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CHAPTER

1
INTRODUCTION

The immune system of humans and animals is constantly triggered by endogenous
(deficient cells) or exogenous (infectious agents) stimuli. Its primary role is to dis-
tinguish self-molecules from non-self molecules to eliminate both endogenous and
exogenous threats. The space of possible target molecules is diverse, and the net-
work of interactions between antigens and immune receptors consists of a bipartite
network for which cross-interactions exist. Seeing this system as a physicist, I will
introduce general and brief notions of biology needed to understand the immunolog-
ical questions discussed in this thesis. Fully understanding how the human immune
system functions requires a multi-scale approach from the chemical and protein level
(for receptors-antigen interactions, protein signaling path, energy barriers for bio-
chemical reactions), via the cellular level, the population of cells interacting and
tissues responses to stimuli, to networks of people at the level of with epidemiology
and propagation of virus and pathogens within a human population.

In this manuscript, I give tools to model the immune system and use current
data to understand fundamental characteristics of the immune system at the scale
of the repertoire. In the following, I will focus on working with the number of cells
(abundance) sharing the same membrane specific T cell receptor. Each number of
cells associated with a specific label (which can be a phenotypic property such as
the cell type or the cell’s ability to interact with the environment thanks to its re-
ceptor) is a dynamic variable. In this thesis, our system of interest will be the T-cell
receptor (TCR) repertoire which corresponds to the list of all T-cell receptors as-
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sociated with the number of cells having this particular receptor (clonal abundance).

The goal of the work described in this manuscript is to understand the dynamics
underlying the T-cell receptor repertoire as a whole system thanks to data, taking
into account the abundances (or populations) of each receptor, which I want to pre-
dict their dynamical evolution. T-cell receptor populations are changing because of
their interaction with the environment. These can be interactions with self-peptides
or foreign peptides presented to the TCR on MHC-antigen complexes or interac-
tions with signaling proteins that enable communication between cells belonging to
one specific pool of the immune system. This signaling can underlie response after
an acute stimulus such as a vaccine or a virus, or chronic stimulations due to a
particular virus or malignant cells leading to cancer. It is crucial to understand
which tool to use to learn from data about how the immune system responds to
TCR and individual stimuli to tackle medical questions such as the efficiency of a
vaccine or drug design. In this thesis, I model the dynamics of a large number of
variables, the N kinds (or species) of TCR present in one person, and the causes
of the time variations of these variables. This problem can be mapped to a pop-
ulation dynamics question for which species (TCR) interact with an environment,
such as predators interact with prey in ecology theory. As the system of interest is
large, of the order of 109− 1010 TCR species (or clones) with an even larger number
of sources of interactions (or antigens), it is not convenient to write deterministic
equations to model the trajectory of each TCR clone in this context. My strategy
as a statistical physicist is to translate this lack of information into mathematical
noise and write stochastic equations instead of deterministic equations to tackle the
lack of knowledge about this extensive and complex system.

The TCR repertoire can be seen as an example of a high-dimensional
personalized biomarker, the hallmark of future precision medicine. Learn-
ing robust models from High-Throughput Repertoire Sequencing data is
still complicated. This thesis uses Bayesian inference to extract informa-
tion about T-cell receptor repertoire abundances.

In chapter 3, I introduce the work discussed in the preprint Bensouda Koraichi
et al. (2022). In this chapter, we first study the neutral dynamics that drive the im-
mune system without acute stimuli in healthy individuals. Taking advantage of lon-
gitudinal High Throughput TCR Repertoire Sequencing (RepSeq), we quantify the
experimental noise to disentangle fundamental changes in TCR clonal abundances
between two-time points separated by years. Using Bayesian inference, we learn
from data the parameters that describe the TCR repertoire dynamics in healthy
people of different ages. We find that data is consistent with the stochastic popu-
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lation dynamics we consider, that we can interpret these models biologically, and
that they can be used to study and quantify the turnover of a person TCR repertoire.

In chapter 4, I explain the work behind Immprint, a method designed in col-
laboration with Thomas Dupic, for which we use TCR RepSeq abundances data
to design a classifier to distinguish two individuals thanks to their TCR repertoire
identity ("Immprint") and test its stability with time. This study was published as
Dupic et al. (2021). Immune repertoires provide a unique fingerprint reflecting the
immune history of individuals. This chapter shows that this information is personal
and can be used to identify people from repertoires of just a few thousand T-cells.
The tool uses an information-theoretic measure of repertoire similarity to classify
pairs of repertoire samples from the same versus different individuals. We tested the
classifier on published data to discriminate individuals with great accuracy, includ-
ing homozygous twins, by computing false positive and false negative rates < 10−6.
We also tested the method’s robustness to acute infections and possible changes in
the TCR repertoire information with time. To do so, we used the results presented
in chapter 3.

The core of the work put forward in this thesis is the manipulation and extraction
of TCR RepSeq data thanks to the Bayesian and probabilistic approach inspired by
statistical physics. This novel approach and techniques, already studied and ex-
posed in Puelma Touzel et al. (2020) are reviewed in the article building chapter 4.
I have implemented these techniques and extended them to several applications in
software called NoisET (Noise learning and Expansion detection of T-cell receptors
with Python). As physicists studying biology and researchers tackling multiple dis-
ciplines, we must make the models we design easy to use to optimize the number
of applications the method can have. This is the goal of NoisET. High-throughput
sequencing of T-cell receptors makes it possible to track TCR immune repertoires
across time, in different tissues, in acute and chronic diseases, and in healthy in-
dividuals. However, quantitative comparison between repertoires is confounded by
variability in the read count of each receptor clonotype due to sampling, library
preparation, and expression noise. NoisET is an easy-to-use python package imple-
menting previous and new methods to account for biological and experimental noise
to pre-process longitudinal TCR RepSeq data, infer experimental noise from repli-
cates samples, and generate synthetic RepSeq data and its possible dynamics thanks
to the model shown in chapter 3, estimate the diversity of TCR immune repertoires
and detect responding clones to acute stimuli. We test the package on different
repertoire sequencing technologies and datasets. We review how such approaches
have been used to identify responding clonotypes in vaccination and disease data.
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In early 2020, at the beginning of the pandemic caused by the SARS-CoV-2
coronavirus, I contributed to an extensive collaboration study to improve our global
understanding of TCR responses to the new SARS-Cov-2 virus. I improved and opti-
mized the methods behind the previously introduced NoisET in chapter 5. Chapter
6 is an analysis of the TCR repertoire response to an acute stimulus and gives a
good biological background on TCR repertoire immunology analysis, published in
Minervina et al. (2021). This analysis has enabled a better understanding of the
diversity of resulting immune memory, the dynamics, and cross-reactivity of the
SARS-CoV-2-specific T cell response.



CHAPTER

2
THE T-CELL RECEPTOR REPERTOIRE

2.1. Immunology background
This section covers some basic notions about the human adaptive immune system.
The explanation will be comprehensive enough to understand the biological pro-
cesses we model in this manuscript. For a broader and more complete overview of
the immune system, see Murphy et al. (2007).

2.1.1 Innate and adaptive immune system
The immune system of mammals and humans is divided into three defensive lines:
the epithelial barrier, innate immunity, and adaptive immunity. The epithelial bar-
riers, such as the skin, and the lining of your digestive tract, are physico-chemical
obstacles that prevent infectious agents from invading the body. When a microbe
overcomes these barriers, it activates several defense mechanisms immediately after
the infection: collectively termed innate immunity. Several innate mechanisms exist
anti-microbial peptides, complement activation, neutrophils, natural killer cells, and
phagocytosis. This response takes place from minutes to hours after the infection. In
most situations, this response is sufficient to stop the disease if the microbe persists
and avoids the innate immunity. An adaptive immune response involving T-cells and
B-cells responses will take over: this is th main focus in this thesis. This response
will be effective after several days as cell divisions are required for the adaptive im-
mune system to occur. This last defensive line is specific to vertebrates. The innate
immune system is not only the first line of defense but also triggers the adaptive
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Figure 2.1: When recognizing malignant antigen peptides, the T-cell repertoire acts
through two kinds of cells: helper T cells carrying the CD4+ surface protein and
cytotoxic T cells carrying the CD8+ surface protein. Here we give the example of
how the T-cell immune system responds to virus infection: helper T-cells will send
signals to other actors of the immune system, such as B-cells and other T-cells, to
clear the virus, and killer T-cells will eradicate cells that the virus has contaminated.
Sketch adapted from Gutierrez et al. (2020).

immune system since interaction pathways exist between these two systems. In this
manuscript, we will focus only on one of the leading actors of the adaptive immune
system, the T-cells.

2.1.2 T-cell recognition of foreign antigens
T-cells have a receptor made up of two proteins to sense the environment surround-
ing them: the α and β chains. Each T-cell has a specific αβ pair expressed on its
surface: the T-cell receptor (TCR). Each human cell presents major histocompatibil-
ity complex (MHC) proteins coded by histocompatibility leukocyte antigen proteins
(HLA) alleles, whose role is to present intra-cellular peptides to TCR. When a cell
is infected by a virus or has a malfunction, specific T-cell receptors will bind to the
MHC-antigen-peptide to trigger an immune response consisting of an expansion of
immune cells responsible for eradicating the malfunction. TCR specificity is cross-
reactive: several kinds of TCR can recognize a given antigen, and, conversely, several
antigens can be detected by one shown TCR. Quantifying and predicting computa-
tionally the binding affinities of the formation of the MHC-peptide complex and the
TCR-complex represent a vast research topic (Glanville et al. (2017); Fischer et al.
(2020); Montemurro et al. (2020); Isacchini et al. (2021); Wu et al. (2021); Shugay
et al. (2018); Bravi et al. (2021b,a)) very useful in the field of drug discovery and
vaccine design. TCR recognition is not the only sensor of T-cell activation toward
an antigen. Signaling proteins such as cytokines activate cell division and death by
responding to antigen detection.
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One can distinguish two categories of T-cells when looking for actors of an im-
mune response. Two classes of major histocompatibility complex (MHC) exist, class
I and class II. T-cells presenting a co-receptor CD4 are called T-helpers because
they act via other cells. They bind with peptides associated with MHC class II and
initiate B-cell activation (other actors of the adaptive immune system Murphy et al.
(2007)). T-cells presenting a co-receptor CD8 will bind with peptides linked to MHC
class I. T CD8 cells are called T-killers as they are in charge of eliminating infected
cells. The sketch in Fig. 2.1 summarizes the modes of action of CD4 and CD8 T-cells.

Each stimulus will provoke a unique dynamic response of the T-cell immune sys-
tem. An immune answer consists of expanding the abundances of stimulus-specific
T-cell receptors some days after the infection, followed by a contraction of these
abundances. These various dynamics are different for most infections, and unveiling
them for diverse T-cells subtypes such as CD4/CD8 ones is a question that will be
tackled in this manuscript. This question is addressed in the context of the Yellow
Fever vaccine, Yellow-Fever double vaccinations, and SARS-CoV2 mild infection.
For example, for the Yellow Fever vaccine, it has been known for several years that
the peak of the T-cell immune system answer is fifteen days after the introduction
of the vaccine (Miller et al. (2008)).

Two keywords are necessary for the understanding of this manuscript: TCR
clone and TCR repertoire. A TCR clone is the collection of all T-cells presenting
the same αβ chain protein. The TCR repertoire of an individual is the list of all
TCR clones this individual possesses, associated with the number of cells populating
each clone. We will call this number abundance or size in this manuscript. The
normalized TCR clonal population will be called clone frequency and correspond
to the TCR population divided by the total number of T-cells. We can define the
TCR repertoire diversity as its richness, i.e., the number of different TCR clones
composing it.

2.1.3 Naive and memory pool
T-cells can be of different types, each of which has a particular role in the response
mechanism of the human body to the proliferation of a malignant antigen. Naive
T-cells are T cells that have differentiated in the thymus and have successfully under-
gone the positive and negative processes of central selection in the thymus. Selected
naive T-cells should not be too reactive to self-antigens. Still, they should have
the potential to bind efficiently against non-self antigens, which makes them a good
discriminator between self and non-self-antigens. After selection, naive T-cells are
released into the peripheral system composed of the blood, the lymphatic system,
and different human body tissues. Naive T-cells have not encountered their cog-
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Figure 2.2: Naive T-cells, produced in the thymus following the VDJ recombination
process and selection, are released in the somatic periphery. The daily number of
new naive T-cells entering the periphery has been estimated to be 108 (Yates (2014)).
Thanks to their receptors, naive T-cells can sense protein or other malignant cells
in the somatic environment and are activated and divided into effector T-cells or
memory T-cells.

nate antigen within the periphery. Like every T-cell, naive T-cells, thanks to their
receptors, sense protein or other cells present in the physical environment and are
activated and divide into effector T-cells (to erase the current antigenic threat) or
into memory T-cells (to optimize the future answer to a similar antigenic invasion)
(as pictured in Fig. 2.2).
Let us emphasize that naive and memory cells are very different cells with different
proteins on their surface, and a different homeostatic ensures separate division and
apoptosis dynamics. Consequently, a memory and a naive T-cell have a different
lifetime as they have different biological fates. A lifetime of memory cells and naive
cells, as well as their ability to divide and answer to an antigenic signal as a function
of time, are questions very much related to the field of immunosenescence or how
aging impacts the efficiency of the immune response. These questions were broadly
tackled quantitatively in Zhang et al. (2021a); Goronzy and Weyand (2013). Still,
no quantitative tools exploiting the availability of T-cell repertoire data have been
designed to answer these questions. This will be one of the ambitions of this
manuscript.

2.1.4 Homeostatic maintenance of the immune system
The formation of the naive T-cells repertoire has been quantitatively modeled in
different studies in Dessalles et al. (2022); Gaimann et al. (2020); ?); Greef et al.
(2019). This statistical analysis of the distributions of naive T-cells and the modeling
of the naive pool seems to lead to three conclusions:
• the naive pool is very diverse. It is composed of cells having a longer lifetime

than memory ones to compensate for thymus involution at the beginning of
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adulthood (Yates (2014)),
• naive cells generally have small somatic clone abundances, and naive somatic

cells with large abundance are likely to be established early in the develop-
ment of the T-cell repertoire, whose properties are mainly shaped early in life
(Pogorelyy et al. (2017)),
• it is still difficult to assess diversity, and to quantify statistical properties of

the naive T-cell repertoire, as data are still lacking information to draw robust
conclusions.

Regarding the dynamic evolution of abundances of memory T-cells, it has been
shown that memory T cells accumulate throughout life. A study discribing the dif-
ferent aspects of the maintenance, compartmentalization, and homeostasis of the
human memory T-cell pool can be found in Farber et al. (2014).

Mechanisms that help the homeostatic maintenance of the naive and memory
T-cell pools, ensure their diversity, specificity, and healthy metabolism are still un-
known. In this manuscript, we propose models and inference tools to help quan-
tify the various changes occurring during multiple vaccinations, multiple infections,
chronic diseases, or simply in a healthy state to improve our general knowledge about
T-cell repertoire dynamics and distinguish healthy from nonhealthy behaviors.
Naive and memory T-cells exist in two subsets that differ by their role in eliminat-
ing a threatening antigen: helper T cells (CD4+) and cytotoxic T cells (CD8+),
introduced in section 2.1.2. As shown in multiple studies such as by Rane et al.
(2022); De Boer et al. (2003), CD4 and CD8 have different TCR clonal abundances
statistics, which may underlie differences in their dynamic behaviors, which we will
quantify in this manuscript in the presence of known stimuli and in the absence of
known infections to explore the long-timescale dynamics of both T-cell subsets.

2.1.5 Origin of the diversity of the TCR repertoire - V(D)J recom-
bination
The TCR repertoire relies on many TCR species (or clones). Estimating the diver-
sity of this system has been an important question tackled by quantitative immu-
nologists Qi et al. (2014); Lythe et al. (2015); ?); Robins et al. (2009); Chao and
Bunge (2002); Laydon et al. (2015); Qi et al. (2014); Arstila et al. (1999). Unfor-
tunately, because of the inherent statistical properties of the TCR repertoire clonal
abundances that we will review later, data have not been informative enough to
draw robust diversity estimates. The number of unique clones has been quantified
to be between 108 and 1010 ( Lythe et al. (2015); ?). In this manuscript, we will
give a method to estimate this diversity despite data sparseness, making the most
of understanding statistical measures of TCR data frequency distributions.
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Figure 2.3: From a CDR3 β chain sequence generated from an experiment, several
VDJ recombination scenarios are possible. Here two scenarios are shown for the
CDR3 sequence in grey: one choice of V gene aligned in two different ways (TRBV7-
2 or TRBV7-9), two different choices of d genes (TRBD1 or TRBD2) and one choice
of J gene (TRBJ2-2). At top, insVD=13, insDJ=6, delV =5, delJ = 6, del5’D=6,
and del3’D = -2 and at bottom, insVD=15, insDJ=9, delV =7, del5’D=9, and
del3’D = 3. As the grey sequence is coming from data, you can see that the gene
alignements can be not optimal with the presence of sequencing errors. Besides,
here, the location of the sequencing primer is given to indicate the start of the
CDR3 from J gene sequence. Reproduced from Murugan et al. (2012).

Antigen receptors are proteins that must be encoded as genes in the DNA. Hu-
mans have if the order of 104 protein-coding genes. Directly encoding the whole
diversity of immune receptor genes in each genome makes it impossible for the DNA
to fit in a cell nucleus of size ≈ 5 µm. To explain the high diversity of TCR α and
β protein sequences in each individual, we will introduce the V(D)J recombination
process, discovered by Susumu Tonegawa (Nobel prize for Physiology or Medicine
in 1987).

T-cell receptors are composed of an α and a β chain encoded by separate genes
stochastically generated by the thymus’s V(D)J recombination process. Each chain
is then generated from the combinatorial concatenation of two (V and J for the α
chain) or three segments (V as Variable, D as Diversity, and J as Joining for the β
chain), picked at random from germline template genes. This biological process is
called thymopoiesis –– the production of thymocytes, which later become T cells.
It includes the random process of choosing among 47 V genes and 61 J functional
TRA (α chain) genes and among 48 V, 3D, and 12J functional TRB (β chain) genes.
The combinatorics of templates resulting from choosing a V, D, and J gene typically
results in ≈ 103 different possible receptors.

But actually, this large diversity comes mainly from random nucleotide inser-
tions and deletions at the VD and DJ junctions for β chains and VJ junction for
α chains. The germline gene usage is highly non-uniform due to differences in gene
copy numbers, DNA conformation, and processive excision dynamics during recom-
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bination. The biases imply that some recombination events are more likely than
others. In addition, specific recombination events can lead to the same nucleotide
sequence, and many nucleotide sequences can lead to the same amino-acid sequence.
The stochastic nature of TCR CDR3 proteins generation increases the hypothetical
diversity number of TCR to ≈ 1040 for each chain and ≈ 1060 for each αβ TCR pair
for every individual (Marcou et al. (2018)).
Fig. 2.4 gives the different steps of both α and β generation. Each T-cell has two
chromosomes coding for V, D, and J genes. The recombination processes described
in the previous paragraph may lead to the creation of out-of-frame sequences with
codon stops, for example, in the middle of the sequence or nucleotide sequences with
a length that is not a multiple of three. The recombination of the two chromosomes
is sequential for β and parallel for α, as described in Fig. 2.4. First, the β chain is
rearranged on one of the chromosomes before the α chain. It is expressed along with
a non-recombined template gene of the α chain on the cell’s surface to be checked
for function. If the recombination event’s first β chain leads to a non-functional
receptor, the β chain is rearranged on the second chromosome. If this step gives
a functional β chain, this T-cell divides and expands a few times before α chain
recombination starts. At this point, the candidate αβ chains resulting from the
process in Fig. 2.4 must pass thymus selection before joining the periphery. In most
of the thesis, I will define a TCR clone by one of its two chains, β only or α only.
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Figure 2.4: VDJ recombination process: different optional paths can lead to the
generation of an αβ TCR on the surface of a T-cell. β chain rearrangement occurs
before α chain one. β chain protein functionality is first tested in a sequential way
after one or two attempts on each of the chromosomes before a parallel α chain
generation happens. The resulting TCR αβ needs then to pass thymus selection to
be released in the periphery and detect threatening antigen peptides. Reproduced
from Dupic et al. (2018).

2.2. High throughput repertoire sequencing
2.2.1 Different Repertoire Sequencing technologies

One of the main challenges tackled in this thesis is using new experimental data
to design data-driven techniques to extract stochastic population dynamic models
of T-cell receptor repertoires. In the last years, many technologies have been de-
veloped to produce higher and higher quality data. Understanding how the data
is made and what they are is of important for the statistical physicist trying to
model the fundamental dynamic behavior of the TCR repertoire. In this section, I
will give an overview of the main advancements in TCR repertoire data generation,
called Repertoire Sequencing data (RepSeq) (Weinstein et al. (2009); Robins et al.
(2009); Boyd et al. (2009); Benichou et al. (2012); Six et al. (2013); Robins (2013);
Georgiou et al. (2014); Heather et al. (2017); Minervina et al. (2019b); Rubelt et al.
(2017)), and give a non-exhaustive list of experimental sources of noise in the data
(Heather et al. (2017); Barennes et al. (2020)). Accurately capturing the TCR
repertoire sequence counts presents a significant challenge. Each RepSeq sample
is a complex multistep protocol for which each step may impact the RepSeq data
and interpretation. The novelty of immune sequencing comes from the recent (in
early 2010) rapid development of sequencing techniques and their reduction in costs.

The different steps of the RepSeq data protocol are summarized in Fig. 2.5.
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Figure 2.5: After T-cells are sorted from blood samples, DNA- or RNA-based
sequencing techniques using either multiplex amplification (for DNA) or Unique
Molecular Identifiers (UMIs (for RNA) followed by cDNA synthesis (because we
can only sequence DNA material) provide FASTQ files, or list of sequences that
need to be processed for error correction. The result is called Repertoire Sequencing
(RepSeq) data, as it gives the list of TCR nucleotide and amino-acid sequences and
their counts in the analyzed sample. Reproduced from Minervina et al. (2019a).
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Figure 2.6: After T-cells being sorted from blood samples, DNA- or RNA-based
sequencing techniques using either multiplex amplification (for DNA) or Unique
Molecular Identifiers (UMIs (for RNA) followed by cDNA synthesis (because we can
only sequence DNA material) provide FASTQ files, or list of TCR sequences that
need to be processed for error correction. The result is called Repertoire Sequencing
(RepSeq) data, as it gives the list of TCR nucleotide and amino-acid sequences and
their counts in the analyzed sample. Reproduced from Barennes et al. (2020).

T-cells corresponding to Peripheral blood mononuclear cells (PBMC) are sorted in
blood samples. Then, TCR genetic information, which can be the DNA or RNA
of each cell, is sequenced using different technologies such as Illumina, and lists of
TCR associated with their abundances are generated.

Methods can be classified as DNA- or RNA-based. One RNA-based method uses
multiplex PCR (mPCR) with panels of V and J primers and short single-stranded
nucleic acids to initiate DNA synthesis. The DNA binding sequence of the primer
has to be specifically chosen, which is done using a method called basic local align-
ment search tool (BLAST) that scans the DNA and finds specific and unique regions
for the primer to bind. Another RNA based method is the rapid amplification of
cDNA-ends by PCR (RACE-PCR) with the possibility of using unique molecular
identifiers (UMI) to limit PCR amplification bias and sequencing errors. Most of
the data-set I will introduce and use in this thesis were generated using UMI to
determine PCR amplification noise. Unique molecular identifiers are used to mark
each T-cell receptor molecule with a unique barcode that can be used to correct
sequencing errors and amplification bias. Immune receptor sequences can also be
extracted from bulk RNA-Seq data.

Each method has potential advantages and limitations summarized in Fig. 2.6
( Barennes et al. (2020)). DNA-based techniques are believed to be more quantita-
tive and can be used in situations where RNA quality may not be guaranteed. In
contrast, RNA-based methods are more sensitive because of the presence of multiple
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mRNA copies per cell and can also be more precise as UMI can be combined with
the technique. Each method imposes its methodological imprint on the repertoire
profile. This is a crucial point to keep in mind when analyzing repertoire data. The
experimental noise is technology-dependent, so each data set coming from different
RepSeq techniques should be tackled with a new perspective. Fig. 2.6 gives the
pros and cons of nine other RepSeq methods for library preparation and sequencing
either on RACE-PCR (RACE-1 to RACE-6) or on multiplex-PCR. This comparison
is extracted from Barennes et al. (2020).

2.2.2 Noise in TCR RepSeq data
I define noise as the difference in TCR sequences and abundances between RepSeq
data and the actual immune repertoire of an individual. Noise can have various
sources.
• Experimental noise: stochasticity in reverse transcription, and PCR amplifi-

cation.
• Sampling noise.
• Detection of rare clones in a blood sample because of the universal and intrinsic

power-law distribution of TCR abundances.
• Intrinsic biological noise: mRNA expression.

Noise from the biotechnical experiments
There are acceptable TCRseq methods based on either DNA or RNA input, and in
both cases, the number of materials impacts both diversity and the detection of rare
clones. The availability of raw data is crucial in allowing reliable and reproducible
in-depth analysis of TCR repertoires. Depending on the technology and the different
steps of the protocol, TCR read counts are unreliable and need to be used carefully.
The sources of PCR noise are described in detail in section 2.2.1.

