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Titre: Adaptation de la reconnaissance d’entités nommées au domaine de la santé des plantesMots clés: Reconnaissance des Entités Nommées, Santé des Plantes, Apprentissageautomatique, Adaptation au Domaine, Modèles de Langue, Zero-Shot Learning, TraitementAutomatique des Langues
Résumé:La complexité croissante des écosystèmesagricoles et le besoin urgent de surveillanceefficace de la santé des plantes rendentnécessaires des solutions technologiquesavancées pour traiter les données textuelles.Située dans le cadre du projet BEYOND, cettethèse répond à ces besoins en améliorantles systèmes de reconnaissance d’entitésnommées (REN) adaptés au domaine dela santé des plantes. Reconnaissant leslimites des approches traditionnelles, cetterecherche intègre des stratégies d’adaptationau domaine.La principale contribution de cette thèseréside dans le développement et l’affinementde méthodes destinées à améliorerl’adaptabilité des systèmes REN dans lareconnaissance d’informations liées à la santédes plantes, telles que les maladies végétales,les organismes nuisibles, les plantes et leslieux. En exploitant des techniques avancéesd’apprentissage automatique, la thèsemontrecomment les systèmes REN peuvent êtreappliqués à la surveillance de la santé desplantes sans nécessiter d’adaptation explicite.Pour relever ces défis, la thèse a trois objectifs.Le premier objectif vise à adapter un modèlede langue au domaine de la santé des plantes,en se concentrant sur son futur application àla tâche de REN. Les questions de recherchepour cet objectif explorent les méthodespar lesquelles un modèle de langage peutêtre ajusté pour prendre en considérationla terminologie spécialisée et les nuancescontextuelles de la santé des plantes.Le deuxième objectif vise à développerune méthode permettant à un système deREN existant de reconnaître de nouvellesentités nommées sans qu’il soit nécessairede procéder à un ajustement explicite. Lesquestions posées ici cherchent à découvrircomment des systèmes existants peuventreconnaître et catégoriser de manièreautonome de nouvelles entités sur la base demodèles et de caractéristiques linguistiquestrouvés dans des données textuelles nonstructurées, réduisant ainsi la dépendance devastes ensembles de données annotées.

Le troisième objectif se concentre surla conception d’un système d’adaptationcomplet spécifiquement adapté au domainede la santé des plantes, et s’appuie sur lesrésultats des deux premiers objectifs. Laquestion de recherche pour cet objectif estde savoir si la recombinaison de différentsmodules du même système, chacun ajustéséparément pour des tâches similaires,permet d’obtenir des résultats comparables àceux d’un modèle réglé de manière classique.Ce processus implique de combiner lemodèle de langue avec les stratégies dereconnaissance d’entités nommées dans unsystème robuste et évolutif capable de gérerles scénarios de données complexes typiquesde la surveillance de la santé des plantes.Sur le plan méthodologique, la thèseadopte une approche double. D’une part,elle ajuste les modèles de langue grâceau masquage de mots-clés, focalisant leprocessus d’apprentissage sur le vocabulairespécifique au domaine pour capturer lesparticularités linguistiques de la santé desplantes. D’autre part, elle améliore lareconnaissance des entités nommées grâce àl’intégration de représentations sémantiquesobtenues à partir de descriptions textuellesdes types d’entités. Cette méthode permet àl’algorithme de reconnaître des types d’entitésnon rencontrés durant l’apprentissage etde s’adapter facilement à de nouvellesapplications. Cette méthodologie est ensuiteappliquée aux données sur la santé desplantes, combinant les deux approches.Cette recherche contribue à l’avancementthéorique dans le domaine de la RENet présente des implications pratiques,fournissant des outils susceptibles deconduire à une prise de décision plusinformée face aux menaces phytosanitaires.Les orientations futures de ce travailincluent l’affinement des approches baséessur les lexiques, l’intégration de donnéesmultimodales et l’amélioration des définitionsd’entités pour perfectionner davantage laprécision et l’applicabilité des systèmes RENdans des domaines spécialisés tels que lasanté des plantes.
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Title: Domain Adaptation of Named Entity Recognition for Plant Health MonitoringKeywords: Named Entity Recognition, Plant Health, Machine Learning, Domain Adaptation,Language Models, Zero-Shot Learning, Natural Language Processing
Abstract: The increasing complexity ofagricultural ecosystems and the urgentneed for effective plant health monitoringnecessitate advanced technological solutionsfor processing textual data. Situated withinthe BEYOND project, this thesis addressesthese needs by advancing Named EntityRecognition (NER) systems tailored to the planthealth domain. Considering the limitationsof traditional NER approaches, this researchinnovates by integrating domain-specificadaptation strategies.The core contribution of this thesis isthe development and refinement of methodsto enhance the adaptability of NER systemsin recognizing information related to planthealth, such as diseases, pests, plants, andlocations. By leveraging advanced machinelearning techniques, the thesis demonstrateshowNER systems can be applied to plant healthmonitoring without explicit adaptation.Methodologically, the thesis employs adual approach. Firstly, it refines languagemodels through Keyword Masking, focusing

the training process on domain-relevantvocabulary to capture the specific linguisticfeatures of the plant health domain. Secondly,it enhances entity recognition via semanticentity representations derived from textualdescriptions of entity types. This approachenables the algorithm to identify entity typesnot seen during training, facilitating seamlessadaptation to new applications. Finally,this methodology is applied to Plant Healthdata, combining both approaches for robustanalysis.This research contributes theoreticaladvancements to the field of NER and offerspractical implications for agricultural practices.It provides tools that can lead tomore informeddecision-making responses to plant healththreats. Future directions for this workinclude refining lexicon-based approaches,integrating multimodal data, and enhancingthe entity types definitions to further improvethe precision and applicability of NER systemsin specialized domains such as plant health.
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1 - Introduction
1.1 . Research Context and Project Contribution
The One Health approach recognizes the interconnected well-being of

humans, animals, plants, and their shared environment to achieve optimal
health outcomes for all [Mackenzie et al., 2013]. Emphasizing a holistic
strategy, it supports the development of policies and practices that address
the complex interplay between ecological health and disease dynamics
[Chen et al., 2024].

Plant health monitoring is crucial for ensuring the stability and
security of global food supplies and maintaining the health of ecosystems
[Ristaino et al., 2021]. As a fundamental component of food production, the
health of plants supports biodiversity, regulates environmental conditions,
and sustains agricultural productivity. The adverse effects of compromised
plant health reach beyond immediate agricultural losses, affecting food
security, market stability, and long term sustainability. With the growing
challenges posed by plant diseases, pests, and environmental stressors,
robust strategies are necessary to protect plant ecosystems, increasingly
threatened by climate change and global trade [Morris et al., 2022].

Effective monitoring and management of plant health are critical, yet
challenging, due to the complexity of agricultural ecosystems and the
nuanced nature of threats that plants face [Bouri et al., 2023]. Accurate and
timely information on plant diseases, pest infestations, and environmental
conditions is essential for devising effective management and control
strategies that prevent widespread agricultural crises. Traditional methods
of plant health assessment often require extensive manual effort and are
constrained by the scale at which they can be applied [Martinelli et al., 2015].
Consequently, there is an increasing reliance on technological advancements
to streamline and enhance the accuracy of plant health monitoring.

This thesis is part of the BEYOND1 project, which aims to improve
epidemiological surveillance strategies for plant health. In this context,
our research involves automatically extracting information from textual
data in order to identify key factors that influence the emergence of plant
diseases. We specifically aim to identify the plants involved, their pathogens,
the diseases affecting them and the locations of these occurrences. This
information is crucial to predict and manage the spread of diseases over
the medium term [Soubeyrand et al., 2024] and also for the robustness and
reliability of surveillance systems that will be used by experts. Knowing which

1https://beyond.paca.hub.inrae.fr/
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plants are affected by specific pathogens and diseases, and their locations,
allows for the construction of detailed models that can predict how these
diseases might spread under various conditions. These models use historical
and real-time data to simulate potential outbreaks and their progression
patterns based on environmental factors, host availability, and pathogen
characteristics [Bischoff et al., 2021].

1.2 . Motivation and Challenges in Named Entity Recognitionfor Plant Health
The information important to monitor plant health is often found in

texts from places like social media and online reports. Due to the high
variability and unstructured nature of this content, advanced technological
tools are essential for efficient extraction. Among the technological
advancements, Natural Language Processing (NLP), particularly Information
Extraction techniques, offer promising tools, including Machine Learning
models, for extracting actionable insights from vast amounts of unstructured
textual data related to plant health. Among these tools, Named Entity
Recognition (NER) is particularly significant.

Efficiently designed NER systems can automate the monitoring of vast
amounts of agricultural data, significantly reducing the time and labor
traditionally required for manual information scanning. For instance,
by automatically detecting and extracting mentions of specific disease
symptoms from new research publications or field reports, these systems
facilitate the rapid updating of databases and keep key players informed
about emerging threats. Furthermore, identifying the exact locations of
disease outbreaks and the plant species involved are essential steps in
developing tailored strategies to prevent the spread of diseases.

NER systems are designed to identify and classify specific spans of text,
knownas namedentities, into predefined categories such as names of people,
organizations, date, disease, andmore. Named entities are terms that refer to
real-world objects or phenomena and help distinguish these specific objects
or phenomena fromother similar ones (see Figure 2.10). ModernNER systems
are based on Language Models, which are algorithms, that calculate the
probability of a lexical unit, such as word, based on its context, and perform
subsequent tasks. Language Models use various linguistic and contextual
clues to determine these entities within a text, distinguishing them from
non-relevant text passages through complex algorithms that integrate an
implicit syntax and semantic analysis [Piantadosi, 2023]. These systems treat
vast amount of texts to find specific information, serving as the cornerstone
for converting text into data that can be easily managed and analyzed.
This capability enhances data usability and supports various applications
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across different fields, making NER a critical component in the realm of text
understanding and information extraction. Consequently, Language Models
are predominantly used in modern NER approaches, as well as in broader
modern NLP applications.

However, when applied to specialized domains such as plant health,
standard NER models frequently encounter difficulties. These models are
typically designed and trained using general language data, which does not
always encompass the unique vocabulary and contextual nuances specific
to domains. For instance, terms like "Xanthomonas", "Phytophthora", or
"Xylella fastidiosa" are commonly used in agricultural contexts to refer to
specific plant pathogens, but these might not be recognized by conventional
NER systems trained on standard datasets. Furthermore, the contextual
significance of such terms—understanding whether "rust" refers to a fungal
disease affecting plants or merely to oxidized metal—poses additional
challenges that standard NER models are often incapable of handling.

In addition, the linguistic cues andpatterns used to identify named entities
in general texts (such as capitalization in the case of proper nouns) may
differ or be less apparent in technical or scientific texts. Additionally, plant
health literature might use a variety of descriptors and synonyms for a
single concept, increasing the complexity of entity recognition. For example,
the Asian citrus psyllid, which transmits citrus greening disease, can be
named as Asian citrus psyllid, ACP, Diaphorina citri, Citrus greening spreader,
Huanglongbing vector, Citrus pest, psyllid species, etc. As a result, the
performance of NER systems can significantly degrade when they are tasked
with processing text from specialized domains without prior adaptation or
retraining.

These challenges are further intensified by the scarcity of datasets
specifically designed for health monitoring across different domains (plants,
human or animals) and by the diversity of textual data sources to take into
account, including scientific publications, news articles, social media and
other. In broader fields, abundant datasets provide a rich array of examples
that enable machine learning models to predict accurately. However, in
specialized fields like plant health, the data is not only scarce but also
often fragmented, covering only certain aspects of the domain and lacking
the comprehensive scope needed to encompass all potential scenarios and
terminologies. Moreover, the nature of plant health-related data, which
often includes complex descriptions of symptoms, treatments, and biological
interactions, requires both detailed and comprehensively annotated datasets
for effective training and evaluation of methods. Without access to extensive
and diverse datasets, the models may not experience enough diverse
examples to develop an accurate understanding of the domain, potentially
compromising their effectiveness and accuracy.

17



In this context, enhancing NER systems to efficiently process and extract
relevant information from agricultural texts becomes crucial. Such systems
can identify in real time critical information such as the symptoms of plant
diseases, locations of outbreaks, and affected plant species. This information
is crucial for early warning systems and strategic response planning.

1.3 . Research Objectives and Questions
This thesis is dedicated to advancing Named Entity Recognition systems

within the specialized domain of plant health, though the methodologies
could also be applied to other domains. It is guided by the principle
of incorporating domain-specific semantics to adapt automatic methods
for recognizing named entities. It is structured around three primary
objectives, each aiming to address distinct but interconnected challenges
within the realm of Natural Language Processing as applied to agricultural
texts. To navigate through these challenges, the study poses several research
questions aimed at both testing theoretical frameworks and evaluating
practical applications essential for enhancing NER capabilities in this domain:

1. The first objective aims to adapt a Language Model specifically for the
plant health domain, focusing on its application in NER. The research
questions for this objective explore the methods by which a Language
Model can be adjusted to take into consideration the specialized
terminology and contextual nuances of plant health. This includes
exploring various adaptation techniques to ensure the model not only
captures the domain-specific language but also excels in identifying and
classifying named entities within this field. The resulting model will be
then applied to the Plant Health domain and evaluated as detailed in
objective 3.

2. The second objective seeks to develop a method enabling an existing
NER system to recognize new named entities without the necessity
for explicit fine-tuning. The questions here delve into the potential
of using unsupervised, semi-supervised learning methods or zero-shot
techniques to enhance the adaptability of NER systems. These
questions seek to uncover how these systems can autonomously
recognize and categorize new entities based on linguistic patterns and
features found in unstructured text data, thereby reducing reliance on
extensive annotated datasets. The developed system will be further
used in Plant Health domain as outlined in objective 3.

3. The third objective focuses on designing a comprehensive adaptation
system that is specifically tuned for the plant health domain, and built
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upon the findings from the first two objectives. Research question
for this objective addresses whether recombining different modules
of the same system, each fine-tuned separately for similar tasks, can
achieve results comparable to those of a classically fine-tuned model.
This process entails combining the adapted Language Model with
introduced entity recognition strategies into a robust, scalable system
capable of managing the complex data scenarios typical in plant health
monitoring.

Together, these research questions frame a study that seeks to extend
the boundaries of current NER technologies and provides a focused approach
to the real-world challenges of the plant health sector. By addressing these
questions, the research aims to contribute to the field of natural language
processing by providing advanced tools that can improve the monitoring and
management of plant health globally.

1.4 . Methodological Approach
Themethodology used in this thesis leverages advancedmachine learning

techniques, particularly adapting a Language Model to a domain (before
adapting it to NER) with proposed KeyWord Masking technique and the
integration of entity type semantics into Language Models. Namely, we are
interested in determining whether selecting specific key words for our model
to focus on could enhance the adjustment process.

Another problem that we are interested in is minimizing the amount of
training data needed to adapt a Language Model to a particular task. To
accomplish this, we use the latent representations of entity types. These
representations are derived from documents that focus on topics related to
specific entity types and are inserted into a NERmodel as input features. This
integration allows the NER system to benefit from a semantic understanding
of entity types, even in the absence of large annotated datasets. By
embedding these latent representations into the classifier, the system can
use inherent semantic and contextual cues from the data to recognize and
categorize new entity types. This approach minimizes the dependency on
extensive manual annotations, which are often costly and time-consuming
to produce.

Both strategies are designed to enhance themodel’s broad understanding
of text and entity relationships, enhancing the adaptability and transferability
of the NER systems developed. We evaluate our approaches on diverse
domains, including Plant Health. This focus on detailed semantics ensures
that the system is versatile and capable of handling diverse and complex data
scenarios that are typical in specialized domains.
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1.5 . Thesis Structure
The thesis is organized into several chapters, each focusing on distinct

aspects of the research:
• Chapter 2: Background and Related Work – This chapter discusses
the fundamentals of Natural Language Processing and reviews existing
literature on Named Entity Recognition and domain adaptation
techniques, highlighting their relevance and application in various
fields, including the specifics of plant health domain.

• Chapters 3, 4 and 5: Methodology and Experiments – These chapters
detail the methodologies developed for adapting NER systems to the
specialized domain of plant health. They describe the experimental
setups and discuss the results obtained from these experiments. Each
chapter addresses a specific objectivementioned in the list 1.3: Chapter
3 focuses on Language Model adaptation using keywords, aligned with
objective 1; Chapter 4 explores NER domain adaptation techniques,
meeting objective 2; and Chapter 5 integrates these methods and
applies them to the plant health domain, fulfilling objective 3.

• Chapter 6: Conclusion – This final chapter summarizes the key findings
and contributions of the thesis. It discusses the broader implications of
this research for future academic inquiries and practical applications,
and suggests potential avenues for further research.

20



2 - Background and related work
Language models have transformed the field of Natural Language

Processing (NLP), enabling machines to accomplish tasks requiring
comprehension, interpretation, and generation of human language.
From early n-gram models to recent transformer-based architectures
such as BERT [Devlin et al., 2019] and GPT [Radford et al., 2018], language
models have consistently expanded the possibilities in understanding and
generating natural language. Particularly, these advancements have proven
instrumental in enhancing Information Extraction techniques, which is the
primary focus of this thesis.

This chapter provides a thorough overview of the fundamental principles,
key models, and notable advancements that have influenced the current
landscape of language modeling and NER applications. It begins by
establishing essential concepts crucial for subsequent section understanding,
covering basic machine learning and NLP principles.

2.1 . Fundamentals of Machine Learning for NLP
Machine learning principles form the foundation of recent advancements

in natural language processing. The evolution of language models from
early statistical methods to sophisticated neural architectures underscores
the pivotal role of ML in modern NLP. Before exploring modern language
models, it is important to establish a strong understanding of core machine
learning concepts. This subsection provides a primer on these foundational
principles, laying the groundwork to delve into more advanced models and
their applications in NLP, particularly in NER.

In Machine Learning, the notion of a "task" refers to a specific problem
that the model is designed to solve. Below are some main types of tasks
[Sarker, 2021]:

• Classification tasks involve predicting a category or label for input
data from a predefined set of categories or labels (e.g., language
identification).

• Regression tasks consist in predicting a continuous value based on
input data (e.g., predicting temperature based onmeteorological data).

• Clustering tasks aim to group a set of objects in such away that objects
in the same group are more similar to each other than to those in
other groups (e.g., organizing documents into groups based on topic
similarity).
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• Dimensionality Reduction tasks imply simplifying the input data,
generalizing the most relevant features (e.g., simplifying the feature set
of audio data).

• Reinforcement Learning tasks focus on learning a strategy to
maximize the reward an agent receives for its actions in a given
environment (e.g., autonomous driving).

Named Entity Recognition, which is central to this thesis, is usually
formulated as a classification task [Hu et al., 2024] where the objective is to
predict a category for each segment of text, such as individual words, from a
set of predefined labels, such as "Location", "Pest", etc. (see Section 2.3). This
process of categorization is a fundamental application of supervised learning
principles, where the model learns to associate specific features of the text
(input) with the correct labels (output). This task is primarily solved with
supervised learning approaches, which will be described in the subsequent
section.

2.1.1 . Supervised Learning
Supervised learning is a type of machine learning approach

focused on finding a mapping between input features and outputs
[Cunningham et al., 2008], enabling accurate predictions for new, unseen
data. This requires a dataset, or labeled data, where each input sample
is matched with the corresponding output sample, or label, that model
aims to predict afterwards. The dataset must be collected, inspected and
annotated in advance. Supervised learning is widely used for most NLP tasks
[Sarker, 2021], including Named Entity Recognition.

Feed-Forward Neural Network
A neural network is amathematical model for data processing inspired by the
architecture of the human brain (hence the name). The classic feed-forward
neural network was introduced in [Rosenblatt, 1958] to understand the
complex relationships in data through computational means. This
foundational concept was further validated by the universal approximation
theorem [Hornik et al., 1989] which claims that such a network with at least
one hidden layer can approximate any continuous function with any level
of precision, given sufficiently many neurons in its hidden layer. Typically,
this network is composed of several layers, each containing multiple neurons
that process incoming data sequentially from the input to the output layer.
A neural network is classified as "deep" when it contains at least five hidden
layers [LeCun et al., 2015], allowing it to capture more complex hierarchies of
information.
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A basic computational unit of any type of neural network is a neuron (see
figure 2.1). It processes inputs, which are weighted outputs of the previous
layer or external inputs. The operation within a neuron involves summing
these weighted inputs, adding a bias, and then passing the result through
an activation function. Weights are parameters that determine how much
each input is important for this neuron. The bias is a parameter which
ensures the activation of the neuron even if all inputs are zero and adjusts
the activation function to adjust the neuron’s output. The final goal of training
is to find the optimal parameters. The activation function is crucial as it acts
as a filter, determining the extent of which a current neuron’s output should
be considered. Depending on its nature, it also can introduce non-linear
properties to the model, enabling it to learn complex patterns and behaviors
that simple linear equations cannot.

While each neuron operates based on its inputs and activation function,
it is integrated into a larger network where the patterns of connectivity
significantly enhance the learning capabilities. It is important to note
that the activation function is identical for all neurons in the same layer.
This uniformity ensures consistent processing of signals across that layer,
contributing to the network’s ability to generalize from input data to form
outputs. The final output of the network is a vector with a number of
coordinates equal to the number of neurons in the last layer. Thus, an output
value of a j-th neuron is calculated by the following formula:

yj = F

(
n∑

i=1

wijxi + bj

)
, (2.1)

where xi is the output from the i-th neuron in the previous layer, wijdenotes the weight applied to this output by the j-th neuron, bj is a bias and
F is the activation function that processes the weighted sum, adjusted by the
bias, to produce the output yj .The output of each neuron is then forwarded as input to neurons in the
subsequent layer, and this process repeats across the network (see Figure
2.2). The final layer’s output is typically transformed into a format suitable for
addressing specific types of problems, such as classification or regression. For
example, in a classification task, the final layer may use a softmax function
to convert the outputs into probability distribution, representing the model’s
confidence in each class.

Feed-forward neural networks, like other types of neural networks,
are trained using backpropagation [Rojas and Rojas, 1996], a method where
errors in predictions are used to iteratively adjust the model’s parameters.
It begins with the calculation of the loss function, which measures the
difference between model’s current output and the desired output. The
next step involves determining how each parameter impacts on the loss
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Figure 2.1: Schematic Representation of a Single Neuron in a Neural Network.This diagram depicts a single neuron where input values x1, x2, . . . , xn are eachmultiplied by corresponding weights w1, w2, . . . , wn. The weighted inputs are thensummed to produce the output y, demonstrating the fundamental operation withina neural network neuron.

Figure 2.2: Feed-Forward Neural Network. This diagram illustrates a standardneural network consisting ofmultiple layers. Each layer is depicted with a set numberof neurons, represented as circles. The first layer contains n neurons, the secondlayerm neurons, and the final layer k neurons, showcasing the structure of a typicalfeed-forward network architecture.

function and then adjusting these parameters to minimize the error.
These adjustments are made using a technique called gradient descent
[Amari, 1993]. Backpropagation improves computational efficiency by
computing gradients for each layer using only the gradients from the
subsequent layer. Starting from the output layer, the method calculates
what is sometimes referred to as the local error for each neuron — the
neuron’s specific contribution to the total network error. These local errors
are then used to compute gradients for previous layers, propagating the error
back through the network, hence the name ’backpropagation’. This iterative
process continues until the network’s predictions are sufficiently accurate or
meet a predefined criterion of accuracy.

Thus, by leveraging layers of neurons with the ability to learn from data,
feed-forward neural networks form powerful tools for a wide range of data
processing tasks, including Named Entity Recognition [Xu and Wang, 2021].

24



Figure 2.3: Comparison of Hidden Layers in FFNNs and RNNs. This figureillustrates the key differences in network architecture between Feed-Forward NeuralNetworks (FFNNs) and Recurrent Neural Networks (RNNs). In the left panel, anFFNN module is depicted where connections between layers propagate strictlyforward without any feedback loops; xt represents the input at time step t, and ytdenotes the output or hidden state at the same step. The right panel illustrates anRNN module, highlighting its recurrent connections that allow feedback from thenetwork’s previous output states (ht−1)sequences. This setup enables the RNN tomaintain a continuous flow of information, where xt is the input, yt is the output and
ht is the hidden state at time t.

Nonetheless, subsequent sections will introduce more efficient models that
offer advanced capabilities and improved performance for such applications.
Recurrent Neural Networks
Recurrent neural networks (RNNs), introduced by [Amari, 1972], share a basic
architectural similarity with feed-forward networks but incorporate a crucial
modification for processing sequential data, such as time series or text. This
capability is achieved through the following architectural modification: each
neuron can receive input not only from the preceding layer but also from its
ownprevious output (see Figure 2.3) through amechanism known as a hidden
state. The concept of a time step within this hidden state corresponds to each
discrete point in the sequence (a letter or a word in text, or amoment in time).
This allows the model to maintain and process context from one segment to
the next, adapting dynamically to the sequential input. The hidden state in an
RNN can be represented by the formula:
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Figure 2.4: Comparison of RNN and LSTM Cell Architectures. This diagramcontrasts the internal structure and processing flow within a standard RecurrentNeural Network (RNN) cell and a Long Short-Term Memory (LSTM) cell. It details thesimple recurrent loop of the RNN cell alongside the complex gate mechanisms of theLSTM.

ht = F (Uxt +Wht−1 + b)

where ht is the hidden state at time t, xt is the input at time t, and F is
the activation function, b is the bias. The matrices U and W are the weight
matrices for the input and the recurrent connection, respectively.

This architecture effectively creates a form of "memory" that retains
information about previous inputs, enabling the network tomake predictions
that consider the sequence’s history. Due to this capability, RNNs
perform better then FFNNs in tasks involving sequential data, such
as text generation, machine translation, and Named Entity Recognition
[Ali et al., 2022, Li et al., 2015b, Li et al., 2015a].
Long Short-Term Memory Neural Networks
Long Short-Term Memory (LSTM) networks, introduced by Hochreiter
and Schmidhuber in 1997 [Hochreiter and Schmidhuber, 1997], represent a
specialized type of RNN designed to capture long-term dependencies. An
LSTM network consists of units known as cells, each containing memory
and gating mechanisms crucial for regulating information flow and retention.
Unlike RNNs that use a single operation in each hidden unit, LSTMs
incorporate multiple gates within each cell to enhance memory processing.
In an LSTM cell, a gate is a component that acts as a selective filter: it decides
whether to retain or forget input information based on its relevance to the
current task, thus modeling a short-term memory. Another key component
of LSTM is the cell state, which undergoes only a few linear transformations,
preserving the information over time and thusmodeling a long-termmemory.
This mechanism allows controlling the information flow (see Figure 2.4) and
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enables the network to selectively retain or forget data. The operations within
these gates are described as follows:

First, the forget gate determines which information is retained or
forgotten by the network:

ft = σ(Wf · [ht−1, xt] + bf )

whereWf is the weight matrix, [ht−1, xt] is the concatenation of the previoushidden state and the current input, bf is the bias, andσ represents the sigmoid
activation function.

Then, the input gate decides which values are important to update:
it = σ(Wi · [ht−1, xt] + bi)

where it is the input gate activation at time t. Wi is the weight matrix, and
bi is the bias for the input gate.The network also creates a vector of new candidate values that could be
added to the state of the cell:

C̃t = tanh(WC · [ht−1, xt] + bC)

where C̃t represents the candidate values for updating the cell state. WCis the weight matrix, and bC is the bias, with tanh indicating the hyperbolic
tangent function.

The cell state is then updated as follows:
Ct = ft ∗ Ct−1 + it ∗ C̃t

where ft is the activation of the forget gate at time t, whichmoderates the
retention of the previous cell state Ct−1, and it is the activation of the input
gate at time t, controlling the degree of inclusion of new candidate values C̃tinto the cell state.

