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Abstract

Proteins play a central role in biological processes, and understanding how they
deform and move is essential to elucidating their functional mechanisms. Despite
recent advances in high-throughput technologies, which have broadened our knowl-
edge of protein structures, accurate prediction of their various conformational states
and motions remains a major challenge. This thesis presents two complementary
approaches to address the challenge of understanding and predicting the full range
of protein conformational variability.

The first approach, Dimensionality Analysis for protein Conformational Ex-
ploration (DANCE) for a systematic and comprehensive description of protein
families’ conformational variability. DANCE accommodates both experimental
and predicted structures. It is suitable for analyzing anything from single proteins
to superfamilies. Employing it, we clustered all experimentally resolved protein
structures available in the Protein Data Bank into conformational collections and
characterized them as sets of linear motions. The resource facilitates access and
exploitation of the multiple states adopted by a protein and its homologs. Beyond
descriptive analysis, we assessed classical dimensionality reduction techniques to
sample unseen states on a representative benchmark. This work improves our
understanding of how proteins deform to perform their functions and opens ways
for a standardized evaluation of methods designed to sample and generate protein
conformations.

The second approach relies on deep learning to predict continuous representa-
tions of protein motion directly from sequences, without the need for structural
data. This model, SeaMoon, uses protein language model (pLM) embeddings as
inputs to a lightweight convolutional neural network with around 1 million trainable
parameters. SeaMoon achieves a success rate of 40% when evaluated against around
1,000 collections of experimental conformations, capturing movements beyond the
reach of traditional methods such as normal mode analysis, which relies solely on
3D geometry. In addition, SeaMoon generalizes to proteins that have no detectable
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sequence similarity with its training set and can be easily retrained with updated
pLMs.

These two approaches offer a unified framework for advancing our understanding
of protein dynamics. DANCE provides a detailed exploration of protein movements
based on structural data, while SeaMoon demonstrates the potential of sequence-
based deep learning models to capture complex movements without relying on
explicit structural information. Together, they pave the way for a more comprehen-
sive understanding of protein conformational variability and its role in biological
function.
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Outline

This thesis manuscript addresses deep learning methods applied to the study of
protein dynamics. The first two chapters of this manuscript are introductory.
The first chapter aims to introduce biological concepts, while the second chapter
introduces deep learning techniques useful for understanding the work discussed in
the following chapters. Chapter 3 presents a method to extract a family-specific
linear motion from a set of sparse observations. This method is applied to all known
experimental structures to form a database of linear motions. Chapter 4 presents
a deep learning method aimed at predicting the linear motion of a given protein
based on its sequence embedding from a protein language model. This method is
trained on a database created using the method described in Chapter 3. Chapter 5
concludes this manuscript and offers perspectives on possible improvements to the
method described in Chapter 4.
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Chapter 1

Introduction to proteins, their 3D
structures, and dynamics

The aim of this chapter is to introduce the essential concepts, outside of deep
learning, that are necessary for understanding the content of this thesis. Section 1.1
aims to provide an introduction to proteins as biological entities. Since this thesis
is entirely based on data derived from protein structures, it seemed important to
describe how these data are obtained. Thus, section 1.2 offers an introduction to
the main experimental techniques used to obtain the three-dimensional structure
of proteins. Section 1.3 discusses the importance of the dynamic nature of proteins
for their function, while section 1.4 explores the determination of these dynamics
through two distinct methods based on physical principles.

1.1 Proteins
Proteins are macromolecules present in all living organisms. Essential to life, they
participate in a wide variety of biological functions. A short and incomplete list of
their biological roles might include the following: 1. A structural role in forming
the support for the different structures of organisms, such as collagen in skin and
bones, or keratin in hair and nails. 2. An enzymatic role in catalyzing essential
chemical reactions, such as the degradation of starch by amylase. 3. A transport
role, such as hemoglobin in the blood which brings oxygen to tissues. 4. A role
in immunity, such as antibodies which serve to identify and neutralize pathogenic
viruses and bacteria. 5. A role in movements, such as actin and myosin which
participate in muscle contraction. 6. A storage role, such as ferritin which allow
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Chapter 1. Introduction to proteins, their 3D structures, and dynamics

the storage of iron.
Protein synthesis Proteins are formed in cells during a process called protein

synthesis. This process can be divided into two phases called transcription and
translation (Fig. 1.1).

During the transcription phase, some section of the deoxyribonucleic acid
(DNA), known as a gene, is transcribed into RNA. The DNA and RNA are made
of four nitrogenous bases, adenine, cytosine, thymine and guanine in DNA, and
adenine, cytosine, guanine, uracil in RNA. The bases pair in a complementary
manner, in DNA the adenine pairs with thymine and the cytosine pairs with
guanine. This pairing gives DNA its double-stranded structure, forming a double
helix of two antiparallel strands. The arrangement of these base pairs allows DNA
to contain all the genetic information, called the genome, of the living being. The
RNA, on the other hand, is formed of a single strand that is synthesized by the
RNA polymerase, which moves along the opened DNA that serves as template. In
eukaryotic organisms, this process takes place in the nucleus. Once synthesized, the
initial RNA transcript, known as precursor messenger RNA (pre-mRNA) undergoes
post-transcriptional modifications, to form a mature mRNA that is transported
outside the nucleus for the translation phase of the protein synthesis.

The translation phase occurs in the cytoplasm. Here, the mRNA encounters a
ribosome, a complex machinery formed with ribosomal RNA (rRNA) and proteins,
that read its sequence to translate it into protein. The ribosome reads the mRNA
three bases at a time. These sets of three nucleotides are called codons. Each one
of the codons codes for one of the 20 standard amino acids that compose protein, or
signal the end of the translation. The correspondence between the codons and the
amino acid they encode is known as the genetic code (Fig. 1.2). It is noteworthy
that this code contains redundancy, as there are 43 = 64 possible codons, but they
only result in 20 standard amino acids and the stop codon. Once a codon is read,
the ribosome chooses the corresponding transfer RNA (tRNA) molecule that carries
the specific amino acid. This amino acid is attached to the previous ones with
peptide bond, forming what is called the peptide chain. This process occurs fast, at
around 5 to 20 amino acids translated per second, and with high accuracy with an
error rate estimated at one error every ∼ 104 codon translated. The transcription
occurs at similar speed, but with typically one order of magnitude lower error
rate. The polypeptide chain then quickly folds itself into a specific shape that will
determine its function within the organism.

Amino acids Amino acids are the building blocks of proteins and share a
common structure known as the backbone, which forms the principal chain. This
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Chapter 1. Introduction to proteins, their 3D structures, and dynamics

backbone is composed of a central carbon atom (Cα) linked to an amine group
(-NH2), a carboxyl group (-COOH), and a hydrogen atom. In addition, amino
acids have a variable side chain (-R) attached to the Cα. This variable chain,
known as the side chain or the secondary chain, differentiates each amino acid and
determines its unique chemical and physical properties, influencing the final protein
structure and function. These side chains impart different chemical characteristics
to amino acids, such as hydrophilicity or hydrophobicity. Hydrophobic amino acids
are non-polar and uncharged, and tend to be found inside the protein to minimize
their contact with water, whereas hydrophilic amino acids have polar or charged
side chains that interact favorably with water, usually by forming hydrogen bonds,
and tend to be found on the protein surface. Other type of amino acids, known as
amphipathic, have both a polar and non-polar character, and therefore tend to be
at the interface between hydrophobic and hydrophilic environnement (Fig. 1.2).

There are four levels of protein structure (Fig. 1.3).
Primary structure The primary structure corresponds to the linear succession

of amino acids without spatial reference, it is often noted in the form of a sequence
formed from an alphabet of 20 letters, each corresponding to one of the 20 standard
amino acids. By convention, the primary structure has a direction from the amino
acid with the free amine end, called the N-terminus, to the amino acid with the
free carboxylate end, called the C-terminus.

Secondary structure The secondary structure of proteins corresponds to the
local organization of the polypeptide chain into regular motifs, such as the α-helix
and the β-sheet, stabilized by hydrogen bonds. The α-helix, first described by L.
Pauling in 1951 [1], is the most common secondary structure, as well as the most
predictable from analysis of the primary structure. It consists of a right-handed
helix-shaped chain, where each N-H group of an amino acid forms a hydrogen
bond with the C=O group of the main chain located four amino acids upstream.
The β-sheet is another common secondary structure in proteins, characterized
by the alignment of several parallel or antiparallel polypeptide chains, forming
a sheet-like arrangement. It is also stabilized by hydrogen bonds between the
N-H and C=O groups of different residues. The main chain of a protein contains
three covalent bonds per amino acid. Since the peptide bond is highly constrained
because of the partial double bond between carbon and nitrogen atom, this leaves
two single bonds around which rotation is possible, making it possible to describe
the conformation of an amino acid backbone from two dihedral angles, that are
called ϕ and ψ. The dihedral angle ϕ is defined by four successive atoms of
the backbone: CO-NH-Cα-CO, with the first carbonyl group belonging to the
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Chapter 1. Introduction to proteins, their 3D structures, and dynamics

preceding residue. The dihedral angle ψ, on the other hand, is defined by the four
atoms: NH-Cα-CO-NH, with the second amide being that of the following residue
(Fig. 1.4a). Not all values of the angles ϕ and ψ are achievable, as some lead
to energetically unfavorable configuration because of electrostatic destabilization
and steric hindrance. The Ramachandran diagram, introduced in 1963 by G.N.
Ramachandran [2], graphically represents admissible combinations of angles ϕ and
ψ, showing three main energetically favorable zones. Analyzing the structure of a
protein, we see that the majority of amino acids have combinations of angles (ϕ, ψ)
that fall within these zones, corresponding mainly to the two common secondary
structure, α-helices and β-sheets (Fig. 1.4b).

Tertiary structure The secondary structure elements fold into a compact
object stabilized by weak interactions involving polar and nonpolar groups, resulting
in the tertiary structure. The tertiary structure is the protein’s three-dimensional
structure. Most of the time, the structure of a protein is entirely determined by its
amino acid sequence, or primary structure. This property is known as Anfinsen’s
dogma [3]. Sometimes, proteins known as chaperones can assist protein folding, but
in the majority of cases, a protein can be unfolded and will spontaneously refold
into what is known as its native state, demonstrating the validity of Anfinsen’s
dogma.

Quaternary structure The quaternary structure is the highest level of orga-
nization of proteins, involving two or more polypeptides. They can be composed of
several identical chains, forming what is called a homomer, or by different polypep-
tides chains, forming a heteromer. The primary stabilizing factor of quaternary
structures is the hydrophobic interactions between the non-polar amino acids,
the hydrophobic regions of the monomers come together to minimize the solvent
exposure.

Representation In textbooks, scientific articles and in this manuscript, protein
structures are represented in several ways. For the visualisation and production of
these representations from atomic coordinates, the software Pymol will be used in
this manuscript [4]. Different examples of representations are given in Figure 1.5.
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Chapter 1. Introduction to proteins, their 3D structures, and dynamics

Figure 1.1: Steps of the protein biosynthesis in eukaryote organism. 1.
RNA polymerase synthesizes pre-messenger RNA from the DNA in the nucleus. 2.
The pre-mRNA undergoes post-transcriptional modifications to become mature
mRNA. 3. The mRNA is exported from the nucleus to the cytoplasm through
nuclear pores. 4. In the cytoplasm, ribosomes attach to the mRNA and use
tRNAs to assemble amino acids according to the order of the codons, synthesizing
a polypeptide chain. 5. The polypeptide chain folds into its three-dimensional
structure. 6. The protein may undergo various additional modifications after its
synthesis to become fully functional. Kep17, CC BY-SA 4.0.
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Figure 1.2: The genetic code and properties of the 20 base amino acids.
The correspondence between the codon and the specific amino acid is given by
reading the table from the center to the extremities. The molecular weight of each
amino acid is given near the outer circle, in g/mol. The color of each amino acid’s
area corresponds to its physicochemical properties: blue for basic amino acids, pink
for acidic amino acids, green for polar amino acids, and yellow for nonpolar amino
acids. The yellow triangles represent potential modifications that the amino acids
can undergo. Edited by Seth Miller User:arapacana, Original file designed and
produced by: Kosi Gramatikoff User:Kosigrim, courtesy of Abgent, also available in
print (commercial offset one-page: original version of the image) by Abgent, Public
domain
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Figure 1.3: The four levels of protein structure. The one-dimensional amino
acid sequence (primary structure) forms local motifs such as alpha helices and
beta sheets (secondary structure). The entire chain adopts a global arrangement
(tertiary structure), which can then associate with other chains to form complexes
(quaternary structure) LadyofHats, Public domain.
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(a) (b)

Figure 1.4: (a). The dihedral angles illustrated on a protein backbone
The angles ϕ, ψ, and ω are shown, corresponding to the rotation around the
N-C, Cα-C, and C-N bonds, respectively. Dcrjsr, vectorised Adam Redzikowski,
CC BY 3.0., (b). Ramachandran plot of several proteins The orange areas
delineate the regions favorable for conformational stability. Two main regions are
observed, corresponding to the secondary structures of alpha helices and beta sheets.
The small region where ϕ > 0 corresponds to a left-handed helical conformation.
Glycines, which do not contain a side chain, are less restricted and can sometimes
be found outside of the favorable regions. Dcrjsr, CC BY 3.0.
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Figure 1.5: Different ways of representing protein structures. Four repre-
sentations of the same macrophage migration inhibitory factor protein (Protein
Data Bank code: 1ljt). 1. Wire representation showing the path of the protein
backbone. 2. Ribbon representation highlighting the secondary structure elements.
Alpha helices (red) are represented by a coiled ribbon, and beta strands (blue)
are represented by arrows pointing toward the C-terminal extremity. 3. Sphere
representation, where each non-hydrogen atom is shown as sphere the size of its van
der Waals radius. The atoms are colored according to the element type. 4. Surface
representation colored by electrostatic potential. The red areas are negatively
charged, and the blue areas are positively charged.
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1.2 Experimental determination of protein struc-
tures

1.2.1 The Protein Data Bank
History The Protein Data Bank [5] is a fundamental resource in structural biology.
It is an international effort to regroup the three-dimensional structures of biological
molecules such as proteins, nucleic acids, and complexes. It was first launched in
1971 at Brookhaven National Laboratory and originally contained 7 structures,
that were shared on request on magnetic tape [6, 7]. Since then, it has seen a
significant growth, crossing the 1,000 entries milestone in 1994, the 10,000 entries
in 1999, the 50,000 entries in 2008 and the 100,000 entries in 2014 (Fig. 1.6). As
of the time of writing, the PDB contains 223,790 entries. The PDB was based
in Brookhaven until 1998. In 1999 the management of the PDB was transferred
to a U.S. consortium named Research Collaboratory of Structural Bioinformatics
(RCSB PSB). In 2003, an international collaboration agreement management of the
PDB was established, known as the worldwide Protein Data Bank (wwPDB) [8, 9],
gathering the U.S. pole (RCSB PDB), a European pole (PDBe), and a Japanese
pole (PDBj).

Impact The PDB plays a considerable role in structural biology. In 2014,
Nature journal published a list of the 100 most-cited research papers of all time,
where the commonly cited PDB paper ranked 92nd [10]. A study made in 2017
placed it 5th in the list of the most cited papers since the year 2000 [11]. In 2023
alone, the wwPDB reported that over 3 billion structures were downloaded from
them. In particular, open access to structures and active sites has contributed to
the development of almost all 210 new drugs approved by the U.S. Food and Drug
Administration (FDA) over the 2010-2016 period, and all new drugs approved over
the 2019-2023 period [12, 13].

Entries The PDB entries come from three main methods for determining
experimental structures, ranked by number of entries: the X-ray crystallography
with 83.6% of the PDB entries, the Elecron Microscopy (EM) with 9.81%, and the
Nuclear Magnetic Resonance (NMR) with 6.40%.

1.2.2 X-Ray crystallography
History X-ray crystallography is historically the most widely used method for
determining the atomic structure of proteins. Its principle is based on the analysis
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Figure 1.6: Growth of the number of entries in the Protein Data Bank
among the years.

Source: https://www.rcsb.org/stats/growth/growth-released-structures.

Figure 1.7: Number of released PDB structures per year and per method.
Source: https://www.rcsb.org/stats/all-released-structures
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of diffraction patterns during the scattering of X-rays by a crystal. When a beam
of X-rays passes through a crystal, which is a solid in which the atoms are regularly
organized in all directions in space, it is diffracted at specific angles, generating a
pattern that can be analyzed to reconstruct the crystal’s structure. The origins of
this method can be traced back to the discoveries of William Henry Bragg and his
son William Lawrence Bragg, who in 1913 discovered the law linking the diffraction
angle, the X-ray wavelength and the distance between the atomic planes of the
crystal, thus enabling the position of atoms in the crystal to be calculated [14].
This discovery laid the foundations of modern crystallography and earned Braggs
the Nobel Prize in Physics in 1915. To this day, William Lawrence Bragg remains
the youngest winner of a scientific Nobel Prize, at the age of 25. The use of X-ray
crystallography to study biomolecules took off in the mid-twentieth century. Major
contributions to this field were made by Dorothy Crowfoot Hodgkin, who used
X-ray crystallography to determine the structure of penicillin in 1945, and vitamin
B12 in 1956 [15, 16]. For this latter contribution, Hodgkin was awarded the Nobel
Prize in Chemistry in 1964, becoming the first British woman to win a Nobel Prize.
It was only after this work that X-ray crystallography began to be applied to
proteins. John Kendrew and Max Perutz, were the first to successfully determine
the three-dimensional structure of a protein, the myoglobin, in 1958 [17]. For this
work, they were awarded the Nobel Prize in Chemistry in 1962.

Experimental context The main difficulty with this method is that it is
entirely dependent on the crystallization step. In order to get the protein structure
with high resolution, the protein crystal needs to be large enough, typically more
than 0.1 mm in its longest dimension - even though advances in microcrystallography
and femtosecond crystallography and have enabled the analysis of much smaller
crystals [18, 19] - , pure in its composition and with no internal imperfections
[20]. During the crystallization process, proteins are dissolved in an aqueous
environment until they reach a state of supersaturation. At this point, and if
experimental conditions are favorable, the proteins assemble to form crystals.
Favorable conditions for protein crystallization can be more or less complicated
to find, and can vary greatly depending on the protein being studied. As an
example, membrane proteins are often known to be difficult to crystallize due to
the presence of hydrophobic segments crossing the lipid membrane, which tend
to be denatured on exposure to water solvent. Proteins with high conformational
flexibility are also known to be often hard to crystallize. After collecting diffraction
data, crystallographers have to solve another challenge known as the phase problem.
This is because sensors are only able to capture the resulting intensity of the
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diffracted rays, and the phase information, which is the shift between the incident
and diffracted wave and is essential for reconstructing the crystal structure, is lost.
To solve this problem, crystallographers can use direct methods if the resolution
is high enough, molecular replacement (MR) which exploits the already known
phases of a similar molecule, and multiple isomorphic replacement (MIR) which
consists of introducing heavy atoms into the crystal that modify the diffraction
intensities and allow the missing phases to be calculated by comparison with the
original diffraction patterns. After capturing the diffraction data and finding a
phase, crystallographers construct an electron density map, which represents an
envelope of electron presence in the crystal. The quality of this electron map is
measured by its resolution. This resolution is expressed in terms of distance: if a
structure has been determined at a resolution of 2 Å, then two atoms separated
by more than 2 Å will appear as separate maxima on the electron density map.
Resolution depends directly on the fineness of the diffraction pattern, which in turn
depends directly on the quality of the diffraction experiment and the protein crystal.
At a resolution of between 0 and 1 Å, i.e. a distance less than the typical length of
a covalent bond, it is easy to distinguish and position each atom in the structure.
At a resolution of 3 Å or more, the envelope only describes the basic contours of the
protein chain, and atom positions can be inferred with limited accuracy (Fig. 1.9).
The structure obtained in an X-ray crystallography experiment is considered to be
a static structure averaged over time and space. It is an average of time, because it
takes time to capture the data, and it is an average of space because the position
obtained is an average of the atomic positions over the different meshes of the
crystal. However, the X-ray experiment allows for a certain degree of measurement
flexibility.

B-factor The B-factor, or Atomic Displacement Parameter (ADP), measures
the attenuation of X-ray diffraction caused by thermal agitation of the atoms.
It is interpreted as describing the amplitude of fluctuation of an atom around
its mean position. The higher an atom’s B-factor, the greater its fluctuation
amplitude. They have been used to study protein dynamics for a long time [21,
22, 23]. Nevertheless, the B-factor is known to have certain limitations [24]. As
explained above, the B-factor is supposed to represent the amplitude of fluctuation
around an equilibrium position. But due to potential conformational variation,
this equilibrium position may not be unique and some atoms may have two or
more stable positions. When the resolution of the crystallography experiment is
not high enough, it is likely that the inferred position of the atom is an average of
the stable positions and that the fluctuations around this position are therefore
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overestimated. Thus, the B-factor does not clearly distinguish between disorder
arising from thermal motion and disorder arising from structural variability, which
limits its interpretation. However, it may be possible to distinguish between the
two by cooling the crystal, which supposedly only reduces thermal fluctuations, but
this approach also has its limitations [21]. In addition, like structural resolution,
they are also affected by potential crystal defects and by potential damage to the
crystal caused by X-rays during data acquisition [25, 26]. Furthermore, B-factors
are extremely dependent on the resolution of the experiment. For all these reasons,
B-factors can be particularly difficult to compare between two proteins. Another
limitation if the resolution of the X-ray experiment is not high enough, the B-factor
will be isotropic, i.e. it assumes that the amplitude of fluctuation is independent
of the direction of space. This is an important restriction because, in reality, it is
likely that there are preferential directions for the movement of atoms.

Figure 1.8: Workflow of structure determination by X-ray crystallography.
1. The protein is purified and crystallized. These crystals are irradiated with
X-rays, often generated by a synchrotron. 2. The X-rays scatter on the crystal
lattice planes, producing a diffraction pattern that is captured by a detector. The
phases are calculated. 3. Using the diffraction pattern and the phases, electron
density maps are generated. 4. These maps enable crystallographers to construct
an initial model of the protein’s structure. The model is refined by comparing
the calculated diffraction pattern of the model with the actual pattern observed
in the crystal. Through iterative adjustments, the model is optimized until the
calculated and observed patterns match as closely as possible. The quality of
the final structure is assessed by measuring the percentage difference between the
calculated and actual diffraction patterns, often known as the R-factor.
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Figure 1.9: Electron density maps for structures with different resolutions.
At 1 Å resolution, the atoms are visible and resolved. The interatomic distances
can be measured to a few hundredths of an Ångstrom. At 3 Å the interatomic
distances can only be measured to about ± 0.5 Å. Blue and yellow represents region
with high and higher electron density.

Source:
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution.
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1.2.3 NMR
History Nuclear magnetic resonance (NMR) is another popular technique for
determining the atomic structure of proteins. This method uses the interaction of
the spins of atomic nuclei with a magnetic field to obtain information on interatomic
distances and the local environment of atoms. Otto Stern’s first measurement
of the magnetic moment of the proton in 1933 earned him the Nobel Prize in
Physics in 1946 [27, 28]. In 1946, Felix Bloch and Edward Purcell independently
discovered new measurement methods using nuclear magnetic resonance, for which
they shared the Nobel Prize in Physics in 1952 [29, 30]. These works founded the
field of NMR spectroscopy, which led to the first applications of NMR in molecular
biology in the 1960s [31]. But it was not until the 1980s that the technique was
mature enough for determining the three-dimensional structures of proteins in
solution, with the work of Richard Robert Ernst and Kurt Wüthrich. Both made
decisive contributions to improving the accuracy of NMR techniques for studying
protein structures. Ernst introduced methods for better resolving NMR signals by
developing multidimensional techniques [32]. Unlike 1D NMR, which produces a
single spectrum showing the resonance of nuclei as a function of a single parameter,
usually frequency, multidimensional NMR records the interactions between different
nuclei. This makes it possible to distinguish signals that would be superimposed in
a one-dimensional spectrum, and to obtain correlations between different atoms,
making it possible to analyze more complex structures. Wüthrich then used
these new tools to map atomic interactions in proteins in solution, facilitating the
precise reconstruction of their three-dimensional structure [33]. For their respective
contributions, Ernst was awarded the Nobel Prize in Chemistry in 1991, followed
by Wüthrich in 2002.

Experimental context Unlike X-ray crystallography, NMR structure determi-
nation is generally carried out in solution. This is an advantage because proteins
are in an environment closer to their physiological environment than in a crystal.
It is also very useful for studying proteins that are difficult to crystallise. However,
the protein studied by NMR must be soluble at very high concentrations without
forming aggregates. NMR is generally considered to be limited to the study of small
proteins, with a small molecular mass, because the complexity and noise of NMR
spectra increases significantly with protein size, making data assignment more
difficult. In the 1970s and up to the early 1980s, 2D NMR experiments enabled
detailed structures to be resolved down to around 10kDa [34]. Improvements in
experimental techniques enabled larger and larger proteins [35] to be studied. One
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of the first of these methods was isotopic labelling of C and N, which consists of
replacing these atoms with their isotopes 13C and 15N, which contribute to the
NMR signals and allow their interactions with other atoms to be detected. Using
this technique, proteins of the order of 20 kDa have been studied [36]. Deuteration,
which is the random replacement of hydrogen atoms by the 2H isotope, pushed the
limit of precise resolution towards 30 kDa in the 1990s [37]. Specific pulse sequences
for studying large proteins, such as transverse relaxation optimized spectroscopy
(TROSY), have also been developed [38]. By combining all these advances in
an appropriate way, NMR was able to be applied to the study of the dynamic
properties of large protein complexes such as the 670 kDa 20S proteasome [39]. In
contrast to X-ray diffraction, which provides a static image representing a spatial
and temporal average of a protein’s structure, NMR has the advantage of being
able to analyse dynamic properties on a large range of time scales [40, 41, 42, 43].

