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Notations

Abbreviations

a.s. Almost surely

c.d.f. Cumulative distribution function

p.d.f. Probability density function

i.i.d. Independent identically distributed

w.r.t. With respect to

max-id Max-infinitely divisible

Mathematical relations

x+ max(0, x)

x− max(0,−x)

x⊕ y Maximum of x and y; also denoted by max(x, y)

x⊙ y Minimum of x and y; also denoted by min(x, y)

x ⊕ y (x1 ⊕ y1, . . . , xd ⊕ yd)

x ⊙ y (x1 ⊕ y1, . . . , xd ⊕ yd)

x < y xj < yj , for all j ∈ [[1, d]]

x ≰ y xj > yj , for some j ∈ [[1, d]]

≲ Lesser or equal up to a constant

≳ Greater or equal up to a constant

Set theory

N Set of integers including 0

N∗ Set of integers excluding 0

R Set of real numbers

R+ Set of non-negative real numbers

Rd Set of real valued vectors of dimension d

Q Set of rational numbers

[[1, d]] Set of integers between 1 and d
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B(E) σ-field of the Borel sets of the topological space E

A ⊎B Disjoint reunion of the sets A and B

Functional analysis

Id Identity on a given space

Lp(E,µ) The set of p-integrable functions φ : E → R w.r.t. a measure µ

L∞(E,µ) The set of bounded functions φ : E → R with respect to a measure µ

⟨·, ·⟩E Inner product on the vector space E

∥ · ∥E Norm on the vector space E

∥ · ∥p p−norm on Rd, for p ∈ [1,+∞]

φ← Pseudoinverse of a function φ

dTV(X,Y ) Total variation distance between the distributions of X and Y

dK(X,Y ) Kolmogorov distance between the distributions of X and Y

dW(X,Y ) Wasserstein distance between the distributions of X and Y

1A Indicator function of the set A

δx Dirac measure at x

λd Lebesgue measure on Rd

λ⊗ µ Product measure of λ and µ

0 Null vector of Rd

1 Unit vector of Rd, whose coordinates are all equal to 1;

constant function equal to 1

∞ Vector of Rd whose coordinates are all equal to +∞

ei i-th element of the canonical basic of Rd, i.e. ei = (0, . . . , 0, 1, 0, . . . , 0)

Probability

PX Law of X

Eµ[φ] Integral of φ under the probability measure µ

E[X] Expectation of the random variable X

E[X|Y ] Conditional expectation of X given the σ-algebra generated by the random
variable Y

V(X) Variance of the random variable X

Cov(X,Y ) Covariance between the random variables X and Y

Xn
d−→ Y The sequence of random variables (Xn)n∈N converges in distribution to the

random variable Y
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X
d= Y The random variable X is equal in distribution to the random variable Y

X ∼ µ X has the probability distribution µ

Geom(p) Geometric distribution with parameter p ∈ [0, 1]

VP(α, σ) Pareto distribution with shape parameter α and scale parameter σ

E(λ) Exponential distribution with scale parameter λ

U[a,b] Uniform distribution on [a, b]

F(α, σ) Fréchet distribution with shape parameter α and scale parameter σ

G(µ, σ) Gumbel distribution with location parameter µ and scale parameter σ

W(α, σ) Weibull distribution with shape parameter α and scale parameter σ

MS(α, ν;µ,σ) Multivariate max-stable distribution with shape parameter α, angular
measure ν, location parameter µ and scale parameter σ





Introduction

Extreme value theory

Catastrophes and extreme phenomena such as 2022 Hurricane Ian ($113 billions of damage) 2021
European floods ($11.8 billions) or 2023 Turkey–Syria earthquakes ($148.8 billions) constitute an
endless source of hazards, a reality made even more blatant nowadays due to the intensification of
global warming and climate change. Human-related disasters such as 2008 financial crisis or the
war in Ukraine started in 2014 have consequences whose range go beyond the financial field. To
deal with such rare (?), but dramatic events, extreme value theory (EVT) constitutes a tool of
choice. This branch of probability is precisely concerned with estimating the likelihood and the
strength of extreme events, such as record rainfall, anomalous network traffic, massive losses in
finance and insurance, or even the COVID-19 contagiousness (Wong and Collins [2020]), giving it a
large range of applications. One of its precursors was M. Fréchet who showed in a paper published
in Fréchet [1927] that, under certain assumptions on the base distribution, the only possible limiting
distributions of a properly scaled maximum of n i.i.d. random variables when n goes to infinity
are the Fréchet distribution and the Weibull distribution. His work was continued by two other
important contributors to EVT: R. A. Fisher, the founding father of modern statistics, and L. H.
C. Tippett, who was interested in the strength of textile fibers, which depends on the solidity of
their weakest link. Their paper Fisher and Tippett [1928] generalized Fréchet’s result by allowing
centering in the normalization of the maximum, thus managing to include the Gumbel distribution
among the possible limits. R. von Mises and B. Gndenko completed this work by characterizing the
domain of attraction of univariate extreme value distributions. Together, those results are known as
Fisher-Tippett-Gnedenko’s theorem (FTG theorem) and form the basis of EVT. In his monograph
Gumbel [1958], E. J. Gumbel applied it to a wide range of problems, including hydrology, fatigue
failures, aeronautics, geology, etc.

Today, EVT is an essential component of risk analysis in several domains, such as finance and
insurance for instance, through the use of the concept of Value-at-Risk, the Peaks-over-threshold
method (POT method), the Hill estimator, etc. A good account of those techniques can be found
in e.g. Embrechts et al. [2013]. An important issue with EVT is to know when the asymptotic
results it relies on, such as the Fisher-Tippett-Gnedenko theorem, are reasonable approximations of
the ’true’, unknown model. Thus, it is essential to determine at which rate those convergences take
place, in order to replace the unknown model behind data by the limit predicted by the theory
while controlling the committed error. This problem is certainly not new: major contributions to it
in the univariate setting include Hall and Wellner [1979], Cohen [1982], Smith [1982], de Haan and
Resnick [1996], and many others. Results in higher dimension are much rarer, see for instance Omey
and Rachev [1991] as well as A. Feidt’s PhD dissertation Feidt [2013]. Most of the aforementioned
works makes use of sophisticated analysis, like regular variation with remainder or second-order
regular variation. They yield accurate results, at the price of increased complexity, and rely on
assumptions which may be complicated to check in applications.
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Modern EVT heavily relies on point processes techniques, as described in Leadbetter et al. [2012] for
instance. More precisely, multivariate extreme value distributions can be seen as the maximum of a
Poisson process whose intensity measure is homogeneous, a property which will play an essential
role in this thesis. As such, Fisher-Tippett-Gnedenko’s (FTG) theorem can be interpreted as the
convergence of a certain point process to a Poisson process. Furthermore, the convergence of the
point process of exceedances to a Poisson process under mild assumptions on the data constitutes
another example of this strong connection between EVT and the point process theory. For all
those reasons, the interplay between EVT and stochastic analysis for the Poisson process will be
instrumental in the sequel.

Stein’s method

Main concepts and approaches

A powerful technique to obtain rates of convergence in limit theorems in probability is the so-called
Stein’s method. It has been used for the first time by C. Stein himself in his seminal paper Stein
[1972] to bound the Kolmogorov distance between a sum of dependent random variables and the
normal distribution, in an effort to extend the Berry-Esseen theorem. Since then, his method has
been greatly extended in many directions and has proved both flexible and effective. Its purpose is
to bound certain types of distance between probability measures. More precisely, suppose µ and
ν are two probability distances on some topological space E. The distances adapted to Stein’s
method are the ones of the form

dH(µ, ν) := sup
h∈H

|Eµ[h] − Eν [h]|,

where H is a space of test-functions from E to R. It is assumed to be large enough to characterize
convergence in distribution w.r.t. the topology on E, and to contains only functions integrable
w.r.t. both µ and ν. For example it can be the space of bounded continuous functions from E
to R, although less regular functions are also used (see infra). Such a metric is called an integral
probability metric. Now assume we want to know the distance between µ and the target distribution
ν, in the sense of a predefined metric. Stein’s method relies on an operator L which characterizes
in a certain sense ν. In most, if not all, instances of Stein’s method, the operator L satisfies the
following abstract property

L is invertible on the space H0 of test-functions with zero mean w.r.t. the target distribution ν:

H0 := {h ∈ H, Eν [h] = 0}.

Such an operator is called a Stein operator. It yields a functional characterization of the target
distribution ν known as Stein’s characterization:

Eµ[Lg] = 0, for all g ∈ G ⇐⇒ µ = ν. (0.1)

The direct sense is the non-trivial part. It goes as follows. Let h be a test-function and set
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h∗ := h− Eν [h]. We have:

Eµ[h] − Eν [h] = Eµ[h∗]
= Eµ

[
LL−1h∗

]
= Eµ[Lgh]
= 0,

thanks to the assumptions we have made on L. Since the class H characterizes convergence in
distribution, it characterizes in particular the equality in distribution. Thus Eν [h] = Eµ[h] for all h
in H implies that µ = ν. In many applications, the proof that L characterizes ν uses more specific
tools depending on the context, for it is not always possible to rely on some of the aforementioned
assumptions. In any case, having a Stein operator for a given target distribution ν is the first step
of the method. The historical example of such an operator is Stein’s original characterization of the
standard normal distribution:

Lh(x) := −xh(x) + h′(x), x ∈ R.

The fact that E[Lh(X)] = 0 for all bounded Lipschitz functions h if and only if X ∼ N (0, 1) is
the so-called Stein’s lemma, whose applications are numerous. One of its consequences is the
fundamental inequality

dH(µ, ν) ≤ sup
h∈H

∣∣Eµ[Lgh]
∣∣ = sup

f∈L−1H0

|Eµ[Lf ]|. (0.2)

Next, it is often very convenient to search and find bounds on gh := L−1h∗ for all h ∈ H0, the
solution to Stein’s equation. This is because in (0.8) we work with functions of the form gh for
every h in H0. It is not compulsory though, especially in the generator approach where one can
work with the semi-group directly instead. Bounding gh and its derivatives allows us to work with
a more restricted class of functions than the test-functions associated with dH. For instance, one
can prove (Nourdin and Peccati [2012]) that if one takes hz = 1(−∞,z] as the test-functions, so that
the associated distance is the Kolmogorov distance, then one have

∥gz∥∞ ≤
√

2π
4 and ∥g′z∥∞ ≤ 1, z ∈ R.

Consequently, the Kolmogorov distance between a probability distribution µ and ν = N (0, 1)
satisfies

dH(µ, ν) ≤ sup
g∈FKol

|Eµ[Lg]| = sup
g∈FKol

|E[g′(X)] − E[Xg(X)]|,

where X is a random variable with the distribution µ and

FK :=
{
g : R → R, ∥g∥∞ ≤

√
2π
4 and ∥g′∥∞ ≤ 1

}
.

This set is sometimes called the Stein class associated with the normal distribution and Kolmogorov
distance (see Mijoule et al. [2023] for instance).

The final step consists in proving that Eµ[Lgh] is ’small’. Surprisingly, it is often much easier than
trying to control the difference Eν [h] − Eµ[h] directly. Many different tools have been developed
for such a purpose, including exchangeable pairs, zero-bias couplings, size-bias couplings, etc., see
for instance Ross [2011], Ley et al. [2017-01], as well as Chen et al. [2010] for an exposition more
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focused on the normal distribution. However, one must keep in mind that there is no general
technique to deal with this part in a systematic way. Depending on how this step is performed, the
resulting bound will be more or less accurate. An important matter is to find a Stein operator L
such that the final bound is sharp, or at least that this step is not too complicated to manage and
still yields interesting results.

Applications of Stein’s method are numerous and concern various domains of probability, like
random matrices, statistical mechanics, random graphs, etc. as well as statistics (see Anastasiou
et al. [2021]), a testament of its great flexibility. The original method focused on the normal
distribution in dimension 1 as the target distribution, and since that time has been extended in
many directions: multivariate normal distribution (Gotze [1991]), Gaußian processes and diffusions
(Barbour [1990]), Poisson distribution (Chen [1974]), Poisson point processes (Barbour and Brown
[1992], Chen and Xia [2004]), univariate and multivariate stable distributions (Chen et al. [2022,
2024], Coutin et al. [2024]), Gamma distribution (Arras and Swan [2015]), etc.

Quantization and convex cones
When applying Stein’s method, the first problem one may meet is finding a ’good’ Stein operator,
even though it is not easy to come up with a general criterion to determine the quality of such an
operator. Our line of thought will be that a Stein operator must have a ’shape’ adapted to the
application at hand. This point should be clarified in one of the applications given in this thesis: the
coupon collector problem. Besides, the more intrinsic properties of the target distribution the Stein
operator expresses, the better. We will elaborate more on this part later too. Another desirable
property of a Stein operator is that it corresponds to the generator of some Markov semi-group.
More precisely, the latter should admit the target distribution ν as an invariant measure. The act
of building such a semi-group for a given probability measure is known as quantization in physics.
This procedure has been established in Parisi and Wu [1981] and has been used, for instance, for
numerical simulations of gauge theories with fermions (Namiki [1992]).

Our starting point will be the definition of the Markov semi-group (Pt)t≥0 instead of its generator
L, the latter playing the role of the Stein operator. One can then prove under certain assumptions
on the test function h that gh exists and is equal to −

∫∞
0 Pth dt. This avoids proving the often

difficult equivalence (0.7) and makes the determination of the Stein’s solution gh regularity easier.
In certain situations, such as Coutin and Decreusefond [2020], it may be necessary to separate the
integral from 0 to +∞ into two parts: one from 0 to a variable threshold ε, and the other from
ε to +∞. Each term should be approached differently so that we do not end up with a simple
upper-bound of the Lipschitz continuity, for instance, of the solution of the Stein’s equation. This
difficulty will concern us.

We see the importance of being able to work with a Stein operator which is also the generator of
some semi-group admitting the target distribution as an invariant measure. However constructing
either the semi-group (Pt)t≥0 or its generator L first is never an easy task. This constitutes one of the
main obstacles to the generalization of Stein’s method via the generator approach to distributions
beyond the Gaußian and the Poisson measures. As of now, there is no known general recipe to
achieve such a goal for an arbitrary probability measure, but see Ley et al. [2017-01] and references
therein for a thorough survey of how to construct an operator satisfying (0.7) for a wide range of
probability measures.

A powerful and generic way to quantize a given probability measure is to use an Itō process known
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as Langevin diffusion. The application of this idea to Stein’s method has been introduced in Gorham
and Mackey [2015] and Gorham et al. [2016]. We do not delve further into this rich theory for,
as powerful as it is, it may no be the most adapted tool to deal with non-Gaußian distributions
depending on the context. For instance, the resulting semi-group and generator may not always
be convenient to use depending on the situation, and the target distribution ν must be absolutely
continuous with respect to Lebesgue measure. This will not be always the case when dealing with
multivariate max-stable distributions. Let us just mention that, for the Gaußian distribution, it
yields the same semi-group as the one obtained through the method we now expose.

The most common choice of Stein operator for the standard Gaussian measure on Rd is

Lf(x) = −⟨x,∇f(x)⟩ + ∆f(x),

for which the so-called Ornstein-Uhlenbeck semi-group is given by

Ptf(x) = E
[
f

(
e−tx +

√
1 − e−2tZ

)]
, (0.3)

where Z ∼ N (0, I) and I is the identity matrix. More generally, if the target distribution ν is the
law of an α-stable distribution Z, parametrized as in Arras and Houdré [2023], a semi-group which
quantizes ν is

Ptf(x) = E
[
f

(
e−tx + (1 − e−αt)

1
αZ

)]
where Z ∼ ν and α ∈ (0, 2]. Both examples take place in an Euclidean setting but more exotic
contexts are possible: define the Heisenberg group H as the space matrices of the form:

H :=
{( 1 x z

0 1 y
0 0 1

)
, (x, y, z) ∈ R3

}
,

with the usual matrix product. Such a set endowed with that binary operation is indeed a group
and it can be shown it is isomorphic to R3 equipped with the following group operation:

(x1, y1, z1) ⊕ (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z3 + 1

2(x1y2 − x2y1)
)
.

This group possesses a notion of outer multiplication by non-negative scalars defined by:

da(x, y, z) = (ax, ay, a2z), a > 0

and which satisfies the axioms da ◦ db = dab and da(x1 ⊕ x2) = dax1 ⊕ dbx2. Now, if we sum n
i.i.d. , square-integrable random variables X1, . . . ,Xn with values on H and renormalize them
appropriately, one gets when n goes to infinity a non-degenerate distribution which corresponds to
the law of:

Z =
(
B1(1), B2(1), 1

2
[ ∫ 1

0
B1 dB2 −

∫ 1

0
B2 dB1

])
,

where B1, B2 are two independent standard Brownian motions on R. The third term is also known
as Lévy’s stochastic area. To be more precise, if X1, . . . ,Xn are i.i.d. centered random variables
with unit variance (componentwise speaking), then

n⊕
i=1

d 1√
n
Xi −→

n→∞
Z.
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Therefore, the distribution ν of Z plays the same role on H as the Gaußian distribution on R:
both are the limiting distributions of a version of the central limit theorem. A semi-group which
quantizes ν has been introduced and studied thoroughly in Lust-Piquard [2010]:

Ptf(x) = E
[
f

(
de−tx ⊕ d√1−e−2tZ

)]
The crucial remark is that the semi-group property of the family of operators so defined is a mere
rewriting of the stability satisfied by α-stable distributions and the Heisenberg Gaußian distribution:
The standard Gaußian measure on Rd is the unique probability law on Rd such that

e−tZ1 + (1 − e−αt)
1
αZ2

d= Z (0.4)

where Z1,Z2 are two independent copies of Z. And, although it is not obvious, one can also check
that

de−tZ1 ⊕ d√1−e−2tZ2
d= Z1, (0.5)

Remark that at a formal level, equations (0.10) and (0.11) can be written as

daX1 ⊕ dbX2
d= X1 (0.6)

where aα + bα = 1 for some α > 0. In the first two cases the operator da is the multiplication of
vectors by real numbers and the sign ⊕ represents the addition of vectors in (0.10). This means
that the algebraic structure at play here is that of a semi-group (the ⊕ operation) with a group
(da)a∈R+ of automorphisms which satisfy the identity da ◦ db = dab. Such a structure is called a
convex cone. More precisely, an abelian topological semi-group (K,⊕) is a convex cone if there
exists a continuous multiplication operator da of the elements x of K by non-negative numbers a
under which K is stable and:

da(x⊕ y) = dax⊕ day, a > 0, x, y ∈ K
da(dbx) = dabx, a, b > 0, x ∈ K

d1x = x, x ∈ K
dae = e, a > 0

where e is the neutral element of K and must satisfy x⊕e = x. In Davydov et al. [2008], the authors
show that there exist numerous other examples of (strictly) stable distributions, i.e. distributions
satisfying (0.12). These distributions are often interesting because their stability property causes
them to appear in many limit theorems such as the central limit theorem or the law of rare events.
This setting is also very broad and apply to Banach spaces as well as non-Euclidean contexts.
Examples of convex cones are various and include the Heisenberg group (and more generally
homogeneous groups), the set of compact convex sets, the set of upper semi-continuous functions,
the set of finite measures, etc.) Each of those spaces is equipped with a binary operation ⊕ and an
outer multiplication (da)a≥0 satisfying the previous properties. The most basic example of such a
convex cone is R with the addition and dax = ax, the usual multiplication. More sophisticated
examples are the continuous positive functions on some cone E with the usual addition and

daf(x) = f(ax), x ∈ E

or the set of compact convex sets with the Minkowski addition and the elementwise multiplication:

K1 ⊕K2 =
{
x1 + x2, (x1, x2) ∈ K1 ×K2

}
,
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and
daK = aK = {ax, x ∈ K}.

Other examples can be found in the paper by Davydov et al. Therein the existence of nontrivial
stable random variables on convex cones is proved under certain general assumptions. Such
distributions arise as limit candidates to renormalized ’sums’ of i.i.d. random variables on K i.e.
a generalized central limit theorem. Being able to quantize them is therefore important to apply
Stein’s method and compute rates of convergence to those distributions. We present a general way
to do so. It consists in defining a semi-group (Pt)t≥0 directly through a Mehler formula:

Ptf(x) := E
[
f

(
de−tx⊕ d(1−e−αt)1/αZ

)]
, x ∈ K

where Z is a strictly stable random variable, in the sense of (0.12). The stability property ensures
that the family of operators (Pt)t≥0 is indeed a semi-group which admits the distribution of Z
as a stationary measure. Semi-groups admitting this kind of representation tend to have certain
properties in common with the original Gaußian Ornstein-Uhlenbeck semi-group. However it does
not seem possible at this point to establish a list of the properties they would all share without
further assumptions on the convex cone K. An important aspect of this thesis is to study the
case where ⊕ is the maximum operator and da is the usual multiplication. Some properties of the
resulting semi-group will be proved by using rather generic arguments, while others will seem to be
more specific to our special case.

Let us conclude this part by briefly mentioning another way to quantize certain distributions. It
relies on the notion of discrete stability, see for instance Steutel and van Harn [1979], Davydov
et al. [2011]. The goal was to extend the concept of stability to discrete spaces where rescaling by
continuous arguments is not possible. Instead, a different, random rescaling is used. It must be
formally analogous to a dilation, in the following sense: p ◦ (q ◦ x) is equal in distribution to (pq) ◦ x
and p ◦ (x⊕ y) has the same law as (p ◦ x) ⊕ (p ◦ y), for x ∈ E and all p, q in a certain subset of
R+, e.g. [0, 1]. The most famous example of such a random rescaling is the thinning by p ∈ [0, 1]
operation on E = N:

p ◦ n =
n∑

i=1
Bi, p ∈ [0, 1]

where the Bi are i.i.d. random variables with the Bernoulli distribution B(p). The Poisson
distribution, which is not stable, is discrete stable however, in the sense that:

p ◦N1 + (1 − p) ◦N2
d= N1,

where N1, N2 are i.i.d. random variables with the Poisson distribution. Actually this result is but a
reflect of the discrete stability of the Poisson process. If ϕ =

∑n
i=1 δxi is a finite configuration, then

one defines the thinning of ϕ by p by removing points xi at random, each with probability 1 − p
and independently from the others. In other words

p ◦ ϕ =
n∑

i=1
Biδxi .

Then one can prove that
p ◦ η1 ∪ (1 − p) ◦ η2

d= η1,
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where η1, η2 are two i.i.d. Poisson processes on some Polish space E, with the same finite intensity
measure. This property of discrete stability allows us to construct a semi-group which quantizes
the Poisson process via a Mehler formula by setting:

Ptf(ϕ) = E
[
f

(
e−t ◦ ϕ+ (1 − e−t) ◦ η

)]
, ϕ ∈ NE .

This is the so-called Glauber semi-group (see for instance Decreusefond [2022]). Those ideas have
been successfully extended to the case of discrete α-stable processes by A. Vasseur in his PhD thesis
Vasseur [2017], giving him the opportunity to apply Stein’s method to limit theorems involving
those processes. More examples of semi-groups should be constructable by using this principle. The
present thesis will exemplify this fact.

Stochastic analysis for max-stable distributions
The ideas developed by Davydov et al. in Davydov et al. [2008] rely on the notion of LePage
series. It allows one to represent stable (for some binary operation ⊕, like the addition or the
maximum) random variable as the ’sum’ (in the sense of ⊕) of a certain Poisson process whose
intensity measure satisfies an homogeneity property. Such a representation has been known before
in the field of α-stable random variables as well as in EVT, where it is referenced as the de Haan
decomposition. This does not come as a surprise as (R,⊕,d) is indeed a convex cone if ⊕ denotes
the maximum operator and d the usual multiplication.

The de Haan decomposition makes a crucial connection between max-stable distributions and
Poisson processes. It will appear under different appearances throughout this thesis, mainly via
the semi-group (Pα

t )t≥0 we will define to quantize a max-stable distribution ν. For instance, the
generator Lα of this semi-group will be expressed with the intensity measure of the same Poisson
process behind the de Haan’s decomposition of ν.

Another way of making use of this connection between Poisson processes and EVD is to leverage
results from stochastic analysis for Poisson processes, such as the ones exposed in Last and Penrose
[2011], Last et al. [2016], to obtain new results for EVD. This line of reasoning is extremely simple
but brings results which would be difficult to prove directly.

Contributions
The contributions of this thesis are the followings: in chapter 2, we define several Markov semi-
groups quantizing all the extreme value distributions, both in the univariate and the multivariate
settings. We give several functional identities (commutation relations, Poincaré inequality, etc.)
which illuminate the structure of those semi-groups and provide additional information about the
extreme value distributions. We also exhibit a Markov process whose semi-group corresponds to
the one quantizing the Fréchet distribution. Throughout the chapter, a parallel with the Gaußian
Ornstein-Uhlenbeck semi-group is drawn.

Chapter 3 applies the previous results to Stein’s method in the case where the target distribution
is the Fréchet law (in any dimension). We state and solve Stein’s equation, describing Stein’s
solution when the working distance is either the Wasserstein distance, the d[2] distance or the
Kolmogorov distance. We then make use of those properties to find rates of convergence to the
Fréchet distribution in several instances.
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In chapter 4, we follow the same line of thought, but in the cases of the Gumbel and (positive)
Weibull distributions. An application is given to the coupon collector problem, where we estimate
the rate of convergence of the renormalized completion time of the collection to the Gumbel
distribution in distance d[2].

Finally, chapter 5 focuses on the applications of stochastic analysis for the Poisson process to
extreme value distributions, and more generally, to stable distributions and max-id distributions.
In particular, we give a short proof of the multivariate version of Poincaré inequality for the family
of semi-groups that we have introduced in chapter 2, as well as a covariance identity for max-id
distributions. The last section of that chapter is more of an heuristic nature and defines a new
semi-group quantizing the Poisson processes whose intensity measure satisfy a certain homogeneity
property.





Résumé en français

La théorie des valeurs extrêmes
Les catastrophes naturelles et autres phénomènes extrêmes tels l’ouragan Ian de 2022 (dont le
préjudice s’élève à 113 milliards $), les inondations de 2021 en Europe (11.8 milliards $), ou encore
le séisme de 2023 en Turquie et en Syrie (148.8 milliards $) représentent une source constante de
risques. Le réchauffement climatique a conduit à une intensification marquée de ces aléas, tant en
terme de fréquence que d’intensité. Les activités humaines sont elles aussi sources de contingence :
la crise financière de 2008 ou encore la guerre en Ukraine, débutée en 2014, ont des conséquences de
long-terme qui vont au-delà du "simple" préjudice financier. Pour faire face à ces événements rares
(?) mais dramatiques, la théorie des valeurs extrêmes constitue un outil de choix. Cette branche de
la théorie des probabilités s’attache précisément à estimer la fréquence et la violence d’événements
extrêmes tels les inondations, une circulation anormale au sein d’un réseau, des pertes records en
finance et en assurance ou encore le degré de contagiosité d’une épidémie comme celle du COVID-19
(Wong and Collins [2020]). L’un de ses plus célèbres précurseurs est M. Fréchet. Celui-ci a démontré
dans Fréchet [1927] sous certaines hypothèses sur la loi des données que leur maximum renormalisé
ne peut converger que vers une loi de Fréchet ou de Weibull. Ses travaux ont été poursuivis par
deux autres grands auteurs : R. A. Fisher, le père fondateur des statistiques modernes, et L. H. C.
Tippett, dont l’intérêt résidait dans la résistance des fibres textiles, elle-même dépendant de celle de
leur lien le plus fragile. Leur article Fisher and Tippett [1928] généralise les résultats de Fréchet en
autorisant la présence d’un paramètre de centrage dans la normalisation du maximum, avec pour
conséquence de faire apparaître la loi de Gumbel comme distribution-limite possible. Par la suite,
R. von Mises et B. Gnedenko ont parachevé ces travaux en caractérisant complètement le domaine
d’attraction des loi d’extremum en dimension 1. Ces résultats sont aujourd’hui connus sous le nom
de théorème de Fisher-Tippett-Gnedenko (théorème FTG) et sont la clef de voûte de la théorie des
valeurs extrêmes. Celle-ci est appliquée par E. J. Gumbel dans son ouvrage Gumbel [1958] à une
vaste étendue de problèmes, parmi lesquels l’hydrologie, la fatigue des matériaux, l’aéronautique, la
géologie, etc.

Aujourd’hui, la théorie des valeurs extrêmes joue un rôle important en analyse de risque pour
plusieurs domaines, tels la finance et l’assurance, pour ne citer qu’eux. Ces derniers font appel aux
concepts de value-at-risk, de méthode POT, d’estimateur de Hill, etc., qui sont tous issus de cette
théorie. On pourra se référer à Embrechts et al. [2013] et les références citées pour d’avantage sur
ce sujet. Les outils mentionnés reposent sur des théorèmes-limites dont la précision dépend du
nombre d’observations disponibles. Ainsis, il est souvent nécessaire de savoir quand la distribution
d’un maximum renormalisé de variables aléatoires peut être "convenablement" approchée par une
loi d’extremum généralisée. Cela revient à demander à quelle vitesse a lieu la convergence du
maximum vers sa limite, pour une certaine distance, l’objectif étant de substituer à la loi inconnue
de la plus grande des observation la limite prédite par la théorie et sur laquelle plus d’informations
sont disponibles. L’erreur due à cette substituion reste contrôlée dans le même temps. Ce problème
n’est en rien nouveau : les principales contributions en dimension 1 incluent entre autres Hall and
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Wellner [1979], Cohen [1982], Smith [1982], de Haan and Resnick [1996]. En revanche il est plus
difficile de trouver des résultats similaires en dimension supérieure. On peut citer essentiellement
Omey and Rachev [1991] ainsi que la thèse de A. Feidt’s PhD Feidt [2013] et ses articles. La
plupart des travaux mentionnés tendent à faire appel à des notions sophistiquées et peu maniables
dans les applications, comme la variation régulière avec reste ou la variation régulière d’ordre 2.
Bien qu’elles fournissent des bornes précises, cela se fait au prix d’une complexité importante et
d’hypothèses délicates à vérifier en pratique.

La théorie moderne des valeurs extrêmes fait un usage important de celle des processus ponctuels.
Plus précisément les loi d’extremum généralisées peuvent, quelque soit la dimension, être représentées
comme le maximum d’un processus de Poisson dont la mesure intensité vérifie une certaine propriété
d’homogénéité. En conséquence, le théorème de Fisher-Tippett-Gnedenko s’interprète comme
la convergence d’un certain processus ponctuel fini vers un processus de Poisson. De même, le
processus ponctuel des excès converge lui aussi vers un processus de Poisson lorsque le nombre
d’observations tend vers l’infini, modulo des hypothèses raisonnables sur ces dernières. Ces exemples
illustrent bien les fortes connexions qui existent entre théorie des valeurs extrêmes et théorie des
processus ponctuels. Elle joueront un rôle important dans la suite de cette thèse.

Méthode de Stein
Principaux concepts et approches
Une technique flexible et puissante pour obtenir des taux de convergence dans des théorèmes-limites
en probabilité est la célèbre méthode de Stein. Stein lui-même l’a utilisée pour la première fois
dans son article pionnier Stein [1972] afin de borner la distance de Kolmogorov entre une somme de
variables aléatoires dépendantes et la loi normale, ceci dans un effort de fournir une généralisation au
théorème de Berry-Esseen. Depuis, cette méthode a été considérablement étendue à de nombreuses
autres distributions. Elle vise à contrôler une certaine distance métrisant la convergence en loi entre
une distribution-cible ν fixée, et une loi µ l’approchant. Plus précisément, on suppose que µ et ν
sont deux lois de probabilité sur un même espace topologique E. Le type de distance utilisée pour
quantifier la proximité entre µ et ν, et adaptée à la méthode de Stein, est de la forme suivante :

dH(µ, ν) := sup
h∈H

|Eµ[h] − Eν [h]|,

où H est un espace de fonctions-tests de E dans R. On suppose qu’il est suffisamment grand pour
caractériser la convergence en loi engendrée par la topologie sur E, et aussi qu’il ne contient que des
fonctions intégrables par rapport à µ et ν. Des exemples couramment rencontrés incluent l’espace
des fonctions bornées continues de E dans R, ou encore celui des fonctions 1-Lipschitz à dérivée
1-Lipschitz, si E est un espace métrique. Une telle métrique dH sur les mesures de probabilité
de E est appelée integral probability metric en anglais. Nous travaillerons toujours avec de telles
métriques. Afin de majorer la distance dH(µ, ν), où ν est la loi de probabilité cible, la méthode de
Stein fait usage d’un certain opérateur linéaire qui satisfait la propriété suivante : L est inversible
sur l’espace H0 des fonctions-tests d’espérance nulle par rapport à ν:

H0 := {h ∈ H, Eν [h] = 0}.

Une application satisfaisant cette identité est appelée un opérateur de Stein. Elle fournit une
caractérisation fonctionnelle de la loi-cible ν, couramment appelée caractérisation de Stein.

Eµ[Lg] = 0, pour tous g ∈ G ⇐⇒ µ = ν. (0.7)
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L’implication directe constitue la partie non triviale et se démontre comme suit. Soit h une
fonction-test. Posons h∗ := h− Eν [h]. Alors nous avons:

Eµ[h] − Eν [h] = Eµ[h∗]
= Eµ

[
LL−1h∗

]
= Eµ[Lgh]
= 0,

grâce aux hypothèses que nous avons faites sur L. Puisque la classe H caractérise la convergence
en loi, elle caractérise en particulier l’égalité en loi. Par conséquent Eν [h] = Eµ[h] quelque soit
h dans H implique que µ = ν. Dans de nombreuses applications, la preuve que L caractérise ν
repose sur des arguments plus spécifiques au contexte en jeu; en effet, certaines des hypothèses
précédentes peuvent faire défaut. En tout cas, disposer d’un opérateur de Stein caractérisant la
loi-cible ν représente la première étape de cette méthode. L’exemple historique d’un tel opérateur
est celui donnée par Stein dans Stein [1972] pour la loi normale standard:

Lh(x) := −xh(x) + h′(x), x ∈ R.

Le fait que E[Lh(X)] = 0 pour tout h bornée et Lipschitz si et seulement si X ∼ N (0, 1) est encore
appelé lemme de Stein. Ses applications sont nombreuses. L’une de ses conséquences est l’inégalité
fondamentale :

dH(µ, ν) ≤ sup
h∈H

∣∣Eµ[Lgh]
∣∣ = sup

f∈L−1H0

|Eµ[Lf ]|. (0.8)

Cela nous mène à la seconde étape de cette méthode : borner pour tout h ∈ H0 la solution de Stein
gh := L−1h∗. En effet, dans (0.8), on travaille avec des fonction de la forme gh pour tout h dans H0.
Cette étape peut prendre des formes différentes selon la variante de la méthode de Stein employée,
en particulier l’approche par générateur qui autorise à travailler avec le semi-groupe à la place.
Un contrôle a priori sur gh et ses dérivées permet de se restreindre à une classe plus restreinte
de fonctions que les fonctions-tests associées à dH. Par exemple, on peut prouver (Nourdin and
Peccati [2012]) que si l’on choisit comme fonction-test les hz = 1(−∞,z], c’est-à-dire qu’on utilise la
distance de Kolmogorov, alors on a

∥gz∥∞ ≤
√

2π
4 et ∥g′z∥∞ ≤ 1, z ∈ R.

Par conséquent, la distance de Kolmogorov entre une loi de probabilité µ and ν = N (0, 1) satisfait

dH(µ, ν) ≤ sup
g∈FKol

|Eµ[Lg]| = sup
g∈FKol

|E[g′(X)] − E[Xg(X)]|,

où X est une variable aléatoire de loi µ et

FK :=
{
g : R → R, ∥g∥∞ ≤

√
2π
4 et ∥g′∥∞ ≤ 1

}
.

Cet enesemble est parfois appelé la classe de Stein associée à la loi normale et à la distance de
Kolmogorov (cf. Mijoule et al. [2023] par exemple).

Le but de la dernière étape est de prouver que Eµ[Lgh] est "petit". Surprenamment, cela est
souvent bien plus simple que de chercher à contrôler la différence Eν [h] − Eµ[h] directement. De
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nombreux outils ont été développés dans cette optique; citons entre autres les paires échangeables,
les couplages zéro-biais, les couplages de biais par la taille, etc. On pourra se référer par exemple à
Ross [2011], Ley et al. [2017-01], ainsi qu’à Chen et al. [2010] pour un exposé plus centré sur la loi
normale. Quelque soit l’approche retenue, il est important de garder en tête qu’aucune technique ne
fonctionne efficacement de manière systématique. Selon comment cette étape est menée, la borne
obtenue sera plus ou moins fine. Par conséquent, il est utile de savoir construire des opérateurs de
Stein L tels que la borne finale soit la plus précise possible, ou tout du moins que cette étape ne
soit pas trop compliquée à mener à son terme.

La méthode de Stein a un large champ d’applications et concerne de nombreux domaines majeurs
des probabilités(matrices aléatoires, mécanique statistique, graphes aléatoires, etc.), ainsi que des
statistiques (voir Anastasiou et al. [2021]). Cela constitue une preuve de sa grande souplesse
d’utilisation. Cette méthode, telle que conçue par Stein originellement, est focalisée sur la loi
normale univariée comme distribution-cible. Elle a depuis été développée dans de nombreuses
directions : loi normale multivariée Gotze [1991], processus gaußiens et diffusions (Barbour [1990]),
loi de Poisson (Chen [1974]), processus ponctuels de Poisson (Barbour and Brown [1992], Chen
and Xia [2004]), lois stables en dimensions finie (Chen et al. [2022, 2024], Coutin et al. [2024]), loi
gamma (Arras and Swan [2015]), etc.

Quantification et cônes convexes

Le premier problème susceptible d’apparaître en appliquant la méthode de Stein réside dans le fait
de trouver un "bon" opérateur de Stein. Il est difficile de définir en général ce que devrait être un
tel opérateur; notre point de vue est qu’il doit avoir une "forme" adaptée à l’application étudiée.
Cet état d’esprit sera précisé et développé au cours de la présente thèse, en particulier dans l’une
des applications proposées, le problème du collectionneur. En outre, par définition, l’opérateur
de Stein encode complètement toute l’information disponible sur la loi-cible qu’il caractérise. Il
est donc souhaitable que les propriétés fonctionnelles de l’opérateur de Stein révèle facilement ces
informations. Enfin, il peut être utile que cet opérateur soit le générateur d’un certain semi-groupe
de Markov de mesure stationnaire la loi-cible ν. Cette procédure a été utilisée en physique et porte
en anglais le nom de quantization, voir Parisi and Wu [1981]. Elle a servi entre autres à effectuer
des simulation numériques en théorie de gauge pour les fermions (Namiki [1992]).

Notre point de départ sera la définition d’un tel semi-groupe markovien (Pt)t≥0 de mesure stationnaire
ν, puis le calcul de son générateur L, qui sera alors automatiquement un opérateur de Stein pour ν.
Ce détour par la théorie des semi-groupes est fertile car il fournit, sous certaines hypothèses sur les
fonctions-tests h, une expression explicite de la solution de Stein gh :

gh = −
∫ ∞

0
Pth dt.

On évite ainsi d’avoir à prouver la difficile équivalence (0.7) tout en ayant de plus grandes facilités
à déterminer la régularité de gh. Dans certains contextes (e.g. Coutin and Decreusefond [2020]), on
peut néanmoins avoir à séparer l’intégrale de 0 à +∞ en deux morceaux: l’un allant de 0 à un seuil
ε arbitraire, et l’autre de ε à +∞. Chaque terme doit être contrôlé séparemment afin d’obtenir une
borne la plus fine possible et qui n’explose pas au voisinage de 0 ou à l’infini. Nous aurons à faire
face à cette difficulté. Lorsqu’on ne dispose pas d’un semi-groupe et qu’on travaille directement
avec L et gh, ces problèmes apparaissent aussi, mais de façon plus cachée.
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Pour toutes ces raisons, on voit l’importance de pouvoir travailler avec un semi-groupe (Pt)t≥0
engendrant l’opérateur de Stein L utilisé. Un problème de type "poule-œuf" se pose néanmoins :
est-il plus simple de construire d’abord (Pt)t≥0, ou de partir de L et de prouver via un théorème
à la Hille-Yoshida qu’il s’agit d’un générateur associé à un certain semi-groupe ? Cette difficulté
a représenté un obstacle à la généralisation de l’approche par générateur de la méthode de Stein
à d’autres lois que la gaußienne ou la loi de Poisson. Il n’existe pas de méthode universelle pour
construire un opérateur de Stein qui satisfasse (0.7) pour une loi-cible arbitraire, mais on pourra
consulter Ley et al. [2017-01] et les références citées pour un panorama des techniques actuelles.

Dans le cas particulier de l’approche par générateur, au mieux de nos connaissances, la seule
technique générale permettant de construire un semi-groupe markovien de loi stationnaire fixée
repose sur les diffusions de Langevin, voir par exemple Gorham and Mackey [2015] et Gorham
et al. [2016]. Bien que très souple, cette approche a ses limites : le semi-groupe et son générateur
peuvent être compliqués à utiliser selon les applications, et de plus il est nécessaire que la loi-cible
ν admette une densité pour la mesure de Lebesgue. Cela ne sera pas toujours vrai dans le cas des
lois d’extremum en dimension supérieure. Mentionnons tout de même que cette méthode fournit,
dans le cas de la loi normale, le même semi-groupe obtenu via l’approche que nous présentons
maintenant.

Un choix commun d’opérateur de Stein pour la loi normale standard sur Rd est

Lf(x) = −⟨x,∇f(x)⟩ + ∆f(x).

Il s’agit du générateur du semi-groupe d’Ornstein-Uhlenbeck :

Ptf(x) = E
[
f

(
e−tx +

√
1 − e−2tZ

)]
, (0.9)

où Z ∼ N (0, I) etI est la matrice identité. Plus généralement, si ν est une loi d’une variable
aléatoire α-stable Z, paramétrisée comme dans Arras and Houdré [2023], alors un semi-groupe
quantifiant ν est donné par :

Ptf(x) = E
[
f

(
e−tx + (1 − e−αt)

1
αZ

)]
où Z ∼ ν et α ∈ (0, 2]. Ces deux exemples se situent dans un cadre euclidien, mais il est possible
d’en donner dans des contextes plus exotiques : on définit le groupe de Heisenberg H comme
l’ensemble des matrices de la forme:

H :=
{( 1 x z

0 1 y
0 0 1

)
, (x, y, z) ∈ R3

}
,

avec le produit matriciel habituel. Un tel ensemble muni de cette opération forme bien un groupe,
et on peut montrer qu’il est isomorphe à R3 doté de la loi de composition interne suivante :

(x1, y1, z1) ⊕ (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z3 + 1

2(x1y2 − x2y1)
)
.

Ce groupe possède une notion de multiplication extérieure par les réels positifs donnée par :

da(x, y, z) = (ax, ay, a2z), a > 0

et qui satisfait les axiomes da ◦ db = dab et da(x1 ⊕ x2) = dax1 ⊕ dbx2. Si maintenant l’on somme
n variables aléatoires i.i.d. de carré intégrable X1, . . . ,Xn, à valeurs H et qu’on les renormalise
convenablement, une loi non dégénérée apparaît lorsque n tend vers l’infini :

Z =
(
B1(1), B2(1), 1

2
[ ∫ 1

0
B1 dB2 −

∫ 1

0
B2 dB1

])
,
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avec B1, B2 deux mouvements browniens standards sur R. Le troisième terme est connu sous le
nom d’aire de Lévy stochastique. Plus précisément, si X1, . . . ,Xn sont des variables aléatoires i.i.d.
centrées et de variance unité (coordonnée par coordonnée), alors

n⊕
i=1

d 1√
n
Xi −→

n→∞
Z.

Par conséquent la loi ν de Z joue le même rôle sur H que la loi gaußienne sur R : toutes les deux
apparaissent comme lois-limites d’un certain théorème central limite. Un semi-groupe quantifiant ν
a été introduit et étudié en détail dans Lust-Piquard [2010]:

Ptf(x) = E
[
f

(
de−tx ⊕ d√1−e−2tZ

)]
Il est important de remarquer que la propriété de semi-groupe de la famille d’opérateurs ainsi
définie n’est qu’une réécriture de la stabilité des lois α-stables et la loi normale sur le groupe de
Heisenberg : par exemple la mesure gaußienne sur Rd est la seule loi sur Rd telle que

e−tZ1 + (1 − e−αt)
1
αZ2

d= Z (0.10)

avec Z1,Z2 deux copies indépendantes de Z. Et, bien que cela ne soit pas évident, on peut vérifier
que

de−tZ1 ⊕ d√1−e−2tZ2
d= Z1, (0.11)

Observons qu’à un niveau plus formel, les équations (0.10) et (0.11) peuvent se réécrire sous la
forme

daX1 ⊕ dbX2
d= X1 (0.12)

avec aα + bα = 1 pour un certain α > 0. Dans les deux premiers cas, l’opérateur da est la
multiplication des vecteurs par les réels, et le signe ⊕ représente l’addition des vecteurs dans (0.10).
La structure algébrique sous-jacente est celle d’un semi-groupe, pour l’opération ⊕ auquel on associe
un groupe (da)a∈R+ d’automorphismes satisfaisant l’identité da ◦ db = dab. Une telle structure est
appelée un cône convexe. Plus précisément, un semi-groupe topologique et abélien (K,⊕) est un
cône convexe s’il existe un opérateur de multiplication continu da des éléments x de K par les réels
positifs a, laissant stable K et satisfaisant:

da(x⊕ y) = dax⊕ day, a > 0, x, y ∈ K
da(dbx) = dabx, a, b > 0, x ∈ K

d1x = x, x ∈ K
dae = e, a > 0

où e est l’élément neutre de K et doit vérifier la relation x⊕ e = x. Dans Davydov et al. [2008],
les auteurs montrent qu’il existe de nombreux exemples de lois (strictement) stables, c’est-à-dire
satisfaisant (0.12). Ces distributions ont un intérêt particulier compte tenu de leur tendance à
apparaître dans de nombreux résultats limites, comme la loi des événements rares ou le théorème
central limite. La cadre des cônes convexes est très large et inclut entre autres celui des espaces
de Banach ansi que de nombreux espaces non euclidiens, e.g. l’ensemble des compacts convexes,
l’ensemble des fonction semi-continues supérieurement, l’ensemble des mesure finies, etc. Chacun de
ces espaces est équippé d’une opération binaire ⊕ et d’une multiplication extérieure (da)a≥0 vérifiant
les propriétés précédentes. Un exemple simple d’un tel cône convexe est R doté de l’addition et
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dax = ax, la multiplication habituelle. D’autres exemples plus sophistiqués incluent l’ensemble des
fonctions continues positives définies sur un cône E, avec l’addition usuelle, et la multiplication
définie par

daf(x) = f(ax), x ∈ E

ou l’ensemble des compacts convexes muni de l’addition de Minkowski et de la multiplication
élément par élément :

K1 ⊕K2 =
{
x1 + x2, (x1, x2) ∈ K1 ×K2

}
,

et
daK = aK = {ax, x ∈ K}.

D’autres exemples sont présentés dans Davydov et al. [2008]. L’existence de lois stables non triviales
sur un cône convexe y est démontrée sous certaines hypothèses. Ces lois apparaissent comme limites
possible pour une "somme" (toujours au sens de ⊕) renormalisée de variables aléatoires i.i.d. sur
K, c’est-à-dire, dans un théorème central limite généralisé. À ce titre il est donc important de
pouvoir leur appliquer la méthode de Stein afin d’obtenir des vitesses de convergences pour ces
théorèmes. Nous présentons une approche générale pour attaquer ce problème. Elle consiste à
définir un semi-groupe (Pt)t≥0 directlement via une formule à la Mehler:

Ptf(x) := E
[
f

(
de−tx⊕ d(1−e−αt)1/αZ

)]
, x ∈ K

où Z est une variable aléatoire strictlement stable, au sens de (0.12). Cette propriété de stabilité
garantit que la famille d’opérateurs (Pt)t≥0 est bien un semi-groupe de mesure stationnaire la loi de
Z. Les semi-groupes admettant ce type de représentation possèdent souvent certaines propriétés en
commun avec le semi-groupe d’Ornstein-Uhlenbeck original. Il ne semble cependant pas possible à
ce point d’établir une liste exhaustive des propriétés communes que satisfont ces différents semi-
groupes, du moins pas sans faire des hypothèses supplémentaires sur le cône convexe K. Dans cette
thèse, nous nous concentrons principalement sur le cas où ⊕ est le maximum et da la multiplication
habituelle. Certaines propriétés du semi-groupe associé à ces opérations seront obtenus via des
arguments génériques, tandis que d’autres seront plus spécifiques à notre cas particulier.

Nous concluons cette partie en mentionnant brièvement un autre moyen de quantifier certaines lois
de probabilités. Il repose sur la notion de stabilité discrète, voir par exemple Steutel and van Harn
[1979], Davydov et al. [2011]. L’idée consiste à étendre le concept de stabilité aux lois discrètes.
Pour ces dernières, une mise-à-l’échelle par un réel positif quelconque ne fait pas sens a priori.
Pour pallier cette difficulté, une opération aléatoire remplace la mise-à-l’échelle déterministe. Elle
continue à satisfaire, au moins formellement, les propriétés qu’on attend d’une multiplication, au
sens suivant : p ◦ (q ◦ x) est égal en loi à (pq) ◦ x, et p ◦ (x⊕ y) a même loi que (p ◦ x) ⊕ (p ◦ y),
pour x dans E et pour tout p, q in a certain subset of R+, e.g [0, 1]. L’amincissement par p ∈ [0, 1]
est le principal exemple de ce type de mise à l’échelle sur E = N :

p ◦ n =
n∑

i=1
Bi, p ∈ [0, 1]

où les Bi sont des variables aléatoires i.i.d. de loi B(p). La loi de Poisson n’est pas stable mais
vérifie cependant la propriété suivante de stabilité discrète :

p ◦N1 + (1 − p) ◦N2
d= N1,
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où N1, N2 sont des variables aléatoires i.i.d. de même loi de Poisson. En réalité, ce résultat n’est
qu’un reflet de la propriété de stabilité discrète du processus de Poisson. Si ϕ =

∑n
i=1 δxi est une

configuration finie, alors on définit l’amincissement de ϕ par p en retirant chaque point xi de ϕ
avec probabilité 1 − p, indépendamment les uns des autres. Dit autrement :

p ◦ ϕ =
n∑

i=1
Biδxi .

On peut alors prouver que :

p ◦ η1 ∪ (1 − p) ◦ η2
d= η1,

où η1, η2 sont deux processus de Poisson i.i.d. sur un espace Polonais E, de même mesure intensité
finie. Cette propriété de stabilité discrète nous permet de reproduire la construction de construire
un semi-groupe de mesure stationnaire le processus de Poisson via une formule à la Mehler en
posant :

Ptf(ϕ) = E
[
f

(
e−t ◦ ϕ+ (1 − e−t) ◦ η

)]
, ϕ ∈ NE .

On retrouve ainsi le semi-groupe de Glauber (voir par exemple Decreusefond [2022]). Ces idées
ont été adaptées avec succès au cas des processus discrets α-stables by A. Vasseur dans sa thèse
de doctorat Vasseur [2017], lui donnant ainsi la possibilité d’appliquer la méthode de Stein pour
quantifier des théorèmes-limites impliquant ces processus. Ce principe est général et peut être
utilisé pour construire d’autres semi-groupes, a priori inédits. Cette thèse en est un exemple.

Analyse stochastique pour les lois max-stables

Les idées développées par Davydov et.al dans Davydov et al. [2008] reposent sur la notion de série
de LePage. Ce concept permet de représenter une variable aléatoire stable pour une opération
binaire ⊕ donnée (telle l’addition, le maximum, etc.) comme une somme infinie (au sens de ⊕)
d’un processus de Poisson dont la mesure intensité satisfait une certaine propriété d’homogénéité.
Une telle représentation était déjà connue pour les variables aléatoires α-stables ainsi qu’en théorie
des valeurs extrêmes, où elle porte le nom de décomposition de Haan. Cela ne constitue pas une
surprise, dans la mesure où (R,⊕, d) est bien un cône convexe lorsque ⊕ représente l’addition ou le
maximum, et d la multiplication par un scalaire.

