectors junN i
and jsi in E . Chapter 5 presents a procedure for calculating the probability of success in
polynomial time. This procedure is divided into two phases: finding the eigenvalues of
the algorithm operator U 0 associated with eigenspaces included in E , then calculating
the components of the vectors in each eigenspace.

It is not possible to determine analytically the eigenvalues of U 0 in E , but it is possible
to check whether or not a ei� term is one of the eigenvalues we are looking for. To do
this, we construct matrices D.s/

�
for a set of values of � 2 Œ0; �=2�. These matrices are

small, but are defined from very large matrices. However, in section 5.2, we show that
it is possible to exploit the properties of Hadamard matrices to compute efficiently the
matrices D.s/

�
. If, for a given value of � , at least one of the singular values of D.s/

�
is

zero, then ei� is one of the eigenvalues we are looking for. By repeating the process with
enough values of � 2 Œ0; �=2�, we find all the eigenvalues �k located in the upper right
quadrant of the complex plane. By symmetry around 0 and �=2, we deduce the other
eigenvalues, to which we add 1 and �1. The 2n non-real eigenvalues �w and ��w of the
uniform walk operator U are potential eigenvalues of U 0 in E that do not correspond to a
matrix D.s/

�
. For the sake of simplicity, we can choose to include them systematically in

the eigenvalues identified. Most of the time, we obtain too many eigenvalues, which is
not a problem, as the supernumerary values correspond to zero components in the space
of interest E .

Once the eigenvalues have been obtained, all that remains is to calculate the com-
ponents of the vectors junN i and jsi. In general, these components can be calculated
directly from the equations (5.100) and (5.101). When an eigenvalue is associated with

124 Conclusion

more than one eigenvector, a correction matrix C defined in section 5.3 must be used.
This correction matrix is defined differently for real and �w eigenvalues.

All that remains is to calculate the probability of success over the iterations from the
equation (5.6). The presented procedure is perfectly equivalent to the direct calculation
using the full U 0 operator, as shown in figure 6.2.

As mentioned in section 6.2, the eigenanalysis of the algorithm that led to the design
of the procedure for calculating the probability of success is undoubtedly as interesting
a result as the procedure itself. The notion of interest space and the technique of joint
eigenspace analysis could be applied to other algorithms or quantum walks on graphs
other than the hypercube, to study their behavior, evaluate or compare their performance.

A. Dirac notation

A.1. Definition

Dirac notation, or "bra-ket" notation, is an alternative method for writing quantities of
linear algebra using row and column vectors, while avoiding matrices. It is particularly
well-suited to the manipulation of vectors containing a very large, or even infinite, number
of elements, as seen in quantum physics. Of course, Dirac notation in no way changes
the principles of linear algebra. It is based on the use of the brakets"h" and "i" and the
vertical bar "j" to construct "bras" and "kets" (hence the name "bra-ket").

A ket is denoted jxi and mathematically represents a complex vector x in a Hilbert
space V . In quantum information, a ket systematically represents a state vector. If
x 2 Cn, it can be written as a column vector.

A bra is denoted by hf j and mathematically represents a linear functional, that is
f W V ! C. This means that in matrix notation, hxj denotes the dual of the vector x, that
is, hxj D jxi�, where "�" is the Hermitian transpose. If x 2 Cn, we can write it as a row
vector whose terms are the complex conjugates of x.

This notation allows us to write the inner product between two vectors x and y as
hxj � jyi D hxjyi. Consequently, we can express the squared norm of a vector as

kxk2 D hxjxi: (A.1)

Similarly, we can define an operator which takes the y component of x as jyihxj.
Indeed, we have jyihxj � jxi D jyihxjxi D kxk2y.

The symbol assigned to a ket or bra is often reused to designate a constant or scalar
variable. For example, the spectral decomposition of a normal operator yM can be written
as

yM D
X
m

mjmihmj: (A.2)

Here, for each eigenvalue m of the operator yM , we sum the weighted jmihmj, where jmi
is an eigenvector of yM .

In quantum information theory, kets are often assigned binary words, such as j001i.

126 A. Dirac notation

A.2. Properties

Bras and kets are objects suitable for linear algebra. Consequently, their manipulation
follows the same rules as row and column vectors in Cn.

