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Segmentation by Deep Learning with Geometric Constraints and
Active Contours.

Abstract

Segmentation of medical images is crucial in clinical practice, requiring accurate and reliable methods
to aid diagnosis and treatment planning. However, existing deep learning approaches often need more
interpretability and robustness, limiting their application in sensitive clinical environments. This thesis
addresses these challenges by proposing two new deep learning models integrating classical image
processing techniques to improve segmentation performance and reliability.
The first contribution, the Chan-Vese Attention U-Net, incorporates an attention mechanism based on
Chan-Vese energy minimisation into the U-Net architecture. This approach exploits geometric con-
straints to guide the segmentation process, enabling the model to produce more accurate and easier-to-
interpret results by focusing on relevant regions of the image and minimising irrelevant details. The
second contribution, Fast Marching Energy CNN, combines neural networks with geodesic distance
computation to learn isotropic Riemannian metrics directly from the data, generating robust segmenta-
tion masks that preserve geometric and topological properties. These methods integrate differentiable
distance transforms and the subgradient walk algorithm into a differentiable framework.
By integrating traditional energy minimisation techniques with modern deep learning models, this re-
search advances the field of medical image analysis, providing more reliable and interpretable tools for
automated segmentation. The results of this thesis can potentially improve clinical decision-making
processes and the adoption of AI-driven solutions in healthcare.

Keywords: Deep Learning, Computer Vision, Attention Mechanism, Medical Data, Active Contours,

Geodesic Distances
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Segmentation by Deep Learning with Geometric Constraints and
Active Contours.

Résumé

La segmentation des images médicales est une tâche critique dans la pratique clinique, nécessitant des
méthodes précises et fiables pour aider au diagnostic et à la planification du traitement. Cependant, les
approches d’apprentissage profond existantes manquent souvent d’interprétabilité et de robustesse, ce
qui limite leur application dans des environnements cliniques sensibles. Cette thèse aborde ces défis en
proposant deux nouveaux modèles d’apprentissage profond qui intègrent des techniques classiques de
traitement d’images pour améliorer la performance et la fiabilité de la segmentation.
La première contribution, le Chan-Vese Attention U-Net, incorpore un mécanisme d’attention basé sur
la minimisation de l’énergie de Chan-Vese dans l’architecture U-Net. Cette approche exploite les con-
traintes géométriques pour guider le processus de segmentation, ce qui permet au modèle de produire
des résultats plus précis et plus faciles à interpréter en se concentrant sur les régions pertinentes de
l’image et en minimisant les détails non pertinents. La seconde contribution, le Fast Marching En-
ergy CNN, combine les réseaux neuronaux avec le calcul de la distance géodésique pour apprendre
les métriques riemanniennes isotropes directement à partir des données, ce qui permet de générer des
masques de segmentation robustes qui conservent à la fois les propriétés géométriques et topologiques.
Ces méthodes utilisent des transformées de distance différentiables et l’algorithme de marche sous-
gradient pour les intégrer dans un cadre différentiables.
En intégrant les techniques traditionnelles de minimisation de l’énergie aux modèles modernes
d’apprentissage profond, cette recherche fait progresser le domaine de l’analyse d’images médicales,
en offrant des outils plus fiables et interprétables pour la segmentation automatisée. Les résultats de
cette thèse ont le potentiel d’améliorer les processus de prise de décision clinique et l’adoption de solu-
tions pilotées par l’IA dans les soins de santé.

Mots Clés: Apprentissage Profond, Vision par Ordinateur, Méchanisme d’Attention, Données Médi-

cales, Contours Actifs, Distances Géodésiques
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Résumé en Français

Les travaux présentés dans cette thèse ont pour objectif de proposer de nouvelles méthodes
pour l’analyse d’images médicales, en particulier la segmentation des tumeurs cérébrales et des
structures arborisées telles que les réseaux vasculaires. La structure de cette thèse est conçue
de manière à permettre la compréhension des enjeux et des méthodes de l’état de l’art à partir
de ce seul manuscrit, et avec les connaissances d’un étudiant de Master 2 en mathématiques
appliquées, en informatique ou en apprentissage automatique.

Ces travaux s’inscrivent dans le cadre des méthodes récentes d’apprentissage automatique,
plus précisément des méthodes d’apprentissage profond (Deep Learning), qui reposent sur
l’entraînement de grands réseaux de neurones pour réaliser des inférences. Nous testons
également des méthodes plus anciennes, telles que les contours actifs et les géodésiques, que
nous cherchons à combiner avec les méthodes d’apprentissage afin de rapprocher ces deux
approches de traitement des données, dans le but de combler les lacunes d’interprétation des
réseaux de neurones.

Structure de la thèse et présentation des contributions

La thèse est composée de 5 chapitres thématiques. Nous commençons par l’introduction de la
thèse et de la mise en contexte. Ensuite, le deuxième chapitre présente les notions de contours
actifs et de méthodes géodésiques. Nous introduisons ces notions d’un point de vue mathé-
matique et aussi informatique pour mettre en avant leur implémentation numérique, qui nous
sera utile dans la suite du manuscrit. Le troisième chapitre introduit la notion d’apprentissage
profond et surtout les méthodes d’apprentissage par vision par ordinateur, ce qui correspond à
l’étude en particulier des images. Le chapitre 4 présente les premiers résultats de combinaison
d’apprentissage profond et de méthodes de contours actifs pour la segmentation de tumeur
cérébrale. Le chapitre 5 introduit la dernière contribution sur l’étude de l’association de méth-
odes géodésiques avec l’apprentissage profond.

La première contribution que nous avons publiée permet la segmentation de tumeur cérébrales.
La méthodes est présentée dans le chapitre 4. Le principe est de proposer une méthode perme-
ttant de mettre en œuvre deux méthodes distinctes de segmentation d’image dans un même
processus pour engendrer une prediction plus sure. Les deux méthodes que nous avons em-
ployées sont l’apprentissage profond et les méthodes de contours actifs. Nous avons basé notre
travail sur la notion de mécanisme d’attention dans les réseaux de neurones qui leur permettent
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d’apprendre à juger de la pertinence d’éléments dans une image pour les aider à formuler une
prédiction. Nous avons décidé d’aller plus loin et de contraindre ces mécanismes d’attention
de résoudre un problème d’optimisation. Le problème d’optimisation à résoudre est basé sur
le modèle de Chan-Vese qui permet de trouver les contours d’importances entre deux zones
dans une images. L’introduction de cette méthode au cœur du processus d’apprentissage du
réseau de neurones permet d’ajouter du contrôle sur l’évolution des valeurs des paramètres du
réseau de neurones qui sont mis à jour également par les valeurs des dérivées provenant du
processus d’optimisation. Nous présentons des résultats détaillés sur une base de données de
tumeur cérébrale comprenant peu de données annotées.

La deuxième contribution est présentée dans le chapitre 5. Nous avons montré que nous
pouvons intégrer les notions de distances géodésiques dans un flux d’apprentissage automa-
tiques. L’objectif est de pouvoir apprendre automatiquement les géométries présentes dans
une image sans qu’un utilisateur doive en choisir une parmi d’autres. Pour ce faire nous avons
combiné la méthode de calcul de distance géodésique communément appelée Fast March-
ing ([Set96]), qui permet de résoudre l’équation eikonale dans un milieu, avec un réseau de
neurones convolutionnel classique. L’architecture complète permet d’apprendre la métrique
isotrope associée à la segmentation des tumeurs cérébrales. La segmentation est approchée en
utilisant l’indicatrice de la boule unité pour la distance définie par la métrique. La possibil-
ité de réaliser l’apprentissage est obtenue grâce à l’utilisation de la méthode de sous-gradient
pour l’algorithme de Fast Marching. Cela permet d’obtenir la différenciation de la distance
géodésiques par rapport aux paramètres du réseau. Les résultats obtenus sont similaires à
ceux de l’état de l’art avec en plus une garantie sur le masque de segmentation.

La troisième contribution est une extension de la méthode présentée précédemment. Une
description de cette contribution est présentée dans le chapitre 5 à la section 5.4.

Mise en Contexte

Le sujet général de cette thèse est l’étude et l’application de techniques informatiques avancées
pour la segmentation d’images médicales. Plus précisément, nous visons à développer des
méthodologies qui délimitent avec précision les frontières et identifient le contenu des images
médicales, en se concentrant sur des objets tels que les tumeurs, les lésions et les réseaux vas-
culaires. La segmentation d’images médicales est une tâche cruciale dans le processus de diag-
nostic et de planification des traitements, car elle permet aux cliniciens d’obtenir des mesures
et des visualisations précises nécessaires pour prendre des décisions éclairées. Au fil des ans,
ce sujet a suscité une attention considérable dans les milieux universitaires et cliniques, ce qui a
conduit au développement d’un large éventail d’approches. Ces approches vont des techniques
mathématiques classiques, telles que la minimisation d’énergie de contours, aux avancées ré-
centes impliquant des algorithmes assistés par ordinateur et l’apprentissage automatique. Ces
dernières années, l’avènement de l’apprentissage profond a révolutionné le domaine de la seg-
mentation des images médicales. Les techniques basées sur les réseaux neuronaux convolutifs
(CNN) ont eu des succès remarquables dans l’apprentissage automatique et l’extraction de car-
actéristiques pertinentes à partir d’images, surpassant souvent les méthodes traditionnelles.
En entraînant ces réseaux neuronaux sur de grands ensembles de données d’images médicales
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annotées par des experts, les chercheurs ont atteint des performances de pointe dans diverses
tâches de segmentation. Ces avancées promettent d’améliorer la précision et l’efficacité des
diagnostics médicaux. Cependant, malgré les progrès significatifs réalisés dans le développe-
ment d’algorithmes de segmentation, leur adoption dans la pratique clinique doit encore être
améliorée. Plusieurs défis contribuent à ce fossé entre la recherche et l’application pratique.
L’une des difficultés réside dans les ressources informatiques nécessaires pour former et dé-
ployer des modèles d’apprentissage profond, en particulier dans des environnements en temps
réel ou à ressources limitées. La phase d’inférence d’un réseau neuronal entraîné exige un
matériel performant, qui peut n’être disponible que dans certains environnements cliniques.
En outre, l’interprétabilité et la transparence des modèles d’apprentissage profond posent un
autre problème. Les implications éthiques du recours à des systèmes automatisés pour des
décisions médicales critiques doivent également être prises en compte : sommes-nous prêts à
confier des décisions, telles que le diagnostic ou le plan de traitement d’un patient, à un modèle
d’apprentissage automatique, en particulier lorsque l’enjeu concerne des vies humaines ? Bien
que ces modèles puissent atteindre une précision impressionnante, leur processus de prise de
décision doit souvent être plus transparent, sinon cela pose des problèmes pour la confiance
des professionnels de santé. Il est essentiel de veiller à ce que ces modèles puissent fournir des
résultats précis, mais aussi explicables et justifiables, pour qu’ils soient plus largement acceptés
dans les milieux cliniques. La recherche en cours dans ce domaine doit relever ces défis pour
combler le fossé entre les techniques de segmentation de pointe et leur mise en œuvre pratique
dans les soins de santé, afin d’améliorer les résultats pour les patients et de susciter la confiance
dans les systèmes automatisés.

Un Mécanisme d’Attention basée sur la Méthode de Contour Actif

Notre première contribution a été introduite dans notre article intitulé « Chan-Vese Attention
U-Net : Un mécanisme d’attention pour une segmentation robuste » ([Mak23]), Laurent D.
Cohen et moi-même y avons présenté une nouvelle approche pour améliorer la segmentation
des images médicales en combinant l’apprentissage profond avec des techniques classiques
de minimisation de l’énergie. La segmentation des images médicales est une tâche cruciale
qui exige souvent un effort important de la part des professionnels de la santé. Bien que les
réseaux neuronaux convolutifs (CNN), en particulier les architectures comme U-Net ([Ron15]),
se soient montrés très prometteurs dans l’automatisation de ce processus, leur application en
milieu clinique soulève encore des inquiétudes quant à leur fiabilité, leur transparence et leur
facilité d’utilisation. Dans cet article, nous avons proposé une nouvelle méthode qui intègre
un mécanisme d’attention basé sur la minimisation de l’énergie de Chan-Vese ([Cha01]) dans
l’architecture U-Net afin d’améliorer la précision et la fiabilité de la segmentation. Nous avons
passé en revue diverses tentatives d’intégration de propriétés géométriques et topologiques
dans les réseaux neuronaux pour les tâches de segmentation. Les approches précédentes, telles
que les méthodes de contour actif et les contours actifs géodésiques intégrés aux CNN, ont con-
tribué à l’amélioration de la segmentation, mais nous avons constaté un potentiel d’intégration
plus efficace de ces techniques classiques avec les méthodes modernes d’apprentissage en pro-
fondeur.
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Résumé en Français
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Figure 1: Schéma illustrant le processus de segmentation de tumeur cérébrale à partir d’une
image IRM. L’image est d’abord traitée par un réseau de neurones, complété par un mod-
ule d’attention basé sur le modèle de Chan-Vese, pour obtenir une segmentation précise de la
tumeur (en blanc).

Notre principale contribution est le développement de la porte d’attention de Chan-Vese
(voir Figure 1), un nouveau mécanisme d’attention qui exploite les informations de la fonction-
nelle de Chan-Vese, une méthode de minimisation de l’énergie bien établie. Ce mécanisme est
conçu pour affiner la segmentation en incorporant efficacement des informations spatiales, of-
frant un contrôle plus précis sur le processus de segmentation que les approches traditionnelles
d’apprentissage profond. Nous pensons que cette méthode pourrait conduire à des résultats
plus précis et plus cohérents en imagerie médicale. Le mécanisme d’attention consiste à appli-
quer l’algorithme de Chan-Vese, qui est traditionnellement utilisé pour les modèles de contours
actifs sans bord. Dans notre implémentation, l’algorithme de Chan-Vese est adapté pour fonc-
tionner dans un environnement de réseau neuronal pour affiner le masque de segmentation
généré à partir de la transformée de distance. La méthode de Chan-Vese combine des aspects
des contours actifs et de la fonctionnelle de Mumford-Shah ([Mum89]) pour faire évoluer un
contour qui minimise une fonctionnelle d’énergie, segmentant efficacement l’image en régions
d’intérêt. En incorporant cette méthode dans notre réseau, nous tirons parti de sa capacité à
imposer des contraintes à la fois globales et locales sur la segmentation, en veillant à ce que les
masques résultants soient non seulement précis, mais qu’ils respectent également les propriétés
géométriques attendues. Cette étape permet de s’assurer que le réseau ne repose pas unique-
ment sur les gradients d’intensité ou la contiguïté des pixels, mais qu’il intègre également des
informations géométriques d’ordre supérieur qui peuvent conduire à des résultats de segmen-
tation plus fiables. L’algorithme modifié utilise le contour initial fourni par la transformée de
distance comme point de départ. La fonction d’énergie de Chan-Vese est ensuite minimisée
d’une manière qui respecte la nature différentiable du cadre d’apprentissage profond. Cela
implique de modifier l’algorithme classique de Chan-Vese pour s’assurer que le processus de
minimisation de l’énergie peut être rétro propagé à travers le réseau. Cette modification est
essentielle car elle permet au réseau d’apprendre du processus de segmentation lui-même, en
améliorant continuellement sa capacité à produire des masques de segmentation précis et fi-
ables Nous avons mené des expériences en utilisant la base de données TCGA-LGG ([Ped]),
qui contient des IRM de patients atteints de tumeurs cérébrales. Nous avons comparé notre
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Chan-Vese Attention U-Net au U-Net traditionnel et à un U-Net d’attention. Nos résultats ont
montré que le Chan-Vese Attention U-Net a obtenu de meilleurs scores d’Intersection Over
Union (IOU) et de meilleurs taux de faux négatifs, ce qui indique une meilleure précision et fi-
abilité de la segmentation. Nous avons également analysé les masques d’attention générés par
le Chan-Vese Attention Gate. Les résultats ont démontré que le masque d’attention converge
rapidement vers une segmentation ressemblant étroitement à la région tumorale, en affinant
les contours au fur et à mesure de l’entraînement. Ce comportement contraste avec les mécan-
ismes d’attention traditionnels, qui peuvent inclure des artefacts non pertinents en dehors de
la zone tumorale. La focalisation de notre méthode sur la région d’intérêt à l’intérieur du crâne
a conduit à une segmentation plus précise et plus fiable (voir Figure 1.

Apprentissage de la Métrique Riemannienne

Notre deuxième contribution a été introduite dans notre article intitulé « Fast Marching En-
ergy CNN » ([Ber23]), mes co-auteurs et moi-même y avons présenté une nouvelle approche
de la segmentation d’images en intégrant le calcul des distances géodésiques aux réseaux neu-
ronaux. L’idée est d’exploiter l’information géométrique véhiculée par les distances géodésiques
pour améliorer la segmentation des images médicales, en particulier des tumeurs cérébrales.
Les distances et les courbes géodésiques sont utilisées depuis longtemps pour représenter les
propriétés géométriques dans diverses applications d’imagerie([Sap95; Pey10; Che14]). Tradi-
tionnellement, ces méthodes s’appuient sur des connaissances préalables pour définir explicite-
ment une métrique Riemannienne à partir de l’image. Cependant, notre approche élimine la
nécessité d’une telle définition manuelle de la métrique. Nous proposons plutôt de générer
une métrique Riemannienne isotrope directement à partir des données à l’aide d’un réseau
neuronal, entraîné de manière supervisée. Cette approche réduit les biais de l’utilisateur et
la nécessité de régler les paramètres, ce qui rend le processus de segmentation plus simple
et plus efficace. La distance géodésique a une riche histoire dans les tâches de segmentation
d’images. Les premières méthodes, comme celles de Malladi et al. [Mal98], utilisaient les dis-
tances géodésiques pour segmenter les images cérébrales en 3D, la distance géodésique aide
le contour à trouver le chemin le plus court vers les bords de l’objet à segmenter tout en ten-
ant compte de la structure de l’image. Des études ultérieures ([Che18; Che16; Yan16]) ont
développé ces idées en introduisant des métriques anisotropes et en s’adaptant à des tâches
spécifiques, telles que la segmentation des structures vasculaires. Bien que ces méthodes se
soient avérées efficaces, elles ne traitent généralement pas la tâche de segmentation de manière
holistique ou ne se généralisent pas bien à de grands ensembles de données.

Seules quelques méthodes récentes ont exploré l’apprentissage d’une métrique à partir de
données, comme les travaux de Scarvelis et al. [Sca22] et Heitz et al. [Hei21], qui visent à
trouver des tenseurs métriques s’adaptant aux données spatio-temporelles pour capturer les
champs de vitesse et la géométrie. Cependant, ces approches ne généralisent pas complète-
ment la génération de tenseurs métriques, et c’est là que notre méthode comble l’écart. La
principale contribution de notre travail est l’intégration d’un réseau neuronal avec le calcul de
la distance géodésique pour la segmentation d’images. Notre approche utilise une architecture
U-Net modifiée pour générer des masques de segmentation sous forme de boules géodésiques,
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Figure 2: L’encodeur traite les caractéristiques de l’image, tandis que les décodeurs respectifs
extraient la métrique géodésique et le barycentre pour guider la segmentation.

déterminées par une métrique apprise et un centre ou point d’amorçage. Ce cadre nous permet
d’appliquer des contraintes géométriques et topologiques sur le masque de sortie, ce qui se
traduit par des segmentations plus précises et plus fiables. La distance géodésique mesure la
longueur du chemin le plus court entre deux points d’une variété qui, dans ce cas, est le do-
maine de l’image. Nous calculons cette distance à l’aide de l’algorithme Fast Marching [Set96],
une méthode bien connue de propagation des fronts qui résout l’équation Eikonale. La distance
géodésique est l’unique solution de viscosité positive de l’équation.

Pour incorporer la distance géodésique dans notre cadre de réseau neuronal, nous avons
dû la différencier par rapport à la métrique, une technique introduite pour la première fois par
Benmansour et al. [Ben10]. Nous appliquons cette différenciation dans notre cadre d’apprentissage
profond à l’aide d’une méthode connue sous le nom d’algorithme de marche de sous-gradient.

Le modèle que nous proposons utilise une architecture U-Net [Ron15] modifiée avec deux
voies de décodage distinctes. Le premier décodeur prédit la métrique requise pour le module
de Fast Marching, tandis que le second décodeur estime un potentiel Gaussien représentant la
probabilité du barycentre de la région. Le module Fast Marching calcule ensuite une carte de
distance basée sur ces prédictions, ce qui nous permet de générer des boules géodésiques pour
la segmentation. La segmentation finale est obtenue en comparant le masque prédit à la vérité
terrain et en ajustant en fonction des erreurs de segmentation et de prédiction du barycentre
(Voir Figure 2.

Le module Fast Marching intégré dans notre cadre a conduit à une convergence plus rapide
et à une précision de segmentation améliorée, en particulier dans la détection des bords. Notre
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méthode a toujours produit des contours bien définis en tenant compte de la morphologie de
l’image, une capacité que les filtres traditionnels n’ont pas.

En résumé, les contributions présentées dans cette thèse visent à améliorer la segmentation
des images médicales en combinant des techniques classiques de géométrie et de traitement
d’images avec des approches modernes d’apprentissage profond. Ces travaux ouvrent de nou-
velles perspectives pour développer des outils plus précis et fiables, essentiels pour l’analyse
et le diagnostic médicaux.
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Chapter 1
Introduction

The intersection of humanism and artificial intelligence (AI) technology raises important ques-
tions about the place of the human in a world increasingly inhabited by non-human entities.
In this respect, typography offers an illuminating metaphor. Traditionally conceived as the
’servant of meaning’, typography transcends its apparent dumbness by playing with full and
empty, black and white. This silent game gives rise to signs and symbols beyond the printed
text.

However, when assessing the text-generating capabilities of machines like GPT-4, one ques-
tion stands out: can these algorithms reproduce the polysemy and eloquent silence that are the
hallmarks of human communication? At first glance, AI models seem formidable in signal pro-
cessing, whether textual or graphical. But it is essential to note that these models are trained
on explicit content and do not perceive what is implicit, what surrounds the signal: the white
space in typography, the silences in music or the unspoken words in a conversation.

The mismatch between AI and these more subtle forms of communication highlights the
intrinsic limitations of current models. At a time when AI is increasingly capable of simulating
human behaviour, it is crucial to question what fundamentally distinguishes man from ma-
chine. It is also a reminder that humanism, the ideology that places humans at the centre, faces
an existential challenge. Are we still unique in the world of symbols and signs?

Humanism is being forced to rethink its centrality in its dialogue with AI. We may be at
the dawn of a new age in which cohabitation with competent non-human entities changes our
understanding of what is ’human’. However, it remains to be seen whether these entities will
ever be able to grasp or reproduce the nuances of polysemy or ’eloquent silence’ that enrich our
subjective experience. It may be precisely in these nuances that our human specificity resides.

Overview of Medical Image Segmentation

The general topic of this thesis is the study and application of advanced computational tech-
niques for medical image segmentation. Specifically, we aim to develop methodologies that
accurately delineate boundaries and identify content within medical images, focusing on ob-
jects such as tumours, lesions, and vascular networks. Medical image segmentation is a crucial
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Chapter 1. Introduction

task in the diagnostic and treatment planning process, as it allows clinicians to obtain precise
measurements and visualisations necessary for making informed decisions. Over the years,
this topic has attracted considerable attention in academic and clinical settings, leading to the
development of a wide range of approaches. These approaches span from classical mathemat-
ical techniques, such as energy minimisation frameworks, to recent advancements involving
computer-assisted algorithms and Machine Learning.

In recent years, the advent of Deep Learning has revolutionised the field of medical image
segmentation. Techniques based on convolutional neural networks (CNNs) have shown re-
markable success in automatically learning and extracting relevant features from images, often
outperforming traditional methods. By training these neural networks on large datasets of an-
notated medical images, where experts perform the segmentation, researchers have achieved
state-of-the-art performance in various segmentation tasks. These advancements promise to
enhance the accuracy and efficiency of medical diagnoses.

However, despite the significant progress made in developing segmentation algorithms,
their adoption in clinical practice still needs to be improved. Several challenges contribute
to this gap between research and practical application. One major challenge is the computa-
tional resources required to train and deploy Deep Learning models, particularly in real-time or
resource-constrained environments. The inference phase of a trained neural network demands
high-performance hardware, which may only be readily available in some clinical settings.

Furthermore, the interpretability and transparency of Deep Learning models pose another
concern. The ethical implications of relying on automated systems for critical medical deci-
sions must also be considered whether we are prepared to entrust decisions, such as a patient’s
diagnosis or treatment plan, to a machine-learning model, especially when the stakes involve
human lives. While these models can achieve impressive accuracy, their decision-making pro-
cess often needs to be more transparent, leading to challenges in gaining the trust of medical
professionals. Ensuring that these models can provide accurate but also explainable and justi-
fiable outputs is crucial for their broader acceptance in clinical settings. The ongoing research
in this field must address these challenges to bridge the gap between state-of-the-art segmenta-
tion techniques and their practical implementation in healthcare, ultimately improving patient
outcomes and creating trust in automated medical systems.

Research Landscape: A Literature Review

The issue of transparency in AI decision-making, particularly in the context of medical applica-
tions, has caught significant attention, leading to the development of multiple methods aimed
at making AI systems more interpretable and trustworthy. Addressing this challenge is cru-
cial, as the nature of Deep Learning algorithms can hinder their adoption in domains such as
healthcare, where decisions have important implications for patient outcomes.

One of the approaches to improving transparency involves decomposing the prediction
process into two distinct stages. The first stage focuses on predicting human-level concepts
that drive decision-making among clinical experts, and the second stage uses these concepts to
produce the final decision. This methodology mirrors the decision-making process of medical
professionals, thereby enhancing the interpretability of the model’s outputs. For instance, in the
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work of Koh et al. [Koh20], a Deep Learning algorithm was developed to predict the presence
of arthritis by first identifying specific clinical concepts such as bone spurs, calcification, and
joint space narrowing—factors commonly used by clinicians to assess the severity of arthritis.
These intermediate predictions are then aggregated to determine the stage of arthritis, making
the model’s decision-making process more transparent and aligned with clinical reasoning.

Further advancements in this area have introduced methods that encode high-level visual
attributes within vector representations, as demonstrated by LaLonde et al. [LaL20]. In this
approach, the model encodes specific radiological features, such as the shape, margin, and tex-
ture of lung nodules, into vectors corresponding to radiologists’ attributes in diagnosing lung
cancer. By making these features explicit, the model’s predictions become more interpretable,
allowing clinicians to understand the basis of the AI’s decision regarding familiar diagnostic
criteria.

Another promising approach is using prototypes to provide global and local explanations,
as proposed by Kim et al. [Kim21] in their XProtoNet framework. Prototypes are representative
patterns of diseases learned from a dataset of X-ray images. The model diagnoses a given image
by comparing its features with the learned prototypes. This comparison provides a visual and
conceptual explanation of the model’s decision, showing how similar the current case is to
previously learned examples. The advantage of this approach lies in its flexibility, allowing
the model to learn and use relevant patterns dynamically. It can adapt its explanations to the
specific characteristics of each disease case.

In addition to these concept-driven approaches, visual methods have been widely adopted
to make the decision-making process of Deep Learning models more straightforward. Among
these, Grad-CAM from Selvaraju et al. [Sel17] is one of the most commonly used techniques.
Grad-CAM generates visual explanations by computing the gradient of the target class with
respect to the feature maps of a convolutional layer. It highlights the areas of the input image
that most influence the model’s prediction. This technique has been effectively used in vari-
ous medical imaging studies to reveal which regions of an image the model focuses on when
making a prediction. For example, Pereira et al. [Per18] employed Grad-CAM to analyse the
predictions of CNN models applied to brain MRI images, specifically in the context of tumour
grading. The Grad-CAM heatmaps generated in their study provided insights into whether
the model has correctly identified relevant tumour regions or is being misled by irrelevant
artefacts, thereby offering a means of assessing and improving model reliability.

Beyond pixel-level explanations, there is a growing interest in concept-level explanations,
which aim to abstract the decision-making process further by associating predictions with high-
level, user-defined concepts. The framework proposed by Graziani et al. [Gra20] lets users
define concepts relevant to a particular medical diagnosis, which the Deep Learning model
predicts as scores. These concept scores are subsequently used to calculate, for instance, the
probability of a malignant tumour. Importantly, this framework allows the model to quantify
the contribution of each concept to the final decision, offering a clear and interpretable expla-
nation behind the model’s predictions. This approach also improves transparency by shifting
the focus from raw pixel values to clinically meaningful concepts to propose another solution
to the transparency problem. It aligns the AI’s reasoning process more closely with human
expertise.
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Chapter 1. Introduction

Key Concepts and Terminologies

Medical image segmentation is a critical process in medical imaging, where the objective is to
partition an image into distinct regions that correspond to different anatomical or pathologi-
cal structures. This process is essential for various clinical applications, including diagnosis,
treatment planning, and disease monitoring. Segmentation allows clinicians to isolate specific
areas of interest, such as tumours, lesions, or vascular networks, from surrounding tissues, en-
abling precise measurements, visualisations, and analyses crucial for making informed medical
decisions.

“Medical image segmentation” refers to the computational techniques ([Nor14]) employed
to achieve this partitioning. These techniques range from traditional mathematical modelling
and energy minimisation methods to advanced Machine Learning algorithms automatically
learning to segment images based on large datasets. The segmentation task can be challeng-
ing due to the complexity and variability of medical images, which may be affected by noise,
artefacts, and differences in patient anatomy.

This thesis focuses specifically on using Deep Learning techniques for medical image seg-
mentation. We illustrate mainly using MRI (Magnetic Resonance Images) data to segment brain
tumours. Deep Learning, a subset of Machine Learning, involves training neural networks
with multiple layers to learn hierarchical representations of data automatically. In medical im-
age segmentation, Deep Learning models, particularly convolutional neural networks (CNNs),
have demonstrated remarkable success in identifying and delineating structures within medi-
cal images, often achieving results that surpass traditional methods.

Advancements, Challenges, and Future Directions in Medical Image
Segmentation

The field of medical image segmentation has experienced significant advancements over the
past few decades, particularly with the rise of Machine Learning and Deep Learning techniques
([Wan22; Alz21]). Traditionally, segmentation tasks were approached using classical methods
such as thresholding, region growing, and edge detection, often combined with mathematical
frameworks like active contours and level sets. While these methods provided a solid founda-
tion, they struggled to handle the complex variability and subtle differences in medical images.
It leads to challenges in achieving accurate and reliable segmentation.

The new Machine Learning methods marked a pivotal shift in the field, enabling more au-
tomated and data-driven approaches to segmentation. Early Machine Learning methods relied
on handcrafted features and shallow classifiers, which, despite improvements over traditional
techniques, still faced limitations in generalisation across datasets and imaging modalities. The
introduction of Deep Learning, particularly convolutional neural networks (CNNs) ([Sar22]),
further enhanced medical image segmentation by allowing models to automatically learn and
extract hierarchical features directly from raw image data.

In recent years, Deep Learning models have become the dominant approach in medical
image segmentation. CNN-based architectures, such as U-Net and its variants, have set new
benchmarks in accuracy and efficiency across various segmentation tasks—from identifying
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tumours in MRI and CT scans to segmenting organs and blood vessels in ultrasound images.
These models handle texture, shape, and intensity variations common in clinical datasets. Their
scalability allows them to be applied to large-scale datasets, allowing the development of ro-
bust, high-performing systems.

Despite these advancements, several challenges remain ([Raz18]). One of the primary chal-
lenges is the dependence on large annotated datasets. High-quality annotations, typically per-
formed by medical experts, are essential for training Deep Learning models. However, this
process is labour-intensive, time-consuming, and expensive. It creates bottlenecks in devel-
oping and deploying these models. Moreover, the small number of labelled data for specific
medical conditions or imaging modalities can limit the models’ generalizability and effective-
ness.

Another critical disadvantage is Deep Learning models’ "black box" nature. Although tech-
niques have been developed to improve interpretability, the complexity of these models often
makes it difficult to understand how they arrive at specific decisions. This lack of transparency
can be a significant barrier to clinical adoption, as medical professionals may be reluctant to
trust a system they cannot fully explain and understand, especially when patient outcomes are
at stake.