La décomposition de Haan permet d’établir un lien crucial entre les lois max-stables et les processus
de Poisson. Elle apparaîtra sous différentes formes tout au long de cette thèse, principalement via le
semi-groupe (Pα

t )t≥0 que nous définirons plus tard et dont la mesure stationnaire sera une certaine
loi max-stable ν (c’est-à-dire une loi d’extremum). Par exemple, le générateur Lα de ce semi-group
sera exprimé à l’aide de la mesure intensité du même processus de Poisson que celui qui intervient
dans la décomposition de de Haan-LePage de ν.

Une autre façon d’employer cette connexion entre processus de Poisson et lois max-stables est de
spécialiser des résultats classiques d’analyse stochastique pour les processus de Poisson, tels ceux
exposés dans Last and Penrose [2011], Last et al. [2016]. On obtient ainsi à peu de frais de nouveaux
résultats pour les loi d’extremum, ou bien des preuves courtes et simples de théorèmes déjà connus.
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Contributions
Les contributions de cette thèse sont les suivantes : au chapitre 2, nous définissons plusieurs
semi-groupes de Markov admettant les lois d’extremum comme mesure stationnaire. Ces définitions
sont données d’abord en dimension 1 puis étendues en dimension supérieure. Plusieurs identités
fonctionnelles (relations de commutation, inégalité de Poincaré, etc.) sont présentées. Elles
contribuent à éclairer la structure de ces semi-groupes et fournissent dans le même temps des
informations supplémentaires sur les lois d’extremum. Nous exhibons aussi un processus de Markov
dont le semi-groupe correspond à celui défini auparavant pour la loi de Fréchet. Tout au long de ce
chapitre, un parallèle avec le semi-groupe d’Ornstein-Uhlenbeck est dressé.

Le chapitre 3 est centré sur les applications des résultats précédents à la méthode de Stein dans le
cas où la loi-cible est la mesure de Fréchet, y compris sa généralisation multivariée. Nous donnons et
résolvons l’équation de Stein, décrivons les propriétés de sa solution lorsque la distance utilisée est
celle de Wasserstein, de Kolmogorov et la distance d[2]. Nous faisons ensuite appel à ces propriétés
pour obtenir des vitesses de convergence dans plusieurs théorèmes-limites impliquant la loi de
Fréchet.

Nous suivons la même approche pour le chapitre 4, cette fois en nous concentrant sur la loi de Gumbel
et celle de Weibull. Une application des résultats exposés concerne le problème du collectionneur.
Nous y établissons un résultat de type vitesse de convergence du temps de complétion renormalisé
vers la loi de Gumbel, et ce pour une distance similaire à celle de Wasserstein, la distance d[2].

Enfin, le chapitre 5 porte sur les connexions entre analyse stochastique pour les processus de Poisson
et lois d’extremum généralisées, et plus généralement, avec les lois stables et les lois max-infiniment
divisibles. En particulier, nous donnons une preuve courte d’une version multivariée de l’inégalité
de Poincaré pour la famille de semi-groupes introduite au chapitre 2. Nous obtenons aussi une
identité de covariance pour les lois max-infiniment divisibles. La dernière section de ce chapitre est
de nature plus heuristique et vise à définir un nouveau semi-groupe sur l’espace des configurations,
dont la mesure stationnaire est un processus de Poisson de mesure intensité vérifiant une certaine
propriété d’homogénéité.
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This chapter is dedicated to giving an overview of the notions essential to this work, as well to
fixing some notations used throughout the next chapters.

1.1 Markov semi-groups
In this section we give the very basics of Markov semi-groups theory. Classic references on the
subject include Bakry et al. [2014], Ethier and Kurtz [1986], Rogers and D.Williams [April 2000].

Definition 1.1.1 (Semi-group). Let (X,X ) be a measurable space. A semi-group on X is a
family (Pt)t≥0 of linear operators defined on a subspace V of real-valued, bounded measurable
functions on X, such that the following properties are satisfied

1. For all t ≥ 0 and all f in V , Ptf is also measurable and bounded.

2. (Conservation of mass) P0 = Id, the identity operator on V .

3. (Semi-group property) For all t, s ≥ 0, we have Pt ◦ Ps = Pt+s.

Definition 1.1.2 (Invariant measure). Let ν be a σ-finite measure on the measurable space

31
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(X,X ). A Markov semi-group (Pt)t≥0 on (X,X ) admits ν as an invariant measure if∫
X
Ptf(x) dν(x) =

∫
X
f(x) dν(x), t ≥ 0, f ∈ V.

Definition 1.1.3 (Markov semi-group). Let (Pt)t≥0 be a semi-group on the measurable space
(X,X ) with invariant measure ν. A semi-group which also satisfies the next two properties is
called a Markov semi-group:

4. (Markov property) For all t ≥ 0, Ptf ≥ 0 if f ∈ V takes only nonnegative values, and
Pt1 = 1, the function constant equal to 1.

5. (Right-continuity) For all f ∈ V , the function t 7→ Ptf is right-continuous in L2(X,X , ν).

Due to the semi-group property, it is clear one just needs to check the right-continuity property at
t = 0. Furthermore, Markov semi-groups automatically satisfy the contraction property:

∥Ptf∥L2(X,ν) ≤ ∥f∥L2(X,ν), t ≥ 0, f ∈ V.

A semi-group (Pt)t≥0 can be symmetric (or reversible) with respect to a measure ν, in which case
the said measure is invariant under (Pt)t≥0 (take g = 1 in the definition below):

Definition 1.1.4 (Symmetry). Let ν be a measure on (X,X ). A semi-group (Pt)t≥0 is
symmetric with respect to a measure ν if Pt is a symmetric operator for the standard inner
product on L2(X, ν) for any nonnegative t:

⟨Ptf, g⟩L2(X,ν) = ⟨f, Ptg⟩L2(X,ν), t ≥ 0, f, g ∈ V.

Definition 1.1.5 (Domain and generator of a Markov semi-group). The domain of a Markov
semi-group (Pt)t≥0 on L2(X, ν) is defined as:

Dom(L) :=
{
f ∈ V, lim

t→0+

Ptf − f

t
exists a.s. and in L2(X, ν)

}
.

In this case we denote by L its generator:

Lf := lim
t→0+

Ptf − f

t
.

The defining assumptions of Markov semi-groups imply that their generators L of (Pt)t≥0 admit a
pseudo-inverse.

Proposition 1.1.6 Let (Pt)t≥0 be a Markov semi-group with invariant measure ν and generator
L. For all f ∈ V such that t 7→ Ptf(x) is integrable for ν-almost all x ∈ X, we have

−
∫ ∞

0
LPtf(x) = f(x) a.e. (1.1)

if Eν [f ] = 0.

From now on, let (Ω,F ,P) be a probability space.



Markov semi-groups 33

Definition 1.1.7 (Markov process). Let (Xt)t≥0 be a measurable process on (Ω,F ,P). Let
(Ft)t≥0 be the filtration generated by (Xt)t≥0. We say that (Xt)t≥0 is a Markov process if it
has the Markov property:

L
(
Xt+h | Ft, X0 = x

)
= L

(
Xh |X0 = Xt

)
, t, h ≥ 0, x ∈ L2(Ω,P).

where L(X | F) denotes the distribution of X given the σ-field F .

There exists a correspondence between a Markov process (Xt)t≥0, its semi-group (Pt)t≥0 and its
generator L: we have already seen how to derive the generator from the semi-group. The latter can
be defined from the Markov process by setting:

Ptf(x) := E
[
f(Xt) |X0 = x

]
.

By the Markov property, this expression indeed defines a Markov semi-group. Thus, knowing Pt is
the same as knowing the distribution of Xt conditional on X0 = x for all t and x. On the other
hand, Pt can be retrieved knowing L via the informal equality Pt = etL.

Through this connection between those three objects, it is possible to construct a martingale from
a Markov process.

Theorem 1.1.8 Let (Xt)t≥0 be a Markov process with generator L, and f a function in the
domain of L such that E[Lf(Xt)] exists for all t. Then the process (Mt)t≥0 defined by:

Mt := f(Xt) − f(X0) −
∫ t

0
Lf(Xu) du

is a martingale with respect to (Ft)t≥0.

1.1.1 Functional inequalities
The main reference for this subsection is Bakry et al. [2014]. Throughout this section we assume
that a standard algebra exists for the considered Markov semi-groups:

Definition 1.1.9 (Standard algebra). Let A be an algebra of functions included in every
Lp(X, ν), with p ∈ (1,∞). Assume it is dense in each of them. We will say that A is a
standard algebra if A is stable under L and all Pt. When ν is a probability measure, we will
also require that A contains every constant function.

This definition ensures us that all the objects defined in this section are well-defined. Typical
examples for A include the space of rapidly decreasing functions (Schwartz space) for the heat
semi-group, or the space of slowly increasing functions for the Ornstein-Uhlenbeck semi-group.

Definition 1.1.10 (Carré du champ and energy). Let L be the generator of some Markov
semi-group (Pt)t≥0 on (X,X ), and µ a probability measure on (X,X ).

- The carré du champ operator associated with L is the symmetric bilinear form Γ defined
as:

Γ(f, g) := 1
2

(
L(fg) − fL(g) − gLf

)
, f, g ∈ A.
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We shorten notations by writing Γ(f) for Γ(f, f).

- The energy form Eµ is defined as:

Eµ(f) := −Eµ
[
fLf

]
, f ∈ A.

The next proposition gives the most basic properties of those two objects.

Proposition 1.1.11 Let L be a generator with invariant measure µ. For all f ∈ A, we have:

- Γ(f) ≥ 0.

- Eµ(f) = Eµ[Γ(f)].

Proposition 1.1.12 Let (Pt)t≥0 a semi-group with invariant measure µ and generator L. The
following assertions are equivalent:

- The measure µ satisfies a Poincaré inequality with constant c:

Vµ(f) ≤ cEµ(f), f ∈ A.

- There exists a constant λ > 0 such that

∥Ptf − Eµ[f ]∥L2(X,µ) ≤ e−λt∥f∥L2(X,µ), t ∈ R+, f ∈ A

Furthermore the optimal constants are linked by the relation c = λ−1.

1.2 Poisson process

The Poisson process plays a central role in extreme value theory and possesses many important
properties. This section gathers those which will be the most relevant to us. Excellent references
about the Poisson process are countless, but we will cite and use only a few of them: Last and
Penrose [2011, 2017], Decreusefond [2022], Privault [2009]. The reference textbooks by Resnick
regarding extreme value theory Resnick [1987, 2006] also contain a crash course about point
processes, including most, but not all, of the properties of the Poisson process we will make use of.
In this section, unless specified otherwise, measures will always be σ-finite.

1.2.1 Definition and basic properties
Definition 1.2.1 (Configuration). Let E be a subset of Rd. A configuration ϕ of E is a locally
finite set of E, in the sense that every bounded subset of E contains only a finite number of
points of ϕ, and where repetitions are allowed. We denote by NE the set of configurations of
E.

Remark 1.2.2. - The fact that repetitions are allowed means that {x, x} is different from {x}.

- With this definition, a configuration is necessarily a countable subset of E. As a result, we will
sometimes denote by ϕ = (xi)i∈I the points of a configuration, where I is a subset of N. Another
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way to denote a configuration is by seeing it as a random counting measure:

ϕA := ϕ(A) =
∑
i∈I

δxn(A), A ⊆ E

where δx is the Dirac measure at x.

- On the other hand, observe that a countable set is not always a configuration: the set ϕ =
{1/n, n ≥ 1} is not a configuration in E = [0, 1] because it admits an accumulation point at 0:
every interval [0, ε] is bounded but contains an infinite number of points of ϕ, for ϵ ∈ (0, 1].

■

Following the conventions of Decreusefond [2022] (page 121), we will indistinctly denote a point
process as a random measure or a random set.

Several operations on configurations are possible.

Definition 1.2.3. - The superposition of two configurations ϕ1, ϕ2 is the reunion of ϕ1 and
ϕ2 considered as sets.

- The thinning of a configuration ϕ =
∑

i∈I δxi by a scalar p ∈ [0, 1] is defined as the random
measure:

p ◦ ϕ :=
∑
i∈I

εiδxi ,

where the εi are i.i.d. random variables with the Bernoulli distribution B(p).

- The dilatation of a configuration ϕ =
∑

i∈I δxi by a scalar λ ∈ R∗+ is defined by:

λϕ :=
∑
i∈I

δλxi
,

while its translation by a vector τ ∈ Rd is defined by

ϕ+ τ :=
∑
i∈I

δxi+τ .

Observe that the space of configurations NE is closed under those operations.

Definition 1.2.4 (Point process). A point process η is an NE-valued random variable.

The binomial process is one of the most basic instances of a point process and a prototype of the
Poisson process.

Definition 1.2.5 (Binomial process). Let X1, . . . , Xn be n i.i.d. random variables on Rd with
distribution µ. Then the configuration ϕ :=

∑n
i=1 δXi is called a binomial process on Rd with

n points and base measure µ.

A (finite) Poisson process can be seen as a binomial process with a Poisson number N of points,
the latter being independent of N . The general case builds on this intuition.
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Definition 1.2.6 (Poisson process). Let λ be a σ-finite measure on Rd. A Poisson point
process η with intensity measure λ is a random counting measure which satisfies the two
following properties:

1. ηA has the Poisson distribution P(λ(A)) for all subset A ⊆ E.

2. For all m ∈ N∗, the random variables ηA1 , . . . , ηAm are independent if the sets A1, . . . , Am

are pairwise disjoint.

It is not obvious that only one point process, if any, satisfies all those properties. It is true however,
even though we will not delve into the construction of the Poisson process. For this we refer to
Last and Penrose [2017], among other classic references. The next result is used as the working
definition of the Poisson process in Privault [2009].

Theorem 1.2.7 Let η be a Poisson process on Rd with finite intensity measure λ. Then for all
f : NE → R+,

E[f(η)] = e−λ(E)f(∅) + e−λ(E)
∞∑

n=1

1
n!

∫
En
f({x1, . . . ,xn}) dλn(x1, . . . ,xn), (1.2)

Poisson processes behave well with respect to superposition and thinning.

Proposition 1.2.8 Let η1, η2 two independent Poisson process with σ-finite intensity measures
λ1, λ2 respectively, and p ∈ [0, 1] Then

- η1 ∪ η2 is a Poisson process with intensity measure λ1 + λ2.

- p ◦ η1 is a Poisson process with intensity measure pλ1.

One of the most important properties of the Poisson process is the Campbell-Mecke formula.
Actually, it characterizes the Poisson process.

Theorem 1.2.9 — Campbell-Mecke formula. Let η be a point process on E and λ a σ-finite
measure on E. For any f : E × NE → R such that

E
[ ∫

E
|f(x, η)| dλ(x)

]
< +∞,

we have

E
[ ∫

E
f(x, η) dη(x)

]
=

∫
E
E

[
f(x, η + δx)

]
dλ(x) (1.3)

if and only if η is a Poisson process with intensity measure λ.

1.2.2 Stochastic analysis for the Poisson process
Stochastic analysis for the Poisson process has its own notion of gradient, just like Malliavin
calculus.
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Definition 1.2.10 (Discrete gradient and its domain). We define the discrete gradient of
f : NE → R as:

D+
x f(ϕ) = f(ϕ+ δx) − f(ϕ), ϕ ∈ NE

and
D−x f(ϕ) = f(ϕ− δx) − f(ϕ), ϕ ∈ NE

where the notation ϕ− δx should be understood as

ϕ− δx =
{
ϕ \ {x} if x ∈ ϕ

ϕ otherwise.

Let η be a Poisson process on E with intensity measure λ. The domain of the gradient is
defined as

Dom(D) :=
{
f : NE → R

∣∣∣ E[f(η)2] < ∞ and E
[ ∫

E
|f(η + δx) − f(η)|2 dλ(x)

]
< +∞

}
.

Definition 1.2.11 (Divergence and its domain). Let η be a Poisson process on E with
intensity measure λ. The domain of the divergence is defined as

Dom2(δ) :=
{
U : NE → R, E

[( ∫
E
U(x, η − δx)( dη(x) − dλ(x))

)2]
< +∞

}
.

The divergence of U is

δU(η) :=
∫

E
U(x, η − δx) dη(x) −

∫
E
U(x, η) dλ(x).

The next result is a consequence of the Campbell-Mecke formula.

Theorem 1.2.12 — Integration-by-parts for the Poisson process. For any f ∈ Dom(D) and any
U ∈ Dom2(δ), we have:

E
[ ∫

E
D+

x f(η)U(x, η) dλ(x)
]

= E[f(η)δU(η)]. (1.4)

1.2.3 The Fock space representation
Denote by Pη the distribution of a point process η. The inner product on L2(En, λn) is defined as:

⟨f, g⟩n :=
∫

En
f(x1, . . . , xn)g(x1, . . . , xn) dλ(x1, . . . , xn).

We also define for n ≥ 1
Tnf(x1, . . . , xn) := E

[
D+

x1,...,xn
f(η)

]
,

where D+
x1,...,xn

:= D+
x1 ◦ · · · ◦ D+

xn
(notice those operators commute). For n = 0, we set T0f(x) :=

E[f(η)].
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Theorem 1.2.13 — Fock space representation. For all f, g ∈ L2(NE ,Pη),

Cov
(
f(η), g(η)

)
=
∞∑

n=1

1
n!⟨Tnf, Tng⟩n. (1.5)

A consequence of this result is the Poincaré inequality for the Poisson process.

Theorem 1.2.14 — Poincaré inequality. Assume that f ∈ L2(NE ,Pη). Then

V(f(η)) ≤
∫

E
E

[(
D+

x f(η)
)2]

dλ(x). (1.6)

1.2.4 The Glauber semi-group
Definition 1.2.15 (Glauber semi-group). Let η be a Poisson process with σ-finite intensity
measure λ. Set

PG
t f(ϕ) := E

[
f

(
e−t ◦ ϕ ∪ (1 − e−t) ◦ η

)]
, t ≥ 0, ϕ ∈ NE , (1.7)

for f : NE → R.

Theorem 1.2.16 (PG
t )t≥0 is an ergodic semi-group on NE whose stationary measure is the

distribution of the Poisson process with intensity measure λ. Its generator has its domain
included in the set of bounded f : NE → R and is equal to:

LGf(ϕ) =
∫

E
D+

x f(ϕ) dλ(x) +
∫

E
D−x f(ϕ) dϕ(x).

Furthermore it satisfies the commutation relation:

D+
x PG

t f(ϕ) = e−tPG
t D+

x f(ϕ), x ∈ E. (1.8)

Finally, L G
G is invertible from L2

0(NE ,Pη) onto itself.

This semi-group yields two other covariance equalities which play a crucial role in the proof of a
concentration inequality for functionals of the Poisson process.

Theorem 1.2.17 Let f, g be two functions belonging to Dom(D). Then the two following
identities hold:

Cov
(
f(η), g(η)

)
=

∫ ∞
0

∫
E
E

[
D+

x PG
t f(η)D+

x g(η)
]

dλ(x) dt. (1.9)

If furthermore f is centered, i.e. E[f(η)] = 0,

Cov
(
f(η), g(η)

)
=

∫
E
E

[
D+

x (L −1
G f)(η)D+

x g(η)
]

dλ(x).

Theorem 1.2.18 — Concentration inequality. Let η be a Poisson process with σ-finite intensity
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measure λ and f : NE → R. Assume that there exist non-negative α and β such that

D+
x f(η) ≤ α, λ⊗ Pη−a.s. and sup

ϕ∈NE

∫
E

D+
x f(ϕ) dλ(x) ≤ β, Pη−a.s.

Then we have

P
(
f(η) − E[f(η)] ≥ r

)
≤ e
− r

2α
log(1+ rα

β
)
, r ≥ 0. (1.10)

1.3 Extreme value theory

Extreme value theory deals with records and their frequencies. It has been first applied to
unidimensional observations, such as precipitation levels or loss amounts. The generalization of this
theory to higher dimension has proved successful and allows for studying spatial extremes, that is,
record observations over dependent sites. However it also comes with non-trivial difficulties, as the
usual order on R is no longer total on Rd.

1.3.1 The univariate case

References for univariate EVT are numerous: let us mention among others Resnick [1987], Leadbetter
et al. [2012], Embrechts et al. [2013], Resnick [2006], de Haan and Ferreira [2007].

The most basic record model in EVT consists in taking i.i.d. observations X1, . . . , Xn and looking
at the highest of them, i.e. Mn = max1≤i≤nXi. And just as in the study of sums of random
variables, one is also interested with the asymptotic behavior of Mn. It will heavily depend on
the support of the Xi: if it is unbounded on the right, then Borel-Cantelli’s lemma tells us that
Mn will a.s. go to infinity as the number of observations n increases. Otherwise, it is bounded
on the right, say by x1, and then Mn will a.s. converge to x1. This result can be understood as
an analog of the law of large numbers, where the sum + operator has been replaced by the max
operator ⊕. It is possible to quantify the speed of convergence of Mn to those two possible limits,
i.e. an analog of the central limit theorem also exists. This is important in applications to know
how many observations are necessary on average for Mn to go beyond a given threshold. Three
possible distributions can play the role of the normal distribution (or the stable distributions when
the Xi do not admit a variance). Just like the usual stable distributions, they appear naturally as
the only distributions which are stable under the max operator.

Definition 1.3.1 (One-dimensional max-stability). Let µ be a probability distribution on R.
We say that µ is max-stable if for any n ≥ 1, and if X1, . . . , Xn are n i.i.d. random variables
with common distribution µ, there exist an, bn two deterministic constants in R+ × R such
that

n⊕
i=1

Xi
d= anX1 + bn.

If bn = 0, then we say that µ is strictly max-stable. A random vector X is said to be min-stable
if the distribution of −X is max-stable.

We have abused notations by having said that a random variable is max-stable if its distribution is
max-stable. The next definition gives examples of max-stable distributions.
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Figure 1.1: p.d.f of W(α), G(0, 1) and F(α) for α ∈ {0.5, 1, 2}

Definition 1.3.2 (Fréchet, Gumbel, Weibull distributions). The next functions define proba-
bility distributions.

- The Fréchet distribution F(α, σ) with shape parameter α > 0 and scale parameter σ > 0
has c.d.f.

Φα,σ(x) :=

0 if x ≤ 0

e−
(

σ
x

)α

otherwise.

- The Gumbel distribution G(µ, σ) with location parameter µ ∈ R and scale parameter σ > 0
has c.d.f.

Λµ,σ(x) := e−e− x−µ
σ , x ∈ R.

- The Weibull distribution W(α, σ) with shape parameter α > 0 and scale parameter σ > 0
has c.d.f.

Ψα,σ(x) :=

e−
(
− x

σ

)α

if x ≤ 0
1 otherwise.

When σ = 1 (and µ = 0 for the Gumbel distribution), we will drop the location and scale
parameters in the notations above.

The probability density functions of those distributions have the following shapes:

Those distributions are indeed max-stable.
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Proposition 1.3.3 — Max-stability. Let X,Y be i.i.d. random variables and fix α > 0.

- Assume X,Y ∼ F(α, σ). Then:

[
λ

1
αX

]
⊕

[
(1 − λ)

1
αY

] d= X, λ ∈ [0, 1], . (1.11)

- Assume X,Y ∼ G(0, 1). Then:

[
X + log(λ)

]
⊕

[
Y + log(1 − λ)

] d= X, λ ∈ [0, 1]. (1.12)

- Assume X,Y ∼ W(α, σ). Then:

[
λ−

1
αX

]
⊕

[
(1 − λ)−

1
αY

] d= X, λ ∈ [0, 1]. (1.13)

Remark 1.3.4. In the sequel we will work mainly with the usual Weibull distribution, which is
the same as the negative Weibull distribution up to a change of sign. It will be usually called the
positive Weibull distribution and its distribution will be denoted by Ψ+

α,σ. Therefore it has support
in R+ and is min-stable. More precisely, denote by x⊙ y the minimum of x and y. The stability
relation satisfied by the positive Weibull distribution writes as:[

λ−
1
αX

]
⊙

[
(1 − λ)−

1
αY

] d= X, λ ∈ [0, 1], (1.14)

where X and Y are independent and have the Weibull distribution W+(α, σ) with c.d.f.

Ψ+
α,σ(x) :=

0 if x ≤ 0

e−
(

x
σ

)α

otherwise.

The Weibull distribution generalizes classic probability laws such as the exponential distribution
(α = 1) or the Rayleigh distribution (α = 2). ■

Actually, these are the only possible max-stable distributions in dimension 1. This point is proved
in the proof of the next theorem (see for instance Resnick [1987]), which is a cornerstone of extreme
value theory.

Theorem 1.3.5 — Fisher–Tippett–Gnedenko theorem. Let (Xi)i≥1 be a sequence of i.i.d. random
variables with c.d.f. F and set Mn := max1≤i≤nXi. Assume that there exist two sequences of
real numbers (an)n≥1, (bn)n≥1, with an > 0 for all n, such that

P
(Mn − bn

an
≤ x

)
= Fn(anx+ bn) →

n→∞
G(x),

where G is a non-degenerate c.d.f. and x is a point of continuity of G. Then G is the c.d.f.
of either the Fréchet distribution, the Gumbel distribution or the Weibull distribution.

It is possible to standardize those three probability laws into one unique distribution. Although it
allows for more elegant and compact formulations in certain contexts (see theorem 1.3.14) below),
we will not make much use of it in the sequel for it may prove unwieldy for our purposes.
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Definition 1.3.6 (Generalized extreme value distribution). For ξ ∈ R, denote by Hξ the
following c.d.f.

Hξ(x) :=

e−(1+ξx)− 1
ξ if ξ ̸= 0

e−x if ξ = 0,

for the x such that 1 + ξx > 0.

Due to the importance of the three max-stable distributions, it is essential to know a few things
about them, in particular their moments and their connections.

Proposition 1.3.7 - The Fréchet distribution F(α, σ) admits moments of all order up to α
excluded:

E[Zk] = 1
σk

Γ
(
1 − k

α

)
, k < α.

- The Gumbel distribution G(µ, σ) admits moments of all order:

E[(Z − µ)k] = 1
σk

Γ(k)(1), k ∈ N.

- The negative Weibull distribution W(α, σ) admits moments of all order:

E[Zk] =
(

− 1
σ

)k
Γ

(
1 + k

α

)
, k ∈ N.

Proposition 1.3.8 Let Z be a random variable with Fréchet distribution F(1). We have the
following:

- Z
1
α ∼ F(α).

- −Z−
1
α ∼ W(α).

- log(Z) ∼ G(0, 1).

We will say that a random variable X belongs to the domain of attraction of the c.d.f. G (noted
FX ∈ D(G)) if one can find normalizing sequences (an)n≥1, (bn)n≥1, with an > 0 for all n, such
that (Mn − bn)/an converges weakly to the distribution with c.d.f. G. The convergence to types
theorem (Resnick [1987] page 7) ensures that the domains of attractions associated to two c.d.f. do
not intersect, unless those c.d.f. are equal up to an affine transformation of the argument.

Theorem 1.3.5 is essential in EVT but only gives the possible limits for a renormalized maximum of
i.i.d. random variables; it does not state which limit (if any) appears for a given base distribution
for the Xi. The next theorem clarifies this point and is also essential in EVT. A similar statement
exists for the generalized central limit theorem (see [Durrett, 2019] as well as Embrechts et al. [2013]
for a more detailed exposition). Before stating it, we need some further definitions.

Definition 1.3.9 (Regular variation). Let h : R∗+ → R∗+. Such a function is said to be
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regularly varying of index α ∈ R at ∞, noted h ∈ RVα, if

lim
t→∞

h(tx)
h(t) = xα, x ∈ R.

When α = 0, we say that h is slowly varying.

A regularly varying function h with index α can always be written as

h(x) = L(x)
xα

, x > 0

where L is a slowly varying function.

Definition 1.3.10 (Von Mises function). A Von Mises function with auxiliary function f is
a c.d.f. F# with right endpoint x1 which admits the representation

F#(x) = ce
−

∫ x

x0
1

f(u) du
, x ∈ (x0, x1)

for some scalar x0 and where c is a positive constant, and f a positive, absolutely continuous
function on (x0, x1), whose derivative f ′ vanishes at x1.

Theorem 1.3.11 - X belongs to the domain of attraction of Φα if and only if its tail function
FX ∈ RV−α. In this case x1 = +∞, and we can take an = F←(1 − 1/n) and bn = 0 as
the normalizing sequences.

- X belongs to the domain of attraction of Λ if and only if there exist a Von Mises function
F# and a function c with finite limit at x1 such that,

FX(x) = c(x)F#(x), x ∈ (z0, x1).

In this case, one may take an = f(bn) and bn = F←(1 − 1/n).

- X belongs to the domain of attraction of Ψ−α if and only if its right endpoint x1 is finite
and x 7→ FX(x1 − x−1) ∈ RVα. In this case we can take an = x1 − F←(1 − 1/n) and
bn = x1 as the normalizing sequences.

As one can see, the domain of attraction of the Gumbel distribution, as well as the normalizing
sequences, are rather complicated to describe. On the other hand, it is usually much easier to work
with the Fréchet distribution and the Weibull distribution. For instance, on many occasions, we
will have

FX(x) ∼
x→∞

c

xα

for some c > 0. This condition implies that FX is in RV−α but also allows us to take an = n1/α, thus
dispensing us of the need to know FX and its pseudo-inverse. Many common distributions satisfy
this stronger assumption, such as the Pareto distribution, the Fisher distribution, the Student
distribution and so on. By contrast, much more complicated situations may arise in the case of the
Gumbel distribution. For instance, both the exponential distribution and the normal distribution
belong to D(Λ). However, in the first case an = 1 and bn = logn, while in the second case we have
the much more formidable constants

an = 1√
2 logn

and bn =
√

2 logn− log 4π + log logn
2
√

2 logn
.
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This contrasts with the central limit theorem, where the normalizing constants depend on the base
distribution only through its first two moments. However, similar problems arise too in the case of
the generalized central limit theorem, where the base distribution does not have a second moment,
and the limiting distribution is a non-Gaußian stable distribution. Notice that we always have an
order on those constants though: an < bn for n large enough. To be more precise, if F belongs to
the domain of attraction of the Gumbel distribution, we have (Resnick [1987]):

lim
n→∞

1 − F (an)
1 − F (bn) = +∞,

so in particular bn reaches the right endpoint x0 of the support of F faster than an could (assuming
it does converge to it at all). Theorem 1.3.11 may be hard to apply in practice, so simpler conditions
to check whether a distribution belongs to the domain of attraction of a max-stable distribution
are welcome.

Proposition 1.3.12 Let F be a distribution function with right endpoint x1 and τ ∈ R∗+. There
exists a sequence (un)n≥1 such that nF (un) converges to τ if and only if F (x−1 ) = 1 and

lim
x→x1

F (x)
F (x−)

= 1.

An immediate consequence of this result is that no discrete distribution can be in the domain of
attraction of the Weibull distribution, since then x1 is finite while we cannot have F (x−1 ) = 1 = F (x1).
It also implies that many common discrete distributions such as the Poisson distribution or the
geometric distribution are not in the domain of attraction of the Gumbel distribution (see Embrechts
et al. [2013] for more about this). This is a bit counter-intuitive since a geometric distribution can
be seen as the discrete counterpart of the exponential distribution, which is a case in point of a
distribution in the domain of attraction of the Gumbel measure.

This last result is used in conjunction with the next proposition, which plays an important part in
the Poisson approximation approach to EVT and its connection with rare events theory, see for
instance Feidt [2013].

Proposition 1.3.13 — Poisson approximation. Let τ be a nonnegative scalar and (un)n a sequence
of real numbers. We have the equivalence:

lim
n→∞

nF (un) = τ ⇐⇒ lim
n→∞

P(Mn ≤ un) = e−τ . (1.15)

That proposition is closely related to the next statement, taken from Embrechts et al. [2013]. It lies
at the root of the most standard statistical techniques of extreme value theory.

Theorem 1.3.14 — Pickands-Balkema-de Haan Theorem. Let FX be the c.d.f. of some real
random variable X with right endpoint x1. For any ξ ∈ R, the following assertions are
equivalent:

1. FX belongs to the domain of attraction of Hξ.

2. There exists a positive, measurable function a such that for all x for which 1+ξx is positive,
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we have

lim
u→x1

FX(u+ xa(u))
FX(u)

=
{

(1 + ξx)−
1
ξ if ξ ̸= 0

e−x if ξ = 0.
(1.16)

3. Set UX(t) = F←X (1 − t−1) for t > 0. For x, y > 0, with y ̸= 1,

lim
u→x1

UX(sx) − UX(s)
UX(sy) − UX(s) =


xξ − 1
yξ − 1 if ξ ̸= 0

log x
log y if ξ = 0.

Remark 1.3.15. Assume ξ = 1/α > 0. Then Hξ is the c.d.f. of a translated Fréchet distribution
α(Z − 1) with Z ∼ F(α).

- It is possible to show that a(s) behaves like α−1UX(s) when s goes to ∞. In particular, if
FX(s) ∼

s→+∞
s−α, then a(s) ∼

s→+∞
α−1s−1/α. When the c.d.f. is differentiable, a possible choice

for a is:

a(u) = FX(u)
fX(u) .

See for instance Papastathopoulos and Tawn [2013] and the references therein.

- Since a(u) is a positive function, we can then give a more probabilistic interpretation to equation
(1.16):

FX(u+ xa(u))
FX(u)

= P(X ≥ u+ xa(u))
P(X ≥ u) = P

(
X ≥ u+ xa(u) |X ≥ u

)
,

meaning that the distribution of (X − u)/a(u) conditional on {X ≥ u} converges weakly to a
so-called generalized Pareto distribution (GPD). More precisely, given our assumption on α, it
converges to a α(Y − 1), where Y ∼ VP(α, 1). In the same spirit, notice that the α−1-regular
variation hypothesis on FX can be interpreted as:

L(u−1X |X ≥ u) d−→
u→∞

VP(α, 1),

because, for x ≥ 1, we have:

P
(
u−1X ≥ x |X ≥ u

)
= P(X ≥ ux)

P(X ≥ u) = FX(ux)
FX(u)

−→
u→∞

1
xα

= P(Y ≥ x),

with Y ∼ VP(α, 1).

■

1.3.2 The multivariate case

Like Gaußian distributions and stable distributions, the notion of max-stable distribution can be
extended into higher dimensions. Most, if not all results from this subsection, come from Resnick
[1987] and Resnick [2006].



46 1. PRELIMINARIES

The maximum operator on Rd is defined:

x ⊕ y := (x1 ⊕ y1, . . . , xd ⊕ yd)

where xj , yj denote the coordinates of the vectors x,y ∈ Rd. Although the following binary relation
is not a true order, unlike its one-dimensional counterpart, it will be still useful in the sequel:

x < y ⇐⇒ xj < yj , for all j ∈ [[1, d]]. (1.17)

By contrast, if at least one coordinate of x is (strictly) greater than the corresponding coordinate
of y, we will say that x ≰ y:

x ≰ y ⇐⇒ xj > yj , for some j ∈ [[1, d]].

We also denote hyperrectangles with the usual notations for segments:

(a, b] := {x ∈ Rd, a < x ≤ b} and (−∞, b] := {x ∈ Rd, x ≤ b}.

Notice that (−∞,a]c = {x ∈ Rd, x ≰ a}, where −∞ denotes the vector of Rd whose coordinates
are all equal to −∞.

The c.d.f. FX of a random vector X in x is defined as the probability that X belongs to (−∞,x]:

FX(x) := P(X ≤ x), x ∈ Rd.

Next we define what being max-stable in higher dimensions means.

Definition 1.3.16 (Multi-dimensional max-stability). Let µ be a probability distribution
on Rd. We say that µ is max-stable if for any n ≥ 1 and any X1, . . . ,Xn are n i.i.d. random
vectors with common distribution µ, there exists an, bn two deterministic vectors in (R∗+)d×Rd

such that
n⊕

i=1
Xi =

( n⊕
i=1

X1
i , . . . ,

n⊕
i=1

Xd
i

) d= anX1 + bn.

where the multiplication between vectors is to be taken in a coordinate-wise manner. If
bn = 0, then we say that µ is strictly max-stable. A random vector X is said to be min-stable
if −X is max-stable.

A basic property of max-stable random vectors is that, under an assumption on the normalizing
vectors, they behave well under max-linear combinations, i.e. linear combinations where the sum
operator + has been replaced by the max operator ⊕.

Proposition 1.3.17 If X = (X1, . . . , Xd) is a max-stable random vector such that there exist
scalars an and bn for which the normalizing vectors an and bn satisfy

an = an1 and bn = bn1

for all n ≥ 1, then any max-linear combination of its coordinates is a max-stable random
variable.
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Proof. Let v be a vector in (R+)d and set

Z := ⟨v,X⟩⊕ :=
d⊕

j=1
vjXj .

Let Z1, . . . , Zn be n i.i.d. copies of Z. Then we have:

P
( n⊕

i=1
Zi ≤ x

)
= P

( n⊕
i=1

d⊕
j=1

vjXj
i ≤ x

)

= P
( d⊕

j=1

n⊕
i=1

vjXj
i ≤ x

)

= P
( d⋂

j=1

{ n⊕
i=1

Xj
i ≤ x

vj

})

= P
( d⊕

j=1
vj(anX

j
1 + bn) ≤ x

)
= P(anZ1 + bn ≤ x).

Before exposing the other principal properties of max-stable vectors, we give a few examples of
such random vectors.

Example 1. - A random vector (X1, . . . , Xd) with i.i.d. coordinates each having the Fréchet
distribution F(1) is a max-stable random vector:

P
( n⊕

i=1
Xi ≤ x

)
=

(
P(X1 ≤ x)

)n = e
−n

∑d

j=1
1

xj , x ∈ (R+)d,

which is exactly the c.d.f. of anX1, where an = n1 = n(1, . . . , 1) (and thus bn = 0).

- Let X ∼ F(1). Then the random vector X = (X, . . . ,X) = X1 is a max-stable random vector
in Rd. Here we have:

FX(x) = e
−

⊕d

j=1
1

xj , x ∈ (R+)d.

The normalization vectors an and bn are the same as in the previous examples, even though the
dependency relations between the coordinates of each random vector are diametrically opposed
(complete independence versus complete dependence).

- The random vector (X,Y ), where X ∼ F(1), Y ∼ G(0, 1) and X,Y are independent, is also
max-stable. This time we have an = (n, 1) and bn = (0, log(n)).

- The Weibull distribution W(1) of shape parameter 1 corresponds to the negative exponential
distribution. Up to a change of sign, we recover the fact that the exponential distribution is
min-stable. Set:

1 − F (x, y) := e−x + e−y − 1
ex + ey − 1 , x, y > 0.
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This defines a distribution function on Rd with exponential margins known as the Marshall and
Olkin bivariate exponential distribution (see Marshall and Olkin [1983]) Let (X,Y ) be a random
vector with this distribution function. One can easily prove that:

P(X ≥ x, Y ≥ y) = 1
ex + ey − 1 , x, y > 0.

Therefore, although the margins are min-stable, a random vector with this distribution is not
min-stable, since we cannot find vectors an > 0 and bn such that(

P(X ≥ x, Y ≥ y)
)n = P

(
a1

nX + b1
n ≥ x, a2

nY + b2
n ≥ y

)
, x, y > 0.

In all those examples, the marginal distributions had one of the one-dimensional max-stable
distributions. This is a general fact: the marginal distributions of a max-stable random vector can
only be Fréchet, Gumbel or Weibull. It is easy to prove by using the same arguments as in the proof
of proposition 1.3.17 and taking v = ei (in this case the assumption on the normalizing vectors an

and bn is not necessary), thus showing that each coordinate Xj of a max-stable random vector X
is max-stable too. We then conclude by theorem 1.3.5. Alternatively, one can also write directly:

F⊕n
i=1Xj

i
(x) = F⊕n

i=1Xi(+∞, . . . ,+∞, x,+∞, . . . ,+∞)

= FanX+bn(+∞, . . . ,+∞, x,+∞, . . . ,+∞)
= F

aj
nXj+bj

n
(x).

In the sequel, we will follow the custom and mainly focus on the simple max-stable random vectors,
that is, max-stable random vectors whose marginals are Fréchet F(α) with parameter α > 0. Let
us mention that the usual definition of simple max-stable random vectors de Haan and Ferreira
[2007] (definition 6.1.13) assumes that α = 1, but this will not fit into our framework, so we will
drop this assumption.

Max-stable random vectors can have complicated dependency structures (and as such are not easy
to simulate), but it is nonetheless possible to give a simple description of them thanks to the next
result (see Resnick [1987]).

Theorem 1.3.18 — Spectral decomposition of max-stable random vectors. Let Z be a random
vector in Rd and define E = [0,+∞]d \ {0}. The following are equivalent:

1. Z is a simple max-stable random vector with F(α) marginal distributions for some positive
α.

2. There exists a finite measure ν on Sd−1
+ , called the angular measure, satisfying the moment

constraints: ∫
Sd−1

+

uj dν(u) = 1, j ∈ [[1, d]] (1.18)

and a Poisson point process η =
∑∞

k=1 δ(ρk,Uk) over R∗+ × Sd−1
+ with intensity measure

α
rα+1 dr ⊗ dν(u) such that:

Z
d=
∞⊕

k=1
ρkU

1
α

k . (1.19)
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3. There exists a finite measure ν on Sd−1
+ satisfying (1.18) such that for all x ∈ Rd

FZ(x) =

0 if x /∈ E

exp
(

−
∫
Sd−1

+

⊕d
j=1

(
uj

xj

)α dν(u)
)

if x ∈ E.
(1.20)

4. There exists a Radon measure µ, called the exponent measure, satisfying the two following
conditions:

µ(tA) = t−αµ(A), t ∈ R∗+, A ∈ B(E), (1.21)

µ{x ∈ E | xj ≥ 1} = 1, j ∈ [[1, d]]. (1.22)

and such that for all x ∈ Rd

FZ(x) =
{

0 if x /∈ E

exp
(

− µ[0,x]c
)

if x ∈ E,

where [0,x] :=
∏d

j=1[0, xj ] if x = (x1, . . . , xj).

This result will be central in what follows. In dimension 1, it simply states that a Fréchet F(1)
random variable is the maximum of (Γ−1

n )n≥1, where (Γn)n≥1 is an homogeneous Poisson point
process on R+. Since the smallest point of the latter is distributed according to an exponential
distribution E(1), this amounts to saying that if Y ∼ E(1), then Y −1 ∼ F(1), a standard result.
Geometrically a typical realization of (Γ−1

n )n≥1 looks like this

Figure 1.2: The 100 first points of (Γ−1
n )n≥1

Notice the accumulation point around 0. In particular, this Poisson process has infinitely many
points a.s. and its intensity measure r−2 dr is σ-finite. This will stay true in higher dimension.

We will give later a more formal definition of the notion of exponent measure (see the subsection
about max-infinitely divisible distributions). For now, observe that the exponent measure µ and
the angular measure ν are related in the following way: first define a measure on R∗+ by setting
ρα[x,+∞) := x−α for every positive x. Define also the product transformation by

d : R∗+ × Sd−1
+ → E0

(r,u) 7→ ru

with E0 := (R+)d \ {0}. Then we have:

µ = d∗(ρα ⊗ ν), (1.23)
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i.e. µ is the image-measure of ρα ⊗ ν by the product transformation d. This identity will be referred
as the polar decomposition of µ (w.r.t. to the reference norm ∥ · ∥).

The equality in distribution (1.19) is also known as the representation in Lévy-LePage series in
the more general context of Davydov et al. [2008] (dubbed here "de Haan-LePage series"). We will
write in the more compact form:

Z
d= m(η), (1.24)

where m is defined as the coordinate-wise maximum of the elements ρkU
1/α
k . Now let us make

a few additional remarks about this theorem: first we observe that the distribution of a simple
max-stable random vector is completely determined by the knowledge of the angular measure. By
putting such a vector at power 1/α in a coordinate-wise manner (or applying log to it when α = 0),
translating it by µ1 and multiplying it by a scale parameter σ, we get three additional parameters
to describe the family of max-stable random vectors whose coordinates share the same α, µ and σ.
Thus we will denote any distribution belonging to this family by

Z ∼ MS(α, ν;µ, σ).

When µ = 0 and σ = 1, we will write MS(α, ν) for short. More generally, when the marginals
of a max-stable random vectors have different max-stable distributions, and thus correspond to
different αj , µj and σj , we will denote this by Z ∼ MS(α, ν;µ,σ), where each vector contains the
parameters of each marginal. Second, even though the moment constraints may seem mysterious,
they are actually an easy consequence of the assumption that the marginal distributions of Z are
all unit Fréchet: by making x1, . . . , xd−1 goes to infinity, and since Zd has unit Fréchet distribution,
we have

exp
(

−
∫
Sd−1

+

ud

xd
dν(u)

)
= e
− 1

xd , xd ∈ R∗+

which yields the moment assumption for j = d. Applying the same argument to the d− 1 other
variables, we recover (1.18). Furthermore the exponent measures µ in the second, third and fourth
points are the same. Indeed, if Z is defined by (1.19), then we have:

P(Z ≤ x) = P
(
∀(ρ,U) ∈ η, ρU /∈ [0,x]c

)
= P

(
η[0,x]c = 0

)
= e−µ[0,x]c .

It remains to prove that this is equal to (1.20). The quantity in exponent can be expressed as:

µ[0,x]c =
∫
Sd−1

+

∫ ∞
0

1[0,x]c(ru) 1
r2 dr dν(u)

=
∫
Sd−1

+

∫
{r∈R+, ru∈[0,x]c}

1
r2 dr dν(u)

=
∫
Sd−1

+

∫
{r∈R+, r≥min x

u
}

1
r2 dr dν(u)

=
∫
Sd−1

+

d⊕
j=1

uj

xj
dν(u).

Here min denoted the usual minimum mapping (thus returning a scalar, not a vector). Now, to fix
ideas, we give some examples of simple max-stable random vectors with explicit angular measures.
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Example 2. - Take ∥·∥p as the reference norm for some p ∈ [1,∞]. If ν =
∑d

j=1 δej is the discrete
measure concentrated on the canonical basis vectors, then it satisfies the moment constraints
(1.18) and the associated exponent measure writes as:

µ[0,x]c =
∫
Sd−1

+

d⊕
j=1

uj

xj
dν(u) =

d∑
j=1

1
xj
, x ∈ E.

In other words, the max-stable distribution associated to this angular measure is the distribution
of d i.i.d. random variables with unit Fréchet margins. Notice that in this case the angular
measure is discrete and that the choice of the reference norm is immaterial here as long as
∥ej∥ = 1. We illustrate the corresponding Poisson process, in the case of the Euclidean norm:

Figure 1.3: The 100 first points of a Poisson process with ν = 1
2(δe1 + δe2)

Each red circle has random radius Rn = Γ−1
n , where (Γn)n≥1 is an homogeneous Poisson point

process on R+. The red dots corresponds to ΓnUn, where Un = (Bn, 1 −Bn), and the Bn are
i.i.d. Bernoulli B(1/2) random variables. Notice that the coordinate-wise maximum (the purple
dot) never belongs to the Poisson process: at least two points of the process are needed for the
maximum to be reached. It is distributed as a Fréchet random variable with shape parameter
α = 1.
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- Now take ∥ · ∥2 as the reference norm on Rd and ν =
√
dδ 1√

d
1. Once more this measure satisfies

the moment constraints (1.18) and we have that:

µ[0,x]c =
∫
Sd−1

+

d⊕
j=1

uj

xj
dν(u) =

d⊕
j=1

1
xj
, x ∈ E. (1.25)

This is exactly the case of complete dependence between coordinates, i.e. the distribution of
(X, . . . ,X) where X ∼ F(1). Visually, we get the following (the angular measure has not been
renormalized by

√
2 here):

Figure 1.4: The 100 first points of a Poisson process with angular measure ν = δ 1√
2
1

This time Un = 2−1/21, so the Un are deterministic. Besides, the coordinate-wise maximum of
this Poisson point process always belongs to it.

- This time we work with a diffuse angular measure. We choose ∥ · ∥2 on R2 as the reference
measure and twice the uniform measure on the compact S1

+ for ν. This measure indeed satisfies
(1.18):∫

S1
+

u1 dν(u) = 2
∫ 1

0
r

∫ π
2

0
cos(θ) dθ dr = 1 = 2

∫ 1

0
r

∫ π
2

0
sin(θ) dθ dr =

∫
S1

+

u2 dν(u).
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As before, a simple computation gives the exponent measure. Let x = (x, y) ∈ E, . We have:

µ[0,x]c = 2
∫ 1

0
r

∫ π
2

0

cos(θ)
x

⊕ sin(θ)
y

dθ dr

= 1
x

∫ arctan( y
x

)

0
cos(θ) dθ + 1

y

∫ π
2

arctan( y
x

)
sin(θ) dθ

= 1
x

sin
(

arctan
(y
x

))
+ 1
y

cos
(

arctan
(y
x

))
= 1√

x2 + y2

(y
x

+ x

y

)
,

where we made use of the identities

sin
(

arctan(x)
)

= x√
1 + x2

and cos
(

arctan(x)
)

= 1√
1 + x2

, x ∈ R.

We illustrate the associated Poisson process, where the angular measure is renormalized to be a
probability measure (the uniform distribution on S1

+):

Figure 1.5: The 100 first points of a Poisson process with uniform angular measure ν for ∥ · ∥ = ∥ · ∥2
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In this exemple, Un =
(

cos(θn), sin(θn)
)
, where θn is random variable with uniform distribution

on [0, π/2]. As such, Un is a uniform random variable on S1
+. Depending on the realization of

the Poisson point process, its component-wise maximum may or not belong to it.

- In the previous example, we chose the uniform measure (up to a constant) on the usual circle.
Changing the reference norm (and thus the associated sphere) changes the dependency structure
between the coordinates. For instance, take the norm ∥ · ∥∞ on R2 as the reference norm, and
S1

+ = ([0, 1] × {1}) ⊎ ({1} × [0, 1]) the associated unit circle. The uniform measure on this set
becomes ν = 3(λ1 ⊗ δ1 + δ1 ⊗ λ1)/2, where λ1 is the Lebesgue measure on R. But then the
exponent measure writes as:

µ[0,x]c =


1
x + x

3y2 if x ≤ y
1
y + y

3x2 if x > y,
, x = (x, y) ∈ E

which is very different from the previous example.

Figure 1.6: The 100 first points of a Poisson process with uniform angular measure ν for ∥·∥ = ∥·∥∞

The random vectors Un are taken equal to
(
Bn+(1−Bn)Xn, (1−Bn)+BnXn

)
, where Bn ∼ B(1/2)

and Xn ∼ U[0,1]. This indeed corresponds to the uniform distribution on the positive orthant S1
+

of the unit circle for the infinity norm ∥ · ∥∞.
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The question of the existence of densities for max-stable random vectors is important in statistical
applications. It will play a (minor) role later in this thesis to make use of a certain result from
the theory of probability metrics. A paper by Dombry et al. [2016] gives necessary and sufficient
conditions for a simple max-stable random vector (with α = 1) to admit a density with respect to
the Lebesgue measure λd on Rd.

1.3.3 Max-infinitely divisible distributions
Max-infinitely divisible distributions (max-id distributions) are the counterparts of infinitely divisible
distributions when the sum operator + is replaced by the max operator ⊕ (see for instance Durrett
[2019] for more on infinitely divisible distributions). As such, they constitute a natural generalization
of max-stable distributions. Just as infinitely divisible distributions are the only possible distributions
of a Lévy process at time t = 1, max-id distributions are the only possible distributions of an
extremal process at time t = 1. We do not delve into this theory and refer the interested reader
to Resnick [1987]. Let us finally mention that max-id distributions are the only possible limiting
distributions for a maximum of a triangular array of n i.i.d. random vectors (Xn,k)n≥1

k≤n
when n goes

to infinity.

