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Chapter 1

Introduction

1.1 Structure

You probably already have an idea of what is a structure. It is a word
frequently used but we noticed many would struggle to give it a formal
definition.

Here is the definition of structure we use here: “system defined by its
fundamental elements, and the roles between these elements”.

Intuitively, many things can be described as structures: buildings, im-
ages, programs, society, living beings, knowledge, and matter. It is hard to
find something that has no structure or cannot be thought of as a structure,
and even harder to find something that has no structure and is interesting
to generate. As such, this thesis covers a wide range of themes and sub-
jects and is a collection of applications, from molecules, coalition of agents,
nonograms, or abstract graphs.

Generative Artificial Intelligence is a topic that recently saw a massive
surge of papers, investments, and media coverage. First with the introduc-
tion of Generative Adversarial Networks in 2014, with the reveal of Dall-E
in 2021, ChatGPT in 2022, and now (2024) with AI capable of generating
entire minutes of video. These advances provide stunning results, photo-
realistic pictures or indiscernible from ones made by real artists, coherent
sentences and paragraphs (mostly), and not too jarring videos. However
these AI still present limits: ChatGPT sometimes hallucinates, the skin can
be too smooth, some fingers are not always done right, and the videos lack
coherence. In addition to the deep learning AI limitations and ethics con-
siderations, these AI are not designed for and fall short on problem-solving,
especially combinatorial.

The generation of structures using Monte Carlo Search algorithms have
multiple advantages:

1. They are explainable.
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4 CHAPTER 1. INTRODUCTION

2. They require no training, or training over less extensive datasets.

3. They perform well on strictly defined problems and always provide a
safe and valid output.

4. They don’t replace artists but instead help non-artistic workers.

Conversely, while they perform well in exact sciences, they are inappro-
priate for image and video generation.

1.2 Monte Carlo Search
To generate structures, we decided to focus exclusively on Monte Carlo
Search (MCS) algorithms.

Monte Carlo Search algorithms are a class of randomized search algo-
rithms involving some form of machine learning. They use random or guided
exploration to sample the search space and guide future searches using that
information. They are anytime, i.e. they can give a valid (but not optimal)
solution to a problem even if they are stopped prematurely. The quality
of the solution that is returned increases with the running time. They give
a nonoptimal solution in a determined time, Las Vegas algorithms give an
optimal solution in a non-determined time.

Monte Carlo algorithms trace back to 1953 with the Monte Carlo method
from Nicholas Metropolis, mainly used in physics. That algorithm was not
using machine learning yet, but inspired multiple (and very different) al-
gorithms that came after. That was not until 2006 that the term “Monte
Carlo Tree Search” was coined. (Coulom, R. (2007). Efficient Selectivity
and Backup Operators in Monte-Carlo Tree Search. In: van den Herik, H.J.,
Ciancarini, P., Donkers, H.H.L.M.(. (eds) Computers and Games. CG 2006.
Lecture Notes in Computer Science, vol 4630. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75538-8_7)

The same year, the most prominently MCTS algorithm used now, Up-
per Confidence Bound applied to trees (UCT), was invented. (Kocsis, L.,
Szepesvári, C., & Willemson, J. (2006). Improved monte-carlo search. Univ.
Tartu, Estonia, Tech. Rep, 1, 1-22.)

Monte Carlo was then used as a gameplaying AI for games with large
search spaces, like Go. In 2017 AlphaGo, a mixture of deep neural network
and MCTS, managed to beat the world champion of Go. But has since then
been used on many other problems, providing state of the art on difficult
deterministic problems as you will see in this thesis. These problems include
industry, chemistry, transportation networks, mathematics, graph theory,
and medicine. Anything that can be explored according to a set of rules,
and can be evaluated rapidly by a computer, can be optimized by Monte
Carlo Search algorithms.

Monte Carlo Search algorithms are divided into two categories:
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1. Iterative, also called Monte Carlo Tree Search. It maps the search
space with a tree storing the previous results and use that knowledge
to direct further searches.

2. Recursive, also called the nested family. Instances of the algorithm
call lower level versions of the algorithm to evaluate and select the
best move available.

The iterative family includes UCT and the canonical MCTS algorithm.
It is the most widely used family of MCS algorithms as UCT is featured in
almost all research that involves MCS. However that family of algorithms
has two shortcomings: they revisit states, thus spending computing time
needlessly when locked in a local minimum, and they don’t optimize toward
the end of the search tree. The existing recursive algorithms avoid these
problems, but in return, they are able to miss states entirely and give no
guarantee of exploring the entire search tree (which should never happen
anyway since MCS algorithms are made for when the search space is too
large to explore entirely).

1.3 Search Space And Terms
All works featured in this thesis share the same concepts and terminology.
A search algorithm explores a search space, it can be continuous or discrete,
here we focused on discrete graph-like search spaces.

A discrete search space is defined by the states composing it and the link
between those states, the moves.

1.3.1 State
A state is a complete or incomplete form of the solution that the search
algorithm is expected to return. A state can also include additional infor-
mations that are not relevant to the solution but help decide moves during
the search.

We can distinguish two special types of states:

1. The initial state. The algorithms start the search from this default
start state.

2. The final states. A state can be considered final when it is valid and
can evaluated by a simple algorithm, or does not have any moves
allowing it to turn it into another state (terminal).

1.3.2 Move
A move is the transformation of one state to another. Not all states can
be transformed into any other state, the move has to be legal (allowed by
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the search space). This ensure that the output solution returned by the
algorithm is always valid if not optimal (for example a knight can’t move in
a straight line in a game of chess).

1.3.3 Playout
Search algorithms need ways to evaluate the states they encounter during
their search. These evaluation functions take many forms, for games they
count the score of a final state, for transportation networks they compute a
set of metrics...

To be evaluated, a state needs to be final: either be able to be returned
as a valid solution by the algorithm, or be terminal (if it is invalid the lowest
value is often returned). But nonterminal states of the search space are not
always final, it depends on the problem but for example, the HP-model
has non-final intermediate states, while all Coalition Structure Generation
(CSG) states are final.

When a state is not final (a direct evaluation using a simple function is
not possible), Monte Carlo Search algorithms use playouts to randomly, or
according to a policy, apply moves to update the state and reach a final state.
The playout then evaluates the non-final state the playout originated from
using the evaluation(s) of the state at the end of (or encountered during)
the playout.

Recent advances also replaced the playouts with neural networks to eval-
uate the non-final states directly.

1.4 Introductory Example
Here is an introductory example using the graph generation problem. We
try to maximize the largest eigenvalue of the adjacency matrix for trees with
10 vertices.

1. State: the adjacency matrix.

2. Starting State: empty matrix of size 10 by 10.

3. Final State: the sum of all matrix cells is equal to 20.

4. Legal Moves: turn a 0 cell into a 1 on the adjacency matrix on a
column whose sum is equal to 0 (and another cell symmetrically to
the diagonal).

5. Score Function (maximisation): max(eigenvalues(adjacency matrix)).

6. Playout: randomly selects a legal move until none is available, then
returns the last state.
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Nothing else is needed other than the adjacency matrix to represent the
state. The score function and the moves do not require additional informa-
tion.

The Starting state is equivalent to a one-node graph without an edge.
But it leaves room for up to 9 new nodes and edges. The final state can’t
exceed 10 nodes and 9 edges due to the construction of the legal moves and
the starting state.

The legal moves must conserve the symmetry of the adjacency matrix
and modify cells in position (x,y) if it modifies a cell in position (y,x). The
condition on the column sum ensures we are adding a leaf and not an edge
connecting two already existing nodes.

The Score function takes the adjacency matrix (full or not), computes
the eigenvalues, and returns the largest one.

The playouts are guaranteed to return a size 10 tree.

??? ??? ??? ???

1.919 2.101 3

size 3

size 4

size 5

size 10

max eigenvalue

Figure 1.1: Search tree of the tree generation problem. The ondulated
arrows represent playouts from size 5 graphs to terminal size 10 graphs.
MCTS algorithm should direct themselves toward the right size of the search
space tree during their search.
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1.5 Plan
This thesis is disjointed and regroups multiple applications of Monte Carlo
Search and other search algorithms on separate problems. But there are a
few themes common to some of these applications.

The first theme is the usual computer scientist combinatorial problems,
involving graphs (and coalition structures). These problems have multiple
advantages: they are broad, abstract, and easily implementable, they are
featured in multiple papers, they gather communities of researchers spe-
cialized in algorithmics and combinatorial optimization These advantages
ensure a strong SOTA and a variety of approaches to compare to. They are
a good ground to show the advantages or disadvantages of the methods we
introduce.

The first problem we experimented on among these was the “automated
spectral graph theory refutation”. Graphs and algebra are two subjects I am
deeply interested in. While MCTS (especially nested ones) outperformed
a previous neural-based method and SOTA, greedy searches proved to be
faster in most situations. Machine learning being outperformed by greedy
search in graph algebra seems to be a result corroborated by Deepmind.
(Mehrabian, A., Anand, A., Kim, H., Sonnerat, N., Balog, M., Comanici,
G., ... & Wagner, A. Z. (2023). Finding increasingly large extremal graphs
with AlphaZero and tabu search. arXiv preprint arXiv:2311.03583.)

The second graph-related problem was the budget-limited optimization
of spatial transportation networks, where we optimized efficiency and ro-
bustness. Also outperforming the previous SOTA (UCT), efficiency was
best optimized by a new algorithm of ours called Lazy Nested Monte Carlo
Search, while the robustness was best optimized by a beam search (deter-
ministic).

The final “usual computer scientist problem” we experimented on was
the Coalition Structure Generation problem. In this problem agents must
be placed in coalition(s) in order to maximize the sum of all the coalition
values. On all variants of the problem, the previous SOTA (UCT with
greedy playouts) was outperformed by either LNMCS (Lazy NMCS, a new
variant of NMCS) with greedy playouts or with a new representation of the
search space.

Another theme linking some of the works in this thesis is cheminfor-
matics. While I do not have a formation in chemistry past high school, I
always was passioned about molecules, atoms, and the structure of matter
(it was a tough choosing between biology, physics, mathematics, and com-
puter science). I am also interested in the idea of the method I am working
on potentially helping people.

The first problem related to cheminformatics we experimented on is a toy
model called the “Hydrophobic-Polar model”. It is a toy model that could
have been labeled as a “usual computer scientist problem’ since it is abstract
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and puzzle-like. It was invented to mimic the folding of real life proteins, and
even if the application to chemistry may be limited, it’s granular and difficult
nature, and the old (and many) algorithms revolving around it helped us
imagine the LNMCS, variant of the NMCS, outperforming all known MCTS
algorithms on all problems we tried it on so far. It is also quite fun to play
with.

The second problem is the much larger retrosynthesis problem. Ret-
rosynthesis is a well-known problem that has been featured in hundreds of
articles. It involves two parts: a neural network (one step retrosynthesis)
and a search algorithm. By swapping the UCT algorithm with a NMCS
in AstraZeneca’s AiZynthFinder we are able to improve its performances
noticeably.

The last problem is the perhaps even larger topic of de novo molecule
design. We partnered with chemists and used ngrams extracted from an
established molecule database, paired with an atom by atom SMILES based
search space representation. This resulted in a software able to generate
thousands of drug-like, valid, novel, and generally unique molecules per
second. The molecules are also fairly (32%) synthesizable. To the best
of our knowledge, no other software has these capacities.

The last theme is one of puzzle design. Puzzles are another of my top-
ics of interest, I love playing them and designing them. I especially like
nonograms, the last project in this thesis is an automated multi-purpose
nonogram generator with difficulty estimation.

If you were to read only four papers of this thesis, we recommend “Solv-
ing the Hydrophobic-Polar Model with Nested Monte Carlo Search” for
the introduction of the Lazy Nested Monte Carlo Search algorithm, “Lazy
Nested Monte Carlo Search for Coalition Structure Generation” for a show-
case of said algorithm, “Comparing search algorithms on the retrosynthesis
problem” for improvements on a state of the art retrosynthesis tool, and
last “DrugSynthMC: an atom based generation of drug-like molecules with
Monte Carlo Search” for a search model that only produces valid molecules,
and that is able to outperform the state of the art in many aspects with the
use of ngrams instead of neural networks.

Here is a list of published papers:

1. Refutation of Spectral Graph Theory Conjectures with Monte Carlo
Search

2. Lazy Nested Monte Carlo Search for Coalition Structure Generation

3. Solving the Hydrophobic-Polar model with Nested Monte Carlo Search

4. Comparing search algorithms on the retrosynthesis problem

5. DrugSynthMC: an atom based generation of drug-like molecules with
Monte Carlo Search
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6. Generating Difficult and Fun Nonograms



Chapter 2

Graphs and coalitions

2.1 Spectral graph theory conjectures

The attempt at refuting conjectures using Monte Carlo Tree Search algo-
rithms was chronologically the first project in this thesis, and the first one
to be published. This is why fewer algorithms were used, they were not
implemented yet. It was initiated by a 2021 article from researcher Adam
Zsolt Wagner using a deep reinforcement learning method called deep cross-
entropy, which has since been cited more than 50 times as of 2024 and in-
spired a good number of papers. Our approach aimed at comparing Monte
Carlo and deterministic search algorithms to state of the art deep learn-
ing over 3 conjectures, by constructing graphs edge by edge. The search
algorithms outperformed and succeeded where deep learning failed.

Spectral graph theory is very interesting for multiple reasons. (1) Spec-
tral graph conjectures are plenty thanks to automated spectral graph conjec-
ture generators (2) the spectrum of a matrix is inexpensive to compute for
small matrices (size < 50) (3) the spectrum of a matrix can be of interest for
many applications such as internet/transportation network optimization.

The first article was published at the COCOON conference, we followed
this research with another article trying a much larger set of algorithms
over all conjectures from the software Graffiti that do not require computing
NP hard invariants (parts of the conjecture like the chromatic number for
example). All conjectures refuted in previous papers were also refuted by
our algorithms, and another, previously open, conjecture was refuted. The
greedy best-first search algorithm, a greedy search algorithm, was generally
the best algorithm. This result is corroborated by recent findings in graph
combinatorics from Deepmind, greedy algorithms and heuristics tend to fare
better on graph theory problems.

Last, Liora Taieb applied our algorithms and code to 68 more computer-
generated conjectures during her internship. These conjectures were previ-
ously refuted using a combination of using a special sample of subquartic

11



12 CHAPTER 2. GRAPHS AND COALITIONS

graphs (no vertex has a degree superior to 4), and the same deep cross-
entropy method introduced by Wagner. All conjectures refuted by the deep
cross entropy were also refuted by tree search methods, proving once again
the superiority of our methods. In addition, 3 open conjectures, which were
not refuted by hand, by exhaustive search, by subquartic graphs, and by
deep reinforcement learning, were refuted.

It is interesting to note, that unlike with the Graffiti conjectures in the
second article, the conjectures from Liora’s third article are best refuted
with NMCS and NRPA when a policy needs to be learned.



Refutation of Spectral Graph Theory
Conjectures with Monte Carlo Search

Milo Roucairol and Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, CNRS

Abstract. We demonstrate how Monte Carlo Search (MCS) algorithms,
namely Nested Monte Carlo Search (NMCS) and Nested Rollout Pol-
icy Adaptation (NRPA), can be used to build graphs and find counter-
examples to spectral graph theory conjectures in minutes.

Keywords: Monte Carlo Search · Graph Theory · Conjecture · Refuta-
tion.

1 Introduction

Monte Carlo search algorithm have proven to be powerful as game playing agents,
with recent successes like AlphaGo[19]. These algorithms have the advantage of
only needing an evaluation function for the final state of the space they explore.

Graph conjectures are propositions on graph classes (any graph, trees, K-
free...) that are suspected to be true and are awaiting a proof or a refutation.
They lend themselves well to computer assisted proofs, as finding a counter ex-
ample can be tedious to do manually. Spectral graph conjectures are appropriate
to automated refutation because the property can often directly be turned into
the evaluation function that can take many different values. Thanks to software
like Auto-GraphiX [18] and Graffiti [10], there are plenty of such conjectures.

Adam Zsolt Wagner showed that one could find explicit counter-examples
using deep reinforcement learning of a policy with the deep cross entropy method
[26].

In this paper, the MCS algorithms will play the game of refuting conjectures
by building counter-examples.

First we will present the refutation of graph theory conjectures, then the
different algorithms we use to explore the problem space, after that the procedure
we use to build graphs and the game rules, finally we expose our results on four
different conjectures.

2 Refutation of Graph Theory Conjectures

2.1 Graph Theory Conjectures

Conjectures in graph theory can be difficult to refute manually, unless one has
an intuition of a counter-example, building a large number of graphs and com-
puting invariant values or NP-hard problems on them often results in a waste of
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2 Roucairol and Cazenave

time. Hopefully, computers can help us with these score computations, the goal
of automated conjecture refutation is to automatize the exploration as well.

Multiple types of graph theory conjectures exist: existence, topological, flow
based, connectivity, cycle, minors, spectral... The conjectures we are examining
here are the spectral ones, they have the advantage of only requiring matrices
calculations. The spectrum of a matrix is the set of its eigenvalues, spectral
graph theory conjectures include conjectures on spectrum related invariants on
different types of graph related matrices (adjacency, distance, laplacian...).

In this article we aim at evaluating the interest of Monte Carlo Search meth-
ods in order to refute some spectral graph theory conjectures. We are interested
in conjectures that Adam Zsolt Wagner refuted in his article [26] as well as in
other conjectures.

2.2 Algorithms Used to Refute Graph Conjectures

Wagner used deep neural networks with cross entropy. The network is used to
learn a policy from a state, it is trained by constructing a batch of graphs ac-
cording to the policy, evaluating and selecting the best graphs from the batch
to adjust the neural network with their state-moves couples according to their
scores (obtained during the evaluation), then it’s repeated starting by the gen-
eration of a new batch until the conjecture is refuted.

Some of our conjectures come from Aouchiche and Hansen survey [1]. In
order to explain how Graffiti selects conjectures they state:
“Graffiti generates many conjectures of a simple form (e.g. inequalities between
two invariants or between an invariant and the sum of two others) then tests
them on a database of graphs and discards those which are falsified. Should this
test be passed, it is checked if the formulas are implied by known ones (in which
case they are also discarded) and that they provide new information for at least
one graph in the database, i.e., that they are stronger than the conjunction of
all other formulas for that graph. If not, they are temporarily set aside. If yes,
they are proposed to all graph theorists, in the electronic file “Written on the
Wall”, which reports on the status of almost 1000 conjectures. Many well-known
graph theorists worked on these conjectures and this led to several dozen papers.
Some of Graffiti’s conjectures are about various topics in spectral graph theory,
namely, the eigenvalues, as well as their multiplicity, of the adjacency, Laplacian
and distance matrices of graphs.”

3 Algorithms

In this section we present Monte Carlo Search and the different search algorithms
we use: NMCS, NRPA and Greedy-BFS.

14
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3.1 Monte Carlo Search

Monte Carlo Tree Search (MCTS) has been successfully applied to many games
and problems [5].

Nested Monte Carlo Search (NMCS) [6] is an algorithm that works well
for puzzles and optimization problems. It biases its playouts using lower level
playouts. At level zero NMCS adopts a uniform random playout policy. Online
learning of playout strategies combined with NMCS has given good results on
optimization problems [24]. Other applications of NMCS include Single Player
General Game Playing [20], Cooperative Pathfinding [3], Software testing [22],
heuristic Model-Checking [23], the Pancake problem [4], Games [7] and the RNA
inverse folding problem [21].

Online learning of a playout policy in the context of nested searches has
been further developed for puzzles and optimization with Nested Rollout Policy
Adaptation (NRPA) [25]. NRPA has found new world records in Morpion Soli-
taire and crosswords puzzles. NRPA has been applied to multiple problems: the
Traveling Salesman with Time Windows (TSPTW) problem [8,12], 3D Packing
with Object Orientation [14], the physical traveling salesman problem [15], the
Multiple Sequence Alignment problem [16] or Logistics [13]. The principle of
NRPA is to adapt the playout policy so as to learn the best sequence of moves
found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree Search dates back to the
general game player Cadia Player and its MAST playout policy [17].

3.2 Nested Monte Carlo Search

NMCS [6] is a Monte Carlo Search algorithm that recursively calls lower level
NMCS on children states of the current state in order to decide which move to
play next, the lowest level of NMCS being a random playout, selecting uniformly
the move to execute among the possible moves. A heuristic can be added to the
playout choices, but it is not the case with the NMCS used here.

Algorithm 1 gives the NMCS algorithm. The different notations used are:

Mcurrent-state denotes the legal moves available from the state current-state.

randomChoice(L) is a function that returns an element selected uniformly
from L.

3.3 Nested Rollout Policy Adaptation

Introduced by Christopher D. Rosin [25], NRPA is akin to mixing NMCS [6]
and Q-learning [27], performances are generally better than NMCS but the ex-
ploration/exploitation can lock itself in a local minimum. The algorithm is also
dependent on how moves are defined.

15



4 Roucairol and Cazenave

The algorithm uses a policy which consist in attributing a value to a move.
The difference with Wagner’s policy [26] is here the value of the move is not
necessarily learned given the state of the graph, but given the definition of the
move, the policy can thus be defined given the few previous moves or the number
of moves preceding the current one. It is also a key difference between NRPA
policy learning and Q-learning, Wagner’s policy is closer to deep Q-learning.

Like the NMCS, the NRPA calls other lower level NRPA which start with the
higher level current policy, these lower level NRPA return their best sequence
which is used to update the higher level policy. At the lowest level, the NRPA
launches a playout and randomly select moves according to the policy.

softmaxChoice(L, policy) is a function that returns an element selected ac-
cording to a softmax distribution on each element value mapped on the policy.

Chances of selecting e from L are exp(policy[e])
sum([exp(policy[i])for i in L]) .

In all our experiments, NRPA’s Alpha, the learning rate, is set to 1.

Algorithm 2 gives the NRPA algorithm.

3.4 Greedy Best First Search

Another algorithm we use is Greedy-BFS [11]. It consists in opening the best (or
randomly one of the best) previously evaluated node, evaluating all its children
and inserting these children in a list, sorted by their evaluation scores.

The evaluation can be done with a heuristic (in which case it is not Monte
Carlo) or a Monte Carlo algorithm like a playout or a low level NMCS.

In this paper, the Greedy-BFS was used as a general search technique and
not a Monte Carlo search algorithm. We use the score function (or the modified
evaluation function in conjecture 2) to choose which leaves to expand.

4 Graph Generation

For each problem we want to solve, we define an interface. This interface provides,
to the search algorithm, the classes for the state and for the move and their
associated functions: score, terminal, Mstate and play.

The goal is to find an instance of a class of graphs that does not respect a
property speculated on that class of graphs, in order to do so we use reinforce-
ment learning and tree search algorithms to explore the possible graphs from
that class and hopefully converge to a counter-example.

Moves to generate graphs are the same in all the approaches presented here,
the graph is built edge by edge. Moves are represented as couple of integers
corresponding to the two vertices the edge will link. If one of the two integer
corresponding vertex is not in the graph yet, it is added alongside the edge as a
leaf (-1 as the second member of the couple means adding a leaf anyway).

16
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What differs from one conjecture (interface) to another are the methods :
- score which derives from the conjecture we want to refute.
- terminal is necessary to MCS methods to know when stop a playout, it can
be the size of the graph (what we used here) but also the number of edges or
any property on the graph. Trying different constraints for that method is part
of the experiments.
- Mstate gives the legal moves from a state according to the model. For example
a model of maximum degree 3 will exclude any moves that result in the edge
addition on a vertex of degree 3.

5 Experiments on Conjectures

The experiments were made with Rust 1.59, on a Intel Core i5-6600K 3.50GHz
using a single core (but parallel processing is very accessible).

Every solution was verified using WolframAlpha symbolic computing of eigen-
values to ensure they were not due to floating point errors in Rust nalgebra 0.30.1
library.

We express every score function in order to maximise them.

5.1 Conjecture 1. AutoGraphiX

Conjecture 7 from [1], also present as conjecture 2.1 from [26], is used as a proof
of concept in the aforementioned paper. We decided to refute all conjectures
from [26] to show that MCS can be equally as good as the deep cross entropy.

Definition 1. Let G be a connected graph, the matching number is the size
of the matching that contains the largest number of edges of G.

Definition 2. Let G be a connected graph on n vertices, the distance spec-
trum λ1, ..., λn is the spectrum of the distance matrix, ranked in descending order
(λ1 being the largest, the index).

This conjecture is the following :
Conjecture 1. Let G be a connected graph on n ≥ 3 vertices with index λ1

and matching number µ. Then λ1 + µ ≥
√
n− 1 + 1.

λ1 + µ ≥
√
n− 1 + 1⇔ 0 ≥

√
n− 1 + 1− λ1 − µ

Which gives

Score function :
√
n− 1 + 1− λ1 − µ

With a NRPA of level 3, and generating trees of size 19, we found a graph
with a positive score of 0.016: λ1 + µ ≈ 5.227 and

√
n− 1 + 1 ≈ 5.243

It is the same counter-example (figure 1) as Adam Zsolt Wagner [26]. His results

17



6 Roucairol and Cazenave

helped us as we knew what to search for and that we could exploit NRPA policy
learning to recreate the pattern found in his counter example. However it is
interesting to try generating trees first anyway when refuting a spectral graph
conjecture as the space to explore is way smaller than for any graph, and trees
are extreme instances of the class, so these tend to be counter-examples.

The NRPA algorithm can lock itself in a policy leading to a local minimum
while searching a counter-example to that conjecture. It is important to use
restarts in this case: if a result is not found in less than a second the algorithm is
launched again a few number of times (usually 10 to 20 times) until the refutation
is found. While it takes a few hours to find the counter example with Wagner’s
deep cross entropy [26], our method can find it in seconds even with multiple
relaunches. Using restarts this way can be parallelized easily.

We also were able to find a counterexample of size 18 (figure 2) with the same
process, with a positive score of 0.012: λ1 + µ ≈ 5.101 and

√
n− 1 + 1 ≈ 5.123

5.2 Conjecture 2. Aouchiche-Hansen

Conjecture 2.15 from [2], also present as conjecture 2.3 from [26].

Definition 3. Let G be a connected graph, the diameter is the maximum
length of the shortest paths between all vertices of G.

Definition 4. Let G be a connected graph, the proximity is, over all the ver-
tices of G, the minimum average distance to all the other vertices of G.

Conjecture 2. Let G be a connected graph on n ≥ 4 vertices with diameter
D, proximity π and distance spectrum λ1 ≥ ... ≥ λn. Then π + λb 2D3 c

≥ 0.

Results from Wagner paper helped us to know what kind of graph generate:
a tree with more than 203 vertices. The intuition of that counter-example can
also be seen in [2].

The NRPA algorithm, with the standard score function, finds trees of size
30 with similar scores (-0.4) as the deep cross entropy method [26] in 3s, when
it takes days of training to the deep cross entropy to achieve these scores.

However none of the Monte Carlo method found a counter example with
these information only, just like Wagner’s deep cross entropy. We determined
that the problem stemmed from the score function which lumps scores from dif-
ferent graphs close together, a graph can see its diameter increase but not see
repercussions on its score due to the flooring (increasing the diameter of the
graph is indeed the way to find a counter example). To solve this problem, we
designed an evaluation function slightly different from the score function:

Score function: −π − λb 2D3 c

18
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Evaluation function: −π − λ′2D

We define λ′ by linearly interpolating λ to be 3 times as long.

With this new evaluation function, increasing the diameter of the graph al-
ways leads to a very different score. Instead of playouts, we then used that
evaluation function in the greedy-BFS algorithm which found a counter exam-
ple (figure 3) in about 5 minutes.

The graph shown in figure 3 had a score of approximately 0.000285, meaning
π+λb 2D3 c

< 0, it’s indeed a counter-example (it was verified to not be a floating

point error with wolfram symbolic eigenvalues computing).

5.3 Conjecture 3. Collins

Conjecture 10 from [9], also present as conjecture 2.4 from [26].
Given a tree T on n vertices, its adjacency matrix A(T ) and its distance

matrix D(T ).

CPD(T ) is the characteristic polynomial of D(T ):

CPD(T ) = det(D(T )− Ix) =
n∑
k=0

δkx
k

Let the coefficients dk = 2k

2n−2 |δk| for k in 0, ..., n-2 be the normalized coeffi-
cient of the characteristic polynomial.

Let pD(T ) be the peak of the normalized coefficient of the characteristic poly-
nomial.

CPA(T ) is the characteristic polynomial of A(T ):

CPA(T ) = det(A(T )− Ix) =

n∑
k=0

akx
k

Let pA(T ) be the peak of the non-zero coefficients (ak) of CPA(T ).

Conjecture 3. Given a tree T, CPA(T ) form an unimodal sequence and its
peak pA(T ) is at the same place as pD(T ) .

Like Adam Zsolt Wagner [26], we only refuted the second part of the conjec-
ture with a level 2 NMCS, using the same score function.
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Score function : |pA(T )
#λ 6=0

− (1− pD(T )
n−2 )|

The counter-example in figure 4 was found in less than a second, it features
a pA(T ) at 19/32 and a pD(T ) at 16/30 which gives no doubt that the peaks are
at different positions.

5.4 Conjecture 4. Graffiti 137

That conjecture was made automatically by a program named Graffiti [10], it is
present in the survey [1] as an already refuted conjecture.

Let Hc =
∑
uv∈E

1
d(u)+d(v) the harmonic of graph G with vertices E, d(u) is

the degree of the vertex u.

Conjecture 4. For any graph G, the second biggest adjacency matrix eigen-
value λ2 is inferior to the harmonic of the graph : λ2 < Hc(G).

Score function : λ2 −Hc(G)

A counter-example of size 7 (figure 5) is quickly found by NMCS of level 2,
NRPA of level 2 or even Greedy-BFS with λ2 ≈ 1.786 and Hc(G) = 5/3 ≈ 1.576 .

5.5 Comparison of Search Algorithms

Table 1 gives the times required to refute each conjecture for each algorithm.
The machine used has a i5-6600K 3.5 GHz CPU. We see that NMCS can refute
conjectures 3 and 4 almost instantly but does not find refutations to conjectures
1 and 2. NRPA also refutes conjectures 3 and 5 almost instantly and refutes
conjecture 1 in 0.1 seconds when Wagner solves it in a few hours. Greedy-BFS
refutes conjectures 2 and 4. It is the only algorithm (among those we tried) able
to refute conjecture 2, using a modified score function to guide a non MC search.
It solves it in 5 minutes when Wagner algorithm solves it in a few days.

Conjecture 2 could not be refuted with the natural score function derived
from the conjecture but could be solved with Greedy-BFS using a more infor-
mative score function. NRPA of level 2 with the natural score function could
attain a score of -0.4 in 3s instead of a few days in Wagner’s work [26].

6 Conclusion

Monte Carlo search methods proved to be powerful ways of refuting conjec-
ture from spectral graph theory much faster than Wagner’s deep cross entropy
method [26]. Trying to build trees even when the conjecture is applied on any
graph can also be helpful as it reduces the amount of possible builds greatly, it
is inexpensive and should be tried first.
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Table 1. Summary of our results

Method Conj 1 Conj 2* Conj 3 Conj 4

NMCS - - 1s (lv 2) 0s (lv 2)

NRPA 1s (lv 3) - 1s (lv 2) 0s (lv 2)

Greedy-BFS - 291s - 0s

(-) denotes a failure, an inability to refute the conjecture.
* Refuted using the evaluation function, different from the score function, that
evaluates non terminal states.

However, these methods present limits. Computing score functions that re-
quire eigenvalues on big trees (over size 500) can be very costly. They are also
dependent on the shape of the score function: a noisy score function with many
local minimum can be challenging, as well as a score function with more dis-
crete results can lead to an absence of differentiation in the paths to explore (see
conjecture 2). Conjectures requiring to compute a NP hard problem can also
severely increase the computing time even for small graphs (30 vertices).

In the future we aim to refute more conjectures and to improve the Greedy-
BFS with MCS method, potentially with pruning strategies too.
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A Appendix - Algorithms

Algorithm 1 The NMCS algorithm.

NMCS (current-state, level)
if level = 0 then

ply ← 0
seq ← {}
while current-state is not terminal do

move← randomChoice(Mcurrent-state)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return score (current-state, seq)

else
best-score← −∞
while current-state is not terminal do

for each move in Mcurrent-state do
next-state← play(current-state,move)
(score, seq)←NMCS (next-state, level − 1)
if score ≥ best-score then

next-best-state← next-state
best-score← score
best-sequence← seq

end if
end for
current-state← next-best-state

end while
return (best-score, best-sequence)

end if
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Algorithm 2 The NRPA algorithm.

NRPA (policy, level)
if level = 0 then

current-state← root()
ply ← 0
seq ← {}
while current-state is not terminal do

move← softmaxChoice(Mcurrent-state, policy)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return (score (current-state), seq)

else
best-score← −∞
for N iterations do

(result, new)← NRPA(policy, level − 1)
if result ≥ best-score then

best-score← result
seq ← new

end if
pol← adapt(pol, seq)

end for
return (best-score, seq)

end if

Adapt (policy, seq)
node← root()
pol′ ← pol
for ply = 0 TO length(seq)− 1 do

pol′[(node, seq[ply])] += Alpha
z ← Sum([exp(pol[(node,m)]) for m in Mnode])
for each move in Mnode do

pol′[(node,move)] -= Alpha·exp(pol[(node,move)])
z

end for
node← play(node, seq[ply])

end for
return pol′
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B Appendix - Graphs

Fig. 1. Counter example of conjecture 1 of size 19

Edges: 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-9, 0-11, 0-18, 4-7, 7-8, 7-10, 7-12, 7-13, 7-14,
7-15, 7-16, 7-17
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Fig. 2. Counter example of conjecture 1 of size 18

Edges: 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-9, 0-11, 4-7, 7-8, 7-10, 7-12, 7-13, 7-14,
7-15, 7-16, 7-17

Fig. 3. Counter example of conjecture 2

Edges: 0-1, 0-8, 0-13, 0-14, 0-15, 0-16, 0-17, 0-18, 0-19, 0-20, 0-21, 0-22, 0-23,
0-24, 0-25, 0-26, 0-27, 0-28, 0-29, 0-30, 0-31, 0-32, 0-33, 0-34, 0-35, 0-36, 0-37,
0-38, 0-39, 0-40, 0-41, 0-42, 0-43, 0-44, 0-45, 0-46, 0-47, 0-48, 0-49, 0-50, 0-51,
0-52, 0-53, 0-54, 0-55, 0-56, 0-57, 0-58, 0-59, 0-60, 0-61, 0-62, 0-63, 0-64, 0-65,

27



16 Roucairol and Cazenave

0-66, 0-67, 0-68, 0-69, 0-70, 0-71, 0-72, 0-73, 0-74, 0-75, 0-76, 0-77, 0-78, 0-79,
0-80, 0-81, 0-82, 0-83, 0-84, 0-85, 0-86, 0-87, 0-88, 0-89, 0-90, 0-91, 0-92, 0-93,
0-94, 0-95, 0-96, 0-97, 0-98, 0-99, 0-100, 0-101, 0-102, 0-103, 0-104, 0-105, 0-106,
0-107, 0-108, 0-109, 0-110, 0-111, 0-112, 0-113, 0-114, 0-115, 0-116, 0-117, 0-118,
0-119, 0-120, 0-121, 0-122, 0-123, 0-124, 0-125, 0-126, 0-127, 0-128, 0-129, 0-130,
0-131, 0-132, 0-133, 0-134, 0-135, 0-136, 0-137, 0-138, 0-139, 0-140, 0-141, 0-142,
0-143, 0-144, 0-145, 0-146, 0-147, 0-148, 0-149, 0-150, 0-151, 0-152, 0-153, 0-154,
0-155, 0-156, 0-157, 0-158, 0-159, 0-160, 0-161, 0-162, 0-163, 0-164, 0-165, 0-166,
0-167, 0-168, 0-169, 0-170, 0-171, 0-172, 0-173, 0-174, 0-175, 0-176, 0-177, 0-178,
0-179, 0-180, 0-181, 0-182, 0-183, 0-184, 0-185, 0-186, 0-187, 0-188, 0-189, 0-190,
0-191, 0-192, 0-193, 0-194, 0-195, 0-196, 0-197, 0-198, 0-199, 0-200, 0-201, 0-202,
1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 8-9, 9-10, 10-11, 11-12

Fig. 4. Counter example of conjecture 3

Edges: 0-1, 0-2, 0-13, 0-27, 1-5, 1-7, 1-9, 1-22, 2-3, 3-4, 3-8, 3-12, 4-10, 4-25,
5-6, 5-16, 5-21, 6-14, 6-28, 9-11, 10-20, 11-24, 13-19, 14-15, 15-17, 15-18, 15-23,
19-26, 19-30, 28-29
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Fig. 5. Counter example of conjecture 4

Edges: 0-1, 0-2, 1-2, 0-3, 3-4, 4-5, 3-5, 3-7
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Abstract. We are interested in the automatic refutation of spectral
graph theory conjectures. Most existing works address this problem ei-
ther with the exhaustive generation of graphs with a limited size or with
deep reinforcement learning. Exhaustive generation is limited by the size
of the generated graphs and deep reinforcement learning takes hours or
days to refute a conjecture. We propose to use search algorithms to ad-
dress these shortcomings to find potentially large counter-examples to
spectral graph theory conjectures in seconds. We apply a wide range of
search algorithms to a selection of conjectures from Graffiti. Out of 13
already refuted conjectures from Graffiti, our algorithms are able to re-
fute 12 in seconds. We also refute conjecture 197 from Graffiti which was
open until now.

Keywords: Monte Carlo Search · Spectral · Graph Theory · Conjecture
· Refutation.

1 Introduction

Monte Carlo search algorithms have proven to be powerful as game-playing
agents, with recent successes like AlphaGo [14]. These algorithms have the ad-
vantage of only needing an evaluation function for the final state of the space
they explore.

Graph conjectures are propositions on graph classes (any graph, trees, Kn −
free...) that are suspected to be true and are awaiting proof or a refutation. They
lend themselves well to computer-assisted proofs, as finding a counter-example
can be tedious to do manually. Spectral graph conjectures are appropriate for
automated refutation because the property can often directly be turned into the
evaluation function that can take many different values. Thanks to software like
Auto-GraphiX [9] and Graffiti [5], there are plenty of such conjectures.

Adam Zsolt Wagner showed that one could find explicit counter-examples us-
ing deep reinforcement learning of a policy with the deep cross entropy method
[16]. Wagner was able to refute three conjectures from Graffiti. Wagner’s method
trained a neural network with reinforcement learning for each conjecture, learn-
ing to build graphs tailored to the refutation of each conjecture. The refutation
of a conjecture with Wagner’s method takes hours or days. Using search algo-
rithms it was possible to refute conjectures 2.1 and 2.4 from the Wagner paper
in one second and conjecture 2.3 in 291 seconds [12].
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A usual way to find counter-examples to graph theory conjectures is to gen-
erate all the graphs smaller than a given size and to verify the conjecture for all
these small graphs [1]. This exhaustive generation limits the size of the graphs
that can be tested. On the contrary, our search algorithms can rapidly generate
larger refutation graphs.