In response to these challenges, researchers have developed various approaches to enhance
the transparency and interpretability of Deep Learning models. Techniques such as concept-
based models aim to mimic the decision-making process of clinicians by predicting human-
level concepts that are then used to make final predictions. Prototype-based methods provide
explanations by comparing input images to representative examples the model has learned,
offering global and local insights into the model’s decision-making process. Visual tools like
Grad-CAM are also widely used to generate heatmaps highlighting the regions of an image
the model considers most important for its prediction, offering a form of visual validation
clinicians can evaluate.

While progress has been made in improving the interpretability of Deep Learning models, a
trust gap still exists between AI systems and clinicians. More work is needed to develop mod-
els that perform well and offer intuitive and aligned explanations with clinical practice. This
could involve integrating more sophisticated explanation methods beyond current visual and
prototype-based techniques, possibly incorporating domain-specific knowledge or reasoning
based on more classical methods with provable guarantees.

Relevance and Potential Impact

The proposed research addresses critical challenges in applying Deep Learning to medical im-
age segmentation, a process essential for accurate diagnosis and treatment planning in health-
care. Despite the significant progress made with Deep Learning models, obstacles still limit
their practical use in clinical settings.

One major challenge is the need for AI models that are not only accurate but also easy to
understand. In a clinical environment, doctors and other healthcare professionals must be able
to trust and comprehend the decisions made by AI systems, significantly when these decisions
impact patient care. However, many current Deep Learning models operate as “black boxes,”
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Chapter 1. Introduction

making explaining how they reach their conclusions difficult. This lack of transparency can
hinder the adoption of these models in everyday medical practice.

This research is necessary because it aims to develop Deep Learning models that are both in-
terpretable and less dependent on extensive annotated datasets. By exploring attention-based
and mathematically-based approaches, the research seeks to create models that provide more
apparent and trustable outputs, helping healthcare professionals make informed decisions.

Research Questions and Objectives

The research problem focuses on the challenges associated with the practical application of
Deep Learning models for medical image segmentation in clinical settings. Specifically, the
issue concerns more interpretability in current deep-learning models. Research Questions:

1. How can Deep Learning models for medical image segmentation be made more inter-
pretable to ensure their decision-making processes are reliable?

• This question explores ways to make AI models more transparent, allowing clin-
icians to understand and trust the outputs provided by these systems. The focus
is on developing methods that explain the model’s decisions in a meaningful and
useful way for medical professionals.

2. How can energy-based methods, which have demonstrated proven convergence prop-
erties, be integrated into Deep Learning models for medical image segmentation to
enhance the reliability and interpretability of predicted features?

• This question explores the potential of combining traditional energy-based tech-
niques with Deep Learning models to improve the reliability of segmentation out-
puts. The focus is on leveraging the convergence properties of energy-based meth-
ods to provide a more stable and interpretable feature extraction process within
Deep Learning frameworks.

3. How can the propagation of the geodesic front, as modelled by fast marching meth-
ods, be incorporated into Deep Learning models to enforce a more structured and in-
terpretable decision-making process in medical image segmentation?

• This question investigates the use of geodesic front propagation techniques within
Deep Learning models to introduce a geometric understanding of the image, guid-
ing the model’s decision-making process. The goal is to see if this approach can lead
to more interpretable outcomes by enforcing decisions that align with the inherent
structure of the medical images.

Structure and Organization of the Study

The thesis is divided into five thematic chapters. We begin by introducing the thesis and setting
the context. Then, the second chapter presents the notions of active contours and geodesic
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methods. We introduce these notions from a mathematical and computational point of view to
highlight their numerical implementation, which will be helpful to us in the remainder of the
manuscript. The third chapter introduces the notion of Deep Learning, especially computer
vision learning methods, which correspond to the study of images. Chapter 4 presents the first
results combining Deep Learning and active contour methods for brain tumour segmentation.
Chapter 5 introduces the last contribution to the study of the association of geodesic methods
with Deep Learning.

Our first contribution was introduced in our paper entitled ‘Chan-Vese Attention U-Net:
An attention mechanism for robust segmentation’ ([Mak23]), in which Laurent D. Cohen and
I presented a new approach to improving the segmentation of medical images by combining
deep learning with classic energy minimisation techniques. The method is presented in the
chapter 4.

The segmentation of medical images is a crucial task that often requires much effort from
healthcare professionals. Although convolutional neural networks (CNNs), in particular archi-
tectures such as U-Net ([Ron15]), have shown great promise in automating this process, their
application in clinical settings still raises concerns about their reliability, transparency and ease
of use. This paper proposes a new method that integrates an attention mechanism based on
Chan-Vese energy minimisation ([Cha01]) into the U-Net architecture to improve segmenta-
tion accuracy and reliability. We have reviewed various attempts to integrate geometric and
topological properties into neural networks for segmentation tasks. Previous approaches, such
as active contour methods and geodesic active contours embedded in CNNs, have improved
segmentation. Still, we have seen the potential for more effective integration of these classic
techniques with modern deep learning methods.

Our main contribution is the development of the Chan-Vese attention gate (see Figure 1.1),
a novel attention mechanism that exploits information from the Chan-Vese functional, a well-
established energy minimisation method. This mechanism is designed to refine segmentation
by efficiently incorporating spatial information, offering more precise control over the segmen-
tation process than traditional deep learning approaches. We believe this method could lead to
more accurate and consistent results in medical imaging. The attention mechanism applies the
Chan-Vese algorithm, which is traditionally used for edge-free active contour models. In our
implementation, the Chan-Vese algorithm is adapted to work in a neural network environment
to refine the segmentation mask generated from the distance transform. The Chan-Vese method
combines aspects of active contours and the Mumford-Shah functional ([Mum89]) to evolve a
contour that minimises an energy functional, efficiently segmenting the image into regions of
interest. By incorporating this method into our network, we take advantage of its ability to
impose global and local constraints on the segmentation, ensuring that the resulting masks are
accurate and respect the expected geometric properties. This step ensures that the network
does not rely solely on intensity gradients or pixel adjacency but also incorporates higher-
order geometric information that can lead to more reliable segmentation results. The modified
algorithm uses the initial contour provided by the distance transform as a starting point. The
Chan-Vese energy function is then minimised in a way that respects the differentiable nature
of the deep learning framework. This involves modifying the classic Chan-Vese algorithm to
ensure the energy minimisation process can be back-propagated through the network. This
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Figure 1.1: Schematic diagram illustrating segmenting a brain tumour from an MRI image. The
image is first processed by a neural network, supplemented by an attention module based on
the Chan-Vese model, to segment the tumour (in white) accurately

.
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modification is essential as it allows the network to learn from the segmentation process, con-
tinually improving its ability to produce accurate and reliable segmentation masks. We con-
ducted experiments using the TCGA-LGG ([Ped]) database, which contains MRI scans of brain
tumour patients. We compared our Chan-Vese Attention U-Net to the traditional U-Net and
an attention U-Net. Our results showed that the Chan-Vese Attention U-Net achieved better
Intersection Over Union (IOU) scores and false negative rates, indicating better segmentation
accuracy and reliability. We also analysed the attention masks generated by the Chan-Vese
Attention Gate. The results showed that the attention mask rapidly converges on a segmenta-
tion closely resembling the tumour region, refining the contours as training progresses. This
behaviour contrasts with traditional attention mechanisms, which can include irrelevant arte-
facts outside the tumour area. Focusing our method on the region of interest within the skull
led to more accurate and reliable segmentation (see Figure 1.1).

Our second contribution was introduced in our article entitled ‘Fast Marching Energy
CNN’ ([Ber23]), in which my co-authors and I presented a new approach to image segmen-
tation by integrating the calculation of geodesic distances with neural networks. The idea is
to exploit the geometric information conveyed by geodesic distances to improve the segmen-
tation of medical images, particularly brain tumours. The method is presented in the chapter
5.

Geodesic distances and curves have long been used to represent geometric properties in
various imaging applications([Sap95; Pey10; Che14]). Traditionally, these methods rely on
prior knowledge to explicitly define a Riemannian metric from the image. However, our ap-
proach eliminates the need for such a manual metric definition. Instead, we propose to generate
an isotropic Riemannian metric directly from the data using a neural network trained in a su-
pervised manner. This approach reduces user bias and the need for parameter tuning, making
the segmentation process simpler and more efficient. Geodesic distance has a rich history in im-
age segmentation tasks. Early methods, such as those by Malladi et al. [Mal98], used geodesic
distances to segment 3D brain images. The geodesic distance helps the contour find the short-
est path to the edges of the object to be segmented while taking into account the structure of the
image. Later studies ([Che18; Che16; Yan16]) developed these ideas by introducing anisotropic
metrics and adapting them to specific tasks, such as segmenting vascular structures. Although
these methods have proved effective, they generally do not treat the segmentation task holisti-
cally or generalise well to large datasets.

Only a few recent methods have explored learning a metric from data, such as the work of
Scarvelis et al. [Sca22] and Heitz et al. [Hei21], which aim to find metric tensors that adapt to
spatio-temporal data to capture velocity fields and geometry. However, these approaches still
need to generalise the generation of metric tensors fully, and this is where our method fills the
gap. The main contribution of our work is integrating a neural network with geodesic distance
computation for image segmentation. Our approach uses a modified U-Net architecture to gen-
erate segmentation masks in the form of geodesic balls determined by a learned metric and a
centre or seed point. This framework allows us to apply geometric and topological constraints
on the output mask, resulting in more accurate and reliable segmentations. The geodesic dis-
tance measures the shortest path length between two points of a variety, which in this case
is the image domain. We calculate this distance using the Fast Marching [Set96] algorithm, a
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Figure 1.2: The encoder processes the image features, while the respective decoders extract the
geodesic metric and barycenter to guide the segmentation.

well-known front propagation method that solves the Eikonal equation. The geodesic distance
is the only positive viscosity solution to the equation.

To incorporate the geodesic distance into our neural network framework, we had to differ-
entiate it from the metric, a technique first introduced by Benmansour et al. [Ben10]. We apply
this differentiation in our deep learning framework using a method known as the subgradient
walk algorithm.

Our proposed model uses a modified U-Net architecture [Ron15] with two distinct decod-
ing paths. The first decoder predicts the metric required for the Fast Marching module, while
the second decoder estimates a Gaussian potential representing the probability of the region’s
barycentre. The Fast Marching module then calculates a distance map based on these predic-
tions, allowing us to generate geodesic balls for segmentation. The final segmentation is ob-
tained by comparing the predicted mask with the ground truth and adjusting for segmentation
and barycentre prediction errors (see Figure 1.2).

The Fast Marching module integrated into our framework led to faster convergence and
improved segmentation accuracy, particularly in edge detection. Our method consistently pro-
duced well-defined edges by taking into account the morphology of the image, a capability
that traditional filters lack.

The third contribution is an extension of the method presented above. A description of this
contribution is presented in the chapter 5 in section 5.4.
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Chapter 2
Technical Background on Active
Contours and Geodesic Methods

This chapter provides a comprehensive examination of active contour models,
which have significantly influenced the field of image segmentation. We discuss
their widespread adoption in various fields, such as medical image segmentation,
object tracking, and 2D or 3D image reconstruction. Our analysis reveals the fun-
damental elements of active contour models and their strengths and weaknesses.
We then shift our focus to level-set methods in computational geometry. The aim is
not to identify application domains for specific contours but to offer an insightful
understanding of the diverse active contour models and level-set methods.

Objectifs
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Chapter 2. Technical Background on Active Contours and Geodesic Methods

Since their appearance in [Kas88], active contour models have had several successes, mak-
ing them very popular. Many fields have turned to them for different tasks such as medical
image segmentation [Coh96; Coh01], object tracking [Bar96], 2D or 3D curve or surface recon-
struction [Coh90; Coh93a].

The wide adoption of active contour methodologies for segmentation purposes has fostered
many models available. This rich assortment facilitates the opportunity to approach segmen-
tation from varied perspectives. Each model focuses on a different challenge. For example,
while some models might focus on speed in computational execution, others might emphasise
precision in segmentation tasks. Specific models may perform efficiently when dealing with
images consisting of relatively homogeneous areas but may need to improve when faced with
noisy or texture-rich images.

In this chapter, we explore various active contour models in depth. Our principal aim is to
provide a thorough overview of the field of active contour models, concentrating on a detailed
discussion of fundamental models that have significantly impacted this specific facet of image
segmentation.

Our examination of the active contour is divided into two distinct sections. In the first
section, we will unveil the fundamental blueprint of an active contour without restricting our
discourse to particular models. Our analysis will reveal that an active contour model funda-
mentally consists of two primary elements: an energy function and a mode of representation
(how to solve the problem). Following this, we will probe the intrinsic properties of each con-
tour type, seeking to understand their strengths and weaknesses and to spotlight key active
contour models that have substantially influenced the field of image segmentation. We do not
intend to identify application domains where a specific contour may demonstrate effective-
ness; instead, we want to present a comprehensive understanding of different contour model
categories.

In the second section, we focus on the domain of level-set methods. With its roots firmly
planted in the broader field of computational geometry, this technique has been an instrumen-
tal tool in image processing and computer vision, offering a flexible approach to handling de-
formable shapes. We will examine the fundamental principles underpinning level-set methods,
tracing their evolution and impact on the landscape of image segmentation.

Afterwards, we focus on geodesic methods. This section introduces important concepts
like the geodesic distance, the Eikonal equation, the Fast Marching method, and the distance
transform.

2.1 Active Contours Model

The concept of active contours, initially introduced by Kass et al. [Kas88], has been the subject
of intense study and exploration over the past 35 years. This interest has led to variations and
adaptations of these deformable models. The robustness and versatility of active contours have
made them a popular choice for a myriad of applications, spanning from image segmentation
to object tracking [Fuj93; Ley93; Del95] and beyond.

Snakes, or active contour models, are used in computer vision research to accurately lo-
calise nearby edges and features. They are different from other edge detection and feature
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2.1. Active Contours Model

localisation methods because they are guided by external constraint forces and influenced by
image forces. Snakes can be used for various visual problems, such as edge detection, motion
tracking, and stereo matching. They provide a unified account of these problems, allowing for
a more efficient and practical approach to visual analysis.

Active contour models are designed to delineate the boundaries of a specific region within
an image. The approach involves defining a curve that minimises a particular function. In
practice, this function is essentially a sum of energy terms that strike a balance between the
smoothness of the shape and the contour’s delineation by the image’s gradient. In other words,
the goal is to find a curve that is, on the one hand, as smooth and as regular as possible and,
on the other hand, aligned with the high gradient regions of the image that usually correspond
to the boundaries. This dual objective is solved by formulating the problem as a function of an
internal energy, a smoothness term, and an external energy, an image term.

2.1.1 Model Definition

In this section, we describe the mathematical formulation of the active contour model in a 2D
context, which applies to images.

We define an image I on a domain Ω ∈ R2. This means that our image I is a function that
assigns an intensity value to each point in the two-dimensional domain Ω. Next, we introduce
a regularised curve, also known as a snake, denoted as γ. :

γ :[0, 1]→ R2 (2.1)

s 7→ γ(s) (2.2)

with γ(0) = a ∈ Ω and γ(1) = b ∈ Ω. (2.3)

We can have two types of contours: one that is open if a ̸= b and one that is closed if a = b.
For the rest of the chapter, we will focus on the case where we have a closed contours s.t. for
x ∈ [0, 1] we have γ(0) = γ(1) to ensure that the curve is closed and γ ∈ C2 to have a smooth
curve and well-defined curvature (See Figure 2.1).

The contour γ is initialised on the image domain Ω, and it moves in the direction of the
normal and tangent vector. At each time step t, the contour evolves to minimise an energy
functional, which, together with the image data, will govern the geometric behaviour of the
model. As the contour is to evolve during the minimisation, we represent the set of all contours
as γ(s, t).

To address the problem, one can formulate it as the minimisation of an energy to use gradi-
ent descent, for example.

We aim at finding γ such that the following functional is minimised :

E(γ) =

∫ 1

0
Eint(γ)(s)) + Eext(s)ds. (2.4)

This functional represents the total energy of the curve, and it is a sum of two terms:

1. The internal energy Eint, which accounts for the smoothness of the curve, governs the
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Chapter 2. Technical Background on Active Contours and Geodesic Methods

geometric evolution of the curve, and usually it is defined as a perimeter, an area or a
curvature;

2. The external energy Eext is the data fidelity term that measures how well the curve aligns
with the image features. This energy term gives access to two categories of active contour
methods: contour-based and region-based.

The energy functional E is a marker indicating how accurately the contour has performed
segmentation and isolated the object of interest from an image. Therefore, when the contour
has aligned with the boundaries of the object we are interested in, we should have E at its
minimum. To reach this state, the contour will gradually undergo a series of energy minimisa-
tions until it stabilises to a point where the curve’s energy is at a local minimum. The energy
functional tied to the contour substantially shapes the model’s potential for segmentation. It
should then reflect the desired behaviours. We can broadly categorise functions into two main
types: contour-based functions and region-based functions.

Only the information along the contour C is considered during the evolution process when
dealing with contour-based active contours. Generally, these criteria are grounded on the in-
tensity gradient of the pixels in the image (for instance, using the inverse of the gradient norm,
the functional can approach zero for significant disparities in image intensity). However, this
measurement is integrated solely along the curve. While effective, contour-based active con-
tours have a substantial vulnerability to noise, limiting their use to images where simple gradi-
ents define boundaries between distinct objects. Consequently, their application becomes more
nuanced in intricate, textured images.

Conversely, region-based active contours use a broader spectrum of image information, em-
ploying criteria referred to as region descriptors. These descriptors are primarily characterised
by the traits of the region enclosed by C. They can manifest in various forms, such as mean or
standard deviation of pixel intensities, intensity histograms, texture descriptors, etc. Upon in-
clusion in the energy functional, a region-based data attachment criterion is not just integrated
along the curve but also across the area enclosed by it [Zhu96; Par02; Coh93a] and sometimes
even over the entire image [Cha01; Ves02]. Consequently, while region-based active contours
boast superior segmentation capabilities, their effectiveness depends on selecting the region
descriptor to steer the curve.

2.2 Active Contours Model

In the case of the original active contour model, [Kas88], the curve γ follows a parametric
representation. The curve is continuous in the image domain Ω and is represented in memory
as coordinates points (See Figure 2.4).

The internal energy is defined as

Eint =
1

2
ω1∥γ̇(s)∥2 + ω2∥γ̈(s)∥2. (2.5)

Here, the derivatives of the curve with respect to t represent the velocity and acceleration of
the points on the curve, respectively. They measure the curve length and its curvature. The
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γ(s)

Ω

Object

Figure 2.1: A parametric active contour γ(s) in the image domain Ω.

coefficient ω1, ω2 are considered constant. And the external energy is defined as a potential P
on the image domain Ω

P : Ω→ R (2.6)

(x, y) 7→ P (x, y), (2.7)

To make the snake close to the boundaries, the external energy is represented as

Eext = λ

∫ 1

0
P (γ(s)), (2.8)

where, for example,

P (x, y) = ∥(∂I
∂x

(x, y),
∂I

∂y
(x, y))∥2, (2.9)

The snake functional energy is defined over the contour γ as :

E(γ) = ω1

∫ 1

0
∥γ̇(s)∥2 ds+ ω2

∫ 1

0
∥γ̈(s)∥ ds− λ

∫ 1

0
P (γ(s)) ds (2.10)

The gradient of the image is a vector that points in the direction of the steepest ascent of
the image intensity, and its magnitude is the rate of this ascent. Therefore, the potential is
high at the boundaries of the objects, where the image intensity changes rapidly, and it is low
inside and outside the objects, where the image intensity is relatively constant. However, one
significant limitation of this model is its data terms. It presumes that the contrast within the
image remains constant throughout the entire area of interest or domain Ω.

This particular formulation of the model has two primary limitations. Firstly, the functional
depends on the curve’s parameterisation, which means the mathematical representation of the
curve dramatically affects the outcome. Secondly, the topology of the curve cannot change
during its evolution (See Figure 2.3b). This poses a problem when there are multiple objects in
the image, and as a single contour, it cannot segment all of them.

While the curve parameterisation problem can be somewhat managed using different func-
tion bases like B-splines, tackling the topology change is a more intricate challenge. Any at-
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Object

Final curve

Curve γ at the iteration t
Initial curve γ

Figure 2.2: Propagation of the curve γ at various iterations t towards the object’s boundaries.

(a) Active contour successfully segment-
ing a single object.

(b) Active contour failing to segment
multiple objects due to fixed topology.
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Figure 2.4: Representation of the curve γ or snake requiring discretisation of the curve.

tempt to adjust the topology during the curve’s evolution would require a highly complex
implementation and be computationally costly, making it an obstacle to overcome ([McI00]).

Going back to the problem at hand, we can rewrite it as

J =

∫ 1

0
F (s,γ, γ̇, γ̈), (2.11)

and the Euler-Lagrange equation of the functional J is expressed as

∂F

∂γ
− ∂

∂s

∂F

∂γ̇
+

∂2

∂s2
∂2F

∂γ̈
= 0, (2.12)

which, by analogy, writes

∇P (γ(s)) + ω2γ
(4)(s)− ω1γ̈(s) = 0, ∀s ∈ [0, 1], (2.13)

Equation 2.13 provides us with the gradient evolution equation for the curve γ(t)

∂tγ(s) = −ω2γ
(4) + ω1γ̈(s)−∇P (γ(s)). (2.14)

This partial differential equation describes how the curve γ(s) evolves over time (See Fig-
ure 2.2). To solve this equation, we discretise the curve, representing it as a sequence of coordi-
nates γ = ((x1, y1), (x2, y2), . . . , (xN , yN )). We then use an explicit scheme to approximate the
solution. The second and fourth derivatives in the equation can be approximated using finite
differences. Using Euler methods, we have:

∂2sγ ≃ γk+1 − 2γk + γk−1, (2.15)

∂4sγ ≃ γk+2 − 4γk+1 + 6γk − 4γk−1 + γk−2. (2.16)

where γk represents the k-th point on the curve, with coordinates (xk, yk).
We introduce the matrix A = ω1A2 +ω2A4, where A2 and A4 are the tridiagonal matrix and

pentadiagonal matrix obtained from the second and fourth derivatives, respectively.
The tridiagonal matrix A2 has non-zero elements on the main diagonal and the diagonals

immediately above and below it:
For all k :
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Figure 2.5: Evolution of an active contour.


A2[k, k − 1] = 1 if k > 1

A2[k, k] = −2
A2[k, k + 1] = 1 if k < N

The matrixA2 captures the second derivative relationships be-

tween each point and its immediate neighbours.
The pentadiagonal matrix A4 extends to two neighbours on each side:
For each row k :

A4[k, k − 2] = 1 if k > 2

A4[k, k − 1] = −4 if k > 1

A4[k, k] = 6

A4[k, k + 1] = −4 if k < N

A4[k, k + 2] = 1 if k < N − 1

This matrix accounts for the fourth derivative, involving

points up to two positions away.
The matrix A depends on the coefficient ω1 and ω2. We can then rewrite equation 2.13 in

matrix form asA·Γ−∇P (Γ) = 0. To solve this equation, we convert it into a fixed-point problem
and use an Euler discretisation scheme with a step size (δt). This leads to the discretisation of
equation 2.13:

(2.17)

This equation provides a numerical method for updating the coordinates of the curve Γ at
each time step, taking into account both the internal and external forces acting on the curve.

The termination of the active contour methods can be based on the L2 difference between
two iterations and stopped when falling below a specified tolerance (See Figure 2.5).

2.2.1 Balloon Extrinsic Criterion

Cohen [Coh91] focused their work on the external criterion of data attachment, with a par-
ticular interest in the potential P from 2.10. After derivation, they defined a force as F (v) =
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Figure 2.6: Representation of the direction of the balloon extrinsic criterion.

−∇P (v). However, they noticed a set of challenges.
In the presence of a weak gradient, where the curve resides, it doesn’t affect its evolution

as F (v) becomes significant compared to internal forces. Similarly, they pointed out that if the
active contour is located too far from a boundary, it’s not attracted by it. Without any forces
tying it to the data, the curve shrinks until it disappears. This is also true for noisy images
where specific standalone pixels with a maximum force F (v) occasionally block the contour.
They also warned that the F (v)

λ ratio should not be excessively high; otherwise, point v might
traverse through specific contours and start to oscillate without stabilising.

In response to these limitations, they proposed a new force for data attachment:

F = k1N(s)− k∇P
∥P∥

. (2.18)

Here, N(s) represents the unit normal vector to the curve at a point γ(s). The potential
P , associated with the data attachment criterion, is expected to grow as the curve moves over
strong gradient regions. The constant k1 and k serve to balance each term. The component
k ∇P
∥P∥ normalises the potential P ’s influence (See Figure 2.6).

The term k1N(s) acts as an additional external force to excite the contour. It’s like treating
the snake as a balloon, and k1N(s) simulates the pressure inside as it inflates. The constant k1
dictates the magnitude of this new inflation force and, by its sign, the expansion or contraction
of the evolution of the contour.

This mechanism enables the contour to move in zero-potential areas and also ensures the
curves don’t get trapped. However, this new force introduced by Cohen [Coh91] has a down-
side. It can cause the contour to change size significantly, as it can start further from the object.
This necessitates re-parameterising the curve and a new matrix inversion to solve equation
2.17.

2.2.2 Geodesic Active Contour

The Geodesic Active Contour model, introduced by Caselles et al. [Cas97], was designed to
reconcile Snakes with geometric definitions of contours. It integrates the geometric definition
of contours with the principles of Snakes models. It is one of the first models where an energy
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High g(I)

Geodesic Path

Euclidean Path

Figure 2.7: Comparison between the Euclidean shortest path (blue dashed line) and the
geodesic path (red solid curve) in the image domain influenced by the metric g(I). The geodesic
path avoids the high-cost area represented by the circle.

functional, defined intrinsically, is implemented using level sets. This approach contrasts with
previous models that primarily relied on geometric approaches.

The GAC model employs a strictly decreasing function denoted as g : [0,∞[→ R+, which
tends to zero as its argument approaches infinity. It is a weighting function that depends on the
image intensity I(x, y) (see Figure 2.7)and is used to restrict the g values and possible gaps in
the boundary so that the propagating curve is guaranteed to stop. Caselles et al. [Cas97] give,
for example, the function :

g(I) =
1

1 + |∇Î|p
, (2.19)

where Î is a smoothed version of I and p = 1 or 2.
An energy functional, guiding the evolution of the contour, is defined as:

E(γ(s, t)) = ω1

∫ 1

0
∥γ̇∥2 ds+ λ

∫ 1

0
g(∥∇Î(γ)∥) ds. (2.20)

In the initial formulation of the Geodesic Active Contour model, a notable constraint is the
functional’s dependence on the curve’s parameterisation. This dependence introduces a level
of specificity and rigidity that can reduce the model’s overall applicability.

To rectify this, the original authors employed a concept from variational calculus called
the Maupertuis principle. Originating from the realm of classical mechanics, the Maupertuis
principle is a principle of least action, asserting that the path followed by a physical system
minimises a certain quantity known as the "action".

By applying this principle, the authors demonstrate that minimising the original functional
can be equivalent to determining a geodesic curve in a Riemannian space derived from the
image Ω. A geodesic curve within a given space signifies the shortest possible path between
two points in differential geometry.
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This translation of the problem into the language of geodesics in a Riemannian space mit-
igates the original issue of parameterisation dependency. Instead of directly manipulating the
original curve, the energy minimisation problem is transformed into finding the optimal path
within a geometrically defined space. Consequently, this widens the functional’s applicability
and enhances its versatility in handling various image processing tasks. It was demonstrated
that minimising this energy function is analogous to minimising the following equation:

E(γ(s, t)) =

∫ 1

0
g(∥∇I(γ(s, t))∥)∥γ̇(s, t)∥ds. (2.21)

Minimisation of this new functional is performed using gradient descent methods. This
involves a step-by-step deformation of the curve according to the Euler-Lagrange equations :

∂tγ(s, t) = (g(I(s))κ−∇g · −→n (s, t))−→n (s, t). (2.22)

where κ = ∇γ
∥∇γ∥ is the curvature of the model.

This approach has the advantage of removing the need to adjust many parameters used in
earlier models. The model not only halts the contour in areas with sharp changes in intensity,
represented by the ∇g term, but it also attracts it to these regions.

2.2.3 Edge-based external forces

Active contour models offer a powerful means of image feature extraction through energy-
minimising splines guided by external constraint forces and influenced by image forces. How-
ever, these models are often prone to getting trapped in local minima, demanding close initial
positioning to the target object, and may need help with complex or poorly defined edges. To
address these limitations, an improvement to the snake model incorporating local edge detec-
tion and potential functions has been proposed by Cohen et al. [Coh93b]. This method com-
mences with edge detection using the Canny [Can86] edge extractor or other similar local edge
detection techniques, providing superior starting points for contour evolution.

Upon detection of edges, a potential function is established, which derives from the distance
to the closest edge and subsequently engenders an attraction force. This force draws the snake
towards the detected edges, incorporating this enhancement into the original active contour
model.

This method firstly computes an Euclidean distance map d for each point x ∈ Ω where d(x)
denotes the Euclidean distance value of x to the nearest edge points. The choice of potential
function, essentially a transformation of the distance to the nearest edge, significantly influ-
ences the model’s performance. Different potential functions, such as P (v) = −e−d(v)2 and
P (v) = −1

d(v) , can modify the rate of decay of the force with increasing distance from the edge,
providing granular control over the contour’s evolution. In the case where P (v) is defined as
g(d(v)), the force becomes F (v) = −∇P (v) = −g′(d(v))∇d(v).

The force coming from the potential function can be normalised, which makes it indepen-
dent of the particular transformation function chosen. However, due to computational accu-
racy, the precise outcomes may still vary. If not normalised, the force can be changed based on
how close or far the contour is from the edge. The process is summarised in Figure 2.8.
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(a) The initial grayscale image containing the object
of interest. (b) Edges detected using the Canny edge detector.

(c) Distance Map d(x). A heatmap representing
the Euclidean distance from each pixel to the near-
est edge, illustrating how distance values increase
away from the edges.

(d) Visualization of the potential function derived
from the distance map, with red arrows indicating
the attraction forces F (v) = −∇P (v) directing to-
wards the edges.

Figure 2.8: Visualization of Edge-Based External Forces in Active Contour Models.
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Finally, these attraction forces can be used individually or in association with an image’s in-
tensity gradient to strengthen the detected edges. This integration is particularly advantageous
when dealing with fragmented detected edges.

By introducing local edge detection and using a potential function, the improved active con-
tour model enhances the quality of segmentation and allows for improved handling of complex
shapes and edges while reducing the dependence on the contour’s precise initial positioning.
This marks a significant stride forward in the evolution of active contour models.

2.2.4 Gradient Vector Flow

Following the idea of Cohen et al. [Coh93b], Xu et al. [Xu98] proposed a new external force
based on the Gradient Vector Flow (GVF). Both these forces originate from an edge map of the
image and can provide an extensive capture range. Studying the distance potential force intro-
duced by Cohen et al. [Coh93b], Xu et al. [Xu98] realised that this adjustment only changes the
strengths of these forces and not their direction. Consequently, the issue of the model converg-
ing to boundary concavities, or indents, remains unsolved by distance potential forces.

The Gradient Vector Flow (GVF) field, represented as v(x, y) = (u(x, y), v(x, y)), is charac-
terised as the vector field that minimises an energy functional, denoted as:

E =

∫ ∫
(u2x + u2y + v2x + v2y) + |∇f2| · |v −∇f |2 dx dy, (2.23)

where ∇f represent ∥I(·)∥.
This energy functional configuration helps produce smooth results when data is absent. If

∇f is small, the energy is chiefly dictated by the aggregate of the squares of the vector field’s
partial derivatives, thereby providing a field of gradual variance. In contrast, when ∇f is
substantial, the second term in the functional holds dominance, which is minimised when v =

∇f . The effect is that v mimics the edge map gradient when substantial while maintaining
slow variation in homogeneous regions.

The trade-off between the first and second terms in the integrand is managed by a regular-
isation parameter, µ. The parameter’s value should correspond to the noise level within the
image, with increased noise necessitating a higher parameter value.

Using the calculus of variations, we can validate that the GVF field is attained by solving
the Euler-Lagrange equation, where ∇2 is the Laplacian operator, and computing a gradient
descent.