Figure 1.10: Workflow of structure determination by NMR. 1. Proteins
are purified and isotopically labeled, then dissolved at very high concentration. 2.
Radio frequency pulses are applied to the sample, temporarily exciting the nuclear
spins of specific atoms. When these nuclei relax back to their original state, they
emit radiation that depends on their chemical environment in the protein. 3. The
emitted radiation is recorded for different pulse sequences, and the resulting spectra
are analyzed to measure chemical shifts and other interactions. 4. The relative
positions of atoms are calculated based on the NMR data, and a series of possible
protein structures are generated.
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1.2.4 Cryo-EM
History Optical microscopy does not allow the observation of objects smaller than
the wavelength of visible light, in the order of a hundred nanometers. In his thesis
in 1924, the French physicist Louis de Broglie presented his theory on the existence
of a wave-like nature for electrons [44]. This hypothesis was confirmed in 1927
by the electron diffraction experiments of Clinton Davisson and Lester Germer
and by George Paget Thomson, independently [45, 46, 47]. For the validation of
his hypothesis, Louis de Broglie was awarded the Nobel Prize in Physics in 1929,
and for the experimental discovery Davisson and Thomson became co-recipients of
the Nobel Prize in 1937. Following these discoveries, the first prototype electron
microscope was constructed by Ernst Ruska and Max Knoll in 1931 [48]. The idea
is to use the much shorter wavelength of high-speed electrons, giving far better
theoretical resolution. This first prototype didn’t allow magnification beyond that
of optical microscopy, but two years later Ruska built the first electron microscope
to exceed the capabilities of optical microscopy [49, 50]. For his work in electron
microscopy (EM), Ruska was awarded half of the 1986 Nobel Prize for Physics.
Immediately after these discoveries, this new technique was applied to the study
of biological objects [51]. It led to a better understanding of the cell, with the
progressive discovery of organelles. Notably, George Emil Palade discovered the
existence of the ribosome in the cell using an electron microscope in 1955, which
earned him a share of the 1974 Nobel Prize for Medicine [52]. Although it has
enabled all these advances, traditional electron microscopy suffers from limitations
when it comes to observing biological samples, particularly when preparing them
for observation. In order to prevent any disturbance to the trajectory of the
incident electron beam, the sample is observed in a vacuum. However, biological
samples contain water, which evaporates in a vacuum. To solve this problem, the
samples were dehydrated and fixed by being covered with a layer of metal, but
this treatment fundamentally denatures the biological sample. In 1981, Jacques
Dubochet and his team invented a new sample preparation technique, which led
to the development of cryo-electron microscopy and earned him a share of the
Nobel Prize in Chemistry in 2017 [53, 54, 55]. The principle lies in the extremely
rapid cooling of the sample. The method involves rapidly immersing the sample
contained in a thin layer of water in a solution of liquid ethane. The water in the
sample cools at a rate of around 10,000◦C per second and has no time to crystallise,
turning into vitreous ice. The latter has the same density as water, so the sample
is embedded in it without being destroyed. Gradually, improvements in electron
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detectors and advances in image processing algorithms have made cryoEM a key
technique in structural biology [56]. As of 2017, the number of PDB entries from
electron microscopy experiments has exceeded the number of entries from NMR
experiments (Fig. 1.7). Today, the most precise cryoEM experiments report atomic
resolution [57, 58].

Experimental context CryoEM has many advantages over X-ray crystallog-
raphy and magnetic resonance methods. Indeed, it does not require crystallization
of the macromolecule studied, which simplifies sample preparation and poses fewer
restrictions on its purity. Moreover, this method does not require a large quantity
of samples. In addition, rapid cooling of the sample preserves it in a state close to
its native state, which is important for understanding the object in its biological
context. High-resolution images and classification algorithms now make it possible
to distinguish between the different conformations present in the sample, which
allows a better understanding of the functional aspect of the protein or complex
studied. These practical aspects of CryoEM also stimulated the development
of integrative structural biology approaches toward characterising protein con-
tinuous conformational heterogeneity [59], as we will describe in more details in
Section 2.4.2.

1.3 Protein dynamics
Proteins move The function of most proteins, whether in catalysis, transport,
or signaling activities, often relies on their ability to bind to other molecules,
known as ligands. This binding capability is intricately linked to the inherent
flexibility of proteins. Indeed, proteins are not rigid and static objects, but dynamic
entities whose movements play an essential role in their biological function. Protein
structures are stabilised by weak interactions that are easily broken and reformed,
giving them their plasticity. This flexibility allows them to adapt to environmental
changes and the presence of other molecules by adopting different three-dimensional
conformations. In this way, a protein is better represented by a set of conformations
than by a single static structure. Proteins therefore inhabit different states, and
these transitions between different states can occur over a wide range of time and
distance scales (Table 1.1), ranging from small adjustments on a side chain to global
conformational rearrangements. These changes have long been known to enable
the biological function associated with the protein to be realised [60, 61]. One
way of describing the populations of different conformations is through the energy
landscape. The most populated and stable states correspond to energy minima,
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Figure 1.11: Workflow of structure determination by cryoEM. 1. The
sample, present in the aqueous solution and purified. 2. A few microliters of
solution are placed on a grid containing holes of the order of a micrometer. The
excess water is removed and the grid is plunged in a solution of liquid ethane,
which causes the formation of a thin layer of vitreous ice containing the samples
within the holes. The samples all have a random orientation of their own. 3. The
frozen grids are then loaded into the electron microscope. In its upper part, the
latter creates and condenses a beam of coherent electrons on the sample. Its lower
part is dedicated to the enlargement and acquisition of the electrons having passed
through the sample. 4. Two-dimensional images of the samples, called poses, are
collected. They correspond to the 2D projection of the 3D objects under their own
orientation, which is unknown at this stage. Typically, tens to hundreds thousands
poses are captured. Depending on the method used, a pose classification algorithm
can be used to classify conformational heterogeneities and give rise to several
three-dimensional reconstructions. 5. The poses are processed by algorithms that
allow them to be assigned a specific orientation. 6. A three-dimensional map of the
sample is created. 7. A model of the protein is built. The last steps are repeated
iteratively in order to refine the model.

Source: Leeds University Library, CC BY-SA 4.0
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represented by wells, and the transitions between the different states correspond to
the crossing of an energy barrier. This energy landscape is often very complex, with
a large number of minima. At the temperature of the organism, the energy supplied
by thermal agitation is often sufficient for a given protein to explore several minima
[62, 63].

Intrinsic and interacting motions Two types of motions can be distinguished
in proteins: intrinsic motions and motions induced by interactions with other
molecules. Intrinsic motions refer to spontaneous motions of the protein in the
absence of interactions. They are induced by thermal agitation and can refer to
small atomic fluctuations as well as large collective motions (Table 1.1). Interaction-
induced motions, on the other hand, are induced by the binding of the protein
to other molecules, such as small ligands, nucleic acids or other proteins. This
concept, known as induced fit, was first suggested by Daniel E. Koshland in 1958
[64]. The idea is that the ligand causes a conformational change in the protein that
increases its affinity for the ligand, stabilizing the interaction and optimizing the
fit between the protein and its binding partner. This concept was originally widely
used to describe conformational changes in proteins. However, while this model
can explain changes that are plausible on a local scale, it struggles to explain the
collective movements that can lead to the rearrangement of entire domains [65].
This is where the concept of conformational selection comes in, a concept first
proposed by Gregorio Weber in 1972 [66]. The idea is that proteins are constantly
exploring a set of conformations, known as a pre-existing equilibrium, and that
only a fraction of these states are predisposed to binding to the ligand. The ligand
then preferentially binds to the conformations that are favourable to it, known as
conformational selection. In this view, structural rearrangements occur because
the intrinsic dynamics of proteins allow them to do so [67]. These two views are
not contradictory but complementary [68], and are illustrated in the Fig. 1.12.

Motions in enzymes Enzymes, which are proteins that catalyse chemical
reactions, are among the most widely studied proteins. They bind to their substrate
and reduce the activation energy required for the chemical reaction. They can
also bind to other molecules called cofactors, which can regulate their activity by
increasing it (activation) or decreasing it (inhibition). The places on the enzyme
that bind with ligands and catalyse the reaction are called active sites. They
generally exist in the form of cavities in the protein’s three-dimensional structure
where a microenvironment favourable to binding with a specific ligand exists.
Interactions between ligands and proteins are stabilised by non-covalent bonds of
the same type as those stabilising the protein structure. To illustrate the diversity
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of protein movements and their purpose, we propose 3 examples of movements that
exist in different enzymes. One very local movement is the rotation of side chains.
The different conformations obtained by side-chain rotation are called side-chain
rotamer. These changes play an essential role in the adaptation of the protein
to the ligand by precisely modulating the environment of the active site, and are
present on 90% of active sites [69].

Another important type of movement during interaction is loop closure around
the active site, as observed in triosephosphate isomerase (TPI). This enzyme
catalyses the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-
3-phosphate (G3P) [70]. This is a step in the metabolism of glucose by the organism.
When the loop closes over the active site, it protects it from the external influence
of solvent. The distance between the top of the loop and the open and closed
conformations is around 7 Å. In the absence of ligand, both states are accessible,
and the characteristic time between the two states is about 10−4 s [71].

Another notable example of movements within enzymes is whole-domain move-
ments. This type of movements is seen, for example, in aspartate aminostransferase
(AST), which is a key enzyme in amino acid metabolism. AST catalyses the
transamination reaction between aspartate and alpha-ketoglutarate, leading to
the formation of oxaloacetate and glutamate. Upon binding to the substrate, a
pivot movement of the small domain (approximately 130 amino acids) is observed.
This movement has the effect of bringing the two parts of the enzyme together,
closing the active site, protecting the substrate from the external environment and
positioning it for catalysis [72]. Figure 1.13 shows some examples of movements at
different scales.

Intrinsically Disordered Proteins Intrinsically Disordered Proteins (IDPs)
and Intrinsically Disordered Regions (IDRs) refer to proteins or protein segments
that do not exhibit a stable three-dimensional structure under physiological condi-
tions [73]. Unlike classical globular proteins, which adopt a defined conformation,
IDPs exist as flexible and dynamic chains. The amino acid sequence of a protein
dictates its folding, and in the same way, it determines the presence or absence of
disorder [74]. IDPs and IDRs play a central biological role by facilitating interac-
tions with a wide range of molecular partners, such as other proteins or nucleic acids,
thereby endowing these proteins with high functional versatility, sometimes referred
to as functional promiscuity [75, 76, 77]. This ability to interact with multiple
partners allows IDPs/IDRs to participate in essential cellular processes, such as
cell signaling and transcriptional regulation, and to assume complex regulatory
functions [78, 79].
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IDPs/IDRs exist at various levels of potential foldability and can acquire a
more rigid structure upon specific interactions, a phenomenon known as induced
folding [80, 81]. In eukaryotes, more than 30% of the proteome consists of proteins
containing disordered regions with more than 50 consecutive residues [74]. These
disordered regions are often rich in charged amino acids and are devoid of bulky
hydrophobic residues, which prevents the formation of a compact hydrophobic core,
characteristic of globular proteins [82].

Motion Spatial Characteristic Energy
displacement (Å) time (s) source

Fluctuations (e.g., atomic vi-
brations)

0.01 to 1 10−15 to 10−11 kbT

Collective motions 0.01 to > 5 10−12 to 10−3 kbT
(A) fast, infrequent (e.g.,
Tyr, Phe ring flips)
(B) slow (e.g., domain move-
ment; hinge-bending)
Triggered conformational 0.5 to > 10 10−9 to 103 Binding
changes interactions

Table 1.1: Typical characteristics of protein motions.
Values extracted from [83]. kbT is the thermal energy.

1.4 Physics based approaches to protein dynam-
ics

1.4.1 Normal mode analysis
Context Normal mode analysis (NMA) is a technique used to study the collective
motions of proteins by modelling their vibrations around a steady state. This
technique has been applied to proteins since the early 1980s [86, 87, 88]. It is a
computationally inexpensive technique, especially when compared with molecular
dynamics (MD) simulations. NMA makes it possible to study low-frequency and
large-amplitude deformation. These motions are valuable from a structural biology
point of view because numerous examples have shown that functionally important
transitions follow the trajectory of one or more low-frequency normal modes [89,
90, 91, 92, 93, 94, 95, 96, 97, 98]. Moreover, low-frequency normal modes are highly
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Figure 1.12: Representation of the mechanisms of conformational selection
and adjustment induced in the enzyme-substrate interaction. Left: The
diagram represents the pre-existing equilibrium between two conformations of the
enzyme (E) in the absence of the substrate (S). The dashed blue curve corresponds
to the harmonic potential of the protein approximated by NMA. Right: When the
substrate binds to the enzyme with the most favourable conformation (conforma-
tional selection), its energetic landscape is modified in favour of the stability of the
attached form (induced fit).

Figure extracted from [84].
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Figure 1.13: Different scales of motions in enzymes. Rearrangement of the
aromatic chains of the FKBP12 enzyme on binding to the substrate. The bound
form (1fkj) is shown in red and the unbound form (2ppn) is shown in blue. Example
taken from [85]. 2. Loop opening and closing at the triosephosphate isomerase
active site. The closed form (1ney) is shown in red and the open form (1ypi)
is shown in blue. 3. Movement of the small domain of the enzyme L-aspartate
aminostransferase during binding with its substrate. The closed form (1art) is
shown in brown and the open form (1ars) is shown in blue.
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conserved between homologous structures, which tends to confirm their functional
validity [99, 100]. Tiwari et al. states that low-frequency modes are even more
conserved than the structure itself [101]. This has significant implications, such as
the possibility of detecting distant homologs by using their similarities in flexibility
[102].

Principle Normal mode analysis is a method used to describe the flexible
states available to a protein around its equilibrium position, i.e. when it is in a
conformation corresponding to a minimum of energy. When an oscillating system,
such as a protein, is slightly perturbed, a restoring force acts to bring the system
back to its equilibrium state. This approach makes it possible to model small
oscillations around this stable conformation. At equilibrium, the potential energy
of the system V (q) can be written by a Taylor expansion:

V (q) = V (q0) +
(
∂V

∂qi

)0

ηi + 1
2

(
∂2V

∂qi∂qj

)0

ηiηj + . . . , (1.1)

where qi and qj represent the position of components i and j and the deviation
of component i from its equilibrium configuration is given by ηi = qi − q0

i . The
exponents 0 indicate that the development is carried out in the equilibrium state.
The first term represents the minimum of the potential, which can be set to 0,
and the second term is zero because the system is in a state of equilibrium. The
expression for the second-order potential therefore becomes

V (q) = 1
2

(
∂2V

∂qi∂qj

)0

ηiηj = 1
2ηiHijηj, (1.2)

where Hij is the Hessian matrix containing the second derivatives of the potential
with respect to the components of the system.
The kinetic energy T of the system is expressed in terms of the velocities of the
particles:

T (q) = 1
2miη̇iη̇i = 1

2 η̇imiη̇i, (1.3)

where η̇i = dηi

dt
is the velocity of component i, and mi is the mass of component i.

In matrix notation, this becomes:

T (q) = 1
2 η̇TMη̇, (1.4)

where M is the diagonal mass matrix.
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The Lagrangian L of the system is given by:

L = T − V = 1
2 η̇imiη̇i − 1

2ηiHijηj. (1.5)

Using the Euler-Lagrange equations:

d

dt

(
∂L
∂η̇i

)
− ∂L
∂ηi

= 0, (1.6)

we compute:

• The partial derivative of the Lagrangian with respect to the velocity:

∂L
∂η̇i

= miη̇i, (1.7)

and its time derivative:

d

dt

(
∂L
∂η̇i

)
= miη̈i, (1.8)

where η̈i = d2ηi

dt2 is the acceleration.

• The partial derivative of the Lagrangian with respect to the displacement:

∂L
∂ηi

= −Hijηj. (1.9)

Substituting these into the Euler-Lagrange equations gives the equations of
motion:

miη̈i +Hijηj = 0, (1.10)

or, in matrix form:

Mη̈ + Hη = 0. (1.11)
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Assuming a harmonic solution for the displacements:

η(t) = ak cos(ωkt+ δk), (1.12)

where ak is the amplitude vector for mode k, ωk is the angular frequency of mode
k, and δk is the phase constant.
Calculating the second derivative of η(t):

η̈(t) = −ω2
kak cos(ωkt+ δk). (1.13)

Substituting η(t) and η̈(t) back into the equation of motion:

M
(
−ω2

kak cos(ωkt+ δk)
)

+ H (ak cos(ωkt+ δk)) = 0. (1.14)

Simplifying, we get:
(
H − ω2

kM
)

ak cos(ωkt+ δk) = 0. (1.15)

Leading to the generalized eigenvalue problem:

Hak = ω2
kMak. (1.16)

The eigenvectors ak contain the directions and relative amplitudes of motion for
each atom in the system, and the eigenvalues ω2

k correspond to the squared angular
frequencies of the normal modes.

The first 6 normal modes correspond to the translation and rotation of the
rigid body, without deformation, and are therefore trivial. Apart from these zero-
frequency modes, it is generally the lowest-frequency modes that are analysed to
describe the motion of the protein.

RTB and Elastic Network Models Early studies of normal modes at the
atomic level used empirical potentials similar to those used in molecular dynamics.
However, this implies certain limitations. Indeed, the structure must be relaxed to
its minimum energy in the force field used, which deforms the structure, frequently
leading the NMA to be performed on a different structure from the initial one.
In addition, for classical NMA is normally performed with all atoms, including
hydrogen atoms, so diagonalization of the Hessian matrix of size 3N × 3N where
N is the number of atoms can quickly be intractable for large proteins. To solve
this problem, low-resolution approaches such as Rotation-Translation of Blocks
(RTB) have been developed [103, 104]. This approach involves dividing the protein
into rigid blocks containing one or more residues, in order to reduce the number of
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elements to be considered.
Another approach, introduced by Tirion, showed that these complicated po-

tentials could be replaced by much simpler potentials while largely preserving the
low-frequency movements [105]. These potentials are of the form

V =
∑

rij<Rc

C
(
r⃗ij − r⃗ij

0
)2

(1.17)

where r⃗ij is the displacement vector between the atoms i and j, and r⃗ij
0 is the

initial vector between these two atoms, Rc is a distance threshold beyond which
pairs are no longer considered and C is a rigidity constant associated with the bond
between two atoms. In practice, this means that we model the protein as a network
of springs where a pair of atoms is linked if it is below the distance threshold, hence
the name Elastic Network Model. This aproximation takes into account the relative
directions of the atoms, and is often referred to as the Anisotropic Network Model
(ANM) [106]. Generally the spring constant C is chosen to be uniform for all pairs,
but some studies have tried to assign higher constants to rigid domains [107, 108].

An even simpler elastic network called the Gaussian Network Model (GNM)
consists of an isotropic version of the previous model, i.e. only the amplitudes of
the fluctuations of the atoms are considered, and the Hessian matrix of dimension
3N × 3N is replaced by a matrix of size N ×N , called the Kirchoff matrix [109,
110]. However, since the deformations considered here are isotropic, this model does
not allow alternative conformations to be generated in the vicinity of the starting
conformation by following collective deformation directions, as is possible with the
anisotropic model. Nevertheless, the fluctuations obtained by the GNM tend to
correlate well with the experimental B-factors [111, 112]. Kundu et al. found an
average correlation of 0.59 on a set of proteins, which is slightly better than the
correlation obtained when using ANM to predict isotropic B-factors [112]. Normal
mode analysis produce linear motions, which deforms the structure unrealisticly at
large amplitude. To tackle this issue Hoffmann and Grudinin introduced a RTB-
based method with non-linear extrapolation of the motion, using instantaneous
linear and angular velocities of the rigid block [113]. Additionally, HOPMA is a
method that proposes breaking certain connections within the Elastic Network
Model (ENM), specifically those corresponding to isolated residues that are distant
in the sequence. This allows, for example, the facilitation of protein opening by
removing non-covalent interactions that would otherwise keep the protein in a
closed state [114].
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1.4.2 Molecular Dynamics (MD) simulations
Principle Molecular dynamics is a computer simulation technique used to study
the movement of atoms and molecules over time. It involves solving Newton’s
equations of motion for each particle in the system. The forces exerted on atoms
are described by a collection of interatomic potentials called force fields. The most
common force fields used in MD include interatomic potentials describing the energy
between covalent atoms as a function of their bond distance, bond angles and bond
torsion. These force fields also include terms that apply to atoms not bound by
a covalent bond, modelling van der Waals forces via the Lennard-Jones potential
and electrostatic forces via the Coulomb potential [115]. The forces exerted on the
particles determine their acceleration, and numerical integration algorithms are
used to calculate the trajectories of each atom over very short time steps, generally
of the order of femtoseconds. Molecular dynamics is the most accurate calculation
method for studying the dynamics of a protein. However, because of the small
integration step and the number of operations required to calculate the potential
of each atom, molecular dynamics simulations are very demanding in terms of
computing resources, which is their main limitation.

Context The first molecular dynamics simulation applied to a protein dates
back to 1977, when the dynamics of a small protein of 58 amino acids, the bovine
pancreatic trypsin inhibitor, was simulated over a period of 9.2 picoseconds [116].
This work, among others, is one of the achievements recognised in the Nobel Prize
for Chemistry awarded in 2013. Since then, the increase in computing power and
the evolution of MD techniques have made it possible to apply these techniques to
larger systems and over much longer simulation times. In the 2000s, the longest
molecular dynamics simulations were typically of the order of microseconds, and in
the 2010s, of the order of milliseconds [117].

Principal component analysis of MD trajectory PCA is a linear dimen-
sionality reduction technique used to project high-dimensional coordinates into
a low-dimensional space. This space is formed with the axes that maximise the
variance of the data, thereby preserving as much information as possible [118]. In
molecular dynamics, it is used to extract the main deformation directions from
conformations from different simulation timesteps. The first step in this analysis is
to choose a reference structure and align the other structures with it, minimising
the sum of the squared deviations of the pairs of atoms. Next, we calculate the
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covariance matrix of the C positions, whose elements are given by

Cij = 1
N

N∑
k=1

(
x

(k)
i − xi

) (
x

(k)
j − xj

)
, (1.18)

where x
(k)
i and x

(k)
i denote the coordinates of structure k at position i and j

respectively, and xi and xj the mean coordinates at these positions. This matrix is
then diagonalized, i.e. we find a Λ matrix for which

C = UΛUT (1.19)

where the matrix U is the matrix containing the eigenvectors corresponding to
the principal directions of variance and Λ is the diagonal matrix containing the
eigenvalues associated with the eigenvectors. The eigenvectors are interpreted as the
principal directions of deformation and the eigenvalues provide information about
the amount of positional variance of the structures explained by the associated
eigenvector. PCA was first used to describe protein dynamics in 1992, by Garcia
on a 240 picosecond simulation of the dynamics of Crabin [119]. He observed that
the motions of distant parts could be highly correlated, but that the motion in
his example was essentially non-linear because the main direction of deformation
contributed only 36% of the total positional variance observed in the simulation.
Amadei et al. applied the same method and highlighted the fact that it is generally
possible to reduce the dimensionality of the motions to 1% of the size of the
original Cartesian space, showing that the internal motions of proteins are highly
constrained [120]. They named the space formed with the principal eigenvectors
essential space (ES). Since then, the use of PCA to analyse the movements produced
by molecular dynamics has become widespread. In particular, this method has
been used to test the validity of normal modes experimentally, by comparing the
subspaces produced by non-trivial normal modes and the ES [121, 122]. While
PCA was first applied to MD trajectories, it has also proven valuable for the
analysis of structural ensembles derived from experimental techniques. Teodoro
et al. showed that PCA can efficiently analyze experimentally determined X-ray
structures to capture dominant motions and reduce the complexity of modeling
large-scale protein flexibility, as shown by their study of HIV-1 protease using
over 130 crystal structures [123]. Similarly, Yang et al. applied PCA to ensembles
of NMR structures and X-ray structures, demonstrating the extracted collective
motions can be similar to those predicted by elastic network models and can
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identify motions that are functionally relevant [124, 125]. One measure of subspace
similarity used in this case is the root mean square inner product (RMSIP),

RMSIP(I, J) =
1
I

I∑
i=1

J∑
j=1

(ui · vj)2

 1
2

, (1.20)

where I and J denote the dimensions of the subspaces formed by the eigenvectors
from each method, ui is the ith vector in the first subspace, and vj is the jth vector
in the second subspace [126]. The RMSIP is between 0 and 1. An RMSIP of zero
corresponds to mutually exclusive spaces, and a score of 1 corresponds to identical
spaces. David and Jacobs. found a RMSIP between the 20 first non-trivial normal
modes and the ES of around 0.5 on several examples, which is considered to be a
good correspondence [122].
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Chapter 2

Deep Learning background in
bioinformatics

This chapter introduces deep learning techniques relevant to understanding the
manuscript, as well as methods commonly used in the field of structural biology and
protein dynamics. Section 2.1 introduces the principles of artificial neural networks
and presents two types of architectures that will be used later in the manuscript.
Section 2.2 covers concepts from natural language processing and connects their
application to natural language with their application to protein sequences. Section
2.3 discusses protein structure prediction from amino acid sequences, while section
2.4 focuses on various methods used to predict protein flexibility.

2.1 Introduction to Artificial Neural Networks
Artificial neural networks (ANNs) have a wide range of applications in bioinfor-
matics. This section aims to give a short introduction to the essential concepts of
this field.

Machine learning Machine learning is a sub-field of artificial intelligence
whose aim is to create statistical algorithms that can learn from a set of numerical
data and generalise to new data without specific instruction. One of the most
important areas of machine learning is artificial neural networks.

Artificial neural networks Artificial neural networks are mathematical models
inspired by the function of biological neurons. They consist of a set of intercon-
nected neurons where the strength of the connection is represented by a numerical
parameter called a weight. They are used to approximate complex functions by
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learning non-linear relationships between input and output data. We introduce the
important concepts in this field using the classic example of multilayer perceptrons
(MLP), first introduced in the 1960s [127, 128]. Nowadays, these basic networks
provide a building block for more complex architectures.

Neural networks are generally composed of several layers, with each layer
containing a certain number of neurons. A neuron is a parameter whose value is
chosen arbitrarily when it belongs to an input layer of the network, or calculated
using the values of the neurons in the previous layer when it does not belong to
the first layer.

In MLPs, two neurons in two adjacent layers are linked by a parameter called the
weight. By analogy with biology, this parameter can be seen as the strength of the
connection between two neurons. The value taken by a neuron is called activation.
In the general case of fully connected networks, this activation is calculated as the
sum of the activations of the neurons in the previous layer, each multiplied by its
corresponding connection weight. To this sum is added a parameter specific to each
neuron, called the bias, which can be seen as the neuron’s activation threshold, and
then a non-linear function called the activation function is applied to the whole.
Mathematically, the activation a

(j)
k of neuron k in layer j is equal to

a
(j)
k = σ

 N∑
i=0

w
(j)
ik a

(j−1)
i + b

(j)
k

, (2.1)

where σ is the activation function, w(j)
ik is the weight linking neuron i in layer j − 1

to neuron k in layer j, and b
(j)
k is the bias of neuron k in layer j.

Generally speaking, the first layer of the network will take parameters from a
dataset as its activation. The last layer, or output layer, contains the prediction of
the neural network.

Training In order for the network’s prediction to make sense, it must go through
a training phase. Learning consists of iteratively modifying the parameters of the
network in order to minimise a quantitative metric called the loss function. In the
case of supervised learning, the prediction targets associated with the training data
are known, so the error function is commonly a metric measuring the difference
between the prediction and the target. The lower the loss function, the more similar
the network prediction and the target.

The classic learning method is gradient backpropagation, first introduced in
1970 and popularized for the training of neural networks in 1980 [129, 130]. This
involves calculating the partial derivative of the error function for each network
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parameter, then updating the parameters by subtracting this derivative multiplied
by a certain coefficient. Mathematically, the parameters are updated as follows

ωi → ωi − γ
∂L

∂ωi

, (2.2)

where ωi is a network parameter, L is the loss function, and γ is the learning
rate. This procedure for updating the network parameters corresponds to classic
gradient descent. By repeating the operation many times and on many examples,
we hope that the network will reduce its error function. In general, the network
parameters are not updated for each example, but for a batch of examples. An
average correction is then made by averaging the gradients for each parameter.
There are variants to these training methods. The most widely used is a stochastic
method based on estimating the mean and variance of the gradients called Adam
(for Adaptive Moment Estimation), which we will use in the following work [131].
These approaches aim to make network training faster and more reliable.