Definition 1.3.19 (Max-id distributions). Let µ be a probability distribution on Rd. We say
that µ is max-infinitely divisible distribution if for any random vector X with distribution µ,
and any positive integer n, there exist n i.i.d. random vectors Xn,1, . . . ,Xn,n such that:

X
d=

n⊕
i=1

Xn,i.

A random vector X is said to be min-infinitely divisible (min-id) if −X is max-id.

In particular, FX = Fn
X1,n

, and thus it is equivalent to ask that F 1/n
X is a distribution function for all

positive integers. Actually, an equivalent statement of the max-id property is that a random vector
X is max-id if and only if its distribution function FX at any power t > 0 is still a distribution
function. Before moving to the main result, we give a few examples of max-d distributions, as well
as a counter-example.

- Every max-stable random vector X with normalizing vectors an and bn is max-id, with
Xn,i := (Xi − bn)/an, where X1, . . . ,Xn are n i.i.d. copies of X.

- Another important family of max-id distributions is given by the univariate probability dis-
tributions, since any distribution function on R at any positive power remains a distribution
function.

- Therefore, examples of distributions which are not max-id can only be found in higher dimensions:
for instance, one can show that the Gaußian random vector (X,X + ρY ), where X and Y
are i.i.d. with standard normal distribution N (0, 1) and ρ ∈ R, is max-id if and only if ρ is
nonnegative. Actually, a random vector X can be max-id only if it is associated:

Cov(f1
(
X), f2(X)

)
≥ 0,

for all f1, f2 which are real-valued, non-decreasing functions in each coordinate of their arguments
on Rd. Taking for f1, f2 the projections with respect to every pair of coordinate number
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j1, j2 ∈ [[1, d]], we see that a Gaußian vector can be max-id only if all the coefficients of its
covariance matrix are nonnegative.

A generalization of theorem 1.3.21 to max-id distributions exists and will prove as useful as its
max-stable counterpart, although less information can be available on the exponent measures at
such a level of generality. We first define properly the notion of exponent measure:

Definition 1.3.20 (Exponent measure). We say that a Radon measure on Rd is an exponent
measure if there exists ℓ ∈ [−∞,+∞)d such that by setting Eℓ := [ℓ,+∞] \ {ℓ}, we have

lim
x→+∞

µ[−∞,x]c = µ
( d⋃

j=1
{x ∈ E, xj = +∞}

)
= 0

Either
(
ℓ > −∞

)
or

(
x ≥ ℓ and ∃j ∈ [[1, d]], xj = −∞ =⇒ µ[−∞,x]c = 0

)
.

We are now in position to give the main result of this section.

Theorem 1.3.21 — Spectral decomposition of max-id random vectors. Let Z be a random vector
in Rd with distribution function FZ . The following are equivalent:

1. Z is a max-id random vector.

2. For some ℓ ∈ [−∞,+∞)d, there exists an exponent measure µ on Eℓ = [ℓ,+∞] \ {ℓ} such
that

FZ(x) =
{
e−µ[−∞,x]c if x ≥ ℓ

0 otherwise.

3. For some ℓ ∈ [−∞,+∞)d, there exists an exponent measure µ on Eℓ = [ℓ,+∞] \ {ℓ} and
a Poisson process η =

∑
k δZk

on Eℓ with intensity measure µ such that

Z
d=
∞⊕

k=1
Zk. (1.26)

If any of those conditions is satisfied, the exponent measure µ is characterized by:

µ[−∞,x]c = − logFZ(x), x > ℓ. (1.27)

1.3.4 Construction and properties of the extremal integral

The classic notion of stochastic integral has been extended in several ways. One of them, called
α-stable integral is particularly suited to describe certain stable stochastic processes and is studied in
e.g. Samorodnitsky and Taqqu [1994]. In the context of max-stable distributions, the corresponding
notion is named extremal integral. Examples of papers relying on this notion include Vervaat [1988]
and Resnick and Roy [1991]. Our presentation follows Stoev and Taqqu [2005].

We will denote the scale parameter of a Fréchet random variable Z by ∥Z∥α := σ. The reason
behind this notation will become clear in the sequel. Next we introduce the notions of α-Fréchet
processes and max-linear combinations. Remember that Gaußian processes are defined as the
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stochastic processes such that any linear combination of their marginals is still Gaußian. Here
α-Fréchet processes are defined in a similar fashion.

Definition 1.3.22. Let X be a subset of Rd, for some d ≥ 1. A real-valued stochastic process
Z = (Z(x))x∈X is α-Fréchet if any max-linear combination of its marginals has the Fréchet
distribution F(α, σ), for some σ and all n ≥ 1:

n⊕
j=1

ajZ(xj) d= F(α, σ), (x1, . . . ,xn) ∈ X n, (a1, . . . , an) ∈ Rn
+.

A result by de Haan states that for a process with α-Fréchet margins, this definition is equivalent
to being max-stable. The next definition is the analogue of Gaußian spaces for α-Fréchet processes.

Definition 1.3.23. We say that a set M of random variables is an α-Fréchet space if it closed
under max-linear combinations and its elements are jointly α Fréchet random variables, that
is:

1. (Max-linear space) For all n ≥ 1, we have for (Z1, . . . , Zn) ∈ M:

n⊕
i=1

aiZi ∈ M, (a1, . . . , an) ∈ Rn
+.

2. For all Z ∈ M, Z is α-Fréchet. Furthermore M is said to be closed if it is closed under
taking limits in probability.

In the sequel we give a short account of the construction of the stochastic extremal integral as it is
done in Stoev and Taqqu [2005]. The reasoning is always the same: first construct the integral
for simple functions, find some fundamental properties of this integral and then construct the
integral for general integrands by approximating them with increasing sequences of simple functions.
We will not detail the first and second parts, but will nonetheless explain the framework used to
justify the approximation procedure since it will be useful for us later. Lastly we will enumerate
some of the most important properties of the stochastic extremal integral and detail its links with
max-stable processes.

Definition 1.3.24. Let (E, E , µ) be a measure space and E0 := {A ∈ E , µ(A) < ∞} and L0(Ω)
the set of real random variables on Ω. Let α > 0. We say that a function Mα : E0 → L0(Ω) is
a random sup-measure with control measure µ if it satisfies the three following conditions:

1. (independently scattered) For any collection of disjoint sets (Aj)1≤j≤n in E0, the random
variables (Mα(Aj))1≤j≤n are independent.

2. (α-Fréchet) For any A ∈ E0, Mα ∼ F
(
α, µ(A)1/α)

)
, i.e.

P(Mα(A) ≤ x) = exp
(

− µ(A)
xα

)
1{x≥0}, x ∈ R.

3. (σ-sup-additive) For any collection of disjoint sets (Ai)i≥1 in E0 such that
⋃

iAi ∈ E0, we



58 1. PRELIMINARIES

have:
Mα

( ∞⊎
i=1

Ai

)
=
∞⊕

i=1
Mα(Ai) a.s..

The existence of random sup-measures is not obvious but is guaranteed with no further assumption
on µ. We will not dwell on the proof of this result and take it for granted (see the aforementioned
paper by Stoev and Taqqu and the references therein). Now using this definition, we introduce the
extremal integral for simple functions.

Definition 1.3.25. Let f be a simple function on E:

f(x) =
n∑

i=1
ai1Ai(x), x ∈ E

where ai are non-negative numbers and the Ai are disjoint. The extremal integral of f with
respect to the random sup-measure Mα is defined as:

e∫
E
f(x) dMα(x) :=

n⊕
i=1

aiMα(Ai).

To extend this definition to more general integrands, the next proposition is required. It is of
interest on its own, and so is the lemma used to prove it.

Proposition 1.3.26 Let M be an α-Fréchet space and let Z,Z1, Z2, · · · ∈ M. We have the
equivalences:

1. Zn
P−→

n→∞
Z,

2. ρM,α(Zn, Z) := 2∥Zn ⊕ Z∥α
α − ∥Zn∥α

α − ∥Z∥α
α −→

n→∞
0,

3. mp(Zn, Z) := E
[
|Zp

n − Zp|
]

−→
n→∞

0.

Moreover, the functionals ρM,α and mp are metrics which metrize the convergence in probability
in M. Finally, M is a closed Fréchet space if and only if it is complete with either one or
both of those metrics.

Lemma 1.3.27 Let Z be a random variable with Fréchet distribution F(α, ∥Z∥α). If p ∈]0, α[,
then Z ∈ Lp(R∗+) and

E[Zp] = cp,α∥Z∥p
α := Γ

(
1 − p

α

)
∥Z∥p

α,

where Γ denotes the Gamma function. Furthermore, if the sequence of random variables
(Zn)n≥1 converges in distribution to some random variable Z, then (∥Zn∥α)n≥1 converges and

Z ∼ F
(
α, lim

n→∞
∥Zn∥α

)
.

On the other hand, if there exists σ ∈ R+ such that (∥Zn∥α)n converges to σ, then

Zn
d−→

n→∞
F(α, σ).
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The previous results constitute the main ingredients to define the extremal integral for general
integrands. It is constructed as the µ-almost sure limit of the sequence of extremal integrals of fn,
where (fn)n is an increasing sequence of non-negative simple functions converging to f . Naturally
this limit does not depend on the approximating sequence. Now we list the main properties of this
integral:

Theorem 1.3.28 Let f be a non-negative function such that
∫

E f(x)α dµ(x) is finite. Then
the extremal integral of f on E exists and is a random variable Z with Fréchet distribution
F(α, ∥Z∥α), where

∥Z∥α
α =

∥∥∥ e∫
E
f(x) dMα(x)

∥∥∥α

α
=

∫
E
f(x)α dµ(x).

This theorem can be seen as an ’extremal’ counterpart of the Itō isometry. But keep in mind that
α-Fréchet random variables are never in Lα(R∗+), so this analogy can be misleading. In the sequel
we will use the notation

Lα
+(E,µ) :=

{
f : E → R+,

∫
E
f(x)α dµ(x) < +∞

}
.

The next proposition gathers several properties of the extremal integral, some of which being
essential for the next subsection.

Proposition 1.3.29 1. (Max-linearity) For all f, g ∈ Lα
+(E,µ), we have(

λ
e∫

E
f dMα

)
⊕

(
µ

e∫
E
g dMα

)
=

e∫
E

(
λf ⊕ µg

)
dMα, λ, µ ≥ 0.

2. (Independence) The extremal integrals of f and g are independent if and only if f and g
have disjoint supports, that is:

e∫
E
f dMα and

e∫
E
g dMα are independent if and only if fg = 0 µ−a.e.

3. (Monotonicity)

f ≤ g µ−a.e. if and only if
e∫

E
f dMα ≤

e∫
E
g dMα µ−a.e.

In particular, f = g µ-a.e. if and only if the associated extremal integrals are equal µ-a.e.

1.4 Distances between distributions

Every random element is defined on an appropriate probability space (Ω,F ,P).

In this section we give a brief account of the main probability distances we will use throughout this
dissertation. More on this topic can be found in the classic monographs Nourdin and Peccati [2012]
and Dudley [2002], as well as in the reference papers Zolotarev [1984] and Müller [1997].

As stated in the introduction, Stein’s method works for integral probability metrics between
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probability measures µ, ν on Rd of the form

dH(µ, ν) := sup
h∈H

|Eµ[h] − Eν [h]|, (1.28)

where H is a separating class of real-valued functions. We say that a class of functions H is
separating if all its elements h are Borel-measurable functions, belong to L1(Ω,P) and are such that

Eµ[h] = Eν [h] for all h ∈ H =⇒ µ = ν.

The functions h of H will often be called test functions while dH will be referred as the distance
associated to H. An instance of a separating class of functions is the set of continuous, compactly-
supported functions from Rd to R.

Equation (1.28) defines a metric on the subset of probability measures µ on Rd such that h is
integrable with respect to µ for all h ∈ H: it is symmetric in its arguments µ and ν, it satisfies
the triangle inequality, and it vanishes if and only if µ = ν. Notice however that the topology it
induces has no reason to be the topology of the convergence in law in general.

Next we give a few examples of distances of the form (1.28). All of them will be used at some point
in the sequel.

Definition 1.4.1. Let µ, ν be two probability measures on Rd, and X,Y two random vectors
with law µ and ν respectively. We do not need to assume they are defined on the same
probability space.

- The total variation distance dTV is the distance associated to

H = {hA : x 7→ 1A(x), A ∈ B(Rd)}.

Therefore, the total variation distance writes as

dTV(X,Y ) = sup
A∈B(Rd)

|P(X ∈ A) − P(Y ∈ A)|.

It can also be expressed as a L1-distance between the densities fX and fY of PX and PY

with respect to (PX + PY )/2:

dTV(X,Y ) = 1
2

∫
Rd

|fX(z) − fY (z)| d(PX + PY )(z).

- The Kolmogorov distance dK is the distance associated to

H = {hz : x 7→ 1(−∞,z](x), z ∈ Rd}.

Therefore, the Kolmogorov distance writes as

dK(X,Y ) = sup
z∈Rd

|FX(z) − FY (z)| = ∥FX − FY ∥∞.
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- The Wasserstein distance dW is the distance associated to the set of 1-Lipschitz functions

H = Lip(Rd,R) =
{
h : Rd → R, |h(x) − h(y)| ≤ ∥x − y∥ for all x,y ∈ Rd}

,

where ∥ · ∥ is some norm on Rd.

- The smooth Wasserstein distance d[2] is the distance associated to the set of differentiable
functions which are 1-Lipschitz, and whose derivative is also 1-Lipschitz

H = Lip[2](Rd,R) = {h : Rd → R, h and h′ are 1−Lipschitz},

with respect to the same norm ∥ · ∥ on Rd.

- The stop-loss distance dSL can be considered a compromise between the Kolmogorov
distance and the Wasserstein distance. The set of test-functions H is:

H = {hz : x 7→ (x− z)+, z ∈ R}.

Those functions are well-known in finance (to define European call options) and in deep
learning (where they serve as activation functions for neural networks). Notice that hz

is 1-Lipschitz. In higher dimensions, a possible generalization would consist in taking
functions of the form:

hz(x) =
d⊕

j=1
hzj (xj) =

d⊕
j=1

(xj − zj)+, x ∈ Rd

where z is some fixed vector in Rd. Like their univariate counterparts, those functions are
also 1-Lipschitz.

Many other choices exist and are commonly used in applications, such as the Fortet-Mourier
distance (whose test-functions are the bounded Lipschitz functions) or the Radon distance (bounded
continuous functions). Naturally, they are not equivalent in general, although it is possible to order
them up to a certain extent. This is the purpose of the next result, which is stated and proved in
greater generality in Gaunt and Li [2023].

Proposition 1.4.2 Let µ, ν be two probability measures on Rd.

- The Kolmogorov metric is bounded by the total variation metric:

dK(µ, ν) ≤ dTV(µ, ν).

- The stop-loss distance is bounded by the Wasserstein distance:

dSL(µ, ν) ≤ dW(µ, ν).

- If ν has a bounded density w.r.t. to Lebesgue measure on Rd, then we also have:

dK(µ, ν) ≤ C
√

dW(µ, ν), (1.29)
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for some constant C independent of µ.

- Under the same assumption on ν, we have:

dK(µ, ν) ≤ C 3
√

d[2](µ, ν), (1.30)

for some constant C independent of µ.

Remark 1.4.3 (With which metric should one work?). As one can see, the choice of the working
distance is not benign. It mainly depends on the application in mind, and more importantly, on the
assumptions on the test-functions one needs. For instance, the total variation metric is well-suited
to compare discrete distributions but cannot be used to determine the distance between a discrete
distribution and a continuous one. Take for example X with an exponential distribution E(1),
and Xn with a geometric distribution Geom(1/n) divided by n. When n goes to infinity, (Xn)n≥1
converges in distribution to X. However, Xn has its support in the discrete set En = {k/n, k ∈ N∗},
which has Lebesgue measure equal to 0. In other words, we always have

1 = |P(Xn ∈ En) − P(X ∈ En)| ≤ dTV(Xn, X) ≤ 1, n ∈ N∗,

and the convergence in distribution of (Xn)n≥1 to X cannot be observed with this metric. On the
other hand, the Kolmogorov distance is less demanding and allows for comparison between discrete
and continuous distributions. But it is not always the most natural choice, especially in higher
dimensions, and the indicator functions 1(−∞,z](·) have little regularity. This may cause troubles
when trying to apply Stein’s method. The Wasserstein distance uses 1-Lipschitz functions as its
test-functions. Because a norm ∥ · ∥ is always 1-Lipschitz with respect to itself, one must assume
that both ∥X∥ et ∥Y ∥ are integrable for dW(X,Y ) to exist. This condition is also sufficient:

|h(X) − h(Y )| ≤ ∥X − Y ∥ ≤ ∥X∥ + ∥Y ∥,

for any 1-Lipschitz function. Consequently, the Wasserstein distance is not suited to work with
non-integrable random vectors, such as stable distributions, or Fréchet distributions, with shape
parameter α ∈ (0, 1). On the other hand, a Lipschitz function h is absolutely continuous, so
it is differentiable almost everywhere, and its derivative h′ is bounded almost everywhere too
(Rademacher’s theorem, see Villani [2008]). Notice we can also express this distance as:

dW(X,Y ) =
∫
Rd

|FX(z) − FY (z)| dz = inf
X′∼X
Y ′∼Y

E
[
∥X ′ − Y ′∥

]
, (1.31)

where the infimum is taken on all coupling (X ′,Y ′) such that X ′ and Y ′ have the same distributions
as X and Y respectively. Those properties make many computations much more convenient when
applying Stein’s method to this distance. Besides, inequality (1.29) allows us to bound the
Kolmogorov distance by using the Wasserstein distance. Thus, getting a rate of convergence for
the former implies getting another one for the latter, although it may not be optimal due to the
presence of the square root. Finally, the smooth Wasserstein distance imposes stronger assumptions
on the test functions, which may prove necessary in certain applications. For instance, when one
of the two distributions at least is not continuous, one cannot work anymore with h′ if h is only
Lipschitz, since the set of points at which it is not differentiable may intersect the set of atoms of
the discontinuous distribution. Furthermore, better rates of convergence may be obtained thanks
to those extra assumptions compared to the Wasserstein distance. An instance of this phenomenon
can be found in Goldstein and Reinert [2001], and another one will appear later in this dissertation.
■
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The goal of this chapter is to define the main tool of this thesis: a family of semi-groups which
quantize the extreme value distributions. Since one-dimensional EVT has certain unique features
compared to its multivariate counterpart, we start with the univariate case and then proceed to
generalize our results to the multivariate case.

2.1 Quantization of univariate extreme-value distributions
As stated in the preliminary, extreme value distributions are parametrized by a shape parameter
α ∈ R. The sign of α has a major impact on the behaviour of the extreme value distribution, and
so does it on the semi-groups we introduce now.

2.1.1 Quantization of the Fréchet distribution

We fix α > 0 in this subsection and let Z be a random variable with Fréchet distribution F(α).
Set γt = et − 1. We need to introduce the standard algebra (for a semi-group which has yet to be
introduced) with which we will work in this subsection:

Definition 2.1.1 (Standard algebra - Fréchet case). We define the class of functions:

SΦ :=
{
f ∈ S (R∗+), sup

x∈(0,1]
x−k|f (n)(x)| < ∞ for all (k, n) ∈ N × N∗

}
,

where S (R∗+) is the Schwartz class of rapidly decreasing functions from R∗+ to R.

It is important to notice that we do not require f to vanish at 0 faster than any monomial xk. This
property only concerns f ′ and its derivatives. Observe that SΦ is included in Lp(R∗+,Φα) for all

63
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p ≥ 1. Notice also that if f and g belong to SΦ, then so do f + λg and fg for any λ ∈ R, thus SΦ
is indeed an algebra of functions. Besides it is not empty.

Example 3. The space C∞c (R∗+) of compactly supported, infinitely differentiable functions on R∗+
is included in SΦ. Another example is the function x 7→ exp(−x− x−1), which does not belong to
C∞c (R∗+).

Definition 2.1.2 (Fréchet semi-group). Let α ∈ R∗+. Define the Fréchet semi-group (Pα
t )t≥0

on the standard algebra A = SΦ by

Pα
t f(x) := E

[
f

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
, x ≥ 0, t ≥ 0 (2.1)

where Z ∼ F(α) and f belongs to SΦ.

Remark 2.1.3. This definition is formally similar to the Mehler’s formula for the standard Ornstein-
Uhlenbeck semi-group (0.9) as well as the definition of the stable semi-group introduced in Arras
and Houdré [2023]:

Pα
t f(x) := E

[
f

(
e−tx+ (1 − e−αt)

1
αZ

)]
,

where Z is an α-stable distribution on R. Notice however that in our definition of the Fréchet
semi-group, α also appears in the first exponential term. To have a definition closer to the original
Mehler’s formula, we could have set

P̃α
t f(x) := E

[
f

(
e−tx⊕ (1 − e−αt)

1
αZ

)]
, x ≥ 0, t ≥ 0.

With this definition, we have P̃α
t f(x) = Pα

αtf(x). But this choice would have led to more cumbersome
formulae in the sequel so we prefer to stick with Pα

t rather than P̃α
t . A connection between the

semi-groups we will define for each EVD is possible too with this definition. ■

The goal of the next propositions is to check that (Pα
t )t≥0 is indeed a Markov semi-group in the

sense of definition 1.1.7. We will prove later that SΦ is indeed a standard algebra for (Pα
t )t≥0. For

now, simply keep in mind that because it contains C∞c (R∗+), it is dense in every Lp(R∗+,Φα).

Proposition 2.1.4 The family of operators (Pα
t )t≥0 is a semi-group on SΦ.

Proof. It is clear that each Pα
t is a well-defined linear operator for f ∈ SΦ, we have:

E
[
|f |

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
≤ CE

[(
e−

t
αx⊕ (1 − e−t)

1
αZ

)−1]
≤ C(1 − e−t)−

1
αE[Z−1]

< +∞,

where C := supx∈R+ xf(x). Thanks to the previous inequality, one gets that Pα
t f is measurable

and bounded. We also see that Pα
0 = Id on SΦ. The semi-group property is a consequence of the
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max-stability relation (1.11) satisfied by the Fréchet distribution:

Pα
t (Pα

s f)(x) = E
[
(Pα

s f)
(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
= E

[
E

[
f

((
e−

s
α

(
e−

t
αx⊕ (1 − e−t)

1
αZ1

)
⊕ (1 − e−s)

1
αZ2

)]]
= E

[
E

[
f

(
e−

1
α

(s+t)x⊕ e−
s
α (1 − e−t)

1
αZ1 ⊕ (1 − e−s)

1
αZ2

)]]
= E

[
f

(
e−

1
α

(s+t)x⊕ (1 − e−(s+t))
1
αZ

)]
= Pα

t+sf(x),

where Z1 and Z2 are i.i.d. random variables with the Fréchet distribution F(α). The expectation
of 1 w.r.t. any probability measure is still 1, so Pα

t 1 = 1. Finally the positivity of the expectation
operator implies that (f ≥ 0) =⇒ (Pα

t f ≥ 0). This completes the proof.

We will need the following lemma, which gives an alternative expression of Pα
t f . It will prove very

convenient throughout this section.

Lemma 2.1.5 Let f ∈ SΦ. The operator Pα
t satisfies:

Pα
t f(x) = f

(
e−

t
αx

)
e−

γt
xα + γt

∫ ∞
x

f
(
e−

t
α z

)
e−

γt
zα

α

zα+1 dz. (2.2)

Proof. It suffices to distinguish two cases, depending on whether (1 − e−t)Z ≤ e−t/αx or the
opposite:

Pα
t f(x) = E

[
f

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
= E

[
f

(
e−

t
αx

)
1{e−t/αx≥(1−e−t)1/αZ}

]
+ E

[
f

(
(1 − e−t)1/αZ

)
1{e−t/αx<(1−e−t)1/αZ}

]
= f

(
e−

t
αx

)
P

(
γ

1/α
t Z ≤ x

)
+ E

[
f

(
(1 − e−t)

1
αZ

)
1{γ1/α

t Z>x}

]
= f

(
e−

t
αx

)
P

(
γ

1/α
t Z ≤ x

)
+ E

[
f

(
e−

t
αγ

1/α
t Z

)
1{γ1/α

t Z>x}

]
.

Since the density of a Fréchet F(α, σ) random variable Z and γ
1/α
t Z ∼ F(α, γ1/α

t ) is

fZ(x) = σαe−
σα

xα
α

xα+1 , x ≥ 0,

and 0 for negative x, we get the desired result.

We next check the right-continuity property of t 7→ Pα
t in L2(R∗+,Φα).

Proposition 2.1.6 The mapping t 7→ Pα
t is right-continuous at 0 in L2(R∗+,Φα).
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Proof. First assume that α > 2 so that the integral
∫
R∗

+
r2 dΦα(r) is finite. Let f ∈ SΦ.

∥Pα
t f−f∥L2(R∗

+,Φα)

=
∫
R∗

+

|Pα
t f(r) − f(r)|2 dΦα(r)

=
∫
R∗

+

∣∣∣f(
e−

t
α r

)
e−

γt
rα + γt

∫ ∞
r

f
(
e−

t
α z

)
e−

γt
zα

α

zα+1 dz − f(r)
∣∣∣2 dΦα(r)

≤ 2
∫
R∗

+

∣∣f(
e−

t
α r

)
e−

γt
rα − f(r)

∣∣2 dΦα(r) + 2γ2
t

∫
R∗

+

∣∣∣ ∫ ∞
r

f
(
e−

t
α z

)
e−

γt
zα

α

zα+1 dz
∣∣∣2 dΦα(r)

≤ 2
∫
R∗

+

∣∣f(
e−

t
α r

)
e−

γt
rα − f(r)

∣∣2 dΦα(r) + 2∥f∥2
∞

∫
R∗

+

(
1 − e−

γt
rα

)2 dΦα(r).

By the dominated convergence theorem applied to the second integral (bound the integrand by 1),
the second half of the previous expression vanishes when t goes to 0+. To deal with the first half,
write ∣∣f(

e−
t
α r

)
e−

γt
rα − f(r)

∣∣ ≤
∣∣f(

e−
t
α r

)
− f(r)

∣∣e− γt
rα + |f(r)|(1 − e−

γt
rα )

≤ ∥f ′∥∞(1 − e−
t
α )r + ∥f∥∞

γt

rα
,

since both f and x 7→ e−x are Lipschitz on R∗+. Because we have assumed that α > 2, we know that
r 7→ r2 is integrable w.r.t. Φα. As a result, the square of each of the previous terms is integrable
w.r.t. Φα and tends to 0 as t goes to 0+, which concludes the proof when α is greater than 2.

If α ∈ (0, 2], simply replace f by g : r 7→ f(rk), where k = ⌊3α⌋, and Z by Z1/k. In this case we
have that g is still in SΦ, and in particular remains bounded and Lipschitz, while Z1/k admits a
variance. The previous arguments thus become valid again.

The next proposition is central for the applications and is another consequence of the max-stability
argument used to prove that (Pα

t )t≥0 has the semi-group property.

Proposition 2.1.7 Let Φα denote the Fréchet probability measure F(α). The semi-group (Pα
t )t≥0

admits Φα has a stationary measure. As such, (Pα
t )t≥0 is a Markov semi-group. Furthermore,

(Pα
t )t≥0 is ergodic:

Pα
t f(x) −→

t→∞
EΦα [f ] =

∫
R∗

+

f(r) dΦα(r), x > 0, f ∈ SΦ.

Proof. Let Z1, Z2 ∼ F(α) be two i.i.d. random variables with the Fréchet distribution. We have∫
R∗

+

Pα
t f(r) dΦα(r) = E

[
f

(
e−

t
αZ1 ⊕ (1 − e−t)

1
αZ2

)]
= E[f(Z)] =

∫
R∗

+

f(r) dΦα(r).

The proof of the ergodicity is a consequence of the dominated convergence theorem since

e−
t
α r ⊕ (1 − e−t)

1
αZ −→

t→∞
Z a.s.

and f ∈ SΦ.
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Proposition 2.1.8 For every t ≥ 0 and every p ∈ [1,∞), the operator Pα
t extends to a linear

contraction operator on Lp(R∗+,Φα).

Proof. The argument is generic and is the same as the one used in Nourdin and Peccati [2012] to
prove a similar property for the Ornstein-Uhlenbeck semi-group. By Jensen’s inequality applied to
the probability measure Φα and the convex function x 7→ xp, we have

∥Pα
t f∥p

Lp(R∗
+,Φα) =

∫
R∗

+

∣∣E[
f

(
e−

t
α r ⊕ (1 − e−t)

1
αZ

)]∣∣p dΦα(r)

≤
∫
R∗

+

E
[
|f |p

(
e−

t
α r ⊕ (1 − e−t)

1
αZ

)]
dΦα(r)

= E
[
|f |p

(
e−

t
αZ1 ⊕ (1 − e−t)

1
αZ2

)]
= E

[
|f |p(Z)

]
= ∥f∥p

Lp(R∗
+,Φα),

where Z1 and Z2 are i.i.d. random variables with the Fréchet distribution F(α). We have once
again used relation (1.11), or equivalently, that Φα is a (the) stationary measure for (Pα

t )t≥0.

We give other useful alternative expressions of Pα
t , its derivative as well as of its generator, all

based on (2.2).

Proposition 2.1.9 Let f ∈ SΦ and x ∈ R∗+. We have the following:

1. The derivative of Pα
t f satisfies:

(Pα
t f)′(x) = e−

t
α e−

γt
xα f ′

(
e−

t
αx

)
(2.3)

2. Pα
t f can be rewritten as:

Pα
t f(x) = −e−

t
α

∫ ∞
x

e−
γt
rα f ′

(
e−

t
α r

)
dr. (2.4)

Proof. 1. To prove equation (2.3), we simply differentiate (2.2) w.r.t. x

d
dx

(
f

(
e−

t
αx

)
e−

γt
xα +γt

∫ ∞
x

f
(
e−

t
α z

)
e−

γt
zα

α

zα+1 dz
)

= e−
t
α f ′

(
e−

t
αx

)
e−

γt
xα + γtf

(
e−

t
αx

)
e−

γt
xα

α

xα+1 − γtf
(
e−

t
αx

)
e−

γt
xα

α

xα+1

= e−
t
α e−

γt
xα f ′

(
e−

t
αx

)
.

2. This is a direct consequence of the previous point and of the fundamental theorem of calculus.

Now that we have proved that (Pα
t )t≥0 is a Markov semi-group, we can focus on computing its

generator.
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Proposition 2.1.10 The Markov semi-group (Pα
t )t≥0 has generator Lα:

Lαf(x) = − 1
α
xf ′(x) +

∫ ∞
0

(
f(x⊕ r) − f(x)

)
dρα(r), x > 0

where dρα(r) := αr−(α+1) dr on R∗+.

Proof. For starters, observe that∫ ∞
0

(
f(x⊕ r) − f(x)

)
dρα(r) = −f(x)

xα
+

∫ ∞
x

f(r) dρα(r). (2.5)

We compute the limit of (Pα
t f(x) − f(x))/t for all positive x and f in the Schwartz class f ∈ SΦ

by relying once again on (2.2).

1
t
(Pα

t f(x) − f(x)) − Lαf(x) = 1
t

(
f

(
e−

t
αx

)
e−

γt
xα + γt

∫ ∞
x

f
(
e−

t
α z

)
e−

γt
rα dρα(r) − f(x)

)
− Lαf(x)

= 1
t

(
f

(
e−

t
αx

)
e−

γt
xα − f(x)

)
+ 1
α
xf ′(x) + f(x)

xα

+ γt

t

∫ ∞
x

f
(
e−

t
α r

)
e−

γt
rα dρα(r) −

∫ ∞
x

f(r) dρα(r)

= (1) + (2).

To deal with (1), assume as before α > 2 and use the same decomposition as in the proof of
proposition 2.1.6:

1
t

(
f

(
e−

t
α r

)
e−

γt
rα − f(r)

)
= 1
t

(
f

(
e−

t
α r

)
− f(r)

)
+ 1
t
f(r)

(
e−

γt
rα − 1

)
.

The second part converges to r−αf(r) a.s. and in L2(R∗+,Φα) thanks to a dominated convergence
argument. To deal with the first part, use a Taylor formula with remainder: there exists a
ξr,t ∈]re−t/α, r[ such that

f
(
e−

t
α r) = f(r) +

(
e−

t
α − 1

)
rf ′(r) + 1

2
(
e−

t
α − 1

)2
r2f ′′(ξr,t).

Since f is in SΦ and α is greater than 2, f ′′ is bounded and the bounded convergence theorem
applies, so we get that (1) goes to 0 a.s. and in L2(R∗+,Φα). Using the same argument as in the
proof of proposition 2.1.6 with k = ⌊4α⌋, we can extend this proof to the general case.

As for (2), since the Schwartz class S (R∗+) is stable under integration, similar arguments as the
ones described above apply and give that (2) goes to 0 too, both a.s. and in L2(R∗+,Φα).

An important observation about Lα is that is can be decomposed into two distinct parts, each with
its own role:

Lαf(x) = − 1
α
xf ′(x) +

∫ ∞
0

(
f(x⊕ r) − f(x)

)
dρα(r) = dαf(x) + Dαf(x), (2.6)

where dα is the generator of the dilatations at power α, and Dα is defined by:

Dαf(x) :=
∫ ∞

0

(
f(x⊕ r) − f(x)

)
dρα(r).
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We will show later in this chapter that Dα is also the generator of a certain (Markov) semi-group.

It is well-known that the Fréchet distribution and the Pareto distribution are intimately connected.
This link manifests in the next proposition too which gives two different formulae for the generator
Lα.

Proposition 2.1.11 Let f ∈ SΦ and x ∈ R∗+ and Z ∼ F(α). Let Y ∼ VP(α, 1). We have the
following:

1. The generator of the Fréchet semi-group is connected to the Pareto distribution with shape
parameter α and scale parameter 1:

Lαf(x) = − 1
α
xf ′(x) + 1

xα

∫ ∞
1

(
f(xr) − f(x)

)
dρα(r) (2.7)

= − 1
α
xf ′(x) + 1

xα
E

[
f(xY ) − f(x)

]
. (2.8)

2. Lαf can be rewritten as

Lαf(x) = − 1
α
xf ′(x) + 1

α

∫ ∞
x

rf ′(r) dρα(r) (2.9)

= − 1
α
xf ′(x) + 1

α

1
xα−1E[Y f ′(xY )]. (2.10)

Proof. 1. The change of variable u = r/x gives immediately the result:

Dαf(x) =
∫ ∞

x

(
f(r) − f(x)

) α

rα+1 dr = 1
xα

∫ ∞
1

(
f(xu) − f(x)

)
dρα(u).

Because the Pareto distribution VP(α, 1) has density r 7→ αr−(α+1)1{r≥1}, we obtain the second
identity just as easily.

2. An integration-by-parts (differentiate r 7→ f(r) − f(x) and integrate r 7→ αr−(α+1)) yields the
desired formula:

Dαf(x) =
∫ ∞

x

(
f(r) − f(x)

) α

rα+1 dr =
∫ ∞

x
f ′(r) 1

rα
dr = 1

α

∫ ∞
x

rf ′(r) dρα(r).

Although Dα is not a true derivation, it satisfies a pseudo Leibniz rule.

Proposition 2.1.12 — Pseudo Leibniz rule - Fréchet case. For every α > 0 and f, g ∈ SΦ, we
have

Dα(fg)(x) = Dαf(x)g(x) + f(x)Dαg(x)

+
∫ ∞

x

(
f(r) − f(x)

)(
g(r) − g(x)

)
dρα(r), x > 0.
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This is also equal to:

Dα(fg)(x) = Dαf(x)g(x) + f(x)Dαg(x)

+
∫ ∞

x
Dαf(y)g′(y) dy +

∫ ∞
x

f ′(y)Dαg(y) dy, x > 0.

Proof. The first identity results from the definition of Dα and the relation

f(r)g(r) − f(x)g(x) = f(x)
(
g(r) − g(x)

)
+ g(x)

(
f(r) − f(x)

)
+

(
f(r) − f(x)

)(
g(r) − g(x)

)
.

This result is a consequence of the integration-by-parts formula.

Now we have the tools to prove that SΦ is a standard algebra for (Pα
t )t≥0.

Proposition 2.1.13 The class of functions SΦ is stable under both Lα and Pα
t for all nonnegative

t: if f belongs to SΦ then so do Lαf and Pα
t f .

Proof. - First we prove that Pα
t f belongs to SΦ if f belongs to SΦ. For every positive x and

k ∈ N,

xk|Pα
t f(x)| ≤ xkE

[
|f |

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
= e

kt
α (e−

t
αx)kE

[
|f |

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
≤ e

kt
α E

[(
e−

t
αx⊕ (1 − e−t)

1
αZ

)k|f |
(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
≤ e

kt
α sup

y∈R∗
+

yk|f |(y)

< +∞.

As for the derivatives of Pα
t f , it suffices to use (2.3) to see that (Pα

t f)(n) behaves as required in
0 and at +∞ when n ∈ N∗.

- The term xf ′(x) does not pose any problem and is clearly in SΦ. The troublesome part is Dαf .
First we have for x > 0 and k ∈ N

xk|Dαf(x)| ≤ xk
∫ ∞

x
r−α|f ′|(r) dr

≤
∫ ∞

x
rk−α|f ′|(r) dr

≤
∫ ∞

0
rk−α|f ′|(r) dr

=
∫ 1

0
rk−α|f ′|(r) dr +

∫ ∞
1

rk−α|f ′|(r) dr

= sup
y∈(0,1]

yk−α|f ′|(y) + sup
y∈R∗

+

yk+1|f ′|(y)
∫ ∞

1

1
rα+1 dr

< +∞.

And since (Dαf)′(x) = x−αf ′(x), we get without difficulty that the derivatives of Dαf go to 0
more quickly than any xk for all k ∈ Z.
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A second consequence of (2.9) is that Dα satisfies a commutation relation with Pα
t akin to the

commutation rule of the Gaußian OU semi-group, i.e. ∇Pt = e−tPt∇, where ∇ is the usual
derivative.

Proposition 2.1.14 — Commutation relation for Dα - Fréchet case. We have for all f ∈ SΦ

DαPα
t f(x) = e−tPα

t Dαf(x), x ∈ R∗+, t ≥ 0. (2.11)

Proof. We use the relation (2.4) and the alternative expression of Dα:

DαPα
t f(x) =

∫ ∞
x

(Pα
t f)′(r) 1

rα
dr

= −e−
t
α

∫ ∞
x

f ′
(
e−

t
αu

)
e−

γt
rα

1
rα

dr.

On the other hand, computing Pα
t Dαf(x), we get:

Pα
t Dαf(x) = −e−

t
α

∫ ∞
x

(Dαf)′
(
e−

t
α r

)
e−

γt
rα dr

= −e−
t
α

∫ ∞
x

f ′
(
e−

t
α r

) 1
e−trα

e−
γt
rα dr

= −ete−
t
α

∫ ∞
x

f ′
(
e−

t
α r

)
e−

γt
rα

1
rα

dr

= etDαPα
t f(x).

Another consequence of (2.3) is the exponential decaying in time of the derivative of Pα
t f in

Lp-norm .

Proposition 2.1.15 Assume f is in SΦ. Then for every p ≥ 1,

∥∇Pα
t f∥Lp(R∗

+,Φα) ≤ e
−( 1

p
+ 1

α
)t∥∇f∥Lp(R∗

+,Φα), t ≥ 0.

Proof. The change of variable u = e−t/αr yields:

∥∇Pα
t f∥p

Lp(R∗
+,Φα) = e−

pt
α

∫
R+

|f ′|p
(
e−

t
α r

)
re−p

γt
rα e−

1
rα

α

rα+1 dx

= e−
pt
α

∫
R+

|f ′|p
(
e−

t
α r

)
e−

pet−(p−1)
rα

α

rα+1 dr

= e−(1+ p
α

)t
∫
R+

|f ′(u)|pe−
p−(p−1)e−t

uα
α

uα+1 e
−αt du

= e−(1+ p
α

)t
∫
R+

|f ′(u)|pe−(p−1)(1−e−t) 1
uα e−

1
uα

α

uα+1 du

≤ e−(1+ p
α

)t
∫
R+

|f ′(u)|pe−
1

uα
α

uα+1 du

= e−(1+ p
α

)t∥∇f∥p
Lp(R∗

+,Φα)

since (p− 1)(1 − e−t) is non-negative for t ≥ 0 and p ≥ 1.
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It is well-known that the generator Lγ of the OU semi-group satisfies

Lγf(x) = −xf ′(x) + f ′′(x) = (δ ◦ ∇)f(x), (2.12)

where δ := −x + ∇ is known as the divergence operator. It is equal to the adjoint of the usual
derivative operator ∇ with respect to the scalar product ⟨f, g⟩L2(R,γ) and γ denotes the standard
normal distribution N (0, 1). In particular Lγ is self-adjoint. We will see that our generator Lα

does not share this property, but it nonetheless satisfies a similar relation:

Lαf(x) = − 1
α
xf ′(x) + 1

α

∫ ∞
x

rf ′(r) dρα(r) = (δα ◦ Dα)f(x), (2.13)

where the operator δα is equal to

δαf(x) := α−1(xα+1∇ + αId)f(x) = α−1xα+1f ′(x) + f(x), f ∈ SΦ.

This operator is actually a Stein operator, as proved in Bartholome and Swan [2013], Kusumoto
and Takeuchi [2020], where it is denoted by T α and does not have the α−1 term. Equality (2.13)
makes a connection between their operator and Lα which thus enjoy similar properties. However,
we will see in the next chapter that being connected to a semi-group makes Lα more convenient to
work with, in our opinion at least. We now give three interesting properties of δα.

Proposition 2.1.16 — Integration-by-parts formula - Fréchet case. Let f, g belong to SΦ. Then
we have

⟨δαf, g⟩L2(R∗
+,Φα) = −

〈
f, α−1rα+1∇g

〉
L2(R∗

+,Φα) (2.14)

Proof. The proof of this result stated by Bartholome and Swan [2013] follows from the usual
integration-by-parts formula.

Just like Dα, the operator δα "almost" commutes with Pα
t .

Proposition 2.1.17 — Commutation relation for δα - Fréchet case. We have for all f ∈ SΦ

δαPα
t f(x) = etPα

t δαf(x), x ∈ R∗+, t ≥ 0. (2.15)

Proof. As before, we compute each side of the equality. We start with δαPα
t f :

δαPα
t f(x) = α−1xα+1f ′

(
e−

t
αx

)
e−

t
α e−

γt
xα + Pα

t f(x).

The second part is equal to:

Pα
t δαf(x) = −e−

t
α

∫ ∞
x

(δαf)′
(
e−

t
α r

)
e−

γt
rα dr

= −e−
t
α

∫ ∞
x

(
α−1xα+1f ′ + f

)′(
e−

t
α r

)
e−

γt
rα dr

= −e−
t
α

∫ ∞
x

(
(1 + α−1)xαf ′ + α−1xα+1f ′′

)(
e−

t
α r

)
e−

γt
rα dr + Pα

t f(x)

= e−tα−1xα+1f ′
(
e−

t
αx

)
e−

t
α e−

γt
xα + e−tPα

t f(x),

by integrating by parts the integral with the α−1xα+1f ′′ term (integrating e−t/αf ′′(e−t/αr) and
differentiating α−1e−trα+1e−γt/rα).
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Notice that term e−t in the right-hand side of (2.15) has been replaced by et. A shorter, but formal,
proof of that result consists in using the commutation relation for Dα together with the well-known
fact that Lα and Pα

t commute:

Lα ◦ Pα
t = Pα

t ◦ Lα ⇐⇒ δα ◦ Dα ◦ Pα
t = (Pα

t ◦ δα) ◦ Dα

⇐⇒ (e−tδα ◦ Pα
t ) ◦ Dα = (Pα

t ◦ δα) ◦ Dα.

By "simplifying" by Dα, one recovers the previous result.

Denote by [A,B] := A ◦B−B ◦A the commutator between two endomorphisms of SΦ. It serves as
a tool to measure the lack of commutativity between A and B since [A,B] = 0 (the null operator)
if and only if A and B commute. The commutator plays a fundamental role in quantum mechanics,
see for instance Hall [2013]. The following identities reveals an interesting structure behind Lα,
Dα and δα.

Proposition 2.1.18 — Commutator identities - Fréchet case. We have the following relations:

[δα,Dα] = Id. (2.16)

[Lα,Dα] = Dα. (2.17)

[δα,Lα] = δα. (2.18)

Furthermore, Lα, Dα and δα satisfy the Jacobi identity:[
Lα, [Dα, δα]

]
+

[
Dα, [δα,Lα]

]
+

[
δα, [Lα,Dα]

]
= 0. (2.19)

Proof. Once more we rely on the simpler expression of the generator (2.9). Notice we can ignore
the identity part in δα = α−1xα+1∇ + Id since it commutes with Dα. Let f ∈ SΦ and x ∈ R∗+.

α[δα,Dα]f(x) = [xα+1∇,Dα]f(x)
= xα+1∇(Dαf)(x) − Dα(xα+1f ′)(x)

= xα+1(
− x−αf ′(x)

)
−

∫ ∞
x

(
rα+1f ′(r)

)′ dr
rα

= −xf ′(x) + xf ′(x) − α

∫ ∞
x

f ′(r) dr

= αf(x).

The proof of the second identity is rather similar:

[Lα,Dα]f(x) = − 1
α

[x∇,Dα]f(x)

= − 1
α
x(Dαf)′(x) + 1

α
Dα(xf ′)(x)

= − 1
α
x−α + 1

α

∫ ∞
x

(
rf ′(r)

)′ dr
rα

=
∫ ∞

x
f ′(r) dr

rα
.
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The final identity is not much harder to prove thanks to the first relation:

α[δα,Lα]f(x) = − 1
α

[xα+1∇, x∇]f(x) + [xα+1∇,Dα]f(x)

= αf(x) + 1
α

[x∇, xα+1∇]f(x)

= αf(x) + 1
α

(
x

(
xα+1f ′(x)

)′ − xα+1(
xf ′(x)

)′)
= αf(x) + xα+1f ′(x).

Finally, we have[
Lα, [Dα, δα]

]
+

[
Dα, [δα,Lα]

]
+

[
δα, [Lα,Dα]

]
= [Dα, δα] + [δα,Dα] = 0.

The Jacobi identity above is part of the definition of a Lie algebra. The next definitions are taken
from Hall [2013] as well as from Faraut [2008]. We say that a R-vector space g with a bilinear map
[·, ·] : g × g → g is a (real) Lie algebra if it satisfies the following properties:

1. (Anti-symmetry) : [x, y] = −[y, x] for all x, y ∈ g

2. (Jacobi identity) :
[
x, [y, z]

]
+

[
y, [z, x]

]
+

[
z, [y, x]

]
= 0 for all x, y, z ∈ g.

In that case, the set [g, g] := {[x, y], x, y ∈ g} equipped with [·, ·] is a Lie algebra as well. Set
g0 := g and

Dk+1(g) :=
[
Dk(g),Dk(g)

]
, k ∈ N.

We call a Lie algebra is solvable if there exists some k ∈ N such that Dk(g) = {0}. It is easy to
check that the vector space spanned by Lα, Dα and δα with respect to linear combinations and
equipped with the commutator is a Lie algebra. Actually, it is even solvable.

Proposition 2.1.19 The vector space gα := span(Lα,Dα, δa, Id) equipped with the commutator
[·, ·] is a solvable Lie algebra.

Proof. We have already proved that gα is a Lie algebra thanks to equality (2.19). The fact it is
solvable comes from noticing that D1(gα) = [gα, gα] = span(Dα, δα), so that D3(gα) = {0}, thanks
to identities (2.16), (2.17) and (2.18).

Lie algebras have been thoroughly classified. Where does gα sit in this classification? In MacCallum
[1999], a complete classification of 4 dimensional Lie algebras is exposed, with applications to
cosmology in view. However gα does not appear explicitly in it, because the commutation relations
we have just given do not match with any of the ones presented in that book. Nonetheless, if we set:

X1 := Lα

X2 := −Dα + δα

X3 := Dα + δα

X4 := −2Id,
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then the previous commutations become

[X1, X2] = −X3

[X1, X3] = −X2

[X2, X3] = X4

[Xi, X4] = 0, i ∈ [[1, 3]].

This matches the class U310 defined in MacCallum [1999] (p. 307), implying that gα is isomorphic to
that Lie algebra. Notice also that if we restrict ourselves to X2, X3 and X4, we get the commutation
relations characteristic of the Heisenberg algebra, so that gα contains a subalgebra isomorphic to it.
The implications of those results, if any, remain to study.

Now, let us sum up the parallels we have drawn between the Ornstein-Uhlenbeck semi-group and
its max-stable counterpart: the usual derivative ∇ is replaced by Dα, while δ changes for δα. The
generator of the OU semi-group Lγ satisfies Lγ = δ ◦ ∇ which turns into (2.13) in the Fréchet case.
The commutation relation ∇Pt = e−tPt∇ becomes the equality (2.11). The divergence δ is the
adjoint of the derivative operator w.r.t. the scalar product induced by the normal distribution,
and δα is the adjoint of −xα+1∇ w.r.t. the scalar product associated with the Fréchet distribution.
Finally, it is well-known that [δ,∇] = Id, an equality satisfied by δα and Dα as well. The relation
[Lγ ,∇] = ∇ also holds true in the Fréchet case, this time as [Lα,Dα] = Dα. Notice that the vector
space spanned by Lγ , ∇, δ and Id is also a solvable Lie algebra, thanks to the exact same arguments
we used for gα.

We continue our tour of the properties of (Pα
t )t≥0 with several functional inequalities. Before stating

them, we give two covariance identity which will play an important role in the sequel. The proofs
will be given in the next subsection in the Gumbel case, where they take a simpler form.

Proposition 2.1.20 — Covariance identities - Fréchet case. Let f, g ∈ SΦ and Z ∼ F(α).

- Let Y ∼ VP(α, 1) be a random variable with Pareto distribution, independent of Z. Then:

⟨Lαf, g⟩L2(R∗
+,Φα) = E

[
Lαf(Z)g(Z)

]
= − 1

α2E
[
Y Z2f ′(Y Z)g′(Z)

]
. (2.20)

- Assume further that f has zero mean: E[f(Z)] = 0. Then:

⟨f, g⟩L2(R∗
+,Φα) = − 1

α2E
[
Y Z2(L −1

α f)′(Y Z)g′(Z)
]
. (2.21)

Recall the energy form EΦα defined as

EΦα(f) = −EΦα [fLαf ] = −E
[
f(Z)Lαf(Z)

]
.

Theorem 2.1.21 — Poincaré inequality - Fréchet case. Let f ∈ SΦ. Let Z ∼ F(α) and
Y ∼ VP(α, 1) be a random variable with Pareto distribution, independent of Z.

V(f(Z)) ≤ 2EΦα(f) = 2
α2E

[
Y Z2f ′(Y Z)g′(Z)

]
. (2.22)

Thanks to proposition 1.1.12, this inequality implies the exponential convergence of Pα
t f to EΦα [f ]

in L2-norm at exponential speed.
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Corollary 2.1.22 Let f ∈ SΦ and Φα denote the probability measure of F(α). We have:∥∥Pα
t f − EΦα [f ]

∥∥
L2(R∗

+,Φα) ≤ e−
t
2 ∥f∥L2(R∗

+,Φα).

2.1.2 Extension to the Gumbel and Weibull distributions

The definition of (Pα
t )t≥0 can be adapted easily to the two other extreme value distributions, i.e.

α ∈ (−∞, 0]. We will see we can connect them through simple transformations, allowing us to
transfer all the previously proved properties in the Fréchet case to the two remaining ones.