Finally, the cell output is computed by combining the cell state with the
hidden state:

ht = σ (Wo[ht−1, xt] + bo) ∗ tanh(Ct)

where ht is the hidden state at time t, Wo is the weight matrix, bo is thebias for the output gate, and Ct is the updated cell state. This output forms
the basis for subsequent operations within the network.

There are several variations of LSTM. One important variation is the
Bidirectional LSTM (BiLSTM), introduced by [Zhang et al., 2015]. It comprises
two LSTMs layers, one of which processes the input in a backward direction.
This dual mechanism allows the model to consider both past and future
contexts simultaneously (see Figure 2.5), enhancing its predictive accuracy
across various sequence modeling tasks including NER.
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Figure 2.5: Comparison of LSTM and BiLSTM Architectures. This diagramillustrates the architectural differences between Long Short-Term Memory (LSTM)and Bidirectional LSTM (BiLSTM) networks. On the left, the LSTM processes inputsequences (x1, x2, ..., xn) in a forward direction, with each LSTM unit outputting acorresponding y value (y1, y2, ..., yn) after passing through an activation function F .On the right, the BiLSTM processes input sequences both forward and backward,allowing the network to incorporate information from both past and future contextswithin the sequence. Each unit in the BiLSTM consists of two LSTMs, one for eachdirection, whose outputs are combined at each time step to produce the final output.
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Figure 2.6: Sequence to Sequence model architecture. The lower row representsthe input sequence x1, x2, . . . , xn, processed by the encoder. The upper rowrepresents the output sequence y1, y2, ..., xym. The circles in the middle denote thenetwork units that can be network units, such as RNN or LSTM units as described inSections 2.1.1 and 2.1.1 respectively.

Overall, LSTMs provide a robust architecture for managing
long-term dependencies, an important capability for complex
sequence modeling tasks across various domains, including NER
[Lample et al., 2016, Limsopatham and Collier, 2016, Zhai et al., 2018].
Sequence-to-sequence
The Sequence to Sequence (seq2seq) architecture, introduced by
[Cho et al., 2014], was originally developed for machine translation tasks.
It is designed to transform a sequence (whether of letters, words, or even
images) into another sequence via an intermediate representation. This
architecture consists of two main components: an encoder and a decoder.
The encoder processes the input sequence into a latent representation,
or a context vector, which is a compressed numerical representation that
captures all the essential information from the input. The decoder then
incrementally constructs the output sequence. Specifically, each unit of the
decoder produces a segment of the output (such as a letter or a word) based
on the output from the previous hidden state, starting with the context
vector. The schema of this architecture is presented in Figure 2.6.

In the original paper [Cho et al., 2014], both the encoder and decoder
are implemented using LSTM networks. However, various architectures
can be employed depending on the specific application. For instance,
in Named Entity Recognition, modifications of LSTM networks combined
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with Conditional Random Fields (see section 2.1.1) have shown effectiveness
[Zhu et al., 2020, Chen and Moschitti, 2018].

Although, seq2seq was initially designed for machine translation tasks,
it has proven more efficient for Named Entity Recognition than the
previously discussed architectures [Tan et al., 2021, Chen and Moschitti, 2018,
Wang et al., 2019]. It has additionally inspired the design of the Transformers
architecture which continues to set the standard for many tasks, as will be
detailed in the subsequent section.
Transformer
The Transformer Network, introduced in [Vaswani et al., 2017], builds on
the foundational ideas of the seq2seq model but uniquely implements a
"multi-head attention" mechanism (see Figure 2.7), which will be defined and
explained later in this section. This architecture was created particularly for
text treatment. Unlike sequence-to-sequence networks that rely heavily on
recurrent layers, the Transformer consists of an encoder and a decoder.
The encoder processes the input information (e.g., a text) and transforms
it into a latent feature representation. The decoder then reconstructs
this representation into a new sequence (e.g., an answer to a question, a
translated sentence, etc.). Each of the encoder’s six layers is a feed-forward
network equipped with a multi-head attention mechanism, enhancing its
ability to focus on different parts of the input sequence simultaneously. The
decoder’s structure mirrors that of the encoder but includes an additional
masked multi-head attention sub-module in each layer to ensure that each
part of the output sequence does not prematurely influence the parts that
come after it.

In the context of NLP, a transformer network processes input data
through what is known as an input embedding, which consists of three main
components: a token embedding, a segment embedding, and a positional
embedding. A token represents a unit of language, such as a letter, a word,
or a sentence. While using transformers, a token is defined as a part of a
word, derived from a predefined vocabulary using a WordPiece algorithm
[Wu et al., 2016]. Token embeddings transform text into these tokens and
assign a unique identifier to each from the vocabulary. Segment embeddings
differentiate various parts of the input text, usually by marking the current
segment being processed with ones and the rest with zeros. Lastly, positional
embeddings record the position of each token within the text to maintain
sequence information.

The attention mechanism enables the model to focus on each unit of
the input separately when processing. Specifically, the sequence of token
embeddings is represented as a matrix X , where each row corresponds to
a token embedding. This matrix X is then linearly projected by multiplying
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Figure 2.7: Overview of the Transformer Model Architecture. This schema, takenfrom the original paper [Vaswani et al., 2017], illustrates the main components of theTransformer model, highlighting both the encoder and decoder structures. Eachmodule consists of multiple layers repeated N times. The encoder processes inputembeddings, enhanced with positional encoding, through multi-head attention andfeed-forward networks. The decoder follows a similar architecture but incorporatesan additional masked multi-head attention layer to prevent the influence of futurecontext on the predictions.

it with parameter matrices to form three distinct representations: query (Q),
key (K), and value (V ) matrices. The query matrix represents the relevance
of each token in relation to others from its own perspective. Conversely, the
keymatrix indicates the relevance of each specific token from the perspective
of other tokens. The value matrix is a latent representation of each token
calculated from its occurrence in a context with other tokens. These matrices
are producedbymultiplying the input embeddingswith correspondingweight
matrices. These transformed matrices are then used as inputs to the
scaled dot-product attention function, which calculates a weighted latent
representation across all tokens:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where dk represents the dimensionality of the key vectors, which is used to
scale the dot product, thereby assisting inmaintaining stable gradients during

31



training.
The multi-head mechanism (see Figure 2.8) implies a concatenation of

multiple attention functions operations, each with its own set of learned
weights. By segmenting the query, key, and value matrices into multiple
"heads", the model can simultaneously have access to information from
multiple positions and representations angles. This diversification enhances
themodel’s ability to focus on various parts of the input sequence and extract
a richer set of features.

MultiHead(Q,K, V ) = Concat(head1,head2, . . . ,headh)WO

where each headi is computed as:
headi = Attention(Q,K, V ) = Attention(XWQ

i , XWK
i , XW V

i )

In this configuration, WQ
i ,WK

i ,, W V
i , and WO are the weight matrices

for the query, key, value and the output linear transformation for the ith
attention head, respectively. This structure enables the model to capture
different types of relationships in the data, making it adept at modeling
complex dependencies across extended sequences.

The masked multi-head attention mechanism is very similar, but during
training, amask is applied to the attentionmechanism to hide the information
about future tokens in the sequence. Specifically, the attention weights
corresponding to future tokens are set to a very large negative value
(e.g., negative infinity) before applying the softmax function. As a result,
these attention weights effectively become zero after applying the softmax
function, meaning that the model completely ignores information about
future tokens during training. This helps the model learn to generate
outputs sequentially and autoregressively, preserving the order of tokens and
maintaining grammatical coherence and semantic accuracy in the generated
sequences.

Thus, Transformer architecture is a significant advancement in processing
sequential data, including text, effectively capturing dependencies across
long sequences while maintaining the order and coherence of generated
outputs. Widely regarded as state-of-the-art, Transformer and its variants
continue to excel across various tasks, including Named Entity Recognition
[Yang et al., 2024, Yan et al., 2019, Lothritz et al., 2020].
Conditional Random Fields
Conditional Random Fields (CRF), introduced in [Lafferty et al., 2001], are
frequently used to refine the outputs of a neural networks. CRF is a special
type of Markov Random Field (MRF) (see Figure 2.9), characterized by an
undirected graph where random variables (representing both inputs and
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Figure 2.8: Multi-Head Attention Mechanism in a Transformer Model. Thisdiagram depicts the multi-head attention mechanism, where each "head" processesthe input data independently. Bold arrows represent linear transformations,applying a unique set of weights to the input. Dashed arrows indicate the extractionof specific rows from the matrix without any transformation. After processingthrough a softmax layer to calculate attention weights, the outputs from all headsare concatenated, forming a comprehensive final output that enhances the model’sability to focus on various aspects of the input data simultaneously.

33



Figure 2.9: Illustration of a Conditional Random Field Model. This figure depictsthe basic structure of a CRF model, where xi and yi represent the input and outputvariable nodes, respectively, for each position in a sequence from 1 to n. The blacksquares in the diagram denote the transition feature function f , as outlined in theformulas presented in this section.

outputs in our context) act as edges, and dependencies between these
variables act as vertices, all adhering to Markov properties [Matúš, 1992].
Unlike general MRFs, CRFs include a set of functions, each corresponding to a
complete subgraph (or clique), which assign non-negative real values to every
potential state of the subgraph’s elements. Specifically, CRFs compute the
conditional probabilities of output variables based on input variables. More
precisely, the conditional probability is given by:

P (y|x) = 1

Z(x)

∏
k

exp

(∑
k

λkfk(y, y−1, xt)

)
where k indexes the cliques in the graph, ϕk(x{k}) is a potential functiondescribing the state of random variables in the k-th clique, fk is a feature

function associatedwith the k-th clique, λk are the parameters learned during
the training and Z is a normalization factor, calculated by:

Z(x) =
∑
y

∏
k

exp

(∑
k

λkfk(y, y−1, xt)

)
where y is a set of possible output sequences.
Thus, CRFs explicitly model the relationships between consecutive labels

in a sequence. This structure allows CRFs to effectively handle the conditional
dependencies between observations and their labels, enhancing prediction
accuracy for complex sequences. In the context of Named Entity Recognition,
a CRF layer is often applied on top of another model, such as an LSTM or a
Transformer. In this setup, xi represents the features of the i-th word, while
yi denotes the predicted class for that word. This provides a more nuanced
understanding and yields better predictions than using a traditional sequence
model alone [Lample et al., 2016, Ma and Hovy, 2016].

This section has explored various supervised learning architectures,
each offering significant advantages for handling specific types of data and
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tasks within the realm of NLP, particularly for NER. However, there are
other supervised learning architectures and techniques not discussed here,
primarily because they may not provide additional context that significantly
diverges from what has already been examined or may not be as relevant for
our subject.

2.1.2 . Unsupervised and semi-supervised methods
Beyond supervised methods, which rely on pre-labeled data,

unsupervised and semi-supervised methods are also employed.
Unsupervised learning aims to discern patterns directly from data, providing
a valuable perspective in situations where labeled data is scarce or costly
to acquire. However, these results are typically less accurate. Additionally,
unsupervised algorithms are more sensitive to scalability issues and data
noise. Unsupervised algorithms are predominantly used when no labeled
data is available. Conversely, if minimal labeled data exists, semi-supervised
algorithms offer a good balance. These algorithms are trained using a mix of
labeled and unlabeled data, but their performance is generally worse than
fully supervised approaches and at the same time still require some labeled
data. A review of unsupervised and semi-supervised algorithms applied to
NER will be presented in Sections 2.3.5 and 2.3.5 respectively.

2.1.3 . Few-shot Learning
In addition to supervised, unsupervised and semi-supervised methods,

few-shot learning represents another approach that operates with a limited
amount of data. Few-shot learning is a generic name of ML methods that
use only a small number of examples for model adjustment. This is often
confusedwith semi-supervised learning due to its use of few labeled samples.
However, few-shot learning specifically refers to using a small set of examples
for training without implying the nature of the learning algorithm itself.
In contrast, semi-supervised methods involve combining both labeled and
unlabeled data during training and do not specify the number of examples
used. Nonetheless, semi-supervised approaches are frequently evaluated
in few-shot contexts due to their reliance on limited labeled instances.
Understanding this distinction is crucial for grasping the practical applications
and limitations of each method in scenarios with scarce data. This thesis
explores a zero-shot technique that operates under a supervised framework
but is applied to data that has not been previously used by the model, nor
is it similar to any data used while constructing the algorithm. This approach
is called zero-shot strategy. Due to the infrequent evaluation of supervised
methods in this context, we will also compare our approach to unsupervised
and prompt engineering methods.

2.1.4 . Adaptive Learning Methods
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When we would like to adjust a model without extensive retraining, we
need to use adaptation techniques. These techniques fall into two primary
categories: transfer learning and meta-learning.

The meta-learning approach involves training a model on a variety
of tasks, then adapting it to perform a specific target task with minimal
examples. Conversely, transfer learning implies using a model that is
pre-trained on a large dataset for one single task or domain, which is then
fine-tuned on a smaller, specific target dataset somehow similar to the
dataset used for pre-training. In this work, we will focus on employing a
transfer learning strategy.

As we turn now to the domain of Language Models, we will delve
into how these advanced tools build on and differ from the supervised
techniques outlined, continuing our exploration of their pivotal role in NLP
advancements.

2.2 . Language Modeling
A model is a simplified representation of an object, system, or process

designed to facilitate the analysis, understanding, and prediction of its specific
aspects. Language Models (LMs) are designed to predict the probability
of a sequence of words or to generate new text sequences that are both
syntactically consistent and contextually meaningful.

Historically, the field has evolved from simple n-gram models, which
rely on the frequencies of short sequences of words, to complex
deep learning models like transformers [Vaswani et al., 2017], which are
capable of capturing long-range dependencies and subtle nuances in
text. The advent of models such as GPT [Radford et al., 2018] (Generative
Pretrained Transformer) and BERT [Devlin et al., 2019] (Bidirectional Encoder
Representations from Transformers) has significantly advanced the
capabilities of Language Models. Today, these models underpin a multitude
of NLP applications propelling them towards achieving unparalleled accuracy
in both understanding and generating human language.

2.2.1 . Language Models pre-training and fine-tuning
LanguageModels are typically used in various NLP task, such as automatic

translation, text classification, information extraction, etc. Before these
models are adjusted for specific applications, they must first undergo a
pre-training stage. This stage equips them with foundational language
knowledge, typically through an unsupervised learning task that simulate
language generation. A common approach to this is Causal Language
Modeling (CLM), which involves predicting a token based on the preceding
sequence of tokens. Conversely, Masked Language Modeling (MLM) implies
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replacing certain tokens with a special "mask" token and then predicting the
original tokens from this masked input. The MLM task was introduced in
[Devlin et al., 2019] with a development of a Language Model named BERT
(see Section 2.2.4), where 15% of the tokens in each sequence are masked.
After this pre-training stage, language models are adjusted to optimize their
performance for particular tasks. This process, known as fine-tuning, involves
modifying the model’s parameters to better align with the characteristics and
requirements of the target task. Often, this adjustment includes a second
round of training on a domain-specific dataset, ensuring that the model
captures the nuances and complexities of the particular domain of texts it
will be applied to. Thus, the pre-training stage of Language Modeling is a
crucial component of modern language models, enabling them to learn rich
contextual representations, perform well on a wide range of NLP tasks, and
leverage transfer learning effectively.

2.2.2 . Early Developments
While the specific term "Language Models" may not have been coined

until the later part of the 20th century, the pursuit of understanding
and generating human language through computational means has
a rich history. Early efforts in this domain leveraged basic statistical
methods and feature extraction techniques, emphasizing the frequency
and significance of words within text data (e.g., co-ocurence matrices
[Leydesdorff and Vaughan, 2006]). These initial approaches laid the
groundwork for what would eventually be recognized as language modeling.
Term Frequency (TF) quantifies how often a specific word appears within
a document, which is hereinafter defined as a string of characters. Thismetric
provides a straightforward measure of word importance. This approach
operates on the premise that the more frequently a word occurs in a text,
the greater its significance for the document’s overall theme or content.
Such simplicity made term frequency an essential initial step in text analysis,
however, while it highlights key terms, Term Frequency alone does not
account for the likeness of words acrossmultiple documents, which led to the
development ofmore nuanced approaches that consider word significance in
broader contexts.
Term Frequency-Inverse Document Frequency (TF-IDF) first
proposed in [Sparck Jones, 1972] improves upon the simplicity of term
frequency by also considering the occurence of a word across the whole
collection of documents. This dual consideration allows TF-IDF to assign
higher weights to words that are frequent in a specific document but rare
in the corpus, effectively distinguishing them as more relevant or unique
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to the document’s context. As such, TF-IDF offers a more sophisticated
measure of word importance, enabling more accurate identification of a
document’s key themes and facilitating tasks such as document similarity
comparisons and information retrieval. As a foundational vector spacemodel
for document processing [Klampanos, 2009], TF-IDF also acts as a precursor
to contemporary language models. Even though TF-IDF is not directly applied
to solve NER task, it is used to preprocess input for further usage by neural
network models, such as Word2Vec (see Section 2.2.4).
Vector Space Models (VSMs), introduced by [Salton, 1971] and also
known as term vector models, represent text documents as vectors within
a geometric space. In this model, the spatial distance between any two
document vectors reflects the similarity or relevance of the documents to
each other. Documents are represented in a document-term matrix, which
is constructed using Term Frequency or Term Frequency-Inverse Document
Frequency scores. The similarity between documents can be quantified
using distance measures such as Euclidean Distance or Cosine Similarity.
For handling large matrices, dimensionality reduction techniques, such as
Singular Value Decomposition [Deerwester et al., 1990], are often employed.
VSMs are particularly effective in identifying semantic relationships between
words and topics within a corpus and are widely used in applications such as
topic modeling and information retrieval. As foundational components in the
evolution of language processing, VSMs set the stage for the development
of more complex statistical models and neural approaches that dominate
current research and applications in natural language understanding.

2.2.3 . Statistical Models
Statistical models rely on the probabilities of sequences of words or

linguistic elements (such as named entities) to predict and interpret new
sequences. These models operate on the premise that language exhibits
statistical regularities, such as the tendency of certain words to co-occur
frequently or the likelihood of particular word sequences occurring within
a given context. This principle is central to distributional semantics, which
posits that words observed in similar contexts have similar meanings
[Harris, 1954]. By capturing these patterns, statistical models can generate
coherent and contextually appropriate text, or a sequence of consecutive
labels such as parts of speech, named entities, etc.
N-grammodels predict the probability of a token (e.g., word or character)
n based on the occurrence of its preceding (n− 1) tokens, treating language
as a Markov process [Jurafsky and Martin, 2018]. In the context of NER, such
models predict the probability of both the n-th token and its corresponding
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label, as proposed in [Jahangir et al., 2012]. Despite their simplicity and
efficiency, n-gram models are severely limited by their inability to capture
extensive contextual dependencies in text. Additionally, they rely only on
observable variables and are challenged by data sparsity issues as the
number of tokens increases.

Hidden Markov Models (HMMs) [Baum et al., 1970] offer a more
complex approach to sequence modeling. Namely, HMMs operate on
the premise of a sequence of hidden (unobservable) states that generate
observable outputs. Each state has a probability distribution over potential
output tokens (e.g., words or characters), and transitions between states
are governed by their own probabilities. This architecture allows to capture
longer andmore abstract dependencies that extend beyond immediate token
sequences. HMMs are particularly applicable in tasks where each observable
data point (e.g., a token) is believed to be generated by a hidden state
(e.g., an entity type). Despite their effectiveness in modeling contextual
dependencies, HMMs are constrained by a fixed-length context window,
typically short. Additionally, as the quantity of tokens within the context
grows, there is an exponential increase in computational complexity due to
the expansion of potential states. Despite their limitations, HMMs remain
useful in some applications, but they are supplanted by more advanced
neural language models capable of capturing complex linguistic phenomena
with higher precision.

2.2.4 . Neural Language Models
The advent of neural networks introduced a new paradigm for language

modeling, overcoming many limitations of traditional statistical models. This
progress has been further accelerated by the availability of computational
resources, allowing for more complex and sophisticated model training and
deployment. In essence, neural language models represent a data-driven
approach to language modeling, where neural networks iteratively refine
their internal representations of language based on the underlying statistical
properties of the data. Unlike statistical language models that rely
heavily on the frequency and arrangement of words, neural models use
high-dimensional, continuous embeddings that capture subtle linguistic
cues and contexts. This shift enhances adaptability and scalability of
models. Unlike traditional statistical approaches that rely onmanually crafted
features, these Language Models rely on a neural network architecture,
coupled with a task definition tailored to the specific language processing
objective at hand.

An early approach, introduced in [Bengio et al., 2000] was created to
overcome the high-dimensionality problem of word vectors produced by
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statistical models. This neural approach effectively captures semantic
nuances, enabling more accurate prediction of word sequences compared
to traditional n-gram models. The architecture is essentially a perceptron
as described in section 2.1.1. Thus, this method introduced distributed
word representations. It developed a function to predict words based
on aggregated context features—namely, the distributed word vectors-,
streamlining the understanding of language context.

The classical algorithm for word vector representations (embeddings)
known as Word2Vec, introduced in [Mikolov et al., 2013], offers two models:
Continuous Bag of Words (CBOW) and Skip-gram. In both cases, the neural
network contains one hidden layer. The CBOW model uses several words
from the past and several words from the future context to predict the current
word using a log-linear classifier. It is efficient in processing frequent words
and generally learns more quickly than Skip-gram, but it does not account for
the order of words. Conversely, Skip-gram employs a single word as input
to predict nearby words, using again a log-linear classifier with a continuous
projection layer. This method is known for producing higher quality word
vectors by considering a broader context range in its predictions but shares
a common limitation with CBOW in that both models assign static vectors
to words, ignoring the polysemy where words can have multiple meanings
based on context. Additionally, neither model can generate embeddings for
out-of-vocabulary words not seen during training, limiting their flexibility in
adapting to new texts or domains where novel vocabulary might emerge.

A similar approach, known as FastText, is introduced in
[Bojanowski et al., 2017], which differs from Word2vec models by treating
character n-grams, rather than whole words, as both input and output data.
This method enhances the model’s ability to capture subword information,
allowing for a more nuanced understanding of word structure, particularly
beneficial for languages with rich morphology, and it effectively addresses
the out-of-vocabulary problem by generating embeddings for words not
seen during training.

This approach also aligns with more advanced neural architectures
such as Convolutional Neural Networks [Pham et al., 2016], Recurrent
neural networks [Mikolov et al., 2011], and Long Short-Term Memory
Networks [Verwimp et al., ]. These architectures have been leveraged
not only for context-based word prediction but also for directly addressing
specific NLP challenges such as named entity recognition and chunking
[Peters et al., 2017], as well as machine translation [McCann et al., 2017],
bypassing the intermediate step of word prediction.

Parallel to these developments, Global Vectors for Word Representation
(GloVe) were introduced in [Pennington et al., 2014], fundamentally differing
from other embeddings in their construction. Initially, a co-occurrencematrix
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X is constructed, where each element xij represents the frequency of word
i occurring alongside word j in the corpus. Subsequently, the probabilities
of the occurrence of word i in the context of word j are estimated. The final
model is defined by the following function:

J =

V∑
i,j=1

f(Xij)
(
wT
i w̃j + bi + b̃j − logXij

)2
where wi is the i-th word vector, wj is the context-free j-th word vector, and
bi and bj are bias terms for i-th and j-th words respectively. The function
f(Xij) is a weighting function applied to each pair of words, which helps
to adjust the influence of rare and frequent co-occurrences differently. The
function J seeks to minimize the squared difference between the predicted
value and the actual logarithm of the words co-occurrence probability. This
adjustment ensures that words appearing in similar contexts have similar
vector representations. While GloVe successfully integrates both local and
global statistical properties of the corpus, providing a robust method for
learning word representations, these embeddings are static and do not
account for word order, rendering them less effective compared to more
advanced models.

Embeddings from Language Models (ELMo), introduced in
[Peters et al., 2018], represents one of the first implementations of deep
contextual embeddings. Unlike static word embeddings, which assign a
single, context-independent representation to each word, deep contextual
embeddings are aware of the surrounding text within a sentence. This means
that aword like "host" would have different embeddings in "host plant" versus
"host family", reflecting its different usages. ELMo achieves this contextual
sensitivity through leveraging a deep bidirectional LSTM network, outlined
in (see Section 2.1.1). This network aims to predict the next word based on
its preceding context and the previous word based on its following context.
Initially, ELMo constructs a character-based embedding for each word, and
then processes these embeddings with the LSTM to account for the context in
which each word appears. This method results in rich word representations
that effectively capture both syntax and semantics, which are especially
useful for tasks such as named entity recognition and part-of-speech
tagging, which require a nuanced understanding of these linguistic aspects
[Collobert et al., 2011, Pilehvar and Camacho-Collados, 2021]. The success of
ELMo highlights their ability to provide distinct vector representations for the
same word in different contexts, reflecting its varied meanings.

The introduction of attention mechanisms [Vaswani et al., 2017] has
further revolutionized Natural Language Models by enabling the model to
focus on different parts of the input sequence when predicting a word,
thereby capturing even more complex dependencies. The first and classic
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LM which leverages the transformer architecture is Bidirectional Encoder
Representations from Transformers (BERT) [Devlin et al., 2019]. It is based on
self-attention mechanisms which allows to weigh the importance of different
words within a sentence. Unlike previous models that processed text in
a single direction (either left-to-right or right-to-left), BERT considers the
full context of a word by reading the text bidirectionally. Although ELMo
embeddings consider both preceding and subsequent context, it processes
one direction at a time during training. In contrast, BERT simultaneously
considers both directions. This is a fundamental feature enabled by
the Masked Language Modeling task (see Section 2.2.1), which helps in
understanding the meaning of ambiguous words based on the context from
both sides. In the MLM task, 15% of the tokens in each sequence are
replacedwith a specialmask token, requiring themodel to predict themasked
words. This innovative approach makes BERT significantly more efficient at
capturing long-range dependencies and handling complex linguistic patterns
compared to RNNs and LSTMs, setting the groundwork for many subsequent
advancements in the field of Natural Language Processing.

BERT has numerous variations, each tailored for specific enhancements
or efficiencies. For instance, RoBERTa (Robustly optimized BERT)
[Liu et al., 2019b] is an optimized version of BERT by refining the training
process. One of the key modifications in RoBERTa is the introduction of
dynamic masking, where tokens are masked anew before each training
epoch, as opposed to being masked just once before all training starts.
XLM (Cross-lingual LM) [Lample and Conneau, 2019] extends BERT’s
methodology to accommodate multiple languages. ERNIE (Enhanced
Language Representation with Informative Entities) [Liu et al., 2023a],
integrates knowledge graphs to enrich its language understanding. DistilBERT
[Sanh, 2019] offers a lighter model that retains most of BERT’s effectiveness
but with fewer parameters and faster training. Additionally, ELECTRA
[Clark et al., 2019b] introduces a novel training approach by using corrupted
plausible tokens instead of masked ones, enhancing learning efficiency and
model performance. The ongoing changes to the BERT framework show
its versatility and adaptability, as researchers explore different aspects
of the model to improve its effectiveness in various language processing
tasks. These adjustments address specific challenges such as computational
efficiency, multilingual support, and incorporation of external knowledge,
enhancing the framework’s usefulness in a variety of applications. Therefore,
using BERT-based models in our research helps ensure comparability with
previous and future studies, given that BERT has become a widely accepted
standard in the field.