Detection of rare clones
When dealing with TCR clone abundances, the variable that is commonly used in
the analysis of TCR repertoire is not the abundance of the TCR, which will be
denoted by n̂ in this manuscript, but the normalized associated variable - the em-
pirical frequency defined as f̂ = n̂/Nreads. In the third chapter dedicated to inference
techniques from RepSeq data, I will show that the error between f̂ and the actual
value of the clone frequency f depends on the value of f . It is important to assess
this error to be able to work with frequencies of small clones after defining what a
small clone is. For small clones, the value of f̂ and f are believed to depend also on
the sequencing protocol.

Numerous studies show evidence that TCR frequencies in RepSeq samples follow
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A

B C D

Figure 2.7: A.Among T-cells constituting an individual entire TCR repertoire, only
blood cells, constituting ≈ 10% of the immune repertoire can be sampled and se-
quenced. And among this 10%, we are sampling 1 mL of blood out of 5L, so
approximately 106 cells, which represents 0.001% of the TCR repertoire. Repro-
duced from ?. B-D.TCR frequency distributions from RepSeq data : 600 people
of Emerson cohort (from Adaptive Biotechnologies study in Emerson et al. (2017),
from DNA-based sequencing technology) and 170 people in Britanova cohort (from
RNA-based sequencing technology, Britanova et al. (2016)). The power-law of these
distributions seem to be independent of the age of the individual for which TCR
repertoire is analyzed. Reproduced from Gaimann et al. (2020).
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a power-law distribution with a very conserved exponent between individuals. As
shown in figure Fig 2.7) published in Gaimann et al. (2020), this power-law expo-
nent does not seem to vary subsequently among the 600 people in the cohort from
Emerson et al. (2017) and the 170 people of the cohort from Britanova et al. (2014).
Additionally, the exponent does not seem to depend on the individual’s age or the
RepSeq protocol used to produce the data, as depicted in figure Fig 2.7. The form
of the TCR abundance distributions does not depend on the sample size. From this
power law, one can start assessing the quality of the data. Indeed, depending on the
RepSeq protocole, the distributions may change for small clones, which are more af-
fected by PCR error. As a direct effect of subsampling and the inherent form of the
TCR frequency distribution, small clones – with a normalized abundance of 1/Nreads

(Nreads being the size of the sample) – have very low probability to be sampled twice
in two PBMCs biological replicates produced the same day.

Sampling noise
Another issue when dealing with RepSeq samples and the abundance of clones is
sample noise. Most current approaches quantify repertoire properties using measure-
ment statistics that are limited to what is observed in the RepSeq sample, rather
than what is expressed in the individual. Only a tiny fraction of the total number
of clones is captured in the samples, as depicted in Fig 2.7. Among T-cells consti-
tuting an individual’s entire TCR repertoire, only blood cells comprising ≈ 1% of
the immune repertoire can be sampled and sequenced. And among this 1%, we are
testing 1 mL of blood out of 5L, so approximately 106 cells represent 0.001% of the
TCR repertoire. Some extrapolation is needed to capture the complete information
about TCR clone abundances in the data. To tackle this issue in this manuscript,
we model the experimental noise using different probabilistic strategies.

Intrinsic biological noise
mRNA is expressed in transcriptional bursts from inheriting noisy promoters ( Elowitz
et al. (2002); Ozbudak et al. (2002); Cai et al. (2006); Taniguchi et al. (2010); Hornos
et al. (2005)). This stochastic transcription leads to long-tailed mRNA abundance
distributions, which get translated into TCR abundances in RepSeq experiments.
We model this inherent biological noise including long-tailed distributions in our
noise model.





CHAPTER

3
TECHNICAL BACKGROUND

3.1. Motivation
In this chapter, I will introduce the mathematical tools needed to model and infer
stochastic population dynamics of T-cell receptor repertoires from actual data. I
am presenting essential tools to describe stochastic variables and their dynamics to
model the abundances of cells that compose, the TCR human repertoire. I introduce
descriptions such as the master equation and Fokker-Planck and Langevin equations
on the example of the neutral birth and death process. I also provide some simple
models of T-cell dynamic predictions in the presence or absence of a known stimulus.
In the second part of the chapter, I will introduce Bayesian tools to analyze data
to understand the biological processes modeled using stochastic models. In the fol-
lowing, I give a general overview of Bayesian inference, general concepts to study
longitudinal TCR RepSeq dynamics, and among them, tools to understand the sta-
tistical analysis I have performed in the work presented in this manuscript. In
practice, in the results that will be presented in the future chapters, I always have
preferred the simplest model, taking the minimum amount of data possible as inputs.
I have learned that searching for meaningful biological results instead of mathemat-
ical beauty in the models should always be the best choice. The best statistical
model to unveil the information in data does not need to be refined.
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3.2. Stochastic population dynamics
Stochastic processes model complex systems subject to noise: the trajectory of a
random variable describing the physical state as a function of time. Two main ap-
proaches are used when dealing with stochastic processes: Langevin equations
introduce the trajectories of the variable of interest stochastically, and master
equations with its continuous form, Fokker-Planck equations, show the dy-
namic evolution of the probability distribution describing the variable of interest.
To describe the TCR temporal evolution of clone abundance - (or normalized abun-
dance - frequency), I will use Langevin equations or the Fokker-Planck equations. I
will describe how to go from one formalism to the other. Once Langevin or Fokker-
Planck equations have been defined to respect the assumptions that translate the
interactions between agents of the immune repertoire and the environment, propa-
gators should be computed from one of these formalisms. The propagator describes
the probability of a random variable at a later timepoint given its earlier value. Ba-
sic notions about stochastic processes for physical modeling of biological phenomena
can be found in Gardiner (2009).

3.2.1 Birth and death processes - the neutral model
I will first describe the neutral birth and death process. Neutral birth and death
mean the cell divides and dies without interacting with the environment independent
of its metabolism or age. These phenomena are always present in the background
when looking at cell abundances, even if they can be neglected if stronger physical
interactions trigger cellular divisions or apoptosis.

Master equation for the birth and death process
First, let us define the master equation for a general discrete process modeling cell
abundance:

∂P (n, t)
∂t

=
∞∑
n′=1

W (n|n′)P (n′, t)−
∞∑
n′=1

W (n′|n)P (n, t), (3.1)

with n the abundance of a TCR species (or clone), P (n, t), the probability for the
TCR clone to have a somatic abundance of n cells at time t, W (n|n′), the transition
probability of going from abundance n′ to abundance n. The variables n and n′

describe the cell numbers and are integer and discrete random variables. This is
what we call a discrete process.

W (n|n′), the transition probability has the following definition:

W (n|n′)∆t = lim
∆t→0

P (n, t+ ∆t|n′, t). (3.2)

Looking at the Markov process (for which knowledge of the present determines
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Figure 3.1: Graph-visualization of a birth-death model. For each TCR species
having a abundance of n cells, this number can jump to n + 1 with probability bn,
depending on the variable n and decrease of one increment of one to n − 1 with
probability n − 1. Solving the process returns to explicitly define the transition
probabilities bn and dn, with b1 = b and d1 = d, biological parameters for each cell.

the future) displayed in Fig 3.1, we can write the corresponding master equation
followed by every TCR abundance n as the following:

∂P (n, t)
∂t

= dn+1P (n+ 1, t) + bn−1P (n− 1, t)− (bn + dn)P (n, t), (3.3)

with bn, the transition probability for producing one additional T cell of the TCR
clone, and dn, the transition probability for one T cell to die for a TCR abundance
of n T cells. Birth and death rates are independent of the TCR clone identity.
This process depends only on the knowledge of a TCR abundance n at time t.
To recover the full neutral dynamics of the TCR repertoire, we can compute the
joint probability, assuming that abundances of each clonal TCR are independent
variables:

P (n1, n2, .., nN , t) =
N∏
i=1

P (ni, t), (3.4)

with N , the total number of clones of the repertoire, and t is time.

General continuous derivation of the master equation.

From the master equation displayed in Eq. 3.1, we can derive the Fokker-Planck
equation, a continuous approach to the master equation. Let us consider the con-
tinuous version of the master equation. To do so, we assume that the variable n,
describing TCR clone abundance, describes a continuous state and is not constrained
to integers. Eq. 3.1 leads to the following equation:
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∂P (n, t)
∂t

=
∫ ∞
n′=−∞

W (n|n′)P (n′, t)dn′ −
∫ ∞
n′=−∞

W (n′|n)P (n, t)dn′. (3.5)

To simplify the former equation, we apply the following change of variable r =
n − n′, which transforms W (n|n′) ≡ W (n′, r) and W (n|n′) = W (n − r, r). We
approximate both terms of Eq. 3.5 under the assumption of a small jump r, such as
n >> r: ∫ ∞

n′=−∞
W (n|n′)P (n′, t)dn′ =

∫ ∞
r=−∞

W (n− r, r)P (n− r, t)dr, (3.6)

The Taylor expansion of W (n− r, r)P (n− r, t) gives:

W (n− r, r)P (n− r, t) = W (n, r)P (n, t) +
∞∑
k=1

(−1)k

k! rk
∂k

∂n
[W (n, r)P (n, t)] . (3.7)

After using Eq. 3.7 in Eq. 3.5 and defining the coefficients ak(n) such as :

ak(n) =
∫ ∞
r=−∞

rkW (n, r)dr, (3.8)

we recover the so-called Kramers-Moyal expression:

∂P (n, t)
∂t

=
∞∑
k=1

(−1)k

k!
∂k

∂n
[ak(n)P (n, t)] . (3.9)

Expanding the Kramers-Moyal expression to order 2, we derive the Fokker-
Planck equation associated to the general Master-Equation in Eq. 3.1:

∂P (n, t)
∂t

= − ∂

∂n
[a1(n)P (n, t)] + 1

2
∂2

∂n
[a2(n)P (n, t)] (3.10)

In what follows, we will call a1(n) ≡ A(n) and a2(n) ≡ B(n) respectively, the
drift and the diffusion coefficients of the stochastic process defining the dynamic
evolution of the variable n. One of the goals developed in this manuscript is to
understand and express these two parameters A(n) and B(n) in the context of the
stochastic population dynamics of T-cell receptor repertoires.

Deriving the Fokker-Planck equation for the birth and death process.

In this section, we are going to derive the Fokker-Planck equation associated to
the master equation in Eq. 3.3 with no source term. To do so we introduce the
operator Ξ applied to a function f , Ξf(m) = f(m + 1) and the inverse operation,
Ξ−1f(m) = f(m− 1). f(m+ 1) and f(m− 1) can be approximated using a Taylor
expansion under the assumption that m >> 1:
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f(m+ 1) =
[ ∞∑

0

1
k! (

∂k

∂m
)k
]
f(m), (3.11)

and
f(m− 1) =

[ ∞∑
0

(−1)k

k!
∂k

∂m

]
f(m). (3.12)

We can now define explicitly general approximations of both operators Ξ and
Ξ−1:

Ξ = 1 + ∂

∂m
+ 1

2
∂2

∂m
+ o(m2), (3.13)

Ξ−1 = 1− ∂

∂m
+ 1

2
∂2

∂m
+ o(m2). (3.14)

Now that we have all the tools to simplify and express Ξ and Ξ−1 operators, we
can use them to write Eq. 3.3:

∂P (n, t)
∂t

= ΞdnP (n, t) + Ξ−1bnP (n, t)− [bn + dn]P (n, t). (3.15)

Using the Taylor expansions of both Ξ and Ξ−1 operators, we can derive the
Fokker-Planck equation associated to the birth and death process:

∂P (n, t)
∂t

= − ∂

∂n
[(bn − dn)P (n, t)] + 1

2
∂2

∂n2 [(bn + dn)P (n, t)]. (3.16)

From Eq. 3.16, we can identify both drift and diffusion parameters of the birth
and death process that were introduced in Eq. 3.33, the drift coefficient A(n) =
bn − dn and the diffusion coefficient B(n) = bn + dn.

Langevin Equation

The Langevin equation is a differential equation of a random variable whose solution
is a random function. Each solution of the Langevin equation represents a different
random trajectory. The Langevin equation associated with a stochastic process is
another way (besides the Fokker-Planck equation) to define the stochastic trajec-
tory described by the variable n, such as the abundance of one TCR clone. As we
want to know the trajectories of all N (number of TCR clones in one individual) n
variables describing the dynamic evolution of the TCR repertoire, we need to write
N possibly coupled SDE or Langevin equations. The Langevin equation can be
decomposed into a deterministic force that undergoes the variables n and stochastic
forces, called noise. Insights about the noise properties can be found using time
correlations of the variable n.

Usually, the Langevin equation is used to describe a system with slow degrees of
freedom coupled with fast degrees of freedom whose effect is not taken into account
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explicitly but implicitly using a random force. It is often easier to derive a Langevin
equation from the microscopic description of single trajectories in the system (if
we know the associated noise) and then to extract global information about the
probability density. Following the above illustrated simple intuition, the Langevin
equation for a microscopic trajectory n(t) is the following:

dn(t)
dt

= a(n(t), t) + b(n(t), t)ξ(t), (3.17)

with ξ(t) white noise process with the Ito convention (Gardiner (2009)), with
the following characteristics: 〈ξ(t)〉 = 0 and 〈ξ(t)〉〈ξ(t′)〉 = δ(t − t′), b(n(t), t) is
a deterministic function measuring the sensitivity of n to the standard external
noise. If the noise has a non-zero mean, it produces a drift over time, and we can
treat the drift as part of the deterministic function a(n(t), t). This description of
the stochastic process is less intuitive than the Master-Equation, as the Langevin
description Eq. 3.17 does not tell us the origin of the randomness in the noise term.
It does not tell us if the noise is intrinsic to the system or is due to some external
environment. Solving stochastic population dynamics of T cells in the absence or
presence of a stimulus, we have already mentioned previously that the noise is coming
from the intrinsic randomness of a T cell to divide or die (birth and death noise)
and from interactions with the environment.

From the Langevin formalism to the Fokker Planck Equation

In the general derivation of the Fokker-Planck equation from the master equation of a
stochastic process, we have introduced the drift A(n) and diffusion B(n) coefficients
associated with the Fokker-Planck definition of a stochastic process. As we have
defined the Langevin formalism in the previous section, it is useful to be able to link
these two parameters A(n) and B(n) to a(n(t), t) and b(n(t), t), in Eq. 3.17.

a(n(t), t) = −A(n, t) (3.18)

b(n(t), t) =
√
B(n, t) (3.19)

These formulae can be derived using Itô rules of stochastic calculus (Gardiner
(2009)).

Going back to our birth and death model, we can use the Langevin formalism
to define it using Eq. 3.18 and Eq. 3.19:

dn

dt
= (b− d)n+

√
(b+ d)nξ(t) (3.20)
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Trajectory of the total number of cells of the TCR repertoire

Let us consider the total number of T cells Ncells = ∑N
i=1 n

i describing the abun-
dances of the N TCR clones that composed the TCR repertoire. We can write its
trajectory thanks to Eq. 3.22, taking into account the thymus source term:

dNcells

dt
= (b− d)Ncells +

√
(b+ d)

N∑
i=1

ni(t)ξ(t) + SN0, (3.21)

with S, the rate of introduction of new clones, and N0 is the abundance at which
they are introduced to new clones. We assume that N0 is a constant, but this num-
ber is a function of time and the clone.

If we neglect the birth and death noise here and study the deterministic trajectory
of the size of the TCR repertoire Ncells, we recover the steady state value of the
repertoire size N∞:

N∞ = SN0

d− b
. (3.22)

The constant introduction of new clones (or species) and, new cells ensures a
negative growth rate b < d and the existence of a steady state.

3.2.2 Population dynamics of TCR repertoires
A review gathering the state of the art on the topic has been written by Desponds
et al. (2021), where multiple models of abundance dynamics of immune repertoire
have been introduced in De Boer and Perelson (1994); De Boer et al. (2003); De
Boer and Perelson (2013); Lythe et al. (2015); Mayer et al. (2019). Most of these
models are built on the same equations based on clonal proliferation into effector
and memory cells triggered by strong antigenic recognition. These signals are most
of the time of pathogenic origin, for which each TCR clone is not sensitive in the
same way. The cell abundance n of TCR clones is no longer controlled by a neu-
tral birth and death model defined previously but depends mainly on the ability of
a T-cell receptor (TCR) to bind different peptides. Consequently, the abundance
dynamics describing n(t) must depend on the TCR binding properties to antigens
present at time t.

Let us take a set of N clones with abundances (n1(t), n2(t), ..., nN(t)) describing
the TCR repertoire of an individual and a set of M antigens at concentrations
(a1(t), a2(t), ..., aM(t)). We can define the interaction matrix K of size N × M ,
with its elements Kij describing the binding affinities between one TCR i and one
antigen j. The dynamics of each clone is described by division and death, which
occur with Poisson rates that depend on a receptor-specific antigenic stimulus si
which is a function of K, (n1(t), n2(t), ..., nN(t)) and (a1(t), a2(t), ..., aM(t)). This is
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a birth-death model for which birth and death rates depends on si: b(si) and d(si).
For each TCR:

si =
M∑
j=1

KijFjaj, (3.23)

where Fj quantifies availabilities of antigens for TCR i and model competition:
the more clones are specific to antigen j, the less available it will be. It is important
to notice that there is no interaction between different species (different TCR) for
this model class. To keep the explanations of this manuscript simple, we approximate
Fj to 1 and we neglect the stochastic nature of division and death yielding the
following Langevin equation (from Eq. 3.22) for each TCR:

dni
dt

=
b+

M∑
j=1

Kijaj − d

ni, (3.24)

with b(si) = b + ∑M
j=1Kijaj and d(si) = d. Approximately the number of T

cells composing the TCR repertoire to be constant on average, we add a source
term modeling thymic input. Mathematically this is done through a source rate
S of the number of clones per time unit with an introduction size N0 drawn from
a Poisson distribution. The stochastic process introduced in Eq. 3.24 has also ad-
sorbing boundary conditions. For the system size not to reach infinity, we should
also describe clonal extinction with absorbing boundary conditions. When the clone
abundance ni reaches 0 at time t, for all time τ for which τ ≤ t, ni(τ) = 0.

As the work presented in this thesis is data-driven, we want to exploit new
available RepSeq data introduced in chapter 2 to understand how such models work
in the presence or absence of stimuli. Unfortunately, data does not allow us to learn
the form of the large random matrix K. To simplify Eq. 3.24 into a simpler model
for which the parameters can be learned from available data, we introduce the notion
of fitness F . Fitness is a term coming from evolution quantifying the ability of a
species to reproduce efficiently.

As introduced in Desponds et al. (2016), we can write Eq. 3.24, using the fitness
definition:

dni
dt

= Fi(t)ni(t), (3.25)

with F(t) =
(
b+∑M

j=1Kijaj − d
)
. F(t) also follows a stochastic process. In

this thesis, we study the abundance dynamics of TCR clones in the absence or
presence of a strong stimulus. As we assume that we have no a priori knowledge
of the trajectories of antigen concentrations and that possible bursts of antigen
concentration can be neglected for long-time studies, we write F(t) as a Brownian
motion:
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dFi
dt

= f0 + 1√
θ
ηi(t), (3.26)

with ηi(t) a white noise of average 〈ηi(t)〉 = 0 and time correlations 〈ηi(t)ηi(t′)〉 =
δ(t − t′), f0(t − t0) the average value of the fitness F and θ the time scale of the
fluctuations of F .

Geometric Brownian motion

In our model, we consider that each clone interacts with the environment that
exhibits a force that does not depend on the value of the variable ni at time t. The
fitness follows a Brownian motion, and we can substitute Eq. 3.26 in Eq. 3.25:

dni
dt

=
(
f0 + 1√

θ
ηi(t)

)
ni(t). (3.27)

Performing Ito’s change of variable, we obtain the following process for the log-
abundance:

d lnni(t)
dt

= −1
τ

+ 1√
θ
ηi(t), (3.28)

with f0 = −1/τ + 1/2θ.
For each TCR clone i:

ni(t) = ni(t0) exp
(
− t
τ

+ 1√
θ
Wi(t)

)
, (3.29)

with Wi, the so-called Wiener process is equivalent to a Brownian motion, and
t0 is the initial time we start looking at the process.

We can then assume that:

ln ni(t)
ni(t0) ∼ N

(
−(t− t0)

τ
,
(t− t0)

θ

)
, (3.30)

with N , the normal distribution of average − (t−t0)
τ

and variance (t−t0)
θ

. In such
settings, each clone abundance grows exponentially following the equation:

ni(t) = ni(t0) exp
(
− t
τ

)
(3.31)

with probability one if we observe the clonotype abundance for a long time. The
expectation value of each clonotype abundance grows exponentially following the
equation:

〈ni(t)〉 = 〈ni(t0)〉 exp
(
−(t− t0)

τ
+ (t− t0)

2θ

)
. (3.32)

These previous statements can give us insights in modeling turnover time-scales
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of TCR repertoires. τ can be considered to describe TCR repertoire diversity -
richness rate of turnover (i.e the typical time for which clonotypes are replaced).
The second timescale displayed in Eq.3.32 is (2τθ)/(2θ−τ): it is the typical timescale
for which the total number of cells Ncells(t) decays. Indeed Ncells(t) is driven by the
value of the mean 〈Ncells(t)〉 dynamics that can be computed thanks to Eq. 3.32 .

Steady-state distribution

To compare with empirical TCR clonal abundance distributions, we should search
for the steady state solution of the previously defined geometric Brownian motion
for which we add a source term. The Fokker-Planck equation associated to the
geometric Brownian motion with a source term is then the following:

∂tρ(lnn, t) = 1
τ
∂lnnρ(lnn, t) + 1

2θ∂
2
lnnρ(lnn, t) + s(lnn), (3.33)

where s(lnn) is the source term describing the size of newly introduced clones,
S is the introductory rate of thymus export, and N0 is the regular introductory size
of new clones. Assuming a constant initial size, s(lnn) = Sδ(lnn − lnN0), we can
compute the solution of this FP equation.

We compute the steady-state ρ(lnn) distribution solution of Eq. 3.33, with the
absorbing condition: ρ(lnn = 0) = ρ(n = 1) = 0. When a clonal abundance reaches
an abundance of one, it goes extinct forever.

ρ(lnn) =

 τS(1− n−α) if lnn < lnN0

τSn−α(Nα
0 − 1) if lnn > lnN0,

(3.34)

with α = 2θ
τ
. Performing a change of variable, we are able to compute the

clonotype size distributions:

ρ(n) =


τS
n

(1− n−α) if n < N0

τS(Nα
0 − 1)n−α−1 if n > N0

(3.35)

We obtain the scaling ρ(n) ∝ n−α−1. This scaling observation was found in
numerous data-sets from different studies in Weinstein et al. (2009); Britanova et al.
(2016); Emerson et al. (2017). As shown in chapter 2, the power-law exponent −α
is found to be conserved among more than 1000 individuals and close to 1.

Using these distributions, we can compute the total number of cells Ncells−ss and
of clonotypes Nclones−ss at steady-states as functions of the parameters, τ , α, and S.

Ncells−ss =
∫ ∞

0
d lnn ρ(lnn)n = 2S(N0 − 1)τθ

2θ − τ (3.36)

Nclones−ss =
∫ ∞

0
d lnnρ(lnn) = τS lnN0 (3.37)
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Rates of extinction and introduction of clonotypes
To understand better the steady-state of our system and for simulations purposes,
it is useful to compute the extinction rate from the steady state values of Ncells−ss,
Nclones−ss. 

dNclones
dt

= rNclones + S
dNcells
dt

=
(
− 1
τ

+ 1
2θ

)
Ncells + SN0,

(3.38)

where

r = − 1
τ lnN0

(3.39)

When simulating repertoire dynamics and sampling clone sizes from these dis-
tributions, we use the number of clonotypes that have a size smaller or larger than
the introductory size N0 (Nclones N<N0 and Nclones N>N0). We are also interested in
computing the number of cells that belong to the clones with a size smaller or larger
than the introduction one (Ncells N<N0 and Ncells N>N0):

Ncells N<N0 = τS(N0 − 1)− τS

1− αN0(N−α0 − 1), (3.40)

Ncells N>N0 = τS

1− αN0(N−α0 − 1), (3.41)

Nclones N<N0 = τS lnN0 −
τS

α
(1−N−α0 ), (3.42)

Nclones N>N0 = τS

α
(1−N−α0 ). (3.43)

Propagator of the dynamic
To generate synthetic data and build a model to predict stochastic population dy-
namics of TCR repertoires, we need to determine the propagator of Eq. 3.33.

The solution of Eq.3.33 is simply the propagator associated with a geometric
Brownian motion:

G(lnn2, t2| lnn1, t1) =
√

θ

2π∆te
−
θ(logn2−logn1−

∆t
τ )2

2∆t . (3.44)
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3.3. Inference tools
Thanks to a breakthrough in TCR RepSeq sequencing described in chapter 2, it is
possible to make the most of the availability of new and numerous RepSeq data to
learn about TCR repertoire dynamics. One of the goals of this thesis is to be able
to infer models introduced in the previous section in the context of TCR response
to an acute stimulus over a time scale of the immune response (a few days) or to
understand the stochastic population dynamics of such a system over a few years.
The goal is to understand the physical forces shaping the TCR immune repertoire for
a healthy individual. We use Bayesian (or probabilistic) modeling to learn dynamic
models from data. The fundamental notions behind inference are introduced in this
section. For more details about Bayesian inference and its applications for biological
data, one can read Bishop (2007), and Durbin et al. (1998).