Convolutional Neural Networks (CNNs) are a class of deep neural networks
that are particularly effective in processing data with a grid structure, such as
sequences and time series [132, 133]. Although CNNs are often associated with
two-dimensional data such as images, they are also applicable to one-dimensional
data, making them suitable for the analysis of sequential data such as protein
sequences. In one-dimensional CNNs (1D CNNs), convolutional layers apply a set
of learnable filters that slide along the time dimension of the input sequence. These
filters capture local patterns by calculating the dot product between filter weights
and input sequence segments. A first key property of CNN is the translation
equivariance, i.e. a shift in the input results in a corresponding shift in the output
feature maps. This property enables CNNs to recognize motifs independently of
their position in the sequence, which is particularly useful in the analysis of protein
sequences where functional motifs may appear at different locations. Another key
property is the ability to process sequence data of arbitrary size, meaning that the
same network can be used on sequences of different sizes, which is useful in the
case of protein analysis since proteins exist in different sizes.

Mathematically, the a(j)
k (t) activation of the k-th feature map at position t in

the j layer is given by:

a
(j)
k (t) = σ

((
w(j,k) ∗ a(j−1)

)
(t) + b

(j)
k

)
, (2.3)

where ∗ is the cross-correlation operation, w(j,k) are the weights of the filter for
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feature map k, a(j−1)(t) is the activation from the previous layer, b(j)
k is the bias

term, and σ is the activation function. We will use this type of architecture in
section 4.

Message Passing Graph Neural Networks (MPGNNs) are a family of
neural networks designed to operate on graph-structured data [134]. In MP-GNNs,
each node in the graph updates its representation by aggregating information from
its neighbors through iterative message-passing steps. This process enables the
network to learn representations that utilize both the features of the nodes and the
topology of the graph. At each layer k, the hidden state h(k)

v of node v is updated
based on its previous state and the messages received from its neighboring nodes
N (v):

h(k)
v = σ

(
W (k)h(k−1)

v + AGGREGATEu∈N (v)M
(k)
(
h(k−1)

v , h(k−1)
u , euv

))
, (2.4)

where W (k) is the weight matrix at layer k, M (k) is the message function that
computes the message from node u to node v using their node features and possibly
the edge features euv, AGGREGATE is an aggregation function invariant to node
permutation (such as sum, mean, or max) applied over the neighboring nodes, and
σ is the activation function. Proteins can be represented in an invariant manner
using a graph, where, for example, the nodes represent the types of amino acids
and the edges represent the distances between them. This is very useful because
the orientation of a single protein in 3D space is arbitrary, and having an invariant
representation ensures that the learned model focuses on the intrinsic properties of
the protein structure rather than its spatial orientation.

2.2 Protein Language Models (PLMs)

2.2.1 The Transformer
Context Technical advances in the field of natural language processing (NLP)
are of great interest in bioinformatics. This is understandable given that DNA,
RNA, and amino acid sequences are expressed in their own language. Indeed, many
analogies can be drawn between natural language and biological sequences. To
begin with, they share a limited number of units of meaning, arguably the words
in the dictionary for natural language and the amino acid alphabet for amino acid
sequences. The amino acids are arranged in a linear order in the same way as the
words in a sentence, and this order is crucial to the meaning of the text and the
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function of the protein. They also have the importance of context in common: in
natural language, the meaning given to a word may depend on the other words
in the sentence. The same applies to the functional interpretation of an amino
acid or group of amino acids, which may vary according to the context of the
sequence. What they also have in common is the presence of recurring patterns.
In natural language, certain groups of words are often used together, and similarly,
certain amino acids are often found together, forming easily identifiable patterns. In
natural language, syntax and grammar impose strong constraints that can prevent
the use of a word in a certain context, just as the replacement of one amino acid
by another can be deleterious to the function of the protein. Finally, just as in
natural language, several sentences can have the same meaning, and several amino
acid sequences can code for proteins with similar functions. It is these similarities
that have motivated the application of language processing techniques to proteins.

The field of NLP took a big leap forward in 2017 with the introduction of
the transformer architecture by Google engineers [135], for its ability to process
information in parallel, for its scalability and for its ability to capture long-distance
dependencies in text. I will introduce a few important concepts from this archi-
tecture because it is the basis on which all large language models (LLMs) and
protein language models (PLMs) are now built. These models are trained on
large quantities of data, with learning tasks forcing them to acquire an internal
representation of the data

Tokenization Tokenisation is a basic step that consists of dividing the sequence
into small units called tokens. The set of tokens constitutes the network’s vocabulary,
i.e. the set of units it can process. This stage is often fairly trivial for PLMs
compared with LLMs. For PLMs, it is generally carried out at the level of amino
acids, of which there are a limited number (20 standard amino acids). PLMs
generally have a vocabulary of 20 to 35 tokens [136, 137, 138, 139, 140, 141]. In
addition to the 20 standard amino acids which are always included, there are often
tokens assigned to non standard amino acids (for example, U for Selenocysteine)
as well as a common token for all unknown amino acids (X). In addition, there
are tokens specific to the operation of the model, such as the markers for the
beginning (BOS) and end (EOS) of the sequence, the token for masking residues,
and a padding token for adjusting the sequences to give them a uniform size.

Some PLMs [142, 143] adopt an approach used in language models, Byte
Pair Encoding (BPE) [144], which involves dividing the sequence into individual
characters, then iteratively merging the most frequent character pairs to form
longer tokens. ProtGPT2 therefore works with a vocabulary of 50,256 tokens,
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corresponding on average to 4 amino acids per token [143].
Vector representation In language models, tokens are translated into high-

dimensional vectors called embeddings. The aim is to associate each token with
a representation rich in meaning, capturing not only its own meaning, but also
its relationships with other words. In this way, two vectors with similar meanings
will also have a close direction in the embedding space. For example, playing with
glove-wiki-gigaword-50 [145], a simple model that encodes words in 50 dimensions -
a relatively small size but sufficient to illustrate the point - we can see that the 5
vectors most similar to the word proteins, according to cosine similarity, are:

protein 0.91
molecules 0.85
genes 0.83
enzymes 0.83
bind 0.81

All these words share a meaning linked to proteins. What is more, by performing
the operation

⃗proteins + ⃗computer − ⃗protein,

we obtain a vector most similar to ⃗computers (with a cosine similarity of 0.88),
suggesting the existence of a specific direction that encodes the notion of plural.
Similarly, by performing

⃗tokyo + ⃗france − ⃗japan,

we obtain a vector most similar to ⃗paris (cosine similarity of 0.92), indicating a
direction corresponding to the concept of capital. This is a simple example, in
practice in LLMs the embedding associated with a token depends on its context.
In a similar way, PLMs learn representations for amino acids which we hope will
contain as much biological information as possible.

Self-Attention The self-attention mechanism is an important component of
Transformer. It allows the embeddings associated with each token to be updated
using the embeddings of other tokens, independently of their positions, enabling
them to enrich their representation by the context in which they are.

The first step is to calculate a linear transformation of the embeddings of each
vector, by calculating Q = XWQ, K = XWK and V = XW V , where Q, K, and
V are the matrices of the queries, keys, and values, and WQ, WK and W V are the
matrices of weights associated with this transformation, which are learned as the
transformer is trained.
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Attention is calculated using the following equation:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2.5)

where dk is the size of the vector K. Multiplying QKT produces attention scores
that indicate the relative importance of each token compared with all the others.
By applying the softmax function, these scores are normalised to form a probability
distribution. This probability distribution is then used to calculate a weighted sum
of the values V , which will update the original embedding X by adding to it. The
transformers’ original paper proposed the idea of heads consisting of performing the
attention operation in parallel with several matrices of weights WQ, WK and W V ,
then concatenating them and linearly transforming them to calculate the update of
each of the embeddings. The idea is to allow each head to focus on different ways
in which context can change the meaning of an embedding.

Linear projection into higher dimensional space An important step,
which should not be overlooked as it contains 2/3 of the Transformer’s parameters
[146], is the MLP part applied to the embeddings after the self-attention step. This
projects each of the embeddings into a high-dimensional space (4x the dimension
of the embedding in the original paper [135]) and then a non-linear function is
applied, before projecting the result back into the original dimensional space of the
embeddings. The aim of this operation is to increase further the expressiveness of
each of the embeddings.

The attention and the MLP are the two fundamental parts forming a block.
These blocks of attention are then stacked in the Transformer’s architecture. The
original implementation uses 6 of these stacks for the encoder, and 6 for the decoder.

Transformers as GNNs I want to make the connection here with the previous
section on MPGNN by noting that Transformers can be seen as a special case of
the general GNN framework. In this special case, Transformers operate on fully
connected graphs. Viewed this way, with one head, the update of the node (or the
token embedding) i of the layer ℓ+ 1 follows this logic:

hℓ+1
i = hℓ

i +
∑
j∈S

wij(W V (ℓ)hℓ
j), (2.6)

In this equation, the presence of hℓ
i represents the residual connection, meaning

the preservation of the previous information of node i. The term wij(W V (ℓ)hℓ
j)

corresponds to the message that i receives from j, where the coefficient wij is

55



Chapter 2. Deep Learning background in bioinformatics

calculated through the attention mechanism:

wij = softmaxj

(
(WQ(ℓ)hℓ

i) · (WK(ℓ)hℓ
j)√

dk

)
, (2.7)

The aggregation function consists of summing these messages weighted by the
attention coefficients wij, allowing i to update its representation by taking into
account all the other nodes in the graph.

2.2.2 Overview of PLMs
Encoder only Most PLMs allow a representation of a protein sequence to be
calculated in the form of an amino acid embedding of a fixed size, specific to the
model. The models that calculate these representations essentially use the BERT
[147] architecture, or variations of it. This architecture is based on the transformer
encoder with an unsupervised learning task, the mask language modelling. Mask
language modelling involves corrupting input sequences by randomly masking some
of their residues, then forcing the PLM to find the type of the masked amino acid.
By repeating this operation on billions of sequences, the model becomes capable
of predicting the probability of finding an amino acid at a given position in the
sequence, showing that it is acquiring a contextual representation of the protein
language. These representations can then be used for various prediction tasks, such
as predicting function, contacts, structure, mutation effects, etc. These prediction
tasks based on the representation learned by the model are called downstream
tasks. These models are generally trained on large collections of sequences, such
as UniRef [148, 149]. The main PLMs for representation learning include the
Meta ESM series: ESM-1b [136], ESM-1v [150], ESM2 [138], which are based
on the RoBERTa architecture [151], which is an evolution of BERT without the
auxiliary task of predicting the next sequence. MSA-Transformer [152] extended the
concept of self-attention to Multiple Sequence Alignment (MSA) columns in order to
produce an embedding for MSAs. This component will be key in AlphaFold2 [153].
Rostlab, in ProtTrans paper [140], has trained a series of encoders used in language
models on protein sequence databases, protBERT, ProtAlBert, protElectra based
on BERT [147], Albert [154], Electra [155]. They also trained ProtT5, based on T5
architecture [156], which is based on the full transformer architecture (encoder and
decoder), but they remove the decoder part during the inference of the embeddings.

Decoder only Some models are auto-regressive, i.e. they follow the principle
of the Transformer decoder architecture. They use masking which forces them
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Figure 2.1: Transformer architecture The transformer architecture consists
of two parts: the encoder on the left, and the decoder on the right. Both parts
are formed with stacks of attention and position-wise linear layers. The decoder
adopts a similar architecture to the encoder, but is distinguished by the masking
task preventing the network from informing itself with the subsequent context,
and by the presence of cross-attention enabling a correspondence to be established
between the encoder’s embeddings and those of the decoder. The figure comes
from the original transformer paper [135]
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to predict the next tokens from the beginning of the sequence, in the same way
as the GPT model [157]. These include Progen [158] and its higher-level version
Progen2 [159] and ProtGTP2 [143]. ProtTrans also contains auto-regressive models,
ProtTXL and ProtXLNet, based on the Transformer-XL [160] and XLNet [161]
architectures. These models are more designed for a generative approach rather than
for representation learning. In fact, in ProtTrans [140], the extracted embeddings
from these models underperform for the downstream tasks studied compared to
the encoder-only models.

Multimodality Some language models take the approach of augmenting the
information contained in the embedding with other forms of input, notably the
three-dimensional structure of the protein associated with the sequence. For
example ProstT5 [162] is a model trained to translate amino acid sequences into
3Di sequences, which are a sequential representation of the 3D structure, introduced
in Foldseek [163]. Similarly, SaProt [164] is a language model trained on amino
acid sequences enriched with the structural tokens produced by Foldseek. ESM-
Gearnet [165] uses the Gearnet structural encoder [166] in order to enrich the ESM2
embeddings with structural information. ESM3 [167] is the latest generation of
multimodal models succeeding ESM2, including encoding and decoding of protein
sequence, structure, and function from a shared embedding.

2.3 Protein structure prediction with deep learn-
ing

2.3.1 CASP
Context The problem of predicting the three-dimensional conformation of a protein
from its amino acid sequence has been around since the first protein structures
were solved over 50 years ago. In addition to the importance of structure for
characterizing protein function, the growing gap between the number of sequences
and the number of experimentally known structures has helped to reinforce the
importance of this problem. For example, in 2022, less than 0.03% of all known
proteins were experimentally solved [168]. It was in this context that the Critical
Assessment of Structure Prediction (CASP) was introduced in 1994 [169], an
experiment aimed at assessing the performance of algorithms for predicting the
three-dimensional structure of proteins from their sequence, in order to provide
a clear framework for evaluating these methods, with the aim of accelerating

58



Chapter 2. Deep Learning background in bioinformatics

research in this field. This event takes place every two years, and evaluates the
methods proposed by the different groups of participants on common targets, whose
structure has not yet been made public. These targets are ranked according to
their difficulty, which is assessed by their similarity to already known structures.
Recent editions of CASP have been enriched by new categories, such as complex
prediction, or, as from edition 15 in 2022, conformational ensemble prediction [170],
reflecting the fact that today’s major challenges in structural biology are protein
dynamics and interactions. CASP12 saw the emergence of deep learning methods
using coevolution signals to predict protein structures, before becoming a dominant
approach since CASP13 [171, 172].

AlphaFold At CASP editions 13 and 14, the models developed by Google
Deepmind, AlphaFold and AlphaFold2 respectively, distinguished themselves [173,
153]. On two occasions, they were the best performers in the high accuracy and
topology modelling categories. AlphaFold2’s performance was such a breakthrough
that it is often considered to have solved the problem of folding single chain proteins
[174]. Indeed, at CASP 14, Alphafold 2 achieved a median Global Distance Test
(GDT) of 92.4 on all targets, far surpassing the second best method with a median
GDT of 72.8. This score measures the similarity between the predicted protein
and the target, ranging from 0 to 100, where 100 denotes maximum similarity. A
score above 90 is considered competitive with experimental methods, and therefore
a valid solution to the problem. The evolution of the performance of the best
performing method of each edition is given in the Fig. 2.2. Since AlphaFold2
has had an extremely important impact on structural biology, having modeled
structures for more than 200 million UniProt sequences [175, 176] and earned its
creators half of the 2024 Nobel Prize in Chemistry, we will briefly present a few
key elements of its architecture.

2.3.2 AlphaFold2
Preprocessing AlphaFold2 first starts with a preprocessing step. This consists of
taking the amino acid sequence, finding its homologous sequences and constructing
a multiple sequence alignment (MSA). The intuition behind this process is to
exploit the co-evolution signals available in the MSA, which are informative for
determining structure. Indeed, two residues close together in three-dimensional
space will tend to coevolve [177]. AlphaFold2 also looks for the existence of resolved
structures for homologs, and if available extracts a pairwise representation of the
distance, used as template.
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Figure 2.2: 28 years of progress between the first edition of CASP and
CASP14 Evolution of the performance of the best method in each edition as
a function of the difficulty of the predicted target. AlphaFold2’s performance
(CASP14) showed a big gap with the second best method (CASP14 w/o427).

Source: John Moult’s presentation at CASP14 https://predictioncenter.org/
casp14/doc/presentations/2020_11_30_CASP14_Introduction_Moult.pdf
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Evoformer The second part is called Evoformer, inspired by the Transformer
architecture described above. This part is made up of 48 blocks, each with its
own weights. Each block has two inputs, the MSA representation and the pairwise
representation. The output of each Evoformer block is an updated version of
these two representations. In each Evoformer block, the MSA representation
is updated by applying axial attention to the rows and columns of the MSA
representation, enabling it to find the most informative relationships between the
different sequences (rows) and amino acids (columns) of the MSA. This is followed
by the MSA transition, which is analogous to the standard MLP of the transformer
architecture. Pair representations are updated via triangle updates, which consist in
learning updates that do not break the geometrical constraint of triangle equalities,
and then via a self-attention mechanism. These two representations communicate
within the Evoformer, the pair representation informs the row-wise attention of
the MSA representation with bias, and the MSA representation updates the pair
representation by adding its outer product. The Evoformer is the main part of
the model, and contains 91M of the model’s 93M parameters. The rest of the
parameters belong to the structure module.

Structure module The structure module can be interpreted as a decoder
that transforms Evoformer representations into three-dimensional structures. It
contains 8 blocks, but unlike the Evoformer, its weights are shared. The structure
module takes as input a linear projection of the first line of the MSA, the pair
representation, and “backbone frames”, which are local landmarks centered on
alpha carbons and formed using the position of neighboring N and C. These
backbone frames are initially all placed at the origin, without consideration of
covalent bonds, and are then iteratively updated to form the protein. The key
feature of the structure module is Invariant Point Attention, which makes the
attention mechanism invariant by rotation and translation, which is important
because these choices are arbitrary for a protein.

Flexibility, pLDDT and PAE In addition to the structure, AlphaFold2
outputs a confidence measure called the predicted Local Distance Difference Test
(pLDDT). This is a score ranging from 0 to 100 assigned to each residue of the
predicted structure. A score above 90 is considered very reliable, between 90 and
70 as reliable, between 70 and 50 as less reliable, and below 50 as very unreliable.
It has been repeatedly established that regions with low pLDDT scores are often
associated with flexible regions [178, 179, 180, 181]. Al Masri et al. [179] report a
strong anti-correlation (Spearman coefficient > −0.70) between the pLDDT and
B-factors for 10 out of the 15 kinases they studied. Saldaño et al. [178] found
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a Pearson correlation of −0.44 between the pLDDT and the RMSF (Root Mean
Squared Fluctuations) across a set of apo (non-binded) and holo (binded) proteins
conformations. The RMSF is defined as the average fluctuation of an atom around
its mean for a set of conformations:

RMSFi =
√

⟨(ri − ⟨ri⟩)2⟩, (2.8)

where ri is the position of atom i and ⟨ri⟩ is its average position over the different
conformations observed. In order to study the dynamics via pLDDT, Guo et al.
[180] defined the AF2score,

AF2score = (pLDDTmax − pLDDT)
(pLDDTmax − pLDDTmin) , (2.9)

and found an average Pearson correlation of 0.85 between the AF2score and the
RMSF derived from molecular dynamics simulations of four distinct proteins.
However, other studies found only a very weak correlation (Pearson coefficient of
−0.069) between the pLDDT and the associated experimental B-factors of 330
X-ray crystal structures of proteins [182]. This contradictory result could perhaps
be partially explained by the author’s use of the Pearson correlation, which yields
large absolute values for linear correlation, whereas, based on previous works,
the linear correlation of the pLDDT is more aligned with the RMSF, which is
theoretically proportional to the square root of the B-factors via the following
relationship:

B =
(

8π2

3

)
RMSF2. (2.10)

In addition to pLDDT, AlphaFold2 also outputs the Predicted Aligned Error (PAE),
which estimates the error in the relative position of each pair of residues in the
protein. Guo et al. [180] report that, generally, the PAEs associated with a pair of
residues within the same domain are lower than the inter-domain PAEs, suggesting
a link between PAE and the dynamics of the protein. Furthermore, they report
a high correlation (PCC > 0.7) between the PAEs and the Cα distance variation
maps derived from molecular dynamics.

Other approaches inspired by AlphaFold2, although often slightly less precise
than the latter, have emerged, such as RoseTTAFold, which is also based on a similar
principle of information exchange between a sequence representation and a pair
representation [183]. Conceptually different approaches have also emerged, based on
the use of a single sequence instead of MSAs. These methods rely on PLMs trained
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in a self-supervised manner, i.e. without the objective of structure prediction. The
hope is that homology information is learned independently by the PLM, rather
than being explicitly constructed via the MSA. These include OmegaFold [184],
HelixFold [185], MonoFold [186] and ESMFold [138]. In May 2024, AlphaFold3 was
released [187]. It brings improvements in the prediction of protein-protein, protein-
RNA and protein-ligand interactions. It includes architectural modifications of
AlphaFold2. The Evoformer is simplified, with the MSA representation replaced by
a single representation (analogous to ESMFold’s Folding Block [138]) and renamed
Pairformer. The structure module is replaced by a generative diffusion module
trained to denoise noisy coordinates. These different methods tend towards the
prediction of a single state. However, since proteins are dynamic objects, taking
account of deformations and alternative conformations in prediction is an important
future step, as emphasized by the AlphaFold3 authors: ”A key limitation of protein
structure prediction models is that they typically predict static structures as seen
in the PDB, not the dynamical behaviour of biomolecular systems in solution.
This limitation persists for AF3, in which multiple random seeds for either the
diffusion head or the overall network do not produce an approximation of the solution
ensemble.”.

2.4 Deep learning methods for protein dynamics
prediction

2.4.1 Prediction of isotropic flexibility
From sequence The prediction of RMSF, defined in Eq. (2.8), or B-factors is an
initial approach to predicting a protein’s dynamics. Since B-values vary greatly
from protein to protein depending on the crystallographic experiment performed,
this prediction generally involves predicting Bnorm, the normalized B-factor,

Bnorm = B − ⟨B⟩
σB

, (2.11)

where ⟨B⟩ is the average of the B-factors and σB is the standard deviation of
the B-factors. The prediction of Bnorm is an old problem; the first approach to
predicting Bnorm from the amino acid sequence dates back to 1985, when P.A.
Karplus proposed a method based on a sliding window along the amino acid
sequence to weight empirical B-factor values from the neighbors of each amino
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acid [188]. Since this preliminary work, other approaches based on artificial neural
networks have emerged to predict protein flexibility. Schlessinger and Rost [189,
190] developed PROFbval, which also uses a sliding window processed by two
feed-forward networks, one of which is specific to buried residues. The predictions
from these networks are made based on the amino acid sequence, evolutionary
profiles, predicted secondary structure, and solvent accessibility.

In 2012, de Brevern et al. presented PredyFlexy [191], with an updated version
in 2019 [192], a model based on Support Vector Machines (SVM) predicting
structural flexibility from the sequence. This SVM was trained on experimental
B-factors from 169 X-ray structures and the RMSFs from molecular dynamics
simulations of these structures. This approach makes predictions per position,
providing residue classification (flexible, intermediate, rigid), normalized B-factors,
normalized RMSFs, and a confidence measure.

Yaseen et al., in 2016, proposed FLEXc [193], a feed-forward neural network
consisting of 250 hidden nodes, applied to a window of 15 residues. The network
predicts 3 classes (flexible, intermediate, rigid) for the central residue. The network
was trained on a set of 5,547 proteins to predict B-factors from Position-Specific
Scoring Matrices (PSSM), which represent the evolutionary conservation of amino
acid positions in a protein sequence, along with various contextual scores and
physical properties of the amino acids considered. They report performance
improvements compared to PredyFlexy on the task of classifying different levels of
flexibility.

In 2021, Vander Meersche et al. introduced MEDUSA [194], a deep convolutional
neural network trained on B-factors from 9,880 high-resolution proteins from the
PDB. The input features include PSSM, physical and chemical properties of amino
acids, and one-hot encoding of the sequence, while the output is a flexibility class
for each residue, with a selectable number of classes ranging from 2 to 5. The
authors report improved performance in flexibility class classification compared to
PROFbval. Other sequence-based approaches using bi-directional Long Short-Term
Memory (biLSTM) networks [195, 196, 197] report very good correlations between
predicted and experimental B-factors.

From structure To my knowledge, the only deep learning method for the
prediction of B-factor that includes structural information is OPUS-BFactor, a
method based on the use of ESM2 sequence embeddings and inter-residue backbone
information [198]. We can also mention other non-deep learning methods that
rely solely on representing protein structures as graphs, similar to the Gaussian
Network Model described in section Section 1.4.1. The first is Multiscale Weighted
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Colored Graphs (MWCGs) [199], which represent the protein as a graph, where
each interaction is weighted by distance. The graph is “colored” to distinguish
different types of interactions depending on the atom types involved in the bond.
The flexibility of each atom is then inferred from a centrality measure based on the
sum of weighted distances between the atom and other atoms. Scaramozzino et
al. [200] also developed a purely structural approach based on ENM. They define
the pairwise structural compliance, a measure of node displacement in the elastic
network model in response to an applied force, divided by the magnitude of this
force, and observe better correlations between this measure and B-factors compared
to simple fluctuations from the ANM.

2.4.2 Prediction of conformational landscape
Conformational landscape from CryoEM CryoEM allows proteins to be
captured in states close to their native environment. Although information about
different conformations and their relative distribution is embedded in the poses, how
this information is exploited depends on the methods used. Traditional approaches
reconstruct a 3D volume by estimating the poses and handle conformational hetero-
geneity by performing discrete classification into a limited number of conformations
[201, 202, 203]. These methods enable high-resolution reconstructions for multi-
ple discrete states but may struggle when continuous heterogeneity is present in
the sample. To address this, several methods have been proposed. Traditional
approaches represent heterogeneity using a low-dimensional linear manifold in the
space of volumes, relying on techniques like PCA [204, 205, 206] and normal mode
analysis (NMA) [207, 208], or even combining NMA with atomic displacements
from MD simulations [209, 210].

Deep learning approaches have aslo been proposed, such the variational autoen-
coder (VAE) CryoDRGN [211, 212], that learn a nonlinear manifold from the 2D
images specific to each dataset. This low-dimensional manifold allows arbitrary
sampling of the latent conformations, generating a continuous spectrum of con-
formations and creating a dynamic trajectory through 3D space. Other methods
using VAEs to capture conformational heterogeneity have also been proposed [213,
214, 215, 216]. Similarly, 3DFlex [217], implemented in the cryoSPARC software,
employs an autodecoder to predict a deformation field for the cryoEM map, further
enabling the modeling of continuous conformational variation.

Conformational sampling with AF2 As previously mentioned, AlphaFold2
was trained to predict a single conformation. In fact, it has been observed that
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in a set of 98 fold-switching proteins, AlphaFold2 captures only one of the two
conformations in 94% of cases [218]. Many researchers have attempted to modify
AlphaFold2 to enable it to predict alternative conformations of proteins. Most
of the methods works by altering the input MSA. Alamo et al. [219], showed
that reducing the number of sequences in the MSA used as input for AlphaFold2,
coupled with reducing the number of recycles in the model from three to one,
allowed AlphaFold2 to sample a wider variety of structures. The idea is that using
a shallower MSA introduces uncertainty into the co-evolutionary signals, which
increases conformational diversity. The authors demonstrated this approach by
predicting alternative conformations of protein transporters and G Protein Coupled
Receptors. Another approach, also involving modifications to the input MSAs, was
explored by Stein and Mchaourab [220]. The authors call their approach in silico
mutagenesis, which consists of artificially mutating entire columns of the MSA at
contact zones predicted by AlphaFold2, which are believed to stabilize the structure.
The authors illustrated their approach by predicting various conformations of
adenylate kinase. Wayment-Steele et al. and Monteiro da Silva et al. [221, 222]
propose two similar methods to predict different conformations, both based on
subsampling the initial MSA, which involves creating subgroups within the MSA.
Wayment-Steele et al. chose to form clusters based on sequence similarity, while
Monteiro da Silva et al. proceeded with repeated random subsampling, allowing
them to estimate the frequency distribution of different conformations. Another
approach, which acts not on the MSA but on the network parameters, involves
using dropout, a technique that randomly disables connections within the network.
This method is typically employed during training to regularize learning but can
also be applied during inference to introduce diversity into the predictions [223,
224]. Cfold [225], also proposes using sampling and clustering of the input MSA,
but they retrain the network specifically with a split of alternative conformation
to make sure that alternative conformations are not seen during training, making
sure that the network is really able to predict alternative conformations by itself.