A linear combination of kets will always result in a ket, and the same applies to bras.
For example, if jx1i, jx2i and jxi are kets, and

jyi D c1jx1i C c2jx1i; (A.3)

jzi D
Z C1
�1

f .x/jxi dx; (A.4)

with .c1; c2/ 2 C2 and f W R! C, then jyi and jzi are also valid kets.
Since bras are by definition linear functionals, their application to a sum of kets follows

the distributive property

hyj.c1jx1i C c2jx2i/ D c1hyjx1i C c2hyjx2i; (A.5)

and by duality, the application of a sum of bras to a ket is also distributive, that is

.c1hy1j C c2hy2j/jxi D c1hy1jxi C c2hy2jxi; (A.6)

with .c1; c2/ 2 C2.
Any sequence of multiplication of bras, kets, linear operators and complex scalars can

be written without parentheses, as it is an associative operation. For example

hxj.Ajyi/ D .hxjA/jyi D hxjAjyi; (A.7)

where A is a linear operator.
The Hermitian transpose, noted "�", is a frequent operation. It is equivalent to trans-

posing and conjugating the terms of a matrix. The rules of Hermitian transpose on bras
and kets are as follows:

jxi� D hxj; (A.8)

hxj� D jxi; (A.9)

.c1jx1i C c2jx2i/� D c�1 hx1j C c�2 hx2j; (A.10)

hxjyi� D hyjxi; (A.11)

hxjAjyi� D hyjA�jxi; (A.12)

.c1jx1ihy1j C c2jx2ihy2j/� D c�1 jy1ihx1j C c�2 jy2ihx2j: (A.13)

B. Kronecker tensor product

The tensor product is an operation used to model multilinear mathematical objects in
many fields of mathematics and physics. In this paper, we focus on the special case of
the Kronecker tensor product. As this is the only tensor product used in this document,
it will simply be referred to as a tensor product. This operation makes it possible to
represent n-dimensional systems and operations in the form of vectors and matrices, as
will be the case for quantum systems. The tensor product between two matrices A and B
is denoted by A˝ B . The matrices A and B can be of any or different dimensions.

Let A and B be two matrices of dimensions mA � nA and mB � nB respectively.

A D

264 a11 � � � a1nA
:::

: : :
:::

amA1 � � � amAnA

375 ; B D
264 b11 � � � b1nB

:::
: : :

:::

bmB1 � � � bmBnB

375 :
The tensor product A˝ B is defined as

A˝ B D

264 a11B � � � a1nAB
:::

: : :
:::

amA1B � � � amAnAB

375 ; (B.1)

explicitly266666666664

a11b11 � � � a11b1nB � � � a1nAb11 � � � a1nAb1nB
:::

: : :
:::

:::
: : :

:::

a11bmB1 � � � a11bmBnB � � � a1nAbmB1 � � � a1nAbmBnB
:::

:::
: : :

:::
:::

amA1b11 � � � amA1b1nB � � � amAnAb11 � � � amAnAb1nB
:::

: : :
:::

:::
: : :

:::

amA1bmB1 � � � amA1bmBnB � � � amAnAbmB1 � � � amAnAbmBnB

377777777775
: (B.2)

We can see that the dimensions of the matrix .A˝B/ are the products of the dimensions
of the terms, that is, mAmB � nAnB . We deduce that the tensor product with a scalar is a
simple multiplication.

A tensor power can be defined in the same way as a multiplicative power, denoted by

A˝n D
O
n

A D A˝ A˝ A˝ � � � ˝ A�
n times

: (B.3)

128 B. Kronecker tensor product

The tensor product is associative, that is

.A˝ B/˝ C D A˝ .B ˝ C/: (B.4)

Moreover, the tensor product is bilinear, that is

A˝ .cB C C/ D cA˝ B C A˝ C; (B.5)

where c is a scalar.
The Kronecker product is not commutative, but we can link A˝ B and B ˝ A by

permutation matrices P and Q (see appendix C):

A˝ B D P.B ˝ A/Q: (B.6)

Furthermore, if A and B have the same size, we will haveQ D P �1 D P | and therefore

A˝ B D P.B ˝ A/P |: (B.7)

An essential property of the tensor product is its interaction with the matrix product,
sometimes called the mixed product:

.A˝ B/.C ˝D/ D AC ˝ BD: (B.8)

