
HAL Id: tel-04876865
https://theses.hal.science/tel-04876865v1

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Dimensional Time Series Anomaly Detection over
Heterogeneous Domains

Vincent Jacob

To cite this version:
Vincent Jacob. High-Dimensional Time Series Anomaly Detection over Heterogeneous Domains. Ma-
chine Learning [stat.ML]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX068�.
�tel-04876865�

https://theses.hal.science/tel-04876865v1
https://hal.archives-ouvertes.fr

626

N
N

T
:

2
0

2
4

IP
P

A
X

0
6

8

High-Dimensional Time Series Anomaly
Detection across Heterogeneous

Domains
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique, Données, Intelligence Artificielle

Thèse présentée et soutenue à Palaiseau, le 26 Septembre 2024, par

VINCENT JACOB

Composition du Jury :

Laure Berti-Equille
Research Director, Institut de Recherche pour le Développement
(ESPACE-DEV)

Rapporteuse

Thorsten Papenbrock
Professor, Philipps-Universität Marburg (Fb12) Rapporteur

Madalina Fiterau
Assistant Professor, UMass Amherst (Information Fusion Lab) Examinatrice

Themis Palpanas
Professor, Université Paris Cité (LIPADE) Examinateur

Jesse Read
Professor, École Polytechnique (LIX) Examinateur (Président)

Yanlei Diao
Professor, École Polytechnique (LIX) Directrice de thèse

Nesime Tatbul
Senior Research Scientist, Intel Labs (PCL) and MIT (CSAIL) Invitée

High-Dimensional Time Series Anomaly

Detection across Heterogeneous Domains

Vincent ❏❛❝♦❜

A thesis presented for the degree of

Doctor of Philosophy

École Polytechnique

Institut Polytechnique de Paris

Résumé

L’adoption généralisée des services numériques, ainsi que l’échelle et la complexité de leur
fonctionnement, ont rendu les incidents dans les opérations informatiques de plus en plus
probables, diversifiés et impactants pour les entreprises de logiciels, créant ainsi le besoin
de solutions automatisées pour les prévenir.
Pour répondre à ce besoin, cette thèse se concentre sur le problème de la détection

d’anomalies dans les séries temporelles de grande dimension, dans lequel un large ensem-
ble de séries temporelles multivariées est généré par la surveillance périodique d’entités
de service, et où les “anomalies” sont définies comme les motifs déviant d’une certaine
notion de comportement normal. Cette tâche, s’inscrivant dans le domaine émergent de
l’“Intelligence Artificielle pour les Opérations Informatiques” (AIOps), présente plusieurs
défis clés (ou challenges) abordés dans ce travail, à savoir : (CH0) l’absence d’outils de
benchmarking ouverts reflétant les défis de l’AIOps dans la recherche académique, (CH1)
la rareté des annotations d’anomalie disponibles pour entrâıner les méthodes de détection,
(CH2) la grande dimensionnalité, complexité et variété des comportements normaux pour
les séries temporelles collectées, (CH3) le changement dans les comportements normaux
pouvant survenir entre les données d’entrâınement et de test, et (CH4) la présence de mo-
tifs de “bruit” normaux mais minoritaires dans les données, ne devant pas être détectés
comme anomalies par les méthodes.
Cette thèse commence par aborder CH0, à travers la contribution (CTB1) de nou-

veaux outils de benchmarking pour la détection d’anomalies explicable dans des séries tem-
porelles de grande dimension. L’outil principal est le benchmark Exathlon, comprenant
(i) un jeu de données annoté provenant de la surveillance d’applications Spark Streaming,
(ii) une méthodologie d’évaluation flexible de la performance des méthodes de détection
d’anomalies (AD) et de “découverte d’explications” (ED), et (iii) une pipeline complète de
détection d’anomalies explicable pour faciliter la création et l’évaluation de méthodes. Afin
d’évaluer davantage les prédictions des méthodes de détection et d’explication d’anomalies,
cette thèse propose également la conception d’une nouvelle plateforme de visualisation ap-
pelée LEADS Viewer, fournissant une interface graphique pour visualiser les résultats de
détection d’anomalies explicable dans des séries temporelles de grande dimension.
Le reste de cette thèse se concentre sur la composante “détection d’anomalies” du bench-

mark Exathlon. Pour s’accorder avec CH1, il considère principalement des méthodes de
détection dans un cadre non supervisé, supposant des données d’entrâınement non an-
notées et principalement normales. Dans ce cadre, cette thèse propose (CTB2) une
analyse de benchmark approfondie de méthodes représentatives non supervisées et semi-
supervisées avec annotations de données normales, simplement appelées “non supervisées”
ici. Notre étude révèle une performance limitée de toutes les méthodes comparées pour
résoudre le benchmark Exathlon, avec un score F1 maximal obtenu de seulement 0.66.
Elle montre également que cette performance limitée est principalement due à une grande
vulnérabilité de ces méthodes à CH3, en particulier pour les méthodes d’apprentissage
profond. En effet, ces dernières modélisent plus finement les données d’entrâınement que
les alternatives classiques étant donné CH2, ce qui est un avantage en AIOps et motive
l’utilisation de l’apprentissage profond, mais est contrebalancé ici par une sensibilité ac-
crue au changement de distribution. Dans l’ensemble, toutes les méthodes ont montré
trois limitations principales, avec un impact décroissant sur la performance : (L1) une
vulnérabilité au changement de comportement normal entre les données d’entrâınement et

3

de test , (L2) une production de faux négatifs pour les anomalies les plus complexes étant
donné notre grand nombre de features , et (L3) une production de faux positifs pour les
motifs de “bruit” normaux mais minoritaires dans les données de test .

La partie suivante de cette thèse aborde explicitement L1 via (CTB3) une nouvelle
méthode de généralisation de domaine pour la détection d’anomalies non supervisée, définis-
sant les différents contextes de fonctionnement normal comme un ensemble de domaines
hétérogènes, et associant le changement de comportement normal au concept de change-
ment de domaine. Nous commençons par caractériser formellement le problème de la
détection d’anomalies non supervisée sous changement de domaine. Nous proposons en-
suite “Domain-Invariant VAE for Anomaly Detection”, ou DIVAD, s’appuyant sur le
feature disentanglement pour décomposer la variable observée en encodages spécifique au
domaine et invariants au domaine, et définissant les anomalies comme les observations
déviant de la distribution d’entrâınement des encodages invariants au domaine unique-
ment. Nous concevons différentes variantes de DIVAD, et montrons que les meilleures
d’entre elles sont particulièrement efficaces pour traiter la limitation L1 de nos méthodes de
référence, améliorant ainsi leur performance de détection de manière significative (jusqu’à
20%, atteignant un score F1 maximal de 0.79). Nous appliquons également notre méthode
DIVAD au jeu de données “Application Server Dataset”, et montrons qu’elle surpasse la
meilleure méthode de référence en score F1 maximal pour 92% des cas de test (avec une
amélioration de plus de 10% pour 67% d’entre eux), soulignant ainsi son applicabilité plus
large, au-delà de notre jeu de données.
Malgré le succès de notre méthode DIVAD pour traiter la principale limitation L1 de

nos méthodes de référence, elle n’a pas été conçue pour s’attaquer à leurs limitations
restantes L2 et L3. Pour traiter conjointement ces trois limitations, cette thèse propose
(CTB4) de nouvelles méthodes contrastives dans un cadre faiblement supervisée, con-
sidérant quelques instances d’anomalie annotées pour entrâıner les méthodes de détection,
tout en s’accordant toujours avec CH1. Dans ce nouveau cadre, nous proposons “Con-
trastive Encoder for Anomaly Detection with a Few Anomaly Labels”, ou CEADAL, une
méthode (i) extrayant des paires normal-normal et normal-anomalie à partir des données
d’entrâınement, (ii) s’appuyant sur la perte contrastive pour construire une projection
latente dans laquelle les données normales sont regroupées dans une région restreinte,
éloignée des anomalies, et (iii) définissant les anomalies comme les observations déviant de
la distribution d’entrâınement des observations normales latentes. Afin d’étudier l’impact
de la perte contrastive utilisée par CEADAL, nous proposons également une méthode al-
ternative basée sur la perte par triplet, appelée TEADAL, induisant des représentations
plus riches et moins contraintes pour les observations normales dans l’espace latent. Nous
évaluons CEADAL et TEADAL sur le benchmark Exathlon, et montrons l’efficacité de
CEADAL pour traiter nos limitations L1-3, atteignant ainsi les scores F1 maximal et
médian les plus élevés parmi toutes les méthodes comparées (0.83 et 0.80, respective-
ment). Notre étude confirme notamment que les fortes contraintes de proximité imposées
par CEADAL pour les observations normales latentes tendent à induire une “généralisation
de contexte implicite” qui aide à aborder L1, surpassant ainsi des alternatives moins con-
traintes telles que TEADAL (qui n’a obtenu qu’un score F1 maximal de 0.64, malgré une
meilleure modélisation des données d’entrâınement). Notre étude montre enfin que les
quelques anomalies annotées utilisées par CEADAL sont en effet utiles pour traiter L2 et
L3, réduisant ainsi le nombre de faux négatifs et de faux positifs produits.

4

Abstract

The widespread adoption of digital services, along with the scale and complexity at which
they operate, has made incidents in IT operations increasingly likely, diverse and impactful
for software companies, creating the need for automated methods to prevent them.
To respond to such needs, this thesis focuses on the problem of anomaly detection in

high-dimensional time series, where a large set of multivariate time series is generated from
the periodic monitoring of service entities, and “anomalies” are defined as patterns in data
that deviate from a given notion of normal behavior. This task, lying in the emerging field
of “Artificial Intelligence for IT Operations” (AIOps), presents a set of key challenges
addressed in this work, namely: (CH0) the lack of open benchmarking tools that reflect
AIOps challenges in academic research, (CH1) the scarcity of anomaly labels available
to train the detection methods, (CH2) the high dimensionality, complexity and variety
of normal behaviors for the recorded time series, (CH3) the shift in normal behaviors
that can occur from training to test data, and (CH4) the presence of normal but “noisy”,
minority patterns in both training and test data that should not be flagged as anomalies
by the methods.

This thesis starts by addressing CH0 through the contribution of (CTB1) new bench-
marking tools for explainable anomaly detection in high-dimensional time series. The
main tool is the Exathlon benchmark, consisting of (i) a labeled dataset centered around
a Spark Streaming application monitoring use case, (ii) a flexible evaluation method-
ology to assess the performance of anomaly detection (AD) and explanation discovery
(ED) methods, and (iii) an end-to-end explainable anomaly detection pipeline to facili-
tate method building and benchmarking. To further diagnose the predictions of anomaly
detection and explanation methods, this thesis also contributes the design of a new visu-
alization platform called LEADS Viewer, providing a Graphical User Interface (GUI) to
visualize explainable anomaly detection outputs on high-dimensional time series.
The remainder of this thesis focuses on the anomaly detection component of the Exathlon

benchmark. To comply with CH1, it mainly considers AD methods in an unsupervised
setting, assuming unlabeled, mostly-normal data for training. Under this setting, this
thesis contributes (CTB2) an in-depth benchmarking analysis of representative unsuper-
vised and semi-supervised methods assuming labeled normal data, simply referred to as
“unsupervised” here. Our study reveals the limited performance of all the methods com-
pared in solving the Exathlon benchmark, with a maximum peak F1-score achieved of only
0.66. It also shows that this limited performance is primarily due to a high vulnerability of
these methods to CH3, especially for deep learning methods. Such methods indeed model
training data at a finer level than shallow alternatives given CH2, which is an advantage
in AIOps and motivates using deep learning, but is counterbalanced here by an increased
sensitivity to distribution shift. Overall, all methods displayed three main limitations,
with a decreasing impact on the performance: (L1) a vulnerability to normal behavior shift
from training to test data, (L2) a production of false negatives for the hardest anomalies
given our large number of features, and (L3) a production of false positives for normal but
“noisy”, minority patterns in test data.

The next part of this thesis explicitly addresses L1 with (CTB3) a new domain gen-
eralization method for unsupervised anomaly detection, defining the different contexts of
normal operation as a set of heterogeneous domains, and associating normal behavior shift
to the concept of domain shift. We start by formally characterizing the problem of unsu-

5

pervised anomaly detection under domain shift. We then propose Domain-Invariant VAE
for Anomaly Detection, or DIVAD, relying on feature disentanglement to decompose
the observed variable into domain-specific and domain-invariant encodings, and defin-
ing anomalies as samples that deviate from the training distribution of domain-invariant
encodings only. We design different DIVAD variants, and show that the best ones are
particularly effective in addressing the limitation L1 of our unsupervised baselines, thus
improving their anomaly detection performance by a large margin (up to 20%, reaching a
maximum peak F1-score of 0.79). We also apply our DIVAD method to the Application
Server Dataset (ASD), and show that it outperforms the best unsupervised baseline in
maximum peak F1-score for 92% of the test cases (with over 10% improvements for 67%
of them), hence highlighting its broader applicability beyond our dataset.
Despite the success of DIVAD in addressing the main limitation L1 of our baselines, it

was not designed to tackle their remaining limitations L2 and L3. To jointly address all
three limitations, this thesis contributes (CTB4) new contrastive methods in a weakly-
supervised setting , considering a few labeled anomalies to train the detection methods,
while maintaining compliance with CH1. Under this new setting, we propose Contrastive
Encoder for Anomaly Detection with a Few Anomaly Labels, or CEADAL, a method
that (i) extracts normal-normal and normal-anomaly pairs from the training samples, (ii)
relies on the contrastive loss to construct a latent mapping where normal data samples
are grouped within a tight region, away from the anomalies, and (iii) defines anomalies as
samples that deviate from the training distribution of normal latent samples. To study the
impact of the contrastive loss used by CEADAL, we also propose an alternative method
based on the more recent triplet loss called TEADAL, inducing richer, less-constrained
representations of normal samples in latent space. We apply both CEADAL and TEADAL
against the Exathlon benchmark, and show the effectiveness of CEADAL in addressing our
limitations L1-3, thus achieving the highest maximum and median peak F1-scores across
all the methods compared (0.83 and 0.80, respectively). In particular, our study confirms
that the strong proximity constraints enforced by CEADAL for normal latent samples
tends to induce an “implicit context generalization” that combats L1, thus outperforming
less constrained alternatives like TEADAL (which obtained a maximum peak F1-score of
only 0.64, despite a better modeling of the training data). Our study finally shows that
the few labeled anomalies leveraged by CEADAL are indeed helpful in tackling L2 and
L3, thereby reducing the amount of false negatives and false positives produced.

6

Acknowledgments

I am deeply grateful for the support and encouragement I have received during the com-
pletion of this PhD thesis.

I would like to start by thanking my supervisor, Yanlei, for her guidance, advice, and
continuous support throughout this research. I am also grateful to the reviewers and
Jury members of my thesis, Laure Berti-Equille, Thorsten Papenbrock, Madalina Fiterau,
Themis Palpanas and Jesse Read, for their time spent evaluating my work and their
valuable feedback, as well as to Alexandre Gramfort for his advice and support as a
monitoring committee member.

I extend my thanks to all my co-authors and collaborators across research projects, with
whom I have been fortunate to work: Nesime, Fei, Bijan and Arnaud for their contributions
to Exathlon; Jia Li, Ran Wang and Junqiang Chen for their work on LEADS Viewer; as
well as Iman and Sein Minn for their efforts on our fraud detection project. Special thanks
also go to all members of the CEDAR team whose paths I have crossed over the years,
for the insightful discussions and moments shared, as well as to Jessica and Alice for their
administrative assistance.

On a personal note, I would like to deeply thank my family and friends, for their
unwavering support, help and encouragement throughout this journey.

7

Contents

Notation 19

1 Introduction 21

1.1 Technical Challenges . 21

1.2 Scope and Contributions . 23

1.3 Thesis Organization . 25

2 Literature Review 27

2.1 Datasets and Benchmarks . 27

2.1.1 Anomaly Detection in Multivariate Time Series 27

2.1.2 Anomaly Explanation . 29

2.2 Time Series Anomaly Detection in AIOps 31

2.2.1 Unsupervised Anomaly Detection in Multivariate Time Series 32

2.2.2 Weakly-Supervised Anomaly Detection and Contrastive Learning . . 33

2.2.3 Domain Generalization . 34

2.3 Explanation Discovery . 35

2.3.1 Interpretable Machine Learning . 35

2.3.2 Outlier Explanation . 36

3 The Exathlon Benchmark 39

3.1 Spark Streaming Dataset . 39

3.1.1 Data Collection . 39

3.2 Evaluation Methodology . 42

3.2.1 Anomaly Detection (AD) Functionality 42

3.2.2 Explanation Discovery (ED) Functionality 46

3.2.3 Computational Performance . 49

3.3 Explainable Anomaly Detection Pipeline . 49

3.3.1 Data Partitioning . 49

3.3.2 Data Transformation . 50

3.3.3 Anomaly Detection Training . 50

3.3.4 AD Inference and Evaluation . 52

3.3.5 ED Execution and ED Evaluation 53

3.4 LEADS Viewer . 53

3.5 Summary and Conclusions . 54

4 Unsupervised Anomaly Detection Study 57

4.1 Problem Statement . 57

4.2 Experimental Setup . 58

4.2.1 Data Selection . 58

4.2.2 Data Preprocessing . 58

4.2.3 Data Partitioning . 59

4.2.4 Feature Engineering . 59

4.2.5 Data Windowing . 60

4.2.6 Evaluation Strategy . 60

9

4.3 Data Characteristics . 61

4.3.1 Event and Anomaly Types . 61

4.3.2 Diversity and Shift in Normal Behaviors 66

4.4 Compared Methods and Hyperparameters 68

4.4.1 Model Training and Selection for Deep Learning Methods 68

4.4.2 Point Modeling Methods . 68

4.4.3 Sequence Modeling Methods . 70

4.5 Results and Analyses . 72

4.5.1 Format of Results . 73

4.5.2 Difficulty of Event Types . 73

4.5.3 Point Modeling Methods . 74

4.5.4 Sequence Modeling Methods . 75

4.5.5 Point vs. Sequence Modeling . 76

4.5.6 Limitations of Best-Performing Methods 78

4.6 Summary and Conclusions . 81

5 Explicit Domain Generalization 83

5.1 Anomaly Detection under Domain Shift . 83

5.1.1 Domain Generalization Framework 85

5.2 Domain-Invariant VAE for Anomaly Detection 85

5.2.1 Model Training . 86

5.2.2 Anomaly Scoring based on Prior . 87

5.2.3 Anomaly Scoring based on Aggregated Posterior Estimate 89

5.2.4 Putting It All Together . 89

5.3 Experiments . 89

5.3.1 Compared Methods and Hyperparameters 89

5.3.2 Results and Analyses . 92

5.4 Broader Applicability: Application Server Dataset 98

5.4.1 Experimental Setup and Methods Considered 98

5.4.2 Results and Analyses . 99

5.5 Summary and Conclusions . 100

6 Prior Knowledge through Weak Supervision 103

6.1 Revised Problem Statement . 103

6.2 Contrastive Encoder for Anomaly Detection with a Few Anomaly Labels . . 104

6.2.1 Contrastive Learning Framework . 104

6.2.2 Pair Mining Strategy . 105

6.2.3 Anomaly Scoring . 106

6.2.4 Triplet Loss Alternative . 107

6.3 Experiments . 107

6.3.1 Revised Experimental Setup . 108

6.3.2 Compared Methods and Hyperparameters 108

6.3.3 Results and Analyses . 112

6.4 Summary and Conclusions . 117

7 Conclusions and Perspectives 121

7.1 Conclusions . 121

7.2 Perspectives . 123

A Spark Streaming Dataset 137

A.1 Spark Streaming Applications . 137

A.1.1 Spark Settings . 138

10

A.2 Extended Effect Intervals . 139

B VAE Framework 141
B.1 Single Latent Variable . 141

B.1.1 Variational Inference . 141
B.1.2 Amortized Variational Inference . 142
B.1.3 ELBO Maximization (Reparameterization Trick) 143
B.1.4 Variational Autoencoder (VAE) Framework 143

B.2 Adaptation to DIVAD’s Dependency Structure 144

11

List of Figures

1.1 The periodic monitoring of a service entity generates a multivariate time
series, where anomalous time periods correspond to abnormal behaviors for
the running entity. 22

1.2 Addressed challenges CH0-4 and corresponding contributions CTB1-4. . . 23

3.1 Spark application monitoring and metrics observed in anomaly instances (a
pair of red vertical bars marks a root cause event). 40

3.2 Range-based Precision and Recall at AD levels 1-4. Precision evaluates
prediction quality (green out of green + yellow for each Pi). Recall evaluates
anomaly coverage (green out of green + blue for each Ri). 44

3.3 A pipeline for explainable anomaly detection over multivariate time series. . 50

3.4 LEADS Viewer’s DASHBOARD tab for the T1 (Bursty Input) trace 5 1 500000 62

of Exathlon’s Spark Streaming dataset, with CEADAL and EXstream pre-
dictions. 56

4.1 Example disturbed trace of each type projected on the last completed batch
scheduling and processing delays. 62

4.2 Kernel Density Estimate (KDE) plots of the last completed batch processing
delay for training normal data, test normal data and test anomalous data. . 63

4.3 Time plot of the difference in total number of received records for a normal
and an anomalous subsequence of lengths 100 in the T3 trace 10 3 1000000 75. 64

4.4 Time plot of the difference in total number of received records in the T4
trace 9 4 1000000 78. The fourth anomaly instance induced an application
crash. 65

4.5 Example executor failure instances projected on the last completed batch
scheduling and processing delays. 66

4.6 The diversity in Spark settings, data sender input rate and concurrency
environment induce diverse normal behaviors even within runs of a same
application. 66

4.7 t-SNE scatter plots of application 2’s normal data, undersampled to 10,000
data records balanced by context. 67

4.8 General form of our recurrent autoencoder architectures. 71

4.9 Box plots of peak F1-scores achieved by each unsupervised method, sep-
arated by modeling strategy (point vs. sequence) and colored by method
category. 73

4.10 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
reconstruction and distribution methods to training normal, test normal
and test anomalous records. 75

4.11 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
Rec VAE to training normal, test normal and test anomalous records. . . . 76

4.12 Time plots of the anomaly scores of Rec AE, Rec DSVDD, LSTM-AD and
TranAD for the records in trace 2 1 100000 60 (Bursty Input), highlighting
their peak F1-score thresholds and the ground-truth anomaly ranges. 77

13

4.13 Ridgeline plot of TranAD’s anomaly scores for the records of each type (i.e.,
in “normal” and T1 to T6 ranges) in each test trace, with its peak F1-score
threshold highlighted in red. 79

4.14 Ridgeline plot of Rec DSVDD’s anomaly scores for the records of each type
(i.e., in “normal” and T1 to T6 ranges) in each test trace, with its peak
F1-score threshold highlighted in red. 80

4.15 Time plot of TranAD’s anomaly scores in trace 6 3 200000 76, highlighting
its peak F1-score threshold and the ground-truth anomaly ranges. 81

5.1 Generative model: the observed variable x depends on its domain d and
latent (i.e., unobserved) class y. 84

5.2 Generative model: x is caused by independent domain-specific zd and
domain-independent zy. Constructing fy then amounts to inferring zy from
x (dashed arrow). 86

5.3 Multi-encoder architecture of our DIVAD-GM models, with Ndom the num-
ber of training domains (DIVAD-G models use a similar architecture, with
the learned Gaussian Mixture parameters replaced with fixed Gaussian pa-
rameters). 90

5.4 Box plots of peak F1-scores achieved by TranAD and each DIVAD variant,
colored by modeling strategy (point vs. sequence). 92

5.5 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
Dense DIVAD-GM to training normal, test normal and test anomalous
records. 93

5.6 Ridgeline plot of Dense DIVAD-GM’s anomaly scores for the records of
each type (i.e., in “normal” and T1 to T6 ranges) in each test trace, with
its peak F1-score threshold highlighted in red. 94

5.7 t-SNE scatter plots of Dense DIVAD-GM’s domain-specific (left) and domain-
invariant (right) encodings of test normal records, undersampled to 10,000
data records, balanced and colored by domain. 95

5.8 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
Rec DIVAD-G and Rec DIVAD-GM to training normal, test normal and
test anomalous records. 96

5.9 Time plots of the anomaly scores of Dense DIVAD-G and Rec DIVAD-G for
the records in trace 5 1 100000 63 (Bursty Input), highlighting their peak
F1-score thresholds and the ground-truth anomaly ranges. 96

5.10 Box plots of peak F1-scores achieved by each DIVAD variant and anomaly
scoring strategy (class encoding prior (P) vs. aggregated posterior (AP)),
colored by modeling strategy (point vs. sequence). 98

5.11 Box plots of peak F1-scores achieved by TranAD and Rec DIVAD-GM for
ASD, using each server as a test set. 99

5.12 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
TranAD and Rec DIVAD-GM and to the training normal, test normal and
test anomalous records of ASD, using server 1 as a test set. 100

6.1 Our goal is to map the normal data samples to a single compact region,
and anomalies away from it. 104

6.2 Training procedure: update the weights of a Siamese neural network to at-
tract the members of concordant pairs and repel the members of discordant
pairs. 105

6.3 “Batch hard” pair mining strategy for the contrastive encoder training:
normal samples 1, 2 and 3 get paired with their closest normal and furthest
anomalous sample in latent space. 106

14

6.4 Box plots of peak F1-scores achieved by the encoding and classification
methods, separated by modeling strategy (point vs. sequence) and colored
by method category (encoding vs. classification). 112

6.5 Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
Dense CEADAL, Dense TEADAL, Conv CEADAL and Conv DSAD to
training normal, test normal and test anomalous records. 114

6.6 Time plots of the anomaly scores assigned by Dense CEADAL, Conv DSAD
and Conv CEADAL in trace 6 3 200000 76, highlighting their peak F1-
score thresholds and the ground-truth anomaly ranges. 116

6.7 Time plot of the anomaly scores assigned by XGBoost in trace 6 5 1000000 93,
highlighting its peak F1-score threshold and the ground-truth anomaly ranges.117

6.8 Time plots of the anomaly scores assigned by Dense DIVA in traces 1 2 100000 68,
3 5 1000000 89 and 6 5 1000000 93, highlighting its peak F1-score thresh-
old and the ground-truth anomaly ranges. 118

6.9 Ridgeline plot of XGBoost’s anomaly scores for the records of each type
(i.e., in “normal” and T1 to T6 ranges) in each test trace, with its peak
F1-score threshold highlighted in red. 120

15

List of Tables

2.1 Total number of sequences, entities, records, features and anomalies for
the most relevant existing real-world datasets and Exathlon’s (with maxi-
mum values shown in bold), and whether they include range-based anoma-
lies (covering multiple records), point-based anomalies (covering individual
records), or both. 29

3.1 Collected metrics and data size. 40
3.2 Undisturbed traces, disturbed traces and ground-truth labels for 97 anomalies. 41
3.3 The Exathlon evaluation methodology and benchmark design. 43
3.4 Range-based Precision/Recall parameter settings for our AD1-4 levels. . . . 45

4.1 Peak F1-scores achieved by the best-performing unsupervised methods for
each event type within a trace (averaged across test traces), with the top-
three F1-scores for each event type shown in bold. 74

5.1 Peak F1-score achieved by the best-performing DIVAD variants for each
event type within a trace (averaged across test traces), with the top F1-
score for each event type shown in bold. 92

6.1 Peak F1-scores achieved by the best-performing encoding and classification
methods for each event type within a trace (averaged across test traces),
with the top-three F1-scores for each event type shown in bold. 113

17

Notation

This work adopts most of the notational conventions of [1], with some exceptions regarding
sets and an additional “slicing” notation for vectors and matrices.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

a A scalar random variable

a A vector-valued random variable

Sets

A A set

R The set of real numbers

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

[a . . b] The integer interval including a and b

{a, b, c} The set containing a, b and c

{a1, . . . , an} The set containing a1, a2, · · · up to an

Indexing

For all elements, indexing starts at 1.

ai Element i of vector a

ai:j Elements i to j in vector a (both included)

Ai,j Element i, j of matrix A

Ai,: or Ai Row i of matrix A

A:,i Column i of matrix A

Ai:j Rows i to j in matrix A (both included)

Ai:j,k:l Rows i to j and columns k to l in matrix A (all included)

19

1 Introduction

Over the past few decades, the norm in the software industry has been shifting from
periodically releasing products to providing cloud-based services [2]. The International
Data Corporation (IDC) predicts that worldwide spending on public cloud services will
reach $805 billion in 2024 and double by 2028, with applications being the largest cat-
egory, capturing over 40% of all public cloud spending in 2024 [3]. This paradigm shift
has greatly generalized the adoption of DevOps practices [4], aiming to constantly im-
prove service quality by implementing continuous development and release cycles. In this
DevOps context, companies increasingly rely on site reliability engineers (SREs) to con-
tinually maintain services under operational conditions, in compliance with service-level
agreements (SLAs) previously made with customers. As such, incidents in IT operations
have become more impactful for software companies, inducing ever-increasing financial
costs, both directly through these SLAs and indirectly through brand image deteriora-
tion. Concurrently, the popularity of such services has greatly increased the scale and
complexity at which they operate, always relying on more resources and parallelism to
process larger volumes of data at high speed. This evolution has made incidents more
frequent, diverse and difficult for SREs to manually anticipate and diagnose, thus creating
the need for more automated solutions.
Providing such solutions has motivated the rapid development of “Artificial Intelligence

for IT Operations” (AIOps) [5], more broadly proposing to use AI to automate and opti-
mize operational workflows [6]. The field of AIOps has been gaining significant attention
within the past few years, with a market size estimated to grow from $27.24 billion in
2024 to $79.91 billion by 2029 [7], as the community recognizes the critical role it will play
in the future of service delivery and IT Operations Management (ITOM). Toward the
application goal of providing systems that can effectively assist SREs in preventing service
incidents, this thesis focuses on the problem of anomaly detection in high-dimensional
time series, where a large set of multivariate time series is generated from the periodic
monitoring of service entities, and “anomalies” are defined as patterns in data that deviate
from a given notion of normal behavior [8]. Figure 1.1 shows an illustrative example for
a service entity run and corresponding multivariate time series. In this example, the pe-
riodic monitoring of the entity’s execution generates multiple univariate time series with
aligned time indices, constituting a multivariate time series. The goal is then to detect
the anomalous time period (marked in red) from the time series data, corresponding to a
period of abnormal behavior for the running entity.

1.1 Technical Challenges

Detecting anomalies in AIOps presents a set of key challenges [9] covered in this work,
which we organize as follows:

• CH0. The lack of open benchmarking tools that reflect the AIOps challenges in
academic research. This challenge supersedes all others, as it prevents the assessment
of whether the developed methods can effectively tackle them.

• CH1. The scarcity of anomaly labels available to train the detection methods, due
to the domain knowledge of IT operations required to reliably label anomalies, and
the labor-intensive process of examining large amounts of time series data.

21

Figure 1.1: The periodic monitoring of a service entity generates a multivariate time se-
ries, where anomalous time periods correspond to abnormal behaviors for the
running entity.

• CH2. The high dimensionality, complexity and variety of normal behaviors for the
recorded time series. The collection of hundreds or thousands of metrics, moni-
tored at a high frequency for a large number of service entities indeed yields high-
dimensional data across both the time and feature dimensions. This high-dimensional
data being monitored for multiple, complex entities at scale in different contexts also
adds to the complexity and variety of the normal behaviors recorded.

• CH3. The shift in normal behaviors that can occur from training to test data, due
to potentially frequent changes in software components, hardware components or
operation contexts of the monitored entities.

• CH4. The presence of normal but “noisy”, minority patterns in both training and
test data that should not be flagged as anomalies by the methods, due to the fine
granularity of data collection and the multiple sources of random artifacts that can
occur.

CH0 has long limited academic research efforts toward anomaly detection in AIOps,
with existing anomaly detection (AD) benchmarks and datasets operating on very small
scales compared to typical real-world settings [10, 11], while also not reflecting CH3 in
systematic and controlled ways. For this reason, addressing CH0 constitutes the first
focus of this thesis. Despite these benchmarking limitations, a significant amount of time
series anomaly detection methods have been proposed over the years. In the literature,
CH1 has been addressed through the development of unsupervised and semi-supervised
AD methods [8], assuming no or only partial label information for training, respectively.
The advent of deep learning (DL) [12] has also been instrumental in partly addressing
CH2, with deep methods becoming particularly effective at learning rich representations
of high-dimensional data as the number of training samples increases, being able to cap-
ture both temporal (i.e., intra-feature) and spatial (i.e., inter-feature) dependencies of
multivariate time series [13, 14]. CH3, despite being one of the most critical challenges
of anomaly detection in AIOps, has been the least studied in the literature. As a result,
this thesis identifies the main limitation of current anomaly detection methods as their
lack of robustness to a shift in normal behaviors from training to test data, leading them
to assign different degrees of “abnormality” to distinct contexts of normal operation for
the recorded entities. Finally, being vulnerable to CH4 can hinder the performance and
practical usage of AD methods, causing them to generate numerous false positives due to
an interference between noise and anomalies in test data. As this thesis shows, leveraging
a few labeled anomaly instances for training, in a weakly-supervised setting [15, 16], can
be an effective way to address this challenge while maintaining compliance with CH1.

22

Figure 1.2: Addressed challenges CH0-4 and corresponding contributions CTB1-4.

1.2 Scope and Contributions

This thesis proposes to address the challenges introduced above through four main con-
tributions (summarized in Figure 1.2):

CTB1 New benchmarking tools for explainable anomaly detection in high-dimensional
time series (Chapter 3). To addressCH0, the main contribution of this thesis is Exathlon
[17], the first public benchmark for explainable anomaly detection over high-dimensional
time series, publicly available at https://github.com/exathlonbenchmark/exathlon.
Exathlon consists of (i) a labeled dataset centered around a Spark Streaming application
monitoring use case, (ii) a flexible evaluation methodology to assess the performance of
anomaly detection (AD) and explanation discovery (ED) methods, and (iii) an end-to-end
explainable anomaly detection pipeline to facilitate method building and benchmarking.
Through its large-scale distributed stream processing use case, Exathlon’s dataset was
collected with AIOps considerations in mind, providing data traces that significantly ex-
ceed the dimensionality of traditional time series datasets and benchmarks. The design
of its evaluation methodology and pipeline is however modular and extensible, making
Exathlon applicable to a wide variety of explainable anomaly detection problems beyond
this particular use case. Besides anomaly detection, Exathlon supports the evaluation
of “explanation discovery”, defined as the task of deriving human-readable, meaningful
explanations for the anomalies detected (e.g., in the form of feature importance scores
or decision rules involving the input features). To further diagnose the predictions of
anomaly detection and explanation methods, this thesis also contributes the design of a
new visualization platform called LEADS Viewer, providing a Graphical User Interface
(GUI) to visualize explainable anomaly detection outputs on high-dimensional time series
data, publicly available at https://github.com/exathlonbenchmark/leads-viewer.

CTB2 An in-depth benchmarking analysis of representative unsupervised anomaly detec-
tion methods (Chapter 4). The remainder of this thesis focuses on the anomaly detec-
tion component of the Exathlon benchmark. To comply with CH1, it mainly considers
anomaly detection methods in an unsupervised setting, assuming unlabeled, mostly-normal
data for training [18]. Under this setting, this thesis contributes an in-depth benchmark-
ing analysis of representative unsupervised and semi-supervised methods assuming labeled

23

normal data (simply referred to as “unsupervised” in the following), as per the taxonomy
of Schmidl et al. [19]. Our study reveals the limited performance of all the methods com-
pared in solving the Exathlon benchmark, with a maximum peak F1-score of only 0.66
achieved by TranAD [14]. It also shows that this limited performance, as well as some of
the tradeoffs observed, are mostly due to a high vulnerability of these methods to CH3,
with shifts in contexts for the normal operations of Exathlon’s Spark Streaming applica-
tions being considered abnormal by the methods. This vulnerability to normal behavior
shift is especially pronounced for deep learning methods, which is caused by, and counter-
balances, their finer modeling of the training data compared to shallow alternatives given
CH2. Our study finally shows that all the methods compared produce false negatives
with respect to the hardest anomalies of Exathlon’s dataset, while also being vulnerable
to CH4, producing false positives for normal but “noisy”, minority patterns in test data.
Overall, the methods displayed three main limitations, listed below in decreasing order
of impact on the AD performance:

• L1. A vulnerability to normal behavior shift from training to test data, hence a
shortcoming in addressing CH3 above.

• L2. A production of false negatives for the hardest anomalies given our large number
of features , hence a shortcoming in addressing part of CH2 above.

• L3. A production of false positives for normal but “noisy”, minority patterns in test
data, hence a shortcoming in addressing CH4 above.

CTB3 A new explicit domain generalization method for unsupervised anomaly detection
(Chapter 5). The next contribution of this thesis is to explicitly address L1, identified as
the main limitation of our unsupervised baselines. We do so through the scope of domain
generalization, defining the different contexts of normal operation for the recorded entities
as a set of heterogeneous domains, and associating normal behavior shift to the concept of
domain shift. We start by formally characterizing the problem of unsupervised anomaly
detection under domain shift. We then propose Domain-Invariant VAE for Anomaly De-
tection, orDIVAD, relying on feature disentanglement [20, 21] to decompose the observed
variable into domain-specific and domain-invariant encodings, and defining anomalies as
samples that deviate from the training distribution of domain-invariant encodings only.
We design different DIVAD variants, based on the architecture, type of domain-invariant
encoding prior used (fixed standard Gaussian vs. learned Gaussian Mixture) and anomaly
scoring strategy. We show that the best ones are particularly effective in addressing the
limitation L1 of our unsupervised baselines, thus improving their anomaly detection per-
formance by a large margin (up to 20% for the learned Gaussian Mixture variant, reaching
a maximum peak F1-score of 0.79). We also apply our DIVAD method to the Applica-
tion Server Dataset (ASD) [13], assessing its ability to detect anomalies in a test server
given training normal data from 11 different servers. Our experiment shows that DIVAD
outperforms the best unsupervised baseline TranAD in maximum peak F1-score for 92%
of the test cases (with over 10% improvements for 67% of them), hence highlighting its
broader applicability beyond our Spark Streaming dataset.

CTB4 New contrastive methods in a weakly-supervised setting (Chapter 6). Despite the
success of DIVAD in addressing the main limitation L1 of our baselines, this method was
not designed to tackle their remaining limitations L2 and L3. To jointly address all three
limitations, this thesis explores a weakly-supervised extension of our setting, considering a
few labeled anomalies to train the detection methods, while maintaining compliance with
CH1. Under this new setting, we propose Contrastive Encoder for Anomaly Detection
with a Few Anomaly Labels, or CEADAL, a method that (i) extracts normal-normal and
normal-anomaly pairs from the training samples, (ii) relies on the contrastive loss [22] to
construct a latent mapping where normal data samples are grouped within a tight region,

24

away from the anomalies, and (iii) defines anomalies as samples that deviate from the
training distribution of normal latent samples. To study the impact of the contrastive
loss used by CEADAL, we also propose an alternative method based on the more recent
triplet loss [23] called TEADAL (using normal samples as anchor and positive inputs, and
anomalies as negative inputs), inducing richer, less-constrained representations of normal
samples in latent space. We apply both CEADAL and TEADAL against the Exathlon
benchmark, along with other encoding and classification methods, and show the effective-
ness of CEADAL in addressing our limitations L1-3, achieving the highest maximum and
median peak F1-scores across all the methods compared (0.83 and 0.80, respectively). In
particular, our study confirms that the strong proximity constraints enforced by CEADAL
for normal latent samples tends to induce an “implicit context generalization” that com-
bats L1, thus outperforming less constrained alternatives like TEADAL (which obtained
a maximum peak F1-score of only 0.64, despite a better modeling of the training data).
Our study finally shows that the few labeled anomalies leveraged by CEADAL are indeed
helpful in tackling L2 and L3, thereby reducing the amount of false negatives and false
positives produced.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a review of the rel-
evant literature, including the datasets and benchmarks proposed for time series anomaly
detection (AD) and explanation, as well as the unsupervised, weakly-supervised and do-
main generalization methods proposed for AD in AIOps scenarios. It also introduces
and categorizes the main explanation discovery (ED) methods mentioned and targeted by
the Exathlon benchmark. Chapter 3 presents the Exathlon benchmark, covering its Spark
Streaming dataset, evaluation methodology and end-to-end pipeline in detail. It also intro-
duces LEADS Viewer, and the way this platform can be used to diagnose the predictions of
anomaly detection and explanation methods. Chapter 4 relies on the Exathlon benchmark
to present an experimental study of unsupervised anomaly detection methods, providing
additional details on Exathlon’s dataset, and highlighting the characteristics, tradeoffs
and limitations of the methods compared. Chapter 5 presents DIVAD, a new domain
generalization method for unsupervised anomaly detection, showing this method effec-
tively addresses the vulnerability to normal behavior shift identified for the unsupervised
baselines, while also being more broadly applicable beyond our particular dataset. Chap-
ter 6 considers a weakly-supervised extension of our setting, where the detection methods
can additionally leverage a few labeled anomalies for training. It presents CEADAL and
TEADAL, relying on the contrastive loss and triplet loss, respectively, to construct la-
tent representations of normal data samples lying away from anomalies. It shows that
CEADAL addresses the main limitations identified for the unsupervised baselines, achiev-
ing the best anomaly detection performance overall. Finally, Chapter 7 presents the main
conclusions of this thesis and suggests relevant research directions for future work.

