
HAL Id: tel-04877851
https://theses.hal.science/tel-04877851v1

Submitted on 9 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to stochastic bilevel optimization
Mathieu Dagreou

To cite this version:
Mathieu Dagreou. Contributions to stochastic bilevel optimization. Optimization and Control
[math.OC]. Université Paris-Saclay, 2024. English. �NNT : 2024UPASG041�. �tel-04877851�

https://theses.hal.science/tel-04877851v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG0
41

Contributions to stochasticbilevel optimization
Contributions à l’optimisation bi-niveaux stochastique

Thèse de doctorat de l’université Paris-Saclay

École doctorale n°580 : Sciences et Technologies de l’Information et de laCommunication (STIC)Spécialité de doctorat: Informatique mathématiqueGraduate School : Informatique et sciences du numériqueRéférent : Faculté des sciences d’Orsay
Thèse préparée dans l’unité de recherche Inria Saclay-Île-de-France (UniversitéParis-Saclay, Inria), sous la direction de Samuel VAITER (HDR), Chargé de Recherche,le co-encadrement de Thomas MOREAU, Chargé de Recherche,et le co-encadrement de Pierre ABLIN, Chercheur.

Thèse soutenue à Paris-Saclay, le 08 octobre 2024, par

Mathieu DAGRÉOU

Composition du jury
Membres du jury avec voix délibérative
Édouard PAUWELS PrésidentProfesseur des universités, Toulouse School of Eco-nomics
Aurélien BELLET Rapporteur & ExaminateurDirecteur de recherche, Inria, Université de Montpel-lier
Peter OCHS Rapporteur & ExaminateurProfesseur, Université de Saarland
Émilie CHOUZENOUX ExaminatriceDirectrice de recherche, Inria, Université Paris-Saclay
Julien MAIRAL ExaminateurDirecteur de recherche, Inria, Université de Grenoble

ii

CONTENTS

Remerciements v

Notations vii

1 Introduction 1
1.1 Introducing example: from hyperparameter selection to bilevel optimization 2
1.2 Bilevel optimization . 8
1.3 Other machine learning applications of bilevel optimization 11
1.4 Outline and contributions of the thesis . 13

I Background 17

2 Background in first-order optimization 19
2.1 Mathematical background . 19
2.2 Gradient descent and variants . 23
2.3 Automatic differentiation . 30

3 Gradient-based algorithms for bilevel optimization 41
3.1 Implicit differentiation . 41
3.2 Stochastic Approximate Implicit Differentiation . 49
3.3 Iterative Differentiation . 56
3.4 Penalty methods . 57
3.5 Benchmarking bilevel optimization algorithms . 57

II Contributions 63

4 A framework for bilevel optimization that enables stochastic and global variance reduction
algorithms 65
4.1 Introduction . 65
4.2 Proposed framework . 67
4.3 Theoretical analysis . 70
4.4 Experiments . 78
4.5 Conclusion . 80

iii

CONTENTS iv

A Appendix to a framework for bilevel optimization that enables stochastic and global variance
reduction algorithms 81
A.1 Proofs . 81
A.2 Convergence rates with weaker regularity assumptions 102

5 Complexity bounds for bilevel empirical risk minimization 105
5.1 Introduction . 105
5.2 A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 106
5.3 Theoretical Analysis of SRBA . 110
5.4 Lower Bound for Bilevel ERM . 117
5.5 Proof of Theorem 5.2 . 118
5.6 Numerical Experiments . 123
5.7 Conclusion . 124

B Appendix to lower bound for bilevel empirical risk minimization 125
B.1 Convergence analysis of SRBA . 125
B.2 Details on the experiments . 139

6 Conclusion and perspectives 143
6.1 Conclusion . 143
6.2 Perspectives . 143

Summary of Contributions 145
1 Context . 145
2 Contributions . 146

Résumé des Contributions en français 151
1 Contexte . 151
2 Contributions . 152

Publications 159

Bibliography 161

REMERCIEMENTS

Je souhaite en premier lieu exprimer toute ma gratitude envers mes directeurs de thèse. Merci de
m’avoir fait confiance il y a maintenant pratiquement 3 ans et demi pour mener à bien ce projet.
Merci à vous trois de m’avoir fait grandir en tant que chercheur. Je mesure la chance que j’ai eue de
travailler avec vous trois, ce qui m’a permis de découvrir tout le spectre entre la théorie et la pratique.
Merci à Thomas de m’avoir tant fait progresser en code et de m’avoir impliqué dans Benchopt. Non, je
ne t’en veux pas des multiples changements d’API et je suis certain que le benchmark bilevel a encore
de beaux jours devant lui ! Merci à Pierre pour ta disponibilité et ta pédagogie. Je garde en mémoire
ces séances au tableau à essayer de débugger ces multiples inégalités. Merci à Samuel pour ta bien-
veillance et les multiples séjours à Nice. Même si l’éloignement géographique fait que l’on a moins
interagi, les discussions que l’on a pu avoir tant sur le plan scientifique que sur le monde académique
m’ont été très précieuses ! Ce qui est sûr, c’est que les meetings du vendredi vont me manquer et que
j’espère que nous aurons l’occasion de collaborer dans le futur !

I thank Aurélien and Peter for reviewing this document and providing valuable comments. I know that
July and August are not the best months to review a PhD manuscript since you needed to do it between
summer break and the NeurIPS reviewing process. I am therefore grateful for the time you spent on it.
I also thank the other members of the jury Émilie, Julien, and Édouard for attending the defense and
for their insightful questions.

La fin de cette thèse marque également la fin de mon appartenance à l’équipe MIND/SODA, ancien-
nement PARIETAL. Je souhaite remercier tous les stagiaires, doctorants et postdoctorants qui ont per-
mis de rendre plus agréables ces trois années. Merci à Benoît et Cédric pour les discussions du lundi
matin à Turing, mais ausi pour le séjour à Pise ! Merci à ceux qui ont partagé le bureau 1047 avec moi :
Bénédicte, Fatemeh, Houssam, Judith et Marine. Je remercie également tous les autres pour les diffé-
rents afterworks, l’ambiance au quotidien ainsi que lors des retraites d’équipe et les différents voyages
en conférence ou en sprint Benchopt : Alexandre4, Alexis, Ambroise, Antoine, Apolline, Binh, Charlotte,
Cédric, Célestin, Félix, Florent, Guillaume, Hugo, Jad, Jade, Joseph, Jovan, Julia, Julie, Julien, Léo, Lilian,
Louis2, Marie, Mansour, Matthieu2, Merlin, Nicolas, Omar, Pierre-Antoine, Pierre-Louis, Raphaël, Ric-
cardo, Samuel2, Sébastien, Théo, Thomas, Virginie, Zaccharie, et tous ceux que j’oublie. Merci à tous
les PIs des équipes MND/SODA/PARIETAL passés et présents pour réussir à maintenir un environne-
ment scientifique stimulant et continuer à se battre pour des conditions de travail exceptionnelles :
Alexandre, Bertrand, Chaithya, Demian, Gaël, Jill-Jênn, Judith, Marine, Philippe et Thomas.

Je tiens à remercier Gabriel Peyré de m’avoir accueilli tous les vendredis au sein des bureaux du CSD à
l’École Normale Supérieure. Au-delà de l’expérience gustative des vendredis midis, il a été très agréa-
ble de côtoyer un environnement scientifique différent de l’Inria. Je remercie tous les membres du
CSD que j’ai croisé toutes les semaines : Francisco, Geert, Jules, Kimia, Michael, Othmane, Raphaël,

v

Remerciements vi

Sibylle, Thibault, Valérie et tous les autres.

Je n’oublie pas toutes les personnes que j’ai pu croiser lors des conférences, workshops et sprints Ben-
chopt que ce soit à la Nouvelle-Orléans, à Valence, à Toulouse, à Arcachon, à Montpellier, à Nancy ou
à Grenoble. Je pense en particulier à Benjamin, Quentin, Hugues, Joseph, Mathurin, Paul, Rémy, Ryan,
Tam, Théo, Yanis entre autres.

Je souhaite avoir une pensée les amis que je côtoie sur et à côté des pistes d’escrime depuis tant d’an-
nées que ce soit les week-ends en compétition ou certains soirs à Paris Nord.

Enfin, je remercie mes parents, ma sœur, mon frère ainsi que le reste de ma famille pour leur soutien
tout au long de ces années.

NOTATIONS

General

∥ · ∥ Scalar product

⟨ · , · ⟩ Euclidean norm

X† The pseudoinverse of X

sign(x) Sign function, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(0) = 0

Sets

N Set of non-negative numbers

N>0 Set of positive integers

R Set of real numbers

Rn Set of real valued vectors of dimension n

Rm×n Set of real valued matrices of dimension m× n

[n] The set of integers {1, . . . , n}

YX The set of functions defined of X and taking values in Y

Differential operators

∇f(x) Gradient of f at x

∇yf(x, y) Partial gradient of f with respect to the variable y at (x, y)

df(x) Differential of f or Jacobian of f at x

∂yf(x, y) Partial differential of f or partial Jacobian of f with respect to y at (x, y)

∇2f(x) Hessian of f at x

Landau notation

f(x) = Oa(g(x)) There exists a constant C > 0 independent from x and a neighborhood Va of a
such that |f(x)| ≤ C|g(x)| for all x ∈ Va. When the context is clear, we will omit
the subscript a.

vii

Notations viii

f(x) = Õa(g(x)) There exists a constant C > 0 independent from x and a neighborhood Va of a
such that |f(x)| ≤ C | log(x−1)g(x) | for all x ∈ Va. When the context is clear, we
will omit the subscript a.

f(x) = Ωa(g(x)) There exists a constant C > 0 independent from x and a neighborhood Va of a
such that C|g(x)| ≤ |f(x)| for all x ∈ Va. When the context is clear, we will omit
the subscript a.

f(x) = Θa(g(x)) There exists constantC1 > 0 andC2 > 0 independent from x and a neighborhood
Va of a such that C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x ∈ Va. When the context is
clear, we will omit the subscript a.

CHAPTER 1

INTRODUCTION

Sommaire
1.1 Introducing example: from hyperparameter selection to bilevel optimization 2

1.1.1 Supervised learning . 2

1.1.2 Generalization and regularization . 4

1.1.3 Hyperparameter selection as a bilevel optimization problem 5

1.1.4 From zero-order to first-order methods 6

1.2 Bilevel optimization . 8

1.2.1 General definition and historical perspective 8

1.2.2 Singleton lower-level solution . 9

1.2.3 Stochastic problems . 10

1.3 Other machine learning applications of bilevel optimization 11

1.3.1 Data reweighting . 11

1.3.2 Implicit deep learning . 12

1.3.3 Neural architecture search . 13

1.4 Outline and contributions of the thesis . 13

The recent years have witnessed the development of cutting-edge technologies based on artificial in-
telligence across various fields such as healthcare, finance, and social science. These advancements,
driven by machine learning, have been enabled by the combination of vast data availability, increased
computational power through the development of GPUs, and the creation of increasingly complex and
expressive models. Machine learning algorithms enable systems to automatically learn tasks by ob-
serving data examples and generalizing from them. This data can take many forms, including images,
tabular data, and text. Typical tasks include generating new data samples (e.g., generating realistic
images), classification (e.g., predicting whether a picture depicts a dog or a cat), and regression (e.g.
predicting a house’s price based on features like size or location).

To perform these tasks, we generally consider a parametric model (e.g., a neural network) and a mea-
sure of error, which quantifies how well the model performs on data. Training the model involves
finding the model’s parameters that minimize this error measure using an optimization algorithm.
This approach has led to the development of efficient optimization algorithms tailored to the specific
structure of machine learning problems.

Recently, machine learning problems with a hierarchical structure have emerged. In these problems,
evaluating a potential solution requires solving an auxiliary problem that depends on the considered

1

1.1. Introducing example: from hyperparameter selection to bilevel optimization 2

solution. For instance, when evaluating a model’s generalization performance, we train it on train-
ing samples and then estimate its performance by computing the error on validation samples. Bilevel
optimization provides a natural framework for formalizing such hierarchical problem structures. Due
to its wide range of applications, such as hyperparameter selection, training deep equilibrium mod-
els, and meta-learning, bilevel optimization has gained significant interest in the machine learning
community. This interest has led to the development of new algorithms explicitly designed for bilevel
structures. While these algorithms share some similarities with classical single-level optimization al-
gorithms, efforts are needed to enhance their efficiency and understand their behavior.

In this chapter, we introduce the formalism of bilevel optimization and demonstrate its usefulness for
various machine learning applications.

1.1 Introducing example: from hyperparameter selection to bilevel
optimization

This section details how one can translate a machine learning problem into a bilevel optimization
problem. We take the hyperparameter selection problem as an example.

1.1.1 Supervised learning

In what follows, we briefly overview the supervised learning paradigm. For more detailed presenta-
tions, interested readers can refer to the following textbooks: (Hastie et al., 2009; Shalev-Shwartz and
Ben-David, 2014; Bach, 2021).

Supervised learning is a machine learning paradigm aimed at predicting an outcome y ∈ Y from an
input x ∈ X . The input x can be an image, for example. The nature of the output y depends on the
task: either regression or classification. In regression, the output y is quantitative and takes values in
a continuous space, such as Y = R (e.g., temperature or house price). In classification, the output
y is categorical and takes values in a finite set. For instance, in binary classification, Y = {−1 , 1 }
(e.g., −1 if the input image does not contain a cat, 1 if it contains a cat), and in multi-class classifica-
tion, Y = { 1 , . . . , K }.

Mathematically, pairs of input/output (x, y) can be viewed as realizations of a random variable (X,Y),
which takes values in the measurable space X × Y , endowed with a joint distribution P(X,Y). Predic-
tions are performed using a prediction function h defined on X . Therefore, learning to predict Y from
X involves finding the best prediction function h from a hypothesis set H ⊂ YX such that h(X) ≈ Y .

To evaluate the quality of a prediction, we introduce a loss function ℓ : Y2 → R+ that measures the
discrepancy between two elements of Y . This loss function is such that ℓ(y, y′) is small if y and y′ are
close and large otherwise.

Example 1.1. These are classical choices of loss function depending on the downstream task:

• The squared loss defined by ℓ(y, y′) = 1
2 (y − y′)2 is often used in regression tasks where Y = R.

• The binary loss defined by ℓ(y, y′) = 1y ̸=y′ is the most natural loss for classification tasks where
Y = {−1, 1} or Y = {1, . . . ,K}.

The previous binary loss poses computational challenges because it is non-convex and non-differen-
tiable. This makes the problem of learning directly with this loss NP-hard (Ben-David et al., 2003; Feld-
man et al., 2012). In practice, convex surrogates are preferred because they are easier to optimize.

• The logistic loss ℓ(y, y′) = log(1 + e−yy′) is often used in binary classification. For this loss, the
constraint of having y′ ∈ {−1, 1} is relaxed to y′ ∈ R.

1.1. Introducing example: from hyperparameter selection to bilevel optimization 3

• The logistic loss can be extended to multi-class regression loss. In this case, if we have K classes,
we can encode the output y as a one-hot vector y ∈ {0, 1}K and the prediction y′ as a vector in
[0, 1]K . Then, the loss considered is the cross-entropy loss given by ℓ(y, y′) = −

∑K
k=1 yk log(y′

k).

To get a measure of performance of a prediction function h ∈ H on the joint distribution P(X,Y), we
introduce the expected risk is defined by

R(h) = E(X,Y)∼P(X,Y) [ℓ(Y, h(X))] . (1.1)

The lower R(h), the better the prediction function h. Thus, one can find the best prediction function
by minimizing the expected risk over the set of functions H. This yields the following optimization
problem

min
h∈H

R(h) . (1.2)

The function h is often chosen among a parametric family of functions (hθ)θ∈Θ where Θ is a subset of
Rp. This converts Problem (1.2) into the following finite dimensional optimization problem

min
θ∈Θ

R(hθ) . (1.3)

In practice, we do not have access to the joint distribution P(X,Y), making the computation of R(hθ)
intractable. We would rather have access to a finite number of realizations of (X,Y). We denote
Dtrain = {(xtrain

i , ytrain
i)}ni=1 these realizations. The set Dtrain is called the training set; its elements

are the training samples. The Empirical Risk Minimization (ERM) problem consists in using the em-
pirical average of the loss over the training set as a proxy for the expected risk, leading to Problem (1.4)

min
θ∈Θ

R̂(θ) ≜ 1
n

n∑
i=1

ℓ(ytrain
i , hθ(xtrain

i)) . (1.4)

Example 1.2. The most simple instance of this problem is the least squares regression problem. It con-
sists in assuming that the following linear model links Y and X

Y = ⟨X, θ∗⟩ + σε

with ε ∼ N (0, 1), σ > 0 and some θ∗ ∈ Rp to estimate. If (xtrain
1 , ytrain

1), . . . , (xtrain
n , ytrain

n) are i.i.d.
realizations of (X,Y), we can estimate θ by maximizing the likelihood of the training samples

max
θ∈Rp

n∏
i=1

p(ytrain
i |xtrain

i , θ) = exp
[

1
2σ2

n∑
i=1

(ytrain
i − ⟨xtrain

i , θ⟩)2

]
.

By taking the logarithm, adding a minus sign, and removing constants in the previous expression, find-
ing the Maximum Likelihood Estimator of θ∗ is equivalent to solving the following ERM problem

min
θ∈Rp

g(θ) = 1
2n

n∑
i=1

(⟨xtrain
i , θ⟩ − ytrain

i)2 .

With the notation of Problem (1.4), the prediction function hθ is defined by hθ(x) = ⟨x, θ⟩ and the loss
function ℓ is the squared loss ℓ(y, y′) = 1

2 (y − y′)2.

Let us denote the design matrix X =
[
xtrain

1 . . . xtrain
n

]⊤ ∈ Rn×p and Y = (ytrain
1 , . . . , ytrain

n) ∈ Rn. The
function g can be written as

g(θ) = 1
2n∥Xθ − Y∥2 .

1.1. Introducing example: from hyperparameter selection to bilevel optimization 4

The function g being convex and differentiable over Rp, we will see in Chapter 2 that minimizing it is
equivalent to finding the zeros of its gradient. Since the gradient of g is given by ∇g(θ) = 1

nX⊤(Xθ− Y),
a least squares estimator is a solution of the following linear system

X⊤Xθ = X⊤Y . (1.5)

The solutions of Equation (1.5) are given by the affine space ker(X) + X†Y. In particular, if X is full
rank, the least squares estimator is unique and is given by θ∗ = (X⊤X)−1X⊤Y.

1.1.2 Generalization and regularization

Assume that R̂ defined in Problem (1.4) has a minimizer θ∗ over the parameter space Θ. This ensures
that the prediction function hθ∗ is the one that performs best on the training samples among all the
(hθ)θ∈Θ. However, our goal is not just to perform well on the training set but also to predict accurately
for any new input-output pair (x, y) drawn from the joint distribution P(X,Y). This is known as the
notion of generalization. A possibility to measure the generalization performance of hθ∗ is to use a
validation set Dval = {(xval

j , yval
j)}mj=1 distinct from the training set and evaluate the average error on

this validation set, often referred to as the hold-out loss

f(θ∗) ≜ 1
m

m∑
j=1

ℓ(yval
j , hθ∗(xval

j)) . (1.6)

A high value of f(θ∗) coupled with a low value of the training error g(θ∗) indicates that the model fits
the training data too closely but does not generalize well to new data. This phenomenon is known as
overfitting. Overfitting is closely related to the complexity of the model, which refers to the model’s
capacity to approximate complex functions. Generally, more complex models require more training
samples to avoid overfitting.

Example 1.3. To illustrate the overfitting phenomenon, we consider a polynomial regression problem.
We generate realizations of (X,Y) as follows: X ∼ U([−1, 1]) and Y = f(X) + σε with f defined by
f(x) = x2 − 1

2 , ε ∼ N (0, 1) and σ = 0.1. For p ∈ {1, . . . , 15} and θ ∈ Rp, we take as prediction function,
a polynomial of degree p− 1

hθ(x) =
p−1∑
k=0

θkx
k .

In this setting, the higher the degree of the polynomial, the more complex the model. We learn a vector
θ ∈ Rp by solving the following least squares problem

min
θ∈Rp

g(θ) = 1
n

n∑
i=1

(ytrain
i − hθ(xtrain

i))2 . (1.7)

In figure 1.1, we display the training samples, and we plot the learned prediction function hθ∗ for the
different values of p and the function f . We observe an underfitting phenomenon for the degrees 0 and
1: the training error is high because linear models are not expressive enough. We observe an overfitting
phenomenon for the highest degrees: the prediction function fits very well on the training samples but
does not generalize well. This is confirmed by figure 1.2, which shows that the training error decreases
with the degree while the test error decreases and then increases.

Overfitting can be prevented by limiting the model’s complexity. One approach is to reduce the size of
the set of prediction functions under consideration. For instance, in Example 1.3, this involves lower-
ing the polynomial degree of the prediction function. Another method is to regularize the optimization
problem as shown in Problem (1.4). It consists in adding a penalty function Ω : Θ × Λ → R+ to the
empirical risk which helps control the model’s complexity. The regularization term is parametrized by

1.1. Introducing example: from hyperparameter selection to bilevel optimization 5

−1.0 −0.5 0.0 0.5 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Degree 0,
train error: 0.08test error: 0.16

Training samples

f(x) = x2 − 0.5

Degree 0

−1.0 −0.5 0.0 0.5 1.0
x

Degree 3,
train error: 0.01test error: 0.01

Training samples

f(x) = x2 − 0.5

Degree 3

−1.0 −0.5 0.0 0.5 1.0
x

Degree 6,
train error: 0.01test error: 0.47

Training samples

f(x) = x2 − 0.5

Degree 6

−1.0 −0.5 0.0 0.5 1.0
x

Degree 9,
train error: 0.01test error: 21.90

Training samples

f(x) = x2 − 0.5

Degree 9

−1.0 −0.5 0.0 0.5 1.0
x

Degree 12,
train error: 0.00test error: 382848.95

Training samples

f(x) = x2 − 0.5

Degree 12

Figure 1.1: Illustration of overfitting in polynomial regression with n = 20 training samples. For each
plot, the black dots are the training samples, the green curves are the true function, and the blue
curves are the prediction function. Each plot corresponds to a different polynomial degree. The degree
increases from the left to the right. For the smallest degrees, the training and the test errors are high.
The training error is low for the highest degrees, while the test error is high.

0 3 6 9 12
Degree

10−2

100

102

104

106

M
ea

n
sq

ua
re

d
er

ro
r

Train error

Test error

Figure 1.2: The train and test errors for the polynomial regression problem. The train error decreases
with the degree of the polynomial. The test error decreases until the degree 3 and then increases,
showing the overfitting phenomenon.

another set of parameters λ ∈ Λ leading to the following training problem

min
θ∈Θ

g(λ, θ) = 1
n

n∑
i=1

ℓ(ytrain
i , hθ(xtrain

i))︸ ︷︷ ︸
data fidelity

+ Ω(λ, θ)︸ ︷︷ ︸
regularization

. (1.8)

In Problem (1.8), the training loss comprises two terms. The first term is the data fidelity term, which
ensures the prediction fits the training samples well. The second term is the regularization that pro-
motes some property on the learned parameter. Note that different regularization parameter values λ
yield different solutions of Problem (1.8). We make this dependency explicit by denoting θ∗(λ) as the
minimizer of g(λ, ·). Several kinds of regularization are proposed in the literature depending on the
properties we want to enforce to the learned parameter θ∗(λ). The most simple is the ℓ2-regularization
proposed by Tikhonov and Arsenin (1977) where Ω(λ, θ) = λ

2 ∥θ∥2 with λ ∈ R+. In the context of least
squares with ℓ2-regularization, we talk about Ridge regression (Hoerl and Kennard, 1970). In deep
learning, the ℓ2-regularization is often referred to as weight decay (Krogh and Hertz, 1991). It reduces
the magnitude of the solution θ∗(λ), yielding less variance in the prediction. The ℓ1-regularization was
also proposed by Tibshirani (1996) and is defined by Ω(λ, θ) = λ∥θ∥1. It has the property to promote
sparse solutions, that is, solutions with many zero entries.

1.1.3 Hyperparameter selection as a bilevel optimization problem

For each λ ∈ Λ, the learned parameter θ∗(λ) is different, leading to different generalization perfor-
mances of the learned model. This hyperparameter has to be set before training the model. This

1.1. Introducing example: from hyperparameter selection to bilevel optimization 6

choice of the hyperparameter is the hyperparameter selection problem. It is generally chosen to min-
imize some criterion.

Different criteria are considered in the literature. The hold-out loss we already mentioned in Equa-
tion (1.6) (Devroye and Wagner, 1979) is based on the split of the dataset into a training set and a
validation set. It reads

Φ(λ) = 1
m

m∑
j=1

ℓ(yval
j , hθ∗(λ)(xval

j))

where θ∗(λ) = arg min
θ∈Θ

1
n

n∑
i=1

ℓ(ytrain
i , hθ(xtrain

i)) + Ω(λ, θ) .

The cross-validation loss (Stone, 1974; Geisser, 1974) consists in splitting the dataset into K distinct
datasets D1, . . . ,DK , named folds. For each fold, the model is trained on the remaining folds and
evaluated on the current fold. The cross-validation loss is the average of the hold-out losses on the K
folds:

Φ(λ) = 1
K

K∑
k=1

1
|Dk|

∑
(x,y)∈Dk

ℓ(y, hθ∗
k

(λ)(x),)

where θ∗
k(λ) = arg min

θ∈Θ

1∑K
s=1
s̸=k

|Ds|

K∑
s=1
s̸=k

∑
(x,y)∈Ds

ℓ(y, hθ(x)) + Ω(λ, θ) .

Other criteria include Stein’s Unbiased Risk Estimator (SURE) (Stein, 1981), Akaike Information Cri-
terion (AIC) (Akaike, 1974), and Bayesian Information Criterion (BIC) (Schwarz, 1978). SURE, more
popular in inverse problem literature (Donoho and Johnstone, 1995; Xiao-Ping Zhang and Desai, 1998;
Pesquet et al., 2009), is an unbiased estimator of the model’s risk. AIC and BIC are information criteria
that consider the model’s likelihood and number of parameters, aiming to balance goodness of fit and
model complexity.

Let us denote f , the criterion we use to choose the hyperparameter λ. This criterion is always eval-
uated at θ∗(λ). Thus, the hyperparameter selection problem can be formalized as the following opti-
mization problem

min
λ∈Λ

Φ(λ) ≜ f(θ∗(λ)) s.t. θ∗(λ) ∈ arg min
θ∈Θ

g(λ, θ) . (1.9)

In Problem (1.9), one can notice that the definition of the function Φ we want to minimize depends on
the solution of an optimization problem which is the problem of learning θ∗(λ) for a given λ ∈ Λ. This
nested optimization problem is a first instance of a bilevel optimization problem. Additional instances
of such problems are discussed in Section 1.3.

This formulation as a bilevel problem of the hyperparameter selection was first proposed by Bennett
et al. (2006). It has then been studied in the bilevel literature (Pedregosa, 2016; Franceschi et al., 2018;
Lorraine et al., 2020), as well as in the inverse problem literature (Calatroni et al., 2016; Pascal et al.,
2021; Santambrogio et al., 2024).

1.1.4 From zero-order to first-order methods

The zero-order methods are the most popular approaches to solving Problem (1.9). These methods
only use evaluations of the function we want to minimize, that is, Φ in the case of Problem (1.9).

Grid search. The most simple zero-order method is the grid search. It consists in specifying a finite
subset of the space of the hyperparameters and making an exhaustive search by evaluating the objec-
tive function Φ on all the elements of this subset. This method is implemented in the Python package
scikit-learn (Pedregosa et al., 2011). An advantage of this method is that the function evaluations

1.1. Introducing example: from hyperparameter selection to bilevel optimization 7

can be parallelized. However, its main drawback is that it scales exponentially with the number of
hyperparameters d. Indeed, suppose that our space of hyperparameters is Λ ≜ [0 , 1]d. If we assume
that the function Φ is Lipschitz continuous and we want to find a λ that is at a distance less than ϵ > 0
of the optimum λ∗, we have to try O((1/ϵ)d) different values, as illustrated in figure 1.3. Moreover,
the grid we set manually is crucial for the performance. If poorly chosen, we can find an "optimal"
hyperparameter that is far from the best.

0.00 0.25 0.50 0.75 1.00
x

0.00

0.05

0.10

0.15

0.20

f
(x

)

Grid

0.00 0.25 0.50 0.75 1.00
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2 Grid

0.0

0.5

1.0

1.5

2.0

2.5

f
(x

1 ,x
2)

Figure 1.3: Illustation of the curse of dimensionality in zero-order optimization. The orange dots are
the test points of the grids. Left: Example in dimension 1. For a function defined on [0, 1], one needs
10 test points to find a solution with precision 0.1. Right: Example in dimension 2. For a function
defined on [0, 1]2, one needs 100 test points to find a solution with the same precision.

Random search. The random search (Bergstra and Bengio, 2012) is a variant of the grid search.
Instead of using a deterministic and uniform grid on the hyperparameter space, the test points are
chosen randomly according to a probability distribution. On the one hand, it keeps the advantages
of simplicity and possible parallelization of the grid search. On the other hand, the randomization
enables a smarter exploration of the space if the function Φ is more sensitive in some dimension than
in another. This is illustrated in figure 1.4 coming from (Bergstra and Bengio, 2012). Assume that the
function Φ is such that Φ(λ1, λ2) = Φ1(λ1) + Φ2(λ2) ≈ Φ1(λ1). Thus, Φ is more sensitive to λ1 than λ2.
In figure 1.4, Φ1 is represented in green, and Φ2 is represented in yellow. With the grid search on the
left, only three distinct values of λ1 are tested while with the random search on the right, nine distinct
values of λ1 are tested, resulting in a better coverage of the subspace.

Figure 1.4: Illustrative comparison between grid search and random search borrowed from Bergstra
and Bengio (2012). Nine trials of grid search and random search are represented. The function verifies
Φ(λ1, λ2) = Φ1(λ1) + Φ2(λ2) ≈ Φ1(λ1). One observes that the grid search explores only three distinct
values of λ1 while the random search explores nine distinct values.

Bayesian optimization. Bayesian optimization methods (Mockus, 1989; Bergstra et al., 2011) re-
fer to a range of zero-order optimization algorithms that take into account the information of the past
evaluation of the objective function. It consists in building a probabilistic model of Φ. This is imple-
mented in some packages such as Optuna (Akiba et al., 2019) or Hyperopt (Bergstra et al., 2015).

1.2. Bilevel optimization 8

All the zero-order methods share a common pitfall: their oracle complexity scales exponentially with
the dimension of the outer variable space. A natural question to ask is: is there a zero-order method
that has a better oracle complexity? The answer to this question is given by the literature on lower
complexity bound in optimization. A lower bound result has always the following form: provided an
algorithm class A and a function class F , there exists a function f ∈ F such that any algorithm in A re-
quires at leastK(ϵ) oracle calls to find a solution with precision ϵ. In the case of zero-order algorithms,
the number of oracle calls refers to the number of times the function we want to optimize is evalu-
ated. Nesterov (2018, Theorem 1.1.2) provides a lower bound on the number of function evaluations
required to minimize a Lipschitz continuous function over a compact set with zero-order algorithms.

Theorem 1.1. Consider ϵ > 0 and L > ϵ
2 . There exists a function f : [0, 1]d → R which verifies

∀x, y ∈ [0, 1]d, |f(x) − f(y)| ≤ L∥x− y∥∞

and such that any zero-order algorithm requires at least
⌊
L
2ε
⌋d

function evaluations to find a point x
such that

f(x) − inf
x∈[0,1]d

f(x) ≤ ε .

This is all the more problematic in bilevel optimization since evaluating the function Φ requires solving
an auxiliary optimization problem which often can not be solved exactly. Thus, in this context, the
computation of the function we want to minimize is expensive and inexact.

However, one can remove this dependency of the complexity on the dimension by using higher order
information such as gradients or Hessian-vector product (Bubeck, 2015). For this reason, this thesis
is devoted to studying and improving first-order methods to solve bilevel optimization problems. As
these methods are the core of this thesis, a background chapter is dedicated to them in Chapter 3.

Bilevel optimization problems encompass a broader range of applications beyond hyperparameter
tuning. In the next section, we give a more general definition of bilevel optimization problem and
provide a brief history of this field.

1.2 Bilevel optimization

1.2.1 General definition and historical perspective

Bilevel optimization problems (Candler and Norton, 1977) are a class of constrained optimization
problems where the constraint set involves the solution of another optimization problem. They are
formalized as follows:

Definition 1.1 (Bilevel Optimization Problem). A bilevel optimization problem is a constrained opti-
mization problem that takes the following form

min
x,y∈X ×Y

f(x, y)

s.t.

{
∀j ∈ [J], ψj(x, y) ≤ 0
y ∈ arg miny′∈Y{g(x, y′),∀i ∈ [I], ϕi(x, y′) ≤ 0}

where X ⊂ Rd, Y ⊂ Rp, I and J are positive integers and f , g, ψ′
js and ϕ′

is are real-valued functions
defined on X × Y that define problem’s contraints. The function f is often referred to as the outer
function, or the upper-level function, and the function g is referred to as the inner function or the
lower-level function. The variable x is the outer variable, and the variable y is the inner variable.

In Definition 1.1, one can observe the hierarchical structure of the problem. For each value of the
outer variable x ∈ X , one has a different inner objective g(x, ·), and thus a different constraint set for
the inner variable y. Hence, the value of the inner variable y is a response to the value of the outer
variable x. In this thesis, we focus on the unconstrained case, where X = Rdx and Y = Rdy and the

1.2. Bilevel optimization 9

inequality constraints defined by the ψj ’s and the ϕi’s are absent. This simplifies the problem to the
following formulation:

min
x,y∈Rdx ×Rdy

f(x, y) s.t. y ∈ arg min
y′∈Rdy

g(x, y′) . (1.10)

Historically, bilevel problems first emerged in economic science, notably in the context of Stackelberg
games (von Stackelberg, 1934, 1952), which models interactions between firms that compete. These
games have two players: a leader and a follower. The leader chooses their strategy first. Then, the
follower observes the leader’s choice and chooses to maximize its payoff. In this context, the outer
function f represents the leader’s decision function, and the inner function g represents the follower’s
decision function. Bracken and McGill (1973) were the first to formalize bilevel programs in the op-
erations research literature, although they did not use the term "bilevel.". The term "bilevel" was first
introduced by Candler and Norton (1977). Later extensions of bilevel programs included replacing
the lower-level optimization problem with a variational inequality constraint (Luo et al., 1996). For a
more comprehensive presentation of bilevel optimization in general, we refer readers to the textbooks
by Dempe (2011) and Bard (2011).

In the machine learning community, the term "bilevel optimization" first appeared in a paper by Ben-
nett et al. (2006), which proposed using bilevel optimization to select the hyperparameters of support
vector machine models. However, earlier works such as Larsen et al. (1996) and Bengio (2000) in-
troduced gradient-based methods for hyperparameter tuning without explicitly referring to bilevel
optimization.

Note that the formulation of Problem (1.10) is commonly referred to as optimistic bilevel optimization
problem (Dempe et al., 2007). In this formulation, the outer function is minimized with respect to the
inner variable y. Alternatively, there exists a pessimistic formulation of bilevel optimization (Wiese-
mann et al., 2013; Dempe et al., 2014), where the outer function is maximized with respect to the inner
variable y:

min
x∈Rdx

max
y∈Rdy

f(x, y) s.t. y ∈ arg min
y′∈Rdy

g(x, y′) .

However, this distinction is beyond the scope of this thesis, as we focus on cases where the inner
problem has a unique solution. This specific case will be presented in the next subsection.

1.2.2 Singleton lower-level solution

In some cases, the solution set of the inner problem in Problem (1.10) is a singleton. This is typically
the case when the function g(x, ·) is strongly convex. In this case, we can define a function y∗ : Rdx →
Rdy by y∗(x) = arg miny∈Rdy g(x, y) (with a slight abuse of notation by identifying a singleton with its
only element).

Definition 1.2 (Value function). Consider Problem (1.10) where arg minx∈Rdx is a singleton for any x.
The value function Φ is the function defined on Rdx by

Φ(x) = f(x, y∗(x)) where y∗(x) = arg min
y∈Rdy

g(x, y) .

In that case, Problem (1.10) boils down to

min
x∈Rdx

Φ(x) . (1.11)

This specific instance of bilevel optimization has received much attention from the machine learning
community in recent years. The reason for this success is that under sufficient regularity of the func-
tions f and g, the function Φ is differentiable, enabling the development of gradient-based methods.
We will review in more detail these methods in Chapter 3.

1.2. Bilevel optimization 10

Example 1.4 (Ridge regression). The Ridge regression problem is a regularized version of the least
squares problem presented in Example 1.2. It consists in adding an ℓ2-penalty to the training loss data
fitting term. If we keep the notations of Example 1.2, the Ridge regression problem is defined by

min
θ∈Rp

g(λ, θ) = 1
2n∥Xθ − Y∥2︸ ︷︷ ︸

data fitting

+ λ

2 ∥θ∥2︸ ︷︷ ︸
regularization

. (1.12)

for a provided λ > 0. For any λ > 0, the function g(λ, ·) is strongly convex. Thus, the minimizer θ∗(λ) is
unique and given by the solution of the normal equation

1
n

X⊤Xθ = 1
n

X⊤Y + λθ

which yields

θ∗(λ) = (X⊤X + nλI)−1X⊤Y .

To select the hyperparameter λ, we assume that we have a validation set Dval = {(xval
j , yval

j)}mj=1 that has
not been used during training. We denote by Xval =

[
xval

1 . . . xval
m

]
and Yval = (yval

1 , . . . , yval
m). The

validation loss is given by

f(θ) = 1
2m∥Xvalθ − Yval∥2 . (1.13)

The hyperparameter λ is chosen by solving the following bilevel optimization problem

min
λ>0

Φ(λ) ≜ f(θ∗(λ)) s.t. θ∗(λ) = arg min
θ∈Rp

g(λ, θ) . (1.14)

We plot this function in figure 1.5. The main thing to notice is that the value function Φ is non-convex,
despite the inner function g being strongly convex and the outer function f being convex.

10−2 100 102

λ

120

130

140

Φ
(λ

)

Figure 1.5: Curve of the value function Φ. Here, we generated samples x ∼ N (0, I300), a parame-
ter θ∗ ∼ N (0, I300) and we generated the target with y = ⟨θ, x⟩ + 0.1ϵ with ϵ ∼ N (0, 1). We generated
100 training samples, and 30 validation samples. The dashed red line indicates the value of the hyper-
parameter λ that minimizes the value function. One observes that the value function is non-convex.

1.2.3 Stochastic problems

In many machine learning applications, such as the hyperparameter selection we have seen in Sec-
tion 1.1, the functions f and g are defined as expectations:

f(x, y) = Eξ[f(x, y; ξ)], g(x, y) = Eζ [g(x, y; ζ)] (1.15)

where ξ and ζ are random variables. The empirical risk minimization setting is a particular case of
Equation (1.15) where the variables ξ and ζ are indices that are sampled uniformly in a finite set. In
this case, the functions f and g in Equation (1.15) take the form of empirical means over samples

f(x, y) = 1
m

m∑
j=1

fj(x, y), g(x, y) = 1
n

n∑
i=1

gi(x, y) (1.16)

1.3. Other machine learning applications of bilevel optimization 11

wherem and n are positive integers representing the number of samples in the upper and lower levels.
In large sample size cases, evaluating the functions f and g is prohibitive. For this reason, the thesis
investigates stochastic algorithms that are more scalable than deterministic ones. Indeed, stochastic
algorithms only require a handful of samples to progress in the problem resolution, making them
more suitable for large-scale problems. More detailed presentations of these algorithms are provided
in subsection 2.2.2 for single-level problems and in Section 3.2 for bilevel problems.

1.3 Other machine learning applications of bilevel optimization

The interest gained by bilevel optimization in the machine learning community is due to its ability
to model various machine learning problems. We already presented the hyperparameter selection
problem in Section 1.1. In this section, we explore additional machine learning applications that can
be effectively addressed using bilevel optimization.

1.3.1 Data reweighting

Consider a training set Dtrain = {xtrain
i }ni=1, where the data samples may not necessarily be labeled,

depending on the use case. Sometimes, there can be a discrepancy between the training distribution
and the testing conditions. This discrepancy can occur, for instance, when not all training samples are
relevant to the downstream task (Grangier et al., 2023), or in a supervised learning context when some
labels are corrupted (Franceschi et al., 2017).

A solution to this problem is to assign a weight wi to each training sample xtrain
i (Ren et al., 2018; Shu

et al., 2019; Wang et al., 2019), leading to the following weighted training loss:

g(w, θ) =
n∑
i=1

wiℓ(xtrain
i , θ)

where w ∈ Rn is a vector of weights, θ ∈ Rp represents the model’s parameters, and ℓ is the loss
function. These weights serve as data selectors: the highest weights should correspond to important
data samples for the downstream task, while the lowest weights correspond to low-quality samples.
Alternatively, instead of weighting each sample individually, one can assign a weight per group of
samples (or domain) as proposed by Fan et al. (2024b).

To learn those weights, one can parametrize them, for instance by a neural network parametrized by
a vector α that takes as input a training sample and returns a weight:

wi = σα(xtrain
i) .

The problem of learning α can be cast as a bilevel optimization problem. Indeed, assume we have
a second dataset Dval = {xval

j }mj=1, which contains data samples that are specific to the downstream
task. As we want the parameter θ∗(α) to have good performances on the downstream task, we can
choose α that solves

min
α
f(θ∗(α)) =

m∑
j=1

ℓ(xval
j , θ∗(α))

s.t. θ∗(α) ∈ arg min
θ

g(α, θ) =
n∑
i=1

σα(xtrain
i)ℓ(xtrain

i , θ) .

A classical application of the data reweighting problem is the data hypercleaning task (Franceschi
et al., 2017). Assume we have a labeled training set Dtrain = {(xtrain

i , ytrain
i)}ni=1 and that some training

samples may have corrupted labels, as illustrated in figure 1.6 with the MNIST dataset. Conversely, we
have a validation set Dval = {(xval

i , yval
i)}ni=1, where all samples have correct labels. Finding and dis-

carding manually the corrupted samples in the training set can be prohibitive for very large datasets.

1.3. Other machine learning applications of bilevel optimization 12

The data reweighting framework enables us to avoid this burden by automatically learning which sam-
ples are correct and which are corrupted.

Figure 1.6: Illustration of the labels corruption with the MNIST dataset

1.3.2 Implicit deep learning

Implicit Deep Learning has raised some interest in the last years (Amos and Kolter, 2017; Bai et al.,
2019; El Ghaoui et al., 2021) thanks to their memory efficiency by avoiding the memory overhead of the
backpropagation. Classical feedforward networks build their prediction with a recurrent procedure

zk+1 = gkθ (zk, x)

where x is the input, the (zk)k∈[L] are the intermediate states of the network, and gkθ is the k-th layer of
the network parametrized by θ (the vector θ includes the parameters of all the layers of the network).
To train these networks, one needs to store all the intermediate states (zk)k∈[L] during the forward
pass for the backpropagation step (see subsection 2.3.3). This poses memory issues when training
very deep networks.

Deep Equilibrium Models (DEQs) (Bai et al., 2019) consider the case where the same transformation
is applied at each layer

zk+1 = gθ(zk, x) . (1.17)

If the function gθ(., x) is contractive, the sequence (zk)k converges towards a fixed point of the function
gθ(., x). For this reason, DEQs consist in taking as output of the network the solution z∗(θ, x) of the
equation

gθ(z∗(θ, x), x) = z∗(θ, x) . (1.18)

The problem of training a DEQ is a bilevel problem. We want to minimize the training loss under
the constraint that we have solved each training sample’s fixed-point equation (1.18). This yields the
following formulation

min
θ
f(θ) = 1

n

n∑
i=1

ℓ(ytrain
i , z∗(θ, xtrain

i))

s.t. ∀i ∈ [n], gθ(z∗(θ, xtrain
i), xtrain

i) = z∗(θ, xtrain
i) .

The main difference with the problems we have seen so far is that the inner problem is not a minimiza-
tion problem but a fixed-point problem. Also, this is an instance of a multi-block bilevel problem: we
have an inner problem by training sample, and the inner problems are independent of each other.
Such formulation enables leveraging implicit differentiation presented in subsection 3.1.2 to train the
network. In this way, one avoids the memory burden of the backpropagation.

1.4. Outline and contributions of the thesis 13

1.3.3 Neural architecture search

Neural Architecture Search (NAS) (Elsken et al., 2019) aims to find the best neural architecture for a
given task. Liu et al. (2019) propose a differentiable way to perform NAS, leading to a bilevel problem.

An architecture (or a cell) is viewed as an acyclic graph where the vertices are represented by an or-
dered sequence of N nodes (wi)i∈[N]. The vertex w0 is the input of the cell and wN its output. Each
node is the result of a sum of operations on its parents, that is

wj =
∑
i<j

o(i,j)(wi) .

Therefore, finding the best architecture boils down to finding the best operation set {o(i,j), j ∈ [N], 1 ≤
i < j}. We denote O, the (finite) set of operation sets we consider. For o ∈ O, let ho,θ the predictor
associated to the operation set o. Finding the best operation set o can be cast as a bilevel problem with

min
o
f(o, θ∗(min

o
)) = 1

m

m∑
j=1

ℓ(yval
j , ho,θ(xval

j))

θ∗(min
o

) ∈ arg min
θ

g(o, θ) = 1
n

n∑
i=1

ℓ(ytrain
i , ho,θ(xtrain

i)) .

Written in this way, the problem is a combinatorial problem in o. A differentiable reformulation is pro-
posed by Liu et al. (2019), giving rise to Differentiable ARchiTecture Search (DARTS), and it is extended
in different fashion (Zhang et al., 2021; Qin et al., 2023; Ye et al., 2023). This is done by considering mix-
tures of operations where the mixture coefficients are parametrized by a continuous hyperparameter
α. In DARTS, the operations o(i,j) are replaced by a weighted sum

ō(i,j) =
∑

o∈O(i,j)

exp(α(i,j)
o)∑

o′∈O(i,j) exp(α(i,j)
o′)

o

where O(i,j) is the set of possible operations between wj and wi. Now it is the weights α = {α(i,j)}i,j
that are optimized, yielding the following bilevel problem

min
α
f(α, θ∗(α)) = 1

m

m∑
j=1

ℓ(yval
j , hα,θ(xval

i))

s.t. θ∗(α) ∈ arg min
θ

g(α, θ) = 1
n

n∑
i=1

ℓ(ytrain
i , hα,θ(xtrain

i)) .

This continuous formulation, illustrated in figure 1.7, opens the door to gradient-based methods such
as the ones presented in Chapter 3.

1.4 Outline and contributions of the thesis

The thesis is divided into two parts. In Part I, we provide the necessary background to understand the
contributions of the theses. More specifically

▶ In Chapter 2, we introduce some mathematical tools used in differentiable optimization. We
also present some classical first-order optimization algorithms and give some intuition on their
behavior. To introduce some proof techniques that will be used later, we recall the proof of
some classical convergence results for gradient descent and stochastic gradient descent. We also
explain how variance reduction techniques speed up the convergence of stochastic algorithms.
Finally, a short introduction to automatic differentiation is given.

1.4. Outline and contributions of the thesis 14

Figure 1.7: Illustration of DARTS. With bilevel optimization, one can optimize jointly mixing coeffi-
cients and the network weights. We finally keep the operations with the highest mixing coefficients.
This figure is borrowed from (Liu et al., 2019)

▶ In Chapter 3, we review the main techniques that have been proposed to solve bilevel optimiza-
tion with gradient-based methods. We first present the implicit differentiation and how it is
leveraged in bilevel optimization. In particular, we present some key ingredients that make Ap-
proximate Implicit Differentiation (AID) based algorithms work in practice. We then present an
alternative approach to implicit differentiation, which consists in differentiating the different
steps used to get an approximate solution of the inner problem. This is the iterative differenti-
ation approach (ITD). Finally, we present the penalty-based approaches. These approaches are
fully first-order approaches that have gained popularity in the last few years because they do not
require second-order information from the inner problem.

In Part II, we present the contributions of the thesis. They are distributed in two chapters:

▶ In Chapter 4, we tackle bilevel optimization problems where the inner function and the outer
function have a structure of empirical means. We introduce a novel framework that consists
in maintaining three variables: the inner variable y, the linear system variable v, and the outer
variable x. We propose to make them evolve simultaneously following suitable directions that
are linear in the outer function and the inner function. This linearity enables easily building
stochastic estimators of these directions with a handful of samples. One can easily adapt any
stochastic first-order algorithm to bilevel problems thanks to its simplicity and modularity. In
this framework, we propose and analyze two instantiations: the Stochastic Bilevel ALgorithm
(SOBA), which is an adaptation of stochastic gradient descent to bilevel optimization, and the
Stochastic Average Bilevel Algorithm (SABA), which is an adaptation of the SAGA algorithm (De-
fazio et al., 2014) to bilevel optimization. We show that, under some regularity assumptions,
SOBA has a convergence rate in O

(
T−0.5) for constant stepsizes in Θ(T−0.5) (T is the number

of iterations) and in O
(
log(T)T−0.5)with decreasing stepsizes. For SABA, we show that one can

converge towards a stationary at the speed of O
(

(n+m) 2
3T−1

)
where n andm are the numbers

of functions in the outer and inner problems, respectively. We also show that SABA achieves
linear convergence under Polyak-Lojasiewicz assumption. Note that these rates match the rate
of SGD and SAGA for non-convex single-level problems. This fact motivates Chapter 5.

▶ In Chapter 5, we interest ourselves in the complexity of bilevel empirical risk minimization.
Bilevel empirical risk minimization corresponds to the situation where the inner and the outer
functions are empirical means. We propose SRBA, an algorithm in which oracle complexity is

O
(

(n+m) 1
2 ϵ−1

)
where n and m are the numbers of functions in the outer and inner prob-

lems, respectively, and ϵ is the desired precision. We show that this algorithm is near-optimal

1.4. Outline and contributions of the thesis 15

in the regime n ≈ m among a class of algorithms that includes a wide range of AID-based algo-
rithms. Indeed, we prove that the oracle complexity for this algorithm class is lower bounded by

Ω
(
m

1
2 ϵ−1

)
when the inner function is strongly convex.

We finally conclude this thesis in Chapter 6 by summarizing the contributions and discussing some
research perspectives.

1.4. Outline and contributions of the thesis 16

Part I

Background

17

CHAPTER 2

BACKGROUND IN FIRST-ORDER OPTIMIZATION

Sommaire
2.1 Mathematical background . 19

2.1.1 Differentiability and gradient . 19

2.1.2 Convex analysis . 21

2.1.3 Lipschitz continuity and smoothness . 22

2.2 Gradient descent and variants . 23
2.2.1 Deterministic optimization . 23

2.2.2 Stochastic optimization . 25

2.2.3 Complexity measure of optimization algorithms 29

2.3 Automatic differentiation . 30
2.3.1 Computational graph . 30

2.3.2 Forward mode . 31

2.3.3 Reverse mode . 32

2.3.4 Hessian-vector products . 33

2.3.5 Benchmarking HVP computation with deep learning architectures. . . 36

This chapter introduces classical tools in optimization that are useful for this thesis. Most of the results
presented here can be found in Nocedal and Wright (2006), Nesterov (2018), or Garrigos and Gower
(2023).

2.1 Mathematical background

The design and the analysis of optimization algorithms rely on the properties of the function we want
to minimize, often referred to as "the regularity" of the function.

2.1.1 Differentiability and gradient

The differentiability of a function is an important notion that indicates the local behavior of this func-
tion. It provides a linear approximation of the function around a point.

Definition 2.1 (Differentiability). Let f : Rp → Rq a function and let x ∈ Rp. The function f is said to be
differentiable at x if there exists a linear continuous application df(x) : Rp → Rq and a neighborhood
Wx of x such that for any h ∈ Wx we have

f(x+ h) = f(x) + df(x)(h) + o(h) .

19

2.1. Mathematical background 20

If f is differentiable in x, we can consider the matrix of the linear application df(x) that we also note
df(x) with a slight abuse of notation. It belongs to Rq×p and is called the Jacobian of f .

Definition 2.2 (Partial derivative). Let ei be the ith canonical vector basis of Rp and suppose that f is
real-valued. f has a partial derivative in the direction ei if f(x+tei)−f(x)

t has a finite limit when t goes to
0. In this case, we denote

∂f

∂xi
(x) = lim

t→0

f(x+ tei) − f(x)
t

.

When f is differentiable, its Jacobian is given by

df(x) =


∂f1
∂x1

(x) · · · ∂fi

∂xp
(x)

...
. . .

...
∂fq

∂x1
(x) · · · ∂fq

∂xp
(x)

 ∈ Rq×p .

When f is real-valued, we can introduce the notion of the gradient.

Definition 2.3 (Gradient). Suppose that q = 1 and that f is differentiable at x. The gradient of f at x
is a vector that belongs to Rp whose components are the partial derivatives of f . It is denoted ∇f(x),
and it is the unique vector that verifies

df(x).h = ⟨∇f(x), h⟩ .

The components of this vector are the partial derivatives of the function f

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xp

(x)

 .

As illustrated in figure 2.1, the gradient provides the steepest ascent direction of the function at a
point x. It is an essential tool in optimization. Indeed, moving in the opposite direction of a function’s
gradient ensures a decrease in this function.

−2 −1 0 1 2
−2

−1

0

1

2
Gradients

−0.4

−0.2

0.0

0.2

0.4

Figure 2.1: Gradient field of the function defined by f(x, y) = xe−(x2+y2). Each arrow represents the
function’s gradient at a point (x, y). The gradient points towards the steepest ascent direction.

When we have a differentiable function, we have a necessary first-order condition for the local mini-
mums of f . This condition is essential for implicit differentiation, so we recall it in Proposition 2.1.

Proposition 2.1. Let f : Rp → R a differentiable function with a local minimum at x. Then

∇f(x) = 0 .

2.1. Mathematical background 21

Note that the converse is not true. For instance, the function f(x) = x3 has a stationary point at x = 0
but is not a local minimum. We will see in the following section that when the function is convex, then
the converse of Proposition 2.1 holds.

The Hessian matrix of a function is also an important tool that contains the second-order information
of a function.

Definition 2.4 (Hessian). Let f : Rp → Rq. We say that f is twice differentiable at x ∈ Rp if f and df are
differentiable. The differential of df at x is denoted d2f(x). This is a linear application with values in
the space of linear applications between Rp and Rq. When f is real-valued, we can consider its Hessian
matrix

∇2f(x) =
(

∂2f

∂xi∂xj
(x)
)

1⩽i,j⩽p
∈ Rp×p .

2.1.2 Convex analysis

Let f : Rp → R a differentiable function. We have seen in Proposition 2.1 that having ∇f(x) = 0 is
necessary for x to be a local minimum. For some functions, this condition is also sufficient. This is the
case for convex functions, making them very convenient to optimize.

Definition 2.5 (Convexity). Let f : Rp → R a function. We say that f is convex if

∀x, y ∈ Rp,∀t ∈ [0, 1], f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) .

If f is differentiable, the convexity of f is equivalent to

∀x, y ∈ Rp, f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ .

If f is twice differentiable, the convexity of f is equivalent to

∀x ∈ Rp,∇2f(x) ⪰ 0 .

The second characterization of Definition 2.5 provides a geometrical interpretation of the convexity
for differentiable functions. A differentiable function is convex if and only if its graph is above its tan-
gents at any point, as illustrated in figure 2.2. Moreover, the condition on the positiveness of the Hes-
sian matrix tells us that the function is convex if and only if it is locally lower bounded by a parabola.

x

f(x) + ⟨f(x), y − x⟩

f(y)

Figure 2.2: Illustation of the convexity of a function. The tangent y 7→ f(x) + ⟨∇f(x), y − x⟩ is below
the curve of f .

When a function is convex, the first-order condition of Proposition 2.1 is also sufficient for a point to
be a global minimum.

2.1. Mathematical background 22

Proposition 2.2. Let f : Rp → R be a convex and differentiable function. Then, x∗ ∈ Rp is a global
minimizer of f if and only if ∇f(x∗) = 0.

Thanks to this characterization, minimizing a convex function can be recast as the resolution of a
system of nonlinear equations. Beyond convexity, strong convexity is a property that makes a function
globally lower bounded by a quadratic function.

Definition 2.6 (Strong convexity). Let f : Rp → R be a differentiable function. We say that f is µ-
strongly convex with parameter µ > 0 if

∀x, y ∈ Rp, f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ∥y − x∥2 .

If f is twice differentiable, the strong convexity of f is equivalent to

∀x ∈ Rp,∇2f(x) ⪰ µIp .

A strongly convex function cannot be flat compared to convex functions. We will see in the follow-
ing that this property enables faster convergence rates for optimization algorithms. Strongly convex
functions are lower bounded by a quadratic function, as illustrated in figure 2.3.

f(y)

f(x) + ⟨∇f(x), y − x⟩ + µ
2 ∥y − x∥2

x

Figure 2.3: Illustation of the strong convexity of a function. The function is lower bounded by the
quadratic function y 7→ f(x) + ⟨∇f(x), y − x⟩ + µ

2 ∥y − x∥2 for a given x ∈ Rp.

2.1.3 Lipschitz continuity and smoothness

The Lipschitz continuity provides a bound on the sensitivity of a function.

Definition 2.7 (Lipschitz continuity). A function f : Rp → Rq is said to be L-Lipschitz continuous if

∀x, y ∈ Rp, ∥f(x) − f(y)∥ ≤ L∥x− y∥ .

An essential property of functions is their smoothness. Informally, a small displacement in the input
space induces a slight change in the function’s gradient.

Definition 2.8 (Smoothness). Let f : Rp → R be a differentiable function. We they that f is L-smooth
if its gradient ∇f is L-Lipschitz continuous, that is

∀x, y ∈ Rp, ∥∇f(x) − ∇f(y)∥ ≤ L∥x− y∥ .

In differentiable optimization, a function’s smoothness is often a starting point for deriving a descent
lemma, which is generally a starting point for analyzing an optimization algorithm.

Proposition 2.3. Let f : Rp → R be a L-smooth function. The function f is L-smooth if and only if for
any x, y ∈ Rp, it holds

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ∥y − x∥2 .

Geometrically, Proposition 2.3 tells us that a smooth function is upper bounded by a quadratic func-
tion, as illustrated in figure 2.4.

2.2. Gradient descent and variants 23

x
f(y)

f(x) + ⟨∇f(x), y − x⟩ + L
2 ∥y − x∥2

Figure 2.4: Illustation of the smoothness of a function. The function is upper bounded by the quadratic
function y 7→ f(x) + ⟨∇f(x), y − x⟩ + L

2 ∥y − x∥2 for a given x ∈ Rp.

2.2 Gradient descent and variants

2.2.1 Deterministic optimization

Gradient descent (Cauchy, 1847) is the workhorse algorithm to minimize a differentiable function. In
this section, let us consider a differentiable function f : Rd → R and the following problem

min
x∈Rd

f(x) . (2.1)

If we are at a point x ∈ Rd and want to move in some direction δ while decreasing the value of f , the
most natural choice for the direction δ is to follow the steepest descent direction. This direction is the
opposite direction of the gradient −∇f(x). The gradient descent algorithm consists of following this
direction at each iteration. It is summarized in Algorithm 1.

Algorithm 1 Gradient descent

Input: initialization x0 ∈ Rd number of iterations T , step size sequence (ηt)t<T .
for t = 0, . . . , T − 1 do

xt+1 = xt − ηt∇f(xt) .

end for

This algorithm seeks a stationary point of the function f while decreasing its value. Indeed, if we
choose a constant step size sequence and if the gradient ∇f is continuous, one can observe that in
case of convergence of the iterates towards a point x∗, one has necessarily ∇f(x∗) = 0. If we assume
the function f to be convex, the point x∗ is a global minimizer of the function f according to Proposi-
tion 2.2.

A critical property of the gradient descent algorithm is that we have a descent guarantee if we assume
that the function f is L-smooth (see Definition 2.8) and for a convenient choice of step sizes. This
property is often referred to as a descent lemma in optimization.

Lemma 2.1 (Descent Lemma for gradient descent). Let f : Rd → R be an L-smooth function and
(xt)t≥0 a sequence verifying

xt+1 = xt − η∇f(xt)

with η ∈
(
0, 1

L

]
. Then it holds

f(xt+1) ≤ f(xt) − η

2∥∇f(xt)∥2 ≤ f(xt) .

2.2. Gradient descent and variants 24

Proof. From Proposition 2.3, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩ + L

2 ∥xt+1 − xt∥2

≤ f(xt) − η∥∇f(xt)∥2 + Lη2

2 ∥∇f(xt)∥2

= f(xt) − η

(
1 − Lη

2

)
∥∇f(xt)∥2 .

Using η ≤ 1/L, we have −η
(

1 − Lη
2

)
≤ −η

2 yielding the result.

From this lemma, a non-asymptotic convergence rate for the gradient descent algorithm in the convex
case can be derived.

Theorem 2.1 (Convergence rate of gradient descent, convex case). Assume that the function f is L-
smooth, convex and that arg min f is non-empty. Let (xt)t≥0 be the sequence generated by Algorithm 1
with a constant step size η ∈

(
0, 1

L

]
. Then it holds for x∗ ∈ arg min f and f∗ = f(x∗)

f(xt) − f∗ ≤ ∥x0 − x∗∥2

2ηt .

The proof of this result uses a classical technique for analyzing a differentiable optimization algo-
rithm. It consists of finding a suitable Lyapunov function that decreases at each iteration. This proof
technique will be helpful in Chapter 4 and Chapter 5.