{
∂u
∂τ = µ∇2u(x)− (u(x)− hx(x)) ∥∇h(x)∥2 ,
∂v
∂τ = µ∇2v(x)− (v(x)− hy(x)) ∥∇h(x)∥2 ,

(2.24)

where hx = ∂I
∂x .

When I(x, y) is constant, the second part of each equation turns to zero because there’s
no gradient in f (x; y). In these areas, u and v are calculated using Laplace’s equation. The
resulting GVF field is then made by blending values from the region’s boundary. This helps us
understand why GVF fields make vectors that point into dips or hollows in the boundary. It is
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like the boundary vectors competing with each other.

2.3 Level Set Method

This section presents an in-depth exploration of Level Set Methods, a mathematical technique
that has significantly influenced the landscape of shape modelling and evolution. The Level
Set Method, first introduced by Osher et al. [Osh88] in 1988, has since been established as a
fundamental tool in computer vision, image processing, and computational physics, offering a
robust and sophisticated approach to modelling the progression of shapes.

This section starts with a theoretical exposition of the Level Set Method, dissecting its math-
ematical foundations. The discussion will focus on the implicit representation of shapes as the
zero-level set of a higher-dimensional function and how this approach facilitates the seamless
handling of topological transformations. This feature proves vital in tasks such as image seg-
mentation.

Subsequently, we will shift to the Chan-Vese model, a specific instantiation of the Level Set
Method. This model, renowned for its application in image segmentation, capitalises on the
strengths of the Level Set Method to segment objects without the prerequisite of edge detection.
We will examine the mathematical formulation of the Chan-Vese model and discuss its practical
applications.

The final part of this chapter will revisit the Geodesic Active Contour model, this time
from the perspective of Level Set Methods. While we have previously explored the model’s
general principles and applications, this section will delve into its level-set formulation. This
formulation brings to the model an inherent flexibility in handling complex shape evolutions, a
characteristic central to the level-set method. We will dissect the mathematical underpinnings
of this formulation, shedding light on how it leverages the strengths of level-set methods to
enhance the model’s performance in tasks such as image segmentation.

2.3.1 Model Definition

The level set method is a numerical method to represent and compute the evolution of a moving
interface. It is based on the interface’s representation as the zero-level set of a higher dimen-
sional function. Osher et al. [Osh88] first introduced the level set method to solve the motion of
a front in a fluid. Since then, it has been used in many applications such as image segmentation
by Malladi et al. [Mal95] and shape optimisation from Allaire et al. [All02].

The fundamental concept revolves around the perception of a curve as a zero level-set of
a function ϕ defined over the entire domain Ω (See Figure 2.9). It is the intersection between
a horizontal plane to the coordinate plane and a level set. Subsequently, the curve’s evolution
is supplanted by a corresponding evolution of the level-set function. While this substitution
might introduce increased computation by amplifying the problem’s dimensionality, it also
provides certain benefits. Indeed, when embedded within a level-set function, the curve is
characterised by an implicit and intrinsic framework.

To better understand this, let’s consider a two-dimensional image segmentation scenario.
Our level set function represented as ϕ : R2 → R, extends into a three-dimensional function.

32



2.3. Level Set Method

x
y

z

1

0

Plane z = 0

The contour curve here is a circle in the plane z = 0.

Figure 2.9: Level-set representation of the curve γ depicted in red, with the level-set function
illustrated in green. The plane z = 0 denotes the zero level-set, indicating the location of the
curve γ.

This additional dimension accounts for a range of plane levels. If you imagine the function as
a landscape, the desired contour would be found where this landscape intersects with a plane
set at a certain level, precisely when ϕ = 0.

If we want to define the initial contour, labelled as γ(s, 0), we will do so using the initial
zero level of ϕ(x, 0). Maintaining this relationship throughout the process, the contour at any
given time can be represented by:

∀x ∈ R2, ∀s ∈ [0, 1],γ(s, t) = x|ϕ(x, t) = 0. (2.25)

This equation essentially states that for any point x belonging to the contour γ(s, t), de-
fined along the curvilinear abscissa s, the function ϕ(γ(x, t), t) will equal zero. As the Eulerian
approach is applied, the function ϕ rather than the contour γ undergoes deformation. Conse-
quently, changes in the contour γ are reflected directly through alterations in the zero level set
of ϕ.

This form of active contours representation, often called the implicit or Eulerian represen-
tation, contrasts with the parametric representation, which transforms a model within a space
to attain a final form. On the other hand, the Eulerian methodology focuses on reshaping the
entire space rather than the curve itself. The changes to the model are then implicitly inferred
from the overall space transformations.

Before delving deeper into the specifics of the implicit representation, it is essential to ar-
ticulate how an active contour is represented in this context. Contrary to the parametric repre-
sentation where an energy functional, such as equation 2.4, is sufficient to deform a contour, an
implicitly represented contour demands an evolution equation. This equation delineates the
deformations experienced by the curve γ(s, t) in its normal and tangential directions when its
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γ•p

N⃗t

T⃗t

Figure 2.10: The diagram illustrates the decomposition of the curve’s evolution into tangent
(T⃗t) and normal (N⃗t) components at point p on the curve γ. The normal vector N⃗t represents
the direction perpendicular to the curve, which drives the geometric evolution of the contour,
either pushing it inward or outward.

energy E(γ(s, t)) is minimised. The equation can be represented as:

∂tγ(s, t) = A(s, t)Tt(γ(s, t)) +B(s, t)Nt(γ(s, t)), (2.26)

where we define as Tt(p) andNt(p) the unit tangent and normals at some point p at time t. And
A(·, ·), B(·, ·) two scalar functions depending on the curve at time t.

The breakdown of the curve’s evolution into tangent and normal components is essential,
as these two aspects relate to distinct properties of the curve’s evolution process. Specifically,
the normal term is directly connected with the curve’s geometric evolution. To understand
this better, consider a simple example: imagine the contour of an object in an image, which we
want to evolve or modify. The perpendicular (or normal) direction to the contour at any given
point can push the contour towards the interior or the object’s exterior (See Figure 2.10). This
movement leads to the geometric evolution of the curve. This relation between the normal term
and the geometric evolution of the curve is well explained in the subsequent property [Eps87],
where a time-dependent change of parameter on the curve γ shows that the evolution of the
curve is mainly captured by B(·, ·) and represent the speed of the normal evolution of γ.

∂tγ(s, t) = B(s, t)Nt(γ(s, t)), (2.27)

The evolution equation 2.27 defines the level sets function’s deformation. Considering
ϕ(s, t) such that its zero level set at fixed time t is the curve γ. Then we have the equation
ϕ(γ(s, t), t) = 0 for all s and t. The time derivative of this equation yields

∂tϕ(γ(s, t), t)) +∇ϕ(γ(s, t), t)T∂tγ(s, t) = 0, (2.28)

Then using equation 2.27 we have that
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∂tϕ(γ(s, t), t) = −∇ϕ(γ(s, t), t) ·B(s, t)Nt(γ(s, t)), (2.29)

This yields, using Nt = − ∇ϕ(·,t)
∥∇ϕ(·,t)∥ :

∂tϕ(γ(s, t), t) = B(s, t) ∥∇ϕ(γ(s, t), t)∥ . (2.30)

Finally, if we can define B(·, ·) on the all domaine Ω then we can introduce the global evolution
equation

∂tϕ(p, t) = B(p, t) ∥∇ϕ(p, t)∥ , ∀p ∈ Ω. (2.31)

The principal advantages of the level-set method are its robustness, adaptability, and po-
tency. It is an excellent approach to address problems related to the evolution of shapes, par-
ticularly image segmentation and shape modelling tasks. This technique leverages the implicit
definition of contours through a function of dimension (n + 1). It details their evolution by
employing a partial differential equation, thus facilitating the manipulation of contours and
managing topological transformations, including splits and merges.

Using a speed function in the equation adds flexibility to the method. It lets us include spe-
cific details of the problem we’re working on, like guiding the contour towards image features.
Also, the method considers changes in the whole computational area, not just the contour itself,
giving a more complete view of the changes in the contours.

As we will see in the next paragraph, the level-set method can require a lot of computing
power. This is because it needs to solve equations across a grid that covers the whole area, no
matter how complex the contours are. So, while it’s a powerful method, it’s also essential to
consider its high computational demand.

2.3.2 Chan-Vese Model

The region-based active contour model developed by Chan et al. [Cha01] in 2001 is seen as a
particular instance of the Mumford-Shah model from 1989 [Mum89]. This model proposes an
energy minimisation problem to find the best partition of an image into two distinct regions
delineated by a contour γ. Instead of limiting the analysis to areas near high gradient lines on
the image, it can focus on differences in image properties within and outside the shape. This
gives rise to the Chan-Vese variational problem, which strives to minimise an energy function
that adjusts contours such that the image intensity remains nearly constant within and outside
these contours (See Figure 2.11).

To elaborate, let’s consider Ω ∈ R2 as the image’s domain (a square or a rectangle) and
I : Ω → R as the image function itself. Rather than directly defining a curve in Ω to denote the
shape, we consider an open subset M of Ω, which signifies the shape’s interior.

The assumption is that image I display almost constant grey levels on both M and the
complement of M (M c), albeit with a potential discontinuity at the boundary ∂M . The energy
function will enforce this condition, along with ensuring the smoothness of the contour, ∂M .
This is achieved by controlling both its length and the area within it.

The model introduces two parameters: c1, representing the mean grey level intensity within
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(a) Level Set Function ϕ(x, y)
(b) Segmentation Boundary (Zero Level
Set) Overlaid on the Original Image

Figure 2.11: Visualization of the Chan-Vese Segmentation Process.

the region enclosed by contour ∂M , and c2, its counterpart for the region external to the con-
tour. To ensure a smooth and regular contour, intrinsic constraints are incorporated, such as
the length of contour ∂M and its enclosed area.

The Chan-Vese Energy is defined as

E(c1, c2,M) = µ× Length(∂M)+ν ×Area(M) (2.32)

+λ1

∫
M
∥I(x)− c1∥ dx+ λ2

∫
Mc

∥I(x)− c2∥ dx (2.33)

The energy described is essentially a simplified version of the Mumford-Shah functional
[Mum89] formulated to approximate an observed image with a piecewise smooth function.
The Chan-Vese model can be seen as a piecewise-constant approximation of the Mumford-
Shah functional.

Implementing the minimisation of this energy function can be intricate. This is primarily
due to the energy function’s dependency on the set M, as opposed to a function that uses
a more conventional approach in the calculus of variation. To circumvent this problem, the
author introduces an implicit representation of ∂M as the zero level set of some ϕ function
such that for all p in ∂M , ϕ(p) = 0. We suppose that


f(p) = 0 if p ∈ ∂M
f(p) < 0 if p ∈M
f(p) > 0 if p ∈M c

(2.34)

Using the Heaviside function and the Dirac measure defined as:
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H(z) =

{
1 if z ≥ 0

0 if z < 0
, δ0(z) =

d

dx
H(z) (2.35)

They also introduce the smooth approximation of the Heaviside function defined on R as
H0 by

Hϵ(x) =
1

2
(1 +

2

π
arctan(

x

ϵ
)). (2.36)

The derivative of the Heaviside function is defined by the Dirac function δ0 and, in this case,
the approximation of the Dirac function δϵ. Then, one can write:

E(c1, c2, ϕ) =µ

∫
Ω
δϵ(ϕ(x)) ∥∇ϕ(x)∥ dx+ ν

∫
Ω
Hϵ(ϕ(x)) dx (2.37)

+ λ1

∫
Ω
∥I(x)− c1∥2Hϵ(ϕ(x)) dx+ ν

∫
Ω
∥I(x)− c2∥2 (1−Hϵ(ϕ(x))) dx.

We can express the c1 and c2 exactly


c1 =

∫
ΩHϵ(ϕ(x))I(x) dx∫

ΩHϵ(ϕ(x)) dx

c2 =

∫
Ω(1−Hϵ(ϕ(x)))I(x) dx∫

Ω(1−Hϵ(ϕ(x))) dx
.

(2.38)

To apply a gradient descent algorithm, we must first find the associated Euler-Lagrange
equation of the energy functional.

The Euler-Lagrange equation is as

∂tE(c1, c2, ϕ) =

∫
Ω
h(x)δϵ(ϕ(x))(−µ div(

∇ϕ
∥∇ϕ∥

)− ν + λ1 ∥I(x)− c1∥2 − λ2 ∥I(x)− c2∥2) dx.

(2.39)
The different terms of the energy can be interpreted as follows:

• The first term is the regularisation term. It ensures that the level set function remains a
signed distance function to the contour.

• The second term is the data term. It ensures that the mean intensity of the region inside
the contour is close to c1.

• The third term is the data term. It ensures that the mean intensity of the region outside
the contour is close to c2.

This is important because the level set method can segment an image into two regions with
different mean intensities. The level set method can also segment an image into more than two
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regions.

2.3.2.1 Numerical implementation

This section details the semi-implicit gradient descent method for solving the Chan–Vese min-
imisation problem, based on the work of Getreuer [Get12], as developed in the foundational
works Chan and Vese [Cha01]. This approach is one among several for addressing the minimi-
sation problem; alternative methods include the topological derivative algorithm by He and
Osher [He07], the multigrid method by Badshah and Chen [Bad08], and fast algorithms based
on graph cuts by Zehiry, Xu, and Sahoo El Zehiry, Xu, Sahoo, and Elmaghraby [EZ07], and Bae
and Tai [Bae09].

For numerical implementation, consider the function f sampled on a regular grid Ω =

{0, . . . ,M} × {0, . . . ,M}. The evolution of φ is discretised spatially according to the following
equation:

∂φi,j
∂t

=δϵ(φi,j)

µ
 ∇−

x∇+
x φi,j√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)
2
+

∇−
y ∇+

y φi,j√
η2 + (∇0

xφi,j)
2 + (∇+

y φi,j)2

 (2.40)

− ν − λ1(fi,j − c1)2 + λ2(fi,j − c2)2
]

(2.41)

where ∇+
x denotes the forward difference in the x dimension, ∇−

x denotes the backward
difference, and ∇0

x := (∇+
x + ∇−

x )/2 is the central difference, with analogous definitions in
the y dimension. The parameter η regularises the curvature term, preventing division by zero;
typically, η = 10−8.

Defining auxiliary variables:

Ai,j = µ
1√

η2 + (∇+
x φi,j)2 + (∇0

yφi,j)
2
, Bi,j = µ

1√
η2 + (∇0

xφi,j)
2 + (∇+

y φi,j)2
(2.42)

the discretised evolution equation becomes:

∂φi,j
∂t

=δϵ(φi,j) [Ai,j(φi+1,j − φi,j)−Ai−1,j(φi,j − φi−1,j)+ Bi,j(φi,j+1 − φi,j) (2.43)

− Bi,j−1(φi,j − φi,j−1)− ν − λ1(fi,j − c1)2 + λ2(fi,j − c2)2
]

(2.44)

The right-hand side terms discretise the curvature term div
(

∇φ
|∇φ|

)
, ensuring that the mixed

differences combine to produce a centred yet localised result. Specifically, the forward and
backward differences are applied so that the resulting numerator and denominator are logically
centred at the desired grid points, enhancing the accuracy of the curvature approximation.

Time discretisation employs a semi-implicit Gauss-Seidel method [5], allowing in-place up-
dates of φ values, thus optimising memory usage. The update rule is:
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φn+1
i,j − φni,j

∆t
=δϵ(φ

n
i,j)
[
Ai,jφ

n
i+1,j +Ai−1,jφ

n+1
i−1,j +Bi,jφ

n
i,j+1+ Bi,j−1φ

n+1
i,j−1 (2.45)

− (Ai,j +Ai−1,j +Bi,j +Bi,j−1)φ
n+1
i,j − ν − λ1(fi,j − c1)

2 + λ2(fi,j − c2)2
]

(2.46)

Here, φi,j , φi−1,j , and φi,j−1 are evaluated at time step n + 1, while other terms remain
at time step n. This strategy ensures stability and accuracy in the numerical solution of the
Chan–Vese minimisation problem.

This allows φ at timestep n + 1 to be solved by one Gauss-Seidel sweep from left to right,
top to bottom:

φn+1
i,j ←

[
φni,j +∆tδϵ(φ

n
i,j)
[
Ai,jφ

n
i+1,j +Ai−1,jφ

n+1
i−1,j +Bi,jφ

n
i,j+1 +Bi,j−1 φ

n+1
i,j−1 (2.47)

− ν − λ1(fi,j − c1)2 + λ2(fi,j − c2)2
]]
/ (1 + ∆tδϵ(φi,j)(Ai,j +Ai−1,j +Bi,j +Bi,j−1))

(2.48)

The coefficients A and B are computed using the latest available values of φ:

Ai,j = µ
1√

η2 + (φni+1,j − φni,j)2 +
(
φn
i,j+1−φ

n+1
i,j−1

2

)2
, (2.49)

Bi,j = µ
1√

η2 +

(
φn
i+1,j−φ

n+1
i−1,j

2

)2

+ (φni,j − φni+1,j)
2

. (2.50)

Boundary conditions are enforced by duplicating pixels near the borders:

φ−1,j = φ0,j , φM,j = φM−1,j , φi,−1 = φi,0, φi,M = φi,M−1. (2.51)

Optionally, the level set function can be reinitialised after every N iteration by replacing φ
with the signed distance function toC or any other function having the same sign at each point.
This reinitialisation does not modify the segmentation boundary but prevents new components
from appearing far away from the current boundary.

The termination of the method can be based on the L2 difference between φn+1 and φn

falling below a specified tolerance. In the implementation, the default value of tol is 10−3. The
overall algorithm, as described in the original paper [9], has a linear computational cost per
iteration in the number of pixels.

The required number of iterations depends significantly on the timestep ∆t and the ini-
tialisation. The contour evolves slowly if it has low curvature (e.g., a large ellipse), potentially
requiring thousands of iterations to converge. An initialisation with high curvature, such as the
checkerboard initialisation mentioned in the previous section, tends to converge much faster.

This semi-implicit approach efficiently balances stability and computational complexity,
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making it a robust choice for solving the Chan–Vese minimisation problem in various image
segmentation applications.

2.4 Geodesics

From primary school to university, we are taught to compute distances in a two-dimensional
plane. The fundamental principle of Euclidean geometry is that the shortest distance between
two points is a straight line. This concept is grounded in our minds and becomes second na-
ture to us. However, when we observe the world around us, particularly the trajectories of
aeroplanes, we notice that they do not follow this rule.

For example, a flight from Paris to New York does not travel in a straight line. Instead, it
goes up north before reaching its destination. This is because the shortest distance between
two points on a sphere is not a straight line but an arc. This shortest path is a geodesic, a
fundamental concept in non-Euclidean geometry.

In other words, the geometry governing our planet differs from the Euclidian geometry
we learn in high school. The Earth is not a flat surface but a three-dimensional sphere, and
therefore, the rules that apply to it are different. Its curvature allows us to calculate the shortest
distance between two points on any surface.

Definition 1 (Geodesic Distance). In a Riemannian manifoldM with metric tensor g, we define
the geodesic distance as the minimal length L between two endpoints a and b of a continuously
differentiable curve γ : [a, b]→M

L(γ) =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt. (2.52)

The metric tensor g is a symmetric, positive-definite bilinear form on the tangent space
TpM of the manifold at point p. g is a inner product between any two tangent vectors ∀u, v ∈
TpM, gp(u, v) =< u, v >p.

Computing the distance between two points on a surface is a more complex problem than
computing the Euclidean distance between two points in a plane. While the Euclidean distance
can be easily calculated using the Pythagorean theorem, computing the distance between two
points on a surface requires considering the surface’s curvature and shape.

One approach to computing the distance between two points on a surface is to use geodesics,
the shortest curves connecting two points on a surface. The length of a geodesic between two
points is the distance between those points on the surface. However, finding geodesics on a
surface can be challenging, especially for surfaces with complex shapes.

Several algorithms have been developed to compute geodesic distances on surfaces. One
popular approach is the Fast Marching Method, an efficient numerical algorithm for computing
the distance between a starting point and all other points on a surface. The algorithm propa-
gates a wavefront from the starting point outward, computing the distance to neighbouring
points as the wavefront advances. The algorithm terminates when the wavefront reaches all
points on the surface.
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2.4.1 The Eikonal Equation

In order to find the geodesic distance u it wan be shown that it satisfies a partial differential
equation called the Eikonale Equation. The Eikonal Equation is defined as follows:{

a(x)−1∥Du(x)∥ = 1,∀x ∈ Ω

u = 0 on ∂Ω
. (2.53)

with Ω an open and bounded set in Rn. The distance is not everywhere differentiable to the
boundary. We have to find a viscosity solution to the Eikonal equation.

Definition 2 (Viscosity). A continuous function u : Ω̄ → R is a viscosity sub-solution (resp.
super-solution) of 2.53 if :

1. u(x) ≤ 0 (resp. u(x) ≥ 0) for all x in ∂Ω.

2. Given r > 0, x0 ∈ B(x0, r) ⊆ Ω, if Φ : B(x0, r) → R is a smooth function such that u − Φ

has a local maximum (resp. minimum) at x0, then ∥DΦ(x0)∥ ≤ 1 (resp. ∥DΦ(x0)∥ ≥ 1).

A continuous function is a viscosity solution of 2.53 if it is both a viscosity sub- and super-
solution.

2.4.2 The Fast Marching Algorithm

Older methods, such as Gauss-Seidel, are slow to compute a solution to solve the Eikonal equa-
tion because it requires several times passing through each grid point. Methods have been
developed to improve the complexity in O(N1+1/d), where N is the discrete domain cardinal-
ity and d is the domain dimension, of Gauss-Seidel methods such as fast sweeping methods
that alternate sweeps along the 2d directions of the grid [Zha05] or the use of a priority queue
[Bor06]. The Fast Marching Method, developed by Sethian [Set96], is an efficient algorithm
for computing the minimal action map or geodesic distance map for an isotropic Riemannian
metric by computing exactly the solution in O(N log(N)) operations, where N is the number
of sampling points. The algorithm is based on a monotonically advancing wave propagation
manner, similar to Dijkstra’s non-iterative algorithm [DIJ59], but with a discretisation scheme
for the local geodesic distance update that differs between Sethian’s method and Tsitsiklis’s
shortest path method ([Tsi95]).

We first introduce some basic notations to estimate the minimal action map U using the fast
marching method. Let Z be a discretisation orthogonal grid of the domain Ω with dimension
d, and let N be the total number of grid points of Z.

The fast marching method is based on an optimal ordering of the grid points that ensures
that each point is visited only once by the algorithm and that this visit computes the exact
solution. The algorithm starts from the initial source points and propagates outward until
filling the whole domain. During the propagation, each grid point in Z is labelled according
to a state: Computed, Front, or Far. Computed points are the grid points for which minimal
action values of U have been estimated and frozen; the algorithm will not consider them any
more. Front points are the grid points for which the minimal action values have been calculated
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but not frozen; they are the points being processed. Far points are the grid points for which the
minimal action values have not been estimated. The value of the distance map for Front points
is well-defined but might change in future iterations, while for Far points, it is defined as∞.

The fast marching front is the interface between the Computed and Far points and consists
of all the Front points. The Front points are stored in a priority queue such that the Front
point xmin with the smallest value of U can be identified efficiently. By marching the front
in an ordered way, the minimal action map U can be obtained within a finite number of local
geodesic distance update steps.

The overview of the fast marching method is presented in Algorithm 1. In each step, the
grid point xmin with the smallest value of U among all the Front points is selected and tagged
as Computed. The neighbourhood points y of xmin are then updated by the local geodesic
distance update scheme detailed in Sections 2.4.2, 2.4.3, and 2.4.5. The stopping criterion for
the fast marching algorithm is when all the grid points in Z have been tagged as Computed.
However, an early abort scheme can be applied to reduce the computation time: once all the
endpoints are tagged as Computed, the fast marching can be stopped. Figure 2.12 presents the
computation of the distance using the Fast Marching algorithm in a maze.

Algorithm 1 An algorithm with caption

Require: si, i ∈ {1, ...,m} The initial source points, F a metric
1: Create a priority queue P and add the starting point with a distance d of 0
2: while the P is not empty do
3: Remove the point with the smallest distance from the queue
4: for each neighbour of the removed point do
5: if the neighbour is not known then
6: Compute dtrial to the neighbour using the local geodesic distance update scheme
7: if dtrial is smaller than d then
8: Update the distance of the neighbour and its parent
9: Add the neighbour to P

2.4.3 The Fast Marching Method on 2D Grid

Using a stationary approach, the Fast Marching algorithm aims to solve the Eikonal Equation,
a non-linear Partial Derivatives Equation. The Eikonal Equation is given by:

|∇u(x)| = n(x), (2.54)

where x is in an open subset of Rn and n(x) is a positive function. In the context of geometric
optics, n is the refractive index of the medium.

Writing it as a wave equation, we have:

∂tu(x, t) + c(x)|∇xu(x, t)| = 0, (2.55)

where x represents a point in space, t is the time and c(x) the function of the speed.
Let T (x) be a function giving the arrival time of the front at a point x in space. We denote
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(a) (b) (c)

Figure 2.12: The images illustrate the potential field and geodesic distance computation in a
maze-like environment using the Fast Marching (FM) method. In (a), the potential field is
visualised, which serves as the input to the FM algorithm. In (b), the geodesic distance from a
source point (marked in red) to all other points in the maze is shown. Lastly, in (c), the distance
is modulated with a sinusoidal function to show the level-sets.

the propagating front at time t as Γt. This function satisfies the following condition for all
trajectories t→ y(t) ∈ Γt.

T (y(t)) = t. (2.56)

By differentiating the equation with regards to t and using the expression of the normal
exterior to the front Γt,

n⃗Γt =
∇xT (x)
|∇xT (x)|

, (2.57)

We get the following equation for the function T :

c(y(t))|∇xT (y(t))| = 1. (2.58)

This equation must be solved on the whole domain, which led to the stationary equation:

c(x)|∇xT (x)| = 1, (2.59)

with the boundary conditions T (x) = 0 for x ∈ Γ0.
The goal is to numerically compute the arrival time T , which is the solution of the following

stationary equation:

c(x)|∇xT (x)| = 1. (2.60)

We consider the 2D case with x = (x1, x2) on a Cartesian grid with spatial step h =

(∆x1,∆x2). The proposed discretisation of the stationary equation is:
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max

(
Ti,j − Ti−1,j

∆x1
,−Ti+1,j − Ti,j

∆x1
, 0

)2

(2.61)

+max

(
Ti,j − Ti,j−1

∆x2
,−Ti,j+1 − Ti,j

∆x2
, 0

)2

=
1

c2(xi,j)
. (2.62)

An initial approach could be to apply an iterative scheme to solve this nonlinear problem
until the algorithm converges with the desired precision. However, this method can take a lot
of work. The Fast-Marching method proposes calculating the values Ti,j in a particular order,
allowing moral convergence in a single iteration by calculating Ti,j in ascending order.

To implement this method, the grid points xi, j are divided into three regions:

• Frozen Points: Definitively calculated points. These are the points that the front has al-
ready cut.

• Narrow Band: Points about to be cut by the front, having a neighbour already frozen.

• Far Away Points: Other points not yet reached by the front.

Initialisation:

• Initial Front: Points on the boundary are frozen, and T is initialised to 0 on these points.

• Narrow Band: Composed of the immediate neighbours of the initial boundary in the
direction of front propagation.

• Far Away Points: Consists of the other points in the direction of front propagation. T is
initialized to∞ on these points.

Initial Calculation of T on the Narrow Band
The values of T on the narrow band are initialised with the following formulas:(

Ti,j
∆x1

)2

=
1

c2(xi,j)
, (2.63)

(
Ti,j
∆x2

)2

=
1

c2(xi,j)
, (2.64)

(
Ti,j
∆x1

)2

+

(
Ti,j
∆x2

)2

=
1

c2(xi,j)
. (2.65)

This calculation assumes that the value of T on the current point is smaller than that of the
narrow band neighbours and larger than that of the neighbours on the initial front (respectively
smaller for the far away region).

Fast-Marching Algorithm:

1. Find the Smallest Value of T on the Narrow Band: The corresponding point becomes
accepted (frozen).
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2. Redefine the Narrow Band: Add the neighbours of the newly accepted point to the nar-
row band.

3. Recalculate T on the Neighboring Points: Solve the discretisation of the stationary equa-
tion to update the values of T on the points X neighbouring the newly accepted point
A.

2.4.4 Implemetation of the Fast-Marching Method

To implement the Fast-Marching method, we need to manipulate several arrays:

1. Array T(i, j) : Contains the values Ti,j at the nodes xi,j .

2. Array TAB(i, j) : Indicates the nature of the point xi,j . For example, TAB(i, j) = 1 if the
point is frozen, TAB(i, j) = −1 if it is in the narrow band, and TAB(i, j) = 0 otherwise
(far away region).

3. Array Pile(i, j,T(i, j)) : Contains the indices of the elements in the narrow band. The
rows of Pile will be sorted according to the increasing values of the third column, thus
requiring a sorting algorithm.

4. Array Pile_test(i, j) : Contains the indices of the four neighbouring points of a newly ac-
cepted point. These 4 points, if not already accepted, will be added to the arrayPile(i, j, T (i, j))
(if they are not already there), and the value of T (i, j) will be recalculated.

The scheme is written as follows:

max

(
Ti,j − Ti−1,j

∆x1
,−Ti+1,j − Ti,j

∆x1
, 0

)2

+max

(
Ti,j − Ti,j−1

∆x2
,−Ti,j+1 − Ti,j

∆x2
, 0

)2

=
1

c2(xi,j)
.

(2.66)
To update the narrow band at each iteration, we will need to solve for Ti,j , given fixed

values (t1, t2) := (Ti−1,j , Ti+1,j) and (t3, t4) := (Ti,j−1, Ti,j+1). The goal is to find θ that solves:

max

(
θ − t1
∆x1

,− t2 − θ
∆x1

, 0

)2

+max

(
θ − t3
∆x2

,− t4 − θ
∆x2

, 0

)2

=
1

c2
. (2.67)

In other words:

1

∆x21
(θ −min(t1, t2, θ))

2 +
1

∆x22
(θ −min(t3, t4, θ))

2 =
1

c2
, (2.68)

where, for simplicity, we denote c = c(xi,j). Let h1 = ∆x1, h2 = ∆x2, v1 = min(t1, t2), and
v2 = min(t3, t4). The equation can also be written as:

1

h21
(θ −min(v1, θ))

2 +
1

h22
(θ −min(v2, θ))

2 =
1

c2
. (2.69)
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2.5 Distance transform

A distance transform is a grey-level image in which the intensity shows the distance between
the pixel to the nearest edge of a set of pixels.

One commonly used metric is the p-norm, the Minkowski distance.

Definition 3. For all x, y in RN , p > 0, the Minskowski distance is defined as:

d(x, y) = ∥x− y∥p = p

√√√√ N∑
n=1

|xn − yn|p (2.70)

In the case of a distance transform, the input to this distance function is a binary image, I ,
where each pixel can take two values, 0 and 1. 0 to be the background and 1 to be the pixels of
interest.

The distance transform, D, is a grayscale image generated from the binary image, I . the
value of each pixel in D corresponds to the minimum distance between that pixel’s location
and the surrounding edge pixels.

Definition 4. For all x, y in I , the distance transform is defined as:

D(x) = min
{y:I(y)=1}

d(x, y) (2.71)

Calculating the distance transform involves up to N comparisons for each pixel, resulting
in a O(N2) complexity. However, techniques to reduce this complexity can be categorised into
three types: propagation, raster-scanning and separable scanning.

Propagation algorithms compute the distance transforms by progressively moving away
from the edge pixels and recording the distances. Raster-scanning algorithms approximate
the Euclidean distance using Chamfer distance, with local masks chosen to minimise the ap-
proximation error. Separable scanning algorithms reduce the operations into independent one-
dimensional operations by tracking parabola intersections or using morphological operators.

The distance function is computationally expensive because of the min operation. This
operation is highly nonlinear, which makes it challenging to accelerate. This section will see one
alternative form for the minimum operation, also known as smooth operations to minimum
functions. These are commonly used in machine learning algorithms. When these smooth
approximations are substituted into the definition of the distance transform 2.71, the algorithm
can be efficiently approximated using convolution operators. The motivation to compute the
distance transform differently is also to have all operations differentiable. This approximation
can then be integrated as a differentiable convolutional distance transform layer into current
deep learning frameworks.