In this paper, the search algorithms will play the game of refuting conjectures
by building counter-examples edge by edge. We build on our previous paper [12]
by testing many more conjectures and by comparing more search algorithms.

First, we will present the refutation of graph theory conjectures, then the
different algorithms we use to explore the problem space, after that the procedure
we use to build graphs and the game rules, and finally we expose our new results
on multiple different conjectures.

2 Refutation of Graph Theory Conjectures

2.1 Graph Theory Conjectures

Refuting Graph theory conjectures can be a hard task to do manually. Imagining
a large number of graphs and computing invariant or NP-hard problem values
can be tedious and often results in a waste of time. Computers are designed to
help with these score computations. The goal of automated conjecture refutation
is to automatize the exploration as well.

Graph theory conjecture can concern many different properties of graphs: ex-
istence, topology, flow, connectivity, cycle, minors, spectral... Here we are inter-
ested in the spectral graph theory conjectures, necessitating matrix calculations
only. The spectrum of a matrix is the set of its eigenvalues. Spectrum-related in-
variants on different types of graph-related matrices (adjacency, distance, Lapla-
cian...) are the focus of spectral graph theory conjectures.

We propose to compare search algorithms for the refutation of various spec-
tral graph theory conjectures. In [12], the conjectures from [16] were refuted
hundreds of times faster and the performances of the methods were comapred.
This paper experiments with a more diverse set of search algorithms and we
address all the remaining conjectures from Graffiti that do not involve solving a
NP-hard problem. Graffiti is a well-known software that was used to generate a
thousand spectral graph theory conjectures. It was the target of numerous works
and discussions, sometimes involving some of the greatest graph theoricians such
as Paul Erdos, Laszlo Lovasz, Noga Alon, Noam Nisan. Conjectures from Graf-
fiti were the subject of entire articles, with graph theorists dedicating weeks or
months to them. Our program aims at refuting some of them in a much more
efficient manner.

We decided to focus on this subset of Graffiti conjectures to avoid dependence
on other algorithms and to reduce the number of conjectures.
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2.2 Algorithms Used to Refute Graph Conjectures

The program by Wagner trained a deep neural network with cross-entropy to
output a policy. The network is used to learn a policy from a state. The policy
is used the generate a batch of graphs, it then evaluates the best graphs from
the batch and trains the neural network using the graph’s scores. Batches are
successively evaluated until the refutation of the conjecture.

Softwares used for automated conjecture generation like Graffiti or Auto-
GraphiX also have their own ways of automatically refuting conjectures to verify
the easily refutable ones. Graffiti and its conjectures are detailed in Aouchiche
and Hansen survey [1]. It generates many conjectures in the form of inequalities
between invariants. It then tests these conjectures on a database of graphs and
discards the falsified ones. Then it checks if the inequalities are not implied by
already known theorems and conjectures. If a conjecture passes these tests, it
is proposed to scientists. "Written on the wall" collects almost 1000 conjectures
from Graffiti, along with the discussions of many scientists. Graffiti’s conjectures
connect various topics in spectral graph theory such as eigenvalues, adjacency,
distance; Laplacian, and gravity matrices of graphs. These conjectures are the
subjects of dozens of articles.

3 Materials and Methods

We decided to expand the experiments from [12] by using the same algorithms
and adding two widely used Monte Carlo Search algorithms, another recent one,
and another baseline simple algorithm on more conjectures produced by Graffiti
[1]. The search model used by the algorithms to build the graphs is the same as
in [12]: starting from a single node, new nodes and edges are added to the graph
until it reaches a target size. These additions of nodes and edges are the edges
of the search tree.

– NMCS [3] uses nested levels of search with random search at the base level.
It is already used in [12].

– NRPA [11] learns a playouts policy with nested levels of best sequences. At
the lowest level it makes playouts with the learned policy. It is already used
in [12].

– GBFS is a simple greedy algorithm opening the best state from a list, eval-
uating the children of this state, and inserting these children in the list
according to their evaluation. It is already used in [12].

– BEAM search, another baseline greedy search heuristic, keeps the width best
states after each step of expanding and going down the search tree.

– Upper Confidence bounds applied to Trees (UCT) as described by Kocsis
and Szepesvári [10], which is the most widely used MCTS algorithm, and
close to PUCT used in outstanding works such as Deepmind’s Alphazero
[15].
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– Rapid action value estimation (RAVE), a MCTS algorithm inspired by UCT
and proposed by Siver and Gelly [8], then generalized as GRAVE by Cazenave
[4] using a threshold on the number of playouts.

– Lazy Nested Monte Carlo Search (LNMCS), a variant of NMCS proposed by
Roucairol and Cazenave [13] addresses a shortcoming of the NMCS. Before
launching a costly lower level LNMCS on a child state, it is evaluated with
playouts and pruned if the evaluation is not satisfying enough, this way it
avoids sinking the time budget in fruitless subtrees and allows the LNMCS
to use higher starting levels than the NMCS.

These conjectures (in table 1) were selected because they did not require NP-
hard problems to be solved to compute the score, thus lending themselves well
to Monte Carlo Search and other optimization methods. All of the fitting conjec-
tures from Aouchiche and Hansen’s survey [1] are included in our experiments.
It is possible to tackle conjectures needing a NP-hard problem to be solved (like
coloration) up to sizes 25-30, we might come back to such conjectures in future
works.

4 Results

The experiments were made with Rust 1.59, on an Intel Core i5-6600K 3.50GHz
using a single core (but parallel processing is very accessible).

Our positive results in table 1 were obtained by launching each algorithm
on each conjecture with a time budget of 15 minutes. In the Graffiti column, R
means the conjecture was already refuted, and O means the conjecture is still
open.

– The NMCS used a level of 3.
– The LNMCS used a level of 4, 3 playouts per evaluation, and a ratio of 0.8.
– The UCT used a constant of 1.
– The GRAVE and RAVE used a reference of 5.
– The BEAM search used a width of 10.

5 Discussion

As shown in table 1, we were unable to refute conjectures that were open except
one (either 197 or 322). This means either that our algorithms are not strong
enough, or that these conjectures are true. However, with the exception of Graffiti
140, most of the already refuted conjectures we tried were refuted by at least one
algorithm among GRAVE, RAVE, NMCS, LNMCS, NRPA, GBFS, and UCT.
Graffiti 140 refutation seems to be lost, 140 is said to be refuted by another work
by Favaron which we are unable to find.

Considering nonterminal states for evaluation helped immensely with the
harder Graffiti 137, 139, 189, 289, and 301. Graffiti 289’s repeating pattern may
be an explanation as to why the NRPA succeeded where most other algorithms
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failed. The times, when displayed in the hundreds of seconds, are approximations,
only GBFS and BEAM are deterministic so the time is exact. In addition, NMCS,
UCT, GRAVE, and RAVE were very unreliable at finding a counter-example for
Graffiti 29, about once every 3 runs, when LNMCS was able to find a counter-
example in less than 60 seconds in 9 out of 10 runs.

For Graffiti 189 and 195, we first searched in the "any graph" search space
(instead of the type of graphs the conjecture is about), and then verified if the
graph in question complied with the conjecture definition.

We think the relative failure of GBFS on Graffiti 30 is partly due to the score
function leading the algorithm to open nodes to smaller graphs first, while the
MCTS algorithms try larger graphs immediately using playouts. Beam search
requires a width of 80 or more to find a counter example to this conjecture, so
trying larger graphs is not sufficient on its own.

The beam search is very dependent on its width parameter, too high and it
will not be able to explore deep in the search tree and find large counter examples
(on Graffiti 137), and too low and it will not consider inferior intermediate states
that would in fact lead to a counter example (on Graffiti 29 and 30). That makes
it an inferior choice for spectral graph conjecture refutation compared to GBFS.

Fig. 1. A counter-example of Graffiti 289 of size 20 (second largest eigenvalue ≤ mean
of the mean of all adjacent vertex degree for all nodes)
Edges: 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-5, 0-11, 11-12, 12-13, 13-14,
14-15, 15-16, 16-17, 17-18, 18-19, 19-14
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Fig. 2. A counter-example of Graffiti 301 of size 14 (scope of positive eigenvalues ≤
harmonic)
Edges: 0-1, 0-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13

Fig. 3. A counter-example of Graffiti 30 of size 15 (# positive distance eigenvalues ≤
sum of temperatures)
Edges: 0-1, 0-3, 0-12, 1-2, 1-3, 2-3, 2-7, 2-12, 3-4, 3-5, 4-6, 5-6, 5-7, 5-12, 6-7, 6-8, 7-9,
8-10, 9-11, 10-14, 11-12, 11-13, 13-14
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Fig. 4. A counter-example of Graffiti 29 of size 7 (randic index ≤ # negative eigenval-
ues)
Edges: 0-1, 0-2, 0-6, 1-3, 2-5, 3-4, 3-6, 4-5, 5-6

In[12] Graffiti 137 was one of the 4 main conjectures refuted. Unfortunately
an erroneous definition of the Harmonic was used (see subsection 5.2). Graffiti
137 is actually more interesting than we initially thought, the smallest known
counter-example featured 101 nodes and required a very specific structure, it was
first refuted by Favaron et al. [6] using a mathematical proof and not directly
a counter-example. Here we managed to find a counter-example of size 67 (see
figure 5) which does not follow the structure described, but closely resembles
it, by descending the search space (opening graphs of increasing size, much like
conjecture 2) almost directly with GBFS.

As mathematical proofs are complex, if the goal was to refute this one con-
jecture, then our algorithm was most likely faster. But another interesting result
is that the class of graph needed to refute Graffiti 137 by Favaron et al. was also
used to refute two other conjectures (and could have been used to refute Graffiti
139, see figure 6), the search algorithms can provide insight to the mathemati-
cians (they can provide insight even if the graph produced does not refute a
conjecture as in Wagner’s work [16] with conjecture 2.3). The other algorithms
did not manage to find a counter-example in a reasonable time.

5.1 Graffiti 197 is refuted

In "Written on the wall", Graffiti 197 is defined as:

Graffiti 197. - 2-nd smallest eigenvalue ≤ range of eigenvalues of gravity
matrix.

Using the usual definition of the range, and not Aouchiche and Hansen’s (see
subsection 5.2), our algorithms find a counter example with the cycle of length
17, see figure 7. Using Aouchiche and Hansen’s definition of the range we could
not find any counter example, but if this initial definition was to be used then
Graffiti 322 would be (too) easily refuted.

The second smallest eigenvalue is λn−1 ≈ −1.9659, and the range of eigen-
values of the gravity matrix is approximately 1.7035.

36



8 M. Roucairol et al.

Cycles of size 21 and 25 also refute Graffiti 197, we conjecture that any cycle
of size 1 + 4 ∗ n greater or equal to 17 refutes this conjecture.

5.2 Erratum

We provide a copy of "Written on the Wall" on this project’s github, which is
otherwise hard to find:

– Graffiti 290 (open) was solved instantly using the definition of gravity in
Aouchiche and Hansen’s survey [1] (which prompted us to verify the defini-
tion). But it was seemingly impossible using the definition from Brewster et
al. [2].
Since the definition of gravity of a graph is not widespread, here is the cor-
rect definition of the gravity matrix from "Written on the Wall" (page 52)
and Brewster et al. [2]:

Gravity matrix: The matrix (indexed by vertices of the graph) whose
(u, v)th entry is 0 if u = v or if there is no path joining u to v; otherwise it
is

Gr(G) = (1/(n− 1))(d(u) ∗ d(v))/d(u, v) (1)

Where d(u) is the degree of vertex u and d(u, v) is the distance from vertex
u to vertex v in the graph G of size n.

– In the same manner, with Aouchiche and Hansen’s definition of the har-
monic, Graffiti 140 was refuted by the graph with one edge connecting two
vertices. The correct definition is featured in "Written on the Wall" (page
28) and in Favaron et al. [6]:

Harmonic: The harmonic of a graph is defined as:

Hc(G) =
∑
uv∈E

2

d(u) + d(v)
(2)

Where and E is the set of edges of a graph G.

– Using Aouchiche and Hansen survey’s [1] definition of range, it appeared that
our algorithms managed to refute Graffiti 322 (open) with a cycle graph of
size 4. Here is the definition of Graffiti 322 from "written on the wall":

Graffiti 322. If G is a triangle-free graph then the Inverse Even ≤ range of
eigenvalues of Distance.

Inverse Even is defined as the sum over the vertices of the inverse of the
number of vertices to even distance from that vertex, ie:
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v∈V 1/Ev(v) where Ev(v) is the number of vertices at even distance from

vertex v.
Thus the cycle of size 4 has 3 distinct distance eigenvalues and an Inverse
Even of 4. An error with the definitions seems more likely than this conjecture
being left open after dozens of articles with such a simple counter-example.
The range is defined as the number of distinct values in a vector in Aouchiche
and Hansen’s survey and (likely inherited from) Favaron et al.’s work, with
no further sources. The range of a vector is usually the difference between the
minimum and maximum values. Thus we think this definition is erroneous
but we were not able to find the actual definition of the range used in "written
on the wall". The results featured in table 1 for Graffiti 322 use the usual
definition of range, either way, Graffiti 197 is refuted or Graffiti 322 is refuted.

– Graffiti 294 from Aouchiche and Hansen’s survey is Graffiti 295 from "written
on the wall", we go by this identifier in table 1.

– Graffiti 140 is said to be refuted by Favaron et al. in "residue of a graph" [7]
according to "written on the wall", but there is no mention of "harmonic",
"deviation" or Graffiti 140 in that paper.

The general lack of sourcing, the loss of multiple articles, and the misleading
or erroneous definitions are detrimental to future work on Graffiti conjectures.
For instance, we suspect that Graffiti conjectures 28 and 209 may not be refuted
as sources are nonexistent (28) or seemingly lost (209). We decided to include
Graffiti 140 in the table unlike 28 and 209 because we could find its refuta-
tion source, but we could not find its appearance in the source. Auto-GraphiX
conjectures may be more favorable to continuing this work.

6 Conclusion

Search algorithms proved to be powerful ways of refuting conjecture from spec-
tral graph theory, much faster than Wagner’s deep cross entropy method [16].
We can identify three algorithms that seem more effective on the conjectures
tested: GBFS which is overall faster but was not able to refute conjectures in
[12] and struggled on Graffiti 30, NRPA which is very efficient when a repeating
pattern refutes a conjecture, and LNMCS/NMCS which managed to be slightly
faster than NRPA on Graffiti 29 and 301 while being faster than the other MCTS
algorithms. LNMCS did not outperform NMCS due to the nature of the search
space: there rarely is a move that doom all its child-states It seems that not
one single algorithm is able to solve all of sample of conjectures we selected,
and using different approaches is required to adapt to the variety of problems in
spectral graph theory conjecture refutation. We recommend trying GBFS, the
NMCS, and then NRPA.

Trying to build trees even when the conjecture is applied on any graph can
also be helpful as it reduces the amount of possible builds greatly and focuses
on a sub-type of graphs that often features extreme properties over the spectral
invariants. It is inexpensive and should be tried first.
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However, these methods present limits. Computing score functions that re-
quire eigenvalues on big trees (over size 300) can be very costly. They are also
dependent on the shape of the score function: a noisy score function with many
local minimums can be challenging, as well as a score function with more dis-
crete results can lead to an absence of differentiation in the paths to explore.
Conjectures requiring computing a NP-hard problem can also severely increase
the computing time even for small graphs (30 vertices).

Despite these limitations, and depending on the definition of the gravity
matrix, either our program was able to refute up to the state of the art (manually
from graph theorists) the conjectures from Graffiti, or it refuted Graffiti 197, a
previously open conjecture.

You can access the implementations of the conjecture and the Rust code used
to refute them here:

https://github.com/RoucairolMilo/refutationExperimentalMathematics
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Table 1. Times in seconds to obtain a refutation by applying every algorithm on
selected Graffiti conjectures.
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Graffiti: R means the conjecture was already refuted (as reported in [1]) O means the
conjecture is open to be proved or refuted
Size: If there is a "+", it is the size at which we start to find counter-examples with
our algorithms. Otherwise, it is the size we built graphs up to.
Graph type: It is the types of graphs we used in our searches, "any" means there was
no restriction on the graph built, K3− free means there is no clique of size 3, "girth
≥ 5" means the shortest cycle must be longer than 5, "tree" means the graph must be
a tree. We tried both generating trees and then any graph on multiple conjectures.
A 0 in the time section means that the conjecture was refuted in less than a second.
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Fig. 5. A counter-example of Graffiti 137 of size 67 (second largest eigenvalue ≤ har-
monic)
Edges: 0-1, 0-2, 1-3, 1-4, 1-5, 1-11, 1-15, 1-18, 1-21, 1-25, 1-28, 1-31, 1-34, 1-37, 1-40,
1-43, 1-46, 1-49, 1-52, 1-55, 1-58, 1-61, 1-64, 1-66, 2-6, 2-7, 2-8, 2-9, 2-10, 2-11, 2-12,
2-13, 2-14, 2-15, 2-16, 2-17, 2-18, 2-19, 2-20, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27,
2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34, 2-35, 2-36, 2-37, 2-38, 2-39, 2-40, 2-41, 2-42,
2-43, 2-44, 2-45, 2-46, 2-47, 2-48, 2-49, 2-50, 2-51, 2-52, 2-53, 2-54, 2-55, 2-56, 2-57,
2-58, 2-59, 2-60, 2-61, 2-62, 2-63, 2-64, 2-65, 2-66
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Fig. 6. A counter-example of Graffiti 139 of size 50 ( - second smallest eigenvalue ≤
harmonic)
Edges: 0-1, 0-2, 0-3, 0-4, 0-5, 0-8, 0-11, 0-14, 0-17, 0-20, 0-23, 0-26, 0-29, 0-32, 0-35,
0-38, 0-41, 0-44, 0-47, 0-49, 1-2, 2-3, 2-6, 2-7, 2-8, 2-9, 2-10, 2-11, 2-12, 2-13, 2-14,
2-15, 2-16, 2-17, 2-18, 2-19, 2-20, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27, 2-28, 2-29,
2-30, 2-31, 2-32, 2-33, 2-34, 2-35, 2-36, 2-37, 2-38, 2-39, 2-40, 2-41, 2-42, 2-43, 2-44,
2-45, 2-46, 2-47, 2-48, 2-49

Fig. 7. A counter-example of Graffiti 197 of size 17
Edges: 0-1, 1-2, 02-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14,
14-15, 15-16, 16-0
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ABSTRACT
We address the problem of automatic refutation of spectral graph theory conjectures
with Monte Carlo methods. Usual ways are testing conjectures on an exhaustive
database of graphs below a certain size, local search algorithms, or, more recently,
deep reinforcement learning. We expand on previous works by finding smaller (and
often sparser) counter-examples to spectral graph theory conjectures in seconds
when it takes minutes or hours with other methods. We apply search algorithms
(including state-of-the-art Monte Carlo Searches) to 68 automated conjectures al-
ready addressed by the deep cross-entropy method. In addition to the ones already
disproved by deep cross-entropy, we refute 2 open conjectures until now. We high-
light the efficiency of Monte Carlo Search algorithms compared to a state-of-the-art
neural approach, and the advantages of the constructive method. Monte Carlo search
can be used to automatically refute conjectures that are experimentally generated.
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1. Introduction

Finding potential counterexamples to a graph theory conjecture can be a tiresome

task. The search space of graphs of order n consists of at least of 2(
n
2)

n! non isomorphic
graphs, with n! being the maximal cardinality of a graph isomorphism class. Thus the
search space’s size is expanded in doubly exponential fashion when exploring multiple
graph sizes when there is no prior intuition on the likely size of a counter-example.

This article expands the work of Roucairol and Cazenave (Roucairol & Cazenave,
2022, 2024), who were the first to use Monte Carlo Search methods to build counter-
examples of spectral graph theory conjectures, in which they showed the effectiveness
of the approach against neural state-of-the-art methods. Few works have been de-
voted to evaluating Monte Carlo search algorithms for combinatorial graph problems.
Cazenave et al. applied it to graph coloring (Cazenave, Negrevergne, & Sikora, 2021),
investigated before them only by Edelkamp et al. (Edelkamp, Externest, Kühl, &
Kuske, 2017), both works being competitive with state-of-the-art SAT solvers.

Our focus in this paper is once again on spectral graph theory conjectures, as they
are well-suited for automated refutation. Here, we focus on conjectures involving the
maximum Laplacian eigenvalue of a graph. The property of a spectral theory conjecture

CONTACT Author. Email: tristan.cazenave@lamsade.dauphine.fr
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can straightforwardly be translated into an evaluation function whose set of images is
large and continuous, which usually provides a good assessment of the quality of the
states evaluated. Many available softwares and libraries of various computer languages
carry out eigenvalue calculations quickly.

The paper is organized as follows. In Sect. 2, we describe previous work in the
refutation of graph theory conjectures and we focus on Monte Carlo search. In Sect.
3, we present the problem and the methodology used to explore the problem space.
Finally, in Sect. 4 and 5, we present and discuss our results on multiple conjectures.

2. Refutation of Graph Theory Conjectures

2.1. State Of The Art

Graph conjectures are propositions on graph classes (any graph, trees, K-free...) that
are thought to be true and are awaiting proof or a refutation. Many mathematicians
have put forward spectral graph theory conjectures still open to this day (Liu & Ning,
2023). Automated softwares for creating conjectures emerged at the rise of powerful
computers in the 80s, including Ingrid (Dutton, Brigham, & Gomez, 1989), GRAPH
(Cvetković & Simić, 1994), Graffiti (DeLaVina, 2005) and AutoGraphiX (P. Hansen &
Caporossi, 2000). Thanks to them, plenty of such conjectures are available and still
open (Aouchiche & Hansen, 2010).

Graffiti uses known theorems to create and refine many conjectures in the form of
inequalities between graph invariants. It then tests these conjectures on a database of
graphs and discards the falsified ones. Its database is built by an exhaustive generation
of graphs smaller than a threshold size. The system later checks if the inequalities are
not implied by already known theorems and conjectures, including those it has created
itself. If a conjecture passes these tests, it is proposed to graph theorists. ”Written
on the wall” (Latest version of ”Written on the wall”, 2012) collects almost 1000
conjectures from Graffiti, along with the discussions of many renowned graph theorists.
The efficiency of Graffiti’s refutation process is strongly limited by the quality of the
database, in other words its completeness and the maximal size of generated graphs.

AutoGraphiX uses local search to create - and also refute - some conjectures. The
program uses a heuristic, the Variable Neighborhood Search (VNS) to identify extremal
graphs and suggest conjectures based on their structure. Local search is naturally more
intelligent than a naive exhaustive generation as it introduces constraints to reduce the
search space, and has been used several times to solve combinatorial graph problems
(Hertz & de Werra, 1987; Lidický, McKinley, & Pfender, 2024; Mehrabian et al., 2023).

Lately, machine and deep learning tackled combinatorial problems over graphs
(Khalil, Dai, Zhang, Dilkina, & Song, 2017). Wagner’s deep reinforcement learning
technique (Wagner, 2021) is a pioneering refutation method of graph theory conjec-
tures. It has been reworked in (Angileri et al., 2024) and used for research in Turán
theory in (Mehrabian et al., 2023), Ramsey theory in (Ghebleh, Al-Yakoob, Kanso, &
Stevanović, 2024) and spectral graph theory in (Al-Yakoob, Ghebleh, Kanso, & Ste-
vanovic, 2024), disproving open conjectures in (Al-Yakoob et al., 2024; Ghebleh et al.,
2024; Wagner, 2021). This program learns a policy of graph generation using a deep
cross entropy. It trains a neural network to output a policy on the next edge to add
to a graph. This way, it creates a batch of full graphs from which the network learns
by minimizing the cross-entropy with the distribution of the best graphs of the batch.
Wagner’s method intrinsically understands the structure of the best graphs. But it
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can take hours or days, and it is limited to the study of fixed sizes of graphs.

2.2. Monte Carlo Search

Monte Carlo Tree Search (MCTS) is a family of algorithms that combine tree search and
reinforcement learning using playouts and heuristics (Browne et al., 2012). The search
space (and not the search states) is represented by a tree, where the nodes are the
partial constructions, the edges are the next possible moves and the leaves are terminal
states. It performs numerous simulations and stores the statistics of actions and their
resulting evaluations to make more educated choices in each iteration. Constraints on
legal moves delimit the possible extent of the search space.

Monte Carlo search algorithms were proven to be powerful in puzzles and optimiza-
tion problems, with recent successes like AlphaGo (Silver et al., 2016). They often
excel in games (Cazenave, 2009; Méhat & Cazenave, 2010) and non-games applica-
tions including biology (Edelkamp & Tang, 2015; Portela, 2018), logistics (Edelkamp
et al., 2016; Edelkamp & Greulich, 2014) and many more (Browne et al., 2012). These
algorithms have the advantage of only needing an evaluation function for the final
state of the space they explore.

The efficiency of MCTS comes from its incremental construction of graphs, which
can produce large solutions. It is similar to local search in that it improves the con-
struction by moving towards the best neighboring solutions. As a local search and
reinforcement learning method, MCTS can fall into a local optima if the evaluation
score is too noisy, but decisions based on reinforcement learning help balance this lim-
itation. Some of them such as Nested Rollout Policy Adaptation learn a general policy
that serves as a playout guiding heuristic, in line with the principle of the deep cross
entropy, without being limited by a fixed graph size.

MCTS is efficient in solving optimization problems where the score function and
the legal moves are relatively inexpensive to compute, as these calculations will be
made many times during the simulations. The difficulty with these methods lies in
the choice of an efficient exploration of the search space, and the formalization of an
objective yet feasible evaluation function. For NP-hard problems, it is possible to bias
the search intelligently (Cazenave, 2017; Cazenave et al., 2021).

3. Problem and Methodology

The conjectures we study come from (Brankov, Hansen, & Stevanović, 2006) and
involve the largest eigenvalue µ of the Laplacian matrix of graphs (degree matrix
minus adjacency matrix). They were created automatically similarly to Graffiti with a
database of 273 214 connected graphs with up to 9 vertices, enhanced by a few special
graphs. We focus on the 68 conjectures attempted by Al-Yakoob et al. with the deep
cross entropy method (Al-Yakoob et al., 2024). All conjectures are presented in the
appendix, their order comes from (Al-Yakoob et al., 2024), different from the order
(Brankov et al., 2006). They are of the form

µ ⩽ max
vi

f (di,mi) (1) or µ ⩽ max
vi∼vj

f (di,mi, dj ,mj) (2)

where vi is any vertex of G, di is the degree of this vertex and mi is the average of the
degrees of vi’s neighbors, and f is some function involving these parameters.

The evaluation function naturally is µ - the value on the right of the inequality.
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To avoid floating point errors when calculating eigenvalues, we force the result to
be greater than 0.0001 for the graph to be considered a counter-example (it is more
than enough for graphs of size 20). The conjectures apply to any graph, therefore we
begin with the naive approach of not restraining the legal moves. Following the work
of Roucairol and Cazenave (Roucairol & Cazenave, 2022), we then narrow the legal
moves to create only trees, as the search space is way smaller and trees are more likely
to converge toward extreme graphs with extreme properties.

We apply 3 Monte Carlo search algorithms to the problem as well as the Greedy
Best-First Search algorithm, the evolutionary algorithm Covariance Matrix Adaptation
- Evolutionary Strategy and an Iterated Local Search. Their pseudo-codes are presented
in the appendix.

• Nested Monte Carlo Search (NMCS) (Cazenave, 2009) uses nested levels of play-
outs with random playouts at the base level. At each recursion level, each legal
moves is assigned a score from the results of the lower level NMCS starting from
the move, and the best move is selected this way.
• Nested Rollout Policy Adaptation (NRPA) (Rosin, 2011) is similar to a NMCS,
but learns a policy with nested levels of best sequences. At the lowest level, it
becomes a playout with the learned policy.
• Generalized Rapid Action Value Estimation (GRAVE) (Cazenave, 2015) uses
the All Moves As First (AMAF) heuristic to update move statistics, taking into
account all the moves that were played in the playout and not only the first one.
It incorporates statistics from a higher reference state in the tree, which is the
closest ancestor state that has more playouts than a given constant.
• Greedy Best-First Search (GBFS) is a simple and deterministic greedy algorithm
opening the best state from a list, evaluating the children of this state, and
inserting these children back in the list according to their evaluation.
• Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) (N. Hansen,
2016) is an evolutionnary method that samples children from the multivariate
Gaussian distribution of the best parents, with the aim of producing even better
children. By definition, it understands the structures of best graphs to which it
applies mutations.
• Iterated Local Search (ILS) (Lourenço, Martin, & Stützle, 2019) repeatedly ap-
plies local search on perturbed solutions.

4. Results

The data and code that support the findings of this study are openly available at:
https://github.com/liorataieb/RefutationSpectralConjectures.

The experiments were made with Rust 2024.1, on an Intel Core i7-1365U 5.2GHz
using a single core. Each algorithm has been allocated a maximum of 1 minute per
conjecture and each algorithm has been ran several times. The then unrefuted conjec-
tures have been alloted additional time, between 15 minutes and 1 hour. The terminal
state of the algorithms and playouts occurs when the graph reaches 20 vertices, as it
is the fixed size studied with the deep cross entropy. We also tried various terminal
sizes between 15 and 50. We present in Table 1 the results of the algorithms, only for
the refuted conjectures for the sake of clarity.

• NCMS, NRPA and GRAVE were ran with and without heuristic on the choice
of the next move in playouts.
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• Only NMCS, NRPA, GRAVE and GBFS were restricted to trees.
• NMCS and NRPA used at most a level of 3.
• GRAVE used a reference of 50.
• CMA-ES used a λ of 5, 10 or 15.
• Several variations of ILS were tried, inspired from the work in (Lourenço et al.,
2019).
• CMA-ES and ILS were tried on solutions of size 20.

The deep cross entropy in (Al-Yakoob et al., 2024) disproved 25 conjectures mostly
with graphs of size 20, up to size 24. 5 more conjectures were refuted in the article using
an exhaustive research on subquartic graphs (graph with degree at most 4) of size 14 at
most. As shown in Table 1, our algorithms combined were able to refute 29 conjectures
: the 25 refuted by the deep cross entropy, 2 that were still open (Conjectures 45 and
48, see Figure 1a and Figure 1b) and 2 (out of 5) that were refuted by a subquartic
graph.

By aggregating the results of 1-minute runs, NMCS outperforms the deep cross
entropy and refutes 28 conjectures, NRPA refutes 26, GRAVE refutes 26 and GBFS
refutes 16. ILS and CMA-ES refute no conjectures. The best number of disproved
conjectures obtained without restart, leaving only 1 minute by conjecture, is 23 con-
jectures for NMCS, NRPA and GRAVE, achieved when we restrict the search space
to trees and use a level of 3 for NMCS and NRPA. with the same constraints applied
to exploration of the entire search space, NMCS and GRAVE produced a maximum
of 17 refuted conjectures, NRPA produced at most 4.

Parallelized restarts of MCTS methods are strongly advised given the difference
between the total number of conjectures refuted and the one of the best run of each
algorithm. Our experiments show that applying a heuristic to moves during the play-
outs systematically increases the number of refuted conjectures compared with non-
heuristic applications of the algorithms, although the refuted conjectures are not al-
ways the same. The same goes when searching for trees rather than any graphs. It is
truly a cost-effective variation that should be tried first.

Increasing the level of NRPA and NMCS yields more refutation, but not every
conjectures can be refuted with a higher level. Conjecture 28 was refuted by NRPA
only with a level of 2 or lower. Likewise, Conjecture 48 can be disproved by NMCS
only with a level of 2 or lower, because NMCS with a level of 3 starts evaluating
graphs at size 4. All other conjectures have been refuted with a level of 3. We do not
advise to go higher than a level of 3, as the trade-of between detailed exploration and
computational power requirements is profitable. As for the terminal size of graphs,
trying different ones is good practice; most of the conjectures were refuted with a size
of 20, but not all, as Conjecture 62 with GRAVE was refuted only with a size of 50
when restricting the search space to trees.

It is interesting to note that GRAVE is the only algorithm that found a counter-
example for Conjecture 51. NRPA favors patterns and NMCS succeeds more where
the solutions are more chaotic. GRAVE can be described as a mix of the two (not in
terms of algorithm, but policy learning behavior), and it is illustrated by the structure
of the counter-example found (see Figure 2b). Furthermore, NMCS yields smaller
counter-examples than NRPA, itself producing smaller results than GRAVE. NRPA
and GRAVE execute a repetitive strategy usually leading to larger graphs. Given that
the counter-examples that are not trees found by NMCS and GRAVE have very little
structure, 1 minute may not be enough for NRPA to produce solutions, explaining the
discrepancy in results between the algorithms when they are not limited to the search
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(a) Edges : 0-1, 0-4, 0-5, 0-

8, 0-10, 0-11, 0-12, 1-2, 1-3,

1-6, 1-7, 1-9, 1-13

(b) Edges : 0-1, 0-2

Figure 1. A counter-example of Conjecture 45 (left) and Conjectures 48, 57 and 61 (right)

(a) Edges : 0-1, 0-9, 1-
2, 1-8, 2-3, 2-7, 2-9, 3-4,

3-6, 3-8, 4-5, 4-7, 5-6, 6-

7, 7-8, 8-9

(b) Edges : 0-1, 0-2, 0-3, 0-4,
0-5, 0-6, 0-7, 0-8, 0-9, 0-10, 0-

11, 0-12, 0-14, 0-15, 0-16, 0-17,

1-2, 1-9, 1-17, 2-3, 2-5, 3-4, 4-
10, 5-6, 5-7, 6-7, 6-8, 7-8, 7-10,

8-9, 9-10, 11-12, 11-13, 12-14,

14-15, 15-16, 16-17

Figure 2. A counter-example of Conjecture 50 (left) and Conjecture 51 (right)

for trees.
Among the 11 conjectures disproved by MCTS but not GBFS, the latter is only able

to refute 1 more conjecture with a 5-minute run, and 3 more with 15 minutes of allotted
time. Conjecture 50 was refuted only by NMCS during a 1-hour run with a terminal
size of 15, raising the total number of conjectures disproved by the algorithm to 28.
As shown in Figure 2a, the counter-example is very structured but small, perhaps too
small for NRPA and GRAVE to find it. We tried several 1-hour runs of NMCS with
heuristic, NRPA and GBFS, both for any graphs and for trees, on the 3 remaining
conjectures already refuted by subquartic graphs, without results. Moreover, NMCS,
NRPA, GRAVE, and GBFS were not able to refute unproved conjectures with a 15-
minute alloted time on terminal size 15, 20 and 50. However the bounds of those
conjectures are often reached during exploration.

(a) Edges : 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-7, 0-8, 0-9, 0-

10, 0-11, 0-12, 0-13, 0-14, 0-15, 0-16, 0-17, 0-18, 0-19,
2-3, 4-5, 6-7, 8-9, 10-11, 12-13, 14-15, 16-17, 18-19

Figure 3. A counter-example of Conjecture 65
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Table 1. Time in seconds to obtain a refutation with each algorithm (maximum of 1 minute per conjecture).

NMCS NRPA GRAVE GBFS CMA-ES ILS

Conj. Time Graph type Time G. type Time G. type Time G. type

3 0 tree 50 tree 0 tree 0 any - -
15 0 tree 0 tree 7 tree 1 any - -
28 0 tree 0 tree - - 0 any - -
29 0 tree 0 tree 0 tree - - - -
31 0 tree 1 tree 0 tree 25 any - -
36 0 tree 0 tree 0 tree - - - -

43 any
41 3 any 14 tree 7 any - - - -
43 0 tree 0 tree 0 tree 0 any - -

2 any 1 any
45 0 tree 3 tree - - - - - -
48 0 tree 0 tree 0 tree 0 tree - -

0 any 0 any 0 any 0 any
49 0 tree 0 tree 0 tree 0 any - -

7 any 3 any
50 422b any - - - - - - - -
51 - - - - 5 any - - - -
52 0 tree 0 tree 0 tree 0 any - -

1 any 0 any
53 0 tree 0 tree 0 tree 0 any - -

1 any 0 any
54 0 tree 0 tree 0 tree - - - -

1 any 0 any
55 0 tree 0 tree 0 tree - - - -

3 any 0 any
57 0 tree 0 tree 0 tree 0 tree - -

1 any 0 any 0 any 0 any
58 0 tree 0 tree 0 tree 0 any - -

3 any 43 any 4 any
59 1 tree 0 tree 0 tree - - - -

11 any 19 any
60 1 tree 2 tree 0 tree - - - -

1 any 25 any
61 0 tree 0 tree 0 tree 0 tree - -

1 any 0 any 0 any 0 any
62 1 tree 0 tree 0 tree - - - -

2 any 4 any
63 0 tree 0 tree 0 tree 0 any - -

23 any
64 1 tree 2 tree 0 tree 0 any - -
65 0 tree 0 tree 0 tree - - - -

1 any 0 any
66 48 tree - - 1 tree 0 any - -
67 1 tree 3 tree 0 tree - - - -
68 0 tree 0 tree 0 tree 0 any - -

1 any 4 any 0 any

atypes of graphs we used in our searches, ”any” means there was no restriction on the graph built, ”tree” means
the graph must be a tree. bThose results were obtained by NMCS while testing 1-hour runs per conjecture
for Conjecture 2, 17, 32 and 50, the 4 conjectures refuted by subquartic graphs but not MCTS.
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5. Discussion

All conjectures previously refuted with the deep cross entropy have been disproved
very quickly by the Monte Carlo algorithms, especially NMCS and GRAVE. The
difference of results between MCTS and GBFS highlights MCTS superior exploration
capabilities. This study provides evidence that MCTS discovers potentially desirable
structures much sooner than deep neural reinforcement learning and outperforms both
the deep cross entropy and more naive local searches. MCTS strength comes from the
gradual building of graphs coupled with smart detection of a search branch quality. It
gives them an advantage to find counter-examples of any (reasonable) sizes, especially
smaller and typically less dense counter-examples. An extreme illustration of this is
Figure 1b, the very small path of 3 vertices, that refutes Conjectures 48, 57 and 61,
one of which was still open. The simplicity of the counter-example exhibits a serious
limitation of the exhaustive generation used to test to conjectures in (Brankov et al.,
2006). But it is a very simple graph, directly and naturally found by MCTS algorithms.

The 4 subquartic graphs presented in (Al-Yakoob et al., 2024) that were able to
refute Conjectures 2, 17, and 32 are very specific. MCTS is capable of generating spe-
cific graphs, such as the one in Figure 3a, which presents an almost windmill1 graph
as a counter-example to Conjecture 36, and the one in Figure 2a, which presents a
”shoelace” graph as a counter-example to Conjecture 50. The fact that MCTS failed
to produce counter-examples for Conjectures 2, 17, and 32 even after hour-long runs
highlights the lack of guarantee in finding an optimal result. The bound of those con-
jectures are reached by our algorithms, but we believe this limitation is due to the high
granularity of the score functions. We tried to remove arbitrarily one or two edges of
the subquartic counter-examples in (Al-Yakoob et al., 2024) and spotted significantly
lower scores when doing so, so much that no conjecture was refuted anymore. This is
a general limitation of optimization methods.

CMA-ES and ILS have not been restricted to build trees, which may explain the
poor results we obtained for them. Both methods start with a preconstructed graph.
CMA-ES is the closest algorithm to the deep cross entropy, and also the hardest to
train. We believe it got lost in the granularity of the score functions. ILS seems too
naive to yield results.

