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I – Introduction

Después agregó animales que inventaba, pegando medio elefante con la mitad de
un cocodrilo, sin saber que estaba haciendo con barro lo mismo que su tía Rosa,
a quien no conoció, hacía con hilos de bordar en su gigantesco mantel, mientras
Clara especulaba que si las locuras se repiten en la familia, debe ser que existe
una memoria genética que impide que se pierdan en el olvido.

La Casa de los Espíritus (Isabel Allende)

I.1 Why biophysics ?

The natural sciences are a set of disciplines that try to make sense of the world around
us in a way that we humans can understand. Initially motivated by survival, for instance
trying to predict weather patterns to develop agriculture, this titanic endeavor probes the
smallest scales and fastest times by crashing particle beams into each other, replicating the
moments right after the Big Bang [1], and the largest scales and slowest times by analyzing
the sounds [2] and the light [3] that reaches the Earth as it wanders through the Universe.
Needless to say, in between these two extremes there is ample room to explore and indulge
our curiosity.

Living systems sit comfortably at a scale that we can experience with our senses, whether
it is large-scale flocks of birds [4], the delicate wing movements allowing the flight of the
honeybee [5], or seeing a neutrophil chasing a bacterium through a microscope. 1 Why would
a physicist be useful, or interested in working on such problems ? One part of the answer is
that, as we will observe later, living systems “need physics” to regulate themselves, and more
relevant to this work, multicellular systems “need physics” to develop. This presumes that we
can draw the line between what is and what is not “physics”, which is rather arbitrary. One
could argue that, deep down, everything is physics, and life is nothing but the integration
of the standard model Lagrangian. In practice, this is not particularly useful, or insightful
in describing the world at the scale of living systems with our current mathematical and
computational tools. Rather, we will consider physics as the mesoscopic approaches of fluid
mechanics and elasticity, supplemented by the regulatory elements that drive these processes.

1. Classic movie from the 1950s by David Rogers. See https://embryology.med.unsw.edu.au/
embryology/index.php/Movie_-_Neutrophil_chasing_bacteria.

1
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2 Chapitre I. Introduction

The other part of the answer comes by identifying how people pose questions and
construct models in the different branches of science, factors which many times stem from
tradition. Two of the branches of biology whose areas of interest overlap significantly in
this thesis are cell and molecular biology. Their approach is methodic and detailed, carefully
probing the interplay between different chemical species involved in intricate metabolic path-
ways. The physics approach is reductionist, trying to find the minimal amount of ingredients
necessary to describe a phenomenon, and searching for “universal” laws that hold in a wide
range of situations, such that many problems can be reduced to a form that can be un-
derstood in the light of an analogous simpler situation. The fascination of a physicist comes
from the realization that many phenomena at different scales can behave in a similar way,
even if their fundamental interactions have a completely different origin. Such a “sloppy”
approach can be the object of ridicule, such as the plethora of jokes about spherical cows
moving in the absence of friction. However, in doing so, we can make general statements
about a particular process, decomposing it into important and negligible contributions. If
our frictionless spherical cow does a good enough job at reproducing what we observe, and
even predicting further results, then it is likely the shape and friction are not particularly
relevant to the phenomenon in question. As with any natural science, the ultimate test to
challenge our intuition, and our sense of a “good enough job”, is experimentation [6].

In broad terms, we will define biophysics as the use of modeling approaches and techniques
that are standard in physics to characterize and study biological phenomena.

Living systems have many characteristics that are amenable to such a treatment, emer-
ging from their multiscale nature, exemplified in Fig. I.1. At the molecular scale, the genetic
material of cells is encoded into a polymer chain, DNA, that can be replicated and transla-
ted depending on the occupancy of different binding sites, such that genes can be expressed
under specific circumstances [7]-[10]. At a larger, coarse-grained mesoscale, the interactions
between different molecules give rise to controllable proliferation and actomyosin deforma-
tions, giving structure, functionality, and motility to different cells and tissues [11], [12].
Finally, at an organism scale, the integration of different environmental stimuli by living
systems allows them to adopt different behaviors and strategies to find resources and mates
[13]-[15].

Hence many questions arise. How did this complexity evolve in the primordial stages
of our planet ? How do living systems find ways to solve problems and survive in their
environments ? What constraints does physics impose on living systems ? Furthermore, we
cannot but marvel at the wide plethora of living beings that have evolved on our planet,
displaying spectacular colors and shapes [16], [17], and adapting to different biomes. On a
personal note, I believe that beyond the limited understanding of the inner workings of living
systems that we may acquire in the span of our human activities, their astounding diversity
holds value in itself. Unfortunately, the fate of our ecosystems has been left at the mercy of
“bigger” interests that are terraforming our planet at a rate far exceeding the adaptation time
of many species [18]. These questions and challenges are far too many to treat in depth in a
single work, however, they must be stressed as a motivation for our scientific endeavor. This
thesis will tackle the challenge of development in multicellular organisms under a mesoscopic,
physics-driven perspective.
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Fig. I.1 Living systems at multiple scales. Left : Electron micrograph image of DNA
during transcription in the Xenopus embryo. Branches represent the nascent transcripts, and
the RNA polymerases are shown at the base of the branches. Scale bar : 0.2 µm. Adapted
from [19]. Center : Migrating Madin-Darby canine kidney (MDCK) epithelial cells in an
in-silico experiment emulating wound healing. The dashed line represents the edge of the
cell collective at the start of the experiment, end configuration after 22 h shows displacement
and fingering. Scale bar : 100 µm. Right : The worm Caenorhabditis elegans displaying one
of its many postures, each associated to different behaviors. Typical length corresponds to
1 mm. Adapted from [20].

I.2 Development

All multicellular organisms emerge from the proliferation of a single cell or nucleus. A
fascinating problem as a consequence of this is how to transition from a completely symmetric
state of one cell to an organism comprising different organs, folds, and highly specialized
tissues in specific locations. In addition to form and function emerging from this state, such
a process must be robust against intrinsic and extrinsic perturbations.

Many natural phenomena exhibit pattern formation, meaning that even if the initial
conditions in space are completely homogeneous, the interaction between different consti-
tuents of the system will lead to an instability that will grow over time and produce spatial
features. These range from completely physical phenomena, such as the formation of convec-
tive cells in boiling pots [21] or active stars [22], to biochemical mechanisms resulting in the
patterning of feathers in penguins [23]. A big breakthrough in the mathematical modeling of
pattern formation in biochemical systems came from the work of Alan Turing. The so-called
Turing mechanism characterizes how reaction-diffusion systems of as little as 2 chemical
species allow for patterns to emerge [24]. All of this is to say that chemistry can find a
way to generate patterns. However, that is only half of the picture, as these patterns must
materialize as morphological changes or material transport.

At the mesoscopic scale spanning cells and tissues, mechanics comes to life. As cells
duplicate their genome and grow, they continually exchange material with their environment
to regulate their size and the forces acting on them [25]. And when cells aggregate, they can
present fluid-like [26] and elastic-like [27], [28] behaviors for different timescales and confining
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geometries. As a result, a typical framework to study development considers the interplay
between mechanics and biochemistry.

Much work has been devoted to understanding how biochemistry influences mechanics.
For instance, the localization of certain chemical species can drive the activity of actin fila-
ments [29]. Furthermore, concentration gradients of chemoattractants drive the remodeling
of fungal networks [30], and tune the activity of molecular motors in chemotactic bacteria
to produce a bias in their translational direction [31].

The converse feedback must not be forgotten, as the deformation of tissues and the
flow of fluids will mediate the transport of different chemical species, and the production
of forces can trigger changes in gene expression through mechanotransduction [32]. When
the molecular species that are being transported or activated/repressed by the mechanical
forces are involved in regulating such forces, we have the perfect setting for mechanochemical
pattern formation [33], [34].

Space is not the only coordinate where patterning is important, because biological pro-
cesses, and development in particular, consist of sequences of events : how are “time patterns”
achieved ? And, how relevant are they to life ? The building block of living systems, cells, are
constantly cycling through different phases of the cell cycle to grow, transcribe new mRNA,
and duplicate [37]. And at the organism scale, the development of the body axis in verte-
brates depends on rhythmic oscillations that give rise to disjointed segments, with different
organisms having a characteristic oscillation frequency [38]. These oscillatory processes re-
quire a stable limit cycle to exist in the phase space of relevant variables, and the key to
achieving them is having a dynamical system with suitable nonlinear interactions. The Van
der Pol oscillator is a prime, simple example that can be realized by electrical circuits [39].
Another example is the Brusselator, a system of three chemical species which reaches a limit
cycle at steady state [40]. More generally, Belousov–Zhabotinsky reactions are a whole class
of biochemical clocks that produce spatio-temporal patterns [41]. Even extremely simple
mathematical abstractions, so-called “cellular automata”, have been shown to produce non-
trivial spacetime patterns emerging from a small set of rules that determine the evolution of
a given density field [42]. With all of this in mind, we may wonder, how are developmental
processes coordinated at the scale of the developing embryo ? This will be explored in a
posterior section of this work.

One last remark that we would like to mention before delving into the specifics of deve-
lopment in different organisms is that the same interplay between mechanics and chemistry
that drives flows, waves, and decision-making in development is involved in the growth and
spreading of cancer [43] and regeneration [44], [45]. Hence, the theoretical framework of
development could shed light on various areas of interest in relation to living systems.

Different developmental plans can be found in nature, and each one of them showcases
different ways in which physics interacts with biochemistry to transition between different
stages. Some notable examples come from established model systems in biology. For example,
the early embryo of the quail is a disk-shaped structure that rests on top of the egg yolk. Sym-
metry breaking and cell migration driven by actomyosin tension deform a region of the tissue
that lies at the boundary between the embryo and the extra-embryonic medium. The flows,
shaped like counter-rotating vortices, lead the boundary region to form a dense structure
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in the mid-embryo called the primitive streak, which sets the stage for differentiation later
on [35], [46], [47] (see Fig. I.2 top). Another example comes from zebrafish embryos. Their
early structure is roughly spherical, separated between the blastoderm, a mass of dividing
cells, and the yolk cell. The structure undergoes a process called epiboly or doming, where
the top blastoderm layer spreads and migrates covering the yolk, precluding the formation
of the ectoderm and future differentiation. The driving force behind this process has been
linked to controllable changes in tissue rigidity [36], [48], [49] (see Fig. I.2 bottom).

This work will focus on the early, i.e. pre-gastrulation development of another model
system in biology, Drosophila Melanogaster, a species of fruit fly.

Fig. I.2 Physical mechanisms drive development. Top : PIV reconstruction of the
early quail embryo before and after the formation of the primitive streak due to actomyosin-
driven cell migration. Colors indicate the relative area of different regions : extraembryonic
region in blue and primitive streak in red. Adapted from [35]. Bottom : Images of the early
zebrafish embryo showing the blastoderm, a mass of cells, sitting on top of the yolk cell.
Proliferation of the blastoderm cells leads to a thinning and spreading of this external layer
over the yolk cell. Adapted from [36].
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Fig. I.3 The star of the show. Adult female Drosophila Melanogaster specimen. Typical
size : 3mm. Retrieved from https://bugguide.net/node/view/901568.

I.3 Enter Drosophila

Drosophila melanogaster (see Fig. I.3) has been utilized in genetic and developmental
studies for more than a century. Experimentally, it is a practical system to work with. They
are readily available to catch, have an approximate time from fertilization to hatching of
10 days at room temperature, and females can lay around 24 eggs per day, depending on
the available substrate [50], [51]. Decades of research on this model organism have produced
an astonishing number of mutant lines that are well-kept by different research institutes.
As an example of the impact that research on the fruit fly had during the 20th century,
the 1995 Nobel Prize in Physiology or Medicine was awarded to Edward Lewis, Christiane
Nüsslein-Volhard, and Eric Wieschaus for their experimental work on the genes that regulate
the development of Drosophila. Understandably, the whole process from egg to adult larva is
beyond the scope of a single work. We will focus on one small fraction of development that
has had relatively less attention in comparison to other studies, which is the pre-gastrulation
embryo (see [52] for a detailed review).

After fertilization, the embryo of Drosophila goes through several rounds of nuclear divi-
sion. Nuclear cycles 4 to 7 occur concomitantly with cytoplasmic flows that spread the nuclei
along the anterior-posterior axis of the egg [53], [54]. Then, after cycle 8 the flows stop, and
most of the nuclei migrate to the cortex of the embryo [55]. The nuclei will continue dividing
at the cortex, and during cell cycle 14 the nuclei will develop cellular membranes, forming
an epithelial tissue. Before cellularization, the nuclei share a common cytoplasm, hence the
early egg is a syncytium. This process is summarized in Fig. I.4.

It must be stressed that the initial cycles are extremely fast compared to regular cellular
cycles, clocking in about 8 minutes each [55], [56]. Speculatively, it is evolutionarily advan-
tageous to be fast to avoid being eaten by predators [52]. The way in which the fly reaches
these fast nuclear cycles is by skipping the G phases entirely and alternating between the S
and M phases. Consequently, there is little to no DNA transcription in these early cycles,
and the embryo depends on maternally provided RNA transcripts and proteins to progress
through its developmental plan.

https://bugguide.net/node/view/901568
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Fig. I.4 Scheme showing the early stages of development of Drosophila Melanogaster from
fertilization to the beginning of gastrulation. Scheme displays changes in the nuclear distri-
butions, cell cycle duration, and transcriptional activity in the egg. Adapted from [52].

Drosophila has evolved an elegant solution to the problem of symmetry breaking and
differentiation. For the cells to differentiate adequately, they activate specific transcriptional
pathways depending on the concentration of particular “map” proteins, so-called morpho-
gens, at their location [8]. The space-time concentration of these morphogens as development
goes forward is the result of the initial deposition of maternal mRNA in different positions of
the embryo [57]. Modifying this morphogen map yields amazing, yet predictable results, such
as producing an embryo with two tails when the maternal gene that determines anterior-
posterior polarity, bicoid, is lacking [58]. From this, it is clear that to produce a viable embryo,
the positions of the cells matter, hence gastrulation must put cells in the right places.

In order for cellularization and gastrulation to happen, new biochemical pathways must
activate. This requires that nuclei start transcribing their DNA [59], [60], and hence, slowing
down the cell cycle is a must [61]. Experiments have shown that the slowdown is controlled
by the ratio of DNA content to cytoplasm, with the wild-type concentration at cycle 14
defining the so-called midblastula transition (MBT) [62]-[64]. As an example of how such
a regulatory process could lead to a non-uniform slowdown, the shkl mutant has reduced
cytoplasmic flows in the initial nuclear cycles, and hence reduced nuclear spreading. As a
result, the nuclear density is non-uniform and the embryos present compromised synchrony
at the MBT [65], leading to lethality when going beyond a certain asynchrony threshold.

The bottom line is that the nuclei must be in the correct positions, even before gastru-
lation, for development to progress adequately. Having illustrated the importance of these
processes, this thesis will be concerned more particularly with this nuclear positioning and
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the synchrony of the pre-gastrulating mitotic divisions in the early embryo of Drosophila.

I.4 Structure of this thesis

Chapter I introduced the big picture of biophysics as a way of approaching living systems
with the mesoscopic tools and the eyes of a physicist. We described the development of
multicellular organisms under this light by highlighting the importance of symmetry breaking
and pattern formation in space and time. Then, we briefly mentioned some key physics-driven
developmental processes in quail and zebrafish embryos. Finally, we briefly summarized the
early development of Drosophila Melanogaster to contextualize the research questions and
results presented in later chapters.

Chapter II will study the nuclear positioning during cycles 1-7, i.e. from fertilization until
the nuclei achieve a uniform distribution in the bulk of the embryo. We will present previous
experimental results that argue for the production of actomyosin contractions induced by
the cell cycle biochemistry, in particular the activation of the phosphatase PP1 in regions
surrounding the nuclei, which in turn drive cytoplasmic flows. We built up a mathematical
two-fluid (Cytosol + actomyosin contractile gel) model including all the necessary regulatory
chemical species and the nuclei. Our model reproduces experimental results on the large
and small-scale structure of the flows, the positioning of the nuclei, and non-trivial myosin
transport. We made novel predictions on the transport of morphogen proteins by the flows,
and the perturbations to the flow geometry and strength when the embryo geometry is
altered. These predictions were successfully verified by experimental observations. We also
suggest future experiments that could probe the predicted micron-thin boundary layer close
to the cortex where the active fluid entrains the cytosol.

Chapter III considers a simplified mathematical model of the flows by separating them
into a gel layer close to the cortex and a cytosol in the bulk. By stripping the regulatory
biochemistry to its simplest elements, we were able to analytically study an actomyosin
instability driven by its chemical reaction-advection diffusion system, resulting in pattern
formation in the gel layer, and the production of sol flows in the bulk. Next, we studied
the production of flows in different geometries by the nuclei-activated PP1 concentrations.
Finally, we were able to obtain relevant timescales of centering in a circular geometry, and to
give an intuition to situations with multiple nuclei in various geometries. These results can
help better understand how life uses cytoplasmic flows, and help in designing novel, smart
materials.

Chapter IV jumps to the stage where the nuclei have migrated to the cortex of the egg
due to microtubule-mediated interactions. During cycles 11-13, the S phase slows down in
preparation for arrest at cycle 14. We will discuss how synchrony is relevant, especially given
the size of the embryo and the typical diffusion time of molecules in light of how fast divisions
must happen. We will present experimental data that show that nuclear density, the DNA
content in the nuclei, and temperature are all factors that affect this synchrony. We will
build a mathematical model that brings together previous modeling work and experimental
observations to reproduce observations on the duration and synchrony of the pre-gastrulating
cell cycles, making novel predictions that open up opportunities for future experimentation.



II – Cytoplasmic flows and nuclear
positioning

On sait qu’au moment du flux, les eaux resserrées entre les îles Feroë et Loffoden
sont précipitées avec une irrésistible violence. Elles forment un tourbillon dont
aucun navire n’a jamais pu sortir. De tous les points de l’horizon accourent des
lames monstrueuses. Elles forment ce gouffre justement appelé le « Nombril de
l’Océan », dont la puissance d’attraction s’étend jusqu’à une distance de quinze
kilomètres. Là sont aspirés non seulement les navires, mais les baleines, mais
aussi les ours blancs des régions boréales.

Vingt mille lieues sous les mers (Jules Verne)

(This chapter and corresponding appendix are adapted from the publication
“Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in
early Drosophila embryos” [66], by Claudio Hernández-López, Alberto Puliafito,
Yitong Xu, Ziqi Lu, Stefano di Talia, and Massimo Vergassola)

II.1 Motivation & Established facts

II.1.1 Cytoplasmic flows in living systems and Drosophila

Cytoplasmic flows are ubiquitous in biology, ranging from flows in large Physarum cells
[67]-[69] to flows in the extracellular space controlling left-right asymmetry in development
[70], [71]. Oogenesis and embryogenesis are two biological processes where flows play key roles
[72], [73]. Flows are central in both C. elegans and Drosophila for the specification of oocytes
[74]-[79] and play a crucial role in nuclear and spindle positioning in oocyte mouse meiosis
[80], [81]. In most species, cytoplasmic flows are observed in the early stage of embryogenesis
[53], [82]-[84]. While the functional role of these flows is not fully understood, we have
recently demonstrated that flows drive proper nuclear positioning in early Drosophila [54].
The early fly embryo develops as a syncytium, i.e., a multinucleated cell where molecules
are free to diffuse. The embryo is large (about 500µm in length) and thus nuclei following
fertilization have to migrate distances as large as 200 − 300µm to fill the entire embryo [53],
[54], [85] (see Fig. II.1). Nuclear movements must be fast, as development proceeds very

9
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Fig. II.1 Nuclear positioning in the embryo of Drosophila after fertilization.
Adapted from [55].

rapidly to avoid predation and pathogens’ infection [86]. Upon fertilization, nuclei undergo
fast and synchronous cycles of cleavage divisions, lasting about 8 minutes each [56], [87]. We
have previously shown that during those divisions, flows transport nuclei along the anterior-
posterior (AP) axis ensuring that they occupy the entire embryo uniformly [54].

Cytoplasmic flows in early Drosophila arise from the coupling between cell cycle oscil-
lations and actomyosin contractility [53], [54], [85]. At mitotic exit, the activity of Cdk1, a
master regulator of the cell cycle, begins to decrease near the chromosomes [88]-[90]. This
local down-regulation triggers the activation of the mitotic phosphatase PP1 (and likely
PP2A as well) which, together with downregulation of Cdk1, can effectively dephosphory-
late mitotic targets in a region of ∼ 50µm around the nuclei [54]. This size is sufficient
to trigger dephosphorylation of mitotic targets near the cortex. Thus, PP1 activity effecti-
vely couples nuclear and cortical dynamics. Higher PP1 activity at mitotic exit triggers the
differential activation of actomyosin contractility at the cortex. Thus, nuclei can drive the
spatiotemporal pattern of cortical actomyosin contractility through the regulation of the cell
cycle oscillator. Notably, when cortical actomyosin contractility is blocked via optogenetic
perturbations, flows are abolished and nuclei do not spread properly [54] . As a result of
this reduced nuclear movement, nuclear density across the embryos is highly non-uniform.
In turn, this results in asynchronous cell cycles prior to the maternal-to-zygotic transition
(MZT), which demonstrates the functional role of the flows [54], [65], [91].

Our previous experimental results strongly argue that cytoplasmic flows observed in
early embryos are driven by cortical contractility [54] (see Fig. II.2). Yet, we are still lacking
a quantitative picture of how cortical contractions drive the flow of cytoplasm across the
embryo and its consequences. Previous models have described the cytoplasm as a viscous
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Fig. II.2 Actomyosin contractions determine flow geometry. Cytoplasmic flows
measured at the cortex of the embryo and at a mid-plane. Top : Wild type flow profiles.
Bottom : Altered flow profiles due to the recruitment of myosin-II motors in the anterior
side using an optogenetic tool. Adapted from [54].

fluid with cortical flows imposed as boundary conditions [54], [82], [92]. This model presents
severe limitations, both fundamental and practical. First, the model ignores interactions of
the actomyosin network at the cortex and the cytosol. In particular, the cytosol should obey
the usual no-slip boundary conditions of normal fluids, which is not the case in the above
model. Moreover, our analysis of the cytoplasmic vorticity field shows that its small-scale
structure in early Drosophila embryos deviates from the behavior of a simple viscous fluid.
Specifically, vorticity of a Stokes’ flow is a harmonic function and should then have maxima
and minima only at the boundary whilst they are experimentally observed in the interior of
the embryo [54].

A more advanced framework for cytoplasmic flow is offered by multiphase models with
multiple fluids [93]. However, these models can become very cumbersome with a large number
of mathematical terms and couplings. A simpler approach is offered by models inspired
by poroelasticity, which were shown to capture the dynamics of blebbing and response to
microindentation [94]-[96]. Here, we present a two-fluid physical model for cytoplasmic flows
in Drosophila embryos, namely, we consider the interactions between a gel, the contractile
actomyosin network, and a passive viscous fluid, the cytosol. We will validate this model by
showing that it can capture the basic properties of cytoplasmic flows and then develop its
predictions and functional consequences. Our description will start by giving a brief modeling
introduction to fluids at low Reynolds numbers and to the behavior of actomyosin networks.
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II.1.2 Physics of fluids in living systems

Newton’s famous equation F = dp
dt relates the rate of change of the momentum of an

object to the external forces that act on it. In an analogous way, the Navier-Stokes equation
relates the rate of change of the momentum density in a fluid as it flows to the different
forces that act on it. This equation is supplemented by the continuity equation associated
with the fluid density. They can be written in the following form :

ρ
Dv

Dt = ∇ · σ + f , (II.1)
∂ρ

∂t
+ ∇ · (ρv) = 0 , (II.2)

where D represents the material derivative that accounts for the motion of the fluid parcel
in study :

D
Dt = ∂

∂t
+ v · ∇ , (II.3)

and f are volume forces acting on the fluid.

The stress tensor σ contains, in a nutshell, the information of the response of the system
to the flow by characterizing the forces that adjacent fluid parcels exert on each other. A
constitutive equation is a mesoscopic description of this response, arising from the integration
of the molecular interactions between the components of the fluid. The simplest constitutive
equation that we can write considers the friction forces between adjacent parcels that are
flowing at different speeds, such that it must be an expansion of spatial derivatives of the
fluid velocity.

A Newtonian fluid has a stress tensor consisting of three main parts. First, there is
an isotropic pressure term that accounts for the kinetics of particles at the molecular scale.
Then, there is a bulk viscosity term that describes the resistance of a fluid to volume changes.
Finally, there is a shear term that describes the resistance of a fluid to shape changes. A key
assumption, that underlies the Newtonian classification, is that the viscosity coefficients do
not change as the fluid deforms, otherwise, we would deal with the rheology of non-Newtonian
fluids.

With all this, the Navier-Stokes equation for a Newtonian fluid can be written as :

ρ
Dv

Dt = −∇p+ ηs∆v +
(1

3ηs + ηb

)
∇ (∇ · u) + f . (II.4)

Now we can perform a dimensional analysis of these equations. Ignoring the influence of
external forces :

ρ
V

T
∼ P

L
+ η

V

L2 , (II.5)

where ηs ∼ ηb ∼ η, in a scaling fashion. Also, T ∼ L/V . The ratio between the viscous and
inertial terms is the Reynolds number :

Re = ρ
V 2

L

L2

ηV
= ρV L

η
. (II.6)
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If Re ≪ 1, inertial effects are negligible, in an analogous way to the overdamped limit
in mechanical systems, and the left side of Eq. II.4 can be dropped. A very rough estimate,
considering the cytoplasm as water, a typical length 500 µm, velocities 1 µm s−1, density
1000 kg/m3, and viscosity 1 mPa s yields Re ∼ 2 × 10−2. This means that we can safely
discard the inertial terms from the equation.

In essence, at the scale of cells and bacteria, swimming in water is akin to humans trying
to swim in a very viscous fluid. More importantly, Stokes’ equation is symmetric under
time-reversal, which has the profound consequence of preventing net motion from reciprocal
motion [97], i.e. the beating of a fin [98] or the swimming of scallops [99].

One possibility of locomotion at low Reynolds numbers is non-reciprocal motion, i.e.
deformations that are not symmetric under time reversal. Such is the case of flagellar turning
in bacteria [100], or breast-swimming-like motion in Chlamydomonas [101].