Generative models Denoising Diffusion Probabilistic Models (DDPMs) are
generative models trained to denoise (inverse diffusion) random noise added (dif-
fusion) to data [226]. This allows them to generate new data from noise alone.
These models have been successfully applied to protein design, with approaches
such as Chroma [227], RFDiffusion [228], Genie and Genie 2 [229, 230]. Building
on DDPMs, Komorowska et al. proposed conditioning the generation of new
conformations through normal mode analysis [231, 232]. EigenFold [233] is also a
generative diffusion model that allows sampling a distribution of protein structures
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with normal modes. The authors of EigenFold define harmonic diffusion, which,
unlike adding Gaussian noise, incorporates the structural constraints of the pro-
tein by modeling it as a system of harmonic oscillators. This approach ensures
biologically plausible structures by maintaining the constraints between adjacent
residues, and it generates new conformations by progressively refining the structure
along the eigenmodes of the system during the reverse diffusion process. Similarly,
the Distributional Graphormer (DiG) framework introduced by Zheng et al. [234]
also leverages diffusion models to sample equilibrium distributions of molecular
systems. Flow matching, a generalization of diffusion models, learns continuous
transformations between distributions without stepwise noise addition, and has
been combined with Alphafold and ESMFold to capture conformational diversity
[235]. Diffusion models offer great flexibility in generating new structures; however,
they are prone to hallucination, and models trained on different protein families
still fail to generate accurate ensembles [187].
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DANCE

This chapter is based on the scientific article Explaining Conformational Diversity
in Protein Families through Molecular Motions, published on July 10, 2024, in
Scientific Data and available open access at the following link: https://www.
nature.com/articles/s41597-024-03524-5.
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Abstract
Proteins play a central role in biological processes, and understanding their confor-
mational variability is crucial for unraveling their functional mechanisms. Recent
advancements in high-throughput technologies have enhanced our knowledge of
protein structures, yet predicting their multiple conformational states and motions
remains challenging. This study introduces Dimensionality Analysis for protein
Conformational Exploration (DANCE) for a systematic and comprehensive de-
scription of protein families conformational variability. DANCE accommodates
both experimental and predicted structures. It is suitable for analysing anything
from single proteins to superfamilies. Employing it, we clustered all experimentally
resolved protein structures available in the Protein Data Bank into conformational
collections and characterized them as sets of linear motions. The resource facilitates
access and exploitation of the multiple states adopted by a protein and its ho-
mologs. Beyond descriptive analysis, we assessed classical dimensionality reduction
techniques for sampling unseen states on a representative benchmark. This work
improves our understanding of how proteins deform to perform their functions
and opens ways to a standardised evaluation of methods designed to sample and
generate protein conformations.

71



Chapter 3. DANCE

3.1 Introduction
Proteins orchestrate all biological processes, and their malfunctions often result in
disease. In recent years, high-throughput technologies have greatly improved our
knowledge of their amino acid sequences and 3D shapes [236, 175, 237, 5]. While
reaching the single-structure frontier [174], these advances have also highlighted the
complexities of how proteins move and deform to carry out their biological functions
[238, 63]. They have stimulated a renewed interest in the modeling of protein and
protein complex multiple conformational states [170]. In particular, the success
of the protein structure prediction neural network AlphaFold2 [153] has inspired
innovative strategies for modifying or repurposing it toward exploring protein
conformational space. These approaches involve forced sampling [239], modulation
of input multiple sequence alignment content and depth [221, 219], or guidance
with state-annotated templates [240, 241]. Although they have achieved promising
results for specific protein families, systematic assessments have revealed limitations
[218, 242]. In addition, studies sampling from low-dimensional representations or
manifolds learned from observed or simulated conformations [233, 234, 243] have
underscored the difficulty in predicting new, completely unseen states and the
importance of high-quality data for training or benchmarking.

Experimental techniques like X-ray crystallography, cryogenic-electron mi-
croscopy (cryo-EM), and nuclear magnetic resonance spectroscopy (NMR) are
essential for capturing protein functional states [244, 238]. The Protein Data Bank
(PDB) [5] offers access to multiple structural states for various proteins, solved
independently in different conditions, oligomeric states, and with diverse cofactors
and molecular partners. Researchers have actively engaged in efforts to collect,
cluster, curate, represent, visualise, and functionally annotate these states [245, 244,
246, 247]. These endeavours have provided valuable insights into the biologically
meaningful conformational space for specific protein families such as protein kinases
[248], RAS isoforms [249], ABC (ATP Binding Cassette) transporters [250], and
G-protein coupled receptors (GPCRs) [251]. However, producing or validating
functional annotations for structural states involves a substantial amount of manual
intervention. Despite the wealth of experimentally resolved protein conformational
variability, its full exploitation remains an ongoing challenge.

Ideally, one would like to comprehensively describe protein conformational vari-
ability with low-dimensional representations or manifolds amenable to visualisation
and interpretation. Principal Component Analysis (PCA) serves as a convenient
and robust means to reduce the dimensionality of a dataset, capturing maximum
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variability [252, 118]. The principal components extracted from a conformational
ensemble define 3D directions for every atom, and motions along them allow navigat-
ing the conformational space [120]. PCA has proven useful for extracting structural
transitions from sparse disconnected low-energy structural states [253, 254, 65, 124,
255, 256]. Unlike more complex non-linear dimensionality reduction techniques,
it offers the advantage of not depending on numerous adjustable parameters and
provides a straightforward geometrical interpretation.

Here, we describe a PDB-wide analysis of protein conformational variability
across various levels of sequence homology. Our fully-automated computational
pipeline, named Dimensionality Analysis for protein Conformational Exploration
(DANCE), systematically compiles collections of aligned protein conformations and
extracts their principal components. We interpret the representation space defined
by the main principal components as the linear motion manifold underlying the
observed conformations. We provide estimates of the intrinsic dimensionality of
these motion manifolds. To assess generative methods, we introduce a benchmark
set comprising ten conformational collections representing therapeutic targets with
substantial functional transitions. Additionally, we provide baseline performances
from classical linear and non-linear manifold learning techniques.

DANCE is versatile, handling both experimental and predicted structures with
varying amino acid sequences. It adopts an unbiased approach, avoiding predeter-
mined protein or domain definitions when building the conformational collections.
Considering the complete context of input protein chains enables a thorough exam-
ination of inter-domain motions. Furthermore, DANCE accommodates uncertainty
from unresolved protein regions without assuming potential conformations. It
introduces a weighting scheme to mitigate the imbalanced coverage of variables.

We provide several databases of conformational collections representing the
whole PDB as well as detailed information about the benchmark on Figshare
[257]. In addition, DANCE’s source code is available at: https://github.com/
PhyloSofS-Team/DANCE.

3.2 Methods

3.2.1 Overview of DANCE
DANCE takes as input a set of protein 3D structures (in Crystallographic Informa-
tion File or CIF format) and outputs a set of protein- or protein family-specific
conformational collections or ensembles (in CIF of PDB format). It first clusters
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Figure 3.1: Outline of the study. Our approach, DANCE, exploits both amino
acid sequences and 3D coordinates. We applied it to all experimentally determined
protein-containing 3D structures from the PDB. Alternatively, users can provide a
custom set of experimental structures or predicted models. DANCE first concen-
trates on sequences. It extracts them from the input structures (A) and clusters
them with MMseqs2 based on user-defined similarity and coverage thresholds (B).
For each cluster, It generates a multiple sequence alignment using MAFFT (C).
It then extracts all 3D coordinates (D), groups the conformations according to
the clusters identified in B and superimposes them to generate conformational
ensembles (E). The superimposition aims at minimizing the Root Mean Square
Deviation to a chosen reference, using the alignments produced by C for mapping
the residues. The examples of the bacterial enzymes adenylate kinase (in grey,
reference PDB code: 1AKEA) and MurD (in blue, 1E0DA), and the murine ABC
transporter P-glycoprotein (5KOYB) are depicted. The arrows indicate adenylate
kinase’s main motion. The horizontal lines behind the P-glycoprotein indicate the
boundaries for the membrane bilayer. Finally, DANCE summarises conformational
diversity through Principal Component Analysis (F). We further assessed the
ability of classical manifold learning techniques to reconstruct and extrapolate
conformations.
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and superimposes the input structures based on the similarities found in their
corresponding amino acid sequences. The users can choose to analysis all input
structures or only those representing monomeric biological units. DANCE then
determines the set of principal components sufficient to explain the variability
observed within each conformational ensemble. The algorithm unfolds in six main
steps depicted in Fig. 4.1.

• a- Extraction of sequences. The first step extracts the one-letter amino
acid sequences of all polypeptidic chains contained in the input CIF files. In
case of multiple models, DANCE retains only the first one. The names of the
residues with resolved 3D coordinates are taken from the atom site.label comp id
column. Residues missing from the protein structure are included as lowercase
letters in the sequence if they are defined in the entity poly seq category.
This information will help in clustering and aligning the sequences (see below).
Otherwise, they are replaced by the ”X” symbol. The ”X” symbol is also
used for unknown amino acid types and for modified amino acids without a
close natural neighbour. Sequences comprising less than 5 non-”X” residues
are then filtered out.

• b- Clustering of the sequences. DANCE clusters sequences using MM-
seqs2 [258]. The users can choose the desired levels of sequence similarity
and coverage, both set to 80% by default. The coverage is bidirectional by
default. This step outputs a TSV file specifying the clusters.

• c- Multiple sequence alignments. DANCE then aligns the sequences
within each cluster using MAFFT [259] with default parameters and the
BLOSUM62 substitution matrix [260]. It further removes all the columns
containing only Xs or gaps, and reorders the sequences according to their
PDB codes.

• d- Extraction of structures. DANCE extracts 3D coordinates of the
backbone atoms N, C, Cα, and the O atom, of all polypeptidic chains
contained in the input CIF files. It reconstructs missing O atoms based on
the other atom’s coordinates. It disregards residues with missing backbone
atoms and chains shorter than 5 residues.

• e- Generation of the conformational collections. DANCE then uses
the sequence clusters defined in (b) to group conformations and the residue
matching provided by (c) to superimpose them. The superimposition puts
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their centers of mass to zero and then aims at determining the optimal
least-squares rotation matrix minimizing the Root Mean Square Deviation
(RMSD) between any conformation and a reference conformation (see below).
This is achieved through the ultrafast Quaternion Characteristic Polynomial
method [261, 262]. The users can choose to account for all the atoms in the
superimposition, or only the Cα atoms. Optionally, the users can filter out the
conformations with too few (less than 5 by default) residues aligning to the
reference. As a post-processing step, DANCE reduces structural redundancy.
Namely, it removes any conformation A deviating by less than rmscut Å from
another one B, provided that the sequence of A is identical to or included in
that of B. The value of rmscut is 0.1 Å by default and is customizable by the
users. Finally, DANCE saves the conformational ensemble as a multi-model
file in PDB or CIF format. Notice that the models can display different amino
acid sequences. DANCE also outputs the corresponding multiple sequence
alignments (MSA) in FASTA format, and the matrix of all-to-all pairwise
RMSDs.

• f- Extraction of linear motions. DANCE performs PCA on the 3D
coordinates from each collection. This dimensionality reduction technique
identifies orthogonal linear combinations of the variables, namely the Carte-
sian coordinates, maximally explaining their variance (see below). These
linear combinations, which we refer to as principal components or PCA
modes, represent directions in the 3D space for every atom. Deforming
the protein structure using these components produce motions that connect
the conformations observed in the collection. For the sake of simplicity, we
directly refer to the principal components as to linear motions, although
they may not represent actual physical motions undergone by the protein.
Furthermore, we estimate the intrinsic dimensionality of the linear motion
manifold underlying an ensemble’s conformational variability as the number
of principal component explaining essentially all its positional variance. The
higher the dimensionality – the more complex the linear motions.

Choosing a reference

We choose the reference conformation for the superimposition as the one with the
amino acid sequence most representative of the MSA. For this, we first determine
the consensus sequence s∗ by identifying the most frequent symbol at each position.
We consider ”X” symbols as equivalent to gaps. Hence, each position is described
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by a 21-dimensional vector giving the frequencies of occurrence of the 20 amino
acid types and of the gaps. In case of ambiguity, we prefer an amino acid over a
gap, hence longer sequences over shorter ones, and an amino acid with a higher
BLOSUM62 score over a lower-scored one. Then, we compute a score for each
sequence s in the MSA reflecting its similarity to s∗ and expressed as,

score(s) =
P∑

i=1
σ(si, s

∗
i ), (3.1)

where P is the number of positions in the MSA and σ(si, s
∗
i ) is the BLOSUM62

substitution score between the amino acid si at position i in sequence s and the
consensus symbol s∗

i at position i. We set the gap score to mina,b(σ(a, b)) − 1 = −5.

Judging the quality of the MSA

We compute the identity level of an MSA as the average percentage of sequence
pairs sharing the same amino acid in a column, and the coverage as the percentage
of positions having less than 20% of gaps. In addition, we evaluate the global quality
of the MSA with a sum-of-pairs score, with σmatch = 1 and σmismatch = σgap = −0.5.
We normalise the raw sum-of-pairs scores by dividing them by the maximum
expected values. The final score for an MSA is thus expressed as,

scorerel(MSA) = score(MSA)(
n
2

)
Leff

, (3.2)

where is the raw MSA score, n is the number of chains or sequences, and Leff is
the effective length of the MSA, computed as,

Leff = max
s∈S

L(s)∑
i=1

I{si ∈ A}, (3.3)

where S is the set of sequences comprised in the MSA, L(s) is the length of the
aligned sequence s, and A is the 20-letter amino acid alphabet (e.g., excluding gap
characters).

Extracting linear motions

The Cartesian coordinates of each conformational ensemble can be stored in a
matrix R of dimension 3m×n, where m is the number of positions in the associated
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MSA and n is the number of conformations. Each position is represented by a C-α
atom. We compute the covariance matrix as,

C = 1
n− 1R

c(Rc)T = 1
n− 1(R − R̄)(R − R̄)T , (3.4)

where R̄ is obtained by averaging the coordinates over the conformations. Alterna-
tively, the users can choose to center the data on the reference conformation. The
covariance matrix is a 3m× 3m square matrix, symmetric and real.

The PCA consists in decomposing C as C = V DV T where V is a 3m × 3m
matrix where each column defines an eigenvector or a PCA mode that we interpret
as a linear motion. D is a diagonal matrix containing the eigenvalues. The sum of
the eigenvalues ∑3m

k=1 λk amounts to the total positional variance of the ensemble.
The portion of the total variance explained by the kth eigenvector or linear motion
is estimated as λk∑3m

k=1 λk
.

In addition, we estimate the collectivity [263, 264] of the kth eigenvector as,

coll(vk) = 1
m

exp
(

−
3m∑
i=1

v2
ki log v2

ki

)
. (3.5)

If coll(vk) = 1, then the corresponding motion is maximally collective and has all
the atomic displacements identical. In case of an extremely localised motion, where
only one single atom is affected, the collectivity is minimal and equals to 1/m.

We also apply PCA to the correlation matrix computed by normalising the
covariance matrix as,

Cori,j = Ci,j√
Ci,i

√
Cj,j

. (3.6)

In that case, the sum of the eigenvalues ∑3m
k=1 λk amounts to 1.

Handling missing data

As stated above, the conformations in a collection may have different lengths
reflected by the introduction of gaps in the associated MSA. We fill these gaps with
the coordinates of the conformation used to center the data (average conformation,
by default). In doing so, we avoid introducing biases through reconstruction of the
missing coordinates. Moreover, this operation results in low variance for highly
gapped positions, thus limiting their contribution to the extracted motions. To go
further and explicitly account for data uncertainty, we implemented a weighting
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scheme. Specifically, DANCE assigns confidence scores to the residues and include
them in the structural alignment step and the PCA. The confidence score of a
position i reflects its coverage in the MSA, wi = 1

n

∑
S 1aS

i ̸=”X”, where ”X” is the
symbol used for gaps. The structural alignment of the jth conformation onto the
reference conformation amounts to determining the optimal rotation that minimises
the following function [265],

E = 1∑
i wi

∑
i

wi(rc
ij − rc

i0)2, (3.7)

where rc
ij is the ith centred coordinate of the jth conformation and rc

i0 is the ith
centred coordinate of the reference conformation. The resulting aligned coordinates
are then multiplied by the confidence scores prior to the PCA.

Implementation details

We implemented DANCE in C/C++ and Python. It relies on the C++ GEMMI
library [266] to parse the CIF files and manipulate the structures. It runs MM-
seqs2 through the following command: cluster DB clusterDB tmp –cov-mode 0
-c $cov –min-seq-id $id. It launches MAFFT with the options auto, amino and
preservecase. The multiple sequence alignment and structure superimposition steps
are parallelized. For the PCA, we use the singular value decomposition (SVD)
implemented in NumPy [267] on the R matrix directly. SVD is computationally
more advantageous when 3m ≫ n, which is typically the case of our data, since
we only compute the required number of n components. We created structure
visualisations in Pymol v2.5.0 [4].

3.2.2 Application and extension of DANCE
DANCE is applicable to experimental 3D structures as well as predicted 3D models,
as long as they comply with the CIF standards.

Describing conformational variability over the whole PDB

We applied DANCE to all 748 297 protein chains with experimentally resolved
3D structures available in the PDB, as of June 2023. We downloaded all the
PDB entries in CIF format from the RCSB [268]. We replaced the raw CIF files
with their updated and optimised versions from PDB-REDO whenever possible
[269]. It took about 2.25 hours to run DANCE on the whole PDB on a desktop

79



Chapter 3. DANCE

computer with Intel Xeon W-2245 @ 3.90GHz and 32Go of RAM (Table A.1).
The most time consuming steps are the extraction and superimposition of the
3D structures to create the conformational ensembles. We ran DANCE at eight
different levels of sequence similarity, designated as lidcov, where id and cov are the
sequence identity and coverage thresholds, correspondingly, and range from 50 to
80%. For investigating how the ensembles transformed across levels, we focused on
the 18 616 conformational ensembles detected in the most relaxed set up, namely at
30% identity and 50% coverage (l30

50). For each ensemble, we extracted its reference
protein chain and we traced back the conformational ensembles to which it belonged
upon progressively applying stricter thresholds.

Focusing on the ABC superfamily

We extended DANCE usage beyond the single-chain and sequence-similarity
paradigms to describe the conformational variability of ABC (ATP Binding Cas-
sette) transporters. We retrieved a set of 354 ABC protein experimental 3D
structures from https://abc3d.hegelab.org [250]. They correspond to function-
ally relevant states annotated as biological units in the PDB. In most of these
structures, several polypeptidic chains, typically 2 or 4, encode the two nucleotide-
binding domains (NBDs) and two transmembrane domains (TMDs) of the ABC
architecture. In addition, some structures contain several ABC protein copies or
some ABC protein cellular partners (small molecules, substrate peptides, inter-
acting proteins). We chose the murine ABC transporter P-glycoprotein (5KOYA)
as reference for the subsequent analysis. Its 1182-residue long single polypeptidic
chain the full-length transporter architecture.

To cope with the high sequence divergence of the ABC superfamily, we relied on
structural similarity for grouping and matching the ABC conformations. Specifically,
we used the method Foldseek [163] to identity structures sharing significant similarity
with the reference and align them. We performed a first screen by querying the
reference against all individual chains (1 244 in total) and defined significant hits
as those with an e-value lower than 10.0. Then, for each structure, we estimated an
upper bound on its coverage of the reference by summing up the reference residue
ranges appearing in the alignments associated with its significant hits. We filtered
out the structures with coverage upper bounds lower than 90%. We performed
a second screen by querying the reference against the 209 remaining structures
defined as monomers by concatenating their chains. We identified two structures
(5NIK, 5NIL) spanning less than 90% of the reference. Permuting their chains
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did not increase their coverage and thus we removed them. To further detect
potentially suboptimal chain orderings, we computed reference to target residue
span ratios. We identified one structure, namely 7AHD, with a highly imbalanced
ratio of 1.6. Such a high value is indicative of large parts of the reference that
could not be aligned to the target structure. Permuting the four chains (A,B,C,D)
of 7AHD into (A,D,B,C) led to a more balanced ratio of 0.86. We did not observe
discrepancies for other structures and thus we retained their original chain ordering.
Finally, we removed the structures with low-quality alignments, i.e., with more
than 200 gaps or with a continuous gapped region of more than 60 positions.

Among the 195 structures finally selected, 4F4C, 7SHN and 7AHD contained
unknown or unrecognized amino acids which we removed. We ran Foldseek one
more time to generate a structure similarity-based multiple sequence alignment
centred on the reference 5KOYA. We trimmed the alignment and the 3D structures
by removing the residues inserted with respect to the reference. We gave the
trimmed alignment and 3D coordinate files as input to DANCE, starting directly
from step d (see the overview of DANCE algorithm above). For consistency and
comparison purposes, we asked DANCE to center the data on the reference. To
mitigate the impact of potential alignment errors, we applied weights reflecting
position-specific confidence scores (see above, Handling missing data). DANCE
structural redundancy reduction step removed 7 conformations, resulting in an
ensemble of 188 conformations.

We compared this ensemble with those generated by DANCE default sequence
similarity-based end-to-end procedure applied to the whole PDB. More specifically,
we took the ensembles generated at l80

80 and l30
50 and containing 5KOYA and we

rebuilt them with DANCE, applying the 5KOYA centering and the uncertainty
weighting scheme. We estimated the similarity between the ensembles’ motion
subspaces as the Root Mean Square Inner Product (RMSIP) [270, 126]. The latter
measures the overlap between all pairs of the l first PCA modes and is defined as,

RMSIP =

√√√√√1
l

l∑
i=1

l∑
j=1

(vSA
i .vSB

j )2, (3.8)

where vSA
i and vSB

j are the ith and jth PCA modes extracted from the confor-
mational ensembles SA and SB, and l is the number of modes considered for the
comparison. Moreover, we monitored the distance between the geometric centres
of the two NBDs defined by the C-α atoms of residues numbered 346-596 and
929-1182, respectively, in the reference 5KOYA.
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3.2.3 Benchmarking for the generation of unseen confor-
mations

We further investigated whether the extracted linear principal components could
be useful to predict unseen conformations. Moreover, since the manifold underly-
ing our data is a priori non-linear, we tested whether non-linear methods could
achieve better reconstructions than linear PCA. We focused on the widely used
kernel Principal Component Analysis (kPCA) [271, 272] and the uniform manifold
approximation and projection (UMAP) [273].

Dimension reduction with non-linear kernel PCA

The intuition behind kPCA is to map the input data points to a higher dimensional
space where they will be linearly separable by a classical PCA. The mapping
function ϕ : R3m → RM is not known. Instead of explicitly calculating it, we use a
kernel function k(ri, rj) = ϕ(ri)Tϕ(rj), where ri and rj are two conformations. We
considered three commonly used kernels,

• the polynomial kernel k(ri, rj) =
(

1
2σ2 rirT

j + c
)d

, where c = 1 and d = 3 by
default,

• the sigmoid kernel k(ri, rj) = tanh
(

1
2σ2 rirT

j + c
)
, where c = 1 by default,

• and the radial basis function (RBF) or Gaussian kernel k(ri, rj) = exp
(

− d(ri,rj)2

2σ2

)
,

where d(ri, rj) is the Euclidean distance between the two conformations ri

and rj.

We explored different values of the hyperparameter σ. For sufficiently large
values, i.e., 1

2σ2 rirT
j ≪ 1 or 1

2σ2d(ri, rj)2 ≪ 1, the kernel becomes effectively linear.
Thus, given the input coordinates R representing n conformations, we computed

the corresponding kernel matrix K of dimension n× n and decomposed it using
the classical PCA. The resulting principal components {ν1, ν2, ..., νn} can then be
expressed as,

νj =
n∑

i=1
ajiϕ(ri),where aji = 1

λj(n− 1)ϕ(ri)Tνj. (3.9)

Uniform manifold approximation and projection
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The UMAP algorithm first builds a graph representing the data in the ambient
space, and then determines the most similar graph in a lower dimension. It relies on
the assumptions that there exists a low-dimensional manifold on which the original
data would be uniformly distributed and that this manifold is locally connected.
Under such assumptions, any ball of fixed volume on the low-dimensional manifold
should contain approximately the same number of points. Thus, to build the graph,
UMAP defines balls in the ambient space centred at each point and encompassing its
nneigh nearest neighbours. The balls have variable sizes that reflect the topology of
the dataset in the ambient space. UMAP then connects points whose corresponding
balls overlap and computes the edge weights by combining the balls’ radii. The
resulting graphical representation is projected into a lower-dimensional space
by minimising the cross entropy between the high- and low-dimensional graphs,
which can be viewed as a force-directed graph layout algorithm. We explored
two hyperparameters, namely the number of neighbours nneigh controlling the
balls’ radii and the minimum distance dmin apart that points are allowed to be
in the low dimensional representation. Low values of nneigh will make UMAP
focus on local details of the dataset topology while high values will account for
more global properties. Increasing dmin will push points far from each other in the
representation space.

Generating conformations

For linear PCA, generating 3D conformations by combining the principal compo-
nents is straightforward. More specifically, given a set of l PCA modes computed
from the coordinates R, we generate a new conformation r∗

pred as,

r∗
pred = p∗V T

l + r̄, (3.10)

where the matrix Vk ∈ R3m×l contains the modes, r̄ ∈ R3m is the average conforma-
tion, and p∗ ∈ Rl is a point in the l-dimensional representation space defined by
the modes. The coordinates of p∗ specify the amplitudes of the modes.

For kPCA and UMAP, we need to learn an inverse transform function that
maps points in the l-dimensional representation space defined by the components
back to the input space. This problem is known as the pre-image problem. To
solve it for kPCA, we used kernel ridge regression of the input coordinates R on
their low-dimensional projections in the representation space as described in [274,
275] and implemented in the scikit-learn Python library [276]. The contribution
of the L2-norm regularisation is controlled through the hyperparameter α. More
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technically, α connects the squared L2-norm between a point in the representation
space and its reconstruction with the squared L2-norm of the kernel weights used
for the reconstruction. In the case of UMAP, we used the built-in inverse transform
function [273]. It relies on stochastic gradient descent to minimise the cross entropy
between the low-dimensional graph and its high-dimensional pre-image graph.

Leave-one-cluster-out cross-validation procedure

We assessed the predictive performance of PCA and kPCA with a leave-one-out
cross-validation procedure. Since the conformations are not evenly distributed
within an ensemble, we grouped them into clusters prior to the evaluation. We
performed the clustering in the l-dimensional PCA representation space, where
l is the minimal number of linear components sufficient to explain 90% of the
ensemble’s total positional variance. We used the k-means clustering [277] with
k = l + 2.

Given a clustered ensemble, we systematically tested the ability of the principal
modes inferred from l + 1 clusters to predict the conformations belonging to the
held-out cluster. We reconstructed each test conformation r∗ from its projection
p∗ in the l-dimensional representation space. For the classical PCA, we computed
the projection as,

p∗ = (r∗ − r̄)Vl. (3.11)

For the kPCA, the projection onto the principal component νj is expressed as,

ϕ(r∗)νj =
n∑

i=1
ajiϕ(R)Tϕ(r∗) =

n∑
i=1

ajiK(R, r∗). (3.12)

We evaluated the reconstruction error as the RMSD between the predicted confor-
mation r∗

pred and the original conformation r∗.