3.3.1 Bayesian inference
Bayesian statistical inference uses many observations found in data to learn a prob-
ability distribution that describes a physical phenomenon most accurately within
a chosen class of models. The candidates for the probability distribution can be
inspired by physical or mathematical modeling from the natural and experimental
laws shaping the data. The input is the data (or observations) and the parameters
describing the probability distribution we want to decipher. The goal is then to find
a procedure to compute the most suitable values of the parameters to explain and
interpret the data faithfully.

Using Bayesian statistics to understand a system is equivalent to using proba-
bilities as a measure of our belief about the studied phenomenon, in contrast to the
frequentist approach for which probabilities are defined as occurrence frequencies
of random variables. The degree of belief of an event x is then translated into the
probability P (x). This degree can be conditioned by the accuracy of another ran-
dom variable y to be known or verified: P (x|y). The relation between these two
beliefs can be established thanks to Bayes theorem.

Coming back to our original problem of modeling a physical phenomenon thanks
to data and probability theory, we can define the probability definition P (D|θ), with
D, the data, or observations contained in the sample. These observations can be
written mathematically as vectors of dimensions depending on the nature of the data.
In this manuscript, observations are denoted as N̂ . They define the abundances of
every TCR clone present in the analyzed biological RepSeq samples at T multiple
times. This is what is called a longitudinal data set. The matrix N̂ is therefore of
size Nobs× T , with Nobs the number of clones we analyze. Each observation i would
be in this case the clone i abundance trajectory N̂i =

(
n̂it1 , n̂

i
t2 , ..., n̂

i
tT

)
.
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θ represents the parameters of the distribution to learn. θ is also a vector of
multiple entries, for which the dimension depends on the number of parameters
contained in the statistical model to optimize from the observations.
If we write Bayes theorem with these probabilities, we have:

P (θ|D) = P (D|θ)P (θ)
P (D) , (3.45)

with P (D|θ) the likelihood of the model (the probability to observe D given
the values of the parameters, P (θ), the prior knowledge on the parameters without
having any information about the data, P (θ|D), the posterior distribution. P (θ|D)
is the best distribution of guesses one can make about the parameter distributions
using the knowledge contained in data. P (D) is the evidence distribution, i.e., the
probability to generate this data integrating (or summing) over all possible value of
θ.
P (D) can be recovered by summing over all possible values that can θ take:

P (D) =
∫
dθP (D, θ) (3.46)

3.3.2 Maximum Likelihood Estimation - MLE
The goal of Bayesian inference is to uncover the parameters θtrue describing the best
the inquire physical phenomenon thanks to partial information contained in the
observations D. To obtain values for θ, we want to maximize θ over the posterior
distribution P (θ|D) which is a function of θ and takes observations as inputs. In
this case, θ∗ is called the maximum a posterior estimate (MAP) and is defined:

θ∗ = argmax
θ

P (θ|D) = argmax
θ

P (D|θ)P (θ)
P (D) , (3.47)

with θ∗, the result of the Bayesian inference task.
In the limit of large numbers of observations Nobs, we should recover that:

θtrue = lim
Nobs→∞

θ∗(Nobs). (3.48)

MAP estimation is closely linked to maximum likelihood estimation (MLE), for
which we maximize the likelihood P (D|θ) vs θ to obtain θ∗:

θ∗MLE = argmax
θ

P (D|θ). (3.49)

MLE can be seen as a particular case of MAP estimation for which there is no
prior knowledge on the model (P (θ) is a constant). If no prior information is known,
P (θ) describes a uniform distribution and does not depend on the value of θ. As the
evidence does not depend on the value of θ neither, P (θ|D) ∝ P (D|θ) (Eq. 3.45).



40 Chapter 3. Technical background

In this manuscript, all parameter estimations using Bayesian inference are done us-
ing MLE.

3.3.3 The likelihood of the model

As explained in the previous subsection 3.3.2, we will maximize the likelihood of a
model in this manuscript every time we want to learn a model from data D. The first
challenge is to analytically express the global likelihood of the entire data sample
from single observations. In this manuscript, we consider that every observation
is drawn independently from the others, which enables us to express the global
likelihood from the likelihoods of single observations:

P (N̂|θ) =
Nobs∏
i

P (N̂i|θ). (3.50)

MLE can be done maximizing the log-likelihood quantity:

θ∗MLE = argmax
θ

Nobs∑
i

ln
(
P (N̂i|θ)

)
. (3.51)

In our applications, we will constrain the values each N̂ i can take: N̂ i ∈ cond
The new likelihood to optimize is slightly modified, adding a new normalization
term to the initial probability:

P (N̂|θ, N̂ ∈ cond) = P (N̂, N̂ ∈ cond|θ)
P (N̂ ∈ cond|θ)

. (3.52)

In practice, we expressed this conditioned MLE as

θ∗MLE = argmax
θ

Nobs∑
i

ln
(
P (N̂i|θ)

)
−Nobs ln

(
P (N̂ i ∈ cond|θ)

) . (3.53)

There are two main challenges when doing MLE of such a system. On the one
hand, one needs to be able to compute numerically and efficiently the single log-
likelihood for each observation which requires a lot of numerical computations on
the other hand. One needs to optimize a multivariate function whose convexity is
not a priori known. One must reach a global minimum to have a reliable estimate
of θ from data.
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Figure 3.2: Graph-visualization of a hidden-Markov model for which the hidden
states are the true clone abundances nT , and the observations are the number of
experimental RepSeq reads for the associated clones, n̂T .

3.3.4 Hidden variables, continuous hidden-Markov Model
Let us return to our problem of interest: inferring TCR repertoire dynamics. D is
the data we use in our Bayesian framework to understand how TCR abundances vary
with time. As mentioned in the first chapter, data and observations describing the
best TCR abundances are generated using different RepSeq technologies. Counting
T cells belonging to the same clones can be done differently depending on the tech-
nique. Because of the difference between empirical TCR clone abundances and the
actual ones due to sampling (chapter 2) and the intrinsically noisy way to produce
data, dataD = N̂ =

(
N̂1, ..., N̂Nobs

)
, empirical abundances found in a RepSeq sample

are a priori insufficient to proceed to Bayesian inference of a model . To calculate the
likelihood, we need to marginalize out the latent variable N = (N1, ...,NNobs), which
are the actual abundances, or hidden variables. The complete likelihood P (N̂,N|θ)
is analytically tractable, and learning this distribution is the goal of the statistical
inference task. We will use F = (F1, ...,FNobs) =

(
N1/Ncells, ...,FNobs/Ncells

)
or N

depending on the application.

Hidden-Markov model for TCR abundance dynamics

A hidden Markov model is a Bayesian probabilistic model representation to learn
sequence data known to follow a Markov process. As defined in 3.2.1, a Markov pro-
cess is a memoryless process for which we have P

(
ntT |nt1 , nt2 , ..., ntT−1

)
= P

(
ntT |ntT−1

)
.

We make the assumption that the true TCR abundances follow Markov dynamics
as a first approximation. The true abundances N are the unobservable hidden
states or variables and follow a Markov process. P

(
ntT |ntT−1

)
is called the transi-

tion probability which transcribes the physical dynamic in the inference model. For
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simplicity and consistency with the rest of the manuscript, we are going to use the
continuous variables TCR frequencies f which are the normalized TCR abundances
n: f = n/Ncell, Ncells the total number of T cells in the repertoire. The observa-
tions N̂ are emitted by the true variables FT = (nt1/Ncell, nt2/Ncell, ..., ntT /Ncell).
The generation process from the true values of frequencies FT and the observations
N̂T contained in the data are encoded in the emission probabibilty P (n̂|f) at every
time point of the process. As a tool of visualization, the hidden-Markov model is
represented in Fig. 3.2. Solving this hidden-Markov model means finding the tran-
sition and emission probabilities as well as the complete likelihood P (N̂,N|θ). The
complete likelihood is

P (N̂ ,F|θ) = ρ(f1)
T−1∏
j=1

P (n̂j|fj)P (fj+1|fj, θ), (3.54)

with fmin, the theoretical lower-bound of the TCR frequency values. The likelihood
of the observations consists of integrating the complete likelihood P (N̂ ,N|θ) over
all range values:

P (N̂ |θ) =
∫ 1

fmin
...
∫ 1

fmin
df1...dfTρ(f1)

T−1∏
j=1

P (n̂j|fj)P (fj+1|fj, θ). (3.55)

Computing P (N̂ ,F|θ) and P (N̂ |θ) can be a challenge to realize numerically. Let
us remember that statistical inference aims to find the best suitable θ parameters
(with our observations) that are the MLE θMLE. One can compute the function and
optimize it numerically using tools inspired by gradient descent to maximize the
likelihood or the log-likelihood. But there are more efficient numerical techniques to
compute the likelihood of the model. Also, knowing that we have reached a global
maximum over the optimization step is not always clear. There are some solutions to
overcome this when the likelihood is not easy to represent and is not systematically
concave.

Compute the likelihood using the forward algorithm

As mentioned in the previous paragraph, one needs to find a way to compute nu-
merically the log-likelihood or the likelihood of the model in a reasonable amount of
time despite the numerous integrations. One trick is to use the forward algorithm,
a dynamic programming algorithm based on recursive relations between probability
of the observed sequences up to and including ft

gt(ft) = P (N̂ = (n̂1, n̂2, ..., n̂t , ft), (3.56)

which translates into:
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gt(ft) =
∫
fmin

df1..dft−1ρ(f1)P (n̂1|f1)
t∏

j=2
P (n̂j|fj)P (fj|fj−1, θ). (3.57)

We have the recursive relation :

gt+1(ft+1) =
∫
fmin

dftgt(ft)P (n̂t+1|ft+1)P (ft+1|ft, θ). (3.58)

The last step, T − 1, will return the likelihood of the model:

P (N̂ |θ) =
∫
fmin

dfTgT (fT ). (3.59)

Before going into the details of the EM algorithm, Let us define two impor-
tant notions of statistical inference: the Shannon entropy S[p] associated with the
probability distribution p

S[p(x)] = −
∫
p(x) ln[p(x)], (3.60)

and the Kullback-Leibler KL[p||q] divergence between two probability distribu-
tions p and q

KL[p(x)||q(x)] =
∫
p(x) ln p(x)

q(x) . (3.61)

The Kullback-Leibler divergence measures how the probability distribution p

differs from another probability distribution q. KL divergence has two important
properties: it is always positive, and if p = q, the KL is equal to 0. KL divergence
is not a distance as it is not symmetric.

Let us come back to the EM algorithm. When dealing with hidden variables,
the (EM) algorithm is an excellent tool for complicated likelihood optimization. EM
is an optimization method ensuring maximizing the log-likelihood quickly and pre-
cisely. We introduce an auxiliary probability distribution q over the hidden variables
F . We can write the following equality:

lnP (N̂ |θ) =
∫
dFq(F) ln

P
(
N̂ ,F|θ

)
q(F) −

∫
dFq(F) ln

P
(
F|N̂ , θ)

)
q(F) . (3.62)

It is simple to derive the previous equality using lnP (N̂ |θ) = lnP (N̂ ,F|θ) −
lnP (F|N̂ , θ), Bayes formulae and

∫
dFq(F) = 1.

In practice, the EM algorithm is an iterative process with multiple steps ensuring
convergence of the log-likelihood toward a global maximum. Going from step t to
step t + 1, we update the value of θ from θt to θt+1 until a chosen criteria for this
optimization procedure is respected. To do so, the most common strategy is to
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chose the function q to be equal to P (F|N̂ , θt) and P
(
N̂ ,F|θ

)
= P

(
N̂ ,F|θt+1

)
in

order to have a log-likelihood function L(θt+1|θt) to maximize with respect to θt+1,
at every step :

L(θt+1|θt) =
∫
dFP (F|N̂ , θt) lnP

(
N̂ ,F|θt+1

)
−
∫
dFP (F|N̂ , θt) ln

P
(
F|N̂ , θt+1

)
P (F|N̂ , θt)

+
∫
dFP (F|N̂ , θt) lnP (F|N̂ , θt).

(3.63)

with θt and θt+1 the values of the parameters at steps t and t+1 of the algorithm.

We recognize in Eq. 3.63, the Kullback-Leibler divergence,KL[P (F|N̂ , θt)||P (F|N̂ , θt+1)]
and the Shannon entropy S[P (F|N̂ , θt)]. We also define theQ−function asQ(θt+1, θt) =∫
dFP (F|N̂ , θt) lnP

(
N̂ ,F|θt+1

)
which can be interpreted as the average quantity

of the log likelihood ln
[
P (N̂ ,F|θ)

]
weighted by the posterior of the hidden variable

at the previous step t, for which θ = θt,

L(θt+1|θt) = Q(θt+1, θt)−KL[P (F|N̂ , θt)||P (F|N̂ , θt+1)] + S[P (F|N̂ , θt)]. (3.64)

Because the Kullback-Leibler divergence KL[P (F|N̂ , θt)||P (F|N̂ , θt+1)] ≥ 0,
the quantity Q + S in Eq. 3.64 (which is negative) is a lower bound on the log-
likelihood function L(θt+1|θt). The quantity S does not depend on the variable θt+1.
We conclude then that maximizing the log-likelihood L(θt+1|θt) with respect to θt+1

is the same as maximizing Q(θt+1, θt) with respect to θt+1.
The EM algorithm is a 2-stage iterative optimization procedure for finding maximum
likelihood estimates. The expectation E-step consists of evaluating the Q function
for a given value of θt with respect to θt+1. Computing the E-step is not always
straightforward and can be done using multiple strategies, for instance, simulation-
based techniques Bishop (2007). The M-step consists of maximizing the Q function
with respect to θt+1 to update the value of θ. These two steps are then repeated
until convergence of the Q function.

In this manuscript, I have not used the forward algorithm or the
Expectation-Maximization algorithm to compute the likelihood of the
model in the following chapters, where I proceed only with pairs of time
points. Still, these tools helped me better understand data and try a
model that has not resulted in convincing results.
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3.3.5 Computing errors on parameter estimations
When the log-likelihood optimization is achieved, and we obtained a numerical value,
it is important to assess the error on the estimation of θ∗MLE. Here we use θ∗MLE and
not θ∗MAP as we have a flat prior P (θ). If the posterior P (θ|D) can be computed,
the model should give us θMLE (in the case of no prior P (θ)). The error should be
proportional to the variance associated with this distribution and inversely propor-
tional to the number of observations (if we remember Eq. 3.48). Let us develop in
θ∗MLE to second order the log-likelihood – lnP (D|θ) = L(θ) – first for a multivariate
form (θ is a vector or several parameters):

L(θ) = L(θ∗MLE) + 1
2(θ− θ∗MLE)TH(θ∗MLE)(θ− θ∗MLE) +o(||θ− θ∗MLE||2), (3.65)

with H, the Hessian matrix associated with the log-likelihood function L. If the
optimization has been correctly performed, we have that ∇L|θ∗MLE = 0, and that is
why this term does not appear in the previous equation Eq. 3.65. From this result,
we have that:

P (θ|D) ∝ P (D|θ) ∝ exp− 1
2 (θ−θ∗MLE)TH(θ∗MLE)(θ−θ∗MLE), (3.66)

at second order. Then computing the Hessian matrix of the log-likelihood and
evaluating it at θ∗MLE gives us the Covariance Matrix of the Gaussian distribution
defining P (θ|D), and so errors on all parameters composing the vector θ.

The entries in the column vector are X = (X1, X2, ..., XT ), with ∀t ∈ [1, T ], Xt a
random variable. We define the entries of the covariance matrix (l,m) CXX as

CXlXm = E[(Xl − E[Xl])(Xm − E[Xm])], (3.67)

where E denotes the expectation of a random variable.





CHAPTER

4
INFERRING T-CELL REPERTOIRE

DYNAMICS FROM HEALTHY INDIVIDUALS

In this chapter, I introduce the work discussed in the preprint Bensouda Koraichi
et al. (2022), which is the core research of this thesis. We study the neutral dy-
namics that drive the immune system without acute and intense stimuli for healthy
individuals. This analysis focuses on data-driven approaches taking advantage of
longitudinal immune repertoire sequencing (RepSeq) data availability. We quantify
the experimental noise and learn the long-timescale dynamics of TCR repertoires
for healthy people. Applying Bayesian inference, we infer parameters that enable us
to quantify for the first time the turnover dynamics of TCR repertoires as a function
of the age of the individual.

4.1. Introduction and motivation
The adaptive immune system protects us from many infections including those
caused by pathogenic challenges that did not exist when we were born. This amazing
plasticity is encoded, in part, in a diverse repertoire of T cells carrying surface re-
ceptors capable of recognizing different antigens, which trigger an immune response.
About 108 new T cells are estimated to be generated and enter the periphery in
human adults every day Yates (2014); Bains et al. (2009b), where they undergo spe-
cific proliferation due to antigen stimulation but also non-specific divisions Jameson
(2002); Dowling and Hodgkin (2009) and death. These processes together result in
clone sizes of different T cells that differ over a few orders of magnitude, forming
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long tailed distributions Desponds et al. (2016); Mora and Walczak (2019b). The
total number of different T cell clones is estimated between 108 and 1010 Qi et al.
(2014); Lythe et al. (2016); Mora and Walczak (2019a). Qualitatively describing
the T cell clonal dynamics in the periphery is important for predicting long- as
well as short-term immune response and to understand the maintenance of immune
memory.

A lot of effort has been put into describing antigen specific response and memory
formation De Boer et al. (2003); Kedzierska et al. (2012); Mayer et al. (2019). At any
given timepoint the majority of the T cell repertoire is not always directly involved in
fighting the current antigenic challenge. Yet, processes such as homeostasis Jameson
(2002) and unspecific signals in both naive and memory subrepertoires result in
frequency changes of background clones. Many first-principles models of naive T
cells dynamics have been proposed to study the balance between thymic output
and peripheral proliferation and death Bains et al. (2009b,a); Dowling and Hodgkin
(2009); de Greef et al. (2020); Dessalles et al. (2022). The role of competition for
antigens between T cells has been pointed out De Boer and Perelson (1994), as
well as the effect of cross-reactivity Dash et al. (2017) (the ability for one T cell to
recognize different antigens), the relative size of a primary versus secondary response
to similar antigens Mayer et al. (2019), or the effect of heritable changes affecting the
homeostatic rate of thymic exports Johnson et al. (2012). These studies highlight
the importance for the naive repertoire of clonal expansions that are not necessarily
linked to specific challenges. While these models were instrumental in advancing
our understanding of bulk repertoire dynamics, and allowed for the interpretation
of deuterated water and bromide staining experiments that describe cellular lifetimes
De Boer and Perelson (2013), the class of models that are consistent with the data
is still large and unexplored.

Thanks to advances in immune repertoire sequencing (RepSeq) Lindau and
Robins (2017); Davis and Boyd (2019); Minervina et al. (2019b), dynamical models
can now be assessed directly against repertoire data at the clonal level. RepSeq
experiments isolate and sequence the T cell receptors (TCR) in a blood sample of
individuals. By counting reads with the same TCR sequence, one can estimate the
frequency of the corresponding clone (defined as the set of cells with the same re-
ceptor) in blood. Even single repertoire snapshots can be informative about the
dynamics: the distribution of clone sizes follows a power law Burgos and Moreno-
Tovar (1996); Koch et al. (2018); Naumov et al. (2003); Zarnitsyna et al. (2013);
Mora and Walczak (2019b), in accord with proposed models of stochastic growth
and death Desponds et al. (2016). Taking samples from the same individual at
different time points allows for tracking the evolution of TCR clone sizes in time.
The longitudinal experiments that have been performed in healthy donors Britanova
et al. (2016); Chu et al. (2019) suggest that the repertoire is relatively stable over
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years.
Our main goal in this article is to characterize the dynamics of the unstimulated

background repertoire. We use an inverse approach to learn models of stochastic
TCR clonal dynamics directly from data, collecting human TCR RepSeq datasets
where we could identify at least two time points between which there was no re-
ported specific acute antigenic stimulation Britanova et al. (2016); Sycheva et al.
(2018); Pogorelyy et al. (2018c); Chu et al. (2019); Minervina et al. (2020). A key
aspect of our method is the treatment of experimental noise, which confounds naive
analyses of stochastic time traces. The method first quantifies both the sampling
and natural biological noise thanks to replicate RepSeq experiments Puelma Touzel
et al. (2020); Bensouda Koraichi et al. (2021) , and then infers the parameters of
a stochastic dynamical model to describe the trajectories of each TCR clone popu-
lation in a healthy individual, i.e. who did not have medical conditions or known
infections during the sampled interval. We explicitly show how correcting for noise
allows us to robustly learn the underlying dynamics. A recent study Gaimann et al.
(2020) has investigated the formation of the T cell repertoire during development
and its maintenance into adulthood. Here we focus on healthy adult repertoires that
are already shaped during the first years of an individual’s life and ask how they
evolve and get renewed. We extract clonal (and not cellular) turnover time scales,
and describe how these time scales depend on the person’s age. Characterizing these
baseline dynamics is an important step towards interpreting TCR dynamics in the
presence of antigenic stimuli.

4.2. Results
4.2.1 Longitudinal sampling of TCR repertoires of healthy individ-

uals
T-cell repertoires are large ecosystems in which each species is a clone of T cells
carrying the same TCR i formed by a unique pair of α and β chains. The dynamics
of this system is characterized by the time course of the number of cells carrying
each receptor, ni(t). This number can be accessed indirectly through TCR repertoire
sequencing (RepSeq), obtained by sequencing the TCR of small samples of peripheral
blood mononuclear cells (PBMC), giving us a read count n̂i(t) for a given chain at
different timepoints (Fig. S1A). Because the two chains are not paired in the data,
from here on we define clones as collections of cells having the same α or β chain,
which we will refer to as clonotypes. This approximation is justified by the low
occurence of TCRs that share one chain but not the other Minervina et al. (2020).

We collected repertoire data from 9 individuals P1-P9, aged 18-57, sampled at
various time points from one month up to 3 years apart, with and without biological
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Figure 4.1: Longituinal tracking of T-cell repertoires. A. Experimental work-
flow. PBMC from a healthy individual are extracted at two timepoints, and their
TCR repertoire sequenced, yielding lists of clonotypes with count numbers corre-
sponding to the number of individual measurements (or reads). The way in which
the two sampled repertoires has changed between the two timepoints is predicted
by a stochastic model of the dynamics of T cell clones. B. Summary of the TCR α
and β repertoire data used in this study. 9 individuals from 5 studies, aged 18-57,
male and female, were included. When available, replicate experiments are anno-
tated with ×2. Datasets were produced using two different sequencing technologies
based on cDNA and gDNA. C. Typical scatter plot of frequencies of TCR clones in
two samples from the same individual P9. Blue: two biological replicates obtained
on the same day show the effect of experimental nosie. Red: 2 samples taken 1
year apart show a larger spread, resulting from a combination of real changes and
noise. The goal of the analysis is to disentangle real changes from the noise. D.
Cumulative distributions of TCR frequencies, which follow a universal power law in
all samples and donors, with exponent ≈ 1.
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replicates. β chain repertoires were sequenced for all samples, and α chains only
for individual P6. The properties of the datasets, including their number of clones
Nc, total read counts Nr = ∑Nc

i=1 n̂i, age, library preparation (from genomic DNA
or from mRNA), and chain, are summarized in Fig. S1B and in Table S1. Because
P3, P4, P6, and P9 were included in a vaccination study, they had received a shot
of the YFV 17D yellow fever vaccine (P3, P4, P6) or of the influenza vaccine (P9)
45 days prior to the first time point, after the decay of their T-cell response, so we
assume that the dynamics of vaccine-specific T does not affect much our analysis of
the global repertoire.

A major challenge when analyzing RepSeq data is that the measured abundances
n̂i(t) only provide a noisy reflection of the true ones ni(t). Observed differences
between datasets thus result from a combination of the repertoire dynamics and
biological and experimental noise. The magnitude of that noise can be assessed
by comparing the normalized clonotype frequencies f̂ = n̂

Nr
between two biological

replicates obtained at the same time point in the same individual (Fig. S1C, blue
dots). By contrast, comparing those frequencies between two timepoints separated
by one year (Fig. S1C, red dots) show a larger dispersion, and a slight overall decrease
of clonotype frequencies. Our goal is to measure this difference quantitatively.

Another difficulty arises from the observation that clonotype frequencies are
highly heterogeneous, with their distribution following a power law P (n̂) ∝ n̂−1−α

spanning no less than 4 orders of magnitude, with an exponent α ≈ 1 which is largely
invariant across individuals and timepoints (Fig. S1D), as previously reported Mora
and Walczak (2019b); Desponds et al. (2016); Gaimann et al. (2020). This implies
that most clonotypes have very low abundance and are thus particularly subject to
sampling and experimental noise.