Proof. Let x∗ ∈ arg min f and f∗ = f(x∗). First we show that the sequence (∥xt−x∗∥2)t≥0 is decreasing.
By expanding the square, we have

∥xt+1 − x∗∥2 = ∥(xt+1 − xt) + (xt − x∗)∥2

= ∥xt − x∗∥2 + 2⟨xt+1 − xt, xt − x∗⟩ + ∥xt+1 − xt∥2

= ∥xt − x∗∥2 + 2⟨xt+1 − xt, xt+1 − x∗⟩ + 2⟨xt+1 − xt, xt − xt+1⟩ + ∥xt+1 − xt∥2

= ∥xt − x∗∥2 + 2⟨xt+1 − xt, xt+1 − x∗⟩ − ∥xt+1 − xt∥2

= ∥xt − x∗∥2 − 2η⟨∇f(xt), xt+1 − xt⟩ − 2η⟨∇f(xt), xt − x∗⟩ − ∥xt+1 − xt∥2 . (2.2)

By the smoothness of f , we have

−2η⟨∇f(xt), xt+1 − xt⟩ ≤ −2η(f(xt+1) − f(xt)) + ηL∥xt+1 − xt∥2 . (2.3)

The convexity of f implies

−2η⟨∇f(xt), xt − x∗⟩ ≤ −2η(f(xt) − f∗) . (2.4)

Summing Equation (2.3) and Equation (2.4) and injecting in Equation (2.2) yield

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2 − 2η(f(xt+1) − f∗) + (ηL− 1)∥xt+1 − xt∥2

≤ ∥xt − x∗∥2 − 2η(f(xt+1) − f∗) . (2.5)

where we used η ≤ 1
L .

Let us consider the Lyapunov function Lt = t(f(xt) − f∗) + ∥xt−x∗∥2

2η . We have

Lt+1 = (t+ 1)(f(xt+1) − f∗) + ∥xt+1 − x∗∥2

2η .

2.2. Gradient descent and variants 25

Using Equation (2.5), we get

Lt+1 ≤ (t+ 1)(f(xt+1) − f∗) + ∥xt − x∗∥2

2η − (f(xt+1) − f∗)

≤ t(f(xt+1) − f∗) + Lt − t(f(xt) − f∗)
≤ t(f(xt+1) − f(xt)) + Lt . (2.6)

Using the descent lemma Lemma 2.1, we have f(xt+1) < f(xt) and thus by Equation (2.6), the Lya-
punov function L is decreasing. This implies that

t(f(xt) − f∗) ≤ Lt ≤ L0 = ∥x0 − x∗∥2

2η

which concludes the proof.

This result shows that the function values (f(xt))t≥0 converge sublinearly towards the optimal value
f∗. When we assume the strong convexity of the function f , we can improve the previous result by
showing the convergence of the iterates at a linear speed thanks to the non-flatness of the function.

Theorem 2.2 (Convergence rate of gradient descent, strongly convex case). Assume the function f is
L-smooth and µ-strongly convex. Let (xt)t≥0 be the sequence generated by Algorithm 1 with a constant
step size η ∈

(
0, 1

L

]
. Then it holds for x∗ = arg min f

∥xt+1 − x∗∥ ≤ (1 − ηµ)t∥x0 − x∗∥ . (2.7)

Proof. The proof starts by expanding the square

∥xt+1 − xt∥2 ≤ ∥xt − x∗∥2 − 2η⟨∇f(xt), xt − x∗⟩ + η2∥∇f(xt)∥2 . (2.8)

By strong convexity, we have

−2η⟨∇f(xt), xt − x∗⟩ ≤ −2η(f(xt) − f∗) − ηµ∥xt − x∗∥2 . (2.9)

By using Lemma 2.1 and η ≤ 1
L , we have

η2∥∇f(xt)∥2 ≤ 2η(f(xt) − f(xt+1)) . (2.10)

Plugging Equation (2.9) and Equation (2.10) in Equation (2.8) yields

∥xt+1 − xt∥2 ≤ (1 − ηµ)∥xt − x∗∥2 − 2η(f(xt+1) − f∗)
≤ (1 − ηµ)∥xt − x∗∥2 .

We conclude the proof by unrolling the previous relation.

2.2.2 Stochastic optimization

In Empirical Risk Minimization such as in Problem (1.4), the functions we want to minimize is the
empirical mean over the dataset:

f(x) = 1
n

n∑
i=1

fi(x) . (2.11)

When the amount of data is large (meaning that n is high) computing the gradient of f becomes too
expensive because it requires computing the gradient of each fi, making gradient descent inefficient.
For this reason, stochastic variants of gradient descent have been designed and are widely used in
practice.

2.2. Gradient descent and variants 26

Stochastic Gradient Descent. The Stochastic Gradient Descent (SGD) algorithm (Robbins and
Monro, 1951) is an adaptation of the gradient descent algorithm. Instead of following the direction
of the negative gradient of f , SGD consists of following the direction given by an unbiased stochastic
estimator of this gradient, built by using only the gradient of fi for a randomly sampled i ∈ [n].

Algorithm 2 Stochastic Gradient descent

Input: initialization x0 ∈ Rd number of iterations T , step size sequence (ηt)t<T .
for t = 0, . . . , T − 1 do

Draw it uniformly at random in {1, . . . , n}.
Update x

xt+1 = xt − ηt∇fit(xt) .

end for

This algorithm has become very popular in machine learning (Bottou, 2010; Bottou et al., 2018) and
successful algorithms in deep learning such as AdaGrad (Duchi et al., 2011) or ADAM (Kingma and Ba,
2015) are variants of SGD.

There are many analyses of Stochastic Gradient Descent in the literature. Non-asymptotic analyses
can be found in Moulines and Bach (2011) and Ghadimi and Lan (2013). Let us consider the strongly
convex case to understand how SGD behaves compared to gradient descent.

Theorem 2.3. Assume that each function fi is L-smooth and convex. We assume, furthermore, that the
function f is µ-strongly convex and that there exists σ > 0 such that for any x ∈ Rp

Ei∼U([n])[∥∇fi(x) − ∇f(x)∥2] ≤ σ2 .

Then, if we let x∗ = arg minx f , the iterates of SGD with a constant step size η ∈
(
0, 1

L

]
verify

E[∥xt+1 − x∗∥2] ≤ (1 − ηµ)t∥x0 − x∗∥2 + ησ2

µ
. (2.12)

Proof. As previously, we start by expanding the square

∥xt+1 − xt∥2 ≤ ∥xt − x∗∥2 − 2η⟨∇fit(xt), xt − x∗⟩ + η2∥∇fit(xt)∥2 .

We denote Et as the conditional expectation given the iterates x0, . . . , xt. Since Et[∇fit(xt)] = ∇f(xt),
we have

Et[∥xt+1 − xt∥2] ≤ ∥xt − x∗∥2 − 2η⟨∇f(xt), xt − x∗⟩ + η2Et[∥∇fit(xt)∥2] . (2.13)

By strong convexity, we have

−2η⟨∇f(xt), xt − x∗⟩ ≤ −2η(f(xt) − f∗) − ηµ∥xt − x∗∥2 . (2.14)

Also,

Et[∥∇fit(xt)∥2] = Et[∥∇fit(xt) − ∇f(xt)∥2] + ∥∇f(xt)∥2

≤ σ2 + ∥∇f(xt)∥2 . (2.15)

Plugging Equation (2.14) and Equation (2.15) in Equation (2.13) yields

Et[∥xt+1 − xt∥2] ≤ (1 − ηµ)∥xt − x∗∥2 − 2η(f(xt) − f∗) + η2σ2 + η2∥∇f(xt)∥2 .

By using Lemma 2.1, since η ≤ 1
L , we have

η2∥∇f(xt)∥2 ≤ 2η(f(xt − η∇f(xt)) − f(xt)) .

2.2. Gradient descent and variants 27

This yields

Et[∥xt+1 − xt∥2] ≤ (1 − ηµ)∥xt − x∗∥2 − 2η(f(xt − η∇f(xt)) − f(x∗)) + η2σ2

≤ (1 − ηµ)∥xt − x∗∥2 + η2σ2 .

Taking the expectation and unrolling the previous relation yields

E[∥xt+1 − x∗∥2] ≤ (1 − ηµ)tE[∥x0 − x∗∥2] + ησ2

µ
.

When comparing the convergence rates of gradient descent in Equation (2.7) and of SGD in Equa-
tion (2.12) for strongly convex functions, one observes the appearance of the variance term ησ2

µ . This
variance term prevents SGD from converging when run with fixed step sizes. Indeed, in this case, the
iterates of SGD oscillate around the optimal point x∗ without converging. Therefore, the sequence
(E[∥xt − x∗∥2])t≥0 reaches a plateau. This behavior is illustrated in figure 2.5, where we compare the
behavior of gradient descent and SGD on a least squares problem with different step size choices. We
observe the linear convergence of gradient descent’s iterates. For SGD with fixed step sizes, there are
two regimes: a first regime where the distance between the iterates and the solution decreases faster
than gradient descent, and a second regime where this distance reaches a plateau. Additionally, the
higher the step size, the higher the plateau. One common strategy to avoid reaching this plateau is to
use a decreasing step size sequence. Indeed, the analysis of Moulines and Bach (2011) shows conver-
gence in this case. However, this leads to very slow convergence, as we can see with the red curve in
figure 2.5.

0 10 20 30 40

Epochs

10−2

100

‖θ
t
−
θ∗
‖

GD

SGD small step

SGD large step

SGD decreasing step

Figure 2.5: Illustration of the behavior of GD and SGD with different step sizes on a least squares
problem with 100 samples and 30 features. We plot the distance between the current iterate and the
solution in function of the number of epochs (i.e., the number of passes on the dataset). Gradient
descent is run with the step size 1

L . SGD with a large step size uses a constant step size of 0.01. SGD
with a small step size uses a constant step size of 0.005. SGD with decreasing step size uses a step size in
0.07√
t+1 where t is the iteration number. We observe the linear convergence of gradient descent’s iterates.

SGD with constant step sizes reaches a plateau higher with a larger step size due to the variance of the
gradient estimate. With decreasing step size, SGD performs a very slow convergence.

Acceleration with variance reduction. We saw in the previous paragraph that the variance of
the gradient estimation prevents SGD from converging. Instead of using vanishing step sizes, it is
possible to make this variance go towards zero. This is the idea of the variance reduction.

A typical variance-reduced optimization algorithm example is SAGA (Defazio et al., 2014). SAGA works
by maintaining a memory (gti)i∈[n] of the past gradients. More precisely, at iteration t, a random index

2.2. Gradient descent and variants 28

it is drawn. Then the memory is updated by gttt = ∇fit(xt) and gti = gt−1
i for i ̸= it. The gradient of the

objective function is then estimated by ∇fit(xt) − gt−1
it

+ 1
n

∑n
i=1 g

t−1
i . This is an unbiased estimator

of the gradient of the objective function because

Eit∼U([n])

[
∇fit(xt) − gt−1

it
+ 1
n

n∑
i=1

gt−1
i

]
= ∇f(xt) − 1

n

n∑
i=1

gt−1
i + 1

n

n∑
i=1

gt−1
i = ∇f(xt) . (2.16)

The SAGA algorithm is summarized in Algorithm 3. The main drawback of SAGA is its memory foot-
print: it requires storing the n gradients ∇fi. In practice, the sum 1

n

∑n
i=1 g

t−1
i is also stored so one can

update it by rolling average.

Algorithm 3 SAGA

Input: initialization x0 ∈ Rd number of iterations T , step size η.
for t = 0, . . . , T − 1 do

Draw it uniformly at random in {1, . . . , n}.
Set

gt
i =

{
∇fit(xt) if i = it

gt−1
i otherwise

Update x

xt+1 = xt − η

[
∇fit(xt) − gt−1

it
+ 1
n

n∑
i=1

gt−1
i

]
.

end for

We provide in Theorem 2.4 a convergence result for SAGA in the strongly convex case coming from
Defazio et al. (2014).

Theorem 2.4 (Defazio et al. (2014, Corollary 1)). Assume that each function fi is L-smooth and µ-
strongly convex. With a step size η = 1

2(µn+L) , the iterates (xt)t≥0 of SAGA verifies

E[∥xt+1 − x∗∥2] ≤ (1 − ηµ)t
[
∥x0 − x∗∥2 + n

µn+ L
(f(x0) − f(x∗))

]
.

Our observation is that we have a linear convergence of the iterates of SAGA towards the optimal point
x∗. Thanks to the variance reduction, the convergence occurs with a fixed step size, making SAGA
faster than SGD. A second remark we can make is to scale the step size with respect to the number of
samples. Indeed, we have η = O

(1
n

)
. This is illustrated in figure 2.6 where we see that, with constant

step size, SAGA converges linearly while SGD reaches a plateau.

In the nonconvex case, the convergence rate of SAGA is established by Reddi et al. (2016).

Theorem 2.5 (Reddi et al. (2016, Theorem 3)). Assume that each function fi is L-smooth, and let us
denote f∗ = inf f . Then, if we set η = 1

3Ln
2
3

, the iterates (xt)t≥0 of SAGA verify

1
T

T−1∑
t=0

E[∥∇f(xt)∥2] ≤ 12Ln 2
3 (f(x0) − f∗)

T
.

In comparison, gradient descent for nonconvex functions achieves O
(1
T

)
convergence rate. As we

compute n gradient per iteration with gradient descent, this leads to a O(nϵ−1) complexity for gradient
descent, which is worse than the O(n 2

3 ϵ−1) complexity of SAGA in this setting.

Note that a wide variety of variance reduction algorithms exist. The SAG algorithm (Schmidt et al.,
2017) is similaire to SAGA but the estimate direction is 1

n

(
∇fit(xt) − gt−1

it
+
∑n
i=1 g

t−1
i

)
instead of

∇fit(xt) − gt−1
it

+ 1
n

∑n
i=1 g

t−1
i . The SVRG algorithm (Johnson and Zhang, 2013) is a variant of SAGA in

2.2. Gradient descent and variants 29

0 10 20 30 40

Epochs

10−3

10−1

101

‖θ
t
−
θ∗
‖

SAGA SGD

Figure 2.6: Illustration of the behavior of SAGA and SGD on a least squares problem with 100 samples
and 30 features. We plot the distance between the current iterate and the solution in function of the
number of epochs (i.e., the number of passes on the dataset). SAGA is run with the step size 0.006.
SGD uses a constant step size of 0.01. Despite a constant step size, SAGA can converge thanks to the
variance reduction. SGD, for its part, reaches a plateau.

which the memories (gt−1
i∈[n] are replaced by gradients computed at the same reference point x̃ which

is updated periodically. The gradient is then estimated by ∇fit(xt) − ∇fit(x̃) + 1
n

∑n
i=1 ∇fi(x̃). By

doing so, we do not need anymore to store the n gradients but only the reference point x̃ and the av-
erage of the gradients 1

n

∑n
i=1 ∇fi(x̃). However, the number of steps between two updates of x̃ is a

hyperparameter that dramatically influences the algorithm’s performance.

2.2.3 Complexity measure of optimization algorithms

The complexity of an optimization algorithm is a quantification of the number of elementary opera-
tions required to reach a solution with a certain precision. The quality of a solution x returned by an
optimization algorithm can be measured in different ways, depending on the problem considered:

▶ Distance to the solution. If the function has a unique minimizer x∗, the (squared) distance to
the solution is the quantity ∥x − x∗∥2 can be used as a performance measure, as it is the case
in Equation (2.7) and Equation (2.12). This performance measure is generally used for strongly
convex functions.

▶ Suboptimality. If the function has multiple minimizers, measuring the distance between a
candidate solution x and one of the minimizers of the function does not make sense. For this
reason, we prefer to use the suboptimality measure f(x) − inf f , as done in Theorem 2.1. This
performance measure is generally used for convex functions.

▶ Stationarity. When the function is non-convex, the access to inf f is not possible in general.
For this reason, we generally use the (squared) norm of the function’s gradient ∥∇f(x)∥2. How-
ever, having ∥∇f(x)∥2 = 0 does not mean that x is a global minimizer of f , but this is a necessary
condition.

Now that we know how to measure a solution’s quality, there are two ways to express the complexity
of an optimization algorithm. For a candidate solution x, consider C(x) one of the above performance
measures.

2.3. Automatic differentiation 30

▶ Convergence rate. For an iterative algorithm, a convergence rate is an upper bound on the
performance measure C(xt) that depends on the iteration number t. More formally, it is a func-
tion σ : N → R+, such that limt→∞ σ(t) = 0 and C(xt) ≤ σ(t). It ensures that C(xt) converges to
zero and quantifies the convergence speed.

▶ Oracle complexity. The complexity of an optimization algorithm is the number of elementary
operations required to reach a solution x such that C(x) ≤ ϵ. In differentiable optimization,
a proxy of the number of elementary operations is the number of calls to oracles, that is, the
number of evaluations of the function and its derivative.

It is generally possible to go from one expression of the complexity to another. For instance, for mini-
mizing a convex finite sum such as Equation (2.11), we showed in Theorem 2.1 that for the iterates of
gradient descent verify

f(xt) − inf f ≤ ∥x0 − x∗∥2

2ηt .

This is a convergence rate result with C(x) = f(x)−inf f and σ(t) = ∥x0−x∗∥2

2ηt . Since at each iteration, we
compute n gradients, the total number K of calls to oracles sufficient to have C(xt) ≤ ϵ is n multiplied

by the smallest t such that σ(t) ≤ ϵ. This gives K =
⌈
n∥x0−x∗∥2

2ηϵ

⌉
= O(nϵ−1).

2.3 Automatic differentiation

This section is based on the following blog post we published in the dedicated track at ICLR 2024:

M. Dagréou, P. Ablin, S. Vaiter, T. Moreau. How to compute Hessian-vector products?. In ICLR blogpost
track, 2024.1

The practical efficiency of optimization algorithms that use derivatives highly relies on the ability to
compute these derivatives efficiently and accurately. Automatic differentiation (AD) is a tool that en-
ables this. In what follows, we briefly and informally present its two main modes: forward and reverse.
Then, we also describe how we can leverage AD to compute Hessian-vector products (HVP). Finally,
we present a benchmark of AD methods to compute HVPs with deep learning architectures.

For a more in-depth introduction, the reader can refer to the book of Griewank and Walther (2008) or
the survey of Baydin et al. (2018).

2.3.1 Computational graph

Automatic differentiation relies on the notion of a computational graph (Bauer, 1974). It is a directed
acyclic graph that represents the succession of elementary operations required to evaluate a function.
A simple computational graph of a function f : Rd → Rp is represented in figure 2.7.

Figure 2.7: Example of computational graph

In this graph, the vertices zi ∈ Rmi represent the intermediate states of the evaluation of f . To get the
vertex zi, we use the values of its parents in the graph zi−1, with simple transfer functions zi(zi−1). The
computational complexity of the function evaluation depends on the complexity of the considered
graph, as one node might have more than one parent. The memory footprint of the evaluation of the
function is also linked to the maximum number of parents that can have a vertex in the computational
graph, as their value needs to be stored until all children nodes have been computed.

1https://iclr-blogposts.github.io/2024/blog/bench-hvp/

https://iclr-blogposts.github.io/2024/blog/bench-hvp/

2.3. Automatic differentiation 31

Let us take an example with a multilayer linear perceptron (MLP) with two layers. The function fx :
Rh × Rh×p → R is defined for an input x ∈ Rp by

fx(U,W) = 1
2(UWx)2 . (2.17)

Here, the input θ corresponds to the parameters of the network (U, V) and the intermediate steps are
z1 = Wx, z2 = Uz1 and z3 = 1

2z
2
2 . A possible computational graph to get fx(U,W) is in the figure 2.8.

The associated Python code to compute fx is

Figure 2.8: Example of computational graph for the MLP

def f(U, W):
z1 = W @ x
z2 = U @ z1
z3 = 0.5 * z2 **2
return z3

Here, the feed-forward structure of the function makes the computational graph very simple, as each
node has a single intermediate result parent.

AD uses this computational graph to compute the function’s derivatives. Using the chain rule, the
Jacobian ∂f

∂θ (θ) of f is obtained as a product of the Jacobian of the intermediate states z1, . . . , zn.

∂f

∂θ
(θ)︸ ︷︷ ︸

p×d

= ∂zn
∂θ

= ∂zn
∂z1

∂z1

∂θ
= · · · = ∂zn

∂zn−1︸ ︷︷ ︸
p×mn−1

∂zn−1

∂zn−2︸ ︷︷ ︸
mn−1×mn−2

· · · ∂z1

∂θ︸︷︷︸
m1×d

. (2.18)

Depending on the order of the multiplication, one can compute the derivative of f with respect to θ in
two ways: the forward mode and the reverse mode.

2.3.2 Forward mode

The forward mode of AD was first proposed by Wengert (1964). It allows to compute Jacobian-vector
product, that is, the product of the Jacobian of a function f : Rd × p with a vector v

∂f

∂θ
(θ) × v = ∂zn

∂zn−1

∂zn−1

∂zn−2
· · · ∂z1

∂θ
v . (2.19)

It consists of doing the multiplications in Equation (2.19) from the right to the left. It is a forward
pass in the computational graph where we propagate at the same time the states zi and the partial
derivatives ∂zi+1

∂zi
. If f is real-valued, the ith coordinate of its gradient is exactly given by the product of

the Jacobian of f and the ith canonical basis vector ei since

∂f

∂θi
(θ) = lim

t→0

f(θ + tei) − f(θ)
t

. (2.20)

2.3. Automatic differentiation 32

Thus, we can get its gradient by computing each of the d JVPs
(
∂f
∂θi

(θ) × ei

)
1≤i≤d

with forward AD.

To understand properly what is happening when using forward differentiation, let us go back to the
linear MLP defined in Equation (2.17). If we implement by ourselves the forward differentiation to get
the JVP, we obtain the following code.

def jvp(U, W, v_u , v_w):
Forward diff of f
z1 = W @ x
v_z1 = v_w @ x # Directional derivative of W -> W @ x in the

direction v_w

z2 = U @ z1
v_z2 = U @ v_z1 + v_u @ z1 # Directional derivative of (U, z_1) ->
z2 in the direction (v_u , v_z1)

v_z3 = v_z2 @ z2 # Directional derivative of z2 -> .5* z2 **2 in the
direction v_z2
return v_z3

In comparison with the code of the evaluation of fx, there are two more operations corresponding to
the computation of the dual variables v_z1 and v_z2. In terms of memory, if we consider the compu-
tation of the JVP as coded in the previous snippet, the maximum number of parents of a vertex is four.
This maximum is achieved by the vertex v_z2 which has the vertices U, v_z1, v_u and z1 as parents.

In JAX, we get the JVP of a function f in the direction v with jax.jvp(f, (params,), (v,))[1].

2.3.3 Reverse mode

The reverse mode of automatic differentiation (Linnainmaa, 1970, 1976) is the most used in practice in
machine learning. Indeed, it is the more efficient mode to compute gradients. In a deep learning con-
text, where we want to compute gradients of the cost function with respect to the model’s parameters,
the reverse mode is often referred to as backpropagation (Rumelhart et al., 1986).

For u ∈ Rp, the reverse mode aims at computing VJPs

u⊤ ∂f

∂θ
(θ) = u⊤ ∂zn

∂zn−1

∂zn−1

∂zn−2
· · · ∂z1

∂θ
. (2.21)

In the reverse AD, the multiplications of Equation (2.19) are done from the left to the right. It requires
doing one forward pass in the computational graph to compute the intermediate states zi and then
a backward pass to propagate the successive partial derivatives from the left to the right. Contrary to
the forward mode, it has a more important memory footprint. Indeed, it requires storing the values of
all the states. For instance, to compute the last term ∂z3

∂z2
, one needs the value of z2 which was the first

computed during the forward pass. If f is real-valued, u is a scalar, and the VJP is the multiplication
of the gradient of f by u. Thus, one can get the gradient on f by using u = 1 and performing only one
reverse differentiation. This makes this mode more efficient in computing gradients.

Let us observe what happens if we manually code the backpropagation to get the gradient of the pre-
vious function fx defined by fx(U,W) = 1

2 (UWx)2.

def gradient (U, W):
Forward pass
z1 = W @ x
z2 = U @ z1
z3 = 0.5 * z2 **2

2.3. Automatic differentiation 33

Reverse pass
Transfer function : z3 = 0.5 * z2 **2
dz2 = z2 # derivative of z3 wrt z2

Transfer function : z2 = U @ z1
dU = jnp.outer(dz2 , z1) # derivative of z3 wrt U
dz1 = U.T @ dz2 # derivative of z3 wrt z1

Transfer function : z1 = W @ x
dW = jnp.outer(dz1 , x) # derivative of z3 wrt W

return dU , dW

This function returns the gradient of fx. When reading this code, we understand that one needs to
store all the intermediate values of the forward pass in the graph. Indeed, if we look at the case of z1,
which is the first node computed, it is used four steps later for the computation of dU.

To get the gradient in JAX, one can use jax.grad(f)(params).

2.3.4 Hessian-vector products

Many algorithms in bilevel optimization require the computation of Hessian-vector products (HVP),
that is quantities of the form

∇2f(x)v

for a twice differentiable function f : Rp → R and a vector v. At first sight, computing such a quantity
seems prohibitive. Indeed, the naive way to compute it is to compute the full Hessian matrix ∇2f(x)
and then multiply it by v. This is not doable in high dimensions because storing the Hessian matrix
requires O(p2) memory.

Automatic differentiation frameworks such as JAX (Bradbury et al., 2018) or PyTorch (Paszke et al.,
2019) enable to compute HVP efficiently without computing the full Hessian matrix. The idea comes
from Pearlmutter (1994), who proposes to leverage the following observation: the HVP is also the di-
rectional derivative of the gradient in the direction v:

∇2f(x)v = lim
t→0

1
t
[∇f(x+ tv) − ∇f(x)] = ∇[⟨∇f(·), v⟩](x)

Based on this identity, AD enables to compute HVPs in three ways, as described in the JAX documen-
tation 2.

Forward-over-reverse. The forward-over-reverse mode consists of doing forward differentiation
in a computational graph of the gradient of f . Its implementation in JAX is only two lines of code.

def hvp_forward_over_reverse (f, params , v):
return jax.jvp(jax.grad(f), (params ,), (v,))[1]

In this case, jax.grad(f)(params) is computed by backward AD, whose complexity is two times the
complexity of evaluating f . Thus, the temporal complexity of hvp_forward_over_reverse is roughly
four times the complexity of the evaluation of f .

To better see what happens, let us consider again our function fx defined by Equation (2.17). The
Python code of the forward-over-reverse HVP follows:

def forward_over_reverse (U, W, v_U , v_W):
Forward through the forward pass through f
z1 = W @ x
v_z1 = v_W @ x

2https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

2.3. Automatic differentiation 34

z2 = U @ z1
v_z2 = U @ v_z1 + v_U @ z1

z3 = 0.5 * z2 **2
Forward through the backward pass through f
z4 = z2 # dz2
v_z4 = v_z2 # v_dz2

z5 = jnp.outer(z4 , z1) # dU
v_z5 = jnp.outer(v_z4 , z1) + jnp.outer(z4 , v_z1) # v_dU

z6 = U.T @ z4 # dz1
v_z6 = U.T @ v_z4 + v_U.T @ z4 # v_dz1

z7 = jnp.outer(z6 , x) # dW
v_z7 = jnp.outer(v_z6 , x) # v_dW

return v_z5 , v_z7 # v_dU , v_dW

The take-home message of this part is that, after computing the gradient of fx, one can consider a
computational graph of this gradient and perform forward differentiation through this new computa-
tional graph. Here, the variables z1,..., z7 are the vertices of a computational graph of the gradient of
fx. The nice thing is that this mode enables the gradient and the HVP to be obtained at the same time.
Indeed, in the previous snippet, z5 and z7 are the components of the gradient of fx, which could be
also returned if needed. This feature can be useful in bilevel optimization, for instance.

Reverse-over-reverse. Instead of doing forward differentiation of the gradient, one can multiply
the gradient by v and thus get a scalar. We can then backpropagate into this scalar product. This is the
reverse-over-reverse mode.

It can be implemented by these lines of code.

def hvp_reverse_over_reverse (f, params , v):
return jax.grad(lambda y: jnp.vdot(jax.grad(f)(y), v))(params)

Since the gradients are computed by backpropagation, the complexity of hvp_reverse_over_reverse
is twice the complexity of jax.grad(f), which is roughly four times the complexity of the evaluation
of f .

Writting down the code of the reverse-over-reverse HVP for our function fx defined by Equation (2.17)
makes us understand the differences between this mode and the forward-over-reverse mode. Particu-
larly, one can notice that there are more elementary operations in reverse_over_reverse mode than
in forward_over_reverse. In terms of memory footprint, reverse_over_reverse requires storing the
values of the vertices of the computational graph of the gradient of fx, while forward_over_reverse
only needs to store the values of the vertices of the computational graph of fx. Thus, the former is less
efficient than the latter.

def reverse_over_reverse (U, W, v_u , v_w):
Forward through <grad(f), v>
Forward through f
z1 = W @ x
z2 = U @ z1
z3 = 0.5 * jnp. linalg .norm(z2)**2

Reverse through f
z4 = z2 # dz2
z4 = jnp.outer(z3 , z1) # dU

2.3. Automatic differentiation 35

z5 = U.T @ z3 # dz1
z6 = jnp.outer(z5 , x) # dW

Output : dot product <grad(f), v>
z7 = jnp.sum(z4 * v_u) + jnp.sum(z6 * v_w)

Backward through z7 = <grad(f),v>
z7 = jnp.sum(z4 * v_u) + jnp.sum(z6 * v_w)
dz6 = v_w
dz4 = v_u

z6 = jnp.outer(z5 , x)
dz5 = dz6 @ x

z5 = U.T @ z3
dz3 = U @ dz5
ddU = jnp.outer(z3 , dz5) # Derivative of z7 wrt U

z4 = jnp.outer(z3 , z1)
dz3 += dz4 @ z1
dz1 = dz4.T @ z3

z3 = z2
dz2 = dz3

z2 = U @ z1
dz1 += dz2 * U
As U appears multiple times in the graph , we sum its contributions
ddU += jnp.outer(dz2 , z1)

z1 = W @ x
ddW = jnp.outer(dz1 , x) # Derivative of z7 wrt W

return ddU , ddW

Reverse-over-forward. What about doing forward differentiation of f rather than reverse propa-
gation? This is what is done in the reverse-over-forward mode. It consists in backpropagating in the
computational graph of the JVP of f and v.

def hvp_reverse_over_forward (f, params , v):
jvp_fun = lambda params : jax.jvp(f, (params ,), (v,))[1]
return jax.grad(jvp_fun)(params)

Since we backpropagate only once, the memory burden is lower than for hvp_reverse_over_reverse.
In comparison with hvp_forward_over_reverse, the complexity is the same. However, one can notice
that hvp_forward_over_reverse enables computing at the same time the gradient of f and the HVP,
which is not the case for the hvp_reverse_over_reverse mode.

The code of the reverse-over-forward HVP for the MLP fx defined by Equation (2.17) is the following.

def reverse_over_forward (U, W, v_U , v_W):
Forward diff of f to <grad(f), v>
z1 = W @ x
z6 = v_W @ x # v_z1

z2 = U @ z1
z5 = U @ z6 + v_U @ z1 # v_z2

output <grad(f), v>

2.3. Automatic differentiation 36

z4 = z5 @ z2 # v_z3

Backward pass through <grad(f), v>
z4 = z5 @ z2
dz2 = z5
dz5 = z2 # dv_z2

z5 = U @ z6 + v_U @ z1
dz1 = v_U.T @ dz5
dz6 = U.T @ dz5 # dv_z1
ddU = jnp.outer(dz5 , z6) # derivative of z4 wrt U

z2 = U @ z1
As U and dz1 appear multiple times , we sum their contributions
dz1 += U.T @ dz2
ddU += jnp.outer(dz2 , z1)

z1 = W @ x
ddW = jnp.outer(dz1 , x)
return ddU , ddW

2.3.5 Benchmarking HVP computation with deep learning architectures.

While these three methods compute the same outputs, the different ways of traversing the computa-
tional graph change their overall time and memory complexities. We now compare the computation
of HVPs with these three methods for various deep-learning architectures3. To cover a broad range of
use cases, we consider a residual network ResNet34 (He et al., 2015) and a transformer-based archi-
tecture ViT-base (Dosovitskiy et al., 2021) for image classification as well as a transformer for natural
language processing Bert-base (Devlin et al., 2019). We use the Flax and PyTorch implementations of
these architectures available in the transformers package provided by Hugging Face.

All computations were run on an Nvidia A100 GPU with 40 GB of memory.

Time complexity. The first comparison we make is a comparison in terms of wall-clock time be-
tween the different ways to compute HVPs and also the computation of a gradient by backpropaga-
tion. For each architecture, we compute the gradient of the model with respect to the parameters
by backpropagation. We also compute the HVPs in forward-over-reverse, reverse-over-forward and
reverse-over-reverse modes. For each computation, we measure the time taken. Specifically for the
HVPs, we subtract the time taken by a gradient computation to get only the time of the overhead re-
quired by the HVP computation. The inputs for each architecture are generated randomly. For the
ResNet34 architecture, we generated a batch of images of size 224x224x3. To limit out-of-memory is-
sues in the experiments, we generated, for the ViT architecture, images of size 96x96x3. For the BERT
architecture, we generated a batch of sequences of length 32.

We first use JAX with just-in-time compilation. Each computation is run 90 times. The results are
in figure 2.9. We plot, on the left of the figure, the median computation time and also the 20% and
80% percentile in black. The computations are done with a batch size of 128. We observe that the
overhead over the gradient computation for the HVP computation is between one and twice the time
of a gradient computation for the three architectures. Consequently, a whole HVP computation takes
between twice and three times the time of a gradient calculation. This is consistent with the theory.
One can notice that the reverse-over-reverse is slightly slower than the others in all the cases. The
forward-over-reverse and reverse-over-forward are, as for them, very close in terms of time.

We also report on the right figure the computational time of each method with respect to the batch size

3The code of the benchmark is available on https://github.com/MatDag/bench_hvp/

https://github.com/MatDag/bench_hvp/

2.3. Automatic differentiation 37

for the ResNet34 architecture. We observe, as expected, that the computational time scales linearly
with the batch size.

Figure 2.9: Left: Median computation time of the gradient and HVPs in JAX for the ResNet34, ViT, and
BERT architectures with a batch size of 128. The 20% and 80% percentiles are also reported. Right:
Evolution of the computational time of the gradient and HVPs with the batch size for the ResNet34
architecture.

We run a similar experiment with the functional API available in PyTorch torch.func similar to the
one JAX has. The results we show in figure 2.10 are more contrasted.

In the case of ResNet34, the scaling between the different methods is similar to the one we get with JAX.
Also, during our experiments, we figured out that batch normalization made the forward computation
slow and induced out-of-memory issues. Thus, we removed the batch normalization layers from the
ResNet34 architecture.

For ViT and BERT, the forward-over-reverse is surprisingly longer than the reverse-over-reverse meth-
od. Moreover, the scaling between the gradient and HVP computational time differs from the one we
get with JAX. Indeed, for these architectures, the HVP computations take between four and five more
time than the gradient computations. This is a discrepancy with what we would expect in theory. This
might be because, at the time we are writing this blog post, the functional API of PyTorch is still in its
early stages. Particularly, we could not use the compilation with torch.compile because it does not
work with some operators of torch.func such as torch.func.jvp.

Figure 2.10: Left: Median computation time of the gradient and HVPs in PyTorch for the ResNet34,
ViT, and BERT architectures with a batch size of 128. The 20% and 80% percentiles are also reported.
Right: Evolution of the computational time of the gradient and HVPs with the batch size for the
ResNet34 architecture.

2.3. Automatic differentiation 38

Memory complexity. We also compare the memory footprint of each approach. The figure 2.11
provides the results we get with JAX jitted code. On the left, we represent the result for each method
and model with a batch size of 64. On the right, we show the evolution of the memory footprint of each
method for the ResNet34 with the batch size. Surprisingly, we could observe that the memory footprint
of the different methods to compute HVPs does not vary for a given model. This is counterintuitive
since we expect that the reverse-over-reverse method has a larger memory footprint due to the double
backpropagation.

Figure 2.11: Left: Memory footprint of the gradient and JVP computation in JAX jitted code. Right:
Evolution of the memory footprint with de batch size

However, we do the same experiment by disabling the JIT compilation. The result we get corroborates
the theory. One can observe in the figure 2.13 that the memory footprint of the reverse-over-reverse
method is larger than the one of the forward-over-reverse and reverse-over-forward methods. This
is because the reverse-over-reverse involves two successive backward differentiations while the other
two involve only one reverse differentiation. Moreover, it scales linearly with the batch size, which was
not the case in the previous figure in the small batch size regime.

In light of these two results, the clever memory allocation performed during just-in-time compilation
significantly reduces the memory footprint of the HVP computations.

Figure 2.12: Left: Memory footprint of the gradient and JVP computation in JAX without jitting the
code. Right: Evolution of the memory footprint with de batch size

In figure 2.12, we plot the results we get with the PyTorch implementation. One observes that in all the
cases, the forward-over-reverse mode consumes more memory than the reverse-over-forward mode.
It is almost at the same level as reverse-over-reverse mode, which is quite unexpected.

2.3. Automatic differentiation 39

The right plot of the evolution of the memory footprint with the batch size for the ResNet34 architec-
ture evolves linearly, as expected.

Figure 2.13: Left: Memory footprint of the gradient and JVP computation in PyTorch. Right: Evolution
of the memory footprint with de batch size

2.3. Automatic differentiation 40

CHAPTER 3

GRADIENT-BASED ALGORITHMS FOR BILEVEL OPTIMIZATION

Sommaire
3.1 Implicit differentiation . 41

3.1.1 The Implicit Function Theorem . 42

3.1.2 Implicit differentiation and regularity of the value function 42

3.1.3 Approximate Implicit Differentiation (AID) 44

3.1.4 Practical computation of the approximate hypergradient 47

3.1.5 Initialization of the sub-procedures . 47

3.2 Stochastic Approximate Implicit Differentiation 49

3.2.1 Two-loop versus one-loop algorithms 51

3.2.2 Variance reduction in bilevel optimization 51

3.2.3 Solving the linear system . 52

3.3 Iterative Differentiation . 56

3.4 Penalty methods . 57

3.5 Benchmarking bilevel optimization algorithms 57

3.5.1 Presentation . 57

3.5.2 Details on the benchmark . 58

This chapter reviews the standard approaches to solving bilevel optimization problems in the machine
learning community that use gradient information.

3.1 Implicit differentiation

In this section, we consider the singleton lower-level problem presented in subsection 1.2.2:

min
x∈Rdx

Φ(x) ≜ f(x, y∗(x)) s.t. y∗(x) = arg min
y∈Rdy

g(x, y) .

We give conditions on the outer and the inner functions to ensure that the value function Φ is dif-
ferentiable and the main recipes in the bilevel optimizers that leverage the implicit differentiation
technique we present.

41

3.1. Implicit differentiation 42

3.1.1 The Implicit Function Theorem

The implicit function theorem (IFT) (Dontchev and Rockafellar, 2009; Krantz et al., 2013) is a funda-
mental result in analysis that enables the expression of the solution of some parametric equation as
a differentiable function. We will use it later to derive the gradient of the value function in bilevel
optimization.

Theorem 3.1. Let F : Rp × Rd → Rp a continuously differentiable function. Let (u0, v0) ∈ Rp × Rp such
that F (u0, v0) = 0 and the partial Jacobian ∂uF (u0, v0) is invertible. Then, there exists a neighborhood
U of u0 and a neighborhood V of v0 and a continuously differentiable function h : V → U such that for
any v ∈ V , it holds

F (h(v), v) = 0 .

Moreover, the Jacobian of h is given by

dh(v) = − [∂uF (h(v), v)]−1
∂vF (h(v), v) .

In the next section, we see how one can use the IFT to derive the gradient of the value function Φ in
bilevel optimization.

3.1.2 Implicit differentiation and regularity of the value function

Gradient descent presented in Section 2.2 is the workhorse algorithm for differentiable optimization.
The main advantage of first-order algorithms with respect to zero-order algorithms is that their guar-
antees are independent of the problem’s dimension (Nesterov, 2018). However, to use gradient descent
on the value function Φ, we must ensure that the function Φ is differentiable, and we must be able to
compute its gradient efficiently. The value function Φ considered in bilevel optimization is defined
implicitly. Therefore, it is not straightforward that these conditions hold. Indeed, the differentiability
of the outer function f and the inner function g is not sufficient to make the function Φ differentiable,
as shown in Example 3.1.

Example 3.1. Consider the function f and g defined on R2 as

f(x, y) = y and g(x, y) = (y3 − x)2 .

Both f and g are differentiable with respect to (x, y). Moreover, for any x ∈ R, the function g(x, ·) admits
a unique minimizer given by y∗(x) = sign(x)|x| 1

3 . However, the value function Φ given by

Φ(x) = f(x, y∗(x)) = sign(x)|x| 1
3

is not differentiable at x = 0 (see figure 3.1).

Consequently, one needs more assumptions to ensure the differentiability of the value function. This
can be achieved by looking at the optimality condition that should verify y∗(x) for any x ∈ Rdx (Jongen
et al., 1990; Dempe, 1993, 1998). In particular, as stated in Proposition 2.2, when g(x, ·) is convex and
has a unique minimizer, the minimizer y∗(x) is uniquely defined by the solution in y of the equation

∇yg(x, y) = 0 .

The Implicit Function Theorem (Theorem 3.1) enables to express the minimizer y∗(x) as a differen-
tiable function of x, under the condition that ∇yg is differentiable and ∇2

yyg(x, y∗(x)) is invertible for
any x ∈ Rdx . The common assumptions adopted to ensure these conditions are to assume that the
inner function g is twice differentiable and that for any x ∈ Rdx , the function g(x, ·) is µg-strongly
convex (Pedregosa, 2016; Ghadimi and Wang, 2018) for some constant µg > 0.

Proposition 3.1. Assume that the function f is differentiable and that the inner function g is twice
differentiable and µg-strongly convex with respect to y. Then, the value function Φ defined as in Prob-
lem (1.11) is differentiable and its gradient is given by

∇Φ(x) = ∇xf(x, y∗(x)) − ∇xyg(x, y∗(x))
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)) . (3.1)

3.1. Implicit differentiation 43

Figure 3.1: Example of differentiable function g where the function y∗ is well-defined but not differen-
tiable everywhere. Here, we have g(x, y) = (y3 − x)2 and y∗(x) = sign(x)|x| 1

3 . The blue lines are the
level sets of g. The red curve is the graph of y∗. Near to x = 0, the function y∗ has an infinite slope,
making it non-differentiable at 0.

The gradient ∇Φ is often called the hypergradient in the bilevel optimization literature.

Proof. Let x ∈ Rdx . Since the function g(x, ·) is µg-strongly convex, it has a unique minimizer which is
the solution of the equation

∇yg(x, y) = 0 .

The function g is twice differentiable, and by strong convexity, its Hessian matrix ∇2
yyg(x, y∗(x)) is

invertible. By the Implicit Function Theorem, there exists a differentiable function y∗ : Rdx → Rdy

such that for any x ∈ Rdx , it holds

∇yg(x, y∗(x)) = 0 . (3.2)

Therefore, the value function Φ is differentiable as a sum and composition of differentiable functions.
Then, the chain rule yields

∇Φ(x) = ∇xf(x, y∗(x)) + dy∗(x)⊤∇yf(x, y∗(x)) (3.3)

where dy∗(x) denotes the Jacobian matrix of y∗. Differentiating Equation (3.2) with respect to x gives

∇yxg(x, y∗(x)) + ∇2
yyg(x, y∗(x))dy∗(x) = 0 .

This yields the following expression for the Jacobian of y∗

dy∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yxg(x, y∗(x)) . (3.4)

Then, plugging Equation (3.4) into Equation (3.3) provides the result.

For convenience, we denote v∗(x) the quantity v∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)), so that

∇Φ(x) = ∇xf(x, y∗(x)) + ∇xyg(x, y∗(x))v∗(x) .

Previously, we saw that getting descent guarantees with the gradient descent algorithm requires en-
suring the gradient of the value function Φ is Lipschitz continuous. It is possible to have this property
by adding to the assumptions of Proposition 3.1, the Lipschitz continuity of the outer function f and
the Lipschitz continuity of the Hessian of the inner function g, as proved by Ghadimi and Wang (2018).

Proposition 3.2 (Ghadimi and Wang (2018, Lemma 2.2)). Assume that the outer function f is Lf,1-
smooth, Lf,0-Lipschitz continuous and that the inner function g is Lg,1-smooth and its Hessian is Lg,2-
Lipschitz continuous. Moreover, assume that for any x ∈ Rdx , the function g(x, ·) is µg-strongly convex.
Then, the gradient of the value function Φ is LΦ-Lipschitz continuous with

LΦ = Lf,1 +
2Lf,1Lg,2 + L2

f,0Lg,2

µg
+ 2Lf,0Lg,1Lg,2 + Lf,1(Lg,1)2

µ2
g

+ Lf,0(Lg,1)2Lg,2
µ3
g

.

3.1. Implicit differentiation 44

Remark. The condition on the Lipschitz continuity of the outer function can be relaxed by a slightly
weaker assumption, which consists of assuming the existence of a constant C > 0 such that for any
x ∈ Rdx we have

∥∇f(x, y∗(x))∥ ≤ C .

For the remainder of this section, we assume the following conditions, which are sufficient for the
smoothness of the value function Φ.

Assumption 3.1. The outer function f is differentiable, Lf,0-Lipschitz continuous and Lf,1-smooth.

Assumption 3.2. The inner function g is twice differentiable, Lg,1-smooth, and its second order deriva-
tive is Lg,2-Lipschitz continuous. Moreover, for any x ∈ Rdx , the function g(x, .) is µg-strongly convex.

For instance, the strong convexity of the inner function g holds when g is the Ridge regression loss
or the ℓ2-regularized logistic regression loss with non-separable data. Although the uniformity of the
strong convexity modulus µg for all x ∈ Rdx is very restrictive, it is a common assumption in the bilevel
literature (Ji et al., 2021; Grazzi et al., 2020).

One limitation of implicit differentiation is that it requires the strong convexity of the inner function,
which is very restrictive. In practical applications involving neural networks, for instance, the inner
function can be non-convex. Petrulionyte et al. (2024) propose to circumvent this non-convexity by
replacing the inner problem it with an infinite-dimensional problem. Specifically, in machine learn-
ing, the inner function often takes the form

g(x, y) = L(x, hy)

where (hy)y∈Rdy is a parametric family of functions (e.g. a neural network parametrized by its weights).
Often, the non-convexity of the problem comes from the parametrization, meaning that function
L(x, ·) is convex in many cases. Thus, the idea of Petrulionyte et al. (2024) is to replace the minimiza-
tion of gwith respect to y by the minimization of the functional L(x, ·) in functional space and demon-
strate a functional variant of the implicit function theorem that enables to get the Frechet derivative
of h∗(x) = arg minh L(x, h).

In other machine learning applications, the inner function is nonsmooth. This is the case, for instance,
when using nonsmooth regularization to enforce some sparsity pattern to the inner problem, as in
Lasso regression (Tibshirani, 1996). Bolte et al. (2021) provide a nonsmooth adaptation of the implicit
function theorem for functions that are path differentiable (Bolte and Pauwels, 2020). Grazzi et al.
(2024) extended these by providing convergence rates for algorithms leveraging nonsmooth implicit
differentiation. Another line of work (Bertrand et al., 2020, 2022) proposes to differentiate optimality
conditions for composite inner functions.

In the remainder of the thesis, we focus on cases where the inner function is smooth. The next sub-
section provides details of the practical use of implicit differentiation to solve bilevel problems.

3.1.3 Approximate Implicit Differentiation (AID)

The gradient expression given in Equation (3.1) presents two computational bottlenecks: it requires
the resolution of the inner problem to get y∗(x) and the resolution of a linear system to get v∗(x).
When the inner problem is ill-conditioned, this can be dramatically costly. In its seminal work, Pe-
dregosa (2016) lays the first bricks to Approximate Implicit Differentiation (AID), opening the doors to
many algorithms for gradient-based bilevel optimization. The idea is the following: instead of com-
puting the gradient ∇Φ(x) exactly by solving the two subproblems, one can replace y∗(x) and v∗(x) in
Equation (3.1) by approximations y and v. This leads us to consider the approximate hypergradient

∇̄Φ(x; y, v) = ∇xf(x, y) + ∇2
xyg(x, y)v . (3.5)

3.1. Implicit differentiation 45

Algorithm 4 General AID-based algorithm

Input: initializations x0 ∈ Rdx , y0 ∈ Rdy , v0 ∈ Rdy , number of iterations T
for t = 0, . . . , T − 1 do

Get an approximation yt+1 of y∗(xt)
Get an approximation vt+1 of the solution of the linear system

∇2
yyg(xt, yt+1)v = −∇yf(xt, yt+1)

Update x following the opposite direction of the approximate gradient

xt+1 = xt − γ∇Φ(xt; yt+1, vt+1)

end for

This approximate hypergradient is consistent with the exact hypergradient since we have

∇̄Φ(x; y∗(x), v∗(x)) = ∇Φ(x) .

The approximations y and v are the outputs of iterative algorithms that approximately solve the inner
problem and the linear system. Running gradient descent with the approximate gradient ∇̄Φ(x; y, v)
yields the AID-based algorithms, whose general form is given in Algorithm 4. At iteration t, AID-based
algorithm computes yt+1, an approximation of y∗(xt). Then, one needs an approximation of v∗(xt).
However, since we do not have y∗(xt), we rather approximate

−∇2
yyg(xt, yt+1)∇yf(xt, yt+1) .

We thus denote v̂(x; y) ≜ −∇2
yyg(x, y)∇yf(x, y), so that v̂(x; y∗(x)) = v∗(x).

Pedregosa (2016) proposes an instantiation of Algorithm 4 which consists in solving at iteration t the
subproblems with a precision ϵt, for a given tolerance sequence (ϵt)t≥0. He shows that if the decrease
of the sequence (ϵt)t≥0 is sufficient, the gradient norms (∥∇Φ(xt)∥)t≥0 converge towards zero.

Theorem 3.2 (Pedregosa (2016, Theorem 2)). Assume that f has Lipschitz gradients, g is strongly convex
with respect to y, and has Lipschitz gradients and Hessian. If the tolerance sequence (ϵt)t≥0 verifies

+∞∑
t=0

ϵt < +∞

then we have
lim

t→+∞
∥∇Φ(xt)∥ = 0 .

This first theoretical result provides a sufficient condition for converging with an AID method. How-
ever, it is an asymptotic result that does not give any convergence speed. The first non-asymptotic
convergence result for AID-based algorithms is due to Ghadimi and Wang (2018).

It is interesting to see how the gradient error influences the descent property of the AID-based algo-
rithms. This is done in Lemma 3.1 by leveraging the smoothness of the value function Φ.

Lemma 3.1. Assume that Assumptions 3.1 and 3.2 hold. Let (yt, vt, xt)t≥0 a sequence of iterates pro-
duced by Algorithm 4. Then, we have the following descent property

Φ(xt+1) ≤ Φ(xt) − γ

2 ∥∇Φ(xt)∥2 − γ

2 (1 − LΦγ) ∥∇̄Φ(xt; yt+1, vt+1)∥2

+ γ

2 ∥∇Φ(xt) − ∇̄Φ(xt; yt+1, vt+1)∥2

(3.6)

3.1. Implicit differentiation 46

Proof. Using the smoothness of the value function Φ in Proposition 3.2, we have the following inequal-
ity for any x, x′ ∈ Rdx

Φ(x′) ≤ Φ(x) + ⟨∇Φ(x), x′ − x⟩ + LΦ

2 ∥x′ − x∥2 .

Using the previous inequality with x = xt and x′ = xt+1 and the relation

xt+1 − xt = −γ∇̄Φ(xt; yt+1, vt+1)

we have

Φ(xt+1) ≤ Φ(xt) − γ⟨∇Φ(xt), ∇̄Φ(xt; yt+1, vt+1⟩ + γ2LΦ

2 ∥∇̄Φ(xt; yt+1, vt+1)∥2 .

For any a, b ∈ Rdx , we have ⟨a, b⟩ = 1
2 (∥a∥2 + ∥b∥2 − ∥a − b∥2). Applying this relation and rearranging

yields

Φ(xt+1) ≤ Φ(xt) − γ

2 ∥∇Φ(xt)∥2 − γ

2 (1 − LΦγ) ∥∇̄Φ(xt; yt+1, vt+1)∥2

+ γ

2 ∥∇Φ(xt) − ∇̄Φ(xt; yt+1, vt+1)∥2

In the case where yt+1 = y∗(xt), vt+1 = v∗(xt) and γ ≤ 1
LΦ

, we recover the usual descent lemma for
gradient descent for smooth functions (Lemma 2.1). Moreover, one might note that the approximation
error term γ

2 ∥∇Φ(xt) − ∇̄Φ(xt; yt+1, vt+1)∥2 slows down the descent. In other words, the better the
approximation of the hypergradient, the steepest the descent. One can bound this approximation
error by the error on y and v.

Lemma 3.2. Assume that Assumptions 3.1 and 3.2. For x ∈ Rdx , and y, v ∈ Rdy , we have

∥∇Φ(x) − ∇̄Φ(x; y, v)∥ ≤ L̄(∥y − y∗(x)∥ + ∥v − v∗(x)∥) .

As a consequence, the Equation (3.6) can be rewritten as

Φ(xt+1) ≤ Φ(xt) − γ

2 ∥∇Φ(xt)∥2 − γ

2 (1 − LΦγ) ∥∇̄Φ(xt; yt+1, vt+1)∥2

+ γ2L̄2

2
(
∥yt+1 − y∗(xt)∥2 + ∥vt+1 − v∗(xt)∥2)

(3.7)

Proof. Let (y, v, x) ∈ Rdy × Rdy × Rdx . We start by writing

∥∇̄Φ(x; y, v) − ∇Φ(x)∥ ≤ ∥∇xf(x, y) − ∇xf(x, y∗(x))∥ + ∥∇2
xyg(x, y)v − ∇2

xyg(x, y∗(x))v∗(x)∥
≤ ∥∇xf(x, y) − ∇xf(x, y∗(x))∥ + ∥∇2

xyg(x, y)∥∥v − v∗(x)∥
+ ∥v∗(x)∥∥∇2

xyg(x, y) − ∇2
xyg(x, y∗(x))∥ .

We bound the first term using the Lf,1-Lipschitz continuity ∇xf . For the second term, we use the
boundedness of ∇2

xyg thanks to the Lipschitz continuity of ∇yg(· , y). For the third term, we use that
∇2
xyg(x, ·) is Lg,2-Lipschitz continuous. We finally get

∥∇̄Φ(x; y, v) − ∇Φ(x)∥ ≤ Lf,1∥y − y∗(x)∥ + Lg,1∥v − v∗(x)∥ + Lf,0Lg,2
µg

∥v − v∗(x)∥

≤
(
Lf,1 + Lf,0Lg,2

µg

)
∥y − y∗(x)∥ + Lg,1∥v − v∗(x)∥ .

Taking L̄ =
√

2 max
(
Lf,1 + Lf,0Lg,2

µG
, Lg,1

)
yields

∥∇̄Φ(x; y, v) − ∇Φ(x)∥2 ≤ L̄2(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2) . (3.8)

3.1. Implicit differentiation 47

The combination of Lemma 3.1 and Lemma 3.2 suggests that the efficiency of AID-based algorithms
depends on the quality of the approximations of y∗(x) and v∗(x) we use. However, getting better ap-
proximations of y∗(x) and v∗(x) demands more computations leading to heavier outer iterations. As
a consequence, there is a trade-off between the convergence speed in terms of number of outer itera-
tions and the computational cost of each outer iteration.

Besides being able to develop gradient-based methods, having the function Φ differentiable enables a
criterion to compare the theoretical performances of the bilevel solvers. In the bilevel literature, the
criterion given by Definition 3.1 is often used.

Definition 3.1. Let (xt)0≤t≤T−1 the iterates of an algorithm. We say that we have found an ϵ-stationary
point if

1
T

T−1∑
t=1

E[∥∇Φ(xt)∥2] ≤ ϵ

where the expectation is taken with respect to the possible randomness of the algorithm producing
the sequence (xt)0≤t≤T−1.

In the next subsection, we review some of the main strategies deployed to approximate y∗(xt) and
v∗(xt).

3.1.4 Practical computation of the approximate hypergradient

Resolution of the inner problem. Since the inner function is assumed to be strongly convex, one
can approximate efficiently the solution of the inner problem by performing several steps of a linearly
convergent optimization algorithm. The solver most widely used in the bilevel literature is the gradient
descent presented in Chapter 2 (Ghadimi and Wang, 2018; Ji et al., 2021). Ghadimi and Wang (2018),Ji
and Liang (2023) and Chen et al. (2023b) propose to use gradient descent with Nesterov acceleration
(Nesterov, 1983), that enjoy a faster convergence speed on strongly convex functions. Pedregosa (2016)
proposes to use L-BFGS (Liu and Nocedal, 1989), a quasi-Newton method for the inner problem.

Resolution of the linear system. The hypergradient given in Equation (3.1) involved a linear sys-
tem driven by the Hessian matrix of the inner function g. In the literature, several authors (Pedregosa,
2016; Grazzi et al., 2020) propose to perform several steps of Conjugate Gradient algorithm (Hestenes
and Stiefel, 1952; Nocedal and Wright, 2006) to approximate the solution of the linear system. In Ramzi
et al. (2022), the authors propose an efficient method to approximate the hypergradient Equation (3.1)
when the inner problem is solved by a quasi-Newton method (Liu and Nocedal, 1989; Broyden, 1965).
Indeed, as the quasi-Newton techniques rely on an approximation of the inverse Hessian of the func-
tion we want to minimize, the authors propose to reuse the quasi-Newton matrices of the forward pass
for the approximation of the solution of the linear system. Other authors, such as Grazzi et al. (2020) or
Arbel and Mairal (2022a), cast the linear system as the minimization of the following quadratic func-
tion

v 7→ 1
2v

⊤∇2
yyg(x, y)v + ∇yf(x, y)⊤v

and apply gradient descent steps to it. This is justified by the Hessian matrix ∇2
yyg(x, y) being sym-

metric positive definite since g(x, ·) is strongly convex.

Choosing which solver to use for each subproblem is not the only question. Whether for the resolution
of the inner problem or the resolution of the linear system, one has to select the initialization of each
sub-procedure. In the next section, we present the two main strategies for this initialization: the cold-
start and the warm-start strategies.

3.1.5 Initialization of the sub-procedures

An important question when designing AID-based algorithms is the choice of the initialization of the
two sub-procedures that approximate y∗(x) and v∗(x). There are two main strategies: the cold-start

3.1. Implicit differentiation 48

and the warm-start strategies. Both methods yield different computational complexities (Arbel and
Mairal, 2022a; Ji et al., 2021) but also different implicit biases in overparametrized cases (Vicol et al.,
2022). In what follows, we focus on the computational aspects of the choice of initialization.

For this subsection, we denote for k ∈ N Ak(y;x) the kth-iterate of an iterative algorithm that ap-
proximates y∗(x), starting from y ∈ Rdy . Similarly, we denote Bq(v; y, x) the qth-iterate of an iterative
algorithm that approximates v̂(x; y), starting from v ∈ Rdy .

Cold-start strategy

The cold-start strategy uses the same initialization for the subproblems at each outer iteration. In
other words, for y0, v0 ∈ Rdy , we take at iteration t

yt+1 = Akt(y0;xt), vt+1 = Bqt(v0; yt+1, xt) .

In Ghadimi and Wang (2018), the authors propose the algorithm BA, an instantiation of Algorithm 4
where the inner problem is solved by gradient steps and cold started. The linear system is assumed
to be solved exactly. They show that under Assumption 3.1 and Assumption 3.2 and by furthermore
assuming that supx∈Rdx ∥y0 − y∗(x)∥ is finite, the iterates of the BA algorithm converge if we choose a
number of inner steps kt = Θ(4

√
t+ 1). This growing number of inner iterations with the outer itera-

tions is mandatory to reduce the hypergradient gradient approximation error.

In Grazzi et al. (2023), the authors show that with the cold-start strategy, an instantiation of Algo-
rithm 4 where gradient descent is used for the inner and the linear system solvers, one can recover the
convergence speed of gradient descent for non-convex single-level problems. This is proved under
the same assumptions as for the BA algorithm. To do so, they assume the number of iterations of both
subprocedures verifies kt = qt = Θ(log(t)). Once again, the theory suggests a growing number of inner
iterations with the outer iterations.

To illustrate the behavior of bilevel optimizers with cold-started subproblem solvers, we consider the
following synthetic problem where the inner and the outer functions are quadratics

f(x, y) = 1
2x

⊤Af,xx+ b⊤
f,xx+ 1

2y
⊤Af,yy + b⊤

f,yy + x⊤Bfy

g(x, y) = 1
2x

⊤Ag,xx+ b⊤
g,xx+ 1

2y
⊤Ag,yy + b⊤

g,yy + x⊤Bgy

(3.9)

(3.10)

with Af,x, Ag,x ∈ R10×10, bf,x, bg,x ∈ R10, Af,y, Ag,y ∈ R100×100, bf,y, bg,y ∈ R100, Bf , Bg ∈ R10×100. We
run the Algorithm 4 with the inner solver (gradient descent) cold started at each iteration for differ-
ent values of number of inner steps. The linear system is solved exactly with the conjugate gradient
algorithm (which is still doable at this scale). We report in figure 3.2 the gradient norm of the value
function with respect to wall-clock time. We observe that in all the cases, the gradient norm reaches
a plateau. Moreover, the higher the number of inner steps, the lower the plateau. But, can also notice
that the computing time increases with the number of inner steps, which is expected.