The Gumbel case

A standard algebra adapted to the Gumbel distribution is the following.

Definition 2.1.23 (Standard algebra - Gumbel case). We define the class of functions:

SΛ :=
{
f(ex), f ∈ SΦ

}
=

{
f ∈ S (R), sup

x∈R−

e−kx|f (n)(ex)| < ∞ for all (k, n) ∈ N × N∗
}
.

Just as in the previous subsection, the max-stability relation satisfied by the Gumbel distribution
yields another semi-group.

Definition 2.1.24 (Gumbel semi-group). Define the Gumbel semi-group (P0
t )t≥0 on the

standard algebra A = SΛ.

P0
t f(x) := E

[
f

((
x− t

)
⊕

(
Z + log(1 − e−t)

))]
, x ∈ [−∞,+∞), t ≥ 0 (2.23)

where Z ∼ G(0, 1) and f belongs to SΛ.

Instead of proving again that (2.23) defines a semi-group, we instead show it is actually the same
semi-group as the one defined previously, up to a transformation of the argument.

Lemma 2.1.25 For f ∈ SΦ, we have

P0
t f(x) = Pα

t

(
f ◦ log xα)(

e
x
α

)
, x ∈ R, (2.24)

which can also be written as the following intertwining relation

P0
t f

(
log xα)

= Pα
t

(
f ◦ log xα)

(x), x ∈ R∗+.

Proof. Because Z ′ = α logZ has the Gumbel G(0, 1) distribution if Z has the Fréchet distribution
F(α), and since z 7→ α log z is non-decreasing on R∗+, we have:

Pα
t

(
f ◦ log xα)(

e
x
α

)
= E

[(
f ◦ log xα)(

e−
t
α e

x
α ⊕ (1 − e−t)

1
αZ

)]
= E

[
f

((
x− t

)
⊕

(
Z ′ + log(1 − e−t)

))]
.

The last equality stems from the fact that g(x⊕y) = g(x)⊕g(y) if g is a non-decreasing function.
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Due to this result, by taking α = 1, we see why SΛ is an appropriate candidate to be a standard
algebra for (P0

t )t≥0. Besides, it is not hard to see that this class is an algebra of functions which
contains compactly supported, infinitely differentiable functions on R, as well as functions such as
x 7→ exp(cosh(x)) defined on R. Finally, because the functions z 7→ α log z and z 7→ exp(z/α) are
inverse to each other, it is clear from (2.24) that (P0

t )t≥0 is a semi-group. We also get the other
defining properties of a Markov semi-group, such as right-continuity, by using this relation and the
definition of SΦ. This gives us the next results.

Proposition 2.1.26 Let Λ denote the Gumbel probability measure G(0, 1). The semi-group
(P0

t )t≥0 admits Λ has a stationary measure. As such, (P0
t )t≥0 is a Markov semi-group.

Furthermore, (P0
t )t≥0 is ergodic:

P0
t f(x) −→

t→∞
EΛ[f ] =

∫
R
f(r) dΛ(r), x ∈ R, f ∈ SΛ.

Proposition 2.1.27 For every t ≥ 0 and every p ∈ [1,∞), the operator P0
t extends to a linear

contraction operator on Lp(R,Λ).

The generator of (P0
t )t≥0 can be deduced from the generator L1 of (P1

t )t≥0 by using relation (2.24).
The computation itself is given in the Weibull case for ease of notations.

Proposition 2.1.28 The Markov semi-group (P0
t )t≥0 has generator L0:

L0f(x) = −f ′(x) +
∫
R

(
f(x⊕ r) − f(x)

)
dρ0(r),

where dρ0(r) := e−r dr on R.

The pseudo Leibniz rule takes formally the same form as in the Fréchet case.

Proposition 2.1.29 — Pseudo Leibniz rule - Gumbel case. We have for f, g ∈ SΛ :

D0(fg)(x) = D0f(x)g(x) + f(x)D0g(x)

+
∫ ∞

x

(
f(r) − f(x)

)(
g(r) − g(x)

)
dρ0(r), x ∈ R.

This is also equal to:

D0(fg)(x) = D0f(x)g(x) + f(x)D0g(x)

+
∫ ∞

x
D0f(y)g′(y) dy +

∫ ∞
x

f ′(y)D0g(y) dy, x ∈ R.

We summarize the counterparts of proposition 2.1.9 and 2.1.11 for the Gumbel case in the next
proposition.

Proposition 2.1.30 Let f ∈ SΛ and x ∈ R. Let Y ∼ E(1).

1. The derivative of P0
t f satisfies:

(P0
t f)′(x) = e−γte−x

f ′(x− t). (2.25)
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2. P0
t f can be rewritten as:

P0
t f(x) = −

∫ ∞
x

e−γte−r
f ′(r − t) dr. (2.26)

3. The generator of the Gumbel semi-group is connected to the exponential distribution with
scale parameter 1:

L0f(x) = −f ′(x) + e−x
∫ ∞

0

(
f(x+ r) − f(x)

)
dρ0(r) (2.27)

= −f ′(x) + e−xE
[
f(x+ Y ) − f(x)

]
. (2.28)

4. L0f can be rewritten as:

L0f(x) = −f ′(x)+
∫ ∞

x
f ′(r) dρ0(r) (2.29)

= −f ′(x) + e−xE[f ′(x+ Y )] (2.30)

As before, we obtain that SΛ is a standard algebra for (P0
t )t. Furthermore, the commutation rule

between D0 and P0
t holds here too.

Proposition 2.1.31 — Commutation relation for D0 - Gumbel case. We have for all f ∈ SΛ

DαP0
t f(x) = e−tP0

t D0f(x), x ∈ R, t ≥ 0. (2.31)

We also have an inequality for the Lp-norm of the gradient of P0
t f .

Proposition 2.1.32 Assume f is in SΛ. Then, for every p ≥ 1,

∥∇P0
t f∥Lp(R,Λ) ≤ e

− t
p ∥∇f∥Lp(R,Λ), t ≥ 0.

The equivalent of (2.12) and of (2.13) in the Gumbel case is

L0f(x) = −f ′(x) +
∫ ∞

x
f ′(r) dρ0(r) = (δ0 ◦ D0)f(x), (2.32)

where the operator δ0 is equal to

δ0f(x) := (ex∇ + Id)f(x) = exf ′(x) + f(x), f ∈ SΛ.

Once more, this defines a Stein operator and it is the one used in Kusumoto and Takeuchi [2020] to
treat limit theorems involving the Gumbel case, where it is denoted by S0.

Proposition 2.1.33 — Integration-by-parts formula - Gumbel case. Let f, g belong to SΛ. Then
we have

⟨δ0f, g⟩L2(R,Λ) = −
〈
f, er∇g

〉
L2(R,Λ) (2.33)

Proof. The proof follows from the usual integration-by-parts formula.

Just like D0, this divergence operator satisfies a commutation rule with P0
t :



Quantization of univariate extreme-value distributions 79

Proposition 2.1.34 — Commutation relation for δ0 - Gumbel case. We have for all f ∈ SΛ

δ0P0
t f(x) = etP0

t δ0f(x), x ∈ R, t ≥ 0. (2.34)

The commutation identities between δ0 and D0, and L0 and D0, are formally the same as in the
Gumbel case and we recover the solvable Lie algebra structure we found in the previous section.
This suggests us that some connection exists between Lα, Dα and δα on the one hand, and L0, D0
and δ0 on the other. The last subsection of this chapter give a clear statement of this intuition.

Proposition 2.1.35 — Commutator identities - Gumbel case. We have the following relations:

[δ0,D0] = Id. (2.35)

[L0,D0] = D0. (2.36)

[δ0,L0] = δ0. (2.37)

Furthermore, L0, D0 and δ0 satisfy the Jacobi identity:[
L0, [D0, δ0]

]
+

[
D0, [δ0,L0]

]
+

[
δ0, [L0,D0]

]
= 0. (2.38)

In particular, the vector space g0 spanned by those three operators and the identity with respect
to linear combinations is a solvable Lie algebra.

Now we give the proofs of the covariance identities and functional inequalities stated at the end of
the section about the quantization of the Fréchet distribution in the Gumbel case.

Proposition 2.1.36 — Covariance identities - Gumbel. Let f, g ∈ SΛ and Z ∼ G(0, 1).

- Let Y ∼ E(1) be a random variable with exponential distribution, independent of Z. Then:

⟨L0f, g⟩L2(R,Λ) = −E
[
f ′(Z + Y )g′(Z)

]
. (2.39)

- Assume further that f has zero mean: E[f(Z)] = 0. Then:

⟨f, g⟩L2(R,Λ) = −E
[
(L −1

0 f)′(Z + Y )g′(Z)
]
. (2.40)

Proof. Integrating the density of the Gumbel distribution and differentiating the rest in the second
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term below, one finds:

⟨L0f, g⟩L2(R,Λ) = −⟨∇f, g⟩L2(R,Λ) +
〈
D0f, g

〉
L2(R,Λ)

= −⟨∇f, g⟩L2(R,Λ) +
∫
R

( ∫ ∞
x

e−yf ′(y) dy
)
g(x)e−(x+e−x) dx

= −⟨∇f, g⟩L2(R,Λ) + ⟨∇f, g⟩L2(R,Λ) −
∫
R

( ∫ ∞
x

e−yf ′(y) dy
)
g′(x)e−e−x dx

= −
∫
R

( ∫ ∞
0

e−(y+x)f ′(y + x) dy
)
g′(x)e−e−x dx

= −
∫
R

( ∫ ∞
0

e−yf ′(y + x) dy
)
g′(x)e−(x+e−x) dx

= −E[f ′(Z + Y )g′(X)].

The second equality is a direct consequence of the first, by replacing f by L −1
0 f .

Remark 2.1.37. In the case of the usual Ornstein-Uhlenbeck semi-group, (2.39) instead becomes:

⟨Lγf, g⟩L2(R,γ) = −E
[
f ′(Z)g′(Z)

]
, f, g ∈ S (R)

where Z ∼ N (0, 1). Besides, equation (2.39) makes obvious that L0 is not symmetric. This is true
as well for the other max-stable semi-groups ■

The energy form EΛ equals

EΛ(f) = −EΛ[fL0f ] = −E
[
f(Z)L0f(Z)

]
.

Theorem 2.1.38 — Poincaré inequality - Gumbel case. Let f ∈ SΛ. Let Z ∼ G(0, 1) and
Y ∼ E(1) be a random variable with exponential distribution, independent of Z.

V(f(Z)) ≤ 2E
[
f ′(Z)f ′(Z + Y )

]
. (2.41)

Proof. Define
β(s) := P0

s(P0
t−sf)2, s ∈ [0, t]

and notice that β(t) − β(0) = P0
t (f2) − (P0

t (f))2. Furthermore, set g := P0
t−sf . Then we have

β′(s) = P0
s

(
L0(g2) − 2gL0g

)
= P0

s(Γ(g)).

Set ΓΛ(g) := (L0(g2) − 2gL0g)/2, the carré du champ operator, and define G(x) := D0g(x). Let
x ∈ R. The carré du champ operator equals:

2ΓΛ(g)(x) = −2g(x)g′(x) + 2
∫ ∞

x
e−yg′(y)g(y) dy + 2g(x)g′(x) − 2g(x)

∫ ∞
x

e−yg′(y) dy.

Then we get

2ΓΛ(g)(x) = 2
∫ ∞

x
e−yg′(y)

∫ y

x
g′(r) dr dy

= 2
∫ ∞

x
g′(r)

∫ ∞
r

e−yg′(y) dy dr

= −2
∫ ∞

x
erG′(r)G(r) dr

= ex(G(x))2 +
∫ ∞

x
er(G(r))2 dr.
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Since G(x) = D0g(x), and since g = P0
t−sf , by the commutation rule the previous equality becomes:

2ΓΛ(g)(x) = ex(G(x))2 +
∫ ∞

x
er(G(r))2 dr

= ex(D0P0
t−sf(x))2 +

∫ ∞
x

er(D0P0
t−sf(r))2 dr

= e−2(t−s)[ex(P0
t−sD0f(x))2 +

∫ ∞
x

er(P0
t−sD0f(r))2 dr

]
≤ e−2(t−s)[exP0

t−s(D0f)2(x) +
∫ ∞

x
erP0

t−s(D0f)2(r) dr
]
.

We have used Cauchy-Schwartz inequality to get the last inequality. Once more integrating by
parts (integrating the exponential and differentiating the semi-group), we find:

2ΓΛ(g)(x) ≤ e−2(t−s)[exP0
t−s(D0f)2(x) +

∫ ∞
x

erP0
t−s(D0f)2(r) dr

]
= −e−2(t−s)

∫ ∞
x

er(
P0

t−s(D0f)2)′(r) dr

Recall that we have:
P0

sf(x) = −
∫ ∞

x
e−γse−r

f ′(r − s) dr.

Evaluating the first equality in L0(g2) − 2gL0(g), we get the following expression for β′(s):

β′(s) = 2P0
sΓΛ(g)(x)

≤ −e−2(t−s)
∫ ∞

x
e−γse−r

er−s(
P0

t−s(D0f)2)′(r − s) dr

= −e−2(t−s)
∫ ∞

x
e−γse−r

er−se−γt−se−(r−s)((D0f)2)′(r − s− t+ s) dr

= −e−2(t−s)
∫ ∞

x
e−γse−r

er−se−(et−es)e−r)((D0f)2)′(r − t) dr

= −e−2(t−s)
∫ ∞

x
e−γte−r

er−s((D0f)2)′(r − t) dr

= −e−2(t−s)
∫ ∞

x−t
e−(1−e−t)e−r

er+t−s((D0f)2)′(r) dr

= −e−(t−s)
∫ ∞

x−t
ere−(1−e−t)e−r ((D0f)2)′(r) dr.

Therefore, we have the inequality:

P0
t (f2) − (P0

t (f))2 = β(t) − β(0) ≤ −(1 − e−t)
∫ ∞
·−t

ere−(1−e−t)e−r ((D0f)2)′(r) dr, t ≥ 0. (2.42)

We can dominate the expression inside the integral by er|((D0f)2)′(r)| when (say) r is positive
(recall that f ∈ SΦ), while we bound it by r 7→ Cer for negative r. Here C is equal to:

C = ∥e−r∇f∥∞
∫
R
e−y|f ′(y)| dy.

Finally, by the dominating convergence theorem, we can let t goes to infinity in (2.42) to get the
announced inequality.
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Corollary 2.1.39 Let f ∈ SΛ and Λ the probability distribution G(0, 1). We have:∥∥P0
t f − EΛ[f ]

∥∥
L2(R,Λ) ≤ e−

t
2 ∥f∥L2(R,Λ).

Thanks to (P0
t )t≥0, we can prove a concentration inequality for functionals of a Gumbel random

variable.

Proposition 2.1.40 Let f : R → R be a bounded C 1-function with bounded derivative, and such
that f ′ is integrable with respect to Lebesgue measure on R. Let Z be a random variable with
Gumbel distribution. Then we have:

P
(
f(Z) − E[f(Z)] ≥ x

)
≤ e
− x2

4∥f∥∞∥f ′∥∞ , x > 0.

Proof. Replacing f by f −E[f(Z)], we can assume that f is centered with respect to Λ. We use the
so-called Herbst argument (see for instance Decreusefond [2022]), that is, we bound the logarithmic
derivative of φ(θ) := E[eθf(Z)]. We start from

φ′(θ) = E
[
f(Z)eθf(Z)]

and apply the covariance identity (2.40) to f and eθf . This yields:

φ′(θ) = −E
[
(L −1

0 f)′(Z + Y )θeθf(Z)] = −θE
[
(L −1

0 f)′(Z + Y )f ′(Z)eθf(Z)].
Next we need to control the terms before eθf(Z). We cannot use Hölder’s inequality and the likes,
because we would then be unable to make E[eθf(Z)] = φ(θ) appear on the right-hand side. This is
why we need such stringent assumptions on f . Using (2.25), we have to bound:

(L −1
0 f)′(x) =

( ∫ ∞
0

∫ ∞
x

f ′(y − t)e−γte−y dy dt
)′

= −
∫ ∞

0
f ′(x− t)e−γte−x dt

= −f(x) +
∫ ∞

0
f(x− t)ete−(x+γte−x) dt

= −f(x) +
∫ ∞

0
f

(
x− log(1 + s)

)
e−(x+se−x) ds

= −f(x) +
∫ ∞

0
f

(
x− log(1 + tex)

)
e−t dt

≤ 2∥f∥∞.

The third equality stems from an integration by parts (integrating t 7→ −u′(y − t)) while the fourth
comes from the change of variable s = γt = et − 1. The fifth is just the change of variable t = e−xs.
Since f ′ is also assumed to be bounded, we find:

φ′(θ) ≤ 2∥f∥∞∥f ′∥∞θφ(θ),

and by integrating, we get:
E[eθf(Z)] = φ(θ) ≤ e∥f∥∞∥f ′∥∞θ2

.

Applying Markov’s inequality, this yields:

P
(
f(Z) − E[f(Z)] ≥ x

)
≤ e∥f∥∞∥f ′∥∞θ2−xθ, x > 0

and by optimizing in θ, we find the announced result.
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The Weibull case

We make the choice to deal with the positive Weibull distribution instead of its negative, max-stable
counterpart. This brings several advantages such as simpler notations and results expressed directly
for the standard exponential distribution. It also allows us to show concretely what changes when
working with min-stable distributions rather than max-stable distributions.

As before, the natural choice of standard algebra for the Weibull distribution is dictated by the
transformation which sends the Fréchet distribution to the Weibull distribution, i.e. x 7→ −x−1

for the negative max-stable Weibull distribution and x 7→ x−1 for the positive, min-stable Weibull
distribution.

Definition 2.1.41 (Standard algebra - Weibull case). We define the classes of functions:

SΨ :=
{
f(−x−1), f ∈ SΦ

}
=

{
f ∈ S (R∗+), sup

x∈[1,+∞)
xk|f (n)(−x−1)| < ∞ for all (k, n) ∈ N×N∗

}
.

SΨ,+ :=
{
f(x−1), f ∈ SΦ

}
=

{
f ∈ S (R∗+), sup

x∈[1,+∞)
xk|f (n)(x−1)| < ∞ for all (k, n) ∈ N×N∗

}
.

The max and min-stability relations satisfied by the negative and positive Weibull distribution
gives two Mehler’s formulas.

Definition 2.1.42 (Positive and negative Weibull semi-groups). Let α ∈ R∗+.

- Define the Weibull semi-group (P−α
t )t≥0 on the standard algebra A = SΨ by

P−α
t f(x) := E

[
f

(
e

t
αx⊕ (1 − e−t)−

1
αZ

)]
, x ≤ 0, t ≥ 0 (2.43)

where Z ∼ W(α) and f belongs to SΨ.

- Define the positive Weibull semi-group (P−α,+
t )t≥0 on the standard algebra A = SΨ,+ by

P−α,+
t f(x) := E

[
f

(
e

t
αx⊙ (1 − e−t)−

1
αZ

)]
, x ≥ 0, t ≥ 0 (2.44)

where Z ∼ W+(α) and f belongs to SΨ,+.

Since we have the equality

P−α
t f(−x) = P−α,+

t

(
f ◦ (−Id)

)
(x), x ≥ 0

we will focus on the positive Weibull semi-group only in this subsection.

Lemma 2.1.43 For f ∈ SΦ, we have

P−α,+
t f(x) = Pα

t

(
f ◦ x−1)

(x−1), x ∈ R∗+, (2.45)

which can also be written as the following intertwining relation

P−α,+
t f(x−1) = Pα

t

(
f ◦ x−1)

(x), x ∈ R∗+.

The same line of reasoning as in the Gumbel case allows us to transfer the main properties of
(Pα

t )t≥0 to (P−α,+
t )t≥0. We list them now without proof, except when a result is specific to the

Weibull case.
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Proposition 2.1.44 Let Ψ+
α denote the Weibull probability measure W+(α). The semi-group

(P−α,+
t )t≥0 admits Ψ+

α has a stationary measure. As such, (P−α,+
t )t≥0 is a Markov semi-group.

Furthermore, (P−α,+
t )t≥0 is ergodic:

P−α,+
t f(x) −→

t→∞
EΨ+

α
[f ] =

∫
R+
f(r) dΨ+

α (r), x ∈ R+, f ∈ SΨ,+.

Proposition 2.1.45 For every t ≥ 0 and every p ∈ [1,∞), the operator P−α,+
t extends to a

linear contraction operator on Lp(R+,Ψ+
α ).

Formally speaking the generator takes the same form as in the Fréchet case, except that the dilation
semi-group takes a minus sign, the maximum operation ⊕ is replaced by the minimum operation ⊙
and the measure ρα becomes ρ−α,+, the latter being also defined on R∗+.

Proposition 2.1.46 The Markov semi-group (P−α,+
t )t≥0 has generator L−α,+:

L−α,+f(x) = 1
α
xf ′(x) +

∫
R+

(
f(x⊙ r) − f(x)

)
dρ−α,+(r),

where dρ−α,+(r) := αrα−1 dr on R+.

Proof. Let f ∈ SΨ,+ and set g : x 7→ f(x−1). Observe that f belongs to SΦ. Set also y = x−1.
With those notations, (2.45) becomes P−α,+

t f(x) = Pα
t g(y). By using the expression of the generator

Lα of (Pα
t )t≥0 and applying carefully the chain rule, we find:

L−α,+f(x) = d
dt

∣∣∣
t=0

P−α,+
t f(x)

= (Lαg)(y)

= − 1
α
yg′(y) +

∫ ∞
0

(
g(y ⊕ r) − g(y)

)
dρα(r)

= − 1
α
y(f(y−1))′ +

∫ ∞
0

(
f(x⊙ r−1) − f(x)

)
dρα(r)

= 1
α
xf ′(x) +

∫ ∞
0

(
f(x⊙ r−1) − f(x)

) α

rα+1

= 1
α
xf ′(x) +

∫ ∞
0

(
f(x⊙ u) − f(x)

)
αuα−1 du.

We have used the change of variable u = r−1 to get the last line. We recognize the measure ρ−α,+
in the integral, which concludes the proof.

Like before, the pseudo Leibniz rule has the same shape as in the Fréchet and Gumbel cases,
although with an appropriate D−α,+.

Proposition 2.1.47 — Pseudo Leibniz rule - Weibull case. For every α > 0 and f, g ∈ SΦ, we



Quantization of univariate extreme-value distributions 85

have

Dα(fg)(x) = Dαf(x)g(x) + f(x)Dαg(x)

+
∫ ∞

x

(
f(r) − f(x)

)(
g(r) − g(x)

)
dρα(r), x > 0.

This is also equal to:

Dα(fg)(x) = Dαf(x)g(x) + f(x)Dαg(x)

+
∫ ∞

x
Dαf(y)g′(y) dy +

∫ ∞
x

f ′(y)Dαg(y) dy, x > 0.

The version of proposition 2.1.9 and 2.1.11 for the Weibull case is given in the next proposition.
Before this, let us introduce the beta distribution B(α, β) with positive shape parameters α, β. It
has density

fα,β(x) = 1
B(α, β)x

α−1(1 − x)β−11(0,1)(x),

where B is the beta function. The special case β = 1 gives us the distribution B(α, 1), with density
αxα−11(0,1)(x). It plays in the Weibull case the same role as the Pareto distribution and exponential
distribution for the Fréchet distribution and Gumbel distribution respectively.

Proposition 2.1.48 Let f ∈ SΨ,+ and x ∈ R+. Let Y ∼ B(1, α).

1. The derivative of P−α,+
t f satisfies:

(P−α,+
t f)′(x) = e

t
α e−γtxα

f ′
(
e

t
αx

)
(2.46)

2. P−α,+
t f can be rewritten as:

P−α,+
t f(x) = e

t
α

∫ x

0
e−γtrα

f ′
(
e

t
α r

)
dr. (2.47)

3. The generator of the Weibull semi-group is connected to the Beta distribution with parameter
α and 1:

L−α,+f(x) = 1
α
xf ′(x) + xα

∫ ∞
0

(
f(xr) − f(x)

)
dρ−α,+(r) (2.48)

= − 1
α
xf ′(x) + xαE

[
f(xY ) − f(x)

]
. (2.49)

4. L−α,+f can be rewritten as:

L−α,+f(x) = 1
α
xf ′(x) − 1

α

∫ x

0
rf ′(r) dρ−α,+(r) (2.50)

= 1
α
xf ′(x) − 1

α
xα+1E[Y f ′(xY )]. (2.51)

Just as in the Fréchet and Gumbel cases, we get that SΨ,+ is a standard algebra for (P−α,+
t )t. The

commutation rule between D−α,+ and P−α,+
t works as well.
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Proposition 2.1.49 — Commutation relation for D−α,+ - Weibull case. We have for all f ∈ SΨ,+

D−α,+P−α,+
t f(x) = e−tP−α,+

t D−α,+f(x), x ∈ R+, t ≥ 0. (2.52)

The inequality for the Lp-norm of the gradient of P−α,+
t f now writes as:

Proposition 2.1.50 Assume f is in SΨ,+. Then for every p ≥ 1,

∥∇P−α,+
t f∥Lp(R+,Ψ+

α ) ≤ e
− t

p ∥∇f∥Lp(R+,Ψ+
α ), t ≥ 0.

The equivalent of (2.12) and of (2.13) in the Weibull case is

L−α,+f(x) = 1
α
xf ′(x) −

∫ x

0
rf ′(r) dρ−α,+(r) = (δ−α,+ ◦ D−α,+)f(x), (2.53)

where the operator δ−α,+ is equal to

δ−α,+f(x) := α−1(r−α+1∇ − αId)f(x) = α−1r−α+1f ′(x) − f(x), f ∈ SΨ,+.

Once more, this defines a Stein operator and it is the one used in Kusumoto and Takeuchi [2020] to
treat limit theorems involving the Weibull case, where it is denoted by Sα.

Proposition 2.1.51 — Integration-by-parts formula - Weibull case. Let f, g belong to SΨ,+. Then
we have

⟨δ−α,+f, g⟩L2(R+,Ψ+
α ) = −

〈
f, αr−α+1∇g

〉
L2(R+,Ψ+

α ) (2.54)

This operator satisfies a commutation rule with P−α,+
t :

Proposition 2.1.52 — Commutation relation for δ−α,+ - Weibull case. We have for all f ∈ SΨ,+

δ−α,+P−α,+
t f(x) = etP−α,+

t δ−α,+f(x), x ∈ R+, t ≥ 0. (2.55)

As in the Fréchet case, the commutator of D−α,+ and δ−α,+, or D−α,+ and L−α,+, has formally
the same shape.

Proposition 2.1.53 — Commutator identities - Weibull case. We have the following relations:

[δ−α,+,D−α,+] = Id. (2.56)

[L−α,+,D−α,+] = D−α,+. (2.57)

[δ−α,+,L−α,+] = δ−α,+. (2.58)

Furthermore, L−α,+, D−α,+ and δ−α,+ satisfy the Jacobi identity:[
L−α,+, [D−α,+, δ−α,+]

]
+

[
D−α,+, [δ−α,+,L−α,+]

]
+

[
δ−α,+, [L−α,+,D−α,+]

]
= 0. (2.59)
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In particular, the vector space g−α,+ spanned by those three operators and the identity with
respect to linear combinations and [·, ·] is a solvable Lie algebra.

Proposition 2.1.54 — Covariance identities - Weibull case. Let f, g ∈ SΨ,+ and Z ∼ W+(α).

- Let Y be a random variable with Beta distribution B(α, 1), independent of Z. Then:

⟨L−α,+f, g⟩L2(R+,Ψ+
α ) = − 1

α2E
[
Y Z2f ′(Y Z)g′(Z)

]
. (2.60)

- Assume further that f has zero mean: E[f(Z)] = 0. Then:

⟨f, g⟩L2(R+,Ψ+
α ) = − 1

α2E
[
Y Z2(L −1

−α,+f)′(Y Z)g′(Z)
]
. (2.61)

Proof. We give a short proof of (2.60) which relies on (2.39). Let φ = x 7→ −α log x and define
Tφf = f ◦ φ whenever this composition is well-defined. We have φ−1(x) = exp(−x/α). Notice that
if X ∼ G(0, 1) then Z = φ−1(X) ∼ W+(α) and also that if W ∼ E(1), then Y = φ−1(W ) ∼ B(α, 1).
Therefore, one has

f(Z) d= (Tφ−1f)(X) and f(ZY ) d= (Tφ−1f)(X +W ),

as well as
P−α,+

t f(x) =
(
TφP0

tTφ−1
)
f(x), x ≥ 0, f ∈ SΨ,+.

Therefore one can write L−α,+ = TφL0Tφ−1 . Consequently, thanks to (2.39),

⟨L−α,+f, g⟩L2(R+,Ψ+
α ) = E

[
(L−α,+f)(Z)g(Z)

]
= E

[(
Tφ−1TφL0Tφ−1

)
f(X)(Tφ−1g)(X)

]
= E

[
L0(Tφ−1f)(X)(Tφ−1g)(X)

]
= −E

[
(Tφ−1f)′(X +W )(Tφ−1g)′(X)

]
= − 1

α2E
[
Y Z2f ′(Y Z)g′(Z)

]
.

Proposition 2.1.55 — Poincaré inequality - Weibull case. Let f ∈ SΨ,+. Let Z ∼ W+(α) and
Y ∼ B(α, 1) be a random variable with beta distribution, independent of Z.

V(f(Z)) ≤ E
[
Lαf(Z)g(Z)

]
= − 2

α2E
[
Y Z2f ′(Y Z)g′(Z)

]
. (2.62)

The generator of the Weibull semi-group with an integer parameter α satisfies a specific property
which is once again proved by simple (iterated) integration-by-parts.

Proposition 2.1.56 Take α = m ∈ N. Denote by f (1)(x) := f ′(x) and f (k−1)(x) :=
∫ x

0 f
(k)(r) dr
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for all integers k in Z which are less or equal than 1. Then we have

L−mf(x) = 1
m
xf ′(x) +

m∑
k=1

(−1)kk!xm−k+1f (−k+1)(x) + (−1)m+1m!f (−m+1)(x), f ∈ SΨ.

Proof. For α = m, iterated integration-by-parts in the integral

1
α

D−α,+f(x) = 1
α

∫ x

0
rf ′(r) dρ−α,+(r) =

∫ x

0
rmf ′(r) dr

yield the desired result.

Example 4. As stated before, the exponential and Rayleigh distributions are special cases of the
Weibull distribution. Since they correspond to α = 1 and α = 2 respectively, the previous result is
applicable. For the exponential case, it writes as

L−1,+f(x) = xf ′(x) − (x− 1)f(x), f ∈ SΨ,+,

while in the Rayleigh case we obtain

L−2,+f(x) = 1
2xf

′(x) − x2f(x) + 2(x− 1)f (−1)(x), f ∈ SΨ,+.

Remark 2.1.57. A comparative look at our three max-stable semi-groups shows that their
generators can be expressed in an unified way:

Lαf(x) = dαf(x) +
∫ ∞

x
dαf(r) dρα(r), f ∈ SΦ (2.63)

for every α ∈ R, with

dαf(x) :=
{

− 1
αxf

′(x) if α ̸= 0
−f ′(x) if α = 0.

The operator dα corresponds to the generator of the dilation semi-group (pα
t )t≥0 when α is different

of 0 while we get the translation semi-group (p0
t )t≥0 when α = 0:

pα
t f(x) :=

{
f

(
e−

t
αx

)
if α ̸= 0

f(x− t) if α = 0.

■

2.2 The Fréchet semi-group as a Markov process
The goal of this section is to build a Markov process whose semi-group is (Pα

t )t≥0. It will be
expressed in terms of extremal integrals, as defined in section 1.3.4. The main motivation of
this section is to continue the analogy with the usual Ornstein-Uhlenbeck process, which can be
described as a stochastic integral depending on a time parameter.
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Definition 2.2.1. The max-stable Ornstein-Uhlenbeck process is defined as :

Xt := e−
t
αX0 ⊕

e∫ t

0
e−

1
α

(t−s) dMα(s).

where Mα is a α-Fréchet random sup-measure with Lebesgue control measure.

Formally this process is the exact counterpart of the standard Ornstein-Uhlenbeck semi-group,
except that the sum is replaced by the maximum, and the stochastic integral by the extremal
integral. It remains to prove that this process is indeed Markovian and has the right semi-group:

Proposition 2.2.2 The process (Xt)t≥0 is a Markov process and

E
[
f(Xt) |X0 = x

]
= Pα

t f(x), x ∈ R+, f ∈ SΦ.

Proof. Let us note provisionally P̃α
t f(x) := E[f(Xt) |X0 = x]. It is clear that for all nonnegative t,

P̃α
t is a linear operator and that P̃α

0 = Id. Now we need to check that P̃α
t ◦ P̃α

s = P̃α
t+s:

(P̃α
t ◦ P̃α

s )f(x) = E
[
f

(
e−

t
αXs ⊕

e∫ t

0
e−

1
α

(t−u) dMα(u)
) ∣∣ X0 = x

]
= E

[
f

(
e−

1
α

(t+s)x⊕
e∫ t

0
e−

1
α

(t+s−u) dMα(u) ⊕
e∫ s

0
e−

1
α

(s−u) dM ′α(u)
)]
,

where M ′α denotes an independent copy of Mα. Furthermore, by the isometry property, we have
that:

e∫ s

0
e−(s−u) dMα(u) d= F

(
1,

( ∫ s

0
e−(s−u) du

)1/α
)

= F
(
α,

( ∫ t+s

t
e−(t+s−u) du

)1/α
)
.

Consequently, injecting this result in the previous computation:

(P̃α
t ◦ P̃α

s )f(x) = E
[
f

(
e−

1
α

(t+s)x⊕
e∫ t

0
e−

1
α

(t+s−u) dMα(u) ⊕
e∫ s

0
e−

1
α

(s−u) dM ′α(u)
)]

= E
[
f

(
e−

1
α

(t+s)x⊕
e∫ t

0
e−(t+s−u) dMα(u) ⊕

e∫ t+s

t
e−

1
α

(t+s−u) dM ′α(u)
)]

= E
[
f

(
e−

1
α

(t+s)x⊕
e∫ t+s

0
e−

1
α

(t+s−u) dMα(u)
)]

= P̃α
t+sf(x).

Furthermore, since
∫ t

0 e
−(t−s) ds = 1 − e−t, we have that

∫ t
0 e
− 1

α
(t−u) dMα(u) d= F

(
α, (1 − e−t)1/α

)
,

so
e∫ t

0
e−

1
α

(t−s) dMα(s) d= (1 − e−t)
1
αZ,

where Z is a random variable with Fréchet distribution F(α). Therefore (P̃α
t )t≥0 = (Pα

t )t≥0.
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Remark 2.2.3. Using the terminology of Stoev and Taqqu [2005], this process is an instance of an
integral moving maximum process:

Xt =
e∫
R+
f(t− u) dMα(u),

where f ∈ Lα
+(R+, λ) and λ is the Lebesgue measure. Here f = u 7→ e−

1
α

u1R+(u). ■

The notion of extremal integral allows us to define another stochastic process of interest here.

Definition 2.2.4. Let Z0 be a positive random variable and α a positive number. An α-
max-stable motion (Zt)t≥0 is a stochastic process such that there exists an α-Fréchet random
measure satisfying

Zt = Z0 ⊕
e∫ t

0
dMα(s), t ≥ 0.

The next proposition links this stochastic process to the max-stable Ornstein-Uhlenbeck process.

Proposition 2.2.5 (Zt)t≥0 is a Markov process whose generator Kα is:

Kαf(x) = Dαf(x) =
∫ ∞

x

(
f(x⊕ r) − f(x)

) α

rα+1 dr, x ∈ R∗+, f ∈ SΦ.

Proof. Let f be in SΦ. Furthermore, define Qtf(x) := E[f(Zt) |X0 = x]. By definition of Zt, we
have:

Zt+s = Z0 ⊕
e∫ t+s

0
dMα(u)

= Z0 ⊕
e∫ s

0
dMα(u) ⊕

e∫ t+s

s
dMα(u)

d= Zs ⊕ tZ,

where Z is a random variable with Fréchet distribution F(α) independent of σ(Zu, u ≤ s). This
proves that (Zt)t≥0 is a Markov process with semi-group

Qtf(x) = E
[
f(x⊕ tZ)

]
= f(x)e−

t
xα + t

∫ ∞
x

f(r)e−
t

rα
α

rα+1 dr, x > 0.

An easy calculation yields the generator of the proposition.

In other words, the generator of the max-stable Ornstein-Uhlenbeck process writes as the generator
of the dilation semi-group plus the generator of an α-max-stable motion. The former "counteracts"
the "diffusion" effect of Dα, the generator of the max-stable motion. This phenomenon is similar
to what is observed in the standard Ornstein-Uhlenbeck process (where the max-stable motion is
replaced by the Brownian motion), or more generally with α-stable Ornstein-Uhlenbeck processes
(see Samorodnitsky and Taqqu [1994]).
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Figure 2.1: Three paths of Xt for α ∈
{1

3 , 1, 3
}

It is well known that one can construct martingales from Markov processes by using their generators
(see for instance Rogers and D.Williams [April 2000], or theorem 6.14 in Gall [2016]). This is the
content of proposition 1.1.8. We apply it to (Xt)t≥0, as defined in the previous remark. For f a
function in the domain of Lα such that E[Lαf(Xt)] exists for all t, the process defined by

f(Xt) − f(X0) −
∫ t

0
Lαf(Xu) du

is a martingale. This result takes an especially simple form for f = log:

Proposition 2.2.6 Let X0 be a positive random variable and define

Mt := logXt − logX0 + t

α
− 1
α

∫ t

0

1
Xα

u

du.

Then (Mt)t≥0 is a martingale for the filtration (Ft)t≥0 = σ(Xt, t ≥ 0).

Proof. We could apply directly the general theorem to f = log, as stated in Rogers and D.Williams
[April 2000], even though (Xt)t≥0 is not Feller (the proof of the needed implication does not require
the Feller property). In that case, we have

Lαf(x) = − 1
α
xf ′(x) +

∫ ∞
x

f ′(y)
yα

dy = − 1
α

+
∫ ∞

x

1
yα+1 dy = − 1

α
+ 1
α

1
xα
,

which explains the form of (Mt)t≥0. Nonetheless we give a direct proof in order to make things
more enlightening. We will need the identity:

E
[
log

(
e−

t
αx⊕ (1 − e−t)

1
αZα

)]
− 1
α

∫ t

0
E

[ 1
e−uxα ⊕ (1 − e−u)Zα

α

]
du = log x− t

α
, (2.64)
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where Zα ∼ F(α). Actually, we just need to prove it for α = 1: by setting y = xα and using that
Z := Zα

α has the Fréchet distribution F(1), the previous equality becomes:

E
[
log

(
e−ty ⊕ (1 − e−t)Z

)]
−

∫ t

0
E

[ 1
e−uy ⊕ (1 − e−u)Z

]
du = log y − t, (2.65)

E
[
log

(
e−ty ⊕ (1 − e−t)Z

)]
= log(e−ty)e−

γt
y +

∫ ∞
y
γt

log
(
(1 − e−t)z

)e− 1
z

z2 dz

= log(e−ty)e−
γt
y + log(1 − e−t)(1 − e

− γt
y ) +

∫ ∞
y
γt

log z e
− 1

z

z2 dz (2.66)

.

On the other hand∫ t

0
E

[ 1
e−uy ⊕ (1 − e−u)Z

]
du =

∫ t

0
eu e
− γu

y

y
+ 1

1 − e−u

∫ ∞
y

γu

e−
1
z

z3 dz du

= 1 − e
− γt

y +
∫ t

0

∫ ∞
y

γu

1
1 − e−u

e−
1
z

z3 dz du

= 1 − e
− γt

y +
∫ ∞

y
γt

∫ t

log(1+ y
z

)

1
1 − e−u

e−
1
z

z3 du dz

= 1 − e
− γt

y +
∫ ∞

y
γt

e−
1
z

z3

[
log γt − log

(y
z

)]
dz

= 1 − e
− γt

y + log
(γt

y

) ∫ ∞
y
γt

e−
1
z

z3 dz +
∫ ∞

y
γt

log z e
− 1

z

z3 dz

= 1 − e
− γt

y + log
(γt

y

) ∫ ∞
y
γt

e−
1
z

z3 dz

+ γt

y
log

(γt

y

)
e
− γt

y +
∫ ∞

y
γt

log z e
− 1

z

z2 dz −
∫ ∞

y
γt

e−
1
z

z2 dz

= γt

y
log

(γt

y

)
e
− γt

y + log
(γt

y

) ∫ ∞
y
γt

e−
1
z

z3 dz +
∫ ∞

y
γt

log z e
− 1

z

z2 dz,

the penultimate equality stemming from an integration by parts (differentiate z 7→ z−1 log z). The
first integral in the last equality is just an avatar of the incomplete Gamma function with an integer
argument. As such it can be computed explicitly (once more by integration by parts) and thus we
find: ∫ t

0
E

[ 1
e−uy ⊕ (1 − e−u)Z

]
du = γt

y
log

(γt

y

)
e
− γt

y + log
(γt

y

)(
1 − e

− γt
y − γt

y
e
− γt

y
)

+
∫ ∞

y
γt

log z e
− 1

z

z2 dz

= log
(γt

y

)
(1 − e

− γt
y ) +

∫ ∞
y
γt

log z e
− 1

z

z2 dz. (2.67)
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Subtracting (2.67) to (2.66), we finally obtain:

E
[
log

(
e−ty ⊕ (1 − e−t)Z

)]
−

∫ t

0
E

[ 1
e−uy ⊕ (1 − e−u)Z

]
du = log(e−ty)e−

γt
y + log(1 − e−t)(1 − e

− γt
y )

− log
(γt

y

)
(1 − e

− γt
y )

= log y − t,

as announced. From this equality and the Markov property of (Xt)t≥0, it is easy to obtain the
martingale property of (Mt)t≥0.

Figure 2.2: Three paths of Mt for α ∈
{1

3 , 1, 3
}

Remark 2.2.7. Set Yt = α logXt and y = α logX0. Then it is easy to see that (Yt)t≥0 is a Markov
process with semi-group (P0

t )t≥0. With those notations, after being multiplied by α, the previous
martingale becomes:

Mt = Yt − Y0 + t−
∫ t

0
e−Yu du.

This is exactly the same martingale which would have appeared had we applied theorem 1.1.8 of
Gall [2016] to the Markov process associated to the Gumbel distribution, and f = Id. The same
line of reasoning could be applied to find the martingale connected to the Weibull distribution. In
other words, up to an obvious change of variable, the martingale (Mt)t≥0 is the same for the three
max-stable distributions. ■

To end that section, we give a table comparing the properties satisfied by the Gaußian Ornstein-
Uhlenbeck semi-group, and the Fréchet semi-group. There, G will denote a random variable with the
standard normal distribution N (0, 1), (Bt)t≥0 a standard Brownian motion, Z a random variable
with the Fréchet distribution F(α), and Y a random variable with the Pareto distribution VP(α, 1).
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Property Ornstein-Uhlenbeck semi-group Fréchet semi-group

Mehler’s formula E
[
f

(
e−tx+

√
1 − e−2tG

)]
E

[
f

(
e−

t
αx⊕ (1 − e−t)

1
αZ

)]
Generator −xf ′(x) + f ′′(x) − 1

αxf
′(x) + Dαf(x)

Derivative ∇ Dα

Divergence −xf(x) + f ′(x) 1
αx

α+1f ′(x) + f(x)

First commutation rule [Pt,∇] = (1 − e−t)Pt∇ [Pα
t ,Dα] = (1 − e−t)Pα

t Dα

Second commutation rule [Pt, δ] = (1 − et)Ptδ [Pα
t , δα] = (1 − et)Pα

t δα

Creation and annihilation
rule

[δ,∇] = Id [δα,Dα] = Id

First infinitesimal commu-
tation rule

[Lγ ,∇] = ∇ [Lα,Dα] = Dα

Second infinitesimal com-
mutation rule

[δ,Lγ ] = δ [δα,Lα] = δα

Energy form −E[f ′(G)g′(G)] − 1
α2E[Y Z2f ′(Y Z)g′(Z)]

Stochastic integral repre-
sentation

Xt = e−tX0 +√
2

∫ t
0 e
−(t−s) dB(s)

Xt = e−
t
αX0⊕e∫ t

0e
− 1

α
(t−s) dMα(s)

2.3 Quantization of multivariate max-stable distributions

The last section of this chapter is dedicated to the quantization of multivariate max stable
distributions. We will rely heavily on the properties of the Poisson process recalled in section 1.2 as
well as on the notations introduced in section 1.3.2.

We need to keep in mind that unlike the unidimensional case, the marginals of a max-stable random
vector may be quite cumbersome to describe. Indeed, recall the example given in the preliminaries:
the vector (X,Y ), with X ∼ F(1) and Y ∼ G(0, 1), and X,Y independent, is max-stable but has
different marginal distributions. However, up to a non-decreasing transformation, the marginal
distributions of a max-stable random vector can be normalized to be e.g. unit Fréchet F(1). This
does not change the dependency structure of the vector, which is given by the angular measure.
For this reason, it is easier to work with max-stable random vectors whose marginals have the same
Fréchet F(1). Since the definition of our semi-group is ’compatible’ with such transformations,
we will not lose in generality by doing so. Therefore, the philosophy of this section is to first
define the semi-group associated to the multivariate max-stable random vectors with unit Fréchet
marginals, and then to apply a certain transformation to it to deduce a quantization of max-stable
distributions in general.
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2.3.1 The case of the unit Fréchet max-stable random vectors

In our context, the right generalization of R∗+ in higher dimensions is not (R∗+)d but E0 defined as
follows

E0 :=
{
x ∈ Rd

+, ∃j ∈ [[1, d]], xj > 0
}

= {x ∈ Rd
+, x ≰ 0} = [0,+∞]d \ {0}.

The Schwartz class on E0 is defined as

S (E0) :=
{
f ∈ C∞(E0), xk∂n

j |f(x)| < ∞, for all (k, n) ∈ Nd × N, j ∈ Nn}
,

where xk =
∏d

j=1(xj)kj and ∂n
j f(x) := ∂j1 . . . ∂jnf(x).

Definition 2.3.1 (Standard algebra). We define the class of functions:

SΦ,d :=
{
f ∈ S (E0), sup

x∈(0,1]d
x−k|∂n

j f(x)| < ∞ for all (k, n) ∈ Nd × N∗, j ∈ Nn}
.

The multivariate extension of the Fréchet semi-group takes formally the same shape as in the
univariate case.

Definition 2.3.2 (Multivariate unit Fréchet semi-group). Fix a reference norm ∥ · ∥ on Rd.
Define the multivariate unit Fréchet semi-group (P1,ν

t )t≥0 on the standard algebra A = SΦ,d

by

P1,ν
t f(x) := E

[
f

(
e−tx ⊕ (1 − e−t)Z

)]
, x ≥ 0, t ≥ 0 (2.68)

where Z ∼ MS(1, ν), with ν a finite measure on Sd−1
+ satisfying the moment constraints

(1.18).

Without further assumptions on the angular measure ν, the set SΦ,d is not a standard algebra
for (P1,ν

t )t≥0 in general. This difficulty is caused by the lack of differentiability of x 7→ x ⊕ y (for
some fixed y) in the x which share a coordinate with y. In dimension 1, this problem did not exist
because we worked with the measure ρα, which is absolutely continuous w.r.t. Lebesgue’s measure.
In higher dimensions, we will need to impose that the angular measure puts zero mass on sets
included in

∆ :=
{
x ∈ E0, x

i = xj for some i ̸= j
}
.

However we will usually not need to work with a true standard algebra, except when iterating the
generator of (P1,ν

t )t≥0. For most of our needs, working on SΦ,d with no additional assumptions on
ν will be enough to ensure the objects we want to define are well-posed.

Proposition 2.3.3 The family of operators (P1,ν
t )t≥0 is a semi-group on SΦ,d.

Proof. Clearly P1,ν
t is a linear operator on SΦ,d. Furthermore, if f ∈ SΦ,d, then f is bounded.

Thus P1,ν
s f is well-defined and bounded too, as well as P1,ν

t (P1,ν
s f), for all nonnegative t, s. The
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semi-group relation is satisfied:

(P1,ν
t ◦ P1,ν

s )f(x) = E
[
(P1,ν

s )f
(
e−tx ⊕ (1 − e−t)Z

)]
= E

[
f

(
e−s(

e−tx ⊕ (1 − e−t)Z
)

⊕ (1 − e−s)Z ′
)]

= E
[
f

(
e−(t+s)x ⊕

(
e−s(1 − e−t)Z ⊕ (1 − e−s)Z ′

))]
= E

[
f

(
e−(t+s)x ⊕ (1 − e−(t+s))Z

)]
where Z ′ is an independent copy of Z. Using representation (1.20), it is clear that e−s(1 − e−t)Z ⊕
(1 − e−s)Z ′ d= (1 − e−(t+s))Z.

The max-stability relation upon which we have built our semi-group implies that it quantizes the
multivariate unit Fréchet distribution.

Proposition 2.3.4 (P1,ν
t )t≥0 is ergodic and admits Φ1,ν as a stationary distribution, where Φ1,ν

denotes the distribution of Z ∼ M(1, ν).

Proof. By the definition of P1,ν
t f and a dominated convergence argument, we get

P1,ν
t f(x) −→

t→∞
E[f(Z)],

which means that (P1,ν
t )t≥0 is ergodic. Furthermore, if Z ′ ∼ MS(1, ν), then it is clear that:

E[P1,ν
t f(Z ′)] = E[f(e−tZ ′ ⊕ (1 − e−t)Z)] = E[f(Z ′)],

due to the max-stability property.

Proving that t 7→ P1,ν
t is right-continuous at 0 and computing the generator of (P1,ν

t )t≥0 are a bit
trickier than in dimension 1 because decomposition (2.2) is not as obvious to write. Actually, it can
be seen as a very particular case of Mecke’s formula. This heuristic still holds in higher dimension
and gives us the counterpart of (2.2) we need.

Lemma 2.3.5 Denote by dµ = T ∗( dρ1 ⊗ dν) the exponent measure of the max-stable distri-
bution MS(1, ν) (see (1.23)). Let Z be a random vector with this distribution. We have for
f ∈ SΦ,d and x ∈ E0:

P1,ν
t f(x) = FγtZ(x)f(e−tx)

+ FγtZ(x)γt

∫
[0,x]c

f
(
e−t(x ⊕ ru)

) 1
r2 dr dν(u)

+ FγtZ(x)
∞∑

n=2

γn
t

n!

∫
([0,x]c)n

f
(
e−t(x ⊕ r1u1 ⊕ · · · ⊕ rnun)

) n∏
i=1

1
r2

i

dri dν(ui),

(2.69)

where we abused notations by integrating over [0,x]c, which denotes here the set {(r,u) ∈
Epol, ru ≰ x}, where

Epol := R∗+ × Sd−1
+ .
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Proof. Remember that Z can be seen as the coordinate-wise maximum of a certain Poisson point
process thanks to (1.19). As a result we can rewrite P1,ν

t f(x) as an expectation with respect to a
Poisson process η with intensity measure dµ = r−2 dr ⊗ dν(u) on E0 and apply (1.2) to expand
it. The problem lies in the fact that the intensity measure of η is not finite because it has an
accumulation point at 0. But observe that we do not need all the points (r,u) of η, only those
such that ru is not less than γ−1

t x, i.e. those which belong to

A :=
{
(r,u) ∈ R∗+ × Sd−1

+ , ru /∈ [0, γ−1
t x]

}
.

This random set η ∩A is still a Poisson process, this time with intensity measure µ restricted to A.
Thus it has finite intensity measure since it avoids the accumulation point at 0. We can apply (1.2)
to the function φ(·) = f(e−tx ⊕ (1 − e−t)m(·)), where f belongs to SΦ,d, to get:

P1,ν
t f(x) = e−µ[0,γ−1

t x]cf(e−tx)

+ e−µ[0,γ−1
t x]c

∞∑
n=1

1
n!

