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Thèse de doctorat de l’Institut Polytechnique de Paris
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Directeur de recherche CNRS Président

Julyan Arbel
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Alain Durmus
Professor at Ecole Polytechnique (CMAP) Invité
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Introduction

1 Background on Bayesian Machine Learning

1.1 Classical Machine Learning

In this section we describe the classical Machine Learning (ML) framework for supervised tasks. First, let’s start by
defining the input data

x ∈ X , x∼ PX .

PX is an unknown distribution on (X,B(X)), where B(X) is the Borel σ-algebra on X. Similarly, the output data,
associated to the input data x, is defined by

y ∈ Y , y ∼ PY |X(x) ,

where y is generated conditionally on x. In this case, PY |X is a Markov kernel with source (X,B(X)) and target
(Y,B(Y)).

The main objective of supervised learning is to predict the target y given an input x. More precisely, to learn
the Markov kernel PY |X . However, this Markov kernel is obviously unknown. In parametric Machine Learning,
this Markov kernel is aproximated by a parametric model {Pθ : θ ∈ Θ} where Pθ is also a Markov kernel on
(X,B(X))×(Y,B(Y)), parametrized by θ ∈Θ. We assume thatPθ admits a density with respect to some dominating
measure λref.
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Example: Exponential Family

A well-known example of such parametric models is the Exponential family. Many standard distributions
are members of the Exponential family, including the Normal, Poisson, and Binomial distributions. This
family of distributions is defined by the following density function:

dPθ

dλref
(y|x) := h(y) exp(g(θ,x)T (y)−C(θ,x))

where h : R→ R+ is called the base measure, C : Θ×X→ R the log-partition function, g : Θ×X→ R
the natural parameter and T : R→ R the natural sufficient statistic.

Consequently, the objective is now to learn the parametric Markov kernel that provides the closest approximation
to the true distribution, based on a set of labeled examples. More precisely, given a set of n data points, called a
dataset and denoted by Dn = (xi,yi)i≤ n, we will try to find an estimator of θ⋆ such that the Markov kernel Pθ⋆

“approximates” the true PY |X . In the following paragraph we describe the most commonly used estimator, the
so-called Maximum Likelihood Estimator.

Maximum Likelihood Estimator Let’s first define the likelihood function associated to the observations Dn

Ln(θ|Dn)∝ exp
{

n∑
i=1

ℓ(θ|xi,yi)
}
,

where the log-likelihood is given by ℓ(θ|xi,yi) = log(dPθ/dλref) and we have assumed that the data are iid. Then the
MLE estimator is denoted by θ̂n and is defined as

θ̂n := argmax
θ∈Θ

Ln(θ|Dn) .

This optimization task may be solved by many approaches such as gradient descent for example. This estimator is
consistent and asymptotically normal under mild conditions.

Main limitation of classical Machine Learning One limitation of traditional machine learning is the absence of
uncertainty quantification. These methods do not account for epistemic uncertainty, which arises from uncertainty
in the model parameters. While this uncertainty can be reduced with sufficient data, it is not eliminated at fixed n.
According to [Guo et al., 2017], neural networks trained with maximum likelihood estimation are often miscalibrated
and overconfident, meaning that their predicted probabilities do not accurately reflect the true likelihood. In many
real-world applications, such as medical diagnosis or weather forecasting for example, uncertainty quantification is
essential for making informed decisions.

Another limitation of traditional machine learning is its inability to incorporate prior knowledge. In many
real-world applications, such as astronomy or agriculture, we have some prior knowledge about the parameters of the
model. Incorporating this prior knowledge can help to constrain the model, making it more robust and improving
learning efficiency. This can lead to better performance, especially in situations where data is limited or noisy.

The last limitation of traditional machine learning is the challenge of distribution shift. In many real-world
applications, the distribution of data is not iid. This means that the distribution of data can differ between training
and testing sets, a phenomenon known as distribution shift. According to [Hein et al., 2019], ReLU networks tend
to be overly confident when faced with out-of-distribution data. Additionally, research by [Modas et al., 2022]
and [Fawzi et al., 2016] has shown that neural networks used for classification can experience a significant drop in
accuracy when faced with common corruptions.

To address all these limitations, the next section will introduce the Bayesian Machine Learning framework,
which provides a more robust approach to handling uncertainty and distribution shift.
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1.2 Bayesian Machine Learning

In Bayesian Machine Learning (BML), the setting considered is similar to the one of ML. The input data x ∈ X is
generated by x∼ PX , the output data y ∈ Y is generated by y ∼ PY |X . The parametric model is also {Pθ : θ ∈Θ},
and the dataset is Dn := {(xi,yi)}i≤n.

However, the objective is not to find θ⋆ such that Pθ⋆ “approximates” PY |X . Instead, the goal is to find the
distribution of the parameters θ given the data Dn, known as the posterior distribution.

The first step of Bayesian Machine Learning is to integrate a prior knowledge p0 which represents initial beliefs
about the parameters before seeing the data.

By specifying both a prior p0 and a likelihood Ln, we obtain the joint distribution of the parameters θ and the
data Dn using the product rule of probability: P(θ,Dn) = p0(θ)×Ln(θ|Dn). This combination of the prior and
the likelihood, when applied through Bayes’ rule, results in the posterior distribution denoted p̂ and given by

p̂(θ|Dn) = Ln(θ|Dn)p0(θ)
p(Dn)

The denominator p(Dn) in the Bayes’ rule is called the normalizing constant, the model evidence or the marginal
likelihood and is given by

p(Dn) =
∫

Ln(θ|Dn)dp0(θ)

Note that this term does not depend on θ, meaning it provides no information for the optimization task.
Furthermore, this integral is often intractable, which is a known issue in Bayesian Machine Learning.

Finally, in Bayesian Machine Learning the prediction is made by integrating over the posterior distribution. The
expectation of a function f(θ) under the posterior is computed as follow:

E[f(θ)|Dn] =
∫
f(θ)p̂(θ|Dn)dθ ≈ 1

N

N∑
i=1

f(θi) ,

where θi are samples from the posterior distribution and this integral approximation is known as Monte Carlo
approximation. For example, given a new test data point (x⋆,y⋆), the predictive distribution is given by

p(y⋆|x⋆,Dn) =
∫

L(θ|y⋆,x⋆)p̂(θ|Dn)dθ .

Comparaison with classical ML Firstly, in Bayesian Machine Learning the epistemic uncertainty is directly
taken into account through the posterior distribution. In [Kristiadi et al., 2020], it was demonstrated that the
Bayesian paradigm reduces the overconfidence problem. This method allows to obtain well-calibrated estimators.
Then, prior knowledge is directly incorporated through the prior distribution. This prior is particularly valuable in
settings with limited data. The prior serves to regularize the model, resulting in more robust estimators. Finally, the
Bayesian Machine Learning framework addresses distribution shifts by naturally incorporating uncertainty. The
posterior distribution tends to concentrate in regions corresponding to the training data. As a result, regions of
out-of-distribution data correspond to areas of high uncertainty, mitigating issues of overconfidence in such regions.

Main issue: The posterior distribution is often intractable, meaning it cannot be computed exactly or efficiently.
This is due to the intractability of the normalizing constant, which involves a high-dimensional integral that is often
impossible to solve analytically. In such cases, we need to find a distribution that closely approximates the posterior
distribution, this method is known as approximate inference. In the following sections, we will introduce the two
most commonly used approximate inference methods in Bayesian Machine Learning: the Monte Carlo Markov
Chain (MCMC) and the Variational Inference (VI).
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1.2.1 Approximate Bayesian inference with MCMC

One of the most commonly used approximate inference method is the so-called Markov Chain Monte Carlo (MCMC).
Let’s start by defining a Markov Chain with values in Rd endowed with the Borel σ-algebra B(Rd) which is a
sequence of random variables (Xk)k∈N defined on a filtered space (Fk)k∈N such that

P(Xk+1 ∈A|Fk) = P(Xk+1 ∈A|Xk) P− a.s.

A homogeneous Markov Chain (Xk)k∈N is characterized by a Markov kernel K : (Rd,B(Rd)) → [0,1]. The
objective of MCMC methods is to construct a Markov kernel K having a unique invariant distribution p̂(·|Dn), ie,∫

Rd
K(x,A)p̂(dx|Dn) = p̂(A|Dn) ∀A ∈ B(Rd)

It means that applying K to a sample X distributed according to the posterior will result in a sample Y also
distributed according to the posterior. Knowing this Markov kernel K, we can iteratively sample a new parameter
Xk+1 according toK(Xk, ·). After a sufficiently large number of iterations, the parameters generated by the Markov
Chain will be distributed according to a distribution that is close the posterior distribution p̂(·|Dn). Thus, this
method allows us to sample parameters from the posterior, even though it is known only up to a normalizing constant.

Example: Langevin Monte Carlo

One well-known MCMC method is the Langevin Monte Carlo (LMC). This scheme is derived from the
Euler-Maruyama approximation of the Langevin diffusion [Roberts and Tweedie, 1996a] and is given by

Xk+1 =Xk + γ∇ log(Ln(Xk|Dn)) +
√

2γϵk+1, (1.1)

where ϵk≥0 are i.i.d. standard Gaussian noises, and γ ≥ 0 denotes the time discretization step-size. The
scheme allows to define a Markov chain with a transition kernel Kγ given by

Kγ(X,A) = 1
(4πγ)d/2

∫
A

exp
(
− 1

4γ ∥X̃ −X + γ∇ log(Ln(X|Dn))∥2
)
dX̃

Sampling from the Markov kernel Kγ(X, ·) is equivalent to updating the parameterX following the Langevin
Monte Carlo scheme (1.1). Under certain assumptions on γ and the Likelihood (see [Dalalyan, 2017,
Durmus and Moulines, 2017] for additional details), the distribution of (Xk)k∈N converges to samples of the
biased stationary distribution p̂γ as k goes to infinity. Moreover, p̂γ approaches the posterior distribution p̂
as γ tends to zero. The Langevin Monte Carlo method is adapted to high-dimensional problems.

MCMC methods, can be quite expensive in terms of computation, especially when dealing with large datasets
(see [Cobb and Jalaian, 2021]) or large models (see [Izmailov et al., 2021]). Additionally, in non-convex setting,
achieving convergence of the Markov Chain may require a significant number of steps. In these cases, variational
inference provides a good alternative approach to approximate the posterior distribution.

1.2.2 Variational Inference

Variational inference (VI) [Hinton and Camp, 1993, MacKay, 1995, MacKay et al., 1995, Blei et al., 2017] has
emerged as a powerful alternative in Bayesian inference. By framing the problem as an optimization task, VI aims to
find an approximate candidate distribution within a parametric family of distributions G that minimizes the (reverse)
Kullback-Leibler (KL) divergence to the target:

q̃ = argmin
p∈G

KL(p|p̂)

where KL(p|p̂) =
∫

log(dp/dp̂)dp if p is absolutely continuous with respect to p̂ and +∞ else.
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Fig. 1.1 Variational Inference problem.

An important choice in VI is the variational family G. The flexibility of the variational family is crucial to capture the
true posterior distribution. However, the complexity of the variational family should be kept low to ensure efficient
optimization. One important example is the non-degenerate Gaussian variational family [Lambert et al., 2022a,
Diao et al., 2023], G = {N (µ,Σ)|µ ∈ Rd,Σ ∈S+

⋆}. This choice of VI family is supported by the Bernstein-Von
Mises theorem [Van der Vaart, 2000]. This theorem, subject to specific regularity conditions, asserts that a properly
scaled version of the posterior converges to a Gaussian as the sample size grows. Consequently, in the regime of
large data, the Gaussian variational family is well-suited to approximate the posterior distribution.

However, in the setting of limited data, the posterior distribution may be multimodal. In this case, the Gaussian
Variational family may not be able to capture the multimodal structure of the posterior distribution. In such cases, a
larger family of distributions, such as the mixture of Gaussians, can be considered [Gershman et al., 2012, Arenz
et al., 2018, Lin et al., 2019]. This illustrates the first source of error in Variational Inference: the approximation
error. This error quantifies how far q̃ is from p̂. The second error is the optimization error, which is the error
introduced by the optimization algorithm used to minimize the KL divergence to approach q̃.

In the next paragraphs, we will present two popular algorithms used to solve the Variational Inference problem,
both of which have been studied in this thesis: Bayes by Backprop and Riemannian Gradient Descent.

Bayes By Backprop: The algorithm derived in [Blundell et al., 2015] and called Bayes by Backprop is commonly
used to train Bayesian Neural Networks (more details about BNN can be found in Section 1.3). The variational
family considered for the weights of the Neural Network is

G =
{
N (µ,diag(σ2))|µ ∈ Rd,σ ∈ R+d

}
This setting is called the mean-field Gaussian variational family and is particularly suited for large Bayesian Neural
Networks. As the number of neurons increases, they tend to become more independent. Consequently, the covariance
matrix of the posterior becomes diagonal. The parametric variational distribution can be rewritten as

q̃(θ|w) =
d∏

i=1
q̃1(θi|wi) =

d∏
i=1
N (θi|µi,σ

2
i ) ,

where θ = (θ1, . . . ,θd), µ = (µ1, . . . ,µd), σ = (σ1, . . . ,σd) and w = (µ,σ) are the variational parameters. The
optimization problem is then defined as

w⋆ = argmin
w∈(Rd×R+d)

KL(q̃(θ|w)|p̂(θ|Dn))

= argmin
w∈(Rd×R+d)

KL(q̃(θ|w)|p0(θ))−Eθ∼q̃(θ|w)[log(Ln(θ|Dn))]

= argmax
w∈(Rd×R+d)

ELBO(w) ,
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where ELBO is called Evidence Lower Bound or variational free energy. This cost function is a sum of a
regularization term (the KL between the variational posterior and the prior) and a data-driven term (the expected
log-likelihood). A useful trick used to optimize the ELBO is the reparametrization trick. It allows to rewrite
the variational distribution q̃1(·|wi) as the pushforward of a reference probability measure with density γ by a
deterministic map Twi . In this case, we choose γ =N (0,1), the standard Gaussian distribution. Then, we have

q̃1(·|wi) = Twi#γ , Twi : z→ µi +σi⊙ z

In [Blundell et al., 2015], the authors show that with this reparametrization trick, we can exchange the derivative
and the expectation:

∂

∂wi
Eq̃1(θi|wi)[f(θi,wi)] = ∂

∂wi
Ez∼γ [f(Twi(z),wi)] = Eγ [∂f(θi,wi)

∂θi

∂Twi(z)
∂wi

+ ∂f(Twi(z),wi)
∂wi

]

This result allows us to optimize the ELBO using Stochastic Gradient Descent. However, computing the
expectation with respect to γ is often intractable. In practice, we approximate this expectation using Monte Carlo
methods, which involve drawing samples from the distribution γ and averaging the results.

Riemannian gradient descent: Another approach used to solve the Variational Inference problem is the Riemannian
gradient descent and is described in [Lambert et al., 2022b]. In this case we consider as variational family the set of
non-degenerate Gaussian distributions

G = {N (µ,Σ)|µ ∈ Rd,Σ ∈S+
⋆}

As explained previously, this choice of Gaussian variational family is justified by Bernstein-Von Mises theorem.
As noted in [Lambert et al., 2022b], G equipped with the Wasserstein distance of order 2 is a complete metric space
as a closed subset of P2(Rd). Recall that for two Gaussian distributions p0 =N (µ0,Σ0) and p1 =N (µ1,Σ1), their
Wasserstein distance has a closed form:

W 2
2 (p0,p1) = ∥µ0−µ1∥2 + tr(Σ0 +Σ1− 2(Σ1/2

0 Σ1Σ
1/2
0 )

1/2
) .

This Wasserstein distance on G allows to derive a Riemannian metric denoted g. The corresponding geodesic is
given through the exponential map. More precisely, for a Gaussian distribution p=N (µp,Σp), this map is defined
as follows:

expp(µv,Σv) =(µp +µv + (Σv + Id)(· −µp))#p

=N (µp +µv, (Σv + Id) Σp (Σv + Id)) . (1.2)

With all these preliminaries, we can now present and motivate the algorithm developed in [Lambert et al., 2022b]
to efficiently solve the Variational Inference problem. This method can be formalized as a Riemannian gradient
descent scheme on G. Firstly, we define the loss function F : p→ KL(p|p̂). Moreover we also define the potential
function U(θ)∝− log p̂(θ|Dn). Then, following [Lambert et al., 2022b], we derive the gradient operator of F on G
equipped with g as

∇gF(p) = (
∫
∇U(θ)dp(θ),

∫
∇2U(θ)dp(θ)−Σ−1

p ) (1.3)

where Σp is the covariance matrix of the Gaussian distribution p. From this expression, the corresponding
Riemannian gradient descent [Bonnabel, 2013] using a step size γ > 0 defines the sequence of iterates {qk}
recursively as:

qk+1 = expqk
(−γ∇gF(qk)) .
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Combining (1.2) and (1.3), this recursion allows to define a sequence of means {µk} and covariance matrices
{Σk} by the recursions

µk+1 = µk − γ
∫
∇U(θ)dqk(θ)

Σk+1 =AkΣkAk

Ak = Id− γ(
∫
∇2U(θ)dqk(θ)−Σ−1

k )

qk+1 =N (µk+1,Σk+1)

The main computational challenge in this recursion stems is that the integrals involved are typically intractable.
To overcome this issue, we employ a Monte Carlo procedure to approximate these integrals. Subsequently, we
consider a sequence of mean values denoted as {µ̃k} and covariance matrices {Σ̃k} such that:

µ̃k+1 = µ̃k − γ∇U(θ̃k)
Σ̃k+1 = ÃkΣ̃kÃk

Ãk = Id− γ(∇2U(θ̃k)− Σ̃−1
k )

θ̃k ∼N (µ̃k, Σ̃k) .

1.3 Bayesian Neural Networks
A nice application of Bayesian Machine Learning is the Bayesian Neural Networks (BNN). In recent years,
neural networks, and specifically deep learning, have emerged as the leading approach for various regression and
classification tasks across multiple domains, including computer vision and natural language processing. The
L-layers Feed-Forward Neural Network fθ : RdX → RdY can be written as

Input layer: y1 = σ(a1x+ b1)
Hidden layers: yl = σ(alyl−1 + bl) for any l = 2, . . . ,L− 1
Output layer: f(x) = aLyL−1 + bL

where σ is the activation function and θ = {(ai, bi)}Li=1 are the NNs parameters. We have (a1, b1) ∈
RM×dX ×RM , (a1, b1) ∈ RM×M ×RM for any l = 2, . . . ,L− 1 and (aL, bL) ∈ RdY×M ×RdY . However, this
kind of networks are typically trained using maximum likelihood estimation, which does not provide a measure
of uncertainty in the model predictions. Furthermore, as reported in [Guo et al., 2017], neural networks are
overconfident in their predictions, meaning that they assign overly high probabilities to their predictions. To address
this issue, Bayesian Machine Learning techniques can be employed. This approach involves selecting a prior
distribution for the neural network parameters, with the aim of approximating the posterior distribution. By doing so,
we can incorporate prior knowledge, quantify uncertainty, and improve the robustness and accuracy of our models.

However, Deep Neural Networks are high dimensional models, often reaching hundreds of millions of parameters.
Furthermore, the weights of neural networks can be permuted across layers, resulting in multiple solutions that
yield the same outcomes for any given minimum. Consequently, neural networks cannot be convex. Due to these
complexities, traditional Bayesian methods, which rely on MCMC, are not directly applicable [Izmailov et al., 2021].
A more suited approach to train BNNs is Variational Inference [Blei et al., 2017, Graves, 2011, Hinton and Camp,
1993].

2 Background on Bandit problems

2.1 Bandit problem

2.1.1 Presentation of the Bandit problem

Bandit problem is a sequential decision making problem where an agent has to choose iteratively among sevelar
possible actions, called “arms”. Each action has an associated reward distribution which is unknown. The objective
of the agent is to maximize the total expected rewards obtained. It was firstly introduced in [Thompson, 1933] by
William R. Thompson to study medical trials.
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The 2-armed bandit problem The simpliest form of bandit problem is the 2-armed bandit problem, imagine a
client in a casino faced with a choice between two slot machines. The customer can either play the left machine or
the right machine. Each slot machine has an unknown distribution of rewards. The customer’s goal is to choose
which machine to play at each round to maximize their total rewards.

LeftRight

Fig. 1.2 Illustration of the 2-armed bandit problem.

The main challenge in this task is to effectively manage a suitable exploitation and exploration trade-off [Robbins,
1952, Katehakis and Veinott, 1987, Berry and Fristedt, 1985, Auer et al., 2002, Lattimore and Szepesvári, 2020,
Kveton et al., 2020a].

• Exploitation: refers to selecting an arm that is currently believed to be the best based on past observation

• Exploration: refers to selecting arms that have not been selected frequently in the past in order to gather
more information on the reward distribution of these arms.

2.1.2 Mathematical framework

The Bandit problem is a game played over T rounds (called the horizon). Let’s denote by A the set of arms. A
bandit process can be defined as follows: at each iteration t ∈ [T ] and given the history Dt−1 = {(as, rs)}s<t

• The agent chooses an action at ∼Qt(·|Dt−1).

• The environment reveals a reward rt ∼ R(·|at). Here, R(·|at) is an unknown Markov Kernel on A×R.

The sequence of conditional distributions Q1:T = {Qt}t≤T describes the strategy used by the agent to choose
the action at each round. The objective of the agent is to find the sequence Q1:T that maximizes the sum of rewards
defined as follow

SReward(Q1:T ) =
∑
t≤T

f(at) ,

where f(a) =
∫
rR(dr|a) is the expected reward associated to an action a ∈ A. Maximizing the sum of rewards is

equivalent to minimizing the cumulative regret, a concept that is more commonly studied in the bandit literature.
The cumulative regret is defined as

CREG(Q1:T ) =
∑
t≤T

f(a⋆)− f(at) ,

where a⋆ = argmaxa∈A f(a) is the best action.

2.1.3 Main real-world applications

A/B Testing: A/B testing is a statistical method used to compare two versions of a webpage to determine which
one performs better. Users are randomly assigned to either the control group (website A) or the treatment group
(website B), and their behavior is tracked to see which version produces better results. 2-armed Bandit algorithms
can be used to optimize A/B testing by dynamically allocating traffic to the best-performing web-site. More
precisely, at each time step t, a user connects to the website, a bandit algorithm is used to choose an action
at ∈ {website A,website B}, and the reward is rt = 1 if the user purchases the product (or make other determined
action) and rt = 0 otherwise.
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Recommendation systems: Bandit algorithms are also widely used in recommendation systems to optimize the
selection of items to display to users. In this context, the items are the arms, and the reward is the user’s engagement
with the item (e.g., clicks, purchases, likes). The goal is to maximize the user’s engagement by selecting the most
relevant items.

Clinical trials: Bandit algorithms are also used in clinical trials to optimize the allocation of treatments to
patients. In a clinical trial, patients are randomly assigned to different treatments, and their outcomes are observed
to determine which treatment is most effective. Bandit algorithms can be used to dynamically allocate treatments
based on the observed outcomes to maximize the overall benefit to patients. For instance see [Réda, 2022].

While bandit problems are useful for some real-world applications, they have limitations and cannot model all
scenarios. One significant limitation is that the reward distribution for a given action is fixed. However, in many
situations, the reward distribution may depend on the state of the environment, which can be represented by a state
vector. For example, in clinical trials the effectiveness of a treatment may depend on some patients’ characteristics.
This setting is called contextual bandit problem and will be explored in the following section and will be the focus of
this thesis

2.2 Contextual Bandit problems

Contextual bandit problem is a particular instance of Multi-armed Bandit problem, which supposes, at each round,
that the set of arms and the corresponding reward depend on a d-dimensional feature vector called a contextual
vector or context. This setting allows the agent to take into account the state of the environment when choosing an
action. The classic bandit problem can be seen as a special case of the contextual bandit problem where the context
is a constant vector. For instance, in a recommender system, this approach enables personalized recommendations
for each user based on their characteristics. Similarly, in a clinical trial, the treatment can be tailored to the patient’s
features. By taking into account contextual information, these systems can improve their accuracy, efficiency, and
overall performance.

Agent

Environment

1
Contexte

3
Reward

2
Action

Fig. 1.3 Illustration of the contextual bandit problem.

This scenario has been extensively studied over the past decades and learning algorithms have been developed to
address this problem [Langford and Zhang, 2007a, Abbasi-Yadkori et al., 2011a, Agrawal and Goyal, 2013a, Kveton
et al., 2020a], and they have been successfully applied in several real-world problem such as recommender systems,
mobile health and finance [Li et al., 2010, Agarwal et al., 2016a, Tewari and Murphy, 2017, Bouneffouf et al., 2020].
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2.2.1 Mathematical framework

We now present in more details the contextual bandit framework. Let X be a contextual space and consider
A : X→ 2A a set-valued action map, where 2A stands for the power set of the action space A. For simplicity, we
assume here that supx∈XCard(A(x)) < +∞. A (deterministic or random) function π : X→ A is said to be a
policy if for any x ∈ X, π(x) ∈ A(x). Then, for a fixed horizon T ∈ N, a contextual bandit process can be defined
as follows: at each iteration t ∈ [T ] and given the past observations Dt−1 = {(xs,as, rs)}s<t:

• The agent receives a contextual feature xt ∈ X;
• The agent chooses an action at = πt(xt) where πt is a policy sampled from Qt(·|Dt−1);
• Finally, the agent receives a reward rt sampled from R(·|xt,at) given Dt−1. Here, R is a Markov kernel on

(A×X)×R, where R⊂ R

For a fixed family of conditional distributions Q1:T = {Qt}t≤T , this process defines a random sequence of
policies, π1:T = {πt}t≤T with distribution still denoted by Q1:T by abuse of notation. Let’s defined the optimal
expected reward for a contextual vector x ∈ X and the expected reward given x and any action a ∈ A(x) as follow

f⋆(x) = max
a∈A(x)

f(x,a) , f(x,a) =
∫
rR(dr|x,a) .

The main challenge of a contextual bandit problem is to find the distribution Q1:T that minimizes the cumulative
regret defined as

CREG(Q1:T ) =
∑

s≤T Regretπs
s (1.4)

with Regretπs
s = f⋆(xs)− f(xs,πs(xs)).

Similar to the classic bandit problem, Contextual Bandit problems also face the challenge of balancing the
exploitation-exploration trade-off. The existing algorithms for addressing these problems can be broadly categorized
into two groups. The first category is based on maximum likelihood and the principle of optimism in the face of
uncertainty (OFU) and has been studied in [Auer et al., 2002, Chu et al., 2011, Abbasi-Yadkori et al., 2011b, Li
et al., 2017a, Ménard and Garivier, 2017, Zhou et al., 2020, Foster and Rakhlin, 2020, Zenati et al., 2022]. The
second category consists in randomized probability matching algorithms, which is based on Bayesian belief and
posterior sampling. Thompson Sampling (TS) is one of the most famous algorithms that fall into this latter category.
Since its introduction by [Thompson, 1933], it has been widely studied, both theoretically and empirically [Agrawal
and Goyal, 2012, Kaufmann et al., 2012a, Agrawal and Goyal, 2013a, Russo and Van Roy, 2014, 2016, Lu and
Van Roy, 2017, Riquelme et al., 2018, Jin et al., 2021a]. Despite the fact that OFU algorithms offer better theoretical
guarantees compared to classic TS-based algorithms, traditional TS methodologies still appeal to us due to their
straightforward implementation and empirical advantages. In [Agrawal and Goyal, 2012], the authors claimed that:
“In applications like display advertising and news article recommendation, TS is competitive with or better than
popular methods such as UCB“. Similarly, [Chapelle and Li, 2011] has examined the empirical performances of TS
on both simulated and real data. Their experiments demonstrate that TS outperforms OFU methods, leading them to
conclude: “In any case, TS is very easy to implement and should thus be considered as a standard baseline“. Taking
all these factors into account, we have decided to focus on TS-based algorithms for addressing contextual bandit
problems.

2.2.2 Thompson Sampling for contextual bandit

In this subsection, we will discuss the Thompson Sampling algorithm for contextual bandit problems. The key idea
behind Thompson Sampling is to use the Bayesian approach to model the uncertainty of the reward distribution. At
each time step t ∈ [T ], the algorithm samples a policy from the posterior distribution and selects the action according
to this policy. After observing the reward, the posterior distribution is updated to reflect the new information.

More precisely, let’s stat by choosing a parametric model {Rθ : θ ∈ Rd} for the reward distribution, where for
any θ, Rθ is a Markov kernel on (A×X)×R parameterized by θ ∈ Rd. We assume that Rθ admits a density with
respect to some dominating measure λref. For instance, let’s consider the exponential family presented in Section 1.1.
With the introduced notations, the likelihood function associated to the observations Dt at step t > 1 is given by



Chapter 1: Introduction 21

Lt(θ)∝ exp
{

t−1∑
s=1

ℓ(θ|xs,as, rs)
}
,

where the log-likelihood is given by ℓ(θ|xs,as, rs) = log(dRθ/dλref)(rs|xs,as) . Choosing a prior on θ with
density p0, and applying Bayes formula, the posterior distribution at round t ∈ [T ] is given by

p̂t = Lt(θ)p0(θ)/Zt

where Zt =
∫
Lt(θ)p0(θ)dθ denotes the normalizing constant and we used the convention that p̂1 = p0. Moreover

we define the potential function U(θ) ∝ − log p̂t(θ). Then, at each iteration t ∈ [T ], TS consists in sampling a
parameter θt from the posterior p̂t and from it, use as a policy, π(TS)

t (x) defined for any x by

π
(TS)
t (x) = aθt(x) , aθ(x) = argmax

a∈A(x)

∫
rRθ(dr|x,a)

The pseudo-code associated to Thompson Sampling is given in Algorithm 1.

Algorithm 1 Thompson Sampling
for t= 1, . . . ,T do

receive a context xt ∈ X
sample θt from p̂t

choose at = π
(TS)
t (xt)

receive rt ∼ R(·|xt,at)
update the posterior p̂t+1 with the new data point (xt,at, rt).

end for

The main challenge in Thompson Sampling is to sample from the posterior distribution. Since Zt is generally
intractable, sampling from the posterior distribution is not in general an option. In this case, we need to use
approximation methods, such as Variational Inference or Langevin Monte Carlo.
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Résumé de la thèse

Dans cette section nous résumons les différentes contributions de cette thèse. Celle-ci s’articule autours de deux
axes principaux: les garanties théoriques pour l’Inférence Variationnelle et les algorithmes de Thompson Sampling
pour les problèmes de bandits.

1 Partie I: Les garanties théoriques pour l’Inférence Variationnelle.

Pour les trois premiers chapitres (chapitre 4-5-6) de cette thèse nous allons étudier théoriquement les Réseaux de
Neurones Bayesiens surparamétrés entrainés par Inférence Variationnelle Gaussienne. Dans le dernier chapitre
(chapitre 7) de cette première partie, nous considérons une famille Variationnelle plus large, capable notament de
modéliser les distributions multimodales, j’ai nommé les Mixtures de Gaussiennes.

1.1 Chapitre 4: Inférence Variationnelle pour les Réseaux de Neurones Bayésiens surparamétrés:
étude théorique et pratique du Tempering.

Dans ce travail nous allons considérer un réseau de neurone bayesien fw̄ : RdX → RdY avec une seule couche cachée
qui, pour tout x ∈ RdX est décrit par:

fw̄(x) = 1
N

N∑
j=1

s(wj ,x) , s(wj ,x) = ajh(bj ,x) ,

où h(·, ·) est la fonction d’activation et w̄ désigne les paramètres du réseau. Ils se décomposent en N différents
neurones chacun avec un paramètre wj = (aj , bj) ∈ RdX × RdY . L’ensemble des paramètres du modèle est
w̄ = {wj}j≤N . Nous allons ensuite appliquer, à ce Réseau de Neurones, l’algorithm Bayes-By-Backprop [Blundell
et al., 2015] qui a été présenté dans la Section 1.2.2 du Chapitre 1. Pour rappel, cette méthode utilise une
approche Bayesienne d’Inférence Variationnelle sur le Réseau de Neurones. On définit alors la vraisemblance
L(w̄|Dp) ∝

∏p
i=1 exp(−ℓ(fw̄(xi),yi)), la distribution à priori p0(w̄) et on obtient la distribution à posteriori

p̂(w̄|Dp)∝ L(w̄|Dp)×p0(w̄). Pour faciliter la compréhension, dans la suite de ce document nous appellerons la
distribution à posteriori : posterior. L’objectif de cet algorithme est de résoudre le problème d’optimisation suivant:

q̃ = argmin
q∈G

KL(q|p̂) , (2.1)
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avec G =
{
q(µ,σ) =N (µ,diag(σ2))

}
est la famille Variationnelle Gaussienne Mean-Field. Le dernier rappel

concernant l’algorithme Bayes-By-Backprop est que l’optimisation de (2.1) est équivalente à l’optimisation de
l’ELBO définit par

q̃ = qθ⋆,N

θ⋆,N = argmax
θ∈Θ

ELBON (θ) = argmax
θ∈Θ

−KL(q̃θ(w̄)|p0(w̄)) +Ew̄∼q̃θ(w̄)[
p∑

i=1
logL(yi|xi, w̄)] . (2.2)

On peut noter que la fonction ELBON se décompose en deux termes: le premier est un terme de régularisation
qui pénalise les distributions variationnelles qui s’éloignent de la distribution à priori et le deuxième est un terme
qui mesure la qualité de la distribution variationnelle par rapport aux données. Dans ce travail nous allons étudier le
régime surparamétré, c’est-à-dire lorsque le nombre de neurones N tends vers l’infini.

Première contribution Nous avons montré que dans le régime surparamétré si nous considérons l’ELBO définie
dans (2.2) alors le terme de régularisation (KL(q̃θ(w̄)|p0(w̄))) va devenir prédominant comparé au terme relatif
aux données. En d’autres termes, nous allons optimiser uniquement que le premier terme de l’ELBO et donc obtenir
une distribution variationnelle qui colle la distribution à priori. Cette contribution est résumée dans la proposition
suivante:

Proposition 1. (Informel). Si on suppose que GΘ est la famille des distributions Gaussiennes avec une covariance
diagonale, que la distribution à priori p0 ∈ GΘ et que X est compact. Si on choisit ℓ comme la perte quadratique ou
la cross-entropy et que la fonction d’activation h est Lipschitz. Alors, KL(q̃θ∗,N (w̄)|p0(w̄))→ 0 lorsque N →∞.

Deuxième contribution Nous avons proposé une version tempérée de l’ELBO qui permet de pallier au problème
d’équilibrage entre les deux termes de l’ELBO. Cette version tempérée est définie par:

ELBON
η (θ) =−ηKL(q̃θ |p0) +Ew̄∼q̃θ(w̄)[

p∑
i=1

logL(yi|xi, w̄)] . (2.3)

C’est le paramètre η qui permet d’équilibrer les deux termes de l’ELBO. Le cas η = 1 correspond au bayesien
classique, η > 1 est appelé le régime de “warm posterior” et enfin le cas η < 1 est appelé le régime de “cold
posterior”. En choisissant η = τp/N avec τ un paramètre fixé alors on peut montrer qu’on n’a plus ce problème
de collapse de la distribution variationnelle sur la distribution à priori. Cette contribution est résumée dans la
proposition suivante:

Proposition 2. (Informel). Si on suppose que η = τp/N et que la fonction de perte ℓ est la perte quadratique. Alors,
limsupN→∞KL(q̃θ∗,N ,p0)> 0 quand N →∞.

Troisième contribution Enfin, nous avons montré que cette version tempérée de l’ELBO converge vers une
fonctionnelle bien définie lorsque le nombre de neurones et de données tend vers l’infini. Cette approche s’inspire
des papiers récents qui étudient la convergence des algorithmes de descente de gradient pour les réseaux de neurones
à une couche cachée dans le régime surparamétré, [Chizat and Bach, 2018, Rotskoff et al., 2019, Mei et al., 2018,
Tzen and Raginsky, 2019, De Bortoli et al., 2020a]. Cette contribution est résumée dans le théorème suivant:

Theorem 3. (Informel). Sous certaines hypothèses décrites dans le chapitre 4, si on considère la version tempérée
de l’ELBO définie dans (2.3) on obtient alors la borne suivante:∣∣∣∣1pELBON

η (θ)−Rτ (νθ
N )
∣∣∣∣≤ C

N
+MG

√
log(δ/2)/(2p) ,

où νθ
N = 1

N

∑N
i=1 δθi

est la distribution empirique des paramètres, C et MG sont des constantes indépendantes du
problème et la fonctionnelle de risque est définie par:

Rτ (ν) =−
∫
ℓ

(
y,

"
ϕ(θ,z,x)dν(θ)dγ(z)

)
dπ(x,y)− τ

∫
KL(q̃1

θ|p0
1)dν(θ) ,
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Ce résultat nous montre que dans le régime surparamétré (N →∞) et le régime large data (p→∞) la version
tempérée de l’ELBO converge vers la fonctionnelle de risque Rτ .

1.2 Chapitre 5: Loi des Grands Nombres pour les Réseaux de Neurones Bayésiens à deux couches
entraînés avec Inférence Variationnelle.

Dans ce chapitre nous considérons une configuration identique à celle du chapitre précédent (Chapitre 4). Cependant,
certains éléments de la configuration ont été simplifiés pour faciliter l’étude théorique du réseau. Premièrement le
réseau de neurones considéré possède uniquement des poids en entrée

fw̄(x) = 1
N

N∑
i=1

h(wi,x) , (2.4)

où on rappelle que h est la fonction d’activation. On voit donc que la sortie du réseau de neurones est de dimension
1. Enfin, nous considérons uniquement les problèmes de régression, donc la fonction de perte étudiée est la perte
quadratique, définie par:

l(y1,y2) = 1
2 |y1− y2|2 .

Maintenant, nous allons rappeler le “reparameterisation trick” de [Blundell et al., 2015]. Soit q̃1
θi

(wi) =
N (wi|µi,σi) la distribution variationnelle associée au neurone i. Alors échantillonner wi selon q̃1

θi
(wi) est

équivalent à échantillonner z selon γ = N (0,1) et à appliquer la transformation suivante: wi = µi + σi ⊙ z.
On peut donc définir la fonction ϕ : (θ,z,x) → h(µ+ σ ⊙ z,x) qui est la fonction d’activation combinée au
“reparameterisation trick’. Nous avons maintenant définie toutes les notations nécéssaires pour developper nos
algorithmes qui sont étudiés dans ce chapitre.

Le premier algorithme est la version de Bayes-By-Backprop (plus de détails de cette approche dans le Chapitre 1)
avant l’approximation de Monte Carlo. Cet algorithme est appelé Idealized SGD dans la suite de ce travail. Le
principe de Bayes-By-Backprop est d’utiliser directement une descente de gradient sur l’ELBO. Nous désignons par
θk

i les poids variationnels associés au ieme neurone après k étapes de descente de gradient. Nous obtenons alors la
récursion suivante:

θi
k+1 = θi

k −
η

N2

N∑
j=1,j,i

(
⟨ϕ(θj

k, ·,xk),γ⟩− yk

)
⟨∇θϕ(θi

k, ·,xk),γ⟩

− η

N2

〈
(ϕ(θi

k, ·,xk)− yk)∇θϕ(θi
k, ·,xk),γ

〉
− η

N
∇θKL(q1

θi
k
|P 1

0 ) (2.5)

Cependant cette version est inutilisable en pratique car les intégrales de la forme: ⟨U,γ⟩=
∫
U(z)dγ(z) ne sont

pas calculables. Nous allons alors les approximer par du Monte Carlo, en prenant B échantillons de Monte Carlo, ie,
⟨U,γ⟩ ≈ 1

B

∑B
l=1U(zl), avec zl échantillonné selon γ. On obtient alors l’algorithme suivant:

θi
k+1 = θi

k −
η

N2B

N∑
j=1

B∑
ℓ=1

(
ϕ(θj

k,Z
j,ℓ
k ,xk)− yk

)
∇θϕ(θi

k,Z
i,ℓ
k ,xk)− η

N
∇θKL(q1

θi
k
|P 1

0 ) (2.6)

Avec (Zj,ℓ
k ,1≤ j ≤N,1≤ ℓ≤B,k ≥ 0) une suite de variables aléatoires échantillonnées selon γ de manière

i.i.d. Cet algorithme est appelé Bayes-By-Backprop SGD dans la suite de ce travail.
Pour chacun des algorithmes, il est utile de définir la distribution empirique des paramètres du réseau après

⌊Nt⌋ étapes de descente de gradient. Cette distribution est définie par:

µN
t = 1

N

N∑
i=1

δθN
⌊Nt⌋

Soit T > 0 un paramètre fixé, on définit µN = {µN
t , t ∈ [T ]} la trajectoire des paramètres.
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Première contribution: Nous avons premièrement démontré que la suite des trajectoires µN suit la même loi des
grands nombres pour les algorithmes Idealized SGD et Bayes-By-Backprop SGD. Cette contribution est résumée
dans le théorème suivant:

Theorem 4. (Informel). Sous certaines hypothèses décrites dans le chapitre 5, si la suite {µN}N≥1 est décrite par
Idealized SGD ou Bayes-By-Backprop SGD alors elle converge en probabilité vers une unique solution déterministe
µ̄ qui est caractérisée par l’équation suivante: pour toute fonction de test f ∈ C∞(Θ) et tout t ∈ [T ] on a:

⟨f, µ̄t⟩− ⟨f,µ0⟩=−η
∫ t

0

∫
X×Y

〈
ϕ(·, ·,x)− y, µ̄s⊗ γ

〉〈
∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ

〉
π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (2.7)

Deuxième contribution: Nous avons ensuite analysé la structure de l’équation limite (2.7), et nous avons constaté
qu’elle peut être réécrite de manière plus simple. Cela nous a permis de développer un nouvel algorithme, appelé
Minimal-VI SGD, qui respecte la même équation limite. Cet algorithme est décrit par l’équation suivante:

θi
k+1 = θi

k −
η

N2

N∑
j=1

(
ϕ(θj

k,Z
1
k,xk)− yk

)
∇θϕ(θi

k,Z2
k,xk)− η

N
∇θDKL(q1

θi
k
|P 1

0 ) (2.8)

Notons qu’à chaque étape uniquement deux variables aléatoires Gaussiennes (Z1
k ,Z

2
k) sont échantillonnées

pour cet algorithme. Alors que chaque étape des algorithmes précédent nécessite la simulation de O(N) variables
aléatoires gaussiennes. Cette version Minimal-VI SGD est donc beaucoup moins coûteuse que se soit théoriquement
ou en pratique.

Troisième contribution: Nous avons montré que la suite des trajectoires µN suit la même loi des grands nombres
pour l’algorithme Minimal-VI SGD. Cette contribution est résumée dans le théorème suivant:

Theorem 5. (Informel). Sous certaines hypothèses décrites dans le chapitre 5, si la suite (µN )N≥1 est décrite par
Minimal-VI SGD alors elle satisfait toutes les affirmations du Théorème 4.

Cet algorithme est donc beaucoup moins coûteux en terme de complexité de calcul, et en plus il a le même
comportement limite.

1.3 Chapitre 6: Théorème Central Limite pour les Réseaux de Neurones Bayésiens entraînés avec
Inférence Variationnelle.

Dans ce chapitre nous suivons le travail réalisé précédement. Nous considèrons la même configuration de réseau
définie en (2.4), la même famille variationnelle et les trois même algorithmes Idealized SGD (2.5), Bayes-By-
Backprop (2.6) et Minimal VI (2.8). Dans le chapitre précédent nous avons démontré que ces trois différents
algorithmes suivent une même loi des grands nombres et que la distribution des leurs paramètres convergent toutes
vers une même distribution limite µ̄t qui est déterministe. Dans ce chapitre nous allons étudier la vitesse de
convergence de ces distributions en dérivant un théorème Centrale Limite. Premièrement, nous allons définir le
processus de fluctuation:

ηN : t ∈ R+ 7→
√
N(µN

t − µ̄t) ,

Première contribution Nous avons premièrement démontré un Théorème Central Limite pour l’algorithme
Idealized SGD (2.5). Cette contribution est résumée dans le théorème suivant:

Theorem 6. (Informel). Sous certaines hypothèses décrites dans le Chapitre 6, si on considère l’algorithm
Idealized SGD, la suite (ηN )N≥1 converge en loi vers un processus η⋆. Ce processus est l’unique solution d’une
certaine équation. Celui-ci est entièrement caractérisée par un G-processus et plus précisément par sa structure
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de covariance. Vous pouvez trouver plus de détails sur cette équation et sur la definition du G-processus dans le
Chapitre 6. Pour cet algorithme, la structure de covariance est donnée par:

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y, µ̄v),Q [g](x,y, µ̄v))dv,

où Q [f ](x,y, µ̄v) = ⟨ϕ(·, ·,x)− y, µ̄v ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄v ⊗ γ⟩.

Deuxième contribution Nous avons ensuite démontré un Théorème Central Limite pour l’algorithme Bayes-
By-Backprop SGD (2.6). Plus précisément, nous avons démontré que cet algorithme suit exactement le même
Théorème Central Limite que l’algorithme Idealized SGD et donc respecte le Théorème 6. Cela justifie encore plus
l’utilisation de cette approximation de Monte Carlo car on voit qu’il n’y a ni différence de convergence ni de vitesse
de convergence entre l’approximation Monte Carlo et la version idéalisée.

Troisième contribution Enfin, nous avons démontré un Théorème Central Limite pour le dernier algorithme
Minimal-VI SGD (2.8). Cette contribution est résumée dans le théorème suivant:

Theorem 7. (Informel). Sous certaines hypothèses décrites dans le Chapitre 6, si on considère l’algorithme
Minimal-VI SGD, la suite (ηN )N≥1 converge en loi vers un processus η⋆. Ce processus est caractérisé par un
G-process dont la structure de covariance est donnée par:

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y,z1,z2, µ̄v),Q [g](x,y,z1,z2, µ̄v))dv,

où Q [f ](x,y,z1,z2, µ̄v) = ⟨ϕ(·,z1,x)− y, µ̄v⟩⟨∇θf · ∇θϕ(·,z2,x), µ̄v⟩.

On peut voir que pour cet algorithme le G-processus a une structure de covariance différente. Par exemple, si on
considère une fonction de test scalaire, on peut montrer que la variance du G-processus associé à Minimal-VI SGD
est plus grande que celles associées aux autres algorithmes. Cependant, rappelons que cet algorithme est beaucoup
plus efficace computationnellement.

1.4 Chapitre 7: Garanties théoriques pour l’Inférence Variationnelle avec des Mélanges de
Gaussiennes à Variance fixée

Dans les trois premiers chapitres de cette thèse, nous avons étudié la famille Variationnelle Gaussienne. Cependant,
lorsque la distribution que nous souhaitons approcher est multimodale, une simple gaussienne ne permet pas d’obtenir
une approximation satisfaisante. L’utilisation d’une famille variationnelle plus flexible, telle que les mélanges de
Gaussiennes, permet de résoudre ce problème et de mieux approcher les distributions multimodales. De plus, la
famille des mélanges de Gaussiennes est dense dans l’espace des distributions de probabilité avec des moments
d’ordre p bornés dans la métrique de Wasserstein-p [Delon and Desolneux, 2020]. Cette famille de distributions est
donc extrêmement pertinente pour notre problème d’Inférence Variationnelle. Cependant dans ce chapitre, nous
proposons de considérer un cadre simplifié où les gaussiennes ont des poids égaux et partagent la même matrice de
covariance diagonale ϵ2Id. Ce cadre permet de réduire la complexité du problème, tout en restant théoriquement
difficile et pertinent en pratique. La famille Variationnelle est alors définie par:

Gn =
{

1
n

n∑
i=1
N (xi, ϵ2Id), xi ∈ Rd

}
=
{
kϵ ⋆ µ, µ= 1

n

n∑
i=1

δxi , xi ∈ Rd

}
.

où kϵ est le noyau Gaussien normalisé, ie, kϵ ∝ exp
(
−∥x∥2/(2ϵ2)

)
.

Rappelons que l’objectif de notre approche est d’approximer la distribution cibleµ⋆ ∝ exp(−V ), plus précisément
le problème d’optimisation de l’Inférence Variationnelle s’écrit de la manière suivante

ν̂ = argmin
νGn

KL(ν,µ⋆) (2.9)
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On peut donc maintenant définir la fonction objective

Fϵ(µ) = KL(kϵ ⋆ µ,µ
⋆)

=
∫
V d(kϵ ⋆ µ) +

∫
log(kϵ ⋆ µ)d(kϵ ⋆ µ)

On peut voir que puisque les variances de nos Gaussiennes sont fixées, l’Inférence Variationnelle vise à optimiser
les emplacements des moyennes du mélange gaussien (xi)n

i=1 pour approcher la distribution cible. On peut donc
voir nos mélanges de Gaussiennes comme des systèmes de particules que nous pouvons faire évoluer le long du flow
qui diminue la fonction objective Fϵ. Pour faire cela, nous allons utiliser un algorithme de descente de gradient
Wasserstein (plus de détails sur l’algorithme dans le Chapitre 7). Soit µl = 1

n

∑n
i=1 δxi

l
la distribution empirique

des particules après l étapes de descente de gradient Wasserstein. Cette distribution empirique est mise à jour
récursivement selon la récurrence suivante

µl+1 = (Id− γ∇F ′
ϵ(µl))#µl (2.10)

où γ > 0 est le pas de discrétisation de l’algorithme et ∇F ′
ϵ(µl) est le flow de gradient Wasserstein de Fϵ.

l’Equation (2.10) permet de faire évoluer les particules de notre système suivant la récurrence:

xj
l+1 = xi

l − γ
(∫

Rd
∇V (y)kϵ(y−xj)dy+

∫
Rd

∑n
i=1∇kϵ(y−xi)∑n
i=1 kϵ(y−xi) kϵ(y−xj)dy

)
,

Première contribution: Nous avons premièrement étudié l’erreur d’optimisation, c’est-à-dire l’erreur obtenue
lorsque que nous optimisons (2.9). Nous avons démontré la regularité (smoothness) de notre fonction objectif Fϵ

puis cela nous a permit d’établir un lemme de descente qui est résumé dans la proposition suivante:

Proposition 8. (Informel) Sous certaines hypothèses décrites dans le chapitre 7, l’inégalité suivante est vérifiée:

Fϵ(µl+1)−Fϵ(µl)≤−γ
(

1− γ

2M
)
∥∇F ′

ϵ(µl)∥2L2(µl).

avec M une constante.

Ainsi, pour un γ suffisamment petit, cette proposition nous montre que la fonction objectif Fϵ décroit à chaque
itération l.

Deuxième contribution: Ensuite, nous nous sommes intéressés à l’erreur d’approximation, qui quantifie à quel
point ν̂ est loin de µ⋆. Plus précisément nous supposons que pour chaque n ∈ N nous avons trouvé l’optimiseur
de (2.9) que nous notons ν̂n = kϵ ⋆ µn avec µn = 1

n

∑n
i=1 δxi . Nous avons démontré que si la distribution cible est

un mélange, potentiellement infini, de Gaussiennes alors l’erreur d’approximation est bornée par une fonction qui
décroit en log(n)

n , cette contribution est résumée dans le Théorème suivant:

Theorem 9. (Informel) Sous certaines hypothèses décrites dans le chapitre 7, l’inégalité suivante est vérifiée:

KL(µn,µ
⋆)≤ C2

µ⋆
log(n) + 1

n

où Cµ⋆ est une constante qui dépend de la distribution cible µ⋆.

2 Partie II: Les algorithmes de Thompson Sampling pour les problèmes de bandits.

Dans cette partie de la thèse, nous allons étudier les problèmes de Bandit contextuel en utilisant une approche
Bayésienne. Plus précisément, nous allons considérer les algorithmes de Thompson Sampling. Une description
complète du problème étudié, ainsi que de l’algorithme de Thompson Sampling est donnée dans la Section 2 du
Chapitre 1.

Les algorithmes de Thompson Sampling classiques présentent deux limites majeures. La première est que
l’échantillonnage selon la posterior est souvent difficile, voire impossible. Et qu’il faut donc utiliser des méthodes
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d’approximation. La deuxième est que ces algorithmes possèdent de moins bonnes garanties théoriques que celles
obtenues par les approches fréquentistes, de type UCB. Dans cette partie de la thèse, nous proposons des solutions à
ces deux problèmes, dans le Chapitre 8 nous allons étudier le problème de Bandit contextuel avec une approche
d’Inférence Variationnelle Gaussienne. Et enfin dans le Chapitre 9 nous étudions un algorithme appelé Feel-Good
Thompson Sampling presenté dans Zhang [2022a], qui permet d’améliorer les garanties théoriques de Thompson
Sampling classique en modifiant légèrement la posterior.

2.1 Chapitre 8: Thompson Sampling avec Inférence Variationnelle pour les problèmes de bandits
contextuels.

Pour rappel, le problème de Bandit contextuel est défini de la manière suivante: à chaque itération t ∈ [T ] un agent
observe un contexte xt ∈ X qui représente l’état de l’environnement, puis il choisit une action at = πt(xt), où πt est
appelé politique, et enfin il reçoit une récompense rt ∼ R(·|xt,at). L’objectif de l’agent est de trouver une politique
qui permet de minimiser le regret cumulé définie

CREG(Q1:T ) =
∑
t≤T

f⋆(xt)− f(xt,πt(xt)) ,

où f(x,a) =
∫
rR(dr|x,a) et f⋆(x) = maxa∈A(x) f(x,a).

Pour résoudre ce problème, nous allons utiliser l’algorithme de Thompson Sampling. On commence par choisir
un modèle paramétrique Rθ pour modéliser la distribution de récompense R. Dans ce chapitre, nous choisissons
de considérer comme modèle la famille exponentielle (voir Chapitre 8 pour plus de détails). On applique ensuite
l’approche Bayesienne, on définit la posterior p̂t. Le principe de Thompson Sampling est d’échantillonner pour
chaque itération t, un paramètre θt selon la posterior, et de choisir l’action de la manière suivante:

at = argmax
a∈A(xt)

∫
rRθt(dr|xt,a) .

Cependant en pratique, il est souvent impossible d’échantillonner selon la posterior et il est donc impératif
d’utiliser une méthode d’approximation. Dans ce chapitre, nous proposons d’utiliser une approche d’Inférence
Variationnelle Gaussienne pour approximer la posterior. Pour résoudre le problème d’optimisation d’Inférence
Variationnelle, nous proposons d’utiliser l’algorithme de descente de gradient Riemannien (voir la section 1.2.2
du chapitre 1 pour plus de détails sur l’algorithme). Pour rappel, la distribution Variationnelle obtenue après k
étapes de descente de gradient Riemannien est q̃t,k =N (µ̃t,k, Σ̃t,k), où les paramètres µ̃k et Σ̃k sont mis à jour de
la manière suivante:

µ̃t,k+1 = µ̃t,k − γ∇Ut(θ̃t,k), (2.11)

Σ̃t,k+1 = Ãt,kΣ̃t,kÃt,k ,

Ãt,k = Id− γt(∇2Ut(θ̃t,k)− Σ̃−1
t,k ) , (2.12)

θ̃t,k ∼ q̃t,k ,

où ht est le pas de discrétisation de l’algorithme et Ut(θ)∝− log(p̂t(θ)) est la fonction de potentiel. Cet algorithme
présenté dans [Lambert et al., 2022b] permet de résoudre le problème d’optimisation Variationnelle, cependant pour
chaque itération k il est nécéssaire d’échantillonner selon une Gaussienne de dimension d, ce qui peut être coûteux
en haute dimension.

Première contribution: Nous avons premièrement proposé une version améliorée de l’algorithme de [Lambert
et al., 2022b]. Au lieu de considérer la matrice de covariance {Σ̃t,k}, nous regardons uniquement une de ses racines
carrée qui est définie par:

Bt,k+1 =
{
Id−ht∇2Ut(θ̃t,k)

}
Bt,k +ht(B−1

t,k )⊤
. (2.13)

Il est alors beaucoup plus efficace d’échantillonner selon la posterior Variationnelle en utilisant la formule suivante:

θ̃t,k = µ̃t,k +Bt,kϵt,k, ϵt,k ∼N (0, Id) .
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On obtient alors notre premier algorithme appelé VITS− I qui à chaque itération t, choisit une action de la manière
suivante:

at = argmax
a∈A(xt)

∫
rRθ̃t,Kt

(dr|xt,a) . (2.14)

Puis on recalcule la distribution Variationnelle en utilisant les equations (2.11) et (2.13) pendant Kt+1 itérations.
Cet algorithme est bien plus efficace que la version de base de [Lambert et al., 2022b], cependant il est toujours
coûteux en haute dimension car à chaque itération nous devons inverser la matrice Bt,k.

Deuxième contribution: Nous avons proposé une nouvelle version de notre algorithme, qui utilise une approxima-
tion de Taylor (pour ht assez petit) qui permet d’approximer l’inverse B−1

t,k par Ct,k qui est définie recursivement
par

Ct,k+1 = Ct,k{Id−ht(C⊤
t,kCt,k −∇2Ut(θ̃t,k))} , Bt,k+1 = (Id−ht∇2Ut(θ̃t,k))Bt,k +htC

⊤
t,k .

Cet algorithme que nous appelons VITS− II est encore plus efficace que VITS− I et permet choisir une action
at de la même manière que dans (2.14).

Troisième contribution: Nous avons proposé une dernière version de notre algorithme qui permet d’éviter l’ultime
étape coûteuse qui est le calcule de la Hessienne de Ut. Pour cela, nous utilisons la propriété Gaussienne suivante:∫

∇2UtdN (µ,Σ) =
∫

Σ−1(Id−µ)∇U⊤
t dN (µ,Σ) .

Le terme de Hessienne∇2Ut(θ̃t,k) dans (2.12) est alors remplacé par C⊤
t,kCt,k(θ̃t,k− µ̃t,k)∇Ut(θ̃t,k)⊤. On obtient

alors l’algorithme VITS− II Hessian-free qui se base sur les récurrences suivantes:

µ̃t,k+1 = µ̃t,k −ht∇Ut(θ̃t,k) ,
Ct,k+1 = Ct,k{Id−ht(C⊤

t,kCt,k −C⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇Ut(θ̃t,k)⊤)} ,

Bt,k+1 = (Id−htC
⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇Ut(θ̃t,k)⊤)Bt,k +htC

⊤
t,k ,

où la distribution Variationnelle est q̃t,k =N (µ̃t,k,B
⊤
t,kBt,k) et le paramètre θ̃t,k ∼ q̃t,k. Cet algorithme possède

un très faible coût computationnel à la fois théoriquement et empiriquement.

Quatrième contribution: Enfin, nous avons démontré que lorsqu’on considère un Bandit linéaire, notre premier
algorithme VITS− I possède une garantie de regret de l’ordre de Õ(d

√
dT ). Cette contribution est résumée dans le

Théorème suivant:

Theorem 10. (Informel). Sous certaines hypothèses décrites dans le chapitre 8, si on considère l’algorithme
VITS− I pour un Bandit linéaire, alors avec probabilité 1− δ on a

CREG(Q̃1:T )≤ C1d
√
dT log

(
3T 3) log

(
(1 + C2T

d
)/δ
)
,

où C1 et C2 sont des constantes (voir Chapitre 8 pour plus de détails).

Ce résultat théorique est la première borne de regret pour une approximation Variationnelle de la posterior.
De plus cette borne est optimale pour le problème de Bandit linéaire utilisant une approche basée sur Thompson
Sampling classique.
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2.2 Chapitre 9: Feel-Good Thompson Sampling avec Langevin Monte Carlo.
Dans ce chapitre, nous allons continuer à étudier les algorithmes de Thompson Sampling pour résoudre le problème
de Bandit contextuel. Bien que ces algorithmes soient très performants en pratique et faciles à implémenter, les
bornes théoriques de regret obtenues par Thompson Sampling sont généralement moins bonnes que celles des
approches fréquentistes. Par exemple, pour le Bandit Linéaire, la meilleure borne de regret pour Thompson Sampling
est CREG = Õ(d3/2√T ) ([Agrawal and Goyal, 2012]), tandis que pour l’approche Linear UCB, on obtient une
borne CREG = Õ(d

√
T ) (Dani et al. [2008], Abbasi-Yadkori et al. [2011b]). Pour contourner ce problème, [Zhang,

2022a] a proposé de modifier la fonction de vraisemblance dans TS en ajoutant un terme de pénalité pour favoriser
une exploration. Plus précisément, on rappelle que la vraisemblance utilisée dans Thompson Sampling est de la
forme suivante:

L(TS)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,xs,as)− rs)2
)
,

où g(θ,x,a) est la sortie du modèle ayant comme paramètre θ, associé au contexte x et à l’action a. L’idée de
[Zhang, 2022a] est de remplacer cette vraisemblance par une nouvelle vraisemblance qui est définie de la manière
suivante:

L(FG)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,x,a)− r)2−λmin(b,g⋆(θ,x))
)
,

où b est un paramètre fixé, λ contrôle l’importance de la pénalité, et g⋆ = maxa∈A(x) g(θ,x,a). Il utilise ensuite
exactement la même approche que TS mais avec cette nouvelle fonction de vraisemblance. Cet algorithme est appelé
Feel-Good Thompson Sampling (FG-TS). Il démontre ensuite que cette nouvelle version de TS permet d’obtenir des
bornes de regret de l’ordre de CREG = Õ(d

√
T ) qui correspond à la borne optimale de regret minimax. Cependant,

cet algorithme n’est pas utilisable en pratique. En effet la distribution à posteriori est encore plus complexe que
pour Thompson Sampling classique. Elle n’est même plus Gaussienne dans le cas linéaire. Il est donc obligatoire
d’utiliser une méthode d’approximation pour échantillonner selon cette nouvelle posterior.

Dans ce chapitre, nous allons étudier l’algorithme de FG-TS, mais nous y ajoutons une méthode de MCMC pour
échantillonner la posterior.

Première contribution Dans un premier temps, nous avons proposé une nouvelle version de la vraisemblance.
Celle-ci est une version lissée (smooth) de la vraisemblance de FG-TS. Cette nouvelle version est appelée smooth-FG
(sFG) et est définie de la manière suivante:

L(sFG)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,x,a)− r)2−λ [b−ϕς(b− g⋆(θ,x))]
)
,

où ϕς(u) = log(1 + exp(ςu))/ς et ς > 0 est un paramètre qui contrôle la régularité de la vraisemblance.
Régulariser la vraisemblance permet d’avoir une posterior lisse (smooth), ce qui améliore largement les performances
des méthodes de MCMC. En particulier, les méthodes MCMC basées sur les informations de gradient [Durmus
et al., 2018]. Nous avons alors proposé un nouvel algorithme, similaire à FG-TS, mais qui utilise cette nouvelle
vraisemblance et qui utilise une approximation de la vrai posterior, cette approximation est notée q̃(sFG)

t . Utilisant
cet algorithme, on obtient le théorème suivant sur la contrôle du regret:

Theorem 11. (Informel). Sous certaines hypothèses décrites dans le chapitre 9, on a l’inégalité suivante:

CREG(Q(sFG)
1:T )≤ λ

ηϵ
KT + C1λT −

ZT

λ
+ ( C2 + C3

λ
)

T∑
t=0

ET
ν0 [δt] ,

où ZT est un terme qui dépend de la distribution à priori, ϵ ∈ (0,1) est un paramètre fixé et C1, C2, C3 sont des
constantes indépendantes du problème. Notons que nous n’avons pas choisit de méthode d’approximation spécifique
à ce moment là, le terme ET

ν0 [δt] est le terme d’erreur d’approxmation, où δt = ||q̃(sFG)
t −µ(sFG)

t ||TV est la Variation
Totale entre la posterior et son approximation.
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Deuxième contribution Nous avons ensuite proposé d’utiliser une méthode de MCMC pour échantillonner selon
la posterior. Plus précisément, nous avons proposé d’utiliser l’algorithme de Langevin Monte Carlo, qui permet de
définir de manière itérative un paramètre de la manière suivante:

θLt,k+1 = θLt,k + γt∇ logµ(sFG)
t (θLt,k) +

√
2γtZt,k ,

où Zt,k ∼N (0, Id) est un bruit Gaussien. Vous pouvez trouver plus de détails sur cet algorithme dans la Chapitre1
ou dans le Chapitre 9. Nous avons aussi proposé d’utiliser une version métropolisée de l’algorithme de Langevin
Monte Carlo, appelé Metropolized Langevin Algorithm (MALA). Cet algorithme est défini de la manière suivante:

θMt,k+1 =
{
θMt,k + γt∇ logµ(sFG)

t (θMt,k) +
√

2γtZt,k with probability 1/αM
t ,

θMt,k sinon,

avec αM
t la probabilité d’acceptation Metropolos-Hasting, défini dans le Chapitre 9. En utilisant ces algorithmes,

nous avons obtenu le résultat suivant:

Corollary 12. (Informel). Sous certaines hypothèsess décrites dans le chapitre 9, on a l’inégalité suivante:

CREG(Q(sFG)
1:T )≤ C4

ϵ

√
ωdKT log(dT ) +

(
4ξ+ϕς(Lg

T
+ ξ+ bf − b)

)
T

+ C5

√
ωKT

d log(dT )
(
− logp0(θ∗) +Lg + ξT + ξ2T

)
+ C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0
ET

ν0 [δt] + 4Lg.

Vous pouvez trouver tous les détails des paramètres utilisés dans le Chapitre 9.

Nous ne sommes pas très loin de pouvoir obtenir une borne de regret à cette étape. Cependant, il nous reste
encore à fixer le modèle utilisé, la distribution à priori et aussi à contrôler le terme d’erreur d’approximation.

Troisième contribution Enfin, nous avons utilisé nos résultats précédents sur le Bandit linéaire. C’est-à-dire
que le modèle utilisé est g(θ,x,a) = ⟨φ(x,a),θ⟩ où ϕ est la fonction de features. Nous avons aussi considéré une
distribution à priori Gaussienne N (0,m−1

0 Id), avec m0 > 0. Nous avons ainsi obtenu le théorème suivant:

Theorem 13. (Informel). Sous certaines hypothèsess décrites dans le chapitre 9, on a l’inégalité suivante:

CREG(Q(sFG)
1:T )≤ C7

√
ωLGT log3(dT )

(
d(ϵ∧ m0)−1 +

√
Mm0 ∥θ∗∥2

)
,

Nous avons donc obtenu une borne de regret de l’ordre de CREG = Õ(d
√
T ) pour le Bandit linéaire. Cette

borne est optimale et correspond à la borne minimax de regret pour ce problème.
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Summary of the contributions

In this chapter, we summarize the main contributions of this thesis, which is organized in two main parts: the
theoretical guarantees for Variational Inference and the Thompson Sampling algorithms for Bandit problems.

1 Part I: Theoretical guarantees for Variational Inference

In the first three chapters (Chapter 4-5-6) of this thesis, we study theoretically overparametrized Bayesian Neural
Networks trained with Gaussian Variational Inference. The last chapter (Chapter 7) of this first part focuses on a
larger Variational family, namely Gaussian mixtures.

1.1 Chapter 4: Variational Inference of overparametrized Bayesian Neural Networks: a
theoretical and empirical study of tempering

In this work let’s consider a one hidden layer Bayesian Neural Network fw̄ : RdX → RdY , defined by:

fw̄(x) = 1
N

N∑
j=1

s(wj ,x) , s(wj ,x) = ajh(bj ,x) ,

where h(·, ·) is the activation function and w̄ denotes the model’s parameters. The model has a total of N different
neurons, each with a parameterwj = (aj , bj) ∈ RdX×RdY . The full model parameters is denoted by w̄ = {wj}j≤N .
Then, let’s apply the Bayes-By-Backprop [Blundell et al., 2015] algorithm (see Section 1.2.2 of Chapter 1 for
more details) to this NN. Recall that this method uses a Bayesian Variational Inference approach on the NN
parameters. Let’s define the likelihood function L(w̄|Dp) ∝

∏p
i=1 exp(−ℓ(fw̄(xi),yi)), the prior distribution

p0(w̄) and consequently it gives us the posterior distribution p̂(w̄|Dp)∝ L(w̄|Dp)×p0(w̄). The objective of such
algorithm is to solve the optimization task:

q̃ = argmin
q∈G

KL(q|p̂) , (3.1)

where G =
{
q(µ,σ) =N (µ,diag(σ2))

}
is the Mean-Field Gaussian Variational family. The last reminder regarding

the Bayes-By-Backprop algorithm is that the optimization of equation (3.1) is equivalent to the optimization of the
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ELBO defined by

q̃ = qθ⋆,N

θ⋆,N = argmax
θ∈Θ

ELBON (θ) = argmax
θ∈Θ

−KL(q̃θ(w̄)|p0(w̄)) +Ew̄∼q̃θ(w̄)[
p∑

i=1
logL(yi|xi, w̄)] . (3.2)

Note that the function ELBON can be decomposed into two terms: the first one is a regularity term which
penalizes the Variational distribution when it is far from the prior, and the second one measures the quality of the
Variational distribution with respect to the data. In this work, we study the overparametrized regime, ie, when the
number of neurons tends to infinity.

First contribution We showed that in the overparameterized regime, if we consider the ELBO defined in
Equation (3.2), the regularization term (KL(q̃θ(w̄)|p0(w̄))) becomes dominant compared to the data-related term.
In other words, we will only optimize the first term of the ELBO, causing the variational distribution to match the
prior distribution. This contribution is summarized in the following proposition:

Proposition 14. (Informal). Assume that GΘ is the family of Gaussian distributions with a diagonal covariance,
that the prior distribution p0 ∈ GΘ , and that X is compact. If ℓ is the squared loss or the cross-entropy loss and the
activation function h is Lipschitz. Then, KL(q̃θ∗,N (w̄)|p0(w̄))→ 0 as N →∞.

Second contribution We proposed a tempered version of the ELBO that fixes the problem of balancing the two
terms of the ELBO. This tempered version is defined by:

ELBON
η (θ) =−ηKL(q̃θ |p0) +Ew̄∼q̃θ(w̄)[

p∑
i=1

logL(yi|xi, w̄)] . (3.3)

The parameter η allows to balance the two terms of the ELBO. The case η = 1 corresponds to the classical
Bayesian approach, η > 1 is called the “warm posterior” regime, and finally, the case η < 1 is called the “cold
posterior” regime. By choosing η = τp/N with τ a fixed parameter, we showed that the issue of the variational
distribution collapsing onto the prior distribution no longer arises. This contribution is summarized in the following
proposition:

Proposition 15. . (Informal). Assume that η = τp/N and that the loss function ℓ is the squared loss, then
limsupN→∞KL(q̃θ∗,N ,p0)> 0 as N →∞.

Third contribution Finally, we showed that this tempered version of the ELBO converges to a well-defined
functional when the number of neurons and data tend to infinity. This approach is inspired by recent papers that
study the convergence of gradient descent algorithms for one hidden layer neural networks in the overparameterized
regime [Chizat and Bach, 2018, Rotskoff et al., 2019, Mei et al., 2018, Tzen and Raginsky, 2019, De Bortoli et al.,
2020a]. This contribution is summarized in the following theorem:

Theorem 16. (Informal). Under certain assumptions described in Chapter 4, if we consider the tempered version of
the ELBO defined in (3.3), we obtain the following bound:∣∣∣∣1pELBON

η (θ)−Rτ (νθ
N )
∣∣∣∣≤ C

N
+MG

√
log(δ/2)/(2p) ,

where νθ
N = 1

N

∑N
i=1 δθi

is the empirical distribution of the parameters, C and MG are constants independent of
the problem, and the risk functional is defined by:

Rτ (ν) =−
∫
ℓ

(
y,

"
ϕ(θ,z,x)dν(θ)dγ(z)

)
dπ(x,y)− τ

∫
KL(q̃1

θ|p0
1)dν(θ) ,

This result shows that in the overparameterized regime (N →∞) and the large data regime (p→∞), the
tempered version of the ELBO converges to the risk functional Rτ .
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1.2 Chapter 5: Law of Large Numbers for Bayesian two-layer Neural Network trained with
Variational Inference.

In this chapter, we consider a setting similar to the one in the previous chapter (Chapter 4). However, some elements
of this setting have been simplified to facilitate the theoretical study of the network. Firstly, the neural network
considered has only input weights:

fw̄(x) = 1
N

N∑
i=1

h(wi,x) , (3.4)

recall that h is the activation function. Consequently, the output of the NN is one-dimensional. Finally, we only
consider regression problems, so the loss function studied is the quadratic loss, defined by:

l(y1,y2) = 1
2 |y1− y2|2 .

Now, we will recall the “reparameterization trick” from [Blundell et al., 2015]. Let q̃1
θi

(wi) =N (wi|µi,σi) be
the variational distribution associated with neuron i. Then samplingwi according to q̃1

θi
(wi) is equivalent to sampling

z according to γ =N (0,1) and applying the following transformation: wi = µi +σi⊙ z. Therefore let’s define the
function ϕ : (θ,z,x)→ h(µ+ σ⊙ z,x) which is the activation function combined with the “reparameterization
trick”. We have now defined all the necessary notation to derive the algorithms which are studied in this chapter.

The first algorithm we consider is the version of Bayes-By-Backprop that does not use Monte Carlo approximation
(more details on this approach can be found in Chapter 1). This algorithm is referred to as Idealized SGD in the
following work. The principle of Bayes-By-Backprop is to use directly a gradient descent on the ELBO. Let’s denote
by θi

k the variational weights associated with the ith neuron after k steps of gradient descent. We then obtain the
following recursion:

θi
k+1 = θi

k −
η

N2

N∑
j=1,j,i

(
⟨ϕ(θj

k, ·,xk),γ⟩− yk

)
⟨∇θϕ(θi

k, ·,xk),γ⟩

− η

N2

〈
(ϕ(θi

k, ·,xk)− yk)∇θϕ(θi
k, ·,xk),γ

〉
− η

N
∇θKL(q1

θi
k
|P 1

0 ) (3.5)

However, this version is unusable in practice because integrals of the form: ⟨U,γ⟩=
∫
U(z)dγ(z) are intractable.

Consequently, let’s apply the Monte Carlo approximation, by taking B Monte Carlo samples, ie, ⟨U,γ⟩ ≈
1
B

∑B
l=1U(zl), with zl sampled according to γ. We then obtain the following algorithm:

θi
k+1 = θi

k −
η

N2B

N∑
j=1

B∑
ℓ=1

(
ϕ(θj

k,Z
j,ℓ
k ,xk)− yk

)
∇θϕ(θi

k,Z
i,ℓ
k ,xk)− η

N
∇θKL(q1

θi
k
|P 1

0 ) (3.6)

Let (Zj,ℓ
k ,1≤ j ≤N,1≤ ℓ≤B,k ≥ 0) be a sequence of random variables sampled i.i.d. according to γ. This

algorithm is called Bayes-By-Backprop SGD in the following work.
Let’s define the empirical distribution of the network parameters after ⌊Nt⌋ steps of gradient descent. This

distribution is defined by:

µN
t = 1

N

N∑
i=1

δθN
⌊Nt⌋

Finally, let’s define the trajectory of the parameters µN = {µN
t , t ∈ [T ]} for T a fixed parameter.

First contribution: We showed that the sequence of trajectories µN follows the same law of large numbers for
Idealized SGD and Bayes-By-Backprop SGD algorithms. This contribution is summarized in the following
theorem:
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Theorem 17. (Informal). Under certain assumptions described in Chapter 5, if the sequence {µN}N≥1 is described
by Idealized SGD or by Bayes-By-Backprop SGD, then it converges in probability to a unique deterministic solution
µ̄ characterized by the following equation: for any test function f ∈ C∞(Θ) and any t ∈ [T ] we have:

⟨f, µ̄t⟩− ⟨f,µ0⟩=−η
∫ t

0

∫
X×Y

〈
ϕ(·, ·,x)− y, µ̄s⊗ γ

〉〈
∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ

〉
π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (3.7)

Second contribution: We analyzed the structure of the limiting equation given by Equation (3.7), and we noted
that it can be rewritten in a simpler way. This insight led us to derive a new algorithm, called Minimal-VI SGD,
that achieves the same limiting equation. The update rule for this algorithm is described by the following equation:

θi
k+1 = θi

k −
η

N2

N∑
j=1

(
ϕ(θj

k,Z
1
k,xk)− yk

)
∇θϕ(θi

k,Z2
k,xk)− η

N
∇θDKL(q1

θi
k
|P 1

0 ) (3.8)

Note that at each step, only two Gaussian random variables (Z1
k ,Z

2
k) are sampled for this algorithm, whereas

each step of the previous algorithms requires the simulation of O(N) Gaussian random variables. Therefore, this
Minimal-VI SGD version is much less computationally expensive both theoretically and in practice.

Third contribution: We showed that the sequence of trajectories µN follows the same law of large numbers for
the Minimal-VI SGD algorithm. This contribution is summarized in the following theorem:

Theorem 18. (Informal). Under certain assumptions described in Chapter 5, if the sequence (µN )N≥1 is described
by Minimal-VI SGD, then it satisfies all the statements of Theorem 17.

This algorithm is therefore much less computationally expensive, and moreover, it has the same limiting behavior.

1.3 Chapter 6: Central Limit Theorem for Bayesian Neural Network trained with Variational
Inference.

In this chapter, we follow the work done previously. We consider the same network configuration defined in (3.4),
the same Variational family, and the three same algorithms Idealized SGD (3.5), Bayes-By-Backprop (3.6) and
Minimal VI (3.8). In the previous chapter, we showed that these three different algorithms follow the same law of
large numbers and that the distribution of their parameters all converge to the same deterministic limit distribution
µ̄t. In this chapter, we study the rate of convergence of these distributions by deriving a Central Limit Theorem.
Firstly, let’s define the fluctuation process:

ηN : t ∈ R+ 7→
√
N(µN

t − µ̄t) ,

First contribution We show a Central Limit Theorem for the Idealized SGD algorithm 3.5. This contribution is
summarized in the following theorem:

Theorem 19. (Informal). Under certain assumptions described in Chapter 6, if we consider the Idealized SGD
algorithm, the sequence (ηN )N≥1 converges in law to a process η⋆. This process is the unique solution of a certain
equation, which is entirely characterized by a G-process and more precisely by its covariance structure. You can find
more details about this equation and the definition of the G-process in Chapter 6. For this algorithm, the covariance
structure is given by:

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y, µ̄v),Q [g](x,y, µ̄v))dv,

where Q [f ](x,y, µ̄v) = ⟨ϕ(·, ·,x)− y, µ̄v ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄v ⊗ γ⟩.
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Second contribution We derived a Central Limit Theorem for the Bayes-By-Backprop SGD algorithm (2.6).
More precisely, we showed that this algorithm follows exactly the same Central Limit Theorem as the Idealized
SGD algorithm and therefore satisfies Theorem (6). This further justifies the use of the Monte Carlo approximation,
as we see that there is no difference in convergence or in convergence rate between the Monte Carlo approximation
and the idealized version.

Third contribution Finally, we derived a Central Limit Theorem for the last algorithm Minimal-VI SGD (2.8).
This contribution is summarized in the following theorem:

Theorem 20. (Informal). Under certain assumptions described in Chapter 6, if we consider the Minimal-VI SGD
algorithm, the sequence (ηN )N≥1 converges in law to a process η⋆. This process is characterized by a G-process,
whose covariance structure is given by

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y,z1,z2, µ̄v),Q [g](x,y,z1,z2, µ̄v))dv,

where Q [f ](x,y,z1,z2, µ̄v) = ⟨ϕ(·,z1,x)− y, µ̄v⟩⟨∇θf · ∇θϕ(·,z2,x), µ̄v⟩.

It can be seen that for the Minimal-VI SGD algorithm, the G-process has a different covariance structure
compared to the other algorithms studied in this chapter. For instance, if we consider a scalar test function, it can be
shown that the variance of the G-process associated with Minimal-VI SGD is larger than those associated with
Bayes-By-Backprop and its Monte Carlo approximation. However, it is important to recall that the Minimal-VI SGD
algorithm is much more computationally efficient

1.4 Chapter 7: Theoretical Gaurantees for Variational Inference with Fixed-Variance Mixture of
Gaussians.

In the three first chapters of this thesis, we studied the Gaussian Variational Family. However, when the distribution
we want to approximate is multimodal, a simple Gaussian does not provide a sufficient approximation. Using a
larger variational family, such as Gaussian Mixtures, allows us to better approximate multimodal distributions.
Moreover, the family of Gaussian Mixtures is dense in the space of probability distributions with bounded p-th
order moments in the Wasserstein-p metric [Delon and Desolneux, 2020]. Therefore, this family of distributions is
extremely relevant for the Variational Inference problem. In this study, we propose to consider a simplified setting
where the Gaussian components have equal weights and share the same diagonal covariance. This regime breaks
down the complexity of the problem, and is still theoretically challenging, but remains a practically relevant scenario.
The Variational Family is then defined by:

Gn =
{

1
n

n∑
i=1
N (xi, ϵ2Id), xi ∈ Rd

}
=
{
kϵ ⋆ µ, µ= 1

n

n∑
i=1

δxi , xi ∈ Rd

}
.

where kϵ is the normalized Gaussian kernel, ie, kϵ ∝ exp
(
−∥x∥2/(2ϵ2)

)
.

Recall that our objective is to approximate the target distribution µ⋆ ∝ exp(−V ), more precisely the optimization
problem of Variational Inference is written as follows:

ν̂ = argmin
ν∈Gn

KL(ν,µ⋆) (3.9)

We can now define the objective function:

Fϵ(µ) = KL(kϵ ⋆ µ,µ
⋆)

=
∫
V d(kϵ ⋆ µ) +

∫
log(kϵ ⋆ µ)d(kϵ ⋆ µ)

Since the variances of our Gaussians are fixed, Variational Inference aims to optimize the locations of the means
{xi}ni=1 of the Gaussian mixture to approximate the target distribution. Therefore, we can view Gaussian mixtures
as particle systems that we can evolve along a flow that decreases the objective function Fϵ. To accomplish this, we
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will use a Wasserstein gradient descent algorithm (see Chapter 7 for more details). Let µl = 1
n

∑n
i=1 δxi

l
be the

empirical distribution of the particles after l steps of Wasserstein gradient descent. This empirical distribution is
recursively updated according to the following recursion:

µl+1 = (Id− γ∇F ′
ϵ(µl))#µl (3.10)

where γ > 0 is the discretization step of the algorithm and∇F ′
ϵ(µl) is the Wasserstein gradient flow of Fϵ. Using

Equation (3.10), the particles of our system evolve according to the following recursion:

xj
l+1 = xi

l − γ
(∫

Rd
∇V (y)kϵ(y−xj)dy+

∫
Rd

∑n
i=1∇kϵ(y−xi)∑n
i=1 kϵ(y−xi) kϵ(y−xj)dy

)
,

First contribution: We studied the optimization error, i.e. the error obtained when we optimize (3.9). We showed
the regularity of our objective function Fϵ and used this result to prove a descent lemma, which is summarized in
the following proposition:

Proposition 21. (Informal) Under certain assumptions described in Chapter 7, the following inequality holds:

Fϵ(µl+1)−Fϵ(µl)≤−γ
(

1− γ

2M
)
∥∇F ′

ϵ(µl)∥2L2(µl).

where M is a constant.

Consequently, for a sufficiently small γ, this proposition shows that the objective function Fϵ decreases at each
iteration l.

Second contribution: We studied the approximation error, which quantifies how far ν̂ is from µ⋆. More precisely,
for each n ∈ N we assume that we have found the optimizer of (3.9) which is denoted by ν̂n = kϵ ⋆ µn with
µn = 1

n

∑n
i=1 δxi . We showed that if the target distribution is a, potentially infinite, mixture of Gaussians then

the approximation error is bounded by a function that decreases in log(n)
n . This contribution is summarized in the

following theorem:

Theorem 22. (Informal) Under certain assumptions described in Chapter 7, the following inequality holds:

KL(ν̂n,µ
⋆)≤ C2

µ⋆
log(n) + 1

n

where Cµ⋆ is a constant that depends on the target distribution µ⋆.

2 Part II: Thompson Sampling for Multi-Armed Bandit problems.

In this part of the thesis, we study contextual bandit problems using a Bayesian approach. More specifically, we
consider Thompson Sampling algorithm. A complete description of the problem studied, as well as the Thompson
Sampling algorithm, is given in Section 2 of Chapter 1.

Classical Thompson Sampling algorithms have two major limitations. First, sampling from the posterior is often
difficult or even impossible, requiring the use of approximation methods. Second, these algorithms have weaker
theoretical guarantees than those obtained by frequentist approaches, such as UCB. In this part of the thesis, we
propose solutions to address these limitations. Specifically, we study the contextual bandit problem using a Gaussian
Variational Inference approach in Chapter 8. Finally, in Chapter 9, we studied theoretically an algorithm called
Feel-Good Thompson Sampling derived in Zhang [2022a], that improves the theoretical guarantees of classical
Thompson Sampling by slightly modifying the posterior.
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2.1 Chapter 8: Variational Inference Thompson Sampling for contextual bandits.
Recall the contextual bandit problem: at each iteration t ∈ [T ], an agent observes a context xt ∈ X representing
the state of the environment, then chooses an action at = πt(xt), where π is called a policy, and finally receives a
reward rt ∼ R(·|xt,at). The agent’s objective is to find a policy that minimizes the cumulative regret defined as:

CREG(Q1:T ) =
∑
t≤T

f⋆(xt)− f(xt,πt(xt)) ,

where f(x,a) =
∫
rR(dr|x,a) and f⋆(x) = maxa∈A(x) f(x,a).

To solve this problem, we use the Thompson Sampling algorithm. First, consider a parametric model Rθ for the
reward distribution R. In this chapter, we focus on the exponential family as a model (see Chapter 8 for more details).
Next, we apply the Bayesian approach and define the posterior distribution p̂t. The principle of Thompson Sampling
is to sample for each iteration t, a parameter θt according to the posterior, and to choose the action as follows:

at = argmax
a∈A(xt)

∫
rRθt(dr|xt,a) .

However, in practice, it is often impossible to sample from the posterior. Indeed, this posterior is usually
intractable and approximate inference methods have to be used to obtain samples with distributions ”close” to
the posterior. In this chapter, we focus on Gaussian Variational Inference approach to approximate the posterior.
In contextual bandits, the data points progressively accumulate over time. According to Bernstein-Von Mises
theorem [Van der Vaart, 2000], the Gaussian approximation becomes increasingly suitable for representing the
posterior in this particular setting. The method used to solve the Variational Inference problem is the Riemannian
gradient descent algorithm (see Section 1.2.2 of Chapter 1 for more details about the algorithm). As a reminder, the
Variational distribution obtained after k steps of Riemannian gradient descent is q̃t,k =N (µ̃t,k, Σ̃t,k), where the
parameters µ̃k and Σ̃k are updated as follows:

µ̃t,k+1 = µ̃t,k − γ∇Ut(θ̃t,k) , (3.11)

Σ̃t,k+1 = Ãt,kΣ̃t,kÃt,k ,

Ãt,k = Id− γt(∇2Ut(θ̃t,k)− Σ̃−1
t,k ) , (3.12)

θ̃t,k ∼ q̃t,k ,

where ht is the discretization step of the algorithm and Ut(θ)∝− log(p̂t(θ)) is the potential function. The algorithm
described by the previous recursion and presented in [Lambert et al., 2022b] allows us to solve the Variational
Inference optimization problem. However, at each iteration k, it requires sampling from a d-dimensional Gaussian,
which can be computationally expensive in high dimension.

First contribution: We proposed an improved version of the algorithm in [Lambert et al., 2022b]. Instead of
considering the covariance matrix Σ̃t,k, we only look at one of its square roots, which is defined by:

Bt,k+1 =
{
Id−ht∇2Ut(θ̃t,k)

}
Bt,k +ht(B−1

t,k )⊤
. (3.13)

It is then much more efficient to sample from the Variational posterior using the following formula:

θ̃t,k = µ̃t,k +Bt,kϵt,k, ϵt,k ∼N (0, Id) .

We obtain our first algorithm called VITS− I, which at each iteration t, chooses an action as follows:

at = argmax
a∈A(xt)

∫
rRθ̃t,Kt

(dr|xt,a) . (3.14)

Next, the Variational distribution is recalculated using equations (3.11) and (3.13) for Kt+1 iterations. This
algorithm is much more efficient than the basic version presented in [Lambert et al., 2022b]. However, it is still
computationally expensive in high dimension because at each iteration, we must invert the matrix Bt,k.
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Second contribution: We proposed a new version of our algorithm, which uses a Taylor approximation (for ht

small enough) to approximate the inverse B−1
t,k by Ct,k which is recursively defined by:

Ct,k+1 = Ct,k{Id−ht(C⊤
t,kCt,k −∇2Ut(θ̃t,k))} , Bt,k+1 = (Id−ht∇2Ut(θ̃t,k))Bt,k +htC

⊤
t,k .

This algorithm, which we refert to as VITS− II, is even more efficient than VITS− I and allows choosing an action
at in the same way as in (3.14). In numerical experiments, this algorithm is much more efficient than VITS− I and
obtain similar cumulative regret.

Third contribution: We proposed a final version of our algorithm that avoids the computationally expensive step
of calculating the Hessian of Ut. To do this, we leverage the following Gaussian property:∫

∇2UtdN (µ,Σ) =
∫

Σ−1(Id−µ)∇U⊤
t dN (µ,Σ) .