Warm-start strategy

The warm-starting strategy consists of initializing each subproblem with the approximate solutions
used in the previous outer iteration. Formally, this means that we take

yt+1 = Akt
(yt;xt), vt+1 = Bqt

(vt; yt+1, xt) .

This strategy was first proposed by Ji et al. (2021) with the AID-BiO algorithm, where the inner solution
is approached by gradient descent steps, and the solution of the linear system is approximated by the
conjugate gradient algorithm. The authors show that under Assumption 3.1 and Assumption 3.2, the
complexity of AID-BiO to find an ϵ-stationary point of Φ is O(ϵ−1). Notably, this result assumes a fixed

3.2. Stochastic Approximate Implicit Differentiation 49

100

101

102

103

N
u

m
b

er
of

in
n

er
step

s

0 200 400

Time [sec]

10−11

10−9

10−7

10−5

10−3

10−1

101

‖∇
Φ

(x
t)
‖2

Figure 3.2: Gradient norm of the value function with respect to wall-clock time when the outer and
the inner functions are quadratics. On the one hand, the more inner steps at each outer iteration,
the lower the plateau of the gradient norm. On the other hand, the more inner steps, the higher the
computing time.

number of steps of the inner problem and the linear system solvers. Also, it does not require to assume
that supx∈Rdx ∥y0 − y∗(x)∥ is finite. In this paper, they also introduce the warm-starting strategy for
stochastic AID-based algorithms with stocBiO. However, only the inner solver is warm-started. Arbel
and Mairal (2022a) built upon by proposing AmIGO, the first stochastic AID-based algorithm in which
the inner and the linear system solvers are cold started. A more in-depth presentation of stochastic
AID-based algorithms is presented in Section 3.2.

Finally, the warm-start strategy presents a drawback: it requires storing the last iterates of the two
subprocedures. This memory burden prevents this technique from being used in multi-block scenar-
ios like the deep equilibrium models’ training because it would require storing one inner variable per
sample.

To understand how the initialization strategy influences the convergence of the bilevel algorithms, we
run an instantiation of Algorithm 4 where at each iteration, 10 steps of gradient descent on the inner
problem and on the linear system are performed. We consider the quadratic setting of Equation (3.9)
and Equation (3.10). We do four runs depending we warm-start or cold start-each each subsolver.
We report in figure 3.3 the gradient norm of the value function with respect to wall-clock time. The
observation we make is that warm-starting both subsolvers enables the convergence of the gradient
norm towards zero. Otherwise, the gradient norm reaches a plateau.

So far, we have focused on deterministic algorithms that implement approximate implicit differenti-
ation. In many machine learning scenarios, these algorithms do not scale with the sample size of the
considered problem. This has motivated the development of stochastic algorithms for bilevel opti-
mization, which we present in the next section.

3.2 Stochastic Approximate Implicit Differentiation

In many machine learning applications like those presented in Section 1.3, the inner function and/or
the outer function take the form of an expectation over distributions Pg and Pf respectively

f(x, y) = Eξ∼Pf
[f(x, y; ξ)] and g(x, y) = Eζ∼Pg

[g(x, y; ζ)] . (3.11)

3.2. Stochastic Approximate Implicit Differentiation 50

0 20 40 60 80 100

Time [sec]

10−14

10−11

10−8

10−5

10−2

101

‖∇
Φ

(x
t)
‖2

WS inner: True, WS linear system: True

WS inner: False, WS linear system: True

WS inner: True, WS linear system: False

WS inner: False, WS linear system: False

Figure 3.3: Gradient norm of the value function in function with respect to wall-clock time. Solid lines
correspond to runs with warm-started inner problems while dashed lines correspond to runs with
cold-started inner problems. Blue lines correspond to runs with warm-started linear system resolution
while orange lines correspond to runs with cold-started linear system resolution. In the legend, "WS"
means "warm-start"

A classical special case of this setting is the empirical risk minimization problem, where the functions
f and g are empirical means over samples:

f(x, y) = 1
m

m∑
j=1

fj(x, y) and g(x, y) = 1
n

n∑
i=1

gi(x, y) . (3.12)

It corresponds to the case where ξ and ζ are uniform random variables over [m] and [n] respectively. For
instance, in the hyperparameter optimization problem, the outer function f is the average of the loss
over the validation sample, and the inner function g is the average of the loss over the training sample.
For convenience, for two batches of realizations of ξ and ζ Bf = {ξ, . . . , ξb} and Bg = {ζ1, . . . , ζb}, we
denote

fBf
(x, y) = 1

b

b∑
j=1

f(x, y; ξj) and gBg (x, y) = 1
b

b∑
i=1

gi(x, y; ζi) . (3.13)

In single-level optimization, classical stochastic algorithms such as SGD rely on an unbiased estima-
tion of the gradient of the objective function. In the bilevel case, the gradient of the value function Φ
is given by Equation (3.1). Notably, it involves the inverse Hessian-vector product (iHVP) v∗(x) which
uses the inverse of the Hessian matrix of the inner function g. This matrix inversion challenges the
design of an unbiased estimator of the hypergradient since in particular, we have

Eζ∼Pg

[
∇2
yyg(x, y; ζ)−1] ̸=

[
Eζ∼Pg

[
∇2
yyg(x, y; ζ)

]]−1
.

However, many works have proposed different ways to handle stochasticity, notably by using stochas-
tic algorithms for the two subprocedures, leading to different performances. In addition to the reg-
ularity Assumptions 3.1 and 3.2, these works assume the unbiasedness and the bounded variance of
the different stochastic derivatives (Ghadimi and Wang, 2018; Chen et al., 2021)

Assumption 3.3. The stochastic derivatives ∇xf(x, y; ξ), ∇yf(x, y; ξ), ∇yg(x, y; ζ), ∇2
yyg(x, y; ζ) and

∇2
xyg(x, y; ζ) are respectively unbiased estimators of ∇xf(x, y), ∇yf(x, y), ∇yg(x, y), ∇2

yyg(x, y) and

3.2. Stochastic Approximate Implicit Differentiation 51

∇2
xyg(x, y). Moreover, there exist σf and σg such that

Eξ∼Pf
[∥∇xf(x, y; ξ) − ∇xf(x, y)∥2] ≤ σ2

f

Eξ∼Pf
[∥∇yf(x, y; ξ) − ∇yf(x, y)∥2] ≤ σ2

f

Eζ∼Pg
[∥∇yg(x, y; ζ) − ∇yg(x, y)∥2] ≤ σ2

g

Eζ∼Pg
[∥∇2

yyg(x, y; ζ) − ∇yg(x, y)∥2] ≤ σ2
g

Eζ∼Pg [∥∇2
xyg(x, y; ζ) − ∇yg(x, y)∥2] ≤ σ2

g .

In some papers (Ji et al., 2021; Yang et al., 2021), the regularity assumptions on the outer function (As-
sumption 3.1) and on the inner function (Assumption 3.2) are assumed to hold on the stochastic ora-
cles, which is a bit stronger.

Assumption 3.4. The function f(· , · ; ξ) is differentiable, Lf,0-Lipschitz continuous and Lf,1-smooth.

Assumption 3.5. The function g(· , · ; ζ) is twice differentiable, Lg,1-smooth, and its second order deri-
vative is Lg,2-Lipschitz continuous. Moreover, for any x ∈ Rdx , the function g(x, .; ζ) is µg-strongly con-
vex.

In the next subsections, we review the methods that are used in the stochastic AID-based bilevel
solvers to approximate y∗(xt) and v∗(xt) in a stochastic fashion and present the guarantees we get
for those methods.

3.2.1 Two-loop versus one-loop algorithms

Analogously to the deterministic case, the common strategy to approximate the inner solution is to
run one or several steps of a stochastic optimization algorithm. Thus, the first stochastic AID-based
algorithm is the Bilevel Stochastic Algorithm (BSA) (Ghadimi and Wang, 2018) where the solution of
the inner problem is approximated by several SGD steps. Since the solver is cold-started, the anal-
ysis of BSA assumes a number of inner steps equal to ⌈

√
t+ 1⌉ where t is the current outer iteration

number. Subsequent works (Ji et al., 2021; Arbel and Mairal, 2022a; Chen et al., 2021) also use SGD for
the inner problem but with warm-start, which enables to keep the number of inner steps fixed on the
order of the inner conditioning, that Lg,1

µg
≥ 1.

In Hong et al. (2023), the authors propose a novel paradigm, where only a single step is performed
for the inner problem. The practical advantage of this is that the practitioners do not need to tune
the number of inner steps. However, the analysis of their method, named Two-Time Scale Algorithm
(TTSA), assumes an inner step size in Θ(T− 3

5) and an outer step size in Θ(T− 2
5). In other words, for

large horizons, the progress of the inner variable is much faster than the progress of the outer variable.
This lead to complexity in Õ(ϵ− 5

2) (here the tilde on the O notation indicates a hidden log(ϵ−1) factor),
which is far from the complexity of SGD for non-convex problems, which is in O(ϵ−2). Chen et al.
(2022b) propose STABLE, a single-loop algorithm where the inner variable y is updated as follows

yt+1 = yt − ρ∇g(xt, yt; ζt) − [Ht
yy]−1Ht

yx(xt+1 − xt)

where Ht
yy and Ht

yx are stochastic estimators of ∇2
yyg(xt, yt) and ∇2

yxg(xt, yt) respectively. This dy-
namic motivated by an ODE analysis allows to get a complexity in O(ϵ−2), but the computational cost
of the product [Ht

yy]−1Ht
yx makes this algorithm impractical.

3.2.2 Variance reduction in bilevel optimization

Beyond the distinction between single-loop and two-loop algorithms, some papers propose to accel-
erate the problem resolution by implementing variance reduction techniques, either on the inner up-
date or in the outer update. For instance, Yang et al. (2021) and Khanduri et al. (2021) propose to adapt
the momentum-based variance reduction of the STORM algorithm (Cutkosky and Orabona, 2019).

3.2. Stochastic Approximate Implicit Differentiation 52

This technique works as follows. Assume that w is the variable we want to update (w can be either the
inner variable y, the linear system variable v, or the outer variable x) in a direction F (w) = Eζ [F (w; ζ)]
(F can be the inner gradient for instance). Then the STORM update rule reads

wt+1 = wt − ρtdt

where ρt is the step size and dt verifies the following recursion

dt = F (wt; ζt) + (1 − β)(dt−1 − F (wt−1; ζt))

with β ∈ (0, 1) a momentum parameter and ζt ∼ Pg. Note that dt is actually a biased estimate of
F (wt; ζt) since

Eζt
[dt] = F (wt) + (1 − β)(dt−1 − F (wt−1)) ̸= F (wt) .

By implementing this variance reduction technique for the inner and the outer variables updates, Yang
et al. (2021) and Khanduri et al. (2021) prove that their respective algorithms MRBO and SUSTAIN
achieve a complexity in Õ(ϵ− 2

3).

Yang et al. (2021) also propose to use another variance reduction technique called SPIDER (Fang et al.,
2018), or also knows as SARAH (Nguyen et al., 2017). As STORM, this technique is based on a recursive
estimation of the update direction. However, the estimate direction is reset periodically, leading to a
two-loop algorithm. At iteration t, the estimate direction dt,0 is initialized by a full-batch (in case of
finite sums) computation or a large batch estimate of F (wt,0). Then, in an inner loop, the estimate
direction is updated as follows

dt,k+1 = dt,k + (F (wt,k; ζt,k) − F (wt,k−1; ζt,k))

and the variable w is updated as
wt,k+1 = wt,k − ρt,kdt,k .

This method also achieves a complexity in O(ϵ− 2
3).

In what follows, we explain how the iHVP is approximated in the stochastic AID-based algorithms.

3.2.3 Solving the linear system

As mentioned earlier, the hypergradient given in Equation (3.1) involves the following linear system

Eζ∼Pg

[
∇2
yyg(x, y; ζ)

]
v = −Eξ∼Pf

[∇yf(x, y; ξ)] .

In the stochastic AID-based literature, mainly two methods have been proposed to estimate the solu-
tion of this linear system: one based on Neumann approximations and another based on the reformu-
lation of the linear system resolution as a stochastic optimization problem.

Neumann approximations. A common technique to estimate the iHVP is to leverage the identity

A−1 =
+∞∑
k=0

(I −A)k

that holds for any square matrix A such that ∥A∥ < 1. Thus, for any y ∈ Rdy and x ∈ Rdx , we can
express the iHVP ∇2

yyg(x, y)−1∇f(x, y) as

∇2
yyg(x, y)−1∇f(x, y) = η

[+∞∑
k=0

(I − 1
η

∇2
yyg(x, y))k

]
∇f(x, y)

where η > 0 is a constant such that η > ∥∇2
yyg(x, y)∥.

For a given k > 0, the term (I − 1
η∇2

yyg(x, y))k can be estimated by
∏k−1
i=0 [I − 1

η∇2
yyg(x, y; ζi)] where

ζ1, . . . , ζk−1 are drawn from Pg.

3.2. Stochastic Approximate Implicit Differentiation 53

In the context of bilevel optimization, this technique was first proposed by Ghadimi and Wang (2018)
who suggest the following approximation of

[
∇2
yyg(x, y)

]−1
for i.i.d. samples ζ1, . . . , ζb drawn from Pg:

Hhia = ηQ

p∏
q=1

[I − η∇2
yyg(x, y; ζq)] (3.14)

where η ∈
(

0, 1
Lg,1

)
, Q ∈ N and p is a random variable uniformly distributed in {0, . . . , Q − 1}. This

estimation comes with the guarantee in Proposition 3.3.

Proposition 3.3 (Ghadimi and Wang (2018, Lemma 3.2)). Assume that Assumption 3.2 and Assump-
tion 3.3 hold. Let Hhia defined in Equation (3.14). Then by taking η ≤ 1

Lg,1
, it holds

∥
[
∇2
yyg(x, y)

]−1 − E[Hhia]∥ ≤ 1
µg

(1 − µgη)Q

E[∥
[
∇2
yyg(x, y)

]−1 −Hhia∥] ≤ 2
µg

where the expectation is taken with respect to p and the random indices i1, . . . , ip.

Proposition 3.3 shows that the bias of Hhia decreases linearly with Q. The estimate’s variance is boun-
ded, but the analysis does not take into account any batch size, preventing a fine control of this vari-
ance.

Ji et al. (2021) proposes with the algorithm stocBiO a modification of Equation (3.14) which involves
matrix-vector multiplications rather than matrix-matrix multiplications and that aims at estimating[
∇2
yyg(x, y)

]−1 ∇f(x, y). Let B1, . . . ,BQ be Q batches of samples drawn from Pg and Bf a batch of
samples drawn from Pf . The authors propose the following estimator

vshia = η

Q−1∑
q=−1

Q∏
s=Q−q

[I − η∇2
yygBs(x, y)]∇yfBf

(x, y) (3.15)

where η ∈
(

0, 1
Lg,1

)
and Q ∈ N. The estimator vshia comes with the following guarantees:

Proposition 3.4 (Ji et al. (2021, Proposition 3)). Suppose that Assumptions 3.3 to 3.5 hold. Let η ≤ 1
Lg,1

and choose the batch size |BQ+1−q| = BQ(1 − ηµg)q−1 for q ∈ [Q], whereB ≥ 1
Q(1−ηµg)Q−1 . Then it holds

∥E[vshia] − v̂(x; y)∥2 ≤ 1
µg

(1 − ηµg)Q+1Lf,0

E[∥vshia − v̂(x; y)∥2] ≤ 4η2

µ2
gLg,1L

2
f,0

1
B

+
4(1 − ηµg)2Q+2L2

f,0

µ2
g

+
2L2

f,0

µ2
g|Bf |

.

On the one hand, as for Proposition 3.3, Proposition 3.4 shows a linear decrease of the bias with respect
to Q. On the other hand, the variance of vshia is upper bounded by a term that decreases linearly with
Q, a term that decreases sublinearly with B, and another that decreases sublinearly with the batch
size |Bf |. Consequently, to determine the complexity of stocBiO, the authors assumed batch sizes in
O(ϵ−1) to effectively mitigate the variance terms in their final result.

It is important to note that these Neumann approximation-based estimators are inherently cold-star-
ted, meaning we cannot reuse the estimator from the previous outer iteration. Consequently, algo-
rithms employing Neumann approximations must set Q = Θ(log(ϵ−1)) to reach an ϵ-stationary so-
lution (see Definition 3.1). In contrast, the following approach, which is based on the optimization
formulation of the inverse Hessian-vector product (iHVP) computation, does not have this limitation.

3.2. Stochastic Approximate Implicit Differentiation 54

Stochastic Gradient Descent. Since the g is assumed to be µg-strongly convex, for fixed x ∈ Rdx

and y ∈ Rdy , the Hessian matrix ∇2
yyg(x, y) is symmetric positive definite. As a consequence, the iHVP

v̂(x; y) can be cast as the minimization of a quadratic form

v 7→ 1
2v

⊤∇2
yyg(x, y)v + v⊤∇yf(x, y) .

This enables the use of classical optimization algorithms to solve the linear system. In particular,
Arbel and Mairal (2022a) use this formulation to warm-start the linear system solver, removing by
the way the additional factor log(ϵ−1) usually present in the complexity of solvers that use Neumann
iterations (Ji et al., 2021; Chen et al., 2021). By doing so, Arbel and Mairal (2022a) manage to get a
complexity in O(ϵ2), matching, by the way, the complexity of the stochastic gradient descent for non-
convex single-level problems. This technique was also implemented in a one-loop fashion by Li et al.
(2022) who propose to perform only one stochastic gradient step in the linear system.

Grazzi et al. (2023) also propose performing stochastic gradient steps to solve the linear system, ini-
tializing the solver from scratch at each iteration. Consequently, their analysis assume a number a
linear system resolution steps in Θ(t) where t is the current outer iteration.

We have seen so far that stochastic AID-based algorithms are the result of mixing some ingredients: the
choice of the inner solver, the choice of the linear system solver, the use or not of variance reduction
techniques, the use of warm-start or not... In Table 3.1, we provide a comprehensive comparison of
stochastic AID-based algorithms.

3.2. Stochastic Approximate Implicit Differentiation 55

M
et

h
o

d
iH

V
P

In
n

er
lo

o
p

LR
in

n
er

LR
o

u
te

r
B

S
W

S
In

n
er

W
S

iH
V

P
N

u
m

b
er

st
ep

s
in

n
er

N
u

m
b

er
st

ep
s

iH
V

P
C

o
m

p
le

xi
ty

B
SA

(G
h

ad
im

ia
n

d
W

an
g,

20
18

)
H

IA
SG

D
O

(k
−

1
)

O
(T

−
1 2

)
Θ

(1
)

✗
✗

Θ
(4√

t)
Θ

(lo
g(

t)
)

O
(ϵ

−
3
)

st
o

cB
iO

(J
ie

ta
l.,

20
21

)
SH

IA
SG

D
1

1
Θ

(ϵ
−

1
)

✓
✗

Θ
(1

)
Θ

(lo
g(

T
))

Õ
(ϵ

−
2
)

V
R

B
O

(Y
an

g
et

al
.,

20
21

)
SH

IA
SP

ID
E

R
1

1
Θ

(1
)

✓
✗

Θ
(1

)
Θ

(lo
g(

T
))

Õ
(ϵ

−
3 2

)

A
m

IG
O

(A
rb

el
an

d
M

ai
ra

l,
20

22
a)

SG
D

SG
D

1
1

Θ
(ϵ

−
1
)

✓
✓

Θ
(1

)
Θ

(1
)

O
(ϵ

−
2
)

A
LS

E
T

(C
h

en
et

al
.,

20
21

)
H

IA
SG

D
O

(T
−

1 2
)

O
(T

−
1 2

)
Θ

(1
)

✓
✗

Θ
(1

)
Θ

(lo
g(

T
))

Õ
(ϵ

−
2
)

B
G

SM
(G

ra
zz

ie
ta

l.,
20

23
)

SG
D

SG
D

O
(T

−
1 2

)
O

(T
−

1 2
)

Θ
(1

)
✗

✗
Θ

(t
)

O
(t

)
Õ

(ϵ
−

2
)

T
T

SA
(H

o
n

g
et

al
.,

20
23

)
H

IA
SG

D
O

(T
−

2 5
)

O
(T

−
3 5

)
Θ

(1
)

✓
✗

1
Θ

(lo
g(

t)
)

Õ
(ϵ

−
5 2

)

SM
B

(G
u

o
et

al
.,

20
21

a)
H

IA
SG

D
w

it
h

m
o

m
en

-
tu

m
1

1
Θ

(1
)

✓
✗

1
Θ

(lo
g(

T
))

Õ
(ϵ

−
4
)

M
R

B
O

(Y
an

g
et

al
.,

20
21

)
SH

IA
ST

O
R

M
O

(t
−

1 3
)

O
(t

−
1 3

)
Θ

(1
)

✓
✗

1
Θ

(lo
g(

T
))

Õ
(ϵ

−
3 2

)

ST
A

B
LE

(C
h

en
et

al
.,

20
22

a)
D

ir
ec

t
SG

D
w

it
h

o
u

te
r

co
rr

ec
ti

o
n

O
(T

−
1 2

)
O

(T
−

1 2
)

Θ
(1

)
✓

✗
1

N
A

O
(ϵ

−
2
)

SU
ST

A
IN

(K
h

an
d

u
ri

et
al

.,
20

21
)

H
IA

ST
O

R
M

O
(t

−
1/

3
)

Θ
(1

)
O

(t
−

1 3
)

✓
✗

1
Θ

(lo
g(

T
))

O
(ϵ

−
3 2

)

SV
R

B
(G

u
o

et
al

.,
20

21
b

)

D
ir

ec
t

+
m

o
-

m
en

-
tu

m

SG
D

w
it

h
m

o
m

en
-

tu
m

O
(t

−
1 3

)
O

(t
−

1 3
)

Θ
(1

)
✓

✗
1

N
A

Õ
(ϵ

−
3
)

F
SL

A
(L

ie
ta

l.,
20

22
)

SG
D

SG
D

O
(t

−
1 2

)
O

(T
−

1 2
)

Θ
(1

)
✓

✓
1

1
O

(ϵ
−

2
)

Ta
b

le
3.

1:
C

o
m

p
ar

is
o

n
o

ft
h

e
st

o
ch

as
ti

c
b

ile
ve

lo
p

ti
m

iz
at

io
n

so
lv

er
s

in
th

e
lit

er
at

u
re

.T
h

e
co

m
p

le
xi

ty
is

th
e

n
u

m
b

er
o

fo
ra

cl
e

ca
lls

n
ec

es
sa

ry
to

at
ta

in
an

ϵ-
ac

cu
ra

te
st

at
io

n
ar

y
p

o
in

t(
se

e
D

efi
n

it
io

n
3.

1)
.i

H
V

P
st

an
d

s
fo

r
in

ve
rs

e
H

es
si

an
-v

ec
to

r
p

ro
d

u
ct

.L
R

st
an

d
s

fo
r

le
ar

n
in

g
ra

te
.B

S
st

an
d

s
fo

r
b

at
ch

si
ze

.L
ea

rn
in

g
ra

te
eq

u
al

s
1

m
ea

n
s

co
n

st
an

tl
ea

rn
in

g
ra

te
,i

n
d

ep
en

d
en

tf
ro

m
th

e
h

o
ri

zo
n

.L
ea

rn
in

g
ra

te
ex

p
re

ss
ed

in
T

m
ea

n
s

a
fi

xe
d

le
ar

n
in

g
ra

te
th

at
d

ep
en

d
s

o
n

th
e

h
o

ri
zo

n
o

ft
h

e
o

u
te

r
lo

o
p.

Le
ar

n
in

g
ra

te
in

t
m

ea
n

s
d

ec
re

as
in

g
le

ar
n

in
g

ra
te

w
it

h
re

sp
ec

tt
o

th
e

o
u

te
r

it
er

at
io

n
t.

Le
ar

n
in

g
ra

te
in

k
m

ea
n

s
d

ec
re

as
in

g
le

ar
n

in
g

ra
te

w
it

h
re

sp
ec

tt
o

th
e

in
n

er
it

er
at

io
n

k
.

3.3. Iterative Differentiation 56

Aside from the AID-based methods, other algorithms leveraging automatic differentiation have emer-
ged in the literature. Although this thesis is focused on AID-based methods, we briefly present this
line of work in the next section for completeness.

3.3 Iterative Differentiation

In the hypergradient given Equation (3.1), the Jacobian of y∗ is computed by leveraging the Implicit
Function Theorem. This method requires solving approximately a potentially large linear system that
involves the Hessian matrix of the inner function. A second line of work considered another class of
method to approximate the Jacobian of y∗: the Iterative Differentiation (ITD).

In the bilevel optimization context, ITD was first proposed by Domke (2012) for energy-based mod-
els. ITD-based algorithms consist of differentiating the different steps of an iterative solver that solves
the inner problem. Domke (2012) proposes to apply the backpropagation algorithm to the gradient
descent and or the heavy ball steps to approximate the Jacobian of y∗. This idea of differentiating
through optimization steps, also known as "unrolling", is also popular in the inverse problem litera-
ture (Bertocchi et al., 2020; Brauer et al., 2023; Huang et al., 2023; Bonettini et al., 2024).

One drawback of this method is the memory cost of the backpropagation that grows linearly with the
number of steps. One way to circumvent this is to use gradient checkpointing (Hascoet and Araya-
Polo, 2006). It consists in storing only a subset of the iterates and recomputing the other iterates on-
the-fly. Another technique was proposed by Maclaurin et al. (2015) where the authors make the obser-
vation that the algorithm SGD with momentum is reversible. This means that starting from the output
of the algorithm, one can rebuild the optimization path. This allows to apply the backpropagation
algorithm without storing the intermediate iterates. Instead, the intermediate steps are recomputed
on the fly. However, the recomputation of the iterates adds an overhead to the algorithm’s iterations,
making it slower. Shaban et al. (2019) propose to backpropagate only in theK last steps of the inner al-
gorithm. The authors show that the approximation error of the hypergradient decreases exponentially
withK. Bolte et al. (2023) show the efficiency of one-step iterative differentiation (that is, differentiat-
ing only the last optimization step of the inner solver) for superlinear optimization methods.

Several authors also studied the consistency of the approximation of the Jacobian of y∗ by the se-
quences of Jacobian (dyk)k≥0 where yk is the k-th iterate of an iterative that approximates y∗. In
particular, Gilbert (1992) shows that if the sequence (yk)k≥0 is generated by iterating a contracting
operator, then the sequence of the Jacobians (dyk)k≥0 converges towards dy∗. Mehmood and Ochs
(2019) show the convergence of the Jacobians for the specific cases of gradient descent and heavy ball
algorithms. Iutzeler et al. (2024) studies the behavior of the Jacobian in the case of stochastic gradient
descent by showing the convergence of the Jacobian when using vanishing step sizes.

Grazzi et al. (2020) derive convergence rates for the estimation of the hypergradient in the AID and the
ITD cases, depending on the number of iterations for the inner algorithm and the algorithm to solve
the linear system (in the case of AID). Ablin et al. (2020) derive convergence rate in the particular case
of min-min problems (that is f = g).

Scieur et al. (2022) study on quadratic objectives the effect of the choice of the step size for the conver-
gence of the iterates of an optimization algorithm and their Jacobians. They show that large step sizes
lead to fast convergence of the iterates but a long burn-in phase for the Jacobians. On the other hand,
taking small step sizes leads to a slower convergence of the iterates but reduces the burn-in phase.

Arbel and Mairal (2022b) provide a theoretical framework of iterative differentiation when the inner
problem has several solutions, which can occur in non-convex settings. This is done by the introduc-
tion of the concept of selection map, denoted as ϕ : Rdx × Rdy , which selects one solution to the inner
problem. One specific instance they discuss is when ϕ(x, y) is defined as the limit of the gradient flow
applied to g(x, ·), starting from the point y.

3.4. Penalty methods 57

When the inner function is nonsmooth, the use of iterative differentiation has been proposed by Ochs
et al. (2015, 2016) and the convergence properties of the Jacobians are studied by Bolte et al. (2022).
However, Malézieux et al. (2022) show that the sequence of Jacobians is not always well-behaved, in
particular when the support of the solution is badly estimated.

3.4 Penalty methods

Recently, another line of work studied the reformulation of the bilevel problems as single-level con-
strained optimization problems. This leads to the following formulation

min
(x,y)∈Rdx ×Rdy

f(x, y) s.t. g(x, y) ≤ g∗(x) . (3.16)

where g∗(x) = miny∈Rdy g(x, y). From this formulation, Kwon et al. (2023a) consider the lagrangian

Lλ(x, y) = f(x, y) + λ(g(x, y) − g∗(x))

which consists in penalizing the outer function by the violation of g(x, y) being far from g∗(x). They
propose to apply (stochastic) gradient descent to this lagrangian while increasing the Lagrange multi-
plier λ. The particularity of this method is that it does not require second-order information from the
inner function g since, by Danskin’s theorem (Danskin, 1967, Theorem 1), the gradient of g∗ is given by

∇g∗(x) = ∇xg(x, y∗(x)) .

The analysis of this kind of method is refined in subsequent papers (Kwon et al., 2023b; Chen et al.,
2023a). Moreover, Kwon et al. (2024) provide a lower complexity bound for bilevel problem resolution
where the algorithm is assumed to access only first-order information of the inner and outer functions
and the solution of the inner problem y∗ is assumed to be accessed up to a certain precision.

Liu et al. (2023) propose a different approach where the constrained in Problem (3.16) is replaced by a
first-order condition on the inner problem instead of the inner suboptimality gap

min
(x,y)∈Rdx ×Rdy

f(x, y) s.t. ∇yg(x, y) = 0 . (3.17)

They also propose to solve Problem (3.17) by seeking a KKT point of the associated Lagrangian.

3.5 Benchmarking bilevel optimization algorithms

3.5.1 Presentation

The previous presentation emphasizes the theoretical guarantees of performance for bilevel optimiza-
tion algorithms. However, it is also important to assess their practical performance to understand the
benefits and limitations of each method, and to reinforce theoretical claims (Sculley et al., 2018). The-
oretical guarantees are often insufficient to predict practical performance for the following reasons:

▶ Worst-case analysis. The complexities in the literature are worst-case complexities, providing
an upper bound on the computation needed to reach an approximate solution. However, the
worst-case scenario can differ significantly from most practical applications.

▶ Theoretical guarantees ignore the downstream task. The guarantees we get quantify the ef-
ficiency of an algorithm in solving a bilevel optimization problem. For bilevel problems, this
often means quantifying how effectively an algorithm approaches a stationary point. However,
in practice, the ultimate goal of using bilevel algorithms is not merely to find a stationary point
but to perform a downstream task.

3.5. Benchmarking bilevel optimization algorithms 58

▶ Assumptions. Some assumptions used to prove theoretical results may not hold in practice.
For example, the assumption of a constant µg > 0 such that the inner function g(x, ·) is strongly
convex for all x ∈ Rdx can be violated. This occurs, for instance, in the case of Ridge regression
loss in the overparametrized regime, where the inner variable is the model’s parameters and the
outer variable is the regularization parameter.

▶ Hardware specifications. Theoretical results often ignore the characteristics of the hardware
used to run the algorithms. Depending on the capacity to parallelize computations or manage
memory, the performance of the algorithms can vary significantly.

Bilevel optimization papers provide empirical results on classical tasks such as hyperparameter se-
lection or data cleaning. However, these results often lack reproducibility. The code is frequently
unavailable, or if it is available, its documentation is incomplete. Indeed, ingredients necessary for
a proper reimplementation may be missing, such as important algorithmic details, or hyperparame-
ter choices (Pineau et al., 2019). Additionally, the same algorithm can exhibit varying performances
across different papers for the same task, reducing trust in the empirical results. Moreover, it is impor-
tant for the practitioners to have a clear understanding of which algorithm is best suited for specific
tasks (Bartz-Beielstein et al., 2020). To address these issues, it is crucial to develop and maintain an
up-to-date benchmark for bilevel optimization algorithms.

We have initiated this effort with the bilevel benchmark we have built over the last three years. This
benchmark is constructed using the Python package Benchopt (Moreau et al., 2022). Benchopt is a tool
that enables to easily build and maintain benchmarks of optimization algorithms. The benchmarks
are built in an open, standardized, and collaborative way so that researchers can use it to benchmark
their algorithm, without the burden of reimplementing baseline methods from the literature. The code
of the benchmark is open source and available on GitHub.1 It enjoys the classical Benchopt features
such as parallel runs, caching, and automatical results archiving, making its execution easy.

3.5.2 Details on the benchmark

Solver. The benchmark contains fourteen solvers:

▶ Four stochastic AID-based solvers without variance reduction. AmIGO (Arbel and Mairal,
2022a), stocBiO (Ji et al., 2021), BSA (Ghadimi and Wang, 2018), TTSA (Hong et al., 2023);

▶ Four stochastic AID-based solvers with variance reduction. MRBO (Yang et al., 2021), VRBO
(Yang et al., 2021), SUSTAIN (Khanduri et al., 2021), FSLA (Li et al., 2022);

▶ Two penalty-based solvers (one stochastic and one deterministic). BOME (Ye et al., 2022),
F2SA (Kwon et al., 2023a);

▶ One Hessian-free solver. PZOBO (Sow et al., 2022);

▶ Two full-batch solvers based on Jaxopt (Blondel et al., 2021). Jaxopt-GD (AID-based), Jaxopt-
ITD (ITD-based);

▶ A zero-order solver. Optuna (Akiba et al., 2019).

Apart from the Jaxopt and Optuna solvers, all the other were implemented from scratch in Jax (Brad-
bury et al., 2018). This enables the use of the automatic differentiation tools to compute the different
oracles, to leverage the just-in-time compilation of Jax, and the automatic vectorization of functions.

1https://github.com/benchopt/benchmark_bilevel

https://github.com/benchopt/benchmark_bilevel

3.5. Benchmarking bilevel optimization algorithms 59

Tasks. The benchmark contains four different bilevel problems:

▶ Quadratic functions. This toy problem aims at having a problem setting where one can con-
trol the different constants of the problem. We consider a setting where the inner and the outer
functions are sums of quadratics.

f(x, y) = 1
m

m∑
j=1

fj(x, y), g(x, y) = 1
n

n∑
i=1

gi(x, y) .

The functions fj and gi are defined as

fj(x, y) = 1
2y

⊤Afj
y y + 1

2x
⊤Afj

x + xBfjy + (dfj
y)⊤y + (dfj

x)⊤x

gi(x, y) = 1
2y

⊤Agi
y y + 1

2x
⊤Agi

x + xBgiy + (dgi
y)⊤y + (dgi

x)⊤x

with A
fj
y , Agi

y ∈ Rp×p, Afj
x , Agi

x ∈ Rd×d, Bfj , Bgi ∈ Rd×p, dfj
y , dgi

y ∈ Rp and d
fj
x , dgi

x ∈ Rd. The

vectors dfj
x , dgi

x are drawn randomly according to a normal distribution N (0, Id). The vectors dfj
y ,

dgi
y are drawn randomly according to a normal distribution N (0, Ip). For the Hessian matrices

with respect to y, we generate Agi
y so that 1

n

∑n
i=1 A

gi
y = A for a symetric positive definite matrix

A with a given spectrum. To do so, we generate xi ∼ N (0, Ip) and set Agi
y =

√
Axi(

√
Axi)⊤. We

proceed similarly for Afj
y , Agi

y , Afj
x . For Bgi , we want 1

n

∑n
i=1 B

gi = B for a prescribed matrix
B ∈ Rd×p such that with a prescribed spectral norm ∥B∥. Let B = UΣV ⊤ the singular values
decomposition of B. To get Bgi , we generate xi ∼ N (0, Ip) and set Bgi = (V Σxi)(Uxi)⊤. We
proceed similarly for Bfj .

▶ Hyperparameter selection with IJCNN1. The IJCNN1 dataset2 is a dataset for binary classifi-
cation. It has n = 49, 990 training samples, m = 91, 701 validation samples, and p = 22 features.
For this dataset, we want to select a regularization parameter for an ℓ2-regularized logistic re-
gression problem where we have one hyperparameter per feature. This leads to the following
outer and inner functions

f(λ, θ) = 1
m

m∑
j=1

log(1 + exp(−yval
j ⟨θ, xval

j ⟩))

g(λ, θ) = 1
n

n∑
i=1

log(1 + exp(−ytrain
i ⟨θ, xtrain

i ⟩)) + 1
2

p∑
k=1

eλkθ2
k

where the inner variable θ ∈ Rp denotes the model’s parameter and the outer variable λ ∈ Rp

denotes the hyperparameter.

▶ Hyperparameter selection with COVTYPE. The COVTYPE dataset 3 contains 581, 012 samples
with p = 54 features distributed into C = 7 classes. We fit a multiclass ℓ2-regularized logistic
regression with one hyperparameter per feature. The inner and outer functions are defined as

f(λ, θ) = 1
m

m∑
j=1

ℓ(θxval
j , yval

j)

g(λ, θ) = 1
n

n∑
i=1

ℓ(θxval
i , yi) +

C∑
c=1

eλc

p∑
k=1

θ2
k,c

where θ ∈ Rp×C is the model’s parameter and λ ∈ RC is the hyperparameter. We used n =
371, 847 training samples, m = 92, 962 validation samples, and ntest = 116, 203 test samples.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_covtype.html

3.5. Benchmarking bilevel optimization algorithms 60

▶ Data hypercleaning with MNIST. The datacleaning task presented in Section 1.3 is performed
with the MNIST dataset 4. The dataset consists of n = 60000 training samples and m = 10000
validation samples au size 28 × 28. The inner and outer functions are defined as

f(w, θ) = 1
m

m∑
j=1

ℓ(θxval
j , yval

j)

g(w, θ) = 1
n

n∑
i=1

σ(wi)ℓ(θxval
i , yi) + Cr∥θ∥2

2

where ℓ is the cross-entropy loss andCr > 0 is a regularization parameter (Cr = 0.2 in our case).
For this task, a proportion p ∈ {0.5, 0.7, 0.9} of the labels of the training samples are corrupted,
as illustrated in figure 1.6. The labels of the validation and test sets remain unchanged.

Selection of the algorithms’ hyperparameters. The algorithms we consider in our benchmark
come with their own hyperparameters. Depending on the methods, those hyperparameters can in-
clude: the inner or outer step size, the number of inner steps, the momentum parameter... To select
these hyperparameters, we perform an extensive grid search. For each solver and task, we keep the hy-
perparameters that perform the best over the 100 first iterations. This choice of looking at the first it-
eration for curve selection relies on a tradeoff we want between the final performance of the algorithm
and its execution speed. The measure of performance can be the validation accuracy (for the hyper-
parameter selection and data cleaning tasks) or the value of the objective function (for the quadratic
task). Also, for stochastic solvers, we perform 10 runs with different random seeds. Among these 10
runs, it is possible that some of them crash because of numerical instability. In order to guarantee the
robustness of the hyperparameter selected, we select the hyperparameters among those that have not
led to a crash in any of the 10 runs.

Examples of results. In figure 3.4, we provide an example of a performance curve we can get with
the benchmark on quadratics. For this setting, we display the squared norm of the value function Φ.
We consider a problem where the inner dimension is 100, and the outer dimension is 10. Moreover, the
inner sum contains n = 8192 functions and the outer sum contains m = 1024 functions. In figure 3.4,
one observes that the slower solver is Optuna. This result is expected because of the dimensionality of
the problem. Additionally, we notice that Hessian-free solvers are slower compared to the AID-based
solvers. Among the stochastic solvers, AMIGO achieves the best final performance, likely because
it is fully warm-started; both the inner and linear system solvers are warm-started. Conversely, the
deterministic solver Jaxopt GD, while slower, reaches a better final value as it avoids getting stuck in a
plateau.

In figure 3.5, we display the performance curves of various solvers on the hyperparameter selection
task using the COVTYPE dataset. It is observed that the deterministic and zero-order solvers are the
slowest compared to the stochastic ones. Moreover, they achieve a higher final test error. The better
performance of the stochastic solvers could be attributed to the non-convexity of the problem and the
stochastic nature of the solver, which may help reach a better solution.

4http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

3.5. Benchmarking bilevel optimization algorithms 61

10−3 10−2 10−1 100 101 102

Time [sec]

10−4

10−3

10−2

10−1

100

101

‖∇
Φ

(x
t
)‖

2

AmIGO

StocBiO

BSA

TTSA

VRBO

MRBO

FSLA

SUSTAIN

BOME

F2SA

PZOBO

Jaxopt ITD

Jaxopt GD

Optuna

Figure 3.4: Median of the squared norm of the gradient of the value function Φ over 10 runs for the
different solvers on the benchmark on quadratics in function of wall-clock time. The shaded area
corresponds to the performances between the 20% and the 80% percentiles. The inner variable has
a dimension of 100, and the outer variable has a dimension of 10. The solvers in plain lines are the
stochastic solvers, the solvers in dashed lines are the variance-reduced solvers, the solvers in dotted
lines are the Hessian-free solvers, the solvers in dash-dotted lines are the deterministic solvers and the
solver with big dot markers is the zero-order solver.

10−2 10−1 100 101 102 103

Time [sec]

30%

35%

40%

T
es

t
er

ro
r

AmIGO

StocBiO

BSA

TTSA

VRBO

MRBO

FSLA

SUSTAIN

BOME

F2SA

PZOBO

Jaxopt ITD

Jaxopt GD

Optuna

Figure 3.5: Median of the test error over 10 runs for the different solvers on the benchmark on hy-
perparameter selection with the COVTYPE dataset in function of wall-clock time. The shaded area
corresponds to the performances between the 20% and the 80% percentiles. The solvers in plain lines
are the stochastic solvers, the solvers in dashed lines are the variance-reduced solvers, the solvers in
dotted lines are the Hessian-free solvers, the solvers in dash-dotted lines are the deterministic solvers
and the solver with big dot markers is the zero-order solver.

3.5. Benchmarking bilevel optimization algorithms 62

Part II

Contributions

63

CHAPTER 4

A FRAMEWORK FOR BILEVEL OPTIMIZATION THAT ENABLES
STOCHASTIC AND GLOBAL VARIANCE REDUCTION ALGORITHMS

Sommaire
4.1 Introduction . 65

4.2 Proposed framework . 67

4.2.1 First example: the SOBA algorithm . 68

4.2.2 Global variance reduction with the SABA algorithm 69

4.3 Theoretical analysis . 70

4.3.1 Background and assumptions . 70

4.3.2 Fundamental descent lemmas . 72

4.3.3 Analysis of SOBA . 74

4.3.4 SABA: a stochastic method with optimal rates 75

4.4 Experiments . 78

4.4.1 Hyperparameters selection . 78

4.4.2 Data hypercleaning . 78

4.4.3 Implementation details . 79

4.5 Conclusion . 80

This section presents the work selected for an oral at NeurIPS 2022:

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Only minor modifications have been made from the original paper: adaptation of the notation, shorter
introduction, relocation of some proofs in the main text, or addition of proof sketch for results with
proof in the appendix (Chapter A) relocation of experimental details in the main text.

4.1 Introduction

In this chapter, we focus on bilevel optimization problem where the inner problem has a single solu-
tion, that is

min
x∈Rdx

Φ(x) = f(x, y∗(x)), such that y∗(x) = arg min
y∈Rdy

g(x, y) , (4.1)

65

4.1. Introduction 66

In the introduction, we have seen that under appropriate hypotheses, the function Φ is differentiable
and that its gradient is given for any x ∈ Rdx by

∇Φ(x) = ∇xf(x, y∗(x)) + ∇2
xyg(x, y∗(x))v∗(x) , (4.2)

where v∗(x) ∈ Rdy is the solution of a linear system

v∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)) . (4.3)

In the light of (4.2) and (4.3), it turns out that the derivation of the gradient of Φ at each iteration is
cumbersome because it involves two subproblems: the resolution of the inner problem to find an
approximation of y∗(x) and the resolution of a linear system to find an approximation of v∗(x). It
makes the practical implementation of first-order methods like gradient descent for (4.1) challenging.

0 100 200 300 400

Iterations

10−12

10−7

10−2

G
ra

d
ie

n
t

n
or

m

SABA

SOBA

Figure 4.1: Convergence curves of the
two proposed methods on a toy prob-
lem. SABA is a stochastic method that
achieves fast convergence on the value
function.

As is the case in many machine learning problems, we sup-
pose in this chapter that f and g are empirical means:

f(x, y) = 1
m

m∑
j=1

fj(x, y), g(x, y) = 1
n

n∑
i=1

gi(x, y) .

This structure suggests the use of stochastic methods to
solve (4.1). For single-level problems (that is, classical op-
timization problems where one function should be mini-
mized), using Stochastic Gradient Descent (SGD; (Robbins
and Monro, 1951; Bottou, 2010)) and variants is natural
because individual gradients are straightforward unbiased
estimators of the gradient. In the bilevel framework, we
want to develop algorithms that make progress on prob-
lem (4.1) by using only a few functions fj and gi at a time.
However, since ∇Φ involves the inverse of the Hessian of
g, building such stochastic algorithms is quite challenging,
one of the difficulties being that there is no straightforward unbiased estimator of ∇Φ. Still, in settings
where m or n are large, where computing even a single evaluation of f or g is extremely expensive,
stochastic methods are the only scalable algorithms.

Variance reduction (Johnson and Zhang, 2013; Defazio et al., 2014; Schmidt et al., 2017; Fang et al.,
2018; Cutkosky and Orabona, 2019) is a popular technique to obtain fast stochastic algorithms. In a
single-level setting, these methods build an approximation of the gradient of the objective function
using only stochastic gradients. Contrary to SGD, the variance of the approximation goes to 0 as the
algorithm progresses, allowing for faster convergence. For instance, the SAGA method (Defazio et al.,
2014) achieves linear convergence if the objective function satisfies a Polyak-Łojasciewicz inequality,
and O(1

T) convergence rate on smooth non-convex functions (Reddi et al., 2016). The extension of
these methods to bilevel optimization is a natural idea to develop faster algorithms. As we have seen
in Chapter 3, the landscape of variance-reduced algorithms is restricted. Indeed, only the STORM
(Cutkosky and Orabona, 2019) and the SPIDER (Fang et al., 2018) algorithms have been extended to
the bilevel setting by Yang et al. (2021), Khanduri et al. (2021) and Li et al. (2022) for STORM and by
Yang et al. (2021) for SPIDER. This can be explained by the fact that this idea is hard to implement
because it is hard to derive unbiased estimators of ∇Φ, let alone variance reduction ones.

Contributions of Chapter 4. In this chapter, we introduce a novel framework for bilevel optimization
in Section 4.2, where the inner variable, the solution of the linear system (4.3) and the outer variable
evolve jointly. The evolution directions are written as sums of derivatives of fj and gi, which allows
us to derive simple unbiased stochastic estimators. In this framework, we propose SOBA, an exten-
sion of SGD (subsection 4.2.1), and SABA (subsection 4.2.2), an extension of the variance reduction
algorithm SAGA (Defazio et al., 2014). In Section 4.3, we analyze the convergence of our methods.

4.2. Proposed framework 67

SOBA is shown to achieve inft≤T E[∥∇Φ(xt)∥2] = O(log(T)T− 1
2) with decreasing step sizes. We prove

that SABA with fixed step sizes achieves 1
T

∑T
t=1 E[∥∇Φ(xt)∥2] = O(1

T). SABA is therefore, to the best
of our knowledge, the first stochastic bilevel algorithm that matches the convergence rate of gradient
descent on Φ. We also prove that SABA achieves linear convergence under the assumption that Φ sat-
isfies a Polyak-Łojasciewicz inequality. To the best of our knowledge, SABA is also the first stochastic
bilevel algorithm to feature such a property. Importantly, these rates match the rates of the single-level
counterparts of each algorithm in a non-convex setting (SGD for SOBA and SAGA for SABA). Finally, in
Section 4.4, we provide an extensive benchmark of many stochastic bilevel methods on hyperparam-
eters selection and data hypercleaning, and illustrate the usefulness of our approach.

4.2 Proposed framework

Algorithm 5 General framework

Input: initializations y0 ∈ Rdy , x0 ∈ Rdx , v0 ∈ Rdy , number of iterations T , step size se-
quences (ρt)t<T and (γt)t<T .
for t = 0, . . . , T − 1 do

Update y: yt+1 = yt − ρtDt
y ,

Update v: vt+1 = vt − ρtDt
v ,

Update x: xt+1 = xt − γtDt
x ,

whereDt
y,Dt

v andDt
x are unbiased estimators of the directionsDy(yt, vt, xt),Dv(yt, vt, vt)

and Dx(yt, vt, xt).
end for

In this section, we introduce our framework in which the solution of the inner problem, the solution
of the linear system (4.3), and the outer variable all evolve at the same time, following directions that
are written as a sum of derivatives of fj and gi. We define

Dy(y, v, x) = ∇yg(x, y) ,

Dv(y, v, x) = ∇2
yyg(x, y)v + ∇yf(x, y) ,

Dx(y, v, x) = ∇2
xyg(x, y)v + ∇xf(x, y) .

(4.4)a

(4.4)b

(4.4)c

These directions are motivated by the fact that we have ∇Φ(x) = Dx(y∗(x), v∗(x), x), with y∗(x) the
minimizer of g(x, ·) and v∗(x) the solution of ∇2

yyg(x, y∗(x))v = −∇yf(x, y∗(x)). When x is fixed, we
approximate y∗ by doing a gradient step on g, following the direction −Dy(y, v, x). Finally, when y

and x are fixed, we find v∗ by following the direction −Dv(y, v, x), which corresponds to a gradient
descent on v 7→ 1

2 ⟨∇2
yyg(x, y)v, v⟩ + ⟨∇yf(x, y), v⟩. The rest of the chapter is devoted to the study of

the global dynamics where the three variables y, v and x evolve at the same time, following stochastic
approximations of Dy, Dv and Dx. The next proposition motivates the choice of these directions.

Proposition 4.1. Assume that for all x ∈ Rdx , the inner function g(x, ·) is strongly convex. If (y, v, x) is
a zero of (Dy, Dv, Dx), then y = y∗(x), v = v∗(x) and ∇Φ(x) = 0.

Proof. Let (y, v, x) a zero of (Dy, Dv, Dx). ForDy, this means that ∇yg(x, y) = 0. Since g(x, ·) is strongly
convex, y is the minimizer of g(x, ·), i.e. y = y∗(x). The fact that (y, v, x) is a zero of Dv implies that
∇2
yyg(y, x)v = −∇yf(x, y). Replacing y by its value, we get v = −

[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x))
which is v∗(x) by definition. Putting all together and using the expression of ∇Φ(x) given by (4.2), we
get

Dx(y, v, x) = ∇xf(x, y∗(x)) + ∇2
xyg(x, y∗(x))v∗(x) = ∇Φ(x) .

On the other hand, Dx(y, v, x) = 0 so ∇Φ(x) = 0.

4.2. Proposed framework 68

We also note that the computation of these directions does not require computing the Hessian ma-
trices ∇2

yyg(x, y) and ∇2
xyg(x, y): we only need to compute their product with a vector, which can be

computed at a cost similar to that of computing a gradient.

The framework we propose is summarized in Algorithm 5. It consists in following a joint update rule
in (y, v, x) that follows directions Dt

y, D
t
v and Dt

x that are unbiased estimators of Dy, Dv, Dx. The first
and most important remark is that whereas ∇Φ cannot be written as a sum over samples, the direc-
tions Dy, Dv and Dx involve only simple sums, since their expressions are “linear” in f and g:

Dy(y, v, x) = 1
n

n∑
i=1

∇ygi(x, y) ,

Dv(y, v, x) = 1
n

n∑
i=1

∇2
yygi(x, y)v + 1

m

m∑
j=1

∇yfj(x, y) ,

Dx(y, v, x) = 1
n

n∑
i=1

∇2
xygi(x, y)v + 1

m

m∑
j=1

∇xfj(x, y) .

It is, therefore, straightforward to derive unbiased estimators of these directions. Li et al. (2022) consid-
ered one particular case of our framework, where the outer direction is estimated by using the STORM
variance reduction technique (see (Cutkosky and Orabona, 2019)). Taking a step back by proposing
the framework summarized in Algorithm 5 opens the way to potential new algorithms that implement
other techniques that exist in stochastic single-level optimization. In what follows, we study two of
them.

4.2.1 First example: the SOBA algorithm

The simplest unbiased estimator is obtained by replacing each mean by one of its terms chosen uni-
formly at random, akin to what is done in classical single-level SGD. We call the resulting algorithm
SOBA (StOchastic Bilevel Algorithm). To do so, we choose two independent random indices i ∈ [n]
and j ∈ [m] uniformly and estimate each term coming from g using gi and each term coming from f

using fj . This gives the unbiased SOBA directions

Dt
y = ∇ygi(xt, yt) ,

Dt
v = ∇2

yygi(xt, yt)vt + ∇yfj(xt, yt) ,

Dt
x = ∇2

xygi(xt, yt)vt + ∇xfj(xt, yt) .

(4.5)a

(4.5)b

(4.5)c

This provides us with a first algorithm, SOBA, where we plug Equations (4.5)a, (4.5)b and (4.5)c in
Algorithm 5. We defer its analysis to the next section. Importantly, we use different step sizes for the
update in (y, v) and for the update in x. We use the same step size in y and in v since the inner problem
and the linear system have similar conditioning, which is that of ∇2

yyG(xt, yt). The need for a different
step size for the outer and inner problems is clear: both problems can have different conditioning.

An important remark for SOBA is that all the stochastic directions used are computed at the same
point yt, vt and xt with the same indices (i, j). The update of y, v and x can thus be performed in par-
allel instead of sequentially, benefiting from hardware parallelism. Moreover, this enables the shar-
ing of the computations between the different directions. This is the case in hyperparameters selec-
tion where gi(x, y) = ℓi(⟨y, di⟩) + x

2 ∥y∥2, with di a training sample, and ℓi that measures how good
is the prediction ⟨y, di⟩. In this setting, we have ∇ygi(x, y) = ℓ′

i(⟨y, di⟩)di + xy and ∇2
yygi(x, y)v =

ℓ′′
i (⟨y, di⟩)⟨v, di⟩di. The prediction ⟨y, di⟩ can thus be computed only once to obtain both quanti-

ties. For more complicated models, where automatic differentiation is used to compute the different
derivatives and Jacobian-vector products, we can store the computational graph only once to compute
at the same time ∇ygi(x, y),∇2

yygi(x, y)v and ∇2
21gi(x, y)v, requiring only one backward pass, thanks

to the R technique (Pearlmutter, 1994). This is explained in detail in Section 2.3.

4.2. Proposed framework 69

Like all single-loop bilevel algorithms, our method updates at the same time the inner and outer vari-
able, avoiding unnecessary optimization of the inner problem when x is far from the optimum.

4.2.2 Global variance reduction with the SABA algorithm

In classical optimization, SGD fails to reach optimal rates because of the variance of the gradient esti-
mator. Variance reduction algorithms aim at reducing this variance, in order to follow directions that
are closer to the true gradient and to achieve superior practical and theoretical convergence.

In our framework, since the directions Dy, Dv, and Dx are all written as sums of derivatives of fj and
gi, it is easy to adapt most classical variance reduction algorithms. We focus on the celebrated SAGA
algorithm (Defazio et al., 2014). The extension we propose is called SABA (Stochastic Average Bilevel
Algorithm). The general idea is to replace each sum in the directions D by a sum over a memory,
updating only one term at each iteration. To help the exposition, we denote z = (y, x, v) the vector of
joint variables. Since we have sums over i and over j, we have two memories for each variable: wti for
i ∈ [n] and w̃tj for j ∈ [m], which keep track of the previous values of the variable y.

At each iteration t, we draw two random independent indices i ∈ [n] and j ∈ [m] uniformly and update
the memories. To do so, we put wt+1

i = zt and wt+1
i′ = wti′ for i′ ̸= i, and w̃t+1

j = zt and w̃t+1
j′ = w̃tj′ for

j′ ̸= j. Each sum in the directionsD is then approximated using SAGA-like rules: given n functions ϕi′
for i′ ∈ [n], we define

S[ϕ,w]ti = ϕi(wt+1
i) − ϕi(wti) + 1

n

n∑
i′=1

ϕi′(wti′) .

This is an unbiased estimator of the average of the ϕ’s since

Ei
[
S[ϕ,w]ti

]
= 1
n

n∑
i′=1

ϕi′(zt) − 1
n

n∑
i′=1

ϕi′(wti′) + 1
n

n∑
i′=1

ϕi′(wti′) = 1
n

n∑
i′=1

ϕi′(zt) .

With a slight abuse of notation, we call ∇2
yygv the sequence of functions (y 7→ ∇2

yygi(x, y)v)i∈[n] and
∇2
xygv the sequence of functions (y 7→ ∇2

xygi(x, y)v)i∈[n]. We define the SABA directions as

Dt
y = S[∇yg, w]ti ,

Dt
v = S[∇2

yygv, w]ti + S[∇yf, w̃]tj ,
Dt
x = S[∇2

xygv, w]ti + S[∇xf, w̃]tj .

(4.6)a

(4.6)b

(4.6)c

These estimators are unbiased estimators of the directions Dy, Dv, and Dx. The SABA algorithm cor-
responds to Algorithm 5 where we use Equations (4.6)a (4.6)b and (4.6)c as update directions. When
taking a step size γt = 0 in the outer problem, hereby stopping progress in x, we recover the iterations
of the SAGA algorithm on the inner problem. In practice, the sum in S is computed by doing a rolling
average of the past gradients computed. More precisely, let us denote

At = 1
n

n∑
i′=1

ϕi′(wti′) ,

the average of the memory at time t. To get At+1, instead of computing the summing all the gradients
stored, which has O(n) computational complexity, we do

At+1 = At + 1
n

(ϕi(wt+1
i) − ϕi(wti)) ,

which is equivalent mathematically but has O(1) computational complexity.

Moreover, the quantities ϕi(wti) are stored rather than recomputed: the cost of computing the SABA
directions is the same as that of SOBA. It requires an additional memory for the five quantities, of total

4.3. Theoretical analysis 70

size n × p + (n + m) × (p + d) floats. Note that we can reduce this load by using larger batch sizes
since in this case, we store average over batches rather than individual gradients. Thus, if bin and bout

are respectively the inner and the outer batch sizes, the memory load is reduced to nb × p + (nb +
mb) × (p × d) with nb = ⌈ n

binn
⌉ and mb = ⌈ m

bout
⌉ which are smaller than the number of samples. This

memory load can also be reduced in specific cases, for instance when g and f correspond to linear
models, where the individual gradients and Hessian-vector products are proportional to the samples.
In this case, we only store the proportionality ratio, reducing the memory load to 3n+ 2m floats. Like
for SOBA, the computations of the new quantities ϕi(wt+1

i) are done in parallel, thus benefiting from
hardware acceleration and shared computations. Despite this memory load, using SAGA-like variance
reduction instead of STORM as done by Li et al. (2022), Yang et al. (2021), and Khanduri et al. (2021)
has the advantage of bringing the variance of the estimate directions to zero, enabling faster O(1

T)
convergence.

In the next section, we show that SABA is fast. It essentially has the same properties as SAGA: despite
being stochastic, it converges with fixed step size and reaches the same rate of convergence as gradient
descent on Φ.

4.3 Theoretical analysis

In this section, we provide convergence rates of SOBA and SABA under some classical assumptions.
Note that, unlike most of the stochastic bilevel optimization papers, we work in a finite sample setting
rather than the more general expectation setting. Actually, SABA does not make any sense for func-
tions that don’t have a finite-sum structure. However, we stress that SOBA could be studied in a more
general setting to obtain the same bounds as here. Also, the finite sum setting is still interesting since
doing empirical risk minimization is very common in practice in machine learning. The proofs and
the constants in big-O are deferred in Section A.1.

4.3.1 Background and assumptions

We start by stating some regularity assumptions on the functions f and g.

Assumption 4.1. The function f is twice differentiable. The derivatives ∇f and ∇2f are Lipschitz con-
tinuous in (x, y) with respective Lipschitz constants Lf,1 and Lf,2.

Note that the above assumption is typically verified in the machine learning context, e.g., when f is
the ordinary least squares (OLS) loss or the logistic loss.

Assumption 4.2. The function g is three times continuously differentiable on Rdx × Rdy . For any x ∈
Rdx , g(x, ·) is µg-strongly convex. The derivatives ∇g, ∇2g and ∇3g are Lipschitz continuous in with
respective Lipschitz constants Lg,1, Lg,2 and Lg,3.

Strong convexity and smoothness with respect to y of g are verified when g is a regularized least-
squares/logistic regression with a full rank design matrix when the data is not separable for the lo-
gistic regression. Moreover, the strong convexity ensures the existence and uniqueness of the inner
optimization problem for any x ∈ Rdx .

Assumption 4.3. There exists Cf > 0 such that for any x we have ∥∇yf(x, y∗(x))∥ ≤ Cf .

This assumption, combined with the strong convexity of g(x, ·), shows boundedness of v∗. This as-
sumption holds, for instance, in the case of hyperparameters selection for a Ridge regression problem.
Note that in Assumptions 4.1 and 4.2, we assume more regularity of f and g than in stochastic bilevel
optimization literature (see for instance Ghadimi and Wang (2018), Hong et al. (2023), Ji et al. (2021)
or Arbel and Mairal (2022a)). It is necessary to get the smoothness of v∗, which will allow to adapt
the proof of Chen et al. (2021) and get tight convergence rates. The following lemma gives us some

4.3. Theoretical analysis 71

smoothness properties of the considered directions that will be useful to derive convergence rates of
our methods.

Lemma 4.1. Under the Assumptions 4.1 to 4.3, there exist constants Ly, Lv and Lx such that

∥Dy(y, v, x)∥2 ≤ L2
y∥y − y∗(x)∥2

∥Dv(y, v, x)∥2 ≤ L2
v(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2)

∥Dx(y, v, x) − ∇Φ(x)∥2 ≤ L2
x(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2) .