6. Conclusion

The Monte Carlo approach performs well in many fields, and their versatility can
effectively be applied to conjecture refutation in graph theory as well. We have shown
that Monte Carlo search rapidly outperforms its rivals in refuting spectral graph theory
conjectures. Its intelligence allows for quick and effortless research among many sizes
of graphs. Roucairol and Cazenave (Roucairol & Cazenave, 2022) have shown that
Monte Carlo methods can rapidly produce large counter-examples. Here, the methods
yield smaller counter-examples than the state-of-the-art deep cross entropy method.
It also refutes open conjectures which were not refuted by other methods.

Here, we only used Monte Carlo methods, as the conjectures we studied call for com-
putationally inexpensive calculations, still on a par with what is done today. These
methods are adaptable and can very well be combined with diverse heuristics to boost

1A windmill is an undirected graph constructed for k ⩽ 2 and n ⩽ 2 by joining n copies of the complete graph

Kk at a shared universal vertex.
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results. Monte Carlo search should be investigated further for more complex combina-
torial graph problems.
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8. Appendices

Appendix A. Algorithms

Algorithm 1 The NMCS algorithm.

function NMCS(current-state, level)
if level = 0 then

ply ← 0
seq ← {}
while current-state is not terminal do

move← randomChoice(LegalMovescurrent-state)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return score(current-state), seq

else
best-score← −∞
best-seq ← []
ply ← 0
while current-state is not terminal do

for each move in Mcurrent-state do
next-state← play(current-state,move)
(score, seq)←NMCS(next-state, level − 1)
if score ≥ best-score then

best-score← score
best-sequence[ply..]← move+ seq

end if
end for
next-move← best-sequence[ply]
ply ← ply + 1
current-state← play(current-state, next-move)

end while
return (best-score, best-sequence)

end if
end function
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Algorithm 2 The NRPA algorithm.

function NRPA(policy, level)
if level = 0 then

current-state← root()
ply ← 0
seq ← {}
while current-state is not terminal do

move← softmaxChoice(LegalMovescurrent-state, policy)
current-state← play(current-state,move)
seq[ply]← move
ply+ = 1

end while
return score (current-state, seq)

else
best-score← −∞
for N iterations do

(result, new)← NRPA(policy, level − 1)
if result ≥ best-score then

best-score← result
seq ← new

end if
pol← Adapt(pol, seq)

end for
return (best-score, seq)

end if
end function

function Adapt(policy, level)
node← root()
pol′ ← pol
for ply = 0 TO seq − 1 do

pol′[(node, seq[ply])] += Alpha
z ← Sum([exp(pol[(node,m)]) for m in Mnode])
for each move in Mnode do

pol′[(node,move)] -= Alpha·exp(pol[(node,move)])
z

end for
node← play(node, seq[ply])

end for
return pol′

end function
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Algorithm 3 The GRAVE algorithm.

Input: N tree-walks, initial state s0, reference state constant ref
Output: A search tree

1: Initialize an empty transposition table
2: for i = 1 to N do
3: s← s0, S ← {s}, sref ← s
4: while s is not a leaf state and is not simulatable do
5: if n(s) > ref then
6: sref ← s
7: end if
8: for each a ∈ s.children do
9: β ← sref.pAMAF

sref.pAMAF+s.p+bias×sref.pAMAF×s.p

10: grave← (1− β)× s.mean + β × sref.AMAF
11: end for
12: Select a← argmax{GRAVE(s, a) | a ∈ s.children}
13: Transition to the new state resulting from action a, S ← S ∪ {s}
14: end while
15: Sample a new action a from the available moves of s
16: Add the state resulting from action a as a child node of s
17: while s is not a terminal state do
18: Sample a from the available moves of s based on the default policy
19: Transition to the new state resulting from action a
20: end while
21: score ← evaluate(s)
22: for each s ∈ S do
23: Update s with score
24: end for
25: end for
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Algorithm 4 The GBFS algorithm.

1: function GBFS(ini-state, max-iter)
2: open-states← [ini-state]
3: state← ini-state
4: iter ← 0
5: best-state← ini-state
6: best-score← score(ini-state)
7: while not optimal(state) and open-states ̸= [] and iter < max-iter do
8: iter ← iter + 1
9: state← pop( open-states, 0)

10: for each move in LegalMovesstate do
11: new-state← play(state, move)
12: score← score(new-state)
13: insert(open-states, score, new-state)
14: if score ≥ best-score then
15: best-state← state
16: best-score← score
17: end if
18: end for
19: end while
20: return best-state
21: end function
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Algorithm 5 The CMA-ES algorithm.

1: Initialization:
2: Number of generations N , number of parents λ.
3: for each graph size n do
4: Load graphs from previous iterations (curriculum) and select the best parents.
5: if the number of parents is insufficient then
6: Create additional parents randomly.
7: end if
8: while N is not reached do
9: Encode the graphs of the parents as vectors.

10: Calculate the mean µ and the covariance matriX Σ of the encoded vectors.
11: Write Σ = A⊤A using SVD.
12: Generate vectors Y = AX + µ where X ∼ N (0, In2).
13: Construct the graphs of the children from the vectors Y .
14: for each generated child do
15: Calculate the score of the child.
16: if the score of the child is higher than the previous best score then
17: Update the best graphs and the best score.
18: else if the score of the child is equal to the previous best score then
19: if the child is not isomorphic to a previously found graph then
20: Add the child to the best graphs.
21: end if
22: end if
23: end for
24: Select the best candidates among the parents and children to form the next

generation.
25: end while
26: Increment n, record the best scores and graphs.
27: end for
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Appendix B. Conjectures

The upper bounds of the 68 conjectures that were attempted in this paper. The largest
eigenvalue µ of the laplacian matrix of some graph must exceed the bound to refute
the conjecture. O means the conjecture is still open to this day, X means it has been
refuted.
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Appendix C. Counter-examples

Some counter-examples for each of the 29 refuted conjectures.

(a) Conjectures 3, 28

and 31

(b) Conjecture 15 (c) Conjecture 29 (d) Conjecture 36

Figure C1. Conjectures 3, 15, 28, 31, 29, and 36

(a) Conjectures 36,

43, 49, 55, 58, 59,
60, 63, 66 and 67

(b) Conjecture 41 (c) Conjecture 41

(tree)

(d) Conjecture 43

Figure C2. Conjectures 36, 41, 41 (tree), 43, 45 and others
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(a) Conjecture 45 (b) Conjectures 48,

57 and 61

(c) Conjectures 49 (d) Conjecture 50

Figure C3. Conjectures 45, 48, 57, 61, 49, and 50

(a) Conjecture 51 (b) Conjectures 52,

53, 62

(c) Conjecture 54 (d) Conjectures 58

Figure C4. Conjectures 51, 52, 53, 62, 54, and 58

(a) Conjecture 58 (big-
ger)

(b) Conjecture 60 (c) Conjectures 63 (d) Conjectures 63
(bigger)

Figure C5. Conjectures 58 (bigger), 60, 63 and 63 (bigger)

(a) Conjecture 64 (b) Conjectures 64

(tree)

(c) Conjecture 65 (d) Conjecture 65

(tree)

Figure C6. Conjectures 64, 64 (tree), 65, and 65 (tree)
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(a) Conjectures 66 (b) Conjectures 68

Figure C7. Conjectures 66 and 68
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64 CHAPTER 2. GRAPHS AND COALITIONS

2.2 Transportation Network Optimization
The spectrum of graph-related matrices is not only used in conjectures but
can also be used as a metric for robustness. I have a special interest in
graph theory and building graphs. In the following paper, the construction
of graphs was not targeted at refuting conjectures, but at generating better
graphs for transportation and communication. This time the optimization
process starts from a pre-existing (real or randomly generated) graph and
adds edges in order to maximize the efficiency and robustness of the graph,
but the process is limited by a budget: the sum of the lengths of the added
edges must not exceed it. The conclusions of this article are multiple. Vari-
ants of the problem behave in very different manners, sometimes favoring
greedy approaches, sometimes policy learning, and sometimes regular Monte
Carlo Search. Robustness is best optimized using a greedy and deterministic
beam search, while the novel variant of the Nested Monte Carlo Search, the
Lazy Nested Monte Carlo Search, provides good performance for efficiency
and robustness.

The state of the art is greatly outperformed, and the problems serve
as an interesting benchmark to showcase each algorithm’s capabilities due
to the different ways it behaves under different parameters. In the end it
cements the new LNMCS variant of NMCS as one of the best-performing
MCTS algorithms available.



BUDGET LIMITED SPATIAL NETWORK IMPROVEMENT FOR1

TRANSPORT AND COMMUNICATIONS USING MONTE CARLO2

SEARCH3

Abstract. We propose a comparison of a large selection of state-of-the-art deterministic and4
Monte Carlo Search (MCS) algorithms on the budget-limited network optimization problem. Includ-5
ing a new one producing better results, and different approaches to simplifying this problem. We6
show that not one algorithm can be the only answer for optimizing both efficiency and robustness,7
but that a simple heuristic can perform well for the optimization of robustness, and that the LNMCS8
with greedy playout is a reliable choice for optimizing efficiency on 100 nodes large graphs. We pro-9
vide results for procedurally generated graphs and real-world ones, and show that results obtained10
on synthetic graphs match with to real-world graphs.11

Key words. Monte Carlo Search, Graph, Network, Generation12

MSC codes. 05-04, 05-08, 05B30, 05C12, 05C40, 68Q25, 68Q87, 68R05, 68R10, 68T05, 68T20,13
68W20, 68W4014

1. Introduction. Optimizing transportation networks is one of the most im-15

portant real-world problems engineers have to face. Critical infrastructure, such as16

the internet or the roads, efficiencies and robustness rely on optimizing these types17

networks.18

Search algorithms are already making most of the State of the Art on this prob-19

lem. More precisely, stochastic search algorithms dominate the network optimization20

problem due to the large search space. We identified two families of stochastic search21

algorithms for network optimization: genetic algorithms [9, 15], and Monte Carlo22

Search algorithms [2].23

Be it communications or transportation, the optimization must respect con-24

straints such as the budget or the topology. In this paper, we compare the perfor-25

mances of multiple algorithms over synthetic and real world instances of the problem.26

Classic deterministic ones such as Beam search or Best First Search (BFS). Against27

Monte Carlo Search ones, namely Upper Confidence bounds applied to Trees (UCT)28

and others such as Nested Monte Carlo Search (NMCS), Nested Rollout Adaptation29

(NRPA), and Rapid Action Value Estimation (RAVE). As transportation and com-30

munication networks have to be efficient and resilient, we chose to optimize them over31

one metric focused on robustness, and another focused on efficiency.32

2. The Network Design Problem. Our instance of the Network Design Prob-33

lem (NDP) [18] consists of a pre-existing weighted graph with infinite capacity. The34

weight on the edges represents the cost of going to the node on one side of the edge35

from the node on the other side of the edge. Here the cost is the distance between the36

two nodes. It is the kind of graph we can use Dijkstra and Floyd-Warshall algorithms37

on. We do not look into the flow optimization in this paper, only the topological38

properties.39

Our goal is, given such a graph, to optimize selected metrics on it. The optimiza-40

tion process starts from a graph and adds new edges until the budget is not exhausted,41

each edge added subtracts its length to the budget. The actions a search algorithm42

can select are the edges that are absent from the graph. The final states are states43

where the budget is too low to add any new edge. Here we chose to maximize specific44

definitions of the efficiency [8] and of the robustness [4].45

Efficiency is defined as in Latora’s work [8] : E(G) = 1
N(N−1)

∑
i̸=j sp(i, j) with46

1
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N the size of the graph, and sp(i, j) the shortest path between vertices i and j. Just47

like in [2], we divide this value by the ideal efficiency, the efficiency of the complete48

graph, to obtain a value between 0 and 1.49

However, we decided to use another metric for robustness than the one used in50

[2]. We think this metric for robustness is too computationally costly (we can not51

compare our results directly with theirs anyway, see section 4). We instead decided to52

use the much less costly spectral radius of the adjacency matrix λ1. It is the largest53

eigenvalue and is described as a powerful robustness estimation in [4], in this survey’s54

own words:55

”The spectral radius is closely related to the path capacity or loop capacity of the56

graph. That is, the number of walks of length k (k = 2, 3, 4...) gives an indication57

of how well connected the graph is. If the graph has many loops and paths, then the58

graph is well connected i.e., larger λ1.”59

”As a robustness measure, a larger λ1 indicates a more robust graph to random60

failures and attack, along with increased susceptibility to virus propagation.”61

This is not the only relevant metric of robustness present in [4]. It is also stated62

that the average distance between stops (i.e. the efficiency) can be a good robustness63

metric, and that spectral-based techniques are scalable to larger graphs, which is one64

of our goals here.65

2.1. Synthetic instances. To compare our algorithm we need instances of var-66

ious sizes. We used the same method as used in [2] which itself was from [7]. This67

method is as follows:68

(1) place a node u with a random positions in [0, 1]269

(2) if there are other nodes, connect this node to each of them (v) given the proba-70

bility p(u, v) = βe−αd(u,v)71

(3) if u was not connected remove it72

(4) if there’s less than the desired amount of nodes, go to (1)73

74

We use the same parameters as in [2]: α = 10 and β = 0.00175

The networks generated this way have the advantage of resembling real-world76

networks as you can see in figure 1. They however feature overlapping edges which77

are absent from real-world networks.78

Fig. 1: Graphs of size 25, 50, 100 generated by seed 0

3. Algorithms.79
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3.1. Playout. Playouts or Rollouts, are the core elements of most Monte Carlo80

Search (MCS) algorithms. They are used to evaluate a state by simulating a the rest81

of the ”game” from it.82

The algorithm of an all-purpose playout is featured in algorithm 3.1.83

Playouts are usually uniformly random and return a terminal state (classicP layout =84

true in algorithm 3.1). However, if the problem admits any state encountered during85

the simulation as a potential solution, the best state encountered can be returned86

(classicP layout = false). The playout can also not be uniformly random, but can be87

guided by the immediate gain (greedy = true). Finally, the playouts can be guided by88

a learned policy like with the Nested Rollout Policy Adaptation (NRPA) algorithm.89

Algorithm 3.1 Playout algorithm.

Function Playout(state):
b-score← −∞ σ∗ ← () c-st← state σ ← () while c-st is not terminal do

if greedy then move← Greedy(M(c-st)) ;
else move← Random(M(c-st)) ;
c-st ← play(c-st,move) σ.push(move) if b-score ≤ c-st.score or
classicP layout then

b-score← c-st.score σ∗ ← σ
end

end
return b-score, σ∗

3.2. BEAM. Beam search is a simple baseline tree search algorithm. It only90

takes one integer parameter, the width w. It necessitates having access to a reliable91

evaluation of the search space states, otherwise the evaluation can be made with92

playouts. The algorithm keeps in memory w nodes, opens and evaluates all the93

children of these nodes, and then replaces the previous w nodes with the w best94

nodes recently opened. It has the advantage of forcing progress deep into the tree.95

A beam search with width = 1 is what we call a greedy playout. A beam search96

of width w is usually w times more computationally heavy than a beam search of97

width 1, thus greedy playouts can be replaced by beam searches in many algorithms98

with a linear increase in computation costs.99

3.3. GBFS. Greedy Best First Search is another simple yet effective baseline100

tree search algorithm [3]. It necessitates having access to a reliable way to evaluate101

nonterminal states, using playouts as a substitute if it is not possible, like Beam search.102

The algorithm selects the node with the best evaluation from a queue, evaluates all103

its children, and inserts them into the queue according to their evaluations. Thus,104

GBFS is guaranteed to explore only once all the nodes in the search tree, unlike105

BEAM search which can miss states with great valuations. Missing states with great106

valuations is usually unavoidable and not a shortcoming since the problems we are107

facing are generally NP-Hard and could never be solved exhaustively anyways.108

3.4. UCT. The Upper Confidence bound applied to Trees is the most widely109

used instance of Monte Carlo Tree Search, and the default algorithm one goes to110

when using Monte Carlo Methods. It, or variants of it, is used in groundbreaking111

applications such as Deepmind’s Alphago [16] or AstraZeneca’s Aizynthfinder [6], and112

other [17].113

Contrary to BEAM and GBFS, MCTS do not need a way to evaluate any state114
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from the search tree, and only need to evaluate final states. This is especially useful115

in games, like chess, where a function evaluating a game in progress is not trivial.116

But even when a such function is available, MCTS algorithms are generally better117

performing because they are more capable of avoiding local maximum and other traps118

that come with a noisy search space.119

UCT and all the other MCTS algorithms share the same 4 phases:120

(1) selection: until an unknown node is opened, go down the search tree according121

to the exploration/exploitation formula. (2) expansion: add a new node to the search122

tree (3) simulation: evaluate the newly added node, using playouts to get a terminal123

state (4) backpropagation: use the simulation result to update the values of all the124

search tree nodes visited during the selection phase125

In UCT’s case, the exploration/exploitation formula for each move m from a state126

s is: w
n + c ∗

√
lnN
n127

Where w is the sum of all scores obtained after playing m from s, n is the number128

of times m was played from s, and N is the number of times s was visited during the129

selection phase. c is a constant (usually c ≈ 1).130

3.5. RAVE and GRAVE. Rapid Action Value Estimation (RAVE) is an MCTS131

algorithm derived from UCT and introduced by Sylvain Gelly and David Silver [5].132

The main difference with UCT is that RAVE generalizes the value of moves over the133

entire search tree (for example, if a move generally leads to better results, then it may134

be favored even if in the UCT-like subtree it led to worse results). This is adapted135

to problems where the order of the moves is less important, for example, go and not136

chess. We think the network optimization problem is appropriate.137

The Generalized Rapid Action Value Estimation (GRAVE) is a generalization of138

RAVE. Unlike RAVE, when deciding which move to play, it inherits a policy from139

the last parent move whose children experienced more than ref playouts for more140

localized generalization. It can also be used in conjunction with a move selection141

heuristic.142

3.6. NMCS. Nested Monte Carlo Search is another type of Monte Carlo Search143

algorithms, different from MCTS like UCT, PUCT, RAVE, and GRAVE in their144

iterative nature, NMCS is recursive.145

The NMCS calls lower-level NMCS on all of the currently available moves from146

the current state. Each NMCS returns the best path it found to optimize the value of147

the state. The higher-level NMCS then executes the first action from the best path148

it has in memory and calls new lower-level NMCS on the available moves from the149

resulting state.150

Compared to UCT, NMCS has the advantage of optimizing at any depth of the151

search tree and not only near the root. It generally shows better results on optimiza-152

tion problems [12] [13].153

3.7. LNMCS. The Lazy Nested Monte Carlo Search presented in [12] is a vari-154

ant of NMCS made to address one of its shortcomings. A NMCS of level l requires155

computing as many NMCS of level l − 1 as the number of moves available from the156

state, and then repeating that for each level of depth of the search tree. The compu-157

tation time of the NMCS increases greatly with the level, an NMCS of level over 3 or158

even 2 can be too computationally costly depending on the problem.159

Under the assumption that some moves doom the lower-level NMCS to under-160

whelming results, we decide to reintroduce the exploration-exploitation dilemma pres-161

ent in MCTS to the NMCS, and prune some of the lower-level NMCS based on cheap162
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and relative evaluations using playouts.163

Before calling a lower-level LNMCS, the available moves are each sampled with b164

playouts. If the mean of the evaluations of a move is inferior to the mean of all the165

evaluations made on that depth tr plus the rate r times the difference between the best166

evaluation ever encountered on that depth trmax and the mean of all the evaluations167

made on that depth tr, then it is pruned: a single playout is launched instead of168

a lower-level LNMCS. For example on Figure 2, the middle and right moves are169

sampled with good enough results to pass the threshold and their lower-level LNMCS170

are called, while the leftmost move has poor sampling and is pruned.171

This means that a rate r of 0 prunes all the moves inferior to the mean of the172

evaluations on a certain depth.173

You can find a pseudocode for LNMCS in [12].174

5
3

6
2

2 18
21

18
20
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...
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level n-1

Fig. 2: Level n LNMCS pruning a search subtree and launching n-1 LNMCS on
surviving search subtrees.

3.8. NRPA. The Nested Rollout Policy Adaptation is a MCTS algorithm in-175

troduced by Cristopher Rosin [11] in 2011. It is derived, but very different, from the176

NMCS. It uses the nesting not to progress deeper into the tree, but to contribute177

hierarchically to a policy that is learned from playouts (or rollouts) to guide future178

playouts.179

4. Results.180

4.1. Preliminary results.181

4.1.1. Variation among the synthetic instances. Before diving into the182

performances of our algorithms on the synthetic benchmark instances, we think it’s183

crucial to sample these possible synthetic instances to know more about their depth184

and potential scores. To do so, we generated 20 synthetic instances of size 25 with185

α = 10 and β = 0.001 and maximized their efficiency using an exhaustive algorithm186

with a budget of 0.1 times the total cost of the starting edges as in [2].187

With as little as 15206 and as much as 18222026 explored states, even small 25188

nodes graphs can take hours to be explored exhaustively, or a few minutes. The189

search space size can vary greatly with a standard deviation of 4183678.3, mainly due190

to extreme outliers.191

The starting efficiency and their improvement show a significant standard devia-192

tion too.193

With such variations among all the parameters surrounding the synthetic in-194

stances, it appears necessary to compare our algorithms on multiple instances and195
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seed search tree size start efficiency efficiency gain
0 180557 0.575 0.222
1 453598 0.498 0.304
2 1118035 0.511 0.279
3 19353 0.600 0.190
4 3990749 0.423 0.354
5 16593 0.585 0.203
6 196488 0.289 0.523
7 451586 0.427 0.301
8 6662608 0.431 0.349
9 15206 0.158 0.571
10 849969 0.604 0.226
11 18222026 0.305 0.498
12 202226 0.468 0.295
13 744556 0.475 0.305
14 144717 0.491 0.312
15 1538641 0.432 0.322
16 247973 0.527 0.273
17 3326338 0.540 0.226
18 443276 0.455 0.340
19 334322 0.529 0.331

Mean 1.957e6 0.466 0.321
Std dev 4.183e6 0.112 0.103

Table 1: Differences in search tree sizes, starting and best values among 20 synthetic
graphs of size 25 with α = 10 and β = 0.001

share them to help with reproducibility and improve the relevancy of said results.196

There seems to be no correlation between the size of the search tree and the efficiency197

gain over this small sample, however, the start efficiency and the efficiency gain seem198

to sum around 0.8 with these parameters.199

Given [2] results show almost no variation, we assume they realized all their200

experiments on a graph generated from a unique seed.201

4.1.2. Hyperparameter tuning and algorithmic choice. Before diving into202

lengthy experiments, we first need to quickly evaluate the algorithms likely to perform203

well and how much the results would vary204

We launched UCT with c = 1.0 and NMCS with level = 2, 3, 10 times over the205

graph of size 50 generated by the seed 0 with the previously mentioned parameters206

and budget with a timeout of 600 seconds, the initial score is 0.43899. Over our207

10 experiments, we obtain final efficiencies featured in tables 2. This subsection’s208

experiments were realized on an Intel i5-6600K 3.50GHz CPU, which is different from209

the CPU used in section 4.2.210

It is interesting to note that UCT peaks around the 120th second, and NMCS211

continues to find better results after the 400th second.212

We do not include the standard deviation in subsequent results as it is always213

between 0.005 and 0.015 and impairs readability. We think it is low enough to justify214

using the means over 10 runs.215
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experiment UCT NMCS 2 NMCS 3
1 0.56436 0.57813 0.59877
2 0.55633 0.58891 0.59768
3 0.56271 0.59257 0.58098
4 0.55491 0.57611 0.58943
5 0.55557 0.58085 0.57400
6 0.56734 0.58652 0.58554
7 0.55697 0.57866 0.57649
8 0.57557 0.60954 0.58618
9 0.55668 0.60097 0.59544
10 0.56689 0.60194 0.57162

Mean 0.56173 0.58942 0.58561
Std dev 0.00682 0.01158 0.00980

Table 2: Preliminary comparison between NMCS and UCT and evaluation of the
variance on one seed

4.2. On the synthetic instances.216

4.2.1. Experimental setup. To evaluate each algorithm, we launch each of217

them 10 times over 3 different sizes: 25, 50, and 100. We then repeat this experiment218

5 times, for each graph generating seed from 0 to 4. In tables 3, 4, and 5 we display219

the results for directly solving the efficiency problem with each algorithm each size.220

In tables 6, 8, and 7 we try new approaches to try to maximize the final efficiency.221

In tables 12, 14, and 13 we apply the previously best methods on the robustness222

problem and compare it against few representative baseline methods.223

As seen in figure 1, these networks seem to imperfectly model networks like streets224

as edges can overlap.225

These experiments were made with Rust 1.59, on an Intel Core i7-11850H 2.50GHz226

using a single core.227

We compare the following algorithms:228

• UCT, with c = 1 as the baseline MCTS algorithm229

• GBFS, a baseline greedy deterministic algorithm230

• BEAM, with widths of 10, 50, and 100, another baseline greedy deterministic231

algorithm232

• NMCS, with l = 2 and another with l = 3 given its good performances and233

relative simplicity234

• LNMCS, with the default hyperparameters l = 3, r = 0.8 and p = 3 as it235

usually improves over NMCS [14]236

• NRPA, with l = 3237

• RAVE, as a recent improvement over UCT238

• GRAVE, ref = 50 is shown to be a good value in [1]239

• GRAVE B with ref = 50, bias = 10 and using the cost-effectiveness (valuechange/cost)240

as a move selection heuristic.241

4.2.2. Solving the problem directly. As you can see in Table 1, a network242

size of 25 is small enough for the BFS to find the optimal value with all seeds except243

seed 2, which features a large search tree. The optimal value is found on seed 4244

despite an even larger search tree. Beam search features good results but they are not245
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seed 0 1 2 3 4
start value 0.575 0.498 0.511 0.600 0.423

BFS 0.797 0.802 0.791 0.790 0.778
BEAM 10 0.768 0.757 0.736 0.778 0.749
BEAM 50 0.781 0.802 0.747 0.790 0.770
BEAM 100 0.766 0.769 0.786 0.790 0.770
LNMCS 0.755 0.754 0.729 0.764 0.763
NMCS 2 0.769 0.752 0.757 0.772 0.752
NMCS 3 0.791 0.786 0.781 0.789 0.764
NRPA 0.792 0.776 0.770 0.790 0.719
UCT 0.724 0.748 0.677 0.746 0.770
RAVE 0.711 0.612 0.687 0.716 0.623
GRAVE 0.704 0.624 0.680 0.702 0.641

GRAVE B 0.708 0.632 0.693 0.709 0.611

Table 3: Final efficiencies found for each algorithm on each graph of size 25 after 600s

seed 0 1 2 3 4
start value 0.438 0.398 0.439 0.445 0.373

BFS 0.607 0.619 0.623 0.639 0.587
BEAM 10 0.614 0.543 0.583 0.668 0.587
BEAM 50 0.659 0.624 0.659 0.687 0.604
BEAM 100 0.655 0.620 0.642 0.700 0.627
LNMCS 0.647 0.632 0.637 0.681 0.621
NMCS 2 0.628 0.583 0.637 0.673 0.561
NMCS 3 0.641 0.589 0.646 0.692 0.588
NRPA 0.644 0.577 0.650 0.677 0.570
UCT 0.590 0.542 0.602 0.580 0.541
RAVE 0.545 0.510 0.547 0.592 0.487
GRAVE 0.556 0.505 0.570 0.589 0.518

GRAVE B 0.558 0.506 0.557 0.589 0.513

Table 4: Final efficiencies found for each algorithm on each graph of size 50 after 600s

optimal, the problem cannot always be solved optimally by greedy playouts. Among246

the Monte Carlo algorithms, NMCS 3 and NRPA show the best results, the UCT247

family is lagging behind the nested family. Over 10 runs, the NRPA managed to248

always find the optimal solution on seed 3, which is impressive for a Monte Carlo249

algorithm.250

With a network size of 50, the BFS is no longer able to explore most of the tree,251

and larger widths are required for the beam search to produce good results. LNMCS252

becomes the best algorithm among the MCTS (except on seed 2). When the search253

tree size increases, pruning bad subtrees becomes more efficient.254

As the search tree size increases further with networks of size 100, on table 5,255

LNMCS becomes the best algorithm and is only outperformed by BFS on seed 3 and256

BEAM 10 on seed 2. BEAM 10 being a very close second is interesting because it is257

both a simple and a greedy algorithm. This result is what pushes us to investigate258
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seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329

BFS 0.456 0.464 0.477 0.511 0.444
BEAM 10 0.459 0.476 0.517 0.484 0.429
BEAM 50 0.440 0.436 0.449 0.467 0.411
BEAM 100 0.416 0.421 0.439 0.458 0.392
LNMCS 0.459 0.480 0.497 0.505 0.461
NMCS 2 0.443 0.451 0.476 0.479 0.425
NMCS 3 0.437 0.453 0.473 0.479 0.431
NRPA 0.446 0.451 0.471 0.484 0.426
UCT 0.406 0.424 0.441 0.449 0.399
RAVE 0.405 0.412 0.441 0.449 0.386
GRAVE 0.406 0.420 0.437 0.469 0.409

GRAVE B 0.373 0.425 0.422 0.456 0.398

Table 5: Final efficiencies found for each algorithm on each graph of size 100 after
600s

the use of greedy playouts instead of random playouts.259

4.2.3. Greedy playouts and action space reduction. One of the main ob-260

stacles we encountered with these experiments is the width of the search tree: with261

a size of 50, the number of available moves is around a thousand at each state. This262

poses a problem to the NMCS (which achieves better performance than UCT despite263

that) as it means billions of score computations. Even LNMCS encounters difficul-264

ties in properly evaluating each of these moves when its pruning capabilities help to265

alleviate this problem.266

Inspired by PUCT, which uses a prior neural network to suggest a smaller set of267

moves when the number of playable moves is too large (like for go with Deepmind’s268

alphago), we make our algorithms only consider the N cheapest moves (here N = 20).269

Many more expensive moves will thus not be used, it leads to better results as shown270

in [2].271

Inspired by the beam search good performances in tables 4 and 5, even on larger272

networks, we aim to try greedy playouts on this problem.273

We compare the best algorithms with greedy playouts, with action space reduc-274

tion, and with greedy playouts and action space reduction combined.275

The BFS, when using greedy playouts (GPBFS), is slightly modified to swap the276

node evaluation function to a single greedy playout.277

NRPA is by definition applying a learned policy on the playout, replacing it with278

a greedy playouts would turn it into a simple sampling algorithm. The beam search279

does not use playouts at all. This is why NRPA and beam search are not featured in280

our experiments involving greedy playouts.281
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seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329

UCT 0.386 0.420 0.432 0.487 0.387
CSGUCT 0.386 0.420 0.432 0.487 0.387
GPBFS 0.430 0.449 0.463 0.495 0.405
LNMCS 0.399 0.449 0.463 0.495 0.405
NMCS 3 0.405 0.453 0.463 0.491 0.407

Table 6: Final efficiencies found with few algorithms on each graph of size 100 after
600s with greedy playouts

As you can see in table 6, using greedy playouts alone did not lead to better282

results. With large graphs and no action space reduction, it is required to compute283

the efficiency thousands of times per greedy playout, each one requiring applying the284

Floyd-Warshall algorithm, making each of the playouts very costly. Only a few greedy285

playouts can be played in 10 minutes (∼15s per greedy playout), which explains the286

redundancy of the results, LNMCS has not enough time to prune anything. Both UCT287

and CSGUCT produced the exact same results because they are very similar, GPBFS288

is slightly better performing but is worse than without greedy playouts too. We did289

not conduct any more experiments on greedy playouts alone because we speculate290

that the results will be inferior for all algorithms compared to their random playouts291

results.292

seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329
BEAM 10 0.509 0.540 0.564 0.547 0.518

BFS 0.449 0.442 0.462 0.507 0.429
NMCS 3 0.528 0.548 0.555 0.588 0.529
LNMCS 0.499 0.545 0.560 0.593 0.522
NRPA 0.538 0.560 0.565 0.597 0.514
UCT 0.467 0.497 0.494 0.522 0.465

Table 7: Final efficiencies found with selected algorithms on each graph of size 100
after 600s with action space reduction

In table 7, all algorithms except BFS better results than in table 5. In addition,293

it is noticeable that the smaller number of available moves seems to help the NRPA294

achieve even better results. We suppose it is because the action space becomes small295

enough for the NRPA to learn a policy. Having a thousand actions available makes296

it harder to build up the policy. The gap between LNMCS and NMCS 3 results has297

disappeared compared to the results featured in table 5. This is unexpected since298

LNMCS usually performs better than NMCS on most problems. We suppose it might299

be due to the pruning of the expensive moves: with this setting all moves lead to good300

subtrees and LNMCS loses its advantage.301
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seed 0 1 2 3 4
start value 0.307 0.343 0.357 0.382 0.329
GPBFS 0.512 0.568 0.597 0.569 0.501
NMCS 3 0.545 0.493 0.569 0.537 0.458
LNMCS 0.519 0.569 0.592 0.599 0.503
UCT 0.483 0.502 0.489 0.541 0.470

CSGUCT 0.460 0.511 0.482 0.510 0.470

Table 8: Final efficiencies found with selected algorithms on each graph of size 100
after 600s with action space reduction and greedy playouts

In green, you can see the best results at maximizing the efficiency over all ap-302

proaches for the graphs of side 100.303

Combining both greedy playouts and reduction is featured in table 8. The re-304

sults are almost always better than the direct approach, even the previously worse-305

performing algorithms can outperform the direct approach LNMCS (best algorithm306

on table 5). It also slightly outperforms the NRPA in the reduction only approach307

except on seed 4. The best algorithm using both action space reduction and greedy308

playouts is LNMCS, only outperformed by NMCS 3 on seed 0, and by GPBFS on309

seed 2. GPBFS is a very close second.310

GPBFS and LNMCS using greedy playouts and action space reduction, and311

NRPA using action space reduction, are the three globally dominating approaches312

to the efficiency problem.313

4.2.4. Robustness. Previously we showed that combining both greedy playouts314

and action space reduction led to generally better results. This is true for efficiency, in315

this sub-subsection we explore a different metric: robustness. Our goal is to determine316

if the best algorithms are roughly the same with this metric, and how a smaller317

computational cost of the metric affects the results.318

Note that the efficiency used previously is the inverse of the average distance319

divided by the average distance of the complete version of the graph, according to [4]320

it is also linked to robustness. Here we need a robustness evaluation of lesser cost, we321

chose to use the spectral radius: the largest eigenvalue from the adjacency matrix.322

seed 0 1 2 3 4
start value 2.512 2.861 3.153 2.738 3.146

BFS 3.969 4.147 4.308 4.083 4.914
BEAM 10 3.755 3.832 3.943 3.842 4.499
BEAM 100 3.969 4.147 4.145 4.083 4.689
LNMCS 3.728 3.898 3.832 3.932 4.407
NMCS 3 3.857 4.071 4.153 4.045 4.762
NRPA 3.759 3.876 4.045 4.025 4.487
UCT 3.755 3.987 3.488 3.778 3.968

Table 9: Final robustness found for each algorithm on each graph of size 25 after 600s
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seed 0 1 2 3 4
start value 3.483 2.755 2.993 3.273 2.706

BFS 4.412 4.895 4.809 4.620 4.626
BEAM 10 4.286 4.734 4.383 4.667 5.354
BEAM 100 5.313 5.000 4.673 5.097 5.782
LNMCS 4.167 4.869 4.485 4.653 5.116
NMCS 3 4.593 4.880 4.663 4.726 5.114
NRPA 4.049 4.218 4.245 4.228 4.420
UCT 3.989 4.133 4.137 4.215 4.252

Table 10: Final robustness found for each algorithm on each graph of size 50 after
600s

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500

BFS 4.215 5.242 5.071 4.551 5.537
BEAM 10 4.838 5.467 5.144 5.627 5.633
BEAM 100 3.788 4.090 4.019 4.164 4.241
LNMCS 4.988 5.353 5.134 5.328 5.444
NMCS 3 4.530 5.260 5.110 4.932 5.189
NRPA 3.961 4.222 4.032 4.156 4.303
UCT 3.780 4.111 3.944 4.029 4.145

Table 11: Final robustness found for each algorithm on each graph of size 100 after
600s

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500

UCT 4.508 4.718 4.191 4.358 4.527
CSGUCT 4.508 4.718 4.191 4.358 4.527
NMCS 3 4.878 5.355 4.614 4.803 5.007
LNMCS 4.775 5.121 4.447 4.764 4.775
GPBFS 4.775 5.121 4.447 4.764 4.775

Table 12: Final robustness found with selected algorithms on each graph of size 100
after 600s with greedy playouts
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seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500
BEAM 10 4.382 4.783 4.924 4.633 4.592

BFS 4.244 4.514 4.727 4.331 4.757
NMCS 3 4.633 5.214 4.981 4.654 4.674
LNMCS 4.207 4.868 4.974 4.514 4.664
NRPA 4.414 4.724 4.767 4.825 4.856
UCT 3.918 4.110 4.282 4.057 4.347

Table 13: Final robustness found with selected algorithms on each graph of size 100
after 600s with action space reduction

seed 0 1 2 3 4
start value 2.964 3.397 3.085 3.265 3.500
GPBFS 4.802 4.694 5.131 4.546 5.023
NMCS 3 4.743 5.233 4.672 4.593 4.426
LNMCS 4.772 5.296 5.161 4.782 5.127
UCT 4.134 4.319 4.477 4.280 4.387

CSGUCT 4.457 4.451 4.684 4.281 4.427

Table 14: Final robustness found with selected algorithms on each graph of size 100
after 600s with action space reduction and greedy playouts

In green, you can see the best results at maximizing the robustness over all ap-323

proaches for the graphs of side 100.324

Contrary to the good performances of a beam search of width 10 on table 11, using325

greedy playouts does not allow to beat these results on table 12. The action space is326

still too large for greedy layouts, only about 20 of them can be played without search327

space reduction in 10 minutes (30s per playout), which explains the good performances328

of NMCS over the other algorithms, the playouts are more spread.329

The action space reduction does not lead to strictly better results (table 13) than330

the approach with greedy playouts only, the results are worse than the base approach331

too. Combined, the two approaches produce slightly better results (table 14) than332

isolated, but still inferior to the base approach.333

Overall, to optimize this definition of the robustness over such graphs, the optimal334

way seems to use a beam search on the base approach (random playouts, full action335

space), a good second choice could be the LNMCS on the base approach too.336

The goal of this section was not to determine which algorithms provide the best337

results for this specific robustness metric but to know if we may generalize the results338

of the various approaches tried on the efficiency over other metrics. We think these339

results are satisfactory because by trying only one other metric, we can say that the340

metrics are differently affected by the approaches. We know that greedy playouts and341

action space reduction are not universally better for this problem depending on the342

metric we want to optimize.343

4.3. Real World Graphs. To better measure our algorithms on the network344

optimization problem, we decided to apply it to graphs from the Survivable Network345

Design Library, SNDlib [10]. This library features 26 networks, some represent cities346
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or countries, some are inspired by biology, and some are more abstract. We decided347

to run the best algorithms from the previous results on 4 graphs from the real world:348

1. France, representing the country of France with 25 vertexes and 45 edges.349

2. Germany50, representing the country of Germany with 50 vertexes and 88350

edges.351

3. India35, representing the country of India with 35 vertexes and 80 edges.352

4. Cost266, representing the European Union with 37 vertexes and 57 edges.353

For comparison, Germany50 is the third largest graph in the database, with only the354

abstract graphs of ”brain” and ”ta2” bigger with respectively 167 and 65 vertexes. In355

Figure 3 you can see what the graphs look like.356

Fig. 3: Graphs from SNDlib for Europe, France, India and Germany from top-right
clockwise.