25

2 Literature Review

In this chapter, we survey the existing work that relates to benchmarking and building
explainable anomaly detection methods in our AIOps use case. We start in Section 2.1 by
reviewing the datasets and benchmarks proposed for time series anomaly detection and
explanation before and following Exathlon. We then discuss relevant anomaly detection
and explanation methods in Sections 2.2 and 2.3, respectively.

2.1 Datasets and Benchmarks

This section reviews the datasets and benchmarks that have been proposed for time series
anomaly detection and explanation.

2.1.1 Anomaly Detection in Multivariate Time Series

Anomaly detection in multivariate time series can be defined as the task of providing
accurate anomaly outputs for multivariate data records in a set of test sequences. These
anomaly outputs can take the form of binary predictions (e.g., 0 for normal, 1 for anomaly),
in which case the goal is to accurately classify normal from anomalous records in test data,
or real-valued anomaly scores, in which case the goal is to assign higher anomaly scores
to anomalous records than to normal records in test data.

Analyzing and comparing anomaly detection methods on time series data has a long
history [24, 18, 25]. However, before Exathlon, the only work really released as a pub-
lic benchmark for time series anomaly detection was the Numenta Anomaly Benchmark
(NAB) [10, 26]. This benchmark focuses on methods developed for real-time streaming
data. It provides more than 50 real and artificial time series data files, along with a scor-
ing system designed to reward early detection. Although some of these data files cover
our main AIOps use case, they are mostly univariate and much smaller in scale than
Exathlon’s. Further, NAB presents several technical challenges that hinder its use as a
practical anomaly detection benchmark [27].

During and since the release of Exathlon, the growing interest in the field has led to
the release of multiple additional benchmarks and studies. Among them, Lai et al.’s [11]
used their refined taxonomy of temporal anomaly types to generate 35 synthetic time series
datasets, including 15 multivariate, and identify four real-world multivariate datasets with
good anomaly type coverage. Their multivariate data generator however assumes individ-
ual dimensions to be independent, which is typically not the case in AIOps. Among their
selected real-world datasets, the two that relate to our use case are “Web Attack” [28] and
“Water Quality” [29]. The former corresponds to event-driven sequential data originally
collected by the Canadian Institute for Cybersecurity in 2017, from which authors extract
a single file containing 72 features derived from system metrics, 168,051 data records and
2,180 point-wise anomalies (from three kinds of intrusions). The latter corresponds to time
series data collected by SPOTSeven Lab in 2018, extracted as a single file with 9 features,
139,566 data records and 51 pattern-wise anomalies. Both of these datasets therefore
contain a single file primarily meant for online streaming anomaly detection, with no his-
torical data assumed available for training, and anomalies currently not labeled according
to the types defined by the authors.

27

In 2022, both Paparrizos et al. [30] and Schmidl et al. [19] released extensive evaluations
and studies of time series anomaly detection methods, with efforts to lay out some new
research insights. The former only focused on univariate methods, while the latter included
both univariate and multivariate methods. Schmidl et al.’s study evaluated 71 algorithms
from different domains on 24 data collections, including 12 real-world multivariate ones.
The authors also developed “Good Time Series Anomaly Generator” (GutenTAG), to
generate synthetic time series with a variety of labeled anomalies, included as part of their
evaluation tool TimeEval [31].

Still in 2022, Alnegheimish et al. released the Signal Intelligence (Sintel) ecosystem,
providing “systems and tools to design, develop and deploy AI applications on top of
signals” [32]. This ecosystem includes the Orion library, which can be used to build
and benchmark unsupervised time series anomaly detection methods, similarly to our
Exathlon pipeline described in Section 3.3. While Orion defines its pipeline instances as
sequences of preprocessing, modeling and postprocessing primitives, Exathlon defines them
as sequences of configurable scripts for each step of an end-to-end explainable anomaly
detection project. Both Orion and Exathlon’s pipelines offer flexibility in terms of the
preprocessing and anomaly detection methods used. Overall, these tools can be useful in
different scenarios, with Exathlon providing the additional steps of data loading and data
partitioning, but also explanation discovery for the detected anomalies, as well as a native
AIOps integration through its dataset, metrics and methods.

Concurrently to these benchmarking efforts, a wide variety of multivariate time series
datasets has been released and used in AIOps-related projects. According to a recent
survey [9], the five most used as of 2023 were “Server Machine Dataset” (SMD) [33],
“Soil Moisture Active Passive” (SMAP) satellite and “Mars Science Laboratory” (MSL)
rover [34], “Water Distribution” (WADI) [35], and “Secure Water Treatment” (SWaT) [36].

SMAP and MSL were both collected by the NASA Jet Propulsion Laboratory. SMAP
corresponds to 55 multivariate time series (called channels), with each one monitoring a
given telemetry feature of the SMAP satellite (e.g., power, radiation), along with a bi-
nary vector encoding the commands sent and received for the satellite modules at each
timestamp. MSL has a similar format, with 27 channels for the Mars rover. For both
spacecrafts, channels are meant to be modeled separately (and thus considered indepen-
dent). Overall, the datasets contain 496,444 telemetry values, with 105 anomaly ranges,
labeled as either point-wise or contextual/collective anomalies.

SWaT and WADI were both collected by the iTrust Centre for Research in Cyber
Security of the Singapore University of Technology and Design (SUTD), in collaboration
with Singapore’s water utility company. Both datasets consist of a single multivariate time
series. In SWaT, this time series originates from the activity of a scaled-down but realistic
water treatment plant. It consists of 51 features recorded every second for 11 days, from
both the software and physical components (i.e., sensors and actuators) of the plant. A
total of 36 attacks of various durations were conducted on the plant’s components over the
last four days of data. The WADI testbed extends the SWaT water plant by incorporating
it into a complete water distribution system. It consists of 123 sensor and actuator values
recorded every second for 18 days, with 15 attacks performed during the last two days.

SMD’s use case may be the most similar to our work’s, along with the one of “Application
Server Dataset” (ASD) [13], released shortly after. Both datasets were collected by large
Internet companies, as a collection of multivariate time series corresponding to independent
machine or software entities. SMD provides 28 such entities, with 38 metrics (e.g., CPU
load, network usage, memory usage) recorded every minute over five weeks. Every entity
time series is meant to be modeled separately, with its second half labeled with anomalies
of various lengths. ASD contains 12 entities, with 19 metrics (e.g., CPU, memory, network
or VM-related) recorded every five minutes over 45 days, with the last 15 days labeled

28

Dataset Sequences Entities Records Features Anomalies R vs. P

Web Attack [28] 1 1 ≈ 168k 72 2,180 Point

Water Quality [29] 1 1 ≈ 140k 9 51 Range

SMAP [34] 55 55 ≈ 430k 2 69 Both

MSL [34] 27 27 ≈ 67k 2 36 Both

SWaT [36] 1 1 ≈ 947k 51 36 Range

WADI [35] 1 1 ≈ 1.2M 123 15 Range

SMD [33] 28 28 ≈ 1.4M 38 327 Range

ASD [13] 12 12 ≈ 154k 19 76 Range

Exathlon’s [17] 93 10 ≈ 2.3M 2,283 97 Range

Table 2.1: Total number of sequences, entities, records, features and anomalies for the
most relevant existing real-world datasets and Exathlon’s (with maximum val-
ues shown in bold), and whether they include range-based anomalies (covering
multiple records), point-based anomalies (covering individual records), or both.

with anomalies of various lengths. Contrary to SMD, no entity in ASD experienced service
changes during its recording period, which facilitates modeling under the assumption of
no concept drift of normal data. Also, anomalies in ASD were further labeled as either
temporal, intermetric or intermetric-temporal, as defined in [13]. Both SMD and ASD
may contain a small amount of unlabeled anomalies in their training data.

Table 2.1 summarizes key statistics of these real-world multivariate datasets, and com-
pares them to Exathlon’s Spark Streaming dataset we propose and detail in Section 3.1.
From this table, we can see that all existing datasets operate on a significantly smaller scale
than Exathlon’s in total number of sequences, data records and features, with Exathlon’s
also providing the second-largest number of range-based anomalies. Furthermore, our
Spark Streaming dataset is the only one to cover the practical AIOps aspect of having
multiple sequences per entity (i.e., Spark Streaming application here), recording each
entity using the same features across multiple operation contexts, as we will detail in Chap-
ters 4 and 5. With Exathlon’s pipeline being modular and extensible, all of the existing
datasets described can easily be incorporated into our benchmark.

2.1.2 Anomaly Explanation

Our release of the Exathlon benchmark took part in a recent stream of efforts to better
evaluate and benchmark explainability methods [37, 38, 39, 40, 41, 42]. In the context
of anomaly detection in multivariate time series, such methods typically seek to provide
human-readable, meaningful explanations for the detection method’s prediction function,
mapping an input sample to its corresponding binary prediction or anomaly score.

Doshi-Velez et al. [38] categorized the evaluation of explainability into application-
grounded, human-grounded and functionally-grounded. Both application-grounded and
human-grounded evaluation require human evaluators. In application-grounded evalua-
tion, those humans are domain experts, evaluating explanations with respect to a final
application-specific task (e.g., doctors diagnosing diseases). In human-grounded evalua-
tion, evaluators can be lay people, evaluating explanations with respect to a simplified
task, typically used as a proxy for the target application (e.g., deciding the “best” out
of two presented explanations). A practical example of application-grounded evaluation
was FICO’s “explainable machine learning” challenge held in 2018 [42]. In this challenge,
contestants were asked to explain the predictions of a model deciding whether a customer
should be granted a loan or not. The quality of these explanations were then evaluated
by data scientists at FICO, partly relying on their domain knowledge.

29

Like most other recent works [37, 38, 39, 40, 41], our Exathlon benchmark focuses on
functionally-grounded evaluation, where humans are kept out of the loop and quantitative
metrics are used as proxies for interpretability. Defining such metrics requires making
assumptions about the type (or format) of explanation expected. Nauta et al. [39]
recently identified 14 categories of such types. In their study of explainable AI papers,
they found that the format most commonly used when explaining individual predictions
was feature importance scores, where each input feature is assigned a real-valued score
reflecting its contribution to the prediction. This explanation format is natively supported
by Exathlon, along with feature localization (i.e., binary feature importance), and
decision rules (i.e., any interpretable logical formula using the input features and usable
for classification).

Once an explanation format is defined, explanation labels may or may not be available
for evaluation. Examples of datasets with explanation labels include SMD and ASD, where
each test anomaly instance comes with “interpretation labels”, defined as the dimensions
that most contribute to the anomaly [33, 13]. Both papers assume feature importance
scores as explanations, and evaluate them quantitatively with respect to feature localiza-
tion labels. Overall, the metrics these papers introduce rely on the idea that 1) ground-
truth important features for a given instance should be covered in its explanation, and
2) the k most important features of the explanation should be part of the ground-truth.
Specifically, Su et al. [33] introduced the HitRate@P% metric, where P can be either 100
or 150, defined for a given instance as the proportion of the ground-truth feature set GT
that is covered by the top-⌊P% × |GT|⌋ features of its explanation. Li et al. [13] further
adapted this metric to a time series context through their InterPretation Score (IPS),
where anomalous ranges (or segments) are considered instead of anomalous data points.
For tabular data, Myrtakis et al. [41] framed the task of anomaly explanation as feature
subspace mining, defining the expected explanation format as a ranked list of subspaces
from the original feature space (i.e., ranked feature localization outputs), to be compared
with one or more ground-truth subspaces for a given point anomaly. Explainers were then
evaluated based on their ability to recover the ground-truth subspaces while also achieving
high Precision for their top-ranked ones. Evaluation was conducted on both real-world
datasets from the UCI machine learning repository [43] and synthetic datasets generated
by Keller et al. [44].

In the absence of explanation labels, like in the Exathlon benchmark and numerous
other scenarios [37, 39, 40], functionally-grounded evaluation can still be performed by
designing quantitative metrics that reflect desirable properties to evaluate for an
explanation. In 2023, Nauta et al. [39] identified 12 such properties, coined as Co-12
properties, and used this categorization scheme to analyze quantitative evaluation in ex-
plainable AI papers from 2014 to 2020. Among these properties, the four that most relate
to the Exathlon benchmark so far are output-Completeness, Continuity, Contrastiv-
ity and Compactness.

Output-Completeness is a subcategory of Completeness. It measures the extent to which
an explanation method agrees with the predictions of the model it explains. To quantify
output-completeness, metrics can be derived from a Deletion Check or Preservation Check,
which for feature importance scores would amount to removing or only keeping the im-
portant features returned by the explanation. When removing them (deletion check), the
accuracy of the model should drop, while it should stay similar when removing every fea-
tures except the important ones (preservation check). Other metrics can be derived from
Fidelity, measuring how much the outcome produced by the explanation agrees with the
outcome of the explained model. Exathlon covers this fidelity aspect for logical formulas
through its “local accuracy” property with respect to binary model predictions.

Continuity reflects the fact that an explanation should remain stable for small variations

30

of the input that produce very similar predictions for the model. The main associated as-
pect is Stability for Slight Variations, measuring the similarity or discrepancy between
explanations of an original input and some slightly different versions. For feature localiza-
tion explanations, Exathlon captures this property through its “local instability” metric.

Contrastivity reflects whether explanations are “discriminative” with respect to ground-
truth labels or other targets. An important aspect of this property is therefore Target
Sensitivity, capturing “the intuition that class-specific features highlighted by an explana-
tion should differ between classes”, as stated by Pope et al. [45] in 2019. In our context
of explainable anomaly detection, this can amount to requiring explanations of different
anomaly classes be different.

Finally, Compactness reflects the intuitive requirement that an explanation should be
sparse, short and/or non-redundant to be understandable by humans [39]. Practical met-
rics for this property include the Size of the explanation, measured differently depending
on its format, as well as its Redundancy, measuring the information overlap within expla-
nations for the formats that support it. In Exathlon, Size is measured as the number of
features involved in an explanation.

2.2 Time Series Anomaly Detection in AIOps

This section reviews the time series anomaly detection methods that have been proposed
for our AIOps use case. A first way to categorize such methods is based on whether they
are built for univariate or multivariate data. In an AIOps context, univariate methods
typically aim to detect abnormal behaviors in a single metric (e.g., Key Performance
Indicator (KPI)) at a time. In contrast, multivariate methods aim to detect abnormal
behaviors in a set of inter-dependent metrics that characterize a whole entity (e.g., a
physical machine or running service) [9].

This work focuses on anomaly detection and explanation at the entity level (and thus
on multivariate methods). This is indeed usually more intuitive, effective and efficient,
due to four main reasons summarized by Su et al. [33]:

• “[I]n practice, operation engineers are more concerned about the overall status of an
entity than each constituent metric”.

• “[I]t is labor-intensive to train and maintain an individual anomaly detection model
for each metric, given a large number of metrics”.

• “[A]n incident (e.g., overload) at an entity typically causes anomalies in multiple
metrics”.

• “[I]ntuitively, modeling the expected value of one univariate time series can benefit
from the more information in the multivariate time series of the same entity”.

Multivariate time series anomaly detection methods have been categorized into super-
vised, semi-supervised and unsupervised methods [18, 46], considering full, partial or no
label information for training, respectively. Due to the domain knowledge of IT oper-
ations required to reliably label anomalies, and the labor-intensive process of examining
large amounts of time series data, collecting sufficient labels to employ supervised methods
is often prohibitively costly [18, 16, 15]. As such, most of the anomaly detection literature,
as well as this work, focuses on semi-supervised and unsupervised methods only. Specif-
ically, Chapters 4 and 5 consider anomaly detection methods in an unsupervised setting,
assuming unlabeled, mostly-normal data for training [18], and simply refer to unsupervised
and semi-supervised methods assuming labeled normal data as unsupervised. Chapter 6
considers an extension of this unsupervised setting, assuming a few anomaly labels are
available for training. In the literature, this updated setting is sometimes considered as a

31

subfield of weakly-supervised anomaly detection called “anomaly detection with incomplete
supervision” [16, 15], which we simply refer to as weakly-supervised in this work.

2.2.1 Unsupervised Anomaly Detection in Multivariate Time Series

Numerous unsupervised anomaly detection methods in multivariate time series have been
proposed throughout the years [8, 47, 48]. Schmidl et al. [19] recently introduced a tax-
onomy based on the way these methods derive their anomaly scores for data samples (the
higher the score of a sample, the more it is deemed anomalous by the method). The
only category we do not consider in this work is distance methods, which typically do not
scale well with the large data dimensionality of our AIOps setting. In the following, we
summarize each category and mention some of their relevant representatives (we refer the
reader to the study of Schmidl et al. for a more comprehensive list).

Forecasting methods define anomaly scores of data samples as forecasting errors,
that is, based on the distance between the forecast and actual value(s) of one or multiple
data point(s) in a context window of length L. Popular methods in this category include
LSTM-AD [49] and Graph Deviation Network (GDN) [50]. The former trains a stacked
LSTM network to predict data points l time steps ahead. It then fits a multivariate
Gaussian distribution to error vectors made by the model on a validation set, and defines
the anomaly score of a test point as the negative likelihood of its error vector with respect
to this distribution. The latter uses a graph attention-based forecasting network to predict
the future behavior of its input time series from a graph where relationships between pairs
of features are encoded as edges. It then uses this forecasting network to identify deviations
and derive anomaly scores.

Reconstruction methods score data samples based on their reconstruction errors
from a transformed space. Representative methods from this category include Principal
Component Analysis (PCA) [51], Autoencoder (AE) [52, 53] and TranAD [14]. Both PCA
and AE simply define anomaly scores of test vectors as their mean squared reconstruction
errors from a transformed space. The transformation of PCA is a projection on the linear
hyperplane formed by the principal components of the data. The one of AE is a non-linear
mapping to a latent representation learned by a deep neural network trained to reconstruct
input data from it. TranAD uses a transformer-based model with self-conditioning to gain
training stability, an adversarial training procedure to amplify reconstruction errors and
model-agnostic meta learning (MAML) to improve data efficiency. It then defines anomaly
scores as averages of two reconstruction terms: one coming from a first decoder, and one
coming from a second decoder whose input was augmented with the reconstruction loss
of the first decoder as a focus score.

Encoding methods score data samples based on their deviation within a transformed
space. Representatives of this category include Deep SVDD [54] and DCDetector [55].
Deep SVDD trains a deep neural network to map the input data to a latent representation
enclosed in a small hypersphere, and then defines anomaly scores of test samples as their
squared distance from this hypershere’s centroid. DCDetector uses a dual-view attention
structure based on contrastive learning to derive representations where differences between
normal points and anomalies are amplified. It subdivides windows into adjacent “patches”,
with one view modeling relationships within patches and the other across patches. To
derive anomaly scores, it then uses the insight that normal points tend to be similarly
correlated for both views, while anomalies tend to be more correlated to their adjacent
points than to the rest of the window.

Distribution methods define anomaly scores of data samples as their deviation from
an estimated distribution of the data. The Mahalanobis method [56, 51] and Variational
Autoencoder (VAE) [57] are representatives of distribution methods. The Mahalanobis
method works by estimating the training data as a multivariate Gaussian distribution,

32

and defining the anomaly score of a test vector as its squared Mahalanobis distance from
it (proportional to its negative log-likelihood with respect to the multivariate Gaussian).
VAE trains a variational autoencoder network to estimate the distribution of the train-
ing data. The anomaly score of a given test point is then derived by drawing multiple
samples from the probabilistic encoder, and averaging the negative log-likelihood of the
reconstructions obtained from each of these samples.

Finally, isolation tree methods score data samples based on their “isolation level”
from the rest of the data. Isolation forest [58] is the most popular isolation tree method. It
relies on the assumption that anomalous samples are “few” and “different”, which makes
them quicker to isolate on average with random consecutive splits on attribute values than
normal samples. As such, the method trains an ensemble of trees to isolate the samples in
the training data, and defines the anomaly score of a test instance as inversely proportional
to the average path length required to reach it using the trees.

Multiple efforts have also been made to propose hybrid methods, defining anomaly
scores of data samples as combinations of scores coming from several scoring strategies
above. Examples of hybrid methods include Multivariate Time-series Anomaly Detec-
tion via Graph Attention Network (MTAD-GAT) [59] and Auto-Encoder with Regression
(AER) [60]. MTAD-GAT is the most representative in the literature, jointly optimizing a
forecasting model and a reconstruction model on top of graph attention and GRU layers,
and defining anomaly scores as convex combinations of reconstruction and forecasting er-
rors. AER uses a bidirectional LSTM network to output the reconstruction of a sample
along with the prediction of its first and last data records, and defines anomaly scores as
either convex combinations or weighted point-wise products of reconstruction and predic-
tion errors. Although hybrid methods could be considered in extensions of our studies,
we choose not to include them in this work to simplify our analyses across the scoring
strategy dimension. Additionally, the most representative hybrid method, MTAD-GAT,
has been shown to be outperformed by the more-recent TranAD method [14].

2.2.2 Weakly-Supervised Anomaly Detection and Contrastive Learning

Despite the success of unsupervised methods, the total absence of anomaly labels to rely
on can prevent them from automatically differentiating unusual patterns that constitute
relevant anomalies for the analysts from less interesting “noise” that just hinders the
analysis [61]. An efficient solution to this problem can be to gather labels for a few relevant
anomalies, and incorporate this label information into anomaly detection models. This
setting corresponds to the growing field of weakly-supervised anomaly detection [16, 15],
where a vast majority of unlabeled, assumed mostly-normal, data gets augmented with
limited anomaly labels.

In the literature, weakly-supervised methods relevant to our use case have been catego-
rized into anomaly feature representation learning, anomaly score learning, active learn-
ing and reinforcement learning methods [15]. The methods we propose in Chapter 6,
Contrastive and Triplet Encoder for Anomaly Detection with a Few Anomaly Labels
(CEADAL and TEADAL, respectively), belong to the anomaly feature representa-
tion learning category, aiming to learn a transformation to a latent space where normal
and anomalous data samples are clearly separated. This category, along with anomaly
score learning, has the benefit of not requiring any explicit request to the user.

Our work compares the performance of CEADAL and TEADAL to another anomaly
feature representation learning method called Deep SAD [62], a follow-up work to Deep
SVDD [54] that improves on its latent mapping by imposing that anomalous samples
get sent far from its normal hypersphere’s centroid. Deep SAD has a similar spirit to
CEADAL, in its way of applying a strong proximity constraint for normal samples in
latent space, which, as detailed in Chapter 6, will turn out to be very effective in our

33

AIOps setting. Like CEADAL, Deep SAD forces normal samples to belong to a tight
latent region, with anomalies being mapped outside of it. For Deep SAD, this tight region
is defined around a randomly initialized centroid, while CEADAL defines it indirectly
through contrastive learning.

Both CEADAL and TEADAL rely on a contrastive learning framework [22, 23].
CEADAL relies on the contrastive loss originally proposed by Hadsell et al. [22], adapted
here by defining samples as “similar” (or concordant) if they belong to the same class
(normal or anomalous), and as “dissimilar” (or discordant) otherwise. TEADAL relies
on the more recent and less constrained triplet loss [23], adapted here by setting normal
samples as anchor and positive inputs, and anomalous samples as negative inputs.

An example of method that leveraged the contrastive loss for a similar purpose is “Con-
trastive Autoencoder for Drifting detection and Explanation” (CADE) [63]. This method
trains an autoencoder network with a contrastive loss to map samples from each of mul-
tiple (balanced) classes to a distinct and tight cluster in latent space. It then defines
drifting samples as those that get mapped unusually far away from every class cluster. In
contrast, CEADAL considers only two classes, one normal and one anomalous, with the
normal class assumed highly prevalent in the data. It then trains an encoder to cluster
samples from the normal class only, away from anomalous data, but not imposing any
proximity constraint within samples of the anomalous class. Finally, an important aspect
of both CEADAL and TEADAL is to make use of the online batching strategy of [23] in
constituting sample pairs and triplets, respectively, with the models being trained on the
“hardest” examples only (i.e., the most “subtle” anomalies or “noisy” normal patterns in
our anomaly detection context).

2.2.3 Domain Generalization

As we will see in Chapter 5, a useful framework to address the normal behavior shift
challenge of our AIOps setting is domain generalization (DG). In this framework, data
samples are collected from multiple, distinct domains, with certain characteristics of the
observed data being determined by the domain, and others being independent from it. The
goal is then to build models on a set of training (or source) domains that can generalize
to another set of test (or target) domains.

Domain generalization has been mainly studied in the context of image classification,
with the domains usually corresponding to the way images are represented or drawn.
DG methods can broadly be categorized as based on explicit feature alignment, domain-
adversarial learning or feature disentanglement [20, 21]. Explicit feature alignment meth-
ods seek to learn data representations where feature distribution divergence is explicitly
minimized across domains, with divergence metrics including maximum mean discrepancy
(MMD), statistical moments, second-order correlations, Wasserstein distance or Kullback-
Leibler (KL) divergence [20, 21]. Rather than using such divergence metrics directly,
domain-adversarial learning methods seek to minimize domain distribution discrepancy
through a minimax two-player game, where the goal is to make the features confuse a
domain discriminator [64], usually implemented as a multiclass or binary domain classi-
fier [65, 66, 67, 68]. Such adversarial methods can suffer from instabilities that make them
hard to reproduce [69, 70], while explicit feature alignment can become very costly when
the number of source domains gets large, like in our AIOps setting. For these reasons, this
work considers domain generalization based on feature disentanglement [71, 72, 73], where
methods seek to decompose the input data into domain-specific and domain-invariant
features, and perform their tasks in domain-invariant space.

Domain-Invariant VAE for Anomaly Detection (DIVAD), which we propose in Chap-
ter 5, specifically relates to Domain-Invariant Variational Autoencoders (DIVA) [71], de-
signed for image classification. DIVA uses variational autoencoders (VAEs) to decompose

34

input data into domain-specific, class-specific and residual latent factors, conditioning the
distributions of its domain-specific and class-specific factors on the training domain and
class, respectively, and enforcing this conditioning by using classification heads to predict
the domain and class from the corresponding embeddings. It then uses its class-related
classifier to derive its predictions for test images. Because of this class supervision, this
method cannot be applied to our unsupervised anomaly detection setting, hence motivat-
ing the design of DIVAD.

Domain generalization for time series AD recently gained some attention through anoma-
lous sound detection and the DCASE2022 Challenge, where the task was to identify
whether a machine was normal or anomalous using only normal sound data under domain-
shifted conditions [74]. The methods proposed as part of this challenge however modeled
single-channel (univariate) sound waves, while also relying on sound-specific preprocess-
ing (e.g., magnitude spectrograms), and assuming labels such as the machine state, the
type of machine, domain shift or noise considered to train domain-invariant or disentan-
gled representations [75]. This makes these methods setting-specific in nature, and thus
unsuitable to solve our more general problem of unsupervised AD in AIOps.

2.3 Explanation Discovery

As we will see in Chapter 3, we constructed the Exathlon benchmark to assess the perfor-
mance of both anomaly detection and explanation methods, with this latter step referred
to as Explanation Discovery (ED). This section introduces and categorizes the main ED
methods mentioned and targeted by our benchmark.

2.3.1 Interpretable Machine Learning

Interpretable machine learning has recently attracted a lot of attention [76], with relevant
techniques being generally categorized into model-specific and model-agnostic methods.
Model-specific methods include intrinsically interpretable models, which directly build a
human-readable model from the data (e.g., linear or logistic regression, shallow decision
trees or rules) [76], as well as methods that can only be applied for specific model character-
istics (e.g., neural network feature visualization [76]). In contrast, model-agnostic methods
separate explanations from the explained machine learning (ML) model, typically relying
on input and output pairs only, which offers the flexibility to mix and match ML models
with interpretation methods. In the model-agnostic family, several methods obtain inter-
pretable classifiers by perturbing the inputs and observing the response [77, 78, 79, 80].
“Local Interpretable Model-agnostic Explanations” (LIME) [78] explains a prediction of
any classifier by approximating it locally with an interpretable sparse linear model, and
explains the overall model by selecting a set of representative instances with explanations.
As such, it is generally considered a method producing local explanations. Anchors [79]
improved upon LIME by replacing its linear model with a logical rule for explaining a data
instance. It offers better coverage of data points in a local neighborhood, but does not
provide support for time series data. SHAP scores [81], RESP scores [82], and axiomatic
attribution [80] are also instance-level explanations that assign a numerical score to each
feature, representing their importance in the outcome. In contrast to local explanations,
other work aims to explain a model via global explanations. Some of them approximate
a deep learning model using a decision tree [83, 84], or by learning a decision set [77, 85]
directly as explainable models.

In the context of the Exathlon benchmark, we refer to interpretable machine learning
methods broadly as model explainers. The goal of such ED methods is indeed to
explain the prediction process of a particular model, which makes them rely (at least)

35

on this model’s decision function, mapping an input sample to its corresponding binary
prediction or anomaly score. Specifically, the Exathlon benchmark and pipeline currently
support model-agnostic methods only, and were primarily designed to build and evaluate
local explanations (although global explanations can also be considered via the ED2 criteria
described in Section 3.2.2).

2.3.2 Outlier Explanation

Besides interpretable machine learning, several efforts have been made to explain anomalies
(or outliers) given a set of normal and anomalous data records annotated by a user or a
detection model [86]. These methods are supported by our Exathlon benchmark under
the name of data explainers, since they aim to explain differences between anomalous
and reference datasets, only relying on AD models to define those datasets through their
prediction labels. Specifically, our benchmark currently supports the evaluation of data
explainers that provide their explanations in the form of feature importance scores or
decision rules involving the input features.

Representative methods defining outlier explanations as feature importance scores are
LookOut [87] and Contextual Outlier INterpretation (COIN) [88]. LookOut is based on
subspace search [86], deriving the explanation of an outlier as a set of focus-plots, where
a focus-plot is defined as a 2-dimensional scatter plot of all data points projected on a
pair of input features. It first computes the anomaly scores of the explained outlier for
each possible focus-plot using any AD method (e.g., isolation forest [58]). It then searches
for the subset of b focus-plots that best collectively explains the outlier (i.e., maximizes
its sum of anomaly scores), using a greedy algorithm with approximation guarantees to
address the NP-hard optimal subset selection problem. The retained focus-plots can then
serve as visual (or pictorial [87]) explanations, or feature importance scores can be derived
for the focus-plots’ features, by summing the anomaly scores they produced for the outlier.
COIN relies on a different strategy, deriving the explanation of an outlier oi based on its
local neighborhood [86] (or context [88]). It first identifies the context Ci of oi, defined as
its nearest normal neighbors based on the L2-norm. It further segments Ci into L disjoint
clusters, Ci = {Ci,1, Ci,2, · · · , Ci,L}, using K-means or hierarchical clustering and ignoring
clusters of small sizes in subsequent steps. For each cluster l, COIN then fits a 1-norm
SVM [89] with a linear kernel to separate normal points from the outlier, producing a
weight vector wi,l. This weight vector is then used to derive the importance score of a
feature am for cluster l, as si,l(am) = |wi,l[m]|/γmi,l, where |wi,l[m]| is the absolute value of
the element at index m in wi,l, and γmi,l is the average distance along the mth axis between
an instance in Ci,l and its closest neighbors. The global importance score of am for oi is
finally defined as its average score across the clusters, weighted by the cluster sizes.

Representative methods defining outlier explanations as decision rules are EXstream [90]
and MacroBase [91]. EXstream relies on entropy-based rewards [86] to explain a given ab-
normal interval IA with respect to a reference interval IR, both in the form of a decision rule
and feature importance scores. It first computes single-feature rewards from an entropy-
based distance function, measuring the segmentation of feature values across IA and IR
(the less segmentation of values, the more important the feature). Given single-feature
reward ranks, it then employs mechanisms to filter unimportant features, defining them
as those (i) having reward ranks below a sharp drop in the ranked list of rewards (re-
ward leap filtering), (ii) having only spurious correlations with IA (false positive filtering),
and (iii) having information overlap with more important features (filtering by correlation
clustering). To form the explanation of IA, EXstream then relies on the segmentation of
values produced for each retained feature, using single-predicate rules for features with
only one boundary (e.g., f1 ≤ 10, where f1 refers to the first feature), or composed pred-
icates in case of multiple abnormal value ranges (e.g., f2 < 20 ∨ (f2 ≥ 30 ∧ f2 ≤ 50)),

36

and further combines partial, feature-wise explanations with conjunctions. MacroBase
derives its explanations based on frequent itemset mining, where items can be mapped
to predicates in our context by discretizing continuous data (e.g., using equi-width parti-
tioning, like in [92]). For an explained outlier set and corresponding set of normal points
(or inliers [91]), MacroBase first searches individual items with minimum support in both
outliers and inliers. It then defines the “importance” of an item (or itemset) as its relative
risk ratio, quantifying how much more likely a data point is to be an outlier if it satisfies
the rule of the item(set), as opposed to the general population [91, 93]. Given its goal
of finding itemsets whose subsets each have minimum support and risk ratio, MacroBase
accelerates computations by first computing risk ratios for single items, and then support
of itemsets whose members have sufficient risk ratios. Once important itemsets have been
retrieved, they can be combined in various ways to form the explanation of the outlier set
(e.g., as its itemset of highest risk ratio).

37

3 The Exathlon Benchmark

This chapter presents Exathlon [17], the first public benchmark for explainable anomaly
detection over high-dimensional time series, which we will rely on in the following chap-
ters. Exathlon provides a benchmarking platform that consists of (i) a curated dataset,
centered around a Spark Streaming application monitoring use case, (ii) a flexible eval-
uation methodology to assess the performance of anomaly detection and explana-
tion methods, and (iii) an end-to-end explainable anomaly detection pipeline to facil-
itate the usage and configuration of the benchmark, as well as the implementation of
new methods. We present each of these components in Sections 3.1, 3.2 and 3.3, re-
spectively. The dataset, code and documentation of Exathlon are publicly available at
https://github.com/exathlonbenchmark/exathlon.

To further diagnose the predictions of anomaly detection and explanation methods, we
also released a visualization platform called LEADS Viewer. This platform provides
a Graphical User Interface (GUI) to visualize explainable anomaly detection outputs on
high-dimensional time series data, be them generated using Exathlon’s pipeline or not.
The code and documentation of LEADS Viewer are publicly available at https://github.
com/exathlonbenchmark/leads-viewer.

3.1 Spark Streaming Dataset

This section presents the Spark Streaming dataset of the Exathlon benchmark. Apache
Spark is an open-source distributed processing engine that greatly facilitates executing
data engineering, data science, or machine learning tasks on single-node machines or clus-
ters. It is today the most popular engine for scalable computing, used by thousands
of companies including 80% of the Fortune 500 [94]. Spark Streaming (now Structured
Streaming) expands upon Spark to provide efficient data stream processing at scale. In
the wake of core Apache Spark, Spark Streaming services are today extensively deployed
to serve as central components of a lot of company workflows. Yet, such services are
especially incident-prone by nature, as they need to operate with very low latency on
large-volume streams that may come from various external sources.
This makes the task of detecting and explaining anomalies in Spark Streaming opera-

tions particularly relevant to a vast number of real-world scenarios, while also reflecting
well practical AIOps challenges. For these reasons, we selected this particular task as the
central use case of the Exathlon benchmark.

3.1.1 Data Collection

To collect the dataset of Exathlon, we considered a Spark workload of 10 stream processing
applications (further described in Appendix A.1) analyzing user click streams from the
WorldCup 1998 website [95].1. As in Figure 3.1a, data sender servers send streams at a
controlled input rate to a Spark cluster of four nodes. Each application has certain work-
load characteristics (e.g., CPU or I/O intensive) and is executed by Spark in a distributed

1The collection of the Spark Streaming dataset was performed prior to my arrival in the project, mainly by
Arnaud Stiegler [96]. We later re-organized, formalized and documented this dataset into the version
integrated in Exathlon, with some traces and event types renamed, as well as the added notion of
“extended anomaly intervals” presented below.

39

(a) Spark application monitor-
ing.

(b) Spark execution environ-
ment.

(c) Trace with bursty input
anomalies.

Figure 3.1: Spark application monitoring and metrics observed in anomaly instances (a
pair of red vertical bars marks a root cause event).

Metric Spark UI Spark UI OS
Type Driver Executor (nmon)

of 5 x 140 4 x 335
Metrics

243
= 700 = 1340

Total 2,283

Frequency 1 data item per second

Data Items 2,335,781

Duration 649 hours

Total Size 24.6 GB

Table 3.1: Collected metrics and data size.

manner, as in Figure 3.1b. Submitted an application, Spark launches a driver process
to coordinate the execution. The driver connects to a resource manager (Apache Hadoop
YARN), which launches executor processes on a subset of nodes where tasks (units of work
on a data partition, e.g., map or reduce) will be executed in parallel [17].

Given 32 cores, each node can also run tasks from multiple applications concurrently. As
common real-world practice, we run 5/10 randomly selected applications at a time. The
placement of driver and executor processes to cluster nodes is decided by YARN based on
data locality and load on nodes, among other factors. Except for I/O activities, YARN
offers container isolation for resource usage of all parallel processes.

We ran the 10 Spark Streaming applications in our four-node cluster over a 2.5-month
period. We refer to the data collected from each run of an application as a trace. Some
of the collected traces were removed because they were affected by cluster downtimes or
the injected anomalies were not well reflected in the data due to failed attempts. After
this manual pruning, we retained 93 traces to constitute the Spark Streaming dataset of
Exathlon.

Collected Metrics

Table 3.1 gives a summary of the metrics collected per trace. Each given trace was stored
as a CSV file recording the evolution of both Spark User Interface (UI) and Operating
System (OS) metrics every second. Spark UI metrics relate to the Spark processes of the
recorded application (e.g., scheduling delay, statistics on the streaming data received and
processed), available through the Spark Monitoring and Instrumentation interface [97],
while OS metrics relate to the operating system of the four cluster nodes, collected via
the nmon software [98].

The driver offers 243 metrics (e.g., scheduling delay, statistics on the streaming data
received and processed). Each executor provides 140 metrics (e.g., CPU time and runtime,
heap memory used). As we wanted to keep the number of metrics the same for all traces,

40

Trace Anomaly # of Anomaly Anomaly Length (RCI + EEI) Data
Type Type Traces Instances min, avg, max Items

Undisturbed N/A 59 N/A N/A 1.4M

Disturbed T1: Bursty input 6 29 15m, 22m, 33m 360K

Disturbed T2: Bursty input until crash 7 7 8m, 35m, 1.5h 31K

Disturbed T3: Stalled input 4 16 14m, 16m, 16m 187K

Disturbed T4: CPU contention 6 26 8m, 15m, 27m 181K

Disturbed T5: Driver failure
11

9 1m, 1m, 1m
128K

Disturbed T6: Executor failure 10 2m, 23m, 2.8h

Ground (app id, trace id, anomaly type, root cause start, root cause end,
Truth extended effect start, extended effect end)

Table 3.2: Undisturbed traces, disturbed traces and ground-truth labels for 97 anomalies.

we set a fixed limit of five for the number of Spark executors (two or three active + three
or two backup). This way, even if an active executor failed during a run and a backup took
over, the number of metrics collected stayed the same, 5× 140 = 700, with null values set
for inactive executors. 335 OS metrics were collected for each of the four cluster nodes,
including CPU time, network traffic and memory usage. All in all, each trace consists
of a total of 2,283 metrics recorded each second for 7 hours on average, constituting a
multi-dimensional time series.