4.2.2 Mathematical model of stochastic clonal dynamics
The dynamics of T cell clones is driven by the proliferation and death of cells be-
longing to them. In addition, new clones with their distinct TCR are continually
produced and released by the thymus, although the rate of thymic exports decays
rapidly with age Yates (2014). Cell division, death, and introduction of new clones
constitute the basis of our model (Fig. 4.2A). Cell division may be caused by anti-
gen stimulation (both self and foreign) or by cytokine and growth factors, and cells
die by lack of stimulation or by apoptotic signals. Even in the absence of strong
and chronic antigenic stimuli, T cell clonotype abundances display stochastic tra-
jectories due to either weak stimulation, repertoire homeostasis and demographic
fluctuations. In addition, individuals may get mild infections over the course of
months and years. Since these events are numerous and unknown, we model them
by an effectively random net growth rate (divisions minus deaths). It can be shown
Desponds et al. (2016); Altan-Bonnet et al. (2020) that on time scales much longer
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than the typical resolution time of infections, each clonotype size ni(t) may then be
modeled by a geometric Brownian motion (GBM). Its evolution is governed by an
effective mean net growth, to which random fluctuations are added to account for
bursts of proliferation and decay:

dlnni(t)
dt

= −τ−1 + θ−1/2ηi(t), (4.1)

where ηi(t) is a clonotype-specific white noise of zero mean and unit amplitude. Note
that the mean growth rate of clones, −τ−1, is typically negative. On average, each
clone should decay to make room for new thymic exports, because of homeostatic
pressures that control the total number of cells. In this interpretation, τ is the
typical decay and turnover time of each clone, which would evolve with time as
ni(t) = ni(0)e−t/τ in the absence of fluctuations. But recall that this is just an
average—many clones do not decay, but instead undergo episodes of large growth
and decay, as illustrated by simulations of (4.2) in Fig. 4.2B. The typical amplitude
of these fluctuations grows with time as

√
t/θ (dashed lines). Thus, θ may be

interpreted as the typical time it takes for a clone to rise or decay above or below
the typical behaviour by one log-unit.

In addition to being biological motivated, the proposed dynamics have the de-
sirable property that, in the presence of a constant rate of thymic exports, the
distribution of clone sizes is predicted to evolve in time towards a perfect power law,
P (n) ∝ n−1−α, with exponent α = 2θ/τ given by twice the ratio of the two time
scales of the model Desponds et al. (2016). This is illustrated in Fig. 4.2C on simu-
lated repertoires at steady state, and agrees well with the empirical distributions of
Fig. S1D.

Our goal is to capture the parameters of these dynamics that is informative about
the repertoire turnover timescales, while constraining the experimentally observed
clone size frequency distribution. Our approach assumes that on the timescales of
the analysis we do not observe signals of strong and specific antigenic stimulation. It
also ignores potential dependences on the size of the clone, which could be mediated
by phenotypic differences between clones. This last assumption will be revisited
later.

4.2.3 Mathematical model of stochastic clonal dynamics
The dynamics of T cell clones is driven by the proliferation and death of cells be-
longing to them. In addition, new clones with their distinct TCR are continually
produced and released by the thymus, although the rate of thymic exports decays
rapidly with age Yates (2014). Cell division, death, and introduction of new clones
constitute the basis of our model (Fig. 4.2A).
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Figure 4.2: Stochastic model of repertoire dynamics. A. T cells are introduced
in the peripheral immune system by thymic export, providing a source of new TCR
clones. T cells belonging to a specific TCR clone (labeled by their color) divide and
die depending on their interactions with the antigenic environment, increasing or
reducing the abundance of its TCR in the repertoire. This process is modeled by a
geometric Brownian motion B. Example traces of TCR abundances simulated from
the model Eq. 4.2 with n(0) = 40, with τ = 2 years and θ = 1.11 year. Clones that
reach abundance < 1 go extinct (red circles). The typical trend is for clones to decay
exponentially with time scale τ (black solid line). Stochastic events of growth and
decay account for a broad variability of individual traces, whose magnitude grows
as
√
t/θ with time (shaded area) in logarithmic scale. C. Cumulative frequencies

distributions of synthetic TCR clone abundances. The model predicts a power law
of exponent α = 2θ/τ . Different values of τ and θ were used to lead to different
values of the exponent α. Parameters: τ = 2 years, Ncell = 1010, n0 = 40.
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Cell division may be caused by antigen stimulation (both self and foreign) or by
cytokine and growth factors, and cells die by lack of stimulation or by apoptotic sig-
nals. Even in the absence of strong and chronic antigenic stimuli, T cell clonotype
abundances display stochastic trajectories due to either weak stimulation, repertoire
homeostasis and demographic fluctuations. In addition, individuals may get mild
infections over the course of months and years. Since these events are numerous and
unknown, we model them by an effectively random net growth rate (divisions minus
deaths). It can be shown Desponds et al. (2016); Altan-Bonnet et al. (2020) that on
time scales much longer than the typical resolution time of infections, each clono-
type size ni(t) may then be modeled by a geometric Brownian motion (GBM). Its
evolution is governed by an effective mean net growth, to which random fluctuations
are added to account for bursts of proliferation and decay:

dlnni(t)
dt

= −τ−1 + θ−1/2ηi(t), (4.2)

where ηi(t) is a clonotype-specific white noise of zero mean and unit amplitude.
Note that the mean growth rate of clones, −τ−1, is typically negative. On average,
each clone should decay to make room for new thymic exports, because of homeo-
static pressures that control the total number of cells. In this interpretation, τ is
the typical decay and turnover time of each clone, which would evolve with time
as ni(t) = ni(0)e−t/τ in the absence of fluctuations. But recall that this is just an
average—many clones do not decay, but instead undergo episodes of large growth
and decay, as illustrated by simulations of (4.2) in Fig. 4.2B. The typical amplitude
of these fluctuations grows with time as

√
t/θ (dashed lines). Thus, θ may be inter-

preted as the typical time it takes for a clone to rise or decay above or below the
typical behaviour by one log-unit.

In addition to being biological motivated, the proposed dynamics have the de-
sirable property that, in the presence of a constant rate of thymic exports, the
distribution of clone sizes is predicted to evolve in time towards a perfect power law,
P (n) ∝ n−1−α, with exponent α = 2θ/τ given by twice the ratio of the two time
scales of the model Desponds et al. (2016). This is illustrated in Fig. 4.2C on simu-
lated repertoires at steady state, and agrees well with the empirical distributions of
Fig. S1D.

Our goal is to capture the parameters of these dynamics that is informative about
the repertoire turnover timescales, while constraining the experimentally observed
clone size frequency distribution. Our approach assumes that on the timescales of
the analysis we do not observe signals of strong and specific antigenic stimulation. It
also ignores potential dependences on the size of the clone, which could be mediated
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by phenotypic differences between clones. This last assumption will be revisited
later.

4.2.4 Model inference
We estimate the parameters (θ, τ) of the dynamics in Eq. (4.2) from the observed
clonotype abundance trajectories using a Bayesian approach for the posterior dis-
tribution of parameters given the data:

(τ ∗, θ∗) = argmax
τ,θ

Nc∏
i=1

P (n̂i(t1), n̂i(t2)|τ, θ), (4.3)

where t1 and t2 are the times of the two samples.
We use two methods to learn the model parameters: naive inference and full

inference. The naive inference assumes the empirical abundances faithfully repre-
sents the real clonal abundances ni through a simple proportionality rule, n̂i ≈
(Nr/Ncell)ni, where Ncell = ∑

i ni is the total number of T cells in the body. In
practice, we work with clonotype frequencies f̂i = n̂i/Nr, and fi = ni/Ncell, so that
this assumption becomes f̂i = fi. Further assuming that the total number of cells
Ncell is approximately constant in time at steady state, f̂i is then governed by the
same equation (4.2) as ni. We take advantage of the closed solution available for
the propagator associated to the GBM, (4.5), to maximize the log-likelihood (see
Methods). This maximization is equivalent to plotting a histogram of the change in
log-frequencies between the two timepoints, and simply read off τ−1 and θ−1 as the
negative mean and the variance of the distribution divided by t = t2− t1 (Fig. S2A),
consistent with their biological interpretation.

The full inference incorporates the fact that the observed clonotype abundances
are contaminated by biological (mRNA expression) and experimental noise sources
(sequencing errors, stochastic PCR amplification, and sampling), which means they
do not correspond exactly to the clonotype abundances. To give a sense of just the
sampling issue, a PBMC sample of ∼ 1mL contains about 1 million cells, yielding
about 1 million reads. By comparison, the organism contains of the order of 1011

T cells. TCR clonotype frequencies are thus extrapolated from observing a fraction
106/1011 ≈ 10−5, or 0.001%, of the whole repertoire Mora and Walczak (2019a). In
addition, not all cells are captured, and each cell may be represented by multiple
reads, either through sequencing of multiple mRNA from the same cell, or from PCR
amplication, depending on the context. To address these sources of uncertainty, in
the full inference approach we introduce an error model Puelma Touzel et al. (2020)
relating observed frequencies f̂ to their true value f probabilistically through the
transfer function P (f̂ |f) (Fig. S2B). We use the previously introduced a software
tool, NoisET Bensouda Koraichi et al. (2021), which learns such a noise model from
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Figure 4.3: Inferring dynamical parameters from data. A. Naive inference.
The empirical clonotype frequencies in the RepSeq samples at the two time points,
f̂1 and f̂2, are treated as the true ones, f1 and f2. We estimate the two parameters τ
and θ from the average and standard deviation over all observed TCR clones of the
log-fold change in frequency between two-time points, log(f̂2/f̂1), which the model
predicts is distributed normally. The distribution of ŝ is shown in light red, and the
Gaussian fit in solid red. B. Full inference. The empirical frequencies f̂ are modeled
as noisy read-outs of the true ones f , through a probabilistic noise model. First, the
noise model P (f̂ |f) is inferred from replicate experiments such as shown in Fig. S1C.
The inference procedure also learns the distribution of frequencies ρ(f), assumed to
follow a power law with adjustable exponent α and minimal frequency fmin. Second,
using the noise model, the parameters of the dynamical propagator P (f2|f1, τ, θ) are
inferred from two timepoints, where f1 and f2 are treated as latent variables and f̂1,
f̂2 as observables, using a Maximum likelihood estimator. C-D. Validation of naive
and full inference models on synthetic data. Model parameters: t2 − t1 = 2 years,
τ = 1, 2, 5, 10 years, α = 1.11, 1.18, 1.25, with all 12 combinations tested; number of
cells Nc = 1010; initial clone size n0 = 40; the other parameters (number of clones,
thymic output) are deduced assuming steady state (see Methods). Sampling model:
number of sampled reads Nr = 106; noise model parameters a = 0.7 and b = 1.1.
Error bars are standard deviations over 10 simulations.
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replicate RepSeq experiments (see Methods).
We applied NoisET to individuals P3, P4, P6 and P9 for whom replicates were

available. The noise model assumes that the read count n̂ of each clone is drawn
from a negative binomial distribution, whose variance grows with the frequency as
Var(n̂) = fNr + a(fNr)b, with two learnable parameters a, b. In addition, since
true frequencies are unknown, we assume as a prior that frequencies are distributed
according to a power law ρ(f) ∝ f−1−α with a cut-off f > fmin, with α and fmin

another two parameters. These parameters are reported for all individuals and time
points in Fig. S1.

Once the noise model has been learned using NoisET, the likelihood of the data
is computed by summing over the latent variables f1 = fi(t1) and f2 = fi(t2):

P (n̂i(t1), n̂i(t2)|τ, θ) =
∫∫ 1

fmin
df1df2 ρ(f1)P (f2|f1, τ, θ)

× P (f̂1|f2)P (f̂2|f2),
(4.4)

where P (f2|f1; τ, θ) is the propagator of the geometric Brownian motion Eq. 4.2,
and f̂j = n̂i(tj)/Nr(tj), j = 1, 2.

To explore the dependence of the τ and θ parameters on the frequency of clono-
types, and to eliminate clones that are not seen at both timepoints, we can generalize
the formulas above to include only clonotypes with frequencies larger than a specific
threshold f̂th, which modifies the normalization of the maximum likelihood estimator
(see Methods).

4.2.5 Validation of the inference methods on synthetic data
We first test the naive and full model inference on simulated RepSeq samples. We
simulate 1010 cells corresponding to ∼ 108 synthetic longitudinal trajectories de-
signed to mimic as closely as possible the features of the real repertoire data at time
points two years apart. The initial size ni(t1) of each clone is drawn from the steady
state distribution of the GBM with a constant source (see Methods). Then Eq. 4.2
is simulated between times t1 and t2 with an extinction condition when ni < 1,
and with a source of new clones whose rate of introcution is matched to the mean
extinction rate (see Methods). We varied the two timescales of the model, τ and
θ, from months to years, while keeping α = 2θ/τ within the observed experimental
range 1.1 – 1.25 Gaimann et al. (2020).

We model experimental sampling using a negative binomial distribution with
variance parameters a = 0.7 and b = 1.1. Sequencing depth was set to Nr = 106

reads at both time points (we checked that asymmetric numbers of reads at each
timepoint did not affect the results, see Fig. S2), resulting in ∼ 105 sampled distinct
clonotypes. For each set of parameters we generated 10 longitudinal datasets to
assess errors. We then performed the naive and full inference methods on these
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datasets, restricted to clones with f̂1 ≥ f̂th and f̂2 > 0, and compared the inferred
values of τ and θ to the true ones (Fig. S2C-D).

While the full inference (blue points) works for all values of the parameters and
frequency threshold, the naive inference (red points) performs poorly for large values
of the parameters. Increasing the cutoff frequency to fth = 10−4 improves the naive
inference by limiting the effect of the sampling noise, which is relatively smaller in
large clones. For lower values of the threshold, the more numerous small clones
dominate the inference, yielding an erroneous estimate. However, since the naive
inference does not require replicates or a noise model, and is faster to implement, it
provides a practical solution for learning τ and θ for large clones.

4.2.6 Analysis of repertoires
We applied the full inference to longitudinal data sets of healthy individual TCR
repertoires presented in Fig. S1 for which replicates were available, focusing on large
enough clones (f̂1 ≥ fth = 10−5). With this cutoff we limit experimental noise
and focus mainly on memory clones, since large clones are more likely to be have
arisen from expansion and belong to the memory pool de Greef et al. (2020). For
all individuals, the inferred values of τ and θ fall close to a line defined by τ ≈ 2θ
(Fig. 4.4A) corresponding to a predicted exponent of α ≈ 2θ/τ = 1 in the power law
of the clone size distribution. This result is in agreement with empirical observations
of Fig. S1D. A more refined comparison of the predicted exponent, 2θ/τ , with the
one directly inferred from the distribution of clone sizes, α, gives consistent but noisy
results (Fig. 4.4B), primarily because of the narrow range of values of α (0.9 – 1.2)
and the small number of individuals. We note that the two inferred values of α use
completely independent pieces of information, namely the clone size distribution in
one case, and the dynamics of clone sizes in the other.

Since our approach is probabilistic, it provides as a byproduct the posterior
distribution of the fold change of individual clones (see Methods). The average of
this posterior over clones agrees very well with the model propagator (4.5) (Fig. S3),
validating its consistency with the data.

The turnover time τ increases sharply with age, from a few years at age 21 to
∼ 50 years at age 57 (Fig. 4.4C). Since the ratio 2θ/τ is constrained to be ≈ 1, this
implies that the amplitude of the stochastic stimulations, θ−1, decreases with age.
The TCR repertoire is more dynamic, with faster turnover, for young individuals,
who also have a larger rate of introduction of new TCR clones from the thymus than
older individuals. At the same time, a turnover time of ∼ 20 years at the age of
40 suggests that the repertoires of adults remain dynamic despite greatly reduced
thymic output.

For individual P6, both TCRα and TCRβ RepSeq samples were available. We
recover very similar dynamic parameters for both receptor chains (Fig. 4.4A-B).
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Figure 4.4: Dynamical parameters of healthy TCR repertoires. A. Typical
decay rate τ−1, and inverse fluctuation amplitude θ−1 for the 5 donors for whom
replicates were available, as obtained using the full inference procedure with fth =
10−5. All donors but one are consistent with the relation 2θ = τ , corresponding to
α = 1. Error bars are standard deviations over all combinations of the replicates
at each time point. B. Direct test of the prediction α = 2θ/τ . Most values of
α fall close to one, allowing for only a narrow range of tested values. Error bars
on α show standard deviations across time points. C. Turnover parameter τ as
a function of donor age. D. Probability for a clone detected at some timepoint
with frequency f̂ ≥ 10−5 to be detected again at a later time point (with the
experimental dataset size). Symbols are empirical estimates. The model predictions
show excellent agreement. Error bars in B.-D. are propagated from A.
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Figure 4.5: Clonal dynamics are frequency dependent. A-B. Results of the
full inference as a function of the minimal frequency threshold f̂th for τ−1 and θ−1.
C-D. Dynamical parameters as a function of clone frequency. The inference was
performed on separate subsets of clones sorted by their frequency in intervals nmin <
n̂ ≤ nmax, with nmin,max consecutive numbers in (2, 5, 10, 20, 100,∞). Error bars are
estimated as in Fig. 4.
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This justifies our hypothesis that the bulk sequencing of single chains captures well
the dynamics of αβ clonotypes.

For comparison, we also applied the naive inference procedure, which allows us to
include all 9 patients even when replicates are not available. This inference generally
gave much larger rates τ−1 and θ−1 (Fig. S4A), suggesting confounding effects of the
noise on both parameters (reversion to the mean for τ−1, and larger variance for θ−1).
Indeed, results obtained for a larger value of the frequency threshold (fth = 10−4,
Fig. S4B) gave smaller values, and in better agreement with the age dependence.

To ask whether the clonal dynamics depended on the cell type, we separately
analyzed the longitudinally sampled CD4 and CD8 repertoires of P6, the only indi-
vidual for which such data were available. The clone size distribution of CD4 falls
off with a larger exponent than that of CD8, meaning that its largest expanded
clones are relatively smaller (Fig. S5 A), as already noted Britanova et al. (2016).
We then applied the naive inference procedure with fth = 10−4 (since we did not
have replicates for the CD4 and CD8 repertoires). The inference (Fig. S5B) reveals
that CD4 clones turn over more slowly than CD8 cells (smaller τ−1), but also have
much smaller fluctuations in their sizes (smaller θ−1). This result is consistent with
a shorter tail of large clones and a larger α in CD4 than in CD8 (Fig. S5C).

The inference results can be used to predict the persistence of clones, whose
turnover has been discussed in the context of aging Britanova et al. (2016); Chu et al.
(2019); Gaimann et al. (2020). For a given individual, we define persistence as the
probability that a clone initially observed at frequency ≥ f̂th = 10−5 is re-sampled
at a later time. This probability strongly depends on the dynamics of turnover of
the TCR repertoire, and therefore on the age of the individual, as well as on the
time interval between the two samples (Fig. 4.4D). We can estimate this persistence
probability directly from data, and compare it to the predictions of our inferred
dynamics, showing excellent agreement. This analysis show that even moderately
large clones persist for many years and even decades in older individuals.

Our model assumes that clones have unique trajectories, but that the statisti-
cal properties of these trajectories are uniform. However, because of their distinct
histories and phenotypical compositions, clones may differ in those dynamical prop-
erties. To investigate that possibility, we asked whether the inferred time scales τ
and θ depended on the value of the clone size threshold f̂th. Low values of f̂th mean
that all clones are taken into account in the inference, while high values mean that
we focus on the largest clones only. We found that the values of both τ−1 and θ−1

increase with the threshold (Fig. 4.5A and B) for P3, P4, and P9, suggesting that
large clones tend to be more dynamic, with a faster turnover. Therefore, while the
overall trends reported in Fig. 4.4 are still correct, these results imply that the model
should be revisited to allow for frequency-dependent dynamics.

To measure the frequency dependence of the dynamic parameters more finely,
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we separately inferred τ and θ for clones sorted into contiguous intervals according
to their initial count n̂(t1). Both time scales showed an approximately linear depen-
dency on the logarithm of the initial frequency (Fig. 4.5 C and D). This confirms
the observation that large clones tend to have faster dynamics than small ones, es-
pecially in younger individuals. The two time scales τ and θ vary in concert, so
that their ratio remains approximately constant across frequencies (Fig. S6). As we
have argued before, this ratio is linked to the power-law exponent of the distribution
of clone sizes at steady state. This exponent can be read off as the slope of that
distribution on a double logarithmic scale, which it is consistently observed to be
constant in the data (Fig. S1D). Finally, we applied the naive inference procedure to
learn the frequency-dependent dynamics of clones in all 9 individuals. As expected,
this inference yielded more noisy and less stable results than the full inference, es-
pecially at low frequencies for which noise is largest (Fig. S7). The dependence of
the inferred parameters on clonal frequency vary across individuals, but confirm a
picture in which older individuals have more stable large clones.

4.1. Discussion
The sizes of T cell clones change constantly throughout the lifetime of an individual,
not only due to specific stimulation. We used data sampled on timescales of the order
of a year from individuals that did not undergo any strong identified antigenic stim-
ulations to learn the repertoire turnover dynamics. These dynamics include both
random unstimulated T cell proliferation and death as well as asymptomatic, or
weakly symptomatic antigenic stimulation. We showed that a geometric Brownian
motion correctly captures the clone dynamics. This model imposes strict relations
that link the exponent of the TCR clone size distribution at steady state, α, with
the parameters of the dynamics, τ and θ. We showed that, for all individuals, we
were able to predict the measured exponent α ≈ 1 from the inferred dynamical
parameters, suggesting that geometric Brownian motion is a good description of
the process. Although the actual timescales vary between individuals, with much
younger individuals having much faster clone turnover dynamics than older individ-
uals, their ratio is fixed. Indeed, as already noted on a larger cohort of individuals
in Ref. Gaimann et al. (2020), the exponent of the power-law distribution of clone
sizes does not depend on age.

The source of the faster turnover in younger individuals is not explained by our
analysis. It can be linked to a larger thymic output rate Yates (2014), imposing a
faster turnover. It could also be linked to more a rapid formation of new immune
memories at a young age. We did not attempt to separately learn the dynamics of
memory and naive pools, since we did not have sorted longitudinal data for which
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abundance information could be trusted. While it is sometimes assumed that larger
clones have a memory phenotype because they must have expanded, a recent study
in mice has shown that naive clones can be large as well de Greef et al. (2020). It
will be interesting to perform a separate analysis of careful sorted naive and memory
repertoires in the future using the method described here, especially for individuals
of different ages.

More generally, we expect clonal dynamics to be linked to the cellular pheno-
type, as our preliminary analysis showed for CD4 and CD8 cells. Phenotypes can
be characterized with increasing resolution using single-cell expression data Pai and
Satpathy (2021), which also provides paired TCR information Valkiers et al. (2022).
Future work combining longitudinal sampling with single-cell techniques could help
explore the relationship between neutral clonal dynamics and cell type. Addition-
ally, we know that TCR with similar sequences form clusters that often respond
to similar stimulants Dash et al. (2017); Glanville et al. (2017), and methods are
being developped to annotate repertoire with cluster membership Mayer-Blackwell
et al. (2021) or specificity Gielis et al. (2019); Montemurro et al. (2020); Sidhom
et al. (2021); Springer et al. (2021); Zhang et al. (2021b). As these annotation be-
come comprehensive, one will be able to study the dynamics of specificity clusters,
and to assess the persistence of specific immune memories across different immune
challenges.

Our current model is based on two effective parameters that describe the timescale
for clone turnover, τ , and the timescale of random changes, θ. Two major assump-
tions underlie this model. First, it assumes that antigenic stimulation happens
repeatedly on short time scales, so that its cumulated effect on longer time scales
look like random fluctuations of the net growth rate. Testing this assumption would
require longer time traces of the clonal dynamics, to look for memory effects in the
clonal growth rates. Second, it assumes that dynamical properties do not depend
on the clone size. As observed in Fig. 4.5, this assumption is only partially verified,
with clear violations for 2 of the youngest donors, in which the larger clones display
much faster dynamics than the smaller ones. The longidutinal analysis of larger
cohorts with a broad age distribution would be required to investigate this effect in
detail.

The turnover time scales we infer range from a few years to 50 years, depending
on the age of the individual. It has been shown that even sparsely sampled T-cell
repertoires can provide a fingerprint that uniquely identifies individuals Dupic et al.
(2021). The stability of this immune fingerprint is guaranteed for tens of years,
provided that the turnover rate is of the order of years or more, as we showed here.

Direct measurements of T cell lifetimes using heavy water De Boer et al. (2003)
give lifetimes of months for memory cells, to a few years for naive cells. These esti-
mates are consistent with our findings: our time scale τ is linked to the inverse of
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the net growth rate of the clone, which results from the balance between cell prolif-
eration and death, while experiments based on heavy water measure the turnover of
individual cells. For instance, memory cells are short lived, but also divide rapidly
to compensate for death, so that the size of memory clones remains stable. One may
also want to compare our estimate with the previously reported persistence time of
clonotypes believed to be of fetal origin, ≈ 37 years Pogorelyy et al. (2017). This
persistence time is not directly comparable to τ , which is the decay rate of the abun-
dance of each clone, but it is similar to the characteristic decay of the persistence
probability (Fig. 4.4D), which may be slower. Another caveat is that fetal clono-
types are also primarily naive and take up only a few percent of the repertoire, so
that they may not be representative of the overall properties of the clonal dynamics.