Therefore, the hessian term ∇2Ut(θ̃t,k) in (3.12) is replaced by C⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇Ut(θ̃t,k)⊤. The algorthm

obtained is called VITS− II Hessian-free and it is based on the following recursions:

µ̃t,k+1 = µ̃t,k −ht∇Ut(θ̃t,k) ,

Ct,k+1 = Ct,k{Id−ht(C⊤
t,kCt,k −C⊤

t,kCt,k(θ̃t,k − µ̃t,k)∇Ut(θ̃t,k)⊤)} ,

Bt,k+1 = (Id−htC
⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇Ut(θ̃t,k)⊤)Bt,k +htC

⊤
t,k ,

where the Variational distribution is q̃t,k =N (µ̃t,k,B
⊤
t,kBt,k) and the parameter θ̃t,k ∼ q̃t,k. This algorithm has a

very low computational cost both theoretically and empirically.

Fourth contribution: Finally, we showed that in the linear bandit setting, VITS− I obtains a regret guarantee of
order Õ(d

√
dT ). This contribution is summarized in the following Theorem:

Theorem 23. (Informal). Under certain assumptions described in Chapter 8, if we consider VITS− I algorithm for
a linear bandit, then with probability at least 1− δ we have:

CREG(Q̃1:T )≤ C1d
√
dT log

(
3T 3) log

(
(1 + C2T

d
)/δ
)
,

where C1 and C2 are constants (see Chapter 8 for more details).

To the best of our knowledge, this is the first regret bound derived for VI in the context of sequential learning.
Moreover, It is in the same order as the state-of-the-art cumulative regret obtained in [Agarwal et al., 2012] for the
Linear Bandit setting.

2.2 Chapter 9: Feel-Good Thompson Sampling via Langevin Monte Carlo.

In this chapter, we continue to study Thompson Sampling algorithms for solving the contextual bandit problem.
While these algorithms are efficient in practice and easy to implement, their theoretical regret bounds are generally
worse than those of frequentist approaches. For example, in the case of the Linear Bandit problem, the best regret
bound for Thompson Sampling is CREG = Õ(d3/2√T ) [Agrawal and Goyal, 2012], while for the Linear UCB
approach, we obtain a bound CREG = Õ(d

√
T ) [Dani et al., 2008, Abbasi-Yadkori et al., 2011b]. To circumvent

this issue, [Zhang, 2022a] proposed to modify the likelihood function in TS by adding a penalty term to enforce
more optimistic exploration. More precisely, recall the likelihood used in the Thompson Sampling algorithm:

L(TS)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,xs,as)− rs)2
)
,
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Here, g(θ,x,a) denotes the output of the model with parameter θ, associated with context x and action a. The
idea of [Zhang, 2022a] is to replace this likelihood with a new likelihood defined as follows:

L(FG)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,x,a)− r)2−λmin(b,g⋆(θ,x))
)
,

where b is a fixed parameter, λ controls the importance of the penalty, and g⋆ = maxa∈A(x) g(θ,x,a). The algorithm
then uses the same approach as Thompson Sampling, but with the new likelihood function defined above. This
algorithm is called Feel-Good Thompson Sampling (FG-TS). The author shows that this new version of TS achieves
regret bounds of order CREG = Õ(d

√
T ), which corresponds to the optimal minimax regret bound. However,

this algorithm is unusable in practice. Indeed, the posterior distribution is even more complex than for classical
Thompson Sampling. For instance it is no longer Gaussian in the linear case. Therefore, it is necessary to use an
approximation method to sample from this new posterior distribution.

In this chapter, we study the FG-TS algorithm. However, to address the challenge of sampling from the complex
posterior distribution, we will incorporate a Markov Chain Monte Carlo (MCMC) method.

First contribution We proposed a new version of the likelihood, which is a smoothed version of the FG-TS
likelihood. We call this new version smooth-FG (sFG), and it is defined as follows:

L(sFG)
t (θ|Dt)∝ exp

(
−

t∑
s=1

η(g(θ,x,a)− r)2−λ [b−ϕς(b− g⋆(θ,x))]
)
,

where ϕς(u) = log(1 + exp(ςu))/ς and ς > 0 is a parameter that controls the smoothness of the likelihood.
By regularizing the likelihood, we obtain a smooth posterior distribution, which greatly improves the performance

of MCMC methods, particularly gradient-based MCMC methods [Durmus et al., 2018]. We proposed a new
algorithm that is similar to FG-TS, but uses this new likelihood and an approximation of the true posterior distribution,
denoted q̃(sFG)

t . With this algorithm, we obtain the following theorem on regret control:

Theorem 24. (Informal). Under certain assumptions described in Chapter 9, we have the following inequality:

CREG(Q(sFG)
1:T )≤ λ

ηϵ
KT + C1λT −

ZT

λ
+ ( C2 + C3

λ
)

T∑
t=0

ET
ν0 [δt] ,

where ZT is a term depending on the prior distribution, ϵ ∈ (0,1) is a fixed parameter, and C1, C2, C3 are
constants independent of the problem. Note that at this point, we have not chosen a specific approximation method.
The term ET

ν0 [δt] represents the approximation error, where δt = ||q̃(sFG)
t −µ(sFG)

t ||TV is the Total Variation between
the posterior distribution and its approximation.

Second contribution We proposed to use an MCMC method to sample from the posterior distribution. More
specifically, we proposed to use the Langevin Monte Carlo algorithm, which allows to iteratively define a parameter
as follows:

θLt,k+1 = θLt,k + γt∇ logµ(sFG)
t (θLt,k) +

√
2γtZt,k ,

where Zt,k ∼N (0, Id) is a Gaussian noise. Find more details about this algorithm in Chapter 1 or in Chapter 9.
We also proposed to use a Metropolized version of the Langevin Monte Carlo algorithm, called Metropolized
Langevin Algorithm (MALA). This algorithm is defined as follows:

θMt,k+1 =
{
θMt,k + γt∇ logµ(sFG)

t (θMt,k) +
√

2γtZt,k with probability 1/αM
t ,

θMt,k otherwise ,

where αM
t is the Metropolis-Hastings acceptance probability and is definied in Chapter 9. Using these algorithms,

we obtain the following result:
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Corollary 25. (Informal). Under certain assumptions described in Chapter 9, the following inequality holds:

CREG(Q(sFG)
1:T )≤ C4

ϵ

√
ωdKT log(dT ) +

(
4ξ+ϕς(Lg

T
+ ξ+ bf − b)

)
T

+ C5

√
ωKT

d log(dT )
(
− logp0(θ∗) +Lg + ξT + ξ2T

)
+ C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0
ET

ν0 [δt] + 4Lg.

Find more details about the parameters used in Chapter 9.

We are almost at the point of obtaining a regret bound. However, there are still some steps to be completed.
Specifically, we need to fix the model used, the prior distribution, and also control the approximation error term.

Third contribution Finally, we applied our previous results on the Linear Bandit. Specifically, we used the
model g(θ,x,a) = ⟨φ(x,a),θ⟩, where ϕ is the feature function. We also considered a Gaussian prior distribution
N (0,m−1

0 Id), with m0 > 0. We thus obtained the following theorem:

Theorem 26. (Informal). Under certain assumptions described in Chapter 9, the following inequality holds:

CREG(Q(sFG)
1:T )≤ C7

√
ωLGT log3(dT )

(
d(ϵ∧ m0)−1 +

√
Mm0 ∥θ∗∥2

)
,

Consequently, we have obtained a regret bound of order CREG = Õ(d
√
T ) for the Linear Bandit. This bound is

optimal and corresponds to the minimax regret bound for this problem.
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Part I

Theoretical guarantees for Variational Inference
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Variational Inference of Overparameterized Bayesian
Neural Networks: a Theoretical and Empirical Study

of Tempering

Chapter abstract: This chapter studies the Variational Inference (VI) used for training Bayesian Neural Networks
(BNN) in the overparameterized regime, i.e, , when the number of neurons tends to infinity. More specifically,
we consider overparameterized two-layer BNN trained with VI and point out a critical issue in the mean-field
regime. This problem arises from the decomposition of the lower bound on the evidence (ELBO) into two terms: one
corresponding to the likelihood function of the model, promoting data-fitting, and the second to the Kullback-Leibler
(KL) divergence between the prior distribution and the variational posterior, acting as a regularizer. In particular,
we show both theoretically and empirically that there is a reasonable trade-off between these two terms in the
overparameterized regime only when the KL term is appropriately re-scaled with respect to the ratio between the the
number of observations and neurons. We also illustrate our theoretical results with numerical experiments that
highlight the critical choice of this ratio.

1 Introduction

Bayesian neural networks (BNN) have gained popularity in the field of machine learning because they promise
to combine the powerful approximation and discrimination properties of (deep) neural networks (NN) with the
decision-theoretic approach of Bayesian inference. Among the advantages of BNN is their ability to provide
uncertainty quantification [Arbel et al., 2023], which is a must in many fields - e.g., autonomous driving [Michelmore
et al., 2020, McAllister et al., 2017], computer vision [Kendall and Gal, 2017], health [Filos et al., 2019, Abdullah
et al., 2022] and many other tasks in artificial intelligence [Papamarkou et al., 2024]. Second, the inclusion of prior
information in some cases leads to better generalization error and calibration in classification tasks; see [Jospin et al.,
2020, Izmailov et al., 2021] and references therein.

NN can be used to build complex probabilistic models for regression and classification tasks. Given w̄
corresponding to the weights and bias of an NN, the network output can be used to define a (conditional) likelihood
L({(xi,yi)}pi=1|w̄) of some observed labels {yi}pi=1, yi ∈ Y associated with feature vectors {xi}pi=1, xi ∈ X.
Specifying a prior distribution for w̄ and applying Bayes’ rule yields the posterior distribution of weights. In the
Bayesian approach, the goal is to find the predictive distribution from new feature vectors defined as an integral with
respect to the posterior. One possible approach is to use Markov-Chain Monte Carlo methods - such as Hamiltonian
Monte Carlo - for inference in Bayesian neural networks; [Neal, 2011, Hoffman et al., 2014, Betancourt, 2017].
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However, the challenge of scaling HMC for applications involving high-dimensional parameter space and large
datasets limits its broad application; [Cobb and Jalaian, 2021]. Computationally cheaper MCMC methods have
been proposed, see [Welling and Teh, 2011, Chen et al., 2014, Brosse et al., 2018]; but these methods yield biased
estimates of posterior expectation, see [Izmailov et al., 2021]. A much simpler alternative from a computational
standpoint is to use Variational Inference (VI) [Blundell et al., 2015, Gal and Ghahramani, 2016, Louizos and
Welling, 2017, Khan et al., 2018], which approximates the posterior with a parametric distribution. Nevertheless,
little is known about the validity or limitations of the latter approach, including the choice of prior, variational family,
and their interplay.

A number of recent papers have investigated the limiting behavior of gradient descent type algorithms for one
or two hidden layers in the overparameterized regime, [Chizat and Bach, 2018, Rotskoff et al., 2019, Mei et al.,
2018, Tzen and Raginsky, 2019, De Bortoli et al., 2020a], i.e, , the number of hidden neurons goes to infinity. More
specifically, it was found that the gradient descent applied to (true) risk minimization can be viewed as a temporal
and spatial discretization of the Wasserstein gradient flow of a limiting functional, which is defined on the space of
probability distributions over the parameters by

Rµ(µ) =
∫
ℓ(y,

∫
s(w̄,x)dµ(w̄)dπ(x,y)) +P(µ) , (4.1)

where π is the data distribution over X×Y, s(w̄,x) is the output prediction of the NN with parameter weights w̄ and
P plays the role of a penalty function. Roughly speaking, identifying this functional consists in noting that the risk
Rw over the weights w̄ of a NN coincides with Rµ on the set of empirical measures, i.e, for any w̄ = (w1, . . . ,wN ) -
where N is the number of neurons-, Rw(w̄) = Rµ(µN ) with µN =N−1∑N

i=1 δwi . This result emphasizes that in
the overparameterized regime, the weights of a NN act as particle discretization of probability measures and the
final prediction of a NN has a form of continuous mixture.

We are interested here in performing a similar analysis but for Variational Inference (VI) of two-layer Bayesian
Neural Networks (BNN). In this setting, the weights of the NN are no longer fixed, but are sampled from a variational
posterior, and the prediction of the NN is the empirical average of the prediction of each sample. The variational
posterior is obtained by maximizing an objective function, the Evidence Lower Bound (ELBO) over a parameter
space ΞN . It was empirically found that the maximization of the “vanilla” ELBO function can lead to very poor
inference. To address this problem, a modification of this objective function is often considered, resulting from a
decomposition into two terms of this function: one corresponding to the Kullback-Leibler (KL) divergence to the
prior and the other to a marginal likelihood term. Based on this decomposition, the modified version of ELBO,
called partially tempered ELBO, consists in multiplying the KL term by a temperature parameter. Although this
change has been justified intuitively or by purely statistical considerations, to our knowledge no formal results have
been derived.

This section is organized as follows. Subsection 2 introduces the background of VI on BNN. Subsection 3
characterizes the inadequacy of these models in the limiting case of the mean field, when the data or prior variance
do not scale, and identifies the well-posed regime. Subsection 4 discusses connections to related work and alternative
choices of scaling for infinite-witdh NN. In Subsection 5, some numerical experiments are presented to illustrate our
claims.

2 Variational inference for BNN objective

Consider a supervised setting where we have access to i.i.d. samples {(xi,yi)}pi=1, from a distribution π on
X×Y ⊂ RdX ×RdY , and aim at predicting y given a new observation x. In this paper, we focus on a fully connected
NN with one hidden layer and N neurons, and activation function h : RdX ×X→ R. A common example is

h(bj ,x) = σ(⟨b,x⟩) , (4.2)

for b ∈ RdX and x ∈ X, where σ : R→ R can be the Rectified Linear Unit: σ(t) = max(0, t), or the Sigmoid
function: σ(t) = et/(1 + et), for t ∈ R. In addition, for each neuron j ∈ {1, . . . ,N}, denote by bj ∈ RdX and
aj ∈ RdY the j-th weights of the hidden and output layers respectively, and set wj = (bj ,aj) ∈ Rd, d= dX +dY,
and w̄ = (wj)N

j=1 all the weights of the NN under consideration. With this notation, for each input x ∈ X, the output
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prediction fw̄ : X→ RdY of the neural network can be written as:

fw̄(x) = 1
N

N∑
j=1

s(wj ,x), s(wj ,x) = ajh(bj ,x). (4.3)

Given a loss function ℓ : Y×Y→ R+, we use the prediction function fw̄ to define the conditional likelihood

L(y|x,w̄)∝ exp(−ℓ(fw̄(x),y)) , (4.4)

with respect to the Lebesgue measure on Rd×N denoted by Lebd×N . Then, choosing a prior pdf p0 on w̄, the
posterior pdf p̂ of the weights is proportional to w̄ 7→ p0(w̄)

∏p
i=1L(yi|xi, w̄). We perform Bayesian inference

using VI [Khan and Rue, 2023, Blei et al., 2017, Blundell et al., 2015, Graves, 2011, Khan et al., 2018]. The
general procedure is to consider a variational family of pdfs GΘ = {q̃θ : θ ∈Θ}, for Θ ⊂ Rdθ and to maximize the
Evidence Lower Bound (ELBO) defined for any θ ∈Θ by:

ELBON (θ) =−KL(q̃θ |p0) +
p∑

i=1

∫
RN×d

logL(yi|xi, w̄)q̃θ(w̄)dLebd×N (w̄) . (4.5)

It is known that maximizing ELBON is equivalent to minimizing θ 7→ KL(q̃θ | p̂). For this reason, VI consists
in approximating the posterior distribution p̂ by q̃θ⋆ with θ⋆ ∈ argmaxELBON . The first term in (4.5) acts as a
penalty term to control the deviation of qθ∗ from the prior p0, while the second term plays the role of empirical risk
and promotes data-fitting.

In practice, however, it has been shown that the choice of the prior and the variational approximation ELBON

is crucial for good performance. It was proposed by [Zhang et al., 2018a, Khan et al., 2018, Osawa et al., 2019,
Ashukha et al., 2020] to weaken the regularization term KL and consider a partially tempered version of ELBON ,
which for a cooling parameter η > 0 is given by

ELBON
η (θ) =−ηKL(q̃θ |p0) +

p∑
i=1

∫
RN×d

logL(yi|xi, w̄)qθ(w̄)dLebd×N (w̄) . (4.6)

It has been shown in [Wenzel et al., 2020, Wilson and Izmailov, 2020] that ELBON
η is the same as ELBON but

considering instead of the true posterior p̂, a partially tempered posterior p̂T ∝ L1/Tp0, where the likelihood
function is tempered for some temperature T ≥ 0. The parameter η (or equivalently the temperature T ) controls the
tradeoff of the likelihood term with respect to the prior. Setting η < 1 corresponds to a cold posterior, where the
likelihood term is strengthened so that the posterior is concentrated in regions of high likelihood. The case η = 1
corresponds to "plain" Bayesian inference, while η > 1 corresponds to warm posterior where the prior has a stronger
influence on the posterior.

In a series of paper, [Grünwald, 2012, Grünwald and Van Ommen, 2017, Bhattacharya et al., 2019, Heide et al.,
2020, Grunwald et al., 2021] have shown, significantly extending earlier results of [Barron and Cover, 1991, Zhang,
2006], that partially tempered posteriors may have better statistical properties under model misspecification than the
"plain" posterior as the number of data points goes to infinity (expressed in terms posterior contraction around the
best approximation of the truth). These results have been derived for Generalized Linear Models and it is not clear
how these results extend to BNN.

[Wilson and Izmailov, 2020] more informally argues that tempering is not inconsistent with Bayesian principles
and that it may be particularly relevant in a parametric setting (where the model is defined by parameters), as opposed
to Bayesian Nonparametric approaches - e.g. , Gaussian processes. Namely, while in nonparametric approaches the
model capacity is automatically scaled with the available data, this is not the case in parametric approaches, where
the model capacity (which is determined by the number of neurons and the neural network architecture) is chosen by
the user. Model misspecification is the rule in such case, as we show in Subsection 3 for neural networks with a
hidden layer. Other works have questioned the role of data augmentation to justify tempering. In [Aitchison, 2021],
the author argues that the choice of likelihood does not reflect properly the data: "curated" datasets such as CIFAR10,
where many labelers agree on the label of a data point, are in favor of cold posteriors, while adding noise to the
labels reverses this effect. In [Nabarro et al., 2022], the authors investigate the role of data augmentation further and
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conclude that the right model should include some data augmentation but tempering still demands an explanation in
that setting. In the present work, we consider the role of overparametrization of the models. A priori, both effects -
dataset curation and overparametrization of BNN - seem to encourage tempered posteriors through different but
complementary aspects. Still, to the best of our knowledge, the choice of temperature with respect to the number of
data points and network parameters has not been investigated theoretically, in particular in the context of BNN.

Other studies, e.g. , [Farquhar et al., 2019], noted that a potential cause of the predominance of the KL term in
(4.5) stems from the choice of the prior. Indeed, it has been noticed that the role of p0 is important since it leads to
very different inferences, see [Fortuin, 2022]. In particular, using priors on w̄ which factorize over the weights, i.e, ,

p0(w̄) =
N∏

j=1
p1

0(wj) , (4.7)

do not yield optimal performance and as a result [Tran et al., 2022, Fortuin et al., 2022, Ober and Aitchison, 2021,
Sun et al., 2019] have proposed the design of new priors which introduce correlation amongst the weights and/or
heavier tails than Gaussian ones.

In the present work, we take a novel approach to justify the use ofELBON
η based on the so-called overparameterized

regime and study the impact of the choice of the cooling parameter η. We assume that the prior and posterior factorizes
over the neurons, i.e, , the prior takes the form (4.7) and for each θ = (θ1, · · · ,θN ) ∈ ΞN , q̃θ(w̄) =

∏N
i=1 q̃

1
θj

(wj),
where p01 and {q̃1

θj
}Nj=1 are distributions over Ξ ⊂ Rd. In this case, the variational parameter space Θ = ΞN

and the prior distribution for each neuron p01 is the same. Further, we assume that for any θ ∈ Ξ, the variational
distribution writes q̃1

θ = Tθ#γ, i.e. as the pushforward of a reference probability measure with density γ by Tθ

where {Tθ : θ ∈ Ξ} is a family of C1-diffeomorphisms on Rd.
A common choice for Tθ is, setting θ = (µ,σ) ∈ Rd× (R∗

+)d,

Tθ : z 7→ µ+σ⊙ z , (4.8)

where ⊙ is the component wise product; but of course much more sophisticated choices are possible. Then,
by (4.3)-(4.4) and a change of variable, the ELBO can be expressed as

ELBON
η (θ) =−η

N∑
j=1

KL(q̃1
θj
|p0

1)−
p∑

i=1
GN (θ; (xi,yi)) (4.9)

with denoting the output of a neuron parametrized by θ ∈ Rd for an input xi by

ϕ(θ,z,xi) = s(Tθ(z),xi) , (4.10)

and z = (z1, . . . ,zN ) ∈ Rd×N ,

GN (θ; (x,y)) =
∫
ℓ

y, N∑
j=1

ϕ(θj ,zj ,x)
N

γ⊗N (dz) . (4.11)

The decomposition of the KL term in (4.9) as N terms results from the choice of considering priors and posteriors
that factorize over neurons. Although the VI framework we are considering may seem overly simplistic in light
of the above, it is the one most commonly used in practice, and therefore it is still very important to obtain useful
guidelines for implementation in order to optimize its performance. Moreover, it is a first step before considering
other VI methods with more complex priors and/or variational families. The expression of ELBON

η shows that
the parameter η must be chosen to balance the two terms in (4.6)-(4.9) to obtain a well-posed objective functional
as N,p→ +∞ and a variational posterior q̃θ⋆ different from the prior. Without this parameter, optimizing the
ELBON (4.5) leads to the collapse of the variational posterior to the prior, as shown in the following proposition.

Proposition 27. Assume that GΘ is a family of Gaussians with diagonal covariance matrices, that p0 ∈ GΘ and that
X is compact. Let θ∗,N = argmaxθ∈Θ ELBON (θ). Assume also that ℓ is the square loss or cross-entropy, and that
σ is Lipschitz. Then, KL(q̃θ∗,N ,p0)→ 0 as N →∞.
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This result and its proof, that can be found in Subsection 7, are inspired from [Coker et al., 2022, Theorem 1,2]
who show that the moments of the predictive posterior collapse to the ones of the prior and that the KL converges to
0 as N →∞, when ℓ is the square loss or logistic loss and σ is odd. Proposition 27 states an analog result, but
which holds for additional losses (i.e., also cross-entropy) and more general activation functions (e.g., non odd ones
as ReLU). This is partly due to our different scaling of the output of the neural network in N−1, see (4.3), that
differs from theirs, in N−1/2. To obtain their result, [Coker et al., 2022] fundamentally rely on a kind of central
limit theorem, which explains their scaling. This is the main reason why they must assume that the activation
function is an odd function. Note that this latter condition is not satisfied for ReLU. In contrast, by considering a
mean-field regime with a scaling in N−1, we can get rid off this condition by relying on a law of large numbers and
encompass a larger set of losses and activation functions, including the ReLU activation function. The result of
Proposition 27 highlights that optimizing ELBON becomes ill-posed as N →∞. This suggests that the optimal
variational posterior tends to ignore the data fitting term in (4.9), and that η must be chosen to rebalance ELBON .
In the next Subsection, we provide a theoretical framework supporting tempering and then present our main results
regarding the choice of η.

3 Identifying well-posed regimes for the ELBO with product priors

We follow the approach outlined in [Chizat and Bach, 2018, Rotskoff et al., 2019, Mei et al., 2018] for ERM. We
first generalize the definition of ELBON

η defined in (4.9) over ΞN , to probability measures ν on Ξ. Indeed, the
following result states that ELBON

η can be expressed as a functional of the empirical measure over the weights νθ
N

defined for each variational parameter θ = (θ1, . . . ,θN ) ∈ ΞN by

νθ
N =N−1

N∑
i=1

δθi
, (4.12)

where δθ is the Dirac mass at θ ∈ Ξ. Define PN (Ξ) the subset of P(Ξ) which can be written as (4.12) for some
θ ∈ ΞN (i.e. discrete measures supported on N parameters).

Proposition 28. For any N ∈ N, there exists a function FN
η defined over PN (Ξ) and valued in R∪{+∞} such that

FN
η (νθ

N ) = ELBON
η (θ) for any θ ∈ ΞN .

Proof. Denote by SN the set of permutations over {1, . . . ,N} and for any θ = (θ1, . . . ,θN ) ∈ Θ, τ ∈ SN ,
θτ = (θτ(1), . . . ,θτ(N)). Note that for any τ ∈SN , ELBON

η (θ) = ELBON
η (θτ ). The proof is then completed upon

using that θ 7→ νθ
N is a bijection from ΞN/∼ to PN (Ξ), where ∼ is the equivalence relation defined by θ ∼ θ′ if

∃τ ∈SN s.t. θ′ = θτ .

Proposition 28 is a first step towards identifying an objective functional defined on P(Ξ), since FN
η is a

reparametrization of the ELBO (i.e., it has the same value) but is defined on empirical measures supported on N
atoms. The main caveat is that FN

η cannot be non-trivially extended to a functional defined for a general probability
measure on Ξ, because it depends on N through the integration of the loss function with respect to the N × d
dimensional Gaussian noise in (4.11). However, in our next result, we show that, when restricted to empirical
probabilities, as N →+∞, FN

η is a perturbation of the functional F̃N
η defined over all probabilities in P(Ξ) by

F̃N
η (ν) =−

p∑
i=1

G̃(ν; (xi,yi))− ηN
∫

KL(q̃1
θ|p0

1)dν(θ) , (4.13)

where
G̃(ν; (x,y)) = ℓ

(
y,

"
ϕ(θ,z,x)dν(θ)dγ(z)

)
, (4.14)

and ϕ is given by (4.10). The main difference between FN
η and F̃N

η is the place where the integration occurs
with respect to the Gaussian measure. For FN

η , the integration is on the loss function in (4.11), while in F̃N
η ,

the integration is only on the second argument of the loss in (4.14). We now define for any θ ∈ Ξ and x ∈ X,
ϕ̃(θ,x) =

∫
ϕ(θ,z,x)dγ(z). Consider the following assumption:
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Assumption 1.

(i) There exists Lℓ > 0 such that for any y ∈ Y, the function ỹ 7→ ℓ(y, ỹ) is Lℓ-smooth: for any ỹ1, ỹ2 ∈ Y,

∥∇ỹℓ(y, ỹ1)−∇ỹℓ(y, ỹ2)∥ ≤ Lℓ ∥ỹ1− ỹ2∥ . (4.15)

(ii) There exists Cϕ ≥ 0, such that for any θ ∈ Ξ, x ∈ X,∫ ∥∥ϕ(θ,z,x)− ϕ̃(θ,x)
∥∥2

dγ(z)≤ Cϕ . (4.16)

Note that Assumption 1-(i) is satisfied for the quadratic or logistic loss if Y is bounded. We give practical
conditions on the activation function σ, the prior p01 and the set Ξ to ensure that Assumption 1-(ii) holds in the case
where Tθ is supposed to be of the form (4.8) for any θ ∈ Ξ, later in this Subsection after stating our general results.

Theorem 29. Assume Assumption 1. Then, there exists C ≥ 0 such that for anyN,p ∈ N, {(xi,yi)}pi=1 ∈ (X×Y)p,
θ ∈ ΞN and η > 0, ∣∣∣ELBON

η (θ)− F̃N
η (νθ

N )
∣∣∣≤ Cp/N , (4.17)

where νθ
N is defined in (4.12).

Proof. Using that for any y ∈ Y, the function ỹ 7→ ℓ(y, ỹ) is Lℓ-smooth, we get by [Nesterov, 2004, Lemma 1.2.3],
Proposition 28 and the definitions (4.9)-(4.11)-(4.13)-(4.14),

∣∣∣FN
η (νθ

N )− F̃N
η (νθ

N )
∣∣∣≤ Lℓ

2N2

p∑
i=1

∫ ∥∥∥∥∥∥
N∑

j=1
ϕ(θj ,zj ,xi)− ϕ̃(θj ,xi)

∥∥∥∥∥∥
2

dγ⊗N (z) (4.18)

≤ Lℓ

2N2

p∑
i=1

N∑
j=1

∫ ∥∥ϕ(θj ,zj ,xi)− ϕ̃(θj ,xi)
∥∥2

dγ(z) . (4.19)

The proof follows from Assumption 1-(ii).

We also show in the following theorem that the minimization of FN
η overPN (ΞN ) provides a good approximation

for the minimization problem corresponding to F̃N
η for sufficiently large N .

Theorem 30. Assume Assumption 1 and that there exists ν⋆ ∈ P(Ξ) such that ν⋆ ∈ argmaxP(Ξ) F̃
N
η . Suppose in

addition that there exists Cν⋆
ϕ ≥ 0 such that for any x ∈ X,∫ ∥∥∥∥ϕ̃(θ,x)−

∫
ϕ̃(θ′,x)dν⋆(θ′)

∥∥∥∥2
dν⋆(θ)≤ Cν⋆

ϕ . (4.20)

Then, there exists C ≥ 0 such that for any N,p ∈ N, {(xi,yi)}pi=1 ∈ (X×Y)p and η > 0,∣∣∣∣∣ sup
θ∈ΞN

ELBON
η (θ)− sup

ν∈P(Ξ)
F̃N

η (ν)

∣∣∣∣∣≤ Cp/N . (4.21)

Proof. Using Theorem 29, we easily get that for any θ ∈ ΞN ,

ELBON
η (θ)≤ F̃N

η (νθ
N ) +Cp/N ≤ sup

ν
F̃N

η (ν) +Cp/N , (4.22)

for some C ≥ 0 independent of {(xi,yi)}pi=1 ∈ (X×Y)p and η > 0. On the other hand, we have using that ν⋆ is a
maximizer of F̃N

η ,

sup
θ∈ΞN

ELBON
η (θ)≥ sup

ν
F̃N

η (ν)−
∫ ∣∣∣ELBON

η (θ)− F̃N
η (νθ

N )
∣∣∣dν⊗N

⋆ (θ)−
∫ ∣∣∣F̃N

η (νθ
N )− F̃N

η (ν⋆)
∣∣∣dν⊗N

⋆ (θ) .

(4.23)
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Using Assumption 1, for any y ∈ Y, ỹ 7→ ℓ(y, ỹ) is Lℓ-smooth, we get by [Nesterov, 2004, Lemma 1.2.3], setting
ϕ̃N = (1/N)

∑N
j=1 ϕ̃(θj ,xi),∫ ∣∣∣F̃N

η (νθ
N )− F̃N

η (ν⋆)
∣∣∣dν⊗N

⋆ (θ)≤ Lℓ

p∑
i=1

∫ ∥∥∥∥ϕ̃N −
∫
ϕ̃(θ′,xi)dν⋆(θ′)

∥∥∥∥2
dν⊗N

⋆ (θ)

≤ LℓpC
ν⋆
ϕ /N . (4.24)

Combining (4.23), (4.24) and Theorem 29 concludes the proof.

The bounds of Theorems 29 and 30, concentrate for p/N → 0, which corresponds to the current practical
overparametrized regimes for NN, where the number of parameters of the network is larger than the number of data
points. We now set the cooling parameter as η = τp/N with τ > 0. As stated in the next proposition, whose proof
can be found in Subsection 7, this tempering prevents the collapse of the variational posterior onto the prior when
optimizing the tempered ELBO, in contrast with Proposition 27.

Proposition 31. Let θ∗,N = argmaxθ∈Θ ELBON
η (θ). Assume η = τp/N and that ℓ is the square loss. Then,

limsupN→∞KL(q̃θ∗,N ,p0)> 0 as N →∞.

With the particular choice of tempering η = τp/N , the functional F̃N
η depends only on the number of observations

p but no longer on the number of neurons N . We denote, for that particular choice of η,

Fp
τ (ν) = p−1F̃N

η (ν) =−1
p

p∑
i=1

G̃(ν; (xi,yi))− τ
∫

KL(q̃1
θ|p0

1)dν(θ) . (4.25)

In our next result, we show that with high probability, Fp
τ (ν) provides a good approximation as p→∞ of the

function
Rτ (ν) =−

∫
G̃(ν; (x,y))dπ(x,y)− τ

∫
KL(q̃1

θ|p0
1)dν(θ) , (4.26)

where G̃ is defined by (4.14).

Proposition 32. Assume Assumption 1 and that there existsMG > 0, such that for any ν ∈ P(Ξ), 0≤ G̃(ν; (x,y))≤
MG, for π-almost all (x,y) ∈ X×Y. Suppose in addition that {(xi,yi)}pi=1 are i.i.d. with distribution π. Then, for
any ν ∈ P(Ξ) and δ > 0, with probability 1− δ at least, it holds

|Fp
τ (ν)−Rτ (ν)| ≤MG

√
log(δ/2)/(2p) . (4.27)

The proof follows from applying Hoeffding’s inequality on the bounded i.i.d. variables G̃(ν; (xi,yi)) for
i= 1, . . . ,p.

It is worth noting that the limiting risk Rτ is similar to the one obtained in the analysis of the limiting behavior
of gradient descent type algorithms for two-layer NN in the overparameterized regime, by [Chizat and Bach, 2018,
Rotskoff et al., 2019, Mei et al., 2018, Tzen and Raginsky, 2019, De Bortoli et al., 2020a] - see (4.1). Moreover, the
maximization of the ELBO using gradient descent can be viewed as a temporal and spatial discretization of the
Wasserstein gradient flow of the limiting function (4.26).

We conclude this Subsection by illustrating when the previous results hold, i.e. when the assumptions are
satisfied for a mean-field variational family associated with the family of C1-diffeomorphisms {Tθ : θ ∈ Ξ} given
in (4.8). Consider the following assumption:

Assumption 2. (i) The subset Ξ is a compact set of Rd× (R∗
+)d, and X,Y are compact sets of RdX ,RdY .

(ii) The probability measure γ satisfies
∫
∥z∥4dγ(z)<+∞.

(iii) For any x ∈ X, there exists Lh ≥ 0 such that the function b 7→ h(b,x) is Lh-Lipschitz on RdX and
supx∈X , b∈RdX |h(b,x)|/(1 + ∥b∥)<+∞.

(iv) The prior density p01 is positive on Rd and satisfies θ 7→ KL(q̃1
θ|p01) is continuous on Ξ.
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Note that the condition that for any x ∈ X, the condition b 7→ h(b,x) is Lh-Lipschitz is automatically satisfied for
h of the form (4.2) with σ the RELU or sigmoid function if X is bounded. Also, we verify in the next proposition,
whose proof can be found in Subsection 7, that θ 7→ KL(q̃1

θ|p01) is continuous if p01 and γ are non-degenerate
Gaussian distributions.

Proposition 33. Assume Assumption 1-(i) and Assumption 2. Then Assumption 1-(ii) and the conditions of
Theorem 30 hold.

Following the submission of our results, several papers have studied the theoretical properties of the method
derived in this work for the overparameterized regime. In [Descours et al., 2023a], the authors derive a Law of
Large Numbers for three different training schemes, one of which (Bayes-by-Backprop SGD) is exactly the training
method described in this paper. Similarly, in [Descours et al., 2024], they derive a Central Limit Theorem for the
same three training schemes presented in [Descours et al., 2023a]. Note that both paper use the re-scaling of the
ELBO advocated by our results.

4 Discussion on the Lazy versus Mean Field regime for BNN

In (4.3), we chose to scale the output of the Bayesian Neural Network by a factor 1/N , where N is the number of
neurons. In the Bayesian Neural Network literature, it is also common to consider scaling the output of the neural
network by 1/

√
N , i.e.

fw̄(x) =N−1/2
N∑

j=1
s(wj ,x), (4.28)

Regarding standard (non Bayesian) neural networks, both the scalings 1/
√
N and 1/N have been considered to

study overparametrized (infinite-width) neural networks, and are referred to respectively as the Neural Tangent
Kernel (NTK) regime [Jacot et al., 2018] and the Mean Field (MF) regime [Chizat and Bach, 2018, Mei et al., 2018,
Sirignano and Spiliopoulos, 2020a]. These choices are briefly discussed and compared in [Chizat et al., 2019]. The
scaling 1/

√
N results in a so-called lazy training regime where the output of the neural network hardly varies with

respect to its initialization. In contrast, the scaling 1/N allows to converge as N →∞ to a non degenerate dynamic
described by a partial differential equation. We now discuss these choices of possible scalings for Bayesian neural
networks.

When the output of a BNN is scaled as (4.28), it is well-known that the output prediction function fw̄ : X→ RdY

under the prior converges weakly to a (prior) Gaussian Process as N →∞ [Neal, 2012, Lee et al., 2019, Matthews
et al., 2018, Garriga-Alonso et al., 2019, Novak et al., 2019, Hron et al., 2020a]; and under the posterior to a
(posterior) Gaussian process [Hron et al., 2020b] (assuming the likelihood is a bounded continuous function of the
NN output).

We establish in the supplement, Subsection 7, that even when choosing the scaling 1/
√
N , our conclusions and

in particular Theorem 30 still hold. Indeed, we show that the problem of optimizing the ELBO using (4.28) can be
reformulated as the one corresponding to a 1/N scaling. However the choice of the temperature in the resulting
ELBO is more subtle.

Here we consider the Mean Field scaling (4.3) and we obtain results on tempering that are easy to interpret,
since the whole (KL) regularization term is reweighted with respect to the number of observations and neurons.
We advocate more generally that the MF regime for Bayesian Neural networks deserves to be analyzed since it
provides a simple model for overparametrized NN which comes with many interesting consequences that we derived
previously; which are first steps towards the full understanding of NN training and performance. We now turn to a
practical evaluation of our study.

Remark 34. One may argue that with the 1/N scaling (4.3), the variance of the prior distribution collapses to zero
as N →∞. However, the distribution which really matters is the (variational) posterior for which the variance is
expected not to vanish with the tempering we propose, with non odd activation functions. We confirm this statement
using a numerical experiment provided in Subsection 7.
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5 Experiments

In this section we illustrate our findings and their practical implications for image classification on standard datasets
(MNIST, CIFAR-10). The reader may refer to Subsection 7 for additional experiments, including on regression
tasks, that highlight the importance of rescaling the ELBO. In this Subsection, we illustrate the influence of the
parameter τ through different metrics.

Evaluation. Let D = (xi,yi)p
i=1 be a dataset, where yi = c ∈ {1, . . . ,nl} is a discrete class label. For an

input x ∈ X, the predictive probability of a class c by a neural network with weights w̄ is defined by Ψc(fw̄(x)),
where Ψc(fw̄(x)) denotes the c-th component of the softmax function applied to the output fw̄(x) ∈ Rnl of
the neural network. The cross entropy loss writes ℓCE(y,fw̄(x)) = −

∑nl
c=1 ỹc log(Ψc(fw̄(x))), where ỹc de-

notes the c-th coordinate of a one-hot representation of the label y and the Negative Log Likelihood (NLL)∑p
i=1
∫
RN×d ℓCE(yi,fw̄(xi))qθ(w̄)dLebd×N (w̄). The calibration performance of the model can be estimated by

the Expected Calibration Error (ECE) [Naeini et al., 2015], see also Subsection 7. We recall that model is calibrated
if the predictive posterior is the true probability for each class c ∈ {1, . . . ,nl}. However, since these probabilities
are unknown, they have to be estimated, e.g. through ECE. As the NLL, ECE penalizes low probabilities assigned
to correct predictions and high probabilities assigned to wrong ones; but these evalutation metrics are not strictly
equivalent.

To make our prediction, for x ∈ X, we use the posterior predictive distribution defined for a class c as∫
Ψc(fw̄(x))q̃θ⋆(w̄)dLebd×N (w̄) with θ⋆ obtained by minimization of ELBON

η by Bayes by Backprop. This
integral is estimated by an empirical version

∫
Ψc(fw̄(x))q̃θ⋆(w̄)dLebd×N (w̄)≈ 1

m

m∑
l=1

Ψc(fw̄l
(x)) , (4.29)

where for l = 1, . . . ,m, w̄l are i.i.d. samples from q̃θ⋆ . All the evaluation metrics mentioned above (NLL, ECE), as
well as the accuracy are estimated using the same procedure. We will present our results on the MNIST dataset
(where p= 6.104) and the CIFAR-10 dataset (where p= 5.104) [Krizhevsky et al., 2009].

Setup. We use a Linear BNN on MNIST, and ResNet20 architecture [He et al., 2016] on CIFAR-10 [Simonyan
and Zisserman, 2015]. For CIFAR-10, we use the standard data augmentation techniques, see [Khan et al., 2018].
For each neuron, we use a centered Gaussian prior with variance 1/5, following [Osawa et al., 2019]. We train each
BNN by Bayes by Backprop [Blundell et al., 2015] with the reparametrization trick (see Subsection 7) and using
batch normalization [Ioffe and Szegedy, 2015].

Results Figures 4.1 and 4.2 illustrate the performance of the different models and data sets for different values
of τ . We evaluate the models on the test set in terms of their accuracy, NLL, ECE, and average confidence over
the test set. In all experiments, we take m= 50 to approximate a BNN prediction and average our results over 5
experiments for each τ . It is worth noting that for a large τ , the accuracy decreases while the NLL increases. This is
hardly a surprise, since the KL regularization forces the VI posterior to stay close to the prior distribution, resulting
in underfitting. At the same time, the ECE value is low because of the poor confidence in the model, which is
reflected in the accuracy. For small values of τ , the data fitting term is privileged, so the accuracy of the model is
high, while the NLL is low. At the same time, the confidence in the model is very high, resulting in a low ECE. For
intermediate values of τ , the accuracy of the models starts to decrease, but slower than the confidence in the model,
which explains an increase in ECE. We also illustrate the different regimes for the parameter τ with additional
experiments in Subsection 7, including analysis of the weights distribution and out-of-distribution detection.

Figure 4.3 displays the NLL and accuracy of 7 networks with an increasing number of neurons, and trained on
the same dataset (MNIST) by optimizing the classical ELBO. The ratio p/N evolves here as the dataset is fixed and
only the network size changes. Figure 4.3 highlights that the performance decreases as N increases and suggests the
critical role of the ratio p/N .
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Fig. 4.1 Effect of the temperature for a Linear BNN trained on MNIST. No cooling η = 1 is indicated by
a red line.

6 Conclusion

In this work, we studied BNN trained with mean-field VI in the overparameterized regime. We have highlighted both
theoretically and numerically that the partially tempered ELBON

η advocated for VI for BNN effectively addresses
the potential imbalance between the data fitting and KL terms. For mean-field VI and product prior distributions, we
found that the cooling parameter must be chosen proportional to the ratio between the number of observations and
neurons to achieve a balance between the data fitting and KL regularizer. With this choice, ELBON

η converges to a
limiting functional that has the same structure as the one given by [Chizat and Bach, 2018, Rotskoff et al., 2019, Mei
et al., 2018, Tzen and Raginsky, 2019, De Bortoli et al., 2020a] for empirical risk minimization. We also explained
why, in the absence of cooling, the KL term can dominate the data fitting term, typically leading to underfitting of
the model, which in practice translates into poor results on all metrics considered. Our work therefore provides a
well-grounded theoretical justification for the importance of using a partial tempering in the overparameterized
framework, which completes the justifications given by [Wenzel et al., 2020, Izmailov et al., 2021, Nabarro et al.,
2022, Noci et al., 2021, Laves et al., 2021]. While our theoretical results apply to a neural network with a single
hidden layer, we have shown numerically that similar conclusions can be drawn for more general NN architectures.
We emphasize that the introduction of a cooling factor into the Mean-Field VI for BNN is not without implications
for the validity of Bayesian inference, and that the conclusions that can be drawn in this framework-in particular,
Bayesian uncertainty quantification-must therefore be used with care (even though the accuracy, NLL, and ECE
metrics obtained with Mean-Field VI compare favorably to their “classical” ERM learning counterparts).
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Fig. 4.2 Effect of the temperature for a Resnet20 trained on CIFAR-10. No cooling η = 1 is indicated by
a red line.
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Fig. 4.3 NLL and accuracy after training using the classical ELBO on MNIST with an increasing number
of neurons.

7 Appendix

Proof of Proposition 27

We have assumed that GΘ is a family of Gaussians with diagonal covariance matrices, and that p0 ∈ GΘ hence there
exists θ0 = (µ,σ) ∈ RN(dX+dY)×RN(dX+dY) such that p0 = qθ0 . For ease of notations, we work with p0 standard
Gaussian:

p0(w̄) =
N∏

j=1

dY∏
l=1
N (ai,j ;0,1)×

N∏
j=1

dX∏
l=1
N (bj,l;0,1) (4.30)
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Our results hold for more general parameters for p0 but we fix these ones for convenience of notations. The posterior
q̃θ ∈ GΘ is:

q̃θ(w̄) =
N∏

j=1

dY∏
l=1
N (aj,l;µaj,l

,σ2
aj,l

)×
N∏

j=1

dX∏
l=1
N (bj,l;µbj,l

,σ2
bj,l

) (4.31)

We define aj = (aj,1, . . . ,aj,dY ) ∈ RdY and bj = (b1,j , . . . , bdX,j) ∈ RdX respectively the jth row of the first layer
weight matrix and the jth column of the second layer weight matrix. We denote µaj = (µaj,1 , . . . ,µaj,dY

) ∈ RdY ,
µa = (µa1 , . . . ,µaN ) ∈ RNdY .

Recall that

ELBON (θ) =−L(q̃θ)−KL(q̃θ|qθ0), with L(q̃θ) =−Ew̄∼q̃θ

[
p∑

i=1
log(L(yi|xi, w̄))

]
, (4.32)

where L(y|x,w̄)∝ exp(−ℓ(fw̄(x),y)) is defined by (4.4).

By the optimality of θ⋆, we have:
ELBON (θ⋆)≥ ELBON (θ0), (4.33)

Hence,
KL(q̃θ∗ |qθ0)≤ L(qθ0)−L(q̃θ∗). (4.34)

We now deal separately with the square loss (Case 1) and cross-entropy loss (Case 2). Throughout, we will often use
the notation σj = σ(< bj ,x >) for any j = 1, . . . ,N and a generic point x ∈ X. Since we have assumed that σ is
L-Lipschitz, for any y ∈ R, |σ(y)| ≤ |σ(0)|+L|y|. Also, to explicit the dependence of θ∗,θ0 in N we will write
their associated distributions q̃N

θ∗ and q̃N
θ0

respectively.

Case of the square loss The idea of the proof is to show that the right hand side term of (4.34) converges to zero
by showing that the two negative log likelihoods converge to the same finite limit, and hence their difference to zero
as N goes to infinity. When l is the square loss, for any qN

θ ∈ GΘ , by (4.32) we have

L(qN
θ ) =

p∑
i=1

Ew̄∼qN
θ

[
∥yi∥2 + ∥fw̄(xi)∥2− 2⟨yi,fw̄(xi)⟩+ log(Z)

]
, (4.35)

where Z is the normalization constant of the model defined by (4.4). We will show that for both the prior qN
θ0

and
optimal posterior qN

θ∗ , the first and second moment of the predictive distribution converge to zero as N goes to
infinity.

Under the prior distribution (4.30), for any x ∈ X, the first of the predictive distribution can be written:

Ew̄∼q̃N
θ0

[fw̄(x)] = E

 1
N

N∑
j=1

σjaj

= 1
N

N∑
j=1

E[σj ]E[aj ] = 0 ,

and second moments,

Ew̄∼q̃N
θ0

[∥fw̄(x)∥2] = Ew̄∼q̃N
θ0

 1
N2

 N∑
j=1

σ2
j ∥aj∥2 + 2

N∑
j=1

∑
k<j

σjσk

〈
aj ,ak

〉
= 1
N2

N∑
j=1

Ew̄∼q̃N
θ0

[σ2
j ]≤ 1

N2

 N∑
j=1
|σ(0)|2 +L2∥x∥2Ew̄∼q̃N

θ0
[∥bj∥2]


−−−−→
N→∞

0 ,
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Hence we first obtain:

lim
N→∞

L(qN
θ0) =

p∑
i=1
∥yi∥2 + logZ. (4.36)

We now turn to showing that L(q̃N
θ∗) has the same limit. First notice that since L is a positive function, by (4.34) we

have: KL(q̃N
θ∗ |qN

θ0
)≤ L(q̃N

θ0
). Since the right-hand term is a converging sequence, it means that KL(q̃N

θ∗ |qN
θ0

) is
bounded by a constant CKL independent of N .

By applying Lemmas 35 and 36, we have:

Ew̄∼q̃N
θ∗

[< yi,fw̄(xi)>] ≤ ∥yi∥∥Ew̄∼q̃N
θ∗

[fw̄(xi)]∥ ≤
ϕ(KL(q̃N

θ∗ , q̃N
θ0

),X,dY)
√
N

≤ ϕ(CKL,X,dY)√
N

(4.37)

Ew̄∼q̃N
θ∗

[∥fw̄(x)∥2] ≤
ψ(KL(q̃N

θ∗ , q̃N
θ0

),X,dY)
√
N

≤ ψ(CKL,X,dY)√
N

(4.38)

where the most right hand side inequalities come from the fact that KL(q̃N
θ∗ |qN

θ0
) is bounded by a constant CKL

independent of N; and ϕ(CKL,X,dY),ψ(CKL,X,dY) are constants that only depend on the data points (xi,yi)p
i=1,

the spaces X, Y and parameters of the prior distribution (through CKL). Hence, the first and second moments of the
predictive under the posterior q̃N

θ∗ converge to 0. Hence, we obtain:

lim
N→∞

L(qN
θ∗) =

p∑
i=1
∥yi∥2 + logZ. (4.39)

From (4.34), (4.36) and (4.39) we finally that

lim
N→∞

KL(q̃N
θ∗ , q̃N

θ0) = 0. (4.40)

Case of the cross-entropy Similarly to the square loss case, the idea of the proof is to show that L(q̃N
θ0

),L(q̃N
θ∗)

have the same limit. We will make use of Lemma 37 which specify that limit under a null moment assumption.

Under the prior distribution q̃N
θ0

,

∥Ew̄∼q̃N
θ0

[ 1
N

N∑
j=1

σjaj ]∥= 1
N
∥

N∑
j=1

E[σj ]E[aj ]∥= 0, (4.41)

hence by Lemma 37:
lim

N→∞
L(q̃N

θ0) = p(log(dY) + logZ).

We now turn to the predictive distribution under the posterior q̃N
θ∗ . Recall that since L is a positive function, using the

optimality of the posterior we have: KL(q̃N
θ∗ |q̃N

θ0
)≤ L(q̃N

θ0
). Since the right-hand term is a converging sequence, it

means that KL(q̃N
θ∗ |q̃N

θ0
) is bounded by a constant CKL independent of N.

By Lemma 35, we can bound the first moment of the predictive distribution as:

∥Ew̄∼q̃N
θ∗

[fw̄(x)]∥ ≤
ϕ(KL(q̃N

θ∗ , q̃N
θ0

),X,dY)
√
N

≤ ϕ(CKL,X,dY)√
N

, (4.42)

where the last inequality comes from the fact that the KL term is bounded by a constant CKL independent of N for
the optimal variational parameter θ∗,N . Moreover, by using similar argument than in the proof of Lemma 35, we
can show that each coordinate µ,σ of θ∗,N is bounded as:

• µ≤
√

2KL(q̃N
θ∗ , q̃N

θ0
)≤
√

2CKL
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• σ ≤ 2KL(q̃N
θ∗ , q̃N

θ0
) + 1≤ 2CKL + 1

It means that each neuron weight has bounded mean and variance. We can thus apply Lemma 37, which yields:

lim
N→∞

L(qN
θ ) = p(log(dY)− logZ).

As 0≤ KL(q̃N
θ∗ |q̃N

θ0
)≤ L(q̃N

θ0
)−L(q̃θ∗) we obtain:

lim
N→∞

KL(q̃N
θ∗ , q̃N

θ0) = 0. (4.43)

Lemma 35. Assume the conditions of Proposition 27 hold. Then there exists a function ϕ, increasing in its first
variable, such that

∥Ew̄∼q̃N
θ

[fw̄(x)]∥ ≤
ϕ(KL(q̃N

θ , q̃
N
θ0

),X,dY)
√
N

.

Proof. By Cauchy-Schwartz inequality, the first moment of the predictive distribution under the variational posterior
can be upper bounded as:

∥Ew̄∼q̃N
θ

[fw̄(x)]∥= 1
N
∥Ew̄∼q̃N

θ
[

N∑
j=1

σ(
〈
bj ,x

〉
)aj ]∥ ≤ 1

N

N∑
j=1
|E[σ(

〈
bj ,x

〉
)]|∥µaj∥.

Since σ is Lipschitz, |σ(x)| ≤ C0 +L|x| where C0 = |σ(0)|. Hence,

|E[σ(
〈
bj ,x

〉
)]| ≤ |C0 +LE[|

〈
bj ,x

〉
|]| ≤ C0 +L

dX∑
l=1

E[|bj,l||xl|]

Let’s start by finding an upper bound for E[|bj,l|]. If bj,l ∼ N (µbj,l
,σ2

bj,l
), then |bj,l| has an absolute Gaussian

distribution and denoting Φ the CDF of a standard Gaussian, we have

E[|bj,l|] = σbj,l

√
2
π

exp
(
−µ2

bj,l

2σ2
bj,l

)
+µbj,l

[
1− 2Φ

(
−
µbj,l

σbj,l

)]
≤ σbj,l

√
2
π

+ |µbj,l
|.

Recall that the KL between the posterior q̃N
θ and prior q̃N

θ0
can be written:

KL(q̃N
θ |q̃

N
θ0) = 1

2

N∑
j=1

 dX∑
l=1

(µ2
bj,l

+σ2
bj ,l− log

(
σ2

bj ,l

)
− 1) +

dY∑
l=1

(µ2
aj,l

+σ2
aj ,l− log

(
σ2

aj ,l

)
− 1)


Hence, for any j = 1, . . . ,N and l = 1, . . . ,dX:

|µbj,l
| ≤ ∥µ∥2 ≤

√
2KL(q̃N

θ |q̃
N
θ0

), (4.44)

σbj,l
≤∥σ∥2 ≤ |σbj,l

+ 1− 1| ≤ |σ2
bj,l
− log

(
σ2

bj,l

)
− 1|+ 1≤ 2KL(q̃N

θ |q̃
N
θ0) + 1, (4.45)

and

E[|bj,l|]≤
√

2
π

(2KL(q̃N
θ |q̃

N
θ0) + 1) +

√
2KL(q̃N

θ |q̃
N
θ0

) :=D(KL(q̃N
θ |q̃

N
θ0))

Where D is increasing. Hence, since X is compact, there exists CX such that ∥x∥1 ≤ CX and:

|E[σ(
〈
bj ,x

〉
)]| ≤ C0 +LCXD(KL(q̃N

θ |q̃
N
θ0)) := E(KL(q̃N

θ |q̃
N
θ0),X),

Where E is increasing in its first variable. Finally, since

N−1
N∑

j=1
∥µaj∥2 ≤N

−1∥µa∥1 ≤N−1√NdY∥µa∥2 ≤N− 1
2
√
dY

√
2KL(qN

θ , q̃
N
θ0

), (4.46)
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the first moment of the predictive distribution can be upper bounded as:

∥Ew̄∼q̃θ
[fw̄(x)]∥ ≤

E(KL(q̃N
θ |q̃

N
θ0

),X)
√
dY
√

2KL(qN
θ , q̃

N
θ0

)
√
N

:=
ϕ(KL(qN

θ , q̃
N
θ0

),X,dY)
√
N

,

where ϕ is increasing in its first variable.

Lemma 36. Assume the conditions of Proposition 27 hold. Then there exists a function ψ depending only on
KL(q̃N

θ , q̃
N
θ0

), X, and dY such that G, increasing in its first variable, such that:

Ew̄∼q̃N
θ

[∥fw̄(x)∥2]≤
ψ(KL(q̃N

θ , q̃
N
θ0

),X,dY)
N

.

Proof. For a posterior of the form (4.31), we can write the second moment of the predictive distribution as:

Ew̄∼q̃N
θ

[∥fw(x)∥2] = 1
N2

N∑
j=1

E[σ2
j ]E[∥aj∥2] + 2

N2

N∑
j=1

N∑
k<j

E[σj ]E[σk]E[
〈
aj ,ak

〉
].

We start with the second term on the right hand side of (4.47). Using E[
〈
aj ,ak

〉
] =
〈
µaj ,µak

〉
≤ 1/2(∥µaj∥2 +

∥µak
∥2), along with (4.44) and (7), we have

1
N2

N∑
j=1

N∑
k=1

E[σj ]E[σk]
〈
µaj ,µak

〉
≤
E2(KL(q̃N

θ , q̃
N
θ0

))2KL(q̃N
θ , q̃

N
θ0

)
N2 . (4.47)

We now turn to the first term on the right hand side of (4.47). We first have for any j = 1, . . . ,N , using (7) that:

E[∥aj∥2] =
dY∑
l=1

E[a2
j,l] =

dY∑
l=1

(σ2
aj,l

+µ2
aj,l

)≤ 2KL(q̃N
θ∗ , q̃N

θ0) +dY(2KL(q̃N
θ∗ , q̃N

θ0) + 1)2 := F (KL(q̃N
θ∗ , q̃N

θ0)).

Then, using that σ is L-Lipschitz, Cauchy-Schwartz inequality and that since X is compact there exists cX such that
∥x∥ ≤ cX, we have:

E[σ2
j ]≤ E[(C0 +L|< bj ,x > |)2] = C2

0 + 2C0cXLE[∥bj∥] +L2c2
XE[∥bj∥2],

where, using (7) and (7),

E[∥bj∥]≤
dX∑
l=1

E[|bj,l|]≤ dXD(KL(q̃N
θ |q̃

N
θ0)),

E[∥bj∥2] =
dX∑
l=1

E[b2
j,l] =

dX∑
l=1

(σ2
bj,l

+µ2
bj,l

)≤ dX(2KL(q̃N
θ∗ , q̃N

θ0) + 1)2 + 2KL(q̃N
θ |q̃

N
θ0).

Hence,

E[σ2
j ]≤ C2

0 + 2C0cXLdXD(KL(q̃N
θ |q̃

N
θ0)) +L2c2

X2KL(q̃N
θ |q̃

N
θ0) :=G(KL(q̃N

θ∗ , q̃N
θ0)),

with R increasing. Hence, the first term on the right hand side of (4.47) can be bounded as:

1
N2

N∑
j=1

E[σ2
j ]E[∥aj∥2]≤

G(KL(q̃N
θ∗ , q̃N

θ0
))F (KL(q̃N

θ∗ , q̃N
θ0

))
N

.

Finally, we obtain the desired result with:

ψ(KL(q̃N
θ∗ , q̃N

θ0)) :=G(KL(q̃N
θ∗ , q̃N

θ0))F (KL(q̃N
θ∗ , q̃N

θ0)) +E2(KL(q̃N
θ∗ , q̃N

θ0))
√

2KL(q̃N
θ∗ , q̃N

θ0
).
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Lemma 37. Let l be the cross-entropy loss, and qN
θ ∈ GΘ where GΘ is a family of Gaussians with diagonal

covariance matrices, i.e. for any θ ∈Θ, θ = (µ,σ) ∈ RNdX ×RNdY . Assume that each coordinate of θ is bounded
by a constant (independent of N ) and that limN→∞ ∥Ew̄∼qθ

[fw̄(x)]∥= 0 for any x ∈ X. Then,

lim
N→∞

L(q̃N
θ ) = p(log(dY) + log(Z)).

Proof. For any i= 1, . . . ,p, denote

lyi : RdY −→ R

(z1, . . . ,zdY ) 7−→ − log
(

ezyi∑dY
j=1 e

zj

) , (4.48)

so that ∀z = (z1, . . .zdY ) ∈ RdY ,

|lyi(z)|=

∣∣∣∣∣∣− log(exp(zyi)) + log

 dY∑
k=1

exp(zk)

∣∣∣∣∣∣ . (4.49)

By the definition of L and plugging − log(dY)− log(Z) in (4.49), we have:

|L(q̃N
θ )− p(log(dY) + log(Z))| ≤

p∑
i=1
|Ew̄∼q̃N

θ
[fw̄(x,yi)]|+ |Ew̄∼q̃N

θ
[log 1

dY

dY∑
k=1

efw̄(x,k)]|,

where fw̄(x,k) denotes the k-th coordinate of fw̄(x) ∈ RdY for l = 1, . . . ,dY. The first term on the right hand side
of the previous inequality converges to 0 as N goes to infinity by assumption. Hence, we can focus on the second
term. For any k = 1, . . . ,dY, since σ is L-Lipschitz,

fw̄(x,k) = 1
N

N∑
j=1

σ(< bj ,x >)aj,k ≤
1
N

N∑
j=1

C0aj,k + L

N

N∑
j=1

dX∑
l=1
|bj,l||xl|aj,k.

Using the previous inequality along with Jensen’s inequality, we have∣∣∣∣∣∣∣∣Ew̄∼q̃N
θ

log

 1
dY

dY∑
k=1

e

L
N

N∑
j=1

dX∑
l=1

|bj,l||xl|aj,k



∣∣∣∣∣∣∣∣≤
∣∣∣∣∣∣log 1

dY

dY∑
k=1

N∏
j=1

dX∏
l=1

Ew̄∼q̃N
θ

[
e

L|bj,l||xl|aj,k
N

]∣∣∣∣∣∣ .
Since the posterior is of the form (4.31) we have for any index (j,k, l):

Ew̄∼q̃N
θ

[
eL

|bj,l||xl|aj,k
N

]
≤ Ew̄∼q̃N

θ

[
eL

|bj,l||xl||aj,k|
N

]
= Eu∼N (0,1);v∼N (0,1)

[
e

L|σbj,l
u+µbj,l

||x||σaj,k
v+µaj,k

|

N

]

≤ Eu∼N (0,1);v∼N (0,1)

[
e

|Cb+C||x||Ca+C|
N

]
,

for some constant C > 0 since by assumption each coordinate of the variational parameter is bounded. By the
dominated convergence theorem, when N goes to infinity we have:

Eu∼N (0,1);v∼N (0,1)

[
e

L|σbj,l
u+µbj,l

||x|(σaj,k
v+µaj,k

)

N

]
= 1 + o

(
1
N

)
.
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Hence, ∣∣∣∣∣∣∣∣Ew̄∼q̃N
θ

log 1
dY

dY∑
k=1

e

L
N

N∑
j=1

dX∑
l=1

|bj,l||xl|aj,k


∣∣∣∣∣∣∣∣≤NdX log

(
1 + o

(
1
N

))

Similarly, we can prove that:

lim
N→∞

∣∣∣∣∣∣∣∣Ew̄∼q̃N
θ

log 1
dY

dY∑
k=1

e

σ(0)
N

N∑
j=1

aj,k


∣∣∣∣∣∣∣∣= 0

Finally, we have:

lim
N→∞

|L(q̃N
θ )− p(log(dY) + log(Z))| ≤ lim

N→∞

∣∣∣∣NdX log
(

1 + o

(
1
N

))∣∣∣∣= 0.

Proof of Proposition 33

We will first need the following technical result.

Lemma 38. Assume Assumption 1-(i) and Assumption 2. Then for any x ∈ X, the function θ 7→ ϕ̃(θ,x) is continuous.
In addition, there exists C ≥ 0 such that for any x ∈ X and θ ∈ Ξ, ∥ϕ̃(θ,x)∥ ≤ C.

Proof. Since ϕ(θ,z,x) = ah(b,x) and since by Assumption 2, b 7→ h(b,x) is continuous for any x ∈ X, it follows
that for any x ∈ X, z ∈ Rd, θ 7→ ϕ(θ,z,x) is continuous on Ξ. Using (4.52) and the condition that Ξ is compact, an
application of the Lebesgue dominated convergence theorem implies that for any x ∈ X, the function θ 7→ ϕ̃(θ,x) is
continuous. Finally, Eq. (4.52) and the condition that Ξ is compact shows that there exists C ≥ 0 such that for any
x ∈ X and θ ∈ Ξ, ∥ϕ̃(θ,x)∥ ≤ C.

We now prove Proposition 33. We first prove Assumption 1-(ii). Recall, that for θ,z,x ∈ Ξ× Rd × X,
ϕ(θ,z,x) = s(Tθ(z),x) where Tθ(z) = µ+ σ⊙ z. Therefore, by (4.3), decomposing each weight as w = (a,b)
where a is the output weight and b is the hidden weight, ϕ(θ,z,x) = ah(b,x) , with a = µa + σa ⊙ za and
b= µb +σb⊙ zb, θ = (θa,θb), θa = (µa,σa) ∈ RdY × (R∗

+)dY and θb = (µb,σb) ∈ RdX × (R∗
+)dX . Hence,

∥a∥2 ≤ 2∥µa∥2 + 2∥σa∥2∥za∥2 ≤ 2∥θ∥2(1 + ∥za∥2) , (4.50)

∥b∥2 ≤ 2∥θ∥2(1 + ∥zb∥2) . (4.51)

Also, by Assumption 2, there exist C0,C1 ≥ 0 such that for any x,b, |h(b,x)| ≤ C0 +C1∥b∥. Hence, we have for
any θ ∈ Ξ, z ∈ Rd and x ∈ X,

∥ϕ(θ,z,x)∥2 ≤ ∥a∥2(C0 +C1∥b∥)2

≤ 2∥θ∥2 (1 + ∥za∥2)[C0 + 2C1 ∥θ∥(1 + ∥zb∥)
1
2 ]

2

≤ C3(1 + ∥z∥4)(1 + ∥θ∥2) , (4.52)

for some constant C3 > 0. As Ξ is compact and
∫
∥z∥4dγ(z) < +∞, it follows that Assumption 1-(ii) holds.

We now show that argmaxP(Ξ) F̃
N
η , ∅. By Proposition 38 in the supplement, ϕ̃ is bounded and for any x ∈ X,

θ 7→ ϕ̃(θ,x) is continuous. Using that under Assumption 2 for any y ∈ Y, ỹ 7→ ℓ(y, ỹ) is continuous, it follows
that ν 7→ G̃(ν; (x,y)) is continuous for the weak topology on P(Ξ) for any (x,y) ∈ X×Y. In addition, since
θ 7→ KL(q̃1

θ|p0) is continuous, we get since Ξ is compact that ν 7→
∫
KL(q̃1

θ|p01)dν(θ) is continuous for the
weak topology. It follows that ν 7→ F̃N

η (ν) is continuous for the weak topology. Using Ξ is compact, P(Ξ) is
compact for the weak topology by [Ambrosio et al., 2008, Theorem 5.1.3], and it follows that argmaxP(Ξ) F̃

N
η , ∅.

The last condition (4.20) of Theorem 30 easily follows from Proposition 38.
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Proof of Proposition 31

We will prove the result by contradiction. Let θ∗,N = argmaxθ∈Θ ELBON
η (θ). Assume that KL(q̃θ∗,N ,p0)→ 0

as N →∞.
Recall that the prior writes as (4.30). Since the posterior q̃θ∗,N ∈ GΘ writes:

q̃θ∗,N (w̄) =
N∏

j=1

dY∏
l=1
N (aj,l;µ∗

aj,l
,σ∗2

aj,l
)×

N∏
j=1

dX∏
r=1
N (bj,k;µ∗

bj,r
,σ∗2

bj,r
), (4.53)

assuming KL(q̃θ∗,N ,p0) → 0 as N → ∞ is equivalent to assuming that for all j = 1, . . . ,N , l = 1, . . . ,dY,
r = 1, . . .dX,

lim
N→+∞

µ∗
aj,l

= 0, , lim
N→+∞

µb∗
j,r

= 0, lim
N→+∞

σ∗
aj,l

= 1, lim
N→+∞

σ∗
bj,r

= 1. (4.54)

We consider a small perturbation of the optimal variational distribution. More precisely, we consider the parameter
θ̃∗,N defined by:

• for all j = 1, . . . ,N , r = 1, . . . ,dX, µ̃bj,r
= µ⋆

bj,r

• for all j = 1, . . . ,N , r = 1, . . . ,dX, σ̃bj,r
= σ⋆

bj,r

• for all j = 1, . . . ,N , l = 1, . . . ,dY, if (j, l) , (k,m), µ̃aj,l
= µ⋆

aj,l

• for all j = 1, . . . ,N , l = 1, . . . ,dY, σaj,l
= σ⋆

aj,l

• µ̃ak,m
= µ⋆

ak,m
+ ϵ

for some ϵ > 0 and k ∈ {1, . . . ,N},m ∈ {1, . . . ,dY}.
Recall that

ELBON
η (θ) =−L(q̃θ)− ηKL(q̃θ|qθ0), with L(q̃θ) =−Ew̄∼q̃θ

[
p∑

i=1
log(L(yi|xi, w̄))

]
, (4.55)

where L(y|x,w̄)∝ exp(−ℓ(fw̄(x),y)) is defined by (4.4). By the optimality of θ∗,N , we have ELBON
η (θ∗,N )≥

ELBON
η (θ̃∗,N ), i.e.

L(q̃θ∗,N ) + ηKL(q̃θ∗,N |p0)≤ L(q̃θ̃∗,N ) + ηKL(q̃θ̃∗,N |p0) (4.56)

which results in

L(q̃θ∗,N )−L(q̃θ̃∗,N )≤ η
(
KL(q̃θ̃∗,N |p0)−KL(q̃θ∗,N |p0)

)
= η

2

(
ϵµ∗

ak,m
+ ϵ2

2

)
(4.57)

where the equality on the right-hand side follows from the construction of θ̃∗,N w.r.t. θ∗,N and the formula of KL
between Gaussians (7).
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Now, for the square loss, by (4.32) we have, denoting σj = σ(
〈
bj ,xi

〉
) (we mask the dependence in the data

index i for lighter notations) for any j = 1, . . . ,N :

L(q̃θ∗,N )−L(q̃θ̃∗,N ) =
p∑

i=1
Ew̄∼q̃

θ∗,N

[
∥fw̄(xi)∥2

]
−Ew̄∼q̃

θ̃∗,N

[
∥fw̄(xi)∥2

]
− 2
〈
yi,Ew̄∼q̃

θ∗,N
[fw̄(xi)]−Ew̄∼q̃

θ̃∗,N
[fw̄(xi)]

〉
= 1

2N

p∑
i=1

dY∑
l=1

Eθ∼q̃
θ∗,N

 N∑
j=1

σ2
j a

2
j,l

−Eθ∼q̃
θ̃∗,N

 N∑
j=1

σ2
j a

2
j,l


+ 1

2N2

p∑
i=1

dY∑
l=1

N∑
j=1

N∑
s=1,s,i

(
Eθ∼q̃

θ∗,N

[
σjaj,lσsas,l

]
−Eθ∼q̃

θ̃∗,N

[
σjaj,lσsas,l

])

+ 2
p∑

i=1

〈
yi,

1
N

N∑
j=1

Ew̄∼q̃
θ̃∗,N

[σj ]Ew̄∼q̃
θ̃∗,N

[aj ]− 1
N

N∑
j=1

Ew̄∼q̃
θ∗,N

[σj ]Ew̄∼q̃
θ∗,N

[aj ]
〉

:=AN +BN +CN ,

First, since the difference is null for l ,m and j , k, we have:

AN = 1
2N

p∑
i=1

(
Eθ∼q̃

θ∗,N

[
σ2

ka
2
k,m

]
−Eθ∼q̃

θ̃∗,N

[
σ2

ka
2
k,m

])
(4.58)

= 1
2N

p∑
i=1

Eθ∼q̃
θ∗,N

[
σ2

k

](
µ⋆2

ak,m
+σ⋆2

ak,m
− (µ⋆

ak,m
+ ϵ)2−σ⋆2

ak,m

)
(4.59)

= 1
2N

p∑
i=1

Eθ∼q̃
θ∗,N

[
σ2

k

]
(−2µ⋆

ak,m
ϵ− ϵ2). (4.60)

Then, let’s define ∆j,s,l = Eθ∼q̃
θ∗,N

[σjaj,lσsas,l]−Eθ∼q̃
θ̃∗,N

[σjaj,lσsas,l]). Firstly, if l ,m, then ∆j,s,l = 0
for any j,s ∈ {1, . . . ,N}. Now, if l =m, there are 3 different combinations for the indexes j and s:

• If j , k and s , k, then ∆j,s,m is also null.

• If j , k and s= k then ∆j,k,m = Eθ∼q̃
θ∗,N

[σjaj,mσk](µ⋆
ak,m
− (µ⋆

ak,m
+ ϵ))

• if j = k and s , k then ∆k,s,m = Eθ∼q̃
θ∗,N

[σkas,mσs](µ⋆
ak,m
− (µ⋆

ak,m
+ ϵ)),

Hence

BN =− 1
N2

p∑
i=1

N∑
s=1,s,k

Eθ∼q̃
θ∗,N

[σkas,mσs]ϵ. (4.61)

And for the last term, we have:

CN = 2
N

p∑
i=1

yi,mEw̄∼q̃
θ∗,N

[σk]ϵ. (4.62)

Since from the previous computations,

1
2

(
ϵµ∗

ak,m
+ ϵ2

2

)
≥ 1
η

(AN +BN +CN ) , (4.63)

we now study the limit of the right-hand side of the previous inequality under the tempering η = τp/N .
Recall that by assuming the collapse of the posterior onto the prior (4.54), since σs = σ(⟨bs,xi⟩), we have for

any s= 1, . . . ,N
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m
(1)
i := lim

N→∞
Ew̄∼q̃

θ∗,N
[σs] = Eb∼N (0,IdX )[σ(⟨b,xi⟩)] ,

and,
m

(2)
i := lim

N→∞
Ew̄∼q̃

θ∗,N
[σ2

s ] = Eb∼N (0,IdX )[σ2(⟨b,xi⟩)]. (4.64)

Hence, we have by assumption (4.54), successively:

lim
N→∞

N

τp
AN = lim

N→∞

1
2τp

p∑
i=1

Eθ∼q̃
θ∗,N

[
σ2

k

]
(−2µ⋆

ak,m
ϵ− ϵ2) =− ϵ2

2τp

p∑
i=1

m
(2)
i , (4.65)

Then, we obtain, using again assumption (4.54):

lim
N→∞

N

τp
BN =− lim

N→∞

1
Nτp

p∑
i=1

N∑
s=1,s,k

Eθ∼q̃
θ∗,N

[σkas,mσs] =− lim
N→∞

1
Nτp

p∑
i=1

N∑
s=1,s,k

(m(1)
i )2µ∗

as,m
= 0,

(4.66)

and finally:

lim
N→∞

N

τp
CN = 2ϵ

τp

p∑
i=1

yi,m lim
N→∞

Ew̄∼q̃
θ∗,N

[σk] = 2ϵ
τp

p∑
i=1

yi,mm
(1)
i . (4.67)

Hence, considering (4.63) when N →∞, we have

lim
N→∞

(
ϵµ∗

ak,m
+ ϵ2

2

)
= ϵ2

2 ≥−
ϵ2

τp

p∑
i=1

m
(2)
i + 4ϵ

τp

p∑
i=1

yi,mm
(1)
i , (4.68)

reordering:

ϵ2
(

1 + 1
τp

p∑
i=1

m
(2)
i

)
≥ 4ϵ
τp

p∑
i=1

yi,mm
(1)
i . (4.69)

Now, let ϵ= sign(
∑p

i=1 yi,mm
(1)
i )ξ for some ξ ∈ R+∗. The previous inequality writes:

ξa := ξ

(
1 + 1

τp

p∑
i=1

m
(2)
i

)
≥ 4
τp

∣∣∣∣∣
p∑

i=1
yi,mm

(1)
i

∣∣∣∣∣ := b. (4.70)

Choosing ξ < b/a, we see that the previous inequality is false, contradicting the assumption (4.54).

Tempering the ELBO objective when scaling the output of a neural network by 1/
√
N

We now rewrite the ELBO (4.6) when the scaling in 1/
√
N is adopted; by rewriting both the KL term and likelihood

term independently. We denote θN = (θN
1 , . . . ,θ

N
N ) the variational parameters of a neural network scaled by 1/N

and θ
√

N = (θ
√

N
1 , . . . ,θ

√
N

N ) if scaled by 1/
√
N . Denoting a′

j = aj/
√
N,b′

j = bj for any j = 1, . . . ,N , the output
of the neural network under (4.3) can be written

N−1
N∑

j=1
ajσ(

〈
bj ,x

〉
) :=N−1/2

N∑
j=1

a′
jσ(
〈
b′

j ,x
〉
). (4.71)

Hence, the mean and variance of input and output weights can be written respectively

(µb′
j
,σb′

j
) = (µbj

,σbj
), (µa′

j
,σa′

j
) = (µajN

− 1
2 ,σajN

− 1
2 ). (4.72)
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Recall as well that for any j = 1, . . . ,N , θN
j = (µj ,σj) ∈ R2d, µj = (µbj

,µaj ) ∈ RdX ×RdY , σj = (σbj
,σaj ) ∈

RdX ×RdY . Similarly, θ
√

N
j correspond to the parameters b′

j ,a
′
j for j = 1, . . . ,N . Hence, using the formula for KL

divergence between Gaussians, denoting q̃
√

N
θ the distribution over weights (a′, b′) we have

KL(q̃
θ

√
N |p0) = 1

2

N∑
j=1

 dX∑
l=1

(µ2
bj,l

+σ2
bj ,l− log

(
σ2

bj ,l

)
)

+
dY∑
l=1

(
µ2

aj,l

N
+
σ2

aj ,l

N
− log

(
σ2

aj ,l

N

))
−dX−dY

 := αN +βN +CN , (4.73)

where CN is a constant (i.e. does not depend on the variational parameters) depending on N . We can notice than in
contrast with the 1/N scaling, now the two terms (αN ,βN ) in the KL term, corresponding to the input and output
weights, are unbalanced. We propose to rescale the latter as η1

NαN +βN . We now turn to the data fitting term of
the ELBO. Notice first that

ϕ(θ
√

N
j ,z,xi) = a′

jh(b′
j ,x) =

aj√
N
h(bj ,x) =

ϕ(θN
j ,z,xi)√
N

. (4.74)

Hence we have for the likelihood term:

p∑
i=1

∫
RN×d

logL(yi|xi, w̄)q
θ

√
N (w̄)dLebd×N (w̄) =

p∑
i=1

∫
ℓ

y, N∑
j=1

ϕ(θ
√

N
j ,zj ,x)
N

γ⊗N (dz) , (4.75)

=
p∑

i=1

∫
ℓ

y, N∑
j=1

ϕ(θN
j ,zj ,x)
N

γ⊗N (dz) (4.76)

=
p∑

i=1
GN
Θ (θN ; (x,y)). (4.77)

In the end, we define:

ELBON
η1

N
(θ

√
N ) =−η1

NαN −βN −
p∑

i=1
GN
Θ (θ

√
N ; (xi,yi)), (4.78)

which is balanced by choosing η1
N = τp

N .

Additional Experiments
About the posterior variance collapse in the mean field regime Here we discuss how the variance of the
variational posterior behaves when optimizing the balanced ELBO as proposed in Subsection 3. For the square loss
and since the distribution of each neuron is independent, the data-fitting term writes:

GN
Θ (θ; (x,y)) = C − 2y

N
Ez∼γ⊗N

[ N∑
j=1

ajσ(
〈
bj ,x

〉
)
]

+ 1
N2Ez∼γ⊗N

[ N∑
j=1
∥aj∥2σ2(

〈
bj ,x

〉
)
]

= C − 2y
N

E
[ N∑

j=1
(µaj +σaj ⊙ zaj )σ(

〈
µbj

+σbj
⊙ zbj

,x
〉

)
]

+ 1
N2E

[ N∑
j=1
∥µaj +σaj ⊙ zaj∥

2σ2(
〈
µbj

+σbj
⊙ zbj

,x
〉

)
]

where the zaj ,zbj
are independent for any j = 1, . . . ,N . Consider σ odd, e.g. σ is the identity function. Optimizing

over the variance for the variational posterior σ, we have that the σ minimizing GN
Θ (θ; (x,y)) minimizes the last
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term above, i.e. N−1σ2. Hence, adding the KL to a standard Gaussian prior, the variational posterior variance σ
minimizing the (rescaled) ELBO minimizes:

σ2

N
+ (σ2− log

(
σ2)). (4.79)

AsN →∞, the first term becomes negligible, and the optimal variance σ collapses to the one of the prior. Moreover,
we always have that as N →∞, the variance of the prior collapses to 0. Indeed, when choosing standard Gaussians
as priors, the prior variance is equal to 1

N2
∑N

j=1 1 = 1/N → 0. However, when σ is non odd (e.g. RelU), the latter
phenomenon - the posterior variance collapse onto zero - does not happen, as shown in the following experiment.

We consider a toy regression {(xi,yi)}pi=1 where xi ∼U[−1,1], yi = x3
i +ϵ and ϵ∼N (0,0.001). The following

dataset is represented in Figure 4.4. The models considered are one hidden layer Bayesian Neural Network with
N number of neurons and a non odd activation (ReLU) trained by variational inference with a tempered ELBO
(ηN = τp/N ). We consider 9 possible values for N (101,2×101,102,2×102,103,2×103,104,2×104,105). And
we study the dynamic, with respect to N, of the predictive distribution variance, ie, Vw∼qN

θ
[fw(x)]. Figure 4.4

represents the expected predictive distribution variance, ie, Ex∼U [−1,1] [Vw∼qθ
[fw(x)]] approximated with Monte

Carlo after the training. We cannot see any pattern demonstrating that the variance of the BNN’s output tends to zero
as N grows. Hence, when the ELBO is well tempered and the activation is non odd then the predictive distribution
variance over the prior collapse to zero, but not necessary the one over the variational posterior .
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Fig. 4.4 Expected standard deviation of the prediction for different sizes of model

Balanced ELBO with cooling We first support with a very simple experiment the theoretical results of Subsection 3
and the relevance of the form of the parameter η = τp/N we find. This experiment does not require training, since
the goal here is to illustrate how introducing this parameter allows to balance the contributions of the two terms
in the decomposition of ELBON

η in (4.6). We choose the architecture of a one hidden layer neural network with
RelU activation functions, to which we will refer to as Linear BNN. We consider a regression task on the Boston
dataset and a classification task on MNIST. We choose a zero-mean Gaussian prior with variance 1/5 for each
neuron. Also, we initialize the variational parameters θ = (µ,σ) where µ is close to zero and σ = 10−3. Figures 4.5
and 4.6 illustrate the ratio between the likelihood and KL terms in ELBON

η when the number of weights grows, for
η = 1 (no cooling), η = τp/N and different values of the hyperparameter τ , on the MNIST and BOSTON datasets
respectively. They confirm that when the number of data points p is fixed and ELBON

η is not rescaled, one of the
two terms become dominant contrary to the case where we set η = τp/N .
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Fig. 4.5 Ratio of the two ELBON terms, for a Linear BNN (non trained) on MNIST.
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Fig. 4.6 Ratio of the two ELBON terms, for a Linear BNN (non trained) on BOSTON.

ECE definition For any input x, define conf(x) = maxc∈{1,...,nl}Ψc(fw̄(x)), i.e., the maximal predicted
probability of the network. This quantity can be viewed as a prediction confidence for the input x. ECE
discretizes the interval [0,1] into a given number of bins B and groups predictions based on the confidence score:
Sb = {i ∈ {1, . . . ,p},conf(xi) ∈ [b/B,(1 + b)/B[}. The calibration error is the difference between the fraction of
predictions in the bin that are correct (accuracy) and the mean of the probabilities in the bin (confidence).

ECE =
B∑

b=1

|Sb|
p
|acc(Sb)− conf(Sb)| , (4.80)

where p is the total number of data points, and |Sb|, acc(Sb) and conf(Sb) are the number of predictions, the accuracy
and confidence of bin Sb respectively.

Cooling effect on the distribution of the variational parameters Figure 4.7 illustrates the distribution of the
variational parameters after training a linear BNN (i.e., single hidden layer with RelU) on MNIST. For a large τ , the
distribution of the variational parameters is close to the prior (a centered Gaussian with standard deviation 0.2). For
a small τ , we can see that the network has learnt values of σ that are very different from the prior (e.g., close to
zero). Intermediate values of τ interpolate between the two previous regimes
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Fig. 4.7 Histograms of the variational parameters θ = (µ,σ) for a Linear BNN trained on MNIST. From
left to right: histogram of variational means, standard deviations, and standard deviation as a
function of the norm of the mean.

OOD detection We also compare the performance on out-of-distribution of a Resnet20 trained on CIFAR-10
with Bayes by Backprop. We compute the the histogram of predictive entropies for 5000 in-distribution samples
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and out-of-distribution samples. Recall that the negative entropy is defined for a vector of class probabilities
[p(y = c|x,D)]c∈{1,...,nl} as −

∑nl
c=1 p(y = c|x,D) log(p(y = c|x,D)). The first ones correspond to samples from

the test set of CIFAR-10; while the out-of-distribution samples are chosen from another image dataset, namely
SVHN [Netzer et al., 2011]. Our results are to be found in Figure4.8 and illustrate again the importance of the
parameter τ . When τ is very small, the model is highly confident for in-distribution samples, and has diffuse
predictive entropies for out-distribution samples. As τ increases, the model starts to be less confident, resulting in
higher entropies on both in-distribution and out-distribution samples, especially for the out-distribution samples.
Finally if τ is too large, as the model sticks to the prior distribution, it is not confident neither on the in-distribution
nor out-distribution, resulting on a spiky distribution of predictive entropies at high values.
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Fig. 4.8 Histogram of the predictive entropies for a Resnet20 trained on CIFAR-10, on 5000 in-distribution
(from the test set of CIFAR-10 dataset) and out-of-distribution (from SVHN dataset) samples

Bayes by Backprop

Several methods have been proposed to optimize ELBON . A first and straightforward approach is to apply stochastic
gradient descent (SGD), using samples from qθc where θc is the current point, to obtain stochastic estimates for
∇θELBON . However, the resulting estimation of the gradient suffers from high variance. Alternative algorithms
have been proposed to mitigate this effect, such as Probabilistic Backpropagation [Hernández-Lobato and Adams,
2015] or Bayes by Backprop [Blundell et al., 2015]. Given a fixed distribution γ̄ and a parameterized function
g(θ, ·), the network parameter w̄ is obtained as w̄ = g(θ,z), where z is sampled from γ̄, e.g., from a standard
normal distribution. While a new z is sampled at each iteration, its distribution is constant, unlike that of the network
parameters w̄. As soon as g(θ, ·) is invertible and γ, q(·|θ) are non-degenerated probability distributions, we have
q(w̄|θ)dw̄ = γ̄(z)dz (see [Jospin et al., 2020, Appendix A]), and for any differentiable function f :

∂

∂θ
Ew̄∼q(.|θ)[f(w̄,θ)] = Ez∼γ̄

[
∂f(w̄,θ)
∂θ

+ ∂w̄

∂θ

∂f(w̄,θ)
∂w̄

]
. (4.81)
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Algorithm 2 Bayes by Backprop
Input: step-size δ > 0, number of iterations miter, number of samples Msamples.
for each miter iterations do

for each m= 1, . . . ,Msamples do
1. Sample z ∼ γ⊗N

2. Let w̄ = µ + log(1 + exp(ρ)) ◦ z.
end for
3. Compute

g(w̄,θ)≈ 1
Msamples

Mbatch∑
m=1

logq(w̄i|θ)− logp0(w̄i)P (D|w̄i) (4.82)

5. Calculate the gradient with respect to the mean and standard deviation parameter ρ

∆µ = ∂g(w,θ)
∂w

+ ∂g(w,θ)
∂µ

(4.83)

∆ρ = ∂g(w,θ)
∂w

ϵ

1 + exp(ρ) + ∂g(w,θ)
∂ρ

(4.84)

6. Update the variational parameters:

µ←− µ− δ∆µ (4.85)
ρ←− ρ− δ∆ρ (4.86)

end for

Bayes by Backprop uses the previous equality to estimate the gradient of F , because F = Ew̄∼q(·|θ)[f(w̄,θ)]
with f(w̄,θ) = logq(w̄|θ)− logp0(w̄)− logP (d|w̄). More specifically, it performs a stochastic gradient descent
for F using a new sample z at each time step to estimate the gradient of F as the parameter θ is updated. When the
step size in this algorithm goes to zero, the Bayes by Backprop dynamics corresponds to a Wasserstein gradient flow
of a particular functional defined on the space of probability distributions over θ, which we introduce in the next
section.

As in [Blundell et al., 2015], we will use a variance reparameterization; σ = log(1 + exp(ρ)) ∈ R+ for ρ ∈ R.
Consequently, the variational parameter is given by θ = (θ1, . . . ,θN ) ∈ RN×2d with θj = (µj ,ρj) ∈ R2d. We
denote by g : R2d×Rd→ R,(θ,z) 7→ µ+ log(1 + exp(ρ))⊙ z, where ⊙ denotes the entry-wise multiplication and
γ denotes the standard normal distribution over Rd. The Bayes-by-backprop algorithm in this setting is summarized
in Algorithm 2.

This algorithm is well suited for minibatch optimisation, when the dataset D is split into a partition of L subsets
(minibatches)D1, . . . ,DL. In this case [Graves, 2011] proposes to minimise a rescaled NELBON for each minibatch
Dl, l = 1, . . . ,L as

NELBON
l = 1

L
KL(q̃θ|p0)−Ew̄∼q̃θ

[logP (Dl|w̄)]. (4.87)
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Law of Large Numbers for Bayesian two-layer Neural

Network trained with Variational Inference

Chapter abstract: We provide a rigorous analysis of training by variational inference (VI) of Bayesian neural
networks in the two-layer and infinite-width case. We consider a regression problem with a regularized evidence
lower bound (ELBO) which is decomposed into the expected log-likelihood of the data and the Kullback-Leibler
(KL) divergence between the a priori distribution and the variational posterior. With an appropriate weighting
of the KL, we prove a law of large numbers for three different training schemes: (i) the idealized case with exact
estimation of a multiple Gaussian integral from the reparametrization trick, (ii) a minibatch scheme using Monte
Carlo sampling, commonly known as Bayes by Backprop, and (iii) a new and computationally cheaper algorithm
which we introduce as Minimal VI. An important result is that all methods converge to the same mean-field limit.
Finally, we illustrate our results numerically and discuss the need for the derivation of a central limit theorem.