The ongoing evolution of the BERT framework, with its focus on
addressing specific challenges and enhancing its versatility in various
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language processing tasks, aligns with the broader landscape of
transformer-based language models. While BERT emphasizes bidirectional
understanding and adaptability across tasks, the Generative Pre-trained
Transformer (GPT) models, first introduced in [Radford et al., 2018], represent
another family of language models that leverage transformer architecture.
Unlike BERT, which is bidirectional, GPT focuses on CLM pre-training (see
Section 2.2.1), attempting to predict the next token based on all preceding
tokens. The model is subsequently fine-tuned for specific tasks such as
text classification, summarization, and question answering. One of the
primary advantages of GPT models is their robust performance in both
few-shot and zero-shot scenarios, even without task-specific pre-training
[Brown et al., 2020a]. However, a notable drawback of these models is
their large size and significant computational demands, which restrict their
practical deployment in production environments. The GPT model has
undergone several improvements over time. GPT-2 [Radford et al., 2019] and
GPT-3 [Brown et al., 2020b] were trained on a more extensive datasets,
and significantly increased the number of parameters compared to
their predecessors. A notable advancement in GPT-3.5, also known as
Instruct-GPT, [Ouyang et al., 2022] is its training protocol that incorporates
human feedback, which refines its ability to follow instructions and generate
more relevant outputs. The latest iteration, GPT-4 [Achiam et al., 2023], is the
most advanced and efficient among GPT models, though specific technical
details that explain its superior performance have not yet been publicly
disclosed.

The T5, or Text-to-Text Transfer Transformer, introduced in
[Raffel et al., 2020], is a model pre-trained to reconstruct a missing sequences
of consecutive tokens. This text-to-text framework implies that T5 processes
input text through an encoder, and generates output text using a decoder.
The primary distinction between BERT and T5 lies in how they handle input
and output transformations. BERT focuses on restoring masked tokens
within a sentence, leaving the unmasked tokens unchanged. T5, on the other
hand, adopts a more comprehensive approach by generating the missing
elements of the text directly, without retaining the original input format.

For instance, given the input sentence "I enjoyedwatching the new [MASK]
movie with my friends", BERT would directly predict the masked word to
complete the sentence, such as "I enjoyed watching the new horror movie
with my friends". Conversely, T5 reformulates this task by potentially taking
an input like "predict missing: I enjoyed watching the new [blank] movie with
my friends" and producing the output "horror", focusing solely on themissing
word without reproducing the entire sentence.

This flexibility allows T5 to dynamically generate textual responses,
making it superior for tasks requiring more complex text generation.
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However, the benefits of T5 come with trade-offs, including longer training
times, larger model sizes, and challenges in model interpretability due to its
extensive capabilities.

Bidirectional Auto-Regressive Transformer (BART) [Lewis et al., 2020] is
a Sequence-to-sequence Transformer that is pre-trained to reconstruct
corrupted noisy text. More precisely, it is composed of an encoder as in BERT
and a decoder as in GPT. Unlike models that only replace masked tokens,
BART is capable of restoring entire sequences where tokens have been
masked, deleted, or permuted. The pretraining process consists in randomly
reordering the original sentences and using a new masking approach where
a sequence of tokens is replaced with a single mask token. While designed
for text generation, BART can also effectively handle comprehension tasks.

Generally, these models perform exceptionally well when used within the
scope of their design, specifically for the tasks and domains on which they
were trained. However, their effectiveness diminishes when applied to text
from highly specialized domains, resulting in poor output quality. This decline
in performance can be attributed to several factors (for more details see
Section 2.4.1):

• Domain specific vocabulary: Specialized fields often use terms that
general models are not trained to understand

• Varied text sources: Texts from different origins may contain unique
syntactic structures and stylistic elements that are unfamiliar to the
model.

• Fast evolution of knowledge: Specialized domains frequently evolve,
introducing new concepts and terminology that models trained on
static datasets cannot consider.

Strategies to address these limitations are discussed in Section 2.3.5.
This section has covered a variety of foundational models in neural

language modeling, from the pioneering approaches like Word2Vec and
GloVe to more sophisticated architectures such as ELMo, BERT, GPT, and
T5. Each model has contributed uniquely to the field, providing deeper
insights and tools for handling the complexities of language through neural
networks. While this discussion is not exhaustive of all themodels developed,
it includes those that have been particularly influential or represent significant
technological steps forward. Subsequent sections will explore specific
pre-trained models and advancements that build on these foundational
techniques.

2.2.5 . Domain-specific Language Models
The training of language models often relies on text data from general

domain, which encompasses a broad range of topics typical in everyday
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language use. However, models trained on texts from this general domain
might not fully capture the nuances of specialized domains like biomedical or
financial literature. When dealing with such domains, domain-specificmodels
become essential, because they leverage domain-specific knowledge and can
achieve superior performance. There are many various domain-specific LMs.
While there exist numerous domain-specific languagemodels, this sectionwill
provide an overview of the models relevant to the present research.

BioBERT, as introduced in [Lee et al., 2020], stands out as a specialized
version of BERT fine-tuned explicitly for biomedical NLP. Its training on
PubMed [White, 2020] abstracts and PubMed Central [Roberts, 2001] full-text
articles ensures its optimization for tasks crucial to the biomedical field, such
as named entity recognition, relation extraction, and question answering.
Given our focus on the biological domain, BioBERT emerges as a highly
relevant tool for our research.

SciBERT [Beltagy et al., 2019] is pretrained on scientific literature, including
papers from the computer science, physics, and other scientific domains.
While not specific to plant epidemiology, it can be adapted for tasks in the
biological and epidemiological domains. Evidence supports its successful
application in biomedical event extraction tasks [Mulya and Khodra, 2023].
However, recent studies suggest that its performance might not be optimal
for agricultural domain-specific tasks [D’Souza, 2024].

ChouBERT [Jiang et al., 2022a] is a pre-trained language model designed
to extract knowledge from French plant health bulletins and identify tweets
related to agricultural contexts. It demonstrates an improved performance
over the CamemBERT model, a variant of BERT trained on French language
texts. However, given our study’s focus on English language analysis, we avoid
using it.

While the models mentioned above are highly relevant to our research,
there are numerous other domain-specific language models tailored to
various fields, each contributing uniquely to the advancement of knowledge
in their respective areas. It is important to note, however, the absence of
a specialized language model for the plant health domain in English, which
underscores a significant opportunity for future development.

Language Models are often adjusted and applied to a particular task,
designed to generate, process or understand textual data. While the
previous section highlighted the adaptation of languagemodels to specialized
domains, the following section will explore a task this thesis focuses on:
Named Entity Recognition. Specifically, we will define the task, outline its
methodologies, discuss its challenges, and examine its applications in various
fields.

2.3 . Named Entity Recognition
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Figure 2.10: Named Entities Recognition task. This example illustrates labelednamed entities in a textual passage.

2.3.1 . Task Definition
One of the fundamental tasks of Natural Language Processing is

Information Extraction, which aims to extract structured information from
unstructured text [Chen et al., 2022]. This process encompasses several
subtasks, including Named Entity Recognition, Relationship Extraction, Event
Extraction, Coreference Resolution, Normalization, Sentiment Analysis, and
others. Named Entity Recognition (NER) is a key component of Information
Extraction that focuses on identifying and classifying named entities present
within a text into predefined categories (see Figure 2.10). These categories
typically include, but are not limited to, names of persons, organizations,
locations, dates, diseases or numerical values such as monetary amounts
and percentages. NER primarily focuses on nominal and adjectival groups,
with verbal groups considered only in specific conditions, particularly for
actionable events such as "launched a product", "discovered a new species",
or "arrested a suspect".

The primary goal of NER is to analyze unstructured text and extract
structured andmeaningful information. This process involves twomain steps:
detection and classification. Detection requires identifying the boundaries
of named entities within the text—essentially, determining where an entity
begins and ends. Classification involves assigning each detected entity to
a specific category based on its context and characteristics. However, it’s
important to note that in practice, most of NERmethods integrate these tasks
into a single step by predicting a label for each token directly.

While some entities like proper nouns (e.g., "New York City") or
collocations (e.g., "Heart Disease") are straightforward to recognize due to
their fixed and consistent nature, the complexity of NER lies in the linguistic
variability and ambiguity inherent in natural language. For example, the
same word or phrase can function as a named entity or common noun
depending on the context, e.g., "Java" as an island in Indonesia versus "Java"
as a programming language. Additionally, terms often have synonyms that
could be abbreviations (like "HBP" for "High Blood Pressure") or metaphorical
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names (such as "Olive Tree Killer" for "Xylella Fastidiosa"), which are very
complicated to identify. The system should also be able to recognize concepts
it was never adjusted to, such as recognizing "NYC" as a location, even though
it was adjusted for "New York City" only.

Furthermore, NER systems often face the challenge of handling nested
entities, where one named entity is embedded within another, such as the
location entity "America" within the organization entity "Bank of America".
These scenarios require precise models that can discern multiple layers of
entity categorization within a single context. Another significant challenge is
discontinuous entities, which consist of parts that are separated from each
other by other words. For example, the phrase "countries of South Asia"
in "countries of Europe and South Asia" constitutes a discontinuous entity
labeled as "location", referring to a specific region.

Overcoming these challenges requires sophisticated linguisticmodels and
algorithms capable of understanding context and distinguishing between
different uses of language.

2.3.2 . Evaluation
A standard evaluationmeasure forNER tasks is the F-measure, or F1-score,

which combines precision and recall into a single performance indicator.
Precision assesses the accuracy of the named entities correctly identified by
the model out of all entities it identified, reflecting the model’s exactness.
Conversely, recall measures the proportion of correctly identified entities out
of all the entities the model should have detected, thus showing the model’s
completeness.

A model with high precision but low recall indicates that while the
entities it identifies are likely correct, it misses many relevant entities.
This scenario may be preferable in situations where the accuracy of each
identification is critical, such as in security-related contexts—for instance,
monitoring communications for potential threats or screening individuals
at checkpoints—where high precision ensures that the resources are
concentrated on genuine threats, minimizing false alarms.

On the other hand, low precision with high recall suggests the model
identifies most entities but also incorrectly labels non-entity text as entities.
Prioritizing recall over precision might be more appropriate in scenarios
where capturing as much relevant information as possible is paramount,
such as during emergencies like natural disasters or public health crises.
This approach is particularly useful if human review of the results, such as
for epidemiological alerts, is planned. Here, systems prioritizing high recall
could quickly extract all potentially relevant information from various texts,
accepting the risk of including some irrelevant data to ensure comprehensive
coverage.
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The F-measure is the harmonic mean of precision and recall and is given
by the following formula:

F1 = 2 ·
( precision · recall
precision+ recall

)
This formula ensures that both precision and recall are balanced, making

the F1-score a crucial metric in scenarios where it is equally important to
avoid false positives (incorrectly labeled entities) and false negatives (missed
entities). This balanced approach is essential for developing effective NER
systems that are adaptable to various practical scenarios, ensuring both
reliability and robustness. Additionally, when evaluating the F1-score across
multiple classes or datasets, averaging methods such as micro and macro
averaging come into play. Micro averaging calculates global totals for
true positives, false positives, and false negatives across all classes before
computing the F1-score, making it sensitive to class imbalance. In contrast,
macro averaging computes the F1-score separately for each class and then
averages these scores, considering all classes are equal irrespective of their
frequency.

2.3.3 . Datasets
A dataset is a systematically organized set of data collected or extracted

from various sources, intended for analysis to draw conclusions, test
hypotheses, or develop predictive models. In the realm of NER, a dataset is
a collection of texts where each word is labeled with a specific entity type
label or marked as not belonging to any entity type. Below are summaries of
commonly used datasets for NER along with some domain specific datasets.
It is important to note that while these datasets are representative, they are
only a small fraction of the many available for NER research. For a more
comprehensive list of NER datasets, researchers may refer to platforms like
Papers with Code1, which catalogues a wide array of datasets across various
tasks and domains.

The Named Entity Recognition task was introduced by
[Grishman and Sundheim, 1996] during the Message Understanding
Conference (MUC). The goal was "to identify component technologies
from the field of information extraction that are practical, largely
domain-independent, and capable of being automated with high accuracy".
Alongside this task, the MUC corpus was also introduced, which initially
included only locations, organizations, and persons as named entities.
However, this dataset is no longer in use as it became outdated and limited in
scope, failing tomeet the evolving needs of NER systems and the complexities
of modern language data.

1https://paperswithcode.com/datasets
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The most commonly used dataset for NER is CoNLL-2003
[Sang and De Meulder, 2003]. It consists of texts in both German and English,
comprising named entities across four distinct categories: individuals,
organizations, locations, and miscellaneous entities that do not align with the
first three types. Primarily composed of news articles, the corpus showcases
a vocabulary representative of the general domain. Since it is a widespread
dataset, its usage ensures that our results derived from it are comparable to
current standards and research outcomes in the field.

OntoNotes dataset [Weischedel et al., 2013] was developed to annotate
a large textual corpus in Arabic, English, and Chinese languages, composed
of diverse sources such as weblogs, broadcast talk shows, telephone
conversations, and news articles. The dataset’s annotations extend beyond
Named Entity Recognition to encompass structural elements such as
syntax and predicate-argument structures, as well as shallow semantic
information, providing a rich resource for multifaceted linguistic analysis.
However, recent findings have highlighted annotation errors within the
corpus[Bernier-Colborne and Vajjala, 2024], leading to our decision not to use
it.

WNUT 2016 [Strauss et al., 2016] and WNUT 2017 [Derczynski et al., 2017],
both originating from Twitter data [Ritter et al., 2011, Baldwin et al., 2015],
respectively include ten and six Named Entity types, covering a wide range
of general domain topics, such as company, facility, movie, person, product,
location. This collection spans a broad spectrum of topics within the general
domain, including shooting events and cybersecurity incidents. Unlike its
predecessor, WNUT 2017 includes comments exceeding 140 characters to
capture a variety of writing styles and unique characteristics. While it retains
the Twitter texts used in WNUT 2016, it expands its scope by incorporating
additional comments from Reddit2, Stack Exchange3, and YouTube4. This
expansion aims to cover a wider array of subjects, from geographical
nuances to specific topic-related events, thereby facilitating a comprehensive
approach to data mining. However, we did not use this corpus in our
experiments, as we aimed to test our approach on datasets from different
domains with minimal overlap in entity types, and the WNUT entities largely
overlap with those in the CoNLL dataset we had already selected for our
experiments.

The Wikigold corpus [Balasuriya et al., 2009] consists of Wikipedia articles
across nine languages, each manually annotated with named entities such as
individuals, organizations, and locations. For more granular analysis, these
main categories are further divided into subcategories such as Geopolitical

2https://www.reddit.com/?rdt=348823https://stackexchange.com/4https://www.youtube.com/
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Entities, facilities, and towns within the location entity type, providing a
detailed framework for entity recognition across diverse linguistic contexts.
Although this corpus is relevant to our study, we did not use it for the same
reasons as the WNUT dataset.

The MIT Movies and Restaurant corpora [Liu et al., 2013a] delve into
specific domains, offering rich datasets for analyzing movie-related
information and restaurant-related conversations through short reviews,
descriptions, and queries. The MIT Movies corpus covers 19 Entity types
including actors, awards, genres, soundtracks, among others, offering a
rich dataset for analyzing movie-related information. In parallel, the MIT
Restaurant corpus contains 8 annotated Entity types, including dishes,
cuisines, amenities, locations, hours, ratings, among others, providing a
comprehensive dataset for exploring restaurant-related conversations. Both
corpora are domain and format specific because of user-generated content
and a distinct set of entities, making them particularly suitable for our
research.

The NCBI Disease Corpus, developed by [Doğan et al., 2014], is centered
on human diseases and comprises 793 PubMed5 abstracts. It contains
mentions of four distinct entity types: Composite Mentions, Modifiers,
Disease Class Mentions, and Specific Diseases. Furthermore, this corpus
enriches Named Entity Recognition with Concept Normalization annotations,
using MeSH [Lipscomb, 2000] and OMIM [Hamosh et al., 2000] codes. Thus,
with its scientific text style and specific entity set, the NCBI Disease Corpus is
a relevant resource for our research.

Bacteria Biotope [Bossy et al., 2019] is a corpus specifically focused on
the identification and annotation of bacteria and their phenotypes and
geographical locations. It includes three labeled entity types: microorganism,
habitat and phenotype. Additionally, this corpus is enriched with annotations
for concept normalization and relation extraction, enhancing its utility for
complex analysis tasks. Therefore, Bacteria Biotope, being a corpus specific
to the biological domain, is highly relevant to our study.

This overview of datasets for Named Entity Recognition illustrates the
variety and depth of resources available in the field. The diversity in the
types of named entities underscores the complexity of the task. Each
dataset, whether general or domain-specific, serves as a crucial tool for
developing and evaluating NER models, catering to a broad spectrum of
linguistic challenges. Consequently, the selection of a dataset is essential for
designing and training effective NERmodels as it directly impacts the breadth
and specificity of recognizable entities by the model.

2.3.4 . Annotation Standards
5https://pubmed.ncbi.nlm.nih.gov/
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The process of labeling or annotating named entities in text is pivotal.
It lays the groundwork for training machine learning models accurately.
However, this task is not without its complexities, mainly due to the diversity
of annotation standards, guidelines and formats employed across different
datasets and projects. These standards dictate how text should be annotated,
including the definition of entity types, the format of the annotation, and how
to deal with ambiguities or entities that span multiple words. Some of the
widely recognized annotation standards in the NER domain include:
IOB (Inside, Outside, Beginning)
One of the simplest and most fundamental tagging schemes of NER is
IOB, that classifies tokens as Inside an entity, Outside any entity, or at
the Beginning of an entity. Each line in an annotation file typically pairs
a token (often a word) with a tag that combines its position (I, O, or B)
and entity type. While effective for basic NER tasks, IOB can struggle with
nested and discontinuous entities. For example, in the phrase "Bank of
America", "Bank" would be annotated with the label "B-org", and "of" with
"I-org". However, it becomes challenging to annotate "America" as it is part
of an organization entity and simultaneously represents a separate location
entity. This ambiguity highlights the limitations of the IOB scheme in dealing
with complex entity structures that might be better served by more detailed
schemes like BIOES.
BIOES (Beginning, Inside, Outside, End, Single)
BIOES, also known as BILUO (Beginning, Inside, Last/End, Unit/Single,
Outside), extends the IOB tagging scheme by incorporating two additional
tags. These additional tags explicitly mark the End of an entity and identify
Single-token entities.This additional granularity helpsmodelsmore accurately
predict entity boundaries. However, it still does not fully accommodate the
annotation of nested and discontinuous entity structure.
BRAT stand-off format
BRAT (Brat Rapid Annotation Tool) is a web-based tool for text annotation that
also defines its own annotation format. Annotations are stored separately
from the text in dedicated files, a format knownas stand-off annotation, which
is particularly useful for avoiding copyright issues. Each line in the annotation
file corresponds to a named entity and includes an annotation ID, an entity
type, indices of the character string in the text, and the corresponding
character string itself. For example, in the phrase "Harvard University located
in Cambridge" the annotation file would contain two lines: "T1 Organisation
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0 18 Harvard University" and "T2 Location 30 39 Cambridge". This structure
allows to consider nested and discontinuous entities, providing flexibility for
annotating complex linguistic structures that may overlap or be separated
by intervening text. Additionally, BRAT supports normalization annotations,
which serve as the subsequent stage in the information extraction process
following NER.

PubTator format
Like BRAT, PubTator is an annotation tool that specifies its own format.
Developed by the National Center for Biotechnology Information (NCBI), it
is designed to meet the specific needs of the biomedical community. In
PubTator, both annotations and the associated texts are contained within
the same file. Each annotation entry includes a text ID, the corresponding
character string, its indices in the text, an entity type, and an identifier linking
to an appropriate database or ontology.

BioC format
Developed as part of the BioCreative (Biological Text Mining and its
Applications in Biomedicine) community initiative, BioC is an XML-based
format designed to facilitate the interoperability of biomedical text mining
systems. In this structured format, each annotation is linked to the
corresponding text through the hierarchical organization of an XML tree.
Annotations in the BioC format include comprehensive details such as the
entity type, the exact character sequence from the text, the start index, the
length of the annotation, and a unique identifier from a relevant database
or ontology. This structure not only ensures precision in text annotation but
also promotes consistency and ease of data integration across different text
mining and processing tools. However, it does not naturally accommodate
discontinuous entities, which can be crucial for capturing complex biological
phenomena.

Silver Annotation
Unlike the manually curated methods discussed above, silver annotations
are automatically generated by one or several methods, often averaged or
weighted by confidence factors. Although commonly used in semi-supervised
learning environments and evaluated in few-shot scenarios due to their
minimal reliance on labeled data, silver annotations must be used cautiously,
because the quality of labeled data has an impact on the performance
of machine learning algorithms. Therefore, while they provide a scalable
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annotation method, their reliability may not always match that of manually
curated datasets.

There are many more annotation formats used for NER, but only the
most classic and widely used are listed here. This diversity of formats can
be both an advantage and a disadvantage. On one hand, it allows users to
select the format that best suits their specific needs; on the other hand, it
necessitates the reformatting of annotations when applying systems across
different corpora. The choice of annotation standard can significantly impact
the training and performance of NERmodels, given the consideration - or lack
thereof - of nested and discontinuous entities, emphasizing the importance
of careful selection based on the unique objectives and challenges of each
project. In our research, we used the BRAT format because it accommodates
all the complex phenomena we needed to model, including discontinuous
and nested entities.

2.3.5 . Techniques and Models Overview
Rule-based Approaches
Traditional approaches to NER were predominantly rule-based, employing
expertly crafted sets of predefined rules. These rules, which hinge on
linguistic, syntactic, and domain-specific knowledge, aremeticulously tailored
to specific domains to ensure accuracy and efficiency. Due to their
domain-specific nature, rule-based systems are highly precise but lack
generalization performance across different domains and require manual
effort in rule creation, alongside advanced domain expertise.

For instance, regular expressions and dictionary based approaches were
employed by [Packer et al., 2010, Etzioni et al., 2005, Sekine and Nobata, 2004,
Zhang and Elhadad, 2013, Kim and Woodland, 2000, Hanisch et al., 2005]
and compared with ML approaches. Surprisingly, regular expressions
outperformed ML approaches in some cases. This performance can be
attributed to the inclusion of specific mentions in the dictionaries on which
regular expressions are based, and their absence in the training data used
by ML algorithms.

[Eftimov et al., 2017] proposed a rule-based NER method called drNER
for extracting dietary information, marking a novel contribution to the field.
Their two-phase approach begins with entity detection and proceeds to
entity extraction, validated across texts from scientific websites and research
articles.

Regular expressions were also used to complete ML approaches.
Thus, [Sari et al., 2010] combined rule-based extraction with semi-supervised
learning to identify entities in accident records. Using tools like the
Stanford Part-of-Speech tagger, they extracted patterns to classify entities
into categories like date and location, assessing their method’s accuracy

53



through Exact Match evaluation.
[Korkontzelos et al., 2015] introduced a voting mechanism to combine

predictions from different MLmodels and developed string-similarity metrics
based on common suffixes in drug names, using these metrics to generate
regular expressions that enhance dictionary-based tagging accuracy.

The FoodIE approach, presented in [Popovski et al., 2019], is designed to
extract food entities from unstructured textual data, including recipes and
dietary recommendations. It leverages existing terminologies and syntactic
patterns to identify and classify food-related terms without requiring an
annotated corpus, addressing a significant gap in food entity research
within biomedical literature. This system integrates text preprocessing,
part-of-speech tagging, semantic tagging, and the recognition of food entities
into a coherent workflow, highlighting its adaptability and potential for
enhancing food-related information extraction, which is particularly beneficial
for public health applications. However, since this approach relies heavily on a
set of domain-specific rules, its adaptability to other types of data or domains
may be limited.

Several other rule-based systems, such as those described
by [Boulaknadel et al., 2014], [Elsayed and Elghazaly, 2015],
[Pushpalatha and Thanamani, 2019] demonstrated the applicability of
rule-based approaches in information extraction across various languages
and domains. Despite their precision and reliance on detailed linguistic and
syntactic knowledge, these systems are constrained by their domain-specific
focus and require a substantial amount of human expertise to create
effective rules. Furthermore, they cannot be easily adapted to new domains
[Li et al., 2020]; in fact, it is often more feasible to develop a separate
rule-based system for each new domain. For these reasons, machine
learning approaches have become more common and widely used in the
field.

Machine Learning Approaches
The state-of-the-art NER models rely on supervised Machine
Learning algorithms such as BiLSTM+CRF [Wang et al., 2021], BERT
[Devlin et al., 2019], generative models [Shen et al., 2023] or prompt
engineering [Wang et al., 2023a].

Supervised methods are applied to data that comes with predefined
labels, training machines on this labeled dataset to either make predictions
or classify the data based on the given task. In the context of Named Entity
Recognition systems, selecting the appropriate learning algorithm is pivotal.
The traditional supervised learning algorithms for NER tasks include Hidden
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Markov Models (HMM), Conditional Random Fields (CRF) [Li et al., 2009], and
Support Vector Machines (SVM) [Ju et al., 2011].

HMM algorithms were once popular for resolving NER tasks. The
first use of HMM was introduced by [Bikel et al., 1997] and showed
93% of F-score on MUC-6 dataset, thus demonstrating its efficacy.
Various modifications were explored by researchers [Zhou and Su, 2002,
Morwal et al., 2012, Morwal et al., 2012]. However, HMMs do not effectively
capture long-range dependencies in text, they require careful feature
engineering and are less efficient than deep learning models.

CRFs have been also extensively used for NER [McCallum and Li, 2003,
Settles, 2004, Krishnan and Manning, 2006], but withmore varied approaches
than HMMs. For instance, to address challenges like noisy and limited data in
social media NER, particularly in the context of concise and sparse tweets, one
of the early Machine Learning methods was introduced by [Li et al., 2009]. It
capitalizes on tweet redundancy through a two-phase NER process. Initially,
each tweet undergoes a preliminary labeling using a sequential labeler based
on a CRF model (see Section 2.1.1). Subsequently, tweets sharing similar
content are aggregated into clusters. Within these clusters, tweet labels
are refined through a CRF model that assimilates cluster-level information,
including the labels of the current word and its adjacent words across all
tweets in the cluster.

Some researchers still use CRF in recent works. A statistical NER
system for the Marathi language, developed by [Patil et al., 2020] uses a
Conditional Random Field for identifying and categorizing named entities.
Given Marathi’s morphological richness, this approach effectively locates and
categorizes named entities within the language, showing promising results
in accuracy. However, incorporating more contextual knowledge could
potentially enhance these results. However, this research is exceptional,
as CRF models are rarely used alone nowadays. Instead, they are widely
implemented on top of neural networks for enhanced performance.

SVM were also among the first models to achieve significant success
in classifying named entities. Firstly applied in [Takeuchi and Collier, 2002],
it outperformed HMM model on MUC-6 dataset. It was used by many
researchers due to its efficiency on small datasets.

These models were considered to be highly effective in NER task
before the advent of more advanced ML models, primarily due to
their ability to model the sequential dependencies in text data. The
advent of neural networks has marked a significant evolution in NER
methodologies. One of the most widely used architectures, first applied
in [Limsopatham and Collier, 2016], is a bidirectional LSTM model that
automatically generates orthographic features from Twitter text, eliminating
the reliance on manually crafted features. This approach improves the
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model’s capability to categorize entity mentions within the noisy and informal
language typical of tweets. The model employs both character and word
embeddings; it uses a convolutional neural network to create character-based
word representations while also incorporating pre-trained word embeddings
to capture deeper semantic and syntactic context. This model significantly
outperformed previous methods on social media texts.

Researchers are not only refining existing methodologies but also
embracing advanced techniques that leverage the strengths of both
approaches. The integration of diverse algorithms, such as CRF and SVM,
has demonstrated substantial improvements in dealing with complex data
characteristics. For instance, methods like the two-phase NER process for
social media and the dual-phase strategy in biomedical contexts illustrate
the adaptation of these models to specific challenges such as sparse data
and class imbalance. These developments pave the way for incorporating
more sophisticated neural network techniques that promise even greater
enhancements in NER performance.