Our work was possible because we were able to calibrate the noise using replicate
samples. However, replicates are not always available. In this case, the dynamics can
still be learned for large clones: we showed using simulations that above a certain
frequency threshold, the sampling error becomes small and we can use empirical
observations to learn TCR repertoire dynamics directly from read counts. This
allows us to correctly estimate the dynamics of large clones without a noise model,
if the clones sizes are large at both time points. However, since the repertoire is
described by a power law distribution, the role of small clones is far from negligible.
An alternative to replicates may be to use close-by timepoints (relative to the time
scales of the dynamics) as surrogate replicates. While we had such time points
separated by one month for P1, P2 and P7, we did not attempt a full inference on
these samples: we did not manage learn a reliable noise model for these donors,
because we lacked both the raw sequencing reads and details about the processing
procedure (PCR amplification, error correction, etc). In particular, unlike uniquely
barcoded cDNA sequencing, PCR amplification of gDNA used for these donors
inflates rare clonotypes (as suggested by the low-frequency plateau in the clone size
distributions, see Fig. S1D), potentially confounding the analysis.

One of the main conclusions of our work is that repertoires are very dynamic
systems, with clone frequencies changing by orders of magnitude on timescales of
years, even in the absence of strong known stimulation. This observation challenges
our ability to identify responding clonotypes to direct immune stimulation, such as
vaccination or diseases. This work builds the ground for inference procedures that
not only correct for experimental and biological noise but also for the natural reper-
toire dynamics. The methods we designed are general and can be used on larger
cohorts of individuals presenting different health status, age, and immunodeficiencies
features. They provide a promising tool to better understand the maintenance and
efficiency of T-cells, enabling to quantify immunosenescence Zhang et al. (2021a),
which plays an important role in vaccines performance and cancer research.k
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4.2. Methods
4.2.1 Longitudinal data

The datasets analyzed in this study are summarized in Table S1, along with accession
number and links to databases.

Data was collected from 4 different studies, which uses two different techniques
for repertoire sequencing. Data from Britanova et al. (2016); Pogorelyy et al.
(2018c); Sycheva et al. (2018); Minervina et al. (2020) was generated by sequencing
TCR mRNA of PBMCs from healthy individuals, while data from Chu et al. (2019)
was obtained by directly sequencing genomic DNA (gDNA), as described in detail
in each original study.

Briefly, mRNA sequencing was done through cDNA synthesis with template
switch allowing for the addition of a unique molecular identifier (UMI), followed
by 2-step PCR amplification of the TCR loci (alpha and/or beta), multiplexing, se-
quencing on an Illumina platform, and processing using the MiXCR software package
Bolotin et al. (2015), to obtain lists of clonotypes (V and J segments and Comple-
mentarity Determining Region 3 nucleotide sequence) corrected for UMI multiplicity
and sequencing errors. gDNA sequencing was done by extracting genomic DNA and
performing multiplex PCR to amplify the TCR beta gene before sequencing on an
Illumina HiSeq system. Raw data processing was performed using closed software.
Since the raw data is not available, we used the processed data provided on the
ImmuneAccess platform.

4.2.2 Naive inference
The naive inference method directly uses the observed TCR clonal frequencies to
learn τ and θ parameters, assuming that they represent exactly the true frequencies:
f = f̂ = n̂/Nr. We aim here at maximizing directly the log-likelihood L(τ, θ) =
logP({(fi(t1), fi(t2))})|τ, θ), which can be expressed by integrating Eq.4.2:

P({(ln fi(t1), ln fi(t2))})|τ, θ)

=
Nc∏
i

G(ln fi(t2)| ln fi(t1); τ, θ)P (ln fi(t1)),
(4.5)

where

G(x|y; τ, θ) =
√

θ

2π∆t exp−θ(x− y −∆tτ−1)2

2∆t (4.6)

is the propagator of the Brownian motion, ∆t = t2 − t1 the time interval between
the two time points, and where we have assumed that Ncell is a constant of time.
Maximizing the log-likelihood with respect to τ and θ is equivalent to doing linear
regression of ln f(t2)− ln f(t1) against ∆t.
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4.2.3 Full inference
Using same-day replicates at time tj, we jointly learn the parameters (α, fmin, a, b)
of the clone-size distribution ρ(f) = Cf−1−α (for fmin ≤ f ≤ 1), and the noise
model P (n̂|f) = NegBin(n̂;Nrf,Nrf + a(Nrf)b) using the NoiSET software Ben-
souda Koraichi et al. (2021), where NegBin(n;x, σ) is a negative binomial of mean
x and variance σ. The learned parameters are reported in Fig. S1.

We then learn the parameters of the dynamics by maximizing the likelihood of
samples taken at two different time points, using the noise model to account for the
discrepancy between true frequencies and sequence counts: For one clone, the full
model likelihood reads

P(n̂i(t1) = n̂1, n̂i(t2) = n̂2)|τ, θ) =∫
[fmin,1]2

df1ρ(f1)df2

f2
G(ln f2| ln f1; τ, θ)P (n̂1|f1)P (n̂2|f2).

(4.7)

where the noise models are specific to each time point.
The maximum likelihood estimator is given by :

(τ ∗, θ∗) = argmax
(τ,θ)

Nc∏
i=1

P(n̂i(t1), n̂i(t2)|τ, θ)
P(n̂i(t1) ≥ Nrfth, n̂i(t2) > 0|τ, θ) , (4.8)

where the denominator accounts for the condition that the clone be included in
the analysis: f̂i(t) ≥ fth and n̂2 > 0. The choice to impose a threshold on the
first time point is justified by the fact we are learning the forward propagator of the
dynamics, which is conditioned on the initial frequency. Typically around 50-70% of
clones above threshold on the first time point remain above threshold in the second
time point. Likewise, similar percentages (40-80%) of clones above threshold in the
second time point were also seen in the first time point. This loss is expected since
the frequencies follow stochastic trajectories, many of which are likely to cross the
threshold between the two time points.

The persistence probability of Fig. 4D is linked to that normalization and is
computed as:

Ppers(τ, θ) = P(n̂i(t1) ≥ Nrfth, n̂i(t2) > 0|τ, θ)
P(n̂i(t1) ≥ Nrfth|τ, θ)

. (4.9)

Once the model is learned, the posterior distribution of fold changes si ≡ ln fi(t2)−
ln fi(t1) of each clone i is computed through

P(si = s|n̂1, n̂2, τ
∗, θ∗) =∫ 1

fmin
df1ρ(f1)G(ln f1 + s| ln f1; τ ∗, θ∗)P (n̂1|f1)P (n̂2|f1e

s)
P(n̂1, n̂2|τ ∗, θ∗)

.
(4.10)

The overall posterior distribution over all clones (solid lines in Fig. S3) is then given
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by Ppost(s) = (1/Nc)
∑Nc
i=1 P(si = s|n̂1, n̂2, τ

∗, θ∗). The prior distribution (dashed
line), by contrast, is directly given by G(ln f1 + s, ln f1|τ ∗, θ∗), which is independent
of f1.

When doing inference in each frequency bin, the product in (6.4) runs over
clones that fall in the bin, and the normalization in the denominator is replaced
by the probability to observe n̂i(t1) in the bin of interest, and n̂i(t2) > 0. The
maximization is performed using the minimize function from the Scipy package,
with the Sequential Least Squares Programming (SLSQP) method Virtanen et al.
(2020) with parameters tol=1e-8 and maxiter=300 and initial condition τ = 2, θ =
.5 and constraint θ−1 > 10−3.

4.2.4 Synthetic data
Synthetic data was generated by simulating Eq. 4.2 with a source term producing
new clones with rate S at initial size n = n0 = 40, and an absorbing boundary
condition at n = 1. We work with the x = lnn variable for convenience. The
simulation is initialized at steady state, which can be computed analytically De-
sponds et al. (2016); Mora and Walczak (2019a). The analytical solution gives us
the expected number of cells and clones as a function of the model parameters:
Ncell = S(n0 − 1)/(τ−1 − θ−1/2), and Nc = Sτ lnn0. Fixing the number of cells to
Ncell = 1010, we then compute the number of clones necessary to achieve that size,
Nc = Ncell(1 − τ/2θ) lnn0/(n0 − 1). We then draw the size ni(t1) = exi(t1) of each
clone i = 1, . . . , Nc from the continuous steady state distribution Desponds et al.
(2016):

ρx(x) =

Sτ (1− e−αx) if x ≤ x0 ≡ lnn0

Sτe−αx (eαx0 − 1) if x > x0,
(4.11)

with α = 2θ/τ .
Then the evolution of each clone from time t1 to t2 = t1 + ∆t is determined by

the modified propagator with absorbing boundary condition at x = 0:

Gabs(x|y) = G(x|y)− e−αyG(x| − y) (4.12)

where G(x|y) is defined in (4.6). In practice, we kill clone i with probability
1 − Psurv(xi(t1)) ≡ 1 −

∫∞
0 dxGabs(x|xi(t1)), which can be expressed in terms of

error functions. Otherwise, its new log-size xi(t2) is drawn from the distribution
Gabs(x|xi(t1))/Psurv(xi(t1)).

In addition, new clones are introduced during ∆t. We draw their number from
a Poisson distribution of mean S∆t, and their introduction times t from a uniform
distribution in the interval [t1, t2]. Then their dynamics are drawn in the same way
as for the initial clones, but with ∆t = t2 − t instead of t2 − t1.

Once the abundances (ni(t1) = exi(t1), ni(t2) = exi(t2)) have been determined, the
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number of reads n̂i(t1), n̂i(t2) from each time point is drawn from a negative binomial
distribution of mean 〈n̂i(t1)〉 = Nrni(t1)/Ncell and variance 〈n̂i(t1)〉+a〈n̂i(t1)〉b, and
likewise for n̂i(t2), with Nr = 106, a = 0.7 and b = 1.1.

4.2.5 Comparison to the VDJdb database
We downloaded the 2022-03-30 release of VDJdb Bagaev et al. (2020a) at https://
github.com/antigenomics/vdjdb-db/releases/download/2022-03-30/vdjdb-2022-03-30.
zip, and restricted our search to CDR3s associated to antigens from the follow-
ing species: CMV, InfluenzaA, EBV, SARS-CoV-2, HIV-1, HCV, YFV, HTLV-1,
DENV1, DENV3/4, HIV, HSV-2, M.tuberculosis, DENV2, HCoV-HKU1, HPV,
MCPyV, StreptomycesKanamyceticus, E.Coli, HIV1, HHV, PseudomonasAerugi-
nosa, PseudomonasFluorescens, SaccharomycesCerevisiae, SelaginellaMoellendorffii,
totalling 65616 CDR3 amino-acid sequences.

4.2.6 Code availability
All scripts to produce the figures can be found at https://github.com/statbiophys/
Inferring_TCR_repertoire_dynamics/.

https://github.com/antigenomics/vdjdb-db/releases/download/2022-03-30/vdjdb-2022-03-30.zip
https://github.com/antigenomics/vdjdb-db/releases/download/2022-03-30/vdjdb-2022-03-30.zip
https://github.com/antigenomics/vdjdb-db/releases/download/2022-03-30/vdjdb-2022-03-30.zip
https://github.com/statbiophys/Inferring_TCR_repertoire_dynamics/
https://github.com/statbiophys/Inferring_TCR_repertoire_dynamics/


4.3 Supplementary figure 69

4.3. Supplementary figure

ID age sex # clones # reads Tech DOI ref
P1 18-19 yo female 4.08 - 5.11·105 10.8 - 25.1·106 gDNA Chu et al. (2019)
P2 18-19 yo female 1.55 - 2.93·105 10.5 - 20.7·106 gDNA Chu et al. (2019)
P3 21-23 yo male 2.04 - 6.44·105 0.23 - 1.03·106 RNA Pogorelyy et al. (2018c)
P4 21-23 yo male 1.9 - 10.06·105 0.28 - 1.79·106 RNA Pogorelyy et al. (2018c)
P5 27-30 yo male 7.6 - 18.12·105 1.53 - 6.94·106 RNA Britanova et al. (2016)
P6 28-29 yo male 2.62 - 6.38·105 0.56 - 1.69·106 RNA Minervina et al. (2020)
P7 45-46 yo female 1.93 - 2.42·105 8.86 - 22.8·106 gDNA Chu et al. (2019)
P8 47-50 yo male 1.38 - 9.54·105 1.53 - 5.93·106 RNA Britanova et al. (2016)
P9 57-58 yo male 3.25 - 7.29·105 0.62 - 1.64·106 RNA Sycheva et al. (2018)

Table 4.1: Summary of the repertoire samples and individuals used in this study.
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Figure S1: Validation of the inference method for time point with very different
number of reads. Parameters: all 9 combinations of τ−1 = (0.1, 0.5, 1) year−1 and
α = (1.11, 1.17, 1.25). The number of reads are Nr(t1) = 106 and Nr(t2) = 105.
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∑
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values due to small number errors, the prior and posterior distribution agree well.
F. Comparison of posteriors across individuals, showing how both the average decay
and its spread decrease with age.
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Figure S3: Naive inference of the dynamical parameters on all individuals, with (A)
fth = 10−5 and (B) fth = 10−4.
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Figure S6: The inference was performed on separate subsets of clones sorted by
their frequency in intervals nmin < n̂ ≤ nmax, with nmin,max consecutive numbers in
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CHAPTER

5
IMMUNE FINGERPRINTING THROUGH

REPERTOIRE SIMILARITY

In chapter 5, I am explaining the work behind Immprint, published in Dupic et al.
(2021), a method designed in collaboration with Thomas Dupic, for which I helped
to address manipulate TCR RepSeq abundances data to conceive a classifier tool to
distinguish two individuals thanks to their TCR repertoire identity ("Immprint").
Thomas Dupic was the leading scientist in the research published in this paper,
and my other main contribution here was to test the method’s robustness to acute
infections and possible changes in the TCR repertoire information with time. To
do so, we exploited data analysis I had already performed on actual data in chapter
4, and use the stochastic population dynamics model also shown in chapter 4 to
generate immune repertoire trajectories to validate our tool on synthetic data. My
actual work here was to understand basal dynamics of abundances of T cells in the
time scale of several years to be able to generate synthetic data and test our Immprint
scores and their robustness versus time. I also helped Thomas Dupic conceiving the
classifier thanks to my previous work working with T-cell abundances on this kind
of data.

5.1. Introduction and motivation
Personalized medicine is a frequent promise of next-generation sequencing. These
high-throughput and low-cost sequencing technologies hold the potential of tailored
treatment for each individual. However, progress comes with privacy concerns.
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Genome sequences cannot be anonymized: a genetic fingerprint is in itself enough
to fully identify an individual, with the rare exception of monozygotic twins. The
privacy risks brought by these pseudonymized genomes have been highlighted by
multiple studies Homer et al. (2008); Naveed et al. (2015); Sweeney et al. (2013),
and the approach is now routinely used by law enforcement. Sequencing experi-
ments that focus on a limited number of expressed genes should be less prone to
these concerns. However, as we will show, B- and T-cell receptor (BCR and TCR)
genes are an exception to this rule.

BCR and TCR are randomly generated through somatic recombination Hozumi
and Tonegawa (1976), and the fate of each B- or T-cell clone depends on the envi-
ronment and immune history. The immune repertoire, defined as the set of BCR
or TCR expressed in an individual, has been hailed a faithful, personalized medical
record, and repertoire sequencing (RepSeq) as a poential tool of choice in personal-
ized medicine Robins (2013); Attaf et al. (2015); Woodsworth et al. (2013); Bradley
and Thomas (2019); Davis and Boyd (2019). In this report we show that each per-
son’s repertoire is truly unique. We describe how, from small quantities of blood
(blood spot or heel prick), one can extract enough information to uniquely identify
an individual, providing an immune fingerprint, which we call “Immprint”.

Given two samples of peripheral blood respectively containingM1 andM2 T cells,
we want to distinguish between two hypothetical scenarios: either the two samples
come from the same individual (“autologous” scenario), or they were obtained from
two different individuals (“heterologous” scenario), see Fig. S1a.

TCR are formed by two protein chains α and β. They each present a region of
high somatic variability, labeled CDR3α and CDR3β, randomly generated during
the recombination process. These regions are coded by short sequences (around
50 nucleotides), which are captured by RepSeq experiments. The two chains are
usually not sequenced together so that the pairing information between α and β

is lost. Most experiments focus on the β chain, and we will focus on that chain,
but the results are largely independent of this choice. CDR3β sequences are very
diverse, with more than 1040 possible sequences ?. For comparison, a human TCR
repertoire is composed of 108 to 1010 unique clonotypes Qi et al. (2014); Lythe et al.
(2015). As a result, most of the sequences found in a repertoire are “private”.

To discriminate between the autologous and heterologous scenarios, one can
count the number of nucleotide receptor sequences, S, shared between the two sam-
ples. Samples coming from the same individual should have more receptors in com-
mon because T-cells are organized in clones of cells carrying the same TCR. By
contrast, S should be low in pairs of samples from different individuals, in which
sharing is due to rare convergent recombinations. Appropriately setting a threshold
to jointly minimize the rates of false positives and false negatives (Fig. S1b), we can
use S as a classifier to distinguish autologous from heterologous samples.
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Figure S1: a) The two samples A and B can either originate from the same individual
(autologous) or two different individuals (heterologous). In both scenarios, sequences
can be shared between the two samples, but their quantity and quality vary. b)
Schematic representation of the distribution of the S or I scores in both scenarios.
The dashed vertical line represents the threshold value. c) Expected value of S
and I for different pairs of samples, sampled from the same individual (in blue) or
different ones (orange). Red dots represent samples extracted from pairs of twins.
The dashed lines represents the theoretical upper bound (see Methods) for both
S and I (γ = 12). d) Distribution of S in both scenarios (orange heterologous,
blue autologous) for different pairs of samples, M = 5000. The distributions in red
correspond to a pair of samples extracted from twins. e) Detection Error Trade-off
(DET) graph for both summary statistics and different sample sizes M . I (γ =
12) outperforms S in all scenarios. f) AUROC (Area Under Receiver Operating
Characteristic), as a function of M . The AUROC is a traditional measure of the
quality of a binary classifier (a score closer to one indicates a better classifier). The
results are shown for S and I both in the default case (only the β chain considered)
or for the full (α-β) receptor.
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The S score can be improved upon by exploiting the fact that some receptors
are much more likely than others to be generated during V(D)J-recombination,
with variations in generation probability (Pgen, Murugan et al. (2012); Marcou et al.
(2018); Sethna et al. (2020)) spanning 15 orders of magnitude. Public sequences
(with high Pgen) are likely to be found in multiple individuals Venturi et al. (2008),
while rare sequences (low Pgen) are unlikely to be shared by different individuals,
and thus provide strong evidence for the autologous scenario when found in both
samples. To account for this information, we define the score:

I =
∑

shared s

[ln (1/Pgen(s))− γ] , (5.1)

which accounts for Shannon’s “surprise” ln(1/Pgen)—a measure of unexpectedness—
associated with each shared sequence s, so that rare shared sequences count more
than public ones. The constant γ depends on the repertoire’s clonal structure and
is set to 12 in the following (see Methods for an information-theoretic derivation).
Pgen is computed using models previously trained on data from multiple individu-
als Marcou et al. (2018). Small differences reported between the Pgen of distinct
individuals justify the use of a universal model Sethna et al. (2020).

We tested the classifiers based on the S and I scores on TCRβ RepSeq datasets
from 656 individuals Emerson et al. (2017). Sequences were downsampled to mimic
experiments whereM1 = M2 = M cells were analyzed (including a procedure to cor-
rect for the limited diversity of the sampled repertoire relative to the full repertoire,
see Methods ). Similar results may be obtained when M1 and M2 are different (see
Methods). In Fig. S1c, we plot the mean value of S (over many draws of M = 5000
receptors) for each individual (autologous scenario, in blue) and between pairs of dif-
ferent individuals (heterologous scenario, in orange). The two scenarios are clearly
discernable under both scores. This result holds for pairs of monozygotic twins ob-
tained from a distinct dataset Pogorelyy et al. (2018a) (pink dots), consistent with
previous reports that twins differ almost as much in their repertoires as unrelated
individuals Zvyagin et al. (2014); Pogorelyy et al. (2018a); Tanno et al. (2020).
Heterologous scores (orange dots) vary little, and may be bounded from above by
a theoretical prediction (dashed line) based on a model of recombination Elhanati
et al. (2018) (see Methods). On the other hand, autologous scores (blue dots) show
several orders of magnitude of variability across individuals. These variations stem
from the clonal structure of the repertoire, and correlates with measures of diversity,
which is known to vary a lot between individuals and correlates with age Britanova
et al. (2016), serological status, and infectious disease history Sylwester et al. (2005);
Khan et al. (2002). To explore the worst case scenario of discriminability, hereafter
we will focus on the individual with the lowest autologous S found in the dataset.

The sampling process introduces an additional source of variability within each
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individual. Two samples of blood from the same individual do not contain the exact
same receptors, and the values of S and I is expected to vary between replicates.
Example of distributions for S between different pairs of replicates in the same
(blue) and in different individual are given in Fig. S1d. The distribution of S is well-
approximated by a Poisson distribution, while I follows approximately a compound
distribution of a normal and Poisson distributions (see Methods for details). Armed
with these statistical models of variations, we can predict upper bounds for the
false negative and false positive rates. As seen from the detection error trade-off
(DET) graph Fig. S1e, the Immprint classifier performs very well for a few thousand
receptors with an advantage for I.

With 10, 000 cells, corresponding to ∼ 10 µL of blood, Immprint may simulta-
neously achieve a false positive rate of < 10−16 and false negative rate of < 10−6,
allowing for the near-certain identification of an individual in pairwise comparisons
against the world population ∼ 1010. When a large reference repertoire has been
collected (M1 = 1, 000, 000, corresponding from ∼ 1mL of blood), an individual can
be identified with just 100 cells.

The AUROC estimator (Area Under the Curve of the Receiver Operating Char-
acteristic), a typical measure of a binary classifier performance, can be used to
score the quality of the classifier with a number between 0.5 (chance) and 1 (per-
fect classification). The I score outperforms the S score (Fig. S1f), particularly
above moderate sample sizes (M ≈ 5000). Both scores can be readily general-
ized to the case of paired receptors TCRαβ, when the pairing of the two chains
is available (through single-cell sequencing Dash et al. (2011); Redmond et al.
(2016); Grigaityte et al. (2017) or computational pairing Howie et al. (2015)), using
Pgen (α, β) = Pgen (α) × Pgen (β) Dupic et al. (2018) for the generation probability
of the full TCR. Because coincidental sharing of both chains is substantially rarer
than with the β chain alone, using the paired chain information greatly improves
the classifier.

The previous results used samples obtained at the same time. However, immune
repertoires are not static: interaction with pathogens and natural aging modify their
composition. The evolution of clonal frequencies will decrease Immprint’s reliability
with time, especially if the individual has experienced immune challenges in the
meantime.

To study the effect of short-term infections, we analyzed an experiment where
6 individuals were vaccinated with the yellow fever vaccine, which is regarded as a
good model of acute infection, and their immune system was monitored regularly
through blood draws Pogorelyy et al. (2018c). We observe an only moderate drop in
S caused by vaccination (Fig. S2a). This is consistent with the fact that infections
lead to the strong expansion of only a limited number of clones, while the rest of
the immune system stays stable DeWitt et al. (2015); Wolf et al. (2018); Qi et al.
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(2016); ?. While other types of infections, auto-immune diseases, and cancers may
affect Immprint in more substantial ways, our result suggests that it is relatively
robust to changes in condition.

We then asked how stable Immprint is over long times. Addressing this issue
is hampered by the lack of longitudinal datasets over long periods, so we turn to
mathematical models Borghans and De Boer (2007); Thomas-Vaslin et al. (2008);
Desponds et al. (2016); Lythe et al. (2015); Greef et al. (2019) to describe the
dynamics of the repertoire. Following the model of fluctuating growth rate described
in Ref. Desponds et al. (2016), we define two typical evolutionary timescales for
the immune system: τ , the typical turnover rate of T-cell clones, and θ, which
represents the typical time for a clonotype to grow or shrink by a factor two as its
growth rate fluctuates. The model predicts a power-law distribution for the clone-
size distribution, with exponent −1− τ/2θ. This exponent has been experimentally
measured to be ≈ −2, which leaves us with a single parameter τ , and θ = τ/2. An
example of simulated evolution of Immprint with time is shown in Fig. S2b. The
highlighted histogram represents a data point at two years obtained from Chu et al.
(2019). While a fit is possible for this specific individual, the τ parameter is not
universal, and we expect it to vary between individuals, especially as a function of
age. In Fig. S2c we explore a range of reasonable values for the clone turn-over rate
τ (from 6 months to 10 years), and their effect on the stability of Immprint. We
observe that for most individuals, bar exceptional events, Immprint should conserve
its accuracy for years or even decades.