1 Introduction

Deep Learning has led to a revolution in machine learning with impressive successes. However, some limitations of
DL have been identified and, despite, many attempts, our understanding of DL is still limited. A long-standing
problem is the assessment of predictive uncertainty: DL tends to be overconfident in its predictions [Abdar et al.,
2021], which is a problem in applications such as autonomous driving [McAllister et al., 2017, Michelmore et al.,
2020], medical diagnosis [Kendall and Gal, 2017, Filos et al., 2019], or finance; cf [Krzywinski and Altman, 2013,
Ghahramani, 2015]. Therefore, on the one hand, analytical efforts are being made to thoroughly investigate the
performance of DL; and on the other hand, many approaches have been proposed to alleviate its shortcomings.
The Bayesian paradigm is an attractive way to tackle predictive uncertainty, as it provides a framework for training
uncertainty-aware neural networks (NNs) (e.g. [Ghahramani, 2015, Blundell et al., 2015, Gal and Ghahramani,
2016]).

Thanks to a fully probabilistic approach, Bayesian Neural Networks (BNN) combine the impressive neural-
network expressivity with the decision-theoretic approach of Bayesian inference, making them capable of providing
predictive uncertainty; see [Blundell et al., 2015, Michelmore et al., 2020, McAllister et al., 2017, Filos et al.,
2019]. However, Bayesian inference requires deriving the posterior distribution of the NN weights. This posterior
distribution is typically not tractable. A classical approach is to sample the posterior distribution using Markov
Chain Monte Carlo methods (such as Hamilton-Monte-Carlo methods). There are however long-standing difficulties,
such as the proper choice of the prior and fine-tuning of the sampler. Such difficulties often become prohibitive in
large-dimensional cases,[Cobb and Jalaian, 2021]. An alternative is to use variational inference, which has a long
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history [Hinton and Camp, 1993, MacKay, 1995, MacKay et al., 1995]. Simpler methods that do not require exact
computation of integrals over the variational posterior were then developed, e.g. first by [Graves, 2011] thanks to
some approximation and then by [Blundell et al., 2015] with the Bayes by Backprop approach. In the latter, the
posterior distribution is approximated by a parametric distribution and a generalisation of the reparametrization trick
used by [Kingma and Welling, 2014] leads to an unbiased estimator of the gradient of the ELBO; see also [Gal
and Ghahramani, 2016, Louizos and Welling, 2017, Khan et al., 2018]. Despite the successful application of this
approach, little is known about the overparameterized limit and appropriate weighting that must be assumed to obtain
a nontrivial Bayesian posterior, see [Izmailov et al., 2021]. Recently, [Huix et al., 2022] outlined the importance
of balancing in ELBO the integrated log-likelihood term and the KL regularizer, to avoid both overfitting and
dominance of the prior. However, a suitable limiting theory has yet to be established, as well as guarantees for the
practical implementation of the stochastic gradient descent (SGD) used to estimate the parameters of the variational
distribution.

Motivated by the need to provide a solid theoretical framework, asymptotic analysis of NN has gained much
interest recently. The main focus has been on the gradient descent algorithm and its variants [Rotskoff and
Vanden-Eijnden, 2018, Chizat and Bach, 2018, Mei et al., 2018, Sirignano and Spiliopoulos, 2020b, Descours et al.,
2022a]. In much of these works, a mean-field analysis is performed to characterize the limiting nonlinear evolution
of the weights of a two-layer NN, allowing the derivation of a law of large numbers and a central limit theorem
for the empirical distribution of neuron weights. A long-term goal of these works is to demonstrate convergence
toward a global minimum of these limits for the mean field. Despite some progress in this direction, this is still an
open and highly challenging problem; cf [Chizat and Bach, 2018, Chizat, 2022, Chizat et al., 2022]. Nevertheless,
this asymptotic analysis is also of interest in its own right, as we show here in the case of variational inference for
Bayesian neural networks. Indeed, based on this asymptotic analysis, we develop an efficient and new variant of the
stochastic gradient descent (SGD) algorithm for variational inference in BNN that computes only the information
necessary to recover the limit behavior.

Our goal, then, is to work at the intersection of analytical efforts to gain theoretical guarantees and insights
and of practical methods for a workable variational inference procedure. By adapting the framework developed
by [Descours et al., 2022a], we produce a rigorous asymptotic analysis of BNN trained in a variational setting for a
regression task. From the limit equation analysis, we first find that a proper regularisation of the Kullback-Leibler
divergence term in relation with the integrated loss leads to their right asymptotic balance. Second, we prove the
asymptotic equivalence of the idealized and Bayes-by-Backprop SGD schemes, as both preserve the same core
contributions to the limit. Finally, we introduce a computationally more favourable scheme, directly stemming from
the effective asymptotic contributions. This scheme is the true mean-field algorithmic approach, as only deriving
from non-interacting terms.

This Section is organized as follows: Subsection 2 introduces the variational inference in BNN, as well
as the SGD schemes commonly considered, namely the idealized and Bayes-by-backprop variants. Then, in
Subsection 3 we establish our initial result, the LLN for the idealized SGD. In Subsection 4 we prove the LLN for the
Bayes-by-backprop SGD and its variants. We show that both SGD schemes have the same limit behavior. Based on
an analysis of the obtained limit equation, we present in Subsection 5 the new minimal- VI. Finally, in Subsection 6
we illustrate our findings using numerical experiments. The proofs of the mean-field limits, which are original and
quite technically demanding, are gathered in the appendix paper.

Related works. Law of Large Numbers (LLN) for mean-field interacting particle systems, have attracted a lot of
attentions; see for example [Hitsuda and Mitoma, 1986, Sznitman, 1991, Fernandez and Méléard, 1997, Jourdain
and Méléard, 1998, Delarue et al., 2019, Del Moral and Guionnet, 1999, Kurtz and Xiong, 2004] and references
therein. The use of mean-field particle systems to analyse two-layer neural networks with random initialization
have been considered in [Mei et al., 2018, 2019], which establish a LLN on the empirical measure of the weights at
fixed times - we consider in this paper the trajectory convergence, i.e. the whole empirical measure process (time
indexed) converges uniformly w.r.t. Skorohod topology. It enables not only to use the limiting PDE, for example to
study the convergence of the weights towards the infimum of the loss function (see [Chizat and Bach, 2018] for
preliminary results), but is is also crucial to establish the central limit theorem, see for example [Descours et al.,
2022a]. [Rotskoff and Vanden-Eijnden, 2018] give conditions for global convergence of GD for exact mean-square
loss and online stochastic gradient descent (SGD) with mini-batches increasing in size with the number of weights
N . A LLN for the entire trajectory of the empirical measure is also given in [Sirignano and Spiliopoulos, 2020b]



Chapter 5: Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference 73

for a standard SGD. [De Bortoli et al., 2020b] establish the propagation of chaos for SGD with different step size
schemes. Compared to the existing literature dealing with the SGD empirical risk minimization in two-layer neural
networks, [Descours et al., 2022a] provide the first rigorous proof of the existence of the limit PDE, and in particular
its uniqueness, in the LLN.

We are interested here in deriving a LLN but for Variational Inference (VI) of two-layer Bayesian Neural
Networks (BNN), where we consider a regularized version of the Evidence Lower Bound (ELBO).

2 Variational inference in BNN:Notations and common SGD schemes

2.1 Variational inference and Evidence Lower Bound

Setting. Let X and Y be subsets of Rn (n≥ 1) and R respectively. For N ≥ 1 and w = (w1, . . . ,wN ) ∈ (Rd)N , let
fN

w : X→ R be the following two-layer neural network: for x ∈ X,

fN
w (x) := 1

N

N∑
i=1

s(wi,x) ∈ R,

where s : Rd×X→ R is the activation function. We work in a Bayesian setting, in which we seek a distribution
of the latent variable w which represents the weights of the neural network. The standard problem in Bayesian
inference over complex models is that the posterior distribution is hard to sample. To tackle this problem, we
consider Variational Inference, in which we consider a family of distribution GN = {qN

θ ,θ ∈ ΞN} (where Ξ is
some parameter space) easy to sample. The objective is to find the best qN

θ ∈ G
N , the one closest in KL divergence

(denotedDKL) to the exact posterior. Because we cannot compute the KL, we optimize the evidence lower bound
(ELBO), which is equivalent to the KL up to an additive constant.

Denoting by L : R×R→ R+ the negative log-likelihood (by an abuse of language, we call this quantity the
loss), the ELBO (see [Blei et al., 2017]) is defined, for θ ∈ ΞN , (x,y) ∈ X×Y, by

Elbo(θ,x,y) :=−
∫

(Rd)N
L(y,fN

w (x))qN
θ (w)dw−DKL(qN

θ |P
N
0 ),

where PN
0 is some prior on the weights of the NN. The ELBO is decomposed into two terms: one corresponding

to the Kullback-Leibler (KL) divergence between the variational density and the prior and the other to a marginal
likelihood term. It was empirically found that the maximization of the ELBO function is prone to yield very poor
inferences [Coker et al., 2022]. It is argued in [Coker et al., 2022] and [Huix et al., 2022] that optimizing the ELBO
leads as N →∞ to the collapse of the variational posterior to the prior. [Huix et al., 2022] proposed to consider a
regularized version of the ELBO, which consists in multiplying the KL term by a parameter which is scaled by the
inverse of the number of neurons:

EN
lbo(θ,x,y) :=−

∫
(Rd)N

L(y,fN
w (x))qN

θ (w)dw− 1
N
DKL(qN

θ |P
N
0 ), (5.1)

A first objective of this paper is to show that the proposed regularization leads to a stable asymptotic behavior and
the effect of both the integrated loss and Kullback-Leibler terms on the limiting behavior are balanced in the limit
N →∞. The maximization of EN

lbo is carried out using SGD.
The variational family GN we consider is a Gaussian family of distributions. More precisely, we assume that for

any θ = (θ1, . . . ,θN ) ∈ ΞN , the variational distribution qN
θ factorizes over the neurons: for all w = (w1, . . . ,wN ) ∈

(Rd)N , qN
θ (w) =

∏N
i=1 q

1
θi(wi), where θ = (m,ρ) ∈ Ξ := Rd×R and q1

θ is the probability density function (pdf)
of N (m,g(ρ)2Id), with g(ρ) = log(1 + eρ), ρ ∈ R.

In the following, we simply write Rd+1 for Rd × R. In addition, following the reparameterisation trick
of [Blundell et al., 2015], q1

θ(w)dw is the pushforward of a reference probability measure with density γ by Ψθ

(see more precisely Assumption A1). In practice, γ is the pdf of N (0, Id) and Ψθ(z) = m+ g(ρ)z. With these
notations, (5.1) writes

EN
lbo(θ,x,y) =−

∫
(Rd)N

L

(
y,

1
N

N∑
i=1

s(Ψθi(zi),x)
)
γ(z1) . . .γ(zN )dz1 . . .dzN −

1
N
DKL(qN

θ |P
N
0 ).
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Loss function and prior distribution. In this work, we focus on the regression problem, i.e. L is the
Mean Square Loss: for y1,y2 ∈ R, L(y1,y2) = 1

2 |y1 − y2|2. We also introduce the function ϕ : (θ,z,x) ∈
Rd+1 ×Rd ×X 7→ s(Ψθ(z),x). On the other hand, we assume that the prior distribution PN

0 write, for allw ∈
(Rd)N , PN

0 (w) =
∏N

i=1P
1
0 (wj), where P 1

0 : Rd → R+ is the pdf of N (m0,σ2
0Id), and σ0 > 0. Therefore

DKL(qN
θ |P

N
0 ) =

∑N
i=1DKL(qθi |P 1

0 ) and, for θ = (m,ρ) ∈ Rd+1,

DKL(q1
θ |P

1
0 ) =

∫
Rd
q1

θ(x) log
(
q1

θ(x)/P 1
0 (x)

)
dx= ∥m−m0∥22

2σ2
0

+ d

2

(g(ρ)2

σ2
0
− 1
)

+ d

2 log
( σ2

0
g(ρ)2

)
.

Note thatDKL has at most a quadratic growth in m and ρ.
Note that we assume here a Gaussian prior to get an explicit expression of the Kullback-Leibler divergence.

Most arguments extend to sufficiently regular densities and are essentially the same for exponential families, using
conjugate families for the variational approximation.

2.2 Common SGD schemes in backpropagation in a variational setting
Idealized SGD. Let (Ω,F ,P) be a probability space. Consider a data set {(xk,yk)}k≥0 i.i.d. w.r.t. π ∈ P(X×Y),
the space of probability measures over X×Y. For N ≥ 1 and given a learning rate η > 0, the maximization of
θ ∈ Rd+1 7→ EN

lbo(θ,x,y) with a SGD algorithm writes as follows: for k ≥ 0 and i ∈ {1, . . . ,N},{
θk+1 = θk + η∇θEN

lbo(θk,xk,yk)
θ0 ∼ µ⊗N

0 ,
(5.2)

where µ0 ∈ P(Rd+1) and θk = (θ1
k, . . . ,θ

N
k ). We now compute ∇θEN

lbo(θ,x,y).
First, under regularity assumptions on the function ϕ (which will be formulated later, see A1 and A3 below) and

by assumption on L, we have for all i ∈ {1, . . . ,N} and all (x,y) ∈ X×Y,∫
(Rd)N

∇θiL

(
y,

1
N

N∑
j=1

ϕ(θj ,zj ,x)
)
γ(z1) . . .γ(zN )dz1 . . .dzN

=− 1
N2

N∑
j=1

∫
(Rd)N

(y−ϕ(θj ,zj ,x))∇θϕ(θi,zi,x)γ(z1) . . .γ(zN )dz1 . . .dzN (5.3)

=− 1
N2

[ N∑
j=1,j,i

(y−⟨ϕ(θj , ·,x),γ⟩)⟨∇θϕ(θi, ·,x),γ⟩+ ⟨(y−ϕ(θi, ·,x))∇θϕ(θi, ·,x),γ⟩
]
,

where we have used the notation ⟨U,ν⟩=
∫
Rq U(z)ν(dz) for any integrable function U : Rq→ R w.r.t. a measure ν

(with a slight abuse of notation, we denote by γ the measure γ(z)dz). Second, for θ ∈ Rd+1, we have

∇θDKL(q1
θ |P

1
0 ) =

(
∇mDKL(q1

θ |P
1
0 )

∂ρDKL(q1
θ |P

1
0 )

)
=

 1
σ2

0
(m−m0)

d
σ2

0
g′(ρ)g(ρ)− d g′(ρ)

g(ρ)

 . (5.4)

In conclusion, the SGD (5.2) writes: for k ≥ 0 and i ∈ {1, . . . ,N},
θi

k+1 = θi
k

η
N2
∑N

j=1,j,i

(
⟨ϕ(θj

k, ·,xk),γ⟩− yk

)
⟨∇θϕ(θi

k, ·,xk),γ⟩
η

N2

〈
(ϕ(θi

k, ·,xk)− yk)∇θϕ(θi
k, ·,xk),γ

〉
− η

N∇θDKL(q1
θi

k

|P 1
0 )

θi
0 ∼ µ0.

(5.5)

We shall call this algorithm idealised SGD because it contains an intractable term given by the integral w.r.t. γ. This
has motivated the development of methods where this integral is replaced by an unbiased Monte Carlo estimator
(see [Blundell et al., 2015]) as detailed below.
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Bayes-by-Backprop SGD. The second SGD algorithm we study is based on an approximation, for i ∈ {1, . . . ,N}, of∫
(Rd)N (y−ϕ(θj ,zj ,x))∇θϕ(θi,zi,x)γ(z1) . . .γ(zN )dz1 . . .dzN (see (5.3)) by

1
B

B∑
ℓ=1

(
y−ϕ(θj ,Zj,ℓ,x)

)
∇θϕ(θi,Zi,ℓ,x) (5.6)

where B ∈ N∗ is a fixed integer and (Zq,ℓ, q ∈ {i, j},1 ≤ ℓ ≤ B) is a i.i.d finite sequence of random variables
distributed according to γ(z)dz. In this case, for N ≥ 1, given a dataset (xk,yk)k≥0, the maximization of
θ ∈ Rd+1 7→ EN

lbo(θ,x,y) with a SGD algorithm is the following: for k ≥ 0 and i ∈ {1, . . . ,N},{
θi

k+1 = θi
k −

η
N2B

∑N
j=1
∑B

ℓ=1
(
ϕ(θj

k,Z
j,ℓ
k ,xk)− yk

)
∇θϕ(θi

k,Z
i,ℓ
k ,xk)− η

N∇θDKL(q1
θi

k

|P 1
0 )

θi
0 = (mi

0,ρ
i
0)∼ µ0,

(5.7)

where η > 0 and (Zj,ℓ
k ,1≤ j ≤N,1≤ ℓ≤B,k ≥ 0) is a i.i.d sequence of random variables distributed according

to γ.

3 Law of large numbers for the idealized SGD

Assumptions and notations. When E is a metric space and I = R+ or I = [0,T ] (T ≥ 0), we denote by
D(I ,E) the Skorohod space of càdlàg functions on I taking values in E and C(I ,E) the space of continuous
functions on I taking values in E. The evolution of the parameters ({θi

k, i= 1, . . . ,N})k≥1 defined by (5.5) is
tracked through their empirical distribution νN

k (for k ≥ 0) and its scaled version µN
t (for t ∈ R+), which are defined

as follows:

νN
k := 1

N

N∑
i=1

δθi
k

and µN
t := νN

⌊Nt⌋, where the θi
k’s are defined (5.5). (5.8)

Fix T > 0. For all N ≥ 1, µN := {µN
t , t ∈ [0,T ]} is a random element of D([0,T ],P(Rd+1)), where P(Rd+1) is

endowed with the weak convergence topology. For N ≥ 1 and k ≥ 1, we introduce the following σ-algebras:

FN
0 = σ(θi

0,1≤ i≤N) and FN
k = σ(θi

0,(xq,yq),1≤ i≤N,0≤ q ≤ k− 1). (5.9)

Recall q1
θ : Rd→ R+ be the pdf of N (m,g(ρ)2Id) (θ = (m,ρ) ∈ Rd+1). In this work, we assume the following.

A1. There exists a pdf γ : Rd → R+ such that for all θ ∈ Rd+1, q1
θdx = Ψθ#γdx, where {Ψθ,θ ∈ Rd+1} is a

family of C1-diffeomorphisms over Rd such that for all z ∈ Rd, θ ∈ Rd+1 7→ Ψθ(z) is of class C∞. Finally,
there exists b : Rd→ R+ such that for all multi-index α ∈Nd+1 with |α| ≥ 1, there exists Cα > 0, for all
z ∈ Rd and θ = (θ1, . . . ,θd+1) ∈ Rd+1,∣∣∂αΨθ(z)

∣∣≤ Cαb(z) with for all q ≥ 1, ⟨bq,γ⟩<+∞, (5.10)

where ∂α = ∂α1
θ1
. . .∂

αd+1
θd+1

and ∂αj

θj
is the partial derivatives of order αj w.r.t. to θj .

A2. The sequence {(xk,yk)}k≥0 is i.i.d. w.r.t. π ∈ P(X×Y). The set X×Y ⊂ Rd×R is compact. For all k ≥ 0,
(xk,yk)⊥⊥FN

k , where FN
k is defined in (5.9).

A3. The activation function s : Rd×X→ R belongs to C∞
b (Rd×X) (the space of smooth functions over Rd×X

whose derivatives of all order are bounded).

A4. The initial parameters (θi
0)N

i=1 are i.i.d. w.r.t. µ0 ∈ P(Rd+1) which has compact support.

Note that A1 is satisfied when γ is the pdf ofN (0, Id) and Ψθ(z) =m+ g(ρ)z, with b(z) = 1 + |z|. With these
assumptions, for every fixed T > 0, the sequence ({θi

k, i= 1, . . . ,N})k=0,...,⌊NT ⌋ defined by (5.5) is a.s. bounded:
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Lemma 39 (Uniform bound on the parameters). Assume A1→A4. Then, there exists C > 0 such that a.s. for all
T > 0, N ≥ 1, i ∈ {1, . . . ,N}, and 0≤ k ≤ ⌊NT ⌋, |θi

k| ≤ Ce
[C(2+T )]T .

Lemma 39 implies that a.s. for all T > 0 and N ≥ 1, µN ∈ D([0,T ],P(ΘT )), where

ΘT = {θ ∈ Rd+1, |θ| ≤ Ce[C(2+T )]T }.

The first main result of this work is the following Theorem which derives the law of large numbers for (µN )N≥1
(defined in (5.8)).

Theorem 40. Assume A1→A4. Let T > 0. Then, the sequence (µN )N≥1 ⊂ D([0,T ],P(ΘT )) defined in (5.8)
converges in probability to the unique deterministic solution µ̄ ∈ C([0,T ],P(ΘT )) to the following measure-valued
evolution equation: ∀f ∈ C∞(ΘT ) and ∀t ∈ [0,T ],

⟨f, µ̄t⟩− ⟨f,µ0⟩=−η
∫ t

0

∫
X×Y

〈
ϕ(·, ·,x)− y, µ̄s⊗ γ

〉〈
∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ

〉
π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (5.11)

The proof of Theorem 40 is given in Appendix 8. We stress here the most important steps and used techniques.
In a first step, we derive an identity satisfied by (µN )N≥1, namely the pre-limit equation (5.28); see Sec. 8.1. Then
we show in Sec. 8.2.2 that (µN )N≥1 is relatively compact inD([0,T ],P(ΘT )). To do so, we check that the sequence
(µN )N≥1 satisfies all the required assumptions of [Jakubowski, 1986, Theorem 3.1] when E = P(ΘT ) there. In
Sec. 8.2.3 we prove that every limit point of (µN )N≥1 satisfies the limit equation (5.11). Then, in Section 8.2.4, we
prove that there is a unique solution of the measure-valued equation (5.11). To prove the uniqueness of the solution
of (5.11), we use techniques developed in [Piccoli et al., 2015] which are based on a representation formula for
solution to measure-valued equations [Villani, 2021, Theorem 5.34] together with estimates in Wasserstein distances
between two solutions of (5.11) derived in [Piccoli and Rossi, 2016]. In Section 8.2.4, we also conclude the proof
of Theorem 40. Compared to [Descours et al., 2022a, Theorem 1], the fact that ({θi

k, i= 1, . . . ,N})k=0,...,⌊NT ⌋
defined by (5.5) are a.s. bounded allows to use different and more straightforward arguments to prove (i) the
relative compactness in D([0,T ],P(ΘT )) of (µN )N≥1 (defined in (5.8)) (ii) the continuity property of the operator
m 7→ Λt[f ](m) defined in (5.35) w.r.t. the topology of D([0,T ],P(ΘT )) and (iii) (µN )N≥1 has limit points in
C([0,T ],P(ΘT )). Step (ii) is necessary in order to pass to the limit N →+∞ in the pre-limit equation and Step
(iii) is crucial since we prove that there is at most one solution of (5.11) in C([0,T ],P(ΘT )). It is worthwhile to
emphasize that, as N →∞, the effects of the integrated loss and of the KL terms are balanced, as conjectured
in [Huix et al., 2022].

To avoid further technicalities, we have chosen what may seem restrictive assumptions on the data or the
activation function. Note however that it readily extends to unbounded set X, and also unbounded Y assuming that π
as polynomial moments of sufficiently high order. Also, RELU (or more easily leaky RELU) may be considered by
using weak derivatives (to consider the singularity at 0), and a priori moment bounds on the weights.

4 LLN for the Bayes-by-Backprop SGD

The sequence {θi
k, i ∈ {1, . . .N}}k=0,...,⌊NT ⌋ defined recursively by the algorithm (5.7) is in general not bounded,

since∇θϕ(θ,Z,x) is not necessarily bounded if Z∼ γ(s)dz. Therefore, we cannot expect Lemma 39 to hold for
{θi

k, i ∈ {1, . . .N}}k=0,...,⌊NT ⌋ set by (5.7). Thus, the sequence {θi
k, i ∈ {1, . . .N}}k=0,...,⌊NT ⌋ is considered on

the whole space Rd+1.
Wasserstein spaces and results. For N ≥ 1, and k ≥ 1, we set

FN
k = σ

(
θi

0,Zj,ℓ
q ,(xq,yq),1≤ i, j ≤N,1≤ ℓ≤B,0≤ q ≤ k− 1

)
. (5.12)

In addition to A1→A4 (where in A2, when k ≥ 1, FN
k is now the one defined in (5.12)), we assume:
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A5. The sequences (Zj,ℓ
k ,1 ≤ j ≤ N,1 ≤ ℓ ≤ B,k ≥ 0) and ((xk,yk),k ≥ 0) are independent. In addition, for

k ≥ 0,
(
(xk,yk),Zj,ℓ

k ,1≤ j ≤N,1≤ ℓ≤B
)
⊥⊥FN

k .

Note that the last statement of A5 implies the last statement of A2. We introduce the scaled empirical distribution of
the parameters of the algorithm (5.7), i.e. for k ≥ 0 and t≥ 0:

νN
k := 1

N

N∑
i=1

δθi
k

and µN
t := νN

⌊Nt⌋, where the θi
k’s are defined (5.7). (5.13)

One can no longer rely on the existence of a compact subsetΘT ⊂ Rd+1 such that a.s. (µN )N≥1 ⊂D([0,T ],P(ΘT )),
where µN = {t ≥ 0 7→ µN

t } is defined in (5.13). For this reason, we will work in Wasserstein spaces Pq(Rd+1),
q ≥ 0, which, we recall, are defined by

Pq(Rd+1) =
{
ν ∈ P(Rd+1),

∫
Rd+1

|θ|qν(dθ)<+∞
}
. (5.14)

These spaces are endowed with the Wasserstein metric Wq , see e.g. [Santambrogio, 2015, Chapter 5] for more
materials on Wasserstein spaces. For all q ≥ 0, (µN )N≥1 ⊂ D(R+,Pq(Rd+1)). The second main results of this
work is a LLN for (µN )N≥1 defined in (5.13).

Theorem 41. Assume A1→A5. Let γ0 > 1+ d+1
2 . Then, the sequence (µN )N≥1 defined in (5.13) converges in proba-

bility inD(R+,Pγ0(Rd+1)) to a deterministic element µ̄ ∈ D(R+,Pγ0(Rd+1)), where µ̄ ∈ C(R+,P1(Rd+1)) is the
unique solution in C(R+,P1(Rd+1)) to the following measure-valued evolution equation:∀f ∈ C∞

b (Rd+1) and ∀t ∈
R+,

⟨f, µ̄t⟩− ⟨f,µ0⟩=−η
∫ t

0

∫
X×Y

〈
ϕ(·, ·,x)− y, µ̄s⊗ γ

〉〈
∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ

〉
π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (5.15)

Theorem 41 is proved in the appendix 9. Since {θi
k, i ∈ {1, . . .N}}k=0,...,⌊NT ⌋ defined by (5.7) is not bounded

in general, we work in the space D(R+,Pγ0(Rd+1)). The proof of Theorem 41 is more involved than that of
Theorem 40, and generalizes the latter to the case where the parameters of the SGD algorithm are unbounded.
We prove that (µN )N≥1 (defined in (5.13)) is relatively compact in D(R+,Pγ0(Rd+1)). To this end we now
use [Jakubowski, 1986, Theorem 4.6]. The compact containment, which is the purpose of Lemma 58, is not
straightforward since Pγ0(Rd+1) is not compact contrary to Theorem 40 where we used the compactness of P(ΘT ).
More precisely, the compact containment of (µN )N≥1 relies on a characterization of the compact subsets of
Pγ0(Rd+1) (see Proposition 56) and moment estimates on {θi

k, i ∈ {1, . . .N}}k=0,...,⌊NT ⌋ (see Lemma 55). We
also mention that contrary to what is done in the proof of Theorem 40, we do not show that every limit point of
(µN )N≥1 in D(R+,Pγ0(Rd+1)) is continuous in time but we still manage to prove that they all satisfy (5.15). Then,
using the duality formula for the W1-distance together with rough estimates on the jumps of t 7→ ⟨f,µN

t ⟩ (for f
uniformly Lipschitz over Rd+1), we then show that every limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)) belongs
a.s. to C(R+,P1(Rd+1)). Again this is important since we have uniqueness of (5.15) in C(R+,P1(Rd+1)).

We conclude this section with the following important uniqueness result.

Proposition 42. Under the assumptions of Theorems 40 and 41, the solution to (5.11) is independent of T and is
equal to the solution to (5.15).

This uniqueness result states that both idealized and Bayes-by-backprop SGD have the same limiting behavior. It
is also noteworthy that the mini-batch B is held fixed B. The effect of batch size can be seen at the level of the
central limit theorem, which we leave for future work.



78 Section 5: The Minimal-VI SGD algorithm

0.0 0.2 0.4 0.6
0

2

4

6

t = 0.0

0.0 0.2 0.4 0.6
0

1

2
1e1 t = 2.5

0.0 0.2 0.4 0.6
0.0

2.5

5.0

7.5

1e1 t = 5.0

0.2 0.0 0.2
0

2

4

t = 0.0

0.2 0.0 0.2
0.0

0.5

1.0
1e1 t = 2.5

0.2 0.0 0.2
0

1

2

3
1e1 t = 5.0

Fig. 5.1 Histograms of {F (θi
⌊NT ⌋), i= 1, . . . ,N}, at different times (initialization (t= 0), half (t= 2.5)

and end of training (T = 5)), when N = 10000. First line: F (θ) = ∥m∥2, where θ = (m,ρ) ∈
Rd ×R. Second line: F (θ) = m ∈ Rd. Idealized (blue), Bayes-by-Backprop (orange) and
Minimal-VI (green).

5 The Minimal-VI SGD algorithm

The idea behing the Bayes-by-Backprop SGD stems from the fact that there are integrals wrt γ in the loss function
that cannot be computed in practice and it is quite natural up to a reparameterization trick, to replace these integrals
by a Monte Carlo approximation (with i.i.d. gaussian random variables). To devise a new cheaper algorithm based
on the only terms impacting the asymptotic limit, we directly analyse the limit equation (5.11) and remark that it can
be rewritten as, ∀f ∈ C∞(ΘT ) and ∀t ∈ [0,T ],

⟨f, µ̄t⟩− ⟨f,µ0⟩

=−η
∫ t

0

∫
X×Y×(Rd)2

〈
ϕ(·,z1,x)− y, µ̄s

〉〈
∇θf · ∇θϕ(·,z2,x), µ̄s

〉
γ⊗2(dz1dz2)π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds.

Thus, the integration over γ⊗2 can be considered as that over π, i.e., we can consider them as two more data variables
that only need to be sampled at each new step. In this case, the SGD (5.7) becomes: for k ≥ 0 and i ∈ {1, . . . ,N},{

θi
k+1 = θi

k −
η

N2
∑N

j=1
(
ϕ(θj

k,Z
1
k,xk)− yk

)
∇θϕ(θi

k,Z2
k,xk)− η

N∇θDKL(q1
θi

k

|P 1
0 )

θi
0 = (mi

0,ρ
i
0)∼ µ0,

(5.16)

where η > 0 and (Zp
k,p ∈ {1,2},k ≥ 0) is a i.i.d sequence of random variables distributed according to γ⊗2. We

call this backpropagation scheme minimal- VI SGD which is much cheaper in terms of computational complexity,
with the same limiting behavior as we now discuss.

We introduce the σ-algebra for N,k ≥ 1:

FN
k = σ

(
θi

0,Zp
q ,(xq,yq),1≤ i≤N,p ∈ {1,2},0≤ q ≤ k− 1

})
. (5.17)

In addition to A1→A4 (where in A2, FN
k is now the one defined above in (5.17) when k ≥ 1), the following

assumption

A6. The sequences (Zp
k,p ∈ {1,2},k ≥ 0) and ((xk,yk),k ≥ 0) are independent. In addition, for k ≥ 0,(

(xk,yk),Zp
k,p ∈ {1,2}

)
⊥⊥FN

k , where FN
k is defined in (5.17).
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Fig. 5.2 Convergence of ⟨f,µN
T ⟩ to ⟨f, µ̄T ⟩, for the idealized (blue), Bayes-by-Backprop (orange) and

Minimal-VI (green) SGD algorithms over 50 realizations.
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Fig. 5.3 Decay of the negative ELBO (left) and its two components (KL (middle), loss (right)) during
the training process done by the idealized (blue), Bayes-by-Backprop (orange) and Minimal-VI
(green) SGD algorithms, for N = 10000.

Set for k ≥ 0 and t≥ 0, νN
k := 1

N

∑N
i=1 δθi

k
and µN

t := νN
⌊Nt⌋, where the θi

k’s are defined in (5.16). The last main
result of this work states that the sequence (µN )N≥1 satisfies the same law of large numbers when N →+∞ as the
one satisfied by (5.13), whose proof will be omitted as it is the same as the one made for Theorem 41.

Theorem 43. Assume A1→A4 and A6. Then, the sequence of (µN )N≥1 satisfies all the statements of Theorem 41.

6 Numerical experiments

In this section we illustrate the theorems 40, 41, and 43 using the following toy model. We set d= 5. Given θ∗ ∈ Rd

(drawn from a normal distribution and scaled to the unit norm), we draw i.i.d observations as follows: Given
x∼ U([−1,1]d), we draw y = tanh

(
x⊤θ∗)+ϵ, where ϵ is zero mean with variance 10−4. The initial distribution of

parameters is centered around the prior: θ0 ∼ (N (m0,0.01Id)×N (g−1(σ0),0.01))⊗N , withm0 = 0 and σ0 = 0.2.
Since the idealized algorithm cannot be implemented exactly, a mini-batch of size 100 is used as a proxy for the
following comparisons of the different algorithms. For the algorithm (5.7) SGD we set B = 1.

6.1 Evolution and limit of the distribution

Fig. 5.1 displays the histograms of {F (θi
⌊Nt⌋), i= 1, . . . ,N} (F (θ)=∥m∥2,g(ρ) orm, where θ = (m,ρ) ∈ Rd×R),

for N = 10000, at initialization, halfway through training, and at the end of training. The empirical distributions
illustrated by these histograms are very similar over the course of training. It can be seen that for N = 10000 the
limit of the mean field is reached.

6.2 Convergence with respect to the numbers of neurons.

We investigate here the speed of convergence of µN
t to µ̄t (asN →+∞), when tested against test functions f . More

precisely, we fix a timeT (end of training) and Figure 5.2 represents the empirical mean of ⟨f,µN
T ⟩ over 50 realizations.

The test functions used for this experiment are fm(θ) = ∥m∥2, fElbo(θ) =−Êlbo(θ)N where Êlbo is the empirical

EN
lbo (see (5.1)) computed with 100 samples of (x,y) and (z1, . . . ,zN ). Finally, fpred(θ) = Êx

[
V̂w∼qN

θ
[fN

w (x)]1/2
]
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Fig. 5.4 Boxplots for 50 runs of ⟨f,µN
t ⟩ for the three SGD schemes for f(θ) = ∥m∥2 on the first line and

f(θ) = g(ρ) on the second line. MVIB-SGD:Minimal-VI SGD. BbB-SGD:Bayes-by-Backprop
SGD.

where Ê and V̂ denote respectively the empirical mean and the empirical variance over 100 samples. All algorithms
are converging to the same limit and are performing similarly even with a limited number of neurons (N = 300 in
this example).

6.3 Convergence with respect to time.

This section illustrates the training process of a BNN with a given number of neurons N = 10000. In Figure 5.3, we
plot the negative ELBO on a test set and its two components, the loss and the KL-divergence terms. Figure 5.3 shows
that the BNN is able to learn on this specific task and all algorithms exhibit a similar performance. It illustrates the
trajectorial convergence of {µN

t , t ∈ [0,T ]}N≥1 to {µ̄t, t ∈ [0,T ]} as N →+∞.

6.4 Behavior around the limit µ̄.

On Figure 5.4, we plot the boxplots of ⟨f,µN
t ⟩ for 50 realizations and N = 10000, at different times of the training.

Minimal-VI scheme (which is computationally cheaper as explained in 5) exhibit a larger variance than the other
algorithms.

7 Conclusion

By establishing the limit behavior of the idealized SGD for the variational inference of BNN with the weighting sug-
gested by [Huix et al., 2022], we have rigorously shown that the most-commonly used in practice Bayes-by-Backprop
scheme indeed exhibits the same limit behavior. Furthermore, the analysis of the limit equation led us to validate the
correct scaling of the KL divergence term in with respect to the loss. Notably, the mean-field limit dynamics has
also helped us to devise a far less costly new SGD algorithm, the Minimal-VI. This scheme shares the same limit
behavior, but only stems from the non-vanishing asymptotic contributions, hence the reduction of the computational
cost. Aside from confirming the analytical results, the first simulations presented here show that the three algorithms,
while having the same limit, may differ in terms of variance. Thus, deriving a CLT result and discussing the right
trade-off between computational complexity and variance will be done in future work. Also, on a more general
level regarding uncertainty quantification, an interesting question is to analyse the impact of the correct scaling
of the KL divergence term on the error calibration and how to apply the same analysis in the context of deep ensembles.
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8 Proof of Theorem 40

For simplicity, we prove Theorem 40 when T = 1, and we denote Θ1 simply by Θ. In this section we assume
A1–A4.

8.1 Pre-limit equation (5.28) and error terms in (5.28)

8.1.1 Derivation of the pre-limit equation

The aim of this section is to establish the so-called pre-limit equation (5.28), which will be our starting point to derive
Equation (5.11). Let N ≥ 1, k ∈ {0, . . . ,N}, and f ∈ C∞(Θ). Recall that by Lemma 39 and since 0≤ k ≤N , a.s.
θi

k ∈Θ, and thus a.s. f(θi
k) is well-defined. The Taylor-Lagrange formula yields

⟨f,νN
k+1⟩− ⟨f,ν

N
k ⟩= 1

N

N∑
i=1

f(θi
k+1)− f(θi

k)

= 1
N

N∑
i=1
∇θf(θi

k) · (θi
k+1− θ

i
k) + 1

2N

N∑
i=1

(θi
k+1− θ

i
k)T∇2f(θ̂i

k)(θi
k+1− θ

i
k),

where, for all i ∈ {1, . . . ,N}, θ̂i
k ∈ (θi

k,θ
i
k+1)⊂Θ. Using (5.5), we then obtain

⟨f,νN
k+1⟩− ⟨f,ν

N
k ⟩=− η

N3

N∑
i=1

N∑
j=1,j,i

(〈
ϕ(θj

k, ·,xk),γ
〉
− yk

)〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,xk),γ

〉
− η

N2
〈(
ϕ(·, ·,xk)− yk

)
∇θf · ∇θϕ(·, ·,xk),νN

k ⊗ γ
〉

− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),νN

k

〉
+RN

k [f ], (5.18)

where

RN
k [f ] := 1

2N

N∑
i=1

(θi
k+1− θ

i
k)T∇2f(θ̂i

k)(θi
k+1− θ

i
k). (5.19)

Let us define

DN
k [f ] := E

[
− η

N3

N∑
i=1

N∑
j=1,j,i

(〈
ϕ(θj

k, ·,xk),γ
〉
− yk

)〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,xk),γ

〉∣∣∣FN
k

]
−E

[ η
N2
〈
(ϕ(·, ·,xk)− yk)∇θf · ∇θϕ(·, ·,xk),νN

k ⊗ γ
〉∣∣∣FN

k

]
. (5.20)

Note that using (5.45) and (5.47) together with the fact that |∇θf(θi
k)| ≤ supθ∈Θ |∇θf(θ)|, the integrant in (5.20)

is integrable and thus DN
k [f ] is well defined. Using the fact that (xk,yk)⊥⊥FN

k by A2 and that {θi
k, i= 1, . . . ,N}

is FN
k -measurable by (5.5), we have:

DN
k [f ] =− η

N3

N∑
i=1

N∑
j=1,j,i

∫
X×Y

(〈
ϕ(θj

k, ·,x),γ
〉
− y
)〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

− η

N2

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ
〉
π(dx,dy). (5.21)

Introduce also

MN
k [f ] :=− η

N3

N∑
i=1

N∑
j=1,j,i

(⟨ϕ(θj
k, ·,xk),γ⟩− yk)⟨∇θf(θi

k) · ∇θϕ(θi
k, ·,xk),γ⟩

− η

N2 ⟨(ϕ(·, ·,xk)− yk)∇θf · ∇θϕ(·, ·,xk),νN
k ⊗ γ⟩−DN

k [f ].
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Note that E
[
MN

k [f ]|FN
k

]
= 0. Equation (5.18) then writes

⟨f,νN
k+1⟩− ⟨f,ν

N
k ⟩= DN

k [f ] + MN
k [f ]− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),νN

k

〉
+RN

k [f ]. (5.22)

Notice also that

DN
k [f ] =− η

N3

N∑
i=1

N∑
j=1

∫
X×Y

(⟨ϕ(θj
k, ·,x),γ⟩− y)⟨∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ⟩π(dx,dy)

+ η

N3

N∑
i=1

∫
X×Y

(⟨ϕ(θi
k, ·,x),γ⟩− y)⟨∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ⟩π(dx,dy)

− η

N2

∫
X×Y
⟨(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ⟩π(dx,dy)

=− η

N

∫
X×Y
⟨ϕ(·, ·,x)− y,νN

k ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),νN
k ⊗ γ⟩π(dx,dy)

+ η

N2

∫
X×Y

〈
(⟨ϕ(·, ·,x),γ⟩− y)⟨∇θf · ∇θϕ(·, ·,x),γ⟩,νN

k

〉
π(dx,dy)

− η

N2

∫
X×Y
⟨(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ⟩π(dx,dy). (5.23)

Now, we define for t ∈ [0,1]:

DN
t [f ] :=

⌊Nt⌋−1∑
k=0

DN
k [f ], RN

t [f ] :=
⌊Nt⌋−1∑

k=0
RN

k [f ], and MN
t [f ] :=

⌊Nt⌋−1∑
k=0

MN
k [f ]. (5.24)

We can rewrite DN
t [f ] has follows:

DN
t [f ] =

⌊Nt⌋−1∑
k=0

∫ k+1
N

k
N

NDN
⌊Ns⌋[f ]ds=N

∫ t

0
DN

⌊Ns⌋[f ]ds−N
∫ t

⌊Nt⌋
N

DN
⌊Ns⌋[f ]ds.

Since νN
⌊Ns⌋ = µN

s (by definition, see (5.8)), we have, using also (5.23) with k = ⌊Ns⌋,

DN
t [f ] =−η

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

+ η

N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds−VN

t [f ], (5.25)

where

VN
t [f ] :=−η

∫ t

⌊Nt⌋
N

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

+ η

N

∫ t

⌊Nt⌋
N

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− η

N

∫ t

⌊Nt⌋
N

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds.

On the other hand, we also have for t ∈ [0,1],
⌊Nt⌋−1∑

k=0
− η

N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),νN

k

〉
=−η

∫ ⌊Nt⌋
N

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds. (5.26)
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We finally set:

WN
t [f ] :=−VN

t [f ] + η

∫ t

⌊Nt⌋
N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds. (5.27)

Since ⟨f,µN
t ⟩− ⟨f,µN

0 ⟩=
∑⌊Nt⌋−1

k=0 ⟨f,νN
k+1⟩− ⟨f,ν

N
k ⟩, we deduce from (5.22), (5.24), (5.25), (5.26) and (5.27),

the so-called pre-limit equation satisfied by µN : for N ≥ 1, t ∈ [0,1], and f ∈ C∞(Θ),

⟨f,µN
t ⟩− ⟨f,µN

0 ⟩=−η
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds

+ η

N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+ MN
t [f ] + WN

t [f ] +RN
t [f ]. (5.28)

8.1.2 The last five terms in (5.28) are error terms

The purpose of this section is to show that the last five terms appearing in the r.h.s. of (5.28) are error terms when
N →+∞. For J ∈N∗ and f ∈ CJ (Θ), set ∥f∥CJ (Θ) :=

∑
|k|≤J ∥∂kf∥∞,Θ , where ∥g∥∞,Θ = supθ∈Θ |g(θ)| for

g : Θ→ Rm.

Lemma 44 (Error terms). Assume A1→A4. Then, there exists C > 0 such that a.s. for all f ∈ C∞(Θ) and N ≥ 1,

1. η
N

∫ 1
0
∫

X×Y

∣∣∣〈⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN
s

〉∣∣∣π(dx,dy)ds≤ C∥f∥C1(Θ)/N .

2. η
N

∫ 1
0
∫

X×Y

∣∣∣〈(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ

〉∣∣∣π(dx,dy)ds≤ C∥f∥C1(Θ)/N .

3. supt∈[0,1] |WN
t [f ]|+ supt∈[0,1] |RN

t [f ]| ≤ C∥f∥C2(Θ)/N .

Finally, supt∈[0,1] E
[
|MN

t [f ]|
]
≤ C∥f∥C1(Θ)/

√
N .

Proof. All along the proof, C > 0 denotes a positive constant independent of N ≥ 1,k ∈ {0, . . . ,N − 1},(s, t) ∈
[0,1]2,(x,y) ∈ X × Y,θ ∈ Θ,z ∈ Rd, and f ∈ C∞(Θ) which can change from one occurrence to another.
Using (5.47), the Cauchy-Schwarz inequality, and the fact that ∇θf is bounded over Θ imply:

|⟨∇θf(θ) · ∇θϕ(θ, ·,x),γ⟩| ≤ ⟨|∇θf(θ) · ∇θϕ(θ, ·,x)|,γ⟩ ≤ C∥f∥C1(Θ). (5.29)

Combining (5.45) and (5.29), we obtain:∫ 1

0

∫
X×Y

∣∣∣〈⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN
s

〉∣∣∣π(dx,dy)ds≤ C∥f∥C1(Θ)

and ∫ 1

0

∫
X×Y

∣∣∣〈(ϕ(·, ·,x)− y)∇mf · ∇mϕ(·, ·,x),µN
s ⊗ γ

〉∣∣∣π(dx,dy)ds≤ C∥f∥C1(Θ),

which proves Items 1 and 2.
Let us now prove Item 3. By (5.45) and (5.29), supt∈[0,1] |VN

t [f ]| ≤ C∥f∥C1(Θ)/N . On the other hand,
because f ∈ C∞(Θ) and θ 7→ ∇θDKL(q1

θ |P
1
0 ) is continuous (see (5.4)) over Θ which is compact, it holds,

∥∇θf · ∇θDKL(q1
θ |P

1
0 )∥∞,Θ <+∞. Hence, it holds:

sup
t∈[0,1]

∣∣∣∫ t

⌊Nt⌋
N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds
∣∣∣≤ C∥f∥C1(Θ)/N.
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Using (5.27), it then holds supt∈[0,1] |WN
t [f ]| ≤ C∥f∥C1(Θ)/N . Since f ∈ C∞(Θ), we have, by (5.19), for N ≥ 1

and 0≤ k ≤N − 1, |RN
k [f ]| ≤ ∥f∥C2(Θ)

C
N

∑N
i=1 |θi

k+1− θ
i
k|

2. By (5.48) and Lemma 39, |θi
k+1− θ

i
k|

2 ≤ C/N2

and consequently, one has:
|RN

k [f ]| ≤ C∥f∥C2(Θ)/N
2. (5.30)

Hence, for all t ∈ [0,1], |RN
t [f ]| ≤ C∥f∥C2(Θ)/N . This proves Item 3.

Let us now prove the last item in Lemma 44. Let t ∈ [0,1]. We have, by (5.24),

|MN
t [f ]|2 =

⌊Nt⌋−1∑
k=0

∣∣MN
k [f ]

∣∣2 + 2
∑
k<j

MN
k [f ]MN

j [f ].

For all 0 ≤ k < j < ⌊Nt⌋, MN
k [f ] is FN

j -measurable (see (5.9)), and since E
[
MN

j [f ]|FN
j

]
= 0, one deduces

that E
[
MN

k [f ]MN
j [f ]

]
= E

[
MN

k [f ]E
[
MN

j [f ]|FN
j

]]
= 0. Hence, E[|MN

t [f ]|2] =
∑⌊Nt⌋−1

k=0 E[|MN
k [f ]|2].

By (5.45) and (5.29), one has a.s. for all 0≤ k ≤N − 1,

|MN
k [f ]| ≤ C∥f∥C1(Θ)/N. (5.31)

Hence, E[|MN
t [f ]|2]≤ C∥f∥C1(Θ)/N , which proves the last inequality in Lemma 44.

8.2 Convergence to the limit equation as N →+∞

In this section we prove the relative compactness of (µN )N≥1 in D([0,1],P(Θ)). We then show that any of its limit
points satisfies the limit equation (5.11).

8.2.1 Wasserstein spaces and duality formula

In this section we recall some basic results which will be used throughout this work on the space P(S) when (S, d)
is a Polish space. First when endowed with the weak convergence topology, P(S) is a Polish space [Billingsley,
1999, Theorem 6.8]. In addition, Pq(S) = {ν ∈ P (S),

∫
S d(w0,w)qν(dw) < +∞}, where w0 ∈ S is arbitrary

(note that this space was defined previously in (5.14) when S = Rd+1) when endowed with the Wq metric is also a
Polish space [Villani, 2009, Theorem 6.18]. Recall also the duality formula for the W1-distance on P1(S) (see
e.g [Villani, 2009, Remark 6.5]):

W1(µ,ν) = sup
{∣∣∫

S
f(w)dµ(w)−

∫
S
f(w)ν(dw)

∣∣, ∥f∥Lip ≤ 1
}
. (5.32)

Finally, when K ⊂ Rd+1 is compact, the convergence in Wq-distance is equivalent to the usual weak convergence on
P(K) (see e.g. [Villani, 2009, Corollary 6.13]).

8.2.2 Relative compactness

The main result of this section is to prove that (µN )N≥1 is relatively compact in D([0,1],P(Θ)), which is the
purpose of Proposition 46 below. To this end, we need to prove that for all f ∈ C∞(Θ), every sequence (⟨f,µN

t ⟩)N≥1
satisfies some regularity conditions, which is the purpose of the next result.

Lemma 45 (Regularity condition). Assume A1→A4. Then there exists C > 0 such that a.s. for all f ∈ C∞(Θ),
0≤ r < t≤ 1, and N ≥ 1:

|⟨f,µN
t ⟩− ⟨f,µN

r ⟩| ≤ C∥f∥C2(Θ)

[
|t− r|+ |t− r|

N
+ 1
N

]
. (5.33)
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Proof. Let f ∈ C∞(Θ) and let N ≥ 1 and 0≤ r < t≤ 1. In the following C > 0 is a positive constant independent
of f ∈ C∞(Θ), N ≥ 1, and 0≤ r < t≤ 1, which can change from one occurrence to another. From (5.28), we have

⟨f,µN
t ⟩− ⟨f,µN

r ⟩= AN
r,t[f ]− η

∫ t

r

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds

+ MN
t [f ]−MN

r [f ] + WN
t [f ]−WN

r [f ] +RN
t [f ]−RN

r [f ], (5.34)

where

AN
r,t[f ] =−η

∫ t

r

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)

+ η

N

∫ t

r

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)

− η

N

∫ t

r

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy).

By (5.45) and (5.29), |AN
r,t[f ]| ≤ C∥f∥C1(Θ)

[
|t− r|+ |t−r|

N

]
. In addition, since θ 7→DKL(q1

θ |P
1
0 ) is bounded over

Θ (since it is smooth and Θ is compact),∣∣∣∫ t

r

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds
∣∣∣≤ C∥f∥C1(Θ)|t− r|.

Furthermore, using (5.31),

|MN
t [f ]−MN

r [f ]|=
∣∣∣ ⌊Nt⌋−1∑

k=⌊Nr⌋
MN

k [f ]
∣∣∣≤ (⌊Nt⌋− ⌊Nr⌋)C∥f∥C1(Θ)/N.

Next, we have, by Item 3 in Lemma 44, |WN
t [f ]−WN

r [f ]| ≤ |WN
t [f ]|+ |WN

r [f ]| ≤ C∥f∥C2(Θ)/N . Finally,
by (5.30),

|RN
t [f ]−RN

r [f ]|=
∣∣∣ ⌊Nt⌋−1∑

k=⌊Nr⌋
RN

k [f ]
∣∣∣≤ (⌊Nt⌋− ⌊Nr⌋)C∥f∥C2(Θ)/N

2.

The proof of Proposition 45 is complete plugging all the previous estimates in (5.34).

Proposition 46 (Relative compactness). Assume A1→A4. Then, the sequence (µN )N≥1 is relatively compact in
D([0,1],P(Θ)).

Proof. The proof consists in applying [Jakubowski, 1986, Theorem 3.1] with E = P(Θ) endowed with the weak
convergence topology. Set F = {Lf ,f ∈ C∞(Θ)} where

Lf : ν ∈ P (Θ) 7→ ⟨f,ν⟩.

The class of continuous functions F on P(Θ) satisfies Conditions [Jakubowski, 1986, (3.1) and (3.2) in Theorem
3.1].

On the other hand, the condition [Jakubowski, 1986, (3.3) in Theorem 3.1] is satisfied since P(Θ) is compact
because Θ is compact (see e.g. [Panaretos and Zemel, 2020, Corollary 2.2.5] together with [Villani, 2009, Corollary
6.13]).

It remains to verify Condition (3.4) of [Jakubowski, 1986, Theorem 3.1], i.e. that for all f ∈ C∞(Θ), (⟨f,µN ⟩)N≥1
is relatively compact in D([0,1],R). To this end, we apply [Billingsley, 1999, Theorem 13.2]. Condition (i)
in [Billingsley, 1999, Theorem 13.2] is satisfied because |⟨f,µN

t ⟩| ≤ ∥f∥∞,Θ for all t ∈ [0,1] and N ≥ 1. Let us
now show that Condition (ii) in [Billingsley, 1999, Theorem 13.2] holds. For this purpose, we use Lemma 45.
For δ,β > 0 sufficiently small, it is possible to construct a subdivision {ti}vi=0 of [0,1] such that t0 = 0, tv = 1,
ti+1− ti = δ+β for i ∈ {0, . . . ,v−2} and δ+β ≤ tv− tv−1 ≤ 2(δ+β). According to the terminology introduced
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in [Billingsley, 1999, Section 12], {ti}vi=0 is δ-sparse. Then, by Lemma 45, there exists C > 0 such that a.s. for all
δ,β > 0, all such subdivision {ti}vi=0, i ∈ {0, . . . ,v− 1}, and N ≥ 1,

sup
t,r∈[ti,ti+1]

|⟨f,µN
t ⟩− ⟨f,µN

r ⟩| ≤ C
(
|ti+1− ti|+

|ti+1− ti|
N

+ 1
N

)
≤ C

(
2(δ+β) + 2(δ+β)

N
+ 1
N

)
.

Thus, one has:
inf
β>0

max
i

sup
t,r∈[ti,ti+1]

|⟨f,µN
t ⟩− ⟨f,µN

r ⟩| ≤ C
(

2δ+ 2δ
N

+ 1
N

)
.

Consequently, there exists C > 0 such that a.s. for all δ > 0 small enough and N ≥ 1,

w′
⟨f,µN ⟩(δ) := inf

{ti}
δ-sparse

max
i

sup
t,r∈[ti,ti+1]

|⟨f,µN
t ⟩− ⟨f,µN

r ⟩| ≤ C
(

2δ+ 2δ
N

+ 1
N

)
.

This implies limδ→0 limsupN→+∞ E[w′
⟨f,µN ⟩(δ)] = 0. By Markov’s inequality, this proves Condition (ii)

of [Billingsley, 1999, Theorem 13.2]. Therefore, for all f ∈ C∞(Θ), using also Prokhorov theorem, the sequence
(⟨f,µN ⟩)N≥1 ⊂D([0,1],R) is relatively compact. In conclusion, according to [Jakubowski, 1986, Theorem 3.1],
(µN )N≥1 ⊂D([0,1],P(Θ)) is tight.

8.2.3 Limit points satisfy the limit equation (5.11)

In this section we prove that every limit point of (µN )N≥1 in D([0,1],P(Θ)) satisfies (5.11).

Lemma 47. Let m,(mN )N≥1 ⊂D([0,1],P(Θ)) be such that mN → m in D([0,1],P(Θ)). Then, for all Lipschitz
continuous function f : Θ→ R, we have ⟨f,mN ⟩ → ⟨f,m⟩ in D([0,1],R).

Proof. Let f be such a function. By [Billingsley, 1999, p.124], mN → m in D([0,1],P(Θ)) iff there ex-
ist functions λN : [0,1]→ [0,1] continuous, increasing onto itself such that supt∈[0,1] |λN (t)− t| →N→∞ 0 and
supt∈[0,1] W1(mN

λN (t),mt)→N→∞ 0. Then ⟨f,mN ⟩ → ⟨f,m⟩ inD([0,1],R) since by (5.32), supt∈[0,1] |⟨f,mN
λN (t)⟩−

⟨f,mt⟩| ≤ ∥f∥Lip supt∈[0,1] W1(mN
λN (t),mt)→N→∞ 0.

Proposition 48 (Continuity of the limit points of ⟨f,µN ⟩). Let f ∈ C∞(Θ). Then, any limit point of (⟨f,µN ⟩)N≥1 ⊂
D([0,1],R) belong a.s. to C([0,1],R).

Proof. Fix t ∈ (0,1].Letting r→ t in (5.33), we obtain |⟨f,µN
t ⟩−⟨f,µN

t−⟩| ≤ C/N . Therefore supt∈(0,1] |⟨f,µN
t ⟩−

⟨f,µN
t−⟩|

D−→ 0 as N →+∞.The result follows from [Billingsley, 1999, Theorem 13.4].

Proposition 49 (Continuity of the limit points of µN ). Let µ∗ ∈ D([0,1], P (Θ)) be a limit point of (µN )N≥1 ⊂
D([0,1], P (Θ)). Then, a.s. µ∗ ∈ C([0,1], P (Θ)).

Proof. Up to extracting a subsequence, we assume that µN D−→ µ∗. By Skorohod representation theorem, there
exists another probability space (Ω̂, F̂ ,P̂) on which are defined random elements (µ̂N )N≥1 and µ̂∗, where,

µ̂∗ D= µ∗, and for all N ≥ 1, µ̂N D= µN ,

and such that P̂-a.s., µ̂N → µ̂∗ in D([0,1], P (Θ)) as N →+∞. Fix f ∈ C∞(Θ). We have, by Lemma 47,

P̂−a.s., ⟨f, µ̂N ⟩ →N→+∞ ⟨f, µ̂∗⟩ inmathcalD([0,1],R).

In particular, ⟨f, µ̂N ⟩ →N→+∞ ⟨f, µ̂∗⟩ in distribution. By Proposition 48, there exists Ω̂f ⊂ Ω̂ of P̂-mass 1 such
that for all ω ∈ Ω̂f , ⟨f, µ̂∗(ω)⟩ ∈ C([0,1],R). Denote byF the class polynomial functions with rational coefficients.
Since this class is countable, the set Ω̂F := ∩f∈F Ω̂f is of P̂-mass 1.
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Consider now an arbitrary f ∈ C(Θ) and let us show that for all ω ∈ Ω̂F , ⟨f, µ̂∗(ω)⟩ ∈ C([0,1],R). By the
Stone-Weierstrass theorem, there exist (fn)n≥1 ⊂ F such that ∥fn − f∥∞,Θ →n→+∞ 0. On Ω̂F , for all n,
t ∈ [0,1] 7→ ⟨fn, µ̂

∗
t ⟩ is continuous and converges uniformly to t ∈ [0,1] 7→ ⟨f, µ̂∗

t ⟩.
Hence, for all ω ∈ Ω̂F and f ∈ C(Θ), ⟨f, µ̂∗(ω)⟩ ∈ C([0,1],R), i.e. for all ω ∈ Ω̂F , µ̂∗(ω) ∈ C([0,1],P(Θ)).

This concludes the proof.

Now, we introduce, for t ∈ [0,1] and f ∈ C∞(Θ), the function Λt[f ] :D([0,1],P(Θ))→ R+ defined by:

Λt[f ] : m 7→
∣∣∣⟨f,mt⟩− ⟨f,µ0⟩

+ η

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,ms⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ms⊗ γ⟩π(dx,dy)ds

+ η

∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),ms

〉
ds
∣∣∣. (5.35)

We now study the continuity of Λt[f ].

Lemma 50. Let (mN )N≥1 ⊂ D([0,1],P(Θ)) converge to m ∈ D([0,1],P(Θ)). Then, for all continuity point
t ∈ [0,1] of m and all f ∈ C∞(Θ), we have Λt[f ](mN )→Λt[f ](m).

Proof. Let f ∈ C∞(Θ) and denote byC(m)⊂ [0,1] the set of continuity points of m. Let t ∈ C(m). From [Billingsley,
1999, p. 124], we have, for all s ∈ C(m),

mN
s →ms in P(Θ). (5.36)

Thus, ⟨f,mN
t ⟩ →N→∞ ⟨f,mt⟩. For all z ∈ Rd and (x,y) ∈ X × Y, A1 and A3 ensure that the functions

θ ∈Θ 7→ ϕ(θ,z,x)−y and θ ∈Θ 7→ ∇θf(θ) ·∇θϕ(θ,z,x) are continuous and also bounded because Θ is compact.
Hence, for all s ∈ [0, t]∩C(m), using (5.36),

⟨ϕ(·,z,x)− y,mN
s ⟩ → ⟨ϕ(·,z,x)− y,ms⟩ and ⟨∇θf · ∇θϕ(·,z,x),mN

s ⟩ → ⟨∇θf · ∇θϕ(·,z,x),ms⟩

Since [0,1]\C(m) is at most countable (see [Billingsley, 1999, p. 124]) we have that for a.e. (s,z′,z,x,y) ∈
[0, t]×Rd×Rd×X×Y,

⟨ϕ(·,z′,x)− y,mN
s ⟩⟨∇θf · ∇θϕ(·,z,x),mN

s ⟩ → ⟨ϕ(·,z′,x)− y,ms⟩⟨∇θf · ∇θϕ(·,z,x),ms⟩.

Since ϕ(θ,z′,x)− y is bounded and by (5.46), there exists C > 0 such that for all (s,z′,z,x,y) ∈ [0, t]×Rd ×
Rd×X×Y, ⟨|ϕ(·,z′,x)− y|,mN

s ⟩⟨|∇θf ·∇θϕ(·,z,x)|,mN
s ⟩ ≤ C∥∇θf∥∞,Θb(z). By the dominated convergence

theorem, we then have:∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,mN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),mN
s ⊗ γ⟩π(dx,dy)ds

−→
N→+∞

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,ms⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ms⊗ γ⟩π(dx,dy)ds.

With the same arguments as above, one shows that
∫ t

0 ⟨∇θf ·∇θDKL(q1
· |P

1
0 ),mN

s ⟩ds→
∫ t

0 ⟨∇θf ·∇θDKL(q1
· |P

1
0 ),ms⟩ds.

The proof of the lemma is complete.

Proposition 51 (Convergence to the limit equation). Let µ∗ ∈ D([0,1],P(Θ)) be a limit point of (µN )N≥1 ⊂
D([0,1],P(Θ)). Then, a.s. µ∗ satisfies (5.11).

Proof. Up to extracting a subsequence, we can assume that µN D−→ µ∗ asN →+∞. Let f ∈ C∞(Θ). The pre-limit
equation (5.28) and Lemma 44 imply that a.s. for all N ≥ 1 and t ∈ [0,1], Λt[f ](µN )≤ C/N + MN

t [f ]. Hence,
using the last statement in Lemma 44, it holds for all t ∈ [0,1],

lim
N→∞

E[Λt[f ](µN )] = 0.
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In particular, Λt[f ](µN ) D−→ 0. Let us now show that Λt[f ](µN ) D−→Λt[f ](µ∗). Denoting by D(Λt[f ]) the set of
discontinuity points of Λt[f ], we have, from Proposition 49 and Lemma 50, for all t ∈ [0,1] and f ∈ C∞(Θ),

P(µ∗ ∈ D(Λt[f ])) = 0.

By the continuous mapping theorem, Λt[f ](µN ) D−→Λt[f ](µ∗). By uniqueness of the limit in distribution, we have
that for all t ∈ [0,1] and f ∈ C∞(Θ), a.s. Λt[f ](µ∗) = 0. Let us now prove that a.s. for all t ∈ [0,1] and f ∈ C∞(Θ),
Λt[f ](µ∗) = 0.

On the one hand, for all f ∈ C∞(Θ) and m ∈ D([0,1],P(Θ)), the function t 7→Λt[f ](m) is right-continuous.
Since [0,1] is separable, we have that for all f ∈ C∞(Θ), a.s. for all t ∈ [0,1], Λt[f ](µ∗) = 0.

One the other hand C∞(Θ) is separable (when endowed with the norm ∥f∥C∞(Θ) =∑
k≥0 2−k min(1,

∑
|j|=k ∥∂jf∥∞,Θ)) and the function f ∈ C∞(Θ) 7→Λt[f ](m) is continuous (for fixed t ∈ [0,1]

and m ∈ D([0,1],P(Θ))) relatively to the topology induced by ∥f∥C∞(Θ).
Hence, we obtain that a.s. for all t ∈ [0,1] and f ∈ C∞(Θ), Λt[f ](µ∗) = 0. The proof of the proposition is thus

complete.

8.2.4 Uniqueness and end of the proof of Theorem 40

Proposition 52. There exists a unique solution to (5.11) in C([0,1],P(Θ)).

Proof. First of all, the fact that there is a solution to (5.11) is provided by Propositions 46, 49 and 51. The proof of
the fact that there is a unique solution to (5.11) relies on the same arguments as those used in the proof of [Descours
et al., 2022a, Proposition 2.14].

For µ ∈ P(Rd+1), we introduce v[µ] : Rd+1→ Rd+1 defined, for θ = (m,ρ) ∈ Rd+1, by

v[µ](θ) =−η
∫

X×Y
⟨ϕ(·, ·,x)− y,µ⊗ γ⟩⟨∇θϕ(θ, ·,x),γ⟩π(dx,dy)− η∇θDKL(q1

θ |P
1
0 ). (5.37)

In addition, if µ̄ ∈ C([0,1],P(Θ)) is solution to (5.11), it satisfies also (5.11) with test functions f ∈ C∞
c (Rd+1).

Then, adopting the terminology of [Santambrogio, 2015, Section 4.1.2], any solution µ̄ to (5.11) is a weak solution1

on [0,T ] of the measure-valued equation {
∂tµ̄t = div(v[µ̄t]µ̄t)
µ̄0 = µ0.

(5.38)

Let us now prove that:

1. There exists C > 0 such that for all µ ∈ P(Rd+1) and θ ∈ Rd+1,

|Jθv[µ](θ)| ≤ C.

2. There exists C > 0 such that for all µ̄ ∈ C([0,1],P(Θ)) solution to (5.11), 0≤ s, t≤ 1, and θ ∈ Rd+1,

|v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|.

3. There exists L′ > 0 such that for all µ,ν ∈ P1(Rd+1),

4.
sup
θ∈Rd

|v[µ](θ)− v[ν](θ)| ≤ L′W1(µ,ν).

1We mention that according to [Santambrogio, 2015, Proposition 4.2], the two notions of solutions of (5.38) (namely the weak solution and
the distributional solution) are equivalent.
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Before proving the three items above, we quickly conclude the proof of the proposition. Items 1 and 2 above imply
that v(t,θ) = v[µ̄t](θ) is globally Lipschitz continuous over [0,1]×Rd+1 when µ̄ ∈ C([0,1],P(Θ)) is a solution
to (5.11). Since µ̄ ∈ C([0,1],P(Θ)) ⊂ C([0,1],P(Rd+1)), this allows to use the representation theorem [Villani,
2021, Theorem 5.34] for the solution of (5.38) in C([0,1],P(Rd+1)), i.e. it holds:

∀t ∈ [0,1], µ̄t = ϕt#µ0, (5.39)

where ϕt is the flow generated by the vector field v[µ̄t](θ) over Rd+1. Equation (5.39) and the fact that
C([0,1],P(Θ))⊂ C([0,1],P1(Rd+1)) together with Item 3 above and the same arguments as those used in the proof
of [Descours et al., 2022a, Proposition 2.14] (which we recall is based estimates in Wasserstein distances between
two solutions of (5.11) derived in [Piccoli and Rossi, 2016]), one deduces that there is a unique solution to (5.11).

Let us prove Item 1. Recall g(ρ) = ln(1 + eρ). The functions

ρ 7→ g′′(ρ)g(ρ), ρ 7→ g′(ρ), ρ 7→ g′(ρ)
g(ρ) , and ρ 7→ g′′(ρ)

g(ρ)

are bounded on R. Thus, in view of (5.4), ∥HessθDKL(q1
θ |P

1
0 )∥∞,Rd+1 <+∞. On the other hand, by A1 and A3,

for x ∈ X, z ∈ Rd, θ ∈Θ 7→ ϕ(θ,z,x) is smooth and there exists C > 0, for all x ∈ X, θ ∈ Rd+1, z ∈ Rd:

|Hessθϕ(θ,z,x)| ≤ C(b(z)2 + b(z)).

This bound allows us to differentiate under the integral signs in (5.37) and proves that |Jθ
∫

X×Y⟨ϕ(·, ·,x)− y,µ⊗
γ⟩⟨∇θϕ(θ, ·,x),γ⟩π(dx,dy)| ≤ C, where C > 0 is independent of µ ∈ P(Θ) and θ ∈ Θ. The proof of Item 1 is
complete.

Let us prove Item 2. Let µ̄ ∈ C([0,1],P(Θ)) be a solution to (5.11), 0≤ s≤ t≤ 1, and θ ∈ Rd+1. We have

v[µ̄t](θ)− v[µ̄s](θ) =−η
∫

X×Y
⟨ϕ(·, ·,x),(µ̄t− µ̄s)⊗ γ⟩⟨∇θϕ(θ, ·,x),γ⟩π(dx,dy). (5.40)

Let z ∈ Rd and x ∈ X. By A1 and A3, ϕ(·,z,x) ∈ C∞(Θ). Therefore, by (5.11),

⟨ϕ(·,z,x), µ̄t− µ̄s⟩=−η
∫ t

s

∫
X×Y
⟨ϕ(·, ·,x′)− y, µ̄r ⊗ γ⟩⟨∇θϕ(·,z,x) · ∇θϕ(·, ·,x′), µ̄r ⊗ γ⟩π(dx′,dy)dr

− η
∫ t

s
⟨∇θϕ(·,z,x) · ∇θDKL(q1

· |P
1
0 ), µ̄r⟩dr

We have ∥∇θDKL(q1
θ |P

1
0 )∥∞,Θ <+∞. Using also (5.46) and the fact that X×Y is a compact (see A2), it holds:

|⟨ϕ(·,z,x), µ̄t− µ̄s⟩| ≤ Cb(z)|t− s|.

Hence, for all x′ ∈ X,

|⟨ϕ(·, ·,x′),(µ̄t− µ̄s)⊗ γ⟩| ≤ ⟨|⟨ϕ(·, ·,x′), µ̄t− µ̄s⟩|,γ⟩ ≤ C|t− s|.

Thus, by (5.40) and (5.47), |v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|. This ends the proof of Item 2.
Let us now prove Item 3. Fix µ,ν ∈ P1(Rd+1) and θ ∈ Rd+1. We have

v[µ](θ)− v[ν](θ) =−η
∫

X×Y
⟨ϕ(·, ·,x),(µ− ν)⊗ γ⟩⟨∇θϕ(θ, ·,x),γ⟩π(dx,dy) (5.41)

For all x ∈ X, using (5.32) and (5.46), it holds:

|⟨ϕ(·, ·,x),(µ− ν)⊗ γ⟩| ≤
∫
Rd
|⟨ϕ(·,z,x),µ⟩− ⟨ϕ(·,z,x),ν⟩|γ(z)dz

≤ C
∫
Rd

W1(µ,ν)b(z)γ(z)dz ≤ C W1(µ,ν).
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Finally, using in addition (5.47) and (5.41), we deduce Item 3.
This ends the proof of the proposition.

We are now ready to prove Theorem 40.

Proof. [Proof of Theorem 40] Recall Lemma 39 ensures that a.s. (µN )N≥1 ⊂D([0,1],P(Θ)). By Proposition 46,
this sequence is relatively compact. Let µ∗ ∈ D([0,1],P(Θ)) be a limit point. Along some subsequence N ′, it
holds:

µN ′ D−→ µ∗.

In addition, a.s. µ∗ ∈ C([0,1],P(Θ)) (by Proposition 49) and µ∗ satisfies (5.11) (by Proposition 51). By
Proposition 52, (5.11) admits a unique solution µ̄ ∈ C([0,1],P(Θ)). Hence, a.s. µ∗ = µ̄. Therefore,

µN ′ D−→ µ̄.

Since the sequence (µN )N≥1 admits a unique limit point, the whole sequence converges in distribution to µ̄.
The convergence also holds in probability since µ̄ is deterministic. The proof of Theorem 40 is complete.

8.3 Proof of Lemma 39
In this section we prove Lemma 39. We start with the following simple result.

Lemma 53. Let T > 0, N ≥ 1, and c1 > 0. Consider a sequence (uk)0≤k≤⌊NT ⌋ ⊂ R+ for which there exists v0

such that u0 ≤ v0 and for all 1≤ k ≤ ⌊NT ⌋, uk ≤ c1(1+ 1
N

∑k−1
ℓ=0 uℓ). Then, for all 0≤ k ≤ ⌊NT ⌋, uk ≤ v0ec1T .

Proof. Define vk = c1(1 + 1
N

∑k−1
ℓ=0 vℓ). For all 0 ≤ k ≤ ⌊NT ⌋, uk ≤ vk and vk = vk−1(1 + c1/N). Hence

vk = v0
(
1 + c1/N

)k ≤ v0
(
1 + c1/N

)⌊NT ⌋ ≤ v0ec1T . This ends the proof of the Lemma.

Proof. [Proof of Lemma 39] Since ρ 7→ g′(ρ) and ρ 7→ g′(ρ)/g(ρ) are bounded continuous functions over R, and
since |g(ρ)| ≤ C(1 + |ρ|), according to (5.4), there exists c > 0, for all θ ∈ Rd+1,

|∇θDKL(q1
θ |P

1
0 )| ≤ c(1 + |θ|). (5.42)

All along the proof, C > 0 is a constant independent of N ≥ 1, T > 0, i ∈ {1, . . . ,N}, 1 ≤ k ≤ ⌊NT ⌋,
(x,y) ∈ X × Y , θ ∈ Rd+1, and z ∈ Rd, which can change from one occurence to another. It holds:

|θi
k| ≤ |θ

i
0|+

k−1∑
ℓ=0
|θi

ℓ+1− θ
i
ℓ|. (5.43)

Using (5.5), we have, for 0≤ ℓ≤ k− 1,

|θi
ℓ+1− θ

i
ℓ| ≤

η

N2

N∑
j=1,j,i

∣∣∣(⟨ϕ(θj
ℓ , ·,xℓ),γ⟩− yℓ)⟨∇θϕ(θi

ℓ, ·,xℓ),γ⟩
∣∣∣

+ η

N2

∣∣∣〈(ϕ(θi
ℓ, ·,xℓ)− yℓ)∇θϕ(θi

ℓ, ·,xℓ),γ
〉∣∣∣+ η

N
|∇θDKL(q1

θi
ℓ
|P 1

0 )|. (5.44)

For all θ ∈ Rd+1, z ∈ Rd, (x,y) ∈ X×Y, we have, by A2 and A3, since ϕ(θ,z,x) = s(Ψθ(z),x),

|ϕ(θ,z,x)− y| ≤ C. (5.45)

Moreover, we have∇θϕ(θ,z,x) =∇1s(Ψθ(z),x)JθΨθ(z) (here∇1s refers to the gradient of sw.r.t. its first variable).
By A3, |∇1s(Ψθ(z),x)| ≤ C and, hence, denoting by Jθ the Jacobian w.r.t. θ, using (5.10),

|∇θϕ(θ,z,x)| ≤ C|JθΨθ(z)| ≤ Cb(z). (5.46)
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Therefore, by (5.10),
⟨|∇θϕ(θ, ·,x)|,γ⟩ ≤ C. (5.47)

Hence, we obtain, using (5.44) and (5.42),

|θi
ℓ+1− θ

i
ℓ| ≤

η

N2

N∑
j=1,j,i

C + η

N2C + cη

N
(1 + |θi

ℓ|)≤
C

N
(1 + |θi

ℓ|). (5.48)

Using A4, there exists K0 > 0 such that a.s. for all i, |θi
0| ≤K0. Then, from (5.43) and (5.48), for 1≤ k ≤ ⌊NT ⌋,

it holds:

|θi
k| ≤K0 + C

N

k−1∑
ℓ=0

(1 + |θi
ℓ|)≤K0 +CT + C

N

k−1∑
ℓ=0
|θi

ℓ| ≤ C0,T (1 + 1
N

k−1∑
ℓ=0
|θi

ℓ|),

with C0,T = max(K0 +CT,C) ≤ K0 +C(1 + T ). Then, by Lemma 53 and A4, we have that for all N ≥ 1,
i ∈ {1, . . . ,N} and 0≤ k ≤ ⌊NT ⌋, |θi

k| ≤K0e[K0+C(1+T )]T . The proof of Lemma 39 is thus complete.

9 Proof of Theorem 41

In this section, we assume A1→ A5 (where in A2, when k ≥ 1, FN
k is now the one defined in (5.12)) and the θi

k’s
(resp. µN ) are those defined by (5.7) for i ∈ {1, . . . ,N} and k ≥ 0 (resp. by (5.13) for N ≥ 1).

9.1 Preliminary analysis and pre-limit equation

9.2 Notation and weighted Sobolev embeddings

For J ∈ N and β ≥ 0, letHJ,β(Rd+1) be the closure of the set C∞
c (Rd+1) for the norm

∥f∥HJ,β :=
( ∑

|k|≤J

∫
Rd+1

|∂kf(θ)|2

1 + |θ|2β
dθ
)1/2

.

The space HJ,β(Rd+1) is a separable Hilbert space and we denote its dual space by H−J,β(Rd+1) (see
e.g. [Fernandez and Méléard, 1997, Jourdain and Méléard, 1998]). The associated scalar product onHJ,β(Rd+1)
will be denoted by ⟨·, ·⟩HJ,β . For Φ ∈H−J,β(Rd+1), we use the notation

⟨f,Φ⟩J,β = Φ[f ], f ∈HJ,β(Rd+1).

For ease of notation, and if no confusion is possible, we simply denote ⟨f,Φ⟩J,β by ⟨f,Φ⟩. The set CJ,β
0 (Rd+1)

(resp. CJ,β(Rd+1)) is defined as the space of functions f : Rd+1→ R with continuous partial derivatives up to order
J ∈ N such that

for all |k| ≤ J, lim
|θ|→∞

|∂kf(θ)|
1 + |θ|β

= 0 (resp.
∑

|k|≤J

sup
θ∈Rd+1

|∂kf(θ)|
1 + |θ|β

<+∞).

The spaces CJ,β(Rd+1) and CJ,β
0 (Rd+1) is endowed with the norm

∥f∥CJ,β :=
∑

|k|≤J

sup
θ∈Rd+1

|∂kf(θ)|
1 + |θ|β

.

We note that
θ ∈ Rd+1 7→ (1−χ(θ))|θ|α ∈ HJ,β(Rd+1) if β−α > (d+ 1)/2, (5.49)
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where χ ∈ C∞
c (Rd+1) equals 1 near 0. We recall that from [Fernandez and Méléard, 1997, Section 2], for

m′ > (d+ 1)/2 and α,j ≥ 0, Hm′+j,α(Rd+1) ↪→ Cj,α
0 (Rd+1). In the following, we consider γ0,γ1 ∈ R and

L0 ∈N such that

γ1 > γ0 >
d+ 1

2 + 1 and L0 >
d+ 1

2 + 1.

We finally recall the following standard result.

Proposition 54. Let q > p≥ 1 and C > 0. The setK q
C := {µ ∈ Pp(Rd+1),

∫
Rd+1 |x|qµ(dx)≤ C} is compact.

9.3 Bound on the moments of the θi
k’s

We have the following uniform bound in N ≥ 1 on the moments of the sequence {θi
k, i ∈ {1, . . . ,N}}k=0,...,⌊NT ⌋

defined by (5.7).

Lemma 55. Assume A1→A5. For all T > 0 and p≥ 1, there exists C > 0 such that for all N ≥ 1, i ∈ {1, . . . ,N}
and 0≤ k ≤ ⌊NT ⌋,

E[|θi
k|

p]≤ C.

Proof. Let p ≥ 1. By A4, E[|θi
0|p] ≤ Cp for all i ∈ {1, . . . ,N}. Let T > 0. In the following C > 0 is a constant

independent of N ≥ 1, i ∈ {1, . . . ,N}, and 1≤ k ≤ ⌊NT ⌋. Using (5.7), the fact that ϕ is bounded, Y is bounded,
and (5.46), we have, for 0≤ n≤ k− 1,

|θi
n+1− θi

n| ≤
C

N2B

N∑
j=1

B∑
ℓ=1

b(Zi,ℓ
n ) + C

N
|∇θDKL(q1

θi
n
|P 1

0 )|

≤ C

NB

B∑
ℓ=1

(1 + b(Zi,ℓ
n )) + C

N
(1 + |θi

n|), (5.50)

where we have also used (5.42) for the last inequality. Let us recall the following convexity inequality: for m,p≥ 1
and x1, . . . ,xp ∈ R+, ( m∑

n=1
xn

)p

≤mp−1
m∑

n=1
xp

n. (5.51)

Using (5.43), A1 with q = p, and the fact that 1 ≤ k ≤ ⌊NT ⌋, one has setting uk = E[|θi
k|

p], uk ≤ C(1 +
1
N

∑k−1
n=0un). The result then follows from Lemma 53.

9.4 Pre-limit equation

In this section, we derive the pre-limit equation for µN defined by (5.13). For simplicity we will keep the same
notations as those introduced in Section 8.1.1, though these objects will now be defined with θi

k set by (5.7), and on
C2,γ1(Rd+1), for all integer k ≥ 0, and all time t≥ 0. Let f ∈ C2,γ1(Rd+1). Then, set for k ≥ 0,

DN
k [f ] =− η

N3

N∑
i=1

N∑
j=1,j,i

∫
X×Y

(〈
ϕ(θj

k, ·,x),γ
〉
− y
)〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

− η

N2

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ
〉
π(dx,dy).

Note that DN
k above is the one defined in (5.21) but now on C2,γ1(Rd+1) and with θi

k defined by (5.7). For k ≥ 0,
we set

MN
k [f ] =− η

N3B

N∑
i,j=1

B∑
ℓ=1

(ϕ(θj
k,Z

j,ℓ
k ,xk)− yk)∇θf(θi

k) · ∇θϕ(θi
k,Z

i,ℓ
k ,xk)−DN

k [f ]. (5.52)



Chapter 5: Law of Large Numbers for Bayesian two-layer Neural Network trained with Variational Inference 93

By Lemma 55 together with (5.45) and (5.46), MN
k [f ] is integrable. Also, using A5 and the fact that θj

k is
FN

k -measurable (see (5.12)),

E[MN
k [f ]|FN

k ] = 0.

Set MN
t [f ] =

∑⌊Nt⌋−1
k=0 MN

k [f ], t≥ 0. We now extend the definition of WN
t [f ] and RN

k [f ] in (5.27) and (5.19)
to any time t≥ 0, k ≥ 0, and f ∈ C2,γ1(Rd+1), and with θi

k set by (5.7). We then set

RN
t [f ] =

⌊Nt⌋−1∑
k=0

RN
k [f ], t≥ 0.

With the same algebraic computations as those made in Section 8.1.1, one obtains the following pre-limit
equation: for N ≥ 1, t≥ 0, and f ∈ C2,γ1(Rd+1),

⟨f,µN
t ⟩− ⟨f,µN

0 ⟩=−η
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

− η
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds

+ η

N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− η

N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+ MN
t [f ] + WN

t [f ] +RN
t [f ]. (5.53)

We will now show that the sequence (µN )N≥1 is relatively compact in D(R+,Pγ0(Rd+1)).

9.5 Relative compactness and convergence to the limit equation

9.6 Relative compactness in D(R+,Pγ0(Rd+1))
In this section we prove the following result.

Proposition 56. Assume A1→A5. Recall γ0 >
d+1

2 + 1. Then, the sequence (µN )N≥1 is relatively compact in
D(R+,Pγ0(Rd+1)).

We start with the following lemma.

Lemma 57. Assume A1→A5. Then, ∀T > 0 and f ∈ C2,γ1(Rd+1),

sup
N≥1

E
[

sup
t∈[0,T ]

⟨f,µN
t ⟩2

]
<+∞.

Proof. Let T > 0. In what follows, C > 0 is a constant independent of f ∈ C2,γ1(Rd+1), (s, t) ∈ [0,T ]2, and
z ∈ Rd which can change from one occurence to another. We have by A4, E[⟨f,µN

0 ⟩2] ≤ C∥f∥2C2,γ1 . By (5.53)
and (5.45), it holds:

sup
t∈[0,T ]

⟨f,µN
t ⟩2 ≤ C

[
∥f∥2C2,γ1 +

∫ T

0

∫
X×Y

∣∣〈⟨∣∣∇θf · ∇θϕ(·, ·,x)
∣∣,γ⟩,µN

s

〉∣∣2π(dx,dy)ds∫ T

0

∣∣〈∣∣∇θf · ∇θDKL(q1
· |P

1
0 )
∣∣,µN

s

〉∣∣2ds
+ 1
N2

∫ T

0

∫
X×Y

∣∣〈⟨∣∣∇θf · ∇θϕ(·, ·,x)
∣∣,γ⟩,µN

s

〉∣∣2π(dx,dy)ds

+ sup
t∈[0,T ]

|MN
t [f ]|2 + sup

t∈[0,T ]
|WN

t [f ]|2 + sup
t∈[0,T ]

|RN
t [f ]|2.

]
. (5.54)
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We have using (5.46), for s ∈ [0,T ] and z ∈ Rd,

|∇θf(θi
⌊Ns⌋) · ∇θϕ(θi

⌊Ns⌋,z,x)| ≤ C∥f∥C1,γ1 b(z)(1 + |θi
⌊Ns⌋|

γ1). (5.55)

Thus, using Lemma 55,
E
[〈
⟨|∇θf · ∇θϕ(·, ·,x)|,γ⟩,µN

s

〉2]≤ C∥f∥2C1,γ1 . (5.56)

Using (5.42), for s ∈ [0,T ], it holds:∣∣∇θf(θi
⌊Ns⌋) · ∇θDKL(q1

θi
⌊Ns⌋
|P 1

0 )
∣∣≤ C∥f∥C1,γ1 (1 + |θi

⌊Ns⌋|
γ1+1). (5.57)

Thus, using Lemma 55,
E
[∣∣〈∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉∣∣2]≤ C∥f∥2C1,γ1 . (5.58)

On the other hand, we have using (5.51):

sup
t∈[0,T ]

|MN
t [f ]|2 ≤ ⌊NT ⌋

⌊NT ⌋−1∑
k=0

|MN
k [f ]|2. (5.59)

Recall (5.52). By (5.21), (5.51), A1, and (5.55), it holds:

|DN
k [f ]|2 ≤ C∥f∥2C1,γ1

[ 1
N4

N∑
i,j=1

(1 + |θi
k|

2γ1) + 1
N4 (1 + ⟨| · |2γ1 ,νN

k ⟩)
]
≤ C

N2 ∥f∥
2
C1,γ1 (1 + |θi

k|
2γ1)

and

|MN
k [f ]|2 ≤ C

N4B

N∑
i,j=1

B∑
ℓ=1
∥f∥2C1,γ1 |b(Zi,ℓ

k )|2(1 + |θi
⌊Ns⌋|

2γ1) + |DN
k [f ]|2.

By Lemma 55 and A1, one deduces that

E[|MN
k [f ]|2]≤ C∥f∥2C1,γ1 /N

2. (5.60)

Going back to (5.59), we then have E[supt∈[0,T ] |MN
t [f ]|2]≤ C∥f∥2C1,γ1 . Using the same arguments as those used

so far, one also deduces that for t ∈ [0,T ]

sup
t∈[0,T ]

|WN
t [f ]|2 ≤

C∥f∥2C1,γ1

N2 sup
t∈[0,T ]

(1 + ⟨| · |γ1+1,νN
⌊Nt⌋⟩)

2

=
C∥f∥2C1,γ1

N2 max
0≤k≤⌊NT ⌋

(1 + ⟨| · |γ1+1,νN
k ⟩)

2

≤
C∥f∥2C1,γ1

N2

⌊NT ⌋∑
k=0

(1 + ⟨| · |γ1+1,νN
k ⟩)

2
.

and thus
E
[

sup
t∈[0,T ]

|WN
t [f ]|2

]
≤ C∥f∥2C1,γ1/N. (5.61)

Let us finally deal with the term involving RN
t [f ]. One has using (5.51):

sup
t∈[0,T ]

|RN
t [f ]|2 ≤ ⌊NT ⌋

⌊NT ⌋−1∑
k=0

|Rk[f ]|2.
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For 0≤ k ≤ ⌊NT ⌋− 1, we have, from (5.19),

|RN
k [f ]|2 ≤

C∥f∥2C2,γ1

N

N∑
i=1
|θi

k+1− θ
i
k|

4(1 + |θ̂i
k|

γ1)2

≤
C∥f∥2C2,γ1

N

N∑
i=1
|θi

k+1− θ
i
k|

4(1 + |θi
k+1|

2γ1 + |θi
k|

2γ1).