This is a result that will often come in handy. We can consider A˝ B to be an object
occupying two dimensions, where A occupies the first dimension, and B the second, and
similarly for C and D. The matrix product takes place dimension by dimension: AC
on the first, BD on the second. From this property, we can deduce the scalar product of
tensor products:

hEa˝ Eb; Ec ˝ Ed i D hEa; Eci ˝ hEb; Ed i D hEa; Eci � hEb; Ed i: (B.9)

The inverse of a tensor product is the tensor product of inverses, that is

.A˝ B/�1 D A�1 ˝ B�1: (B.10)

Transposition acts in the same way:

.A˝ B/| D A| ˝ B|: (B.11)

The trace and rank of a tensor product are the products of the traces and ranks of the
product terms, that is

tr.A˝ B/ D tr.A/ tr.B/; (B.12)
rk.A˝ B/ D rk.A/ rk.B/: (B.13)

C. Permutation matrices

A permutation matrix P is a matrix containing only coefficients equal to 0 or 1, where
there is only one 1 per row and column. The columns of a n�n permutation matrix form
the canonical basis of Rn. Consequently, permutation matrices are unitary and therefore
compatible with the quantum operations formalism. As the permutation matrices are
orthogonal matrices, we have P �1 D P |. We can therefore cancel the application of a
permutation matrix P with its transpose P |.

Multiplying any matrix A with a permutation matrix P is equivalent to permuting the
columns of A if P is on the right, or the rows if P is on the left. For example, let the
matrices

A D
241 2 3

4 5 6

7 8 9

35 ; P D
241 0 0

0 0 1

0 1 0

35 :
We can see that P is indeed a permutation matrix. The matrix products of A and P are

AP D
241 3 2

4 6 5

7 9 8

35 ; PA D
241 2 3

7 8 9

4 5 6

35 : (C.1)

We can see that AP is identical to the matrix A with columns 2 and 3 inverted. The same
applies to PA, but now with the rows.

In this document, we define special permutation matrices Pa;b of size ab � ab to
interact with tensor products. For example, the matrix P2;3 is a 6 � 6 matrix created as
follows:

1. We place the integers from 1 to ab (here 6) in a a � b matrix (here 2 � 3), row by
row then column by column: �

1 2 3

4 5 6

�
:

2. Next, we read this matrix column by column and then row by row. The result is 1,
4, 2, 5, 3, 6.

3. In the k-th column of the matrix Pa;b, we place the coefficient 1 in the row

130 C. Permutation matrices

indicated by the k-th integer of the sequence obtained. We then have

P2;3 D

26666664
1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

37777775 : (C.2)

Note that P |

a;b
D Pb;a. This is the matrix referred to in equation (B.7). It reverses the

order of the tensor product. If A and B are matrices of sizes a� a and b � b respectively,
we have

A˝ B D Pa;b .B ˝ A/Pb;a: (C.3)

This property allows us to swap the order of quantum walk workspaces to obtain operators
that are easier to study, notably in section 2.2.

D. SAT problem

The Boolean satisfiability problem, or SAT, is a central logic problem in theoretical
computer science. It consists in determining whether or not there exists, for a given
logical formula, at least one n-tuple of variables that induces this formula to be true. This
set of variables is said to "satisfy" the proposition. For example, the formula

v1 ^ v2 ^ :v3 (D.1)

is satisfiable, as it is true for v1 true, v2 true and v3 false. In contrast, the formula

v1 ^ :v1 (D.2)

is always false, and therefore unsatisfiable.
When manipulating more complex formulas, we use De Morgan’s laws to represent

formulas in "conjunctive normal form", that is, as the conjunction (concatenation of
ANDs) of "clauses". Clauses are themselves disjunctions (OR concatenations) of literals.
Literals are either variables or variable negations. If we note the literals li , a clause is of
the form

n_
iD1

li D l1 _ l2 _ : : : _ ln: (D.3)

For example, the formula

.:.x1 _ x2/ _ .x3 ^ x4// ^ .:x1 _ x2/ (D.4)

becomes, in conjunctive normal form

.:x1 _ x3/ ^ .:x1 _ x4/ ^ .:x2 _ x3/ ^ .:x2 _ x4/ ^ .:x1 _ x2/; (D.5)

where .:x1 _ x3/, .:x1 _ x4/, .:x2 _ x3/, .:x2 _ x4/ and .:x1 _ x2/ are the clauses,
whose literals are :x1, x2, :x2, x3 and x4.