∫
An
f

(
e−tx ⊕ (1 − e−t)m{r1u1, . . . , rnun}

) n∏
i=1

1
r2

i

dri dν(ui)

= e−γtµ[0,x]cf(e−tx)

+ e−γtµ[0,x]c
∞∑

n=1

1
n!

∫
An
f

(
e−t(x ⊕ γtr1u1 ⊕ · · · ⊕ rnun)

) n∏
i=1

1
r2

i

dri dν(ui)

= e−γtµ[0,x]cf(e−tx)

+ e−γtµ[0,x]c
∞∑

n=1

γn
t

n!

∫
([0,x]c)n

f
(
e−t(x ⊕ r1u1 ⊕ · · · ⊕ rnun)

) n∏
i=1

1
r2

i

dri dν(ui),

since γtA = [0,x]c. By using that [0, γ−1
t x]c = γ−1

t [0,x]c and equation (1.21), we found that
µ[0, γ−1

t x]c = γtµ[0,x]c. Finally, notice that

e−γtµ[0,x]c = P(Z ≤ γ−1
t x) = FγtZ(x).

Proposition 2.3.6 The family of operators (Pα
t )t≥0 satisfies the following properties:

- The application t 7→ P1,ν
t is right-continuous at 0, and so (P1,ν

t )t≥0 is a Markov semi-group.

- The Markov semi-group (P1,ν
t )t≥0 has generator L1,ν , given by:

L1,νf(x) = −⟨x,∇f(x)⟩ +
∫

Epol

(
f(x ⊕ ru) − f(x)

) 1
r2 dr dν(u), x ∈ E0, f ∈ SΦ,d

and where ⟨·, ·⟩ denotes the standard Euclidean inner product on Rd.

Proof. - We prove that P1,ν
t f converges to f in norm L2(E0,Φ1,ν). Clearly

FγtZ(x)f(e−tx) = e−γtµ[0,x]cf(e−tx) −→
t→0+

f(x) a.e.

and thus Φ1,ν-a.s. too. It is dominated by C(1 + ∥ 4
√
x∥) for some constant C > 0 since

f(x) = f̃(x), where f̃(x) = f(x4), and f̃ still belongs to SΦ,d. In particular, f̃ is Lipschitz on
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E0. Moreover, because all norms are equivalent in finite dimension, one can find another constant
C such that ∥ 4

√
x∥ ≤ C∥ 4

√
x∥1, making it clear that x 7→ ∥ 4

√
x∥ is Φ1,ν-square integrable. By

bounded convergence theorem, we conclude that exp(−γtµ[0,x]c)f(e−tx) converges to 0 in
norm L2(E0,Φ1,ν). The two other terms of (2.69) likewise converge to 0 in norm L2(E0,Φ1,ν)
because γt = et − 1 vanishes when t goes to 0 and the multiple integrals are easily dominated by
(µ[0,x]c)n.

- We differentiate equality (2.69) with respect to t at t = 0. The first term gives two parts of the
generator:

d
dt

∣∣∣
t=0

e−γtµ[0,x]cf(e−tx) = −µ[0,x]cf(x) − ⟨x,∇f(x)⟩

= −⟨x,∇f(x)⟩ −
∫

[0,x]c
f(x) 1

r2 dr dν(u).

As for the first integral term,

d
dt

∣∣∣
t=0

γte
−γtµ[0,x]c

∫
[0,x]c

f
(
e−t(x⊕ru)

) 1
r2 dr dν(u)

= d
dt

∣∣∣
t=0

{
e−γtµ[0,x]cγt

∫
[0,x]c

f
(
e−t(x ⊕ ru)

) 1
r2 dr dν(u)

}
=

∫
[0,x]c

f(x ⊕ ru) 1
r2 dr dν(u).

The series converges to 0 at speed O(t2), so we can neglect it. Putting all the parts together
and noticing that (r,u) 7→ f(x ⊕ ru) − f(x) vanishes on [0,x], we find the announced result:∫

[0,x]c
f(x⊕ ru) 1

r2 dr dν(u) −
∫

[0,x]c
f(x) 1

r2 dr dν(u) =
∫

Epol

(
f(x⊕ ru) − f(x)

) 1
r2 dr dν(u).

The only thing left to do is proving that the convergence takes place in norm L2(E0,Φ1,ν). This
is done in a similar manner as the proof of right-continuity, but with much heavier notations, so
we skip this part.

As in the 1-dimensional case, the max-stable Ornstein-Uhlenbeck semi-group enjoys several useful
properties which we sum up in the next proposition:

Proposition 2.3.7 The multivariate Fréchet semi-group satisfies the following.

1. (Commutation rule) Set:

D1,νf(x) :=
∫

Epol

(
f(x ⊕ ru) − f(x)

) 1
r2 dr dν(u), x ∈ E0.

Then for all f ∈ SΦ,d we have:

D1,νP1,ν
t f(x) = e−tP1,ν

t D1,νf(x), t ≥ 0.
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2. The operator D1,ν can be rewritten as:

D1,νf(x) =
∫

Epol

〈
ru1ru,x,∇f(x ⊕ ru)

〉 1
r2 dr dν(u), f ∈ SΦ,d (2.70)

where 1j
y,x equals 1 if yj ≥ xj and 0 otherwise, i.e. 1j

y,x = 1{yj≥xj}.

3. This is also equal to:

D1,νf(x) =
d∑

j=1

∫
{ruj≥xj}

uj∂jf(x ⊕ ru)1
r

dr dν(u), f ∈ SΦ,d, (2.71)

with {ruj ≥ xj} the subset of Epol of (r,u) such that ruj ≥ xj.

Proof. 1. First we compute P1,ν
t D1,νf(x):

P1,ν
t D1,νf(x) = E

[
(D1,νf)

(
e−tx ⊕ (1 − e−t)Z

)]
= E

[ ∫
Epol

(
f

(
e−tx ⊕ (1 − e−t)Z ⊕ ru

)
− f(e−tx ⊕ (1 − e−t)Z)

) 1
r2 dr dν(u)

]
=

∫
Epol

E
[
f

(
e−tx ⊕ ru ⊕ (1 − e−t)Z

)
− f(e−tx ⊕ (1 − e−t)Z)

] 1
r2 dr dν(u).

On the other hand, a change of variable yields:

D1,νP1,ν
t f(x) =

∫
Epol

(
P1,ν

t f(x ⊕ ru) − P1,ν
t f(x)

) 1
r2 dr dν(u)

=
∫

Epol
E

[(
f

(
e−t(x ⊕ ru) ⊕ (1 − e−t)Z

)
− f(e−tx ⊕ (1 − e−t)Z)

) 1
r2 dr dν(u)

]
= e−t

∫
Epol

E
[(
f

(
e−tx ⊕ ru ⊕ (1 − e−t)Z

)
− f(e−tx ⊕ (1 − e−t)Z)

) 1
r2 dr dν(u)

]
= e−tP1,ν

t D1,νf(x).

2. To prove the alternate expression of D1,ν , we write:

D1,νf(x) =
∫
Sd−1

+

∫
ru∈[0,x]c

(
f(x ⊕ ru) − f(x)

) 1
r2 dr dν(u)

=
∫
Sd−1

+

∫ ∞
min u

x

(
f(x ⊕ ru) − f(x)

) 1
r2 dr dν(u).

Next, we perform an integration-by-parts in the inner integral, integrating r 7→ r−2 and
differentiating r 7→ f(x ⊕ ru) − f(x). Notice that this last function has at least one argument
which is not constant with respect to r by definition of the integration domain. This accounts
for the presence of the vector 1ru,x. Since the function r 7→ x ⊕ ru is piecewise C 1, the
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integration-by-parts makes sense and we get:∫
Sd−1

+

∫ ∞
min u

x

(
f(x ⊕ ru) − f(x)

) 1
r2 dr dν(u) =

∫
Sd−1

+

∫ ∞
min u

x

〈
u1ru,x,∇f(x ⊕ ru)

〉 dr
r

dν(u)

=
∫
{ru∈[0,x]c}

〈
ru1ru,x,∇f(x ⊕ ru)

〉 1
r2 dr dν(u)

=
∫

Epol

〈
ru1ru,x,∇f(x ⊕ ru)

〉 1
r2 dr dν(u).

Example 5. Depending on the angular measure, the form of D1,ν changes drastically. For the sake
of clarity, assume that the reference norm is the infinity norm ∥ · ∥∞ on Rd.

- In the case of complete independence, ν =
∑d

j=1 δej , where ej is the j-th vector of the canonical
basis of Rd, so that:

D1,νf(x) =
d∑

j=1

∫ ∞
0

(
f(x ⊕ rej) − f(x)

) 1
r2 dr

=
d∑

j=1

∫ ∞
xj

r(∂jf)(x ⊕ rej) 1
r2 dr, x ∈ E0.

Notice that D1,νf(x) is still infinitely differentiable with respect to each xj, because the ⊕
operator has actually vanished already. This is explained by the very particular shape of the
angular measure.

- On the other hand, in the case of complete dependence, i.e. ν = δ1, we get:

D1,νf(x) =
∫ ∞

minx

(
f(x ⊕ r1) − f(x)

) 1
r2

=
d∑

j=1

∫ ∞
xj

r∂jf(x ⊕ r1) 1
r2 dr, x ∈ E0,

where minx = x1 ⊙ · · · ⊙ xd. Notice that D1,νf(x) is still differentiable with respect to each xj

once but not more in general.

A pseudo Leibniz rule still holds in higher dimensions for D1,ν :

Proposition 2.3.8 — Pseudo Leibniz rule. For every f, g ∈ SΦ,d, we have for x ∈ E0:

D1,ν(fg)(x) = D1,νf(x)g(x) + f(x)D1,νg(x)

+
∫

Epol

(
f(x ⊕ ru) − f(x)

)(
g(x ⊕ ru) − g(x)

) 1
r2 dr dν(u).

Proof. The proof relies on the same kind of decomposition we have used to prove proposition 2.1.12,
with ru1/α replacing r.
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The commutation rule between P1,ν
t and D1,ν admits an "infinitesimal version", to quote the

expression of Chafaï [2006], page 6. It corresponds to the commutator relation (2.17) we have
proved in the univariate case through a direct computation. Things are less obvious in higher
dimensions, but we give a general argument which works for other semi-groups, like the α-stable
semi-groups.

Proposition 2.3.9 We have the commutation relation:

[L1,ν ,D1,ν ] = D1,ν . (2.72)

Proof. Equation (2.71) makes it clear that L1,νD1,ν and D1,νL1,ν are well-defined for every choice
of angular measure. The same goes for P1,νD1,ν and D1,νP1,ν thanks to the commutation rule.
We write

[L1,ν ,D1,ν ] = lim
t→0+

1
t
[P1,ν

t − Id,D1,ν ]

= lim
t→0+

1
t
[P1,ν

t ,D1,ν ]

= lim
t→0+

1
t

(
P1,ν

t D1,ν − D1,νP1,ν
t

)
= lim

t→0+

1 − e−t

t
P1,ν

t D1,ν

= D1,ν .

Remark 2.3.10. In this subsection we have made great use of the polar decomposition to express
D1,ν and L1,ν . The advantage of this formulation is that it fits our choice of parametrization of
max-stable distributions, which relies on the stability index α and the angular measure ν. Another
choice of parametrization would have consisted in using only the exponent measure µ instead of
decomposing it as the product of the measure ρα and the angular measure ν. This yields more
compact formulae, e.g.

Dµf(x) :=
∫

E0

(
f(x ⊕ y) − f(x)

)
dµ(y) = D1,νf(x),

if µ is the image measure of r−2 dr ⊗ dν(u) by (r,u) 7→ ru. However, one drawback of that
parametrization is that the homogeneity and diffusivity properties of µ become less easy to exploit.
■

2.3.2 The general case
To extend the results of the previous section to max-stable distributions, we will need a few notations
and objects. First, for φ : Rd → Rd, denote by Tφ the mapping defined by Tφf = f ◦ φ for all
f : Rd → R such that this composition is well-defined. It is clear that if φ is invertible, then
T−1

φ = Tφ−1 .

Second, recall the inverse probability integral transform: if X is a real random variable with c.d.f.
FX , then FX(X) has the uniform distribution U[0,1]. Equivalently, −1/ logFX(X) has the unit
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Fréchet distribution F(1), and thus

X
d= F←X

(
exp(−Z−1)

)
where Z ∼ F(1) and F←X denotes the pseudo-inverse of FX . Such a transformation can be applied
to any simple max-stable random vector i.e. max-stable random vector with unit Fréchet margins,
to give it any desired margins. In the sequel X will often be a max-stable distribution, so will
mainly work with invertible functions such as x 7→ xα or x 7→ log x, so we are not losing much in
generality by assuming that FX is invertible. The next lemma is basic in multivariate extreme
value theory.

Lemma 2.3.11 Let X be a max-stable random vector in Rd. Denote by FXj the c.d.f. of its j-th
marginal and set φ := (−1/ logFX1 , · · · ,−1/ logFXd). Assume that each FXj is invertible.
Then φ(X) is a simple max-stable random vector.

Remark 2.3.12. In the previous lemma, is not possible to assume that X is only max-id instead of
max-stable in general. Otherwise it would mean that all max-id random vectors could be normalized
into simple max-stable random vectors through a non-decreasing transformation. This is not true,
as the following counterexample shows:

F (x, y) :=


(
e

1
x + e

1
y − 1

)−1 if x, y ≥ 0,
0 otherwise.

This expression defines a bivariate c.d.f. with unit Fréchet F(1) margins. Furthermore the function
Q(x, y) := − logF (x, y) satisfies ∂2

x,yQ(x, y) ≤ 0 for all x, y ∈ R+. By a criterion given in Resnick
[1987] (proposition 5.3 page 254), this implies that F is the c.d.f. of a max-id random vector.
However, it is clear that F is not max-stable. This implies that max-id random vectors may have a
more complex dependency structure than max-stable random vectors, even when they have the
same margins. On the other hand, lemma 2.3.11 shows why max-stable random vectors can be
parametrized just by using a vector of shape parameters α and a finite measure on Sd−1

+ . ■

Let Z ∼ MS(α, ν) and denote by φα the non-decreasing transformation which turns the distribution
of Z into MS(1, ν), that is φα := (−1/ logFZ1 , · · · ,−1/ logFZd) For ease of notation, we will write
Tφα = Tα. The standard algebra is defined by applying φα to SΦ,d:

Definition 2.3.13 (Standard algebra). We define the class of functions:

Sα,d :=
{
f ◦ φ, f ∈ SΦ,d} = TαSΦ,d.

The general definition of our semi-group for max-stable random vectors then goes as follows:

Definition 2.3.14 (Multivariate max-stable semi-group). Define the multivariate unit Fréchet
semi-group (Pα,ν

t )t≥0 on the standard algebra A = Sα,d by setting

Pα,ν
t f(x) :=

(
TαP1,ν

t T−1
α

)
f(x), t ≥ 0, x ∈ φ(E0) (2.73)

where Z ∼ MS(α, ν), with ν a finite measure on Sd−1
+ satisfying the moment constraints

(1.18).

This definition makes immediate several properties of (Pα,ν
t )t≥0, such as the semi-group property

Pα,ν
t Pα,ν

s =
(
TαP1,ν

t T−1
α

)(
TαP1,ν

s T−1
α

)
= TαP1,ν

t+sT
−1
α = Pα,ν

t+s.
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The fact that MS(α, ν) is an invariant measure of (Pα,ν
t )t≥0, as well as the ergodicity and right-

continuity of this semi-group are other easy consequences of its definition and the properties of
(P1,ν

t )t≥0. Its generator can be expressed as:

Lα,ν = TαL1,νT
−1
α = Tα(d1 + D1,ν)T−1

α = Tαd1T
−1
α + Dα,ν ,

where d1f(x) = −⟨x,∇f(x)⟩ is the generator of the dilatation semi-group in dimension d, and
Dα,ν is defined as Dα,ν := TαD1,νT

−1
α . This operator also satisfies the commutation rule:

Dα,νPα,ν =
(
TαD1,νT

−1
α

)(
TαP1,ν

t T−1
α

)
= TαD1,νP1,ν

t T−1
α

= e−tTαP1,ν
t D1,νT

−1
α

= e−tPα,ν
t Dα,ν .

For instance, when α > 0 and α = α1, Tα(x) = xα, and the generator of the multivariate Fréchet
semi-group with parameters α and ν is

Lα,νf(x) = − 1
α

⟨x,∇f(x)⟩ +
∫

Epol

(
f(x ⊕ ru1/α) − f(x)

) α

rα+1 dr dν(u)

= − 1
α

⟨x,∇f(x)⟩ + 1
α

∫
Epol

〈
ru1/α1ru,x,∇f(x ⊕ ru1/α)

〉 α

rα+1 dr dν(u). (2.74)

In dimension 1, the application Tα is actually a Lie algebra isomorphism on the Lie algebra spanned
by span(L1,D1, δ1), in the sense that:

Tα[ϕ1, ϕ2] =
[
Tαϕ1, Tαϕ2

]
, ∀ϕ1, ϕ2 ∈ span(L1,D1, δ1).

We thus see that δα satisfies Tαδ1, just like Lα and Dα. This gives a short proof of proposition.
2.1.31 and 2.1.53.

We conclude this section by noticing that since all univariate distributions are max-id and have the
same dependency structure (!), one can quantize them by resorting to the same method we have used
to deal with max-stable distributions. For instance, if Z ∼ F(1), we know that exp(−1/Z) ∼ U[0,1],
so a semi-group quantifying the uniform distribution is given by

Ptf(x) = E
[
f

(
xet ⊕ U

1
1−e−t

)]
, x ∈ [0, 1]

where U ∼ U [0, 1], while for the logistic distribution with c.d.f. (1 + e−x)−1 on R, we get

Ptf(x) = E
[
f

(
− log

(
(1 + e−x)t − 1

)
⊕ − log

(
e

1
(1−e−t)Z − 1

))]
, x ∈ R

since − log(e1/Z − 1) has the logistic distribution if Z has the unit Fréchet distribution. This
time we cannot give a Mehler formula for Ptf(x) by using a random variable having the target
logistic distribution. This stems from the fact that the distribution of a maximum of two i.i.d.
logistic random variables is not easily expressed in terms of one logistic distribution. However, the
maximum of two i.i.d. uniform random variables U1, U2 has the same distribution as

√
U1, which

explains the simpler expression of the former semi-group. In the same way, the minimum of two
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i.i.d. Pareto VP(1) random variables X1, X2 has the same distribution as
√
X1, so a semi-group

quantifying this distribution would be:

Ptf(x) = E
[
f

(
xet ⊙X

1
1−e−t

)]
, x ∈ [1,+∞),

where X ∼ VP(1). Here we have used the nonincreasing transformation z 7→ exp(1/Z) to change
from the Fréchet distribution to the Pareto one, hence the presence of the minimum operator ⊙
instead of ⊕.
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In this chapter we show how the Fréchet semi-group we have introduced may prove useful to apply
Stein’s method to extreme value distributions. We start with the univariate case, where we give a
few results regarding the Stein’s solution associated to Lα, and then apply the obtained results to
prove a bound on the distance between renormalized maxima of random variables and the Fréchet
distribution. We then proceed to show how those results extend in higher dimension and give some
further applications.

3.1 The univariate Fréchet distribution

3.1.1 Stein’s equation and its solution

We first check that the generator Lα is indeed a characterizing operator of the Fréchet distribution
Φα. The proof relies on the Mellin transform and is not given. Instead we will prove this result in
the case of the Gumbel distribution; the proof will make use of the more familiar Laplace transform.
The space of text-functions is chosen to be as large as possible while ensuring that each part of
Lαf is well-defined and integrable.

Proposition 3.1.1 Let X be a random variable on R+ such that E[X−1] is finite. Then X has
the Fréchet distribution F(α) if and only if

E[Xf ′(X)] = αE[Dαf(X)],

for all f ∈ C 1(R∗+) such that there exists a constant C for which |f ′(z)| ≤ Cz−1 for z large
enough. If α > 1 and X ∼ F(α), the identity holds true if f is assumed to be Lipschitz
instead.

The generator Lα of (Pα
t )t≥0 can be written as

Lαf(x) = − 1
α
xf ′(x) +

∫ ∞
x

f ′(r) dr
rα
, x > 0, f ∈ SΦ.

105
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In the sequel, we will need to work with test functions which do not belong to this space, such
as 1-Lipschitz functions. Therefore we must make sure Pα

t f and Lαf have a sense. Furthermore,
Pα

t f must be nice enough so that −
∫∞

0 Pα
t f dt = L −1

α f is defined for centered f . Answering those
questions is the content of the next proposition.

Proposition 3.1.2 Let α > 0 and Z ∼ F(α). Set h∗ = h− E[h(Z)] if h is PZ-integrable. We
have the following:

- Pα
t h and Lαh exist for all h ∈ Lip1(R+,R) if and only if α > 1.

- For all z ∈ R+, set hz = 1(−∞,z]. Then Pα
t hz is well defined.

In both cases, t 7→ Pα
t h
∗(x) is integrable for all x ∈ R∗+, so that L −1

α h∗ exists. In the second
case, the pseudo-inverse of h∗z equals:

L −1
α h∗z(x) = α(log xz−1)+e

− 1
zα −

∫ ∞
α(log xz−1)+

(
e−

1−e−t

zα − e−
1

zα

)
dt. (3.1)

Proof. - If α ≤ 1, take h = Id. This function is 1-Lipschitz, but if Z ∼ F(α), then e−t/αx⊕ (1 −
e−t)1/αZ ≥ (1 − e−t)1/αZ is not integrable for all t > 0. On the other hand, if α > 1, then we
have ∣∣h(

e−
t
αx⊕ (1 − e−t)

1
αZ

)∣∣ ≤ h(0) + e−
t
αx+ Z,

because f is 1-Lipschitz on R+. As Z is integrable, this proves that Pα
t f is defined on R+. Now,

recall that a 1-Lipschitz function is differentiable a.e. and that its derivative h′ is bounded by 1
a.e. (Villani [2008]). Thus we find∫ ∞

x
|h′(r)| dr

rα
≤

∫ ∞
x

dr
rα

= 1
α− 1

1
xα−1 , x > 0,

meaning that Lαh(x) is well-defined for all positive x.

- Things are even simpler in this case, since we have for all nonnegative z

Pα
t hz(x) = P

(
e−

t
αx⊕ (1 − e−t)

1
αZ ≤ z

)
= e−

1−e−t

zα 1{e−t/αx≤z}, x ≥ 0. (3.2)

If h is 1-Lipschitz, then

|Pα
t h
∗(x)| = |Pα

t h(x) − E[h(Z)]|

≤ E
[
|e−

t
αx⊕ (1 − e−t)

1
αZ − Z|

]
≤ E

[
|e−

t
αx− Z|1{Z≤γ

−1/α
t x}

]
+

(
1 − (1 − e−t)

1
α

)
≤ E

[
|e−

t
αx− Z|β

] 1
β P(Z ≤ γ

−1/α
t x)

1
β +

(
1 − (1 − e−t)

1
α

)
= E

[
|e−

t
αx− Z|β

] 1
β e−

(
γt
xα

) 1
β

+
(
1 − (1 − e−t)

1
α

)
,

by Hölder’s inequality, with β = (α+ 1)/2, so that β ∈ (1, α). The first term is clearly integrable
with respect to t, while the second one is equivalent to e−t/α when t goes to ∞. Thus t 7→
Pα

t h(x) −E[h(Z)] is integrable w.r.t. Lebesgue measure, and by proposition 1.1.6, L −1
α h∗(x) exists

and is given by:
L −1

α h∗(x) = −
∫ ∞

0
Pα

t h
∗(x) dt, x > 0.
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In the case of the indicator functions hz, expression (3.2) tells us that

Pα
t h
∗
z(x) = −e−

1
zα + e−

1−e−t

zα 1{e−t/αx≤z}

= −e−
1

zα + e−
1−e−t

zα 1{t≥α(log xz−1)+}

= −e−
1

zα 1{t≤α(log xz−1)+} +
(
e−

1−e−t

zα − e−
1

zα )1{t≥α(log xz−1)+}.

The presence of the positive part is due to the constraint that t is always non-negative. The first
term is equivalent to e−t/zα, and the second is null outside the bounded interval [0, α(log xz−1)+],
and continuous w.r.t. t inside, hence the existence of L −1

α h∗z(x). Equality (3.1) immediately
follows.

We next list some properties of those Stein solutions, starting with the Lipschitz case.

Proposition 3.1.3 Let α > 1.

1. Let h be a 1-Lipschitz function on R∗+. The associated Stein solution gh := L −1
α h∗ is

α-Lipschitz and its derivative satisfies:

g′h(x) = −
∫ ∞

0
e−

t
α e−

γt
xα h′

(
e−

t
αx

)
dt, x > 0. (3.3)

As a result, we have

|g′h(x)| ≤ min(α, xα), x > 0. (3.4)

2. Consequently, Dαgh(0) is well-defined and finite.

3. Furthermore assume that h ∈ Lip[2](R∗+,R), i.e. h and h′ are Lipschitz on R∗+. Then g′h is
Cα-Lipschitz, with Cα a positive constant depending only on α.

Proof. 1. We already know from (2.3) that for f ∈ SΦ,

(Pα
t f)′(x) = e−

t
α e−

γt
xα f ′

(
e−

t
αx

)
, x > 0.

It is not hard to check that Pα
t f is still absolutely continuous if f is 1-Lipschitz, and that

the previous identity keeps holding. By dominating this function by e−t/α, we can apply the
dominated convergence theorem and differentiate gh under the integral sign:

g′h(x) = − d
dx

( ∫ ∞
0

(
Pα

t h(x) − E[h(Z)]
)

dt
)

=
∫ ∞

0
e−

t
α e−

γt
xα h′

(
e−

t
αx

)
dt.

Applying the triangle inequality and using that |h′(x)| ≤ 1 a.e., we get |g′h(x)| ≤ α. Actually we
can be more precise:

|g′h(x)| ≤
∫ ∞

0
e−

t
α e−

γt
xα dt

=
∫ ∞

0

xα

(xαu+ 1)1+ 1
α

e−u du.

The second expression gives |g′h(x)| ≤ xα since the denominator is greater than 1 for all u and x
in R∗+.
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2. This is a direct consequence of the previous item:∫ ∞
0

|g′h(r)| 1
rα

dr ≤
∫ ∞

0
min(α, r−α) dr < +∞.

3. Representation (3.3) tells us that g′h is the integral of a product of two bounded Lipschitz
function, since h is also supposed to be Lipschitz. The first one is r 7→ exp(−γtr

−α), whose
derivative αγtr

−(α+1) exp(−γtr
−α) is positive and whose maximum is

(
1 + 1

α

)1+ 1
α
γ
− 1

α
t ≤ 4γ−

1
α

t

because α > 1. Notice this bound is integrable w.r.t. t on R+. The second Lipschitz function is
r 7→ h(e−t/αr), which is e−t/α-Lipschitz. Therefore the integrand is 4γ−1/α

t + e−t/α Lipschitz
and g′h is Cα-Lipschitz, with

Cα =
∫ ∞

0
e−

t
α (4γ−1/α

t + e−t/α) dt = 2
α

+ 4
∫ ∞

0
e−

t
αγ
−1/α
t dt.

Remark 3.1.4. The interest of working with doubly Lipschitz functions, i.e. h ∈ Lip[2](R∗+,R),
lies in the lack of regularity of gh when h is a Lipschitz function or some indicator function 1(−∞,z].
In any of those cases, gh is Lipschitz but its weak derivative has no reason to be defined everywhere.
This is not a cause of problems when working with continuous random variables, but it will be
when it comes to comparing a discrete random variable to an extreme value distribution, as we
shall do later (see section 4.2). ■

The Stein’s solution for test functions equal to hz being more explicit, it can be described more
thoroughly.

Proposition 3.1.5 Let z ∈ R∗+. Denote by gz the pseudo-inverse of h∗z = hz − P(Z ≤ z). We
have the following:

1. gz is non-decreasing and constant over [0, z]:

gz(x) = −
∫ ∞

0

(
e−

1−e−t

zα − e−
1

zα

)
dt, x ∈ [0, z].

Furthermore we have the equivalent

gz(x) ∼
x→+∞

αe−
1

zα log x.

2. gz is continuously differentiable over R∗+ \ {z} and its derivative equals:

g′z(x) =

α
x e
−

(
1

zα− 1
xα

)
if x > z

0 otherwise.
(3.5)
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3. g′z satisfies the inequality

|g′z(x)| ≤ α

x
1{x>z}, x > 0. (3.6)

Thus it also satisfies for all positive x, y:

α−1|gz(x) − gz(y)| ≤ 1
z

|x⊕ z − y ⊕ z| ⊙ | log(x⊕ z) − log(y ⊕ z)|. (3.7)

In particular, gz is αz−1-Lipschitz.

4. We have the inequality:
0 ≤ Dαgz(x) ≤ 1

xα
, x > 0.

More precisely

Dαgz(x) = e−
1

zα
(
e

1
xα⊙ 1

zα − 1
)
, x > 0. (3.8)

Consequently, supz∈R+ Dαgz(0) is finite.

Proof. 1. The function hz = 1(−∞,z] is non-increasing and (Pα
t )t≥0 is a Markov semi-group, thus

−Pα
t h
∗
z is also non-decreasing. Integrating over [0,+∞) w.r.t. t, we get the monotony of gz

over [0, z]. In the same way, x 7→ hz(e−t/αx) is constant on [0, z] for e−t/αx is always less than
z for all t ≥ 0. When x goes to +∞, the integral converges to 0, leaving the logarithm term
exploding to +∞, hence the announced asymptotic equivalent. In particular gz is not bounded.

2. The function x 7→ (log xz−1)+ is clearly piecewise continuously differentiable over R+. It is
continuous everywhere, but its derivative is not in z. Consequently, gz is the composition of a
piecewise continuously differentiable function by the smooth function:

y 7→ ye−
1

zα −
∫ ∞

y

(
e−

1−e−t

zα − e−
1

zα

)
dt.

As such, it is also piecewise continuously differentiable. An application of the chain rule yields
the announced result:

g′z(x) = α

x
e−

1
zα + α

x

(
e−

1−(zx−1)α

zα − e−
1

zα

)
= α

x
e−

(
1

zα− 1
xα

)
.

for x > z. If x is less than z, we already know that gz is constant and thus its derivative is null.

3. Assume x ≤ y. By integrating g′z over [x, y] and using inequality (3.6), one finds

|gz(x) − gz(y)| ≤
∫ y

x

α

r
1{r>z} dr

= α
(

log y − log(x⊕ z)
)

+

= α| log(y ⊕ z) − log(x⊕ z)|.

Alternatively, one could have bounded 1/r by 1/z to obtain the |x⊕ z − y ⊕ z| term. Because
x 7→ x⊕ z is 1-Lipschitz, one deduces from this last inequality that gz is αz−1-Lipschitz.
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4. The fact that Dαgz is non-negative is a by-product of the monotony of gz, which gives
gz(x⊕ r) − g(x) ≥ 0. As for the second part of the inequality, one can use the bound ob-
tained in the previous point to find

Dαgz(x) = 1
α

∫ ∞
x

rg′z(r) dρα ≤
∫ ∞

x
dρα(r) = 1

xα
.

A more precise result can be proved by using (3.5):

Dαgz(x) = 1
α

∫ ∞
x

rg′z(r) dρα(r)

=
∫ ∞

x⊕z
e−

(
1

zα− 1
rα

)
dρα(r)

= e−
1

zα

∫ ∞
x⊕z

e
1

rα dρα(r)

= e−
1

zα

∫ (x⊕z)−α

0
er dr

= e−
1

zα
(
e

1
(x⊕z)α − 1

)
.

Notice that we can check that indeed Lαgz(x) = h∗z by using (3.5) and (3.8) together. Finally,

Dαgz(0) = e−
1

zα
(
e

1
zα − 1

)
= 1 − e−

1
zα ,

a function which is bounded w.r.t. z ∈ R+.

Figure 3.1: Graphs of gz over [1, 10] for z ∈
{1

3 , 1, 3
}

and α ∈
{1

2 , 1, 2, 4
}

Notice that the order of magnitude of gz decreases with respect to α. This is the opposite of what
happens with Fréchet F(α) random variables: the lower α is, the more explosive their values tend
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to be. The constancy of gz on [0, z], its non-differentiability in z, as well as its logarithmic growth
are easily observed too.

3.1.2 Rates of convergence to the Fréchet distribution
Before turning to applications, we must raise a technical difficulty specific to the Fréchet distribution
(and to a lesser extent, to the Weibull distribution): it is possible that a sequence of random variables
with support in a space larger than R∗+ converges in distribution to a Fréchet distribution. This
is the case of a renormalized maximum of n i.i.d. Cauchy random variables for instance. But the
generator of the Fréchet semi-group is defined only on R∗+, so we must deal with the negative values
of the approaching random variable before applying Stein’s method. This is an instance of the
so-called problem of support (see for example Döbler [2012] page 23).

We give a general argument in the case of continuous W . Assume that W is a real continuous
random variable with density fW , at least beyond a certain positive threshold K:

FW (x) = FW (K) +
∫ x

K
fW (r) dr, x ≥ K.

Assume also that h is some nice test-function. Then we have

|E[h(W )] − E[h(Z)]| = |E[h∗(W )]|
≤ |E[h∗(W )1{W≤K}]| + |E[h∗(W )1{W >K}]| (3.9)

In applications, the first term usually goes to 0 fast (at exponential rate for instance), so it is the
second one which will give the rate of convergence. To deal with it, we write

−E[h∗(W )1{W >K}] = E
[
LαL −1

α h∗(W )1{W >K}
]

= E
[
Lαgh(W )1{W >K}

]
= − 1

α
E

[
Wg′h(W )1{W >K}

]
+ E

[
Dαgh(W )1{W >K}

]
.

Rewriting each term by using the density fW , one gets

αE[h∗(W )1{W >K}] =
∫ ∞

K
rg′h(r)fW (r) dr −

∫ ∞
K

rg′h(r)P(K < W ≤ r) dρα(r)

=
∫ ∞

K
rg′h(r)fW (r) dr −

∫ ∞
K

rg′h(r)FW (r) dρα(r) + FW (K)
∫ ∞

K
rg′h(r) dρα(r)

=
∫ ∞

K
rg′h(r)FW (r)

[ fW (r)
FW (r) dr − dρα(r)

]
+ FW (K)

∫ ∞
K

rg′h(r) dρα(r).

We see that this error term is controlled by the distance between the measure ρα and the logarithmic
derivative of FW , plus a remainder which corresponds to the mass put by PW on R−. This gives us
the following abstract bound on the Wasserstein distance and Kolmogorov distance between W
and Z:

Proposition 3.1.6 Let W be a random variable such that there exists some positive K for
which FW is absolutely continuous on [K,+∞). Assume that Z is a random variable with the
Fréchet distribution F(α) for some α > 0. Let also H be a space of test-functions.

- If H = Lip1(R,R), take α > 1 and assume there exists p ∈ (1, α) such that |W |p is
integrable. Let q be the conjugate of p i.e. p−1 + q−1 = 1. Then there exists a positive
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constant Cα such that we have

dW(W,Z) ≤
(
Cα + E

[
|W |p

] 1
p

)
FW (K)

1
q

+ 1
α

∫ ∞
K

rmin(α, rα)FW (r)
∣∣∣ fW (r)
FW (r) − α

rα+1

∣∣∣ dr. (3.10)

- If H = {hz = x 7→ 1(−∞,z](x), z ∈ R}, then

dK(W,Z) ≤ 2FW (K) + sup
z>K

∫ ∞
z

e−( 1
zα− 1

rα )FW (r)
∣∣∣ fW (r)
FW (r) − α

rα+1

∣∣∣ dr. (3.11)

Proof. - Since PW admits a first moment, and α > 1, the Wasserstein distance between PW and
PZ is finite. We start from (3.9). Consider the trivial coupling between PW and PZ : let W ′ and
Z ′ be independent random variables defined on the same probability space, with distribution
PW and PZ respectively. Then, for all 1-Lipschitz functions h, we see that

|E[h∗(W )1{W≤K}]| ≤ E
[
|h(W ′) − h(Z ′)|1{W ′≤K}

]
≤ E

[
|W ′ − Z ′|1{W ′≤K}

]
≤ E

[
|W |1{W≤K}

]
+ E[Z]FW (K)

≤ E
[
|W |p

] 1
pFW (K)

1
q + E[Z]FW (K)

≤
(
C + E

[
|W |p

] 1
p

)
FW (K)

1
q ,

with C = E[Z] = Γ(1 − α−1). We have applied Hölder’s inequality to find the penultimate
inequality. Next we deal with the second part of (3.9). Thanks to inequality (3.4), we can write

|E[h∗(W )1{W >K}]| ≤ 1
α

∫ ∞
K

r|g′h(r)|FW (r)
∣∣∣ fW (r)
FW (r) − α

rα+1

∣∣∣ dr + 1
α
FW (K)

∫ ∞
K

r|g′h(r)| dρα(r)

≤ 1
α

∫ ∞
K

rmin(α, rα)FW (r)
∣∣∣ fW (r)
FW (r) − α

rα+1

∣∣∣ dr + FW (K)
∫ ∞

K
min(α, rα) dr

rα

≤ 1
α

∫ ∞
K

rmin(α, rα)FW (r)
∣∣∣ fW (r)
FW (r) − α

rα+1

∣∣∣ dr +
(
1 + α

α− 1
)
FW (K).

Because q ≥ 1 and FW (K) ∈ [0, 1], we have FW (K) ≤ FW (K)1/q, giving us the announced
bound.

- Once more we start from (3.9). For all z ∈ R, we have

|E[h∗z(W )1{W≤K}]| = |P(W ≤ z,W ≤ K) − P(Z ≤ z)P(W ≤ K)|
≤ P(W ≤ z,W ≤ K) + P(W ≤ K)
≤ 2P(W ≤ K).

so that we have
|E[h∗z(W )1{W≤K}]| ≤ 2FW (K), z ∈ R.
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Remark 3.1.7. The assumption that FW is absolutely continuous on [K,+∞) means our result
covers the case of random variables which may not be continuous over the whole real line, but
ultimately admit a density. ■

We now apply this line of reasoning to the classical question of computing rates of convergence in
extreme value theory, in the case where the limiting distribution is Fréchet.

Assume that (Xi)i≥1 is a sequence of i.i.d. random variables and set

Mn := max
1≤i≤n

Xi and Zn := Mn − bn

an
, n ≥ 1

where (an)n≥1 and (bn)n≥1 are sequences of real numbers, with an > 0 for all n. Under reasonable
assumptions on the common c.d.f. FX of the Xi, we want to get an estimate of the rate at which
the convergence of (Zn)n≥1 to the Fréchet distribution occurs. We already know that for (Zn)n≥1
to converge to the Fréchet distribution, FX must have infinite right end-point, i.e. x1 = +∞, and
be regularly varying at +∞ with order α > 0, i.e. it must be of the form

FX(x) = L(x)
xα

with L a slowly-varying function at +∞, for some α > 0 and x large enough. Any function with a
finite limit at +∞ is slowly varying, but so is the logarithm. The asymptotic behaviour of L at +∞
plays an important role in the determination of rates of convergence, so we need to make further
assumptions on L. We follow the example of Chen et al. [2022] by restricting ourselves to the case
where L converges to some limit ℓ when x goes to +∞. Before stating and proving our result, we
give a useful lemma.

Lemma 3.1.8 Let α, β, γ ∈ R∗+, with α+ β > 1. Then we have:

∫ ∞
0

e−
γ

rα

rα+β
dr = 1

α

1
γ1+ β−1

α

Γ
(
1 + β − 1

α

)
.

Proof. The changes of variable s = r−α and t = γs yield:∫ ∞
0

e−
γ

rα

rα+β
dr = 1

α

∫ ∞
0

s
β−1

α e−γs ds

= 1
α

1
γ1+ β−1

α

∫ ∞
0

t
β−1

α e−t dt

= 1
α

1
γ1+ β−1

α

Γ
(
1 + β − 1

α

)
.

Proposition 3.1.9 Let (Xi)i≥1 be a sequence of i.i.d. random variables with common distribution
FX . Suppose also there exists α > 0 for which we have

FX(x) ∼
x→+∞

1
xα
.

We further assume that there is a positive K such that FX is differentiable over [K,+∞) and
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which satisfies:
δ

rα
≤ FX(r) ≤ δ′

rα
, r ≥ K,

for some δ, δ′ > 0. Take an = n1/α and bn = 0, so that Zn = n−1/αMn. Then:

- Assume that α > 1 and that X−, the negative part of X, is integrable. Then there exists a
constant CW

α,FX
depending only on α and FX such that:

dW(Zn, Z) ≤ CW
α,FX

[ 1
n

+ n1− 1
α

∫ ∞
K

e−
δ
2

n
rα

∣∣rα+1fX(r) − α
∣∣ dr
rα

]
, n ≥ 2. (3.12)

- There exists another constant CK
α,FX

depending only on α and FX such that:

dK(Zn, Z) ≤ CK
α,FX

[ 1
n

+ n

∫ ∞
K

e−
δ
2

n
rα

∣∣rα+1fX(r) − α
∣∣ dr
rα+1

]
, n ≥ 2. (3.13)

Proof. The assumption on the c.d.f. of X implies that it belongs to the domain of attraction of the
Fréchet distribution F(α) and also that X+ is integrable. Since we have assumed its negative part
to be integrable, this also implies that X is integrable, and thus Zn too.

- We take care first of the mass that Zn puts on (−∞,K]. Because X belongs to the domain of
attraction of F(α), a minor modification of the proof of a result found in Resnick [1987] at page
77 yields that

E
[
|Zn|p

]
−→

n→∞
E

[
Zp]

= Γ
(
1 − p

α

)
, p ∈ (1, α).

In particular this sequence of expectations is bounded. On the other hand,

FZn(K)
1
q = FX(K)

n
q ,

and this quantity decreases to 0 exponentially fast since FX(K) is strictly less than 1. Notice
that in our setting, (Zn)n≥1 cannot converge in distribution to Z faster than at exponential
speed, except in trivial cases. This is due to a result given in Rootzén [1984] which states than a
faster than exponential rate of convergence implies that Zn actually is a max-stable distribution
for n large enough.

To deal with the values of zn greater than K, notice first we can reformulate the assumption on
FX as

FX(r) = 1 + ε(r)
rα

, r ≥ K

where ε is a differentiable function vanishing at +∞ and such that 1 + ε(r) ≥ δ if r ≥ K. Since
we have already dealt with the values of Zn lower than K, we can make use of this assumption
on X, and thus say that Zn has a density fZn(r) = nanFX(anr)n−1fX(anr). This implies in
particular that:

fZn(r)
FZn(r) = nan

fX(anr)
FX(anr)

, r ≥ a−1
n K.

Therefore we can continue the proof of proposition 3.1.6 to bound |E[h∗(W )1{W >K}]| (with
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K ′ = a−1
n K):

|E[h∗(W )1{W >K}]| ≤
∫ ∞

K
an

rmin(α, rα)FX(anr)n
∣∣∣nan

fX(anr)
FX(anr)

− α

rα+1

∣∣∣ dr

≤ α

∫ ∞
K
an

FX(anr)n
∣∣∣nan

fX(anr)
FX(anr)

− α

rα+1

∣∣∣ dr

= αa−2
n

∫ ∞
K

rFX(r)n
∣∣∣nan

fX(r)
FX(r) − nan

α

rα+1

∣∣∣ dr

= αn1− 1
α

∫ ∞
K

rFX(r)n
∣∣∣ fX(r)
FX(r) − α

rα+1

∣∣∣ dr.

Notice we have used that aα+1
n = nan. Now we need to investigate why fX/FX = (logFX)′

should be close to r 7→ αr−(α+1). We re-write the expression in the absolute value as:

fX(r)
FX(r) − α

rα+1 = α

rα+1
FX(r)
FX(r) + 1

rα+1
rα+1fX(r) − α

FX(r) .

Plugging this expression in the previous integral and applying the triangle inequality, we obtain

|E[h∗(W )1{W >K}]| ≤ αn1− 1
α

∫ ∞
K

rFX(r)n
∣∣∣ fX(r)
FX(r) − α

rα+1

∣∣∣ dr

= αn1− 1
α

∫ ∞
K

FX(r)n−1∣∣αFX(r) + rα+1fX(r) − α
∣∣ dr
rα

=≤ αn1− 1
α

∫ ∞
K

e−
(n−1)δ

rα
∣∣αFX(r) + rα+1fX(r) − α

∣∣ dr
rα

≤ αn1− 1
α

(
δ′α

∫ ∞
K

e−
δ
2

n
rα

dr
r2α

+
∫ ∞

K
e−δ n−1

rα
∣∣rα+1fX(r) − α

∣∣ dr
rα

)
.

We have used that n − 1 ≥ n/2, as soon as n ≥ 2. The penultimate bound stems from the
assumption that FX(r) is more than δr−α if r ≥ K. This implies in particular 1 + ε(r) ≥ δ.
The standard inequality 1 − x ≤ e−x with x = FX(r) then gives the exponential bound. We
have also used that there exists some positive C such that FX(r) ≤ δ′r−α. The first integral is
bounded via lemma 3.1.8:

n1− 1
α

∫ ∞
K

e−
δ
2

n
rα

dr
r2α

≤ n1− 1
α

∫ ∞
0

e−
δ
2

n
rα

dr
r2α

= 22− 1
α

αδ2− 1
α

n1− 1
α

n2− 1
α

Γ
(
2 − 1

α

)
≲

1
n
.

This concludes for the case of the Wasserstein distance.

- The case of the Kolmogorov distance is similar and relies on the same arguments. One must be
careful that rg′z(r) is bounded by 1, so the change of variable s = anr will make appear a−1

n
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before the integral, instead of a−2
n as in the Wasserstein case:

|E[h∗(W )1{W >K}]| ≤ sup
z≥a−1

n K

∫ ∞
z

e−( 1
zα− 1

rα )FX(anr)n
∣∣∣nan

fX(anr)
FX(anr)

− α

rα+1

∣∣∣ dr

≤
∫ ∞

K
an

FX(anr)n
∣∣∣nan

fX(anr)
FX(anr)

− α

rα+1

∣∣∣ dr

= a−1
n

∫ ∞
K

FX(r)n
∣∣∣nan

fX(r)
FX(r) − nan

α

rα+1

∣∣∣ dr

= n

∫ ∞
K

FX(r)n
∣∣∣ fX(r)
FX(r) − α

rα+1

∣∣∣ dr.

In particular we recover the n−1 term in the final bound:

n

∫ ∞
K

e−
δ
2

n
rα

dr
r2α+1 ≲

n

n2 = 1
n
.

Remark 3.1.10. - As mentioned in the introduction, quantifying the speed of convergence in
univariate extreme-value theory is a problem which has been thoroughly studied before. A
reference paper regarding this question is Smith [1982]. By making use of the notion of regular
variation with a remainder (Goldie and Smith [1987]), Smith was able to obtain sharp rates of
convergence in various settings. One downside of this method is that the remainder may be
difficult to compute for an arbitrary distribution function. By contrast, our approach gives rates
of convergence expressed only with the density function, the main information one has about
probability distributions in many situations. At the cost of a loss of generality and minimal
assumptions on the c.d.f. we obtain a bound which is more convenient to use, as the next
examples will show. Other approaches to derive rates of convergence in EVT can be found in
Resnick [1987] and make use of different tools, such as von Mises functions. Once more, they
come at the price of generality, but yield easier-to-use bounds.

- Our bonds yield speeds of convergence which cannot be faster than n−1. In particular we will see
in the examples that because of this term, we will not always get optimal rates of convergence.
This is because we have bounded

|rα+1fX(r) − αFX(r)| =
∣∣αFX(r) + rα+1fX(r) − α

∣∣
by δ′αr−α + |rα+1fX(r) −α|. A closer look tells us that when r goes to +∞, the term rα+1fX(r)
converges to α and FX(r) goes to 0, while αFX(r) tends to α and rα+1fX(r) vanishes when r
goes to the left of the support of X (maybe below K). This heuristic suggests us to bound the
previous expression by∣∣αFX(r) + rα+1fX(r) − α

∣∣ ≤
∣∣αFX(r) − αp(r)| + |rα+1fX(r) − αq(r)

∣∣,
where p, q are positive functions such that p(r) + q(r) = 1. Taking p(r) = FX(r) brings us back
to the initial inequality. One could also take p(r) = 1{r≤c} and then try to optimize on c to get
a better rate of convergence. What we have done amounts to choose p(r) = 0. We still get an
interesting rate this way, and we do not need to use more information on FX to conclude.
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- To the best of our knowledge, those results constitute one of the few applications of Stein’s
method to EVT so far. The other two we are aware of are Bartholome and Swan [2013]
and Kusumoto and Takeuchi [2020]), as well as Feidt’s doctoral thesis (Feidt [2013]). The
first two papers define directly Stein’s operators (the same one in the Fréchet case) through
integration-by-parts, although only the former actually makes use of those results to get rates of
convergence, by relying on certain arguments of Smith. In the second work, the author employs
completely different arguments and instead relies on Stein’s method for Poisson process to assess
the distance between the point process of exceedances and the limiting Poisson process. She
then deduces rates of convergence for the maximum of n random variables to one of the extreme
value distributions via results such as proposition 1.15. The connection between EVD and
Poisson processes is well-known now, and we will also exploit it, although our strategy will be
different from Feidt’s.

- The approach we have made use of is quite different from what has been done in similar contexts,
even in the framework of Stein’s method. In Xu [2019], the author bounds the Wasserstein
distance between a renormalized sum of i.i.d. random variables with regularly varying tails
and a stable distribution by using a Taylor formula and a truncation argument. The Stein’s
operator is also given by a semi-group (Qα

t )t≥0 which quantizes stable distributions. In Chen
et al. [2022], the authors rely on the leave-one-out approach and use the regularity properties
of the semi-group (Qα

t )t≥0 to circumvent the non-integrability of their random variables, as
α ∈ (0, 1]. Those arguments do not seem to work with max-stable distributions, unlike our
method. Its main drawback is that it relies heavily on the existence of a density for X1, . . . , Xn

(an assumption which also appears in Chen et al. [2022]). We will later a way to go beyond this
limitation, at the cost of practicability.

- Those bonds hold for the Wasserstein distance, so they also control the stop-loss distance (see
1.4.1). In particular, we have a rate of convergence for the sequence (E[(Zn − z)+])n≥1 to its
limit E[(Z − z)+] for any z in R whenever α is greater than 1.

■

Example 3.1.11. As per the custom, we apply our result first to the case where X ∼ VP(α).
This example is especially simple since in that case K = 1 and rα+1fX(r) − α = 0 on [1,+∞).
Thus, only the n−1 error term remains for both metrics. In the case of the Kolmogorov
distance, it is well-known since Hall and Wellner [1979] that a maximum of n i.i.d. Pareto
random variables renormalized by n1/α converges in the Kolmogorov distance to the Fréchet
distribution F(α) at rate n−1. That the same result holds in the Wasserstein distance is new,
to the best of our knowledge.

The next statement is a corollary of proposition 3.1.9 and will be very convenient in the applications:

Corollary 3.1.12 Assume that FX is a distribution function satisfying the assumptions of
proposition 3.1.9. If its derivative also satisfies

|rα+1fX(r) − α| ≲ 1
rγ
, r ≥ K (3.14)

for some γ > 0, then
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- in the Wasserstein case, if α > 1, there exists CW
α,FX

such that:

dW(Zn, Z) ≤ CW
α,FX

[ 1
n

+ 1
n

γ
α

]
, n ≥ 1, (3.15)

- in the Kolmogorov case, for all α > 0, there exists CK
α,FX

such that:

dK(Zn, Z) ≤ CK
α,FX

[ 1
n

+ 1
n

γ
α

]
, n ≥ 1. (3.16)

Proof. We treat only the Kolmogorov case (just keep in mind the constant Cα,FX
is different in the

Wasserstein case and explodes when α tends to 1+); by plugging the assumption into inequality
(3.13) and using lemma 3.1.8 with β = γ + 1, we get

n

∫ ∞
K

e−
δ
2

n
rα

∣∣rα+1f(r) − α
∣∣ dr
rα+1 ≤ n

∫ ∞
0

e−
δ
2

n
rα

dr
rα+γ+1

≲
n

n1+ γ
α

= 1
n

γ
α

.