Using (5.50),

|θi
k+1− θ

i
k|

4 ≤ C
[ 1
N4 +

|θi
k|

4

N4 + 1
N4B

B∑
ℓ=1
|b(Zi,ℓ

k )|4
]
.

By Lemma 55 and A1, it then holds E[|θi
k+1− θ

i
k|

4(1 + |θi
k+1|

2γ1 + |θi
k|

2γ1)]≤ C/N4. Hence, one deduces that

E[ sup
t∈[0,T ]

|RN
t [f ]|2]≤ C∥f∥2C2,γ1/N

2. (5.62)

This ends the proof of Lemma 57.

Lemma 58 (Compact containment for (µN )N≥1). Assume A1→A5. Let 0< ϵ < γ1− γ0. For every T > 0,

sup
N≥1

E
[

sup
t∈[0,T ]

∫
Rd+1

|x|γ0+ϵµN
t (dx)

]
<+∞. (5.63)

Proof. Apply Lemma 57 with f : θ 7→ (1−χ)|θ|γ0+ϵ ∈ C2,γ1(Rd+1).

Lemma 59. Assume A1→A5. Let T > 0 and f ∈ C2,γ1(Rd+1). Then, there exists C > 0 such that for all δ > 0
and 0≤ r < t≤ T such that t− r ≤ δ, one has for all N ≥ 1,

E
[
|⟨f,µN

t ⟩− ⟨f,µN
r ⟩|2

]
≤ C(δ2 + δ/N + 1/N).

Proof. Using (5.53), Jensen’s inequality, (5.45), (5.56), and (5.58), one has for f ∈ C2,γ1(Rd+1),

E
[
|⟨f,µN

t ⟩− ⟨f,µN
r ⟩|2

]
≤ C

[
(t− r)2(1 + 1/N2)∥f∥2C1,γ1 + E

[∣∣ ⌊Nt⌋−1∑
k=⌊Nr⌋

MN
k [f ]

∣∣2]]
+ E

[∣∣∣WN
t [f ]−WN

r [f ]
∣∣∣2 ]+ E

[∣∣∣RN
t [f ]−RN

r [f ]
∣∣∣2 ]. (5.64)

We also have with the same arguments as those used just before (5.31)

E
[∣∣ ⌊Nt⌋−1∑

k=⌊Nr⌋
MN

k [f ]
∣∣2]=

⌊Nt⌋−1∑
k=⌊Nr⌋

E[|MN
k [f ]|2].

Using in addition (5.60), one has E
[∣∣∑⌊Nt⌋−1

k=⌊Nr⌋ MN
k [f ]

∣∣2] ≤ C(Nδ + 1)∥f∥2C1,γ1/N
2. Note that with this

argument, we also deduce that
E[|MN

t [f ]|2]≤ C∥f∥2C1,γ1/N. (5.65)

On the other hand, by (5.61) and (5.62), one has

E
[∣∣∣WN

t [f ]−WN
r [f ]

∣∣∣2 ]≤ C∥f∥2C1,γ1 /N and E
[∣∣∣RN

t [f ]−RN
r [f ]

∣∣∣2 ]≤ C∥f∥2C2,γ1/N
2.

One then plugs all the previous estimates in (5.64) to deduce the result of Lemma 59.
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We are now in position to prove Proposition 56. Proof. [Proof of Proposition 56] The proof consists in
applying [Jakubowski, 1986, Theorem 4.6] with E = Pγ0(Rd+1) and F = {Hf ,f ∈ C∞

c (Rd+1)} where

Hf : ν ∈ Pγ0(Rd+1) 7→ ⟨f,ν⟩.

The set F on Pγ0(Rd+1) satisfies Conditions [Jakubowski, 1986, (3.1) and (3.2) in Theorem 3.1]. Condition
(4.8) there follows from Proposition 54, Lemma 58, and Markov’s inequality. Let us now show [Jakubowski,
1986, Condition (4.9)] is verified, i.e. that for all f ∈ C∞

c (Rd+1), the family (⟨f,µN ⟩)N≥1 is relatively compact in
D(R+,R). To do this, it suffices to use Lemma 59 and [Descours et al., 2022a, Proposition A.1] (withH1 =H2 = R
there). In conclusion, according to [Jakubowski, 1986, Theorem 4.6], the sequence (µN )N≥1 ⊂D(R+,Pγ0(Rd+1))
is relatively compact.

9.7 Limit points satisfy the limit equation (5.15)

For f ∈ C1,γ0−1(Rd+1) and t≥ 0, we introduce for m ∈ D(R+,Pγ0(Rd+1)),

Φt[f ] : m 7→
∣∣∣⟨f,mt⟩− ⟨f,µ0⟩

+ η

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,ms⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ms⊗ γ⟩π(dx,dy)ds

+ η

∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),ms

〉
ds
∣∣∣. (5.66)

Note that Φt[f ] is the function Λt[f ] previously defined in (5.35) for test functions f ∈ C1,γ0−1(Rd+1) and for
m ∈ D(R+,Pγ0(Rd+1)).

Lemma 60. Assume A1→ A5. Let f ∈ C1,γ0−1(Rd+1). Then Φt[f ] is well defined. In addition, if a sequence
(mN )N≥1 converges to m in D(R+,Pγ0(Rd+1)), then, for all continuity point t≥ 0 of m, we have Φt[f ](mN )→
Φt[f ](m).

Proof. Using A1, and because Y is bounded and the function ϕ is bounded, G x,y
1 : θ 7→ ⟨ϕ(θ, ·,x)− y,γ⟩ ∈

C∞
b (Rd+1). In addition, for all multi-index α ∈ Nd+1, there exists C > 0, for all x,y ∈ X × Y and all
θ ∈ Rd+1, |∂αG

x,y
1 (θ)| ≤ C. The same holds for the function G x

2 : θ ∈ Rd+1 7→ ⟨∇θϕ(θ, ·,x),γ⟩. Consequently,
θ 7→ ∇θf(θ) ·G x

2 (θ) ∈ C0,γ0−1(Rd+1) ↪→ C0,γ0(Rd+1). Then, there existsC > 0 independent of (x,y) ∈ X× Y
and s ∈ [0, t] such that

|⟨G x,y
1 ,ms⟩| ≤ C,

and

|⟨∇θf ·G x
2 ,ms⟩| ≤ C∥f∥C1,γ0−1⟨1 + |.|γ0 , ms⟩.

Finally, the function θ 7→ ∇θDKL(q1
θ |P

1
0 ) is smooth (see (6.3)) and (5.42) extends to all its derivatives, i.e. for

all multi-index α ∈Nd+1, there exists c > 0, for all θ ∈ Rd+1,

|∂α∇θDKL(q1
θ |P

1
0 )| ≤ c(1 + |θ|).

Thus, ∇θf · ∇θDKL(q1
θ |P

1
0 ) ∈ C0,γ0(Rd+1) and for some C > 0 independent of s ∈ [0, t]

|⟨∇θf · ∇θDKL(q1
· |P

1
0 ),ms

〉
| ≤ C∥f∥C1,γ0−1⟨1 + |.|γ0 , ms⟩.

Since in addition sups∈[0,t]⟨1+ |.|γ0 , ms⟩<+∞ (since s 7→ ⟨1+ |.|γ0 , ms⟩ ∈ D(R+,R)), Φt[f ] is well defined.
To prove the continuity property of Φt[f ] it then suffices to use the previous upper bounds together similar arguments
as those used in the proof of Lemma 50 (see also [Descours et al., 2022a]).
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Proposition 61. Assume A1→A5. Let µ∗ be a limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)). Then, µ∗ satisfies
a.s. Equation (5.15).

Proof. Let us consider f ∈ C∞
c (Rd+1) and µ∗ be a limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)). Recall that

by [Ethier and Kurtz, 2009, lemma 7.7 in Chapter 3], the complementary of the set

C(µ∗) = {t≥ 0,P(µ∗
t− = µ∗

t ) = 1}

is at most countable. Let t∗ ∈ C(µ∗). Then, by Lemma 60, one has that P(µ∗ ∈ D(Φt∗ [f ])) = 0. Thus, by the
continuous mapping theorem, it holds

Φt∗ [f ](µN ) D−→ Φt∗ [f ](µ∗).

On the other hand, using (6.25) and the estimates (5.62), (5.61), (5.65), (5.56), and (5.58), it holds

lim
N→∞

E[Φt∗ [f ](µN )] = 0.

Consequently, for all f ∈ C∞
c (Rd+1) and t∗ ∈ C(µ∗), it holds a.s. Φt∗ [f ](µ∗) = 0. On the other hand, for all

ψ ∈ C∞
c (Rd+1), m ∈ D(R+,Pγ0(Rd+1)), and s≥ 0, the mappings

t≥ 0 7→ Φt[ψ](m)

is right continuous, and

f ∈HL0,γ0−1(Rd+1) 7→ Φs[f ](m)

is continuous (because HL0,γ0−1(Rd+1) ↪→ C1,γ0−1
0 (Rd+1)). In addition, HL0,γ0−1(Rd+1) admits a dense

and countable subset of elements in C∞
c (Rd+1). Moreover, there exists a countable subset Tµ∗ of C(µ∗) such

that for all t ≥ 0 and ϵ > 0, there exists s ∈ Tµ∗ , s ∈ [t, t+ ϵ]. We prove this claim. Since R+ is a metric
space, C(µ∗) is separable and thus admits a dense subset Oµ∗ . Since [t+ ϵ/4, t+ 3ϵ/4]∩C(µ∗) , ∅, there exists
u ∈ [t+ ϵ/4, t+ 3ϵ/4]∩C(µ∗). Consider now s ∈ Oµ∗ such that |s−u| ≤ ϵ/4. It then holds t≤ s≤ t+ ϵ, proving
the claim with Tµ∗ =Oµ∗ .

Hence, we have with a classical argument that a.s. for all f ∈HL0,γ0−1(Rd+1) and t≥ 0, Λt[f ](µ∗) = 0. Note
also that C∞

b (Rd+1)⊂HL0,γ0−1(Rd+1) since 2γ0 > d+ 1. This ends the proof of the proposition.

9.8 Uniqueness of the limit equation and end of the proof of Theorem 41

In this section, we prove that there is a unique solution to (5.15) in C(R+,P1(Rd+1)). To this end, we first need to
prove that every limit points of (µN )N≥1 a.s. belongs to C(R+,P1(Rd+1)).

9.9 Limit points belong to C(R+,P1(Rd+1))

Proposition 62. Assume A1→A5. Letµ∗ ∈ D(R+,Pγ0(Rd+1)) be a limit point of (µN )N≥1 inD(R+,Pγ0(Rd+1)).
Then, a.s. µ∗ ∈ C(R+,P1(Rd+1)).

Proof. Note that since W1 ≤ Wγ0 , µN ′ D−→ µ∗ also inD(R+,P1(Rd+1)), along some subsequenceN ′. According
to [Jacod and Shiryaev, 1987, Proposition 3.26 in Chapter VI], µ∗ ∈ C(R+,P1(Rd+1)) a.s. if for all T > 0,
limN→+∞ E

[
supt∈[0,T ] W1(µN

t− ,µ
N
t )
]

= 0. Using (5.32), this is equivalent to prove that

lim
N→+∞

E
[

sup
t∈[0,T ]

sup
∥f∥Lip≤1

|⟨f,µN
t−⟩− ⟨f,µ

N
t ⟩|
]

= 0. (5.67)

Let us consider T > 0 and a Lipschitz function f : Rd+1 → R such that ∥f∥Lip ≤ 1. We have ⟨f,µN
t ⟩ =

⟨f,µN
0 ⟩+

∑⌊Nt⌋−1
k=0 ⟨f,νN

k+1⟩ − ⟨f,ν
N
k ⟩ (with usual convention

∑−1
0 = 0). Thus the discontinuity points of
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t ∈ [0,T ] 7→ ⟨f,µN
t ⟩ lies exactly at {1/N,2/N,. . . ,⌊NT ⌋/N} and

|⟨f,µN
t−⟩− ⟨f,µ

N
t ⟩| ≤ max

k=0,...,⌊NT ⌋−1
|⟨f,νN

k+1⟩− ⟨f,ν
N
k ⟩|, ∀t ∈ [0,T ], f Lipschitz. (5.68)

Pick k = 0, . . . ,⌊NT ⌋− 1. We have by (5.50),

|⟨f,νN
k+1⟩− ⟨f,ν

N
k ⟩| ≤

1
N

N∑
i=1
|θi

k+1− θ
i
k| ≤

C

N

N∑
i=1

[ 1
NB

B∑
ℓ=1

(1 + b(Zi,ℓ
k )) + 1

N
(1 + |θi

k|)
]

=: dN
k (5.69)

Hence, it holds:

|dN
k |

2 ≤ C

N

N∑
i=1

[ 1
N2B

B∑
ℓ=1

(1 + b2(Zi,ℓ
k )) + 1

N2 (1 + |θi
k|

2)
]
,

where thanks to Lemma 55 and A1, for all k = 0, . . . ,⌊NT ⌋− 1, E[|dN
k |

2]≤ C/N2 for some C > 0 independent of
N ≥ 1 and k = 0, . . . ,⌊NT ⌋− 1. Thus, using (5.68) and (5.69),

E
[

sup
t∈[0,T ]

sup
∥f∥Lip≤1

|⟨f,µN
t−⟩− ⟨f,µ

N
t ⟩|
]
≤E

[
sup

∥f∥Lip≤1
max

k=0,...,⌊NT ⌋−1
|⟨f,νN

k+1⟩− ⟨f,ν
N
k ⟩|
]

≤E
[

max
k=0,...,⌊NT ⌋−1

dN
k

]

≤E
[√√√√⌊NT ⌋−1∑

k=0
|dN

k |2
]

≤

√√√√E
[ ⌊NT ⌋−1∑

k=0
|dN

k |2
]
≤ C√

N
.

This concludes the proof of Proposition 62.

9.10 Uniqueness of the solution to (5.15)

Proposition 63. There is a unique solution µ̄ ∈ C(R+,P1(Rd+1)) to (5.15).

Proof. First of all, the existence of a solution is provided by Propositions 56, 62 and 61. Let us now prove that there
is a unique solution to (5.15) in C(R+,P1(Rd+1)).

Recall the definition of v[µ] in (5.37). We claim that for all T > 0 and all solution µ̄ ∈ C(R+,P1(Rd+1))
of (5.15), there exists C > 0 such that

|v[µ̄t](θ)− v[µ̄s](θ)| ≤ C|t− s|, for all 0≤ s≤ t≤ T and θ ∈ Rd+1. (5.70)

The proof of item (5.70) is the same as the one made for Item 2 in Proposition 52 since it holds using (5.42)
and (5.46), for all 0≤ s≤ t≤ T and z ∈ Rd,∣∣∣∫ t

s
⟨∇θϕ(·,z,x) · ∇θDKL(q1

· |P
1
0 ), µ̄r⟩dr

∣∣∣≤ Cb(z)
∫ t

s
⟨(1 + | · |), µ̄r⟩dr

≤ Cb(z) max
r∈[0,T ]

⟨(1 + | · |), µ̄r⟩|t− s|.

We now conclude the proof of Proposition 63. Item 1 in the proof of Proposition 52 and (5.70) imply that
v(t,θ) = v[µ̄t](θ) is globally Lipschitz on [0,T ]×Rd+1, for all T > 0, when µ̄ ∈ C(R+,P1(Rd+1)) is a solution
of (5.15). Since in addition a solution µ̄ to (5.15) is a weak solution on R+ to (5.38) in C(R+,P(Rd+1)), it holds
by [Villani, 2021, Theorem 5.34]:

∀t≥ 0, µ̄t = ϕt#µ0, (5.71)
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where ϕt is the flow generated by the vector field v[µ̄t](θ) over Rd+1. Together with Item 3 in the proof of
Proposition 52 and using the same arguments as those used in Step 3 of the proof of [Descours et al., 2022a,
Proposition 2.14], two solutions agrees on each [0,T ] for all T > 0. One then deduces the uniqueness of the solution
to (5.11). The proof of Proposition 63 is complete.

We are now in position to end the proof of Theorem 41.
Proof. [Proof of Theorem 41] By Proposition 56, (µN )N≥1 is relatively compact inD(R+,Pγ0(Rd+1)). Letµ1,µ2 ∈
D(R+,Pγ0(Rd+1)) be two limit points of this sequence. By Proposition 62, a.s. µ̄1, µ̄2 ∈ C(R+,P1(Rd+1)). In
addition, according to Proposition 61, µ1 and µ2 are a.s. solutions of (5.15). Denoting by µ̄ ∈ C(R+,Pγ0(Rd+1))
the unique solution to (5.15) (see Proposition 63), we have a.s.

µ̄1 = µ̄ and µ̄2 = µ̄ in C(R+,P1(Rd+1)).

In particular µ̄ ∈ D(R+,Pγ0(Rd+1)) and µ̄j = µ̄ in D(R+,Pγ0(Rd+1)), j ∈ {1,2}. As a consequence, µ̄ is
the unique limit point of (µN )N≥1 in D(R+,Pγ0(Rd+1)) and the whole sequence (µN )N≥1 converges to µ̄ in
D(R+,Pγ0(Rd+1)). Since µ̄ is deterministic, the convergence also holds in probability. The proof of Theorem 41
is complete.

Let us now prove Proposition 42.
Proof. [Proof of Proposition 42] Any solution to (5.11) in C([0,T ],P(ΘT )) is a solution to (5.15) in
C([0,T ],P1(Rd+1)). The result follows from Proposition 63.
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Central Limit Theorem for Bayesian Neural Network

trained with Variational Inference

Chapter abstract: In this chapter, we rigorously derive Central Limit Theorems (CLT) for Bayesian two-layer neural
networks in the infinite-width limit and trained by variational inference on a regression task. The different networks
are trained via different maximization schemes of the regularized evidence lower bound: (i) the idealized case with
exact estimation of a multiple Gaussian integral from the reparametrization trick, (ii) a minibatch scheme using
Monte Carlo sampling, commonly known as Bayes-by-Backprop, and (iii) a computationally cheaper algorithm
named Minimal VI. The latter was recently introduced by leveraging the information obtained at the level of the
mean-field limit. Laws of large numbers are already rigorously proven for the three schemes that admits the same
asymptotic limit. By deriving CLT, this work shows that the idealized and Bayes-by-Backprop schemes have similar
fluctuation behavior, that is different from the Minimal VI one. Numerical experiments then illustrate that the
Minimal VI scheme is still more efficient, in spite of bigger variances, thanks to its important gain in computational
complexity.

1 Introduction

Neural networks (NN), especially with a deep learning architecture, are one of the most powerful function
approximators, in particular in a regime of abundant data. Their flexibility may however lead to some overfitting
issues, which justify the introduction of a regularization term in the loss. Therefore, Bayesian Neural Networks
(BNN) are an interesting alternative. Thanks to a full probabilistic approach, they directly model the uncertainty
on the learnt weights through the introduction of a prior distribution, which acts as some natural regularization.
Thus, BNN combine the expressivity power of NN, while showing more robustness, in particular when dealing with
small datasets, and providing predictive uncertainty [Blundell et al., 2015, Michelmore et al., 2020, McAllister et al.,
2017, Filos et al., 2019]. During training, the probabilistic modelling however requires to compute integrals over the
posterior distribution. This can be computationally demanding, as these integrals are most of the time not tractable.
Alternative techniques as Markov-chain Monte Carlo methods and variational inference are most commonly used
instead. The convergence time of the former may prove too prohibitively long in large-dimensional cases [Cobb and
Jalaian, 2021]. Therefore variational inference [Hinton and Camp, 1993, MacKay, 1995, MacKay et al., 1995] comes
often as the most efficient alternative, especially while using the reparametrization trick and the Bayes-by-backprop
(BbB) approach. The variational approach relies on an approximation of the posterior distribution by the closest
realization of a parametric one, according to a Kullback-Leibler (KL) divergence. Using a generalisation of the
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reparametrization trick [Kingma and Welling, 2014], the Bayes-by-Backprop approach [Blundell et al., 2015] leads
to an unbiased estimator of the gradient of the ELBO, which enables training by stochastic gradient descent (SGD).

There are now many successful applications of this approach, e.g. [Gal and Ghahramani, 2016, Louizos and
Welling, 2017, Khan et al., 2018]. This comes in contrast with the lack of analytical understanding of the behavior
of BNN trained with variational inference, especially regarding their overparametrized limit. For instance, it was
but only recently shown in [Descours et al., 2023b] what is the appropriate balance in the ELBO of the integrated
log-likelihood term and of the KL regularizer, in order to avoid a trivial Bayesian posterior [Izmailov et al., 2021].
To achieve such results, a proper limiting theory was rigorously derived in [Descours et al., 2023b]. Such mean-field
analysis, as done in [Rotskoff and Vanden-Eijnden, 2018, Chizat and Bach, 2018, Mei et al., 2018, Sirignano and
Spiliopoulos, 2020b, Descours et al., 2022b], enables the determination of the limiting nonlinear evolution of the
weights of the NN, trained by a gradient descent or some variants. It then allows the derivation of a Law of Large
Numbers (LLN) and a Central Limit Theorem (CLT). The main practical goal of such asymptotic analysis is to
show convergence towards some global minimizer, it however remains an open and highly-challenging question.
Nevertheless, such asymptotic analysis can still be of direct and practical relevance. On top of the proper balance in
ELBO, it was recently shown in [Descours et al., 2023b] for BNN on a regression task that the mean-field limit can be
leveraged to develop a new SGD training scheme, named Minimal VI (MiVI). Indeed, in this limit, the microcospic
correlations between each pair of neurons can be shown to be equivalent to some averaged effect of the whole
system. Therefore, the Minimal VI scheme, which backpropagates only these average fields, is proven to follow
the same LLN as standard SGD schemes, but only requires a fraction of the previously needed computations to
recover the same limit behavior. Furthermore, numerical experiments showed that the convergence to the mean-field
limit arises quite fast with the number of neurons (N = 300 [Descours et al., 2023b]). The Minimal VI scheme
would emerge as a genuinely competitive alternative under these conditions. However, unsurprisingly, numerical
experiments also showed a larger variance for the Minimal VI scheme, compared to others. Therefore the work
presented here directly deals with a precise study of the fluctuation behaviors present at finite width N , as done
in [Descours et al., 2022b] for a two-layer NN, but here for the different variational training schemes of a BNN.
Independently from the question of scheme comparison, the issue of quantifying the deviations of finite-width BNN
from their infinite-width limit is of direct and fundamental relevance.

In more details, we push on the analytical effort to further characterize the limiting behaviors of the three
schemes and derive CLT. By framing the fluctuation behaviors of the different schemes, this work is thus of practical
and direct relevance for a robust and efficient variational inference framework.

The paper is organized as follows: Section 2 presents the BNN setting as well as the different training algorithms,
i.e. idealized, BbB and MiVI, as well as recalls the LLN derived in [Descours et al., 2023b], that shows their
asymptotic equivalence at first order. Then, in Section 3, we prove for each algorithm a CLT for the rescaled and
centered empirical measure with identified covariance based on non trivial extensions of [Descours et al., 2022b].
Whereas, covariances of the G-process driving the limit SPDE may be compared, the asymptotic variances of the
rescaled centered empirical process are not easily comparable. Therefore we produce numerical experiments in
Section 4 showing the good performance of MiVI needing few additional neurons to get comparable variances with
less complexity. The proofs for CLT can be found in Section 6.

Related works. The derivation of LLN and CLT for mean-field interacting particle systems have garnered
significant attention; refer to, for instance, [Hitsuda and Mitoma, 1986, Sznitman, 1991, Fernandez and Méléard,
1997, Jourdain and Méléard, 1998, Delarue et al., 2019, Del Moral and Guionnet, 1999, Kurtz and Xiong, 2004] and
references therein. The use of such approaches to study the asymptotic limit of two-layer NN were introduced in [Mei
et al., 2018] (see also [Mei et al., 2019]), which establishes a LLN on the empirical measure of the weights at fixed
times. Formal arguments in [Rotskoff and Vanden-Eijnden, 2018] led to conditions to achieve a global convergence
of Gradient Descent for exact mean-square loss and online SGD with mini-batches. Regarding fluctuation behaviors,
they observe with increasing mini-batch size in the SGD the reduction of the variance of the process leading the
fluctuations of the empirical measure of the weights (see [Rotskoff and Vanden-Eijnden, 2018] (Arxiv-V2. Sec
3.3)). See also [Chen et al., 2020a] for a dynamical CLT and [De Bortoli et al., 2020b] on propagation of chaos for
SGD on a two-layer NN with different step-size schemes, however limited to finite time horizon. In [Descours et al.,
2022b], a LLN and CLT for the entire trajectory, and not only at fixed times, of the empirical measure of a two-layer
NN are rigorously derived, especially when proving the uniqueness of the limit PDE. These results are obtained for
a large class of variants of SGD (minibatches, noise), that extend in addition to rigorize the work done in [Sirignano
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and Spiliopoulos, 2020b] and [Sirignano and Spiliopoulos, 2020c]. Regarding the fluctuation behavior, the results
in [Descours et al., 2022b] agree with the observations of [Rotskoff and Vanden-Eijnden, 2018] on the minibatch
impact and further exhibit a possible particular fluctuation behavior in a large noise regime. Finally, regarding
BNN, [Descours et al., 2023b] rigorously prove a LLN for the entire trajectory for a two-layer BNN trained on a
regression task with three different schemes (idealized, BbB, MiVI).

We rigorously prove a CLT for the entire trajectory of the empirical measure of the weights of a two-layer BNN
trained by three different maximization schemes (idealized, BbB, MiVI) of a regularized version of ELBO. Remark
that a trajectorial CLT is necessary to understand the evolution of the variance of the scaled centered covariance.

2 Setting and proven mean-field limit

2.1 Variational Inference and Evidence Lower Bound
In this section, we first recall the setting of Bayesian neural networks as well as the minimization problem in
Variational Inference. We then introduce the three maximization algorithms of the ELBO and recall the respective
Law of Large Numbers which were derived in [Descours et al., 2023b], which are the starting points of this work.

The Evidence Lower Bound Let X and Y be subsets of Rd (d ≥ 1) and R respectively. For N ≥ 1 and
w = (w1, . . . ,wN ) ∈ (Rd)N , we consider the following two-layer neural network fN

w : X→ R defined by:

fN
w (x) := 1

N

N∑
i=1

s(wi,x) ∈ R,

where x ∈ X and s : Rd×X→ R is the so-called activation function. In a Bayesian setting, one needs to be able
to efficiently sample according to the posterior distribution PN of the latent variable w (w are the weights of the
neural network). The classical issue in Bayesian inference over complex models is that the posterior distribution PN

is quite hard to sample. For that reason, in variational inference, one looks for the closest distribution to PN in a
family of distributions QN = {qN

θ ,θ ∈ ΞN} which are much easier to sample than PN . Here, Ξ is the parameter
space. To measure the distance between q ∈ QN and PN , one typically considers the KL divergence distance,
denoted byDKL in the following. In other words, this minimization problem writes:

argminq∈QNDKL(q|PN ).

This minimization problem is hard to solve since the KL is not easily computable in practice. A routine computation
shows that the above minimization problem, which also writes argminθ∈ΞNDKL(qN

θ |P
N ), is equivalent to the

maximization of the Evidence Lower Bound over θ ∈ ΞN . In practice N ≫ 1, and in this regime, it has been shown
in [Coker et al., 2022] and [Huix et al., 2022] that optimizing the ELBO leads to the collapse of the variational
posterior to the prior. It has been suggested in [Huix et al., 2022] to rather consider a regularized version of the
ELBO, which consists in multiplying the KL term by a parameter which is scaled by the inverse of the number of
neurons:

EN
lbo(θ,x,y) =−

∫
(Rd)N

L
(
y,fN

w (x)
)
qN

θ (dw)− 1
N
DKL(qN

θ |P
N
0 ).

In conclusion, the maximization problem we will consider in this work is

argmaxθ∈ΞNEN
lbo(θ,x,y).

Loss function and prior distribution The variational familyQN we consider is a Gaussian family of distributions.
More precisely, it is assumed throughout this work that for any θ = (θ1, . . . ,θN ) ∈ ΞN , the variational distribution
qN

θ factorizes over the neurons: for all w = (w1, . . . ,wN ) ∈ (Rd)N , qN
θ (w) =

∏N
i=1 q

1
θi(wi), where θi = (mi,ρi) ∈

Ξ := Rd×R and q1
θi is the probability density function (pdf) of N (mi,g(ρi)2Id), with g(ρ) = log(1 + eρ), ρ ∈ R.
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Let us simply write Rd+1 for Rd×R. Following the reparameterisation trick of [Blundell et al., 2015], q1
θ(w)dw is

the pushforward of a reference probability measure with density γ by Ψθ (see Assumption A1). In practice, γ is the
pdf of N (0, Id) and Ψθ(z) =m+ g(ρ)z. In addition, in all this work, we consider the regression problem, i.e. L is
the Mean Square Loss: for a,b ∈ R, L(a,b) = 1

2 |a− b|2.
Set ϕ : (θ,z,x) ∈ Rd+1×Rd×X 7→ s(Ψθ(z),x). Throughout this work, we assume that the prior distribution

PN
0 is the function defined by:

∀w ∈ (Rd)N
, PN

0 (w) =
N∏

i=1
P 1

0 (wi), (6.1)

where P 1
0 : Rd→ R+ is the pdf of N (m0,σ2

0Id), and σ0 > 0. With all these assumptions and notations, we have:

EN
lbo(θ,x,y) =−1

2

∫ ∣∣∣y− 1
N

N∑
i=1

s(Ψθi(zi),x)
∣∣∣2γ(z1) . . .γ(zN )dz1 . . .dzN −

1
N

N∑
i=1
DKL(q1

θi |P 1
0 ). (6.2)

Remark 64. We recall that (6.1) implies thatDKL(qN
θ |P

N
0 ) has a rather nice expression, given by: DKL(qN

θ |P
N
0 ) =∑N

i=1DKL(q1
θi |P 1

0 ) and, for θ = (m,ρ) ∈ Rd+1,

DKL(q1
θ |P

1
0 ) =

∫
Rd
q1

θ(x) log
(
q1

θ(x)/P 1
0 (x)

)
dx= ∥m−m0∥22

2σ2
0

+ d

2

(g(ρ)2

σ2
0
− 1
)

+ d

2 log
( σ2

0
g(ρ)2

)
.

We also note thatDKL has at most a quadratic growth in m and ρ. In addition, for θ ∈ Rd+1, we have

∇θDKL(q1
θ |P

1
0 ) =

(
∇mDKL(q1

θ |P
1
0 )

∂ρDKL(q1
θ |P

1
0 )

)
=

 1
σ2

0
(m−m0)

d
σ2

0
g′(ρ)g(ρ)− d g′(ρ)

g(ρ)

 . (6.3)

We assume here a Gaussian prior to get an explicit expression of the Kullback-Leibler divergence. Most
arguments extend to sufficiently regular densities and are essentially the same for exponential families, using
conjugate families for the variational approximation.

2.2 Stochastic Gradient Descent and maximization algorithms

In this section, we present the three different maximization algorithms of the ELBO we are going to consider. In
what follows, (Ω,F ,P) is a probability space and we write ⟨U,ν⟩ =

∫
Rq U(z)ν(dz) for any integrable function

U : Rq→ R w.r.t. a measure ν (with a slight abuse of notation, we denote by γ the measure γ(z)dz). Also we define
the σ-algebra FN

0 = σ(θi
0,1≤ i≤N).

Idealized SGD Consider a data set {(xk,yk)}k≥0 i.i.d. w.r.t. π ∈ P(X×Y), the space of probability measures
over X×Y. For N ≥ 1 and given a learning rate κ > 0, the maximization of θ ∈ Rd+1 7→ EN

lbo(θ,x,y) with a SGD
algorithm writes as follows: for k ≥ 0,{

θk+1 = θk +κ∇θEN
lbo(θk,xk,yk)

θ0 ∼ µ⊗N
0 ,

(6.4)

where µ0 ∈ P(Rd+1) (the space of probability measures over Rd+1) and θk = (θ1
k, . . . ,θ

N
k ).

Using the computation of∇θEN
lbo(θk,xk,yk) performed in [Descours et al., 2023b], (6.4) writes: for k ≥ 0 and

i ∈ {1, . . . ,N}, 
θi

k+1 = θi
k −

κ
N2
∑N

j=1,j,i

(
⟨ϕ(θj

k, ·,xk),γ⟩− yk

)
⟨∇θϕ(θi

k, ·,xk),γ⟩

− κ
N2

〈
(ϕ(θi

k, ·,xk)− yk)∇θϕ(θi
k, ·,xk),γ

〉
− κ

N∇θDKL(q1
θi

k

|P 1
0 ),

θi
0 ∼ µ0.

(6.5)
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We shall call this algorithm idealised SGD because it contains an intractable term given by the integral w.r.t. the
probability distribution γ. This has motivated the development of methods where this integral is replaced by an
unbiased Monte Carlo estimator (see [Blundell et al., 2015]) as detailed below with the BbB SGD scheme. For the
Idealized SGD, and for later purposes, we set for N ≥ 1 and k ≥ 1:

FN
k = σ(θi

0,(xq,yq),1≤ i≤N,0≤ q ≤ k− 1) (6.6)

Bayes-by-Backprop (BbB) SGD For N ≥ 1, given a dataset (xk,yk)k≥0, the maximization of θ ∈ Rd+1 7→
EN
lbo(θ,x,y) with a BbB SGD algorithm is the following: for k ≥ 0 and i ∈ {1, . . . ,N},{

θi
k+1 = θi

k −
κ

N2
∑N

j=1
(
ϕ(θj

k,Z
j
k,xk)− yk

)
∇θϕ(θi

k,Zi
k,xk)− κ

N∇θDKL(q1
θi

k

|P 1
0 ),

θi
0 = (mi

0,ρ
i
0)∼ µ0,

(6.7)

where (Zj
k,1≤ j ≤N,k ≥ 0) is a i.i.d sequence of random variables distributed according to γ. We recall that this

algorithm is based on the Monte Carlo approximation, for i ∈ {1, . . . ,N}, of the term∫
(Rd)N

(y−ϕ(θj ,zj ,x))∇θϕ(θi,zi,x)γ(z1) . . .γ(zN )dz1 . . .dzN

which is the gradient w.r.t. to θi of the integral term in the left-hand-side of (6.2). We mention that we consider
here in (6.7) the BbB SGD with a batch size of 1, corresponding to |B|= 1 in [Descours et al., 2023b].

For the BbB SGD, we set for N ≥ 1 and k ≥ 1:

FN
k = σ

(
θi

0,Zj
q,(xq,yq),1≤ i, j ≤N,0≤ q ≤ k− 1

})
. (6.8)

Minimal VI (MiVI) SGD The last algorithm studied, denoted MiVI SGD, was proposed in [Descours et al.,
2023b] as an efficient alternative to the first two algorithm above. It is the following: for k ≥ 0 and i ∈ {1, . . . ,N},{

θi
k+1 = θi

k −
κ

N2
∑N

j=1
(
ϕ(θj

k,Z
1
k,xk)− yk

)
∇θϕ(θi

k,Z2
k,xk)− κ

N∇θDKL(q1
θi

k

|P 1
0 )

θi
0 = (mi

0,ρ
i
0)∼ µ0,

(6.9)

where (Zp
k,p ∈ {1,2},k ≥ 0) is a i.i.d sequence of random variables distributed according to γ⊗2. Thus, the MiVI

descent backpropagates through two common Gaussian variables (Z1
k,Z2

k) to all neurons, instead of a different
Gaussian random variable Z·

k for each neuron.
We finally set for N,k ≥ 1:

FN
k = σ

(
θi

0,Zp
q ,(xq,yq), i ∈ [1,N ],p ∈ {1,2}, q ∈ [0,k− 1]

)
. (6.10)

2.3 Mean-field limit and Law of Large Numbers

Empirical distributions and assumptions We introduce the empirical distribution νN
k of the parameters

{θi
k, i ∈ {1, . . . ,N}} at iteration k ≥ 0 (where the θi

k’s are generated either by the algorithm (6.5), (6.7), or by (6.9))
as well as its scaled version µN

t , which are defined by:

νN
k := 1

N

N∑
i=1

δθi
k

and µN
t := νN

⌊Nt⌋. (6.11)

Note that for all N ≥ 1, µN := {µN
t , t≥ 0} is a random element of the Skorokhod space D(R+,P(Rd+1)), when

P(Rd+1) is endowed with the weak convergence topology. Let us recall that for q ≥ 0, the Wasserstein spaces
Pq(Rd+1) are defined by Pq(Rd+1) = {µ ∈ P(Rd+1),

∫
Rd+1 |θ|qµ(dθ)<+∞}. The space Pq(Rd+1) is endowed

with the standard Wasserstein metric Wq . Note that for all q ≥ 0, (µN )N≥1 is also a random sequence of elements
in D(R+,Pq(Rd+1)). We denote by C∞

b (Rd×X) the space of smooth functions over Rd×X whose derivatives of
all order are bounded.

We now introduce the assumptions [Descours et al., 2023b] we will work with in this work:
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A1. There exists a pdf γ : Rd → R+ such that for all θ ∈ Rd+1, q1
θdx = Ψθ#γdx, where {Ψθ,θ ∈ Rd+1} is a

family of C1-diffeomorphisms over Rd such that for all z ∈ Rd, θ ∈ Rd+1 7→ Ψθ(z) is of class C∞. Finally,
there exists p0 ∈N∗ such that for all multi-index α ∈Nd+1 with |α| ≥ 1, there exists Cα > 0, for all z ∈ Rd

and θ = (θ1, . . . ,θd+1) ∈ Rd+1,∣∣∂αΨθ(z)
∣∣≤ Cαb(z) with ∀q ≥ 1, ⟨bq,γ⟩<+∞, (6.12)

where ∂α = ∂α1
θ1
. . .∂

αd+1
θd+1

and ∂αj

θj
is the partial derivatives of order αj w.r.t. to θj , and b(z) = 1 + |z|p0 .

A2. The sequence {(xk,yk)}k≥0 is i.i.d. w.r.t. π ∈ P(X×Y). The set X×Y ⊂ Rd×R is compact. For all k ≥ 0,
(xk,yk)⊥⊥FN

k (where, depending on the considered algorithms, FN
k is defined by (6.6), (6.8), or (6.10)).

A3. The (activation) function s : Rd×X→ R belongs to C∞
b (Rd×X).

A4. The initial parameters (θi
0)N

i=1 are i.i.d. w.r.t. µ0 ∈ P(Rd+1). Furthermore, µ0 has compact support.

We moreover assume when considering the BbB algorithm (6.7) (resp. the MiVI algorithm (6.9)):

A5. The sequences (Zj
k,1≤ j ≤N,k ≥ 0) (resp. (Zp

k,p ∈ {1,2},k ≥ 0)) and ((xk,yk),k ≥ 0) are independent.
For k ≥ 0,

(
(xk,yk),Zj

k,1≤ j ≤N
)
⊥⊥FN

k , see (6.8) (resp.
(
(xk,yk),Zp

k,p ∈ {1,2}
)
⊥⊥FN

k , see (6.10)).

In the following we simply denote all the above assumptions by A. Let us remark that A3 may seem restrictive, see
however Remark 4 in [Descours et al., 2022b] to consider a more general setting.

Law of Large Numbers for the sequence of rescaled empirical distribution As already explained, the starting
points to derive Central Limit Theorems for the sequence (µN )N≥1 defined in (6.11) for the three algorithms
introduced above are the Law of Large Numbers obtained in [Descours et al., 2023b] (see more precisely Theorems
1, 2, and 3 there), that we now recall.

Theorem 65 ([Descours et al., 2023b]). Let γ0 > 1 + d+1
2 . Assume A. Let the {θi

k,k ≥ 0, i ∈ {1, . . . ,N}}’s be
generated either by the algorithm (6.5), (6.7), or (6.9). Then, (µN )N≥1 (see (6.11)) converges in P-probability in
D(R+,Pγ0(Rd+1)) to a deterministic element µ̄ ∈ D(R+,Pγ0(Rd+1)). In addition, µ̄ ∈ C(R+,P1(Rd+1)) and it
is the unique solution in C(R+,P1(Rd+1)) to the following measure-valued evolution equation: ∀f ∈ C∞

b (Rd+1)
and ∀t ∈ R+:

⟨f, µ̄t⟩− ⟨f,µ0⟩=−κ
∫ t

0

∫
X×Y

〈
ϕ(·, ·,x)− y, µ̄s⊗ γ

〉〈
∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ

〉
π(dx,dy)ds

−κ
∫ t

0

〈
∇θf · ∇θDKL(q1

· |P
1
0 ), µ̄s

〉
ds. (6.13)

Let us mention that the statement of Theorem 65 differs slightly from the one of Th. 2 in [Descours et al., 2023b]
when the Idealized SGD (6.5) is concerned. Since this was possible, we have decided here to work in P(Θ) (with
Θ ⊂ Rd+1 compact) instead of Pγ0(Rd+1). Nevertheless, Theorem 3 in [Descours et al., 2023b], by following its
proof, also holds for the scaled empirical measure µN of the parameters θi

k’s generated by the Idealized SGD (6.5).

3 Main results: Central Limit Theorems

For J ∈ N and j≥ 0, letHJ,j(Rd+1) be the closure of the set C∞
c (Rd+1) for the norm ∥f∥HJ,j defined by

∥f∥2HJ,j =
∑

|k|≤J

∫
Rd+1

|∂kf(θ)|2

1 + |θ|2j
dθ.

The spaceHJ,j(Rd+1) was introduced e.g. in [Fernandez and Méléard, 1997, Jourdain and Méléard, 1998]. It is a
separable Hilbert space. Its dual space is denoted byH−J,j(Rd+1). The associated scalar product onHJ,j(Rd+1)
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will be denoted by ⟨·, ·⟩HJ,j . For Φ ∈ H−J,j(Rd+1), we use the notation ⟨f,Φ⟩J,j = Φ[f ], f ∈ HJ,j(Rd+1). We
will simply denote ⟨f,Φ⟩J,β by ⟨f,Φ⟩ when no confusion is possible. The set CJ,j(Rd+1) is defined as the space of
functions f : Rd+1→R which have continuous partial derivatives up to the order J ∈ N and satisfy, for all |k| ≤ J,
|∂kf(θ)|
1+|θ|j → 0 as |θ| →+∞. It is endowed with the norm ∥f∥CJ,j :=

∑
|k|≤J supθ∈Rd+1

|∂kf(θ)|
1+|θ|j <+∞.

We denote by x 7→ ⌈x⌉ the ceiling function and we finally set:

j3 = ⌈d+ 1
2 ⌉+ 1 and J3 = 4⌈d+ 1

2 ⌉+ 8.

The fluctuation process is defined by

ηN : t ∈ R+ 7→
√
N(µN

t − µ̄t) , (6.14)

where µN is defined in (6.11) and µ̄t is its limiting process, see Theorem 65. We will show below that the three
fluctuation processes converge in law to a limiting process which is the unique (weak) solution an equation (namely
Equation (EqL) below). The equation (EqL) is fully characterizes by the covariance structure of a so-called
G-process, a process we introduce now.

Definition 66. We say that a C(R+,H−J3,j3(Rd+1))-valued process G is a G-process if for all k ≥ 1 and
all f1, . . . ,fk ∈ HJ3,j3(Rd+1), {t ∈ R+ 7→ (Gt[f1], . . . ,Gt[fk])T } is a C(R+,Rk)-valued process with zero-
mean, independent Gaussian increments (and thus a martingale) and with covariance structure prescribed by
Cov(Gt[fi],Gs[fj ]), for 0≤ s≤ t.

We mention that two G-processes are equal in law if and only if they have the same covariance structure
(see [Descours et al., 2022b]). For aG-processG ∈ C(R+,H−J3,j3(Rd+1)), we say that a C(R+,H−J3+1,j3(Rd+1))-
valued process η is a solution of (EqL) if it satisfies a.s. the equation:

∀f ∈H−J3,j3−1(Rd+1),∀t ∈ R+,

⟨f,ηt⟩− ⟨f,η0⟩=−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηs⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηs⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩π(dx,dy)ds (EqL)

−κ
∫ t

0
⟨∇θf · ∇θDKL(q1

· |P 1
0 ),ηs⟩ds+Gt[f ].

We now define, as in the classical theory of stochastic differential equations (see [Kallenberg, 2002]), the notion
of weak solution of (EqL).

Definition 67. Let ν be aH−J3+1,j3(Rd+1)-valued random variable. We say that weak existence holds for (EqL)
with initial distribution ν if: there exist a probability space P , a process η ∈ C(R+,H−J3+1,j3(Rd+1)) and a
G-process G on P satisfying (EqL) with in addition η0 = ν in law. In this case, we will simply say that η is a weak
solution of (EqL). In addition, we say that weak uniqueness holds if for any two weak solutions η◦ and η⋆ of (EqL)
with the same initial distributions, it holds η◦ = η⋆ in law.

We are now in position to state the main theoretical result of this work: Central Limit Theorems for the trajectory
of the scaled empirical measures µN of the {θi

k, i ∈ {1, . . . ,N}}’s generated either by the algorithm (6.5), (6.7), or
by (6.9).

Theorem 68. Assume A. Then,

1. The sequence (ηN )N≥1 converges in distribution inD(R+,H−J3+1,j3(Rd+1)) to aC(R+,H−J3+1,j3(Rd+1))-
valued process η⋆.

2. The process η⋆ is the unique weak solution of (EqL) with initial distribution ν0, where ν0 is the unique
(in distribution) H−J3+1,j3(Rd+1)-valued random variable such that for all k ≥ 1 and f1, . . . ,fk ∈
HJ3−1,j3(Rd+1), (⟨f1,ν0⟩, . . . ,⟨fk,ν0⟩)T ∼ N (0,C(f1, . . . ,fk)), where C(f1, . . . ,fk) is the covariance
matrix of (f1(θ1

0), . . . ,fk(θ1
0))T . Moreover, the G-process G has covariance structure given by, for all

f,g ∈HJ3,j3(Rd+1) and all 0≤ s≤ t:
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• When the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the idealized algorithm (6.5) or by the BbB algo-

rithm (6.7),

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y, µ̄v),Q [g](x,y, µ̄v))dv,

where Q [f ](x,y, µ̄v) = ⟨ϕ(·, ·,x)− y, µ̄v ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄v ⊗ γ⟩.

• When the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the MiVI algorithm (6.9),

Cov(Gt[f ],Gs[g]) = η2
∫ s

0
Cov(Q [f ](x,y,z1,z2, µ̄v),Q [g](x,y,z1,z2, µ̄v))dv,

where Q [f ](x,y,z1,z2, µ̄v) = ⟨ϕ(·,z1,x)− y, µ̄v⟩⟨∇θf · ∇θϕ(·,z2,x), µ̄v⟩.

Let us begin by the following remark: when f = g it follows directly from Jensen’s inequality that the variance of
the G-process leading the limiting SPDE of the CLT of the Minimal VI algorithm is greater than the corresponding
variance of the BbB algorithm. It is however not clear if this hierarchy is conserved through the SPDE. However
numerical experiments presented in Section 4 tend to this conclusion.

The strategy of the proof of Theorem 68 is the same whenever one considers that the {θi
k, i ∈ {1, . . . ,N}}’s are

generated by (6.5), (6.7) or (6.9), except for the convergence of the martingale sequence (
√
NMN )N≥1 towards a

G-process which requires more inlvolved analysis (see more precisely Section 6.3). Appendix 6 below is dedicated
to the detailed proof of the Central Limit Theorem when the {θi

k, i ∈ {1, . . . ,N}}’s are generated by (6.7). The other
two cases are treated very similarly except, as already mentioned, the convergence of the martingale term towards a
G-process, which is therefore proved for each of the three algorithms in Section 6.3. The proof of Theorem 68 is
inspired by the one made for Th. 2 in [Descours et al., 2022b]. Nonetheless, two difficulties arise in the proof of
Theorem 68 compared to [Descours et al., 2022b]. The first one comes from the fact that the term∇θDKL(q1

θ |P
1
0 ),

appearing in all of the three algorithms, is not bounded in θ (see indeed (6.3)). The second difficulty deals with
the convergence of the martingale sequence (

√
NMN )N≥1, defined in (6.24), when the {θi

k, i ∈ {1, . . . ,N}}’s are
generated by (6.7). In this case, we have to introduce and study the convergence of the empirical distribution of both
the {θi

k, i ∈ {1, . . . ,N}}’s and the Zi’s (see (6.74) and Lemma 83).

4 Numerical simulations

In this section, we begin by illustrating Theorem 68 of this paper, followed by a comparative analysis between MiVI
SGD algorithm and its two counterparts, idealized (I-SGD) and BbB SGD.

For our experimental setup, we draw uniformly the input data x∼ U([−1,1]din). Then, the output data is given
by y = tanh(⟨x,w⋆

in⟩) ·w⋆
out +β · ϵ. Here, β ∈R represents the noise level and ϵ∼N (0, Idin

) is the Gaussian noise.
Therefore, we are trying to learn the noisy prediction of a two-layer Neural Network with an hyperbolic tangent
activation function. The true parameters of this network are defined by w⋆

in ∈Rdin and w⋆
out ∈Rdout . These true

parameters are initialized randomly, sampled from a standard Gaussian distribution.
We consider two distinct settings in our evaluation. The first is a noiseless and low-dimensional scenario with

parameters set to β = 0, din = 10, and dout = 1. In contrast, the second setting is more complex, involving noise
with β = 1, and higher dimensions with din = 50 and dout = 10.

For all algorithms (MiVI-SGD, BbB-SGD, and I-SGD), the prior distribution is PN
0 =N (0, IN×(din+dout)).

The variational parameters θ are randomly initialized, centered around the prior distribution. Since the Idealized-SGD
cannot be implemented due to intractable integral calculation, we approximate it using Monte Carlo with a mini-batch
of 100. For the algorithm BbB-SGD, we set the number of Monte Carlo samples to 1. The number of gradient descent
steps used by all algorithms is set to ⌊t ·N⌋, where t= 10 for the simple setting. However, due to computational
limitations, we set t= 3 for the complex setting. For all experiments, we consider three different test functions. If
θ = (m,ρ), we define fmean(θ) = ∥m∥2, fstd(θ) = |g(ρ)|, and fpred(θ) = Êx

[
V̂w∼q1

θ
[s(w,x)]

1
2
]
. Here, Ê and V̂

represent the empirical mean and variance over 100 samples, respectively. These functions are used to compute
⟨f, µN

t ⟩ and ⟨f, ηN
t ⟩.
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Fig. 6.1 Convergence of V[⟨f,ηN
t ⟩] in the simple (left column) and complex (right column) setting, for

fmean (1st line), fstd (2nd line) and fpred (3rd line).

Illustration of Theorem 68: Using the definition of ηN
t in equation 6.14, and that µ̄t is deterministic, then we

deduce that V[⟨f, ηN
t ⟩] =N ·V[⟨f, µN

t ⟩]. Figure 6.1 displays the convergence of N ·V[⟨f, µN
t ⟩] in the simple and

complex setting. The variance is estimated using its empirical version with 300 samples, and the 95% confidence
interval is calculated based on 10 samples. These plots clearly show that the G-process associated with the limiting
fluctuation process ηt derived from BbB-SGD shares the same covariance as the one derived from I-SGD, but differs
from the covariance derived from MiVI-SGD, which exhibit larger values. These plots clearly illustrates the main
result of Theorem 68 and the following remark.

Comparison MiVI-SGD, BbB-SGD and I-SGD: The objective of this paragraph is to compare, at a fixed number
of neurons N , the performances of algorithms MiVI-SGD, BbB-SGD and I-SGD. Recall that algorithm BbB-SGD
randomly samples N Gaussian vectors of dimension din + dout at each training step. Consequently, during the
full training, this algorithm samples ⌊t ·N⌋N Gaussian vectors. In contrast, MiVI-SGD samples only 2 Gaussian
vectors per training step, resulting in a total of 2⌊t ·N⌋ sampled Gaussian vectors. Therefore, algorithm MiVI-SGD
becomes more suitable (in terms of the number of Gaussian vectors sampled) for N ≥ 2. Figure 6.2 show the
variance of ⟨f, µN

t ⟩ with respect to N , in the simple and complex setting. Similarly to the previous paragraph, the
variance is estimated using 300 samples, and the 95% confidence interval is computed based on 10 samples.

This figure shows that, in the simple setting MiVI-SGD with N = 700 obtains the same performance (in term of
V[⟨f, µN

t ⟩]), than BbB-SGD and I-SGD with N = 620 for fmean, N = 210 for fstd and N = 380. Similarly, in the
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Fig. 6.2 V[⟨f,µN
t ⟩] with respect to N , in the simple (left column) and complex (right column) setting, for

fmean (1st line), fstd (2nd line) and fpred (3rd line).

complex setting MiVI-SGD with N = 700 obtains the same performance (in term of V[⟨f, µN
t ⟩]), than BbB-SGD

and I-SGD with N = 550 for fmean, N = 75 for fstd and N = 95.
Consequently, in both settings, algorithm MiVI-SGD appears to be more efficient (in terms of the number of

sampled vectors) than other algorithms for achieving the same value of V[⟨f, ;µN
t ⟩].

5 Conclusion

In this work, we have rigorously shown CLT for a two-layer BNN trained by variational inference with different
SGD schemes. It appears that the idealized SGD and the most-commonly used Bayes-by-Backprop SGD schemes
have the same fluctuation behaviors, i.e. driven by a SPDE with a G-process having the same covariance structure,
in addition to admitting the same mean-field limit. Introduced in [Descours et al., 2023b], the less costly Minimal VI
SGD scheme exhibits a different fluctuation behavior, with a G-process of different covariance structure, which can
be argued to lead to larger variances. Though, numerical experiments show that the trade-off between computational
complexity and variance is still vastly in favour of the Minimal VI scheme. This opens the interesting perspective of
exploring whether additional practical improvements can be derived from the asymptotic results at the mean-field
level. This becomes even more intriguing and a justified approach given that neural networks appear to reach such
limits rapidly.
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6 Central Limit Theorem: proof of Theorem 68

In all this section, the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.7), except in Section 6.3 which, we

recall, is dedicated to the study of the convergence of the sequences of martingale (
√
NMN )N (see (6.24)). Recall

the definition of the σ-algebra FN
k in (6.8). We also recall the following paramount result which aims at giving

uniform bounds, see Lemma 17 in [Descours et al., 2023b] on the moments of the parameters {θi
k, i ∈ {1, . . . ,N}}

up to iteration ⌊NT ⌋, for a fixed T > 0.

Lemma 69. Assume A. Then, for all T > 0 and all p≥ 1, there exists C > 0 such that for allN ≥ 1, i ∈ {1, . . . ,N}
and 0≤ k ≤ ⌊NT ⌋, E[|θi

k|
p]≤ C.

Let us now recall some Sobolev embeddings which will be also used in the proof of Theorem 68. For
M, j > (d+ 1)/2 and k,J ≥ 0, HM+J,k(Rd+1) ↪→ CJ,k(Rd+1) and HM+J,k(Rd+1) ↪→H.S. HJ,k+j(Rd+1) (see
Section 2 in [Fernandez and Méléard, 1997]). Recall J3 = 4⌈d+1

2 ⌉ + 8 and j3 = ⌈d+1
2 ⌉ + 1. Set J0 =

⌈d+1
2 ⌉+3, J1 = 2⌈d+1

2 ⌉+4, J2 = 3⌈d+1
2 ⌉+6, and j2 = 2⌈d+1

2 ⌉+2, j1 = 3⌈d+1
2 ⌉+4, j0 = 4⌈d+1

2 ⌉+5. Hence,
the following Hilbert-Schmidt embeddings hold: HJ3−1,j3(Rd+1) ↪→H.S. HJ2,j2(Rd+1), HJ2,j2(Rd+1) ↪→H.S.

HJ1+1,j1−1(Rd+1), HJ1,j1(Rd+1) ↪→H.S. HJ0,j0(Rd+1). One also has the following continuous embeddings:
HJ0,j0(Rd+1) ↪→C2,j0(Rd+1) andHM,j(Rd+1) ↪→HM,j+k(Rd+1), where M, j,k≥ 0.

We finally recall some useful inequality which will be used throughout this work (see the proof of Lemma 1
in [Descours et al., 2023b]) and which are direct consequences of A: for all θ ∈ Rd+1, z ∈ Rd, and (x,y) ∈ X×Y,
it holds:

I. |ϕ(θ,z,x)− y| ≤ C and |∇θϕ(θ,z,x)| ≤ C|JθΨθ(z)| ≤ Cb(z) (where Jθ denotes the Jacobian operator w.r.t.
θ).

In addition,

II. For all x ∈ X,
H(·,x) : θ 7→

∫
Rd
ϕ(θ,z,x)γ(z)dz = ⟨ϕ(θ, ·,x),γ⟩ (6.15)

is smooth and all its derivatives of non negative order are uniformly bounded over Rd+1 w.r.t x ∈ X.

Moreover, for any multi-index α ∈Nd+1, (see Remark 64), it holds for some C > 0 and all θ ∈ Rd+1:

|∂αDKL(q1
θ |P

1
0 )| ≤ C(1 + |θ|) if |α|= 1 and |∂αDKL(q1

θ |P
1
0 )| ≤ C for |α| ≥ 2. (6.16)

6.1 Relative compactness of the fluctuation sequence (ηN )N≥1

Recall that the fluctuation process is defined by ηN : t ∈ R+ 7→
√
N(µN

t − µ̄t), N ≥ 1. The aim of this section is to
prove the following relative compactness result on the sequence (ηN )N≥1.

Proposition 70. Assume A. Then, (ηN )N≥1 is relatively compact in D(R+,H−J3+1,j3(Rd+1)).

We mention that Proposition 70 also holds when the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the two other

algorithms (6.5) and (6.9). Before starting the proof of Proposition 70, we need to introduce an auxiliary system of
particles, this is the purpose of the next lemma.

For any µ ∈ P(C(R+,Rd+1)), we consider Pµ ∈ P(C(R+,Rd+1)) defined as the law of the process (Xt)t≥0
solution to

(Eµ)
{
dXt =−κ

∫
X×Y⟨ϕ(·, ·,x)− y,µt⊗ γ⟩⟨∇θϕ(Xt, ·,x),γ⟩π(dx,dy)dt−κ∇θDKL(q1

Xt
|P 1

0 )dt,
X0 ∼ µ0.

We then denote by F (µ) the function t ∈ R+ 7→ (Pµ)t =Pµ ◦π−1
t the law (Xs)s≥0 at time t, where πt is the

natural projection from C(R+,Rd+1) to R define by πt(f) = f(t).
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Lemma 71. Assume A. Then, µ̄= F (µ̄) (where µ̄ is given by Theorem 65), i.e for the solution (X̄t)t≥0 of (Eµ̄), it
holds X̄t ∼ µ̄t for all t≥ 0.

Proof. We claim that F (µ) ∈ C(R+,P1(Rd+1)), for all µ ∈ P(C(R+,Rd+1)). Let us prove this claim. Let
(Xt)t≥0 be the solution of (Eµ). Then, by I, II, and A, together with (6.16), there exists c0 > 0 such that a.s. for all
t≥ 0,

|Xt| ≤ c0(1 + t) + c0

∫ t

0
|Xs|ds.

Therefore, a.s., for all T > 0 and 0 ≤ t ≤ T , by Gronwall lemma, one has |Xt| ≤ c0(1 + T )ec0T . With this
bound, one deduces that there exists c1 > 0 such that a.s. for all 0≤ s≤ t≤ T , |Xt−Xs| ≤ c1(1 +T )ec1T (t− s),
which proves the claim.

Let µ ∈ P(Rd+1). Define V [µ] : Rd+1→ Rd+1 by:

V [µ](θ) =−κ
∫

X×Y
⟨ϕ(·, ·,x)− y,µ⊗ γ⟩⟨∇θϕ(θ, ·,x),γ⟩π(dx,dy)−κ∇θDKL(q1

θ |P
1
0 ). (6.17)

By the analysis carried out in Section B.3.2 in [Descours et al., 2023b] (based on Th. 5.34 in [Villani, 2021]), µ̄ is
the unique weak solution1 in C(R+,P1(Rd+1)) of the measure-valued equation{

∂tµ
∗
t = div(V [µ̄t]µ∗

t )
µ∗

0 = µ0.
(6.18)

On the other hand, using the equality g(Xt)− g(X0) =
∫ t

0∇g(Xu) · d
dtXudu valid for any C1 function g with

compact support, together with (Eµ), we deduce thatF (µ̄) is a weak solution of (6.18). By uniqueness, µ̄= F (µ̄).
The proof is complete.

Let us now introduce N independent processes X̄i, i ∈ {1, . . . ,N}, solution to (Eµ̄). It then holds thanks to
Lemma 71, for all i ∈ {1, . . . ,N} and t≥ 0:

(S)
{
dX̄i

t =−κ
∫

X×Y⟨ϕ(·, ·,x)− y, µ̄t⊗ γ⟩⟨∇θϕ(X̄i
t , ·,x),γ⟩π(dx,dy)dt−κ∇θDKL(q1

X̄i
t
|P 1

0 )dt,

X̄i
0 ∼ µ0, X̄i

t ∼ µ̄t.

Their empirical distribution is denoted by µ̄N
t = 1

N

∑N
i=1 δX̄i

t
, for N ≥ 1 and t ∈ R+. Recall that from the proof of

Lemma 71, there exists c1 > 0 such that a.s. for all 0≤ s≤ t≤ T and all i ∈ {1, . . . ,N}:

|X̄i
t | ≤ c1(1 +T )ec1T and |X̄i

t − X̄i
s| ≤ c1(1 +T )ec1T (t− s). (6.19)

We now decompose ηN using the following two processes:

Υ N :=
√
N(µN − µ̄N ) and ΘN :=

√
N(µ̄N − µ̄). (6.20)

We denote by CJ,j(Rd+1)∗ the dual space of CJ,j(Rd+1) (J, j≥ 0). One the one hand, µ̄N ∈ C(R+,C1,j(Rd+1)∗),
j≥ 0. This is indeed a direct consequence of (6.19). On the other hand, for any j≥ 0, µN ∈ D(R+,C0,j(Rd+1)∗).
Hence, it holds for all j≥ 0 a.s.

Υ N ∈ D(R+,C1,j(Rd+1)∗). (6.21)

Concerning ΘN , we have the following result.

Lemma 72. Assume A. Then, for any J> 1 + (d+ 1)/2 and k≥ 0, µ̄N , µ̄ ∈ C(R+,H−J,k(Rd+1)). Therefore, a.s.
ΘN ∈ C(R+,H−J,k(Rd+1)). Finally, (6.13) also holds for any test function f ∈HJ,k(Rd+1) (J> 1 + (d+ 1)/2
and k≥ 0).

1See Section 4.1.2 in [Santambrogio, 2015] for the definition.
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Proof. LetJ> 1+(d+1)/2 andk≥ 0. It then holdsHJ,k(Rd+1) ↪→C1,k(Rd+1). This implies thatC1,k(Rd+1)∗
↪→

H−J,k(Rd+1), and consequently, µ̄N ∈ C(R+,H−J,k(Rd+1)).
Let us now prove that µ̄ ∈ C(R+,H−J,k(Rd+1)) for k ≥ 0. Set j = k+ 1. Recall that one can choose any

γ0 > 1+ d+1
2 in Theorem 65. Pick thus such a γ0 such that j≤ γ0. We then haveHJ,j−1(Rd+1) ↪→C1,j−1(Rd+1) ↪→

C1,γ0−1(Rd+1) ↪→ C0,γ0−1(Rd+1). Since µ0 has compact support, µ0 ∈ C0,γ0−1(Rd)∗
↪→ H−J,j−1(Rd). Let

f ∈ C∞
c (Rd+1) and 0≤ s≤ t≤ T . Thanks to (6.16) and Assumption A, we deduce that:

|⟨f, µ̄t⟩− ⟨f, µ̄s⟩| ≤C|t− s|(∥f∥C1,γ0 + ∥f∥C1,γ0−1) sup
u∈[0,T ]

|⟨1 + | · |γ0 , µ̄u⟩|

≤ C|t− s|∥f∥C1,γ0−1 sup
u∈[0,T ]

|⟨1 + | · |γ0 , µ̄u⟩|

≤ C|t− s|∥f∥HJ,j−1 sup
u∈[0,T ]

|⟨1 + | · |γ0 , µ̄u⟩|.

We have that supu∈[0,T ] |⟨1 + | · |γ0 , µ̄u⟩|<+∞ since u≥ 0 7→ ⟨1 + | · |γ0 , µ̄u⟩ ∈ D(R+,R) (this follows from the
fact that µ̄ ∈ D(R+,Pγ0(Rd)) together with Th. 6.9 in [Villani, 2009]). We have thus proved that µ̄t ∈H−J,j−1(Rd)
and |⟨f, µ̄t⟩ − ⟨f, µ̄s⟩| ≤ C|t− s|∥f∥HJ,j−1 . This proves that µ̄ ∈ C(R+,H−J,j−1(Rd+1)). The last claim is
obtained by a density argument and the fact thatHJ,j−1(Rd+1) ↪→C1,γ0−1(Rd+1).

Lemma 73. Assume A. For all T > 0, we have

sup
N≥1

sup
t∈[0,T ]

E[∥ΘN
t ∥2H−J1,j1 + ∥Υ N

t ∥2H−J1,j1 ]<+∞.

In particular, supN≥1 supt∈[0,T ] E[∥ηN
t ∥2H−J1,j1 ]<+∞.

Proof.
Let T > 0. Pick t ∈ [0,T ], N ≥ 1, and f ∈ HJ1,j1(Rd). On the one hand, since (f(X̄j

t )−⟨f, µ̄t⟩)j=1,...,N

are independent centered random variables, one deduces that E[⟨f,ΘN
t ⟩2]≤ 2

N

∑N
i=1(E

[
|f(X̄i

t)|2
]

+ |⟨f, µ̄t⟩|2)≤
CT ∥f∥2HJ0,j0 , where the last inequality is a consequence of (6.19) together withHJ0,j0(Rd+1) ↪→C0,j0(Rd+1) and
µ̄ ∈ C(R+,H−J0,j0(Rd+1)) (see Lemma 72). Using also the embeddingHJ1,j1(Rd+1) ↪→H.S. HJ0,j0(Rd+1) and
considering an orthonormal basis ofHJ1,j1(Rd+1), one deduces the desired upper bound on ΘN .

Let us now derive the bound on the second order moment of Υ N . To this end, introduce an orthonormal basis
(fa)−a≥1 ofHJ1,j1(Rd+1). One then has:

∥Υ N
t ∥2H−J1,j1 =

∑
a≥1
⟨fa,Υ

N
t ⟩2. (6.22)

RecallHJ0,j0(Rd+1) ↪→C2,j0(Rd+1). We have, by (S) and the fact that f ∈ C2,j0(Rd+1),

⟨f, µ̄N
t ⟩= ⟨f, µ̄N

0 ⟩−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇f · ∇θϕ(·, ·,x), µ̄N

s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0
⟨∇f · ∇θDKL(q1

· |P 1
0 ), µ̄N

s ⟩ds. (6.23)

We now set for k ≥ 0 and g ∈ C2,j(Rd+1) (j≥ 0):

1. DN
k [g] :=− κ

N3
∑N

i=1
∑N

j=1,j,i

∫
X×Y

(〈
ϕ(θj

k, ·,x),γ
〉
−y
)〈
∇θg(θi

k)·∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)− κ

N2
∫

X×Y
〈
(ϕ(·, ·,x)−

y)∇θg · ∇θϕ(·, ·,x),νN
k ⊗ γ

〉
π(dx,dy).

2. MN
k [g] =− κ

N3
∑N

i,j=1(ϕ(θj
k,Z

j
k,xk)− yk)∇θg(θi

k) · ∇θϕ(θi
k,Zi

k,xk)−DN
k [g].

3. RN
k [g] := 1

2N

∑N
i=1 (θi

k+1− θ
i
k)T∇2g(θ̂i

k)(θi
k+1 − θ

i
k) is the rest of the second order Taylor expansion of

1
N

∑N
k=1 f(θi

k+1)− f(θi
k) (the point θ̂i

k lies in [θi
k+1,θ

i
k]).
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Note that DN
k [g] and MN

k [g] are well defined for g ∈ C1,j(Rd+1) (j≥ 0). For t≥ 0, we also define:

RN
t [g] :=

⌊Nt⌋−1∑
k=0

RN
k [g] and MN

t [g] :=
⌊Nt⌋−1∑

k=0
MN

k [g]. (6.24)

Let t≥ 0. With these definitions, we recall that from Eq. (53) in [Descours et al., 2023b], there exist θ̂i
k (i= 1, . . . ,N

and k = 0, . . . ,⌊Nt⌋− 1) such that for g ∈ C2,j0(Rd+1):

⟨g,µN
t ⟩− ⟨g,µN

0 ⟩=−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θg · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0

〈
∇θg · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds

+ κ

N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θg · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ

N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θg · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+ MN
t [g] + WN

t [g] +RN
t [g], (6.25)

where WN
t [f ] :=−VN

t [f ] +κ
∫ t

⌊Nt⌋
N

〈
∇θf · ∇θDKL(q1

· |P
1
0 ),µN

s

〉
ds and

VN
t [f ] :=−κ

∫ t

⌊Nt⌋
N

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

+ κ

N

∫ t

⌊Nt⌋
N

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ

N

∫ t

⌊Nt⌋
N

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds.

Hence, since by definition Υ N =
√
N(µN − µ̄N ), one has for all t ∈ R+, using (6.23) and (6.25) together with the

fact that ⟨f,µN
0 ⟩= ⟨f, µ̄N

0 ⟩:

⟨f,Υ N
t ⟩=−κ

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),Υ N

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),

√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0
⟨∇θf · ∇θDKL(q1

· |P 1
0 ),Υ N

s ⟩ds

+ κ√
N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ√
N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+
√
NMN

t [f ] +
√
NWN

t [f ] +
√
NRN

t [f ]. (6.26)

Using II, when j> d+1
2 , one has H(·,x) ∈HJ,j(Rd+1) for all J≥ 0, and it holds:

sup
x∈X

∥∥H(.,x)
∥∥

HJ,j <+∞. (6.27)
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By Lemma B.3 in [Descours et al., 2022b], one has, for all t ∈ R+,

⟨f,Υ N
t ⟩2 ≤AN

t [f ] + BN
t [f ], (6.28)

where

AN
t [f ] =−2κ

∫ t

0

∫
X×Y
⟨f,Υ N

s ⟩⟨ϕ(·, ·,x)− y,µN
s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N

s ⊗ γ⟩π(dx,dy)ds

− 2κ
∫ t

0

∫
X×Y
⟨f,Υ N

s ⟩⟨ϕ(·, ·,x),Υ N
s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N

s ⊗ γ⟩π(dx,dy)ds

− 2κ
∫ t

0

∫
X×Y
⟨f,Υ N

s ⟩⟨ϕ(·, ·,x),
√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

− 2κ
∫ t

0
⟨f,Υ N

s ⟩⟨∇θf · ∇θDKL(q1
· |P 1

0 ),Υ N
s ⟩ds

+ 2κ√
N

∫ t

0

∫
X×Y
⟨f,Υ N

s ⟩
〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− 2κ√
N

∫ t

0

∫
X×Y
⟨f,Υ N

s ⟩
〈

(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ

〉
π(dx,dy)ds (6.29)

and

BN
t [f ] =

⌊Nt⌋−1∑
k=0

[
2⟨f,Υ N

k+1
N

−⟩
√
NRN

k [f ] + 3NRN
k [f ]2

]
+

⌊Nt⌋−1∑
k=0

[
2⟨f,Υ N

k+1
N

−⟩
√
NMN

k [f ] + 3NMN
k [f ]2

]

+
⌊Nt⌋−1∑

k=0

[
2⟨f,Υ N

k+1
N

−⟩aN
k [f ] + 3aN

k [f ]2
]
− 2
√
N

∫ t

0
⟨f,Υ N

s ⟩LN
s [f ]ds,

with, for s ∈ [0, t],

LN
s [f ] =−κ

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)

+ κ

N

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)

− κ

N

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)

−κ⟨∇θf · ∇θDKL(q1
· |P 1

0 ),µN
s ⟩

and, for 0≤ k < ⌊Nt⌋, aN
k [f ] =

√
N
∫ k+1

N
k
N

LN
s [f ]ds. By (6.22) and (6.28),

∥Υ N
t ∥2H−J1,j1 ≤

∑
a≥1

AN
t [fa] + BN

t [fa]. (6.30)

Using Lemma 76, one deduces that:∑
a≥1

E[AN
t [fa] + BN

t [fa]]≤ CT +CT

∫ t

0
E[∥Υ N

s ∥2H−J1,j1 ]ds (6.31)

Hence, by (6.30) and (6.31),

E[∥Υ N
t ∥2H−J1,j1 ]≤ CT +CT

∫ t

0
E[∥Υ N

s ∥2H−J1,j1 ]ds. (6.32)

Using Gronwall’s lemma yields the desired moment estimate on Υ N .

The following lemma provides the compact containment condition we need to prove that (ηN )N≥1 is relatively
compact in D(R+,H−J3+1,j3(Rd+1)).
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Lemma 74. Assume A. Then, for all T > 0, supN≥1 E[supt∈[0,T ] ∥ηN
t ∥2H−J2,j2 ]<+∞.

Proof. Let T > 0 and N ≥ 1. Consider an orthonormal basis (fa)a≥1 of HJ2,j2(Rd+1) and f ∈ HJ2,j2(Rd+1).
From (6.26) and using Jensen’s inequality,

sup
t∈[0,T ]

⟨f,Υ N
t ⟩2 ≤ C

∫ T

0

∫
X×Y
|⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩|2π(dx,dy)ds

+C

∫ T

0

∫
X×Y
|⟨ϕ(·, ·,x),Υ N

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩|2π(dx,dy)ds

+C

∫ T

0

∫
X×Y
|⟨ϕ(·, ·,x),

√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩|2π(dx,dy)ds

+C

∫ T

0
|⟨∇θf · ∇θDKL(q1

· |P 1
0 ),Υ N

s ⟩|2ds

+ C

N

∫ T

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉2
π(dx,dy)ds

+ C

N

∫ T

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉2
π(dx,dy)ds

+N sup
t∈[0,T ]

MN
t [f ]2 +N sup

t∈[0,T ]
WN

t [f ]2 +N sup
t∈[0,T ]

RN
t [f ]2. (6.33)

Let us now provide upper bounds on each term appearing in the right-hand side of (6.33). Let us consider the first
term in the right-hand side of (6.33). By II, for all J≥ 1 and j≥ 0,

sup
g∈HJ,j(Rd+1),∥g∥HJ,j=1

sup
x∈X

∥∥∇θg ·H(·,x)
∥∥

HJ−1,j <+∞. (6.34)

By (6.48), (6.34), the embedding HJ2,j2(Rd+1) ↪→ HJ1+1,j1(Rd+1) together with Lemma 73, we have, for all
s ∈ [0,T ],

E
[∫

X×Y
|⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩|2π(dx,dy)

]
≤ CE

[∫
X×Y

∥∥∇θf ·H(·,x)
∥∥2

HJ1,j1 ∥Υ
N
s ∥2H−J1,j1π(dx,dy)

]
≤ C∥f∥2HJ1+1,j1 E[∥Υ N

s ∥2H−J1,j1 ]≤ C∥f∥2HJ1+1,j1 . (6.35)

Let us now deal with the second term in the right hand side of (6.33). Using (6.27), Lemma 73 and (6.50), and
Sobolev embeddings, we have, for all s ∈ [0,T ],

E[|⟨ϕ(·, ·,x),Υ N
s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N

s ⊗ γ⟩|2]≤ C∥f∥2HJ1,j1 E[∥Υ N
s ∥2H−J1,j1 ]≤ C∥f∥2HJ1,j1 ,

which provides the required upper bound.
We now consider the t third term in the r.h.s of (6.33). We have, using (6.50) and (6.51), together with the

embeddingHJ0,j0(Rd+1) ↪→C1,j0(Rd+1), for all s ∈ [0,T ],

E[|⟨ϕ(·, ·,x),
√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩|2]≤ C∥f∥2HJ0,j0 .

We now turn to the fourth term in (6.33). Note first that by (6.16), we have that ∇θg · ∇θDKL(q1
· |P 1

0 ) ∈
HJ−1,j+1(Rd+1) for all g ∈HJ,j(Rd+1), J≥ 1, j≥ 0. Moreover, we have

sup
g∈HJ,j(Rd+1),∥g∥HJ,j=1

∥∇θg · ∇θDKL(q1
· |P 1

0 )∥HJ−1,j+1 <+∞. (6.36)
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Hence, using the embeddingHJ2,j2(Rd+1) ↪→HJ1+1,j1−1(Rd+1) (see the beginning of Section 6) and Lemma 73,
we obtain, for all s ∈ [0,T ],

E[|⟨∇θf · ∇θDKL(q1
· |P 1

0 ),Υ N
s ⟩|2]≤E[∥⟨∇θf · ∇θDKL(q1

· |P 1
0 )∥2HJ1,j1∥Υ

N
s ∥2H−J1,j1 ]≤ C∥f∥2HJ1+1,j1−1 .

By A and Lemma 69, the fifth and sixth terms in the r.h.s of (6.33) are bounded byC∥f∥2C1,j0 and thus byC∥f∥2HJ0,j0 .
We now turn to the three last terms of (6.33). Note first that t ∈ R+ 7→MN

t [f ] is a FN
t -martingale, where

FN
t = FN

⌊Nt⌋ (to see this, use the same computations as those used in the proof of Lemma 3.2 in [Descours et al.,
2022b]). Now, using Equations (65), (61) and (62) in [Descours et al., 2023b], we obtain, using Doob’s inequality
and Sobolev embeddings,

E[ sup
t∈[0,T ]

MN
t [f ]2] = E[MN

T [f ]2]≤ C∥f∥2HJ0,j0/N, (6.37)

E[ sup
t∈[0,T ]

WN
t [f ]2]≤ C∥f∥2HJ0,j0/N,

E[ sup
t∈[0,T ]

RN
t [f ]2]≤ C∥f∥2HJ0,j0/N

2. (6.38)

Collecting these bounds, we obtain

E
[

sup
t∈[0,T ]

⟨f,Υ N
t ⟩2

]
≤ C(∥f∥2HJ1+1,j1 + ∥f∥2HJ1+1,j1−1 + ∥f∥2HJ1,j1 + ∥f∥2HJ0,j0 ). (6.39)

Hence, by Sobolev embeddings together with the embeddingHJ2,j2(Rd+1) ↪→H.S. HJ1+1,j1−1(Rd+1), one deduces
that:

E
[

sup
t∈[0,T ]

∥Υ N
t ∥2H−J2,j2

]
≤ C. (6.40)

We now turn to the study of E[supt∈[0,T ]⟨f,ΘN
t ⟩2]. Recall that ΘN

t =
√
N(µ̄N

t − µ̄t). Using (6.23) and (6.13)
(recall that by Lemma 72, one can use test functions f ∈HJ0,j0(Rd+1) in (6.13)), one has:

⟨f,ΘN
t ⟩= ⟨f,ΘN

0 ⟩−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇f · ∇θϕ(·, ·,x),ΘN

s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0
⟨∇f · ∇θDKL(q1

· |P 1
0 ),ΘN

s ⟩ds. (6.41)

By Jensen’s inequality, together with (6.48) and Lemma 73, we obtain

E
[

sup
t∈[0,T ]

⟨f,ΘN
t ⟩2

]
≤ CE[⟨f,ΘN

0 ⟩2] +CE
[∫ T

0

∫
X×Y
⟨∇f · ∇θϕ(·, ·,x),ΘN

s ⊗ γ⟩2π(dx,dy)ds
]

+CE
[∫ T

0
⟨∇f · ∇θDKL(q1

· |P 1
0 ),ΘN

s ⟩2ds
]

≤ C∥f∥2HJ1,j1 +C∥f∥2HJ1+1,j1

∫ T

0
E[∥ΘN

s ∥2H−J1,j1 ]ds+C∥f∥2HJ1+1,j1−1

∫ T

0
E[∥ΘN

s ∥2H−J1,j1 ]ds

≤ C(∥f∥2HJ1,j1 + ∥f∥2HJ1+1,j1 + ∥f∥2HJ1+1,j1−1).

Hence, by Sobolev embeddings (see the very beginning of Section 6), we deduce that:

E
[

sup
t∈[0,T ]

∥ΘN
t ∥2H−J2,j2

]
≤ C. (6.42)

Together with (6.40), this completes the proof of the lemma.

The following lemma provides the regularity condition needed to prove that the sequence of fluctuation processes
(ηN )N≥1 is relatively compact in the space D(R+,H−J3+1,j3(Rd+1)).
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Lemma 75. Assume A. For all T > 0, there existC > 0 such that for allN ≥ 1, δ > 0, 0≤ r < t≤ T with t−r ≤ δ
and f ∈ C∞

c (Rd+1), E[|⟨f,ηN
t ⟩− ⟨f,ηN

r ⟩|]≤ C(
√
δ+ δ+ (1 + δ)/

√
N)∥f∥HJ1+1,j1−1 .

Proof. From (6.26), ⟨f,Υ N
t ⟩− ⟨f,Υ N

r ⟩ is equal to:

−κ
∫ t

r

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

r

∫
X×Y
⟨ϕ(·, ·,x),Υ N

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

r

∫
X×Y
⟨ϕ(·, ·,x),

√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

r
⟨∇θf · ∇θDKL(q1

· |P 1
0 ),Υ N

s ⟩ds

+ κ√
N

∫ t

r

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ√
N

∫ t

r

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+
√
N(MN

t [f ]−MN
r [f ]) +

√
N(WN

t [f ]−WN
r [f ]) +

√
N(RN

t [f ]−RN
r [f ]). (6.43)

Using similar techniques as those used in the proof of Lemma 74, we obtain the following bounds:

E
[∣∣∣∫ t

r

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

∣∣∣]≤ C∥f∥HJ1+1,j1 (t− r),

E
[∣∣∣∫ t

r

∫
X×Y
⟨ϕ(·, ·,x),Υ N

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

∣∣∣]≤ C∥f∥HJ1,j1 (t− r),

E
[∣∣∣∫ t

r

∫
X×Y
⟨ϕ(·, ·,x),

√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

∣∣∣]≤ C∥f∥HJ0,j0 (t− r),

E
[∣∣∣∫ t

r
⟨∇θf · ∇θDKL(q1

· |P 1
0 ),Υ N

s ⟩ds
∣∣∣]≤ C∥f∥HJ1+1,j1−1(t− r),

E
[∣∣∣ 1√

N

∫ t

r

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

∣∣∣]≤ C ∥f∥HJ0,j0√
N

(t− r),

E
[∣∣∣ 1√

N

∫ t

r

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

∣∣∣]≤ C ∥f∥HJ0,j0√
N

(t− r).

Let us now treat the three last terms appearing at the last line of Equation (6.43). From the proof of Lemma 21
in [Descours et al., 2023b], we have:

E[|MN
t [f ]−MN

r [f ]|]≤ C
√
Nδ+ 1
N

∥f∥C1,j0 and E[|RN
t [f ]−RN

r [f ]|]≤ C
∥f∥C2,j0

N
.

Let us mention that the upper bound on E[|WN
t [f ]−WN

r [f ]|] provided in the proof of Lemma 21 in[Descours
et al., 2023b] (which we recall implies that this term is control by 1/

√
N ) is not sharp enough. With straightforward

computations, from the definition of WN
t [f ], we actually have:

E[|WN
t [f ]−WN

r [f ]|]≤E[|WN
t [f ]|] + E[|WN

t [f ]|]≤ C
∥f∥C1,j0

N
.

In conclusion, using Sobolev embeddings (see the very beginning of Section 6), we obtain

E[|⟨f,Υ N
t ⟩− ⟨f,Υ N

r ⟩|]≤ C(
√
δ+ δ+ (1 + δ)/

√
N)∥f∥HJ1+1,j1−1 . (6.44)
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Let us now consider ΘN
t −ΘN

r . By (6.41), one has:

⟨f,ΘN
t ⟩− ⟨f,ΘN

r ⟩=−κ
∫ t

r

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇f · ∇θϕ(·, ·,x),ΘN

s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

r
⟨∇f · ∇θDKL(q1

· |P 1
0 ),ΘN

s ⟩ds. (6.45)

By (6.48), (6.34) and (6.36), together with Lemma 73, it then holds:

E
[
|⟨f,ΘN

t ⟩− ⟨f,ΘN
r ⟩|
]
≤ C∥f∥HJ1+1,j1

∫ t

r
E[∥ΘN

s ∥H−J1,j1 ]ds+C∥f∥HJ1+1,j1−1

∫ t

r
E[∥ΘN

s ∥H−J1,j1 ]ds

≤ Cδ(∥f∥HJ1+1,j1 + ∥f∥HJ1+1,j1−1). (6.46)

Hence, by (6.44) and (6.46), and recalling that ηN = Υ N +ΘN , we get that E[|⟨f,ηN
t ⟩− ⟨f,ηN

r ⟩|]≤ C(
√
δ+ δ+

(1 + δ)/
√
N)∥f∥HJ1+1,j1−1 .

Lemma 76. Assume A. Let (fa)a≥1 be an orthonormal basis of HJ1,j1(Rd+1). Then, for all T > 0, there exists
C > 0 such that for all 0≤ t≤ T ,

(i) ∑
a≥1

E
[
− 2κ

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θfa · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

]
≤ C

∫ t

0
E
[
∥Υ N

s ∥2H−J1,j1

]
ds.

(ii) ∑
a≥1

E
[
− 2κ

∫ t

0
⟨fa,Υ

N
s ⟩⟨∇θfa · ∇θDKL(q1

· |P 1
0 ),Υ N

s ⟩ds
]
≤ C

∫ t

0
E
[
∥Υ N

s ∥2H−J1,j1

]
ds.

(iii) ∑
a≥1

E
[
− 2κ

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩⟨ϕ(·, ·,x),Υ N

s ⊗ γ⟩⟨∇θfa · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

− 2κ
∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩⟨ϕ(·, ·,x),

√
N(µ̄N

s − µ̄s)⊗ γ⟩⟨∇θfa · ∇θϕ(·, ·,x), µ̄N
s ⊗ γ⟩π(dx,dy)ds

]
≤ C +C

∫ t

0
E[∥Υ N

s ∥2H−J1,j1 ]ds.

(iv) ∑
a≥1

E
[ 2κ√

N

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩
〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θfa · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− 2κ√
N

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩
〈

(ϕ(·, ·,x)− y)∇θfa · ∇θϕ(·, ·,x),µN
s ⊗ γ

〉
π(dx,dy)ds

]
≤ C +C

∫ t

0
E
[
|∥Υ N

s ∥2H−J1,j1

]
ds.

(v) ∑
a≥1

E
[ ⌊Nt⌋−1∑

k=0

[
2⟨fa,Υ

N
k+1

N

−⟩
√
NMN

k [fa] + 3NMN
k [fa]2

]]
≤ C.
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(vi)

∑
a≥1

E
[ ⌊Nt⌋−1∑

k=0

[
2⟨fa,Υ

N
k+1

N

−⟩
√
NRN

k [fa] + 3NRN
k [fa]2

]]
≤ C +

∫ t

0
E
[
∥Υ N

s ∥2H−J1,j1

]
ds.

(vii)

∑
a≥1

E
[ ⌊Nt⌋−1∑

k=0

[
2⟨fa,Υ

N
k+1

N

−⟩aN
k [fa] + 3aN

k [fa]2
]
− 2
√
N

∫ t

0
⟨fa,Υ

N
s ⟩LN

s [f ]ds
]
≤ C.

Proof. Let 0 ≤ t ≤ T and N ≥ 1. Consider an orthonormal basis (fa)a≥1 of HJ1,j1(Rd+1) and a function
f ∈ HJ1,j1(Rd+1). In what follows, C > 0 will denote a constant independent of t, N , s ∈ [0, t], f and (fa)a≥1,
which can change from one occurrence to another. Let us prove item (i). Introduce for x ∈ X, the operator
Tx :HJ1,j1(Rd+1)→HJ1−1,j1(Rd+1) defined by

θ ∈ Rd+1 7→Tx(f)(θ) =∇θf(θ) · ∇θ

∫
Rd
ϕ(θ,z,x)γ(z)dz =∇θf ·H(·,x), (6.47)

where we recall that ϕ(θ,z,x) = s(Ψθ(z),x). Note that Tx is well defined since the function H(·,x) : θ 7→∫
Rd ϕ(θ,z,x)γ(z)dz = ⟨ϕ(θ, ·,x),γ⟩ is smooth and all its derivatives of non negative order are uniformly bounded

w.r.t x ∈ X over Rd+1 (this follows from A1 and A3). Then, one has∑
a≥1
−2κ

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θfa · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

=−2κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩
∑
a≥1
⟨fa,Υ

N
s ⟩⟨Txfa,Υ

N
s ⟩π(dx,dy)ds

=−2κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨Υ N
s ,T∗

xΥ
N
s ⟩H−J1,j1π(dx,dy)ds.