In the biomedical field, a BERT-HMM-based NER system, introduced by
[Li et al., 2021], was specifically designed to address the challenge of noisy
labels frommultiple sources. This systemuses anHMMmodel to refine labels
predicted by BERT, demonstrating how simpler methods can enhance the
effectiveness of modern approaches when combined.

Among the most significant of the advancements in the field of model
integration is the combination of Long Short-Term Memory (LSTM) (see
Section 2.1.1) networkswith Conditional RandomFields (CRF) (see Section 2.1.1),
including their Bidirectional variants. The integration of BiLSTM with BiCRF,
first applied to NER by [Panchendrarajan and Amaresan, 2018], effectively
models label dependencies by considering both preceding and subsequent
labels within the sequence. The architecture also incorporates pre-trained
word embeddings, Part-of-Speech tags, and casing features. Demonstrating
robust performance on the CoNLL-2003 dataset, it notably outperforms
models using unidirectional CRF. Furthermore, it excels in identifying complex
named entities and enhancing the detection of Miscellaneous entities due to
its bidirectional capabilities.

Further advancements have been achieved with the introduction of BERT
[Devlin et al., 2019]. BERT transforms the landscape of NER tasks by using
a mechanism known as the transformer (see Chapter 2.2), which processes
words in relation to all other words in a sentence, rather than one at a time.
This allows BERT to capture the full context of a word by looking at both
its left and right surroundings—a feature called bidirectional training. When
applied to NER, BERT has shown remarkable success, outperforming previous
models by a significant margin because it deeply understands the semantic
relationships within text.

56



The WikiNEuRal approach [Tedeschi et al., 2021] combines two previously
discussed approaches and uses BERT+Bi-LSTM+CRF. This method harnesses
the capabilities of pretrained language models within a framework that
incorporates knowledge-based techniques and neural models. By leveraging
the hyperlinked structure of Wikipedia for data extraction and annotation,
WikiNEuRal distinguishes named entities from general concepts (e.g.
appartment, plane, etc.) in Wikipedia articles. It also employs a validation
process for silver annotations and identifies previously unlabeled entities
within this silver data, thereby overcoming the limitations of traditional
heuristic methods. The approach also incorporates domain adaptation
algorithms, enhancing its performance across various testing settings and
demonstrating significant improvements in span-based F1-score points on
standard benchmarks.

The NER task can also be solved using a generative approach, such
as SC-NER model [Wang et al., 2019]. This model initially employs a
classifier to determine the presence of entities in sentences, followed by
a sequence-to-sequence (seq2seq) framework that incorporates both an
encoder and a decoder based on Long Short-Term Memory networks. The
output is a sequence of labels instead of words (e.g. for "Albert Einstein was
born in Ulm" a sequence can be "B-per I-per O OO B-loc"). Preliminary results
demonstrate that SC-NER outperforms classic models on a custom dataset
of patent documents in precision and recall, particularly in recognizing
specific entity types such as materials, highlighting its potential suitability for
specialized domains.

DiffusionNER [Shen et al., 2023] redefines a NER task as a denoising
diffusion process to refine the boundaries of named entities from noisy
spans. Generally, a denoising diffusion process creates images or generates
data by starting with a completely random pattern and gradually removing
the randomness (or "noise") to form a structured, meaningful image. In
the context of DiffusionNER, this process begins with an approximate initial
guess of entity locations in the text and methodically refines these guesses
by progressively eliminating errors and uncertainties. This method not only
enhances the accuracy of identifying entity boundaries but also enables
the model to handle an arbitrary number of entities dynamically during
evaluation, a significant advantage in practical scenarios.

The W2NER method [Li et al., 2022b] uses a combination of BERT
and BiLSTM for generating contextual word representations, and applies
convolutions for refining these representations. Relations between words
are categorized into Next-Neighboring-Word and Tail-Head-Word-* relations,
aiding in the identification of entity boundaries and types.

The Universal NER approach [Zhou et al., 2023] involves refining the
ChatGPT model using a technique called distillation, which involves a smaller,
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less powerful model learning to imitate the predictions of a larger, fully
trained model. Despite its smaller size, UniversalNER outperforms ChatGPT
and other BERT-based models in recognizing named entities across widely
used datasets like ConLL-2003, MIT Movies, NCBI diseases, WikiNeural, and
others in both fine-tuned and zero-shot settings. However, this method
depends on the availability of a large pre-trained model, making it less
versatile for situations where such models are not accessible. Distillation
primarily serves as an optimization strategy to enhance performance and
efficiency, rather than a domain adaptation technique.

Thus, supervised learning techniques currently represent the
state-of-the-art in Named Entity Recognition systems. As technology
advances, the integration of classical algorithms like CRF and SVM with
advanced neural network architectures such as BERT has transformed the
field of NER. However, these methods rely on a substantial amount of labeled
data [Jehangir et al., 2023]. The performance of these supervised methods
typically improves with an increase in training examples, often reaching
state-of-the-art results when sufficient data is available. Yet, in practical
scenarios, especially in low-resource languages or specialized domains,
acquiring a large volume of annotated data is either costly or impractical.
This limitation highlights the necessity for exploring unsupervised methods,
which do not depend on labeled data and exploit inherent patterns within
the dataset itself.

Unsupervised methods Unsupervised learning techniques are applied
to unlabeled data, to raw texts in NLP, although labels may be used for
evaluating the models. Two primary strategies in unsupervised learning
include association and clustering. The association technique focuses on
detecting patterns and relationships among variables by analyzing their joint
occurrences. Conversely, clustering involves organizing objects into groups
(clusters) where themembers of each group aremore alike to each other than
those in different groups, which helps reveal natural classifications within the
data. These methods are crucial in contexts where labeled data is scarce or
costly to obtain.

In the realm of biomedical NER, the approach outlined by
[Zhang and Elhadad, 2013] stands out for its flexibility across different
semantic categories and textual formats. This method, which processes raw
texts, is based on leveraging terminologies, shallow syntactic patterns, and
statistical data from the corpus. Entity types are modeled through classes
of a knowledge base, which also helps in normalizing concepts. While their
technique demonstrated promising results on clinical notes and biomedical
datasets, it does not take into consideration nested and discontinuous
entities, which are prevalent in complex biomedical texts.
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A cross-domain unsupervised domain adaptationmodel was proposed by
[Peng et al., 2021]. It uses adversarial training of a classic model coupled with
entity-aware attention to reduce domain distribution shifts. The adversarial
training component aims to minimize the misalignment of entity features
during the learning process. However, the model’s performance is likely
highly dependent on the quality and representativeness of the source domain
data. If the source data does not adequately capture the diversity of
entity types or contextual usage found in the target domain, the model’s
effectiveness could be compromised.

The Knowledge Augmented Language Model (KALM) [Liu et al., 2019a]
integrates a RNN-based neural language model with information about
entities types, which are organized into groups within the knowledge base.
KALM improves languagemodeling by using a gatingmechanism that decides
whether a word is treated as a general vocabulary item or as an entity,
enhancing the model’s ability to handle named entities and generalizing
across entity classes. This approach enables KALM to recognize named
entities in an unsupervisedmanner, demonstrating the potential of predictive
learning combined with entity knowledge to enhance the training of deep
learning models. The model significantly reduces perplexities in language
modeling tasks and achieves competitive accuracy in NER. Although effective,
the model requires access to a knowledge base, which may be difficult to
obtain for certain domains.

CycleNER, introduced in [Iovine et al., 2022], is a generative approach
that uses unannotated sentences along with a set of named entity samples
which reflect the same entity distribution found in the target texts.
This method consists of two core components: Sentence-to-Entity and
Entity-to-Sentence, both implemented as sequence-to-sequence networks.
These components are trained through a bi-directional cycle, allowing the
system to convert sentences to entities and vice-versa, thereby leveraging the
cycle-consistency concept. CycleNER was evaluated on several benchmarks,
showing competitive results close to state-of-the-art supervised methods.

Overall, the use of unlabeled data by unsupervised methods makes the
training process cost-effective compared to traditional supervised methods.
Despite the advancements brought by these unsupervised methods, they
generally fall short of the accuracy achieved by supervised approaches.This
gap has led to the further exploration into alternative strategies that aim
to bridge the robustness of supervised learning with the scalability of
unsupervised techniques.

Semi-supervised methods Semi-supervised learning approaches for
NER offer promising solutions by leveraging both labeled and unlabeled data,
aiming to address the scarcity of annotated corpora in specific domains.
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These methods blend the strengths of supervised learning with the ability
to harness large volumes of unlabeled text, enhancing model performance
without extensive manual labeling efforts.

One notable approach is kNN-NER [Wang et al., 2022] that integrates
k-nearest neighbor (kNN) retrieval with traditional NER models to enhance
performance, particularly in managing long-tail cases without extensive
training datasets. The proposed model retrieves similar examples from
a cached training set during inference, thereby reducing the need for
memorization and allowing the model to generalize better from less data.

A semi-supervised ensemble learning approach was introduced by
[Ma et al., 2020]. It combines Conditional Random Field, Bidirectional Gated
Recurrent Unit, and Bidirectional Long Short-Term Memory models. This
approach implies an iterative training of the model with minimal labeled
data alongside a substantial corpus of unlabeled text. By initiating training
with a small labeled dataset for pre-training the base learners, which
then collaboratively assign reliable labels to the unlabeled data through a
tri-training algorithm.

Weakly supervised methods Weakly supervised learning shares
similarities with semi-supervised learning. This distinction focuses on the
type and quality of data each method employs to train models. While
semi-supervised learning uses a combination of labeled and unlabeled data
to enhance training, weakly supervised learning operates with labels that are
noisy, inexact or incomplete [Zhou, 2018].

One of working weakly supervised methods to overcome data scarcity
limit is distant supervision, which is based on the hypothesis that if specific
words or phrases are labeled as entities in one corpus, they should similarly
be labeled in other corpora, allowing for the generation of labeled data from
unlabeled text. However, this approach canmistakenly label non-entity words
as entities, leading to decreased performance. To address this issue, the
Spy-PU algorithm [Zheng et al., 2021] treats these incorrectly labeled samples
as unlabeled and introduce a semi-supervised method to reliably identify
positive samples. This method strategically embeds a certain proportion of
known positive samples into a set of unlabeled samples to help identify and
confirm genuine positive samples within that unlabeled set. Demonstrating
promising results, this method enhances the effectiveness of Chinese NER
models across multiple public datasets, overcoming the limitations of sparse
and inaccurately labeled training data.

The Bert-Assisted Open-Domain Named entity recognition with Distant
Supervision framework [Liang et al., 2020] is another approach with distant
supervision that uses a two-stage training process to effectively address the
challenges of label scarcity and noisy data in NER. Initially, the RoBERTamodel
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is fine-tuned with distantly-matched labels. Subsequently, a teacher-student
framework refines the training through the use of pseudo soft-labels,
significantly enhancing the model’s ability to handle incomplete annotations
and improving overall quality.

Each of these works exemplifies the diverse strategies within
semi-supervised and distant supervised NER, ranging from ensemble
learning and unsupervised entity linking to original applications of distant
supervision. Such approaches lay the groundwork for further exploration
into how models can be fine-tuned for even more precise and contextually
aware entity recognition. Nevertheless, there are other techniques that
allows to improve NER systems particularly in scenarios where data is scarce.
These will be discussed in the subsequent sections.

Prompt engineering Prompt engineering represents a distinct family of
techniques in the landscape of machine learning, positioned as a method
that focuses on modifying inputs to use pre-trained language models (PLMs)
without the extensive need for new data labeling or model retraining. In the
context of NER, it is aimed to optimize the recognition and classification of
entities within texts, particularly in low-resource scenarios. By structuring
input data through pre-designed prompts, researchers can leverage the
intrinsic knowledge of PLMs without requiring extensive labeled datasets.

A prime example of this approach is PromptNER [Zhang et al., 2023a],
a few-shot prompting approach. This model integrates a component for
detecting the positions of entity spans and utilizes a classifier to determine
entity types via prompts. Unlike traditional methods that rely on prototypical
networks, PromptNER employs k-nearest neighbor search to leverage entity
information from supporting examples effectively. This allows for direct
fine-tuning on new support sets, facilitating a smoother transition from the
training to the fine-tuning phase. However, PromptNER cannot recognize
discontinuous entities, as it assigns only one position slot per entity, which
might not capture multiple segments of a split entity. In addition, the number
of entities that PromptNER can identify is limited by the number of position
slots pre-determined during its training, which can lead to problems if an
unexpected number of entities appears in the text.

A Prompt-based Text Entailment (PTE) approach, introduced by
[Li et al., 2022a] redefines the task of Named Entity Recognition by framing
it as a text entailment problem, which effectively leverages pre-trained
language models in low-resource settings. In natural language processing,
entailment involves evaluatingwhether a premise can logically imply the truth
of a hypothesis. Using this framework, the PTE method generates specific
prompts corresponding to each entity type and pairs these prompts with
the original sentences. These combinations are fed into pre-trained models
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that evaluate and score each potential entity type based on its congruence
with the given sentence context. The entity type receiving the highest score
is then selected as the correct classification. This approach streamlines the
recognition process by focusing on individual words rather than larger text
segments or n-grams, enhancing efficiency and adaptability in scenarios with
sparse data. Nevertheless, the model’s reliance on the binary outcome of
a text entailment task (entailment vs non-entailment) may oversimplify the
complexity and ambiguity inherent in human language, especially in handling
entities that require contextual or background knowledge to be identified
correctly.

The COntrastive learning with Prompt guiding for few-shot NER (COPNER)
technique, proposed by [Huang et al., 2022]combines contrastive learning
with prompts enriched with class-specific words. These words represent
various entity categories, such as "individual" for "person", "place" for
"location", and "company" for "organization". By embedding these prompts,
the model leverages the semantic richness of Pre-trained Language Models.
During training, COPNER aligns theword representationswith these prompts.
In the inference phase, these class-specific words serve as metric referents,
enabling the model to classify new examples accurately. This method
enhances previous prompt-based approaches by providing a more adaptive
and versatile framework for entity recognition, particularly effective in
specialized or complex areas where conventional models may struggle due
to limited data.

QaNER, developed by [Liu et al., 2022], transforms the NER task
into a Question Answering (QA) format. This method generates NER
specific prompts for QA models. By fine-tuning QA models with a few
annotated NER example, QaNER facilitates low-resource training and
enables zero-shot learning capabilities. It outperforms other approaches
in terms of computational efficiency and adaptability in low-resource and
zero-shot scenarios on the MIT Movies [Liu et al., 2013a], MIT Restaurants
[Liu et al., 2013a] and CoNLL-2003 [Sang and De Meulder, 2003] datasets.

While prompt engineering significantly enhances the capabilities of
pre-trained language models in NER, it requires substantial computational
resources and offers limited options in open-source tools. Moreover,
the decision-making process in prompt engineering is often challenging
to interpret because, unlike traditional learning strategies where features
are explicitly designed and selected for model training, control over the
model is indirect and mediated through prompts. Despite these challenges,
whether employing supervised, unsupervised, semi-supervised, or prompt
engineering, the effectiveness of the algorithm in a specific domain can
be further improved through domain adaptation techniques, which will be
explored in the following section.
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Domain Adaptation techniques
Domain adaptation is usually seen as a specific form of transfer learning,
a machine learning strategy where knowledge acquired from solving one
(source) problem is applied to solve a related but distinct (target) problem.
The principle behind this approach is that general insights gained from
one domain can improve performance in another. Specifically, domain
adaptation deals with the challenge of transferring knowledge between
domains. A "domain" encompasses the data environment, including its
features, distribution, and specific tasks. For instance, a model trained
on English news articles might be adapted to analyze social media texts.
Although both domains involve text and may share tasks like sentiment
analysis or NER, their linguistic styles, usage, and content often differ
markedly.

Traditional approaches to domain adaptation in NER frequently use
difference between domains, as demonstrated in [Jia et al., 2019]. This
method leverages both domain and task-specific embeddings to generate
dynamic parameters for NER and MLM tasks. The core of this approach is
the hypothesis that the overall behavior of the model is determined not by
a unified set of parameters but by a combination of foundational settings
(meta parameters) and the adjustments provided by task embeddings and
domain embeddings. By decomposing the parameters into meta parameters
and embeddings, the approach allows the model to flexibly adapt to various
domains and tasks by mixing and matching these components, leading to
more effective and versatile performance across different scenarios. This is
achieved by training the model with a combination of both labeled NER data
and unlabeled raw data for MLM task (see Section 2.2.1) from both source
and target domains. One unique feature of this method is that it supports
learning in new fields without needing specific examples from those areas, by
automatically deriving target-domain NER parameters from source-domain
data.

The study of [Peng et al., 2021] introduces an entity-aware adversarial
domain adaptation network to bridge the domain gap for NER. The approach
applies adversarial training to minimize the distributional differences in
token probabilities across domains while paying special attention to entity
features through an entity-aware attention mechanism. This dual strategy
ensures that the model not only learns domain-invariant features but also
prioritizes the alignment of entity-related characteristics, leading to superior
performance in the target domain. This model demonstrates the efficacy
of adversarial approaches in domain adaptation for NER by focusing on
entity-level feature alignment.

In [Zheng et al., 2022] relationships between labels are modeled via
graphs. By constructing label graphs in both source and target domains
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and formulating the problem as a graph matching issue, this approach
allows the transfer of label knowledge even when label sets do not overlap.
Integrating label graphs with word embeddings enhances the model’s
ability to understand and use label-specific information, thereby improving
cross-domain NER performance. This method highlights the potential
of graph-based approaches in capturing and transferring complex label
relationships across domains.

In [Zhang et al., 2021], domain adaptation is examined from a unique
perspective by treating crowdsourcing for NER as its application. By
considering crowdsourced annotations as domain-specific data, this
approach implies applying cross-domain adaptation techniques to leverage
the diversity in annotators’ perspectives. An annotator-aware representation
learning model is proposed to effectively capture domain annotator-specific
features, demonstrating substantial improvements in NER performance with
crowdsourced data.

The approach that captured our attention is described in [Ma et al., 2022].
In this method, the authors leverage two BERT models. The first BERT model
encodes the input text along with its tokens in a normal way. The second
model is dedicated to encoding the labels, specifically the entity types. Each
label is transformed in a natural language form (e.g., "person" for "PER"),
but conserves the IOB format (see Section 2.3.4), resulting in labels like
"beginning person" for beginning of an entity "person" and "inside person" for
continuation of an entity "person". These enriched label embeddings are then
combinedwith text embeddings through a dot product operation. Predictions
are then made by selecting the label with the highest dot product value.
The model is trained on the Ontonotes dataset and evaluated on 5 datasets
from diverse domains, such as biology, medical and news. This dual-encoder
strategy enhances the model’s ability to understand and categorize entities,
particularly in few-shot learning scenarios where data is limited.

Our approach draws inspiration from the concepts outlined in
[Ma et al., 2022]. Similar to the strategy described in that work, we use
label semantics, transforming them through a BERT-based model. However,
our approach does not entail model training for labels representation.

In summary, the explored studies present diverse strategies for domain
adaptation in NER, from adversarial training and attention mechanisms to
graph-based label transfers and innovative uses of crowdsourced data. Each
approach addresses specific aspects of the domain adaptation challenge,
whether it be reducing domain discrepancies, improving model robustness,
transferring label knowledge across mismatched domains, or redefining
the task. Collectively, these contributions enhance the adaptability and
performance of NERmodels across varied and evolving domains. As wemove
to the specific challenges and strategies of NER in the context of plant health,
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it becomes clear that such advancements in domain adaptation are critical in
applying NER to more specialized and technically demanding fields.

2.4 . Named Entity Recognition and Domain Adaptation forPlant Health
In the field of plant health, quickly processing and analyzing textual

information from real-time data sources like social media and news outlets
is crucial for enhancing dynamic monitoring capabilities. This enables the
development of alert systems that proactively inform farmers and agricultural
professionals about new disease threats, allowing for early interventions to
decrease risks and manage these outbreaks more effectively. These systems
can analyze trends and patterns in the data, providing early warnings that are
essential for maintaining plant health.

Furthermore, Named Entity Recognition supports decision-making
processes by structuring detailed insights into plant health dynamics. This
automation aids in the creation of extensive databases that document
various aspects of plant health, including potential triggers, environmental
factors, and effective treatment methods. Such databases offer organized,
accessible knowledge to farmers, researchers, and agronomists, ensuring
sustainable farming practices and optimal resource utilization.

Thus, Named Entity Recognition is a valuable tool in the plant health
context, automatically extracting important information related to plant
health. This includes the identification of a wide range of entities, from highly
specific domain entities such as species (e.g. Xylella fastidiosa), symptoms
(e.g., leaf scorch, wilting), pathogens (e.g.Flavescence dorée), diseases (e.g.,
Banana bunchy top disease), to generic entities that are common across
various domains, such as locations (e.g., West Nile region) and dates (e.g., last
month).

Applying NER in plant health involves understanding specific linguistic
challenges present in agricultural texts. These challenges include accurately
identifying relevant entities among common language ambiguity and
scientific terminology complexity. It also involves processing information
from diverse sources with varying levels of technical language. Such sources
include academic research papers, technical reports, social media.

Furthermore, the significance of NER extends beyond text extraction; it
plays a vital role in improving decision-making processes. IntegratingNER into
precision agriculture systems that combine data from multiple sources like
geographic information systems can notably enhance intervention accuracy
and timeliness for preventing or treating plant diseases.

This section explores the current state of NER applications in plant health
domain by examining unique challenges faced, technological approaches
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used,and practical implementations of NER systems. Additionally, it looks
at potential future advancements and ongoing research aimed at refining
these systems to better support complex decision-making needs in modern
agriculture.

2.4.1 . Challenges Specific to Plant Health NER
Implementing Named Entity Recognition for plant health introduces a

set of unique challenges that underscore the complexities of agricultural
language and the specificity of botanical information. Addressing these
challenges is crucial for the successful application of NER technologies in
enhancing agricultural research and practice.

Linguistic Ambiguity and Terminological Complexity Agricultural
texts often contain a significant degree of linguistic ambiguity. Terms like
"rust" can refer to a plant disease or simply to oxidized metal, depending
on the context. Similarly, "blackberry" might denote a fruit or a mobile
device. Such ambiguities necessitate sophisticated NLP systems capable
of contextual differentiation. Additionally, the complexity of scientific
terminology, including Latin names, like Erysiphe necator (a type of fungus) and
specialized jargon, like phytoremediation (a method that use plants to purify
polluted soil), requires an NER system to have an extensive and continually
updated vocabulary to recognize and differentiate these terms accurately.

Data Scarcity and Lack of Annotated Datasets The field of plant
health does not have as extensive a repository of annotated datasets asmore
general domains like news or popular domains like finance or healthcare.
The scarcity of labeled data in agricultural contexts hampers the training of
effective machine learning models. Generating these datasets is often costly
and time-consuming, as it requires domain expertise not only in linguistics
but also in various agricultural disciplines.

Diverse Data Sources Information pertinent to plant health is
disseminated through various channels ranging from academic articles and
technical reports to social media posts and direct farmer communications.
Each of these sources has its own linguistic style and technical complexity,
challenging NER systems to maintain consistency and accuracy across
different types of texts.

Fast Evolution of Domain-Specific Knowledge The fields of botany
and agriculture are continually evolving, with new pest species being
discovered and new diseases emerging. NER systems need to be adaptive
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Dataset Entity types Mentionsnumber Documentsnumber Document types Availability
Plant-Disease Relations Plant, Disease 3160 199 Abstracts doi.orgPlant corpus Plant 3985 208 Abstracts gcancer.orgPPR Plant, Phenotype 16937 600 Abstracts doi.org

Agricultural corpus

Person, Location, Organization,Chemicals, Crop, Organism,Policy, Climate, Food items,Diseases, Natural Disaster,Events, Nutrients, Count,Distance, Quantity, Money,Temperature, Date

11041 - Wikipedia articles,websites -

Plant-Chemical Relationships Plant, Chemical 742 382 Abstracts -Taec Species, Trait, Phenotype 10815 528 PubMed Articles doi.org
Table 2.1: Summary of datasets related to Plant health monitoring andagriculture for NER relevant to our study. This table includes details on thenumber ofmentions and documents, types of documents, and entities types for eachdataset.

and quickly updatable to incorporate new terminologies and entities as the
domain knowledge expands.

Moving from the complexities inherent in plant health language to
practical approaches for handling these challenges, we transition into
discussing the actual data sources and methodologies used in this study for
Named Entity Recognition in plant health.

2.4.2 . Data Sources and Annotation for Plant Health NER
In this study, we focus on four entity types: plants, pests, locations,

and diseases. These categories are fundamental to the study of plant
health as they encompass the key aspects of agricultural ecosystems—flora
and the threats they face, both biological (pests and diseases) and
environmental (locations). Understanding and extracting information related
to these entities are vital for effective monitoring and management of
crop health. However, data annotated with these specific entity types is
scarce. Researchers often develop custom corpora tailored to their specific
needs, as seen in [Liang et al., 2023], [Seideh et al., 2016], [Yan and Li, 2021],
and [Liu et al., 2020]; however, these resources are frequently not made
publicly available, maintaining the data scarcity issue. This section details all
relevant publicly available datasets that have been identified to address this
gap. A summary table of these datasets are provided at Table 2.1 and Table
2.2.
Plant corpora
The Plant-Disease Relations Corpus [Kim et al., 2019] is a resource specifically
designed to facilitate text-mining of plant and disease relationships
documented in Medline abstracts. This corpus categorizes plant-disease
interactions into four distinct types: treatments, causes, associations, and
negative relations. However, a significant limitation of this corpus for
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our study is the ambiguity between human and plant diseases, which can
complicate the extraction and analysis of disease-specific data relevant to our
focus on plant pathology. Additionally, the broad interpretation of the term
"plant" in the corpus could potentially impact the precision of our analyses.

The Plant corpus [Cho et al., 2017] was constructed for NER/NEL for plants
from scientific papers abstracts. The only annotated entity type is Plant.
All the mentions were mapped to concepts in the NCBI taxonomy database
[Federhen, 2012]. Given its specialized focus on scientific names of plant
entities, its utility in our research is limited.

The Plant-Phenotype Relationship (PPR) Corpus introduced in
[Cho et al., 2022] is a dataset for Relation Extraction between plants and
phenotypes in biomedical literature. This corpus is constructed from
manually annotated abstracts sourced from PubMed. It contains annotated
mentions of plants and phenotypes along with the relationships between
them. This corpus is primarily focused on phenotypes and does not really fit
plant health domain.

The agricultural corpus introduced in [Malarkodi et al., 2016], derived
from Wikipedia articles and authoritative websites focused on European
agriculture, includes 19 annotated entity types. These types represent key
terms prevalent in the agricultural domain, such as crop names, diseases, and
chemicals. The corpus covers a wide range of agricultural sub-domains, from
crop cultivation to agribusiness, ensuring comprehensive coverage of the
field’s terminology and contexts. This makes it a potentially comprehensive
resource for agricultural NER. However, it is important to note that this corpus
is not available as open source.

The Plant-Chemical Relationships Corpus [Choi et al., 2016] serves as
a valuable resource designed to facilitate the exploration of interactions
between plants and chemicals through text mining techniques. Constructed
from PubMed abstracts, this corpus includes detailed annotations of
relationships between plant and chemical entities. This corpus could be used
for LMfine-tuning. However, it is focused on chemicals and their relationships
with plants and has a limited usage in plant health domain. Furthemore,
although the original publication asserts that the corpus is available online,
attempts to access it via the provided link have been unsuccessful.