Example 3.1.13. We give various examples to illustrate the usefulness and simplicity of use
of proposition 3.1.9 and corollary 3.1.12.

1. Log-logistic distribution - In this case FX(r) = (1 + rα)−1 for r ≥ 0. By taking K = 1,
we find

FX(r) = 1
rα

1
1 + r−α

≥ 1
2rα

, r ≥ 1

so that δ = 1/2. We need to bound r 7→ rαf(r) − α on [1,∞):

|rα+1fX(r) − α| =
∣∣∣α r2α

(1 + rα)2 − α
∣∣∣

= α
(
1 − 1

(1 + r−α)2

)
≤ α

(
(1 + r−α)2 − 1

)
≤ 2α
rα
,

since the function r 7→ (1 + r)2 is 2-Lipschitz on [0, 1]. Therefore the assumption (3.14) is
satisfied with γ = α, and so inequality (3.15) holds, yielding a rate of convergence of n−1

in both the Wasserstein metric (if α > 1) and the Kolmogorov metric.

2. Student distribution - This is our first example of distribution whose c.d.f. is not
available in a closed form, and also whose support is R. The density of the Student
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distribution with ν degrees of freedom is explicit though:

fX(r) =
Γ

(
ν+1

2
)

√
πνΓ

(
ν
2

)(
1 + r2

ν

)− ν+1
2 =: 1

C

(
1 + r2

ν

)− ν+1
2
.

This function is regularly varying of order ν + 1, so we take α = ν. It is clear that
rn+1f(r) − ν will not vanish when r goes to ∞. Therefore we will work with σ−1X,
where X has the Student distribution with parameter ν, and σ is a positive scalar to be
determined. Its density fσ−1X is:

fσ−1X(r) = σfX(σr) = σ

C

(
1 + σ2r2

ν

)− ν+1
2
.

Now we want to find σ such that rν+1fσ−1X(r) − ν goes to 0, and to determine at which
speed it does. As in the previous examples, we will take K = 1.

|rν+1fσ−1X(r) − ν| =
∣∣∣rν+1 σ

C

(
1 + σ2r2

ν

)− ν+1
2 − ν

∣∣∣
=

∣∣∣ σ
C

(ν−1σ2 + r−2)−
ν+1

2 − ν
∣∣∣

=
∣∣∣ν ν+1

2

Cσν
(1 + νσ−2r−2)−

ν+1
2 − ν

∣∣∣.
We see that σ must be equal to νC−2/(ν−1) for the last term to vanish at infinity. This
implies that σ = C−1/νν(ν−1)/2ν . Taking this value of σ, we can factorize to obtain

|rν+1fσ−1X(r) − ν| = ν
∣∣∣ν ν−1

2

Cσν
(1 + νσ−2r−2)−

ν+1
2 − 1

∣∣∣
= ν|(1 + νσ−2r−2)−

ν+1
2 − 1|

≲
1
r2 ,

as the function r 7→ (1 + r)(ν+1)/2 is Lipschitz on [0, 1]. Consequently assumption (3.14) is
satisfied with δ = 2 and we get

d(σ−1Zn, Z) ≲ 1
n

+ 1
n

2
ν

,

where d can be either the Wasserstein (for α > 1) or Kolmogorov distance. Numerical
estimations suggest that the true rate of convergence is always n−2/α, even when ν ∈ (0, 2).

3. Generalized Beta prime distribution - This distribution has four positive parameters
α, β, p, q, the first three being shape parameters while q is a scale parameter. Its p.d.f. is

fX(r) = p

qB(α, β)
(r/q)αp−1

(1 + (r/q)p)α+β
= qpβ

βB(α, β)
pβ

rpβ+1
1

(1 + (r/q)−p)α+β
, r > 0

where B(α, β) is the beta function in α and β. By choosing q = B(α, β)−1/pβ, we obtain
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for r ≥ K = 1

|rpβ+1f(r) − pβ| = pβ
∣∣∣ 1
(1 + (r/q)−p)α+β

− 1
∣∣∣

= pβ

(1 + (r/q)−p)α+β

[(
1 +

(q
r

)p)α+β
− 1

]
≲

1
rp
.

By the same arguments as in the previous examples, we find that:

d(σ−1Zn, Z) ≲ 1
n

+ 1
n

p
β

.

This distribution admits several interesting particular cases, like the beta prime distribution,
the Fisher distribution, the Pareto distribution, the log-logistic distribution, as well as
more exotic laws (Daggum, Singh–Maddala, etc.).

4. Stable distributions - A central family of distributions belonging to the domain of
attraction of Φα are the stable distributions with index α ∈ (0, 2). Except when α =
1/2 (Lévy distribution) or 1 (Cauchy distribution), they do not admit explicit density
functions, but we still have the following result from Bergström [1953] for one-sided α-stable
distributions:

fX(x) = 1
π

∞∑
k=1

(−1)k−1 sin(απk)Γ(αk + 1)
Γ(k + 1)

1
xkα+1 , x > 0.

The first term equals Γ(α+ 1) sin(απ)x−(α+1), which means that we need to renormalize
by σ = (Γ(α) sin(απ))1/α. The remainder is then:

|rα+1fσ−1X(r) − α| = α

π

∣∣∣ ∞∑
k=2

(−1)k−1 sin(απk)Γ(αk + 1)
Γ(k + 1)

1
r(k−1)α

∣∣∣
= α

π

∣∣∣ ∞∑
k=1

(−1)k sin(απ(k + 1))Γ(α(k + 1) + 1)
Γ(k + 2)

1
rkα

∣∣∣.
Furthermore, the density of stable distributions is bounded (see Zolotarev [1986] page 87),
so the previous series is bounded too. The order of convergence is given by the first term of
the series which is different of 0; let us call its index k0. Then the same method as before
gives us a rate of convergence of n−k0α/α + n−1 = n−k0 + n−1. For instance, in the case of
the Lévy distribution, which is a one-sided 1/2-stable distribution, the term of index 1 in
the above series vanishes but not the second, so k0 = 2, hence a rate of convergence of n−1

in Kolmogorov distance.

To conclude this section, we present another method to obtain rates of convergence in extreme
value theory. It is inspired by the classic leave-one-out approach and relies on different arguments.
We find it less practical to yield though, hence our preference for the above approach.

Remark 3.1.14. For ease of notations, set:

Xn,i := a−1
n Xi and Mn\i := max

k ̸=i
Xk.
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In particular, Mn\n = Mn−1. Set also Zn,n−1 := a−1
n Mn−1. As before, one must show that

E
[
Zng

′(Zn)
]

≃ αE[Dαg(Zn)] = E
[
Z−(α−1)

n Y g′(Y Zn)
]
,

where g = gh is some Stein’s solution and we have used the alternative expression of Dα given in
(2.9), with Y ∼ VP(α, 1). Take ψ = x 7→ xg′(x) and proceed as follows:

E[ψ(Zn] =
n∑

i=1
E

[
ψ(Xn,i)1{Xi≥Mn\i}

]
= nE

[
ψ(Xn,n)1{Xn≥Mn−1}

]
.

Conditioning on z = Mn−1 in the previous inequality, which is independent of Xn,n, we find:

E
[
Xn,ng

′(Xn,n)1{Xn≥z}
]

= FX(z)E
[
Xn,ng

′(Xn,n) |Xn ≥ z
]
.

From this we deduce that:

E[ψ(Zn)] = nE
[
ψ(Xn,n)1{Xn≥Mn−1}

]
= nE

[
E

[
ψ(Xn,n)1{Xn≥Mn−1} |Mn−1

]]
= nE

[
FX(Mn−1)E

[
ψ(Xn,n) |Xn ≥ Mn−1

]]
= nE

[
F a−1

n X(Zn,n−1)E
[
ψ

(
Zn,n−1M

−1
n−1Xn)

) ∣∣ Xn ≥ Mn−1
]]
,

By using that nF a−1
n X(r) →

n→∞
r−α if FX is α−1-varying, we find:

E[ψ(Zn)] ≃ E
[
Z−α

n,n−1E
[
ψ

(
Zn,n−1M

−1
n−1Xn)

) ∣∣ Xn ≥ Mn−1
]]

≃ E
[
Z−α

n,n−1ψ(Y Zn,n−1)
]

= E
[
Z
−(α−1)
n,n−1 Y g′(Y Zn,n−1)

]
.

The second approximation results from theorem 1.3.14 and the remark following it: conditional to
Mn−1, for n large enough, the distribution of M−1

n−1Xn when Xn ≥ Mn−1 is approximately a Pareto
distribution VP(α, 1) because Mn−1 almost surely goes to infinity. One advantage of that method
is that we do not need to assume that X admits a density for large enough values. On the other
hand it relies on approximations which may be difficult to quantify in general. ■

3.2 Extension in higher dimension

The purpose of this section is to go beyond the univariate setting and to establish tools to quantify
the speed of convergence to max-stable random vectors. To keep notations simple, we will focus
on the multivariate max-stable distributions whose marginals are all Fréchet F(α) for some α > 0.
When α = α1 for some α, and ν is some angular measure on Sd−1

+ w.r.t. some norm, we will denote
the associated semi-group by Pα,ν

t := Pα,ν
t .
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3.2.1 Regularity of Stein’s solutions in higher dimension
Here the benefits of working with the generator approach will be made obvious; although it is not too
difficult to find a Stein operator for the univariate extreme-value distributions, as they have explicit
p.d.f. and c.d.f., the same cannot be said about their multivariate counterparts. On the other
hand, the Mehler’s formula (2.68) through which we have defined the Fréchet semi-group (Pα

t )t≥0
readily extends to higher dimensions, as we have seen in the previous chapter. This multivariate
semi-group (Pα,ν

t )t≥0 admits MS(α, ν) as its stationary distribution, and thus its generator Lα,ν

is a Stein operator for this distribution:

Z ∼ MS(α, ν) =⇒ E[Lα,νf(Z)] = 0, f ∈ Sα,d. (3.17)

We aim at using those tools to apply Stein’s method to multivariate extreme value distribution. To
do so, it is in our opinion instructive to see first how equality naturally appears. Its proof is the
consequence of a general argument concerning semi-groups with invariant measure, but we want to
understand why it works in this specific case through direct arguments. This will be of great help
in the applications. For ease of notations, we assume provisionally α = 1.

We must show that:
E

[
⟨Z,∇f(Z)⟩

]
= E

[
D1,νf(Z)

]
, f ∈ SΦ,d.

By Mecke’s formula applied to the functional

φ : (x, η) 7→
〈
rur,m(η),∇f

(
m(η) ⊕ ru

)〉
.

we see that

E
[
D1,νf(Z)

]
= E

[
D1,νf

(
m(η)

)]
=

∫
Epol

E
[〈
ru1ru,m(η),∇f

(
m(η) ⊕ ru

)〉] 1
r2 dr dν(u)

= E
[ ∫

Epol

〈
ru1ru,m(η−δ(r,u)),∇f

(
m(η) ⊕ ru

)〉
dη(r,u)

]
= E

[ ∫
Epol

〈
ru1ru,m(η−δ(r,u)),∇f

(
m(η)

)〉
dη(r,u)

]
,

= E
[〈
m(η),∇f

(
m(η)

)〉]
,

giving us the announced identity. The penultimate equality comes from the fact that there is no
point (r,u) in η such that any coordinate of ru is greater than the corresponding coordinate of
m(η). The last identity follows by observing that for every j ∈ [[1, d]], the only pairs (r,u) ∈ η
such that the j-th coordinate of 1ru,m(η−δ(r,u)) is not null corresponds to the ones giving the j-th
coordinate of m(η).

Next we give some properties of Pα,ν
t and the pseudo-inverse of Lα,ν . In spite of the additional

complexity caused by the multivariate setting, describing Stein’s solutions gh is not much harder
than in the univariate setting.

Proposition 3.2.1 Let α > 0 and Z ∼ MS(α, ν). Set h∗ = h− E[h(Z)] if h is PZ-integrable.
We have the following:

- Pα,ν
t h and Lα,νh exist for all h ∈ Lip1(E0,R) if and only if α > 1.

- For all z ∈ E0, set hz = 1(−∞,z]. Then Pα
t hz is well defined.
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In both cases, t 7→ Pα,ν
t h∗(x) is integrable for all x ∈ E0, so that L −1

α,νh
∗ exists. In the second

case, the pseudo-inverse of h∗z equals:

L −1
α,νh

∗
z(x) = α(max logxz−1)+FZ(z) − FZ(z)

∫ ∞
α(max logxz−1)+

(
FZ(z)−e−t − 1

)
dt. (3.18)

Here the logarithm is taken coordinatewise and maxx = max1≤j≤d x
j.

Proof. The proof is quite similar to the one given in the univariate case.

- If h is 1-Lipschitz, then it is sub-linear and we have

E
[
|h|

(
e−

t
αx ⊕ (1 − e−t)

1
αZ

)]
≤ C + E

[
∥Z∥1

]
< +∞

since all the coordinates of Z have Fréchet distribution F(α) and thus are integrable if α > 1.
Besides ∫

Epol
|f(x ⊕ ru) − f(x)| α

rα+1 dr dν(u) ≤
∫

Epol
∥x ⊕ ru − x∥1

α

rα+1 dr dν(u)

=
d∑

j=1

∫
Epol

(ruj − xj)+
α

rα+1 dr dν(u)

≤
d∑

j=1

∫
Epol

uj α

rα
dr dν(u),

and this quantity is finite since α > 1 and ν is a finite measure on the compact set Sd−1
+ .

- Clearly Pα,ν
t hz is well-defined because 1(−∞,z] is bounded and measurable. The proof of identity

(3.1) follows the same lines as (3.1):

Pα,ν
t h∗z(x) = −

∫ ∞
0

1{e−t/αx⊕(1−e−t)1/α≤z} − P(Z ≤ z) dt

= −
∫ ∞

0
P

(
(1 − e−t)

1
αZ ≤ z

)
1{e−t/αx≤z} − P(Z ≤ z) dt

= α(max logxz−1)+FZ(z) +
∫ ∞

α(max logxz−1)+
P

(
(1 − e−t)

1
αZ ≤ z

)
− P(Z ≤ z) dt.

The last identity comes from noticing that

e−t/αx ≤ z ⇐⇒ logx ≤ t

α
1 + log z

⇐⇒ t ≥ α log xj/yj , for all j ∈ [[1, d]],

which means that t ≥ α(max logxz−1)+, the presence of the positive part coming from the fact
that t is always non-negative. The relation

P
(
(1 − e−t)

1
αZ ≤ z

)
= FZ(z)1−e−t

is a consequence of identity (1.20).

We now prove a counterpart to 2.3.
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Proposition 3.2.2 Let α > 1 and h be a differentiable 1-Lipschitz function with respect to
the norm ∥ · ∥1.

1. Pα,ν
t h is differentiable and for all j ∈ [[1, d]]

|∂jPα,ν
t h(x)| ≤ e−

t
αP(Z ≤ γ

−1/α
t xj), t ≥ 0, x ∈ E0 (3.19)

with Z ∼ F(α). In particular the gradient of Pα,ν
t h satisfies

∥∇Pα,ν
t h(x)∥1 ≤ e−

t
α ∥pt(x)∥1, (3.20)

where pt(x) := (pt(x1), . . . , pt(xd)) =
(
P(Z ≤ γ

−1/α
t x1), . . . ,P(Z ≤ γ

−1/α
t xd)

)
. As a result,

Pα,ν
t h is de−

t
α -Lipschitz.

2. Furthermore assume that ∂jh is 1-Lipschitz for all j ∈ [[1, d]], i.e. h ∈ Lip[2](E0,R). Then
∂jPα,ν

t h is C1,α(t)-Lipschitz for all j ∈ [[1, d]] and t > 0, with

C1,α(t) := (d− 1)e−t/α + αγ
−1/α
t .

Proof. 1. Observe that the function x 7→ e−
t
αx ⊕ (1 − e−t)

1
αZ is continuous and almost surely

differentiable. Set:

Z(x) := e−
t
αx ⊕ (1 − e−t)

1
αZ.

For every j ∈ [[1, d]], the j-th derivative of its k-th coordinate is given by:

∂jZ
k(x) = e−

t
α1{xj≥γ

1/α
t Zj}1{k=j} a.s.

Thus the chain rule yields:

∇h
(
e−

t
αx ⊕ (1 − e−t)

1
αZ

)
= e−

t
α


∂1h

(
e−

t
αx ⊕ (1 − e−t)

1
αZ

)
1{x1≥γ

1/α
t Z1}

...

∂dh
(
e−

t
αx ⊕ (1 − e−t)

1
αZ

)
1{xd≥γ

1/α
t Zd}

 a.s.

Since x 7→ ∥∇h(x)∥1 is bounded, all the partial derivatives of h are also bounded. Using a
dominated convergence argument and taking expectations, we get the announced result.

2. Now we deal with the second point. We must prove that ∂iPα,ν
t h is Lipschitz w.r.t. each

coordinate. The partial derivative ∂jPα,ν
t h is e−t/α-Lipschitz with respect to xk for k ̸= j

as a composition of a 1-Lipschitz functions, since ∂jh is assumed to be 1-Lipschitz, and a
e−t/α-Lipschitz function, the function xk 7→ e−t/αx⊕ (1−e−t)1/αZ. If k = j, we must be careful
because of the indicator function which is not Lipschitz. For ease of notations, assume k = j = 1.
We want to prove that ∂1Pα,ν

t h is Lipschitz w.r.t. x1. For all x ∈ E0 and y = (y1, x2, . . . , xd)
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we have

|∂1Pα,ν
t h(x) − ∂1Pα,ν

t h(y)| =
∣∣∣E[

∂1h
(
Z(x)

)
1{x1≥γ

1/α
t Z1}

]
− E

[
∂1h

(
Z(y)

)
1{y1≥γ

1/α
t Z1}

]∣∣∣
≤ E

[∣∣∂1h
(
Z(x)

)
− ∂1h

(
Z(y)

)∣∣1{x1≥γ
1/α
t Z1}

]
+ E

[∣∣∂1h
(
Z(t,y)

)∣∣∣∣1{x1≥γ
1/α
t Z1} − 1{y1≥γ

1/α
t Z1}

∣∣]
≤ e−

t
α |x1 − y1| + E

[
|1{x1≥γ

1/α
t Z1} − 1{y1≥γ

1/α
t Z1}|

]
= e−

t
α |x1 − y1| +

∣∣FZ

(
γ
−1/α
t x1)

− FZ

(
γ
−1/α
t y1)∣∣.

The last equality comes from the monotony of x 7→ 1{x≥γ
1/α
t Z1}. Besides FZ is Kα-Lipschitz,

with

Kα = α
( αe−1

α+ 1
)1+ 1

α ≤ α.

Therefore ∂1Pα,ν
t h is γ−1/α

t Kα-Lipschitz.

As before, one can give general properties of the Stein’s solutions. It appears their behaviour is not
much different from what we have observed in dimension 1, even though the presence of dependent
coordinates prevents certain simplifications to occur in higher dimension. For instance one does not
have the representation formula (3.3) for the derivative of gh in higher dimensions. However the
ensuing bound on the derivative of gh is still true.

Proposition 3.2.3 Let h be a 1-Lipschitz function on Rd.

1. The associated Stein solution gh is α-Lipschitz and its derivative satisfies:

|∂jgh(x)| ≤ min
(
α, (xj)α)

, x ∈ E0. (3.21)

2. Consequently, Dα,νgh(0) is well-defined and finite.

3. Furthermore, assume that h ∈ Lip[2](E0,R). Then ∂jgh is C2,α, with

C2,α :=
∫ ∞

0
C1,α(t) dt.

Proof.

This is an immediate consequence of (3.19) and of the formula

gh(x) = −
∫ ∞

0
Pα,ν

t h∗(x) dt,

the inversion between the partial derivative ∂j and the integral being justified as in dimension 1
(see the proof of proposition 3.4).
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The argument works as in dimension 1, thanks to the previous item:

∫
Epol

∣∣〈rv1rv,Zn ,∇gh(Zn)
〉∣∣ dρα(r) dν(u) =

d∑
j=1

∫
{ruj≥xj}

rvj |∂jgh(Zn)| dρα(r) dν(u)

≤
d∑

j=1

∫
Epol

rvj min(α, rα) α

rα+1 dr dν(u)

=
d∑

j=1

∫
Sd−1

+

vj dν(u)
∫ ∞

0
min(α, rα) α

rα
dr

< +∞

The integral over Sd−1
+ equals 1, thanks to the moment constraint relation (1.18) satisfied by ν, and

the integral over R+ is finite because α > 1.

Using the notations of proposition 3.2.2, we already know that ∂jPα,ν
t is C1,α(t)-differentiable. To

justify the permutation between the partial derivative ∂1 (say) and the integral sign, we write that∣∣∣∂1Pα,ν
t h(x)E

[
∂1h

(
Z(x)

)
1{x1≥γ

1/α
t Z1}

]∣∣∣ ≤ P
(
Z ≤ γ

−1/α
t x1)

= e
− γt

(x1)α

≤ e−
γt
bα ,

if we assume that x1 ∈ [a, b], for a ≤ b two non-negative numbers. This last function is integrable
with respect to t. Hence we can write:

|∂1gh(x)| ≤
∫ ∞

0
|∂1Pα,ν

t h∗(x)| dt

≤
∫ ∞

0
C1,α(t) dt

=
∫ ∞

0
(d− 1)e−

t
α + αγ

−1/α
t dt

< +∞,

because γ−1/α
t ∼

t→0
t−1/α, and 1/α ∈ (0, 1), as α > 1.

We can say more about gz, even in higher dimensions.

Proposition 3.2.4 Let z ∈ E0. We have the following:

1. gz is non-decreasing and constant over [0, z]:

gz(x) = −FZ(z)
∫ ∞

0

(
FZ(z)−e−t − 1

)
dt, x ∈ [0, z].

Furthermore we have the equivalent

gz(x) ∼
xj→+∞

αFZ(z) log xj , j ∈ [[1, d]].



Extension in higher dimension 127

2. gz is continuously differentiable w.r.t. xj over R∗+ \ {zj ,maxk ̸=j x
k/zk}. Set

Imax :=
{
j ∈ [[1, d]], x

j

zj
≥ xk

zk
, ∀k ∈ [[1, d]]

}
Then one has:

∂jgz(x) =

 α
xjFZ(z)1−

(
zj

xj

)α

if xj > zj and j ∈ Imax

0 otherwise.
(3.22)

Consequently, supz∈E0
D0gz(0) is finite.

3. ∂jgz satisfies the inequality

|∂jgz(x)| ≤ α

xj
1{xj>zj>0}, j ∈ [[1, d]]. (3.23)

Thus it also satisfies for all x,y ∈ E0:

|gz(x) − gz(y)| ≤ α
( 1
z∗

∥x ⊕ z − y ⊕ z∥1
)

⊙ ∥ log(x ⊕ z) − log(y ⊕ z)∥1, (3.24)

where z∗ is the smallest non-null coordinate of z. In particular gz is α/z∗-Lipschitz.

Proof. 1. The proof of the first point is similar to the one given in the demonstration of proposition
3.1.5.

2. If j does not belong to Imax then gz(x) does not depend on xj due to equality (3.18) and then
∂jgz(x) = 0. The same result occurs if xj is not greater than zj , just as in dimension 1. If both
conditions are satisfied, then one can drop the max and the positive part to find:

∂jgz(x) = α

zj
FZ(z)1−

(
zj

xj

)α

.

Actually, our assumptions on xj imply that Imax = {j}.

3. The previous point implies that |∂jgz(x)| ≤ α/xj1{zj>0}, for FZ(z) goes to 0 exponentially
fast when zj tends to 0+. Besides, this partial derivative is null if xj is less than zj , hence the
indicator function 1{xj>zj>0}. Just as in the proof given for the scalar case, we integrate each
partial derivative to control every increment of gz. For the sake of clarity, we give the proof in
dimension d = 2, the reasoning being the same in higher dimensions but with more cumbersome
notations.

|gz(x) − gz(y)| ≤ |gz(x1, x2) − gz(y1, x2)| + |gz(y1, x2) − gz(y1, y2)|

≤ α

∫ y1

x1
|∂1gz(r, x2)| dr + α

∫ y2

x2
|∂1gz(y1, r)| dr.

If y1 is less than x1 or y2 is less than x2, simply exchange the bounds of integration. Notice
inequality 3.23 depends only on the j-th coordinate. The rest of the proof follows the same lines
as the one given in the univariate case (proposition 3.1.5).



128 3. STEIN’S METHOD FOR THE FRÉCHET DISTRIBUTION

3.2.2 Applications
In this subsection, unless specified otherwise, the reference norm ∥ · ∥ will be any ℓp-norm:

∥x∥p =
( d∑

j=1
|xj |p

) 1
p
,

if p ∈ [1,+∞) and ∥x∥∞ = max1≤j≤d |xj |. This choice is rather arbitrary and serves only to make
certain arguments easier to state later.

Distance between max-stable random vectors

Let Z1 and Z2 be two max-stable random vectors with distribution MS(αi, νi) respectively, with
αi > 0 and i ∈ {1, 2}. We wish to get an idea of how close are the distributions of Z1 and Z2, and
express this closeness in terms of αi and νi.

We start by assuming that ν1 = ν2, i.e. Z1 and Z2 have the same angular measure ν but different
stability indices α1, α2.

Proposition 3.2.5 Let α1, α2 be two positive numbers with α1 < α2, and ν a finite measure on
Sd−1

+ satisfying the moment constraints (1.18). Let Zi ∼ MS(αi, ν) for i = 1, 2.

- There exists a constant CK
α1,α2,ν such that:

dK(Z1,Z2) ≤ CK
α1,α2,ν

( 1
α1

+ 1
α2

)
|α1 − α2|.

Let Z1 ∼ F(α1) and µα1 the exponent measure of Z1. A possible choice for the constant
CK

α1,α2,ν1 is:

CK
α1,α2,ν = d+

d∑
j=1

∫
E0

| log yj |P
(
Z

α2/α1
1 ⊙ Z1 ≤ yj)

dµα1(y). (3.25)

- If furthermore both α1 and α2 are greater than 1, we have a constant CW
α1,α2,ν1 > 0 such

that:

dW(Z1,Z2) ≤ CW
α1,α2,ν

( 1
α1

+ 1
α2

)
|α1 − α2|.

A possible choice for the constant Cα1,α2,ν is:

CW
α1,α2,ν = dΓ

(
1 − 1

α2

)
+

d∑
j=1

∫
E0

(1 ⊕ yj)| log yj |P
(
Z

α2/α1
1 ⊙ Z1 ≤ yj)

dµα1(y). (3.26)

Proof. - Set h∗ = h− E[h(Z2)] for any PZ2-integrable h, and take gz = L −1
α2,νh

∗
z. We have:

|FZ1(z) − FZ2(z)| = |E[hz(Z1)] − E[hz(Z2)]|
= |E[h∗z(Z1)]|
= |E[Lα2,νgz(Z1)]|.
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Thanks to inequality (3.23), we see that ⟨Z1,∇gz(Z1)⟩ and Dα2,νgz(Z1) have finite expectations.
Furthermore, the fact that E[Lα1,νgz(Z1)] = 0 implies that:

E
[
Dα1,νgz(Z1)

]
= 1
α1

E
[
⟨Z1,∇gz(Z1)⟩

]
,

so that

α2E
[
Lα2,νgz(Z1)

]
= α2E

[
Dα2,νgz(Z1)

]
− E

[
⟨Z1,∇gz(Z1)⟩

]
= α2E

[
Dα2,νgz(Z1) − Dα1,νgz(Z1)

]
+ α2E[Dα1,νgz(Z1)] − E

[
⟨Z1,∇gz(Z1)⟩

]
= α2E

[
Dα2,νgz(Z1) − Dα1,νgz(Z1)

]
+

(α2
α1

− 1
)
E

[
⟨Z1,∇gz(Z1)⟩

]
. (3.27)

The second term is bounded by dα2|1 − α2α
−1
1 |, for

E
[
⟨Z1,∇gz(Z1)⟩

]
=

d∑
j=1

E
[
Zj

1∂jgz(Z1)
]

≤ dα2,

thanks to inequality (3.23). As for the first one, comparing directly the operators Dα2,ν and
Dα1,ν seems difficult. Instead, we start by giving a more convenient expression of Dα2,νgz(Z1).
Recall the notations introduced in subsection 2.3.2. With them, we can write:

E[Dα2,νgz(Z1)] = E
[
Tα2

α1
Dα1,νTα1

α2
gz(Z1)

]
= E

[
Dα1,νTα1

α2
gz

(
Z

α2
α1
1

)]
= E

[
Dα1,νTβ−1gz(Zβ

1 )
]
,

where we set β := α2/α1. Let µα1 be the exponent measure of Z1. From what precedes we get

E
[
Dα2,νgz(Z1) − Dα1,νgz(Z1)

]
= E

[
Dα1,νTβ−1gz(Zβ

1 ) − Dα1,νgz(Z1)
]

=
∫

E0

E
[
gz

(
Z1 ⊕ y1/β)

− gz(Z1) − gz
(
Z1 ⊕ y

)
+ gz(Z1)

]
dµα1(y)

=
∫

E0

E
[
gz

(
Z1 ⊕ y1/β)

− gz
(
Z1 ⊕ y

)]
dµα1(y).

The triangle inequality and bound 3.24 yield:∣∣E[
Dα2,νgz(Z1)−Dα1,νgz(Z1)

]∣∣
≤

∫
E0

E
[∣∣gz(

Z1 ⊕ y1/β)
− gz

(
Z1 ⊕ y

)∣∣] dµα1(y)

≤ α2

∫
E0

E
[∥∥ log

(
Z1 ⊕ y1/β)

− log
(
Z1 ⊕ y

)∥∥
1
]

dµα1(y)

= α2

d∑
j=1

∫
E0

E
[∣∣ log

(
Z1 ⊕ (yj)1/β)

− log
(
Z1 ⊕ yj)∣∣] dµα1(y)

= α2

d∑
j=1

∫
E0

E
[∣∣ log

(
Z1 ⊕ (yj)1/β)

− log
(
Z1 ⊕ yj)∣∣1{yj≥Zβ

1⊙Z1}
]

dµα1(y),
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where Z1 ∼ F(α1). The indicator function in the last equality comes from noticing that if
yj ≤ Z1 and yj ≤ Zβ

1 at the same time, then the integrand vanishes. Finally, because the
logarithm is a non-decreasing function, we know that log(x⊕ y) = log x⊕ log y. Furthermore,
x 7→ c⊕ x is 1-Lipschitz. Using this result with c = logZ1, we find:

∣∣E[
Dα2,νgz(Z1) − Dα1,νgz(Z1)

]∣∣ ≤ α2

d∑
j=1

∫
E0

|β−1 log yj − log yj |P
(
Zβ

1 ⊙ Z1 ≤ yj)
dµα1(y)

= |α2 − α1|
d∑

j=1

∫
E0

| log yj |P
(
Zβ

1 ⊙ Z1 ≤ yj)
dµα1(y).

This last integral is bounded since the probability inside vanishes at exponential speed when yj

goes to 0. By dividing this bound by α2, we obtain the desired result.

- We start from equality (3.27), but with gh = L −1
α2,νh

∗ instead of gz, where h a 1-Lipschitz
function on E0. As in the previous point, we have two terms to bound:

∣∣E[
⟨Z1,∇gh(Z1)⟩

]∣∣ ≤
d∑

j=1
E

[
Zj |∂jgh(Z)|

]
≤ α2

d∑
j=1

E[Zj ]

= dα2Γ
(
1 − 1

α2

)
.

this inequality being a consequence of (3.21). As for the second term, we use the Lipschitz
property of gh, relying on the fact that both α1 and α2 are greater than 1.∣∣E[

Dα2,νgh(Z1) − Dα1,νgh(Z1)
]∣∣

≤
∫

E0

E
[∣∣gh

(
Z1 ⊕ y1/β)

− gh

(
Z1 ⊕ y

)∣∣] dµα1(y)

≤ α2

∫
E0

E
[∥∥Z1 ⊕ y1/β − Z1 ⊕ y

∥∥
1

]
dµα1(y)

= α2

d∑
j=1

∫
E0

E
[∣∣Zj

1 ⊕ (yj)1/β − Zj
1 ⊕ yj

∣∣1{yj≥Zβ
1⊙Z1}

]
dµα1(y)

≤ α2

d∑
j=1

∫
E0

∣∣(yj)β−1 − yj
∣∣P(

Zβ
1 ⊙ Z1 ≤ yj)

dµα1(y)

= α2

d∑
j=1

∫
E0

yj
∣∣(yj)β−1−1 − 1

∣∣P(
Zβ

1 ⊙ Z1 ≤ yj)
dµα1(y).

This quantity is finite because α1 > 1 and µα1 is the image measure of ρ1⊗ν by (r,u) 7→ (ru)1/α1 ,
with ν a finite measure over the compact Sd−1

+ . Recall that α1 < α2, so that β−1 < 1, and thus
1 − β−1 ∈ (0, 1). We need to study the function f : δ 7→ y−δ = exp(−δ log y) over (0, 1) for all
y ∈ R∗+. If y ∈ [1,+∞), we have

|y−δ − 1| = 1 − exp(−δ log y) ≤ δ log y.
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And if y ∈ (0, 1], then |f ′(δ)| = y−δ| log y| ≤ y−1| log y|. Thus f is (1 ⊕ y−1)| log y|-Lipschitz
over R∗+. Finally:

∣∣E[
Dα2,νgh(Z1) − Dα1,νgh(Z1)

]∣∣ = α2

d∑
j=1

∫
E0

yj
∣∣(yj)β−1−1 − 1

∣∣P(
Zβ

1 ⊙ Z1 ≤ yj)
dµα1(y)

≤ |α1 − α2|
d∑

j=1

∫
E0

(1 ⊕ yj)| log yj |P
(
Zβ

1 ⊙ Z1 ≤ yj)
dµα1(y),

and this last integral is finite.

Next we suppose the stability index is now the same α for both Z1 and Z2 but that they differ by
their angular measures, ν1 and ν2 respectively.

Proposition 3.2.6 Let α be a positive number and ν1, ν2 two finite measures on Sd−1
+ satisfying

the moment constraints (1.18). Let also Zi ∼ MS(α, νi) for i = 1, 2.

- The following inequality holds:

dK(Z1,Z2) ≤ ddTV(ν1, ν2).

- If furthermore α is greater than 1, then

dW(Z1,Z2) ≤ dΓ
(
1 − 1

α

)
dTV(ν1, ν2).

Proof. - As before, set h∗ = h− E[h(Z2)] for any PZ2-integrable h, and gz = L −1
α2,νh

∗
z. We have

|FZ1(z) − FZ2(z)| = |E[Lα,ν2gz(Z1)]|.

We use once again that the term E
[
⟨Z1,∇gz(Z1)⟩

]
is common to both Lα,ν1 and Lα,ν2 :

E
[
Lα2,νgz(Z1)

]
= E

[
Dα,ν2gz(Z1)

]
− 1
α
E

[
⟨Z1,∇gz(Z1)⟩

]
= E

[
Dα,ν2gz(Z1) − Dα,ν1gz(Z1)

]
. (3.28)

This time, comparing Dα,ν1 and Dα,ν2 is easier:

Dα,ν2gz(x)−Dα,ν1gz(x)

= 1
α

∫
Epol

〈
ru1/α1ru1/α,x,∇gz(x ⊕ ru1/α)

〉
dρα(r)

(
dν2(u) − dν1(u)

)
= 1
α

∫
R∗

+

∫
Sd−1

+

〈
ru1/α1ru1/α,x,∇gz(x ⊕ ru1/α)

〉(
fν2(u) − fν1(u)

)
dν1,2(u) dρα(r).

for every x ∈ E0. Here ν1,2 := ν1 + ν2, and fνi = dνi/ dν1,2 for i = 1, 2, the density function of
νi w.r.t. to ν1,2. Now, replacing x by Z1 and taking expectations, we bound the scalar product
in the integral by

∣∣〈ru1/α1ru1/α,Z1
,∇gz(Z1 ⊕ ru1/α)

〉∣∣ ≤ α
d∑

j=1
P

(
Z ≤ r(uj)1/α)

≤ dαP(Z ≤ r),
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because
r(uj)1/α|∂jgz(Z1 ⊕ ru1/α)| ≤ 1{r(uj)1/α≥Zj

1}
,

thanks to inequality (3.23). We have also used that uj is always in [0, 1], as u ∈ Sd−1
+ (since the

reference norm is a ℓp-norm). Besides, Z is a random variable with Fréchet distribution F(α),
which corresponds to the distribution of the marginals of Z1. Finally we find:

|FZ1(z) − FZ2(z)| =
∣∣E[

Dα,ν2gz(Z1) − Dα,ν1gz(Z1)
]∣∣

≤ d

∫
R∗

+

∫
Sd−1

+

P(Z ≤ r)
∣∣fν2(u) − fν1(u)

∣∣ dν1,2(u) dρα(r)

= d

∫
R∗

+

e−
1

rα
α

rα+1 dr
∫
Sd−1

+

∣∣fν2(u) − fν1(u)
∣∣ dν1,2(u)

= ddTV(ν1, ν2).

- We start from (3.28), with gh = Lα,ν2h
∗ instead of gz, where h : E0 → R is a 1-Lipschitz

function. Then, we know from inequality (3.21) that:

∣∣〈ru1/α1ru1/α,Z1
,∇gh(Z1 ⊕ ru1/α)

〉∣∣ ≤
d∑

j=1
min(α, rαuj)r(uj)1/αP

(
Z ≤ r(uj)1/α)

≤ dαrP(Z ≤ r).

Consequently we find:

|h(Z1) − h(Z2)| ≤ d

∫
R∗

+

e−
1

rα
α

rα
dr

∫
Sd−1

+

∣∣fν2(u) − fν1(u)
∣∣ dν1,2(u)

= dΓ
(
1 − 1

α

)
dTV(ν1, ν2).

We combine those two results in the following corollary.

Corollary 3.2.7 Let α1, α2 be two positive numbers with α1 < α2, and ν1, ν2 two finite measures
on Sd−1

+ satisfying the moment constraints (1.18). Let Zi ∼ MS(αi, νi), for i = 1, 2.

- By taking Cα1,α2,ν1 as in (3.25), the following inequality holds:

dK(Z1,Z2) ≤ Cα1,α2,ν1

( 1
α1

+ 1
α2

)
|α1 − α2| + ddTV(ν1, ν2).

- If furthermore α1, α2 are greater than 1, then for Cα1,α2,ν1 given by (3.26), we have:

dW(Z1,Z2) ≤ Cα1,α2,ν1

( 1
α1

+ 1
α2

)
|α1 − α2| + dΓ

(
1 − 1

α2

)
dTV(ν1, ν2).

Proof. Simply bound dK(Z1,Z2) by dK(Z1,Z3) + dK(Z3,Z2), with Z3 ∼ MS(α2, ν1) and use
propositions 3.2.5 and 3.2.6.
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Rate of convergence of the de Haan-LePage series

Let n ∈ N∗ and ϕ = ((ri,vi))i≥1 a configuration in E0. We arrange ϕ in decreasing order with
respect to the first coordinate, i.e. r1 ≥ r2 ≥ . . . , and define

mn(ϕ) :=
n⊕

i=1
rivi.

Take Z a max-stable random vector with distribution MS(α, ν). Define a measure να on Sd−1
+ by

να(B) := ν(Bα), B ∈ B(Sd−1
+ ),

where Bα = {xα, x ∈ B}. In other words, να is the image-measure of ν by u 7→ u1/α. Let
η = ((ri,vi))i≥1 be a marked Poisson process on Epol with intensity measure αr−(α+1) dr⊗ dνα(v).
We know from Davydov et al. [2008] that when n goes to infinity, mn(η) converges to m(η) in
distribution. Our goal is to determine an estimation of the speed at which this convergence occurs.

Proposition 3.2.8 Let η = ((ri,vi))i≥1 be a Poisson process on Epol with intensity measure
αr−(α+1) dr ⊗ dνα(v), with α > 1. Set

Zn := mn(η) =
n⊕

i=1
rivi.

Then there exists a constant Cα > 0 depending only on d and α such that

dW(Zn,Z) ≤ Cα
1
n
, n ≥ 2.

Proof. We first check that ⟨Zn,∇gh(Zn)⟩ is integrable. Thanks to property 3.21, we know that gh

is α-Lipschitz for h is 1-Lipschitz; therefore

|⟨Zn,∇gh(Zn)⟩| ≤ α
d∑

j=1
Zj

n ≤ α
d∑

j=1
Zj

because by definition Zj
n is dominated by Z = m(η), whose coordinates are integrable since α > 1.

The integrability of Dα,νf(Zn) has already been checked in proposition 3.21.

To compare E[Dα,νgh(Zn)] and αE[⟨Zn, gh(Zn)⟩], we apply the Campbell-Mecke formula to:

η 7→
〈
rv1rv,mn(η),∇gh

(
mn(η) ⊕ rv

)〉
,

so that we get

E
[
Dα,νgh

(
mn(η)

)]
=

∫
Epol

E
[〈
rv1rv,mn(η),∇gh

(
mn(η) ⊕ rv

)〉] α

rα+1 dr dνα(v)

= E
[ ∑

(r,v)∈η

〈
rv1rv,mn(η−δ(r,v)),∇gh

(
mn(η − δ(r,v)) ⊕ rw

)〉]
= E

[ ∑
(r,v)∈η

〈
rv1rv,mn(ηr,v),∇gh

(
mn(ηr,v)) ⊕ rw

)〉]
, (3.29)

with ηr,v := η − δ(r,v). Notice we do not have mn(η) ⊕ rv = mn(η + δ(r,v)) in general, because (r,v)
may not be one of the n first points of η; in that case mn(η) ⊕ rv = mn(η). To deal with this
difficulty, we will need the following lemma.
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Lemma 3.2.9 With the above notations, η can be partitioned into three disjoint pieces:

η = η< ⊎ η= ⊎ η>, (3.30)

where

η< :=
{

(r,v) ∈ η, rv ∈
[
0,mn(η)

)}
η= :=

{
(r,v) ∈ η, ∃j ∈ [[1, d]], rvj = mj

n(η) ̸= 0
}

η> :=
{

(r,v) ∈ η, rv /∈
[
0,mn(η)

]}

Proof. Equality (3.30) indeed constitutes a partition of η: if a vector rv does not have all of its
coordinates strictly less than the corresponding coordinates of mn(η), then it means that one of it
coordinates is equal or greater than its counterpart of mn(η). Those two cases are incompatible
since η is a Poisson process with diffuse intensity measure on Epol. Indeed, assume there exist j1, j2
such that

rvj1 = mj1
n (η) ̸= 0 and rvj2 > mj2

n (η).
The second assumption implies that (r,v) does not belong to the n first points of η. But then it
would imply that one could find another (ri,vi) in η, with i ∈ [[1, n]], such that

rvj1 = riv
j1
i .

Because the measure αr−(α+1) dr is diffuse on R∗+, this situation can occur with positive probability
only if both vj1

i and vj1 are equal to 0. This contradicts the fact that rvj1 is not null.

A way to sum up the contents of the previous lemma is to say that each coordinate of mn(η) comes
from exactly one rv, which does not prevent it from containing other coordinates of mn(η). With
this partition, we can decompose the sum in (3.29) into three pieces, denoted by S<, S= and S>,
that we analyse now.

1. The first part corresponds to η< and is the easiest to deal with:∑
(r,v)∈η<

〈
rv1rv,mn(ηr,v),∇gh

(
mn(ηr,v) ⊕ rv

)〉
= 0,

because each term in the inner product vanishes. Indeed, due to the indicator functions, the
sum is null as soon as all coordinates of rv are less than those of mn(ηr,v). But since (r,v) ∈ η<,
we already know that no coordinate of rv contributes to mn(η), and thus to mn(ηr,v). Thus

E[S<] = 0.

2. Next we take care of the sum over η>. First observe that if (r,v) ∈ η>, then it cannot belong to
the n first points of η and is not taken into account by mn. So we have

mn(ηr,v) = mn(η).

Besides, assume vj ̸= 0. In particular, rvj ̸= rkv
j
k a.s. for all k ∈ [[1, n]], because the Poisson

process (ri)i≥1 has a diffuse measure. This means that:

{rvj ≥ mj
n(η)} = {rvj > mj

n(η)} =
n⋂

k=1
{rvj > rkv

j
k} ⊆

n⋂
k=1

{vj > vj
k}.
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The inequality comes from noticing that since r ∈ η>, so that it belongs to (ri)i≥n+1, we have
r < rk if k ∈ [[1, n]], because the sequence (ri)i≥1 has been sorted in decreasing order. Thus,
rvj ≥ mj

n(η) is possible only if vj ≥ vj
k for all k ∈ [[1, n]].

|E[S=]| =
∣∣∣E[ ∑

(r,v)∈η>

〈
rv1rv,mn(ηr,v),∇gh

(
mn(ηr,v) ⊕ rv

)〉]∣∣∣
=

∣∣∣E[ ∑
(r,v)∈η>

〈
rv1rv,mn(η),∇gh

(
mn(η) ⊕ rv

)〉]∣∣∣
≤

d∑
j=1

E
[ ∑

(r,v)∈η>

rvj
∣∣∂jgh

(
mn(η) ⊕ rv

)∣∣1{rvj≥mj
n(η)}

]

≤ α
d∑

j=1
E

[ ∞∑
i=n+1

ri min
(
α, (riu

j
i )

)α)1{vj ̸=0}1⋂n

k=1{v
j≥vj

k
}

]

≤ α
d∑

j=1

∞∑
i=n+1

E
[
ri min(α, rα

i )
]
P

( n⋂
k=1

{vj > vj
k}

)

≤ dα
1
n

∞∑
i=n+1

E[rα+1
i ],

thanks to inequality (3.21). The term 1/n comes from the basic bound:

P(X1 > X2, . . . , X1 > Xn) ≤ 1
n
,

where X1, . . . , Xn are n i.i.d. random variables. Indeed, the marks (vi)i≥1 are i.i.d. by definition.
Notice it works even if the Xk are constant thanks to the strict inequalities. We have also used
that the vj are always less than 1{vj ̸=0}, because the reference norm is a ℓp-norm and v ∈ Sd−1

+ .
Set Γi := r−α

i . By definition of the ri, which are the points of a Poisson process with intensity
αr−(α+1), we know that Γi ∼ Γ(i, 1), the Gamma distribution with shape parameter i and scale
parameter 1. This implies that:

E[rα+1
i ] = E

[
Γ−(1+1/α)

i

]
= 1

Γ(i)

∫ ∞
0

x−(1+ 1
α

)xi−1e−x dx

= Γ(i− 1 − 1/α)
Γ(i)

≤
(
i− 1 − 1

α

)−(1+ 1
α

)
,

thanks to the inequality

Γ(x)
Γ(y) ≤ xx−1

yy−1 e
y−x, y > x > 1 (3.31)

which is a special case of a bound proved in Kečkić and Vasić [1971]. We have taken
x = i− 1 − 1/α and y = i, for i ≥ n + 1 and n ≥ 2. This last bound is the general term
of a convergent series. The integral test for convergence (aka the Maclaurin–Cauchy test) tells
us that: ∞∑

i=n+1

1
i1+ 1

α

∼
n→∞

1
n

1
α

.
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In particular, by bounding n/(n− 1 − 1/α) by 2, we find:

|E[S>]| =
∣∣∣E[ ∑

(r,v)∈η>

〈
rv1rv,mn(ηr,v),∇gh

(
mn(ηr,v) ⊕ rv

)〉]∣∣∣ ≤ 2dα 1
n1+ 1

α

.

3. Finally, we treat the case of η=. We will show that E[S=] ≃ E[⟨Zn,∇gh(Zn)⟩]. For this, we
forcefully make appear the second part of the generator times α. A consequence of lemma 3.30
is that it equals: 〈

mn(η),∇gh(mn(η))
〉

=
∑

(r,v)∈η=

〈
rv1rv,mn(η),∇gh(mn(η))

〉
.

Therefore the error we commit by making this substitution is:

S= −
〈
mn(η),∇gh(mn(η))

〉
=

∑
(r,v)∈η=

r
[〈
v1rv,mn(ηr,v),∇gh

(
mn(η(r,v)) ⊕ rv

)〉
−

〈
v1rv,mn(η),∇gh(mn(η))

〉]

=
d∑

j=1

∑
(r,v)∈η=

rvj
[
∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂kgh(mn(η))1{rvj≥mj
n(η)}

]

=


d∑

j=1

∑
(r,v)∈η=

rvj
[
∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

]
0,

the first case occurring as soon as one coordinate of rn+1vn+1 is greater than its counterpart of
mn(η), while both terms in the subtraction are equal if rn+1vn+1 ∈ [0,mn(η)]. Besides, we can
bound rvj by r1, and the partial derivatives by α. Gathering those arguments, we see that the
error is bounded by:

E
[ ∑

(r,v)∈η=

rvj
∣∣∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

∣∣]
= E

[ ∑
(r,v)∈η=

rvj
∣∣∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

∣∣1An

]
,

where

An :=
d⋃

l=1

n⋂
k=1

{vl
n+1 > vl

k}.

As a result, we get∣∣E[S=] − E
[〈
Zn,∇gh(Zn)

〉]∣∣ ≤ 2dαE[r11An ]
≤ 2d2αE

[
r11⋂n

k=1{v
j>vj

k
}
]

= 2d2αE[r1]P
( n⋂

k=1
{vj > vj

k}
)

≤ 2d2αΓ
(
1 − 1

α

) 1
n

where r1 has the Fréchet distribution F(α). The presence of the term d2 comes from the double
sum: the sum over j has d terms, and the sum over η= has a random number of terms which is
bounded by d.
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Through a slightly finer analysis, it is possible to obtain a better rate of convergence in the previous
result. This comes at the price of working with smoother test functions, namely twice Lipschitz
functions (i.e. 1-Lipschitz functions with 1-Lipschitz partial derivatives).

Corollary 3.2.10 We use the notations of proposition 3.2.8. There exists a constant Cα > 0
depending only on d and α such that

d[2](Zn,Z) ≤ Cα
1

n1+ 1
α

, n ≥ 2.

Furthermore we have that Cα = O
((

1 − 1
α

)−2)
when α goes to 1+.

Proof. Because a doubly Lipschitz function h on E0 is 1-Lipschitz by definition, all the arguments
given in the proof of proposition 3.2.8 apply again. A careful examination shows that we lose
the rate of convergence of n−(1+1/α) when dealing with S=. More precisely we must bound more
accurately

∑
(r,v)∈η=

rvj
∣∣∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

∣∣1An (3.32)

We define two subsets of [[1, d]]:

J1 :=
{
j ∈ [[1, d]], rvj = mj

n(η)
}

J2 :=
{
j ∈ [[1, d]], rn+1v

j
n+1 < rvj}

Recall that unless vj = 0, in which case everything is null, we have rn+1v
j
n+1 ̸= rvj almost surely.

To make the rest of the proof clear, we distinguish all four possible cases, depending on whether j
belongs to J1 and/or J2, or not.

1. j ∈ J1 ∩ J2 - In that case, both indicator functions are equal to 1. Now, because ∂jgh is
C2,α-Lipschitz, we have:

rvj
∣∣∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

∣∣
≤ C2,αrv

j∥mn(ηr,v) ⊕ rv − mn(η)∥1

≤ C2,αr1∥mn(ηr,v) ⊕ rv − mn(η)∥1

≤ 2dC2,αr1rn+1.