We first rewrite the minimum function using the log-sum-exponential form. We recall the
following lemma due to Karam et al. [Kar19].
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Lemma 1. Let z1, · · · , zK ∈ R. Then,

min{z1, · · · , zK} = lim
λ→0
−λ log

(
K∑
k=1

exp
(
−zk
λ

))
. (2.72)

This equation is a way to approximate the minimum function using a smoother, differen-
tiable function.

In this section, we will focus on translation-invariant metrics. This means that the distance
dunction d(·, ·) has the following porperty : d(x, y) = d(x+ z, y + z) for all z in RN .

We recall the following theorem :

Theorem 1. Let ∗ denote the convolution. Then

D(x) = lim
λ→0
−λ log

(
I(x) ∗ exp

(
−d(x)

λ

))
. (2.73)

This theorem allows us to reformulate the distance transform as a convolution, which can
be computed more efficiently. The distance transform can be approximated using a convolution
of the binary image I with a kernel exp(−d(·, 0)/λ), where ∗ is the convolutional operator.

One of the main challenges of the convolutional design of the distance transform is that the
kernel size needs to be as large as the diagonal of the input image to ensure that even very
sparse binary images can be distance transformed. However, this leads to two main issues:
increased computational complexity and decreased numeric stability for vast distances. To
address this issue, [Pha21] propose a cascade of local distance transforms.

The large kernel size required for the convolutional operation increases computational com-
plexity, making it impractical for large images. Additionally, for considerable distances, the ex-
ponential term in the kernel design may approach zero, leading to decreased numeric stability
of the logarithmic expression within the Convolutional Distance Transform (CDT). This issue is
particularly noticeable in large images with only a few foreground pixels.

To tackle this challenge, [Pha21] suggests cascading distance transforms with smaller ker-
nels to approximate the actual transform. This approach reduces the computational complexity
and overcomes the numerical instability. Instead of directly computing the distance transform
with a large kernel, we iteratively extend the binary input image by the area for which a dis-
tance calculation was possible by the locally restrictive CDT. The calculated distances are then
used with the distances for the previous iterations to form the final distance transform.

The maximum distance to a foreground pixel that can be captured by the CDT is limited to
a range of ⌊k2⌋, k the kernel size. For all background points that are further away than ⌊k2⌋ from
a foreground point, 1 yields a distance of 0. The idea is to iteratively extend the binary input
image by the area for which a distance calculation was possible, i.e. by all points that fulfil
the condition that the calculated distance is more significant than zero. This extended binary
image can then compute a new locally restricted distance transform using the small kernel.

For the i-th iteration, let I(i) denote the extended binary image and let D(i)
I denote the local

CDT of I(i). For the i-th iteration, we assume that the original foreground area has been ex-
tended by a margin of i · ⌊k2⌋. Therefore, this offset distance is added to the current distances to
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Kernel

Distance TransformInput

Figure 2.13: Example of the computation of a distance transform on the left image using the
proposed approach.

compensate for the lower kernel size. Thus the cascaded distance transform DI is updated by
the current distances by adding i · ⌊k2⌋+D

(i)
i wherever Di(p) > 0 holds.

This procedure can dramatically reduce the number of operations from the initial O(w · h ·
diag2) to O(w ·h ·k ·diag) if the kernel size is chosen much smaller than the image diagonal, i.e.
k << diag. Since the maximally possible measured distance of d(·, 0) in 1 is restricted by the
kernel size, a small kernel size additionally yields a more stable computation of the logarithmic
term as the exponential does not tend to approach zero. Figure 2.13 represent the computation
of the distance transform on a simple example.

2.6 Partial Conclusion

This chapter comprehensively studies active contour models and geodesic methods, show-
ing their evolution and important role in image segmentation. Starting from the foundational
work of Kass et al. [Kas88], we have explored the parametric active contour models, also called
snakes. These models introduced the idea of energy-minimizing curves guided by internal and
external forces to find object boundaries in images accurately. While effective in some cases,
parametric models have significant limitations, such as sensitivity to initial conditions, diffi-
culty in handling topological changes, and dependence on the curve’s parameterisation.

To overcome these challenges, improvements such as the balloon model by Cohen [Coh91]
introduced an inflation force, allowing the contour to expand or contract dynamically, which
helps it converge better to object boundaries. The Geodesic Active Contour model by Caselles
et al. [Cas97] advanced the field further by reformulating the problem using geodesic compu-
tations in a Riemannian space derived from the image. This approach reduced the dependence
on parameterisation and improved the model’s ability to capture complex shapes.

Then we moved to the level set method, a powerful framework introduced by Osher et
al. [Osh88], which represents contours implicitly as the zero level set of a higher-dimensional
function. This method naturally handles topological changes, allowing the contour to split
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and merge during evolution. The level set framework provides robustness and flexibility in
modelling shape evolution, as shown by the Chan-Vese model [Cha01], which segments images
based on region statistics without the need for edge detection. This model demonstrated the
benefits of using region-based information, improving segmentation in images with noise and
weak edges.

Furthermore, we explored geodesic methods and their implementation through the Eikonal
equation and the Fast Marching algorithm. These methods allow efficient computation of
geodesic distances, helping to calculate minimal paths important for various image process-
ing tasks, like segmentation and shape analysis. We also discussed the concept of distance
transforms, highlighting their role in computing geodesic distances and their efficient imple-
mentation using convolution operations. We addressed computational challenges related to
large kernel sizes in convolutional distance transforms and presented strategies to mitigate
these issues through iterative approaches.

Throughout this chapter, we have highlighted the progression from parametric active con-
tours to level set methods and geodesic computations, emphasising the increased flexibility, ro-
bustness, and computational efficiency these methods bring to image segmentation and shape
modelling. The shift towards implicit representations and the integration of geometric prin-
ciples have significantly enhanced our ability to tackle complex segmentation tasks involving
intricate shapes and varying topologies.
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Chapter 3
Technical Background on Deep Learning

Deep learning is a rapidly growing field that has significantly impacted machine
learning in recent years. This chapter will introduce deep learning and explore
its applications in various domains, such as image recognition, natural language
processing, and predictive analytics. We will begin by discussing the fundamental
components of deep learning, including supervised learning and the basic building
blocks of neural networks. We will explain the strengths and weaknesses of these
elements and how they contribute to the overall functionality of deep learning sys-
tems. Our focus will then shift towards the practical application of deep learning
theories. Instead of delving into specific use cases, we aim to provide a comprehen-
sive understanding of the various deep learning concepts and their implications.
For readers new to these topics, this chapter will provide a foundation to under-
stand the objectives of this thesis. We will use simple and clear language to explain
complex ideas, making them accessible to a broad audience. Overall, this chapter
introduces deep learning, offering insights into its key components, applications,
and practical implications. By the end of this chapter, readers should have a thor-
ough understanding of deep learning and its potential uses in various fields.

Objectifs
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3.1 Supervised Learning

In this chapter, we will explore the fascinating world of machine learning, which involves cre-
ating algorithms that can learn from data and make predictions or decisions based on that
learning. We will focus on a particular subset, supervised learning.

One of the intriguing aspects of machine learning is its ability to learn and predict things
that humans cannot model or systematically solve. For example, we know how to recognise
patterns in images, sounds, and texts but often need help explaining what our cognitive process
does to analyse them. Similarly, when talking or listening, we do these tasks unconsciously
without regard to the complex movements of our mouth and tongue.

The idea behind supervised learning is to provide the computer with as much labelled data
as possible to learn to recognise patterns and make predictions on its own. This can be seen as
the computer trying to extrapolate from many examples what the expected answer is (however,
in practice, as we will see later, it is more interpolating in the space of examples).

Clever algorithms are designed using parametric algorithms to reach this behaviour in com-
puters. Given a set of parameters, these algorithms leave a subset of their parameters unspec-
ified. The learning phase involves finding the best values for these parameters. This is where
the learning happens.

Most of the models we present in this thesis can be understood as parametric functions
where the parameters are adjusted during the training (or learning phase) to improve the ac-
curacy of the predictions. For example, a neural network can be seen as a big black box trained
until it has reached enough confidence in predicting new unseen examples.

In the following sections, we will see that in mathematical terms, machine learning involves
defining a parameter space, i.e., the space containing the possible values that a parameter can
take, and measuring the accuracy of the answer to a new example to assess its capacity to
generalise well.

3.1.1 Definition and Conceptual Overview

In recent years, deep learning methods have become state-of-the-art techniques for various
image analysis tasks, including image classification, object detection, segmentation, and gen-
eration. However, traditional methods such as handcrafted feature extraction and machine
learning algorithms are still used in specific applications. In this section, we will compare deep
learning methods and conventional methods for image analysis and discuss the advantages
and disadvantages of each approach.

Traditional methods for image analysis typically involve the following steps (See Figure
3.1):

1. preprocessing: enhance the image quality and remove noise;

2. feature extraction: manual design of features that capture the relevant information from
the image;

3. feature selection: select the most informative features;
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Image Feature Extractor Trainable Classifier

Hand Engineered

Figure 3.1: Traditional feature extraction pipeline – The figure represents the conventional ap-
proach to machine learning, where features are manually engineered before being passed to a
trainable classifier for classification.

4. classification or regression.

One of the main advantages of traditional methods is their interpretability. Since the fea-
tures are manually designed, it is easier to understand how the algorithm makes its decisions.
Additionally, conventional methods can be more efficient regarding computational resources
since they only require the computation of a small set of features. However, the performance
of traditional methods is often limited by the quality of the handcrafted features, which may
only capture some of the relevant information in the image.

Deep learning methods, on the other hand, automatically learn features from the raw image
data using neural networks (See Figure 3.2). Several studies have compared the performance of
deep learning and traditional methods for various image analysis tasks. For example, [Kri12]
compared deep CNN performance with SIFT features and Fischer Vectors [Sán11] for image
classification on the ImageNet dataset. The results showed that the deep CNN significantly out-
performed the SVM with handcrafted features. Similarly, [Gir14] compared the performance of
a deep CNN and a standard HOG-based deformable part-based model (DPM) [Gir12; Lim13;
Ren13] for object detection on the PASCAL VOC dataset. The results showed that the deep
CNN significantly outperformed the DPM.

Supervised learning is a critical method used in machine learning and artificial intelligence.
This method provides the system with the input and the corresponding desired output data.
This data is labelled, organised and classified to help the system learn effectively and serve as
a foundation for processing new data.

The term supervised is akin to having a teacher overseeing the learning process. Here, our
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Image Low Level Features Trainable ClassifierMid Level Features High Level Features

Figure 3.2: Visualization of feature extraction in a deep learning model – The figure illustrates
the hierarchical representation of features learned by a fully trained neural network, starting
from low-level features to mid and high-level features.

student algorithm learns from the labelled data we provide. The process is considered super-
vised because we control the learning, knowing the expected output for each piece of input
data. Figure 3.3 illustrates this for a simple classification task where we want to assign a label
to an image. In this example, a cat is depicted in the picture and the supervised algorithm pre-
dicts that the object of interest is a dog. The error is corrected by updating the parameters of
the learning algorithm (See Section 3.2.3) as depicted by the red arrow. Once the algorithm has
been adequately trained, it can predict outputs for new, unseen input data. The performance
of a supervised learning model is evaluated by how accurately it can classify new data or make
accurate predictions.

In essence, supervised learning is a learning process in which we teach or train the machine
using well-labelled data, meaning the data is already tagged with the correct answer. After that,
the machine is provided with a new set of data, so supervised learning algorithms analyse the
training data and produce an inferred function (See Figure 3.4b), which can be used to map new
examples. This method allows us to train machines that can classify emails and photographs,
recognise speech, and give precise predictions.

In more concrete terms, we aim to train a machine to distinguish between images of cats
and dogs. In the context of supervised learning, we would feed the machine an extensive set of
images, each labelled either as ’cat’ or ’dog’. This dataset, known as the training set, forms the
basis for the machine’s learning. Each image i in the training set is a pair (xi, yi), where xi is
the image, and yi is its corresponding label (cat or dog). The machine studies this training set
using a machine learning algorithm and learns to map the input images x to the correct labels
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Figure 3.3: Diagram outlining the steps of supervised learning

(a) (b)

Figure 3.4: Example of two classical supervised problems: classification and regression.

y, effectively learning to identify the distinguishing features of cats and dogs (See Figure 3.4a).
Figure 3.4a represents the separation created by the machine learning algorithm after training,
in this case, a linear model.

The underlying mathematical formality of this learning process can be expressed as learn-
ing a function f that best maps input variables x to an output variable y, given by: y = f(x).
The algorithm learns the function based on the input-output pairs from the training data. Once
the function is learned adequately, it can predict the output for new, unseen input data.

Within the broad landscape of supervised learning, problems are typically divided into
Classification and Regression. Classification involves predicting discrete labels, such as "spam"
or "not spam" for emails or "cat" or "dog" for our animal images. Mathematically, a classification
model learns a function that maps the input to discrete categories.

On the other hand, regression problems involve predicting a continuous outcome variable.
For instance, they could predict stock market prices or determine an individual’s age based
on specific features. In mathematical terms, a regression model learns a function that maps
the input to continuous values. While the techniques used to solve classification and regres-
sion problems can often be very similar, the type of problem fundamentally changes how we
evaluate model performance.
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Reward

(a) (b)

Figure 3.5: Example of unsupervised problems: reinforcement learning and k-means.

While supervised learning serves as a strong tool, it’s crucial to note that it’s only one of
several learning strategies employed in machine learning. Unsupervised learning, for example,
involves training models using data that isn’t classified or labelled. The algorithm can discern
and act on underlying patterns in the data without external knowledge. Figure 3.5b shows
three clusters identified by the algorithm, each cluster corresponding to a distinct grouping
of data points based on their similarity in feature space, likely representing different species
in the Iris dataset [Fis36]. Another paradigm, self-supervised learning, learns representations
from the data itself by training itself to understand one part of the input from another part of
the input. In contrast, reinforcement learning involves training an agent to make specific deci-
sions based on reward and penalty; desirable actions are rewarded, and undesirable ones are
penalised. Figure 3.5a) illustrate how the learning agent, here Mario, interacts with his envi-
ronment to improve over time. Through actions, observations, and rewards, the agent learns
an optimal policy by exploring the environment, adjusting its behaviour based on feedback,
and refining its decision-making process to maximize its long-term rewards in following tri-
als. These diverse techniques highlight the rich and varied nature of machine learning, each
offering unique ways to extract patterns and insights from data.

When we look at the big picture of artificial intelligence (AI), supervised learning is a criti-
cal way that machines can learn to make predictions, make decisions, and understand patterns.
It’s a building block for creating complex AI systems that can act like humans. The influence
of supervised learning is everywhere already in our digital lives. For instance, supervised
learning algorithms are at play when an online platform recommends a movie based on your
previous viewing habits. Similarly, when your voice assistant accurately processes your verbal
requests or a self-driving vehicle correctly identifies traffic signs, these are examples of super-
vised learning.

3.1.2 Supervised Learning Tasks

The input space or feature space is represented by a set M. An element of M is denoted as x,
which refers to the input to our learning system. In the case of a real-world problem such as
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M

x2

x1x3

N

f(x2)

f(x1)

f(x3)

Figure 3.6: A neural network transforms the initial representation in a space M, the feature
space, to a simpler representation as an element of N , the label space.

object recognition, x could be an image. For simplification and the following computations, we
assume that our inputs x are numerical or have been transformed to numerical representation
as this is the form in which they are stored and processed in a computer. Therefore, M is
usually a subset of Rd.

The output space or label space is represented by a set N . An element of N is denoted as y

and refers to the output or the label associated with an input. In the case of object recognition,
y could be a label representing the object in the image, such as a car or plane. For example, in
classification problems where we need to classify inputs into distinct categories,N is a discrete
set, whereas in regression problems where we predict a continuous value, N is a subset of the
real numbers.

A training set is a set of pairs {(xi, yi)i∈[1:n]} where the xi are a sequence of inputs and yi
are the corresponding sequence of labels. The goal of supervised learning is to use the training
set to learn a function f : M → N that can accurately predict the label y for a new input
x. The function f is learned through an algorithm that adjusts its parameters to minimise a
loss function L(y, f(x)), which measures the discrepancy between the true labels y and the
predictions f(x). The function f learns to transform the initial representation into a simpler
representation to classify the elements (See Figure 3.6).

Note that the function f and the loss function L depend on the type of problem and the
model chosen for the task. For example, in the case of linear regression, f is a linear function
of the input features, and L could be the mean squared error between the actual labels and the
predictions.

The goal of training a machine learning model is to find the best parameters θ for a function
fθ : M → N that maps inputs to outputs or predictions. This function, fθ, represents our
machine learning model. Depending on the context and the type of problem, this function can
take various forms, such as a linear function in linear regression or a more complex function in
deep learning models. The set of all possible values of the parameters θ forms the parameter
space, denoted as Θ. Typically, the parameters are numerical values, which implies that Θ is a
subset of Rd.
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Figure 3.7: Three examples of regression problems showing the respectively from left to right
under fitting, balance between bias and variance, and overfitting

In an ideal scenario, where our model has learned the exact relationships between the input
features and the output, the predictions made by the model for all inputs in the training set
would match the actual labels, i.e., for all xi in X , we would have fθ(xi) = yi.

However, real-world data is usually noisy and may contain inaccuracies. If we fit our model
to such a noisy training set perfectly, it could learn to reproduce the noise and inaccuracies
in the data. This would lead to a model that performs well on the training data but fails to
generalise to unseen data, a problem known as overfitting. Thus, machine learning aims to
find a balance between fitting the training data and preserving the ability to generalise to new,
unseen data. This often involves allowing some level of error in the predictions of the training
data. The exact balance is determined by the complexity of the model, the amount and quality
of the training data, and the method used to train the model (See Figure 3.7).

Training datasets can contain inaccuracies in the form of noise, bias, corruption, or incom-
pleteness, each presenting unique challenges.

Noise, or random errors in the data, can hide the underlying patterns a model needs to
learn, leading to a model needing help generalising to new data. For example, if training a
model to identify handwritten digits from images, the images collected could vary in lighting
conditions, introducing random brightness variations in the data. The model might need help
to learn the correct patterns, as the brightness variations could overshadow the actual patterns
of the digits.

Systematic errors, or bias, can skew the model’s understanding of these patterns, resulting
in similar issues with generalisation. When building a facial recognition model, if all the faces
in the training data are of people from one specific age group, the model will perform poorly
on an other age group. The model might be great at recognising faces within that age group but
fails when trying with faces from other age groups. This isn’t very objective, as the model has
learned a pattern specific to one age group because the training data was not representative of
the entire population.

Corruption in the data due to errors in collection or processing results in false or mislead-
ing data that can disrupt the model’s learning process and obstruct the interpretability of its
predictions. If we train an image classifier and some images get distorted or flipped during
preprocessing or the labels get swapped accidentally, the model might learn incorrect patterns.
For instance, if a dog image is labelled a cat, the model could start associating dog features with
cats.

Similarly, incompleteness, where data is missing or records are incomplete, can prevent the
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model from thoroughly learning the underlying patterns, leading to errors when predicting
new data. While only sometimes affecting performance on the training data, these inaccuracies
can cause generalisation errors where the model performs well on training data but poorly on
new, unseen data. This typically happens because the model learns the inaccuracies present in
the training data rather than the underlying patterns.

Regression In the context of linear regression, we are given a set of pairs {(xi, yi)i∈[1:n]} ∈
(Rl×1)n, obtained from, for example, computer simulations or experimental data. Regression
analysis aims to discover a relationship between these vectors x and y. We define:

Y =


y1
y2
...
yn

 x =


x1i
x2i
...
xni

 i = 1, · · · , l ε =


ε1
ε2
...
εn


where ε is the matrix of biases.

We then denote ψ(x) as the vector that applies ψi to each component xi. The function space,
denoted by F , is composed of linear combinations of basis functions ψi and we write:

ψ(X) =

ψ1(x1)|ψ2(x2)| · · · |ψl(xl)


The least squares method provides an estimator for the output vector ŷz = f(z, w),∀z ∈

Rn, where z is a new observation, intended to be as close as possible to y, where w are the
parameters to optimise. In this section, we denote f as the functions from the chosen function
family for our linear model, x as the input vector of assumed size n, and w as the parameter
vector of size l. We aim to learn an approximation for a function from Rn → R. :

Fz = {f ; f(z, w) =
l∑

i=1

ψi(zi)wi} (3.1)

This set can be visualised on a plane or as a scatter plot. We can rewrite the expression for
function f by assuming that the functions ψi are independent of the model parameters.

Y = ψ(X)Tw + ε

with w ∈ Rl, ε ∈ Rn, and X ∈Mn,l with Rank(X) = l.
The functions ψ could be, for example, polynomials. The system can be written as:

y1 = w1ψ1(x1) + w2ψ2(x1) + . . .+ wlψl(x1) + ε1
y2 = w1ψ1(x2) + w2ψ2(x2) + . . .+ wlψl(x2) + ε2
...
yn = w1ψ1(xn) + w2ψ2(xn) + . . .+ wlψl(xn) + εn

(3.2)

To express the empirical risk in terms of matrices, the model matrix X , where each row
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corresponds to an example from the training base, and each column represents a parameter of
the model expressed in the base of secondary variables (the ψi). Thus, we have:

Xij = ψj(xi) ⇒ Remp(f) =
1

n

n∑
i=1

(f(xi, w)− yi)2 (3.3)

=
1

n

n∑
i=1

(ψ(xi)
Tw − yi)2 =

1

n
(Xw − y)T (Xw − y) (3.4)

Our goal is to minimise the error:

min ||Xw − y||2 (3.5)

The derivative of this function with respect to w is:

∇w∥Xw − y∥ = 2XT (Xw − y). (3.6)

The minimum is reached when XTXw = XT y. Applied to empirical risk, we get:

∂Remp(f)

∂w
=

2

n
(XTXw −XT y) (3.7)

The minimum is reached at the value we denote as ws: ws = (XTX)−1XT y. A simple ge-
ometric interpretation is possible considering the observation space, which the Gram-Schmidt
process can orthonormalise. The solution to our least squares problem appears as the orthog-
onal projection matrix onto the solution subspace (the basis being the columns of the matrix
X).

Given X ∈Mn,l with n > l and y ∈ Rn, we say that the vector w ∈ Rl minimizes ||Xw− y||2

if and only if XTXw = XT y. These are called normal equations; this system admits at least
one solution. Finally, if XTX is regular (i.e., rank(X) = l), then the solution is unique.

While not immediately related to linear regression, deep learning can be seen as a gener-
alisation. In a deep learning model, instead of using simple basis functions ψi and a linear
combination of them, we use artificial neural networks, which can represent highly complex
functions. Deep learning generalises linear regression to non-linear and high-dimensional con-
texts.

Classification Classification represents a distinctive approach to predictive modelling, which
inherently differs from regression. Instead of predicting continuous numeric values, the goal
of classification is to predict labels that are categorical and unordered. The labels, or ’classes’,
stem from a predetermined set which does not entail a natural hierarchical structure. A typical
example is binary classification, deciding whether a human face is present in an image. Nev-
ertheless, classification is open to more than a binary context and can handle problems with
multiple classes reaching hundreds or thousands.

The critical distinction between regression and classification is that the output of the predic-
tive function fθ is discrete in classification. Directly optimising for this discrete output would
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lead to a combinatorial problem. To avoid this, most approaches opt for a relaxation of the out-
put constraint during the optimisation process, and later, the obtained continuous values are
converted back into discrete class labels. For instance, consider a binary classification scenario
where the classes are denoted as 0 and 1. The outputs of fθ can be taken as probabilities in the
continuous range [0,1].

1. Thresholding is a common strategy to convert these continuous outputs into discrete class
labels. For example, any output value p < 0.5 is mapped to class 0, while any p ≥ 0.5 is
mapped to class 1.

2. This approach lends itself to an interpretation of fθ(xi) as the probability of xi belonging
to class 1.

This probabilistic framework can be used to formulate the loss function for the classification
model. Let fθ(xi) = pi for each i, and treat the vector p as a distribution over the space of classes
M . The ground truth labels y can similarly be interpreted as a distribution over M . The loss
function can then be defined as a divergence measure between the two distributions p and y.
A standard choice for this divergence measure is the cross entropy loss:

CE(y, p) = −
n∑
i=1

yi log(pi) + (1− yi) log(1− pi) (3.8)

When y and p fall in the range [0,1], the summand in the cross entropy loss is non-positive
and is zero when pi = yi. Given that p depends on the model parameters θ, the cross en-
tropy provides a suitable choice for the loss function L(θ) to be minimised during the learning
process.

The described classification setup is highly relevant in the context of deep learning. Deep
learning models for classification often involve an output layer with a softmax activation func-
tion, which produces output probabilities summing to one. The soft(arg)max (we want the
most probable position and not the probability) allows us to transform a vector of k compo-
nents into a distribution over k classes. The function is defined as :

σ(z)j =
ezj∑k
i=0 e

zi
∀j ∈ {1, · · · , k}. (3.9)

These models are trained by minimising the cross entropy loss between the predicted class
probabilities and the actual class labels. This makes deep learning a powerful tool for tackling
classification problems, providing state-of-the-art results in many domains, including image
classification, text categorisation, and more.
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Figure 3.8: Neural Network given an example from the MNIST dataset. The Neural Network
has 2 hidden layers.

3.2 Neural Networks

3.2.1 Introduction to Neural Networks - An overview of neural networks and their
origins

Here are some key terms that will appear multiple times throughout this thesis:

• Batch: A batch refers to a small group of data samples processed together by a
machine learning model before updating its parameters. Instead of feeding all the
data at once, batches make the training more manageable and efficient.

• Epochs: An epoch is one complete pass through the entire training dataset. During
each epoch, the model processes all the training data once, typically in smaller
batches, and updates its parameters to improve performance.

• Learning Rate: The learning rate is a parameter that controls how much the
model’s parameters are adjusted during training. It determines the step size for
each update. A higher learning rate means larger updates, while a lower learning
rate results in smaller, more gradual updates.

Neural Network (NN) is a machine learning algorithm inspired by the human brain’s struc-
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ture and function. We want to mimic the connections and the information-passing mechanism
in the brain. The idea behind neural networks dates back to the 1940s and 1950s from McCul-
loch et al. [McC43] when researchers first began to explore the possibility of building artificial
systems that could perform tasks like image and speech recognition, which are easy for humans
but difficult for computers.

The basic block of a Neural Network (NN) is a neuron modelled after the human brain’s
neurons. Each neuron takes in one or more inputs (an electric impulsion in the brain), applies a
mathematical function, and produces an output. The output of one neuron can be used as the
input to another neuron, allowing the network to perform increasingly complex computations.

Usually, we organise Neural Network (NN) into layers, each containing a set of neurons. The
first layer, the input layer, receives the raw data the network will use to make predictions. The
last layer is the output layer, which produces the final network prediction. Between the input
and output layers, there can be as many layers as one wants; we call them hidden layers, and
they perform intermediate computations and help the network learn complex patterns in the
data.

To illustrate the notion and how a NN works, we can consider a simple example. Suppose
we want to create a model that can learn to recognise handwritten digits [LeC89]. If each image
is of size 28 × 28, we can make a first layer containing 784 neurons, one for each pixel. The
output layer will contain 10 neurons, one for each possible digit (0 through 9). We can have
one or more hidden layers between the input and output layers with a variable number of
neurons (See Figure 3.8). During training, we present as many examples of handwritten digits
as possible to the NN and their corresponding labels. (i.e. the correct digit for each image). The
network adjusts the strength of the connections between neurons (called weights) to minimise
the difference between its predicted outputs and the actual labels.

3.2.2 Deep Neural Networks

This section describes the formulation of a Neural Network (NN). We define the input and output
of the NN as layers that we denote x(0) and x(L), L + 1 is the number of layers in the neural
network. We define the hidden layers as x(l) with l ∈ {1, · · · , L − 1}. We subscript the n
neurons in the fist layer x(l)n and m neurons in the second one x(1)m . Between each layer we find
weights w(l) and bias b(l) and we write the connexion between two neurons i = {1, · · · ,m}
and j = {1, · · · , n} as w(l)

i,j . Between each layer, we find an activation function σ. Figure 3.9
summarises the computation between each layer.

3.2.3 Backpropagation: The Mathematical Backbone of Deep Learning Optimiza-
tion

There are multiple methods to compute derivatives numerically. Among them are finite dif-
ference methods. It performs derivatives using the definition in terms of limits, substituting a
small increment h to approximate the derivative.

∂

∂xi
f(x1, · · · , xN ) ≈

f(x1, · · · , xi + h, · · · , xN )− f(x1, · · · , xi, · · · , xN )
h

. (3.10)
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Figure 3.9: Example of the connections between two layers of a fully connected neural network.

We usually use these methods to validate gradient computations. Despite that, they are
straightforward to use as they only require function evaluation but they are impractical to
train neural networks due to the high computational costs, requiring a separate forward pass
for each partial derivative, and numerical instability from subtracting nearly equal values and
dividing by a small h.

Backpropagation is one of the foundational algorithms in deep learning. It enables the
efficient computation of gradients, a prerequisite for optimising a neural network’s parameters.
The essence of backpropagation lies in an elegant application of the chain rule from calculus.
It is a technique used to compute the partial derivatives of a loss function with respect to the
parameters of a neural network. These derivatives are then employed in gradient descent,
similar to their use in linear and logistic regression.

3.2.3.1 A simple univariate example

Before presenting backpropagation in the case of Neural Networks, we start by looking at a
simple example. We consider a single input example (x, x̂) and the predictions are made using
a linear operation with a sigmoid activation function to introduce non-linearity.

z = wx+ b (3.11)

y = σ(z) (3.12)

L =
1

2
(y − x̂)2 (3.13)

We want to compute the partial derivatives of the cost function in terms of w and b. To do
so, we compute the derivatives and the chain rule multiple times.
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Definition 5 (Chain rule (2 variables case)). Given a function f of 2 variables, we want to
compute d

dtf(x(t), y(t)). The chain rule gives:

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(3.14)

In the case of our simple example in the univariate case, we have:

L =
1

2
(σ(wx+ b)− x̂)2 (3.15)

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx+ b)− x̂)2

]
(3.16)

= (σ(wx+ b)− x̂) ∂
∂w

[(σ(wx+ b)− x̂)] (3.17)

= (σ(wx+ b)− x̂)σ′(wx+ b)
∂

∂w
(wx+ b) (3.18)

= (σ(wx+ b)− x̂)σ′(wx+ b)x (3.19)

(3.20)

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx+ b)− x̂)2

]
(3.21)

= (σ(wx+ b)− x̂) ∂
∂b

[(σ(wx+ b)− x̂)] (3.22)

= (σ(wx+ b)− x̂)σ′(wx+ b)
∂

∂b
(wx+ b) (3.23)

= (σ(wx+ b)− x̂)σ′(wx+ b) (3.24)

(3.25)

This provides a clear example of the several drawbacks inherent in this method. Firstly, the
calculations are exceedingly cumbersome. Throughout this derivation, numerous terms had to
be transcribed from one line to the next, making it easy to omit something inadvertently. Al-
though the calculations are manageable in this simplified example, they become overwhelm-
ingly complex for realistic neural networks. Secondly, the calculations entail a considerable
amount of redundant work. For example, the initial three steps in the two derivations above
are nearly identical. Thirdly, the final expressions contain numerous repeated terms, resulting
in substantial redundancy if implemented directly. For instance, wx + b is computed a total of
four times between ∂L

∂w and ∂L
∂b . The larger expression (σ(wx + b) − t)σ′(wx + b) is computed

twice. Recognising these redundancies might allow for a more efficient implementation by
factoring out the repeated expressions.

The fundamental idea behind backpropagation is to leverage these repeated computations
wherever possible. When executed correctly, backpropagation calculations are notably clean
and modular.
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Figure 3.10: Computational graph for a linear regression.

3.2.3.2 The Computation Graph

To compute the derivatives computationally, we represent all the variables and operations as a
graph. For the example in section 3.2.3.1, we construct the graph presented in Figure 3.10.