Based on the previous results, we selected the best algorithms from each size for357

robustness and efficiency in table 15. LNMCS GR is the variant of LNMCS with358

greedy playouts and action space reductions as it is the one that performs the best359

overall for optimizing efficiency on large graphs, see table 8. As a baseline, we add the360

NMCS of level 3 with normal playouts and no action space reduction as it performed361

well enough in all the experiments.362

25 50 100
Robustness BFS BEAM 100 BEAM 10
Efficiency BFS BEAM 100 LNMCS GR

Table 15: Best algorithm for each size of the problem
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graph france germany50 cost266 india35
start value 0.716590 0.848845 0.844898 0.953861

BFS 0.884692 0.883322 0.912834 0.965096
BEAM 100 0.876070 0.887081 0.912834 0.965004
LNMCS GR 0.872731 0.895397 0.909709 0.964143
NMCS 3 0.871349 0.885278 0.909772 0.964209

Table 16: Final efficiencies found with selected algorithms on each graph from SNDlib
after 600s

graph france germany50 cost266 india35
start value 4.712265 4.085959 3.399925 5.491604

BFS 5.594335 5.102157 4.760420 6.354730
BEAM 100 5.505853 5.325418 4.834799 6.307945
BEAM 10 5.407345 5.218283 4.494036 6.271883
NMCS 3 5.565474 5.113068 4.799523 6.336223

Table 17: Final robustness found with selected algorithms on each graph from SNDlib
after 600s

Except for NMCS 3, the results presented in Tables 16 and 17 are all from deter-363

ministic tree search algorithms so they were only executed once.364

The results obtained in tables 17 and 16 corroborate the ones found on synthetic365

instances: BFS and BEAM give the best results for smaller graphs. Germany50 is the366

biggest graph and LNMCS performs already well for synthetic instances of size 50,367

this explains why this graph was best optimized with LNMCS with greedy playouts368

and action space reduction. NMCS 3 is a control experiment and was not expected369

to outperform the other algorithms. The graphs from SNDlib have 50 vertexes or less370

and do not give indications of whether the results obtained on synthetic instances371

apply similarly to graphs with 100 vertexes.372

5. Conclusion. In this paper, we experimented with optimizing graphs for com-373

munications and transport under budget constraints. Multiple different graphs of374

different sizes were experimented upon, using two definitions of robustness and effi-375

ciency among many and with greedy playouts and action space reduction. We showed376

that while no algorithm is better than the others in any context, the LNMCS usually377

offers good enough results in most contexts. Deterministic greedy algorithms should378

not be ignored as the BEAM search offers great results even on larger graphs. Finally,379

synthetic graphs seem to behave similarly to real-world graphs, for sizes smaller than380

50 vertexes at least.381
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2.3. COALITION STRUCTURE GENERATION 81

2.3 Coalition Structure Generation
The Coalition Structure Generation (CSG) is another combinatorial prob-
lem. This time, it is not about graphs but about forming coalitions of agents
in order to maximize the sum of all coalition’s values. Just like the network
optimization problem, this problem has many parameters. Arguably too
many, due to an over-abundance of coalition valuation functions brought by
a single researcher. Despite this drawback, the CSG problem can be a good
showcase for search algorithms under certain circumstances. While many
valuation functions are vulnerable to greedy approaches, the original ver-
sion of the problem, introduced by Tuomas Sandholm, a figure in operation
research, AI, and combinatorics, is not vulnerable to greedy approaches.

No matter the valuation function, the Lazy Nested Monte Carlo Search
is able to greatly outperform all state-of-the-art approaches. It is able to
push the limits of this problem even further with a new representation of
the search space.

In addition to showing the superiority of the LNMCS approach, this
paper shows the unnecessity of several valuation functions, that were intro-
duced for no reason, and clog the experimentations on this problem. Our
results will likely be hard to outperform and we do not recommend working
on this problem. All the other problems presented in this thesis are, in our
opinion, more interesting to work on and more likely to yield interesting
results.
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Abstract: This paper explores Monte-Carlo Search algorithms applied to Multiagent Systems (MAS), specifically fo-
cusing on the problem of Coalition Structure Generation (CSG). CSG is a NP-Hard problem consisting in
partitioning agents into coalitions to optimize collective performance. Our study makes three contributions:
(i) a novel action space representation tailored for CSG, (ii) a comprehensive comparative analysis of multiple
algorithms, and the introduction of Lazy NMCS, (iii) a cutting-edge method that surpasses previous bench-
marks. By outlining efficient coalition formation strategies, our findings offer insights for advancing MAS
research and practical applications.

1 INTRODUCTION

Multiagent Systems (MAS) is a vast field of study
where multiple entities have different preferences,
goals, or beliefs (Shoham and Leyton-Brown, 2008).
One of the main goals of MAS research is to plan and
coordinate agents in order to improve global perfor-
mance or to complete task goals that are difficult or
impossible for an individual agent.

Among the different fields of study in MAS, our
work focuses on the partitioning of the agents into
mutually disjoint coalitions (Rahwan et al., 2015).
Partitioning agents into a coalition structure’s goal
can be stability (i.e., where no agent has an interest in
changing coalition) (Cechlárová et al., 2001) or opti-
mality (i.e., maximizing the total performance / social
welfare) (Aziz and de Keijzer, 2011). Here we decide
to focus on maximizing the sum of the performances
of all the coalitions in the coalition structure, which
is also called Coalition Structure Generation (CSG)
(Rahwan et al., 2015).

Out of the existing methods used on the resolu-
tion of the CSG problem, some of them are trying
to resolve optimally such as dynamic programming
(Yun Yeh, 1986) or integer partition-based search

a https://orcid.org/0000-0002-7794-5614
b https://orcid.org/0000-0002-0082-1939
c https://orcid.org/0000-0001-9805-8291
d https://orcid.org/0000-0003-4669-9374

(Rahwan et al., 2009). Nevertheless finding the best
coalition structure, especially with many agents, will
be costly since the problem is NP-complete. There-
fore, methods have been introduced to produce coali-
tion structures with better values on large number
of agents at the cost of a loss in theoretical guaran-
tees. Genetic algorithms (Sen and Dutta, 2000) and
GRASP (Mauro et al., 2010) algorithms fall into this
category.

In this paper we compare multiple Monte Carlo
search algorithms, including the state of the art one
on the CSG problem: CSG-UCT (Wu and Ramchurn,
2020). Monte Carlo search algorithms are the state of
the art in many applications and have recently been
combined with reinforcement algorithms, beating hu-
man professional players in multiple games such as
Go, Chess, and Shogi (Silver et al., 2017; Silver et al.,
2018).

Monte Carlo search algorithms are used on coali-
tion problems in two resources. One in (Wu and Ram-
churn, 2020) which uses a modified version of Upper
Confidence bounds applied to Trees (UCT) (Browne
et al., 2012) with a greedy playout. Another one is
presented in (Präntare et al., 2021), where different
Monte Carlo Search algorithms are outperformed by
the Random Hill Climbing (RHC) algorithm in the
Simultaneous Coalition Structure Generation and As-
signment (SCSGA) (Präntare and Heintz, 2020) prob-
lem. It is stated that the SCSGA problem is an exten-
sion of the CSG problem with the inclusion of an as-
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signment problem and that the RHC should perform
well on the CSG problem (theorem 1 of (Präntare and
Heintz, 2020)).

In this paper, we extend the research on Monte
Carlo algorithms for the CSG problem by using
other Monte Carlo based algorithms, either already
present in the CSG literature (RHC, CSG-UCT),
or new to the problem but well known (NMCS,
UCT) or completely new (LNMCS). Algorithms
based on NMCS showed great result in puzzles
and optimization problems, particularly in multiple
applications such as Single Player General Game
Playing (Méhat and Cazenave, 2010), Cooperative
Pathfinding (Bouzy, 2014), Software testing (Pould-
ing and Feldt, 2014), heuristic Model-Checking
(Poulding and Feldt, 2015), Games (Cazenave et al.,
2016), RNA Inverse Folding problem (Portela, 2018;
Cazenave and Fournier, 2020), Graph Coloring
(Cazenave et al., 2020) and refutation of spectral
graph theory conjectures (Roucairol and Cazenave,
2022).

We contribute to the CSG problem in three ways:
(i) We provide a new representation of the action

space of the CSG problem, which can improve the
performance under given conditions. (ii) We use it for
the first time and compare the performance of multi-
ple algorithms on the CSG problem. (iii) We intro-
duce a new algorithm, the Lazy NMCS, which solves
past problems of NMCS and outperforms the previ-
ous state of the art (at least) on the main benchmarks
of the problem.

The paper is structured as follows: the second
section presents notations for CSG problems, section
three presents the various representations used, sec-
tion four presents the different algorithms, section five
presents our results on multiple benchmarks, and the
last section summarizes our work and outlines future
work.

2 CSG Model

The modelization of the action space is a key factor
for the performances. One of the first model pro-
posed was (Sandholm et al., 1999) which represents
the coalition with levels, where at level i, each node
is a coalition structure composed of i coalitions. This
model is explained more precisely in Subsection 2.1.

Other models are available such as in (Rahwan
et al., 2007b), where coalition structures are re-
grouped by multiset of positive integers whose sum
is equal to |A|. This representation has been used for
integer partition graph (Rahwan et al., 2009).

In Subsection 2.2, we introduce a new model that

allows us to reduce the number of actions at each node
and to enhance the performance under certain condi-
tions.

2.1 Model A: simple coalition merging

The initial state is the singleton coalition (a CS com-
posed of the |A| singleton coalitions), and the avail-
able moves consist in the |CS| ˆ p|CS| ` 1q{2 two by
two merging of coalitions among the coalition struc-
ture CS. Thus, this action space is a directed graph
where each node represents a coalition structure. The
graph representing the action space is therefore com-
posed of levels, where each level corresponds to the
number of coalitions in each coalition structure i.e.,
in the level i, each node is composed of i coalitions.
The graph naturally ends up with the structure made
of one coalition encompassing all agents, called the
grand coalition.

For an example of the CS graph with 4 agents see
figure 1. In this model, the action space and the search
space increase greatly with each new agent. For each
node (coalition structure CS), there are |CS|ˆp|CS|´1q

2
possible actions, and the closer we are from the start-
ing node, the more actions are possible with the first
one having |CS| “ |A|. To reduce the size of the ac-
tion space (4950 available moves from the singleton
coalition structure with 100 agents), we introduce a
new representation.

2.2 Model B : Locked Merge

In model A, all sequences of actions (playouts) lead to
the grand coalition. In Monte Carlo Search algorithm,
the playout usually returns the value of the last state
of the playout, but in model A it will return the grand
coalition value each time. To alleviate this problem
it is possible to modify the playout algorithm to keep
in memory the best state encountered yet and return
it at the end of the playout, this is the method used
with CSG-UCT (Wu and Ramchurn, 2020), however,
computing the score after each move can be costly. As
stated before, the action space for larger CS in model
A can get large enough for it to be problematic (4950
moves for 100 coalitions).

Our aim with this new model is (i) to reduce the
number of available moves, especially from the first
and largest coalition structure (singleton), and (ii) to
avoid the costly computation of each state’s score of
a playout that model A requires.

We propose a new model representation where we
get a tree of the state space of depth |A|, with |CS|

moves possible at each node-state and with |CS| “ |A|

moves for the starting node.
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ta1u,ta2u,ta3u,ta4u

ta1u,ta2u,ta3 ,a4u ta1 ,a2u,ta3u,ta4u ta1 ,a3u,ta2u,ta4u ta1u,ta2,a4u,ta3u ta1u,ta2 ,a3u,ta4u ta1 ,a4u,ta2u,ta3u

ta1u,ta2 a3 a4u ta1 ,a2u,ta3 a4u ta1 a3 a4u,ta2u ta1 ,a3u,ta2 a4u ta1 a2 a4u,ta3u ta1,a4u,ta2 a3u ta1 a2 a3u,ta4u

ta1 ,a2,a3 ,a4u

Figure 1: Model A: an example with four agents.

pa1q,ta2u,ta3u

ra1s,pa2q,ta3u pa1,a2q,ta3u pa1,a3q,ta2u

ra1s, ra2s,pa3q

ra1s,pa2 a3q

ra1,a2s,pa3q

pa1,a2,a3q

ra1,a3s,pa2q

pa1,a2,a3q

ra1s, ra2s, ra3s

ra1s, ra2,a3s

ra1,a2s, ra3s

ra1,a2,a3s

ra1,a3s, ra2s

ra1,a2,a3s

Figure 2: Model B: an example with three agents. We de-
note tu when the coalition is not locked and not active, pq

when the coalition is not locked and active, and rs when the
coalition is locked.

The new model is defined as follows: The starting
node is the coalition structure of all singleton coali-
tions as with model A, without any coalition locked
(a coalition that cannot be merged and will be present
as is in the final state). At any time, only one coali-
tion is active. Two types of moves can be applied to
the coalition structure: (i) locking the active coalition
and selecting another coalition as the active coalition
or (ii) merging another coalition with the active coali-
tion (it remains the active coalition).

Thus any CS has exactly as many moves avail-
able as non-locked coalitions with model B, and each
move played reduces the total of non-locked coali-
tions in the CS by 1. Once all coalitions are locked
there is no more action available and it is then possi-
ble to compute the value of the coalition structure.

An example is provided in Figure 2 with three
agents. Locked coalitions are noted rs and unlocked
coalition as tu. As said previously, the first node is

the CS of all singleton coalitions (tpa1q,ta2u,ta3uu),
with none of them being locked. From this node-state,
there are three actions/moves possible, the first one is
to lock the first coalition (ra1s), the second action is
to merge the first and second coalition (pa1,a2q) and
the last action is to merge the first and third coali-
tion (pa1,a3q). If we chose the second action, we
now have two actions available. The first action is
to lock the current coalition (ra1,a2s) and the second
one is to merge the remaining coalitions (pa1,a2,a3q).
If we decide to lock the coalition, we are left with one
non-locked coalition and the last action is to lock it
(ra1,a2s, ra3s).

It should be noted that it is possible to modify
model B to make all terminal states return different
structures by not merging the coalitions that were re-
jected by the current active coalition until the current
active coalition is locked. This results in an unbal-
anced tree. We did not explore this version of the
model due to poor preliminary results.

3 Algorithms

In this section, we present the algorithms we tried
on the CSG problem: (i) Upper Confidence bound
applied to Trees (UCT) (Browne et al., 2012) (ii)
CSG-UCT (Wu and Ramchurn, 2020) (iii) Random
Hill Climbing (RHC) (Präntare and Heintz, 2020)
(iv) Nested Monted Carlo Search (NMCS) (Cazenave,
2009) (v) Lazy Nested Monte Carlo Search (LN-
MCS).

In the subsequent pseudo-codes, we use the fol-
lowing notations:

c-st denotes the current state,
n-st denotes the next state,
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b-score denotes the best score,
Mstate denotes the legal actions possible in state,
σ denotes the sequence kept in memory,
σ˚ denotes the best sequence,
b denotes the number of times we can repeat the

playout algorithm.
playpstate,moveq is a function returning the next

state when move is applied on state,
l denotes the current level in NMCS and LNMCS,
listri..s denotes the part of list from the i-th ele-

ment to the end.

3.1 Monte Carlo Tree Search and UCT

Monte Carlo Tree Search (MCTS) (Browne et al.,
2012) is a popular category of tree search algorithms,
notably used in recent and world-leading research
projects such as Alphazero (Silver et al., 2017), Al-
phafold (Jumper et al., 2021) or Astrazeneca’s tool
for retrosynthesis AiZynthFinder (Genheden et al.,
2020). MCTS consists of four steps: (i) selection —
select nodes by going down the tree according to the
exploitation policy until an unexplored node or a fi-
nal state is hit (ii) expansion — unless the node is
a terminal state, add it to the explored tree (iii) sim-
ulation — estimate the child node by using an ex-
ploration strategy (playout) (iv) backpropagation —
backpropagate the result obtained from the playout
through the nodes chosen during the selection phase.

3.1.1 Selection

Most of the time, the selection phase is done by ban-
dit algorithms. Bandit algorithms are a class of al-
gorithms used when one needs to choose between K
actions. To do so, bandit algorithms must balance be-
tween the exploitation of the current best action and
the exploration of other actions that are currently sub-
optimal.

The formula for UCT is as follow:

UCTchild “ X̄child `C

d

lnpnq

nchild

The child node selected from a current node is the
one that maximizes UCTchild . X̄child is the average re-
ward of the child, C is a constant parameter, nchild the
number of times the child node has been visited and n
the number of times the current node has been visited.

3.1.2 Simulation

In this paper, we are using two types of playouts: (i)
random playout or (ii) greedy playout. Random play-
outs select uniformly a child node, greedy playouts

Algorithm 1: Playout algorithm.

Function Playout(state):
b-score Ð ´8;
σ˚ Ð pq;
c-st Ð state;
σ Ð pq;
while c-st is not terminal do

if greedy then
move Ð GreedypMc-stq ;

else move Ð RandompMc-stq ;
c-st Ð playpc-st,moveq;
σ.pushpmoveq;
if b-score ď c-st.score or
classicPlayout then

b-score Ð c-st.score;
σ˚ Ð σ;

return b-score,σ˚;

select the child node with the best value (a node is a
coalition structure).

In Algorithm 1, we present the pseudo-code of
the playouts used in the multiple algorithms presented
later in the paper. If classicPlayout is true, the algo-
rithm returns the terminal value and not the best it
encountered on its path (suitable for model B).

3.1.3 Backpropagation

Once a value is obtained from the simulation step, all
nodes selected during the selection step (a path going
down the CS tree) see their total number of visits in-
creased by 1, and their average reward updated with
the value from the simulation.

3.2 CSG UCT

CSG-UCT is introduced in (Wu and Ramchurn,
2020) and designed for model A (Subsection 2.1).
CSG-UCT differs from UCT in three ways: (i) in
the selection phase, the average value of Xchild is
replaced with the maximum value observed (ii) the
value backpropagated is the maximum value between
the value backpropagated and the current value saved.
(iii) The playouts are greedy, thus CSG-UCT cannot
work for model B.

Greedy playouts do not select the next state uni-
formly like random playouts, instead, they select
the state (merge the two coalitions C1 and C2) that
will improve the coalition structure value the most:
argmaxC1,C2PCSvptC1 YC2uq ´ vpC1q ´ vpC2q.
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3.3 Random Hill Climbing

Random Hill Climbing (RHC) is defined in (Präntare
and Heintz, 2020). In this work, they compare a basic
version of MCTS against RHC and obtain better re-
sults with RHC. The authors compare the algorithms
over the Simultaneous Coalition Structure Generation
and Assignment (SCSGA) problem, which is an ex-
tension of CSG with an assignment problem. They
claim that an algorithm that can provide good results
on an instance of the SCSGA problem can also pro-
vide good results on a CSG instance, so we decided
to compare RHC against the other algorithms.

Algorithm 2: RHC algorithm.

Function RHC(b):
b-st Ð RandomCoalitionStructurepq ;
while b not exhausted do

CS Ð RandomCoalitionStructurepq ;
succes Ð true;
while succes ““ true and b not
exhausted do

success Ð f alse;
for a in ak1 , . . . ,akn do

i Ð l such that a P Cl ;
i˚ Ð

argmax jPt1,...,muztiu∆apC jq ;
if
∆apCi˚ztauqq ą ∆apCiztauqq

then
success Ð true;
CSris Ð CSrisztau;
CSri˚s Ð CSri˚s Y tau;

if b-st.score ą CS.score then
b-st Ð CS ;

return b-st

RHC uses neither of the models (A or B). In-
stead, RHC starts from a randomly generated CS and
for each agent checks if swapping with any coali-
tion would increase the value of the CS, if so the
agent swaps coalitions with the one providing the
largest marginal contribution. If none of the agents
swapped to another coalition, the value is returned as
a potential optimal CS, and RHC is restarted from
another random CS until the budget b is exhausted.
The pseudo-code of RHC is available in Algorithm 2,
and has been modified to match the CSG formalism.
∆apCq “ vpC Y aq ´ vpCq is the marginal contribution
of agent a to the coalition C.

Algorithm 3: NMCS algorithm.

Function nmcs(c-st, l):
if l “ 0 then return Playout(c-st) ;
b-score Ð ´8;
σ˚ Ð rs;
ply Ð 0;
while c-st is not terminal do

foreach move in Mc-st do
n-st Ð playpc-st,moveq;
pscore,σq Ðnmcs ( n-st, l ´ 1 );
if score ě b-score then

b-score Ð score;
σ˚rply..s Ð move ` σ;

next ´ move Ð σ˚rplys;
ply Ð ply ` 1;
c-st Ð playpc-st,next ´ moveq;

return b-score,σ˚

3.4 NMCS

Nested Monte Carlo Search (NMCS) (Cazenave,
2009) is a Monte Carlo Search algorithm that recur-
sively calls a lower level of NMCS on each child state
of the current state. This lower level of NMCS allows
the algorithm to decide which move to choose next.
The lowest level of NMCS being a random playout.
The main improvement of NMCS is the memoriza-
tion of the best sequence at each recursion level.

NMCS is available in Algorithm 3 and in all our
experiments with NMCS we used a level l of 3.

3.5 LNMCS

The Lazy NMCS inherits its main features from the
NMCS, but solves an obstacle encountered for the
CSG problem. Calling a higher level NMCS (l ě 3)
yields better results. However, the cost of calling a
lower level l ´1 NMCS on each of the resulting states
of the available actions can be prohibitive and some
of these actions produce subtrees doomed to produce
underwhelming results.

Therefore, we propose a new algorithm based on
NMCS named Lazy NMCS (LNMCS). LNMCS was
first proposed as a prototype and applied to the HP-
model for protein folding (Roucairol and Cazenave,
2023), this new version corrects some flaws of the
prototype such as the separation between evaluation
and pruning. LNMCS works the same as NMCS with
the following exceptions (i) before expanding a state,
we compute the mean of each available action by
launching b playouts (ii) we update a dynamic thresh-
old relative to the depth of the current state (iii) we
compare the score of each child to the threshold, if
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the score is below the threshold, the node is pruned.
The pseudocode of LNMCS is available in Algo-

rithm 4 and you can find each part of this process
marked in the pseudocode.

In addition to past notation, we are using r as the
ratio to the threshold a state will be pruned, e is the
number of possible moves we will focus on in case
there are too many moves, and, as in NMCS, l is the
nesting level. tr is a list of tuples containing the mean
value and the number of experiments made to con-
tribute to that value in order to compute the mean eas-
ily. trmax keeps in memory the best evaluation for
each level of depth. randomSamplepMstate,eq ran-
domly selects e actions from the moves from state if
there is too many available actions.

See Figure 3 for a graphic description of LNMCS,
subtrees are sampled and the underperforming ones
are pruned.

5 3 6 2 2 18 21 18 20 19 19 21 22 19 21

......
...

......
...

level n

level n-1

Figure 3: Level n LNMCS pruning a search subtree and
launching n-1 LNMCS on surviving search subtrees.

4 Results

4.1 Experimental setup

To refer to our models-algorithms combinations, we
use the following notations:

CA: model A CSG-UCT, C “ 1
LA: model A LNMCS, r “ 0, b “ 2, l “ 5, e “ 10
NA: model A NMCS, l “ 3
UA: model A UCT, C “ 1
LB: model B LNMCS, r “ 0, b “ 2, l “ 5, e “ 10
FB: (Full action space) model B LNMCS, r “ 0.9,

b “ 2, l “ 5, e “ 100
NB: model B NMCS, l “ 3
UB: model B UCT, C “ 1
LG: model A LNMCS with greedy playouts, r “

0, b “ 1, l “ 5, e “ 10
NG: model A NMCS with greedy playouts, l “ 3
R: RHC

Algorithm 4: LNMCS algorithm.

tr Ð rs;
trmax Ð rs;
Function lnmcs(c-st, l, b, r, e):

if l “ 0 then return Playout(c-st) ;
b-score Ð ´8;
σ˚ Ð rs;
ply Ð 0;
while c-st is not terminal do

budget moves Ð

randomSamplepMc-state,eq

candidates Ð rs;
d Ð c-st.nbplay;
/* d: number of moves played

from initial state */
foreach move in budget moves do

n-st Ð playpc-st,moveq;
ev Ð 0.0;
/* (i) */
for in 0..b do

pplsc, plsqq Ð

Playout(n-st);
if score ě b-score then

b-score Ð plsc;
σ˚rply..s Ð move ` plsq;

ev Ð ev ` plsc;
n Ð n ` 1;

candidates.pushprev,movesq;
/* (ii) */
if tr.lengthpq ă d ` 1 then

tr.pushpval : 0.0,n : 0q;
trmax.pushpevq;

trrds.val Ð
trrds.val˚trrds.n`ev

trrds.n`1 ;
trrds.n Ð ptrrds.n ` 1q;
if trmaxrds ă ev

n then
trmaxrds Ð ev

n ;

/* (iii) */
foreach can in candidates do

nl Ð l ´ 1;
if canr0s ă

trrds ` r ¨ ptrmaxrds ´ trrdsq

then nl Ð 0 ;
pscore,σq Ð

lnmcs(play(c-st, can[1]), nl, p);
if score ě b-score then

b-score Ð score;
σ˚rply..s Ð canr1s ` σ;

next-move Ð σ˚rplys;
ply Ð ply ` 1;
c-st Ð playpc-st,next-moveq

return b-score,σ˚;
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To compare these algorithms, we launched 100 in-
stances of the CSG problem with 100 agents with a
time budget of 100 seconds on four benchmarks.

As the CS values of an instance of the problem
are randomly initialized, we decide to compare the
result by measuring the number of times an algorithm
is better than another on each of the 100 instances.

The average performances and the standard devi-
ation are vulnerable to differences among the 100 dif-
ferent synthetic problem instances we used i.e., when
the standard deviation does not go below 0.5 on the
gaussian benchmark, it is in part due to the optimal
structure score having a standard deviation of about
0.5 over the 100 instances.

We chose to compare our algorithms on four coali-
tion value distributions/benchmarks from the litera-
ture:

• Uniform first used in (Larson and Sandholm,
1999) i.e., vpCq „ Up0, |C|q.

• Normal or Gaussian first used in (Rahwan et al.,
2007a) i.e., vpCq „ N p10˚|C|,0.1q, σ “ 0.1 being
the standard deviation.

• Agent based first used in (Rahwan et al., 2021)
i.e., vpCq „

ř

aPC Up0, paq where pa „ Up0,1q is
the power of an agent and is fixed on start..

• NDCS first used in (Rahwan et al., 2009) i.e.,
vpCq „ N p|C|,

a

|C|q, σ “
a

|C| being the stan-
dard deviation.

The experiments were made with Rust 1.59, on
an Intel Core i7-11850H 2.50GHz using a single core
(but parallel processing is very accessible). We use a
random generator with a set seed as our value func-
tion, and the values of each coalition are only pro-
duced once on demand by the random generator and
then stored in a hashmap for later use. The raw results
are available in Table 1.

4.2 Raw results

As observed in Table 1, on the uniform benchmark,
the LNMCS with model B significantly outperforms
all of the other algorithms, with the greedy LNMCS
coming in second place. Surprisingly, CSG-UCT did
not perform very well and was only able to outper-
form UCTs and NMCS. On the Gaussian, NDCS,
and agent-based benchmarks, the difference is even
greater with the greedy LNMCS, being close to 100
wins each time against each of the other algorithms.

By calculating confidence intervals, we can assert
with a confidence of 95% that one method is superior
to another only if that method wins at least 60 times
out of 100, and with a confidence of 99% if it wins

at least 63 times. LNMCS outperforms other meth-
ods significantly. The only duel that would leave any
doubts about the performances of the LNMCS is the
one between the greedy LNMCS and CSG-UCT on
the Gaussian benchmark. We decided to run 100 ad-
ditional experiments (seeds 100 to 199), and obtained
62 wins for the greedy LNMCS and 38 for CSG-UCT.
These experiments give a 0.99% certitude that the A
LNMCS is at least slightly superior to the A CSG-
UCT on the Gaussian benchmark. We think this per-
formance can be explained by the fixed variance of
the Gaussian coalition value function and does not fa-
vor larger coalitions. Since UCT explores from the
root every time it is advantaged at finding small but
high-value coalitions.

In the next sections, we analyze the performances
of each algorithm relative to the others and explain
these results.

4.2.1 Playout choice

MCTS/UCT generally uses a random playout, how-
ever, the CSG-UCT algorithm uses a strictly greedy
playout. The authors of CSG-UCT (Wu and Ram-
churn, 2020) did not compare the impact of using a
different playout. We propose to look into the effects
of the playout type, both for UCT and for the other
algorithms.

By looking at the results from the uniform bench-
mark in Table 1 (a), we can observe that CA out-
performs UA (CSG-UCT is comparable to UCT with
greedy playouts) with 82 wins, LG performs better
than LA with 60 wins and NG performs better than NA
with 61 wins.

On the Gaussian, NDCS, and agent-based bench-
marks, the results show that the performance of the
greedy is further enhanced, to such an extent that the
greedy playout does not lose a single time against a
random playout.

While the greedy playouts seem more effective,
retrieving the values of all the possible child CS (up
to 4950 with model A) can be costly and slows down
the playouts. It is the most resource-consuming part
of all of these algorithms.

4.2.2 Model choice

Model B (random playouts only) provides superior re-
sults on the uniform benchmark with the LNMCS, be-
ing able to outperform the LNMCS on model A with
greedy playouts and with random playouts. However,
it provides far inferior results on the other benchmark.
We think it’s due to the other benchmarks favoring
trying as many coalitions as possible, which model
B can not do since it only returns the terminal CS. It
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Table 1: The uncurated data, number of times the algorithm from a line beats the algorithm from a column over 100 experi-
ments.

CA LA NA UA LB FB NB UB LG NG R total wins Copeland

CA 36 53 82 6 24 97 74 13 39 100 524 538.5
LA 63 60 83 22 45 97 81 39 65 100 655 661.5
NA 46 38 67 16 30 97 73 24 39 100 530 537.5
UA 18 16 32 3 14 89 46 9 16 100 343 347.5
LB 94 76 83 95 77 99 94 74 92 100 884 892
FB 74 53 66 83 16 97 84 43 64 100 680 690
NB 3 3 3 11 1 3 8 1 1 100 134 134
UB 24 15 24 48 4 12 92 8 24 100 351 361.5
LG 81 60 75 91 26 55 99 90 77 100 754 767
NG 48 35 61 84 8 33 99 75 16 100 559 570.5
R 0 0 0 0 0 0 0 0 0 0 0 0

(a) Uniform benchmark with 100 agents.

CA LA NA UA LB FB NB UB LG NG R total wins Copeland

CA 100 100 100 100 100 100 100 36 94 100 930 930
LA 0 40 100 100 100 100 100 0 0 9 549 549
NA 0 60 99 99 99 99 100 0 0 27 583 583
UA 0 0 1 86 38 100 100 0 0 0 225 325
LB 0 0 1 14 1 99 100 0 0 0 215 215
FB 0 0 1 62 99 100 100 0 0 0 362 362
NB 0 0 1 0 1 0 100 0 0 0 102 102
UB 0 0 0 0 0 0 0 0 0 0 0 0
LG 64 100 100 100 100 100 100 100 94 100 958 958
NG 6 100 100 100 100 100 100 100 6 100 812 812
R 0 91 73 100 100 100 100 100 0 0 664 664

(b) Gaussian benchmark with 100 agents.

CA LA NA UA LB FB NB UB LG NG R total wins Copeland

CA 100 100 100 100 100 100 100 0 73 100 873 873
LA 0 84 100 97 93 100 100 0 0 3 577 577
NA 0 16 92 39 31 48 94 0 0 4 324 324
UA 0 0 8 0 0 0 45 0 0 0 53 53
LB 0 3 61 100 39 82 100 0 0 1 386 386
FB 0 7 69 100 61 94 100 0 0 2 433 433
NB 0 0 52 100 18 6 100 0 0 1 277 277
UB 0 0 6 55 0 0 0 0 0 0 61 61
LG 100 100 100 100 100 100 100 100 100 100 1000 1000
NG 27 100 100 100 100 100 100 100 0 100 827 827
R 0 97 96 100 99 98 99 100 0 0 689 689

(c) Agent based benchmark with 100 agents.

CA LA NA UA LB FB NB UB LG NG R total wins Copeland

CA 100 100 100 100 100 100 100 0 85 100 885 885
LA 0 79 100 98 87 100 100 0 0 2 566 566
NA 0 21 95 37 33 43 94 0 0 2 325 325
UA 0 0 5 0 0 0 53 0 0 0 58 58
LB 0 2 63 100 33 91 100 0 0 0 389 389
FB 0 13 67 100 67 94 100 0 0 1 442 442
NB 0 0 57 100 8 6 100 0 0 1 272 272
UB 0 0 6 47 0 0 0 0 0 0 53 53
LG 100 100 100 100 100 100 100 100 100 100 1000 1000
NG 15 100 100 100 100 100 100 100 0 100 815 815
R 0 98 98 100 100 99 100 100 0 0 695 695

(d) NDCS benchmark with 100 agents.

For example, LB beats NA 83 times out of 100 with 1 ex-aequo on the uniform benchmark, and FB beats UA 62
times out of 100 with no ex-aequo on the gaussian benchmark.

89



however proves the interest of trying new representa-
tions of the problem.

4.2.3 Algorithm family choice

With regard to the choice of the type of algorithm,
the nested family is overall preferable to the MCTS
family on the CSG problem, especially with LN-
MCS which dominates in every benchmark. From the
MCTS family, we observe overall great performances
with the CGT-UCT except on the uniform benchmark.

Precisely, we observe the following dominance or-
ders:

Uniform: LB ą LG ą FB ą LA ą CA ą others
Gaussian: LG ą CA ą NG ą R ą NA ą others
Agent-based: LG ą CA ą NG ą R ą LA ą others
NDCS: LG ą CA ą NG ą R ą LA ą others

4.2.4 Discussion: The benchmark problem

As you can see in Table 1 (b, c, d), and in the pre-
vious observations, most random playout based al-
gorithms perform poorly compared to their greedy
playout-based versions on the Gaussian, agent-based,
and NDCS benchmarks. We can notice that this is not
the case for Sandholm’s initial uniform benchmark.

To understand why, we computed the optimal
coalitions for instances of the problem with 15 agents
using an exact algorithm, and then compared the
CSG-UCT to a BEAM search with a width of 10.
On such small instances of the problem, the BEAM
search returned the optimal value, slightly higher or
equal to the value returned by CSG-UCT.

We tried various other benchmarks such as Sand-
holm’s second uniform benchmark, where the value
of a coalition is sampled uniformly between 0 and 1
regardless of its size (Sandholm et al., 1999). It turns
out that every benchmark other than Sandholm’s first
uniform greatly favors greedy playouts and gives sim-
ilar results to the Gaussian benchmark. It is the main
reason why we decided to experiment on only 3 of the
benchmarks introduced by Rahwan.

Alternatively, the RHC algorithm which consists
of a greedy playout stopping at the first local max-
imum and starting from a randomly initialized state
outperforms the random playouts-based state of the
art machine learning algorithms on the agent-based,
NDCS, and Gaussian distributions. For these distribu-
tions, a single greedy playout is much better than al-
gorithms using random playouts. That result leads us
to question the interest of these distribution, and oth-
ers introduced by Rahwan, as their introduction was
never justified in the first place and their number is
getting out of hand.

As shown in Table 1, replacing LNMCS random
playouts with greedy playouts is enough to outper-
form the current state-of-the-art algorithms.

5 Conclusion and Future Works

In this paper, we proposed to analyze Nested Monte
Carlo based algorithms for the CSG problem. We
present a new algorithm called Lazy Nested Monte
Carlo Search which answers some of NMCS’s short-
comings. In addition, we present a new model repre-
sentation of CSG which allows us to strongly reduce
the number of actions at the beginning of the search.

Our new algorithm is able to outperform the pre-
vious state-of-the-art algorithms on all of the main
coalition value distributions we experienced upon.
We also proposed a new modelization of the search
tree that provides better results over the initial uni-
form distribution.

In future works, we may aim at:
(i) Finding real-life coalition value distributions to

compare algorithms on real problems. In this work,
we have been assuming that coalition values are not
affected by other coalitions. In many realistic set-
tings, such as in the Partition Function Games (PFG)
formalism (Thrall and Lucas, 1963), this property is
not satisfied. Another task will be to extend our work
to probabilistic CSG (Schwind et al., 2021).

(ii) Proposing a new coalition value distribution
that is resistant to the greedy playouts approach to fur-
ther the CSG problem.

You can access our implementation
as well as the result files containing the
value improvements and their timestamps at
https://github.com/RoucairolMilo/coalition.
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Chapter 3

Cheminformatics

3.1 Hydrophobic Polar Model

This problem was placed in the Cheminformatics section, but it is a typi-
cal computer scientist NP-hard problem. It is meant as an abstraction for
protein folding where a string is folded in a 3D lattice. In that regard it is
very similar to toy puzzles like the rubik’s snake. As such, it was quite fun
to work with, and we recommend it to any computer scientist, no chemistry
knowledge is needed.

One particularity of the HP-model search space is the commitment. A
move earlier in the search tree leads to greatly different states down the tree.
The previous models involve less commitment: two coalitions can be merged
later, the order in which the edges are added does not matter.

But with the HP-model, a sub-optimal move at one point can doom the
rest of the search tree. The NMCS can be vulnerable to these wrong moves
as it calls a lower level NMCS on each child. This is how we got the idea
for the LNMCS: the NMCS needed a way to tell if a move was bad before
launching a lower-level NMCS and spending computation time on it. This
led to an algorithm providing significant improvements over the base NMCS.

While our work on the HP-model may not help chemists much, or be
impressive on its own, it was the origin of one of the main contributions of
this thesis, the LNMCS. The LNMCS has then showed to outperform all
other MCTS algorithms on every problem it was tried on.

A few information about the LNMCS are absent from this paper, as
it was the first. They are also absent from most subsequent papers as it
only became clear after trying it on multiple projects. If you want to use
the LNMCS, do it with a search space where mistakes are possible. The
more the mistakes doom a branch of the search tree, the more the LNMCS
will outperform the NMCS. For example, it is easy to course correct when
generating graphs due to isomorphisms and the existence of multiple paths
to a single graph, the same for the nonograms where a move can undo the
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previous move. On the other hand, the HP-model has the search space
that is the most prone to doom a subtree in all the projects of this thesis,
subsequent moves can’t save the subtree, and a wrong move can make the
value of the state decrease significantly more than when generating graphs.
The LNMCS should however not underperform compared to the NMCS on
any search space: it would mean that the evaluation of a state is useless,
and because it is made with playouts or a heuristic, most MCTS algorithms
should struggle equally then. Another tip to get the best out of the LNMCS
is to ensure that at least 50% of the states are pruned (improves more than
twice the performances of the algorithm because many pruned states are the
root of costly branches, higher level LNMCS). The ratio varies from search
space to search space and the hyperparameters must be tuned, but it is a
quick task.
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Abstract. In this paper we present a new Monte Carlo Search (MCS) al-
gorithm for finding the ground state energy of proteins in the Hydrophobic-
Polar-model (HP model). We also compare it to other MCS algorithms
not usually used on the HP model as well as to other approaches and
provide an overview of the state of the art algorithms used on the HP
model.