The Triticum aestivum trait Corpus (TaeC) [Nédellec et al., 2024] was
developed to improve the understanding of complex phenotype-genotype
relationships and enrich the annotation of diverse trait expressions within
agricultural texts. It contains annotations of wheat traits, phenotypes, and
species, using theWheat Trait and Phenotype Ontology for annotations. TaeC
is aligned with the D2KAB project, aiming to refine text mining methods and
ensure the quality of data in plant genomics research. This corpus provides
a valuable resource specifically for wheat species research but does not
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Dataset Mentionsnumber Documentsnumber Document types Area URL
GeoVirus 2167 229 News (epidemiology) worldwide GitHubLGL 4793 588 Local news mostly U.S. *Clust 11564 1082 news worldwide *GeoWebNews 5121 200 news worldwide GitHubWikToR 25000 5000 Wikipedia articles worldwide GitHubGeoCorpora 2966 211 tweets mostly North America GitHub
*This corpus can be found online; however, the original publication does not cite a specific source.
Table 2.2: Summary of datasets for geographic NER relevant to our study. Thistable includes details on the number of entities and documents, types of documents,and geographical coverage for each dataset.

encompass other plant species, limiting its applicability to broader studies.
Overall, the presented corpora are relevant to our research but have

limitations due to their focus or unavailability.
Geographical corpora
The geospatial corpora are primarily focused on the recognition and linking
of geographical entities. Although these collections do not cover all
domain-specific entity types, they are particularly relevant to our research due
to the diversity of geospatial entities represented across various news sources
and social media platforms. This variability is important as standard NER
corpora often repeat the same locations entities, limiting their applicability
in dynamic, real-world scenarios.

TheGeoVirus dataset [Gritta et al., 2018b] is a specialized open-source test
dataset created to evaluate geoparsing capabilities within the context of news
events related to global disease outbreaks and epidemics. Constructed from
WikiNews articles, this dataset focuses on the geotagging and geocoding
of location references within news stories about human diseases. The
dataset provide a robust resource for developing and testing geoparsing and
geocoding systems in the domain of epidemiological news coverage.

The Local-Global Lexicon (LGL) corpus [Lieberman et al., 2010] is a
collection of news articles drawn from the NewsStand system. Specifically
designed to tackle the challenges of toponym resolution, LGL emphasizes
smaller, geographically dispersed newspapers. While this corpus is larger
than GeoVirus, it is focused primarily on U.S. areas and cannot capture the
geographic diversity and linguistic variety found in global datasets. This
limitation may affect its applicability for our study.

Clust [Lieberman and Samet, 2011] corpus was created to complement
LGL. Focusing on larger news stories, contrasts with LGL by including
toponyms generally corresponding to larger, more populous locations.
Together, these corpora facilitate a comprehensive evaluation of toponym
recognition across a spectrumof news sizes and sources. However, both Clust
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and LGL primarily feature general news content, which is different from the
specialized domain of plant health.

GeoWebNews [Gritta et al., 2018a] is a dataset designed to enhance
the evaluation and implementation of fine-grained tagging and
classification of toponyms, supporting the development of geotagging
and geocoding/toponym resolution applications. This corpus stands as a
resource for geographic information retrieval and semantic evaluation tasks
in real-world applications. However, like Clust, it is less relevant for our
specific focus on plant health due to its general content orientation.

The Wikipedia Toponym Retrieval (WikToR) corpus [Gritta et al., 2018c] is
constructed using a Python script that links locations from the GeoNames
database toWikipedia pages. This setup provides a dataset particularly useful
for resolving highly ambiguous locations, offering a valuable resource for
geospatial entity recognition and disambiguation. Nevertheless, since the
corpus is automatically generated from Wikipedia, it may not reflect the full
diversity of language found in other domains like news articles or social
media.

The GeoCorpora [Wallgrün et al., 2018] is a crowd-sourced and
expert-guided corpus which was specifically developed to benchmark
and improve geoparsing methods through themanual annotation of location
entities in microblog content, particularly from Twitter. Unfortunately, the
GeoCorpora is primarily concentrated on North American regions and lacks
the geographic diversity and linguistic variety that global datasets offer,
which imposes a limitation for our research.

Thus, exploring various corpora for Named Entity Recognition tailored
to specific domains reveals that these datasets are highly specialized. Each
dataset has its own limitations and is designed for distinct applications. They
are often constrained by the scope and nature of the data collected. A
common challenge across these datasets is the ambiguity in entity definitions.
For example, in some corpora, the "Location" entity might include relative
terms such as "South of Montpellier", while others might not. Similarly, the
representation of plant names varies; some datasets require inclusion of the
word "tree" as in "olive tree", whereas others do not specify this.

For our research in plant health monitoring, we have selected the
GeoVirus corpus for identifying "Location" entities because it is specifically
designed for tracking global disease outbreaks and pandemics, primarily in
human health. This focus is well-aligned with our domain requirements.
Additionally, for plant-specific data, we are using the EPOP corpus (see Section
3.1.2), which is specifically crafted for Plant Health Monitoring.

2.4.3 . Technological Approaches and Models
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The ChouBERT model [Jiang et al., 2022b], a French pre-trained language
model, was designed for monitoring plant health through tweets. The
authors address the challenges posed by limited labeled data in extracting
meaningful information from social media, specifically Twitter, to enhance
epidemiological surveillance of plant health. ChouBERT was shown
to effectively identify and classify tweets about plant health threats,
demonstrating its utility in detecting both known and novel natural hazards.
The model utilizes token-level annotations and benefits from its ability to
generalize across different natural hazards with relatively small datasets. This
research contributes to precision agriculture by integrating advanced NLP
tools to monitor crop health and predict potential outbreaks through the
analysis of real-time data from social media.

The AGRONER approach introduced in [Veena et al., 2023], designed
specifically for the agricultural domain, which addresses the challenge of
extracting domain-specific entities such as diseases, pathogens, pesticides,
crops, places, and soil types from text. Leveraging an extended BERT
model with Latent Dirichlet Allocation for topic modeling, the system
enhances entity recognition by creating domain-adapted tokenizers and
vector representations. This system uses global vectors constructed from
weighted topic distributions to categorize words into relevant agricultural
entities. Themodel demonstrates significant effectiveness in an unsupervised
setting on a custom corpus. However, both themodel and the training corpus
are not available online, limiting reusability, reproducibility and accessibility.

A KIWINER [Zhang et al., 2022] is a lexicon and attention-based Chinese
Named Entity Recognition model for the agricultural domain, particularly
focusing on kiwifruit-related entities. KIWINER combines a BiLSTM and
a CRF, and introduces some original techniques like out of vocabulary
words detection based on statistics, leveraging lexicons for character
embeddings adjustments through an attention mechanism and another
attention mechanism focusing on long dependencies in a text to improve
entity recognition.

Similarly, a BERT-BiLSTM-CRF model has been employed to identify citrus
pests and diseases, as detailed in [Liu et al., 2023b]. This model is trained on a
corpus constructed from Chinese authoritative texts and websites dedicated
to citrus health. The corpus is available upon request.

Two similar approaches were applied to extract information from Chinese
texts about apple disease. The first, as detailed in [Guo et al., 2022], integrates
dictionaries and similar words into a character-based BiLSTM-CRF model,
while the second [Zhang et al., 2023b] uses a BERT-CRFmodel in a classic way.

Another agricultural NER framework, introduced in [Guo et al., 2021], is
designed for recognizing specific diseases, pests, and treatments in Chinese
texts. This approach leverages a fine-tuned BERT model combined with
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adversarial training to enhance the recognition and generalization capabilities
in handling domain-specific texts, which often contain rare entities and terms
unique to agriculture. The fine-tuned BERT helps generate context-sensitive
embeddings, capturing domain-specific nuances, while adversarial training
adds robustness against input variations, improving themodel’s performance
on rare mentions.

The RSA-CANER model [Zhao et al., 2022] employs the ALBERT
architecture — a lightweight version of BERT that shares parameters across
its layers to reduce computational costs and increase training speed. It
incorporates a multi-feature fusion approach that integrates character-level,
radical, and stroke features of Chinese characters, capturing detailed
semantic and morphological information vital for the accurate classification
of entities. This method uses BiLSTM networks to process text sequences,
capturing both forward and backward context, and integrates a CRF layer for
optimal sequence tagging. Additionally, it employs a multi-head attention
mechanism to enhance feature representation and focus on relevant parts
of the text.

Thus, we can observe that the existing models within the agricultural NER
domain are notably specialized, often targeting specific plants or diseases.
Many of these models rely on state-of-the-art supervised learning techniques
or remain proprietary, not available as open-source tools. This situation
underscores the importance of ongoing research in this area. Enhancing
accessibility and broadening the scope of thesemodels could greatly advance
our capability to manage agricultural health more effectively and address a
wider array of challenges in the field.

2.5 . Conclusion
In conclusion, the application of NER in the domain of plant health

presents a complex but critically important challenge within agricultural
technology and plant science. By efficiently processing and analyzing textual
information, NER plays a pivotal role in identifying key entities such as
species, symptoms, pathogens, and diseases from diverse textual sources.
The linguistic and contextual challenges in agricultural texts, such as linguistic
ambiguity, terminological complexity, polysemy, and homonymy, require
advanced systems capable of conducting a deep contextual analysis and
continuous adaptation to evolving domain-specific knowledge. This section
has explored the technological approaches, challenges, and the current state
of NER in the plant health domain, providing insights into both existing
capabilities and avenues for future research. As the field progresses, further
advancements in NER technologies will undoubtedly unlock new potentials
formanaging plant healthmore effectively, leveraging the growing availability
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of textual data across digital platforms. Building upon the challenges and
opportunities outlined in this discussion, the following chapters will introduce
a new approach to NER tailored specifically for the plant health domain.
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3 - Language Model Domain Adaptation: A
KeyWord Masking method
Masked Language Modeling (MLM) is a crucial step in preparing language

models for their final application. At its core, the MLM task consists in
training a language model to fill in missing tokens in a passage, given the
context provided by the remaining tokens (see Section 2.2.1). This process
inherently makes themodel capture language syntax, semantics and intrinsic
relationships between tokens [Clark et al., 2019a, Hewitt and Manning, 2019,
Jawahar et al., 2019, Chang and Bergen, 2024] and also prepares themodel for
more complex NLP tasks, such as NER.

The primary advantage of MLM, in the context of domain adaptation, lies
in its ability of better adjusting the model to specific types of texts, without
the need for labeled data. While traditional MLM fine-tuning techniques have
already improved performance in many subsequent tasks, we explored ways
to refine these methods further, aiming to enhance their effectiveness, in
particular for NER task.

This chapter introduces a technique designed to adjust Language Models
to specific domains without the need for large datasets. Termed KeyWord
Masking (KWM), this method refines the traditional approach to fine-tuning
for the MLM task. Unlike standard methods that involve random token
masking, KWM guides the selection of tokens for masking based on their
relevance to the domain, facilitated by domain-specific lexicons. This strategy
aims to prepare the model to be used for a variety of NLP tasks, including
but not limited to NER. We hypothesize that by focusing on domain-relevant
tokens, an LM can develop a more nuanced understanding of the language
characteristics specific to the domain and its entities, thereby potentially
improving its performance across multiple NLP tasks.

3.1 . Methodology
As previously discussed, recent studies on few-shot NER have

predominantly explored two methodologies: transfer learning and
meta-learning.

Our interest was drawn to a transfer learning method tailored for
domain-specific data discussed by [Gligic et al., 2020]. This method begins by
pre-training word embeddings on a large corpus of texts specific to a domain.
Subsequently, the embeddings are fine-tuned using a smaller, labeled NER
dataset divided into two stages: the first for training the model on word
prediction using the CBOW algorithm (see Section 2.2.4), and the second
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Figure 3.1: Overview of the KeyWordMasking Strategy. This schema illustrates theKWM approach to MLM task, where mentions of specific entity types are selectivelymasked in the text. The Language Model is then fine-tuned to reconstruct thesementions.

specifically for fine-tuning to NER. The distinct advantage of this approach lies
in its usage of unannotated texts from the same domain during pre-training,
which substantially boosts the NER model’s efficacy.

Similar approaches were used by [Pergola et al., 2021] and
[Golchin et al., 2023]. In the work [Pergola et al., 2021], the final goal was
to improve biomedical question-answering systems. This method enhances
language models by selectively masking entities identified by the SciSpacy
tool. In contrast, in [Golchin et al., 2023], the masking technique was
designed to be task-independent and was tested across several domains.
The authors used KeyBERT to extract keywords from datasets and then
masked those keywords to fine-tune the LM. It is important to note that
although this method was intended to be task independent, its efficacy was
only demonstrated in the context of text classification tasks. Even though
both of these approaches seem to be efficient, they require a pre-trained
NER or keyword extraction system, which could limit their applicability in
environments where such resources are unavailable.

Building upon these insights from domain adaptation research, our
methodology employs a similar principle of domain relevance but extends
it by implementing a KeyWordMasking strategy during the Masked Language
Modeling pre-training phase. We assume that this approach prioritizes
domain relevance by selectively masking domain-specific keywords, and
therefore would enhances the language model’s ability to capture nuanced,
domain-specific informationmore effectively. Thus, such targeted adaptation
is expected to improve the model’s performance on tasks that are sensitive
to domain-specific terminology and context.

Unlike previous methods that often depend on pre-existing NER or
keyword extraction systems, our KWM strategy operates independently, thus
broadening its applicability. We generate and compile lists of domain-relevant
terms based on the semantics of entity types that we will further need to
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detect. These lists are then used to guide the masking process during MLM
domain adaptation. A visual summary of the KWM method is presented in
Figure 3.1.

3.1.1 . Masking strategy
As previously mentioned, the Masked Language Modeling task involves

restoring masked tokens in a text using the surrounding non-masked
tokens. Traditionally, about 15% of tokens are randomly masked, as
established in initial research [Devlin et al., 2019]. However, subsequent
studies [Wettig et al., 2022, Liao et al., 2022] suggest that masking 40 to 50%
of tokens may be more effective. Moreover, tailoring the masking strategy
to specific tasks has been shown to yield better results [Lad et al., 2022]. For
instance, a strategy presented in [Pergola et al., 2021], as mentioned before,
consists in masking tokens identified as entities relevant to the biomedical
domain by a NER model, thereby better preparing the language model for
biomedical Question-Answering tasks. However, this approach requires a
pre-trained NER model. Another interesting approach is [Berend, 2023],
where a selective masking technique was employed to concentrate on
"important" tokens, while the importance of each token was determined by a
task-specific score.

Inspired by these findings, we adopted a similar strategy by masking
domain-relevant entities. However, instead of employing a NER system to
identify these entities, we compile a list of relevant terms (lexicons) for each
entity type (see section 3.1.3) and apply masking using regular expressions
(see Figure 3.1). Additionally, recognizing that certain entity typesmay provide
useful contextual clues about others (e.g., predicting a disease from a pest
and plant), we ensure that interdependent entities are never masked all
together simultaneously. For instance, since certain pests are commonly
found on specific plants, masking both could prevent themodel to learn these
important correlations. Additionally, if the proportion of masked tokens is
lower than 15%, we supplement with randomly chosen tokens, taking care
not to mask the interdependent entities discussed previously.

3.1.2 . Datasets
To evaluate our method in a robust and generalizable manner, we

selected three semantically distinct categories of texts, all in English: Plant
Health, Microbiology, and General domain news. The first two categories
are highly specialized and distinctly different from each other, though they
intersect in the area of microbial diseases. In contrast, the third category
includes types of entities frequently encountered in general news articles.
We then selected or developed a specific dataset for each category. The
evaluation will focus on the impact of KWM on NER, and we will therefore
present the corpora and their annotations. This strategy allows us to test our
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model under diverse conditions, thereby reducing bias and ensuring fairness
in our evaluations.
Plant Health
The entities of interest in the Plant Health domain include Plant, Pest and
Disease entities. The primary source of our texts for the dataset that we
created and then used is the Plateforme d’Épidémiosurveillance en Santé
Végétale (PESV) [PESV, 2023], which provides plant health news summaries,
scientific reports, and reports containing updates on plant-related health
issues. To enrich this corpus, we supplemented it with a variety of texts,
including 578 encyclopedic articles, 23 scientific reports, 102 popular science
articles, 61 local news articles, and 48 blog posts. These sources were
selected for their rich descriptive content about plant health issues, aligning
closely with the operational needs of our real-time NER system. Our
selection process involved conducting online searches to identify popular and
credible sources, verifying their reliability and ensuring that their licensing
terms permitted at least the usage of the material without the possibility
of redistribution. These sources include the UK Plant Health Information
Portal1, Phys.org website dedicated to science2, Encyclopædia Britannica3
and other. The full list is available at https://github.com/project178/
KeyWord-Masking-strategy. Due to licensing restrictions, this corpus is not
publicly available. The resulting corpus consists of 1311 texts, all in English,
with an average length between 10000 to 20000 characters, thus providing a
robust dataset for model fine-tuning in an MLM task.

Subsequently, we selected a subset of this corpus and annotated it
for the NER task to obtain preliminary results with "Pest", "Plant" and
"Disease" entities. The chosen documents include official reports and
news articles that describe pest occurrences on specific plants in certain
geographic areas. All the information about the texts can be found at
https://entrepot.recherche.data.gouv.fr/file.xhtml?persistentId=
doi:10.57745/XTQPNY&version=2.0. To select these texts, we consulted with
Plant Health experts from the European and Mediterranean Plant Protection
Organization (EPPO). They provided a list of currently monitored pests, which
guided our selection of articles that mention all listed pests under various
names, to ensure comprehensive coverage.

During the annotation process, we developed specific guidelines,
available at https://entrepot.recherche.data.gouv.fr/file.xhtml?
persistentId=doi:10.57745/98DYFQ&version=2.0. We used the BRAT
format and annotation tool described in the Section 2.3.4. An example of the

1https://planthealthportal.defra.gov.uk2https://phys.org/3https://www.britannica.com
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Figure 3.2: Example of BRAT annotation from our test corpus for named entityrecognition in the plant health domain. Various entity types are annotated,including plants (e.g., "Cavendish Bananas"), pests (e.g., "Fusarium oxysporum"), andlocations (e.g., "Asia", "Latin America").

annotation can be seen in Figure 3.2. This corpus is used as a test corpus, and
we ensured there were no duplicate documents between our training and
testing sets. The annotations of this corpus [Borovikova, 2023] are accessible
via the following link4 however, the text files themselves are not available
due to licensing restrictions.

Furthermore, the validation of our approach has been extended to the
recently developed Epidemiomonitoring Of Plant (EPOP) corpus, which is
set to be released soon. This corpus was specifically designed for Named
Entity Recognition, Entity Linking, and Relation Extraction tasks within the
plant health domain. It comprises a diverse collection of scientific and media
articles, annotated by a team of plant health experts, ensuring its reliability
and high quality as a resource for NER applications in plant health. The EPOP
corpus contains eight annotated entity types: Pest, Plant, Disease, Vector,
Dissemination pathway, Quantity, Date and Location. While the majority of
the articles are in English, a portion includes texts in other languages that
have been translated using Google Translate, broadening the scope of the
dataset.

Microbiology
In the domain of Microbiology, we use the Bacteria Biotope 2019 corpus
[Bossy et al., 2019], which includes annotations of Microorganism, Habitat and
Phenotype entity types. This corpus comprises abstracts from PubMed
about microorganisms and excerpts from scientific articles on beneficial
microorganisms in food products. Although the corpus is annotated for
several tasks including NER, we use only the raw texts without annotations
to fine-tune a language model specific to this domain. For evaluating model

4https://doi.org/10.57745/HVPITE
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performance, however, we employ both the raw texts and NER annotations
from the development set of this corpus. The test set was not used as it is not
publicly available.

General-domain news
Unlike microbiology and plant health, the general domain provides a vast
variety of existing corpora, allowing us to test the robustness of our approach
using different corpora for training and testing. Within this domain, we
specifically focus on Location entities due to the relative ease of acquiring
lexicons. For fine-tuning, we use raw texts from the English CoNLL-2003
corpus [Sang and De Meulder, 2003], which is a subset of the Reuters news
stories. To evaluate how well our approach identifies geographical entities,
we use the GeoVirus corpus [Gritta et al., 2018b]. This dataset includes 229
news articles, each detailing events related to epidemics and global disease
outbreaks.

For a detailed summary of the entity types involved in each test dataset
used in our study, refer to Table 3.1. Analysis reveals that the EPOP corpus
contains significantly more mentions of pests and plants than diseases, with
each plant mentioned approximately five times, pests twelve times, and
diseases eight times1. In contrast, the Bacteria Biotope corpus exhibits a lower
frequency of entity repetition, approximately twice per entity, but habitat
mentions are four times more prevalent than phenotype mentions1. The
Geovirus corpus presents amore challenging dataset, characterized by a high
number of unique entities, each appearing approximately three times on
average1. Consequently, the complexity of identifying and classifying entities
may vary, with less various entities potentially having a higher score.

Having constructed a diverse collection of datasets that span multiple
domains, we now turn our attention to developing domain-specific lexicons.
The construction and implications of these lexicons are discussed in the
following section.

3.1.3 . Domain-specific terms lists
In constructing our domain-specific lexicons, we developed separate lists

for each type of entity. We chose authoritative sources that are well-regarded
in their respective fields. This criterion ensures that our lexicons include all
terms necessary for our tasks. Our goal is to use themost representative data
sources to improve the accuracy and relevance of our language model across
various contexts.

1This observation assumes a balanced dataset by entities; however, this balancecould be skewed if one or two entities are highly repetitive, overshadowing othersthat appear infrequently.
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Dataset Documents Entity type Number of occurences Unique Entitites
EPOP 247 Plant 1111 213Pest 1202 161Diseases 434 50
Bacteria Biotope 134 Microorganism 402 202Habitat 610 313Phenotype 161 88Geovirus 229 Location 2167 683
Table 3.1: Entity Types Across Different Datasets. This table presents the total andunique counts of various entity typeswithin the EPOP, Bacteria Biotope (developmentset), and GeoVirus datasets.

Dataset domain Entity type Number Examples
Plant Health Plant 228984 baobab, African violetPest 12107 oak wilt, pinewood nematodDisease 2844 HLB, leprosis, apple scab

Microbiology Microorganism 6758474 Psychrobacter immobilis PG1,
H. influenzae, Cryobacterium

Habitat 4522 embryonic root part,
sesame milk, snow

Phenotype 574 oligotroph, star-shaped,
phototacticGeneral-domainNews Location 2132976 Oslo, France, U. S.

Table 3.2: Overview of Domain-Specific lexicons for Masked Language Modeling
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The Plant, Pest and Disease entities lexicons are sourced from the EPPO
Global database [EPPO, 2023]. It is worth to note that in this database, pests
and diseases are combined into a single list named "Pest". To address this,
experts from the BEYOND project collaborated with us to clearly differentiate
and refine the lists for these two entity types. Managedby EPPO, this database
serves as a comprehensive resource containing pest-related data, regularly
updated with information produced or collected by EPPO. While it includes
many vernacular names, for our purposes, we have retained only those in
English.

For the Microorganism entity, we used respective subsets of the NCBI
taxonomy [Schoch et al., 2020], a structured database that encompasses a
wide range of recognized life forms and is constantly updated; however, it
includes few vernacular names, which limits its utility. We enriched these
subsets by adding automatically generated abbreviations (e.g., H.equorum for
Helicobacter equorum). Lists for Habitat and Phenotype entities were created
by experts.

To mask Location entities, we retrieved a list of countries and cities
from the GeoNames database [GeoNames, 2023], which catalogs geographic
locations worldwide, from major cities to smaller towns. This comprehensive
resource was selected for its extensive coverage. Each record in the database
contains essential information about the location, including its name in
different languages, coordinates, population size, etc.

The gathering of entity-specific terms from these trusted databases form
a foundation for identifying domain-relevant entities within the texts, thereby
directing the model’s focus toward domain-specific vocabulary. This strategic
preparation ensures that our language model learns the necessary nuances
specific to each specialized domain. An overview of the lexicons is presented
in Table 3.2.

3.1.4 . Evaluation method
With the lexicons developed and the fine-tuning phase complete, we now

proceed to evaluate the model using two distinct prediction modes. The first
involves evaluating the predictions for a randomly selected 15% of the tokens,
as is traditionally applied in the literature. The second mode focuses on
evaluating the predictions for masked named entities. This involves masking
all entities of one type or masking all types simultaneously. To assess the
performance, we calculate both accuracy and perplexity, which are standard
metrics for theMasked LanguageModeling task. Accuracy is calculated as the
proportion of correct predictions made by the model out of the total number
predictions. Perplexity is calculated by the following formula:

Perplexity(M) = exp(CrossEntropyLoss(M)) =
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exp(−
∑
t∈v

L(t|context) ∗ log2 P (t|context))

where M represents the language model, t denotes a token from the
vocabulary v of the model M , L(t|context) indicates the true probability
of the token t appearing in the specified context, and P (t|context) is the
probability of the prediction of token t by the model M in the given
context. Perplexity measures the inverse probability normalized by the
number of words in the test set. It effectively quantifies the divergence
between the predicted and actual probability distributions of the text. Lower
perplexity indicates higher confidence and better model performance, with
a score of 1.0 representing perfect prediction. In the study introducing
BERT [Devlin et al., 2019], perplexity scores ranged from 3 to 6, which can be
considered satisfactory for evaluating this model.

The connection between perplexity and accuracy in evaluating model
performance is complex [Gonen et al., 2023]. While accuracy measures the
model’s precision at predicting each tokens correctly, perplexity evaluates the
model’s overall confidence across the entire text by analyzing the probability
of the generated sequence. As such, these metrics are complementary,
offering a detailed and multidimensional evaluation of a model’s capabilities
and overall effectiveness in the MLM task.

3.2 . Experiments
3.2.1 . Baselines

To assess the effectiveness of our domain-specific fine-tuning approach,
we compare it with two baselinemodels. The first baseline is amodel that has
not undergone any fine-tuning, operating in its pre-trained state. This serves
as a control to demonstrate the model’s capabilities without domain-specific
adaptations. This comparison helps us determine the extent to which
domain-specific fine-tuning provides a measurable improvement over the
generic model. The second baseline involves a standard fine-tuning process,
where 15% of the tokens are randomly masked. This widely used method
aims to refine the model’s overall predictive abilities in a specific domain
without specifically targeting domain-relevant terms. These comparisons
are necessary to determine whether our method improves performance
compared to the standard strategy, and if so, to what extent.

3.2.2 . Implementation details
In our experiments, we have fine-tuned BERT [Devlin et al., 2019] and

BioBERT [Lee et al., 2020] models. We selected BERT because it is a widely
used model accross various domains, and BioBERT, as it is the current
State-of-the-artmodel in the biomedical domain, which includesMicrobiology
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and Plant Health. Bothmodelswere chosen for their ease of use and relatively
light computational requirements. While numerous other models are now
available and could be tested in future work, the focus of this research is
to compare the impact of masking strategies with models that range from
general to more specialized domains, rather than surveying all possible
models.

For both models training is done with an Adam optimizer and a learning
rate 5e−5. We implemented an early stoppingmechanism that stops training
if there is no improvement inmodel performance for five consecutive epochs.

The data and results for this study were processed using Python version
3.8 [van Rossum, 2022]. We primarily used the PyTorch [Imambi et al., 2021]
and transformers [Wolf et al., 2020a] libraries for our computational
needs. The code is available at https://github.com/project178/
KeyWord-Masking-strategy.

With the technical setup detailed, we will present the evaluation results of
our model in the following section.

3.2.3 . Results
Tables 3.3 and 3.4, along with Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8, show

the performancemetrics of accuracy and perplexity for the BERT and BioBERT
models. These models were tested across various datasets described in
section 3.1.2, applying both standard and KeyWord Masking fine-tuning
approaches. Details about the type of masking applied during testing are
specified in the "Masked tokens" column of each table. The "Dataset" column
indicates the datasets used for evaluation, while the "Model" column lists
the model used. Results are presented for models without fine-tuning, with
standardmasking, andwith KWM, highlighting the best scores in bold for each
dataset and model combination. To confirm our findings were reliable, we
averaged the results from ten training iterations and provided the standard
deviations.