It is possible that by switching to the conjunctive normal form, a logical formula
becomes exponentially longer. A typical case is the formula

n_
iD1
.xi ^ yi/ D .x1 ^ y1/ _ .x2 ^ y2/ _ : : : _ .xn ^ yn/; (D.6)

132 D. SAT problem

which becomes

.x1_x2_ : : :_xn/^.y1_x2_ : : :_xn/^.x1_y2_ : : :_xn/^.y1_y2_ : : :_xn/^
: : :^.x1_x2_: : :_yn/^.y1_x2_: : :_yn/^.x1_y2_: : :_yn/^.y1_y2_: : :_yn/:

(D.7)

In conjunctive normal form, this formula contains n literals per clause. Deciding on its
satisfiability is therefore an n-SAT problem.

The SAT problem is of paramount importance in algorithmics, because according
to Cook’s theorem [Coo71] it is NP-complete (except 2-SAT, which is solvable in
polynomial time), which means that all NP problems can be reduced to SAT, and even
to 3-SAT [Kar72], in polynomial time. We then prove that many algorithms are NP-
complete by reducing them to SAT or 3-SAT, such as the Hamiltonian cycle problem, the
traveling salesman problem, the graph coloring problem and the knapsack problem.

E. Singular value decomposition

Singular value decomposition, or SVD, is a matrix factorization tool. It is quite similar to
the eigenvalue and eigenvector decomposition, which it generalizes to rectangular matri-
ces. For any m� n matrix M with complex coefficients, we can write the decomposition

M D U˙V �; (E.1)

where U is a unitary m �m matrix, V a unitary n � n matrix and ˙ a diagonal m � n
matrix containing only non-negative real values.

The terms on the diagonal of ˙ are the singular values of M . They are denoted �i ,
for i from 1 to min.m; n/. By convention, the singular values are arranged in descending
order, and the columns of the matrices U and V are ordered appropriately.

We can prove that the SVD of a matrix always exists. Let M be a m � n complex
matrix. The matrix M �M is positive semidefinite and thus Hermitian. It can therefore
be diagonalized by a unitary matrix V of size n � n such that

V �M �MV D
�
D 0

0 0

�
; (E.2)

where D is a diagonal matrix containing min.m; n/ strictly positive real values. We
can then decompose V into two parts V1 of size n �min.m; n/ and V2 of size n � .n �
min.m; n// such that"

V
�
1

V
�
2

#
M �M

�
V1 V2

� D "V �1M �MV1 V
�
1M

�MV2

V
�
2M

�MV1 V
�
2M

�MV2

#
D
�
D 0

0 0

�
; (E.3)

that is

V
�
1M

�MV1 D D; (E.4)
MV2 D 0: (E.5)

We can then define the matrix U �
1 D D�1=2V �1M �, such that

U
�
1MV1 D D1=2: (E.6)

We can then find a matrix U �
2 such that U D �U1 U2

�
is unitary. In the end, we have"

U
�
1

U
�
2

#
M
�
V1 V2

� D U �MV D
�
D1=2 0

0 0

�
; (E.7)

134 E. Singular value decomposition

and we find the expression for SVD

M D U
�
D1=2 0

0 0

�
V �: (E.8)

We can see that

˙ D
�
D1=2 0

0 0

�
; (E.9)

which implies that the non-zero singular values ofM are the square roots of the non-zero
eigenvalues of M �M .

In this work, we use a variant of SVD, labelled "fine", which consists in calculating
only the first n columns of U , thus saving time when m > n. If m < n, the calculation
can be performed on the transposed matrix. The fine SVD can be expressed as

M D Un˙nV �; (E.10)

where Un is of sizem�n and˙n is of size n�n. TheM and V matrices are unchanged
and all non-zero singular values are preserved.

Among the many properties of SVD, the one that will be used in this paper is the de-
termination of the dimension of the kernel of a matrix. As a reminder, the kernel ker.M/

of a matrix M is the set of vectors v such that Mv D 0. The dimension of the kernel of
M is equal to the number of zero eigenvalues, that is

dim.ker.M// D #.i 2 Œ0;min.m; n/� j �i D 0/: (E.11)

There are algorithms capable of calculating the SVD in polynomial time. According
to Golub and Van Loan [GL13], the R-SVD algorithm can perform this task with
complexity O.n3 C nm2/. It is also possible to restrict the calculation to singular
values, in which case the operation can be performed with complexity O.mn2/ by the
Golub-Reinsch SVD algorithm.