Keywords: Protein folding · Monte Carlo Search · MCTS · HP model
· optimization · pruning.

1 Introduction

Monte Carlo search algorithms have proven to be powerful as game playing
agents, with recent successes like AlphaGo [14]. These algorithms have the ad-
vantage of only needing an evaluation function for the final state of the space
they explore.

Protein folding is crucial to our understanding of biology and designing drugs,
however, trying our algorithms directly on accurate models could be counter-
productive. In this paper, we use a new MCS algorithm to fold proteins in a
simplified lattice based model called the HP model.

First, we will present the protein folding and the HP model, then the different
algorithms we used to explore the problem space and finally the results of our
experiments.

2 The problem

2.1 Protein folding

With recent developments in ARNm technology, it is now possible to incite
cells to produce a specific protein [8], like the spike protein used in COVID-19
vaccines. Unfortunately, deducing the shape a protein will take given the amino
acids sequence is not obvious nor trivial. That is a reason protein folding is a
very important problem in molecular biology and medicine.

Proteins are chains of amino acids (primary structure), they can fold in many
different ways, the secondary structure is the shape the protein will take at a
local level (a coil for example), the tertiary structure is the global shape of the
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protein with less discernible patterns, finally, the quaternary structure is how
a protein can assemble with another. Here we are interested in predicting the
ground state energy folding (secondary and tertiary structure) from the primary
structure. Many forces drive the folding, which prevents the creation of a very
accurate simulator, the main driving force is the hydrophobic one.

One can not approach protein folding without mentioning DeepMind’s Al-
phaFold [10]. Placing first at the Critical Assessment of Techniques for Protein
Structure Prediction in 2018 and 2020, it is the best program for protein struc-
ture prediction yet. AlphaFold uses machine learning on a large protein database
to train neural networks, in addition to physics based rules in order to predict
the folding of a protein.

AlphaFold is the greatest achievement to protein folding prediction in decades,
but the research is not over yet. AlphaFold accuracy can still be perfected, and
by using neural networks the explainability is low and the model may not be
able to predict the structure of proteins never seen before. Our objective here is
to provide a better algorithm than the other MCS algorithms for Monte Carlo
physics simulation, which may be more explainable than AlphaFold and other
MCS algorithms, but should currently be way less accurate than Alphafold if it
was applied on the same problem.

2.2 Hydrophobic-Polar model

The HP model was introduced in 1985 by Ken Dill [4]. The main idea behind
the creation of the HP model is that the Hydrophobic-Polar (HP) force is the
main force driving the folding of a protein, thus it is the only one used here.

The HP model is a simplified lattice based model for protein folding, it exists
in 2D and 3D versions.

In the HP model, proteins are represented as a chain of H and P residues
(amino acids), the chain is then folded onto a grid, two residues can not share the
same positions. The residue contacts determine the energy of a chain, usually,
the reward for an H-H connection is -1, and 0 for H-P and P-P contacts in a
context of minimization (since the ground energy state is the state with the least
potential energy). Other rewards can be used to obtain different results or guide
the search.

2.3 State of the art on HP model

The HP model has seen a number of algorithms trying to solve it. All of the
best performing algorithms on the HP model are Monte Carlo based, policy
learning using neural networks or reinforcement learning like NRPA [12] led to
poor results. In these Monte Carlo algorithms, we can identify two types, the
chain growth algorithms and the replica exchange ones.

The chain growth methods add the residues one after the other, next to the
previous one, it is similar to a self avoiding walk and it is the method we used
in our own algorithm.
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The replica exchange methods use pull moves, pulling the chain at one point
by rotating a residue around one of its neighbors, symmetrically rotating a part
of the chain or pulling from one side of the chain. This means the entirety of
the chain is present on the lattice at any given state of the search and is in
a physically possible conformation, this method is used in simulated annealing
like Monte Carlo algorithms. To see a representation of these moves see Chris
Thchuk, Alena Shmygelska, and Holger H Hoos REMC article [16].

Here is a short review of the methods we encountered.

1) PERM: Initially used on Self Avoiding Walks (SAW), PERM is a chain
growth algorithm and was used on the HP model by Peter Grassberger in 1997
[7]. It stands for Pruned Enriched Rosenbluth Method, the idea is to explore
the possible chains uniformly with a bias on the immediate gain, cutting (prun-
ing) branches leading to too few choices and poor performances, and cloning
(enriching) branches that lead to great results. PERM has seen many new ver-
sions until 2011 [9], mainly proposed by its creator, Peter Grassberger. It still is
one of the best algorithms available but has been outperformed by pull-moves
based more recent algorithms. We reproduced PERM, but our results with this
algorithm did not live up to the expectations, it matched UCT’s (see part 4.3)
performances.

2) REMC: Introduced in 2007 by Chris Thachuk, Alena Shmygelska and Hol-
ger H Hoos [16], the Replica Exchange Monte Carlo algorithm uses pull moves
and simulated annealing. That algorithm keeps only a certain number of replicas
(it was determined the best number of replicas for the 3D HP model was 2), each
with a given temperature. At each step the algorithm mutates each replica with
a Monte-Carlo Search using the pull moves, the probabilities of keeping a mu-
tation are decided by the score gain (energy loss) of the mutated state and the
temperature. Then, once each state is produced through mutation, the replicas
are then again swapped probabilistically according to their score (energy) and
temperatures.

3) Wang-Landau sampling: Introduced in 2012 on the HP model, the Wang-
Landau sampling (WLS) [17] method seems to be the new best algorithm for
solving the HP model. It is a replica-exchange (simulated annealing) algorithm
that uses the same pull moves as the REMC, but also uses moves consisting in
cutting and joining of the molecule (thus reallocating all the residues according
to their position), together they are named the Monte-Carlo trial moves. With
these moves, the WLS explores the conformation space to estimate a histogram
of the energies of these conformations. With this histogram, the WLS can then
direct the exchange of the replicas.
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3 Algorithm

3.1 Biased Growth

In a similar way to the PERM algorithm [9], we try to favor the immediate
reward when building/folding the molecule. To do this, we use biased playouts,
the chances of selecting a move m from M the possible moves from state S
follows a softmax distribution with b the bias factor:

exp(Gm ∗ b)∑
i∈MS

exp(Gi ∗ b)
(1)

Mc-state denotes the legal moves available from the state current-state.
GMc-state

denotes the immediate gains of each legal moves available from the
state current-state.

Algorithm 1 The biased growth playout algorithm.
1: function playout(c-state, b)
2: ply ← 0
3: seq ← {}
4: while c-state is not terminal do
5: gains← GMc-state

6: move← softMaxChoice(Mc-state, gains ∗ b)
7: c-state← play(c-state,move)
8: seq[ply]← move
9: ply+ = 1

10: end while
11: return score(c-state), seq
12: end function

3.2 Nested Monte Carlo Search

NMCS [1] is a Monte Carlo Search algorithm that recursively calls lower level
NMCS on children states of the current state in order to decide which move to
play next, the lowest level of NMCS being a random playout, selecting uniformly
the move to execute among the possible moves. A heuristic can be added to the
playout move choices, and it is the case here with the biased growth playouts.

Algorithm 2 gives the NMCS algorithm, l is the nesting level and b the playout
bias.

3.3 Lazy Nested Monte Carlo Search

The lazy NMCS inherits its main features from the NMCS, but solves an obstacle
encountered on this problem. Solving the 3D HP model with the NMCS requires
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Algorithm 2 The NMCS algorithm.
1: function NMCS(c-state, l, b)
2: if l = 0 then return playout(c-state, b)
3: else
4: best-score← −∞
5: best-sequence← []
6: ply ← 0
7: while c-state is not terminal do
8: for each move in Mc-state do
9: n-st← play(c-state,move)

10: (score, seq)← NMCS(n-st, l − 1, b)
11: if score ≥ best-score then
12: best-score← score
13: best-sequence[ply..]← move+ seq
14: end if
15: end for
16: next-move← best-sequence[ply]
17: ply ← ply + 1
18: c-state← play(c-state, next-move)
19: end while
20: return (best-score, best-sequence)
21: end if
22: end function

using a level of 4 at least, however, it requires computing many 3 level NMCS,
already very costly, one for each possible move the level 4 NMCS can make.
The main idea behind the lazy NMCS is that there are moves that lead to low
potential states, to do so, we estimate the potential of a state by launching a
number of biased growth playouts and calculating the mean of their scores, then
we compare that score to a threshold (relative to the number of moves already
done) calculated from the previous estimations to decide if we want to expand
the search tree from this state, or prune it. To update the pruning threshold tr,
it is possible to use a mean, a median, or a max from the previous estimations,
here we use the max as it gave the best results on these problems.

In the following pseudocode in algorithm 3, p is the number of playouts used
to evaluate a state and r is the ratio to the threshold a state will be pruned on.
l is the nesting level and b is the playout bias.

From line 9 to line 14, the state is evaluated with the mean of p playouts.
From line 15 to line 17, the threshold list is extended on the first entry of

a new molecule length, this step is not needed if the list is initialized with the
right size from the start for problems we know the maximum number of moves
that will be played.

From lines 18 to 120, the threshold is updated with the evaluation.
From lines 21 to 25, it is decided with the evaluation, the pruning ratio, and

the corresponding threshold if the search will be costly or not.
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Algorithm 3 The Lazy NMCS algorithm.
1: tr ← []
2: function LNMCS(c-st, l, b, p, r)
3: if level = 0 then return playout(c-st, b)
4: else
5: best-score← −∞
6: best-sq ← []
7: ply ← 0
8: while c-st is not terminal do
9: for each move in Mc-state do

10: n-st← play(c-st,move)
11: for i in 0..p do
12: (playoutSc,_)← playout(n-st, b)
13: es← es+ playoutSc/p
14: end for
15: if tr.length() < c-st.nbplay + 1 then
16: tr.push(0.0)
17: end if
18: if tr[c-state.nbplay] < es then
19: tr[c-state.nbplay]← es
20: end if
21: if es < ratio ∗ tr[c-st.nbplay] then
22: (sc, sq)←LNMCS(c.1, 0, b, p, r)
23: else
24: (sc, sq)←LNMCS(c.1, l − 1, b, p, r)
25: end if
26: if sc ≥ best-score then
27: best-score← sc
28: best-sq[ply..]← move+ sq
29: end if
30: end for
31: next-move← best-sq[ply]
32: ply ← ply + 1
33: c-st← play(c-st, next-move)
34: end while
35: return (best-score, best-sq)
36: end if
37: end function
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As you can see there is only one FOR loop iterating over the moves in this
implementation of the LNMCS, which means the evaluation is incomplete when
the algorithm decides whether to prune the first branches or not. This is a minor
flaw in this version of the algorithm and it is easily fixed by ulterior versions
(along with other shortcomings). Nonetheless, the experiments were made with
this "prototype" version of the algorithm.

4 Results

4.1 Lazy Nested Monte Carlo Search

Experimental setup We conducted experiments on the 10 molecules with 48
mers from the benchmark we can find in Holger’s [16] and Hsu’s [9] work, here
on table 1. -E* denotes (the opposite of) the speculated energy of the lowest
energy state.

ID molecule -E*

1 HPHHPPHHHHPHHHPPHHPPHPH
HHPHPHHPPHHPPPHPPPPPPPPHH 32

2 HHHHPHHPHHHHHPPHPPHHPPH
PPPPPPHPPHPPPHPPHHPPHHHPH 34

3 PHPHHPHHHHHHPPHPHPPHPHH
PHPHPPPHPPHHPPHHPPHPHPPHP 34

4 PHPHHPPHPHHHPPHHPHHPPPH
HHHHPPHPHHPHPHPPPPHPPHPHP 33

5 PPHPPPHPHHHHPPHHHHPHHPH
HHPPHPHPHPPHPPPPPPHHPHHPH 32

6 HHHPPPHHPHPHHPHHPHHPHPP
PPPPPHPHPPHPPPHPPHHHHHHPH 32

7 PHPPPPHPHHHPHPHHHHPHHPH
HPPPHPHPPPHHHPPHHPPHHPPPH 32

8 PHHPHHHPHHHHPPHHHPPPPPP
HPHHPPHHPHPPPHHPHPHPHHPPP 31

9 PHPHPPPPHPHPHPPHPHHHHHH
PPHHHPHPPHPHHPPHPHHHPPPPH 34

10 PHHPPPPPPHHPPPHHHPHPPHP
HHPPHPPHPPHHPPHHHHHHHPPHH 33

Table 1: The benchmark’s molecules and their speculated lowest energy state

To obtain our results, we used the lazy NMCS with a timeout of 150s, if the
algorithm has not found a conformation with the lowest known energy before
the end of the timeout then we restart the algorithm until that happens. In our
experiments, the playout biased growth gives an immediate gain of 1 to any le-
gal H-H connection, but also a penalty of -0.2 to the H-P connections, this was
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made in order to incite the biased growth to keep a maximum of H mers open
to future connections, we did not experiment on that variable.

Molecule 4 used a lazy NMCS with a threshold based on the mean of the
evaluation playouts with the following parameters:

level 4
#eval playouts 10
pruning ratio 0.97
playout bias 20

The other molecules used a lazy NMCS with a threshold based on the best
average from a batch of evaluation playouts with the following parameters:

level 5
#eval playouts 20
pruning ratio 0.9
playout bias 20

Results Different methods of evaluation and pruning can greatly change the
performance of the algorithm, and some methods can be ineffective on a set of
molecules while being capable on another set.

ID mean time interquartile
1 5.5 5
2 12.5 15.5
3 10 14
4 20 25
5 10 10
6 +- 180 -
7 +- 60 -
8 13.5 12
9 +- 120 -
10 7 9

Table 2: Mean time and interquatile (in minutes) of LNMCS on the benchmark
molecules to reach a state with the lowest state energy

These results are displayed in minutes and were obtained on a 3.50GHz Intel
core i5-6600K CPU, the lowest state energy are the -E* featured in table 1.

Our LNMCS performed very poorly on molecules 6 and 7, we were not able
to gather enough data to compute the statistics. This was unexpected since only
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molecules 4 and 9 are difficult for PERM (the state of the art chain growth
algorithm) to solve according to Grassberger and Hsu’s latest paper [9], and
molecule 4 posed fewer problems. However, the lazy NMCS could attain the
second best energy level very reliably in less than 150s in half of the launches
with both molecules.

LNMCS was also able to easily reach the second best level of energy on
molecule 9 but could only reach the optimal state every 2 hours approximately,
that result was expected since PERM encounters difficulties with that molecule
too.

4.2 Comparing LNMCS to Deep Reinforcement Learning in
AlphaZero style

Experimental setup Recent results on the HP model were brought to our
attention in Deng et al’s work [3]. Experiments were realized on 8 other HP
strings in table 3 using a neural network based Monte Carlo Search method, in
AlphaZero’s manner. To the best of our knowledge, this is a first for the HP
model.

ID molecule -E*
S1 HPHPPHHPHPPHPHHPPHPH 11
S2 HHPPHPPHPPHPPHPPHPPHPPHH 13
S3 PPHPPHHPPPPHHPPPPHHPPPPHH 9

S4 PPPHHPPHHPPPPPHHHHHHHPPHH
PPPPHHPPHPP 18

S5 PPHPPHHPPHHPPPPPHHHHHHHHH
HPPPPPPHHPPHHPPHPPHHHHH 31

S6 HHPHPHPHPHHHHPHPPPHPPPHPP
PPHPPPHPPPHPHHHHPHPHPHPHH 31

S7
PPHHHPHHHHHHHHPPPHHHHHHHH

HHPHPPPHHHHHHHHHHHHPPPP
HHHHHHPHHPHP

52

S8
HHHHHHHHHHHHPHPHPPHHPPHHP

PHPPHHPPHHPPHPPHHPPHHPPHPHP
HHHHHHHHHHHH

56

Table 3: The second benchmark’s molecules and their speculated lowest energy
state

We launched our LNMCS with a threshold based on the best average from
a batch of evaluation playouts with the same parameters as with most previous
results:
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level 5
#eval playouts 20
pruning ratio 0.9
playout bias 20

Results In table 4 we show that LNMCS is able to outperform this recent
method as well.

ID our -E* LNMCS time to previous -E* previous -E*
S1 11 30s 11
S2 13 25s 13
S3 9 5s 9
S4 18 0.73s 18
S5 31 103s 31
S6 31 143s 31
S7 54 14s 52
S8 58 135s 56

Table 4: Best scores obtained by LNMCS on the second benchmark molecules

Due to a typo on S6 in [3], molecule S6 was retrieved from [13]. The times
displayed in table 4 show approximately how much time is necessary to reach
the previous lowest energy state for each molecule.

As you can see in table 4, our LNMCS was able to very quickly get to the
lowest know state energy and was even able to find new optimums for molecules
S7 and S8. However, despite the LNMCS performing better, our own UCT with
biased playouts is inferior to their UCT with the priors approach. We think using
priors on the LNMCS could lead to even better results than the ones presented
in this paper.

4.3 Other MCS algorithms

We tried to solve The HP model with a variety of different Monte Carlo algo-
rithms. We only applied these algorithms to the first molecule from the bench-
mark, the results presented in this section are only to give an idea of these
algorithms’ performances and do not necessarily reflect their potential on the
HP model.

Nested Monte Carlo Search The good performances of the NMCS [1] com-
pared to the other algorithms presented in this section is what made us decide
to try to improve it for this problem into the LNMCS: the NMCS was able to
find the optimal value on the molecule in less than 10mn.
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In Figure 2 and Figure 1 we compare performances of the level 5 NMCS and
the level 5 LNMCS with a ratio of 0.9 on molecule 1, with both a playout bias
of 20 over 20 runs with a 150s timeout.

−32 −31 −30 −29
0

5

10

15

Energy

N

Fig. 1: Energy distribution with the
Lazy NMCS

−32 −31 −30 −29
0

5

10

15

Energy

N
Fig. 2: Energy distribution with the
NMCS

As you can see in figures 1 and 2, the LNMCS provides a substantial perfor-
mance gain over the NMCS on this problem. Lowest energy conformations are
way sparser than the second lowest energy conformations, being able to reach
them 3 or 4 times as often is a great improvement.

Nested Rollout Policy Adaptation The NRPA [12] is similar to the NMCS,
the main difference is that the NRPA learns a policy to decide which move
to play during playouts, that policy discovery is interesting for many problems
which are too complex to implement a handmade policy (like we did here). On
many problems the NRPA outperforms the NMCS, however, in this case it was
not able to. The performance of the NRPA and GNRPA [2] are widely dependent
on the move representations, here it is the number corresponding to the number
of residues already placed and its direction and NRPA and GNRPA with a bias
of 20 were not able to reach the optimal energies (-28 or -29 for the GNRPA
when -32 is the best known). Other moves representations were tried, using the
last few previous moves instead of the number of residues already placed for
example, but none were able to provide better performances. Our inability to
obtain good results with NRPA does not mean it is impossible to solve this
problem with it.

Greedy Best First Search with playouts The Greedy BFS [5] is a simple
search algorithm that uses a ranked list of the nodes to open according to their
scores given by an evaluation function. Iteratively, the Greedy BFS opens the
best node from the list and launches the evaluation function on every child of
this node to insert them in the ranked list. Here we evaluate the children with
their results with one or multiple playouts. This method converges rapidly to a
"good enough" solution (a local minimum), -29 when the best known is -32 on
molecule 1, but then improves very little, it is due to a large number of good
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scoring states that do not lead to an optimal solution, making the search too
exhaustive. Pruning the search tree could improve the results of this method.

Upper Confidence bounds applied to Trees UCT [11] is the most widely
used MCTS method, namely in outstanding works like alphazero [15] and As-
traZeneca’s AiZynthFinder [6]. It iteratively starts from the initial state, go down
the search tree following a formula, and launches layouts once it finds an un-
visited state, based on the results of each playout, the value used to determine
how to go down the search tree are updated. UCT does not work well on the HP
model without biased growth (achieving about the same scores as a single biased
playout, -18), with biased growth it achieves scores around -28/-29 on molecule
1, like the other non-NMCS algorithms discussed here.

5 Conclusion

In this paper, we proposed a new (prototype) Monte Carlo Search algorithm
that has the advantage to be easier to implement than most usual HP model
algorithms and is applicable to more problems. It is also shown to be an improve-
ment on the NMCS algorithm for this specific problem and to outperform novel
neural network based methods. We have applied LNMCS to other problems, and
it has not been outperformed by any other algorithm on any of these problems
yet, we also made slight changes to the algorithm towards a final version (hence
the use of the term "prototype" here) in papers soon to be published.

In future works, we aim to apply LNMCS to more problems and find ways to
improve its performance. We also aim to use a prior neural network to further
improve LNMCS performance on the HP model problem.

You can find our codes for the HP model, the LNMCS, and the other algo-
rithms here: https://github.com/RoucairolMilo/HPmodelICCCI
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3.2 Retrosynthesis
I have always had an interest in chemistry, my advisor invited me to a pre-
sentation on chemoinformatics at the Pierre-Gilles de Gennes Foundation.
There we met two chemists who recommended we look at AiZynthFinder,
a retrosynthesis tool, for using our search algorithms on chemoinformatics
problems. Retrosynthesis is the task of finding a chain of reactions from
available reactants to produce a desired molecule, it is extremely useful in
pharmaceutics and is the most “real world” problem in this thesis. Indeed
AiZynthfinder is a well made software that is already using a version of
Monte Carlo Search similar to UCT.

We substituted our algorithms to their Monte Carlo Search. Both NMCS
and GBFS provided improved performances, solving up to 20% more molecules
in the long run with NMCS, and immediately outperforming the base algo-
rithm in the short run with GBFS. Because the molecules from the bench-
mark we used are gradually more complex, this 20% increase in molecules
solved is a great improvement, outperforming ASKCOS, the state of the art
retrosynthetic tool from the MIT.

However, much remains to be done. For instance, the publicly avail-
able one step retrosynthesis neural network (PUCT prior) provided by As-
traZeneca is trained on publicly available data. The structure of the neural
network is also very simple. Both of these are being worked on and could
yield significant improvements.

This is why Ngoc Trinh Hung Nguyen worked on this problem during
his internship and managed to improve the neural network’s structure. This
improvement yielded a 10% increase in molecules solved. With both the
NMCS and the improved neural network, the number of molecules solved
was further improved to 39, so a 30% improvement, allowing the modified
AiZynthfinder to rival or outperform tools using much larger datasets.

The performances could be even further improved by using said datasets
to train the new network and as the available list of reactants. But the
SOTA has already been outperformed without these so the results are very
satisfactory as they are.
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Abstract
In this article we try different algorithms, namely Nested Monte Carlo Search
and Greedy Best First Search, on AstraZeneca’s open source retrosynthetic
tool : AiZynthFinder. We compare these algorithms to AiZynthFinder’s base
Monte Carlo Tree Search on a benchmark selected from the PubChem data-
base and by Bayer’s chemists. We show that both Nested Monte Carlo Search
and Greedy Best First Search outperform AstraZeneca’s Monte Carlo Tree
Search, with a slight advantage for Nested Monte Carlo Search while ex-
perimenting on a playout heuristic. We also show how the search algorithms
are bounded by the quality of the policy network, in order to improve our
results the next step is to improve the policy network.

KEYWORD S
MCTS, Monte Carlo Tree Search, retrosynthesis, search algorithm

1 | INTRODUCTION

Retrosynthesis is a domain of organic chemistry that
consists of finding a synthetic route (a sequence of re-
actions) for a given molecule in order to synthesize it
from a given set of available precursor molecules [1]. It
is an important part of organic chemistry molecule syn-
thesis, and can be used to produce newfound drugs.
What we aim for in this paper is to evaluate the
strengths and weaknesses of two search algorithms by
comparing them to AiZynthFinder’s Monte Carlo Tree
Search (MCTS) on a small benchmark consisting of cu-
rated and complex molecules, covering many reactions
encountered by chemists.

The second section presents the retrosynthesis prob-
lem, the third section presents the AiZynthFinder retro-
synthesis tool, the fourth section describes the search al-
gorithms we compare, the fifth section details the
benchmark used to compare the search algorithms, and
the sixth section gives experimental results.

2 | THE RETROSYNTHESIS
PROBLEM

Before diving into the details, let’s broadly present the
retrosynthesis problem.

* precursors: molecules that form one or multiple prod-
uct molecules when they react together. ZINC [2] is a
database of precursors that are available on the mar-
ket.

* reaction template: a patent predicting the product of
the reaction of one or multiple molecules. USPTO is a
database of reaction template patents.

* One step retrosynthesis: an important part of retrosyn-
thesis is selecting a few promising reaction templates
before applying them as MCTS moves, this step uses a
neural network.

As said before: the retrosynthetic analysis of a mole-
cule is trying to find a sequence of reactions from a
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given molecule that leads to available precursors. It is a
decision problem.

We start from the one molecule we want to find a
synthetic route for and decompose it into precursors,
available in the market or not. Then we recursively de-
compose the precursors according to a reaction template.
Each time a reaction is applied, this gives us another
state of the search, composed of different molecules (as
many or more). The goal is to find a sequence of reaction
templates (a retrosynthetic route) that leads to a state of
the search uniquely composed of molecules/precursors
available on the market.

Figure 1 represents a retrosynthetic route for mole-
cule A0 (on the right) as displayed in AiZynthFinder’s
UI, each green framed molecule is a precursor available
in ZINC, each orange framed one is a molecule that isn’t
available, and each black dot is a reaction. The mole-
cules on each column represent a state of the search
space that was explored, but it does not display all states
explored, only the ones in the route.

3 | AIZYNTHFINDER

AiZynthFinder [3] is a retrosynthesis tool made by As-
traZeneca’s research and development. It has the advant-
age of being open source, understandable, and well de-
scribed.

AiZynthFinder uses a neural network trained on
USPTO, a set containing about 18 million reaction
templates from organic chemistry patents. That neural
network’s role is to select the best reactions given a
molecule we want to synthesize, it also gives a value to
each move (the prior). Due to how the program works,
it’s hard to do without that neural network and the
priors because it would require finding another meth-
od to evaluate the reactions available for a molecule.
Thus, every algorithm presented here get their possi-
ble moves/reactions from the policy neural network.
In this article we use AstraZeneca’s open source pre-
trained network. Training a network to predict more
accurately the reactions for molecule retrosynthesis is

another domain called “one step retrosynthesis”, see
Ref. [1], it is not what we aim to explore here.

AiZynthFinder takes the SMILES: a string repre-
sentation of a molecule, as an input which makes the
first state (which is made of only one molecule). A
state is a set of molecules, from each state the neural
network proposes some reactions producing a mole-
cule from the state from precursors. If a reaction is
played the molecule is removed from the state, and the
precursors are added (a reaction can also be a mod-
ification of the molecule’s shape only, not removing
any atom, we call these “structural moves”). Retrosyn-
thesis often uses and/or trees, here the “and” are com-
bined into a single state as it makes the search more
simple.

We use the ZINC [2] molecule database, a curated
collection of commercially available (in stock) chem-
ical compounds prepared especially for virtual screen-
ing. Any state is evaluated by AiZynthFinder’s base
evaluation function which is 0.95*(fraction_of_mole-
cules_making_the_state_in_stock) + 0.05*(squash _
depth_of_the_reaction_tree). This function tries to
maximize the fraction of molecules in stock among the
ones composing the state. It decides between those
that have the same proportion by adding the squashed
(applying 1 – sigmoid of) depth of the search tree to
favor shorter routes.

We don’t modify it directly in this study but explor-
ing different score functions could be interesting in fu-
ture works.

4 | ALGORITHMS

Our algorithms use common primitives:

* Mstate represents the moves available from state state.
* play(state, m) executes the move m on the state state
and returns a children state of state.

* score(state) evaluates a state with a float value.
* visits(state) returns the number of time the state state
has been visited.

F I G U R E 1 Retrosynthetic route for molecule A0.
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* sumEvals(state) returns the sum of all scores returned
by state and its child states.

* prior(state,m) returns the value of move m when ap-
plied to state according to the neural network (here m
is a chemical reaction patent, and state a set of mole-
cules)

* terminal(state) returns true if no move can be applied:
a certain depth is reached, or we know no reaction for
molecules of the state

4.1 | AizynthFinder’s MCTS

AiZynthFinder uses a MCTS algorithm with priors very
similar to PUCT. PUCT stands for “Prior Upper Con-
fidence bounds applied to Trees”, it is a generalisation of
the UCT algorithm [4] using priors for each state of the
problem (the prior is the policy at the output of the neu-
ral network here), see Ref. [5] for the original version of
PUCT. PUCT has been used in AlphaGo [6] and Alpha
Zero [7]. Just like PUCT, this MCTS algorithm explores
the tree using playouts: it selects the next moves to try
according to their evaluations. It plays the selected
moves until it reaches a state not explored yet or until it
reaches a terminal state. That state is memorized in an
entry that contains the number of visits for that state,

the number of visits for each child state, and the
evaluations for each child state. Then the score of that
newly explored state is retro-propagated to update the
evaluations of the parent states.

AiZynthFinder’s MCTS in Algorithm 1 differs from
standard PUCT in how the bandit value, the value used
in the selection phase of a MCTS, is determined. In all
our experiments the c hyper-parameter is AstraZeneca’s
base one of 1.4. Algorithm 1 is iteratively called until it
reaches the maximum number of iterations, the trans-
position table is conserved between iterations.

When AiZynthFinder’s creators compared it to ASK-
COS, the MIT and DARPA’s retrosynthetic solver [8], it
showed similar performances [3].

4.2 | Nested Monte Carlo Search

Monte Carlo Tree Search (MCTS) has been successfully
applied to many games and problems [9].

Nested Monte Carlo Search (NMCS) [10] is an algo-
rithm that works well for puzzles and optimization prob-
lems. It biases its playouts using lower level playouts.
Online learning of playout strategies combined with
NMCS has given good results on optimization problems
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[11]. Other applications of NMCS include Single Player
General Game Playing [12], Cooperative Pathfinding
[13], Software testing [14], heuristic Model-Checking
[15], the Pancake problem [16], Games [17] and the
RNA inverse folding problem [18].

Online learning of a playout policy in the context of
nested searches has been further developed for puzzles
and optimization with Nested Rollout Policy Adaptation
(NRPA) [19]. NRPA has found new world records in
Morpion Solitaire and crossword puzzles. NRPA has
been applied to multiple problems: the Traveling Sales-
man with Time Windows problem [20,21], 3D Packing
with Object Orientation [22], the physical traveling sales-
man problem [23], the Multiple Sequence Alignment
problem [24] or Logistics [25]. The principle of NRPA is
to adapt the playout policy so as to learn the best se-
quence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree
Search dates back to the general game player Cadia Play-
er and its MAST playout policy [26].

NMCS [10] recursively calls lower level NMCS on
children states of the current state in order to decide
which move to play next, the lowest level of NMCS be-
ing a random playout, selecting uniformly the move to
execute among the possible moves. A heuristic can be
added to the playout choices.

We detail the NMCS in Algorithm 2.
Here we used a heuristic to penalize the structural

moves (when nothing is added or removed from the
molecule, it only changes shape) because these moves
often occupied most of the limited depth of search, even
looping to a previous state sometimes. We use the score
of the children (between 0 and 1), to which we add 1 if
the largest molecule weight in the state is smaller than
its parent largest molecule weight. That value is then
used as the chance to select that move over the sum of
every other move’s values. The modified score function
for the heuristic and the heuristic are described in Algo-
rithm 3.

While we did not use softmax to harden the heuristic,
nor tuned the parameters, that simple heuristic allowed
us to diminish the structural moves problem, giving
them less than half the chance of being selected in play-
outs than before, and led to better results.

4.3 | Greedy Best First Search

GBFS stands for Greedy Best-First Search. It is a simple
algorithm that consists of opening (and removing) the
best node from a list of nodes sorted by their scores,
evaluating all its children and inserting them in the sort-
ed list of nodes, and then repeating the operation by

opening the new best node [27]. The evaluation function
can use playouts to make the algorithm closer to a
Monte Carlo Search algorithm. Like MCTS, that algo-
rithm can lock itself in a local minimum, but is faster
(and less accurate) as it skips the playout and the asso-
ciated calculations between each node discovery. Both
lack forced progress in depth of NMCS. We describe
GBFS in Algorithm 4.

The function insert(open-states, score, new-state) in-
serts new-state in the sorted list open-states given the
score value.

We modified the evaluation function similarly to the
NMCS playout function: if the children’s biggest mole-
cule is smaller than the parent’s then add 1 to the score.
That modification allows to avoid structural moves, mul-
tiplying states with high scores, but also prevents struc-
tural moves that are sometimes necessary to the reso-
lution of a molecule, finding an alternative solution
would greatly help this algorithm.

5 | BENCHMARK

To compare our algorithms to AstraZeneca’s MCTS, we
use a small subset containing 40 SMILES representation
of drugs from the PubChem database (see Table 3) se-
lected by Ref. [28] (molecules ID starting with C) and 20
SMILES representation of molecules selected by Bayer’s
chemists [29] (molecules ID starting with A). The Bay-
er’s chemists molecules contains molecules ranging from
easy ones to hard ones. The 40 molecules selected ran-
domly from PubChem by the authors of the benchmark
were obtained in such a way to cover small to large mol-
ecules [28]. The original goal of this benchmark was to
test the prediction of difficulty of retrosynthesis of these
molecules, thus these 40 molecules feature some of the
hardest to synthesize according to some chemists.

Generally, one step retrosynthesis uses USPTO-50 K
[30] as a benchmark. However here we are not trying to
benchmark the reaction propositions of the neural net-
work used here, but how our algorithm solves the retro-
synthesis problem. Thus our benchmark provides a few
advantages: proposing harder molecules to synthesize,
reducing the benchmark size allowing us to focus more
on each molecule, and giving a fixed benchmark to com-
pare with others.

You can find the SMILES representation of this
benchmark in Table 3 of the appendix.
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6 | RESULTS

These experiments were made on a 3.50GHz intel core
i5-6600 K on Windows 10 with 32 Gb of RAM. We used
the same common parameters for every algorithm:

* Max step for substrates (how many reactions we can
make from a substrate to the target molecule): 15

* Policy cutoff cumulative: 0.995
* Policy cutoff number (maximum number of possible
moves returned on a molecule): 50

* Filter cutoff: 0.05

6.1 | AiZynthFinder’s MCTS

To compare our algorithms, we ran AiZynthFinder
MCTS at least 2 times on each of the 60 molecules of the
benchmark with the base settings, C=1.4 for the ex-
ploration/exploitation constant. Running it a few times

only is not problematic because the MCTS results were
observed to be very stable on the few molecules we ran it
multiple times on. Our goal is not to measure the exact
solving times as they heavily depend on the im-
plementation, the language, and the hardware, but to see
how many molecules of the benchmark a given algo-
rithm can find a synthetic route for. The times specified
are here only to give an idea of the differences in per-
formance between the algorithms.

First, we ran the MCTS (Table 1) with a timeout of 2
minutes and a maximum number of iterations of 100
(“MCTS 2 min 100it”). The molecules identified with a C
in Table 3 were either solved instantly (<200 ms) or not
solved in 2 minutes. On the contrary, the molecules se-
lected by Bayer’s chemists (starting with “A”) took gen-
erally more time to be solved if they were. In addition, a
bigger proportion of molecules from A were solved than
from C, which can be explained by their sizes and the
presence of distinctive atoms (like fluor). We then
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launched the MCTS with a time limit of 20 minutes,
solving a few more molecules, and finally, we launched
a MCTS of 2 h on some of the remaining ones: C2, C35,
C37, C38. Only C37 (*) got solved in 5236.093 seconds, it
was not included in Figure 2.

As you can see on Table 1, increasing the MCTS
search time doesn’t help much, the molecules are either
solved instantaneously (<200 ms) or very quickly. The

instantaneous solving is due to the neural network (one-
step retrosynthesis) which immediately proposes the
right solution in 1 or 2 reactions for small molecules.
This means that the quality of the search algorithm
doesn’t matter on these molecules, and is solved almost
equally as fast with the MCTS, the NMCS, the GBFS,
and even a NMCS without playout. These molecules are
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not useful to our research so we remove them from the
set for further experiments.

6.2 | Other algorithms

Every molecule solved by the MCTS was also solved by
NMCS and all but one by GBFS. Even if they may be
slower than MCTS for easy states (the GBFS has to in-
stance 50 children per opened state even if it uses only
one or two). Thus, we are going to focus on molecules
not solved by AizynthFinder base MCTS and those that
took at least 2 minutes to solve.

For the NMCS, we first perform a level 1 NMCS us-
ing only the 5 best moves from each state, instead of the
50 best given by the Policy cutoff number. If that NMCS
(usually shorter than 1 minute) fails we perform a much
longer level 1 NMCS using all the 50 moves. If even that
fails, we launch the level 2 NMCS. The level 2 NMCS is
very slow but is able to solve molecules unsolved by both
MCTS and GBFS.

The GBFS was only launched once on each molecule
because the algorithm is deterministic, it was launched
with a time limit of 20 minutes, and molecules not
solved by then are considered unsolved. Given enough
time, the GBFS explores the entire tree.

First, we can notice in Figure 2 that NMCS and GBFS
outperform Astrazeneca’s MCTS in the long run, but as
the y-axis starts at 15, they slightly underperform on
molecules solved by 1 or 2 steps, in less than 1 s. These
molecules take about 0.6 s with GBFS and NMCS com-
pared to about 0.1 s for MCTS. This is because they don’t
open first the most promising node according to the neu-
ral network. It is observed that GBFS is better than both
NMCS and MCTS for search times between 2 and 480
seconds. It stops improving after 120 seconds while the
others continue to improve. NMCS finds retrosynthesis
routes slower but can find more of them. MCTS (or any
algorithm opening the reaction greedily according to the
neural network) is better for very short experiments (<
1 s), GBFS is better for medium length experiments (<
60s) and NMCS appears to be better for longer experi-
ments and more complex molecules.

T A B L E 1 AiZynthFinder’s MCTS results.