The coordinates of the vector mn(ηr,v) ⊕ rv − mn(η) are either null or a factor of rn+1 by some
vj ∈ [0, 1], hence the last inequality. To compute the expectation of r1rn+1, we let E1, . . . , En+1
be n+ 1 i.i.d. random variables with the exponential distribution E(1). Then

(r1, rn+1) d=
(
E
− 1

α
1 , (E1 + · · · + En+1)−

1
α

)
≤

(
E1, (E2 + · · · + En+1)−

1
α

)
.
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Thus, by setting Γn :=
∑n+1

i=2 Ei, we find

E[r1rn+1] ≤ E[r1]E
[
Γ−

1
α

n

]
= Γ

(
1 − 1

α

)Γ(n− 1
α)

Γ(n)

≤ Γ
(
1 − 1

α

)(
n− 1

α

)− 1
α

≤ 2Γ
(
1 − 1

α

) 1
n

1
α

.

by using once again inequality (3.31). This gives us the term n−1/α while the indicator function
1An , which is independent of the (ri)i≥1, yields the term n−1 as before. Notice summing this
bound makes w.r.t. j and (r,v) appear a factor d2, while C2,α also depends on d. Thus the final
constant depends on d4.

2. j ∈ Jc
1 ∩ J2 - If j /∈ J1, then the contribution of rvj to mj

n(η) is ignored and thus the second
indicator function in (3.32) vanishes. So does the first indicator function; otherwise rvj would
have to be greater than both rn+1v

j
n+1 and mj

n(ηr,v) = mj
n(η). This contradicts j /∈ J1.

Consequently, both indicator functions are null.

3. j ∈ J1 ∩ Jc
2 - Under the assumption that j /∈ J2, the first indicator function is equal to 0. It also

implies that rvj < rn+1v
j
n+1 ≤ rn+1. The second term is not null and bounded by a constant,

so that

rvj
∣∣∂jgh

(
mn(ηr,v) ⊕ rv

)
1{rvj≥mj

n(ηr,v)} − ∂jgh(mn(η))1{rvj≥mj
n(η)}

∣∣ ≤ 2αrn+1

4. j ∈ Jc
1 ∩ Jc

2 - As seen previously, j /∈ J1 is enough to make both indicator functions vanish.

To prove the estimate on the constant, recall from proposition that C2,α depends on the integral of
γ
−1/α
t , and observe that:∫ ∞
0

γ
− 1

α
t dt =

∫ 1

0
γ
− 1

α
t dt+

∫ ∞
1

γ
− 1

α
t dt ≤

∫ 1

0
t−

1
α dt+

∫ ∞
1

γ
− 1

α
t dt =

(
1 − 1

α

)−1
+

∫ ∞
1

γ
− 1

α
t dt.

Because Γ(x) ∼
x→0+

1
x , we see that the constant in the bound for the case j ∈ J1 ∩ J2 is of order

(1 − 1/α)−2, hence concluding the proof. case

We make two observations: first the bound of theorem 3.2.10 gets better as α is closer to 1 but in
exchange the constant Cα explodes. Second we had to resort to the distance d[2] to obtain this rate.
Unlike the Kolmogorov distance, it is not invariant by monotonous bijective transformations and so
we cannot deduce rates of convergence when α ∈ (0, 1]. Given the properties of the Stein’s solution
for the Kolmogorov distance, it is not obvious to find directly a bound for this distance. We bring
a partial solution to both problems by using proposition 1.4.2 proved in Gaunt and Li [2023]:

Corollary 3.2.11 Let α ∈ R∗+ and assume that ν is such that Z ∼ MS(α, ν) has a bounded
density with respect to the Lebesgue measure on Rd. Then there exist a constant C > 0
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depending only d such that the de Haan-LePage series (Zn)n≥1 satisfies:

dKol(Zn,Z) ≤ C
( logn

n

) 2
3
, n ≥ 2.

Proof. Let Z ′ ∼ MS(β, ν) and notice that Z ′ has the same distribution as Zα/β for every positive
β. The same goes for the partial "sum" Z ′n, which has the same law as Z

α/β
n .

Now, thanks to proposition 1.4.2 and corollary 3.2.10, we know that there exists a constant C
independent of n and β such that

dKol(Z ′n,Z ′) ≤ C
(
1 − 1

β

)− 2
3 1
n

1
3 (1+ 1

β
)

for n greater than 2 and any β ∈ (1,+∞). Because x 7→ xα/β is a non-decreasing function on E0,
and the Kolmogorov distance is invariant by non-decreasing transformations, the left-hand side is
also equal to dKol(Zn,Z). In particular, it does not depend on β. Thus we are free to optimize the
right-hand side w.r.t. β. Taking β−1 = 1 − (logn)−1, we find the announced result.

Remark 3.2.12. To the best of our knowledge, those are the first results quantifying the speed of
convergence of de Haan-LePage series. In the case of α-stable distributions, the literature is richer:
Ledoux and Paulauskas [1996], Davydov and Nagaev [1999], Bentkus et al. [1996, 2000] managed
to obtain a rate of convergence in total variation distance for all α ∈ (0, 2). None relies on Stein’s
method to prove their result. ■

We conclude this section by giving an heuristic way to prove Berry-Esseen bounds for the multivariate
extreme value theorem, i.e. how to bound the distance between a renormalized coordinatewise
maximum of random vectors and a max-stable distribution. Using the same arguments as in
dimension 1 should be possible, but at the cost of a great loss of generality because random
vectors with a density with respect to Lebesgue measure are less common. For instance, it is
uncommon to work with continuous random variables with no density. A famous example is the
Cantor distribution. In higher dimensions, even max-stable random vectors may not admit a
density, depending on their angular measures. To circumvent this difficult, we propose the following
argument. Assume X1, . . . ,Xn are n i.i.d. random vectors with continuous common distribution
function FX . Set

Zn,k := a−1
k

n⊕
i=1

Xi

for some renormalizing sequence (an)n≥1 which is such that:

nP(a−1
n X1 ≰ x) →

n→∞
µ[0,x]c.

where µ satisfies the equality µ(tA) = t−αµ(A) for every positive t and A ∈ B(E0). That assumption
is equivalent to the convergence of (Zn,n)n≥1 to a max-stable random vector with exponent measure
µ (see Resnick [2006] page 211). For commodity, we will assume that X1 has its support in E0.
Let:

ηn,k := {a−1
k X1, . . . , a

−1
k Xn}.

The point process ηn,k is a binomial process with n points and intensity measure akFX(ak dx). In
this context, it will be easier to work directly with the exponent measure µ rather than with its
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polar decomposition αr−(α+1) dr ⊗ dν(u). Recall that

Dµf(x) =
∫

E0

(
f(x ⊕ y) − f(x)

)
dµ(y) = 1

α

∫
E0

〈
y1y,x,∇g(y ⊕ x)

〉
dµ(y).

As before, we want to show that for nice functions g, we have:

E
[
⟨Zn,n,∇g(Zn,n)⟩

]
≃ αE[Dµg(Zn,n)].

One way to do so without relying on the assumption that Zn,n has a density consists in using
the Campbell-Mecke’s formula for binomial processes. It states that for any nice function φ on
E0 × NE0 , we have:

E
[ ∫

E0

φ(y, ηn,n − δy) dηn,n(y)
]

=
∫

Eo
E

[
φ(y, ηn−1,n)

]
dµn(y). (3.33)

where δy is the Dirac measure in y and µn is the intensity measure of the binomial process a−1
n ηn.

In our context, ηn,n =
∑n

i=1 δa−1
n Xi

and so, µn[0,x]c = nP(X ≰ anx). We apply the formula (3.33)
to the map:

φ(y, ϕ) =
〈
y1y,m(ϕ),∇g

(
y ⊕ m(ϕ)

)〉
.

This yields an integration-by-parts formula for Zn = m(ηn):

E
[ ∫

E0

φ(y, ηn − δy) dηn(y)
]

= E
[ ∫

E0

φ(y, ηn − δy) dηn(y)
]

=
∫

E0

E
[〈
y1y,Zn−1,n ,∇g(y ⊕ Zn−1,n)

〉]
dµn(y).

The left-hand side simplifies greatly, since only one point y ∈ ηn can give one (or more) coordinate
j of Zn. Indeed, no other point in ηn can reach the maximum since we assumed the Zi to be diffuse.
In that case we have Zj

n = yj and thus the previous identity takes the form

E
[
Zng

′(Zn)
]

=
∫

E0

E
[〈
y1y,Zn−1,n ,∇g(y ⊕ Zn−1,n)

〉]
dµn(y)

=
d∑

j=1

∫
E0

yjE
[
∂jg(y ⊕ Zn−1,n)1{Zj

n−1,n≤yj}

]
dµn(y).

On the other hand, we have

αE
[
Dµg(Zn)

]
=

d∑
j=1

∫
E0

yjE
[
∂jg(y ⊕ Zn,n)1{Zj

n,n≤yj}

]
dµ(y).

As a result, the expectation of Lµg(Zn) becomes:

αE
[
Lµg(Zn)

]
= αE

[
Dµg(Zn)

]
− E

[
Zng

′(Zn)
]

=
d∑

j=1

∫
E0

yj
(
E

[
∂jg(y ⊕ Zn,n)1{Zj

n,n≤yj}

]
dµ(y) − E

[
∂jg(y ⊕ Zn−1,n)1{Zj

n−1,n≤yj}

]
dµn(y)

)
.
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In dimension 1, the term inside g is simply y and is not random anymore. Then, assuming that
the Xi have a density, one can rewrite µn in terms of nFn−1

X (anr)fX(anr), effectively recovering
the well-known density of a maximum of n i.i.d. random variables. In the general case, there
are two sources of error: replacing the exponent measure µ by µn, and replacing Zn,n by Zn−1,n.
Notice also that Zn−1,n depends only on n− 1 random variables, making the above formula a "max"
counterpart to the well-known leave-one-out approach used to apply Stein’s method to sums of
random variables.
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This chapter is dedicated to the application of Stein’s method to the Gumbel distribution as well
as the Weibull distribution. Unlike the previous chapter, we focus only on the univariate case, as
this where the most important differences with the Fréchet distribution lie.

4.1 Properties of the Stein solution
4.1.1 The case of the Gumbel distribution
We start by proving that L0 is a Stein operator for the Gumbel distribution: it characterizes this
law in the sense of the next proposition.

Proposition 4.1.1 Let X be a random variable on R such that E[e−X ] is finite. Then X has
the Gumbel distribution G(0, 1) if and only if

E[f ′(X)] = E[D0f(X)],

for all f ∈ Lip(R,R).

Proof. The reciprocal means that if X has the Gumbel distribution, then E[L0fX)] = 0. This can
be proved by a generic argument regarding semi-groups:

E[L0f(X)] = E
[
lim
t→0

d
dtP

0
t f(X)

]
= lim

t→0

d
dtE[P0

t f(X)]

= lim
t→0

d
dtE[P0

0f(X)]

= 0,

143
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because the Gumbel distribution is a stationary measure for (P0
t )t≥0.

Now we turn to the direct implication: we first prove that the Laplace transform LX : λ 7→ E[e−λX ]
of X is defined on a neighbourhood of 0. The assumption on X and relation (2.29) yield:

E[f ′(X)] = E
[
e−Xf ′(X + Y )

]
,

where Y ∼ E(1) and is independent of X. By assumption, we already know that LX(1) is finite,
and thus LX is well-defined on [0, 1]. Now take f = x 7→ etx, for some t ∈ [0, 1). Then the previous
identity gives:

LX(−t) = E
[
e−(1−t)XetY ]

= LX(1 − t) 1
1 − t

.

Because t is less than 1, the right-hand side is well defined, so the left-hand side is also well-defined.
Thus so is LX is well defined (at least) on (−1, 1]. Actually, by taking f = x 7→ e−x, it is easily seen
that LX is in fact defined on (−1, 2]. By recurrence, one shows that LX is well-defined on ] − 1,∞).

To determine LX , we apply the Bohr-Mollerup theorem (see Artin [1964]) to f : λ 7→ LX(λ− 1),
which is well-defined on R∗+ thanks to the previous discussion. This theorem states that if f is
defined on R∗+, is log-convex, satisfies f(1) = 1 and f(x + 1) = xf(x) for all positive x, then f
is the Gamma function. Clearly, f(1) = LX(0) = 1. It is also well-known that the logarithm of
the Laplace transform of a probability measure is convex (this is an easy consequence of Hölder’s
inequality). Finally, the assumption gives for all positive λ:

f(λ) = LX(λ− 1)
= E

[
e−λXe−(λ−1)Y ]

= LX(λ)E[e−(λ−1)Y ]

= f(λ+ 1) 1
λ
,

which is the required functional equation. Therefore

LX(λ) = Γ(λ+ 1), λ ∈ (−1,+∞).

An easy computation shows that this is indeed the Laplace transform of the Gumbel distribution.
Since they coincide on a neighbourhood of 0, this proves that X has the Gumbel distribution.

We will mainly work with this expression of the generator L0 of (P0
t )t≥0:

L0f(x) = −f ′(x) +
∫ ∞

x
f ′(r)e−r dr, x ∈ R, f ∈ SΛ.

As in the previous chapter, we will mainly deal with Lipschitz test functions or with the indicator
functions of the sets (−∞, z] for all non-negative z. The next proposition ensures that P0

t and L −1
0

are defined for those functions. Most of the arguments are the same as in the Fréchet case so we
skip the proofs, unless necessary.

Proposition 4.1.2 Let Z ∼ G(0, 1). Set h∗ = h− E[h(Z)] if h is PZ-integrable. We have the
following:

- P0
th and L0h exist for all h ∈ Lip1(R+,R).
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- For all z ∈ R, set hz = 1(−∞,z]. Then P0
thz is well defined.

In both cases, t 7→ P0
th
∗(x) is integrable for all x ∈ R, so that L −1

0 h∗ exists. In the second
case, the pseudo-inverse of h∗z equals:

L −1
0 h∗z(x) = (x− z)+e

−e−z −
∫ ∞

(x−z)+

(
e−(1−e−t)e−z − e−e−z

)
dt. (4.1)

We next list some properties of those Stein solutions, starting with the Lipschitz case.

Lemma 4.1.3 Let h ∈ Lip[2](R,R). Then P0
th is 1-Lipschitz and its derivative is 2-Lipschitz

for all t ≥ 0.

Proof. We know that (P0
th)′(x) is equal to h′(x− t)e−γte−x . Because h′ is bounded by 1, we see

that P0
th is 1-Lipschitz. Besides, (P0

th)′ writes as the product of two bounded 1-Lipschitz functions,
so it is 2-Lipschitz.

Proposition 4.1.4 1. Let h be a 1-Lipschitz function on R. The associated Stein solution
satisfies:

g′h(x) = −
∫ ∞

0
e−γte−x

h′(x− t) dt, x ∈ R. (4.2)

As a result, we have

|g′h(x)| ≤ min(2 + |x|, ex), x ∈ R. (4.3)

2. Furthermore, assume that h ∈ Lip[2](R∗+,R). Then g′h is C-Lipschitz, with C a positive
constant.

Proof. 1. Thanks to (2.25), we have for h ∈ SΛ,

(P0
th)′(x) = e−γte−x

h′(x− t), x ∈ R.

The absolute value of (P0
th)′(x) is less than e−γte−b if x ∈ [a, b], for any a, b ∈ R such that a ≤ b.

Therefore we can exchange the derivation w.r.t. x and the integral to get:

|g′h(x)| ≤
∫ ∞

0
e−γte−x

e−t dt.

The changes of variable u = et − 1 and t = e−xu yield:∫ ∞
0

e−γte−x dt =
∫ ∞

0

ex

ext+ 1e
−t dt =

∫ 1

0

ex

ext+ 1e
−t dt+

∫ ∞
1

ex

ext+ 1e
−t dt

When x is non-negative, we can bound the first integral by log(ex + 1) ≤ x+ e−x and the second
by 1, while if x is negative, we bound the whole integral by ex. This yields the announced
bound.
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In the case of indicator functions, the Stein’s solution given by the Gumbel semi-group behaves in
the same way as in the Fréchet case, except that x−α is replaced by e−x and x ∈ R. Other than
that, the proofs are exactly the same.

Proposition 4.1.5 Let z ∈ R∗+. Denote by gz the pseudo-inverse of h∗z = hz − P(Z ≤ z). We
have the following:

1. gz is non-decreasing and constant over (−∞, z]:

gz(x) = −
∫ ∞

0

(
e−(1−e−t)e−z − e−e−z

)
dt, x ∈ (−∞, z].

Furthermore we have the equivalent

gz(x) ∼
x→+∞

xe−e−z
.

2. gz is continuously differentiable over R \ {z} and its derivative equals:

g′z(x) =
{
e−(e−z−e−x) if x > z

0 otherwise.
(4.4)

3. g′z satisfies the inequality

|g′z(x)| ≤ 1{x>z}, x ∈ R. (4.5)

Thus it also satisfies for all x, y:

|gz(x) − gz(y)| ≤ |x⊕ z − y ⊕ z|. (4.6)

In particular, gz is 1-Lipschitz.

4. We have the inequality:
0 ≤ D0gz(x) ≤ e−x, x ∈ R.

More precisely

D0gz(x) = e−e−z (
eex⊙ez − 1

)
, x ∈ R. (4.7)

Consequently, supz∈R lim
x→−∞

D0gz(x) is finite.

With those tools at hand, we can now give generals bounds on the distance to the Gumbel
distribution.

Proposition 4.1.6 Let W be a random variable such that there exists some positive K for which
FW is absolutely continuous on [K,+∞). Assume Z a random variable with the Gumbel
distribution G(0, 1). Let also H be a space of test-functions.

- If H = Lip1(R,R), assume that there exists some p > 1 such that |W |p is integrable and
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let q be the conjugate of p. Then there exists a positive constant C such that we have

dW(W,Z) ≤
(
C + E

[
|W |p

] 1
p

)
FW (K)

1
q

+
∫ ∞

K
rmin(2 + r, er)FW (r)

∣∣∣ fW (r)
FW (r) − e−r

∣∣∣ dr. (4.8)

- If H = {hz = x 7→ 1(−∞,z](x), z ∈ R}, then

dK(W,Z) ≤ 2FW (K) + sup
z>K

∫ ∞
z

e−(e−z−e−r)FW (r)
∣∣∣ fW (r)
FW (r) − e−r

∣∣∣ dr. (4.9)

Figure 4.1: Graphs of gz over [1, 10] for z ∈
{1

3 , 1, 3
}

- Gumbel case

Let X be a random variable in the domain of attraction of the Gumbel distribution. Unlike the
Fréchet case, where it is enough to assume that FX behaves like x−α to standardize the normalizing
constants, such a thing is much less easy to do in the Gumbel case. Therefore, a counterpart to
proposition 3.1.9 does not seem accessible in this context.

4.1.2 The case of the positive Weibull distribution
Next we adapt the results proven for the Fréchet distribution to the positive, min-stable, Weibull
distribution.

Proposition 4.1.7 Let X be a random variable on R+ such that E[X] is finite. Then X has
the Weibull distribution W+(α) if and only if

E[Xf ′(X)] = −αE[D−α,+f(X)],
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for all f ∈ C 1(R∗+) such that there exists a constant C for which |f ′(z)| ≤ Cz for z small
enough.

The generator L−α,+ of (P−α,+
t )t≥0 is also equal to

L−α,+f(x) = 1
α
xf ′(x) +

∫ x

0
f ′(r)rα dr, x > 0, f ∈ SΦ.

We now express the Stein’s solutions provided by the Weibull process and give their main properties.

Proposition 4.1.8 Let α > 0 and Z ∼ W+(α). Set h∗ = h− E[h(Z)] if h is PZ-integrable. We
have the following:

- P−α,+
t h and L−α,+h exist for all h ∈ Lip1(R+,R).

- For all z ∈ R+, set hz = 1(−∞,z]. Then P−α,+
t hz is well defined.

In both cases, t 7→ P−α,+
t h∗(x) is integrable for all x ∈ R∗+, so that L −1

−α,+h
∗ exists. In the

second case, the pseudo-inverse of h∗z equals:

L −1
−α,+h

∗
z(x) = α(log xz−1)+e

−zα −
∫ ∞

α(log xz−1)+

(
e−(1−e−t)zα − e−zα

)
dt. (4.10)

Proof. We only prove equality (4.10); as before we have

L −1
−α,+h

∗
z(x) = −

∫ ∞
0

P−α,+
t h∗z(x) dt

= −
∫ ∞

0

[
P

(
et/αx⊙ (1 − e−t)−1/αZ ≤ z

)
− P(Z ≤ z)

]
dt

= −
∫ ∞

0
1{et/αx≤z}

[
P

(
(1 − e−t)−1/αZ ≤ z

)
− P(Z ≤ z)

]
− 1{et/αx>z}P(Z ≤ z) dt

= α(log xz−1)+e
−zα −

∫ ∞
α(log xz−1)+

(
e−(1−e−t)zα − e−zα

)
dt,

because et/αx ≤ z for t nonnegative is equivalent to t ≥ α(log xz−1)+.

Here we gather some properties of those Stein solutions, starting with the Lipschitz case.

Proposition 4.1.9 Let α > 0.

1. Let h be a 1-Lipschitz function on R∗+. The associated Stein solution gh is α-Lipschitz and
its derivative satisfies:

g′h(x) = −
∫ ∞

0
e−

t
α e−γtxα

h′
(
e−

t
αx

)
dt, x > 0. (4.11)

As a result, we have

|g′h(x)| ≤ min(α, x−α), x > 0. (4.12)

2. Consequently, lim
x→+∞

D−α,+gh(x) is finite.
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3. Furthermore, assume that h ∈ Lip[2](R∗+,R), i.e. h and h′ are 1-Lipschitz on R∗+. Then
g′h is Cα-Lipschitz, with Cα a positive constant depending only on α.

The Stein’s solution for test functions equal to hz takes a shape similar to the one given in the
Fréchet case.

Proposition 4.1.10 Let z ∈ R∗+. Denote by gz the inverse of h∗z = hz − P(Z ≤ z). We have the
following:

1. gz is non-decreasing and constant over [0, z]:

gz(x) = −
∫ ∞

α(log xz−1)+

(
e−(1−e−t)zα − e−zα

)
dt, x ∈ [0, z].

Moreover, we have the equivalent

gz(x) ∼
x→+∞

αe−zα log x.

2. gz is continuously differentiable over R∗+ \ {z} and its derivative equals:

g′z(x) =
{

α
x e
−(zα−xα) if x > z

0 otherwise.
(4.13)

3. g′z satisfies the inequality

|g′z(x)| ≤ α

x
1{x>z}, x > 0. (4.14)

Thus it also satisfies for all positive x, y:

|gz(x) − gz(y)| ≤ αz|x⊕ z − y ⊕ z|. (4.15)

In particular, gz is αz−1-Lipschitz.

4. We have the inequality:
0 ≤ D−α,+gz(x) ≤ xα, x > 0.

More precisely

D−α,+gz(x) = e−zα(
exα⊙zα − 1

)
, x > 0. (4.16)

Consequently, supz∈R+ lim
x→+∞

D−α,+gz(x) is finite.
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Figure 4.2: Graphs of gz over [1, 10] for z ∈
{1

3 , 1, 3
}

and α ∈
{1

2 , 1, 2, 4
}

- positive Weibull case

Compared to figure 3.1, the order of the curves is inverted: the curve corresponding to the biggest
α is the lowest, while it was the highest for large enough z in the Fréchet case.

As in the two previous cases, it is possible to deduce from the properties of the Stein’s solutions
general bounds on the Wasserstein and Kolmogorov distance.

Proposition 4.1.11 Let W be a random variable such that there exists some positive K for
which FW is absolutely continuous on [0,K]. Assume that Z is a random variable with the
Weibull distribution W+(α) for some α > 0. Let also H be a space of test-function.

- If H = Lip1(R,R), take α > 1 and assume there exists p ∈ (1, α) such that |W |p is
integrable. Let q be the conjugate of p i.e. p−1 + q−1 = 1. Then there exists a positive
constant Cα such that we have

dW(W,Z) ≤
(
Cα + E

[
|W |p

] 1
p

)
FW (K)

1
q

+ 1
α

∫ K

0
rmin(α, r−α)FW (r)

∣∣∣ fW (r)
FW (r)

− αrα−1
∣∣∣ dr. (4.17)

- If H = {hz = x 7→ 1(−∞,z](x), z ∈ R}, then

dK(W,Z) ≤ 2FW (K) + sup
z<K

∫ z

0
e−(zα−rα)FW (r)

∣∣∣ fW (r)
FW (r)

− αrα−1
∣∣∣ dr. (4.18)

We can also use the previous result to give Berry-Esseen-type bounds on the distance between a
renormalized maximum of n i.i.d. random variables and a positive Weibull distribution, as we did
in the Fréchet case.
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Let (Xi)i≥1 be a sequence of i.i.d. random variables and set

Mn := min
1≤i≤n

Xi and Zn := Mn − bn

an
, n ≥ 1

where (an)n≥1 and (bn)n≥1 are sequences of real numbers, with an > 0 for all n. For (Zn)n≥1 to
converge to the Weibull distribution, FX must have finite left end-point x0 and be regularly varying
at x0 with order α, i.e. to write as

FX(x) = (x− x0)αL(x− x0), x ≥ x0

with L a slowly-varying function at 0, for x large enough. Just as for the Fréchet distribution,
we can give a general bound for the distance between an (almost) arbitrary distribution and the
Weibull law.

Proposition 4.1.12 Let (Xi)i≥1 be a sequence of i.i.d. random variables with common dis-
tribution FX and left end-point x0 > −∞. Suppose also there exists α > 0 for which we
have

FX(x) ∼
x→x0

(x− x0)α.

We further assume that there is a positive K such that FX is differentiable over [0,K] and
which satisfies:

δ(r − x0)α ≤ FX(r) ≤ δ′(r − x0)α, r ≥ K,

for some δ ∈ (0, 1]. Take an = n−1/α and bn = x0, so that Zn = n1/α(Mn − x0). Then:

- Assume that that X+, the positive part of X, is integrable. Then there exists a constant
CW

α,FX
depending only on α and FX such that:

dW(Zn, Z) ≤ CW
α,FX

[ 1
n

+ n1− 1
α

∫ K

0
e−

δ
2 nrα∣∣r−(α−1)fX(r) − α

∣∣rα dr
]
, n ≥ 2. (4.19)

- There exists another constant CK
α,FX

depending only on α and FX such that:

dK(Zn, Z) ≤ CK
α,FX

[ 1
n

+ n

∫ K

0
e−

δ
2 nrα∣∣r−(α−1)fX(r) − α

∣∣rα−1 dr
]
, n ≥ 2. (4.20)

The previous result implies that the distance between Zn and the Weibull distribution W+(α) is
controlled by the gap between x−(α+1)fX(x) and α, weighted by an exponential term which offsets
the contributions the error committed when x is large. This naturally leads us to a counterpart of
corollary 3.1.12 for the Weibull distribution:

Corollary 4.1.13 Assume that FX is a distribution function satisfying the assumptions of
proposition 4.1.12. If it also satisfies

|r−(α−1)fX(r) − α| ≲ rγ , r ≤ K (4.21)

for some γ > 0, then
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- in the Wasserstein case,there exists CW
α,FX

such that:

dW(Zn, Z) ≤ CW
α,FX

[ 1
n

+ 1
n

γ
α

]
, n ≥ 1, (4.22)

- in the Kolmogorov case, there exists another CK
α,FX

such that:

dK(Zn, Z) ≤ CK
α,FX

[ 1
n

+ 1
n

γ
α

]
, n ≥ 1. (4.23)

Notice that the equivalent of lemma 3.1.8 in this setting is simply the equality:∫ ∞
0

rα+βe−γrα dr = 1
α

1
γ1+ β+1

α

Γ
(
1 + β + 1

α

)
. (4.24)

For instance, we find the n−1 term in the Kolmogorov bounds by computing:

n

∫ K

0
e−

δ
2 nrα

r2α−1 dr ≤ n

∫ ∞
0

e−
δ
2 nrα

r2α−1 dr = 4
δ2α

1
n
,

which corresponds to taking γ = δn/2 and β = α− 1 in (4.24).

Example 4.1.14. Now we give a few examples of application of the last results.

1. Beta distribution - The Beta distribution with shape parameters α, β > 0 has density

fX(r) = rα−1(1 − r)β−1

B(α, β) 1[0,1](r),

with B(α, β) the Beta function. It generalizes the uniform distribution (and its positive
powers), as well as the arcsine distribution. Using the same notations as in the examples
given in the Fréchet case (see 3.1.13), we find

|r−(α−1)fσ−1X(r) − α| = |σr−(α−1)fX(σr) − α|

=
∣∣∣ σ−α

B(α, β)(1 − σr)β−1 − α
∣∣∣.

When r goes to 0, this quantity vanishes if and only if

σ =
(
αB(α, β)

) 1
α .

For that choice of σ and r ∈ [0, 1/2], we find

|r−(α−1)fσ−1X(r) − α| = |σr−(α−1)fX(σr) − α|
= α|(1 − σr)β−1 − 1|
≲ ασr,

because r 7→ (1 − σr)β−1 is Lipschitz on [0, 1/2]. The last inequality implies we can take
γ = 1 in corollary 4.1.13, thus yielding a rate of convergence of n−1/α in both Kolmogorov
and Weierstrass distances if α ≥ 1, and n−1 otherwise.
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2. Gamma distribution - The Gamma distribution with shape parameter α > 0 and scale
parameter λ > 0 has density

fX(r) = λα

Γ(α)r
α−1e−λr1R+(r).

It generalizes the exponential distribution, the χ2 distribution, as well as the Erlang
distribution. With σ equal to

σ = λ−1(
Γ(α+ 1)

) 1
α

we find that
|r−(α−1)fσ−1X(r) − α| = α|e−r − 1| ≤ αr.

This implies that σ−1Zn converges to the positive Weibull distribution at rate max(n−1/α, n−1)
in Kolmogorov and Wasserstein distances.

4.2 Application to the coupon collector problem
In this section, we use the Gumbel semi-group and Stein’s method to find a rate of convergence in
the classic coupon collector problem. Let us describe its simplest version. A collection is constituted
of n distinct items which can be found in each box of a brand of cereals with the same probability
1/n. We want to complete this collection by buying one box per week until we get all items at least
once. It has been proved in Erdös and Rényi [1961] that

Zn := Tn − n logn
n

d−→
n→∞

G(0, 1),

where Tn is the first (random) time at which all the n coupons have been found at least once. The
previous result is well known in the literature and has applications in many fields, such as computer
science or engineering (see for instance Boneh and Hofri [1997], Mitzenmacher and Upfal [2017]),
and we want to estimate its rate of convergence to evaluate the error made when replacing Zn by a
Gumbel distribution.

A convenient way to study the distribution of Tn consists in introducing the random variables τi

for i ∈ [[1, n]], where τn
i is the number of weeks needed to get the i-th new item while i− 1 distinct

ones have already been collected. With this definition:

Tn =
n∑

i=1
τn

i .

Furthermore, it can be easily proved that the τn
i are independent and have a geometric distribution

with parameter (n− i+ 1)/n respectively. Notice Tn can be expressed as a maximum of n random
variables: we number each coupon from 1 to n and introduce Tn

i the number of weeks spent before
finding the coupon number i. Then we have:

Proposition 4.2.1 Set Sn
i :=

∑i
j=1 τ

n
j and

(
Tn

(1), . . . , T
n
(n)

)
the order statistics of the Tn

i . Then:

1. We have the equality in distribution

Sn
i

d= Tn
(i), i ∈ [[1, n]].
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In particular:
Tn = max(Tn

1 , . . . , T
n
n ).

2. The random variables Tn
1 , . . . , T

n
n are exchangeable.

Proof. 1. By definition, Sn
i is the number of weeks needed to get i distinct items for the first

time. This is also the moment when item j is found for the first time, for a certain (random) j.
Consequently, it equals one of the Tn

j , and it is the i-th smallest (by definition it is greater than
Sn

1 , . . . , S
n
i−1). This indeed means that Sn

i = Tn
(i).

2. The enumeration of the coupons is arbitrary and each coupon has the same probability of being
found. So, for any permutation σ ∈ Sn, we have:(

Tn
σ(1), . . . , T

n
σ(n)

) d= (Tn
1 , . . . , T

n
n ),

which is the definition of exchangeability.

Of course the Tn
1 , . . . , T

n
n cannot be independent, because they always take distinct values per

definition.

As noticed in remark 3.1.4, we cannot work with the Wasserstein distance or the Kolmogorov
distance: in both cases g′h is not defined everywhere, while Zn is a discrete random variable whose
atoms lie in the set {k − n logn

n
, k ∈ N∗

}
.

Therefore we will work with test functions h ∈ Lip[2](R∗+,R), i.e. with the distance d[2]. Let us
add that we found the proof given in this section before studying the properties of gh. Due to its
length, we have not reformulated it to take into account those results. Instead we give the original
proof which relies on direct manipulations of (P0

t )t≥0.

Our approach relies on identity (2.29): Z has the Gumbel distribution G(0, 1) if and only if

E[h′(Z)] = E
[
e−Zh′(Z + Y )

]
, (4.25)

where Y ∼ E(1) and is independent of Z.

Stein’s method is usually applied (but not restricted!) to the study of sums of random variables
Sn =

∑n
i=1X

n
i . The generator approach is one of the many ways to put this method into application

and in that context, one tries to make appear the generator associated with the limit distribution,
for example the classical Ornstein-Uhlenbeck generator of the normal distribution in the case of
Berry-Esseen’s theorem. At some point it becomes necessary to compare Sn with Sn−1, because we
will work with Lipschitz test-functions. We will do something similar in our case, but we need to
be careful: even though we manipulate sums of independent random variables, they have to be
defined on the same probability space for different n.

Therefore we need to define the random variables (τn
i )1≤i≤n and (τn−1

i )1≤i≤n−1 in such a way that
they take close values while having the desired distributions. So first we introduce a coupling between
those two sets of random variables. Put simply, the τn−1

i−1 are built using the same exponential
random variables Yi as τn

i , for i ≥ 2 (the case i = 1 is trivial: τn
1 = 1 a.s.). The coupling itself relies

on the well-known inversion method:
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Lemma 4.2.2 Let Y2, . . . , Yn be i.i.d. random variables with exponential distribution E(1). Set
τn

1 = τn−1
1 = 1 and:

τn
i :=

⌈
− Yi

log(1 − pn
i )

⌉
and τn−1

i−1 :=
⌈

− Yi

log(1 − pn−1
i−1 )

⌉
, i ∈ [[2, n]]

where we set:
pn

i := n− i+ 1
n

, n ∈ N∗, i ∈ [[1, n]].

Then τn
i ∼ G(pn

i ) and τn−1
i ∼ G(pn−1

i ). Furthermore:

τn−1
i−1 ≤ τn

i , i ∈ [[2, n]].

Proof. This is simply a consequence of the fact that if Y ∼ E(1), then:

⌈Y
λ

⌉
∼ G(e−λ), λ > 0.

The second part of the lemma is proved by noticing that p 7→ ⌈−y/ log(1 − p)⌉ is non-increasing on
(0, 1) for all y ∈ R+ and that pn

i ≤ pn−1
i−1 :

pn
i = n− i+ 1

n
≤ n− i+ 1

n− 1 = pn−1
i−1 .

Now we can compare Zn and Zn−1. We will need in particular to know how much Zn is close to
Zn−1 in norm L1:

Lemma 4.2.3 There exists a positive constant C such that:

∥Zn − Zn−1∥L1 ≤ C
logn
n

, n ≥ 2.

Proof. Notice that since τn
1 = 1 a.s., we have for all n ≥ 2:

Zn − Zn−1 = 1
n

n∑
i=1

τn
i − logn− 1

n− 1

n−1∑
i=1

τn−1
i + log(n− 1)

= 1
n

n−1∑
i=1

τn
i+1 − 1

n− 1

n−1∑
i=1

τn−1
i + 1

n
+ log

(
1 − 1

n

)

= 1
n

n−1∑
i=1

(τn
i+1 − τn−1

i ) − 1
n(n− 1)

n−1∑
i=1

τn−1
i + 1

n
+ log

(
1 − 1

n

)
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By the triangle inequality, and because τn
i+1 ≥ τn−1

i a.s., we find:

∥Zn − Zn−1∥L1 ≤ 2
n− 1 + 1

n

n−1∑
i=1

∥τn
i+1 − τn−1

i ∥L1 + 1
n(n− 1)

n−1∑
i=1

∥τn−1
i ∥L1

= 2
n− 1 + 1

n

n−1∑
i=1

E[τn
i+1 − τn−1

i ] + 1
n(n− 1)

n−1∑
i=1

E[τn−1
i ]

= 2
n− 1 + 1

n

n−1∑
i=1

( n

n− i
− n− 1
n− i

)
+ 1
n(n− 1)

n−1∑
i=1

n− 1
n− i

= 2
n− 1 + 1

n

n−1∑
i=1

1
i

+ 1
n

n−1∑
i=1

1
i

= 2
n− 1 + 2

n
Hn−1,

where Hn denotes the n-th harmonic number.

Notation 1: Set αn := 1 − 1/n and βn := −(n− 1) logαn, as well as:

δn := log
(
1 − 1

n

)
− 1
n

log(n− 1).

We will make constant use of the following inequalities in the sequel for n ≥ 2:

−1 ≤ δn ≤ 1
n

≤ 0 ≤ αn < βn < 1. (4.26)

The next proposition is basically a Stein’s identity for Zn, which is expressed using both of Zn

and Zn−1. Observe that when n goes to ∞, it approaches the characteristic relation (4.25) of the
Gumbel distribution.

Proposition 4.2.4 Let f be a function in C 1(R,R) and n ≥ 2. We have the identity :

E
[
f ′(Zn)

]
= CnE

[
e−βnZn−1f ′

(
αnx+ Gn

n
+ δn

)]
, (4.27)

where the τn−1
i are i.i.d., respectively with distribution Geom

(
n−i
n−1

)
for each i ∈ [[1, n− 1]], the

random variable Gn has distribution Geom( 1
n) and is independent of the τn−1

i as well as of
the τn

i for all i, and

Cn := n
(
1 − 1

n

)(n−1) log(n−1)
≥ n

n− 1 ≥ 1.

Proof. The idea is to do a change of probability: we replace the distribution of (τn
1 , . . . , τ

n
n−1, τ

n
n )

by the distribution of (τn−1
1 , . . . , τn−1

n−1 , τ
n
n ). Doing so makes appear a density function which will

behave as e−Zn
d= e−Z when n goes to infinity, where Z ∼ G(0, 1). As for τn

n , this term is singled
out because of the following well-known result:

τn
n

n
d= 1
n

Geom
( 1
n

) d−→
n→∞

E(1).
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This will give us the exponential random variable which appears in the generator of the Gumbel
distribution. Now denote by Pn

j the joint distribution of (τn
1 , . . . , τ

n
j ) for all j ∈ [[1, n]] and

(ti)1≤i≤j ∈ (N∗)j :

Pn
j (t1, . . . , tj) := P

( j⋂
i=1

{τn
i = ti}

)

=
j∏

i=1

(n− i+ 1
n

)(
1 − n− i+ 1

n

)ti−1

=
j∏

i=1

(n− i+ 1
n

)( i− 1
n

)ti−1
.

Furthermore, the density of (τn
1 , . . . , τ

n
n−1) with respect to the distribution of (τn−1

1 , . . . , τn−1
n−1 ) is

equal to:

Pn
n−1(t1, . . . , tn−1)

Pn−1
n−1 (t1, . . . , tn−1)

=
∏n−1

i=1
(

n−i+1
n

)(
i−1
n

)ti−1∏n−1
i=1

(
n−i
n−1

)(
i−1
n−1

)ti−1

=
(
1 − 1

n

)n−1 n!
(n− 1)!

∏n−1
i=1

( 1
n

)ti−1∏n−1
i=1

( 1
n−1

)ti−1

= n
(
1 − 1

n

)∑n−1
i=1 ti

= n
(
1 − 1

n

)(n−1)
(

1
n−1

∑n−1
i=1 ti

)

= n
(
1 − 1

n

)(n−1) log(n−1)(
1 − 1

n

)(n−1)
(

1
n−1

∑n−1
i=1 (ti−log(n−1))

)

Using that equality, we perform a change of probability to get rid of the (n− 1) first τn
i and replace

them by the τn−1
i . Since τn

n is independent of τn
i for all i ≤ n− 1, we can replace τn

n by a random
variable Gn with distribution Geom( 1

n). This substitution is essential, as τn
n is not independent of

τn−1
n−1 , since both have been constructed by using the same exponential random variable Yn. In other

words, we have used two couplings of τn
n and τn−1

n−1 : the first one, described in lemma 4.2.2, and a
trivial one, with independent geometric random variables. The purpose of the first was to compare
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Zn and Zn−1, while the second will make appear the random variable Y of lemma 4.25 at the limit.

E
[
f ′(Zn)

]
= E

[
f ′

( 1
n

n−1∑
i=1

τn
i − logn+ τn

n

n

)]

= E
[
f ′

( 1
n

n−1∑
i=1

τn
i − logn+ Gn

n

)]

= E
[Pn

n−1(τn−1
1 , . . . , τn−1

n−1 )
Pn−1

n−1 (τn−1
1 , . . . , τn−1

n−1 )
f ′

( 1
n

n−1∑
i=1

τn−1
i − logn+ Gn

n

)]

= n
(
1 − 1

n

)(n−1) log(n−1)
E

[(
1 − 1

n

)(n−1)Zn−1
f ′

( 1
n

n−1∑
i=1

τn−1
i − logn+ Gn

n

)]

= CnE
[(

1 − 1
n

)(n−1)Zn−1
f ′

( 1
n

n−1∑
i=1

τn−1
i − logn+ Gn

n

)]
= CnE

[(
1 − 1

n

)(n−1)Zn−1
f ′

((
1 − 1

n

)
Zn−1 + Gn

n
+ log

(
1 − 1

n

)
− 1
n

log(n− 1)
)]
.

Notice that when n goes to infinity, the term Cn before the expectation converges to 1 (as fast as
logn/n goes to 0).

Notation 2: The following notation will be convenient in the sequel:

gn(x) := e−βnxE
[
f ′

(
αnx+ Gn

n
+ δn

)]
. (4.28)

We will apply identity (4.27) to f = P0
th, which is indeed of class C 1. By using the previous

results, we will find a bound to control the rate of convergence of E[L0f(Zn)] = E[L0P0
th(Zn)] to 0.

Because that bound will be integrated over [0,+∞), we must ensure it is an integrable function of
t. To be more precise, the term γ−1

t = (et − 1)−1 will appear throughout the next subsection. It is
integrable on [ε,∞) for all ε > 0, but not when ε = 0. This problem also appears with the standard
Ornstein-Uhlenbeck semi-group, at least in dimension 2 or higher (see Decreusefond [2015]). A
simple way to fix it consists in finding two different bounds, one for t in [0, ε] and the other for t in
[ε,∞). Optimizing in ε then concludes the proof. The rest of this section is subdivided into two
subsections, one for each bound.

4.2.1 Bounding the error on [ε, ∞)

The goal of this section is to prove that the following proposition holds:

Proposition 4.2.5 Let h ∈ Lip[2](R,R). There exists a constant C > 0 such that:

∣∣E[
L0P0

th(Zn)
]∣∣ ≤ C

1 + | log γt|
γt

logn
n

, t ∈ [ε,∞), n ∈ N∗.
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To do so, we introduce the decomposition on which relies this subsection (and the next):

E[L0f(Zn)]
= −E[f ′(Zn)] + E

[
e−Znf ′(Zn + Y )

]
= −CnE[gn(Zn−1)] + E[g(Zn)]
= (1 − Cn)E[gn(Zn−1)] + E[g(Zn)] − E[gn(Zn−1)]
= (1 − Cn)E[gn(Zn−1)] +

(
E[g(Zn)] − E[g(Zn−1)]

)
+

(
E[g(Zn−1)] − E[gn(Zn−1)]

)
= (1) + (2) + (3), (4.29)

where the second equality is a consequence of proposition 4.25. Next we deal with (1) and (2). To
do so, we give some properties of g and E[gn(Zn−1)]:

Lemma 4.2.6 Let ht = P0
th, where h ∈ Lip[2](R,R), so that

g(x) = e−xE[e−γte−(x+Y )
h′(x+ Y − t)],

where Y ∼ E(1). We couple Gn with Y in the following way

Gn := 1
n

⌈ −Y
log an

⌉
∼ Geom

( 1
n

)
.

Then the followings hold true.

- The function g is (eγt)−1-Lipschitz.

- The sequence
(
E[gn(Zn−1)]

)
n≥1 is bounded by Cγ−1

t for some C > 0. As a result,

(Cn − 1)|E[gn(Zn−1)]| ≤ C

γt
(Cn − 1) = 1

γt
O

( logn
n

)
, t ≥ 0, n ∈ N∗.

Proof. - It is enough to notice that g′ admits a simple expression thanks to the change of variable
y′ = y + x:

g(x) = e−x
∫ ∞

0
e−γte−(x+z)

h′(x+ z − t)e−z dz =
∫ ∞

x
e−ze−γte−z

h′(z − t) dz.

Differentiating with respect to x, we find that g′(x) = −e−xe−γte−x
h′(x− t), so that

|g′(x)| ≤ e−xe−γte−x ≤ e−1

γt
.

- Recall that gn is given by (4.28), and that the constants αn, βn and δn have been defined just
before (4.26). We know that the double exponential term is a non-decreasing function, and that
⌈y⌉ ≤ y + 1, for every non-negative y. Besides, as −n logαn ≥ 1 and δn ≤ −1/n, we have:

− Y

n logαn
+ δn ≤ Gn

n
+ δn ≤ − Y

n logαn
+ δn + 1

n
≤ Y. (4.30)
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Moreover, since Zn−1 ≥ 1 − log(n− 1) ≥ − logn a.s., and as x will be replaced by Zn−1 in the
sequel, we only need to work with x ≥ − logn:

|gn(x)| ≤ e−βnxE
[
e−γte−(αnx+ Gn

n +δn)]
≤ e−βnxE

[
e−γte−(αnx+Y )]

= 1
γt
e−(βn−αn)x(

1 − e−γte−αnx)
≤ 1
γt
e−(βn−αn)x

≤ 1
γt
nβn−αn .

as for all positive γ we have E[e−γe−Y ] = (1 − e−γ)/γ if Y has exponential distribution E(1).
This last term is bounded w.r.t. to n, because nβn−αn ∼

n→∞
1 + logn/(2n). Finally, notice that:

0 ≤ Cn−1 = n
(
1− 1

n

)(n−1) log(n−1)−1 ≤ ne−(1− 1
n

) log(n−1)−1 = elog(1+ 1
n−1 )+ 1

n
log n−1 ∼

n→∞
logn
n

.

The intermediary result, available for x greater than − logn

e−βnxE
[
e−γte−(αnx+ Gn

n +δn)]
≤ C

γt
, (4.31)

will be useful on its own in the sequel.

This lemma has two immediate conclusions: the first item furnishes a bound for (1), while the
second one directly settles the case of (2) in (4.29):

|E[g(Zn)] − E[g(Zn−1)]| ≤ e−1

γt
∥Zn − Zn−1∥L1 ≤ C

γt

logn
n

.

As for (3), we will need to decompose it further:

E[g(Zn−1)] − E
[
gn(Zn−1)

]
=

(
E[g(Zn−1)] − E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)
h′(Zn−1 + Y − t)

])
+

(
E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)
h′(Zn−1 + Y − t)

]
− E

[
gn(Zn−1)

])
= (3.1) + (3.2).

Let us start with (3.2). Recall that δn is non-positive:∣∣∣E[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)
h′(Zn−1 + Y − t)

]
− E

[
gn(Zn−1)

]∣∣∣
≤ E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)∣∣∣h′(Zn−1 + Y − t) − h′
(
αnZn−1 + Gn

n
+ δn − t

)∣∣∣]
≤ E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)∣∣∣(1 − αn)Zn−1 + Y − Gn

n
− δn

∣∣∣]
≤ E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)( 1
n

|Zn−1| +
∣∣∣Y − Gn

n

∣∣∣ − δn

)]
.



Application to the coupon collector problem 161

That last expression is also equal to:

1
n
E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)
(|Zn−1| − δn)

]
+ E

[
e−βnZn−1e−γte−(αnZn−1+ Gn

n −δn)∣∣∣Y − Gn

n

∣∣∣]
≤ C

nγt

(
E[|Zn−1|] − δn

)
+

(
E

[
e−2βnZn−1e−2γte−(αnx+ Gn

n +δn)]) 1
2
∥∥∥Y − Gn

n

∥∥∥
L2

≤ C

nγt

(
E[|Zn−1|] − δn

)
+ C

γt

(
E[e−βnZn−1 ]

) 1
2
∥∥∥Y − Gn

n

∥∥∥
L2
.

We have used successively inequality (4.31), Cauchy-Schwarz inequality and once more inequality
(4.31). The sequences (E[|Zn−1|])n≥1 and (E[e−Zn−1 ])n≥1 are bounded. This is easily seen for the
first one, for instance by recalling that:

V(Zn) = π2

6 + o(1).

As for the second sequence, notice that since βn ≤ 1, we have:

E[e−βnZn−1 ] ≤ (E[e−Zn−1 ])βn ≤ 1,

thanks to the next statement:

Lemma 4.2.7 For all λ ≥ 0, the sequence (E[e−λZn ])n≥1 is bounded. Moreover, we have the
asymptotic expansion:

E[e−Zn ] − 1 ∼
n→∞

− logn
2n . (4.32)

Proof. For all n ≥ 1, we have by definition of Zn:

E[e−λZn ] = nλ
n∏

i=1

1 − i−1
n

e
λ
n − i−1

n

= nλn!
n∏

i=1

1
ne

λ
n − i+ 1

≤ nλn!
n∏

i=1

1
n− i+ 1 + λ

= nλn!
n∏

i=1

1
i+ λ

,

thanks to the inequality neλ/n ≥ n+ λ. Therefore:

E[e−λZn ] = nλ
n∏

i=1

i

i+ λ
≤ e−λ

( ∑n

i=1
1

i+λ
−log n

)
= e
−λ

( ∑n

i=1
1
i
−log n−λ

∑n

i=1
1

i(i+λ)

)
,

and using the well-known asymptotic expansion
∑n

i=1 i
−1 = logn+ γ + o(1), where γ = 0.577 . . . is

the so-called gamma constant, we conclude that the right-hand side converges for every non-negative
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λ. As for the second part of the statement

E[e−Zn ] = nn!
n∏

i=1

1
ne1/n − i+ 1

= nn!
(n+ 1)!

n∏
i=1

n− i+ 2
ne1/n − i+ 1

= n

n+ 1

n∏
i=1

n− i+ 2
ne1/n − i+ 1

= n

n+ 1

n∏
i=1

n− i+ 2
(n(e1/n − 1) − 1) + n− i+ 2

= n

n+ 1

n∏
i=1

(
1 + n(e1/n − 1) − 1

i+ 1
)−1

= n

n+ 1 exp
(

−
n∑

i=1
log

(
1 + n(e1/n − 1) − 1

n− i+ 2
))

Recall that:

n(e1/n − 1) − 1 ∼
n→∞

1
2n.

Therefore, a standard result about positive divergent series yields:

E[e−Zn ] − 1 ∼
n→∞

n

n+ 1e
− 1

2n
Hn − 1 ∼

n→∞
e−

1
2n

log n − 1 ∼
n→∞

− 1
2n logn,

which concludes the proof.

As a result, we need to compare Y and Gn/n. We already know that the latter converges weakly
to Y . To get a rate of convergence, we use the fact that Gn depends of Y in a simple way:

Lemma 4.2.8 Let Y ∼ E(1) and Gn defined as before. Then (Gn/n)n≥1 converges to Y in L2

norm, with rate of convergence at least
√

2/n:

∥∥∥Y − Gn

n

∥∥∥
L2

≤
√

2
n
, n ≥ 2.