Proof. Let (y, v, x) ∈ Rdy × Rdy × Rdx . Using the fact that ∇yg(x, y∗(x)) = 0 and the Lg,1-smoothness
of g(x, ·), we have

∥Dy(y, v, x)∥2 = ∥∇yg(x, y) − ∇yg(x, y∗(x))∥2 ≤ L2
g,1∥y − y∗(x)∥2 .

For Dv, since ∇2
yyg(x, y∗(x))v∗(x) = −∇yf(x, y∗(x)), we write

∥Dv∥ = ∥(∇2
yyg(x, y)v + ∇yf(x, y)) − (∇2

yyg(x, y∗(x))v∗(x) + ∇yf(x, y∗(x)))∥
≤ ∥[∇2

yyg(x, y) − ∇2
yyg(x, y∗(x))]v∗(x)∥ + ∥∇2

yyg(x, y)[v − v∗(x)]∥
+ ∥∇yf(x, y) − ∇yf(x, y∗(x))∥ .

For the first term, we use the Lipschitz continuity of ∇2
yyg:

∥[∇2
yyg(x, y) − ∇2

yyg(x, y∗(x))]v∗(x)∥ ≤ Lg,2∥y − y∗(x)∥∥v∗(x)∥ .

Since g in µg-strongly convex, ∇yf(· , y∗(·)) is bounded and v∗(x) = −[∇2
yyg(x, y∗(x))]−1∇yf(x, y∗(x)),

we have

∥[∇2
yyg(x, y) − ∇2

yyg(x, y∗(x))]v∗(x)∥ ≤ Lg,2Cf
µg

∥y − y∗(x)∥ . (4.7)

For the second term, we use the Lg,1-smoothness of g(x, ·) and for the third term, we use the Lf,1-
smoothness of f and we finally get

∥Dv∥ ≤
(
Lg,2Cf
µg

+ Lf,1

)
∥y − y∗(x)∥ + Lg,1∥v − v∗(x)∥ .

Then, taking Lv =
√

2 max
(
Lg,2Cf

µg
+ LF , Lg,1

)
, we get

∥Dv(y, v, x)∥2 ≤ L2
v(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2) .

For Dx(y, v, x) − ∇Φ(x) we start by writing

∥Dx(y, v, x) − ∇Φ(x)∥ ≤ ∥∇xf(x, y) − ∇xf(x, y∗(x))∥ + ∥∇2
xyg(x, y)v − ∇2

xyg(x, y∗(x))v∗(x)∥
≤ ∥∇xf(x, y) − ∇xf(x, y∗(x))∥ + ∥∇2

xyg(x, y)∥∥v − v∗(x)∥
+ ∥v∗(x)∥∥∇2

xyg(x, y) − ∇2
xyg(x, y∗(x))∥ .

We bound the first term using the fact that ∇xf is Lf,1-Lipschitz continuous. For the second term, the
fact that ∇2

xyG is bounded thanks to the Lipschitz continuity of ∇yg(· , y). For the third term, we use
that ∇2

xyg(x, ·) is Lg,2-Lipschitz continuous and the same derivation as Equation (4.7). We finally get

∥Dx − ∇Φ(x)∥ ≤
(
Lf,1 + CfLg,2

µg

)
∥y − y∗(x)∥ + Lg,1∥v − v∗(x)∥ .

4.3. Theoretical analysis 72

Taking Lx =
√

2 max
(
Lf,1 + CfLg,2

µg
, Lg,1

)
yields

∥Dx(y, v, x) − ∇Φ(x)∥2 ≤ L2
x(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2) . (4.8)

In first-order optimization, a fundamental assumption on the objective function is the smoothness
assumption. In the case of vanilla gradient descent applied to a function f , it allows to get a conver-
gence rate of ∥∇f(xt)∥2 in O(1/T), i.e. convergence to a stationary point (Nesterov, 2004). We recall
that the smoothness of Φ is provided in Proposition 3.2

As usual with the analysis of stochastic methods, we define the expected norms of the directions V ty =
E[∥Dt

y∥2], V tv = E[∥Dt
v∥2] and V tx = E[∥Dt

x∥2], where the expectation is taken over the past. Thanks
to variance-bias decomposition, they are the sum of the variance of the stochastic direction and the
squared-norm of the unbiased direction. For SOBA, we use classical bounds on variances like those
found for instance by Hong et al. (2023):

Assumption 4.4. There exist By and Bv such that for all t, Et[∥Dt
y∥2] ≤ B2

y(1 + ∥Dy(yt, vt, xt)∥2) and
Et[∥Dt

v∥2] ≤ B2
v(1 + ∥Dv(yt, vt, xt)∥2) where Et denotes the expectation conditionally to (yt, vt, xt).

For SOBA and SABA, we need to bound the expected norm ofDt
x. For SABA, this assumption allows to

get the same sample complexity as SAGA for single-level problems.

Assumption 4.5. There exists Bx such that for all t, Et[∥Dt
x∥2] ≤ B2

x.

Assumptions 4.4 and 4.5 are verified for instance, if all the gi and ∇ygi have at most quadratic growth,
and if f has bounded gradients. They are also verified if the iterates remain in a compact set. Note that
we do not assume that g has bounded gradients, as this would contradict its strong convexity. Finally,
for the analysis of SABA, we need regularity on each gi and fj :

Assumption 4.6. For all i ∈ [n] and j ∈ [m], the functions ∇gi, ∇fj , ∇2
yygi and ∇2

xygi are Lipschitz
continuous in (x, y).

4.3.2 Fundamental descent lemmas

Our analysis for SOBA and SABA is based on the control of both

δty = E[∥yt − y∗(xt)∥2] and δtv = E[∥vt − v∗(xt)∥2] .

Strong convexity of g and smoothness of y∗(x) and v∗(x) allow to obtain the following lemma by adapt-
ing the proof of Chen et al. (2021). In what follows, we drop the dependency of the step sizes ρ and γ
in t for clarity.

Lemma 4.2. Assume that γ2 ≤ min
(

µgL
2
∗

4B2
xL

2
yx
,
µgL

2
∗

8B2
xL

2
vx

)
ρ. We have:

δt+1
y ≤

(
1 − ρµg

4

)
δty + 2ρ2V ty + βyxγ

2V tx + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

δt+1
v ≤

(
1 − ρµg

8

)
δtv + βvyρδ

t
y + 2ρ2V tv + βvxγ

2V tx + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

where βyx = βvx = 3L2
∗, βyx = 8L2

∗
µg

, βvx = 16L2
∗

µg
, L∗ is the maximum between the Lipschitz constants

of y∗ and v∗ (see Lemma A.1), βvy = 1
µ3

g
(Lf,1µg + Lg,2)2, Lyx and Lvx are respectively the smoothness

constants of y∗ and v∗.

Proof sketch. The detailed proof is provided in subsection A.1.2.

4.3. Theoretical analysis 73

Inequality for δy. We start by expanding the square:

∥yt+1 − y∗(xt+1)∥2 = ∥yt+1 − y∗(xt)∥2 + ∥y∗(xt+1) − y∗(xt)∥2

− 2⟨yt+1 − y∗(xt), y∗(xt+1) − y∗(xt)⟩

Using the strong convexity of g(x, ·) and the unbiasedness of Dt
y, we bound the first term by

E[∥yt+1 − y∗(xt)∥2] ≤ (1 − ρµG)δty + ρ2EtV ty .

The second member is bounded using Lipschitz continuity of y∗:

E[∥y∗(xt+1) − y∗(xt)∥2] ≤ L2
∗γ

2V tx .

For the remaining scalar product, we have

−2⟨yt+1 − y∗(xt), y∗(xt+1) − y∗(xt)⟩ = −2[⟨yt − y∗(xt), y∗(xt+1) − y∗(xt)⟩ − ρ⟨Dt
y, y

∗(xt+1) − y∗(xt)⟩] .

The second term can be bounded using the Cauchy-Schwarz inequality, the Lipschitz-continuity of
y∗, and Young inequality:

E[ρ⟨Dt
y, y

∗(xt+1) − y∗(xt)⟩] ≤ ρ2

2 V
t
y + L2

∗
γ2

2 V
t
x .

For −2⟨yt−y∗(xt), y∗(xt+1)−y∗(xt)⟩, we follow the proof of Chen et al. (2021) which consists in making
appear the "unbiased part of y∗(xt+1) − y∗(xt) by a linear approximation. More precisely, we have

⟨yt − y∗(xt), y∗(xt+1) − y∗(xt)⟩ = ⟨yt − y∗(xt),dy∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
A

⟨yt − y∗(xt), y∗(xt+1) − y∗(xt) − dy∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
B

.

For A, we use the unbiasedness of Dt
x, Cauchy-Schwarz inequality, the Lipschitz continuity of y∗

(Lemma A.1) and the identity ab ≤ ηa2 + b2

η for a suitable choice of η > 0:

−2E[A] = −2γE[⟨yt − y∗(xt),dy∗(xt)Dx(yt, vt, xt)⟩]
≤ 2L∗γE[∥yt − y∗(xt)∥∥Dx(yt, vt, xt)∥]

≤ ρµG
2 δty + 8L2

∗
µG

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

For B, we use Cauchy-Schwarz inequality, the smoothness of y∗ (Lemma A.2), Young inequality and
the boundedness of Et[∥Dt

x∥2] to get

−2E[B] ≤ 2E[∥yt − y∗(xt)∥∥y∗(xt+1) − y∗(xt) − dy∗(xt)(xt+1 − xt)∥]
≤ LyxE[∥yt − y∗(xt)∥∥xt+1 − xt∥2]

≤ LyxνE[∥yt − y∗(xt)∥2∥xt+1 − xt∥2] + Lyx
ν

E[∥xt+1 − xt∥2]

≤
L2
yxB

2
xγ

2

L2
∗

δty + L2
∗γ

2V tx .

Putting all together yields the final result

4.3. Theoretical analysis 74

Inequality for δv. The proof for δv is similar to the one for δy. The difference leans on the fact that
we have to take care of the difference between v∗(xt; yt) and v∗(xt). This difference is controlled by δty,
which explains the appearance of this term in the final inequality.

We insist that this result is obtained in general for Algorithm 5 with arbitrary unbiased directions. We
can, therefore, invoke this lemma for the analysis of both SOBA and SABA.

We use the smoothness of Φ to get the following lemma, which is similar to (Chen et al., 2021, Lemma
1).

Lemma 4.3. Let Φt = E[Φ(xt)] and gt = E[∥∇Φ(xt)∥2]. We have

Φt+1 ≤ Φt − γ

2 g
t − γ

2E[∥Dx(yt, vt, xt)∥2] + γ

2L
2
x(δty + δtv) + LΦ

2 γ2V tx . (4.9)

Proof. We use smoothness of Φ to get

Φ(xt+1) ≤ Φ(xt) − γ⟨Dt
x,∇Φ(xt)⟩ + LΦ

2 γ2∥Dt
x∥2

Then, we take the expectation conditionally to the past iterate and use the unbiasedness of Dt
x to

obtain

Et[Φ(xt+1)] ≤ Φ(xt) − γ⟨Dx(yt, vt, xt),∇Φ(xt)⟩ + LΦ

2 γ2Et[∥Dt
x∥2]

≤ Φ(xt) − γ

2 (∥∇Φ(xt)∥2 + ∥Dx(yt, vt, xt)∥2 − ∥∇Φ(xt) −Dx(yt, vt, xt)∥2)

+ LΦ

2 γ2Et[∥Dt
x∥2]

where the last inequality comes from the identity ⟨a, b⟩ = 1
2 (∥a∥2 + ∥b∥2 − ∥a − b∥)2. We take the total

expectation and use the previous Lemma 4.1 to get

Φt+1 ≤ Φt − γ

2 g
t − γ

2E[∥Dx(yt, vt, xt)∥2] + γL2
x

2 (δty + δtv) + LΦ

2 γ2V tx (4.10)

If yt = y∗(xt), vt = v∗(xt), that is δy, δv both cancel and Dx(yt, vt, xt) = ∇Φ(xt), we get an inequality
reminiscent of the smoothness inequality for SGD on Φ.

4.3.3 Analysis of SOBA

The analysis of SOBA is based on Lemmas 4.2 and 4.3. We have the following theorem, with fixed step
sizes depending on the number of iterations:

Theorem 4.1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that Assump-
tions 4.1 to 4.5 hold. We consider fixed steps ρt = ρ√

T
and γt = ξρt with ρ and ξ precised in the appendix.

Let (xt)t≥1 the sequence of outer iterates for SOBA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O(T− 1
2) .

As opposed to Hong et al. (2023), we do not need that the ratio γ
ρ goes to 0, which allows getting a

complexity (that is, the number of calls to oracles to have an ϵ-stationary solution) in O(ϵ−2) better
than the Õ(ϵ− 5

2) they have. Also, note that this rate is the same as the one of SGD for non-convex
single-level problems.

4.3. Theoretical analysis 75

Proof sketch. The detailed proof is provided in subsection A.1.3.

The proof is a Lyapunov analysis. We consider the following Lyapunov function

Lt = Φt + ϕyδ
t
y + ϕvδ

t
v (4.11)

where ϕy and ϕv are positive constants to be chosen. For SOBA, the inequalities in Lemma 4.2 take the
following form for small enough step sizes

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2ρ2B2

y + βyxγ
2B2

x + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 2βvyρδty + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(yt, vt, xt)∥2] .

(4.12)

(4.13)

Let ϕ′
y = ϕy

γ
ρ and ϕ′

v = ϕv
γ
ρ . From Lemma 4.3 and using Equations (4.12) and (4.13) with small enough

constants ϕ′
y, ϕ′

v, γ and ρ yields

Lt+1 − Lt ≤ −γ

2 g
t + LΦ

2 B2
xγ

2 +
(
ϕ′
yβyx + ϕ′

vβvx
)
B2
xργ + 2

(
ϕ′
yB

2
y + ϕ′

vB
2
v

) ρ3

γ
. (4.14)

Then, summing and telescoping yields the result.

We obtain a similar rate using decreasing step sizes:

Theorem 4.2 (Convergence of SOBA, decreasing step size). Assume that Assumptions 4.1 to 4.5 hold.
We consider steps ρt = ρt−

1
2 and γt = ξρ. Let xt the sequence of outer iterates for SOBA. Then,

inf
t≤T

E[∥∇Φ(xt)∥2] = O(log(T)T− 1
2) .

Proof sketch. The detailed proof is provided in subsection A.1.4.

With the Lyapunov function given by Equation (4.11), Equation (4.14) is still valid for suitable choices
of the different constants.

We lower bound
∑T
t=1 γ

tgt by inft∈[T] g
tγT and we upper bound

∑T
t=1(γt)2 by C(1 + log(T)) for some

constant C > 0.

Then, summing and rearranging Equation (4.14) and using the previous bounds give the result.

As for SGD, SOBA suffers from the need of decreasing step sizes to get actual convergence because of
the variance of the estimation on each directions.

On the other hand, the analysis of SABA leverages the dynamic of all three variables, resulting in fast
convergence with fixed step sizes.

4.3.4 SABA: a stochastic method with optimal rates

In what follows, we denote N = n + m the total number of samples. The following theorem shows
the O(N 2

3T−1) convergence for the SABA algorithm in the general case where we only assume smooth-
ness of Φ. Our analysis of SABA is inspired by the analysis of single-level SAGA by Reddi et al. (2016).

Theorem 4.3 (Convergence of SABA, smooth case). Assume that Assumptions 4.1 to 4.3 and 4.5 to 4.6
hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on f and g and are specified in
appendix. Let xt the iterates of SABA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O
(
N

2
3T−1

)
.

4.3. Theoretical analysis 76

Proof sketch. The detailed proof is provided in subsection A.1.5.

In short, the main difference with the SOBA proof is that we have to control the variance of the es-
timate of the directions Dt

y, Dt
v and Dt

x. This is done by controlling the distance from the memory to
the current variables. We denote for indices i ∈ [n] and j ∈ [m] we denote (yti , vti , xti) and (y′t

j , v
′t
j , x

′t
j)

the memories for each variable corresponding respectively to calls to g and f . We define

Ety = 1
n

n∑
i=1

E[∥yt − yti∥2], Etv = 1
n

n∑
i=1

E[∥vt − vti∥2], Etx = 1
n

n∑
i=1

E[∥xt − xti∥2]

E′t
y = 1

m

m∑
j=1

E[∥yt − y′t
j ∥2], E′t

v = 1
m

m∑
j=1

E[∥vt − v′t
j ∥2], E′t

x = 1
m

m∑
j=1

E[∥xt − x′t
j ∥2] .

These quantify the error between the iterates and their respective memories. We show in Lemma A.5
that we have the inequality

Et+1
y ≤

(
1 − 1

2n

)
Ety + ρ2E[∥Dt

y∥2] + 2nρ2E[∥Dy(yt, vt, xt)∥2]

and similar inequalities for Etv, Etx, E′t
y , E′t

v and E′t
x .

In a second step, we prove in Lemma A.6 the control of the variance by the memory error and the
quantities δty and δtv:

E[∥Dt
y∥2] ≤ 2L2

yδ
t
y + 2L′

yS
t ,

E[∥Dt
v∥2] ≤ 2(L2

v + L′′
y)(δty + δtv) + 2L′

vS
t ,

E[∥Dt
x∥2] ≤ 2E[∥Dx(yt, vt, xt)∥2] + 2L′′

x(δty + δtv) + 2L′
xS

t

where St = Ety + Etv + Etx + E′t
y + E′t

v + E′t
x and Ly, L′

y, L
′′
y , Lv, L

′
v, L

′′
v , Lx, L

′
x are constants.

From the previous inequalities, we derive a control on the sum of the memory errors St

St+1 ≤
(

1 − Γ
2

)
St + βsyρ

2δty + βsvρ
2 + Pγ2E[∥Dx(yt, vt, xt)∥2] . (4.15)

Then, the control of the variances enables us to get a modified version of the descent lemmas 4.2 and
4.3

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2L′′

xβyxγ
2δtv + 5L′

yρ
2St + 2βyx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] ,

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 3βvyρδty + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] ,

Φt+1 ≤ Φt − γ

2 g
t − γ

4E[∥Dx(yt, vt, xt)∥2] + L2
xγ(δty + δtv) + LΦL

′
xγ

2St .

(4.16)

(4.17)

(4.18)

Finally, we define the Lyapunov function

Lt = Φt + ϕsS
t + ϕyδ

t
y + ϕvδ

t
v .

We use Equations (4.15) to (4.18) to upper bound Lt+1 in function of the quantities St, δty, δtv, Φt, gt

and E[∥Dx(yt, vt, xt)∥2]. Then, we show that under appropriate choices of step sizes and constants ϕs,
ϕy, ϕv, we have

Lt+1 − Lt ≤ −γ

2 g
t .

Finally, summing, telescoping and rearranging yield the result.

4.3. Theoretical analysis 77

Note that the step sizes are constant with respect to the time, but they scale with N− 2
3 . As a conse-

quence, the sample complexity is O(N 2
3 ϵ−1) which is analogous to the one of SAGA for non-convex

single-level problems (Reddi et al., 2016). This is better than the sample complexity of Algorithm 5
with full batch directions, which is O(Nϵ−1). Hence, with SABA, we get the best of both worlds: the
stochasticity makes the scaling in N of the sample complexity going from N in full batch mode to N

2
3

for SABA, and the variance reduction makes the scaling in ϵ goes from ϵ−2 for SOBA to ϵ−1 for SABA.
Our experiments in Section 4.4 confirm this gain.

Furthermore, if we assume that Φ satisfies a Polyak-Łojasiewicz (PL) inequality, we recover linear con-
vergence. Recall that Φ has the PL property if there exists µΦ > 0 such that for all x ∈ Rdx ,

1
2∥∇Φ(x)∥2 ≥ µΦ(Φ(x) − Φ∗)

with Φ∗ the minimum of Φ.

Theorem 4.4 (Convergence of SABA, PL case). Assume that Φ satisfies the PL inequality and that As-
sumptions 4.1 to 4.3 and 4.5 to 4.6 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ′N−1, where ρ′ and ξ depend
only on f and g and are specified in appendix. Let xt the iterates of SABA and c′ ≜ min

(
µΦ,

1
16P ′

)
with

P ′ specified in the appendix. Then,

E[ΦT] − Φ∗ = (1 − c′γ)T (Φ0 − Φ∗ + C0)

where C0 is a constant specified in appendix that depends on the initialization of y, v, x and memory.

Proof sketch. The detailed proof is provided in subsection A.1.6.

The proof is similar to that of the previous theorem: we find coefficients ϕs, ϕy, ϕv such that

Lt = Φt + ϕsS
t + ϕyδ

t
y + ϕvδ

t
v

satisfies the inequality

Lt+1 ≤ (1 − c′γ)Lt ,

which is then unrolled.

Note that in the case where we initialize y and v with y0 = y∗(x0), v0 = v∗(x0), and the memories w0
i =

w0, w̃0
j = w0 for all i, j, the constant C0 cancels and the bound simplifies to

E[Φ(xT)] − Φ∗ ≤ (1 − c′γ)T (Φ(x0) − Φ∗) .

Just like classical variance reduction methods in single-level optimization, this theorem shows that
our method achieves linear convergence under PL assumption on the value function. To the best of
our knowledge, our method is the first stochastic bilevel optimization method that enjoys such prop-
erty. We note that the PL hypothesis is more general than µΦ-strong convexity of Φ – it is a necessary
condition for strong convexity.

We see here the importance of global variance reduction. Indeed, using variance reduction only on y
and SGD on x would lead to sub-linear convergence in x. This would be the case even with a perfect
estimation of y∗(x). Similarly, using variance reduction only on x and SGD on y would lead to sub-
linear convergence in y, and hence in x. Using global variance reduction with respect to each variable,
as we propose here, is the only way to achieve linear convergence. We now turn to experiments, where
we find that our method is also promising from a practical point of view.

4.4. Experiments 78

4.4 Experiments

Here we compare the performances of SOBA and SABA with competitor methods on different tasks.

The different methods being compared are stocBiO (Ji et al., 2021), AmiGO (Arbel and Mairal, 2022a),
FSLA (Li et al., 2022), MRBO (Yang et al., 2021), TTSA (Hong et al., 2023), BSA (Ghadimi and Wang,
2018) and SUSTAIN (Khanduri et al., 2021). 1

4.4.1 Hyperparameters selection

The first task we perform is hyperparameters selection to choose regularization parameters on ℓ2 lo-
gistic regression. Let us denote ((dtrain

i , ytrain
i))1≤i≤n and ((dval

i , yval
i))1≤i≤m the training and the valida-

tion sets. In this case, the inner variable θ corresponds to the parameters of the model, and the outer
variable λ to the regularization. The functions f and g of the problem (4.1) are the logistic loss, with ℓ2

penalty for g, that is to say

f(λ, θ) = 1
m

m∑
i=1

φ(yval
i ⟨dval

i , θ⟩)

and

g(λ, θ) = 1
n

n∑
i=1

φ(ytrain
i ⟨dtrain

i , θ⟩) + 1
2

p∑
k=1

eλkθ2
k

whereφ(u) = log(1+e−u). We fit a binary classification model on the IJCNN12 dataset. Here, n = 49 990,
m = 91 701 and p = 22. Note that the parametrization in eλ of the penalty instead of λ can be surprising
at first glance, but it is classical in the bilevel optimization literature (Pedregosa, 2016; Ji et al., 2021;
Grazzi et al., 2021) because it avoids positivity constraints on λ.

The suboptimality gap is plotted in figure 4.2 for each method. The lowest values are reached by SABA.
Moreover, SABA is the only single-loop method that reaches a suboptimality below 10−3. SOBA reaches
a quite high final value but slightly better than TTSA and FSLA. The gap between SOBA and SABA
highlights the benefits of variance reduction: it gives us a lower plateau and the fixed step sizes enable
faster convergence.

100 200 300 400
Time [sec]

10− 4

10− 3

10− 2

10− 1

O
pt
im
al
ity
h(
xt
)−
h∗

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure 4.2: Comparison of SOBA and SABA with other stochastic bilevel optimization methods. For
each algorithm, we plot the median performance over 10 runs. The shaded area corresponds to the
performances between the 20% and the 80% percentiles. We observe that SABA achieves the best
performance. The dashed lines are for one-loop competitor methods, the dotted lines are for two-
loop methods, and the solid lines are the proposed methods.

4.4.2 Data hypercleaning

The second task we perform is data hypercleaning introduced by Franceschi et al. (2017) on the MNIST3

dataset. The data is patitioned into a training set (dtrain
i , ytrain

i), a validation set (dval
i , yval

i), and a test

1The code of the benchmark is available at https://github.com/benchopt/benchmark_bilevel and the
results are displayed in https://benchopt.github.io/results/benchmark_bilevel.html.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
3http://yann.lecun.com/exdb/mnist/

https://github.com/benchopt/benchmark_bilevel
https://benchopt.github.io/results/benchmark_bilevel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://yann.lecun.com/exdb/mnist/

4.4. Experiments 79

set. The training set contains 20000 samples, the validation set 5000 samples and the test set 10000
samples. The targets y take values in {0, . . . , 9} and the samples x are in dimension 784. Each sample
in the training set is corrupted with probability p: a sample is corrupted when we replace its label yi
by a random label in {0, . . . , 9}. Samples in the validation and test sets are not corrupted. The goal of
datacleaning is to train a multinomial logistic regression on the train set and learn a weight per train-
ing sample, that should go to 0 for corrupted samples. This is formalized by the bilevel optimization
problem (4.1) with

f(λ, θ) = 1
m

m∑
i=1

ℓ(θdval
i , yval

i)

and

f(λ, θ) = 1
n

n∑
i=1

σ(λi)ℓ(θdtrain
i , ytrain

i) + Cr∥θ∥2

where ℓ is the cross entropy loss and σ is the sigmoid function. The inner variable θ is a matrix of size
10 × 784, and the outer variable λ is a vector in dimension ntrain = 20000.

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(a) p = 0.5

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(b) p = 0.7

10−1 100 101 102 103

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(c) p = 0.9

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SABA

SOBA

SOBA FULL BATCH

Figure 4.3: Datacleaning experiment, with different corruption probability (higher means that more
data are contaminated). For each plot, we report the median test error over 10 runs. The shaded area
corresponds to the performance between the 20% and the 80% percentiles.

For the estimated parameters θ during optimization, we report in figure 4.3 the test error, i.e., the
percent of wrong predictions on the testing data. We use for this experiment a corruption probability
p ∈ {0.5, 0.7, 0.9}. In general, the error decreases quickly until it reaches a final value. We observe that
our method SABA outperforms all the other methods by reaching faster its smallest error, which is
smaller than the ones of the other methods. For SOBA, it reaches a lower final error than stocBiO and
BSA. Overall, we find that among all methods, even those that implement variance reduction (that is
FSLA, MRBO, SUSTAIN, SABA), SABA is the one that demonstrates the best empirical performance.

4.4.3 Implementation details

All the experiments are performed with Python, using the package Benchopt (Moreau et al., 2022) and
Numba (Lam et al., 2015) for fast implementation of stochastic methods. For each problem, we use
oracles for a function given function f that (f(x, y),∇yf(z, x),∇2

yyf(x, y)v,∇2
21f(x, y)v) avoiding du-

plicate computation of intermediate results for these quantities.

We find that using mini-batches instead of individual samples to compute the stochastic estimates
allowed for much faster computations, thanks to hardware acceleration and vectorization of the com-
putations. We use continuous batches to avoid random memory access that slows down the compu-
tations. Concretely, if ib is the index of the current batch and B is the batch size, the indices of the
corresponding samples are those in the set {ib × B, . . . , (ib + 1) × B − 1}. By doing so, the samples
in the same batch are contiguous in memory, which facilitates access. We use a batch size of 64 in all
experiments.

4.5. Conclusion 80

For the methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps at each
outer iteration as proposed in the papers which introduced these methods. For the approximate Hes-
sian vector product, we perform 10 steps per outer iteration for each methods using HIA (BSA, TTSA,
SUSTAIN), SHIA (MRBO, stocBiO) or SGD (AmIGO) for the inversion of the linear system.

For the step sizes, they all have the form ρt = α/ta and γt = β/tb. For the pair of exponents (a, b), we
choose the theoretical one from the original papers, that is (1/2, 1/2) for BSA and FSLA, (1/3, 1/3) for
MRBO and SUSTAIN, (0, 0) for SABA, AmIGO and stocBiO, (2/5, 3/5) for TTSA and SOBA. For (α, β), we
perform a grid search, and we keep for each method, the pair (α, β) that gives the lowest value of Φ (for
the hyperparameters) or the lowest test error (for the data cleaning task) in median over 10 runs for
each possible pair. When we use HIA or SHIA for the Hessian inversion, we set η = α since the Hessian
inversion problem has the same conditioning as the inner optimization problem. For the STORM’s
momentum parameter in MRBO and SUSTAIN, we take 0.5/t2/3.

For the grid search of the hyperparameter selection experiment, we search α in a set of 9 values be-
tween 2−5 and 23 spaced on a log scale. For β, we choose r in a set of 7 values between 10−2 and 10
spaced on a logarithmic scale and we set β = α

r . For this experiment, we use Just-In-Time (JIT) compi-
lation thanks to the package Numba (Lam et al., 2015), to decrease the python overhead in the iteration
loop. To evaluate the value function Φ, we use L-BFGS (Liu and Nocedal, 1989) to solve compute y∗(xt)
and then evaluate the function Φ(xt) = f(xt, y∗(xt)).

For the datacleaning experiment, the parameter α is picked in a set of 11 numbers between 10−3 and
100 spaced on a logarithmic scale. For β, we choose r in a set of 11 values between 10−5 and 1 spaced
on a logarithmic scale and we set β = α

r . For the regularization parameterCr, we chooseCr = 0.2 after
a manual search in order to get the best final test accuracy. Note that in this case, we could not use JIT
from Numba since at the moment of the experiment, the softmax function coming from Scipy was not
compatible with Numba.

4.5 Conclusion

In this chapter, we have presented a framework for bilevel optimization that enables the straightfor-
ward development of stochastic algorithms. The gist of our framework is that the directions in Equa-
tions (4.4)a, (4.4)b, and (4.4)c are all written as simple sums of sample derivatives. We leveraged this
fact to propose SOBA, an extension of SGD to our framework, and SABA, an extension of SAGA to our
framework, which both achieve similar convergence rates as their single-level counterparts. Finally,
we think that our framework opens a large panel of potential methods for stochastic bilevel optimiza-
tion involving techniques of extrapolation, variance reduction, momentum, and so on.

CHAPTER A

APPENDIX TO A FRAMEWORK FOR BILEVEL OPTIMIZATION THAT
ENABLES STOCHASTIC AND GLOBAL VARIANCE REDUCTION

ALGORITHMS

Section A.1 contains the proofs of the analysis of SOBA and SABA that are not include in the main
text. Section A.2 provides convergence rates of SOBA and SABA algorithms if we only assume that the
outer function f is differentiable and smooth (instead of twice differentiable with Lipschitz continuous
Hessians and gradients) and the inner function g is twice differentiable with Lipschitz continuous
derivatives (instead of three times differentiable).

A.1 Proofs

A.1.1 Lemmas on the regularity of y∗ and v∗

We start by showing the Lipschitz continuity of y∗ and v∗.

Lemma A.1. There exists a constant L∗ > 0 such that for any x1, x2 ∈ Rdx we have

∥y∗(x1) − y∗(x2)∥ ≤ L∗∥x1 − x2∥, ∥v∗(x1) − v∗(x2)∥ ≤ L∗∥x1 − x2∥ .

Proof. Let x ∈ Rdx . The Jacobian of y∗ is given by dy∗(x) = −[∇2
yyg(x, y∗(x))]−1∇2

yxg(x, y∗(x)). Thanks

to the µg-strong convexity of g and the fact that ∇2
21G is bounded, we have ∥dy∗(x)∥ ≤ Lg,1

µg
. Thus, y∗

is Lipschitz continuous.

For ∥v∗(x1) − v∗(x2)∥, we start from the definition v∗:

∥v∗(x1) − v∗(x2)∥ = ∥[∇2
yyg(x1, y

∗(x1))]−1∇yf(x1, y
∗(x1)) − [∇2

yyg(x2, y
∗(x2))]−1∇yf(x2, y

∗(x2))∥
≤ ∥([∇2

yyg(x1, y
∗(x1))]−1 − [∇2

yyg(x2, y
∗(x2))]−1∇yf(x1, y

∗(x1))∥
+ ∥[∇2

yyg(x2, y
∗(x2))]−1(∇yf(x2, y

∗(x2)) − ∇yf(x1, y
∗(x1)))∥ .

For the first term, we use that for any invertible matrixA andB we haveA−1 −B−1 = A−1(B−A)B−1

to get

81

A.1. Proofs 82

∥[∇2
yyg(x1, y

∗(x1))]−1 − ∇2
yyg(x2, y

∗(x2))]−1∥ = ∥[∇2
yyg(x1, y

∗(x1))]−1(∇2
yyg(x2, y

∗(x2))]−
∇2
yyg(x1, y

∗(x1))])[∇2
yyg(x2, y

∗(x2))]−1∥

≤ 1
µ2
g

∥∇2
yyg(x1, y

∗(x1)) − ∇2
yyg(x2, y

∗(x2))∥

≤ Lg,2
µ2
g

∥(x1, y
∗(x1)) − (y∗(x2), x2)∥

≤ Lg,2
µ2
g

[∥y∗(x1) − y∗(x2)∥ + ∥x1 − x2∥]

≤ Lg,2
µ2
g

[
1 + Lg,1

µg

]
∥x1 − x2∥ .

And then, since ∇yf(· , y∗(·)) is bounded:∥∥([∇2
yyg(x1, y

∗(x1))]−1 − [∇2
yyg(x2, y

∗(x2))]−1∇yf(x1, y
∗(x1))

∥∥ ≤ CfLg,2
µ2
g

[
1 + Lg,1

µg

]
∥x1 − x2∥ .

For the second term, the strong convexity of g(· , x) and the fact that ∇yf is Lipschitz continuous lead
to

∥[∇2
yyg(x2, y

∗(x2))]−1(∇yf(x2, y
∗(x2)) − ∇yf(x1, y

∗(x1)))∥ ≤ 1
µg

∥∇yf(x2, y
∗(x2)) − ∇yf(x1, y

∗(x1))∥

≤ Lf,1
µF

∥(x1, y
∗(x1)) − (y∗(x2), x2)∥

≤ Lf,1
µg

[∥y∗(x1) − y∗(x2)∥ + ∥x1 − x2∥]

≤ Lf,1
µg

[
1 + Lg,1

µg

]
∥x1 − x2∥ .

Then we get

∥v∗(x1) − v∗(x2)∥ ≤
[
CfLg,2
µ2
g

[
1 + Lg,1

µg

]
+ Lf,1

µg

[
1 + Lg,1

µg

]]
∥x1 − x2∥ .

We conclude by setting

L∗ = max
(
Lg,1
µg

,
CfLg,2
µ2
g

[
1 + Lg,1

µg

]
+ Lf,1

µg

[
1 + Lg,1

µg

])
.

In what follows, we denote by Et[·] the expectation conditionally on yt, vt and xt.

We have the smoothness property of y∗ provided in (Chen et al., 2021, Lemma 2).

Lemma A.2. Under the Assumptions 4.1, 4.2 and 4.3, the function y∗ : Rdx → Rdy is Lyx-smooth with

Lyx = Lg,2(1 + L∗)
µg

+ Lg,1Lg,2(1 + L∗)
µ2
g

.

We establish the same result for v∗. To this, we need more regularity on g and f .

Lemma A.3. The function v∗ : Rdx → Rdy is differentiable and its differential is defined for any x, ϵ ∈
Rdx by:

dv∗(x).ϵ = [∇2
yyg(x, y∗(x))]−1[∇2

yyf(x, y∗(x))dy∗(x).ϵ+ ∇2
yxf(x, y∗(x)).ϵ]

− [∇2
yyg(x, y∗(x))]−1[(∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ)]

× [∇2
yyg(x, y∗(x))]−1∇yf(x, y∗(x))

(A.1)

A.1. Proofs 83

where for any z, α ∈ Rdy and x ∈ Rdx , (∇3
yyyg(x, y)|α) ∈ Rdy×dy is defined by

(∇3
yyyg(x, y)|α) =

[
p∑
k=1

∂3g

∂yi∂yj∂yk
(z, x)αk

]
1≤i,j≤dy

and for any β ∈ Rdx , (∇3
yyxg(x, y)|β) ∈ Rdy×dy is defined by

(∇3
yyxg(x, y)|β) =

[
p∑
k=1

∂3g

∂yi∂yj∂xk
(z, x)βk

]
1≤i,j≤dy

.

Moreover, dv∗ is Lvx-Lipschitz continuous.

Proof. Let x, ϵ ∈ Rdx . Using the differentiability of ∇2
yyg, ∇yf and of the matrix inversion, we have

v∗(x+ ϵ) = [∇2
yyg(y∗(x+ ϵ), x+ ϵ)]−1∇yf(y∗(x+ ϵ), ϵ)

= [∇2
yyg(x, y∗(x)) + (∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ) + o(∥ϵ∥)]−1

× (∇yf(x, y∗(x)) + ∇2
yyf(x, y∗(x))dy∗(x).ϵ+ ∇2

yxf(x, y∗(x))ϵ+ o(∥ϵ∥))
=
{

[∇2
yyg(x, y∗(x))]−1

−[∇2
yyg(x, y∗(x))]−1[(∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ)]

×[∇2
yyg(x, y∗(x))]−1 + o(∥ϵ∥)

}
× (∇yf(x, y∗(x)) + ∇2

yyf(x, y∗(x))dy∗(x).ϵ+ ∇2
yxf(x, y∗(x))ϵ+ o(∥ϵ∥))

= v∗(x) + [∇2
yyg(x, y∗(x))]−1[∇2

yyf(x, y∗(x))dy∗(x).ϵ+ ∇2
yxf(x, y∗(x)).ϵ]

− [∇2
yyg(x, y∗(x))]−1[(∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ)][∇2

yyg(x, y∗(x))]−1

× ∇yf(x, y∗(x)) + o(∥ϵ∥)

that proves (A.1). Now, let x, x′, ϵ ∈ Rdx with ∥ϵ∥ = 1. Let us denote

A(x, ϵ) = −[∇2
yyg(x, y∗(x))]−1[(∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ)][∇2

yyg(x, y∗(x))]−1

and
B(x, ϵ) = ∇2

yyf(x, y∗(x))dy∗(x).ϵ+ ∇2
yxf(x, y∗(x))

so that dv∗(x).ϵ = [∇2
yyg(x, y∗(x))]−1B(x, ϵ) +A(x, ϵ)∇yf(x, y∗(x)). We have

(dv∗(x) − dv∗(x′)).ϵ = [∇2
yyg(x, y∗(x))]−1B(x, ϵ) +A(x, ϵ)∇yf(x, y∗(x))
− [∇2

yyg(x′, y∗(x′))]−1B(x′, ϵ) −A(x′, ϵ)∇yf(x′, y∗(x′))
= [∇2

yyg(x, y∗(x))]−1(B(x, ϵ) −B(x′, ϵ))
+ ([∇2

yyg(x, y∗(x))]−1 − [∇2
yyg(x′, y∗(x′))]−1)B(x′, ϵ)

+A(x, ϵ)(∇yf(x, y∗(x)) − ∇yf(x′, y∗(x′)))
+ (A(x, ϵ) −A(x′, ϵ))∇yf(x′, y∗(x′)) .

We can now bound each term using the regularity assumptions on g and f :

∥[∇2
yyg(x, y∗(x))]−1(B(x, ϵ) −B(x′, ϵ))∥ ≤ 1

µ g
(∥∇2

yyf(x, y∗(x))dy∗(x) − ∇2
yyf(x′, y∗(x′))dy∗(x′)∥

+ ∥∇2
yxf(x, y∗(x)) − ∇2

yxf(x′, y∗(x′))∥)

≤ 1
µ g

(∥∇2
yyf(x, y∗(x)) − ∇2

yyf(x′, y∗(x′))∥∥dy∗(x)∥

+ ∥dy∗(x) − dy∗(x′)∥∥∇2
yyf(x′, y∗(x′))∥

+ Lf,2(∥y∗(x) − y∗(x′)∥ + ∥x− x′∥)

≤ 1
µ g

(Lf,2L∗(1 + L∗) + LyxLf,1 + Lf,2(1 + L∗))∥x− x′∥ .

A.1. Proofs 84

For the second term:

∥([∇2
yyg(x, y∗(x))]−1 − [∇2

yyg(x′, y∗(x′))]−1)B(x′, ϵ)∥

≤ 1
µ2
g

∥∇2
yyg(x, y∗(x)) − ∇2

yyg(x′, y∗(x′))∥∥B(x′, ϵ)∥

≤ 1
µ2
g

∥∇2
yyg(x, y∗(x)) − ∇2

yyg(x′, y∗(x′))∥

× (∥∇2
yyf(x, y∗(x))∥∥dy∗(x)∥ + ∥∇2

yxf(x, y∗(x))∥)

≤ (Lg,2 + Lf,1)(L∗ + 1)
µ2
g

∥x− x′∥ .

For the third term, we have:

∥A(x, ϵ)(∇yf(x, y∗(x)) − ∇yf(x′, y∗(x′)))∥ ≤ Lf,1(1 + L∗)
µ2
g

∥(∇3
yyyg(x, y∗(x))|dy∗(x).ϵ)

+ (∇3
yyxg(x, y∗(x))|ϵ)∥∥x− x′∥

≤ (Lf,1 + Lg,2)(1 + L∗)
µ2
g

∥x− x′∥ .

And finally, for the forth term:

∥(A(x, ϵ) −A(x′, ϵ))∇yf(x, y∗(x))∥ ≤ Cf{∥[∇2
yyg(x, y∗(x))]−1∥

× ∥(∇3
yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3

yyxg(x, y∗(x))|ϵ)∥
× ∥[∇2

yyg(x, y∗(x))]−1 − [∇2
yyg(x′, y∗(x′))]−1∥

+ ∥[∇2
yyg(x, y∗(x))]−1 − [∇2

yyg(x′, y∗(x′))]−1∥
× ∥(∇3

yyyg(x, y∗(x))|dy∗(x).ϵ) + (∇3
yyxg(x, y∗(x))|ϵ)∥

× ∥[∇2
yyg(x′, y∗(x′))]−1∥

+ ∥[∇2
yyg(x′, y∗(x′))]−1∥2

× (∥(∇3
yyyg(x, y∗(x))|dy∗(x).ϵ) − (∇3

yyyg(x′, y∗(x′))|dy∗(x′).ϵ)∥
∥(∇3

yyxg(x, y∗(x))|ϵ) − (∇3
yyxg(x′, y∗(x′))|ϵ)∥)}

≤ Cf

{
22Lg,2(1 + L∗)

µ3
g

+ Lg,3(1 + L∗)
µ2
g

}
∥x− x′∥

Thus v∗ is Lvx-smooth with

Lvx = Lf,2L∗(1 + L∗) + LyxLf,1 + Lf,2(1 + L∗)
µg

+ 2(Lg,2 + Lf,1)(L∗ + 1)
µ2
g

+ CfLg,3(1 + L∗)
µ2
g

+ 4CfLg,2(1 + L∗)
µ3
g

.

A.1.2 Proof of Lemma 4.2

We now provide the proof of Lemma 4.2.

Proof. Inequality for δy.

We start by expanding the square:

∥yt+1 − y∗(xt+1)∥2 = ∥yt+1 − y∗(xt)∥2 + ∥y∗(xt+1) − y∗(xt)∥2

− 2⟨yt+1 − y∗(xt), y∗(xt+1) − y∗(xt)⟩
(A.2)

A.1. Proofs 85

We study each member, using the unbiasedness of Dt
z and the µg−strong convexity of g(· , xt):

Et[∥yt+1 − y∗(xt)∥2] = Et[∥yt − y∗(xt)∥2] − 2ρEt[⟨Dt
z, y

t − y∗(xt)⟩] + ρ2Et[∥Dt
y∥2]

= ∥yt − y∗(xt)∥2 − 2ρ⟨∇yg(xt, yt), yt − y∗(xt)⟩ + ρ2Et[∥Dt
y∥2]

≤ (1 − ρµg)∥yt − y∗(xt)∥2 + ρ2Et[∥Dt
y∥2] .

Taking the total expectation yields

E[∥yt+1 − y∗(xt)∥2] ≤ (1 − ρµg)δty + ρ2V ty .

The second member is bounded using Lipschitz continuity of y∗:

E[∥y∗(xt+1) − y∗(xt)∥2] ≤ L2
∗E[∥xt+1 − xt∥2] = L2

∗γ
2V tx .

For the remaining scalar product, we have

−2⟨yt+1 − y∗(xt), y∗(xt+1) − y∗(xt)⟩ = −2[⟨zt − y∗(xt), y∗(xt+1) − y∗(xt)⟩ − ρ⟨Dt
z, y

∗(xt+1) − y∗(xt)⟩] .

The second term can be bounded using the Cauchy-Schwarz inequality, the Lipschitz-continuity of
y∗, and the Young inequality:

E[ρ⟨Dt
z, y

∗(xt+1) − y∗(xt)⟩] ≤ E[ρ∥Dt
z∥∥y∗(xt+1) − y∗(xt)∥]

≤ ρL∗E[∥Dt
z∥∥xt+1 − xt∥]

≤ ρ2

2 V
t
y + L2

∗
2 ∥xt+1 − xt∥2

≤ ρ2

2 V
t
y + L2

∗
γ2

2 V
t
x .

For −2⟨yt−y∗(xt), y∗(xt+1)−y∗(xt)⟩, we follow the proof of Chen et al. (2021) which consists in making
appear the "unbiased part of y∗(xt+1) − y∗(xt) by a linear approximation. More precisely, we have

⟨yt − y∗(xt), y∗(xt+1) − y∗(xt)⟩ = ⟨yt − y∗(xt),dy∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
A

⟨yt − y∗(xt), y∗(xt+1) − y∗(xt) − dy∗(xt)(xt+1 − xt)⟩︸ ︷︷ ︸
B

.

For A, we use the unbiasedness of Dt
x, Cauchy-Schwarz inequality, the Lipschitz continuity of y∗

(Lemma A.1) and the identity ab ≤ ηa2 + b2

η for any η > 0:

−2E[A] = −2γE[⟨yt − y∗(xt),dy∗(xt)Dt
x⟩]

= −2γE[⟨yt − y∗(xt),dy∗(xt)Et[Dt
x]⟩]

= −2γE[⟨yt − y∗(xt),dy∗(xt)Dx(yt, vt, xt)⟩]
≤ 2γE[∥yt − y∗(xt)∥∥dy∗(xt)Dx(yt, vt, xt)∥]
≤ 2L∗γE[∥yt − y∗(xt)∥∥Dx(yt, vt, xt)∥]

≤ 2ηδty + 2L2
∗
η
γ2E[∥Dx(yt, vt, xt)∥2] .

We take η = ρµg

4 and we get

−2E[A] ≤ ρµg
2 δty + 8L2

∗
µg

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

A.1. Proofs 86

For B, we use Cauchy-Schwarz inequality, the smoothness of y∗ (Lemma A.2), Young inequality and
the boundedness of Et[∥Dt

x∥2] to get

−2E[B] ≤ 2E[∥yt − y∗(xt)∥∥y∗(xt+1) − y∗(xt) − dy∗(xt)(xt+1 − xt)∥]
≤ LyxE[∥yt − y∗(xt)∥∥xt+1 − xt∥2]

≤ LyxνE[∥yt − y∗(xt)∥2∥xt+1 − xt∥2] + Lyx
ν

E[∥xt+1 − xt∥2]

≤ Lyxνγ
2E[∥yt − y∗(xt)∥2Et[∥Dt

x∥2]] + Lyxγ
2

ν
V tx

≤ LyxB
2
xνγ

2δty + Lyxγ
2

ν
V tx .

We take ν = Lyx

L2
∗

and we get

−2E[B] ≤
L2
yxB

2
xγ

2

L2
∗

δty + L2
∗γ

2V tx

Now, using γ2 ≤ ρµgL
2
∗

B2
xL

2
yx

, we end up with

δt+1
y ≤ (1 − ρµg

4)δty + 2ρ2V ty + βyxγ
2V tx + βyx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] , (A.3)

with βyx = 3L2
∗ and βyx = 8L2

∗
µg

.

Inequality for δv. We proceed in a similar way for v:

δt+1
v ≤ E[∥vt+1 − v∗(xt)∥2] + E[∥v∗(xt+1) − v∗(xt)∥2] − 2E[⟨vt+1 − v∗(xt), v∗(xt+1) − v∗(xt)⟩] .

For the first term, we have

Et[∥vt+1 − v∗(xt)∥2] = ∥vt − v∗(xt)∥2 − 2ρ⟨Dv(yt, vt, xt), vt − v∗(xt)⟩ + ρ2Et[∥Dt
v∥2]

Now, using that Dv(y∗(xt), v∗(xt), xt) = 0:

⟨Dv(yt, vt, xt), vt − v∗(xt)⟩ = ⟨Dv(yt, vt, xt) −Dv(y∗(xt), v∗(xt), xt), vt − v∗(xt)⟩
= ⟨∇2

yyg(xt, yt)(vt − v∗(xt)), vt − v∗(xt)⟩
+ ⟨(∇2

yyg(xt, yt) − ∇2
yyg(y∗(xt), xt))v∗(xt), vt − v∗(xt)⟩

+ ⟨(∇yf(xt, yt) − ∇1f(y∗(xt), xt)), vt − v∗(xt)⟩

≥ µg∥vt − v∗(xt)∥2 − Lg,2Cf
µg

∥yt − y∗(xt)∥∥vt − v∗(xt)∥

− Lf,1∥yt − y∗(xt)∥∥vt − v∗(xt)∥
≥ µg∥vt − v∗(xt)∥2 − ω∥yt − y∗(xt)∥∥vt − v∗(xt)∥

where ω = Lf,1 + Lg,2Cf

µg
. We then use ω∥yt−y∗(xt)∥∥vt− v∗(xt)∥ ≤ 1

2c∥v
t− v∗(xt)∥2 + ω2

2c ∥yt−y∗(xt)∥2

with c = µg to get

−⟨Dv(yt, vt, xt), vt − v∗(xt)⟩ ≤ −1
2µgδ

t
v + ω2

2µg
δty .

We get the overall inequality by taking the total expectation

E[∥vt+1 − v∗(xt)∥2] ≤
(

1 − ρµg
2

)
δtv + ρ

ω2

2µg
δty + ρ2V tv .

We also use Lipschitz on v∗ to bound the other term

E[∥v∗(xt+1) − v∗(xt)∥2] ≤ L2
∗γ

2V tx .

A.1. Proofs 87

As previously, the scalar product is bounded by:

−E[⟨vt+1 − v∗(xt), v∗(xt+1) − v∗(xt)⟩] = −E[⟨vt − v∗(xt), v∗(xt+1) − v∗(xt)⟩]
− ρE[⟨Dt

v, v
∗(xt+1) − v∗(xt)⟩]

≤ E[⟨yt − y∗(xt), v∗(xt+1) − v∗(xt)⟩] + ρ2

2 V
t
v + L2

∗
γ2

2 V
t
x

We do similar manipulations pour v∗, thanks to Lemma A.3. We have as for z from Lemma A.1 for any
η > 0:

−E[⟨vt − v∗(xt),dv∗(xt)(xt+1 − xt)⟩] ≤ ηδtv + L2
∗γ

2

η
E[∥Dx(yt, vt, xt)∥2] .

We take η = ρµg

8 and we get

−E[⟨vt − v∗(xt),dv∗(xt)(xt+1 − xt)⟩] ≤ ρµg
8 δtv + 8L2

∗γ
2

µgρ
E[∥Dx(yt, vt, xt)∥2]

Then smoothness of v∗ for any η > 0 gives us

−E[⟨vt − v∗(xt), v∗(xt+1) − v∗(xt) − dv∗(xt)(xt+1 − xt)⟩] ≤ LvxB
2
xν

2 γ2δtv + Lvx
2ν γ

2V tx .

With ν = Lvx

L2
∗

we get

−E[⟨vt − v∗(xt), v∗(xt+1) − v∗(xt) − dv∗(xt)(xt+1 − xt)⟩] ≤ L2
vxB

2
x

2L2
∗
γ2δtv + L2

∗
2 γ2V tx .

With the assumption γ2 ⩽ ρµgL
2
∗

8L2
vxB

2
x

, we get

δt+1
v ≤

(
1 − ρµg

2 + ρµg
4 + L2

vxBx
L2

∗

)
δtv + ρβvyδ

t
y + 2ρ2V ty + 3L2

∗γ
2V tx + 16L2

∗γ
2

µgρ
E[∥Dx(yt, vt, xt)∥2]

≤
(

1 − ρµg
8

)
δtv + ρβvyδ

t
y + 2ρ2V ty + 3L2

∗γ
2V tx + 16L2

∗γ
2

µgρ
E[∥Dx(yt, vt, xt)∥2] .

And finally we have

δt+1
v ≤

(
1 − ρµg

8

)
δtv + ρβvyδ

t
y + 2ρ2V ty + βvxγ

2V tx + βvx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2] (A.4)

with βvy = ω2

2µg
, βvx = 3L2

∗ and βvx = 16L2
∗γ

2

µg
.

A.1.3 Proof of Theorem 4.1

This section is devoted to the proof of Theorem 4.1 that we recall here.

Theorem 4.1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that Assump-
tions 4.1 to 4.5 hold. We consider fixed steps ρt = ρ√

T
and γt = ξρt with ρ and ξ precised in the appendix.

Let (xt)t≥1 the sequence of outer iterates for SOBA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O(T− 1
2) .

A.1. Proofs 88

The values of the different constants are

ϕ′
y = 1

8βyx
, ϕ′

v = min
(

1
8βvx

,
µgϕ

′
y

32βvy

)
, ρ = min

(
16
µg
,

µg
16L2

yB
2
y

,
µg

32L2
vB

2
v

,
βvy
L2
vB

2
v

)
,

and ξ2 = µg
4 min

[
min

(
1
L2
yx

,
1
L2
vx

)
L2

∗
B2
xρ
,min

(
ϕ′
v, ϕ

′
y

) 1
2L2

x

]
.

Before, one has to adapt our descent lemmas to the case of SOBA.

Lemma A.4. Assume that the step sizes ρ and γ verify

ρ ≤ min
(

µg
16L2

yB
2
y

,
µg

32L2
vB

2
v

,
βvy
L2
vB

2
v

)
, and γ2 ≤ min

(
ρµgL

2
∗

4B2
xL

2
yx

,
ρµgL

2
∗

8B2
xL

2
vx

)
.

Then it holds

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2ρ2B2

y + βyxγ
2B2

x + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 2βvyρδty + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(yt, vt, xt)∥2] .

Proof. From Assumption 4.4 and Lemma 4.1, we have

V ty ≤ B2
y(1 +Dy(yt, vt, xt)) ≤ B2

y(1 + L2
yδ
t
y) .

Plugging this into Equation (A.3) and using V tx ≤ B2
x yields

δt+1
y ≤

(
1 − ρµg

4 + 2L2
yB

2
yρ

2
)
δty + 2ρ2B2

y + βyxγ
2B2

x + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

Since by assumption ρ ≤ µg

16L2
yB

2
y

, we have

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2ρ2B2

y + βyxγ
2B2

x + βyx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

For δtv, Assumption 4.3 and Lemma 4.1 provide us

V tv ≤ B2
v(1 + L2

v(δty + δtv)) .

Since the assumptions of Lemma 4.2 are verified, we can plug the previous inequality into Equa-
tion (A.4) to get

δt+1
v ≤

(
1 − ρµg

8 + 2L2
vB

2
vρ

2
)
δtv + (βvyρ+ 2L2

vρ
2B2

v)δty + 2ρ2B2
v + βvxγ

2B2
x + βvxE[∥Dx(yt, vt, xt)∥2]

which can be simplified using ρ ≤ min
(

µg

32L2
vB

2
v
,
βvy

L2
vB

2
v

)
to get finally

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 2βvyρδty + 2ρ2B2

v + βvxγ
2B2

x + βvxE[∥Dx(yt, vt, xt)∥2] .

We can now prove Theorem 4.1.

Proof. Consider the Lyapunov function Lt = Φt + ϕyδ
t
y + ϕvδ

t
v. Using the Equations (4.9), (A.3) and

(A.4), we can bound Lt+1 − Lt:

Lt+1 − Lt ≤ −γ

2 g
t −
(
γ

2 − ϕyβyx
γ2

ρ
− ϕvβvx

γ2

ρ

)
E[∥Dx(yt, vt, xt)∥2]

−
(
ϕy
µg
8 ρ− L2

x

2 γ − 2ϕvβvyρ
)
δty

−
(
ϕv
µg
16ρ− L2

x

2 γ

)
δtv

+
(
LΦ

2 + ϕyβyx + ϕvβvx

)
B2
xγ

2

+ 2(ϕyB2
y + ϕvB

2
v)ρ2 .

A.1. Proofs 89

Let ϕ′
y = ϕy

γ
ρ and ϕ′

v = ϕv
γ
ρ , so that:

Lt+1 − Lt ≤ −γ

2 g
t −
(γ

2 − ϕ′
yβyxγ − ϕ′

vβvxγ
)
E[∥Dx(yt, vt, xt)∥2]

−
(
ϕ′
y

µg
8
ρ2

γ
− L2

x

2 γ − 2ϕ′
vβvy

ρ2

γ

)
δty

−
(
ϕ′
v

µg
16
ρ2

γ
− L2

x

2 γ

)
δtv

+
(
LΦ

2 + ϕ′
yβyx

ρ

γ
+ ϕvβvx

ρ

γ

)
B2
xγ

2

+ 2
(
ϕ′
yB

2
y

ρ

γ
+ ϕ′

vB
2
v

ρ

γ

)
ρ2 .

In order to get a decrease, ϕ′
y, ϕ′

v, ρ and γ must verify
ϕ′
yβyx + ϕ′

vβvx ≤ 1
2

L2
x

2 γ + 2ϕ′
vβvy

ρ2

γ ≤ ϕ′
y
µg

8
ρ2

γ
L2

x

2 γ ≤ ϕ′
v
µg

16
ρ2

γ

(A.5)

Let us take ϕ′
y = 1

8βyx

and ϕ′
v = min

(
1

8βvx

,
µgϕ

′
y

32βvy

)
. We have

ϕ′
yβyx + ϕ′

vβvx ≤ 1
4 <

1
2

and
L2
x

2 γ + 2ϕ′
vβvy

ρ2

γ
≤ L2

x

2 γ + ϕ′
y

µg
16
ρ2

γ
.

If we impose L2
x

2 γ + ϕ′
y
µg

16
ρ2

γ ≤ ϕ′
y
µg

8
ρ2

γ , this combined with the third condition in Equation (A.5) gives

the condition L2
x

2 γ
2 ≤ min

(
ϕ′
v, ϕ

′
y

) µg

16 ρ
2. We also have the conditions coming from the assumptions of

A.4, that is

ρ ≤ ρ = min
(

16
µg
,

µg
16L2

yB
2
y

,
µg

32L2
vB

2
v

,
βvy
L2
v

)
(A.6)

and γ2 ≤ min
(

1
L2

yx
, 1
L2

vx

)
µgL

2
∗

4B2
x
ρ. Let us take ρ = ρ√

T
with γ = ξρ where ξ is defined as

ξ2 ≜
µg
4 min

[
min

(
1
L2
yx

,
1
L2
vx

)
L2

∗
B2
xρ
,min

(
ϕ′
v, ϕ

′
y

) 1
2L2

x

]
. (A.7)

From now, we have

Lt+1 − Lt ≤ −γ

2 g
t + LΦ

2 B2
xγ

2 +
(
ϕ′
yβyx + ϕ′

vβvx
)
B2
xργ + 2

(
ϕ′
yB

2
y + ϕ′

vB
2
v

) ρ3

γ
. (A.8)

Summing and telescoping yields

1
T

T∑
t=1

gt ≤ 2L1

Tγ
+ LΦB

2
xγ + 2

(
ϕ′
yβyx + 2ϕ′

vβvx
)
B2
xρ+ 4

(
ϕ′
yB

2
y + ϕ′

vB
2
v

) ρ3

γ2

≤ 2L1
√
Tξρ

+ LΦB
2
x

ξα√
T

+
(
ϕ′
yβyx + 2ϕ′

vβvx
)
B2
x

α√
T

+ 4
(
ϕ′
yB

2
y + ϕ′

vB
2
v

) α

ξ2
√
T

and so

1
T

T∑
t=1

gt = O
(

1√
T

)
.

A.1. Proofs 90

A.1.4 Proof of Theorem 4.2

Proof. In the decreasing step size case, we take ρt = ρ
√
t and γt = ξρt where ρ is defined in Equa-

tion (A.6) and ξ is defined in Equation (A.7). We recall the integral majorization:

T∑
t=1

t−1 ≤ 1 +
∫ T

1
t−1dt = 1 + log(T) .