ID Time (s) ID Time (s) ID Time (s) ID Time (s)

C14 0.060 C13 0.061 C21 0.061 C31 0.063

C34 0.063 C25 0.064 C40 0.066 C26 0.071

C5 0.080 A11 0.120 C8 0.125 C3 0.130

C23 0.149 C1 0.167 A19 0.343 A9 0.743

A14 0.792 A4 0.821 A17 2.564 A1 5.225

A16 12.490 A2 12.948 A18 15.447 C20 22.088

C36 41.294 A7 84.585 C19 310.966 C22 425.647

A15 587.830 A5 1086.547 C2 >7200 C4 >7200

C6 >7200 C7 >7200 C9 >7200 C10 >7200

C11 >7200 C12 >7200 C15 >7200 C16 >7200

C17 >7200 C18 >7200 C24 >7200 C27 >7200

C28 >7200 C29 >7200 C30 >7200 C32 >7200

C33 >7200 C35 >7200 C37* >7200 C38 >7200

C39 >7200 A0 >7200 A3 >7200 A6 >7200

A8 >7200 A10 >7200 A12 >7200 A13 >7200

F I G U R E 2 Distribution of the numbers of molecules solved
with times in seconds.
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On Table 2 we focus our attention on the molecules
that took more than 2 minutes to solve or were not
solved by at least one of the algorithms:

C19, C20, C22, C37, A0, A3, A5, A6, A8, A12, A13
and A15

The results on A8 (*) were obtained by opening the
200 best nodes given by the neural network and not the
50 best, in addition to only searching up to a depth of 5
instead of 15. NMCS and MCTS were unable to solve the
molecule with the same parameters. The reactions re-
quired to solve A8 were not present in the 50 best pro-
posals from the neural network, but in the 200 best. On
the other hand, a top 5 level 1 NMCS was enough to
solve 30 of the 60 molecules, meaning the NN was very
accurate in these cases. It emphasizes how much results
depend on the accuracy of the NN. Again, the one we
used was trained by AiZynthFinder’s team on the public
USPTO reaction dataset, which does not feature many
reactions present in licensed datasets such as Reaxys or
Pistachio [31].

Our GBFS was unable to solve C20, despite being
solved by the MCTS and the NMCS, we think it was be-
cause our search heuristic favors the non structural
moves when a structural move is required here to cut
the carbon cycle. Overall, molecules with long carbon
cycles posed problems to be solved to all the algorithms
and C20 was the smallest and most simple of them from
the benchmark. It is what AstraZeneca is focusing on in
the latest updates for AiZynthFinder (we used an earlier
version from 2022 to conduct these experiments).

Like with MCTS, running the other algorithms lon-
ger did not yield much improvement. This is because the
neural network does not always propose the best re-
actions. Obtaining a better network, possibly trained on

a more complete dataset could improve our results
greatly.

To put our results in perspective, out of the 60 mole-
cules of our benchmark we managed to solve 35 mole-
cules with GBFS, and 36 with NMCS [29], while man-
aged to solve 38 molecules with a MCTS and 41 with a
DFPN (Depth-First Proof Number search, Aizynth-
Finder’s DFPN does not yield such results). We hope we
will be able to try with a more complete dataset and the
according NN in the future. Bigger molecules would still
be a challenge given all the reactions and subtrees they
offer, but we think it could help with the few unsolved
small molecules: C4, C6, C7, C10, C12, C35, C38, and
A10.

7 | CONCLUSION

While MCTS solves 31 molecules out of 60 from this
benchmark, GBFS solves 35 in a reasonable time and
NMCS solves 36. We showed that GBFS and NMCS
could provide satisfying performance improvements, es-
pecially since GBFS and NMCS are much simpler and
don’t use the neural network as a search policy beyond
the reaction proposition, unlike MCTS. We believe that a
more accurate neural network trained on a bigger data-
set, and a more complete template set would improve
the performances.

8 | FUTURE WORKS

Retrosynthesis is a vast topic, and much remains to be
done, we only scratched the surface of AiZynthFinder
here. It would be interesting to experiment on more al-
gorithms, including the canonical PUCT and apply the
prior to the algorithms we used here, use other score
functions or train and use another neural network. This
research would require a lot of time, and we can only
encourage other computer scientists to try their algo-
rithms and score functions on AiZynthFinder.

9 | APPENDIX

The appendix can be found in Table 3 below.
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T A B L E 2 Comparison of algorithms.

Molecule MCTS GBFS NMCS

C19 310.966 3.765 81.267

C20 119.230 X 46.166

C22 425.647 50.800 4.255

C37 5236.093 2.836 8.919

A0 X 4.569 84.582

A3 X 2.075 176.445

A5 1086.547 2.145 60.000

A6 X 29.604 1075.222

A8 X 95.365* X

A12 X 47.78 431.095

A13 X X 518.727

A15 587.830 3.587 37.178
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T A B L E 3 Benchmark

Mol SMILES

C1 COc4ccc3nc(NC(=O)CSc2nnc(c1ccccc1C)[nH]2)sc3c4

C2 OC8Cc7c(O)c(C2C(O)C(c1ccc(O)c(O)c1)Oc3cc(O)ccc23)c(O) c(C5C(O)C(c4ccc(O)c(O)c4)Oc6cc(O)ccc56)c7OC8c9ccc(O)c(O)c9

C3 NC(=O)Nc1nsnc1C(=O)Nc2ccccc2

C4 C=CCn5c(=O)[nH]c(=O)c(=C4CC(c2ccc1OCOc1c2)N(c3ccccc3)N4)c5=O

C5 Oc1c(Cl)cc(Cl)cc1CNc2cccc3cn[nH]c23

C6 CC(C)C(C)C=CC(C)C1CCC3C1(C)CCC4C2(C)CCC(O)CC25CCC34OO5

C7 CC45CC(O)C1C(CC=C2CC3(CCC12)OCCO3)C4CCC56OCCO6

C8 CCc2ccc(c1ccccc1)cc2

C9 CC5C4C(CC3C2CC=C1CC(OC(C)=O)C(O)C(O)C1(C)C2CC(O)C34C)OC56CCC(=C)CO6

C10 CSc2ncnc3cn(C1OC(CO)C(O)C1O)nc23

C11 CCc1c(C)c2cc5nc(nc4[nH]c(cc3nc(cc1[nH]2)C(=O)C3(C)CC)c(CCC(=O)OC)c4C)C(C)(O)C5(O)CCC(=O)OC

C12 CN(COC(C)=O)c1nc(N(C)COC(C)=O)nc(N(C)COC(C)=O)n1

C13 CSc2ccc(OCC(=O)Nc1ccc(C(C)C)cc1)cc2

C14 Cc2ccc(C(=O)Nc1ccccc1)cc2

C15 CC5CC(C)C(O)(CC4CC3OC2(CCC1(OC(C=CCCC(O)=O)CC=C1)O2)C(C)CC3O4)OC5C(Br)=C

C16 COc8ccc(C27C(CC1C5C(CC=C1C2c3cc(OC)ccc3O)C(=O) N(c4cccc(C(O)=O)c4)C5=O)C(=O)N(Nc6ccc(Cl)cc6Cl)C7=O)cc8

C17 CC=CC(O)CC=CCC(C)C(O)CC(=O)NCC(O)C(C)C(=O)NCCCC2OC1(CCCC(CCC(CC=C(C)C(C)O)O1)CCC2C

C18 CCC(C)=CC(=O)OC1C(C)CC3OC1(O)C(O)C2(C)CCC(O2)C(C)(C)C=CC(C)C3=O

C19 CCC(CO)NC(=O)c2cccc(S(=O)(=O)N1CCCCCC1)c2

C20 CCCCCC1OC(=O)CCCCCCCCC=CC1=O

C21 COc1ccc(Cl)cc1

C22 CC(C)(C)C(Br)C(=O)NC(C)(C)C1CCC(C)(NC(=O)C(Br)C(C)(C)C)CC1

C23 COc2cc(CNc1ccccc1)ccc2OCC(=O)Nc3ccc(Cl)cc3

C24 COC4C=C(C)CC(C=CC=CC#CC1CC1Cl)OC(=O)CC3(O)CC(OC2OC(C)C(O)C(C)(O)C2OC)C(C)C(O3)C4C

C25 CCc2ccc(OC(=O)c1ccccc1Cl)cc2

C26 COc1ccccc1c2ccccc2

C27 CCCC(NC(=O)C1CC2CN1C(=O)C(C(C)(C)C)NC(=O)Cc3cccc (OCCCO2)c3)C(=O)C(=O)NCC(=O)NC(C(O)=O)c4ccc(NS-
(N)(=O)=O)cc4

C28 COC4C(O)C(C)OC(OCC3C=CC=CC(=O)C(C)CC(C) C(OC2OC(C)CC1(OC(=O)OC1C)C2O)C(C)C=CC(=O)OC3C)C4OC

C29 CC(C)(C)c4ccc(C(=O)Nc3nc2C(CC(=O)NCC#C)C1(C)CCC(O)C(C)(CO)C1Cc2s3)cc4

C30 CCC7(C4OC(C3OC2(COC(c1ccc(OC)cc1)O2)C(C)CC3C)CC4C) CCC(C6(C)CCC5(CC(OCC=C)C(C)C(C(C)C(OC)C(C)C(O)=O)-
O5)O6)O7

C31 O=C(OCc1ccccc1)c2ccccc2

C32 CC(C)CC(NC(=O)C(CC(=O)NC2OC(CO)C(OC1OC(CO)C(O)C(O)
C1NC(C)=O)C(O)C2NC(C)=O)NC(=O)c3ccccc3)C(=O)NC(C(C)O)C(N)=O

C33 CCCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)CC(N(C)C)C1O)C(C) (OCC=Cc3cnc2ccc(OC)cc2c3)CC(C)C4=NCCN6C(C4C)-
C5(C)OC6=O

C34 COC(=O)c1ccccc1NC(=O)CC(c2ccccc2)c3ccccc3

C35 Cc4onc5c1ncc(Cl)cc1n(C3CCCC(CNC(=O)OCc2ccccc2)C3)c(=O)c45

C36 CC(C)OCCCNC(=O)c3cc2c(=O)n(C)c1ccccc1c2n3C

C37 COC(=O)N4CCCC(N3CCC(n1c(=O)n(S(C)(=O)=O)c2ccccc12)CC3)C4

C38 Cc5c(C=NN3C(=O)C2C1CC(C=C1)C2C3=O)c4ccccc4n5Cc6ccc(N(=O)=O)cc6

C39 CCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)CC(N(C)C)C1O)C(C) (OCC#Cc4cc(c3ccc2ccccc2n3)no4)CC(C)C(=O)C(C)C6NC-
(=O)OC56C

C40 CC(=O)Nc1ccccc1NC(=O)COc2ccccc2

A0 COC(=O)c1cccc2c(C(=O)OC(C)C)c(nn12)c3cccc(Cl)c3
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T A B L E 3 (Continued)

Mol SMILES

A1 CCOC(=O)C1=C(C)N(C)C(=O)NC1c2ccncc2

A2 Cn1c(nc2ccccc12)c3ncc(cc3N4CCCC4=O)c5ccccc5

A3 CC1(COc2ccccc2)CCN1C(=O)c3ccccc3

A4 Cc1cc(nn1CC(=O)N2CCC(CC2)c3nc(cs3)C4=NOC(C4)c5ccccc5OCC#C)C(F)(F)F

A5 CCC1(CC1)c2ccc(C)cc2CN(C3CC3)C(=O)c4c(F)n(C)nc4C(F)F

A6 CC1CCC(CN1C(=O)c2ccnc(NS(=O)(=O)c3cccc(Cl)c3)n2)c4cncc(c4)c5cnn(c5)C(=O)C

A7 Cc1cccc(C)c1c2csc(n2)C(=O)NCCC3=CC(=CC(=O)N3)Oc4ccccc4Cl

A8 COc1ccc(cc1)N2CC(CC2C(=O)NCc3ccc4CCCCc4n3)NCC(F)(F)F

A9 FC(F)(F)Oc1cc(Cl)cc(c1)n2cnc3ccc(cc23)S(=O)(=O)NC4COC4

A10 COc1cc2c3CC(NC(=O)C)C(Oc3ccc2cc1C#N)c4ccc(F)c(F)c4

A11 FC(F)(F)c1ccc(Nc2ncc(C(=O)NCC3CCC(F)(F)CC3)c(n2)C(F)(F)F)c(Cl)c1

A12 Fc1cnc(Nc2ccc(cc2)C(=O)N3CCN(CC3)C4COC4)nc1c5cnc(n5C6CCCCC6)C(F)(F)F

A13 Cc1ccc(C2=NC(O)C(=O)Nc3cc(C)c(Cl)cc23)c(Cl)c1

A14 CC1(C)CN(C(C(=O)NC2CCCCC2)c3cccc(c3)C(F)(F)F)C(=O)C1

A15 CC(=O)Nc1ccc(cc1)S(=O)(=O)c2ccc(cc2)C3CCN(C3)c4ccccc4

A16 Cc1cnc(C(=O)O)c(OC(F)F)c1

A17 FC(F)(F)c1nnc2CNCCn12

A18 CNCCC(Oc1cccc2ncncc12)c3cncs3

A19 FC(F)(F)c1nnc2CN(CCn12)c3cccc(I)c3

10 of 11

Wiley VCH Mittwoch, 10.07.2024

2407 / 349564 [S. 372/373] 1

 18681751, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

inf.202300259 by C
ochrane France, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

118



20. T. Cazenave, F. Teytaud, Application of the Nested Rollout
Policy Adaptation Algorithm to the Traveling Salesman Prob-
lem with Time Windows. In: Learning and Intelligent Opti-
mization - 6th International Conference, LION 6, 2012, p. 42–
54.

21. S. Edelkamp, M. Gath, T. Cazenave, F. Teytaud, Algorithm
and knowledge engineering for the TSPTW problem. In: Com-
putational Intelligence in Scheduling (SCIS), 2013 IEEE Sym-
posium on IEEE, 2013, p. 44–51.

22. S. Edelkamp, M. Gath, M. Rohde, Monte-Carlo Tree Search for
3D Packing with Object Orientation. In: KI 2014: Advances in
Artificial Intelligence Springer International Publishing, 2014,
p. 285–296.

23. S. Edelkamp, C. Greulich, Solving physical traveling salesman
problems with policy adaptation. In: Computational Intelli-
gence and Games (CIG), 2014 IEEE Conference on IEEE,
2014, p. 1–8.

24. S. Edelkamp, Z. Tang, Monte-Carlo Tree Search for the Multi-
ple Sequence Alignment Problem. In: Proceedings of the
Eighth Annual Symposium on Combinatorial Search, SOCS
2015 AAAI Press, 2015, p. 9–17.

25. S. Edelkamp, M. Gath, C. Greulich, M. Humann, O. Herzog,
M. Lawo, Monte-Carlo Tree Search for Logistics. In: Commer-
cial Transport Springer International Publishing, 2016, p. 427–
440.

26. H. Finnsson, Y. Björnsson, Simulation-Based Approach to
General Game Playing. In: Aaai, vol. 8, 2008, p. 259–264.

27. J. E. Doran, D. Michie, Experiments with the graph traverser
program. Proceedings of the Royal Society of London Series A
Mathematical and Physical Sciences, 1966, 294, 235–259.

28. P. Ertl, A. Schuffenhauer, J Cheminform 2009, 1, 8.
29. C. Franz, G. Mogk, T. Mrziglod, K. Schewior, Completeness

and Diversity in Depth-First Proof-Number Search with Appli-
cations to Retrosynthesis. In: Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence Vien-
na, Austria: International Joint Conferences on Artificial In-
telligence Organization, 2022, p. 4747–4753. https://www.ijcai.
org/proceedings/2022/658.

30. D. M. Lowe, Extraction of chemical structures and reactions
from the literature. Thesis, University of Cambridge, 2012.

31. A. Thakkar, T. Kogej, J. L. Reymond, O. Engkvist, E. J. Bjer-
rum, Chem. Sci. 2020, 11, 154–168.

How to cite this article: M. Roucairol, T.
Cazenave, Molecular Informatics 2024, 43,
e202300259. https://doi.org/10.1002/
minf.202300259

11 of 11

Wiley VCH Mittwoch, 10.07.2024

2407 / 349564 [S. 373/373] 1

 18681751, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

inf.202300259 by C
ochrane France, W

iley O
nline L

ibrary on [21/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

119



Application of Metric Transformation in

One-Step Retrosynthesis

Ngoc Trinh Hung Nguyen, Roucairol Milo, Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL

Abstract

In this article, we investigate the impact of Deep Metric Learning and
Transformer architecture on predicting the retrosynthesis of Simplified
Molecular Input Line Entry System (SMILES) chemical compounds.

We demonstrate that combining the Attention mechanism with Proxy
Anchor Loss is effective for classification tasks due to its strengths in cap-
turing both local and global contexts and differentiating between various
classes.

Our approach, which requires no prior chemical knowledge, achieves
promising results on the USPTO-FULL dataset, with accuracies of 53.4%,
83.8%, 90.6%, and 97.5% for top-1, top-5, top-10, and top-50 predictions,
respectively.

We further validate the practical application of our approach by cor-
rectly predicting the retrosynthesis pathways for 63 out of 100 randomly
selected compounds from the ChEMBL database and for 39 out of 60
compounds selected by Bayer’s chemists and from PubChem.

1 INTRODUCTION

Designing molecules and materials with desired properties is a practical goal of
chemistry and materials science. Chemoinformatics involves the use of data and
computational methods to investigate and comprehend the connections between
molecular structures and their properties, paving the way for the discovery of
novel functional molecules.

Chemists prioritize designing synthesis pathways that generate target molecules
through a sequence of chemical reactions. A common approach, known as
retrosynthetic analysis, involves deconstructing target molecules into precursor
molecules and then further deconstructing these precursors until all are available
in the stock database for synthesis.

Retrosynthetic planning involves two primary tasks: single-step retrosynthe-
sis prediction and multi-step retrosynthetic planning.
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Single-step retrosynthesis is treated as a prediction problem, where the input
is a given product molecule and the output is the predicted set of reactant
molecules.

Multi-step retrosynthesis planning aims at producing a relizable synthetic
route for a specific compound by breaking it down into simpler intermediates or
precursors. This process is carried out through retrosynthetic analysis, where
the desired compound is iteratively deconstructed until one of the stopping
criteria is met: identifying known or purchasable building blocks, reaching a
time limit, reaching a maximum tree depth, or fulfilling other predefined criteria
([25]). Multi-step retrosynthesis planning is approached as a search problem,
guided by solutions derived from single-step retrosynthesis.

There are two main approaches to the one-step retrosynthesis problem:
template-based methods and template-free methods.

Template-based methods mimic chemists’ reasoning by using a pool of re-
action templates to identify potential reaction centers. The goal is to find the
appropriate template that allows the deconstruction of product molecules into
their reactant molecules. Template-based methods are a classical approach,
where the one-step retrosynthesis problem is considered a classification prob-
lem. This approach is reliable since it uses experts’ knowledge about chemical
reactions and mimics the way chemists work, which makes it easy to use for
experts ([22]). This is also the approach for our experiments in this paper.

Template-free methods, on the other hand, are considered sequence-to-sequence
learning processes, where the input consists of string-like representations of
chemical products (SMILES), and the output corresponds to the SMILES strings
of reactants ([22]). The most common models used in this approach are Transformer-
based ([33]).

2 METHODS AND DATASETS

2.1 Dataset

2.1.1 USPTO, AiZynthFinder, AiZynthTrain, Reaction Utils and
RXNMapper

USPTO-FULL is a dataset extracted from chemical reactions in US patents
(1976-Sep 2016) ([19]). It consists of approximately 3.5 million reactions with
almost 1.2 million reaction templates.

Several free and open-source software tools are available for downloading
and preprocessing the USPTO-FULL reaction dataset. We utilize AiZynthTrain
(AZT) ([14]), Reaction Utils ([17]), and RXNMapper ([27]) to prepare and train
our one-step retrosynthesis model due to their robustness and comprehensive
end-to-end pipelines.

RXNMapper and Reaction Utils are used for downloading, preparing, and
performing atom mapping on the USPTO dataset. This is followed by AiZyn-
thTrain, which provides a collection of routines, configurations, and pipelines

121



for transforming the atom-mapped dataset into molecular fingerprints1, split-
ting the data, and training one-step retrosynthesis prediction models. These
pipelines also generate human-readable reports, covering all stages from data
preprocessing to the training process.

On the other hand, AiZynthFinder (AZF) ([25]) is a free and open-source
software for multi-step retrosynthetic planning. Its primary search algorithm
is based on Monte Carlo Tree Search (MCTS) ([3]), which recursively breaks
down a target molecule into purchasable precursors. We use AiZynthFinder
and its MCTS to conduct our experiments on multi-step retrosynthesis tasks.
Additionally, we incorporate Nested Monte Carlo Search (NMCS) ([4]), which
has already demonstrated promising results in multi-step retrosynthesis ([24]),
in order to gain a deeper understanding of the interaction between one-step ret-
rosynthesis models and search algorithms in multi-step retrosynthesis problems.

2.1.2 Dataset

Our primary objective is to enhance the performance of our one-step retrosyn-
thesis model to subsequently improve multi-step retrosynthesis planning with
AiZynthFinder ([25]). This objective builds on the work of comparing search
algorithms in multi-step retrosynthesis ([24]), including Nested Monte Carlo
Search ([4]) and Greedy Best First Search ([10]). To achieve this, we aim to
design a robust one-step retrosynthesis architecture that can deliver satisfactory
performance within defined time constraints for inference, in order to efficiently
support multi-step retrosynthesis planning.

Therefore, we use the USPTO-FULL dataset (as opposed to the USPTO-50k
dataset ([26]) used in other studies). This dataset was downloaded and prepared
using RXNUtils and RXNMapper, and subsequently filtered with AiZynthTrain.
To ensure a fair comparison with the AiZynthTrain base model and its associ-
ated experiments, we applied all default filters provided by AiZynthTrain ([14]),
including the criterion to retain only templates with more than N = 3 example
reactions in the USPTO-FULL dataset.

After filtering, the dataset is divided into two subsets: 812,948 samples as-
sociated with 42,134 unique reaction templates for the one-step retrosynthesis
model, and a ”ring-breaker” dataset containing 57,227 ring reactions with 5,225
reaction templates, which is used to train the ring-breaker model ([32]). The
one-step retrosynthesis dataset is split into 658,907/97,776/56,265 for train-
ing/validation/testing. The ring-breaker dataset is split as 48,800/4,044/4,383
for training/validation/testing.

AiZynthTrain also transformed each molecule into its molecular fingerprint,
which serves as the input for the models. The associated labels are the reaction
templates that need to be applied to deconstruct the molecules into smaller
reactants.

1A numerical representation of the molecule, mapping it to a sparse discrete representa-
tion space. Molecular fingerprints provide a computationally efficient and consistent way to
represent the chemical properties (structural, physicochemical, etc.) of large-scale chemical
datasets ([34]).
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A key feature of the USPTO-FULL dataset is the large number of reaction
templates (or classes) and the significant imbalance between them, with sample
counts ranging from 1 for the smallest templates to nearly 8,000 for the largest.
This imbalance makes training more difficult, especially for underrepresented
classes.

For a clearer assessment with smaller datasets, we also performed experi-
ments on the USPTO-50k dataset ([26]). After AiZynthTrain filtering, we ob-
tained 27,704/4,580/2,376 samples for training/validation/testing, along with a
negligible ring-breaker dataset. Like USPTO-FULL, the filtered USPTO-50k
is heavily imbalanced, with nearly half the templates having just 1-3 training
samples, making it prone to overfitting.

2.2 Methods

2.2.1 Backbone Model

Deep Metric Learning and Proxy Anchor Loss
Despite their extensive use in supervised deep-learning applications, includ-

ing one-step retrosynthesis problems, cross-entropy-based loss functions are of-
ten less effective when there is significant intra-class variance and minimal inter-
class variance within the input data distribution.

Deep Metric Learning aims to measure the similarity between data samples
by learning a representation function that maps these samples into an embed-
ding space, where samples from the same class are closely grouped together.

The quality of an input’s representation largely depends on the loss functions
used to train the networks. These loss functions are typically categorized into
two classes: pair-based and proxy-based.

Pair-based losses are derived from pairwise distances between data points in
the embedding space. A well-known example is Contrastive Loss ([2]), which
aims to minimize the distance between pairs of data points with identical class
labels and maximize the distance between those with different labels. These
losses provide rich data-to-data information by directly comparing data points.
However, this approach results in extremely high training complexity and re-
quires a specific arrangement of data to generate both negative and positive
pairs.

Proxy-based losses address this issue by introducing proxies as representa-
tives, which are learned as part of the network parameters. Each data point is
associated with proxies, typically one per class, enabling the model to leverage
data-to-proxy relationships. In essence, a proxy can be thought of as a learn-
able centroid for each class. The model’s task is to adjust the representations of
both samples and proxies so that each sample is close to its corresponding proxy,
each proxy is close to its respective samples, and optionally, the distance be-
tween samples of different classes is maximized. Examples of such losses include
Proxy NCA ([23]) and Proxy Anchor Loss ([18]).

We use Proxy Anchor Loss to train our backbone model because it captures
both data-to-proxy and data-to-data relationships by taking each proxy as an
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anchor and associating it with the entire data in a batch. The loss is given by
([18])

L(X) =
1

|P+|
∑
p∈P+

log

1 +
∑

x∈X+
p

e−α(s(x,p)−δ)


+

1

|P |
∑
p∈P

log

1 +
∑

x∈X−
p

eα(s(x,p)+δ)

 (1)

In equation 1, δ > 0 is a margin, α > 0 is a scaling factor, P indicates the set
of all proxies, and P+ denotes the set of positive proxies of data in the batch.
Also, for each proxy p, a batch of embedding vectors X is divided into two sets:
X+, the set of positive embedding vectors of p, and X− = X −X+ ([18]).

One issue we observed with Proxy Anchor Loss during training is the poten-
tial for gradient instability due to the large number of unique reaction templates.
Therefore, careful selection of hyperparameters, particularly α, is crucial. We
experimented with α values ranging from 1 to 128. With small α values such
as 1, 2, and 4, the interaction between samples and proxies was too weak, while
larger values such as 64 and 96 led to overly aggressive interactions, causing
gradient instability. We found that α = 32 yielded optimal results, avoiding
gradient issues, consistent with the findings in the Proxy Anchor Loss paper
([18]).

Attention and Positional Embedding
Transformers ([33]) represent the State-of-the-Art in Natural Language Pro-

cessing due to their ability to capture both local and global context. The Trans-
former architecture has also achieved notable success in Computer Vision, as
demonstrated by the Vision Transformer (ViT) ([11]).

Drawing inspiration from both the original Transformer and the Vision
Transformer, we conceptualize a chemical compound as a sentence composed
of words. Consequently, we transform the input into vectors of consistent size
to apply multi-head self-attention, the mechanism used in Transformer model

We treat a molecule as a sentence, where the position of each ’word’ is
crucial for the model’s effective interpretation. Thus, we incorporate Positional
Embedding before applying the attention mechanism.

Metric Transform
We refer to our backbone model, which incorporates Positional Embedding,

the Attention mechanism of the Transformer, and Proxy Anchor loss, as the
Metric Transform (see Fig 2). The output of the final Attention layer is passed
through a Global Max-Pooling 1D layer to capture the most significant informa-
tion about the input molecule. The Max-Pooling operation reduces the spatial
dimensions of the feature maps by selecting the maximum value within a spec-
ified spatial window, thereby helping to mitigate overfitting. Additionally, one
or more fully connected layers can be added after Max-Pooling to improve the
model’s ability to distinguish between molecules and facilitate fine-tuning.
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This model is then trained using Proxy Anchor Loss to enhance its ability
to distinguish between samples from the same class and samples from different
classes.

Typically, proxies are initialized and trained with a high learning rate on a
pre-trained model, such as ResNet ([15]) or ViT. This approach allows the prox-
ies to quickly adapt and subsequently refine the model parameters to enhance
performance. In contrast, our approach involves training the backbone model
from scratch. Consequently, we initialize and train the proxies using the same
learning rate as the backbone model to encourage the model’s parameters to be
optimized at a similar pace to the proxies, instead of letting the proxies take
the lead as in the original implementations. We also experimented with using
a higher learning rate for the proxies and, conversely, a lower learning rate for
the proxies. In both cases, the results were less attractive2 compared to using
the same learning rate for both the proxies and the model’s parameters.

2.2.2 Subclass Mapping and Fine-Tuning Process

Following a traditional fine-tuning approach, we enhanced our backbone model
by adding one or more fully connected layers. This resulted in a 3-4% im-
provement in performance over the AiZynthTrain base model, demonstrating
satisfactory progress.

Unlike moderate-sized classes, which tend to form well-defined clusters dur-
ing the representation learning process, samples from the major classes exhibit
only localized clustering. While our approach improves the model’s predic-
tive performance compared to the base model, the inherent bias of deep neural
networks toward the major classes restricts the model’s ability to generalize
effectively to rare templates.

We address this problem by performing ”subclass mapping” (see Fig 1) for
all major classes using k-means clustering ([20]). Instead of treating a given
major class as a single entity, we divide it into smaller subclasses, such that
samples within each subclass are closer to one another. This approach has two
main benefits:

1. Reduces the imbalance between major and minor classes.

2. Makes it easier for the model to distinguish similarities and differences by
using subclass labels instead of whole-class labels.

2By ”attractive,” we refer to the capability of distinguishing samples from minor classes,
as the major classes can be handled by a solution we propose below.
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Figure 1: Schematic diagram of the subclass mapping process. Al-
though the green points are locally clustered, their centroid is close
to samples from minor classes, which makes distinguishing between
classes less effective. We use the subclass mapping to address this
issue.

After this step, the number of classes will increase compared to the original
dataset. Despite the greater number of classes, this approach helps the model
fine-tune more effectively because samples within each subclass are now closer to
each other through their local cluster than they were within the original major
class. Additionally, the class imbalance will be less severe.

We also define a custom layer that remaps subclasses back to their original
classes, enabling reaction template predictions for a given molecule. In the case
of a reaction template (class) being split into two or more subclasses, the remap-
ping layer will use predefined criteria to determine the probability of predicting
the original class.

Next, we fine-tune our backbone model by adding a fully connected layer
to perform the classification task using traditional cross-entropy loss with sub-
classes and incorporate the remapping layer to remap the subclasses back to
their original classes (see Fig 3).

Figure 2: Diagram of the Metric
Transform.

Figure 3: Diagram of the fine-
tuning process.
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3 RESULTS AND DISCUSSION

3.1 One-step Retro-Synthesis

As described above, our primary objective is to develop a robust model that
can be fine-tuned for downstream tasks and applied to other template-based
architectures to enhance their performance. Therefore, we trained both our
one-step and ring-breaker models using datasets derived from the USPTO-FULL
dataset. Each model was trained solely on its training set, with its validation
set used for model selection and early stopping criteria..

The entire training process, which included training the backbone model,
subclass mapping, and fine-tuning on USPTO-FULL, required only a few hours
in total on a 3.30 GHz AMD Ryzen 5 6600H Linux machine with 16 GB of
RAM and a NVIDIA GeForce RTX 3050 4 GB GPU.

Comparison between AiZynthTrain base model and Metric Trans-
form

We first compare our architecture with the AiZynthTrain base model for
one-step retrosynthesis and the ring-breaker model. It is important to note that
the ring-breaker model is trained similarly to the one-step model but on the
ring-breaker dataset, a derived dataset that contains only ring reactions.

Model Top-1 Accuracy Top-5 Accuracy Top-10 Accuracy Top-50 Accuracy
AZT 51.1/52.4 77.3/81.8 83.7/87.9 92/95.1

MetricTransform (Ours)a 54.2/51.9 81.4/83.2 87.3/90.4 95/97.3
MetricTransform (Ours) 55/53.4 81.9/83.8 88.1/90.6 95.1/97.5

AZT ring-breaker 70/70.8 90.4/91 93.6/94 97.7/98.2
MetricTransform ring-breaker (Ours)a 74.3/74.5 94.9/95.2 97.5/97.9 99.4/99.5
MetricTransform ring-breaker (Ours) 74.3/74.4 95/95.4 97.5/97.7 99.5/99.5
a Results without the subclass mapping process.

Table 1: Top-k accuracy of the AiZynthTrain base model and Metric Transform
on the USPTO-FULL dataset filtered by AiZynthTrain. Accuracies are reported
as the left side of the slash for the validation set, and the right side for the test
set.

Comparison of Models Based on Predictive Capacity and Inference
Speed

State-of-the-Art models, such as GLN ([8]) and the Augmented Transformer
([31]), utilize the curated USPTO-FULL dataset ([8]). This curated version
of the original USPTO-FULL dataset ([19]) was created by removing dupli-
cate reactions and those with incorrect atom mappings, resulting in train-
ing/validation/testing sets with 800k/100k/100k samples, respectively.

On the other hand, using the default filtering and splitting of AiZynthTrain,
we have dataset of 707,707/101,820/60,648 samples for training/validation/testing.
These datasets are split for one-step modeling and ring-breaker modeling. To
enable a fair comparison with other models on the USPTO-FULL benchmark,
we rescaled our model’s performance by applying the following rules:
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• Because our models are trained solely on the training set, we rescale accu-
racies as the average of weighted accuracies from both the one-step model
and the ring-breaker model, on both the validation and testing sets.

• Since the ratio between the training set and the validation/testing set is
4.36 (707,707:162,468) instead of the typical 4.0 (696,140:174,035), as used
in other papers, this discrepancy implies that some samples should belong
to the validation/testing set rather than the training set. Therefore, we
consider these 11,567 samples as failed predictions, even though this may
not necessarily reflect the actual training and inference process.

• Additionally, we have 25,965 fewer samples3 compared to the valida-
tion/testing sets used in the curated USPTO-FULL dataset ([8]). This
shortfall includes samples that belong to rare reaction templates, which
only appear once or twice in the entire dataset and have been filtered out
by AiZynthTrain. Consequently, we assume failure to predict these sam-
ples, similar to the approach used in the Augmented Transformer ([31]).

Furthermore, in the retrosynthesis problem, the primary function of a single-
step model is to serve as an environment during the multi-step search process.
Therefore, inference time is a crucial metric for evaluating these models, in ad-
dition to predictive performance. Faster single-step models can enable more
extensive searches within limited time and computational resources ([21]). De-
spite its importance, inference speed is often overlooked in existing studies. Our
work addresses this gap by evaluating models based on their inference time and
comparing them with other available models, offering a comprehensive view of
inference speed in one-step retrosynthesis.

We present the following comparison of the performances in both predictive
capacity and inference speed of models on the USPTO-FULL dataset in Table
2 and 3.

Model Top-1 Accuracy Top-10 Accuracy
Retrosima 32.8 56.1
Neuralsyma 35.8 60.8

GLNa 39.3 63.7
Augmented Transformerb 44.4 70.4

AZTc 42.7 69.6
MetricTransform (Ours)c 45.1 72.7
a Results for Retrosim ([6]), Neuralsym ([28]), and GLN as reported
by [9].

b Results reported by [31] by assuming that Augmented Transformer
failed for all 4% of excluded reactions from the curated USPTO-
FULL dataset.

c Recalculated results on the filtered USPTO-FULL dataset by AiZyn-
thTrain

Table 2: Rescaled Top-k Accuracy of
Various Models on the USPTO-FULL
Dataset

Model Inference Speed (sec/sample)
GLNa 10−1

Transformera 10−1

MHNreacta 10−3

NeuralSyma 10−3

AZTb 10−4

MetricTransform (Ours)b 10−4

a Results for GLN, Transformer, MHNreact, and NeuralSym
as reported by [29] using Nvidia GPUs (Titan V 12GB, P40
24 GB, V100 16GB, A100 20GB MIG).

b Average inference time obtained by evaluating on the whole
testing set consisting of 56,265 samples with batch size = 1,
using an NVIDIA GeForce RTX 3050 4 GB GPU.

Table 3: Inference speeds of various
models, expressed in terms of base-10
exponents

3This shortfall is calculated based on the assumption that the total number of samples in
the validation/testing sets is 174,035, with 11,567 samples immediately considered as failed
predictions because they are actually part of the training set.
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Coverage
USPTO datasets have a key characteristic: some reaction rules are absent

from the training set. Therefore, the percentage of coverage is often considered
the theoretical upper limit for model performance. To better assess predictive
capacity, we re-evaluate model performance based on the total coverage of re-
action templates, providing a clearer view of each model’s learning capabilities.

Model Coverage Top-1 Accuracy Top-5 Accuracy Top-10 Accuracy Top-50 Accuracy
GLNa 93.3 56.3 81.0 89.7 99.0
GLNbb 93.3 68.8 91.3 96.5 99.9

LocalRetroa 98.1 54.4 87.6 94.2 99.6
LocalRetrobb 98.1 65.1 94.2 98.2 99.8
LocalRetroc 97.0 55.8 81.8 87.0 93.2

AZTd 100 52.6 79.6 85.7 93.4
MetricTransform (Ours)d 100 55.5 83.2 89.5 96.1
a Results on USPTO-50k; reaction class unknown.
b Results on USPTO-50k; reaction class known.
c Results on USPTO-MIT ([16]).
d Results on USPTO-FULL.

Table 4: Rescaled top-k Accuracy of Various Models based on template coverage

USPTO-50k
We conducted quick experiments with the filtered USPTO-50k dataset and

compared the AiZynthTrain base model with our approach. Although the
dataset is less imbalanced than USPTO-FULL, many templates with only 1-3
samples might complicate the training process and increase the risk of over-
fitting. Initially, we used Attention layers but found that they caused severe
overfitting. Therefore, we replaced them with a fully connected layer in the
Metric Transform model and then followed the same process as for USPTO-
FULL. Due to the lesser imbalance, models with and without subclass mapping
showed no significant performance difference. The results were obtained without
knowledge of reaction type.

Model Top-1 Accuracy Top-5 Accuracy Top-10 Accuracy Top-50 Accuracy
O-GNN 54.1 86.0 92.5 98.3

LocalRetro 53.4 85.9 92.4 97.7
GLN 52.5 75.6 83.7 92.4
AZTa 43.5/44.3b 70.2/73.9 77.1/81.5 88.7/90.9

MetricTransform (Ours)a 48/46.4 75.8/77 82.6/84.9 92.4/94
a Results obtained with filtered USPTO-50k
b Results on validation/testing set.

Table 5: Top-k accuracy of various models on the USPTO-50k dataset (reaction
class unknown)

Discussion of One-Step Retrosynthesis Models
Throughout our experiments, we demonstrate that a combination of the at-

tention mechanism, deep metric learning, and subclass mapping can achieve sat-
isfying predictive performance comparable to state-of-the-art methods, such as
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GLN and Augmented Transformer (see Table 2), on the USPTO-FULL dataset
while maintaining significantly faster inference times (see Table 3).

Although we achieved good results compared to the AiZynthTrain base
model on the filtered USPTO-50k dataset, we observed limitations in our ap-
proach with smaller datasets compared to other models such as GLN, Local-
Retro, and O-GNN ([35]) (see Table 5).

On the other hand, the experiments (see Table 2 and 4) demonstrate that
with larger datasets, state-of-the-art models like GLN and LocalRetro tend to
exhibit slightly reduced performance. In contrast, our approaches show im-
proved performance on larger datasets.

We also further investigate subclass mapping and its potential in Section
A.1.

3.2 Multi-step Retro-Synthesis

3.2.1 Multi-step Retrosynthesis

We evaluated our model on multi-step retrosynthesis on a 3.30GHz AMD Ryzen
5 6600H, Linux machine with 16 Gb of RAM, NVIDIA GeForce RTX 3050 4GB,
using 2 subsets:

• 100 compounds randomly selected from the ChEMBL database ([25]).