Undisturbed and Disturbed Traces

In an approach similar to chaos engineering (i.e., injecting failures into a production sys-
tem to verify/improve its reliability) [99] and general systems monitoring (e.g., Microsoft’s
NetMedic [100]), we first collected undisturbed traces to characterize the normal behav-
ior of our Spark applications and cluster, and then introduced various anomalous events
to collect disturbed traces. Table 3.2 provides an overview.

Undisturbed Traces Uninterrupted executions of 5/10 randomly selected applications at
a time, at parameter settings within the capacity limits of our Spark cluster, over a period
of one month, gave us 59 undisturbed traces of 15.3GB in size. Any instances of occasional
cluster downtime were manually removed from these traces. It is important to note that,
although undisturbed, these traces still exhibit occasional variations in metrics due to
Spark’s inherent system mechanisms (e.g., checkpointing or CPU usage by a DataNode
in the distributed file system). Since such variations do appear in almost every trace, we
consider them as part of the normal system behavior. In other words, our normal data
traces include some “noise”, as most real-world datasets typically do.

Disturbed Traces Disturbed traces were obtained by introducing anomalous events dur-
ing application executions. In total, we collected 34 disturbed traces (9.3 GB in size)
covering six types of injected events, designed such that they:

1. Led to visible effects in traces.
2. Did not lead to an instant crash of the application (since anomaly detection would

be of little help in this case).
3. Could be tracked back to their root causes.

The event types are the following (please refer to Appendix B.2 of our Exathlon paper [101]
for further details):

• Bursty Input (Type 1). To mimic input rate spikes, we run a disruptive event
generator (DEG) on data senders to temporarily increase the input rate by a given

41

factor for a duration of 15-30 minutes. We repeat this pattern multiple times during
a given trace collection, creating a total of 29 instances of this event type over six
different traces. Figure 3.1c shows an example of bursty input anomalies.

• Bursty Input Until Crash (Type 2). This is a longer version of Type 1 anoma-
lies, where we let the DEG period last forever, crashing the executors due to lack
of memory. When an executor crashes, Spark launches a replacement, but the sus-
tained high rates keeps crashing the executors, until Spark eventually decides to kill
the whole application. We injected this anomaly into seven different traces.

• Stalled Input (Type 3). This type of event mimics failures of Spark data sources
(e.g., Kafka or HDFS). To create it, we run a DEG that set the input rates to zero
for about 15 minutes, and then periodically repeat this pattern every few hours,
giving us a total of 16 anomaly instances across four different traces.

• CPU Contention (Type 4). The YARN resource manager cannot prevent ex-
ternal programs from using the CPU cores that it has allocated to Spark processes,
causing scheduling delays to build up due to CPU contention. We reproduced this
anomaly using a DEG that ran Python programs to consume all CPU cores on a
given Spark node. We created 26 such anomaly instances over six different traces.

• Driver Failure (Type 5) and Executor Failure (Type 6). Hardware faults or
maintenance operations may cause a node to fail all of a sudden, making all processes
(drivers and/or executors) located on that node unreachable. Such processes must
be restarted on another node, which causes delays. We created such anomalies by
failing driver processes, where the number of processed records drops to zero until
the driver comes back up again in about one minute (with all counter metrics reset).
We also created anomalies by failing a given executor process. When an executor
fails, it may or may not get replaced with another one. In all cases, we observe a
buildup in the application’s delays while operating with one fewer executor, which
either ends with the executor replacement or an application crash if the executor
is not replaced. We created nine driver failures and 10 executor failures over 11
different traces.

Ground-Truth Table For all of the 97 anomaly instances we injected over 34 disturbed
traces, we provide ground truth labels with the information shown in Table 3.2. Such
labels include both root cause intervals (RCIs) and their respective extended effect intervals
(EEIs). RCIs typically correspond to the time period during which DEG programs were
running, whereas the EEIs are the time periods that start immediately after an RCI and
end when important system metrics return to normal values or the application is eventually
pushed to crash. The EEIs are manually determined using domain knowledge. Additional
details can be found in Appendix A.2.

3.2 Evaluation Methodology

This section presents the evaluation methodology we proposed to benchmark Anomaly
Detection (AD) and Explanation Discovery (ED) methods. As summarized in Table 3.3,
Exathlon was designed to evaluate AD and ED algorithms in both functionality and
computational performance, using well-defined metrics, while also allowing users to
specify their own through the pipeline presented in Section 3.3.

3.2.1 Anomaly Detection (AD) Functionality

To best fit its Spark Streaming dataset, Exathlon was primarily designed to target range-
based anomalies, occurring over contiguous time intervals instead of single time points.

42

Anomaly Detection (AD) Explanation Discovery (ED) Computational
Functionality Functionality Performance

Evaluation AD1: Anomaly Existence ED1: Local Explanation P1: AD Training Scalability
Criteria AD2: Range Detection ED2: Global Explanation P2: AD Inference Efficiency

AD3: Early Detection P3: ED Efficiency
AD4: Exactly-Once Detection

Evaluation Accuracy: Range-based Precision, Conciseness: Size Time, given
Metrics Recall, F-Score, AUPRC Consistency: Instability (ED1), Discordance (ED2) different Dimensionality

Accuracy: Point-based Precision, Recall, F-Score and Cardinality factors

Table 3.3: The Exathlon evaluation methodology and benchmark design.

Support for point-based evaluation was however also added, and used in Chapter 4.

Evaluation Criteria

We identified four key criteria for evaluating AD functionality, listed below from basic
toward advanced, where a higher AD level includes the requirements of all preceding
levels:

• AD1 (Anomaly Existence). The first expectation is to flag the existence of an
anomaly somewhere within the anomaly interval (i.e., the root cause interval (RCI)
+ the extended effect interval (EEI))2.

• AD2 (Range Detection). The next expectation is to report not only the existence,
but also the precise time range of an anomaly. The wider a range of an anomaly that
an AD method can detect, the better its understanding of the underlying real-world
phenomena.

• AD3 (Early Detection). The third expectation is to minimize the detection la-
tency, i.e., the difference between the time an anomaly is first flagged and the start
time of the corresponding RCI.

• AD4 (Exactly-Once Detection). The last expectation is to report each anomaly
instance exactly once. Duplicate detections are undesirable, because they may not
only redundantly cause repeated alerts for a single anomalous event, but also trouble
in understanding whether those alerts relate to the same anomaly event or not.

Evaluation Metrics

To assess how well an AD method can meet these four functionality levels, we use the
framework of Precision and Recall for time series [106], proposed in 2018 to evaluate real
and predicted anomalies at the range level with a set of tunable parameters. By setting the
values of these parameters in a particular way and applying the resulting Precision/Recall
formulas to the output of an AD algorithm, one can assess how well that output measures
up to the quality expectations represented by those parameter settings. We leverage this as
a mathematical tool to quantify how well an AD algorithm meets AD1-AD4. Furthermore,
we chose to do this in a way that every level AD{i} builds on and adds to the requirements
of the previous level AD{i− 1}. This monotonic design ensures that the AD functionality
score that an algorithm gets (Precision, Recall, or other metrics derived from them) is
always ordered as:

score(AD1) ≥ score(AD2) ≥ score(AD3) ≥ score(AD4),

2Note that this criterion corresponds to the popular “point adjustment” protocol used in numerous
works [55, 102, 103, 33, 104], but also heavily criticized nowadays as greatly over-estimating perfor-
mance, being unpredictable and misleading [105]. Our advice would therefore be to either avoid this
criterion or always use it together with other ones and/or visual inspections.

43

Figure 3.2: Range-based Precision and Recall at AD levels 1-4. Precision evaluates pre-
diction quality (green out of green + yellow for each Pi). Recall evaluates
anomaly coverage (green out of green + blue for each Ri).

which facilitates evaluating and interpreting results in a systematic way. In Exathlon, we
preferred this design over the alternative of treating each AD level as orthogonal to enable
users to develop and perfect their models for tasks that become increasingly challenging.

Figure 3.2 provides a simple example to illustrate how range-based Precision and Recall
are computed for different AD levels. Given real anomaly ranges R1 . .R4 and predicted
anomaly ranges P1 . .P4 produced by an AD algorithm, we first compute Precision and
Recall for each range and then average them for overall Precision and Recall. Intuitively,
Precision focuses on the size of True Positive (TP) ranges (colored green) relative to TP +
False Positive (FP) ranges (colored yellow), while Recall focuses on the size of TP ranges
relative to TP + False Negative (FN) ranges (colored blue). For AD1, Recall(Ri) is 1 if Ri
is flagged, 0 otherwise. For AD2, Recall(Ri) is proportional to the relative size of the TP
range. For AD3, Recall(Ri) is further weighted by position of the TP range relative to the
start of Ri. Finally, at AD4, Recall(Ri) degrades to 0 for any Ri that is not flagged using
exactly one predicted range. Precision(Pi) is computed in an analogous way, except that
AD levels about anomaly coverage quality (AD1 and AD3) are not relevant to it; rather,
the main focus is on the size and number of the real anomaly ranges that are successfully
predicted. In our simple example, it turns out that all AD levels for Precision consider
the same Pi subranges.

Formally, we recall that, given sets of real anomaly ranges R = {R1, R2, . . . , RNr} and
predicted anomaly ranges P = {P1, P2, . . . , PNp}, the range-based Recall of a real anomaly
range Ri is defined as:

RecallT (Ri, P) = α · ExistenceReward(Ri, P) + (1− α) ·OverlapReward(Ri, P),

with α ∈ [0, 1] a tradeoff parameter balancing the importance of rewarding the detection
of Ri’s existence and the overlap between Ri and P . The existence reward is defined as:

ExistenceReward(Ri, P) =

{

1 if
∑Np

j=1 |Ri ∩ Pj | ≥ 1,

0 otherwise.

The overlap reward captures the size, position and cardinality aspects of the overlap
between Ri and P through parameter functions ω, δ and γ, respectively. It is defined as:

OverlapReward(Ri, P) = CardinalityFactor(Ri, P) ·

Np
∑

j=1

ω(Ri, Ri ∩ Pj , δ).

44

Precision Recall
Parameters Parameters

AD Functionality Level α δ γ α δ γ

AD1: Anomaly Existence 0 Flat 1 1 N/A N/A
AD2: Range Detection 0 Flat 1 0 Flat 1
AD3: Early Detection 0 Flat 1 0 Front 1
AD4: Exactly-Once Detection 0 Flat 0 0 Front 0

Table 3.4: Range-based Precision/Recall parameter settings for our AD1-4 levels.

The cardinality term therefore serves as a scaling factor for the rewards earned from the
size and position of Ri and P overlaps. It is maximized when Ri overlaps with at most
one predicted range from P , and is defined through the γ function otherwise:

CardinalityFactor(Ri, P) =

{

1 if Ri overlaps with at most one Pj ∈ P,

γ(Ri, P) otherwise.

The range-based Precision of a predicted range Pi with respect to the set of real anomaly
ranges R is defined similarly, except it has no existence reward component (i.e., α = 0):

PrecisionT (R,Pi) = CardinalityFactor(Pi, R) ·
Nr
∑

j=1

ω(Pi, Pi ∩Rj , δ).

Table 3.4 summarizes the parameter values we set for range-based Precision and Recall
to reflect our different AD levels. We provide a brief description of these parameters here,
and refer the reader to the original paper for further details [106]. The α parameter is
only relevant here in the context of Recall, and when (only) focusing on anomaly existence.
We therefore set it to 1 when computing AD1’s Recall, and always to 0 otherwise. The δ
parameter is a function defining the reward of a detected (or real) anomaly range based on
its overlap position. We set this parameter to “Front” (i.e., linearly decreasing rewards over
time) for AD3-4 Recall, to penalize detection latency for the predictions in real anomaly
ranges. For other scenarios, we set this parameter to “Flat” (constant rewards over time),
to reflect that overlap position is not important. Finally, our AD1-3 levels do not penalize
one-to-many mappings for either real or predicted anomaly ranges, which corresponds to
setting the γ function to the constant, maximal value of 1 for both Precision and Recall.
Our AD4 level, however, fully cancels the rewards of both (i) repeated predictions in
real anomaly ranges, and (ii) predictions spanning multiple real ranges. This level indeed
requires exact, one-to-one mappings between real and predicted ranges, which corresponds
to setting γ to the constant, minimal value of 0 for both Precision and Recall.

Like reminded above, the range-based Precision/Recall framework provides a fourth
parameter ω, which serves to compute how much reward is earned from the size of the
overlap between a real and predicted anomaly range (relevant for AD2 and beyond). We
use its default, additive definition from the original paper here, with a minor normalization
adjustment to ensure monotonicity. More specifically, we make the Precision/Recall scores
decrease from AD2 to AD3 by defining the union of detected ranges under AD2 as the
best-positioned (i.e., earliest) detected range under AD3 to achieve a monotonic behavior.

Although both the AD methods and metrics considered by Exathlon focus on binary
anomaly detection (normal vs. anomalous ranges), our dataset is inherently multiclass
(normal ranges vs. six types of anomalous ranges). This raises a question on how to eval-
uate binary predictions under multiclass labels. Exathlon takes a holistic approach, and
allows to consider AD predictions evaluation (i) globally, (ii) grouped by event class/type

45

and (iii) averaged across types. Even though a binary predictor is not able to detect dif-
ferent event types, we can indeed still measure its resulting coverage (i.e., Recall) for each
type. Type-wise measurement is however not entirely meaningful for Precision, since false
positives are essentially typeless.

3.2.2 Explanation Discovery (ED) Functionality

Once an anomalous instance was flagged by a detection method, the next desirable func-
tionality is to find the best explanation for the anomaly detected, or more precisely, a
human-readable formula offering useful information about what has led to the anomaly.

Many ED methods have been proposed in recent years. These methods differ in the
form of “explanation” provided, with some returning a logical formula as an explanation
(e.g., EXstream [90], MacroBase [91] or Anchors [79]), others returning a decision tree (like
Tree Regularization [84]), and some others returning a numerical score for each feature,
such as coefficients of a linear model (like LIME [78]) or SHAP scores [81]. Exathlon does
not pose heavy restrictions on the form of explanation used, but rather takes an abstract
view of explanations. Formally, we model each trace in a test dataset as a multivariate
time series (or sequence):

S = [s1 · · · st · · · sT]
T ,

where each st ∈ R
M is a data vector, or record, with M features. We define the data from

a predicted anomaly range starting at index t ∈ [1 . . T] and spanning l > 0 records in this
sequence as:

Pt,l := St:t+l−1 = [st · · · st+l−1]
T .

We then denote the explanation generated for this predicted anomaly as Et,l, and treat
it as a function of the features A = (a1, . . . , aM) from the data3:

Et,l(a1, . . . , aM) |= Pt,l,

where |= means that Et,l “explains” the predicted anomaly Pt,l. Specifically, Exathlon
currently supports features A specified as interpretable names for the M feature columns
of Pt,l (i.e., ignoring its time dimension of l rows). For example, an explanation returned
as a logical formula (e.g., by EXstream, MacroBase or Anchors) could take the form of
the following conjunction of predicates:

Eformula
t,l (a1, . . . , aM) = a1 ≥ 10 ∧ (a2 ≥ 30 ∧ a2 ≤ 50),

while an explanation returned as feature importance scores (e.g., by LIME or SHAP) could
take the form of the following set of (feature, score) tuples:

Escores
t,l (a1, . . . , aM) = {(a3, 0.58), (a1, 0.25), (a2, 0.08)}.

In the latter example, the explanation indicates that a3, a1 and a2 were found as the
features that most explain Pt,l, optionally after an internal thresholding step performed by
the ED method (e.g., top-k selection or other filtering mechanisms, like in EXstream [90]).

Finally, we define an extraction function G over Et,l, that returns the set of features
At,l used in the explanation:

G(Et,l(a1, . . . , aM)) =: At,l ⊆ A,

3The notations Pt,l and Et,l do not relate to indexing. Rather, we consider P and E as objects charac-
terized by their start index t and length l in S.

46

along with the size of Et,l, as the size of its feature set At,l:

|Et,l(a1, . . . , aM)| = |At,l|.

In our previous examples, explanations would have sizes 2 and 3, as the numbers of features
appearing in the logical formula and having non-zero importance scores, respectively.

Evaluation Criteria

The two criteria we identified for evaluating ED functionality are based on whether expla-
nations are considered for a single anomalous instance at a time (i.e., at a local level) or
for a group of anomalous instances (i.e., at a global level):

• ED1 (Local Explanation). The local explanation of a (single) anomaly instance
should provide a compact yet meaningful piece of information. In particular, the
explanation produced should be locally faithful [78], meaning here that the same
explanation should hold for immediate “neighbors” of the explained instance.

• ED2 (Global Explanation). Deriving an identical and succinct explanation for
a large set of anomalous instances is usually not feasible. A “global” explanation
is therefore usually composed of a set of instance-wise explanations (e.g., Ribeiro et
al. [78] chose the most representative k instances to derive a “model” explanation
from LIME). In this benchmark, we choose to group explanations based on the
type of event they relate to (if available), to check whether these explanations are
consistent or have any predictive power within the group.

Desired Properties and Evaluation Metrics

Exathlon evaluates both local and global explanations for three desired properties, re-
flected by quantitative metrics.

Conciseness Following the Occam’s razor principle, humans favor smaller, and thus sim-
pler explanations. To reflect this property, we consider the Size metric, defined as the
number of features used in an explanation Et,l for ED1, and as the average number of
features used across a set of N explanations {Eti,li}

N
i=1 for ED24:

SizeED1(Et,l) := |Et,l| , SizeED2({Eti,li}
N
i=1) :=

1

N

N
∑

i=1

|Eti,li |.

Consistency Anomalies of the same type occurring in a similar context should have
consistent explanations. For both ED1 and ED2, we only check for consistency using the
set of features reported, without considering their numerical values.
For ED1, consistency translates to the notion of stability, which requires that an instance

explanation stay similar when the input data is slightly altered. Multiple mechanisms can
be considered to alter the input data5. In this work, alteration is performed through a

subsampling procedure, generating a set of K samples {P
(i)
t,l }

K
i=1 from a predicted anomaly

Pt,l, and deriving explanations {E
(i)
t,l }

K
i=1 for them. We then generalize the application of

4The explanations of such a set can technically belong to different sequences. We however assume in this
section that all predicted ranges considered in ED2 belong to the same test sequence S to simplify the
notation.

5These include “perturbations” of the input features (like for instance done in [78, 79]), which should
be considered as an alternative option in the future, as they could be more suitable in some contexts,
while also allowing the evaluation of stability when l = 1.

47

our extraction function to a set of explanations as the duplicate-preserving union of its
outputs for each explanation in the set:

G({E
(i)
t,l (a1, . . . , aM)}Ki=1) =

K
⋃

i=1

G(E
(i)
t,l) =

K
⋃

i=1

A
(i)
t,l =: A∪

t,l.

To reflect the stability property, we define our instability metric as the Shannon entropy
of this bag of explanatory features:

Instability({E
(i)
t,l }

K
i=1) := H(A∪

t,l) = −
M
∑

i=1

p(ai) log2 p(ai),

with the convention for p(ai) = 0 that 0× log2(1/0) ≡ 0 [107], and:

p(ai) =
1

|A∪
t,l|

∑

a∈A∪

t,l

1(a = ai)

with 1(a = ai) the indicator function, outputting 1 if the feature a of the bag A∪
t,l is

equal to the feature ai, else 0. The smaller the entropy value, the less uncertain will be
the outcome of randomly drawing an explanatory feature from the bag A∪

t,l, and hence
the more the features used to explain the different anomaly samples will agree with each

other. In the ideal case, where all explanations {E
(i)
t,l }

K
i=1 are identical and of size Q, the

entropy takes its minimum value of HQ = log2(Q). To alleviate the issue of the instability
baseline being correlated with the size of explanations, we also report a normalized version
of instability, defined as:

Norm-Instability(Et,l, {E
(i)
t,l }

K
i=1) := 2Instability({E

(i)
t,l

}Ki=1)/SizeED1(Et,l).

Normalized instability (equal to 2Instability({E
(i)
t,l

}Ki=1)/2log2(SizeED1(Et,l))) represents the ratio
between the size of an explanation with same entropy as the combined explanations of the
instance samples, and the actual size of the original instance’s explanation.

For ED2, the consistency property translates to the concept of concordance, which
requires that explanations for anomalies of the same type be consistent. To reflect it, we
define the discordance metric similarly to instability, replacing the set of K subsampled

instances {P
(i)
t,l }

K
i=1 by a set of N anomalies of the same type {Pti,li}

N
i=1 (and corresponding

explanations {Eti,li}
N
i=1):

Discordance({Eti,li}
N
i=1) := Instability({Eti,li}

N
i=1),

with its corresponding normalized version:

Norm-Discordance({Eti,li}
N
i=1) := 2Discordance({Eti,li

}Ni=1)/SizeED2({Eti,li}
N
i=1).

Accuracy The last (and hardest) property we consider in our benchmark is whether
explanations can be predictive of “similar” anomaly instances (as defined above for ED1
and ED2). We evaluate this property by turning each explanation into a predictive model,
and deriving accuracy metrics for this model’s predictions around similar instances. As
such, accuracy can only be assessed for ED methods that provide their explanations in
a form that can be used for prediction (i.e., mapping a given data point to 0 or 1, Et,l :
R
M → {0, 1}). ED methods that support accuracy evaluation for instance include those

48

that output logical formulas [90, 91, 79] or decision trees [84], but not those that output
feature importance or SHAP scores [81]. Even among methods whose explanations can be
used for prediction, the literature largely lacks ED methods that can provide explanations
characterizing temporal patterns. For this reason, Exathlon defines the accuracy of an
explanation as the point-based Precision, Recall and F-score it can achieve when used
as a prediction model around other anomaly instances.

For ED1, accuracy metrics are computed for a given predicted anomaly Pt,l by randomly
splitting its data points into P train

t,l and P test
t,l , generating an explanation Etrain

t,l for the

anomaly points of P train
t,l , and reporting its Precision and Recall as a predictive model on

P test
t,l plus some neighboring normal data immediately preceding or following the anomaly

instance. In practice, the reported Precision and Recall are obtained by averaging across
K repetitions of this procedure, each time using a different random split6.

For ED2, the Precision and Recall of an anomaly instance’s explanation is computed on
the anomalous and neighboring normal data of the other instances of the same type. This
enables to assess whether the “rule” defined by the anomaly explanation can differentiate
between normal and anomalous data around other similar instances.

3.2.3 Computational Performance

Along with functionality, Exathlon can also report the computational performance of both
AD and ED methods for a given data dimensionality and cardinality.

Our computational performance properties P1 and P2 relate to anomaly detection.
Their corresponding metrics are the total training time of the AD method and its
average inference time on the test set, respectively. P3 relates to explanation discovery,
and is reflected in the benchmark as the average explanation time of the ED method.

3.3 Explainable Anomaly Detection Pipeline

This section presents the full explainable AD pipeline for multivariate time series we
provide to facilitate the usage and configuration of the benchmark, as well as the imple-
mentation of new AD and ED methods. This end-to-end pipeline consists in a sequence
of configurable steps ranging from data partitioning to data transformation to anomaly
detection and explanation discovery. We implemented it using Python, with some com-
ponents relying on popular libraries like Scikit-Learn [108], TensorFlow [109] and Py-
Torch [110]. This pipeline was designed to be open and modular, within and beyond our
particular use case, allowing different datasets and methods to be added and combined.
Figure 3.3 provides an overview.

3.3.1 Data Partitioning

The data partitioning step takes as input the path to the raw sequences data and labels.
A dataset-specific connector first performs data loading, parsing and selection, as well
as any necessary data cleaning. This step then partitions data into a set of N1 and
N2 intermediate training and test sequences, S inter

train and S inter
test , with corresponding (final)

sequences of labels Ytrain and Ytest:

6It should be noted that Exathlon’s implementations of ED1 accuracy and consistency currently assume
that an anomaly’s ground-truth explanation remains constant over time. In practice, it can however
happen that long-lasting anomalies display distinct “phases” of different nature (e.g., subtle, precursory
signals of a phenomenon followed by the phenomenon in itself), in which case we cannot expect random
anomaly subsamples to yield consistent, succinct explanations. For such anomalies, one could employ
domain knowledge to treat distinct phases separately (e.g., only triggering ED on the first minute of AD
predictions, considering this phase as the most interesting to explain for deploying corrective actions).

49

Figure 3.3: A pipeline for explainable anomaly detection over multivariate time series.

Ytrain = {y(1), . . . ,y(N1)} , Ytest = {y(N1+1), . . . ,y(N1+N2)},

with y(i) ∈ [0 . . C]T , such that y
(i)
t = c if the record at index t in sequence i is of

class c ∈ [0 . . C] (in Exathlon, we define c = 0 for normal and c > 0 for anomalous).
Although not shown in Figure 3.3 nor in our description, this step also allows to consider
part of the training set as validation sequences, whose data can for instance be used for
early stopping and checkpointing by deep learning methods. Both training and validation
labels are optional and never considered by unsupervised methods.

3.3.2 Data Transformation

The data transformation step takes in the intermediate training and test sequences from
the previous step and turns them into the N1 training sequences and N2 test sequences
considered by the AD and ED methods:

Strain = (S(1), . . . ,S(N1)) , Stest = (S(N1+1), . . . ,S(N1+N2)),

where each S(i) consists of T ordered data records7 of dimension M . Depending on the
user’s needs, this transformation process can involve configurable components arranged in
any order, for instance including data-specific feature engineering, general dimensionality
reduction (e.g., Principal Component Analysis [56], Factor Analysis [111]) and/or data
rescaling (e.g., standardization, normalization).

3.3.3 Anomaly Detection Training

The goal of the anomaly detection training step is to produce an AD method in the form of
either one of two sequence-to-sequence functions g or f . We refer to g as a record scoring
function. It maps a sequence S to a sequence of record-wise real-valued anomaly scores :

g :RT×M → R
T

S 7→ g(S),

where a higher score corresponds to more “abnormality” for the method. In contrast, the
function f , which we call a record detection function, maps a sequence S to a sequence of
record-wise binary predictions :

7In practice, Exathlon supports sequences of different lengths Ti, but we consider a single T here to
simplify the notation.

50

f :RT×M → {0, 1}T

S 7→ f(S).

The expected output of this training step is therefore flexible to the type of method
employed. In this work, we always consider the setting of offline training and online
inference, where training has to be performed offline on Strain, and inference on Stest only
considering the previous data for a given record at time index t:

g(S(i))t = g(S
(i)
1:t)t

f(S(i))t = f(S
(i)
1:t)t , ∀t ∈ [1 . . T] , i ∈ [N1 . . N1 +N2].

For this reason, and although online inference is not required by the pipeline, we always
refer to the AD methods based on g and f as online scorers and online detectors,
respectively.

Window Scorers, Online Scorers and Online Detectors

Both online scorers and detectors can optionally rely on a window scorer. In this case,
the online scorer (or detector) definition and/or training is preceded by additional data
windowing and window scorer training steps in the pipeline.

For data windowing, we employ a windowing operator WL, extracting and labeling
sliding windows, or samples, of length L > 0 from a given sequence i:

WL(S
(i),y(i)) = {(S

(i)
t−L+1:t,mode(y

(i)
t−L+1:t)}

T
t=L =: {(X

(i)
t , ỹ

(i)
t)}Tt=L,

with X
(i)
t ∈ R

M×L the samples, and ỹ
(i)
t ∈ [0 . . C] the corresponding labels, indicating

their majority class:

mode(yt−L+1:t) = argmax
c∈yt−L+1:t

t
∑

t′=t−L+1

1(yt′ = c).

Window scorers are then trained on samples extracted from the training sequences and
labels8:

Dtrain :=
⋃

i∈[1. .N1]

{

WL(S
(i),y(i))

}

.

to derive a window scoring function, that assigns an anomaly score to a given window,
proportional to its abnormality for the method:

gW :RL×M → R

X 7→ gW (X).

Online scorers (and detectors) can be derived from gW independently from the anomaly
detection method used, which is the strategy we adopt in the rest of this work. Specifically,
our experiments compare all AD methods in the same unifying framework, turning window
scorers into online scorers by setting for a given test sequence S and β ∈ [0, 1):

8Although extracted based on sequence labels, window labels are never used by unsupervised methods.

51

g(S;L, β)t =

−∞ if t < L

(1− β)ŷL =: mL if t = L
βmt−1+(1−β)ŷt

(1−βt+1)
=: mt if t > L

With:

ŷt = gW (St−L+1:t) , ∀t ∈ [L . . T].

For a test sequence, we therefore start by assigning an anomaly score to the current
sliding window of length L using gW (which is fixed and trained offline). We then make
this window score correspond to the anomaly score of its last record (i.e., the record we
just received in an online setting). To allow some additional control regarding the tradeoff
between the “stability” and “reactivity” of the record scoring function9, we further apply
an exponentially weighted moving average (EWMA) with smoothing hyperparameter β to
the anomaly scores. This produces the final output of the record scoring function g for a
test sequence, prepended with infinitely low anomaly scores for the timestamps before a
first full window of length L is received. When using this framework, both L and β are
hyperparameters to set for every anomaly detection methods.

The Exathlon pipeline also allows to turn online scorers into online detectors through
threshold selection. If training labels are available, threshold selection can be performed
in a supervised way by maximizing a given performance metric (e.g., F1-score). Otherwise,
it can be performed in an unsupervised way, typically modeling the distribution of (finite)
anomaly scores assigned by g in training sequences, and setting the threshold value to the
start of this distribution’s upper tail.

3.3.4 AD Inference and Evaluation

The AD inference and evaluation steps evaluate online scorers or detectors with respect
to the requirements presented in Section 3.2.1. Specifically, online scorers g are evaluated
based on their ability to separate normal from anomalous records in anomaly score space,
leaving the selection of a suitable threshold to human operators when the solution is
deployed in practice [103]. A way to do so is to consider every possible detector f that
can be derived from g using a fixed anomaly score threshold. That is, given the set of all
anomaly scores g assigned in test sequences:

Ĝtest :=
⋃

i∈[N1+1. .N1+N2]

{{

g(S(i);L, β)t , t ∈ [1 . . T]
}}

,

consider all detectors F = {f(·;L, β, δ) , δ ∈ Ĝtest}, where the binary record-wise predic-
tion assigned by a detector f(·;L, β, δ) in a sequence S at time t is defined as:

f(S;L, β, δ)t := g(S;L, β)t > δ.

Plotting the Precision and Recall for every such detector on the test set gives the Precision-
Recall (PR) curve. The pipeline supports the Area Under the Precision Recall Curve
(AUPRC) as an online scorer metric, but also the Precision, Recall and F1-score achieved
by the detector f(·;L, β, δ∗), where δ∗ is the anomaly score threshold that gave the max-
imum F1-score on the test set (i.e., the “best” point on the PR-curve). We refer to
this latter metric as the peak F1-score achieved by the online scorer g, indicating the
detection performance this scorer would achieve given the adequate threshold.

9This tradeoff is also influenced by the window length L, the window scoring function and the types of
anomalies.

52

The pipeline also supports running and evaluating online detectors f using the range-
based Precision, Recall and F-score metrics directly. In particular, performing inference
with an online detector f produces the predicted ranges introduced in Section 3.2.2 and
required by the ED inference and evaluation steps:

Ptest :=
⋃

i∈[N1+1. .N1+N2]

{{

P
(i)
tj ,lj

, j ∈ [1 . . Ki]
}}

,

with Ki the number of anomalous ranges predicted by f in sequence S(i).

3.3.5 ED Execution and ED Evaluation

The ED execution step produces explanations Etest for the ranges Ptest predicted by an
online detector f in test sequences. Like mentioned in Section 2.3, the Exathlon pipeline
supports two main types of ED methods, referred to as model explainers and data ex-
plainers. The goal of model explainers is to explain the prediction process of a particular
model, which makes them rely, at least, on this model’s decision function. Specifically,
the pipeline currently supports the evaluation of window scorer explainers, explaining a
mapping gW from an input window to its real-valued anomaly score. In contrast, data
explainers seek to explain the differences between an anomalous and a reference dataset,
only relying on anomaly detection methods to define these datasets through their predic-
tion labels. By default, the pipeline defines the reference dataset of an anomaly range as
the normal range that immediately precedes it in time and spans twice its length.
The ED evaluation step takes in the Etest explanations produced by ED execution and

evaluates them based on the criteria defined in Section 3.2.2. By default, this step com-
putes ED1 instability by subsampling 80% of the explained instances five times, and ED1
accuracy across five folds using 80/20 splits. Since ED2 requires the event type infor-
mation, the pipeline currently supports setting Ptest as the ground-truth anomaly ranges
directly (i.e., considering human annotations), as well as the intersection between the AD
method’s predictions and ground-truth anomalies (i.e., considering true positives only, for
which we know the expected type)10. The former scenario also allows diagnosing data
explainers without the need for an AD method at all.

3.4 LEADS Viewer

This section presents the Viewer of Leads via an Explainable Anomaly Detection System
(LEADS Viewer)11, a platform we designed and released to visualize high-dimensional
time series along with AD and ED predictions12.

LEADS Viewer can be used as a tool for qualitatively assessing the performance of
explainable AD methods, either jointly with or independently of the quantitative bench-
marking provided by Exathlon. Launching the platform brings us to a home page, from
which we can create or load an existing project. After selecting a project, we get to
upload sequences, each corresponding to a multivariate time series, along with optional
anomaly detection and explanation results. The uploaded sequences appear with their
name in a SEQUENCE tab. They should all have the same feature names, from which we
get asked to specify a list of Key Performance Indicators (KPIs). The values of these

10In its current implementation, our ED2 evaluation criteria therefore assumes the ED method operates
on top of a working AD method, with most of its predictions being true positives, and very few of them
being (ignored) false positives.

11The name comes from the aim of providing “leads”, or “clues” toward characterizing abnormal behaviors
of entities from collected data.

12The implementation of LEADS Viewer was carried out by Jia Li, Ran Wang and Junqiang Chen, with
whom continuous exchanges also helped refine the design.

53

KPIs will be displayed as time plots on the left of the DASHBOARD tab for every sequence,
and can optionally be ignored in explanations. In practice, KPIs should reflect the overall
“health” or “status” of a recorded entity, typically corresponding to the few metrics that
human operators would watch to check its proper behavior. Selecting a sequence from the
SEQUENCE tab sends us to its corresponding DASHBOARD tab, displaying the feature values
and optional predictions for this sequence.

Figure 3.4 shows an example of LEADS Viewer’s DASHBOARD tab for the T1 (Bursty
Input) trace 5 1 500000 62 of Exathlon’s Spark Streaming dataset. In this example, we
can see we selected the application’s last completed batch total delay, scheduling delay and
processing delay features as KPIs, appearing as time plots on the left side of the dashboard.
The total delay for a batch of streaming records corresponds to the sum of its scheduling
delay and processing delay, with the scheduling delay being the time elapsed between the
arrival of this batch and the start of its processing, and the processing delay its total
processing time. The other 234 features from Section 4.2.4’s feature set are displayed on
the right side of the dashboard, also as time plots by default, but with the option of viewing
them in a tabular format instead. On top of the features, Figure 3.4a shows the anomaly
ranges predicted by our detection method in red (CEADAL from Chapter 6 in this case,
only considering the first 120 seconds of its predicted ranges, and removing the ranges
smaller than 60 seconds as post-processing). From Figure 3.4b, we can see that double-
clicking on a specific predicted range provides a zoomed-in view around it, and displays
its corresponding explanation if available. In this example, we explain the first predicted
range of trace 5 1 500000 62 using an internal version of EXstream [90], providing both
feature importance scores and decision rules in the form of conjunctions of predicates (the
most comprehensive explanation format currently supported by the platform). As we can
see, the explanation returned states that the numbers of records in the last received batch
(i.e., received in the last five seconds, given the batch interval set for the applications) are
abnormally high, fluctuating around 12M instead of the usual 3M. This corresponds to
an abnormally high rate of data records coming from the sender, and therefore constitutes
a plausible explanation for a T1 (Bursty Input) event. Additional information about
the supported data formats, functionalities, and usage of LEADS Viewer is available at
https://github.com/exathlonbenchmark/leads-viewer.

LEADS Viewer could be compared to the MTV platform [112] recently released within
the Signal Intelligence (Sintel) project [32]. Like MTV, LEADS Viewer proposes to vi-
sualize the predictions of an anomaly detection method over a “multi-signal view” of
multivariate time series data. While LEADS Viewer does not currently include some of
MTV’s features, like its “multi-aggregation” view (i.e., simultaneous display of signals
at different aggregation levels), anomaly annotations or discussion panels, it introduces
additional concepts like KPIs and the visualization of anomaly explanations, along with
an optional tabular view that can be useful for various use cases, such as fraud detection
in financial transactions. Overall, LEADS Viewer and MTV were originally designed to
serve different purposes, and could thus be seen as complementary. Specifically, MTV cen-
ters around time series anomaly detection for teams, mostly in industrial settings, while
LEADS Viewer was built as a lightweight tool for researchers and practitioners to quickly
visualize their time series data and explainable anomaly detection outputs.

3.5 Summary and Conclusions

In this chapter, we presented Exathlon, the first public benchmark for explainable anomaly
detection over high-dimensional time series. We introduced its (i) Spark Streaming dataset
and use case, (ii) evaluation methodology for anomaly detection (AD) and explanation dis-
covery (ED), and (iii) modular pipeline for explainable anomaly detection. We also intro-

54

duced LEADS Viewer, a graphical user interface we released to visualize high-dimensional
time series and further diagnose predictions of AD and ED methods.
We released Exathlon and LEADS Viewer to address the lack of development and bench-

marking tools available to academic research for explainable anomaly detection in high-
dimensional time series. This problem is a central component of Exathlon’s Spark Stream-
ing (AIOps) use case, which also comes with other specific challenges that we hope these
open benchmarking tools will help study more and address.
In the next chapter, we will conduct an experimental study of representative unsuper-

vised AD methods on Exathlon’s dataset. Throughout this study, we will come back to
these specific AIOps challenges, showing the way they are reflected in our experimental
setup, and the limitations of traditional methods to address them.

55

(a) Features time plots and CEADAL anomaly predictions.

(b) EXstream’s explanation of the first predicted anomaly.

Figure 3.4: LEADS Viewer’s DASHBOARD tab for the T1 (Bursty Input) trace
5 1 500000 62 of Exathlon’s Spark Streaming dataset, with CEADAL and
EXstream predictions.

56

4 Unsupervised Anomaly Detection Study

In this chapter, we conduct an in-depth benchmarking analysis of representative unsu-
pervised anomaly detection (AD) methods against the Exathlon benchmark and dataset
introduced in the previous chapter. We start by formalizing the problem statement consid-
ered in Section 4.1. We then describe our experimental setup in Section 4.2, corresponding
to the parameters used for the steps and substeps of the Exathlon pipeline. We follow by
detailing the characteristics of the Exathlon dataset in Section 4.3, including the specific
way AIOps challenges are reflected in our experimental setup, as well as the connection
between the dataset’s event types and the anomaly types commonly defined for time series.
Section 4.4 presents the unsupervised methods we included in this study, whose perfor-
mance is reported and analyzed in Section 4.4. In this last section, we further highlight
the 15 conclusions drawn from this study as C1-15, including the tradeoffs and main
limitations we found for the considered methods to address our AIOps challenges.

4.1 Problem Statement

This section formalizes the anomaly detection problem we want to solve in this unsuper-
vised setting.
We consider N1 training sequences and N2 test sequences:

Strain = (S(1), . . . ,S(N1)) , Stest = (S(N1+1), . . . ,S(N1+N2)),

where each S(i) consists of T ordered data records of dimension M . For each test sequence,
we further consider a sequence of anomaly labels:

Ytest = {y(N1+1), . . . ,y(N1+N2)},

with y(i) ∈ {0, 1}T , such that:

{

y
(i)
t = 1 if the record at index t in sequence i is anomalous,

y
(i)
t = 0 otherwise (i.e., the record is normal).

Our goal is to build an anomaly detection model in the form of a record scoring function
g : RT×M → R

T , mapping a sequence S to a sequence of real-valued record-wise anomaly
scores g(S), which assigns higher anomaly scores to anomalous records than to normal
records in test sequences. That is:

g(S(i))t1 > g(S(j))t2 , ∀i, j ∈ [N1 . . N1 +N2] , t1, t2 ∈ [1 . . T] s.t. y
(i)
t1

= 1 ∧ y
(j)
t2

= 0.