Since the function ϕ is bounded and Y is compact, one has:

∃C > 0,∀ν ∈ P(Rd+1),∀(x,y) ∈ X×Y, |⟨ϕ(·, ·,x)− y,ν⊗ γ⟩| ≤ C. (6.48)

By (6.48) and using Lemma B.2 in [Descours et al., 2022b] (note that Υ N ∈ D(R+,H−J1+1,j(Rd+1)) by (6.21)
together with the Sobolev embeddingHJ1−1,j(Rd+1) ↪→C1,j1(Rd+1), j≥ 0), we have

E
[∑

a≥1
−2κ

∫ t

0

∫
X×Y
⟨fa,Υ

N
s ⟩⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θfa · ∇θϕ(·, ·,x),Υ N
s ⊗ γ⟩π(dx,dy)ds

]
≤ C

∫ t

0
E
[
∥Υ N

s ∥2H−J1,j1

]
ds,

which is the desired estimate.
Introduce the operator T :HJ1,j1(Rd+1)→HJ1−1,j1+1(Rd+1) defined by (see also (6.16))

T(f) : θ 7→ ∇θf · ∇θDKL(q1
· |P 1

0 ), (6.49)

Item (ii) is proved as the previous item, using now Lemma 77 below.
Item (iii) is obtained with exactly the same arguments as those used to derive the upper bounds on

∑
a≥1 JN

t [fa]
and

∑
a≥1 KN

t [fa] in the proof of Lemma 3.1 in [Descours et al., 2022b] (it suffices indeed to change σ(·,x) there
into H(·,x)). In particular, by II and (6.19), it holds:

sup
x∈X
|⟨∇θf · ∇θϕ(·, ·,x), µ̄N

s ⊗ γ⟩| ≤ C∥f∥C1,j0 , (6.50)
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and (see Equation (3.20) in [Descours et al., 2022b]),

E[⟨ϕ(·, ·,x),(µ̄N
s − µ̄s)⊗ γ⟩2]≤ C/N. (6.51)

Note also that by Lemma 69 and I, it holds:

E
[
⟨|∇θf · ∇θϕ(·, ·,x)|,µN

s ⊗ γ⟩2
]
≤ C∥f∥2C1,j0 (6.52)

Item (iv) follows fromHJ0,j0(Rd+1) ↪→C1,j0(Rd+1) andHJ1,j1(Rd+1) ↪→H.S. HJ0,j0(Rd+1).
Let us prove item (v). Since E[MN

k [f ]|FN
k ] = 0, we have with the same arguments as those used to derive

Equation (B.1) in [Descours et al., 2022b],

⌊Nt⌋−1∑
k=0

E[⟨f,Υ N
k+1

N

−⟩
√
NMN

k [f ]] = 0.

Moreover, we recall that by Lemma 69 (see Eqaution (60) in [Descours et al., 2023b]), one has E[MN
k [f ]2] ≤

C∥f∥2C1,j0/N
2. Hence, we conclude, using again HJ0,j0(Rd+1) ↪→ C1,j0(Rd+1) and HJ1,j1(Rd+1) ↪→H.S.

HJ0,j0(Rd+1), that

∑
a≥1

E
[ ⌊Nt⌋−1∑

k=0

[
2⟨fa,Υ

N
k+1

N

−⟩
√
NMN

k [fa] + 3NMN
k [fa]2

]]
≤ C

∑
a≥1
∥fa∥2C1,j0 ≤ C. (6.53)

Let us prove item (vi). We have

⌊Nt⌋−1∑
k=0

⟨f,Υ N
k+1

N

−⟩
√
NRN

k [f ]≤
⌊Nt⌋−1∑

k=0

1
N
⟨f,Υ N

k+1
N

−⟩2 +
⌊Nt⌋−1∑

k=0
N2RN

k [f ]2.

Recall that from the analysis performed at the end of the proof of Lemma B.1 in [Descours et al., 2023b],
E[RN

k [f ]2]≤ C/N4 so that

E
[ ⌊Nt⌋−1∑

k=0
N2RN

k [f ]2
]
≤ C∥f∥2C2,j0/N.

Using (6.19) and Lemma 69, the same computations as those of the proof of item (iv) in Lemma B.1 in [Descours
et al., 2022b] yield:

E
[ ⌊Nt⌋−1∑

k=0

1
N
⟨f,Υ N

k+1
N

−⟩2
]
≤ C∥f∥2C2,j0 + E

[∫ t

0
⟨f,Υ N

s ⟩2ds
]
.

Hence,
⌊Nt⌋−1∑

k=0
⟨f,Υ N

k+1
N

−⟩
√
NRN

k [f ]≤ C∥f∥2C2,j0 + E
[∫ t

0
⟨f,Υ N

s ⟩2ds
]

+C∥f∥2C2,j0 /N. (6.54)

Item (vi) then follows fromHJ0,j0(Rd+1) ↪→C2,j0(Rd+1) andHJ1,j1(Rd+1) ↪→H.S. HJ0,j0(Rd+1).
Let us prove item (vii). Using Jensen’s inequality together with Lemma 69 and (6.16), we have, for all 0≤ s≤ t,

E[|LN
s [f ]|2]≤ C∥f∥2C1,j0 (1 + 1/N). (6.55)

On the other hand, for all s ∈ ( k
N ,

k+1
N ), by (6.19) and the same computations as those used to derive Equation (B.5)

in [Descours et al., 2022b], we have:

|⟨f,Υ N
k+1

N

−⟩− ⟨f,Υ N
s ⟩|=

√
N
∣∣⟨f, µ̄N

s ⟩− ⟨f, µ̄N
k+1

N

⟩
∣∣≤ C∥f∥C2,j0 . (6.56)



122 Section 6: Central Limit Theorem: proof of Theorem 68

Hence,

E
[ ⌊Nt⌋−1∑

k=0
⟨f,Υ N

k+1
N

−⟩aN
k [f ]−

√
N

∫ ⌊Nt⌋
N

0
⟨f,Υ N

s ⟩LN
s [f ]ds

]

=
√
N

⌊Nt⌋−1∑
k=0

∫ k+1
N

k
N

E
[(
⟨f,Υ N

k+1
N

−⟩− ⟨f,Υ N
s ⟩
)

LN
s [f ]

]
ds

≤ C∥f∥C2,j0

∫ ⌊Nt⌋
N

0
E[|LN

s [f ]|]ds≤ C∥f∥2C2,j0 . (6.57)

We also have, using Lemma 69 and (6.19), it is straightforward to deduce that E[⟨f,Υ N
s ⟩2] ≤ CN∥f∥2C1,j0 .

Consequently, one has:

E
[√

N
∣∣∣∫ t

⌊Nt⌋
N

⟨f,Υ N
s ⟩LN

s [f ]ds
∣∣∣]≤√N ∫ t

⌊Nt⌋
N

√
E[⟨f,Υ N

s ⟩2]
√

E[LN
s [f ]2]≤ C∥f∥2C1,j0 . (6.58)

Finally,

E
[ ⌊Nt⌋−1∑

k=0
aN

k [f ]2
]

=NE
[ ⌊Nt⌋−1∑

k=0

∣∣∣∫ k+1
N

k
N

LN
s [f ]ds

∣∣∣2]≤ ⌊Nt⌋−1∑
k=0

∫ k+1
N

k
N

E[LN
s [f ]2]ds

≤ C∥f∥2C1,j0 (1 + 1/N). (6.59)

Item (vii) follows from (6.57), (6.58) and (6.59). The proof of the lemma is complete.

Lemma 77. Let J≥ 1 and j≥ 0. Recall the definition of T ∈ L(HJ,j(Rd+1),HJ−1,j+1(Rd+1)) in (6.49). Then,
there exists C > 0 such that for any Υ ∈H−J+1,j+1(Rd+1),

|⟨Υ ,T∗Υ ⟩H−J,j | ≤ C∥Υ ∥2H−J,j . (6.60)

Note that T∗ ∈ L(H−J+1,j+1(Rd+1),H−J,j(Rd+1)). Let us mention that the upper bound (6.60) is much better
than the one which would be obtained applying the Cauchy-Schwarz inequality. Proof. The proof is inspired
from the one of Lemma B.2 in [Descours et al., 2022b] (see also Lemma B1 in [Sirignano and Spiliopoulos,
2020c]). We will give the proof in dimension 1, i.e when d = 0, the other cases are treated the same way. Let
Υ ∈H−J+1,j+1(R) ↪→H−J,j(R). By the Riesz representation theorem, there exists a unique Ψ ∈HJ,j(R) such
that

⟨f,Υ ⟩= ⟨f,Ψ ⟩HJ,j , ∀f ∈HJ,j(R).

Define F by F (Υ ) = Ψ . The density of C∞
c (R) in HJ,j(R) implies that {Υ ∈ H−J,j(R) : F (Υ ) ∈ C∞

c (R)} is
dense inH−J,j(R). It is thus sufficient to show (6.60) when Ψ = F (Υ ) ∈ C∞

c (R). We have

⟨Υ ,TΥ ⟩H−J,j = ⟨Ψ ,T∗Υ ⟩= ⟨TΨ ,Υ ⟩= ⟨TΨ ,Ψ ⟩HJ,j . (6.61)

Hence, to prove (6.60), it is enough to show |⟨TΨ ,Ψ ⟩HJ,j | ≤ C∥Ψ ∥2HJ,j for Ψ ∈ C∞
c (R). We will only consider the

case when J = j = 1, the other cases being treated very similarly. Recall the upper bounds (6.16). Let Ψ ∈ C∞
c (R).
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We have, by integration by parts and using the fact that Ψ is compactly supported,

⟨TΨ ,Ψ ⟩H1,1 =
∫
R
Ψ ′(θ)D ′

KL(q1
θ |P

1
0 ) Ψ (θ)

1 + θ2dθ+
∫
R

(Ψ ′(θ)D ′
KL(q1

θ |P
1
0 ))′ Ψ

′(θ)
1 + θ2dθ

=
∫
R
Ψ ′(θ)D ′

KL(q1
θ |P

1
0 ) Ψ (θ)

1 + θ2dθ+
∫
R
Ψ ′′(θ)D ′

KL(q1
θ |P

1
0 )Ψ

′(θ)
1 + θ2dθ

+
∫
R
D ′′

KL(q1
θ |P

1
0 )Ψ

′(θ)2

1 + θ2 dθ

=−1
2

∫
R
Ψ (θ)2 d

dθ

(D ′
KL(q1

θ |P
1
0 )

1 + θ2

)
dθ− 1

2

∫
R
Ψ ′(θ)2 d

dθ

(D ′
KL(q1

θ |P
1
0 )

1 + θ2

)
dθ

+
∫
R
D ′′

KL(q1
θ |P

1
0 )Ψ

′(θ)2

1 + θ2 dθ. (6.62)

To bound the first two terms of (6.62), we use the bounds (6.16). More precisely, for all θ ∈ R,∣∣∣ d
dθ

(D ′
KL(q1

θ |P
1
0 )

1 + θ2

)∣∣∣≤ |D ′′
KL(q1

θ |P
1
0 )(1 + θ2)|+ 2|θD ′

KL(q1
θ |P

1
0 )|

(1 + θ2)2 ≤ C

1 + θ2 + C|θ|(1 + θ|)
(1 + θ2)2 ≤ C

1 + θ2 .

Hence, we obtain, plugging this bound in (6.62),

|⟨TΨ ,Ψ ⟩H1,1 | ≤ C
(∫

R

Ψ (θ)2

1 + θ2 dθ+
∫
R

Ψ ′(θ)2

1 + θ2 dθ
)
≤ C∥Ψ ∥2H1,1 .

This completes the proof of the lemma.

We now collect the previous results to prove Proposition 70. Proof. [Proof of Proposition 70] The proof consists
in applying Th. 4.6 in [Jakubowski, 1986] with E =H−J3+1,j3(Rd+1) and F = {Hf , f ∈ C∞

c (Rd+1)} where

Hf : ν ∈H−J3+1,j3(Rd+1) 7→ ⟨f,ν⟩.

Note thatHJ3−1,j3(Rd+1) is compactly embedded inHJ2,j2(Rd+1). Hence, by Schauder’s theorem,H−J2,j2(Rd+1)
is compactly embedded inH−J3+1,j3(Rd+1). Thus, for allC > 0, the set {h ∈H−J3+1,j3(Rd+1), ∥h∥H−J2,j2 ≤ C}
is compact. Hence, Condition (4.8) in Th. 4.6 in [Jakubowski, 1986] follows from Lemma 74 and Markov’s
inequality. Let us now show that Condition (4.9) in [Jakubowski, 1986] is verified, i.e., that for all f ∈ C∞

c (Rd+1),
the sequence (⟨f,ηN ⟩)N≥1 is relatively compact in D(R+,R). To do this, it suffices to use Lemma 75 and Prop.
A.1 in [Descours et al., 2022b] (with H1 =H2 = R there). In conclusion, according to Th. 4.6 in [Jakubowski,
1986], the sequence (ηN )N≥1 is relatively compact in D(R+,H−J3+1,j3(Rd+1)).

6.2 Relative compactness of (
√
NMN )N≥1 and regularity of the limit points

Throughout this section, we that the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.7) (with straightforward

modifications, one can check that all the results of this section are valid when the {θi
k, i ∈ {1, . . . ,N}}’s are generated

by the algorithms (6.5) and (6.9)).

Lemma 78. Assume A. Then, for all T > 0, supN≥1 E
[

supt∈[0,T ] ∥
√
NMN

t ∥2H−J1,j1

]
<+∞.

Proof.
Recall that by (6.37), there exists C > 0 such that for all f ∈HJ1,j1(Rd+1) and N ≥ 1,

E[ sup
t∈[0,T ]

|
√
NMN

t [f ]|2]≤ C∥f∥2HJ0,j0 .

Considering an orthonormal basis of HJ1,j1(Rd+1) ↪→H.S. HJ0,j0(Rd+1), one gets that
E[supt∈[0,T ] ∥

√
NMN

t ∥2H−J1,j1 ]≤ C uniformly in N ≥ 1.

We now turn to the regularity condition on the sequence {t ∈ R+ 7→
√
NMN

t [f ]}N≥1, for f ∈ C∞
c (Rd+1).
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Lemma 79. Assume A. Then, for all T > 0, there exists C > 0 such that for all N ≥ 1, δ > 0, 0≤ r < t≤ T such
that t− r ≤ δ and f ∈ C∞

c (Rd+1), it holds

E
[
|
√
NMN

t [f ]−
√
NMN

r [f ]|
]
≤ C
√
Nδ+ 1

∥f∥C1,j0√
N

.

Proof. From the proof of Lemma 21 in [Descours et al., 2023b], it holds

E
[
|MN

t [f ]−MN
r [f ]|2

]
≤ C(Nδ+ 1)

∥f∥2C1,j0

N2 .

This leads the desired result.

Proposition 80. Assume A. Then, the sequence {t ∈ R+ 7→
√
NMN

t }N≥1 is relatively compact inD(R+,H−J3,j3(Rd+1)).

Proof. Recall thatHJ3,j3(Rd+1) ↪→H.S. HJ1,j1(Rd+1). The same arguments as those used to prove Proposition 70
together with Lemmata 78 and 79 imply the result.

We now turn to the regularity of the limit points of the sequence (ηN )N≥1.

Lemma 81. Assume A. Then, for all T > 0,

lim
N→∞

E
[

sup
t∈[0,T ]

∥ηN
t − ηN

t−∥2H−J3+1,j3

]
+ E

[
sup

t∈[0,T ]
∥
√
NMN

t −
√
NMN

t−∥2H−J3,j3

]
= 0. (6.63)

Any limit point of (ηN )N≥1 (resp. of (
√
NMN )N≥1) in D(R+,H−J3+1,j3(Rd+1)) (resp. in

D(R+,H−J3,j3(Rd+1))) belongs a.s. to C(R+,H−J3+1,j3(Rd+1)) (resp. to C(R+,H−J3,j3(Rd+1))).

Proof. Let T > 0. Let us first consider the sequence (ηN )N≥1. In what follows, C > 0 is a constant independent of
N ≥ 1, k ∈ {1, . . . ,⌊NT ⌋}, and f ∈HJ3−1,j3(Rd+1). We have

sup
t∈[0,T ]

∥ηN
t − ηN

t−∥2H−J3+1,j3 ≤ 2 sup
t∈[0,T ]

∥Υ N
t −Υ N

t−∥2H−J3+1,j3 + 2 sup
t∈[0,T ]

∥ΘN
t −ΘN

t−∥2H−J3+1,j3 . (6.64)

According to Lemma 72, one has, for all t ∈ R+ and N ≥ 1, ∥ΘN
t −ΘN

t−∥H−J3+1,j3 = 0. In addition, since a.s.
µ̄N ∈ C(R+,H−J0,j0(Rd+1)), it follows, by definition of Υ N , that a.s. for all N ≥ 1,

sup
t∈[0,T ]

⟨f,Υ N
t −Υ N

t−⟩2 =N sup
t∈[0,T ]

⟨f,µN
t −µN

t−⟩2. (6.65)

The function t ∈ [0,T ] 7→ ⟨f,µN
t ⟩ has exactly ⌊NT ⌋ discontinuities located at times tk = k/N (k ∈ {1, . . . ,⌊NT ⌋}).

In addition, from (6.26), for k ∈ {1, . . . ,⌊NT ⌋}, its k-th discontinuity is bounded by

δN
k [f ] := |MN

k−1[f ]|+ |RN
k−1[f ]|

+κ
∣∣∣∫ k

N

k−1
N

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

∣∣∣
+ κ

N

∣∣∣∫ k
N

k−1
N

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

∣∣∣
+ κ

N

∣∣∣∫ k
N

k−1
N

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

∣∣∣
+κ
∣∣∣∫ k

N

k−1
N

⟨∇θf · ∇θDKL(q1
· |P 1

0 ),µN
s ⟩ds

∣∣∣.
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Thus,
sup

t∈[0,T ]
⟨f,µN

t −µN
t−⟩2 ≤max{|δN

k+1[f ]|2, 0≤ k < ⌊NT ⌋}. (6.66)

Using the bounds provided by the proof of Lemma 19 in [Descours et al., 2023b], we obtain, for 0≤ k < ⌊NT ⌋,

E[|MN
k [f ]|4]≤ C

∥f∥4C1,j0

N4 ≤ C
∥f∥4HJ0,j0

N4 , E[|RN
k [f ]|4]≤ C

∥f∥4HJ0,j0

N8 , (6.67)

and

E
[∣∣∣∫ k+1

N

k
N

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

∣∣∣4
+ 1
N

∣∣∣∫ k+1
N

k
N

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

∣∣∣4
+ 1
N

∣∣∣∫ k+1
N

k
N

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

∣∣∣4]≤ C ∥f∥4HJ0,j0

N4 .

In addition, one also has (see Equation (57) in [Descours et al., 2023b]):

E
[∣∣∣∫ k

N

k−1
N

⟨∇θf · ∇θDKL(q1
· |P 1

0 ),µN
s ⟩ds

∣∣∣4]≤ C ∥f∥4HJ0,j0

N4 .

Consequently, it holds:

E[max{|δN
k+1[f ]2, 0≤ k < ⌊NT ⌋}]≤

∣∣∣ ⌊NT ⌋−1∑
k=0

E[δN
k [f ]4]

∣∣∣1/2
≤ C
∥f∥2HJ0,j0

N3/2 .

Hence

E
[
N sup

t∈[0,T ]
⟨f,µN

t −µN
t−⟩2

]
≤ C
∥f∥2HJ0,j0√

N
. (6.68)

Since HJ3−1,j3(Rd+1) ↪→H.S. HJ0,j0(Rd+1), one deduces that E[supt∈[0,T ] ∥ηN
t − ηN

t−∥2H−J3+1,j3 ]→ 0 as N →
+∞. The fact that any limit points of (ηN )N≥1 is a.s. continuous follows from Condition 3.28 in Proposition 3.26
of [Jacod and Shiryaev, 1987].

The case of the sequence (
√
NMN )N≥1 is treated very similarly. The proof of the lemma is complete.

6.3 Convergence of (
√
NMN )N≥1 to a G-process

In this section, we prove that the sequence (
√
NMN )N≥1 converges towards a G-process (see Definition 66), see

Proposition 85. The case when the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.7) requires extra analysis

compared to the cases when the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithms (6.5) or (6.9) (see indeed the

second part of the proof of Proposition 85 and Lemma 83 below).

Proposition 82. Assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated either by the algorithm (6.5) or by the

algorithm (6.7). Then, for every f ∈ C1,j0(Rd+1), the sequence {t ∈ R+ 7→
√
NMN

t [f ]}N≥1 converges in
distribution in D(R+,R) towards a process X f ∈ C(R+,R) that has independent Gaussian increments. Moreover,
for all t ∈ R+,

E[X f
t ] = 0 and V ar(X f

t ) = κ2
∫ t

0
V arπ(Q [f ](x,y, µ̄s))ds,

where we recall Q [f ](x,y, µ̄v) = ⟨ϕ(·, ·,x)− y, µ̄v ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄v ⊗ γ⟩ (see Theorem 68).

Proof. We treat separately the two cases when the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.5) or by

the algorithm (6.7). Let f ∈ C1,j0(Rd+1).
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The case of the Idealized algorithm (6.5). Let us assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the

algorithm (6.5). To prove the desired result, we apply the martingale central limit theorem 5.1.4 in [Ethier and Kurtz,
2009] to the sequence {t ∈ R+ 7→

√
NMN

t [f ]}N≥1. Let us first show that Condition (a) in Th. 7.1.4 in [Ethier and
Kurtz, 2009] holds. First of all, by Remark 7.1.5 in [Ethier and Kurtz, 2009], the covariation matrix of

√
NMN

t [f ] is

aN
t [f ] =N

⌊Nt⌋−1∑
k=0

MN
k [f ]2 (6.69)

In particular, aN
t [f ]− as[f ]≥ 0 when t≥ s. On the other hand, by (6.67) (which, we recall, also holds when the

{θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.5)), we have for all T ≥ 0:

lim
N→+∞

E
[

sup
t∈[0,T ]

|
√
NMN

t [f ]−
√
NMN

t− [f ]|
]

= 0. (6.70)

Thus Condition (a) in Th. 7.1.4 in [Ethier and Kurtz, 2009] is satisfied. Let us prove the last required condition in
Theorem 7.1.4 of [Ethier and Kurtz, 2009], namely that for all t ∈ R+, limN aN

t [f ] = ct[f ] in P-probability, where
c satisfies the assumptions of Th. 7.1.1 in [Ethier and Kurtz, 2009] (i.e., t ∈ R+ 7→ ct[f ] is continuous, c0[f ] = 0,
and ct[f ]− cs[f ] ≥ 0 if t ≥ s). Let us consider and fix t ≥ 0. We recall that when the {θi

k, i ∈ {1, . . . ,N}}’s are
generated by the algorithm (6.5), one has that for k ≥ 0 (see Equation (21) in [Descours et al., 2023b]),

DN
k [f ] =− κ

N3

N∑
i=1

N∑
j=1,j,i

∫
X×Y

〈
ϕ(θj

k, ·,x)− y,γ
〉〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

− κ

N2

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ
〉
π(dx,dy)

=− κ

N3

N∑
i=1

N∑
j=1

∫
X×Y

〈
ϕ(θj

k, ·,x)− y,γ
〉〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

+ κ

N3

N∑
i=1

∫
X×Y

〈
ϕ(θi

k, ·,x)− y,γ
〉〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

− κ

N2

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ
〉
π(dx,dy),

and

MN
k [f ] :=− κ

N3

N∑
i=1

N∑
j=1,j,i

(⟨ϕ(θj
k, ·,xk),γ⟩− yk)⟨∇θf(θi

k) · ∇θϕ(θi
k, ·,xk),γ⟩

− κ

N2 ⟨(ϕ(·, ·,xk)− yk)∇θf · ∇θϕ(·, ·,xk),νN
k ⊗ γ⟩−DN

k [f ].

Let us introduce, for any ν ∈HJ0,j0(Rd+1),

Q[f ](ν) =
∫

X×Y

(〈
ϕ(·, ·,x),ν⊗ γ

〉
− y
)〈
∇θf · ∇θϕ(·, ·,x),ν⊗ γ

〉
π(dx,dy).

Let us also define for k ≥ 0 and N ≥ 1,

RN
k [f ] := κ

N3

N∑
i=1

(⟨ϕ(θi
k, ·,xk),γ⟩− yk)⟨∇θf(θi

k) · ∇θϕ(θi
k, ·,xk),γ⟩

− κ

N2 ⟨(ϕ(·, ·,xk)− yk)∇θf · ∇θϕ(·, ·,xk),νN
k ⊗ γ⟩

− κ

N3

N∑
i=1

∫
X×Y

(〈
ϕ(θi

k, ·,x),γ
〉
− y
)〈
∇θf(θi

k) · ∇θϕ(θi
k, ·,x),γ

〉
π(dx,dy)

+ κ

N2

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),νN

k ⊗ γ
〉
π(dx,dy).
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It then holds for all k ≥ 0 and N ≥ 1:

MN
k [f ] =− κ

N
Q [f ](xk,yk,ν

N
k ) + κ

N
Q[f ](νN

k ) +RN
k [f ]. (6.71)

Hence, by (6.69) and (6.71), for all t ∈ R+,

aN
t [f ] = κ2

N

⌊Nt⌋−1∑
k=0

[
Q [f ](xk,yk,ν

N
k )−Q[f ](νN

k )
]2 + 2κ

⌊Nt⌋−1∑
k=0

RN
k [f ]

[
Q[f ](νN

k )−Q [f ](xk,yk,ν
N
k )
]

+N

⌊Nt⌋−1∑
k=0

RN
k [f ]2. (6.72)

Fix t≥ 0. Recall that we want to identify the limit of (aN
t [f ])N≥1 ∈ RN∗ in P-probability. Using the following

two upper bounds (which can be easily derived using A and Lemma 69)

E
[
|RN

k [f ]|2
]
≤ C∥f∥2C1,j0 /N

4 and E
[
|Q[f ](νN

k )|2
]

+ E
[
|Q [f ](xk,yk,ν

N
k )|2

]
≤ C∥f∥2C1,j0 ,

one deduces that the two last terms of (6.72) converge to zero in L1. Therefore, one just needs to determine the
limit in P-probability of

κ2

N

⌊Nt⌋−1∑
k=0

[Q [f ](xk,yk,ν
N
k )−Q[f ](νN

k )]2 = κ2

N

⌊Nt⌋−1∑
k=0

V arπ(Q [f ](x,y,νN
k ))

+ κ2

N

⌊Nt⌋−1∑
k=0

(Q [f ](xk,yk,ν
N
k )−Q[f ](νN

k ))2

− κ2

N

⌊Nt⌋−1∑
k=0

V arπ(Q [f ](x,y,νN
k )). (6.73)

On the one hand, using Theorem 65 together with the continuous mapping theorem and the dominated convergence
theorem, one deduces that for all t≥ 02:

κ2

N

⌊Nt⌋−1∑
k=0

V arπ(Q [f ](x,y,νN
k )) = κ2

⌊Nt⌋−1∑
k=0

∫ k+1
N

k
N

V arπ(Q [f ](x,y,µN
s ))ds

= κ2
∫ t

0
V arπ(Q [f ](x,y,µN

s ))ds−κ2
∫ t

⌊Nt⌋
N

V arπ(Q [f ](x,y,µN
s ))ds

P−−−−−→
N→+∞

κ2
∫ t

0
V arπ(Q [f ](x,y, µ̄s))ds.

Let us now deal with the two remainders terms in (6.73). Denoting byL N
k = [Q [f ](xk,yk,ν

N
k )−Q[f ](νN

k )]2, we
notice that V arπ(Q [f ](x,y,νN

k )) = E(x,y)∼π[L N
k ]. Moreover if j < k, sinceL N

j is FN
k -measurable (see (6.6))

as well as νN
k , and (xk,yk)⊥⊥FN

k , one has:

E
[(
L N

k −Eπ[L N
k ]
)(
L N

j −Eπ[L N
j ]
)]

= E
[(
L N

j −Eπ[L N
j ]
)

E
[(
L N

k −Eπ[L N
k ]
)
|FN

k

]]
= E

[(
L N

j −Eπ[L N
j ]
)

Eπ

[(
L N

k −Eπ[L N
k ]
)]]

= E
[(
L N

j −Eπ[L N
j ]
)
× 0
]

= 0.

2This is indeed the same proof as the one made just after Eq. (3.63) in [Descours et al., 2022b], changing σ there by H = ⟨∇θϕ,γ⟩.
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Thus, it holds:

E
[∣∣∣κ2

N

⌊Nt⌋−1∑
k=0

[Q [f ](xk,yk,ν
N
k )−Q[f ](νN

k )]2− κ2

N

⌊Nt⌋−1∑
k=0

V arπ(Q [f ](x,y,νN
k ))

∣∣∣2]

= κ4

N2

⌊Nt⌋−1∑
k=0

E
[∣∣∣[Q [f ](xk,yk,ν

N
k )−Q[f ](νN

k )]2−V arπ(Q [f ](x,y,νN
k ))

∣∣∣2]

≤ C

N2

⌊Nt⌋−1∑
k=0

E[|Q [f ](xk,yk,ν
N
k )|4]≤ C

N
∥f∥4C1,j0 → 0.

We have thus shown that for all t≥ 0, aN
t [f ]→ κ2 ∫ t

0 V arπ(Q [f ](x,y, µ̄s))ds in P-probability and as N →+∞.
Therefore, for t ≥ 0, ct[f ] = κ2 ∫ t

0 V arπ(Q [f ](x,y, µ̄s))ds. This ends the proof of the proposition when the the
{θi

k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.5).

The case of the BbB algorithm (6.7). Let us assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the

algorithm (6.7). We will also apply the central limit theorem 7.1.4 in [Ethier and Kurtz, 2009] to the sequence
{t ∈ R+ 7→

√
NMN

t [f ]}N≥1. Again, we define, as in (6.69),

aN
t [f ] =N

⌊Nt⌋−1∑
k=0

MN
k [f ]2.

Condition (a) in Th. 7.1.4 in [Ethier and Kurtz, 2009] is satisfied and we will now prove the last required
condition in Th. 7.1.4 in [Ethier and Kurtz, 2009]. Let us introduce the following random probability measures over
Rd+1×Rd:

rN
k = 1

N

N∑
i=1

δ(θi
k

,Zi
k

) and ρN
t = rN

⌊Nt⌋, k ≥ 0, t≥ 0. (6.74)

We also set, for (x,y) ∈ X×Y and ρ ∈ P(Rd+1×Rd),

Q[f ](x,y,ρ) = ⟨ϕ(·, ·,x)− y,ρ⟩⟨∇θf(πRd+1(·)) · ∇θϕ(·, ·,x),ρ⟩,

where, for (θ,Z) ∈ Rd+1×Rd, πRd+1 is the projection onto Rd+1: πRd+1(θ,Z) = θ ∈ Rd+1. By Item 2 in the
proof of Lemma 73, one has for k ≥ 0,

MN
k [f ] =− κ

N
⟨ϕ(·, ·,xk)− yk,rN

k ⟩⟨∇θf(πRd+1(·)) · ∇θϕ(·, ·,xk),rN
k ⟩−DN

k [f ]

=− κ

N
Q[f ](xk,yk,rN

k )−DN
k [f ] = FN (xk,yk,rN

k )−DN
k [f ]

where
FN (xk,yk,rN

k ) =− κ

N
Q[f ](xk,yk,rN

k ).

Fix t≥ 0. Let us identify the limit in probability as N →+∞ of the sequence (aN
t [f ])N≥1 ⊂ R. We define at

iteration k ≥ 1 a larger σ-algebra than FN
k (see (6.8)), in which, contrary to FN

k , the sequence {Zj
k, j = 1, . . . ,N}

is considered:
ΣN

k = σ
(
θi

0,Z
j
q′ ,(xq,yq),1≤ i, j ≤N,0≤ q ≤ k− 1,0≤ q′ ≤ k

})
.

We rewrite aN
t [f ] as follows:

aN
t [f ] =N

⌊Nt⌋−1∑
k=0

(
E
[
MN

k [f ]2
∣∣ΣN

k

]
+ MN

k [f ]2−E
[
MN

k [f ]2
∣∣ΣN

k

])
. (6.75)
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By (6.67), it holds:

E
[(
N

⌊Nt⌋−1∑
k=0

MN
k [f ]2−E[MN

k [f ]2|ΣN
k ]
)2]

=N2
⌊Nt⌋−1∑

k=0
E
[(

MN
k [f ]2−E[MN

k [f ]2|ΣN
k ]
)2]

≤ CN2
⌊Nt⌋−1∑

k=0
E[MN

k [f ]4]≤ CN2∥f∥4C1,j0/N
3→ 0.

Hence, the two last terms of (6.75) converge to zero in L2, i.e.:

N

⌊Nt⌋−1∑
k=0

MN
k [f ]2−E

[
MN

k [f ]2
∣∣ΣN

k

] L2
−−−−→
N→∞

0. (6.76)

Therefore, the limit in P-probability ct[f ] of aN
t [f ] is given by the limit in P-probability of

N

⌊Nt⌋−1∑
k=0

E
[
MN

k [f ]2
∣∣ΣN

k

]
=N

⌊Nt⌋−1∑
k=0

V arπ(FN (x,y,rN
k )),

where the equality holds since (xk,yk)⊥⊥ ΣN
k and the (θj

k,Z
k
j )’s are ΣN

k -measurable. We then write:

N

⌊Nt⌋−1∑
k=0

V arπ(FN (x,y,rN
k ))

= κ2

N

⌊Nt⌋−1∑
k=0

V arπ(Q[f ](x,y,rN
k ))

= κ2
⌊Nt⌋−1∑

k=0

∫ k+1
N

k
N

V arπ(Q[f ](x,y,ρN
s ))ds

= κ2
∫ t

0
V arπ(Q[f ](x,y,ρN

s ))ds−κ2
∫ t

⌊Nt⌋
N

V arπ(Q[f ](x,y,ρN
s ))ds. (6.77)

For this fix time t≥ 0, we would like now to pass to the limit N →+∞ (in P-probability) in (6.77). We recall the
standard result: (XN )N≥1 converges to X in P-probability if for any subsequence N ′ there exists a subsequence
N⋆ of N ′ such that a.s. XN⋆ →X . We will use such a result. Let us thus consider a subsequence N ′. Let us show
that there exists a subsequence N⋆ of N ′ such that a.s.

N⋆
⌊N⋆t⌋−1∑

k=0
V arπ(FN⋆(x,y,rN⋆

k ))→ κ2
∫ t

0
V arπ(Q [f ](x,y, µ̄s))ds.

Since q0 := 2max(j0,p0) > 1 + (d+ 1)/2, by Theorem 65, in P-probability, limN ′ µN ′ = µ̄ in the space
D(R+,Pq0(Rd+1)). Hence, there exists a subsequence N ′′ of N ′ such that µN ′′ converges a.s. to µ̄ in
D(R+,Pq0(Rd+1)). By Lemma 83 below, it holds a.s. for all s≥ 0,

ρN ′′
s → µ̄s⊗ γ as N ′′→+∞ in Pq0(Rd+1×Rd). (6.78)

We now claim that a.s. for all s≥ 0

V arπ(Q[f ](x,y,ρN ′′
s ))→ V arπ(Q[f ](x,y, µ̄s⊗ γ)) as N ′′→+∞. (6.79)

Let us prove this claim. We recall that by definition:

V arπ(Q[f ](x,y,ρN ′′
s )) = E(x,y)∼π[|Q[f ](x,y,ρN ′′

s )|2]−E(x,y)∼π[Q[f ](x,y,ρN ′′
s )]

2
, (6.80)
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where

Q[f ](x,y,ρN ′′
s ) = ⟨ϕ(·, ·,x)− y,ρN ′′

s ⟩⟨∇θf(πRd+1(·)) · ∇θϕ(·, ·,x),ρN ′′
s ⟩. (6.81)

Since (θ,z) 7→ ϕ(θ,z,x)− y is continuous and bounded (uniformly over θ,z,x,y), it holds a.s. for all s ≥ 0,
x,y ∈ X×Y, ⟨ϕ(·, ·,x)− y,ρN ′′

s ⟩ → ⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩ as N ′′→+∞. On the other hand, since the function
(θ,z) 7→ ⟨∇θf(θ) · ∇θϕ(θ,z,x) is continuous and bounded by C∥f∥C1,j0 (1 + |θ|j0)b(z). Since (1 + |θ|j0)b(z) is
bounded by the function Dq0(θ,z) = 1 + |θ|q0 + |z|q0 (recall that by A1, b(z) = 1 + |z|p0 ), one has from (6.78), as
N ′′→+∞, a.s. for all s≥ 0, x ∈ X,

⟨∇θf(πRd+1(·)) · ∇θϕ(·, ·,x),ρN ′′
s ⟩ → ⟨∇θf(πRd+1(·)) · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩.

Note also that by the previous analysis, we have a.s. for all s≥ 0, x,y ∈ X×Y,

|Q[f ](x,y,ρN ′′
s )| ≤ sup

x,y
|Q[f ](x,y,ρN ′′

s )| ≤ C∥f∥C1,j0 ⟨Dq0 ,ρ
N ′′
s ⟩ (6.82)

≤ C∥f∥C1,j0 sup
N ′′≥1

⟨Dq0 ,ρ
N ′′
s ⟩<+∞

where the last inequality follows e.g. from the fact that (⟨Dq0 ,ρ
N ′′
s ⟩)N ′′ is a converging sequence. Together with the

dominated convergence theorem, one deduces (6.79).
Let us now consider the random variable

∫ t
0 V arπ(Q[f ](x,y,ρN ′′

s ))ds appearing in the r.h.s of (6.77).
By (6.80), (6.81), (6.82), and (6.89), it holds a.s. for all s≥ 0 and x,y ∈ X×Y,

V arπ(Q[f ](x,y,ρN ′′
s ))≤ C∥f∥2C1,j0 |⟨Dq0 ,ρ

N ′′
s ⟩|2

≤ C∥f∥2C1,j0 sup
N ′′≥1

sup
s∈[0,t]

|⟨Dq0 ,ρ
N ′′
s ⟩|2 <+∞.

Therefore, using also (6.79) and the dominated convergence theorem, for this fix t≥ 0, one has:

κ2
∫ t

0
V arπ(Q[f ](x,y,ρN ′′

s ))ds a.s.−−−−−→
N ′′→∞

κ2
∫ t

0
V arπ(Q[f ](x,y, µ̄s⊗ γ))ds.

Let us now consider the last term in (6.77). We have using (6.90),

E
[∣∣∣∫ t

⌊N′′t⌋
N′′

V arπ(Q[f ](x,y,ρN ′′
s ))ds

∣∣∣]= E
[∣∣∣∫ t

0
V arπ(Q[f ](x,y,ρN ′′

s ))1
s∈
[

⌊N′′t⌋
N′′ ,t

]ds∣∣∣]
≤ 1
N ′′ E

[
sup

s∈
[

⌊N′′t⌋
N′′ ,t

]V arπ(Q[f ](x,y,ρN ′′
s ))

]

≤
C∥f∥2C1,j0

N ′′ E
[

sup
s∈
[

⌊N′′t⌋
N′′ ,t

] |⟨Dq0 ,ρ
N ′′
s ⟩|2

]

≤
C∥f∥2C1,j0

N ′′ −−−−−→
N ′′→∞

0.

Therefore, there exists N⋆ ⊂N ′′ such that∫ t

⌊N⋆t⌋
N⋆

V arπ(Q[f ](x,y,ρN⋆

s ))ds a.s.−−−−−→
N⋆→∞

0.

Thus, we have found a subsequence N⋆ ⊂N ′ such that a.s.

N⋆
⌊N⋆t⌋−1∑

k=0
V arπ(FN⋆(x,y,rN⋆

k )) a.s.−−−−−→
N⋆→∞

ct[f ] := κ2
∫ t

0
V arπ(Q[f ](x,y, µ̄s⊗ γ))ds.
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Consequently

N

⌊Nt⌋−1∑
k=0

V arπ(FN (x,y,rN
k )) P−−−−→

N→∞
ct[f ].

This is the desired result since Q[f ](x,y, µ̄s⊗ γ) = Q [f ](x,y, µ̄s). The proof of the proposition is complete.

Lemma 83. Assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.7). Assume also A and let

q0 ∈ 2N such that q0 > 1 + (d+ 1)/2. Assume that along some subsequence N , (µN )N converges a.s. to µ̄ in
D(R+,Pq0(Rd+1)). Then, it holds a.s. for all s≥ 0:

lim
N →+∞

ρN
s = µ̄s⊗ γ in Pq0(Rd+1×Rd).

Proof. In the following, we simply denote N by N . Assume that µN a.s.−−→ µ̄ in D(R+,Pq0(Rd+1)). Recall that
Dq0(θ,z) = 1 + |θ|q0 + |z|q0 . According to Th. 6.0 in [Villani, 2009], to prove the lemma it is enough to show that
a.s. for all s≥ 0,

lim
N→+∞

ρN
s = µ̄s⊗ γ in P(Rd+1×Rd) and lim

N→+∞
⟨Dq0 ,ρ

N
s ⟩= ⟨Dq0 , µ̄s⊗ γ⟩. (6.83)

We have for any continuous fonction h : Rd+1×Rd→ R and s≥ 0,

⟨h,ρN
s ⟩− ⟨h, µ̄s⊗ γ⟩= 1

N

N∑
i=1

(
h(θi

⌊Ns⌋,Z
i
⌊Ns⌋)−

∫
Rd
h(θi

⌊Ns⌋,z)γ(z)dz
)

+ 1
N

N∑
i=1

∫
Rd
h(θi

⌊Ns⌋,z)γ(z)dz−⟨h, µ̄s⊗ γ⟩, (6.84)

as soon as the
∫
Rd h(θ,z)γ(z)dz’s (θ ∈ Rd+1) and ⟨h, µ̄s⊗ γ⟩ are well defined.

Step 1. We start by proving the first statement in (6.83). Let t ≥ 0. We pick g ∈ Cb(Rd+1 ×Rd). Note that in
this case (6.84) holds with h = g. For ease of notation, we set S i

k (g) = g(θi
k,Zi

k)−
∫
Rd g(θi

k,z)γ(z)dz, and we
will also simply denote S i

k (g) by S i
k . Note that since g is bounded, for all m ∈N∗, E[|S i

k |
m] ≤ C for some

C > 0 independent of i ∈ {1, . . . ,N}, N ≥ 1, and k ≥ 0. Let us consider ij ∈ {0, . . . ,6}, j = 1, . . . ,6 such that∑6
j=1 ij = 6. Assume that there exists j0 ∈ {1, . . . ,6} such that ij0 = 1 and ij0 , il for all l , j0. Then, it holds:

E
[ 6∏

j=1
S

ij

k

]
= 0.

Therefore, it holds:

E
[

sup
s∈[0,t]

∣∣∣ 1
N

N∑
i=1

g(θi
⌊Ns⌋,Z

i
⌊Ns⌋)−

∫
Rd
g(θi

⌊Ns⌋,z)γ(z)dz
∣∣∣6]

≤
⌊Nt⌋∑
k=0

E
[∣∣∣ 1
N

N∑
i=1
S i

k

∣∣∣6]

= 1
N6

⌊Nt⌋∑
k=0

N∑
i=1

E[|S i
k |

6] + 1
N6

⌊Nt⌋∑
k=0

∑
i,j

E[(S i
k )3(S j

k )
3
] + 1

N6

⌊Nt⌋∑
k=0

∑
i,j

E[|S i
k |

4|S j
k |

2]

+ 1
N6

⌊Nt⌋∑
k=0

∑
i,j,ℓ

E[|S i
k |

2|S j
k |

2|S ℓ
k |

2]≤ C

N2 ,

where
∑

i,j,ℓ is a short notation for the sum over the triples (i, j, ℓ) such that i , j, j , ℓ, and ℓ , i.
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By Borel-Cantelli lemma, one deduces that, for all t≥ 0 it holds a.s.

sup
s∈[0,t]

∣∣∣ 1
N

N∑
i=1

g(θi
⌊Ns⌋,Z

i
⌊Ns⌋)−

∫
Rd
g(θi

⌊Ns⌋,z)γ(z)dz
∣∣∣→ 0 as N →+∞. (6.85)

Considering t ∈N, on deduces that a.s. for all t≥ 0, (6.85) holds. Let us now show that a.s. for all s ∈ R+,

1
N

N∑
i=1

∫
Rd
g(θi

⌊Ns⌋,z)γ(z)dz−⟨g, µ̄s⊗ γ⟩ → 0 as N →+∞. (6.86)

Since W1 ≤Wq0 , we have that µN a.s.−−→ µ̄ in D(R+,P1(Rd+1)). As µ̄ ∈ C(R+,P1(Rd+1)), it holds a.s. for all
t ∈ R+, µN

t → µ̄t in P1(Rd+1). Let us define the function G : θ ∈ Rd+1 7→
∫
Rd g(θ,z)γ(z)dz, which is bounded

continuous. We have a.s. for all s ∈ R+, ⟨G,µN
s ⟩ → ⟨G,µ̄s⟩. This is exactly (6.86).

Considering (6.84) together with (6.85) and (6.86), we have shown that for all g ∈ Cb(Rd+1×Rd), it holds a.s.
for all s≥ 0:

⟨g,ρN
s ⟩ → ⟨g, µ̄s⊗ γ⟩. (6.87)

We now would like to prove that it holds a.s. for all g ∈ Cb(Rd+1×Rd) and all s≥ 0: ⟨g,ρN
s ⟩ → ⟨g, µ̄s⊗γ⟩ (which

would exactly implies the first statement in (6.83)). To this end, by Remark 5.1.6 in [Ambrosio et al., 2008], it is
sufficient to show that a.s. for all s≥ 0 and g ∈ Cc(Rd+1×Rd) (the space of continuous functions with compact
support), ⟨g,ρN

s ⟩ →N→∞ ⟨g, µ̄s ⊗ γ⟩. Since the space Cc(Rd+1 ×Rd) is separable, this last statement follows
from (6.87) and a standard continuity argument. Hence, we have proved that a.s. for all s≥ 0, ρN

s → µ̄s⊗ γ. The
proof of the first statement in (6.83) is complete.

Step 2. Let us now prove the second statement in (6.83). Fix t≥ 0. Note first that by A1, γ has moments of every
order. Thus,

∫
Rd Dq0(θ,z)γ(z)dz = 1 + |θ|q0 + ⟨| · |q0 ,γ⟩ and ⟨Dq0 , µ̄t⊗ γ⟩= 1 + ⟨| · |q0 , µ̄t⟩+ ⟨| · |q0 ,γ⟩ are well

defined. Thus (6.84) holds with h = Dq0 . From the analysis carried out in the first step, (6.85) holds with g is
replaced by Dq0 if for all m≥ 1, i ∈ {1, . . . ,N} and k ∈ {1, . . . ,⌊Nt⌋}, E[|S i

k (Dq0)|m]≤ C (C > 0 independent
of i,k, and N ), which is the case if

E[|Dq0(θi
k,Zi

k)|m] + E
[∣∣∣∫

Rd
Dq0(θi

k,z)γ(z)dz
∣∣∣m]≤ C.

On the one hand, we have E[|Dq0(θi
k,Zi

k)|m] = E[|1+ |θi
k|

q0 + |Zi
k|

q0 |m]≤ Cm(1+E[|θi
k|

q0m]+E[|Zi
k|

q0m])≤ C
(see Lemma 69). With similar computations, E[|

∫
Rd Dq0(θi

k,z)γ(z)dz|m] < +∞. Thus, (6.85) holds with g is
replaced by Dq0 , i.e it holds a.s. for all t≥ 0:

sup
s∈[0,t]

∣∣∣ 1
N

N∑
i=1

Dq0(θi
⌊Ns⌋,Z

i
⌊Ns⌋)−

∫
Rd

Dq0(θi
⌊Ns⌋,z)γ(z)dz

∣∣∣→ 0 as N →+∞. (6.88)

Let us now prove that (6.86) holds with g replaced there by Dq0 . Consider the function D0 : θ ∈ Rd+1 7→∫
Rd Dq0(θ,z)γ(z)dz = 1+ |θ|q0 +⟨| · |q0 ,γ⟩. The functionD0 is continuous over Rd+1 and clearly θ 7→D0(θ)/(1+
|θ|q0) is bounded. Consequently, since µN a.s.−−→ µ̄ in D(R+,Pq0(Rd+1)) and µ̄ ∈ C(R+,Pq0(Rd+1)), it holds a.s.
for all s ∈ R+, ⟨D0,µN

s ⟩ → ⟨D0, µ̄s⟩, which is exactly (6.86) when g is replaced by Dq0 . This achieves the proof of
the second statement in (6.83). The proof of the lemma is therefore complete.

We end the proof of the lemma by deriving two extra estimates (namely (6.89) and (6.90) below) which will be
useful in the proof of Proposition 82 when the algorithm (6.7) is considered. Since µN a.s.−−→ µ̄ inD(R+,Pq0(Rd+1)),
using e.g. Proposition 5.3 in Chapter 3 of [Ethier and Kurtz, 2009], one has a.s. for all t≥ 0,

sup
N≥1

sup
s∈[0,t]

|⟨D0,µ
N
s ⟩|<+∞.

Say that the previous inequality holds for all ω ∈ Ω∗ where P(Ω∗) = 1. By (6.88), there exists Ω′ with
P(Ω′) = 1 and such that for all ω ∈Ω′ and t≥ 0, it holds as N →+∞
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sup
s∈[0,t]

∣∣⟨Dq0 ,ρ
N
s (ω)⟩− ⟨D0,µ

N
s (ω)⟩

∣∣→ 0.

Therefore, for all ω ∈Ω′ ∩Ω∗, there exists N1(ω)≥ 1 such that that for all N ≥N1(ω) and t≥ 0,

sup
s∈[0,t]

∣∣⟨Dq0 ,ρ
N
s (ω)⟩

∣∣≤ 1 + sup
s∈[0,t]

|⟨D0,µ
N
s (ω)⟩

≤ 1 + sup
N≥1

sup
s∈[0,t]

|⟨D0,µ
N
s (ω)⟩<+∞.

Therefore, for all ω ∈Ω′ ∩Ω∗ and t≥ 0

sup
N≥1

sup
s∈[0,t]

|⟨Dq0 ,ρ
N
s (ω)⟩

∣∣<+∞, (6.89)

i.e. (6.89) holds a.s. for all t≥ 0 (since P(Ω′ ∩Ω∗) = 1). Finally, it holds that for all m≥ 1 and 0≤ t1 ≤ t2,

sup
s∈[t1,t2]

1
N

N∑
i=1
|Zi

⌊Ns⌋|
m ≤

⌊Nt2⌋∑
k=⌊Nt1⌋

1
N

N∑
i=1
|Zi

k|
m.

Since the Zi
k’s are i.i.d. with moments of all order (see A1), one deduces that:

E
[

sup
s∈[t1,t2]

1
N

N∑
i=1
|Zi

⌊Ns⌋|
m
]
≤ (⌊Nt2⌋− ⌊Nt1⌋+ 1)Eγ [|Z|m].

Consequently, using also Lemma 19 in [Descours et al., 2023b], one has:

E
[

sup
s∈[t1,t2]

∣∣∣ 1
N

N∑
i=1

Dq0(θi
⌊Ns⌋,Z

i
⌊Ns⌋)

∣∣∣m]

≤E
[

sup
s∈[t1,t2]

1
N

N∑
i=1

Cm[1 + |θi
⌊Ns⌋|

q0m + |Zi
⌊Ns⌋|

q0m]
]

≤ CmE
[

sup
s∈[0,t2]

⟨1 + |.|q0m,µN
t ⟩
]

+Cm(⌊Nt2⌋− ⌊Nt1⌋+ 1)Eγ [|Z|q0m]

≤ C +C(⌊Nt2⌋− ⌊Nt1⌋+ 1)Eγ [|Z|q0m],

where C > 0 is independent of N ≥ 1. In particular, when t2− t1 ≤ 1/N , it holds

E
[

sup
s∈[t1,t2]

∣∣⟨Dq0 ,ρ
N
s ⟩
∣∣m]≤ C, (6.90)

where C > 0 is independent of N ≥ 1.

With the same arguments as those used to prove Proposition 82 when the {θi
k, i ∈ {1, . . . ,N}}’s are generated

by the algorithm (6.5), we obtain

Proposition 84. Assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.9). Assume also A.

Then, for every f ∈ C2,j0(Rd+1), the sequence {t ∈ R+ 7→
√
NMN

t [f ]}N≥1 converges in distribution in D(R+,R)
towards a process X f ∈ C(R+,R) that has independent Gaussian increments. Moreover, for all t ∈ R+,

E[X f
t ] = 0 and V ar(X f

t ) = κ2
∫ t

0
V arπ⊗γ⊗2(Q [f ](x,y,z1,z2, µ̄s))ds,

where we recall Q [f ](x,y,z1,z2, µ̄v) = ⟨ϕ(·,z1,x)− y, µ̄v⟩⟨∇θf · ∇θϕ(·,z2,x), µ̄v⟩ (see Theorem 68).
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Proposition 85. Assume that the {θi
k, i ∈ {1, . . . ,N}}’s are generated either by the algorithm (6.5), (6.7), or (6.9).

Assume also A. Then, (
√
NMN )N≥1 converges in distribution in D(R+,H−J3,j3(Rd+1)) to a G-process G ∈

C(R+,H−J3,j3(Rd+1)) (see Definition 66) with covariance structure given by: for all 1 ≤ i, j ≤ k, f1, . . . ,fk ∈
HJ3,j3(Rd+1) and 0≤ s≤ t,

• When the {θi
k, i ∈ {1, . . . ,N}}’s are generated either by the algorithm (6.5) and (6.7),

Cov(Gt[fi],Gs[fj ]) = η2
∫ s

0
Cov(Q [fi](x,y, µ̄v),Q [fj ](x,y, µ̄v))dv,

where we recall Q [f ](x,y, µ̄v) = ⟨ϕ(·, ·,x)− y, µ̄v ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄v ⊗ γ⟩ (see Theorem 68).

• When the {θi
k, i ∈ {1, . . . ,N}}’s are generated either by the algorithm (6.9),

Cov(Gt[fi],Gs[fj ]) = η2
∫ s

0
Cov(Q [fi](x,y,z1,z2, µ̄v),Q [fj ](x,y,z1,z2, µ̄v))dv,

where we recall Q [f ](x,y,z1,z2, µ̄v) = ⟨ϕ(·,z1,x)− y, µ̄v⟩⟨∇θf · ∇θϕ(·,z2,x), µ̄v⟩ (see Theorem 68).

Proof. The proof of Proposition 85 relies on the same arguments as those used to prove Prop. 3.13 in [Descours
et al., 2022b].

6.4 On the limit points of (ηN ,
√
NMN )N≥1

In this section, we come back to the case when the {θi
k, i ∈ {1, . . . ,N}}’s are generated by the algorithm (6.7). The

other two cases (namely (6.5) and (6.9)) are treated similarly, and all the results of this section also holds for each of
these other two algorithms.

Let us derive the pre-limit equation for the fluctuation process ηN , see (6.91) just below. On the one hand, one
has for all N ≥ 1, t≥ 0 and f ∈HJ0,j0(Rd+1),

√
N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩π(dx,dy)ds

−
√
N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y,µN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ⟩π(dx,dy)ds

=−
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN

s ⊗ γ⟩π(dx,dy)ds

−
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩π(dx,dy)ds

− 1√
N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN
s ⊗ γ⟩π(dx,dy)ds.
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Hence, using (6.25) and (6.13), we obtain the following pre-limit equation for ηN :

⟨f,ηN
t ⟩− ⟨f,ηN

0 ⟩=−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN

s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩π(dx,dy)ds

− κ√
N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN
s ⊗ γ⟩π(dx,dy)ds

−κ
∫ t

0
⟨∇θf · ∇θDKL(q1

· |P 1
0 ),ηN

s ⟩ds

+ κ√
N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ√
N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+
√
NMN

t [f ] +
√
NWN

t [f ] +
√
NRN

t [f ]. (6.91)

The aim of this section is to pass to the limit N →+∞ in (6.91). We start with the following lemma whose proof,
identical to the one of Lemma 3.16 in [Descours et al., 2022b], is omitted.

Lemma 86. Assume A. Then, the sequence (ηN
0 )N≥1 converges in distribution in H−J3+1,j3(Rd+1) towards

a variable ν0 which is the unique (in distribution) H−J3+1,j3(Rd+1)-valued random variable such that for all
k ≥ 1 and f1, . . . ,fk ∈ HJ3−1,j3(Rd+1), (⟨f1,ν0⟩, . . . ,⟨fk,ν0⟩)T ∼ N (0,C(f1, . . . ,fk)), where C(f1, . . . ,fk) is
the covariance matrix of the vector (f1(θ1

0), . . . ,fk(θ1
0))T .

Let us now set
E =D(R+,H−J3+1,j3(Rd+1))×D(R+,H−J3,j3(Rd+1)). (6.92)

According to Propositions 70 and 80, (ηN ,
√

MN ) is tight in E . Let (η⋆,G ∗) be one of its limit point in E . Along
some subsequence N ′, it holds:

(ηN ′
,
√
N ′MN ′)→ (η⋆,G ⋆), as N ′→∞.

Considering the marginal distributions, and according to Lemma 81, it holds a.s.

η⋆ ∈ C(R+,H−J3+1,j3(Rd+1)) and G ⋆ ∈ C(R+,H−J3,j3(Rd+1)). (6.93)

By uniqueness of the limit in distribution, using Lemma 86 (together with the fact that the function m ∈
D(R+,H−J3+1,j3(Rd+1)) 7→m0 ∈H−J3+1,j3(Rd+1) is continuous) and Proposition 85, it also holds:

η⋆
0
L= ν0 and G ⋆ L= G . (6.94)

Proposition 87. Assume A. Then, η⋆ is a weak solution of (EqL) with initial distribution ν0.

Proof. Let us introduce, for Φ ∈H−J3+1,j3(Rd+1), f ∈HJ3,j3−1(Rd+1), and s≥ 0:

Us[f ](Φ) = κ

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),Φ ⊗ γ⟩π(dx,dy), (6.95)

Vs[f ](Φ) = κ

∫
X×Y
⟨ϕ(·, ·,x),Φ ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩π(dx,dy), (6.96)

and
Ws[f ](Φ) = κ⟨∇θf · ∇θDKL(q1

· |P 1
0 ),Φ⟩ (6.97)
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The term Us[f ](Φ) is well defined because f ∈ H−J3,j3−1(Rd+1) ↪→ HJ3,j3(Rd+1). Since j3 > (d+ 1)/2,
using (6.27) and because µ̄s ∈ Pj0(Rd+1) (f ∈ C1,j0(Rd+1)), Vs[f ](Φ) is well defined. The term Ws[f ](Φ) is well
defined because of (6.36). Equation (6.91) can be rewritten as follows:

⟨f,ηN
t ⟩− ⟨f,ηN

0 ⟩+
∫ t

0
(Us[f ](ηN

s ) +Vs[f ](ηN
s ) +Ws[f ](ηN

s ))ds−
√
NMN

t [f ] = eN
t [f ], (6.98)

where

ReN
t [f ] =− κ√

N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN
s ⊗ γ⟩π(dx,dy)ds

+ κ√
N

∫ t

0

∫
X×Y

〈
⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN

s

〉
π(dx,dy)ds

− κ√
N

∫ t

0

∫
X×Y

〈
(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN

s ⊗ γ
〉
π(dx,dy)ds

+
√
NWN

t [f ] +
√
NRN

t [f ].

Fix f ∈HJ3,j3−1(Rd+1) and t ∈ R+.

Step 1. In this step we study the continuity of the mapping

Bt[f ] :m ∈ D(R+,H−J3+1,j3(Rd+1)) 7→ ⟨f,mt⟩+
∫ t

0
(Us[f ](ms) +Vs[f ](ms) +Ws[f ](ms))ds (6.99)

Let (mN )N≥1 such that mN →m in D(R+,H−J3+1,j3(Rd+1)). Using (6.34), it holds, for all N ≥ 1, s ∈ [0, t]
and x ∈ X,

|⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),mN
s ⊗ γ⟩|

≤ C
∥∥∇θf · ∇θH(·,x)

∥∥
HJ3−1,j3 sup

N≥1
sup

s∈[0,t]
∥mN

s ∥H−J3+1,j3

≤ C∥f∥HJ3,j3 sup
N≥1

sup
s∈[0,t]

∥mN
s ∥H−J3+1,j3 <+∞.

We also have, by (6.27) and the embedding f ∈HJ3,j3−1(Rd+1) ↪→C1,j0(Rd+1) and the fact that µ̄ ∈ C(R+,Pj0(Rd+1)),

|⟨ϕ(·, ·,x),mN
s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩| ≤ C sup

N≥1
sup

s∈[0,t]
∥mN

s ∥H−J3+1,j3

×∥f∥C1,j0 sup
s∈[0,t]

⟨1 + | · |j0 , µ̄s⟩<+∞.

Finally, using (6.36),

|⟨∇θf · ∇θDKL(q1
· |P 1

0 ),mN
s ⟩| ≤ ∥∇θf · ∇θDKL(q1

· |P 1
0 )∥HJ3−1,j3 sup

N≥1
sup

s∈[0,t]
∥mN

s ∥H−J3+1,j3

≤ C∥f∥HJ3,j3−1 sup
N≥1

sup
s∈[0,t]

∥mN
s ∥H−J3+1,j3 <+∞.

These bounds allow to apply the dominated convergence theorem to obtain that Bt[f ](mN )→Bt[f ](m), as soon
as t is a continuity point of m. Consequently, using (6.93) and the continuous mapping theorem 2.7 in [Billingsley,
1999], it holds, for all t ∈ R+ and f ∈HJ3,j3−1(Rd+1),

Bt[f ](ηN ′)−⟨f,ηN ′
0 ⟩−

√
N ′MN ′

t [f ] L−−−−−→
N ′→∞

Bt[f ](η∗)−⟨f,η∗
0⟩−G ∗

t [f ]. (6.100)
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Step 2. In this step, we prove that for any t ∈ R+ and f ∈HJ3,j3−1(Rd+1):

E
[
|ReN

t [f ]|
]
→N→∞ 0. (6.101)

By (6.34)-(6.27), the embeddingH−J1,j1(Rd+1) ↪→H−J3+1,j3(Rd+1) and Lemma 73, it holds

E
[∣∣∣ 1√

N

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x),ηN

s ⊗ γ⟩⟨∇θf · ∇θϕ(·, ·,x),ηN
s ⊗ γ⟩π(dx,dy)ds

∣∣∣]
≤
C∥f∥HJ3−1,j3√

N

∫ t

0
E
[
∥ηN

s ∥2H−J3+1,j3

]
ds≤

C∥f∥HJ3−1,j3√
N

∫ t

0
E
[
∥ηN

s ∥2H−J1,j1

]
ds≤

C∥f∥HJ3−1,j3√
N

.

By Lemma 69, we have

E
[ 1√

N

∫ t

0

∫
X×Y

∣∣∣〈⟨ϕ(·, ·,x)− y,γ⟩⟨∇θf · ∇θϕ(·, ·,x),γ⟩,µN
s

〉∣∣∣π(dx,dy)ds

+ κ√
N

∫ t

0

∫
X×Y

∣∣∣〈(ϕ(·, ·,x)− y)∇θf · ∇θϕ(·, ·,x),µN
s ⊗ γ

〉∣∣∣π(dx,dy)ds
]
≤
C∥f∥C1,j0√

N
.

In addition, from (6.38), E[
√
N |RN

t [f ]|] ≤ ∥f∥HJ0,j0 /
√
N . Moreover, it is straightforward to prove that

E[|WN
t [f ]|]≤ ∥f∥HJ0,j0/N . Hence, we have proved (6.101).

Step 3. End of the proof of Proposition 87. By (6.98), (6.100) and (6.101), we deduce that for all f ∈
HJ3,j3−1(Rd+1), and t ∈ R+, it holds a.s. Bt[f ](η⋆)− ⟨f,η⋆

0⟩ −G ⋆
t [f ] = 0. Since HJ3,j3−1(Rd+1) and R+ are

separable, we conclude by a standard continuity argument (and using that every Hilbert-Schmidt embedding is
continuous) that a.s. for all f ∈ HJ3,j3−1(Rd+1) and t ∈ R+, Bt[f ](η⋆)− ⟨f,η⋆

0⟩ −G ⋆
t [f ] = 0. Hence, η⋆ is a

weak solution of (EqL) with initial distribution ν0 (see (6.94)). This ends the proof of Proposition 87.

6.5 Pathwise uniqueness and proof of Theorem 68
Throughout this section, we consider algorithm (6.7), but we recall that all our statements are valid for algorithms (6.5)
and (6.9).

Proposition 88. Assume A. Then strong (pathwise) uniqueness holds for (EqL). Namely, on a fixed probability
space, given a H−J3+1,j3(Rd+1)-valued random variable ν and a G-process G ∈ C(R+,H−J3,j3(Rd+1)), there
exists at most one C(R+,H−J3+1,j3(Rd+1))-valued process η solution to (EqL) with η0 = ν almost surely.

Proof.
By linearity of the involved operators in (EqL), it is enough to consider a C(R+,H−J3+1,j3(Rd+1))-valued

process η solution to (EqL) when a.s. ν = 0 and G = 0, i.e., for every f ∈HJ3,j3−1(Rd+1) and t ∈ R+,{
⟨f,ηt⟩+

∫ t
0 (Us[f ](ηs) +Vs[f ](ηs) +Ws[f ](ηs))ds= 0,

⟨f,η0⟩= 0,
(6.102)

where we recall that U, V and W are defined respectively in (6.95), (6.96) and (6.97). Pick T > 0. By (6.102), we
have, a.s. for all f ∈HJ3,j3−1(Rd+1) and t ∈ [0,T ],

⟨f,ηt⟩2 =−2
∫ t

0
(Us[f ](ηs) +Vs[f ](ηs) +Ws[f ](ηs))⟨f,ηs⟩ds. (6.103)

Since sups∈[0,T ]⟨1 + | · |j0 , µ̄s⟩<+∞, and using (6.27),

− 2
∫ t

0
Vs[f ](ηs)⟨f,ηs⟩ds

≤ 2κ
∫ t

0

[
⟨f,ηs⟩2 +

∫
X×Y
|⟨ϕ(·, ·,x),ηs⊗ γ⟩|2|⟨∇θf · ∇θϕ(·, ·,x), µ̄s⊗ γ⟩|2π(dx,dy)

]
ds

≤ C
∫ t

0

[
⟨f,ηs⟩2 + ∥ηs∥2H−J3,j3 ∥f∥

2
C1,j0

]
ds≤ C

∫ t

0

[
⟨f,ηs⟩2 + ∥ηs∥2H−J3+1,j3∥f∥

2
HJ0,j0

]
ds.
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Consider an orthonormal basis {fa}a≥1 ofH−J3,j3−1(Rd+1). Recall that Tx : f ∈H−J3,j3−1(Rd+1) 7→
∫
Rd∇θf ·

∇θϕ(·,z,x)γ(z)dz ∈ HJ3−1,j3−1(Rd+1) (see (6.47)). By Lemma B.2 in [Descours et al., 2022b], one deduces
that:

−2
∑
a≥1

∫ t

0
Us[fa](ηs)⟨fa,ηs⟩ds=−2κ

∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩

∑
a≥1
⟨Txfa,ηs⟩⟨fa,ηs⟩π(dx,dy)ds

=−2κ
∫ t

0

∫
X×Y
⟨ϕ(·, ·,x)− y, µ̄s⊗ γ⟩⟨ηs,T∗

xηs⟩H−J3,j3−1π(dx,dy)ds

≤ C
∫ t

0
∥ηs∥2H−J3,j3−1ds.

Using the operator T : f ∈HJ3,j3−1(Rd+1) 7→ ∇θf ·∇θDKL(q1
· |P 1

0 ) ∈HJ3−1,j3(Rd+1) (see (6.49)) together with
Lemma 77, we obtain∑

a≥1
−2
∫ t

0
Ws[fa](ηs)⟨fa,ηs⟩ds=−2κ

∫ t

0

∑
a≥1
⟨Tfa,ηs⟩⟨fa,ηs⟩ds=−2κ

∫ t

0
⟨ηs,T∗ηs⟩H−J3,j3−1ds

≤ C
∫ t

0
∥ηs∥2H−J3,j3−1ds

Hence, using (6.103), one deduces that a.s. for all t ∈ [0,T ],

∥ηt∥2H−J3,j3−1 =
∑
a≥1
⟨fa,ηt⟩2 ≤ C

∫ t

0
∥ηs∥2H−J3,j3−1ds.

By Gronwall’s lemma, a.s. for all t ∈ [0,T ], ∥ηt∥H−J3,j3−1 = 0. This concludes the proof of Proposition 88.

We are now in position to conclude the proof of Theorem 68.
Proof. [Proof of Theorem 68] Let us consider the case when the θi

k’s are generated by the algorithm (6.7) (the
proofs of Theorem 68 are exactly the same when they are generated by the algorithms (6.5) or the algorithm (6.9)).
By Proposition 70, (ηN ) admits a limit point. Assume that it admits two limit points. Let ℓ ∈ {1,2} and Nℓ

be such that in distribution ηNℓ → ηℓ in D(R+,H−J3+1,j3(Rd+1)). Recall that from Lemma 81, we have a.s.
ηℓ ∈ C(R+,H−J3+1,j3(Rd+1)). Let us now consider a limit point (ηℓ,⋆,G ℓ,⋆) of (ηNℓ ,

√
NℓMNℓ) in E (see (6.92)).

Up to extracting a subsequence from Nℓ, we assume

(ηNℓ ,
√
NℓMNℓ) L−−−−−→

Nℓ→∞
(ηℓ,⋆,G ℓ,⋆) in E .

Considering the marginal distributions, we then have by uniqueness of the limit in distribution, for ℓ= 1,2,

ηℓ,⋆ L= ηℓ and G ℓ,⋆ L= G . (6.104)

where G is a G-process given by Proposition 85. Recall also that from Proposition 87, both η1,⋆ and η2,⋆ are two
weak solutions of (EqL) with initial distribution ν0 (see also Lemma 86). Since strong uniqueness for (EqL) (see
Proposition 88) implies weak uniqueness for (EqL), we deduce that η1,⋆ = η2,⋆ in law. By (6.104), this implies
η1 = η2 in law. Consequently, the whole sequence (ηN )N≥1 converges in distribution inD(R+,H−J3+1,j3(Rd+1)).
Denoting by η⋆ its limit, we have proved that η⋆ has the same distribution as the unique weak solution of (EqL)
with initial distribution ν0. The proof Theorem 68 is complete.
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7
Theoretical Guarantees for Variational Inference with

Fixed-Variance Mixture of Gaussians

Chapter abstract: Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best
approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse)
Kullback-Leibler (KL) divergence. Despite its empirical success, the theoretical properties of VI have only received
attention recently, and mostly when the parametric family is the one of Gaussians. This work aims to contribute to
the theoretical study of VI in the non-Gaussian case by investigating the setting of Mixture of Gaussians with fixed
covariance and constant weights. In this view, VI over this specific family can be casted as the minimization of a
Mollified relative entropy, i.e. the KL between the convolution (with respect to a Gaussian kernel) of an atomic
measure supported on Diracs, and the target distribution. The support of the atomic measure corresponds to the
localization of the Gaussian components. Hence, solving variational inference becomes equivalent to optimizing
the positions of the Diracs (the particles), which can be done through gradient descent and takes the form of an
interacting particle system. We study two sources of error of variational inference in this context when optimizing
the mollified relative entropy. The first one is an optimization result, that is a descent lemma establishing that the
algorithm decreases the objective at each iteration. The second one is an approximation error, that upper bounds
the objective between an optimal finite mixture and the target distribution.

1 Introduction

A fundamental problem in computational statistics and machine learning is to compute integrals with respect to
some target probability distribution µ⋆ on Rd whose density is known only up to a normalization constant. For
instance in Bayesian inference, µ⋆ is the posterior distribution over the parameters of complex models. The general
goal of sampling methods is thus to provide an approximate distribution for which the integrals are easily computed.
A large number of methods have been developed to tackle this problem. The classical approach is to sample the
posterior using Markov Chain Monte Carlo (MCMC) algorithms, in which a Markov chain designed to converge to
µ⋆ is simulated for a sufficiently long time [Roberts and Rosenthal, 2004]. These methods use the discrete measure
over past iterates of the algorithm as an approximation of the posterior to compute integrals of interest. However,
MCMC algorithms are generally computationally expensive, and it is an open problem to diagnose their convergence
in practice [Moins et al., 2023]. Variational inference (VI) [Blei et al., 2017] has emerged as a powerful and versatile
alternative in Bayesian inference. By framing the problem as an optimization task, VI aims to find an approximate
candidate distribution within a parametric family of distributions G that minimizes the (reverse) Kullback-Leibler
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(KL) divergence to the target:
ν̂ := argmin

µ∈G
KL(µ|µ⋆), (7.1)

where KL(µ|µ⋆) =
∫

log(dµ/dµ⋆)dµ if µ is absolutely continuous with respect to µ⋆ denoting dµ/dµ⋆ its Radon-
Nikodym density, and +∞ else; and ν̂ is referred to as the optimal approximation within the variational family.

While VI methods can only return an approximation of the target, they are much more tractable in the large scale
setting, since they benefit from efficient optimization methods, e.g. parallelization or stochastic optimization [Zhang
et al., 2018b]. Hence, VI has proven effective in numerous applications and is a popular paradigm especially in
high-dimensional scenarios. Still, the understanding of its theoretical properties remains a challenging and active
area of research. Fundamentally, there are two sources of errors in VI: the approximation error that quantifies how
far ν̂ is from µ⋆, and the optimization error that comes from the optimization of the objective in (7.1) to approach ν̂.

Even among the recent literature on theoretical guarantees for VI, most efforts have been concentrated in the
case where G is the set of non-degenerate Gaussian distributions. Recently, [Katsevich and Rigollet, 2023] studied
the approximation quality (in total variation) of the approximate posterior ν̂, i.e., minimizers of the objective
(7.1), and show that it better estimates the true mean and covariance of the posterior than the well-known Laplace
approximation [Helin and Kretschmann, 2022]. Regarding the optimization of (7.1), still restricted to Gaussians,
several recent works leverage the geometry of Wasserstein gradient flows, more precisely the equivalence between
Bures-Wasserstein gradient flows on the space of probability distributions and Euclidean flows on the space of
parameters of the variational approximation. They derive novel algorithms with convergence guarantees e.g.
through gradient-descent [Lambert et al., 2022b] or forward-backward [Diao et al., 2023, Domke et al., 2023] time
discretizations; and precise connections with Black-Box Variational Inference (BBVI) [Yi and Liu, 2023].

However, to the best of our knowledge, the study of approximation and computational guarantees when G is a set
of mixture of Gaussians has not been tackled yet. Mixture models are a widely used class of probabilistic models
that capture complex and multi-modal data distributions by combining simpler components. Moreover, they are
dense in the space of probability distributions with p bounded moments in the Wasserstein-p metric [Delon and
Desolneux, 2020, Lemma 3.1].

In this study, we propose to consider a simplified setting where the Gaussian components have equal weights and
share the same diagonal covariance. This regime breaks down the complexity of the problem, and is still theoretically
challenging, but remains a practically relevant scenario. In this setting, variational inference aims to optimize the
locations of the means of the Gaussian mixture to approximate the target distribution.

In the following, we assume that µ⋆ admits a density proportional to exp(−V ) with respect to the Lebesgue
measure over Rd.

2 The mollified relative entropy

Writing µ⋆ = e−V /Z with Z the unknown normalization constant, the (reverse) Kullback-Leibler divergence (or
relative entropy) can be written as

KL(µ|µ⋆) =
∫
V dµ+

∫
log(µ)dµ+ log(Z)

:= EV (µ) +U(µ) + log(Z),

for µ absolutely continuous with respect to µ⋆, and +∞ else. Hence, it decomposes as the sum of a potential energy
EV , i.e. a linear functional, and the negative entropy U , up to an additive constant that is fixed in the optimization
problem.

We now consider the minimization problem of Variational Inference (7.1) for mixture of Gaussians. We will
study a specific setting where the variational family is the set of mixture of n Gaussians with equally weighted
components, and where these components have the same diagonal covariance ϵ2Id, for some n ∈ N∗, ϵ > 0.

Gn =
{

1
n

n∑
i=1

qi, qi =N (xi, ϵ2Id), xi ∈ Rd

}
,

where Id denotes the d-dimensional identity matrix. In our setting, only the positions (the means) of the
mixture components will be optimized. Hence, searching for the optimal distribution in the variational family
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approximating the target µ∗ consists in finding the optimal locations of the Gaussian components in Rd. We
will denote kϵ the normalized Gaussian kernel, i.e. kϵ(x) = exp

(
−∥x∥2/(2ϵ2)

)
Z−1

ϵ , where
∫
kϵ(x)dx = 1 and

Zϵ ∝ (ϵ2)d/2. It is a specific example of mollifiers, i.e. smooth approximations of the Dirac delta at the origin, as
introduced in [Friedrichs, 1944]. For µ a given probability distribution on Rd, we denote by kϵ ⋆ µ its convolution
with the Gaussian kernel that writes kϵ ⋆ µ =

∫
kϵ(· − x)dµ(x). Equipped with these notations, we can write

Gn =
{
kϵ ⋆ µn, µn = 1

n

∑n
i=1 δxi , x1, . . . ,xn ∈ Rd

}
.

Irrespective of the number of components n, VI with Gaussian mixtures whose components share the same
variance can be written more generally as minimizing (7.1) restricted to the family G =

{
kϵ ⋆ µ, µ ∈ P(Rd)

}
. The

latter problem can be then reformulated as the optimization over P(Rd) of the following objective functional, that
we will refer to as the mollified relative entropy (or mollified KL):

Fϵ(µ) =
∫
V d(kϵ ⋆ µ) +

∫
log(kϵ ⋆ µ)d(kϵ ⋆ µ)

:= EVϵ(µ) + Uϵ(µ), (7.2)

where EVϵ is a potential energy with respect to a convoluted potential Vϵ = kϵ ⋆ V (using the associativity of the
convolution operation), and Uϵ(µ) = U(kϵ ⋆µ) is a functional that we will refer to as the mollified negative entropy.
In contrast with the negative entropy defined above, the mollified one is well-defined for discrete measures.

2.1 Algorithm
We now discuss the optimization of the mollified relative entropy, starting from the continuous time dynamics to the
practical discrete-time particle scheme.

A Wasserstein gradient flow of Fϵ [Ambrosio et al., 2008] can be described by the following continuity equation:

∂µt

∂t
= ∇ · (µt∇W2Fϵ(µt)), ∇W2Fϵ(µt) :=∇F ′

ϵ(µt), (7.3)

where F ′
ϵ denotes the first variation of Fϵ. Recall that if it exists, the first variation of a functional F at ν is the

functionF ′(ν) : Rd→ R s.t. for ν,µ ∈ P(Rd): limϵ→0 1/ϵ[F(ν+ϵ(µ−ν))−F(ν)] =
∫
F ′(ν)(x)(dµ(x)−dν(x)).

Wasserstein gradient flows are paths of steepest descent with respect to the W2 metric, and can be seen as analog to
Euclidean gradient flows on the space of probability distributions [Santambrogio, 2017].

Starting from some initial distribution µ0 ∈ P(Rd), and for some given step-size γ > 0, a forward (or explicit)
time-discretization of (7.3) corresponds to the Wasserstein gradient descent algorithm, and can be written at each
discrete time iteration l ∈ N as:

µl+1 = (Id− γ∇F ′
ϵ(µl))#µl (7.4)

where Id is the identity map in L2(µl).
For discrete measures µn = 1/n

∑n
i=1 δxi , we can define the finite-dimensional objective F (Xn) := Fϵ(µn)

where Xn = (x1, . . . ,xn), since the functional Fϵ is well defined for discrete measures. The Wasserstein gradient
descent dynamics of Fϵ (7.4) then correspond to standard gradient descent of the (finite-dimensional) function F ,
i.e., gradient descent on the position of the particles. In that setting, we recall that particles correspond to the means
of the Gaussian components of the mixture. The gradient of F is readily obtained as

∇xjF (Xn) =
∫
Rd
∇V (y)kϵ(y−xj)dy+

∫
Rd

∑n
i=1∇kϵ(y−xi)∑n
i=1 kϵ(y−xi) kϵ(y−xj)dy. (7.5)

Notice that the gradient above involves integrals over Rd. However, using a Gaussian kernel kϵ, since ∇kϵ(x) =
− x

ϵ2 kϵ(x), these integrals can be easily approximated through Monte Carlo using Gaussian samples. A particle
version of (7.4), e.g., starting with µ0 discrete, can then be written as the following gradient descent iterates:

xj
l+1 = xj

l − γ∇xj
l
F (Xn

l ) (7.6)

for j = 1, . . . ,n and where Xn
l = (x1

l , . . . ,x
n
l ). Hence, minimizing Fϵ on discrete measures results in a particle

system that interact through the gradient of the objective. The reader may refer to Subsection 7.1 for the detailed
computations leading to the particle scheme. Notice that it recovers the scheme mentioned in [Lambert et al., 2022b,
Section 5] where the covariance of the mixture components are fixed, see Subsection 7.2 for a detailed discussion.
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Remark 89. Notice that the Wasserstein gradient at µ ∈ P2(Rd) of the mollified KL in 7.3, ∇F ′
ϵ(µt) : Rd→ Rd

writes for any w ∈ Rd:
∇F ′

ϵ(µt)(w) = kϵ ⋆∇V (w) + kϵ ⋆∇ log(kϵ ⋆ µ)(w), (7.7)

see Subsection 7.1. Hence, it differs from the Wasserstein gradient of the (standard) KL w.r.t. µ⋆ ∝ e−V , i.e.
KL(·|µ⋆) evaluated at the convoluted distribution that writes as∇ log(kϵ⋆µ/µ⋆), see [Wibisono, 2018, Section 3.1.3].

2.2 Non-smoothness of the KL
In Euclidean optimization, it is standard that the convergence of gradient descent is guaranteed when the objective
function is convex and smooth, which relates to a lower bound and upper bound on the Hessian of the objective
when the latter is twice differentiable [Garrigos and Gower, 2023]. Analogously, when optimizing a functional on
the Wasserstein space, lower and upper bounds on the Hessian characterize respectively convexity and smoothness
on the functional F with respect to the Wasserstein-2 geometry (see [Villani, 2009, Proposition 16.2]). The
Wasserstein space has a Riemannian geometry [Otto, 2001], where one can define for any µ the tangent space
TµP2(Rd) = {∇ψ, ψ ∈ C∞

c (X)} ⊂ L2(µ) [Ambrosio et al., 2008, Definition 8.4.1]. The W2 Hessian of a
functional F , denoted HF|µ is an operator over TµP2(X) verifying

〈
HF|µvt,vt

〉
L2(µ) = d2

dt2

∣∣∣
t=0
F(ρt) if t 7→ ρt

is a geodesic starting at µ with vector field t 7→ vt. Considering ψ ∈ C∞
c (X) and the path ρt from µ to (I +∇ψ)#µ

given by: ρt = (Id + t∇ψ)#µ, for all t ∈ [0,1], the Hessian of F at µ, HF|µ, is defined as a symmetric bilinear

form on C∞
c (X) associated with the quadratic form HessµF(ψ,ψ) := d2

dt2

∣∣∣
t=0
F(ρt).

We now recall the formula of the Wasserstein Hessian of the (standard) Kullback-Leibler divergence (or relative
entropy).

Proposition 90. [Villani, 2021, Section 9.1.2]. Assume that µ⋆ has a density µ⋆ ∝ e−V where the potential
V :X → R is C2(X). The Hessian of KL(·|µ⋆) at µ is given, for any ψ ∈ C∞

c (X), by:

HessµKL(ψ,ψ) =
∫ [
⟨HV (x)∇ψ(x),∇ψ(x)⟩+ ∥Hψ(x)∥2HS

]
dµ(x) (7.8)

=HessµEV (ψ,ψ) +HessµU(ψ,ψ), (7.9)

where HV is the Hessian of V .

The proof of Proposition 90 is provided in Subsection 7.5.1 for completeness. The reader may also refer
to [Korba et al., 2021, Duncan et al., 2023] for similar computations on Wasserstein Hessians.

The KL divergence inherits the convexity of the target potential V in the Wasserstein geometry. Indeed, if
HV ⪰ λId, then KL(·|µ⋆) is λ-displacement convex, i.e. it is λ-convex along Wasserstein-2 geodesics, the underlying
geometry for Wasserstein gradient flows. Yet, the Kullback-Leibler divergence is not a smooth objective in the
Wasserstein sense, since its (Wasserstein) Hessian is not upper bounded even if the potential V is smooth. Indeed,
assume HV ⪯M Id, i.e., the potential of the target distribution is M -smooth. This enables to control the first term
in (7.8) by M∥∇ψ∥2

L2(µ), but the second term due to the negative entropy cannot be controlled similarly for any
ψ [Wibisono, 2018, Korba et al., 2020].

Hence in this context, it is not possible to prove a descent lemma along (Wasserstein) gradient descent for the
KL, unless restricting to smooth directions [Korba et al., 2020]. The non-smoothness of the KL is also the reason
why many algorithms aiming to minimize the KL in the Wasserstein geometry rely on splitting-schemes such as the
forward-backward algorithm, to perform a gradient descent (explicit) step on the potential energy part, and a JKO
(implicit) step on the entropy part [Salim et al., 2020, Diao et al., 2023, Domke et al., 2023]. In contrast, we will
leverage the fact that the mollified KL enjoys some smoothness properties that will allow us to derive a descent
lemma in Section 3, at the price of loosing some convexity.

Still, we next show that Fϵ recovers displacement convexity (of the standard KL) as ϵ→ 0, since its Hessian
recovers the one of the KL.

Proposition 91. Let µ ∈ P2(Rd). For any ψ ∈ C∞
c (Rd), the Wasserstein Hessian of Fϵ converges to the one of the

regular KL, i.e:
HessµFϵ(ψ,ψ)−−−→

ε→0
HessµKL(ψ,ψ). (7.10)
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The proof of Proposition 91 can be found in Subsection 7.5.2; the main technical difficulties arise when dealing
with the negative entropy term. This result shows that as ϵ→ 0, one can recover the geometric properties of the KL.

Proposition 91 serves as an auxiliary finding within our study, not directly influencing other results, yet it enables
us to illustrate key conceptual distinctions. Specifically, it demonstrates that while the standard Kullback-Leibler
(KL) divergence is convex in the Wasserstein geometry for log-concave targets—exhibiting even strong convexity
for targets that are strongly log-concave—it loses this convexity when mollified, although it gains smoothness
with a positive ϵ. This transition is typically delineated through lower and upper bounds on the Hessians within
the Wasserstein framework. Getting a non-asymptotic, quantitative bounds on the Hessian of the mollified KL
in terms of ϵ is the subject of future work. Such research could potentially offer insights into how small ϵ may
be selected relative to the strong convexity constant of the target potential, ensuring the optimization objective
maintains convexity.

3 Optimization Guarantees

We now turn to the analysis of the optimization error for VI in our setting, i.e. the optimization of Fϵ. Under a
smoothness assumption on the target potential, as well as moment conditions on the trajectory, one can obtain a
descent lemma for the Wasserstein gradient descent iterates.

Assumption 3. The potential V is L-smooth, i.e. for any x,y ∈ Rd, ∥∇V (x)−∇V (y)∥ ≤ L∥x− y∥.

Assumption 4. µ0 is supported on n Diracs, and the second moments of (µl)l≥0 are bounded by h > 0 along
gradient descent iterations, i.e.

∫
∥x∥2dµl(x)< h ,∀l ≥ 0.

Bounded moment assumptions such as these are commonly used in stochastic optimization, for instance in
some analysis of the stochastic gradient descent [Moulines and Bach, 2011]. We also verified empirically this
assumption in a specific setting outlined afterwards. The target µ⋆ is a mixture of 100 Gaussians that we approximate
with a mixture of 10 Gaussians. Then we run (7.6) (equivalently (7.4)) for 1000 iterations. The expectations
in (7.5) with respect to the Gaussian kernel are estimated by Monte Carlo with 100 samples. Figure 7.1 displays
the second moments of the particle distributions along iterations, for various dimensions. The 95% confidence
interval displayed in Figure 7.1 is calculated based on 50 runs, and represents the randomness corresponding to
Monte Carlo approximations, initialization of the target and initialization of our mixture. Our experiment shows that
Assumption 4 holds for any dimension, i.e., the second moment of the particles distribution is bounded along the
(discrete-time) flow. Further details on the setup are provided in Section 7.6. We now turn to one of our main results
regarding the optimization of the mollified KL.

0 250 500 750 1000
iteration l

102

103

se
co

nd
 m

om
en

t o
f (

l) l
0

d
5
10

20
50

Fig. 7.1 Second moment along Wasserstein gradient descent iterations.
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Proposition 92. Suppose Assumptions 3 and 4 hold. Consider the sequence of iterates of Wasserstein gradient
descent of Fϵ defined by (7.4). Then, the following inequality holds:

Fϵ(µl+1)−Fϵ(µl)≤−γ
(

1− γ

2M
)
∥∇F ′

ϵ(µl)∥2L2(µl).

where M = L+Kϵ,n,h, and Kϵ,n,h is a constant depending on ϵ,n,h.