As we can see, we have a directed acyclic graph.
The nodes in the graph represent all the computed values, with edges indicating the depen-

dencies between these values.
The objective of backpropagation is to compute the derivatives with respect tow and b. This

is achieved by repeatedly applying the Chain Rule. To calculate a derivative using Equation
3.14, the derivatives of its child nodes in the computation graph must be known first. Con-
sequently, we must begin from the final result of the computation (in this case, L) and work
backwards through the graph. This backward traversal is why backpropagation and reverse
mode autodifferentiation are named as such.

We begin with the formal definition of the algorithm. Let v1, . . . , vN represent all the nodes
in the computation graph arranged in a topological order. A topological ordering ensures that
parent nodes precede their child nodes. We aim to compute the derivatives of all ∂L

∂vi
, though

we might only be interested in a subset of these values. Initially, all values are computed in a
forward pass, followed by the computation of derivatives in a backward pass. Specifically, vN
denotes the final result of the computation, and it is the quantity for which we seek to compute
the derivatives. By convention, we set ∂L

∂vN
= 1. The algorithm proceeds as follows:

1. For i = 1, . . . , N :

• Compute vi as a function of Pa(vi)

2. Set ∂L
∂vN

= 1

3. For i = N − 1, . . . , 1:

• ∂L
∂vi

=
∑

j∈Ch(vi)
∂L
∂vj

∂vj
∂vi
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Here, Pa(vi) denotes the parents of vi, and Ch(vi) denotes the children of vi. This algorithm
ensures the efficient computation of derivatives by leveraging the structure of the computation
graph.

Let’s use the graph to compute the algorithm for the linear regression example in section
3.2.3.1.

∂L
∂L

= 1 (3.26)

∂L
∂y

=
∂L
∂L

dL
dy

=
∂L
∂L

(y − t). (3.27)

∂L
∂z

=
∂L
∂y

dy

dz
=
∂L
∂L

(y − t)σ′(z). (3.28)

∂L
∂w

=
∂L
∂z

dz

dw
=
∂L
∂L

(y − t)σ′(z)x. (3.29)

∂L
∂b

=
∂L
∂z

dz

db
=
∂L
∂L

(y − t)σ′(z)b. (3.30)

(3.31)

We remove most of the computation using the proposed algorithm, and each previous com-
putation is reusable.

3.2.3.3 A simple Neural Network

We can now use the same algorithm for a small neural network with two inputs, one output,
and two hidden layers (see Figure 3.11). We write the operations performed by the neural
networks as follows:

The operation performed by the neural network are:

zi =
∑
j

w
(1)
ij xj + b

(1)
i (3.32)

hi = σ(zi) (3.33)

yk =
∑
i

w
(2)
kj hi + b

(2)
k (3.34)

L =
1

2

∑
k

(yk − x̂k)2. (3.35)
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Figure 3.11: Computational graph for two inputs, one output and two hidden layers.

We compute the derivatives with regards to the different variables in the neural network:

∂L
∂L

= 1 (3.36)

∂L
∂yk

=
∂L
∂L

dL
dyk

=
∂L
∂L

(yk − x̂k) (3.37)

∂L
∂w

(2)
ki

=
∂L
∂yk

dyk

w
(2)
ki

=
∂L
∂yk

hi (3.38)

∂L
∂b

(2)
k

=
∂L
∂yk

(3.39)
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Now in the matrix form we have:

z =W (1)x+ b(1) (3.44)

h = σ(z) (3.45)

y =W (2)h+ b(2) (3.46)
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2
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In this section, we demonstrated how to apply backpropagation to a simple neural network
with two inputs, two hidden layers, and one output (refer to Figure 3.11). We outlined the
forward pass by specifying the operations performed at each layer, including the calculation of
weighted sums, the application of the activation function σ, and the computation of the loss L.

We then derived the gradients of the loss function with respect to the network’s parame-
ters/weights and biases, both in scalar and matrix forms. By computing these derivatives, we
established how the gradients propagate backwards through the network, enabling the adjust-
ment of parameters using optimisation algorithms like gradient descent.

This detailed walkthrough illustrates the fundamental mechanisms underlying neural net-
work training. Understanding these calculations is crucial for more complex architectures and
optimisation techniques in Deep Learning. The methodologies applied here form the backbone
of neural network learning, highlighting how iterative updates based on gradient information
improve performance and minimise the loss over time.

3.2.4 Varieties of Neural Networks: A Brief Overview

In recent years, the field of Deep Learning (DL) has revolutionised various domains such as
Computer Vision (CV), Natural Language Processing (NLP) and speech recognition. Deep Learn-
ing algorithms automatically learn hierarchical feature representations from large-scale data,
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enabling them to achieve state-of-the-art performance in a wide range of tasks. Several types
of deep learning architectures, each with strengths and weaknesses, have been developed to
tackle different problems. We will focus on specific architectures recurrently found in image
analysis, Convolutional Neural Networks (CNN), and Transformers.

Convolutional Neural Networks (CNN) is one of the most popular deep learning architectures
for computer vision tasks [Fuk80; Wai13; LeC89]. CNN exploit the spatial correlations found
in images using convolutional layers. The convolutional layer applies a set of learnable filters
to the input image to extract local features. The filters learn to recognise specific patterns, such
as edges or corners. They are shared across the entire image, significantly reducing the number
of learnable parameters. CNN also typically include pooling layers which downsample the
feature maps to reduce the computational complexity and improve the model’s invariance to
local translations.

Transformers are a more recent deep learning architecture that has achieved state-of-the-
art performance in various Natural Language Processing (NLP) tasks [Vas17]. They have been
adapted for computer vision tasks by Dosovitskiy et al. [Dos20], known as Vision Transform-
ers (ViT). Transformers use a self-attention mechanism to model relationships between input
sequences/image patches, allowing them to capture long-term dependencies.

3.2.4.1 Convolutional Neural Networks (CNN)

We will present the convolutional networks for 2D data. Convolutional Neural Networks are
based on the convolution operation. The network inputs an image X and outputs an image Z.
At each pixel (i, j), the output zi,j is a weighted sum of nearby pixels of x. We apply the same
weights at every position. These weight patches are called convolutional kernels or filters. A
kernel size defines the size of these patches or regions. For, say, a kernel size of 3, we have :

zi,j =

3∑
k,l=1

wk,lxi+k−2,j+l−2. (3.56)

Therefore, the kernel can be written as a matrix:w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

 (3.57)

A convolutional layer is then defined as the combined operation of computing the convo-
lution of the input with the filter and adding a bias β before passing the result through an
activation function σ. Figure 3.12 summarise the computation of the convolution operation.
We can write:

hi,j = σ

β +

3∑
k,l

wk,lxi+k−2,j+l−2

 (3.58)

We find three main applications of CNN in computer vision: image classification, where
the goal is to assign the image to one of a set of categories. Semantic segmentation, where the
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Figure 3.12: The diagram illustrates an example of a convolution operation between an input
matrix I and a kernel K. The kernel slides over the input matrix, performing element-wise
multiplication with the overlapping values, and the results are summed to produce the corre-
sponding value in the output matrix I ∗ K. The red-highlighted section in the input matrix
represents the region currently convolved with the kernel, and the green-highlighted section
shows the resulting value in the output matrix after applying the convolution at that position.

goal is to assign each image pixel to a label corresponding to an object. Object detection, where
the goal is to find a bounding box around the objects of interest.

Image classification In the early days, image classification was made from hand-engineered
features such as Histogram of Oriented Gradients (HOG) [Dal05] and Scale-Invariant Feature
Transform (SIFT) [Low99]. However, these features have limited representational power and
require significant domain expertise.

The first success of CNN, which brought them back into the spotlight, was for image clas-
sification with AlexNet [Kri12] introduced in 2012 by Krizhevsky et al. AlexNet significantly
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [Ber10]. They won by
a significant margin, beating the second with a top-5 error rate of 15, 3% while the second
was at 26, 2%. AlexNet consisted of eight layers, including five convolutional layers and three
fully connected layers. It also introduced the ReLU (Rectified Linear Unit) activation function,
which significantly speeds up training time compared to traditional sigmoid or tanh activation
functions.

Since the introduction of AlexNet, many significant developments have been in the archi-
tecture of CNN for image classification. Some notable examples:

• VGGNet [Sim14]: Introduced in 2014 by Simonyan et al., VGGNet increased the depth of
the network to 16 or 19 layers. They also made use of smaller convolutional kernels (3×3).
The model showed that increasing the depth of the network improves the performance.

• GoogLeNet [Sze15]: This was also introduced in 2014 by Szegedy et al. [Sze15]. The
model GoogLeNet introduced the Inception module, which allows multiple parallel con-
volutional filters with different sizes to be used within the same layer. This reduces the
number of parameters and increases the network’s representation power.

• ResNet [He16]: Introduced in 2016 by He et al., ResNet solves the problem of vanishing
gradients in deep networks by introducing residual connections. It allows direct gradient
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Figure 3.13: The image illustrates feature visualisations from a fully trained convolutional neu-
ral network model. The left side shows the learned filters that capture various patterns, such
as edges, textures, and object parts, with higher layers focusing on more complex patterns. The
right side displays images that strongly activate the corresponding filters, showing how the
network detects specific visual features, such as dogs, tools, or circular objects. This figure is
extracted from Zeiler et al. [Zei14], highlighting the interpretability of deep networks by visu-
alising the learned features at different layers.

propagation from the later layer to the earlier layers. It makes the training of very much
deeper neural networks possible. Some versions of ResNet have over 100 layers.

Figure 3.13 displays visualisations of features learned by a fully trained convolutional neu-
ral network, as presented by [Zei14]. The image illustrates how the network’s layers progres-
sively extract higher-level representations from the input data. The network learns to detect
simple patterns such as edges, lines, and basic textures in the initial layers. As the data passes
through subsequent layers, the network captures more complex structures like shapes, object
parts, and, eventually, whole objects. This hierarchical feature learning demonstrates the net-
work’s ability to build sophisticated representations from simple visual elements, highlighting
the effectiveness of deep learning models in understanding and interpreting visual informa-
tion.
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3.2.4.2 Transformers

Transformers have become increasingly popular in computer vision in recent years. Initially
introduced for natural language processing tasks, transformers have since been adapted for
various vision tasks, such as image classification, object detection, and segmentation.

The use of transformers was first proposed in the paper "Attention is All You Need" by
Vaswani et al. in 2017 [Vas17]. The authors introduced the transformer architecture for Natural
Language Processing, which relies solely on attention mechanisms to process input data without
needing recurrent neural networks or convolutional layers. This architecture achieved state-of-
the-art results on machine translation tasks and inspired researchers to explore its potential for
vision tasks.

So far, NLP problems were solved using older architectures such as Recurrent Neural Net-
works or Long Short-Term Memory and Gated Recurrent Neural Network. These architectures
raised some difficulties. When processing texts, we must transform the words into tokens to let
the machine process the information. For example, for a text of 50 words, the length required
to convert the content into tokens is 50× 1024 = 51200 if we choose an embedding of size 1024

(a conventional size).
Vaswani et al. [Vas17] proposes to create interaction between the different positions in a

sentence and compatible with sequences of various lengths. They call these operations dot-
product self-attention. Each word under the shape of a token vector is passed by a batch of N
tokens to the self-attention module and is mapped to new vectors with compatibility between
them.

One of the earliest applications of transformers for vision was in the paper "Image Trans-
former" by Parmar et al. [Par18] in 2018. The authors proposed a transformer-based archi-
tecture for image classification that treated images as sequences of pixels and applied self-
attention mechanisms to model global dependencies between pixels. While this approach
achieved promising results, it was computationally expensive and required large amounts of
data to train.

To address these challenges, researchers have since proposed various adaptations of the
transformer architecture for vision tasks. One popular approach is to use convolutional layers
to extract local features from images and then apply transformer layers to model global de-
pendencies between these features. This approach has been used in models such as the Vision
Transformer (ViT)[Dos20] and the Detecting Transformer (DETR)[Car20].

The ViT, proposed by Dosovitskiy et al. [Dos20] in 2020, treats an image as a sequence
of patches and applies a transformer encoder to model global dependencies between these
patches. The authors showed that the ViT achieved state-of-the-art results on several im-
age classification benchmarks, outperforming convolutional neural networks (CNNs) on some
tasks.

The DETR, proposed by Carion et al. [Car20] in 2020, is a transformer-based model for
object detection that treats object detection as a set prediction problem. The DETR uses a
transformer encoder-decoder architecture to model global dependencies between objects and
achieves state-of-the-art results on several object detection benchmarks.
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3.3 Applications of Neural Networks for Images

Image classification is one of the most common applications of neural networks for images.
Image classification involves assigning a label to an input image based on its content. Convo-
lutional neural networks (CNNs) have achieved state-of-the-art performance on various image
classification benchmarks, such as ImageNet [Rus15], CIFAR-10 [Kri09], and SVHN [Net11].
CNNs use convolutional layers to extract features from the input image and pooling layers to
reduce the spatial dimensions of the feature maps. The extracted features are then fed into fully
connected layers for classification.

Another application of neural networks for images is object detection. Object detection
involves identifying and locating objects in an image. CNNs have been used for object detec-
tion by applying a sliding window approach, where a CNN is applied to different regions of
the input image to detect objects. More recently, region-based CNNs (R-CNNs) [Gir14] and
their extensions, such as Fast R-CNN [Gir15] and Faster R-CNN [Ren16], have achieved state-
of-the-art performance on various object detection benchmarks. These methods use a region
proposal network (RPN) to generate candidate object regions and a CNN to classify and refine
the proposed areas.

Semantic segmentation is another application of neural networks for images. Semantic seg-
mentation involves assigning a label to each pixel in an image. Fully convolutional networks
(FCNs) [Lon15] have been used for semantic segmentation by replacing the fully connected
layers in a CNN with convolutional layers. FCNs use upsampling layers to increase the spatial
resolution of the feature maps and skip connections to combine features from different lay-
ers. More recently, encoder-decoder architectures, such as U-Net [Ron15] and SegNet [Bad17],
have been proposed for semantic segmentation. These architectures use an encoder network
to extract features from the input image and a decoder network to generate the segmentation
mask.

Neural networks have also been used to generate images. Generative adversarial networks
(GANs) [Goo14] consist of two neural networks: a generator network that produces pictures
and a discriminator network that evaluates the generated images. The generator network
learns to create images that are indistinguishable from actual images by minimising the loss
function of the discriminator network. GANs have been used for various image generation
tasks, such as image-to-image translation [Iso17], super-resolution [Led17], and style transfer
[Zhu17].

Face recognition is another application of neural networks for images. Face recognition
involves identifying a person from a picture of their face. CNNs have been used for face recog-
nition by extracting features from the face image and comparing them to a database of known
faces. DeepFace [Tai14] and FaceNet [Sch15] are two examples of CNN-based face recognition
systems that have achieved high accuracy on large-scale face recognition benchmarks.

Neural networks have also been used for medical image analysis tasks, such as tumour
segmentation [Hav17], lesion detection [Jaf16], and image registration [Wu13; Zha15]. U-Net
[Ron15] and its extensions, such as V-Net [Mil16] and 3D U-Net [Çiç16], have been widely used
for medical image segmentation. These architectures use skip connections to combine features
from different layers and have achieved state-of-the-art performance on various medical image
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segmentation benchmarks.
In conclusion, neural networks have great potential in various image processing and com-

puter vision tasks. In this section, we have explored some of the most common applications
of neural networks for images, including image classification, object detection, semantic seg-
mentation, image generation, face recognition, and medical image analysis. With the increasing
availability of large-scale labelled image datasets and advances in neural network architectures
and training methods, neural networks’ performance on these tasks is expected to improve.

3.4 Conclusion

In this chapter, we have introduced deep learning and its applications. We started with super-
vised learning, explaining how models can learn from labelled data to make predictions. We
then discussed the difference between regression and classification tasks, which are important
in many fields.

Next, we introduced neural networks inspired by the human brain. We explained how they
are composed of layers of neurons and can learn complex patterns in data. We also described
the backpropagation algorithm, which is essential for training neural networks by adjusting
the weights to minimise the loss function.

We also discussed different types of neural networks, such as Convolutional Neural Net-
works (CNNs) and Transformers. CNNs are very effective for image processing tasks because
they can capture spatial features in images. Transformers are a newer type of network that
uses attention mechanisms and are becoming popular in both natural language processing and
computer vision.

Finally, we looked at some applications of neural networks in image analysis, like image
classification, object detection, and semantic segmentation. These applications show how pow-
erful deep learning can be in solving complex problems.

This chapter provides the technical background needed to understand the methods used in
this thesis. With this foundation, we can now proceed to explore more advanced topics in the
following chapters.
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Chapter 4
Chan-Vese Attention U-Net: An
Attention Mechanism for Robust
Segmentation.

This chapter addresses the problem of object segmentation. Segmentation is a criti-
cal task in image analysis, particularly in applications requiring precise delineation
of objects. When studying the results of a segmentation algorithm using cnn, one
wonders how robust the results are. This leads to questioning the possibility of us-
ing such an algorithm in applications without room for doubt. In this chapter, we
present a new attention gate based on Chan-Vese energy minimisation, which uses
a standard CNN architecture such as the U-Net model to control the segmentation
masks more precisely. This mechanism allows us to obtain a constraint on the seg-
mentation based on the resolution of a PDE and allows the gradient to propagate
through the optimisation process. The study of the results allows us to observe the
spatial information retained by the neural network on the region of interest and ob-
tain competitive results on the binary segmentation. We illustrate the efficiency of
this approach for medical image segmentation on a database of brain images.

Objectifs
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4.1 Introduction

This is a joint work with Laurent D. Cohen. Accepted at GSI 2023 conference, it has
been published online as part of the Proceedings of the 6th International Conference on
Geometric Science of Information (GSI 2023).

Literature Review

Medical image segmentation is a crucial task that requires significant time and effort from med-
ical experts. Although various solutions, including Convolutional Neural Networks (CNNs),
have been proposed to automate this process, the need for efficient and reliable methods still ex-
ists. While CNNs have shown promising results in medical image segmentation, their opaque
reasoning and the sensitive nature of medical data raise concerns regarding their applicability
in real-world hospital settings, especially for medical staff who need to be trained in machine
learning. Researchers have explored integrating geometric or topological properties into neu-
ral networks to address these challenges and incorporate information beyond adjacent pixels
for segmentation tasks.

Convolutional neural networks have revolutionised image classification and segmentation,
with architectures like the fully convolutional network by Long et al. [Lon15] and the U-Net
by Ronneberger et al. [Ron15] standing out for their performance and versatility. These archi-
tectures have been extensively tested on various applications, such as MRI segmentation of
the brain [Kle16] and heart [Pop18], as well as CT scans of thoracic organs [Ger19]. Numer-
ous modifications have been made to improve the efficiency of these complex structures, but
challenges still need to be solved in achieving precise boundary delineation and incorporating
domain-specific knowledge.

One avenue of research has focused on combining CNNs with Active Contour Models
(ACMs) to leverage the strengths of both methods. One of the first papers on integrating neural
networks and active contours is by Rupprecht et al. [Rup16], who proposed integrating a CNN
with an ACM by training a class-specific CNN to predict a vector field that guides contour
evolution (See Figure 4.1). The method involves extracting small patches from the evolving
contour and predicting vectors pointing towards the nearest object boundary. The predicted
vector field is used to evolve the contour within a Sobolev space, as proposed by Sundaramoor-
thi et al. [Sun07], ensuring smooth and robust contour evolution while mitigating the impact
of spurious local predictions.

Soon after, another idea was proposed by Wang et al. [Wan18] also to mitigate user in-
formation. The authors proposed a novel integration of Conditional Random Fields (CRFs)
with Convolutional Neural Networks (CNNs) for interactive image segmentation. The method
leverages CRFs to model spatial dependencies with unary and pairwise potentials, where the
unary potentials are derived from CNN outputs, and the pairwise potentials are represented by
a flexible neural network called Pairwise-Net. This allows for learning freeform pairwise func-
tions rather than using fixed Gaussian functions, thereby enhancing the modelling of complex
relationships. The CRF is implemented as a Recurrent Neural Network (RNN) to facilitate end-
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to-end training with the CNNs. The iterative mean-field approximation method minimises the
Gibbs energy, updating the distribution to minimise the KL divergence. A key innovation is
incorporating user interactions as hard constraints within the CRF framework, using geodesic
distance transforms to convert user-provided scribbles into features. This ensures the segmen-
tation respects user inputs by setting the probabilities for user-labeled pixels accordingly. To
maintain computational efficiency, the pairwise connections are restricted to local patches, re-
ducing complexity and mitigating long-distance dependency issues that could corrupt segmen-
tation in medical images with low contrast. The Pairwise-Net is pre-trained using a synthetic
training set.

Building on this idea, Marcos et al. [Mar18] proposed “Learning Deep Structured Active
Contours End-to-End,” aiming to enhance the precision of building footprint segmentation by
integrating the geometric constraints inherent in ACMs with the robust feature learning capa-
bilities of CNNs (See Figure 4.2). Compared to Rupprecht et al. [Rup16], this work is one of the
first to allow the gradient of the ACM to update the weights of the CNN. The CNN predicts
the parameters of the ACM energy function, including data terms, curvature penalisation, and
balloon terms, guiding the ACM to fit object boundaries accurately. Training involves a struc-
tured prediction problem using a Structured Support Vector Machine (SSVM) loss, allowing
for end-to-end training. The SSVM loss function is convex but not necessarily differentiable.
Hence, the optimisation employs subgradient methods to find the most violated constraints
and update the network parameters through backpropagation.

In the medical domain, Hatamizadeh et al. [Hat19] proposed the “Deep Active Lesion Seg-
mentation” (DALS) framework (See Figure 4.3), integrating CNNs and ACMs to enhance lesion
segmentation in medical images. The method involves a CNN that predicts an initial proba-
bility map and local parameter maps to guide the ACM’s contour evolution. The ACM refines
the initial segmentation by evolving the contour to minimise an energy functional influenced
by these parameter maps. A structured loss, typically a Dice coefficient, measures the final
segmentation accuracy and backpropagates through the CNN to update its weights, indirectly
accounting for the ACM evolution. However, a limitation is that the CNN may focus on gener-
ating a perfect initial segmentation, potentially rendering the ACM step redundant. The ACM
provides a regularisation effect during early training stages rather than contributing directly to
the final segmentation accuracy.

Similarly, Akbarimoghaddam et al. [Akb22] introduced an innovative image segmentation
method that integrates CNNs with ACMs. The authors propose a Locally Controlled Distance
Vector Flow (LCDVF) to enhance the ACM’s effectiveness, leveraging CNN-predicted initiali-
sation and parameter maps for improved performance. The framework employs a dual CNN
architecture trained simultaneously: one CNN predicts the internal energy parameters of the
ACM and the balloon force, inspired by the DSAC approach. At the same time, the other CNN
generates a ground truth mask used to derive the initialisation circle and distance transform.
The ACM evolves a contour represented as a set of polygon points by minimising an energy
functional that combines external energy with spatially varying parameters predicted by the
CNN. This approach enhances capture range and reduces sensitivity to the initial contour lo-
cation.

The proposed DALS architecture. DALS is a fully automatic framework that does not re-
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Figure 4.1: The diagram illustrates the concept of combining Convolutional Neural Net-
works (CNNs) with Active Contour Models (ACMs) to guide contour evolution towards object
boundaries. The contour is evolved based on a vector field predicted by a CNN, where each
vector points towards the nearest boundary of the object. Ck represents a point where a small
patch Pk is extracted, with the normal vector νk pointing towards the object boundary and the
tangential vector ηk maintaining contour smoothness.(Figure from [Rup16]

Figure 4.2: DSAC idea. The CNN predicts the values of the energy terms to be used by the
active contour model (ACM): a global α for the length penalisation and maps for local D, the
data term, β, the curvature penalisation and κ, the balloon term. After ACM inference, a struc-
tured loss is computed and given to the CNN, whose parameters can then be updated using
backpropagation. (Illustration from [Mar18])
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Figure 4.3: The proposed DALS architecture. DALS is a fully automatic framework without
the need for human supervision. The CNN initialises and guides the ACM by learning local
weighted parameters.

quire human supervision. The CNN initialises and guides the ACM by learning local weighted
parameters. The methodology proposed in the paper from Chen et al. [Che19] integrates tra-
ditional Active Contour Models (ACMs) with Convolutional Neural Networks (CNNs) to im-
prove segmentation accuracy by incorporating geometric constraints directly into the loss func-
tion. The framework introduces a novel Active Contour Loss (AC Loss) function that combines
boundary length and region-based terms to ensure precise and smooth segmentation bound-
aries. The AC Loss function consists of two components: the Length term, which penalises the
length of the predicted segmentation boundary to encourage smoother contours, and the Re-
gion term, which measures the difference in intensity inside and outside the predicted contour
against the ground truth, ensuring accurate region delineation. The Length term is calculated
as the integral of the gradient magnitude of the predicted segmentation. In contrast, the Region
term is based on the mean intensities inside and outside the contour.

To address issues related to imbalanced class data and weak boundary delineation in med-
ical images, Le et al. [Le21] proposed a two-branch deep network architecture. The first branch
employs a conventional encoder-decoder network, such as a U-Net or Fully Convolutional Net-
work (FCN), to extract high-level semantic features and generate a coarse segmentation map.
The second branch, the Narrow Band Active Contour (NB-AC) attention model, focuses on
refining segmentation boundaries by concentrating on lower-level features around the object
contours. This model operates within a narrow band around the predicted contour, treating it
as a hyperplane and using the data within it to adjust its position and orientation. The NB-AC
model incorporates contour length and regional energy terms to enhance boundary precision,
guiding the contour to minimise boundary length while accurately fitting the region.

Furthermore, Wu et al. [Wu20] proposed the Deep Parametric Active Contours (DPAC)
framework, integrating CNNs with ACMs to enhance boundary precision and segmentation
accuracy. The CNN predicts local weighted parameter maps that guide the ACM’s evolution
by controlling the contour’s internal and external energy terms. The internal energy, influenced
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by elasticity and bending rigidity maps, penalises the curve’s length and curvature to maintain
smoothness. The external energy, driven by Gradient Vector Flow (GVF) and normal force
maps, directs the curve towards object boundaries. The DPAC framework is trained end-to-
end using backpropagation, adjusting the predicted parameter maps iteratively to evolve the
curve towards accurate boundaries in medical images.

In addition to these methods, other attempts have been made to integrate geometric or topo-
logical properties into neural networks. For instance, Zhang et al. [Zha20] presented a model
where the neural network predicts the parameters for initialising the active contour model and
an initial contour. Learning is achieved by combining the error produced by the neural network
with that from the active contour usage. Ma et al. [Ma20] proposed a fully integrated geodesic
active contour model, where the neural network learns to minimise the energy functional of
the model. This encoder-decoder network outputs a contour map instead of a probability map
for segmentation, based on the active contour method proposed by Caselles et al. [Cas97].

Despite these advancements, challenges remain due to CNNs’ opaque reasoning and the
sensitive nature of medical data, which raise concerns regarding their applicability in clinical
settings. With our proposed attention gate mechanism, we aim to study how neural networks
behave to produce the desired output segmentation, providing more transparency and inter-
pretability.

The rest of this chapter is organised as follows. In Section 4.2, we introduce our experimen-
tal procedure for the Chan-Vese Attention Gate. In Section 4.3, we present the main results of
our experiments and provide a discussion of our work.

This chapter introduces a novel hybrid approach combining classical segmentation tech-
niques based on functional energy minimisation with deep learning. Our method features a
new attention gate, the Chan-Vese Attention Gate, which integrates information from the level
sets method of the well-established Chan-Vese functional[Cha01]. In the proposed segmen-
tation framework, we integrate attention mechanisms within a standard convolutional neural
network architecture, enhancing the precision of region segmentation. Figure 4.4a illustrates
the use of skip connections and attention mechanisms. In contrast, Figure 4.4b demonstrates
incorporating the Chan-Vese model into the architecture to impose additional shape constraints
on the segmentation results. Unlike traditional deep learning methods that rely solely on the
neural network to improve image segmentation, our approach leverages resolution informa-
tion to achieve more accurate results.

To demonstrate the effectiveness of our method, we conducted comprehensive experiments
on the TCGA LGG database [Ped]. Given the sensitive nature of medical image segmentation, it
is crucial to ensure the validity of our results. Our approach achieved at least equivalent results
to previous networks while remaining simple to optimise, with only slightly longer computa-
tion time. Our approach represents a significant advancement in medical image segmentation,
offering a more accurate and efficient solution for this critical field.
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Skip Connection

Previous Expansion Layer

Attention

(a)

Skip Connection Input Image

Previous Expansion Layer

Chan-Vese Attention

(b)

Figure 4.4: (a) Visualization of the network architecture with skip connections and the pre-
vious expansion layer integrated with an attention mechanism. The attention mechanism is
used to refine the segmentation masks by focusing on regions of interest, improving precision.
(b) Diagram illustrating the input image, skip connection, previous expansion layer, and the
integration of Chan-Vese attention. This architecture enhances segmentation performance by
leveraging the Chan-Vese model to impose shape constraints on the segmentation process.
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4.2 Methodology

4.2.1 The U-Net architecture

The U-Net architecture [Ron15], a convolutional neural network, is widely used for medical
image segmentation. This process involves separating the regions of interest from the rest of
the image. This architecture is particularly effective because it maintains the structure of an
image during the transformation process, which involves converting an image into a vector,
processing it, and then converting it back into an image. This is achieved by using features
extracted during the contraction phase, also known as the encoding or downsampling path,
which helps to preserve important spatial information.

The U-Net architecture takes the shape of a "U", hence its name, and comprises three main
parts: contraction, transition, and expansion. The contraction path, the left side of the "U",
applies several blocks, each containing convolution and pooling layers. These layers work
together to capture the context in the image, with the number of feature maps doubling at
each stage, thereby increasing the depth of the network and enabling it to learn more complex
features.

The transition part, the bottleneck, uses convolution layers to create a compact image rep-
resentation, which helps reduce the network’s computational complexity. The expansion path
(which is the right side of the "U") uses a combination of convolution (See Section 3.2.4.1) and
up-sampling layers. These layers work together to recover the spatial information lost during
the contraction phase and to reconstruct the image. The number of expansion blocks is the
same as the number of contraction blocks, ensuring a symmetrical architecture that balances
the encoding and decoding of the image.

Finally, the network’s output is obtained through a last convolutional layer, which applies
a 1x1 convolution to map each component feature vector to the desired number of classes. This
final layer provides the segmentation map, highlighting the regions of interest in the image,
thereby completing the image segmentation process.

The U-Net architecture is particularly effective for medical image segmentation due to sev-
eral key features distinguishing it from other convolutional neural networks.

Firstly, U-Net uses many feature channels (See Section 3.2.4.1), up to 1024 in the original
implementation, allowing it to capture more contextual information and learn more complex
features. This is especially important in medical image segmentation, where the regions of
interest can be small and intricate, and their differences can be subtle (See Figure 4.6).

Secondly, U-Net uses skip connections, or shortcut connections, to concatenate the feature
maps from the contraction path to the corresponding feature maps in the expansion path. These
connections help preserve the spatial information lost during the pooling operations in the
contraction path. By combining the high-resolution features from the contraction path with the
up-sampled features from the expansion path, the network can make more accurate predictions
and produce more precise segmentation masks.

Thirdly, U-Net uses a symmetric architecture, with the number of expansion blocks being
the same as the number of contraction blocks. This symmetry helps to balance the encoding
and decoding of the image, ensuring that the network does not lose too much information
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Figure 4.5: The diagram illustrates the process of brain tumour segmentation using a convolu-
tional neural network (CNN). The brain’s input image, an MRI scan, is processed by a CNN to
extract key features, emphasising a specific region of interest (ROI) for detailed analysis. The
CNN produces both a feature map, representing the learned features of the input, and the final
binary output segmentation, where the white region highlights the segmented tumour area.

during the downsampling process and can recover the details during the upsampling process.
Finally, U-Net uses a pixel-wise softmax function (See Equation3.9) in the final layer, which

allows it to output a probability map for each class. This is particularly useful in medical image
segmentation, where the output is often a binary mask indicating the presence or absence of
a particular structure (See Figure 4.5). U-Net can provide more nuanced predictions by out-
putting a probability map, indicating the network’s confidence level for each pixel.