Distance to the training set

We estimated the difficulty of reconstructing a given conformation by computing
its distance to the convex hull defined by the conformations used for training
in the l-dimensional representation space. Setting the number of clusters in the
training set to l + 1 ensures that the convex hull will be a polytope of dimension
at least l. For instance, in 1 dimension, we need at least 2 affine-independent
points to define a 1-polytope. The explicit computation of the convex hull of n
points in l dimensions is an operation whose complexity is of the order of O(nl/2)
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[278] and rapidly becomes computationally infeasible as the value of l increases.
Nevertheless, the calculation of the distance of a given point to the hull does not
require computing the convex hull explicitly and is a much simpler computational
problem. It can be solved in quasilinear time with quadratic programming (QP).
Here, we used the efficient and exact QP simplex solver proposed in [279] and
implemented in the Computational Geometry Algorithms Library (CGAL) [280]. It
takes advantage of the low dimensionality of the representation space by observing
that the closest features of two l-polytopes are always determined by at most l + 2
points.

In order to compare distances across systems of different sizes, we scale them
by the number of positions m,

dnorm = d√
m
. (3.13)

This normalisation also allows relating distances in the representation space with
RMS deviations in the 3D Cartesian space. Indeed, let us consider an ensemble of
conformations exhibiting a purely one-dimensional motion. Any two conformations
distant by an RMSD of 1 Å in the original 3D space will be separated by a
normalised distance of 1 Å in the one-dimensional representation space.

Interpolating between states

We generated interpolation trajectories between ATPase states with PCA and
kPCA. We started from the conformational clusters defined in the leave-one-out
procedure and identified clusters 0 and 4 as the most extreme ones along the first
PCA component. Secondly, we used these two clusters only to learn PCA and
kPCA low-dimensional representation spaces. We computed the coordinates of the
clusters’ centres in these spaces and defined interpolation trajectories between them
with 50 regularly spaced intermediate points. We then generated 50 conformations
from the 50 intermediate points. We finally determined the minimal RMS deviation
between each generated conformation and the known conformations from clusters 1,
2 and 3. We qualitatively compared these trajectories with physics-based non-linear
trajectories computed with NOLB [113]. NOLB extracts normal modes from a
starting conformation and models the transition to a target conformation as a series
of twists extrapolated from these modes with optimal amplitudes, as described in
[281]. We chose 1KJUA from cluster 0 as the starting conformation and 1T5SA
from cluster 4 as the target conformation.
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3.3 Results
We used DANCE to chart the experimentally resolved conformational diversity of
protein families (Fig. 4.1). We explored eight levels of sequence similarity (sim) and
coverage (cov), denoted as lsim

cov , to group the ∼750K chains included in the PDB as
of June 2023 (Fig. A.1A and Table A.2). In the most conservative set up, namely
l80
80, less than 3% of the conformations remain isolated (Fig. A.1A, singletons).

Most of the conformational collections (or ensembles) are associated with multiple
sequence alignments of high quality across all levels (Fig. A.1B). Sequence identity
and coverage are more widely distributed in more relaxed conditions, but the
median values always remain very high, above 0.95 (Fig. A.1C-D).

3.3.1 Experimentally resolved conformations lie on low-
dimensional manifolds

Only one or two linear principal components suffice to explain almost half of the
ensembles’ conformational diversity (Fig. 3.2a). We interpret these components as
directions of motion, and by simplification, we will denote them as linear motions
in the following (see Methods). In the overwhelming majority of cases, less than
eight linear motions explain more than 90% of the total positional variance. These
observations hold true across all sequence identity and coverage levels. They indicate
that the conformational states captured by experimental techniques for a protein or
a protein family lie on a low-dimensional manifold. This low dimensionality is only
partially determined by the cardinality of the ensembles (Fig. A.2A-B). Almost
30% of the most highly populated ensembles (>50 conformations) detected at l80

80
can be comprehensively described with less than three linear motions (Fig. A.2C).
This proportion increases up to 46% in the most relaxed conditions, namely at l30

50
(Fig. A.2D).

The bacterial adenylate kinase gives an example of a one-dimensional motion
underlying its 42 conformations (Fig. 4.1e, in grey). One can easily classify the
conformations by visual inspection into two main states, open and closed, deviating
by about 7 Å. The bacterial enzyme MurD (Fig. 4.1e, in blue) and the murine
ABC transporter P-glycoprotein (Fig. 4.1e, in orange) also exhibit low-dimensional
opening-closing motions. In particular, the P-glycoprotein’s collection reveals a
rich spectrum of intermediate conformations between the open and closed forms
(Fig. 4.1e, in orange). The main motion involves about 70% of the protein and
modulates the volume of the transporter’s internal cavity within the lipid bilayer
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Figure 3.2: Evolution of protein conformational diversity across sequence
similarity levels. a. Proportion of conformational ensembles requiring n linear
PCA modes to explain 90% of their total positional variance, with n varying from 1
to 8. The number of modes n is an indicator of motion complexity. Singletons and
pairs are excluded. b. Cumulative distribution of the number of conformations
gained from the most stringent level, namely l80

80, with 80% sequence similarity and
coverage, to the most permissive one, l30

50, with 30% similarity and 50% coverage.
The 3D structures of the reference protein chains are depicted for a few ensembles.
c. Comparison of motion complexity between the most stringent and most relaxed
set ups. We considered only the cases where the ensemble at l30

50 is bigger than
the corresponding one at l80

80. Singletons and pairs are excluded. D-G. Detailed
evolution of three ensembles marked by colored dots in panel C. d. Motion
complexity expressed as a number of modes. The names and PDB codes of the
reference chains are indicated. e. Motion amplitude, measured as the maximum
RMSD between any two conformations (in Å). f. Conformational collection size.
G. Conformational diversity observed for the Bcl-2 family. On the top left, the 54
conformations comprised in the MCL1 ensemble at l80

80. At the bottom right, the
218 additional conformations at l30

50. The color code indicates the position in the
sequence, from the N-terminus in blue to the C-terminus in red.
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up to over 6,000 Å3 [282]. It explains about 80% of the total positional variance
on its own. The remaining variability is mostly due to rotations of the nucleotide
binding domains with respect to the transmembrane helical bundles and to loop
deformations.

3.3.2 A few protein families display huge conformational
expansion upon relaxing the sequence selection crite-
ria

To investigate how the conformational ensembles transformed with sequence similar-
ity, we systematically backtracked the 18 616 representative protein chains identified
at l30

50 across more stringent levels (see Methods). The fragment antigen-binding
regions display the largest growth between the most stringent and most relaxed
sequence selection criteria (Fig. 3.2). For instance, while the Fab6785 light chain’s
ensemble at l80

80 comprises a bit less than 300 conformations, it expands up to
over 12 500 conformations at l30

50 (Fig. 3.2b, PDB id: 4QHUH). With the largest
number of conformations at l80

80, the HIV-1 capsid protein’s ensemble however
displays a relatively limited expansion across the different levels, from 3 334 to
3 391 (Fig. 3.2b, 3J345). Bovine trypsin and its close homologs give an example of
an extensively characterized subfamily, with 470 different conformations detected
at l80

80. This ensemble expands by more than 5 folds, aggregating different serine
proteases, upon relaxing the criteria to l30

50 (Fig. 3.2b, PDB id: 1TAWA). Likewise,
the Beta-2-microglobulin and its close homologs have a large body of 1 465 confor-
mations at l80

80, growing further up to 2 025 conformations at l30
50 by including other

immunoglobulins (Fig. 3.2b, 7MX4B). By contrast, the reconstructed ancestral
tyrosine kinase AS, a common ancestor of Src and Abl, has only 2 conformations
available in the PDB and no close homologs. At l30

50, it serves as representative for
a huge ensemble of over 4 000 protein kinase conformations (Fig. 3.2b, 4UEUA).
Apart from these over-represented protein families or superfamilies, the ensembles
generally gain only a few conformations, with a median value of 4.

3.3.3 Family expansion may lead to an apparent motion
simplification

As an ensemble grows, the gained conformations may lie on the same motion
manifold, defined by the subset of principal components explaining the variance,
or give rise to new motions represented by new components (Fig. 3.2c). The
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bacterial long-chain flavodoxin exemplifies the second scenario (Fig. 3.2d-f, in
black). At l80

80, it undergoes a one-dimensional motion describing the transition
between a compact state and a partially unfolded conformation (Fig. A.3). Upon
relaxing sequence similarity to l30

50, the ensemble roughly doubles in size (Fig. 3.2f)
and the newly added conformations exhibit complex deformations of the FMN
binding pocket. As a result, five more linear motions are required to explain the
positional variance (Fig. 3.2d). Hence, in this case, the motions get more complex
when considering more distant homologs.

The emergence of new motions does not however systematically lead to an
increased motion complexity. The murine MCL1 gives an illustrative example of
apparent motion simplification upon expansion (Fig. 3.2d-f, in red, and Fig. 3.2g).
At l80

80, almost 30 components are needed to explain the variability observed over
the couple of hundreds conformations in the ensemble. They represent local defor-
mations of the inter-helical loops and the extremities (Fig. 3.2g and Fig. A.3).
Extending the ensemble to distant members of the Bcl-2 family brings in about
50 new conformations (Fig. 3.2f). They reveal a new extended state the protein
BAX adopts upon assembling into domain-swapped dimers [283]. The large am-
plitude transition between the compact conformation and the extended one takes
a big part in the variance, resulting in a drastically reduced motion complexity
(Fig. 3.2d). The benzaldehyde lyase BAL gives another example (Fig. 3.2d-f,
in blue) where the transition to a new state, adopted by the distant homolog
actinobacterial 2-hydroxyacyl-CoA lyase [284], dominates the variance (Fig. A.3).
The conformational variability transforms from small (<1Å) seemingly random
fluctuations to a one-dimensional motion.

Overall, about a third of the ensembles undergo an apparent motion simplifica-
tion upon expansion (Fig. 3.2c and Fig. A.4A). They likely represent protein
families where distant homologs exhibit novel distinct states. The larger the devia-
tions of these novel states with respect to the other ones, the higher the contribution
of the corresponding motions to the variance. To mitigate this variance-dependent
effect, we repeated the analysis on the correlation matrix. The latter estimates
the extent to which the residues move in the same direction, regardless of the
magnitude of their displacements. We found that the motion complexity still
decreases in over 20% of the ensembles (Fig. A.4B). This result indicates that
motion simplification does not merely reflect larger transitions ”hiding” smaller
rearrangements. A substantial fraction of protein families show evidence of more
concerted residue movements between more distant homologs.
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3.3.4 Beyond single chains and sequence similarity, the
ABC superfamily as a case study

We explored the possibility of using DANCE to chart the conformational variability
of remote homologs with low sequence similarity and variable chain composition.
We focused on the ABC (ATP Binding Cassette) transporter superfamily. The
ABC architecture comprises two nucleotide-binding domains (NBDs) and two
transmembrane domains (TMDs) encoded by one or several polypeptidic chains
(Fig. 3.3a). The NBDs are highly conserved across species and families, whereas the
TMDs exhibit various scaffolds associated with heterogeneous transport functions
[250]. We considered a collection of a few hundreds ABC protein experimental
3D structures [250], taking the single-chain murine P-glycoprotein as reference
(Fig. 3.3a, 5KOYA).

We bypassed DANCE sequence extraction, clustering and alignment steps and
directly gave it a pre-computed alignment built from structural similarities as input
(see Methods). Relying on structure rather than sequence similarity and considering
various oligomeric states provided a more comprehensive description of ABC trans-
porters’ functional motions and states (Fig. 3.3 and Movies S1-2). The resulting
ensemble comprises 188 conformations encompassing 295 protein chains, some of
which have sequence identity below 30% or coverage lower than 50% (Fig. 3.3a).
A set of 25 linear motions are required to explain the positional variance. By
comparison, the sequence similarity-based 5KOYA-containing collection generated
by DANCE at l30

50 contains only 71 conformations explained by only four linear
motions. These motions are essentially identical to those extracted from the 61
conformations at l80

80 (Fig. 3.3b, RMSIP = 0.99).
Despite having different motion complexities, the sequence- and structure-based

conformational collections have largely overlapping motion subspaces (Fig. 3.3b,
RMSIP ∼ 0.7). In particular, they all share the same most contributing motion
describing the transition between the transporter inward-closed and inward-open
forms (Fig. A.5). This functional transition controls the substrate access to the
transporter’s central binding pocket. It explains 45 to 70% of the variance on its
own and involves over two-thirds of the residues. The structure similarity-based
collection represents a quasi-continuum of increasingly open states (Fig. 3.3c, in
blue, and Movie S1) between two extreme dimeric forms, one from the human
lysosomal cobalamin exporter ABCD4 where the two NBDs are in contact and
the other from Salmonella typhimurium’s lipid A transporter MsbA with a widely
open cavity. The overwhelming majority of conformations are regularly spaced
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Figure 3.3: ABC transporters’ conformational variability. a. Examples
of protein structures from the ABC structure similarity-based conformational
collection. The reference chain (5KOYA) is on the left, where we indicate the
location of the two NBDs (∼500 residues) and two TMDs (∼700 residues). Within
each of the other structures, we highlight one chain in marine, give its percentage
of identity with the reference in squared brackets, and display the remaining
chains in transparent grey. The six marine chains were assigned to six different
collections by DANCE’s default sequence similarity-based end-to-end protocol at l30

50.
b. Comparison of motion subspaces extracted from the sequence-based ensembles
at l80

80 (61 conformations) and l30
50 (71 conformations) and the structure-based one

(188 conformations). Each matrix shows the absolute pairwise scalar products
computed for the first four PCA modes. The corresponding RMSIP are 0.99, 0.71
and 0.73. c. Distance between the geometric centres of the two NBDs (in Å). The
conformations are ordered along the x-axis from the most closed one to the most
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by inter-NBD distance increments smaller than 1 Å. By contrast, the sequence
similarity-based collections populate sparse regions of this continuous transition,
with a high concentration of semi-open and open states (Fig. 3.3c, in pink and
red, and Movie S2).

3.3.5 Classical manifold learning techniques can generate
highly accurate conformations

Beyond describing the observed conformational variability, we evaluated the ability
of several popular manifold learning techniques to generate unseen conformations.
To do so, we identified a set of ten conformational ensembles with very different
degrees of motion complexity (Fig. 3.4a and Table A.3). They comprise between
20 and over 3 300 conformations and their reference chains contain 80 to 1 200
residues. They represent proteins or protein families displaying substantial (≥ 5 Å)
and functionally relevant conformational changes, namely adenylate kinase (ADK)
[285, 286], MurD [287, 243], the calcium pump ATPase [288, 289], the ABC trans-
porters [290, 250], the small heat shock protein αB crystallin (Crys) [291, 292], the
heat shock protein HSP90 [293, 294], calmodulin (CALM) [295, 296], kinases (KIN)
[297, 298], RAS [299, 249], and the HIV capsid protein (CAP) [300, 301]. Most of
them have been extensively characterized by experimental structure determination
techniques or computational methods for simulating protein dynamics. Targeting
their motions or their specific conformations bears a therapeutic interest.

We chose the linear PCA as baseline and we considered four non-linear tech-
niques, namely kernel PCA (kPCA) [271, 272], UMAP [273], isoMAP [302] and
t-SNE [303]. While all techniques allow for projecting the conformations in a
low-dimensional space, only PCA, kPCA and UMAP allow for reconstructing con-
formations from the projections through an inverse transform. Furthermore, UMAP
is limited to a narrow range of dimensions and, as a consequence, we could apply it
only to a subset of the benchmark (see Methods). Hence, we primarily focus on the
comparison between PCA and kPCA in the following. We tested three different
kernels for kPCA, namely the sigmoid, polynomial and radial basis function (RBF)
kernels. Within each ensemble, we first learned low-dimensional representations of
a subset of conformations used as training samples. We then projected the test
conformations, not seen during training, to the learned representation space, and
mapped the projections back to the original 3D Cartesian space. The mapping is
determined analytically in the case of linear PCA and learned in the case of kPCA
and UMAP (see Methods). We evaluated the quality of the 3D reconstructions by
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Figure 3.4: Assessment of classical manifold learning techniques. a. Prop-
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max (log(y))−min (log(y)) . The minimum and maximum are determined over
the whole l80
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b. Distributions of the RMSD reconstruction errors (in Å) for each ensemble in
the benchmark set. We systematically reconstructed each conformation through
a leave-one-cluster-out cross-validation procedure (see Methods). We set the two
hyper-parameters of the kPCA (RBF kernel) to the values yielding the best re-
construction, for each ensemble. The protein names in the x-axis are ordered
according to motion complexity. The stars indicate the statistical significance of
the better performance of kPCA compared to linear PCA (one-sided paired t-test;
*: p-val < 1e−2; ***: p-val< 1e−5). c. RMSD reconstruction error in function of
the distance to the training set’s convex hull in the PCA representation space.93
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computing their RMS deviations from the original conformations. We found that
both PCA and kPCA (with RBF kernel) produced high-accuracy reconstructions
(RMSD error below 2Å) for almost all proteins (Fig. 3.4b). The error distribution
median and width vary from one protein to another and do not depend on motion
complexity. For instance, all reconstructed conformations of HSP90 deviate by less
than 3 Å from the original ones, while the reconstruction error can be as high as
14 Å for MurD. The distributions are overall shifted toward higher reconstruction
errors for ATPase and ABC, likely due to their large size (∼ 1 000 amino acids
compared to less than 500 for the other proteins, Table A.3), and for CALM,
likely due to the large amplitude of its motions (average RMSD = 10.38 ± 4.23 Å,
Table A.3). The nonlinear kPCA performed significantly better than the linear
PCA for all proteins from the benchmark. It allows increasing the percentage of
high-quality reconstructions (RMSD error<2Å) from 5 to 82% for MurD and from
18 to 26% for ABC (Table A.4). Nevertheless, the reconstruction accuracy of
kPCA varies greatly depending on the values of the two hyperparameters controlling
the kernel width and the amount of regularisation (Fig. A.6). The optimal values
vary from one system to another and determining them a priori is not trivial. The
sigmoid and polynomial kernels may be better suited than RBF for some of the
proteins, but the results are overall similar (Fig. A.7 and Table A.5). By contrast,
UMAP consistently produced reconstructions of substantially lower accuracy than
PCA and kPCA (Fig. A.7 and Table A.5). Moreover, its runtime was 100 to
100K times longer, depending on the representation space dimension.

3.3.6 Reconstruction accuracy strongly depends on the
distance to the training set

The quality of the predictions strongly correlates with the distance between the test
conformation and the training set’s convex hull in the low-dimensional representa-
tion space (Fig. 3.4c). The linear PCA produces highly accurate reconstructions,
with an RMSD error smaller than 2 Å, only for conformations lying in a close
vicinity to the training set’s convex hull (distance smaller than 3 Å). We observed
a similar tendency for kPCA (Fig. A.8). This dependence can be appreciated by
visualising how the conformations cluster in the representation space (Fig. A.9).
For instance, the most poorly reconstructed MurD conformation forms a singleton
located far away from all other conformations, particularly along the first most
important principal component (Fig. A.9B, dark dot). For this protein, the kPCA
performed substantially better than the PCA thanks to a better reconstruction of
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the most populated cluster (Fig. A.9B, light squares). Hence, the further away
from the training set, the more difficult the task. In addition, the overwhelming
majority of conformations lie outside of the training set’s convex hull. This obser-
vation agrees with a recent study showing that interpolation almost surely never
happens with high dimensional datasets [304]. The 14 conformations (out of 4 892
in total) located inside come from ADK, CALM, KIN, RAS and CAP and are all
reconstructed with high accuracy, the RMSD errors ranging from 0.2 to 2.9 Å.

3.3.7 Stereochemical quality and biological significance of
the generated conformations

We assessed the physical realism of the generated conformations with PROCHECK,
a popular software for checking the stereochemical quality of protein conformations,
by comparing them with expected statistics [305]. The PCA- and kPCA-generated
conformations displayed proportions of residues in the most favoured (or core)
regions of the Ramachandran plot comparable with the experimental conformations
(Fig. A.10). In particular, most of the conformations generated by kPCA for
ADK, MurD, Crys, HSP90, RAS and CAP had more than 90% of their residues
in the most favoured regions. Some of the generated conformations were even of
higher stereochemical quality than their experimental counterparts. For instance,
for the protein RAS, the linear PCA reconstruction greatly improved over the
crystallographic structure 1PLL (chain A), from 63.6% to 94.4% residues in the
most favoured Ramachandran regions. The secondary structures in the generated
conformation are visibly better defined than in the experimental one (Fig. A.11).
In this case, the PCA was able to denoise a poorly resolved conformation by learning
from the other conformations in the collection. The conformations generated for
CALM have the lowest stereochemical quality (Fig. A.10), in line with their large
RMSD errors (Fig. 3.4b). The conformations generated with UMAP have very
poor quality across all proteins to which we applied it (Fig. A.10, in green blue).

We further probed the biological significance of the representation spaces learnt
by PCA and kPCA by investigating whether linear interpolations between extreme
states in these spaces could recapitulate known intermediate conformations. We
focused on ATPase as a case study and we chose the centres of clusters 0 and 4 as the
end points (Fig. A.9C). We first learnt a low-dimensional representation space using
all conformations from the two clusters, and we then generated 50 regularly spaced
intermediate conformations along the trajectory between them. The generated
conformations approximate known intermediates with RMSD errors as low as 3.6Å
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Figure 3.5: Interpolation trajectories for ATPase. The interpolation trajecto-
ries were computed between clusters 0 and 4, as depicted on Figure S9. For the
kPCA, we used the RBF kernel with hyperparameters σ = 130 and α = 1×10−10. a.
For each of the 50 conformations generated along the PCA and kPCA trajectories,
we report its minimum RMS deviation (in Å) to the known experimental interme-
diate conformations from clusters 1, 2 and 3. b. The conformations generated by
PCA (left) and kPCA (middle) are colored according to the transition completion,
from blue to red. We compare them with the transition computed directly in the
ambient space by NOLB between the conformations 1KJUA from cluster 0 and
1T5SA from cluster 4. NOLB extrapolates motions computed from instantaneous
linear and angular velocities, defined with the normal mode analysis, to large
amplitudes (see Methods).
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in the first half of the trajectory and 3.8Å in the second half (Fig. 3.5a). These
results suggest that interpolating between known states in the learnt representation
space can be a valid strategy to generate plausible intermediate conformations.
In addition, one can visually appreciate the non-linear nature of the trajectories
computed with kPCA compared to the linear PCA (Fig. 3.5b, compared left and
middle panels). They bear some resemblance with trajectories computed using
non-linear normal mode analysis [306, 113, 281] (Fig. 3.5b, compared middle and
right panels).

3.3.8 Influence of data uncertainty handling and reference
conformation choice

We assessed the influence of accounting for uncertainty in the data by assigning a
weight to each position proportional to the number of conformations where it was
resolved (see Methods). In principle, this operation may impact the conformations’
superimposition and, as a consequence, their final coordinates, as well as the
extracted motions. In practice, 95% of the ∼35 000 ensembles at l80

80 – excluding
singletons and pairs, were not substantially altered by introducing position-wise
uncertainty weights (Fig. A.12). They displayed the same displacement amplitude
(± 1 Å) and motion complexity (± 1 mode). When the weights were impactful,
they effectively lowered the importance of large deviations in uncertain regions,
i.e., poorly covered by the conformations, and prevented the associated motions,
typically highly localised, from dominating the variance (Fig. A.12, red dots).
Hence, the uncertainty weights tended to induce smaller deviations (Fig. A.12A),
increased motion complexities (Fig. A.12B), and less dominant and more collective
main motions (Fig. A.12C-D).

In addition, we performed two experiments probing the impact of choosing a
different reference conformation. In the first one, we inverted the priority rules used
to resolve ambiguities in the definition of the consensus sequence (see Methods). At
a given position, in case of ambiguity, we would prefer a gap over an amino acid,
thus favouring shorter reference conformations over longer ones, and a less frequent
amino acid over a more frequent one, according to BLOSUM62 scores. Inverting
the priority rules led to a different choice of reference in about 20% of the ∼35 000
collections. The displacement amplitude remained the same (± 1 Å) in all cases
and the motion complexity deviated by more than one mode in only one case (TrwK
protein, from 6 to 4 modes). This analysis shows that changing the priority rules
has a negligible impact on the results. In the second experiment, we applied a much
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more drastic change. Namely, we chose as alternative reference the conformation
maximising the RMS deviation from the default reference. Moreover, we centred
the data on the reference conformation, instead of the average conformation,
prior to extracting the motions (see Methods). As expected, this setup yielded
the most contrasted results, with about 57% of the ∼35 000 collections being
impacted (Fig. A.13). It almost never happened that an ensemble consistently
displayed a high motion complexity or a weakly contributing main motion for both
references (Fig. A.13B-C). This result suggests that the ensembles exhibiting
complex conformational rearrangements (e.g., loop deformations) among a bulk
of conformations also include a few conformations comparatively far from all the
others. The motions simplify when performing the PCA from the perspective of
this minority. Normalising out the variance to focus on inter-residue correlations
attenuates this effect (Fig. A.14).

3.4 Discussion
This work proposes a new perspective on the variability of protein 3D conformations.
It provides the community with conformational collections representing the multiple
protein states available in the PDB and a fully automated versatile computational
pipeline to build custom collections. In doing so, it contributes to the representation
and managing of multiple conformational models of proteins. It enhances access and
understanding of protein functional states and motions and facilitates predictive
methods benchmarking. Both DANCE pipeline and the produced PDB-wide data
are readily usable in other studies.

We chose to rely on classical principal component analysis because of its intuitive
geometrical interpretation. It allows describing protein conformational variability
with a limited set of orthogonal vectors interpretable as linear motions. By default,
DANCE reports the number of PCA components required to explain 50%, 80%,
85%, 90%, 95%, and 99% of the total positional variance, thus providing a multi-
resolution description of the complexity of the motions explaining the observed
conformational diversity. We found that a few linear motions suffice to explain over
90% of the positional variance observed in the vast majority of the conformational
collections. The high complexity exhibited by a few protein families may reflect
nonlinear structural deformations or seemingly random fluctuations. For instance,
protein kinases exhibit highly complex loop conformational rearrangements despite
a well-conserved overall fold and only two metastable functional states. Our analysis
helps to identify such cases to prioritise their in-depth characterisation with more
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sophisticated nonlinear dimensionality reduction techniques.
We designed DANCE for dealing primarily with single polypeptidic chains

grouped based on sequence similarity. DANCE allows exploring different custom
levels of sequence identity and coverage, thus providing a versatile framework
for grouping the input 3D structures. Users who would like to save time may
bypass the creation of the clusters and directly start from the pre-computed and
weekly-updated clusters available through the RCSB PDB website. In addition,
by default, DANCE analysis encompasses all polypeptidic chains found in the
input 3D structures. These chains may be in different contexts and the motions
extracted from the collections may be associated with the binding to a partner, as
for BAX from the Bcl-2 family for instance. To ease interpretability, DANCE offers
the users the possibility to restrict the context by excluding the protein chains
engaged in oligomeric assemblies. Purely monomeric states represent about 15%
of the ∼ 750K protein chains available from the PDB. Future improvements will
include labelling complexes involving small molecules and accounting for them
in the clustering. Furthermore, to go beyond sequence-based homology and the
single-chain perspective, we have provided a proof-of-concept application study of
DANCE’s usefulness for comprehensively describing continuous motions shared
across very distant homologs comprising different numbers of chains. We showed
that ABC proteins with a wide diversity of substrates and transport mechanisms
share a highly collective high amplitude opening/closing motion underlying their
functioning.