In summary, we demonstrated that the T-cells present in small blood samples
provide a somatic and long-lived barcode of human individuality, which is robust
to immune challenges and stable over time. Unlike genome sequencing, repertoire
sequencing can discriminate monozygotic twins with the same accuracy as unre-
lated individuals. However, a person’s unique immune fingerprint can be completely
wiped out by a hematopoietic stem cell transplant Buhler et al. (2020). Immprint
is implemented in a python package and webapp (see Methods) allowing the user
to determine the autologous or heterologous origin of a pair of repertoires. Be-
yond identifying individuals, the tool could be used to check for contamination or
labelling errors between samples containing TCR information. The repertoire in-
formation used by Immprint can be garnered not only from RepSeq experiments,
but also from RNA-Seq experiments, which contain thousands of immune receptor
transcripts Li et al. (2017); Bolotin et al. (2017). Relatively small samples of im-
mune repertoires are enough to uniquely identify an individual even among twins,
with potential forensics applications. At the same time, unlike genetic data from
genomic or mRNA sequencing, Immprint provides no information about kin rela-
tionships, very much like classical fingerprints, and avoids privacy concerns about
disclosing genetic information shared with non consenting relatives.
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5.2. Methods

5.2.1 Datasets & Pre-processing

We use four independant RepSeq datasets in this study: (i) genomic DNA from
Peripheral blood mononuclear cells (PBMCs) from 656 healthy donors Emerson
et al. (2017); (ii) cDNA of PBMCs sampled from three pairs of twins, before and
after a yellow-fever vaccination Pogorelyy et al. (2018c); (iii), (iv) two longitudinal
studies of healthy adults Chu et al. (2019); Britanova et al. (2016) .

CDR3 nucleotide sequences were extracted with MIGEC Shugay et al. (2014)
(for the second dataset) coupled with MiXCR Bolotin et al. (2015). We also extract
the frequency of reads from the three datasets. The non-productive sequences were
discarded (out-of-frame, non-functional V gene, or presence of a stop codon). The
generation probability (Pgen) was computed using OLGA Sethna et al. (2019), with
the default TCRβ model. The frequency of each clone was estimated through the
number of reads, which we use as an imperfect proxy for the number of cells.

5.2.2 Discrimination scores

To discriminate between the autologous and heterologous scenarios, we introduce a
log-likelihood ratio test between the two possibilities:

I =
∑
s

ln P (y1(s), y2(s)|autologous)
P (y1(s), y2(s)|heterologous) , (5.2)

where y1(s) = 1 if the sequence s is found in sample 1, and 0 otherwise; likewise
y2(s) = 1 if s is in sample 2. The sum runs over all potential sequences s, including
unseen ones. To be present in a sample, a sequence s first has to be present in
the repertoire. This occurs with probability 1− (1− p(s))Nc , where Nc is the total
number of clonotypes in the repertoire, and p(s) is the probability of occurence of
sequence s (resulting from generation and selection, see below). Second, it must
be picked in a sample of size M , with probability 1 − (1 − f)M ≈ Mf (assuming
Mf � 1) depending on its frequency f , which is distributed according to the clone
size distribution ρ(f). We checked that f(s) and Pgen(s) were not correlated). Then
one can write

P (y1(s) = 1, y2(s) = 1 | autologous) ≈
(
1− e−Ncp(s)

)
M1M2

∫
df ρ(f) f 2, (5.3)

P (y1(s) = 1, y2(s) = 0 | autologous) ≈
(
1− e−Ncp(s)

)M1

Nc
and 1↔ 2, (5.4)

P (y1(s) = 0, y2(s) = 0 | autologous) ≈ 1−
(
1− e−Ncp(s)

)M1 +M2

Nc
, (5.5)



5.2 Methods 83

where we’ve used
∫
df ρ(f) f = 1/Nc. For the heterologous case the probability

factorizes as:

P (y1(s), y2(s) | heterologous) = P1(y1(s))P2(y2(s)), (5.6)

with
Pa(ya(s) = 1) ≈

(
1− e−Ncp(s)

)Ma

Nc
, a = 1, 2. (5.7)

Since only the term y1(s) = y2(s) = 1 (shared sequences) is different between the
autologous and heterologous cases, we obtain:

I =
∑

shared s

[
ln(N2

c 〈f 2〉)− ln
(
1− e−Ncp(s)

)]
. (5.8)

Further assuming Ncp(s) � 1, and p(s) = Pgen(s)q−1 (where q accounts for se-
lection Elhanati et al. (2018) and Pgen(s) is the probability of sequence generation
Marcou et al. (2018)), the score simplifies to Eq. 5.1, with γ = − ln(qNc〈f 2〉) =
ln(q−1〈f〉/〈f 2〉). The factor γ depends on unknown parameters of the model, but
can be estimated assuming a power-law for the clone size distribution Touzel et al.
(2020), ρ(f) ∝ f−2 extending from f = 10−11 to f = 0.01, and q = 0.01 Elhanati
et al. (2018), yielding γ ≈ 12.24. Alternatively we optimized γ to minimize the
AUROC, yielding γ ≈ 15. Since performance degrades quickly for larger values, we
conservatively set γ = 12.

5.2.3 Estimating mean scores from RepSeq datasets
To estimate the autologous S and I of two samples of size M1 and M2 in the
absence of true replicates, we computed their expected values from a single dataset
containing N reads, from which two random subsamples of sizes M1 and M2 were
taken. The mean value of S is equal to 〈S〉 = ∑

s(1−(1−f(s))M1)(1−(1−f(s))M2),
where f(s) is the true (and unknown) frequency of sequence s. A naive estimate of
〈mS〉 may be obtained by repeatly resampling subsets of sizes M1 and M2 from the
observed repertoire, calculate S for each draw, and average. One get the same result
by replacing f(s) by f̂s = n(s)/N in the previous formula, where n(s) is the number
of s reads in the full dataset, and N = ∑

s n(s). However, this naive estimate leads
to a systematic overestimate of the sharing (visible when compared with biological
replicates, simply because this procedure overestimates the probability of resampling
rare sequences, in particular singletons whose true frequency may be much lower that
1/N . A similar bias occurs when computing I. To correct for this bias, we look for
a function h(n) that satisfies for all f :

〈h(n)〉 ≡
∑
n

(
N

n

)
fn(1− f)N−nh(n) = (1− (1− f)M1) (1− (1− f)M2), (5.9)
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so that 〈S〉 and 〈I〉 can be well approximated by:

〈S〉 ≈
∑
s

h(n(s)), (5.10)

〈I〉 ≈ −
∑
s

h(n(s)) [ln(1/Pgen(s))− γ] . (5.11)

Expanding the right-hand side of Eq. 5.9 into 4 terms, we find that h(n) =
1− gM1(n)− gM1(n) + gM1+M2(n) satisfies Eq. 5.9 provided that:

∑
n

(
N

n

)
fn(1− f)N−ngM(n) = (1− f)M . (5.12)

Under the change of variable x = f/(1− f), the expression becomes:

∑
n

(
N

n

)
xngM(n) = (1 + x)N−M =

∑
n

(
N −M

n

)
xn. (5.13)

Identifying the polynomial coefficients in xn on both sides yields:

gM(n) =
(
N −M

n

)/(
N

n

)
. (5.14)

These corrected estimates agree with the direct estimates using biological replicates).

Similarly, 〈S〉 and 〈I〉 in heterologous samples can be estimated using:

〈S〉 ≈
∑
s

[1− gM1(n(s))][1− gM2(n′(s))], (5.15)

〈I〉 ≈
∑
s

[1− gM1(n(s))][1− gM2(n′(s))] [ln(1/Pgen(s))− γ] . (5.16)

where n(s) and n′(s) are the empirical counts of sequence s in the two samples.

Theoretical upper bound on heterologous scores

When the two samples were extracted from two different people (heterologous sce-
nario), we can use the universality of the recombination process to give upper bounds
on the values of S and I. These bounds are represented by the dashed lines in
FigS1c). If two samples of respectively M1 and M2 unique sequences are extracted
from two different individuals, the number of shared sequences between them is
given by Elhanati et al. (2018):

〈S〉heterologous ≤
∑
s

(
1− (1− p(s))M1

) (
1− (1− p(s))M2

)
/M1M2

∑
s

p(s)2 = M1M2〈p(s)〉.

(5.17)
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p(s) is the probability of finding a sequence s in the blood. Following Elhanati et al.
(2018), we make the approximation p(s) = Pgen(s)q−1, where the q = 0.01 factor
is the probability that a generated sequences passes selection. Then 〈p(s)〉 can be
estimated from the mean over generated sequences. Similarly, we can estimate I as

〈I〉heterologous /M1M2
∑
s

p(s)2 [ln (1/Pgen(s))− γ] = −M1M2〈p(s)[γ + ln(qp(s))]〉,

(5.18)

which is also estimated from the mean over generated sequences.

5.2.4 Error rate estimates

To make the quantitative predictions shown in Fig. S1, we need to constrain the tail
behavior of the distributions of S and I, for the two scenarios.

The S statistic can be rewritten as a sum of Bernouilli variables over all possible
sequences, each with a parameter corresponding to its probability of being present
in both samples, either in the autologous or the heterologous case. Therefore S
is a Poisson binomial distribution, a sum of independent Bernouilli variables with
potentially different parameters. The variance and tails of that distribution are
bounded by those of the Poisson distribution with the same mean, denoted by ma

for the autologous case, and mh for the heterologous case).

Thanks to that inequality, the rates of false negatives and false positives for a
given threshold r are bounded by:

P (S < r|autologous) ≤ Q(r+1,ma), P (S > r|heterologous) ≤ 1−Q(r+1,mh),
(5.19)

where Q is the regularized gamma function, which appears in the cumulative dis-
tribution function of the Poisson distribution. The mean autologous score ma is
estimated from experimental data: we use the smallest value of 〈S〉 in the Emerson
dataset and Eq. 5.10. To compute mh, we use the semi-theoretical prediction made
using the universality of the recombination process, Eq. 5.17.

Similarly, I can be viewed as a sum of S independent random variables, all fol-
lowing the distribution of ln(1/Pgen) − γ. However, this distribution differs in the
two scenarios. Sequences shared between more than one donor have an higher prob-
ability of being generated, their ln(Pgen) distribution has higher mean and smaller
variance.

The sum is composed of a relatively large number of variables in most realistic
scenarios. Hence, we rely on the central limit theorem to approximate it by a normal
distribution, of mean and variance proportional to S. Explicitly:
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P (I < r|autologous) = 1
2

∞∑
S=0

(ma)S e−ma
S!

1 + erf
 r − S〈ln(1/Pgen)− γ〉√

2SVar[ln(1/Pgen)− γ]

 ,
(5.20)

P (I > r|heterologous) = 1
2

∞∑
S=0

(mh)S e−mh
S!

1− erf
 r − S〈ln(1/Pgen)− γ〉shared√

2SVar[ln(1/Pgen)− γ]shared

 .
(5.21)

The AUROC are computed based on these estimates, by numerically integrating the
true positive rate P (S, I < r|heterologous) with respect to the false negative rate
P (S, I < r|autologous) as the threshold r is varied.

5.2.5 Modeling the evolution of autologous scores
We use the model of Ref. Desponds et al. (2016) to describe the dynamics of indi-
vidual T- or B-cell clone frequencies f under a fluctuating growth rate reflecting the
changing state of the environment and the random nature of immune stimuli:

df

dt
=
[
−1
τ

+ 1
2θ + 1√

θ
η(t)

]
f(t), (5.22)

where η(t) is a Gaussian white noise with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t− t′).
With the change of variable x = ln(f), these dynamics simplify to a simple

Brownian motion in log-frequency: ∂tx = −τ−1 + θ−1/2η(t). In that equation, τ
appears as the decay rate of the frequency, while θ is the timescale of the noise, in-
terpreted as the typical time it takes for the frequency to rise or fall by a logarithmic
unit owing to fluctuations. Considering a large population of clone, each with their
independent frequency evolving according to Eq. 5.22, and a source term at small
f corresponding to thymic exports, one can show that the steady-state probability
density function of f follows a power-law Desponds et al. (2016), ρ(f) ∝ f−α, with
exponent α = 1 + 2θ/τ . α was empirically found to be ≈ 2 in a wide variety of
immune repertoires Weinstein et al. (2009); ?); Oakes et al. (2017); Touzel et al.
(2020), implying 2θ ≈ τ . The turn-over time τ is unknown, and was varied from
1/2 year to 10 years in the simulations.

We simulated the evolution of human TRB repertoires by starting with the
empirical values of the frequencies of each observed clones, f(s, 0) = f̂(s, 0) =
n(s, 0)/N from the analysed datasets. A sample of size M was randomly selected
with respect to these frequencies, and the frequencies of the clones captured in
that sample were then evolved with a time-step of 2 days using Euler-Maruyama’s
method, which is exact in the case of Brownian motion. Clones with frequencies
falling below 10−11 (corresponding to a single cell in the organism) were removed.
At each time t > 0, we measured the mean value of S with the formula ∑s(1− (1−
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f(s, t))M) where the sum runs over the sequences captured in the initial sample.
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Figure S1: Comparison between the mean of S (autologous case), and three common
diversity measures: the number of unique sequences found in the dataset (top left),
the Shannon index, −∑ f̂s ln f̂s (top right), the Simpson index (bottom left), and
the total number of reads in each datasets (bottom right). All the diversity measures
show a strong correlation with S, but the correlation with the sequencing depth is
low.
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Figure S2: Detection Error Trade-off (DET) graph for both summary statistics,
between a large sample (full dataset, M1 = 106) and a smaller one, of size M2 = M .



5.3 Supplementary figures 89

0 2000 4000
rank

28

26

24

22

20

18

m
ea

n 
of

 ln
(P

ge
n
)

All
Shared

0 200 400
rank

24

22

20

m
ea

n 
of

 ln
(P

ge
n
)

Shared
Shared, CMV+ donors
Shared, CMV­ donors

Figure S3: Left: Mean value of Pgen as a function of the rank of the clonotype,
for generic sequences (blue) and sequences shared between more than two donors
(orange). The mean stays flat indicating that the probability of being generated does
not generally depend on the clonotype size. There is an exception (black rectangle),
shown as a close-up on the right panel. The top twenty clones, when shared between
donors, have a smaller probability of being generated than expected by chance. This
difference is likely to be driven by convergent selection against common pathogens,
since CMV positive donors show a more prononced effect than CMV negative ones.
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CHAPTER

6
NOISET

In chapter 6, I explain through the designing of a software which are the different
analyses to perform on longitudinal TCR RepSeq data when wanting to decipher the
dynamics of T-cell abundances. My starting point was first to build a python library
to use easily for future needs the methods developed in Puelma Touzel et al. (2020)
to infer sampling and experimental noise from RepSeq data and use this knowledge
to detect significant expansion or contraction of TCR clonal abundances between
two-time points. I also develop in the chapter the improvements I achieved for these
two tasks and new features to use for anyone who is working with this kind of data.
My work here was to understand the different probabilistic models that one can use
to assess experimental noise (and sampling noise) described in the introduction of
this manuscript. Model selection here is not developed but can be done regarding
each practical case: one can compare the likelihood of the model, or the BIC score
if models do not have same number of parameters. Another important point is the
computation time, which can be a reason to prefer a model to another.

6.1. Introduction
Cells of the adaptive immune system, T and B lymphocytes, recognize molecules for-
eign to our body and protect us against pathogenic threats. These cells also have the
ability to eliminate cells that harbor anomalies, such as cancer cells. Lymphocytes
perform this discrimination task between potentially dangerous and normally func-
tioning “self" molecules using specialized receptors on their surface that constantly
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sample and bind molecules in our organisms. Each cell has one type of receptor and
the system relies on a large diversity of a repertoire of different receptors expressed
on over 109 different B or T cells to protect the organism against infections Robins
et al. (2009); ?); Lythe et al. (2015); DeWitt et al. (2016).

The composition of the repertoire contains information about past infections
and conditions. Reading this information requires quantitatively understanding the
natural repertoire dynamics. Upon recognition of a pathogenic molecule, the recog-
nizing cell proliferates making many cells with the same receptor, forming a clone,
which enables fast infection clearance. New cells are constantly produced and in-
troduced into this diverse repertoire. Additionally to specific stimulation, cells also
undergo random divisions. Each cell has a finite lifetime and clones can go extinct
if all the cells of that clone die. Together these processes define a natural dynamics
of the repertoire, which leads to a constantly changing set of different cells present
at different frequencies.

High-Throughput Repertoire Sequencing (RepSeq) of T and B cell receptors
(TCR and BCR) Weinstein et al. (2009); Robins et al. (2009); Boyd et al. (2009);
Benichou et al. (2012); Six et al. (2013); Robins (2013); Georgiou et al. (2014);
Heather et al. (2017); Minervina et al. (2019b); Rubelt et al. (2017) enables us to
study the dynamics of lymphocytes at the resolution of single clones, by comparing
their concentrations across timepoints or conditions. To detect biologically rele-
vant clones, one must be able to distinguish true differences in clone frequencies
from experimental noise. This variability has three sources. First, laboratories use
various sequencing and sample preparation protocols using either gDNA or cDNA
(with or without unique molecular identifiers), with different outcomes in terms of
amplification bias and errors Heather et al. (2017); Barennes et al. (2020). This
makes it difficult to reliably estimate TCR or BCR clonal frequencies from sequence
counts. Secondly, in the case of cDNA based sequencing, these uncertainties are not
solely due to different sample preparation but have a more fundamental, biological
source. mRNA is produced in bursts Elowitz et al. (2002); Ozbudak et al. (2002);
Cai et al. (2006); Taniguchi et al. (2010); Hornos et al. (2005), which adds a natural
longtailed noise to the sequencing read distribution. Thirdly, one must translate
immune information contained in a few milliliters of blood to the whole repertoire.
To describe these sources of variability, one needs a probabilistic approach.

Puelma Touzel et al. Puelma Touzel et al. (2020) developed a statistical model to
identify responding clones using sequence counts in longitudinal RepSeq data. This
model captures features of a repertoire response to a single, strong perturbation
(e.g. yellow fever vaccination), giving rise to a fast transient response dynamics.
The method was proposed as an alternative to commonly used tests such as Fisher’s
exact test Balachandran et al. (2017) or beta binomial models Rytlewski et al.
(2019). Its main innovation is to account for the different sources of biological and
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experimental noise in the clone count measurements in a Bayesian way, allowing for
a more reliable detection of expanded or contracted clones.

Here we briefly review the ideas behind the method that calibrates the noise
and we introduce NoisET (Noise sampling learning and Expansion detection of
TCRs), an easy-to-use python package that implements this method and extends
it to datasets of diverse origin describing the clonal repertoire response to acute
infections. We also review several applications of this approach.

6.2. Model
In order to correctly identify expanding or contracting clonotypes, whether after
direct antigenic stimulation or due to random cell division and death, we need to
correctly separate biological and experimental noise from the lymphocyte dynamics.
The main idea behind the Bayesian probabilistic modeling method implemented in
the NoisET software is learning probabilistic distributions describing sampling and
experimental noise from empirical frequencies of TCR counts in biological replicate
samples from the same individual. In this section we introduce the two types of
models implemented in NoisET: the noise model and the response model.

6.2.1 Modeling experimental noise
TCR sequencing (TCRseq) methods, depending if they are based on DNA or RNA
input, produce data with different characteristics. For example, RNA-based meth-
ods allow for the usage of unique molecular identifiers (UMI) to limit PCR amplifi-
cation bias and sequencing errors. Non-UMI methods are better in capturing rare
clones which motivates their frequent usage Barennes et al. (2020). During this first
step, NoisET learns at the same time the exponent of the underlying power-law
TCR frequency distribution, ρ(f) Weinstein et al. (2009) and the parameters of
error model between the empirical abundance of one specific TCR clone n̂ and its
true frequency f : P (n̂|f). NoisET has also the power to learn these distributions
constraining the size of the clones we want to take into account for the analysis.

For each TCR clone, the likelihood to sample n̂ reads from the first biological
replicate and n̂′ reads from the second biological replicate is:

P(n̂, n̂′|Θ) =
∫ 1

fmin
dfρ(f |Θ)P (n̂|f,Θ)P (n̂′|f,Θ), (6.1)

where Θ are the parameters of the noise model which define the error model P (n̂|f),
fmin corresponds to the minimum clonal frequency for each individual, and ρ(f),
which is the clonal frequency prior known to be a power-law distribution ∝ fα

Weinstein et al. (2009); Mora and Walczak (2019a). NoisET learns the parameters
of the noise model Θ by maximizing the log-likelihood of the observed TCR counts,
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n̂, n̂′, from the two biological replicates:

Θ∗ = argmax
Θ

Nobs∏
i=1

P(n̂i, n̂′i|Θ). (6.2)

Since in RepSeq samples we only partially sample an individual’s repertoire, the
likelihood in Eq. 6.1 needs to be modified. We condition the likelihood on observing
that specific clone in at least one of the two replicates: P(n̂+ n̂′ > 0). The modified
likelihood becomes P(n̂, n̂′|n̂ + n̂′ > 0) = P(n̂, n̂′, n̂ + n̂′ > 0)/P(n̂ + n̂′ > 0). We
can also choose to learn the noise model only on clones having a size larger than
a certain threshold. In this case the likelihood in Eq. 6.1 becomes: P(n̂, n̂′|n̂ >

n̂th, n̂
′ > n̂th) = P(n̂, n̂′, n̂ > n̂th, n̂

′ > n̂th)/P(n̂ > n̂th, n̂
′ > n̂th).

To take into account different possible sources of noise due to the various RepSeq
method, NoisET gives the choice of three different probabilistic distributions to learn
the biological and experimental noise in the measured TCR abundances, P (n̂|f):
• The Poisson distribution, P (n̂|f) = Poisson(fNr). In this case, the noise

parameters Θ are the exponent α of the clone-size distribution ρ(f) = Cfα

and the minimum clonal frequency in Eq. 6.1, fmin. Nr is the total number of
reads in the sample.
• The negative binomial distribution: P (n̂|f) = NegBin(n̂;Nrf,Nrf+a(Nrf)b),

where NegBin(n;x, σ) is a negative binomial of mean x and variance σ. In this
case, Θ = (α, a, b, fmin) with α, fmin being the same parameters as described for
the Poisson distribution, and a and b, the parameters of the negative binomial
distribution.
• The negative binomial combined with a Poisson distribution: P (n̂|f) =

∞∑
mi

P (n̂|mi)P (mi|f),

with P (mi|f) = NegBin(mi; fM, fM+a(fM)b) and P (n̂|mi) = Poisson(miNr/M).
A clone of size f appears in a sample containing M T-cells on average as fM
cells. To account for over dispersion, the number of cells associated to a spe-
cific clone is m and follows a negative binomial of mean fM and variance
fM + a(fM)b. For each clone the empirical abundance read in the biological
sample is distributed according to a Poisson distribution with mean mNr/M .
For this model Θ = (α, a, b,M, fmin).

While the mathematical framework is the same, when applied to identifying
expanding clonotypes NoisET uses noise parameters inferred at both time points,
contrary to the approach taken in Pogorelyy et al. (2018c) and Puelma Touzel et al.
(2020). Experimental conditions at both time points can vary and it is important to
use both sets of parameters Θ, to have the correct form of P (n̂|f, t1) and P (n̂|f, t2).
The exponent of the power-law α and fmin in Eq. 6.1 are the learnt values inferred
at the time point for which sequencing depth is the larger.
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Figure S1: (a) Scatter plots of sequence counts from two biological replicates from
Pogorelyy et al. (2018a) (left). NoisET learns a statistical model of sequence fre-
quencies and observed counts from these data (here with negative binomial sampling
noise model), which can then be used to generate realistic synthetic data (right).
(b) PCA (Principal Component Analysis) performed on the matrix composed of the
normalized clone counts of the top 1000 clones present at every time point of the
longitudinal dataset. The clustering of the data projected on the two first principal
components enables us to understand different kinds of dynamics for three clusters
of clones here (bottom left). The number of clusters can be adjusted in NoisET
and should be tested. In this example, this pre-analysis of the longitudinal dataset
enabled us to find a significant contracting dynamical trend between day 15 to day
85 and a significant expansion trend between day 15 and day 37 following a mild
COVID-19 infection Minervina et al. (2021) (bottom left). The top plots show the
individual trajectories in each trend, the bottom plots the average with standard
variation error bars. (c) Scatter plot of contracted clones from day 15 to day 85 after
a mild COVID-19 infection Minervina et al. (2021). Clones detected as contracting
by NoisET are shown in blue. (d) The number of responding clones detected by
NoisET (using a two step noise model) for 3 studies: donors M and W (with both
α and β TCR chains) in response to a SARS-CoV-2 infection between days 15 and
85 post infection Minervina et al. (2021); 6 twin donors (S1 through Q2, only β
chain) between days 0 and 15 following yellow-fever vaccination Pogorelyy et al.
(2018a); and yellow-fever first (M) and second vaccination (M and P) Minervina
et al. (2020). (e) Venn diagram showing the overlap between the number of called
responding TCR clones by both NoisET and edgeR after a mild COVID-19 infection
Minervina et al. (2021). The z−scores and p−values of the common clones found
by both methods and the MIRA data base. Plots a-c are standard NoisET output.
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6.2.2 Detecting responding TCR clones
To account for differential expression after antigenic stimulation, NoisET implements
the approach of previous work Pogorelyy et al. (2018a); Puelma Touzel et al. (2020)
that introduced a selection factor s defined as the log-fold change between a clone’s
frequency at time t1 f(t1) = f , and the frequency at time t2, f(t2) = fes. A prior
is assumed over the variable s, P (s|γ, s̄) = γ exp(−|s|/s̄)/(2s̄) + (1 − γ)δ(s), with
0 ≤ γ ≤ 1 the fraction of responding clones and s̄ > 0, their typical effect size. The
likelihood associated to observing a clone with empirical abundances n̂1 at time t1
and n̂2 at time t2 integrating the prior knowledge over the log-fold change s is the
following:

P(n̂i(t1) = n̂1, n̂i(t2) = n̂2)|γ, s̄) =∫ ∫
df1ρ(f1)dsP (s|γ, s̄)P (n̂1|f1)P (n̂2|f1e

s).
(6.3)

The parameters (γ, s̄), are learned by maximizing the likelihood of the count pair
data taken at two given time points:

(γ∗, s̄∗) = argmax
(γ,s̄)

Nobs∏
i=1

P(n̂i(t1), n̂i(t2)|γ, s̄,Θ(t1),Θ(t2))
Z(γ, s̄) , (6.4)

with Z(γ, s̄) a normalization factor accounting for the probability to observe TCR
clone counts in both analyzed samples and Θ(t1),Θ(t2) the noise parameters learned
at both time points t1 and t2 with NoisET. These two parameters were then used
to compute the posterior P(s|n̂i(t1), n̂i(t2)):

P(s|n̂1, n̂2) = P(n̂1, n̂2|s, γ, s̄)P (s|γ, s̄)
P(n̂1, n̂2)) . (6.5)

The knowledge of the log-fold change posterior (6.5) is used to discriminate
expanded or contracted clones from the bulk between t1 and t2. In analogy with p-
values, we define p = P(s ≤ 0|n̂1, n̂2, γ, s̄,Θ(t1),Θ(t2)), the probability corresponding
to the null hypothesis of no expansion. If p < threshold, the clone is classified as
expanded. When looking at contraction, we use the same method reversing times
t1 and t2 and looking at significant expansions from t2 to t1. The value of the
threshold can be chosen by the user. In all the results presented in this review,
the threshold was set to 0.05, however no threshold was applied when identifying
contracting clones. Another threshold on the median of the P(s|n̂1, n̂2) distribution
can be applied to select for clones that are greatly expanded.