In summary, the U-Net architecture works best for medical image segmentation because it
captures more contextual information, preserves spatial information through skip connections,
balances the encoding and decoding of the image through a symmetric architecture, provides
nuanced predictions through a pixel-wise softmax function, and learns a global representation
of the image through end-to-end training.

In this chapter, we have based our study on the architecture of the U-Net [Ron15], which is
probably the most widely used CNN in medical image segmentation.

4.2.2 Attention Gate in U-Net architecture

This section explores the concept of attention within the UNet architecture. Attention, a funda-
mental element in various deep learning applications, is illustrated in Figure 4.7, emphasising
salient features while diminishing irrelevant background noise. Specifically, in the context of
UNet, attention mechanisms focus on significant objects, such as sheep, rather than the back-
ground, thereby enhancing the model’s efficiency by concentrating computational resources
on pertinent areas. This selective emphasis aids in better generalisation of the network without
necessarily increasing its compute time. The quality of results obtained from integrating atten-
tion into UNet will be examined in subsequent sections, where we will determine whether this
addition provides a marginal or substantial improvement over the standard UNet configura-
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Figure 4.6: A block diagram of the U-Net segmentation model. The input image is progres-
sively filtered and downsampled by a factor of 2 at each scale in the encoding part of the net-
work. N denotes the number of classes.

tion.
There are two primary types of attention mechanisms used within neural networks: hard

attention and soft attention.
Hard attention is characterised by explicitly localising relevant regions within an image by

segmenting specific areas of interest, such as sheep. These segmented regions are subsequently
processed independently through the convolutional network. However, hard attention em-
ploys discrete, non-differentiable operations, rendering standard backpropagation inapplica-
ble. Consequently, alternative learning strategies, such as reinforcement learning techniques or
Monte Carlo methods, are necessitated to optimise the region selection process. This introduces
computational complexity and increased resource requirements.

In contrast, soft attention operates by assigning continuous, differentiable weights to var-
ious parts of the image, thereby enabling the application of backpropagation. This mecha-
nism computes a weighted sum of the input features, with the weights learned and refined
during training. Soft attention empowers the model to dynamically adjust its focus based on
the relevance of different regions, thereby enhancing feature extraction and overall network
performance. The training involves gradually optimising these weights via gradient descent,
allowing the model to concentrate on pertinent areas as training epochs increase progressively.

The implementation of soft attention typically involves the following steps:

1. Linear transformation of the input features into query, key, and value vectors;

2. Computation of attention scores by comparing the query vectors with the key vectors,
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Figure 4.7: The image illustrates a sheep being highlighted by an attention mechanism within
a deep learning model. The attention map focuses on the key features of the sheep, such as
its body and head, emphasising the regions most relevant for the model’s decision-making
process. This visual representation shows how the attention mechanism directs the model’s
focus, enabling more accurate identification and segmentation of the sheep in the image.

often using dot-product or scaled dot-product;

3. Normalisation of the attention scores, typically using the softmax function, to produce
attention weights;

4. Generation of context vectors, which emphasise essential features, by weighting the value
vectors by the attention weights.

Soft attention is computationally efficient and integrates seamlessly for various Deep Learn-
ing tasks. This flexibility makes it particularly suitable for complex tasks such as image cap-
tioning, machine translation, and visual question answering, where discerning and prioritising
specific parts of the input data is critical.

In the case of transformers the self-attention module works as follows: imagine you have a
sentence broken into four tokens (words or subwords) and want to understand the connection
between these tokens. Self-attention helps the model do this by processing each token with
respect to all the others.

The process begins by creating three vectors for each token: Query (Q), Key (K), and Value
(V) vectors. The query represents the current token, and the key vector represents all the other
tokens it is compared against. For each token, its query is compared with the keys of every
other token (including itself), and this comparison gives a score that tells us how much at-
tention should be paid to the other tokens. Figure 4.81 graphically presents the self-attention
module’s different steps for better understanding in the case of Natural Language Processing,
where the input is a series of tokens.

Once we have these scores, we use them to weigh the value vectors (which contain the
information of the tokens) and sum them up. Tokens with higher scores will contribute more

1Illustrations inspired by the blog post of Jay Alammar on GPT2. https://jalammar.github.io/illustrated-gpt2/
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Self-Attention

Compute Q, K, V

Score

Sum

(a) An overview of self-attention computation, il-
lustrating the process of generating Query (Q), Key
(K), and Value (V) vectors from input tokens, fol-
lowed by calculating the attention scores.

Self-Attention

(b) Illustration of the process to create the query,
key and value vectors for each input token by mul-
tiplying by weight matrices WQ,WK ,WV .

Self-Attention

Soft(arg)max

Score

(c) Depiction of how the query vector of one to-
ken is compared against the key vectors of other
tokens to compute attention scores in the self-
attention mechanism. Illustrating the use of the
softmax function to normalise attention scores,
making them interpretable as probabilities in the
self-attention process.

Self-Attention

Sum

Score

(d) Visualisation of how attention scores are used
to weight the value vectors and produce a final out-
put that captures the contextual relationships be-
tween tokens.

Figure 4.8: The images provide a step-by-step visualisation of the self-attention mechanism in
a neural network. Each subfigure illustrates different stages, from generating query, key, and
value vectors (a, b) to computing and normalising attention scores (c) and finally producing
the output by weighting the value vectors based on these scores (d).
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to the final result, capturing the essential context. After applying this self-attention process for
all tokens, the model better understands each token in relation to others, which is then passed
to the next layer in the network.

Recent advancements in attention mechanisms have led to the development of self-attention
and the Transformer architecture, which extend the principles of soft attention to capture long-
range dependencies and contextual relationships within data. In self-attention mechanisms,
each input sequence element attends to all other elements, enabling the model to construct a
global context and significantly improve performance on tasks involving sequential data. Us-
ing multi-head self-attention, the Transformer architecture further enhances this capability by
allowing the model to simultaneously focus on different aspects of the input.

To recall, the architecture of a standard U-Net is characterised by repetitive convolutional
blocks and prominent skip connections. The skip connections play a vital role in maintain-
ing spatial information that is progressively downsampled in the encoder path and later up-
sampled in the decoder path. This retained spatial information offers essential context that
facilitates output reconstruction during upsampling. However, a challenge emerges due to the
relatively weak feature representations in the early stages of the encoder path, as these layers
primarily capture rudimentary features.

Soft attention mechanisms can be incorporated into the skip connections to address this
limitation. By introducing attention gates at these junctions, weights can be assigned to specific
regions of interest, such as mitochondria in an image. These attention gates amplify the model’s
focus on relevant features, enhancing overall feature representation.

In a U-Net augmented with attention mechanisms, each skip connection is equipped with
an attention gate, comprising two main components: the gating signal (query) and the in-
put from the skip connection. The gating signal, originating from deeper layers, contains rich
feature information, while the input from the skip connection offers spatial information from
earlier layers. The attention mechanism aligns these inputs, generating attention coefficients
highlighting significant features.

The efficacy of this approach is demonstrated by the progressively refined attention co-
efficients over multiple training epochs. These coefficients become increasingly concentrated
on the regions of interest as training advances, illustrating the model’s enhanced capacity to
prioritise relevant features.

To understand the attention gate within the U-Net architecture (See Figure 4.9), it is essen-
tial to analyse its constituent components and operations. The attention gate primarily takes
two inputs: x and g. The input g denotes the gating signal, typically derived from a deeper
layer in the network, and thus contains rich feature representations. In contrast, x represents
the input from an earlier layer, which carries detailed spatial information but weaker feature
representations.

Due to their respective positions in the network, the gating signal g and the input x often
have different dimensionalities. Both inputs undergo a 1×1 convolution to address this. For g,
this convolution preserves its original dimensions, while for x, a stride of 2×2 is applied, effec-
tively reducing its spatial resolution by half. After the convolution, both tensors are reshaped
to a matching dimension of 64× 64× 128, where 128 signifies the number of filters.

The reshaped tensors are then added element-wise, taking advantage of the fact that aligned
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Figure 4.9: A block diagram of the Attention U-Net segmentation model. The input image is
progressively filtered and downsampled by a factor of 2 at each scale in the encoding part of the
network. N denotes the number of classes. Attention gates (AGs) filter the features propagated
through the skip connections. Schematic of the AGs is shown in Figure 4.10. Feature selectivity
in AGs is achieved by use of contextual information (gating) extracted in coarser scales. (Figure
inspired by [Okt18]
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weights (e.g., 0.9 and 0.9) result in larger summed values (e.g., 1.8), while unaligned weights
(e.g., 0.1 and 0.1) yield relatively smaller sums (e.g., 0.2). This additional step accentuates sig-
nificant feature alignments. The resulting tensor is passed through a ReLU activation function,
eliminating negative values and maintaining positive ones linearly.

Next, a 1 × 1 convolution is applied to the activated tensor, generating a single-channel
output of size 64× 64× 1. These values, essentially the attention weights, are then normalised
to a [0,1] range via a sigmoid function. To match the original dimensions of x, these weights
are upsampled to 128× 128.

The final step entails element-wise multiplication of the upsampled weights with the input
x, adjusting each pixel value in x based on its corresponding weight. This process dynamically
enhances the significant regions in x during training, as these weights are refined iteratively
through backpropagation.

To implement this in code, the attention block can be structured as follows:

1. Convolution Operations:

• θ(x): 1× 1 convolution with a stride of 2× 2 applied to x.

• ϕ(g): 1× 1 convolution applied to the gating signal g.

2. Addition and Activation:

• The outputs of θ(x) and ϕ(g) are added element-wise and passed through a ReLU
activation.

3. Attention Coefficients:

• Apply a 1 × 1 convolution with a single filter to the activated sum to produce the
attention coefficients.

• Normalise these coefficients using a sigmoid function.

4. Upsampling:

• Upsample the normalised coefficients to the original dimensions of x.

5. Element-wise Multiplication:

• Multiply the upsampled coefficients with x element-wise.

Here is a brief implementation:

def attention_gate(x, g):

theta_x = Conv2D(128, (1, 1), strides=(2, 2))(x)

phi_g = Conv2D(128, (1, 1))(g)

add_xg = Add()([theta_x, phi_g])

relu_xg = Activation(’relu’)(add_xg)

psi = Conv2D(1, (1, 1))(relu_xg)

sigmoid_xg = Activation(’sigmoid’)(psi)
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upsampled_psi = UpSampling2D(size=(2, 2))(sigmoid_xg)

y = Multiply()([upsampled_psi, x])

return y

This function aligns x and g, computes the attention coefficients, normalises them, and
applies them to the input x. The attention gate thus refines feature representations, enhancing
the U-Net’s ability to focus on significant features. As demonstrated in subsequent images from
the referenced paper, the attention coefficients become increasingly focused on the regions of
interest as training progresses, illustrating the effectiveness of this method.

4.2.3 Chan-Vese Energy Minimization

We briefly recall the Chan-Vese method, presented in 2.3.2, used to segment a binary image.
Let I be the given grayscale image on a domain Ω to be segmented. The Chan Vese method
looks for a piece-wise constant approximation of an image where two regions are separated
by an unknown boundary curve C. This is obtained through the minimisation of the following
energy depending on curve C and the constant values c1 and c2 inside and outside the curve:

E(C, c1, c2) = µ× Length(C) + ν ×Area(inside(C))

+ λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy + λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy, (4.1)

where µ, λ1, λ2 are positive constants.
Energy minimisation is simplified by replacing the curve C with a level set function ϕ. The

inside region is then the set where ϕ > 0 and the outside region the set where ϕ < 0. With the
help of the Heavyside function H , the energy becomes:

F (c1, c2, ϕ) = µ

∫
Ω
δ(ϕ(x))|∇ϕ(x)|dx+ ν

∫
Ω
H(ϕ(x))dx

+ λ1

∫
Ω
|I(x)− c1|2H(ϕ(x))dx+ λ2

∫
Ω
|I(x)− c2|2(1−H(ϕ(x)))dx, (4.2)

where the term following µ represent the length of the contour, ν the area inside the contour
and δa the Dirac mass. This is useful since now all integrals are on the whole domain Ω, and
differentiation is thus made simpler.

(P ) : arg min
c1,c2,ϕ

F (c1, c2, ϕ) (4.3)

Minimisation is solved using the associated Euler-Lagrange Equation that evolves ϕ instead of
evolving directly curve C.
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4.2.4 Chan-Vese Attention in U-Net architecture

We propose an enhanced attention mechanism integrated into the U-Net architecture to im-
prove the accuracy of medical image segmentation. Building upon the attention method in-
troduced by Oktay et al. [Okt18], which highlights informative regions in skip connections,
our approach incorporates information from the Chan-Vese method to perform intermediate
segmentation at each block of the expansion phase.

As illustrated in Figures 4.10 and 4.11, the feature representation from the skip connection
at layer l, denoted as X l

i ∈ RFl for spatial position i, is combined with a gating vector gi ∈
RFg , which contains contextual information from the previous layer. Following the additive
attention formulation, the attention coefficients αli ∈ [0, 1] are computed as:

qlatt = ψ⊤
(
σ1

(
W⊤
x X

l
i +W⊤

g gi + bg

))
+ bψ, (4.4)

αli = σ2

(
qlatt

)
, (4.5)

where σ1 is the ReLU activation function, σ2(x) = 1
1+exp(−x) is the sigmoid function, Wx ∈

RFl×Fint and Wg ∈ RFg×Fint are weight matrices, bg ∈ RFint and bψ ∈ R are bias terms, ψ ∈ RFint

is a weight vector, and Fint is the number of intermediate features. The attention coefficients
modulate the feature map by element-wise multiplication: X̂ l

i = X l
i · αli, allowing the network

to focus on salient regions relevant to the segmentation task.
To refine the attention mechanism, we apply a differentiable distance transform D (See

Section 2.5) to the attention coefficients, obtaining a transformed attention map:

βli = D(αli) = −λ log
(
αli ∗ exp

(
−d(·, 0)

λ

))
, (4.6)

where d(·, 0) is the Euclidean distance to the zero level-set, ∗ denotes convolution, and λ is
a scaling parameter. This transformed map βli serves as the initial contour for the Chan-Vese
segmentation.

In addition to the main branch, we introduce a secondary branch to emphasise the tumor-
ous regions of the input image I ∈ RN×H×W×C , where N is the batch size, H and W are the
height and width, and C is the number of channels. The input image is resized to match the
dimensions of layer l and transformed as:

γli = σ2

(
W⊤
x′

(
W⊤
x′X

l
i + σ2(Ii)

)
+ bW

)
, (4.7)

where Wx′ is the weight matrix for the 1 × 1 convolution, bW is a bias term, and Ii is the
input image at position i. The transformation γli reduces the intensity in regions far from the
tumour, mitigating the inclusion of undesirable areas in the segmentation.

Finally, the segmentation mask and refined attention coefficient ζ li are obtained by solving
the Chan-Vese problem:

ζ li = CV(γli, β
l
i, µ, ν), (4.8)
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where CV denotes the Chan-Vese segmentation function, and µ and ν are positive regular-
isation parameters controlling the smoothness and fidelity of the segmentation. The function
CV iteratively segments the image γli using βli as the initial contour, enhancing the network’s
ability to focus on the most relevant features.

The integration of the Chan-Vese method into our attention mechanism offers several ben-
efits:

1. Intermediate Segmentation: It enables the network to perform intermediate segmenta-
tion at each block of the expansion phase, improving the final segmentation accuracy.

2. Facilitated Learning: It provides a control signal that facilitates learning and enhances
convergence during training.

3. Focused Attention: By emphasising the tumorous regions, the network improves its fo-
cus on critical areas in medical images.

In summary, our proposed attention method extends the mechanism by Oktay et al. [Okt18]
by incorporating the Chan-Vese method and a secondary branch emphasising tumorous re-
gions. This approach refines the attention maps, allowing the network to concentrate on the
most relevant features while ignoring irrelevant ones, thereby enhancing the accuracy of med-
ical image segmentation.

4.2.5 Differentiability of the Optimisation Problem

In the proposed model, we integrate the Chan-Vese method within an attention mechanism to
enhance segmentation in a U-Net-like architecture for medical imaging. This approach raises
differentiability and optimisation challenges, especially when using non-differentiable compo-
nents such as distance transforms and algorithms like the Chan-Vese segmentation.

The central issue in this integration is the differentiability of the Chan-Vese method and its
reliance on the distance transform. Traditionally, the Euclidean Distance Transform (EDT) and
the Chan-Vese model are not directly differentiable. This poses a problem in end-to-end neural
network training, where gradients are required for backpropagation.

To solve the issue with the non-differentiability of the Euclidean Distance Transform usual
implementation, we use a differentiable variant of the Euclidean Distance Transform, as pro-
posed by Pham et al. [Pha21]. The distance transform, Dx, used in our attention block takes
a feature map and computes the distance of each pixel to the nearest boundary, ensuring that
this operation remains compatible with gradient-based optimisation.

The formula for the differentiable distance transform is:

D(αli) = −λ log(αli ∗ exp
(
−d(·, 0)

λ

)
). (4.9)

This transformation uses convolution ∗ with a kernel that smooths the distance field, mak-
ing it differentiable.

@jit

def CDT(I, k):
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l = 0.35

n,h,w,c = I.shape

[X,Y] = jax.numpy.meshgrid(jax.numpy.linspace(-jax.numpy.floor(k/2),jax.numpy.

floor(k/2),num=7), jax.numpy.linspace(

-jax.numpy.floor(k/2),jax.numpy.floor(

k/2),num=7))

dis_0 = jax.numpy.exp(-jax.numpy.sqrt(X**2 + Y**2)/l)

dis = jax.numpy.reshape(jax.numpy.dstack([dis_0]*n),(n,c,7,7))

return -l * jax.numpy.log(lax.conv_general_dilated(I,dis,window_strides=(1,1),

padding=’SAME’,dimension_numbers=(’

NHWC’, ’OIHW’, ’NHWC’)))

@jit

def CCDT_2(I, s, k):

n,h,w,c = I.shape

D_star = jax.numpy.reshape(jax.numpy.nan_to_num(CDT(I,k),posinf=0.0)[:,:,:,0],(n

,h,w,c))

flat = D_star > 0

D = D_star

I = I + flat

pad = jax.numpy.floor(k/2)

def for_loop(idx, input):
conv = CDT(input[1],7)
D_star = jax.numpy.reshape(jax.numpy.clip(jax.numpy.nan_to_num(conv ,posinf=

0.0),0)[:,:,:,0],(n,h,w,c))

flat = D_star > 0

I = input[1] + flat

D = input[0] + (idx * pad) * flat + D_star

return D, I

D, I = lax.fori_loop(lower=0, upper=50, body_fun=for_loop, init_val=(D,I))

return D

Moreover, to facilitate differentiability in the Chan–Vese optimisation problem, as is con-
ventionally done, we employ smooth approximations of the Heaviside and Dirac delta func-
tions.
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4.3 Experiments

In this study, we used the TCGA LGG database, an openly available online repository [Ped]
containing magnetic resonance imaging (MRI) 2D images of brain tumour patients. The database
comprises 110 patients from The Cancer Genome Atlas (TCGA) lower-grade glioma collec-
tion, with genomic cluster data and at least one fluid-attenuated inversion recovery (FLAIR)
sequence available. Table 5.1 summarises the experimental results. We have used 2D MRI
images as our learning and training datasets. We have set aside ten patients’ data to form an
as-independent test set as possible (whereas two images from the same patient can be sepa-
rated in the training and validation set, test data are always the result of a different acquisition
from the training and validation set).

Implementation Details We used a large batch of 32 for gradient update, and the model
parameters are optimised using an adamW optimiser [Los17] with learning rate 5 × 10−4 and
batch normalisation. We applied standard data augmentation (resize, horizontal flip, vertical
flip, random rotate, transpose, shift and scale, normalise). The Chan-Vese parameters µ and
ν are set respectively to 0.1 and 1.0. To optimise the model’s performance and to penalise the
error between the prediction mask x and the ground truth mask y, we used a combination of
Dice loss and Binary Cross-Entropy (BCE) loss (Equation 5.8).

LS(x, y) =
2×

∑N
i=1 xiyi∑N

i=1 xi +
∑N

i=1 yi
+

1

N

N∑
i=1

−(yi log(xi) + (1− yi) log(1− xi)). (4.10)

The Dice loss helps manage class imbalance, while BCE loss ensures stable learning, making
the combination of these losses effective for accurate mask prediction. Specifically, Dice loss
emphasises overlap between the prediction and ground truth (See Figure 4.12), particularly for
smaller regions, while BCE provides pixel-wise precision and helps optimise the probability
outputs during training. The added attention layer slows the training by an average of 1 sec out
of 7 sec per batch. The code is written in Jax using the Haiku framework. The implementation
parameters are summarised in Figure 4.13.

4.3.1 Segmentation Results

This study compares our proposed attention-based U-Net model with the classical U-Net and
the original Attention U-Net. The experimental results are summarised in Table 5.1. Our pro-
posed model demonstrated superior performance in terms of Intersection over Union (IOU)

Table 4.1: Segmentation results (IOU) on the TGCA_LGG brain MRI database. Significant re-
sults are highlighted in bold font

Name Dice IOU Hausdorff FPR FNR
UNet 0.832 0.829 2.390 0.010 0.013
Attention UNet 0.830 0.833 2.416 0.009 0.015
Chan-Vese UNet 0.824 0.848 2.329 0.012 0.013
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Prediction

Ground Truth

Prediction

Ground Truth

Figure 4.12: Illustration of predicted segmentation versus ground truth segmentation for eval-
uating the Dice metric.

32 images per batch

7sec vs 6sec

AdamW

Augmented Data

Figure 4.13: This diagram showcases the key hyperparameters used in the model, such as batch
size (32 images per batch), optimisation algorithm (AdamW), and the impact of augmented
data on training speed (7 seconds per batch vs. 6 seconds per batch)
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Prediction

Ground Truth

Prediction

Ground Truth

Figure 4.14: Illustration of predicted segmentation versus ground truth segmentation for eval-
uating the Intersection over Union (IoU) metric. The overlap and differences between the two
masks are used to compute the IoU score.

scores and improved false negative performance.
The IOU score is a commonly used metric for evaluating the accuracy of image segmen-

tation. It measures the overlap between the predicted and ground truth segmentation (See
Figure 4.14). A higher IOU score indicates better segmentation accuracy. Our proposed model
achieved higher IOU scores than the classical U-Net and the original Attention U-Net, suggest-
ing that it produces more accurate segmentation results.

In addition to the improved IOU scores, our proposed model demonstrated improved false
negative performance. False negatives occur when the model fails to detect a region of interest
in the input image. This can be particularly problematic in medical image segmentation, where
missing a tumour or other abnormality can have serious consequences. Our proposed model’s
ability to focus on a smaller area of interest and integrate the Chan-Vese method enables more
effective capture of relevant information, reducing the risk of information loss and improving
false negative performance.

The integration of the Chan-Vese method in our proposed model provides several benefits.
First, it allows the network to perform intermediate segmentation for each block of the expan-
sion phase, improving the final segmentation’s accuracy. Second, it provides a control signal
to facilitate learning and enhance the network’s convergence. Finally, it allows the network to
focus on the tumorous region of the input image, which is often the most critical region for
medical image segmentation.

In summary, our proposed attention-based U-Net model demonstrated superior perfor-
mance regarding IOU scores and false negative performance compared to the classical U-Net
and the original Attention U-Net. This can be attributed to the model’s ability to focus on a
smaller area of interest and the integration of the Chan-Vese method, which enables more ef-
fective capture of relevant information and reduces the risk of information loss. These results
demonstrate the potential of our proposed model for improving the accuracy of medical image
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segmentation.

4.3.2 Chan-Vese Attention Masks analysis

The results of the attention layer, as shown in Figure 4.15, demonstrate the effectiveness of
our proposed attention-based U-Net model with the integration of the Chan-Vese method.
With Chan-Vese, the attention mask quickly converges to a tumour-like segmentation. This
is achieved by taking advantage of the minimisation of the Chan-Vese energy from the initiali-
sation of the mask, which is inspired by the attention method of Oktay et al. [Okt18]. Addition-
ally, using the initial image to be segmented further enhances the accuracy of the segmentation.

As the segmentation process progresses, the contours of the tumour become more precise,
and the active intensity of the tumour becomes the confidence in the energy to be minimised.
This is achieved using the 0 level set, which enables the neural network to selectively prioritise
the tumour area during segmentation. By focusing on the tumour area, the network can better
capture the relevant features and reduce the risk of information loss.

Once the tumour area has been prioritised, the upper-level set is subsequently employed
to refine the segmentation. This step further improves the accuracy of the segmentation by
refining the boundaries of the tumour and ensuring that the segmentation closely matches the
ground truth.

Overall, the results of the attention layer demonstrate the effectiveness of our proposed
attention-based U-Net model with the integration of the Chan-Vese method for medical im-
age segmentation. By quickly converging to a tumour-like segmentation and prioritising the
tumour area during segmentation, the network can better capture the relevant features and re-
duce the risk of information loss. The subsequent use of the upper-level set further improves
the accuracy of the segmentation, resulting in more precise and accurate segmentation results.

4.3.3 Comparison with Attention UNet

Figure 4.16 compares the attention output of our proposed Chan-Vese Attention Module and
the classical Attention Module. Both methods allow the neural network to focus on the tumour
area, highlighting the importance of attention mechanisms in medical image segmentation.

However, it should be noted that the method proposed by Oktay et al. [Okt18] obtains a
finer mask on specific details of the tumour but needs to manage to rank the confidence of the
presence of the tumour in the framework of our study. This can result in artefacts outside the
tumour area that do not correspond to the object of interest in the image. These artefacts can
be problematic as they can lead to false positives and reduce the accuracy of the segmentation.

In contrast to these observations, our proposed Chan-Vese Attention Module focuses only
on the tumour area inside the skull. This is achieved by integrating the Chan-Vese method
into the attention mechanism, enabling the network to capture the relevant features better and
reduce the risk of information loss. By focusing only on the tumour area, the network can
produce more accurate segmentation results and reduce the risk of false positives.

Furthermore, the Chan-Vese method in the attention mechanism provides several benefits.
It allows the network to perform intermediate segmentation for each block of the expansion
phase, improving the final segmentation’s accuracy. It also provides a control signal to facilitate
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learning and enhance the network’s convergence. Finally, it allows the network to focus on the
tumorous region of the input image, which is often the most crucial region for medical image
segmentation. The last image in Figure 4.17 shows the confidence of the segmentation as level-
set.
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4.4 Partial Conclusion

This chapter presents a novel approach to image segmentation that combines classical en-
ergy minimisation techniques with deep learning architectures. Specifically, we introduced
the Chan-Vese Attention Gate, an attention mechanism integrated into the U-Net model to en-
hance segmentation accuracy. By incorporating the Chan-Vese energy minimisation within the
attention gates, our method allows for more precise control over the segmentation masks and
enables the gradient to propagate through the optimisation process.

Our approach addresses the critical challenge of robust object segmentation, particularly in
medical imaging applications where precise delineation is essential. Traditional convolutional
neural networks like U-Net have demonstrated impressive performance in segmentation tasks
but often cannot explicitly integrate geometric and topological constraints. By embedding the
Chan-Vese model into the attention mechanism, we leverage prior knowledge about the ob-
ject’s shape and structure, leading to improved segmentation results.

Through comprehensive experiments on the TCGA LGG brain MRI database, we demon-
strated that our method achieves competitive results in binary segmentation tasks. The inte-
gration of the Chan-Vese Attention Gate improved the Intersection over Union (IoU) scores
compared to the classical U-Net and the original Attention U-Net and reduced false negatives,
which is crucial in medical diagnostics. The attention masks generated by our model focused
on the tumour regions, confirming the effectiveness of our approach in capturing spatial infor-
mation relevant to the regions of interest.

Moreover, our method maintains computational efficiency, with only a slight increase in
computation time due to the added attention mechanism. The differentiability of the optimi-
sation problem was addressed by employing a differentiable variant of the Euclidean distance
transform, ensuring seamless integration into the neural network’s training process.

In conclusion, the Chan-Vese Attention Gate offers a promising direction for enhancing
segmentation models by combining the strengths of classical energy minimisation and deep
learning. This hybrid approach provides more control over the segmentation process and can
be particularly beneficial in medical imaging, where accuracy and reliability are very impor-
tant. Future work could extend this mechanism to multi-class segmentation problems and
investigate its applicability to other imaging modalities and domains. Additionally, integrat-
ing other geometric constraints and further optimising computational efficiency could broaden
the impact and utility of this method.
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Figure 4.17: Level set recovered by Chan-Vese alongside the energy surfaces
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Chapter 5
Fast Marching Energy CNN

In this chapter, we focus on solving a segmentation problem by leveraging geodesic
distances and the rich geometrical information they provide, which is essential for
many imaging applications. Geodesic distance computation has been used for im-
age segmentation for a long time using Image-based metrics. We introduce a new
method by generating isotropic Riemannian metrics adapted to a problem using
CNN and illustrate an application example. We then apply this idea to the segmen-
tation of brain tumours as unit balls for the geodesic distance computed with the
metric potential output by a CNN, thus imposing geometrical and topological con-
straints on the output mask. We show that geodesic distance modules work well in
machine learning frameworks and can achieve state-of-the-art performances while
ensuring geometrical and topological properties.
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5.1 Introduction

This is a joint work with Théo Bertrand and Laurent D. Cohen. It was accepted at the
SSVM 2023 conference and published online as part of the Proceedings of the 9th Inter-
national Conference on Scale Space and Variational Methods in Computer Vision (SSVM
2023).

In this chapter, we aim to segment a region defined as the set of points in the image whose
geodesic distance from a source point falls below a specified threshold. In this context, we
consider the region to be a geodesic ball with respect to the learned metric.

Geodesic curves and distances have been extensively used to convey geometric properties
in various applications, from computer vision and medical imaging to robotics [Rat09] and
geophysics. Traditional methods in these domains typically rely on prior knowledge of the task
to explicitly construct a Riemannian metric g from data. This metric is then used to compute
geodesic distances, which are integral to understanding the underlying geometry of the data.
However, this approach introduces a bias in the choice of the metric tensor, as it requires users
to make arbitrary decisions and perform manual parameter tuning.

To address this issue, the approach presented in this work aims to eliminate the bias intro-
duced by manual metric selection. We propose a novel framework that generates the metric
tensor directly from data using a Neural Network architecture. The parameters of this neu-
ral network are optimised through a supervised learning approach using training data. By
learning the metric from data, we circumvent the need for subjective decisions and fine-tuning,
making the process more objective and adaptable. The neural network architecture employed
in this work is designed to take raw data as input and output a metric tensor that best rep-
resents the geometric structure of the data. The network is trained using a loss function that
measures the discrepancy between two segmentation masks, one generated using the image’s
predicted metric and the geodesic distance computation. By minimising this loss, the network
learns to create a metric that accurately captures the intrinsic geometry of the data.

The use of geodesic distances in segmentation tasks has a long history. To the authors’
knowledge, the first article to segment an image’s region using a minimal path distance and
fast marching is Malladi et al. [Mal98], with application on a 3D brain image. For the segmen-
tation of tubular tasks, we can refer to Chen et al. [Che16] for instance, a method that segments
the 3D vascular tree by propagating the front of the minimal path distance computation. Sim-
ilarly, Cohen et al. [Coh07] segments vascular structures by introducing an anisotropic metric,
determined dynamically by evaluating local orientation scores during the Fast Marching com-
putations. Those three articles already use the level sets of the geodesic distance (or "geodesic
balls") to provide the segmentation mask. We also mention Cohen et al. [Coh97]. They present
a boundary detection method that finds the global minimum of an active contour model’s en-
ergy, improves initialisation, avoids local minima, and detects closed contours by minimising
path length in a Riemannian metric using an efficient numerical method. These works gener-
ally avoid treating the task holistically and focus on providing a good model for segmenting
structures. In contrast, this work tries to treat the problem end-to-end and generalise to a large
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dataset of input images.
Only a few previous methods are interested in learning a metric from data. We may men-

tion recent works such as Scarvelis et al. [Sca22] and Heitz et al. [Hei21] that try to find metric
tensors that fit spatio-temporal data to capture the velocity fields and underlying geometry of
the data. The first paper models trajectories as the solutions of a dynamic system generated
by a neural network, considering the dynamics of the whole population by penalising an opti-
mal transport cost between two consecutive timestamps. However, [Hei21] tries to interpolate
a sequence of histograms with Wasserstein barycenters by optimising over the metric tensor
appearing in the ground cost. Also, there are important links between the Wasserstein optimal
transport, its dynamical formulation and geodesics; for further reading, we refer to Ambrosio
et al. [Amb21]. These works propose interesting frameworks but must be more focused on
generalising the generation of the metric tensors.