Example of singular value decomposition

Let the matrix

M D
p
2

24 1 2

�1 2

0 1

35 : (E.12)

Its decomposition into singular values is

M D U˙V �; (E.13)

D

264�2=3 �
p
2 �
p
2=6

�2=3
p
2 �

p
2=6

�1=3 0 2
p
2=3

375
243p2 0

0 2

0 0

35� 0 �1
�1 0

�
; (E.14)

135

and its fine decomposition is

M D Un˙nV �; (E.15)

D
24�2=3 �

p
2

�2=3
p
2

�1=3 0

35�3p2 0

0 2

� �
0 �1
�1 0

�
: (E.16)

Bibliography

[AAMP20] F. Acasiete, F. P. Agostini, J. Khatibi Moqadam, and R. Portugal. Im-
plementation of quantum walks on IBM quantum computers. Quantum
Information Processing, 19(12):426, November 2020.

[ADZ93] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks.
Physical Review A, 48(2):1687–1690, August 1993. Publisher: American
Physical Society.

[Asp76] Alain Aspect. Proposed experiment to test the nonseparability of quantum
mechanics. Physical Review D, 14(8):1944–1951, October 1976. Publisher:
American Physical Society.

[BB14] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. Theoretical Computer Science, 560:7–11,
December 2014.

[Ben80] Paul Benioff. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines. Journal of Statistical Physics, 22(5):563–591, May 1980.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor,
Post-Quantum Cryptography, Lecture Notes in Computer Science, pages
73–80, Berlin, Heidelberg, 2010. Springer.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In Kim G.
Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages
and Programming, Lecture Notes in Computer Science, pages 820–831,
Berlin, Heidelberg, 1998. Springer.

[CG04] Andrew M. Childs and Jeffrey Goldstone. Spatial search by quantum walk.
Phys. Rev. A, 70(2):022314, August 2004. Publisher: American Physical
Society.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, May 1971. Association
for Computing Machinery.

138 Bibliography

[Cro18] Andrew Cross. The IBM Q experience and QISKit open-source quantum
computing software. 2018:L58.003, January 2018. Conference Name: APS
March Meeting Abstracts ADS Bibcode: 2018APS..MARL58003C.

[DFK91] Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time
algorithm for approximating the volume of convex bodies. Journal of the
ACM, 38(1):1–17, January 1991.

[Dir35] P. A. M. Dirac. The Principles of Quantum Mechanics, Second Edition.
Oxford University Press, oxford at the clarendon press; 2nd edition edition,
January 1935.

[DRKB02] W. Dür, R. Raussendorf, V. M. Kendon, and H.-J. Briegel. Quantum walks
in optical lattices. Physical Review A, 66(5):052319, November 2002.
Publisher: American Physical Society.

[Fey82] Richard P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics, 21(6):467–488, June 1982.

[GL13] Gene H. Golub and Charles F. Van Loan. Matrix Computations. JHU Press,
February 2013.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search,
November 1996. arXiv:quant-ph/9605043.

[GS22] Walther Gerlach and Otto Stern. Der experimentelle Nachweis der Rich-
tungsquantelung im Magnetfeld. Zeitschrift für Physik, 9(1):349–352,
December 1922.

[JSV04] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time ap-
proximation algorithm for the permanent of a matrix with nonnegative
entries. Journal of the ACM, 51(4):671–697, July 2004.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems. In Ray-
mond E. Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Com-
plexity of Computer Computations: Proceedings of a symposium on the
Complexity of Computer Computations, held March 20–22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and
sponsored by the Office of Naval Research, Mathematics Program, IBM
World Trade Corporation, and the IBM Research Mathematical Sciences
Department, The IBM Research Symposia Series, pages 85–103. Springer
US, Boston, MA, 1972.

Bibliography 139

[Kem05] Julia Kempe. Discrete Quantum Walks Hit Exponentially Faster. Probab.
Theory Relat. Fields, 133(2):215–235, October 2005.

[MR02] Cristopher Moore and Alexander Russell. Quantum Walks on the Hy-
percube. In José D. P. Rolim and Salil Vadhan, editors, Randomization
and Approximation Techniques in Computer Science, Lecture Notes in
Computer Science, pages 164–178, Berlin, Heidelberg, 2002. Springer.