In addition, our work goes beyond a descriptive analysis by showing that
classical manifold learning techniques can generate plausible conformations in the
vicinity of the training set. These conformations could serve as starting points for
further conformational exploration, e.g. with molecular dynamics simulations, or as
targets in drug discovery campaigns. A potential strategy would be to give them as
templates to RoseTTAFold All-Atom [307] with a putative drug to guide the folding.
The interpolation trajectories could provide insights into functional transitions
involving substantial secondary structure rearrangements (e.g. membrane fusion
proteins). The latter are particularly challenging to deal with for physics-based
approaches, such as normal mode analysis [306]. Finally, our results can serve as
baselines for evaluating more sophisticated approaches for predicting alternative
conformations.

DANCE superimposes the conformations onto representative references and
describes conformational variability as a set of linear motions of these references.
This approach offers a multi-view perspective on a given collection of conformations,
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easing interpretability and allowing for augmenting data in a learning context.
Nevertheless, radical differences between conformations, such as fold changes, might
confound the superimposition. Another limitation comes from the dependency
of the superimposition on the multiple sequence alignment heuristic. Ambigui-
ties arising from sequence similarities might result in suboptimal 3D coordinates
matching and, thus, in large deviations. Future improvements will explore multi-
reference or reference-free probabilistic frameworks and more refined accounts of
data uncertainty [308, 309, 310, 311, 312].

Data availability
We provide public access to the conformational collections compiled by DANCE
from the PDB at two levels of sequence similarity, namely l80

80 and l30
50 on Figshare

[257].This repository also contains the structural similarity-based ABC transporter
conformational collection along with the supplementary Movies S1 and S2. In ad-
dition, we provide detailed information about the benchmark set and the assessment
of PCA and kPCA.

Code availability
DANCE source codes are written in C/C++ and Python and are publicly available
on GitHub at https://github.com/PhyloSofS-Team/DANCE. This repository also
contains a Python wrapper allowing users to seamlessly run DANCE full pipeline.
In addition, we provide example input 3D structures.
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SeaMoon

This chapter is based on the preprint SeaMoon: Prediction of Molecular Motions
Based on Language Models, posted on September 25, 2024, on BioRχiv, freely
accessible at the following link: https://www.biorxiv.org/content/10.1101/
2024.09.23.614585v1.
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Abstract
How protein move and deform determines their interactions with the environment
and is thus of utmost importance for cellular functioning. Following the revolution
in single protein 3D structure prediction, researchers have focused on repurposing
or developing deep learning models for sampling alternative protein conformations.
In this work, we explored whether continuous compact representations of protein
motions could be predicted directly from protein sequences, without exploiting
nor sampling protein structures. Our approach, called SeaMoon, leverages protein
Language Model (pLM) embeddings as input to a lightweight (∼1M trainable
parameters) convolutional neural network. SeaMoon achieves a success rate of up
to 40% when assessed against ∼ 1 000 collections of experimental conformations
exhibiting a wide range of motions. SeaMoon capture motions not accessible to the
normal mode analysis, an unsupervised physics-based method relying solely on a
protein structure’s 3D geometry, and generalises to proteins that do not have any
detectable sequence similarity to the training set. SeaMoon is easily retrainable
with novel or updated pLMs.
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4.1 Introduction
Proteins coordinate and regulate all biological processes by adapting their 3D
shapes to their environment and cellular partners. Deciphering the complexities
of how proteins move and deform in solution is thus of utmost importance for
understanding the cellular machinery. Yet, despite spectacular advances in protein
structure determination and prediction, comprehending protein conformational
heterogeneity remains challenging [174, 238, 63].

Many recent approaches have concentrated on repurposing the protein structure
prediction neural network AlphaFold2 [153] to generate conformational diversity
[313]. Guiding the predictions with state-annotated templates proved successful
for modelling the multiple functional states of a couple of protein families [241,
240]. In addition, massive sampling strategies have shown promising results for
protein complexes [223] [224, 239] with notable success in the blind CASP15-
CAPRI assessment [314]. While they can be deployed seamlessly with parallelized
implementations [315], they remain highly resource-intensive.

Other strategies have explored promoting diversity by modulating and disen-
tangling evolutionary signals [316]. The rationale is that amino acid co-variations
in evolution reflect 3D structural constraints [317, 318, 319, 320, 321, 322, 323].
These evolutionary patterns can be extracted directly from alignments of evolu-
tionary related sequences, or, as shown more recently, by modeling raw sequences
at scale with protein language models [324, 140, 138]. Inputting shallow, masked,
corrupted or sub-sampled alignments to AlphaFold2 allowed for modelling distinct
conformations for a few protein families [325, 221, 219, 220]. Nevertheless, con-
tradictory findings have highlighted difficulties in rationalising the effectiveness of
these modifications and interpreting them, particularly for metamorphic proteins
[326, 218, 242].

More classically, physics-based molecular dynamics (MD) is a method of choice
to probe protein conformational landscapes [327]. Nonetheless, the time scales
amenable to MD simulations on standard hardware remain much smaller than
those spanned by slow molecular processes [328]. This limitation has stimulated
the development of hybrid approaches combining MD with machine learning (ML)
toward accelerating or enhancing sampling [329]. Deep neural networks can help to
identify collective variables from MD simulations as part of importance-sampling
strategies [328, 330, 331, 332, 333]. Or they may directly generate conformations
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according to a probability distribution learnt from MD trajectories or sets of
experimental structures [234, 334, 243, 335]. Diffusion-based architectures [187,
234, 233] and the more general flow-matching framework [235] provide highly
efficient and flexible means to generate diverse conformations conditioned on
cellular partners and ligands. Nevertheless, they are prone to hallucination, and
models trained across protein families still fail to approximate solution ensembles
[187].

On the other hand, the normal mode analysis (NMA) represents a data- and
compute-inexpensive unsupervised alternative for accessing large-scale, shape-
changing protein motions [306]. In particular, the NOLB method predicts protein
functional transitions in real-time by deforming single structures along a few collec-
tive coordinates inferred with the NMA [281, 113]. The generated conformations
are physically plausible and stereochemically realistic. However, the results strongly
depend on the 3D geometry of the starting structure, and although some of the
initial topological constraints can be easily alleviated [114], the NMA remains
unsuitable for modelling extensive secondary structure rearrangements.

Training and benchmarking predictive methods is difficult due to the sparsity
and inhomogeneity of the available experimental data [5]. X-ray crystallogra-
phy, cryogenic-electron microscopy (cryo-EM), and nuclear magnetic resonance
spectroscopy (NMR) have provided invaluable insights into protein diverse confor-
mational states [244, 238], but only for a relatively small number of proteins [225].
Small-angle X-ray or neutron scattering (SAXS, SANS) and high-speed atomic force
microscopy (HS-AFM) techniques allow for directly probing continuous protein
heterogeneity, but with limited structural resolution [336, 337, 338].

Ongoing community-wide efforts aim at revealing the full potential of the avail-
able structural data by collecting, clustering, curating, visualising and functionally
annotating experimental protein structures together with high-quality predicted
models [245, 244, 246, 247, 248, 249, 250, 251]. For instance, the DANCE method
produces movie-like visual narratives and compact continuous representations of
protein conformational diversity, interpreted as linear motions, from static 3D
snapshots [339]. DANCE application to the Protein Data Bank (PDB) [5] revealed
that the conformations observed for most protein families lie on a low-dimensional
manifold. Classical dimensionality reduction techniques can learn this manifold
and generate unseen conformations with reasonable accuracy, albeit only in close
vicinity of the training set [339].
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Here, we explored the possibility of predicting protein motions directly from amino
acid sequences without exploiting nor sampling protein 3D structures. To do so,
we leveraged protein Language Models (pLMs) pre-trained through self-supervision
over large databases of protein-related data. Our approach, SEAquencetoMOtioON
or SeaMoon, is a 1D convolutional neural network inputting a protein sequence
pLM embedding and outputting a set of 3D displacement vectors (Fig. 4.1).
The latter define protein residues’ relative motion amplitudes and directions. We
tested whether SeaMoon could capture the linear motion manifold underlying
experimentally resolved conformations across thousands of diverse protein families
[339]. To this end, we devised an objective function invariant to global translations,
rotations, and dilatations in 3D space. SeaMoon achieved a success rate similar
to the normal mode analysis (NMA) when inputting purely sequence-based pLM
embeddings [138] without any knowledge about protein 3D structures. It could
generalise to proteins without any detectable sequence similarity to the training set
and capture motions not directly accessible from protein 3D geometry. Injecting
implicit structural knowledge with sequence-structure bilingual or multimodal pLMs
[167, 162] further boosted the performance. This work establishes a community
baseline and paves the way for developing evolutionary- and physics-informed
neural networks to predict continuous protein motions.

4.2 Results
The approach introduced in this work, SeaMoon, predicts continuous representations
of protein motions with a convolutional neural network inputting pLM sequence
embeddings (Fig. 4.1). We considered the purely sequence-based pLM ESM2 [340]
and two structure-aware pLMs, namely ESM3 [167] and ProstT5 [162]. ESM3 is the
largest model (Table B.1), and it can condition on and reconstruct several protein
sequence and structural properties. ProstT5, the smallest model (Table B.1),
is a fine-tuned version of the sequence-only model T5 that translates amino acid
sequences into sequences of discrete structural states and reciprocally. We trained
and tested SeaMoon on over ∼ 17 000 experimental conformational collections
representing a non-redundant set of the PDB at 80% sequence similarity. We used
the principal components extracted from these collections as ground-truth linear
motions to which we compared SeaMoon predicted 3D vectors. The latter are not
anchored on a particular conformation and may be in any arbitrary orientation. To
allow for a fair comparison, we determined the optimal rotation and scaling between
the ground-truth and predicted vectors before computing the error between them
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Figure 4.1: Outline of SeaMoon’s approach. SeaMoon takes as input a
high-dimensional L × d matrix representation of a protein sequence of length
L computed by a pre-trained pLM. It outputs a set of 3D vectors of length L
representing linear motions. The training procedure regresses these output motions
(blue and red arrows) against ground-truth ones (yellow arrows) extracted from
experimental conformational collections through principal component analysis. For
this, SeaMoon identifies the transformation (rotation and scaling) minimising their
discrepancy, computed as a sum-of-squares error (SSE). We consider predictions
with a normalised error (NSSE) smaller than 0.6 as acceptable. We show the query
protein 3D structure only for illustrating the motions, it is not used by SeaMoon
nor by the pLM generating the input embeddings..

(see Methods for details). Based on visual inspection, we considered predictions as
acceptable when their normalised sum-of-squares error (NSSE) was smaller than
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0.6 (Fig. 4.1). See Fig. B.1 for illustrative examples of different error levels.
By comparison, random predictions typically display errors above 0.9 (Fig. B.2).
SeaMoon is highly computationally efficient. It took 12s to predict 3 motions for
each of 1 121 test proteins on a desk computer equipped with Intel Xeon W-2245
@ 3.90 GHz.

4.2.1 SeaMoon predicts motions from sequences across
diverse protein families

SeaMoon predicted at least one acceptable linear motion for each of 300 test proteins
from the purely sequence-based ESM2 embeddings (Table 4.1 and Fig. 4.2A). Its
performance was comparable to that of the purely geometry-based unsupervised
NMA. SeaMoon success rate improved by 25-40% when inputting structurally-
informed embeddings computed by ESM3 or ProstT5, outperforming the NMA by
a large margin (Table 4.1 and Fig. 4.2A). ProstT5, with the smallest number
of parameters and embedding dimensions (Table B.1), yielded the best overall
performance (Fig. 4.2A, paired Wilcoxon signed-rank test p-values < 10−6 and
< 10−9 with respect to ESM3 and ESM2, respectively). In addition, we observed
a boost in performance by up to 10% upon stimulating the model to learn a one-
sequence-to-many-motions mapping (Table 4.1 and Fig. 4.2A). More specifically,
we augmented the training data by using multiple (up to 5) reference conformations
per experimental collection (Table B.2). While the pLM embeddings within a
collection should be highly similar, the extracted motions may differ substantially
from one reference to another [339]. The positive impact of this data augmentation
strategy was most visible for the ESM-based version of SeaMoon (Table 4.1 and
Fig. 4.2A).

SeaMoon effectively generalised to unseen proteins across diverse families (Ta-
ble 4.1, Fig. 4.2B, Fig. B.4 and Fig. B.5). It produced high-quality predictions
at different levels of similarity to the training set, which we can interpret as varying
difficulty levels. For instance, SeaMoon-ESM2(x5) almost perfectly recapitulated
the motions of antibodies (Fig. B.5A), a class of proteins well represented in both
train and test sets. Beyond such easy cases, SeaMoon-ESM2(x5) could transfer
knowledge between proteins with similar 3D folds but highly divergent sequences.
The ATP-binding cassette (ABC) transporter superfamily provides an illustrative
example of this intermediate difficulty (Fig. B.5B). SeaMoon-ESM2(x5) accu-
rately predicted the opening-closing motion of a putative ABC transporter from
Campylobacter jejuni (Fig. B.5B, 5T1PE, NSSE = 0.33) that does not have any
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Figure 4.2: SeaMoon performance and generalisation capability. We report
the NSSE of the best match between 3 predictions and 3 ground-truth motions
for each of the 1 121 test proteins. A. Cumulative NSSE for six different versions
of SeaMoon and for the NMA. We tested three pLMs, namely ESM2, ESM3
and ProstT5, and a data augmentation strategy with 5 training samples per
experimental collection (x5). We cropped the plot at NSSE = 0.6 for ease of
visualisation; see Fig. B.3 for the full curves. Inset: Agreement between a selection
of methods. For instance, the first bar stack gives the numbers of proteins for
which the NMA (right red square) produced acceptable (NSSE < 0.6), inaccurate
(0.6 < NSSE < 0.75) or highly inaccurate (NSSE > 0.75) predictions among
the top-100 proteins best-predicted by SeaMoon-ESM2(x5) (left blue square). B.
NSSE computed for SeaMoon-ESM2(x5) in function of sequence and structural
similarity to the training set.

detectable sequence similarity with the training set. This motion is characteristic
of the “Venus Fly-trap” mechanism for transporting sugars [341] and is shared with
a structurally similar ABC transporter from the training set (Fig. B.5B, 7C68B,
TM-score = 0.83). At the most difficult level, SeaMoon-ESM2(x5) successfully
captured the motions of proteins completely unrelated to the training set, such as
the benzoyl-coenzyme A reductase from Geobacter metallireducens (Fig. B.5C,
4Z3ZF, NSSE = 0.37).

4.2.2 SeaMoon complementary to the normal mode analysis
We investigated the extent of the agreement between the purely sequence-based
version of SeaMoon and the purely geometry-based NMA (Fig. 4.2A, inset, and
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Table 4.1: Performance and dependence on the similarity to the training
set

Method Protocol Number of proteins Correlation Correlation
w. acceptable predictions w. TM-Score w. sequence id.

SeaMoon

ESM2 320 (29%) -0.35 -0.20
ESM2(x5) 348 (31%) -0.39 -0.26
ESM3 416 (37%) -0.31 -0.18
ESM3(x5) 436 (39%) -0.38 -0.22
ProstT5 439 (39%) -0.32 -0.12
ProstT5(x5) 452 (40%) -0.37 -0.20

NMA 303 (27%) -0.09 0.03

We consider predictions as acceptable if their normalised sum-of-squares error is smaller
than 0.6. The highest success rate is highlighted in bold.

Fig. B.6). Among the top-100 proteins best-predicted by SeaMoon-ESM2(x5),
about half exhibit motions accessible to the NMA (Fig. 4.2A, inset). Most of
these motions involve a large portion of the protein (median collectivity κ =
0.69) and correspond to large conformational changes (median deviation of 5.1Å).
They include functional opening-closing motions of virulence factors, thermophilic
proteins, metalloenzymes, periplasmic binding proteins, dehydrogenases, glutamate
receptors, and antibodies (see Fig. B.7 for illustrative examples). On the other
hand, the NMA performed extremely poorly for a third of SeaMoon-ESM2(x5)
top-100 (NSSE > 0.75, see Fig. 4.2A, inset). The associated motions tend to be
localised with median collectivity κ = 0.20.

The bacterial toxins PemK and protective antigen (PA) from anthrax illustrate
SeaMoon’s capability to go beyond the NMA physics-based inference for highly
localised motions and fold-switching deformations (Fig. 4.3). SeaMoon-ESM2(x5)
captured the PemK’s loop L12 motion with high precision (Fig. 4.3A, NSSE =
0.24) whereas the NMA failed to delineate the mobile region in the protein and to
infer its direction of movement (Fig. 4.3A, in red). This highly localised motion
(κ = 0.17) plays a decisive role in regulating PemK RNAse activity by promoting
the formation of the PemK-PemI toxin-antitoxin [342]. In the anthrax protective
antigen, SeaMoon-ESM2(x5) accurately predicted the relative motion amplitudes
and directions of an 80 residue-long region that detaches from the rest of the protein
upon forming an heptameric pore Fig. 4.3B). By contrast, the NMA predicted a
breathing motion poorly approximating the ground-truth one (Fig. 4.3B), likely
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due to its assumption that proteins behave as elastic networks. PA’s ∼30Å-large
conformational transition is essential for the translocation of the bacterium’s edema
and lethal factors to the host cell [343]. PemK and PA do not have any detectable
sequence similarity to the training set. SeaMoon likely leveraged information
coming from training proteins with similar folds and functions from other bacteria
[344, 345].

Reciprocally, SeaMoon covered 60% of the top-100 proteins best-predicted
by the NMA with ESM2 embeddings, and up to 75% with ProstT5 embeddings
(Fig. 4.2A, inset, and Fig. B.6). Using implicit structural knowledge allowed
recovering elastic motions such as that exhibited by the mammalian plexin A4
ectodomain (Fig. B.8, NSSE = 0.28). Taken together, SeaMoon-ProstT5(x5) and
the NMA approximated the motions of 554 test proteins (out of 1121, 49%) with
reasonable accuracy (Table 4.1). This result suggests that combining SeaMoon
transfer learning approach with the physics- and geometry-based NMA could be a
valuable strategy.

4.2.3 SeaMoon can recapitulate entire motion subspaces
Beyond assessing individual predictions, we evaluated the global similarities between
predicted and ground-truth 3-motion subspaces focusing on the test proteins for
which SeaMoon produced at least one acceptable prediction (Table 4.1). We found
that SeaMoon motion subspaces were fairly similar to the ground-truth ones, with
a Root Mean Square Inner Product (RMSIP) [126, 121, 122] higher than 0.5, for
almost two thirds of these proteins. We observed an excellent correspondence for
a dozen proteins, e.g., the Mycobacterium phage Ogopogo major capsid protein
(Fig. 4.4 and Fig. B.9). The purely sequence-based SeaMoon-ESM2(x5) achieved
an RMSIP of 0.75 on this protein, and the structure-aware SeaMoon-ProstT5(x5)
reached 0.82. SeaMoon-ProstT5(x5) first, second and third predicted motions
had a Pearson correlation of 0.93, 0.73 and 0.75 with the first, third and second
ground-truth principal components, respectively (Fig. 4.4A). The associated NSSE
were all smaller than 0.5 (Fig. 4.4B). By inspecting the training set, we could
identify several major capsid proteins from other bacteriophages sharing the same
HK97-like fold as the Ogopogo one (TM-score up to 0.78), despite relatively low
sequence similarity (up to 34%). The ability of SeaMoon to recapitulate the
Ogopogo protein entire motion subspace with reasonable accuracy likely reflects
the high conservation of major capsid protein dynamics upon forming icosahedral
shells [346].
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SeaMoon-ESM2(x5)

NSSE = 0.10

Normal Mode Analysis

NSSE = 0.76

7EWJG NSSE = 0.24 NSSE = 0.77

Ground-truth SeaMoon-ESM2(x5) Normal Mode AnalysisA.

B.

1TZOA

Figure 4.3: Examples of motions well predicted by SeaMoon and not by
the NMA. The arrows depicted in yellow, blue and red on the grey 3D struc-
tures represent the ground-truth motions and the best-matching predictions from
SeaMoon-ESM2(x5) and the NMA, respectively. A. Bacterial toxin PemK (PDB
code: 7EWJ, chain G) from the test set. It does not have any detectable sequence
similarity to the training set B. Anthrax protective antigen (PDB code: 1TZO,
chain A) from the validation set. We show the two most extreme conformations
of the collection on the left, colored according to the residue index, from the N-
terminus in blue, to the C-terminus in red. The closest homolog from the training
set shares 35% sequence similarity.

4.2.4 Contributions of the inputs and design choices
We investigated the contribution of SeaMoon inputs, architecture and objective
function to its success rate through an ablation study, starting from SeaMoon-
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Figure 4.4: Motion subspace comparison and deformation trajectories.
A-B. Ogopogo major capsid protein motion subspace. PDB code: 8ECN, chain
B. A. Pairwise similarities measured as Pearson correlations between the ground-
truth motions and SeaMoon-ProstT5(x5) predictions. B. Pairwise discrepancies
measured as NSSE. C-E. Trajectories of a human ABC transporter (PDB code:
7D7R, chain A) deformed along its first ground-truth principal component (C)
and the best-matching SeaMoon-ProstT5(x5) prediction (D-E). D. The prediction
is optimally aligned with the ground truth. E. The orientation of the prediction
minimises the protein conformation’s angular velocity. Each trajectory comprises
10 conformations coloured from blue at the N-terminus to red at the C-terminus.

ProstT5 baseline model (Table B.3 and Fig. B.10). Inputting random matrices
instead of pre-trained pLM embeddings or using only positional encoding had the
most drastic impacts. Still, we observed that the network can produce accurate
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predictions for over 100 proteins in this extreme situation (Fig. B.10, in grey).
Annihilating sequence embedding context by setting all convolutional filter sizes to
1 also had a dramatic impact, reducing to success rate from 40 to 25% (Table B.3
and Fig. B.10). Moreover, a 7-layer transformer architecture (see Methods)
underperformed SeaMoon’s convolutional neural network, despite having roughly
the same number of free parameters (Fig. B.10, in brown). Finally, disabling
either sign flip or reflection (i.e., pseudo-rotation) or permutation when computing
the loss degraded the performance by 6 to 15% (Fig. B.10, in light green). This
result underlines the utility of implementing a permissive and flexible comparison
of the predicted and ground-truth motions during training.

4.2.5 SeaMoon practical utility to deform protein struc-
tures

SeaMoon does not use any explicit 3D structural information during inference. Its
predictions are independent of the global orientation of any protein conformation,
making it impractical to directly use them to deform protein structures. To
partially overcome this limitation, we propose an unsupervised procedure to orient
SeaMoon predicted vectors with respect to a given protein 3D conformation. This
method exploits the rotational constraints of the ground-truth principal components.
Namely, the total angular velocity of the reference conformation subjected to a
ground-truth principal component is zero (see Methods). Therefore, we determine
the rotation that must be applied to the predicted motion vectors to minimize the
total angular velocity of a target conformation.

This strategy proved successful for the vast majority of SeaMoon’s highly
accurate predictions. SeaMoon-ProstT5(x5) predicted motion vectors, oriented
to minimise angular velocity, exhibit an acceptable error (< 0.6) in 85% of cases
where the optimal alignment with the ground truth results in NSSE < 0.3. This
result indicates that predictions that approximate well the ground-truth principal
components also preserve their properties. The human ABC transporter sub-family
B member 6 gives an illustrative example where the third predicted motion vector
approximates the first ground-truth principal component with NSSE = 0.20 upon
optimal alignment and 0.22 upon angular velocity minimisation (Fig. 4.4C-E).
Overall, the procedure allowed for correctly orienting acceptable predictions for
215 test proteins.

Note that this post-processing increases computing time significantly, from 12s
to 24m over the 1 121 test proteins on a desk computer equipped with Intel Xeon
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W-2245 @ 3.90 GHz.

4.3 Discussion
This proof-of-concept study explores the extent to which protein sequences encode
functional motions. SeaMoon reconstructs these motions within an invariant
subspace directly from sequence-based pLM embeddings. Our results indicate that
incorporating structure-aware input embeddings significantly improves the success
rate. Moreover, they highlight SeaMoon’s ability to transfer knowledge about
motions across distant homologs, leveraging the universal representation space of
pLMs. However, the framework’s capacity to predict entirely novel motions has
yet to be fully assessed.

SeaMoon’s transfer learning approach complements unsupervised methods that
rely solely on the 3D geometry of protein structures, such as Normal Mode Analysis
(NMA). Future work will focus on integrating these two sources of information into
a unified, end-to-end framework. Incorporating explicit structural information for
a target protein could resolve the ambiguity in orienting predicted motions without
requiring ground-truth knowledge.

One current limitation is the scarcity of functional motions in the training set,
raising concerns about its accuracy and completeness. Both SeaMoon and NMA
struggle to predict certain motions, suggesting that these may lack biological or
physical relevance. Conversely, SeaMoon could be used to assess the evolutionary
conservation of motions. Another limitation of the current approach is its reliance
on a linear description of protein motion subspaces. Linear principal components
are insufficient for describing complex loop deformations or large rearrangements of
secondary structures. Introducing non-linearity could yield more realistic motion
predictions. Future work will address these issues, potentially augmenting the
training set with in silico generated data, such as motions derived from MD and
NMA simulations, or protein conformations predicted by AlphaFold.

Despite these limitations, the current findings offer valuable insights for integra-
tive structural biology. SeaMoon provides a compact representation of continuous
structural heterogeneity in proteins, enabling the sampling of conformations through
a generative model. Additionally, the estimated motion subspaces can be used to
compute protein conformational entropy. Lastly, our framework is highly versatile,
featuring a lightweight, trainable deep learning architecture that does not depend
on fine-tuning a large pre-trained model. This flexibility allows users to easily
adapt the system to new input pLM embeddings without modifying the model
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architecture.

4.4 Methods

4.4.1 Datasets
To generate training data, we constructed a non-redundant set of conformational
collections representing the whole PDB (as of June 2023) using DANCE [339].
To ensure high quality of the data, we replaced the raw PDB coordinates with
their updated and optimised versions from PDB-REDO whenever possible [269].
We used a stringent setup where each conformational collection is specific to a
set of close homologs. Specifically, any two protein chains belonging to the same
collection share at least 80% sequence identity and coverage. We filtered out the
collections with too few or too many data points. Namely, we asked for at least
4 and at most 500 conformations and a representative protein chain comprising
between 30 and 1 000 residues. We further retained only Cα atoms (option -c)
and used coordinate weights to account for uncertainty (option -w).

For each collection, DANCE extracted the K = 3 principal components con-
tributing the most to its total positional variance [339]. We interpret these com-
ponents as the main linear motions explaining the collection’s conformational
diversity. Namely, the kth principal component defines a set of 3D displacement
vectors {x⃗GT

ik , i = 1, 2, ...L} for the L protein residues’ Cα atoms. We normalised
these vectors to facilitate their comparison across different proteins, such that∑L

i=1 ∥x⃗GT
ik ∥2 = L. We further applied three filtering criteria with the aim of exclud-

ing collections with low diversity or highly non-linear complex deformations: (i)
maximum Root Mean Squared Deviation (RMSD) between any two conformations
of at least 2 Å, (ii) first principal component (main linear motion) contributing
at least 80% of the total variance and (iii) involving at least 12 residues, i.e.,
L× κ ≥ 12, where κ is the collectivity of the principal component (see definition
below). This operation resulted in 7 339 collections, randomly split between train
(70%), validation (15%) and test (15%) sets.