This record scoring function should further be constructed in a setting of offline training
and online inference, meaning training has to be done offline on Strain, and inference has
to be done on Stest only considering previous data for a given record at time index t:

g(S(i))t = g(S
(i)
1:t)t , ∀i ∈ [N1 . . N1 +N2] , t ∈ [1 . . T].

We note that this problem statement encompasses both a point-based requirement and
the AD1-4 criteria presented in Section 3.2.1, in the sense that solving it would perfectly
satisfy all of them for a record scoring function g.

57

4.2 Experimental Setup

This section describes the experimental setup we consider to run and evaluate AD methods
on Exathlon’s dataset, with respect to the problem statement of Section 4.1. This descrip-
tion corresponds to the parameters we set for the corresponding steps (and substeps) of
the Exathlon pipeline presented in Section 3.3.

4.2.1 Data Selection

In all our experiments, we never consider the Spark Streaming applications 7 and 8, for
which there are no disturbed and undisturbed traces, respectively. In practice, one could
also consider pruning the first few and/or last minutes of data for every trace, to account
for various recording artifacts, along with any specific noisy data segments we identified in
both training and test traces. We however choose not to remove any other data item, in
order to study the behavior of methods with respect to such minority and noisy patterns.

Our primary goal with this use case is to detect anomalies in the behavior of a running
Spark Streaming application, as opposed to the behavior of the entire four-node cluster an
application is running on. As such, we always remove from our labels the CPU contention
events that had no impact on a recorded application’s components (i.e., that occurred on
nodes where this application had no running driver or executors). In practice, we label
those anomalies the same way as other “unknown” anomalous events, in order not to
penalize CPU contention Recall for missing them, nor Precision for detecting records as
abnormal in these ranges.

4.2.2 Data Preprocessing

Like mentioned in Section 3.1, the metrics collected for Spark Streaming traces allocated
140 columns for each of five “executor spots” in the data, saved in case one of the two to
three active executors of an application failed during its execution. In practice, inactive
executor spots in the data took the default value of −1 (as a placeholder for “null”). This
value of −1 was however also (and mainly) used to refer to (a potential subset of) “missing”
metrics, not received fast enough for the expected timestamp during data collection. This
convention yielded two types of contiguous “−1 ranges” for executor metrics in the data,
with some meaning the executor was inactive, and some meaning it was not reachable
by data collection (typically, but not only, during anomalies). For every executor e,
we distinguish these two cases based on the {e} executor runTime count counter metric.
Specifically, if a −1 range occurs between two non-(−1) ranges and this counter metric was
reset after it, then this −1 range corresponds to an “inactive executor range”. Otherwise,
it corresponds to a “missing range”. We handle cases of starting and ending −1 ranges
through a combination of manual inspection and duration rules.

With these types of ranges distinguished, missing values were filled by propagating
forward preceding valid values (or propagating backward following valid values when no
such values existed). Inactive executor ranges were left as −1.

After this preprocessing, all metrics in the data should be either positive or −1. This
was sometimes not the case for three specific metrics, which could mistakenly take the
opposite of their “true value” due to other related metrics being −1. For this reason, we
also set all negative metrics different from −1 to their opposite values.

Finally, to handle duplicate and missing timestamps, we resampled the data from all
traces to match their supposed sampling period of one second (using the max(·) aggrega-
tion function).

58

4.2.3 Data Partitioning

In this study, we consider the setup of building a single AD method instance for all the
Spark Streaming applications in training, as opposed to building a distinct instance per
application. We retained this setup to reduce the modeling cost as the number of appli-
cations increases, which relates to the AIOps challenge of being able to handle different
contexts at scale. Besides, training a single model for a variety of entities is often consid-
ered more effective in practice, allowing this model to share knowledge across entities, and
thus increasing data efficiency per entity [113]. We however do not require AD methods
to generalize to unseen applications, by making sure the eight applications left after data
selection are all represented in the training and test sequences.
Specifically, we define our training sequences as most of the undisturbed traces, plus

some disturbed traces to increase the variety in application settings and input rates for
the methods to learn from. We also make sure both the training and the resulting test
disturbed traces cover all the event types of Exathlon (but remove anomalous data for the
undisturbed methods). After data partitioning, our test sequences contain:

• 15 Bursty Input (T1) ranges.
• 5 Bursty Input Until Crash (T2) ranges.
• 6 Stalled Input (T3) ranges.
• 7 CPU Contention (T4) ranges.
• 5 Driver Failure (T5) ranges.
• 5 Executor Failure (T6) ranges.

4.2.4 Feature Engineering

All our compared methods consider the same features as input, built from an automated
feature engineering step simply consisting in:

• Dropping the features collected by nmon (since these features reflect the behavior of
the entire four-node cluster, sometimes unrelated to the application run represented
in the trace).

• Dropping the features that were constant throughout the whole data.
• Differencing cumulative features (i.e., that were only increasing within a given trace).
• Averaging corresponding Spark executor features across “active executor spots”
(non-(−1) after data preprocessing) into a single block of 140 features.

After this feature engineering, we get M = 237 features to use by the AD methods,
which can be decomposed as follows:

• 168 Driver Features

– 18 “streaming” features. For example:

∗ The processing delay and scheduling delay of the last completed batch.
∗ The number of records in the last received batch.

– 5 block manager features. For example:

∗ The disk space used by the block manager.
∗ The memory used by the block manager.

– 32 JVM features. For example:

∗ The heap memory usage of the driver.
∗ The survivor space usage of the driver (the survivor space is a memory pool
that holds objects having survived a young generation garbage collection,
before those objects potentially get promoted to old generation memory).

59

– 19 DAG scheduler features. For example:

∗ The number of active jobs.
∗ The number of running stages.

– 94 live listener bus features. For example:

∗ The number of messages received from the DAG scheduler in the last 1, 5
and 15 minutes.

∗ The average processing time of messages received from the DAG scheduler.

• 69 Executor Features (Averaged Across Active Executors)

– 27 “executor” features. For example:

∗ The CPU time.
∗ The number of active tasks.
∗ The number of bytes read and written to HDFS.

– 38 JVM features, similar to those of the driver.
– 4 netty block transfer features. For example:

∗ The direct memory used by the shuffle client and server of the netty network
application framework (sending and receiving blocks of data).

∗ The heap memory used by the shuffle client and server of the netty network
application framework.

4.2.5 Data Windowing

To compare different AD methods in a unified manner, this study relies on the framework
introduced in Section 3.3.3, only considering methods that are both trained and used on
data windows (sometimes called samples in the following), with anomaly scores derived
from a window scoring function gW . We therefore perform a data windowing step, produc-
ing sliding windows of length L = 1 for methods that model individual data records (called
point modeling methods in the following), and L = 20 for sequence modeling methods.

Once sliding windows have been created from the training sequences, we further balance
them by according to the (application, Spark settings, input rate) triplet they relate to.
Since there is no reason for AD methods to favor any particular values of those aspects,
we indeed ensure every combination that exists in the training data is equally represented.
We make sure this process preserves the data cardinality, by randomly undersampling the
over-represented combinations, and randomly oversampling the under-represented ones.

4.2.6 Evaluation Strategy

To simplify this study, we only consider point-based anomaly detection performance. Like
in [103], we favor that AD methods induce a single, high-performing threshold over many
“medium” ones, and thus evaluate AD methods using the peak F1-score metric of the
Exathlon benchmark introduced in Section 3.3.4. When computing the F1-scores, we av-
erage Recall values across the different event types, considering them as equally important
to detect no matter their cardinality in test data.

We benchmark anomaly detection methods assuming a purely unsupervised scenario,
where labels are not assumed available even for tuning hyperparameters. As such, we
report the performance of each method as its full box plot of peak F1-scores achieved
across a “sensible” grid of hyperparameter values, like advised for instance in [61].

For every AD method, our window-based methodology to derive the record scoring func-
tion can induce “rightfully large” anomaly scores assigned to the L−1 records immediately
following an anomaly (since the windows of length L used to compute them are partially
anomalous). This may introduce some rightful “lags” in the anomaly predictions, hinder-
ing the global performance despite the method behaving properly. The recently proposed

60

Volume Under the Surface (VUS) metric [114] alleviates this issue, and could be consid-
ered to extend this study in the future. In our evaluation, we simply ignore the L − 1
records following each test anomaly, where L is the window length used by the evaluated
AD method.
When deriving our record scoring functions g, we always consider the following grid of

anomaly score smoothing factors:

β ∈ (0, 0.8, 0.9, 0.95, 0.96667, 0.975, 0.98, 0.98333, 0.9875, 0.99167, 0.99375, 0.995),

which corresponds to considering approximately the last:

nβ ∈ (1, 5, 10, 20, 30, 40, 50, 60, 80, 120, 160, 200)

anomaly scores in the exponentially weighted moving average (with nβ = 1/(1− β)).

4.3 Data Characteristics

This section describes the characteristics of Exathlon’s dataset under the experimental
setup of Section 4.2. We first discuss the impact each event type could have on our
extracted features, mapping them to the anomaly types commonly defined for time series
in the literature [18, 115]. We then provide additional details about the diversity and shift
in normal behaviors present in this dataset.

4.3.1 Event and Anomaly Types

Figure 4.1 shows an example disturbed trace for each type in Exathlon’s dataset, projected
on the application’s last completed batch scheduling delay and processing delay features.
The scheduling delay for a batch of streaming records corresponds to the time elapsed
between the arrival of this batch and the start of its processing, while the processing delay
refers to its complete processing time. The scheduling delay should ideally remain sta-
ble at either zero or a low value over time (i.e., batches keep getting processed shortly
after they arrive). An increase in scheduling delay typically occurs when the processing
delay exceeds the batch interval set for the application (i.e., batches arrive faster than
they can be processed). This typically makes the scheduling and processing delays rele-
vant Key Performance Indicators (KPIs) to consider when monitoring a Spark Streaming
application.
In the literature, anomalies in univariate time series have commonly been categorized

into the following three types [18, 115]:

• Point Anomalies. Data records that significantly deviate from the rest of the data
(e.g., a substantial extremum in value, which is generally the easiest type of anomaly
to detect [18, 19]).

• Contextual Anomalies. Data records that are normal in a given context, but
anomalous in another (e.g., a temperature of 5°C is normal in the winter in France,
but anomalous in the summer).

• Collective (or Sequence) Anomalies. Data records that are normal when taken
individually, but anomalous when considered as a sequence (e.g., recording the exact
same temperature value over a long period of time can indicate a sensor malfunction
period, even if the individual temperatures are normal).

As we will see, these three anomaly types are represented through the event types and
features of the Exathlon dataset after our feature engineering.

61

(a) Bursty Input (T1) trace 6 1 500000 65.

(b) Bursty Input Until Crash (T2) trace 10 2 1000000 67.

(c) Stalled Input (T3) trace 10 3 1000000 75.

(d) CPU Contention (T4) trace 9 4 1000000 78.

(e) Process Failure (T5) trace 9 5 1000000 84.

Figure 4.1: Example disturbed trace of each type projected on the last completed batch
scheduling and processing delays.

62

(a) Bursty Input (T1) traces. (b) CPU Contention (T4) traces.

Figure 4.2: Kernel Density Estimate (KDE) plots of the last completed batch processing
delay for training normal data, test normal data and test anomalous data.

Bursty Input (T1) and Bursty Input Until Crash (T2) Events

Figure 4.1a shows a time plot of a Bursty Input (T1) trace. Although T1 events could
induce (imperfect) point anomalies for the scheduling delay feature, they were reflected by
contextual anomalies for a lot of others, including the processing delay. To illustrate this,
Figure 4.2a shows Kernel Density Estimate (KDE) plots of the processing delay values
taken by training normal records, test normal records and test T1 records (i.e., belonging
to T1 anomaly ranges). A separate subplot is shown for each test T1 trace, with an
additional subplot for all of the remaining data in our experimental setup. All subplots
share the same x-axis in log scale. From this figure, we can see that, although T1 events
induce higher processing delays than normal within the context of a trace, these “higher”
values actually appear normal with respect to the training and test normal data globally
(i.e., taken from all traces together). In other terms, T1 events induce contextual anomalies
for the processing delay feature, where the context is defined as the characteristics of a
trace (further detailed in Section 4.3.2).

Figure 4.1b shows a time plot of a Bursty Input Until Crash (T2) trace. T2 events can
be seen as “simpler” versions of T1 events. Since they are more sustained and eventually
lead to an application crash, the anomalies induced by T2 events tend to become more
“point-based” as time progresses within a trace.

Stalled Input (T3) Events

Figure 4.1c shows a time plot of a Stalled Input (T3) trace. T3 events can be seen as
slightly more subtle than T1 and T2 events, in the sense that a lack of incoming data
does not induce any delays or resources shortage for an application. Some aspects get
easier to detect, like some point anomalies induced for the processing delay (which drops
around its global minimum of zero). Other aspects however get more complex, like the
collective anomalies induced for the “difference in total number of received records”
feature. To illustrate this collective component, Figure 4.3 shows time plots of this feature
for a normal and an anomalous subsequence of lengths 100 in T3 trace 10 3 1000000 75

(sharing the same y-axis). The “total number of received records” being a cumulative
feature, it was replaced by the following difference by our feature engineering step:

63

Figure 4.3: Time plot of the difference in total number of received records for a normal and
an anomalous subsequence of lengths 100 in the T3 trace 10 3 1000000 75.

vdifft := voriginalt − voriginalt−1 , (4.1)

where voriginalt ∈ R+ generally refers to a cumulative feature value at time index t in a
sequence, and vdifft ∈ R to its corresponding difference. For our feature, having a value of
zero for vdifft therefore means no new records have been received at time index t, which
naturally occurs for most time indices in Exathlon’s traces. As described in Appendix A.1,
every application in Exathlon was indeed run with a fixed processing period, which defined
the rate at which the application triggered new computations, and thus considered new in-
put records to process. For non-windowed applications, this processing period corresponds
to the batch interval, which was always set to five seconds. For windowed applications,
it corresponds to the window slide parameter, set to 20 seconds for application 3, and 10
seconds for applications 8, 9 and 10. For traces of application 10, like the one shown in
Figure 4.3, a subsequence of zeros for the difference in total number of received records
is therefore normal if and only if this subsequence spans nine time steps. This is not the
case during T3 events, which last 16 minutes (i.e., around 960 time steps) on average.

CPU Contention (T4) Events

Figure 4.1d shows a time plot of a CPU Contention (T4) trace. Throughout data collection,
T4 events could have different impacts on a recorded application and features depending
on (i) where this application’s components were running and (ii) where the CPU-intensive
process was launched on the cluster. As such, T4 events can further be categorized into
the three following subtypes, listed below in decreasing order of expected difficulty:

• Crash-Inducing Contention. Contention that impacted the application so much
that it eventually led it to crash (e.g., the fourth anomaly instance in Figure 4.1d).

• Regular CPU Contention. Contention that impacted the application in a milder
way, without leading it to crash (e.g., the first, second, fifth and sixth anomaly
instances in Figure 4.1d).

• No-Impact Process. CPU-intensive process that was launched outside the scope
of the monitored application’s driver and executors, and thus had either no or a
very slight impact on its behavior (e.g., the third anomaly instance in Figure 4.1d).
Such T4 events only really affected the OS metrics of the node that hosted the CPU-
intensive process. Since we removed all such OS metrics from our feature set, we
never consider this subtype of T4 events in our experiments.

The removal of explicit, CPU-related OS metrics from our feature set made all T4
events more subtle and challenging to detect. As shown in Figure 4.2b, T4 events that
had some impact on the applications could induce point, contextual or no anomalies
for the processing delay. Most of the “easier” anomalies correspond to crash-inducing

64

Figure 4.4: Time plot of the difference in total number of received records in the T4 trace
9 4 1000000 78. The fourth anomaly instance induced an application crash.

contentions, both because of their stronger impact on the applications and because of
the crashes themselves, which had the effect of resetting all the counter features. From
Equation 4.1, such resets made the corresponding differences go from their usual, moderate
positive values to very large negative numbers (i.e., vdifft := 0 − “large original count”).
We illustrate this in Figure 4.4, showing a time plot of the difference in total number
of received records for the T4 trace 9 4 1000000 78, where the fourth anomaly instance
induced an application crash.

Driver Failure (T5) and Executor Failure (T6) Events

Figure 4.1e shows a time plot of a Process Failure (T5) trace, containing both Driver
Failure (T5) and Executor Failure (T6) events. T5 events are very short and point-based
in nature. Unlike crash-inducing CPU contentions, their purpose and immediate effect
were to lead to an application crash. As such, the significant point anomalies induced by
crashes through counter resets (described earlier for crash-inducing CPU contentions) took
a greater part of T5 ranges, making them more globally point-based than the anomalies
induced by other event types.

Our feature set containing executor features “averaged across active executors”, and not
for each executor separately, made most T6 events more subtle and challenging to detect.
Indeed, an executor failing can now only be detected through the impact this failure had
either on other application features, or on “active executor averages” during the (short)
period the failed executor was being replaced by a new one. All T6 events involved a
single Spark executor at a time, and could belong to one of three subtypes listed below
by decreasing order of expected difficulty:

• Failure without Replacement, with Buildup in Delay. Failed executor that
was not replaced by another, which induced a buildup in scheduling delay ending
either with an application crash or the end of recording. An example of this subtype
is the executor failure of trace 2 5 1000000 88, shown in Figure 4.5a.

• Failure with Replacement, with Temporary Delay. Failed executor that was
shortly replaced by another, which induced an increase in scheduling delay dur-
ing the replacement period. An example of this subtype is the T6 event of trace
1 5 1000000 86, shown in Figure 4.5b.

• Failure without Replacement, with Temporary Delay. Failed executor that
was not replaced by another, which induced a short, temporary increase in scheduling
delay (meaning that after a short adjustment period, the application could run
properly with one less executor). An example of this subtype is the T6 event of
trace 9 5 1000000 84, shown in Figure 4.1e.

65

(a) Failure “without replacement, with buildup in delay” in trace 2 5 1000000 88.

(b) Failure “with replacement, with temporary delay” in trace 1 5 1000000 86.

Figure 4.5: Example executor failure instances projected on the last completed batch
scheduling and processing delays.

Figure 4.6: The diversity in Spark settings, data sender input rate and concurrency envi-
ronment induce diverse normal behaviors even within runs of a same applica-
tion.

4.3.2 Diversity and Shift in Normal Behaviors

The Exathlon benchmark was built to reflect a set of key challenges typically encountered
in AIOps settings. Among these challenges, and as hinted by the contextual nature of most
anomaly types, are the diversity and shift in normal behaviors for the recorded application
runs. The first reason for this diversity is the presence eight different Spark Streaming
applications (i.e., entities in AIOps terms [9]) in both the training and test set of our
experimental setup. Even for a same Spark Streaming application, however, different runs
could be launched and recorded in vastly different contexts, mainly characterized by the
three following high-level factors (also illustrated in Figure 4.6):

• The Spark settings set for the application run. These settings included the process-
ing period described earlier (i.e., the batch interval or the window slide), which was
always constant across runs of a same application in Exathlon. Settings that could
vary across all runs were however (i) the number of active Spark executors and (ii)
the “memory profile” (including the maximum memory set for the driver block man-
ager, executors JVM and garbage collection, as further detailed in Appendix A.1).
Both these aspects had either a direct or indirect impact on the baselines values
taken by a lot of features (e.g., the driver block manager memory usage).

66

(a) Data records colored by context. (b) Data records colored by dataset.

Figure 4.7: t-SNE scatter plots of application 2’s normal data, undersampled to 10,000
data records balanced by context.

• The input rate of the data sender, which defined the (approximate) rate at which
data records were sent to the application. This input rate had a direct effect on the
volume of data periodically processed by an application run, and therefore on a lot
of baseline values for its recorded features (e.g., the last completed batch processing
delay).

• The concurrency environment of the cluster, defined as the set of other programs
that were running on the four nodes during the recording of a trace. Thanks to the
resource isolation performed by Spark, this factor only mainly impacted the OS
metrics recorded for the nodes by the nmon software. Because we removed such
metrics from our feature set, we choose to ignore this concurrency factor in
this study.

All in all, we consider the “normal behavior” in a trace to be mainly determined by its
trace characteristics, defined as the combination of its entity and context. In Exathlon
and our setup, the entity corresponds to the Spark Streaming application recorded, and
the context to the Spark settings and input rate used for the application run.

Using this terminology, the diversity in normal behaviors stems from the diversity in
trace characteristics in our experimental setup, while the shift in normal behavior from
the training to the test data stems from the shift in context for each of the eight entities.
The illustrate these challenges, Figure 4.7 shows t-SNE scatter plots [116] of application
2’s normal data, undersampled to 10,000 data records balanced by context. The diversity
challenge is shown in Figure 4.7a, where data records are colored by context (with context
labels indicating the processing period, number of Spark executors, maximum executors
memory and data sender input rate, respectively). As we can see on this plot, differ-
ent contexts appear as distinct clusters, constituting a multimodal distribution for data
records. Figure 4.7b illustrates the shift challenge, with the same data records colored this
time by dataset in our experimental setup. As we can see, the different contexts induce a
distribution shift from the training to the test data, even within normal records of a same
application. This distribution shift is the reason for the contextual nature of most of the
anomalies in Exathlon’s dataset.

67

4.4 Compared Methods and Hyperparameters

This section presents the unsupervised methods and hyperparameters considered in our
study. We start by describing our general model training and selection procedure for all the
deep learning methods. We then present the methods in turn, recalling their categories
from Schmidl et al. [19], and separating those that perform a point modeling of the
training data (i.e., consider windows of length L = 1) from those that perform a sequence
modeling (i.e., consider windows of length L > 1, set to 20 in our experiments).

4.4.1 Model Training and Selection for Deep Learning Methods

All of the deep learning methods considered used the same random 20% of training data
as validation, sampled in a stratified manner with traces as strata. For each undisturbed
trace, a contiguous period of 20% of records was randomly selected. For each disturbed
trace, the validation period was fixed so as to obtain a similar distribution of event types
in training and validation data (with the exception of T2 traces, which were all used as
training because of their shorter lengths). We adopted this strategy in order to use the
same training, validation and test data in our unsupervised and weakly-supervised sce-
narios, with training and validation anomalies simply being removed in the unsupervised
case.
Unless mentioned otherwise, all deep learning methods were trained with a Stochas-

tic Gradient Descent (SGD) strategy, using mini-batches of size B, the AdamW opti-
mizer [117], and a weight decay coefficient of 0.01. For all methods and sets of hyperpa-
rameters, we considered a grid of learning rate values η ∈ {1e−5, 3e−5, 1e−4, 3e−4}, and
selected the learning rate that yielded the lowest validation loss (i.e., the best modeling
performance, like in [32]). All methods were trained for 300 epochs by default, using early
stopping and checkpointing on the validation loss with a patience of 100 epochs.

4.4.2 Point Modeling Methods

Point modeling methods model individual data records (L = 1), assumed independent
and identically distributed (i.i.d). As such, they only rely on our feature engineering and
anomaly score smoothing to capture the sequential aspect of the data. We include the
following point modeling methods in our study:

• Isolation forest [58] (iForest) as an isolation tree method.
• Principal Component Analysis (PCA) [56] and Dense Autoencoder (Dense AE)
[52, 53] as reconstruction methods.

• Dense Deep SVDD [54] (Dense DSVDD) as an encoding method.
• The Mahalanobis method [56, 51] (Maha) and Dense Variational Autoencoder
(Dense VAE) [57] as distribution methods.

Isolation forest trains an ensemble of trees to isolate the samples in the training data,
and defines the anomaly score of a test instance based on the average path length required
to reach it using the trees. We report its performance with the following hyperparameters
(using the default values of Scikit-Learn [108] 1.0.2 for the ones not mentioned):

• A number of trees in {50, 100, 200, 500, 1000}.
• A maximum number of samples used by each tree in {256, 512, 2048, 8192, 32768}.
• A maximum number of features used by each tree of 64.

As reconstruction methods, PCA and Dense AE define anomaly scores of test vectors as
their mean squared reconstruction errors from a transformed (latent) space. The transfor-
mation of PCA is a projection on the linear hyperplane formed by the principal components

68

of the data. We report its performance with the following preprocessing and hyperparam-
eters (using the default values of Scikit-Learn 1.0.2 for the ones not mentioned):

• A standardization of the input samples.
• A number of principal components (latent dimension) in {16, 64, 128, 95%, 99%,M},
where 95% and 99% correspond to the latent dimension preserving 95% and 99% of
the training data variance, respectively, and M = 237 is our input dimensionality
after feature engineering.

The transformation of the Autoencoder method is a non-linear mapping to a latent
encoding learned by a neural network that was trained to reconstruct input data from it.
With Dense AE, we consider a fully-connected architecture for this neural network, and
report its performance with the following preprocessing and hyperparameters:

• A standardization of the input samples.
• A single hidden layer of 200 units for both the encoder and the decoder.
• The Rectified Linear Unit (ReLU) activation function for all the layers except the
output, for which we do not use any activation function.

• An encoding dimension in {16, 64}.
• A mini-batch size B = 32.

The Mahalanobis and VAE methods define anomaly scores of data samples as their
deviation from an estimated data distribution. The Mahalanobis method estimates this
distribution as a multivariate Gaussian, and defines the anomaly score of a test vector as
its squared Mahalanobis distance from it. As such, it does not require any hyperparam-
eters, and we therefore report its performance using only a standardization of the input
samples. Dense VAE estimates the data distribution using a fully-connected variational
autoencoder, with the anomaly score of a test point derived by drawing multiple samples
from the probabilistic encoder, and averaging the negative log-likelihood of the reconstruc-
tions obtained from each of these samples. We report its performance using the following
preprocessing and hyperparameters:

• A standardization of the input samples.
• A single hidden layer of 200 units for both the encoder and the decoder.
• An encoding dimension in {16, 64}.
• The ReLU activation function for all the layers except the encoding and output. To
improve numerical stability, we adopt a similar strategy to Xu et al. [103], and derive
the standard deviations of encodings and outputs using softplus activations shifted
by a small constant ϵ set to 1e−4.

• A mini-batch size B = 32.
• A number of samples drawn of 256 to derive the anomaly score of a test example.

The Dense DSVDD method trains a fully-connected neural network to map the input
data to a latent representation enclosed in a small hypersphere, and then defines anomaly
scores of test samples as their squared distance from this hypershere’s centroid. We use the
implementation of Ruff et al. [62] with the “One-Class Deep SVDD” objective (assuming
most of the training data is normal) and their initialization of the encoder weights from
a pretrained autoencoder model. We report the performance of Dense DVSDD with
the following preprocessing and hyperparameters (using the same values as the original
implementation for those not mentioned):

• A standardization of the input samples (we also tried the original paper’s strategy of
normalizing the inputs and using a sigmoid activation function for the output layer,
but this did not lead to a better performance).

69

• A single hidden layer of 200 units for the encoder and the decoder (with the decoder
only being used for pretraining).

• An encoding dimension in {16, 64}.
• The Leaky ReLU activation function with a negative slope coefficient α = 0.01 for
all the layers except the encoding and decoder output (like in the original implemen-
tation).

• A mini-batch size B = 200 (like in the original implementation).
• A pretraining phase of 150 epochs, followed by a training phase of 150 epochs (which
makes the same total number of 300 epochs as the other methods).

• The same learning rate and optimization strategy for the pretraining and training
phases.

• The same grid of learning rate values as the other methods, but dividing the learning
rate by 10 after 50 epochs (like in the original implementation). Larger learning rate
values were also tried due to this scheduling, but did not produce better results.

• A weight decay coefficient of 1e−6 (like in the original implementation).

4.4.3 Sequence Modeling Methods

Sequence modeling methods model wider windows of data records (L = 20 here), which
offers them the capacity of explicitly considering the temporal aspect of the data. We
include the following sequence modeling methods in our study:

• Recurrent Autoencoder [52, 53] (Rec AE) and TranAD [14] as reconstruction
methods.

• LSTM-AD [49] as a forecasting method.
• Recurrent Deep SVDD [54] (Rec DSVDD) as an encoding method. We also tried
to include the more recent encoding method DCDetector [55], but did not retain it
due to its poor performance on our dataset.

• Recurrent VAE (Rec VAE) as a distribution method.

Rec AE uses the same modeling and scoring strategy as Dense AE, with the fully-
connected neural network architecture replaced by a recurrent one. Figure 4.8 illustrates
the general form we adopted for our recurrent autoencoders, including 1D convolutional
and recurrent layers. In this design, the encoder first consists of an optional stack of 1D
convolutional layers, which in this example contains a single layer labeled Conv1D(32, 5, s),
to indicate it has 32 filters of size 5 and a stride length hyperparameter s. These layers
result in a new latent window length L′ ≤ L for an input window, with one feature map
per filter in the last layer. These feature maps get sent to an optional stack of GRU layers,
here shown as a single layer labeled GRU(64,Last), to indicate it has 64 units and returns
its outputs for the last time step only. These layers are followed by a fully-connected layer
that outputs the final encoding. This encoding is provided as input to the decoder, which
repeats it L′ times to match the window length of the data after the 1D convolutions. This
repeated vector goes through a stack of GRU layers typically defined symmetrically to the
encoder’s, except it now returns its outputs for each of the L′ time steps. These outputs
finally get passed to a stack of 1D transposed convolutional layers defined symmetrically
to the encoder’s 1D convolutional layer stack, except for the output layer using M filters to
match the input dimensionality. We report the performance of Rec AE using the following
preprocessing and hyperparameters:

• A standardization of the input samples.
• An encoder with a 1D convolutional layer using 32 filters of size 5, a stride length of
1 and the ReLU activation function, followed by a GRU layer of 64 units using the

70

Figure 4.8: General form of our recurrent autoencoder architectures.

hyperbolic tangent (tanh) activation function, and a fully-connected layer to output
the encoding.

• A decoder defined symmetrically to the encoder as per the design of Figure 4.8.
• An encoding dimension in {64, 128}, with the ReLU activation function for the
encoding layer.

• A mini-batch size B = 32.

TranAD uses a transformer-based model with self-conditioning, an adversarial training
procedure and model-agnostic meta learning (MAML). It relies on two encoder-decoder
networks, with the first encoder considering the current input window, and the second one
considering a larger context of past data in the window’s sequence. The method defines the
anomaly score of an input window as the average of its reconstruction errors coming from
two decoders and inference phases, with the second phase using the reconstruction error
from the first phase as a focus score to detect anomalies at a finer level. Compared to the
other methods considered, TranAD therefore considers training windows augmented with
their past sequence data, which prevented us from applying the simple window balancing
strategy described in Section 4.2.5. We report the performance of TranAD using the
implementation of Tuli et al. [14], only specifying manually the following preprocessing
and hyperparameters:

• A normalization of the input samples (like in the original implementation). We also
tried the strategy of standardizing the inputs and using no activation function for the
output layer (like the other methods), but this did not lead to a better performance.

• A number of encoder hidden units in {64, 128}.
• The same grid of learning rate values as the other methods, but multiplying the
learning rate by 0.9 every 5 epochs (like in the original implementation). Larger
learning rate values were also tried due to this scheduling, but did not produce
better results.

• A mini-batch size B = 128 (like in the original implementation).
• A weight decay coefficient of 1e−5 (like in the original implementation).

LSTM-AD trains a stacked LSTM network to predict the next l data records from the
first L−l of a window. Originally designed for univariate time series, this method produces
an l-dimensional vector of forecasting errors for each data record in a test sequence, with
one component for each position held by this record in forecast windows of length l. The
method then fits a multivariate Gaussian distribution to the error vectors it produced
in a validation set, and defines the anomaly score of a test record as the negative log-
likelihood of its error with respect to this distribution. In this work, we adapt LSTM-
AD to multivariate data by considering the l × M matrix of forecasting errors made

71

for a data record at each time step and feature, and averaging these errors across the
feature dimension to get the l-dimensional vector of the original method. We report the
performance of LSTM-AD using the following hyperparameters:

• A standardization of the input samples.
• A forecast window length l = 10 (i.e., half of our window length L = 20).
• A version with a single LSTM layer of 128 units, and a version with two LSTM
layers of 128 units each, all using the tanh activation function.

• A mini-batch size B = 32.

Rec VAE uses the same modeling and scoring strategy as Dense VAE, with the fully-
connected neural network architecture replaced by a recurrent one following the design of
Figure 4.8. We report the performance of Rec VAE using the following preprocessing and
hyperparameters:

• A standardization of the input samples.
• An encoder with a 1D convolutional layer using 32 filters of size 5, a stride length
of 1 and the ReLU activation function, followed by a GRU layer of 64 units using
the tanh activation function, and a fully-connected layer to output the encoding
parameters.

• A decoder defined symmetrically to the encoder as per the design of Figure 4.8.
• An encoding dimension in {64, 128}.
• The same strategy as Dense VAE for deriving the encoding and output standard
deviations.

• A mini-batch size B = 32.
• A number of samples drawn of 256 to derive the anomaly score of a test example.

Rec DSVDD uses the same modeling and scoring strategy as Dense DSVDD, with the
fully-connected neural network architecture replaced by a recurrent one, adapting the
implementation of Ruff et al. [62] to match the design of Figure 4.8. We report the
performance of Rec DSVDD with the following preprocessing and hyperparameters (using
the same values as the original implementation for those not mentioned):

• A standardization of the input samples.
• An encoder with a 1D convolutional layer using 32 filters of size 5, a stride length
of 1, batch normalization and the Leaky ReLU activation function (with a negative
slope coefficient α = 0.01), followed by a GRU layer of 64 units and a fully-connected
layer to output the encoding.

• A pretraining decoder defined symmetrically to the encoder as per the design of
Figure 4.8.

• An encoding dimension in {64, 128}, with no activation function for the encoding
layer.

• A mini-batch size B = 200 (like in the original implementation).
• A pretraining phase of 150 epochs, followed by a training phase of 150 epochs.
• The same learning rate and optimization strategy for the pretraining and training
phases.

• The same grid of learning rate values as the other methods, but dividing the learning
rate by 10 after 50 epochs (like in the original implementation).

• A weight decay coefficient of 1e−6 (like in the original implementation).

4.5 Results and Analyses

This section presents and analyzes the results obtained with the unsupervised methods
introduced in Section 4.4, using the evaluation strategy of Section 4.2.6. We start by

72

Figure 4.9: Box plots of peak F1-scores achieved by each unsupervised method, separated
by modeling strategy (point vs. sequence) and colored by method category.

describing the format in which the results are presented. We then derive our 15 conclusions,
labeled C1-15, regarding the (i) difficulty of detecting the different event types in test
data, (ii) performance within and across point and sequence modeling methods, and (iii)
limitations of the best-performing methods in addressing the dataset’s challenges.

4.5.1 Format of Results

Figure 4.9 shows the box plots of the peak F1-scores achieved by each unsupervised method
across their hyperparameter values. It separates point from sequence modeling methods
in two different subplots with a shared y-axis, with boxes colored based on the method
category.

Table 4.1 considers the methods with their best-performing hyperparameter values (i.e.,
that yielded the maximum peak F1-score in Figure 4.9), and reports the average peak
F1-score they obtained within each test trace for each type of event. For example, con-
sidering three traces A, B and C, with only traces A and C containing T1 events, we would
compute the maximum possible F1-score for the method’s anomaly scores in traces A and
C separately, as the harmonic mean of Precision and T1 Recall (e.g., getting 0.65 for trace
A and 0.45 for trace C). We would then report the average of these two F1-scores as the
method’s Tr-T1 value in Table 4.1 (0.55 in our example). We consider such metrics to
study the ability of each method to detect different types of events, when partly factoring
out the challenge of the normal behaviors shift across traces.

4.5.2 Difficulty of Event Types

Considering the Average row of Table 4.1, the easiest types of events to detect across
the methods appear to be T1 (Bursty Input), T2 (Bursty Input Until Crash) and T5
(Driver Failure) (C1). This observation is consistent with our discussion of Section 4.3,
indicating that T1 and T2 events induce contextual anomalies for a lot of features within a
trace, with T2 events being “easier” versions of T1 events. As such, we expect most of the
poor performance for these types of events to be due to the distribution shift across traces,
whose effects were partly factored out in Table 4.1. Obtaining a good performance for T5
events throughout the methods was also expected, as those events lead to pronounced point
anomalies for the counter features. In addition to the high average performance, we can
see the top-three F1-scores achieved for these event types (shown in bold in Table 4.1) are
almost perfect. This reflects an ability of the corresponding methods to perfectly separate
these types of events from normal data within the test traces.

The hardest types of events to detect appear to be T3 (Stalled Input), T4 (CPU
Contention) and T6 (Executor Failure) (C2). This is again consistent with our discussion

73

Method Tr-T1 Tr-T2 Tr-T3 Tr-T4 Tr-T5 Tr-T6

iForest [58] 0.81 0.95 0.29 0.54 0.68 0.45

PCA [56] 0.79 0.96 0.23 0.68 0.84 0.49

Dense AE [52, 53] 0.92 0.96 0.67 0.72 0.93 0.54

Maha [56, 51] 0.82 0.93 0.39 0.57 0.97 0.48

Dense VAE [57] 0.51 0.89 0.61 0.55 0.87 0.43

Dense DSVDD [54] 0.97 0.96 0.58 0.46 0.91 0.52

Point Average 0.80 0.94 0.46 0.59 0.87 0.49

Rec AE [52, 53] 0.89 0.97 0.43 0.77 0.95 0.51

TranAD [14] 0.97 0.99 0.78 0.51 0.97 0.48

LSTM-AD[49] 0.95 0.90 0.77 0.63 0.67 0.51

Rec VAE [57] 0.36 0.74 0.80 0.38 0.59 0.44

Rec DSVDD [54] 0.79 0.99 0.55 0.72 0.90 0.65

Sequence Average 0.79 0.92 0.67 0.60 0.82 0.52

Average 0.80 0.93 0.58 0.60 0.86 0.51

Table 4.1: Peak F1-scores achieved by the best-performing unsupervised methods for each
event type within a trace (averaged across test traces), with the top-three F1-
scores for each event type shown in bold.

of Section 4.3, with T3 events being more “subtle” than T1 events (in that they do not
induce any delays for the application), as well as T4 and T6 including subtypes with
even more subtle impacts on the recorded features. Looking at the top-three F1-scores
for each type, we can see that T6 events were by far the most challenging type to detect
for our methods (even within a given trace). A likely reason of this poorer performance
is the averaging of “active executor” features we performed in our feature engineering,
which made executor failures far more subtle to detect given our feature set. However,
the maximum F1-score of 0.65 achieved by Rec DSVDD seems to indicate that a better
detection of T6 events can still be achieved through modeling only, without altering our
feature engineering procedure.

4.5.3 Point Modeling Methods

Looking back at the performance across all test traces in Figure 4.9, and focusing on point
modeling methods only, we can see that the reconstruction methods performed the
best, while the distribution methods performed the worst (C3). Among reconstruction
methods, the deep method (Dense AE) outperformed the shallow one (PCA), while the
shallow method (Maha) outperformed the deep one (Dense VAE) among distribution
methods (C4).

These two observations can be linked to the distribution shift challenge described in
Section 4.3. To illustrate this, we show in Figure 4.10 the KDE plots of the anomaly
scores assigned by the point modeling reconstruction and distribution methods to the
training normal, test normal and test anomalous records1. On these plots, the separation
between the anomaly scores assigned to the test normal and test anomalous records (i.e.,
between the blue and red KDEs) directly relates to anomaly detection performance of a
method, while the overlap between the scores of training normal and test normal records
(i.e., green and blue KDEs) reflects its “robustness” to the distribution shift from training
to test data.

1The x-axes being shown in log scale, the anomaly scores of the methods that produced negative values
were further shifted so as to get a minimum value of 1 before applying the logarithm function.

74

(a) PCA (shallow reconstruction method). (b) Dense AE (deep reconstruction method).

(c) Maha (shallow distribution method). (d) Dense VAE (deep distribution method).

Figure 4.10: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by re-
construction and distribution methods to training normal, test normal and
test anomalous records.

Comparing Figures 4.10c to 4.10a and 4.10d to 4.10b, respectively, we can see that dis-
tribution methods, by modeling the training distribution more explicitly, tend to produce
more similar anomaly scores across the training normal records (i.e., tighter green KDEs).
However, this tighter modeling of the training distribution also makes these methods more
sensitive to the distribution shift from training to test data. This makes them view test
normal and test anomalous records as “similarly anomalous” (i.e., high overlap between
the blue and red KDEs), which hinders their test anomaly detection performance.