With such definition of ρt and γt, Equation (A.8) is still valid for any t ⩾ 1. The only difference is that
the step sizes decrease with t. Hence, by summing and rearranging in Equation (A.8), we get

T∑
t=1

γtgt ≤ 2L1 +
(
LΦ + 2

(
ϕ′
yβyx + 2ϕ′

vβvx
)
B2
x

1
ξ

+ 4
(
ϕ′
yB

2
y + ϕ′

vB
2
v

) 1
ξ3

) T∑
t=1

(γt)2 (A.9)

The left-hand-side in Equation (A.9) can be lower bounded by

T∑
t=1

γtgt ≥
(

inf
t∈[T]

gt
)
ξρ

T∑
t=1

t−
1
2 ≥

(
inf
t∈[T]

gt
)
ξρT

1
2 . (A.10)

Also we have
T∑
t=1

(γt)2 = ξ2ρ2
T∑
t=1

t−1 ≤ ξ2ρ2(1 + log(T)) . (A.11)

Plugging Equations (A.10) and (A.11) into Equation (A.9) and rearranging give

inf
t∈[T]

gt ≤ 2L1

ξρ
√
T

+ ξρ

(
LΦ + 2

(
ϕ′
yβyx + 2ϕ′

vβvx
)
B2
x

1
ξ

+ 4
(
ϕ′
yB

2
y + ϕ′

vB
2
v

) 1
ξ3

)
1 + log(T)√

T

that is to say

inf
t∈[T]

gt = O
(

1√
T

+ log(T)√
T

)
.

A.1.5 Proof of Theorem 4.3

In this section, we prove Theorem 4.3 that we recall here

Theorem 4.3 (Convergence of SABA, smooth case). Assume that Assumptions 4.1 to 4.3 and 4.5 to 4.6
hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on f and g and are specified in
appendix. Let xt the iterates of SABA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O
(
N

2
3T−1

)
.

The constants ρ′ and ξ are given by

ρ′ = min
(√

K1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 5
7

,

(
K4

K5

) 1
3

,
µg

64L2
y

,
βyx
2βyx

,
µg

128(L2
v + L′′

v) ,
βvy

8(L2
v + L′′

v) ,
βvx
2βvx

)

and

ξ = min(K1,K2(ρ′)− 1
2 ,K3(ρ′)− 3

2 ,K4(ρ′)−1)

where

ϕ′′
y = 1

32βyx
, ϕ′′

v = min
(

1
32βvx

, ϕ′′
y

µg
128βvy

)
,

A.1. Proofs 91

K1 = min
(√

ϕ′′
yµg

32L2
x

,

√
ϕ′′
vµg

48L2
x

,

√
L′
y

2L′
xβyx

,

√
L′
v

2L′
xβvx

)
,

K2 = min
(√

µg
64βyxL′′

x

,

√
µg

128βvxL′′
x

,

√
βvy

4L′′
xβvx

)
,

K3 =
√

ϕ′′
vµg

384ϕ′′
yL

′′
x

, K4 = min
(

1
4LΦ

,
L2
x

2LΦL′′
x

,

√
Γ′

6LΦL′
x

,
1

8P ′ ,
ϕ′′
yµg

32β′
sz

,
ϕ′′
vµg

48β′
sv

)
and

K5 =
15(ϕ′′

yL
′
y + ϕ′′

vL
′
v)

Γ′ .

Control of distance from memory to iterates

We can view our method has having two “parallel” memories for each variable (yti , vti , xti) for i ∈ [n]
corresponding to calls in g and (y′t

j , v
′t
j , x

′t
j) for j ∈ [m] corresponding to calls to f . At each itera-

tion, we sample i at random uniformly and do (yt+1
i , vt+1

i , xt+1
i) = (yt, vt, xt) and (yt+1

i′ , vt+1
i′ , xt+1

i′) =
(yti′ , vti′ , xti′) for i′ ̸= i, and similarly for the other memory.

In what follows, we focus on controlling the error between the iterates and the memories. We define
to make things simpler

Ety = 1
n

n∑
i=1

E[∥yt − yti∥2] , Etv = 1
n

n∑
i=1

E[∥vt − vti∥2] , Etx = 1
n

n∑
i=1

E[∥xt − xti∥2] ,

and similarly E′t
x , E

′t
v and E′t

x .

Lemma A.5. We have the following inequalities:

Et+1
y ≤

(
1 − 1

2n

)
Ety + ρ2E[∥Dt

y∥2] + 2nρ2E[∥Dy(yt, vt, xt)∥2] ,

Et+1
v ≤

(
1 − 1

2n

)
Etv + ρ2E[∥Dt

v∥2] + 2nρ2E[∥Dv(yt, vt, xt)∥2] ,

Et+1
x ≤

(
1 − 1

2n

)
Etx + γ2E[∥Dt

x∥2] + 2nγ2E[∥Dx(yt, vt, xt)∥2] ,

E′t+1
y ≤

(
1 − 1

2m

)
Ety + ρ2E[∥Dt

y∥2] + 2mρ2E[∥Dy(yt, vt, xt)∥2] ,

E′t+1
v ≤

(
1 − 1

2m

)
Etv + ρ2E[∥Dt

v∥2] + 2mρ2E[∥Dv(yt, vt, xt)∥2] ,

and

E′t+1
x ≤

(
1 − 1

2m

)
Etx + γ2E[∥Dt

x∥2] + 2mγ2E[∥Dx(yt, vt, xt)∥2] .

Proof. We provide the detailed proof for Ety. The approach for the five others is similar.

Let i ∈ [n]. Taking the expectation of ∥yt+1 − yt+1
i ∥2 conditionaly to yt, vt, xt yields

Et[∥yt+1 − yt+1
i ∥2] = 1

n
Et[∥yt+1 − yt∥2] + n− 1

n
Et[∥yt+1 − yti∥2] .

Then, using the fact that Et[Dt
y] = Dy(yt, vt, xt), we have

Et[∥yt+1 − yti∥2] = Et[∥yt+1 − yt∥2] + ∥yt − yti∥2 − 2ρ⟨Dy(yt, vt, xt), yt − yti⟩ .

A.1. Proofs 92

We then upper-bound crudely the scalar product by Cauchy-Schwarz and Young inequalities with
parameter β:

Et[∥yt+1 − yti∥2] ≤ Et[∥yt+1 − yt∥2] + ρβ−1∥Dy(yt, vt, xt)∥2 + (1 + ρβ)∥yt − yti∥2

As a consequence, by taking the total expectation and summing for all i ∈ [n], we find

Et+1
y ≤ ρ2E[∥Dt

y∥2] + ρβ−1
(

1 − 1
n

)
E[∥Dy(yt, vt, xt)∥2] + (1 + ρβ)

(
1 − 1

n

)
Ety .

Finally, we take β = 1
2nρ to obtain

Et+1
y ≤

(
1 − 1

2n

)
Ety + ρ2E[∥Dt

y∥2] + 2nρ2E[∥Dy(yt, vt, xt)∥2] . (A.12)

Bounds on the variances

The following lemma gives us upper-bounds for E[∥Dt
y∥2], E[∥Dt

v∥2], and E[∥Dt
x∥2].

Lemma A.6. For SABA, there are constants L′
y, L

′
v, L

′
x > 0 such that

E[∥Dt
y∥]2 ≤ 2E[∥Dy(yt, vt, xt)∥2] + 2L′

y(Ety + Etx) ,

E[∥Dt
v∥2] ≤ 2E[∥Dv(yt, vt, xt)∥2] + 2L′

v(Ety + Etx + Etv + E′t
y + E′t

x) + 2L′′
v(δty + δtv)

and
E[∥Dt

x∥2] ≤ 2E[∥Dx(yt, vt, xt)∥2] + 2L′
x(Ety + Etx + Etv + E′t

y + E′t
x) + 2L′′

x(δty + δtv) .

Proof. For SABA, if we consider i sampled from [n] at iteration t, we have

Dt
y = ∇ygi(yt, xt) − ∇ygi(yti , xti) + 1

n

n∑
i′=1

∇ygi′(yti′ , xti′) .

Hence we get

Et[∥Dt
y∥2] = Et[∥∇ygi(yt, xt) − ∇ygi(yti , xti) + 1

n

N∑
i′=1

∇ygi′(yti′ , xti′)

− ∇yg(xt, yt) + ∇yg(xt, yt)∥2]
≤ 2∥∇yg(xt, yt)∥2 + 2Et[∥∇ygi(yt, xt) − ∇ygi(yti , xti)

+ 1
n

N∑
i′=1

∇ygi′(yti′ , xti′) − ∇yg(xt, yt)∥2] .

(A.13)

The second term is the variance of ∇ygi(yt, xt) − ∇ygi(yti , xti), which is therefore upper-bounded by

Et[∥[∇ygi(yt, xt) − ∇ygi(yti , xti)∥2] = 1
n

n∑
i=1

∥[∇ygi(yt, xt) − ∇ygi(yti , xti)∥2

≤
L′
y

n

n∑
i=1

(∥yt − yti∥2 + ∥xt − xti∥2) (A.14)

where the inequality comes from the Lipschitz continuity of each ∇ygi with L′
z = maxi∈[n] Lgi,1.

Then, by plugging (A.14) into (A.13) and taking the total expectation, we get

E[∥Dt
y∥]2 ≤ 2E[∥Dy(yt, vt, xt)∥2] + 2L′

y(Ety + Etx) . (A.15)

A.1. Proofs 93

Things are quite similar for the other variables, albeit a bit more difficult.

In v, it holds

Et[∥Dt
v∥2] =Et[∥∇yfj(yt, xt) − ∇yfj(y′t

j , x
′t
j) + 1

m

m∑
j′=1

∇yfj′(y′t
j′ , x′t

j′)

+ ∇2
yygi(yt, xt)vt − ∇2

yygi(yti , xti)vti + 1
n

n∑
i′=1

∇2
ygi′(yti′ , xti′)vi′t

−Dv(yt, vt, xt) +Dv(yt, vt, xt)∥2]
≤2[∥Dv(yt, vt, xt)∥2

+ 2Et[∥∇yfj(yt, xt) − ∇yfj(y′t
j , x

′t
j) + 1

m

m∑
j′=1

∇yfj′(y′t
j′ , x′t

j′)

+ ∇2
yygi(yt, xt)vt − ∇2

yygi(yti , xti)vti + 1
n

n∑
i′=1

∇yg
2
i′(yti′ , xti′)vti′

−Dv(yt, vt, xt)∥2]

Here, we see that we need to control the variance of

∇yfj(yt, xt) − ∇yfj(y′t
j , x

′t
j) + ∇2

yygi(yt, xt)vt − ∇2
yygi(yti , xti)vti .

Since i and j are independent, this is a sum of two independent random variables, hence its variance
is the sum of the variances, which is upper-bounded by

Et[∥∇yfj(yt, xt) − ∇yfj(y′t
j , x

′t
j)∥2] + Et[∥∇2

yygi(yt, xt)vt − ∇2
yygi(yti , xti)vti∥2] .

For Et[∥∇yfj(yt, xt) − ∇yfj(y′t
j , x

′t
j)∥2] we use the lipschitz continuity of the ∇yfj :

Et[∥∇yfj(yt, xt) − ∇yfj(y′t
j , x

′t
j)∥2] ≤

[
max
j∈[m]

Lfj ,1

]
Et[∥yt − ztj∥2 + ∥xt − xtj∥2]

≤
[

max
j∈[m]

Lfj ,1

]
1
m

m∑
j=1

(∥yt − ztj∥2 + ∥xt − xtj∥2) .

The control of Et[∥∇2
yygi(yt, xt)vt − ∇2

yygi(yti , xti)vti∥2] is a bit harder without assuming the boundness
of v beforehand. But, we can bypass the difficulty by introducing ∇2

yygi(y∗(xt), xt)v∗(xt):

Et[∥∇2
yygi(yt, xt)vt − ∇2

yygi(yti , xti)vti∥2] ≤ 4
{
Et[∥∇2

yygi(yt, xt)(vt − v∗(xt))∥2]
+ Et[∥(∇2

yygi(yt, xt) − ∇2
yygi(y∗(xt), xt))v∗(xt)∥2]

+ Et[∥(∇2
yygi(y∗(xt), xt) − ∇2

yygi(yti , xti))v∗(xt)∥2]
+Et[∥∇2

yygi(yti , xti)(v∗(xt) − vti)∥2]
}

≤ 4(max
i∈[n]

Lgi,1)∥vt − v∗(xt)∥2 + (max
i∈[n]

Lgi,2)Cf
µg

∥yt − y∗(xt)∥2

+ (max
i∈[n]

Lgi,2)Cf
µg

(∥xt − xti∥2 + 2(∥yt − y∗(xt)∥2 + ∥yt − yti∥2))

+ (max
i∈[n]

Lgi,1)(∥xt − xti∥2 + 2(∥vt − v∗(xt)∥2 + ∥vt − vti∥2))

Let

L′
v = 4 max

(
2 max
i∈[n]

Lgi,1, 2 max
i∈[n]

Lgi,2
Cf
µg
, max
j∈[m]

Lfj ,1

)
and

L′′
v = 4 max

(
3 max
i∈[n]

Lgi,1), 3 max
i∈[n]

Lgi,2)Cf
µg

)
.

A.1. Proofs 94

Taking the total expectation and putting all together yields

E[∥Dt
v∥2] ≤ 2E[∥Dv(yt, vt, xt)∥2] + 2L′

v(Ety + Etx + Etv + E′t
y + E′t

x) + 2L′′
v(δty + δtv) . (A.16)

In x we have similarly

E[∥Dt
x∥2] ≤ 2E[∥Dx(yt, vt, xt)∥2] + 2L′

x(Ety + Etx + Etv + E′t
y + E′t

x) + 2L′′
x(δty + δtv) . (A.17)

We now form St = Ety +Etx +Etv +E′t
y +E′t

v +E′t
x , and letting Γ = min(1

m ,
1
n). Note that by definition,

each quantity Ety is smaller than St.

We will therefore use the cruder bounds on E[∥Dt
y∥2], E[∥Dt

v∥2] and E[∥Dt
x∥2] as follows thanks to

Lemma 4.1 and Lemma A.6
E[∥Dt

y∥2] ≤ 2L2
yδ
t
y + 2L′

yS
t , (A.18)

E[∥Dt
v∥2] ≤ 2(L2

v + L′′
v)(δty + δtv) + 2L′

vS
t (A.19)

and
E[∥Dt

x∥2] ≤ 2E[∥Dx∥2] + 2L′
xS

t + 2L′′
x(δty + δtv) . (A.20)

We have the following lemma

Lemma A.7. If 4ρ2(L′
y + L′

v) + 4γ2L′
x ≤ Γ

2 and 4L′′
xγ

2 ≤ ρ2(L2
v + 4L′′

v), it holds

St+1 ≤
(

1 − Γ
2

)
St + βsyρ

2δty + βsvρ
2δtv + Pγ2E[∥Dx∥2]

for some Ls, βsy, P > 0.

Proof. It holds following eq. (A.12) (and omitting the dependencies in (yt, vt, xt) in the direction for
simplicity)

St+1 ≤ (1 − Γ)St + E
[
2ρ2(∥Dt

y∥2 + ∥Dt
v∥2) + 2γ2∥Dt

x∥2

+2(m+ n)[ρ2(∥Dy∥2 + ∥Dv∥2) + γ2∥Dx∥2]
]
.

Using the previous bounds (A.15), (A.16) and (A.17), we get

St+1 ≤
(
1 − Γ + 4ρ2(L′

y + L′
v) + 4γ2L′

x

)
St + (2(m+ n) + 4)E[ρ2(∥Dy∥2 + ∥Dv∥2)

+ γ2∥Dx∥2] + 4L′′
vρ

2(δty + δtv) + 4L′′
xγ

2(δty + δtv) .

Next, using 4ρ2(L′
y + L′

v) + 4γ2L′
x ≤ Γ

2 and letting P = (2(m+ n) + 4) we get

St+1 ≤
(

1 − Γ
2

)
St + PE[ρ2(∥Dy∥2 + ∥Dv∥2) + γ2∥Dx∥2] + +4L′′

vρ
2(δty + δtv) + 4L′′

xγ
2(δty + δtv) .

To finish, we use Lemma 4.1 to get

St+1 ≤
(

1 − Γ
2

)
St + P [ρ2((L2

y + L2
v)δty + L2

vδ
t
v) + (4L′′

vρ
2 + 4L′′

xγ
2)(δty + δtv) + γ2E[∥Dx∥2]] .

Then, using that 4L′′
xγ

2 ≤ ρ2(L2
v + 4L′′

v), we get the bound, letting Lsy = L2
y + L2

v + 4L′′
v and Lsv =

L2
v + 4L′′

v :

St+1 ≤
(

1 − Γ
2

)
St + βsyρ

2δty + βsvρ
2δtv + Pγ2E[∥Dx∥2]

with βsy = 2PLsy, βsv = 2PLsv

A.1. Proofs 95

Putting it all together

Recall that we denote gt = E[∥∇Φ(xt)∥2] and Φt = E[Φ(xt)]. In the following lemma, we adapt
Lemma 4.2 and Lemma 4.3 to the SABA algorithm.

Lemma A.8. If

ρ ≤ min
(

µg
64L2

y

,
βyx
2βyx

,
µg

128(L2
v + L′′

v) ,
βvy

8(L2
v + L′′

v) ,
βvx
2βvx

)
and

γ ≤ min
(√

ρµg
64βyxL′′

x

,

√
L′
y

2L′
xβyx

ρ,

√
ρµg

128βvxL′′
x

,

√
ρβvy

4L′′
xβvx

,

√
L′
v

2L′
xβvx

ρ,
1

4LΦ
,

L2
x

2LΦL′′
x

)
then it holds

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2L′′

xβyxγ
2δtv + 5L′

yρ
2St + 2βyx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] ,

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 3βvyρδty + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

and

Φt+1 ≤ Φt − γ

2 g
t − γ

4E[∥Dx(yt, vt, xt)∥2] + L2
xγ(δty + δtv) + LΦL

′
xγ

2St . (A.21)

Proof. We start from Lemma 4.2 and plug the bounds of Equations (A.18) and (A.19).

δt+1
y ≤

(
1 − ρµg

4 + 4L2
yρ

2 + 4βyxL′′
xγ

2
)
δty + 2L′′

xβyxγ
2δtv

+ (4L′
yρ

2 + 2L′
xβyxγ

2)St +
(

2βyxγ2 + βyx
γ2

ρ

)
E[∥Dx(yt, vt, xt)∥2]

(A.22)

Since ρ ≤ µg

64L2
y

and γ2 ≤ ρµg

64βyxL′′
x

, we have

−ρµg
4 + 4L2

yρ
2 + 4βyxL′′

xγ
2 ≤ −ρµg

8 . (A.23)

The condition γ2 ≤ L′
y

2L′
xβyx

ρ2 gives us

4L′
yρ

2 + 2L′
xβyxγ

2 ≤ 5L′
yρ

2 . (A.24)

With ρ ≤ βyx

2βyx
, we get

2βyxγ2 + βyx
γ2

ρ
≤ 2βyx

γ2

ρ
. (A.25)

We can plug Equations (A.23), (A.24) and (A.25) into Equation (A.22) and we end up with

δt+1
y ≤

(
1 − ρµg

8

)
δty + 2L′′

xβyxγ
2δtv + 5L′

yρ
2St + 2βyx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

The proof for δtv is quite similar. From Lemma 4.2, Equations (A.19) and (A.20).

δt+1
v ≤

(
1 − ρµg

8

)
δtv + βvyρδ

t
y + 2ρ2V tv + βvxγ

2V tx + βvx
γ2

ρ
E[∥Dx(yt, vt, xt)∥2]

≤
(

1 − ρµg
8 + 4(L2

v + L′′
v)ρ2 + 4L′′

xβvxγ
2
)
δtv + (4(L2

v + L′′
v)ρ2 + 2L′′

xβvxγ
2 + βvyρ)δty+

+
(
4L′

vρ
2 + 2L′

xβvxγ
2)St +

(
2βvxγ2 + βvx

γ2

ρ

)
E[∥Dx(yt, vt, xt)∥2] .

(A.26)

A.1. Proofs 96

Using ρ ≤ µg

128(L2
v+L′′

v) and γ2 ≤ ρµg

128L′′
xβvx

, we get

−ρµg
8 + 4(L2

v + L′′
v)ρ2 + 4L′′

xβvxγ
2 ≤ −ρµg

16 . (A.27)

With γ2 ≤ ρβvy

4L′′
xβvx

and ρ ≤ βvy

8(L2
v+L′′

v) , we have

4(L2
v + L′′

v)ρ2 + 2L′′
xβvxγ

2 + βvyρ ≤ 3βvyρ . (A.28)

The condition γ2 ≤ L′
v

2L′
xβvx

ρ2 yields

4L′
vρ

2 + 2L′
xβvxγ

2 ≤ 5L′
vρ

2 . (A.29)

With ρ ≤ βvx

2βvx
we get

2βvxγ2 + βyx
γ2

ρ
≤ 2βvx

γ2

ρ
. (A.30)

As a consequence of Equations (A.26), (A.27), (A.28), (A.29) and (A.30), we have

δt+1
v ≤

(
1 − ρµg

16

)
δtv + 3βvyρδty + 5L′

vρ
2St + 2βvx

γ2

ρ
E[∥Dx(yt, vt, xt)∥2] .

For the inequality on Φt, we start from Equations (4.9) and (A.20)

ht+1 ≤ Φt − γ

2 g
t −
(γ

2 − LΦγ
2
)
E[∥Dx(yt, vt, xt)∥2]

+
(
L2
x

2 γ + LΦL
′′
xγ

2
)

(δty + δtv) + LΦL
′
xγ

2St .

(A.31)

Assuming γ ≤ min
(

1
4LΦ

,
L2

x

2LΦL′′
x

)
leads

Φt+1 ≤ Φt − γ

2 g
t − γ

4E[∥Dx(yt, vt, xt)∥2] + L2
xγ(δty + δtv) + LΦL

′
xγ

2St .

We are now ready to prove Theorem 4.3.

Proof. We consider the Lyapunov function

Lt = Φt + ϕsS
t + ϕyδ

t
y + ϕvδ

t
v (A.32)

for some constants ϕs, ϕy and ϕv.

We have

Lt+1 − Lt ≤ −γ

2 g
t −
(
γ

4 − 2ϕyβyx
γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ

2
)
E[∥Dx(yt, vt, xt)∥2]

−
(
ϕy
µg
8 ρ− L2

xγ − 8ϕvβvyρ− ϕsβsyρ
2
)
δty

−
(
ϕv
µg
16ρ− L2

xγ − 2ϕyL′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ
2 − 5ϕyL′

yρ
2 − 5ϕvL′

vρ
2 − LΦL

′
xγ

2
)
St .

To get a decrease, ϕy, ϕv and ϕs, ρ and γ must be such that:

2ϕyβyx
γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ

2 ≤ γ

4
L2
xγ + 8ϕvβvyρ+ ϕsβsyρ

2 ≤ ϕy
µg
8 ρ

L2
xγ + 8ϕyL′′

xγ
2 + ϕsβsvρ

2 ≤ ϕv
µg
16ρ

5ϕyL′
yρ

2 + 5ϕvL′
vρ

2 + LΦL
′
xγ

2 ≤ ϕs
Γ
2 .

A.1. Proofs 97

In order to take into account the scaling of the quantities with respect toN = n+m, we take ρ = ρ′Nnρ ,
γ = γ′Nnγ , ϕy = ϕ′

yN
ny , ϕv = ϕ′

vN
nv and ϕs = ϕ′

sN
ns . Since Γ = O(N−1), P = O(N), βsy = O(N)

and βsv = O(N), we also define Γ′ = ΓN , P ′ = PN−1, β′
sy = βsyN

−1 and β′
svN

−1. Now, the previous
Equations read (after slight simplifications):

(2ϕ′
yβyx + 2ϕ′

vβvx)γ
′

ρ′N
ny+nγ −nρ + ϕ′

sP
′γ′Nns+nγ +1 ≤ 1

4
L2
xγ

′Nnγ + 8ϕ′
vβvyρ

′Nnv+nρ + ϕ′
sβ

′
sy(ρ′)2N2nρ+ns+1 ≤ ϕ′

y

µg
8 ρ′Nny+nρ

L2
xγ

′Nnγ + 8ϕ′
yL

′′
x(γ′)2N2nγ +ny + ϕ′

sβ
′
sv(ρ′)2Nns+2nρ+1 ≤ ϕ′

v

µg
16ρ

′Nnv+nρ

5ϕ′
yL

′
y(ρ′)2Nny+2nρ + 5ϕ′

vL
′
v(ρ′)2N2nρ+nv + LΦL

′
x(γ′)2Nnγ ≤ ϕs

Γ′

2 N
ns−1 .

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take ny = nv = 0, nρ = nγ = − 2

3 and ns = − 1
3 . The Equations become

(2ϕ′
yβyx + 2ϕ′

vβvx)γ
′

ρ′ + ϕ′
sP

′γ′ ≤ 1
4

L2
xγ

′N−2/3 + 8ϕ′
vβvyρ

′N−2/3 + ϕ′
sβ

′
sy(ρ′)2N−2/3 ≤ ϕ′

y

µg
8 ρ′N−2/3

L2
xγ

′N−2/3 + 8ϕ′
yL

′′
x(γ′)2N−4/3 + ϕ′

sβ
′
sv(ρ′)2N−2/3 ≤ ϕ′

v

µg
16ρ

′N−2/3

5ϕ′
yL

′
y(ρ′)2N−4/3 + 5ϕ′

vL
′
v(ρ′)2N−4/3 + LΦL

′
x(γ′)2N−4/3 ≤ ϕ′

s

Γ′

2 N
−4/3 .

We can replace the penultimate equation by the stronger

L2
xγ

′N−2/3 + 8ϕ′
yL

′′
x(γ′)2N−2/3 + ϕ′

sβ
′
sv(ρ′)2N−2/3 ≤ ϕ′

v

µg
16ρ

′N−2/3

so that we can simplify all the equations by dropping the dependencies in N :

(2ϕ′
yβyx + 2ϕ′

vβvx)γ
′

ρ′ + ϕ′
sP

′γ′ ≤ 1
4

L2
xγ

′ + 8ϕ′
vβvyρ

′ + ϕ′
sβ

′
sy(ρ′)2 ≤ ϕ′

y

µg
8 ρ′

L2
xγ

′ + 8ϕ′
yL

′′
x(γ′)2 + ϕ′

sβ
′
sv(ρ′)2 ≤ ϕ′

v

µg
16ρ

′

5ϕ′
yL

′
y(ρ′)2 + 5ϕ′

vL
′
v(ρ′)2 + LΦL

′
x(γ′)2 ≤ ϕ′

s

Γ′

2 .

Let us take ϕ′
s = 1, ϕ′

y = ϕ′′
y
ρ′

γ′ and ϕ′
v = ϕ′′

v
ρ′

γ′ with ϕ′′
y = 1

32βyx

and ϕ′′
v = min

(
1

32βvx

, ϕ′′
y

µg

128βvy

)
. The

equations become

P ′γ′ ≤ 1
8

L2
xγ

′ + β′
sy(ρ′)2 ≤ ϕ′′

y

µg
16

(ρ′)2

γ′

L2
xγ

′ + 8ϕ′′
yL

′′
xγ

′ρ′ + β′
sv(ρ′)2 ≤ ϕ′′

v

µg
16

(ρ′)2

γ′

5ϕ′′
yL

′
y

(ρ′)3

γ′ + 5ϕ′′
vL

′
v

(ρ′)3

γ′ + LΦL
′
x(γ′)2 ≤ Γ′

2 .

The condition γ′ ≤ 1
8P ′ ensures that the first equation is verified. With γ′ ≤ min

(√
ϕ′′

yµg

32L2
x
ρ′,

ϕ′′
yµg

32β′
sz

)
, the

second equations is verified. With γ′ ≤ min
(√

ϕ′′
vµg

48L2
x
ρ′,

ϕ′′
vµg

48β′
sv
,
√

ϕ′′
vµg

384ϕ′′
yL

′′
xρ

′

)
, the third is verified. With

γ′ ≤
√

Γ′

6LΦL′
x

, the last can be simplified:

(5ϕ′′
yL

′
y + 5ϕ′′

vL
′
v)(ρ′)3 ≤ Γ′

3 γ
′ .

A.1. Proofs 98

Let us write γ′ = ξρ′. If we want that equation does no contradict the previous upper bound on γ′

involving ρ′ and the conditions of Lemma A.8, that is

γ′ ≤ min
(√

ϕ′′
yµg

32L2
x

,

√
ϕ′′
vµg

48L2
x

,

√
L′
y

2L′
xβyx

,

√
L′
v

2L′
xβvx

)
︸ ︷︷ ︸

K1

ρ′

γ′ ≤ min
(√

µg
64βyxL′′

x

,

√
µg

128βvxL′′
x

,

√
βvy

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′

γ′ ≤
√

ϕ′′
vµg

384ϕ′′
yL

′′
x︸ ︷︷ ︸

K3

1√
ρ′

γ′ ≤ min
(

1
4LΦ

,
L2
x

2LΦL′′
x

,

√
Γ′

6LΦL′
x

,
1

8P ′ ,
ϕ′′
yµg

32β′
sz

,
ϕ′′
vµg

48β′
sv

)
︸ ︷︷ ︸

K4

γ′ ≥
15(ϕ′′

yL
′
y + ϕ′′

vL
′
v)

Γ′︸ ︷︷ ︸
K5

ρ3

ξ must verify
ξ ≤ K1

ξ ≤ K2(ρ′)− 1
2

ξ ≤ K3(ρ′)− 3
2

ξ ≤ K4(ρ′)−1

ξ ≥ K5(ρ′)2

which is possible if ρ′ satisfies

ρ′ ≤ min
(√

K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2
)

.

Let us take

ρ′ = min
(√

K1

K5
,

(
K2

K5

)− 3
2

,

(
K3

K5

)− 5
2

,

(
K4

K5

)−2
,
µg

64L2
y

,
βyx
2βyx

,
µg

128(L2
v + L′′

v) ,
βvy

8(L2
v + L′′

v) ,
βvx
2βvx

)
and

ξ = min(K1,K2(ρ′)− 1
2 ,K3(ρ′)− 3

2 ,K4(ρ′)−1) .

Finally, we have
Lt+1 − Lt ≤ −γ

2 g
t

and therefore, summing and telescoping yields

1
T

T∑
t=1

gt ≤ L1

γT
= L0N

2
3

T
.

Since with respect to N we have

L0 = Φ0 + ϕyδ
0
y + ϕvδ

0
v + ϕsS

0 = O(N−1 + 1 + 1 +N− 1
3) = O(1) ,

we end up with

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O

(
N

2
3

T

)
.

A.1. Proofs 99

A.1.6 Proof of Theorem 4.4

We are now going to prove Theorem 4.4 that we recall here:

Theorem 4.4 (Convergence of SABA, PL case). Assume that Φ satisfies the PL inequality and that As-
sumptions 4.1 to 4.3 and 4.5 to 4.6 hold. We suppose ρ = ρ′N− 2

3 and γ = ξρ′N−1, where ρ′ and ξ depend
only on f and g and are specified in appendix. Let xt the iterates of SABA and c′ ≜ min

(
µΦ,

1
16P ′

)
with

P ′ specified in the appendix. Then,

E[ΦT] − Φ∗ = (1 − c′γ)T (Φ0 − Φ∗ + C0)

where C0 is a constant specified in appendix that depends on the initialization of y, v, x and memory.

Here, we have

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4
K5

) 1
3

,
µg

64L2
y

,
βyx
2βyx

,
µg

128(L2
v + L′′

v) ,
βvy

8(L2
v + L′′

v) ,
βvx
2βvx

 ,

and
ξ = min(K ′

1,K2(ρ′)− 1
2 ,K3(ρ′)− 3

2 ,K ′
4(ρ′)−1) .

where P ′ = PN−1, Γ′ = ΓN ,

ϕ′′
y = 1

32βyx
, ϕ′′
v = min

(
1

32βvx
, ϕ′′
y

µg
128βvy

)
,

K ′
1 = min

(
µg

64c′ ,

√
ϕ′′
yµg

48L2
x

,

√
ϕ′′
vµg

64L2
x

,

√
L′
y

2L′
xβyx

,

√
L′
v

2L′
xβvx

)
,

K2 = min
(√

µg
64βyxL′′

x

,

√
µg

128βvxL′′
x

,

√
βvy

4L′′
xβvx

)
,

K3 =
√

ϕ′′
vµg

512ϕ′′
yL

′′
x

, K ′
4 = min

(
Γ′

6c′ ,
1

4LΦ
,

L2
x

2LΦL′′
x

,

√
Γ′

6LΦL′
x

,
1

18P ′ ,
ϕ′′
yµg

48β′
sz

,
ϕ′′
vµg

64β′
sv

)
and

K5 =
20(ϕ′′

yL
′
y + ϕ′′

vL
′
v)

Γ′ .

Proof. For simplicity, we assume that Φ∗ = 0 and so for any x ∈ Rdx the PL inequality reads:

1
2∥∇Φ(x)∥2 ≥ µΦΦ(x) .

Then, eq. (A.21) gives

ht+1 ≤
(

1 − γµh
2

)
Φt − γ

4E[∥Dx(yt, vt, xt)∥2] + γL2
x(δty + δtv) + LΦL

′
xγ

2St .

We take Lt the Lyapunov function given in Equation (A.32). We find

Lt+1 − Lt ≤ −γµhΦt −
(
γ

4 − 2ϕyβyx
γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ

2
)
E[∥Dx(yt, vt, xt)∥2]

−
(
ϕy
µg
8 ρ− L2

xγ − 8ϕvβvyρ− ϕsβsyρ
2
)
δty

−
(
ϕv
µg
16ρ− L2

xγ − 2ϕyL′′
xγ

2 − ϕsβsvρ
2
)
δtv

−
(
ϕs

Γ
2 − 5ϕyL′

yρ
2 − 5ϕvL′

vρ
2 − LΦL

′
xγ

2
)
St .

We now try to find linear convergence, hence we add to this cLt to get

A.1. Proofs 100

Lt+1 − (1 − c)Lt ≤ −(γµh − c)Φt −
(
γ

4 − 2ϕyβyx
γ2

ρ
− 2ϕvβvx

γ2

ρ
− ϕsPγ

2 − c

)
E[∥Dx(yt, vt, xt)∥2]

−
(
ϕy
µg
8 ρ− L2

xγ − 8ϕvβvyρ− ϕsβsyρ
2 − cϕy

)
δty

−
(
ϕv
µg
16ρ− L2

xγ − 2ϕyL′′
xγ

2 − ϕsβsvρ
2 − cϕv

)
δtv

−
(
ϕs

Γ
2 − 5ϕyL′

yρ
2 − 5ϕvL′

vρ
2 − LΦL

′
xγ

2 − cϕS

)
St .

Hence, the set of inequations for decrease becomes

c ≤ γµh

2ϕyβyx
γ2

ρ
+ 2ϕvβvx

γ2

ρ
+ ϕsPγ

2 + c ≤ γ

4
L2
xγ + 8ϕvβvyρ+ ϕsβsyρ

2 + ϕyc ≤ ϕy
µg
8 ρ

L2
xγ + 8ϕyL′′

xγ
2 + ϕsβsvρ

2 + ϕvc ≤ ϕv
µg
16ρ

5ϕyL′
yρ

2 + 5ϕvL′
vρ

2 + LΦL
′
xγ

2 + ϕsc ≤ ϕs
Γ
2 .

We see that it is more convenient to write c = γc′. As previously, we write γ = γ′Nnγ , ρ = ρ′Nnρ ,
ϕy = ϕ′

yN
ny , ϕv = ϕ′

vN
nv , ϕs = ϕ′

sN
ns , P = P ′N , Γ = Γ′N−1, βsx = β′

sxN and βsv = β′
svN . The

equations read:

c′ ≤ µh

2ϕ′
yβyx

γ′

ρ′N
ny+nγ −nρ + 2ϕ′

vβvx
γ′

ρ′N
nv+nγ −nρ + ϕ′

sP
′γ′Nns+1+nγ + c′ ≤ 1

4
L2
xγ

′Nnγ + 8ϕ′
vβvyρ

′Nnv+nρ + ϕ′
sβ

′
sy(ρ′)2Nns+2nρ+1 + ϕ′

yc
′γ′Nny+nγ ≤ ϕ′

y

µg
8 ρ′Nnρ+ny

L2
xγ

′Nnγ + 8ϕ′
yL

′′
x(γ′)2Nny+2nγ + ϕ′

sβ
′
sv(ρ′)2Nns+1+2nρ + ϕ′

vc
′γ′Nnv+nγ ≤ ϕ′

v

µg
16ρ

′Nnv+nρ

5ϕ′
yL

′
y(ρ′)2Nny+2nρ + 5ϕ′

vL
′
v(ρ′)2Nnv+2nρ + LΦL

′
x(γ′)2N2nγ + ϕ′

sc
′γ′Nns+nγ ≤ ϕ′

s

Γ′

2 N
ns−1 .

In order to ensure that the exponents on N are lower in the left-hand-side than those on the right-
hand-side, we take ny = nv = 0, nρ = − 2

3 , nγ = −1 and ns = − 1
3 . The Equations become

c′ ≤ µh

2ϕ′
yβyx

γ′

ρ′N
− 1

3 + 2ϕ′
vβvx

γ′

ρ′N
− 1

3 + ϕ′
sP

′γ′N− 1
3 + c′ ≤ 1

4
L2
xγ

′N−1 + 8ϕ′
vβvyρ

′N− 2
3 + ϕ′

sβ
′
sy(ρ′)2N− 2

3 + ϕ′
yc

′γ′N−1 ≤ ϕ′
y

µg
8 ρ′N− 2

3

L2
xγ

′N−1 + 8ϕ′
yL

′′
x(γ′)2N−2 + ϕ′

sβ
′
sv(ρ′)2N− 2

3 + ϕ′
vc

′γ′N−1 ≤ ϕ′
v

µg
16ρ

′N− 2
3

5ϕ′
yL

′
y(ρ′)2N− 4

3 + 5ϕ′
vL

′
v(ρ′)2N−2 + LΦL

′
x(γ′)2N−2 + ϕ′

sc
′γ′N− 4

3 ≤ ϕ′
s

Γ′

2 N
− 4

3 .

Now we have to find ρ′, γ′, ϕ′
y, ϕ′

v and ϕ′
s that verifies the following conditions (which are a bit stronger

than thoose in the previous Equations):

c′ ≤ µh

2ϕ′
yβyx

γ′

ρ′ + 2ϕ′
vβvx

γ′

ρ′ + ϕ′
sP

′γ′ + c′ ≤ 1
4

L2
xγ

′ + 8ϕ′
vβvyρ

′ + ϕ′
sβ

′
sy(ρ′)2 + ϕ′

yc
′γ′ ≤ ϕ′

y

µg
8 ρ′

L2
xγ

′ + 8ϕ′
yL

′′
x(γ′)2 + ϕ′

sβ
′
sv(ρ′)2 + ϕ′

vc
′γ′ ≤ ϕ′

v

µg
16ρ

′

5ϕ′
yL

′
y(ρ′)2 + 5ϕ′

vL
′
v(ρ′)2 + LΦL

′
x(γ′)2 + ϕ′

sc
′γ′ ≤ ϕ′

s

Γ′

2 .

A.1. Proofs 101

As previously, we take ϕ′
s = 1 and we denote ϕ′

z = ϕ′′
y
ρ′

γ′ with ϕ′′
y = 1

32βyx

and ϕ′
z = ϕ′′

y
ρ′

γ′ with ϕ′′
v =

min
(

1
32βvx

, ϕ′′
y

µg

128βvy

)
, the equations become

c′ ≤ µh

P ′γ′ + c′ ≤ 1
8

L2
x(γ′)2 + β′

sy(ρ′)2γ′ + ϕ′′
yc

′ρ′γ′ ≤ ϕ′′
y

µg
16 (ρ′)2

L2
x(γ′)2 + 8ϕ′′

yL
′′
xρ

′(γ′)2 + β′
sv(ρ′)2γ′ + ϕ′′

vc
′ρ′γ′ ≤ ϕ′′

v

µg
16 (ρ′)2

5ϕ′′
yL

′
y(ρ′)3 + 5ϕ′′

vL
′
v(ρ′)3 + LΦL

′
x(γ′)3 + c′(γ′)2 ≤ Γ′

2 γ
′ .

Since c′ ≤ 1
16 and γ′ ≤ 1

16P ′ , the second equation is verified. With γ′ ≤ min
(√

ϕ′′
yµg

48L2
x
ρ′,

ϕ′′
yµg

48βsv

)
and

c′ ≤ µgρ
′

48γ′ the third is verified. The conditions γ′ ≤ min
(√

ϕ′′
vµg

64L2
x
ρ′,
√

ϕ′′
vµg

512ϕ′′
yL

′′
xρ

′ ,
ϕ′′

vµg

64β′
sv

)
and c′ ≤ µgρ

′

64γ′

ensure that the forth is verified. With γ′ ≤
√

Γ′

8LΦL′
x

and c′ ≤ Γ′

8γ′ , the fifth is simplified in

5ϕ′′
yL

′
y(ρ′)3 + 5ϕ′′

vL
′
v(ρ′)3 ≤ Γ′

4 γ
′ .

As in the proof of Theorem 4.3, let us denote γ′ = ξρ′. To verify this equation and the previous bounds
on γ′ and c′, we need

γ′ ≤ min
(√

ϕ′′
yµg

48L2
x

,

√
ϕ′′
vµg

64L2
x

,

√
L′
y

2L′
xβyx

,

√
L′
v

2L′
xβyx

)
︸ ︷︷ ︸

K1

ρ′ ,

γ′ ≤ min
(√

µg
64βyxL′′

x

,

√
µg

128βvxL′′
x

,

√
βvy

4L′′
xβvx

)
︸ ︷︷ ︸

K2

√
ρ′ ,

γ′ ≤
√

ϕ′′
vµg

512ϕ′′
yL

′′
x︸ ︷︷ ︸

K3

1√
ρ′ ,

γ′ ≤ min
(

1
4LΦ

,
L2
x

2LΦL′′
x

,
ϕ′′
yµg

48βsv
,
ϕ′′
vµg

64β′
sv

,
1

16P ′ ,

√
Γ′

8LΦL′
x

)
︸ ︷︷ ︸

K4

γ′ ≥
20(ϕ′′

yL
′
y + ϕ′′

vL
′
v)

20︸ ︷︷ ︸
K5

(ρ′)3 ,

c′ ≤ min
(
µh,

1
16 ,

1
16P ′

)
︸ ︷︷ ︸

K6

,

c′ ≤ µg
64︸︷︷︸
K7

1
ξ
,

c′ ≤ Γ′

8︸︷︷︸
K8

1
γ′ .

A.2. Convergence rates with weaker regularity assumptions 102

So, ξ, ρ′ and c′ must verify

ξ ≤ min
(
K1,

K7

c′

)
︸ ︷︷ ︸

K′
1

,

ξ ≤ K2(ρ′)− 1
2 ,

ξ ≤ K3(ρ′)− 3
2 ,

ξ ≤ min
(
K4,

K8

c′

)
︸ ︷︷ ︸

K′
4

(ρ′)−1

ξ ≥ K5(ρ′)2 ,

c′ ≤ min
(
µh,

1
16 ,

1
16P ′

)
︸ ︷︷ ︸

K6

,

which is possible if

ρ′ ≤ min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4
K5

) 1
3

 .

So let us take c′ = min
(
µh,

1
16 ,

1
16P ′

)
= min

(
µh,

1
16P ′

)
,

ρ′ = min

√K ′
1

K5
,

(
K2

K5

) 2
5

,

(
K3

K5

) 2
7

,

(
K ′

4
K5

) 1
3

,
µg

64L2
y

,
βyx
2βyx

,
µg

128(L2
v + L′′

v) ,
βvy

8(L2
v + L′′

v) ,
βvx
2βvx


and

ξ = min(K1,K2(ρ′)− 1
2 ,K3(ρ′)− 3

2 ,K4(ρ′)−1) .

We have

Lt+1 ≤ (1 − c)Lt

therefore, unrolling yields

Φt − Φ∗ ≤ Lt ≤ (1 − c′γ)tL0.

A.2 Convergence rates with weaker regularity assumptions

To get our rates, we need stronger assumptions than in the stochastic bilevel optimization litera-
ture Ghadimi and Wang (2018); Hong et al. (2023); Ji et al. (2021); Arbel and Mairal (2022a). In this
section, we shortly present the convergence rates we can expect if we replace Assumptions 4.1 and 4.2
by Assumptions A.1 and A.2.

Assumption A.1. The function f is differentiable. The gradient ∇f is Lipschitz continuous in (x, y) with
Lipschitz constants Lf,1.

Assumption A.2. The function g is twice continuously differentiable on Rdy × Rdx . For any x ∈ Rdx ,
g(· , x) is µg-strongly convex. The derivatives ∇g are ∇2g are Lipschitz continuous in (x, y) with respec-
tive Lipschitz constants Lg,1 and Lg,2.

With these assumptions, we are not ensured that v∗ is smooth, and so the descent lemmas take the
form of Lemma A.9.

A.2. Convergence rates with weaker regularity assumptions 103

Lemma A.9. Assume that ρ ≤ 2
µg

. We have:

δt+1
y ≤

(
1 − ρµg

2

)
δty + 2ρ2V ty + 4L

2
∗
µg

γ2

ρ
V tx

δt+1
v ≤

(
1 − ρµg

4

)
δtv + ρβvyδ

t
y + 2ρ2V tv + 8L

2
∗
µg

γ2

ρ
V tx

where L∗ is the maximum between the Lipschitz constants of y∗ and v∗ (see Lemma A.1) and βvy =
1
µ3

g
(LFµg + LG2)2.

Proof. Inequality for δy.

Instead of expanding the square as done in the proof of Lemma 4.2 in Equation (A.2), we use Young’s
inequality for some a > 0

δt+1
y ≤ (1 + a)E[∥yt+1 − y∗(xt)∥2] + (1 + a−1)E[∥y∗(xt+1) − y∗(xt)∥2] .

Treating E[∥yt+1 − y∗(xt)∥2] and E[∥y∗(xt+1) − y∗(xt)∥2] as done in the proof of Lemma 4.2 leads to

δt+1
y ≤ (1 + a)

[
(1 − ρµg)δty + ρ2V ty

]
+ (1 + a−1)L2

∗γ
2V tx

In order to keep a decrease in δy, we might want to use a = 1
2ρµg, which gives the bound

δt+1
y ≤

(
1 − ρµg

2

)
δty + 2ρ2V ty + βyx

γ2

ρ
V tx

with βyx = 4L
2
∗
µg

. Indeed, this gives (1 + 1
2ρµg)(1 − ρµg) ≤ 1 − 1

2ρµg. We have a ≤ 1 since ρ ≤ 2
µg

, so

(1 + a)ρ2 ≤ 2ρ2. Finally, we also have 1 + a−1 ≤ 2a−1 = 4
ρµg

.

Inequality for δv. As for δy, the difference with the proof of Lemma 4.2 is that we use we use Young’s
inequality for some b > 0 to get

δt+1
v ≤ (1 + b)E[∥vt+1 − v∗(xt)∥2] + (1 + b−1)E[∥v∗(xt+1) − v∗(xt)∥2] .

The remaining part of the proof is similar to the proof of Lemma 4.2.

The main difference with Lemma 4.2 is that we have O(γ
2

ρ) in factor of V tx instead of O(γ2). As a
consequence, we need that the ratio γ

ρ goes to zero to get convergence, as in Hong et al. (2023). This
prevent us in getting rates that match rates of single level algorithms.

Hence, for SOBA, we have to choose γ = O(T− 3
5) and ρ = O(T− 2

5) and we end up with a convergence
rate in O(T− 2

5). For SABA, we get a O((n + m)ϵ−1) sample complexity, which is actually the sample
complexity of SOBA used with full batch estimated directions.

A.2. Convergence rates with weaker regularity assumptions 104

CHAPTER 5

COMPLEXITY BOUNDS FOR BILEVEL EMPIRICAL RISK
MINIMIZATION

Sommaire
5.1 Introduction . 105
5.2 A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 106

5.2.1 Assumptions . 107

5.2.2 Hypergradient Approximation . 107

5.2.3 SRBA: Stochastic Recursive Bilevel Algorithm 108

5.3 Theoretical Analysis of SRBA . 110
5.3.1 Mean Squared Error of the Estimated Directions 110

5.3.2 Fundamental Lemmas . 111

5.3.3 Complexity Analysis of SRBA . 115

5.4 Lower Bound for Bilevel ERM . 117
5.5 Proof of Theorem 5.2 . 118

5.5.1 Preliminary results . 118

5.5.2 Main proof . 121

5.6 Numerical Experiments . 123
5.7 Conclusion . 124

This section presents the work published in AISTATS2024:

M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. A Lower Bound and a Near-Optimal Algorithm for
Bilevel Empirical Risk Minimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2024

Only minor modifications have been made from the original paper: adaptation of the notation, shorter
introduction, relocation of some proofs in the main text, or addition of proof sketch for results with
proof in the appendix (Chapter B).

5.1 Introduction

In this chapter, we build on the previous chapter’s setting, aiming to solve:

min
x∈Rdx

Φ(x) = f(x, y∗(x)) ,

subject to y∗(x) ∈ arg min
y∈Rdy

g(x, y) (5.1)

105

5.2. A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 106

where the outer function f and the inner function g are empirical means:

f(x, y) = 1
m

m∑
j=1

fj(x, y), g(x, y) = 1
n

n∑
i=1

gi(x, y) .

Previously, we demonstrated that in the non-convex/strongly convex setting, the SOBA and SABA al-

gorithms achieve complexities in O
(
ϵ−2) and O

(
(n+m) 2

3 ϵ−1
)

respectively. These complexities are

analogous to those of SGD (Robbins and Monro, 1951; Ghadimi and Lan, 2013) and SAGA (Defazio
et al., 2014; Reddi et al., 2016) respectively for non-convex single-level optimization problems. This is
despite the hypergradient bias arising from approximations of the inner problem solution y∗(x) and
the linear system solution v∗(x). This suggests a possible transfer of complexity bounds from single-
level to bilevel problems.

However, in classical single-level optimization, it is known that neither of these algorithms is optimal:
the SARAH algorithm (Nguyen et al., 2017) achieves a better sample complexity of O(m 1

2 ε−1) with
m the number of samples. Furthermore, this algorithm is near-optimal (i.e. optimal up to constant
factors) because the lower bound for single-level non-convex optimization is Ω(m 1

2 ε−1) as proved by
Zhou and Gu (2019). It is natural to ask if we can extend these results to bilevel optimization:

Are the optimal complexity bounds for solving bilevel optimization the same as in single-level
optimization?

In single-level optimization, the problem of finding complexity lower bounds has been widely stud-
ied since the seminal work of Nemirovsky and Yudin (1983). On the one hand, Agarwal and Bottou
(2015) provided a lower bound to minimize strongly convex and smooth finite sums with determin-
istic algorithms that have access to individual gradients. These results were extended to randomized
algorithms for (strongly) convex finite sum objective by Woodworth and Srebro (2016). On the other
hand, Carmon et al. (2020) provided a lower bound for minimizing non-convex functions with deter-
ministic and randomized algorithms. The non-convex finite sum case is treated by Fang et al. (2018)
and Zhou and Gu (2019). In the bilevel case, Ji and Liang (2023) showed a lower bound for determin-
istic algorithms. However, this result is restricted to the case where the value function Φ is convex or
strongly convex, which is not the case with most ML-related bilevel problems. Our results are instead
in a non-convex setting.

Contributions of Chapter 5. In Section 5.2, we introduce SRBA, an adaptation of the SARAH algo-
rithm to the bilevel setting. We then demonstrate in Section 5.3 that, similarly to the single-level set-
ting,

O
(

(n+m) 1
2 ε−1 ∨ (n+m)

)
oracle calls are sufficient to reach an ε-stationary point. As shown in Table 5.1, it achieves the best-
known complexity in the regime n + m ≲ O(ε−2). In Section 5.4, we analyze the lower bounds for
such problems. We show that we need at least Ω(m 1

2 ε−1) oracle calls to reach an ε-stationary point
(see Definition 5.1), hereby matching the previous upper-bound in the case where n ≍ m and ε ≤
m− 1

2 . SRBA is thus near-optimal in that regime. Even though our main contribution is theoretical, we
illustrate the numerical performances of the algorithm in Section 5.6.

5.2 A Near-Optimal Algorithm for Bilevel Empirical Risk Minimiza-
tion

In this section, we introduce SRBA (Stochastic Recursive Bilevel Algorithm), a novel algorithm for
bilevel empirical risk minimization which is provably near-optimal for this problem. This algorithm is
inspired by the algorithms SPIDER (Fang et al., 2018) and SARAH (Nguyen et al., 2017, 2022) which are
known for being near-optimal algorithms for non-convex finite sum minimization problems. It relies
on a recursive estimation of directions of interest, which is restarted periodically.

5.2. A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 107

Complexity Stochastic setting f g

StocBiO (Ji et al., 2021) Õ(ε−2) General expectation C1,1
L SC and C2,2

L

AmIGO (Arbel and Mairal, 2022a) O(ε−2) General expectation C1,1
L SC and C2,2

L

MRBO (Yang et al., 2021) Õ(ε− 3
2) General expectation C1,1

L SC and C2,2
L

VRBO (Yang et al., 2021) Õ(ε− 3
2) General expectation C1,1

L SC and C2,2
L

SABA (Dagréou et al., 2022a) O((n+m) 2
3 ε−1) Finite sum C2,2

L SC and C3,3
L

F2SA (Kwon et al., 2023a) O(ε− 7
2) General expectation C2,2

L SC and C2,2
L

SRBA O((n+m) 1
2 ε−1) Finite sum C2,2

L SC and C3,3
L

Table 5.1: Comparison between the sample complexities and the Assumptions of some
stochastic bilevel solvers. It corresponds to the number of calls to gradient, Hessian-vector
products, and Jacobian-vector product sufficient to get an ε-stationary point. The tilde on
the Õ hide a factor log(ε−1). "SC" means "strongly convex". Cp,k

L means p-times differentiable
with Lipschitz kth order derivatives for k ≤ p.

5.2.1 Assumptions

Before presenting our algorithm, we formulate regularity Assumptions on the functions f and g.

Assumption 5.1. For all j ∈ [m], fj is twice differentiable and Lf,0-Lipschitz continuous. Its gradient is
Lf,1-Lipschitz continuous and its Hessian is Lf,2-Lipschitz continuous.

Assumption 5.2. For all i ∈ [n], gi is three times differentiable. Its first, second, and third order deriva-
tives are respectively Lg,1-Lipschitz continuous, Lg,2-Lipschitz continuous, and Lg,3-Lipschitz continu-
ous. For x ∈ Rdx , the function gi(x, ·) is µg-strongly convex.

The strong convexity and the smoothness with respect to y hold, for instance, when we consider an
ℓ2-regularized logistic regression problem with non-separable data. These regularity assumptions up
to first-order for f and second-order for g are standard in the stochastic bilevel literature (Arbel and
Mairal, 2022a; Ji et al., 2021; Yang et al., 2021). The second-order regularity for f and third-order reg-
ularity for g assumptions are necessary for the analysis of the dynamics of the auxiliary variable v we
introduce in subsection 5.2.2, as is the case in the previous chapter. As shown by Ghadimi and Wang
(2018, Lemma 2.2), these assumptions imply the smoothness of Φ as proved in Proposition 3.2, which
is a fundamental property to get a descent. Another consequence of Assumptions 5.1 and 5.2 is the
boundedness of the function v∗.

Proposition 5.1. Assume that Assumptions 5.1 and 5.2 hold. Then, for R = Lf,0
µg

it holds that for

any x ∈ Rdx , we have ∥v∗(x)∥ ≤ R.

We denote Γ the closed ball centered in 0 with radius R, and ΠΓ the projection onto Γ. We also de-
note Π(y, v, x) = (y,ΠΓ(v), x), for (y, v, x) ∈ Rdy × Rdy × Rdx .

5.2.2 Hypergradient Approximation

Recall that the gradient of Φ is given by

∇Φ(x) = ∇xf(x, y∗(x)) + ∇2
xyg(x, y∗(x))v∗(x)

where v∗(x) is the solution of a linear system:

v∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)) . (5.2)

This gradient is intractable in practice because it requires the perfect knowledge of y∗(x) and v∗(x)
which are usually costly to compute. As classically done in the stochastic bilevel literature (Ji et al.,
2021; Arbel and Mairal, 2022a; Li et al., 2022), y∗(x) and v∗(x) are replaced by approximate surrogate
variables y and v. The variable y is typically the output of one or several steps of an optimization

5.2. A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 108

procedure applied to g(x, ·.). The variable v can be computed by using Neumann approximations or
doing some optimization steps on the quadratic v 7→ 1

2v
⊤∇2

yyg(x, y)v + ∇yf(x, y)⊤v. We consider the
approximate hypergradient given by

Dx(y, v, x) = ∇2
xyg(x, y)v + ∇xf(x, y) .

The motivation behind this direction is that if we take y = y∗(x) and v = v∗(x), we recover the true
gradient, that is Dx(y∗(x), v∗(x), x) = ∇Φ(x). Proposition 5.2 controls the hypergradient approxima-
tion error by the distances between y and y∗(x) and between v and v∗(x) (see Lemma 4.1 for a proof).

Proposition 5.2. Let x ∈ Rdx . Assume that f is differentiable and Lf,1 smooth with bounded gradient,
g is twice differentiable with Lipschitz gradient and Hessian and g(x, ·) is µg-strongly convex. Then
there exists a constant Lx such that

∥Dx(y, v, x) − ∇Φ(x)∥2 ≤L2
x(∥y − y∗(x)∥2 + ∥v − v∗(x)∥2).

Thus, it is natural to make y and v move towards their respective equilibrium values which are given
by y∗(x) and v∗(x). As a consequence, we also introduce the directions Dy and Dx as follows

Dy(y, v, x) = ∇yg(x, y) ,

Dv(y, v, x) = ∇2
yyg(x, y)v + ∇yf(x, y) .

The interest of considering the directionsDy andDv is recalled in Proposition 5.3 demonstrated in the
previous chapter (see Proposition 4.1).

Proposition 5.3. Assume that g is strongly convex with respect to its first variable. Then for any x ∈ Rdx ,
it holds Dy(y∗(x), v∗(x), x) = 0 and Dv(y∗(x), v∗(x), x) = 0.

The directions Dy, Dv, and Dx can be written as sums over the samples. Hence, following these direc-
tions enables to adapt any classical algorithm suited for single-level finite sum minimization to bilevel
finite sum minimization. In what follows, for two indices i ∈ [n] and j ∈ [m], we consider the sampled
directions Dy,i,j , Dv,i,j and Dx,i,j defined by

Dy,i,j(y, v, x) = ∇ygi(x, y)
Dv,i,j(y, v, x) = ∇2

yygi(x, y)v + ∇yfj(x, y)
Dx,i,j(y, v, x) = ∇2

xygi(x, y)v + ∇xfj(x, y) .

(5.3)

(5.4)

(5.5)

When i and j are randomly sampled uniformly, these directions are unbiased estimators of the true
directions Dy, Dv, and Dx. Yet, as in (Nguyen et al., 2017), we use them to recursively build biased
estimators of the directions that enable fast convergence.

5.2.3 SRBA: Stochastic Recursive Bilevel Algorithm

In Algorithm 6, we present SRBA, a combination of the idea of recursive gradient coming from (Fang
et al., 2018; Nguyen et al., 2022) and the framework proposed in Chapter 4. It relies on a recursive
estimation of each direction Dy, Dv, Dx which is updated following the same strategy as SARAH. Let
us denote by ρ the step size of the update for the variables y and v, and γ the step size for the update
of the variable x. We use the same step size for y and v because the problems of minimizing the
inner function g and solving the linear system (5.2) have the same conditioning driven by ∇2

yyg. For
simplicity, we denote the joint variable u = (y, v, x) and the joint directions weighted by the step
sizes ∆ = (ρDy, ρDv, γDx) = (∆y,∆v,∆x).

At iteration t, the estimate direction ∆ is initialized by computing full batch directions:

∆t,0 = (ρDy(ũt), ρDv(ũt), γDx(ũt))

5.2. A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization 109

Algorithm 6 Stochastic Recursive Bilevel Algorithm

Input: initializations y0 ∈ Rdy , x0 ∈ Rdx , v0 ∈ Rdy , number of iterations T and q, step sizes
ρ and γ.
Set ũ0 = (y0, v0, x0)
for t = 0, . . . , T − 1 do

Reset ∆: ∆t,0 = (ρDy(ũt), ρDv(ũt), γDx(ũt))
Update u: ut,1 = Π(ũt − ∆t,0) ,
for k = 1, . . . , q − 1 do

Draw i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
∆t,k

y = ρ(Dy,i,j(ut,k) −Dy,i,j(ut,k−1)) + ∆t,k−1
y

∆t,k
v = ρ(Dv,i,j(ut,k) −Dv,i,j(ut,k−1)) + ∆t,k−1

v

∆t,k
x = γ(Dx,i,j(ut,k) −Dx,i,j(ut,k−1)) + ∆t,k−1

x

Update u: ut,k+1 = Π(ut,k − ∆t,k)
end for
Set ũt+1 = ut+1,q

end for
Return (ỹT , ṽT , x̃T) = ũT

and a first update is performed by moving from ũt in the direction −∆t,0. As done by Hu et al. (2022),
we project the variable v onto Γ to leverage the boundedness property of v∗. Then, during the kth
iteration of an inner loop of size q − 1, two indices i ∈ [n] and j ∈ [m] are sampled and the estimate
directions are updated according to Equations (5.6) to (5.8)

∆t,k
y = ρ(Dy,i,j(ut,k) −Dy,i,j(ut,k−1)) + ∆t,k−1

y

∆t,k
v = ρ(Dv,i,j(ut,k) −Dv,i,j(ut,k−1)) + ∆t,k−1

v

∆t,k
x = γ(Dx,i,j(ut,k) −Dx,i,j(ut,k−1)) + ∆t,k−1

x

(5.6)

(5.7)

(5.8)

where the sampled directions Dy,i,j , Dv,i,j and Dx,i,j are defined by Equations (5.3) to (5.5). Then the
joint variable u is updated by

ut,k+1 = Π(ut,k − ∆t,k) . (5.9)

Recall that the projection is only performed on the variable v. The other variables y and x remain
unchanged after the projection step. At the end of the inner procedure, we set ũt+1 = ut,q.