Our experiments demonstrate significant differences between the two
masking methods. Models fine-tuned with KeyWord Masking perform better
at identifying domain-specific entities than those fine-tunedwith the standard
method. In contrast, for random word masking, the standard method
outperforms KWM. Additionally, in our tests, BioBERT outperforms BERT
on biomedical (Bacteria Biotope) and epidemiological (EPPO - Plant health)
texts, while BERT provedmore effective with general domain (GeoVirus) texts.
These findings indicate that the choice of framework and masking strategy
should be carefully considered and integrated into the pipeline depending on
the solvable task - Named Entity Recognition in our case.

Another observation concerns the perplexity. Our experiments revealed
that the standard fine-tuning method results in lower perplexity on the test
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Dataset Masked tokens Model Withoutfine-tuning Standardmasking KWM

EPOP

Plant BERT 0.05 0.12±0.01 0.19±0.03BioBERT 0.09 0.15±0.02 0.21±0.02
Pest BERT 0.03 0.08±0.01 0.18±0.01BioBERT 0.03 0.09±0.02 0.21±0.02
Disease BERT 0.04 0.12±0.02 0.10±0.01BioBERT 0.06 0.16±0.02 0.15±0.01
All BERT 0.03 0.09±0.02 0.21±0.02BioBERT 0.04 0.09±0.02 0.16±0.03
Random BERT 0.39 0.46±0.00 0.3±0.02BioBERT 0.37 0.47±0.00 0.41±0.02

BB

Microorganisms BERT 0.03 0.04±0.01 0.07±0.03BioBERT 0.02 0.04±0.00 0.08±0.00
Habitats BERT 0.05 0.03±0.00 0.06±0.02BioBERT 0.09 0.09±0.02 0.11±0.01
Phenotypes BERT 0.07 0.02±0.01 0.06±0.00BioBERT 0.11 0.11±0.00 0.11±0.00
All BERT 0.02 0.02±0.01 0.06±0.01BioBERT 0.03 0.03±0.01 0.08±0.03
Random BERT 0.37 0.38±0.01 0.12±0.00BioBERT 0.46 0.43±0.01 0.15±0.00

GeoVirus Locations BERT 0.08 0.14±0.03 0.21±0.1Random BERT 0.30 0.41±0.03 0.08±0.00
Table 3.3: Accuracy Performance Across Datasets. This table presents theaccuracy metrics for BERT and BioBERT models tested across various datasets forMLM task. It highlights the model performance under no fine-tuning, standardmasking, and KeyWord Masking conditions, with the best scores marked in boldfor each dataset and model combination. Each row in ’Masked tokens" columnindicates which entities were masked during evaluation. Rows labeled "All" indicatethat all entity types from the dataset in question were masked, while rows labeled"Random" reflect accuracy when tokens were masked at random, without targetedentity masking. This table provides a comparative view of how each fine-tuningstrategy influences model accuracy.
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Dataset Masked tokens Model Withoutfine-tuning Standardmasking KWM

EPOP

Plant BERT 953 1.1±0.1 1.3±0.2BioBERT 218 1.1±0.0 1.1±0.1
Pest BERT 1075 1.2±0.1 1.1±0.3BioBERT 229 1.2±0.1 1.1±0.0
Disease BERT 908 1.0±0.1 1.0±0.2BioBERT 215 1.0±0.1 1.0±0.0
All BERT 1212 2.7±0.2 5.1±2.1BioBERT 969 1.5±0.2 1.3±0.3
Random BERT 1720 1.9±0.2 2.7±1.1BioBERT 305 1.8±0.0 1.8±0.1

BB

Microorganisms BERT 667661 1.8 14.9BioBERT 20709 1.6 3.1
Habitats BERT 609785 2.0 15.3BioBERT 27489 1.6 3.0
Phenotypes BERT 535986 1.2 14.3BioBERT 28482 1.2 2.0
All BERT 26170240 6.2±3.2 6.7±1.4BioBERT 313426 6.3±2.1 5.9±2.3
Random BERT 2605567 1.9±0.5 3.4±0.4BioBERT 61243 1.7±0.9 3.1±1.9

GeoVirus Locations BERT 2432350 4.8±3.6 15±2.7Random BERT 2875939 7.3±5.2 20±6.1
Table 3.4: Perplexity Performance Across Datasets. This table details theperplexity scores of the BERT and BioBERT models on MLM task under differentfine-tuning approaches: without fine-tuning, with standard masking approach, andwith KeyWordMasking approach. Themetrics are presented across various datasets,highlighting the best performances in bold. Each score represents an average ofresults from ten training iterations, alongside the corresponding standard deviations.
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Figure 3.3: Accuracy comparison of Standard and KWM masking strategies forBacteria Biotope dataset.

Figure 3.4: Accuracy comparison of Standard and KWM masking strategies forGeovirus dataset.

Figure 3.5: Accuracy comparison of Standard and KWM masking strategies forEPOP dataset. 87



Figure 3.6: Perplexity comparison of Standard and KWMmasking strategies forBacteria Biotope dataset.

Figure 3.7: Perplexity comparison of Standard and KWMmasking strategies forGeovirus dataset.

Figure 3.8: Perplexity comparison of Standard and KWMmasking strategies forEPOP dataset. 88



set. This suggests that models fine-tuned with the standard approach are
more confident in their predictions of masked tokens, highlighting the impact
of the choice of the fine-tuning method.

Subsequent tests focus on applying and comparing the pre-trained
models to the Named Entity Recognition task. We incorporated a Conditional
RandomField layer as a classifier on top of themodel, representing a standard
architecture for NER (see Section 2.3.5). We used the same models as before,
but we eliminated BERTs for EPOP and BB datasets due to lower scores than
BioBERT during the MLM evaluation. We used the same datasets previously
employed for both fine-tuning and evaluation. Specifically, for the Plant
Health domain, where the manually annotated corpus was too small to be
used for effective fine-tuning, we used the train and test partitions of EPOP
corpus. We computed standard NER metrics such as precision, recall, and
F-measure, with the results presented in Table 3.5. The best results are
highlighted in bold. As indicated, the models fine-tuned using the KeyWord
Masking method generally showed better result. More precisely, the F-score
was better for all the entity types, with a significant gap for Plants and Pests
entities.

3.3 . Discussion
3.3.1 . General remarks

Overall, our results indicate that the KWM strategy is beneficial for
recovering domain-specific terms. The experiments indicate that models
fine-tunedusing thismethod grasp the semantics of themaskedwords’ lexical
group more effectively, enhancing performance in Named Entity Recognition
task involving similar lexical groups. However, this approach appears to
diminish the model’s general language understanding and offers no benefits
when the masked tokens do not belong to a closely related lexical group, as
observed in the random token prediction mode.

This makes sense because the standard fine-tuning method involves
training the language model on entire text datasets with randomly masked
tokens. In contrast, the KeyWordMasking strategy targets training on specific,
implicit information that is useful in predicting particular entities. While this
technique can enhance the performance of MLMs in tasks like Named Entity
Recognition, it may limit the model’s ability to capture the general structure
and patterns of the texts, potentially reducing its effectiveness in broader
processing contexts.

3.3.2 . Entity Type-Specific Observations
In terms of specific entity types, KWM significantly improves accuracy for

pests and plants, but shows slightly lower performance for disease entities
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Dataset Masked tokens Model Precision Recall F

EPOP

Plant Without fine-tuning 0.55 0.70 0.62Standard masking 0.56 0.78 0.65Keyword masking 0.59 0.76 0.66
Pest Without fine-tuning 0.68 0.53 0.59Standard masking 0.62 0.49 0.55Keyword masking 0.54 0.73 0.62
Disease Without fine-tuning 0.77 0.62 0.69Standard masking 0.71 0.67 0.69Keyword masking 0.89 0.67 0.76

BB

Microorganisms Without fine-tuning 0.79 0.63 0.70Standard masking 0.80 0.62 0.69Keyword masking 0.77 0.65 0.71
Habitats Without fine-tuning 0.64 0.43 0.51Standard masking 0.59 0.43 0.50Keyword masking 0.60 0.46 0.52
Phenotypes Without fine-tuning 0.56 0.37 0.44Standard masking 0.55 0.37 0.44Keyword masking 0.55 0.43 0.48

GeoVirus Locations Without fine-tuning 0.80 0.67 0.73Standard masking 0.81 0.70 0.75Keyword masking 0.85 0.70 0.77
Table 3.5: Named Entity Recognition Performance Metrics. This table comparesthe precision, recall, and F-measure of BERT models under three different maskingapproaches: without fine-tuning, standard masking, and KeyWord Masking. Resultsare shown for different entity types across three datasets: EPOP, Bacteria Biotope(BB), and GeoVirus. The highest scores for each metric across the testing conditionsare highlighted in bold, demonstrating the effectiveness of the masking strategies invarying contexts.

compared to the standard masking method. This discrepancy is likely due
to the smaller number of disease instances in the corpus, leading to less
training data and reduced generalization for these entity representations.
Additionally, the inherent complexity and variability in disease terminology
might also limit achieving higher performance levels with the KWM approach.

Location entities are also poorly restored using the KWM strategy for the
MLM task, yet this approach enhances performance for NER. Moreover, it
requires fewer epochs (2 vs 6) to achieve these results. The reason for this
is that when tasked with restoring location entities, the model attempts to
determine where an event occurred, which is not always straightforward (e.g.,
"... the form that made him a hero in [LOC] (Turin)."). Through this process,
the model learns to discern patterns specific to location entities, even though
it may incorrectly predict locations (e.g., "London" instead of "Paris"). This
enhances themodel’s ability to recognize the samenamed entities duringNER
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tasks.
Additionally, it was observed that habitats and microorganisms achieve

better accuracy scores when using the KeyWord Masking strategy for the
masked token restoring task, but this does not extend to the NER task
comparing to the standard approach. The explanation is straightforward:
the Bacteria Biotope dataset contains a substantial number of habitat
and microorganism entities, providing ample data for the model to learn
and predict these entities effectively. This allows the model to reach
a performance threshold dictated by other factors, such as the model’s
architecture. In contrast, phenotypes are less represented in the dataset. The
KWM strategy compensates for this by focusing more on these infrequently
occurring entities, helping to narrow the representation gap.

Another notable observation concerns predicting all entity types
simultaneously. It is evident that accuracy significantly declines when
entities are masked collectively. One might initially think this is due to a
quantitative issue, where masking all entities simultaneously results in fewer
token hints for the system. However, it’s crucial to recognize that, in our
dataset, entities are interrelated. For instance, specific plants are frequently
affected by the same pests and diseases. Similarly, microorganisms and
phenotypes often correlate, though habitats do so a bit less frequently.
Therefore, trying to restore all entities at once is extremely difficult, if not
impossible.

3.3.3 . Concerns over Overfitting
Interestingly, random tokens in the Bacteria Biotope dataset are better

predicted by a model that was not fine-tuned. This could be because the
pre-trained model already has a sufficiently general understanding of the
language used in the dataset, making additional fine-tuning less effective or
even, as we can see, detrimental by causing overfitting to specific features
that do not generalize well. This is particularly plausible since BioBERT, which
showed the best results in this case, was originally trained on literature from
similar biomedical domains.

3.3.4 . Errors Analysis
Regarding errors, a similar pattern emerges across pests, plants,

diseases and microorganisms. Some of the incorrect predictions resemble
scientific names but lack sense (e.g., Colursothtumususylophilus instead of
Bursaphelenchus xylophilus). Others merge elements of two distinct terms
(e.g., Fusarium fastidiosa instead of Fusarium odoratissimum, influenced by
frequent references to Xylella fastidiosa in the texts). Additionally, some
predictions contain relevant terms of a different type, such as predicting a
disease name, panama disease, instead of the actual pest causing it, Fusarium
odoratissimum.
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3.4 . Conclusion
This chapter has detailed an innovative approach to enhancing language

model performance through domain-specific adaptations, specifically
through the use of KeyWord Masking. This technique represents a shift
from conventional random token masking to a more focused strategy
that enhances the model’s ability to handle specific domain-related tasks,
particularly Named Entity Recognition. Our source code and resources are
available at https://github.com/project178/KeyWord-Masking-strategy.
The results presented in this chapter have been published at the 2023
International Conference on Applications of Natural Language to Information
Systems [Borovikova et al., 2023].

Our exploration into domain-specific fine-tuning has demonstrated that
while KWM offers substantial improvements in domain-relevant contexts,
it may somewhat narrow the model’s general language understanding
capabilities. This approach is better in detailed, contextual understanding
of domain-specific terms, boosting NER performance when the entities are
closely related to the targeted domain.

However, the strategy also presents limitations, particularly in handling
tasks where general language comprehension is crucial. Our findings
suggest that while KWM enhances model performance on tasks closely
aligned with the training domain, it does not universally enhance the
model’s overall language processing abilities across unrelated domains.
Nevertheless, further empirical testing is suggested to validate these findings
comprehensively.

Future work will aim to generalize and potentially automate the strategy
for selecting lexicons and other resources when adapting the language
models for various domains (see Section 6.2). This effort will involve gathering
and refining documents and lexicons, followed by their integration into the
system to enhance adaptability and accuracy.

In conclusion, the adoption of KWM should be considered carefully with
respect to the specific requirements and constraints of the task at hand. KWM
is particularly beneficial for tasks focused on specific entities or semantic
groups, such as Named Entity Recognition, Entity Linking, or Information
Extraction. However, it may be less suitable for tasks requiring a broader
general understanding of language, such as text generation, summarization,
or classification. Ultimately, KWM is best suited for use cases where
domain-specific, and more precisely entity-specific, accuracy is prioritized
over general language understanding. As language models continue to
evolve, the integration of such domain-adaptive techniques will be crucial in
advancing the frontier of machine learning applications in natural language
processing.

The language model fine-tuned for the Plant Health domain, developed
92

https://github.com/project178/KeyWord-Masking-strategy


in this chapter, serves as a base for the entire Plant Health NER system.
Moving forward, the next steps involve developing a domain-flexible NER
system that can seamlessly integrate with this Plant Health-adapted model.
This integration allow the NER system to be better positioned to respond to
emerging challenges in disease prevention. We will now proceed to the next
chapter, which discusses the development of this NER classifier designed to
complement the capabilities of this language model.
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4 - Zero-Shot Named Entity Recognition
As previously mentioned, Named Entity Recognition (NER) is a component

of Information Extraction systems. It involves identifying text segments,
known as mentions, that correspond to predefined categories, known as
Named Entity types, which include Person, Location, Organization, Facility,
Product, etc. Those segments are called mentions. State-of-the-art methods,
primarily based on machine learning, are highly effective but depend heavily
on manually labeled data for training. To overcome this limitation, various
adaptation techniques have been developed. These include Meta Learning,
which implies adjusting model parameters based on the task, and Transfer
Learning, which focuses on adjustingmodel parameters based on the domain
of data.

This chapter introduces SemNER, a domain adaptation method that
requires minimal annotated data. It uses textual descriptions of entity types
as input features and leverages their latent representations to compare with
each token in the text and predict rather belonging to the corresponding
entity type or not. This approach enables the model to dynamically adapt
to data from new domains without modifying its core parameters, thus
improving its adaptability across various contexts. The methodological
contributions of SemNERare the following: it leverages the semantics of entity
types, transfers learned knowledge from source to target domains without
extensive labeled datasets, and is evaluated in a zero-shot scenario. By
employing these strategies, SemNER improves the adaptability of NERmodels
across diverse contexts and bridges the gap between different domains
without altering the core parameters of the model.

4.1 . Methodology
4.1.1 . General Pipeline

As previously discussed in section 2.3.5, traditional domain adaptation
techniques in Named Entity Recognition generally focus on the differences
between domains, as demonstrated in [Jia et al., 2019]. However, the
approach described by [Ma et al., 2022] caught our interest due to its use
of label semantics for Named Entity types, which enables the model to
understand the contextual meanings of entity types more deeply than
traditional methods, which might treat them as arbitrary categories. This
method combines the embeddings of the input text with those of the
entity types labels through a dot product. Then it makes predictions
based on the highest values obtained from this calculation. Entity type
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Figure 4.1: Overview of the Semantic Named Entity Recognition Model. Thisdiagram illustrates how the model encodes entity types, such as "Cuisine", usingSentence-BERT with descriptions sourced fromWikipedia. Concurrently, input text isencoded using BERT. Both sets of embeddings are processed through linear layers,combined via a dot product, and then passed through a classifier to identify specificentities like "Indian", which is a type of cuisine. The colors in the diagram—yellowfor Language Models, gold for the dot product, red for entities, and blue fortransformation layers—visually differentiate the stages of data processing.

embeddings are generated by encoding the label names using a separate
BERT-based encoder. This process transforms each label, such as "Person"
or "Location", into their natural language forms and then produces semantic
embeddings for these labels. This strategy differs from conventionalmethods
by leveraging textual representations of entity type labels to directly compare
them with the text tokens.

In line with [Ma et al., 2022], we agree that leveraging semantic
representations of entity types improves the performance of the NER
algorithm while requiring substantially less training data. However, we
believe that using only the names of entity types does not fully convey
their full semantic meaning. Therefore, building on this concept, we also
incorporate label semantics, but we use text passages instead of label names
to represent entity types more comprehensively.

Our method starts with the encoding of entity type descriptions and input
texts using Sentence-BERT and (Bio)BERT, respectively. These embeddings
are then processed through linear layers featuring ReLU activations and
combined using a dot product. The subsequent Conditional Random Field
layer identifies the matching entities. Figure 4.1 provides a visual overview of
our approach.

4.1.2 . Datasets
In our research, we employ datasets from various domains to assess the

robustness and broad applicability of our algorithm. We use six datasets
in total, some of which have been referenced in the previous chapter: four
from the general domain, including the English subcorpus of CoNLL-2003
[Sang and De Meulder, 2003], the GeoVirus dataset [Gritta et al., 2018b], the
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Dataset Entity type Training data Testing data Overlap(raw number) Overlap(percentage)Total Unique Total Unique
CoNLL-2003

Location 7118 1102 3478 681 379 56Organization 6272 2289 2974 1158 535 46Person 6560 3485 3423 2226 591 27Miscellaneous 3370 735 1593 484 189 39
NCBIdiseases

Disease class 769 447 121 84 26 31Specificdisease 2962 941 555 274 106 39
Compositemention 115 78 20 19 2 11
Modifier 1288 271 264 85 51 60

MITRestaurants

Dish 1475 614 288 168 90 54Cuisine 2839 448 532 170 113 66Restaurantname 1901 1008 402 291 98 34
Rating 1070 219 201 73 36 49Price 730 180 171 62 33 53Hours 990 353 212 122 70 57Location 3817 1120 812 337 149 44Amenity 2541 1091 533 316 154 49

MIT Movies

Genre 4354 278 1117 132 83 63Review 221 99 56 40 16 40Rating 2007 48 500 21 17 81Ratingsaverage 1869 156 451 83 51 61
Title 2376 1611 562 448 141 31Plot 1927 1174 491 416 191 46Director 1719 932 456 315 104 33Actor 3219 1285 812 520 377 73Character 385 255 90 74 21 28Song 245 169 54 46 12 26Trailer 113 15 30 6 3 50Year 2858 187 720 111 81 73

BacteriaBiotope
Microorganism 739 362 402 202 64 32Habitat 1118 579 610 313 36 12Phenotype 369 163 161 88 20 23Geovirus Location 1733 519 434 186 49 26

Table 4.1: Datasets Overview. This table presents counts of total and unique entitytypes for each dataset, detailed for both training and testing partitions. It alsoincludes counts of overlapping unique entities across these partitions.
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MIT restaurant review corpus [Liu et al., 2013b], and the MIT movie review
semantic corpus [Liu et al., 2013b]; as well as two from the biological domain,
namely the NCBI diseases [Doğan et al., 2014] and the Bacteria Biotope
[Bossy et al., 2019] datasets.

Table 4.1 provides a summary of the datasets by entity types, listing the
total number of mentions and unique entity designations for each type in
the "Total" and "Unique" columns, respectively. It also shows the number
of entities appearing in both training and testing datasets ("Overlap raw
number" column) and the percentage of these overlapping entities in the
test set ("Overlap percentage" column). A higher number of total and
particularly unique entities in the training data typically enhances themodel’s
generalization performance and reduces the risk of overfitting. Conversely, a
greater number of total and unique entities in the testing data ensures more
precise evaluation. Most datasets show a ratio of unique to total entities
ranging between 2 and 3 in average. However, some entities are highly
repetitive, like Genre, Ratings, and Rating average in the MIT Movies dataset,
whereas others like Title, Character, and Song are mostly unique.

The overlap between training and testing datasets also serves as an
indicator of the model’s generalization capabilities. Specifically, a smaller
overlap indicates a more accurate measure of the model’s performance on
new data. For instance, in the NCBI diseases dataset, the Composite mention
entity type shows only 2 out of 19 entities common to both the training and
testing sets, suggesting minimal overlap. In contrast, the Cuisine entities in
the MIT Restaurants dataset exhibit about a 66% of test set overlap. These
differences are crucial to consider when analyzing the model’s performance
across various datasets.

Having detailed the diversity and specific characteristics of the datasets
employed in our study, it becomes evident why a robust approach to
semantic representation is necessary. The variability and uniqueness of
entity types across different datasets underscore the need for a method
that leverages this diversity for enhanced performance. This leads us into
the subsequent section, where we explore how semantic representations
of entity types are constructed. By employing an approach that integrates
Wikipedia descriptions and advanced semantic processing techniques, we
aim to tailor the NER model to effectively handle the complexities introduced
by the varied datasets.

4.1.3 . Semantic representation of entity types
This subsection details the methodology for constructing semantic

representations of entity types (see Figure 4.1). We begin the process
by identifying a suitable textual representation for each entity type. For
commonly understood types, such as "Location", we directly use the

98



corresponding Wikipedia article whose title directly matches the entity type.
If a strict match leads to a disambiguation page, we select the relevant article
from this page. In cases where the semantic properties of entity type are less
straightforward and do not have a correspondent article, such as "date", we
select the top result from aWikipedia search, which in this casemight redirect
to "calendar date".

To enrich the semantic depth, we also explore articles linked within the
primary Wikipedia article. For example, from the article "price", we might
extract links to related concepts such as "cost". Additionally, synonyms are
incorporated by consulting resources like the Cambridge English Thesaurus
[McIntosh, 2023], which enriches the semantic representations of entity types,
making them more precise and thereby enhancing the overall quality of
the model. This involves matching synonyms with corresponding articles,
following the same initial search and selection criteria.

When dealing with ambiguous or unclear entity types, manual selection
becomes necessary. For instance, the entity type "genre" in the MIT Movies
dataset could ambiguously refer to various contexts; however, we specifically
use the "film genre" Wikipedia article to align with the dataset’s context.
Similarly, for the "org" label in the CoNLL-2003 dataset we select the article
for "organization".

Some labels are evenmore ambiguous. For example, the "Miscellaneous"
category in the CoNLL-2003 dataset encompasses a diverse array of names
and terms that fall outside persons, locations, or organizations, such as books,
movies, conferences, festivals, etc. To address this, we selected an article
titled "Named Entity", which provides a several relevant examples.

Another challenging example is the "Modifier" entity type in the NCBI
Disease dataset. According to the paper [Doğan et al., 2014], this refers
to instances where "the disease mention was not a noun phrase but a
modifier". For this, we again used the text from the "Specific Disease"
category, concatenating it with text from the "Grammatical modifier" article.

The content from each selected article is then extracted and concatenated
into a single document, separated by blank lines to delimit different sources.
This document undergoes transformation via Sentence-BERT, producing
latent representations of each entity type’s textual description.

The latent representations generated are then integrated into the
NER pipeline, enhancing the model’s capability to recognize and adapt to
entity types across various contexts and domains. Figure 4.2 illustrates
this integration process and the flow from textual extraction to semantic
representation.

With the methodology for constructing semantic representations of
entity types, we now proceed to their integration within our Named Entity
Recognitionmodel. This integration enhances themodel’s ability to adapt and
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Figure 4.2: Semantic Representation Process. This figure illustrates the processof constructing semantic representations for various entity types used in NamedEntity Recognition on the example of "Habitat", "Genre", and "Review" entities. Thecorresponding Wikipedia descriptions are selected for each entity. For ambiguousentity types like "Genre", where the specific domain (e.g., "Film genre") is necessary,a precise article is chosen to match the context of the dataset. Each description isthen processed through Sentence-BERT, which transforms the textual content intolatent representations.

recognize new or unfamiliar entity types. The next section details how these
enriched semantic inputs are incorporated into the model’s architecture.

4.1.4 . Model description
In addressing the challenges of Named Entity Recognition, our approach

builds upon traditional methods that take tokenized text as input and predict
probabilities for each token belonging to predefined entity classes. While
thesemodels performwell with familiar data, they struggle to recognize entity
classes not encountered during training because they lack the capability to
dynamically define new classes. To overcome these limitations of traditional
NERmodels, our method integrates semantic representations of entity types,
as detailed in Section 4.1.3. These representations define the entities classes
and serve as adaptive cues, enabling the model to handle new or unseen
entity types during inference.

We use the BERT [Devlin et al., 2019] and BioBERT [Lee et al., 2020]
pretrained models to process input texts. BERT is used for general domain
datasets due to its wide applicability across various fields, while BioBERT
is selected for biomedical datasets because it is a state-of-the-art model in
that area. This choice ensures that the model’s language understanding is
appropriately aligned with the domain-specific nuances of the input data.

The core peculiarity of our model lies in the integration of
embeddings from BERT (or BioBERT) with those from Sentence-BERT
[Reimers and Gurevych, 2019]. Initially, a linear transformation layer adjusts
the embeddings from both sources to harmonize their dimensions. This
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step is necessary as the embeddings from different models reside in distinct
feature spaces and cannot be directly combined. After this adjustment, the
dot product of embeddings is computed. It measures the similarity between
the embeddings, emphasizing features that are common to both, thereby
enriching the final feature set used for classification.

These combined embeddings, now enhanced by the dot product, are
processed through three subsequent linear layers. These layers progressively
refine and reduce the dimensionality of the embeddings, streamlining them
for efficient processing and focusing on the most informative features.

The final element in our model’s architecture involves a Conditional
Random Field (CRF) algorithm (see Section 2.1.1). This layer is particularly
valuable as it considers the dependencies between adjacent labels, enhancing
the model’s precision in identifying the boundaries of named entities.

We maintain the pre-trained weights of both BERT (or BioBERT) and
Sentence-BERT fixed, focusing our adaptive training efforts exclusively
on the newly added linear layers and the CRF layer. By freezing the
base model weights, we ensure the model can be efficiently applied to
new datasets without the necessity for extensive retraining, preserving
computational resources and enhancing the model’s adaptability to evolving
data requirements.

An illustrative overview of this model architecture is provided in Figure 4.1.

4.2 . Experiments
4.2.1 . Baselines

To evaluate our approach, we compare it with two baseline models. The
first baseline employs cosine similarity - instead of a classifier - between
the entity type embedding and each token embedding. We establish a
threshold, empirically set at 0.4 after testing various levels during a single
epoch of fine-tuning. If the value is below this threshold, the token is
classified as belonging to the compared entity type; otherwise, it is classified
as not belonging. The second baseline is a BERT model [Devlin et al., 2019]
fine-tuned in a classic way. This model does not incorporate the semantics of
entity types. Both baseline models, like our own, are trained on the training
partitions of all datasets, with one dataset reserved exclusively for testing.
These baseline comparisons are essential for understanding the effects of
integrating specific semantic information into the model.

4.2.2 . Experimental setup
As detailed in Section 4.1.4, in our study, we employed the BERT

[Devlin et al., 2019] and BioBERT [Lee et al., 2020] models for text
representation, alongside the Sentence-BERT [Reimers and Gurevych, 2019]
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Figure 4.3: Integration of predictions. This diagram visually represents the processof consolidating entity predictions for multiple entity types into a unified output.This method enables a holistic evaluation of our model’s performance across variousentity types.

model for representing entity types. We keep the weights of BERT (or
BioBERT) and Sentence-BERT fixed, adjusting only the classifier weights.
Given that our model processes one entity type at a time, we generate
predictions for each entity within every input text from the test set. We then
compile these individual predictions into a unified output that covers all
entity types, as shown in Figure 4.3. In cases where a token may fit multiple
categories, we assign it to the category with the highest probability. This
approach allows for a fair comparison of our model with other existing
models.