Another possibility is to spend energy to induce changes in the environment to achieve
propulsion. A canonical example is the pathogenic bacterium Listeria monocytogenes, which
polymerizes an actin comet using the monomers of its host, achieving propulsion opposite to
the comet [102], [103]. In a similar spirit, the strategy adopted by the nuclei in the embryo
of Drosophila is rooted in the behavior of actin networks and their control via molecular
motors.

II.1.3 Actomyosin : mechanical properties and activity

Different types of filaments endow structure, motility, and functionality to living systems.
Such is the case of actin filaments. They consist of aggregates of G-actin monomer (see Fig.
II.3A), that have a typical length and persistence length of around 18 µm. Thanks to the
Arp2/3 complex, new branches can polymerize from existing filaments, as shown in Fig.
II.3B. In addition to molecular cross-linkers that link monomers in different filaments, this
setting allows for the construction of a mesh-like actin network. Such a network exists in the
egg of Drosophila (see Fig. II.3D).

These networks can be deformed due to the activity of a particular molecular motor called
myosin-II, depicted in Fig. II.3B. Molecular motors utilize ATP to drive conformational
changes in their structure such that they can bind to different kinds of filaments and walk
along them by cycling through these conformations, sketched in Fig. II.3C. Two-headed
myosin motors walk in opposite directions in two different filaments, producing relative
motion between them (see Fig. II.3E). By externally controlling the binding rate of the
motors to actin filaments, it is possible to tune the timing and location of these displacements,
which is exactly the strategy adopted by Drosophila. From an energetic point of view, instead
of spending energy driving molecular motors that actuate cilia or flagella, the nuclei spend
energy in activating a particular molecular species, PP1, which increases the binding rate of
myosin.

There are two approaches to modeling the behavior of such actomyosin networks. The
first one is a molecular approach, simulating the kinetics of actin monomers, the transport
of molecular motors, and the resultant forces [107]. This approach is very detailed and very
useful to simulate phenomena at short timescales, yet it is computationally intensive. The
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Fig. II.3 Structure and behavior of actomyosin networks. A) Scheme showing the
aggregation of actin monomers to form actin filaments, and their further branching mediated
by the ARP2/3 complex. Adapted from [104].
B) Scheme depicting the structure of myosin-II. Adapted from [105].
C) Scheme depicting the ATP-driven power cycle that allows myosin-II to walk on the actin
filaments. Adapted from [106].
D) Fluorescent image showing the actin network in the embryo of Drosophila Melanogaster.
Adapted from [53].
E) Sketch depicting the contractile effect of a myosin-II motor in between two actin filaments.
F) Sketch depicting the bulk contractile effect of an inhomogeneous distribution of myosin-II
motors in a quasi-isotropic actin network.
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second approach is a mesoscopic description where the network is simulated as a continuous
material [108]. In general, the behavior of actomyosin networks can be described as visco-
elastic. However, on the timescale of development, i.e. minutes, elasticity can be ignored.
Hence, the passive stress tensor of the material contains the contribution of shear and bulk
viscosity.

The forces generated by myosin motors will have a clear direction depending on the
orientation of the filaments. Naively, if the network is completely isotropic, the contribution
from all the different motors would produce forces in every direction, resulting in a net
zero force. However, there is an asymmetry between tensile and compressive actions on the
filaments due to buckling, such that at the mesoscopic scale, tensile stresses that compress
the medium prevail [109], [110], as sketched in Fig. II.3f). In such a case, at the lowest order,
we can describe this compressive activity by an isotropic tensor :

σa
ij ∝ ρbδij , (II.7)

where ρb is the concentration of bound myosin. As an effective description of the depletion
of sites when too many myosin motors are bound, saturation is incorporated into the stress,
in a familiar Hill form :

σa
ij ∝ ρb

ρb +Ka
δij . (II.8)

Some further details can be incorporated into the model, like the changes in unbinding
kinetics as a function of stress [111]. These details are not relevant to the phenomenology
that we are interested in studying.

This actomyosin network (gel) coexists with the cytosol. Consider a space of constant vo-
lume V , with Ns(x) the number of water molecules and Ng(x) the number of actin monomers
at a given position in space. Considering each primitive constituent as incompressible, the
(constant) volume per water molecule is νs, and νg per actin monomer. The concentrations
ρs = lim∆V →0

Ns
∆V and ρg = lim∆V →0

Ng

∆V satisfy the following continuity equations :

∂ρs

∂t
+ ∇ · (vρs) = 0 , (II.9)

∂ρg

∂t
+ ∇ · (uρg) = 0 , (II.10)

where v is the sol velocity, and u is the gel velocity. Assuming that all the space is occupied,
then necessarily, for every infinitesimal volume element, ∆V = νsNs +νgNg. In another way :

1 = νsρs + νgρg . (II.11)

We may rename νgρg = ϕ, and νsρS = 1 − ϕ, where ϕ is the gel volume fraction. Taking
the time derivative and using Eqs. II.9,II.10 :

∇ · (v(1 − ϕ) + uϕ) = 0 . (II.12)

Finally, assuming that ϕ ≪ 1 :
∇ · v = 0 , (II.13)

such that we can assume an incompressible sol and a compressible gel.
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II.2 Results

II.2.1 Stokes’ flows fail to explain cytoplasmic streaming

To gain insight into the physics of cytoplasmic flows, let us start with the simplest possible
option : a single fluid obeying Stokes’ equations, which describe a normal fluid dominated
by viscous effects. The Navier-Stokes equations for an incompressible fluid reduce then to
[112] :

η∇2v = ∇p ; ∇ · v = 0 , (II.14)

where η is the dynamic viscosity, v the velocity field, and p the pressure field. These fields
are three-dimensional, but experimental data in [54] considered horizontal and vertical mid-
planes going through the AP axis. Given the roughly ellipsoidal geometry of the embryo,
the flows in those planes are expected to be approximately two-dimensional with vanishing
components in the respective off-plane directions. That was checked in [54] and it is further
verified in Appendix Fig. A.1 by comparing the two orthogonal orientations of the mid-planes.
In the sequel, we shall therefore simplify our equations by working in a two-dimensional
setting. The full three-dimensional geometry is computationally more demanding but is a
straightforward generalization of the results presented hereafter.

Three main arguments can be put forward against such a simple description of the cy-
toplasm. The first two arguments are empirical and data-driven. First, we found that the
Stokes’ flows that fit a set of measured data are unable to correctly predict the rest of said
data. Specifically, we found that, in order to fit the velocities in the bulk of the embryo, the
flow speeds near the embryo cortex (≲ 10µm) should significantly exceed the measured flow.
That suggests that Stokes’ flows cannot capture the behavior of cytoplasmic flows near the
embryo boundary. Second, while the large-scale patterns are visually similar, quantitative
properties of the experimental flows clearly deviate from Stokes’ flows. A convenient way to
highlight those effects is the vorticity field ωv = ∇ × v [112]. This quantity measures the
local circulation of fluid elements and the presence of a derivative in its definition highlights
small-scale properties of the velocity v. From Eq. (II.14), we can derive :

η∇2ωv = 0 , (II.15)

which implies that the vorticity ωv is a harmonic function. This is relevant as extrema of
harmonic functions must be located at the boundary of the domain, whilst the vorticity of
our measured flows systematically features four extrema well inside the embryos [54]. That
manifestly demonstrates deviations of cytoplasmic flows from a Stokes’ structure.

The third argument on boundary conditions relates to the first point above. A normal
fluid obeys no-slip conditions at the boundary, i.e., it should move at the same velocity as the
boundary. Since we do not observe the vitelline membrane undergoing significant movement,
we can assume that the perivitelline fluid should be at rest at the boundary. In the pre-
blastoderm stage, the plasma membrane is in most places adjacent to the vitelline membrane,
thus no-slip boundary conditions are a reasonable approximation, which contradicts imposing
a non-trivial velocity as boundary condition.
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In sum, a single passive Stokes flow is insufficient and a better physical model is needed to
capture the dynamics of flows in early Drosophila embryos. As we show in the next Section,
a parsimonious way out of these limitations is the introduction of two fluids, which will be
shown to lead to the formation of a boundary layer near the cortex and differential motion
of gel and cytosol.

II.2.2 Two-fluid model for cytoplasmic flows

To establish a more relevant model for cytoplasmic flows, we explicitly consider both
the actomyosin network and the cytosol, described as an active gel and a passive viscous
fluid, respectively. We describe the interaction between the two fluids with a simple friction
term. Moreover, we include the nuclei and their cell cycle regulation to obtain a model that
can describe nuclear positioning by the flows. Thus, our formulation has four components :
the cytosol, the gel, the nuclei, and the activity of PP1 which couples nuclear and cortical
dynamics. These components, their interactions and their spatial localization have been
summarized in Fig. II.4. We describe the cross-section under study as an ellipse of major
axis 250µm and of minor axis 90µm. We then obtain the following equations :

Γ(u − v) − ∇p+ η∇2v = 0 ; ∇ · v = 0 ; Γ(v − u) + ∇ · σ = 0 . (II.16)

Here, Γ is the gel-sol friction coefficient, v is the sol velocity, u is the gel velocity, p the
pressure field, η the shear viscosity of the cytosol and the gel stress tensor σ decomposes as :

σαβ = σa
αβ + σd

αβ . (II.17)

Note that kinetic and friction coefficients may a priori depend on the location via the gel
concentration : here, we make the simplest choice of assuming them constant.

PP1
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Fig. II.4 A scheme of the mechano-chemical coupling underlying our model for
cytoplasmic flows Left : Sketch depicting a slice of the anterior side of the egg, along with
the ingredients of our model and their location in space. Right : captions and interaction
sequence detailing the mechano-chemical coupling that results in nuclei being transported
in the embryo.
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The passive component reads

σd
αβ = ηb (∇ · u) δαβ + ηs

(
∂uα

∂rβ
+ ∂uβ

∂rα
− (∇ · u) δαβ

)
(II.18)

where ηb and ηs are the gel bulk and shear viscosity. The active term models contractions of
the actomyosin network driven by gradients in bound myosin concentration, as illustrated
in Fig. II.4. The simplest option for the stress tensor is an isotropic term with saturation :

σa
αβ = ζ

ρb

ρb +Ka
δαβ , (II.19)

where ρb is the concentration of active myosin (myosin bound to actin) [113]. ζ is the contrac-
tion strength and Ka is the active saturation parameter (see the below section on vorticity
for the rationale and tests of this choice).

The cytosol satisfies no-slip boundary conditions v|∂Ω = 0 at the boundary of the domain
(cortex) ∂Ω. Conversely, the active gel must satisfy the no-penetration condition (u · n) |∂Ω =
0, where n is the normal to the cortex, but can slide along it. The balance of the forces
between the cortex and the gel layer in contact with it yields the tangential traction boundary
condition

(
σT n · t

)
|∂Ω = Ξ, where t is the local tangent vector to the cortex. If the gel were

free to slip, then Ξ = 0, which is contradicted by the experimental observation of a (weak)
backflow following antero-posterior expansions. This observation makes it more appropriate
to consider the elastic response discussed hereafter.

As the gel flows, actomyosin filaments attach and detach from the cortex. When detached,
filaments are carried by the flow u. When attached, filaments are getting strained and, if the
contracting force vanishes, they will tend to flow back to their anchoring point. To describe
the evolution of the straining displacement s, we denote by kc the binding rate to the cortex
and by τc the cortical unbinding time. The derivative ṡ = ut = u · t if the filament is in the
bound state and ṡ = 0 in the unbound state. The probability of the former is kcτc

1+kcτc
and the

duration t of the binding event is exponentially distributed as e−t/τc/τc. Taking the average
to identify typical effects over many filaments, it follows that the average displacement

⟨s⟩ = kcτ

1 + kcτc

∫ ∞

0

e−t′/τc

τc
dt′
∫ t

t−t′
ut(t′′)dt′′

= kcτc

1 + kcτc

∫ ∞

0
e−t′/τcut(t− t′) dt′ , (II.20)

where the second equality is obtained integrating by parts. Given the displacement, the
tangential traction is finally :

Ξ = −ke⟨s⟩ , (II.21)
where ke is the spring constant of the elastic restoring force.

II.2.3 Modeling the control of actomyosin contractility by the cell cycle

Biochemical regulation of myosin activity is controlled by the cell cycle oscillator, viz., the
spatiotemporal activity of PP1. Experimental observations suggest the following dependence
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of PP1 activity on space and time :

ρp(r, t) = g(t)
∑

i∈nuclei

e−|r−ri|/λ , (II.22)

where g(t) is a suitable oscillatory function that embodies the phase of the cell cycle (see
Fig. A.2), ri is the position of the i-th nucleus, r is the point of interest, and λ ≃ 30µm is the
decay length of the PP1 activity cloud generated by each nucleus, as illustrated in Fig. II.4.

We now present the dynamical equations for myosin II and its regulation by the above
PP1 field. We consider myosin II to exist in two states : unbound and bound (active) to actin
filaments. The unbound and bound states are described by a reaction-diffusion equation :

∂ρk

∂t
+ ∇ · Jk = Gk , (II.23)

where Jk is the flux of species k and Gk is a reaction term. We consider two kind of fluxes :
advection and diffusion. The unbound myosin will be advected by the sol, whereas the bound
myosin by the gel, so that :

Jb = uρb −Db∇ρb ; Ju = vρu −Du∇ρu , (II.24)

where Db and Du are the respective diffusion constants and myosin diffuses much less when
bound, i.e., Db ≪ Du.

As for the reaction terms, the two myosin species are coupled by binding/unbinding
kinetics, with the total amount of myosin assumed to be constant. Considering these reactions
in a linear regime, one obtains :

Gk =
∑

j

Rkjρj (II.25)

where the elements of the matrix R are the reaction rates. Since the total myosin is constant,
Rjk = −Rkj . We assume that the myosin unbinds at a constant rate so that Rbu = −Rub =
−ku. The activation of myosin is promoted by Rho activity, which is in turn regulated by
PP1 and cortical mechanisms, as sketched in Fig. II.4. It is observed experimentally that the
timing of myosin activation is delayed with respect to that of PP1 and Rho activation [54].
That motivated us to introduce an effective intermediate field ρ that responds to PP1 activity
with a characteristic time τ and mediates the activation of myosin according to the equation :

∂ρ

∂t
= −1

τ
ρ+ k′ρg

ρp

ρp +Kp
. (II.26)

The field ρg effectively accounts for the preferential activation of myosin close to the cor-
tex, likely due to the localization of ρ-GEF molecules mediating the Rho/myosin activation
process, as well as molecules that help organize the cortical actin network. The field rapidly
decays away from the cortex as ρg = e−r/µ (see Fig. II.5), where r indicates the distance
from the cortex and µ is the characteristic decay length (the value used in the rest of the
paper is µ = 8µm). The field ρ controls the rate of myosin activation as :

∂ρb

∂t
+ ∇ · (uρb) = Db∆ρb − kuρb + kbρρu ; (II.27)

∂ρu

∂t
+ ∇ · (vρu) = Du∆ρu + kuρb − kbρρu . (II.28)
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Fig. II.5 Localized myosin binding Sketch showing the concentration of Rho-GEF next
to the cortex, and the PP1 cloud of a single embryo. Characteristic lengthscales are µ and λ
respectively

II.2.4 Modeling the transport of nuclei, their divisions and positioning

The last step to complete our model is to define the dynamics of nuclei. Nuclei are
advected by the local sol velocity v according to the following overdamped equation for the
position ri of the i-th nucleus :

ṙi = v(ri) − ν
∑
j ̸=i

(
∂rjVij

)
r̂ij , (II.29)

where ν is the mobility. The interaction potential Vij between nuclei i and j follows an inverse
power law with an exponential tail :

Vij =
(
ℓi + ℓj
rij

)α

exp
(

− rij

ℓi + ℓj

)
, (II.30)

which provides an effective description of the forces acting among nuclei that result from the
action of microtubule spindles, asters and/or actin caps [114], [115]. The simple idea is that
when the typical extension of those microtubule structures is comparable/longer than the
distance rij between the two nuclei i and j, a repulsive force will result. The length ℓi of the
microtubule structure radiating from the i-th nucleus depends on the phase of its cell cycle.
Specifically, based on the observation that microtubule asters are inhibited by Cdk1 and
grow at mitotic exit/early interphase [116], [117], we take the following linear dependence
on the local PP1 concentration :

ℓi = ℓmin + βρp(ri) . (II.31)

Finally, in Eq. II.30 we take the exponent α = 6, as in molecular dynamics (other choices
leave our results unchanged).

Nuclear divisions are regulated by the temporal function g(t) that controls the PP1
concentration in Eq. II.22. In particular, the minima of this function mark each mitotic
entry, at which point every nucleus is replaced by two nuclei separated by a distance of
four microns, centered around the original one. As there is no PP1 at the beginning of
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division, microtubules have their minimal length, and nuclei are progressively moved apart
by the growing filaments. The division axis is chosen randomly for each division event ; tests
were also performed using a deterministic rule, namely splitting nuclei along the direction
perpendicular to the net force exerted on each nucleus. Our main results and conclusions
were found unaltered. As the microtubules grow according to Eq. II.31, the nuclei move apart
as a result of the effective potential, thus completing mitosis.

II.2.5 Myosin-driven contractions drive the large-scale geometry of embryonic
flows

Our model for cytoplasmic flow is defined by the ensemble of Eqs. (II.16-II.31), along
with the chosen parameters (see Appendix Table A.1). Values have been obtained from
the literature, e.g., η, from previous experiments, e.g. λ, and through parameter scanning.
Among these, some of them have been directly compared to previously reported values, e.g.,
τc, ηs, whereas others have been justified through scale arguments, e.g., Γ, (see Eq. II.33).
In particular, we observed that changing Γ for fixed ηs changes the relative strength of the
vortices induced by the flows. We chose a value that captures the experimentally measured
velocity profiles. Furthermore, a parameter scan around our chosen values showed that no
parameter value is critical at a fine-tune level to reproduce the flows qualitatively.

We simulated the model starting with a single nucleus, which undergoes seven cycles of
divisions and transport by cytoplasmic flows generated by the above dynamics. Fig. II.6 shows
that the model captures experimental observations. In particular, the large-scale structure
of the flow and its timing with the cells cycles are correctly reproduced. The large-scale
pattern of the flow features four vortices and a stagnation point that arises near the center
of the nuclear cloud where cortical flows converge. A strong antero-posterior (AP) extensive
flow is observed during interphase, at the peak of myosin activation and contraction (see
Figs. II.6A-B). The basic mechanism is as in Ref. [54] : PP1 activity drives cortical myosin
gradients, which lead to contractility and motion of the actomyosin gel ; The sol is then
entrained by the friction with the gel and its incompressibility produces its ingression in the
bulk of the embryo and the four vortices pattern. As for the backflows seen in Figs. II.6C-
D, they are generated by the elastic restoring force Eq. II.21. The force pushes back the
actomyosin filaments when the action of myosin contractions vanishes as the cell progresses
into mitosis. As in the case of the forward flow, the sol is then entrained by friction and
creates its own flow. Its structure is similar to the reverse of the forward flow, albeit the
amplitude is smaller since the elastic force is weaker than myosin contractility.

Note that the nuclear positions and flows are strongly coupled by the PP1 profiles being
centered around the nuclei. In particular, the positions of the stagnation and the ingression
points will move together with the center of the nuclear cloud. This is the basis of the
self-correcting properties of cytoplasmic flows that will be discussed later below. As for the
dependence on the cycles, cortical and cytoplasmic speeds increase gradually in magnitude
from cycles 4–6 and then significantly reduce by cycle 7. The reason for the increase is the
growing number of nuclei and the strength of their effects. However, by cycle 7, a new effect
sets in : nuclei are almost uniformly spread along the AP axis, which implies that gradients
of myosin activation tend to fade and eventually vanish. That is the reason for the minor
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Fig. II.6 The two-fluid model captures the large-scale feature of embryonic
flows. A)-B) Typical cytoplasmic flow observed during the AP expansion phase in our mo-
del (A) and experiments (B). C)-D) Typical cytoplasmic backflow observed during the AP
contraction phase in our model (C) and experiments (D). The length of the arrows is in the
same units as in panel (A,B) so as to highlight the reduced speed of backflow. E)-F) Recons-
tructed initial distributions to achieve a uniform nuclear distribution at the end of cell cycle
7 in our model (E) and wild-type experiments (F). Particles are uniformly distributed along
the AP axis at the end of cycle 7 and simulated (E) or measured (F) cytoplasmic flows are
used to evolve their position backward in time until the beginning of cycle 4.
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Fig. II.7 Final nuclear distribution and residual flow profile in the egg with (top) and
without (bottom) actomyosin deformations.

role of cytoplasmic flows in late cycles.

In sum, Eqs.(II.16-II.31) produce effective dynamics to spread uniformly the nuclei over
the embryo. A striking way to condense this message is provided by Figs. II.6E-F, which
trace back nuclei distributed uniformly at the end of cycle 7. To this aim, we computationally
positioned uniformly distributed particles in the mid-embryo along the AP axis at the end of
cycle 7. We then used the simulated or experimentally measured cytoplasmic flows to evolve
their position backward in time until the beginning of cycle 4. The figure clearly shows that
nuclei would start from a small cloud centered in the mid-embryo at the beginning of cycle
4 both in the model and the experiments. We also performed numerical simulations where
the coupling between the PP1 activation and myosin-II recruitment is impaired, such that
the only forces driving nuclear motion are the microtubule-microtubule interactions. In such
a case, as shown in Fig. II.7, spreading is severely compromised and the nuclear distribution
remains centered around its initial position.

II.2.6 Sol-gel friction induces extremal points of the vorticity inside the embryo

The experimental vorticity field in Ref. [54] highlighted the fundamental discrepancy
between cytoplasmic and Stokes’ flow explained in the above Section. Conversely, we show
here that our model reproduces the presence of extrema of the vorticity field inside the
embryo.
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Fig. II.8 Our model explains experimental observations of the sol vorticity. A)-
B) A heatmap showing the vorticity field (ωv = ∇ × v) of the sol flow in our model (A) and
in experiments (B). C) The total vorticity ηsωu + ηωv (normalized by η + ηs to preserve its
physical dimensions), showing its extrema at the boundary of the domain, which reflects the
harmonic nature of the field in our specific model (see discussion in the body of the paper).
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By taking the curl of Eq. II.16, we obtain

η∇2ωv = Γ (ωv − ωu) ; ηs∇2ωu = Γ (ωu − ωv) . (II.32)

Remark indeed that all the terms in the stress tensor that are ∝ δ do not contribute as
they yield terms ∝ ϵij∇i∇j , where the tensor ϵ12 = −ϵ21 = 1 is anti-symmetric. It follows
from Eq. II.32 that, while the sum of the two vorticities ηsωu + ηωv is still harmonic, each
individual component is not. We conclude that extrema are a priori possible for the individual
components whilst they are not for their weighted sum. This property is explicitly confirmed
in Fig. II.8.

Note that while the dissipative part of the gel stress tensor in Eq. II.18 is fixed, the
active component (Eq. II.19) could be non-isotropic and therefore take a non-diagonal form,
e.g., in the presence of nematic order [108]. This would a priori lead to a non-vanishing
contribution to the vorticity balance, which would break the harmonicity of the total vorticity
∝ ηsωu +ηωv. In the absence of data on the gel velocity, we cannot locate the extrema of the
total vorticity and test its harmonicity. Furthermore, we show here that the simple isotropic
form in Eq. II.19 captures the main phenomenology available at this stage. That was the
rationale for such a minimalistic choice (and constant friction and kinetic coefficients), which
should of course be tested and possibly revisited as gel flow data become available.

II.2.7 Spatio-temporal distributions of sol and gel flows are qualitatively dif-
ferent, with a sharp micron-thin boundary layer at the cortex

An essential feature of our model is the explicit modeling of two fluids : cytosol and
gel. Such a model accommodates of course the possibility of an effective single fluid, i.e.,
that the friction between the two fluids makes their flow similar to each other. The purpose
of this Section is to show that that is not the case, which is evidenced by Fig. II.9, where
snapshots of sol and gel flows (at the same time) are compared. The most striking difference
is that the sol flows in its circulating four-vortices patterns with major components along
the anteroposterior axis whilst the gel mainly flows from the inside of the embryo towards
the cortex. The latter drives the accumulation of gel components to the surface that will be
quantified in the next Section. As already mentioned, experimental data on gel flow are not
available yet and would be crucial to test our predictions.

The difference in the flow patterns of the two fluids should not mislead the conclusion
that friction is irrelevant and does not play any role. On the contrary, friction is what drives
the flow of the sol, which would be at rest without the entrainment by the gel. Most of the
entrainment is provided in the micron-size boundary layer observed in Fig. II.10 close to
the cortex, where most of the active myosin accumulates, see Fig. II.11. These observations
are consistent with the fact that cytoplasmic flows are mainly driven by cortical rather
than bulk actomyosin, as demonstrated by optogenetic experiments in Ref. [54]. The thin,
micron-size width of the boundary layer is consistent with the experimental observation that
cytoplasmic flows are observed very close to the cortex in spite of the membrane appearing to
be essentially immobile and the no-slip boundary condition applying to the sol. The physical
explanation and prediction of our model are that a very thin boundary layer exists, where
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Fig. II.9 The multiphase nature of the dynamics in our model is germane. Typi-
cal flow of the sol (Top) and the gel (Center). Note that, contrary to the sol, the gel mainly
flows from the inside of the embryo towards the cortex, driving the peaks in myosin concen-
tration in Fig. II.11. The gel velocity component perpendicular to the cortex vanishes when
getting closer to it. Heatmap (Bottom) shows the thin cortical region where bound myosin
accumulates and where the two fluids are entrained.
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Fig. II.10 Our model predicts a thin boundary layer close to the cortex. A) A
zoom of the region close to the cortex, meant to highlight that substantial cytoplasmic flows
are observed relatively close to the cortex, as observed in experiments. In fact, the no-slip
boundary condition forces the sol velocity to drop to zero at the cortex but the decrease is
sharp and happens in a boundary layer that is micron-thick. This is visually demonstrated by
taking the velocity in the box shown in panel (B) and plotting its amplitude vs the position
(normalized by the width of the embryo at that AP position). Panel (C) shows results for
our simulations, and panel (D) for an analogous region in the experiments. The segmented
vertical lines represent the point from which no experimental velocities can be resolved,
which reinforces the impossibility of resolving a boundary layer such as the one present in
the simulations with the available experimental data.
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the sol velocity drops abruptly from its bulk value to zero. This would also be consistent
with the fact that the typical size of the cortex is a few hundred nanometers.