In Algorithm 6, the variables y, v, and x are updated simultaneously rather than alternatively. From
a computational perspective, this enables sharing the common computations between the different
oracles and doing the update of each variable in parallel. So there is no sub-procedure to approximate
the solution of the inner problem and the solution of the linear system.

Note that Yang et al. (2021) propose VRBO, another adaptation of SPIDER/SARAH for bilevel problems.
VRBO has a double loop structure where the inner variable is updated by several steps in an inner
loop. In this inner loop, the estimates of the gradient of g and the gradient of Φ are also updated using
SARAH’s update rules. SRBA has a different structure. First, in SRBA, the inner variable y is updated
only once between two updates of the outer variable instead of several times. Second, the solution of
the linear system evolves following optimization steps, whereas in VRBO, a Neumann approximation
is used. Moreover, the algorithm VRBO is analyzed in the case where the functions f and g are general
expectations but not in the specific case of empirical risk minimization, as done in Section 5.3. Finally,
VRBO requires three more parameters than SRBA: the number of inner steps, the number of terms, and
the scaling parameter in the Neumann approximations.

5.3. Theoretical Analysis of SRBA 110

5.3 Theoretical Analysis of SRBA

In this section we provide the theoretical analysis of Algorithm 6 leading to a final sample complexity

in O
(

(n+m) 1
2 ε−1 ∨ (n+m)

)
. In Definition 5.1, we recall what is an ε-stationary point.

Definition 5.1. Let d a positive integer, f : Rd → R a differentiable function, and ε > 0. We say that a
point x ∈ Rd is an ε-stationary point of f if ∥∇f(x)∥2 ≤ ϵ. In a stochastic context, we call ε-stationary
point a random variable x such that E[∥∇f(x)∥2] ≤ ε.

In this chapter, the theoretical complexity of the algorithms is given in terms of number of calls to
oracle, that is to say, the number of times the quantity

[∇fj(x, y),∇gi(x, y),∇2
yygi(x, y)v,∇2

xygi(x, y)v] (5.10)

is queried for i ∈ [n], j ∈ [m], y ∈ Rdy , v ∈ Rdy and x ∈ Rdx . Note that in practice, although the
second-order derivatives of the inner functions ∇2

yygi(x, y) ∈ Rp×p and ∇2
xygi(x, y) ∈ Rd×p are in-

volved, they are never computed or stored explicitly. We rather work with Hessian-vector products
∇2
yygi(x, y)v ∈ Rdy and Jacobian-vector products ∇2

xygi(x, y)v ∈ Rdx which can be computed effi-
ciently thanks to automatic differentiation with a computational cost similar to the cost of computing
the gradients ∇ygi(x, y) and ∇xgi(x, y) as explained in Section 2.3 (Pearlmutter, 1994). The cost of one
query (5.10) is, therefore, of the same order of magnitude as that of computing one stochastic gradient.

5.3.1 Mean Squared Error of the Estimated Directions

A strength of our method is its simple expression of the estimation error of the directions coming
from the bias-variance decomposition provided by Nguyen et al. (2017). Let us denote the estimate
directions Dt,k

y = ∆t,k
y /ρ, Dt,k

v = ∆t,k
v /ρ and Dt,k

x = ∆t,k
x /γ. In the remainder of the chapter, a

quantity denoted A• refers to Ay, Av or Ax, depending on the context. We introduce the residuals

St,k• =
k∑
r=1

E[∥D•(ut,r) −D•(ut,r−1)∥2],

S̃t,k• =
k∑
r=1

E[∥Dt,r
• −Dt,r−1

• ∥2] .

We provide a link between the mean squared error E[∥Dt,k
• −D•(ut,k)∥2] and the residuals.

Proposition 5.4 (MSE of the estimate directions). For any t ≥ 0 and k ∈ {1, . . . , q − 1}, the estimate
Dt,k

• of the direction D•(ut,k) satisfies

E[∥Dt,k
• −D•(ut,k)∥2] = S̃t,k• − St,k• .

Proof. Let t > 0 and k ∈ [q − 1].

For k = 0, we directly have E[∥Dt,k
• −D•(ut,k)∥2] = 0.

For k ≥ 1 and r ∈ {1, . . . , k}, the bias/variance decomposition of Dt,r
• reads

Et,r[∥Dt,r
• −D•(ut,r)∥2] = Et,r[∥Dt,r

• −Dt,r−1
• +D•(ut,r−1) −D•(ut,r)∥2]

+ ∥D•(ut,r) +D•(ut,r−1) −Dt,r−1
• −D•(ut,r)∥2

= Et,r[∥Dt,r
• −Dt,r−1

• − (D•(ut,r−1) −D•(ut,r))∥2]
+ ∥Dt,r−1

• −D•(ut,r−1)∥2

The term Et,r[∥Dt,r
• −Dt,r−1

• − (D•(ut,r−1) −D•(ut,r))∥2] is the variance ofDt,r
• −Dt,r−1

• , and then can
written as

Et,r[∥Dt,r
• −Dt,r−1

• − (D•(ut,r−1) −D•(ut,r))∥2] = Et,r[∥Dt,r
• −Dt,r−1

• ∥2] − ∥D•(ut,r) −D•(ut,r−1)∥2

5.3. Theoretical Analysis of SRBA 111

Plugging this in the previous inequality and taking the total expectation leads to

E[∥Dt,r
• −D•(ut,r)∥2] = E[∥Dt,r

• −Dt,r−1
• ∥2] − E[∥D•(ut,r) −D•(ut,r−1)∥2]

+ E[∥Dt,r−1
• −Dt,r−1

• (ut,r−1)∥2]

Summing for r ∈ {1, . . . , k} and telescoping gives the final result (taking into account that we have
Dt,0

• = D•(ut,0)):

E[∥Dt,k
• −D•(ut,k)∥2] =

k∑
r=1

E[∥Dt,r
• −Dt,r−1

• ∥2] −
k∑
r=1

E[∥D•(ut,r) −D•(ut,r−1)∥2] .

The above error has two components: the accumulation of the difference between two successive full
batch directions and the accumulation of the difference between two successive estimate directions.

5.3.2 Fundamental Lemmas

We establish descent lemmas which are key ingredients to get the final convergence result. Lemma 5.1
characterizes the dynamic of u on the inner problem. To do so, we define the function ϕy as

ϕy(x, y) = g(x, y) − g(x, y∗(x)) .

In the bilevel literature, a direct control on the distance to optimum δt,ky ≜ E[∥yt,k − y∗(xt,k)∥2] is
established. Here, the biased nature of the estimate direction Dt,k

y makes it hard to upper bound ap-
propriately the scalar product ⟨Dy(ut,k) − Dt,k

y , yt,k − y∗(xt,k)⟩. Therefore, we rather consider ϕt,ky . By
combining the smoothness property of ϕy and the bias-variance decomposition provided in Proposi-
tion 5.4, we can show some descent property on the sequence ϕt,ky defined by ϕt,ky = E[ϕy(yt,k, xt,k)].
Before stating Lemma 5.1, let us define Gt,kv = 1

ρ

(
vt,k − ΠΓ(vt,k − ρDt,k

v)
)

so that vt,k+1 = vt,k − ρGt,kv .
This is the actual update direction of v. If there were no projections, we would have Gt,kv = Dt,k

v . Hence,
it acts as a surrogate of Dt,k

v in our analysis. We also define

V t,ky = E[∥Dt,k
y ∥2], V t,kv = E[∥Gt,kv ∥2], V t,kx = E[∥Dt,k

x ∥2]

the variances and their respective sums over the inner loop

Vt,ky =
k∑
r=1

E[∥Dt,r−1
y ∥2], Vt,kv =

k∑
r=1

E[∥Gt,r−1
v ∥2], Vt,kx =

k∑
r=1

E[∥Dt,r−1
x ∥2] .

Lemma 5.1 (Descent on the inner level). Assume that the step sizes ρ and γ verify γ ≤ Cyρ for some
positive constant Cy specified in the proof. Then it holds

ϕt,k+1
y ≤

(
1 − µg

2 ρ
)
ϕt,ky − ρ

2 (1 − Λyρ)V t,ky + ρ3βyyVt,ky + γ2ρβyvVt,kv

+ γ2ρβyxVt,kx + Λy
2 γ2V t,kx + γ2

ρ
βyxE[∥Dx(ut,k)∥2]

(5.11)

for some positive constants Λy, βyy, βyx and βyx that are specified in the proof.

In (5.11) we recover a decrease of ϕt,ky by a factor (1 − ρµg). But the outer variable’s movement and the
noise make appear Dx(ut,k) and the variance hindering the convergence of y towards y∗(x).

Proof. In subsection B.1.2, we show the Γy-smoothness of ϕy. This enables us to write:

ϕy(yt,k+1, xt,k+1) ≤ ϕy(yt,k, xt,k) − ρ⟨Dt,k
y ,∇yg(yt,k, xt,k)⟩ + Λy

2 ρ2∥Dt,k
y ∥2

− γ⟨Dt,k
x ,∇xg(yt,k, xt,k) − ∇xg(y∗(xt,k), xt,k)⟩ + Λy

2 γ2∥Dt,k
x ∥2 .

(5.12)

5.3. Theoretical Analysis of SRBA 112

Using the equality ⟨a, b⟩ = 1
2 (∥a∥2 + ∥b∥2 − ∥a− b∥2), we get

−⟨Dt,k
y ,∇yg(yt,k, xt,k)⟩ + Λy

2 ρ∥Dt,k
y ∥2 = 1

2(∥Dt,k
y − ∇yg(yt,k, xt,k)∥2

− ∥∇yg(yt,k, xt,k)∥2 − (1 − Λyρ) ∥Dt,k
y ∥2) .

(5.13)

Plugging Equation (5.13) into Equation (5.12) and tacking the expectation conditionally to the past
iterates yields

Et,k[ϕt,k+1
y] ≤ ϕt,ky + ρ

2Et,k[∥Dt,k
y − ∇yg(yt,k, xt,k)∥2]

− ρ

2∥∇yg(yt,k, xt,k)∥2 − ρ

2 (1 − Λyρ)Et,k[∥Dt,k
y ∥2]

− γ⟨Et,k[Dt,k
x],∇xg(yt,k, xt,k) − ∇xg(y∗(xt,k), xt,k)⟩ + Λy

2 γ2Et,k[∥Dt,k
x ∥2] .

(5.14)

From Young inequality, we have for any c > 0

⟨Et,k[Dt,k
x],∇xg(yt,k, xt,k) − ∇xg(y∗(xt,k), xt,k)⟩ ≤ 1

2c∥Et,k[Dt,k
x]∥2

+ c

2∥∇xg(yt,k, xt,k) − ∇xg(y∗(xt,k), xt,k)∥2

(5.15)

The smoothness of g and strong convexity give us

∥∇xg(yt,k, xt,k) − ∇xg(y∗(xt,k), xt,k)∥2 ≤ Lg,1∥yt,k − y∗(xt,k)∥2 ≤ 2Lg,1
µg

ϕy(yt,k, xt,k) (5.16)

Let us denote L′ = Lg,1
µg

. Plugging inequalities (5.15) and (5.16) into Equation (5.14) yields

Et,k[ϕy(yt,k+1, xt,k+1)] ≤ (1 + cL′γ)ϕy(yt,k+1, xt,k+1) − ρ

2Et,k[∥∇yg(yt,k, xt,k)∥2]

+ ρ

2Et,k[∥Dt,k
y − ∇yg(yt,k, xt,k)∥2] − ρ

2 (1 − Λyρ)Et,k[∥Dt,k
y ∥2]

+ γ

2c∥Et,k[Dt,k
x]∥2 + Λy

2 γ2Et,k[∥Dt,k
x ∥2]

(5.17)

From Lemma B.2, we have

E[∥Dt,k
y − ∇yg(yt,k, xt,k)∥2] ≤

k∑
r=1

Lg,1(ρ2E[∥Dt,r−1
y ∥2] + γ2E[∥Dt,r−1

y ∥2]) .

Taking the total expectation and plugging the previous inequality into Equation (5.17) yields

ϕt,k+1
y ≤ (1 + cL′γ)ϕt,k + Lg,1

2

k∑
r=1

(ρ3E[∥Dt,r−1
y ∥2] + γ2ρE[∥Dt,r−1

x ∥2])

− ρ

2E[∥∇yg(yt,k, xt,k)∥2] − ρ

2 (1 − Λyρ)E[∥Dt,k
y ∥2]

+ γ

2cE[∥E[Dt,k
x]∥2] + Λy

2 γ2E[∥Dt,k
x ∥2]

(5.18)

Since g is µg-strongly convex with respect to z, Polyak-Łojasiewicz inequality holds:

∥∇yg(yt,k, xt,k)∥2 ≥ 2µgϕy(yt,k, xt,k)

As a consequence, Equation (5.18) becomes

ϕt,k+1
y ≤ (1 + cL′γ − µgρ)ϕt,k + Lg,1

2

k∑
r=1

(ρ3E[∥Dt,r−1
y ∥2] + γ2ρE[∥Dt,r−1

x ∥2])

− ρ

2 (1 − Λyρ)E[∥Dt,k
y ∥2] + γ

2cE[∥E[Dt,k
x]∥2] + Λy

2 γ2E[∥Dt,k
x ∥2]

5.3. Theoretical Analysis of SRBA 113

Taking c = µgρ
2L′γ yields

ϕt,k+1
y ≤

(
1 − µg

2 ρ
)
ϕt,k + Lg,1

2

k∑
r=1

(ρ3E[∥Dt,r−1
y ∥2] + γ2ρE[∥Dt,r−1

x ∥2])

− ρ

2 (1 − Λyρ)E[∥Dt,k
y ∥2] + L′

µg

γ2

ρ
E[∥E[Dt,k

x]∥2] + Λy
2 γ2E[∥Dt,k

x ∥2]

For the term E[∥Et,k[Dt,k
y]∥2], we have

E[∥Et,k[Dt,k
x]∥2] = E[∥Dx(yt,k, vt,k, xt,k) −Dx(yt,k−1, vt,k−1, xt,k−1) +Dt,k−1

x ∥2]
= E[∥Dx(yt,k, vt,k, xt,k) −Dx(yt,k−1, vt,k−1, xt,k−1) − E[Dt,k−1

x]∥2]
+ E[∥Dt,k−1

x − E[Dt,k−1
x]∥2]

= E[∥Dx(yt,k, vt,k, xt,k)∥2]
+ E[∥Dt,k−1

x −Dx(yt,k−1, vt,k−1, xt,k−1)∥2] .

(5.19)

Using Lemma B.2, we get

E[∥Dt,k−1
x −Dx(ut,k−1)∥2] ≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2) k−1∑

r=1
E[∥Dt,r−1

y ∥2]

+ 4ρ2(Lg,1)2
k−1∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2 ((Lg,2R)2 + (Lf,1)2) k−1∑
r=1

E[∥Dt,r−1
x ∥2] .

Putting all together yields

ϕt,k+1
y ≤

(
1 − µg

2 ρ
)
ϕt,k − ρ

2 (1 − Λyρ)E[∥Dt,k
y ∥2] + Λy

2 γ2E[∥Dt,k
x ∥2]

+ L′

µg

γ2

ρ
E[∥Dt,k

x (ut,k)∥2] + 4(Lg,1)2 L
′

µg
γ2ρ

k∑
r=1

E[∥Gt,r−1
v ∥2]

+ ρ

[
ρ2Lg,1

2 + 4(Lg,2R)2L′

µg
γ2 + 4(Lf,1)2L′

µg
γ2
] k∑
r=1

E[∥Dt,r−1
y ∥2]

+ γ2
[
ρ
Lg,1

2 + 4(Lg,2R)2 L
′

µg

γ2

ρ
+ 4(Lf,1)2 L

′

µg

γ2

ρ

] k∑
r=1

E[∥Dt,r−1
x ∥2]

(5.20)

By assumption, γ ≤ Cyρ, with Cy =
√

µgLg,1
8L′((Lg,2R)2+(Lf,1)2) therefore

ϕt,k+1
y ≤

(
1 − µg

2 ρ
)
ϕt,ky − ρ

2 (1 − Λyρ)E[∥Dt,k
y ∥2] + Λy

2 γ2E[∥Dt,k
x ∥2]

+ L′

µg

γ2

ρ
E[∥Dt,k

x (ut,k)∥2] + ρ3Lg,1

k∑
r=1

E[∥Dt,r−1
y ∥2]

+ 4(Lg,1)2 L
′

µg
γ2ρ

k∑
r=1

E[∥Gt,r−1
v ∥2] + γ2ρLg,1

k∑
r=1

E[∥Dt,r−1
x ∥2]

≤
(

1 − µg
2 ρ
)
ϕt,k − ρ

2 (1 − Λyρ)V t,ky + Λy
2 γ2V t,kx + βyx

γ2

ρ
E[∥Dt,k

x (ut,k)∥2]

+ ρ3βyyVt,ky + γ2ρβyvVt,kv + γ2ρβyxVt,kx

with βyy = Lg,1, βyv = 4(Lg,1)2L′

µg
, βyx = Lg,1 and βyx = L′

µg
.

5.3. Theoretical Analysis of SRBA 114

For the variable v, the quantity we consider is

ϕv(v, x) = Ψ(y∗(x), v, x) − Ψ(y∗(x), v∗(x), x)

where Ψ(y, v, x) is defined as

Ψ(y, v, x) = 1
2v

⊤∇2
yyg(x, y)v + ∇yf(x, y)⊤v .

The intuition behind considering this quantity is that solving the linear system (5.2) is equivalent to
minimizing over v the function Ψ(y∗(x), v, x).

Lemma 5.2. Assume that the step sizes ρ and γ verify ρ ≤ Bv and γ ≤ Cvρ for some positive constants
Bv and Cv specified in the appendix. Then it holds

ϕt,k+1
v ≤

(
1 − ρµg

16

)
ϕt,kv − β̃vvρV

t
v + ρ3βvyVt,ky + 2ρ3βvvVt,kv + γ2ρβvxVt,kx

+ ραvyϕ
t,k
y + Λv

2 γ2E[∥Dt,k
x ∥2] + γ2

ρ
βvxE[∥Dx(ut,k)∥2]

for some positive constants Λv, βvy, βvx, β̃vv and βvx that are specified in the appendix.

Lemma 5.2 is similar to Lemma 5.1 with a term in ϕt,ky taking into account the error of y∗(x)’s approx-
imation. The proof of this lemma is provided in subsection B.1.3. It harnesses the generalization of
Polyak-Łojasiewicz inequality for composite functions introduced by Karimi et al. (2016).

The following lemma is a consequence of the smoothness of Φ. Let us denote the expected val-
ues Φt,k = E[Φ(xt,k)] and expected gradient gt,k = E[∥∇Φ(xt,k)∥2].

Lemma 5.3. There exist constants βΦy, βΦv, βΦx > 0 such that

Φt,k+1 ≤ Φt,k − γ

2 g
t,k + γ

2L2
x

µg
(ϕt,ky + ϕt,kv) + γρ2βΦyVt,ky

+ γρ2βΦvVt,kv + γ3βΦxVt,kx − γ

2 (1 − LΦγ)V t,kx .

This lemma shows that the control of the approximation error ϕ• (Lemma 5.1 and Lemma 5.2) and the
sum of variances V• is crucial to get a decrease of E[Φ(xt,k)].

Proof. The smoothness of Φ (Proposition 3.2) gives us

Φ(xt,k+1) ≤ Φ(xt,k) − γ⟨∇Φ(xt,k), Dt,k
x ⟩ + γ2LΦ

2 ∥Dt,k
x ∥2 .

Then, we use the identity ⟨a, b⟩ = 1
2 (∥a∥2 + ∥b∥2 − ∥a− b∥2) to get

Φ(xt,k+1) ≤ Φ(xt,k) − γ

2 ∥∇Φ(xt,k)∥2 − γ

2 ∥Dt,k
x ∥2 + γ

2 ∥∇Φ(xt,k) −Dt,k
x ∥2 + γ2LΦ

2 ∥Dt,k
x ∥2

≤ Φ(xt,k) − γ

2 ∥∇Φ(xt,k)∥2 − γ

2 ∥Dt,k
x ∥2 + γ∥∇Φ(xt,k) −Dx(ut,k)∥2

+ γ∥Dx(ut,k) −Dt,k
x ∥2 + γ2LΦ

2 ∥Dt,k
x ∥2 .

Then taking the expectation gives and using Proposition 5.2 yields

Φt,k+1 ≤ Φt,k − γ

2 g
t,k + γE[∥∇Φ(xt,k) −Dx(ut,k)∥2]

+ γE[∥Dx(ut,k) −Dt,k
x ∥2] − γ

2 (1 − LΦγ)E[∥Dt,k
x ∥2]

≤ Φt,k − γ

2 g
t,k + γL2

x(E[∥yt,k − y∗(xt,k)∥2] + E[∥vt,k − v∗(xt,k)∥2])

+ γE[∥Dx(ut,k) −Dt,k
x ∥2] − γ

2 (1 − LΦγ)E[∥Dt,k
x ∥2] .

5.3. Theoretical Analysis of SRBA 115

The µg-strong convexity of g ensures that ∥y − y∗(x)∥2 ≤ 2
µg
ϕy(y, x) and ∥v − v∗(x)∥2 ≤ 2

µg
ϕv(v, x).

As a consequence

Φt,k+1 ≤ Φt,k − γ

2 g
t,k + γ

2L2
x

µg
(ϕt,ky + ϕt,kv) + γE[∥Dx(yt,k, vt,k, xt,k) −Dt,k

x ∥2]

− γ

2 (1 − LΦγ)E[∥Dt,k
x ∥2] .

From Lemma B.2, we have

E[∥Dt,k
x −Dx(ut,k)∥2] ≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2) k∑

r=1
E[∥Dt,r−1

y ∥2] + 4ρ2(Lg,1)2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2 ((Lg,2R)2 + (Lf,1)2) k∑
r=1

E[∥Dt,r−1
x ∥2] .

As a consequence

Φt,k+1 ≤ Φt,k − γ

2 g
t,k + γ

2L2
x

µg
(ϕt,ky + ϕt,kv)

+ 4γρ2 ((Lg,2R)2 + 2(Lf,1)2) k∑
r=1

E[∥Dt,r−1
y ∥2] + 4γρ2(LG1)2

k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ3 ((Lg,2R)2 + 2(Lf,1)2) k∑
r=1

E[∥Dt,r−1
x ∥2] − γ

2 (1 − LΦγ)E[∥Dt,k
x ∥2]

≤ Φt,k − γ

2 g
t,k + γ

2L2
x

µg
(ϕt,ky + ϕt,kv) + γρ2βΦyVt,ky + γρ2βΦvVt,kv

+ γ3βΦxVt,kx − γ

2 (1 − LΦγ)E[∥Dt,k
x ∥2]

with βΦy = 4
(
(Lg,2R)2 + 2(Lf,1)2), βΦv = 4(LG1)2 and βΦx = 4

(
(Lg,2R)2 + 2(Lf,1)2).

5.3.3 Complexity Analysis of SRBA

In Theorem 5.1, we provide the convergence rate of SRBA towards a stationary point.

Theorem 5.1. Assume that Assumptions 5.1 and 5.2 hold. Assume that the step sizes verify ρ ≤ ρ and
γ ≤ min(γ, ξρ) for some constants ξ, ρ and γ specified in appendix. Then it holds

1
Tq

T−1∑
t=0

q−1∑
k=0

E[∥∇Φ(xt,k)∥2] = O
(

1
qTγ

)
where O hides regularity constants that are independent from n and m.

Proof sketch. The detailed proof is provided in subsection B.1.4.

The proof combines classical proof techniques from the bilevel literature and elements from SARAH’s
analysis (Nguyen et al., 2017, 2022). We introduce the Lyapunov function

Lt,k = Φt,k + ψyϕ
t,k
y + ψvϕ

t,k
v

where ψy and ψv are non-negative constants.

5.3. Theoretical Analysis of SRBA 116

By combining Lemmas 5.1 to 5.3 we get

Lt,k+1 − Lt,k ≤ −γ

2 g
t,k +A

γ2

ρ
E[∥Dx(ut,k)∥2] + (B1γ −B2ρ+B3ρ)ϕt,ky

+ (C1γ − C2ρ)ϕt,kv +
(
D1ρ

2 −D2ρ
)
V t,ky − E1ρV

t,k
v

+
(
F1γ

2 − F2γ
)
V t,kx +

(
G1ργ

2 +G2ρ
3 +G3ρ

3)Vt,ky
+
(
H1ργ

2 +H2γ
2ρ+H3ρ

3)Vt,kv +
(
I1γ

3 + I2γ
2ρ+ I3ρ

3)Vt,kx ,

(5.21)

where the constants A, B1, B2, B3, C1, C2, D1, D2, E1, F1, F2, G1, G2, G3, H1, H2, H3, I1, I2 and I3 are
independent from the step sizes and q.

The term E[∥Dx(ut,k)∥2] can be bounded by using Proposition 5.2:

E[∥Dx(ut,k)∥2] ≤ 2gt,k + 4
µg

(ϕt,ky + ϕt,kv)

If we inject the previous equation in Equation (5.21), then by summing a telescoping, we get

Lt,q − Lt,0 ≤ −
(
γ

2 − J
γ2

ρ

) q−1∑
k=0

gt,k +
(
B1γ −B2ρ+B3ρ+B4

γ2

ρ

) q−1∑
k=0

ϕt,ky

+
(
C1γ − C2ρ+ C3

γ2

ρ

) q−1∑
k=0

ϕt,kv + (D1ρ
2 −D2ρ)

q−1∑
k=0

V t,ky

− E1ρ

q−1∑
k=0

V t,kv +
(
F1γ

2 − F2γ
) q−1∑
k=0

V t,kx +
(
G1ργ

2 +G2ρ
3 +G3ρ

3) q−1∑
k=0

Vt,ky

+
(
H1ργ

2 +H2γ
2ρ+H3ρ

3) q−1∑
k=0

Vt,kv
(
I1γ

3 + I2γ
2ρ+ I3ρ

3) q−1∑
k=0

Vt,kx ,

Using the inequality
q−1∑
k=0

Vt,k• ≤ q

q−1∑
k=1

E[∥Dt,k−1
• ∥2] ,

we get

Lt,q − Lt,0 ≤ −
(
γ

2 − J ′ γ
2

ρ

) q−1∑
k=0

gt,k

+
(
B1γ −B2ρ+B3ρ+B4

γ2

ρ

) q−1∑
k=0

ϕt,ky +
(
C1γ − C2ρ+ C3

γ2

ρ

) q−1∑
k=0

ϕt,kv

+ (D1ρ
2 −D2ρ+ q

(
G1ργ

2 +G2ρ
3 +G3ρ

3)) q−1∑
k=0

V t,ky

+ (−E1ρ+ q
(
H1ργ

2 +H2γ
2ρ+H3ρ

3))ρ q−1∑
k=0

V t,kv

+
(
F1γ

2 − F2γ + q
(
I1γ

3 + I2γ
2ρ+ I3ρ

3)) q−1∑
k=0

V t,kx .

With suitable choice of the step sizes ρ and γ, and constants ψy and ψv, we get

Lt,q − Lt,0 ≤ −γ

4

q−1∑
k=0

gt,k .

Then, summing for t ∈ {0, . . . , T − 1} yields the result.

5.4. Lower Bound for Bilevel ERM 117

Note that increasing q allows a faster convergence in terms of iterations but makes each iteration more
expensive since the number of oracle calls per iteration is (2n + 3m) + 2 × 5(q − 1). Thus, there is a
trade-off between the convergence rate and the overall complexity. In Corollary 5.3.1, we state that the
value of q that gives the best sample complexity is n+m.

Corollary 5.3.1. Suppose that Assumptions 5.1 and 5.2 hold. If we take the inner step size ρ = ρ(n +
m)− 1

2 , the outer step size γ = min(γ, ξρ)(n+m)− 1
2 and the inner loop size q = n+m, then

O
(

(n+m) 1
2 ε−1 ∨ (n+m)

)
calls to oracles are sufficient to find an ε-stationary point with SRBA.

Proof. Let us take ρ = ρ(n+m)− 1
2 , γ = min(ξρ, γ) and q = n+m. Then Theorem 5.1 holds:

1
Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4
Tqγ

Γ0 .

with Γ0 = O(1). To get an ε-stationary solution, we set T ≥ 4
qγΓ0ε−1 ∨ 1 = O

(
1
qγε ∨ 1

)
. One iteration

has Θ(q) = Θ(n+m) oracle complexity. As a consequence, the sample complexity to get an ε-stationary

point is O
(

(n+m) 1
2 ϵ−1 ∨ (n+m)

)
.

This sample complexity is analogous to the sample complexity of SARAH in the non-convex finite-
sum setting. To the best of our knowledge, such a rate is the best known for bilevel empirical risk
minimization problems in terms of dependency on the number of samples n+m and the precision ε.
This improves by a factor (n + m)− 1

6 the previous result which was achieved by SABA (Dagréou et al.,
2022a). As a comparison, VRBO (Yang et al., 2021) achieves a sample complexity in Õ(ε− 3

2). Note that,
for large value of n+mwe can have actually (n+m) 1

2 ε−1 ≳ ε−2. This means that, just like single-level
SARAH, the complexity of SRBA can be beaten by others when the number of samples is too high with
respect to the desired accuracy (actually if n+m = Ω(ε−2)).

5.4 Lower Bound for Bilevel ERM

In this section, we derive a lower bound for bilevel empirical risk minimization problems. This shows
that SRBA is a near-optimal algorithm for this class of problems.

Function and Algorithm Classes. We define the function and algorithm classes we consider.

Definition 5.2. Let n,m two positive integers, Lf,1 and µg two positive constants. The class of the
smooth empirical risk minimization problems denoted by CLf,1,µg is the set of pairs of real-valued
function families ((fj)1≤j≤m, (gi)1≤i≤n) defined on Rdx ×Rdy such that for all j ∈ [m], fj isLf,1 smooth
and for all i ∈ [n], gi is twice differentiable and µg-strongly convex.

Note that we consider a class of non-convex bilevel problems. This class contains the functions defin-
ing the bilevel formulation of the datacleaning task.

For the algorithmic class, we consider algorithms that use approximate implicit differentiation.

Definition 5.3. Given initial points y0, v0, x0, a linear bilevel algorithm A is a measurable mapping
such that for any ((fj)1≤j≤m, (gi)1≤i≤n) ∈ CLf,1,µg , the output of A((fj)1≤j≤m, (gi)1≤i≤n) is a sequence
{(yt, vt, xt, it, jt)}t≥0 of points (yt, vt, xt) and random variables it ∈ [n] and jt ∈ [m] such that for all
t ≥ 0

yt+1 ∈ y0+Span{∇ygi0(x0, y0), . . . ,∇ygit(xt, yt)}
vt+1 ∈ v0+Span{∇2

yygi0(x0, y0)v0 + ∇yfj0(x0, y0),
. . . ,∇2

yygit(xt, yt)vt + ∇yfjt
(xt, yt)}

xt+1 ∈ x0+Span{∇2
xygi0(x0, y0)v0 + ∇xfj0(x0, y0),

. . . ,∇2
xygit(xt, yt)vt + ∇xfjt

(xt, yt)}.

5.5. Proof of Theorem 5.2 118

This algorithm class includes popular stochastic bilevel first-order algorithms, such as AmIGO (Arbel
and Mairal, 2022a), FSLA (Li et al., 2022), SOBA, and SABA (Dagréou et al., 2022a). Moreover, despite
the projection step, SRBA is part of this algorithm class since the projection of a vector onto Γ is actu-
ally just a rescaling.

As a comparison to the existing lower bound for bilevel optimization by Ji and Liang (2023), we con-
sider randomized algorithms and do not assume the value function Φ to be convex or strongly convex.

Main Theorem. Problem (5.1) is actually a smooth non-convex optimization problem. The lower
complexity bound for non-convex finite sum problems has been studied by Fang et al. (2018) and Zhou
and Gu (2019). In particular, they show that the number of gradient calls needed to get an ε-stationary
point for a smooth non-convex finite sum is at least O(m 1

2 ε−1), wherem is the number of terms in the
finite sum.

Intuitively, we expect the lower complexity bound to solve (5.1) to be larger. Indeed, bilevel problems
are harder than single-level problems because a bilevel problem involves the resolution of several
subproblems to progress in its resolution. Theorem 5.2 formalizes this intuition by showing that the
classical single-level lower bound is also a lower bound for bilevel problems.

Theorem 5.2. For any linear bilevel algorithm A, and any Lf , n, ∆, ε, p such that ε ≤ (∆Lfm−1)/103,
there exists a dimension d = O(∆ε−1m

1
2Lf), an element ((fj)1≤j≤m, (gi)1≤i≤n) ∈ CLf,1,µg such that the

value function Φ defined as in (5.1) satisfies Φ(x0) − infx∈Rd Φ(x) ≤ ∆ and in order to find x̂ ∈ Rd such
that E[∥∇Φ(x̂)∥2] ≤ ε, A needs at least Ω(m 1

2 ε−1) calls to oracles of the form (5.10).

The proof is an adaptation of the proof of Zhou and Gu (2019, Theorem 4.7). We take as outer function
f defined by f(x, y) =

∑m
j=1 f(U (j)z) where f is the “worst-case function” used by Carmon et al. (2021),

U = [U (j), . . . , U (m)]⊤ is an orthogonal matrix and g(x, y) = 1
2 ∥y − x∥2. We leverage the fact that

∥∇f(y)∥2 > K as long as the two last coordinates of y are zero for some known constant K. Then
we use the “zero chain property” to bound the number of indices j such the two last components of
U (j)xt are zero at a given iteration t, implying ∥∇Φ(xt)∥2 > ϵ when t is smaller than O(m 1

2 ε−1). In the
next section, we provide the proof of Theorem 5.2.

5.5 Proof of Theorem 5.2

The proof of Theorem 5.2 is an adaptation of the proof of (Zhou and Gu, 2019, Theorem 4.7) from
single-level to bilevel problems. We build the outer function from the worst-case instance of (Zhou
and Gu, 2019, Theorem 4.7) and we add a bilevel component by using as inner function the function g
defined by g(x, y) = µg

2 ∥y − x∥2. We start by introducing the different tools used in this proof.

5.5.1 Preliminary results

In what follows, we provide the building blocks of our worst-case instance. The proof uses the follow-
ing quadratic function presented by (Nesterov, 2018).

Definition 5.4. Let d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. We define Q(.; ξ, d) : Rd → R by

Q(x; ξ, d) = ξ

2(x1 − 1)2 + 1
2

d−1∑
k=1

(xk+1 − xk)2 .

Proposition 5.5 proposition comes directly from (Zhou and Gu, 2019, Proposition 3.5). The first part
of the proposition gives us the regularity of Q. The second part shows that a function defined as
Q(U × · ; ξ, d) +

∑q
p=1 g(⟨up, · ⟩) verifies the so-called "zero-chain property" (Carmon et al., 2020): if

Ux ∈ Span(u1, . . . , uk), then we gain a non-zero coordinate by calling the gradient

∇ [Q (U × · ; ξ, d) +
q∑
p=1

g(⟨up, · ⟩)](x) .

5.5. Proof of Theorem 5.2 119

In other words, that makes us progress in the problem resolution.

Proposition 5.5. For d ∈ N>0, ξ ∈ [0 , +∞) and ζ ≤ 1. The following holds:

1. Q(· ; ξ, d) is convex and 4-smooth.

2. Let q ∈ N>0, U = [u1, . . . , ud]⊤ ∈ Rd×q such that UU⊤ = I, and for k ≤ d, let

U (≤k) = [u1, . . . , uk, 0, . . . , 0]⊤ ∈ Rd×q .

Let g : R → R differentiable such that g′(0) = 0. Then for any x ∈ Rq such that Ux = U (≤k)x, then

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(⟨up, · ⟩)
]

(x) ∈ Span(u1, . . . , uk, uk+1) .

Proof. Let x ∈ Rq such that Ux = U (≤k)x. For 0 ≤ k ≤ d, we denote

Rk,d = {v ∈ Rd, vk+1 = · · · = vd = 0} .

Let us write Q(x; ξ, d) = 1
2x

⊤Ax+ b⊤x+ c with

A =



1 + ξ −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 1


∈ Rd×d ,

b = ξ(1, 0, . . . , 0)⊤ and c = ξ
2 (1, 0, . . . , 0)⊤.

On the one hand it is known from (Nesterov, 2018, Lemma 2.5.1) that if v ∈ Rk,d,

∇Q(v; ξ, d) ∈ Rk+1,d

As a consequence,
∇Q(Ux; ξ, d) = ∇Q(U (≤k)x︸ ︷︷ ︸

∈Rk,d

; ξ, d) ∈ Rk+1,d

and
∇[Q(U × · ; ξ, d)](x) = U⊤∇Q(Ux; ξ, d) ∈ Span(u1, . . . , uk+1) .

On the other hand,

∇

[
d∑
p=1

g(⟨up, · ⟩)
]

(x) =
d∑
p=1

g′(⟨up, x⟩)up =
k∑
p=1

g′(⟨up, x⟩)up ∈ Span(u1, . . . , uk+1) .

Thus

∇

[
Q(U × · ; ξ, d) +

d∑
p=1

g(⟨up, · ⟩)
]

(x) ∈ Span(u1, . . . , uk, uk+1) .

However, the function Q is convex. That is why we also use the function Γ introduced by Carmon et al.
(2021). As explained by Carmon et al. (2021), this function is essential to lower bound the gradient of
our worst wase instance.

Definition 5.5. Let d ∈ N>0. We define Γ(· ; d) : Rd+1 → R by

Γ(x; d) = 120
d∑
k=1

∫ xk

1

t2(t− 1)
1 + t2

dt .

5.5. Proof of Theorem 5.2 120

An important property of Γ shown in (Carmon et al., 2021, Lemma 2) is the smoothness of the func-
tion Γ.

Proposition 5.6. There exists a constant c > 0 such that Γ(· ; d) is c-smooth.

Now we introduce the function fnc we use to build our worst-case instance. This function comes from
(Zhou and Gu, 2019, Definition 3.5). It is the sum of the quadratic function defined in Definition 5.4
and the non-convex component given in Definition 5.5.

Definition 5.6. For α > 0 and d ∈ N>0, fnc(· ;α, d) : Rd+1 → R is defined a

fnc(x;α, d) = Q(x;
√
α, d+ 1) + αΓ(x) .

The essential properties of fnc come from (Carmon et al., 2021, Lemmas 2, 3, 4). The first part provides
the regularity properties of fnc. The second part bounds the distance between fnc(· ;α, d) and the
optimal value of the function. The third part will be key to the overall proof. In words, it states that
as long x ∈ Rd+1 has its two last components equal to zero, the norm of the gradient of fnc(· ;α, d)
is higher than a constant controlled by α. As a consequence, if α is properly chosen, as soon as xd =
xd+1 = 0, we are ensured that ∥∇fnc(x;α, d)∥ ≥ ϵ.

Proposition 5.7. For α ∈ [0 , 1], it holds

1. −αc ⪯ ∇2fnc ⪯ 4 + αc.

2. fnc(0;α, d) − infx fnc(x;α, d) ≤
√
α

2 + 10αd.

3. For x ∈ Rd+1 such that xd = xd+1 = 0, ∥∇fnc(x;α, d)∥ ≥ α
3
4

4 .

From now we denote

O(a, b) = {U ∈ Ra×b, UU⊤ = Ia} .

The following Lemma adapted from (Zhou and Gu, 2019) is fundamental for our lower bound proof.

Lemma 5.4. Let d,m ∈ N>0 and U ∈ O((d+ 1)m, (d+ 1)m). We denote

U =

U
(1)

...
U (m)


with each U (i) ∈ O(d+ 1, (d+ 1)m). Let {Φj}j∈[m] with Φj(x) = fnc(U (j)x;α, d) and Φ = 1

m

∑m
j=1 Φj .

Let x ∈ R(d+1)m and z(j) = U (j)x ∈ Rd+1. Let I = {j ∈ [m], z(j)
d = z

(j)
d+1 = 0}. Then it holds

∥∇Φ(x)∥2 ≥ α
3
2 |I|

16m2 .

5.5. Proof of Theorem 5.2 121

Proof. We have

∥∇Φ(x)∥2 =

∥∥∥∥∥∥ 1
m

d∑
j=1

∇Φj(x)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1
m

m∑
j=1

(U (j))⊤∇fnc(U (j)x;α, d)

∥∥∥∥∥∥
2

= 1
m2

m∑
j=1

∥∥∥(U (j))⊤∇fnc(U (j)x;α, d)
∥∥∥2

+ 2
m2

m∑
j,l=1
j ̸=l

∇fnc(U (j)x;α, d)⊤U (l)(U (j))⊤∇fnc(U (j)x;α, d)

= 1
m2

m∑
j=1

∥∥∥(U (j))⊤∇fnc(U (j)x;α, d)
∥∥∥2

where the last equality comes from the fact that we have for for any j ̸= l, U (l)(U (j))⊤ = 0 since
U ∈ O ((d + 1)m, (d+ 1)m). Now, using the third part of Proposition 5.7, we get

∥∇Φ(x)∥2 ≥ 1
m2

∑
j∈I

∥∥∥(U (j))⊤∇fnc(U (j)x;α, d)
∥∥∥2

≥ 1
m2

∑
j∈I

∥∥∥∇fnc(U (j)x;α, d)
∥∥∥2

≥ α
3
2 |I|

16m2 .

5.5.2 Main proof

Now we are ready to prove Theorem 5.2.

Proof. We consider U ∈ O((T + 1)m, (T + 1)m) and we denote

U =

U
(1)

...
U (m)


with U (j) = (u(j)

1 , . . . , u
(j)
T+1)⊤ ∈ O(T + 1, (T + 1)m).

For j ∈ [m], we choose f j : R(T+1)m+(T+1)m → R defined by

f j(x, y) = fnc(U (j)y;α, T)

and we set f = 1
m

∑m
j=1 f j . We also define for i ∈ [n] gi(x, y) = 1

2 ∥y − x∥2, g = 1
n

∑n
i=1 gi, y

∗(x) =
arg miny g(x, y) and Φ(x) = f(x, y∗(x)) = fnc(U (j)x;α, T). By Proposition 5.7, f j is 4 + αc

m smooth, and
gi is 1-smooth and 1-strongly convex.

We have
Φ(0) − inf

x
Φ(x) ≤

√
α+ 10αT .

We finally consider fj(x, y) = λff j(x/β, y/β), gi(x, y) = λGgi(x/β, y/β). As a consequence, we have
y∗(x) = arg miny g(x, y) = y∗(x) and Φ(x) = f(x, y∗(x)). We also consider a fixed indices sequence
(it, jt). We set

α = min
{

1, m
c

}
, λf = 160mϵ

Lf,1α3/2 , β =
√

5λf/Lf,1, λG = β2µg, T = ∆Lf,1
1760mϵ

√
α .

5.5. Proof of Theorem 5.2 122

We can check that each fj is Lf,1-smooth, and each gi is µg-strongly convex.

Assuming ϵ ≤ ∆Lf,1α/(1760m) ensures that Φ(0) − infx Φ(x) ≤ ∆ (we can check that Φ(0) = λfΦ(0)
and inf Φ = λf inf Φ).

Let us assume without loss of generality that the algorithm at initialization we have y0 = v0 = x0 = 0
and consider (yt, vt, xt) the output of an algorithm with the known sequence (it, jt).

Given our inner function and the fact that ∇xf(x, y) = 0 for any (x, y) ∈ R(m+1)d+(m+1)d, we have

yt+1 ∈ Span(y0 − x0, . . . , yt − xt)
vt+1 ∈ Span(v0 + ∇yfj0(x0, y0), . . . , vt + ∇yfjt(xt, yt))
xt+1 ∈ Span(v0, . . . , vt) .

(5.22)

(5.23)

(5.24)

Since v0 = 0, we have by Equation (5.23) v1 ∈ Span(∇yfj0(x0, y0)) and by induction

vt+1 ∈ Span(∇yfj0(x0, y0), . . . ,∇yfjt
(xt, yt)) .

Therefore, using Equation (5.24), we have

xt+1 ∈ Span(∇yfj0(x0, y0), . . . ,∇yfjt
(xt, yt)) .

Since y0 = 0, by Equation (5.22), y1 ∈ Span(x0) and by induction

yt+1 ∈ Span(x0, . . . , xt) .

As a consequence,

xt ∈ Span(∇yfj0(x0,Span(x0)), . . . ,∇yfjt
(xt,Span((xs)s≤t))) .

Let us denote z(j,t) = U (j)xt. Since x0 = 0, z(j0,0) = 0 and by the second part of Proposition 5.5,
x1 ∈ Span(u(j0)

1).

Now we assume that for all s ≤ t we have

xs ∈ Span(u(j0)
1 , . . . , u(j0)

s , . . . , u
(js−1)
1 , . . . , u(js−1)

s) .

There exist scalars α1, . . . , αr, β1,1, β2,1, β2,2, . . . , βt,1, . . . , βt,t such that

xt+1 =
t∑

r=1
αr∇yfjr

(
xr,

r∑
s=1

βr,sx
s

)
.

Let Xr =
∑r
s=1 βr,sx

s. For r ∈ {1, . . . , t}, we have by induction hypothesis

Xr ∈ Span(u(j0)
1 , . . . , u(j0)

r , . . . , u
(jr−1)
1 , . . . , u(jr−1)

r) .

By orthogonality, we have

Span(u(j0)
1 , . . . , u(j0)

r , . . . , u
(jr−1)
1 , . . . , u(jr−1)

r) ⊥ Span(u(jr)
r+1, . . . , u

(jr)
T+1) .

As a consequence
U (jr)Xr = (⟨u(jr)

1 , Xr⟩, . . . , ⟨u(jr)
r , Xr⟩, 0, . . . , 0) .

We can use Proposition 5.5 to say

∇yfjr
(xr, Xr) ∈ Span(u(jr)

1 , . . . , u
(jr)
r+1) ⊂ Span(u(j0)

1 , . . . , u(j0)
r , u

(j0)
r+1, . . . , u

(jr)
1 , . . . , u

(jr)
r+1) .

And we get finally
xt+1 ∈ Span(u(j0)

1 , . . . , u
(j0)
t , u

(j0)
t+1, . . . , u

(jt)
1 , . . . , u

(jt)
t+1) .

5.6. Numerical Experiments 123

By induction, for any t, we have

xt ∈ Span(u(j0)
1 , . . . , u

(j0)
t , . . . , u

(jt)
1 , . . . , u

(jt)
t︸ ︷︷ ︸

at mostmt vectors

)

and so
xt ⊥ Span((u(j)

1 , . . . , u
(j)
T+1)j∈[m]\{j0,...,jt}, (u

(j)
t+1, . . . , u

(j)
T+1)j∈{j0,...,jt}) .

As a consequence, for t ≤ m
2 T , let I = {j, z(j,t)

T = z
(j,t)
T+1 = 0} with z(j,t) = U (j)xt. Since t ≤ m

2 T , we have
|I| ≤ m

2 and by Lemma 5.4, we have
∥∇Φ(xt)∥ ≥ ϵ .

If we define T ((xt)t,Φ) = inf{t ∈ N, ∥∇Φ(xt)∥2 ≤ ϵ}, we just showed that for the fixed sequence (it, jt),
we have

T ((xt)t,Φ) ≥ m

2 T = Ω(
√
mϵ−1) .

The right-hand side being independent from the sequence (it, jt), for t ≤ m
2 T , we have

E[∥∇Φ(xt)∥2] > ϵ

where the expectation is taken over the random choice of i0, . . . , it−1, j0, . . . , jt−1.

5.6 Numerical Experiments

Even though our contribution is mostly theoretical, we run several experiments to highlight to com-
pare the proposed algorithm with state-of-the-art stochastic bilevel solvers. We compare our method
to AmIGO (Arbel and Mairal, 2022a), F2SA (Kwon et al., 2023a), MRBO (Yang et al., 2021), VRBO (Yang
et al., 2021), StocBiO (Ji et al., 2021) and SABA (Dagréou et al., 2022a). They are run on a synthetic
problem with quadratic functions and on a hyperparameter selection problem for ℓ2-regularized lo-
gistic regression with the dataset IJCNN11. A more detailed description of the experiments is available
in Section B.2.

Experiments on quadratics. To evaluate the performance of stochastic bilevel optimizers in a
controlled setting, we perform a benchmark on quadratic loss functions described in Section B.2. Here
f and g are quadratic jointly in (y, x), allowing us to choose freely the conditioning of f , g, and Φ. We
take for the Hessian and cross derivative matrices of each sample, the empirical correlation of random
vectors drawn with a prescribed covariance matrix. The generation process is detailed in Section B.2.
In figure 5.1, we report the norm of the gradient of the value function function with respect to time.
Our first observation is that among all the methods, SRBA and SABA converge the fastest. These two
solvers share two key ingredients: variance reduction and warm-starting. Variance reduction makes
the variance of the gradient estimate go to zero without using decreasing step sizes. The warm-starting
strategy in both the approximation of y∗(xt) and the approximation of v∗(xt) enables getting an esti-
mator of ∇Φ(xt) which is asymptotically unbiased, without requiring an increasing number of inner
iterations or batch-size. Note that solvers using Neumann iterations (VRBO, MRBO, stocBiO) fail to
converge because Neumann iterations provide a biased estimate of v∗(x). Moreover, AmiIGO and
stocBiO evolve slowly after some iterations because they require vanishing step sizes to converge. Fi-
nally, SRBA is faster than SABA, which is consistent with the theory.

Hyperparameter selection. We also run an experiment on the hyperparameter selection prob-
lem for ℓ2-regularized logistic regression with the IJCNN1 dataset. SRBA shows good performances
in the experiment, both in speed and accuracy. It is competitive with other state-of-the-art meth-
ods AmIGO and SABA, while going faster than Amigo and requiring less memory than SABA. VRBO
–another extension of SARAH for bilevel problems– is slower in all problems. This is due to the bur-
den of computing the approximate hypergradient at each inner iteration without updating the outer

1\Phittps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

\Phi ttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

5.7. Conclusion 124

parameter. We can also notice that in the experiment on IJCNN1, the slowest method are method
implementing Neumann approximations to approximate v∗(x). Note that this last experiment does
not include F2SA because we find that on this problem, the norm of the iterates of F2SA goes towards
infinity.

0 50 100 150 200 250
Time (s)

10− 14

10− 11

10− 8

10− 5

10− 2

101

k∇
h(
xt
)k AmIGO

F2SA
MRBO
SABA

SRBA
StocBiO
VRBO

100 200 300 400
Time [sec]

10− 5

10− 4

10− 3

10− 2

10− 1

h(
xt
)−
h∗ AmIGO

MRBO
VRBO

SABA
StocBiO
SRBA

Figure 5.1: Comparison of the behavior of SRBA with other stochastic bilevel solvers. For each experi-
ment, the solvers are run with 10 different seeds, and the median performance over these seeds is re-
ported. The shaded area corresponds to the performances between the 20% and the 80% percentiles.
The performances are reported with respect to wall clock time. Left: Experiments on quadratic func-
tions. We report the gradient norm of the value function. Right: Hyperparameter selection with the
IJCNN1 dataset.

5.7 Conclusion

In this chapter, we have introduced SRBA, an algorithm for bilevel empirical risk minimization. We
have demonstrated that the sample complexity of SRBA is O((n + m) 1

2 ε−1) for any bilevel problem
where the inner problem is strongly convex. Then, we have demonstrated that any bilevel empirical
risk minimization algorithm has a sample complexity of at least O(m 1

2 ε−1) on some problems where
the inner problem is strongly convex. This demonstrates that SRBA is optimal, up to constant factors,
and that bilevel ERM is as hard as single-level non-convex ERM.

CHAPTER B

APPENDIX TO LOWER BOUND FOR BILEVEL EMPIRICAL RISK
MINIMIZATION

Section B.1 contains the necessary lemmas and proofs of Section 5.3. Section 5.5 contains the proof
of the lower bound for stochastic bilevel optimization. Section B.2 details the setting of the numerical
experiments.

B.1 Convergence analysis of SRBA

B.1.1 Technical lemmas

Lemma B.1. There exists constant Ly∗ and Lv∗ such that for any x1, x2 ∈ Rd, we have

∥y∗(x1) − y∗(x2)∥ ≤ Ly∗∥x1 − x2∥ and ∥v∗(x1) − v∗(x2)∥ ≤ Lv∗∥x1 − x2∥

Proof. The Jacobian of y∗ reads dy∗(x) = [∇2
yyg(x, y∗(x))]−1∇2

yxg(x, y∗(x)). By µg-strong convexity and

Lg,1-smoothness of g, we have ∥dy∗(x)∥ ≤ Lg,1
µg

which implies that y∗ is Ly∗ -Lipschtiz with Ly∗ = Lg,1
µg

.

For v∗ we do the computation directly:

∥v∗(x1) − v∗(x2)∥ = ∥[∇2
yyg(y∗(x1), x1)]−1∇yf(y∗(x1), x1)

− [∇2
yyg(y∗(x2), x2)]−1∇yf(y∗(x2), x2)∥

≤ ∥[∇2
yyg(y∗(x1), x1)]−1(∇yf(y∗(x1), x1) − ∇yf(y∗(x2), x2))∥

+ ∥([∇2
yyg(y∗(x1), x1) − [∇2

yyg(y∗(x2), x2)]−1]−1∇yf(y∗(x2), x2)∥

≤
(
Lf,1
µg

+ Lg,2Lf,0
µ2
g

)
∥(y∗(x1), x1) − (y∗(x2), x2)∥

≤
(
Lf,1
µg

+ Lg,2Lf,0
µ2
g

)
(∥y∗(x1) − y∗(x2)∥ + ∥x1 − x2∥)

≤
(

1 + Lg,1
µg

)(
Lf,1
µg

+ Lg,2Lf,0
µ2
g

)
∥x1 − x2∥

Then taking Lv∗ =
(

1 + Lg,1
µg

)(
Lf,1
µg

+ Lg,2Lf,0
µ2

g

)
concludes the proof.

Lemma B.2. Let us consider the update directions Dt,k
y = ∆t,k

y /ρ, Dt,k
v = ∆t,k

v /ρ and Dt,k
x = ∆t,k

x /γ

125

B.1. Convergence analysis of SRBA 126

where ∆t,k
y , ∆t,k

v and ∆t,k
x verify Equations (5.6) to (5.8). Then it holds

E[∥Dt,k
y −Dy(ut,k)∥2] ≤

k∑
r=1

Lg,1(ρ2E[∥Dt,r−1
y ∥2] + γ2E[∥Dt,r−1

y ∥2])

E[∥Dt,k
v −Dv(ut,k)∥2] ≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2) k∑

r=1
E[∥Dt,r−1

y ∥2] + 4ρ2(Lg,1)2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2 ((Lg,2R)2 + (Lf,1)2) k∑
r=1

E[∥Dt,r−1
x ∥2]

E[∥Dt,k
x −Dx(ut,k)∥2] ≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2) k∑

r=1
E[∥Dt,r−1

y ∥2] + 4ρ2(Lg,1)2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2 ((Lg,2R)2 + (Lf,1)2) k∑
r=1

E[∥Dt,r−1
x ∥2] .

Proof. DirectionDy

We start from Proposition 5.4.

E[∥Dt,k
y −Dy(ut,k)∥2] = E[∥Dt,k

y − ∇yg(yt,k, xt,k)∥2]

=
k∑
r=1

E[∥Dt,r
y −Dt,r−1

y ∥2] −
k∑
r=1

E[∥∇yg(yt,r, xt,r) − ∇yg(yt,r−1, xt,r−1)∥2]

≤
k∑
r=1

E[∥Dt,r
y −Dt,r−1

y ∥2]

≤
k∑
r=1

Lg,1(ρ2E[∥Dt,r−1
y ∥2] + γ2E[∥Dt,r−1

y ∥2])

where the last inequality comes from the smoothness of each gi.

DirectionDv For Dv, the proof is almost the same. Proposition 5.4 gives us

E[∥Dt,k
v −Dv(ut,k)∥2] ≤

k∑
r=1

E[∥Dt,r
v −Dt,r−1

v ∥2] .

Then, using the boundedness of v and regularity of each gi and Fj , we have

E[∥Dt,r
v −Dt,r−1

v ∥2] ≤ 2(E[∥∇2
yygi(yt,r, xt,r)vt,r − ∇2

yygi(yt,r−1, xt,r−1)vt,r−1∥2]
+ E[∥∇xFj(yt,r, xt,r) − ∇xFj(yt,r−1, xt,r−1)∥2])

≤ 4(E[∥∇2
yygi(yt,r, xt,r)(vt,r − vt,r−1)∥2]

+ E[∥(∇2
yygi(yt,r, xt,r) − ∇2

yygi(yt,r−1, xt,r−1))vt,r−1∥2]
+ (Lf,1)2(γ2E[∥Dt,r−1

y ∥] + ρ2E[∥Dt,r−1
x ∥2]))

≤ 4((Lg,1)2ρ2E[∥Gt,r−1
v ∥2]

+ (Lg,2)2R2(ρ2E[∥Dt,r−1
y ∥] + γ2E[∥Dt,r−1

x ∥2])
+ (Lf,1)2(ρ2E[∥Dt,r−1

y ∥] + γ2E[∥Dt,r−1
x ∥2]))

≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2)E[∥Dt,r−1
y ∥2] + 4ρ2(Lg,1)2E[∥Gt,r−1

v ∥2]
+ 4γ2 ((Lg,2R)2 + (Lf,1)2)E[∥Dt,r−1

x ∥2] .

DirectionDx The proof is the same as the proof for Dv.

B.1. Convergence analysis of SRBA 127

B.1.2 A technical lemma for Lemma 5.1

Let ϕy(y, x) = g(y, x) − g(x, y∗(x)) the inner suboptimality gap. The proof of Lemma 5.1 is based on
the smoothness of ϕy, which is the object of the following lemma.

Lemma B.3. The function ϕy has Λy-Lipschitz continuous gradient on Rp × Rd, for some constant Λy.

Proof. For any (y, x) ∈ Rp × Rd, we have

∇yϕy(y, x) = ∇yg(y, x) and ∇xϕy(y, x) = ∇xg(y, x) − ∇xg(x, y∗(x)) .

Let us consider (y, x) ∈ Rp × Rd and (y′, x′) ∈ Rp × Rd. Since ∇g is Lg,1-Lipschitz continuous, we have
directly

∥∇yϕy(y, x) − ∇yϕy(y′, x′)∥ ≤ Lg,1∥(y, x) − (y′, x′)∥ .

Moreover, we have

∥∇xϕy(y, x) − ∇xϕy(y′, x′)∥ ≤ ∥∇xg(y, x) − ∇xg(y′, x′)∥
+ ∥∇xg(x, y∗(x)) − ∇xg(y∗(x′), x′)∥

≤ Lg,1∥(y, x) − (y′, x′)∥ + Lg,1∥(x, y∗(x)) − (y∗(x′), x′)∥
≤ Lg,1∥(y, x) − (y′, x′)∥ + Lg,1(∥y∗(x) − y∗(x′)∥ + ∥x− x′∥) .

From Lemma B.1, y∗ is L∗ Lipschitz continuous, so

∥∇xϕy(y, x) − ∇xϕy(y′, x′)∥ ≤ Lg,1∥(y, x) − (y′, x′)∥ + Lg,1(∥y∗(x) − y∗(x′)∥ + ∥x− x′∥)
≤ Lg,1∥(y, x) − (y′, x′)∥ + Lg,1(L∗ + 1)∥x− x′∥
≤ Lg,1(Ly∗ + 2)∥(y, x) − (y′, x′)∥ .

As a consequence

∥∇ϕy(y, x) − ∇ϕy(y′, x′)∥ ≤ ∥∇yϕy(y, x) − ∇yϕy(y′, x′)∥ + ∥∇xϕy(y, x) − ∇xϕy(y′, x′)∥
≤ Lg,1(Ly∗ + 3)∥(y, x) − (y′, x′)∥ .

Hence, ϕy is Λy smooth with Λy = Lg,1(Ly∗ + 3).

B.1.3 Proof of Lemma 5.2

Recall that we denote

Ψ(y, v, x) = 1
2v

⊤∇2
yyg(y, x)v + ∇yf(y, x)⊤v

and

ϕv(v, x) = Ψ(y∗(x), v, x) − Ψ(y∗(x), v∗(x), x) .

As for Lemma 5.1, the key property we need is the smoothness of ϕv. The derivatives of ϕv involve the
third derivative of g. For a tensor T ∈ Rp1×p2×p3 and a vector a ∈ Rp3 we denote (T |a) the matrix in
Rp1×p2 defined by:

(T |a) =
[
p3∑
k=1

Ti,j,kak

]
1≤i≤p1
1≤j≤p2

.

Lemma B.4. The function ϕv has Λv-Lipschitz continuous gradient on Γ × Rd, for some constant Λv.

Proof. For any (v, x) ∈ Γ × Rd, we have

∇yϕv(v, x) = Dv(y∗(x), v, x)

B.1. Convergence analysis of SRBA 128

and

∇xϕv(v, x) = (dy∗(x))⊤
[

1
2(∇3

111g(x, y∗(x))|v)v − 1
2(∇3

111g(x, y∗(x))|v∗(x))v∗(x)

+∇2
yyf(x, y∗(x))v − ∇2

yyf(x, y∗(x))v∗(x)
]

+
[

1
2(∇3

211g(x, y∗(x))|v)v − 1
2(∇3

211g(x, y∗(x))|v∗(x))v∗(x)

+∇2
21f(x, y∗(x))v − ∇2

21f(x, y∗(x))v∗(x)
]
.