[MW19] S. Marsh and J. B. Wang. A quantum walk-assisted approximate algorithm
for bounded NP optimisation problems. Quantum Inf Process, 18(3):61,
January 2019.

[MW20] S. Marsh and J. B. Wang. Combinatorial optimization via highly efficient
quantum walks. Phys. Rev. Res., 2(2):023302, June 2020. Publisher:
American Physical Society.

[MW21] S. Marsh and J. B. Wang. Deterministic spatial search using alternating
quantum walks. Phys. Rev. A, 104(2):022216, August 2021. Publisher:
American Physical Society.

[MW22] Edric Matwiejew and Jingbo Wang. QuOp_mpi: A framework for parallel
simulation of quantum variational algorithms. Journal of Computational
Science, 62:101711, May 2022.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition, December 2010. ISBN:
9780511976667 Publisher: Cambridge University Press.

[NV00] Ashwin Nayak and Ashvin Vishwanath. Quantum Walk on the Line,
October 2000. arXiv:quant-ph/0010117.

[PBBC23] Hugo Pillin, Gilles Burel, Paul Baird, El-Houssain Baghious, and Roland
Gautier. Hypercube quantum search: exact computation of the probability
of success in polynomial time. Quantum Information Processing, 22(3):149,
March 2023.

[QMWC22] Dengke Qu, Samuel Marsh, Kunkun Wang, Lei Xiao, Jingbo Wang, and
Peng Xue. Deterministic Search on Star Graphs via Quantum Walks. Phys.
Rev. Lett., 128(5):050501, February 2022. Publisher: American Physical
Society.

[QWXC21] Xiaogang Qiang, Yizhi Wang, Shichuan Xue, Renyou Ge, Lifeng Chen,
Yingwen Liu, Anqi Huang, Xiang Fu, Ping Xu, Teng Yi, Fufang Xu,
Mingtang Deng, Jingbo B. Wang, Jasmin D. A. Meinecke, Jonathan C. F.

140 Bibliography

Matthews, Xinlun Cai, Xuejun Yang, and Junjie Wu. Implementing graph-
theoretic quantum algorithms on a silicon photonic quantum walk processor.
Science Advances, 7(9):eabb8375, February 2021. Publisher: American
Association for the Advancement of Science.

[Sch95] Benjamin Schumacher. Quantum coding. Physical Review A, 51(4):2738–
2747, April 1995. Publisher: American Physical Society.

[Sch99] T. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No.99CB37039), pages 410–414, October 1999. ISSN: 0272-5428.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, pages 124–134, November 1994.

[SKW03] Neil Shenvi, Julia Kempe, and K. Birgitta Whaley. Quantum random-walk
search algorithm. Physical Review A, 67(5):052307, May 2003. Publisher:
American Physical Society.

[SMMW21] N. Slate, E. Matwiejew, S. Marsh, and J. B. Wang. Quantum walk-based
portfolio optimisation. Quantum, 5:513, July 2021. Publisher: Verein zur
Förderung des Open Access Publizierens in den Quantenwissenschaften.

[TM02] B. C. Travaglione and G. J. Milburn. Implementing the quantum ran-
dom walk. Physical Review A, 65(3):032310, February 2002. Publisher:
American Physical Society.

[Tur37] A. M. Turing. On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem. Proceedings of the Lon-
don Mathematical Society, s2-42(1):230–265, 1937. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230.

Titre : Algorithme de recherche par marche quantique sur hypercube — Analyse propre et
calcul de la probabilité de succès en temps polynomial

Mots clés : Algorithme quantique, algorithme de Grover, marche quantique, probabilité de
succès, calcul en temps polynomial