Comparing now Figures 4.10b to 4.10a and 4.10d to 4.10c, respectively, we can see
that the deep methods achieved a better separation between the training normal and test
anomalous records (green and red KDEs) than the shallow methods, but also between the
training normal and test normal records (green and blue KDEs). Given our large data
cardinality, the deep methods can indeed model the training data at a finer level than the
shallow ones. For distribution methods, the benefit of better separating anomalies from
the training normal records (red vs. green) is however counterbalanced by an increased
sensitivity to the distribution shift, and thus worse separation of anomalies from the test
normal records (red vs. blue).

Finally, considering the point modeling methods in Table 4.1, we can see that all the
deep learning methods significantly outperformed all the shallow methods for T3 (Stalled
Input) events (C5). As described in Section 4.3, a key property of Exathlon’s dataset (and
our feature engineering) is that a single instance of anomalous event could typically induce
a variety of anomaly types for the features, making its information redundant in different
forms throughout our feature set. This redundancy is especially prevalent for T3 events,
which are reflected as point, contextual and collective anomalies at once. From Table 4.1,
it appears that the higher capacity of the deep methods can help them discover (some)
non-collective anomaly signals from the features more easily than the shallow methods,
which makes them perform decently for T3 events despite using a point modeling strategy.

4.5.4 Sequence Modeling Methods

Considering sequence modeling methods in Figure 4.9, we can see that the distribution
method (Rec VAE) is again the worst-performing one (C6). This can be explained sim-
ilarly to C3, with Rec VAE separating well the test anomalies from the normal training
data (almost perfect red vs. green KDE separation in Figure 4.11), but also deeming

75

Figure 4.11: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by Rec
VAE to training normal, test normal and test anomalous records.

anomalous a large part of the shifting test records (poor red vs. blue KDE separation in
Figure 4.11).

Apart from a vulnerability to the distribution shift challenge of Exathlon’s dataset,
the Precision of a method can also be hindered by its failure to integrate noise into its
learned normal behavior. Figure 4.12 shows time plots of the anomaly scores produced
by the Rec AE, Rec DSVDD, LSTM-AD and TranAD methods for the records in trace
2 1 100000 60, highlighting their peak F1-score thresholds and the ground-truth anomaly
ranges. From this figure, we can see that LSTM-AD and TranAD were the most robust to
the “noisy”, minority patterns present in test data, producing much less anomaly scores
above their threshold value outside the real anomaly ranges (C7). LSTM-AD being robust
to noise is consistent with the study of Schmidl et al. [19], and could be explained by this
method assigning anomaly scores from a distribution of forecasting error vectors rather
than from forecasting errors directly. This result is also expected for the TranAD method,
which, by using a larger context of past data windows than the other methods to derive its
anomaly scores, tends to be more robust to the less-sustained deviations from normality
represented by noise.

4.5.5 Point vs. Sequence Modeling

Considering Figure 4.9 again, we can see that both the best “maximum” and “median”
performances were achieved by sequence modeling methods (C8), with maximum F1-
scores of 0.66, 0.66 and 0.65 for TranAD, Rec DSVDD and LSTM-AD, respectively, and
median F1-scores of 0.65, 0.62 and 0.61 for TranAD, LSTM-AD and Rec DSVDD, respec-
tively. This advantage over point modeling methods is significant except for the Dense AE
method, which could achieve a maximum F1-score of 0.65 and median F1-score of 0.61.
This smaller difference with Dense AE can partly be explained by the redundancy property
of our dataset and feature engineering described in Section 4.5.3, making it possible to
detect a large part of events using point modeling only, provided the method has enough
capacity to find deviating point or contextual anomalies in the features. As shown in
Figure 4.9, however, although detecting such events is partly possible with point modeling
methods, it is in general harder to achieve than with sequence modeling methods, which
perform better on average (C9).

As shown in Table 4.1, the better performance of sequence modeling methods was mainly
due to a significantly better detection of T3 (Stalled Input) events within traces (with an
average F1-score of 0.67 across the sequence modeling methods vs. 0.46 across the point
modeling methods) (C10). This is consistent with our description of Section 4.3, and T3
events tending to induce more collective anomalous patterns in the features than the other
event types.

Still from Table 4.1, we can see that sequence modeling methods however performed
worse than the point modeling ones for T5 (Driver Failure) events within traces (with an

76

(a) Anomaly scores of Rec AE.

(b) Anomaly scores of Rec DSVDD.

(c) Anomaly scores of LSTM-AD.

(d) Anomaly scores of TranAD.

Figure 4.12: Time plots of the anomaly scores of Rec AE, Rec DSVDD, LSTM-AD and
TranAD for the records in trace 2 1 100000 60 (Bursty Input), highlighting
their peak F1-score thresholds and the ground-truth anomaly ranges.

77

average F1-score of 0.82 across the sequence modeling methods vs. 0.87 across the point
modeling methods) (C11). This difference in performance is less significant than for T3
events, but is again relatively expected, since T5 events correspond to the shortest, most
“point-based” anomalies in the data. As such, they induce anomalous signals that are
easily identifiable using point modeling, but more susceptible of “fading” within the larger
contexts of mostly-normal windows used by sequence modeling methods.

4.5.6 Limitations of Best-Performing Methods

As mentioned in Section 4.5.5, the best-performing methods in our study were TranAD,
Rec DSVDD and LSTM-AD. In particular, TranAD achieved the highest “maximum”
and “median” peak F1-scores (0.66 and 0.65, respectively), as well as a good general
separation of the different event types within test traces (with four out of six F1-scores in
the top-three for their event type in Table 4.1). This overall performance however remains
relatively low, with even the most effective methods showing limitations to address some
AIOps challenges of the Exathlon dataset.

The first factor hindering performance relates to the concept of false negatives and
Recall, with methods assigning anomaly scores that are too small for some anomalous
records in test data. This pertains to our discussion of Section 4.5.2 about the “hardest”
event types to detect, and can be associated with the AIOps challenge of identifying
anomaly signals for the hardest T4 (CPU Contention) and T6 (Executor Failure) events
from a high-dimensional feature set (C12). As we will see in Chapter 6, an effective
solution to partly address this challenge is to augment the training data with a few labeled
records for these types of events.

The second factor relates to the concept of false positives and Precision, with meth-
ods assigning anomaly scores that are too large for some normal records in test data. This
pertains to many observations from our study, and can be associated with the following
AIOps challenges:

• Being resilient to the shift in normal behaviors that can occur from the training to
the test data (C13).

• Properly integrating “noisy”, minority patterns as part of the learned normal behav-
ior (C14). Although less impactful than the first challenge on the final performance,
this challenge remains important to address in practice to avoid repeated false alarms
by the detection system.

Throughout this study, this first challenge emerged as the main impediment to optimal
performance, and will be our main focus in the rest of this work. Figure 4.13 further
illustrates it for our best-performing baseline, TranAD, by showing the ridgeline plot of
its anomaly scores for the records of each type within the 23 test traces. Specifically, this
figure shows a row per test trace, with a given KDE plot corresponding to the distribution
of the anomaly scores assigned by the method to the records of a particular type only (i.e.,
either records within “normal” ranges, or within ranges of a specific type of event from T1
to T6), also highlighting in red its peak F1-score threshold. As we can see from this figure,
although TranAD can separate most of the anomalies from the normal data within a given
trace, the misalignment of the anomaly scores it assigned to normal records in different
traces prevents it from achieving an optimal detection using a single, global threshold. As
an example, we can see that the normal and anomalous records in traces 1 2 100000 68

and 1 5 1000000 86 are quite well separated. However, most of the anomaly scores as-
signed to the normal records in trace 1 2 100000 68 are (i) above the optimal threshold
(which makes them false positives), but also (ii) similar to a lot of anomaly scores assigned
to T6 anomalies in trace 1 5 1000000 86. In other terms, although the model recognizes

78

that the normal data in trace 1 2 100000 68 is “less abnormal” than the anomalies of this
same trace, it also perceives it as “similarly abnormal” to some anomalies in the other
context of trace 1 5 1000000 86.

Figure 4.13: Ridgeline plot of TranAD’s anomaly scores for the records of each type (i.e.,
in “normal” and T1 to T6 ranges) in each test trace, with its peak F1-score
threshold highlighted in red.

Figure 4.14 shows a similar ridgeline plot for the Rec DSVDD method. As we can
see, Rec DSVDD appears more resilient to the normal behavior shift, showing a better
alignment for the anomaly scores it assigned to normal records in different test traces.
Because the objective of Deep SVDD is to learn a mapping from the input space to a
compact latent hypersphere, this method tends to enforce a similar representation of its
input samples no matter the context they come from, which benefits context generalization
(C15). We will further discuss and leverage this implicit generalization property in Chap-

79

ter 6, demonstrating its advantage over a less-constrained encoding strategy. We however
note that the implicit nature of Rec DSVDD’s generalization makes it imperfect to address
the normal behavior shift challenge. This is for instance illustrated by the lower anomaly
scores assigned in traces 5 1 100000 63, 5 1 100000 64 and 5 1 500000 62, showing the
contexts of these traces were deemed less anomalous than others by Rec DSVDD, which
led it to miss T1 events when using its optimal global threshold.

Figure 4.14: Ridgeline plot of Rec DSVDD’s anomaly scores for the records of each type
(i.e., in “normal” and T1 to T6 ranges) in each test trace, with its peak F1-
score threshold highlighted in red.

Limitations of TranAD to address the second challenge are illustrated in Figure 4.15,
showing the time plot of its anomaly scores in the (Stalled Input) trace 6 3 200000 76,
whose first half contains a particularly high level of noise. This figure shows that, al-
though TranAD was found more robust to noise than alternative baselines (see C7), it

80

Figure 4.15: Time plot of TranAD’s anomaly scores in trace 6 3 200000 76, highlighting
its peak F1-score threshold and the ground-truth anomaly ranges.

is still limited in differentiating heavier and more sustained noisy patterns from the rele-
vant anomalies in test data. This is a recurrent shortcoming of expressive unsupervised
methods, caused by their lack of prior knowledge about the deviating patterns that are
relevant to the analysts (the labeled event types in our case), as opposed to other main-
tained abnormal behaviors (defined as noise here, since they simply hinder the analysis).
For this reason, our main method for addressing this challenge will be through the weakly-
supervised learning framework of Chapter 6.

4.6 Summary and Conclusions

In this chapter, we conducted an experimental study of representative unsupervised anom-
aly detection methods against the Exathlon benchmark and dataset. We started by for-
malizing the problem statement considered and describing our experimental setup. We
then discussed the characteristics of the Exathlon dataset in more detail, highlighting the
relationships between its different event types and the anomaly types commonly defined for
time series in the literature. This discussion revealed some key properties of this dataset,
such as the prevalence of anomalies that are contextual to the trace characteristics,
conditioning the behavior of data records in a trace and defined as the combination of
the recorded entity (the Spark Streaming application) and context (the Spark settings
and data sender input rate used). Using this terminology, we saw that the variety and
shift in normal behaviors observed in our experimental setup could be explained by a
variety in trace characteristics and a shift in context, respectively. Besides this prevalence
of contextual anomalies, our discussion also revealed that a same anomalous event could
induce an important redundancy of the anomaly signal across the features, with point
and collective anomalies also being represented, especially for T3 (Stalled Input) events.
After introducing the unsupervised methods compared, we finally presented the results
and main analyses of our study, which led to 15 conclusions, summarized, reorganized
and grouped by similarity below:

• C3, C4, C6, C13, C15. Reconstruction methods performed the best, while dis-
tribution methods performed the worst both within point and sequence modeling
methods. The use of deep learning was beneficial among point reconstruction meth-
ods, while it degraded performance for point distribution methods. In general, the
more a method precisely and explicitly models the training data, the less we can
expect it to address our normal behavior shift challenge. This explains why dis-
tribution methods performed the worst, and why the coarser density estimation of
the shallow distribution method was beneficial. Across all the methods, this AIOps
challenge of normal behavior shift was identified as the main impediment to opti-
mal performance, with only Deep SVDD addressing it to some extent through the

81

generalization implicitly induced by its learning objective.
• C8. Both the best “maximum” and “median” performances were achieved by se-
quence modeling methods, showing a significant advantage over all point modeling
methods except Dense AE.

• C1. Within test traces, the easiest types of events to detect across the methods were
T1 (Bursty Input), T2 (Bursty Input Until Crash) and T5 (Driver Failure), due to
their significant impact on the features, mainly in the form of contextual anomalies.

• C2, C12. Within test traces, the hardest types of events to detect were T3 (Stalled
Input), T4 (CPU Contention) and T6 (Executor Failure), due to their more subtle
impact on the features. For T4 and T6, this difficulty of detection can be linked to
the AIOps challenge of identifying anomaly signals for the hardest event types from
a high-dimensional feature set .

• C5. Within test traces, all deep learning methods significantly outperformed all
shallow methods in detecting T3 (Stalled Input) events. This mainly relates to the
redundancy of anomaly signals in the Exathlon dataset, with deep learning methods
being able to detect T3 events efficiently, be it from collective anomalies or not.

• C9, C10. Within test traces, sequence modeling methods outperformed point mod-
eling methods for T3 (Stalled Input) events. Although detecting such events is
(partly) possible for point modeling methods (due to the redundancy in anomaly
signals), it is in general harder to achieve for them than for sequence modeling
methods, which can rely on the significant collective component of T3 events to
detect them.

• C11. Within test traces, point modeling methods outperformed sequence modeling
methods for T5 (Driver Failure) events, due to their shorter and more “point-based”
nature than the other event types.

• C7, C14. LSTM-AD and TranAD were found to be the most “robust” to the noise
encountered in test data, producing much less anomaly scores above their optimal
threshold outside the real anomaly ranges. These methods however remain limited in
their ability to differentiate heavier, more sustained noisy patterns from our relevant
events, an AIOps challenge that is important to address in practice for preventing
repeated false alarms by the detection system.

In particular, this study revealed three main limitations for the unsupervised methods
compared, listed below in decreasing order of impact on the AD performance:

• L1. A vulnerability to normal behavior shift from training to test data, with different
contexts of normal operation for the Spark Streaming applications being considered
differently abnormal by the methods.

• L2. A production of false negatives for the hardest anomalies given our large number
of features .

• L3. A production of false positives for normal but “noisy”, minority patterns in test
data.

In the next chapter, we will focus on explicitly formalizing and addressing L1, consis-
tently identified as the main impediment to optimal performance by this study, relying on
the framework of domain generalization.

82

5 Explicit Domain Generalization

The experimental study conducted in the last chapter consistently identified (L1) the
vulnerability to normal behavior shift from training to test data as the main limitation
of the baseline unsupervised methods. In this chapter, we start by formally characteriz-
ing its associated challenge, relating it in Section 5.1 to the general concept of domain
shift [20, 21]. In Section 5.2, we propose Domain-Invariant VAE for Anomaly Detec-
tion, or DIVAD, a domain generalization method decomposing the observed variable
into domain-specific and domain-invariant encodings, and defining anomalies as samples
that deviate from the training distribution of domain-invariant encodings only. We apply
this method to our experimental setup in Section 5.3, demonstrating its superiority over
the unsupervised baselines to address normal behavior shift and thus detect anomalies.
Our experiments also analyze and compare different variants of DIVAD, in terms of (i)
modeling strategy (point vs. sequence), (ii) type of prior distribution used (fixed Gaus-
sian vs. learned Gaussian Mixture) and (iii) anomaly scoring strategy (based on prior
vs. aggregated posterior). Like in the last chapter, we highlight the 14 conclusions drawn
from these experiments as C1-14. Finally, Section 5.4 applies our DIVAD framework to
the Application Server Dataset (ASD), showing that its explicit domain generalization is
more broadly applicable beyond our Spark Streaming dataset.

5.1 Anomaly Detection under Domain Shift

This section formally characterizes the problem of anomaly detection under domain shift,
as well as the domain generalization framework we adopt to address it.

One of the first adopted definitions of an anomaly was proposed by Douglas M. Hawkins
in 1980, describing it as “an observation which deviates so much from the other obser-
vations as to arouse suspicions that it was generated by a different mechanism” [118].
This definition naturally suggests addressing the problem of Section 4.1 from a generative
perspective, where we assume the labeled windows from Dtrain and Dtest, resulting from
the data windowing step described in Section 3.3.3, were all generated from a distribution
pdata(x, y)

1, with normal windows generated from pdata(x|y = 0). In anomaly detection,
our general goal then translates to constructing a model pθ(x) of pdata(x|y = 0), parame-
terized by θ ∈ Θ. This yields a natural definition for the anomaly score of a test sample,
as its negative log-likelihood with respect to this model:

gW (x;θ) := − log pθ(x = x)

Since normal samples from the training and test sets are assumed generated from pdata(x|y =
0) ≈ pθ(x), we would indeed expect them to have a higher likelihood under this model
than anomalous windows, generated from pdata(x|y = 1) ̸= pθ(x).

A specificity of our AIOps use case, however, is that the distribution generating an
observed sample can not only be conditioned on its class, but also on the specific sequence
this sample was extracted from. In particular, each sequence corresponds to a context that
impacts the distribution of observed data, even for a same entity being recorded. These

1To simplify the notation, we use x and y to refer to an input window and its corresponding label in the
following chapters, instead of X and ỹ used in Section 3.3.3.

83

x

d y

Figure 5.1: Generative model: the observed variable x depends on its domain d and latent
(i.e., unobserved) class y.

contexts can be included in our generative model, by assuming the selection of a sequence
i corresponds to the realization di of a discrete random variable d ∼ pdata(d) with infinite
support2. In this setting, the samples of class c ∈ {0, 1} from sequence i:

{x
(i)
t | y

(i)
t = c}Tt=L =: {(xc)

(i)
t }T

(i)
c

t=1 ,

can be seen as independently drawn from a sequence-induced, or domain distribution:

pi(x|y = c) = pdata(x|y = c, d = di).

This formulation amounts to assuming the distribution of x is conditioned on the two
independent variables d and y, the former determining the domain the sample originates
from, and the latter determining whether the sample is normal or anomalous. We illustrate
the corresponding generative model of the data in Figure 5.1. Under this model, the data-
generating distribution of normal samples can be expressed as the countable mixture of
all possible domain distributions:

pdata(x|y = 0) =
∞
∑

d=1

pdata(x|y = 0, d = d)pdata(d = d).

Definition 1 (Domain Shift Challenge) Directly applying traditional generative meth-
ods in an unsupervised setting amounts to making pθ(x) estimate the data-generating dis-
tribution of the normal training samples:

ptrain(x|y = 0) =
1

N1

N1
∑

i=1

pdata(x|y = 0, d = di),

with di’s fixed and all samples equally-likely to come from every sequence i. Given the
infinitude of possible domains, this distribution is likely to differ from the data-generating
distribution of the normal test samples:

ptest(x|y = 0) =
1

N2

N1+N2
∑

i=N1+1

pdata(x|y = 0, d = di),

with {di}
N1
i=1 ̸= {di}

N1+N2
i=N1+1. This mismatch induces a domain shift challenge, characterized

by test normal samples x0 ∼ ptest(x|y = 0) and test anomalies x1 ∼ ptest(x|y = 1) being
both unlikely in uncontrollable ways under pθ(x) ≈ ptrain(x|y = 0), which hinders anomaly
detection performance.

2We use di (as opposed to i) to reflect the fact that multiple sequences can correspond to the same
context, and thus domain value d (i.e., we can have di = dj for i ̸= j).

84

5.1.1 Domain Generalization Framework

A suitable framework to address this domain shift challenge is domain generalization [20,
21]. In this framework, the domains sampled for training are referred to as source domains,
while those sampled at test time are called target domains.

Definition 2 (Anomaly Detection with Domain Generalization) Our problem can
be framed as building an anomaly detection model from the source domains that gener-
alizes to the target domains. We do so by assuming that the observed variable x can be
mapped via fy to a latent representation zy, whose distribution is (i) discriminative with
respect to the class y (i.e., normal vs. anomalous) and (ii) independent from the domain
d. Our goal can be formulated as:

• Finding such a mapping fy(x) = zy;
• Constructing pθ(x) to estimate ptrain(fy(x)|y = 0) instead of ptrain(x|y = 0).

Since fy(x) = zy is independent from d, we then have:

ptrain(zy|y = 0) =
1

N1

N1
∑

i=1

p(zy|y = 0, d = di)

ptrain(zy|y = 0) = p(zy|y = 0) = ptest(zy|y = 0),

which means that, under pθ(x) ≈ ptrain(zy|y = 0) = ptest(zy|y = 0), the normal test
samples x0 should be more likely than the test anomalies x1, hence addressing
the domain shift challenge.

5.2 Domain-Invariant VAE for Anomaly Detection

This section introduces our new approach to anomaly detection under domain shift. At
a high level, its central assumption is that anomalies should have a sensible impact on
the properties of the input samples that are invariant with respect to the domain. In an
AIOps scenario, this means that, although some aspects of a running process may vary
from domain to domain, others typically remain constant and characterize its “normal”
behavior. These domain-invariant, normal-specific characteristics can be seen as reflect-
ing whether the process functions properly, while domain-specific characteristics simply
manifest different modes of normal operation. Such “invariant” behaviors can for instance
relate to the Key Performance Indicators (KPIs) [9] of a process, which semantically re-
flect its well-functioning or overall health, and should therefore behave similarly across
different contexts.
To construct the mapping fy defined in Section 5.1.1, we propose Domain-Invariant VAE

for Anomaly Detection (DIVAD). This method relies on feature disentanglement [20, 21],
assuming that the observed variable x is caused by two independent latent factors zd and
zy, where zd is conditioned on the observed domain d, while zy is assumed independent
from it and can be used to detect anomalies in test samples. The corresponding generative
model is shown in Figure 5.2. Further, we assume this model is parameterized by model
parameters θ ∈ Θ, and that the “complex”, intractable, marginal likelihood pθ(x|d):

pθ(x|d) =

∫

pθ(x, zd, zy|d)dzddzy

pθ(x|d) =

∫

pθ(x|zy, zd)pθ(zd|d)p(zy)dzddzy,

can be constructed from “simpler”, tractable prior and likelihood distributions, whose
parameters can be complex functions of their inputs.

85

x

zyzd

d

Figure 5.2: Generative model: x is caused by independent domain-specific zd and domain-
independent zy. Constructing fy then amounts to inferring zy from x (dashed
arrow).

5.2.1 Model Training

To uncover the latent factors, and ultimately pθ(zy|x), our goal is to adjust the model
parameters to best fit the training data. To do so, we leverage amortized variational in-
ference using the reparameterization trick (i.e., consider a variational autoencoder (VAE)
framework [119, 120], as described in Appendix B). In this framework, we consider addi-
tional variational parameters φd,φy ∈ Φ, and optimize the evidence lower bound (ELBO)
with KL divergence terms weighted by a factor β [121, 71]:

LELBO(x, d;θyd,θd,φd,φy) = Eqφd
(zd|x)qφy

(zy |x)[log pθyd
(x|zd, zy)]

− βDKL(qφy
(zy|x)∥p(zy))− βDKL(qφd

(zd|x)∥pθd
(zd|d)), (5.1)

with:

pθyd
(x|zd, zy) = N (NNθyd

(zd, zy),NNθyd
(zd, zy))

pθd
(zd|d) = N (NNθd

(d),NNθd
(d))

qφy
(zy|x) = N (NNφy

(x),NNφy
(x))

qφd
(zd|x) = N (NNφd

(x),NNφd
(x))

where N (NNθ(·),NNθ(·)) denotes a multivariate Gaussian distribution whose mean and
variance are outputted by a neural network with parameters θ, and p(zy) is the zy prior,
used for anomaly scoring and further detailed in Section 5.2.2. The conditional prior
pθd

(zd|d) has the effect of making zd more dependent on d, by ensuring that signals from
d are incorporated into zd (and thus facilitating the classification of d given zd).

To further enforce this ease of classification, we add to maximum likelihood the following
domain discrimination objective:

Ld(x, d;φd,ωd) = Eqφd
(zd|x) log qωd

(d|zd),

with ωd ∈ Ω the domain discriminator parameters. In practice, this objective amounts
to training a domain discrimination head by minimizing the cross-entropy loss based on
the source domain labels. We finally perform gradient ascent on the overall maximization
objective:

L(x, d;θyd,θd,φd,φy,ωd) = LELBO(x, d;θyd,θd,φd,φy) + αdLd(x, d;φd,ωd),

86

with αd ∈ R a tradeoff hyperparameter balancing the maximum likelihood estimation of
the generative model and the domain discrimination. We do not share the parameters of
our encoder networks NNφy

and NNφd
, but instead consider a multi-encoder architecture.

DIVAD is similar in spirit to Domain-Invariant Variational Autoencoders (DIVA) [71],
proposed for image classification. Our problem setting of unsupervised anomaly detection
however leads to major differences from classification-based DIVA. First, by not relying on
training class labels, DIVAD fuses DIVA’s class-conditioned and residual latent factors zy
and zx into a single, unconditioned domain-invariant factor zy, considering a conditioning
and auxiliary classification objective only for the domain-specific factor zd. Second, rather
than relying on an explicit classifier on top of the class-specific factor zy, DIVAD derives
its anomaly scores from these factor’s training distribution, modeled with the flexibility
described in Sections 5.2.2 and 5.2.3.

5.2.2 Anomaly Scoring based on Prior

After training, we should have the variational posterior qϕy
(zy|x) approximate the model

posterior pθ(zy|x) (dashed arrow in Figure 5.2). We can therefore use this variational
posterior to construct our mapping fy:

zy = fy(x) ∼ qφy
(zy|x) ≈ pθ(zy|x).

The anomaly score gW (x) of a data sample x can then simply be defined as the negative
log-likelihood of fy(x) with respect to the prior p(zy):

gW (x) := − log p(zy = fy(x)) (5.2)

Indeed, maximizing Equation 5.1 on average on the training set amounts to maximizing
the regularization term of the ELBO with respect to zy:

Ωφy
:= −Eptrain(x)DKL(qφy

(zy|x)∥p(zy)),

which reads (from [122]):

Ωφy
= −Ep̂train(x)Eqφy

(zy |x)qφy
(zy|x) log

qφy
(zy|x)

p(zy)

=

∫ ∫

p̂train(x)qφy
(zy|x)(log p(zy)− log qφy

(zy|x))dxdzy

=

∫ ∫

1

Ntrain

Ntrain
∑

i=1

δ(x− xi)qφy
(zy|x)(log qφy

(log p(zy)− zy|x))dxdzy

Ωφy
=

∫

1

Ntrain

Ntrain
∑

i=1

qφy
(zy|xi) log p(zy)dzy −

∫

1

Ntrain

Ntrain
∑

i=1

qφy
(zy|xi) log qφy

(zy|xi)dzy,

with Ntrain the total number of training samples, and p̂train the empirical training distri-
bution. By considering:

qφy
(zy) =

1

Ntrain

Ntrain
∑

i=1

qφy
(zy|xi),

the marginal, or aggregated posterior [123, 124] (here the empirical distribution of
encoded, presumably domain-invariant, samples), we therefore have:

87

Ωφy
=

∫

qφy
(zy) log p(zy)dzy −

∫

1

Ntrain

Ntrain
∑

i=1

qφy
(zy|xi) log qφy

(zy|xi)dzy

Ωφy
= −H(qφy

(zy), p(zy)) +H(qφy
(zy|x)),

with H(qφy
(zy), p(zy)) the cross-entropy between the aggregated posterior and the prior,

and H(qφy
(zy|x)) the conditional entropy of qφy

(zy|x) with the empirical distribution
p̂train(x) [122].
As we can see, the maximization process of the ELBO has the effect of trying

to make the aggregated posterior qφy
(zy) match the prior p(zy), which a priori

motivates the choice above of using the prior to derive anomaly scores.

Fixed Standard Gaussian Prior

We first consider the default choice of prior for zy in a VAE framework, as a fixed standard
Gaussian distribution:

p(zy) = N (0, I),

and refer to the method that uses this zy prior and scores with Equation 5.2 as DIVAD-
G. A limitation of DIVAD-G is that, although the aggregated posterior and prior should
be brought closer when maximizing the ELBO, they usually do not end up matching in
practice at the end of training [124, 125]. This phenomenon is sometimes described as
“holes in the aggregated posterior”, referring to the regions of the latent space that have
high density under the prior but very low density under the aggregated posterior [126].

Learned Gaussian Mixture Prior

A method that has been shown to (at least partly) address the problem of aggregated
posterior holes is to replace the fixed zy prior with a learnable prior pλ(zy) [126, 122],
and hence have the maximization process update both the aggregated posterior and the
prior. If sufficiently expressive, the prior can serve as a good approximation q̂φy

(zy) of
the aggregated posterior at the end of training, which makes it safer to use for anomaly
scoring:

gW (x) := − log pλ(zy = fy(x)) (5.3)

In a way, considering a learnable prior amounts to explicitly performing a joint den-
sity estimation of the marginal likelihood and aggregated posterior. With sufficiently
expressive priors, this joint estimation also has the effect of putting less constraints on the
aggregated posterior, letting it capture normal clusters with more variance and arbitrary
shapes. This is particularly useful in our anomaly detection context, where the “normal”
class is an umbrella term for a variety of different normal behaviors (even for a same
monitored entity). In practice, any density estimator pλ(zy) can be used to model the
aggregated posterior. In this work, we consider a Gaussian Mixture (GM) distribution
with K components:

pλ(zy) =

K
∑

k=1

wkN (µk,σ
2
k),

with λ = {wk,µk,σ
2
k}

K
k=1 randomly initialized and trained along with the other param-

eters. We refer to the method that uses this zy prior and scores with Equation 5.3 as
DIVAD-GM.

88

5.2.3 Anomaly Scoring based on Aggregated Posterior Estimate

An alternative (or complementary) solution to the problem of aggregated posterior holes
is to perform the density estimation of the aggregated posterior q̂φy

(zy) separately, and
then define the anomaly score with respect to this estimate instead of the prior:

gW (x) := − log q̂ϕy
(zy = fy(x)) (5.4)

In the following experiments, we consider this alternative in addition to the prior-based
scoring for both DIVAD-G and DIVAD-GM. For DIVAD-G, the aggregated posterior is
performed by fitting a multivariate Gaussian distribution to the training samples in latent
space. For DIVAD-GM, it is performed by fitting to them a Gaussian Mixture model with
the same number of components K as the prior.

5.2.4 Putting It All Together

We illustrate the multi-encoder architecture of our DIVAD method in Figure 5.3, shown
here for the learned Gaussian Mixture prior detailed in Section 5.2.2. From this figure,
we can see that encoder networks NNφd

and NNφy
take the same sample x as input

to output the mean and variance parameters of multivariate Gaussians qφd
(zd|x) and

qφy
(zy|x), respectively. These parameters are first used to compute the KL divergence

terms of Equation 5.1, with the parameters of the conditional prior pθd
(zd|d) outputted

by a network NNθd
from the domain d of x, and the parameters of pλ(zy) learned as

described in Section 5.2.2. They are then used to sample the corresponding domain and
class encodings of x: zd and zy. These encodings, of same dimension M ′, are further
concatenated to form the input of the decoder network NNθyd

, outputting the parameters
of the multivariate Gaussian pθyd

(x|zd, zy), from which the likelihood (or reconstruction)
term of Equation 5.1 is computed. The bottom right of the figure finally shows the domain
discrimination head, NNωd

, which takes the domain encoding zd of x as input, and outputs
the parameters of the Categorical qωd

(d|zd), used to compute the domain discrimination
objective Ld.

5.3 Experiments

This section applies the DIVAD-G and DIVAD-GM methods introduced in Section 5.2
against the Exathlon benchmark and dataset. We use the experimental setup described in
Section 4.2, with the training windows balanced by domain instead of (application, Spark
settings, input rate) triplet. We start by defining the concept of domain in our experi-
mental setup, outlining our compared DIVAD variants and their grid of hyperparameter
values. We then present and analyze the results obtained, deriving 14 conclusions labeled
C1-14, mostly about the (i) effectiveness of the domain generalization performed and the
improvement it induced on the detection performance, the (ii) benefits and limitations of
point and sequence modeling methods and their ability to detect different event types,
and the (iii) effect the anomaly scoring strategy had on the performance according to the
DIVAD variant.

5.3.1 Compared Methods and Hyperparameters

In our experimental setup, we do not require the methods to generalize to new Spark
Streaming applications, but rather to the context the eight applications seen in training
were recorded in. For this reason, we simply define the domain of a trace as its context,
which, from Section 4.3, corresponds to the Spark settings and input rate used for its

89

Figure 5.3: Multi-encoder architecture of our DIVAD-GM models, with Ndom the number
of training domains (DIVAD-G models use a similar architecture, with the
learned Gaussian Mixture parameters replaced with fixed Gaussian parame-
ters).

application run. Using this definition, we obtain 22 source domains and 11 target
domains to consider for our DIVAD variants.
We adopt the same model training and selection strategy as described in Section 4.4.1

for both DIVAD-G and DIVAD-GM. For both variants, we use the same strategy as
Dense VAE and Rec VAE for deriving encoding and output standard deviations. We first
consider point modeling DIVAD methods (L = 1), using fully-connected neural network
architectures and referred to as Dense DIVAD-G and Dense DIVAD-GM, respec-
tively. We report the performance of Dense DIVAD-G using the following preprocessing
and hyperparameters:

• A standardization of the input samples.
• A single hidden layer of 200 units for the encoders NNφy

and NNφd
as well as for

the decoder NNθyd
.

• A single fully-connected hidden layer of 64 units for the conditional domain prior
network NNθd

.
• A ReLU activation function followed by a single fully-connected layer of Ndom = 22
units (i.e., one per source domain) for the classification head NNωd

. The domain
encoding zd is indeed sampled unbounded from qφd

(zd|x), so we pass it through
a ReLU activation before applying the output layer. The classification head was
intentionally kept simple, so as to be able to easily classify the domain from zd.

• The ReLU activation function for all the layers except the encoding and output
layers.

• An encoding dimension in {16, 64}.
• A fixed KL divergence weight β ∈ {1, 5}. We also tried using the linear scheduling
strategy of DIVA [71], but this did not lead to a better performance.

90

• A domain classification weight αd = 100, 000. We set this weight based on the scale
we observed for our losses LELBO and Ld during training in some initial experiments.
We also tried different weight values, as well as the CoV-Weighting strategy proposed
by Groenendijk et al. [127] to automatically balance these two losses, but this did
not lead to a better performance.

• A mini-batch size B = 128.
• An anomaly scoring based on the class encoding aggregated posterior estimate
q̂φy

(zy), fitting a multivariate Gaussian distribution to the training class encodings.

We report the performance of Dense DIVAD-GM using the following preprocessing and
hyperparameters:

• A standardization of the input samples.
• The same architectures as Dense DIVAD-G for the networks NNφy

, NNφd
, NNθyd

,
NNθd

and NNωd
.

• An encoding dimension in {16, 32}, with K = 8 Gaussian Mixture components when
using an encoding dimension of 16, and K = 4 components when using an encoding
dimension of 32.

• A fixed KL divergence weight β ∈ {1, 5}.
• A domain classification weight αd = 100, 000.
• A mini-batch size B = 128.
• An anomaly scoring based on (i) the learned class encoding prior pλ(zy), and (ii)
the class encoding aggregated posterior estimate q̂φy

(zy), fitting a Gaussian Mixture
distribution with K components to the training class encodings.

We also consider sequence modeling DIVAD methods (L = 20 here), with some fully-
connected neural network architectures replaced by recurrent ones based on the design of
Figure 4.8, referred to asRec DIVAD-G andRec DIVAD-GM, respectively. We report
the performance of Rec DIVAD-G using the following preprocessing and hyperparameters:

• A standardization of the input samples.
• Each encoder NNφy

and NNφd
with a 1D convolutional layer using 64 filters of size

5, a stride length of 1 and the ReLU activation function, followed by a GRU layer
of 64 units using the tanh activation function, and a fully-connected layer to output
the encoding parameters.

• The decoder NNθyd
defined symmetrically to one encoder as per the design of Fig-

ure 4.8.
• The same architectures as Dense DIVAD-G for the conditional domain prior network
NNθd

and classification head NNωd
.

• An encoding dimension of 32.
• A fixed KL divergence weight β ∈ {1, 5}.
• A domain classification weight αd = 100, 000.
• A mini-batch size B = 128.
• The same anomaly scoring as Dense DIVAD-G.

We report the performance of Rec DIVAD-GM using the following preprocessing and
hyperparameters:

• A standardization of the input samples.
• The same architectures as Rec DIVAD-G for the networks NNφy

, NNφd
, NNθyd

,
NNθd

and NNωd
.

• An encoding dimension of 32, with K = 8 Gaussian Mixture components.
• A fixed KL divergence weight β ∈ {1, 5}.

91

Figure 5.4: Box plots of peak F1-scores achieved by TranAD and each DIVAD variant,
colored by modeling strategy (point vs. sequence).

Method Tr-T1 Tr-T2 Tr-T3 Tr-T4 Tr-T5 Tr-T6

Dense DIVAD-GM 0.80 0.97 0.87 0.73 0.96 0.57

Dense DIVAD-G 0.78 0.98 0.79 0.75 0.93 0.53

Point Average 0.79 0.98 0.83 0.74 0.95 0.55

Rec DIVAD-GM 0.78 0.97 0.76 0.72 0.75 0.68

Rec DIVAD-G 0.53 0.97 0.73 0.69 0.72 0.58

Sequence Average 0.66 0.97 0.75 0.71 0.74 0.63

Average 0.72 0.97 0.79 0.72 0.84 0.59

Table 5.1: Peak F1-score achieved by the best-performing DIVAD variants for each event
type within a trace (averaged across test traces), with the top F1-score for each
event type shown in bold.

• A domain classification weight αd = 100, 000.
• A mini-batch size B = 128.
• The same anomaly scoring as Dense DIVAD-GM.

5.3.2 Results and Analyses

We show in Figure 5.4 the box plots of the peak F1-scores achieved by each DIVAD vari-
ant across its hyperparameter values, with boxes colored based on the modeling strategy
(point vs. sequence). We also include the performance of TranAD for reference, as our
best-performing unsupervised baseline from Chapter 4. Table 5.1 follows the same for-
mat as Table 4.1 described in Section 4.5.1. It considers our DIVAD variants with their
best-performing hyperparameters (i.e., that yielded their maximum peak F1-score in Fig-
ure 5.4), and reports the average peak F1-score they obtained within each test trace for
each type of event.

Improvements over Unsupervised Baselines

The main observation we can make from Figure 5.4 is that Dense DIVAD-GM and Dense
DIVAD-G significantly outperformed our best unsupervised baseline in maximum perfor-
mance (C1), with 20% and 15% improvements in maximum peak F1-scores (0.79 and
0.76 over 0.66), respectively. As expected, resorting to a learned Gaussian Mixture prior
(DIVAD-GM) instead of a fixed Gaussian prior (DIVAD-G) was also beneficial, improv-
ing both the maximum and median peak F1-scores for the point and sequence modeling
variants (C2).

Although Dense DIVAD-GM could outperform TranAD in the median (with a less-

92

Figure 5.5: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by Dense
DIVAD-GM to training normal, test normal and test anomalous records.

significant 3% improvement), the general trend was to get a lower median F1-score for
the DIVAD methods than for TranAD. Overall, the large differences observed between the
maximum and median F1-scores of the DIVAD variants reveals their particular sensitivity
to the hyperparameter values used, and the importance of properly tuning them to benefit
from a performance gain in practice (C3).

The higher performance achieved by Dense DIVAD-GM can directly be attributed to
its accurate domain generalization (C4). To illustrate this, Figure 5.5 shows the Kernel
Density Estimate (KDE) plots of the anomaly scores the best-performing Dense DIVAD-
GM assigned to the training normal, test normal and test anomalous records. From this
figure, we can see that the explicit modeling of the training data distribution carried out
by Dense DIVAD-GM led to a similar benefit as Dense VAE (see Figure 4.10d), with a
low variance in the anomaly scores assigned to the training normal records (i.e., narrow
green KDE). Contrary to Dense VAE, however, Dense DIVAD-GM relied on this precise
density estimation in a domain-invariant space (where distribution shifts were drastically
reduced), which made it generalize to test normal records as well (i.e., better aligned and
similarly narrow green and blueKDEs). As such, Dense DIVAD-GM could generally view
the test anomalies as “more abnormal” than the test normal records (i.e., good separation
of the red and blue KDEs), which led to the better anomaly detection performance.