Hence, for a small enough step-size γ, the latter proposition shows that the objective decreases at each iteration.
We now provide a proof for this result, using similar techniques as [Arbel et al., 2019, Korba et al., 2020]. The main
technical difficulties are left in the appendix and are related to showing the descent for the mollified entropy part, see
7.4 for details.
Proof. [Proof of Proposition 92] Consider a path between µl and µl+1 of the form ρt = (ψt)#µl with ψt =
(Id + t∇F ′

ϵ(µl)). We have ∂ρt
∂t = ∇· (ρtvt) with vt =−∇F ′

ϵ(µl)◦ψ−1
t . The latter continuity equation holds in the

sense of distributions [Ambrosio et al., 2008, Chapter 8] and holds for discrete measures. The function t 7→ Fϵ(ρt)
is differentiable and hence absolutely continuous. Therefore one can write:

Fϵ(ργ) = Fϵ(ρ0) + γ
d
dt

∣∣∣∣
t=0
Fϵ(ρt) +

∫ γ

0

[
d
dt
Fϵ(ρt)−

d
dt

∣∣∣∣
t=0
Fϵ(ρt)

]
dt. (7.11)

Moreover, using the chain rule in the Wasserstein space, we have successively:

d
dt
Fϵ(ρt) =

〈
∇F ′

ϵ(ρt),vt

〉
L2(ρt) , and

d
dt

∣∣∣∣
t=0
Fϵ(ρt) =−∥∇F ′

ϵ(µl)∥2L2(µl). (7.12)

Then, since Fϵ = Uϵ + EVϵ , we have first under Assumption 3 that kϵ ⋆ V is L-smooth and by Proposition 99 that:

d
dt
EVϵ(ρt)−

d
dt
EVϵ(ρt)

∣∣∣
t=0
≤ L t∥∇F ′

ϵ(µl)∥2L2(µl), (7.13)

and by Proposition 100 and Assumption4:

d

dt
Uϵ(ρt)−

d

dt
Uϵ(ρt)

∣∣∣
t=0
≤Kϵ,n,ht∥ϕ∥2L2(µl),

whereKϵ,n,h = 1/ϵ2+2
√

hn/ϵ3+
√

n/ϵ2+n
√

h/2ϵ3. Hence, the result follows directly by applying the above expressions
to (7.11) where M = L+Kϵ,n,h.

As a corollary, we obtain the convergence of the average of squared gradient norms along iterations.

Corollary 93. Let cγ = γ(1− γM
2 ). Under the assumptions of Proposition 92, one has

1
L

L∑
l=1
∥∇F ′

ϵ(µl)∥2L2(µl) ≤
Fϵ(µ0)
2cγL

. (7.14)

In contrast with the KL that is non-smooth as explained in 2.2, the mollified KL is smooth, which is why we can
prove the descent lemma in Proposition 92 and the rate on average gradients. The descent lemma and its corollary
imply that the sequence of squared gradient norms is summable and hence converges to zero.

We illustrate the validity of the rate derived in Corrolary 93 with simple experiments. The variational family there
is a family of Gaussian mixtures with 10 components, while the target is a Gaussian mixture with 100 components.
Figure 7.2 shows the convergence of the cumulative sum 1

L

∑L
l=1 ∥∇F ′

ϵ(µl)∥2L2(µl)
along iterations, for various

dimensions and in log scale. Similarly to the previous experiment, the expectations involved in the gradient descent
schemes are estimated using Monte Carlo with 100 samples. The 95% confidence interval displayed in Figure 7.2 is
computed based on 50 runs, representing the randomness due to Monte Carlo approximations, randomization of
the target and ininital distribution for the scheme. The term ∥∇F ′

ϵ(µl)∥2L2(µl)
also involves expectations that are

estimated by Monte Carlo with 1000 samples. Figure 7.2 illustrates that the cumulative sum is indeed of order 1
L as

stated by Corollary 93. A detailed description of the experimental setup can be found in Section 7.6.
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Fig. 7.2 Illustration of the rate of 1
L

∑L
l=1 ∥∇F ′

ϵ(µl)∥2L2(µl)
derived in Corollary 93

Remark 94. Non-convex rates similar to our Corollary 93 have been obtained for Langevin Monte-Carlo [Balasub-
ramanian et al., 2022] or Stein Variational Gradient Descent (SVGD) algorithm [Korba et al., 2020] leveraging
similar techniques and smoothness of the potential. However, since Langevin Monte Carlo and SVGD optimizes
the (standard) KL divergence, the squared gradient norm correspond to the Fisher Divergence and Kernel Stein
Discrepancy respectively, that are valid probability divergences. In our setting, Corollary 93 implies the following.
If µl converges weakly to some distribution µ∞ (up to a subsequence) as l →∞, the Wasserstein gradient of
Fϵ given in (7.7) is zero on the support of µ∞, assuming µ 7→ ∥∇F ′

ϵ(µ)∥2
L2(µ) is lower semi continuous with

respect to the weak topology of measures. This can be rewritten∇kϵ ⋆ (log(kϵ ⋆ µ∞)− log(µ⋆)) = 0 µ∞-a.e, i.e.
kϵ ⋆ (log(kϵ ⋆ µ∞)− log(µ⋆)) = c µ∞−a.e. for some constant c.

4 Approximation Guarantees

In this section, we investigate the approximation accuracy of a finite mixture of Gaussians to the posterior, i.e.
minimizers of the objective functional Fϵ (assuming we are able to find these minimizers, e.g. after optimization).
We obtain non-asymptotic rates with respect to the number of components in the mixture. For ease of notation, we
will denote by kx

ϵ := kϵ(· −x) for any x ∈ Rd. We first consider the following assumption on the target distribution.

Assumption 5. The target posterior distribution µ⋆ has a mixture representation form, i.e. there exists P on Rd

such that

µ⋆ =
∫
Θ

kw
ϵ dP (w).

Notice that Assumption 5 is a relatively weak assumption, as mixture of Gaussians are dense in the space of
probability distributions [Delon and Desolneux, 2020]. We now state our second main result.

Theorem 95. Suppose Assumption 5 holds and define

C2
µ⋆ =

∫ ∫
(km

ϵ (x))2dP (m)∫
kw

ϵ (x)dP (w)
dx. (7.15)

Define Gn =
{
kϵ ⋆ µn, µn ∈ Pn(Rd)

}
, where Pn(Rd) is the set of discrete probability distributions supported on n

Dirac masses. Then,

min
µn∈Pn(Rd)

KL(kϵ ⋆ µn|µ⋆)≤ C2
µ⋆

log(n) + 1
n

.
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Our result is novel and quantifies the approximation quality of the family of mixtures of n Gaussian distributions
(with equal weight and constant covariance) in the (reverse) Kullback-Leibler sense.

A major limitation in the use of Gaussian distributions in VI arises from the inherent simplicity of this family.
In particular, the unimodality of the Gaussian distribution becomes a critical stumbling block when the target
distribution is multimodal. A notable exception exists in the work of Katsevich & Rigollet (2023), which provides
an error bound for cases where the target is a posterior distribution in the Bayesian inference context. As the sample
size goes to infinity, the Bernstein Von-Mises theorem shows that the posterior distribution asymptotically converges
to a Gaussian distribution, thereby lending some predictability to the approximation error in this specific scenario.
In stark contrast, Theorem 95 offers a more versatile result, applicable to any target distribution, including those
encountered in Bayesian inference with a fixed sample size. It shows that increasing the number of components
in a Gaussian mixture can significantly mitigate the limitations of Gaussian VI. As we expand the mixture, the
approximation error not only decreases, it converges to zero. This result highlights the potential of complexifying
the variational family to achieve more accurate approximations of the target distribution.

The proof of Theorem 95 follows the steps of [Li and Barron, 1999], that proved similar guarantees for the
forward KL (akin to likelihood maximization), while we focus on the reverse KL, i.e. the one considered in
variational inference. Hence our proof requires non-trivial different inequalities and intermediate lemmas that are
deferred to Subsection 7.3.
Proof. [Proof of Theorem 95] We will prove the previous result by induction. We denote by νn the minimizer of the
Kullback-Leibler divergence to the target within this family, i.e.,

νn := argmin
µn∈Pn(Rd)

KL(kϵ ⋆ µn|µ⋆),

and Dn = KL(kϵ ⋆ µn|µ⋆). For any m ∈ Rd, we consider the distribution ρm
n+1 ∈ Cn+1 defined as

ρm
n+1 = (1−α)(kϵ ⋆ µn) +αkm

ϵ

where α= 1/n+1. Therefore we have Dn+1 = KL(kϵ ⋆ µn+1|µ⋆)≤ KL(ρm
n+1|µ⋆). By definition of the Kullback-

Leibler divergence, denoting f(x) = x logx, we have

KL(ρm
n+1|µ⋆) =

∫
f(rn+1)dµ⋆ ,

where we define rn+1 and r0 as:

rn+1 :=
ρm

n+1
µ⋆

= (1−α) (kϵ ⋆ µn)
µ⋆

+α
km

ϵ

µ⋆
:= r0 +α

km
ϵ

µ⋆
.

Define B(x) = (x logx−x+ 1)/(x−1)2 for x ∈ [0,+∞[. Note that rn+1(x)≥ r0(x) for any x, then using that B
is decreasing (see Lemma 96), we have B(rn+1(x))≤B(r0(x)). It follows that

rn+1 log(rn+1)≤ rn+1− 1 +B(r0)(rn+1− 1)2

= r0 +α
km

ϵ

µ⋆
− 1 +B(r0)

(
r0 +α

km
ϵ

µ⋆
− 1
)2

= r0 +α
km

ϵ

µ⋆
− 1 +B(r0)

{
(r0− 1)2 +

(
α
km

ϵ

µ⋆

)2
+ 2α(r0− 1)k

m
ϵ

µ⋆

}
= α

km
ϵ

µ⋆
+ r0 log(r0) +

(
α
km

ϵ

µ⋆

)2
B(r0) + 2αB(r0)(r0− 1)k

m
ϵ

µ⋆
. (7.16)
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Moreover, we have the following inequality:

Dn+1 =
∫
Dn+1dP (m)

≤
∫

KL(ρm
n+1|µ)dP (m)

= α+
∫
r0(x) log(r0(x))dµ⋆(x) +α2

"
km

ϵ (x)2

µ⋆(x)2 B(r0(x))dµ⋆(x)dP (m)

+ 2α
∫
B(r0(x))(r0(x)− 1)dµ⋆(x),

where we used (7.16) in the last equality. We now focus on bounding each term on the r.h.s. of the previous
inequality. By definition of r0, the second term can be rewritten∫

r0 log(r0)dµ⋆ = (1−α) log(1−α) + (1−α)Dn.

We now turn to the third term. For any x ∈ R+, since B is monotone decreasing, B(r0(x)) ≤ B(0) = 1. Under
Assumption5 , it follows that∫ ∫

km
ϵ (x)2

µ⋆(x)2 B(r0(x))dµ⋆(x)dP (m)≤
∫ ∫

km
ϵ (x)2

µ⋆(x) dP (m)dx= C2
µ⋆ .

Finally let’s focus on the last term. We have B(x)(x− 1) ≤
√
x− 1 using Lemma 97. Denoting H2(f,g) =

1−
∫ √

f(x)g(x)dx ∈ [0,1] the squared Hellinger distance between f and g, we have∫
B(r0)(r0− 1)dµ⋆ ≤

∫
(
√
r0− 1)dµ⋆

=
√

1−α(1−H2(kϵ ⋆ µn,µ
⋆))− 1

≤
√

1−α− 1.

Finally, we have

Dn+1 ≤ α+ (1−α) log(1−α) + (1−α)Dn +α2C2
µ⋆ + 2α(

√
1−α− 1)

≤ (1−α)Dn +α2C2
µ⋆ ,

where the last inequality uses that −α+ (1−α) log(1−α) + 2α
√

1−α≤ 0 (see Lemma 98).
Now, recall that α = 1/(n + 1). Denoting Un = nDn, our previous computations imply that Un+1 ≤

Un + C2
µ⋆/n+1, which by telescoping yields Un−U0 ≤ C2

µ⋆Hn, where Hn denotes the harmonic number and is
upper bounded by 1 + log(n). The rate on Dn follows.

Our result is analog to the one of [Li and Barron, 1999] that bounds the forward Kullback-Leibler divergence to
the target. Indeed under Assumption 5, their Theorem 1 states that

argmin
µn∈Pn(Rd)

KL(µ⋆|kϵ ⋆ µn)≤
C2

µ⋆h

n
(7.17)

where h= 4log(3
√
e+ a) is a constant depending on ϵ since a= supm1,m2∈Rd log(km1

ϵ (x)/km2
ϵ (x)). In our case,

the constant in the rate does not involve h as we do not rely on the same functions (our B ≤ 1 instead of B ≤ h in
their case).

When Assumption 5 does not hold, they also show in Theorem 2 that for every gP =
∫
kϵ(· −w)dP (w),

argmin
µn∈Pn(Rd)

KL(µ⋆|kϵ ⋆ µn)≤ KL(µ⋆|gP ) +
C2

µ⋆,Ph

n
(7.18)
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where C2
µ⋆,P =

∫ ∫ km
ϵ (x)2dP (m)

(
∫

kw
ϵ (x)dP (w))2 dµ

⋆(x). However, they can easily obtain this result as a consequence of their

first theorem along with the linearity of the forward KL. In constrast, the reverse KL does not verify linearity nor
triangular inequality hence we cannot obtain readily such a generalization.

Notice that the forward KL rate obtained in [Li and Barron, 1999] is of order 1/n, outpacing the one we attained.
This is due to our chosen variational family, which is a Gaussian mixture with fixed weights. However, considering
non-fixed weights (i.e. non-equally weighted mixtures) allows us to set α = 2/(n+ 1), thus achieving the exact
same rate as [Li and Barron, 1999] for the reverse KL.

Since the Total Variation can be written as an Integral probability metric over measurable functions f : Rd→
[−1,1], we deduce from Pinsker’s inequality and Theorem 95 that a minimizer µn of KL(kϵ ⋆ ·|µ⋆) achieves the
following bound for the integral approximation error among this set of functions:

∣∣∣∣∫ f d(kϵ ⋆ µn)−
∫
fdµ⋆

∣∣∣∣≤
√
C2

µ⋆(log(n) + 1)
2n .

The latter is then comparable to the integral approximation error of MCMC methods which is known to be of order
O(n− 1

2 ) when using n particles [Łatuszyński et al., 2013].
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Fig. 7.3 Illustration of the rates of Theorem 95, where νn = argminν∈Cn
KL(ν|µ⋆) is approximated by

ν̃n.

We finally test numerically the validity of Theorem 95 in a simple setting. The target distribution considered
is a Gaussian mixture with 100 components. We denote by (x⋆

i )i≤100 the mean of these components. For any
n ∈ [1,100], the objective is to solve (7.1) and find νn := argminν∈Cn

KL(ν|µ⋆), where Qn represents the family
of Gaussian mixtures with n components. This minimizer is approximated by selecting only the first n components
(x⋆

i )i≤n of µ⋆, and we denote ν̃n the resulting approximate distribution. Note that in that specific setting, the
variational family Cn and the target distribution µ⋆ share the same standard deviation. Figure 7.3 shows the
convergence rate of KL(ν̃n|µ⋆) with respect to the number of components n, for various dimensions. The objective is
estimated by Monte Carlo with 1000 samples. The 95% confidence interval displayed in Figure 7.3 is approximated
based on 100 samples, representing the randomness corresponding to Monte Carlo approximation of the KL, and
the initialization of the target. Figure 7.3 illustrates that the Kullback-Leibler divergence between ν̃n and the µ⋆ is
indeed decreasing linearly with n. This result proves the validity of the rates derived in Theorem 95 for this specific
setting. A full description of the experimental setup can be found in Subsection 7.6.

5 Related work

In this section we discuss relevant related work.
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Theoretical guarantees for Variational Inference. For the variational inference optimization problem in (7.1),
frequently employed constraint setsG in existing literature encompass the set of non-degenerate Gaussian distributions,
location-scale families, mixtures of Gaussian components, and the set of product measures. In the Gaussian
setting, [Lambert et al., 2022b, Diao et al., 2023] have been the first to leverage the geometry of Wasserstein gradient
flows to study the convergence properties of variational inference, and provide convergence rates when the target
µ∗ ∝ e−V has a smooth and strongly convex potential V . In Mean-Field Variational inference (MFVI), the space
G in (7.1) is taken to be the class of product measures over Rd, written P(R)⊗d. Several works have proposed
algorithms in this context via wasserstein gradient flows [Yao and Yang, 2022, Lacker, 2023]. [Jiang et al., 2023]
consider a smaller subset of G, namely a polyhedral subset for which they can derive optimization and approximation
guarantees. However the previous work do not tackle mixture of Gaussians for the variational family.

Mollified Relative entropies. A closely related line of work to this paper is the one of [Carrillo et al., 2019, Craig
et al., 2023a,b, Carrillo et al., 2024] that study Wasserstein gradient flows of mollified relative entropies and the
associated particle systems, that are of particular interest in the literature of partial differential equations and kinetic
theory. In [Carrillo et al., 2019], the authors mention the mollified negative entropy Uϵ that we define in (7.2) as a
regularization of the negative entropy U(µ) =

∫
log(µ)dµ (or entropy of order 1), but they do not study it. Instead,

they focus on a closely related functional, defined as Ũϵ(µ) =
∫

log(kϵ ⋆ µ)dµ (i.e. with only one convolution
inside the logarithm, while Uϵ involves two convolutions). While they mention the possible choice of Uϵ as a
regularization of the entropy U , they choose to study the alternative regularization Ũϵ(µ) for numerical reasons, as
the Wasserstein gradient of the latter functional writes as an integral over the distribution of the particles, while the
one of Uϵ (hence Fϵ) writes as an integral over the whole space w.r.t. Lebesgue measure, as explained in Section 2.1.
Hence their results on λ-convexity1 of the functional or the particle system differ from our setting. [Craig et al.,
2023a] focus on a mollified chi-square divergence that corresponds to a weighted second order entropy; [Li et al.,
2022] studies another mollified approximation of the chi-square divergence. [Carrillo et al., 2024] also study
λ-convexity of entropies but only for entropies of order strictly greater than 1. Finally [Craig et al., 2023b] study
functionals of the form

∫
fϵ(kϵ ⋆ µ)dL as approximations of

∫
f(µ)dL where L denotes the Lebesgue measure. In

their case fϵ is a specific function depending on f and ϵ, which excludes Uϵ and thus also differs from our setting.
Variational inference for mixtures. Several works have tackled VI on mixtures on a computational aspect.

[Gershman et al., 2012] optimize (with L-BFGS, that is a quasi Newton method) an approximate ELBO (recall that
the ELBO is the reverse KL we consider up to an additive constant), using several consecutive approximations of
ELBO terms for the case of mixture of Gaussians. In the end, their optimization objective differs a lot from the
original KL objective from VI, that is a valid divergence between probability distributions - in contrast with their
objective. [Arenz et al., 2018] adopt an Expectation-Maximization (EM) approach. As noted in [Aubin-Frankowski
et al., 2022, Kunstner et al., 2021] EM can be seen as mirror descent scheme on the KL. Also, this algorithm can be
seen as an Euler discretization of the gradient flow of the KL in the Fisher-Rao geometry [Domingo-Enrich and
Pooladian, 2023, Chopin et al., 2024]. The parallel can be seen from eq (5) or (8) in [Arenz et al., 2018], that take a
similar form as eq (6) in [Chopin et al., 2024], i.e. a geometric update on the distributions, i.e. that act directly on
updating densities (in a "vertical" manner), equivalently weights. In contrast, we focus on gradient descent dynamics,
that correspond to a time discretization of the KL gradient flow in the Wasserstein geometry. This correspond to
"horizontal" updates, where particles are displaced at each iteration. [Lin et al., 2019] use natural gradient updates
for VI in the natural parameter space (e.g. means for Gaussians). However, from [Raskutti and Mukherjee, 2015,
Kunstner et al., 2021], it is known that this is equivalent to mirror descent on the exponential family parameters,
which again is related to Fisher-Rao dynamics on the space of probability distributions (see eq (13) in [Chopin et al.,
2024]).

6 Conclusion

The goal of this chapter is to improve our theoretical understanding of variational inference algorithms in the
non-Gaussian case. We consider here a specific family of distributions, a mixture of Gaussians with constant
covariance and equally weighted components, that enables us to derive novel results for the approximation and
optimization error for Variational Inference. We derive theoretical guarantees regarding gradient descent of the
objective (i.e. a descent lemma proving that the objective decreases at each iteration) leveraging smoothness of the
objective and the Wasserstein geometry. We also derive novel approximation results for minimizers of the objective.

1λ-convexity for λ ≥ 0 recovers displacement convexity, while λ ≤ 0 recovers smoothness.
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In our study, we chose to simplify our exploration of Variational Inference (VI) within the context of Gaussian
Mixtures by assuming uniform weights for each Gaussian component and by fixing the covariances. Extending
our findings to more complex scenarios, where the weights of each Gaussian are dynamically optimized and the
covariances are variable, represents a significant challenge that goes beyond the scope of our current research.
For instance, the task of optimizing the weights attached to each Gaussian component introduces a shift from the
Wasserstein dynamics, which are central to our current discussion, to Fisher-Rao dynamics. Achieving a counterpart
to our current optimization result Proposition 92 under these conditions would not only require the adoption
of alternative proof techniques but also a deep dive into the intricacies of Fisher-Rao dynamics, which diverge
significantly from those of Wasserstein. Furthermore, the optimization of covariance matrices introduces another
level of complexity. Such an endeavor requires a unique analytical framework, primarily due to the constraints
imposed by the requirement that these matrices be positive definite. While this aspect of the analysis is crucial
for a comprehensive understanding of VI in Gaussian mixtures, it requires a specialized approach that our current
methodology does not cover. The exploration of dynamic weight optimization and variable covariance matrices
within the context of Gaussian Mixtures in VI presents a rich avenue for future work.

7 Appendix

The appendix is organized as follows. Subsection 7.1 details the computations for the Wasserstein gradients and the
particle scheme corresponding to the optimization of the mollified relative entropy. Subsection7.2 discusses the
connection with the algorithm and framework presented in [Lambert et al., 2022b]. Subsection 7.3 contains the
intermediate lemmas needed for the proof of Theorem 95. Subsection 7.5 contains the proofs of the Propositions
regarding Wasserstein Hessians. Subsection 7.6 outlines the setup used for the numerical experiments.

7.1 Particle implementation of the gradient flow

A solution of (7.3) is implemented by the Mac-Kean Vlasov process:

ṁt =−(∇ U ′
ϵ(µt)(mt) +∇E ′

Vϵ
(µt)(mt)). (7.19)

Here we detail the computation of the vector field in (7.19) and its particle implementation.

For the negative entropy part, we can rewrite Uϵ(µ) =
∫
U(kϵ ⋆ µ(θ))dθ where U : x 7→ x log(x). We have that

U ′
ϵ(µ)(·) = kϵ ⋆ (U ′ ◦ (kϵ ⋆ µ))(·) =

∫
Rd
kϵ(θ− ·)U ′

(∫
kϵ(θ− y)dµ(y)

)
dθ

where U ′ : x 7→ log(x) + 1. Hence, computing U ′
ϵ requires an integration over Rd. Then, we have, since kϵ is

smooth, using an integration by parts with ∇U ′(x) =∇ log(x) and symmetry of kϵ, for any w ∈ Rd we have:

∇w U ′
ϵ(µ)(w) =∇wkϵ ⋆ (U ′ ◦ (kϵ ⋆ µ))(w)

=
∫
Rd
∇wkϵ(θ−w)U ′

(∫
kϵ(θ− y)dµ(y)

)
dθ

=−
∫
Rd
∇θkϵ(θ−w)U ′

(∫
kϵ(θ− y)dµ(y)

)
dθ

= +
∫
Rd
kϵ(θ−w)∇θU

′
(∫

kϵ(θ− y)dµ(y)
)
dθ

=
∫
Rd
kϵ(θ−w)∇θ log

(∫
kϵ(θ− y)dµ(y)

)
dθ

=
∫
Rd
kϵ(θ−w)

∫
∇kϵ(θ− y)dµ(y)∫
kϵ(θ− y)dµ(y)

dθ. (7.20)



Chapter 7: Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians 151

Finally, if µt is an atomic measure of the form µt = 1
N

∑N
i=1 δm

(i)
t

, then a particle implementation of (7.22) reduces
to solve a system of ordinary differential equations for the locations of the Dirac masses:

ṁ
(j)
t =−

∫
Rd
∇V (y)kϵ(y−m(j)

t )dy−
∫
Rd

∑N
i=1∇kϵ(y−m(i)

t )∑N
i=1 kϵ(y−m(i)

t )
kϵ(y−m(j)

t )dy. (7.21)

For the potential energy part, we can rewrite

EVϵ(µ) =
∫
Rd
V (θ)d(kϵ ⋆ µ)(θ)

=
∫
Rd
V (θ)

∫
kϵ(θ−m)dµ(m)dθ

=
"

Rd
kϵ(θ−m)V (θ)dθdµ(m)

:=
∫
Rd
Vϵ(m)dµ(m),

where Vϵ(m) =
∫
Rd kϵ(θ−m)V (θ)dθ = kϵ ⋆ V (m). Hence, we have for any w ∈ Rd

E ′
Vϵ

(µ)(w) = Vϵ(w)

and successively

∇wkϵ(θ−w)V (θ)dθ =−
∫
Rd
∇θkϵ(θ−w)V (θ)dθ =

∫
Rd
kϵ(θ− ·)∇V (θ)dθ

using again an integration by parts. Hence, (7.19) becomes:

ṁt =−
∫
Rd
kϵ(θ−mt)∇V (θ)dθ−

∫
Rd
kϵ(θ−mt)

∫
∇kϵ(θ− y)dµt(y)∫
kϵ(θ− y)dµt(y)

dθ. (7.22)

7.2 Mixture of Gaussians optimization
[Lambert et al., 2022b] consider a Gaussian approximation of the Langevin diffusion given by Saarka’s heuristic, i.e.
Xt ∼ µt where µt is the solution of Fokker-Planck equation is replaced by Yt ∼N (mt,Σt) where

ṁt =−E[∇V (Yt)]
Σ̇t = 2Id−E[∇V (Yt)⊗ (Yt−mt) + (Yt−mt)⊗∇V (Yt)]

They prove that the law of Yt is the gradient flow of the KL on the Bures-Wasserstein manifold BW(Rd) � Rd×S++
d

(the space of Gaussians equipped with the W2 distance); which is a submanifold of P2(Rd). It can be seen as
“Projected WG” where the Wasserstein gradient of the KL is projected onto the tangent space of the submanifold;
another way to view it is to see that its the GF of the KL on the Bures-Wasserstein manifold.

Then, they propose to write a Gaussian mixture ρ on Rd as ρν(θ) =
∫
BW(Rd) p(θ)dν(p)2 where ν is a measure

over BW(Rd); hence MOG is isomorphic to P2(BW(Rd)). Then the WGF of ν 7→ KL(ρν |µ⋆), ie the GF of this
functional over P2(BW(Rd)) is implemented through a particle system νt = 1

N

∑N
i=1 δ(m(i)

t ,Σ
(i)
t ):

ṁ
(i)
t =−E

[
∇ log

(
ρνt

µ⋆

)(
Y

(i)
t

)]
(7.23)

Σ̇
(i)
t =−E

[
∇2 log

(
ρνt

µ⋆

)(
Y

(i)
t

)]
Σ

(i)
t −Σ

(i)
t E

[
∇2 log

(
ρνt

µ⋆

)(
Y

(i)
t

)]
(7.24)

2We can rewrite it as
∫
Rd×S++

d

py,Σ(θ)dν(y,Σ)
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where Y (i)
t ∼N (m(i)

t ,Σ
(i)
t ).

In contrast, in this work we restrict ourselves to Gaussian mixtures ρ that write ρµ =
∫
Rd kϵ(θ− y)dµ(y) where µ

is a measure over Rd. Then the WGF of µ 7→ KL(ρµ|π), i.e. the GF of this functional over P2(Rd) is equivalent
to the update above from [Lambert et al., 2022b]. Indeed if we fix ν = µ⊗ δϵId , a Gaussian mixture writes
ρν(θ) = ρµ(θ) =

∫
Rd kϵ(θ− y)dµ(y). In this case we consider the particle system µt = 1

N

∑N
i=1 δm

(i)
t

, we have

ρµt(θ) = 1
N

∑N
i=1 kϵ(θ−m(i)

t ). The update (7.23) becomes:

ṁ
(j)
t =−E

[
∇ log

(ρνt

π

)(
Y

(j)
t

)]
=−E[∇V (Y (j)

t )]−E
[
∇ log(ρµt)

(
Y

(j)
t

)]
=−E[∇V (Y (j)

t )]−E

[∑N
i=1∇kϵ(Y (j)

t −m(i)
t )∑N

i=1 kϵ(Y (j)
t −m(i)

t )

]

=−
∫
∇V (y)kϵ(y−m(j)

t )dy−
∫ ∑N

i=1∇kϵ(y−m(i)
t )∑N

i=1 kϵ(y−m(i)
t )

kϵ(y−m(j)
t )dy

since Y (j)
t ∼N (m(j)

t , ϵId) has density kϵ(· −m(j)
t ) hence we obtain the same update as (7.21).

7.3 Lemmas for the proof of Theorem 95

Lemma 96. For any x ∈ R+, the function defined on [0,+∞[ by

B(x) = x logx−x+ 1
(x− 1)2 if x > 0,

and B(0) = 1 is monotone decreasing in r.

Proof. Firstly, the derivative of f is given by

B′(x) =
2− x+1

x−1 log(x)
(x− 1)2 .

Recall some inequalities of the log function derived in [Topsøe, 2007]:

∀x ∈ [1,+∞[ , 2(x− 1)
x+ 1 ≤ log(x),

∀x ∈ [0,1] , log(x)≤ 2(x− 1)
x+ 1 .

Consequently, combining those two inequalities and multiplying by 1/(x− 1) which is positive on [1,+∞[ and
negative on [0,1[ we obtain for any x ∈ [0,+∞[

log(x)
x− 1 ≥ 2(x− 1)

It implies that the derivative f ′(x) is always negative and f is monotone decreasing.

Lemma 97. For any x ∈ R+ we have

C(x) =B(x)(x− 1) = x log(x)−x+ 1
x− 1 ≤

√
x− 1

Proof. Recall the inequalities derived in [Topsøe, 2007]
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1. for any x ∈ [1,+∞[, log(x)≤ x−1√
x

2. for any x ∈ [0,1], log(x)≥ x−1√
x

.

Combining those inequalities and multiplying by 1/(x− 1) which is positive on [1,+∞[ and negative on [0,1[, we
obtain for any x ∈ [0,∞[,

log(x)
x− 1 ≤

1√
x
.

Moreover,

C(x)−
√
x− 1 = x log(x)

x− 1 −
√
x.

Consequently, by multiplying the previous inequality by x, we obtain that C(x)− (
√
x+ 1)≤ 0

Lemma 98. For any α ∈ [0,1], we have

−α+ (1−α) log(1−α) + 2α
√

1−α≤ 0.

Proof. Let’s start by applying the classical inequality ∀x >−1, log(1 +x)≤ x at x=−α, we obtain log(1−α)≤
−α. Hence,

−α+ (1−α) log(1−α) + 2α
√

1−α≤−α−α(1−α) + 2α
√

1−α
= α(2

√
1−α− 2 +α)

:= αg(α)

Moreover,

g(α) = 2
√

1−α− 2 +α and g′(α) = −1√
1−α

− 1≤ 0,

hence g is decreasing. Consequently,

−α+ (1−α) log(1−α) + 2α
√

1−α≤ αg(0)≤ 0.

7.4 Proof of Proposition 92

We first deal with the potential energy term. Notice that under Assumption 3, Vϵ is also L-smooth, since for any
x,y ∈ Rd

∥∇Vϵ(x)−∇Vϵ(y)∥ ≤
∫
kϵ(θ)∥∇V (x− θ)−∇V (y− θ)∥dθ ≤ L∥x− y∥ (7.25)

since
∫
kϵ(θ)dθ = 1. Hence we have the following.

Proposition 99. Let ρ in P2(Rd) and ρt = Tt#ρ where Tt = Id + tϕ.

d

dt
EVϵ(ρt)−

d

dt
EVϵ(ρt)

∣∣∣
t=0
≤ Lt∥ϕ∥2L2(ρ).

Proof. By the chain rule in Wasserstein space we have

d

dt
EVϵ(ρt) = ⟨∇E ′

Vϵ
(ρt),vt⟩L2(ρt) = ⟨∇Vϵ,vt⟩L2(ρt).
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Hence, using the transfer Lemma and Cauchy-Schwarz successively,

d

dt
EVϵ(ρt)−

d

dt
EVϵ(ρt)

∣∣∣
t=0

= ⟨∇Vϵ,vt⟩L2(ρt)−⟨∇Vϵ,ϕ⟩L2(ρ)

= ⟨∇Vϵ ◦Tt−∇Vϵ,ϕ⟩L2(ρ)

≤ Ew∼ρ[L∥∥Tt(x)−x∥∥∥ϕ(w)∥]≤ Lt∥ϕ∥2L2(ρ) . (7.26)

We now turn to the mollified entropy term that is the most challenging.

Proposition 100. Let ρ denote a mixture of n Diracs and ρt = Tt#ρ where Tt = Id + tϕ. We have:

d

dt
Uϵ(ρt)−

d

dt
Uϵ(ρt)

∣∣∣
t=0
≤

(
1
ϵ2

+
√
m2(ρ)n
ϵ3

+
√
n

ϵ2
+
n
√
m2(ρ)
2ϵ3

)
t∥ϕ∥2L2(ρ)

where m2(ρ) denotes the second moment of ρ.

Proof. By the chain rule in Wasserstein space, we have

d

dt
Uϵ(ρt) = ⟨∇ U ′

ϵ(ρt),vt⟩L2(ρt).

Consequently,

d

dt
Uϵ(ρt)−

d

dt
Uϵ(ρt)

∣∣∣
t=0

=⟨∇ U ′
ϵ(ρt),vt⟩L2(ρt)−⟨∇ U ′

ϵ(ρ),ϕ⟩L2(ρ)

= ⟨∇ U ′
ϵ(Tt#ρ) ◦Tt−∇ U ′

ϵ(ρ),ϕ⟩L2(ρ)

≤ Ew∼ρ[∥∇ U ′
ϵ(Tt#ρ)(Tt(w))−∇ U ′

ϵ(ρ)(w)∥∥ϕ(w)∥] (7.27)

where in the second line we have used the transfer Lemma and in the last inequality Cauchy-Schwarz. Now, let’s
focus on the term ∥∇ U ′

ϵ(Tt#ρ)(Tt(w))−∇ U ′
ϵ(ρ)(w)∥, that we will decompose as

∇ U ′
ϵ(Tt#ρ) ◦Tt−∇ U ′

ϵ(ρ) =∇ U ′
ϵ(Tt#ρ)(Tt(w))−∇ U ′

ϵ(ρ)(Tt(w)) +∇ U ′
ϵ(ρ)(Tt(w))−∇ U ′

ϵ(ρ)(w)
:= BTt(w)(ρt,ρ) +Aρ(Tt(w),w). (7.28)

In the rest of the proof, we will show the Lipschitzness on w for A and on ρ for B.
Using Proposition 101 and Proposition 102, we have

d

dt
Uϵ(ρt)−

d

dt
Uϵ(ρt)

∣∣∣
t=0
≤ Ew∼ρ

[
(∥Aρ(Tt(w),w)∥+ ∥BTt(w)(ρt,ρ)∥)∥ϕ(w)∥

]
≤

(
1
ϵ2

+
√
m2(ρ)n
2ϵ3

)
t∥ϕ∥2L2(ρ) +

(√
n

ϵ2
+
√
nm2(ρ)
2ϵ3 +

n
√
m2(ρ)
2ϵ3

)
t∥ϕ∥2L2(ρ)

≤

(
1
ϵ2

+
2
√
m2(ρ)n
ϵ3

+
√
n

ϵ2
+
n
√
m2(ρ)
2ϵ3

)
t∥ϕ∥2L2(ρ).

Proposition 101. Let ρ denote a mixture of n Diracs and ρt = Tt#ρ where Tt = Id + tϕ. It holds that

∥Aρ(Tt(w),w)∥ ≤
(

1
ϵ2

+
√

2m2(ρ)n
ϵ3

)
t∥ϕ(w)∥ (7.29)
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Proof. Recalling the definition of ∇ U ′
ϵ in (7.20), we obtain

∇ U ′
ϵ(ρ)(w) =

∫
kϵ(θ−w)

∫
∇kϵ(θ− y)dρ(y)∫
kϵ(θ− y)dρ(y)

dθ = 1
ϵ2

∫
kϵ(θ−w)

∫
ykϵ(θ− y)dρ(y)∫
kϵ(θ− y)dρ(y)

dθ− w

ϵ2
. (7.30)

Then from the definition of A in (7.28) we have

∥Aρ(Tt(w),w)∥= 1
ϵ2

∥∥∥∥∫ (kϵ(θ−Tt(w)) + kϵ(θ−w))
∫
ykϵ(θ− y)dρ(y)
kϵ ⋆ ρ(θ) dθ−Tt(w) +w

∥∥∥∥
≤ 1
ϵ2

∫
|kϵ(θ−Tt(w))− kϵ(θ−w)|

∫
∥y∥kϵ(θ− y)dρ(y)

kϵ ⋆ ρ(θ) dθ+ t∥ϕ(w)∥
ϵ2

Moreover, recall that ρ is a mixture of n Diracs. Therefore, we have∫
∥y∥kϵ(θ− y)dρ(y)≤

√∫
∥y∥2dρ(y)

√∫
kϵ(θ− y)2dρ(y)

=
√
m2(ρ)

√√√√ 1
n

n∑
i=1

kϵ(θ− yi)2

≤
√
m2(ρ) 1√

n

n∑
i=1

kϵ(θ− yi)

≤
√
m2(ρ)n kϵ ⋆ ρ(θ). (7.31)

Consequently,

∥Aρ(Tt(w),w)∥ ≤
√
m2(ρ)n
ϵ2

2TV(N (Tt(w), ϵ2Id), N (w,ϵ2Id)) + t∥ϕ(w)∥
ϵ2

≤
√
m2(ρ)n
ϵ2

√
2KL(N (Tt(w), ϵ2Id), N (w,ϵ2Id)) + t∥ϕ(w)∥

ϵ2

=
(

1
ϵ2

+
√

2m2(ρ)n
ϵ3

)
t∥ϕ(w)∥.

Proposition 102. Let ρ denote a mixture of n Diracs and ρt = Tt#ρ where Tt = Id + tϕ. We have:

Ew∼ρ[∥BTt(w)(ρt,ρ)∥∥ϕ(w)∥]≤
(√

n

ϵ2
+
√
nm2(ρ)
ϵ3

+
n
√
m2(ρ)
ϵ3

)
t∥ϕ∥2L2(ρ).

Proof. Recalling the definition of (7.20), we have

Ew∼ρ[∥BTt(w)(ρt,ρ)∥∥ϕ(w)∥]

=
∫ ∥∥∥∥ 1

ϵ2

∫
kϵ(θ−Tt(w))

∫
ykϵ(θ− y)dρt(y)
kϵ ⋆ ρt(θ)

−
∫
ykϵ(θ− y)dρ(y)
kϵ ⋆ ρ(θ)

∥∥∥∥ .∥ϕ(w)∥dθdρ(w)

≤ 1
ϵ2

∫ (∫
kϵ(θ−Tt(w))∥ϕ(w)∥dρ(w)

) ∥∥∥∫ ykϵ(θ− y)dρt(y)
kϵ ⋆ ρt(θ)

−
∫
ykϵ(θ− y)dρ(y)
kϵ ⋆ ρ(θ)

∥∥∥dθ. (7.32)

Then, we can use Cauchy Schwarz inequality and that ρt is supported on n Diracs to obtain∫
∥ϕ(w)∥kϵ(θ−Tt(w))dρ(w)≤ ∥ϕ∥L2(ρ)

√∫
kϵ(θ−w)2dρt(w) =

√
n∥ϕ∥L2(ρ) kϵ ⋆ ρt(θ). (7.33)
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Moreover, recall that∥∥∥∫ ykϵ(θ− y)dρt(y)
kϵ ⋆ ρt(θ)

−
∫
ykϵ(θ− y)dρ(y)
kϵ ⋆ ρ(θ)

∥∥∥
≤

∥∥∥∫ ykϵ(θ− y)dρt(y)−
∫
ykϵ(θ− y)dρ(y)

∥∥∥
kϵ ⋆ ρt(θ)

+
∥∥∥∫ ykϵ(θ− y)dρ(y)

∥∥∥ ∣∣∣ 1
kϵ ⋆ ρt(θ)

− 1
kϵ ⋆ ρ(θ)

∣∣∣
≤
∫
∥Tt(y)kϵ(θ−Tt(y))− ykϵ(θ− y)∥dρ(y)

kϵ ⋆ ρt(θ)
+
∫
∥y∥kϵ(θ− y)dρ(y)

∣∣∣kϵ ⋆ ρ(θ)− kϵ ⋆ ρt(θ)
kϵ ⋆ ρ(θ) kϵ ⋆ ρt(θ)

∣∣∣
:= C1(θ) + C2(θ). (7.34)

We can now combine inequalities 7.32, 7.33 and 7.34 to obtain

Ew∼ρ[∥BTt(w)(ρt,ρ)∥∥ϕ(w)∥]≤
√
n∥ϕ∥L2(ρ)
ϵ2

∫
kϵ ⋆ ρt(θ)(C1(θ) + C2(θ))dθ.

We first focus on the C1 term:∫
kϵ ⋆ ρt(θ)C1(θ)dθ =

∫ ∫
∥Tt(y)kϵ(θ−Tt(y))− ykϵ(θ− y)∥dρ(y)dθ

≤
∫ ∫

∥Tt(y)− y∥kϵ(θ−Tt(y)) + ∥y∥ |kϵ(θ−Tt(y))− kϵ(θ− y)|dρ(y)dθ

≤ tEy∼ρ[∥ϕ(y)∥] +
∫
∥y∥2TV(N (Tt(y), ϵ2Id),N (y,ϵ2Id))dρ(y)

≤ t∥ϕ∥L2(ρ) +
∫
t∥y∥ ∥ϕ(y)∥

ϵ
dρ(y)

≤ t∥ϕ∥L2(ρ) +
t∥ϕ∥L2(ρ)

2ϵ

√∫
∥y∥2dρ(y)

=
(

1 +
√
m2(ρ)
ϵ

)
t∥ϕ∥L2(ρ).

Finally, we focus on the C2 term. We obtain using the same computations as in (7.31):∫
kϵ ⋆ ρt(θ)C2(θ)dθ =

∫ ∫
∥y∥kϵ(θ− y)dρ(y)

kϵ ⋆ ρ(θ) |kϵ ⋆ ρ(θ)− kϵ ⋆ ρt(θ)|dθ

≤
√
m2(ρ)n

∫
|kϵ ⋆ ρ(θ)− kϵ ⋆ ρt(θ)|dθ

≤
√
m2(ρ)n

∫ ∫
|kϵ(θ− y)− kϵ(θ−Tt(y))|dρ(y)dθ

≤
√
m2(ρ)n

∫ ∫
t∥ϕ∥L2(ρ)

ϵ
dρ(y)dθ

≤
t
√
m2(ρ)n
ϵ

∥ϕ∥L2(ρ).

Combining the previous inequalities, we obtain

Ew∼ρ[∥BTt(w)(ρt,ρ)∥∥ϕ(w)∥]≤
(√

n

ϵ2
+
√
nm2(ρ)
ϵ3

+
n
√
m2(ρ)
ϵ3

)
t∥ϕ∥2L2(ρ).
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7.5 Wasserstein Hessians of relative entropies

7.5.1 Proof of Proposition 90

Proof. Let µt = (Id + t∇ψ)#µ where ψ ∈ C∞
c (Rd). Let µt,µ

∗ be the densities of µt and µ∗ respectively. We
denote by ϕt = Id + tg where g =∇ψ. Hence we have Jϕt = Id + tJg. Time derivatives are denoted as ϕ′

t = dϕt
dt .

Notice that (Jϕt)′ = Jϕ′
t = Jg =Hessψ.

For any f -divergence,

hµ(t) =
∫
f

(
µt(x)
µ∗(x)

)
µ∗(x)dx=

∫
f̃

(
µt(x)
µ∗(x)

)
µt(x)dx.

where f̃(t) = f(t)/t. By the transfer lemma and change of variables formula, we have

hµ(t) =
∫
f̃

(
µ(x)

µ∗(ϕt(x))|Jϕt(x)|

)
dµ(x).

Let us rewrite

hµ(t) =
∫
f̃
(
µ(x)ent(x)

)
dµ(x), where nt(x) = V (ϕt(x))− log |Jϕt(x)|.

We have consecutively:

h′
µ(t) =

∫
f̃ ′
(
µ(x)ent(x)

)
µ(x)n′

t(x)ent(x)dµ(x)

h′′
µ(t) =

∫ [
f̃ ′′(µ(x)ent(x))

(
µ(x)n′

t(x)ent(x)
)2
f̃ ′(µ(x)ent(x))

(
n′′

t (x) +n′
t(x)2

)
µ(x)ent(x)

]
dx

where

n′
t(x) =

〈
∇V (ϕt(x)),ϕ′

t(x)
〉
−Tr

(
(Jϕt(x))−1Jϕ′

t(x)
)
,

n′′
t (x) =

〈
HV (ϕt(x))ϕ′

t(x),ϕ′
t(x)

〉
+ Tr

(
(Jϕt(x))−1Jϕ′

t(x)2
)
,

since ϕ′′
t = 0. At time t= 0, we have

n0(x) = V (x) =− log(µ∗(x))
n′

0(x) = ⟨∇V (x),∇ψ(x)⟩−∆ψ(x),
n′′

0(x) = ⟨HV (x)∇ψ(x),∇ψ(x)⟩+ ∥Hψ(x)∥2HS

since Tr(Hψ) = ∆Ψ and Tr
(

(Hψ)2
)

= ∥Hψ∥2HS . Notice that n′
0(x) = Lµ∗ψ(x) where Lµ∗ : ψ 7→ ⟨∇V,∇ψ⟩−

∆ψ denotes the (negative) generator of the standard Langevin diffusion with stationary distribution µ∗ with density
µ∗ ∝ e−V , see [Pavliotis, 2014, Section 4.5].

Now we get at time t= 0:

h′′
µ(0) =

∫ [(
f̃ ′′
(
µ(x)
µ∗(x)

)(
µ(x)
µ∗(x)

)2
+ f̃ ′

(
µ(x)
µ∗(x)

)(
µ(x)
µ∗(x)

))
(Lµ∗ψ(x))2

+f̃ ′
(
µ(x)
µ∗(x)

)(
µ(x)
µ∗(x)

)(
⟨HV (x)∇ψ(x),∇ψ(x)⟩+ ∥Hψ(x)∥2HS

)]
µ(x)dx.

Hence if V is convex, and that min(f̃ ′(t), tf̃ ′(t) + t2f̃ ′′(t))≥ 0, then h′′
µ(0)≥ 0. Now let f(t) = t log t− t, then

hµ(t) = KL(µt|µ∗)− 1. Then, f̃(t) = log(t)− 1; f̃ ′(t) = 1/t, f̃ ′′(t) =−1/t2, hence tf̃ ′(t) + t2f̃ ′′(t) = 0 and we
obtain more precisely:

HessµKL(ψ,ψ) =
∫ [
⟨HV (x)∇ψ(x),∇ψ(x)⟩+ ∥Hψ(x)∥2HS

]
µ(x)dx.



158 Section 7: Appendix

7.5.2 Hessian of the mollified relative entropy

Recall that Fϵ(µ) = EVϵ(µ) + Uϵ(µ). Hence, for any ψ ∈ C∞
c (Rd), HessµFϵ(ψ,ψ) = HessµEVϵ(ψ,ψ) +

Hessµ Uϵ(ψ,ψ). We directly have for the potential energy part that

d2EVϵ(ρt)
dt2

∣∣∣
t=0

=
∫
⟨HVϵ(x)∇ψ(x),∇ψ(x)⟩dµ(x). (7.35)

using again our computation from Subsection 7.5.1. Since HVϵ = kϵ ⋆HV and kϵ converges to a Dirac at origin as ϵ
goes to zero, we get HessµEVϵ(ψ,ψ)−−−→

ε→0

∫
⟨HV (x)∇ψ(x),∇ψ(x)⟩dµ(x).

We now turn to the mollified entropy part. We rewrite it along a geodesic (ρt,vt)t∈[0,1] as

Uϵ(ρt) =
∫

log(kϵ ⋆ ρt)d(kϵ ⋆ ρt) =
∫

θ
U(kϵ ⋆ ρt(θ))dLd(θ),

denoting U : x 7→ x log(x). The first time derivative of t 7→ Uϵ(ρt) is:

d Uϵ(ρt)
dt

=
∫
U ′(kϵ ⋆ ρt(θ))

d
dt
kϵ ⋆ ρt(θ)dθ (7.36)

=
∫

(1 + log(kϵ ⋆ ρt(θ))
∫
⟨∇kϵ(θ−x),vt(x)⟩dρt(x)dθ (7.37)

Since by an integration by parts,

d
dt
kϵ ⋆ ρt(θ)dθ =

∫
kϵ(θ−x)∂ρt(x)

∂t
dx=

∫
∇kϵ(θ−x)ρt(x)vt(x)dx.

From 7.36 we obtain

d2 Uϵ(µt)
dt2

=
∫ [

U
′′(kϵ ⋆ ρt(θ))

(
dkϵ ⋆ ρt(θ)

dt

)2
+U

′(kϵ ⋆ ρt(θ))
d2kϵ ⋆ ρt(θ)

dt2

]
dθ

=
∫

θ

[
(kϵ ⋆ ρt(θ))−1

(
dkϵ ⋆ ρt(θ)

dt

)2
+ (1 + log(kϵ ⋆ ρt(θ)))

d2kϵ ⋆ ρt(θ)
dt2

]
dθ. (7.38)

The first term in (7.38) is always positive but the second may not because of the logarithmic term. However, as
ϵ→ 0, we recover the geodesic convexity of the negative entropy, as stated in the following proposition.

Proposition 103. Let µ ∈ P2(Rd). Let ψ ∈ C∞
c (Rd). As ϵ→ 0, the Wasserstein Hessian of the regularized entropy

Uϵ converges to the one of the regular negative entropy U(µ) =
∫

log(µ)dµ, i.e:

Hessµ Uϵ(ψ,ψ)−−−→
ε→0

HessµU(ψ,ψ) =
∫
∥Hψ(x)∥2HSdµ(x). (7.39)

Proof.
For each term, we will first take the limit as t → 0 to recover the definition of the Hessian at µ (limiting

distribution of ρt as t goes to 0), then ϵ→ 0 to recover the case of the standard (non-regularized) relative entropy.
Denote hϵ

µ(t,θ) = kϵ ⋆ ρt(θ) =
∫
kϵ(θ−x)dρt(x) =

∫
kϵ(θ−ϕt(x))dµ(x) by the transfer lemma. We have

d2 Uϵ(µt)
dt2

=
∫ [

U
′′(hϵ

µ(t,θ))
(
dhϵ

µ(t,θ)
dt

)2
+U

′(hϵ
µ(t,θ))

d2hϵ
µ(t,θ)
dt2

]
dθ

=
∫

θ

[
(hϵ

µ(t,θ))−1
(
dhϵ

µ(t,θ)
dt

)2
+
(
1 + log

(
hϵ

µ(t,θ)
)) d2hϵ

µ(t,θ)
dt2

]
dθ. (7.40)

We firstly have
hϵ

µ(t,θ) = kϵ ⋆ ρt(θ)−−−→
t→0

kϵ ⋆ µ(θ)−−−→
ε→0

µ(θ).
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Recall that the continuity equation along Wasserstein geodesics write:

∂ρt(x)
∂t

+ ∇ ·
(
ρt(x)∇ψ ◦ϕ−1

t (x)
)
) = 0. (7.41)

Then, using ∇ · (aB) = ⟨∇a,B⟩+ a∇ · (B), the first time derivative of t 7→ hϵ
µ(t,θ) writes

dhε
µ(t,θ)
dt

=
∫
kϵ(θ−x)∂ρt(x)

∂t
dx (7.42)

=−
∫
kϵ(θ−x)∇ ·

(
ρt(x)∇ψ(ϕ−1

t (x))
)
dx (7.43)

−−−→
t→0

−
∫
kϵ(θ−x)∇ · (µ(x)∇ψ(x))dx, (7.44)

Hence for the first term in (7.40) we have:∫
(hϵ

µ(t,θ))−1
(
dhε

µ(t,θ)
dt

)2
dθ (7.45)

−−−→
t→0

∫
(kϵ ⋆ µ(θ))−1

(∫
kϵ(θ−x)∇ · (µ(x)∇ψ(x))dx

)2
dθ (7.46)

−−−→
ε→0

∫
µ(θ)−1∇ · (µ(θ)∇ψ(θ))2dθ (7.47)

=
∫
µ(θ)−1⟨∇µ(θ),∇ψ(θ)⟩2dθ+

∫
∆ψ(θ)2dµ(θ) + 2

∫
∆ψ(θ)⟨∇µ(θ),∇ψ(θ),d⟩θ (7.48)

= (a) + (b) + (c). (7.49)

We now turn to second term in (7.40). Using (7.42), the second time derivative of hϵ
µ writes:

d2hε
µ(t,θ)
dt2

=−
∫
kϵ(θ−x)∇ ·

(
d

dt
(ρt(x)∇ψ(ϕ−1

t (x)))
)
dx

=−
∫
kϵ(θ−x)∇ ·

(
∂ρt(x)
∂t
∇ψ(ϕ−1

t (x))
)
dx−

∫
kϵ(θ−x)∇ ·

(
ρt(x)d∇ψ(ϕ−1

t (x))
dt

)
dx

= (d) + (e).

Then using ∂ρt(x)
∂t =−∇ ·

(
ρt(x)∇ψ(ϕ−1

t (x))
)

=−⟨∇ρt(x),∇ψ(ϕ−1
t (x))⟩− ρt(x)∆ψ(ϕ−1

t (x)), we have

(d) =
∫
kϵ(θ−x)∇ ·

(
⟨∇ρt(x),∇ψ(ϕ−1

t (x))⟩+ ρt(x)∆ψ(ϕ−1
t (x))

)
∇(ψ(ϕ−1

t (x)))dx

−−−→
t→0

∫
kϵ(θ−x)∇ · (⟨∇µ(x),∇ψ(x)⟩+µ(x)∆ψ(x))∇(ψ(x))dx

−−−→
ϵ→0

∇ ·
(
⟨∇µ(θ),∇ψ(θ)⟩∇ψ(θ)

)
+ ∇ ·

(
µ(θ)∆ψ(θ)∇(ψ(θ))

)
Now, using ϕ−1

t ≈ Id− t∇ψ for t≈ 0:

(e) =−
∫
kϵ(θ−x)∇ ·

(
ρt(x) d

dt
(∇ψ(ϕ−1

t (x)))
)
dx

−−−→
t→0

∫
kϵ(θ−x)∇ · (µ(x)Hψ(x)∇ψ(x))dx

−−−→
ϵ→0

∇ · (µ(θ)Hψ(θ)∇ψ(θ))dx.
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Finally, for the second term in (7.40) we have∫
(1 + log

(
hϵ

µ(t,θ)
)
)
d2hϵ

µ(t,θ)
dt2

dθ

−−−−→
t,ϵ→0

∫
(1 + log(µ(θ)))

{
∇ · (⟨∇µ(θ),∇ψ(θ)⟩∇ψ(θ) +µ(θ)∆ψ(θ)∇ψ(θ) +µ(θ)Hψ(θ)∇ψ(θ))

}
dθ

=−
∫
⟨∇ log(µ(θ)),⟨∇µ(θ),∇ψ(θ)⟩∇ψ(θ) +µ(θ)∆ψ(θ)∇ψ(θ) +µ(θ)Hψ(θ)∇ψ(θ)⟩dθ

=−
∫
µ(θ)−1⟨∇µ(θ),∇ψ(θ)⟩2dθ−

∫
∆ψ(θ)⟨∇µ(θ),∇ψ(θ)⟩dθ−

∫
⟨∇µ(θ),Hψ(θ)∇ψ(θ)⟩dθ

=−(a)− 1
2(c)−

∫
⟨∇µ(θ),Hψ(θ)∇ψ(θ)⟩dθ.

Moreover, by an integration by parts, using the divergence of matrix vector product ∇·(Ab) = ∇·(A)b+Tr(A∇b):

−
∫
⟨∇µ(θ),Hψ(θ)∇ψ(θ)⟩dθ =

∫
∇ · (Hψ(θ)∇ψ(θ))dµ(θ)

=
∫
⟨∇ ·Hψ(θ),∇ψ(θ)⟩+ Tr(Hψ(θ)Hψ(θ))⊤dµ(θ)

=
∫
⟨∇(∆ψ(θ)),∇ψ(θ)⟩+ ∥Hψ(θ)∥2Fdµ(θ),

where ∫
⟨∇(∆ψ(θ)),∇ψ(θ)⟩dµ(θ) =−

∫
∆ψ(θ)∇ · (µ(θ)∇ψ(θ))dθ

=−
∫

∆ψ(θ)(⟨∇µ(θ),∇ψ(θ)⟩−µ(θ)∆ψ(θ))dθ

=−1
2(c)− (b).

Consequently,∫
(1 + log

(
hϵ

µ(t,θ)
)
)
d2hϵ

µ(t,θ)
dt2

dθ −−−−→
t,ϵ→0

−(a)− 1
2(c)− 1

2(c)− (b) +
∫
∥Hψ(θ)∥2Fdµ(θ). (7.50)

Finally combining (7.49) and (7.50) we get the result.

7.6 Experimental setting
The target distribution The target distribution µ⋆ is chosen to be a Gaussian mixture with 100 components:

µ⋆ = 1
100

100∑
i=1
N (x⋆

i , ϵ
2Id)

The components (x⋆
i )i≤100 are randomly sampled from a normal distribution N (0,σ2Id), where σ = 5 in all

experiments. The standard deviation of the target is set to ϵ = ϵ0
√
d, where ϵ0 = 1 in our setting. This standard

deviation scales with
√
d because the term ∥x⋆

i ∥2 also scales with
√
d. Without this scaling, the term N (x⋆

i , ϵ
2Id)

would be very close to a Dirac mass in high dimensions.

Variational family The variational family used for the experiments is the family of Gaussian mixtures with 10
components:

G =
{

1
10

1∑
i=1

0N (xi, ϵ
2Id), xi ∈ Rd

}
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At the beginning of the training, the mean of each component (xi)i≤10 is randomly initialized, sampled from a
normal distribution N (0, ζ2Id), where ζ = 15 in all experiments. Note that these components are initialized further
than the parameters (x⋆

i )i≤100 of the target µ⋆, ie, ζ ≥ σ. It seems that this setting allows to slightly improve the
performances and the mode coverage of the algorithm. For simplicity, the variational family shares the same standard
deviation ϵ than the target.

Training parameters The step-size is set as γ = γ0 · d, where γ0 = 0.01. According to Proposition 92, the
step-size should satisfy γ ≤ 2/M to ensure a decrease in the objective of each iteration, where the constantM scales
inversely with d. Therefore, we opted for γ to scale with d accordingly.

Monte Carlo approximation of the cumulative mean Let µ a Gaussian mixture with n components. We denote
by (xi)i≤n the mean of those components. Therefore, the term ∥∇F ′

ϵ(µ)∥2
L2(µ) can be approximated by Monte

Carlo with B samples using

∥∇F ′
ϵ(µ)∥2L2(µ) =

∫
∥∇F ′

ϵ(µ)(w)∥22dµ(w)

= 1
n

n∑
i=1
∥∇F ′

ϵ(µ)(xi)∥22

= 1
n

n∑
i=1
∥
∫
∇ log

(
µ(y)
µ⋆(y)

)
dkxi

ϵ (y)∥22

≈ 1
n

n∑
i=1
∥ 1
B

B∑
j=1
∇ log

(
µ(yi

j)
µ⋆(yi

j)

)
∥22 ,

where yi
j ∼N (xi, ϵ

2Id).

Monte Carlo approximation of the KL Let νn a Gaussian mixture with n components. We denote by (xi)i≤n
the mean of those components. Therefore, the Kullback-Leibler divergence between νn and the target µ⋆ can be
approximated by Monte Carlo with B samples using

KL(νn,µ
⋆) =

∫
log
(
νn(y)
µ⋆(y)

)
dµ(y)

= 1
n

n∑
i=1

∫
log
(
νn(y)
µ⋆(y)

)
dkxi

ϵ (y)

≈ 1
B ·n

n∑
i=1

B∑
j=1

log
(
νn(yi

j)
µ⋆(yi

j)

)
,

where yi
j ∼N (xi, ϵ

2Id).
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Part II

Thompson Sampling for Multi-Armed Bandit
problems





Chapter 8: Variational Inference Thompson Sampling for contextual bandits 165

C
h

a
p

t
e

r

8
Variational Inference Thompson Sampling for

contextual bandits

Chapter abstract: In this chapter, we introduce and analyze a variant of the Thompson sampling (TS) algorithm
for contextual bandits. At each round, traditional TS requires samples from the current posterior distribution, which
is usually intractable. To circumvent this issue, approximate inference techniques can be used and provide samples
with distribution close to the posteriors. However, current approximate techniques yield to either poor estimation
(Laplace approximation) or can be computationally expensive (MCMC methods, Ensemble sampling...). In this
paper, we propose a new algorithm, Varational Inference TS (VITS), based on Gaussian Variational Inference. This
scheme provides powerful posterior approximations which are easy to sample from, and is computationally efficient,
making it an ideal choice for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same
order in the dimension and number of round as traditional TS for linear contextual bandit. Finally, we demonstrate
experimentally the effectiveness of VITS on both synthetic and real world datasets.

1 Introduction

In traditional Multi-Armed Bandit (MAB) problems, an agent, has to sequentially choose between several actions
(referred to as “arms“), from which he receives a reward from the environment. The arm selection process is induced
by a sequence of policies, which is inferred and refined at each round from past observations. These policies are
designed to optimize the cumulative rewards over the entire process. The main challenge in this task is to effectively
manage a suitable exploitation and exploration trade-off [Robbins, 1952, Katehakis and Veinott, 1987, Berry and
Fristedt, 1985, Auer et al., 2002, Lattimore and Szepesvári, 2020, Kveton et al., 2020a]. Here, exploitation refers to
selecting an arm that is currently believed to be the best based on past observations, while exploration refers to
selecting arms that have not been selected frequently in the past in order to gather more information.

Contextual bandit problems is a particular instance of MAB problem, which supposes, at each round, that the set
of arms and the corresponding reward depend on a d-dimensional feature vector called a contextual vector or context.
This scenario has been extensively studied over the past decades and learning algorithms have been developed
to address this problem [Langford and Zhang, 2007a, Abbasi-Yadkori et al., 2011a, Agrawal and Goyal, 2013a,
Kveton et al., 2020a], and they have been successfully applied in several real-world problem such as recommender
systems, mobile health and finance [Li et al., 2010, Agarwal et al., 2016a, Tewari and Murphy, 2017, Bouneffouf
et al., 2020]. The existing algorithms for addressing contextual bandit problems can be broadly categorized into
two groups. The first category is based on maximum likelihood and the principle of optimism in the face of
uncertainty (OFU) and has been studied in [Auer et al., 2002, Chu et al., 2011, Abbasi-Yadkori et al., 2011b, Li
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et al., 2017a, Ménard and Garivier, 2017, Zhou et al., 2020, Foster and Rakhlin, 2020, Zenati et al., 2022]. The
second category consists in randomized probability matching algorithms, which is based on Bayesian belief and
posterior sampling. Thompson Sampling (TS) is one of the most famous algorithms that fall into this latter category.
Since its introduction by [Thompson, 1933], it has been widely studied, both theoretically and empirically [Agrawal
and Goyal, 2012, Kaufmann et al., 2012a, Agrawal and Goyal, 2013a, Russo and Van Roy, 2014, 2016, Lu and
Van Roy, 2017, Riquelme et al., 2018, Jin et al., 2021a]. Despite the fact that OFU algorithms offer better theoretical
guarantees compared to classic TS-based algorithms, traditional TS methodologies still appeal to us due to their
straightforward implementation and empirical advantages. In [Agrawal and Goyal, 2012], the authors claimed that:
“In applications like display advertising and news article recommendation, TS is competitive with or better than
popular methods such as UCB“. Similarly, [Chapelle and Li, 2011] has examined the empirical performances of TS
on both simulated and real data. Their experiments demonstrate that TS outperforms OFU methods, leading them to
conclude: “In any case, TS is very easy to implement and should thus be considered as a standard baseline“. Taking
all these factors into account, we have decided to focus on TS-based algorithms for addressing contextual bandit
problems.

Despite its relative simplicity, effectiveness and convergence guarantees, TS comes with a computational burden
which is to sample, at each iteration t ∈ N, from an appropriate Bayesian posterior distribution p̂t defined from the
previous observations. Indeed, these posteriors are usually intractable and approximate inference methods have to
be used to obtain samples with distributions ”close” to the posterior. The family of TS methods using approximate
inference methods will be referred to as approximate inference TS in the sequel. Among the simplest approximate
inference methods, Laplace approximation has been proposed for TS in [Chapelle and Li, 2011]. This method
consists in approximating the posterior distribution p̂t by a Gaussian distribution with a carefully chosen mean and
covariance matrix. More precisely, the mean is a mode of the target distribution which is typically found using an
optimization algorithm, while the covariance matrix is taken to be the negative Hessian matrix of the log posterior
at the considered mode. Despite this method is easy to implement, it may lead to poor posterior representations.
Indeed, while Laplace method achieves minimal optimality in terms of regret [Faury et al., 2022], it doesn’t dictate
the posterior convergence rate. More precisely, in [Katsevich and Rigollet, 2023] it has been demonstrated that
VI outperforms Laplace in terms of mean convergence by a factor of 1/n. It is worth noting that the covariance
rates remain the same for both methods. This discrepancy can lead to inadequate approximations, especially in
high-dimensional settings, as highlighted in section I.4 of [Katsevich and Rigollet, 2023]. Another class of popular
approximate inference methods are Markov Chain Monte Carlo (MCMC) methods, such as Metropolis or Langevin
Monte Carlo (LMC) algorithms. In the bandit literature, LMC has been proposed to get approximate samples from
TS posteriors for solving traditional bandit problem in [Mazumdar et al., 2020a] and for contextual bandit problems
in [Xu et al., 2022, Huix et al., 2023]. Also, [Lu and Van Roy, 2017] have proposed to adapt Ensemble Methods
to the bandit setting. Roughly, the idea here is to maintain and incrementally update an ensemble of statistically
plausible models and to draw a uniform sample from this family at each iteration. Finally, [Zhang et al., 2020]
suggests a TS method based on Neural Tangent Kernel. While this performs well on relative datasets, their method
is much more expensive than previously mentioned approaches, as it requires training a neural network.

Finally, Variational Inference (VI) [Blei et al., 2017] is another class of approximate method that could be used
to get samples from the posterior distribution. The core concept behind VI is to find a distribution q̃, referred to
as the variational posterior, to closely match the true posterior p̂ in terms of Kullback-Leibler divergence (KL)
within a predefined family of distributions known as the variational family G. In general, the variational family is
chosen to make the optimization of the KL tractable and to be easy to sample from. In their work [Urteaga and
Wiggins, 2018] propose the mean-field mixture of Gaussian variational family for TS. This family of distributions is
quite extensive and provides an accurate approximation for a wide range of posterior distributions. However, in our
perspective, it might not be the most suitable choice for TS. Firstly, the optimization algorithm at each time step can
be computationally expensive. Secondly, the mean-field assumption assumes that the parameters are independent, a
premise that holds true in the regime of large, overparameterized models. In our perspective, this regime may not
align with the Bandit problem, which often operates in a setting where the number of data points tends towards
infinity in comparison to the model size.

In this chapter, we develop an efficient VI method that makes use of the whole family of non-degenerate Gaussian
distributions. This choice of VI family is supported by the Bernstein-Von Mises theorem [Van der Vaart, 2000]. This
theorem, subject to specific regularity conditions, asserts that a properly scaled version of the posterior converges to
a Gaussian as the sample size grows. When applied to contextual bandits, the data points progressively accumulate
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over time, leading to the gradual concentration of the posterior around a dominant mode. As a consequence, the
Gaussian approximation becomes increasingly suitable for representing the posterior in this particular setting.
Furthermore, the covariance of the rescaled posterior distribution tends to converge towards the inverse Fisher
information matrix, which may not necessarily be diagonal, thus justifying the need for a non-mean-field hypothesis.

The theoretical foundations of TS for linear contextual bandits were initially explored by [Agrawal and Goyal,
2013a]. In this paper, the authors establish a sub-linear cumulative regret bound Õ(d3/2√T ) for Linear TS (Lin-TS).
Compared to this study, our method achieves a similar regret bound in the linear framework. However, it should be
noted that Lin-TS is a specialized algorithm that can be only used when the posterior is known and can be efficiently
sampled from.

As mentioned previously, VI has been suggested for TS in [Urteaga and Wiggins, 2018]. This paper introduces a
TS algorithm called VTS that utilizes a mixture of mean-field Gaussian distributions to approximate the sequence of
posteriors. In comparison to this work, the setting and the variational family we consider are richer than [Urteaga
and Wiggins, 2018]. A more detailed comparison is postponed in Section 8. Moreover, the methodology developed
in [Urteaga and Wiggins, 2018] does not come with any convergence guarantees. An empirical and theoretical study
of using LMC as approximate inference method for TS for contextual bandit problems was carried out in [Xu et al.,
2022]. This paper establishes that the resulting algorithm, called LMC-TS, achieves a state-of-the-art sub-linear
cumulative regret for linear contextual bandits. Compared to this method, our approach yields a similar sub-linear
regret in the same setting.

2 Thompson sampling for contextual bandits

Contextual bandit: We now present in more details the contextual bandit framework. Let X be a contextual space
and consider A : X→ 2A a set-valued action map, where 2A stands for the power set of the action space A. For
simplicity, we assume here that supx∈XCard(A(x))<+∞. A (deterministic or random) function π : X→ A is
said to be a policy if for any x ∈ X, π(x) ∈ A(x). Then, for a fixed horizon T ∈ N, a contextual bandit process can
be defined as follows: at each iteration t ∈ [T ] and given the past observations Dt−1 = {(xs,as, rs)}s<t:

• The agent receives a contextual feature xt ∈ X;
• The agent chooses an action at = πt(xt) where πt is a policy sampled from Qt(·|Dt−1);
• Finally, the agent receives a reward rt sampled from R(·|xt,at) given Dt−1. Here, R is a Markov kernel on

(A×X)×R, where R⊂ R

For a fixed family of conditional distributions Q1:T = {Qt}t≤T , this process defines a random sequence of
policies, π1:T = {πt}t≤T with distribution still denoted by Q1:T by abuse of notation. Let’s defined the optimal
expected reward for a contextual vector x ∈ X as

f⋆(x) = max
a∈A(x)

f(x,a) , (8.1)

and the expected reward given x and any action a ∈ A(x) as

f(x,a) =
∫
rR(dr|x,a) . (8.2)

The main challenge of a contextual bandit problem is to find the distribution Q1:T that minimizes the cumulative
regret defined as

CREG(Q1:T ) =
∑
s≤T

Regretπs
s (8.3)

where the regret is defined as

Regretπs
s = f⋆(xs)− f(xs,πs(xs)) . (8.4)

The main difficulty in the contextual bandit problem, comes from the fact that the reward distribution R is
intractable and must be inferred to find the best policy to minimize the instantaneous regret π 7→ f⋆(x)− f(x,π(x))
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for a context x ∈ X. However, the estimation of R may be in contradiction with the primary objective to minimize
the cumulative regret (8.3), since potential non-effective arms has to be chosen to obtain a complete description
of R. Therefore, bandit learning algorithms have to achieve an appropriate trade-off between exploitation of arms
which have been confidently learned and exploration of misestimated arms.

Thompson sampling: To achieve such a trade-off, we consider the popular Thompson Sampling (TS) algorithm.
Consider a parametric model {Rθ : θ ∈ Rd} for the reward distribution, where for any θ, Rθ is a Markov kernel
on (A×X)×R parameterized by θ ∈ Rd. We assume in this paper that Rθ admits a density with respect to some
dominating measure λref. An important example are generalized linear bandits [Filippi et al., 2010, Kveton et al.,
2020a]. In particular, it assumes that {Rθ(·|x,a) : θ ∈ Θ} is an exponential family with respect to λref, i.e., for
x ∈ X and a ∈ A,

dRθ

dλref
(r|x,a) = h(r)exp(g(θ,x,a)T(r)−C(θ,x,a)), (8.5)

for h : R→ R+, natural parameter and log-partition function g,C : Rd×X×A→ R and sufficient statistics
T : R→ R. The family is said to be in canonical form if g(θ,x,a) = ⟨ϕ(x,a),θ⟩ for some feature map ϕ : X×A→ R
andC(θ,x,a) = σ(⟨ϕ(x,a),θ⟩) for some link function σ. Linear contextual bandits [Chu et al., 2011, Abbasi-Yadkori
et al., 2011b] fall into this model taking λref = Leb, T equals to the identity function,

h(r) = exp
(
−ηr2/2

)
and g(θ,x,a) = η ⟨ϕ(x,a),θ⟩ , (8.6)

for some η > 0.
As a result, Rθ(·|x,a) is simply the Gaussian distribution with mean ⟨ϕ(x,a),θ⟩ and variance 1/η. Fi-

nally [Riquelme et al., 2018, Zhou et al., 2020, Xu et al., 2020] introduced an extension of linear contextual bandits,
referred to as linear neural contextual bandits where g is a neural network with weights θ and taking as input a pair
(x,a). With the introduced notations, the likelihood function associated to the observations Dt at step t > 1 is given
by

Lt(θ)∝ exp
{

t−1∑
s=1

ℓ(θ|xs,as, rs)
}
, (8.7)

where the log-likelihood is given by ℓ(θ|xs,as, rs) = log(dRθ/dλref)(rs|xs,as) . Choosing a prior on θ with
density p0 with respect to Leb, and applying Bayes formula, the posterior distribution at round t ∈ [T ] is given by

p̂t = Lt(θ)p0(θ)/Zt (8.8)

where Zt =
∫
Lt(θ)p0(θ)dθ denotes the normalizing constant and we used the convention that p̂1 = p0. Moreover

we define the potential function U(θ) ∝ − log p̂t(θ). Then, at each iteration t ∈ [T ], TS consists in sampling a
sample θt from the posterior p̂t and from it, use as a policy, π(TS)

t (x) defined for any x by

π
(TS)
t (x) = aθt(x) , aθ(x) = argmax

a

∫
rRθ(dr|x,a) (8.9)

Since Zt is generally intractable, sampling from the posterior distribution is not in general an option.

Variational inference TS: To address this challenge, practitioners often employ approximate inference methods
to generate samples from a distribution that is expected to be ‘close’ to the actual posterior distribution. In this
context, we specifically concentrate on the application of VI. In this scenario, we consider a variational family G
which is a set of probability densities with respect to the Lebesgue measure, from which it is typically easy to sample
from. Then ideally, at each round t ∈ [T ], the posterior distribution p̂t is approximated by the variational posterior
distribution q̃t which is defined as:

q̃t = argmin
p∈G

KL(p|p̂t) , (8.10)
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where KL is the Kullback-Leibler divergence.
However, we have to determine at each round a solution to the problem specified in (8.10). In this paper, we

consider as variational family the set of non-degenerate Gaussian distribution G = {N (µ,Σ) : µ ∈ Rd, Σ ∈ S∗
+}

where N (µ,Σ) is the Gaussian distribution with mean µ and covariance matrix Σ and S∗
+ is the set of symmetric

positive definite matrices. As explained in the introduction, this Gaussian variational family is particularly relevant
in bandit framework according to Bernstein-Von Mises theorem.

Presentation of VITS− I: As we will see, this choice of variational family will allow to derive an efficient
method for solving (8.10) using the Riemannian structure of G. As noted in [Lambert et al., 2022b], G equipped
with the Wasserstein distance of order 2 is a complete metric space as a closed subset of P2(Rd), the set of
probability distributions with finite second moment. Recall that for two Gaussian distributions p0 =N (µ0,Σ0) and
p1 =N (µ1,Σ1), their Wasserstein distance has a closed form:

W 2
2 (p0,p1) = ∥µ0−µ1∥2 + tr(Σ0 +Σ1− 2(Σ1/2

0 Σ1Σ
1/2
0 )

1/2
) .

This Wasserstein distance on G allows to derive a Riemannian metric denoted g. The corresponding geodesic is
given through the exponential map. More precisely, for a Gaussian distribution p=N (µp,Σp), this map is defined
as

expp(µv,Σv) =(µp +µv + (Σv + Id)(· −µp))#p

=N (µp +µv, (Σv + Id) Σp (Σv + Id)) . (8.11)

With all these preliminaries, we can now present and motivate the algorithm developed in [Lambert et al., 2022b]
to efficiently solve (8.10). This method can be formalized as a Riemannian gradient descent scheme on G. Firstly,
we define the loss function Ft : p→ KL(p|p̂t). Then, following [Lambert et al., 2022b], we derive the gradient
operator of Ft on G equipped with g as

∇gFt(p) = (
∫
∇Ut(θ)dp(θ),

∫
∇2Ut(θ)dp(θ)−Σ−1

p ) (8.12)

where Σp is the covariance matrix of p. From this expression, the corresponding Riemannian gradient de-
scent [Bonnabel, 2013] using a step size ht > 0 defines the sequence of iterates {qt,k}Kt

k=1 recursively as:

qt,k+1 = expqt,k
(−ht∇gFt(qt,k)) .

At each time step t, this sequence is initialized with variational posterior at the previous step, ie, qt,0 = qt−1,Kt−1 .
Please note that this warm initialization of the posterior results in an efficient algorithm and has been directly used in
our main theoretical result (see (8.32)). Combining (8.11) and (8.12), this recursion amounts defining a sequence of
means {µt,k}Kt

k=1 and covariance matrices {Σt,k}Kt
k=1 by the recursions

µt,k+1 = µt,k −ht

∫
∇Ut(θ)dqt,k(θ) , Σt,k+1 =At,kΣt,kAt,k , qt,k+1 =N (µt,k+1,Σt,k+1) ,

where At,k = Id−ht(
∫
∇2Ut(θ)dqt,k(θ)−Σ−1

t,k ).
The main computational challenge in this recursion stems is that the integrals involved are typically intractable.

To overcome this issue, we employ a Monte Carlo procedure to approximate these integrals. Subsequently, we
consider a sequence of mean values denoted as {µ̃t,k}Kt

k=1 and covariance matrices {Σ̃t,k}
K1
k=1 such that:

µ̃t,k+1 = µ̃t,k −ht∇Ut(θ̃t,k) , Σ̃t,k+1 = Ãt,kΣ̃t,k Ãt,k ,

where Ãt,k = Id−ht(∇2Ut(θ̃t,k)−Σ̃−1
t,k ) and θ̃t,k ∼N (µ̃t,k, Σ̃t,k). Consequently, following [Lambert et al., 2022b]

we obtain an algorithm capable of addressing the problem defined in (8.10). However, this algorithm exhibits
computational inefficiency, particularly in high-dimensional scenarios. This inefficiency arises from the necessity to
sample from a Gaussian distribution with a non-diagonal covariance matrix during each updating step k ∈ [Kt]. As
a result, it becomes impractical for use in a contextual bandit problem, where, at each time step t, we must solve
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the problem described in (8.10). This chapter introduces an improved version of the earlier algorithm, designed to
efficiently address the problem presented in (8.10). To achieve this, we begin by examining a sequence of matrices
denoted as Bt,k, defined by the following

Bt,k+1 =
{
Id−ht∇2Ut(θ̃t,k)

}
Bt,k +ht(B−1

t,k )⊤
. (8.13)

It is important to note that Bt,k is a square-root matrix of the covariance of the variational distribution
Σ̃t,k, ie, Bt,kB

⊤
t,k = Σ̃t,k. Then we can sample efficiently from the variational distribution using Bt,k with

θ̃t,k = µ̃t,k + Bt,kϵt,k , ϵ ∼ N (0, Id). As a result, note that our method does not require any Cholesky
decomposition, which has a complexity of O(d3), contrary to the algorithm derived in [Lambert et al., 2022a] and
also in LinTS. The updating strategies for the new sequence of µ̃t,k and Bt,k are given by

µ̃t,k+1 = µ̃t,k −ht∇Ut(θ̃t,k) , Bt,k+1 =
{
Id−ht∇2Ut(θ̃t,k)

}
Bt,k +ht(B−1

t,k )⊤
, θ̃t,k ∼N (µ̃t,k,B

⊤
t,kBt,k) .

From this methodology, we can now complete the description of our first algorithm, referred to as VITS-I.
At each step t, we consider the variational distribution q̃t = q̃t,Kt =N (µ̃t,Kt ,B

⊤
t,kBt,k) which approximates the

solution of (8.10). Then, at round t+ 1, VITS-I consists in sampling θ̃t+1 according to q̃t and choosing

πVITS−I
t+1 (x) = argmax

a∈A(x)
aθ̃t+1(x) . (8.14)

As in TS, the likelihood function and the posterior distribution p̂t+1 are updated following equations (8.7)
and (8.8) using the new observed reward rt+1 distributed according to R(·|xt+1,at+1) with at+1 = πVITS−I

t+1 (x).
The round t+ 1 is then concluded by solving q̃t+1 = q̃t+1,Kt+1 . The pseudo-code associated with this algorithm is
given in Algorithm 3 and Algorithm 4.

Algorithm 3 VITS algorithm
Parameter:

variance parameters λ and η, time horizon T
Initialize:

B1,1 = Id/
√
λη, W̃1,1 = Id/(ηλ), µ̃1,1 ∼N (0,W̃1,1)

for t= 1, . . . ,T do
receive xt ∈ X
sample θ̃t from q̃t,Kt =N (µ̃t,Kt ,B

⊤
t,Kt

Bt,k)
choose at = π(VITS)(xt) presented in (8.14)
receive rt ∼ R(·|xt,at)
update q̃t+1,Kt+1 using Alg. 4 or 5.

end for

Algorithm 4 VITS-I
Parameter:

step-size ht, number of iterations Kt

Initialize:
µ̃t,1← µ̃t−1,Kt−1 ,Bt,1←Bt−1,Kt−1

for k = 1, . . . ,Kt do
draw θ̃t,k ∼ q̃t,k =N (µ̃t,k,B

⊤
t,kBt,k)

µ̃t,k+1← µ̃t,k −ht∇Ut(θ̃t,k)
Bt,k+1←

{
Id−ht∇2(Ut(θ̃t,k))

}
Bt,k +ht(B−1

t,k )⊤

end for
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Presentation of VITS-II: In high dimension, the computational cost of the recursion of mean values and
covariance matrices may be prohibitive since at each iteration k ∈ [Kt], it requires inverting the matrix Bt,k. To
tackle this computational issue, we propose a new version of VITS. More precisely, the inverse of the square root
covariance matrix B−1

t,k can be approximated using a first order Taylor expansion in ht; see Section 7 for more
details. We denote by Ct,k the approximation of B−1

t,k , and we obtain the following recursions for the sequence of
{Ct,k}k≤Kt

and {Bt,k}k≤Kt
:

Ct,k+1 = Ct,k{Id−ht(C⊤
t,kCt,k −∇2Ut(θ̃t,k))} , Bt,k+1 = (Id−ht∇2Ut(θ̃t,k))Bt,k +htC

⊤
t,k .

This trick reduces the complexity fromO(d3) toO(d2) for the computation of the inverse. This version of VITS
is referred to as VITS− II and is given in Algorithm 3 and 5.

Presentation of VITS− II Hessian-free: The most computationally intensive step in VITS− II remains the
computation of the Hessian of Ut. In scenarios with a large number of data points and high dimensions, this step can
become highly demanding. To avoid computing the Hessian of Ut, we suggest to use the following property of
Gaussian distribution which is the result of a simple integration by part:∫

∇2UtdN (µ,Σ) =
∫

Σ−1(Id−µ)∇U⊤
t dN (µ,Σ) . (8.15)

After approximating this right side integral using Monte Carlo, we derive a new sequence of square-root
covariance matrix {Bt,k}k≤Kt

and inverse square-root covariance matrix {Ct,k}k≤Kt
, defined recursively by:

Ct,k+1 = Ct,k{Id−ht(C⊤
t,kCt,k −At,k)} , Bt,k+1 = (Id−htAt,k)Bt,k +htC

⊤
t,k ,

where At,k = C⊤
t,kCt,k(θ̃t,k − µ̃t,k)∇U⊤

t (θ̃t,k) and θ̃t,k ∼N (µ̃t,k,B
⊤
t,kBt,k). This last version of VITS is referred

to as VITS− II Hessian-free and its pseudo-code is given in Algorithm 3 and Algorithm 5.

Algorithm 5 VITS− II / VITS− II Hessian-free

Parameter:
step-size ht, number of iterations Kt

Initialize:
µ̃t,1← µ̃t−1,Kt−1 , Bt,1←Bt−1,Kt−1

for k = 1, . . . ,Kt do
draw θ̃t,k ∼ q̃t,k =N (µ̃t,k,B

⊤
t,kBt,k)

µ̃t,k+1← µ̃t,k −ht∇Ut(θ̃t,k)

At,k =
{ ∇2(Ut(θ̃t,k)) (Hessian)
C2

t,k(θ̃t,k − µ̃t,k)(∇Ut(θ̃t,k))⊤ (Hessian free)
.

Bt,k+1←
{
Id −htAt,k

}
Bt,k +htC

⊤
t,k

Ct,k+1← Ct,k(Id−ht(C⊤
t,kCt,k −At,k))

end for

The computational complexity of all methods has been experimentally studied in a simple case, as discussed in
Section 10.3.

3 Main results

3.1 Linear Bandit
In this section, we are interested in convergence guarantees for VITS− I applied to the linear contextual bandit
framework. This framework consists in assuming that Rθ has form (8.5) with λref = Leb, T is the identity function
and h and g are specified by (8.6):
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dRθ

dLeb
(r|x,a)∝ exp

[
η(r−⟨ϕ(x,a),θ⟩)2/2

]
. (8.16)

Assumption on the reward kernel R is the following:

Assumption 6. (Sub-Gaussian Reward Distribution) There exists R> 1 such that for any x ∈ X, a ∈ A(x), ρ > 0,

log
∫

exp{ρ(r− f(x,a))}R(dr|x,a)≤Rρ2 ,

where f is defined in 8.1

We could only assume that R > 0 in Assumption 6 since if a distribution is R-sub-Gaussian, it is also R′-sub-
Gaussian for any R′ ≥R, however, we choose to set R ≥ 1 to ease the presentation of our main results. We also
assume that the model is well-specified.

Assumption 7. There exists θ⋆ such that R = Rθ⋆ and satisfying ∥θ⋆∥2 ≤ 1. Feature map ϕ satisfies the boundedness
condition.

Assumption 8. For any contextual vector x ∈ Rd and action a ∈ A(x), it holds that ∥ϕ(x,a)∥2 ≤ 1.

Uniform boundedness condition on the feature map is relatively common for obtaining regret bounds for linear
bandit problems [Agrawal and Goyal, 2013a, Xu et al., 2022, Kveton et al., 2020a, Abbasi-Yadkori et al., 2011b].
Note that Assumption 8 is equivalent to supx∈X ,a∈A(a)∥ϕ(x,a)∥2 ≤Mϕ for some arbitrary but fixed constant
Mϕ > 0, changing the feature map ϕ by ϕ/Mϕ. Finally, we specify the prior distribution.

Assumption 9. The prior distribution is assumed to be zero-mean Gaussian distribution with variance 1/(λη),
where η also appears in the definition Rθ in (8.16),

While our theoretical results can readily be extended to accommodate a non-zero mean Gaussian prior, for the
sake of simplicity, we have chosen to center the prior. Under Assumption 9, combining (8.8) and (8.16), the negative
log posterior − log p̂t denoted by Ut is given by

Ut(θ) = η

2

(
t−1∑
s=1

(ϕ(as,xs)⊤θ− rs)2 +λ∥θ∥22

)

= η

2 (θ⊤Vtθ− 2θ⊤bt +
t−1∑
s=1

r2
s) , (8.17)

where Vt = λId +
∑t−1

s=1ϕsϕ
⊤
s ∈ Rd×d and bt =

∑t−1
s=1 rsϕs ∈ Rd×1. Therefore, it follows that the gradient of Ut

is given by ∇Ut(θ) = η(Vtθ− bt) and its hessian matrix is equal to ∇2Ut(θ) = ηVt. Consequently, we recover
the well-known fact that the posterior is a Gaussian distribution with mean µ̂t = V −1

t bt and covariance matrix
Σ̂t = (ηVt)−1. Denote by Q̃1:T the distribution on the sequence of policies induced by the sequence of variational
posterior {q̃t = N(µ̃t,Kt ,B

⊤
t,Kt

Bt,Kt)}t∈[T ] obtained with VITS− I

We now state our main result on the cumulative regret associated to VITS− I for linear contextual bandit, where
a the proof is provided in Section 6.