During the training we used an AdamW [Loshchilov and Hutter, ]
optimizer and a learning rate 1e − 3. We integrated an early stopping
mechanism into our training process, which halts the training if there is no
enhancement in model performance observed over five consecutive epochs.

The experiments were conducted using Python 3.10 [van Rossum, 2024],
along with the PyTorch [Imambi et al., 2021] and the transformers
[Wolf et al., 2020b] libraries.

Having covered the technical setup, we will present the evaluation results
of our model in the following section.

4.2.3 . Evaluation method
Having outlined the architecture of our Named Entity Recognition model,

we now turn to its evaluation, which was conducted under the zero-shot
scenario. Specifically, we trained the model on all datasets except for one,
using only the test partition of this excluded dataset for testing purposes.

To assess the model’s performance, we calculate precision, recall, and
F-measure, which are standard metrics for the NER task.

Precision is calculated as the ratio of tokens correctly identified as entities
to the total number of tokens predicted as entities. This metric evaluates the
model’s ability to label only the relevant tokens as entities.

Recall is defined as the ratio of tokens correctly predicted as entities to
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all tokens that are actual entities in the text. This metric assesses the model’s
ability to identify all relevant instances of entities.

F-measure (also known as F-score or F1-score) represents the harmonic
mean of precision and recall. It provides a balanced measure of the model’s
accuracy by considering both the proportion of correct positive predictions
and the relevance of these predictions relative to the actual positives, thus
giving an integrated view of performance:

F =
2× Precision×Recall

Precision+Recall

While calculating an average of F-measure, there are two approaches:
micro-average and macro-average. Micro-average is calculated by summing
the individual true positives, false positives, and false negatives of the
system for different classes and then using these sums to compute precision,
recall, and F1-score. This approach is particularly useful when dealing with
imbalanced datasets as it weighs each instance equally, regardless of the
class size. Macro-average, on the other hand, involves calculating precision,
recall, and the F1-score independently for each class, and then averaging
these scores across all classes. This method gives equal weight to each class,
regardless of its frequency, which can provide a misleading impression of
performance if some classes are much less frequent than others.

In our study, we use micro-average due to the significant class imbalance
present in our datasets (see Table 4.1). The micro-average method
ensures that our evaluation metrics reflect the performance across all
instances in the dataset, preventing larger classes from overshadowing the
performance metrics of smaller but equally important classes. By focusing
onmicro-average, we ensure that our evaluation is not biased by the unequal
distribution of classes and facilitate comparison with other studies, as the
majority of published research predominantly reports micro-average scores.

The selection of precision, recall, and F-measure as evaluation metrics is
particularly appropriate for our study. Precision optimization ensures that the
model’s performance is not overstated by the number of recognized entities,
recall optimization guarantees that the model does not miss relevant entities
and F-measure serves as an indicator of overall performance. Together, these
metrics provide a thorough assessment of the model’s effectiveness across
different scenarios.

4.2.4 . Results
This section presents the evaluation of our model. Tables 4.3, 4.4, 4.5,

4.6 and 4.7 present the precision, recall and F-measure scores obtained by
our algorithm and two baselines outlined in Section 4.2.1 on MIT Restaurants,
MIT Movies, CoNLL-2003 datasets, NCBI diseases and Bacteria Biotope
respectively. The "Cosine Similarity" column contains scores from the
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Dataset StandardCross-Dataset CosineSimilarity SemNER SOTA
CoNLL-2003 0.24 0.12 0.79 0.93 [Wang et al., 2022]GeoVirus 0.79 0.07 0.54 -MIT restaurants 0.09 0.12 0.46 0.36[Zhou et al., 2023]MIT movies 0.12 0.02 0.62 0.63 [Wang et al., 2023b]NCBI diseases 0.00 0.15 0.24 -BB 0.00 0.17 0.34 -

Table 4.2: Overall comparison of F-score across all the datasets.

Entity Measure StandardCross-Dataset CosineSimilarity SemNER
Dish Precision 0.00 0.16 0.38Recall 0.00 0.14 0.58F-score 0.00 0.15 0.46

Cuisine Precision 0.00 0.14 0.30Recall 0.00 0.12 0.86F-score 0.00 0.13 0.44
Restaurantname

Precision 0.00 0.08 0.23Recall 0.00 0.05 0.05F-score 0.00 0.06 0.08
Rating Precision 0.05 0.02 0.59Recall 0.03 0.12 0.82F-score 0.03 0.03 0.69
Price Precision 0.00 0.58 0.82Recall 0.00 0.14 0.64F-score 0.00 0.23 0.72
Hours Precision 0.00 0.15 0.44Recall 0.00 0.07 0.25F-score 0.00 0.10 0.32
Location Precision 0.26 0.16 0.40Recall 0.32 0.13 0.84F-score 0.29 0.14 0.54
Amenity Precision 0.00 0.25 0.85Recall 0.00 0.13 0.34F-score 0.00 0.17 0.49

Table 4.3: Performance metrics on MIT Restaurants dataset.
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Entity Measure StandardCross-Dataset CosineSimilarity SemNER
Genre Precision 0.00 0.03 0.98Recall 0.00 0.05 0.93F-score 0.00 0.03 0.95
Review Precision 0.00 0.00 0.00Recall 0.00 0.00 0.00F-score 0.00 0.00 0.00
Rating Precision 0.00 0.00 0.39Recall 0.00 0.01 0.15F-score 0.00 0.00 0.22
Ratingsaverage

Precision 0.58 0.00 0.55Recall 0.82 0.00 0.80F-score 0.68 0.00 0.65
Title Precision 0.00 0.00 0.15Recall 0.00 0.00 0.04F-score 0.00 0.00 0.06
Plot Precision 0.00 0.01 0.21Recall 0.00 0.01 0.02F-score 0.00 0.01 0.04
Director Precision 0.00 0.03 0.62Recall 0.00 0.02 0.89F-score 0.00 0.03 0.73
Actor Precision 0.00 0.05 0.53Recall 0.00 0.01 0.72F-score 0.00 0.02 0.61
Character Precision 0.00 0.00 0.54Recall 0.00 0.00 0.34F-score 0.00 0.00 0.42
Song Precision 0.00 0.01 0.00Recall 0.00 0.00 0.02F-score 0.00 0.00 0.00
Trailer Precision 0.00 0.79 0.98Recall 0.00 0.91 0.89F-score 0.00 0.85 0.93
Year Precision 0.00 0.02 0.95Recall 0.00 0.10 0.25F-score 0.00 0.03 0.40

Table 4.4: Performance metrics on MIT Movies dataset.
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Entity Measure StandardCross-Dataset CosineSimilarity SemNER
Location Precision 0.93 0.19 0.91Recall 0.70 0.15 0.48F-score 0.80 0.17 0.62

Organization Precision 0.00 0.22 0.82Recall 0.00 0.18 0.90F-score 0.00 0.20 0.86
Person Precision 0.00 0.18 0.65Recall 0.00 0.04 0.67F-score 0.00 0.07 0.65

Miscellaneous Precision 0.00 0.00 0.25Recall 0.00 0.00 0.11F-score 0.00 0.00 0.15
Table 4.5: Performance metrics on CoNLL-2003 dataset.

Entity Measure StandardCross-Dataset CosineSimilarity SemNER
Disease class Precision 0.00 0.18 0.5Recall 0.00 0.23 0.33F-score 0.00 0.20 0.40

Specificdisease
Precision 0.00 0.16 0.55Recall 0.00 0.15 0.20F-score 0.00 0.15 0.29

Compositemention
Precision 0.00 0.01 0.07Recall 0.00 0.55 0.65F-score 0.00 0.02 0.13

Modifier Precision 0.00 0.03 0.10Recall 0.00 0.00 0.00F-score 0.00 0.00 0.00
Table 4.6: Performance metrics on NCBI Diseases dataset.

106



Entity Measure StandardCross-Dataset CosineSimilarity SemNER
Microorganism Precision 0.00 0.71 0.54Recall 0.00 0.14 0.80F-score 0.00 0.18 0.75
Habitat Precision 0.00 0.12 0.18Recall 0.00 0.09 0.13F-score 0.00 0.10 0.15
Phenotype Precision 0.00 0.18 0.07Recall 0.00 0.15 0.31F-score 0.00 0.16 0.12

Table 4.7: Performance metrics on Bacteria Biotope dataset.

cosine baseline model, while the "SemNER" column shows results from our
algorithm. The "Standard Cross-Dataset" column reflects scores obtained
by a conventional model [Devlin et al., 2019], without incorporating entity
type semantics. Notably, a score of zero in this column indicates that the
conventional model failed to recognize entities not seen during training,
reflecting its limitations in handling unseen data during the inference phase.

Additionally, Table 4.2 presents overall F-scores for all datasets obtained
by thesemodels. Scores for SOTAmodels are provided in the column "SOTA",
sourced directly from relevant research papers. We took the best result for
each dataset to compare. Specifically, we selected the best published result
for each dataset to use as a comparison: kNN-NER [Wang et al., 2022] for the
CoNLL-2003 dataset, UniversalNER [Zhou et al., 2023] for the MIT restaurants
dataset and InstructUIE [Wang et al., 2023b] for the MIT Movies dataset. It is
important to note that no previously published method has been applied to
all these datasets simultaneously, making a global comparison impossible. In
cases where no score is presented for a dataset, this indicates the absence
of zero-shot algorithm evaluations for those datasets up to this point. The
scores are intriguing and will be discussed in the Section 4.3.

In evaluating our model across various datasets, we observed a varied
performance that reflects both its strengths and areas for improvement. On
the MIT Restaurants dataset (see Table 4.3), the model generally performed
well across most entities, except for "Restaurant name", which showed
weaker results. This may be attributed to the significant semantic variations
between the generic concept "Restaurant name" and specific examples such
as "Burger King", "Cheesecake Factory", and "Lucky Fortune". These names
not only differ widely from the generic concept but also vary considerably
among themselves. In the MIT Movies dataset (see Table 4.4), the model
scored highly on "Genre" and "Trailer" entities, though it failed to detect
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"Review" and "Song" entities almost entirely. The hypotheses attempting to
explain these results are discussed in Section 4.3.

On the CoNLL-2003 dataset (see Table 4.5), our model demonstrated
strong performance for the "Location" entity, closely matching the precision
of the standard cross-dataset model and significantly improving in all scores
compared to the cosine similarity model. However, for "Miscellaneous",
despite outperforming both baseline models, the scores were still low,
highlighting the need for targeted enhancements.

Moving to the NCBI diseases dataset (see Table 4.6), our model delivered
acceptable results for "Disease class" and "Specific disease" entities but
struggled with "Composite mention" and failed to identify "Modifiers"
altogether, indicating areas where the model could be refined. Detailed
explanations are provided in the Section 4.3.

Lastly, the performance in the Bacteria Biotope dataset 4.7 was mediocre
but still much better than the baselines, indicating a positive direction despite
the need for further improvement.

Overall, our experiments demonstrate that our model consistently
outperforms baseline models across most entity types, with particularly
impressive results in the MIT Restaurants dataset, where it exceeds both the
baseline and the current state-of-the-art performance.

However, the model shows weaker results comparing to the standard
approach in recognizing the "Location" entity within the Geovirus and
CoNLL-2003 datasets and the "Ratings average" entity, indicating areas where
further enhancements are needed, which is discussed in the subsequent
section.

Having outlined the performance metrics across a range of datasets,
we now understand where our model excels and where it requires further
development. The following section will delve deeper into the implications
of these results, explore the potential reasons behind the disparities in
performance, and suggest pathways for future enhancements.

4.3 . Discussion
Our analysis confirms that integrating entity type semantics enables

NER model to predict unseen entity types, a capability lacking in standard
models, resulting in zero scores for most unseen entities. The only exception
is "Ratings average" of the MIT Movies dataset and "Rating" of the MIT
Restaurants dataset, but it is worth to note that we allowed a classically
fine-tuned model to treat these classes as one class.

A thorough analysis of our prediction results shows clear disparities
across different entity types. For instance, entities such as "Location",
"Organization", "Person", "Rating", "Price", and "Genre" achieve high scores,
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whereas "Miscellaneous", "Modifier", "Restaurant name", "Review", "Title",
"Plot", and "Song" score very low. These variations suggest the need for a
case-by-case explanation, but broadly speaking, two main factors emerge.

Firstly, the clarity of the concept plays a crucial role. Entities like
"Price" and "Location" have straightforward definitions, whereas terms like
"Miscellaneous", "Modifier" or "CompositeMention" are inherently vague and
confusing even for human annotators. Secondly, the relevance and quality
of the source texts or descriptions significantly influence outcomes. For
example, while the Wikipedia page for "Song" explains the concept well ("A
song is a musical composition performed by the human voice..."), in practice,
the system must recognize specific song titles like "Married Life" within
context "find me the movie with the song ’Married Life’". This discrepancy
indicates that the descriptions often do not align closely enough with the
practical identification tasks at hand. It’s important to note that these two
factors are interconnected: when an entity type is well-defined, it tends to
have a shared understanding, which increases the likelihood of having a
comprehensive Wikipedia page.

We also can notice that the model is persistently better then the cosine
baseline. Therefore, we can conclude that final layers play an important role
in retrieving intrinsic features helpful for the classification.

Another observation is that in the case of Cosine Similarity, precision and
recall often show similar values. This could suggest several things. It might
indicate that the algorithm does not consistently favor one type of error over
another—either predicting false positives or false negatives. Alternatively,
it could be due to the threshold for classifying an object as part of the
positive class being optimized to balance minimizing false positives, which
would improve precision, and avoiding missing true positives, which would
enhance recall. This optimization can result in comparable values for both
metrics. Furthermore, if the model is overly simplistic or lacks the capacity to
effectively adapt to the data, such as linear models applied to non-linearly
separable data, this too might lead to average yet balanced precision and
recall. We believe that the similarity in these metrics likely stems from a
combination of the latter two factors: the simplicity of the model and an
empirically set threshold that aptly suits the data.

Moreover, it is important to note that for the "Location" entity, a standard
model demonstrates lower recall than might be expected given the volume
of training data. This discrepancy arises because the definition of "Location"
varies significantly across different datasets. For example, in the CoNLL-2003
dataset, "Location" typically refers to simple geographical places like cities
and countries. However, in the GeoVirus dataset, it includes more complex
geopolitical entities, such as "Fort Hood", or specific sections of facilities, like
"St. Nicolas" in "St. Nicolas Hospital". The MIT Restaurants dataset reflects
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an even broader approach, incorporating phrases that describe location
contextually, such as "around", "in the area", and "near Cheyenne". Despite
our model using the semantics of the word "Location", applying a single
definition across all these varied contexts leads to the observed lower recall
as well. Future work could explore this discrepancy, for example, by training
identical models separately on the training partitions of CoNLL-2003 and
GeoVirus, then applying them to amixed set of test data to analyze prediction
differences.

Another interesting observation is the confusion between similar classes.
For instance, our model frequently predicts the same mention as belonging
to both "Disease class" and "Specific disease", or to both "Dish" and
"Cuisine" classes simultaneously. We believe this happens because the texts
describing these different entities are quite similar. To further investigate
this issue, future research could measure the distance between the semantic
representations of these similar entity types and compare them with the
distances to other, more distinct, entity types.

In addition, it is noteworthy that the "Trailer" entity type is the only
one better recognized by the cosine similarity model. The reason is
straightforward. According to Table 4.1, the entity "Trailer" appears only 30
times in the test dataset, with 6 unique forms. In fact, over 20 mentions
of "Trailer" are represented by the word "trailer" alone. Therefore, adding
additional layers for this specific entity type would unnecessarily complicate
the model without enhancing performance.

A general trend we have noticed is that categories with fewer
representations (refer to the unique and total numbers of entities in Table 4.1)
tend to have higher scores. This could suggest that the system is less stable,
as its performance drops with a greater variety of mentions. This indicates a
potential lack of generalization capability in our model.

Furthermore, it’s important to highlight that we compared our zero-shot
algorithm with the top-performing zero-shot models for each dataset.
Nonetheless, these models did not consistently outperform our approach
across different datasets. For example, the study by [Wang et al., 2023b]
achieved a score of 0.21 on theMIT Restaurants dataset, which is considerably
lower than other reported results. In a similar vein, [Zhou et al., 2023]
achieved an F-measure of 0.49 for the MIT Movies dataset, a result that
aligns closely with ours. Additionally, all state-of-the-art systems were trained
on multiple datasets, often sharing a significant number of common labels,
as seen in the CoNLL-2003 dataset. This overlap simplifies the task for
these entities, thereby rendering a direct comparison to our method less
straightforward and reliable. These observations suggest potential concerns
regarding the robustness of existing systems.
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4.4 . Conclusion
This chapter has detailed a novel approach on Zero-Shot Named Entity

Recognition. By employing entity type semantics integrated by textual
descriptions into our model, we have enhanced the ability of NER systems to
adapt dynamically to new domains without the need for extensive retraining.
Unlike methods that rely on very large models, such as those discussed in
[Wang et al., 2023b] and [Zhou et al., 2023], our approach does not require
extensive retraining. It also offers ease of transfer to new domains by
simply sourcing appropriate textual descriptions, a method that is more
straightforward than the model adjustments needed in techniques like those
found in [Wang et al., 2022]. The results presented in this chapter have
been published at the 27th International Symposium On Methodologies For
Intelligent Systems 2024 [Borovikova et al., 2024].

Through testing on diverse datasets, we have demonstrated that
our model in some cases surpasses current state-of-the-art approaches,
particularly in handling domain-specific entity types. The distinct advantage
of using enriched semantic inputs to facilitate domain adaptation has
been underscored by our experimental results, which show significant
performance improvements, especially in zero-shot learning scenarios where
traditional models are less helpful.

However, the variability in performance across different entity types and
datasets highlights the ongoing challenges NER systems face, particularly
in generalizing across diverse contexts and managing ambiguous entity
classifications. The system necessitates meticulous selection of documents
that accurately describe the entity types to be identified. The insights gained
from this study lay a foundation for future work. Enhancing model sensitivity
to context and refining semantic representation sources could all contribute
to more robust NER capabilities.

Future research could explore two primary areas:
1. Automating the collection of texts for calculating entity representations
(see Section 6.2). One approach to the this problem could involve using
dictionaries. For instance, instead of using descriptive texts for the
"Location" entity, we could use a list of locations from the GeoNames
database, similar to our approach with KeyWord Masking in Chapter 3.

2. Enhancing System Robustness: Developing strategies to make the
system both more robust and less sensitive to variations in text is
crucial. The specific methods to achieve this remain not clear and
require further investigation. However, future research could focus
on understanding the factors that contribute to system vulnerability
and devising strategies to counteract them. Potential strategies might
include experimenting with the Sentence-BERT model to examine
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how text variations affect representations. This could involve
modifying texts by removing, inserting, or replacing segments and
observing the impact on text representations. Additionally, fine-tuning
Sentence-BERT for a specific tasks related to entity types, such as
predicting entity type based on a text describing it, could provide
deeper insights and potential improvements.

Looking ahead, the next chapter will integrate these developments with
the other KWM component of the system for domain adaptation in the Plant
Health domain. Given the flexibility of this approach, it can be easily applied
to specialized domains.
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5 - Named Entity Recognition domain
adaptation for plant health
As discussed in the previous chapter, adapting a Named Entity

Recognition system to a new domain introduces challenges specific to that
domain. In the context of plant health, these challenges include managing
agricultural and scientific terminology, navigating language ambiguities, and
handling the diverse styles of documents, such as academic research papers,
technical reports, and social media content. This chapter aims to address
these issues by applying two previously presented methods: KeyWord
Masking strategy (see Chapter 3) and SemNER (see chapter 4), to effectively
adapt NER technology for use in the plant health domain.

5.1 . Methodology
5.1.1 . General pipeline

Building on the insights from previous chapters, this section outlines
our methodology for adapting Named Entity Recognition to the Plant Health
domain. By integrating two complementary strategies previously discussed,
this approach aims to leverage the strengths of each method to enhance the
precision and applicability of NER within agricultural texts.

Our method starts by using the KeyWord Masking strategy to fine-tune
a domain-specific Language Model. We generate lexicons - lists of pests,
plants, diseases, and locations— terms critical to plant health. These lexicons
serve as masks during the model’s fine-tuning phase. This process helps the
model to focus on relevant terms during theMasked LanguageModeling task.
Afterwards, we use the fine-tunedmodel to extract latent representations for
each token in texts where these entity types are to be detected.

Furthermore, we enhance entity recognition by integrating semantic
representations of each entity type. Descriptive articles from Wikipedia
about each entity type are processed through the Sentence-BERT model to
create rich semantic embeddings. These embeddings are then processed
by our SemNER framework through a series of transformations, dot
product combination with token representations, obtained by the fine-tuned
Language Model, and a Conditional Random Field layer to generate the final
predictions.

A visual summary of this integrated approach is provided in Figure 5.1.
5.1.2 . Datasets
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Figure 5.1: Overview of the Integrated NER Methodology for Plant Health. Thisfigure illustrates the application of a zero-shot Named Entity Recognition strategy(SemNER), as described in Chapter 4, to the Plant Health domain. It employs adomain-specific Language Model that was fine-tuned using the KeyWord Maskingstrategy outlined in Chapter 3.

For our experiments we used the two datasets on plant health previously
described in Section 3.1.2. More precisely, for the fine-tuning of the Language
Model, we employed a collection of documents primarily sourced from
the Plateforme d’Épidémiosurveillance en Santé Végétale (PESV), which was
further enrichedwith a variety of related texts, including encyclopedic articles,
scientific reports, popular science articles, local news articles, and blog posts,
all of which provide rich descriptive content pertinent to plant health.

For the zero-shot NER tests, we leveraged the recently developed
Epidemiomonitoring Of Plant (EPOP) corpus, which is specifically designed
for several Information Extraction tasks within the plant health domain
including Named Entity Recognition. This corpus includes eight entity types
(see Section 3.1.2), but our focus was narrowed to the four most critical for
our research: Plant, Pest, Disease, and Location. This selective focus allows
us to concentrate our efforts on the entities most relevant to plant health
monitoring. Specifically, understanding Plant entities helps in identifying
the species at risk or affected by various factors, while Pest and Disease
entities are crucial for diagnosing and managing threats to plant health.
Additionally, Location information is vital for tracking the spread of pests and
diseases and implementing region-specific treatment protocols, making these
entities indispensable for effective plant health surveillance and intervention
strategies.

In order to describe entity types, we use Wikipedia articles that were
specifically selected to capture the essence of each of them, following
consultations with Plant Health experts. Specifically, for "Disease" entity type,
we use articles on Plant Disease and Plant Pathology. For "Plant", we use
Plant and Botany articles, and for "Pest", we use the Pest (organism) article.
Additionally, weused the same latent representations for the "Location" entity
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as those used in our experiments detailed in Chapter 4.
All the datasets were selected/created to effectively adapt our NER system

to the Plant Health domain. However, achieving high performance relies
on more than just the dataset. For instance, during the fine-tuning of the
Language Model using the KeyWord Masking method, the quality of the
lexicons appears to be crucial. We now turn our attention to refining these
lexicons used in our experiments, as their precision directly influences the
efficiency of the entire system.

5.1.3 . Lexicon filter
While analyzing the results of our KeyWord Masking strategy on entity

prediction mode (see Section 3.2.3), we identified that some lexicon entries
contained ambiguous short words, leading to false positive predictions. For
example, "pit" can refer to a location in Italy as well as a hole in the ground,
"rose" can denote both a plant and the past tense of "rise" and "fly" might be
identified either as a pest or a verb.

To address this issue, we conducted experiments to determine howmany
words from our lexicons were simultaneously present in the training dataset
and appeared in the testing datasetwith a non-relevantmeaning. Considering
the extensive size of our dictionary, manually analyzing each entry was not
feasible. Nonetheless, we had already developed a hypothesis regarding
a potential criterion to refine our dictionary. Typically, pests, plants, and
diseases are partly denoted by their international scientific names, which
are in Latin and tend to be lengthy. Similarly, locations with longer names
are less likely to be ambiguous. Based on these observations, we propose
that excluding shorter words from our lexicons could effectively reduce these
ambiguities.

To test this hypothesis, we projected the lexicon onto our corpus, taking
into account the plural forms of the terms. We then assessed the impact
of this refinement by calculating precision, recall, and F-measure (refer to
Section 2.3.2).

Upon analysis, we determined the optimal length threshold to be different
for each category: 11 characters for Locations, 12 for Diseases and Pests, and 4
for Plants. Our primary goal was to prioritize precision over recall, minimising
the misidentification of irrelevant tokens. This focus aligns with the KeyWord
Masking strategy, which targets specific words rather than random tokens,
unlike traditional approach (see Section 3.1.1).

Interestingly, the "Pest" entity exhibited the highest precision at a
30-character threshold, achieving the best precision but with a recall close to
zero, indicating a very narrow focus. However, a more balanced approach at
a 12-character threshold provided nearly as high precision with a significantly
better recall.
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Figure 5.2: Performance Metrics for "Plant" Entities Using Different LexiconLength Filters.

Figure 5.3: Performance Metrics for "Pest" Entities Using Different LexiconLength Filters.
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Figure 5.4: Performance Metrics for "Disease" Entities Using Different LexiconLength Filters.

Figure 5.5: Performance Metrics for "Location" Entities Using Different LexiconLength Filters.
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The results of these lexicon refinement experiments, demonstrating the
impact of different length thresholds on the identification of "Plant", "Pest",
"Disease" and "Location" entities, can be viewed in Figures 5.2, 5.3, 5.4, 5.5
respectively.

Having refined our lexicons to exclude shorter, more ambiguous terms,
we are now positioned to fine-tune our Language Model more effectively and
use these optimized lexicons in a baseline comparison, details of which are
described in the following section.

5.2 . Experiments
5.2.1 . Experimental setup

We fine-tuned the BioBERT model [Lee et al., 2020] using the KeyWord
Masking strategy following the same protocol as described in Section 3.2.2,
and using the filtered lexicons. Subsequently, we apply the SemNER model,
developed during the experiments detailed in Section 4.2, to the test dataset.
Latent representations of the entities are generated using the Sentence-BERT
model [Reimers and Gurevych, 2019]. These representations are derived
from texts that were specifically selected to capture the essence of each entity
type, following consultations with Plant Health experts.

For the evaluation we use precision, recall and F-measure as described in
4.2.3.

We evaluated our model against three baselines.
1. The first baseline, named "Lexicon projection", uses a regular
expression search based on our lexicons, specifically attempting to
match each term in both singular and plural forms in the corpus.
This baseline provides a clear, low-level solution to compare against
more complex models. By establishing how well a simple lexical
approach performs, we can evaluate the added value of advanced
ML models like BioBERT. In addition, we can evaluate the quality and
comprehensiveness of our lexicon.