To estimate the width of the boundary layer, we take the difference in Eq. II.32 :

∆(ωv − ωu) = κ2(ωv − ωu) , (II.33)

which identifies the reciprocal of a lengthscale κ =
√

Γ(η + ηs)/(ηηs) that vanishes in the
absence of friction. The parameters that allowed us to reproduce experimental observations
yield 1/κ ≃ 7µm, consistent with previous remarks on the width of the boundary layer.
As noted above and shown in Fig. II.10D, this fine resolution was not accessible in the
experiments in Ref. [54] and constitutes a prediction that awaits experimental validation.
From a numerical standpoint, properly capturing the boundary layer required an adaptive
mesh, sub-micrometer sized near the embryo boundary, which allowed us to resolve the flow
within the boundary layer (see Methods for details). Comparison of the flow speed of the
gel and the sol indicates that the gel moves faster than the sol. Despite this differential
movement, no significant shear is expected between the two fluids, as the gel turns over very
rapidly (over timescales of seconds).

Note finally that our model provides insights into the physical properties of the actomyo-
sin gel and the sol. In particular, reproducing experimental speeds requires the viscosity of
the gel to be a few orders of magnitude larger than the viscosity of the sol. This is consistent
with independent experimental data reporting ηgel/ηsol ≈ 105 [118].

II.2.8 Gel-mediated transport leads to non-trivial myosin dynamics

Experimental data [54] show the peculiar time profiles of Myosin II (see the Supplemen-
tary Fig. S3 of Ref. [54] for similar plots for F-actin) for cell cycles 5-6 at the embryo surface
and varying distances from it. Peaks of myosin concentration are strongest at the cortex
and decay over a few microns away from it, as shown in Fig. II.11. The other characteristic
feature is that the peaks are delayed at various depths, with the earliest peak at the cortex
and the deeper ones progressively delayed.

The above behavior is captured by our model, as shown in Fig. II.11A. The qualitative
reason underlying these trends is intuited from the interplay between gel flow and diffusion
of unbound components. In a nutshell, the dynamics has two phases. During early inter-
phase, gel flows drive the rapid recruitment of myosin to the cortex where it accumulates
in the bound state. The width of its peak close to the cortex reflects the rapid decay of
the ρg field defined in Eq. II.26. In the subsequent second phase, at mitotic entry, the PP1
activity decreases, and gel flows dampen. Then, the dynamics is dominated by diffusion of
the unbounded components which tend to move from the cortex (zone of high concentration)
toward the interior of the embryo. The delays as a function of the depth are caused by the
time taken by the excess myosin that unbinds at the cortex to progressively diffuse back.
Fig. II.11C highlights the role played by the active nature of the gel fluid : if we suppress
activity by putting σa = 0 in Eq. II.17, variations in myosin levels are much reduced and the
order of the delays among the peaks at different depths is lost.
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Fig. II.11 Myosin dynamics in the early embryo. Upper and middle panels : Total
concentration of myosin for cell cycles 5-6 at embryo surface (blue line) and varying distances
from the surface (see legend) in our model (A) and experiments (B). Colored arrows locate
the maxima of the curves. Dotted black line : The Cdk1 to PP1 ratio, which constitutes a
proxy for the phase of the cell cycle. Lower panel : Total concentration of myosin for the
same conditions as in panel (A) but for a passive gel, i.e., suppressing the active component
σa of the stress in Eq. II.17.



30 Chapitre II. Cytoplasmic flows and nuclear positioning

II.2.9 Nuclear positioning is a self-correcting process

The position of the nuclear cloud at the beginning of cycle 4, when flows start, reflects the
position of the initial nucleus in the embryo, which is subject to fluctuations [54]. What is the
influence of that position on the flow structure and will the final distribution of nuclei, at the
end of cycle 7, be affected ? In other words, are the flows able to buffer shifts and distortions
of the nuclear cloud at the beginning of cycle 4 and still achieve a uniform spreading of the
nuclei ?

The answer to this question is summarized by Fig. II.12, where we have simulated various
initial positions and reported the difference of the nuclear positions with respect to the
reference configuration where the initial nucleus is placed at 40% of the total AP length
of the embryo. Several remarkable features can be noted. First, irrespective of the initial
position, the cloud of nuclei converges to very similar final configurations. Second, the role
of forward and backward flows is apparent from the figure : the distance to the reference
configuration decreases during the forward phases and flattens or even increases during the
phases of backflow. Third, the final differences between the actual and the reference positions
are only a few microns, defining the degree of robustness of the process.

The reasons underlying this striking property of the cytoplasmic flow reside in what was
stressed in previous sections : myosin accumulation and contractions are localized at the
position of the nuclear cloud. That defines the location where the sol will flow in the bulk
and extend. If the initial location is sufficiently central, as it typically is, then four vortices are
created and an extension both on the anterior and posterior sides is produced. Conversely,
if the initial position is very anterior (or posterior), then the flow points in the opposite
direction toward the posterior (or anterior). The net effect is that the modified dynamics
compensates for the displacement of the initial nucleus and readjusts the final position of
the nuclei as demonstrated by Fig. II.12.

We also tested the ability of the flows to center nuclei in response to displacements in
directions perpendicular to the AP axis (see Fig. A.3). We found that the flows are able to
center the nuclei and ensure that the nuclear cloud sits in the middle of the embryo. The
reason for this is intuitive. If nuclei are closer to one side of the cortex than the other, PP1
activity and myosin recruitment are higher on that side and, as a consequence, that side will
experience a stronger contraction and flow, which will help to center the nuclei.

II.2.10 Cytoplasmic flows weakly affect the formation of the Bicoid gradient

Cytoplasmic flows at cycles 4-6 are concomitant with the initial stage of the establishment
of the Bicoid gradient [119]. Bicoid is a morphogen that generates an exponential gradient es-
sential to pattern the embryo AP axis [120], [121]. The formation of the gradient is controlled
by the localization of bcd mRNA to the anterior of the embryo [122]. The mRNA is transla-
tionally silent until fertilization when the localized production coupled with protein motion
starts the process that eventually establishes the gradient [119], [122]. The movement of the
protein has been hypothesized to be dominated by diffusion [123]. However, the formation of
the Bicoid gradient is not fully understood and it has been suggested that flows might play
a role in ensuring that the Bicoid gradient achieves the appropriate length [124]. However,
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Fig. II.12 Flows ensure a uniform distribution of nuclei along the AP embryonic
axis irrespective of the initial nucleus’ location. A) Three different flow geometries
controlled by the location of the nuclear cloud, illustrating the self-centering effect. B) A series
of positions (coded by different colors) for the first nucleus that starts the division cycles.
The nine different locations go from 10% to 90% of the embryo AP length. The reference
configuration has the nucleus placed at 40% of the embryo AP length. C) The evolution
in time (flowing upwards) of the distance with respect to the reference configuration. The
distance is defined as 1

N

∑N
i=1 (xi − x∗

i )2, where N is the total number of nuclei (at that time),
x∗

i and xi are the positions of nuclei in the reference or the displaced configurations. The
best matching that minimizes the total distance between the two sets of nuclei is obtained
by using the Belief Propagation algorithm described in the Methods. Colors of the curves
correspond to the initial positions in the bottom panel. Three pairs correspond to the two
sides of the reference positions and the last two curves refer to the initial positions at 80%
and 90% of the AP length. D) The final configurations of nuclei (for the whole ensemble of
colors). Note that all colors are mixed up, witnessing the self-correcting nature of the AP
spreading process. That is shown more quantitatively by the middle curves, which all reduce
to values corresponding to distances of a few microns distance between pairs of nuclei of the
various configurations.
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this hypothesis has remained largely untested due to a lack of quantitative information on
the structure of cytoplasmic flows.

To test the influence of cytoplasmic flows on Bicoid gradients, we used the flow generated
by our model above and simulated the dynamics of Bicoid transport by using measured
mRNA distributions and assuming that protein production begins at fertilization. Bicoid
molecules are dispersed by the joint effect of molecular diffusion and cytoplasmic flows. The
minimal assumption is that Bicoid initially does not preferentially localize to the cortex or
the bulk. Results for the evolution of the Bicoid concentration are reported in Fig. II.13.
Color-coded Bicoid profiles at various times are shown in panel A. The profiles at cycles 4-7
in panel B agree with the experimental curves reported in [125]. In our model, we can easily
turn off the flows and ascertain their effect on the gradients’ formation. The corresponding
curves illustrate that the differences with and without flows are minor. More specifically,
in the anterior part of the embryo, the flow at the cortex tends to push Bicoid toward the
mid-embryo and the curves with the flows on are therefore slightly higher than without.
The effect is reversed beyond mid-embryo but remains minor. Moreover, effects on Bicoid
spreading are predicted to be temporary : by cell cycles 7-8, Bicoid distribution is essentially
indistinguishable with and without flows. Additional evidence is provided in Fig. A.4. We
conclude that flows have a minor influence on the formation of the Bicoid gradient.

To test this prediction experimentally, we compared the Bicoid gradient in wild-type
embryos and mutant embryos, featuring severely reduced cytoplasmic flows. To this end,
we used cullin-5 (shackleton) mutant embryos, which we have previously shown to display
strongly reduced cortical contractions and cytoplasmic flows [65]. Consistent with a minor
and transient role for flows in controlling the Bicoid gradient, we found that the gradient at

A B C

Fig. II.13 Embryonic cytoplasmic flows weakly affect the establishment of the
Bicoid morphogenetic gradient. A) Heatmap showing the Bicoid concentration profile
in the embryo, and the characteristic half-moon shape with the concentration higher at the
cortex than in the bulk. B) The concentration of Bicoid vs the (normalized) position along
the AP axis for various cycles, as indicated in the color legend. NF stands for "No Flow",
i.e., situations where cytoplasmic flows were suppressed. Values are reported at the position
of each nucleus. C) Experimental comparison of the Bicoid gradient at cell cycle 13 in wild-
type and cullin-5 mutant embryos, where flows are strongly suppressed [65]. Datapoints were
binned in each case, with the continuous line and error bars representing each bin’s average
and standard error respectively.
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cell cycle 13 is essentially indistinguishable in wild-type and cullin-5 mutant embryos.

In sum, even though the presence of cytoplasmic flows might a priori influence the for-
mation of the Bicoid gradient, in practice the structure of the flows actually observed in
the embryo is such that their influence is minor and they weakly and transiently affect the
formation of Bicoid gradients.

II.2.11 Embryo shape modulates the strength and asymmetry of the flows

As a further test of our model, we performed various simulations altering the geometry
of the embryo. The resulting dynamics is well captured by the following intuitive considera-
tions, which run similar to those explaining the self-correcting nature of the AP expansion
demonstrated in Fig. II.12. The cortex points which are closest to the nuclear cloud define
the regions where myosin-II accumulates and sets the locations of the strongest contraction.
In the wild-type and the usual geometry, these points will determine where the gel flows are
directed and define the corners of the vortices observed in the sol flows. An important role is
played by the elliptic geometry of the embryo since the transversal distance between the AP
axis and the cortex reduces as one moves toward the poles. A first expected effect is that,
as the ratio between the major and minor axes of the ellipse reduces to unity, the dynamics
becomes more isotropic, and therefore the ratio between longitudinal and transverse speeds
should tend to unity. The second expected effect is a global reduction in the overall speed,
which can be linked to two different causes. First, due to changes in embryo geometry on
average nuclei will be further away from the cortex, and the PP1 cloud will not activate as
much myosin as in the wild-type case. Furthermore, as the egg becomes more symmetric, the
shape of the PP1 isolines becomes closer to the shape of the egg, thus reducing the myosin
gradients and the strength of the flows.
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Fig. II.14 Predictions and experimental verification of flows in rounded embryos
A) A wild-type and a round embryo are shown in the lower/upper panels, respectively.
Mutants are generated by using a knockdown of Fat2 (Fat2 RNAi), a major regulator of the
elongation of the egg chamber. Panels B) and C) show the ratio between the embryo-averaged
longitudinal and transverse sol speeds and the embryo-averaged sol speed, respectively, time-
averaged over CC6. Simulation/experimental data are shown in blue circles/red squares,
respectively. Error bars represent the standard deviation of the space averages during CC6.
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To test our predictions, we generated embryos of different geometry by using a knockdown
of Fat2 (Fat2 RNAi), a major regulator of the elongation of the egg chamber, in somatic cells
of the female ovary [126], [127]. Notably, these experiments are performed by directing the
expression of the RNAi transgene to the somatic cells of the egg chamber, thus embryos of
different geometry but genetically wild-type can be generated, see Fig. II.14A. These embryos
show patterns of flow that differ significantly as compared to the wild-type. In particular,
the ratio between longitudinal and transverse speeds, as well as the overall speed, reduce
(see Fig. II.14B,C) in agreement with our theoretical predictions.

II.3 Discussion

We have presented a theoretical framework that quantitatively captures the main mechano-
chemical couplings underlying the cytoplasmic flows in the early Drosophila embryo. As in
most developmental and cellular conditions, Reynolds numbers are low, and fluids are well
described by neglecting accelerations (Stokes’ conditions). The behavior of a Stokes fluid is
determined by its velocity at the boundary of the region of interest [112], a property that
underlies most of previous works on cytoplasmic flow. There, the velocity at the boundary of
the cell or the embryo was prescribed, e.g., by the measured velocity, and it was then shown
that the cytoplasmic flow is well described by solving Stokes’ equations with the prescribed
boundary conditions [82], [84], [92]. The velocity at the boundary often involves active me-
chanisms, e.g., generated by active actomyosin contractions. In multicellular systems, active
myosin at the cell-cell interfaces can drive tissue-wide cellular flow, as shown in Drosophila
gastrulation [128]. Global morphogenetic flow is accurately predicted by the spatial distri-
bution of myosin motors. Similarly, a tensile ring in the quail embryo drives movement in
the gastrulating amniote embryo [35], [47]. Here, we have coupled the mechanics of Stokes
flows to the cell cycle via some of its major chemical components (Cdk1 and PP1). Nuclei
in the fly syncytium regulate the balance between Cdk1 and PP1, which itself controls the
activation of myosin via Rho. We have shown that fundamental and empirical reasons impose
a multiphase model that features a mixture of a passive and an active fluid. The active gel
can slide along the cortex and generates the cortical forces that propel the ensemble of the
two fluids and the transport of nuclei in the bulk of the embryo. The passive phase satisfies
no-slip boundary conditions and the sol fluid is thus at rest at the plasma membrane, which
is adjacent to the immobile Drosophila vitelline membrane. A major result emerging from
our work is that the two phases move differently, and a single-fluid description is insufficient
to capture the complexity of cytoplasmic flows in fly embryos. Previous discrepancies from a
Stokes’ flow of the sol vorticity [54] can thus be understood as reflecting the transfer of mo-
mentum between the active and passive phases due to their mutual friction. The entrainment
of the passive fluid by its active counterpart concentrates in a thin boundary layer close to
the cortex, which constitutes another striking result emerging from our work. In the boun-
dary layer, the velocities of the two phases change sharply to accommodate their respective
boundary conditions. The corresponding thickness is predicted to be a few microns.

Our framework recapitulates previous observations and, most importantly, offers new
predictions to inspire experiments. The results on round embryos that we presented here
provide a notable example of theoretical predictions that we could already confirm expe-
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rimentally. Numerical simulations of our model predict the extent to which the amplitude
and geometry of cytoplasmic flows would change with embryo shape. These predictions were
supported by experiments in which embryos of different geometry were generated via genetic
engineering. In particular, by knocking down Fat2 expression (via RNAi) in the somatic cells
of the egg chamber, we could obtain embryos having a round geometry [126], [127]. In these
embryos, the observed cytoplasmic flows were found to be in agreement with our theoretical
predictions. Another example of what theory can uniquely offer is provided by our predic-
tions on the role of cytoplasmic flows in the establishment of Bicoid gradients. Specifically,
we capitalized on the possibility of direct and unequivocal comparison of gradients with and
without cytoplasmic flows to demonstrate their minor role in the establishment process of
Bicoid gradients.

In the future, there are several new experiments suggested by our theoretical results. A
first example is provided by the robustness of the spreading process with respect to the posi-
tion of the initial nucleus that we highlighted here. The procedure that we have implemented
in numerical simulations suggests set-ups to reproduce it experimentally. For example, one
could use optogenetic control of myosin activity to displace the position of nuclei at early
cycles [54] and observe whether or not flows compensate for the displacement and still drive
uniform positioning in later cycles.

A crucial test of our theoretical framework will be the experimental verification of the
gel flow and the presence of a sharp boundary layer. Experimental challenges will need to
be overcome to obtain accurate measurements of the flow of the actomyosin gel. First, it is
difficult with current fluorescent probes to distinguish whether myosin is in the active (bound)
or inactive (unbound) state. Second, imaging of myosin deep in the embryo does not show
significant features to infer possible flows. On a positive note, it is relatively straightforward
to measure the total concentration of myosin and quantify myosin concentration at different
distances from the cortex. Our simulations recapitulate the measured concentration data (see
Fig. II.11), arguing that we captured the essential features of the gel flow. Our simulations
predict that the gel flow drives cortical recruitment of active myosin, which is the main
driving force of the nuclear spreading process. Approaches based on Fluorescence Recovery
After Photobleaching (FRAP) could be used to infer average flows across large regions of the
embryo [54], [129]. FRAP of fluorescently tagged myosin near the cortex could potentially
confirm that the gel flow is directed mainly towards the cortex (as we predicted here for
the gel) rather than sliding parallel to it (as we predicted for the sol). However, testing this
prediction experimentally will be strongly influenced by the ratio of the concentration of
active and inactive myosin and the results could be difficult to interpret. Thus, we propose
that novel experimental approaches are needed to accurately measure the gel flow. Developing
such methods will not only reveal fundamental insights into the mechanisms of cytoplasmic
flows but will also allow testing the hypothesis that the viscosity of the two fluids is very
different, a property that is essential in our model to generate the observed flows of cytosol.
Similarly, it will be important to develop experimental approaches to resolve the thin (few
µm) boundary layers predicted by our theory. Particle Image Velocimetry allows tracking
flows near the cortex [54] but assaying the localization of the tracked features relative to the
plasma membrane has not been analyzed carefully to date.

Future experimental observations of the gel flow will be important not only to confirm
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the current theoretical framework but also to refine and advance it. The isotropic form of
the active stress tensor taken here was dictated by the parsimony principle and the fact that
no current experimental observation forced us to introduce more sophisticated hypotheses
(and the resulting additional fields). It is however quite conceivable that nematic and/or
polar effects are present and our description should be upgraded to take them into account.
A detailed classification of the additional fields and couplings are found in Ref. [108]. An
experimental observable that will be highly informative in that respect is the gel vorticity,
which would allow us to construct the total vorticity. Isotropic forms of the active stress tensor
cannot produce vorticity, as shown here. The total vorticity is then harmonic, which strongly
constrains its spatial structure (its extrema are confined to the boundary of the embryonic
domain). Polar and nematic effects break isotropy and generically lead to the production of
vorticity and the breaking of harmonicity. It would then be important to measure the total
vorticity and assess the consistency of its spatial structure with the harmonic property.

One big simplification that allowed us to extract some information from the equations,
and to ease the numerical solving, is to ignore the evolution of the actin network density
and to consider it as homogeneous and isotropic. Strictly speaking, as the network flows,
the filaments come closer together, and they might re-align. This is particularly important
because we have assumed that the friction force is uniform, whereas in reality, it might
depend on density. A closer look at fluorescent images reveals that the network is less dense
in the bulk, which has been incorporated effectively into our model because the active gel
does not advect the nuclei. In our case, the simplified scheme works because the activation of
myosin is confined due to the distribution of Rho-GEF and the entrainment region is small,
yet it is possible that in other systems where actomyosin deformations drive the production
of flows these subtleties become more relevant.

In sum, the combination of discriminating experimental tests, new predictions, and sug-
gested novel experiments presented here constitute exemplary instances of the value of the
interplay between theory, numerical simulations, and quantitative experiments that we see
as an exciting way forward in the field of developmental biology and embryology.

II.4 Methods and Materials

II.4.1 Fly Stocks

To image and quantify the Bicoid gradient, we used an EGFP-Bcd line (Bloomington
stock 29018). For the analysis of the gradient in cullin-5 embryos, we used the following fe-
males : EGFP-Bcd/EGFP-Bcd ; His2Av-mRFP/His2Av-mRFP ; shklGM130/shklGM163. To
obtain round embryos, we crossed flies carrying a UAS :Fat2 RNAi transgene (VDRC 5098,
kind gift of Sally Horne-Badovinac) to flies expressing Gal4 under the trafficjam promoter
to restrict expression in the somatic cells of the egg chamber (kind gift of Sally Horne-
Badovinac). We then selected female flies carrying both transgenes and set up cages to
collect embryos where the activity of Fat2 was reduced specifically in the somatic cells of
the female ovary. In some experiments, embryos also expressed PCNA-TagRFP to visualize
nuclei.
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II.4.2 Embryo Manipulations

Following collection, embryos were dechorionated with 50% bleach for 1 min, rinsed
with water, mounted in halocarbon oil on a gas-permeable membrane, and covered with a
glass coverslip. To visualize cytoplasmic flows, yolk granules were stained by permeabilizing
embryos with a solution of 10% CitraSolv in water for 2 minutes and immersing them in
Trypan Blue for 1 minute.

II.4.3 Microscopy

Imaging experiments were performed with an upright Leica SP8 confocal microscope,
a 20 X /0.75 numerical aperture oil immersion objective, an argon ion laser, and a 561-
nm diode laser, as described in Ref. [54]. For the analysis of the Bicoid gradient, images
were acquired on the mid-sagittal plane with a time resolution ≃ 12s. For the analysis of
cytoplasmic flow in wild-type embryos, we used data in Ref. [54], where we acquired stacks
of raw confocal sections (800 x 400 pixels, pixel size : 0.727 µm) of yolk (Trypan Blue) and
nuclei (PCNA-TagRFP) with an axial distance of 50-60 µm and sampling of 20 s. For the
round embryos, we acquired images (1024x1024 pixels, pixel size : 0.568 µm) of yolk at about
40 µm from the cortex and sampling ≃ 10 − 20s.

II.4.4 Image and data analysis

Particle Image Velocimetry

Raw confocal images of yolk granules were Gaussian-filtered (width of 10 µm and standard
deviation 6 µm) to increase the signal-to-noise ratio as a pre-processing image analysis step.
Cytoplasmic velocity fields were measured by means of Particle-Image-Velocimetry. Briefly,
stripes of 35 µm (Anterior-Posterior direction) by 15 µm (Dorsal-Ventral or lateral direction)
were used as templates and probed within regions of 60 µm by 30 µm to find the best
correlation spots, with a threshold correlation coefficient of 0.7. PIV was calculated for 10,000
unique points randomly distributed in the embryo at each time interval. A sampling of around
20 to 30 s was used to get reliable local displacements while maintaining high correlations.
The obtained velocity fields were time-averaged over a range of 10 s and linearly interpolated
on a square grid with 4 µm spacing.

Quantification of the Bicoid gradient

The nuclear segmentation masks of the Drosophila embryos were generated with Ilastik
1.3.3 software [130] by using the Pixel Classification pipeline. The segmented nuclear region
was binned along the AP axis, with bin width 7.27 µm (10 pixels, pixel size = 0.727 µm). The
average pixel intensity of the EGFP-Bicoid channel was calculated for each binned region
of the nuclear mask. Next, 11 consecutive frames (frame rate = 12.56 s) were manually
selected right before the mitosis of cell cycle 13 (cc13). The average of these 11 frames was
taken for each bin to generate the Bicoid gradient profile. The gradients were normalized
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as follows : first, the positions of the bins were normalized by the length of the embryo ;
second, an offset was determined by the average intensity of the 10% posterior-most bins
and subtracted from the profile ; third, the value at each bin was normalized by the average
intensity (post-offsetting) of the 10-20% anterior-most bins. The final profiles of 6 wild-type
embryos and 4 cullin-5 mutant embryos were reported.

II.4.5 Numerical simulations

Space and time discretization

We performed numerical simulations by using a finite-element method, implemented in
a custom FreeFem++ code. Different meshes were generated for each geometry with an
adaptive edge size, such that the boundary layer could be well resolved. The target minimum
edge size was chosen as hmin = 0.75 µm, and we used a fixed timestep ∆t = 3 × 10−2 s. The
element types were chosen as MINI elements (Linear element + order 3 bubble) for u and
v ; discontinuous linear elements for ρb and ρu ; linear elements for the remaining fields.
The mix of MINI elements for the velocity space and linear elements for the pressure space
ensures the solution is unique, satisfying the discrete inf-sup condition [131]. Since the flow
and myosin dynamical equations are coupled, we sequentially solved them. Specifically, at
timestep n we first calculate vn and un from ρn

b and Ξn ; then we obtain ρn
p from the nuclei

positions rn, and determine the microtubule lengths ℓn ; ρn+1
b , ρn+1

u and ρn+1
p are calculated

next, followed by rn+1 from vn and ℓn ; finally, we determine ⟨s⟩n+1 and Ξn+1 from un.

Myosin dynamics

Eqs. (II.26,II.27,II.28) are conveniently written in a compact form as

∂ϕ

∂t
= Lϕ + N , (II.34)

where ϕ = ρ for Eq. II.26 and ϕ = (ρb, ρu) for Eqs. (II.27,II.28). L represents linear parts

of the equation, viz. L = −1/τ and L =
(
Db∆ − ku 0

ku Du∆

)
, respectively. Conversely,

N = k′ρg
ρp(t)

ρp(t)+Kp
and N = (kbρρu − ∇ · (uρb) ,−kbρρu − ∇ · (vρu)) for the two cases. Eq.

II.34 is solved as

e−L∆tρ(t+ ∆t) = ρ(t) +
∫ t+∆t

t
e−L(t′−t)N(t′) dt′ , (II.35)

and the integral was approximated by using N(t′) ≃ N(t) + (N(t) − N(t − ∆t))(t′ − t)/∆t
to finally obtain :

(1 − L∆t) ρ(t+ ∆t) = ρ(t) + 3
2N(t)∆t− 1

2N(t− ∆t)∆t , (II.36)

The initial conditions were ρu = 1 and ρb = 0 everywhere. At the boundary, the fields satisfy
no-flux conditions, which ensure that the total amount of myosin in the embryo is constant.
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Bicoid dynamics

We modeled the dynamics by the equation
∂ρp

∂t
+ ∇ · (vρp) = Dp∆ρp − 1

τp
ρp + kmρm , (II.37)

The Bicoid mRNA distribution ρm decays exponentially from the anterior pole ρm(r) =
e∥r−rA∥/µm , where rA is the position of the anterior pole. By defining L = Dp∆ − 1

τp
, and

N(t) = −∇ · (vρp) + kmρm, we can solve this equation as explained above. Our initial
conditions have ρp = 0 everywhere.