DANCE makes use of a reference conformation to superimpose the Cα atoms’
3D coordinates and centre them prior to extracting motions with PCA. By default,
the reference corresponds to the protein chain with the most representative amino
acid sequence [339]. In order to augment the data, we defined up to 4 alternative
reference conformations, in addition to the default one (option -n 5). At each
iteration, DANCE chose the new reference conformation as the one displaying
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the highest RMSD from the previous one. This strategy maximises the impact of
changing the reference and thus the diversity of the extracted motions.

4.4.2 Model Specifications
Input features

SeaMoon takes as input embeddings computed from pre-trained pLMs, namely
Evolutionary Scale Models ESM2-T33-650M-UR50 [340] and ESM3-small (1.4B)
[167], as well as Protein sequence-structure T5 [162]. ESM2-T33-650M-UR50 is
a BERT [147] style 650-million-parameter encoder-only transformer architecture
trained on all clusters from Uniref50 [149, 148], a version of UniProt [236] clustered
at 50% sequence similarity, augmented by sampling sequences from the Uniref90
clusters of the representative chains (excluding artificial sequences). ESM3-small
(1.4B) is a transformer-based [135] all-to-all generative architecture that both
conditions on and generates a variety of different tracks representing protein
sequence, secondary and tertiary structure, solvent accessibility and function. It
was trained on over 2.5 billion natural proteins collected from sequence and structure
databases, including UniRef, MGnify [347], OAS [348] and the PDB [5], augmented
with synthetic sequences generated by an inverse folding model [167]. Protein
sequence-structure T5 is a bilingual pLM trained on a high-quality clustered version
of the AlphaFold Protein Structure Database [349, 175] to translate 1D sequences
of amino acids into 1D sequences of 3Di tokens representing 3D structural states
[163] and vice versa. The 3Di alphabet, introduced by the 3D-alignment method
Foldseek [163], describes tertiary contacts between protein residues and their nearest
neighbours. This 1D discretised representation of 3D structures is sensitive to fold
change but robust to conformational rearrangements. Protein sequence-structure
T5 expands on ProtT5-XL-U50 [140], an encoder-decoder transformer architecture
[156] trained on reconstructing corrupted amino acids from the Big Fantastic
Database [350] and UniRef50. Throughout the text, we refer to these pLMs as
ESM2, ESM3 and ProstT5, respectively. We used the pre-trained pLMs as is,
without fine-tuning their weights, and we gave them only amino acid sequences as
input.

Model’s architecture

SeaMoon’s architecture is a convolutional neural network [351] taking as input a
sequence embedding of dimensions L×d, with L the number of protein residues and
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d the representation dimension of the chosen pLM, namely 1 280 for ESM2, 1 536
for ESM3, and 1 024 for ProstT5, and outputting K predicted tensors of dimensions
L×3. It comprises a linear layer followed by two hidden 1-dimensional convolutional
layers with filter sizes of 15 and 31, respectively, and finally K parallel linear layers
(Table B.1). SeaMoon’s convolutional architecture allows handling sequences of
any arbitrary length L and preserving this dimension throughout the network. All
layers were linked through the LeakyReLu activation function [352], as well as
80% dropout [353]. We experimented with other types of architectures, including
those based on sequence transformers, and chose the one based on CNNs as it
demonstrated the maximum accuracy at a reasonable number of trained parameters.
Please see Table B.3 and Fig. B.10 for more details. We implemented the models
in PyTorch [354] v2.1.0 using Python 3.11.9.

By design, the SeaMoon model predicts the K motion tensors in a latent space
that is invariant to the protein’s actual 3D orientation. To align these predictions
with a given 3D conformation, additional information, such as the ground-truth
motions, is required, as explained below.

Loss function

We aim to minimise the discrepancy between the predicted tensor X and the
ground-truth tensor XGT, both of dimensions L×K × 3, expressed as a weighted
aligned sum-of-squares error loss,

L = 1
L

min
R,S,P

(
L∑

i=1
wi∥R(PXGT

i )T − (SXi)T ∥2
F

)
, (4.1)

where Xi defines the set of K 3D displacements vectors {x⃗ik ≡ (Xi,k,·)T , k =
1, 2, ...K} predicted for the Cα atom of residue i, XGT

i defines the corresponding
ground-truth 3D displacement vector set, ∥ · ∥F designates the Frobenius norm, and
wi is a weight reflecting the confidence in the ground-truth data for residue i [339].
It is computed as the proportion of conformations in the experimental collection
with resolved 3D coordinates for residue i. The matrices R, of dimension 3 × 3,
and P , of dimension K ×K, allow for rotating and permuting the ground-truth
vectors to optimally align them with the predicted ones. We chose to apply the
transformations to the ground-truth vectors for gradient stability. We allow for
rotations R because SeaMoon relies solely on a protein sequence embedding as
input. Its predictions are not anchored in a particular 3D structure and hence,
they may be in any arbitrary orientation. We allow for permutation P to stimulate
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knowledge transfer across conformational collections. The rationale is that a motion
may be shared between two collections without necessarily contributing to their
positional variance to the same extent. Additionally, we allow for scaling predictions
with the K ×K diagonal matrix S, so that SeaMoon can focus on predicting only
the relative motion amplitudes between the amino acid residues.

In practice, we first jointly determine the optimal permutation P and rotation
R of the ground-truth 3D vectors. We test all possible permutations, and, for
each, we determine the best rotation by solving the orthogonal Procrustes problem
[355, 356]. We shall note that the optimal solution may be a pseudo-rotation, i.e.,
det(R) = −1, which corresponds to the combination of a rotation and an inversion.
The loss can then be reformulated as,

L = 1
L

min
S

(
K∑

k=1

L∑
i=1

wi∥x⃗GT-trans
ik − Skkx⃗ik∥2

)
, (4.2)

where x⃗GT-trans
ik is the ground-truth 3D displacement vector for residue i matching

the predicted 3D vector x⃗ik and aligned with it, and Skk ∈ R is the kth scaling
coefficient, i.e. the kth non-null term of the diagonal scaling matrix S. The optimal
value for Skk is computed as,

Skk =
∑L

i=1 wi(x⃗GT-trans
ik )T x⃗ik∑L

i=1 wi∥x⃗ik∥2 . (4.3)

Training

We trained six models (Table B.2) to predict K = 3 motions using the Adam
optimizer [131] with a learning rate of 1e-02. We used a batch size of 64 input
sequences and employed padding to accommodate sequences of variable sizes in
the same batch. We trained for 500 epochs and kept the best model according to
the performance on the validation set.

Inference

We provide an unsupervised procedure to orient SeaMoon’s predicted motions
with respect to a target 3D conformation C⃗i during inference. This approach
relies on the assumption that correct predictions comply with the same rotational
constraints as ground-truth motions (see Supplementary Methods). Specifically,
these constraints state that the cross products between the positional 3D vectors
of the reference conformation C0 and the 3D displacement vectors defined by a
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ground-truth principal component XGT
k result in a null vector,

L∑
i=1

C⃗i

0
× x⃗GT

ik = 0⃗. (4.4)

Assuming that the motion tensor Xk predicted by SeaMoon preserves this property,
we determine the rotation R that minimises the following cross-product,

L∑
i=1

C⃗i ×Rx⃗ik = 0⃗. (4.5)

This problem has at most four solutions and we solve it exactly using the symbolic
package wolframclient in Python. See Supplementary Methods for a detailed
explanation. In practice, we observe that these four solutions reduce to two pairs
of highly similar rotations.

4.4.3 Evaluation
We assessed SeaMoon predictions on each test protein from two different perspec-
tives. In the first assessment, we considered all K × K pairs of predicted and
ground-truth motions and estimated the discrepancy between the two motions
within each pair after optimally rotating and scaling them. We focused on the
best matching pair for computing success rates and illustrating the results. In the
second assessment, we considered the predicted and ground-truth motion subspaces
at once and estimated their permutation-, rotation- and scaling-invariant global
similarity. In addition, we estimated discrepancies and similarities between individ-
ual predicted and ground-truth motions after globally matching and aligning the
subspaces. We detail our evaluation metrics and procedures in the following.

Normalised sum-of-squares error

At inference time, we estimate the discrepancy between the kth predicted motion
and the lth ground-truth principal component by computing their weighted sum-
of-squares error under optimal rotation Ropt and scaling sopt,

SSE = 1
L

L∑
i=1

wi∥x⃗GT-trans
il − soptx⃗ik∥2, (4.6)

with x⃗GT-trans
il = Roptx⃗GT

il (4.7)
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In the best-case scenario, the prediction is colinear to the transformed ground-
truth, x⃗GT-trans

il = cx⃗ik, c ∈ R, such that (x⃗GT-trans
il )T x⃗ik = ∥x⃗GT-trans

il ∥∥x⃗ik∥ =
c∥x⃗ik∥2, ∀i ∈ 1, 2, ...L. By virtue of Eq. (4.3), the scaling coefficient sopt will be
equal to c, and thus, the error will be null,

SSEmin = 1
L

L∑
i=1

wi∥x⃗GT-trans
il − cx⃗ik∥2 = 1

L

L∑
i=1

wi∥cx⃗ik − cx⃗ik∥2 = 0. (4.8)

In the worst-case scenario, the prediction is orthogonal to the ground truth, such
that (x⃗GT-trans

il )T x⃗ik = 0, ∀i ∈ 1, 2, ...L. The scaling coefficient will be null and,
hence, this situation is equivalent to having a null prediction,

SSEmax = 1
L

L∑
i=1

wi∥x⃗GT-trans
il − 0⃗∥2 = 1

L

L∑
i=1

wi∥x⃗GT-trans
il ∥2. (4.9)

The value of the raw error depends on the uncertainty of the ground-truth data.
If all conformations in the collection have resolved 3D coordinates for all protein
residues, then wi = 1, ∀i = 1, 2, ..., L and the maximum error is SSEmax =
1
L

∑L
i=1 ∥x⃗GT-trans

il ∥2 = L
L

= 1. As uncertainty in the ground-truth data increases,
the associated errors will become smaller. To ensure a fair assessment of the
predictions across proteins, we normalise the raw errors,

NSSE = SSE

SSEmax

. (4.10)

Estimation of sum-of-squares errors for random vectors

To compare SeaMoon results with a random baseline, we selected 14 ground-truth
principal components from the test set. We focused on proteins with maximum
confidence, i.e., for which wi = 1, ∀i = 1, 2, ..., L. We started with a set of
10 components chosen randomly. We then added the most localised component
(collectivity κ = 0.06), the most collective one (κ = 0.85), a component from
the smallest protein (33 residues), and a component from the longest one (662
residues). We generated 1000 random predictions for each ground truth component
and computed their sum-of-squares errors under optimal rotation and scaling.

Subspace comparison

We estimated the similarity between the K × 3 subspaces spanned by SeaMoon
predictions and the ground-truth principal components as their Root Mean Square
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Inner Product (RMSIP) [126, 121, 122]. It is computed as an average of the
normalised inner products of all the vectors in both subspaces,

RMSIP =
(

1
K

K∑
k=1

K∑
l=1

L∑
i=1

(x⃗GT
ik )T x⃗ortho

il

∥x⃗GT
ik ∥∥x⃗ortho

il ∥

)
, (4.11)

where x⃗ortho
il is obtained by orthogonalising SeaMoon predictions using the Gram–Schmidt

process. This operation ensures that the RMSIP ranges from zero for mutually
orthogonalising subspaces to one for identical subspaces and avoids artificially
inflating the RMSIP due to redundancy in the predicted motions. We should
stress that in practice, this redundancy is limited and the motions predicted for a
given protein never collapse (Fig. B.11). A RMSIP score of 0.70 is considered an
excellent correspondence while a score of 0.50 is considered fair [126].

While the RMSIP is invariant to permutations and rotations, the individual
inner products, reflecting similarities between pairs of motions, are not. For
interpretability purposes, we maximised these pairwise similarities through the
following procedure:

1. compute the NSSE for all pairs of predictions and ground-truth principal
components, under optimal rotation and scaling, as in Eq. (4.7),

2. orthogonalise the predictions in the order of their losses, from the best-
matching prediction to the worst-matching one,

3. determine the optimal global rotation of the ordered set of matching ground-
truth components onto the ordered set of orthogonalised predictions,

4. compute all pairwise normalised inner products and the corresponding RMSIP,
and all pairwise NSSE under optimal scaling.

4.4.4 Comparison with the normal mode analysis
We compared SeaMoon performance with the physics-based unsupervised normal
mode analysis (NMA) [306]. The NMA takes as input a protein 3D structure and
builds an elastic network model where the nodes represent the atoms and the edges
represent springs linking atoms located close to each other in 3D space. The normal
modes are obtained by diagonalizing the mass-weighted Hessian matrix of the
potential energy of this network. We used the highly efficient NOLB method [113]
to extract the first K = 3 normal modes from the test protein 3D conformations.
We retained only the Cα atoms, as for the principal component analysis, and
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defined the edges in the elastic network using a distance cutoff of 10Å. We enhanced
the elastic network dynamical potential by excluding edges corresponding to small
contact areas between protein segments. We detected them as disconnected patches
in the contact map using HOPMA [114]. Contrary to SeaMoon predictions, the
orientation of the NMA predictions is not arbitrary and thus, we do not need to
align the ground-truth components onto them.

4.4.5 Protein properties
Sequence and structure similarity

We estimated sequence similarity between train and test proteins using MMseqs2
[258] with default settings. We used TM-align (version 20220412) to perform all-
to-all pairwise structural alignments between train and test protein conformations
and compute TM-scores [357]. TM-score measures the topological similarity of
protein structures. It ranges between 0 and 1, and a score higher than 0.5 assume
roughly the same fold.

Motion contribution and collectivity

We estimate the contribution of the L× 3 ground-truth principal component XGT
k

to the total positional variance as its normalised eigenvalue, λk∑
l
λl

. We estimate the
collectivity [263, 264] of the L× 3 predicted or ground-truth motion tensor Xk as,

κ(Xk) = 1
L

exp
−

L∑
i=1

3∑
j=1

X2
ijk logX2

ijk

 , (4.12)

with L the number of residues. If κ(v) = 1, then the corresponding motion is
maximally collective and has all the atomic displacements identical. In case of an
extremely localised motion, where only one single atom is affected, the collectivity
is minimal and equals to 1/L.

Data and code availability
The source code and model weights of this work are freely available at https:
//github.com/PhyloSofS-Team/seamoon. The data used for development and
evaluation of SeaMoon are freely available at Zenodo [358].

123

https://github.com/PhyloSofS-Team/seamoon
https://github.com/PhyloSofS-Team/seamoon


Chapter 5

Final words

This thesis took place during a highly dynamic period for the application of deep
learning in structural biology. This is reflected by the fact that nearly half of the
references in the bibliography date from 2021, the year this PhD began, or were
published afterward. As mentioned several times in this manuscript, now that the
problem of protein structure prediction has largely been solved, predicting their
dynamics and alternative conformations naturally emerges as a next challenge. The
work presented in this manuscript offers, in part, a response to this issue.

Key findings
Chapter 3 proposed a pipeline for generating collections of conformations from
which linear motions are extracted. This pipeline was applied to the entire set
of resolved structures available in the PDB, with clustering at different levels of
identity and coverage. We observed that, in the vast majority of cases, protein
motions are contained within a low-dimensional manifold. We assessed different
manifold learning methods for the task of reconstructing unseen conformations on
a representative benchmark and showed that classical manifold learning methods
can generate accurate conformations. Both the data and the method have been
made available to the community, can be easily updated with new experimental
data, and are easily applicable to custom datasets. I believe these data are of great
interest to all methods aiming to predict alternative conformations or deformations,
whether for experimental validation or for training deep learning methods.

The findings from Chapter 3 motivated us to develop a deep learning method
introduced in Chapter 4. This method predicts the linear motion manifold of a
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protein from a protein sequence embedding generated by a Protein Language Model.
This method uses a lightweight convolutional network to translate the embedding
into probable deformation directions. It is flexible, as it can be easily retrained with
different embeddings, works natively with sequences of arbitrary length, and can
be configured to predict a desired number of modes. However, it faces significant
limitations in terms of applicability, as the modes are predicted in a space that
must be aligned with the final structure, and finding the optimal alignment proves
to be non-trivial during inference. This limitation will drive future developments.
Nevertheless, an alignment method has been proposed by minimizing the torque of
the predicted deformation.

Future perspectives
My work will focus on overcoming the limitations of SeaMoon through architectural
changes. The current idea is to design a network that predicts deformations in
a local representation, invariant to rotations and translations in 3D space. The
transition from the internal representation to 3D space should be unambiguous.
A message-passing graph neural network, representing the protein as a graph, as
described in Section 2.1, would theoretically allow predictions in a local frame
at each Cα atom, while efficiently incorporating structural information, which
has already proven crucial in the experiments conducted in Chapter 4, where we
observed that the structure-informed ProstT5 embedding outperformed the ESM2
embedding. Transitioning to this type of architecture will also simplify the loss
function, as the need for alignment optimization will no longer be required.

125





Bibliography

[1] L. Pauling, R. B. Corey, and H. R. Branson. “The structure of proteins;
two hydrogen-bonded helical configurations of the polypeptide chain”. In:
Proceedings of the National Academy of Sciences of the United States of
America 37.4 (Apr. 1951), pp. 205–211. issn: 0027-8424. doi: 10.1073/
pnas.37.4.205.

[2] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. “Stereo-
chemistry of polypeptide chain configurations”. In: Journal of Molecular
Biology 7 (July 1963), pp. 95–99. issn: 0022-2836. doi: 10.1016/s0022-
2836(63)80023-6.

[3] C. B. Anfinsen. “Principles that govern the folding of protein chains”. In:
Science (New York, N.Y.) 181.4096 (July 20, 1973), pp. 223–230. issn:
0036-8075. doi: 10.1126/science.181.4096.223.

[4] Warren L DeLano et al. “Pymol: An open-source molecular graphics tool”. In:
CCP4 Newsl. Protein Crystallogr 40.1 (2002). Publisher: Citeseer, pp. 82–92.

[5] Helen M. Berman et al. “The Protein Data Bank”. In: Nucleic Acids Research
28.1 (Jan. 1, 2000), pp. 235–242. issn: 0305-1048. doi: 10.1093/nar/28.1.
235.

[6] “Crystallography: Protein Data Bank”. In: Nature New Biology 233.42
(Oct. 1, 1971). Publisher: Nature Publishing Group, pp. 223–223. issn:
2058-1092. doi: 10.1038/newbio233223b0.

[7] F. C. Bernstein et al. “The Protein Data Bank: a computer-based archival
file for macromolecular structures”. In: Journal of Molecular Biology 112.3
(May 25, 1977), pp. 535–542. issn: 0022-2836. doi: 10 . 1016 / s0022 -
2836(77)80200-3.

127

https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1016/s0022-2836(63)80023-6
https://doi.org/10.1016/s0022-2836(63)80023-6
https://doi.org/10.1126/science.181.4096.223
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1038/newbio233223b0
https://doi.org/10.1016/s0022-2836(77)80200-3
https://doi.org/10.1016/s0022-2836(77)80200-3


Bibliography

[8] Helen Berman, Kim Henrick, and Haruki Nakamura. “Announcing the
worldwide Protein Data Bank”. In: Nature Structural Biology 10.12 (Dec.
2003), p. 980. issn: 1072-8368. doi: 10.1038/nsb1203-980.

[9] Helen Berman et al. “The worldwide Protein Data Bank (wwPDB): ensuring
a single, uniform archive of PDB data”. In: Nucleic Acids Research 35
(Database issue Jan. 2007), pp. D301–303. issn: 1362-4962. doi: 10.1093/
nar/gkl971.

[10] Richard Van Noorden, Brendan Maher, and Regina Nuzzo. “The top 100
papers”. In: Nature News 514.7524 (Oct. 30, 2014). Cg type: Nature News
Section: News Feature, p. 550. doi: 10.1038/514550a.

[11] Jodi Basner. Impact Analysis of ”Berman HM et al., (2000), The Protein
Data Bank”. Clarivate Analytics, May 1, 2017.

[12] John D. Westbrook and Stephen K. Burley. “How Structural Biologists and
the Protein Data Bank Contributed to Recent FDA New Drug Approvals”.
In: Structure (London, England: 1993) 27.2 (Feb. 5, 2019), pp. 211–217.
issn: 1878-4186. doi: 10.1016/j.str.2018.11.007.

[13] Stephen K. Burley et al. “Impact of structural biology and the protein data
bank on us fda new drug approvals of low molecular weight antineoplastic
agents 2019–2023”. In: Oncogene 43.29 (July 2024). Publisher: Nature
Publishing Group, pp. 2229–2243. issn: 1476-5594. doi: 10.1038/s41388-
024-03077-2.

[14] W. H. Bragg. “The Reflection of X-Rays by Crystals”. In: Nature 91.2280
(June 1913). Publisher: Nature Publishing Group, pp. 477–477. issn: 1476-
4687. doi: 10.1038/091477b0.

[15] D. C. Hodgkin. “The X-ray analysis of the structure of penicillin”. In:
Advancement of Science 6.22 (July 1949), pp. 85–89. issn: 0001-866X.

[16] Dorothy Crowfoot Hodgkin et al. “Structure of Vitamin B12”. In: Nature
178.4524 (July 1956). Publisher: Nature Publishing Group, pp. 64–66. issn:
1476-4687. doi: 10.1038/178064a0.

[17] J. C. Kendrew et al. “A three-dimensional model of the myoglobin molecule
obtained by x-ray analysis”. In: Nature 181.4610 (Mar. 8, 1958), pp. 662–666.
issn: 0028-0836. doi: 10.1038/181662a0.

128

https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1093/nar/gkl971
https://doi.org/10.1093/nar/gkl971
https://doi.org/10.1038/514550a
https://doi.org/10.1016/j.str.2018.11.007
https://doi.org/10.1038/s41388-024-03077-2
https://doi.org/10.1038/s41388-024-03077-2
https://doi.org/10.1038/091477b0
https://doi.org/10.1038/178064a0
https://doi.org/10.1038/181662a0


Bibliography

[18] Henry N. Chapman et al. “Femtosecond X-ray protein nanocrystallography”.
In: Nature 470.7332 (Feb. 3, 2011), pp. 73–77. issn: 0028-0836. doi: 10.
1038/nature09750.

[19] Janet L. Smith, Robert F. Fischetti, and Masaki Yamamoto. “Micro-
crystallography comes of age”. In: Current opinion in structural biology
22.5 (Oct. 2012), pp. 602–612. issn: 0959-440X. doi: 10.1016/j.sbi.2012.
09.001.

[20] M S Smyth and J H J Martin. “x Ray crystallography”. In: Molecular
Pathology 53.1 (Feb. 2000), pp. 8–14. issn: 1366-8714.

[21] Robert Huber. “Conformational flexibility and its functional significance in
some protein molecules”. In: Trends in Biochemical Sciences 4.12 (Dec. 1,
1979), pp. 271–276. issn: 0968-0004. doi: 10.1016/0968-0004(79)90298-6.

[22] Dagmar Ringe and Gregory A. Petsko. “Study of protein dynamics by X-
ray diffraction”. In: Methods in Enzymology. Enzyme Structure Part L 131
(Jan. 1, 1986), pp. 389–433. doi: 10.1016/0076-6879(86)31050-4.

[23] M. Vihinen. “Relationship of protein flexibility to thermostability”. In:
Protein Engineering 1.6 (Dec. 1987), pp. 477–480. issn: 0269-2139. doi:
10.1093/protein/1.6.477.

[24] O. Carugo and P. Argos. “Reliability of atomic displacement parameters in
protein crystal structures”. In: Acta Crystallographica. Section D, Biological
Crystallography 55 (Pt 2 Feb. 1999), pp. 473–478. issn: 0907-4449. doi:
10.1107/s0907444998011688.

[25] Wayne A. Hendrickson. “Radiation damage in protein crystallography”.
In: Journal of Molecular Biology 106.3 (Sept. 25, 1976), pp. 889–893. issn:
0022-2836. doi: 10.1016/0022-2836(76)90271-0.

[26] J. R. Helliwell. “Protein crystal perfection and the nature of radiation
damage”. In: Journal of Crystal Growth 90.1 (July 2, 1988), pp. 259–272.
issn: 0022-0248. doi: 10.1016/0022-0248(88)90322-3.
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Supplemental tables and figures

Table A.1: Execution time on the PDB (748 297 protein chains)

Step Library or tool (CPU) Time#
a- Sequence extraction GEMMI 16 9min 30s
b- Sequence clustering MMseqs2 16 15s
c- Sequence alignment MAFFT 16 23min 54s
de- Structure extraction and alignment GEMMI 16 88min 2s
f- Linear motion extraction NumPy 16 11min 46s
Total 2h 14min

Table A.2: Properties of the ensembles in the most conservative and the most relaxed set
ups.

Property Id., Cov. Min. 1st Quart. Median 3rd Quart. Max. Mean ± Sd
Ensemble size 80,80 2.00 2.00 4.00 8.00 3 334 12.00 ± 45.80
(in conformation) 30,50 2.00 3.00 5.00 14.00 12694 24.64 ± 137.35
Reference length 80,80 5.00 112.00 207.00 335.00 4579.00 252.03 ± 223.35
(in residue) 30,50 5.00 81.00 165.00 304.00 4516.00 224.07 ± 231.74
Max deviation 80,80 0.00 0.52 1.10 2.45 72.93 2.39 ± 3.95
(in Å) 30,50 0.00 0.78 2.15 5.11 114.50 4.25 ± 5.88
Motion complexitya 80,80 1.00 2.00 3.00 4.00 118.00 3.89 ± 4.43
(in mode) 30,50 1.00 2.00 3.00 4.00 105.00 3.98 ± 4.45
1st mode contributiona 80,80 7.30 50.00 64.90 80.90 100 64.85 ± 19.99
(in percentage) 30,50 7.30 49.90 65.40 82.20 100 65.32 ± 20.31
1st mode collectivitya 80,80 0.30 13.30 30.20 50.90 98.20 33.07 ± 21.92
(in percentage) 30,50 0.30 15.90 29.40 48.90 98.20 33.26 ± 20.90

a To compute motion properties, we focused on the subset of ensembles with at least three members. Indeed,
pairs of conformations trivially exhibit single-mode motions and are thus disregarded variability exhibited by
pairs of conformations can be trivially explained by only one mode
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Table A.3: Properties of the ensembles chosen for benchmarking manifold learning
techniques.

Reference Protein Size Length Mean Max Motion 1st mode 1st mode
PDB Id name deviation deviation complexity contrib. coll.