Theorem 104. Assume Assumptions 6 to 9 hold. For the choice of hyperparameters {Kt,ht}t∈[T ] and η specified
in Section 6.2, for any δ ∈ (0,1), with probability at least 1− δ, the cumulative regret is bounded by

CREG(Q̃1:T )≤
CR2d

√
dT log

(
3T 3)

λ2 log
( (1 +T/λd)

δ

)
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where C ≥ 0 is a constant independent of the problem. Our main result shows that the distribution of the
sequence of policies generated by VITS− I or results in a cumulative regret of order Õ(d

√
dT ). It is in the same

order as the state-of-the-art cumulative regret obtained in [Agrawal and Goyal, 2013a] for LinTS. The number of
optimization steps Kt we found are of order κ2

t log(dT log(T )) where κt = λmax(Vt)/λmin(Vt). Following [Hamidi
and Bayati, 2020, Wu et al., 2020], if the diverse context assumption holds, the condition number is κt = O(1).
Therefore, under this previous assumption, VITS− I and require a number of optimization steps that scale as
log(dT log(T )). Finally, [Xu et al., 2022] derived similar bounds for TS using LMC for linear contextual bandit
problems. Although our proof is based on the linear case, it could be extended to more general cases insofar as our
updates remain Gaussian by definition of the variational family. This allows the use of Gaussian (anti) concentration
bound in the theoretical analysis. This is in contrast to other approximation methods, which do not possess this
advantage.

Comparison table. In this paragraph we have added a comparison table between Linear TS (LinTS), Lin-
ear UCB (LinUCB), Feel-Good TS [Huix et al., 2023, Zhang, 2022a], VITS− I, VITS− II (VITS-I/II),
VITS− II Hessian-free (VITS-II HF), Langevin Monte Carlo TS (LMCTS) and Variational TS (VTS). The
column “Regret” corresponds to the theoretical regret bound obtained by the algorithm, more precisely the symbol
(++) corresponds to a regret O(

√
dT ), (+) to O(d3/2√T ) and (−) to no existing regret bound. “Complexity” is

the computational complexity. “Linear” is set to Yes when the algorithm is designed only for the Linear Bandit
setting and No for general setting including Linear. The “Conditioning” column describes the algorithm’s robustness
against the conditioning of the problem.

Regret Complexity Linear Conditioning

LinTS + ++ Yes ++
LinUCB ++ ++ Yes ++
FG-TS ++ No

VITS-I/II + + No +
VITS-II HF — + + No +

LMC-TS + ++ No —
VTS — — No

4 Numerical experiments

4.1 Linear and quadratic bandit
Our initial investigation focused on a toy setting where contextual vectors are sampled from a Gaussian distribution.
However, in this specific setting, the contextual vectors exhibit high diversity, resulting in a posterior covariance
matrix with a condition number ofO(1). This condition makes the optimization problem overly simplistic, as a result,
all approximation methods seem to perform identically in this simple well-conditioned problem. So we introduce a
novel setting in which the diversity of arms is controlled by a parameter, denoted as ζ. Firstly, we consider a fixed
pool of arms denoted as P = [x̃1, . . . , x̃n] with n= 50, where each arm x̃i follows a normal distribution N (0d, Id).
This fixed pool is relevant in real-world scenarios, such as in a Recommender system, where this pool corresponds
to the concept of a meta-user. Then, at each step t ∈ [T ], for every arm, we randomly sample a vector x̃i from the
pool P , and the contextual vector associated with this arm is defined as x= x̃i + ζϵ, where ϵ∼N (0d, Id). When ζ
has a high value, the corresponding user is far from the meta-user. Consequently, the diversity among arms is high,
resulting in a well-conditioned problem. However, in cases where ζ is low, the problem is ill-conditioned and the
optimization becomes challenging.

We consider the linear bandit and the quadratic bandit problems. In both settings, the bandit environment is
simulated using a random vector θ⋆ sampled from a normal distribution N (0d,σ

⋆Id). We opted for σ⋆ = 1/d
to ensure that the variance of the scalar product x⊤θ⋆ remains independent of the dimension d. The parameter
dimension d is set to 20 and we consider a number of armsK = 50. In the linear bandit setting, the reward associated
with the contextual vector x, is r = x⊤θ⋆ +αϵ where ϵ ∼ N (0d, Id). However, to maintain problem complexity
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independent of ζ, we have set the signal-to-noise ratio to a fixed value of 1, meaning E[(x⊤θ⋆)2]/E[(αϵ)2] = 1.
This implies that

√
1 + ζ2 = α. See Subsection 9.2 for more details about the setting. In these experiments, we

have chosen to compare VITS− II, VITS− II Hessian-free, Linear TS (LinTS), and LMC-TS, with 10 and
50 iterations of Langevin diffusion at each step. For VITS based algorithm, we have only used 10 updating steps.
We have omitted the performance of VITS− I since it experimentally performs identically to VITS− II. For
the algorithm VITS− II Hessian-free, we approximate the integral presented in (8.15) using 20 Monte Carlo
samples. This choice is made due to the observed instability caused by the Monte Carlo error when considering high
values of η. However, in our setting, even with 20 Monte Carlo samples, VITS− II Hessian-free remains a faster
method compared to VITS− II. We also attempted to assess the performance of VTS, but, in the ill-conditioned
setting, it exhibited a linear and notably high cumulative regret. Consequently, we have opted to exclude it from the
figure for the sake of clarity and visibility. The mean and standard error are reported for all experiments over 50
runs. The hyperparameter is provided in Subsection 9.1.
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Fig. 8.1 Linear bandits, ζ = 0.1 (left), ζ = 1 (right).

Figure 8.1 illustrates the cumulative regret with respect to the time step t for a well-conditioned problem (ζ = 1)
and a ill-conditioned problem (ζ = 0.1). Firstly, for ζ = 1, it appears that all methods exhibit similar performance,
with the exception of LMC-TS with 10 steps, which slightly underperforms. However, for ζ = 0.1, the optimization
problem becomes harder and LMC-TS underperforms even with 50 Langevin steps. This behaviour was expected in
our setting, because LMC requires a lot of iterations to converge to the posterior compared to VI. A more complete
explanation of this phenomenon can be found in Subsection 10.1. Finally, we can conclude that VITS− II performs
similarly to LinTS and that its Hessian-free version slightly underperforms but is computationally more efficient.

For Quadratic bandit in Fig 8.2, the reward is r = (x⊤θ⋆)2 +αϵ. This setting is similar to the Linear setting, but
we ensure the condition E[(x⊤θ⋆)4]/E[(αϵ)2] = 1 to still get the signal-to-noise ratio equals to 1. This implies a
slight different condition α = (ζ2 + 1)

√
3 + 6/d, see Subsection 9.2. Moreover, a simple MLP with two hidden

layers of 20 neurons is used for LMC, VITS− II, and its Hessian-free version as neural network architecture.
Performance in Fig 8.2 are similar to linear bandits where VITS− II slightly performs better than its Hessian-free
version but outperforms both LMC and LinTS algorithms as LinTS is not adapted for this setting. The gap between
LMC and our algorithm is smaller in the well-conditioned setting than in the ill-conditioned, which was also
expected. Finally, additional experience on non-contextual bandits can also be found in Appendix 10.2.
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Fig. 8.2 Quadratic bandit, ζ = 0.1 (left), ζ = 1 (right).

4.2 MovieLens Dataset

In this section, we evaluate VITS on the MovieLens dataset, consisting of one million ratings by 6040 users for
3952 movies. We adopt the setup proposed in [Aouali et al., 2022], involving a low-rank factorization of the rating
matrix to yield 5-dimensional representations for users (xj ∈ R5) and movies (θi ∈ R5). Movies are treated as
potential actions, and context xt is uniformly sampled from the pool of user vectors. We consider logistic rewards,
sampled from Ber(µ(x⊤

j θi)), where µ is the sigmoid function. We conduct 50 simulations, each involving 100
randomly selected movies.Our prior distribution employs a Gaussian distribution with mean µ0 and covariance
Σ0 = diag(σ0). Here, µ0 and σ0 represent the mean and variance of movie vectors across all dimensions. This
setting deviates somewhat from our theoretical framework, where we consider a unified posterior distribution
for all arms using a feature map function ϕ representing context-action pairs. In the MovieLens context, each
arm possesses an individual posterior distribution. These two settings closely align when the feature map is the
vector concatenation function. In practice, we can apply VITS or LMC at each arm to obtain posterior samples.
In this experiment, we compare LinTS against LMC-TS, VITS− II, and the VITS− II Hessian-free variant.
LMC-TS uses 10 Langevin updating steps. It’s crucial to note that for each time step t and each arm a, LMC-TS
requires running Langevin diffusion to obtain a new parameter with low correlation to the previous one. This leads
to a high computational complexity for LMC-TS. In contrast, VITS for each arm only involves sampling from a
low-dimensional Gaussian distribution and updating the variational posterior corresponding to the chosen arm. This
approach offers significant computational efficiency.
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Fig. 8.3 Cumulative regret for MovieLens dataset.

Figure 8.3 reveals that LinTS is ill-suited for this particular task, as it assumes rewards to be linear while the
approximated algorithms outperform LinTS, as they specifically target the logistic posterior. Remarkably, VITS
appears to slightly outperform LMC-TS, despite its computational efficiency advantages.
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5 Conclusion and perspectives

This paper presents a novel TS algorithms called VITS− I, that use VI as an approximation method. This algorithms
provide robust theoretical guarantees, in particular a cumulative regret bound of Õ(d

√
dT ) in the linear setting. One

limitation of our theoretical analysis is that the regret bound derived is limited to the linear setting while the interest
of our algorithm relies on nonlinear tasks. Additionally, we introduce two other algorithms, named VITS− II and
VITS− II Hessian-free, which offer enhanced computational efficiency. The VITS− II algorithm uses a Taylor
expansion to remove the computation of inverse matrix and the VITS− II Hessian-free algorithm removes the
computations of Hessian, resulting in faster execution. Finally, all algorithms have been extensively evaluated in
both simulated and real problems.

6 Proof of the regret bound

6.1 Proof of Theorem 104
While [Lambert et al., 2022b] establishes quantitative bounds on the bias introduced by Algorithm 4 for the VI of
the posterior. Combining this result with the one derived in [Agrawal and Goyal, 2013a] for TS leads to sub-optimal
regret bounds. It is similar to LMC-TS [Xu et al., 2022] which had to make a clever adaptation of [Agrawal and
Goyal, 2013a]. Similar to this work, we need here to revise the proof of [Agrawal and Goyal, 2013a] to VITS. We
give in this section the main steps of our proofs. Each step is based on Lemmas which are stated and proved in the
next Subsections. First, we define the filtration (Ft)t≤T −1 such that for any t ∈ [T ], Ft−1 is the σ-field generated by
Ht−1 and xt where Ht−1 = {(xs,as, rs)}s≤t−1 is the observations up to t− 1 and xt is the contextual vector at
step t. For some feature map ϕ : X×A→ R and for any t ∈ [T ], we denote by

∗
ϕt = ϕ(xt,a

⋆
t ) ,and ϕt = ϕ(xt,at) ,

the features vector of the best arm a⋆
t and the features vector of the arm at chosen by VITS at time t respectively. the

difference between the best expected reward and the expected reward obtained by VITS is denoted by

∆t =
∗
ϕ⊤

t θ
⋆−ϕ⊤

t θ
⋆ .

At each round t ∈ [T ], we consider the set of saturated arms St and unsaturated arms Ut defined by

St =
⋂

a∈A(xt)
{∆t(a)> g(t) ∥ϕ(xt,a)∥

V −1
t
} , (8.18)

and Ut =A(xt)\ St where V −1
t is defined in (8.17) and

g(t) = CR2d
√

log(t) log(T )/λ3/2 ,

for some constant C ≥ 0 independent of d, t and T . In addition, consider the events Etrue
t and Evar

t such that⋂
a∈A(xt)

{|ϕ(xt,a)⊤µ̂t−ϕ(xt,a)⊤θ⋆| ≤ g1(t) ∥ϕ(xt,a)∥
V −1

t
} ⊂ Etrue

t

Evar
t =

⋂
a⊂A(xt)

{|ϕ(xt,a)⊤θ̃t−ϕ(xt,a)⊤µ̂t| ≤ g2(t) ∥ϕ(xt,a)∥
V −1

t
} ,

where µ̂t is given by µ̂t = V −1bt is the mean of the posterior distribution at time t and bt is given in (8.17). The
specific definitions of Etrue

t , g,g1 and g2 are given in Subsection 6.3. Nevertheless, by definition, it holds that
g1(t) + g2(t)≤ g(t).

1. For ease of notation, the conditional expectation Eπ1:T ∼Q1:T [·] and probabilities Pπ1:T ∼Q1:T (·) with respect
to the σ-field Ft−1 are denoted by Et[·] and Pt(·) respectively. Therefore, with these notations, we have by
definition of the cumulative regret:

CREG(Q̃1:T ) =
T∑

t=1
∆t .
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We now bound for any t ∈ [T ], with high probability, ∆t(at). To this end, in the next step of the proof, we
show that the stochastic process (Xt)t∈[T ] defined below is a (Ft)t∈[T ] super-martingale.

Xt =
t∑

s=1
Ys

with Ys = ∆s− cg(s)
∥ϕs∥V −1

s

p
− 2
s2 ,

where p ∈ (0,1) and c is a sufficiently large real number, independent of d, T and s.

2. Showing that (Xt)t∈[T ] is a super-martingale. We consider the following decomposition

Et[∆t(at)] = Et[∆t(at)1Etrue
t

] + Et[∆t(at)|Ētrue
t ]Pt(Ētrue

t )

≤ Et[∆t(at)1Etrue
t

] +Pt(Ētrue
t ) , (8.19)

where we used for the last inequality that ∥θ⋆∥2 ≤ 1 and Assumption 8. Then, since Etrue
t ∈ Ft−1, we have,

Et[∆t(at)1Etrue
t

] = 1Etrue
t

Et[∆t(at)|Evar
t ]Pt(Evar

t ) +1Etrue
t

Et[∆t(at)|Ēvar
t ]Pt(Ēvar

t )

≤ 1Etrue
t

[Et[∆t(at)|Evar
t ] +Pt(Ēvar

t )] (8.20)

where in the last line we have used that ∆t(at)≤ 1 again. Denote by āt = argmina∈Ut
∥ϕ(xt,a)∥

V −1
t

and

ϕt = ϕ(xt, āt). Then, given Etrue
t and Evar

t we have

∆t(at) =
∗
ϕ⊤

t θ
⋆−ϕ⊤

t θ
⋆

=
∗
ϕ⊤

t θ
⋆−ϕ⊤

t θ
⋆ +ϕ

⊤
t θ

⋆−ϕ⊤
t θ

⋆

(a)
≤ g(t)∥ϕt∥V −1

t
+ϕ

⊤
t θ

⋆−ϕ⊤
t θ

⋆

(b)
≤ g(t)∥ϕt∥V −1

t
+ (ϕ⊤

t θ̃t + g(t)∥ϕt∥V −1
t

)− (ϕ⊤
t θ̃t− g(t)∥ϕt∥V −1

t
)

(c)
≤ (2∥ϕt∥V −1

t
+ ∥ϕt∥V −1

t
)g(t) (8.21)

where inequality (a) is due to āt ∈ Ut, and therefore ∆t(āt)≤ g(t)∥ϕt∥V −1
t

, inequality (b) uses that given

Etrue
t and Evar

t , for any ϕ ∈ Rd, |ϕ⊤θ̃t−ϕ⊤θ⋆| ≤ g(t)∥ϕ∥
V −1

t
since by definition g1(t)+g2(t)≤ g(t); finally,

the arm at maximizes the quantity ϕ(xt,at)⊤θ̃t, ϕ
⊤
t θ̃t−ϕ⊤

t θ̃t is obviously negative, which implies inequality
(c).
Moreover, given Etrue

t and Evar
t ,

Et[∥ϕt∥V −1
t

] = Et[∥ϕt∥V −1
t
|at ∈ Ut]Pt(at ∈ Ut) +Et[∥ϕt∥V −1

t
|at ∈ St]Pt(at ∈ St)

(a)
≥ ∥ϕt∥V −1

t
Pt(at ∈ Ut)

(b)
≥ (p− 1/t2)∥ϕt∥V −1

t

where (a) is due to the definition of ϕt, i.e. for any a ∈ Ut,∥ϕt∥V −1
t
≤ ∥ϕ(xt,a)∥

V −1
t

, and (b) uses Lemma 108
with p ∈ (0,1). Here is one of the main differences with the proof conducted by [Agrawal and Goyal, 2013a].
Indeed, to obtain such a bound, we need to carefully dig into the convergence of the the sequence of means
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{µ̃t,Kt}k∈[1,Kt] and covariance matrices {Σ̃t,Kt}k∈[1,Kt] to obtain a fine-grained analysis of the distribution
of q̃t. Therefore, using equations (8.20) and (8.21)

1Etrue
t

Et[∆t(at)]≤
( 2
p− 1/t2 + 1

)
g(t)Et[∥ϕt∥V −1

t
] + 1

t2

≤ cg(t)
p

Et[∥ϕt∥V −1
t

] + 1
t2
,

where c is a sufficiently large real number independent of the problem. Plugging this bounds in 8.19, we obtain

Et[∆t(at)]≤
cg(t)
p

Et[∥ϕ∥V −1
t

] + 1
t2

+Pt(Ētrue
t )

Applying Lemma 107 yields

Et[∆t(at)]≤
cg(t)
p

Et[∥ϕ∥V −1
t

] + 2
t2
.

This is another important difference with the original proof of [Agrawal and Goyal, 2012] which uses our
precise convergence study for {µ̃t,Kt}k∈[1,Kt]. Then, it follows that (Xt)t∈[T ] is a (Ft)t∈[T ]-super martingale.

3. Concentration for (Xt)t∈[T ]. Note that (Xt)t∈[T ] is a super-martingale with bounded increments: for any
t ∈ [T ]

|Xt+1−Xt|= |Yt+1|

= |∆t(at)−
cg(t)
p
∥ϕt∥V −1

t
− 2
t2
|

(a)
≤ |∆t(at)(at)−

cg(t)√
λp
− 2
t2
|

≤ 3cg(t)√
λp

,

where in (a) we have used that

∥ϕt∥V −1
t
≤ ∥ϕt∥V −1

1
≤ 1/

√
λ ,

and inequality (b) is due to ∆t(at) ≤ 1, 2/t2 ≤ 2 and 3cg(t)/(p
√
λ) > 2 for an appropriate choice of the

numerical constant c. Therefore, applying Azuma-Hoeffding inequality (Lemma (122)), with probability
1− δ it holds that

XT ≤

√√√√2log(1/δ)
T∑

s=1

9c2g(s)2

p2λ
≤

√
18log(1/δ) c

2

p2λ
g(T )2T ,

using that g(T )≥ g(t).

4. Conclusion. The super-martingale (Xt)T
t=1 is directly linked to the cumulative regret by

XT =
T∑

t=1
Yt

=
T∑

s=1
∆t− cg(t)

∥ϕt∥V −1
t

p
− 2
t2

= CREG(Q̃1:T )−
T∑

t=1
cg(t)

∥ϕt∥V −1
t

p
+ 2
t2
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then taking the expectation and using the super-martingale previous argument of the proof, we obtain the
following upper bound for the cumulative regret:

CREG(Q̃1:T )≤
T∑

t=1

cg(t)
p
∥ϕt∥V −1

t
+

√
18log(1/δ) c

2

p2λ
g(T )2T + π2

3 .

using that
∑+∞

t=1 1/t2 ≤ π2/6. As a result, applying Lemma 109 yields

CREG(Q̃1:T )≤ cg(T )
p

√
2dT log

(
1 + T

λd

)
+ cg(T )

p
√
λ

√
18log(1/δ)T + π2

3 .

Using the definition of g(T ) in (8.19), we get

CREG(Q̃1:T )≤ CR2d

λ2 log
(
3T 3)√dT log

(
1 + T

λd

)
log
(
1/δ
)
,

where C ≥ 0 is a constant, independent of the problem, which completes the proof.

6.2 Hyperparameters choice and values

In this section, we define and discuss the values of the main hyperparameters.

Parameter η : is the inverse of the temperature. The lower is η, the better is the exploration. For theoretical
reasons, it is fixed to

η = 4λ2/(81R2d log
(
3T 3))≤ 1 (8.22)

Parameter λ : it is used in the standard deviation of the prior distribution. It controls the regularization. The
lower is λ, the better is the exploitation. This parameter is fixed but lower than 1.

Parameter ht : is the step size used in all Algorithms. It is fixed to

ht = λmin(Vt)
2η(λmin(Vt)2 + 2λmax(Vt)2)

(8.23)

Parameter Kt : is the number of gradient descent steps performed at each steps. It is fixed to

Kt = 1 + 2(1 + 2κ2
t ) log

(
2Rκtd

2T 2 log2(3T 3)
)
. (8.24)

Therefore the number of gradient descent steps is Kt ≤O(κ2
t log(dT log(T ))).

6.3 Useful definitions

Definition 105. (Variational approximation)
Recall that p̂t(θ)∝ exp(−Ut(θ)) is the posterior distribution. And q̃t is the variational posterior distribution in

the sense that
q̃t = argmin

p∈G
KL(p|p̂t) ,

where G is a variational family. In this paper we focus on the Gaussian variational family and we denote by µ̃t

and Bt respectively the mean and the square root covariance matrix of the variational distribution, ie,

q̃t =N (µ̃t,BtB
⊤
t ) .
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The values of µ̃t and Bt are obtained after running Kt steps of algorithm 4 or 5. Note that the sequence of means
{µ̃t,k}Kt

k=1 is defined recursively by

µ̃t,k+1 = µ̃t,k −ht∇Ut(θ̃t,k)
= µ̃t,k −htηVt(θ̃t,k − µ̂t)

where θ̃t,k ∼N (µ̃t,k,B
⊤
t,kBt,k) and we have used that∇Ut(θ) = η(Vtθ−bt) (see equation (8.17)). Consequently,

µ̃t,k is also Gaussian and we denote by m̃t,k and W̃t,k its mean and covariance matrix, ie, µ̃t,k ∼N (m̃t,k,W̃t,k).
Furthermore, the sequence of square root covariance matrix {Bt,k}Kt

k=1 is defined recursively in Algorithm 4 by

Bt,k+1 =
{
Id−ht∇2(Ut(θ̃t,k))

}
Bt,k + (B⊤

t,k)−1

= {Id− ηhtVt}Bt,k +ht(B⊤
t,k)−1

where we have used that∇2(Ut(θ)) = ηVt for the linear bandit case (see (8.17)). Let denote by Σ̃t,k =Bt,kB
⊤
t,k the

covariance of the variational posterior q̃t,k. For ease of notation we denote by At = Id− ηhtVt, it follows that

Σ̃t,k+1 =AtΣ̃t,kAt + 2htAt +h2
t Σ̃

−1
t,k

If Λt,k = Σ̃t,k − 1/ηV −1
t denotes the difference between the covariance matrix of the varational posterior and the

true posterior, therefore it holds that

Λt,k+1 =AtΣ̃t,kAt + 2htAt +h2
t Σ̃

−1
t,k − 1/ηV −1

t

=AtΛt,kAt + 2htAt− 2htId + ηh2
tVt +h2

t Σ̃
−1
t,k

=AtΛt,kAt− ηh2
tVt +h2

t Σ̃
−1
t,k

=AtΛt,kAt−h2
t ηVtΛt,kΣ̃

−1
t,k

Definition 106. (Concentration events)
The main challenge for the proof of Theorem 104, is to control the probability of the following events: for any

t ∈ [T ] we define

• Êtrue
t =

{
for any a ∈ A(xt) : |ϕ(xt,a)⊤µ̂t−ϕ(xt,a)⊤θ⋆| ≤ g1(t) ∥ϕ(xt,a)∥

V −1
t

}
• Etrue

t = Êtrue
t

⋂{
|ξt|<R

√
1 + log3t2

}⋂{
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log3t3

}
• Evar

t =
{

for any a ∈ A(xt) : |ϕ(xt,a)⊤θ̃t−ϕ(xt,a)⊤µ̂t| ≤ g2(t) ∥ϕ(xt,a)∥
V −1

t

}
,

where g1(t) = R
√
d log(3t3) +

√
λ and g2(t) = 10

√
d log(3t3)/(ηλ) and ξt is the R-sub Gaussian noise of the

reward definition defined by the relation
rt = ϕ⊤

t θ
⋆ + ξt . (8.25)

The first event Êtrue
t controls the concentration of ϕ(xt,a)⊤µ̂t around its mean. Similarly, event Evar

t controls
the concentration of ϕ(xt,a)⊤θ̃t around its mean. Note that compared to [Agrawal and Goyal, 2013a], in our
case, it is important to include within Etrue

t , the concentration of the distributions ξt and W̃−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt).
Consequently, conditionally on Etrue

t and Evar
t it holds that: for any a ∈ A(xt)

|ϕ(xt,a)⊤θ̃t−ϕ(xt,a)⊤θ⋆| ≤

(
R
√
d log(3t3) +

√
λ+ 10

√
d log(3t3)/(ηλ)

)
∥ϕ(xt,a)∥

V −1
t

≤ 12R
√
d log(3t3)/(ηλ) ∥ϕ(xt,a)∥

V −1
t

(a)= 108dR2

λ3/2

√
log(3t3) log(3T 3)∥ϕ(xt,a)∥

V −1
t

:= g(t)∥ϕ(xt,a)∥
V −1

t
, (8.26)
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where in (a), we have used that η = 4λ/
(

81R2d log
(
3T 3)) and in the last inequality we have used that

g(t) = CR2d
√

log(t) log(T )/λ3/2.

6.4 Main lemmas
Lemma 107. (Concentration lemma for µ̂t)

Recall the definition of the event Etrue
t in (106). Therefore, for any t ∈ [T ], it holds that

P(Etrue
t )≥ 1− 1

t2
(8.27)

This lemma shows that the mean of the posterior distribution µ̂t is concentrated around the true parameter θ⋆ with
high probability.

Proof. Firstly, we apply Lemma 123, with mt = ϕt/
√
λ = ϕ(xt,at)/

√
λ and ϵt =

(
rat(t)−ϕ⊤

t θ
⋆
)
/
√
λ, where

rat(t) is sampled from the R-sub-Gaussian reward distribution of mean ϕ⊤
t θ

⋆. Let’s define the filtration F ′
t =

{aτ+1,mτ+1, ϵτ}τ≤t. By the definition of F ′
t , mt is F ′

t−1-measurable. Moreover, ϵt is conditionally R/
√
λ-

sub-Gaussian due to Assumption 6 and is a martingale difference process because E[ϵt|F ′
t−1] = 0. If we denote

by

Mt = Id + 1
λ

t∑
τ=1

mτm
τ
τ = 1

λ
Vt+1 ,

and

ζt =
t∑

τ=1
mτ ϵτ ,

Then, Lemma 123 shows that ∥ζt∥M−1
t
≤R/

√
λ
√
d log

(
t+1
δ′
)

with probability at least 1− δ′. Moreover, note that

M−1
t−1(ζt−1− θ⋆) =M−1

t ( 1
λ
bt−

1
λ

t−1∑
τ=1

ϕτϕ
⊤
τ θ

⋆− θ⋆)

=M−1
t−1( 1

λ
bt−Mt−1θ

⋆)

= µ̂t− θ⋆ .

Note that ||θ⋆||
M−1

t−1
= ∥θ⋆M

−1/2
t−1 ∥2 ≤ ∥θ⋆∥2∥M

−1/2
t−1 ∥2 ≤ ∥θ⋆∥2, where the last inequality is due to Assump-

tion 7. Then, for any arm a ∈ A(xt) we have

|ϕ(xt,a)⊤µ̂t−ϕ(xt,a)⊤θ⋆|= |ϕ(xt,a)M−1
t−1(ξt−1− θ⋆)|

≤ ∥ϕ(xt,a)∥
M−1

t−1
∥ξt−1− θ⋆∥

M−1
t−1

≤ ∥ϕ(xt,a)∥
M−1

t−1
(∥ξt−1∥M−1

t−1
+ ∥θ⋆∥

M−1
t−1

)

≤
√
λ

(
R√
λ

√
d log

(
t

δ′

)
+ 1
)
∥ϕ(xt,a)∥

V −1
t

=
√
λ

(
R√
λ

√
d log(3t3) + 1

)
∥ϕ(xt,a)∥

V −1
t

=
(
R
√
d log(3t3) +

√
λ

)
∥ϕ(xt,a)∥

V −1
t

:= g1(t)∥ϕ(xt,a)∥
V −1

t
.

This inequality holds with probability at least δ′ = 1/(3t2).
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Moreover, recall the definition of the R-subGaussian noise of the reward definition in Definition 106

rt = ϕ⊤
t θ

⋆ + ξt

Then it holds that P(|ξt| > x) ≤ exp
(
1−x2/R2). It follows that P(|ξt| ≤ R

√
1 + log3t2) ≥ 1− 1/(3t2), for

any t ≤ 1. Finally, recall the definition of W̃t,k, µ̃t,k and m̃t,k in Subsection 6.3. Consequently, the term
W̃

−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt) is gaussian with mean 0 and an identity covariance matrix. Therefore, it holds that

P
(
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log3t3

)
≥ 1− 1/(3t2) (8.28)

Consequently, we have

P
(
Êtrue

t

⋂{
|ξi|<R

√
1 + log3t2

}⋂{
∥W̃−1/2

t,Kt
(µ̃t,Kt − m̃t,Kt)∥ ≤

√
4d log3t3

})
≥ 1− 1

t2
,

where Êtrue
t is defined is Definition 106

Lemma 108. (Probability of playing an unsaturated arm)
Given Etrue

t defined in Definition (106), the conditional probability of playing an unsaturated arm is strictly
positive and is lower bounded as

1Etrue
t

Pt(at ∈ Ut) := P(at ∈ Ut|Ft−1)≥ 1Etrue
t

(p− 1/t2) , (8.29)

where p= 1/
√

2πe and Ut is defined in (8.18).

Proof. If we suppose that ∀a ∈ St, ϕ(xt,a
⋆
t )⊤θ̃t ≥ ϕ(xt,a)⊤θ̃t, then at ∈ Ut. Indeed, The optimal arm a⋆

t is
obviously in the unsaturated arm set (Ut) and ϕ(xt,at)⊤θ̃t ≥ ϕ(xt,a

⋆
t )⊤θ̃t by construction of the algorithm. Hence

we have
P(at ∈ Ut|Ft−1)≥ P(

∗
ϕ⊤θ̃t ≥ ϕ(xt,a)⊤θ̃t,∀a ∈ St|Ft−1)

Subsequently, given events Etrue
t and Evar

t we have{ ∗
ϕ⊤θ̃t ≥ ϕ(xt,a)⊤θ̃t,∀a ∈ St

}
⊃
{ ∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆

}
.

Indeed, for any a ∈ St,

ϕ(xt,a)⊤θ̃t

(a)
≤ ϕ(xt,a)⊤θ⋆ + g(t)∥ϕ(xt,a)∥

Σ̂t

(b)
≤

∗
ϕ⊤θ⋆ ,

where (a) uses that Etrue
t and Evar

t hold. And in inequality (b) we have used that a ∈ St, ie,
∗
ϕ⊤

t θ
⋆−ϕ(xt,a)⊤θ⋆ :=

∆t(a)> g(t)∥ϕ(xt,a)∥
Σ̂t

.
Consequently,

P(
∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1) = P(

∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1,Evar

t )P(Evar
t ) +P(

∗
ϕ⊤θ̃t ≥

∗
ϕ⊤θ⋆|Ft−1, ¯Evar

t )P( ¯Evar
t )

≤ P(
∗
ϕ⊤θ̃t ≥ ϕ(xt,a)⊤θ̃t,∀a ∈ St|Ft−1) +P( ¯Evar

t )

Therefore,

P(at ∈ Ut|Ft−1)≥ P(
∗
ϕ⊤

t θ̃t ≥
∗
ϕtθ

⋆|Ft−1)−P( ¯Evar
t )

≥ p− 1
t2
,

where the last inequality is due to Lemma 121 and Lemma 120 with p= 1/(2
√

2πe).
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Lemma 109. (Upper bound of
∑T

t=1 ∥ϕt∥Σ̂t
) The following lemma will be useful in the derivation of the regret

bound later in the proof.

T∑
t=1
∥ϕt∥V −1

t
≤
√

2dT log
(

1 + T

λd

)
Proof. Recall the relation between the 1-norm and 2-norm for a d-dimensional vector, ie, ∥ · ∥1 ≤

√
d∥ · ∥2. Hence,

it follows that

T∑
t=1
∥ϕt∥V −1

t
≤

√√√√T

T∑
t=1
∥ϕt∥2

V −1
t

Firs, recall the definition of Vt = λId
∑t−1

s=1ϕsϕ
⊤
s in (8.17). Therefore, we apply Lemma 11 and Lemma 10

of [Abbasi-Yadkori et al., 2011b], then we have

T∑
t=1
∥ϕt∥2V −1

t
≤ 2log detVt

detλId

≤ 2log (λ+T/d)d

λd

= 2d log
(
1 + T

λd

)
.

Consequently,
T∑

t=1
∥ϕt∥V −1

t
≤
√

2dT log
(

1 + T

λd

)

6.5 Technical Lemmas

6.5.1 Upper bound of variational mean concentration term

In this section the objective is to bound the mean variational concentration term, ie, |ϕ⊤(m̃t,k − µ̂t)|.

Lemma 110. Given Etrue
t defined in Definition (106), the expected mean of the variational posterior at time step t

after Kt steps of gradient descent m̃t,Kt , defined in Subsection 6.3, is equal to:

m̃t,Kt =
t−1∑
j=1

t−1∏
i=j

AKi−1
i (µ̂j − µ̂j+1) + µ̂t (8.30)

where Ai = Id− ηhiVi.

Proof. Recall the definitions of µ̃t,k and m̃t,k in Subsection 6.3. Moreover, this Subsection also presents the
sequence {µ̃t,k}Kt

k=1 defined recursively in Algorithm 3 by:

µ̃t,k+1 = µ̃t,k −htηVt(θ̃t,k − µ̂t) .

Note that {µ̃t,k}Kt
k=1 is a sequence of Gaussian samples with mean and covariance matrix m̃t,k and W̃t,k+1

respectively (see 6.3). Then, we have,

m̃t,k+1 = E[µ̃t,k+1]
= m̃t,k − ηhtVt(m̃t,k − µ̂t)
= (Id−htηVt)m̃t,k + ηhtVtµ̂t
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Now, we recognise an arithmetico-geometric sequence, therefore the solution is:

m̃t,k = (Id−htηVt)k−1(m̃t,1− µ̂t) + µ̂t

Moreover, in the algorithm we use that µ̃t,1 = µ̃t−1,Kt−1 , which implies that m̃t,1 = m̃t−1,kt−1 and Wt,1 =
Wt−1,Kt−1 . Hence, we have

m̃t,Kt =
t∏

i=1
(Id− ηhiVi)Ki−1(m̃1,1− µ̂1) +

t−1∑
j=1

t∏
i=j+1

(Id− ηhiVi)Ki−1(µ̂j − µ̂j+1) + µ̂t (8.31)

Fianlly, the mean of the variational posterior is initialized at µ̃1,1 = 0d, then the expected mean of the variational
posterior m̃1 = µ̂1 = 0d. Therefore the first term of (8.31) is null.

Lemma 111. Given Etrue
t , for any ϕ ∈ Rd, it holds that

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥
V −1

j
∥ϕj∥V −1

j

(
g1(t)√
λ

+R
√

1 + log(3t2)
)

where m̃t,Kt is the expected mean of the variational posterior at time step t after Kt steps of gradient descent, ie,
m̃t,Kt = E[µ̃t,Kt ], (see Subsection 6.3). Recall that g1(t) =R

√
d log(3t3) +

√
λ (see Definition: 106).

Proof. Lemma 110 gives us that m̃t,Kt =
∑t−1

j=1
∏t−1

i=j A
Ki−1
i (µ̂j − µ̂j+1) + µ̂t where Ai = Id− ηhiVi. Then, for

any ϕ ∈ Rd, the term we want to upper bound is:

|ϕ⊤(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1
|ϕ⊤

t−1∏
i=j

AKi−1
i (µ̂j − µ̂j+1)| , (8.32)

We can notice that the previous term only depends on the difference between the mean posterior at time j and
the one at time j+1, which can be upper bounded. Recall the different relations between Vj , bj , rj , ϕj and Σ̂j in
the linear bandit setting (see equation (8.17)): Vj+1 = Vj + ϕjϕ

⊤
j , bj+1 = bj + rjϕj and µ̂j = V −1

j bj , then by
Sherman-Morrison formula we have:

V −1
j+1 = (Vj +ϕjϕ

⊤
j )−1 = V −1

j −
V −1

j ϕjϕ
⊤
j V

−1
j

1 +ϕ⊤
j V

−1
j ϕj

(8.33)

The difference between the mean posterior at time j+ 1 and the one at time j becomes:

µ̂j+1− µ̂j = V −1
j+1bj+1−V −1

j bj

= (V −1
j −

V −1
j ϕjϕ

⊤
j V

−1
j

1 +ϕ⊤
j V

−1
j ϕj

)(bj + rjϕj)−V −1
j bj

= rjV
−1

j ϕj −
V −1

j ϕjϕ
⊤
j V

−1
j

1 +ϕ⊤
j V

−1
j ϕj

(bj + rjϕj)

=
V −1

j ϕj

1 +ϕ⊤
j V

−1
j ϕj

{
−ϕ⊤

j µ̂j − rjϕ
⊤
j V

−1
j ϕj + rj(1 +ϕ⊤

j V
−1

j ϕ⊤
j )
}

=
V −1

j ϕj(rj −ϕ⊤
j µ̂j)

1 +ϕ⊤
j V

−1
j ϕj

(a)=
V −1

j ϕj(ϕ⊤
j θ

⋆ + ξj −ϕ⊤
j µ̂j)

1 +ϕ⊤
j V

−1
j ϕj

(b)
≤ V −1

j ϕj(ϕ⊤
j θ

⋆ + ξj −ϕ⊤
j µ̂j) (8.34)
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where in (a) we have used that rj = ϕ⊤
j θ

⋆ + ξj with ξj is sampled from a R-Subgaussian distribution. Inequality (b)
is due to ϕ⊤

j V
−1

j ϕi = ∥ϕj∥2V −1
j

> 0.

Subsequently, combining equations (8.32) and (8.34), we obtain the following upper bound

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

|ϕ⊤AKi−1
i (µ̂j − µ̂j+1)|

(a)
≤

t−1∑
j=1

t−1∏
i=j

∣∣∣ϕ⊤AKi−1
i V −1

j ϕj(ϕ⊤
j θ

⋆ + ξj −ϕ⊤
j µ̂j)

∣∣∣
(b)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1ϕ⊤V
−1/2

j V
−1/2

j ϕj |(ϕ⊤
j θ

⋆ + ξj −ϕ⊤
j µ̂j)|

(c)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥
V −1

j
∥ϕj∥V −1

j
|(ϕ⊤

j θ
⋆ + ξj −ϕ⊤

j µ̂j)|

(d)
≤

t−1∑
j=1

t−1∏
i=j

(1− ηhλmin(Vi))Ki−1∥ϕ∥
V −1

j
∥ϕj∥V −1

j

(g1(t)√
λ

+R
√

1 + log(3t2)
)

In the inequality (a) we have used equation (8.34), in (b) the relationAKi−1
i = (Id− ηhiVi)Ki−1 ⪯ (1− ηhiλmin(Vi))Ki−1 Id,

in (c) the definition of ∥ϕ∥
V −1

t
=
√
ϕ⊤V −1

t ϕ =
√
ϕ⊤V

−1/2
t

√
V

−1/2
t ϕ = ϕ⊤V

−1/2
t , and finally (d) is due to

|ξi|<R
√

1 + log3t2 as Etrue
t holds and |ϕ⊤

i (θ⋆− µ̂t)| ≤ g1(t)
∥∥ϕ⊤

i

∥∥
V −1

t
≤ g1(t)/

√
λ

Lemma 112. Given Etrue
t , for any ϕ ∈ Rd, for t≥ 2, if the number of gradient descent of Algorithm 4 is such that

Kt ≥ 1 + 2(1 + 2κ2
t ) log

(
4R
√
dT log(3T 3)

)
,

then it holds that

|ϕ(m̃t,Kt − µ̂t)| ≤
2∥ϕ∥

V −1
t

λ
This lemma provides the upper bound for variational mean concentration term.

Proof.
Firstly, we can apply Lemma 111, it gives us

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhtλmin(Vt))Ki−1∥ϕ∥
V −1

j
∥ϕj∥V −1

j

(
g1(t)/

√
λ+R

√
1 + log(3t2)

)

where g1(t) =R
√
d log(3t3) +

√
λ. Moreover, for t≥ 2,

R
√

1 + log3t2 + g1(t)/
√
λ≤R

√
log3t2 +R

√
d log(3t3)/λ+R+ 1

≤ 4R
√
d log3t2/λ (8.35)

where we have used that R≥ 1 and λ≤ 1. Moreover, for any j ∈ [1, t] we have

∥ϕ∥
V −1

j
≤ ∥ϕ∥2/

√
λ

≤ λmax(Vt)1/2∥ϕ∥
V −1

t
/
√
λ

= λmax(Vt)1/2∥ϕ∥
V −1

t
/λ1/2 (8.36)
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Let’s define ϵ =
(

4R
√
dt log(3t2)

)−1
≤ 1/2 and let’s take Ki such that (1−htλmin(Vt))Ki−1 ≤ ϵ, this

condition will be explained later in the proof. It follows that

|ϕ(m̃t,Kt − µ̂t)| ≤
t−1∑
j=1

t−1∏
i=j

(1− ηhtλmin(Vt))Ki−1∥ϕ∥
V −1

j
∥ϕj∥V −1

j
ϵ−1

(a)
≤
∥ϕ∥

V −1
t
λmax(Vt)1/2

λ

t−1∑
j=1

t−1∏
i=j

(1−htλmin(VT ))Ki−1ϵ−1

(b)
≤
∥ϕ∥

V −1
t

λ

t−1∑
j=1

ϵt−j−1

(c)
≤
∥ϕ∥

V −1
t

λ
× 1

1− ϵ
(d)
≤

2∥ϕ∥
V −1

t

λ
,

where (a) comes from equations (8.36) and (8.35). The point (b) comes that λmax(Vt) ≤
√
t because λ ≤ 1 and

definition of ϵ, then (c) from the geometric series formula. Finally, in (d), we have used ϵ≤ 1/2.
Now, let’s focus on that condition on Ki presented previously. For any i ∈ [t], recall the definition of the step

size ht in 6.3.

hi = λmin(Vi)
2η(λmin(Vt)2 + 2λmax(Vi)2)

,

and define κi = λmax(Vi)/λmin(Vi). Therefore, it holds that

(1− ηhiλmin(Vi))Ki−1 =
(

1− 1
2(1 + 2κ2

i )

)Ki−1

For any ϵ > 0, we want that (1−hiλmin(Vi))Ki−1 ≤ ϵ. Hence we deduce that

Ki ≥ 1 + log(1/ϵ)
log
(
1− 1/(2(1 + 2κ2

i ))
) .

Moreover, if 0< x < 1 then we have −x > log(1−x), if follows that

Ki ≥ 1 + 2(1 + 2κ2
i ) log(1/ϵ) .

We note that,

log(1/ϵ) = log
(

4R
√
dt log3t3

)
≤ log

(
4R
√
dT log3T 3

)
.

Finally, taking Ki ≥ 1 + 2(1 + 2κ2
i ) log

(
4R
√
dT log(3T 3)

)
, we obtain the condition

(1− ηhiλmin(Vt))Ki−1 ≤ ϵ ,

which concludes the proof.
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6.5.2 Control the variational covariance matrix

The objective of this Subsection is to control the following term: |ϕ⊤ (θ̃t,k− µ̃t,k
)
|. As θ̃t,k is a sample from a

Gaussian distribution with mean µ̃t,k, the previous term will be controlled using Gaussian concentration and an
upper bound of the norm of the variational covariance matrix Σ̃t,k. Recall the definitions of parameters Σ̂t, Bt,k,
θ̃t,k and µ̃t,k in Definition 6.3.

Lemma 113. For any t ∈ [T ] and k ∈ [Kt], the following relation holds:

(H) : Σ̃t,k ⪰
1
2ηV

−1
t . (8.37)

Proof. The sequence {Σ̃t,n}t∈[T ], n∈[kt] is initialized by Σ̃1,1 = Id/(λη) = V −1
1 /η ⪰ V −1

t /(2η). Hence, (H) holds
for the pair t= 1 and k = 1. Therefore, to conclude the proof, we have to show that the following transitions are true:

• for any t ∈ [T ], if (H) holds at step (t,Kt) then it stays true at step (t+ 1,1) (recursion in t),

• for any k ∈ [Kt], if (H) holds at step (t,k) then it stays true at step (t,k+ 1) (recursion in k).

Firstly, let’s focus on the first implication and suppose that (H) holds at step (t,Kt). Therefore we have

Σ̃t+1,1
(a)= Σ̃t,Kt

(b)
⪰ 1

2ηV
−1

t

(c)
⪰ 1

2ηV
−1

t+1

where (a) comes from the initialization of the sequence {Σ̃t,k}k∈[kt], (b) from the hypothesis (H) at step (t,Kt).
And finally, (c) is due to Vt+1 = Vt +ϕtϕ

⊤
t ⪰ Vt. Then we can conclude that (H) holds at step (t+ 1,1).

Now we focus on the second implication and we suppose that (H) holds at step (t,k). For ease of notation we
denote by Zt,k := Σ̃t,k −V −1

t /(2η). Therefore using the recursive definition of Σ̃t,k given in Subsection (6.3), we
have

Zt,k+1 =AtΣ̃t,kAt + 2htAt +h2
t Σ̃

−1
t,k −V

−1
t /(2η)

=AtZt,kAt + 2htAt +h2
t Σ̃

−1
t,k −htId + ηh2

tVt/2

=AtZt,kAt +htId− 3h2
t ηVt/4 +h2

t Σ̃
−1
t,k

where in the last inequalities we have used that At = (Id− ηh2
tVt). Moreover, all terms in the previous inequality

are positive semi-definite. Indeed, as (H) holds at step (t,k), we know that Zt,k ⪰ 0 and then that AtZt,kAt ⪰ 0.
Moreover, Σ̃t,k ⪰ V −1

t /(2η)⪰ 0, so Σ̃−1
t,k ⪰ 0. Finally, recall the definition of ht in Subsection (6.3)

ht ≤
λmin(Vt)

2η(λmin(Vt)2 + 2λmax(Vt)2)

= 1/κt

2ηλmax(Vt)((1/κt)2 + 1)

= 4
3ηλmax(Vt)

× 3/κt

8(1 + (1/κ2
t ))

≤ 4
3ηλmax(Vt)

,

where κt = λmax(Vt)/λmin(Vt) ≥ 1. Consequently, the matrix Id − 3ηhtVt/4 is also positive semi-definite.
Subsequently, we have

Zt,k+1 ⪰ 0 .
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Lemma 114. For any ϕ ∈ Rd, let Bt,k the square root of the covariance matrix defined in Algorithm (4). It holds
that

∥Bt,Ktϕ∥2 ≤ 1/√η
(

1 +
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

and ∥Bt,Ktϕ∥2 ≥ 1/√η
(

1−
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

where Ct = 1
λ

∑t−1
j=1
∏t

i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

.

Proof. Recall the recursive relation of Λt,k defined in Section (6.3).

Λt,k+1 =AtΛt,kAt− ηh2
tVtΛt,kΣ̃

−1
t,k ,

Hence, we have the following relation on the norm of Λt,k+1:

∥Λt,k+1∥2 ≤ ∥At∥2∥Λt,k∥2∥At∥2 + ηh2
t ∥Vt∥2∥Λt,k∥2∥Σ̃−1

t,k∥2

=
(
λmax(At)2 + ηh2

tλmax(Vt)λmax(Σ̃−1
t,k )
)
∥Λt,k∥2

(a)=
(

1− 2ηhtλmin(Vt) + η2h2
tλmin(Vt)2 + ηh2

tλmax(Vt)λmax(Σ̃−1
t,k )
)
∥Λt,k∥2

=
(

1− 3htη

2 λmin(Vt) + ηht{ht(ηλmin(Vt)2 +λmax(Vt)λmax(Σ̃−1
t,k ))−λmin(Vt)/2}

)
∥Λt,k∥2

(b)
≤
(

1− 3htη

2 λmin(Vt)
)
∥Λt,k∥2 ,

where (a) uses thatλmax(At) = 1−ηhλmin(Vt). Finally, inequality (b) is due to: Σ̃t,k ⪰ V −1
t /(2η) (Lemma 113).

Indeed it implies that

ht(ηλmin(Vt)2 +λmax(Vt)λmax(Σ̃−1
t,k ))≤ ht(ηλmin(Vt)2 + 2ηλmax(Vt)2)

≤ λmin(Vt)
2 ,

where the inequality comes from the definition of the step size: ht ≤ λmin(Vt)/
(

2η(λmin(Vt)2 + 2λmax(Vt)2)
)

.
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Subsequently,

∥Λt,Kt∥2 ≤
(

1− 3htη

2 λmin(Vt)
)
∥Λt,Kt−1∥2

≤
(

1− 3htη

2 λmin(Vt)
)Kt−1

∥Σ̃t,1− 1/ηV −1
t ∥2

=
(

1− 3htη

2 λmin(Vt)
)Kt−1

∥Σ̃t−1,kt−1 − 1/ηV −1
t ∥2

≤
t−1∏
i=1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥Σ̃1,1− 1/ηV −1
1 ∥2 (8.38)

+
t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥1/ηV −1
j − 1/ηV −1

j+1∥2

(a)
≤ 1
η

t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

∥V −1
j −V −1

j+1∥2

(b)
≤ 1
λη

t−1∑
j=1

t∏
i=j+1

(
1− 3htη

2 λmin(Vi)
)Ki−1

,

:= Ct/η

where in (a) we have used that Σ̃1,1 = 1
λη Id = 1/ηV −1

1 . Moreover ∥V −1
j − V −1

j+1∥2 = ∥
(
V −1

j ϕjϕ
⊤
j V

−1
j

)
/
(
1−

ϕ⊤
j V

−1
j ϕj

)
∥2 see result (8.33). It implies that ∥V −1

j −V −1
j+1∥2 ≤ ∥V

−1
j ∥22 ≤ ∥V

−1
1 ∥22 = 1/λ.

Finally, for any ϕ ∈ Rd,

∥Bt,Ktϕ∥2 =
√
ϕ⊤B⊤

t,Kt
Bt,Ktϕ

=
√
ϕ⊤Σ̃t,Ktϕ

=
√
ϕ⊤(Σ̃t,Kt − 1/ηV −1

t )ϕ+ 1/ηϕ⊤V −1
t ϕ

≤ ∥ϕ∥2
√
∥Σ̃t,Kt − 1/ηV −1

t ∥2 + 1/√η∥ϕ∥
V −1

t

where the last inequality comes from the fact that for a,b > 0,
√
a+ b <

√
a+
√
b, Moreover,

∥ϕ∥2 = ∥ϕV −1/2
t V

1/2
t ∥2

≤ ∥ϕ∥
V −1

t
∥V 1/2

t ∥2

Consequently, we have

∥Bt,Ktϕ∥2 ≤ 1/√η
(

1 +
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

The lower bound of this lemma

∥Bt,Ktϕ∥2 ≥ 1/√η
(

1−
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

is obtained because
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∥Bt,Ktϕ∥2 =
√
ϕ⊤B⊤

t,Kt
Bt,Ktϕ

=
√
ϕ⊤Σ̃t,Ktϕ

=
√
ϕ⊤(Σ̃t,Kt − 1/ηV −1

t )ϕ+ 1/ηϕ⊤V −1
t ϕ

≥−∥ϕ∥2
√
∥Σ̃t,Kt − 1/ηV −1

t ∥2 + 1/√η∥ϕ∥
V −1

t
≤ ∥Bt,Ktϕ∥2 ≥ 1/√η

(
1−

√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t
,

where the first inequality comes from remarkable identity
√
a−
√
b <
√
a+ b for a,b > 0.

Lemma 115. For any t ∈ [T ] and a ∈ A(xt), if the number of gradient descent steps of Algorithm 4 is
Kt ≥ 1 + 4(1 + 2κ2

t ) log(2T )/(3η), therefore it holds that

∥ϕ(xt,a)⊤Bt,Kt∥2 ≤ 1/√η
(

1 + 1/
√
λ
)
∥ϕ∥

V −1
t

and ∥ϕ(xt,a)⊤Bt,Kt∥2 ≥ 1/√η
(

1− 1/
√
λ
)
∥ϕ∥

V −1
t

.

Proof. Firstly, Lemma 114, gives us

∥Bt,Ktϕ∥2 ≤ 1/√η
(

1 +
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

∥Bt,Ktϕ∥2 ≥ 1/√η
(

1−
√
∥Vt∥2Ct

)
∥ϕ∥

V −1
t

with Ct = 1/λ
∑t−1

j=1
∏t

i=j+1 (1− 3htη
2 λmin(Vt))

Ki−1
. Furthermore, for any t ∈ [T ], recall that

ht = λmin(Vt)
2η(λmin(Vt)2 + 2λmax(Vt)2)

,

and define κt = λmax(Vt)/λmin(Vt). Therefore, it holds that(
1− 3ηht

2 λmin(Vt)
)Kt−1

=
(

1− 3
4(1 + 2κ2

t )

)Kt−1

For any ϵ > 0, we want that
(

1− 3htη
2 λmin(Vt)

)Kt−1
≤ ϵ. Hence we deduce the following relation for Kt:

Kt ≥ 1 + log(ϵ)
log
(
1− 3η/(4(1 + 2κ2

t ))
) .

Moreover, if 0< x < 1 then we have −x > log(1−x), then we have

Kt ≥ 1 + 4(1 + 2κ2
t ) log(1/ϵ)/3 .

Subsequently, let’s apply the last result to ϵ= 1/(2t). Then for Kt ≥ 1 + 4(1 + 2κ2
t ) log(2T )/3, we have

∥Vt∥2
λ

t−1∑
j=1

t∏
i=j+1

(
1− 3ηht

2 λmin(Vt)
)Ki−1

≤ ∥Vt∥2ϵ
λ

t−1∑
j=1

ϵt−j−1

≤ ∥Vt∥2ϵ
λ

+∞∑
j=0

ϵj

(a)
≤ ∥Vt∥2

2λt(1− ϵ)
(b)
≤ 1
λ
,
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where (a) and (b) come from the geometric serie because ϵ ≤ 1/2 and we have used that ∥Vt∥2 = ∥λId +∑t−1
s=1ϕϕ

⊤∥2 ≤ λ+ t− 1≤ t, as λ≤ 1. Consequently, we have

∥Bt,Ktϕ∥2 ≤ 1/√η
(

1 + 1/
√
λ
)
∥ϕ∥

V −1
t

and ∥Bt,Ktϕ∥2 ≥ 1/√η
(

1− 1/
√
λ
)
∥ϕ∥

V −1
t

Lemma 116. For any t ∈ [T ] and a ∈ A(xt), if the number of gradient descent steps of Algorithm 4 is
Kt ≥ 1 + 4(1 + 2κ2

t ) log(2T )/3, then with probability at least 1− 1/t2, we have

|ϕ(xt,a)⊤ (θ̃t,Kt − µ̃t,Kt

)
| ≤
√

4d log(t3)/η
(

1 + 1/
√
λ
)
∥ϕ(xt,a)∥

V −1
t

Proof. For any a ∈ A(xt), if Kt ≥ 1 + 4(1 + 2κ2
t ) log(2T )/(3η), Lemma 115 gives us that

|ϕ(xt,a)⊤ (θ̃t,Kt − µ̃t,Kt

)
| ≤ ∥B−1

t,Kt
(θ̃t,Kt − µ̃t,Kt)∥2∥ϕ(xt,a)⊤Bt,Kt∥2

≤ ∥B−1
t,Kt

(θ̃t,Kt − µ̃t,Kt)∥2(1/√η)
(

1 + 1/
√
λ
)
∥ϕ∥

V −1
t

.

where first inequality comes from classical matrix norm inequality and the second one is previous Lemma 115, recall
that θ̃t,Kt ∼N (µ̃t,Kt ,Bt,KtB

⊤
t,Kt

), hence B−1
t,Kt

(θ̃t,Kt − µ̃t,Kt)∼N (0, Id). Therefore, with probability 1− 1/t2
we have

B−1
t,Kt

(θ̃t,Kt − µ̃t,Kt)≤
√

4d log(t3) .

Finally, we conclude that with probability 1− 1/t2, it holds that

|ϕ(xt,a)⊤ (θ̃t,Kt − µ̃t,Kt

)
| ≤
√

4d log(t3)/η
(

1 + 1/
√
λ
)
∥ϕ(xt,a)∥

V −1
t

.

6.5.3 Concentration of the mean of the Variational posterior around its mean

In this section, the objective is the show to concentration of µ̃t,k around its mean m̃t,k. More precisely, we want an
upper bound of |ϕ⊤ (µ̃t,k− m̃t,k

)
|.

Lemma 117. For any t ∈ [T ] and k ∈ [Kt], we have the following relation

W̃t,k+1 = (Id− ηhtVt)W̃t,k(Id− ηhtVt)T + η2h2
tVtE[Σ̃t,k]Vt

where the sequence {W̃t,k}
Kt

k=1 is introduced in Section 6.3. (Recall: µ̃t,k ∼N (m̃t,k,W̃t,k))

Proof. We focus on the covariance matrix W̃t,k (see definition 6.3), by definition we have

W̃t,k+1 = E[(µ̃t,k+1− m̃t,k+1)(µ̃t,k+1− m̃t,k+1)⊤]
= E[at,k+1a

⊤
t,k+1] ,

where at,k is the difference between µ̃t,k and its mean. For ease of notation, let’s define Ωt,k := θ̃t,k − m̃t,k, then
we have

at,k+1 = µ̃t,k − m̃t,k − ηhtVt(θ̃t,k − m̃t,k)// = µ̃k − m̃t,k − ηhtVtΩt,k.
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Consequently,

at,k+1a
⊤
t,k+1 = (µ̃t,k − m̃t,k)(µ̃t,k − m̃t,k)⊤− ηhtVtΩt,k(µ̃t,k − m̃t,k)⊤

− ηht(µ̃t,k − m̃t,k)Ω⊤
t,kVt + η2h2

tVtΩt,kΩ
⊤
t,kVt

Moreover, note that θ̃t,k = µ̃t,k+Bt,kϵt,k where ϵt,k ∼N (0, Id). Subsequently we haveΩt,k = µ̃t,k−m̃t,k+Σ̃
1/2
t,k ϵt,k.

Then we haveE[Ωt,kΩ
⊤
t,k] = W̃t,k +E[Bt,kB

⊤
t,k], E[Ωt,k(µ̃t,k − m̃t,k)⊤] =Wt,k, andE[(µ̃t,k−m̃t,k)Λ⊤

t,k] = W̃t,k.
Finally we obtain that

W̃t,k+1 = E[at,k+1a
⊤
t,k+1]

= W̃t,k − ηhtVtW̃t,k − ηhtW̃t,kVt + η2h2
tVtW̃t,kVt + η2h2

tVtE[Bt,kB
⊤
t,k]Vt

= (Id− ηhtVt)W̃t,k(Id− ηhtVt)⊤ + η2h2
tVtE[Bt,kB

⊤
t,k]Vt .

Lemma 118. Recall that µ̃t,Kt , the mean of the variational posterior after Kt steps of gradient descent, is a
sample from the Gaussian with mean m̃t,Kt and covariance matrix W̃t,Kt , ie, µ̃t,Kt ∼N (m̃t,Kt ,W̃t,Kt). Recall
the definition of Λt,k = Σ̃t,k − 1/ηV −1

t , and let denote by Γt,k = W̃t,k −JtV
−1

t , where Jt = ht(2Id− ηhtVt)−1Vt.
This Lemma shows that the 2-norm of Γt,Kt is controlled by

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i ,

where κj = λmax(Vj)/λmin(Vj) and Di = Id− 3ηhiλmin(Vi)/2.

Proof. Lemma (117) gives us that

W̃t,k+1 =AtW̃t,kAt + η2h2
tVtΣ̃t,kVt ,

where At = Id− ηhtVt.
Note that Jt and Vt commute, therefore we have

AtJtV
−1

t At = JtV
−1

t − 2htηJt + η2h2
tJtVt .

Consequently, by combining the two previous equations we obtain

Γt,k+1 =AtΓt,kAt− 2htηJt + η2h2
tJtVt + ηh2

tVt + η2h2
tVtΛt,kVt

=AtΓt,kAt + η2h2
tVtΛt,kVt−htηJt(2Id− ηhtVt) + ηh2

tVt

=AtΓt,kAt + η2h2
tVtΛt,kVt .

It follows that

∥Γt,k+1∥2 ≤ ∥At∥22∥Γt,k∥2 + η2h2
t ∥Vt∥22∥Λt,k∥2

Therefore, iterating over k gives us

∥Γt,k+1∥2 ≤ ∥At∥2k
2 ∥Γt,k∥2 + η2h2

t

k−1∑
j=0
∥At∥2j

2 ∥Vt∥22∥Λt,k−j∥2 .

Moreover, Equation (8.38) is used to controls the following quantity

∥Λt,k∥2 ≤
(

1− 3ηht

2 λmin(Vt)
)k−1

∥Λt,1∥2 .
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Let’s denote by Dt = 1− 3ηhtλmin(Vt)/2, Subsequently

∥Γt,k+1∥2 ≤ ∥At∥2k
2 ∥Γt,k∥2 + η2h2

t

k−1∑
j=0
∥At∥2j

2 ∥Vt∥22D
k−j−1
t ∥Λt,1∥2 .

However, ∥At∥22 = (1− ηhtλmin(Vt))2 < (1− 3ηht
2 λmin(Vt)), because ηht ≤ 1/(4λmin(Vt)). Consequently, the

geometric sum has a common ratio strictly lower than 1, then it is upper bounded by:
k−1∑
j=0

(
∥At∥22

(1− 3ηht
2 λmin(Vt))

)j

≤
+∞∑
j=0

(
∥At∥22

(1− 3ηht
2 λmin(Vt))

)j

=
1− 3ηht

2 λmin(Vt)
1− 3ηht

2 λmin(Vt)−∥At∥22

≤
1− 3ηht

2 λmin(Vt)
1/2 ηhtλmin(Vt)− η2h2

tλmin(Vt)2

≤ 6
ηhtλmin(Vt)

, (8.39)

where in the first inequality we have used that the ratio of the previous sum is positive. In the last inequality we have
used that ηht ≤ 1/(6λmin(Vt)) in the denominator and we can remove the negative part of the numerator. Therefore,
it holds that

∥Γt,k+1∥2 ≤ ∥At∥2k
2 ∥Γt,k∥2 + 6ηκthtD

k−1
t ∥Vt∥2∥Λt,1∥2 ,

where the last inequality comes from (8.39) and the definition of κt = λmax(Vt)/λmin(Vt). Finally, iterating over t
yields to:

∥Γt,k+1∥2 ≤ ∥At∥2k
2

t−1∏
j=1
∥Aj∥

2(Kj−1)
2 ∥Γ1,1∥2 +

t−1∑
j=1
∥At∥2k

2

t−1∏
i=j+1

∥Ai∥
2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtD

k−1
t ∥Vt∥2∥Λt,1∥2

≤
t−1∑
j=1
∥At∥2k

2

t−1∏
i=j+1

∥Ai∥
2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtD

k−1
t ∥Vt∥2∥Λt,1∥2 ,

where in the last inequalities we have used that W1,1 is initialized such that W1,1 = 1/(11ηλ)Id and that
J1V1 = h1(2Id− ηh1λId)−1 = 1/(11ηλ)Id because h1 = 1/(6ηλ). Finally, we can conclude

∥Γt,Kt∥2 ≤
t−1∑
j=1
∥At∥

2(Kt−1)
2

t−1∏
i=j+1

∥Ai∥
2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)
+ 6ηκthtD

Kt−1
t ∥Vt∥2∥Λt,1∥2

=
t∑

j=1

t∏
i=j+1

∥Ai∥
2(Ki−1)
2

(
6ηκjhjD

Kj−1
j ∥Vj∥2∥Λt,1∥2

)

≤
t∑

j=1

t∏
i=j

DKi−1
i

(
6ηκjhj∥Vj∥2∥Λt,1∥2

)
,

where in the last inequality we have used that ∥At∥22 ≤ Dt. Moreover, equation (8.38) gives us that ∥Λj,1∥2 ≤
1/(ηλ)

∑j
r=1
∏j−1

l=r D
Kl−1
l . Consequently, it holds that

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

j−1∏
l=r

DKl−1
l

t∏
i=j

DKi−1
i

=
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i .
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Lemma 119. For any t≥ 2, givenEtrue
t , if the number of gradient descent steps isKt ≥ 1+4(1+2κ2

t ) log
(

2κtd
2T log2(3T 3)

)
/3,

therefore it holds that

|ϕ⊤ (µ̃t,Kt − m̃t,Kt

)
| ≤

(√
3

ηλd log(3t3) +
√

4d log(3t3)/(11η)
)
∥ϕ∥

V −1
t

.

Proof.
For any ϕ ∈ Rd,

|ϕ⊤ (µ̃t,Kt − m̃t,Kt

)
| ≤ ∥ϕ⊤W̃

1/2
t,Kt
∥2∥W̃

−1/2
t,Kt

(µ̃t,Kt − m̃t,Kt)∥2 , (8.40)

where W̃ 1/2
t,Kt

is the unique symmetric square root of W̃t,Kt . Firstly, givenEtrue
t , the term ∥W̃−1/2

t,Kt
(µ̃t,Kt−m̃t,Kt)∥2 <√

4d log(3t3).
Then, we observe that√

4d log(3t3)∥W̃ 1/2
t,Kt

ϕ∥2 =
√

4d log(3t3)ϕW̃t,Ktϕ
⊤

≤
√

4d log(3t3)ϕΓt,Ktϕ
⊤ +

√
4d log(3t3)ϕJtV

−1
t ϕ⊤ , (8.41)

where Jt = ht(2Id− ηhtVt)−1Vt = (2V −1
t /ht− ηId)−1 and Γt,k = W̃t,k − JtV

−1
t .

Moreover, √
ϕJtV

−1
t ϕ⊤ = ∥(JtV

−1
t )∥1/2

2 ϕ

(a)= ∥J1/2
t V

−1/2
t ϕ∥2

≤ ∥J1/2
t ∥2∥ϕ∥V −1

t
,

where in inequality (a) we have used that Jt and V −1
t commute.

Recall that Vt is a symmetric matrix, therefore we have λmin(Vt)Id ⪯ Vt ⪯ λmax(Vt)Id. It follows that

2
htλmax(Vt)

Id ⪯
2
ht
V −1

t ⪯ 2
htλmin(Vt)

Id.

Recall the definition of ht = λmin(Vt)/
(
2η(λmin(Vt)2 +λmax(Vt)2)

)
. Consequently, the previous relation becomes

(4η(1 + 2κ2
t )

κt
− η
)
Id ⪯

2
ht
V −1

t − ηId ⪯
(

3η+ 8ηκ2
t

)
Id . (8.42)

The left hand term is obviously positive, therefore it holds that

∥J1/2
t ∥2 = ∥( 2

ht
V −1

t − ηId)∥−1/2
2

≤
√

κt

η(4 + 8κ2
t −κt)

≤ 1√
η(4 + 7κ2

t )

≤ 1√
11η

.
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Finally, √
4d log(3t3)ϕJtV

−1
t ϕ⊤ ≤

√
4d log(3t3)/(11η)∥ϕ∥

V −1
t

.

Now, we focus on the first term of equation 8.41. Lemma 118 gives us that

∥Γt,Kt∥2 ≤
t∑

j=1

6κjhj∥Vj∥2
λ

j∑
r=1

t∏
i=r

DKi−1
i

≤
t∑

j=1

κj

ηλ

j∑
r=1

t∏
i=r

DKi−1
i ,

where in the last inequality we have used that ht∥Vt∥2 = κt/
(
2η(1 + 2κt)

)
≤ 1/(6η). For any j ∈ [2, t], let’s define

ϵj = 1/(2(κjd
2t2 log2(3t3))). Additionally, let’s fix Ki such that DKi−1

i ≤ ϵj (this condition will be explained
later in the Lemma). Subsequently, we have

4d log
(
3t3
)
∥Vt∥2/(ηλ)

t∑
j=1

κj

j∑
r=1

t∏
i=r

DKi−1
i ≤ 4d log

(
3t3
)
∥Vt∥2/(ηλ)

t∑
j=1

κj

j∑
r=1

ϵt−r+1
j

≤ 2∥Vt∥2
t2ηλd log(3t3)

t∑
r=1

t∑
j=r

ϵt−r
j

(a)
≤ 2∥Vt∥2
t2ηλd log(3t3)

t∑
r=1

t∑
j=r

( 1
2d2t2 log2(3t3)

)t−r

≤ 2∥Vt∥2
tηλd log(3t3)

t∑
r=1

t− r+ 1
t

( 1
2d2t2 log2(3t3)

)t−r

(b)
≤ 2∥Vt∥2
tηλd log(3t3)

t∑
r=1

( 1
2d2t2 log2(3t3)

)t−r

(c)
≤ 2∥Vt∥2
ηtλd log(3t3)

t−1∑
u=0

( 1
25

)u

≤ 3
ηλd log(3t3) ,

where in (a) we have used that ϵj ≤ 1/2(d2t2 log2(3t3)). Inequality (b) is due to t− r+ 1≤ t. The inequality (c)
is obtained because 1/(2d2t2 log2 3t3) ≤ 1/(4× log2(8)) ≤ 1/25 and u = t− r. For the last inequality we have
used the geometric series formula and ∥Vt∥2 = ∥λId +

∑t−1
s=1ϕϕ

⊤∥2 ≤ λ+ t− 1≤ t, because λ≤ 1.
Consequently, as ∥ϕ∥2 ≤ ∥V

1/2
t ∥2∥ϕ∥V −1

t
, we obtain

√
4d log(3t3)ϕΓt,Ktϕ

⊤ ≤

√
3

ηλd log(3t3)∥ϕ∥V −1
t

. (8.43)

Moreover, the previous inequalities hold if (1− (3/2)ηhiλmin(Vi))Ki−1 ≤ ϵ, following a similar reasoning than
in Section 6.5.2, it follows that we need

Kt ≥ 1 + 4(1 + 2κ2
t ) log

(
2κtd

2T 2 log2(3T 3)
)
/3
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6.6 Concentration and anti-concentration

Lemma 120. (Concentration lemma for θ̃t)
For any t ∈ [T ], given Etrue

t , the following event is controlled

P(Evar
t |Ft−1)≥ 1− 1

t2

Proof. Firstly, if t= 1, the condition is obvious because P(Evar
t |Ft−1)≥ 0. For the rest of the proof, we assume

that t≥ 2. Recall the definition of the event Evar
t :

Evar
t =

{
for any a ∈ A(xt), |ϕ(xt,a)⊤θ̃t−ϕ(xt,a)⊤µ̂t| ≤ g2(t)∥ϕ(xt,a)∥

V −1
t

}
.

with g2(t) = 10
√
d log(3t3)/(ηλ).

Let a ∈ A(xt), it holds that

|ϕ(xt,a)⊤(θ̃t− µ̂t)| ≤ |ϕ(xt,a)⊤(θ̃t,Kt − µ̃t,Kt)|+ |ϕ(xt,a)⊤(µ̃t,Kt − m̃t,Kt)|+ |ϕ(xt,a)⊤(m̃t,Kt − µ̂)| ,

where θ̃t = θ̃t,Kt is a sample from the variational posterior distribution trained after Kt steps of Algorithm 4.
µ̃t,Kt and Σ̃t,Kt are, respectively, the mean and covariance matrix of the variational posterior. Moreover, µ̃t,Kt is
gaussian with mean m̃t,Kt and covariance matrix W̃t,Kt (see Section 6.3). If the number of gradient descent steps is
K

(1)
t ≥ 1 + 4(1 + 2κ2

t ) log(2T )/3, then Lemma 116 shows that with probability at least 1− 1/t2, we have

|ϕ(xt,a)⊤ (θ̃t,Kt − µ̃t,Kt

)
| ≤
√

4d log(t3)/η
(

1 + 1/
√
λ
)
∥ϕ(xt,a)∥

V −1
t

≤ 4
√
d log(t3)/(ηλ)∥ϕ(xt,a)∥

V −1
t
,

where the last inequality is due to λ≤ 1.
Similarly, Lemma 119 shows that for any t≥ 2, given Etrue

t , ifK2
t ≥ 1+4(1+2κ2

t ) log
(

2κtd
2T 2 log2(3T 3)

)
/3,

therefore we have

|ϕ(xt,a)⊤ (µ̃t,Kt − m̃t,Kt

)
| ≤

(√
3

ηλd log(3t3) +
√

4d log(3t3)/(11η)
)
∥ϕ(xt,a)∥

V −1
t

where in the last simplification we have used λ≤ 1.
Finally, Given Etrue

t , let’s apply Lemma 112 with a number of gradient descent steps such K(3)
t ≥ 1 + 2(1 +

2κ2
t ) log

(
4R
√
dT log(3T 3)

)
, we obtain that

|ϕ(m̃t,Kt − µ̂t)| ≤ 2/λ∥ϕ(xt,a)∥
V −1

t
.

Note that Kt = 1 + 2(1 + 2κ2
t ) log

(
2Rκtd

2T 2 log2(3T 3)
)
≥ max{K(1)

t ,K
(2)
t ,K

(3)
t } (see Equation (8.24)),

then with probability at least 1− 1/t2 we have

|ϕ(xt,a)⊤ (θ̃t,k − µ̂t

)
| ≤ |ϕ(xt,a)⊤ (θ̃t,k − µ̃t,k

)
|+ |ϕ(xt,a)⊤ (µ̃t,k − m̃t,k

)
|+ |ϕ(xt,a)⊤ (m̃t,k − µ̂

)
|

≤
(

4
√
d log(t3)/(ηλ) +

√
3

ηλd log(3t3) +
√

4d log(3t3)/(11η) + 2/λ
)
∥ϕ(xt,a)∥

V −1
t

≤ 10
√
d log(3t3)/(ηλ)∥ϕ(xt,a)∥

V −1
t

≤ g2(t)∥ϕ(xt,a)∥
V −1

t
.

where the last inequality holds because t≥ 2, λ≤ 1 and η ≤ 1.
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Lemma 121. (Anti-concentration lemma)
Given Etrue

t , if the number of gradient steps is Kt = 1 + 2(1 + κ2
t ) log

(
2Rκtd

2T 2 log2(3T 3)
)

Therefore, it
holds that

P
( ∗
ϕ⊤

t θ̃t,k >
∗
ϕ⊤

t θ
⋆
)
≤ p ,

where p= 1/(2
√

2πe)

Proof. Firstly, note that

P
( ∗
ϕ⊤

t θ̃t,Kt >
∗
ϕ⊤

t θ
⋆
)

= P

 ∗
ϕ⊤

t θ̃t,Kt −
∗
ϕ⊤

t m̃t,Kt√
∗
ϕ⊤

t Σ̃t,Kt

∗
ϕt +

∗
ϕ⊤

t W̃t,Kt

∗
ϕt

>

∗
ϕ⊤

t θ
⋆−

∗
ϕ⊤

t m̃t,Kt√
∗
ϕ⊤

t Σ̃t

∗
ϕt +

∗
ϕ⊤

t W̃t,Kt

∗
ϕt

 .

Recall that ∗
ϕ⊤

t µ̃t ∼ N
( ∗
ϕ⊤

t m̃t,
∗
ϕtW̃t,k

∗
ϕ⊤

t

)
and

∗
ϕ⊤

t θ̃t,Kt ∼ N
( ∗
ϕ⊤

t µ̃t,k,
∗
ϕ⊤

t Σ̃t

∗
ϕt

)
.

Therefore, using the conditional property of Gaussian vectors, we have
∗
ϕ⊤

t θ̃t ∼ N
( ∗
ϕ⊤

t m̃t,
∗
ϕtΣ̃t

∗
ϕ⊤

t +
∗
ϕtW̃t

∗
ϕ⊤

t

)
.

Consequently, we have to control the term

Yt :=
( ∗
ϕ⊤

t θ
⋆−

∗
ϕ⊤

t m̃t,Kt

)
/
(√ ∗

ϕ⊤
t Σ̃t,Kt

∗
ϕt,Kt +

∗
ϕ⊤

t W̃t,Kt

∗
ϕt,Kt

)
and use the Gaussian anti-concentration lemma (Lemma 124). First, in this lemma, we suppose that Etrue

t holds,
therefore we have

|
∗
ϕ⊤

t (µ̂t− θ⋆)| ≤ g1(t)∥
∗
ϕt∥V −1

t

=
(
R
√
d log(3t3) +

√
λ

)
∥

∗
ϕt∥V −1

t
.

Moreover, as the number of gradient descent, defined in Section 6.2 is upper than K
(1)
t = 1 + 2(1 +

2κ2
i ) log

(
4R
√
dT log(3T 3)

)
, then Lemma 112 gives us that

|
∗
ϕ⊤

t (m̃t,Kt − µ̂t)| ≤
2∥

∗
ϕt∥V −1

t

λ
.

Consequently, the numerator of Yt is upper bounded by

|ϕ∗⊤
t (θ⋆− m̃t,Kt)|

a
≤ |

∗
ϕ⊤

t (θ⋆− µ̂t,Kt)|+ |
∗
ϕ⊤

t (µ̂t,Kt − m̃t,Kt)|
(b)
≤

(
R
√
d log(3t3) +

√
λ+ 2

λ

)
∥

∗
ϕ⊤

t ∥V −1
t

Regarding the denominator of Yt, we need a lower bound for ∥Bt,k

∗
ϕt∥2. Lemma 114 for gives us that

∥Bt,Ktϕ∥2 ≥ 1/√η
(

1−
√
∥Vt∥2Ct

)
∥

∗
ϕt∥V −1

t

with

−C1/2
t =−

( 1
λ

t−1∑
j=1

t∏
i=j+1

(1− 3htη

2 λmin(Vt))
Ki−1)1/2

. (8.44)
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Finally, we find a lower bound to this quantity.

∥Bt,Ktϕ∥2 ≥ 1/√η
(

1−
√
∥Vt∥2Ct

)
∥

∗
ϕt∥V −1

t

(a)=
∥

∗
ϕt∥V −1

t√
η

(
1−

√
∥Vt∥2

( 1
λ

t−1∑
j=1

t∏
i=j+1

(1− 3htη

2 λmin(Vt))
Ki−1)1/2)

(b)=
∥

∗
ϕt∥V −1

t√
η

(
1−

( t−1∑
j=1

ϵt−j−1
)1/2)

(c)=
∥

∗
ϕt∥V −1

t√
η

(
1−

( t−2∑
j=0

ϵj
)1/2)

(d)
≥
∥

∗
ϕt∥V −1

t√
η

(
1− 1

9t1/4

)
(e)
≥
∥

∗
ϕt∥V −1

t√
η

(
1− 1

9

)
=

8∥
∗
ϕt∥V −1

t

9√η

with (a) is 8.44. Where (b) we use ∥Vt∥2 ≤ t and setting ϵ= (4t)−1, point (c) comes from a change of variable,
(d) comes from the fact that for any t≥ 1,

∑t−2
j=0 ϵ

j < 1/(81
√
t). Finally, (e) comes from that 1/t by can be upper

bounded by 1 for any t.
Finally, regrouping the nominator and the denominator, we have the following expression for Yt:

Yt ≤
∗
ϕ⊤

t θ
⋆−

∗
ϕ⊤

t m̃t,Kt√
∗
ϕ⊤

t Σ̃t,Kt

∗
ϕt,Kt +

∗
ϕ⊤

t W̃t,Kt

∗
ϕt,Kt

≤
∗
ϕ⊤

t θ
⋆−

∗
ϕ⊤

t m̃t,Kt∥∥∥ ∗
ϕt

∥∥∥
Σ̃t,Kt

≤
R
√
d log(3t3) +

√
λ+ 2

λ

8/(9√η)

≤
9R
√
d log(3t3)√η

2λ

Recall the definition of η in Section 6.2

η = 4λ2

81R2d log(3T 3)

Consequently, it yields that |Yt| ≤ 1.
Finally, Lemma 124 gives us that

P
( ∗
ϕ⊤

t θ̃t,Kt >
∗
ϕ⊤

t θ
⋆
)
≥ 1

2
√

2πe
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6.7 Auxiliary Lemmas
Lemma 122. (Azuma-Hoeffding inequality) We define {Xs}s∈[T ] a super-martingale associated to the filtration Ft.
If it holds that for any s≥ 1, |Xs+1−Xs| ≤ cs+1. Then for any ϵ > 0, we have

P(XT −X0 ≥ ϵ)≤ exp
(
− ϵ2

2
∑T

s=1 c
2
s

)
.

Lemma 123. (Martingale Lemma [Abbasi-Yadkori et al., 2011b]) Let (Ft)t≥0 be a filtration, (mt)t≥1 be an
Rd-valued stochastic process such that mt is (F ′

t−1)-measurable, (ϵt)t≥1 be a real-valued martingale difference
process such that ϵt is (F ′

t)-measurable. For t≥ 0, define ζt =
∑t

τ=1mτ ϵτ and Mt = Id +
∑t

τ=1mτm
⊤
τ , where

Id is the d-dimensional identity matrix. Assume ϵt is conditionally R-sub-Gaussian. Then, for any δ′ > 0, t ≥ 0,
with probability at least 1− δ′,

∥ζt∥M−1
t
≤R

√
d log

(
t+ 1
δ′

)
where ∥ζt∥M−1

t
=
√
ζ⊤

t M
−1
t ζt

Lemma 124. (Gaussian concentration [Abramowitz and Stegun, 1964]) Suppose Z is a Gaussian random variable
Z ∼N

(
µ,σ2), where σ > 0. For 0≤ z ≤ 1, we have

P(Z > µ+ zσ)≥ 1√
8π
e− z2

2 , P(Z < µ− zσ)≥ 1√
8π
e− z2

2 (8.45)

And for z ≥ 1, we have

e−z2/2

2z
√
π
≤ P(|Z −µ|> zσ)≤ e− z2

2

z
√
π

7 Approximation of our algorithm and complexity

In this section, the objective is to approximate the inversion of the matrix Bt,k of Algorithm 4. Ideed, Algorithm 4,
requires to compute the inversion of a d× d matrix at each step t and k, which represents a complexity of O(d3). In
the approximated version of Algorithm 4, we consider both the sequence of square root covariance matrix {Bt,k}Kt

k=1
and the sequence of their approximations {Ct,k}Kt

k=1 such that, for any t ∈ [T ] and k ∈ [Kt]

Ct,k ≈B−1
t,k .

Recall the recursive definition of Bt,k,

Bt,k+1 =
{
Id−htAt,k

}
Bt,k +ht(B⊤

t,k)−1

≈
{
Id−htAt,k

}
Bt,k +htC

⊤
t,k , (8.46)

where At,k =B2
t,k(θ̃t,k− µ̃t,k)∇Ut(θ̃t,k)⊤ if the hessian free algorithm is used or At,k =∇2U(θ̃t,k) otherwise.

Recall that θ̃t,k ∼N (µ̃t,k,Bt,kB
⊤
t,k). Furthermore, we can now focus on the definition of the sequence {Ct,k}Kt

k=1.
Firstly, we recall that

Bt,k+1 =
{
Id−htAt,k

}
Bt,k +ht(B⊤

t,k)−1

= {Id +ht((B⊤
t,k)−1(Bt,k)−1−At,k)}Bt,k.

Then, let’s use a first order Taylor expansion of the previous equation in ht, we obtain the approximated inverse
square root covariance matrix:
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Ct,k+1 = C−1
t,k {Id−ht(C⊤

t,kCt,k −At,k)}. (8.47)

Note that the lower is ht, the better is the approximation and in our case the step size ht is decreasing with
t. The approximated recursive definition of the square root covariance matrix defined in equation (8.46) and its
approximated inverse defined in equation (8.47) are used to defined our the approximated version of VITS called
VITS− II and is presented in Algorithm 5. Moreover, note that the updating step of Algorithm 5 uses only matrix
multiplication and sampling from independent Gaussian distribution N (0, Id). Therefore the global complexity of
the overall algorithm is O(d2).

8 Discussion on the difference between the algorithm of VTS and our algorithm VITS.

The main difference between our setting and the one of [Urteaga and Wiggins, 2018] (VTS) is the bandit modelisation.
Indeed, given a context x and an action a, in our setting, the agent receives a reward r ∼ R(·|x,a). Consequently, a
parametric model Rθ is used to approximate the reward distribution and it yields to a posterior distribution p̂. In
the setting of [Urteaga and Wiggins, 2018], the agent receives a reward r ∼ Ra(·|x). Then, it considers a set of
parametric models {Rθa}

K
a=1 and a set of posterior distributions: {p̂a}Ka=1. The setting we have used in this paper is

richer as it consider the correlation between the arms distributions compared to [Urteaga and Wiggins, 2018] which
consider that the arm distributions are independents. For example, if we consider the case of the Linear bandit. In
this setting, the posterior distribution is Gaussian. With the modelisation of [Urteaga and Wiggins, 2018], we have
for any a ∈ [K], p̂a :=N (µa,Σa), where µa ∈ Rd and Σa ∈ Sd

+. However, with our modelisation, p̂ :=N (µ,Σ),
where µ ∈ Rd×K and Σ ∈ Sd×K

+ . We can see that the covariance matrix Σ encodes the correlations between the
different arms, which is not the case of {Σa}Ka=1. In addition, in our setting, we can consider any model for the
mean of the reward distribution. For example we can choose g(θ,x,a) as a Neural Networks. This kind of model is
unusable in the formulation of [Urteaga and Wiggins, 2018].

Moreover, the approximate families used in both papers are different. Indeed, we consider the family of
non-degenerate Gaussian distributions, and [Urteaga and Wiggins, 2018] is focused on the family of mixture
of mean-field Gaussian distribution. The mixture of Gaussian distribution is richer than the classic Gaussian
distribution. However, the non mean-field hypothesis allow to keep the correlation between arms distributions.

Furthermore, VTS from [Urteaga and Wiggins, 2018] scales very poorly with the size of the problem. The
variational parameters are very large: α ∈ RK×M , β ∈ RK×M , γ ∈ RK×M , u ∈ RK×M×d, V ∈ RK×M×d×d

where K is the number of arms, M is the number of mixtures and d the parameter dimension. In addition, the
parameter updating step is also very costly in term of memory and speed. We have re-implemented an efficient
version of their algorithm in JAX in order to scale as much as possible but many memory problems occur.

Finally, our algorithm comes with theoretical guarantees in the Linear Bandit case and outperforms empirically
the others approximate TS methods. VTS performs poorly in practice and has no theoretical guarantee, even in the
Linear case.

9 Additional details about numerical settings

9.1 Hyper-parameters tuning

This Subsection summarizes the different grid-search used to compute all plots in this paper for the algorithms:
LinTS, LMC-TS, VITS− I, VITS− II and VITS− II Hessian-free.

Parameter Value
inverse temperature η 10,100,500,1000

regularization λ 0.1,1,10

Tab. 8.1 LinTS hyperparameter grid-search
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Parameter Value
inverse temperature η 10,100,500,1000

regularization λ 0.1,1,10
Nb gradient steps Kt 10, 50

learning rate h 0.001,0.01,0.1

Tab. 8.2 LMC-TS hyperparameter grid-search

Parameter Value
inverse temperature η 10,100,500,1000

regularization λ 0.1,1,10
Nb gradient steps Kt 10

learning rate h 0.001/η,0.01/η,0.1/η
Monte Carlo samples 1 (Hessian) and 20 (Hessian-free)

Tab. 8.3 VITS hyperparameter grid-search

9.2 Details about experiences in synthetic contextual bandits with synthetic data
In this subsection, we provide more details about the toy example derive in this paper. Firstly, we consider a fixed
pool of arms denoted as P = [x̃1, . . . , x̃n] with n= 50, where each arm x̃i follows a normal distribution N (0d, Id).
Then, at each step t ∈ [T ], for every arm, we randomly sample a vector x̃i from the pool P , and the contextual vector
associated with this arm is defined as x= x̃i + ζϵ, where ϵ∼N (0d, Id). The bandit environment is simulated using
a random vector θ⋆ sampled from a normal distribution N (0d,σ

⋆Id). We opted for σ⋆ = 1/d to ensure that the
variance of the scalar product x⊤θ⋆ remains independent of the dimension d. Indeed, both linear and quadratic
settings, the reward only depends on the scalar product between the context and the true parameter. If we denote by
x[i] and θ⋆[i] the ith coordinate of the vector x and θ⋆ respectively, then the scalar product is defined by

x⊤θ⋆ =
d∑

i=1
x[i]θ⋆[i],

and its variance is

V[x⊤θ⋆] = V[
d∑

i=1
x[i]θ⋆[i]]

=
d∑

i=1
V[x[i]]V[θ⋆[i]]

= dσ⋆ V[x[i]].

In the previous equations we have used that all coordinates are independents identically distributed and centered.
Therefore, taking σ⋆ = 1/d ensure that the variance of the scalar product remains independent of d. In the linear
bandit setting, the reward depends linearly on the contextual vector x, more precisely,

r = x⊤θ⋆ +αϵ ,

where ϵ∼N (0d, Id). However, to maintain problem complexity independent of ζ, we have set the signal-to-noise
ratio to a fixed value of 1. This signal-to-noise ratio is the ratio between E[(x⊤θ⋆)2] and E[(αϵ)2]. Firstly,

E[(x⊤θ⋆)2] = V[x⊤θ⋆]
= V[x[i]]
= 1 + ζ2 ,
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where in the last equation we have used that x= x̃i + ζϵ and V[x[i]] = 1 + ζ2. Moreover, the denominator of the
signal-to-noise ratio is E[(αϵ)2] = α2. Consequently, a signal-to-noise ratio equals to 1 implies that

√
1 + ζ2 = α.