Cortical actomyosin dynamics

As mentioned in the main text, backflows are explained by the elastic recoil of actomyosin
filaments, which attach and detach to the cortex. If i denotes a generic boundary node
and ⟨si⟩ represents the mean displacement of filaments attached at i (positive for counter-
clockwise displacements), evolution of the displacement is given by :

⟨ṡi⟩ = − 1
τc

⟨si⟩ + kcτc

1 + kcτc
ut (II.38)

where ut is the component of the gel velocity tangent to the boundary at the displaced
location. This equation was solved as described above with L accounting for the decay term
with typical rate 1

τc
, and N(t) the non-homogeneous last term on the r.h.s of the equation.

A value τc = 4 min reproduced the backflow delay and duration. Similar values for the
cortical elasticity relaxation timescale have been reported in previous experimental works
using ferrofluids at the beginning of cellularization [132]. We have used kc = 4 min−1.

Nuclear dynamics

Based on the ellipsoidal flow geometry observed in previous experiments [54], we exploited
the cylindrical symmetry around the AP axis and performed simulations in a two-dimensional
domain representing a mid-embryo slice. In order to take into account the third (z) dimension
into account, we proceeded as follows. First, from the x and y positions of nuclei, we built ∆x

and ∆y, the maximum nucleus-nucleus distance in x and y, and their center of mass. Second,
a 3d ellipsoid is built at the center of mass and semimajor axes ∆x/2, ∆y/2, and ∆y/2. The
last step enforces the cylindrical symmetry. Third, z-coordinates of nuclei are assigned so
that each one of them lies at the boundary of said ellipsoid. For each nucleus there are two
possible z-coordinates : if the previous z-coordinate is non-zero, its sign is preserved ; else, it
is chosen at random. Finally, distances required for microtubule-mediated interactions (Eq.
II.30), PP1 activity (Eq. II.22) and pair matching algorithm, all considered 3d distances.

Eqs. (II.29) for the nuclei were integrated using a 1-step Euler method. To obtain nuclear
separations comparable to the experiments, we chose ℓmin = 1 µm, β = 1 µm. At mitotic exit,
we duplicated each nucleus, choosing a random axis of division and placing two daughter
nuclei at a distance rmit = 2 µm along the division axis. Initial conditions in the unperturbed
embryo considered a single nucleus along the AP axis and 50 µm to the left of the center.
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Fig. II.15 Pair matching. Sketch showing the reference distribution {X∗
i }i and the per-

turbed distribution {Xi}i at a particular time. The lines indicate the matching that mini-
mizes the mean squared displacement between the two different distributions.

Pair matching

To produce Fig. II.12, we had to find the best matching between two sets of particles
(Nuclei). Matching two sets of particles in two different image frames is conveniently formu-
lated as the matching in a bipartite graph so that a certain edge-weight dependent quantity
is minimized [133]. This problem is well-known in graph theory [134], and efficient algorithms
are available [135]. In our case, for each timestep, the two sets {ri(t)} and {r∗

i (t)} represent
the set of nuclei positions in a reference simulation and another simulation where the initial
nucleus has been displaced. To find the matching which minimizes the RMS particle-particle
distance, we implemented the simplified min-sum algorithm described in [135], with a weight
function ωi,j = e−β(ri·r∗

j ), and β = 0.002 (see II.15 for an example of a match between two
sets and the objective function to minimize).



III – Analytical results on a simplified
model

The principal function of form is to advance our understanding. It is the orga-
nization of a piece which helps the listener to keep the idea in mind, to follow its
development, its growth, its elaboration, its fate.

Arnold Schönberg

(This chapter and corresponding appendix are adapted from a manuscript in
preparation by Claudio Hernández-López and Arghyadip Mukherjee)

III.1 Motivation & Modelling

III.1.1 A simplified sol-gel setting

The previously explored model in Chapter II allowed us to reproduce a wide variety
of experimental features of the flows and nuclear transport in wild-type and mutant eggs
of Drosophila Melanogaster. We showed that due to the nature of the mechanochemical
coupling between the nuclei and actomyosin, the geometry of the domain impacts the shape
of the flows, revealing a centering effect that corrects for perturbations in the initial position
of the nuclear distribution. It would be insightful to know what key physical parameters
affect these processes, and thus we ask the question, how simple can this configuration be
such that we recover these flows and the nuclear transport ? Moving beyond studying the
particular geometry of Drosophila and the biochemical details of its regulatory network, we
would like to understand what kind of flow structures can be produced by such actomyosin-
driven deformations in a general setting. Furthermore, even if we know that once a uniform
nuclear distribution is reached the PP1 gradients are negligible, it could be that this uniform
bound myosin setting is unstable, triggering actomyosin pattern formation and flows in the
bulk as a result.

Hence, we will simplify the model as much as possible such that we can bring forward
some more general ideas about these flows in different geometries. The first simplification
that we can make is to assume that the sol and gel are not mixed. From Chapter II, we know

41
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that the sol velocity peaks before dropping to zero in a boundary layer of a width that scales
as the hydrodynamical length, i.e. the region where the gel entrains the sol. We can model
this effect by having an active layer of width h next to the cortex, where h matches the
hydrodynamical length. The rest of the system, i.e. the bulk, will be filled by the cytosol. As
mentioned in Chapter II, h ∼ 7 µm, and the typical lengthscale of the embryo is L ∼ 100 µm.
In all the geometries that we will explore, as in the real system, we will restrict ourselves to
h ≪ L such that our approximation is meaningful.

The first consequence of this simplification is that the strength and geometry of the gel
flow do not depend on the sol flow. To model the fluid-fluid boundary between the sol and
gel, we will consider a tangential stress continuity boundary condition :

σgeln̂ · t̂ = σsoln̂ · t̂ (III.1)

As we shall see in our geometries of interest, this amounts to equating the velocity of
the gel flows to a multiple of the vorticity of the sol at the interface. This proportionality
factor will depend on the ratio between the gel and sol viscosities and the thickness of the
gel layer. As there is no gel in the bulk, the cytosol vorticity is a harmonic function, and the
values at the interface propagate in the bulk. Hence, under this approximation, the maxima
and minima of the sol vorticity in the interior of the egg are present at a distance h from
the boundary. This allows us to relate the parameters of the model to real-world data.

It is clear that this simplified setting ignores the transport of bound myosin towards the
cortex, which resulted in strong peaks in its concentration and time delays as a function of
the distance to the cortex. As a result, the model should underestimate the accumulation of
myosin and the localization of the flows.

This model is further simplified by ignoring the non-linearities in the myosin binding and
contraction strength, such that :

ρb

ρb +Kb
→ ρb , (III.2)

where ρb is the bound myosin distribution. This means that our results overestimate the flow
effects at high concentrations. The other approximation that we can make is to assume that
there is abundant unbound myosin, and that its diffusion is orders of magnitudes larger than
the bound myosin diffusion, which was discussed in the previous chapter. If so, we can ignore
its spacetime evolution and assume it as homogeneous. Then, full system of equations that
we are interested in, for a 2d cortical surface and a 3d sol :

ηs∆u + ηb∇(∇ · u) − γu = −α∇ρb , (III.3)
∂ρb

∂t
+ ∇ · (uρb) = Db∆ρb − kuρb + kbρp , (III.4)

and in the bulk :

η∆v − ∇p = 0 , (III.5)
∇ · v = 0 , (III.6)

where u is the gel velocity, ηs is the gel shear viscosity, ηb is the gel bulk viscosity, γ is an
effective friction coefficient which models the interaction between the gel and the sol in the
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entrainment region, α is the gel contractility, Db is the diffusion of bound myosin molecules,
ku is the unbinding rate of bound myosin, kb is the binding rate of myosin, ρp is the PP1
concentration, v is the sol velocity, and p is the pressure.

III.1.2 The stream-vorticity formulation and boundary conditions

For simplicity, let us consider a d=2 situation, i.e. the gel is confined to an unidimensional
geometry. This situation can approximate the midplane of an axially symmetric flow, and
allows for relatively simple mathematical calculations to determine the flow structure by
utilizing the so-called stream-vorticity formulation. As mentioned in Chapter II, by taking
the curl of Eq. III.5 :

∆ω = 0 . (III.7)

On the other hand, if v is divergence-free, it must derive from a particular vector poten-
tial. In particular, we can choose :

v = ∇ × (ψẑ) , (III.8)

and then :
∇ × v = ∇ × ∇ × (ψẑ) = ω . (III.9)

From the identity ∇ × ∇ × A = ∇ (∇ · A) − ∇ · ∇A :

∆ψ = −ω . (III.10)

These equations must be complemented with boundary conditions. The no penetration
boundary condition is straightforward to write :

v · n̂ = ∇ × (ψẑ) · n̂ = 0 . (III.11)

Now, the continuous stress boundary conditions. In the sol, the stress tensor reads :

σsol = −pI + η
(
(∇v) + (∇v)T

)
. (III.12)

Then :

σsoln̂ · t̂ = η
(
(∇v) + (∇v)T

)
n̂ · t̂ (III.13)

= η
∑
ij

(∂ivj + ∂jvi) n̂in̂
⊥
j , (III.14)

where we have used that t̂ = n̂⊥.

For example, in the simple case where the boundary is aligned with the y axis, and the
cytosol occupies the region x > 0 :

σsoln̂ · t̂ = η (∂xvy) = ηω , (III.15)
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GEL

SOL

Fig. III.1 Sketch showing the stress-matching boundary condition between the gel and the
sol. The red profile and arrows represent the velocities at different distances away from the
cortex, and the dotted blue lines show the discontinuity in the slope of the velocity profile
when crossing the two media of differing viscosities.

where we have used the no-penetration boundary condition to eliminate the ∂yvx terms. If
the boundary is curved this expression becomes more complicated, but it is still easy to treat
in a circular domain. The elements of the stress tensor read :

σrr = −p+ 2η∂vr

∂r
, (III.16)

σθθ = −p+ 2η
(1
r

∂vθ

∂θ
+ vr

r

)
, (III.17)

σrθ = σθr = η

(1
r

∂vr

∂θ
+ ∂vθ

∂r
− vθ

r

)
, (III.18)

n̂ = r̂ , (III.19)
t̂ = θ̂ . (III.20)

And then, if we consider that the radius R is large such that we can ignore the vθ/R
term :

σsolr̂ · θ̂ = η

(
∂vθ

∂r

)
= ηω . (III.21)

We must include additional information to calculate the stress in the gel, as we are not
explicitly modeling its velocity variation across the layer of width h. A phenomenological
way, which recapitulates our previous observations at the boundary layer, is to consider that
the gel velocity is maximum right at the cortex, and decreases linearly until reaching the
cytosol (see Fig. III.1). In a scaling fashion, such a stress will be given by :

σgeln̂ · t̂ = ±ηc
u

h
, (III.22)

where the sign is positive (negative) if n̂ points to (away from) the gel layer.
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III.2 Uniformly bound myosin : mechanochemical instability

When myosin is bound uniformly in the cortex, for example when placing a single nucleus
in the center of a ring, no myosin gradients along it exist, and as such, no flows are produced.
Yet, this state could be linearly unstable, and flows could be produced in periodic patterns
due to such instability. Two opposing forces drive this process. On the one hand, when a
region of higher bound myosin concentration is produced, the gel flow will point towards
this region, driving further accumulation of myosin, increasing the flow strength in a posi-
tive feedback loop. The non-linear terms we have neglected in the bound myosin activation
and cortical compressibility should limit this process in the long run. On the other hand,
concentrations drop more rapidly in more concentrated regions due to diffusion and myosin
unbinding. The balance between these two opposing effects can be systematically studied in
a 1d periodic system, with the instability depending on the characteristics of the actomyosin
activation function [136]. Similar studies have been performed in active cortical networks,
where different mechanochemical feedbacks bring these patterns to life [137], [138]. More
broadly, previous work has considered hydrochemical pattern formation in both experimen-
tal and theoretical settings, finding the production of localized structures due to flow and
matter patterning [139]. In this case, we will study how these actomyosin instabilities drive
flows in the bulk, and the impact of the geometry in forming and selecting these patterns.
We will treat this problem using the standard tools of linear stability analysis.

III.2.1 Infinite cortical strip

Consider an infinite cortical strip parallel to the x axis and located at y = 0. The region
y > 0 is completely filled by cytosol. Let us start from a completely homogeneous situation,
with u = 0 and ρb = ρ0

b = kb/ku. We may then introduce a perturbation such that :

u = δueσt+iqx , (III.23)
ρb = ρ0

b + δρbe
σt+iqx . (III.24)

We may rescale time by the typical bound time of myosin, t → k−1
u t. We can also rescale

distances by the hydrodynamical length, such that x →
√

ηc

γ x. Then, the dispersion relation
can be expressed as (see Appendix) :

σ(q) = Π2
α

q2

1 + q2 −
(
q2Π2

D + 1
)
, (III.25)

where Πα =
√

αρ0
b

ηcku
is the ratio between active and viscous forces, and ΠD =

√
γ
ηc

√
Db
ku

is the ratio between the diffusion length of bound myosin and the hydrodynamical length.
The behavior of this function for different parameter values is illustrated in Fig. III.2a. We
can see that this system cannot excite zero modes (σ(q → 0) < 0), nor unphysical modes
(σ(q → ∞) < 0). By analyzing the extrema of σ, we can determine the stability phase
diagram as a function of Πα and ΠD (see Fig. III.2b). For Πα > ΠD, the maxima are located
at a location |q∗| > 0, and if (Πα − ΠD)2 > 1, σ(q∗) > 0, resulting in pattern formation. This
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a) b)

c)

Fig. III.2 a) Nondimensional dispersion relation of actomyosin pattern formation in a
cortical strip as a function of the nondimensional wavenumber q for three different parameter
combinations. b) Stability phase diagram for the cortical strip as a function of the two
nondimensional parameters. Blue : Stable, Red : Unstable. c) Vector plot of the induced
cytoplasmic flows in the half-space y > 0 due to the cortical instability with q∗ = h−1.

has a very clear physical interpretation, the actomyosin contractility must be large enough
such that it can overcome the viscosity and the tendency of myosin to homogenize due to
diffusion.

We can determine an approximate flow profile in the cytosol by considering the contri-
bution of the fastest-growing mode only. This would mean that we are at a timescale that
is large in comparison to the evolution of the modes, yet small in comparison with the non-
linear effects, i.e. saturation, that could perturb growth. Calculating the stream function of
the flows, recovering dimensional units yields (see Appendix) :

ψ = ηc

η

u0
h

cos (q∗x) y

2q∗ e
−q∗y , (III.26)

where u0 is the amplitude of the cortical flows, and q∗ is the fastest growing mode. Fig.
III.2c shows the typical profile of the resulting flows. We can see that the instability produces
regular domains separated by a distance 2π

q∗ , and there is an exponential decay of the flow
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strength going away from the cortical strip.

III.2.2 Cortical ring

Next, consider a circular domain of cytosol of radius R, with an active gel ring at the
boundary. Now, instead of a continuous wavenumber q, we have a set of integers n that
produce patterns with different symmetries. By introducing the same time rescaling t → k−1

u t

as before, and defining the rescaled variable q =
√

ηc

ηc+R2γ
n, the nondimensional dispersion

relation reads (see Appendix) :

σ(q) = Π2
α

q2

1 + q2 −
((

Π2
D + Π2

R

)
q2 + Π2

R + 1
)
, (III.27)

a) a)

c)

Fig. III.3 a) Nondimensional dispersion relation of actomyosin pattern formation in a
cortical ring as a function of the normalized wavenumber q for three different parameter
combinations. b) Stability phase diagram for the cortical ring as a function of the three
nondimensional parameters. Blue : Stable, Red : Unstable. c) Vector plot of the induced
cytoplasmic flows in a circular arena due to the cortical instability. Left : n∗ = 2, Right :
n∗ = 5.
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where ΠR = 1
R

√
Db
ku is the ratio between the diffusion length of bound myosin to the radius

of the ring. The behavior of this function is illustrated by Fig. III.3a. In this case, we can
show that when Π2

α > Π2
D + Π2

R, the maxima are located at |q∗| > 0, and if Π2
α + Π2

D −
2Πα

√
Π2

D + Π2
R > 1, σ(q∗) > 0, resulting in pattern formation (see Fig. III.3b).

In this case, the curvature makes the system more stable. In a system where these cyto-
plasmic flows drive the transport of material through tubes, considering the active nature of
the driving force, it could be beneficial to make tubes narrow enough such that they do not
develop this instability.

We can determine the approximate shape of the flows by using the same saddle point
approximation as in the strip case. Then, in dimensional units (see Appendix) :

ψ = 1
4(n∗ + 1)

ηc

η

u0
h

(
r

R

)n∗ (
r2 −R2

)
cos(n∗θ) , (III.28)

where u0 is the amplitude of the cortical flows, and n∗ is the fastest growing mode. Fig.
III.3c shows the typical profile of the resulting flows for n∗ = 2 and n∗ = 5, note that due to
the harmonic vorticity, the velocity decay closer to the center is gets faster as n∗ increases.
As a final intuitive remark connecting this case to the previous one, we can see that the case
R → ∞, rescaling n = qR, reduces this situation to the case of the infinite cortical strip.

III.3 Nuclear-induced flows in different geometries

To get tractable analytical results, we will consider that the binding-unbinding rates are
very fast in comparison to the variations in PP1 concentration due to the oscillations in
the Cdk1 clock and the motion of the nuclei. Our chosen myosin binding/unbinding rates
in the previous chapter support this assumption, with the cell cycle lasting eight minutes,
and binding/unbinding timescales on the order of seconds (see Table A.1). We will ignore
the intermediate field that introduces a delay between PP1 and myosin (see Eq II.26) as it
is not substantial to reproduce the flows. We will also ignore the non-linear effects of myosin
transport due to the cortical flows.

In this adiabatic setting, the concentration of bound myosin is proportional to the amount
of PP1 at a given location in the cortex. This establishes a direct link between the location
of the nuclei and the driving forces of the gel flows. Furthermore, the response of the system
is linear in the concentration of bound myosin. Hence, its behavior for multiple nuclei can
be easily found after having solved the single nucleus case.

Depending on the cortical geometry and the position of the nuclei, these flows are able
to propel them in particular directions. A very simple example that illustrates this fact is
the case of a nucleus inside of a V-shaped cortical aperture. As we can observe in Fig. III.4,
the bound myosin maxima are displaced in the x coordinate with respect to the x position
of the nucleus, which can be determined geometrically :

ϵ = x sin2(α/2) , (III.29)
where x is the distance of the nucleus from the corner. hence the nucleus will be propelled
away from the corner.
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Fig. III.4 Sketch showing an embryo (red) in a triangular-shaped cytoplasmic region (light
yellow). Due to the geometry, the bound myosin distribution (green) is displaced with respect
to the center of the PP1 distribution by a length ε, which leads to the propulsion of the
nucleus.

This general fact illustrates that nuclei tend to migrate from narrower regions to broader
regions.

III.3.1 Infinite cortical strip

We will start by considering an infinite cortical strip parallel to the y axis, located at
x = 0. The cytosol fills the x > 0 region, and we have a single nucleus at (xi, yi). A standard
tool to solve this problem considers calculating the Fourier transform of our relevant functions
in the y coordinate. However, even in this simple setting, expressing the inverse transforms
in a closed form is extremely challenging. To go over this roadblock, we will perform two
approximations. First, we will consider a Gaussian approximation for the bound myosin
distribution at the cortex, assuming that the distance between the nucleus and the cortex is
larger than the PP1 decay length λ. In such a case, and considering yi = 0 for simplicity, we
can approximate the PP1 cloud in space as :

ρp = g(t)e−
√

x2
i +y2/λ ≈ g(t)e−xi/λe

− y2
2xiλ , (III.30)

where g(t) is the PP1 activation function. As a result, the Fourier transforms of the re-
levant variables will be some Gaussian function multiplied by another function. This will
yield different functions that decay exponentially at infinity, and present a given number of
symmetric or antisymmetric spikes close to k = 0. If our hydrodynamical lengths are such
that these spikes decay rapidly over space, these resulting functions can be approximated by
a sum of Gaussian functions with different standard deviations, which then can be readily
brought back to x space (see Appendix for detailed calculations).

From Fig. III.5a, we can see that the flow profile partitions the space into two clear
regions. In the central cone, the velocity points away from the strip. Outside this cone, the
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a) b)

c)

Fig. III.5 a) Vector plot of the flows induced due to the presence of a single nucleus at
xi/h = 2 next to a cortical wall located at x = 0. b) Flow velocity at the position of a
nucleus next to a cortical wall at x = 0. c) Evolution of the position of a single nucleus as a
function of time resulting from the distance-dependent cytoplasmic flow strength shown in
b). 5 different initial conditions are displayed. Timescale τ0 = η/(hα) and typical velocity
v0 = h/τ0.

velocity profile has a strong horizontal component that will bring a tracer back to the central
cone.

The dependence of the strength of the pushing as a function of the distance is clearly
illustrated by Fig. III.5b. Moreover, there is a characteristic distance from the wall beyond
which the velocity is negligible. Fig. III.5c illustrates that beyond this point, the distance of
different nuclei to the wall with different initial conditions will collapse. This is a consequence
of velocity control due to PP1. As another remark, the initial quasi-linear scaling hints at
that it could be easy for a probe to measure its distance from the wall just by analyzing the
strength of the flows.

Approximate solutions for more complicated geometries can be obtained by adding the
contributions of multiple infinite strips, assuming that the distances between them are larger
than the decay length of the sol flows that they induce, and that the strips may only intersect
in regions beyond the decay length of the gel flows.
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a) b)

Fig. III.6 a) Vector plots of the induced flow in a channel parallel to the y axis due
to the presence of a single nucleus at varying distances from the right cortical strip. The
pushing effect from the flows leads to centering. b) Vector plots of the induced flow in a
channel parallel to the y axis due to the presence of two nuclei that start in a configuration
perpendicular to the channel. Any small perturbation leads to hydrodynamical buckling, and
in the end, nuclei get to a preferred separation distance. Channel width : L.
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III.3.2 Parallel infinite cortical strips

The case of two parallel strips can be approximated by using the solution obtained
before and superposing the contributions of two strips next to each other. But if the distance
between the two is smaller than the characteristic decay length of the sol flows induced
by the gel entrainment, the approximation will become very poor. Hence, to study narrow
geometries, it will be useful to consider a more accurate solution. This parallel cortical strips
situation approximates the mid-section of a tube.

The relevant calculations reduce to using the same Gaussian approximation introduced
in Eq. III.30 in both strips, and then calculating the flows inside using analogous Fourier
transform techniques to the single strip case (see Appendix for details). As illustrated by
Fig. III.6a, if the nucleus is not placed at the same distance from the two strips, the shape
of the flow will move the nucleus closer to the center.

Because stream functions are additive, our calculations can already account for multiple
nuclei. We can see that the induced flow tends to spread the nuclei in the bulk, such that
they are separated by a characteristic distance. This is interesting because it shows that
microtubules are not strictly necessary to spread the nuclei apart when under the influence of
actomyosin-driven flows. A very clear representation of this is shown in Fig. III.6b. When the
two nuclei are placed in a line that is perpendicular to the strips, the induced flows will bring
them closer to the center. But this situation is actually unstable. Any small perturbation to
this configuration will make the nuclei spread apart in the y axis as they move toward the
center, resembling the process of mechanical buckling.

When multiple nuclei are placed together, we can see from Fig. III.7 that the strongest
flows are produced at the edges of the distribution. This is completely natural, considering
that the bound myosin distribution is less uniform at the edges. This means that the nuclear
spreading is not completely uniform, it is driven by the external nuclei, which when displaced

Fig. III.7 Vector plot of the induced flows in a channel of width L parallel to the y axis
due to the presence of a line of nuclei. PP1 gradients produce the strongest flows at the edges
of the distribution.
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trigger the next shell to move and so on.

These results suggest that when having a nuclear distribution, the flows will tend to
concentrate the distribution along the axis lying in between the two strips. If the strips are
really infinite, then the distribution will become delta-distributed around this line. Otherwise,
the size of the system will set the aspect ratio of the final distribution.

III.3.3 Circular arena : discrete nuclear distribution

Next, we consider the case of a nucleus in a circular cytosol domain of radius R, surroun-
ded by an active gel ring. When the nucleus is exactly at the center of this structure, myosin
binds uniformly around the cortex and no flows are produced. As we have shown in the pre-
vious section, this could induce the production of flow patterns due to the advection-driven
instability, yet this effect is not captured when ignoring the gel-driven myosin transport.

As in the previous cases, we can expand the ρb function assuming that the nucleus is far
from the cortex. When the nucleus is off-center, the PP1 cloud is displaced and flows arise
from these gradients. Given that the vorticity is a harmonic function, it can be naturally
expressed as a superposition of circular harmonics, i.e. vorticity multipoles. At the lowest
order, our results allow us to find the contribution of the vorticity dipole and quadrupole

+

Fig. III.8 Flow vorticity induced due to the PP1 activation of a single nucleus in a circular
arena. The main components are a dipole and a quadrupole. Vorticity color-coded from blue
(Negative) to red (Positive).
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(see Fig. III.8). They are oriented such that the nucleus is located in a line of zero vorticity,
with the signs such that the flows redirect the nucleus to the center. Overall, the addition
of the two vortices has the shape of a quadrupole that is displaced from the center, which is
in qualitative agreement with experimental observations and our full model, even if the real
embryo geometry is elongated.

Using an analogous procedure to the one explained for the other geometries, we can
calculate the stream function for a single nucleus, and from there reconstruct the velocity
profile everywhere in the domain, and in particular, at the position of the nucleus. At the
lowest order, the evolution of the distance of the nucleus to the origin satisfies the following
dynamical equation (see Appendix) :

dri

dt = −g(t) 1
τ
ri , (III.31)

where g(t) is the cell cycle oscillator and :

1
τ

= 1
8

1
h

α

η

1
10 + 7R2κ2

c +R4κ4
c

Re− R
λ

(
5 +R2κ2

c

) R
λ
, (III.32)

where κ−1
c =

√
ηc/γ is the hydrodynamical length.

a)

b)

c)

Fig. III.9 Centering in a circular arena follows exponential dynamics a) Plot of
solution III.33 for four different initial conditions. b,c) Plot of solution III.34 for four different
initial conditions. T = 2τ and T = 10τ respectively.
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Assuming g(t) to be equal to one, i.e max PP1 activity, we recover exponential decay :

ri(t) = ri(0)e− t
τ . (III.33)

Solutions to this equation for different initial conditions are shown in Fig. III.9a. A more
realistic result considers the periodic oscillations of the cell cycle. For instance, by considering
g(t) = sin2 (πt/T ) :

ri(t) = ri(0)e− t
2τ e

T sin(2πt/T )
4πτ , (III.34)

where notably, due to the non-constant PP1 activation, the characteristic centering time
is doubled. This would depend, in general, on the time average of the function g(t). Figs.
III.9b,c show the behavior of this solution for different oscillatory periods of PP1.