The output of NoisET detection of responding clones is the list of statistical
properties of the true log-fold change variable s called according to the posterior
P (s|n̂1, t1, n̂2, t2) learned from data after learning the noise and differential model
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Feature Description
s1,low

∫ s1,low
−∞ P(s|n̂1, n̂2)ds = 0.025

s2,med
∫ s2,med
−∞ P(s|n̂1, n̂2)ds = 0.5

s3,high
∫ s3,high
−∞ P(s|n̂1, n̂2)ds = 0.975

smax argmax
(s)

P(s|n̂1, n̂2)

s̄
∫+∞
−∞ sP(s|n̂1, n̂2)ds

1− P(s > 0)
∫+∞
−∞ sP(s|n̂1, n̂2)ds

Table S1: Mathematical definition of statistical properties of the hidden variable s,
the log-fold change of counts of a given clone, computed from the posterior distri-
bution P (s|n̂1, t1, n̂2, t2), learned from the noise and differential model. The output
of NoisET when detecting significantly expanded clones consists of the list of clones
that are detected to have respectively increased or decreased in term of abundance
associated with these specific s characteristics.

(Eq. 6.2,6.4). These statistics are mathematically defined in Table S1 and are the
values of s that defines the first quantile s1,low, the median of the posterior s2,med, the
value of s that defines the third quantile s3,high, the mode of the posterior smax, the
average of the posterior s̄ and and the p-value like value defined as P (s ≤ 0|n̂1, n̂2).

6.3. Features
NoisET has two main functions: (1) inference of a statistical null model of sequence
counts and variability, using replicate RepSeq experiments, as described by the
models presented in section II A; (2) detection of responding clones to a stimulus by
comparison of two repertoires taken at two timepoints, as described by the models
presented in section II A. The second function requires a noise model, which is
given as an output of the first function. Both functions require two lists of sequence
counts associated to each TCR or BCR present in the repertoires: from replicate
experiments for the first function (Fig. 1a left), and from repertoires before and
after the stimulus for the second function (Fig. 1a right). In addition, NoisET has
features for detecting the time points to be compared, to simulate natural immune
repertoire dynamics, and to estimate diversity.

All functions are described in a README and notebooks available on the Github
repository (https://github.com/statbiophys/NoisET). A tutorial explains the
different functions of NoisET.

6.3.1 Detecting the peak moment of the response
When more than two time points are available, and when the timescales of the dy-
namical response of the TCR repertoire to an acute infection are not known, it is
difficult to know which pairs of time points in longitudinal data can be informative
about responding clonotypes. A method based on Principal Component Analysis

https://github.com/statbiophys/NoisET
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(PCA) of longitudinal trajectories was first used in Minervina et al. (2020, 2021) to
identify the peak of the response (Fig 1b). It uses the first two PCA components
of the 1000 most abundant TCR clonotype frequencies normalized by their max-
imum post-infection values. The clustered trajectories identify different modes of
clonal abundance dynamics. NoisET includes a feature for performing this PCA on
trajectories as a preliminary step to pick the best timepoints.

6.3.2 Learning the noise model
When learning a noise model from replicates, the user must pick the type of noise
model, which describes how the sequence count in the RepSeq sample depends prob-
abilistically on its true frequency in the blood. Choices are: a Poisson distribution,
a negative binomial distribution, or a two-step model Puelma Touzel et al. (2020).
Once the parameters have been learned (Maximum Likelihood Estimation optimiza-
tion algorithm), a generation tool can be applied to qualitatively check the agreement
between data and model for replicates (Fig 1a). We also successfully learned a null
model from gDNA data Rytlewski et al. (2019), which is included in the package
example notebook.

6.3.3 Detecting responding clones
To use the second function to detect responding clonotypes, the user provides, in
addition to the two datasets to be compared, two sets of experimental noise parame-
ters learned at both times using the first function. When replicates are not available
for each time point or donor, a common null model may be used for both timepoints.
This should be done with caution, since even if both samples are produced with the
same technology for the same donor, the sequencing depth and distribution of clone
frequencies may vary between timepoints. Finally the user provides two thresholds:
one for the posterior probability above which a clone is labeled as responding, and
one for the median log-fold frequency difference above which detection is allowed.
The output is a CSV file containing a table of putative responding clones. The result
is illustrated in Fig. 1c, which shows contracted clones (purple points) detected from
day 15 to day 85 from a mild COVID-19 infection Minervina et al. (2021).

Compared with software introduced in Ref. Puelma Touzel et al. (2020), NoisET
allows for conditioning on TCR clones sizes in the analysis, and for using a Poisson
or negative binomial distribution for the experimental noise model.

6.3.4 Generating trajectories
Using NoisET, one can also generate in-silico RepSeq samples, and their neutral
dynamics following the stochastic population dynamics developed in Desponds et al.
(2016), and in Bensouda Koraichi et al. (2022). The function takes as input the noise
model method (negative binomial or Poisson), the noise model parameters at both
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time points, the number of reads at both time points, the duration of the simulations,
and the values of τ and θ describing the global stochastic population dynamics. The
neutral dynamics for each clone is defined by dn

dt
=
[
− 1
τ

+ 1
2θ + 1√

θ
η(t)

]
n(t), with

n(t) – the true somatic abundance for a clone belonging to an individual repertoire.

6.3.5 Diversity estimator
Learning the noise model is also helpful for computing diversity estimates which
are known to be sensitive to sampling noise Mora and Walczak (2019a). NoisET
includes a diversity estimator D0 = Nobs/(1 − P (n̂ = 0, n̂′ = 0)), with Nobs the
number of clones observed in both replicates used to learn the experimental noise,
and P (n̂ = 0, n̂′ = 0) the learned fraction of non-sampled clones from the repertoire.
This value is expected to be close to 1. Evidently, the larger Nobs, the deeper the
sequencing is and so the diversity estimate is expected to be more trustworthy,
assuming comparable quality of data generation.

6.4. Applications of NoisET
The method on which NoisET is based has been applied in two published stud-
ies identifying clones involved in yellow fever vaccination Pogorelyy et al. (2018a)
and SARS-CoV2 responses Minervina et al. (2021). In both cases, the analysis was
performed on longitudinal TCR RepSeq cDNA data sets and from several differ-
ent time-points, we were able to identify the peak of the response (expansion or
contraction) thanks to the trajectory PCA method Minervina et al. (2020) now en-
coded in NoisET. Fig. 1d reports the number of responding clonotypes detected by
NoisET applied to these datasets, as well as to data from a secondary Yellow-Fever
vaccination study Minervina et al. (2020).

In the yellow fever vaccination study, TCR repertoires of three pairs of identical
twins were sequenced Pogorelyy et al. (2018a). In each donor, 600 to 1700 responding
TCR clones were identified. The TCR response was highly personalized even among
twins. Analyzing the clonotypes the method called responding, we were able to show
that while the responding TCRs were mostly private, they could be well-predicted
using a classifier based on sequence similarity. Using the a posteriori distribution,
different types of dynamics were found in different TCR subsets: CD4+ cells contract
faster than CD8+ cells.

TCR cDNA-based repertoire response identified groups of CD4+ and CD8+ T
cell clones that contract after recovery (∼ 15 days after the onset of symptoms) from
a SARS-CoV-2 infection Minervina et al. (2021). A secondary response peak of the
response was identified ∼ 40 days after the onset of symptoms. This secondary peak
was also seen in other SARS-CoV2 studies Weiskopf et al. (2020), however it did
not correspond to known tetramer probes. Analyzing repertoire data for the same
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individuals taken a year and two years before the SARS-CoV2 infection, we showed
that T-cell clones detected as reacting to SARS-Cov-2 were present one year before
the SARS-Cov-2 infection. A network analysis revealed that these pre-existing cells
that could confer immunity were specific to a SARS-CoV2 epitope with a one amino
acid mutation compared to a common cold coronavirus. This observation raised
the question of the correlation between the presence of cross-reactive T cells before
infection and mildness of the disease. The detected reactive T-cell clones were also
found in memory subpopulations at least three months after the infection.

As mentioned in section III D the noise learning feature of NoisET has also been
used to learn the natural dynamics of TCR repertoires based on gDNA and cDNA
data in the absence of direct antigenic stimulation Bensouda Koraichi et al. (2022).
This study considered the TCRβ repertoires of 9 people and showed that the dynam-
ics of all people, regardless of age is constrained by the power law exponent of the
frequency distribution. The exponent itself is given by the ratio of the deterministic
turnover timescale and the stochastic noise timescale. The reproducibility of this
ratio is a very strong constraint, not directly encoded by the model but learned from
the statistics of the data, that implies strong amplitudes of environmental antigenic
fluctuations compared to the mean fitness of lymphocyte clones. This parameter
regime translates into a very susceptible dynamical system since the mean of the
clone size distribution diverges. This property allows the repertoire to maintain a
large number of cells, even if the source disappears or becomes very small. While the
ratio is constrained, the repertoire turnover timescale shows a strong dependence
on the age of the individual, with clear signatures of ageing in the physical sense:
turnover timescales grow linearly with the biological age of the individual from ∼ 10
years for 20-year olds to ∼ 40 years for 60-year olds. This timescale gives us an
estimate of how likely we are to find clones in the repertoire after a certain number
of years, depending on the person’s age.

6.5. Comparison with existing software
The need to characterise experimental noise has been well recognized in the sequenc-
ing community. EdgeR is a package used to analyse a variety of data produced with
HTS (High Throughput Sequencing) that includes read counts Yunshun, Chen and
Aaron, Lun and Davis, McCarthy and Xiaobei, Zhou and Mark, Robinson and
Gordon, Smyth (2017). This software has been mostly used for differential gene
expression analysis, differential splicing and bisulfite sequencing. Applied to lym-
phocyte repertoires, the EdgeR package enables using statistical tests to identify
TCR clones expanded after an acute infection.

We compare EdgeR and NoisET detected clones assumed to respond to SARS-
Cov2 antigen, based on TCR data from Adaptive Biotechnologies (https://clients.

https://clients.adaptivebiotech.com/pub/covid-2020
https://clients.adaptivebiotech.com/pub/covid-2020
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adaptivebiotech.com/pub/covid-2020). We can validate the responding clones
using the MIRA dataset from the same group for which the reactivity to SARS-
Cov2 antigen was validated experimentally https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7418734/. To count the overlap between the responding clonotypes
called by each software and the TCR MIRA database, we used the AtrieGC soft-
ware (https://github.com/mbensouda/NoisET_tutorial/), which enables to rapidly
compare two lists of amino-acids. In order to ascribe statistical significance to our
results, we compare the numbers of overlapping TCRs called by EdgeR and NoisET
to overlapping TCRs between lists of 1000 randomly sampled clones from the ex-
perimental samples and the MIRA list. Given the mean and standard deviation
of overlapping clones, we quantify the performance of the two softwares using a
z-score. The conclusion is drawn in a Venn diagram in Fig.S1e. For this specific
task of recognizing SARS-Cov2 TCR clones NoisET (p-value of 5.10−13) performs
similarly to edgeR (p-value of 2.410−14) with the benefits of better understanding
of the data, better knowledge of the log-fold change statistics and the possibility
to generate synthetic data. We note that the MIRA database is non exhaustive so
both NoisET and edgeR may have called truly responding SARS-Cov2 TCR clones
that are not included in the MIRA database.

6.6. Discussion
High-throughput sequencing of immune repertoires is poised to revolutionize systems
immunology as well as precision medicine. In particular, there is a growing interest in
identifying T-cell receptors that respond to acute infections and vaccine challenges,
based on experiments that probe repertoires before and after an antigenic challenge.
Due to experimental and biological noise, identifying the response simply based on
differences in counts before and after the challenge is not reliable. The commonly
used solution is to prune these estimates using statistical tests, which are not tailored
to account for these specific sources of noise.

In our previous work, we provided a computational method that accounts for
the different biological and experimental sources of noise in the clone count mea-
surements in a Bayesian way, allowing for a more reliable detection of expanded
or contracted clones. However, while the proof-of-principle algorithm explored the
applicability of the method, it did not provide a user-friendly tool, which limits its
wide use by the community of immunologists and clinicians. Here, we described a
new computational tool, NoisET (https://github.com/statbiophys/NoisET), a
python package with a command-line interface that implements the method for char-
acterizing the noise and identifies statistically significant responding clones. The tool
is applicable to datasets of diverse origin describing the clonal repertoire response
to acute infections and non-stimulated long-term dynamics.

https://clients.adaptivebiotech.com/pub/covid-2020
https://clients.adaptivebiotech.com/pub/covid-2020
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418734/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418734/
https://github.com/mbensouda/NoisET_tutorial/
https://github.com/statbiophys/NoisET
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NoisET is designed as an easy-to-use package to learn the noisy statistics of
sequence counts and to detect responding clones to a stimulus as reliably as possible.
It captures the experimental and biological noise for both RNAseq and gDNAseq
replicate technologies. Although the package has been tested on diverse datasets,
choosing and using the adequate statistical null model should be done with caution.

Among the different types of noise models offered, the negative binomial noise
model is recommended to start the analysis as its running time is shorter than the
two step model, while retaining the ability to account for arbitrary noise ampli-
tudes. So far, NoisET has been used to study the short time scale dynamics for
acute infections, but could also be used to compare bulk repertoires with selected
repertoires derived from functional or cultured assays Balachandran et al. (2017).
For longer time scales, the dynamics of lymphocyte populations should be modeled
to best describe slow global repertoire changes that cannot be attributed to a single
stimulus Desponds et al. (2016); Bensouda Koraichi et al. (2022).

The Bayesian approach encoded in NoisET results in a more reliable way to
account for uncertainty than statistical estimates that are also less interpretable.
The detection of responding clones based on the fold change of empirical abundances
was not optimal without a robust interpretation of the details of the noise model.
Errors in noise identification also propagate to erroneous calling of clonotypes.

From a more general perspective, NoisET and the methods behind it combine
many years of the study of gene expression noise Elowitz et al. (2002); Ozbudak
et al. (2002); Cai et al. (2006); Taniguchi et al. (2010); Hornos et al. (2005). NoisET
strongly exploits the intermittency of mRNA production and the heterogeneity of
mRNA counts in individual cells.

As we briefly discussed, NoisET has been applied to identify SARS-CoV-2-
specific T-cell receptors and in the future can be used to study and understand
the heterogeneity of SARS-Cov-2 vaccine response. It has potential application
uncovering responding T-cell receptors to acute infections and vaccine response.

While the method is generally applicable to T cells and B cells Altan-Bonnet
et al. (2020); Chakraborty and Košmrlj (2010), due to the somatic hypermutations
occurring in B cells upon proliferation, care must be taken when preparing B cell
data input and interpreting the model. One possibility is to collapse the sequences
into lineages and consider the dynamics of a lineage in the periphery. However,
while this is a reasonable first approximation, more work is needed to correctly
account for the complexity of B cell repertoires. For this reason we discuss existing
applications to T cells. Nevertheless, the conceptual ideas behind noise calibration
as implemented in the NoisET software apply.

More broadly, the noise inference using the first module of NoisET has also been
used to learn the natural dynamics of T cell repertoires in the absence of specific
antigenic stimulation Bensouda Koraichi et al. (2022). For all individuals studied
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we found a universal contraint on the dynamics, which translated into a susceptible
dynamical system that can easily maintain a large number of diverse cells. If the
same type of dynamics holds for coarse-grained B cell repertoires, which remains to
be seen, it would point to universal laws that constrain clone size distributions and
govern repertoire dynamics.
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7
LONGITUDINAL HIGH-THROUGHPUT TCR
REPERTOIRE PROFILING REVEALS THE

DYNAMICS OF T CELL MEMORY
FORMATION AFTER MILD COVID-19

INFECTION

In April 2020, at the beginning of the pandemic caused by the SARS-CoV-2 coro-
navirus, I contributed to an extensive collaboration study to improve our global
understanding of TCR responses to the new SARS-Cov-2 virus. I improved and
optimized the methods behind the previously introduced NoisET in chapter 5. My
contribution to this analysis was the detection of expanding and contracting clones
from longitudinal RepSeq data of two people having contracted SARS-CoV-2 with
mild symptoms. Chapter 6 is a comprehensive analysis of the TCR repertoire re-
sponse to an acute stimulus and gives a good biological background on TCR reper-
toire immunology analysis, published in Minervina et al. (2021). I am a co-author
of this article and all the other analyses were done by other scientists.
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Chapter 7. Longitudinal high-throughput TCR repertoire profiling
reveals the dynamics of T cell memory formation after mild COVID-19

infection7.1. Introduction

COVID-19 is a global pandemic caused by the novel SARS-CoV-2 betacoronavirus
Vabret et al. (2020). T cells are crucial for clearing respiratory viral infections
and providing long-term immune memory Schmidt and Varga (2018); Swain et al.
(2012). Two major subsets of T cells participate in the immune response to viral
infection in different ways: activated CD8+ T cells directly kill infected cells, while
subpopulations of CD4+ T cells produce signaling molecules that regulate myeloid
cell behaviour, drive and support CD8 response and the formation of long-term CD8
memory, and participate in the selection and affinity maturation of antigen specific
B-cells, ultimately leading to the generation of neutralizing antibodies. In SARS-1
survivors, antigen-specific memory T cells were detected up to 11 years after the ini-
tial infection, when viral-specific antibodies were undetectable Ng et al. (2016); Oh
et al. (2011). The T cell response was shown to be critical for protection in SARS-
1-infected mice Zhao et al. (2010). Patients with X-linked agammaglobulinemia, a
genetic disorder associated with lack of B cells, have been reported to recover from
symptomatic COVID-19 Quinti et al. (2020); Soresina et al. (2020), suggesting that
in some cases T cells are sufficient for viral clearance. Theravajan et al. showed that
activated CD8+HLA-DR+CD38+ T cells in a mild case of COVID-19 significantly
expand following symptom onset, reaching their peak frequency of 12% of CD8+
T cells on day 9 after symptom onset, and contract thereafter Thevarajan et al.
(2020). Given the average time of 5 days from infection to the onset of symptoms
Bi et al. (2020), the dynamics and magnitude of T cell response to SARS-CoV-2 is
similar to that observed after immunization with live vaccines Miller et al. (2008).
SARS-CoV-2-specific T cells were detected in COVID-19 survivors by activation fol-
lowing stimulation with SARS-CoV-2 proteins Ni et al. (2020), or by viral protein-
derived peptide pools Weiskopf et al. (2020); Braun et al. (2020); Snyder et al.
(2020); Le Bert et al. (2020); Meckiff et al. (2020); Bacher et al. (2020); Peng et al.
(2020). Some of the T cells activated by peptide stimulation were shown to have
a memory phenotype Weiskopf et al. (2020); Le Bert et al. (2020); Mateus et al.
(2020), and some potentially cross-reactive CD4+ T cells were found in healthy
donors Braun et al. (2020); Grifoni et al. (2020); Sekine et al. (2020); Bacher et al.
(2020).

T cells recognise short pathogen-derived peptides presented on the cell surface
of the Major Histocompatibility Complex (MHC) using hypervariable T cell recep-
tors (TCR). TCR repertoire sequencing allows for the quantitative tracking of T
cell clones in time, as they go through the expansion and contraction phases of the
response. It was previously shown that quantitative longitudinal TCR sequencing
is able to identify antigen-specific expanding and contracting T cells in response to
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yellow fever vaccination with high sensitivity and specificity Minervina et al. (2020);
Pogorelyy et al. (2018c); DeWitt et al. (2015). Not only clonal expansion but also
significant contraction from the peak of the response are distinctive traits of T cell
clones specific to the virus Pogorelyy et al. (2018c).

In this study we use longitudinal TCRalpha and TCRbeta repertoire sequencing
to quantitatively track T cell clones that significantly expand and contract (after
recovery from a mild COVID-19 infection), and determine their phenotype. We
reveal the dynamics and the phenotype of the memory cells formed after infection,
identify pre-existing T cell memory clones participating in the response, and describe
public TCR sequence motifs of SARS-CoV-2-reactive clones, suggesting a response
to immunodominant epitopes.

7.2. Results

7.2.1 Longitudinal tracking of TCR repertoires of COVID-19 pa-
tients

In the middle of March (day 0) donor W female and donor M (male, both healthy
young adults), returned to their home country from the one of the centers of the
COVID-19 outbreak in Europe at the time. Upon arrival, according to local reg-
ulations, they were put into strict self-quarantine for 14 days. On day 3 of self-
isolation both developed low grade fever, fatigue and myalgia, which lasted 4 days
and was followed by a temporary loss of smell for donor M. On days 15, 30, 37,
45 and 85 we collected peripheral blood samples from both donors (Fig. 1a). The
presence of IgG and IgM SARS-CoV-2 specific antibodies in the plasma was mea-
sured at all timepoints using SARS-CoV-2 S-RBD domain specific ELISA (Fig. S1).
From each blood sample we isolated PBMCs (peripheral blood mononuclear cells,
in two biological replicates), CD4+, and CD8+ T cells. Additionally, on days 30,
45 and 85 we isolated four T cell memory subpopulations (Fig. S2): Effector Mem-
ory (EM: CCR7-CD45RA-), Effector Memory with CD45RA re-expression (EMRA:
CCR7-CD45RA+), Central Memory (CM: CCR7+CD45RA-), and Stem Cell-like
Memory (SCM: CCR7+CD45RA+CD95+). From all samples we isolated RNA and
performed TCRalpha and TCRbeta repertoire sequencing as previously described
Pogorelyy et al. (2017). For both donors, TCRalpha and TCRbeta repertoires were
obtained for other projects one and two years prior to infection. Additionally, TCR
repertoires of multiple samples for donor M – including sorted memory subpopu-
lations – are available from a published longitudinal TCR sequencing study after
yellow fever vaccination (donor M1 samples in Minervina et al. (2020)).
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Figure S1: Longitudinal tracking of T cell clones after mild COVID-19.
a, Study design. Peripheral blood of two donors was sampled longitudinally on
days 15, 30, 37, 45, 85 after arrival in Russia. At each timepoint, we evaluated
SARS-CoV-2-specific antibodies using ELISA (Fig. S1) and isolated PBMCs in
two biological replicates. Additionally, CD4+ and CD8+ cells were isolated from
a separate portion of blood, and EM, CM, EMRA, SCM memory subpopulations
were FACS sorted on days 30, 45 and 85. For each sample we sequenced TCRal-
pha and TCRbeta repertoires. For both donors pre-infection PBMC repertoires
were sampled in 2018 and 2019 for other projects. b,c, PCA of clonal temporal
trajectories identifies three groups of clones with distinctive behaviours.
Left: first two principal components of the 1000 most abundant TCRbeta clono-
type frequencies normalized by maximum value for each clonotype in PBMC at
post-infection timepoints. Color indicates hierarchical clustering results of princi-
pal components; symbol indicates if clonotype was called as significantly contracted
from day 15 to day 85 (triangles), or expanded from day 15 to day 37 (circles) by
both edgeR and NoisET (Fig. S5 shows overlap between clonal trajectory clusters
and edgeR/NoisET hits). Right: each curve shows the average ± 2.96 SE of nor-
malized clonal frequencies from each cluster. Contracting (d) and expanding
(e) clones include both CD4+ and CD8+ T cells, and are less abundant
in pre-infection repertoires. T cell clones significantly contracted from day 15
to day 85 (d) and significantly expanded from day 15 to day 37 (e) were identi-
fied in both donors. The fraction of contracting (d) and expanding (e) TCRbeta
clonotypes in the total repertoire (calculated as the sum of frequencies of these
clonotypes in the second PBMC replicate at a given timepoint) and corresponding
to the fraction of responding cells of all T cells) is plotted in log-scale for all reactive
clones (left), reactive clones with the CD4 (middle) and CD8 (right) phenotypes.
Similar dynamics were observed in TCRalpha repertoires (Fig. S3), and for signifi-
cantly expanded/contracted clones identified with the NoisET Bayesian differential
expansion statistical model (alone) (Fig. S4).
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7.2.2 Two waves of T-cell clone response
From previously described activated T cell dynamics for SARS-CoV-2 Thevarajan
et al. (2020), and immunization with live vaccines Miller et al. (2008), the peak of
the T cell expansion is expected around day 15 post-infection, and responding T
cells significantly contract (afterwards). However, Weiskopf et al. Weiskopf et al.
(2020) reports an increase of SARS-CoV-2-reactive T cells at later timepoints, peak-
ing in some donors after 30 days following symptom onset. To identify groups of T
cell clones with similar dynamics in an unbiased way, we used Principal Component
Analysis (PCA) in the space of T cell clonal trajectories (Fig. 1b and c). This
exploratory data analysis method allows us to visualize major trends in the dynam-
ics of abundant TCR clonotypes (occuring within top 1000 on any post-infection
timepoints) between multiple timepoints.