Proof. To determine the rate of convergence in L2 norm, we will need to compute E[Y ⌈Y/λ⌉] for
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some λ > 0. Set un :=
∫ nλ

0 ye−y dy

E
[
Y

⌈Y
λ

⌉]
=

∫ ∞
0

y
⌈y
λ

⌉
e−y dy

=
∞∑

n=0
(n+ 1)

∫ (n+1)λ

nλ
ye−y dy

=
∞∑

n=0
(n+ 1)(un − un+1)

=
∞∑

n=0
un + (nun − (n+ 1)un+1)

=
∞∑

n=0
un

= λe−λ

(1 − e−λ)2 + 1
1 − e−λ

.

Evaluating this identity at λ = − log(1 − 1/n) > 0, we get that

E
[∣∣∣Y − Gn

n

∣∣∣2]
= 2 + 2 − 1

n
− 2
n
E

[
Y

⌈Y
λ

⌉]
= 4 − 1

n
+ 2(n− 1) log

(
1 − 1

n

)
− 2

= 2 − 1
n

+ 2(n− 1) log
(
1 − 1

n

)
≤ 2
n2 .

The last inequality comes the well-known inequality:

log
(
1 − 1

x

)
≤ − 1

x
− 1

2x2 , x ≥ 1.

And so (3.2) is bounded by C/(γtn), for some constant C > 0 independent of t. Now we move onto
(3.1). Before bounding this term, we show briefly how we can replace e−βnZn−1 by e−Zn−1 .∣∣∣E[(

e−βnZn−1 − e−Zn−1
)
e−γte−(αnZn−1+ Gn

n +δn)
h′(Zn−1 + Y − t)

]∣∣∣
≤ E

[∣∣e−βnZn−1 − e−Zn−1
∣∣e−γte−(αnZn−1+ Gn

n +δn)]
≤ E

[∣∣e−βnZn−1 − e−Zn−1
∣∣e−γte−(αnZn−1+Y )]

= E
[
|e−βnZn−1 − e−Zn−1 |φn(Zn−1)

]
,

where we set φn(x) := E
[
e−γte−(αnx+Y )] for all x ≥ − logn. The change of variable y′ = y − log γt

shows that:

φn(x) = 1
γt

∫ ∞
− log γt

e−ye−e−(αnx+y) dy ≤ 1
γt

∫
R
e−ye−e−(αnx+y) dy = 1

γt
eαnx.
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Thus, noticing that z 7→ e−Zn−1z is Lipschtiz on [βn −αn, 1 −αn], with Lipschitz constant less than
|Zn−1|(e−(βn−αn)Zn−1 + e−(1−αn)Zn−1) almost surely, we can replace βn by 1:∣∣∣E[

(e−βnZn−1 − e−Zn−1)φn(Zn−1)
]∣∣ ≤ C

γt
E

[∣∣e−(βn−αn)Zn−1 − e−(1−αn)Zn−1
∣∣∣]

≤ C

γt
(1 − βn)E

[
|Zn−1|

(
e−(βn−αn)Zn−1 + e−(1−αn)Zn−1

)]
.

We have used Cauchy-Schwarz inequality and lemma 4.2.7 to bound the remaining expectation. As
a result, we can exchange (3.1) for

E
[
e−Zn−1

(
e−γte−(Zn−1+Y )

−e−γte−(αnZn−1+ Gn
n +δn))

h′(Zn−1 + Y − t)
]

≤ E
[
e−Zn−1

∣∣e−γte−(Zn−1+Y )
− e−γte−(αnZn−1+ Gn

n +δn)∣∣]. (4.33)

As tempting as it may be, we cannot exploit (yet) the fact that x 7→ e−γte−x is Lipschitz, because
doing so would yield an expression without the term γ−1

t , which is crucial to find an integrable
bound w.r.t. t on [ε,+∞). Set εn := −n logαn ≥ 1. Then the above expression is bounded by:

E
[
e−Zn−1

∣∣e−γte−(Zn−1+Y )
− e−γte−(αnZn−1+Y ) ∣∣]

+ E
[
e−Zn−1

(
e−γte−(αnZn−1+Y )

− e−γte−(αnZn−1+ Gn
n +δn))]

= E
[
e−Zn−1

(
e−γte−(αnZn−1+Y )

− e−γte−(Zn−1+Y ))
1{Zn−1≤0}

]
+ E

[
e−Zn−1

(
e−γte−(Zn−1+Y )

− e−γte−(αnZn−1+Y ))
1{Zn−1>0}

]
+ E

[
e−Zn−1

(
e−γte−(αnZn−1+Y )

− e−γte−(αnZn−1+ Gn
n +δn))]

≤ E
[
e−Zn−1

(
e−γte−(αnZn−1+Y )

− e−γte−(Zn−1+Y ))
1{Zn−1≤0}

]
+ E

[
e−Zn−1

(
e−γte−(Zn−1+Y )

− e−γte−(αnZn−1+Y ))
1{Zn−1>0}

]
+ E

[
e−Zn−1

(
e−γte−(αnZn−1+Y )

− e−γte
−(αnZn−1+ Y

εn
+δn))]

.

We have used the inequality (4.30) at the last line, which amounts to saying that Gn/n ≥ Y/εn.
Unfortunately, in spite of the monotony of the double exponential and the inequality Gn/n+δn ≤ Y ,
we could not remove the absolute values in the first expression, because it is not true that αnx ≤ x
if x < 0. This explains the need for the above inequality. With the absolute value out of the picture,
the two first terms become easy to estimate as we know that for α ∈ {αn, 1}, :

e−xE
[
e−γte−(αx+Y )] = 1

γt
e−(1−α)x(

1 − e−γte−αx)
, x ∈ R

so that for all x ∈ R:

E
[
e−x(

e−γte−(αnx+Y ) − e−γte−(x+Y ))]
= 1
γt

(
(e−(1−αn)x − 1) + (e−γte−x − e−(1−αn)xe−γte−αnx)

)
= 1
γt

(
(e−(1−αn)x − 1)(1 − e−γte−αnx) + (e−γte−x − e−γte−αnx)

)
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Now we can bound the first two terms by putting the indicator functions together again:

E
[
e−Zn−1

∣∣e−γte−(Zn−1+Y )
− e−γte−(αnZn−1+Y ) ∣∣]

≤ 1
γt
E

[∣∣e−(1−αn)Zn−1 − 1| + |e−γte−Zn−1 − e−γte−αnZn−1 ∣∣].
Controlling these two expectations is simple: first the function z 7→ e−Zn−1z is Lipschtiz on
[0, 1 − αn], with Lipschitz constant less than |Zn−1|(1 + e−(1−αn)Zn−1) almost surely. Second,
remark that the function z 7→ e−γte−z is e−1-Lipschitz. Thanks to Cauchy-Schwartz inequality, we
know that

sup
n∈N∗

E
[
|Zn−1|e−λZn−1

]
< +∞, λ ≥ 0.

Therefore, we can write:

E
[
e−Zn−1

∣∣e−γte−(Zn−1+Y )
− e−γte−(αnZn−1+Y ) ∣∣] ≤ C

γt

1
n
.

The third term is a source of troubles because Y is divided by εn = −n logαn ≥ 1. A change of
variable gives:

e−xE
[
e−γte

−(αnx+ Y
εn

+δn)]
= εne

−x
∫ ∞

0
e−εnye−γte−(αnx+y+δn) dy, x ∈ R.

We need to compare this integral to e−x
∫∞

0 e−ye−γte−(αnx+y+δn) dy:

Lemma 4.2.9 There exists a constant C > 0 such that for all n ≥ 2, we have for all positive t
and for all real numbers x:

e−x
∣∣∣ ∫ ∞

0
e−ye−γte−(αnx+y) dy − εn

∫ ∞
0

e−εnye−γte−(αnx+y+δn) dy
∣∣∣

≤ C
|x| + | log γt|

γt

logn
n

e−
1
n

x.

In particular

E
[
e−Zn−1

∣∣∣ ∫ ∞
0

e−ye−γte−(αnZn−1+y)
dy − εn

∫ ∞
0

e−εnye−γte−(αnZn−1+y+δn)
dy

∣∣∣]
≤ C

1 + | log γt|
γt

logn
n

.

Proof. The arguments are similar to those given above, but certain new difficulties arise nonetheless.

- First we replace εn = −n log(1 − 1/n) by 1 by using that εn ≥ 1. Recall that δn is negative, so
that:

0 ≤ (εn − 1)
∫ ∞

0
e−εnye−γte−(αnx+y+δn) dy ≤ (εn − 1)

∫ ∞
0

e−ye−γte−(αnx+y) dy ≤ eαnx

γt
(εn − 1).

Next we take care of the e−εny part in the integral. As before, observe that z 7→ e−yz is Lipschitz
on [1, εn], with Lipschitz constant ye−y:

0 ≤
∫ ∞

0
(e−y − e−εny)e−γte−(αnx+y+δn) dy

≤ (εn − 1)
∫ ∞

0
ye−ye−γte−(αnx+y+δn) dy = (εn − 1)e−τE

[
(Z + τ)1{Z+τ≥0}

]
.
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where τ := log γt −αnx− δn ∈ R and Z is a random variable with standard Gumbel distribution.
The right-hand side makes appear | log γt| in the bound:

0 ≤
∫ ∞

0
(e−y − e−εny)e−γte−(αnx+y+δn) dy

≤ e−τ (
C + | log γt| − αn|x|

)
(εn − 1) = eαnx+δn

γt

(
C + | log γt| + αn|x|

)
(εn − 1)

- As for the final term, recall once more that δn = log(1 − 1/n) − log(n− 1)/n ≤ 0:

0 ≤
∫ ∞

0
e−εnye−γte−(αnx+y) dy−

∫ ∞
0

e−εnye−γte−(αnx+y+δn) dy

=
∫ ∞

0
e−εnye−γte−(αnx+y) dy − eεnδn

∫ ∞
δn

e−εnye−γte−(αnx+y) dy

≤
∫ ∞

0
e−εnye−γte−(αnx+y) dy − eεnδn

∫ ∞
0

e−εnye−γte−(αnx+y) dy

= (1 − eεnδn)
∫ ∞

0
e−εnye−γte−(αnx+y) dy

≤ eαnx

γt
(1 − eεnδn).

The second inequality of the statement is obtained by replacing x by Zn−1 and integrating w.r.t. this
random variable. Recall that the sequence (E[|Zn−1|e−λZn−1 ])n≥1 is bounded for all non-negative λ.

4.2.2 Bounding the error on [0, ε]
The next proposition bounds E[L0P0

th(Zn)] by an integrable term w.r.t. t in the neighbourhood of
0:

Proposition 4.2.10 Let h ∈ Lip[2](R,R). Then there exists a constant C > 0 such that:

|E[L0P0
th(Zn)]| ≤ C

logn
n

, t ≥ 0, n ∈ N∗.

Proof. We have already found a bound depending on γ−1
t , so we have to obtain another bound,

constant w.r.t. t. This boils down to bounding the same four terms as before, but independently of
t, which makes the task much faster and easier. First, we have

(1 − Cn)|E[gn(Zn−1)]| ≤ E
[
e−βnZn−1e−γte−(αnZn−1+ Gn

n +δn)]
≤ (1 − Cn)E[e−βnZn−1 ]
≲ (1 − Cn),

and we already know that this last term goes to 0 as fast as logn/n. The second term is dealt with
in the next lemma:
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Lemma 4.2.11 Let g : x 7→ e−xE[e−γ
−(x+Y )
t h′(x+ Y − t)], where h ∈ Lip[2](R,R) and Y is a

random variable with exponential distribution E(1). Then there exists C > 0 such that:

|E[g(Zn)] − E[g(Zn−1)]| ≤ C
logn
n

, t ≥ 0, n ≥ 2.

Proof. We have that:
|E[g(Zn)] − E[g(Zn−1)]|

≤ E
[
e−Zn

∣∣e−γte−(Zn+Y )
h′(Zn + Y − t) − e−γte−(Zn−1+Y )

h′(Zn−1 + Y − t)
∣∣]

+ E
[
|e−Zn − eZn−1 |e−γte−(Zn−1+Y )

|h′(Zn−1 + Y − t)|
]

≤ E
[
e−Zn |Zn − Zn−1|

]
+ E

[
|e−Zn − e−Zn−1 |

]
.

To exploit the fact that τn
i+1 ≥ τn−1

i , recall that τn
1 = 1 a.s. and introduce:

Z ′n := 1
n− 1

n∑
i=1

τn
i − log(n− 1) = 1

n− 1

n−1∑
i=1

τn
i+1 + 1

n− 1 − log(n− 1), n ≥ 2.

Clearly Z ′n ≥ Zn−1 and Z ′n ≥ Zn since

Zn − Z ′n = − 1
n(n− 1)

n∑
i=1

τn
i + log

(
1 − 1

n

)
≤ 0.

Therefore:
|E[g(Zn)] − E[g(Zn−1)]| ≤ E

[
e−Zn

∣∣Zn − Zn−1|
]

+ E
[
|e−Zn − e−Zn−1

∣∣]
≤ E

[
e−Zn(Z ′n − Zn)

]
+ E

[
e−Zn(Z ′n − Zn−1)

]
+ E

[
e−Zn − e−Z′

n
]

+ E
[
e−Zn−1 − e−Z′

n
]

= (1) + (2) + (3) + (4).
We start with (1). Introduce the notation:

Zn\i := 1
n

n∑
j=1
j ̸=i

τn
j − logn, i ∈ [[1, n]].

Now conditioning on Yi, the i-th exponential random variable in the definitions of τn
i+1 and τn−1

i ,
we can write:

E
[
e−Zn(Z ′n − Zn)

]
= 1
n(n− 1)

n∑
i=1

E[e−Znτn
i ] − log

(
1 − 1

n

)
E[e−Zn ]

≤ 1
n(n− 1)

n∑
i=1

E[e−Znτn
i ] + 1

n− 1

= 1
n(n− 1)

n∑
i=1

E[e−Zn\i ]E[e−
1
n

τn
i τn

i ] + 1
n− 1

≤ 1
n(n− 1)

n∑
i=1

E[e−Zn\i ]E[τn
i ] + 1

n− 1

= 1
n− 1

n∑
i=1

E[e−Zn\i ] 1
n− i+ 1 + 1

n− 1 .
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That last expectation is bounded with respect to n:

E[e−Zn\i ] = n
n∏

j=1
j ̸=i

n− j + 1
ne1/n − j + 1

= nn!
n− i+ 1

n∏
j=1
j ̸=i

1
ne1/n − j + 1

≤ nn!
n− i+ 1

n∏
j=1
j ̸=i

1
n− j + 2

= nn!
n− i+ 1 × n− i+ 2

(n+ 1)!

= n− i+ 2
n− i+ 1 × n

n+ 1
≤ 2.

Consequently we have

E
[
e−Zn(Z ′n − Zn)

]
≤ 1
n− 1 + 1

n(n− 1)

n∑
i=1

E[e−Zn\i ]E[e−
1
n

τn
i τn

i ]

≤ 1
n− 1 + 2

n− 1Hn.

Those arguments apply again to (2) and give (almost) the same bound:

E
[
e−Zn(Z ′n − Zn−1)

]
= 1
n− 1 + 1

n− 1

n−1∑
i=1

E
[
e−Zn(τn

i+1 − τn−1
i )

]
= 1
n− 1 + 1

n− 1

n−1∑
i=1

E[e−Zn\i ]E
[
e−τn

i+1(τn
i+1 − τn−1

i )
]

≤ 1
n− 1 + 2

n− 1

n−1∑
i=1

1
n− i

= 1
n− 1 + 2

n− 1Hn−1.

Finally we deal with (3) and (4). This last part essentially boils down to determining how fast
E[e−Zn ] goes to 1, a question whose answer has already been given in lemma 4.32, where we found
that

E[e−Zn ] − 1 ∼
n→∞

− logn
2n ,

which concludes the proof.

As for the third term, we rely once more on the fact that z 7→ e−Zn−1z is |Zn−1|(e−βnZn−1 + e−Zn−1)-
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Lipschitz almost surely, when z ∈ [βn, 1]:

∣∣∣E[
(e−βnZn−1 − e−Zn−1)e−γte−(αnZn−1+ Gn

n +δn)
h′(Zn−1 + Y − t)

]∣∣∣
≤ E

[
|e−βnZn−1 − e−Zn−1 |

]
≤ (1 − βn)E

[
|Zn−1|(e−βnZn−1 + e−Zn−1)

]
≤ C(1 − βn).

Now, as before, we use that x 7→ e−γte−x is e−1-Lipschitz on R, so that the fourth and final term
satisfies:

∣∣∣E[
e−Zn−1

(
e−γte−(Zn−1+Y )

− e−γte−(αnZn−1+ Gn
n +δn))

h′(Zn−1 + Y − t)
]∣∣∣

≤ E
[
e−Zn−1

∣∣e−γte−(Zn−1+Y )
− e−γte−(αnZn−1+ Gn

n +δn)∣∣]
≤ e−1E

[
e−Zn−1

(
(1 − αn)|Zn−1| + (Y − Gn

n
− δn)

)]
.

Putting proposition 4.2.5 and 4.2.10 together, we finally get:

Proposition 4.2.12 Let h ∈ Lip[2](R,R). Then there exists a constant C such that:

|E[L0P0
th(Zn)]| ≤ C min

(
1, 1 + | log γt|

γt

) logn
n

, t ≥ 0, n ≥ 2.

By combining all the previous results, we find finally that:

Proposition 4.2.13 Let Z be a random variable with Gumbel distribution. Then there exists a
constant C > 0 such that

d[2](Zn, Z) ≤ C
logn
n

, n ≥ 1.

Proof. We already know that for every h ∈ Lip[2](R,R)

E[h(Zn)] − E[h(Z)] = −
∫ ∞

0
E

[
L0P0

th(Zn)
]
dt.

Using proposition 4.2.12 and taking an arbitrary ε > 0, we obtain:

|E[h(Zn)] − E[h(X)]| ≤
∣∣∣ ∫ ∞

0

∣∣E[
L0P0

th(Zn)
]∣∣dt∣∣∣

≤
∫ ε

0

∣∣E[
L0P0

th(Zn)
]∣∣dt+

∫ ∞
ε

∣∣E[
L0P0

th(Zn)
]∣∣dt

≤ C
logn
n

ε+ C
logn
n

∫ ∞
ε

1 + | log γt|
γt

dt

= C
logn
n

(
ε+

∫ ∞
ε

1 + | log γt|
γt

dt
)
.
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Since the rate of convergence is the same for t ∈ [0, ε] and for t ∈ [ε,+∞), we do not need to
optimize in ε, as it would only affect the constant, not the speed of convergence. Let us just mention
that the function ε 7→ 1 − |1 + log γε|/γε admits one unique zero around ε = 0.7, and it is a global
minimum. That concludes the proof.

Remark 4.2.14. To the best of our knowledge, only one paper so far has given similar uniform
bounds for the coupon collector problem: Sándor [1993]. The author finds the same rate as ours, but
in the Kolmogorov distance and through a different method. Sándor’s PhD student has developed
this topic in her doctoral thesis Pósfai [2010]. She has made use of Stein-Chen method, among other
techniques, to find rates of convergence in several limit theorems related to the coupon collector
problem. ■
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The last chapter aims at analysing more thoroughly the connections between max-id random
variables and Poisson processes. The fact that a max-id random variable can be seen as the
maximum of a certain Poisson process allows us to exploit well-known elements of stochastic
analysis for those point process to prove new results for max-id distributions. This is the subject of
the first section. We will also see that several limit theorems involving max-stable distributions can
actually be considered as special cases of limit theorems for point processes. Although this idea is
not new, we introduce a specific tool in the second section to quantify it through Stein’s method.

5.1 Stochastic analysis for max-id distributions
In this section, we use adapt several results known to be true for the Poisson process to max-id
distributions. The proofs are usually very short since the main argument is always the same: any
max-id distribution is equal in distribution to the componentwise maximum of a certain Poisson
process. For ease of notations, when dealing with max-stable distributions, we will restrict ourselves
to the case α = α1, with α > 0. All statements can be readily adapted to general max-stable
distributions, although with more involved notations.

5.1.1 Covariance identities
There exist several alternative expressions for the covariance of two functionals of a Poisson process.
To convert them into covariance identities for max-id distributions, we will use the following equality,
which has already played an important role in the definition of (Pα,ν

t )t≥0:

m(ϕ+ δx) = m(ϕ) ⊕ x. (5.1)

available for all x ∈ Eℓ and configuration ϕ ∈ NEℓ
. Denote by ∆yf(x) := f(x ⊕ y) − f(x). If ϕ is

a configuration on Eℓ and x = m(ϕ), we get from (5.1) that:

∆yf(x) = D+
y f̄(ϕ),

where f̄ = f ◦ m. More generally, denote by ∆y1,...,yn the composition ∆y1 ◦ · · · ◦ ∆yn , so that

∆y1,...,ynf(x) = D+
y1,...,yn

f̄(ϕ), y1, . . . ,yn ∈ Eℓ. (5.2)

171
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We sum up this line of reasoning in the following diagram:

NEℓ
Eℓ

R

m

f̄
f

We can now use the Fock space representation (1.5) to derive covariance identities for max-id
random vectors.

Proposition 5.1.1 Let Z be a max-id random vector with exponent measure µ on Eℓ. Let
f, g ∈ L2(Eℓ,PZ). Set:

Tnf(x1, . . . ,xn) := E
[
∆x1,...,xnf(Z)

]
and for all u, v ∈ L2(En

ℓ , µ
⊗n):

⟨u, v⟩n :=
∫

En
ℓ

u(x1, . . . ,xn)u(x1, . . . ,xn) dnµ(x1, . . . ,xn).

We have the following identity:

Cov
(
f(Z), g(Z)

)
=
∞∑

n=1

1
n!⟨Tnf, Tng⟩n. (5.3)

Proof. We apply identity (1.5) to the Poisson process η with σ-finite intensity measure µ and to the
functionals f̄ = f ◦ m and ḡ = g ◦ m. Clearly f̄ and ḡ belong to L2(NEℓ

,Pη). Finally we identify
the terms inside the series in (1.5) by using identity (5.2) and the fact that

Z
d= m(η) =

⊕
x∈η

x.

In dimension 1, it is possible to greatly simplify this identity thanks to the next lemma:

Lemma 5.1.2 Let f : R → R and x, r1, . . . , rn ∈ R for some n ≥ 1. Set r(n) := min(r1, . . . , rn).
We have

∆r1,...,rnf(x) = (−1)n−1∆x⊙r(n)f(x) =
{

(−1)n−1∆r(n)f(x) if x ≤ r(n)

0 otherwise.
(5.4)

Proof. We prove this result by induction on n. The case n = 1 is trivial. Assume the proposition
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holds true for some n. Then we have:

∆r1,...,rn,rn+1f(x) = ∆rn+1∆r1,...,rnf(x)
= (−1)n−1∆rn+1∆x⊙r(1)f(x)

= (−1)n−1
[
f

(
x⊕ (x⊙ r(n)) ⊕ rn+1

)
− f

(
x⊕ (x⊙ r(n))

)
− f(x⊕ rn+1) + f(x)

]
= (−1)n−1

[
f

(
x⊕ r(n) ⊕ rn+1

)
− f(x⊕ r(n)) − f(x⊕ rn+1) + f(x)

]
= (−1)n∆x⊙r(n+1)f(x).

The last identity is checked by distinguishing cases depending on the rank of rn+1 w.r.t. to x and
r(n).

Remark 5.1.3. Unfortunately this identity does not seem to generalize well in higher dimensions.
Troubles appear already in dimension 2 when considering examples like ∆y1,y2f(x) with y1 = (r, 0),
y2 = (0, r) and x = (1, 1) for all r > 1. Iterated applications of ∆(r,0) and ∆(0,r) for different
values of r will not simplify as in dimension 1. This is because the vectors (r, 0) and (0, r) are
"intertwined". Of course, if one has

y1 ≥ y2 · · · ≥ yn

for instance, in the sense of the order defined in (1.17) i.e. each coordinate of yi is more than the
corresponding coordinate of yi+1, then equality (5.4) still holds although it is too specific to be of
much use:

∆y1,...,ynf(x) = (−1)n−1∆x⊙y(n)f(x).

■

Relation (5.4) allows us to give a more convenient expression of Tnf .

Proposition 5.1.4 Let Z be a max-id random variable on (ℓ,∞). Let f, g ∈ L2((ℓ,∞],PZ).
Then

Cov
(
f(Z), g(Z)

)
=

∫ ∞
ℓ

E
[
∆rf(Z)

]
E

[
∆rg(Z)

] dµ(r)
FZ(r) . (5.5)

Proof. Thanks to (5.4), we have

Tnf(r1, . . . , rn)Tng(r1, . . . , rn) = E
[
∆r1,...,rnf(Z)

]
E

[
∆r1,...,rng(Z)

]
= E

[
∆r(n)f(Z)

]
E

[
∆r(n)g(Z)

]
.

Summing over the n possibilities for the value of r(n) and integrating over En
ℓ w.r.t. the exponent
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measure dµ(r) = logFZ( dr), we find:

⟨Tnf, Tng⟩n =
n∑

i=1

∫
En

ℓ

E
[
∆rif(Z)

]
E

[
∆rig(Z)

]
1{r(n)=ri} dµ(r1) . . . dµ(rn)

= n

∫
En

ℓ

E
[
∆rnf(Z)

]
E

[
∆rng(Z)

]
1{r(n)=rn} dµ(r1) . . . dµ(rn)

= n

∫
Eℓ

E
[
∆rnf(Z)

]
E

[
∆rng(Z)

] ∫ ∞
rn

· · ·
∫ ∞

rn

1 dµ(r1) . . . dµ(rn−1) dµ(rn)

= n

∫
Eℓ

E
[
∆rnf(Z)

]
E

[
∆rng(Z)

](
− logF (rn)

)n−1 dµ(rn)

= n

∫
Eℓ

E
[
∆rf(Z)

]
E

[
∆rg(Z)

](
− logF (r)

)n−1 dµ(r),

since µ[x,∞] = − logF (x) due to equality (1.27). Finally, dividing the previous result by n! and
summing from n = 1 to ∞, we obtain:

Cov
(
f(Z), g(Z)

)
=
∞∑

n=1

1
n!⟨Tnf, Tng⟩n

=
∞∑

n=0

1
n!

∫
Eℓ

E
[
∆rf(Z)

]
E

[
∆rg(Z)

](
− logF (r)

)n dµ(r)

=
∫

Eℓ

E
[
∆rf(Z)

]
E

[
∆rg(Z)

]
e− log F (r) dµ(r),

hence the desired result.

Example 6. We give an example of application of the previous covariance identity. Let Z ∼ F(α)
with α > 2. Then Z admits a variance and we have by a direct computation that

V(Z) = Γ
(
1 − 2

α

)
− Γ

(
1 − 1

α

)2
.

On the other hand, identity (5.5) yields another expression for V(Z) from which we deduce:∫ ∞
0

eu
[
u−

1
α e−u − Γ

(
1 − 1

α
, u

)]2
du = Γ

(
1 − 2

α

)
− Γ

(
1 − 1

α

)2
,

where Γ(x, u) denotes the lower-incomplete Gamma function: Γ(x, u) =
∫∞

u tx−1e−t dt.

The relation (5.3) is not the only covariance identity one can prove for max-stable distributions.
Several other such identities for the Poisson process can be found in Last and Penrose [2017] and
Decreusefond [2022]. However none of them translate well to the max-id setting, in the sense that
the underlying Poisson process does not vanish in the final identity. We will detail this point in the
next section. Nonetheless, there is at least one corollary of those covariance identities which admits
a max-id counterpart. We say a function f : Rd → R is non-decreasing if

x ≤ y =⇒ f(x) ≤ f(y),

where x ≤ y means that xj ≤ yj for all j ∈ [[1, d]].
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Proposition 5.1.5 Let Z be a max-id random vector with exponent measure µ on Eℓ and A
some subset of Eℓ. Assume that f, g belong to L2(Eℓ,PZ) and are non-decreasing on A and
non-increasing on Eℓ \A. Then:

E
[
f(Z)g(Z)

]
≥ E[f(Z)]E[g(Z)]. (5.6)

Proof. This is a direct consequence of the Harris-FKG inequality (Last and Penrose [2017] page
217) which states that if f̄ , ḡ belong to L2(NEℓ

,Pη) and are non-decreasing on some set B ⊆ NEℓ

and non-increasing on its complementary, then

E
[
f̄(η)ḡ(η)

]
≥ E[f̄(η)]E[ḡ(η)].

Here, being nondecreasing means that f̄(ϕ+δx) ≥ f̄(ϕ) for all x ∈ Eℓ and ϕ ∈ NEℓ
. The application

m is clearly non-decreasing, so we can apply this result to f̄ = f ◦ m and ḡ = g ◦ m.

An immediate consequence of this inequality is that max-id random vectors are associated: if Z is
a max-id random vector, then for any non-increasing f, g : Eℓ → R, we have

Cov
(
f(Z), g(Z)

)
≥ 0.

An alternative proof of this result can be found in Resnick [1987] (page 299). It consists in proving
first that Poisson processes are associated and then applying m to transfer this result to max-id
random vectors, thus following a line of reasoning similar to the one we use in this section. A more
direct approach which does not rely on Poisson processes is given in Marshall and Olkin [1983].

Remark 5.1.6. Observe that this approach allows us to prove that positive α-stable random vectors
are also associated, since they are are equal in distribution to a non-decreasing transformation of a
Poisson process (the sum of its points). See Samorodnitsky and Taqqu [1994] page 204 for a more
thorough statement with a completely different proof. More generally, every random variable equal
in distribution to a non-decreasing transformation of a Poisson process is associated. For more on
the notion of associativity and its applications, see the original paper introducing it: Esary et al.
[1967]. ■

5.1.2 Poincaré inequalities

We have seen in the second chapter that the univariate Fréchet, Weibull and Gumbel semi-groups all
satisfy a Poincaré inequality. We now generalize this result in higher dimensions by using different
arguments.

Proposition 5.1.7 Let Z be a max-id random vector with exponent measure µ supported by
Eℓ = [ℓ,+∞] \ {ℓ} for some ℓ ∈ [−∞,+∞), and f ∈ L2(Eℓ,PZ). We have:

V
(
f(Z)

)
≤

∫
Eℓ

E
[(
f(Z ⊕ x) − f(Z)

)2]
dµ(x). (5.7)

Proof. Recall equation (1.26):

Z
d=
∞⊕

k=1
Zk = m(η),
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where η =
∑

k δZk
is a Poisson process on Eℓ with intensity measure dµ on Eℓ, for some ℓ ∈

[−∞,+∞)d. As a result, the Poincaré’s inequality for the Poisson process (1.6) applied to the
functional f̄ := f ◦ m ∈ L2(NEℓ

,Pη) yields:

V
(
f(Z)

)
= V

(
f̄(η)

)
≤

∫
Eℓ

E
[(
f̄(η + δx) − f̄(η)

)2]
dµ(x)

=
∫

Eℓ

E
[(
f(Z ⊕ x) − f(Z)

)2]
dµ(x),

thanks to identity (5.1). Alternatively, one could have proved this result by using the covariance
identity (5.3), just like the original Poincaré inequality is demonstrated in Last and Penrose [2017]
(page 193).

Remark 5.1.8. The method we have used made the proof of this result is extremely short. It
can be applied to different situation and only requires a counterpart of (1.26) to work. A general
framework where such a decomposition exists is the context of stable distributions on convex cones
(Davydov et al. [2008]) where it is known as a LePage series. For example, one can prove that
α-stable distributions admit such a decomposition (see Samorodnitsky and Taqqu [1994]). When
α belongs to (0, 1), an instance of this result consists in taking a Poisson process η on R∗+ with
intensity measure αr−(α+1) and setting

s(η) =
∑
x∈η

x =
∫
R∗

+

x dη(x).

Such a random series does converge and its distribution is α-stable. The rest of the proof would
look formally the same and would yield a Poincaré inequality for stable distributions. The latter
is well-known and has been proved through other means in the more general context of infinitely
divisible distributions: with stochastic calculus for Lévy processes in Chen [1985], a covariance
representation for infinitely divisible random vectors in Houdré et al. [1998], and semi-group
arguments for self-decomposable random vectors in Arras and Houdré [2019]. ■

At first sight, inequality (5.7) seems different from the Poincaré’s inequality (2.22) we have proved
in dimension 1 because of its right-hand side. Actually the latter is equal to EΦα,ν , the energy form
associated to (Pα,ν

t )t≥0, as we shall see now.

Lemma 5.1.9 The carré du champ operator associated to (Pα,ν
t )t≥0 is denoted by

ΓΦα,ν (f, g) = 1
2

(
Lα,ν(fg) − fLα,νg − gLα,νf

)
, f, g ∈ Sα,d.

We have for x ∈ E0:

ΓΦα,ν (f, g)(x) = 1
2

∫
E0

(
f(x ⊕ y) − f(x)

)(
g(x ⊕ y) − g(x)

)
dµ(y).

Consequently, if Z ∼ MS(α, ν), we have:

EΦα,ν (f) = 1
2

∫
E0

E
[(
f(Z ⊕ x) − f(Z)

)2]
dµ(x).
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Proof. The purpose of the carré du champ operator is to measure how far the generator Lα,ν is
from being a derivation, i.e. from satisfying the Leibniz rule (fg)′ = fg′ + gf ′. We know that

Lα,ν = dα,d + Dα,ν ,

where dα,df(x) = −α−1⟨x,∇f(x)⟩ is the generator of the d-dimensional dilation semi-group
(pα,d

t )t≥0 defined by
pα,d

t f(x) = f
(
e−

t
αx

)
.

One easily checks that dα,d is a derivation and thus does not contribute to the carré du champ
operator:

2ΓΦα,ν (f, g)(x) =
(
Lα,ν(fg) − fLα,νg − gLα,νf

)
(x)

=
(
(dα,d + Dα,ν)(fg) − f(dα,d + Dα,ν)g − g(dα,d + Dα,ν)f

)
(x)

=
(
Dα,ν(fg) − fDα,νg − gDα,νf

)
(x),

which yields the result, as:

(
Dα,ν(fg) − fDα,νg − gDα,νf

)
(x) =

∫
E0

(
f(x ⊕ y)g(x ⊕ y) − f(x)g(x)

)
dµ(y)

− f(x)
∫

E0

(
g(x ⊕ y) − g(x)

)
dµ(y)

− g(x)
∫

E0

(
f(x ⊕ y) − f(x)

)
dµ(y)

=
∫

E0

(
f(x ⊕ y) − f(x)

)(
g(x ⊕ y) − g(x)

)
dµ(y).

The second result stems from the fact EΦα,ν (f) = E[ΓΦα,ν (f, f)(Z)].

We deduce from the previous propositions that (Pα,ν
t )t≥0 satisfies a Poincaré inequality with

constant 2, the same constant we found in dimension 1 in (2.22).

Proposition 5.1.10 Let α > 0 and Z ∼ MS(α, ν) be a max-stable random vector with angular
measure ν, and f ∈ L2(E0,Φα,ν). Then we have:

V
(
f(Z)

)
≤ 2Eα,ν(f) =

∫
E0

E
[(
f

(
Z ⊕ ru

1
α

)
− f(Z)

)2] α

rα+1 dr dν(u). (5.8)

Thus (Pα,ν
t )t≥0 converges exponentially fast to the stationary measure Φα,ν in L2(E0,Φα,ν):

∥Pα,ν
t f − E[f(Z)]∥L2(E0,Φα,ν) ≤ e−

t
2 ∥f − E[f(Z)]∥L2(E0,Φα,ν),

for all t ≥ 0 and f ∈ Sα,d.

Proof. The first part of the result comes readily from the previous lemma. The second part is once
again a consequence of 1.1.12.

What we have proved is sometimes called a first-order Poincaré inequality. We now turn to the
second-order Poincaré inequality; it quantifies the distance between a functional of a max-id random
vector and the normal distribution. We prove it as a direct corollary of a famous result by Last,
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Peccati and Schulte. Let η be a Poisson process over Eℓ with intensity measure µ. Denote by F a
Poisson functional. Assume that f̄ is centered and has unit variance, and set:

γ1 := 2
( ∫

E3
ℓ

(
E

[
(D+

x f̄)2(D+
y f̄)2]) 1

2
(
E

[
(D+

x,z f̄)2(D+
y,z f̄)2]) 1

2 d3µ(x,y, z)
) 1

2

γ2 :=
( ∫

E3
ℓ

E
[
(D+

x,z f̄)2(D+
y,z f̄)2]

d3µ(x,y, z)
) 1

2

γ3 :=
∫

Eℓ

E
[
|Dxf̄ |3

]
dµ(x).

The result of Last, Peccati and Schulte states that if µ is σ-finite, then:

dW (f̄ , N) ≤ γ1 + γ2 + γ3,

where N is a random variable with Gaußian distribution. A similar result controlling the Kolmogorov
distance instead of the Wasserstein distance between f̄ and N is also given in their paper, but the
bound is more involved. The important point for us here is that all the γi depend on the underlying
Poisson process η only through f̄ . By choosing f̄ = f ◦ m, where f : Eℓ → R, one obtains a
bound on the Wasserstein distance between a functional f of a max-id random vector with σ-finite
exponent measure µ and a Gaußian random variable (an exponent measure is always σ-finite). The
bound itself involves only the distribution of Z, and makes no reference to the Poisson process η
anymore, hence its interest. In other words, we have deduced a second-order Poincaré inequality
for max-id distributions from its original Poisson counterpart.

5.2 Another quantization of the Poisson process
This section is mainly of an heuristic nature and merely introduces new objects without
studying them in a fully rigorous manner.

It originates from the following observation: when a sequence of random variables (Zn)n≥1 converges
in distribution to an extreme value distribution, it is often the case that Zn is the maximum of
some random set. The most basic occurrence of this is when Zn is a renormalized maximum of n
i.i.d. positive random variables Xi, . . . , Xn with regularly varying tails, say with index −α. One
can actually prove that the random set {X1, . . . , Xn} converges in distribution to a Poisson process
with intensity measure αr−(α+1) on R∗+, see Durrett [2019]. Remember that the Fréchet distribution
F(α) is equal in law to the maximum of such a process.

Another example is the coupon collector problem studied previously: Zn is the maximum of n
exchangeable random variables, each with geometric distribution Geom(1/n), and converges in law
to a Gumbel distribution, which can be seen as the maximum of a Poisson process with intensity
measure e−r on R. Two recent papers (Glavaš and Mladenović [2018], Ilienko [2019]) show that the
set of the arrival times of the coupons {Tn

1 , . . . , T
n
n } converges to a Poisson process with intensity

measure e−r.

We give one last example, taken from Soshnikov [2004]. The largest eigenvalue of a Wigner random
matrix whose entries have heavy-tails converges in law to a Fréchet distribution when the dimension
n goes to ∞. And indeed, the random set of the positive eigenvalues of such matrices, properly
renormalized, converges in law to a Poisson process with intensity measure αr−(α+1) on R∗+.
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We have already given tools to quantify the speed of convergence to the Fréchet and Gumbel
distributions in each of those examples, and even treat the first two in this thesis. But it is certainly
more instructive to know at which speed the whole process will converge to the limiting Poisson
process, although it will most likely be at a slower rate than its maximum. To reach that goal, we
need to quantize Poisson processes. Of course the Glauber semi-group already does that, and it
even enjoys on a Mehler’s formula:

Ptf(ϕ) = E
[
f

(
e−t ◦ ϕ+ (1 − e−t) ◦ η

)]
, ϕ ∈ NE .

However this formula relies only on the stability property shared by all Poisson processes, whatever
their intensity measure is:

p ◦ η1 ∪ (1 − p) ◦ η2
d= η1,

where η1, η2 are two independent Poisson processes with the same intensity measure. But the
Poisson processes which interest us are those whose intensity measure µ satisfies a homogeneity
condition given in the next definition:

Definition 5.2.1. Let d be a positive integer and µ a Radon measure on Rd. For any α, we
say that µ is α-homogeneous if for all A ∈ B(Rd)

µ(tA) = t−αµ(A), t ∈ R∗+,

when α ∈ R∗, or
µ(A+ t) = e−tµ(A), t ∈ R,

if α = 0.

For instance, the intensity measure of any simple max-stable random vector is α-homogeneous
with α > 0. The case α = 0 corresponds to Gumbel marginals, while α < 0 is associated to
Weibull marginals. Notice that thanks to the polar decomposition (1.23), any α-homogeneous
measure is finite in neighborhoods of +∞. Any Poisson process whose intensity measure fulfills
that homogeneity condition for some α ̸= 0 then possesses the following stability property:

e−
t
α η1 ∪ (1 − e−t)

1
α η2

d= η1

where the thinning operation ◦ has been replaced by the multiplication of configurations by scalars,
as described in definition 1.2.3. Indeed, the left-hand side is a Poisson process whose intensity
measure is

e−tµ+ (1 − e−t)µ = µ,

thanks to the homogeneity property of µ. In the case α = 0, we have instead

(η1 − t) ∪
(
η2 + log(1 − e−t)

) d= η1.

This suggests us the next two definitions. Before giving them, we must define what is a differentiable
function on NRd . Because α-homogeneous measures have an accumulation point at either 0 or
−∞, we cannot assume our configurations will be finite. Thus, we will work with functionals f(ϕ)
where f : (Rd)N → R is a symmetric function on the space of sequences, i.e. for every bijective
application σ from N∗ to N∗, we have:

f(xσ(1),xσ(2), . . . ) = f(x1,x2, . . . )
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if ϕ = (xn)n≥1. Such a functional is by definition a function of an infinite number of variables, but
is symmetric w.r.t. each of them. We will say it is differentiable if f is differentiable w.r.t. to its
first variable. A much more rigorous definition of what a differentiable functional of configurations
on manifolds can be found in Albeverio et al. [1998]. Our definition amounts to theirs in our context.
Examples of differentiable functionals include:

- The coordinate-wise sum function s restricted to the subset of summable families of RN:

s(ϕ) =
∞∑

n=1
xn,

is differentiable, with derivative
∂ns(ϕ) = 1.

- The cardinal function restricted to finite configurations is another example:

∂ncard(ϕ) = 0.

The fact that all its partial derivatives vanish can be explained by the fact that moving the
points of ϕ does not change the size of ϕ.

- On the other hand, if A is any non-empty subset of Rd, then

ϕ 7→ card(A ∩ ϕ)

is not differentiable everywhere, because moving a point of ϕ too far could make it leave A.
However, if λ is a measure on RN such that

λ
({

(xn)n≥1 ∈ (Rd)N, xn ∈ ∂A for some n
})

= 0,

where ∂A is the border of A, then one has again

∂ncard(A ∩ ϕ) = 0 λ−a.e.

- The coordinate-wise maximum function m is also differentiable λ-a.e. if λ puts zero mass on
configurations which possess the same point several times:

λ
({

(xn)n≥1 ∈ (Rd)N, xj
n = xj

m for some j ∈ [[1, d]] and n ̸= m
})

= 0,

in which case we find

∂nm(ϕ) =
(
1{x1

n≥x1
m, m∈N∗}, . . . ,1{xd

n≥xd
m, m∈N∗}

)
λ−a.e.

To compute the generator of (P̄µ
t )t≥0, we need to find a set of test functions regular enough to ensure

the objects we work with are well-defined. However, it will be difficult to find a set large enough to
include both the maximum function and the sum function for instance. Indeed, depending on the
value of α, the sum of the points of a Poisson process with intensity αr−(α+1) will not converge a.s.,
while its maximum will always be finite. So, instead of trying to be as general as possible, we will
inspire ourselves from the max-stable setting. To keep things simple, we will restrict ourselves to
the case α > 0.
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Definition 5.2.2. Let t : NE0 → Rd be an application on the space of configurations NE0 .

- We will say it is a compact transformation if there exists a point x0 ∈ E0 such that

t(ϕ) = t
(
ϕ∣∣[0,x0]c

)
, ϕ ∈ NE0

i.e. t(ϕ) only depends on the points of ϕ which belong to [0,x0]c.

- Let µ be an α-homogeneous measure on E0. If t is also µ-a.e. differentiable, then we say
that t is a µ-differentiable compact transform.

The assumption that t takes its values in Rd implies that t(η) is always well-defined as soon as η is
a configuration of E0. The adjective "compact" comes from the fact that sets of the form [0,x0]c
are compact in E0.

Definition 5.2.3. Let t be a µ-differentiable compact transform. We define the class of
functions:

S̄µ,τ :=
{
f̄ = f ◦ t, f ∈ SΦ

}
.

Definition 5.2.4 (α-stable Poisson semi-group). Let α ∈ R. Define the α-stable Poisson
semi-group (P̄µ

t )t≥0 on the algebra A = S̄µ,τ by

P̄µ
t f(ϕ) :=

E
[
f̄

(
e−

t
αϕ ∪ (1 − e−t)

1
α η

)]
, if α ∈ R∗

E
[
f̄

(
(ϕ− t) ∪

(
η + log(1 − e−t)

))]
, if α = 0

(5.9)

where η is a Poisson process whose intensity measure is α-homogeneous.

The definition of (P̄µ
t )t≥0 through a Mehler formula automatically yields the semi-group property,

the ergodicity property and the fact that the distribution of η is an invariant measure for (P̄µ
t )t≥0.

Proposition 5.2.5 Let µ be an α-homogeneous measure on Rd, for some α ∈ R. Then the
family of operators (P̄µ

t )t≥0 is a semi-group on S̄µ,τ . The distribution of a Poisson process
with intensity measure µ on Rd is an invariant measure of (P̄µ

t )t≥0. Besides, this semi-group
is ergodic.

Proof. The proof is very similar to the ones we have given for the max-stable semi-groups. Everything
relies on the fact that for every non-negative a and ϕ1, ϕ2 ∈ NRd :

a(ϕ1 ∪ ϕ2) = aϕ1 ∪ aϕ2

ϕ1 ∪ ϕ2 + a = (ϕ1 + a) ∪ (ϕ2 + a)

and the aforementioned stability relations.

What makes the previous proposition central in the study of stable laws is that it generates the
other semi-groups associated to those distributions.

- Let f : R+ → R be a bounded function and f̄ = f ◦ m. Then we have the relation:

Pα
t f(x) = P̄µ

t f̄({x}),
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with dµ(r) = αr−(α+1) dr and α > 0.

- Let α ∈ (0, 1) and f : R → R be a bounded function, as well as f̄ = f ◦ s. Then the operators
Pα

t defined as:
Pα

t f(x) = P̄µ
t f̄({x}),

constitute a Markov semi-group whose invariant measure is the distribution of s(η), where η is a
Poisson process on R∗+ with intensity measure dµ(r) = αr−(α+1) dr and α > 0. The distribution
of s(η) is α-stable.

As in chapter 2, we will need a preliminary lemma to compute the generator of (P̄µ
t )t≥0. We will

assume α = 1 for ease of notations. We will also note ϕ ∪ y instead of ϕ ∪ {y}:

Lemma 5.2.6 Let η be a Poisson process on E0 with intensity measure µ. Assume µ is
1-homogeneous. We have for f ∈ S̄µ,τ and ϕ ∈ NE0:

P̄µ
t f̄(ϕ) = e−γtµ[0,x0]c f̄(e−tϕ)

+ e−γtµ[0,x0]cγt

∫
[0,x]c

f̄
(
e−t(ϕ ∪ y)

)
dµ(y)

+ e−γtµ[0,x0]c
∞∑

n=2

γn
t

n!

∫
([0,x0]c)n

f̄
(
e−t(ϕ ∪ y1 ∪ · · · ∪ yn)

)
dµ(y1) . . . dµ(yn).

(5.10)

Proof. The proof of this lemma is similar to the one given in chapter 2: we want to apply identity
(1.2) to ϕ′ 7→ f̄(e−t(ϕ ∪ γtϕ

′)). But f̄ depends on η only through its restriction to [0,x0]c. So the
previous function depends only on γtη restricted to [0,x0]c, which is still a Poisson process with
intensity measure γtµ, due to the 1-homogeneity property of µ.

Thanks to that lemma, we can compute the generator L̄µ of (P̄µ
t )t≥0. The proof follows the same

line of reasoning as before.

Proposition 5.2.7 The semi-group (P̄µ
t )t≥0 has generator L̄µ, given by:

L̄µf̄(ϕ) = −
〈
ϕ,∇f̄(ϕ)

〉
[0,x0]c +

∫
[0,x0]c

(
f̄(ϕ ∪ y) − f̄(ϕ)

)
dµ(y), f̄ ∈ S̄µ,τ ,

for any ϕ ∈ NE0, where 〈
ϕ,∇f̄(ϕ)

〉
[0,x0]c :=

∑
x∈ϕ∩[0,x0]c

x∂xf̄(ϕ).
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Titre : Méthode de Stein pour les lois d’extremum
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Résumé : La théorie des valeurs extrêmes étudie
la probabilité de survenance d’événements extrêmes,
tels les inondations, les sécheresses ou encore les
crises financières. Une part importante de cette
théorie repose sur les théorèmes limites, comme ce-
lui des valeurs extrêmes, ou de Pickands-Balkema-de
Haan. Afin d’appliquer ces théorèmes avec précision
et approcher raisonnablement la loi des données
extrêmes, inconnue en général, par son modèle li-
mite, il faut pouvoir quantifier la vitesse de conver-
gence de ces théorèmes. Une façon de faire est d’utili-
ser l’approche par générateur de la méthode de Stein.
Aussi, dans cette thèse nous introduisons et étudions
une famille de semi-groupes de Markov spécialement
construits pour admettre les lois d’extremum comme
mesure invariante. Pour ce faire, la définition choi-
sie repose sur une formule de Mehler, elle-même

conséquence des relations de stabilité satisfaites par
les lois max-stables. L’avantage principal de cette
construction est que les semi-groupes ainsi définis
disposent automatiquement de propriétés similaires
à celles du semi-groupe d’Ornstein-Uhlenbeck (pro-
priété de commutation, inégalité de Poincaré, iden-
tités de covariance, etc.). Nous appliquons ensuite
ces résultats à l’obtention de bornes générales sur les
distance à une loi d’extremum, puis nous spécialisons
ces bornes dans différents contextes pour obtenir des
taux explicites. Enfin le dernier chapitre porte sur les
processus de Poisson dont la mesure intensité satis-
fait une propriété d’homogénéité. Nous étudions com-
ment les propriétés bien connues de ces processus
se traduisent en nouveaux résultats pour les lois max-
stables, éclairant ainsi d’une autre manière le contenu
des chapitres précédents.

Title : Stein’s method for extreme value distributions

Keywords : Extreme value theory, Stein’s method, Generator approach, Markov processes, Poisson pro-
cesses, Functional inequalities, Convex cones

Abstract : Extreme value theory deals with the proba-
bility of occurrence of extreme events, such as floods,
droughts or financial crises. An important part of that
theory relies on limit theorems, such as the extreme
value theorem, or the Pickands-Balkeman-de Hann
theorem. In order to apply those theorems accurately
and approximate efficiently the usually unknown dis-
tribution of the extreme data by its limit model, one
needs to quantify the speed of convergence of those
theorems. A manner of doing so is to use the gene-
rator approach of Stein’s method. That is why in this
thesis we construct a family of Markov semi-groups
whose invariant measure is an extreme value distri-
bution. We do so via a Mehler’s formula, which re-

lies itself on the stability property satisfied by max-
stable distributions. Thanks to this definition, the semi-
groups satisfy similar properties to the usual Ornstein-
Uhlenbeck semi-group (commutation rule, Poincaré’s
inequality, covariance identities, etc.). We then pro-
ceed to apply those results to the generator approach
of Stein’s method to deduce rates of convergence to
extreme value distributions in various settings. The
last chapter focuses on Poisson processes whose in-
tensity measure satisfies an homogeneity assumption
and how their standard properties translate into new
results for max-stable distributions, thus shedding a
new light on the contents of the previous chapters.
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