Now, let us focus on nuclear positioning when more than one nucleus is present. In our
approximation, the cytosol vorticity is the linear superposition of dipoles and quadruples.
They are mathematically represented as sin(θ− θi) and sin(2(θ− θi)) terms, where θi is the
angular position of nucleus i in the domain (see Appendix). When two nuclei are present,
we can see from Fig. III.10a and from our equations (see Appendix) that the flows will drive
them to spread apart with a separation angle ∆θ = π, achieving a maximally symmetric
state. If both particles are equidistant from the center, then we should only look at the
sin(θ− θi) and sin(2(θ− θi)) terms. It is not hard to see that for two particles with opposite
angles, the first term annihilates, and hence the leading residual flows have a sin(2θ) shape,
i.e. 4 vortices. We must remember that we have started from an expansion of the exponential
in the ρb function, hence higher orders of sin(n(θ−θi)) are ought to exist in the full problem.

If we consider a triangular distribution where one of the vertices is closer to the cortex, we
can see that the flows will bring this nucleus closer to the center, while the other ones will be
pushed apart (see Fig. III.10b). In the end, they will reach an equilateral triangle distribution.
In this case, the ∆θ = 2π/3 angular separation between particles implies that the sin(θ) and
sin(2θ) terms vanish, hence the leading residual flows have a higher symmetry. A rectangular
distribution with unequal width and length will converge to a square distribution, as shown
in Fig. III.10c, and the ∆θ = π/4 angular separation between particles will annihilate the
sin(θ) and sin(2θ) terms again.

In general, for a centered N-gon nuclear distribution, the leading residual flows will have
DN symmetry, where D is the dihedral group. The argument is very simple ; as shown before
a single nucleus will be pushed towards the center of the arena. If we have N nuclei arranged
symmetrically around the center, each one of them will be pushed towards the center with
the same strength. However, the fluid is incompressible, which means that between regions
pushing inwards there should be regions that push outwards. Hence, there will be 2N vortices,
N positive and N negative, and the whole flow field will have DN symmetry. This has
important implications. Because the vorticity is harmonic, the strength of the flow decreases
and becomes more localized towards the boundary the more vortices there are. Hence, the
residual flows become less relevant as more nuclei are put in. Finally, in the N → ∞ limit,
the distribution is circular and no gradients of ρb exist, hence the residual flows are exactly
zero.
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a)

b)

c)

Fig. III.10 a,b,c) Initial and final distribution of nuclei for a two,three, and four-particle
distribution respectively. Residual flows in the three and four-particle cases cannot be cal-
culated with our approximation.



III.3 Nuclear-induced flows in different geometries 57

III.3.4 Circular arena : arbitrary continuous nuclear distribution

We have already determined that there exists a link between the geometry of the dis-
tribution of nuclei and the geometry of the flows in the circular arena. We have argued
that distributions tend to become more symmetric over time, however, this timescale is not
completely obvious, and dealing with generic angles and distances between particles quickly
leads to equations that are intractable with simple analytical methods. Hence, it would be
even more insightful to work with continuous distributions to see how the properties of the
distribution relate to the properties of the flow and its temporal evolution. Let us define a
nuclear distribution ρn by performing a coarse-grained procedure on the discrete positions
of the nuclei :

ρn =
〈∑

i

δ (r − ri)
〉

A

, (III.35)

where ri denotes the position of the i-th nucleus and the average is performed in a neighbo-
rhood of size A around r.

This nuclear distribution will, in general, evolve with the following equation :
∂ρn

∂t
+ ∇ · (vnρn −Dn∇ρn) = Gn , (III.36)

where vn is the advection velocity of the nuclei, Dn is the nuclei diffusion coefficient, and
Gn is a production function that accounts for nuclear division or death.

We will make various simplifying assumptions to disentangle the effect of the flows from
the rest of the nuclear biochemistry. Nuclei are large enough such that their diffusive motion
can be ignored in the timescales that we are interested in. We will also ignore nuclear division,
such that Gn = 0. Finally, we will ignore the microtubule-mediated interaction forces, such
that the advection velocity is exactly the cytosol velocity. Formally, this could be a problem
because depending on the shape of the flows, there could be an unphysical accumulation of
nuclear density in localized positions in space. However, the cytosol is incompressible, and if
the only thing moving the nuclei is the cytosol, this should not be an issue.

To close this equation, we need to find the cytosol velocity as a function of the nuclear
distribution, v(ρn). As an intermediate step, we should determine the cortical gel velocity,
for which we calculate the bound myosin distribution by integrating the activation kernel
over the nuclear distribution :

ρb =
∫
g(x′, t)e−∥x−x′∥/λρn(x′, t) ddx′ . (III.37)

We formally have everything to determine the evolution of an arbitrary nuclear density.
However, it will be insightful to study the evolution of the moments of the distribution, as
the two first moments will already give plenty of information about where the distribution is
moving to, and how much is its spread. We can calculate the expected value of any observable
by integrating over the nuclear distribution, and in particular, we can consider the moments
of the distribution. We can show (see Appendix) that the evolution of the center of mass of
the distribution satisfies :

d
dt ⟨x⟩ = −g(t)χ1 ⟨x⟩ , (III.38)
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where χ1 = 1/τ is the inverse timescale of decay in the discrete case that was previously
defined in Eq. III.3.3. On the other hand, the difference between the spread in the x and y
directions satisfies :

d
dt
〈
x2 − y2

〉
= −4g(t)χ2

〈
x2 + y2

〉〈
x2 − y2

〉
, (III.39)

where :
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. (III.40)

From the evolution of the different moments of the distribution, we can see that the
distribution will tend to center and homogenize its spread in the x and y directions, becoming
rotationally symmetric. We can also see that the distribution homogenizes its spread faster
than its relocation to the center. As a final remark, just like explained before, due to the
incompressibility of the fluid, the flows stop when perfect symmetry is achieved.

III.4 Discussion

Many different organisms rely on cytoplasmic flows to grow and transport cargo. Hence,
the flow strength and geometry are determinants to achieve these tasks correctly. Centering
has been of particular research relevance, not only in the context of flows [80], [140], but
also in actomyosin networks [141], [142]. Here, we propose that this mechanism is generic,
with general physical principles allowing us to predict the centering of arbitrary nuclear
distributions and their evolution timescales.

Our pattern formation setting was reduced to the linear case. It would be interesting
to study the nonlinear effects perturbatively, hence getting a sense of how the patterns get
sharper over time, and how does saturation affect each mode depending of their wavenumber.

The general principles uncovered by our simplified model will allow for a better analysis
of structures that rely on actomyosin deformations, and could serve as a guiding tool to
design new materials. In particular, we have not explored yet the possibility of modulating
the actomyosin binding function in space and time. This function would satisfy its own
continuity-like equation, and as such there could very well be a feedback between the nuclear
positioning or the flow strengths on this function. In turn, this could allow for the propagation
of mechanical or “activation” waves, and produce symmetry-breaking flows. In the same way
that we have studied pattern formation in the cortical layer leading to bulk flows, there
could be the same type of instabilities or even limit cycles if appropriate feedback terms are
considered.

More generally, this kind of system can be put in the context of active matter mo-
dels. The prototypical picture of the Vicsek model [143], later generalized in the continuum
[144], considers the self-organized behavior of systems of aligning polar particles. Recently,
it has been found that systems where forces are mediated by hydrodynamical interactions
can display rotational [145] or translational [146] order. In this context, this mechanism of
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boundary-driven flows could be of interest to study the collective properties of these par-
ticles in different geometries, and effective particle-particle interactions arising from this
mechanochemical coupling could be determined.

A further question is the influence of temperature gradients in the flows. Myosin binding
and actin contractions, being processes driven by chemical reactions, should depend on tem-
perature, and we could write an Arrhenius-type dependency as we have done for the other
chemical equations. The binding of myosin will no longer be centered around the nucleus, but
rather skewed towards the region that is at a higher temperature. As a result, the nucleus
will not be at the stagnation point of the flow field, and it will be pushed towards the cold re-
gion. Different living organisms have been shown to perform positive or negative thermotaxis
[147]-[149]. In the same way, because the cell cycle biochemistry influences the cortical insta-
bilities, tuning the temperature could be a way to transition from a homogeneous situation
to triggering an instability and producing flows.

These results could be interesting in the context of flows in tube networks, arising in
the context of Physarum [68], bacterial aggregates [150], and mycorrhizal fungi [151]. In the
midsection of a tube, these gradients can drive the motion of the nuclei. At a bifurcation
point, the proportion of nuclei going one way or the other could be determined and controlled
by modulating the temperature gradient in each one of the two. This would allow for tunable
material transport, beyond pure geometry, by dynamically adjusting the temperature in
different regions of the network.
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IV – Slowing down before gastrulation

Como en un acto de telepatía, H y yo miramos simultáneamente el gran reloj
que estaba en medio de la plaza y la sorpresa que nos llevamos fue aterradora :
el tiempo no avanzaba ni un segundo después de las 4 y 19 minutos de la tarde.

Amigo se escribe con H (María Fernanda Heredia)

(This chapter and corresponding appendix are adapted from a manuscript in
preparation by Claudio Hernández-López, Stefano di Talia, and Massimo Ver-
gassola)

IV.1 Motivation & Established facts

IV.1.1 Experimental findings on pre-gastrulating Drosophila embryos

Gastrulation in Drosophila Melanogaster involves a wide range of processes that break
the symmetry of the egg and set the stage for tissue differentiation in its different regions.
Some of these processes include the ventral furrow formation that will give rise to the me-
soderm of the fly [128], [152], or the production of polarized tissue flows that drive the
invagination of the endoderm [153]. Besides an adequate regulation of the mechanics of such
processes, they require having finalized cellularization, which is dependent on transcription
of the nuclear DNA [59], [60]. We must remember that up to the beginning of cycle 14, there
is little transcriptional activity in the syncitium because a short S phase only allows for small
transcripts to be produced [61]. Hence, it is fundamental that the nuclei start transcribing
their DNA to activate new biochemical pathways that lead to development progression. And
then, mechanical forces must be properly induced to deform the epithelium in an expected,
reproducible way, and therefore synchrony is essential. This poses a critical challenge because
chemical reactions are inherently noisy and the beginning of transcriptional activity may not
necessarily be triggered at the same time in different regions of the egg. Diffusion can help to
smooth out these inhomogeneities, however with the size of the embryo, 500 µm, in contrast
with the diffusion coefficient of typical protein 5 µm s−1 [154], whole-embryo synchrony is
not a given. As we will discuss, the key lies in the clever use of regulatory biochemistry.

The nuclei in early Drosophila embryos switch between S and M phases, with the master
regulator of the cell cycle, the Cyclin B-Cdk1 dimer, switching between phases of slow growth

61
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(S phase) and fast growth followed by degradation (M phase). The chemical network that
regulates this clock is set up in such a way that the reaction-diffusion system governing
the Cdk1 concentration in the embryo allows for the propagation of waves [155]. Fig. IV.1a
shows a wave of mitotic divisions for cycle 13, and Fig. IV.1b shows the same phenomenon
by looking at the concentration of Cdk1. As the duration of the cell cycle increases while the
embryo goes through successive cleavage divisions, the speed of these waves decreases (see
Fig. IV.1c), and so does the embryo-wide synchrony.

A simplified model of the cell cycle biochemistry was proposed, extracting an effective
bistable potential that governs the concentration of active Cdk1 (see Fig. IV.1d). However,
in contrast with the embryonic waves in the early development of the frog Xenopus [156],
the behavior and measured speeds of the mitotic waves in Drosophila are not consistent
with bistable waves. In particular, the waves are too fast and are not impacted by physically
decoupling different regions in the egg. The key to understanding this is to note that as more
cyclins are produced over time, the shape of the effective potential governing the activation
of Cdk1 changes, in particular losing bistability as the stable low-Cdk1 and unstable fixed
points annihilate each other. In the wild-type embryo, this evolution of the effective potential
landscape is faster than the relaxation timescale of active Cdk1 back to the fixed point, hence

a)

b) c) d)

Fig. IV.1 a) Fluorescent images depicting the spreading of mitotic waves in the embryo of
Drosophila Melanogaster during cycle 13. Scale bar : 10 µm. b) Activity of the Cdk1 reporter
at different positions in the egg during cell cycle 13 showing the propagation of a Cdk1 wave.
c) Time delay of the spreading of the wave as a function of position for different cell cycles.
d) Effective Cdk1 activation function as a function of its concentration during cycle 13 in a
model of the cell cycle biochemistry. Trajectories color-coded from red to blue by increasing
time. Panel adapted from [155].



IV.1 Motivation & Established facts 63

there is a clear separation between the S and M phase of the cell cycle. During the S phase, the
Cdk1 activity stays close to the evolving low-Cdk1 stable fixed point, and diffusion smoothens
concentration changes, producing concentration gradients. During the M phase, bistability
is lost, and Cdk1 activity spikes as its concentration gets closer to the high Cdk1 fixed point.
Activity increases so dramatically that diffusion becomes irrelevant in this phase, i.e. we have
a kinematic wave that does not require coupling between different regions of the embryo.
The main intuition to keep in mind is that the time delays between different regions are set
during S phase, and then M phase merely drives the divisions that occur with these delays
[155]. A detailed mathematical analysis of the model successfully reproduced the speed of the
waves in wild-type conditions. Furthermore, this model accurately predicted that changes
in the feedback mechanisms of the cell cycle can slow down the evolution of the effective
potential and recover the slow, bistable mitotic waves [157].

If kinematic waves are responsible for synchronizing mitotic events in Drosophila embryos,
what is the origin of cell cycle slowing ? One possible lead is noting that nuclear density in
the embryo doubles as more divisions are completed. It is a well-established fact that the
nuclear to cytoplasmic volume ratio (N/C) is one quantity of interest of cells to control, with
departures from an optimal value clear signs of senescence or cancer [158]. In the syncytial
stage of the embryo, we are in the presence of a single cell that is duplicating its nuclear
volume at each stage. Hence, keeping track of the N/C ratio could be one way to signal cell
cycle arrest to start transcription [64]. However, it is clear that nuclei do not have access to
all the information in the egg due to the aforementioned slow diffusion of signaling chemical
species. Hence, the N/C ratio measurement should be local up to a certain degree, which is
perfectly illustrated by genetic experiments.

As explained in Chapter II, achieving a uniform nuclear distribution by cycle 7 requires
the cell cycle chemistry to drive cytoplasmic flows. The shkl mutant displays an impai-
red activity of the ligase Cul-5, involved in the regulation of cytoskeletal activity, and more
specifically actomyosin contractions. Hence, the cytoplasmic flows in these embryos are signi-
ficantly reduced. As a consequence, once the nuclei reach the cortex, the nuclear distribution
follows a gradient along the anterior-posterior axis, and synchrony is compromised following
the production of an extra division patch in the diluted region [65], [91] (see Fig. IV.2a).
These results are consistent with the idea that the cell cycle slows down as a function of the
nuclear density. However, this sensing seems to be controlled by the density of DNA rather
than nuclear density alone. In particular, the duration of nuclear cycle 13 has been shown
to scale with the DNA content [64], [159], with detailed experiments showing a quasi-linear
behavior [63] (see Fig. IV.2b). Experiments have shown that this scaling is not uniform, the
removal/duplication of particular chromosomes amount to different effects, and it has been
suggested that this is due to the transcriptional activity of different chromosomes [63]. We
will ignore this subtetly for the time being.

Beyond altering the cell cycle length, this mechanism has profound consequences. If the
DNA fraction in the embryo is 50% of the WT embryo, then nuclei effectively measure that
they are one cell cycle behind what they really are and then one extra division should be
triggered. Analogously, if the DNA fraction is 200% of the WT embryo, the nuclei should
arrest their cell cycle one division before the WT embryo. This means that somewhere in
between 50% and 100% (100% and 200%), there should be some values for which random
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b)

d)

c)

e)

a)

Fig. IV.2 a) Fluorescent images depicting the shkl embryo mutant. At cell cycle 11, the
anterior has a higher density than the posterior side. Later on, the less dense side divides an
extra time, producing a patch that has been outlined in white. Scale bar : 100 µm. Adapted
from [65]. b) Duration of cycle 13 as a function of the DNA content of the embryo. Adapted
from [63]. c) Patchy embryo arrested between cycles 13 and 14 for increased DNA quantity
mutants, and between cycles 14 and 15 for reduced DNA quantity mutants, compared to a
reference wild-type embryo arrested at cycle 14. Adapted from [62]. d) Percentage of embryos
that arrest at cell cycle 13 (blue), 14 (red), and 15 (green) for different DNA quantities.
Adapted from [62]. e) Measured probability of extra division at different locations in the
embryo as a function of the local N/C ratio, averaging over different neighborhood sizes
depicted in different colors. Curves collapse at a relative N/C ratio close to 0.7. Adapted
from [65].
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fluctuations drive the embryos to either trigger an extra division (arrest a cycle early) or
not. Not only is this true, but also the spatial extent of these decisions is not necessarily
the whole embryo, with patchy embryos being produced for some fractions of the WT DNA
content (see Fig. IV.2c). Fig. IV.2d shows a sharp transition between embryos that arrest
at cycle 14 and cycle 15 for a DNA content of ∼ 70%, where patchy embryos are observed
around this number. These results go hand in hand with careful measurements of the size of
the extra division patches in shkl embryos. In particular, the probability of undergoing an
extra division before arrest at cycle 14 is linked to a local nuclear density in space close to
∼ 70% of the WT cycle 14 density (see Fig. IV.2e).

It has been shown that the N/C ratio controls the slowdown of the cell cycle by inhibiting
Chk1 [155]. Yet, the biochemical mechanism that yields this effect has yet to be agreed upon.
One possible mechanism is the titration of a given molecular species. Fig. IV.3 sketches such
a mechanism, where nuclei compete for importing a particular molecular species that has a
regulatory effect. Increasing the nuclear density reduces the available number of molecules
that each nucleus can import. Experimental evidence supports that histone H3, which is
imported into the nuclei, could be a candidate. In particular, as illustrated in Fig. IV.4a, its
concentration modulates the duration of the cell cycle, even triggering an extra division event
when it is abundant. Furthermore, as shown in Figs. IV.4b and c, increasing H3 concentra-
tions downregulates Chk1 activity, and the concentration of H3 per-nucleus decreases as the

Fig. IV.3 Sketch depicting how a titration mechanism allows for regulation of biochemi-
cal pathways. Top : low nuclear density setting, all the nuclei can import enough titration
molecules. Bottom : high nuclear density setting, the central nuclei cannot import enough
titration molecules.
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a) b)

d)c)

Fig. IV.4 a) Box plot of duration of cell cycles 11-13 for wild-type embryos, embryos
expressing excess of histone H4, and embryos expressing excess of histone H3. The later ones
present extra divisions beyond cycle 13. Adapted from [161]. b) Measured Chk1 activity
during cell cycles 12 and 13 in a wild-type embryo and an embryo expressing excess of
histone H3. Metaphase is greyed out due to the reporter depending on the presence of the
nuclear membrane. Adapted from [161]. c) Measured fluorescence level of photoactivated
histone H3 in the nuclei as a function of time for cell cycles 11-13. Adapted from [160]. d)
Measured single-nucleus import rate of histone H3 for cell cycles 11-13. Adapted from [160].

cell cycle progresses. The total import rate of this histone in the embryo is constant (see Fig.
IV.4d), which means that nuclei do not compete directly to import this histone, rather, they
compete to utilize the import machinery [160].

One more element that adds complexity to the challenge at hand is temperature. Beyond
the metabolic activity, no internal temperature regulation is present in the egg. The null
assumption that we can make is that the reaction rates of the chemical reactions will, as a
first approximation, depend on temperature following Arrhenius’ equation. These reactions
involve a different number of steps and reactants, such that their activation energies are not
necessarily the same. To keep a reference of the relevant energy scales, the chemical potential
of ATP hydrolysis is µATP ≈ 30.5 kJ/mol, and at 25◦C, RT ≈ 2.5 kJ/mol.

When chemical reactions occur sequentially, their progression is slaved to the slowest
reaction, and an effective Arrhenius activation energy can be then obtained [162]. When
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Fig. IV.5 Top : Total time of development and rate of development, from egg-laying to
adult hatching, of Drosophila Melanogaster and Drosophila Simulans as a function of tempe-
rature. Adapted from [163]. Bottom : Fit of an effective Arrhenius coefficient by measuring
the rate of progression through different steps of development of Drosophila Melanogaster, in
particular, cell cycle 13 (left) and cell cycle 14 until the beginning of cellularization (right).
Adapted from [162].

reactions occur in parallel, it would be necessary to have a checkpoint in place such that the
system is slaved once again to the set of slowest reactions.

Experiments have shown that Drosophila can develop in a wide temperature window (see
Fig. IV.5), with different developmental rates [163]-[165]. In a big portion of this window, the
developmental rate follows Arrhenius law. More detailed experiments have shown that the
effective Arrhenius activation energy changes as development goes beyond gastrulation [162]
(see Fig. IV.5). This is not a big surprise, given the sharp increase of zygotic transcription
driving the activation of new chemical pathways.

Finally, microfluidic experiments have challenged the ability of the embryo to synchro-
nize the cell cycle by putting the two ends of the egg at different temperatures [166]-[168].
This effectively causes the two regions to go through the cell cycle at different speeds. The
non-uniform forces produced by the microtubule-mediated nuclear interactions lead to the
production of important cytoplasmic flows [168], [169], concomitant with a yo-yo-like motion
of the nuclei that has been observed previously [170]. Even in the presence of this sharp
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temperature gradient and cytoplasmic flows, the embryo is viable in a wide temperature
step range.

In this work, we will consider all of these experimental observations and previous modeling
schemes to construct a unifying model of the cell cycle biochemistry to study the speed and
synchronization of the cell cycle in the pre-gastrulating embryo of Drosophila Melanogaster.

IV.1.2 Modeling chemical reactions : the Gillespie equation

Consider ρi as the concentration of chemical i in our compartment. At a mesoscopic level,
its dynamics will follow the continuity equation :

∂ρi

∂t
+ ∇ · Ji = Gi , (IV.1)

where Ji = vρi − D∇ρi considering advective and diffusive transport. Now we must treat
the source term Gi.

At a fundamental level, chemical reactions are stochastic processes. For a reaction to
take place, the two given species must be close enough such that they can interact, and
their respective energies must be higher than the energy barrier that separates the bound
from the free state. Provided that we find a timescale t large enough such that various
random collision events are integrated, but small enough so that the variation in the binding
affinities between chemical species remains relatively constant, we can write an approximate
solution to the evolution of the number of molecules Ni that we are interested in. Assuming
that all reactions produce a single molecule of this product, and considering a well-mixed
compartment [171] :

dNi

dt =
∑

j

aj (N) +
∑

j

√
aj (N)ξj(t) , (IV.2)

where ξj is a delta-correlated Gaussian white noise process satisfying :

⟨ξi(t)⟩ = 0 , (IV.3)
⟨ξi(t)ξj(t′)⟩ = δ(t− t′)δij . (IV.4)

Finally, to obtain concentrations, we divide by the volume of the container :

dρi

dt = 1
V

∑
j

aj (V ρ) + 1
V

∑
j

√
aj (V ρ)ξj(t) . (IV.5)

As a first-order description of reaction kinetics, we consider that aj(V ρ) = V ajρjρi.
Then :

dρi

dt =
∑

j

ajρjρi + 1√
V

∑
j

√
ajρjρiξj(t) . (IV.6)

This equation reveals an intuitive fact. Due to the molecular origin of the noise term,
if two systems have the same molecular concentrations but different numbers of particles,
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i.e. the two systems have different volumes, the noise amplitude will be different in the two
cases. In particular, as the number of particles increases, the amplitude of the noise in the
concentration equation decreases. In such a regime, it is sometimes helpful to approximate
the multiplicative noise as additive noise to perform analytical calculations. The general
idea to keep in mind is that there is one “free” parameter in the equations that connects the
molecular concentrations in our arbitrary units with the number of molecules in the system.

Another fact to keep in mind is that the sum of noise terms can be grouped owing to the
ξ variables being identically distributed, independent Gaussian variables. Using the additive
property of the variances, we have :

dρi

dt =
∑

j

ajρjρi + 1√
V

√∑
j

ajρjρiξ(t) . (IV.7)

The sum can also be split into different contributions if convenient, which will be perfor-
med in our case. This is the form of the term Gi which must be included in the continuity
equation to account for chemical reactions.

IV.1.3 Temperature dependence at mesoscopic scales : Einstein’s relation &
Arrhenius equation

We will first explore the relationship between the diffusion coefficient and temperature.
Consider a particle immersed in a temperature bath under the action of a spatially-dependent
potential E(x). The probability of finding said particle at a particular position x at a given
time t evolves according to the Fokker-Planck equation :

∂P

∂t
+ ∇ · (vP −D∇P ) = 0 , (IV.8)

where the (deterministic) velocity of the particle v is given by :

v = −µ∇E , (IV.9)

where µ is the mobility.

At steady state :
∇ logP = − µ

D
∇E , (IV.10)

and hence :
P ∝ e− µ

D
E . (IV.11)

However, we also know that in the canonical ensemble :

P ∝ e
− 1

kBT
E
, (IV.12)

so we finally arrive at Einstein’s relation :

D = kBT

µ
. (IV.13)
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This is a very powerful statement that connects the microscopic world, i.e. the interactions
between the particle and the medium where it resides, to the macroscopic world. It is one
example of the so-called fluctuation-dissipation relation. In this case, we can derive the
mobility µ approximating the shape of the molecule to a sphere and using the Stokes drag
coefficient, such that µ = 6πηa, where η is the viscosity of the medium, and a is the typical
radius of the molecule. Assuming that in the temperature range that we are working the
changes in viscosity due to temperature are negligible, then the diffusion coefficient should
scale linearly with T . Now, we will explore how the reaction rates depend on T.