2. The second baseline employs a standard Transformer-based model,
namely BioBERT [Lee et al., 2020] fine-tuned for MLM task with the
KWM strategy, enhanced with a Conditional Random Field layer
and fine-tuned again for NER task on the train and dev splits
of EPOP corpus. This approach combines classic domain-specific
supervised task adaptation with the KWM strategy, mirroring the
methodology employed in our algorithm. This comparison allows us
to assess how our system measures up against traditional supervised
domain-adaptation approaches.
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Entity Measure Standardfine-tuned Standardcross-datasets Lexicon projection SemNER
Plant Precision 0.56 0.00 0.23 0.62Recall 0.78 0.00 0.35 0.73F-measure 0.65 0.00 0.27 0.67
Pest Precision 0.67 0.00 0.52 0.18Recall 0.49 0.00 0.28 0.25F-measure 0.56 0.00 0.37 0.21

Disease Precision 0.73 0.00 0.39 0.00Recall 0.67 0.00 0.03 0.00F-measure 0.70 0.00 0.06 0.00
Location Precision 0.64 0.65 0.41 0.75Recall 0.78 0.02 0.17 0.93F-measure 0.71 0.04 0.24 0.83

Table 5.1: Performance metrics on EPOP dataset

3. The third baseline is pretrained on the datasets outlined in 4.1.2, but
not fine-tuned on the EPOP corpus, serves as a classic supervised
system evaluated in a zero-shot setup. This baseline provides a control
scenario to evaluate the necessity and effectiveness of domain-specific
fine-tuning. If the non-fine-tuned model performs comparably to the
fine-tuned models, it might suggest that the pretraining has already
captured a sufficient understanding of the relevant concepts, or that
the fine-tuning process needs refinement.

All three baselines, along with our model are evaluated on the test split of the
EPOP dataset.

5.2.2 . Results
This section presents the results of our experiments. Table 5.1 presents

the precision, recall and F-measure scores obtained on the EPOP dataset by
our algorithm and by three baselines outlined in Section 5.2.1. The "Lexicon
projection" column contains scores from the baseline obtained by matching
the lexicons with the corpus (baseline 1), while the "SemNER" column shows
results from our algorithm. The "Standard fine-tuned" column reflects scores
obtained by a conventional model, fine-tuned on a train split of the dataset
(baseline 2). The "Standard cross-datasets" column displays outcomes from
a standard model that, like SemNER, is pretrained across various datasets
without further fine-tuning on EPOP (baseline 3).

The results indicate a mixed performance across different entity types.
Notably, our approach shows promising results in recognizing "Location"
entities with significantly higher precision and recall compared to the
baselines. However, it struggles with "Disease" entities, where it fails to
correctly identify any instances. This disparity will be discussed in the next
section. The standardmodel, when fine-tuned, performs optimally but shows
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limited capability in zero-shot mode, recognizing only "Location" entities,
which results in zero scores for other entity types. The lexicon projection
method, although not achieving top results, still manages to identify 20-40%
of entities, except for "Diseases".

The experimental results provide factual insights into the model’s
performance in generalizing across domains without direct training,
highlighting key areas for potential enhancements. As we transition into the
discussion section, we will delve deeper into these disparities, examining the
underlying reasons for the model’s performance variations and exploring
strategies for future improvements.

5.3 . Discussion
5.3.1 . Insights from the EPOP dataset

Our results on the EPOP dataset reveal several insights about the
performance of our zero-shot NER algorithm, SemNER, within the specific
context of Plant Health. Notably, while SemNER demonstrates robust
capabilities in recognizing "Location" entities with superior precision and
recall, it encounters challenges with "Disease" entities, failing to identify them
entirely. This variation in performance across entity types underscores the
nuanced challenges inherent in zero-shot learning and highlights the need
for targeted improvements.

Firstly, the successful identification of "Location" entities by SemNER
suggests that the model effectively leverages semantic features that are
generalizable across different contexts. This is likely due to the more defined
and consistent representation of location-related terms across various
domains and texts. While one might argue that this success is due to prior
exposure to "Location" entities during pre-training, it is important to note
that two other baselines were also exposed to this entity type. Despite this,
SemNER still outperforms the second baseline, which had access to the same
datasets. This suggests that SemNER’s architecture, which integrates broader
contextual understanding, appears particularly suited to such well-defined
categories.

Conversely, SemNER’s inability to recognize "Disease" entities highlights a
critical limitation of the current implementation. This discrepancy indicates
a gap in the lexical and semantic coverage of our model, particularly for
specialized terms that require a deep domain-specific understanding which
our model struggles to capture. Despite various attempts using different
textual representations, such as encyclopedic articles, lists of diseases, and
related texts, our model consistently failed to detect "Disease" entities. The
specialized and varied nomenclatures of diseases within the Plant Health
domain pose a particular challenge, as evidenced by the results of the lexicon

120



projection method in identifying these terms. This result highlights a critical
area for improvement in enhancing the model’s understanding of complex
domain-specific entities.

It’s important to note that some diseases are predicted correctly, but
their number is so small that it does not affect the overall scores. Namely,
’brown rot’ is predicted accurately but only appears twice in the test set.
The verification showed that it is mentioned in the Wikipedia article used for
entity representation. Surprisingly, ’panama disease’, though also mentioned
in the same article, was never predicted. When analyzing false predictions,
the model often misclassifies pests as both pests and diseases, typically with
a higher probability assigned to them being pests. This misclassification
could be attributed to the predominance of pest mentions over diseases
in the article, which may affect the model’s behaviour. However, a similar
behaviour is also observed in the conventional model, which sometimes
predicts pests instead of diseases, albeit less frequently. This suggests that
distinguishing between pests and diseases might generally pose a challenge
for NER systems. Indeed, some diseases are named after the pathogens
that cause them, such as Fusarium wilt (caused by Fusarium oxysporum)
or diseases named directly after viruses like Banana bunchy top virus and
Tobacco Mosaic Virus, which refer to both the disease and the causative
agent. Further investigation is needed to establish the problem associated
with this entity type. Potential experimental approaches to address this
challenge are discussed in Section 5.3.3.

Regarding the Standard cross-dataset scores for "Location" entities, we
observe a moderately acceptable precision of 0.65, closely aligning with the
standard fine-tuning score of 0.64. However, the recall is notably low at
0.02, indicating that while the model does not make a lot of mistakes when
it does predict an entity, it fails to detect most entities. A possible explanation
for this is that the definition of "Location" varies across datasets, causing
inconsistencies in model performance. For instance, the MIT Restaurants
dataset primarily contains relative location terms such as "nearby", "around",
and "downtown", in contrast to the primarily geographical names found in
the CoNLL-2003, Geovirus, and EPOP datasets. Additionally, the CoNLL-2003
dataset sometimes annotates city names within a football context as
"Organization" rather than "Location", such as "Paris" and "Saint-Germain" in
"Standings in the French first division after Friday’s matches (tabulate under
played, won, drawn, lost, goals for, against, points): Paris Saint-Germain 21
12 6 3 34 15 42)". When reviewing this model’s performance on "Location"
entity type across various datasets (see 4.3), it is evident that scores fluctuate
depending on the dataset, supporting the hypothesis that the definition of
"Location" entities in the EPOP corpus is uniquely distinct, showing minimal
overlap with definitions from CoNLL-2003, MIT Restaurants and Geovirus,
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which were used for fine-tuning.
Interestingly, the SemNER model outperforms the standard fine-tuning

approach in detecting "Location" entities, suggesting several insights into the
model’s design and application. Notably, the SemNER model’s effectiveness
suggests that its semantic understanding of "Location" closely mirrors the
definitions and expectations set forth in the EPOP dataset. This alignment
indicates that the SemNER model has effectively incorporated the specific
semantic cues that define "Location" within this dataset, allowing it to
recognize and categorize these entities with greater accuracy, while the
understanding of "Location" entity of a standard model is dictated by
previously seen corpora, which may be different. More precisely, in the
EPOP corpus, "Location" typically refers to straightforward geographical
places, such as cities and countries (e.g., "Italy"), similar to the usage in the
CoNLL-2003 dataset. However, this is in contrast to the Geovirus dataset,
where "Location" can include parts of organization titles (e.g., "Bulacan" in
"Bulacan Farm"), and the MIT datasets, which describe "Location" in broader
terms, such as "nearby".

Additionally, the superior performance of the SemNERmodel implies that
standard fine-tuning methods may face limitations due to insufficient data.
Typically, standard approaches rely heavily on the breadth and diversity of
training data to learn effective models. However, when the available data
does not adequately represent the variety of contexts in which "Location"
entities appear, these models struggle to generalize well. This is particularly
evident in datasets like EPOP, where unique or less common representations
of "Location"may not be sufficiently covered by standard training procedures.
For instance, while adjectives are never annotated as "Location" entities in
the Geovirus or CoNLL-2003 datasets, in EPOP, adjectives referring to plants,
such as "Mediterranean" in "Mediterranean vegetation", are classified as
"Location".

Therefore, the success of the SemNERmodel underscores the importance
of tailoring semantic representations to the specific requirements of the
dataset and suggests that enhancing training data or employing more
sophisticated semantic modeling techniques could significantly improve
performance. This analysis sets the stage for a deeper discussion on
optimizing entity recognition models to handle varying definitions across
datasets effectively.

The results from the lexicon projectionmethod, which achievesmoderate
success in recognizing a reasonable proportion of entities, further emphasize
the potential of incorporating domain-specific lexicons into the learning
process. However, the limited success with "Disease" entities also highlights
the challenges of the NER task, reinforcing the need for enhanced
domain-specific training or the integration of more comprehensive lexicons.
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It is worth noting that filtering lexicons had varied impacts depending on
the entity type. A common observation is that recall consistently degrades
across all types, which is expected as filtering reduces the number of terms
available for predictions.

For "Plant" entities, our analysis reveals a notable pattern related to the
length of words in our lexicon. As illustrated in Figure 5.2), both precision
and recall experience before 4-character filter, indicating the presence of
ambiguouswords at this length (e.g., "ash", "May", ’tea"). However, a decline in
both metrics becomes evident as we increase the lexicon length filter beyond
4 characters. The decrease in recall is expected as fewer words meet the
filter criteria, leading to fewer predictions. Interestingly, precision also drops,
which can be attributed to the presence of words in the lexicon that appear in
the text but are not annotated as "Plant" entities. As the filter becomes more
restrictive, excluding more and more relevant words, precision deteriorates.
This analysis suggests that words that are 4 characters long strike a balance,
being sufficiently relevant and unambiguous for the Plant Health domain.

In contrast, "Pest" entities showed a slight improvement in precision up
to a 12-character filter, followed by a a sharp decrease and a subsequent
recovery at a 28-character filter (see Figure 5.3). This means that there are
some ambiguous terms that have 12-28 characters of length.

For "Disease" entities (see Figure 5.4), precision peakedwith a 12-character
filter before dropping dramatically to zero at an 18-character filter. Recall
slightly improved until until the threshold of 5 characters and then remained
stable until a 13-character threshold, beyond which it began to deteriorate,
reaching zero at an 18-character threshold. This pattern suggests that there
are no long disease mentions in the EPOP corpus that are presented in our
lexicon and also that the initial improvement and subsequent stability in recall
suggest that shorter terms may not contribute much to false negatives but
their elimination eventually limits the model’s coverage.

However, the "Location" entities (see Figure 5.5) displayed a notably
different trend with sharp fluctuations in precision, peaking and then
declining, and recall slightly improving up to a 4-character filter before
drastically decreasing. This underscores the complex nature of geographic
names and suggests that a more nuanced approach to lexicon filtering may
be necessary.

These variations emphasize the need to customize lexicon length filters
based on the specific characteristics and requirements of each entity type to
optimize the performance of NER systems in different contexts.

In addition, the performance disparities between the fine-tuned standard
model and its cross-dataset counterpart highlight the importance of
dataset-specific fine-tuning in achieving optimal results. While the standard
model fine-tuned on the train split of the EPOP dataset shows respectable
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performance, its inability to generalize in a zero-shot scenario without
fine-tuning underscores the challenges of applying general NER models to
specialized domains without adaptation.

5.3.2 . Potential impact on Plant Health Epidemiology Monitoring
As for the impact on Plant Health Monitoring, considering, this algorithm

could be applied in a real world system, as a human assistant, the results are
satisfactory or not depending on the particular entity type.

The high precision in identifying "Location" entities ensures that when the
model labels a word as a location, it is almost always correct. While high
precision minimizes the risk of false positives, which are generally easy for
humans to discern, the more critical issue in epidemiological monitoring is
the model’s low recall. This low recall means that many pertinent locations
are not identified, potentially leading to underreported disease spread areas.
Such omissions can delay response measures and compromise the overall
effectiveness of epidemiological monitoring. Consequently, achieving a recall
of 0.93 and a precision of 0.75 is considered a satisfactory outcome, as it
balances the need for both accurate and comprehensive location detection.

The failure to detect "Disease" entities significantly impacts epidemiology,
as accurate disease identification is crucial for monitoring outbreaks and
implementing preventive measures. The low precision and recall in this
category mean that the system is currently not reliable for tracking disease
occurrences. Even under the best-case scenario, which involved standard
training, the highest quality observed was a 70% effectiveness. This level
of performance, although substantial, suggests there is considerable room
for improvement. High precision is essential to ensure that the diseases
identified are correctly classified, avoiding false positives that could lead to
unnecessary alarms and misallocation of resources. Similarly, high recall is
critical to ensure that all instances of a disease are captured, especially for
rare or emerging illnesses that could escalate if not promptly addressed.

Similar to diseases, accurate identification of pests is crucial for effective
pest population control and prevention of associated plant health issues.
High precision is essential because pests can easily be mistaken for harmless
insects or bacteria unrelated to plant diseases. Ensuring that each identified
pest is indeed a threat prevents unnecessary interventions and focuses
resources on true problems. Similarly, high recall is vital because overlooking
a pest can lead to significant delays in taking necessary action, potentially
exacerbating the infestation and its detrimental effects on plant health. In
the best case scenario we observed, the precision was 0.67 and the recall was
0.49. These figures highlight a substantial gap in the system’s effectiveness,
underscoring the urgent need for improvements to ensure that pest detection
is both accurate and comprehensive.
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Additionally, in scenarios where the monitoring focus is on targeted
diseases, high precision is better than high recall to ensure that no potential
threat is overlooked, which is critical in a surveillance cell monitoring specific
diseases. Conversely, less critical diseases, which aremore numerous,may be
approached more broadly and superficially, prioritizing recall over precision.

Accurate identification of plant species is essential for monitoring disease
susceptibility and pest resistance across varied plant types. High precision is
crucial, as it ensures that the plants are correctly identified, which supports
precise mapping of their susceptibility and resistance. This precision is
particularly important given the potential for confusion between plants and
closely related entities, such as fruits, herbs, or plant-derived products like
medicines. High recall is also vital as it ensures that all relevant plant types
are captured in epidemiological assessments, avoiding oversight that could
skew data and decision-making.

In our evaluation, the SemNER algorithm achieved the highest precision
at 0.62, effectively identifying plants with a lower risk of false positives. On
the other hand, the standard fine-tuned model demonstrated superior recall
at 0.78, suggesting it is better at capturing a comprehensive range of plant
entities but may include more false positives. To leverage the strengths of
both approaches, we should explore strategies to integrate the high precision
of SemNER with the extensive recall of the standard fine-tuning. Combining
thesemethodologies could potentially yield amore robust system, enhancing
both the accuracy and completeness of plant identification in epidemiological
studies.

5.3.3 . Future Directions
Moving forward, several strategies could be explored to enhance the

performance of zero-shot NER models like SemNER in specialized domains
such as Plant Health. One effective strategy involves refining the lexicons;
this could be achieved through targeted filtering techniques that eliminate
ambiguous or irrelevant terms, or by incorporating synonym expansion to
cover a broader range of relevant vocabulary. Such improvements would
enable the model to more accurately understand and recognize specialized
terms associated with plant diseases.

Furthermore, diversifying the sources and methods for defining entities
could offer substantial benefits. Using a broader range of sources enhances
models’ ability to understand entity types more deeply, potentially increasing
accuracy in identifying and categorizing entities, especially in complex or
ambiguous contexts. Additionally, diverse sources help mitigate biases
inherent in data from a single source. Instead of relying exclusively on
encyclopedic articles, which may not capture the nuanced language specific
to certain domains, alternative approaches could include:
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Expert Input. Engaging domain experts to directly contribute textual
definitions or validate existing ones could ensure that the lexicons reflect the
precise terminology used in practice.

Usage of Specialized Lexicons. Employing a categorized list of lexicons,
where terms are grouped by their relevance or context, might provide clearer
guidance for the model on how terms are used within specific domain areas.

Guideline-Based Definitions. Definitions derived from industry
or academic guidelines could be incorporated to align the model’s
understanding with the standardized descriptions recognized in the field.

Particular attention needs to be given to the "Disease" entity type, as the
system’s behavior here is counterintuitive, necessitating further investigation.
As discussed in Section 5.3, we suppose that this may be due to the influence
of pest mentions in the articles used to describe the "Disease" entities. This
influence could potentially be verified through various text modifications,
such as inserting more examples of diseases or removing mentions of pests.

Additionally, challenges in distinguishing between pests and diseases
may arise due to similarities in their names.An improvement strategy could
involve the integration of a disambiguation module specifically designed to
differentiate between closely related terms. This module would not only
distinguish between pests and diseases, which are two distinct entity types,
but also clarify distinctions between other similar terms, such as plants
versus fruits and herbs, or pests versus other insects and microorganisms.
Implementing such adjustments would enable the model to refine its
recognition strategies dynamically, tailoring its response based on the entity
type and the contextual information present.

Another avenue involves incorporating a classic model equipped with
an automatic preannotation module. This module would leverage lexicons,
particularly focusing on entities that are poorly recognized, such as
"Disease" in our study. This preannotation could be used as a silver
annotation afterwards. This module would employ lexicons that capture
a comprehensive list of disease terms, providing a preliminary layer of
annotations. These preliminary annotations, often referred to as ’silver
annotations’, could serve as an informed guess that the model can refine
further.

Moreover, further refinement of the model’s architecture to incorporate
adaptive thresholds for entity recognition based on the semantic similarity
and contextual cues specific to the domain could enhance its adaptability and
accuracy.

5.4 . Conclusion
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This chapter has described the complex process of adapting Named
Entity Recognition for the Plant Health domain through the integration of
two sophisticated methodologies — KeyWord Masking and semantic entity
representation. Thus, we have crafted an approach to enhance the quality
and usability of NER in agricultural contexts.

The methodologies applied here have been rigorously tested using
datasets specifically curated for their relevance to plant health. These tests
have demonstrated the vital role of accurate, domain-specific lexicons in
improving NER performance, highlighted by the significant refinement of
lexicons to mitigate the issues posed by ambiguous terms. The experimental
results have shown varied success across different entity types, underscoring
the nuanced challenges of zero-shot learning and the need for ongoing
enhancements to the system’s capabilities.

The SemNER model, in particular, excelled in identifying "Location"
entities with high precision and recall. Conversely, the struggle with "Disease"
entities exposed critical gaps in the model’s coverage and its ability to handle
the specialized vocabulary intrinsic to plant health. This disparity between
entity types has raised discussions on the need for targeted improvements
and suggested that future strategies should include the expansion of lexicon
sources, the refinement of entity definitions, and the customization of model
parameters to better capture the complex dynamics of plant health.

Moving forward, the insights obtained from this study will inform further
advancements in NER applications tailored to plant health and related
specialized fields. Future efforts will be dedicated to refining the model’s
capacity to consistently recognize a variety of entity types across different
contexts, ensuring high accuracy crucial for practical deployment in plant
epidemiology. This will enhance the system’s utility in real-world scenarios,
enabling more effective monitoring and management of plant health issues.
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6 - Conclusion
6.1 . Summary of findings
This thesis has explored the nuances of domain adaptation in Named

Entity Recognition focusing on the plant health domain. It introduced novel
techniques, namely, a special strategy of Masked Language Modeling with
KeyWord Masking and SemNER system which uses semantic representation
of entity types as input features. The exploration across the chapters provided
deep insights into the complexity of adapting language models to specialized
domains, highlighting the effectiveness of targeted strategies in enhancing
NER applications.

Firstly, the implementation of the KeyWord Masking strategy, as detailed
in Chapter 3, demonstrated how the targeted masking of keywords relevant
to specific entities could refine the training process of language models. By
focusing on domain-relevant vocabulary, this strategy ensures that themodel
captures the nuanced context and terminology associated with specific entity
types. This entities-oriented approach improved the model’s accuracy in
recognizing these specific entities such as plants, pests, and diseases within
the Plant Health domain, and revealed the importance of domain-specific
lexicons in pre-training Language Models for robust NER systems.

This method enhances semantic understanding, enabling the language
model to interpret and process text with greater relevance and specificity.
As a result, the NER system equipped with this model performs better in
real-world applications, especially in identifying entity types that resemble the
vocabulary used for masking.

Secondly, the integration of semantic entity representations as described
in Chapter 4 offers a method to recognize previously unseen named entities
types without requiring an explicit fine-tuning of a model for NER task on the
domain-specific dataset. This method leverages textual descriptions of entity
types that encapsulate theirmeaning, thereby enhancingmodel’s adaptability
and performance across various domains.

We evaluated this approach on multiple datasets from both general
and specialized biological domains. The outcomes highlight our method’s
broad applicability, as evidenced by non-zero F-scores across all datasets.
In addition, our method outperformed several existing zero-shot techniques
on certain datasets, achieving an F-score of 0.46 compared to 0.36
[Zhou et al., 2023] and 0.21 [Wang et al., 2023b] on MIT Restaurants, and
0.62 compared to 0.49 [Wang et al., 2023b] on MIT Movies). However, its
effectiveness varies and heavily relies on the quality and specificity of the text
descriptions used. While this reliance on precise text descriptions could be
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seen as a limitation—restricting the ease of application across different entity
types — it also presents an opportunity. Since the definition of entity types
can vary from one dataset to another and depends on the system’s intended
purpose, this dependency allows us to fine-tune the algorithm by adjusting
the textual definitions of entity types to meet specific needs.

Finally, as outlined in the Chapter 5, the application of a combined strategy
in the plant health domain has revealed both the challenges and successes
of deploying advanced NER techniques in a specific real-world context, such
as plant epidemiology. The high accuracy in identifying location entities
contrasted with the struggles in detecting diseases points out critical areas
for further research. Identifying "Location" entities within the SemNERmodel
are crucial for tracking the spread of plant diseases and pests. Accurate
location data ensures that interventions are correctly targeted, which is vital
for efficient resource allocation and response planning.

However, the struggles with identifying "Disease" entities point to
significant gaps in themodel’s ability to handle specialized vocabulary related
to plant health. This limitation could influence the detection of disease
outbreaks, potentially leading to delayed responses and poor management
of plant health crises. Therefore, improving the recognition of disease entities
is critical for developing early warning systems and enhancing the predictive
capabilities of plant health monitoring systems.

The disparities in performance across different entity types also
underscore the need for continuous refinement of the model. For instance,
the model’s success with "Location" entities suggests that similar strategies
could be adapted to improve recognition accuracy for "Disease" and
"Pest" entities. Furthermore, the challenges highlighted by the mixed
performance across various entity types demonstrate the importance
of tailored approaches in NER applications. For effective plant health
monitoring, it is essential that the NER system not only recognizes but
also accurately categorizes entities such as pests, diseases, and plants in
a way that aligns with the specific needs and contexts of the field. This
requires an ongoing evaluation and enhancement of the lexicons and training
methodologies to ensure they remain relevant and effective.

These insights are crucial for future efforts aimed at refining NER systems
not only for plant health but also for other specialized fields that require
precise and context-aware text analysis.

In practical terms, integrating these enhanced NER capabilities into
real-world plant health monitoring systems could lead to more effective
management of plant health issues. While themodel fine-tuned in a standard
way seems to be more efficient on the same dataset, it can struggle more for
new entity types or newly appeared organisms or diseases. That is why, the
integration of both, standard and presented system seems the best option
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to improve the real-time monitoring systems, enabling proactive measures
and timely responses to potential threats. Moreover, the ability to accurately
monitor and analyze plant health data on a large scale could transform
epidemiological studies, providing deeper insights into disease patterns and
pest behaviors, thus contributing to more sustainable agricultural practices
and improved food security.

6.2 . Perspectives
Looking ahead, the field of Named Entity Recognition in the context

of specialized domains such as plant health offers several avenues for
further research and development. The insights gained from this thesis
underscore the potential of NER technologies to contribute significantly to
domain-specific challenges.

One of potential perspectives is continuous refinement of domain-specific
lexicons. Future research should focus on the expansion and
precision-enhancement of these lexicons to include more comprehensive
and up-to-date terminologies, especially for rapidly evolving fields like plant
health. This involves not only enlarging the lexicons but also improving their
specificity to reduce the incidence of false positives and negatives.

Exploring further directions in lexicon development, automating the
gathering of lexicons through web scraping of specialized websites can
efficiently target sites rich in specialized terminology, such as professional
associations, industry publications, and academic journals. By automating
the extraction of terms and their contexts, systems can rapidly enhance their
lexicons with current and relevant vocabulary.

Furthermore, this automation can be configured to regularly update
existing lexicons, ensuring that language models remain attuned to the
evolving terminology within specialized fields. Such ongoing refinement is
crucial for systems operating in dynamic sectors like medical research, legal
statutes, technological innovations, or plant health monitoring.

Moreover, employing categorized lexicons, where terms are sorted by
relevance or context, can offer clearer insights into the usage of terms specific
to certain domains or sub-domains.

Another direction for future research involves refining the methods used
to define entities in Named Entity Recognition systems. Relying solely on
encyclopedic articles may not capture the nuanced language and specialized
terminology of specific domains adequately. To address this limitation,
alternative approaches could be pursued to enhance the accuracy and
relevance of entity definitions. For example, involving domain experts to
provide or verify definitions or documents ensures that the lexicons reflect
the specialized terminology used in real-world applications across various
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fields accurately. Another strategy could involve using the same lexicons
as for KWM directly as text, rather than just definitions, which can further
enhance the applicability of the model. Besides, integrating definitions
from industry or academic standards can also help align the model’s
understanding with the commonly accepted terminologies and descriptions
used in specialized fields, thereby maintaining consistency and enhancing
accuracy in entity recognition across diverse applications.

Another promising avenue for future research is the integration of
multimodal data. Studies have shown that combining textual information
with visual cues from social media platforms, such as Twitter, can significantly
enhance the accuracy of entity recognition [Sun et al., 2021]. This approach
uses the relationship between text and images, which could further refine
how automated systems gather and interpret complex data across different
modalities, thus broadening their application in real-time monitoring and
analysis. For example, integrating visual cues from images—such as signs
of disease or pest infestation—with geographic data that maps the spread
and intensity of these issues, and correlating these with textual analysis
from scientific articles, field reports, and social media, could enhance the
robustness and accuracy of these systems.

In addition, prompting-based approaches with Large Language Models
(LLMs) hold a promise for enhancing NER performance and can be tested.
By providing context-specific prompts to LLMs, we can leverage their
vast knowledge and language understanding capabilities to refine entity
recognition. Recent research, such as [Xie et al., 2024], has demonstrated
the effectiveness of this approach by integrating LLMs with modules that
automatically generate prompts asking to find NEs in texts. Building on this,
we could explore embedding semantic knowledge into LLMs through textual
descriptions of named entity types, similar to the descriptions used in our
experiments. This approach could potentially further refineNER performance
and make it applicable to a specific domain without further adjustment.

Finally, expanding the application of this approach from Plant Health to
Human Health and Animal Health could offer several advantages, fostering
a more integrated and comprehensive perspective on health and disease
management across different domains. This holistic approach aligns with
the One Health concept, which emphasizes the interconnectedness of the
health of people, animals, and the environment. This could be beneficial
in addressing complex global challenges such as climate change, habitat
encroachment, and the rising threat of pandemics.

In conclusion, this thesis has contributed to the field of zero-shot
Named Entity Recognition within the specialized domain of Plant Health. It
introduced two novel approaches: one that fine-tunes a language model
more efficiently to a specific domain, and another that applies NER system
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to previously unseen entity types. These methodologies were tested on
several publicly available datasets from general and biomedical domains, and
their integration was applied specifically to Plant Health data. While this
combination shows promising results on someentity types, its performance is
not consistently stable and varies depending on the representation of entity
types. Therefore, while further research is necessary, this work lays a solid
foundation for future advancements and practical applications, paving the
way formore sophisticated, reliable, and effectiveNER systems across various
specialized domains.
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