In the quadratic bandit setting, the reward depends quadratically on the contextual vector x, more precisely,

r = (x⊤θ⋆)2 +αϵ ,

where ϵ∼N (0, Id). In this setting, the reward also depends only on the scalar product between x and θ⋆, thus, we
also choose σ⋆ = 1/d. We also ensure a signal-to-noise equal to 1, it implies a more sophisticated condition on the
noise: α= (ζ2 + 1)

√
3 + 6/d. More precisely, in the quadratic setting, the signal-to-noise ratio is defined as follow

E[(x⊤θ⋆)4]
E[(αϵ)2]

= 1.

Firstly,

E[(x⊤θ⋆)4] = E[(
d∑

i=1
x[i]θ⋆[i])

4

]

= E

[
d∑

i=1
(x[i]θ⋆[i])4 + 4

d∑
i=1

∑
j,i

(x[i]θ⋆[i])3x[j]θ⋆[j] + 6
d∑

i=1

∑
j<i

(x[i]θ⋆[i])2(x[j]θ⋆[j])2

+ 12
d∑

i=1

∑
j,i

∑
k,i,k<j

(x[i]θ⋆[i])2x[j]θ⋆[j]x[k]θ⋆[k]

+ 24
d∑

i=1

∑
j<i

∑
k<j

∑
l<k

x[i]θ⋆[i]x[j]θ⋆[j]x[k]θ⋆[k]x[l]θ⋆[l]
]

=
d∑

i=1
E[x[i]4]E[θ⋆[i]4] + 6

d∑
i=1

∑
j<i

E[x2
i ]E[x2

j ]E[θ⋆[i]2]E[θ⋆[j]2]

= 9(ζ2 + 1)2

d
+ 6
(
d

2

)
(ζ2 + 1)2

d2

= (ζ2 + 1)2(9
d

+ 3(d− 1)
d

)

= (ζ2 + 1)2(6
d

+ 3)

which gives that α= (ζ2 + 1)
√

3 + 6/d

9.3 Computational Power
In this work, we use GPUs v100–16g or v100–32g for running our code with GPU Nvidia Tesla V100 SXM2 16 Go
and CPUs with 192 Go per node.

10 Additional numerical experiments

10.1 Experimental comparison between Langevin Monte Carlo and VI
In this Subsection, we conduct an experimental comparison between Langevin Monte Carlo (LMC) and two variants
of Variational Inference (VI), denoted as VI-I and VI-II, in approximating a specific target distribution. Our target
distribution is a straightforward Gaussian distribution, represented as p⋆ =N (µ⋆,Σ⋆). We perform LMC, VI-I, and
VI-II for a designated number of iterations. In each iteration, we calculate the Kullback-Leibler distance between the
approximated distribution and the target distribution. In this context, all distributions generated by LMC, VI-I, and
VI-II take the form of Gaussians. To compute the mean and covariance matrix for LMC, we perform parameter



Chapter 8: Variational Inference Thompson Sampling for contextual bandits 203

averaging over the results obtained after 1000 burn-in steps (which are excluded from the plotted data). Then, the
training is stopped when

KL(qk,p⋆)≤ ϵ , (8.48)

or if the number of steps exceeds 50000 steps.
Figure 8.4 illustrates the relationship between the condition number of Σ⋆ and the number of steps needed

to achieve (8.48). We conducted these experiments with three different step sizes and repeated them across 100
different seeds. The red dashed line in the figure represents the maximum allowable number of iterations.
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Fig. 8.4 Comparison Langevin Monte Carlo and Variational inference

The first observation drawn from these figures is that VI-I and VI-II exhibit identical behavior, even when using
a relatively large step size of 0.1. The second finding suggests that both LMC and VI exhibit a linear dependency on
the condition number. However, we cannot definitively conclude that one algorithm is more robust in the face of
varying condition numbers. Lastly, the third conclusion highlights that VI consistently requires fewer iterations to
achieve (8.48).

10.2 Additional Results on non-contextual bandits

In this subsection, we consider a contextual bandit setting with a parameter dimension d= 10 and a number of arms
K = 10. The bandit environment is simulated by a random vector θ⋆ ∈ Rd sampled from a normal distribution
N (0, Id) and subsequently scaled to unit norm. To create a complex environment that necessitates exploration, we
define the set of contextual vectors as X := {θ⋆,θ⋆

ϵ ,x2, . . . ,xK}. Here, θ⋆
ϵ is defined as θ⋆

ϵ = (θ⋆ + ϵ)/∥(θ⋆ + ϵ)∥2,
where ϵ is sampled from a normal distribution with mean 0 and standard deviation 0.1. This contextual vector
corresponds to a small modification of θ⋆. The other contextual vectors are sampled from a normal distribution
N (0,1) and then scaled to unit norm.

Linear bandit scenario. Here, the true reward R(·|xa,a) associated to an action a ∈ {1, . . . ,K} and an arm
xa ∈ Rd corresponds to the distribution of ra = x⊤

a θ
⋆ + ξ, where the noise ξ is sampled from N (0, Id). In this

complex setting, we can calculate the expected reward for each arm as follows: µ0 = E[r0] = 1, µ1 ≈ 1< µ0, and for
any i > 1, µi < µ1. Intuitively, the first and second arms offered high rewards, while the remaining arms offered low
rewards. On the other hand, finding the optimal arm is challenging and needs a significant amount of exploration.

Logistic bandit framework. We consider the same contextual set X, but the true rewardR(·|xa,a) associated
to an action a ∈ {1, . . . ,K} and an arm xa now corresponds to ra ∼ Ber(σ(⟨xa,θ

⋆⟩)), where Ber is the Bernoulli
distribution, and σ(x) = 1/(1 + e−x) is the logistic function. Similarly to the linear bandit, the logistic framework
introduces a complex environment where a significant amount of exploration is required to accurately distinguish
between the first and second arm.
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Fig. 8.5 Linear Bandits

Figures 8.5 and 8.6 display the cumulative regret (8.3) obtained by various TS algorithms, namely Linear TS
(LinTS), Langevin Monte Carlo TS (LMC-TS), Variational TS (VTS), VITS-I and VITS-II in the linear and logistic
bandit settings.

Fig. 8.6 Logistic Bandits

The figures show the mean and standard error of the cumulative regret over 20 samples. As depicted in Figure 8.5,
VITS-I outperforms the other approximate TS algorithms in the linear bandit scenario. Note that the cumulative
regret of VITS-I and VITS-II is comparable to that of Lin-TS, which uses the true posterior distribution. This
observation highlights the efficiency of the variational TS algorithms in approximating the true posterior distribution
and achieving similar performance to the Lin-TS algorithm. Figure 8.6 shows that VITS outperforms all other TS
algorithms in the logistic setting too. This highlights the importance of employing approximation techniques in
scenarios where the true posterior distribution cannot be sampled exactly. Moreover, both figures illustrate that
VITS-II achieves a comparable regret to VITS-I while significantly reducing the computational complexity of the
algorithm. Finally, as emphasized earlier, the settings we have chosen require a good tradeoff between exploration
and exploitation that LMC-TS cannot achieve, as illustrated by the histogram in Figure 8.5.

10.3 Computation complexity
We conduct an experimental comparison between Langevin Monte Carlo (LMC) and three variants of Variational
Inference, denoted as VITS− I, VITS− II and VITS− II Hessian-free, in approximating a specific target dis-
tribution. Our target distribution is a straightforward Gaussian distribution, represented as p⋆ =N (µ⋆,Σ⋆). At each
iteration, we calculate the Kullback-Leibler distance between the approximated distribution and the target distribution.
In this context, all distributions generated by LMCTS, VITS− I, VITS− II and VITS− II Hessian-free take
the form of Gaussians. To compute the mean and covariance matrix for LMC, we perform parameter averaging. As
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both the posterior and its approximation are Gaussians, the Kullback-Leibler divergence is easily tractable. Then,
the training is stopped when

KL(qk,p
⋆)≤ ϵ

or if the number of steps exceeds 10000 steps.
The following Figure illustrates the relationship between the obtained Kullback-Leibler divergence and the

computational time needed to achieve 10.3. The computational time is the total time (in second) required to run all
updating steps of the algorithm. This experiment is repeated across 1000 different seeds to compute the confidence
interval. We decide not to compare with LinTS or LinUCB algorithms as they do not allow to approximate complex
posteriors compared to LMCTS and VITS algorithms.
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This figure shows that VITS− II and VITS− II Hessian-free are faster (in term of computational time)
than LMCTS to obtain a certain Kullback-Leibler divergence. Note that VITS− I is the slowest algorithm, this is
due to the costly inverse matrix calculation.
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Chapter abstract: In this chapter, we consider high dimensional contextual bandit problems. Within this setting,
Thompson Sampling and its variants have been proposed and successfully applied to multiple machine learning
problems. Existing theory on Thompson Sampling shows that it has suboptimal dimension dependency in contrast to
upper confidence bound (UCB) algorithms. To circumvent this issue and obtain optimal regret bounds, [Zhang,
2022b] recently proposed to modify Thompson Sampling by enforcing more exploration and hence is able to attain
optimal regret bounds. Nonetheless, this analysis does not permit tractable implementation in high dimensions. The
main challenge therein is the simulation of the posterior samples at each step given the available observations. To
overcome this, we propose and analyze the use of Markov Chain Monte Carlo methods. As a corollary, we show
that for contextual linear bandits, using Langevin Monte Carlo (LMC) or Metropolis Adjusted Langevin Algorithm
(MALA), our algorithm attains optimal regret bounds of Õ(d

√
T ). Furthermore, we show that this is obtained

with Õ(dT 4), Õ(dT 2) data evaluations respectively for LMC and MALA. Finally, we validate our findings through
numerical simulations and show that we outperform vanilla Thompson sampling in high dimensions.

1 Introduction

Bandit models have proven to be one of the most successful paradigms for decision making in random environments
[Robbins, 1952, Katehakis and Veinott, 1987, Berry and Fristedt, 1985, Auer et al., 2002, Lattimore and Szepesvári,
2020]. Formally, it models an agent which for some rounds has to choose between several potential actions. The
agent selects each action according to its current policy and receives a reward once this action is made. In this paper,
we are especially interested in the contextual bandit problem [Langford and Zhang, 2007b] which supposes that
the set of actions at each round and the corresponding reward mean function depend on a context vector which is
specified by the environment under consideration. This setting has been developed and studied intensively over
the past decade [Langford and Zhang, 2007b, Filippi et al., 2010, Abbasi-Yadkori et al., 2011b, Chu et al., 2011,
Agrawal and Goyal, 2013b, Li et al., 2017b, Lale et al., 2019, Kveton et al., 2020a] and has been successfully
applied in various fields; see e.g. for applications in content recommendation, mobile health and finance [Li et al.,
2010, Agarwal et al., 2016b, Tewari and Murphy, 2017, Bouneffouf et al., 2020]. To address this problem, bandits
algorithms deal with the research and design of efficient algorithms that seek to optimize the cumulative reward. To
this end, they recursively define a sequence of policies which is adjusted at each round given the previous historical
state-action-reward tuples. The main challenge towards the adaptation and implementation of these policies is to
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find a compromise between (1) exploitation of the arms with good empirical expected rewards and (2) exploration of
the worse arms with under-sampled rewards.

The approaches to maximizing cumulative reward (alternatively, minimizing cumulative regret) can be broadly
divided into two categories. Maximum likelihood methods with optimistic adjustment (UCB) follow the principle of
optimism in the face of uncertainty and were adopted in [Auer et al., 2002, Ménard and Garivier, 2017, Chu et al.,
2011, Abbasi-Yadkori et al., 2011b, Li et al., 2017b, Zhou et al., 2020, Zenati et al., 2022, Foster and Rakhlin, 2020].
The second approach is based on the Bayesian paradigm, and involves the sampling of a sequence of posterior
distributions associated with a statistical model for the reward function; see e.g. , [Thompson, 1933, Agrawal and
Goyal, 2012, Kaufmann et al., 2012b, Russo and Van Roy, 2016, 2014, Jin et al., 2021b]. Thompson Sampling (TS)
is one of the most famous algorithms that fall into this latter category. Both of these aim to inject uncertainty into
the model in order to encourage “exploration”-type behaviour, and have demonstrated their efficiency and robustness
in a wide range of applications. In addition, they come with important theoretical guarantees, complementing each
other while providing comparable results empirically; see [Chapelle and Li, 2011]. However, existing regret bounds
for TS are often sub-optimal when compared to analogous rates for UCB. In particular, the bounds established in
[Agrawal and Goyal, 2012] for Thompson Sampling (TS) applied to linear models are of order Õ(d3/2√T ) where d
is the dimension of the model considered and T the time horizon. These bounds are worse by a factor

√
d than the

ones proved in [Dani et al., 2008, Abbasi-Yadkori et al., 2011b] for Linear UCB type algortihms. In fact [Zhang,
2022b] showed that this discrepancy between usual TS and UCB cannot be reduced, providing an instance where
regret bounds for usual TS can be lower bounded by Õ(T ) whereas results on UCB from [Foster and Rakhlin, 2020]
achieve a cumulative regret of order Õ(

√
KT ), where K is the number of possible actions. To circumvent this

issue, [Zhang, 2022b] proposed to modify the likelihood function in TS by adding a penalty term to enforce more
optimistic exploration. In addition, the author was able to show that this version of TS, coined Feel-Good Thompson
sampling (FG-TS), comes with an upper bound for the cumulative regret which is of order Õ(d

√
T ). This matches

the minimax regret lower bound established in [Agarwal et al., 2012].
One defect in the methodology and the analysis of [Zhang, 2022b] is that they do not take into account that the

sequence of posterior distributions associated with FG-TS is intractable to sample from in practice, even for linear
contextual bandits. This is in contrast to the standard TS algorithm. The objective of the present paper is precisely
to fill this gap. To address this problem, we propose the use of Markov Chain Monte Carlo methods at each round to
obtain approximate samples from the target posterior distribution.

2 Contextual bandit and Thompson sampling methods

We describe the contextual Bandit framework below. Let X be a contextual set andA : X→ 2A be a set-valued action
map, where 2A denotes the power set of the action space A. While we do not assume that A is finite, we suppose
supx∈XCard(A(x))<∞. In the sequel, we consider policies π : X→ A such that for any x ∈ X, π(x) ∈ A(x), and
π can be either deterministic or random. Given a horizon T ∈ N, and the past observations Dt−1 = {(xs,as, rs)}s<t
let the following procedure define the bandit framework:

Contextual bandit process. At each iteration t ∈ [T ] and given Dt−1:

• The agent observes a contextual vector xt ∈ X;

• The agent chooses a policy πt from some conditional distribution Qt(·|Dt−1) and sets its action to
at = πt(xt);

• The agent receives a reward rt with conditional distribution R(·|xt,at) given Dt−1 (where R is a Markov
kernel on (A×X)×R, where R is some subset of R).

Given a sequence of conditionals Q1:T = {Qt}t≤T , this process defines a distribution on the sequence of policies
π1:T = {πt}t≤T still denoted by Q1:T by abuse of notation.
The bandit problem then consists in finding the conditional {Qt}t≤T that minimizes the cumulative regret that
we will define below. However, as the reward distribution R is unknown, the agent has to simultaneously learn
this distribution and choose the best policy. This is a classical exploitation/exploration problem. First, define the
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expected reward under the optimal action:

f∗(x) = max
a∈A(x)

∫
rR(dr|x,a) , (9.1)

and the expected reward under any particular action as the following respectively:

f(x,a) =
∫
rR(dr|x,a) .

We define then the regret at time s with respect to a policy πs and a context xs as

REGπs
s = f⋆(xs)− f(xs,πs(xs)) , (9.2)

and finally, we seek to find Q1:T such that the cumulative regret is minimized

CREG(Q1:T ) = Eπ1:T ∼Q1:T [
∑

s≤T REGπs
s ] . (9.3)

Thompson sampling (TS) algorithm is a well known algorithm which achieves this goal, with strong performance
in practice. First we present the standard TS framework to highlight its limitations. Firstly, consider the Gaussian
parametric model {R(TS)

θ : θ ∈ Rd} based on g : Rd×X×A→ R, where R(TS)
θ (·|x,a) is the Gaussian distribution

with mean g(θ,x,a) and variance 1/(2η) for some η > 0. For example, in linear contextual bandits [Chu et al.,
2011, Abbasi-Yadkori et al., 2011b], g(θ,x,a) = ⟨a,θ⟩ assuming that A(x)⊂ Rd for any x ∈ X. Under the same
condition, generalized linear bandits [Filippi et al., 2010, Kveton et al., 2020a] consist of g(θ,x,a) = σ(⟨a,θ⟩) for
some link function σ. Finally, in neural contextual bandits [Riquelme et al., 2018, Zhou et al., 2020, Xu et al., 2020],
g is a neural network taking as input a pair (x,a) and θ stands for the weights of g.

Then, the likelihood function associated with the observations Dt at step t is given by

L(TS)
t (θ|Dt)∝ exp

(
−

t∑
s=1

ℓ(TS)(θ|xs,as, rs)
)
, (9.4)

where the negative log-likelihood ℓ(TS) is given by

ℓ(TS)(θ|x,a,r) = η(g(θ,x,a)− r)2 . (9.5)

Then, at each iteration t ∈ [T ], TS considers the policy πt determined, for any x, by

π
(TS)
t (x) = aθt(x) (9.6)

where, for θt a sample from the posterior distribution µ(TS)
t (·|Dt−1), aθt(x) is defined as follow

aθt(x) = argmax
a∈A(x)

g(θt,x,a) .

Here µ(TS)
t (θ|Dt−1)∝ L(TS)

t (θ|Dt−1)p0(θ), where p0 is the prior on θ. However, as mentioned in [Zhang, 2022b],
the classic TS algorithm may yield to sub-optimal cumulative regret. They described a simple example where
the cumulative regret defined in (9.3) is linear (O(T )), which is sub-optimal compared to the regret bound of
O(
√
T logT ) achieved in [Foster and Rakhlin, 2020] for UCB models. This behavior comes from the choice of

Gaussians as the model, which leads to sub-exploration of the action space.
To overcome this difficulty, [Zhang, 2022b] proposes a new model where the classic negative log-likelihood is

replaced by the Feel-Good negative log-likelihood, defined by

ℓ(FG)(θ|x,a,r) = η(g(θ,x,a)− r)2−λmin(b,g⋆(θ,x)) , (9.7)

where λ, η and b are hyperparameters in R+ and g⋆(θ,x) = maxa∈A(x) g(θ,x,a). Then the Feel-Good Thompson
sampling algorithm analysed in [Zhang, 2022b] considers the resulting sequence of likelihoods {L(FG)

t }t≤T and
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sequence of posteriors {µ(FG)
t }t≤T defined similarly to the classic TS method, and defines the sequence of policies

{π(FG)
t }t≤T as in (9.6) where this time θt is a sample from µ

(FG)
t (·|Dt−1).

However, exact sampling from µ
(FG)
t (·|Dt−1) is usually not tractable, and MCMC algorithms have to be used in

their place. This difficulty is not tackled in [Zhang, 2022b]. Consequently, the main objective and contribution of the
present paper is to extend the analysis by considering the additional complexity from using approximate samples of
the posteriors. More precisely, we consider a gradient-based MCMC schemes to generate these approximate samples.
The non-smoothness of the prior definition raises a challenge to this end. While gradient-based MCMC has been
developed to sample from such non-smooth densities, they do not enjoy the same theoretical guarantees as smooth
densities. For that reason, we propose to consider a smoothed posterior (sFG-TS) with the negative log-likelihood

ℓ(sFG)(θ|x,a,r) = η(g(θ,x,a)− r)2−λ [b−ϕς(b− g⋆(θ,x))] , (9.8)

with ϕς(u) = log(1 + exp(ςu))/ς for u ∈ R and ς > 0 is a hyperparameter which controls the regularity of ℓ(sFG).
Through an application of the Bayes theorem, assuming that the prior distribution p0 is correctly specified, then the
posterior distribution at time t≤ T can be defined as

µ
(sFG)
t (θ|Dt−1)∝ e−

∑t−1
s=1 ℓ(sFG)(θ|xs,as,rs)p0(θ) . (9.9)

For simplicity, we denote µ(sFG)
t−1 (θ|Dt−1) by µ(sFG)

t−1 (θ). With this notation, we present the MCMC-sFG-TS method
in Algorithm 6. In this algorithm, the choice of the sequence of initial distributions {pt,0}t≥T and the sequence
of Markov kernels {Kt}t≤T is left arbitrary. Indeed, we first extend the analysis provided in [Zhang, 2022b] to
this setting and derive general bounds depending on quantities related to the convergence of Markov chains with
Markov kernels {Kt}t≤T and initialized with {pt,0}t≥T . We then illustrate our results by considering two examples
of MCMC algorithms in particular, which we provide below.

(1) Langevin Monte Carlo: For a fixed step t ∈ [T ], given the target µ(sFG)
t and an initial distribution pt,0,

Langevin Monte Carlo (LMC) follows the Markov chain {θLt,k}
Nt

k=0
initialized θLt,0 ∼ pt,0, defined through the

recursion:

θLt,k+1=θLt,k+γt∇ logµ(sFG)
t (θLt,k)+

√
2γtZt,k , (9.10)

where Nt ∈ N∗ is a number of iterations, γt a step size, and {Zt,k}k∈[Nt] are i.i.d. samples from the d-dimensional
standard Gaussian. It amounts to choosing the Markov kernel KL

t with transition density given for θ0,θ1 ∈ Rd by

kLt (θ0,θ1)∝exp
[
−∥θ1−θ0+γt∇ logµ(sFG)

t (θ0)∥2/(4γt)
]
. (9.11)

For better rates [Durmus et al., 2019], in our analysis we consider the final parameter to be the ergodic average after
some burn-in time, i.e. θLt = 2/Nt

∑Nt
k=Nt/2 θt,k for some even Nt.

LMC is the Euler discretization of the overdamped Langevin diffusion [Roberts and Tweedie, 1996b] and is a
popular way to sample approximately from a smooth positive target density. The Langevin diffusion is a Markov
process associated with solutions to the stochastic differential equation (SDE)dθt,s =∇ logµ(sFG)

t (θt,s)ds+
√

2dBs,
where (Bs)s≥0 is a d-dimensional standard Brownian motion. However, while {θt,s}s≥0 admits µ(sFG)

t as its
stationary distribution, this is not the case for the Markov kernel associated with (9.10). Therefore, LMC comes
with a bias which is the same order as the stepsize γt under appropriate conditions [Talay and Tubaro, 1990, Durmus
and Eberle, 2021].

(2) Metropolis Adjusted Langevin Algorithm: To correct the discretization bias of the Langevin SDE, a
Metropolis filter can be applied at each iteration as suggested for example in [Roberts and Tweedie, 1996b]. This
corresponds to the Metropolis Adjusted Langevin Algorithm (MALA). For technical reasons, we study the 1/2-lazy
version of this algorithm, which defines the Markov chain {θMt,k}

Nt

k=0
initialized with θMt,0 ∼ pt,0 following the

recursion:
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• generate a proposal θ̃Mt,k+1 ∼ KL
t (θMt,k, ·);

• with probability 1/2αM
t (θMt,k, θ̃

M
t,k+1): set θMt,k+1 = θ̃Mt,k+1

• otherwise set θMt,k+1 = θMt,k,

where

αM
t (θ0,θ1) = 1∧ µ

(sFG)
t (θ1)kLt (θ1,θ0)
µ

(sFG)
t (θ0)kLt (θ0,θ1)

. (9.12)

For MALA, we take θt = θt,Nt to be the last iterate. We refer to the resulting methods as LMC-sFG-TS (resp.
MALA-sFG-TS) in the sequel.

Related Works Appoximate sampling in TS algorithms is in general based on Laplace approximation [Chapelle
and Li, 2011], which fits the mean and the covariance matrix of a Gaussian distribution based on the target. This
is then used to approximately sample from the posterior. However, high-dimensional Gaussian distribution with
general covariance matrices may be expensive to compute. Further, in non-linear models such as generalized linear
bandits and neural contextual bandits, the sequence of posteriors may be far from Gaussian distributions and Laplace
approximation may fail in capturing their complex properties. Finally, Laplace approximation does not come with
any theoretical guarantees on the quality of the resulting approximation.

The use of LMC or Stochastic Gradient Langevin Dynamics in Thompson Sampling for non-contextual bandits
has been proposed in [Mazumdar et al., 2020b]. This idea has been recently extended to contextual bandits in [Xu
et al., 2022], which introduced LMC-TS. Algorithm 6 extends this method in two ways: (1) by considering the more
complex likelihood (9.4), (2) taking as an input the MCMC algorithms which are used to sample in sFG-TS. Finally,
[Xu et al., 2022] is only applicable for linear bandits, where the TS posteriors are Gaussian distributions. In contrast,
we are able to establish very generic bounds for MCMC-sFG-TS by adapting and extending the FG-TS theory in
[Zhang, 2022b]. We specify these results in Section 3.3 to the particular instance of linear bandits, when the MCMC
method used in MCMC-sFG-TS is LMC or MALA.

Algorithm 6 MCMC-sFG-TS
Initialize:

D0 = ∅
for t= 1, . . .T do

receive xt ∈ X
initialize the Markov chain θt,0|Dt−1 ∼ pt,0 where pt,0 may depend on Dt−1;
for k = 0, . . .Nt− 1 do

θt,k+1|Dt−1 ∼ Kt(θt,k, ·) where Kt is a Markov kernel which targets µ(sFG)
t (·|Dt−1), e.g., LMC or

MALA
end for
choose θt = F ({θt,k}k≤Nt

)
choose at = argmaxa∈A(xt) g(θt,xt,a)
receive the reward rt ∼ R(·|xt,at)

end for

3 Main results

3.1 Analysis of MCMC-sFG-TS
We make these assumptions on the reward distribution.

Assumption 10. (Sub-Gaussian Reward Distribution) There exists c > 0 such that for any x ∈ X, a ∈ A(x), ρ > 0,

log
∫

exp{ρ(r− f(x,a))}R(dr|x,a)≤ cρ2 , (9.13)

where f is defined in (9.1). Furthermore, assume supx∈X ,a∈A(x) |f(x,a)| ≤ bf .
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Note that Assumption 10 is automatically satisfied if the rewards are bounded almost surely, i.e, for any x and a,
R(·|x,a) has a bounded support.

We state our main result regarding the cumulative regret for MCMC-FG-TS. First recall that we have assumed a
finite action set A and therefore we can defineK = maxx∈X Card(A(x)). Second, we denote by q̃(sFG)

t the distribution
of θt given Dt−1, as defined in Algorithm 6, and define for t ∈ [T ], δt = ||q̃(sFG)

t −µ(sFG)
t ||TV. Note that the sequence

(xt,at, rt,θt)T
t=0, defined in Algorithm 6, is a Markov chain, possibly inhomogeneous, and we define by ET

ν0 and
PT

ν0 the canonical expectation and probability respectively associated with this process and with initial distribution
ν0. Define the filtration (Ft)t∈[T ] by Ft = σ{{xs,as, rs}s∈[t]}. With this notation, the cumulative regret associated

with the distribution Q(sFG)
1:T defined by Algorithm 6 can be written as CREG(Q(sFG)

1:T ) = ET
ν0 [
∑

s≤T f⋆(xs)− rs].

Theorem 125. Assume that Assumption 10 holds and let ς > 0. If η is chosen according to (9.27) with ϵ ∈ (0,1),
then there exists C1, C1, C2 and C3, independent of ϵ,η,λ,d,T,K such that

CREG(Q(sFG)
1:T )≤ λ

ηϵKT + C1λT − ZT
λ + ( C2 + C3

λ )
∑T

t=0ET
ν0 [δt] ,

where

ZT = ET
ν0 log

∫
exp

(
−
∑T

s=1∆ℓ
(sFG)(θ̃,xs,as, rs)

)
dp0(θ̃) ,

and
∆ℓ(sFG)(θ,x,a) = η

{
(g(θ,x,a)− r)2−(f(x,a)− r)2

}
−λ{b−ϕς(b−g⋆(θ,x))−f⋆(x)} .

Proof. We provide here the main steps leading to Theorem 125 based on Lemmas which are stated and proved in
Section 6.1 of the supplement.

(A) Regret decomposition. The first step of the proof is to decompose the expected regret at time s into two
terms as follows

ET
ν0 [REGπs

s ] = ET
ν0 [Bxs(θs,a

θs(xs))]−ET
ν0 [FGxs(θs,a

θs(xs))] (9.14)

where

• Bx : (θ,a)→ gb(θ,x,a)− f(x,a),
• gb(θ,x) = max{−b, min(b, g⋆(θ,x))},
• FGx : (θ,a) 7→ gb(θ,x,a)− f∗(x).

On the right hand side, the first term is referred to as the Bellman error in the reinforcement learning
literature [Bellman, 1966], and the second one as the Feel-Good exploration term. The proof of the
decomposition is provided in Lemma 130.

(B) Bellman error. By using Lemma 131 we can bound the Bellman error by

ET
ν0 [Bxs(θs,a

θs(xs))|xs,Fs−1]≤ infγ>0
(

K
4γ + γET

ν0 [ψ(xs,a
θs(xs))|xs,Fs−1]

)
,

where ψ(xs,a) = ET
ν0 [LSb

xs
(θs,a)|xs,Fs−1], and

LSb
x : (θ,a) 7→ (gb(θ,x,a)− f(x,a))2 . (9.15)

This step allows us to decouple the contribution of the random parameter θs and its associated action aθs(xs)
to the Bellman error. In the right hand side, we first take the expectation with respect to the parameter for
a fixed action, and then with respect to the random action aθs(xs). This inequality holds for any γ > 0, in
particular for γ = 2Cη/(3λ), with

Cη = 1.5η(1− 4cη)[1 − 0.75η(1− 4cη)(b+ bf )2] , (9.16)
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where c is the sub-Gaussian coefficient and bf is the supremum of the true reward function, both defined
in Assumption 10. Lemma 136 shows that 2Cη/(3λ) is strictly positive. Hence, the Bellman error bound
becomes

ET
ν0 [Bxs(θs,a

θs(xs))|xs,Fs−1]≤ 3Kλ
8Cη

+ 2Cη

3λ ET
ν0 [ψ(xs,a

θs(xs))|xs,Fs−1] . (9.17)

In the next step of the proof, we focus on bounding the resulting error ET
ν0 [ψ(xs,a

θs
s (xs))|xs,Fs−1]. More

precisely, given Ds−1, x ∈ X, a ∈ A(x), Lemma 132 with τ = 3η(1− 4cη)/2 (which is positive according to
Lemma 136) gives

CηEθ∼q̃(sFG)
s

[LSb
x(θ,a)]≤− logE

θ∼µ
(sFG)
s

[e−3η(1−4cη)LSx(θ,a)/2] +Cη(b+ bf )2δs , (9.18)

where LSx is defined in (9.15), and

LSx : (θ,a) 7→ (g(θ,x,a)− f(x,a))2 . (9.19)

Next, we will focus on the second term in the regret decomposition (9.14), the Feel-Good exploration term.

(C) Feel Good exploration term. Similarly, given Ds−1, for any x ∈ X, Lemma 133 with τ = 3λ gives

−Eθ∼q̃s [FGx(θ,aθ(x))]≤− 1
3λ logE

θ∼µ
(sFG)
s

[e3λFGx(θ,aθ(x))] + 3λ(b+bf )2

2 + (b+ bf )δs . (9.20)

Now, the Bellman error bound (9.17) and the Feel-Good bound (9.20) can be merged.

(D) Combining the bounds. The combination of (9.18) and (9.20) gives

E
θ∼q̃(sFG)

s

[
2Cη

3λ LSb
x(θ,a)−FGx(θ,aθ(x))

]
≤− 2

3λ logE
θ∼q̃(sFG)

s
[e−3η(1−4cη)LSx(θ,a)/2]

− 1
3λ logE

θ∼µ
(sFG)
s

[e3λFGx(θ,aθ(x))]

+
[

2Cη(b+ bf )2

3λ + (b+ bf )
]
δs + 3λ

2 (b+ bf )2 .

Moreover, given Ds−1, we can use Lemma 134 to get for any x ∈ X and a ∈ A(x),

E
θ∼q̃(sFG)

s

[
2Cη

3λ LSb
x(θ,a)−FGx(θ,aθ(x))

]
≤− 1

λ
logE

θ∼µ
(sFG)
s

[Γ (a,x)]

+
[

2Cη(b+ bf )2

3λ + (b+ bf )
]
δs + 3λ

2 (b+ bf )2 , (9.21)

setting Γ (a,x) = Er∼R(·|x,a)[e−∆ℓ(sFG)(θ,x,a,r)]. We now have all tools to bound the cumulative regret and
conclude the proof.

(E) Cumulative Regret Bound. Using the regret decomposition (9.14) and the Bellman error bound (9.17), we
have

ET
ν0 [REGπs

s ]≤ 3Kλ
8Cη

+ 2Cη

3λ ET
ν0

[
E

θ∼q̃(sFG)
s

[LSb
xs

(θ,as)]
]
−ET

ν0

[
E

θ∼q̃(sFG)
s

[FGxs(θ,aθ(xs))]
]
.

Then Eq. (9.21) gives

ET
ν0 [REGπs

s ]≤ 3λK
8Cη

− 1
λ
ET

ν0

[
logE

θ∼µ
(sFG)
s

[Γ (as,xs)]
]

+
[

2Cη(b+ bf )2

3λ + (b+ bf )
]
ET

ν0 [δs] + 3λ
2 (b+ bf )2 .
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Finally, we can use Lemma 135 to get,

Zt−Zt−1 ≤ ET
ν0

[
logE

θ∼µ
(sFG)
s

[Γ (as,xs)]
]
. (9.22)

We conclude the proof by summing over t to get,

CREG(Q1:T ) =
∑
s≤T

ET
ν0 [REGπs

s ]

≤
[

3λK
8Cη

+ 3λ
2 (b+ bf )2

]
T − ZT

λ
+
[

2Cη(b+ bf )2

3λ + (b+ bf )
]∑

s≤T

ET
ν0 [δs]

≤ λKT

ϵη
+ C1λT + ( C2 + C3

λ
)
∑
s≤T

ET
η0 [δs]− ZT

λ
,

where C1 = 3(b+ bf )2/2, C2 = (b+ bf ) and C3 = (b+ bf )2/4, these constants do not depend neither on
η nor in λ. The last inequality uses Lemmas 137-138.

3.2 Regret Bounds for Bandits
We now specify the bounds provided by Theorem 125 assuming the following condition on the prior distribution p0
and the family of models {(x,a) 7→ g(θ,x,a) : θ ∈ Rd}.

Assumption 11. Assume that logp0 is continuously differentiable, L0-smooth and m0-strongly concave for some
L0 ≥m0 ≥ 0. This implies that the following holds for all θ1,θ2 ∈ Rd:

∥∇ logp0(θ2)−∇ logp0(θ1)∥ ≤ L0 ∥θ1− θ2∥

⟨∇ logp0(θ2)−∇ logp0(θ1),θ1− θ2⟩ ≥
m0
2 ∥θ1− θ2∥2 .

In addition, we assume that the family of models {(x,a) 7→ g(θ,x,a) : θ ∈ Rd} is regular enough and close to
the true model, in the following senses.

Assumption 12. (Uniform Smoothness) Suppose that for all θ1,θ2 ∈ Rd,x ∈ X,a ∈ A(x), the following bound
holds for some Lg ∈ R+:

|g(θ1,x,a)− g(θ2,x,a)| ≤ Lg ∥θ1− θ2∥ .

Assumption 13. (Well Specified Model) Suppose that there exist θ∗ ∈ Rd and ξ ∈ R+ such that for all x ∈ X,a ∈
A(x):

|g(θ∗,x,a)− f(x,a)| ≤ ξ .

Corollary 126. Let Assumptions 10-13 hold and let ς > 0. For ω,η,λ specified in (9.28), and T large enough
(specified in (9.31)), and for constants C4, C5, C6 not dependent on ω,ϵ,d,K,T

CREG(Q(sFG)
1:T )≤ C4

ϵ

√
ωdKT log(dT ) +

(
4ξ+ϕς(Lg

T
+ ξ+ bf − b)

)
T

+ C5

√
ωKT

d log(dT )
(
− logp0(θ∗) +Lg + ξT + ξ2T

)
+ C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0
ET

ν0 [δt] + 4Lg.

Here θ∗ is the parameter defined in Assumption 13.

The proof of this result along with explicit bounds are given in Section 6.2.
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3.3 Linear Bandits

A concrete example where Assumptions 11-13 hold is the linear contextual bandits framework:

Example 127. (Linear Gaussian Function Class) Consider the function class with f(x,a) = ⟨φ(x,a),θ∗⟩, with
θ∗ ∈ Rd, x ∈ X,a ∈ A(x), with φ : X×A→ Rd being some feature map. Let the reward be absolutely bounded by
some constant br almost surely, and let sup(x,a)∈X×A(x) ∥φ(x,a)∥ ≤

√
M with 0<M <∞. Finally, let |A(x)| ≤ d

for all x ∈ X.

Remark: The absolute bound on the reward is only needed to guarantee the almost sure complexity bounds on
the gradient descent step.

We now define an appropriate notion of complexity, which is different from the typical definition seen in bandit
literature.

Definition 128. (Data Complexity) The agent has access to both the value g(θ,x,a) and the gradient∇g(θ,x,a) for
any θ ∈ Rd,x ∈ X,a ∈ A(x). Then, if g is evaluated at times and ∇g is evaluated bt times at any timestep t, then
we define Gt = at + bt as the data complexity at time t, and CG =

∑
t≤T Gt be the cumulative data complexity.

Theorem 129. Consider Example 127 with the linear function class g(θ,x,a) = ⟨φ(x,a),θ⟩ and a Gaussian prior
N (0,m−1

0 Id), with m0 > 0. Assume Assumption 10 holds, let ωLG,λ,η be as specified in (9.32), and let T be large
enough (specified in (9.33)). Assume in addition let there exist κ > 0 such that almost surely, for any t ∈ [T ] the
Hessian matrix of − logµ(sFG)

t (θ) (9.9) satisfies for some mt,Lt > 0:

LtId ⪰−∇2 logµ(sFG)
t (θ)⪰ mtId , Lt/mt ≤ κ . (9.23)

(a) Then, starting from an initial point θ̂⋆
0 = θ0, we can find at each round recursively θ̂⋆

t satisfying
∥θ̂⋆

t − θ⋆
t ∥ ≤

√
d/(2Lt) using the gradient descent algorithm to maximize logµ(sFG)

t (θ) and initialized with
θ̂∗

t−1. Here θ∗
t is the maximizer of logµ(sFG)

t (θ). The cumulative data complexity of this procedure is of order
CGDκT

2 log
(
brLt

√
MT/m0

)
, for some absolute constant CGD, and the step size is 2/(Lt + mt).

(b) In addition setting pt,0 =N (θ̂⋆
t ,(Lt)−1Id), for any of the following standard choices of Markov kernel, we

attain the regret bound for some constant C7 not dependent on ωLG, ϵ,d,K,T,M

CREG(Q(sFG)
1:T )≤ C7

√
ωLGT log3(dT )

(
d(ϵ∧ m0)−1 +

√
Mm0 ∥θ∗∥2

)
,

with the number of oracle calls stated below:

• KL (Langevin Monte Carlo): has CGLMC ≤ CL CκdT
4 log

(
4
√
dκ/m0

)
cumulative data complexity, with

step-size γLt = AL/(max(κ,Lt)dT 2), Cκ = max(LT /m2
0,LT ).

• KM (Metropolis Adjusted Langevin Monte Carlo): has CGMALA ≤ CMκdT
2(1∨

√
κd−1) log

(
dT 2) cumula-

tive data complexity, with step-size γMt = AM/(Ltdmax(1,
√
κd−1))

Here CL, CM, AL,AM are absolute constants depending on which MCMC algorithm was chosen.

The proof of this result along with explicit bounds are given in Section 6.3.
Remarks: We note that the Gaussian prior can be replaced with an arbitrary prior satisfying Assumption 11, so

long as a good bound on p0(θ∗) exists.
Now, let’s compare Theorem 129 with [Xu et al., 2022, Theorem 4.2]. [Xu et al., 2022, Theorem 4.2] has a

bound on the cumulative data complexity for LMC-TS of order κT 2, which is used to obtain a cumulative regret
of order d3/2T 1/2. In contrast, for our results under MALA, we pay an extra factor of d in the cumulative data
complexity in order to remove the suboptimal factor of d1/2 in the resulting cumulative regret. We see this increased
complexity as a necessary cost in order to obtain our tighter regret bounds. It may be possible to more finely balance
this trade-off by e.g. annealing the Feel-Good parameter, but we defer this investigation to subsequent work.
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4 Experiments

In this section, we illustrate the benefits of our methodology on several contextual bandit benchmarks associated
with both synthetic and real data. In our comparisons, we first perform grid searches for the hyperparameters, and
then fix the best ones. Additional details about experimental design are provided in Section 7.

4.1 Toy example
We first illustrate our approaches on a synthetic contextual bandit problem. At each round t ∈ [T ], the agent observes
a contextual vector sampled from a 4 dimensional Gaussian distribution, i.e., xt ∼N (04, I4). Then, the agent has to
choose an action at between K = 5 arms, and finally, receives a reward rt = φ(xt,at)⊤θ⋆ + ϵ where ϵ∼N (0,σ2),
θ⋆ ∈ R20 is the true parameter of the model, σ is the noise level of the problem. Here φ allows us to transform
the context vector and the arm index into a vector v such as, φ(x,0) = (x,0, . . . ,0), φ(x,1) = (0,x,0, . . .) and
φ(x,d− 1) = (0, . . . ,0,x). We consider the corresponding model defined as g(θ,x,a) = φ(x,a)⊤θ. Under these
settings, note that posterior distributions associated with TS are Gaussian distributions and are therefore tractable.

In Figure 9.1, we compare our methodology MCMC-sFG-TS using LMC and MALA with Linear TS, along
with LMC-TS. For completeness, we also consider TS where at each iteration, we approximate the TS posterior
(9.4) with MALA. This simply corresponds to MCMC-sFG-TS but choosing λ = 0. For these results, we only
display the best combination of hyperparameters for each algorithm. More details for the experiment settings are
provided in Section 7. Note that for MALA-sFG-TS and MALA-TS, we initialize MALA with the output of a
gradient descent scheme using full-batch gradient. Moreover, we also consider Linear UCB for which results can
be found in Section 7. We observe that adding the Feel-Good framework allow us to converge to a better regret.
Similarly, approximating the posterior using MALA seems to improve the algorithmic performance by converging
faster to the target. Finally, by combining the Feel-Good adjustment with MALA, we obtain MALA-sFG-TS which
provides the best cumulative regret.

Similar conclusions are drawn on different bandit settings, including logistic and quadratic bandits trained with
benchmark algorithms; see Section 7.
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Fig. 9.1 Cumulative regret with respect to the time step t, for the toy example. Whole curve (left) and its
zoomed version (right) are represented. Statistics are reported over 50 runs.

4.2 Real-World dataset
In this subsection, we compare the algorithms on the Yahoo! Front Page Today Module dataset, which is a standard
benchmark for contextual bandits [Li et al., 2010, Mellor and Shapiro, 2013, Liu et al., 2018]. This seeks to
model a user’s interest in a specified news article using the contextual bandit framework. At each round, we
consider a user and a pool of articles. Here, the context is composed by a user-features vector and user-article
interaction information. In addition, the set of arms is the pool of articles. Then, given a current bandit model,
we choose an article and check if it is clicked. If so, a reward of 1 is incurred; otherwise, the reward is 0. With
this definition and our bandit formulation, we seek here to maximize the average expected cumulative reward
T−1EΠ∼Q1:T [

∑T
t=1 f(xt,πs(xt))], which is precisely the click-through rate (CTR) in [Li et al., 2010]. A more

detailed description on the implementation can be found in [Li et al., 2010].
In our experiments, we consider just a subset of 500 thousand recommendations made the 3th of May 2009, with

the statistics reported over 10 trials. For each run the dataset is shuffled.
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In Figure 9.2 we compare the different approaches using their relative CTR, which is the algorithm’s CTR
divided by that of a baseline random policy. It can be seen that LMC-sFG-TS and MALA-sFG-TS deliver the best
recommendations amongst their competitors.
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Fig. 9.2 Relative CTR for the Yahoo recommendation task

5 Conclusion

In this work we proposed and analyzed the MCMC-sFG-TS algorithm for contextual bandits, which is a tractable
implementation of Thompson sampling with an optimistic Feel-Good adjustment term. We showed that this obtains
the optimal regret bound of Õ(d

√
T ) in high dimensions, in contrast to the Õ(d3/2√T ) that was previously known

for MCMC algorithms in the Thompson sampling setting. We also validated the superior performance of this
algorithm in practice, relative to the standard Thompson sampling.

Further extensions to our approach include non-quadratic log-likelihoods, which would extend our results to
classes such as logistic bandits and bandits with generalized linear models. Finally, applying our framework to
some classes of reinforcement learning problems would be an important step towards a general understanding of
Thompson sampling algorithms in that setting.

6 Main Proofs

6.1 Proof of Theorem 125
Lemma 130. (Regret decomposition) The regret at time s can be decomposed into two terms as follows

ET
ν0 [REGπs

s ] = ET
ν0 [gb(θ,xs,a

θ
s(xs))− f⋆(xs,a

θ
s(xs))]−ET

ν0 [gb(θ,xs,a
θ
s(xs))− f⋆(xs)] .

Proof. Using the definition of REGπs
s in (9.2) and the definition of policy πs in (9.6), we have

ET
ν0 [REGπs

s ] = ET
ν0 [f⋆(xs)− f(xs,πs(xs))]

= ET
ν0 [f⋆(xs)− f(xs,a

θ
s(xs))]

= ET
ν0 [gb(θ,xs,a

θ
s(xs))− f(xs,a

θ
s(xs))]−ET

ν0 [gb(θ,xs,a
θ
s(xs))− f⋆(xs)] .

Lemma 131. Let b > 0. Then, we have the following decoupling bound

ET
ν0 [gb(θs,xs,a

θs(xs))− f(xs,a
θs(xs))|xs,Fs−1]≤ inf

γ>0

(
K/(4γ) + γET

ν0 [ψxs(aθs
s (xs))|xs,Fs−1]

)
,

where ψxs(a) = ET
ν0 [LSb

xs
(θs,a)|xs,Fs−1].
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Proof. Note first that

ET
ν0 [gb(θs,xs,a

θs(xs))− f(xs,a
θs(xs))|xs,Fs−1]

≤ ET
ν0 [|gb(θs,xs,a

θs(xs))− f(xs,a
θs(xs))||Fs−1,xs]

=
∑

a∈A(xs)
ET

ν0 [1{aθs(xs) = a}|gb(θs,xs,a)− f(xs,a)||Fs−1,xs] . (9.24)

Consider for any ã ∈ A(xs), q(ã|xs) = ET
ν0 [1{aθs(xs) = ã}|Fs−1,xs]. Then for any γ > 0, we have

Eν0 [1{aθs(xs) = a}|gb(θs,xs,a)− f(xs,a)||Fs−1,xs]

≤ ET
ν0 [1{a

θs(xs) = a}
4γq(a|xs) + γq(a|xs)(gb(θs,xs,a)− f(xs,a))2|Fs−1,xs]

= 1/(4γ) + γq(a|xs)ET
ν0 [(gb(θs,xs,a)− f(xs,a))2|Fs−1,xs]

where the inequality comes from the algebraic inequality z1 ·z2 ≤ z2
1/2+z2

2/2 and the last equality from the definition
of the distribution q. Plugging the previous inequality in (9.24), and using that for any x ∈ X,Card(A(x))≤K,
then we have

ET
ν0 [gb(θs,xs,a

θs(xs))− f(xs,a
θs(xs))|Fs−1,xs]

≤K/(4γ) + γ
∑

a∈A(xs)
q(a|xs)ET

ν0 [(gb(θs,xs,a)− f(xs,as))2|Fs−1,xs]

=K/(4γ) + γET
ν0 [ψ(xs,a

θs
s (xs))|xs,Fs−1] .

Lemma 132. Assume Assumption 10. Given Ds−1, for any x ∈ X, a ∈ A(x) and τ > 0, it holds

CτEθ∼q̃s [LSb
x(θ,a)]≤− logE

θ∼µ
(sFG)
s

[exp{−τLSx(θ,a)}] +Cτ (b+ bf )2δs ,

where
Cτ = τ [1− τ(b+ bf )2/2] .

Proof. Since for any z ≤ 0, we have expz ≤ z2/2 + z+ 1, we obtain for any τ > 0,

E
θ∼µ

(sFG)
s

[exp{−τLSx(θ,a)}]≤ E
θ∼µ

(sFG)
s

[exp{−τLSb
x(θ,a)}]

≤−τE
θ∼µ

(sFG)
s

[LSb
x(θ,a)] + τ2

2 E
θ∼µ

(sFG)
s

[LSb
x(θ,a)2] + 1

≤−τ [1−
τ(b+ bf )2

2 ]E
θ∼µ

(sFG)
s

[LSb
x(θ,a)] + 1

≤−CτEθ∼q̃s [LSb
x(θ,a)] + 1 +Cτ (b+ bf )2δs ,

where the first inequality uses LSx(θ,a)≥ LSb
x(θ,a), third inequality LSb

x ≤ (b+ bf )2 and the last inequality the
definition of the total variation distance. Moreover, using logz ≤ z− 1 for z ≤ 1, we have,

logE
θ∼µ

(sFG)
s

[exp{−τLSx(θ,a)}]≤ E
θ∼µ

(sFG)
s

[exp{−τLSx(θ,a)}]− 1

≤−CτEθ∼q̃s [LSb
x(θ,a)] +Cτ (b+ bf )2δs .

Lemma 133. Assume Assumption 10. Given Ds−1, for any x ∈ X, a ∈ A(x) and τ > 0, the Feel-Good exploration
term is bounded as follows

−Eθ∼q̃s [FGx(θ,aθ(x))]≤−1
τ

logE
θ∼µ

(sFG)
s

[exp
(
τFGx(θ,aθ(x))

)
] + τ

2 (b+ bf )2 + (b+ bf )δs .
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Proof. Using Hoeffding’s lemma since FGx(θ,aθ(x)) ∈ [−(b+ bf ),(b+ bf )], for any τ > 0, we have

logE
θ∼µ

(sFG)
s

[exp{τFGx(θ,aθ(x))}]≤ τE
θ∼µ

(sFG)
s

[FGx(θ,aθ(x))] + τ2

2 (b+ bf )2

≤ τEθ∼q̃s [FGx(θ,aθ(x))] + τ2

2 (b+ bf )2 + τ(b+ bf )δs ,

where the second line uses the definition of the total variation distance.

Lemma 134. Assume Assumption 10. Given Ds−1, for any x ∈ X, and a ∈ A(x),

− 2
3 log

(
Eθ∼µs(sFG)[e−3η(1−4cη)LSx(θ,a)/2]

)
− 1

3 log
(
E

θ∼µ
(sFG)
s

[e3λFGx(θ,aθ(x))]
)

≤− logE
θ∼µ

(sFG)
s , r∼R(·|x,a)[e

−∆ℓ(sFG)(θ,x,a,r)] ,

where ∆ℓ(sFG)(θ,x,a,r) is defined in (125).

Proof. Firstly, we can apply the Hölder’s inequality with p= 3/2 and q = 3:

logE
θ∼µ

(sFG)
s

[e−η(1−4cη)LSx(θ,a)+λFGx(θ,aθ(x))] (9.25)

≤ 2
3 logE

θ∼µ
(sFG)
s

[e−3η(1−4cη)LSx(θ,a)/2] + 1
3 logE

θ∼µ
(sFG)
s

[e3λFGx(θ,aθ(x))] .

Subsequently, by Assumption 10 with ρ = 2η(f(x,a)− g(θ,x,a)), if we denote ϵ = r− f(x,a), we find that:
∃ c > 0 such that∫

exp{−2η(f(x,a)− g(θ,x,a))ϵ}R(dr|x,a)≤ exp{4cη2(f(x,a)− g(θ,x,a))2}

= exp{4cη2LSx(θ,a)} .

Recall the definition of ∆ℓ(sFG) in (125). Then,

−∆ℓ(sFG)(θ,x,a,r) =−η(ϵ+ f(x,a)− g(θ,x,a))2 + ηϵ2 +λ(b−ϕς(b,g⋆(θ,x))− f⋆(x))
=−2ηϵ(f(x,a)− g(θ,x,a))− η(f(x,a)− g(θ,x,a))2 +λ(b−ϕς(b,g⋆(θ,x))− f⋆(x))
≤−2ηϵ(f(x,a)− g(θ,x,a))− η(f(x,as)− g(θ,x,a))2 +λ(gb(θ,x)− f⋆(x))
=−2ηϵ(f(x,a)− g(θ,x,a))− ηLSx(θ,a) +λFGx(θ,aθ(x)) .

Combining the sub-Gaussian equation with (9.25) and the bound of −∆ℓ(sFG), we find

−∆ℓ(sFG) ≤−2
3 logE

θ∼µ
(sFG)
s

[e−3η(1−4cη)LSx(θ,as)/2]− 1
3 logE

θ∼µ
(sFG)
s

[e3λFGx(θ,aθ(x))]

≤− logE
θ∼µ

(sFG)
s , r∼R(·|x,a)[e

−2η(f(x,a)−g(θ,x,a))ϵ−ηLSx(θ,a)+λFGx(θ,aθ(x))]

≤− logE
θ∼µ

(sFG)
s , r∼R(·|x,a)[e

−∆ℓ(sFG)(θ,x,a,r)] .

Lemma 135.
Zt−Zt−1 ≤ ET

ν0

[
logE

θ∼µ
(sFG)
s

[Er∼R(·|xs,as)[e−∆ℓ(sFG)(θ,xs,as,r)]]
]

where

Zt = ET
ν0 log

∫
exp

(
−

t∑
s=1

∆ℓ(sFG)(θ̃,xs,as, rs)
)
dp0(θ̃) , (9.26)
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Proof. The proof is provided in [Zhang, 2022b] but has been rewritten for completeness.
For ease of notation, let defineKt(θ|Dt) = exp{−

∑t
s=1∆ℓ

(sFG)(θ,xs,as, rs)} such thatZt = ET
ν0 [logEθ∼p0 [Kt(θ|Dt)]].

Then we have

Zt−Zt−1 = ET
ν0 log

Eθ∼p0 [Kt(θ|Dt)]
Eθ∼p0 [Kt−1(θ|Dt−1)]

= ET
ν0 logEθ∼p0

[
Kt(θ|Dt)

Eθ̃∼p0
[Kt−1(θ̃|Dt−1)]

]

= ET
ν0 logEθ∼p0

[
Kt−1(θ|Dt−1)e−∆ℓ(sFG)(θ,xt,at,rt)

Eθ̃∼p0
[Kt−1(θ̃|Dt−1)]

]
= ET

ν0 logE
θ∼µ

(sFG)
t

[e−∆ℓ(sFG)(θ,xt,at,rt)]

≤ ET
ν0

[
logE

θ∼µ
(sFG)
s

[Er∼R(·|xs,as)[e−∆ℓ(sFG)(θ,xs,as,r)]]
]
,

where the last line uses Jensen’s inequality.

6.1.1 Technical Lemmas

Lemma 136. Let c > 0 be given in H 10. If η is chosen according to the following strategy,
for any ϵ ∈ (0,1),

0< η ≤


3/(16c) if 1

16c2 ≤ 1−ϵ
3c(b+bf )2

min
(

3
16c ,

1
8c −

√
1

64c2 − 1−ϵ
3c(b+bf )2

)
otherwise.

(9.27)

Then we have these useful properties

(i) η > 0,

(ii) η ≤ 3/(16c)< 1/(4c),

(iii) 1− (3η(1− 4cη)(b+ bf )2)/4≥ ϵ,

(iv) Cη > 0 where Cη is defined in (9.16).

Proof. The results for (i) and (ii) are obvious regarding the definition of η in (9.27). Moreover, P(η) = η2−η/(4c)+
(1− ϵ)/(3c(b+ bf )2s) is a second order polynomial with determinant ∆P = 1/(16c2)− 4(1− ϵ)/(3c(b+ bf )2).
If ∆P ≤ 0 ⇐⇒ (b+ bf )2 ≤ 64(1− ϵ)c/3, then P is always positive on its domain. However, if ∆P > 0
⇐⇒ (b+ bf )2 > 64(1− ϵ)c/3 then P admits two zeros:

x1 = 1
8c −

√
1

64c2 −
1− ϵ

3c(b+ bf )2 ≥ 0

x2 = 1
8c +

√
1

64c2 −
1− ϵ

3c(b+ bf )2 ≥ 0

As x1 is obviously positive, by taking η ≤ x1 we have P(η) positive and then (iii) is true.
Finally, given (i), (ii) and (iii), Cη is obvisouly strictly positive.
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Lemma 137. If η is chosen according to 9.27, then we have,
3λKT
8Cη

≤ λKT

ϵη
.

Proof. By definition of Cη in (9.16) and using the property (iii) of Lemma 136, then we have

Cη = 1.5η(1− 4cη)[1− 3η(1− 4cη)(b+ bf )2/4]
≥ 1.5η(1− 4cη)ϵ

Moreover η ≤ 3/(16c) we have 1− 4cη ≥ 1/4. Hence,

Cη ≥
3ϵ
8 η .

This last inequality concludes the proof.

Lemma 138. If η is chosen according to (9.27), then

2Cη(b+ bf )2

3λ ≤
(b+ bf )2

4λ ,

Proof. By definition of Cη in (9.16),

Cη = 1.5η(1− 4cη)[1− 3η(1− 4cη)(b+ bf )2/4]

≤ 1.5η ≤ 3
8 ,

where the last inequality comes from (9.27).

6.2 Proof of Corollary 126
Proof. Hereafter we specify the choice of

ω =D−1
η ∨Lg ∨ 1, η = 1

ω
, λ=

√
d log(dT )
ωKT

, (9.28)

where Dη is the RHS of equation (9.27). Consider the compact set Bγ = {θ ∈ Rd : ∥θ− θ∗∥ ≤ 1
γ } for some γ ≥ 1.

By Assumption 11, we know that for any θ ∈ Bγ , if θ̃s = (1− s)θ+ sθ∗,

logp0(θ)− logp0(θ∗)≥−
∫ 1

0

〈
∇ logp0(θ̃s),θ∗− θ

〉
ds

≥−
∫ 1

0
⟨∇ logp0(θ∗),θ∗− θ⟩ds−L0

∫ 1

0
∥θ− θ∗∥2 ds

≥−∥∇ logp0(θ∗)∥
γ

− L0
2γ2 .

From Assumptions 12-13, we get for any θ ∈ Bγ ,

sup
x∈X,a∈A(x)

|g(θ,x,a)− f(x,a)| ≤ Lg

γ
+ ξ . (9.29)

Consequently for θ ∈ Bγ , if we let a∗(x) = argmaxa∈A(x) f(x,a), then we have

−∆ℓ(sFG)(θ,xs,as, rs)≥−η(g(θ,xs,as)− f(xs,as))2− 2η|g(θ,xs,as)− f(xs,as)||rs− f(xs,as)|
−λ(f∗(xs)− b+ϕς(b− g∗(θ,xs)))

≥−
(ηLg

γ
+ ηξ+ 2η|rs− f(xs,as)|

)
(ξ+ Lg

γ
)

−λ
(
f∗(xs)− b+ϕς(b− g(θ,xs,a

θ(xs)))
)
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In the last line, we used (9.29). Now, let’s focus on the last term of the previous inequality

f⋆(xs)− b+ϕς

(
b− g(θ,xs,a

θ(xs))
)

= f⋆(xs)− g(θ,xs,a
θ(xs)) +ϕς

(
g(θ,xs,a

θ(xs))− b
)

≤
Lg

γ
+ ξ+ϕς(g(θ,xs,a

θ(xs))− b) ,

In the first line, we used that ϕς(x) = x+ ϕς(−x). The second line comes from 9.29 and that for any a ∈
A(x), f⋆(x)− f⋆(x,a) ≤ 0. Moreover, as ϕς is a growing function, we just have to found an upper bound of
g(θ,xs,a

θ(xs))− b to bound the previous term.

g(θ,xs,a
θ(xs))− b= g(θ,xs,a

θ(xs))− f⋆(xs,a
θ(xs)) + f⋆(xs,a

θ(xs))− b

≤
Lg

γ
+ ξ+ bf − b .

Consequently,

−∆ℓ(sFG)(θ,xs,as, rs)≥−
(ηLg

γ
+ ηξ+λ+ 2η|rs− f(xs,as)|

)
(ξ+ Lg

γ
)−λϕς(Lg

γ
+ ξ+ bf − b) .

Then, taking expectation and using Assumption 10 to control Eν0 [|rs− f(xs,as)|]≤
√

2c (see e.g. [Wainwright,
2019], Theorem 2.6),

E[ inf
θ∈Bγ

−∆ℓ(sFG)(θ,xs,as, rs)]≥−
(
η

(
Lg

γ
+ ξ

)
+λ+ 2

√
2cη
)

(ξ+ Lg

γ
)−λϕς(Lg

γ
+ ξ+ bf − b)

≥−4(1 + ξ+λ)(ξ+ Lg

γ
)−λϕς(Lg

γ
+ ξ+ bf − b).

The last line follows from our choice of η, and γ ≥ 1. Finally, noting that the volume of a d-dimensional ball can
be lower bounded by exp(−10d logd), we can estimate the probability of Bγ under p0 with the following

logp0(Bγ)≥ inf
θ∈Bγ

logp0(θ)− 10d logγd

≥ logp0(θ∗)− L0
2γ2 − 10d log(γd)

Then we can bound as follows:

ZT = E

[
logEθ∼p0

[
exp

(
−

T∑
s=1

∆ℓ(sFG)(θ,xs,as, rs)
)]]

≥ E log
(
p0(Bγ) inf

θ∈Bγ

exp
(
−

T∑
s=1

∆ℓ(sFG)(θ,xs,as, rs)
))

≥ logp0(θ∗)− L0
2γ2 − 10d log(γd)−

(
4(1 + ξ+λ)(ξ+ Lg

γ
) +λϕς(Lg

γ
+ ξ+ bf − b)

)
T,

where in the last step we used our bound on p0(Bγ).
Finally, substituting ZT ,λ,η,γ = T into Theorem 125, and expanding the product:

CREG(Q(sFG)
1:T )≤ λ

ηϵ
KT + C1λT −

ZT

λ
+
(
C2 + C3

λ

) T∑
t=0

ET
ν0 [δt]

≤
√
ωdKT log(dT )

ϵ
+ C1

√
dT log(dT )

ωK
+
(
C2 + C3

√
ωKT

d log(dT )

)
T∑

t=0
ET

ν0 [δt]

+

√
ωKT

d log(dT )

(
− logp0(θ∗) + L0

2T 2 + 10d log(dT ) + 4Lg

)

+ 4ξ

√
ωKT

d log(dT ) (T + ξT +Lg) + 4(ξT +Lg) +ϕς(Lg

T
+ ξ+ bf − b)T . (9.30)
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When T satisfies

T ≥
√
L0
2d ∨Lg ∨ e, (9.31)

then the following inequalities hold:

L0
2T 2 ≤ d, Lg ≤ T, logT ≥ 1.

This is a mild assumption and does not impact the viability of the result; the second term is only needed to absorb
ξLg into ξT , and is not necessary when ξ is small.

Consequently, we can make some simplifications to find

CREG(Q(sFG)
1:T )≤

C4
√
ωdKT log(dT )

ϵ
+ C6

(
1 +

√
ωKT

d log(dT )

)
T∑

t=0
ET

ν0 [δt] + 4Lg

+ C5

√
ωKT

d log(dT )
(
− logp0(θ∗) +Lg + ξT + ξ2T

)
+
(
4ξ+ϕς(Lg

T
+ ξ+ bf − b)

)
T,

where here we define C4 = 1 + 11ϵ+ ϵ C1/(ωK)≤ 14 + C1, C6 = C2 + C3, C5 = 8, such that they can be
loosely upper bounded by constants not depending on ϵ,ω,d,K,T . Note that this restriction on T is dimension-free
and quite mild.

6.3 Proof of Theorem 129
Let Dη again be the RHS of (9.27). Hereafter we specify the choice of

ωLG =D−1
η ∨

√
M ∨ 1, η = 1

ωLG
, λ=

√
log(dT )
ωLGT

, ς =
√
T , b≥ bf . (9.32)

Secondly, the condition on T is now

T ≥ e∨
√

m0
2d , (9.33)

since as ξ is zero, the second condition in (9.31) is not necessary. Note that this assumption is not very restrictive on
T , especially when the dimension is large.

Lemma 139. If the MCMC method can output pt,Nt such that δt ≤ 1
T , then we obtain the bound for C7 =

( C4 + C5)∨ C6 when the parameters satisfy (9.32), (9.33):

CREG(Q(sFG)
1:T )≤ C7

√
ωLGT log3(dT )

(
d(1
ϵ

+ 1
m0

) +
√
M + m0 ∥θ∗∥2

)
. (9.34)

Proof.
The setting of Theorem 129 satisfies all the assumptions of Proposition 126 with ξ = 0, Lg =

√
M , ω = ωLG.

Let us first examine the term ϕς(
√
M/T + bf − b)T for our choice of ς,b. In this case,

ϕς(Lg

T
+ bf − b)T =

log
(

1 + exp
(√

M/
√
T +
√
T (bf − b)

))
√
T

×T

≤
√
T log

(
1 + exp

(√
M

T

))
≤
√
M +

√
T .
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In the second line we use that b ≥ bf , and in the third line we use that log(1 + exp(x)) ≤ 1 + x for x ≥ 0.
Subsequently, we get the following bound immediately, using that K/d≤ 1:

CREG(Q(sFG)
1:T )≤

√
ωLGT log(dT )

(
2 C4

d

ϵ
+ 3 C5

√
M − C5 logp0(θ∗) + C6

T∑
t=0

ET
ν0 [δt]

)

≤
√
ωLGT log(dT )

(
2 C4

d

ϵ
+ 3 C5

√
M + C5m0 ∥θ∗∥2

2 + C5d log2π
2m0

+ C6

T∑
t=0

ET
ν0 [δt]

)
,

where in the second line we substitute the density of the Gaussian prior. We absorb the
√
M ,
√
T tersm from ϕς into

C4, C5. Since 4 ≤ 2
√
wT log(dT )C5, the 4Lg term in Corollary 126 is absorbed into the C5

√
M seen above.

If we substitute δt ≤ 1/T , this last part of the sum can be absorbed as a factor of log(T )≤ log(dT ), and then we
choose C7 = (2 C4 + 3 C5)∨ C6 to complete the proof.

Remark: We can assume instead K ≤ CKd for some absolute constant CK , with this constant subsequently
appearing at multiple places in the proof. For ease of presentation, we do not do this.

Consequently, this allows us to use gradient descent to estimate the modes of the successive posteriors with
negligible cost (with the previous mode for bootstrapping). We state a theorem for gradient descent which makes
this rate rigorous:

Lemma 140 (Adapted from [Nesterov et al., 2018], Theorem 2.1.15). Given a µ-strongly convex, λ-smooth function
g with condition number κ and an initial point θ0, gradient descent with step-size 2/(µ+ λ) can find the mode
θ∗ = argminθ g(θ) with rate

N ≥ 2κ log
(
∥θ0− θ∥

ϵ

)
=⇒ ∥θN − θ∗∥ ≤ ϵ.

We will not discuss this result extensively as it is only necessary to furnish a modal estimate for MCMC methods.
The use of gradient descent is standard and has been well-studied, e.g. in the aforementioned [Nesterov et al., 2018].

We show a polynomial in time bound on the norms of the iterates, which is crude but sufficient for our purposes.

Lemma 141. Let θ∗
t be the mode of the posterior µ(sFG)

t . Then the following holds, where br is the a.s. bound on the
reward:

∥θ∗
t ∥ ≤

2t
√
Mt

m0
( br

ωLG
+λ) (9.35)

In particular, we immediately get the crude bound∥∥θ∗
t − θ∗

t−1
∥∥≤ 4t

√
Mt

m0
( br

ωLG
+λ). (9.36)

Proof. First consider the minimizer of the posterior for Thompson sampling without Feel-good adjustment (µ(TS)
t ),

and denote it by ζ∗
t . Then, since ζ∗

t is just the solution of a regularized least squares problem, we know the following
bound on ζ∗

t :

ζ∗
t = (Φ⊤

t Φt + m0
η
Id)

−1
Φ⊤

t rt, Φt =


φ(x1,a1)
φ(x2,a2)

. . .
φ(xt,at)

 , rt =


r1
r2
. . .
rt

 .
Here Φt is the data matrix which hasφ(xi,ai) in its i-th row. In particular, since the matrix Φ⊤

t Φt+ m0
η Id ⪰ ωLGm0Id,

∥Φt∥2 ≤ t
√
M and ∥rt∥2 ≤ br

√
t, we obtain

∥ζ∗
t ∥ ≤

1
ωLGm0

∥Φt∥2 ∥rt∥2 ≤
brt
√
Mt

ωLGm0
. (9.37)
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Secondly, writing the difference in negative log-likelihoods as:

− logµ(TS)
t (θ) =− logµ(sFG)

t (θ) +λ

t∑
s=1

[
b−ϕς(b−

〈
θ,φ(xs,a

θ(xs))
〉

)
]

︸                                             ︷︷                                             ︸
Jt(θ)

.

We now seek to estimate ∥θ∗
t − ζ∗

t ∥, using that ζ∗
t ,θ

∗
t minimize their respective posteriors:

0 =
∥∥∥∇ logµ(sFG)

t (θ∗
t )−∇ logµ(TS)

t (ζ∗
t )
∥∥∥2

=
∥∥∥∇ logµ(sFG)

t (θ∗
t )−∇ logµ(sFG)

t (ζ∗
t ) +∇Jt(ζ∗

t )
∥∥∥2

=
∥∥∥∇ logµ(sFG)

t (θ∗
t )−∇ logµ(sFG)

t (ζ∗
t )
∥∥∥2

+ ∥∇Jt(ζ∗
t )∥2 + 2

〈
∇ logµ(sFG)

t (θ∗
t ) +∇ logµ(sFG)

t (ζ∗
t ),∇Jt(ζ∗

t )
〉

≥
∥∥∥∇ logµ(sFG)

t (θ∗
t )−∇ logµ(sFG)

t (ζ∗
t )
∥∥∥2

+ ∥∇Jt(ζ∗
t )∥2

− 2
∣∣∣〈∇ logµ(sFG)

t (θ∗
t )−∇ logµ(sFG)

t (ζ∗
t ),∇Jt(ζ∗

t )
〉∣∣∣.

Let us proceed to use Young’s inequality |⟨a,b⟩| ≤ 1/4∥a∥2 + ∥b∥2, to find∥∥∥∇ logµ(sFG)
t (θ∗

t )−∇ logµ(sFG)
t (ζ∗

t )
∥∥∥2

+ ∥∇Jt(ζ∗
t )∥2

≤ 2
∣∣∣〈∇ logµ(sFG)

t (θ∗
t )−∇ logµ(sFG)

t (ζ∗
t ),∇Jt(ζ∗

t )
〉∣∣∣

≤ 1
2

∥∥∥∇ logµ(sFG)
t (θ∗

t )−∇ logµ(sFG)
t (ζ∗

t )
∥∥∥2

+ 2∥∇Jt(ζ∗
t )∥2 .

After some rearranging, we get∥∥∥∇ logµ(sFG)
t (θ∗

t )−∇ logµ(sFG)
t (ζ∗

t )
∥∥∥2
≤ 2∥∇Jt(ζ∗

t )∥2 .

We use triangle inequality and the boundedness of φ to get for all θ ∈ Rd

∥∇Jt(θ)∥=

∥∥∥∥∥λ
t∑

s=1

exp
(
ς(b−

〈
θ,φ(xs,a

θ(xs))
〉
)
)

exp
(
ς(b−

〈
θ,φ(xs,aθ(xs))

〉
)
)

+ 1
φ(xs,a

θ(xs))

∥∥∥∥∥
≤ λt
√
M.

From the strong convexity of − logµ(sFG)
t , we get

∥∥∥∇ logµ(sFG)
t (θ∗

t )−∇ logµ(sFG)
t (ζ∗

t )
∥∥∥2
≥ m2

t ∥θ∗
t − ζ∗

t ∥
2 ≥

m2
0 ∥θ∗

t − ζ∗
t ∥

2. Finally, this implies

∥θ∗
t − ζ∗

t ∥ ≤
√

2Mλt

m0
.

Substituting (9.37) completes the proof.

Remarks: Much better bounds are possible through more careful analysis, but since it is only necessary to
provide very rough bounds (as gradient descent is a fast algorithm), this will suffice for our purposes.

First we formally state the warm-start condition:

Definition 142. (Warm-Start Condition) Let µ,ν be two distributions on Rd. We say that a distribution µ is a
cW (µ,ν) warm-start for another distribution ν if

sup
A∈B(Rd)

µ(A)
ν(A) ≤ cW (µ,ν) , (9.38)

where B(Rd) is the Borel σ-field of Rd.
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Finally, we state the consequences of gradient descent for finding appropriate warm-starts for our MCMC
methods.

Corollary 143. Using gradient descent methods, at time t, we can find an approximate mode θ̂∗
t , so that when we

construct the prior pt,0 =N (θ̂∗
t ,(2L(sFG)

t )
−1

Id) (with Id the d-dimensional identity matrix), then

logcW (pt,0,µ
(sFG)
t )≤ d log2κ, KL(pt,0 ∥µ

(sFG)
t )≤ d log2κ.

is satisfied with only 2κ log2(8bL(sFG)
t

√
MT/m0) iterations of gradient descent.

Proof. For each time t, we can first estimate θ̂∗
t using gradient descent from θ̂∗

t−1. We choose the desired accuracy

to be ϵ=
√
d/(2L(sFG)

t ) at each time t. Using Lemmas 140 and (9.36), this can be done with number of iterations

4κ log
(

8bL(sFG)
t

√
MT/m0

)
.

Then, Section 3.2.1 of [Dwivedi et al., 2018] shows thatpt,0 chosen here attains a warm-start with cW (pt,0,µ
(sFG)
t )≤

exp(d log(2κ)). Finally, for the KL bound, we need only note that

KL(p ∥ q) =
∫

log p
q
dp≤ logcW (p ∥ q).

Remark: Summing the number of iterations over t ∈ [T ], and noting that each iteration of gradient descent is
equal to a full pass through the data, this yields 4κT 2 log

(
8bL(sFG)

t

√
MT/m0

)
data complexity. This is dominated

by the data complexity due to sampling in all cases.

6.3.1 Langevin Monte Carlo

For the result under LMC, we can give the following state-of-the-art rate, following the result of [Durmus et al.,
2019].

Lemma 144 (Adapted from [Durmus et al., 2019], Corollary 11). For targets with condition number κ = L/m,
ambient dimension d and error tolerance ϵ, if we take the ergodic distribution of the N/2 to N LMC iterates, for
some N even, 2/N

∑N
k=N/2 θk with the law of θk denoted pk and the stationary distribution µ, we get

NL = CL C̃κd

δ2 log 2W2(p0 ∥µ)
δ2 =⇒ || 2

N

N∑
k=N/2

pk −µ||TV ≤ δ, (9.39)

for some absolute constant CL, with C̃κ = max(L/m2,L) andW2 is the 2-Wasserstein distance between measures.
Here the step size is chosen as

γL = AL
δ2

t

(κ∨ L)d . (9.40)

where AL > 0 is an absolute constant.

Secondly, we state a lemma:

Lemma 145 (Talagrand’s Inequality, [Bakry et al., 2014] Corollary 9.3.2). If p is strongly convex with constant α,
thenW2

2 (q ∥ p)≤ 2/αKL(q ∥ p).

Finally, we are ready to show the complexity for LMC.
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Proof of Proposition 129, LMC : To show the MCMC complexity, it remains only to combine Lemma 145 with
Corollary 143. This shows that the Wasserstein term can be bounded

log
(

2W2(pt,0 ∥µ
(sFG)
t )

)
≤ log

(
2
mt

√
d log2κ

)
.

Consequently, we apply with the choice δt ≤ 1
T , which yields NL

t ≤ CL CκdT
2 log

(
4
√
dκ/m0

)
, and γLt =

AL/((κ∨ L)dT 2). This implies that at time t, the data complexity is Gt ≤ CL CκdT
3 log

(
4
√
dκ/m0

)
, and that

cumulative data complexity is

T∑
t=1

Gt ≤ CL CκdT
4 log

(
4
√
dκ/m0

)

6.3.2 Metropolis Algorithm

Let us state the conditions required for MALA to obtain a fast rate, seen e.g. in [Chen et al., 2020b].

Proposition 146. (One-Step Convergence of Bandit MALA [Chen et al., 2020b], Theorem 5) Assume that the initial
distribution p0 satisfies Definition 142 with logcW (p0,µ)≤ d log(2κ), where µ is the stationary distribution of the
chain. Assume further that the potential has condition number κ. Then the MALA algorithm converges to the true
posterior with the following rate:

N ≥ CMκd log
(
d

δ2

)(
1∨
√
κ

d

)
=⇒ ||pN −µ||TV ≤ δ,

when we take the step size to be

γM = AM

Ldmax
(

1,
√
κ/d

) ,
with AM again an absolute constant.

Immediately, we can see that the critically dependency on the error tolerance ϵ are significantly better when
contrasted with the unadjusted Langevin algorithm.

Proof of Proposition 129, MALA: The warm-start condition for all t≤ T is immediately implied by Corollary 143.
Consequently, recalling that we pick δt ≤ 1

T at each iteration t, we only need to perform Nt = CMκd log
(
dT 2)(1∨

κ/d) MALA iterations at each time t. Since each MALA iteration contains t gradients, this has data complexity
Gt ≤ CMκdT log

(
dT 2)(1∨κ/d). Finally,

T∑
t=1

Gt ≤ CMκdT
2 log

(
dT 2)(1∨κ/d)

7 Additional numerical experiments

7.1 Toy Example
In this section, we give additional details about the Toy example settings. As presented in the Section 4.1, the reward
distribution considered in this toy example is Gaussian and all parameters used to describe the problem are provided
in Table 9.1.

For each algorithm, we studied a pool of hyperparameters, and Figure 9.1 represents the best combination of
hyperparameter for each approach. Table 9.2 summarizes the pool of hyperparameters studied during the experiment.
Notice that the step size, parameter λ, and the standard deviation of the prior depend on the parameter η. This choice
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Parameter dimension (d) 20
Context dimension (dx) 4

Number of arms (K) 5
Noise level (σ) 1

Time horizon (T) 1000

Tab. 9.1 Environment hyperparameters

η [1, 5, 10, 50, 100, 500, 1000]
Step Size [1/(tη),0.5/(ηt),0.1/(ηt),0.05/(ηt),0.01/(ηt)]

λ [0.5η,0.1η,0.05η]
Gaussian Prior Std 0.01η

Number of gradient updates [25, 50, 100]
b 1000

Gradient descent steps for MALA / FG-MALA 20

Tab. 9.2 Algorithm hyperparameters

is subjective but seems to be quite logical. The step size is also depending on the time step t. For MALA-TS and
FG-MALA-TS, we initialize MALA with the output of a full-batch gradient descent during 20 steps.

The baseline algorithm LinUCB has been studied for different values of α. However, for clarity, figure 9.1 shows
only the performance of LinTS, LMC-TS, MALA-TS, FG-LMC-TS and FG-MALA-TS. The study of LinUCb is
provided in figure 9.3. Notice that the best α among the pool studied is 0.1 and with this setting LinUCB outperforms
all algorithms except FG-MALA-TS.
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Fig. 9.3 Linear UCB study

7.2 Real World Dataset

Table 9.3 summarizes the main parameters used for the Yahoo! Front Page Today Module Dataset. A more detailed
description of the problem can be found in [Li et al., 2010]. Our implementation of this task is based on the git
repository: https://github.com/antonismand/Personalized-News-Recommendation.

Parameter dimension (d) 12
Context dimension (dx) 12

Number of arms (K) 22
Time horizon (T) 25000

Tab. 9.3 Environment hyperparameters

Similarly, Table 9.4 describes the pool of hyperparameters studied during this experiment. Therefore, Figure 9.2
shows only the best comparison among this pool.

https://github.com/antonismand/Personalized-News-Recommendation
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η [1, 3, 5, 10, 20, 30, 40, 50]
Step size 0.1/(tη)

λ [0.1η,0.3η,0.5η]
Gaussian Prior std 0.01η

Number of gradient updates 100
b 1000

Gradient Descent steps for MALA/FG-MALA 20

Tab. 9.4 Algorithm hyperparameters

7.3 Logistic bandit
In this section we investigate the behavior of Feel-Good Thompson Sampling on a more complex setting: the
logistic bandit. We follow the setting of [Kveton et al., 2020b] and [Xu et al., 2022]. We consider a contextual
vector x ∈ R20 sampled from N (020, I20) and scaled to unit norm. A fixed set of 50 arms. And a Bernoulli reward
distribution such that r ∼ B(ϕ(θ⋆T

x)) where θ⋆ is the true parameter, sampled from N (020, I20) and scaled to unit
norm. The function ϕ(u) = 1/(1 + e−u) is the logistic function.

Figure 9.4 shows the cumulative regret, ie, EΠ∼Q1:T [
∑T

t=1 1− f(xt,πs(xt))] for LMC-TS and FG-LMC-
TS. For the later, we consider four different values of λ. We observe that for small λ (≤ 0.01) FG-LMC-TS
outperforms LMC-TS. However, when λ is too high, FG-LMC-TS becomes unstable and linear. It means that in
this setting, the parameter λ has to be carefully determined. The implementation is based on the repository git:
https://github.com/devzhk/LMCTS. The hyperparameters used for this experiment are provided in Table 9.5
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Fig. 9.4 Cumulative regret for logistic bandit over 10 runs

Time horizon (T) 10000
Number of LMC steps 500

Step size 0.001
Inverse temperature (β−1) 0.001

Tab. 9.5 Hyperparameters for logistic bandit

https://github.com/devzhk/LMCTS
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Conclusion, limitations and perspectives

The frequentist approach to machine learning is often seen as simple and effective, but it is limited and cannot
incorporate any prior knowledge or properly quantify uncertainty in predictions. In contrast, the Bayesian approach,
known as Bayesian Machine Learning, naturally addresses these issues. However, it comes with an algorithmic
challenge: how to sample from the posterior distribution. Variational Inference (VI) is a knwon method used to solve
this issue. The main idea behind VI is to transform the sampling problem into an optimization problem. It results in
a computationally efficient, simple, and highly parallelizable algorithm. By choosing an appropriate variational
family, VI offers high flexibility, allowing us to adapt to the target distribution. The choice of variational family is
crucial, as it directly impacts the approximation’s quality, but it requires a profound understanding and expertise of
the specific problem.

In this thesis, we have explored the potential of VI for Bayesian Neural Networks (BNNs). These models
integrate Bayesian inference with deep learning, offering a promising path for combining flexibility with uncertainty
quantification, a vital aspect in many real-world applications. In this setting, the large model size and non-convexity
of the method make the MCMC approach impractically slow and unscalable. In contrast, Variational Inference, which
comes with all the efficient optimization tools, appears far more suitable. For instance, in this scenario, we operate
in the mean-field regime (large model size), meaning the model weights can be assumed to be independent. As a
result, we can represent the variational distribution with a diagonal covariance matrix, enabling the use of a simpler
and faster optimization algorithm. For these reasons, I strongly believe that Variational Inference is particularly
promising for BNNs. However, in the current state of research, this approach lacks sufficient theoretical guar-
antees, both in terms of optimization error and approximation error, making it a promising area for future investigation.

Furthermore, we have explored the use of Variational Inference in a specific sequential decision-making problem
known as contextual bandits. Our work demonstrates that VI can efficiently estimate the posterior distribution
of the reward function, enabling informed decision-making at each step of the process. In this context, I believe
the Gaussian variational approach is particularly well-suited. For instance, in the contextual bandit setting, the
agent receives a new context at each step, leading to a large-data regime where the Bernstein-von Mises theorem
suggests that the posterior distribution converges to a Gaussian. However, this domain also faces a lack of theoretical
guarantees. An intriguing area for future research would be to investigate the behavior of VI in contextual bandits,
particularly in more complex scenarios, such as non-linear reward distributions.

In conclusion, I believe that Variational Inference is a powerful tool with the potential to drive significant
advancements in Bayesian Machine Learning. However, there are still several challenges that need to be addressed.
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First of all, despite its empirical success, the theoretical properties of VI have only received attention recently, and
mostly when the parametric family is the one of Gaussians. To unlock the full potential of VI, it is crucial to extend
these theoretical guarantees to more complex and flexible variational families. This will enable us to better harness
the flexibility and robustness that VI offers, paving the way for broader and more effective applications.
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Titre : Inférence Variationnelle : théorie et applications en grande dimension.
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Résumé : Cette thèse développe des méthodes
d’Inférence Variationnelle pour l’apprentissage
bayésien en grande dimension. L’approche
bayésienne en machine learning permet de gérer
l’incertitude épistémique des modèles et ainsi de
mieux quantifier l’incertitude de ces modèles, ce qui
est nécessaire dans de nombreuses applications de
machine learning. Cependant, l’Inférence Bayésienne
n’est souvent pas réalisable car la distribution à pos-
teriori des paramètres du modèle n’est pas calculable
en général. L’Inférence Variationnelle (VI) est une
approche qui permet de contourner ce problème en
approximant la distribution à posteriori par une distri-
bution plus simple appelée distribution Variationnelle.
Dans la première partie de cette thèse, nous avons
travaillé sur les garanties théoriques de l’Inférence
Variationnelle. Dans un premier temps, nous avons
étudié cette approche lorsque la distribution Varia-
tionnelle est une Gaussienne et dans le régime sur-
paramétré, c’est-à-dire lorsque les modèles sont en
très grande dimension. Puis, nous nous sommes
intéressés aux distributions Variationnelles plus ex-
pressives que sont les mélanges de Gaussiennes et
nous avons étudié à la fois l’erreur d’optimisation et

l’erreur d’approximation de cette méthode.
Dans la deuxième partie de la thèse, nous avons
étudié les garanties théoriques des problèmes
de bandit contextuels en utilisant une approche
Bayésienne appelée Thompson Sampling. Dans
un premier temps, nous avons exploré l’utilisation
d’Inférence Variationnelle pour l’algorithme Thomp-
son Sampling. Nous avons notament démontré que
dans le cadre linéaire, cette approche permet d’ob-
tenir les mêmes garanties théoriques que si la distri-
bution à posteriori était connue. Dans un deuxième
temps, nous avons étudié une variante de Thomp-
son Sampling appelée Feel-Good Thompson Sam-
pling (FG-TS). Cette méthode permet d’obtenir de
meilleures garanties théoriques que l’algorithme clas-
sique. Nous avons alors étudié l’utilisation d’une
méthode de Monte Carlo Markov Chain pour approxi-
mer la distribution à posteriori. Plus spécifiquement,
nous avons ajouté à FG-TS un algorithme de Lange-
vin Monte Carlo et de Metropolized Langevin Monte
Carlo. De plus, nous avons obtenu les mêmes garan-
ties théoriques que pour FG-TS lorsque la distribution
à posteriori est connue.

Title : Variational Inference : theory and large scale applications.

Keywords : Variational Inference, Bayesian Machine Learning, Contextual Bandit

Abstract : This thesis explores Variational Inference
methods for high-dimensional Bayesian learning. In
Machine Learning, the Bayesian approach allows one
to deal with epistemic uncertainty and provides a bet-
ter uncertainty quantification, which is necessary in
many machine learning applications. However, Baye-
sian Inference is often not feasible because the pos-
terior distribution of the model parameters is generally
untractable. Variational Inference (VI) allows to over-
come this problem by approximating the posterior dis-
tribution with a simpler distribution called the Variatio-
nal distribution.
In the first part of this thesis, we worked on the theo-
retical guarantees of Variational Inference. First, we
studied VI when the Variational distribution is a Gaus-
sian and in the overparameterized regime, i.e., when
the models are high dimensionals. Finally, we explore
the Gaussian mixtures Variational distributions, as it
is a more expressive distribution. We studied both the
optimization error and the approximation error of this

method.
In the second part of the thesis, we studied the theore-
tical guarantees for contextual bandit problems using
a Bayesian approach called Thompson Sampling.
First, we explored the use of Variational Inference for
Thompson Sampling algorithm. We notably showed
that in the linear framework, this approach allows us
to obtain the same theoretical guarantees as if we
had access to the true posterior distribution. Finally,
we consider a variant of Thompson Sampling called
Feel-Good Thompson Sampling (FG-TS). This me-
thod allows to provide better theoretical guarantees
than the classical algorithm. We then studied the use
of a Monte Carlo Markov Chain method to approxi-
mate the posterior distribution. Specifically, we incor-
porated into FG-TS a Langevin Monte Carlo algorithm
and a Metropolized Langevin Monte Carlo algorithm.
Moreover, we obtained the same theoretical guaran-
tees as for FG-TS when the posterior distribution is
known.
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