Consider two chemical species, A and B, that can bond and form a product AB. The
typical energy landscape between the two species as a function of their distance is depicted
in Fig. IV.6. The reaction rate is inversely proportional to the time that it takes for the
product to reach the unbound state. To simplify the discussion, we will place particle A
in the origin of our reference frame. How long does it take for particle B to reach a given
position in space ? In particular, we will be interested in how long does it take for it to escape
the potential well of its interaction with A. What follows is a very handwavy calculation that
gives some intuition, yet the reader must know it can be developed in a more formal way.

Let τ(x) be the time to reach a given target if currently at position x, and let us consider
a 1d system for simplicity. As the particle can diffuse, during a time interval ∆t the particle
can move a typical distance ±∆x with the same probability. The diffusion coefficient relates
the size of the random step to ∆t, in a scaling fashion : ∆x2 = 2D∆t. The particle can also
move due to advection, moving a distance v∆t. Then, τ(x) satisfies the following equation :

τ(x) = ∆t+ 1
2 (τ(x− ∆x+ v∆t) + τ(x+ ∆x+ v∆t)) , (IV.14)

Fig. IV.6 Sketch showing the typical potential energy landscape between two different
chemical species that can form a bond as a function of space. The distance xmin represents
the mean distance between the particles in the bound state, and xmax the distance at which
the potential barrier is maximal.
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and expanding as a Taylor series up to order 2 in space derivatives :

1
D

+ ∂2τ

∂x2 − 1
kBT

∂E

∂x

∂τ

∂x
= 0 . (IV.15)

Consider a solution of the form ∂τ
∂x = A(x)e

E(x)
kBT . Then :

A(x) −A(x0) = −
∫ x

x0

1
D
e

− E(x′)
kBT dx′ . (IV.16)

The origin acts as an infinite potential wall. Hence, we can use reflective boundary condi-
tions on τ , such that :

A(x) = −
∫ x

0

1
D
e

− E(x′)
kBT dx′ . (IV.17)

Now let’s assume that x0 is our end position, beyond the energy barrier. Then, τ(x0) = 0,
such that :

−τ(xmin) = − 1
D

∫ x0

xmin
e

E(x′)
kBT dx′

∫ x′

0
e

− E(x′′)
kBT dx′′ . (IV.18)

If E ≫ kBT , then the right (left) integral will be dominated by the minimum (maximum)
of the potential energy. At the first order of the saddle point approximation :

τ ∝ e
∆E

kBT → k ∝ e
−∆E
kBT . (IV.19)

This is known as Arrhenius equation. Even if we can make some sense out of its derivation,
as sketched here, it remains fundamentally an empirical observation, where the prefactor can
depend on temperature depending on the circumstances, although it is typically much weaker
than exponential. For simplicity, we will consider it as constant.

We can see that the diffusion coefficient scales linearly with T , whereas the reaction
rates scale exponentially. We must not forget that, using the international system of units,
temperatures ought to be measured in Kelvin, hence a change from 20◦C to 40◦C represents
a change of 7% in the diffusion coefficient. Hence, in the spirit of the simplest description
that we can make, we will consider the diffusion coefficient as constant.

IV.2 Modelling

IV.2.1 Geometry of the domain

The embryo can be thought of, in principle, as an ellipsoid of semimajor axis ∼ 250 µm
and semiminor axis ∼ 90 µm. The nuclei are located at the cortex, where they also move
and divide (see Fig. IV.7). A rigorous description of this system would consider a thin shell
where the chemical reactions are taking place and the nuclei are moving. We will simplify this
situation greatly by mapping the cortex to a plane. But even this is too much for what we
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Fig. IV.7 Artist’s impression depicting the nuclei (red) at the cortex (green) of the embryo
of Drosophila during the pre-gastrulation nuclear cycles.

need at the moment. The experimental data that we possess indicates that the dynamics is
axially symmetric along the anterior-posterior axis, i.e. both the nuclei and the mitotic waves
move parallel to it. Hence, we will consider a 1D geometry, where our effective coordinate
would map to a position along the cortex of the embryo. Our domain will have a wall on
each side, such that no-flux boundary conditions will be utilized.

IV.2.2 The cell cycle clock

The master regulator of the cell cycle is the Cdk1-Cyclin B dimer. We assume that cyclins
are constantly being produced in the egg from abundant maternally deposited transcripts,
which then quickly bind to free Cdk1. This dimer can be activated and deactivated by dif-
ferent chemical species that dephosphorylate and phosphorylate it respectively. Of particular
importance are the activator phosphatase Cdc25 [172] and the inhibitory kinase Wee1 [173].
The activities of these enzymes are, in turn, dependent on the concentration of active Cdk1
[174], [175], with an ultrasensitive, i.e. large Hill coefficient, regulation [176], [177]. The ubi-
quitin ligase APC/C is also activated in an ultrasensitive way by active Cdk1, and it tags
cyclin-B for degradation [178], bringing down the activity of Cdk1, a requirement for mitotic
exit [88]. Finally, Chk1 is a kinase that inhibits Cdc25 and activates Wee1, effectively leng-
thening the pre-mitotic phases of the cell cycle when active [179], [180], i.e. it is inhibited
when the concentration of Cdk1 is large.

Previous numerical and analytical work on this biochemical network in the embryos of
Xenopus [156], [181], [182] and Drosophila [65], [155], [157], [161] have shown that some of
these regulatory elements produce oscillations, clearly defined S and M phases, and waves
that can spread over space. However, no model has considered all of these elements together,
in space, including the nuclear density and temperature effects.

In principle, we would have one equation for each chemical species. However, to simplify
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this situation even more, we will consider that there is a separation of timescales between the
activity of Cdk1 and the activity of the other regulatory enzymes, such that the activities
of the latter ones can be considered as slaved to the concentration of active Cdk1. Then,
the concentration of total cyclin c, i.e. active and inactive Cdk1-cyclin B dimer, and the
concentration of active Cdk1 a satisfy the following equations (see appendix for parameter
values) :

∂c

∂t
= D∆c+ ksynth − kdeg[a]c+ ξc , (IV.20)

∂a

∂t
= D∆a+ ksynth + kCdc25[a](c− a) − kWee1[a]a− kdeg[a]a+ ξa , (IV.21)

where D is the diffusion coefficient, ksynth is the production rate of cyclins and :

kdeg[a] =
(
αdeg + βdeg

andeg

K
ndeg
deg + andeg

)
, (IV.22)

kCdc25[a] =
(
αCdc25 + βCdc25

anCdc25

KnCdc25
Cdc25 + anCdc25

)(
1 − h

KnChk1
Chk1

KnChk1
Chk1 + anChk1

)
, (IV.23)

kWee1[a] =
(
αWee1 + βWee1

KnWee1
Wee1

KnWee1
Wee1 + anWee1

)(
1 + h

KnChk1
Chk1

KnChk1
Chk1 + anChk1

)
, (IV.24)

are the chemical rates, and h is the parameter that links the N/C ratio to the activation
of Chk1 ; its dynamics will be described in the next section. The noise correlations satisfy
[171] :

⟨ξc(x, t)ξc(x′, t′)⟩ = σ2
c (ksynth + kdeg[a]c) δ(x− x′)δ(t− t′) , (IV.25)

⟨ξa(x, t)ξa(x′, t′)⟩ = σ2
a(ksynth + kCdc25[a](c− a) + kWee1[a]a+ kdeg[a]a)δ(x− x′)δ(t− t′) .

(IV.26)

Note that the production rate could depend on the cell cycle through a yet unknown
mechanism that slightly lengthens the cell cycle even in Chk1 mutants [161]. We will ignore
this to build a simple description that could be expanded in future explorations.

IV.2.3 N/C ratio control

As a first approximation, we will consider that the only variable controlled by the N/C
ratio is the activity of Chk1. In particular, we will extend a model of control via titration
that has been proposed and modeled without taking into account space and the complete
cell cycle dynamics [160], [161], [183].

Based on the observations of the competition to import histone H3 into the nuclei, we will
model the dynamics by including a generic importin protein that will incorporate the titration
molecule into the nuclei. These importins, and the titration molecule, will be produced with
a fixed rate, and the binding between the two will satisfy simple mass-action kinetics. Let Y
correspond to the concentration of a given titration molecule, and let I be the concentration
of the molecular complex that transports said molecule into the nuclei. We will assume that
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this transport is purely diffusive and that this complex cannot be reutilized after entering
the nucleus. [Y I] will denote the concentration of the titration molecule-transport complex
dimer. Then, the kinetics of this system satisfy :

∂Y cyt

∂t
= D∆Y cyt + αY − kY IY

cytI , (IV.27)
∂I

∂t
= D∆I + αI − kY IY

cytI − δII , (IV.28)

∂[Y I]
∂t

= D∆[Y I] + kY IY
cytI − kimp[Y I]N , (IV.29)

dY nuc

dt = kimp[Y I] . (IV.30)

Let us consider a spatially uniform case to gain further intuition. If the dynamics of I
and [Y I] are fast in comparison to other timescales, then :

dY nuc

dt = αI

N

Y cyt

(δI/kY I) + Y cyt , (IV.31)

which has the same form as proposed in [183], with the maximum import rate given by
the importing production rate, and the Michaelis constant is equal to the ratio of importin
degradation to titration molecule-importin association rate.

A coarse-grained description of the system considers the activation of Chk1 to depend on
the nuclear concentration of the titration molecule [161]. We will extend this by postulating
that the activation threshold will depend linearly on the DNA fraction ϕ present in the
nuclei, such that :

h = h∗ 1
1 + Y nuc

ϕKY

. (IV.32)

IV.2.4 Nuclear division and nuclear envelope breakdown

The objective of the cell cycle is to replicate the nuclei, and because the distribution
of the nuclei is involved in the regulation of Chk1, it is necessary to model them. One of
the hallmarks of the M phase is the rupture of the nuclear envelope, such that the genetic
material of the nuclei is no longer separated from the egg cytoplasm. It does not make sense
to talk about nuclear import during this phase, so we need to establish a protocol in our
formalism to account for this phase. We define two Cdk1 thresholds, a∗ and a∗∗ respectively,
with a∗ > a∗∗. If a given nucleus is in S phase, and the active Cdk1 concentration around
it hits a > a∗, the nuclear envelope breaks down, and it will be marked as a nucleus in M
phase. Then, for a nucleus in M phase, if a < a∗∗, the nuclear envelope will reform, and two
new nuclei in S phase will occupy its place. Cell division is a complex process, involving the
positioning and orientation of the mitotic spindle and the integration of forces pulling on
the chromosomes and aster-aster interactions between different spindles. As a first, effective
description, we will ignore all of these elements and consider the number of nuclei in space
N(x) to evolve exclusively following the nuclear envelope reform mechanism just described.
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During the M phase, the nucleus releases all the non-DNA-bound titration molecules into
the cytoplasm, and no transport into the nucleus is possible, i.e kimp = 0.

Without loss of generality, we can assume that the concentration of DNA-bound titration
molecule in the nucleus can reach a maximum value of ϕ per DNA chain in wild-type embryos,
where ϕ is the DNA fraction compared to WT. Then, if given enough supply, each daughter
nuclei will start with a concentration of DNA-bound titration molecule equal to ϕ. We will
assume that if the initial amount of relative DNA-bound titration molecule in a daughter
nucleus falls below a certain value Y ∗/ϕ, it will trigger transcriptional activity due to the
activation of DNA damage response.

IV.2.5 Transcription-driven degradation of Twine protein

The model that we have described thus far does not result in cell cycle arrest. Even if
the nuclear density goes beyond a threshold where the nuclei cannot import enough titration
molecules in a typical time τ , our model considers a continuous production of titration
molecules and import complexes, such that the cell cycle arrest is always momentary. Current
experiments do not set a constraint on the import rate or the production of titration molecules
at the onset of cell cycle slowing, so we will not make this assumption in the model. Rather,
we will turn to observations about the dynamics of the Cdc25 homologs String and Twine.

Experiments have shown that beyond its modulation as the concentration of Cdk1
changes over time, Twine is degraded at the beginning of cycle 14 [184]. This is correla-
ted with the start of transcriptional activity, with Tribbles one of the transcripts that has
been shown to degrade Twine [185], [186]. The rule for a nucleus to activate transcription is
mentioned in the previous section. Let θ be the concentration of a transcript that inhibits the
activity of Twine protein, such as Tribbles. Then, we will explicitly model the concentration
of Cdc25 in time and space, s, by taking into account the degradation induced by θ :

∂s

∂t
= D∆s+ δs

(
αCdc25 + βCdc25

anCdc25

KnCdc25
Cdc25 + anCdc25

)(
1 − h

KnChk1
Chk1

KnChk1
Chk1 + anChk1

)
− δss− θs ,

(IV.33)
∂θ

∂t
= D∆θ +

′∑
i

δ(x− xi)αθ , (IV.34)

where the sum runs over all the positions where nuclei are actively transcribing θ. Using the
same separation of timescale argument that was used to write the original equations of the
model, i.e. assuming that the relaxation time of this equation is relatively fast, then we can
approximate the effective concentration of Cdc25 as :

s = 1
1 + θ

δs

(
αCdc25 + βCdc25

anCdc25

KnCdc25
Cdc25 + anCdc25

)(
1 − h

KnChk1
Chk1

KnChk1
Chk1 + anChk1

)
, (IV.35)

which is completely consistent with having θ as a regulatory molecule.
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IV.3 Results

IV.3.1 Single oscillator dynamics in phase space

We started by considering the simplest situation : a single compartment where the che-
mical species are homogeneous in space, and the Chk1 activity threshold h is fixed, i.e. there
is no nuclear envelope breakdown nor titration molecule import. In doing this, we can focus
exclusively on the dynamics of the active Cdk1 concentration a and the total cyclin concen-
tration c over time. The dynamical system governing the evolution of these two quantities
possesses a single parameter, h. As it is well known, 2 dimensional dynamical systems can
display a limited set of behaviors, and codimension-one bifurcations have been well charac-
terized, so it is a good simplified system to study.

The dynamical system contains multiple nonlinearities that change with h, so we will
resort to graphical methods to study the behavior of the system. First, we plotted the
nullclines of both chemical species in Fig. IV.8a, revealing that the system possesses a single
fixed point. The stability of such a fixed point can be determined from the intersection
between the nullclines. In a particular window of values of h, the nullclines intersect in such
a way that the fixed point is linearly unstable. As the degradation terms ensure that both
a and c must decrease if they grow too large, the trajectories cannot go to infinity. Hence,
theoretically, the only option is for the system to possess an attractor other than a fixed point.
In 2d, the only such option is a limit cycle, and because of the constraint just mentioned
this limit cycle must be stable.

We plotted the eigenvalues of the linear stability matrix around the fixed point in Fig.
IV.9a,b, and c, and we can make the following remark. For our chosen parameter values,
there exists a negative value of h such that the system undergoes a Hopf bifurcation. The
reasoning behind having a parameter set such that this value is negative is as follows. As
more titration molecules are imported into the nuclei, h decreases. In the limit where the
concentration of nuclei is very small, each nucleus can import these molecules fast enough,
and h → 0. If the bifurcation happened for h > 0, then for a given nuclei concentration, the
cell cycle would stop, which is not reasonable considering that divisions are happening from
fertilization onwards. Mapping the microscopic parameters of the model to the normal form
of this Hopf bifurcation is beyond the scope of this work, and is left for future explorations.

As shown in Fig. IV.8b, as h increases, the period of the oscillations increases as well,
and they become “spikier” until reaching a homoclinic bifurcation, i.e. the limit cycle collides
with a stable fixed point. This is also referred to as an infinite period bifurcation because
the system remains excitable, and if driven far enough from the stable fixed point, it will
be driven around the cycle back to the fixed point in a homoclinic orbit. This “spikyness”
represents the lengthening of the S phase (slow growth) whereas the duration of the M phase
(fast growth) remains relatively constant, which is an experimental fact. Different parameter
choices lead to qualitatively similar phenomenologies, with the main differences in how big
the h window where oscillations are happening is. For some parameter choices, no value of
h allows for oscillations.

At first glance, the existence of this infinite period bifurcation in the dynamical system



IV.3 Results 77

Active Cdk1 (a.u) Time (min)

A
ct

iv
e 

C
dk

1 
(a

.u
)

To
ta

l c
yc

li
n 

(a
.u

)

a)
To

ta
l c

yc
li

n 
(a

.u
)

To
ta

l c
yc

li
n 

(a
.u

)
To

ta
l c

yc
li

n 
(a

.u
)

To
ta

l c
yc

li
n 

(a
.u

)

A
ct

iv
e 

C
dk

1 
(a

.u
)

A
ct

iv
e 

C
dk

1 
(a

.u
)

A
ct

iv
e 

C
dk

1 
(a

.u
)

A
ct

iv
e 

C
dk

1 
(a

.u
)

b)

Fig. IV.8 Dynamics of the cell cycle biochemistry in a single compartment for different
values of Chk1 activity h. a) Active Cdk1 vs total cyclin phase portrait. Cdk1 growth nullcline
in blue, cyclin growth nullcline in yellow, and temporal dynamics in red. b) Active Cdk1 vs
time for the same values of h as on the left.
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Fig. IV.9 a) Real and b) imaginary part of the two eigenvalues of the linearized dynamics
around the fixed point as a function of h. c) Dynamics of the two eigenvalues of the linearized
dynamics around the fixed point in the complex plane as a function of h. Green square :
Hopf bifurcation. Yellow triangle : Homoclinic (Infinite period) bifurcation. d) Oscillation
period of the limit cycle as a function of h.
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hints at cell cycle arrest. In particular, our experimentally-motivated functional form of h
decreases as the nuclei density increases because each one of them cannot import as much
titration molecule as it would in isolation. However, as mentioned in the modeling section,
this is not the full picture because the import of the titration molecule does not stop, even if
very small. Hence, true arrest requires transcription of the Twine-degrading molecule. The
link between this excitable state and the mitotic patches could be of theoretical interest when
studying embryos where regions do not divide evenly. This is, however, left for future work.

Finally, we determined numerically the period of the cell cycle oscillations for different
values of h (see Fig. IV.9d). We note an initial quasi-linear scaling, followed by a sharp
increase in the slope of the curve when getting close to the infinite period bifurcation. We
have chosen our parameters such that we have a range of periods that reproduce the duration
of the different cell cycles in pre-gastrulating Drosophila embryos. The analytic form of this
oscillation period as a function of the various microscopic parameters of the model is left for
future work.

IV.3.2 Wave propagation and slowdown

We simulated the model starting from the beginning of the S phase of cycle 11. For
the sake of simplicity, all the concentrations are chosen to be homogeneous at the start
of the simulation. Space is discretized with ∆x/L = 0.01, and N = 8 at every location.
First, looking at the time series of the concentration of active Cdk1 at a particular location
in the embryo in Fig. IV.10, we observe that our simulations reproduce the experimental
observations of regions of slow increase of Cdk1 (S phase) followed by a spiking region (M
phase). As observed experimentally, the duration of the S phase increases as divisions go
forward, whereas the duration of the M phase remains constant between 4 and 5 minutes.
We quantified the duration of each cell cycle, and our chosen parameters lead to values (see
Fig. IV.11a) that match experimental observations [63], [155], [161].

We also performed simulations changing the global temperature in the embryo by scaling

all the reaction rates by a common factor e
− ∆E

kB

(
1
T

− 1
T0

)
, and we observed that the cell cycle

sped up (slowed down) when increasing (decreasing) the temperature (see Fig. IV.11a).
Going further, in Fig. IV.11b we plotted the duration of cell cycle 13 for a range of different
temperatures, and we verified that their scaling follows the same Arrhenius scaling that was
found experimentally [162] and that we introduced into our model via the chemical rates.

Next, we studied the dynamics of Cdk1 in the whole embryo. By looking at the kymograph
of active Cdk1 at different positions in the embryo as a function of time in Fig. IV.11c, we
can see that the time of entry into M phase (Yellow color) is not the same for every position.
And cycle 13 is the one where this asynchrony is the most pronounced. To characterize the
synchrony of mitosis, we measured the time of nuclear envelope breakdown for a given cell
cycle at every position in space, and we extracted the maximum difference between these
times. These results have been plotted in Fig. IV.11d. We observed that this embryo-wide
asynchrony τL increases significantly from cell cycle 12 to 13, in comparison to the jump
from cell cycle 11 to 12. This is in complete correspondence with experimental observations
on the mitotic waves. Another feature of the model is the increase of τL as T decreases (see
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cc11 cc12 cc13 cc14

Fig. IV.10 Representative dynamics of the concentration of active Cdk1 as a function of
time in the embryo from cycle 11 to 14. Dotted orange lines mark the beginning of each cycle
as the nuclear membrane reassembles. Dotted pink lines mark the nuclear envelope break-
down. Slanted segmented lines illustrate the characteristic activation rate of Cdk1 during S
phase (Red) and M phase (Green) for each cycle.

Fig. IV.11d), which is consistent with previous experimental measurements [91]

Next, we looked at the influence of the DNA fraction present in the nuclei on the cell cycle.
In a wild-type embryo, the proposed titration mechanism allows the nuclei to sense “which”
cell cycle are they in thanks to the concentration of their titration molecule. However, if
this sensing depends on the DNA fraction in the embryo, alterations to it should lead to an
“intermediate” cell cycle. Fig. IV.11e shows the duration of cell cycle 13 for different DNA
fractions, and our results agree with the same linear scaling that has been observed in the
literature. Note that the results consider a reduced range of DNA fractions, this is because
further changes cause mitotic patches to appear, which will be left for the next section.

Finally, we looked at the effective activation rates of Cdk1 during the different S phases.
By simulating embryos with different DNA fractions ϕ = 0.8, 1, and 1.2, we plotted kS as
a function of the DNA fraction, compared to the WT embryo at cycle 13 (see Fig. IV.11f).
The linear scaling for the effective cycles 12 and 13, and the significative jump going to the
effective cycles 11 are characteristics that agree with experimental observations [155].

IV.3.3 Mitotic patches in embryos with altered N/C ratios

Our simulations reproduce the formation of patches in the case where the embryo has an
altered DNA content. Fig. IV.12a,b show two kymographs for cycles 13 and partial cycle 14
with ϕ = 0.71. Notably, the speed of the wave decreases at the edges of the patch. This is a
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Fig. IV.11 a) Cell cycle duration for cycles 11, 12, and 13 for three different temperatures.
b) Reciprocal of the duration of cell cycle 13 vs reciprocal of temperature, in log-linear
scale. Red dotted line represents the linear scaling that would follow from Arrhenius law.
Experimental data retrieved from [162]. c) Kymograph of the active Cdk1 concentration
over time in the whole embryo showing the completion of cycles 11, 12, and 13. d) Time
delay between first and last completion of cell cycles 11, 12, and 13 in the whole embryo for
three different temperatures. e) Duration of cell cycle 13 vs the DNA fraction in the nuclei.
Experimental data retrieved from [63]. f) Effective Cdk1 activation rate during S phase kS
for different DNA contents compared to WT cycle 13.
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a) b)

c)

Fig. IV.12 a,b) Two representative kymographs of the Cdk1 activity over time in an em-
bryo with DNA fraction ϕ = 0.71 showing full completion of cycle 13 and patchy completion
of cycle 14. c) Temporal dynamics of active Cdk1, curves color-coded by positions in space
separated by 25 µm at the edge of the mitotic patch shown for partial cell cycle 14 in b).

direct consequence of our assumptions : Cdc25 is being degraded in the regions close to the
arrested patches. As Cdc25 diminishes, the activation of Cdk1 slows down, until reaching a
point where no oscillations are possible (see Fig. IV.12c). In an analogous way of a previously
explored Drosophila mutant [155], [157], the reduction of Cdc25 makes the wave transition
from a phase wave to a slow bistable wave. This feature has also been observed in shkl
embryos, but has remained yet unexplored [65].

We can also see that the two simulations produced different patch sizes, not necessarily
connected, even if having the same DNA content. We performed 800 simulations for different
values of the DNA fraction ϕ and plotted the histogram of the fraction of the embryo that
undergoes an extra division (see Fig. IV.13). By looking at the histograms, the transition
from preferentially arresting after cycle 13 to preferentially arresting after cycle 14 is centered
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Fig. IV.13 Size histograms of the extra cycle 14 division patch for different values of the
DNA fraction ϕ. In each case, 800 simulations were considered.



84 Chapitre IV. Slowing down before gastrulation

around ϕ∗ ≈ 0.71. We make this point more clear in Fig. IV.14 by plotting the average
fraction of the embryo undergoing an extra division as a function of ϕ. We can see that
there is a sharp transition at a certain DNA concentration range, which for our chosen
parameters occurs close to ϕ∗ ≈ 0.71. This is in very good agreement with experimental
observations [63]. Observing this transition point in vivo would be challenging due to the
amount of precision and statistics necessary. However, it could be interesting to obtain the
experimental distributions to compare with our predictions. It is likely that the sharpness of
the transition is related to some of our model parameters, like the Twine-degrading molecule
production or degrading strength, that could be better constrained with this kind of data.

There is a critical value of the titration molecule that must be present in the nucleus when
the nuclear membrane reforms such that it does not trigger transcription, which has been
assumed to scale linearly with DNA content. Beyond altering the duration of the cell cycle,
the DNA fraction is not involved in the import dynamics of the titration molecule. Hence,
when the membrane reforms, it is likely that some nuclei will be above and others below this
threshold for a range of values of the DNA content. The Twine-degrading molecule will be
produced in the regions below the threshold, diffusing to the other regions. This induces a
natural integration length over which patches can form, rather than discrete extra divisions.
Furthermore, its degrading activity is racing against the progression of the cell cycle. A scaling
argument reveals that just like Cdk1 [155], ℓ =

√
4Dτ is a relevant integration lengthscale

(see appendix), with τ the typical S-phase time, i.e. ∼ 10 min. Hence, ℓ ∼ 100 µm. Future
work can utilize these ideas to construct a model to predict the patch size distribution and
relate it to controllable experimental parameters.