The accurate domain generalization of the best-performing Dense DIVAD-GM is also
illustrated in Figure 5.6, showing the ridgeline plot of its anomaly scores for the records
of each type within the 23 test traces, as well as its peak F1-score threshold (akin to
Figures 4.13 and 4.14 for the TranAD and Rec DSVDD methods, respectively). From this
figure, we can see that the anomaly scores assigned by Dense DIVAD-GM to the test nor-
mal records were (i) mostly lower than the anomaly scores it assigned to anomalies, but
also (ii) far more similar across different traces than for TranAD (see Figure 4.13), allow-
ing Dense DIVAD-GM to achieve a superior detection performance using a single, global
threshold. Moreover, the explicit domain generalization of Dense DIVAD-GM was more
effective than the implicit one produced by Rec DSVDD (see Figure 4.14), with for in-
stance most of the T1 records of traces 5 1 100000 63, 5 1 100000 64 and 5 1 500000 62,
which were missed by Rec DSVDD, now being detected above the optimal threshold.

To further illustrate Dense DIVAD-GM’s accurate comprehension of test domains, Fig-
ure 5.7 shows t-SNE scatter plots of the domain-specific and domain-invariant encodings
it produced for test normal records (sampled from qφd

(zd|x) and qφy
(zy|x), respectively),

undersampled to 10,000 data records, balanced and colored by domain. Domain labels fol-
low the same format as described in Section 4.3.2, indicating the processing period, number
of Spark executors, maximum executors memory and data sender input rate, respectively.
From this figure, we can see that the mapping learned by Dense DIVAD-GM from the in-
put to its domain-specific space produced the distinct domain clusters expected, while the
mapping it learned from the input to its domain-invariant space produced more scattered
encodings.

93

Figure 5.6: Ridgeline plot of Dense DIVAD-GM’s anomaly scores for the records of each
type (i.e., in “normal” and T1 to T6 ranges) in each test trace, with its peak
F1-score threshold highlighted in red.

94

Figure 5.7: t-SNE scatter plots of Dense DIVAD-GM’s domain-specific (left) and domain-
invariant (right) encodings of test normal records, undersampled to 10,000 data
records, balanced and colored by domain.

Point vs. Sequence Modeling

Another observation we can make from Figure 5.4 is that using point modeling over se-
quence modeling DIVAD variants appeared both sufficient (C5) and necessary (C6) to
outperform TranAD for our dataset and experimental setup.

Point modeling variants being sufficient to outperform our unsupervised baselines is
consistent with our description of Section 4.3, stating that nearly all the event types were
mainly reflected in the features as contextual anomalies, which could typically be turned
into (easier-to-detect) point anomalies when viewed in the domain-invariant spaces of the
DIVAD methods. Referring back to the central assumption of our DIVAD framework
(discussed at the start of Section 5.2), considering the values of feature combinations at
single time steps at a time was here sufficient for the point modeling methods to learn
domain-invariant patterns that were also discriminative for most anomaly types.

The lower performance observed for sequence modeling DIVAD variants (i.e., point
modeling methods being “necessary” in this case) was somewhat less expected a priori,
but can be explained by two main factors.

The first factor comes from the unsupervised nature of the DIVAD methods. Without
information on the relevant anomalies to detect, these methods do not have the incentive to
learn domain-invariant patterns that will also accurately distinguish anomalies. For point
modeling variants, the feature combinations that tended to be domain-invariant were also
useful to detect the anomalies of our dataset and experimental setup. For Rec DIVAD-G,
however, the sequential patterns learned to be shared across domains also tended to be
shared between normal data and specific anomaly types. This is for instance illustrated
in Figure 5.8a, showing KDE plots of the anomaly scores assigned by Rec DIVAD-G to
training normal, test normal and test anomalous records. From this figure, we can see
that Rec DIVAD-G could accurately perform its domain generalization task, with training
and test normal records getting assigned similar anomaly scores (i.e., aligned green and
blue KDEs). However, this accurate domain generalization did not result in a better
anomaly detection performance, primarily due to Rec DIVAD-G’s inability to distinguish
some anomalous records from normal data in its domain-invariant space (i.e., high overlap
between the blue and red KDEs). Figure 5.9, showing time plots of the anomaly scores
assigned by Dense DIVAD-G and Rec DIVAD-G in trace 5 1 100000 63 (Bursty Input),
further illustrates this aspect for T1 events specifically. From these figures, we can see

95

(a) Rec DIVAD-G. (b) Rec DIVAD-GM.

Figure 5.8: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by Rec
DIVAD-G and Rec DIVAD-GM to training normal, test normal and test
anomalous records.

(a) Dense DIVAD-G.

(b) Rec DIVAD-G.

Figure 5.9: Time plots of the anomaly scores of Dense DIVAD-G and Rec DIVAD-G for
the records in trace 5 1 100000 63 (Bursty Input), highlighting their peak F1-
score thresholds and the ground-truth anomaly ranges.

that, while Dense DIVAD-G could accurately view T1 records as “more abnormal” than
most normal records in the trace, the encoding performed by Rec DIVAD-G tended to
“erase” most of the anomalous signals from these T1 events.

The second factor explaining the lower performance of sequence modeling DIVAD vari-
ants is the heightened challenge of learning domain-invariant patterns from the data that
are sequential in nature. While leveraging such sequential information can theoretically
be useful, identifying domain-invariant shapes within and across M = 237 time series con-
stitutes a harder task than relying on simple feature combinations at given time steps for
our dataset and experimental setup, typically requiring more hyperparameter tuning. This
is illustrated in Figure 5.8b, showing KDE plots of Rec DIVAD-GM’s anomaly scores for
training normal, test normal and test anomalous records. From this figure, we can see that
the domain generalization performed by Rec DIVAD-GM was less effective than for Dense
DIVAD-GM and Rec DIVAD-G (see Figures 5.5 and 5.8b, respectively), with its anomaly
scores drifting from the training to the test normal records (green vs. blue KDEs). This
suboptimal domain generalization led to a higher overlap between the anomaly scores of
the test normal and anomalous records (blue vs. red KDEs), which resulted in the low
anomaly detection performance.

96

Difficulty of Event Types

Now considering the Average row of Table 5.1, we can see that T2 (Bursty Input Until
Crash), T3 (Stalled Input) and T5 (Driver Failure) were the easiest types of events
to detect within test traces across the DIVAD variants (C7). The worse detection of
T1 (Bursty Input) events compared to the unsupervised baselines of Chapter 4 (0.72 vs.
0.80 average peak F1-score in Table 4.1) was however only due to Rec DIVAD-G, whose
domain generalization tended to remove some of the T1 anomaly signals, as we just dis-
cussed. Excluding Rec DIVAD-G, the average T1 performance across DIVAD variants
indeed becomes nearly the same as our unsupervised baselines (0.79 and 0.80 peak F1-
scores, respectively). The better detection of T3 (Stalled Input) events by the DIVAD
variants compared to the unsupervised baselines of Table 4.1 was primarily due to a far
better performance of point modeling methods, now even outperforming the sequence
modeling ones (0.83 here vs. 0.46 in Table 4.1 for the Point Average row, and 0.75 vs.
0.67 for the Sequence Average row) (C8). This again relates to our previous discussion,
indicating that the domain generalization performed by the Dense DIVAD methods was
sufficient to turn the contextual anomaly components of T3 events into easier-to-detect
point anomalies, rendering their collective components unnecessary. Regarding T5 (Pro-
cess Failure) events, the same conclusion can be made as for the unsupervised baselines,
with their short and point-based nature favoring the point modeling methods over the
sequence modeling ones (C9). This advantage of point modeling methods was even more
pronounced here, with domain generalization also allowing to turn the few contextual com-
ponents of T5 events into point anomalies (0.95 over 0.74 peak F1-scores for the DIVAD
variants vs. 0.87 over 0.82 for the unsupervised baselines).

Like for our unsupervised baselines, T6 (Executor Failure) events were by far the hard-
est type to detect (C10), indicating domain generalization was not helpful in better
separating them from normal data within the test traces. Domain generalization however
appeared beneficial to better consistently detect T4 (CPU Contention) events, with an
improved Average F1-score of 0.72 over 0.60 for the unsupervised baselines (C11). The
maximum T4 performance could however not be improved (0.75 peak F1-score for Dense
DIVAD-G vs. 0.77 for Rec AE).

Sensitivity Analysis: Anomaly Scoring Strategy

Figure 5.10 presents a sensitivity analysis of the anomaly scoring strategy used by our
DIVAD methods. It shows the box plots of peak F1-scores achieved by each DIVAD vari-
ant and anomaly scoring strategy, with “(P)” indicating the scoring is based on the class
encoding prior (fixed Gaussian for DIVAD-G, learned Gaussian Mixture for DIVAD-GM),
and “(AP)” indicating the scoring is based on the class encoding aggregated posterior (es-
timated as a Gaussian distribution for DIVAD-G, and as a Gaussian Mixture distribution
with K components for DIVAD-GM).

As we can see from this figure, sequence modeling DIVAD methods again performed
worse than the point modeling variants in both median and maximum peak F1-score no
matter the scoring strategy used (C12). Like expected, deriving the anomaly scores from
an aggregated posterior estimate instead of the prior was significantly beneficial for both
DIVAD-G methods (C13), which, by relying on a fixed Gaussian prior, are particularly
subject to the issue of “holes in the aggregated posterior” discussed in Section 5.2.2. By re-
lying on a more expressive and learned class encoding prior, DIVAD-GM was less sensitive
to the type of scoring strategy used (C14), with the scoring based on the prior performing
better for the point modeling method, and the one based on the aggregated posterior
performing better for the sequence modeling method. This observation is also consistent
with our expectations, and motivated our choice of including both scoring strategies into

97

Figure 5.10: Box plots of peak F1-scores achieved by each DIVAD variant and anomaly
scoring strategy (class encoding prior (P) vs. aggregated posterior (AP)),
colored by modeling strategy (point vs. sequence).

the hyperparameters grid of DIVAD-GM in our study.

5.4 Broader Applicability: Application Server Dataset

This section studies the broader applicability of our DIVAD framework, employing it to
detect anomalies in the Application Server Dataset (ASD) [13]. This dataset, collected
from a large Internet company, consists of a set of traces, each of which recorded the
status of a group of services running on a separate server, using 19 metrics every five
minutes. Although the metrics were anonymized, they for instance relate to the CPU,
memory, network or virtual machine of the recorded server. The goal of ASD is to detect
the labeled anomaly ranges located at the end of the traces based on the previous data. Its
contamination factor (i.e., anomaly ratio) is 4.61%, with minimum, median and maximum
anomaly lengths of 3, 18 and 235 data records, respectively. We refer the reader to the
original paper for additional details about this dataset.

5.4.1 Experimental Setup and Methods Considered

ASD contains 12 different traces, each corresponding to a server. Its intended usage is to
consider a separate instance of anomaly detection model per trace, using the first 30 days
of the trace as training and its remaining 15 days as test. In this work, we however use ASD
to assess the extent to which our DIVAD framework can learn server-invariant normal
patterns to detect anomalies in a new, unseen test server. As such, our experimental setup
considers 11 out of the 12 traces as the training set of a single model instance, and the
remaining trace as the test set. Since we do not have information about the similarity
between servers, we run 12 separate experiments, each using a given server trace as the
test set. For each experiment, we further remove the anomalous records from the training
traces, since we assume our methods to be trained on mostly-normal data. For these 12
different runs, we report the performance of TranAD (our best performing unsupervised
baseline) and Rec DIVAD-GM (which, this time, outperformed Dense DIVAD-GM in our
initial experiments). We consider a window length L = 20 for both methods, as well as
the same model training and selection methodology as for the Spark Streaming dataset
(see Section 4.4.1).
We report the performance of TranAD using the implementation of Tuli et al. [14],

and the same preprocessing and hyperparameters as for the Spark Streaming dataset.
For Rec DIVAD-GM, we consider each server trace as a separate domain, and report its
performance using the following preprocessing and hyperparameters:

• A standardization of the input samples.

98

Figure 5.11: Box plots of peak F1-scores achieved by TranAD and Rec DIVAD-GM for
ASD, using each server as a test set.

• Each encoder NNφy
and NNφd

with a 1D convolutional layer using 32 filters of size
5, a stride length of 1 and the ReLU activation function, followed by a GRU layer
of 32 units using the tanh activation function, and a fully-connected layer to output
the encoding parameters.

• The decoder NNθyd
defined symmetrically to one encoder as per the design of Fig-

ure 4.8.
• A single fully-connected hidden layer of 32 units for the conditional domain prior
network NNθd

.
• A ReLU activation function followed by a single fully-connected layer of Ndom = 11
units (i.e., one per source domain) for the classification head NNωd

.
• An encoding dimension of 16, with K = 8 Gaussian Mixture components.
• A fixed KL divergence weight β ∈ {1, 5}.
• A domain classification weight αd = 1, 000.
• A mini-batch size B = 128.
• An anomaly scoring based on the class encoding aggregated posterior estimate
q̂φy

(zy), fitting a Gaussian Mixture distribution with K = 8 components to the
training class encodings.

5.4.2 Results and Analyses

Figure 5.11 presents the results of our 12 experiments, showing the box plots of the peak
F1-scores achieved by TranAD and Rec DIVAD-GM across their hyperparameter values
for each test server. From this figure, we can see that Rec DIVAD-GM outperformed
TranAD in maximum peak F1-score for 11 out of 12 test servers (i.e., 92% of the cases),
improving the maximum performance by more than 10% for eight of them. However, these
results also show that the median performance was only improved by Rec DIVAD-GM for
7 out of the 12 possible test servers. This again highlights the sensitivity of our DIVAD
framework with respect to the hyperparameters used, and the necessity of properly tuning
them to benefit from a performance gain.
Figures 5.12a and 5.12b show the KDE plots of the anomaly scores assigned by the best-

performing TranAD and Rec DIVAD-GMmethods to training normal, test normal and test
anomalous records when using server 1 as a test set (i.e., the setup for which Rec DIVAD-
GM improved the performance the most, by 167%). From Figure 5.12a, we can see the low
performance of TranAD was primarily to the lower mode of its distribution of anomaly
scores assigned to anomalies, which had a significant overlap, and thus were considered
“similarly abnormal”, to some of the test normal data. As we can see in Figure 5.12b,
Rec DIVAD-GM was able to alleviate this issue, producing much less overlap between this
lower mode and the rest of test normal data, which resulted in the performance gain.
An important aspect to note about these experiments is that, since we do not have

99

(a) TranAD. (b) Rec DIVAD-GM.

Figure 5.12: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by
TranAD and Rec DIVAD-GM and to the training normal, test normal and
test anomalous records of ASD, using server 1 as a test set.

information about the nature of the services running on the servers, it is difficult to know
a priori whether learning normal patterns that are shared across the training servers will be
useful to detect anomalies in a new one. From this study, we could see that this was mostly
the case, with the clearest example being for test server 1. We however observed some
disparities in the results, hinting at different properties for the server behaviors. As an
example, learning from the rest of the servers seemed sufficient to detect anomalies in test
server 8, even without resorting to domain generalization, with high maximum F1-scores
of 0.70 and 0.76 achieved by TranAD and Rec DIVAD-GM, respectively. In contrast,
learning patterns that generalized to test server 6 was found to be more challenging,
whether using domain generalization or not, with much lower maximum F1-scores of 0.16
and 0.20 obtained for the respective methods. In other terms, and at least from these
experiments, (i) services running on server 1 were found different from those running on
the other servers, but still possible to capture based on shared underlying factors, (ii)
services running on server 8 were found “similar” to (at least some) services running on
the other servers, while (iii) services running on server 6 were found different from the
others, both in “direct” and “underlying” behaviors.

5.5 Summary and Conclusions

In this chapter, we started by formally characterizing the normal behavior shift challenge
identified in Chapter 4, relating it to the concept of domain shift. We then sought to
address this challenge explicitly, by proposing DIVAD, a domain generalization method
decomposing the observed variable into domain-specific and domain-invariant encodings,
and defining anomalies as samples that deviate from the training distribution of domain-
invariant encodings only. After elaborating on the model design, model training and
possible anomaly scoring strategies of DIVAD, we applied multiple of its variants against
our Exathlon benchmark and experimental setup. We presented our results and analyses
from this study, which led to 14 conclusions, summarized, reorganized and grouped by
similarity below:

• C1, C3, C4. Our best-performing DIVAD variants significantly improved the de-
tection results of our unsupervised baselines. This improvement was directly at-
tributable to their explicit domain generalization, which addressed most of the nor-
mal behavior shift challenge identified in the last chapter. The high variance in the
results obtained for a given DIVAD method however showed their particular sen-
sitivity to the hyperparameter used, and the necessity of properly tuning them to
benefit from a performance gain in practice.

• C2. Within our DIVAD variants, considering a learned Gaussian Mixture prior
(DIVAD-GM) over a fixed Gaussian prior (DIVAD-G) was always found beneficial.

100

• C5, C6. For our dataset and experimental setup, using point modeling over se-
quence modeling DIVAD variants was both sufficient and necessary to outperform
our unsupervised baselines. Point modeling variants being sufficient was expected
due to most event types predominantly inducing contextual anomalies, which could
be turned into easier-to-detect point anomalies when viewed in a domain-invariant
space. Sequence modeling variants performing worse was mainly explained by (i)
their domain-invariant mapping removing some relevant anomaly signals from the
data, due to a lack of incentive to preserve them, and (ii) the more challenging na-
ture of learning domain-invariant shapes within and across M = 237 time series for
this dataset.

• C7, C8, C9. Within test traces, the easiest types of events to detect across the
DIVAD variants were T2 (Bursty Input Until Crash), T3 (Stalled Input) and T5
(Driver Failure). Like for the unsupervised baselines, the point modeling variants
outperformed the sequence modeling ones in detecting T5 events. The worse de-
tection of T1 events compared to the unsupervised baselines was primarily due to
the recurrent DIVAD-G’s domain-invariant mapping removing important T1 signals
from the data, while the better detection of T3 events was mainly due to a better
ability of point modeling variants to detect them.

• C10, C11. Within test traces, the hardest type of event to detect was T6 (Execu-
tor Failure), similar to the unsupervised baselines. This indicates that the domain
generalization performed by the DIVAD methods did not help better distinguish T6
events from normal data within a test trace. Domain generalization however ap-
peared beneficial to consistently detect T4 (CPU Contention) events, although the
maximum performance achieved for these events could not be improved.

• C12, C13, C14. Sequence modeling DIVAD methods performed worse than point
modeling variants in both median and maximum peak F1-score no matter the scoring
strategy used. Like expected, deriving the anomaly scores from an aggregated pos-
terior estimate instead of the prior significantly improved the performance of both
DIVAD-G methods. By relying on a more expressive and learned class encoding
prior, DIVAD-GM was less sensitive to the scoring strategy used.

This chapter ended with a study of the broader applicability of our DIVAD framework,
employing it to detect anomalies in a server trace from the Application Server Dataset
(ASD) given the traces from the 11 other servers as training. This study revealed that
our DIVAD method could outperform TranAD in most of the test cases, showing that its
explicit domain generalization could also be useful beyond our Spark Streaming dataset.
Although the study of Chapter 4 identified (L1) the vulnerability to normal behavior

shift from training to test data as the main limitation of our unsupervised baselines. It
also revealed their performance was significantly hindered by (L2) their production of
false negatives for the hardest anomalies given our large number of features and (L3)
production of false positives for normal but “noisy”, minority patterns in test data. In the
next chapter, our goal will be to better address all three of these limitations L1-3 in a
setting of weakly-supervised learning.

101

6 Prior Knowledge through Weak
Supervision

In this chapter, we introduce prior knowledge about the relevant anomalies to detect
through the setting of “learning with incomplete supervision”, which we simply refer to as
weakly-supervised learning. We start by formalizing this new setting with a revised
problem statement in Section 6.1. We then present CEADAL in Section 6.2, a method re-
lying on contrastive learning to learn a compact representation of normal data, away from
the few labeled anomalies. We also present an alternative method based on the triplet loss
called TEADAL. In Section 6.3, we apply CEADAL and TEADAL against the Exathlon
benchmark and our experimental setup extended with the few training anomalies, com-
paring them with classification and weakly-supervised anomaly detection methods. We
derive 18 conclusions from this study, highlighted as C1-18, and show that the compact
representation of data in latent space learned by CEADAL can implicitly address the
(L1) vulnerability to normal behavior shift from training to test data identified for the
unsupervised baselines in Chapter 4, while also better addressing their (L2) production
of false negatives for the hardest anomalies given our large number of features and (L3)
production of false positives for normal but “noisy”, minority patterns in test data.

6.1 Revised Problem Statement

This section formalizes the anomaly detection problem we want to solve in this weakly-
supervised setting.

We consider N1 training sequences and N2 test sequences:

Strain = (S(1), . . . ,S(N1)) , Stest = (S(N1+1), . . . ,S(N1+N2)),

where each S(i) consists of T ordered data records of dimension M , with corresponding
sequences of anomaly labels:

Ytrain = {y(1), . . . ,y(N1)} , Ytest = {y(N1+1), . . . ,y(N1+N2)},

with y(i) ∈ {0, 1}T , such that:

{

y
(i)
t = 1 if the record at index t in sequence i is anomalous,

y
(i)
t = 0 otherwise (i.e., the record is normal).

The rest of the problem statement is the same as described in Section 4.1, with the record
scoring function g : RT×M → R

T now trained on Strain and Ytrain, instead of just Strain

in the unsupervised setting. Like mentioned in Chapter 5, we use x and y to refer to an
input window and its corresponding label in the following, instead of X and ỹ used in
Section 3.3.3, to simplify the notation.

103

Figure 6.1: Our goal is to map the normal data samples to a single compact region, and
anomalies away from it.

6.2 Contrastive Encoder for Anomaly Detection with a Few
Anomaly Labels

This section presents Contrastive Encoder for Anomaly Detection with a Few Anomaly
Labels (CEADAL), a method relying on contrastive learning to construct a latent mapping
where normal data samples get mapped to a compact region, away from the anomalous
samples. We start by motivating and describing this framework in Section 6.2.1. We
then detail the contrastive pair mining and anomaly scoring strategy of CEADAL in
Sections 6.2.2 and 6.2.3, respectively. We end this section by presenting an alternative of
CEADAL based on the more recent and less-constrained triplet loss, called Triplet Encoder
for Anomaly Detection with a Few Anomaly Labels (TEADAL).

6.2.1 Contrastive Learning Framework

To address the challenges identified in Chapter 4, we propose to leverage the few labeled
anomalies to construct a latent space mapping such that:

• Normal data samples get mapped to a single, compact region.
• This normal region is learned in contrast to the few anomaly representatives, which
should get mapped away from it.

We illustrate this motivation in Figure 6.11. To construct this mapping, we present “Con-
trastive Encoder for Anomaly Detection with a Few Anomaly Labels”, or CEADAL. This
method relies on contrastive learning [22], adapted for anomaly detection by extracting
normal-normal pairs and normal-anomaly pairs from the training samples, referred to as
concordant and discordant pairs, respectively. After extracting these pairs, the mapping
is learned by training a Siamese neural network to encode the samples from concordant
pairs “near each other”, and the samples from discordant pairs “far apart” in a latent
space, as illustrated in Figure 6.2.

1The neural network diagrams of this chapter were created using [128].

104

Figure 6.2: Training procedure: update the weights of a Siamese neural network to attract
the members of concordant pairs and repel the members of discordant pairs.

Formally, our goal is to learn the parameters θ of a mapping eθ : RM → R
M ′

, called
contrastive encoder, that minimize the following contrastive loss [22]:

L(P;θ) =
1

|P|

∑

(x1,x2,y)∈P

LC(x1,x2, y;θ),

where:

LC(x1,x2, y;θ) = (1− y)∥eθ(x1)− eθ(x2)∥
2
2 + ymax {0,m− ∥eθ(x1)− eθ(x2)∥2}

2 ,

P is the set of labeled concordant and discordant pairs extracted from the training samples,
with y = 0 for concordant pairs and y = 1 for discordant pairs, and m ∈ R

∗
+ is a

margin hyperparameter, after which increasing the distance for discordant pairs is no
longer rewarded.

6.2.2 Pair Mining Strategy

An important factor in successfully training the contrastive encoder presented in Sec-
tion 6.2.1 is the strategy we adopt to extract concordant and discordant pairs from the
training samples. Some pairs can indeed turn out to be “easy” or “hard” for the model at
any time during its training process, with both easy concordant pairs (i.e., normal samples
already mapped very close to each other in latent space) and easy discordant pairs (normal
and anomaly samples already mapped farther than m in latent space) contributing (close
to) nothing to the contrastive loss, which reduces the useful information provided.

To address this issue, we adopt a strategy similar to “batch hard” triplet mining [23],
and train the contrastive encoder only on the “hardest” concordant and discordant pairs
in every given mini-batch. Specifically, at every epoch during training, we constitute
mini-batches of (even) size B, each balanced with respect to the sample class (“normal”
vs. “anomaly”) by oversampling the anomalous examples. For every mini-batch, we then
consider the data samples encoded by the model in latent space (i.e., perform a model
forward pass), and pair each of the B/2 normal samples to (i) its furthest other normal
sample and (ii) its closest anomalous sample, constituting a set of B “hardest” concordant
and discordant pairs. We finally use these pairs to compute the contrastive loss and update
the weights of the network. This overall process is illustrated in Figure 6.3.

105

Figure 6.3: “Batch hard” pair mining strategy for the contrastive encoder training: normal
samples 1, 2 and 3 get paired with their closest normal and furthest anomalous
sample in latent space.

6.2.3 Anomaly Scoring

After training the contrastive encoder, we expect normal data samples to get mapped to
a single, compact, spherical region in latent space, away from anomalies. In practice, this
spherical region is however likely to end up imperfect, resembling more an approximate
ellipsoid. This motivates estimating the distribution of the training normal samples in
latent space more generally as a multivariate Gaussian, and defining the anomaly score
of a test sample x as the squared Mahalanobis distance from this distribution:

gW (x) := d2Maha(eθ(x); c,Σ) = (eθ(x)− c)TΣ−1(eθ(x)− c),

with c ∈ R
M ′

and Σ ∈ R
M ′×M ′

the empirical mean and covariance matrix of the training
normal data in latent space, respectively. Relying on the squared Euclidean distance to
derive our anomaly scores directly would indeed not be optimal for an ellipsoidal normal
region, as lower distance thresholds would be relevant for lower-variance axes. Using the
Mahalanobis distance definition above directly addresses this issue, as it amounts to first
rescaling each principal axis of the latent normal cluster to have unit variance, and then
applying the squared Euclidean distance for anomaly scoring.
As we can see, the framework of CEADAL still focuses mainly on capturing the normal

behavior of the data, by modeling the distribution of normal data samples in latent space
to derive its anomaly scores. As such, we can expect it to be more robust to class imbalance
and labels scarcity than traditional classifiers. By contrasting the normal region learned
with respect to a few labeled anomalies, this framework however injects prior knowledge
about the relevant anomalies to detect. For this reason, we can expect CEADAL to
outperform unsupervised methods in (i) detecting the impacts of harder, more “subtle”
anomalous events on high-dimensional feature sets , but also (ii) making real anomalies
stand out from normal but “noisy”, minority patterns in the data, hence addressing the
corresponding challenges of Chapter 4. Besides, by enforcing a similar representation of
the normal data samples no matter the context they come from, our contrastive framework
embeds a context generalization component, which implicitly addresses our remaining
normal behavior shift challenge, as further shown in our experimental study.

106

6.2.4 Triplet Loss Alternative

To study the impact of the implicit context generalization induced by CEADAL’s con-
trastive loss, we propose an alternative encoder based on the more recent and less-
constrained triplet loss [23], called “Triplet Encoder for Anomaly Detection with a Few
Anomaly Labels” (TEADAL). Rather than enforcing normal-normal distances to approach
zero, this framework simply requires them to be smaller than normal-anomaly distances
by a margin m ∈ R

∗
+, minimizing the following triplet loss [23]:

L(T ;θ) =
1

|T |

∑

(xa,xp,xn)∈T

LT (xa,xp,xn;θ),

where:

LT (xa,xp,xn;θ) = max
{

∥eθ(xa)− eθ(xp)∥
2
2 − ∥eθ(xa)− eθ(xn)∥

2
2 +m, 0

}

,

and T is a set of triplets extracted from the training samples, where both the anchor xa

and positive sample xp are normal, and the negative sample xn is an anomaly. The goal
is therefore to maximize ∥eθ(xa)− eθ(xn)∥

2
2 − ∥eθ(xa)− eθ(xp)∥

2
2 (i.e., make the squared

normal-anomaly distance larger than the squared normal-normal distance) until we have
∥eθ(xa) − eθ(xn)∥

2
2 ≥ ∥eθ(xa) − eθ(xp)∥

2
2 + m (i.e., until a margin m separates the two

squared distances).
The training strategy for this triplet encoder is then the same as for the contrastive

encoder, except we consider a single triplet where we previously considered a concordant
and a discordant pair. Like in [23] and CEADAL, we only train the encoder on the
“hardest” triplets in every given mini-batch. Also like in [23], we stabilize training by
further L2-normalizing the encoder outputs. In this context, minimizing the squared
Euclidean distance between two latent samples is equivalent to maximizing their cosine
similarity. We therefore define the anomaly score of a test sample x as its negative
cosine similarity to the training normal centroid in latent space:

gW (x) := −Scos(eθ(x), c) = −cT eθ(x),

where c ∈ R
M ′

is the empirical mean of the training normal data in latent space.
By relying on the triplet loss over the more constrained contrastive loss, we can expect

TEADAL to learn a richer representation of normal data, allowing the latent normal region
to exhibit more intra-class variance. Enabling such flexibility is especially relevant in the
general anomaly detection setting, where a single “normal” class is typically assigned to
refer to a possibly wide range of different normal behaviors. As our experiments will show,
this flexibility however acts as a hindrance for our specific use case and setup, by removing
the heavier compactness constraint of the contrastive loss for the latent normal region, and
thus its implicit context generalization component.

6.3 Experiments

This section applies the CEADAL and TEADALmethods introduced in Section 6.2 against
the Exathlon benchmark and dataset, and compares them to other methods from the
literature that rely on class labels. We start by presenting our revised experimental setup
for this weakly-supervised setting. We then describe the compared methods and their grid
of hyperparameter values. We finally present and analyze the results obtained, deriving
18 conclusions, labeled C1-18, showing in particular that our CEADAL method could (at
least partly) address the three main challenges identified in Chapter 4.

107

6.3.1 Revised Experimental Setup

For this weakly-supervised study, we no longer remove the labeled anomaly ranges from
our training and validation sequences, resulting in the following anomaly ranges in the
training set of the compared methods:

• 8 Bursty Input (T1) ranges.
• 2 Bursty Input Until Crash (T2) ranges.
• 2 Stalled Input (T3) ranges.
• 6 CPU Contention (T4) ranges.
• 2 Driver Failure (T5) ranges.
• 2 Executor Failure (T6) ranges.

And the following anomaly ranges in their validation set :

• 6 Bursty Input (T1) ranges.
• 2 Stalled Input (T3) ranges.
• 4 CPU Contention (T4) ranges.
• 1 Driver Failure (T5) ranges.
• 2 Executor Failure (T6) ranges.

Like mentioned in Section 4.4.1, T2 traces were indeed all used as training because of
their shorter lengths. For a window length L = 1, and after the window balancing de-
scribed in Section 4.2.5, this setup corresponds to a training contamination factor of
3.36%, (0.66%, 1.74%, 0.22%, 0.64%, 0.01% and 0.07% for T1 to T6, respectively) and
a validation contamination factor of 3.44% (0.74%, 0.30%, 0.78%, 0.01% and 1.62%
for T1, T3, T4, T5 and T6, respectively). For window lengths L > 1, we only keep the
anomalous windows that either (i) were 100% abnormal or (ii) contained all of an anomaly
range (to handle cases where anomaly ranges were shorter than our window length). After
this process and window balancing for a window length L = 20, this setup corresponds to
a training contamination factor of 3.44% (0.69%, 1.76%, 0.22%, 0.67%, 0.02% and
0.08% for T1 to T6, respectively), and a validation contamination factor of 3.48%
(0.74%, 0.30%, 0.80%, 0.01% and 1.62% for T1, T3, T4, T5 and T6, respectively).

The rest of the experimental setup is the same as for our unsupervised setting (which
makes the methods from both settings comparable).

6.3.2 Compared Methods and Hyperparameters

As described in Section 6.2, the objective of both our CEADAL and TEADAL methods
is to learn a transformation to a latent space where normal and anomalous samples are
clearly separated, making them operate in an anomaly feature representation learning
framework [15]. Besides CEADAL and TEADAL, we include another, state-of-the-art,
anomaly feature representation learning method called Deep SAD [62] in our comparative
study, along with some relevant classification methods. On the whole, we consider the
following encoding and classification methods:

• Dense CEADAL and Convolutional CEADAL (Conv CEADAL), as point mod-
eling and sequence modeling CEADAL variants, respectively.

• Dense TEADAL and Convolutional TEADAL (Conv TEADAL), as point mod-
eling and sequence modeling TEADAL variants, respectively.

• Dense Deep SAD [62] (Dense DSAD) and Convolutional Deep SAD (Conv DSAD),
as point modeling and sequence modeling Deep SAD variants, respectively, and Deep
SAD a relevant anomaly feature representation learning method.

108

• XGBoost [129], as a popular, shallow, point modeling method used for classifica-
tion.

• Dense DIVA [71] and Convolutional DIVA (Conv DIVA), as point modeling
and sequence modeling DIVA variants, respectively, and DIVA a relevant domain
generalization method designed for classification.

For all the deep learning methods, we adopt the same model training and selection strategy
as described in Section 4.4.1. For the sequence modeling methods, we consider a window
length L = 20, like for the unsupervised sequence modeling methods of Chapters 4 and 5.

We report the performance of Dense CEADAL using the following preprocessing and
hyperparameters:

• A standardization of the input samples.
• A single hidden layer of 200 units.
• An latent mapping (i.e., encoding) dimension in {16, 64}.
• The ReLU activation function for all the layers except the encoding.
• A mini-batch size B = 300. Using large mini-batches is indeed advised when relying
on an online, “batch hard” pair mining strategy [23].

• A contrastive loss margin m = 10.

When constituting the mini-batches of both CEADAL and TEADAL, we further consider
the anomalous samples balanced by event type, resulting in B/2 = 150 normal samples
and B/(2 · 6) = 25 anomalous samples of each type per batch. This amounts to assuming
that all the event types were equally represented in the data. None of the methods however
relied on the event type information of the anomalous samples; they only considered the
binary detection problem described in Section 6.1.
We report the performance of Conv CEADAL using the following preprocessing and

hyperparameters:

• A standardization of the input samples.
• Two 1D convolutional layers, each using 32 filters of size 5, a stride length of 1, batch
normalization and the ReLU activation function (with a 1D max-pooling layer of
window and stride lengths 2 after the first convolutional layer), followed by a fully-
connected layer to output the encoding.

• An encoding dimension in {64, 128}, with no activation function for the encoding
layer.

• A mini-batch size B = 300.
• A contrastive loss margin m = 10.

We report the performance of Dense TEADAL and Conv TEADAL using the same prepro-
cessing and hyperparameters as Dense CEADAL and Conv CEADAL, respectively, with a
triplet loss marginm = 0.2 in place of the contrastive loss margin. For both TEADAL vari-
ants, we however consider a lower grid of learning rate values η ∈ {1e−6, 3e−6, 1e−5, 3e−6}
than for other deep learning methods, as we observed a higher tendency of TEADAL’s
validation losses to diverge using the regular grid in our experiments.
Deep SAD [62] (for “Deep Semi-supervised Anomaly Detection”) is a follow-up work of

Deep SVDD [54], improving on its latent mapping by imposing that anomalous samples
get sent far from the centroid of the normal hypersphere. Like CEADAL, this method
aims to learn similar representations of normal data samples no matter the context they
come from, inducing a proximity constraint between them that is likely to benefit context
generalization. For this study, we use the Deep SAD implementation of Ruff et al. [62],
including their initialization of the encoder weights from a pretrained autoencoder model.
We report the performance of Dense DSAD with the following preprocessing and hyperpa-
rameters (using the same values as the original implementation for those not mentioned):

109

• A standardization of the input samples (we also tried the original paper’s strategy of
normalizing the inputs and using a sigmoid activation function for the output layer,
but this did not lead to a better performance).

• A single hidden layer of 200 units for the encoder and the decoder (with the decoder
only being used for pretraining).

• An encoding dimension in {16, 64}.
• The Leaky ReLU activation function with a negative slope coefficient α = 0.01 for
all the layers except the encoding and decoder output (like in the original implemen-
tation).

• A mini-batch size B = 200 (like in the original implementation).
• A pretraining phase of 150 epochs, followed by a training phase of 150 epochs (which
makes the same total number of 300 epochs as the other methods).

• The same learning rate and optimization strategy for the pretraining and training
phases.

• The same grid of learning rate values as the other methods, but dividing the learning
rate by 10 after 50 epochs (like in the original implementation).

• A weight decay coefficient of 1e−6 (like in the original implementation).

We report the performance of Conv DSAD with the following preprocessing and hyper-
parameters (using the same values as the original implementation for those not mentioned):

• A standardization of the input samples.
• An encoder with two 1D convolutional layers, each using 32 filters of size 5, a stride
length of 1, batch normalization and the Leaky ReLU activation function (with a
negative slope coefficient α = 0.01, and a 1D max-pooling layer of window and stride
lengths 2 after the first convolutional layer), followed by a fully-connected layer to
output the encoding.

• A pretraining decoder defined symmetrically to the encoder as per the design of
Figure 4.8, with a 1D upsampling layer to invert the encoder’s 1D max-pooling
layer.

• An encoding dimension in {64, 128}, with no activation function for the encoding
layer.

• A mini-batch size B = 200 (like in the original implementation).
• A pretraining phase of 150 epochs, followed by a training phase of 150 epochs.
• The same learning rate and optimization strategy for the pretraining and training
phases.

• The same grid of learning rate values as the other methods, but dividing the learning
rate by 10 after 50 epochs (like in the original implementation).

• A weight decay coefficient of 1e−6 (like in the original implementation).

XGBoost [129] (for “eXtreme Gradient Boosting”) is an optimized, distributed imple-
mentation of gradient boosted trees, building an ensemble of decision trees sequentially
to perform a supervised learning task, with each tree correcting the errors made by the
previous ones. For this study, we apply XGBoost for anomaly detection by training it
for binary classification (using a logistic regression objective), and defining the anomaly
score of a test sample as its predicted probability to belong to the anomalous class. We
report the performance of XGBoost with the hyperparameter values that maximized the
validation F1-score after 100, 200, 500, 1, 000 and 2, 000 trials of Bayesian hyperparam-
eter optimization over the following hyperparameter space (using the default values of
XGBoost 2.0.3 for the ones not mentioned):

• A number of boosting rounds in {50, 100, 200}.

110

• A maximum tree depth in [1 . . 12].
• A minimum “child weight” in [1, 3, 5, 10, 20, 100, 500].
• A subsampling ratio in [0.5, 1.0].
• A boosting learning rate between 1e−4 and 0.5, using the “log sampling” strategy
of KerasTuner [130] (i.e., uniformly sampling η ∈ [0.0, 1.0) and setting the boosting
learning rate to 1e−4 · (0.5/1e−4)η).

• A minimum required loss reduction γ = 0.0.
• A maximum delta step in [0, 1, 5].
• A choice between balancing the data samples (i.e., setting the balancing of positive
and negative weights to the number of normal samples over the number of anomalous
samples) or not (i.e., setting the balancing of positive and negative weights to 1.0).

DIVA [71] (for “Domain-Invariant Variational Autoencoders”) is a domain generaliza-
tion method proposed for image classification, which we adapted for unsupervised anomaly
detection in Chapter 5 to construct our DIVAD method. Its generative model assumes
the observed variable x is generated from independent latent factors zy, zd and zx, where
zy represents its class-specific component, conditioned on its class y, zd represents its
domain-specific component, conditioned on its domain d, and zx represents its residual
component. DIVA has a similar architecture to DIVAD, with the main differences of:

1. Considering an additional encoder NNφx
(x), outputting the parameters of the vari-

ational posterior qφx
(zx|x).