(# conf.) (# res.) (Å) (Å) (# mode) (%) (%)
1AKEA ADK 42 214 2.48 ± 2.78 7.30 1 0.963 0.462
2WJPA MurD 22 435 2.58 ± 4.09 16.07 2 0.816 0.616
1IWOA ATPase 104 994 7.12 ± 4.19 15.84 3 0.597 0.481
5KOYB ABC 61 1181 5.95 ± 3.20 14.94 4 0.786 0.681
2KLRA Crys 23 82 2.08 ± 1.24 5.37 6 0.502 0.311
1AH6A HSP90 52 213 1.13 ± 1.10 4.56 7 0.410 0.105
1NIWA CALM 388 136 10.38 ± 4.23 23.68 8 0.415 0.580
2G1TA KIN 122 271 2.85 ± 1.88 8.89 9 0.669 0.086
6YXWC RAS 744 167 1.56 ± 1.02 8.58 24 0.347 0.173
3J345 CAP 3334 231 4.06 ± 1.68 17.55 30 0.232 0.070

Table A.4: Proportion of conformations reconstructed with high accuracy.

Reference Protein PCA Poly-kPCA RBF-kPCA Sigmoid-kPCA UMAP
(in %) (in %) (in %) (in %) (in %)

1AKEA ADK 83 83 83 83 -
2WJPA MurD 5 82 82 82 0
1IWOA ATPase 0 0 0 0 0
5KOYB ABC 18 28 30 18 0
2KLRA Crys 96 96 96 91 83
1AH6A HSP90 92 90 90 92 90
1NIWA CALM 0 1 2 0 -
2G1TA KIN 93 93 93 93 57
6YXWC RAS 99 99 98 99 -
3J345 CAP 99 99 99 99 -

We consider reconstructions with RMSD errors lower than 2 Å as highly accurate. For the kPCA, we
set the hyperparameters to the values leading to the lowest average error over each conformational
collection (see Supplementary Table S5).
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Table A.5: Average reconstruction errors for unseen conformations and hyperparameter
values.

Protein name Method Kernel type sigma alpha nneigh dmin Mean RMSD (Å)
ADK pca 1.635
ADK kpca rbf 5.96e+03 1.00E-14 1.633
ADK kpca poly 13.3 2.81e+03 1.598
ADK kpca sigmoid 0.309 32.4 1.525
MurD pca 3.115
MurD umap 2 0.223 3.928
MurD kpca rbf 0.494 1.00E+05 1.774
MurD kpca poly 33.9 2.81e+03 1.755
MurD kpca sigmoid 1.00E+05 1.00E+05 1.774

ATPase pca 3.607
ATPase umap 9 0.112 5.161
ATPase kpca rbf 569 1.46e-13 3.567
ATPase kpca poly 910 5.96e-14 3.591
ATPase kpca sigmoid 2.33e+03 5.96e-14 3.606

ABC pca 2.599
ABC umap 2 1 3.911
ABC kpca rbf 569 5.96e-14 2.554
ABC kpca poly 569 3.56e-13 2.533
ABC kpca sigmoid 3.73e+03 5.96e-14 2.600
Crys pca 1.360
Crys umap 2 0.001 1.676
Crys kpca rbf 86.9 1.26e-11 1.356
Crys kpca poly 112 5.18e-12 1.357
Crys kpca sigmoid 0.193 5.43 1.302

HSP90 pca 0.719
HSP90 umap 4 0.889 0.865
HSP90 kpca rbf 54.3 7.54e-11 0.704
HSP90 kpca poly 222 2.44e-14 0.711
HSP90 kpca sigmoid 1.00E+03 1.00E-14 0.718
CALM pca 4.075
CALM kpca rbf 356 1.46e-13 3.525
CALM kpca poly 356 8.69e-13 3.531
CALM kpca sigmoid 356 1.6e-08 4.060
KIN pca 1.228
KIN umap 11 0.001 1.871
KIN kpca rbf 222 7.54e-11 1.225
KIN kpca poly 222 4.5e-10 1.226
KIN kpca sigmoid 910 5.96e-14 1.228
RAS pca 0.612
RAS kpca rbf 139 2.12e-12 0.605
RAS kpca poly 139 3.09e-11 0.606
RAS kpca sigmoid 910 2.12e-12 0.612
CAP pca 1.014
CAP kpca rbf 222 8.69e-13 0.986
CAP kpca poly 222 1.26e-11 0.989
CAP kpca sigmoid 356 4.5e-10 1.014
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Figure A.1: Global properties of the ensembles and their sequence alignments. We report
values computed across eight versions of the database, corresponding to eight combinations of sequence
similarity and coverage thresholds. These combinations are given in x-axis. A. Number of singletons,
pairs, and ensembles with at least 3 members. B. Distributions of sequence identity measured as a
normalised sum-of-pairs scores with null mismatch and gap penalties. C. Distribution of coverage
expressed as the fraction of positions with less than 80% gaps. D. Distribution of global alignment
quality computed as a normalised sum-of-pairs scores with the following parameters: σmatch = 1,
σmismatch = σgap = -0.5 (see Methods).
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Figure A.2: Influence of ensemble size on motion complexity We report motion complexity,
measured as the number of principal components or modes required to explain 80% of the positional
variance, in function of the ensemble size, i.e. number of conformations. A-B. Scatterplots in log
scale. C-D. Discretized heatmaps. We consider the most stringent set up, namely l80

80 (A,C), and the
most relaxed one, namely l30

50 (B,D).
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Figure A.3: Expansion of three conformational ensembles upon relaxing sequence selection
criteria. We compare the set of conformations detected at two different levels of sequence similarity
and coverage, namely l80

80 (on the left) and l30
50 (on the right). For the latter, we show separately

the conformations already included in the ensemble at l80
80 (on the left) and the new additional

conformations (on the right). The number of conformations in each (sub)ensemble is given on top.
The color code indicates the position in the sequence, from the N-terminus in blue to the C-terminus
in red. The flavodoxin (FLAV) ensemble contains one partially unfolded conformation, highlighted
with the arrows. Some properties of these three examples are reported in Figure 2.
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Figure A.4: Evolution of motion complexity upon protein family expansion. A. Number
of ensembles where motion complexity increases, remains the same, or decreases between the most
stringent and the most relaxed set ups. We extracted the motions from either the covariance (in
black) or the correlation (in grey) matrix. B. Comparison of motion complexity estimated from the
correlation matrix in the most stringent set up (x-axis) versus the most relaxed one (y-axis).
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Figure A.5: ABC protein opening in function of the first PCA component values. The
degree of opening of the ABC transporters is measured as the distance between the geometric centres
of the two NBDs (in Å). The analysis is performed on the 188 conformations from the ABC structure
similarity-based ensemble.
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Figure A.6: Systematic exploration of the two hyperparameters for kPCA-based con-
formation reconstruction. We illustrate the influence of the hyper parameters σ and α on the
reconstruction error (in Å) for a randomly picked up conformation (4th one) from the ADK protein
ensemble. The red star highlights the optimal parameter values. We used the RBF kernel.
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Figure A.7: Distributions of the RMSD reconstruction errors (in Å) for each ensemble in
the benchmark set.We systematically reconstructed each conformation through a leave-one-cluster-
out cross-validation procedure (see Methods). We set the hyperparameters of the kPCA and UMAP
to the values yielding the best reconstruction, for each ensemble. The protein names in the x-axis are
ordered according to motion complexity.
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defined by the training conformations in the low-dimensional representation space. It is normalised
by the number of residues.
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Figure A.9: PCA feature spaces for three proteins from the benchmark. We show the
projections of the conformations in the l-dimensional PCA feature space, where l is the number of
principal components needed to explain 90% of the total positional variance, for ADK (A), MurD
(B) and ATPase (C). The point shapes indicate the clusters to which the conformations belong as
determined by k-means clustering where k = l + 2. The colors reflect the RMSD reconstruction error
(in Å). We reconstructed each conformation using the principal components computed from the set of
conformations not belonging to the same cluster.
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Figure A.10: Distributions of the percentage of residues in the core region of the Ra-
machandran plot for each ensemble in the benchmark set. We systematically reconstructed
each conformation through a leave-one-cluster-out cross-validation procedure (see Methods). We set
the hyperparameters of the kPCA and UMAP to the values yielding the best reconstruction, for
each ensemble. The protein names on the x-axis are ordered according to motion complexity. The
Ramachandran core region indicates the most favoured phi-psi angle combinations.

Figure A.11: X-ray crystallographic structure of RAS (PDB code: 1PPL, chain A, in
beige) and its PCA reconstruction (in green). The PCA reconstruction displays a better
secondary structure. The original structure has 63.9% of its residues in Ramachandran core region,
while the PCA reconstruction has 96.4%.
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Figure A.12: Influence of data uncertainty handling. We compare some properties of the
ensembles obtained at l80

80 when applying the weighting scheme accounting for uncertainty versus
without weights. We consider only the ensembles with at least 3 members. A. Largest deviation
between any two conformations (in Å). B. Motion complexity (in mode). C. Percentage of the
variance explained by the most contributing linear motion. D. Collectivity of the most contributing
linear motion. We highlight the ensembles for which applying the weighting scheme leads to a
maximum deviation decrease of more than 5Å and an increased motion complexity by more than 5
modes in red.
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Figure A.13: Influence of data conformation-specific centring. We compare some properties of
the ensembles obtained at l80

80 when superimposing and centring the conformations with respect to
two different references. The first one is the closest to the multiple sequence alignment consensus
(see Materials and methods). The second one has the highest RMS deviation from the first one.
We consider only the ensembles with at least 3 members. A. Largest deviation between any two
conformations (in Å). B. Motion complexity (in mode). C. Percentage of the variance explained by
the most contributing linear motion. D. Collectivity of the most contributing linear motion.
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A
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Figure A.14: Influence of data conformation-specific centring when extracting motions
from the correlation matrix. We consider the ensembles with at least 3 members produced at l80

80
when superimposing and centring the conformations with respect to two different references. The
first one is the closest to the multiple sequence alignment consensus (see Materials and methods).
The second one has the highest RMS deviation from the first one. A. Motion complexity (in mode).
B. Percentage of the variance explained by the most contributing linear motion. These plots can be
compared with panels B and C from Figure S9.
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We compute the ground-truth motions with DANCE [339] by applying Principal Component Analysis
on the 3D coordinates of a collection of protein conformations superimposed onto one another. The
superimposition puts the protein conformations’ centers of mass to zero and then aims at determining the
optimal least-squares rotation matrix minimizing the Root Mean Square Deviation (RMSD) between any
conformation and a reference conformation. Let us first derive some preliminary properties of this optimal
rigid superposition.

Implications of optimal superimposition

Let us consider two sets of 3-vectors A = {a⃗i, i = 1, ...., m} and B = {⃗bi, i = 1, ...., m}, such that a rigid
transformation defined by the translation vector T⃗ and the rotation matrix R minimizes their squared
geometric mismatch: ∑

i

(⃗ai − Rb⃗i − T⃗ )2 → min . (B.1)

By taking the derivative of the above equation with respect to the rigid translation T⃗ , we obtain∑
i

(⃗ai − Rb⃗i − T⃗ ) = 0⃗. (B.2)

Similarly, by taking the derivative of the above equation with respect to the rotation matrix R about x, y,
and z axes, we obtain ∑

i

b⃗i × (⃗ai − Rb⃗i − T⃗ ) = 0⃗, (B.3)

where b⃗i × (⃗ai − Rb⃗i − T⃗ ) is the angular velocity of the particle i from B. Therefore, the total translational
force and the total rotational force or torque applied to a set of points in a rigid body must be zero at the
optimal superposition conformation.

Ground-truth motions’ translational and rotational constraints

The Cartesian coordinates of the 3D protein conformations in a collection are stored in a matrix X of
dimension 3m × n. Their positional covariance matrix C of dimensions 3m × 3m is expressed as,

C = 1
n − 1XXT . (B.4)

The eigen decomposition of the covariance matrix C = V DV T leads to a set of eigenvectors {V·j , j = 1, ..., 3m}
which are the columns of the matrix V , associated with the set of eigenvalues {λj , j = 1, ..., 3m} stored
in the diagonal matrix D. We show below that these eigenvectors comply with specific translational and
rotational constraints.

Translational constraint. Since the conformations are centred at the origin, we have
∑m

l=1 x⃗lj = 0⃗ for
every conformation j = 1, ..., n, with x⃗lj the 3-component vector from X corresponding to atom l. It follows
that the elements of each x,y,z component in each ow of the covariance matrix C sum to zero,

m∑
xj ,yj ,zj=1

Cij = 1
n − 1

m∑
xj ,yj ,zj=1

n∑
k=1

XikXjk = 1
n − 1

n∑
k=1

Xik

m∑
xj ,yj ,zj=1

Xjk = 0. (B.5)
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Without loss of generality, we can define coordinate indexes as jx = 3j, jy = 3j + 1, and jz = 3j + 2.
According to the eigen decomposition, we can then write, ∀i, i = 1, ..., 3m,

m∑
xj ,yj ,zj=1

Cij =
m∑

xj ,yj ,zj=1

3m∑
k=1

λkVikVjk = 0. (B.6)

Summing up over the x,y, and z components of the rows of C, we obtain,

m∑
xi,yi,zi=1

m∑
xj ,yj ,zj=1

Cij =
m∑

xi,yi,zi=1

m∑
xj ,yj ,zj=1

3m∑
k=1

λkVikVjk = 0, (B.7)

which can be rewritten as,

λ1

(∑
i

V x
i1

)2

+ λ2

(∑
i

V y
i1

)2

+ λ3

(∑
i

V z
i1

)2

+ λ4

(∑
i

V x
i2

)2

λ5

(∑
i

V y
i2

)2

+ λ6

(∑
i

V z
i2

)2

(B.8)

+... + λ3m−2

(∑
i

V x
i(m)

)2

+ λ3m−1

(∑
i

V y
i(m)

)2

+ λ3m

(∑
i

V z
i(m)

)2

= 0. (B.9)

Since the covariance matrix C is symmetric and positive semi-definite, all the eigenvalues λk are real and
non-negative and it follows that the sum of components of each eigenvector V·k corresponding to a positive
eigenvalue λk must be zero. And the number of such eigenvectors equals the rank of the covariance matrix.

Rotational constraint. We can express the angular velocity of an atom l from conformation j from our
set as r⃗lj × x⃗lj , where r⃗lj is its 3D position relative to the conformation’s center of mass, i.e., the rotation
center, and x⃗lj is its 3D displacement vector from the reference conformation. This angular velocity can be
re-written as (r⃗l + x⃗lj) × x⃗lj = r⃗l × x⃗lj , where r⃗l is the 3D position of the atom l in the reference conformation
relative its center of mass. We can further rewrite this vector product in a matrix form as [rl]×x⃗lj , where
[rl]× is a 3 × 3 skew-symmetric matrix that corresponds to the cross product operation. Let us also define a
3m × 3m block-diagonal matrix R formed of m matrices [ri]×, R ≡ diag([r1]×, [r2]×, ..., [rm]×).

Since the global rotations between protein conformations, with respect to the reference, have been removed
during superimposition, the angular velocities for any conformation j result in a null vector,

∑m
l=1[rl]×x⃗lj =

0⃗. Or, in the matrix form, for each column (conformation) j,
∑m

i=1(RX)ixj = 0,
∑m

i=1(RX)iyj = 0,∑m
i=1(RX)izj = 0, where, without loss of generality, we can define coordinate indexes as ix = 3i, iy = 3i + 1,

and iz = 3i + 2. It follows that,

∀a ∈ {x, y, z} :
m∑

j=1
(RX(RX)T )ija =

m∑
j=1

n∑
k=1

(RX)ik(RX)jak =
n∑

k=1
(RX)ik

m∑
j=1

(RX)jak = 0. (B.10)

The decomposition of RX(RX)T leads to, ∀i, i = 1, ..., 3m,

∀a ∈ {x, y, z} :
m∑

j=1
(RX(RX)T )ija =

m∑
j=1

(R[
∑

k

λkVkV T
k ]RT )ija =

∑
k

λk

m∑
j=1

(RVk[RVk]T )ija = 0 (B.11)

Summing up over the x,y, and z components of the rows of the previous system, we obtain,
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λ1

(∑
i

(RV1)ix

)2

+ λ1

(∑
i

(RV1)iy

)2

+ λ1

(∑
i

(RV1)iz

)2

+ (B.12)

λ2

(∑
i

(RV2)ix

)2

+ λ2

(∑
i

(RV2)iy

)2

+ λ2

(∑
i

(RV2)iz

)2

+ (B.13)

... + λ3m

(∑
i

(RV3m)ix

)2

+ λ3m

(∑
i

(RV3m)iy

)2

+ λ3m

(∑
i

(RV3m)iz

)2

= 0. (B.14)

Thus, the positional eigenvectors must have additional rotational constraints, ∀k, k = 1, ..., 3m,∑
i(RVk)ix = 0 ,

∑
i(RVk)iy = 0 , and

∑
i(RVk)iz = 0 for all eigenvectors with the corresponding non-

zero eigenvalues.

Orienting a predicted motion with respect to a 3D conformation

We exploit the rotational constraints of the ground-truth motions, i.e., the eigenvectors of the positional
covariance matrix, to align the motion vectors predicted by SeaMoon on a given protein 3D conformation.
More specifically, we aim at determining the rotation R ∈ SO(3) that minimizes the overall angular velocity
of the conformation subjected to the predicted motion. If we denote (vi)i≤m the 3D displacement vectors
predicted by SeaMoon for m protein atoms, the problem we solve is

∑
i(Rvi) × ri = 0 for the rotation R,

where ri is the 3D positional vector of atom i.
For coordinate d ∈ {1, 2, 3}, we can then write, using Einstein’s notation:

0 = ed.(Rvi) × ri

= εpqd(Rvi)pri
q

= εpqdRpkvi
kri

q

= Rpkεpqdvi
kri

q

= Tr(RAT
d )

where (Ad)pk = εpqdvi
kri

q and where εi,j,k is 0 if i, j, k are not different and elsewise is equal to the signature
of the permutation (

1 2 3
i j k

)
To solve these equations, we use 4-dimensional quaternions which have fewer dimensions than 3 × 3

matrices, associating to a unitary quaternion the rotation matrix [359]:

Rq =

q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) q2

1 + q2
3 − q2

2 + q2
4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 + q2

4 − q2
2 + q2

3

 (B.15)
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We can develop the expression Tr(RAT ) to give:

Tr(RAT ) = (−2q1q2 + 2q3q4)A3,2 + (2q1q2 + 2q3q4)A2,3

+ (−2q1q3 + 2q2q4)A1,3 + (2q1q3 + 2q2q4)A3,1

+ (−2q1q4 + 2q2q3)A2,1 + (2q1q4 + 2q2q3)A1,2

+ (q2
1 − q2

2 − q2
3 + q2

4)A3,3 + (q2
1 − q2

2 + q2
3 − q2

4)A2,2 + (q2
1 + q2

2 − q2
3 − q2

4)A1,1

Writing the same equations changing A for Am for m = 1, 2, 3, we get a system of 3 quadratic equations for
4 unknowns by setting the previous terms to 0, to which we add the unitary constraint q2

0 + q2
1 + q2

3 + q2
4 = 1.

We solve this system using the symbolic package wolframclient in Python, yielding at most 4 quaternions as
solutions which we then transform in rotation matrices.
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Supplemental tables and figures

Layer type Output shape Filter size #(Parameters)

Input
ESM2:(L, 1 280)
ESM3:(L, 1 536)

ProstT5:(L, 1 024)
- 0

Conv1D (256, L) 1
ESM2: 327 936
ESM3: 393 216

ProstT5: 262 400
Conv1D (128, L) 15 491 648
Conv1D (64, L) 31 254 016
K Conv1D (K, 3, L) 1 K × 195

Table B.1: Description of SeaMoon neural network architecture. We report the layer types,
output shapes, kernel sizes, and parameters for ESM2-, ESM3-, and ProstT5-based SeaMoon models.
The length (in amino acid) of the input sequence is denoted as L and the number of predicted vectors
as K. The 1D convolutional layers with filter size of 1 are equivalent to linear layers.

Method Input pLM Supervised #(Train samples)
SeaMoon-ESM2 sequence ESM2 � 5 119
SeaMoon-ESM2(x5) sequence ESM2 � 14 921
SeaMoon-ESM3 sequence ESM3 � 5 119
SeaMoon-ESM3(x5) sequence ESM3 � 14 921
SeaMoon-ProstT5 sequence ProstT5 � 5 119
SeaMoon-ProstT5(x5) sequence ProstT5 � 14 921
NMA 3D structure × × 0

Table B.2: Description of the tested models and methods. For SeaMoon-ESM2(x5), SeaMoon-
ESM3(x5) and SeaMoon-T5(x5), we increased the number of training samples by defining up to 5
reference conformations per experimental collection.
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Ablation applied # of proteins
w. acceptable prediction

Base model, SeaMoon-T5 439 (39.2%)
Network architecture:

Size 1 kernel 271 (24.2%)
7-layer Transformer architecture 411 (36.7%)

Training loss:
Without sign flip 413 (36.8%)

Without permutation 375 (33.4%)
Without reflection 402 (35.9%)

Input data:
Random embeddings 119 (10.6%)

Positional encoding only 177 (15.8%)
Random baseline:

Random neural network weights 0 (0.0%)

Table B.3: Success rate in ablation study. The transformer architecture comprises one linear
layer from dimension 1024 to 128, seven Transformer layers of size 128, with 4 heads, and three 1D
CNNs with kernel size 1 (same as the base model) going from dimension 128 to 3 for each predicted
mode. It has a similar number of free parameters compared to the base model.
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3GVOA 4ZEVB

6W19p 7RTNB

8E7MH 5T1PE
0.14 0.32

0.42 0.62

0.75 0.86

Figure B.1: Examples of predictions. They allow for a visual assessment of how well the predicted
vectors (in blue) approximate the ground-truth motions (in yellow) at different levels of NSSE
(indicated on each panel). For each example, the query conformation is shown in black cartoons and
labelled with its PDB chain identifier (in bold). We obtained the predicted vectors with SeaMoon-
ESM2(x5).
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Figure B.2: Normalised sum-of-squares errors for random predictions. Distributions of
normalised sum-of-squares errors computed after optimal rotation and scaling of 1000 random vectors
against 14 ground-truth motions from the test set. The PDB chain identifiers of the corresponding
proteins are given in x-axis. The boxes are colored according to the protein length.
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Figure B.3: Performance on a test set of 1 121 proteins. A. Comparison of the cumulative
normalised sum-of-squares error (SSE) curves computed for different versions of SeaMoon and for
the Normal Mode Analysis (NMA, performed with NOLB). For SeaMoon, we tested three pLMs,
namely ESM2, ESM3, and ProstT5. During training, we gave only the reference conformation of each
collection to SeaMoon-ESM2, SeaMoon-ESM3, and SeaMoon-ProstT5, while we gave 5 conformations
per collection to SeaMoon-ESM2(x5), SeaMoon-ESM3(x5), and SeaMoon-ProstT5(x5).
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Figure B.4: Influence of sequence and structure similarity. Normalised sum-of-squares errors
(y-axis) in function of the maximum TM-score (x-axis) and maximum sequence identity (color) of
the test conformations computed over the whole training set. A. SeaMoon-ESM2(x5). B. SeaMoon-
ESM3(x5). C. SeaMoon-ProstT5(x5). D. NMA.
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1OTSC, NSSE = 0.07

5T1PE, NSSE = 0.33

4Z3ZF, NSSE = 0.37

A.

B.

C.

5T78D, seq. id. = 0.72

7C68B, TM-score = 0.83

7LQ6A, TM-score = 0.44

Figure B.5: Examples of predictions for test proteins with decreasing similarity to the
training set. The conformations are shown in cartoons and labelled with their PDB chain identifier.
The ground-truth and SeaMoon-ESM2(x5) predicted motions are depicted with yellow and blue
arrows, respectively. Left, in black: test proteins. Right, in grey: closest proteins from the training
set. A. Fab fragment (heavy chain), 221 residues, 107 conformations in the collection, collectivity
kappa = 0.74 for the ground-truth motion. Its sequence, structure and main motion are highly similar
to the Fab fragment displayed on the right B. Putative ABC transporter from Campylobacter jejuni,
326 residues, 8 conformations, kappa = 0.74. It does not have any detectable sequence similarity to
the training set. Its structure and main motion bear some resemblance with the ABC transporter
from Thermus thermophilus shown on the right. C. Iron-sulfur cluster-binding oxidoreductase, 170
residues, 20 conformations, kappa = 0.52. It does not have any detectable sequence similarity to the
training set and the structurally closest training protein, the bacterial penicillin-binding protein 1B,
exhibits a different 3D fold and different motions.195
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Figure B.6: Agreement between a selection of methods. A. Distribution densities of the
NSSE computed for the NMA over the full test set (in black, 1 121 proteins) and over the subsets
best-predicted (NSSE < 0.25, in blue, 36 proteins) and worst-predicted (NSSE > 0.75, in red, 326
proteins) by SeaMoon-ESM2(x5) and SeaMoon-ProstT5(x5). B-C. Distribution densities of the
NSSE computed for SeaMoon-ESM2(x5) (B) and SeaMoon-ProstT5(x5) (C) over the full test set (in
black) and over the subsets best-predicted (NSSE < 0.25, in blue, 46 proteins) and worst-predicted
(NSSE > 0.75, in red, 624 proteins) by the NMA.
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Ground-truth SeaMoon-ESM2(x5) Normal Mode Analysis

NSSE = 0.26 NSSE = 0.161LAFE

NSSE = 0.19 NSSE = 0.184F5CA

Figure B.7: Examples of motions well predicted by SeaMoon-ESM2(x5) and the NMA.
The arrows depicted in yellow (left), blue (middle) and red (right) onto the 3D structure represent the
ground-truth motion, the best-matching prediction from SeaMoon-ESM2(x5), and the best-matching
prediction from the NMA. Top: Mammalian aminopeptidase N (PDB code: 4F5C, chain A). It shares
81% sequence similarity with a human aminopeptidase from the train set (TM-score = 0.96). Bottom:
Bacterial periplasmic lysine-, arginine-, ornithine-binding protein (PDB code: 1LAF, chain E). It
shares only 35% sequence similarity with its closest homolog from the train set, a nopaline-binding
periplasmic protein from bacteria. Their structures are highly similar, with a TM-score of 0.91.
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Figure B.8: Examples of motions better captured by SeaMoon-ProstT5(x5) than SeaMoon-
ESM2(x5). The arrows depicted in yellow, orange, red, and blue onto the 3D structures represent
the ground-truth motions and the best-matching predictions from SeaMoon-ProstT5(x5), the NMA,
and SeaMoon-ESM2(x5), respectively. Left: Mammalian plexin A4 ectodomain (PDB code: 5L5L,
chain B). It shares 64% sequence similarity with a plexin A2 ectodomain from the train set (TM-score
= 0.68). Right: Legionella effector MavC (PDB code: 6K3B, chain B). It does not have any detectable
sequence similarity with the training set and shares only a weak structural similarity (TM-score
= 0.59) with the mammalian cytochrome P450 2B4.
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A.

B.

C.

Figure B.9: Ogopogo major capsid protein motion subspace. Visualisation of the ground-truth
(yellow) and predicted (black) motion relative directions and amplitudes for the best-matching pairs
(1,1) (A), (3,2) (B) and (2,3) (C) on the reference 3D conformation, PDB code: 8ECN, chain B.
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Figure B.10: Ablation study We report the number of test proteins with at least one acceptable
prediction. The baseline model is SeaMoon-ProstT5.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Scalar product of predicted modes

0

50

100

150

200

Fr
eq

ue
nc

y

Test set
5ref_T5
5ref_ESM

Figure B.11: Pearson correlation computed between motions predicted by SeaMoon. We
performed an all-to-all pairwise comparison for each protein from the test set. About 95 percent of
the pairs have an absolute Pearson correlation below 0.5.
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