• 60 molecules4, consisting of 20 molecules selected by Bayer’s chemists
(molecules ID starting with A) and 40 molecules randomly selected from
PubChem ([12]), chosen to cover a range of molecular sizes from small to
large (molecules ID starting with C).

The first subset was designed to facilitate a comparison between AiZyn-
thFinder and ASKCOS, and since both tools use Monte Carlo Tree Search, our
tests on this subset will exclusively use this search algorithm.

The second subset, initially intended to test the predicted difficulty of ret-
rosynthesizing these molecules, features some of the hardest compounds to syn-
thesize, according to Bayer’s chemists and Ertl’s team. Therefore, we utilize
both Monte Carlo Tree Search and Nested Monte Carlo Search to examine the
retrosynthetic capacity of the combination of our model with different search
algorithms.

We then compare our multi-step retrosynthesis performance with ASKCOS
([5]) and Depth-First Proof-Number Search (DFPN) ([13]). We note the signif-
icant differences among them:

• AiZynthFinder and Metric Transform use the USPTO-FULL dataset with
the ZINC database ([30]) as stock.

• ASKCOS uses the Reaxys dataset ([1]) with Sigma Aldrich and eMolecules
([7]) as stock .

4Dataset available at https://doi.org/10.5281/zenodo.6511731
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• DFPN uses several public and non-public data sources, consisting of 8,616,239
molecules and 270,605 reaction templates obtained after extensive data
cleaning and preprocessing, with chemicals labeled as buyable according
to the suppliers for Bayer Research as stock ([13]).

We observe that among these datasets, the USPTO-FULL and ZINC are con-
siderably smaller compared to Reaxys, Sigma Aldrich, and eMolecules. DFPN
utilizes a significantly larger dataset, which is ten times the size of USPTO-
FULL, along with an internal stock database. However, because DFPN relies
on non-public datasets, we are unable to explore their resources further.

Comparison on 100 molecules between ASKCOS, AiZynthFinder
and Metric Transform

To ensure a fair comparison, we maintain the original AiZynthFinder setup
([25]). In addition to the number of solved molecules, which serves as the pri-
mary criterion in multi-step retrosynthesis, we also present additional statistics
to provide a deeper understanding of how the one-step retrosynthesis model
impacts solving capacity

Model Ring Breaker Iter = 100 Iter = 10,000 Solved
ASKCOS 62

AZF (Original Result) X X 55
AZF (Our Test) X 50
AZF (Our Test) X 59
AZF (Our Test) X X 52
AZF (Our Test) X X 60

MetricTransform (Ours) X 57
MetricTransform (Ours) X 63
MetricTransform (Ours) X X 55
MetricTransform (Ours) X X 63

Table 6: Comparison of different models and their performance with various
configurations and parameters. The table presents results for models with and
without the ring-breaker feature, and across different iteration limits, within a
time limit of 120 seconds per molecule.

Model Average Solution Time Average Number of Steps Average Number of Precursors Solved
ASKCOS 14.3 3.3 3.2 62

AZF (Original Result) 7.1 2.4 2.7 55
AZF (Our Test) 7.7 3.0 3.5 60

MetricTransform (Ours) 6.0 2.8 3.4 63

Table 7: Comparison of retrosynthesis models based on key performance statis-
tics. Results are shown for models with a ring-breaking feature, limited to 120
seconds and 10,000 iterations.

Comparison on 60 molecules between DFPN, AiZynthFinder and
Metric Transform

For the AiZynthFinder MCTS experiment, we first set the cutoff number
(the maximum number of possible moves returned for a molecule) to 5 with
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time limits of 300 and 600 seconds, then increased the cutoff to 50 with limits
of 900 and 1200 seconds.

In the NMCS experiment, we also utilize nmcs1top5 (level 1 NMCS with
only the 5 best moves from each state), followed by nmcs1top50 and nmcs2top50

([24]) for more expensive and exhaustive search.
For both experiments, we set the max-transforms (the maximum depth of

the search tree) to 7, consistent with the setting used for DFPN.

Model MCTSa NMCS MCTSb DFPN
AZF modelc 31 36
DFPN modeld 38 41

Metric Transform (Ours) 33 39
a AiZynthFinder Monte Carlo Tree Search.
b Depth-First Proof-Number Search Monte Carlo Tree Search.
c Reported results by [24].
d Reported results by [13].

Table 8: Comparison of retrosynthesis models using different search algorithms

A comprehensive analysis of the time taken to solve each molecule can be
found in Section A.3

Discussion on Multi-Step Retro-Synthesis
We demonstrate the predictive performance of our approach by using differ-

ent search algorithms on various subsets. Our models yield results comparable
to ASKCOS and slightly below DFPN (see Table 6 and 8), despite utilizing a
considerably smaller dataset, a reduced stock database, and limited computa-
tional resources. Additionally, we reaffirm the potential of NMCS in multi-step
retrosynthesis planning, as demonstrated in previous works ([24]).

It is important to note that both the dataset for one-step retrosynthesis mod-
eling and the stock database are crucial in multi-step retrosynthesis planning.
A larger dataset can encompass a broader range of reaction templates, while
an extensive stock database enhances the flexibility of retrosynthesis planning,
resulting in significantly improved outcomes ([25]).

The ring-breaker model yields mixed results, which are discussed in Section
A.2.

4 CONCLUSION

The combination of deep metric learning, attention mechanisms, and subclass
mapping resulted in a robust architecture that addresses the inherent imbalance
in chemical reaction datasets. This approach demonstrates strong performance
across both common and rare reaction types, delivering satisfactory results in
both one-step and multi-step retrosynthesis. Notably, this was achieved with
minimal training time, limited resources, and without modifications to the de-
fault AiZynthTrain settings.

Our approach, based solely on Machine Learning and Deep Learning princi-
ples, treats the retrosynthesis problem as a classification challenge. We believe
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that this method can also be adapted and applied to other template-based ap-
proaches to enhance their performances.

5 FUTURE WORKS

We recognize that our exploration of this field is just beginning. Notably, we
have not yet transformed reaction templates to reduce the number of templates
requiring classification—a crucial step demonstrated in other top-performing
studies to enhance performance.

Future work will involve training a model on larger datasets such as Reaxys,
and integrating USPTO-FULL with synthetic reaction datasets. Additionally,
we plan to delve deeper into chemical and molecular structures to transform
the dataset, including optimizing the structure of reaction templates to reduce
the actual number of templates necessary for classification. We also aim to
adapt our approach to current State-of-the-Art models like: LocalRetro, GLN
to evaluate whether our approach can improve their performances.
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A Appendix

A.1 Subclass mapping

The number of clusters per class is an important hyperparameter that needs to
be fine-tuned because a small number of clusters per class will lead to a small
variance (which might cause underfitting), while a large number will provide a
small bias (but might cause overfitting).

In our experiments, we set the number of clusters by
⌈
n
k

⌉
, where n is the

number of samples in a given class, and k is a constant ranging from 50 to 500.
We observed the results after the fine-tuning process: a small number of clusters
(i.e., a large k) is usually better on the validation and test sets. On the other
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hand, a large number of clusters (i.e., a small k) can give better results on the
training set but slightly worse results on the validation and test sets.

We also explored whether using subclass mapping before training the back-
bone model could be beneficial. This approach is intriguing because it could
potentially mitigate the impact of dataset imbalance and improve the embed-
ding process of the backbone model.

However, it is important to note that the input consists solely of molecular
fingerprints, which are numerical representations of molecules. These finger-
prints may not provide significant information for the subclass mapping process.
Our test of this approach resulted in poorer performance compared to our initial
method. This notably worse result highlights the importance of a well-defined
projection of our Metric Transform model to the embedding space and under-
scores the need for an effective projection to enhance the utility of the subclass
mapping.

To further explore the utility of subclass mapping, we conducted additional
experiments:

1. Set the limit of samples for subclasses.

2. Fine-tune the backbone model on the subclassed dataset.

In experiment 1, we observed a slight improvement, making it easier to
achieve the results shown in Table 1.

In experiment 2, the final results significantly improved, with performance
gains ranging from 0.1 to 0.5 for top-1 to top-50 accuracy.

The reason behind these improvements is that, after subclass mapping, sam-
ples from the same class may belong to different subclasses while still sharing
characteristics from the original class. Fine-tuning the backbone model on the
new subclassed dataset allows for better separation of these subclasses.

Please note that the results on one-step and multi-step retrosynthesis pre-
sented above were obtained without incorporating this new exploration.

A.2 Ring-Breaker Model

The idea behind the ring-breaker model is to help the model break ring systems
in a given molecule, thereby making it easier to decompose that molecule into
smaller and purchasable precursors ([32]).

The mixed results obtained by incorporating the ring-breaker model into
multi-step retrosynthesis (see Table 6) can be explained by the following ele-
ments:

1. Search algorithms need to allocate separate time for evaluating both the
one-step model and the ring-breaker model, which reduces effectiveness
when the search time is limited.

2. The ring reaction dataset is not large enough to effectively cover ring
systems.
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These two points lead to an ineffective situation where the one-step model is
already sufficient for solving small and medium molecules, but large molecules
remain unsolvable (see Table 6, 8 and 9). Extensive research is needed to effec-
tively incorporate ring-breaker models into multi-step retrosynthesis planning.

A.3 Analysis of the subset of 60 molecules of Bayer’s chemists
and PubChem

We provide a comprehensive analysis of the time required to solve each molecule
in the subset of 60 molecules sourced from Bayer’s chemists and PubChem.
We note that solving time is highly dependent on computational resources,
particularly for more challenging molecules. Therefore, this analysis aims to
highlight the differences in performance between MCTS and NMCS.

ID Time (s) ID Time (s) ID Time (s) ID Time (s)
A0 73.1/274.3 A1 0.02/1.25 A2 0.06/21.7 A3 147.9/416.1
A4 27.4/213.1 A5 558.6/252.5 A6 X/1035 A7 131.7/165.4
A8 X/1404 A9 6.6/13.5 A10 X/1420 A11 0.06/4.5
A12 98.6/184 A13 X/1539 A14 0.06/14.8 A15 0.9/41.6
A16 0.3/11.7 A17 0.01/33.6 A18 5.2/116.6 A19 532.6/7.3
C1 0.02/1.3 C2 X/X C3 0.03/3.4 C4 X/X
C5 0.02/1.3 C6 X/X C7 X/X C8 0.03/2.9
C9 X/X C10 X/X C11 X/X C12 X/X
C13 0.04/2.5 C14 0.01/32.4 C15 X/X C16 X/X
C17 X/X C18 X/X C19 22/46.6 C20 10.8/1514.6
C21 0.09/2.7 C22 X/647.9 C23 0.03/1.6 C24 X/X
C25 0.01/1.3 C26 0.02/1.27 C27 X/X C28 X/X
C29 X/X C30 X/X C31 0.01/32.2 C32 X/X
C33 X/X C34 0.03/2.9 C35 X/2217 C36 1.7/21.1
C37 13.3/81.6 C38 X/X C39 X/X C40 0.01/33.9

Table 9: Analysis of the time required (in seconds) to solve each molecule in
the subset of 60 molecules from Bayer’s chemists and PubChem using Metric-
Transform. The values to the left of the slash represent times from Monte Carlo
Tree Search, while those to the right correspond to times from Nested Monte
Carlo Search. ’X’ indicates non-solvable molecules within the time limit of 3600
seconds.

Our analysis indicates that, using the same one-step retrosynthesis model,
NMCS generally demonstrates superior performance compared to MCTS. Every
molecule successfully solved by MCTS was also addressed by NMCS, although
NMCS required more time. One potential strategy is to use MCTS to solve the
”easier” molecules first, followed by NMCS for the more challenging ones. This
approach would allow us to benefit from the speed of MCTS while leveraging
the higher solving performance of NMCS.
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We also highlight the challenges of multi-step retrosynthesis, particularly
with large molecules such as C2 and C39. These molecules contain complex
ring systems that remain unsolvable in our experiments. One potential strategy
is to employ a ring-breaker model to simplify the retrosynthesis planning by
breaking down these ring systems. However, as discussed in Section A.2, the
USPTO-FULL ring breaker model has drawbacks that affect the solving capacity
of our model and search algorithms for these large molecules.

Additionally, we encounter difficulties with some medium-sized molecules,
such as C6 and C7, which also remain unsolvable. This issue is likely due to the
lack of specific templates needed to break down these molecules effectively.

Interestingly, we found that C22 and C38, which remain unsolved using
MCTS, have precursors that are not in stock—Br for C22 and O=C1OC(=O)C2C3C=CC(C3)C12
for C38—but these precursors can be easily purchased or found on eMolecules.
This highlights the importance of having a large dataset and a detailed stock
database to enhance the ability to solve multi-step retrosynthesis problems.
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140 CHAPTER 3. CHEMINFORMATICS

3.3 De Novo Molecule Design
With retrosynthesis and AstraZeneca’s AiZynthFinder we have a way to
assess if molecules are synthesizable. The next step was to automatize the
generation process using our algorithms too. De Novo Molecule Design is
another vast subject of research with hundreds of papers. Here we decided
to search the molecule space with SMILES (string) representation, similar
to an atom-by-atom model.

Despite the large amount of papers, most software use a data-only ap-
proach with generative neural networks, or use Monte Carlo Search with
neural networks, but do not check the validity of each move.

The particularity of our model is that it cannot produce invalid molecules.
The search model is encoded in a way that prevents any failure to produce
a valid molecule.

In addition, we used AiZynthFinder to assess the synthesizability of the
produced molecules. This resulted in a 32% synthesizability rate wich is
surprisingly high given that the score function only maximized the drug-
likeness and nothing else. The synthesizability of the produced molecules is
a side product but is in line with the performances of AiZynthFinder on the
FDA database.

Last, this approach is data-light, ngrams were trained over the FDA-
approved drug database containing less than 2000 molecules, and provided
better results and synthesizability over the previous state-of-the-art neural
networks, as well as being 500 times faster. In addition, molecules generated
have high novelty and other metrics show that it is not a regurgitation of
the training data set.

This project was able to produce valid, unique, novel, and synthesizable,
with an extremely small training set and extremely fast generation time. It
is to the best of our knowledge never seen before.

The molecules were only made to be drug-like, the next step is to generate
molecules that cure a specific disease by training a neural network on a
binding simulation to act as a score function.
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Abstract

The design or screening of molecules with desired pharmacokinetic and selectivity

profiles is an important focus in translational biology. This paper presents DrugSyn-

thMC, a new method for automated and computer-assisted de novo molecule design

using an atom-based research model that builds molecules as SMILES, character by

character.

Combined with Monte Carlo Search, we show that DrugSynthMC is able to produce

valid and synthesizable drug-like molecules that enforce a set of Lipinski rules in frac-

tions of seconds. This ease of drug-like molecule generation can then be combined with

score functions aimed at different goals to design useful molecules. Our approach can

function with or without an underlying neural network and is thus easily explainable

and versatile. Combined with digital screening pipelines, DrugSynthMC is expected

to enable the functional assessment of large compound libraries covering an extensive

novel chemical space, overcoming the limitations of existing drug collections.
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Introduction

Since the 1980s, in silico approaches have been extensively and routinely used in drug dis-

covery and have transformed the medicinal chemistry field,1 with the expectation to do so

even more in the future. The need for rapid response, highlighted by the emergence of resis-

tant bacteria and, among others, the COVID-19 pandemic, has fuelled the development of

novel computational tools for drug design and screening.2 In silico virtual-library screening

(VS) is usually the first critical step in structure-based drug discovery, where the algorithm

aims to predict the best matching binding mode of a ligand to a receptor.3 Despite the

many attempts to improve accuracy of VS methods,4,5 the relatively limited chemical di-

versity of compounds in libraries reduces the ability of structure-based VS to identify hits

and leads.6,7 Indeed, it has been estimated that only a small portion (106-107) of the 1063

drug-like molecules predicted to be synthetically accessible has been explored.8

Several studies have shown that screening larger libraries that expand the accessible

molecules by several orders of magnitude (∼ 1011) improves the rate of true high affinity

(nM-pM) binders.9–12 To further expand the chemical space within virtual libraries, gen-

erative models based on Deep Learning (DL) methodologies have been used to produce

molecules with desired chemical features able to bind specifically macromolecules of interest

(extensively reviewed in13–15 ).

Recurrent neural networks (RNNs) were among the first DL methods to be developed

to generate SMILES, a line notation that describes the structure of a molecule16(Weininger

2002). However, RNNs tend to suffer from exposure bias, and a diverse range of alternative

approaches that differ in the training procedure and model architecture have been pro-

posed. These include Variational AutoEncoders (VAEs),17 Generative Adversarial Networks

(GANs),18 and graph-based generators.19 Nevertheless, even these alternative approaches

have limitations and, for example, it has been reported that VAEs generated SMILES often

cannot be translated into interpretable chemical structures.20 Furthermore, a key require-

ment of generative models is that designed molecules must be synthesizable. A wide range of
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different approaches has been used to predict the synthetic feasibility of molecules, including

using scores based on structure complexity and similarity to evaluate synthesizability,21 or in-

tegrating computer-aided synthesis planning (CASP) tools as part of the design process.22,23

However, as Bilodeau et al.24 recently highlighted, approaches that embed CASP tools au-

tomatically inherit CASP limitations, thus reducing the chemical diversity of compounds in

libraries.

In this paper, we use Monte Carlo Search (MCS) algorithms in conjunction with DL and

statistical-based priors to generate thousands of interpretable chemical structures and novel

drug-like molecules per second. DrugSynthMC (Drug Synthetise using Monte Carlo) relies

on an algorithm never previously used in chemistry/medicinal chemistry, differing from prior

efforts in that it rapidly produces valid molecules, while being explainable and, importantly,

requiring no training. The algorithm does not enforce synthesizability or rely on synthe-

sizability metrics during SMILES generation. However, we analyzed the synthesizability of

generated compounds using an open-source retrosynthesis analysis tool, AiZynthFinder.25

We show that our method generates drug-like libraries with a high proportion of predicted-to-

be synthesizable compounds and efficiently expands the chemical space within the libraries.

Finally, DrugSynthMC is highly flexible and, in the future, could be easily tuned using multi-

ple parameters to tailor for a wide range of different chemical goals and/or create customized

libraries of compounds for specific targets.

DrugSynthMC

Search model

The search model consists of a set of instructions defining what available moves (character

addition) can be applied to unfinished SMILES. All SMILES start empty, and only one atom

can be added at that stage. Once atoms are added, cycles and subtrees can be initiated.

This search model ensures that initiated SMILES can be completed from any point of the

143



search into a valid final SMILE, with generation being heavily restricted by the below rules.

The central rule is to respect the total number of bonds each atom can protract. To do so,

the number of available bonds of the last added atom in the current subtree is stored. This

number is checked to compute possible legal moves and decreased, when adding a character

corresponding to a new atom in a different subtree level, according to the number of bonds

used to connect the new atom to the previous one.

To maximise the chance of generating valid molecules with drug-like properties, we

scanned the FDA-approved drug bank from ZINC? to obtain frequency information on

types of atoms and bonds involved. This information was stored in frequency matrices, al-

lowing to label as illegal moves by the search model bonds that were never or very rarely

encountered (less than 1/10000 of the bonds for each atom involved). It also enabled us to

focus the generator on using the most commonly encountered atoms only: C, O, N, F, S,

and Cl. Hence, Br and P atoms were left out due to their relative rarity, but can easily be

reintroduced in the search model, along with inorganic atoms.

Last, we added shortcuts for the different moieties involving sulfur. A sulfur atom can

act as a 2-bond atom, a 4-bond atom in sulfinyl, and a 6-bond atom in sulfonyl. Rather than

learning the entire functional groups and edge possibilities through the prior, we decided to

pre-process the SMILES prior to training, turning the trifluoromethyl (W), sulfinyl (M), and

sulfonyl (U) residues into their own symbols used in building SMILES.

Operating principle

To give an accurate list of possible characters to append to an incomplete SMILE, the search

model keeps track of several parameters concerning the SMILES at any step.

(1) The depths of the nested subtrees: The subtrees are expressed in SMILES language

using the ”(” symbol for opening, and the ”)” symbol for closure. Termination of SMILES

is not allowed unless they are back to the root tree, meaning that all open parentheses must

be closed. Closing a subtree when no parenthesis is open is also forbidden.
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(2) Covalence bounds counts: Each subtree contains an active atom, which is the last

one added at that level. It is the atom to which other atoms, cycles, and subtrees are then

added. The search model keeps track of the number of available covalent bounds on the last

atom of each subtree until the latter is closed by a ”)”. Moves that exceed the number of

covalent bounds available are not allowed.

(3) Cycle nesting: Nested cycles that share more than one bond are uncommon in drug-

like molecules. Thus only the most recent cycle is allowed to be terminated.

(4) Cycle length: More rules, not inherent to the SMILES grammar, were added to

improve the drug-likeness and stability of the molecules. These included not allowing cycles

smaller than 5 and bigger than 7 atoms to be generated. Indeed, while these cycle sizes exist

in drug-like molecules, size 4 cycles are usually hard to synthesize and unstable, while cycles

longer than 7 atoms are rare.

Additionally, to avoid unnecessarily long playouts and molecules, a boolean flag called

”finish ASAP” is added. It is set to true once a certain number of characters is met and

disallows certain moves, such as opening a new subtree or cycle, with some exceptions (ie.

finishing an already open subtree).

This complicated set of rules is necessary to prevent the search from cornering itself due

to cycles or using all the covalent bounds available on a particular level. However, this results

in a rather lengthy function enumerating the legal moves from an incomplete SMILES (about

100 lines long).

Playouts

Before explaining the Monte Carlo Tree Search and other algorithms used in this study, we

believe that it is important to give a clear explanation of the term ”playout”. In Monte

Carlo Search, a playout is a computationally cheap unfolding of actions from a starting

search space state. Moves are selected and played until the resulting new search is terminal

or no move is available. The terminal state is then evaluated (here using Lipinski rules, see
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corresponding section below) and returned to be used by the algorithm calling the playout.

Playouts are a core element of most Monte Carlo Search algorithms and the move selec-

tion process differentiates algorithms. Many algorithms use random playouts, usually when

tackling NP-hard problems where expert knowledge can’t help. The Prior Upper Confidence

bounds applied to Trees (PUCT26) used in DeepMind’s AlphaGo27 employs a neural net-

work to recommend moves to play in a game of Go. The Nested Rollout Policy Adaptation

(NRPA28) learns a reinforcement learning policy on the fly to select the moves. Some other

applications can evaluate non-terminal states and use greedy playouts (ARTICLE PUB-

LISHED SOON). In fact, the choice of playout mode can be more important to the success

of a MCS than the algorithm used (ARTICLE PUBLISHED SOON). In this study, we used

the Sampling method to act as a baseline to compare our algorithms. This method con-

sists of independent playouts from the start state and ends once a molecule reaches the best

possible score.

Guided playouts: ngrams

Ngrams are short subsequences derived from larger sequences of characters. They were

one of the first machine learning approaches, mostly used in Natural Language Processing

(NLP). Through the use of grams, it is possible to compute the statistics of every sequence

of characters in a learning corpus to predict the next character in a Markovian process.

Here, ngrams were generated through extracting every sequence of characters from the

FDA-approved compound database and were associated conditional probabilities used to

guide the playout of an incomplete SMILES given its last characters at any step. For instance,

if the learning corpus only contained ”COCC” and ”COCO”, the entry for ”COC” would

report P (C|COC) = 0.5 and P (O|COC) = 0.5. The ngrams were only used to value moves

and act as a prior, following the rules of the search model. Hence, whenever the ngram

valued a move that was forbidden by the model, the move was discarded. The ngrams also

used the cycle length computed from the FDA-approved compound database to guaranty the
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right proportion of cycles of each length in the final molecules. Storing information about

the cycles’ length within the ngrams themselves would be possible but expected to be more

error-prone. Therefore, we instead decided to use a probability to end a cycle at a certain

length. These probabilities are 0.228 for a cycle of length 5, 0.751 for a cycle of length 6, and

0.02 for a cycle of length 7. Smaller and longer cycles were omitted for reasons mentioned

above.

Guided playouts: neural network

As previously explored,29 neural networks can be trained to give conditional probabilities

of the next character given all of the SMILES. The neural network is then repeated on the

newly extended SMILES until the SMILES is terminal, similar to recent Large Language

Models (LLM). This method strays from the usual playouts as it is not limited by the rules

of the search model, but is prone to produce invalid smiles.29

The same neural network can also be used as a prior, following the rules of the search

model just like in the case of ngrams. This method has two advantages over approaches using

ngrams: (1) taking the entire context of the SMILES into account, and (2) generalization

(as ngrams require an exact precursor). However, ngrams are faster, more easily explainable,

and require no training.

The neural network used in the present study is the same as presented in,29 and was

trained using the same dataset. It was only slightly modified to accommodate for the short-

cuts with no apparent repercussions on the results obtained.

Monte Carlo Search

Monte Carlo Search (MCS) encompasses a wide range of search algorithms. These differ from

regular search algorithms in that they are not deterministic and use randomness to explore

search spaces too large for regular algorithms and learn guiding policies. The first Monte

Carlo algorithm was introduced by Nicholas Metropolis in 1949 with Markov Chain Monte
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Carlo.30 In 2006, Kocsis introduced a variant of Monte Carlo Tree Search (MCTS) called

Upper Confidence bounds applied to Trees (UCT) or Bandit based Monte-Carlo Planning.31

It is now the most widely used MCTS and MCS algorithm in the literature, often in the

form of Prior UCT (PUCT). MCS algorithms have since seen a wide range of uses: protein

folding,32 inverse RNA folding,33–35 retrosynthesis,25 multi-agent systems,36 game playing,37

network optimization,38 and conjecture refutation.39 In 2016, Deepmind’s Alphago famously

won four games of Go out of five against one of the best players in the world using a variant

of UCT:PUCT, combining MCTS and neural networks. it was the first time in history a

computer achieved superhuman performance on Go. Indeed, Go search space was too large

to use the same algorithms as in Chess (i.e. Deep Blue). In short, Monte Carlo Search

algorithms are general and have been applied to many different combinatorial optimization

problems that have a state space too large to be completely explored.

Upper Confidence bounds applied to Trees

UCT is the most commonly used MCTS algorithm. It is a bandit-based reinforcement

learning algorithm similar to Q-learning. The algorithm learns a policy and selects to go

down the tree in order to balance exploitation and exploration.

Like all MCTS, UCT is comprised of 4 phases:

1. Selection: Progress in the selection tree according to the policy.

2. Expansion: Once a state that has not been explored yet is encountered, it is added to

the tree.

3. Evaluation: A playout (or another fast algorithm) is used to evaluate the quality of

the new state.

4. Backpropagation: The result of the evaluation is used to update all the parent states

visited during the Selection step.
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These four steps are repeated indefinitely, starting from the initial state each time, much

like in Q-learning. What differs between the various MCTS algorithms is the formula of the

policy.

UCT uses the following formula to evaluate a child state S to select:

UCTS = XS + C ∗
√

lnV
VS

Where XS is the average score of state S, C is the exploration/exploitation constant

(usually 1), V is the number of visits of the current state, and VS is the number of child

state S visits.

PUCT is a generalization of UCT. It uses a prior to guide not only the playouts but

also the selection process, allowing to speed up the latter with knowledge from outside this

execution. PUCT uses a different selection formula:

UCTS = XS + C ∗ PS ∗
√
V

1+VS

With PS the value given by the prior for state S.

Nested Monte Carlo Search

Nested Monte Carlo Search (NMCS) is a different type of MCS algorithm. It uses lower-level

NMCS on each available move of the current state to explore the search tree and register

the sequences of actions leading to the best scores. Once the lower-level NMCS returns their

best routes to the higher level, it executes the next move of the best route and calls new

lower-level NMCS on the resulting state. The lowest level NMCS is (usually) a playout.

Unlike UCT, the NMCS does not explore the entire search space given enough time, but

gains in precision as it explores the tree and is less prone to be stuck in a local maximum.

This property led to generally better results from NMCS over UCT and other algorithms on

optimization problems.
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Results

Experimental setup

The aim of this work was to (i) generate large sets of novel molecules that expand the

chemical diversity of available compound libraries, (ii) generate small molecules with drug-

like properties, (iii) which in future could be used for VS campaigns and could be easily

grown into larger drugs tailored for specific targets. As such, DrugSynthMC generates, in

the absence of any training, SMILES of drug-like molecules without prior targets in mind.

Thus, the score function is meant to only maximize the validity and drug-likeness of the

output molecules and is not goal-oriented (e.g., tailored to bind a specific biological target).

The drug-likeness is obtained by maximizing the general chemical properties associated with

drugs according to the “Rule of 5”40 41.42 Indeed, easily calculated physicochemical descrip-

tors, such as molar mass and number of hydrogen bond donors and acceptors, have been

found to correlate with the success rate of clinical trials.43

The function of compliance (score function) was defined as:

α1 = −max(mass− 500, 0)/500 (1)

α2 = −max(natoms− 70, 0)/70 (2)

α3 = min(natoms− 20, 0)/20 (3)

α4 = −max(nhbd− 5, 0)/5 (4)

α5 = −max(nhba− 10, 0)/10 (5)

score = α1 + α2 + α3 + α4 + α5 (6)

With mass the molecular weight of the molecule in daltons, natoms the number of atoms

(including hydrogens), nhbd the number of hydrogen bond donors, and nhba the number of

hydrogen bond acceptors. This formula has the advantage of being computationally cheap

and requiring only a pass through the SMILES string.
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When generating molecules with a particular target in mind, this function can be used

to produce drug-like molecules in tandem with a specific goal function.

To identify the most efficient method, we compared the UCT and NMCS MCS algorithms

combined with different types of playouts:

1. random: the next character is selected uniformly randomly among the ones proposed

by the search model.

2. enforced: the next character is selected uniformly randomly among the ones proposed

by the search model. In order to generate compounds that are structurally valid and

synthetically accessible, the score function aims to generate molecules containing the

same ratios of heavy atoms (Nitrogen, Oxygen, Fluorine, Sulphur, Chlorine) as in FDA

drugs (retrieved from the FDA subset of the ZINC20 database).44

3. ngram: the next character is selected randomly among the ones proposed by the search

model, according to the conditional probabilities of the 3 characters ngram computed

on the SMILES from the FDA database. To balance the sizes of the rings, cycles

close with lengths 5, 6, and 7 with probabilities of 0.228, 0.751, and 0.020 respectively

(computed from FDA data). No conditional probability was used to balance the type

of ring (i.e., aromatic and aliphatic, homo- and hetero-cycles). Additionally, characters

with a probability under 0.001 are pruned as they are judged too rare.

4. neural: the next character is selected randomly among the ones proposed by the search

model, according to the neural network output weight given the incomplete current

SMILES input. Additionally, characters with a probability under 0.001 are pruned as

they are judged too rare.

For NMCS, we used a level of 3. For PUCT/UCT we used a constant of 1. We used

PUCT instead of UCT when a prior was employed (ngrams and neural). PUCT and UCT

used a timeout of 10 seconds, as PUCT is prone to locking itself in a local maximum even
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with neural priors. All experiments were ran in Rust 1.59, on an Intel Core i7-11850H

2.50GHz using a single core.

Validation of the Generated Drug-like Molecules

In recent years, with the expansion of DL methods for drug design, several initiatives

have been launched to assess generated compounds, which includes benchmarks such as

Guacamol45 and MOSES.46 However, these benchmarks are not suitable for methods like

DrugSynthMC that don’t exclusively rely on training datasets. Instead, we evaluated similar

metrics (validity, uniqueness, novelty, diversity, physicochemical properties, and synthesiz-

ability) and used comparable tools (RDkit, ZINC databases, AiZynthFinder) to validate our

algorithm. To assess the reliability of the tool to generate valid and interpretable molecules,

10,000 generated SMILES were translated into structure representations using RDkit. In all

cases, we see that RDkit is able to read and translate 100% of the inputted SMILES (Table

1), showing no syntax errors. This is significantly superior to other methods, which showed

validity scores ranging from 85% for generative autoencoders to about 96% for RNN-based

models47 48.49 The ability to generate novel compounds was determined by measuring the

percentage of molecules in a library of 10,000 generated SMILES which was not present

within ZINC-250K (containing nearly 250,000 molecules) (Table 2). In all cases, we see a

high level of novelty. It is logical to assume that designing compounds based on general

physicochemical properties of drugs instead of on a training set allows DL methods to ex-

plore a wider chemical space. Within each of the libraries generated, uniqueness was assessed

by identifying the number of identical molecules (Table 3). This shows substantial differ-

ences among the different playouts used, with ngram and neural showing a higher number

of replicated molecules within libraries. This is linked to the priors restricting the search

space to what is more probable. Indeed, by determining the average edit distance as a mea-

sure of structural similarity of compounds (Table 4), we can see that both priors similarly

restrict the explored chemical space (lower values indicating more similar structure, more

152



likely to have similar properties50). Conversely, by generating larger drugs with SMILES

string containing 30 characters or more the uniqueness rises above 95% with all methods.

While possible, it is more challenging to predict the synthesizability of larger drugs using

retrosynthesis programs that search a synthetic route for a chosen molecule51.52

The first four rules of Lipinski are easy to compute. However, computing the logP of a

molecule is not an easy task and is still an active research topic, with recent advancements

using computationally expensive and state of the art neural approaches.53 Faster approaches

are available but they trade accuracy for speed. As such, to avoid making the evaluation func-

tion computationally expensive or inaccurate, the calculation of the logP was not included

within the score function. It was instead subsequently computed on generated compounds

using Rdkit which implements the atom-based Wildman-Crippen method.54 In Table 5, we

show this approach to be valid, as all molecules generated using the first 4 rules show logP

values inferior to 5.

Using our model with the current parameters gives molecules that are completely drug-

like in at least 99% of cases. Molecules with logP > 5 do not contain a cycle or subtrees

(string-like) and are therefore easily identifiable. However as their logP is still very close to

5, they could nevertheless be considered drug-like.

In short, DrugSynthMC produces completely valid and novel drug-like molecules that

show uniqueness in comparison to existing collections of drug-like molecules.

Table 1: Validity of 10 000 generated SMILES with different methods using RDkit sanitation

random enforced ngram neural
NMCS 100% 100% 100% 100%
PUCT - - 100% 100%

Sampling 100% 100% 100% 100%

Synthesizability of the Generated Drug-like Molecules

A recent comparison of tools used to predict the synthesizability of compounds carried out

by Sanchez-Garcia et al.55 showed that retrosynthesis programs tend to be more accurate
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Table 2: Novelty of generated SMILES with different methods

random enforced ngram neural
NMCS 100% 99.99% 99.98% 99.96%
PUCT - - 99.99% 100%

Sampling 100% 100% 100% 99.99%

Table 3: Uniqueness of 10 000 generated SMILES with different methods

random enforced ngram neural
NMCS 99.94% 99.17% 81.78% 87.12%
PUCT - - 86% 85.32%

Sampling 99.83% 98% 82.58% 68.01%

Table 4: Average edit distance for 1 000 generated molecules compared 2 by 2 from each
method

random enforced ngram neural
NMCS 17.930 14.266 12.954 13.988

UCT/PUCT - - 13.334 13.956
Sampling 17.801 13.940 13.100 14.051

Table 5: Proportion of logP < 5 of 10 000 generated SMILES with different methods

random enforced ngram neural
NMCS 100% 99.91% 100% 100%
PUCT - - 99.99% 100%

Sampling 99.98% 99.88% 99.98% 100%
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than SA scores. Retrosynthesis programs use a combination of search algorithms and 1-step

retrosynthesis deep learning to apply reactions to a molecule and divide it into reactants

available on the market.

AiZynthFinder is an open-source full-fledged template-based retrosynthesis tool that uses

MCTS, the same algorithm as UCT used here with slight differences. It is easily reproducible,

and objective, but generates many false negatives as larger or too complex molecules can

prove beyond the capability of the program to assess. According to the publication docu-

menting the performance of AizynthFinder,25 the overwhelming majority of successful paths

to synthesis are found within 2 minutes of exploration. Indeed, this was consistent with our

retrosynthesis analysis of drugs retrieved from the FDA subset, showing that AiZynthFinder

finds routes for the majority of molecules within the first 2 min of search as seen in Figure

1. Hence, 2 min was chosen as maximum search time for the retrosynthesis assessment of

the 1000 molecules generated.

There is a connection between mass of a molecule and success in identifying retrosynthesis

synthetic routes, as seen in Figure ??. We noticed that the larger the compounds generated

the less likely AiZynthFinder successfully completes a search within 2 minutes or more.

Indeed, AiZynthFinder only finds routes for about 60% of the 1615 FDA-approved within

this time limit, despite 11.02% of the FDA molecules already being commercially available

(Figure ??). As this will not be the case for our molecules, their synthesizability rate is

therefore expected to be under 50%. Therefore, we chose to generate lower molar mass

drug-like compounds, at the expense of uniqueness, to show the ability of our approach to

generate synthesizable compounds.
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Figure 1: Search time in seconds for the 909 out of 1615 molecules from the FDA molecule
database that AiZynthFinder found a route for

Figure 2: Amount of molecules AiZynthFinder found a route for in less than 2 minutes,
separated in weight bins of 50 Daltons. ”Solved 1-step” molecules are molecules whose
synthesis route only has one step, they can be produced directly from commercially available
compounds. ”Already in stock” molecules are molecules from FDA that are immediately
identified as commercially available by AiZynthFinder.
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The relatively low success in finding retrosynthesis routes can be in part explained by

the fact that AiZynthFinder uses the default 1-step retrosynthesis neural network trained

on USPTO-50K incomplete data by AstraZeneca. However, as better performing 1-step

retrosynthesis neural networks are not publicly available, results from AiZynthFinder are

still useful to compare the predicted synthesizability of the compounds generated using the

various methods used here.

In table 6 we show the percentage of synthesizability of the first 1000 molecules generated

by each playout variant of the NMCS. Due to the similarities between the algorithms when

using neural or ngram playouts, and, as shown above, the overall better performances of

NMCS, we focused on the molecules generated by this latter method.

Table 6: Synthesizability of 1000 generated SMILES with NMCS with different playouts
computed by AiZynthFinder in 2 minutes

random enforced ngram neural
NMCS 0.4% 0.9% 32.2% 18.1%

The ngram playout is the one that generates the largest number of synthesizable com-

pounds. The 32.2% synthesizability rate is promising and in line with previously reported

accuracy rates for different retrosynthesis programs.56 The neural playouts, while still promis-

ing, provide a much lower rate of predicted synthesizability. This can be explained by the

fact that the neural network does not return the exact conditional probability from the train-

ing set, and thus rare moves such as the shortcuts are over-represented in these generations.

We adopted the neural network from Yang et al.,29 with adaptations for our shortcuts and

explicit bonds. While it showed worse outcomes with the implicit bonds and no shortcuts,

it delivered similar results with the shortcuts. However, with further fine tuning, neural

networks may have the potential to reach the same level of synthesizability achieved with

the ngrams, although with the added disadvantage of having a slower execution (Table 7).

The random and enforced generations act as control experiments. As no policy governs

the structure of the generation, nothing can direct the molecule generation toward a sen-
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sible and synthesizable outcome. This results in a low rate of synthesizability. The 1-step

retrosynthesis neural network used by AiZynthFinder is unable to propose reactions, thus

ending the search long before the 2-minute time limit (generally in less than a second).