2. Considering the three latent encodings as input to the decoder NNθ(zd, zy, zx), out-
putting the parameters of the likelihood pθ(x|zd, zy, zx).

3. Using two conditional Gaussian priors pθy
(zy|y) and pθd

(zd|d), with corresponding
networks NNθy

(y) and NNθd
(d), along with a fixed standard Gaussian prior p(zx).

4. Using two classification heads NNωy(zy) and NNωd
(zd), outputting the parameters of

qωy(y|zy) and qωd
(d|zd), respectively, with corresponding classification loss weights

αy and αd in the total loss.

We refer the reader to the original paper for additional details about this method. For this
study, we apply DIVA for anomaly detection by defining the anomaly score of a test sample
x as its predicted probability of being anomalous from qωy(y|zy), with zy ∼ qφy

(zy|x).
We consider DIVA without its residual latent factor zx, as including it tended to result
in worse performance in our experiments. Like for DIVAD, we train DIVA with domains
defined as trace contexts (i.e., the Spark settings and input rate used for the application
runs), resulting in the same 22 source domains and 11 target domains as in Chapter 5. We
further balance the normal and anomaly classes in the data, by oversampling the anomalies
to match the cardinality of normal samples for both the training and validation sets (with
the anomalous samples also balanced by event type within the anomaly class). We report
the performance of Dense DIVA using the following preprocessing and hyperparameters:

• A standardization of the input samples.
• A single hidden layer of 200 units for the encoders NNφy

and NNφd
as well as for

the decoder NNθyd
.

• A single fully-connected hidden layer of 64 units for the conditional class prior net-
work NNθy

and the conditional domain prior network NNθd
.

• A ReLU activation function followed by a single fully-connected layer of Ndom = 22
units (i.e., one per source domain) for the classification heads NNωy and NNωd

.
• The ReLU activation function for all the layers except the encoding and output
layers.

• An encoding dimension in {16, 64}.

111

Figure 6.4: Box plots of peak F1-scores achieved by the encoding and classification meth-
ods, separated by modeling strategy (point vs. sequence) and colored by
method category (encoding vs. classification).

• A fixed KL divergence weight β ∈ {1, 5}. We also tried using the linear scheduling
strategy of the original implementation, but this did not lead to a better performance.

• Weights αy = 100, 000 and αd = 100, 000 for the class and domain classification
losses, respectively. We also tried different weight values, as well as the CoV-
Weighting strategy proposed by Groenendijk et al. [127] to automatically balance
the three loss terms, but this did not lead to a better performance.

• A mini-batch size B = 128 (like in the original implementation).

We report the performance Conv DIVA using the following preprocessing and hyperpa-
rameters:

• A standardization of the input samples.
• Each encoder NNφy

and NNφd
with two 1D convolutional layers using 32 filters

of size 5, a stride length of 1 for the first layer and 2 for the second layer, and the
ReLU activation function, followed by a fully-connected layer to output the encoding
parameters.

• The decoder NNθyd
defined symmetrically to one encoder as per the design of Fig-

ure 4.8.
• The same architectures as Dense DIVA for the conditional class and domain prior
networks NNθy

and NNθd
, as well as for the classification heads NNωy and NNωd

.
• An encoding dimension of 32.
• A fixed KL divergence weight β ∈ {1, 5}.
• Weights αy = 100, 000 and αd = 100, 000 for the class and domain classification
losses, respectively.

• A mini-batch size B = 128 (like in the original implementation).

6.3.3 Results and Analyses

Figure 6.4 shows the box plots of the peak F1-scores achieved by the encoding and clas-
sification methods across their hyperparameter values. It separates point from sequence
modeling methods in two different subplots with a shared y-axis, and shows boxes colored
based on the method category (encoding vs. classification). Table 6.1 follows the format
described in Section 4.5.1, considering the methods with their best-performing hyperpa-
rameters (i.e., maximum peak F1-score in Figure 6.4), and reporting their average peak
F1-score within each test trace for each type of event.

112

Method Tr-T1 Tr-T2 Tr-T3 Tr-T4 Tr-T5 Tr-T6

XGBoost [129] 0.97 1.00 0.82 0.61 0.18 0.46

Dense TEADAL 0.96 0.96 0.59 0.67 0.73 0.36

Dense DIVA [71] 0.90 0.86 0.56 0.57 0.11 0.30

Dense DSAD [62] 0.97 1.00 0.88 0.79 0.97 0.54

Dense CEADAL 0.96 0.98 0.89 0.85 0.95 0.56

Conv TEADAL 0.17 0.93 0.15 0.54 0.94 0.34

Conv DIVA [71] 0.87 0.98 0.56 0.40 0.31 0.32

Conv DSAD [62] 0.98 0.98 0.91 0.86 0.89 0.61

Conv CEADAL 0.99 0.97 0.89 0.81 0.96 0.57

Table 6.1: Peak F1-scores achieved by the best-performing encoding and classification
methods for each event type within a trace (averaged across test traces), with
the top-three F1-scores for each event type shown in bold.

Improvements over Unsupervised Methods

Figure 6.4 shows that the three best-performing methods of this weakly-supervised study
were Dense CEADAL, Conv DSAD, and Conv CEADAL, thus including both our CEADAL
variants (C1). These three methods significantly improved on the unsupervised methods
in terms of median performance (with 0.80, 0.76 and 0.75 median peak F1-scores, respec-
tively, over 0.65 for TranAD, the best unsupervised baseline, and 0.68 for Dense DIVAD-
GM, the best unsupervised domain generalization method), which shows that leveraging
the few labeled anomalies was useful to achieve higher performances with less hyperparam-
eter tuning (C2). The top-three methods also obtained higher maximum peak F1-scores
than unsupervised methods (0.83, 0.81 and 0.80, respectively, over 0.66 for TranAD and
0.79 for Dense DIVAD-GM), showing that the few anomalies leveraged were also useful to
reach higher performances with the right hyperparameter values (C3).

Implicit Context Generalization

An important factor that contributed to the superior performance of the CEADAL and
Deep SAD variants was their higher robustness to the normal behavior shift challenge of
the Exathlon benchmark, induced by their objective of learning similar latent representa-
tions for all the normal samples (C4). We highlight this implicit context generalization
aspect in Figures 6.5a, 6.5b, 6.5c and 6.5d, showing Kernel Density Estimate (KDE)
plots of the anomaly scores assigned to training normal, test normal and test anomalous
records by Dense CEADAL, Dense TEADAL, Conv CEADAL and Conv DSAD, respec-
tively. From these figures, we can see that the CEADAL and Deep SAD variants were
typically more robust to normal behavior shift than the best TEADAL method, for which
a similar latent representation of normal samples was not enforced. Specifically, we can
see that CEADAL and Deep SAD variants assigned more similar anomaly scores to the
training and test normal records (i.e., better aligned green and blue KDEs) than the
best TEADAL method. This anomaly score alignment however remains imperfect, and
weaker than the one achieved by the explicit domain generalization of Dense DIVAD-GM,
shown in Figure 5.5 (C5). Another observation we can make from Figure 6.5b is that the
richer representation of normal data learned by TEADAL, although less robust to normal
behavior shift, resulted in a better modeling of the training data than CEADAL and Deep
SAD (narrower green KDE), as we could expect from Section 6.2.4 (C6).

113

(a) Dense CEADAL. (b) Dense TEADAL.

(c) Conv CEADAL. (d) Conv DSAD.

Figure 6.5: Kernel Density Estimate (KDE) plots of the anomaly scores assigned by Dense
CEADAL, Dense TEADAL, Conv CEADAL and Conv DSAD to training nor-
mal, test normal and test anomalous records.

Improved Anomaly Coverage

Considering the maximum peak F1-scores achieved by the methods in Table 6.1, we can
see that T1 (Bursty Input), T2 (Bursty Input Until Crash), T3 (Stalled Input) and T5
(Driver Failure) were the easiest types of events to detect within test traces across the
best encoding methods (C7). We can also see that our CEADAL variants achieved a good
general separation of the different event types within the test traces, both with five out of
six F1-scores in the top-three for their event type (C8).

Importantly, Table 6.1 further shows that the three best-performing methods (includ-
ing our CEADAL variants) significantly improved on the maximum peak F1-scores of
unsupervised methods for T3 and T4 (CPU Contention) events within test traces, hence
partly addressing the challenge of identifying the impacts of these harder events on our
high-dimensional feature set (C9). Specifically, Dense CEADAL, Conv DSAD and Conv
CEADAL achieved peak F1-scores of 0.89, 0.91 and 0.89 for T3 events, respectively, over
0.67 and 0.80 for the best-performing point and sequence modeling unsupervised base-
lines (in Table 4.1), and 0.87 for the best-performing domain generalization method (in
Table 5.1). Although sequence modeling methods still outperformed the point modeling
ones for T3 events here, the significant improvement of Dense CEADAL over the point
modeling unsupervised baselines shows the few labeled anomalies could facilitate point de-
tection, being useful to identify the contextual and point anomalies induced by T3 events
(C10). The largest overall improvement was however achieved for the (more subtle) T4
events (C11), with peak F1-scores of 0.85, 0.86 and 0.81 obtained for Dense CEADAL,
Conv DSAD and Conv CEADAL, respectively, over 0.77 for Rec AE in Table 4.1, the best
T4 peak F1-score across the unsupervised methods.

Again from Table 6.1, we can see that T6 (Executor Failure) events however remained
the hardest type to detect by far across the encoding and classification methods (C12).
Specifically, the maximum peak F1-scores of 0.56, 0.61 and 0.57 obtained for Dense
CEADAL, Conv DSAD and Conv CEADAL, respectively, did not improve on the best
unsupervised T6 peak F1-score of 0.68, achieved by Rec DIVAD-GM in Table 5.1. This
shortcoming could be explained by the relatively low representation of T6 anomalies in
these methods’ training and validation data (0.07% and 1.62% of samples, respectively,
for L = 1, and 0.08% and 1.62% of samples, respectively, for L = 20), compared to the va-
riety and detection difficulty of such events described in Section 4.3. From Tables 4.1, 5.1

114

and 6.1, we can see that T6 events tended to be better detected by sequence modeling
methods, which indicates that T6 detection could be improved through a refined modeling
only, besides altering our feature engineering strategy.

Finally, Table 6.1 shows that Conv TEADAL performed much worse than its fully-
connected counterpart in terms of T1 and T3 event detection within traces, with 0.17 and
0.15 peak F1-scores compared to 0.96 and 0.59, respectively. This indicates that Conv
TEADAL could require more hyperparameter tuning to reach a similar performance to
Dense TEADAL in practice.

Improved Noise Integration

Figures 6.6a, 6.6b and 6.6c show the time plots of the anomaly scores assigned by Dense
CEADAL, Conv DSAD and Conv CEADAL, respectively, in the (Stalled Input) trace
6 3 200000 76, whose first half contains a particularly high level of noise. From these
figures, and Figure 4.15, we can see that these methods were far more able to integrate
heavy and sustained noisy patterns into their normal behavior than TranAD, the “most
robust” unsupervised baseline from Chapter 4. This indicates that leveraging the few
anomaly labels as prior knowledge for the anomaly types to detect was indeed useful in
differentiating noisy, minority patterns from our relevant anomalies in test data, hence
addressing our corresponding challenge (C13). We can also see this resilience to noise was
even higher for sequence modeling methods, relying on larger contexts of length L = 20,
in which small irrelevant deviations get diminished, to derive their anomaly scores (C14).
Like for TranAD, most of the anomaly scores assigned by the three methods in this trace
were however below their peak F1-score threshold, which resulted in them missing all the
corresponding T3 events, and again highlights the suboptimality of their implicit context
generalization to address our normal behavior shift challenge.

Limitations of Classification Methods

Another observation we can make from Figure 6.4 and Table 6.1 is that classification
methods performed much worse than our best encoding methods, but also worse than
the best unsupervised baselines from Chapter 4 (C15). Only Dense DIVA could indeed
slightly outperform TranAD in maximum peak F1-score, with 0.67 over 0.65. Like all
other classification methods, it however performed worse in median peak F1-score, with
0.63 compared to 0.65 for TranAD.

A first factor explaining this poorer performance can be identified from Table 6.1, show-
ing that the three classification methods could not detect most of T5 (Driver Failure)
events within the test traces (C16), with peak F1-scores of 0.18, 0.11 and 0.31 obtained
for XGBoost, Dense DIVA and Conv DIVA, respectively. Figures 6.7 and 6.8b, showing
the time plots of the anomaly scores assigned by XGBoost in trace 6 5 1000000 93 and
Dense DIVA in trace 3 5 1000000 89, respectively, further highlight the inability of these
methods to detect T5 anomaly signals. This limitation can most likely be explained by the
very low representation of T5 anomalies in the training and validation data, constituting
only 0.01% and 0.01% of samples, respectively, for L = 1, and 0.02% and 0.01% of sam-
ples, respectively, for L = 20. Because encoding methods primarily focus on modeling the
normal behavior of the data, and deem test samples anomalous if they deviate from this
normal behavior, they typically require very few, if any, training examples of T5 anomalies
to accurately detect them from the significant deviations they induce in test samples. In
contrast, classification methods focus on modeling the normal and anomalous classes in-
dividually, deeming test samples anomalous if they belong to the specific “anomaly class”
learned from training. As such, we can expect these methods to require more training
examples of T5 anomalies to accurately detect them in test data.

115

(a) Anomaly scores of Dense CEADAL.

(b) Anomaly scores of Conv DSAD.

(c) Anomaly scores of Conv CEADAL.

Figure 6.6: Time plots of the anomaly scores assigned by Dense CEADAL, Conv DSAD
and Conv CEADAL in trace 6 3 200000 76, highlighting their peak F1-score
thresholds and the ground-truth anomaly ranges.

For XGBoost, this limitation to detect T5 events was further combined with a vul-
nerability to the normal behavior shift of the Exathlon benchmark, showing that simply
leveraging a few anomaly labels was not helpful in generalizing to different trace contexts
(C17). This lack of generalization is illustrated in Figure 6.9, showing the ridgeline plot
of XGBoost’s anomaly scores for the records of each type (i.e., in “normal” and T1 to
T6 ranges) in each test trace, with its peak F1-score threshold highlighted in red. From
this figure, we can see that, although XGBoost was able to separate most of the anoma-
lous records from normal data within the test traces, the misalignment of anomaly scores
assigned to normal records across different traces prevented it from achieving optimal
performance with a single, global threshold. Clear examples from Figure 6.9 include the
test traces 6 3 200000 76 and 10 5 1000000 85, for which the anomaly scores assigned
by XGBoost were nearly all below its optimal global threshold, leading it to miss most of
the corresponding anomalies despite achieving a reasonable separation within each trace.

For DIVA, another factor that seemed to hinder the performance was the output activa-
tions of its classification head NNωy used to derive the anomaly scores (C18). When using
sigmoid or softmax activation functions, classification methods indeed tend to bias their
model toward a specific anomaly score threshold as part of their training procedure. As
such, we can expect them to benefit far less from our “peak F1-score” evaluation strategy,
since tuning their threshold based on the test performance will be far less effective. This is
illustrated for Dense DIVA in Figure 6.6, showing that its peak F1-score threshold was set

116

Figure 6.7: Time plot of the anomaly scores assigned by XGBoost in trace 6 5 1000000 93,
highlighting its peak F1-score threshold and the ground-truth anomaly ranges.

to (the already “pre-thresholded” value of) 1.0. This “dichotomous” behavior, also present
to a lesser extent for XGBoost, as shown in Figure 6.9, had the effect of increasing both
the false negative and false positive rates of Dense DIVA. Figures 6.8a and 6.8c, showing
the time plots of the anomaly scores assigned by Dense DIVA in traces 1 2 100000 68 and
6 5 1000000 93, respectively, present illustrative examples of this phenomenon. In Fig-
ure 6.8a, we can see that (possibly less-significant) abnormal patterns in the T2 (Bursty
Input Until Crash) range of trace 1 2 100000 68 tended to get assigned very low anomaly
scores, producing a significant amount of false negative predictions. Figure 6.8c highlights
the opposite behavior, with (possibly slightly-deviating) normal patterns outside the real
anomaly ranges of trace 6 5 1000000 93 getting assigned very high anomaly scores, which
produced a lot of false positives. For traditional anomaly detection methods, records from
these two cases were typically assigned more “nuanced” anomaly scores, which allowed
our evaluation strategy to find threshold values that mitigated these false negative and
false positive issues.

6.4 Summary and Conclusions

In this chapter, we started by formalizing a revised problem statement for anomaly de-
tection under a weakly-supervised setting, where a few anomaly labels are available to
train the anomaly detection methods. We then proposed a method called CEADAL, re-
lying on contrastive learning to construct a latent mapping where normal data samples are
grouped within a tight region, away from the anomalies. We also presented TEADAL,
an alternative of CEADAL based on the triplet loss, inducing richer, less-constrained rep-
resentations of normal data samples in latent space. We then applied our CEADAL and
TEADAL methods against the Exathlon benchmark under this new weakly-supervised
setting, comparing them to other encoding and classification methods. After presenting
the methods compared and their grid of hyperparameter values, we presented our results
and analyses from this study, which led to 18 conclusions, summarized and grouped by
similarity below:

• C1, C2, C3. The three best-performing methods were Dense CEADAL, Conv
DSAD, and Conv CEADAL, thus including both our CEADAL variants. Leverag-
ing a few labeled anomalies was both useful in achieving (i) a higher performance
with less hyperparameter tuning, and (ii) a higher performance with properly tuned
hyperparameter values.

• C4, C5. An important factor in the superiority of CEADAL and Deep SAD variants
over the other methods was their higher ability to handle the normal behavior shift
challenge of the Exathlon benchmark. This ability stemmed from the implicit context
generalization induced by these methods, itself resulting from the strong proximity

117

(a) Anomaly scores in trace 1 2 100000 68.

(b) Anomaly scores in trace 3 5 1000000 89.

(c) Anomaly scores in trace 6 5 1000000 93.

Figure 6.8: Time plots of the anomaly scores assigned by Dense DIVA in traces
1 2 100000 68, 3 5 1000000 89 and 6 5 1000000 93, highlighting its peak F1-
score threshold and the ground-truth anomaly ranges.

constraints they enforced for the normal samples in latent space. Because of its
implicit nature, this generalization however remained suboptimal , and weaker to the
one reached by our Dense DIVAD-GM method from Chapter 5.

• C6. Despite being less robust to normal behavior shift, the richer representation
learned by TEADAL for the normal samples resulted in a better modeling of the
training data than the other methods.

• C7, C8, C9, C10, C11. Within test traces, the easiest types of events to detect
across the best encoding methods were T1 (Bursty Input), T2 (Bursty Input Until
Crash), T3 (Stalled Input) and T5 (Driver Failure), with our CEADAL variants
achieving a good general separation of the different event types. The best-performing
methods (including CEADAL) significantly improved on the maximum peak F1-
scores of unsupervised methods for T3 and T4 (CPU Contention) events, hence
partly addressing the challenge of identifying the impacts of these harder events on
our high-dimensional feature set . The largest overall improvement was achieved for
the (more subtle) T4 events, but the few labeled anomalies were also helpful in better
detecting T3 events with point modeling methods.

• C12. Within test traces, the hardest type of events to detect across the methods
remained T6 (Executor Failure). This could be explained by the relatively low
representation of T6 anomalies in the training and validation data, compared to the
variety and detection difficulty of these events.

118

• C13, C14. The best encoding methods of this weakly-supervised study were far
more able to differentiate normal but noisy, minority patterns from relevant anoma-
lies than unsupervised methods, showing that the few labeled anomalies were indeed
useful to contrast relevant anomalies from other minority patterns. This robustness
to noise was even higher for sequence modeling methods, which could rely on larger
contexts to derive their anomaly scores.

• C15, C16, C17, C18. The classification methods performed much worse than our
best encoding methods, but also worse than the best unsupervised baselines. The
first factor of this poorer performance was the inability of classification methods
to detect most of T5 (Driver Failure) events, most likely due to their lack of rep-
resentation in the training and validation data. For XGBoost, this limitation was
further combined with a vulnerability to the normal behavior shift challenge of our
benchmark. For DIVA, and to some extent all classification methods, it was fur-
ther combined with the negative impact of the “pre-thresholding” performed for its
predictions during training, disadvantaged by our evaluation strategy, which rely on
finding the optimal threshold for the anomaly scores in test data.

In particular, this study showed that our weakly-supervised setting and proposed CEADAL
method could partly address all three of the limitations L1-3 identified for the unsuper-
vised baselines in Chapter 4, providing a solution that (i) is more robust to the normal
behavior shift from training to test data, (ii) better identifies anomaly signals of harder
event types in a high-dimensional feature set , and (iii) better distinguishes normal but
noisy, minority patterns from our relevant event types in test data.
This study also revealed some improvement directions for our proposed methods

which could be pursued in future work, as further discussed in the next chapter.

119

Figure 6.9: Ridgeline plot of XGBoost’s anomaly scores for the records of each type (i.e.,
in “normal” and T1 to T6 ranges) in each test trace, with its peak F1-score
threshold highlighted in red.

120

7 Conclusions and Perspectives

This chapter summarizes the main contributions and conclusions of this thesis, in Sec-
tion 7.1, and lays out some perspectives for future work, in Section 7.2.

7.1 Conclusions

The first objective of this thesis was to address the lack of tools openly available to develop
and benchmark explainable anomaly detection methods in high-dimensional time series,
with a focus on AIOps scenarios. We could achieve this objective through the following
contribution:

CTB1 New benchmarking tools for explainable anomaly detection in high-dimensional
time series, including the Exathlon benchmark1 and the design of LEADS Viewer2. The
Exathlon benchmark first includes a Spark Streaming dataset, consisting of data traces
of significantly higher dimensionality than traditional time series datasets (around 2.3M
raw data records of 2, 283 columns, brought to 2.2M with 237 features in our experimental
setup), collected with AIOps considerations in mind. Through its disturbed traces, this
dataset provides labeled anomaly intervals for six different types of events T1-6, enabling
the detailed analysis of anomaly detection (AD) and explanation discovery (ED) methods.
Exathlon also includes a flexible evaluation methodology for AD and ED. Its AD func-
tionality implements metrics for both range-based and point-based evaluation, with the
option of using different AD levels to reflect increasingly challenging requirements. Its ED
functionality provides new metrics to evaluate anomaly explanations both “locally” (for
a given explained instance) and “globally” (across multiple explained instances), without
the need for ground-truth explanatory features. Finally, Exathlon provides a full pipeline
for explainable anomaly detection, designed to be modular within and beyond its Spark
Streaming use case, allowing different datasets and methods to be added and combined.
Either jointly or independently from Exathlon, LEADS Viewer can be used as an effective
way to qualitatively assess explainable anomaly detection methods, providing an easy-to-
use Graphical User Interface (GUI) to visualize their outputs on high-dimensional time
series data.

The remainder of this thesis focused on the anomaly detection functionality of the
Exathlon benchmark, starting with the objective of assessing the performance of repre-
sentative unsupervised methods against its AIOps use case. This objective was mainly
achieved through the following contribution:

CTB2 An in-depth benchmarking analysis of representative unsupervised anomaly detec-
tion methods. This study started with a thorough analysis of the Spark Streaming dataset,
deriving a detailed experimental setup showed to reflect key AIOps challenges. It then
derived 15 conclusions for the methods compared, covering their characteristics and trade-
offs, ability to detect different types of events, and limitations to address the benchmark
challenges. Distribution methods were for instance more vulnerable to normal behavior
shift from training to test data than reconstruction methods due to their explicit modeling

1Publicly available at https://github.com/exathlonbenchmark/exathlon.
2Publicly available at https://github.com/exathlonbenchmark/leads-viewer.

121

of the normal training distribution, which resulted in lower performance (with a peak F1-
score of 0.54 for the best distribution method vs. 0.66 for the best reconstruction method).
Another conclusion was that the larger contexts used by sequence modeling methods to
derive their anomaly scores usually made them more robust to “noisy”, minority patterns
than point modeling methods. Across the methods compared, T1 (Bursty Input), T2
(Bursty Input Until Crash) and T5 (Driver Failure) events were typically easier to detect
than T3 (Stalled Input), T4 (CPU Contention) and T6 (Executor Failure) events, with
T6 events being the most challenging type. Overall, this study revealed the unsupervised
methods were limited to solve our benchmark setup, with a maximum peak F1-score of
only 0.66 achieved by TranAD [14]. In particular, the methods compared displayed three
main limitations, listed below in decreasing order of impact on the AD performance:

• L1. A vulnerability to normal behavior shift from training to test data, with different
contexts of normal operation for the Spark Streaming applications being considered
differently abnormal by the methods.

• L2. A production of false negatives for the hardest anomalies given our large number
of features .

• L3. A production of false positives for normal but “noisy”, minority patterns in test
data.

The third objective of this thesis was therefore to explicitly address L1 in this unsupervised
setting. We tackled it through the approach of domain generalization, considering different
normal behaviors as heterogeneous domains, and associating normal behavior shift to the
concept of domain shift. This approach allowed us to effectively achieve our objective,
through the following contribution:

CTB3 A new explicit domain generalization method for unsupervised anomaly detection.
We started by formally characterizing the problem of unsupervised anomaly detection
under domain shift. We then proposed Domain-Invariant VAE for Anomaly Detection,
or DIVAD, relying on feature disentanglement to decompose the observed variable into
domain-specific and domain-invariant encodings, and defining anomalies as samples that
deviate from the training distribution of domain-invariant encodings only. We designed
and run different DIVAD variants against our benchmark and setup, and showed that the
normal behavior learned by the best-performing ones generalized much better to the test
data than the unsupervised baselines, thus addressing their limitation L1 and significantly
improving their AD performance (with a maximum peak F1-score of 0.79). Through its
14 conclusions, our study also confirmed that using a learned Gaussian Mixture prior
(DIVAD-GM) over a fixed Gaussian prior (DIVAD-G) for the domain-invariant encoding
variable was always beneficial, although DIVAD-G could still outperform the unsuper-
vised baselines when deriving its anomaly scores from an aggregated posterior estimate
instead of the prior (with a maximum peak F1-score of 0.76 obtained with the aggregated
posterior estimate vs. 0.64 obtained with the prior). Another conclusion was that us-
ing point modeling DIVAD variants was here sufficient to outperform the unsupervised
baselines, due to the predominantly contextual nature of the anomalies in our setup. We
finally applied DIVAD to the Application Server Dataset (ASD) [13], and showed it could
outperform the best unsupervised baseline TranAD in maximum peak F1-score for 92%
of the test cases (with over 10% improvements for 67% of them), hence highlighting its
broader applicability beyond our Spark Streaming dataset.

Despite their success in addressing L1, none of our DIVAD variants could effectively
tackle the remaining limitations L2 and L3 of the unsupervised baselines, showing no
improvement in the detection of more complex T4 and T6 events, nor being particularly
more resilient to “noisy”, minority patterns encountered in test data. The fourth objective

122

of this thesis was therefore to jointly address the three limitations L1-3 in a weakly-
supervised extension of our setting, where a few labeled anomalies are available to train
the detection methods. We could take a significant step toward this objective, through
the following contribution:

CTB4 New contrastive methods in a weakly-supervised setting . We proposed Contrastive
Encoder for Anomaly Detection with a Few Anomaly Labels (CEADAL), a method that
(i) extracts normal-normal and normal-anomaly pairs from the training samples, (ii) re-
lies on the contrastive loss to construct a latent mapping where normal data samples
are grouped within a tight region, away from the anomalies, and (iii) defines anomalies as
samples that deviate from the training distribution of normal latent samples. To study the
impact of the contrastive loss used by CEADAL, we also proposed an alternative method
based on the triplet loss called TEADAL, inducing richer, less-constrained representations
of normal data samples in latent space. We then applied CEADAL and TEADAL against
the Exathlon benchmark, under the experimental setup of our unsupervised study aug-
mented with training anomalies, and compared them with other encoding and classification
methods. Our study derived 18 conclusions, and showed that CEADAL was very effec-
tive in addressing the three limitations L1-3, achieving the highest maximum and median
peak F1-scores across all the methods compared (0.83 and 0.80, respectively). In particu-
lar, our study confirmed that the strong proximity constraints enforced by CEADAL for
normal samples in latent space tended to induce an “implicit context generalization” that
benefited addressing L1. This improved generalization in turn explained its higher perfor-
mance achieved compared to less-constrained alternatives like TEADAL, which obtained
a maximum peak F1-score of only 0.64 despite a better modeling of the training data.
The few labeled anomalies leveraged by CEADAL were also helpful in better detecting T4
(CPU Contention) events, as well as differentiating even the most sustained noisy patterns
from our relevant anomalies in test data, thereby tackling L2 and L3. Our study finally
outlined several reasons for the poorer performance of the classification methods, including
(i) their inability to detect under-represented T5 (Driver Failure) events, (ii) their vulner-
ability to normal behavior shift (for XGBoost [129]), and (iii) the “pre-thresholding” they
performed during training, which was disadvantaged by our evaluation strategy.

Our CEADAL method significantly improved the maximum and median AD perfor-
mance of the unsupervised baselines, making notable progress in addressing their limita-
tions L1-3. Because of its implicit nature, the context generalization it performed , and
thus its handling of L1, however remained suboptimal , and less effective than the one we
could reach using our DIVAD framework. Besides, none of the methods could improve the
detection of T6 (Executor Failure) events, and thus fully overcome L2. These remaining
challenges highlight important research directions for future work on the modeling side,
which will be further discussed in Section 7.2.

7.2 Perspectives

The work of this thesis could be extended and pursued in the following directions:

Explainable anomaly detection benchmarking . Being extensible and modular, the
Exathlon benchmark could be expanded with additional, more recent evaluation metrics
in future work. For anomaly detection, these could include Volume Under the Surface
(VUS) [114], a recent metric offering benefits such as a greater robustness to lag and
noise, as well as a clear separation between “accurate” and “inaccurate” methods. In
our experimental studies, we chose to consider the simplest metrics that aligned with
our requirements and desired properties for the compared methods. Incorporating VUS in

123

Exathlon could however be useful to extend these studies, as well as in other scenarios. On
the explanation front, our benchmark could be expanded to support more Co-12 proper-
ties [39] and explanation formats. Target Sensitivity could for instance be better captured
by requiring high Discordance(·) scores across explanations of different event types, in
addition or replacement to low scores across explanations of a same type. Multiple per-
turbation mechanisms could also be added and compared for our Instability(·) metric, and
consider the impact the perturbed instances have on corresponding model predictions. We
finally hope the release of Exathlon’s Spark Streaming dataset will be part of a growing
effort to openly release challenging, real-world data traces for explainable AD in AIOps.
As our studies showed, transparency about the precise settings and environment used to
record such traces is instrumental in characterizing their contexts of normal operation,
and thus a significant part of the problem. Providing a wide set of anomalous events is
also valuable, as it enables studying the behavior of different explainable AD methods at
a finer level. To further improve the realism and quality of explanation discovery, it is
also important for these events to induce slight, progressive effects on the recorded enti-
ties, to enable identifying event type-specific precursory signals of abnormality before Key
Performance Indicators (KPIs) get significantly impacted.

Anomaly detection and context generalization . Despite its success in addressing the
main limitation L1 of our baselines, the unsupervised nature of our DIVAD framework
makes it vulnerable to removing relevant anomaly signals from the samples in domain-
invariant space. This was for instance the case for Rec DIVAD-G in our study, which
significantly hindered its coverage of T1 (Bursty Input) events. The “anomaly-aware”
mapping constructed through our weakly-supervised setting and CEADAL method could
alleviate this issue, but with a weaker, implicit generalization and addressing of L1. Ef-
forts have been made during this thesis to design a weakly-supervised version of DIVAD,
combining its explicitly tackling of normal behavior shift with the robustness to removing
anomaly signals brought by the few labeled anomalies. Although the performance ob-
tained was not yet satisfactory, we believe this approach could still improve the current
results. Further efforts could also be directed at making the DIVAD framework and its
weakly-supervised version more stable to reduce the amount of hyperparameter tuning
needed. Additionally, more complex architectures could be considered in the future to
better detect more complex event types like T6 (Executor Failure), since we could see that
more advanced sequence modeling methods were beneficial in this regard. During this
thesis, we also experimented with a time-frequency architecture for DIVAD, considering
time and frequency “paths” within its encoders and decoder. The frequency paths oper-
ated on the Discrete Fourier Transform (DFT) of the input samples, which can typically
be more domain-invariant than time-based features [113]. Although experiments using
this architecture across multiple window lengths and downsampling factors could not im-
prove the performance so far, it could still be further explored in the future for this or
other scenarios. Finally, another interesting direction to address L1 could be through
the scope of fast domain adaptation, where a base model can be adjusted to the first few
data samples of a given test trace (i.e., target domain). Although this approach could be
more costly than domain generalization due to this “retraining” step, the cost would still
be lower than training a model per trace. It could also be further reduced, for instance
relying on AD to identify whether the domain shift of a test trace is significant enough
to require an adjustment. Such cost analyses for model training and inference would also
constitute important aspects to consider as extensions of our studies, which focused more
on the effectiveness of the AD methods in addressing our AIOps challenges.

Explainability . The significant challenges encountered for the compared AD methods
with respect to our benchmark centered the modeling work of this thesis around the

124

anomaly detection component of our AIOps use case. Its explainability component yet
remains essential to indicate the reasons behind anomalies, so that operators like site
reliability engineers (SREs) can better understand the issues of the monitored entities
and deploy corrective actions. During this thesis, some work was for instance done to
help improve the EXstream algorithm [90], proposing to explain a given anomalous range
of records with respect to a reference range, where the anomalous range was typically
flagged by a detection method. An advantage of EXstream is that it can operate fully
independently of the explained model. As such, it can optionally rely on a different
feature set, considering additional metrics that would be harmful to model globally but
useful to consider locally in search for a root cause. For our Spark Streaming dataset,
this could correspond to the OS metrics recorded using nmon. These metrics were ignored
when constituting the feature set of our experimental setup, since they relate to the entire
cluster and are thereby influenced by all the concurrent jobs running on it. However,
they could still be useful to further diagnose what is occurring during an anomalous
event on the cluster, outside the application, and potentially facilitate going back to a
root cause. Explainability could also be added to our existing methods by updating
and extending the experimental study of data and model explainers we conducted in our
Exathlon paper [17], considering either the current or some extended metrics for ED, as
discussed earlier. Besides data and model-agnostic explainers, methods relying on model
internals could also be included, for instance considering attention-based architectures for
our DIVAD models, and working on making attention weights reflect desirable properties
of explanations [131].

125

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[2] Y. Dang, Q. Lin, and P. Huang, “Aiops: Real-world challenges and research innova-
tions,” in 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 4–5, 2019.

[3] M. S. (IDC), “Worldwide spending on public cloud services is forecast to double
between 2024 and 2028, according to new idc spending guide.” https://www.idc.

com/getdoc.jsp?containerId=prUS52460024, 2024. Accessed: 2024-08-01.

[4] G. Kim, P. Debois, J. Willis, and J. Humble, The DevOps Handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, 2016.

[5] Gartner, “Market guide for aiops platforms.” https://www.gartner.com/en/

documents/3772124, 2018. Accessed: 2023-10-10.

[6] Z. Zhong, Q. Fan, J. Zhang, M. Ma, S. Zhang, Y. Sun, Q. Lin, Y. Zhang, and D. Pei,
“A survey of time series anomaly detection methods in the aiops domain,” 2023.

[7] M. Intelligence, “Aiops platforms market size - industry report on share, growth
trends & forecasts analysis (2024 - 2029).” https://www.mordorintelligence.

com/industry-reports/aiops-market, 2024. Accessed: 2024-08-01.

[8] V. Chandola et al., “Anomaly detection: A survey,” ACM Computing Surveys,
vol. 41, no. 3, pp. 15:1–15:58, 2009.

[9] Z. Zhong, Q. Fan, J. Zhang, M. Ma, S. Zhang, Y. Sun, Q. Lin, Y. Zhang, and D. Pei,
“A survey of time series anomaly detection methods in the aiops domain,” 2023.

[10] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection algorithms – the
numenta anomaly benchmark,” in 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA), pp. 38–44, 2015.

[11] K.-H. Lai, D. Zha, J. Xu, Y. Zhao, G. Wang, and X. Hu, “Revisiting time series
outlier detection: Definitions and benchmarks,” in Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks (J. Vanschoren and
S. Yeung, eds.), vol. 1, Curran, 2021.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[13] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei, “Multivariate time series
anomaly detection and interpretation using hierarchical inter-metric and temporal
embedding,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, (New York, NY, USA), p. 3220–3230, Associ-
ation for Computing Machinery, 2021.

127

[14] S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer networks for
anomaly detection in multivariate time series data,” Proc. VLDB Endow., vol. 15,
p. 1201–1214, feb 2022.

[15] M. Jiang, C. Hou, A. Zheng, X. Hu, S. Han, H. Huang, X. He, P. S. Yu, and Y. Zhao,
“Weakly supervised anomaly detection: A survey,” 2023.

[16] Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science
Review, vol. 5, pp. 44–53, 08 2017.

[17] V. Jacob et al., “Exathlon: A benchmark for explainable anomaly detection over
time series,” Proc. VLDB Endow., vol. 14, no. 11, pp. 2613–2626, 2021.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, jul 2009.

[19] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in time series: A
comprehensive evaluation,” Proc. VLDB Endow., vol. 15, p. 1779–1797, may 2022.

[20] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generalization: A
survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, p. 4396–4415, Apr. 2023.

[21] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. S.
Yu, “Generalizing to unseen domains: A survey on domain generalization,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 8, pp. 8052–8072,
2023.

[22] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in-
variant mapping,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2, pp. 1735–1742, 2006.

[23] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for
face recognition and clustering,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 815–823, 2015.

[24] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial
Intelligence Review, vol. 22, pp. 85–126, 10 2004.

[25] V. Chandola, V. Mithal, and V. Kumar, “Comparative evaluation of anomaly detec-
tion techniques for sequence data,” in 2008 Eighth IEEE International Conference
on Data Mining, pp. 743–748, 2008.

[26] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly
detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017. Online
Real-Time Learning Strategies for Data Streams.

[27] N. Singh and C. Olinsky, “Demystifying numenta anomaly benchmark,” in 2017
International Joint Conference on Neural Networks (IJCNN), pp. 1570–1577, 2017.

[28] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” in International
Conference on Information Systems Security and Privacy, 2018.

[29] S. Moritz, F. Rehbach, S. Chandrasekaran, M. Rebolledo, and T. Bartz-Beielstein,
“Gecco industrial challenge 2018 dataset: A water quality dataset for the ’internet
of things: Online anomaly detection for drinking water quality’ competition,” in
Genetic and Evolutionary Computation Conference, feb 2018.

128

[30] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and M. J. Franklin, “Tsb-
uad: An end-to-end benchmark suite for univariate time-series anomaly detection,”
Proc. VLDB Endow., vol. 15, p. 1697–1711, apr 2022.

[31] P. Wenig, S. Schmidl, and T. Papenbrock, “Timeeval: A benchmarking toolkit
for time series anomaly detection algorithms,” Proc. VLDB Endow., vol. 15,
p. 3678–3681, aug 2022.

[32] S. Alnegheimish, D. Liu, C. Sala, L. Berti-Equille, and K. Veeramachaneni, “Sintel:
A machine learning framework to extract insights from signals,” in Proceedings of
the 2022 International Conference on Management of Data, SIGMOD ’22, (New
York, NY, USA), p. 1855–1865, Association for Computing Machinery, 2022.

[33] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for
multivariate time series through stochastic recurrent neural network,” in Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, (New York, NY, USA), p. 2828–2837, Association for
Computing Machinery, 2019.

[34] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom, “De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding,”
in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, (New York, NY, USA), p. 387–395, Association
for Computing Machinery, 2018.

[35] C. M. Ahmed, V. R. Palleti, and A. P. Mathur, “Wadi: A water distribution testbed
for research in the design of secure cyber physical systems,” in Proceedings of the
3rd International Workshop on Cyber-Physical Systems for Smart Water Networks,
CySWATER ’17, (New York, NY, USA), p. 25–28, Association for Computing Ma-
chinery, 2017.

[36] A. P. Mathur and N. O. Tippenhauer, “Swat: a water treatment testbed for research
and training on ics security,” in 2016 International Workshop on Cyber-physical
Systems for Smart Water Networks (CySWater), pp. 31–36, 2016.