Finally, we performed numerical simulations where we introduced a gradient in the nu-
clear density, emulating the shkl embryo. These gradients have been set by considering the
original homogeneous situation of N = 8 nuclei at every position in space, with ∆x = 0.01L,

Fig. IV.14 Average fraction of the embryo undergoing an extra cycle 14 division before
cell cycle arrest as a function of the DNA Fraction.
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and then partitioning the embryo into chunks of a given size. When crossing from one chunk
to the other, the amount of nuclei at the start of the simulation will be reduced by one com-
pared to the previous chunk. As an example, if the chunk size is ℓchunk/L = 0.2, positions
x ≤ 0.2L will contain 8 nuclei, 0.2L < x ≤ 0.4L 7 nuclei, and so on. As seen in Fig. IV.15 our
model reproduces the mitotic patches in the less dense region. Patches were also produced
for varying quantities of DNA ratio ϕ, and their size increased as ϕ diminished. This has a
clear interpretation. Let N∗ be the number of nuclei per chunk at CC14 in the WT embryo.
Then, ϕ∗N∗ is the threshold amount of DNA per chunk to trigger cell cycle arrest. Then,
we predict an extra mitotic division in a chunk that satisfies ϕN(x) < ϕ∗N∗, and a domain
wall separating these chunks from the chunks satisfying ϕN(x) > ϕ∗N∗. This corresponds
very well with our simulations. As was shown in the histograms for embryos with a uniform
distribution but altered DNA contents, there are some fluctuations. However, the extra di-
vision patch is always located past the predicted value. This can be easily interpreted in the
light of our model. The high-density region will arrest the cell cycle and start to produce the
Twine-degrading molecule, which then starts diffusing to the other region. Then, just like
previously argued in the uniform density case, there is a competition between the cell cycle
duration and the degradation of Twine due to the wavefront of the degrading species that is
coming from the other side. Hence, the extra division wall will, on average, be beyond the
expected threshold. How far in space does this shift our naive prediction should depend on
the timing of the divisions, i.e. how steep the density gradient is, and will be left as future
work.

IV.3.4 Non-uniform temperatures

As a simple setting, replicating previous experimental settings, we will split the embryo
into two parts, one of them at T = T1, and the other one at T = T2. We will assume
the simplest initial condition by having the same levels of active Cdk1 everywhere in the
embryo. To gain some intuition, we will use the same simplified model that we have used
before, with the sole difference being that the temperature in the Arrhenius coefficient will
be space-dependent. We will then discuss what happens in a more realistic scenario.

First, our simulations indicate that deep in the bulk of each region, i.e. at the boundaries
of the domain, the period of the oscillations is not influenced by the presence of the other
region. This means that as time goes by, oscillations go more and more out of sync (see Fig.
IV.16). This means that the largest time delay between the end of CC13 in the two different
regions can be approximated by the following expression (see appendix) :

τL ≈ (τ11 + τ12 + τ13) ∆E
kB

∆T
T 2

0
, (IV.36)

where τ11, τ12 and τ13 are the durations of CC11, CC12 and CC13 respectively, at the
reference temperature T0. With our parameters, this expression simplifies to τL ≈ ∆T/10,
and its results correspond well with the simulation data.

We may note that at the boundary between the two temperatures, we get a matching
region where a bistable front can propagate from the region that is dividing first to the other
one. However, diffusion can only get the wave so far. The scaling of this matching region is left
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Fig. IV.15 Kymographs showing the activity of active Cdk1 during cycles 11,12, 13, and
(patchy) 14 in embryos presenting a decreasing gradient in their nuclear density in the
direction ℓ/L = 0 → 1. The domain is separated into chunks of size ℓchunk, with each one of
them having one additional nucleus removed compared to the previous one in their initial
condition. Three different values of the DNA fraction in the embryo ϕ are shown. Red dashed
lines : predicted position of the domain wall between extra division and arrested patch.
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Fig. IV.16 Kymographs showing the activity of active Cdk1 during cycles 11,12, and 13
in an embryo where the bottom half and top half are held at different temperatures. Top
embryo half : T = 23◦C + ∆T/2. Bottom embryo half : T = 23◦C − ∆T/2.

for future work. From a completely mathematical point of view, trying to match regions that
are oscillating at different periods must introduce defects, i.e. regions where the mitotic wave
is not able to traverse the whole embryo. The question is how large must ∆T be to observe
these defects during the 3 divisions before CC14. For ∆T = 2◦C, no defect is observed.
However, for ∆T = 4◦C, we can see in Fig. IV.16 that the wave vanishes mid-embryo during
cycle 12, and a region that is stuck at a high Cdk1 value in the middle is observed. This
would represent a region where mitosis spends a long time in an intermediate phase, for
example right before the separation of the chromosomes. It would be interesting to observe
this phenomenon in experiments.

For an even larger temperature difference, we can see a more dramatic effect. As shown
in Fig. IV.16 for ∆T = 6◦C, the warm region starts its cycle 13 division approximately 30
minutes before the cold region does. This time delay is sufficiently large for the transcription
of the Twine-degrading molecule in the warm side to diffuse to the cold side and have
a noticeable effect. In particular, we can see that cycle 13 is completed in less than half
of the cold region, which would have a dramatic consequence later on in development. In
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contrast to this, it must be noted that previous microfluidic experiments have determined
that the embryo is viable even with ∆T = 7◦C. Our answer to this is twofold. First, further
quantifications of the division patch sizes as a function of temperature could shed light on
the spread of the Twine-degradation molecule and the values of certain parameters that
for the moment we cannot constrain completely. Tuning these parameters will undoubtedly
yield different patch sizes for the same time delay. Second, there is another factor that we
have overlooked in simulations up to now and may play a major role in smoothening out
these inhomogeneities : the mixing of material in the embryo due to cytoplasmic movements
induced by nonsynchronous divisions.

Let us give some preliminary ideas about including hydrodynamics and the explicit mode-
ling of the nuclei in the model. First, all the relevant biochemical reaction-diffusion equations
are promoted to reaction-diffusion-advection equations. Moreover, strictly speaking, tempe-
rature is also being transported with the flows. A detailed description would consider writing
the heat equation in the domain and using fixed T boundary conditions. Then, there is a
competition between the equilibration timescale of the temperature in the egg, controlled
by the thermal conductivity of the cortex and the cytoplasm, and the timescale of nuclear
displacement. If the temperature is very slow in re-equilibrating, then each nucleus should
feel the same temperature at all times. On the other hand, if this equilibration is fast, then
each nucleus would sample different temperatures as it undergoes its yoyo motion. If this is
the case, the resulting mixing of material can help to reduce the asynchrony of the mitotic
divisions and could account for a viable embryo at a larger temperature range than what
this simple model would predict. These explorations will be left as future work.

IV.4 Discussion

We have studied the spreading of mitotic waves in the pre-gastrulating Drosophila em-
bryo. These “oscillators” are conceptually interesting due to their departure from a simple
Kuramoto-style phase oscillator, owing to the different dynamics during the S and M phases,
and the cycle duration being dependent on the N/C ratio. Beyond the homoclinic bifurca-
tion in the single oscillator picture, the system remains excitable, which is an interesting
fact given that embryos where oscillatory and arrested regions exist in the form of the shkl
embryo. Observing an extra oscillation in the arrested region is hard due to the presence
of transcription of the Twine degradation molecule. Further theoretical studies could tackle
the behavior of a system with an arbitrary arrangement of regions with different oscillatory
characteristics. How long can perturbations propagate in such a complex medium ? What
happens at the interface between sections of different oscillatory characteristics ?

We must not forget that we have greatly simplified the geometry of the system, and in
doing so we have ignored some effects such as the changes in curvature in different positions
of the embryo. Even if considering axial symmetry is a reasonable assumption, experiments
have found patches that are not axially symmetric in some situations [62], owing putatively
to differences in nuclear density and chemical concentrations in the azimuthal direction. How
these effects would play a role in an embryo with an altered geometry, such as the round
embryo displaying altered flow structures, has been left unexplored. Further analysis can
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consider the production of patches in curved or more complicated surfaces.

There is one aspect of the cell cycle control in the embryo that we have overlooked.
Experiments have shown that the response of the nuclei to the N/C ratio is not uniform in
the embryo, with a gradient along the anterior-posterior axis yielding better predictive results
to the location of the extra division region in comparison to a fixed threshold [65]. This is
probably connected to the fact that reversing the temperature step in embryos developing
in a microfluidic chamber does not show the same asynchrony as embryos in the original
temperature step [166], [168].

The spreading of these waves, and microtubule-mediated nuclear interactions, could be
of interest in the context of recent experiments on reconstituted systems [187], [188]. It is
possible that the observed microtubule dynamics and compartmentalization could be modi-
fied in the presence of temperature gradients, or activity gradients as a function of nuclear
density. Furthermore, connecting to our results in Chapter III, a preferential distance of sepa-
ration in nuclei hints at a different way of producing spatially segregated domains in narrow
geometries which can be modulated by either biochemistry or the shape of the domain.

One last remark brings together the formalisms and findings of this chapter to the ones
explored in previous chapters. Biological systems rely on mechanical forces and chemical
networks to perform different tasks. Beyond the specificity of these tasks, reproducibility is
fundamental, hence energy must be spent to amplify signals and drive active processes. In
other words, life is intrinsically out of equilibrium, and metabolic pathways must evolve to
distribute chemical energy in a “reasonable” way. However, this energy has to come from
somewhere, and once the egg is laid, there is no further exchange of matter with its envi-
ronment. One point that we have not explicitly discussed is the energy use and efficiency
of the processes just discussed. Can we quantify how expensive is it to spread the nuclei in
comparison with the transcriptional costs of keeping the cell cycle running ? Is the long-range
mechanochemical coupling described in previous chapters the most efficient use of resources
to produce nuclear transport in the egg of Drosophila ? These questions are undoubtedly
coupled with the scaling of the size of the embryo and the maximal cell cycle speed.

IV.5 Methods

IV.5.1 Numerics

The single-compartment oscillations results were obtained by using a custom Mathema-
tica code, through the pre-existing routines “FindRoot” (Position of the fixed point in phase
space), “Eigenvalues” (Eigenvalues of the linear stability matrix around the fixed point), and
“Fourier” (Oscillation period as a function of h).

We performed all of our space-dependent numerical simulations using the finite-difference
method implemented in a custom C++ code. Space was partitioned in a regular grid of
nx = 100 points with spacing ∆x = 5 µm, and time was discretized uniformly with ∆t =
1×10−4 min. Equations with noise were integrated using the 1-step Euler-Mayurama method.
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If the continuous equation reads :

∂ρ

∂t
= D

∂2ρ

∂x2 +G(ρ, t) + σ
√
G(ρ, t)ξ (IV.37)

then the discretized form reads :

ρ(x, t+ ∆t) = ρ(x, t) + D

∆x2 (ρ(x− ∆x, t) − 2ρ(x, t) + ρ(x+ ∆x, t)) ∆t

+G(ρ(x, t), t)∆t+ σ
√
G(ρ(x, t), t)ξ(x, t)

√
∆t (IV.38)

where every ξ(x, t) was extracted independently from a normal distribution for every position
and time. Pseudorandom number generation : mt19937 (Mersenne Twister).

No flux boundary conditions were implemented by assigning values at ghosts positions
outside of our domain :

ρ(−∆x, t) = ρ(∆x, t) (IV.39)
ρ(nx∆x, t) = ρ((nx − 2)∆x, t) (IV.40)

(IV.41)

where we must note that the last index in the grid is (nx − 1) due to zero-indexing.

All posterior data analysis and visualization was implemented in custom Python codes.
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A.1 Notation

— Ω : embryo domain.
— ∂Ω : embryo boundary.
— n̂ and t̂ : normal and tangent vectors to the embryo boundary.
— wv, wu, wp, πb, πu and πp : basis functions for the v, u,p, ρb, ρu and ρp spaces

respectively.
— A : B = ∑

ij AijBij

When the corresponding finite element space is discontinuous, additional quantities must
be defined. Let F be the shared edge between the adjacent triangles T1 and T2. Then :

— hF : length of F .
— n̂F : normal vector to F .
— [[g]] = g(T1) − g(T2) : jump discontinuity of g across F .
— {{g}} = 1

2 (g(T1) + g(T2)) : average of g across F .

A.2 Weak formulation of the flow equations

After multiplying Eqs. II.16 in the main text by their respective basis functions, and
integrating over the whole embryo, we get the following equations to solve by our finite
element scheme :

η

∫
Ω

(∇v) : (∇wv) −
∫

Ω
p(∇ · wv) + Γ

∫
Ω

(v − u) · wv = 0 , (A.1)

ηs

∫
Ω

(∇u) : (∇wu) + C(ηs, ηb,u,w
u) + D(γn,u,w

u) + Γ
∫

Ω
(u − v) · wu

= −ζ
∫

Ω

ρb

Ka + ρb
(∇ · wu) +

∫
∂Ω

Ξ(wu · t̂) , (A.2)

∫
Ω
wp(∇ · v) − γp

∫
Ω
pwp = 0 , (A.3)
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where :

C(ηs, ηb,u,w
u) = ηb

∫
Ω

(∇ · u)(∇ · wu)

+ ηs

∫
Ω

(
∂uy

∂x

∂wu
x

∂y
+ ∂ux

∂y

∂wu
y

∂x
− ∂uy

∂y

∂wu
x

∂x
− ∂ux

∂x

∂wu
y

∂y

)
(A.4)

arises from the gel compressibility, and :

D(γn,u,w
u) = γn

∫
∂Ω

(u·n̂)(wu·n̂)−
∫

∂Ω
(n̂T σd[u]n̂)(wu·n̂)−

∫
∂Ω

(n̂T σd[wu]n̂)(u·n̂) (A.5)

is an extra term that enforces the no-penetration boundary condition via penalization (Sym-
metric Nitsche’s method). We chose γn = 107. γp = 10−10 is a small term that ensures the
algorithm converges to a well-defined pressure.

A.3 Weak formulation of the myosin continuity equations

( 1
∆t + ku

)∫
Ω
ρn+1

b πb + A(Db, γ
b
g, ρ

n+1
b , πb)

= 1
∆t

∫
Ω
ρn

b π
b + kb

∫
Ω
ρnρn

uπ
b + 3

2B(ρn
b ,u

n, πb) − 1
2B(ρn−1

b ,un−1, πb) , (A.6)

1
∆t

∫
Ω
ρn+1

u πu − ku

∫
Ω
ρn+1

b πu + A(Du, γ
u
g , ρ

n+1
u , πu)

= 1
∆t

∫
Ω
ρn

uπ
u − kb

∫
Ω
ρnρn

uπ
u + 3

2B(ρn
u,v

n, πu) − 1
2B(ρn−1

u ,vn−1, πu) , (A.7)

where :

A(D, γ, ρ, π) = D

∫
Ω

(∇ρ) · (∇π) + γD
∑
F

1
hF

∫
F

[[ρ]][[π]]

−D
∑
F

∫
F

({{∇ρ}} · nF )[[π]] −D
∑
F

∫
F

[[ρ]]({{∇π}} · nF ) (A.8)

is the diffusion term, including discontinuity penalization, and :

B(ρ,u, π) = −
∫

ω
∇ · (ρu)π +

∑
F

∫
F

(u · n̂F )[[ρ]]{{π}} − 1
2
∑
F

∫
F

|u · n̂F |[[ρ]][[π]] (A.9)

is the advection term, including penalization and upwinding.

We chose γb
g = 5 × 102 and γu

g = 5 × 103 as the discontinuous jump penalty coefficients
for ρb and ρu respectively.

After calculating ρn+1
b and ρn+1

b , a 2-D limiter (modified minmod) is applied as described
in [189]. The parameters chosen in our case were M = 5 × 10−1 for the limiter curvature
cutoff, and θ = 1 as its comparison parameter.
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A.4 Weak formulation of the Bicoid continuity equation

( 1
∆t + 1

τ

)∫
Ω
ρn+1

p πp + A(Dp, γ
p
g , ρ

n+1
p , πp) = 1

∆t

∫
Ω
ρn

pπ
p + B(ρn

p ,v
n, πp) + km

∫
Ω
ρn

mπ
p ,

(A.10)
where we chose γp

g = 5 × 103.

A.5 PP1 time dependence

g(t) was chosen heuristically by analyzing the oscillations in the Cdk1/PP1 reporter. We
decided to model it as a slanted sine wave, quickly increasing from 0 to 1 at the mitotic exit,
and then slowly decreasing back to 0. The period of these oscillations has been fixed to T =
8 min, in accordance with the duration of the cell cycle at the early stages of development.
The slanted sine wave has been defined as a weighted sum of sine functions, with the explicit
form defined as :

g(t) = g0 + 15
32 sin

(2π(t− t0)
T

)
+ 3

32 sin
(4π(t− t0)

T

)
+ 1

96 sin
(6π(t− t0)

T

)
, (A.11)

where g0 is such that g(0) = 0 and t0 = 0.192T .

A.6 A simplified model for the actomyosin concentration dynamics

The same qualitative features as the myosin dynamics in Fig. 6 of the main text are
obtained in the following simplified one-dimensional model. A constant unit concentration of
scalar θu is present in the negative half-line in the unbound u form. Particles are reflected at
the origin (meant to represent the cortex), i.e., reflecting boundary conditions are imposed
there. At the origin, the scalar can interconvert between the u and the b forms at rates kθu(0)
and θb/τ .

During an initial phase of accumulation at the cortex, a constant velocity V is present in
the positive direction, which dominates diffusion and replenishes the amount that is converted
into the b form at the origin. The solution in this first phase is calculated easily, unit for all
the positions but the origin. The equations for the values at the origin (unbound and bound,
respectively) are

θ̇0 = −kθ0 + V + ϕ0
τ

; ϕ̇0 = kθ0 − ϕ0
τ
, (A.12)

where we have already used that θ−1 = 1. With V = 0, the values settle to θ0 = 1 and
ϕ0 = kτ , which are approached exponentially with rate (1 + kτ)/τ . In the presence of V ,
there is a pile-up and both values go up in time as V t/(1 + kτ) and V tkτ/(1 + kτ).

The above process keeps going on until the cell cycle gets to its end when the flow V and
the attachment rate k vanish. During this second phase of movement, the bound scalar at the
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origin is released and diffuses back toward the bulk. The re-injection rate is ke−t/τ = ϕ0(t)/τ ,
where t is counted from the beginning of this second phase. The time profile at a distance x
from the cortex is then proportional to e−t/τ

∫ t
0 G(x, s)es/τ ds where G(x, s) is the diffusive

propagator at distance x and time s with reflecting boundary conditions at the origin. The
latter is calculated by the method of images [190], and, since the source is located close to
the reflecting boundary, G(x, s) is essentially the diffusive propagator if x is not small. We
can finally calculate the above time profile and check that it has a structure similar to Fig. 6
in the main text with peaks that are shifted later and later in time as the distance to the
cortex increases.
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Table A.1 Model parameters
Parameter Notation Value
Sol viscosity η 1.0 × 10−3 Pa s
Gel shear viscosity ηs 1.0 Pa s
Gel bulk viscosity ηb 1.0 Pa s
Sol-gel friction Γ 2.2 × 10−5 Pas/µm2

Gel contraction strength ζ 1.42 × 101 Pa
Gel contraction bound myosin-II capacity Ka 1
PP1 decay length λ 30 µm
Rho-GEF decay length µ 8 µm
PP1 oscillation period T 8 min
Bound myosin-II diffusion constant Db 1.67 × 10−1 µm2/s
Unbound myosin-II diffusion constant Du 1.67 × 101 µm2/s
Myosin-II binding constant kb 6.67 × 10−1 s−1

Myosin-II unbinding rate ku 8.33 × 10−1 s−1

Intermediate field delay τ 7.5 × 10−1 min
Intermediate field activation PP1 capacity Kp 5
Minimum microtubule length ℓmin 1 µm
Microtubule growth factor β 10−2

Cortex-bound actin elastic constant ke 6.67 × 10−6 Pa/µm
Actin-cortex binding rate kc 4 min−1
Actin-cortex binding persistence time τc 4 min
Bicoid decay time τp 60 min
Bicoid production rate km 1.67 × 10−4 s−1

Bicoid production decay length µm 25 µm
Bicoid diffusion constant Dp 5 µm2/s



96 Annexe A. Chapter II Appendix

LATERAL VIEW DORSAL-VENTRAL VIEW

Fig. A.1 Experiments reveal the axial symmetry of the flows. Left : x velocity
component of the bulk flows at the cycle 6 contraction peak, averaged over a 50 µm strip at
the egg center for 6 different embryos. Red/blue curves correspond to measurements on the
lateral/DV side, corresponding to quasi-orthogonal planes. Variability can be attributed to
differences in embryo sizes and nuclear positioning at cycle 6. Center/Right : Vector plots
of the bulk flows at the cycle 6 contraction peak for eggs that have been imaged from the
lateral/DV side.
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Fig. A.2 Time dependence of PP1 concentration over time given by Eq. A.11 for a single
cycle.
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Fig. A.3 Flows ensure a uniform distribution of nuclei along the AP embryonic
axis irrespective of the initial nucleus’ distance to it. Bottom : A series of positions
(coded by different colors) for the first nucleus that starts the division cycles. The nine
different locations consider the reference configuration at the embryo AP axis, and four
pairs displaced 20 µmto 50 µm away from said axis. Middle : The evolution in time (flowing
upwards) of the distance with respect to the reference configuration. Distance is defined and
calculated as in Fig. 7 of the main text. The colors of the curves correspond to the initial
positions in the bottom panel. Top : The final configurations of nuclei (for the whole ensemble
of colors). Note that all colors are mixed up, witnessing the self-correcting nature of the AP
spreading process. That is shown more quantitatively by the middle curves, which all reduce
to values corresponding to distances of a few microns distance between pairs of nuclei of the
various configurations.
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A B

C

Fig. A.4 Embryonic cytoplasmic flows weakly affect the establishment of the
Bicoid morphogenetic gradient. A)-B) Mid-embryo (A) and cortical (B) Bicoid concen-
trations vs the (normalized) position along the AP axis for various cycles, as indicated in
the color legend. NF stands for "No Flow", i.e., situations where cytoplasmic flows were
suppressed. C) Heatmaps showing the Bicoid concentration field at two different times after
fertilization and three different Bicoid diffusivities.
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B.1 Actomyosin instability-driven flow : Half-space

We have the following system of equations describing the gel velocity field u in a thin
strip and the bound myosin concentration ρb along said strip :

ηc
∂2u

∂x2 + α
∂ρb

∂x
= γu , (B.1)

∂ρb

∂t
+ ∂

∂x
(uρb) = Db

∂2ρb

∂x2 + kb − kuρb , (B.2)

where we have assumed that the unbound myosin concentration does not change significantly.

Let us start from a completely homogeneous situation, with u = 0 and ρb = ρ0
b = kb/ku.

We may then introduce a perturbation such that :

u = δueσt+iqx , (B.3)
ρb = ρ0

b + δρbe
σt+iqx , (B.4)

and replacing in Eqs. B.1,B.2 :

−q2ηcδu+ iqαδρb = γδu , (B.5)
σδρb + iqρ0

bδu = −q2Dbδρb − kuδρb . (B.6)

This is essentially a matrix-vector system of equations to find δu and δρb. We may note
that it is homogeneous, hence, if the matrix of coefficients is invertible, the only solution
to this system is the zero vector. Hence, there must be a functional relationship between σ
and q such that the matrix is not invertible, and that relationship is the dispersion relation.
Finding it requires that the determinant of the matrix be zero :∣∣∣∣∣−q2ηc − γ iqα

iqρ0
b σ + ku + q2Db

∣∣∣∣∣ = 0 , (B.7)

and the dispersion relation :

(q2ηc + γ)σ = q2αρ0
b − (q2ηc + γ)(q2Db + ku) , (B.8)

101
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or, written in a more suggestive way :

σ

ku
= αρ0

b

ηcku

q2 ηc

γ

q2 ηc

γ + 1 −
(
q2Db

ku
+ 1

)
. (B.9)

We can see that the typical unbinding time k−1
u is a relevant timescale, whereas the

hydrodynamical length
√

ηc

γ and the bound myosin diffusion length
√

Db
ku

are the relevant
lengthscales in the problem. First, we will nondimensionalize time by taking t → k−1

u t. Given
that the chemical kinetics are typically easier parameters to measure and control, we will
nondimensionalize space by taking x →

√
ηc

γ x. Then, in nondimensional units :

σ(q) = Π2
α

q2

1 + q2 −
(
q2Π2

D + 1
)
, (B.10)

where Π2
α = αρ0

b
ηcku

is the ratio between active and viscous forces, and ΠD =
√

γ
ηc

√
Db
ku

is the
ratio between the diffusion length of bound myosin and the hydrodynamical length. We can
find the extrema of this function by taking the first derivative, and in particular, the maxima
are located at :

(q∗)2 =
{Πα

ΠD
− 1 if Πα ≥ ΠD

0 if Πα < ΠD ,
(B.11)

with values :

σ∗ =
{

(Πα − ΠD)2 − 1 if Πα ≥ ΠD

−1 if Πα < ΠD .
(B.12)

When the instability is triggered, we can calculate the flow profile. Let us recover dimen-
sional units now. Assuming that enough time has passed, i.e t ≫ 1

σ[q] , then we can take the
saddle point approximation and consider :

u = u0 cos(q∗x) (B.13)

for q∗ > 0.