Résumé : Les algorithmes de marche
quantique à temps discret sont les analogues
directs des algorithmes de marche aléatoire
classiques, une famille importante en
informatique. Ils peuvent résoudre une variété
de problèmes, dont le problème NP-complet
SAT, en un temps relativement court. Ainsi,
l'étude des marches quantiques pourrait
amener à la conception de nouveaux
algorithmes quantiques. Parmi les algorithmes
quantiques, l'un des plus étudiés est
l'algorithme de recherche de Grover, un
processus itératif qui peut trouver un élément
parmi N qui répond à un certain critère, avec
un gain de temps quadratique par rapport à
n'importe quel algorithme classique. Dans
cette thèse, on étudie la variante de
l'algorithme de recherche de Grover proposée
par Shenvi, Kempe et Whaley, basée sur les

marches sur les graphes hypercubes. Comme
les algorithmes de recherche sont des
processus itératifs, il faut calculer le nombre
correct d'étapes R avant de lancer la
recherche, car la probabilité de succès
diminue au-delà d'un certain point. La valeur
de R dépend du nombre d'éléments N, mais
aussi du nombre de solutions M. Pour
l'algorithme de Grover, le nombre optimal
d'itérations est bien connu, mais ce n'est pas
le cas pour la recherche sur l'hypercube dès
qu'il y a plusieurs solutions. Dans cette thèse,
on propose une analyse propre exhaustive de
l'algorithme de recherche sur l'hypercube, qui
conduit à une procédure permettant de
calculer la probabilité de succès de
l'algorithme de recherche sur l'hypercube
sans l'exécuter, en temps polynomial.

Title : Quantum walk search algorithm on hypercube — Eigenanalysis and calculation of the
probability of success in polynomial time

Keywords : Quantum algorithm, Grover’s algorithm, quantum walk, probability of success,
computation in polynomial time

Abstract : Discrete time quantum walk
algorithms are the direct analogs of classical
random walk algorithms, an important family in
theoretical informatics. They can solve a variety
of problems, in particular the NPcomplete SAT
problem, in a relatively short time. Thus, the
study of quantum walks could lead to the
conception of new quantum algorithms. Among
the quantum algorithms, one of the most
extensively studied is Grover’s search
algorithm, an iterative process that can find one
element among N that meet a certain criterion,
with a quadratic time gain over any classical
algorithm. In this thesis, we study the variant of
Grover’s search algorithm proposed by Shenvi,
Kempe and Whaley, based on walks on
hypercube graphs.

As search algorithms are iterative processes,
one has to compute the correct number of
steps R before running the search, as the
probability of success decreases past a
certain point. The value of R depends on the
number of elements N, but also the number of
solutions M. For Grover's algorithm, the
optimal number of iterations is well known, but
this is not the case for the search on the
hypercube as soon as there are multiple
solutions. In this thesis, we propose an
extensive eigenanalysis of the hypercube
search algorithm, which leads to a procedure
that allows us to compute the probability of
success of the search algorithm on the
hypercube without running it, in polynomial
time.

	Notations
	Introduction
	Notions of quantum information
	Fundamentals of quantum physics
	Quantum bits
	Qubit definition
	Qubit representation
	Qubit association
	Quantum entanglement

	Quantum operations
	Quantum gates and circuits
	Usual quantum gates

	Quantum state measurement
	Measurement principles
	Examples of measurements
	Measurement of entangled states

	No-cloning theorem

	Quantum walks
	Formalism and walk on an axis
	Walk on hypercube

	Quantum search algorithm
	Quantum Oracle and Grover iteration
	Grover's algorithm execution
	Hypercube search algorithm

	Eigenanalysis of the hypercube search algorithm
	Search operator eigenspaces
	Shift operator
	Coin operator
	Oracle

	Generator matrices
	Generators G_1, G_2, G_3
	Generator G'_3 and its submatrices

	Joint eigenspaces
	Joint eigenspaces of operators C and O
	Joint eigenspaces of operators S and C
	Joint eigenspaces of operators S, C and O

	Eigenanalysis of the uniform walk
	Overview of the uniform walk eigenanalysis
	Detail of the eigenanalysis of the uniform walk

	Dimension of the space of interest
	Overview of the computation of the dimension of the space of interest
	Detail of the computation of the dimension of the space of interest

	Summary of the eigenanalysis

	Search algorithm probability of success calculation
	Space of interest eigenanalysis
	Overview of the space of interest eigenanalysis
	Detail of the space of interest eigenanalysis

	Eigenvalue search in polynomial time
	Vector components in the space of interest
	Overview of the vector component calculation
	Detail of the vector component calculation

	Summary of the probability of success calculation

	Results and perspectives
	Probability of success computation procedure
	Improvements and applications

	Conclusion
	Dirac notation
	Definition
	Properties

	Kronecker tensor product
	Permutation matrices
	SAT problem
	Singular value decomposition