[Ben10] is an older article important for our work, as they laid the ground for differentiating
the geodesic distance concerning the metric in the Fast Marching algorithm. They then proceed
to apply it in the setting of inverse problems to retrieve the metric from distance measurements.
Its only concern was to solve inverse problems involving the geodesic distance, whereas we go
one step further by including a Fast Marching module in a deep learning segmentation proce-
dure. The sub-gradient marching algorithm is briefly described in section 2 as it is essential to
our framework to propagate through the Fast Marching module and carry the learning step.

Regarding Deep Learning, please refer to Chapter 3. For a review of deep learning methods
in medical imaging, one might refer to Zhou et al. [Zho21]. The general techniques of directly
producing segmentation from medical images are already quite efficient. Still, they need more
robustness and impose more structure on the segmentation that comes out of the network.
Contrary to this, our work imposes many constraints on the topology of the segmented region
(namely, a set with trivial topology).

The rest of the chapter is structured as follows. We present the isotropic problem, where
the metric tensor is uniform in all directions. Following this, we delve into the fast marching
method, a popular algorithm for computing geodesic distances efficiently. We explain how
geodesic distances and their gradients can be calculated using sub-gradient methods, provid-
ing the mathematical foundation for understanding how geodesic distances are computed and
how they can be used to analyse data geometry.

Next, we introduce our method for Fast Marching Energy CNN. This novel architecture
combines the strengths of convolutional neural networks and fast marching methods for ef-
ficient and accurate geodesic distance computation. This model leverages the learned metric
tensor to compute geodesic distances that respect the underlying geometric structures of the
data. We then present the main results of our experiments on the brain tumour MRI image
dataset. We compare the performance of our method with traditional approaches that rely on
manually designed metrics. The results show that our method achieves higher segmentation
accuracy and a remarkable ability to learn from data and generalise to unseen data.

Subsequently, we discuss the limitations of the isotropic approach and introduce the anisotropic
problem, where the metric tensor varies with direction. This section highlights the need for
methods to handle directional information and the challenges associated with anisotropic met-
rics. We explore an alternative approach to computing geodesic distances using the heat equa-
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tion and Varadhan’s formula. This method leverages automatic differentiation to calculate the
gradients of geodesic distances, providing a more flexible and efficient way to analyse the ge-
ometry of data.

We then present a modified version of our model that uses an approach similar to the
isotropic model but incorporates directional information. This model aims to address the limi-
tations of the isotropic approach while maintaining the efficiency of the fast marching method.
Following this, we introduce a second model that uses a probability map and Kullback-Leibler
(KL) regularisation to handle the anisotropic problem. This model leverages probabilistic meth-
ods to capture the directional information and regularise the metric tensor, leading to more
accurate geodesic distance computations.

We present the results of our experiments using the modified models on the brain tumour
MRI image dataset. We compare the visual performance of Model 1 and Model 2 with the orig-
inal isotropic model and discuss the improvements achieved by incorporating directional in-
formation. Finally, we conclude with a summary of our contributions and potential directions
for future research. We discuss the implications of our work for medical imaging and other
applications and highlight the potential of learning-based approaches for geometric data anal-
ysis. By structuring the chapter in this manner, we aim to provide a comprehensive overview
of our approach to learning geodesic distances from data, addressing both the isotropic and
anisotropic problems and demonstrating the effectiveness of our methods through extensive
experiments.

5.2 Isotropic Geodesic Case

5.2.1 Computing geodesic distances and their gradient

The geodesic distance is a fundamental concept in the field of Riemannian geometry (See Sec-
tion 2.4), and it is used to quantify the distance between two points on a (compact, path-
connected) manifoldM. It is defined as the minimal length of all possible paths linking two
points on the manifold.

Formally, the geodesic distance is given by the following :

dg(x, y) = inf
γ∈Lip([0,1],M),γ(0)=x,γ(1)=y

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt, (5.1)

where Lip([0, 1],M) is the space of Lipschitz curves on the manifoldM and parameterized
by the interval [0, 1]. g is a metric tensor, which is a map defined at each point x ∈ M as
gx : (u, v) ∈ TxM2 7→ gx(u, v) is positive definite bilinear form. This means that

√
gx is a

Euclidean norm on TxM, the tangent space toM at point x.
In this work, we will consider a straightforward mathematical framework, where M is

simply a path-connected, open and bounded set Ω of Rd and TxM can be identified with Rd.
This simplification allows for a more straightforward implementation of the geodesic distance
while maintaining its core properties and mathematical foundation. In this section, we will
have gx(u, v) = ϕ(x)2 ⟨u, v⟩Rd .
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5.2.2 Recall on the Fast Marching Algorithm

Since the seminal work of Sethian [Set96], the Fast Marching algorithm has been one of the
most widely used methods for computing geodesic distances on a manifold. The Fast Marching
method computes the geodesic distance by front propagation.

The Eikonal equation (See Section 2.4.1) has the geodesic distance as its unique positive
viscosity solution and is critical to front propagation in Fast Marching.

The distance u from a set S ⊂ Ω satisfies the Eikonal equation:{
∀x ∈ Ω \ S, ∥∇u(x)∥ = ϕ(x),

∀x ∈ S, u(x) = 0,
(5.2)

It can be shown that the unique positive solution to the equation 5.2 in the sense of viscosity
solutions is the geodesic distance from the set S, relative to the metric tensor field associated
with the matrices ϕ(x)2Id.

The Eikonal equation in dimension 2 is discretised using the upwind scheme introduced by
Cohen et al. [Coh97]: ∑

1≤i≤2

1

h2
max(up − up+ei , up − up−ei , 0)2 = ϕ2p, (5.3)

with up and ϕp the geodesic distance and potential at point p in the discretized domain Ω, p±ei
denote the adjacent points on the grid and h is the discretization parameter. This algorithm
allows us to compute distances with less bias due to the grid approximation of space.

Fast Marching (See Section 2.4.2) is an algorithm that iteratively visits each point on the grid
from neighbour to neighbour. At each iteration, we look at the neighbour points to those al-
ready accepted and take the nearest point among the neighbours. We repeat this by computing
the new neighbourhood of the accepted points. We initialise all values at +∞ except the seed
point at 0. Depending on the number of accepted points connected to p on the grid, equation
(5.3) reduces either to a quadratic of the affine equation to find up from the values of the parent
points.

In practice, we use the python library Hamiltonian Fast Marching (HFM) [Mir19] that pro-
vides a fast and efficient implementation of the Fast Marching method and the so-called Sub-
gradient Marching Algorithm.

5.2.3 Differentiating Fast Marching

Differentiating the geodesic distance with respect to the metric is an essential tool in many ap-
plications, such as shape optimisation and optimal control. The first work to propose a numer-
ical method to differentiate the geodesic distance with respect to the metric is by Benmansour
et al. [Ben10], and it has found many applications (see, for instance, [Bon20]).

To compute the derivatives of the Fast Marching algorithm, we rely on the subgradient
marching algorithm. The goal at hand is to optimise the geodesic distance with regard to the
metric ϕ. To do so, we derive a subgradient for the metric ϕ by perturbating the metric:
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ddϕ+εξ(x, y)

dε

∣∣∣
ε=0

=

∫
γ⋆
ξ, (5.4)

where γ⋆ is a minimiser for the ϕ-length functional. This formulation is hard to differentiate
in a discretised robust manner. This is why Benmansour et al. [Ben10] approach proposed to
discretise the approximation of the distance by the Fast Marching algorithm rather than the
direct geodesic distance.

We can use the discretised Eikonal equation (5.5) update to differentiate the geodesic dis-
tance. By taking the Eikonal equation written in dimension 2 and using the setting of interest,
i.e. an isotropic metric gx(v, w) = ϕ(x)2 ⟨v, w⟩R2 ,we write the discretised version of the Eikonal
equation, with h the discretisation parameter, the discretised domain is simply a regular square
grid : {

(up − up±e1)2 + (up − up±e2)2 = h2ϕ2p if p has 2 parents,

up = mini up±ei + hϕp if p has only 1 parent or h2ϕ2p < (up±e1 − up±e2)2.
(5.5)

Thus up is the value of the distance computed by fast marching at point p, and we define
Dϕup ∈ Rn

2
the differential of up with respect to the potential ϕ.

Differentiating with respect to ϕ in the two cases of update, we get
(up − up±e1)(Dϕup −Dϕup±e1) + (up − up±e2)(Dϕup −Dϕup±e2) = h2ϕp

if p has 2 parents,

Dϕup = Dϕup±ei + h1p if p has only 1 parent or h2ϕ2p < (up±e1 − up±e2)2,

(5.6)

with 1p ∈ Rn
2

the vector filled with zero except at coordinate p, which gives the update:Dϕup =
(up−up±e1 )Dϕup±he1

+(up−up±e2 )Dϕup±e2+h
2ϕp

(up−up±e1 )+(up−up±e2 )
if p has 2 parents,

Dϕup = Dϕup±ei + h1p if p has only 1 parent or h2ϕ2p < (up±e1 − up±h2)2,
(5.7)

This update can then be used to compute the gradient of the geodesic distance with respect to
the metric tensor during the Fast Marching iterations. This method introduced in Benmansour
et al. [Ben10] is named Subgradient Marching Algorithm. This method can be extended to higher
dimensions and more general Finsler metrics.

5.2.4 Model

The proposed method presented in this study uses a neural network, specifically a modified
version of the U-Net architecture, to segment regions of an image as geodesic balls with respect
to a metric. The metric is obtained by training a convolutional neural network (CNN) to pro-
vide both the metric and the centre or seed of the geodesic ball. The framework, as shown in
Figure 5.1, processes the input image using the encoder component of the U-Net, resulting in a
vector representation of the image. This vector is then passed through two separate decoders
to perform distinct tasks.
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Chapter 5. Fast Marching Energy CNN

Figure 5.1: Diagram of the framework from the input image to the loss.

The first decoder predicts the potential ϕ to be used by the fast marching module, which
can be computed using the HFM library. The second decoder predicts a Gaussian potential
that represents the probability of the presence of the region’s barycenter in a given area, which
is also provided as a seed to the fast marching module. The distance map generated by the
fast marching procedure is then used to find a geodesic ball for segmentation. The expected
segmentation is compared to the predicted segmentation, and the theoretical barycenter is com-
pared to the predicted Gaussian potential to compute the error.

The distance computation module can be written as a function of seed points and input
metrics. The metric ϕ is defined as the output of a CNN architecture, such as the widely used
U-Net, with θ being in the space of parameters. We enforce positive and non-zero properties
of the metric by taking ϕ = fθ(u)

2 + ϵ, with u being the input image and let fθ be a CNN, with
θ ∈ Rp the space of parameters. To avoid solutions that distribute a lot of mass everywhere,
as noted in [Ben10], we ensure that the total mass of the metric is reasonable by applying a
transformation ϕ 7→ ϕ

max( 1
λ
∥ϕ∥1,1)

that upper bounds the L1 norm at a fixed level λ (We chose in

this work to empirically bound the total mass at 5).
In this study, we focus on the potential generation and employ two different architectures

commonly used for image segmentation: the U-Net introduced by Ronneberger et al. [Ron15]
and a combination of the U-Net and ResNet ([He16]). The U-Net is a fully convolutional neu-
ral network designed for image segmentation, comprising a contracting and expansive path.
The contracting path reduces the spatial resolution of feature maps, while the expansive path
increases it. Combining these paths allows for extracting high-level features from the input
image and recovering the spatial resolution to provide a segmented output.

However, CNNs’ depth can cause vanishing gradients, affecting model performance. To ad-
dress this, we propose using ResNet-U-Net, a combination of the U-Net and ResNet-34 model,
in the encoder portion of the network. ResNet-34 benefits from deep residual learning and
comprises a 7x7 convolutional layer, a max pooling layer, and 16 residual blocks.

By combining these architectures, ResNet-U-Net can capture fine and coarse features of
input images and learn deeper and more complex representations. This results in a more ac-
curate and robust model for image segmentation tasks, as demonstrated by our experimental
results. Additionally, we introduced modifications to the expansive path of both networks, im-
plementing a dual expansive path system to predict potential energy and a Gaussian potential
for predicting the barycenter. These modifications are illustrated in Figure 5.1. Overall, our
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Figure 5.2: The image compares the original distance map centred at the source point x0 = (0, 0)
with sigmoid-based masks for different values of δ. As δ decreases, the sigmoid approximation
more closely resembles the characteristic function of the unit ball, with sharper transitions oc-
curring for smaller δ values and smoother transitions for larger δ values. (From second to last
image: δ = 0.1, 0.5, and 1)

proposed model demonstrates promising results for potential generation tasks.

5.2.5 Generating masks with geodesic balls

Applications may take advantage of topological priors on the label to reconstruct. For instance,
one may need to recover regions in an image we know to be path-connected and of trivial
topology. Such regions might be modelled as balls related to a specific distance and recovered
as indicator functions of such a ball. Formally, we expect for a set E to recover a characteristic
function as χdϕ(x0,·)≤1 for well chosen x0 ∈ Rd and ϕ ∈ L1(Ω).

With this method of building masks for specific tasks, we can generalise using a neural
network architecture and find good potential ϕ to segment attractive regions in images. To do
this, we would need to compute the gradient of a chosen loss function and thus would need to
differentiate the mask; that is why we will replace the indicator function on the unit ball, which
would yield zero gradients almost everywhere, by a sigmoid that will smoothly interpolate
between the value 1 in the region inside the unit ball and 0 outside. Given the distance map
dϕ(x0, ·), our mask then becomes χδ(dϕ(x0, ·)) = 1 − 1

1+exp(−(dϕ(x0,·)−1)/δ) , which approaches
characteristic function of the unit ball as the parameter δ approaches 0 (See Figure 5.2). δ will
typically be taken off the order of the pixel size, i.e. approximately the inverse of the image
size.

Figure 5.3 shows how it is possible to approach the characteristic function of different sets
with this formulation. This problem is not convex so that solutions may vary depending on the
initialisation. Most of the time, potentials converge to a solution that puts a lot of mass on the
edges of the mask to recover. The seed here is fixed to x0, the centre of the balls to be fitted,
and the potential ϕ is directly optimised using automatic differentiation and ADAM with a
"learning rate" equal to 0.01. ϕ2 is taken as input for the fast marching algorithm instead of ϕ
as an easy way to enforce the positivity of the potential smoothly.
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Figure 5.3: Example of recovery of an isotropic metric fitting two regions by minimising
∥χδ ◦ dϕ2 − y∥22 with respect to ϕ, where y is the ground truth mask, δ = 0.01. x0 is taken
as the centre of the mask to be recovered.

5.3 Experiments

As announced before, our experiments were led on a tumour segmentation task.

5.3.1 Data

The use of isotropic fast marching is particularly well-suited for the type of data we are work-
ing with, specifically the Brain MRI segmentation tasks from the TCGA LGG database [Ped].
This is the same dataset used in Section 4.3. We recall that this dataset contains MRI scans of 110
patients with brain tumours, resulting in 1189 images. The scans include fluid-attenuated in-
version recovery (FLAIR) sequences and genomic cluster data. Isotropic fast marching ensures
that the propagation of the front is uniform in all directions. Uniform propagation helps accu-
rately capture the tumour boundaries regardless of their orientation. MRI images, especially
those involving tumours, can be noisy due to factors such as patient movement or imaging
artefacts. Isotropic fast marching helps reduce the effect of the noise, ensuring that the segmen-
tation process is not significantly affected by minor irregularities in the image data.

We have used 2D MRI images as our learning and training datasets. We have set aside
ten patients’ data to form an as-independent test set as possible (whereas two images from the
same patient can be separated in the training and validation set, test data are always the result
of a different acquisition from the training and validation set).

We applied data augmentation on the training images to increase the training set’s diver-
sity and improve the model’s generalisation. The data augmentation techniques used were
horizontal flipping with probability p = 0.5, vertical flipping with probability p = 0.5, random
90-degree rotation with probability p = 0.5, transpose with probability p=0.5, and a combina-
tion of shifting, scaling, and rotating with probability p = 0.25. We set the shift, scale, and
rotation limits to 0.01, 0.04, and 0 (as we already perform rotation). We computed the tumour
seed using an Euclidean barycenter of the mask region.

5.3.2 Model Training Procedures

In this study, U-Net architecture was employed for image segmentation. The model was ini-
tialised with Kaiming initialisation [He15]. It is an initialisation method for neural networks
that considers the non-linearity of activation functions, such as ReLU activations. We opti-
mised the network weights using the Adam optimiser [Kin14], which has been widely used
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in literature due to its capability to adjust the learning rate during training. The learning rate
was set to 1e-3, a commonly used value in CNNs, as it provides a balance between achieving
convergence and avoiding overshooting the optimal solution. To optimise the model’s perfor-
mance and to penalise the error between the prediction mask x and the ground truth mask y,
we used a combination of Dice loss and Binary Cross-Entropy (BCE) loss (Equation (5.8)).

LS(x, y) =
2×

∑N
i=1 xiyi∑N

i=1 xi +
∑N

i=1 yi
+

1

N

N∑
i=1

−(yi log(xi) + (1− yi) log(1− xi)). (5.8)

The Dice loss helps manage class imbalance, while BCE loss ensures stable learning, mak-
ing the combination of these losses effective for accurate mask prediction. Specifically, dice
loss emphasises the overlap between prediction and ground truth, particularly for smaller re-
gions, while BCE provides pixel-wise precision and helps optimise probability outputs during
training.

A binary cross-entropy loss was used to control the error in the seed prediction where h1 is
the predicted seed, and h2 is the ground truth seed.

LH(h1, h2) =
1

N

N∑
i=1

−(h2i log(h1i ) + (1− h2i ) log(1− h1i )) (5.9)

The final loss is:
L(x, y, h1, h2) = LS(x, y) + LH(h1, h2) (5.10)

The Dice loss function, known for handling imbalanced data, was combined with the BCE loss
function, which provides stability during training.

To determine the distance between two barycenters, a transformation of the position coor-
dinates into a Gaussian potential is used based on the following formulation:

f(x, y) =
1√
2πσ

exp(−(x− b1)2 + (y − b2)2

2σ2
) (5.11)

Here, (b1, b2) represents the barycenter coordinates. The predicted potential is used at inference
time to identify the maximum location from which the barycenter coordinates can be extracted.

The model’s architecture was initialised with 64 feature maps, a suitable number for high-
resolution images, and a batch size of 16 was used during the training process. This combi-
nation of hyperparameters allowed the model to effectively use detailed information from the
input image while maintaining a balance between generalisation and overfitting, as demon-
strated by the results presented in this chapter. Since the two decoders are different and pre-
dict two different things, these new parameters do not assist the segmentation compared to the
direct method.

5.3.3 Potential Analysis

The potential generated by the neural network was analysed with respect to the number of
training epochs. Results show in Figure 5.4 that the output distribution quickly converged to-
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(a) Epoch 1 (b) Epoch 10 (c) Epoch 50 (d) Epoch 100 (e) Epoch 150

Figure 5.4: Evolution of the predicted potential taken as input in the Fast Marching Module.

wards the tumour’s boundaries to be segmented. However, as training progressed, the contour
of the tumour sharpened, and boundaries became more distinct. At the same time, we could
see the brain edges removed. Ultimately, the potential only holds detailed information about
the contours in a small area around the tumour.

5.3.4 Segmentation Experiments

(a) Input Image (b) Groundtruth (c) Predicted (d) Potential

Figure 5.5: Results of the segmentation on validation data. The blue and green dots on the
input image are, respectively, the ground truth and predicted seed.

We compared our method to a standard U-Net segmentation approach. Our method demon-
strates precise edge detection as seen in the results plots 5.5. The well-defined contours pro-
duced by our method result from its ability to take into account the morphology of the image,
which traditional filters cannot do. Furthermore, our method’s problem-specific nature allows
for improved image segmentation performance. Classical metrics will enable us to compare
quantitatively the results of our segmentation. We recover the same precision on the segmen-
tation mask with minimal improvements in the symmetric Hausdorff distance. However, the
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Table 5.1: Segmentation results (IOU) on the TGCA_LGG brain MRI database.

Name Dice IOU Hausdorff F1 Score FPR FNR
U-Net 0.862 0.869 2.313 0.869 0.007 0.05
ResNet U-Net 0.873 0.877 2.257 0.877 0.006 0.07
FM U-Net (ours) 0.825 0.823 2.505 0.823 0.011 0.064
FM Resnet U-Net
(ours)

0.863 0.866 2.248 0.866 0.009 0.04

convergence towards an acceptable solution is faster when combined with the Fast Marching
Module since, with only an approximate potential, the method converges to a relatively close
segmentation. Time allows the neural network to learn the filter and sharpen the edge of the
tumour. A general observation from the segmentation in Figure 5.5 is that the method, when
failing to predict correctly a pixel, tends to create a false positive rather than a true negative.
Table 5.1 shows our method has a high recall, controlling for very few false negatives. We per-
formed the training with the library HFM. Overall, the U-Net architecture shows difficulties in
precisely learning the potential. At the same time, from a metric point of view, the ResNet-U-
Net performs comparatively as the classical segmentation technique using CNNs.

Figure 5.6: Results of the Fast Marching Energy CNN for images outside the scope of the train-
ing database.Top row: segmentation of outside the training scope. Bottom row: Potential out-
put by the CNN before fast marching.

We also look at the properties of the generated potential of our CNN by testing it with dis-
similar MRI images found randomly through an image search on Figure 5.6 where activated
areas correspond to the segmentation ranging from yellow to green for confidence. The re-
sults for the last two MRI images show that while the algorithm does not properly segment
the tumour (as the predicted barycenter for initialisation of the Fast Marching is not correctly
placed), the learned filter detects small contours similar to tumours, focusing on the shape of
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the different objects.

5.3.5 More Experimental Results

Figures 5.71 and 5.82 show examples where our trained model achieves its best and worst per-
formances based on the F1 score.

We notice that the best scores occur when the target mask is large and looks like a simple
ball. This suggests that our model performs well when the area to segment is sizable and has a
straightforward shape.

In the worst cases, our model struggles because the area to be segmented is very narrow, or
it fails to place a good seed point inside the area. The seed point is crucial because it’s where
the model starts computing the geodesic distance for segmentation.

Interestingly, it’s actually easier for the model to learn how to provide a good potential
for segmentation than to accurately predict the centre (barycenter) of the target segmenta-
tion mask. Predicting the barycenter is essentially projecting the mask into a two-dimensional
space, which might seem simple due to its low dimensionality, but it poses challenges for the
model.

We also compared two different approaches for selecting the seed point: one using the mean
predicted value and the other using the maximum probability value. Using the maximum
probability, the second approach reduces the number of images where our model performs
very poorly. Specifically, the proportion of images with almost zero scores drops from about
7.5% to around 0.25%. Additionally, the overall performance improves from an 83% F1 score
to 85%.

To provide a complete picture, we include some examples of our results on the test set in
Figures 5.93 and 5.104.

1Figure created by Théo Bertrand and kindly provided.
2Figure created by Théo Bertrand and kindly provided.
3Figure created by Théo Bertrand and kindly provided.
4Figure created by Théo Bertrand and kindly provided.
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Figure 5.7: Examples where our FMECNN model achieves its highest scores. From Left to
Right, the figures show the input image, the target segmentation mask, the potential computed
by our trained model, and the proposed segmentation (superposed with the target, the red
canal is the proposed, the green canal is the target, and blue is the intersection).
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Figure 5.8: Examples where our FMECNN model achieves its lowest scores. From Left to
Right, the figures show the input image, the target segmentation mask, the potential computed
by our trained model, and the proposed segmentation (superposed with the target, red canal is
the proposed, green canal is the target, and blue is the intersection).
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Figure 5.9: Examples where our FMECNN model achieves its highest scores on the Test set.
From Left to Right, the figures show the input image, the target segmentation mask, the po-
tential computed by our trained model, and the proposed segmentation (superposed with the
target, the red canal is the proposed, the green canal is the target, and blue is the intersection).
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Figure 5.10: Examples where our FMECNN model achieves its lowest scores on the Test set.
From Left to Right, the figures show the input image, the target segmentation mask, the po-
tential computed by our trained model, and the proposed segmentation (superposed with the
target, red canal is the proposed, green canal is the target, and blue is the intersection).
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5.4 Anisotropic Geodesic Case

To compute geodesic distances, Crane et al. [Cra13] proposed an alternative approach based
on the formulation introduced by Varadhan [Var67], leveraging the heat equation for efficient
distance computation.

In this section, we recall the formulation of the heat equation. We begin with the simple
case of an isotropic heat diffusion with a constant thermal diffusivity coefficient. Then, we
recall the formulation with a thermal diffusivity coefficient depending on the grid coordinates.
We move to the more technical setting of the anisotropic diffusion of heat and finally combine
anisotropy and non-constant thermal diffusivity coefficient. We then present the first approach
using a close method to the one presented in the isotropic section. Finally, we introduce a new
model to extend the results to a more complex structure.

5.4.1 Isotropic Heat Diffusion

The heat equation is a partial differential equation that describes the propagation of heat in a
medium or, more precisely, the evolution of the heat distribution over a period of time T . The
general form of the equation writes:

∂u

∂t
= α∆u (5.12)

where α ∈ R+ is the thermal diffusivity, positive and constant in each region coordinate, and ∆

represents the Laplace operator. If we position ourselves in the case where the heat propagation
takes place in R2, then for all x ∈ R2 and for all t ∈ [0, T ], u(x, t) represents the temperature at
coordinates x and at time t.

The thermal diffusivity coefficient characterises the rate at which the heat diffuses through
a material. Considering the thermal diffusivity α as a constant implies that the evolution of the
heat distribution is the same in any medium coordinate. This is often not true in real-world
scenarios since mediums rarely have homogenous properties.

The Laplace operator ∆ is a second-order differential operator that plays a role in the spa-
tial aspect of the heat equation. In R2, the Laplace operator takes the form ∆u = ∂2u

∂x2
+ ∂2u

∂y2
,

representing the second-order derivatives of the heat function u with regards to the spatial
coordinates. The Laplace operator captures how the temperature at a point compares to its sur-
roundings and quantifies the local variation of the temperature. It measures the curvature of
the heat distribution. If the Laplacian is positive, then the temperature at that point is smaller
than its average surroundings, promoting the heat flow towards that point. We recover the
physical property; the second law of thermodynamics states that heat always flows sponta-
neously from hotter to colder matter regions.

Changing the thermal diffusivity coefficient can make the heat equation more complex, as
proposed by Yang et al. [Yan16]. We want to have a different diffusion speed at each grid co-
ordinate. Varying the thermal diffusivity implies that the rate of heat diffusion varies spatially
within the domain. Given a potential p representing the conductivity in a medium, we can
write α as:

α = |1− |p(x0)− p(x)||d + ε, ∀x ∈ R2. (5.13)
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The point x0 is set at the coordinates of the heat source. The coefficient d ∈ N∗ will depend
on the contrast between the interesting features in the image and background. The formula
for alpha suggests that the thermal diffusivity now differs at any domain point. The difference
between the source of propagation and any other point of the domain influences it.

A higher d coefficient will result in an enhanced difference in the propagation of the heat
distribution in different areas of the image. This allows for fine-tuning the sensitivity and
modelling more complex propagation scenarios, such as barriers or preferred diffusion paths.

5.4.2 Anisotropic Heat Diffusion

In the previous section, we studied the propagation of heat distribution without considering
the principal direction of propagation in an image. However, in many applications, it is essen-
tial to consider the direction of heat propagation. To do so, we rewrite the heat equation using
a diffusion tensor, which is a generalisation of the thermal diffusivity coefficient as:

∂u

∂t
= div(D∇u), (5.14)

where D is the diffusion tensor. Usually, D is constructed using the feature of the image. The
diffusion tensor allows us to control the direction of heat propagation in the image.

Using a diffusion tensor, we can model anisotropic diffusion, where the diffusion speed dif-
fers in different directions. Figure 5.11 illustrates the difference between isotropic and anisotropic
heat propagation across a fingerprint image. Figure 5.11a depicts isotropic heat propagation,
where the diffusion occurs uniformly in all directions. This type of diffusion does not con-
sider any directional properties of the image, leading to an even distribution of heat across the
surface. In contrast, Figure 5.11b, 5.11c, and 5.11d show anisotropic heat propagation, where
the diffusion tensor D controls the direction of heat propagation. This allows heat to propa-
gate faster in specific directions, depending on the image features. The contour lines show the
varying anisotropic coefficients, which result in different propagation behaviours. These con-
tours follow the principal directions of the fingerprint ridges, illustrating how the anisotropic
diffusion adapts to the local geometry of the image.

Using the diffusion tensor, we can model directional heat propagation, crucial for applica-
tions requiring anisotropic diffusion to highlight specific structural features in images.

5.4.3 Structure Tensor Field

The structure tensor field T is a 2D matrix in each grid coordinate. It represents the orientation
in a neighbourhood around a point. The idea is to measure the variation in intensity and texture
between two consequently selected regions. If you have two regions with similar intensities,
we want the orientation to be minor, whereas for two regions with different intensities, we
want the orientation to indicate this variation.

The structure tensor field is computed using the first derivatives of the image along both
directions using a Gaussian filter to average information on a neighbourhood of each point to
reflect the size of the neighbourhood.
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(a) Isotropic heat propagation. (b) Anisotropic heat propagation.

(c) Anisotropic heat propagation. (d) Anisotropic heat propagation.

Figure 5.11: The images compare isotropic (a) and anisotropic (b-d) heat propagation across
a fingerprint image for different anisotropic coefficients. Isotropic diffusion spreads heat uni-
formly, while anisotropic diffusion, controlled by the tensor D, directs heat along the image’s
structural features, adapting to the fingerprint’s geometry.
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(
∂I
∂x

2 ∂I
∂x

∂I
∂y

∂I
∂y

∂I
∂x

∂I
∂y

2

)

T = T ∗Gσ (5.15)

The structure tensor is then diagonalised in an orthogonal basis using the eigenvectors
(e1, e2):

T (x) = µ1(x)e1(x)e1(x)
T + µ2(x)e2(x)e2(x)

T (5.16)

The eigenvectors (e1, e2) represent the orientation of the image at each pixel location, with
e1 indicating the direction of maximum variation and e2 indicating the direction of minimum
variation. The corresponding eigenvalues (µ1, µ2) represent the magnitude of the variation in
each direction.

The visualisations in Figure 5.12 demonstrate how the tensor field encodes anisotropy and
orientation in different datasets. The ellipses depicted in these figures correspond to the local
structure tensor at each point. The direction and elongation of the ellipses provide insight into
the image’s dominant texture or structural direction at each location. Larger, elongated ellipses
indicate areas with strong directional variation (red ellipses), where e1 dominates. In contrast,
more circular ellipses reflect regions with isotropic or minimal variation between directions
(green ellipses), where µ1 and µ2 are closer in magnitude. This graphical representation allows
an intuitive interpretation of the local geometry, revealing patterns such as flow direction or
branching structures in the underlying image.

5.4.4 Varadhan Formulation

In [Var67], the author proposes a theoretical result that relates the behaviour of the heat equa-
tion to the geodesic distance on a Riemannian manifold. It was initially introduced in the
context of significant deviation theory but has since found applications in various fields, such
as computer vision and image processing.

To compute the geodesic distance on an image, the favoured method uses the Fast Marching
(FM) algorithm proposed by Sethian [Set96], an extension of Dijkstra’s algorithm. The author
Yang et al. [Yan16] adapted this result in the case of isotropic and anisotropic heat flow to get
the geodesic. Their work builds on the seminal work of Crane et al. [Cra13] who proposed a
method to compute the geodesic distance in three steps: i) compute the heat density ∂tu = α∆u

where α is constant on the whole domain ii) normalise the gradient X = ∇u/|∇u| iii) solve the
Poisson equation ∆ϕ = div(X) where ϕ is the final distance.

We first consider the heat equation on a Riemannian manifold:

∂u

∂t
= ∆u (5.17)

where ∆ is the Laplace-Beltrami operator, which generalises the Laplacian operator to curved
spaces.

