Machine learning methods for cross-section reconstruction in full-core deterministic neutronics codes
Méthodes de machine learning pour la reconstruction des sections efficaces dans les codes de neutronique déterministe à l'échelle coeur
Abstract
Today, most deterministic neutronics simulators for nuclear reactors follow a two-step multi-scale scheme. In a so-called “lattice” calculation, the physics is finely resolved at the level of the elementary reactor pattern (fuel assemblies); these tiles are then brought into contact in a so-called “core” calculation, where the overall configuration is calculated more coarsely. Communication between these two codes is realized by the deferred transfer of physical data, the most important of which are called “homogenized cross sections” (hereafter referred to as HXS) and can be represented by multivariate functions. Their deferred use and dependence on variable physical conditions call for a tabulation-interpolation scheme: HXS are precalculated in a wide range of situations, stored, then approximated in the core code from the stored values to correspond to a specific reactor state. In a context of increasing simulation finesse, the mathematical tools currently used for this approximation stage are now showing their limitations. The aim of this thesis is to find replacements for them, capable of making HXS interpolation more accurate, more economical in terms of data and storage space, and just as fast. The whole arsenal of machine learning, functional approximation, etc., can be put at use to tackle this problem.In order to find a suitable approximation model, we began by analyzing the datasets generated for this thesis: correlations between HXS's, shapes of their dependencies, linear dimension, etc. This last point proved particularly fruitful: HXS sets turn out to be of very low effective dimension, which greatly simplifies their approximation. In particular, we leveraged this fact to develop an innovative methodology based on the Empirical Interpolation Method (EIM), capable of replacing the majority of lattice code calls by extrapolations from a small volume of data, and reducing HXS storage by one or two orders of magnitude - all with a negligible loss of accuracy.To retain the advantages of such a methodology while addressing the full scope of the thesis problem, we then turned to a powerful machine learning model matching the same low-dimensional structure: multi-output Gaussian processes (MOGPs). Proceeding step by step from the simplest Gaussian models (single-output GPs) to most complex ones, we showed that these tools are fully adapted to the problem under consideration, and offer major gains over current HXS interpolation routines. Numerous modeling choices were discussed and compared; models were adapted to very large data, requiring some optimization of their implementation; and the new functionalities which they offer were tested, notably uncertainty prediction and active learning.Finally, theoretical work was carried out on the studied family of models - the Linear Model of Co-regionalisation (LMC) - in order to shed light on certain grey areas in their still young theory. This led to the definition of a new model, the PLMC, which was implemented, optimized and tested on numerous real and synthetic data sets. Simpler than its competitors, this model has also proved to be just as accurate and fast if not more so, and holds a number of exclusive functionalities that were put to good use during the thesis.This work opens up many new prospects for neutronics simulation. Equipped with powerful and flexible learning models, it is possible to envisage significant evolutions for deterministic codes: systematic propagation of uncertainties, correction of various approximations, taking into account of more variables...
Les simulateurs déterministes de neutronique pour les réacteurs nucléaires suivent aujourd'hui majoritairement un schéma multi-échelles à deux étapes. Au cours d'un calcul dit « réseau », la physique est finement résolue au niveau des motifs élémentaires du réacteur (assemblages de combustible) ; puis, ces motifs sont mis en contact dans un calcul dit « cœur », où la configuration globale est calculée de manière plus grossière. La communication entre ces deux codes se fait de manière différée par le transfert de données physiques, dont les plus importantes se nomment « sections efficaces homogénéisées » (notées ci-après HXS) et peuvent être représentées par des fonctions multivariées. Leur utilisation différée et leur dépendance à des conditions physiques variables imposent un schéma de type tabulation-interpolation : les HXS sont précalculées dans une large gamme de situations, stockées, puis approximées dans le code cœur à partir de ces données afin de correspondre à un état bien précis du réacteur. Dans un contexte d'augmentation de la finesse des simulations, les outils mathématiques actuellement utilisés pour cette étape d'approximation montrent aujourd'hui leurs limites ; la problématique de cette thèse est ainsi de leur trouver des remplaçants, capables de rendre l'interpolation des HXS plus précise, plus économe en données et en espace de stockage, et tout aussi rapide. Tout l'arsenal du machine learning, de l'approximation fonctionnelle, etc, peut être mis à contribution pour traiter ce problème.Afin de trouver un modèle d'approximation adapté au problème, l'on a commencé par une analyse des jeux de données générés pour cette thèse : corrélations entre les HXS, allure de leurs dépendances, dimension linéaire, etc. Ce dernier point s'est révélé particulièrement fructueux : les jeux de HXS s'avèrent être d'une très faible dimension effective, ce qui permet de simplifier grandement leur approximation. En particulier, l'on a développé une méthodologie innovante basée sur l'Empirical Interpolation Method (EIM), capable de remplacer la majorité des appels au code réseau par des extrapolations d'un petit volume de données, et de réduire le stockage des HXS d'un ou deux ordres de grandeur - le tout occasionnant une perte de précision négligeable. Pour conserver les avantages d'une telle méthodologie tout en répondant à la totalité de la problématique de thèse, l'on s'est ensuite tourné vers un puissant modèle de machine learning épousant la même structure de faible dimension : les processus gaussiens multi-sorties (MOGP). Procédant par étapes depuis les modèles gaussiens les plus simples (GP mono-sorties) jusqu'à de plus complexes, l'on a montré que ces outils sont pleinement adaptés au problème considéré, et permettent des gains majeurs par rapport à l'existant. De nombreux choix de modélisation ont été discutés et comparés ; les modèles ont été adaptés à des données de très grande taille, requérant une optimisation de leur implémentation ; et les fonctionnalités nouvelles qu'ils offrent ont été expérimentées, notamment la prédiction d'incertitudes et l'apprentissage actif.Enfin, un travail théorique a été accompli sur la famille de modèles étudiées - le Linear Model of Co-regionalisation (LMC) - afin d'éclairer certaines zones d'ombre de leur théorie encore jeune. Cette réflexion a mené à la définition d'un nouveau modèle, le PLMC, qui a été implémenté, optimisé et testé sur de nombreux jeux de données réelles et synthétiques. Plus simple que ses concurrents, ce modèle s'est aussi révélé autant voire plus précis et rapide, et doté de plusieurs fonctionnalités exclusives, mises à profit durant la thèse.Ce travail ouvre de multiples perspectives pour la simulation neutronique. Doté de modèles d'apprentissage puissants et flexibles, l'on peut envisager des évolutions importantes des codes : propagation systématique des incertitudes, correction de diverses approximations, prise en compte de davantage de variables…
Origin | Version validated by the jury (STAR) |
---|