Let us consider (v, x) ∈ Γ × Rd and (v′, x′) ∈ Γ × Rd. We have

∥∇yϕv(v, x) − ∇yϕv(v′, x′)∥ ≤ ∥∇2
yyg(x, y∗(x))v − ∇2

yyg(y∗(x′), x′)v′∥
+ ∥∇yf(x, y∗(x)) − ∇yf(y∗(x′), x′)∥

For the first term,

∥∇2
yyg(x, y∗(x))v − ∇2

yyg(y∗(x′), x′)v′∥ ≤ ∥∇2
yyg(x, y∗(x))(v − v′)∥

+ ∥(∇2
yyg(x, y∗(x)) − ∇2

yyg(y∗(x′), x′))v′∥
+ ∥∇2

yyg(y∗(x′), x′)(v − v′)∥
≤ 2Lg,1∥v − v′∥ + Lg,2(Ly∗ + 1)∥v′∥∥x− x′∥
≤ [2Lg,1 + Lg,2(Ly∗ + 1)R]∥(v, x) − (v′, x′)∥

For the second terms, we use the smoothness of f and the Lipschitz continuity of y∗ (Lemma B.1):

∥∇yf(x, y∗(x)) − ∇yf(y∗(x′), x′)∥ ≤ Lf,1∥(x, y∗(x)) − (y∗(x′), x′)∥
≤ Lf,1(∥y∗(x) − y∗(x′)∥ + ∥x− x′∥)
≤ Lf,1(Ly∗ + 1)∥x− x′∥
≤ Lf,1(Ly∗ + 1)∥(x, v) − (x′, v′)∥ .

As a consequence

∥∇yϕv(v, x) − ∇yϕv(v′, x′)∥ ≤ Λ1∥(v, x) − (v′, x′)∥ (B.1)

with
Λ1 = Lf,1(Ly∗ + 1) + 2Lg,1 + Lg,2(Ly∗ + 1)R . (B.2)

To prove the Lipschitz continuity of ∇xϕv, we remark that ∇3
yyyg, ∇3

xyyg are Lipschitz and bounded by
assumption. (v 7→ v) is Lipschitz and bounded on Γ. Also by Lemma B.1, y∗ and v∗ are Lipschitz and
bounded. Finally, dy∗ is bounded (Lemma B.1) and Lipschitz according to Chen et al. (2021)[Lemma
9]. As a consequence, ∇xϕv is Λ2-Lpischitz for some constant Λ2 > 0. Hence, ∇ϕv is Λv-Lipschitz
continuous with Λv = Λ1 + Λ2.

Lemma B.5. Let t > 0. For k ∈ [q − 1], we have

0 ≤ −
〈

1
ρ

(vt,k+1 − vt,k) +Dt,k
v , vt,k+1 − vt,k

〉
Proof. The function ιΓ being convex (since Γ is convex), let us consider its sub-differential

∂ιγ(v) = {η ∈ Rp,∀v′ ∈ Rp, ιΓ(v′) ≥ ιΓ(v) + ⟨η, v′ − v⟩}

By definition

vt,k+1 = arg min
v

(ιΓ(v) + 1
2ρ∥v − (vt,k − ρDt,k

v)∥2) .

B.1. Convergence analysis of SRBA 129

Using Fermat’s rule, we get

−1
ρ

(vt,k+1 − vt,k) −Dt,k
v ∈ ∂ιΓ(vt,k+1) .

We can use the definition of the sub-differential with η = − 1
ρ (vt,k+1 − vt,k) −Dt,k

v to get

ιΓ(vt,k+1)︸ ︷︷ ︸
=0

≤ ιΓ(vt,k)︸ ︷︷ ︸
=0

−
〈

1
ρ

(vt,k+1 − vt,k) +Dt,k
v , vt,k+1 − vt,k

〉
.

We can now turn to the proof of Lemma 5.2.

Proof. The smoothness of ϕv provides us the following upper bound

ϕv(vt,k+1, xt,k+1) ≤ ϕv(vt,k, xt,k) + ⟨ΠΓ(vt,k − ρDt,k
v) − vt,k, Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ρ2∥ΠΓ(vt,k − ρDt,k

v) − vt,k∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.3)

Let us denote ∆t,k
Π = ΠΓ(vt,k − ρDt,k

v) − ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)). Adding and subtracting

⟨ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k) − vt,k, Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k) − vt,k∥2

yields

ϕv(vt,k+1, xt,k+1) ≤ ϕv(vt,k, xt,k) + ⟨∆t,k
Π , Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥ΠΓ(vt,k − ρDv(y∗(xt), vt,k, xt,k)) − vt,k∥2

+ ⟨ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k, Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.4)

Taking ρ ≤ 1
Γ v gives

ϕv(vt,k+1, xt,k+1) ≤ ϕv(vt,k, xt,k) + ⟨∆t,k
Π , Dv(y∗(xt,k), vt,k, xt,k)⟩

+ 1
2ρ∥ΠΓ(vt,k − ρDv(y∗(xt), vt,k, xt,k)) − vt,k∥2

+ ⟨ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k, Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.5)

Let ιΓ the indicator function of the convex set Γ. Similarly to Karimi et al. (2016, Equation 13) we define
for any α > 0 and v ∈ Rp

DιΓ(v, x, α) = −2α min
v′∈Rp

[
⟨∇yϕv(v, x), v′ − v⟩ + α

2 ∥v′ − v∥2 + ιΓ(v′) − ιΓ(v)
]
.

B.1. Convergence analysis of SRBA 130

Hence, for v ∈ Γ and x ∈ Rd, we have

−ρ

2DιΓ

(
v, x,

1
ρ

)
= ⟨ΠΓ(v − ρDv(y∗(x), v, x)) − v,Dv(y∗(x), v, x)⟩

+ 1
2ρ∥ΠΓ(v − ρDv(y∗(x), v, x)) − v∥2 .

Therefore, Equation (B.5) can be written as

ϕv(vt,k+1, xt,k+1) ≤ ϕv(vt,k, xt,k) − ρ

2DιΓ

(
vt,k, xt,k,

1
ρ

)
+ ⟨∆t,k

Π , Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

By strong convexity of ϕv with respect top v and smoothness, we have

DιΓ(vt,k, xt,k,Λv) ≥ 2µgϕv(vt,k, xt,k) .

According to Karimi et al. (2016, Lemma 1), DιΓ(vt,k, xt,k, ·) is an increasing function. As a conse-

quence, since Λv ≤ 1
ρ , we have DιΓ

(
vt,k, xt,k, 1

ρ

)
≥ 2µgϕv(vt,k, xt,k). This leads to

ϕv(vt,k+1, xt,k+1) ≤ (1 − ρµg)ϕv(vt,k, xt,k) + ⟨∆t,k
Π , Dv(y∗(xt,k), vt,k, xt,k)⟩

+ Λv
2 ∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.6)

The non-expansiveness of ΠΓ yields

∥∆t,k
Π ∥ ≤ ρ∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥ (B.7)

and

∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k) − vt,k︸︷︷︸
∈Γ

∥ = ∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − ΠΓ(vt,k)∥

≤ ρ∥Dv(y∗(xt,k), vt,k, xt,k)∥ . (B.8)

Moreover, using Equation (B.7) and Young Inequality, we have for any c > 0

⟨∆t,k
Π , Dv(y∗(xt,k), vt,k, xt,k)⟩ ≤ c

2∥∆Π∥2 + 1
2c∥Dv(y∗(xt,k), vt,k, xtk,)∥2

≤ cρ2

2 ∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ 1
2c∥Dv(y∗(xt,k), vt,k, xtk,) −Dv(y∗(xt,k), v∗(xt,k), xtk,)︸ ︷︷ ︸

=0

∥2

≤ cρ2

2 ∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ Lg,1
µgc

ϕv(vt,k, xt,k)

(B.9)

Plugging Equation (B.9) into Equation (B.6) with c = 2Lg,1
µ2

gρ
yields

ϕv(vt,k+1, xt,k+1) ≤
(

1 − ρµg
2

)
ϕv(vt,k, xt,k) + Lg,1ρ

µ2
g

∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ Λv
2 ∥∆t,k

Π ∥2 + Λv⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.10)

B.1. Convergence analysis of SRBA 131

Using Equation (B.7), Equation (B.8) and Young Inequality for d > 0 yields

⟨∆t,k
Π ,ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k⟩ ≤ d

2∥∆t,k
Π ∥2

+ 1
2d∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k∥2

≤ dρ2

2 ∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ ρ2

2d∥Dv(y∗(xt,k), vt,k, xt,k)∥2

≤ dρ2

2 ∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ LG1 ρ
2

µgd
ϕv(vt,k, xt,k) .

(B.11)

(B.12)

Plugging Equation (B.12) into Equation (B.10) with d = 4Lg,1Λv)ρ
µ2

g
gives

ϕv(vt,k+1, xt,k+1) ≤
(

1 − ρµg
4

)
ϕv(vt,k, xt,k)

+
[
Lg,1ρ

µ2
g

+ 2Lg,1Λ2
vρ

3

µ2
g

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ Λv
2 ∥∆t,k

Π ∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

Using once again (B.7), we get

ϕv(vt,k+1, xt,k+1) ≤
(

1 − ρµg
4

)
ϕv(vt,k, xt,k)

+
[
Lg,1ρ

µ2
g

+ 2Lg,1Λ2
vρ

3

µ2
g

+ Λvρ2

2

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.13)

By Lemma B.5, we have for any α > 0

0 ≤ −α
〈

1
ρ

(vt,k+1 − vt,k) +Dt,k
v , vt,k+1 − vt,k

〉
.

By adding this to Equation (B.13), we get

ϕv(vt,k+1, xt,k+1) ≤
(

1 − ρµg
4

)
ϕv(vt,k, xt,k)

− α

ρ
∥vt,k+1 − vt,k∥2 − α⟨Dt,k

v , vt,k+1 − vt,k⟩

+
[
Lg,1ρ

µ2
g

+ 2Lg,1Λ2
vρ

3

µ2
g

+ Λvρ2

2

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

(B.14)

B.1. Convergence analysis of SRBA 132

We can control −
〈
Dt,k
v , vt,k+1 − vt,k

〉
by Cauchy-Schwarz and Young for some c, d, e, f > 0

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
= −

〈
Dv(y∗(xt,k), vt,k, xt,k),ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k) − vt,k

〉
−
〈
Dv(y∗(xt,k), vt,k, xt,k),∆t,k

Π

〉
−
〈
Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k),ΠΓ(vt,k − ρDv(y∗(x))) − vt,k

〉
−
〈
Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k),∆t,k

Π

〉
≤ c

2∥Dv(y∗(xt,k), vt,k, xt,k)∥2

+ 1
2c∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k∥2

+ d

2∥Dv(y∗(xt,k), vt,k, xt,k)∥2 + 1
2d∥∆t,k

Π ∥2

+ e

2∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2

+ 1
2e∥ΠΓ(vt,k − ρDv(y∗(xt,k), vt,k, xt,k)) − vt,k∥2

+ f

2 ∥Dt,k
v −Dv(y∗(xt,k), vt,k, xt,k)∥2 + 1

2f ∥∆t,k
Π ∥2

≤
(
c+ d

2 + ρ2
(

1
2c + 1

2e

))
∥Dv(y∗(xt,k), vt,k, xt,k)∥2

+
(
e+ f

2 + ρ2
(

1
2d + 1

2f

))
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

≤
(
c+ d

2 + ρ2
(

1
2c + 1

2e

))
2Lg,1
µg

ϕv(vt,k, xt,k)

+
(
e+ f

2 + ρ2
(

1
2d + 1

2f

))
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

Let us take c = d = e = f = ρ. We get

−
〈
Dt,k
v , vt,k+1 − vt,k

〉
≤ 4Lg,1

µg
ρϕv(vt,k, xt,k) + 2ρ∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2 .

Then, by plugging the last Inequality in Equation (B.14) and setting α = µ2
g

32Lg,1
, we end up with

ϕv(vt,k+1, xt,k+1) ≤
(

1 − µg
8 ρ
)
ϕv(vt,k, xt,k) − α

ρ
∥vt,k+1 − vt,k∥2

+ ρ

[
Lg,1
µ2
g

+
µ2
g

16Lg,1
+ Λvρ

2 + 2Lg,1Λ2
vρ

2

µ2
g

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2

≤
(

1 − µg
8 ρ
)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρ∥Gt,kv ∥2

+ ρ

[
Lg,1
µ2
g

+
µ2
g

16Lg,1
+ Λvρ

2 + 2Lg,1Λ2
vρ

2

µ2
g

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

B.1. Convergence analysis of SRBA 133

Since ρ ≤ Bv ≜
[
Lg,1
µ2

g
+ µ2

g

16Lg,1

]
min

(
2

Λv
,

µg√
2Lg,1Λv

)
yields

ϕv(vt,k+1, xt,k+1) ≤
(

1 − µg
8 ρ
)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρ∥Gt,kv ∥2

+ 3ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
∥Dt,k

v −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2

≤
(

1 − µg
8 ρ
)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρ∥Gt,kv ∥2

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
∥Dt,k

v −Dv(ut,k)∥2

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
∥Dv(ut,k) −Dv(y∗(xt,k), vt,k, xt,k)∥2

− γ⟨Dt,k
x ,∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2∥Dt,k
x ∥2 .

Tacking the expectation conditionally to the past iterates yields

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(

1 − µg
8 ρ
)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
Et,k[∥Dt,k

v −Dv(ut,k)∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
Et,k[∥Dv(ut,k) −Dv(y∗(xt,k), vt,k, xt,k)∥2]

− γ⟨Et,k[Dt,k
x],∇xϕv(vt,k, xt,k)⟩ + Λv

2 γ2Et,k[∥Dt,k
x ∥2] .

(B.15)

From Young inequality, we have for any c > 0

⟨Et,k[Dt,k
x],∇xϕv(vt,k, xt,k)⟩ ≤ c−1∥Et,k[Dt,k

x]∥2 + c∥∇xϕv(vt,k, xt,k)∥2 . (B.16)

Moreover, using the Lipschitz continuity of y∗, of ∇2
yyG and ∇F and the fact that v and v∗ are bounded,

B.1. Convergence analysis of SRBA 134

we have

∥∇xϕv(v, x)∥ ≤ ∥dz ∗ (x)∥
[∥∥∥∥1

2(∇3
111g(x, y∗(x))|v)v − 1

2(∇3
111g(x, y∗(x))|v∗(x))v∗(x)

∥∥∥∥
+∥∇2

yyf(x, y∗(x))v − ∇2
yyf(x, y∗(x))v∗(x)∥

]
+ ∥1

2(∇3
211g(x, y∗(x))|v)v − 1

2(∇3
211g(x, y∗(x))|v∗(x))v∗(x)∥

+ ∥∇2
21f(x, y∗(x))v − ∇2

21f(x, y∗(x))v∗(x)∥

≤ L∗

[∥∥∥∥1
2(∇3

111g(x, y∗(x))|v − v∗(x))v − 1
2(∇3

111g(x, y∗(x))|v∗(x))(v − v∗(x))
∥∥∥∥

+Lf,2∥v − v∗(x)∥]

+
∥∥∥∥1

2(∇3
211g(x, y∗(x))|v − v∗(x))v − 1

2(∇3
211g(x, y∗(x))|v∗(x))(v − v∗(x))

∥∥∥∥
+ Lf,2∥v − v∗(x)∥

≤ L∗

[∥∥∥∥1
2(∇3

111g(x, y∗(x))|v − v∗(x))v
∥∥∥∥

+
∥∥∥∥1

2(∇3
111g(x, y∗(x))|v∗(x))(v − v∗(x))

∥∥∥∥+ Lf,2∥v − v∗(x)∥
]

+
∥∥∥∥1

2(∇3
211g(x, y∗(x))|v − v∗(x))v

∥∥∥∥
+
∥∥∥∥1

2(∇3
211g(x, y∗(x))|v∗(x))(v − v∗(x))

∥∥∥∥+ Lf,2∥v − v∗(x)∥

≤ L∗

[
Lg,2

2 (∥v∥ + ∥v∗(x)∥)∥v − v∗(x))∥ + Lf,2∥v − v∗(x)∥
]

+ Lg,2
2 (∥v∥ + ∥v∗(x)∥)∥v − v∗(x))∥ + Lf,2∥v − v∗(x)∥

≤ (L∗ + 1) [Lg,2R+ Lf,2] ∥v − v∗(x)∥ .

On the other hand, we have by strong convexity

∥v − v∗(x)∥2 ≤ 2
µg
ϕv(v, x) .

As a consequence, we have

∥∇xϕv(vt,k, xt,k)∥2 ≤ L′′ϕv(vt,k, xt,k) (B.17)

with L′′ = 2(L∗+1)2[Lg,2R+Lf,2]2

µg
.

Plugging Inequalities (B.16) and (B.17) into (B.15) yields

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(

1 − µg
8 ρ+ cL′′γ

)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
Et,k[∥Dt,k

v −Dv(ut,k)∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
Et,k[∥Dv(ut,k) −Dv(y∗(xt,k), vt,k, xt,k)∥2]

+ γ

c
∥Et,k[Dt,k

x]∥2 + Λv
2 γ2Et,k[∥Dt,k

x ∥2] .

B.1. Convergence analysis of SRBA 135

The Lipschitz continuity of ∇2
yyG and ∇yF and the boundedness of v give us

∥Dv(ut,k) −Dv(y∗(xt,k), vt,k, xt,k)∥2 ≤
(
∥∇2

yyg(yt,k, xt,k)vt,k − ∇2
yyg(y∗(xt,k), xt,k)vt,k∥

+∥∇yf(yt,k, xt,k) − ∇yf(y∗(xt,k), xt,k)∥
)2

≤ (Lg,2R+ Lf,1)2∥yt,k − y∗(xt,k)∥2

≤ 2(Lg,2R+ Lf,1)2

µg
ϕy(yt,k, xt,k) .

As a consequence

Et,k[ϕv(vt,k+1, xt,k+1)] ≤
(

1 − µg
8 ρ+ cL′′γ

)
ϕv(vt,k, xt,k) −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
Et,k[∥Dt,k

v −Dv(ut,k)∥2]

+ 6ρ
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
2(Lg,2R+ Lf,1)2

µg
ϕy(yt,k, xt,k)

+ γ

c
∥Et,k[Dt,k

x]∥2 + Λv
2 γ2Et,k[∥Dt,k

x ∥2] .

(B.18)

From Lemma B.2, we have

E[∥Dt,k
v −Dv(ut,k)∥2] ≤ 4ρ2 ((Lg,2R)2 + (Lf,1)2) k∑

r=1
E[∥Dt,r−1

y ∥2] + 4ρ2(Lg,1)2
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 4γ2 ((Lg,2R)2 + (Lf,1)2) k∑
r=1

E[∥Dt,r−1
x ∥2]

Taking the total expectation and plugging the previous inequality in Equation (B.18) yields

ϕt,k+1
v ≤

(
1 − µg

8 ρ+ cL′′γ
)
ϕt,kv −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 24ρ3 ((Lg,2R)2 + (Lf,1)2)(Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
y ∥2]

+ 24ρ3(Lg,1)2

(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 24ργ2 ((Lg,2R)2 + (Lf,1)2)(Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
x ∥2]

+
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
12(Lg,2R+ Lf,1)2

µg
ρϕt,ky

+ γ

c
E[∥[Et,kDt,k

x]∥2] + Λv
2 γ2E[∥Dt,k

x ∥2] .

B.1. Convergence analysis of SRBA 136

Taking c = µgρ
16L′′γ yields

ϕt,k+1
v ≤

(
1 − µg

16ρ
)
ϕt,kv −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 24ρ3 ((Lg,2R)2 + (Lf,1)2)(Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
y ∥2]

+ 24ρ3(Lg,1)2

(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 24ργ2 ((Lg,2R)2 + (Lf,1)2)(Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
x ∥2]

+
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
12(Lg,2R+ Lf,1)2

µg
ρϕt,ky

+ 16L′′

µg

γ2

ρ
E[∥[Et,kDt,k

x]∥2] + Λv
2 γ2E[∥Dt,k

x ∥2] .

Combining Equation (5.19) and Lemma B.2 yields

ϕt,k+1
v ≤

(
1 − µg

16ρ
)
ϕt,kv −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 8ρ
(
(Lg,2R)2 + (Lf,1)2) [3

(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
ρ2 + 8L′′

µg
γ2

]
k∑
r=1

E[∥Dt,r−1
y ∥2]

+ 8ρ(Lg,1)2

[
3
(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
ρ2 + 8L′′

µg
γ2

]
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 8γ2 ((Lg,2R)2 + (Lf,1)2) [3
(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
γ + 8L′′

µg

γ2

ρ

]
k∑
r=1

E[∥Dt,r−1
x ∥2]

+
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
12(Lg,2R+ Lf,1)2

µg
ρϕt,ky

+ 16L′′

µg

γ2

ρ
E[∥Dx(utk,)∥2] + Λv

2 γ2E[∥Dt,k
x ∥2] .

By assumption, γ ≤ Cvρ with Cv =
√

µg

8L′′

(
Lg,1
µ2

g
+ µ2

g

16Lg,1

)
, therefore

ϕt,k+1
v ≤

(
1 − µg

16ρ
)
ϕt,kv −

µ2
g

32Lg,1
ρEt,k[∥Gt,kv ∥2]

+ 32ρ3 ((Lg,2R)2 + (Lf,1)2)(Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
y ∥2]

+ 32ρ3(Lg,1)2

(
Lg,1
µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Gt,r−1
v ∥2]

+ 32γ2ρ
(
(Lg,2R)2 + (Lf,1)2)(Lg,1

µ2
g

+
µ2
g

16Lg,1

)
k∑
r=1

E[∥Dt,r−1
x ∥2]

+
[
Lg,1
µ2
g

+
µ2
g

16Lg,1

]
12(Lg,2R+ Lf,1)2

µg
ρϕt,ky

+ 16L′′

µg

γ2

ρ
E[∥Dx(ut,k)∥2] + Λv

2 γ2E[∥Dt,k
x ∥2] .

B.1. Convergence analysis of SRBA 137

We get finally

ϕt,k+1
v ≤

(
1 − ρµg

16

)
ϕt,kv − β̃vvρV

t
v + ρ3βvyVt,ky + 2ρ3βvvVt,kv + γ2ρβvxVt,kx

+ ραvyϕ
t,k
y + Λv

2 γ2E[∥Dt,k
x ∥2] + γ2

ρ
βvxE[∥Dx(ut,k)∥2]

with βvy = βvx = 32
(
(Lg,2R)2 + (Lf,1)2) (Lg,1

µ2
g

+ µ2
g

16Lg,1

)
, βvv = (Lg,1)2

(
Lg,1
µ2

g
+ µ2

g

16Lg,1

)
, βvx = 16L′′

µg
,

β̃vv = µ2
g

32Lg,1

and αvy =
[
Lg,1
µ2

g
+ µ2

g

16Lg,1

]
12(Lg,2R+Lf,1)2

µg
.

B.1.4 Proof of Theorem 5.1

The constants involved in Theorem 5.1 are

ψy = 1
16βyx

, ψv = min
[

1
16βvx

,
αyvµg

12 ψy

]

ρ = min
[√

ψy
12q(ψyβyy + ψvβyv)

,

√
1

6Λy
,

√
1

12qβvv
, Bv

]
,

ξ = min

Cy, Cv, 1, ψvµ2
g

16L2
x

,

√
µg

8βvx
,
ψyµ

2
g

24L2
x

,

√
µg

12βyx

 ,

γ = min

√ 1
12q(ψyβyx + ψvβvx) ,

√
1

12qβΦx
,

1
6(LΦ + ψyΛy + ψvΛv)

,

√
ψvβ̃vv

6q(βΦv + ψyβvy)
,

√
ψy

12qβΦy

 .

Proof. The proof is a classical Lyapunov analysis. Consider the following Lyapunov function Lt,k =
Φt,k + ψyϕ

t,k
y + ψvϕ

t,k
v for some positive constants ψy and ψv. We use use Lemmas 5.1 to 5.3 to upper

bound Lt,k − Lt,k+1.

We have

Lt,k+1 − Lt,k ≤ −γ

2 g
t,k + (ψyβyx + ψvβvx)γ

2

ρ
E[∥Dx(ut,k)∥2]

+
(

2L2
x

µg
γ − ψy

µg
2 ρ+ ψvαyvρ

)
ϕt,ky +

(
2L2

x

µg
γ − ψv

µg
16ρ

)
ϕt,kv

+
(
ψy

Λy
2 ρ2 − ψy

1
2ρ
)
V t,ky − ψvβ̃vvρV

t,k
v

+
(
LΦ

2 γ2 + ψy
Λy
2 γ2 + ψv

Λv
2 γ2 − γ

2

)
V t,kx

+
(
βΦyργ

2 + ψyβyyρ
3 + ψvβyvρ

3)Vt,ky
+
(
βΦvργ

2 + ψyβvyγ
2ρ+ ψvβvvρ

3)Vt,kv
+
(
βΦxγ

3 + ψyβyxγ
2ρ+ ψvβvxρ

3)Vt,kx .

(B.19)

We bound E[∥Dx(ut,k)∥2] crudely by using Proposition 5.2

E[∥Dx(ut,k)∥2] ≤ 2E[∥∇Φ(xt,k)∥2] + 2E[∥Dx(ut,k) − ∇Φ(xt,k)∥2]
≤ 2gt,k + 2(E[∥yt,k − y∗(xt,k)∥2] + E[∥vt,k − v∗(xt,k)∥2])

≤ 2gt,k + 4
µg

(ϕt,ky + ϕt,kv) .

B.1. Convergence analysis of SRBA 138

Summing in (B.19) for k = 0, . . . , q − 1 yields

Lt,q − Lt,0 ≤ −
(
γ

2 − 2ψyβyx
γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k

+
(

2L2
x

µg
γ − ψy

µg
2 ρ+ ψvαyvρ+ ψyβyx

γ2

ρ

) q−1∑
k=0

ϕt,ky

+
(

2L2
x

µg
γ − ψv

µg
16ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

ϕt,kv +
(
ψy

Λy
2 ρ2 − ψy

1
2ρ
) q−1∑
k=0

V t,ky

− ψvβ̃vvρ

q−1∑
k=0

V t,kv +
(
LΦ

2 γ2 + ψy
Λy
2 γ2 + ψv

Λv
2 γ2 − γ

2

) q−1∑
k=0

V t,kx

+
(
βΦyργ

2 + ψyβyyρ
3 + ψvβyvρ

3) q−1∑
k=0

Vt,ky

+
(
βΦvργ

2 + ψyβvyγ
2ρ+ ψvβvvρ

3) q−1∑
k=0

Vt,kv

+
(
βΦxγ

3 + ψyβyxγ
2ρ+ ψvβvxρ

3) q−1∑
k=0

Vt,kx .

Since we have

q−1∑
k=0

Vt,k• =
q−1∑
k=0

k∑
r=1

E[∥Dt,r−1
• ∥2] =

q−1∑
r=1

q−1∑
k=r

E[∥Dt,r−1
• ∥2] =

q−1∑
r=1

(q − r)E[∥Dt,r−1
• ∥2] ≤ q

q−1∑
k=1

E[∥Dt,k−1
• ∥2]

we get

Lt,q − Lt,0 ≤ −
(
γ

2 − 2ψyβyx
γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k

+
(

2L2
x

µg
γ − ψy

µg
2 ρ+ ψvαyvρ+ ψyβyx

γ2

ρ

) q−1∑
k=0

ϕt,ky

+
(

2L2
x

µg
γ − ψv

µg
2 ρ+ ψvβvx

γ2

ρ

) q−1∑
k=0

ϕt,kv

+
(
ψy

Λy
2 ρ2 − ψy

1
2ρ+ q

(
βΦyργ

2 + ψyβyyρ
3 + ψvβyvρ

3)) q−1∑
k=0

V t,ky

+
(
−ψvβ̃vvρ+ q

(
βΦvργ

2 + ψyβvyγ
2ρ+ ψvβvvρ

3)) q−1∑
k=0

V t,kv

+
((

LΦ

2 + ψy
Λy
2 + ψv

Λv
2

)
γ2 − γ

2 + q
(
βΦxγ

3 + (ψyβyx + ψvβvx)ργ2)) q−1∑
k=0

V t,kx .

(B.20)

Since ρ ≤ ρ ≤ min
[√

ψy

12q(ψyβyy+ψvβyv) ,
√

1
6Λy

]
and γ ≤ γ ≤

√
ψy

12qβΦy
, we have

ψy
Λy
2 ρ2 − ψy

1
2ρ+ q

(
βΦyργ

2 + ψyβyyρ
3 + ψvβyvρ

3) < 0 . (B.21)

Moreover, the conditions ρ ≤ ρ ≤
√

β̃vv

6qβvv
and γ ≤ γ ≤

√
ψvβ̃vv

6q(βΦv+ψyβvy) , ensure that

−ψvβ̃vvρ+ q
(
βΦvργ

2 + ψyβvyγ
2ρ+ ψvβvvρ

3) < 0 . (B.22)

B.2. Details on the experiments 139

The conditions

ρ ≤ ρ ≤

√
1

12q(ψyβyx + ψvβvx) ,

and

γ ≤ γ ≤ min
[√

1
12q(ψyβyx + ψvβvx) ,

√
1

12qβΦx
,

1
6(LΦ + ψyΛy + ψvΛv)

]

yield
LΦ

2 γ2 + ψy
Λy
2 γ2 + ψv

Λv
2 γ2 − γ

2 + q
(
βΦxγ

3 + ψyβyxγ
2ρ+ ψvβvxργ

2) < 0 . (B.23)

The condition γ ≤ ξρ ≤ min
[
ψvµ

2
g

16L2
x
,
√

µg

8βvx

]
ρ ensures

2L2
x

µg
γ − ψv

µg
2 ρ+ ψvβvx

γ2

ρ
≤ 0 (B.24)

By definition, we have ψv ≤ αyvµg

12 ψy and by assumptions γ ≤ ξρ ≤ min
[
ψyµ

2
g

24L2
x
,
√

µg

12βyx

]
ρ. As a conse-

quence

2L2
x

µg
γ − ψy

µg
2 ρ+ ψvαyvρ+ ψyβyx

γ2

ρ
< 0 . (B.25)

Plugging Inequalities (B.21) to (B.25) into Equation (B.20) gives

Lt,q − Lt,0 ≤ −
(
γ

2 − 2ψyβyx
γ2

ρ
− 2ψvβvx

γ2

ρ

) q−1∑
k=0

gt,k .

Since ψy = ρ

16βyx

and ψv ≤ ρ

16βvx

and γ2

ρ ≤ ξ ≤ 1, we get

Lt,q − Lt,0︸ ︷︷ ︸
Lt+1,0−Lt,0

≤ −γ

4

q−1∑
k=0

gt,k .

Summing, telescoping and dividing by Tq gives

1
Tq

T−1∑
t=0

q−1∑
k=0

gt,k ≤ 4
Tqγ

(
Φ0,0 − Φ∗ + ψyϕ

0,0 + ψvϕ
0,0]
)︸ ︷︷ ︸

Γ0

.

B.2 Details on the experiments

We performed the experiments with the Python package Benchopt (Moreau et al., 2022)1. For each ex-
periment, we use minibatches instead of single samples to estimate oracles because it is more efficient
in practice. We use a batch size of 64 for the stochastic inner and outer oracles. All the experiments
were performed on processors AMD EPYC 7742 (4 CPUs/experiment).

1The code of the benchmark is available at \Phittps://github.com/benchopt/benchmark_bilevel and the
results are displayed in https://benchopt.github.io/results/benchmark_bilevel.html.

\Phi ttps://github.com/benchopt/benchmark_bilevel
 https://benchopt.github.io/results/benchmark_bilevel.html

B.2. Details on the experiments 140

B.2.1 Benchmark on quadratics

For this benchmark, we consider

f(y, x) = 1
m

m∑
j=1

Fj(y, x), g(y, x) = 1
n

n∑
i=1

gi(y, x) .

The functions Fj and gi are defined as

Fj(y, x) = 1
2y

⊤AFj
y z + 1

2x
⊤AFj

x + xBFjz + (dFj
y)⊤z + (dFj

x)⊤x

gi(y, x) = 1
2y

⊤Agi
y z + 1

2x
⊤Agi

x + xBgiz + (dgi
y)⊤z + (dgi

x)⊤x

with A
Fj
y , Agi

y ∈ Rp×p, AFj
x , Agi

x ∈ Rd×d, BFj , Bgi ∈ Rd×p, dFj
y , dgi

y ∈ Rp and dFj
x , dgi

x ∈ Rd. The vectors

d
Fj
x , dgi

x are drawn randomly according to a normal distribution N (0, Id). The vectors dFj
y , dgi

y are drawn
randomly according to a normal distribution N (0, Ip). For the Hessian matrices with respect to z,
we generate Agi

y so that 1
n

∑n
i=1 A

gi
y = A for a symetric positive definite matrix A with spectrum in

[0.1, 1]. To do so, we generate xi ∼ N (0, Ip) and setAgi
y =

√
Axi(

√
Axi)⊤. We proceed similarly forAFj

y ,

Agi
y , AFj

x . For Bgi , we want 1
n

∑n
i=1 B

gi = B for a prescribed matrix B ∈ Rd×p such that ∥B∥ = 0.1.
Let B = UΣV ⊤ the singular values decomposition of B. To get Bgi , we generate xi ∼ N (0, Ip) and
set Bgi = (V Σxi)(Uxi)⊤. We proceed similarly for BFj . In our experiment, we take n = 32768 and
m = 1024. To select the parameters of the solvers, we perform a grid search. More precisely, for each
solver, we take the inner step size in the form of αt−a where a is the theoretical decrease rate of each
solver, and α is chosen in {0.01, 0.1}. The outer step size is taken as α

r t
−b where b is the theoretical

decrease rate and r is chosen in {0.1, 1, 10, 100}. For the two-loops algorithms (i.e. StocBiO, VRBO,
AmIGO), the number of inner steps is set to 10 after a manual search. In the methods implementing
Neumann approximations (MRBO, VRBO, StocBiO), the number of terms in the Neumann series is
also set to 10, and the scaling parameter η is set to 0.5. To get the fastest convergence, we keep for each
solver the set of parameters that give the best decrease of Φ on the 100 first epochs. The period of full
batch computation of VRBO and SRBA q is parametrized as q = an+m

b where b = 64 is the batch size
and a is chosen in {2−6, 2−3, 2−1, 23, 26}. For F2SA, we take λ0 = 1 and δt = αt−

1
7 with α chosen in

{0.01, 0.1, 1}.

B.2.2 Hyperparameter selection with IJCNN1

We solve a regularization selection problem for an ℓ2-regularized logistic regression problem. Here, we
assume that we have a regularization parameter per feature. We have ntrain = 49, 990 training samples
(dtrain
i , ytrain

i)i∈[ntrain] and nval = 91, 701 validation samples (dval
i , yval

i)i∈[ntrain] coming from the IJCNN12

dataset. Mathematically, it boils down to solve Problem (5.1) with f and g given by

f(θ, λ) = 1
nval

nval∑
j=1

φ(yval
j ⟨dval

j , θ⟩)

g(θ, λ) = 1
ntrain

ntrain∑
i=1

φ(ytrain
i ⟨dtrain

i , θ⟩) + 1
2

p∑
k=1

eλkθ2
k

where φ is the logistic loss defined by φ(u) = log(1 + e−u). The inner and outer step sizes are set to
0.05.

To make our comparison, we select the parameters of each solver with an extensive grid search. More
precisely, for each solver, we take the inner step size in the form of αt−a where a is the theoretical
decrease rate of each solver and α is chosen in {2−5, 2−4, 2−3, 2−2}. The outer step size is taken as
α
r t

−b where b is the theoretical decrease rate and r is chosen in {10−2, 10−1.5, 10−1, 10−0.5, 100}. For

21https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

B.2. Details on the experiments 141

the two-loops algorithms (i.e. StocBiO, VRBO, AmIGO), the number of inner steps is set to 10 after a
manual search. In the methods implementing Neumann approximations (MRBO, VRBO, StocBiO), the
number of terms in the Neumann series is also set to 10, and the scaling parameter η is set to 0.5. To
get the fastest convergence, we keep for each solver the set of parameters that give the best decrease of
Φ on the 100 first epochs. The period of full batch computation of VRBO and SRBA q is parametrized
as q = an+m

b where b = 64 is the batch size and a is chosen in {2−6, 2−3, 2−1, 23, 26, 29}. For F2SA, we
take λ0 = 1 and δt = αt−

1
7 with α chosen in {0.01, 0.1, 1}.

B.2. Details on the experiments 142

CHAPTER 6

CONCLUSION AND PERSPECTIVES

6.1 Conclusion

In this thesis, we investigated several aspects of stochastic AID-based algorithms. In particular, we
extended some single-level optimization algorithms to the bilevel setting in the non-convex/strongly
convex setting.

In Chapter 4, we tackled the challenge of stochastic bilevel optimization, exploring how established
techniques for single-level optimization could be adapted to bilevel problems. We introduced a novel
framework to easily adapt stochastic single-level optimization algorithms to bilevel problems when
the outer and inner functions are defined as expectations. This is achieved by proposing dynamics
that are linear in the outer and inner functions, facilitating the design of stochastic estimators for up-
date directions. We proposed and analyzed two instantiations of this framework: SOBA, an adaptation
of the stochastic gradient algorithm to the bilevel setting, and SABA, an adaptation of the variance-
reduced algorithm SAGA. We demonstrated that those algorithms achieved complexity that is analo-
gous to their single-level counterparts in nonconvex settings.

The complexity results of Chapter 4 led us to the question addressed in Chapter 5: does the complexity
bound of single-level optimization transfer to bilevel optimization when the inner function is strongly
convex? We considered the scenario where the outer and inner functions are finite sums and affirmed
this by proving a lower bound on the complexity for solving such problems with algorithms based
on stochastic approximate implicit differentiation. Additionally, we proposed an algorithm whose
complexity matches this lower bound.

From a practical standpoint, we developed a comprehensive benchmark of bilevel optimization algo-
rithms. This open-source benchmark includes a significant number of solvers covering a wide range
of bilevel algorithms. It is designed to be enriched by the community, providing a reference for com-
parison of bilevel solvers and reducing the need to reimplement existing baselines.

6.2 Perspectives

Beyond the contributions of this thesis, several theoretical and practical questions remain open.

▶ Memory-efficient warm-starting strategies. In the introduction, we highlighted that a key el-
ement for the efficient application of AID-based algorithms is warm-starting the inner and iHVP
sub-procedures. This process, however, requires storing the outputs of the subprocedures at

143

6.2. Perspectives 144

each outer iteration. When dealing with high-dimensional inner variables or multiple inde-
pendent inner problems in a bilevel setting, this becomes impractical. Investigating memory-
efficient strategies for warm-starting the sub-procedures, such as learning initializations (Samb-
harya et al., 2024), would be a valuable direction for future research.

▶ Parameter free methods. As in single-level optimization, bilevel optimization performance
is highly dependent on step sizes. This is all the more difficult as in bilevel optimization, one
might deal with the interaction between several dynamics. Only two papers have investigated
this topic. Fan et al. (2024a) adapt Polyak step sizes to bilevel optimization (Polyak, 1987; Loizou
et al., 2021). Salehi et al. (2023) proposes an inexact line search method for bilevel optimization,
albeit requiring knowledge of the problem’s regularity constants. Recently, much research has
been done on parameter-free optimization methods with promising empirical results (Defazio
and Mishchenko, 2023; Mishchenko and Defazio, 2024; Khaled et al., 2024; Schaipp et al., 2024).
One possible direction would be to adapt these methods to the context of bilevel optimization.

▶ Understanding AID with non-strongly convex inner functions. Implicit differentiation as-
sumes that the inner function is strongly convex. However, methods using approximate im-
plicit differentiation have shown promising empirical results in deep learning contexts (Grang-
ier et al., 2023). It would be interesting to investigate theoretically the performances of AID-
based methods when dealing with a non-strongly convex inner function. What explains these
practical performances? Is there a meaning of applying AID-based methods to bilevel problems
with non-strongly convex inner functions?

▶ Does gradient-based hyperparameter selection overfit the validation set? The bilevel opti-
mization framework is a natural formalization of this purpose. Moreover, this formalization
enabled the development of efficient gradient-based methods to tune hyperparameters. While
these methods can precisely solve bilevel problems, such precise fitting of the validation set
might lead to overfitting. It would be beneficial to develop generalization bounds that quantify
the risk of overfitting in gradient-based hyperparameter selection.

SUMMARY OF CONTRIBUTIONS

1 Context

Bilevel optimization is a subfield of optimization with more and more applications in machine learn-
ing. Among these applications, there are hyperparameter selection (Pedregosa, 2016; Franceschi et al.,
2018), implicit deep learning (Bai et al., 2019), meta-learning (Rajeswaran et al., 2019), neural archi-
tecture search (Liu et al., 2019), and data augmentation (Cubuk et al., 2019; Rommel et al., 2022).

A bilevel optimization problem is an optimization problem in which some variables are constrained to
be the solution of another optimization problem. Formally, consider f and g two real-valued functions
defined on Rdx × Rdy . The bilevel problems we are interested in take the following form:

min
x∈Rdx

Φ(x) ≜ f(x, y∗(x)) s.t. y∗(x) ∈ arg min
y∈Rdy

g(x, y) . (6.1)

The function f is the outer function, and the function g is the inner function. Similarly, the variable x
is the outer variable, and the variable y is the inner variable.

When the inner function g(x, ·) is twice differentiable and strongly convex and the outer function f is
differentiable, the Implicit Function Theorem enables to get the following expression of the gradient
of Φ

∇Φ(x) = ∇xf(x, y∗(x)) + ∇2
xyg(x, y∗(x))v∗(x) (6.2)

where v∗(x) is the solution of a linear system

v∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)) .

The hypergradient given at Equation (6.2) presents two major computational bottlenecks: it requires
the solutions of the inner problem y∗(x) and of the linear system v∗(x). When the inner problem is
ill-conditioned, this can be dramatically costly.

Moreover, in many machine learning applications, the inner and the outer functions take the form of
empirical means over a potentially large amount of samples

f(x, y) = 1
m

n∑
j=1

fj(x, y) and g(x, y) = 1
n

m∑
i=1

gi(x, y) . (6.3)

When the numbers of samplesm and n are large, evaluating the functions f and g and their derivatives
can be costly. In single-level optimization, stochastic algorithms such as SGD (Robbins and Monro,
1951) suit this situation. This explains why we are interested in developing stochastic algorithms for
bilevel problems that use only a handful of samples to progress.

145

2. Contributions 146

2 Contributions

2.1 A framework for bilevel optimization that enables stochastic and global vari-
ance reduction algorithms

In Dagréou et al. (2022a), we propose a general framework to solve the Problem (6.1) without com-
puting exactly the values of y∗(x) and v∗(x). The idea is to replace y∗(x) and v∗(x) in Equation (6.2)
by auxiliary variables y and v that move simultaneously with x towards their respective equilibrium
following suitable directions at iteration t:

yt+1 = yt − ρDy(yt, vt, xt) = yt − ρt∇yg(xt, yt)
vt+1 = vt − ρDv(yt, vt, xt) = vt − ρt(∇2

yyg(xt, yt)vt + ∇yf(xt, yt))
xt+1 = xt − γDx(yt, vt, xt) = xt − γt(∇2

xyg(xt, yt)vt + ∇xf(xt, yt))

(6.4)

(6.5)

(6.6)

where t is the iteration number and ρ, γ > 0 are step sizes. The advantage of considering the directions
Dy, Dv, and Dx is that they are linear in the functions f and g. Therefore, when f and g are empirical
means, these directions can be easily estimated by cheap stochastic estimators. Thus, our general
framework summarized in Algorithm 7 consists of following the dynamics given by the equations (6.4),
(6.5) and (6.6) where the directions Dy(yt, vt, xt), Dv(yt, vt, xt) and Dx(yt, vt, xt) are replaced by cheap
stochastic estimators Dt

y, Dt
v and Dt

x.

Algorithm 7 General framework

Input: initialisations y0 ∈ Rdy , x0 ∈ Rdx , v0 ∈ Rdy , number of iterations T , step size se-
quences (ρt)t<T and (γt)t<T .
for t = 0, . . . , T − 1 do

Update y: yt+1 = yt − ρtDt
y ,

Update v: vt+1 = vt − ρtDt
v ,

Update x: xt+1 = xt − γtDt
x ,

where Dt
y, D

t
v and Dt

x are unbiased estimators of Dy(yt, vt, xt), Dv(yt, vt, vt) and
Dx(yt, vt, xt).

end for

We propose and analyze two instantiations of this general framework. The analysis of both instantia-
tions relies on the following regularity assumptions that ensure that the value function Φ is differen-
tiable with Lipschitz continuous gradient and that the directions Dy, Dv, and Dx are well-behaved.

Assumption 6.1. The function f is twice differentiable. The derivatives ∇f and ∇2f are Lipschitz con-
tinuous in (x, y) with respective Lipschitz constants Lf,1 and Lf,2.

Assumption 6.2. The function g is three times continuously differentiable on Rdx × Rdy . For any x ∈
Rdx , g(x, ·) is µg-strongly convex. The derivatives ∇g, ∇2g and ∇3g are Lipschitz continuous in with
respective Lipschitz constants Lg,1, Lg,2 and Lg,3.

Assumption 6.3. There exists Cf > 0 such that for any x we have ∥∇yf(x, y∗(x))∥ ≤ Cf .

The Lipschitz continuity of the derivatives up to the first order for f and the second order for g is stan-
dard in the literature (Ji et al., 2021; Arbel and Mairal, 2022a). However, to avoid assuming increasing
batch size with the precision (Arbel and Mairal, 2022a), or avoid assuming the resolution of the linear
system up to a precision ϵ in the analysis (Chen et al., 2021; Ji et al., 2021), we assume the Lipschitz
continuity of the derivatives up to the second-order for f and the third-order for g.

We also make the following assumptions on the variance of the stochastic estimators.

Assumption 6.4. There exists By, Bv and Bx such that for all t, Et[∥Dt
y∥2] ≤ B2

y(1 + ∥Dy(yt, vt, xt)∥2)
and Et[∥Dt

v∥2] ≤ B2
v(1 + ∥Dv(yt, vt, xt)∥2) where Et denotes the expectation conditionally to (yt, vt, xt).

2. Contributions 147

Assumption 6.5. There exists Bx such that for all t, Et[∥Dt
x∥2] ≤ B2

x.

StOchastic Bilevel Algorithm (SOBA). The first is SOBA, an adaptation of Stochastic Gradient
Descent (SGD) (Robbins and Monro, 1951) for bilevel problems. It consists of taking for the directions

Dt
y = ∇ygi(xt, yt)

Dt
v = ∇2

yygi(xt, yt)vt + ∇yfj(xt, yt)
Dt
x = ∇2

xygi(xt, yt)vt + ∇xfj(xt, yt)

for two randomly sampled indices i ∈ [n] and j ∈ [m].

We provide convergence guarantees for SOBA with fixed step sizes that depend on the horizon (Theo-
rem 6.1). We show that SOBA achieves a convergence rate similar to the convergence rate of SGD for
smooth non-convex single-level problems (Ghadimi and Lan, 2013) in terms of the dependency in T .

Theorem 6.1 (Convergence of SOBA, fixed step size). Fix an iteration T > 1 and assume that Assump-

tions 6.1 to 4.5 hold. We consider fixed steps ρt = Θ
(

1√
T

)
and γt = Θ

(
1√
T

)
. Let (xt)t≥1 the sequence of

outer iterates for SOBA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O(T− 1
2) .

In Theorem 6.2, we provide a convergence rate for SOBA with decreasing step sizes. Again, the rates
we get are similar to the ones obtained for the SGD in the smooth non-convex single-level setting
(Ghadimi and Lan, 2013).

Theorem 6.2 (Convergence of SOBA, decreasing step size). Assume that Assumptions 6.1 to 4.5 hold.

We consider steps ρt = Θ
(

1√
t

)
and γt = Θ

(
1√
t

)
. Let (xt)t≥1 the sequence of outer iterates for SOBA.

Then,
inf
t≤T

E[∥∇Φ(xt)∥2] = O(log(T)T− 1
2) .

Stochastic Averaged Bilevel Algorithm (SABA). The second instantiation we propose is SABA,
an adaptation of the variance-reduced algorithm SAGA (Defazio et al., 2014) for bilevel problems. The
general idea is to replace each sum in the directions D by a sum over a memory, updating only one
term at each iteration. To help with the exposition, we denote the vector of joint variables as z =
(y, x, v). Since we have sums over i and over j, we have two memories for each variable: wti for i ∈ [n]
and w̃tj for j ∈ [m], which keep track of the previous values of the variable y. At each iteration t, we
draw two random independent indices i ∈ [n] and j ∈ [m] uniformly and update the memories. To do
so, we putwt+1

i = yt andwt+1
i′ = wti′ for i′ ̸= i, and w̃t+1

j = yt and w̃t+1
j′ = w̃tj′ for j′ ̸= j. Each sum in the

directions D is then approximated using SAGA-like rules: given n functions ϕi′ for i′ ∈ [n], we define

S[ϕ,w]ti = ϕi(wt+1
i) − ϕi(wti) + 1

n

n∑
i′=1

ϕi′(wti′) .

This is an unbiased estimator of the average of the ϕ’s since Ei
[
S[ϕ,w]ti

]
= 1

n

∑n
i=1 ϕi(yt).

With a slight abuse of notation, we call ∇2
yygv the sequence of functions (y 7→ ∇2

yygi(x, y)v)i∈[n] and
∇2
xygv the sequence of functions (y 7→ ∇2

xygi(x, y)v)i∈[n]. Finally, the stochastic directions Dt
y, Dt

v and
Dt
x used for the SABA algorithm are given by

Dt
y = S[∇yg, w]ti

Dt
v = S[∇2

yygv, w]ti + S[∇yf, w̃]tj
Dt
x = S[∇2

xygv, w]ti + S[∇xf, w̃]tj .

Analogously to the SAGA’s analysis, the SABA’s analysis assumes that the regularity assumptions hold
for each fj and gi instead of only the sums f and g.

2. Contributions 148

Assumption 6.6. For all i ∈ [n] and j ∈ [m], the functions ∇gi, ∇fj , ∇2
yygi and ∇2

xygi are Lipschitz
continuous in (x, y).

In Theorem 6.3, we show that SABA achieves a convergence rate in O((n+m) 2
3 ϵ−1). This rate is similar

to the convergence rate of SAGA for non-convex problems (Reddi et al., 2016) in terms of the depen-
dency on the number of samples and the iteration number.

Theorem 6.3 (Convergence of SABA, smooth case). Assume that Assumptions 6.1 to 6.3 and 6.6 hold.
We suppose ρ = ρ′N− 2

3 and γ = ξρ, where ρ′ and ξ depend only on regularity constants of f and g. Let
(xt)t≥1 be the iterates of SABA. Then,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O
(
N

2
3T−1

)
.

Finally, in Theorem 6.4, we show the linear convergence of SABA under a Polyak-Łojasiewicz (PL) as-
sumption.

Theorem 6.4 (Convergence of SABA, PL case). Assume that Φ satisfies the PL inequality. This means
that there exists a constant µΦ > 0 such that for any x we have µΦ

2 ∥Φ(x)∥2 ≥ Φ(x) − minx Φ(x). We
furthermore assume that Assumptions 6.1 to 6.3 and 4.5 to 6.6 hold. We suppose ρ = ρ′N− 2

3 and γ =
ξρ′N−1, where ρ′ and ξ depend only on f and g. Let xt the iterates of SABA and c′ ≜ min

(
µΦ,

1
16P ′

)
with

P ′ a constant. Then,
E[ΦT] − Φ∗ = (1 − c′γ)T (Φ0 − Φ∗ + C0)

where C0 is a that depends on the initialization of y, v, x and memory.

2.2 A lower bound and a near-optimal algorithm for bilevel empirical risk mini-
mization

We consider again Problem (6.1) in the finite sum setting given in Equation (6.3). In the previous,
we show in two specific cases that bilevel algorithms adapted from single-level algorithms could have
complexities similar to their single-level counterparts in the non-convex/strongly convex setting. This
raises a natural question we try to answer in (Dagréou et al., 2024b): Do the lower and upper complex-
ity bounds transfer from the single-level to the bilevel setting?

Upper bound. In the single-level setting, the algorithm SARAH (Nguyen et al., 2017) is known to
be a near-optimal algorithm for the minimization of smooth non-convex finite sums (Nguyen et al.,
2022). We propose an adaptation of SARAH for bilevel problems called SRBA.

Consider the dynamics given by Equations (6.4), (6.5) and (6.6). The SRBA algorithm consists of follow-
ing these dynamics with stochastic estimators of the directions built recursively and reset periodically
with a full batch computation of the directions. The algorithm is summarized in Algorithm 8 where
Π(y, v, x) = (y,ΠB(0,R)(v), x) with ΠB(0,R) the projection on the ball of radius R = supx∈Rdx ∥v∗(x)∥2

centered at 0. This projection enables avoiding a boundedness assumption on the iterates v.

The convergence analysis of SRBA relies on the following regularity assumptions. Note that, as op-
posed to the SOBA’s analysis, our regularity assumptions should hold for each fj and gi instead of only
the sums f and g.

Assumption 6.7. For all j ∈ [m], fj is twice differentiable and Lf,0-Lipschitz continuous. Its gradient is
Lf,1-Lipschitz continuous and its Hessian is Lf,2-Lipschitz continuous.

Assumption 6.8. For all i ∈ [n], gi is three times differentiable. Its first, second, and third order deriva-
tives are respectively Lg,1-Lipschitz continuous, Lg,2-Lipschitz continuous, and Lg,3-Lipschitz continu-
ous. For x ∈ Rd, the function gi(x, ·) is µg-strongly convex.

Based on these assumptions, we show the convergence rate of SRBA in Theorem 6.5.

2. Contributions 149

Algorithm 8 Stochastic Recursive Bilevel Algorithm

Input: initializations y0 ∈ Rp, x0 ∈ Rd, v0 ∈ Rp, number of iterations T and q, step sizes ρ
and γ.
Set ũ0 = (y0, v0, x0)
for t = 0, . . . , T − 1 do

Reset ∆: ∆t,0 = (ρDy(ũt), ρDv(ũt), γDx(ũt))
Update u: ut,1 = Π(ũt − ∆t,0) ,
for k = 1, . . . , q − 1 do

Draw i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
∆t,k

y = ρ(Dy,i,j(ut,k) −Dy,i,j(ut,k−1)) + ∆t,k−1
y

∆t,k
v = ρ(Dv,i,j(ut,k) −Dv,i,j(ut,k−1)) + ∆t,k−1

v

∆t,k
x = γ(Dx,i,j(ut,k) −Dx,i,j(ut,k−1)) + ∆t,k−1

x

Update u: ut,k+1 = Π(ut,k − ∆t,k)
end for
Set ũt+1 = ut+1,q

end for
Return (ỹT , ṽT , x̃T) = ũT

Theorem 6.5. Assume that Assumptions 6.7 and 6.8 hold. Assume that the step sizes verify ρ ≤ ρ and
γ ≤ min(γ, ξρ) for some constants ξ, ρ and γ. Then it holds

1
Tq

T−1∑
t=0

q−1∑
k=0

E[∥∇Φ(xt,k)∥2] = O
(

1
qTγ

)
where O hides regularity constants that are independent from n and m.

Theorem 6.5 implies that SRBA find an ϵ-stationary point of Φ after at most O
(

(n+m) 1
2 ε−1 ∨ (n+m)

)
calls to oracles, for appropriate choice of step sizes ρ, γ and inner loop length q.

Lower bound. We also establish a lower bound result on the number of oracles that are necessary
to solve bilevel problems. For this, one needs to define the function and the algorithm classes we
consider.

For the function class, we consider outer and inner functions that are finite sums with sufficient reg-
ularity to make the value function Φ differentiable. This class is formally defined in Definition 6.1.

Definition 6.1. Let n,m two positive integers, Lf,1 and µg two positive constants. The class of the
smooth empirical risk minimization problems denoted by CLf,1,µg is the set of pairs of real-valued
function families ((fj)1≤j≤m, (gi)1≤i≤n) defined on Rp × Rd such that for all j ∈ [m], fj is Lf,1 smooth
and for all i ∈ [n], gi is twice differentiable and µg-strongly convex.

The algorithm class we define in Definition 6.2 is a class that includes several stochastic AID-based
algorithms of the literature.

Definition 6.2. Given initial points y0, v0, x0, a linear bilevel algorithm A is a measurable mapping
such that for any ((fj)1≤j≤m, (gi)1≤i≤n) ∈ CLf,1,µg , the output of A((fj)1≤j≤m, (gi)1≤i≤n) is a sequence
{(yt, vt, xt, it, jt)}t≥0 of points (yt, vt, xt) and random variables it ∈ [n] and jt ∈ [m] such that for all

2. Contributions 150

t ≥ 0
yt+1 ∈ y0+Span{∇ygi0(y0, x0), . . . ,∇ygit(yt, xt)}
vt+1 ∈ v0+Span{∇2

yygi0(y0, x0)v0 + ∇yfj0(y0, x0),
. . . ,∇2

yygit(yt, xt)vt + ∇yfjt(yt, xt)}
xt+1 ∈ x0+Span{∇2

xygi0(y0, x0)v0 + ∇xfj0(y0, x0),
. . . ,∇2

xygit(yt, xt)vt + ∇xfjt
(yt, xt)}.

We can derive a lower complexity bound for bilevel problems with these ingredients. We state the
result in Theorem 6.6.

Theorem 6.6. For any linear bilevel algorithm A, and any LF , n, ∆, ε, p such that ε ≤ (∆LFm−1)/103,
there exists a dimension d = O(∆ε−1m

1
2LF), an element ((fj)1≤j≤m, (gi)1≤i≤n) ∈ CLf,1,µg such that the

value function h defined as in (5.1) satisfies Φ(x0) − infx∈Rd Φ(x) ≤ ∆ and in order to find x̂ ∈ Rd such
that E[∥∇Φ(x̂)∥2] ≤ ε, A needs at least Ω(m 1

2 ε−1) calls to oracles of the form (5.10).

Rigorously speaking, the function classes considered for the upper and lower bounds are different
does not match. Indeed, for the analysis of SRBA, we need to assume a bit more regularity on the
functions fj and gi to control the dynamic of the variable v. Moreover, the lower bound result is a
partial result since any dependency in the number of inner functions n appears.

2.3 Extensive benchmark of bilevel optimization algorithms

The literature on stochastic bilevel optimization is rich with many variants of algorithms that come
with theoretical guarantees. However, assessing their practical performance is crucial to understand-
ing the benefits and limitations of each method and reinforcing theoretical claims. Many bilevel opti-
mization papers provide empirical results on classical tasks such as hyperparameter selection or data
cleaning. However, the code is frequently unavailable, or if it is available, its documentation is incom-
plete, leading to a lack of reproducibility in the field.

For these reasons, we propose an extensive benchmark of bilevel optimization algorithms on several
tasks. This benchmark has been made with the Python package Benchopt (Moreau et al., 2022), which
is a tool for building standardized and collaborative benchmarks. The code is open source and avail-
able on GitHub 1. Also, an HTML page displays the latest results of the benchmark2.

In the benchmark, 17 solvers are implemented:

▶ 5 stochastic without variance reduction solvers. AmIGO (Arbel and Mairal, 2022a), stocBiO
(Ji et al., 2021), BSA (Ghadimi and Wang, 2018), TTSA (Hong et al., 2023), SOBA (Dagréou et al.,
2022a);

▶ 6 stochastic solvers with variance reduction. MRBO (Yang et al., 2021), VRBO (Yang et al.,
2021), SUSTAIN (Khanduri et al., 2021), FSLA (Li et al., 2022), SABA (Dagréou et al., 2022a), SRBA
(Dagréou et al., 2024b);

▶ 3 Hessian-free solvers. BOME (Ye et al., 2022), F2SA (Kwon et al., 2023a), PZOBO (Sow et al.,
2022),

▶ 2 full-batch solvers based on Jaxopt (Blondel et al., 2021). Jaxopt-GD, Jaxopt-ITD;

▶ A zero-order solver. Optuna (Akiba et al., 2019).

We consider three tasks: a toy problem with quadratic functions, the hyperparameter selection prob-
lem for ℓ2-regularized logistic regression with the IJCNN1 and COVTYPE datasets, and the data clean-
ing task with the MNIST dataset.

1the code of the benchmark is available at https://github.com/benchopt/benchmark_bilevel
2the results of the benchmark are available at https://benchopt.github.io/results/benchmark_bilevel.h

tml

https://github.com/benchopt/benchmark_bilevel
https://benchopt.github.io/results/benchmark_bilevel.html
https://benchopt.github.io/results/benchmark_bilevel.html

RÉSUMÉ DES CONTRIBUTIONS

1 Contexte

L’optimisation bi-niveaux est un sous-domaine de l’optimisation qui a plus en plus d’applications
en apprentissage statistique. Parmi elles, on trouve la sélection d’hyperparamètres (Pedregosa, 2016;
Franceschi et al., 2018), l’apprentissage profond implicite (Bai et al., 2019), le méta apprentissage (Ra-
jeswaran et al., 2019), la recherche d’architecture neuronale (Liu et al., 2019) et l’augmentation de
données (Cubuk et al., 2019; Rommel et al., 2022).

Un problème d’optimisation bi-niveaux est un problème d’optimisation dans lequel certaines va-
riables sont contraintes à être la solution d’un autre problème d’optimisation. Formellement, consi-
dérons f et g comme deux fonctions à valeurs réelles définies sur Rdx ×Rdy . Les problèmes bi-niveaux
qui nous intéressent prennent la forme suivante :

min
x∈Rdx

Φ(x) ≜ f(x, y∗(x)) s.t. y∗(x) ∈ arg min
y∈Rdy

g(x, y) . (6.7)

La fonction f est la fonction externe, et la fonction g est la fonction interne. De même, la variable x est
la variable externe, et la variable y est la variable interne.