To apply the Varadhan formulation, they use the results introduced by on uniformly
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(a) (b)

(c)

Figure 5.12: The images provide a visualisation of the anisotropy and orientation encoded
in the tensor field across different datasets. The ellipses in each image represent the lo-
cal anisotropy at each point, with their orientation and shape indicating the principal direc-
tions and diffusion strength. Larger and more elongated ellipses denote stronger directional
anisotropy (red ellipses), while more circular ellipses suggest isotropic diffusion (green el-
lipses). Image (a) illustrates the synthetic dataset, with ellipses highlighting flow-like struc-
tures, emphasising the dominant diffusion directions. Finally, in (b), the tree-like structure is vi-
sualised, with ellipses following the branches, indicating the natural orientation and anisotropy
within the tree structure. In (c), the road structure dataset is shown, where ellipses are aligned
along the road networks, reflecting the constrained diffusion along the roads.131
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second-order parabolic operators with variables to approximate solutions for the Green func-
tion. The resulting Laplacian operator is defined as:

Lu :=
n∑
i,j

ai,j(x)
∂2u

∂xi∂xj
+

n∑
i,j

bj(x)
∂u

∂xj
+ c(x)u. (5.18)

Therefore, the heat equation becomes:{
∂tu− Lu = 0, in (0,∞)× RN

u(x, 0) = δx0 , on RN
. (5.19)

The Green function of the heat equation is a solution to the PDE with an initial condition
given by a delta function at a point x0 on the manifold. It represents the temperature distribu-
tion at time t due to an instantaneous point source. Given L according to Constantinescu et al.
[Con10], the Green function for the heat equation is given by:

G(x, y, t) = e−
ϕ(x,y)2

4t

(4πt)N/2
(
∞∑
k=0

G(k)(x, y)) (5.20)

According to Varadhan’s formula Varadhan [Var67], the logarithm of the Green function is
asymptotically equivalent to:

lim
t→0

[−4t log ux(y, t)] = ϕ2(x, y) (5.21)

where ux(y, t) is the Green function for an initial condition given by a delta function at x and
ϕ(x, y) is the geodesic distance between x, y induced by the Riemannian metric.

ux(y, t) = (2πt)−k/2 exp{− 1

4t
∥x− y∥2} (5.22)

Varadhan’s formula [Var67] provides a way to compute the geodesic distance between two
points on a Riemannian manifold by solving the heat equation and analysing the behaviour of
the Green function.

5.4.5 Numerical Applications

The methodology involves computing the Laplacian of the heat field modified to account for
the anisotropic diffusion through the use of a spatially resolved diffusion tensor. This tensor
modulates the diffusivity in different directions to enable a more accurate simulation of a het-
erogenous medium than isotropic diffusion models.

The computational procedure first computes the heat field’s gradient to determine the heat
changes’ rate and direction within the medium. Then, a second-order derivative of the heat
field is combined with the diffusion tensor to recover the anisotropic Laplacian. Additionally,
the method calculates the divergence of the product between the diffusion tensor and the heat
gradient.

We use Von Neumann boundary conditions. Following the CFC conditions, we carefully
select the spatial and temporal discretisation parameters to ensure the method’s numerical
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(a) (b) (c)

Figure 5.13: The images illustrate the potential field and geodesic distance computation in a
maze-like environment using the Heat method. These images are to be compared with the Fig-
ure 2.12. In (a), the potential field is visualised, which serves as the input to the FM algorithm.
In (b), the geodesic distance from a source point (marked in red) to all other points in the maze
is shown. Lastly, in (c), the distance is modulated with a sinusoidal function to show the level-
sets.

Algorithm 2 Laplacian update for the heat diffusion

1: function LAPLACIAN UPDATE(u,D, dt, n)
2: for i← 1 to n do
3: u←

n∑
i,j
Di,j(x)

∂2u
∂xi∂xj

+
n∑
i,j
Dj(x)

∂u
∂xj

4: u← u+ dt ∗ u
5: return u
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(a) (b) (c)

Figure 5.14: The plots illustrate the propagation of heat on a fingerprint image based on the
anisotropic heat equation originating from a source point. In some cases, a coefficient α is de-
fined as α = |1−|p(x0)−p(x)||d+ε, which modulates the geodesic distance based on the spatial
variation in heat propagation. The colour gradient, ranging from blue (short distances) to red
(long distances), reflects increasing geodesic distance from the source point. In (a), the contour
plot represents the anisotropic geodesic distance with the α coefficient applied, highlighting its
effect on distance modulation. Plot (b) displays the raw anisotropic geodesic distance, while
(c) shows the contour of the geodesic distance without including the α coefficient, comparing
the two approaches.

stability and convergence.
We show in Figure 5.13 the resulting distances computation on a 2D square domain with as

potential a labyrinth in the case of the isotropic heat method for geodesic distance computation.
In comparison, Figure 5.14 presents the results of the heat propagation also on the 2D domain
but in the case of a potential defined by a fingerprint with a varying coefficient α. The effect
of the coefficient α is little compared to the action of the diffusion tensor, giving rise to the
anisotropic formulation of the heat equation. Figure 5.15 and 5.16 presents more results on
heat propagation and anisotropic geodesic distance.

5.4.6 Generating masks with geodesic balls

In our investigation, we concentrate on enhancing the segmentation of tubular structures in
images by integrating deep-learning models with geodesic distance measurements. This ap-
proach extends the principle of leveraging topological priors for reconstructing specific image
regions, mainly focusing on identifying tubular structures that are inherently path-connected
and exhibit a non-complex topology. Such structures are essential in various applications, in-
cluding medical imaging, where blood vessels and nerves are interesting.

We extend the model introduced in Section 5.2.5 to anisotropic geodesic distance in order
to segment tubular structures. The model predicts a potential for the Riemannian metric, sub-
sequently applied in constructing a geodesic distance map, dϕ(x0, ·). This map is crucial for
delineating the tubular regions, traditionally segmented by identifying them as within a cer-
tain geodesic distance from a chosen point, x0, in the domain Rd. The conventional method
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(a) Anisotropic heat propagation. (b) Anisotropic geodesic distance.

Figure 5.15: The images illustrate the results of anisotropic heat propagation and geodesic dis-
tance computation. In (a), the heat propagates from a source point across the terrain, as mod-
elled by the anisotropic heat equation. The colour gradient, ranging from blue (low temper-
ature) to red (high temperature), represents the heat intensity at different locations, reflecting
the varying resistance to heat flow. In (b), the anisotropic geodesic distance is computed, with
the colour map indicating distances: blue represents regions close to the source point, while
red indicates areas farther away, following the minimal paths that conform to the terrain’s ge-
ometry.
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(a) Isotropic heat propagation. (b) Isotropic geodesic distance with alpha

Figure 5.16: The images illustrate the results of anisotropic heat propagation and geodesic dis-
tance computation. In (a), the heat propagates from a source point across the vascular network,
as modelled by the anisotropic heat equation. The colour gradient, ranging from blue (low
temperature) to red (high temperature), represents the heat intensity at different locations, re-
flecting the varying resistance to heat flow. In (b), the anisotropic geodesic distance is com-
puted, with the colour map indicating distances: blue represents regions close to the source
point, while red indicates areas farther away, following the minimal paths that conform to the
vascular’s geometry.
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employs an indicator function, χdϕ(x0,·)≤1, for regions modelled as geometric balls within this
geodesic distance framework, where ϕ ∈ L1(Ω) acts as the potential defining the geodesic met-
ric.

We shift from a hard indicator function to a differentiable approximation to adapt this
method for practical application in neural network architectures and ensure the optimisation
process is conducive to gradient-based methods. Specifically, for the segmentation of tubular
structures, the mask generation is formulated through a sigmoid function that smoothly tran-
sitions across the boundary of the tubular region. This function is defined as χδ(dϕ(x0, ·)) =

1− 1
1+exp(−(dϕ(x0,·)−1)/δ) , where δ is a small positive parameter related to the pixel’s size, ensur-

ing a smooth interpolation from the interior to the exterior of the tubular region. This adap-
tation allows the neural network to predict a geodesic distance map that effectively segments
tubular structures by approximating the characteristic function of the tubular region as δ → 0.

This method demonstrates the potential to closely model the segmentation of tubular struc-
tures by adjusting the sigmoid’s steepness through δ, typically chosen about the image resolu-
tion. In the context of tubular structures, the potential ϕ is optimised to emphasise the tubular
boundaries, guided by the neural network’s architecture and trained using automatic differen-
tiation and the ADAM optimiser with a learning rate of 0.01. To facilitate smooth enforcement
of the potential’s positivity, crucial for the fast marching method used in geodesic distance
computations, we consider ϕ2 as the input potential.

5.4.7 Learning an Anisotropic Metric

For this first work, the model extends the one presented in section 5.2.4, which presents a
method that merges deep learning with the segmentation of an area as a unit ball for an
anisotropic geodesic distance. We use the heat method based on Varadhan’s formulation to pre-
dict a potential for the Riemannian metric and a Gaussian potential that initiates heat propaga-
tion. This approach uses the output from the model to construct an anisotropic diffusion tensor
and integrate it into a geodesic distance computation module. The aim is to enhance the preci-
sion of geodesic distance measurement in heterogeneous medium, leveraging the strengths of
both deep learning for feature extraction and the analytical computation of distances.

The deep learning model is the same as presented in section 5.2.4. The model keeps the
same structure. Additionally, the model predicts a Gaussian potential field that serves as
the source for heat propagation. This prediction is crucial for applying the heat method for
geodesic distance computation, as it determines the initial conditions for the diffusion process.
We use a sequence of convolutional layers with decreasing filter sizes to predict the Gaussian
potential, followed by batch normalisation and ReLU activation functions. The final layer is a
convolutional layer with a softmax activation function, which ensures that the output values
sum to one and can be interpreted as a probability distribution.

An anisotropic diffusion tensor is constructed using the predicted potential field to accom-
modate a medium’s directional heat flow properties. This step is crucial for accurately mod-
elling the heat diffusion process in media where thermal properties vary with direction. The
anisotropic diffusion tensor allows for a more nuanced heat flow simulation, reflecting the
complex behaviour of tubular structures.
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Finally, we solve the heat equation approaching the time-zero limit, and Varadhan’s formu-
lation bridges the gap between the heat kernel and the geodesic distance. This process yields a
geodesic distance map.

In segmenting tubular structures within images, our methodology advances the distance
computation module to accommodate the unique characteristics of tubular geometries and the
anisotropic properties of their surrounding media. The module operates on the premise that
the geodesic distance, denoted as dϕ(x0, ·), calculates the proximity from any given point on
the grid to predefined seed points, x0, based on an anisotropic metric, ϕ. This metric, ϕ, signif-
icantly diverges from traditional isotropic metrics by encapsulating directional dependencies,
essential for accurately modelling the complex pathways within tubular structures.

For scenarios involving multiple seed points, indicative of tubular networks with branching
paths or intersections, the model seamlessly accommodates an array of seeds, S = {xi0}1≤i≤q.
Here, the distance to the closest seed, dϕ(S, ·) = minxi0∈S

dϕ(x
i
0, ·), is computed, ensuring that

the model’s applicability spans across tubular networks of varied complexity. This computa-
tion does not impose additional burdens on the fast marching algorithm or the heat method
employed to deduce these distances efficiently.

The definition of the metric ϕ stems from the output of a neural network specifically tai-
lored for medical imaging and the segmentation of tubular structures. The U-Net architecture,
renowned for its effectiveness in medical image processing, is the backbone for our neural net-
work, denoted as fθ where θ ∈ Rp represents the parameter space. In our model, ϕ is defined
as fθ(u)2 + ϵ, with u representing the input image. This formulation ensures that the metric ϕ
remains positive and non-zero, a critical attribute for the accurate computation of anisotropic
geodesic distances.

5.4.8 Experiments

5.4.8.1 Data

For our investigation, we leveraged three distinct datasets encompassing both synthetic and
real-world medical imaging data to evaluate the robustness and applicability of our models.
Figure 5.17 presents an example of each dataset.

We use a synthetic dataset comprising images of small trees designed to test the model’s
capability in detecting arboreal structures. This set includes 20 images for training and 20 for
testing. Points within these images, representing critical junctures in the tree structure, are
stored as coordinates. For each image, we generated Gaussian heatmaps centred around these
key points to facilitate the learning of structural nuances and initialise the heat propagation.

Another synthetic dataset was curated to simulate simple vascular structures, containing
40 images for training and 20 for testing. Like the small trees dataset, key points are identified
as critical vessel junctures and represented through Gaussian heatmaps. This dataset aims
to benchmark the model’s performance in recognising and segmenting linear and branching
patterns typical of vascular networks.

We used the Multi-Atlas Labeling Beyond the Cranial Vault dataset, which contains full-
resolution images. This dataset provides detailed ground truth labels for semantic segmen-
tation across various anatomical structures. The dataset’s high-resolution nature allows for
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(a) (b) (c)

Figure 5.17: The images represent examples from different datasets used for the different seg-
mentation tasks. (a) The first image depicts a medical CT scan, highlighting anatomical struc-
tures relevant to segmentation in medical imaging. (b) The second image shows a synthetic
tree structure used for evaluating segmentation algorithms on geometrically complex patterns.
(c) The third image illustrates a detailed vascular tree structure, focusing on the segmentation
of fine, branching elements.

identifying intricate features within the images, such as organ boundaries and other important
anatomical structures.

Ground truth labels are used to train the segmentation models across all datasets. We aim to
develop models capable of accurately segmenting and outlining key anatomical features in syn-
thetic datasets and real-world medical images. The dataset is carefully split into independent
training and test sets to ensure a robust and unbiased evaluation of the model’s segmentation
performance.

We used data augmentation techniques to increase the diversity of the synthetic datasets
and improve the model’s ability to generalise. These techniques include horizontal and vertical
flipping, random rotations, and geometric transformations like shifting and scaling. Using
these strategies, the model is exposed to a wider variety of structural orientations and scales,
which is important for achieving high accuracy in keypoint detection and heatmap generation.

The DRIVE patches dataset was prepared with annotations of bifurcation points, endpoints,
and crossing points, adding real-world complexity not present in the synthetic datasets. We en-
sure comprehensive learning and adaptability by training the segmentation models on simple
to complex structures.

5.4.8.2 Training Procedures

This study uses the U-Net architecture for image segmentation. The model was initialised and
optimised exactly as the isotropic model presented in section 5.3.2.

5.4.8.3 Results

The images presented in this section demonstrate the segmentation results achieved by our
model under different conditions. In Figure 5.18, we apply heat propagation to segment tubu-
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Figure 5.18: The images demonstrate the segmentation results for a tree-like structure using a
heat propagation model, attempting to replicate the performance of the Fast Marching Energy
CNN (FMECNN) model. In (a), the predicted segmentation mask is shown, capturing the
general structure of the tree. Image (b) illustrates the predicted learned isotropic metric used
to guide the segmentation process. In (c), the output of the model is visualised, highlighting
the effects of anisotropic diffusion on the tree structure. Lastly, (d) displays the potential field
predicted by the model, showing the influence of the learned metric in shaping the geodesic
distance and segmentation.

lar structures. The heat-based method effectively outlines the vascular structures by propagat-
ing from a source point within the object. While the segmentation result is accurate, slight edge
inaccuracies are noticeable, particularly where the boundaries exhibit fine, tubular geometries.

In Figure 5.19, we extend the method to handle multiple objects with similar characteristics.
Here, the segmentation targets are more complex, resembling the objects typically used in the
Fast Marching algorithm. The segmentation map is reasonably precise, although edge details
are slightly blurred, especially in areas where object components are close together. The neural
network successfully predicts the anisotropic metric, as shown by the learned potential maps,
which effectively capture the object boundaries.

Next, in Figure 5.20 and Figure 5.21, we introduce anisotropy through the structure tensor in
the learning phase. These figures illustrate the impact of anisotropic diffusion on the segmen-
tation process. The introduction of anisotropy allows the model to better handle directional
features in the data, particularly in structures with complex geometries such as branching trees
and tubular vessels. The predicted segmentation masks in these figures align well with the
intricate shapes of the objects, especially in cases where previous isotropic methods struggled.

The potential maps in these figures further demonstrate the model’s ability to predict geodesic
distances from a source point inside the object to its boundary. The anisotropic nature of the
model allows for more accurate boundary delineation, which is critical for applications involv-
ing complex geometries like vascular or branching structures. Despite some minor imperfec-
tions at the edges of the segmented regions, the overall results are promising, indicating that
anisotropy helps improve segmentation quality in datasets involving tubular or tree-like struc-
tures and in synthetic and real-world scenarios.
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(a) (b) (c) (d)

Figure 5.19: The images show the results of a semantic segmentation task using a neural net-
work to predict an anisotropic metric. In the first image (a), the model’s output prediction
is presented, showcasing the segmented region. Image (b) displays the predicted anisotropic
metric the neural network learned. This metric influences the diffusion process. In (c), the
model’s output on the segmented structure is visualised, showing the effects of anisotropic dif-
fusion. Finally, image (d) illustrates the predicted potential field, showing the progression of
diffusion within the segmented region. These results demonstrate the model’s capacity to learn
and apply the predicted metric for accurate semantic segmentation.

(a) (b) (c) (d)

Figure 5.20: The images display the results of synthetic data analysis using anisotropic diffu-
sion. In the first image (a), the model’s output prediction is shown, demonstrating the seg-
mentation result of the synthetic structure. Image (b) presents the predicted anisotropic metric
guiding the behaviour of the diffusion process. In (c), the final output of the diffusion model on
the synthetic structure is visualised. Lastly, image (d) illustrates the predicted potential field,
showing how the diffusion progresses through the synthetic structure. These results highlight
the model’s ability to capture and represent complex synthetic features.
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(a) (b) (c) (d)

Figure 5.21: The images demonstrate the results of anisotropic tree structure analysis. In the
first image (a), the output of the anisotropic model on the tree structure is shown, illustrating
the heat propagation pattern. In (b), the potential field generated from the anisotropic diffusion
is visualised, highlighting how the heat flows through the tree branches. Image (c) shows the
modulation of the geodesic distance with the coefficient α, the thermal diffusion, affecting the
diffusion process based on local variations. Finally, in (d), the predicted segmentation or outline
of the tree structure is displayed, highlighting the model’s ability to capture the geometric
features of the tree.

5.4.9 Learning an Anisotropic Metric - Another Approach

In contrast to the initial approach described above, we present a second method for geodesic
distance computation within vascular networks, addressing several challenges encountered
with seed point selection and computational efficiency. Specifically, this approach avoids the
complexity of manually selecting a “seed” point from which to compute the distance map—an
issue made difficult by the non-convex nature of the vascular regions to be segmented and
the absence of a unique optimal point. For this second approach, we approach the Laplacian
operator as the graph Laplacian on the grid as Heitz et al. [Hei21].

Initially, we considered leveraging a database of points of interest, similar to our previ-
ous work on landmark detection and geodesic fitting. Using these predefined seed points, we
achieved the segmentation results depicted in Figure 5.22. The geodesic distance was com-
puted using the heat equation based on Varadhan’s formulation. However, while computing
geodesic distances from a single seed point is relatively straightforward, challenges arise when
distances must be calculated from multiple points. Our approach aimed to recover regions to
segment, denoted yth ∈ {0, 1}n, by approximating:

exp

(
−dM (x0, xi)

2

4t

)
≈ (yth)i (5.23)

where x0 is a seed point, and xi represents a grid point. A significant complication emerged:
although the segmented region around each seed point is normalised to sum to 1, the mass
distribution around each seed may differ, leading to inconsistencies in the segmentation. To
overcome this, we would compute a non-trivial renormalisation constant for each region or
solve the heat equation individually for each seed, taking the minimum across all distance
maps. Both options are computationally expensive.

To simplify this, we propose a different strategy that avoids explicitly predicting seed points
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Figure 5.22: First example of generating an isotropic metric with the help of a U-Net on an
image from the validation set. Left: Ground Truth Segmentation. Center: Proposed Segmenta-
tion. Right: Associated Potential output by the U-Net

from the image. Instead, we modify the initialisation of the heat flow by replacing the position
of δx, the Dirac delta function representing the seed location. This allows us to predict the heat
flow without specifying exact seed points.

In this alternative approach, our neural network is composed of two branches (See Figure
5.23). The first branch predicts the map x 7→ D(x), where D(x) defines the heat flow and is the
inverse of the classic metric tensor. The second branch predicts a 2D probability map µ, which
indicates likely vascular landmarks or regions of interest that guide the heat flow and refine
the segmentation.

Given input images x and their corresponding normalised ground truth masks y, we define
our loss function as:

Lseg(Φ
Dθ(x)
t (µθ(x)), y)− λ∥µθ(x)∥22 (5.24)

where Dθ is the metric tensor predicted by the first branch, µθ is the probability map from the
second branch, and ΦDt (ν) represents the heat flow based on diffusion tensor D, applied to
ν ∈ P (Ω) until time t .

We trained this network on the DRIVE dataset [Sta04], splitting it into a 60% training set
and 40% validation set, and tested it on the IOSTAR dataset [Zha16]. To prevent overfitting,
we applied random affine transformations and image flips, using only the green channel of
the input images. We found that a small batch size of 2 images yielded better results. After
250 epochs, the model achieved a DICE score of 77% on the validation set, which, although
not state-of-the-art, effectively overcomes some of the challenges identified earlier (see Figure
5.22).

As illustrated in Figure 5.24, the barycenter predicted by our model does not coincide with
the barycenter maps produced by the original FMECNN model. Instead, it predicts segmen-
tations of the vascular network. This divergence occurs because the second branch of our net-
work is not explicitly trained to predict seed points, and the sparsity-promoting penalty in the
loss function does not collapse the barycenter to a set of discrete points, even for larger values
of λ. This behaviour can be interpreted as an attention mechanism, where the solution to the
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Encoder
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Seed Map
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Figure 5.23: Diagram of the architecture of the alternative approach for anisotropic tubular
structure segmentation.

heat equation, computed from the two network outputs, refines the segmentation map.

144



5.4. Anisotropic Geodesic Case

Figure 5.24: Output of our method on a sample from the IOSTAR dataset. Left: Comparison
of proposed segmentation versus Ground Truth. Center Left: Barycen- ter map output by
the network. Center Right: Sum of the metric elements in both directions. Right : (log of)
Anisotropy factor.
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5.5 Partial Conclusion

In this chapter, we introduced a novel approach to image segmentation that combines the
Fast Marching Method (FMM) with Convolutional Neural Networks (CNNs), termed the Fast
Marching Energy CNN (FMECNN). Our primary goal was to leverage the rich geometrical in-
formation provided by geodesic distances to enhance segmentation tasks, particularly in med-
ical imaging applications such as brain tumour segmentation.

We began by exploring the isotropic geodesic case, where the metric tensor is uniform in all
directions. Integrating the Fast Marching algorithm into a neural network framework allowed
the network to learn the potential function ϕ directly from the data. This potential function
serves as the speed map for the Fast Marching algorithm, enabling the computation of geodesic
distances from a source point. We addressed the challenge of differentiating through the Fast
Marching algorithm by using the Subgradient Marching Algorithm, allowing us to backprop-
agate gradients through the geodesic distance computations.

Our method involved predicting both the potential function and the seed point from which
to compute the geodesic distances. The segmentation mask was then generated by threshold-
ing the geodesic distance map, effectively defining the segmented region as a geodesic ball
centred at the predicted seed point. We employed a smooth approximation of the character-
istic function of the geodesic ball using a sigmoid function, which facilitated gradient-based
optimisation during training.

Experimental results on the TCGA LGG brain MRI database demonstrated that our FMECNN
model could achieve segmentation performance comparable to traditional U-Net architectures.
Notably, our method produced precise edge detections and maintained robustness against false
negatives, a critical factor in medical image segmentation where missing a region of interest can
have significant consequences. The potential function learned by the network effectively cap-
tured the boundaries of the tumours, highlighting the model’s ability to incorporate geometric
information into the segmentation process.

We also extended our approach to the anisotropic geodesic case to handle more complex
image structures, such as tubular networks in vascular imaging. By incorporating anisotropic
diffusion tensors derived from the structure tensor field of the image, we adapted the heat
equation-based geodesic distance computation to account for directional information. This ex-
tension allowed the model to capture the intrinsic geometries of anisotropic structures better,
leading to improved segmentation results in datasets involving tree-like and vascular struc-
tures.

Two models were proposed for the anisotropic case. The first model extended the isotropic
approach by integrating anisotropic diffusion into the heat equation and predicting the diffu-
sion tensor and the seed points. The second model circumvented the need for explicit seed
point prediction by employing a probability map and Kullback-Leibler (KL) regularisation, ef-
fectively transforming the segmentation problem into an attention mechanism guided by the
heat flow.

Our experiments with these models showcased their ability to segment complex structures
without the necessity of predefined seed points, reducing computational overhead and simpli-
fying the segmentation pipeline. Although the models did not surpass state-of-the-art perfor-
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mance metrics, they provided valuable insights into integrating geometric methods with deep
learning for image segmentation.

In conclusion, the FMECNN framework presents a promising direction for incorporating
geometric priors into deep learning-based segmentation models. By leveraging geodesic dis-
tances and the Fast Marching Method within a neural network architecture, we can impose
geometric and topological constraints on the output masks, leading to more accurate and re-
liable segmentation results. This approach opens up new possibilities for applications where
the shape and connectivity of the segmented regions are of paramount importance, such as in
medical imaging and computational anatomy.

Future work could focus on further refining the anisotropic models to enhance their per-
formance and extend their applicability to three-dimensional datasets. Additionally, exploring
the integration of other geometric PDE-based methods within deep learning frameworks could
yield new insights and methodologies for complex image analysis tasks. Addressing computa-
tional efficiency and scalability will also be essential for deploying these models in real-world
clinical settings.
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6.1 Conclusion

This work explores new ways to improve image segmentation by combining traditional math-
ematical methods with modern Deep Learning techniques, especially for medical images. Our
main goal was to make segmentation models more accurate and reliable by directly including
geometric and topological information in neural networks.

First, we introduced the Chan-Vese Attention Gate, an attention mechanism added to the
U-Net model. This method includes the Chan-Vese energy minimisation inside the network’s
attention gates, allowing better control over the segmentation masks. This means the network
can focus more effectively on important regions, like tumours in medical images, which leads
to better segmentation accuracy. By integrating the Chan-Vese method, the network can learn
from the data while keeping the geometric constraints from the energy minimisation.

Our experiments showed that the Chan-Vese Attention Gate helps the network to outline
complex structures in images more effectively. The attention masks created by our model fo-
cused on critical regions, confirming that our approach is good at capturing the spatial informa-
tion needed for segmentation. This method improved the Intersection over Union (IoU) scores
compared to standard U-Net models and reduced false negatives, which is very important in
medical diagnostics where missing a region of interest can have serious consequences.

Next, we introduced the Fast Marching Energy CNN (FMECNN), which combines the Fast
Marching Method with Convolutional Neural Networks to use geodesic distances in image
segmentation. The Fast Marching Method is a numerical algorithm used to solve the Eikonal
equation, which describes how a wavefront moves through a medium. By integrating this
method into a neural network, we allowed the network to learn the potential function directly
from the data, which acts as the speed map for the Fast Marching algorithm.

We looked at both isotropic and anisotropic cases. In the isotropic case, where the metric
is the same in all directions, we showed how the network could segment regions defined as
geodesic balls based on the learned metric. By using a smooth approximation of the character-
istic function of the geodesic ball, we made gradient-based optimisation during training pos-
sible. Our experiments showed that the FMECNN could achieve segmentation performance
similar to traditional U-Net architectures, with precise edge detections and robustness against
false negatives.

In the anisotropic case, we extended our approach to handle more complex image struc-
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tures, like tubular networks in vascular imaging. By incorporating anisotropic diffusion tensors
derived from the image’s structure tensor field, we adapted the heat equation-based geodesic
distance computation to account for directional information. This allowed the model to cap-
ture the shapes of anisotropic structures better, leading to improved segmentation results in
datasets involving tree-like and vascular structures.

Our methods show a strong connection between heat flow and geodesic distances. By sim-
ulating how heat would naturally spread through an image’s features, we could find meaning-
ful distances that help understand and segment complex structures. This approach builds on
Crane et al.’s method by integrating it into a learnable framework suitable for deep learning.

Our work shows that combining traditional mathematical methods with deep learning can
enhance image segmentation tasks. We can achieve more accurate and reliable segmentation
results by embedding geometric and topological constraints into neural network architectures.
This is especially important in medical imaging applications, where accurately identifying
structures like tumours or vascular networks is crucial for diagnosis and treatment planning.

In the future, we could focus on further improving these models, extending them to handle
higher-dimensional data, and exploring more ways to integrate geometric information into
deep learning frameworks. By continuing to bridge the gap between classical methods and
modern machine learning, we aim to develop tools that can better understand and analyse
complex image data, ultimately helping advancements in medical diagnostics and other fields
that rely on accurate image segmentation.
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MOTS CLÉS

Apprentissage Profond, Vision par Ordinateur, Méchanisme d’Attention, Données Médicales, Contours Actifs,
Distances Géodésiques

RÉSUMÉ

La segmentation des images médicales est une tâche critique dans la pratique clinique, nécessitant des méthodes pré-
cises et fiables pour aider au diagnostic et à la planification du traitement. Cependant, les approches d’apprentissage
profond existantes manquent souvent d’interprétabilité et de robustesse, ce qui limite leur application dans des envi-
ronnements cliniques sensibles. Cette thèse aborde ces défis en proposant deux nouveaux modèles d’apprentissage
profond qui intègrent des techniques classiques de traitement d’images pour améliorer la performance et la fiabilité de la
segmentation.
La première contribution, le Chan-Vese Attention U-Net, incorpore un mécanisme d’attention basé sur la minimisation de
l’énergie de Chan-Vese dans l’architecture U-Net. Cette approche exploite les contraintes géométriques pour guider le
processus de segmentation, ce qui permet au modèle de produire des résultats plus précis et plus faciles à interpréter en
se concentrant sur les régions pertinentes de l’image et en minimisant les détails non pertinents. La seconde contribution,
le Fast Marching Energy CNN, combine les réseaux neuronaux avec le calcul de la distance géodésique pour apprendre
les métriques riemanniennes isotropes directement à partir des données, ce qui permet de générer des masques de
segmentation robustes qui conservent à la fois les propriétés géométriques et topologiques. Ces méthodes utilisent
des transformées de distance différentiables et l’algorithme de marche sous-gradient pour les intégrer dans un cadre
différentiables.

En intégrant les techniques traditionnelles de minimisation de l’énergie aux modèles modernes d’apprentissage profond,

cette recherche fait progresser le domaine de l’analyse d’images médicales, en offrant des outils plus fiables et inter-

prétables pour la segmentation automatisée. Les résultats de cette thèse ont le potentiel d’améliorer les processus de

prise de décision clinique et l’adoption de solutions pilotées par l’IA dans les soins de santé.

ABSTRACT

Segmentation of medical images is crucial in clinical practice, requiring accurate and reliable methods to aid diagnosis
and treatment planning. However, existing deep learning approaches often need more interpretability and robustness,
limiting their application in sensitive clinical environments. This thesis addresses these challenges by proposing two
new deep learning models integrating classical image processing techniques to improve segmentation performance and
reliability.
The first contribution, the Chan-Vese Attention U-Net, incorporates an attention mechanism based on Chan-Vese en-
ergy minimisation into the U-Net architecture. This approach exploits geometric constraints to guide the segmentation
process, enabling the model to produce more accurate and easier-to-interpret results by focusing on relevant regions
of the image and minimising irrelevant details. The second contribution, Fast Marching Energy CNN, combines neural
networks with geodesic distance computation to learn isotropic Riemannian metrics directly from the data, generating
robust segmentation masks that preserve geometric and topological properties. These methods integrate differentiable
distance transforms and the subgradient walk algorithm into a differentiable framework.

By integrating traditional energy minimisation techniques with modern deep learning models, this research advances

the field of medical image analysis, providing more reliable and interpretable tools for automated segmentation. The

results of this thesis can potentially improve clinical decision-making processes and the adoption of AI-driven solutions in

healthcare.

KEYWORDS

Deep Learning, Computer Vision, Attention Mechanism, Medical Data, Active Contours, Geodesic Distances
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