The sol satisfies :
∆ω = 0 . (B.14)

The continuous-stress boundary condition at the interface between the sol and the gel
enforces :

ηω

∣∣∣∣
y=0

= −ηc
u

h
, (B.15)

such that :
ω = −ηc

η

u0
h

cos(q∗x)e−q∗y . (B.16)

Now, to find the stream function we must solve :

∆ψ = −ω , (B.17)
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subject to no-penetration boundary conditions at the sol-gel interface :

∂ψ

∂y

∣∣∣∣
y=0

= 0 . (B.18)

Then :
ψ = ηc

η

u0
h

cos(q∗x) y

2q∗ e
−q∗y . (B.19)

B.2 Actomyosin instability-driven flow : Circular arena

Our equations are :

ηc
1
R2

∂2u

∂θ2 − ηc
1
R2u+ α

R

∂ρb

∂θ
= γu , (B.20)

∂ρb

∂t
+ 1
R

∂

∂θ
(uρb) = Db

1
R2

∂2ρb

∂θ2 −Db
1
R2 ρb + kb − kuρb , (B.21)

and our perturbed state is :

u = δueσt+inθ , (B.22)
ρb = ρ0

b + δρbe
σt+inθ , (B.23)

where the 2π symmetry in θ forces n to be an integer. Then :

− 1
R2n

2ηcδu− ηc
1
R2 δu+ in

α

R
δρb = γδu , (B.24)

σδρb + in
1
R
ρ0

bδu = −Db
1
R2n

2δρb −Db
1
R2 δρb − kuρb . (B.25)

To find the dispersion relation :∣∣∣∣∣−n2ηc − ηc −R2γ inRα
inRρ0

b R2σ + n2Db +Db +R2ku

∣∣∣∣∣ = 0 , (B.26)

hence :

(ηc(n2 + 1) +R2γ)R2σ = n2R2αρ0
b − (ηc(n2 + 1) +R2γ)(Db(n2 + 1) +R2ku) . (B.27)

Written in a more suggestive way :

σ

ku
= αρ0

b

ηcku

ηc

ηc+R2γ
n2

ηc

ηc+R2γ
n2 + 1 −

( 1
R2

Db

ku
n2 +

( 1
R2

Db

ku
+ 1

))
. (B.28)

As in the previous case, we will rescale time as t → k−1
u t. We will also introduce a new

variable q =
√

ηc

ηc+R2γ
n. In this way, we can compare the form of this function to the infinite

strip case. Written in terms of q :

σ = αρ0
b

ηcku

q2

q2 + 1 −
(( 1

R2
Db

ku
+ Db

ku

γ

ηc

)
q2 +

( 1
R2

Db

ku
+ 1

))
. (B.29)
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We can introduce the same nondimensional parameters as before, in addition to ΠR =
1
R

√
Db
ku

, which is the ratio between the diffusion length of bound myosin and the radius of
the ring. Then :

σ(q) = Π2
α

q2

1 + q2 −
((

Π2
D + Π2

R

)
q2 + Π2

R + 1
)
, (B.30)

which peaks at :

(q∗)2 =


√

Π2
α

Π2
D+Π2

R
− 1 if Π2

α ≥ Π2
D + Π2

R

0 if Π2
α < Π2

D + Π2
R ,

(B.31)

with values :

σ∗ =

Π2
α + Π2

D − 2Πα

√
Π2

D + Π2
R − 1 if Π2

α ≥ Π2
D + Π2

R

−
(
Π2

R + 1
)

if Π2
α < Π2

D + Π2
R .

(B.32)

Now to calculate the flow, we make use of the same saddle point approximation. The
sol-gel interface is located at r = R. Recovering dimensional units, the gel velocity in the
ring is :

u = u0 cos(n∗θ) (B.33)

for n∗ > 0, and the sol in the bulk satisfies :

∆ω = 0 . (B.34)

Stress-matching boundary conditions require :

ηc
u

h
= ηω

∣∣∣∣
r=R

, (B.35)

and as such :

ω = −ηc

η

u0
h

(
r

R

)n∗

cos(n∗θ) . (B.36)

The stream function satisfies :
∆ψ = −ω , (B.37)

subject to no-penetration at the sol-gel interface :

ψ

∣∣∣∣
r=R

= 0 . (B.38)

Then :

ψ = 1
4(n∗ + 1)

ηc

η

u0
h

(
r

R

)n∗ (
r2 −R2

)
cos(n∗θ) . (B.39)
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B.3 Nuclei-driven flow : Half-space

We consider a nucleus at position (xi, 0) next to an infinite gel strip parallel to the y
axis. The sol-gel interface is located at x = 0. The gel equation reads :

∂2u

∂y2 − κ2
cu = − α

ηc

∂ρb

∂y
, (B.40)

where κ−1
c =

√
ηc

γ is the hydrodynamical length.

Taking the Fourier transform :

−k2û(k) − κ2
c û(k) = −i α

ηc
kρ̂b(k) , (B.41)

where, assuming that xi > λ, we can make a Gaussian approximation of the bound myosin
concentration : :

ρb = g(t)e−
√

y2+x2
i /λ ≈ g(t)e−xi/λe−y2/(2λxi) , (B.42)

where g(t) is the PP1 activation function, such that :

ρ̂b = g(t)
√
λxie

−xi/λe− 1
2 (√

λxik)2
. (B.43)

Then :
û = i

α

ηc
g(t)

√
λxie

−xi/λ k

k2 + κ2
c

e− 1
2 (√

λxik)2
. (B.44)

From the continuous stress boundary condition :

ω̂(0, k) = −ηc

η

û

h
, (B.45)

and :
ω̂(x, k) = −ηc

η

û

h
e−|k|x . (B.46)

Also :
ψ̂(x, k) = − sign(k) x2k

ηc

η

û

h
e−|k|x . (B.47)

It is also of interest to calculate the saddle point expansion of û(k)
k . Let :

L(k) = 1
2
(√

λxik
)2

+ log
(
k2 + κ2

c

)
, (B.48)

then :
û(k)
k

≈ i
α

ηc
g(t)

√
λxie

−xi/λe−L(0)e− 1
2 L′′(0)k2

, (B.49)

where L(0) = log
(
κ2

c

)
and L′′(0) =

(
λxi + 2

κ2
c

)
.
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Then, we can calculate the rest of the quantities of interest. In particular, we can calculate
the stream function :

ψ(x, y) = −α

η
g(t)

√
λxi

λxi + 2/κ2
c

e−xi/λ x

2hκ2
c

ℑ
(
e

(x+iy)2

2(λxi+2/κ2
c) erfc

(
x+ iy√

2 (λxi + 2/κ2
c)

))
,

(B.50)
from which we can calculate the velocity profile in the cytosol. In particular, at the position
of the nucleus :
dxi

dt = α

η
g(t)

√
λxi

λxi + 2/κ2
c

e−xi/λ xi

2hκ2
c

√ 2
π

− xi√
λxi + 2/κ2

c

e

x2
i

2(λxi+2/κ2
c) erfc

(
xi√

2 (λxi + 2/κ2
c)

) .

(B.51)

B.4 Nuclei-driven flow : Channel

Consider a nucleus at (xi, 0), between two cortical strips parallel to the y axis. The sol-gel
interfaces are located at x = 0 and x = L. In the bulk, the vorticity satisfies :

∆ω = 0 , (B.52)
and considering the Fourier transform in y :

∂2ω̂

∂2x
− k2ω̂ = 0 , (B.53)

subject to stress-matching boundary conditions at each interface :

ω̂

∣∣∣∣
x=0

= −ηc

η

û0

h
(B.54)

ω̂

∣∣∣∣
x=L

= ηc

η

ûL

h
, (B.55)

where :

û0 = i
α

ηc
g(t)

√
λxie

−xi/λ k

k2 + κ2
c

e− 1
2 (√

λxik)2
, (B.56)

ûL = i
α

ηc
g(t)

√
λ(L− xi)e−(L−xi)/λ k

k2 + κ2
c

e− 1
2

(√
λ(L−xi)k

)2

. (B.57)

The solution reads :

ω̂ = ηc

η
csch(kL)

(
ûL

h
sinh(kx) − û0

h
sinh(k(L− x))

)
. (B.58)

And the stream function, considering the no-penetration boundary condition at the sol-
gel interfaces :

ψ̂ = 1
2k
ηc

η
csch(kL)

(
−
(
ûL

h
+ û0

h
cosh(kL)

)
x cosh(kx)

+
(

coth(kL)
(
û0

h
+ ûL

h
cosh(kL)

)
L− ûL

h
(L− x) sinh(kL)

)
sinh(kx)

)
. (B.59)
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For a fixed value of x, this function of k has two pairs of antisymmetric peaks around
zero that vary in strength as a function of x. Further analysis reveals that this function can
be decomposed into the contribution from each parallel strip (i.e. separating the x and L−x
components), and these can be approximated as :

ψ̂ = ik
(
f1(x)e− 1

2 φ1(x)k2 + f2(x)e− 1
2 φ2(x)k2)

, (B.60)

where :

f1(x) =
α
ηc
g(t)
2h

ηc

η

√
λxie

−xi/λx
−2L2 + 3Lx− x2

3Lκ2
c

, (B.61)

f2(x) =
α
ηc
g(t)
2h

ηc

η

√
λ(L− xi)e−(L−xi)/λx

L2 − x2

3Lκ2
c

, (B.62)

φ1(x) = 2
κ2

c

+ 14
30L

2 − 1
5 (L− x)2 + xiλ , (B.63)

φ2(x) = 2
κ2

c

+ 14
30L

2 − 1
5x

2 + (L− xi)λ . (B.64)

The inverse Fourier transform yields :

ψ = −
(

f1(x)
φ1(x)3/2 e

− 1
2

y2
φ1(x) + f2(x)

φ2(x)3/2 e
− 1

2
y2

φ2(x)

)
y , (B.65)

which readily generalizes to the case of multiple nuclei :

ψ = −
∑

i

(
f1,i(x)

φ1,i(x)3/2 e
− 1

2
(y−yi)2
φ1,i(x) + f2,i(x)

φ2,i(x)3/2 e
− 1

2
(y−yi)2
φ2,i(x)

)
(y − yi) . (B.66)

B.5 Nuclei-driven flow : Circular arena

Consider a nucleus placed in a circular arena at (polar) coordinates (ri, θi). The sol-gel
interface is located at r = R. The sol vorticity can be found from the Laplace equation in a
circular domain :

ω = A0 +
∑
n=1

rn (An sin(nθ) +Bn cos(nθ)) , (B.67)

while the gel satisfies :
∂2u

∂θ2 −
(

1 +R2 γ

ηc

)
u = −R α

ηc

∂ρb

∂θ
. (B.68)

We can expand the bound myosin distribution assuming that ri
R ≪ 1

ρb = g(t)e−
√

(y−yi)2+(x−xi)2/λ = e−
√

R2+r2
i −2Rri cos(θ−θi)/λ (B.69)

≈ g(t)e− R
λ

(
1 + R

λ

ri

R
cos(θ − θi) + 1

2
R

λ

(
ri

R

)2 (
−1 +

(
R

λ
+ 1

)
cos2(θ − θi)

))
, (B.70)
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such that :

∂ρb

∂θ
≈ −g(t)e− R

λ

(
R

λ

ri

R
sin(θ − θi) + R

λ

(
ri

R

)2 (R
λ

+ 1
)

sin(2(θ − θi))
)
, (B.71)

and finally :

u = − 1
10 + 7R2κ2

c +R4κ4
c

R
α

ηc
g(t)e− R

λ

((
5 +R2κ2

c

) R
λ

ri

R
sin(θ − θi)

+
(
2 +R2κ2

c

) R
λ

(
ri

R

)2 (R
λ

+ 1
)

sin(2(θ − θi))
)
, (B.72)

which can be rewritten compactly :

u = −u1

(
ri

R

)
sin(θ − θ0) − u2

(
ri

R

)2
sin(2(θ − θ0)) . (B.73)

Stress-matching boundary conditions require :

ηc
u

h
= ηω(r = R, θ) (B.74)

and as such :

ω = − 1
h

ηc

η

(
u1

(
ri

R

)
sin(θ − θi)

r

R
+ u2

(
ri

R

)2
sin(2(θ − θi))

r2

R2

)
. (B.75)

We can see that the resulting flow comes from the contribution of a dipole and a quadrupole
vortex profiles.

We will calculate the stream function by dividing it into two parts. First :

∆ψ1 = 1
Rh

ηc

η
u1

(
ri

R

)
sin(θ − θ0)r . (B.76)

Defining ψ1 = f1(r)φ1(θ), it is clear that φ1(θ) = sin(θ − θ0). Then :

f ′′
1 + 1

r
f ′

1 − 1
r2 f1 = 1

Rh

ηc

η
u1

(
ri

R

)
r , (B.77)

and :
f1(r) = 1

8
1
Rh

ηc

η
u1

(
ri

R

)
r3 +B1r . (B.78)

From an analogous procedure, φ2 = sin(2(θ − θ0)), and :

f2(r) = 1
12

1
R2h

ηc

η
u2

(
ri

R

)2
r4 +B2r

2 . (B.79)

Then :

ψ =
(1

8
1
Rh

ηc

η
u1

(
ri

R

)
r3 +B1r

)
sin(θ−θi)+

(
1
12

1
R2h

ηc

η
u2

(
ri

R

)2
r4 +B2r

2
)

sin(2(θ−θi)) .

(B.80)
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B1 and B2 are fixed by the no-penetration condition :

vr

∣∣∣∣
r=R

= 1
r

∂ψ

∂θ

∣∣∣∣
r=R

= 0 . (B.81)

Then :

ψ = 1
8

1
Rh

ηc

η
u1

(
ri

R

)(
r3 −R2r

)
sin(θ− θi) + 1

12
1
R2h

ηc

η
u2

(
ri

R

)2 (
r4 −R2r2

)
sin(2(θ− θi)) .

(B.82)

To determine the centering dynamics of the nucleus, we first calculate the radial velocity :

vr = 1
8

1
Rh

ηc

η
u1

(
ri

R

)(
r2 −R2

)
cos(θ − θi) + 1

6
1
R2h

ηc

η
u2

(
ri

R

)2 (
r3 −R2r

)
cos(2(θ − θi)) .

(B.83)

Now we evaluate this at the position of the nucleus, i.e r = ri, θ = θi. At the lowest
order :

dri

dt = −1
τ
g(t)ri , (B.84)

where 1
τ = 1

8
u1
h

ηc

η .

B.6 Continuous nuclear distribution : Circular arena

We may consider now a distribution of nuclei ρn, with the cell cycle being represented in
space and time by the function g. Then :

ρb(x, t) = g(t)
∫
g(x′, t)ρn(x′, t)e−

√
(y−y′)2+(x−x′)2/λ d2x′ , (B.85)

such that :
ρb =

〈
g(x′, t)e−

√
(y−y′)2+(x−x′)2/λ

〉
. (B.86)

To simplify our calculations, we will consider that there are no nuclear divisions. We
will also ignore the microtubule-mediated nuclei-nuclei interactions. Then, the distribution
of nuclei satisfies the continuity equation :

∂ρn

∂t
+ ∇ · (vρn) = 0 , (B.87)

where v is the cytosol velocity. We may note that from here on, the equations that we need
to solve and their boundary conditions are exactly the same as in the case of the discrete
nuclear distribution. The only difference is that instead of summing the contributions of each
individual nucleus, we are now integrating over the whole distribution. As a result :

ω = − 1
h

ηc

η

(
u1
r

R

〈
sin(θ − θ′)r

′

R

〉
+ u2

(
r

R

)2
〈

sin(2(θ − θ′))
(
r′

R

)2〉)
, (B.88)



110 Annexe B. Chapter III Appendix

and :

ψ = 1
8

1
Rh

ηc

η
u1
(
r3 −R2r

)〈
g(r′, θ′, t)

(
r′

R

)
sin(θ − θ′)

〉
+ 1

12
1
R2h

ηc

η
u2
(
r4 −R2r2

)〈
g(r′, θ′, t)

(
r′

R

)2
sin(2(θ − θ′))

〉
, (B.89)

such that :

ψ = χ1
R2 (r2 −R2) [⟨g(r, θ, t)r cos(θ)⟩ r sin(θ) − ⟨g(r, θ, t)r sin(θ)⟩ r cos(θ)]

+ χ2
R2 (r2 −R2)

[〈
g(r, θ, t)r2 cos(2θ)

〉
r2 sin(2θ) −

〈
g(r, θ, t)r2 sin(2θ)

〉
r2 cos(2θ)

]
. (B.90)

In cartesian coordinates :

ψ = χ1
R2 (r2 −R2) [⟨g(x, y, t)x⟩ y − ⟨g(x, y, t)y⟩x]

+ χ2
R2 (r2 −R2)

[〈
g(x, y, t)(x2 − y2)

〉
2xy − ⟨g(x, y, t)2xy⟩ (x2 − y2)

]
, (B.91)

and at the lowest order of x and y :

ψ = −χ1 [⟨g(x, y, t)x⟩ y − ⟨g(x, y, t)y⟩x]

− χ2
[〈
g(x, y, t)(x2 − y2)

〉
2xy − ⟨g(x, y, t)2xy⟩ (x2 − y2)

]
, (B.92)

then :

vx = −χ1 ⟨g(x, y, t)x⟩ − χ2
[〈
g(x, y, t)(x2 − y2)

〉
2x+ ⟨g(x, y, t)2xy⟩ 2y

]
, (B.93)

vy = −χ1 ⟨g(x, y, t)y⟩ + χ2
[〈
g(x, y, t)(x2 − y2)

〉
2y − ⟨g(x, y, t)2xy⟩ 2x

]
. (B.94)

Now we can follow the temporal evolution of any spatial dependent quantity as follows :

d
dt ⟨M⟩ =

∫
M∂ρn

∂t
d2x (B.95)

= −
∫

M∇ · (vρn) d2x (B.96)

=
∫
ρnv · ∇M d2x (B.97)

= ⟨v · ∇M⟩ , (B.98)

where we have used the divergence theorem, considering that v · n̂ = 0 at the boundary. In
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particular, for the moments of the distribution :

d
dt ⟨x⟩ = −χ1 ⟨g(x, y, t)x⟩ − 2χ2

[〈
g(x, y, t)(x2 − y2)

〉
⟨x⟩ + ⟨g(x, y, t)2xy⟩ ⟨y⟩

]
, (B.99)

d
dt ⟨y⟩ = −χ1 ⟨g(x, y, t)y⟩ + 2χ2

[〈
g(x, y, t)(x2 − y2)

〉
⟨y⟩ − ⟨g(x, y, t)2xy⟩ ⟨x⟩

]
, (B.100)

d
dt
〈
x2
〉

= −2χ1 ⟨g(x, y, t)x⟩ ⟨x⟩ − 4χ2
[〈
g(x, y, t)(x2 − y2)

〉〈
x2
〉

+ ⟨g(x, y, t)2xy⟩ ⟨xy⟩
]
,

(B.101)
d
dt
〈
y2
〉

= −2χ1 ⟨g(x, y, t)y⟩ ⟨y⟩ + 4χ2
[〈
g(x, y, t)(x2 − y2)

〉〈
y2
〉

− ⟨g(x, y, t)2xy⟩ ⟨xy⟩
]
.

(B.102)

If the myosin activation function g is spatially uniform, two clear results emerge from
this set of equations. First, when the nuclear distribution is symmetric around its mean, the
evolution of the mean satisfies :

d
dt ⟨x⟩ = −g(t)χ1 ⟨x⟩ , (B.103)

such that the distribution will become centered over time.

On the other hand, when the nuclear distribution is centered but not symmetric, its
moments satisfy :

d
dt
〈
x2 − y2

〉
= −4g(t)χ2

〈
x2 + y2

〉〈
x2 − y2

〉
, (B.104)

d
dt ⟨xy⟩ = −2g(t)χ1 ⟨xy⟩ − 4g(t)χ2

〈
x2 + y2

〉
⟨xy⟩ . (B.105)

such that the distribution will become symmetric over time.
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C.1 Spatiotemporal dynamics of the twine-degrading protein

Consider the dynamical equation of the concentration of the twine-degrading molecule
θ :

∂θ

∂t
= D∆θ + αθΘ

(
x+ b

2

)
Θ
(
b

2 − x

)
, (C.1)

where Θ is the Heaviside function. The size of the patch that is actively transcribing is b,
and centered at x = 0. A formal solution to this equation can be found using the Green’s
function. To give a sense of the scaling, we will use a Fourier transform, i.e. approximating
the bulk of the system. Calculating the Fourier transform in space :

∂θ̂

∂t
+Dk2θ̂ = 2 αθ√

2π
sin
(

kb
2

)
k

. (C.2)

The solution to this equation, considering an initial condition where θ = 0 can be found
by an integrating factor :

θ̂ =
√

2
π
αθte

−k2Dt
sin
(

kb
2

)
k

, (C.3)

which, when taking the inverse Fourier transform yields the simple solution :

θ = 1
2αθt

(
erf
( 1√

4Dt

(
b

2 − x

))
+ erf

( 1√
4Dt

(
b

2 + x

)))
, (C.4)

and, looking at distances larger than those set by diffusion, we can use the asymptotic form
of the error functions, such that :

θ ≈ 1√
π
αθt

1√
4Dt

e− x2
4Dt b . (C.5)

C.2 Time delay between regions at different temperatures

Assuming that the bulk of the two regions is oscillating at their characteristic period

τe
∆E
kB

(
1
T

− 1
T0

)
, we can calculate the delay between the end of cycle 13 at one side and the
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other as the difference of the total time that it takes for the cold region (longer period) and
the total time that it takes for the warm region (smaller period) :

τL = (τ11 + τ12 + τ13)
(
e

∆E
kB

(
1

T1
− 1

T0

)
− e

∆E
kB

(
1

T2
− 1

T0

))
, (C.6)

where we have assumed that both sides start in phase, and we have ignored the regular mitotic
waves triggered by noise that may spread these values. Now, we assume that T1 = T0 −∆T/2
and T2 = T0 + ∆T/2. The exponential factor ∆E/kB ∼ 9500, and because temperatures are
measured in Kelvin, their variations are not large. Hence, we can perform a Taylor expansion
around T0 in the exponential. At the first order :

τL ≈ (τ11 + τ12 + τ13) ∆E
kB

∆T
T 2

0
. (C.7)
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Table C.1 Model parameters
Parameter Notation Value
Diffusion coefficient D 5 µm2/s
Cyclin production rate ksynth 12 nM min−1

Basal cyclin degradation rate αdeg 0.06 min−1

Cdk1-dependent cyclin degradation rate βdeg 0.57 min−1

Cdk1 at cyclin degradation half activation Kdeg 32.0 nM
Cdk1 degradation Hill coefficient ndeg 5
Basal Cdk1 activation due to Wee1 αWee1 0.24 min−1

Cdk1-dependent Cdk1 activation due to Wee1 βWee1 1.00 min−1

Cdk1 at Wee1 half activation KWee1 26.4 nM
Wee1 regulation Hill coefficient nWee1 5
Basal Cdk1 inactivation due to Cdc25 αCdc25 0.12 min−1

Cdk1-dependent Cdk1 inactivation due to Cdc25 βCdc25 0.65 min−1

Cdk1 at Cdc25 half activation KCdc25 26.4 nM
Cdc25 activation Hill coefficient nCdc25 5
Basal effective Cdc25 inhibition-degradation coefficient δs 10.0 min−1

Cdc25 inhibitor production rate αθ 1.0 nM min−1

Cdk1 at half value of the Chk1 regulation function KChk1 48 nM min−1

Cdk1-mediated Chk1 regulation Hill coefficient nChk1 10
Basal Chk1 activity h∗ 0.9
Titration molecule at Chk1 half activation KY 0.728 nM
Titration molecule production rate αY 0.5 nM min−1

Titration molecule - importin binding rate kY I 5.0 min−1

Importin degradation rate δI 5.0 min−1

Importin import rate kimp 5.0 min−1

Cyclin production chemical noise amplitude σc 0.24
Cdk1 activation chemical noise amplitude σa 0.24
Nuclear envelope breakdown Cdk1 threshold a∗ 29.0 nM
Mitotic exit Cdk1 threshold a∗∗ 14.0 nM
Degradation molecule threshold for transcription Y ∗ 0.9 nM
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Sujet : La Physique du Développement Précoce de la Drosophile

Résumé : Cette thèse porte sur le développement embryonnaire de la Drosophile depuis un point
de vue physique. Les organismes multicellulaires ont de gros défis à surmonter : leur développe-
ment doit aboutir à une grande variété de formes et de tissus qui se différentient à des positions
spécifiques à partir d’une céllule initiale, et ce de manière reproductible. La Drosophile Melano-
gaster est depuis longtemps étudiée, ce qui en fait un terrain de jeu parfait pour utiliser les outils
de la physique afin de comprendre l’ensemble de procesus qui rendent cela possible, en particulier
le couplage entre la biochimique et la mécanique. Le chapitre I introduit la biophysique et son ap-
proche, caractérise le développement embryonnaire des organismes multicellulaires, et décrit les
premières phases du développement de la mouche. Le chapitre II aborde la modélisation des écou-
lements cytoplasmiques produits par des contractions d’actomyosine quelques cycles cellulaires
après la fertilisation, grâce à un couplage méchanochimique noyaux-cortex. Le modèle reproduit
les observations expérimentales sur la forme des écoulements, leur amplitude et le transport des
noyaux. Le chapitre III aborde les résultats théoriques sur les écoulements décrits dans le cha-
pitre II, en introduisant un modèle simplifié. Le modèle explicite des expressions sur la puissance
des écoulements et le mouvement résultant des noyaux pour différentes géometries, et fait des
prédictions sur la stabilité des distributions de myosine et la formation de motifs. Le chapitre
IV traite des cycles nucléaires qui précèdent la gastrulation. Après la diffusion des noyeaux dans
l’oeuf, ils atteignent la cortex embryonnaire, et l’horloge cellulaire qui contrôle les divisions se
ralentissent en préparation à la gastrulation. Des expériences ont trouvé que la dynamique des
noyaux dépend de la densité nucléaire et le profil de température dans l’oeuf. On explore un mo-
dèle qui reproduit des observations sur la propagation des ondes mitotiques dans des embryons
type sauvage et mutants. On fait ainsi des prédictions pour des expériences futures.

Mots clés : Biophysique, Biologie du développement, Drosophile, Actomyosine, Écoulements
multiphasiques, Oscillateurs non linéaires



Subject : The Physics of Early Drosophila Development

Abstract: This work presents a physics approach to the early embryonic development of Droso-
phila. The development of multicellular organisms must tackle diverse challenges, in particular,
producing a great variety of shapes and tissues that differentiate in specific locations starting
from a single cell, in a robust way. Orchestrating all of this requires the interplay between bio-
chemistry and mechanics, hence the relevance of the physics toolkit to integrate these elements.
These ideas will be explored in a well-established model system in biology, the fruit fly Drosophila
Melanogaster. Chapter I introduces general notions of biophysics and its approach, characterizes
the embryonic development of multicellular organisms, and gives an overview of the early de-
velopment of the fruit fly. Chapter II describes the modeling of cytoplasmic flows produced by
actomyosin contractions a few cellular cycles after fertilization, controlled by a mechanochemical
coupling between the nuclei and the cortex. The model reproduces experimental observations on
the flow shape, amplitude, and nuclear transport. Chapter III introduces a simplified model that
allows for a theoretical treatment of the cytoplasmic flows described in Chapter II. We obtain
analytical expressions of the strength and shape of the flows and the timescale of nuclear centering
for different geometries and make predictions on the stability of myosin distribution and pattern
formation. Chapter IV describes the pre-gastrulating nuclear cycles, where after having spread
in the bulk of the embryo, the nuclei migrate to the cortex and the cell cycle slows down in pre-
paration for gastrulation. Experiments have shown that the dynamics of the nuclei at the cortex
depend on nuclear density and the temperature profile in the embryo. We explore a model that
reproduces experimental observations in wild-type and mutant embryos, particularly considering
the spreading of mitotic waves, and make predictions that suggest new experiments.

Keywords : Biophysics, Developmental biology, Drosophila, Actomyosin, Multiphase flows, Non-
linear oscillators
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