Physicochemical properties of the Generated Drug-like

Molecules

To further validate drug-likeness of generated compounds, we compared the distributions of

key physicochemical properties of molecules generated by NMCS with ngram playout (the

method that generated the highest number of valid and synthesisable drugs-like compounds)

with molecules generated with NMCS with random playout (used as control) and drugs

retrieved from the FDA subset of ZINC-20,44 abiding to the same general physicochemical

properties we took into consideration in the design stage. It has been shown that to avoid

reducing oral bioavailability, the number of hydrogen bond donors (HBD) should be lower

than 6 and hydrogen bond acceptors (HBA) lower than 15,57.58 Despite the upper limitation

of 10 and 5 for HBA and HBD, respectively, we found that compounds generated with ngram

peak at 2 and 1 for HBA and HBD, respectively, with an overall lower number of HBA than

random, and a higher ratio of compounds with fewer HBD than random and FDA, (Figures

3a 3b).

By design, ngram generates compounds with lower molar mass and total number of

carbons (and consequently, lower number of heavy atoms) and hydrogens than drugs in FDA

(Figures 3g 3d). This is only a side effect of stopping building the molecule once it respects

all Lipinski rules. But it is also an indispensable requirement for (i) future optimization

studies where compounds may need to be grown to adapt to pockets in targets and increase

overall affinity, and (ii) synthesizability analysis with AiZynthFinder.

The distribution of heavy atoms is overall comparable in all plots, as the score function

generates molecules containing the same heavy atoms (Nitrogen, Oxygen, Fluorine, Sulphur,
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Chlorine) ratios as in FDA drugs (Figures 3n 3o 3l 3p 3h). DrugSynthMC score function

balances the number and size of rings (Figures 3i 3j 3k), but not the type (aromatic and

aliphatic, homo- and hetero-cycles), based on the probability of different rings occurrence

calculated on FDA drugs. The formula returns drugs with a nearly equal distribution of

compounds with zero or one aromatic cycle, which is lower than the aromatic cycle content

in FDA drugs (Figure 3e). However, it has been shown that oral drugs with less than 3

aromatic rings have good compound developability,59 suggesting that DrugSynthMC has

the potential to generate compounds with a low risk of attrition in early-stage development.

Generated compounds also have promising oral bioavailability parameters. Earlier work

by Caminero Gomes Soares et al.60 showed that FDA-approved drugs in the last 20 years

have relatively stable numbers of rotatable bonds (mean 5, median 7.5) with about 89%

drugs containing less than 10 rotatable bonds. Search with ngrams successfully generates

compounds with less than 6 rotatable bonds (mean 3) and, in proportion, produced a higher

number of molecules with fewer and higher rotatable bonds than the FDA drugs and Random

playout, respectively, thus potentially identifying a balance between flexibility and diffusional

cross-section (Fig. 2P).

The results presented in Figure 3 should be analyzed while keeping in mind that the only

goal of our approach is to generate novel, unique, synthesizable, drug-like molecules. It is not

an attempt to create a new database with the exact same distribution of molecular descriptors

as the FDA. It would however be possible to use our approach to do that by enforcing these

molecular descriptors through the score function like it was done with enforced for the ratio

of oxygen and nitrogen per carbon atoms.

Generation Times

The capabilities of DrugSynthMC to reliably generate valid drug-like molecules are estab-

lished in the previous sections. But generation time is an important metric to assess the

usability of our approach, especially if it is to be used in tandem with target-based com-
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(g) #carbons (h) #chlorines
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(k) #cycles of size 7 (l) #fluorines
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(m) #hydrogens (n) #nitrogens

(o) #oxygens (p) #sulfurs

(q) #rotatable bonds

Figure 3: Metrics of molecule generated using NMCS with ngram prior and random playouts
compared to the FDA molecules
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pounds optimization.

The time required to generate 1000 valid drug-like molecules in independent runs can be

found in Table 7. This readout provides us with a few insights into our model, the search

methods used, and the drug-likeness score function.

Table 7: Time to generate 1000 molecules with each method and algorithm in seconds

random enforced ngram neural
NMCS 1.366 9.395 0.753 3280.072

UCT/PUCT - - 0.507 2732.383
Sampling 9.154 675.544 0.482 2679.176

The random and enforced columns do not use a policy and show how the algorithm

selection can affect the generation speed. Because it locks itself into local maxima induced

by the shortcuts, UCT is unable to return Lipinski molecules (unless restarted immediately,

turning it into Sampling). The shortcuts add a great amount of mass to the molecules and

increase the score, but they are not the best overall choice to generate Lipinski molecules.

Even with the priors, UCT locks itself into local maxima and requires restarts to generate

Lipinski molecules. While we do not show these results in table 7, UCT without the shortcuts

is able to return molecules for random and enforced generation. In this case, it is as fast

as NMCS and Sampling over random generation and produces 1000 molecules in 0.60s. In

contrast, it generates 1000 enforced molecules in 1440.00s seconds against 11.43s for NMCS

and 212.77s for Sampling.

The NMCS shows a clear advantage over UCT and Sampling when the score function

is hardened. It is a better optimization strategy than random playouts and does not lock

itself in local maxima like UCT. The design of NMCS forces it to explore other subtrees of

the search tree, thus preventing locking. This feature is also the reason why this approach

is slower when using a prior in our experiments.

The prior columns for ngram and neural, give a different insight. The gap between the

algorithms is closer because Sampling usually uses less than 20 playouts before finding a

correct lipinski molecule. Both the ngram and neural priors are enough by themselves to
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perform efficient playouts, returning Lipinski molecules. UCT and Sampling have similar

outcomes because the small number of playouts undertaken do not let UCT reinforcement

learning gather sufficient data before finding a suitable molecule. NMCS is however slightly

slower due to the design that prevents it from locking itself in local maxima: because the

algorithm explores other branches, possibly including ones not recommended by the prior, it

can spend some time searching in less promising subtrees. This informs us that on problems

that can be efficiently solved using playouts with a strong enough prior alone, NMCS can

be outperformed by Sampling. However, we recommend using NMCS as it is usually better

on harder problems, as shown by results shown in the columns for random and enforced

playouts. We suspect that this state of play would extend to any specific goal-oriented

generation, which is expected to be more complex than Lipinski molecule generation.

The column neural shows that the neural prior is much slower (approximately 5000

times) than the ngrams. This is the result of the difference in execution time between the

neural network and the ngrams alone. With this instance of the neural network, this longer

generation time is not rewarded with the generation of better molecules (as shown above).

Discussion

Our approach aims at generating character-by-character SMILES that can be defined as

drug-like, through following the Lipinki rule of five. DrugSynthMC gives multiple insights

on de novo drug-like molecule generation. First, it provides the unexpected result that

ngrams can prove superior to the more advanced neural approaches. Second, it shows that

usual MCTS algorithms such as UCT may be outperformed by other optimization algo-

rithms. Finally, it delivers a significant improvement on the predicted synthesizability of the

generated molecules as compared to previous published approaches.

AiZynthFinder was able to find retrosynthetic route for 32.2% of the molecules generated

using ngrams in under 2 minutes. This result is promising, especially considering AiZyn-
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thFinder found a route in under 2 minutes for only 909 out of the 1615 molecules of the

FDA, despite using this dataset as part of its training.

It is possible that the ngrams were superior to the neural prior because they followed more

closely the distribution. The superiority of NMCS over UCT in random and enforced genera-

tion was expected as NMCS is usually better than UCT on optimization problems.39,61? The

easiness of generation when using priors both for UCT, NMCS, and Sampling was however

unexpected, and caused the generation to show little differences between these algorithms.

This means that both ngrams and neural network can efficiently learn molecule’s structures

to guide a search.

However, ngrams present limitations. They cannot learn nor use the context from the

entire molecule. The search algorithm can make up for this under some circonstances but

future advances in de novo generation might still require the use of neural networks. These

could be used as prior to DrugSynthMC which we showed to be highly flexible and could

easily be tuned to fit the need of future drug discovery projects. This would include the

generation of customised drugs libraries tailored for specific binding pockets on bespoke

targets.

Conclusion

While not focusing on set generation, DrugSynthMC is capable of generating sets that com-

pete with state-of-the-art methods, with valid and drug-like molecules as outputs. In addi-

tion, a significant portion of these molecules are found to be synthesizable by retrosynthetic

tools, while being completely novel.

Generating Lipinski molecules proved to be an easy task for Monte-Carlo algorithms,

to the extent that using a prior does not differentiate between them. The next step of our

research will focus on generating molecules with a harder goal in addition to the drug-likeness,

such as the ability to bind chosen 3-dimensional pockets on selected biological targets. This
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could be achieved by using a neural network trained on docking results as a score function

to optimize molecules for specific binding sites.

Code and results are available at: https://github.com/RoucairolMilo/DrugSynthMC
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(17) Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-

Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.;

Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous represen-

tation of molecules. ACS central science 2018, 4, 268–276.

(18) Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-

Guzik, A.; Zhavoronkov, A. Reinforced adversarial neural computer for de novo molec-

ular design. Journal of chemical information and modeling 2018, 58, 1194–1204.

(19) Li, Y.; Zhang, L.; Liu, Z. Multi-objective de novo drug design with conditional graph

generative model. Journal of cheminformatics 2018, 10, 1–24.

(20) Segler, M. H.; Kogej, T.; Tyrchan, C.; Waller, M. P. Generating focused molecule

libraries for drug discovery with recurrent neural networks. ACS central science 2018,

4, 120–131.

(21) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. SCScore: synthetic complexity

learned from a reaction corpus. Journal of chemical information and modeling 2018,

58, 252–261.

(22) Button, A.; Merk, D.; Hiss, J. A.; Schneider, G. Automated de novo molecular design

by hybrid machine intelligence and rule-driven chemical synthesis. Nature machine in-

telligence 2019, 1, 307–315.

(23) Horwood, J.; Noutahi, E. Molecular design in synthetically accessible chemical space

via deep reinforcement learning. ACS omega 2020, 5, 32984–32994.

(24) Bilodeau, C.; Jin, W.; Jaakkola, T.; Barzilay, R.; Jensen, K. F. Generative models for

molecular discovery: Recent advances and challenges. Wiley Interdisciplinary Reviews:

Computational Molecular Science 2022, 12, e1608.

169
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Chapter 4

Puzzle design

4.1 Nonograms
I am an avid player of nonograms. I cannot get enough of them. Unfortu-
nately, each nonogram game only comes with one or two hundred puzzles.
And to the best of my knowledge, no game proposes endless procedurally
generated nongrams or alternated game modes (like versus, time attack, or
survival).

This project aimed at producing a new way to evaluate nonograms using
a solver, and generate nonograms according to their evaluations. Evaluating
the fun proved tricky, it ended up only helping to avoid generating unfun
nonograms. However, the difficulty was more accurately evaluated. The
software was able to produce nonograms exceeding human capacities.

This problem was not useful as a benchmark for comparing MCTS algo-
rithms, they performed similarly.
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Generating Difficult and Fun Nonograms

Milo Roucairol ID and Tristan Cazenave ID
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Abstract. Nonograms are Japanese logic puzzles where the player must
find a 2D black-and-white image using information on the columns and
rows. Here we present a new method to generate nonograms of varying
difficulties and enjoyability using a human-like solver to estimate the
difficulty of a puzzle, and Monte Carlo Tree Search algorithms to optimize
the estimation of the difficulty.

Keywords: Nonogram · Monte Carlo · puzzle.

1 Introduction

Logic puzzles are a staple of the gaming landscape. Widespread as early as 1913
thanks to newspaper, or even in 1783 with Euler’s Latin square. Every living
person has encountered one (be it crossword or sudoku), and likely solved one
in their life. They are especially popular among retired people and computer
scientists, as they are very similar to many computer science logic problems.
Solving or programming a solver for these problems is common in CS studies
and research.

Sudoku and Sokoban are two of the most notable logic puzzles of the 20th
century. Another notable Japanese logic puzzle from the 80’s was the Nonogram.
It was quickly taken over by Nintendo with the Picross series for the Game Boy
and the SNES with Mario’s Picross in 1995 and entries using the sprites from
Nintendo’s most popular franchises. Spinning off multiple variants, like color
nonograms, mosaic nonogram, nonogram with unknowns, mega-picross etc. We
are interested in the original version of the nonograms.

A nonogram is a grid-based logic puzzle. The player has to fill a grid with
either black or white squares until there are no more unknown cells and the
picture is fully formed. The player is given instructions on the rows and columns
in the form of numbers on top and left of the grid. Each number n indicates
that there are exactly n adjacent black squares. The order in which the numbers
appear is important too, the groups of adjacent black squares mus appear in the
same order as on the indication.

Here we set out to generate Nonogram puzzles of varying difficulties, this has
been the subject of some research. First in 2009, K. Joost Batenburg et al. [1]
introduced a method to evaluate the difficulty and generate simple nonograms.
Followed in 2012 by another assessment of the difficulty of nonograms [2]. How-
ever both these research do not focus on a player related difficulty but only to a
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Fig. 1: Example of a medium sized nonogram, it depicts a cup of coffee on a
saucer

solver/mathematical related difficulty, here we intend to explore the nonogram
design with human players in mind. Solvers for nonograms are also another point
of interest, with genetic approaches like in Wiggers’ work [12].

In this paper we will use a human-like deterministic solver to evaluate the
difficulty and enjoyability (fun) of the generated nonograms, and state of the
art Monte Carlo Search algorithms for the generation process. Our goal is to
make a fast nonogram generator with targetable difficulty to allow for new ways
of playing nonograms: time attack, survival, or endless modees, with a set or
increasing difficulties (Tetris-like gameplay).

2 "Human" Solver

An optimization process requires a way to evaluate the quality of a state. A
state of our search tree is small a black-and-white image. We imagine two ways
to evaluate the difficulty and enjoyability of that image:

1. A neural network trained on a set of images and their evaluation by humans
2. A solver that emulates human logic and stores data about the resolution

We decided to use a solver because designing a human-like solver is an in-
teresting and intuitive task, and the neural network training datasets are not
publicly available yet.

One technique that is commonly used when solving nonograms is to check
the possible extreme positions of a group of adjacent black tiles and see if they
overlap. If they do, the part where they overlap is necessarily black. This is the
main technique used by humans, as such it is also the main one used by the
solver. Conversely, spaces where no possible conformation had a black square on
add a white square

In Figure 2, first the 8 white cells are deduced given all positions of the 10
consecutive white cells overlap on these 8 cells. Then, all possible positions of
the 2 in the third column exclude the 6 first cells from top to bottom (denoted
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Fig. 2: Example of column and row swipes

with black "X"). These 6 cells must be black. This in turn helps us fill the 1st,
4th, 5th and 6th lines from the top.

Our method takes a line or columns, it’s indications, and the already-filled
cells, and compute all possible fillings that meet the requirements of the indi-
cations. Then if for a cell in this line, all possible filling leave it black or white,
the cell is filled in the grid. This method is called over the rows and columns
according to the last cells modified, this mimics human solving as the attention
and memory of a human player are focused on the last cells modified too.

This simple method is enough to solve most nonograms, but the hardest
ones may require a more advanced techniques, like the one called "edge solving".
Edge solving is a type of deterministic guessing, it is done by guessing a white
square, usually on the edges of the grid, and unrolling the usual resolution until
a contradiction is found. Once a contradiction is found, the cell that was guessed
as white is colored black. That technique is unknown by most players, and should
be avoided unless the difficulty target is high and it only happens 1 to 3 times
in the puzzle.

The algorithm has a stack of rows and lines to check (starting with all rows
and columns), it checks them all until if finds a line/row move, it then applies
that move to the row or columns and add the rows and columns of all modified
cells to the stack. If the algorithm does not find a line/row move, it tries to find
a deterministic guessing move that gives a contradiction. If no move is found
it returns the grid in its state, completed or not. We decided to not allow the
solver to do another deterministic guess while one is active, thus used as a score
function it does not produce nonograms unsuitable for humans. This is not a
problem since deterministic guessing is almost never used in most nonogram
games, and never in a nested fashion to the best of our knowledge.

The solving time of the algorithm is a metric sufficient to design hard nono-
grams by maximizing it. But for more precise difficulty targets, the solver returns
other metrics such as the number of time it used edge solving, the number of
step, the length of each backtracking, and others. These metrics are used to
estimate the fun and the difficulty of a puzzle.
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3 Generation

3.1 Search Space

The generation process takes the form of a search tree search as we use Monte-
Carlo Tree Search and other deterministic search algorithms. All the algorithms
share the same search tree (or search space). The root of the search tree is the
initial nonogram that is submitted to the algorithm: an empty grid with black
cells only. From that state, the available moves are swapping the value (white
or black) of any rectangle inside the grid.

This simple single move allows the search algorithms to reach diverse grids in
fewer moves than setting the value of each cell. It also allows for drastic changes
in difficulty and grid layout in very few moves, while also setting the value of
each cell individually if needed.

It is possible to start from an already existing nonogram, or from an image,
and input a list of cells that cannot have their value swapped to preserve the
depiction: nonograms usually depict objects.

3.2 Algorithms

Monte Carlo search algorithms are a family of search algorithms that use sam-
pling (playouts) to learn about a search space to guide the search. They are a key
element of recent breakthrough in game playing such as Deepmind’s AlphaGo
[11], but are also widely used in other machine learning applications like multi-
step retrosynthesis [5] or graph theory [9]. We selected the following algorithms.

1. UCT: Upper Confidence bound applied to Trees, the most commonly used
MCTS algorithm. [6]

2. RAVE: Rapid Action Value Estimation, a variant of UCT using All Moves
As First (AMAF), a machine learning technique appropriate to our search
model because the order of the moves does not matter. [4]

3. NMCS: Nested Monte Carlo Search, a method that recursively calls lower
level version of themselves on child states to find the route leading to the
best score. A level 0 NMCS is a playout. [3]

4. LNMCS; Lazy Nested Monte Carlo Search, a variant of NMCS that intro-
duces the exploitation/exploration dilemma and prunes lower level LNMCS
using playout based evaluation. [10]

5. NRPA: Nested Rollout Policy adaptation, an algorithm inspired by NMCS
that learns online a policy to guide the playouts. [8]

For combinatorial optimization, two families of MCS exist. The main and
most commonly used one is called MCTS and uses an iterative approach, it
includes UCT and RAVE. The other family is recursive, it includes NMCS,
LNMCS, and NRPA.

Deterministic search algorithms are simpler search algorithms that do not in-
volve sampling or machine learning. Intuitively we could expect them to provide
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inferior results compared to methods using machine learning. Recent approaches
show that this is not always the case, they can outperform even the most com-
plex state-of-the-art machine learning on certain problems, as shown in [7,9]. We
selected two widely known deterministic search algorithms:

1. BFS: Best First Search uses a list to keep track of the best candidates, it
opens the best one, evaluates its child, inserts them in the list according to
their evaluation, and repeats. This algorithm is complete, it will explore the
entire search space given enough time.

2. BEAM: Beam Search keeps width w states open at all depth. From a depth
n it opens all the children of the w states and keeps the w best ones for
depth n+ 1.

4 Results

4.1 Experimental Setup

The experiments were made using a 2.60 GHz i5-13600K Intel single core.
We define two goals of optimization:

1. Difficulty for the solver program: time spent solving it by the solver.
2. Difficulty for players: estimation by the solver.
3. Fun: estimation by the solver.

Nonograms also come in many different sizes, we decided to compare our pro-
gram on sizes 5x10, 10x10, and 15x15 as these are the most common nonogram
sizes used in games. Larger nonograms exist too, but the focus is usually on the
picture depicted and not on the difficulty or the puzzling aspect.

Monte Carlo Search experiments require multiple runs. We observed an im-
portant standard deviation among preliminary runs, so we decided to run each
algorithm 10 times over each combination of size and goal.

Finally, this method is intended to be used in real-time by games for player
versus player, or survival (like Tetris for example) game modes for example. In
these game modes small new nonograms must be generated as fast as the player
solves them so we decided to set the optimization time to 60 seconds on an Intel
Core i5-13600K using a single core. This method is also fit for generating regular
low-quality nonogram games, or daily challenges.

For Hyperparameters, BEAM uses a width of 10, UCT a learning ratio of 1,
RAVE a treshold of 5, NMCS a level of 2, NRPA a level of 2, and LNMCS a
level of 3, pruning ratio of 0.8 and 3 playouts per estimation.

4.2 Optimizing the Solver Difficulty

The solver was made to behave like a human, thus the time taken to solve a
nonogram is indicative of its difficulty, but it is also an interesting task by itself
as a benchmark for estimating MCS algorithms performances. The solving times
of graphs optimized to be more complex to the solver by all algorithms are
presented in Table 1.
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BFS BEAM UCT RAVE NMCS LNMCS NRPA
5x5 0.000417 0.000181 0.00150 0.00121 0.00179 0.00180 0.000131
5x10 0.0200 0.00219 0.226 0.145 0.103 0.0963 0.00272
10x10 0.0221 0.00305 0.591 0.568 0.308 0.563 0.0286
15x15 0.00995 0.00254 9.578 10.466 3.066 13.07 1.741

Table 1: Mean solving times of nonograms generated in 60s in seconds, greater
values indicate success from the Monte Carlo optimization algorithm

4.3 Optimizing the Estimated Player Difficulty

To estimate the difficulty for a human player, we focus on three metrics:

1. The number of steps required to solve the puzzle
2. The number of times edge guessing is required
3. The number of times backtracking is required (the next available move is

not in vicinity)

Only focusing on the number of steps like in [1] would not result in an actually
difficult puzzle, but in tedious ones (like the one shown in Figure 4 of their paper).
While the difficulty and tediousness often overlap in nonograms, and a minimum
number of steps is required to make a hard enough puzzle, the number of steps is
not sufficient to build difficult nonograms, and is here the least important part
of the evaluation. The other two members of the difficulty estimation are the
number of times the player must backtrack to find a new available move (the
move is N cells away from any modified cells last), this is the most important
part of the equation and where we think resides the true difficulty. The last part
of the equation is the number of advanced deterministic guessing techniques the
player must use (edge guessing), puzzles must refrain from using too many of
these in order to remain enjoyable, as such only the reward follows a square root
function.

difficulty(N) = n(N) +
√
g(N) ∗ 50 + d(N) ∗ 10

Where N is the solution to the nonogram, n(N) the number of steps in that
solution, g(N) the number of deterministic guessing, and d(N) the number of
times no move is found in the 7 lines and rows checked after making a move.
The factors (50 and 10) were set to these values because a long backtracking is
approximately 10 times more complex and time consuming for a human than
executing moves found directly. A deterministic guessing can be simple or very
hard, for the sake of the method’s simplicity it is set 50, but could be computed
more accurately depending on what happens during the guessing, or set to higher
values like 100 by default.

The estimated difficulty scores of graph optimized by all algorithms are pre-
sented in Table 2
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BFS BEAM UCT RAVE NMCS LNMCS NRPA
5x5 103.710 103.710 158.670 148.930 168.956 166.241 96.536
5x10 112 112 197.533 184.609 211.582 212.475 116.202
10x10 181.602 217 277.778 280.949 271.944 272.314 198.370
15x15 299 401 308.975 313.443 320.596 296.749 282.483
Table 2: Mean estimated difficulty scores of nonograms generated in 60s

4.4 Optimizing the Fun

Estimating the human player’s fun is a harder task as it is even more subjective.
According to players, the fun is "like dominos or finishing a jigsaw puzzle, seeing
something meticulously set up and solved line by line finally stepping back to
look at the result, it’s satisfying because of completion itself", or "solving any
nonogram gives me a dopamine hit, but the bigger ones definitely hit harder.".
Other players find satisfaction in hard puzzles (but we are not going to use
this definition of fun in this section), otherwise the puzzles are generally fun by
default, unless they are unfun.

An unfun puzzle can be defined as unnecessarily tedious and frustrating. As
such, the number of total steps, edge guessing, and backtracking must be limited
with some tolerance to avoid making the puzzles so simple they become tedious
again.

To avoid puzzles so easy they become unfun, one of the terms in the paren-
thesis favors balance between the number of black and white cells. The other is
the kurtosis value of the lengths of the moves of the solution. Both are multiplied
by the number of unique lengths of the moves of the solution because players
enjoy the most variety.

fun(N) = (
4 ∗ b(N)w(N)

s(N)2
− k(N)) ∗ u(N) + 5−max(d(N), 5)− g(N)2

Where N is the solution to the nonogram, s(N) the size of the grid (number
of cells), k(N) the kurtosis of the lengths of the moves used, u(N) the number of
moves of different lengths used, b(N) the number of black cells, w(n) the number
of white cells, n(N) the number of steps in that solution, g(N) the number of
deterministic guessing, and d(N) the number of times no move is found in the 7
lines and rows checked after making a move. Like with the difficulty, this function
is an attempt to model the fun. It is to be improved, ideally supported by puzzles
rated by players, which we do not have.

The estimated fun scores of graph optimized by all algorithms are presented
in Table 3

4.5 Overview of the Solver’s Estimations

To assess our estimation function and solver, we ran it on 150 nonograms, in
figure 3 we show 15 of them and their fun scores, difficulty scores, and solving
times.
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BFS BEAM UCT RAVE NMCS LNMCS NRPA
5x5 12.765 12.765 12.765 12.696 12.765 12.765 11.099
5x10 14.008 0 16.523 15.642 16.959 17.072 14.326
10x10 18.596 0 19.807 18.540 20.213 19.888 16.417
15x15 18.976 0 13.577 12.113 11.663 13.235 16.225
Table 3: Mean estimated fun scores of nonograms generated in 60s

5 Discussion

With the optimization of the solver’s time on Table 1: finding nonograms complex
enough to maximize the time spent by the solver solving it, the size 15x15 is too
large for most algorithms and does not allow to collect reliable data as the solver
is rapidly countered by UCT, RAVE and LNMCS, but not NMCS. The standard
deviation is high enough that LNMCS performance can be attributed to luck
(UCT 5.019, RAVE 3.550, LNMCS 8.323, NMCS 2.544, NRPA 0.869). But this
does not indicate that the solver is underperforming as seen in Figure 3 where it
solves most nonograms rapidly. On lower grid sizes, LNMCS, UCT and RAVE
are similar, with standard deviations of approximately 0.3 on 10x10. NMCS and
NRPA are outperformed by the other MCS algorithms. BFS and BEAM results
are even lower, this may be due to the use of playouts wich produce complex
puzzles without the need to evaluate at each step (MCS algorithms only evaluate
at the end), leading the deterministic algorithms to be left behind with larger
grids. However, deterministic algorithms seem to perform better on small grids.

The optimization of the estimation of difficulty with a handmade function on
Table 2 shows most MCS algorithms providing similar scores. The standard devi-
ation is approximately 30 with all the MCS algorithms for size 15x15. Differences
between UCT, RAVE, NMCS, and LNMCS are minimal and can be attributed
to their random nature. However, NRPA, the only algorithm learning a policy,
underperforms, while the BEAM search outperforms all MCS algorithms. The
proximity of the 10x10 and 15x15 difficulty scores for the MCS algorithms seem
to indicate that the solving times become too important and block the algo-
rithms at the beginning of the search trees. BEAM evaluates the children of 10
states and goes down the search tree, thus allowing it to reach a harder puzzle.

The optimization of the estimation of fun with a handmade function on
Table 3 show that BEAM locks itself in a local maximum. Again the MCS
algorithms share similar results, with a slight advantage for LNMCS, they all
have a standard deviation of approximately 1 for sizes 10x10 and 15x15 and
less than 0.5 for sizes 5x5 and 10x5. The 15x15 size is where our optimization
process starts to struggle to optimize the fun further, it seems adequate since the
tediousness of a puzzle increases faster than its fun with the size in our opinion.

The application of the evaluations to select 15 nonograms in Figure 3 shows
that the difficulty score, while far from being perfect, is quite correlated to the
difficulty of the puzzles and is sometimes better at evaluating the difficulty than
the solver time. However, our attempt at a fun function is able to produce fun
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(a) D:99, F:-
13.243, T:0.0361

(b) D:50, F:-
17.368, T:0.0049

(c) D:99, F:-
10.337, T:0.0045

(d) D:126, F:-
12.094, T:0.0361

(e) D:89, F:-
5.844, T:0.008

(f) D:51,
F:2.325, T:0.28

(g) D:106, F:-
5.739, T:0.0361

(h) D:132, F:-
24.77, T:0.00503

(i) D:92, F:-
39.721, T:0.0239

(j) D:122, F:-
35.22, T:1.171

(k) D:72, F:-
1.833, T:0.0207

(l) D:92, F:-8.6,
T:0.0289

(m) D:99, F:-
13.243, T:0.0361

(n) D:122, F:-
81.372, T:9.812

(o) D:51, F:
2.325, T: 0.235

Fig. 3: Solver and its estimations applied to 15 nonograms, D: difficulty score,
F: fun score, T: solving time by the solver in seconds

puzzles when used as a goal function for optimization but fails to recognize the
fun in these nonograms. This may be explained by the penalization of determin-
istic guessing, and the kurtosis, for example Figure 3n has a high kurtosis as it
has a mean of move length of 2, same for the kurtosis of Figure 3j. The imbal-
ance between black and white, which does not necessarily have to be respected
in handcrafted puzzles, can skew the estimation of fun too. The fun evaluation
function aims to avoid tedious puzzles, even if it may produce false negatives.

6 Conclusion

In this paper we provided two new ways of evaluating the difficulty of Nonogram
puzzles, improving on the previous work. These two new ways being using the
solving time of a solver deigned to tackle the puzzle in approximately the same
way as a human, and a new difficulty function taking backtracking and deter-
ministic guessing into account. We also experimented with the definition of fun,
with a mixed success, fun is highly subjective and our method only avoids unfun
puzzles, but can flag fun puzzles as unfun, partly due to assumption on the fun
definition which is not the same for all players.
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We then used these functions to design new nonogram puzzles using search
algorithms including State of The Art Monte Carlo Search algorithms. While
MCS algorithms offered similar results, we noticed that NRPA was either able
to learn a policy and outperform the others, or be outperformed.

Our method is apt for this task and can generate many nonograms of target
difficulty rapidly. You can find the code here:

https://github.com/RoucairolMilo/nonogram
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Chapter 5

Conclusion

Four major points should be retained from this work:

• 1) The applications of Monte Carlo Tree Search algorithms are many.
This class of algorithm can be applied to any problem with defined
actions and evaluation functions. They are the state of the art on many
combinatorics problems. While they are not apt to generate images
like recent advances in deep learning, they are more efficient at solving
more strictly defined problems that can lead to great results such as
in pharmaceutics for example. MCTS algorithms are so versatile that
all projects in this thesis use the same algorithms and only swap the
search space.

• 2) UCT is by far the most commonly used algorithm, and family of
algorithms. But it was shown to be outperformed by the nested fam-
ily algorithms on each problem from this thesis. This is because the
nested algorithms optimize at any depth of the search tree and spend
less time in local maximums. Greedy algorithms also showed good per-
formance in combinatorics, especially in mathematics. We encourage
future projects to try more algorithms than just UCT.

• 3) The LNMCS, a variant of NMCS, introduced in this thesis, is
the best-performing MCTS algorithm. It reintroduces the exploita-
tion/exploration dilemma and avoid traps the NMCS could fall into.

• 4) Neural networks can be outperformed by simpler methods, espe-
cially in combinatorics and mathematical problems. Neural networks
still are necessary, or very useful, as policies for complex and less com-
binatoric tasks such as retrosynthesis, or complex evaluation functions.

Here is an exhaustive list of what was accomplished during this thesis:

• 1a) The superiority of MCTS and sometimes greedy search algorithms
over deep learning methods was shown on the spectral graph theory

187



188 CHAPTER 5. CONCLUSION

refutation problem. The constructive approach of the search space is
also a reason for the good performances. The nested family of algo-
rithms produces the best results on this problem.

• 1b) Conjecture 197 from Graffiti is refuted. No refuted conjecture from
Graffiti is left unrefuted by our approach. Conjectures that took days
and were the subject of an article are refuted in seconds or minutes.

• 1c) Three other lesser-known automatically generated conjectures are
refuted. Among dozen of them which were refuted more effectively by
our approach.

• 2a) MCTS and deterministic search algorithms were showed to out-
perform the state of the art for the optimization of communications
and transport graphs under budget constraints.

• 2b) The optimization of communications and transport graphs under
budget constraints is a complex problem whose variants react differ-
ently to different algorithms.

• 2c) The optimization of communications and transport graphs under
budget constraints synthetic instances share the same properties in op-
timization as the real-world instances despite their visible differences.

• 3a) The Coalition Structure Generation problem has a new state of
the art, vastly outperforming the previous, and showing the strength
of LNMCS.

• 3b) The Coalition Structure Generation problem would benefit from
not having too many redundant variation which show no differences
between the algorithms’ performances among them and no reason for
their existence.

• 4a) The HP model has the LNMCS, a new, open, and powerful algo-
rithm for solving it. The HP model is a very interesting toy model with
an unforgiving search space, we encourage researchers in optimization
to try their search algorithms on it.

• 4b) The previous SOTA methods for solving the HP model were not
made public, and were not given a pseudocode. Attempts to reproduce
them did not yield the announced results, to the best of our knowledge,
LNMCS is the best method for the HP model with a readily available
code.

• 5a) Replacing AiZynthFinder’s MCTS with NMCS or GBFS greatly
improved the retrosynthesis’ tool performances.



• 5b) Improving the neural network architecture and method also im-
proved the performances.

• 5c) Combined together, these improvements allowed AiZynthFinder
(already SOTA before the improvements) to vastly outperform ASKCOS
and other SOTA methods. Despite a much smaller dataset compared
to the other approaches.

• 6a) A new SOTA de novo drug generator was proposed, using ngrams
instead of deep learning, and growing the molecules character by char-
acter from the SMILES representation.

• 6b) This new method is able to produce unique, novel, and valid
molecules like none before. In addition, at least 32% of the molecules
were synthesizable, which was not directly assessed using a retrosyn-
thetic software before.

• 7a) An attempt was made to evaluate the difficulty of nonograms using
a human-like solver, with relative and subjective success.

• 7b) An attempt was made to evaluate the fun of nonograms using
a human-like solver, evaluating fun is highly subjective and a harder
task that was not accomplished without flaws.

This thesis shows that search algorithms, and especially MCTS (and
more precisely, the nested family of algorithms) can easily produce the best
results in optimization processes in constructive search spaces.
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RÉSUMÉ

Ce document regroupe les article publiés lors de ma thèse dirigée par Tristan Cazenave au LAMSADE.
La recherche Monte Carlo désigne une classe d'algorithmes de recherche stochastiques retournant une solution avec
une garantie dans le temps, mais sans garantie de résultat. Ces algorithmes utilisent des techniques d'apprentissage par
renforcement basées sur des exploration aléatoires ou guidées.
Les capacités des algorithmesMonte Carlo sont limitées dans des domaines d'application mis en valeur récement, comme
la génération d'image et de texte, ou les réseaux de neurones, LLM et autres algorithmes entrainés sur de larges bases
de données dominent. Mais en revanche ils excellent sur les problèmes plus classiques et définis.
L'usage le plus connu d'algorithme de rechercheMonte Carlo est son utilisation en 2017 pour battre pour la première fois un
champion de Go, chose qu'aucune autre famille d'algorithme n'était parvenue à faire. Mais les utilisations d'algorithmes de
rechercheMonte Carlo vont aussi bien au delà des jeux. Les algorithmes de rechercheMonte Carlo sont largement utilisés
dans la chimie, la recherche opérationelle, les transports, les mathématiques, et dans les jeux. Ils peuvent être appliqués
à tout problème de décision séquentielle et de recherche dans un espace d'état tant que les fonctions d'évaluation et de
modification d'un état sont définies.
La définition de structure pour cette thèse est ``système défini par les éléments qui le composent et les interactions entre
ces éléments''. Cette thèse explore plusieures applications de recherche Monte Carlo dans le contexte de la génération
de structure. De nombreux espaces de recherche peuvent être représentés comme une structure en dehors des jeux,
comme le circuit du problème de voyageur de commerce par exemple, mais aussi des molécules, des cristaux, des
coalitions, des graphes, etc.
Les points forts de cette thèse sont : - Des comparaisons entre algorithmes sur divers problèmes montrant la supériorité
de la famille d'algorithmes ``nested''. - Une nouvelle variante de la Nested Monte Carlo Tree Search (NMCS) avec de
meilleures performances. - Une bibliothèque d'algorithmes Monte Carlo codés en Rust. - Un projet de réfutation de
conjectures des graphes. - Une implémentation du NMCS pour AiZynthFinder, le logiciel de rétrosynthèse open source
d'AstraZeneca. - Un programme de génération de molécules valides et synthétisables.
Les sujets abordés peuvent être séparés en deux groupes. D'un côté la chimie, avec le HP-model, la rétrosynthèse, et
la génération de molécules. Et de l'autre les mathématiques, avec les structures de coalitions, la théorie spectrale des
graphes, les réseaux de transport, et les nonograms.
Bien que cette thèse ne se consacre qu'à des applications de la recherche Monte Carlo, elle apporte aussi des aperçus
plus généraux : une comparaison des familles d'algorithmes montrant la supériorité des ``nested'', une nouvelle variante
du NMCS, et des heuristiques et modifications généralement utiles pour les problèmes combinatoirement difficiles.

ABSTRACT

This document gathers the articles published during my PhD thesis directed by Tristan Cazenave at LAMSADE.
Monte Carlo search refers to a class of stochastic search algorithms that return a solution with a guarantee of time, but
no guarantee of result. These algorithms use reinforcement learning techniques based on random or guided exploration.
The capabilities of Monte Carlo algorithms are limited in recently highlighted application domains, such as image and text
generation, where neural networks, LLM and other algorithms trained on large databases dominate. On the other hand,
they excel in more classic, defined problems.
The best-known use of a Monte Carlo search algorithm is its use in 2017 to beat a Go champion for the first time, something
no other algorithm family had managed to do. But the uses of Monte Carlo search algorithms also extend far beyond
gaming. Monte Carlo search algorithms are widely used in chemistry, operations research, transportation, mathematics,
and gaming. They can be applied to any sequential decision and state-space search problem, as long as the functions
for evaluating and modifying a state are defined.
The definition of structure for this thesis is “a system defined by the elements that compose it and the interactions between
these elements”. This thesis explores several applications of Monte Carlo search in the context of structure generation.
Many search spaces can be represented as structures outside of games, such as the circuit of the traveling salesman
problem, but also molecules, crystals, coalitions, graphs, etc.
The highlights of this thesis are: - Comparisons between algorithms on various problems showing the superiority of the
“nested” family of algorithms. - A new variant of Nested Monte Carlo Tree Search (NMCS) with improved performance.
- A library of Monte Carlo algorithms coded in Rust. - A project to refute graph conjectures. - An NMCS implementation
for AiZynthFinder, AstraZeneca's open source retrosynthesis software. - A program for generating valid, synthesizable
molecules.
The topics covered can be divided into two groups. On the one hand, chemistry, with HP-model, retrosynthesis and
molecule generation. On the other, mathematics, with coalition structures, spectral graph theory, transport networks and
nonograms.
Although this thesis is devoted solely to applications of Monte Carlo search, it also provides more general insights: a com-
parison of algorithm families showing the superiority of “nested”, a new variant of NMCS, and heuristics and modifications
generally useful with NP problems.
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