Lorsque la fonction interne g(x, ·) est deux fois différentiable et fortement convexe et que la fonc-
tion externe f est différentiable, le Théorème des Fonctions Implicites permet d’obtenir l’expression
suivante du gradient de Φ

∇Φ(x) = ∇xf(x, y∗(x)) + ∇2
xyg(x, y∗(x))v∗(x) (6.8)

où v∗(x) est la solution d’un système linéaire

v∗(x) = −
[
∇2
yyg(x, y∗(x))

]−1 ∇yf(x, y∗(x)) .

L’hypergradient donné à l’Equation (6.8) présente deux principaux verrous computationnels : il né-
cessite la solution du problème interne y∗(x) et celle du système linéaire v∗(x). Lorsque le problème
interne est mal conditionné, cela peut être extrêmement coûteux.

De plus, dans de nombreuses applications d’apprentissage automatique, les fonctions internes et ex-
ternes prennent la forme de moyennes empiriques sur un nombre potentiellement grand d’échan-
tillons

f(x, y) = 1
m

n∑
j=1

fj(x, y) et g(x, y) = 1
n

m∑
i=1

gi(x, y) . (6.9)

151

2. Contributions 152

Lorsque les nombres d’échantillons m et n sont grands, évaluer les fonctions f et g ainsi que leurs
dérivées peut être coûteux. En optimisation à un seul niveau, des algorithmes stochastiques tels que
la descente de gradient stochastique (SGD) (Robbins and Monro, 1951) sont parfaitement adaptés à
cette situation. Cela explique pourquoi nous nous intéressons au développement d’algorithmes sto-
chastiques pour les problèmes bi-niveaux qui utilisent seulement quelques d’échantillons pour pro-
gresser.

2 Contributions

2.1 Un cadre pour l’optimisation bi-niveaux qui permet les algorithmes de réduc-
tion de variance stochastiques et globaux

Dans Dagréou et al. (2022a), nous proposons un cadre général pour résoudre le Problème (6.7) sans
calculer exactement y∗(x) et v∗(x). L’idée est de remplacer y∗(x) et v∗(x) dans l’Equation (6.8) par
des variables auxiliaires y et v qui se déplacent simultanément avec x vers leur équilibre respectif en
suivant des directions appropriées à l’itération t :

yt+1 = yt − ρDy(yt, vt, xt) = yt − ρt∇yg(xt, yt)
vt+1 = vt − ρDv(yt, vt, xt) = vt − ρt(∇2

yyg(xt, yt)vt + ∇yf(xt, yt))
xt+1 = xt − γDx(yt, vt, xt) = xt − γt(∇2

xyg(xt, yt)vt + ∇xf(xt, yt))

(6.10)

(6.11)

(6.12)

où t est le numéro de l’itération et ρ, γ > 0 sont des tailles de pas. L’avantage de considérer les di-
rections Dy, Dv et Dx est qu’elles sont linéaires dans les fonctions f et g. Par conséquent, lorsque
f et g sont des moyennes empiriques, ces directions peuvent être facilement estimées par des esti-
mateurs stochastiques peu coûteux. Ainsi, notre cadre général résumé dans l’Algorithme 9 consiste à
suivre les dynamiques données par les équations (6.10), (6.11) et (6.12) où les directions Dy(yt, vt, xt),
Dv(yt, vt, xt) et Dx(yt, vt, xt) sont remplacées par des estimateurs stochastiques Dt

y, Dt
v et Dt

x.

Algorithm 9 Cadre général

Entrée : initialisations y0 ∈ Rdy , x0 ∈ Rdx , v0 ∈ Rdy , nombre d’itérations T , séquences de
tailles de pas (ρt)t<T et (γt)t<T .
for t = 0, . . . , T − 1 do

Mise à jour de y : yt+1 = yt − ρtDt
y ,

Mise à jour de v : vt+1 = vt − ρtDt
v ,

Mise à jour de x : xt+1 = xt − γtDt
x ,

où Dt
y, D

t
v et Dt

x sont des estimateurs sans biais des directions Dy(yt, vt, xt), Dv(yt, vt, vt)
et Dx(yt, vt, xt).

end for

Nous proposons et analysons deux instanciations de cet algorithm général. L’analyse des deux instan-
ciations repose sur les hypothèses de régularité suivantes qui garantissent que la fonction valeur Φ est
différentiable avec un gradient lipschitzien et que les directions Dy, Dv et Dx peuvent être controlées.

Hypothèse 6.1. La fonction f est deux fois différentiable. Les dérivées ∇f et ∇2f sont lipschitziennes en
(x, y) avec des constantes de Lipschitz respectives Lf,1 et Lf,2.

Hypothèse 6.2. La fonction g est trois fois continûment différentiable sur Rdx ×Rdy . Pour tout x ∈ Rdx ,
g(x, ·) est µg-fortement convexe. Les dérivées ∇g, ∇2g et ∇3g sont lipschitziennes avec des constantes de
Lipschitz respectives Lg,1, Lg,2 et Lg,3.

Hypothèse 6.3. Il existe Cf > 0 tel que pour tout x, nous ayons ∥∇yf(x, y∗(x))∥ ≤ Cf .

La continuité lipschitzienne des dérivées jusqu’au premier ordre pour f et au deuxième ordre pour
g est courante dans la littérature (Ji et al., 2021; Arbel and Mairal, 2022a). Cependant, pour éviter de

2. Contributions 153

supposer une taille de batch croissante avec la précision (Arbel and Mairal, 2022a), ou d’éviter de
supposer la résolution du système linéaire jusqu’à une précision ϵ dans l’analyse (Chen et al., 2021; Ji
et al., 2021), nous supposons la continuité lipschitzienne des dérivées jusqu’au deuxième ordre pour
f et au troisième ordre pour g.

Nous faisons également les hypothèses suivantes sur la variance des estimateurs stochastiques.

Hypothèse 6.4. Il existe By, Bv et Bx tels que pour tout t, Et[∥Dt
y∥2] ≤ B2

y(1 + ∥Dy(yt, vt, xt)∥2) et
Et[∥Dt

v∥2] ≤ B2
v(1 + ∥Dv(yt, vt, xt)∥2) où Et désigne l’espérance conditionnelle à (yt, vt, xt).

Hypothèse 6.5. Il existe Bx tel que pour tout t, Et[∥Dt
x∥2] ≤ B2

x.

Algorithme bi-niveaux stochastique (SOBA - StOchastic Bilevel Algorithm). Le premier est
SOBA, une adaptation de la Descente de Gradient Stochastique (SGD) (Robbins and Monro, 1951)
pour les problèmes bi-niveaux. Il consiste à prendre pour les directions

Dt
y = ∇ygi(xt, yt)

Dt
v = ∇2

yygi(xt, yt)vt + ∇yfj(xt, yt)
Dt
x = ∇2

xygi(xt, yt)vt + ∇xfj(xt, yt)

pour deux indices i ∈ [n] et j ∈ [m] tirés aléatoirement.

Pour SOBA, nous fournissons des garanties de convergence avec des tailles de pas fixes qui dépendent
de l’horizon (Théorème 6.1). Nous montrons que SOBA atteint un taux de convergence similaire à
celui de SGD pour les problèmes non convexes de niveau unique (Ghadimi and Lan, 2013).

Théorème 6.1 (Convergence de SOBA, pas fixes). Fixons un horizon T > 1 et supposons les Hypoothèses

6.1 à 6.5 vérfiées. Pour des tailles de pas fixesρt = Θ
(

1√
T

)
et γt = γ avec ρ = O(

√
1/T) et γt = Θ

(
1√
T

)
,

les itérés (xt)t≥0 de SOBA vérifient

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O(T− 1
2) .

Dans le Théorème 6.2, nous fournissons un taux de convergence pour SOBA avec des tailles de pas
décroissantes. Encore une fois, les taux que nous obtenons sont similaires à ceux obtenus pour le SGD
dans le cadre non convexe lisse à un seul niveau (Ghadimi and Lan, 2013).

Théorème 6.2 (Convergence de SOBA, pas décroissants). Supposons que les Hypothèses 6.1 à 4.5 soient

vérifiées. Nous considérons des tailles de pas ρt = Θ
(

1√
t

)
et γt = Θ

(
1√
t

)
. Soit (xt)t≥1 la séquence des

itérés de SOBA. Alors,
inf
t≤T

E[∥∇Φ(xt)∥2] = O(log(T)T− 1
2) .

Algorithme bi-niveaux stochastique moyenné (SABA - Stochastic Averaged Bilevel Algo-
rithm). La deuxième instantiation que nous proposons est SABA, une adaptation de l’algorithme
réduit de variance SAGA (Defazio et al., 2014) pour les problèmes bi-niveaux. L’idée générale est de
remplacer chaque somme dans les directions D par une somme sur une mémoire, en mettant à jour
un seul terme à chaque itération. Pour faciliter la présentation, nous notons z = (y, x, v) le vecteur
des variables conjointes. Comme nous avons des sommes sur i et sur j, nous avons deux mémoires
pour chaque variable : wti pour i ∈ [n] et w̃tj pour j ∈ [m], qui gardent la trace des valeurs précédentes
de la variable z. À chaque itération t, nous tirons uniformément deux indices indépendants aléatoires
i ∈ [n] et j ∈ [m] et mettons à jour les mémoires. Pour ce faire, nous posons wt+1

i = yt et wt+1
i′ = wti′

pour i′ ̸= i, et w̃t+1
j = yt et w̃t+1

j′ = w̃tj′ pour j′ ̸= j. Chaque somme dans les directions D est alors
approximée en utilisant des règles similaires à SAGA : étant donné n fonctions ϕi′ pour i′ ∈ [n], nous
définissons

S[ϕ,w]ti = ϕi(wt+1
i) − ϕi(wti) + 1

n

n∑
i′=1

ϕi′(wti′) .

2. Contributions 154

Ceci est un estimateur sans biais de la moyenne des ϕ puisque Ei
[
S[ϕ,w]ti

]
= 1

n

∑n
i=1 ϕi(yt).

Avec un léger abus de notation, nous appelons ∇2
yygv la séquence de fonctions (y 7→ ∇2

yygi(x, y)v)i∈[n]
et ∇2

xygv la séquence de fonctions (y 7→ ∇2
xygi(x, y)v)i∈[n]. Enfin, les directions stochastiques Dt

y, Dt
v

et Dt
x utilisées pour l’algorithme SABA sont données par

Dt
y = S[∇yg, w]ti

Dt
v = S[∇2

yygv, w]ti + S[∇yf, w̃]tj
Dt
x = S[∇2

xygv, w]ti + S[∇xf, w̃]tj .

De manière analogue à l’analyse de SAGA, l’analyse de SABA suppose que les hypothèses de régularité
s’appliquent à chaque fj et gi au lieu de seulement aux sommes f et g.

Hypothèse 6.6. Pour tout i ∈ [n] et j ∈ [m], les fonctions ∇gi, ∇fj , ∇2
yygi et ∇2

xygi sont lipschitziennes
en (x, y).

Dans Théorème 6.3, nous montrons que SABA atteint un taux de convergence en O((n + m) 2
3 ϵ−1).

Ce taux est similaire au taux de convergence de SAGA pour les problèmes non convexes (Reddi et al.,
2016) en termes de dépendance au nombre d’échantillons et au nombre d’itérations.

Théorème 6.3 (Convergence de SABA, cas lisse). Supposons que les Hypothèses 6.1 à 6.3 et l’hypothèse
6.6 soient satisfaites. Nous supposons ρ = ρ′N− 2

3 et γ = ξρ, où ρ′ et ξ dépendent uniquement des
constantes de régularité de f et g. Soit (xt)t≥1 la suite itératérés de SABA. Alors,

1
T

T∑
t=1

E[∥∇Φ(xt)∥2] = O
(
N

2
3T−1

)
.

Enfin, dans Théorème 6.4, nous montrons la convergence linéaire de SABA sous une hypothèse de
Polyak-Łojasiewicz (PL).

Théorème 6.4 (Convergence de SABA, cas PL). Supposons que Φ satisfait l’inégalité PL, c’est-à-dire qu’il
existe une constante µΦ > 0 telle que pour tout x nous avons µΦ

2 ∥Φ(x)∥2 ≥ Φ(x) − minx Φ(x). Nous
supposons en outre que les Hypothèses 6.1 à 6.3 et 6.5 à 6.6 soient satisfaites. On suppose ρ = ρ′N− 2

3

et γ = ξρ′N−1, où ρ′ et ξ dépendent uniquement de f et g. Soit (xt)t≥0 la suite des itérés de SABA et
c′ ≜ min

(
µΦ,

1
16P ′

)
avec P ′ une constant. Alors,

E[ΦT] − Φ∗ = (1 − c′γ)T (Φ0 − Φ∗ + C0)

où C0 est une constante qui dépend de l’initialisation de y, v, x et de la mémoire.

2.2 Une borne inférieure et un algorithme quasi-optimal pour la minimisation
du risque empirique à deux niveaux

Nous considérons à nouveau le Problème (6.7) dans le cas où f et g sont des sommes finies telles
que dans l’Equation (6.9). Précédemment, nous avons montré dans deux cas spécifiques que des al-
gorithmes bi-niveaux adaptés d’algorithmes à un niveau pouvaient avoir des complexités similaires à
leurs homologues à un niveau dans le cadre non convexe/fortement convexe. Cela soulève une ques-
tion naturelle à laquelle nous essayons de répondre dans (Dagréou et al., 2024b) : Les bornes infé-
rieures et supérieures de complexité se transfèrent-elles du cadre à un niveau au cadre bi-niveaux?

Borne supérieure. Pour les problèmes à un niveau, l’algorithme SARAH (Nguyen et al., 2017) est
connu pour être un algorithme quasi-optimal pour la minimisation de sommes finies non convexes
lisses (Nguyen et al., 2022). Nous proposons une adaptation de SARAH pour les problèmes bi-niveaux
appelée SRBA.

Considérons les dynamiques données par les Équations (6.10), (6.11) et (6.12). L’algorithme SRBA
consiste à suivre ces dynamiques avec des estimateurs stochastiques des directions construits de ma-

2. Contributions 155

Algorithm 10 Algorithm stochastic recursif bi-niveaux (SRBA)

Input : initializations y0 ∈ Rdy , x0 ∈ Rdx , v0 ∈ Rdy , number of iterations T and q, step sizes
ρ and γ.
Set ũ0 = (y0, v0, x0)
for t = 0, . . . , T − 1 do

Reset ∆ : ∆t,0 = (ρDy(ũt), ρDv(ũt), γDx(ũt))
Update u : ut,1 = Π(ũt − ∆t,0) ,
for k = 1, . . . , q − 1 do

Draw i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}
∆t,k

y = ρ(Dy,i,j(ut,k) −Dy,i,j(ut,k−1)) + ∆t,k−1
y

∆t,k
v = ρ(Dv,i,j(ut,k) −Dv,i,j(ut,k−1)) + ∆t,k−1

v

∆t,k
x = γ(Dx,i,j(ut,k) −Dx,i,j(ut,k−1)) + ∆t,k−1

x

Update u : ut,k+1 = Π(ut,k − ∆t,k)
end for
Set ũt+1 = ut+1,q

end for
Return (ỹT , ṽT , x̃T) = ũT

nière récursive et réinitialisés périodiquement avec un calcul complet par lot des directions. L’algo-
rithme est résumé dans l’Algorithme 10 où Π(y, v, x) = (y,ΠB(0,R)(v), x) avec ΠB(0,R) la projection sur
la boule de rayon R = supx∈Rdx ∥v∗(x)∥2 centrée en 0. Cette projection permet d’éviter une hypothèse
de bornitude sur les itérations v.

L’analyse de convergence de SRBA repose sur les hypothèses de régularité suivantes. Contrairement à
l’analyse de SOBA, nos hypothèses de régularité doivent s’appliquer à chaque fj et gi au lieu des seules
sommes f et g.

Hypothèse 6.7. Pour tout j ∈ [m], la fonction fj est deux fois différentiable et Lf,0-lipschitzienne. Son
gradient est Lf,1-lipschitzien continu et son Hessian est Lf,2-Lipschitzien.

Hypothèse 6.8. Pour tout i ∈ [n], la fonction gi est trois fois différentiable. Ses dérivées de premier,
deuxième et troisième ordre sont respectivementLg,1-lipschitzienne,Lg,2-lipschitzienne etLg,3-lipschit-
zienne. Pour x ∈ Rd, la fonction gi(x, ·) est µg-fortement convexe.

Sur la base de ces hypothèses, nous montrons le taux de convergence de SRBA dans le Théorème 6.5.

Théorème 6.5. Supposons que les Hypothèses 6.7 et 6.8 soient vérifiées. Supposons que les pas vérifient
ρ ≤ ρ et γ ≤ min(γ, ξρ) pour certaines constantes ξ, ρ et γ. Alors, on a

1
Tq

T−1∑
t=0

q−1∑
k=0

E[∥∇Φ(xt,k)∥2] = O
(

1
qTγ

)
où O cache des constantes de régularité qui sont indépendantes de n et m.

Théorème 6.5 implique que SRBA trouve un point ϵ-stationnaire de Φ après au plus

O
(

(n+m) 1
2 ε−1 ∨ (n+m)

)
appels aux oracles, pour un choix approprié des tailles de pas ρ, γ et de la taille de la boucle interne q.

Borne inférieure. Nous établissons également un résultat de borne inférieure sur le nombre d’ap-
pels aux oracles nécessaires pour résoudre des problèmes bi-niveaux. Pour cela, il est nécessaire de
définir les classes de fonctions et d’algorithmes que nous considérons.

Pour la classe de fonctions, nous considérons les fonctions externes et internes comme étant des
sommes finies avec une régularité suffisante pour rendre la fonction valeur Φ différentiable. Cette

2. Contributions 156

classe est formellement définie dans la Définition 6.1.

Définition 6.1. Soient n,m deux entiers positifs, Lf,1 et µg deux constantes positives. La classe des
problèmes de minimisation du risque empirique lisse, notée CLf,1,µg , est l’ensemble des paires de fa-
milles de fonctions à valeurs réelles ((fj)1≤j≤m, (gi)1≤i≤n) définies sur Rdy × Rdx telles que pour tout
j ∈ [m], fj est Lf,1-lisse et pour tout i ∈ [n], gi est deux fois différentiable et µg-fortement convexe.

La classe d’algorithmes que nous définissons dans la Définition 6.2 est une classe qui inclut plusieurs
algorithmes stochastiques basés sur AID de la littérature.

Définition 6.2. Étant donnés les points initiaux y0, v0, x0, un algorithme linéaire bi-niveaux A est une
application mesurable telle que pour toute paire ((fj)1≤j≤m, (gi)1≤i≤n) ∈ CLf,1,µg , la sortie de l’al-
gorithme A((fj)1≤j≤m, (gi)1≤i≤n) est une séquence {(yt, vt, xt, it, jt)}t≥0 de points (yt, vt, xt) et de va-
riables aléatoires it ∈ [n] et jt ∈ [m] telle que pour tout t ≥ 0

yt+1 ∈ y0+Span{∇ygi0(y0, x0), . . . ,∇ygit(yt, xt)}
vt+1 ∈ v0+Span{∇2

yygi0(y0, x0)v0 + ∇yfj0(y0, x0),
. . . ,∇2

yygit(yt, xt)vt + ∇yfjt
(yt, xt)}

xt+1 ∈ x0+Span{∇2
xygi0(y0, x0)v0 + ∇xfj0(y0, x0),

. . . ,∇2
xygit(yt, xt)vt + ∇xfjt(yt, xt)}.

Nous pouvons en déduire une borne inférieure de complexité pour les problèmes bi-niveaux avec ces
ingrédients. Nous énonçons le résultat dans le Théorème 6.6.

Théorème 6.6. Pour tout algorithme linéaire bi-niveau A, et pour tout LF , n, ∆, ε, p tels que ε ≤
(∆LFm−1)/103, il existe une dimension d = O(∆ε−1m

1
2LF), un élément ((fj)1≤j≤m, (gi)1≤i≤n) ∈

CLf,1,µg tel que la fonction valeur h définie comme dans (5.1) satisfait Φ(x0) − infx∈Rd Φ(x) ≤ ∆ et
pour trouver x̂ ∈ Rd tel que E[∥∇Φ(x̂)∥2] ≤ ε, A nécessite au moins Ω(m 1

2 ε−1) appels aux oracles de la
forme (5.10).

En toute rigueur, les classes de fonctions considérées pour les bornes supérieure et inférieure sont
différentes et ne correspondent pas. En effet, pour l’analyse de SRBA, nous devons supposer un peu
plus de régularité sur les fonctions fj et gi pour contrôler la dynamique de la variable v. De plus, le
résultat de la borne inférieure est un résultat partiel puisque toute dépendance dans le nombre de
fonctions internes n apparaît.

2.3 Benchmark exhaustif des algorithmes d’optimisation bi-niveaux

La littérature sur l’optimisation bi-niveaux stochastique est riche de nombreuses variantes d’algo-
rithmes accompagnées de garanties théoriques. Cependant, évaluer leur performance pratique est
crucial pour comprendre les avantages et les limites de chaque méthode et pour renforcer les résultats
théoriques. De nombreux papiers sur l’optimisation bi-niveaux fournissent des résultats empiriques
sur des tâches classiques telles que la sélection d’hyperparamètres ou le nettoyage des données. Ce-
pendant, le code est souvenet indisponible ou, lorsqu’il est disponible, sa documentation est incom-
plète, ce qui conduit à un manque de reproductibilité dans le domaine.

Pour ces raisons, nous proposons un benchmark exhaustif des algorithmes d’optimisation bi-niveaux
sur plusieurs tâches. Ce benchmark a été réalisé avec le package Python Benchopt (Moreau et al., 2022),
qui est un outil permettant de construire des benchmarks standardisés et collaboratifs. Le code est ou-
vert et disponible sur GitHub3. De plus, une page HTML affiche les derniers résultats du benchmark4.

Dans le benchmark, 17 solveurs sont implémentés :

3Le code du benchmark est disponible à https://github.com/benchopt/benchmark_bilevel
4Les résultats du benchmark sont disponibles à https://benchopt.github.io/results/benchmark_bilevel

.html

https://github.com/benchopt/benchmark_bilevel
https://benchopt.github.io/results/benchmark_bilevel.html
https://benchopt.github.io/results/benchmark_bilevel.html

2. Contributions 157

▶ 5 solveurs stochastiques sans réduction de variance. AmIGO (Arbel and Mairal, 2022a), stoc-
BiO (Ji et al., 2021), BSA (Ghadimi and Wang, 2018), TTSA (Hong et al., 2023), SOBA (Dagréou
et al., 2022a) ; item 6 solveurs stochastiques avec réduction de variance. MRBO (Yang et al.,
2021), VRBO (Yang et al., 2021), SUSTAIN (Khanduri et al., 2021), FSLA (Li et al., 2022), SABA
(Dagréou et al., 2022a), SRBA (Dagréou et al., 2024b) ;

▶ 3 solveurs sans Hessienne. BOME (Ye et al., 2022), F2SA (Kwon et al., 2023a), PZOBO (Sow
et al., 2022) ;

▶ 2 solveurs déterministes basés sur Jaxopt (Blondel et al., 2021). Jaxopt-GD, Jaxopt-ITD;

▶ Un solveur d’ordre zéro. Optuna (Akiba et al., 2019).

Nous considérons trois tâches : un problème jouet avec des fonctions quadratiques, le problème de
sélection d’hyperparamètres pour la régression logistique régularisée par régularisation ℓ2 avec les en-
sembles de données IJCNN1 et COVTYPE, et la tâche de nettoyage des données avec le jeu de données
MNIST.

2. Contributions 158

PUBLICATIONS

International conferences.

As first author:

▶ Dagréou et al. (2022a): M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. In Advances in
Neural Information Processing Systems (NeurIPS), 2022;

▶ Dagréou et al. (2024b): M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. A Lower Bound and a
Near-Optimal Algorithm for Bilevel Empirical Risk Minimization. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2024.

As a middle author:

▶ Moreau et al. (2022): T. Moreau, M. Massias, A. Gramfort, P. Ablin, P.-A. Bannier, B. Charlier,
M. Dagréou, T. D. la Tour, G. Durif, C. F. Dantas, Q. Klopfenstein, J. Larsson, E. Lai, T. Lefort,
B. Malézieux, B. Moufad, B. T. Nguyen, A. Rakotomamonjy, Z. Ramzi, J. Salmon, and S. Vaiter.
Benchopt: Reproducible, efficient and collaborative optimization benchmarks. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

National conferences.

▶ Dagréou et al. (2022b): M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. Algorithmes stochastiques
et réduction de variance grâce à un nouveau cadre pour l’optimisation bi-niveaux. In XXVIIIème
Colloque Francophone de Traitement Du Signal et Des Images GRETSI, 2022

▶ Dagréou et al. (2023): M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. Borne inférieure de com-
pléxité et algorithme quasi-optimal pour la minimisation de risque empirique bi-niveaux. In
XXIXème Colloque Francophone de Traitement Du Signal et Des Images GRETSI, 2023

Miscellaneous.

We also wrote the following blogpost on the computation of Hessian-vector products. It was published
in the blogpost track of ICLR 2024:

▶ Dagréou et al. (2024a) M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. How to compute Hessian-
vector products?, In ICLR blogpost track, 2024, https://iclr-blogposts.github.io/2024/bl
og/bench-hvp/.

159

https://iclr-blogposts.github.io/2024/blog/bench-hvp/
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

2. Contributions 160

BIBLIOGRAPHY

P. Ablin, G. Peyré, and T. Moreau. Super-efficiency of automatic differentiation for functions defined
as a minimum. In International Conference on Machine Learning (ICML), 2020. page 56

A. Agarwal and L. Bottou. A Lower Bound for the Optimization of Finite Sums. In International Con-
ference on Machine Learning (ICML), 2015. page 106

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974. ISSN 0018-9286. page 6

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-generation Hyperparameter
Optimization Framework. In International Conference on Knowledge Discovery and Data Mining
(SIGKDD), 2019. pages 7, 58, 150, 157

B. Amos and J. Z. Kolter. OptNet: Differentiable Optimization as a Layer in Neural Networks. In Inter-
national Conference on Machine Learning (ICML), 2017. page 12

M. Arbel and J. Mairal. Amortized Implicit Differentiation for Stochastic Bilevel Op-
timization. In International Conference on Learning Representations (ICLR), 2022a.
pages 47, 48, 49, 51, 54, 55, 58, 70, 78, 102, 107, 118, 123, 146, 150, 152, 153, 157

M. Arbel and J. Mairal. Non-Convex Bilevel Games with Critical Point Selection Maps. In Advances in
Neural Information Processing Systems (NeurIPS), 2022b. page 56

F. Bach. Learning theory from the first principles, 2021. page 2

S. Bai, J. Z. Kolter, and V. Koltun. Deep Equilibrium Models. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019. pages 12, 145, 151

J. F. Bard. Practical Bilevel Optimization: Algorithms and Applications. Kluwer Acadmic, Dordrecht;
London, 2011. page 9

T. Bartz-Beielstein, C. Doerr, D. van den Berg, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fischbach,
P. Kerschke, W. La Cava, M. Lopez-Ibanez, K. M. Malan, J. H. Moore, B. Naujoks, P. Orzechowski,
V. Volz, M. Wagner, and T. Weise. Benchmarking in Optimization: Best Practice and Open Issues.
arXiv preprint arXiv:2007.03488, 2020. page 58

F. L. Bauer. Computational Graphs and Rounding Error. SIAM Journal on Numerical Analysis, 11(1):
87–96, 1974. ISSN 0036-1429, 1095-7170. page 30

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine
learning: A survey. Journal of Machine Learning Research, 18(153):1–43, 2018. page 30

161

BIBLIOGRAPHY 162

S. Ben-David, N. Eiron, and P. M. Long. On the difficulty of approximately maximizing agreements.
Journal of Computer and System Sciences, 66(3):496–514, 2003. ISSN 00220000. page 2

Y. Bengio. Gradient-Based Optimization of Hyperparameters. Neural Computation, 12(8):1889–1900,
2000. ISSN 0899-7667, 1530-888X. page 9

K. Bennett, Jing Hu, Xiaoyun Ji, G. Kunapuli, and Jong-Shi Pang. Model Selection via Bilevel Opti-
mization. In The 2006 IEEE International Joint Conference on Neural Network Proceedings, pages
1922–1929, Vancouver, BC, Canada, 2006. IEEE. pages 6, 9

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13(10):281–305, 2012. page 7

J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox. Hyperopt: A Python library for model
selection and hyperparameter optimization. Computational Science & Discovery, 8(1):014008, 2015.
page 7

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for Hyper-Parameter Optimization. In
Advances in Neural Information Processing Systems (NeurIPS), 2011. page 7

C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and M. Prato. Deep unfolding of a prox-
imal interior point method for image restoration. Inverse Problems, 36(3):034005, 2020. ISSN 0266-
5611, 1361-6420. page 56

Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit differentiation
of Lasso-type models for hyperparameter optimization. In International Conference on Machine
Learning (ICML), 2020. page 44

Q. Bertrand, Q. Klopfenstein, M. Massias, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit
differentiation for fast hyperparameter selection in non-smooth convex learning. Journal of Ma-
chine Learning Research, 23(149):1–43, 2022. page 44

M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pedregosa, and J.-P. Vert. Ef-
ficient and Modular Implicit Differentiation. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. pages 58, 150, 157

J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation, stochastic gradi-
ent methods and deep learning. Mathematical Programming, 2020. ISSN 0025-5610, 1436-4646.
page 44

J. Bolte, T. Le, E. Pauwels, and A. Silveti-Falls. Nonsmooth Implicit Differentiation for Machine Learn-
ing and Optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
page 44

J. Bolte, E. Pauwels, and S. Vaiter. Automatic differentiation of nonsmooth iterative algorithms. In
Advances in Neural Information Processing Systems (NeurIPS), 2022. page 57

J. Bolte, E. Pauwels, and S. Vaiter. One-step differentiation of iterative algorithms. In Advances in
Neural Information Processing Systems (NeurIPS), 2023. page 56

S. Bonettini, L. Calatroni, D. Pezzi, and M. Prato. Algorithmic unfolding for image reconstruction and
localization problems in fluorescence microscopy. arXiv preprint arXiv:2403.17506, 2024. page 56

L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In International Confer-
ence on Computational Statistics (COMPSTAT), pages 177–186, Heidelberg, 2010. pages 26, 66

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. Siam
Reviews, 60(2):223–311, 2018. page 26

BIBLIOGRAPHY 163

J. Bracken and J. T. McGill. Mathematical Programs with Optimization Problems in the Constraints.
Operations Research, 21(1):37–44, 1973. ISSN 0030-364X, 1526-5463. page 9

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable transformations of Python+NumPy
programs, 2018. pages 33, 58

C. Brauer, N. Breustedt, T. de Wolff, and D. A. Lorenz. Learning Variational Models with Unrolling and
Bilevel Optimization. arXiv preprint arXiv:2209.12651, 2023. page 56

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of
computation, 19(92):577–593, 1965. page 47

S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends® in Machine
Learning, 8(3-4):231–357, 2015. ISSN 1935-8237, 1935-8245. page 8

L. Calatroni, C. Cao, J. Carlos De Los Reyes, C.-B. Schönlieb, and T. Valkonen. 8. Bilevel approaches for
learning of variational imaging models. In M. Bergounioux, G. Peyré, C. Schnörr, J.-B. Caillau, and
T. Haberkorn, editors, Variational Methods, pages 252–290. De Gruyter, 2016. page 6

W. Candler and R. Norton. Multi-Level Programming and Development Policy. Number vol. 1 in Multi-
Level Programming and Development Policy. World Bank, 1977. pages 8, 9

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points I. Math-
ematical Programming, 184(1-2):71–120, 2020. ISSN 0025-5610, 1436-4646. pages 106, 118

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points II: First-
order methods. Mathematical Programming, 185(1-2):315–355, 2021. ISSN 0025-5610, 1436-4646.
pages 118, 119, 120

A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. In Comptes
Rendus de l’Académie Des Sciences de Paris, 1847. page 23

L. Chen, Y. Ma, and J. Zhang. Near-Optimal Fully First-Order Algorithms for Finding Stationary Points
in Bilevel Optimization. arXiv preprint arXiv:2306.14853, 2023a. page 57

T. Chen, Y. Sun, and W. Yin. Closing the Gap: Tighter Analysis of Alternating Stochastic Gradient Meth-
ods for Bilevel Problems. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
pages 50, 51, 54, 55, 70, 72, 73, 74, 82, 85, 128, 146, 153

T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin. Learning to optimize: A primer and
a benchmark. Journal of Machine Learning Research, 23(189):1–59, 2022a. page 55

T. Chen, Y. Sun, and W. Yin. A Single-Timescale Stochastic Bilevel Optimization Method. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2022b. page 51

Z. Chen, B. Kailkhura, and Y. Zhou. An accelerated proximal algorithm for regularized nonconvex and
nonsmooth bi-level optimization. Machine Learning, 112(5):1433–1463, 2023b. ISSN 0885-6125,
1573-0565. page 47

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. AutoAugment: Learning Augmentation
Strategies from Data. In arXiv Preprint arXiv:1805.09501, 2019. pages 145, 151

A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex SGD. In Advances
in Neural Information Processing Systems (NeurIPS), 2019. pages 51, 66, 68

BIBLIOGRAPHY 164

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. A framework for bilevel optimization that enables
stochastic and global variance reduction algorithms. In Advances in Neural Information Processing
Systems (NeurIPS), 2022a. pages 107, 117, 118, 123, 146, 150, 152, 157, 159

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. Algorithmes stochastiques et réduction de variance
grâce à un nouveau cadre pour l’optimisation bi-niveaux. In XXVIIIème Colloque Francophone de
Traitement Du Signal et Des Images GRETSI, 2022b. page 159

M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. Borne inférieure de compléxité et algorithme quasi-
optimal pour la minimisation de risque empirique bi-niveaux. In XXIXème Colloque Francophone
de Traitement Du Signal et Des Images GRETSI, 2023. page 159

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. How to compute Hessian-vector products? In ICLR
Blogposts, 2024a. page 159

M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. A Lower Bound and a Near-Optimal Algorithm for Bilevel
Empirical Risk Minimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2024b. pages 148, 150, 154, 157, 159

J. M. Danskin. The Theory of Max-Min and Its Application to Weapons Allocation Problems, volume 5 of
Ökonometrie Und Unternehmensforschung / Econometrics and Operations Research. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1967. page 57

A. Defazio and K. Mishchenko. Learning-Rate-Free Learning by D-Adaptation. In International Con-
ference on Machine Learning (ICML), 2023. page 144

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for
Non-Strongly Convex Composite Objectives. In Advances in Neural Information Processing Systems
(NeurIPS), 2014. pages 14, 27, 28, 66, 69, 106, 147, 153

S. Dempe. Directional differentiability of optimal solutions under Slater’s condition. Mathematical
Programming, 59(1-3):49–69, 1993. ISSN 0025-5610, 1436-4646. page 42

S. Dempe. An Implicit Function Approach to Bilevel Programming Problems. In P. M. Pardalos,
R. Horst, A. Migdalas, P. M. Pardalos, and P. Värbrand, editors, Multilevel Optimization: Algorithms
and Applications, volume 20, pages 273–294. Springer US, Boston, MA, 1998. page 42

S. Dempe. Foundations of Bilevel Programming. Springer, New York; London, 2011. page 9

S. Dempe, J. Dutta, and B. S. Mordukhovich. New necessary optimality conditions in optimistic bilevel
programming. Optimization, 56(5-6):577–604, 2007. ISSN 0233-1934, 1029-4945. page 9

S. Dempe, B. Mordukhovich, and A. Zemkoho. Necessary optimality conditions in pessimistic bilevel
programming. Optimization, 63(4):505–533, 2014. ISSN 0233-1934, 1029-4945. page 9

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL-HLT), 2019. page 36

L. Devroye and T. Wagner. Distribution-free performance bounds for potential function rules. IEEE
Transactions on Information Theory, 25(5):601–604, 1979. ISSN 0018-9448. page 6

J. Domke. Generic methods for optimization-based modeling. In Conference on Artificial Intelligence
and Statistics (AISTATS), 2012. page 56

D. L. Donoho and I. M. Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal
of the American Statistical Association, 90(432):1200–1224, 1995. ISSN 0162-1459, 1537-274X. page 6

BIBLIOGRAPHY 165

A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Vari-
ational Analysis. Springer Monographs in Mathematics. Springer New York, New York, NY, 2009.
page 42

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, Georg Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning Representations
(ICLR), 2021. page 36

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. page 26

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit Deep Learning. SIAM Journal on
Mathematics of Data Science, 3:930–958, 2021. page 12

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. Journal of Machine Learning
Research, 20(55):1–21, 2019. page 13

C. Fan, G. Choné-Ducasse, M. Schmidt, and C. Thrampoulidis. BiSLS/SPS: Auto-tune Step Sizes for
Stable Bi-level Optimization. In Advances in Neural Information Processing Systems (NeurIPS),
2024a. page 144

S. Fan, M. Pagliardini, and M. Jaggi. DoGE: Domain Reweighting with Generalization Estimation. In
International Conference on Machine Learning (ICML), 2024b. page 11

C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-Optimal Non-Convex Optimization via Stochas-
tic Path Integrated Differential Estimator. In Advances in Neural Information Processing Systems
(NeurIPS), 2018. pages 52, 66, 106, 108, 118

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. Agnostic Learning of Monomials by Halfspaces
Is Hard. SIAM Journal on Computing, 41(6):1558–1590, 2012. ISSN 0097-5397, 1095-7111. page 2

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and Reverse Gradient-Based Hyperpa-
rameter Optimization. In International Conference on Machine Learning (ICML), 2017. pages 11, 78

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel Programming for Hyperparameter
Optimization and Meta-Learning. In International Conference on Machine Learning (ICML), 2018.
pages 6, 145, 151

G. Garrigos and R. M. Gower. Handbook of Convergence Theorems for (Stochastic) Gradient Methods.
arXiv preprint arXiv:2301.11235, 2023. page 19

S. Geisser. A predictive approach to the random effect model. Biometrika, 61(1):101–107, 1974. ISSN
0006-3444, 1464-3510. page 6

S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. pages 26, 106, 147, 153

S. Ghadimi and M. Wang. Approximation Methods for Bilevel Programming. arXiv preprint
arXiv:1802.02246, 2018. pages 42, 43, 45, 47, 48, 50, 51, 53, 55, 58, 70, 78, 102, 107, 150, 157

J. C. Gilbert. Automatic differentiation and iterative processes. Optimization Methods and Software, 1
(1):13–21, 1992. ISSN 1055-6788, 1029-4937. page 56

D. Grangier, P. Ablin, and A. Hannun. Bilevel Optimization to Learn Training Distributions for
Language Modeling under Domain Shift. In Workshop on Distribution Shifts at NeurIPS, 2023.
pages 11, 144

BIBLIOGRAPHY 166

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complexity of hypergradient compu-
tation. In International Conference on Machine Learning (ICML), 2020. pages 44, 47, 56

R. Grazzi, M. Pontil, and S. Salzo. Convergence properties of stochastic hypergradients. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), 2021. page 78

R. Grazzi, M. Pontil, and S. Salzo. Bilevel Optimization with a Lower-level Contraction: Optimal Sam-
ple Complexity without Warm-start. Journal of Machine Learning Research, 24(167):1–37, 2023.
pages 48, 54, 55

R. Grazzi, M. Pontil, and S. Salzo. Nonsmooth Implicit Differentiation: Deterministic and Stochastic
Convergence Rates. In International Conference on Machine Learning (ICML), 2024. page 44

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation, Second Edition. Society for Industrial and Applied Mathematics, second edition, 2008.
page 30

Z. Guo, Q. Hu, L. Zhang, and T. Yang. Randomized Stochastic Variance-Reduced Methods for Multi-
Task Stochastic Bilevel Optimization. arXiv preprint arXiv:2105.02266, 2021a. page 55

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. On Stochastic Moving-Average Estimators for Non-Convex
Optimization. arXiv preprint arXiv:2104.14840, 2021b. page 55

L. Hascoet and M. Araya-Polo. Enabling user-driven Checkpointing strategies in Reverse-mode Auto-
matic Differentiation. arXiv preprint arXiv:0606042, 2006. page 56

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in Statis-
tics. Springer New York, New York, NY, 2009. page 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. page 36

M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, 49(6):409, 1952. ISSN 0091-0635. page 47

A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Problems.
Technometrics, 12(1):55–67, 1970. ISSN 0040-1706, 1537-2723. page 5

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A Two-Timescale Stochastic Algorithm
Framework for Bilevel Optimization: Complexity Analysis and Application to Actor-
Critic. SIAM Journal on Optimization, 33(1):147–180, 2023. ISSN 1052-6234, 1095-7189.
pages 51, 55, 58, 70, 72, 74, 78, 102, 103, 150, 157

Q. Hu, Y. Zhong, and T. Yang. Multi-block Min-max Bilevel Optimization with Applications in Multi-
task Deep AUC Maximization. In Advances in Neural Information Processing Systems (NeurIPS),
2022. page 109

Y. Huang, E. Chouzenoux, and J.-C. Pesquet. Unrolled Variational Bayesian Algorithm for Image Blind
Deconvolution. IEEE Transactions on Image Processing, 32:430–445, 2023. ISSN 1057-7149, 1941-
0042. page 56

F. Iutzeler, E. Pauwels, and S. Vaiter. Derivatives of Stochastic Gradient Descent. In Advances in Neural
Information Processing Systems (NeurIPS), 2024. page 56

K. Ji and Y. Liang. Lower Bounds and Accelerated Algorithms for Bilevel Optimization. Journal of
Machine Learning Research, 24(22):1–56, 2023. pages 47, 106, 118

BIBLIOGRAPHY 167

K. Ji, J. Yang, and Y. Liang. Bilevel Optimization: Convergence Analysis and En-
hanced Design. In International Conference on Machine Learning (ICML), 2021.
pages 44, 47, 48, 51, 53, 54, 55, 58, 70, 78, 102, 107, 123, 146, 150, 152, 153, 157

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems (NeurIPS), 2013. pages 28, 66

H. Th. Jongen, D. Klatte, and K. Tammer. Implicit functions and sensitivity of stationary points. Math-
ematical Programming, 49(1-3):123–138, 1990. ISSN 0025-5610, 1436-4646. page 42

H. Karimi, J. Nutini, and M. Schmidt. Linear Convergence of Gradient and Proximal-Gradient Methods
Under the Polyak-Łojasiewicz Condition. In European Conference on Machine Learning (ECML),
2016. pages 114, 129, 130

A. Khaled, K. Mishchenko, and C. Jin. DoWG Unleashed: An Efficient Universal Parameter-Free Gra-
dient Descent Method. arXiv preprint arXiv:2301.07733, 2024. page 144

P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A Near-Optimal Algorithm for Stochas-
tic Bilevel Optimization via Double-Momentum. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. pages 51, 52, 55, 58, 66, 70, 78, 150, 157

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International Conference on
Learning Representations (ICLR), 2015. page 26

S. G. Krantz, H. R. Parks, and S. G. Krantz. Implicit Function Theorem: History, Theory, and Applica-
tions. Modern Birkhäuser Classics. Birkhäuser, New York, 2013. page 42

A. Krogh and J. Hertz. A simple weight decay can improve generalization. In J. Moody, S. Hanson, and
R. Lippmann, editors, Advances in Neural Information Processing Systems (NeurIPS), 1991. page 5

J. Kwon, D. Kwon, S. Wright, and R. Nowak. A Fully First-Order Method for Stochastic Bilevel Optimiza-
tion. In International Conference on Machine Leaning (ICML), 2023a. pages 57, 58, 107, 123, 150, 157

J. Kwon, D. Kwon, S. Wright, and R. Nowak. On Penalty Methods for Nonconvex Bilevel Optimization
and First-Order Stochastic Approximation. In International Conference on Learning Representations
(ICLR), 2023b. page 57

J. Kwon, D. Kwon, and H. Lyu. On the Complexity of First-Order Methods in Stochastic Bilevel Opti-
mization. In International Conference on Machine Learning (ICML), 2024. page 57

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python JIT compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 1–6, Austin Texas, 2015. ACM.
pages 79, 80

J. Larsen, L. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural networks: The
optimal use of a validation set. In Neural Networks for Signal Processing VI. Proceedings of the 1996
IEEE Signal Processing Society Workshop, pages 62–71, Kyoto, Japan, 1996. IEEE. page 9

J. Li, B. Gu, and H. Huang. A Fully Single Loop Algorithm for Bilevel Optimization without Hessian
Inverse. In Proceedings of the Thirty-sixth AAAI Conference on Artificial Intelligence, AAAI’22, 2022.
pages 54, 55, 58, 66, 68, 70, 78, 107, 118, 150, 157

S. Linnainmaa. The representation of the cumulative rounding error of an algorithm as a Taylor ex-
pansion of the local rounding errors. Master’s Thesis (University of Helsinki), 1970. page 32

S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT, 16(2):146–160, 1976. ISSN
0006-3835, 1572-9125. page 32

BIBLIOGRAPHY 168

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathe-
matical Programming, 45(1-3):503–528, 1989. ISSN 0025-5610, 1436-4646. pages 47, 80

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable Architecture Search. In International Confer-
ence on Learning Representations (ICLR), 2019. pages 13, 14, 145, 151

R. Liu, Y. Liu, W. Yao, S. Zeng, and J. Zhang. Averaged Method of Multipliers for Bi-Level Optimization
without Lower-Level Strong Convexity. In International Conference on Machine Learning (ICML),
2023. page 57

N. Loizou, S. Vaswani, I. Laradji, and S. Lacoste-Julien. Stochastic Polyak Step-size for SGD: An Adap-
tive Learning Rate for Fast Convergence. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2021. page 144

J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing Millions of Hyperparameters by Implicit Differen-
tiation. In International Conference on Artificial Intelligence and Statistics (AISTAT), 2020. page 6

Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical Programs with Equilibrium Constraints. Cambridge
University Press, 1 edition, 1996. page 9

D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based Hyperparameter Optimization through
Reversible Learning. In International Conference on Machine Learning (ICML), 2015. page 56

B. Malézieux, T. Moreau, and M. Kowalski. Understanding approximate and unrolled dictionary learn-
ing for pattern recovery. In International Conference on Learning Representations (ICLR), 2022.
page 57

S. Mehmood and P. Ochs. Automatic Differentiation of Some First-Order Methods in Parametric
Optimization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
page 56

K. Mishchenko and A. Defazio. Prodigy: An Expeditiously Adaptive Parameter-Free Learner. In Inter-
national Conference on Machine Learning (ICML), 2024. page 144

J. Mockus. The Bayesian Approach to Local Optimization, volume 37, pages 125–156. Springer Nether-
lands, Dordrecht, 1989. page 7

T. Moreau, M. Massias, A. Gramfort, P. Ablin, P.-A. Bannier, B. Charlier, M. Dagréou, T. D. la Tour, G. Du-
rif, C. F. Dantas, Q. Klopfenstein, J. Larsson, E. Lai, T. Lefort, B. Malézieux, B. Moufad, B. T. Nguyen,
A. Rakotomamonjy, Z. Ramzi, J. Salmon, and S. Vaiter. Benchopt: Reproducible, efficient and collab-
orative optimization benchmarks. In Advances in Neural Information Processing Systems (NeurIPS),
2022. pages 58, 79, 139, 150, 156, 159

E. Moulines and F. Bach. Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Ma-
chine Learning. In Advances in Neural Information Processing Systems (NeurIPS), 2011. pages 26, 27

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-
Interscience series in discrete mathematics. Wiley, Chichester ; New York, 1983. page 106

I. E. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Number v. 87 in Applied
Optimization. Kluwer Academic Publishers, Boston, 2004. page 72

Y. Nesterov. A method for solving the convex programming problem with convergence rate
$\mathcal{O}(1/k^2)$. Proceedings of the USSR Academy of Sciences, 269:543–547, 1983. page 47

Y. Nesterov. Lectures on Convex Optimization. Springer Berlin Heidelberg, New York, NY, 2018.
pages 8, 19, 42, 118, 119

BIBLIOGRAPHY 169

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A Novel Method for Machine Learning
Problems Using Stochastic Recursive Gradient. In International Conference on Machine Learning
(ICML), 2017. pages 52, 106, 108, 110, 115, 148, 154

L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng, and J. R. Kalagnanam. Finite-sum
smooth optimization with SARAH. Computational Optimization and Applications, 82(3):561–593,
2022. ISSN 0926-6003, 1573-2894. pages 106, 108, 115, 148, 154

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer,
New York, 2nd ed edition, 2006. pages 19, 47

P. Ochs, R. Ranftl, T. Brox, and T. Pock. Bilevel optimization with nonsmooth lower level problems. In
International Conference on Scale Space and Variational Methods in Computer Vision, pages 654–
665. Springer, 2015. page 57

P. Ochs, R. Ranftl, T. Brox, and T. Pock. Techniques for Gradient-Based Bilevel Optimization with Non-
smooth Lower Level Problems. Journal of Mathematical Imaging and Vision, 56(2):175–194, 2016.
ISSN 0924-9907, 1573-7683. page 57

B. Pascal, S. Vaiter, N. Pustelnik, and P. Abry. Automated Data-Driven Selection of the Hyperparameters
for Total-Variation-Based Texture Segmentation. Journal of Mathematical Imaging and Vision, 63
(7):923–952, 2021. ISSN 0924-9907, 1573-7683. page 6

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. In Advances in Neural Information Processing Systems (NeurIPS), 2019. page 33

B. A. Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–160, 1994.
ISSN 0899-7667, 1530-888X. pages 33, 68, 110

F. Pedregosa. Hyperparameter optimization with approximate gradient. In International Conference
on Machine Learning (ICML), 2016. pages 6, 42, 44, 45, 47, 78, 145, 151

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85):
2825–2830, 2011. page 6

J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux. A SURE Approach for Digital Signal/Image De-
convolution Problems. IEEE Transactions on Signal Processing, 57(12):4616–4632, 2009. ISSN 1053-
587X, 1941-0476. page 6

I. Petrulionyte, J. Mairal, and M. Arbel. Functional Bilevel Optimization for Machine Learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2024. page 44

J. Pineau, K. Sinha, G. Fried, R. N. Ke, and H. Larochelle. ICLR Reproducibility Challenge 2019. 2019.
page 58

B. T. Polyak. Introduction to optimization. Translations series in mathematics and engineering. Opti-
mization Software, Publications Division, New York, 1987. page 144

D. Qin, C. Wang, Q. Wen, W. Chen, L. Sun, and Y. Wang. Personalized Federated DARTS for Electricity
Load Forecasting of Individual Buildings. IEEE Transactions on Smart Grid, pages 1–1, 2023. ISSN
1949-3061. page 13

BIBLIOGRAPHY 170

A. Rajeswaran, C. Finn, S. Kakade, and S. Levine. Meta-Learning with Implicit Gradients. In Advances
in Neural Information Processing Systems (NeurIPS), 2019. pages 145, 151

Z. Ramzi, F. Mannel, S. Bai, J.-L. Starck, P. Ciuciu, and T. Moreau. SHINE: SHaring the INverse Estimate
from the forward pass for bi-level optimization and implicit models. In International Conference on
Learning Representations (ICLR), 2022. page 47

S. J. Reddi, S. Sra, B. Poczos, and A. Smola. Fast Incremental Method for Nonconvex Optimiza-
tion. In 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, pages 1971–1977, 2016.
pages 28, 66, 75, 77, 106, 148, 154

M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to Reweight Examples for Robust Deep Learning.
In International Conference on Machine Learning (ICML), 2018. page 11

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
22(3):400–407, 1951. pages 26, 66, 106, 145, 147, 152, 153

C. Rommel, T. Moreau, J. Paillard, and A. Gramfort. CADDA: Class-wise Automatic Differentiable Data
Augmentation for EEG Signals. In International Conference on Learning Representations (ICLR),
2022. pages 145, 151

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986. ISSN 0028-0836, 1476-4687. page 32

M. S. Salehi, S. Mukherjee, L. Roberts, and M. J. Ehrhardt. Dynamic Bilevel Learning with Inexact Line
Search. arXiv preprint arXiv:2308.10098, 2023. page 144

R. Sambharya, G. Hall, B. Amos, and B. Stellato. Learning to warm-start fixed-point optimization al-
gorithms. Journal of Machine Learning Research, 25(166):1–46, 2024. page 144

C. Santambrogio, M. Pragliola, A. Lanza, M. Donatelli, and L. Calatroni. Whiteness-based bilevel learn-
ing of regularization parameters in imaging. In European Signal Processing Conference (EUSIPCO),
2024. page 6

F. Schaipp, R. Ohana, M. Eickenberg, A. Defazio, and R. M. Gower. MoMo: Momentum Models for
Adaptive Learning Rates. In International Conference on Machine Learning (ICML), 2024. page 144

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
Mathematical Programming, 162(1-2):83–112, 2017. ISSN 0025-5610, 1436-4646. pages 28, 66

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 1978. ISSN 0090-5364.
page 6

D. Scieur, Q. Bertrand, G. Gidel, and F. Pedregosa. The Curse of Unrolling: Rate of Differentiating
Through Optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
page 56

D. Sculley, J. Snoek, A. Rahimi, and A. Wiltschko. Winner’s Curse? On Pace, Progress, and Empirical
Rigor. In ICLR Workshop Track, 2018. page 57

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots. Truncated Back-propagation for Bilevel Optimization.
In Conference on Artificial Intelligence and Statistics (AISTATS), 2019. page 56

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, New York, NY, USA, 2014. page 2

BIBLIOGRAPHY 171

J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng. Meta-Weight-Net: Learning an Explicit
Mapping For Sample Weighting. In Advances in Neural Information Processing Systems (NeurIPS),
2019. page 11

D. Sow, K. Ji, Z. Guan, and Y. Liang. A Primal-Dual Approach to Bilevel Optimization with Multiple
Inner Minima. arXiv preprint arXiv:2203.01123, 2022. pages 58, 150, 157

C. M. Stein. Estimation of the Mean of a Multivariate Normal Distribution. The Annals of Statistics, 9
(6), 1981. ISSN 0090-5364. page 6

M. Stone. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 36(2):111–133, 1974. ISSN 1369-7412, 1467-9868.
page 6

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. pages 5, 44

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. W.H. Winston, 1977. page 5

P. Vicol, J. Lorraine, F. Pedregosa, D. Duvenaud, and R. Grosse. On Implicit Bias in Overparameterized
Bilevel Optimization. In International Conference on Machine Learning (ICML), 2022. page 48

H. von Stackelberg. Marktform Und Gleichgewicht. Die Handelsblatt-Bibliothek "Klassiker Der Na-
tionalökonomie". J. Springer, 1934. page 9

H. von Stackelberg. Theory of the Market Economy. Oxford University Press, 1952. page 9

X. Wang, H. Pham, P. Michel, A. Anastasopoulos, J. Carbonell, and G. Neubig. Optimizing Data Usage
via Differentiable Rewards. In International Conference on Machine Learning (ICML), 2019. page 11

R. Wengert. A simple automatic derivative evaluation program. Communications of the ACM, 7(8):
463–464, 1964. page 31

W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem. Pessimistic Bilevel Optimization. SIAM
Journal on Optimization, 23(1):353–380, 2013. ISSN 1052-6234, 1095-7189. page 9

B. E. Woodworth and N. Srebro. Tight Complexity Bounds for Optimizing Composite Objectives. In
Advances in Neural Information Systems Processing (NeurIPS), 2016. page 106

Xiao-Ping Zhang and M. Desai. Adaptive denoising based on SURE risk. IEEE Signal Processing Letters,
5(10):265–267, 1998. ISSN 1070-9908, 1558-2361. page 6

J. Yang, K. Ji, and Y. Liang. Provably Faster Algorithms for Bilevel Optimiza-
tion. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
pages 51, 52, 55, 58, 66, 70, 78, 107, 109, 117, 123, 150, 157

M. Ye, B. Liu, S. Wright, P. Stone, and Q. Liu. BOME! Bilevel Optimization Made Easy: A Sim-
ple First-Order Approach. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
pages 58, 150, 157

P. Ye, T. He, B. Li, T. Chen, L. Bai, and W. Ouyang. β-DARTS++: Bi-level Regularization for Proxy-
robust Differentiable Architecture Search. arXiv preprint arXiv:2301.06393, 2023. page 13

M. Zhang, S. W. Su, S. Pan, X. Chang, E. M. Abbasnejad, and R. Haffari. iDARTS: Differentiable Archi-
tecture Search with Stochastic Implicit Gradients. In International Conference on Machine Learning
(ICML), 2021. page 13

D. Zhou and Q. Gu. Lower Bounds for Smooth Nonconvex Finite-Sum Optimization. In International
Conference on Machine Learning (ICML), 2019. pages 106, 118, 120

Titre : Contributions à l’optimisation bi-niveaux stochastique
Mots clés : Optimisation bi-niveaux, differenciation implicite, algorithmes stochastiques, apprentis-sage automatique
Résumé : Les problèmes bi-niveaux sont untype de problèmes d’optimisation caractériséspar une structure hiérarchique. Dans ces pro-blèmes, on cherche à minimiser une fonction ex-terne sous la contrainte que certaines variablesminimisent une fonction interne. Ces problè-mes gagnent en popularité dans la commu-nauté du machine learning en raison de leurlarge éventail d’applications, telles que l’opti-misation d’hyperparamètres. Dans cette thèse,nous explorons des algorithmes basés sur ladifférenciation implicite approximée pour abor-der les problèmes bi-niveaux où les fonctionsexternes et internes sont des moyennes em-piriques sur des ensembles d’échantillons po-tentiellement vastes. Ce cadre de minimisationdu risque empirique est une approche classiquedans de nombreuses tâches de d’apprentissagestatistique. Tout d’abord, nous introduisons uncadre algorithmique général qui permet d’adap-ter n’importe quel solveur stochastique de pre-mier ordre, initialement conçu pour des pro-blèmes à un seul niveau, aux problèmes bi-

niveaux. Nous fournissons et analysons deux ins-tanciations de ce cadre : une adaptation de la des-cente de gradient stochastique et de l’algorithmeSAGA aux problèmes bi-niveaux. Notre analysedémontre que ces algorithmes ont des complexi-tés comparables à celles de leurs homologues àun seul niveau. Ensuite, nous nous intéressonsà la complexité de l’optimisation bi-niveaux dansle cadre non convexe/fortement convexe. Nousproposons une classe d’algorithmes qui inclutplusieurs méthodes stochastiques basées sur ladifférenciation implicite approximée et établis-sons une borne inférieure sur le nombre d’ap-pels aux oracles nécessaires pour atteindre unpoint stationnaire approché. Nous proposons en-suite un algorithme dont la complexité corres-pond à cette borne inférieure. Les performancesdes méthodes proposées sont évaluées numéri-quement par un benchmark comparant ces mé-thodes à d’autres algorithmes bi-niveaux sur desfonctions quadratiques, des problèmes de sélec-tion d’hyperparamètres et la tâche de nettoyagede données.

Title: Contributions to stochastic bilevel optimization
Keywords: Bilevel optimization, implicit differentiation, stochastic algorithms, machine learning
Abstract: Bilevel problems are a type of opti-mization problem characterized by a hierarchi-cal structure. In these problems, one wants tominimize an outer function under the constraintthat some variables minimize an inner function.These problems are gaining popularity in themachine learning community due to their widerange of applications, such as hyperparameteroptimization. In this thesis, we explore approxi-mate implicit differentiation-based algorithms toaddress bilevel problems where both the outerand inner functions are empirical means over po-tentially large sample sets. This empirical riskminimization framework is a classical approachin many machine learning tasks. First, we in-troduce a general algorithmic framework that al-lows any first-order stochastic solver, initially de-signed for single-level problems, to be adaptedto bilevel problems. We provide and analyze

two instantiations of this framework: an adapta-tion of the stochastic gradient descent and of theSAGA algorithm to bilevel problems. Our analysisdemonstrates that these algorithms have com-plexities comparable to their single-level coun-terparts. Then, we interest ourselves in thecomplexity of bilevel optimization in the non-convex/strongly convex setting. We propose analgorithm class that includes several stochasticapproximate implicit differentiation-basedmeth-ods and establish a lower bound on the num-ber of oracle calls required to reach an approx-imate stationary point. Then, we propose analgorithm whose complexity matches this lowerbound. The performances of the proposedmeth-ods are evaluated numerically by a benchmarkcomparing those methods to other bilevel algo-rithms on quadratic functions, hyperparameterselection problems, and the datacleaning task.

	Remerciements
	Notations
	Introduction
	Introducing example: from hyperparameter selection to bilevel optimization
	Bilevel optimization
	Other machine learning applications of bilevel optimization
	Outline and contributions of the thesis

	I Background
	Background in first-order optimization
	Mathematical background
	Gradient descent and variants
	Automatic differentiation

	Gradient-based algorithms for bilevel optimization
	Implicit differentiation
	Stochastic Approximate Implicit Differentiation
	Iterative Differentiation
	Penalty methods
	Benchmarking bilevel optimization algorithms

	II Contributions
	A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
	Introduction
	Proposed framework
	Theoretical analysis
	Experiments
	Conclusion

	Appendix to a framework for bilevel optimization that enables stochastic and global variance reduction algorithms
	Proofs
	Convergence rates with weaker regularity assumptions

	Complexity bounds for bilevel empirical risk minimization
	Introduction
	A Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
	Theoretical Analysis of SRBA
	Lower Bound for Bilevel ERM
	Proof of Theorem 5.2
	Numerical Experiments
	Conclusion

	Appendix to lower bound for bilevel empirical risk minimization
	Convergence analysis of SRBA
	Details on the experiments

	Conclusion and perspectives
	Conclusion
	Perspectives

	Summary of Contributions
	Context
	Contributions

	Résumé des Contributions en français
	Contexte
	Contributions

	Publications
	Bibliography