[37] C. Molnar, Interpretable Machine Learning. Lulu.com, 2 ed., 2022.

[38] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine
learning,” arXiv: Machine Learning, 2017.

[39] M. Nauta, J. Trienes, S. Pathak, E. Nguyen, M. Peters, Y. Schmitt, J. Schlötterer,
M. van Keulen, and C. Seifert, “From anecdotal evidence to quantitative evaluation
methods: A systematic review on evaluating explainable ai,” ACM Comput. Surv.,
vol. 55, jul 2023.

[40] P. Q. Le, M. Nauta, V. B. Nguyen, S. Pathak, J. Schlötterer, and C. Seifert, “Bench-
marking explainable ai - a survey on available toolkits and open challenges,” in
Proceedings of the Thirty-Second International Joint Conference on Artificial Intel-
ligence, IJCAI-23 (E. Elkind, ed.), pp. 6665–6673, International Joint Conferences
on Artificial Intelligence Organization, 8 2023. Survey Track.

[41] N. Myrtakis, V. Christophides, and E. Simon, “A Comparative Evaluation of
Anomaly Explanation Algorithms,” in 24th International Conference on Extending
Database Technology (EDBT’2021), (Nicosia, Cyprus), Mar. 2021.

129

[42] FICO, “Explainable machine learning challenge.” https://community.fico.com/

s/explainable-machine-learning-challenge, 2018. Accessed: 2023-11-27.

[43] K. N. Markelle Kelly, Rachel Longjohn, “The uci machine learning repository.”
https://archive.ics.uci.edu. Accessed: 2023-11-28.

[44] F. Keller, E. Muller, and K. Bohm, “Hics: High contrast subspaces for density-based
outlier ranking,” in 2012 IEEE 28th International Conference on Data Engineering,
pp. 1037–1048, 2012.

[45] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability
methods for graph convolutional neural networks,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 10764–10773, 2019.

[46] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao, “Adbench: Anomaly detection
benchmark,” in Advances in Neural Information Processing Systems (S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35, pp. 32142–
32159, Curran Associates, Inc., 2022.

[47] Z. Z. Darban, G. I. Webb, S. Pan, C. C. Aggarwal, and M. Salehi, “Deep learning
for time series anomaly detection: A survey,” 2022.

[48] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for temporal
data: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 26,
no. 9, pp. 2250–2267, 2014.

[49] P. Malhotra, L. Vig, G. M. Shroff, and P. Agarwal, “Long short term memory
networks for anomaly detection in time series,” in The European Symposium on
Artificial Neural Networks, 2015.

[50] A. Deng and B. Hooi, “Graph neural network-based anomaly detection in multivari-
ate time series,” in AAAI Conference on Artificial Intelligence, 2021.

[51] C. C. Aggarwal, Linear Models for Outlier Detection, pp. 65–110. Cham: Springer
International Publishing, 2017.

[52] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using replicator
neural networks,” in Data Warehousing and Knowledge Discovery (Y. Kambayashi,
W. Winiwarter, and M. Arikawa, eds.), (Berlin, Heidelberg), pp. 170–180, Springer
Berlin Heidelberg, 2002.

[53] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear
dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd Workshop on
Machine Learning for Sensory Data Analysis, MLSDA’14, (New York, NY, USA),
p. 4–11, Association for Computing Machinery, 2014.

[54] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, and M. Kloft, “Deep one-class classification,” in Proceedings of the 35th
International Conference on Machine Learning (J. Dy and A. Krause, eds.), vol. 80
of Proceedings of Machine Learning Research, pp. 4393–4402, PMLR, 10–15 Jul
2018.

[55] Y. Yang, C. Zhang, T. Zhou, Q. Wen, and L. Sun, “Dcdetector: Dual attention con-
trastive representation learning for time series anomaly detection,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, (New York, NY, USA), p. 3033–3045, Association for Computing Machin-
ery, 2023.

130

[56] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel anomaly detec-
tion scheme based on principal component classifier,” in Proceedings of International
Conference on Data Mining, 01 2003.

[57] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon-
struction probability,” in Special Lecture on IE, 2015.

[58] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE
International Conference on Data Mining, pp. 413–422, 2008.

[59] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and
Q. Zhang, “Multivariate time-series anomaly detection via graph attention network,”
in 2020 IEEE International Conference on Data Mining (ICDM), pp. 841–850, 2020.

[60] L. Wong, D. Liu, L. Berti-Equille, S. Alnegheimish, and K. Veeramachaneni, “Aer:
Auto-encoder with regression for time series anomaly detection,” in 2022 IEEE In-
ternational Conference on Big Data (Big Data), (Los Alamitos, CA, USA), pp. 1152–
1161, IEEE Computer Society, dec 2022.

[61] C. C. Aggarwal, An Introduction to Outlier Analysis, pp. 1–34. Cham: Springer
International Publishing, 2017.

[62] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and
M. Kloft, “Deep semi-supervised anomaly detection,” in International Conference
on Learning Representations, 2020.

[63] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and G. Wang,
“Cade: Detecting and explaining concept drift samples for security applications,” in
Proc. of USENIX Security, 2021.

[64] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, p. 2096–2030, jan 2016.

[65] T. Matsuura and T. Harada, “Domain generalization using a mixture of multiple
latent domains,” in AAAI Conference on Artificial Intelligence, 2019.

[66] K. Akuzawa, Y. Iwasawa, and Y. Matsuo, “Adversarial invariant feature learn-
ing with accuracy constraint for domain generalization,” in Machine Learning and
Knowledge Discovery in Databases (U. Brefeld, E. Fromont, A. Hotho, A. Knobbe,
M. Maathuis, and C. Robardet, eds.), (Cham), pp. 315–331, Springer International
Publishing, 2020.

[67] R. Shao, X. Lan, J. Li, and P. C. Yuen, “Multi-adversarial discriminative deep do-
main generalization for face presentation attack detection,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[68] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain
generalization via conditional invariant adversarial networks,” in Computer Vision
– ECCV 2018 (V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), (Cham),
pp. 647–663, Springer International Publishing, 2018.

[69] N. Kodali, J. Hays, J. D. Abernethy, and Z. Kira, “On convergence and stability of
gans,” arXiv: Artificial Intelligence, 2018.

131

[70] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training of genera-
tive adversarial networks through regularization,” in Neural Information Processing
Systems, 2017.

[71] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling, “Diva: Domain invariant vari-
ational autoencoders,” in Proceedings of the Third Conference on Medical Imaging
with Deep Learning, vol. 121 of Proceedings of Machine Learning Research, pp. 322–
348, PMLR, 06–08 Jul 2020.

[72] F. Qiao, L. Zhao, and X. Peng, “Learning to learn single domain generalization,” in
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 12553–12562, 2020.

[73] V. Piratla, P. Netrapalli, and S. Sarawagi, “Efficient domain generalization via
common-specific low-rank decomposition,” in Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
vol. 119 of Proceedings of Machine Learning Research, pp. 7728–7738, PMLR, 2020.

[74] K. Dohi, K. Imoto, N. Harada, D. Niizumi, Y. Koizumi, T. Nishida, H. Purohit,
R. Tanabe, T. Endo, M. Yamamoto, and Y. Kawaguchi, “Description and discus-
sion on DCASE 2022 challenge task 2: Unsupervised anomalous sound detection for
machine condition monitoring applying domain generalization techniques,” in Pro-
ceedings of the 7th Detection and Classification of Acoustic Scenes and Events 2022
Workshop (DCASE2022), (Nancy, France), pp. 1–5, November 2022.

[75] S. Venkatesh, G. Wichern, A. Subramanian, and J. Le Roux, “Disentangled surro-
gate task learning for improved domain generalization in unsupervised anomalous
sound detection,” tech. rep., DCASE2022 Challenge, July 2022.

[76] C. Molnar, “Interpretable Machine Learning: A Guide for Making Black Box Models
Explainable,” 2021. Accessed: 2021-07-27.

[77] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A joint
framework for description and prediction,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, (New
York, NY, USA), p. 1675–1684, Association for Computing Machinery, 2016.

[78] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”: Explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, pp. 1135–1144, 2016.

[79] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: high-precision model-agnostic
explanations,” in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Confer-
ence and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18, AAAI Press, 2018.

[80] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,”
in Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, p. 3319–3328, JMLR.org, 2017.

[81] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, (Red Hook, NY, USA), p. 4768–4777, Curran Asso-
ciates Inc., 2017.

132

[82] L. Bertossi, J. Li, M. Schleich, D. Suciu, and Z. Vagena, “Causality-based explana-
tion of classification outcomes,” in Proceedings of the Fourth International Workshop
on Data Management for End-to-End Machine Learning, DEEM ’20, (New York,
NY, USA), Association for Computing Machinery, 2020.

[83] N. Frosst and G. E. Hinton, “Distilling a neural network into a soft decision tree,”
CoRR, vol. abs/1711.09784, 2017.

[84] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez, “Beyond
sparsity: tree regularization of deep models for interpretability,” in Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, AAAI
Press, 2018.

[85] M. Kopp et al., “Anomaly Explanation with Random Forests,” Expert Systems with
Applications, vol. 149, p. 113187, 2020.

[86] E. Panjei, L. Gruenwald, E. Leal, C. Nguyen, and S. Silvia, “A survey on outlier
explanations,” The VLDB Journal, vol. 31, p. 977–1008, Jan. 2022.

[87] N. Gupta, D. Eswaran, N. Shah, L. Akoglu, and C. Faloutsos, “Beyond outlier
detection: Lookout for pictorial explanation,” in Machine Learning and Knowledge
Discovery in Databases (M. Berlingerio, F. Bonchi, T. Gärtner, N. Hurley, and
G. Ifrim, eds.), (Cham), pp. 122–138, Springer International Publishing, 2019.

[88] N. Liu, D. Shin, and X. Hu, “Contextual outlier interpretation,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18,
pp. 2461–2467, International Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2018.

[89] J. Zhu, S. Rosset, R. Tibshirani, and T. Hastie, “1-norm support vector machines,”
in Advances in Neural Information Processing Systems (S. Thrun, L. Saul, and
B. Schölkopf, eds.), vol. 16, MIT Press, 2003.

[90] H. Zhang et al., “Exstream: Explaining anomalies in event stream monitoring,” in
International Conference on Extending Database Technology (EDBT), pp. 156–167,
2017.

[91] P. Bailis et al., “MacroBase: Prioritizing Attention in Fast Data,” in ACM Interna-
tional Conference on Management of Data (SIGMOD), pp. 541–556, 2017.

[92] D. Y. Yoon, N. Niu, and B. Mozafari, “Dbsherlock: A performance diagnostic tool
for transactional databases,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, (New York, NY, USA), p. 1599–1614, Associa-
tion for Computing Machinery, 2016.

[93] J. A. Morris and M. J. Gardner, “Statistics in medicine: Calculating confidence
intervals for relative risks (odds ratios) and standardised ratios and rates,” BMJ,
vol. 296, no. 6632, pp. 1313–1316, 1988.

[94] T. A. S. Foundation, “Apache spark.” https://spark.apache.org/. Accessed:
2024-05-31.

[95] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy, “Scalla: A platform
for scalable one-pass analytics using mapreduce,” ACM Transactions on Database
Systems, vol. 37, no. 4, p. 27, 2012.

133

[96] F. Song, Y. Diao, J. Read, A. Stiegler, and A. Bifet, “Exad: A system for explainable
anomaly detection on big data traces,” in 2018 IEEE International Conference on
Data Mining Workshops (ICDMW), pp. 1435–1440, 2018.

[97] T. A. S. Foundation, “Monitoring and instrumentation.” https://spark.apache.

org/docs/latest/monitoring.html. Accessed: 2024-06-01.

[98] “nmon for linux.” https://nmon.sourceforge.io/pmwiki.php. Accessed: 2024-
06-01.

[99] A. Basiri et al., “Chaos engineering,” IEEE Software, vol. 33, no. 3, pp. 35–41, 2016.

[100] S. Kandula et al., “Detailed Diagnosis in Enterprise Networks,” in ACM SIGCOMM
Conference, pp. 243–254, 2009.

[101] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and N. Tatbul, “Exathlon: A
benchmark for explainable anomaly detection over time series,” arXiv:2010.05073v3
[cs.LG], 2021.

[102] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer: Time series anomaly
detection with association discrepancy,” in International Conference on Learning
Representations, 2022.

[103] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng,
J. Chen, Z. Wang, and H. Qiao, “Unsupervised anomaly detection via variational
auto-encoder for seasonal kpis in web applications,” in Proceedings of the 2018
World Wide Web Conference, WWW ’18, (Republic and Canton of Geneva, CHE),
p. 187–196, International World Wide Web Conferences Steering Committee, 2018.

[104] L. Shen, Z. Li, and J. Kwok, “Timeseries anomaly detection using temporal hier-
archical one-class network,” in Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 13016–13026, Curran Associates, Inc., 2020.

[105] S. Kim, K. Choi, H.-S. Choi, B. Lee, and S. Yoon, “Towards a rigorous evaluation of
time-series anomaly detection,” in AAAI Conference on Artificial Intelligence, 2021.

[106] N. Tatbul et al., “Precision and recall for time series,” in Advances in Neural In-
formation Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc., 2018.

[107] D. J. C. MacKay, Probability, Entropy, and Inference, ch. 2, pp. 27–54. Copyright
Cambridge University Press, 2003.

[108] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[109] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: a system for large-scale machine learning,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
(USA), p. 265–283, USENIX Association, 2016.

134

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc., 2019.

[111] R. L. Gorsuch, Factor Analysis, ch. 6, pp. 143–164. John Wiley & Sons, Ltd, 2003.

[112] D. Liu, S. Alnegheimish, A. Zytek, and K. Veeramachaneni, “Mtv: Visual analytics
for detecting, investigating, and annotating anomalies in multivariate time series,”
Proc. ACM Hum.-Comput. Interact., vol. 6, apr 2022.

[113] H. He, O. Queen, T. Koker, C. Cuevas, T. Tsiligkaridis, and M. Zitnik, “Domain
adaptation for time series under feature and label shifts,” 2023.

[114] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. Elmore, and M. J. Franklin,
“Volume Under the Surface: A New Accuracy Evaluation Measure for Time-
Series Anomaly Detection,” Proceedings of the VLDB Endowment, vol. 15, no. 11,
pp. 2774–2787, 2022.

[115] M. Braei and S. Wagner, “Anomaly detection in univariate time-series: A survey on
the state-of-the-art,” ArXiv, vol. abs/2004.00433, 2020.

[116] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[117] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, OpenReview.net, 2019.

[118] D. Hawkins, Identification of outliers. Monographs on applied probability and statis-
tics, London [u.a.]: Chapman and Hall, 1980.

[119] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd Interna-
tional Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, 2014.

[120] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and
approximate inference in deep generative models,” in Proceedings of the 31st Inter-
national Conference on Machine Learning (E. P. Xing and T. Jebara, eds.), vol. 32 of
Proceedings of Machine Learning Research, (Bejing, China), pp. 1278–1286, PMLR,
22–24 Jun 2014.

[121] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mo-
hamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with a con-
strained variational framework,” in International Conference on Learning Represen-
tations, 2016.

[122] J. M. Tomczak, “Priors in vaes.” https://jmtomczak.github.io/blog/7/7_

priors.html. Accessed: 2023-12-26.

[123] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoen-
coders,” 2016.

[124] A. A. Alemi, B. Poole, I. Fischer, J. V. Dillon, R. A. Saurous, and K. Murphy,
“Fixing a broken elbo,” 2018.

135

[125] M. Rosca, B. Lakshminarayanan, and S. Mohamed, “Distribution matching in vari-
ational inference,” 2019.

[126] M. Bauer and A. Mnih, “Resampled priors for variational autoencoders,” in Proceed-
ings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, vol. 89 of Proceedings of Machine Learning Research, pp. 66–75, PMLR,
2019.

[127] R. Groenendijk, S. Karaoglu, T. Gevers, and T. Mensink, “Multi-loss weighting with
coefficient of variations,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1469–1478, 2020.

[128] A. LeNail, “Nn-svg: Publication-ready neural network architecture schematics,”
Journal of Open Source Software, vol. 4, no. 33, p. 747, 2019.

[129] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, (New York, NY, USA), p. 785–794, Association for
Computing Machinery, 2016.

[130] T. O’Malley et al., “Keras Tuner.” https://github.com/keras-team/

keras-tuner, 2019.

[131] A. Bibal, R. Cardon, D. Alfter, R. Wilkens, X. Wang, T. François, and P. Watrin,
“Is attention explanation? an introduction to the debate,” in Annual Meeting of the
Association for Computational Linguistics, 2022.

[132] A. Mnih, “Modern latent variable models and variational inference.”
https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/

L11%20-%20UCLxDeepMind%20DL2020.pdf, 2020. Accessed: 2024-08-08.

136

A Spark Streaming Dataset

This appendix provides additional details about the Spark Streaming dataset of the
Exathlon benchmark. Appendix A.1 elaborates on the characteristics and settings used
for the Spark Streaming applications. Appendix A.2 provides some details about the
extended effect intervals set for our labeled anomalies.

A.1 Spark Streaming Applications

Our Spark workload consists of 10 stream processing applications that analyzed user
click streams from the WorldCup 1998 website [95] (replicated with a scale factor for
our long-running applications). The applications processed data formatted as (user id -

- timestamp - - url) records, using a batch interval of five seconds. Join data stored
in HDFS was also available for the applications to use, in the form of a dataset called
PageRanks containing (page rank - - url) records.
We summarize the operations performed by each application below, and provide their

source code under https://github.com/exathlonbenchmark/exathlon/tree/master/

apps for more details:

App 1 (EVERY 5s, 1 BATCH): GROUP BY + COUNT
Every 5 seconds, groups the last batch by user ID and counts the number of records.

App 2 (EVERY 5s, 1 BATCH): GROUP BY + CUMULATIVE COUNT + FILTER
Every 5 seconds, groups the last batch by URL, updates a cumulative count by URL
and filters out URLs with counts lower than or equal to 1, 000.

App 3 (EVERY 20s, 6 BATCHES): GROUP BY + COUNT + FILTER
Every 20 seconds (window slide), groups the last 30 seconds (i.e., the last six batches)
by URL, counts the number of records, and filters out URLs with counts lower than
or equal to 1, 000.

App 4 (EVERY 5s, 6 BATCHES): GROUP BY
Every 5 seconds, groups the last 30 seconds of records (i.e., the last six batches) by
user ID.

App 5 (EVERY 5s, 6 BATCHES): GROUP BY + FILTER + JOIN + SUM
Every 5 seconds, groups the last 30 seconds of records (i.e., the last six batches)
by user ID, filters out page URLs which are not in PageRanks, joins data with
PageRanks and sums the ranks of pages by user.

App 6 (EVERY 5s, 6 BATCHES): GROUP BY + FILTER + JOIN + SUM + SAVE
Every 5 seconds, groups the last 30 seconds of records (i.e., the last six batches)
by user ID, filters out page URLs which are not in PageRanks, joins data with
PageRanks, sums the ranks of pages by user and saves the result to HDFS.

App 7 (EVERY 5s, 6 BATCHES): UDF + GROUP BY
Every 5 seconds, runs a user-defined function (computing the 70 first terms of the
Leibniz formula for π) and groups the last 30 seconds of records (i.e., the last six
batches) by user ID.

App 8 (EVERY 10s, 2 BATCHES): GROUP BY + COUNT + FILTER + SAVE
Every 10 seconds (window slide), groups the last 10 seconds of records (i.e., the last
two batches) by user ID, counts the number of records and filters out user IDs with
counts lower than or equal to 300.

137

App 9 (EVERY 10s, 2 BATCHES): GROUP BY + SAVE
Every 10 seconds (window slide), groups the last 10 seconds of records (i.e., the last
two batches) by user ID and saves the result to HDFS.

App 10 (EVERY 10s, 2 BATCHES): GROUP BY + COUNT + FILTER + SAVE
Every 10 seconds (window slide), groups the last 10 seconds of records (i.e., the last
two batches) by URL, counts the number of records, filters out URLs with counts
lower than or equal to 500 and saves the result to HDFS.

The operation results were therefore entirely saved to HDFS for applications 6, 8, 9 and
10. For other applications, the results were only saved to HDFS for the first batch.
Overall, these applications commonly involved group-by operations, and varied in terms
of windowing, parameters and filtering conditions. Two of the applications additionally
involved join operations, and one of them used a user-defined function. As such, our
workload aimed to capture a diverse mix of popular streaming primitives.
We note that the batch interval, window size, and window slide parameters were always

kept constant across the runs of a given application. These application-specific param-
eters led to important characteristics for the corresponding traces, which we refer to as
their processing period and periodic volume. The processing period corresponds to the
time elapsed between two consecutive computations triggered by the application, marking
the consideration of new input records to process. For non-windowed applications, this
corresponds to the batch interval, which was always set to five seconds. For windowed
applications, this corresponds to the window slide parameter, set to 20 seconds for appli-
cation 3, and 10 seconds for applications 8, 9, and 10. The periodic volume refers to the
volume of data periodically processed by the application (i.e., every “processing period”).
This volume depends on both the number of batches considered by the application (in-
dicated above) and the data sender input rate, defining the number of records sent per
second for the application to process.

A.1.1 Spark Settings

Throughout data collection, a same application could be launched with different Spark
settings, which were reflected in various ways in the recorded time series. Some setting
values were correlated with, although not completely determined by, the type of trace
recorded (i.e., undisturbed or one of the five disturbed types), since introducing different
types of anomalous events could require different settings for data collection to work prop-
erly. This section goes over the main “setting-related” characteristics that were observed
to have an impact in the traces data. In this work, we define the overall “settings” used
for a given trace as the values taken by each of these differentiating factors.

Number of Active Executors

The first differentiating factor across traces of a same application could be its number
of active Spark executors. We include this aspect as a general settings component here,
although its impact was likely reduced by the “active executor averaging” of our feature
engineering described in Section 4.2.4. We detail the number of active executors for the
traces of each type below:

Undisturbed
Always 2 active executors.

T1 (Bursty Input)
Always 2 active executors, except for trace 4 1 100000 61, which has 3.

T2 (Bursty Input Until Crash)
Always 3 active executors.

138

T3 (Stalled Input)
Always 2 active executors.

T4 (CPU Contention)
Always 2 active executors, except for traces 3 4 1000000 81 and 9 4 1000000 78,
which have 3.

T5 (Process Failure)
Always 3 active executors, except for traces 5 5 1500000 92 and 10 5 1000000 85,
which have 2.

“Memory Profile”

We define the second settings component of a trace broadly as its “memory profile”,
covering memory-related settings that varied together for a given trace. These metrics
include the maximum memory set for the driver’s block manager, as well as the maximum
memory set for the executors’ JVM and garbage collection (PS-Eden-Space, PS-Old-Gen
and PS-Survivor-Space). All these settings have a direct impact on the maximum memory
and memory usage metrics of the corresponding traces, besides indirectly impacting other
metrics as well. We detail the maximum memory set for the executors JVM for the traces
of each type below:

Undisturbed
Always 30GB, except for trace 9 0 100000 3, for which it is 9GB.

T1 (Bursty Input)
Always 9GB, except for traces 5 1 500000 62 and 6 1 500000 65, for which it is
15GB.

T2 (Bursty Input Until Crash), T4 (CPU Contention), T5 (Process Failure)
Always 15GB, except for traces 2 5 1000000 87 and 5 5 1000000 91, for which it is
9GB.

T3 (Stalled Input)
Always 15GB, except for trace 6 3 200000 76, for which it is 30GB.

A.2 Extended Effect Intervals

This section describes the way we set the extended effect interval (see Table 3.2) for each
anomalous event. Each anomaly instance was initially labeled with its known type and
root cause interval (RCI). However, we observed that some injected events could have a
long-lasting effect on relevant metrics, such as the scheduling delay and processing delay
of the last completed batch, even after their end time. To characterize such events, we
therefore sought to extend their root cause interval to include this long-lasting effect. More
specifically, we used domain knowledge to set an extended effect interval (EEI) for each
anomalous event, starting immediately after the end of its RCI, and ending at a point
after which we deem anomaly detection not helpful. In practice, we either set the end of
an EEI to when the application had fully restarted, or to when its main metrics had come
back to normal. Here are the rules we used for each type of anomalous event:

• Bursty Input (Type 1). The end of the EEI is set to the point when highly related
metrics, such as the scheduling delay and processing delay of the last completed
batch, come back to normal.

• Bursty Input Until Crash (Type 2). The EEI is set to null, because the root
cause event already ends at the time of the application crash.

• Stalled Input (Type 3). The end of the EEI is set to the point when the processing
delay of the last completed batch comes back to normal (the application restarts
processing data at its usual rate).

139

• CPU Contention (Type 4). If the effect of the event is just an increased pro-
cessing time, we set the end of the EEI to the time when the scheduling delay and
processing delay of the last completed batch come back to normal. If its effect is
an application crash, we set the end of the EEI to the time when the application
restarts (typically one minute after the crash in practice).

• Driver Failure (Type 5). The end of the EEI is set to when the application
restarts.

• Executor Failure (Type 6). The end of the EEI is set to the point when the
scheduling delay of the last completed batch comes back to normal.

140

B VAE Framework

This appendix provides a brief reminder of the Variational Autoencoder (VAE) frame-
work [119, 120] used in DIVAD (Appendix B.1), based on some content from [132], as well
as the adaptation of this framework to DIVAD’s dependency structure (Appendix B.2).

B.1 Single Latent Variable

Let pθ(x) be a latent variable model considering a single continuous latent variable z, with
θ ∈ Θ a vector of model parameters. We model the marginal likelihood of the observed
variable x as follows:

pθ(x) =

∫

pθ(x|z)p(z)dz,

with p(z) and pθ(x|z) two tractable distributions.

Our goal is then to find θ̂ that best fits the training observations {xi}
N
i=1 using maximum

likelihood estimation:

θ̂ = argmax
θ

1

N

N
∑

i=1

log pθ(xi)

θ̂ = argmax
θ

1

N

N
∑

i=1

log

∫

pθ(xi|z)p(z)dz.

We can see that, for each observation xi, this maximization process requires estimating
an integral over the continuous latent variable z, which is intractable in the general case.

B.1.1 Variational Inference

One way to estimate the log-likelihood and its gradient in a tractable way is through
variational inference, considering a tractable distribution qi(z) for each instance xi (e.g.,
qi(z) = N (µi, σ

2
i I)). For each observation xi, we have for any such qi(z) (as long as it is

non-zero over the support of p(z)):

log pθ(xi) = log

∫

pθ(xi|z)p(z)dz

= log

∫

qi(z)
pθ(xi|z)p(z)

qi(z)
dz

= logEqi(z)
pθ(xi|z)p(z)

qi(z)

log pθ(xi) ≤ Eqi(z) log
pθ(xi|z)p(z)

qi(z)
, using Jensen’s inequality.

By using any such qi(z), we can therefore get a lower bound on the marginal log-
likelihood of a particular instance xi:

141

L(i)(xi;θ) := Eqi(z) log
pθ(xi, z)

qi(z)
.

A good choice of qi(z) for a tight lower bound is to set it as an approximation of the
“true” posterior estimate of the data for the instance, pθ(z|xi) (itself intractable). This
definition of qi(z) is called the variational posterior qφi

(z|xi) (with φi ∈ Φ observation-
specific variational parameters). The corresponding lower bound is called the evidence
lower-bound (ELBO):

L
(i)
ELBO(xi;θ,φi) := Eqφi

(z|xi) log
pθ(xi, z)

qφi
(z|xi)

= Eqφi
(z|xi) log

pθ(z|xi)pθ(xi)

qφi
(z|xi)

= Eqφi
(z|xi) log pθ(xi)−DKL(qφi

(z|xi)∥pθ(z|xi))

L
(i)
ELBO(xi;θ,φi) = log pθ(xi)−DKL(qφi

(z|xi)∥pθ(z|xi)).

As we can see, maximizing the ELBO, a tractable entity, for a given observation xi

therefore has an effect on two intractable entities: the marginal log-likelihood of the obser-
vation and the KL divergence between variational and true posterior distributions (called
the variational gap). On the one hand, maximizing the ELBO with respect to φi reduces
the variational gap, making the variational posterior better estimate the true posterior.
Importantly, this also has the effect of making the ELBO itself better approximate the
true marginal log-likelihood of the observation, hence tightening the bound. Indeed, we
have:

DKL(qφi
(z|xi)∥pθ(z|xi)) = log pθ(xi)− L

(i)
ELBO(xi;θ,φi).

On the other hand, maximizing the ELBO with respect to θ has the effect of both max-
imizing the marginal log-likelihood of the observation (our main objective), as well as
reducing the variational gap.
For this reason, the maximization process of the ELBO can be seen as alternating

between 1) making this bound a better approximation of the true marginal log-likelihood,
and 2) maximizing the true marginal log-likelihood itself.

B.1.2 Amortized Variational Inference

In the current setting, we consider a different ELBO and variational posterior optimization
for every observation xi (whether it is a training or a test one). Doing this is typically
inefficient for large datasets, and also because it does not allow the model to share any
knowledge across instances.

Amortized variational inference seeks to amortize the cost of this separate optimization
procedure, by replacing it with a functional approximation: instead of optimizing the
variational parameters φi for every observations, we train a neural network, called the
inference network, to predict them from the observation. In this context, φ does not
refer to the variational parameters anymore, but to the parameters of the inference network
used to predict them. The updated ELBO therefore reads:

LELBO(xi;θ,φ) := Eqφ(z|xi) log
pθ(xi, z)

qφ(z|xi)
,

where qφ(z|xi) is typically specified as N (NNφ(xi),NNφ(xi)), with NNφ the inference
network.

142

B.1.3 ELBO Maximization (Reparameterization Trick)

We compute the gradient of the ELBO with respect to the model parameters θ using
Monte Carlo sampling from the variational posterior (here using K samples):

∇θLELBO(xi;θ,φ) = ∇θEqφ(z|xi)

[

log
pθ(xi, z)

qφ(z|xi)

]

= Eqφ(z|xi)[∇θ log pθ(xi, z)]

∇θLELBO(xi;θ,φ) ≈
1

K

K
∑

k=1

∇θ log pθ(xi, z
(k)) , with z(k) ∼ qφ(z|xi).

However, computing the gradient of the ELBO with respect to the variational parame-
ters φ is harder, due to the sampling procedure also depending on φ:

∇φLELBO(xi;θ,φ) = ∇φEqφ(z|xi)

[

log
pθ(xi, z)

qφ(z|xi)

]

.

To compute this gradient, we use the reparameterization trick, that is, reparameterizing
samples z as functions of other samples ϵ coming from a parameter-free distribution p(ϵ):

z = g(ϵ;φ),

hence factoring out the sampling procedure from the variational parameters. As long as
g(ϵ,φ) is differentiable with respect to φ, we then have:

∇φEqφ(z)[f(z)] = ∇φEp(ϵ)[f(g(ϵ,φ))]

= Ep(ϵ)[∇φf(g(ϵ,φ))] p(ϵ) does not depend on φ

∇φEqφ(z)[f(z)] = Ep(ϵ)[∇zf(z)|z=g(ϵ,ϕ)∇ϕg(ϵ, ϕ)] Using the chain rule.

For z ∼ N (µ, σ2), this amounts to setting:

z = µ+ σϵ with ϵ ∼ N (0, 1).

B.1.4 Variational Autoencoder (VAE) Framework

Variational autoencoders are generative models with continuous latent variables, where
both the likelihood pθ(xi|z) and the variational posterior qφ(z|xi) are parameterized using
neural networks. In this setting, similarly to the variational posterior, the parameters θ

of the likelihood do not refer to the model parameters anymore, but to the parameters
of the decoder network used to predict them. The inference network is also called the
encoder network. Relevant components are therefore:

• The encoder NNφ, computing the variational posterior qφ(x|z) = N (NNφ(x),NNφ(x))
from x.

• The decoder NNθ, computing the likelihood pθ(x|z) = N (NNθ(z),NNθ(z)) from z.
• The prior p(z) = N (0, I).

They are trained by maximizing the ELBO, expressed as:

LELBO(x;θ,φ) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)∥p(z)),

using amortized variational inference and the reparametrization trick.

143

B.2 Adaptation to DIVAD’s Dependency Structure

Following the dependency structure specified in Section 5.2, the marginal log-likelihood of
the observed variable x given its domain d reads:

pθ(x|d) =

∫

pθ(x|zy, zd)pθ(zd|d)p(zy)dzddzy,

which, using amortized inference, corresponds to the following ELBO to maximize:

LELBO(xi, di;θyd,θd,φd,φy) = Eqφd
(zd|xi)qφy

(zy |xi) log
pθyd

(xi|zy, zd)pθd
(zd|di)p(zy)

qφd
(zd|xi)qφy

(zy|xi)
,

with di the domain of xi. This corresponds to the ELBO of Equation 5.1 (without its KL
divergence terms weighted by a factor β):

LELBO(xi, di;θyd,θd,φd,φy) = Eqφd
(zd|xi)qφy

(zy |xi)[log pθyd
(xi|zd, zy)]

−DKL(qφy
(zy|xi)∥p(zy))−DKL(qφd

(zd|xi)∥pθd
(zd|di)).

144

Titre : Détection d’Anomalies dans les Séries Temporelles de Grande Dimension sur des Domaines Hétéro-

gènes

Mots clés : Détection d’Anomalies, Séries Temporelles, Généralisation de Domaine, Modélisation Générative,

Apprentissage Contrastif

Résumé : L’adoption généralisée des services numé-

riques, ainsi que leur échelle et complexité, a rendu

les incidents dans les opérations informatiques de

plus en plus probables, diversifiés et impactants pour

les entreprises, créant le besoin de solutions auto-

matisées pour les prévenir. Pour répondre à ce be-

soin, cette thèse se concentre sur le problème de la

détection d’anomalies dans les séries temporelles de

grande dimension, dans le cadre de l’“Intelligence Ar-

tificielle pour les Opérations Informatiques" (AIOps).

Cette thèse propose tout d’abord de nouveaux outils

de benchmarking pour la détection d’anomalies expli-

cable dans des séries temporelles de grande dimen-

sion. L’outil principal est Exathlon, comprenant (i) un

jeu de données provenant de la surveillance d’appli-

cations Spark Streaming, (ii) un framework d’évalua-

tion des méthodes de détection d’anomalies et de “dé-

couverte d’explications", et (iii) une pipeline complète

de détection d’anomalies explicable.

Cette thèse propose ensuite une analyse de bench-

mark de méthodes de détection d’anomalies non su-

pervisées, révèlant leur performance limitée avec trois

limitations principales : (L1) une vulnérabilité au chan-

gement de comportement normal entre les données

d’entraînement et de test, (L2) une production de faux

négatifs pour les anomalies les plus complexes, et

(L3) une production de faux positifs pour les motifs

de “bruit" normaux dans les données de test.

La partie suivante traite explicitement de L1 via une

nouvelle méthode de généralisation de domaine ap-

pelée DIVAD, définissant les différents contextes de

fonctionnement normal comme des “domaines hété-

rogènes", et associant le changement de comporte-

ment normal à un “changement de domaine". Nos ex-

périences montrent que DIVAD est particulièrement

efficace pour traiter L1, améliorant ainsi la perfor-

mance jusqu’à 20%, tout en étant applicable au-delà

des données d’Exathlon.

Afin de traiter conjointement L1-3, cette thèse pro-

pose enfin de nouvelles méthodes contrastives fai-

blement supervisées, dont la principale est CEADAL.

Nos expériences montrent l’efficacité de CEADAL

pour traiter L1-3, atteignant les scores F1 maximal et

médian les plus élevés des méthodes comparées.

Title : High-Dimensional Time Series Anomaly Detection across Heterogeneous Domains

Keywords : Anomaly Detection, Time Series, Domain Generalization, Generative Modeling, Contrastive Lear-

ning

Abstract : The widespread adoption of digital ser-

vices, along with their scale and complexity, has made

incidents in IT operations increasingly likely, diverse

and impactful for companies, creating the need for au-

tomated methods to prevent them. To respond to such

needs, this thesis focuses on the problem of anomaly

detection in high-dimensional time series, within “Arti-

ficial Intelligence for IT Operations" (AIOps).

This thesis starts by contributing new benchmar-

king tools for explainable anomaly detection in high-

dimensional time series. The main tool is Exathlon,

consisting of (i) a dataset centered around a Spark

Streaming application monitoring use case, (ii) an

evaluation framework to assess anomaly detection

and explanation discovery methods, and (iii) an end-

to-end explainable anomaly detection pipeline.

This thesis next contributes a benchmarking analysis

of unsupervised anomaly detection methods, revea-

ling their limited performance with three main limita-

tions: (L1) a vulnerability to normal behavior shift from

the training to the test data, (L2) a production of false

negatives for the hardest anomalies, and (L3) a pro-

duction of false positives for normal but “noisy" pat-

terns in test data.

The next part explicitly addresses L1 with a new do-

main generalization method called DIVAD, defining

the different contexts of normal operation as “hetero-

geneous domains", and associating normal behavior

shift to the concept of “domain shift". Our experiments

show that DIVAD is particularly effective in addressing

L1, thus improving performance by up to 20%, while

also being applicable beyond Exathlon’s data.

To jointly address L1-3, this thesis finally contri-

butes new weakly-supervised contrastive methods,

the main one being CEADAL. Our experiments show

the effectiveness of CEADAL in addressing L1-3,

achieving the highest maximum and median peak F1-

scores of the methods compared.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Notation
	Introduction
	Technical Challenges
	Scope and Contributions
	Thesis Organization

	Literature Review
	Datasets and Benchmarks
	Anomaly Detection in Multivariate Time Series
	Anomaly Explanation

	Time Series Anomaly Detection in AIOps
	Unsupervised Anomaly Detection in Multivariate Time Series
	Weakly-Supervised Anomaly Detection and Contrastive Learning
	Domain Generalization

	Explanation Discovery
	Interpretable Machine Learning
	Outlier Explanation

	The Exathlon Benchmark
	Spark Streaming Dataset
	Data Collection

	Evaluation Methodology
	Anomaly Detection (AD) Functionality
	Explanation Discovery (ED) Functionality
	Computational Performance

	Explainable Anomaly Detection Pipeline
	Data Partitioning
	Data Transformation
	Anomaly Detection Training
	AD Inference and Evaluation
	ED Execution and ED Evaluation

	LEADS Viewer
	Summary and Conclusions

	Unsupervised Anomaly Detection Study
	Problem Statement
	Experimental Setup
	Data Selection
	Data Preprocessing
	Data Partitioning
	Feature Engineering
	Data Windowing
	Evaluation Strategy

	Data Characteristics
	Event and Anomaly Types
	Diversity and Shift in Normal Behaviors

	Compared Methods and Hyperparameters
	Model Training and Selection for Deep Learning Methods
	Point Modeling Methods
	Sequence Modeling Methods

	Results and Analyses
	Format of Results
	Difficulty of Event Types
	Point Modeling Methods
	Sequence Modeling Methods
	Point vs. Sequence Modeling
	Limitations of Best-Performing Methods

	Summary and Conclusions

	Explicit Domain Generalization
	Anomaly Detection under Domain Shift
	Domain Generalization Framework

	Domain-Invariant VAE for Anomaly Detection
	Model Training
	Anomaly Scoring based on Prior
	Anomaly Scoring based on Aggregated Posterior Estimate
	Putting It All Together

	Experiments
	Compared Methods and Hyperparameters
	Results and Analyses

	Broader Applicability: Application Server Dataset
	Experimental Setup and Methods Considered
	Results and Analyses

	Summary and Conclusions

	Prior Knowledge through Weak Supervision
	Revised Problem Statement
	Contrastive Encoder for Anomaly Detection with a Few Anomaly Labels
	Contrastive Learning Framework
	Pair Mining Strategy
	Anomaly Scoring
	Triplet Loss Alternative

	Experiments
	Revised Experimental Setup
	Compared Methods and Hyperparameters
	Results and Analyses

	Summary and Conclusions

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Spark Streaming Dataset
	Spark Streaming Applications
	Spark Settings

	Extended Effect Intervals

	VAE Framework
	Single Latent Variable
	Variational Inference
	Amortized Variational Inference
	ELBO Maximization (Reparameterization Trick)
	Variational Autoencoder (VAE) Framework

	Adaptation to DIVAD's Dependency Structure