In both donors, and in both TCRalpha and TCRbeta repertoires, we identi-
fied three clusters of clones with distinct dynamics. The first cluster (Fig. 1bc,
purple) corresponded to abundant TCR clonotypes which had constant concentra-
tions across timepoints, the second cluster (Fig. 1bc, green) showed contraction
dynamics from day 15 to day 85, and the third cluster (Fig. 1bc, yellow), showed
an unexpected clonal expansion from day 15 with a peak on day 37 followed by
contraction. The clustering and dynamics are similar in both donors and are repro-
duced in TCRbeta (Fig. 1bc) and TCRalpha (Fig. S3ab) repertoires. We next used
edgeR, a software for differential gene expression analysis Robinson et al. (2010)
and NoisET, a Bayesian differential expansion model Puelma Touzel et al. (2020),
to specifically detect changes in clonotype concentration between pairs of timepoints
in a statistically reliable way and without limiting the analysis to the most abundant
clonotypes. Both NoisET and edgeR use biological replicate samples collected at
each timepoint to train a noise model for sequence counts. Results for the two mod-
els were similar (Fig. S4) and we conservatively defined as expanded or contracted
the clonotypes that were called by both models simultaneously. We identified 291
TCRalpha and 295 TCRbeta clonotypes in donor W, and 607 TCRalpha and 616
TCRbeta in donor M significantly contracted from day 15 to day 85 (largely overlap-
ping with cluster 2 of clonal trajectories, Fig. S5). 176 TCRalpha and 278 TCRbeta
for donor W, and 293 TCRalpha and 427 TCRbeta clonotypes for donor M were
significantly expanded from day 15 to 37 (corresponding to cluster 3 of clonal tra-
jectories).

Note that, to identify putatively SARS-CoV-2 reactive clones, we only used
post-infection timepoints, so that our analysis can be reproduced in other patients
and studies where pre-infection timepoints are unavailable. However, tracking the
identified responding clones back to pre-infection timepoints reveals strong clonal
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Figure S2: Memory phenotypes of responding clonotypes contracting after
day 15. a, A large fraction of contracting clonotypes is identified in T cell
memory subsets after infection. Bars show the fraction of contracting CD4+
and CD8+ TCRbeta clonotypes present in 2-year; 1-year pre-infection PBMC; in
at least one of memory subpopulation sampled on day 30, day 37 and day 85 post
infection. b,c Responding clones are found in different memory subsets.
Fraction of CD4+ (left panels) and CD8+ (right panels) contracting clones of donor
W (b) and M (c) that were identified in each memory subpopulation repertoire
at each timepoint. For both donors, CD4+ clonotypes were found predominantly
in Central Memory (CM) and Effector Memory (EM), while CD8+ T cells were
enriched in EMRA compartment.c, For donor M, CD4+ contracting clonotypes are
also identified in memory subsets 1 year before the infection, with a bias towards
the CM subpopulation and a group of CD8+ clones is found in the pre-infection EM
subpopulation.

expansions from pre- to post-infection (Fig. 1de, Fig. S3cd). For brevity, we further
refer to clonotypes significantly contracted from day 15 to 85 as contracting clones
and clonotypes significantly expanding from day 15 to 37 as expanding clones. Con-
tracting clones corresponded to 2.5% and 0.9% of T cells on day 15 post-infection,
expanding clones reached 1.1% and 0.8% on day 37 for donors M and W respectively
(Fig. 1de, left). This magnitude of the T cell response is of the same order of magni-
tude as previously observed after live yellow fever vaccine immunization of donor M
(6.7% T cells on day 15 post-vaccination). For each contracting and expanding clone
we determined their CD4/CD8 phenotype using separately sequenced repertoires of
CD4+ and CD8+ subpopulations (see Methods). Both CD4+ and CD8+ subsets
participated actively in the response (Fig. 1de). Interestingly, clonotypes expanding
after day 15 were significantly biased towards the CD4+ phenotype, while contract-
ing clones had balanced CD4/CD8 phenotype fractions in both donors (Fisher exact
test, p < 0.01 for both donors).

7.2.3 Memory formation and pre-existing memory
On days 30, 45 and 85 we identified both contracting (Fig. 2a-c) and expanding
(Fig. S6a-c) T cell clones in the memory subpopulations of peripheral blood. Both
CD4+ and CD8+ responding clones were found in the CM and EM subsets, however
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CD4+ were more biased towards CM (with exception of donor W day 30 timepoint,
where a considerable fraction of CD8+ clones were found in CM), and CD8+ clones
more represented in the EMRA subset. A small number of both CD4+ and CD8+
responding clonotypes were also identified in the SCM subpopulation, which was
previously shown to be a long-lived T cell memory subset Fuertes Marraco et al.
(2015). Note that we sequenced more cells from PBMC than from the memory
subpopulations (Table S1), so that some low-abundant responding T cell clones are
not sampled in the memory subpopulations. Intriguingly, a number of responding
CD4+ clones, and fewer CD8+ clones, were also represented in the repertoires of
both donors 1 and 2 years before the infection. Pre-existing clones were expanded
after infection, and contracted afterwards for both donors (Fig. S7). For donor M,
for whom we had previously sequenced memory subpopulations before the infection
Minervina et al. (2020), we were able to identify pre-existing SARS-CoV-2-reactive
CD4+ clones in the CM subpopulation 1 year before the infection and a group of
CD8+ clones in the pre-infection EM subpopulation. Interestingly, on day 30 after
infection the majority of pre-infection CM clones were detected in the EM sub-
population, suggesting recent T cell activation and a switch of the phenotype from
memory to effector. These clones might represent memory T cells cross-reactive for
other infections, e.g. other human coronaviruses.

A search for TCRbeta amino acid sequences of responding clones in VDJdb
Bagaev et al. (2020b) — a database of TCRs with known specificities — resulted in
essentially no overlap with TCRs not specific for SARS-CoV-2 epitopes: only two
clonotypes matched. One match corresponded to the CMV (cytomegalovirus) epi-
tope presented by the HLA-A*03 MHC allele, which is absent in both donors (Table
S2), and a second match was for Influenza A virus epitope presented by HLA-A*02
allele. The absence of matches suggests that contracting and expanding clones are
unlikely to be specific for immunodominant epitopes of common pathogens covered
in VDJdb. We next asked if we could map specificites of our responding clones to
SARS-CoV-2 epitopes.

7.2.4 Validation by MHC tetramer-staining assay
On day 25 post-infection donor M participated in study by Shomuradova et al.
Shomuradova et al. (2020) (as donor p1434), where his CD8+ T cells were stained
with HLA-A*02:01-YLQPRTFLL MHC-I tetramer. TCRalpha and TCRbeta of
FACS-sorted tetramer-positive cells were sequenced and deposited to VDJdb (see
Shomuradova et al. (2020) for the experimental details). We matched these tetramer-
specific TCR sequences to our longitudinal dataset (Fig. 3a for TCRbeta and Fig. S8
for TCRalpha). We found that their frequencies were very low on pre-infection
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timepoints and monotonically decreased from their peak on day 15 (7.1·10−4 fraction
of bulk TCRbeta repertoire) to day 85 (1.3 · 10−5 fraction), in close analogy to our
contracting clone set. Among the tetramer positive clones that were abundant on
day 15 (with bulk frequency > 10−5), 17 out of 18 or TCRbetas and 12 out of 15
TCRalphas were independently identified as contracting by our method.

7.2.5 TCR sequence motifs of responding clones
It was previously shown that TCRs recognising the same antigens frequently have
highly similar TCR sequences Dash et al. (2017); Glanville et al. (2017). To identify
motifs in TCR amino acid sequences, we plotted similarity networks for significantly
contracted (Fig. 3bc, Fig. 4ab) and expanded (Fig. S9b-e) clonotypes. The number
of edges in all similarity networks except CD8+ expanding clones was significantly
larger than would expected by randomly sampling the same number of clonotypes
from the corresponding repertoire (Fig. 3d and Fig. S9a). In both donors we found
clusters of highly similar clones in both CD4+ and CD8+ subsets for expanding and
contracting clonotypes. Clusters were largely donor-specific, as expected, since our
donors have dissimilar HLA alleles (SI Table 1) and thus each is likely to present
a non-overlapping set of T cell antigens. The largest cluster, described by the mo-
tif TRAV35-CAGXNYGGSQGNLIF-TRAJ42, was identified in donor M’s CD4+
contracting alpha chains. Clones from this cluster constituted 16.3% of all of donor
M’s CD4+ responding cells on day 15, suggesting a response to an immunodomi-
nant CD4+ epitope in the SARS-CoV-2 proteome. The high similarity of the TCR
sequences of responding clones in this cluster allowed us to independently identify
motifs from donor M’s CD4 alpha contracting clones using the ALICE algorithm
Pogorelyy et al. (2018b) (Fig. S10). While the time dependent methods (Fig. 1)
identify abundant clones, the ALICE approach is complementary to both edgeR and
NoisET as it identifies clusters of T cells with similar sequences independently of
their individual abundances.

7.2.6 Mapping TCR motifs to SARS-CoV-2 epitopes
In CD8+ T cells, 3 clusters of highly similar TCRbeta clonotypes in donor M and
one cluster of TCRalpha clonotypes correspond to YLQPRTFLL-tetramer-specific
TCR sequences described above. To map additional specificities for CD8+ TCRbe-
tas, we used a large set of SARS-CoV-2-peptide specific TCRbeta sequences from
Snyder et al. (2020) obtained using Multiplex Identification of Antigen-specific T
cell Receptors Assay (MIRA) with combinatorial peptide pools Klinger et al. (2015).
For each responding CD8+ TCRbeta we searched for the identical or highly similar
(same VJ combination, up to one mismatch in CDR3aa) TCRbeta sequences specific
for given SARS-CoV-2 peptides. A TCRbeta sequence from our set was considered
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Figure S3: a, SARS-CoV-2-specific TCRs are independently identified by
clonal contraction. Each dot corresponds to the frequency of HLA-A*02:01-
YLQPRTFLL-tetramer specific TCRbeta clonotype in bulk repertoire of donor M
(donor p1434 from Shomuradova et al. (2020)) at each timepoint. Green dots
correspond to clonotypes independently identified as contracting in our longitu-
dinal dataset. Blue line shows the cumulative frequency of tetramer specific TCR-
beta clonotypes. b, c Analysis of TCR amino acid sequences of contract-
ing CD8+ clones reveals distinctive motifs. For each set of CD8alpha, and
CD8beta contracted clonotypes, we constructed a separate similarity network. Each
vertex in the similarity network corresponds to a contracting clonotype. An edge
indicates 2 or less amino acid mismatches in the CDR3 region, and identical V and J
segments. Networks are plotted separately for CD8alpha (b) and CD8beta (c) con-
tracting clonotypes. Clonotypes without neighbours are not shown. Sequence logos
corresponding to the largest clusters are shown under the corresponding network
plots. ‘T’ on vertices indicate TCRbeta clonotypes confirmed by HLA-A*02:01-
YLQPRTFLL tetramer staining. Shaded colored circles ((c)) indicate clonotypes
with large number of matches to CD8+ TCRs recognising SARS-CoV-2 peptides
pools from ref. Snyder et al. (2020) (MIRA peptide dataset). Lists of peptides in
YLQ and ORF7b peptide pools are shown on the right. d, Sequence convergence
among contracting clonotypes. The number of edges in each group is shown
by pink dots and is compared to the distribution of that number in 1000 random
samples of the same size from the relevant repertoires at day 15 (blue boxplots).
e, Fraction of TCRbeta clonotypes with matches in the MIRA dataset (coloured
rectangles) out of all responding CD8+ TCRbeta clonotypes in donor M on day 15.
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Figure S4: a, Analysis of TCR amino acid sequences of CD4+ contracting
clones reveal distinctive motifs. Each vertex in the similarity network corre-
sponds to a contracting clonotype. An edge indicates 2 or less amino acid mismatches
in the CDR3 region (and identical V and J segments). Networks are plotted sepa-
rately for CD4alpha (a), CD4beta (b), contracting clonotypes. Clonotypes without
neighbours are not shown. Sequence logos corresponding to the largest clusters are
shown under the corresponding network plots. c, d, Clonotypes forming the two
largest motifs are significantly more clonally expanded (p<0.001, one sided t-test)
in a cohort of COVID-19 patients Snyder et al. (2020) than in a cohort of con-
trol donors Emerson et al. (2017). Each dot corresponds to the total frequency of
clonotypes from motifs shaded on (b) in the TCRbeta repertoire of a given donor.
Colored dots show donors predicted to share HLA-DRB1*07:01 allele with donor W
(c), or HLA-DRB1*03:01-DQB1*02:01 haplotype with donor M (d).
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mapped to a given peptide if it had at least two highly similar TCRbeta sequences
specific for this peptide in the MIRA experiment. This procedure yielded unambigu-
ous matches for 32 CD8+ TCRbetas — just one clonotype was paired to two peptide
pools (Table S3). The vast majority of matches to MIRA corresponded to groups
of contracting clones. As expected, we found that all clusters corresponding to
HLA-A*02:01-YLQPRTFLL MHC-I tetramer-specific TCRs were matched to the
peptide pool YLQPRTFL,YLQPRTFLL,YYVGYLQPRTF in the MIRA dataset.
Another large group of matches corresponded to the HLA-B*15:01-restricted Sta-
matakis et al. (2020) NQKLIANQF epitope. Interestingly, clonotypes corresponging
to this cluster together made up 21% of the CD8+ immune response on day 15, sug-
gesting immunodominance of this epitope. Two TCRbeta clonotypes mapped to
this epitope were identified in Effector Memory subset one year before the infection,
suggesting potential cross-reactive response. We speculate, that this response might
be initially triggered by NQKLIANAF, a homologous HLA-B*15:01 epitope from
HKU1 or OC43, common human betacoronaviruses. To predict potential pairings
between TCRalpha and TCRbeta motifs, we used a method of alpha/beta clonal
trajectory matching described in Minervina et al. (2020) (see Methods for details).
We found consistent pairing between one of the motifs in TCRalpha to the largest
motif in TCRbeta T cells, which is associated to HLA-B*15:01-NQKLIANQF.

7.2.7 Validation of CD4+ COVID-19 HLA-restricted specificity by
cohort association analysis
At the time of writing, no data on TCR sequences specific to MHC-II class epi-
topes exist to map specificities of CD4+ T-cells in a similar way as we did with
MIRA-specific TCRs. However, a recently published database of 1414 bulk TCR-
beta repertoires from COVID-19 patients allowed us to confirm the SARS-CoV-2
specificity of contracting clones indirectly. Public TCRbeta sequences that can rec-
ognize SARS-CoV-2 epitopes are expected to be clonally expanded and thus sampled
more frequently in the repertoires of COVID-19 patients than in control donors. In
Fig. 4cd we show that the total frequency of TCRbeta sequences forming the largest
cluster in donor M (Fig. 4c) and donor W (Fig. 4d) is significantly larger in the
COVID-19 cohort than in the healthy donor cohort from ref. Emerson et al. (2017),
suggesting antigen-dependent clonal expansion. We hypothesized that the difference
between control and COVID-19 donors in motif abundance should be even larger if
we restrict the analysis to donors sharing the HLA allele that presents the epitope.
Unfortunately, HLA-typing information is not yet available for the COVID-19 co-
hort. However, using sets of HLA-associated TCRbeta sequences from ref. DeWitt
et al. (2018), we could build a simple classifier to predict the HLA alleles of donors
from both the control and COVID-19 cohorts exploiting the presence of TCRbeta
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sequences associated with certain HLA alleles (see Methods for details). We found
that the CD4+ TCRbeta motif from donor W occurs preferentially in donors pre-
dicted to have DRB1*07:01 allele, while the motif from donor M appears to be
associated with HLA-DRB1*03:01-DQB1*02:01 haplotype. The frequency of se-
quences corresponding to these motifs can then be used to identify SARS-CoV-2
infected donors with matching HLA alleles (Fig. S11).

7.3. Discussion
Using longitudinal repertoire sequencing, we identified a group of CD4+ and CD8+
T cell clones that contract after recovery from a SARS-CoV-2 infection. Our re-
sponse timelines agree with T cell dynamics reported by Theravajan et al. Thevara-
jan et al. (2020) for mild COVID-19, as well as with dynamics of T cell response to
live vaccines Miller et al. (2008). We further mapped the specificities of contract-
ing CD8+ T cells using sequences of SARS-CoV-2 specific T cells identified with
tetramer staining in the same donor, and as well as the large set of SARS-CoV-
2 peptide stimulated TCRbeta sequences from ref. Snyder et al. (2020). For large
CD4+ TCRbeta motifs we show strong association with COVID-19 by analysing the
occurence patterns and frequencies of these sequences in a large cohort of COVID-19
patients.
Surprisingly, in both donors we also identified a group of predominantly CD4+
clonotypes which expanded from day 15 to day 37 after the infection. One possible
explanation for this second wave of expansion is the priming of CD4+ T cells by
antigen-specific B-cells, but there might be other mechanisms such as the migration
of SARS-CoV-2 specific T cells from lymphoid organs or bystander activation of
non-SARS-CoV-2 specific T cells. It is also possible that later expanding T cells
are triggered by another infection, simultaneously and asymptomatically occurring
in both donors around day 30. In contrast with the first wave of response identified
by contracting clones, for now we do not have confirmation that this second wave
of expansion corresponds to SARS-CoV-2 specific T cells. Accumulation of TCR
sequences for CD4+ SARS-CoV-2 epitope specific T cells may further address this
question.
We showed that a large fraction of putatively SARS-CoV-2 reactive T cell clones
are later found in memory subpopulations and remain there at least 3 months af-
ter infection. Importantly, some of responding clones are found in long-lived stem
cell-like (SCM) memory subset, as also reported for SARS-CoV-2 convalescent pa-
tients in ref. Sekine et al. (2020). A subset of CD4+ clones were identified in
pre-infection central memory subsets, and a subset of CD8+ T cells were found
in effector memory. Among these are CD8+ clones recognising NQKLIANQF, an
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immunodominant HLA-B*15:01 restricted SARS-CoV-2 epitope, for which homolo-
gous epitope differing by 1 aa mismatch exists in common human betacoronaviruses.
The presence of SARS-CoV-2 cross-reactive CD4+ T cells in healthy individuals

was recently demonstrated Braun et al. (2020); Grifoni et al. (2020); Le Bert et al.
(2020); Meckiff et al. (2020); Bacher et al. (2020); Peng et al. (2020). Our data
further suggests that cross-reactive CD4+ and CD8+ T cells can participate in the
response in vivo. It is interesting to ask if the presence of cross-reactive T cells be-
fore infection is linked to the mildness of the disease (with predicted HLA-B*15:01
cross-reactive epitope described above as a good starting point). Larger studies with
cohorts of severe and mild cases with pre-infection timepoints are needed to address
this question.

7.4. Methods

7.4.1 Donors and blood samples

Peripheral blood samples from two young healthy adult volunteers, donor W (fe-
male) and donor M (male) were collected with written informed consent in a certified
diagnostics laboratory. Both donors gave written informed consent to participate in
the study under the declaration of Helsinki. HLA alleles of both donors (Table S2)
were determined by an in-house cDNA high-throughput sequencing method.

7.4.2 SARS-CoV-2 S-RBD domain specific ELISA

An ELISA assay kit developed by the National Research Centre for Hematology
was used for detection of anti-S-RBD IgG according to the manufacturer’s protocol.
The relative IgG level (OD/CO) was calculated by dividing the OD (optical density)
values by the mean OD value of the cut-off positive control serum supplied with the
Kit (CO). OD values of d37, d45 and d85 samples for donor M exceeded the limit of
linearity for the Kit. In order to properly compare the relative IgG levels between
d30, d37, d45 and d85, these samples were diluted 1:400 instead of 1:100, the ratios
d37:d30 and d45:d30 and d85:d30 were calculated and used to calculate the relative
IgG level of d37, d45 and d85 by multiplying d30 OD/CO value by the correspond-
ing ratio. Relative anti-S-RBD IgM level was calculated using the same protocol
with anti-human IgM-HRP conjugated secondary antibody. Since the control cut-off
serum for IgM was not available from the Kit, on Fig. S1b. we show OD values for
nine biobanked pre-pandemic serum samples from healthy donors.
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7.4.3 Isolation of PBMCs and T cell subpopulations
PBMCs were isolated with the Ficoll-Paque density gradient centrifugation proto-
col. CD4+ and CD8+ T cells were isolated from PBMCs with Dynabeads CD4+
and CD8+ positive selection kits (Invitrogen) respectively. For isolation of EM,
EMRA, CM and SCM memory subpopulations we stained PBMCs with the follow-
ing antibody mix: anti-CD3-FITC (UCHT1, eBioscience), anti-CD45RA-eFluor450
(HI100, eBioscience), anti-CCR7-APC (3D12, eBioscience), anti-CD95-PE (DX2,
eBioscience). Cell sorting was performed on FACS Aria III, all four isolated sub-
populations were lysed with Trizol reagent immediately after sorting.

7.4.4 TCR library preparation and sequencing
TCRalpha and TCRbeta cDNA libraries preparation was performed as previously
described in Pogorelyy et al. (2017). RNA was isolated from each sample using
Trizol reagent according to the manufacturer’s instructions. A universal primer
binding site, sample barcode and unique molecular identifier (UMI) sequences were
introduced using the 5’RACE technology with TCRalpha and TCRbeta constant
segment specific primers for cDNA synthesis. cDNA libraries were amplified in two
PCR steps, with introduction of the second sample barcode and Illumina TruSeq
adapter sequences at the second PCR step. Libraries were sequenced using the Il-
lumina NovaSeq platform (2x150bp read length).

7.4.5 TCR repertoire data analysis
Raw data preprocessing. Raw sequencing data was demultiplexed and UMI
guided consensuses were built using migec v.1.2.7 Shugay et al. (2014). Resulting
UMI consensuses were aligned to V and J genomic templates of the TRA and TRB
locus and assembled into clonotypes with mixcr v.2.1.11 Bolotin et al. (2015). See
Table S1 for the number of cells, UMIs and unique clonotypes for each sample.

Identification of clonotypes with active dynamics. Principal component
analysis (PCA) of clonal trajectories was performed as described before Minervina
et al. (2020). First we selected clones which were present among the top 1000 abun-
dant in any of post-infection PBMC repertoires, including biological replicates, i.e.
considered clone abundant if it was found within top 1000 most abundant clonotypes
in at least one of the replicate samples at one timepoint. Next, for each such abun-
dant clone we calculated its frequency at each post-infection timepoint and divided
this frequency by the maximum frequency of this clone for normalization. Then we
performed PCA on the resulting normalized clonal trajectory matrix and identified
three clusters of trajectories with hierarchical clustering with average linkage, using
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Euclidean distances between trajectories.
We identify statistically significant contractions and expansions with edgeR as previ-
ously described Pogorelyy et al. (2018c), using FDR adjusted p < 0.01 and log2 fold
change threshold of 1. NoisET implements the Bayesian detection method described
in Puelma Touzel et al. (2020). Briefly, a two-step noise model accounting for cell
sampling and expression noise is inferred from replicates, and a second model of ex-
pansion is learned from the two timepoints to be compared. The procedure outputs
the posterior probability of expansion or contraction, and the median estimated log2

fold change, whose thresholds are set to 0.05 and 1 respectively.

Mapping of COVID-19 associated TCRs to the MIRA database. TCR-
beta sequences from T cells specific for SARS-CoV-2 peptide pools MIRA (Im-
muneCODE release 2) were downloaded from https://clients.adaptivebiotech.
com/pub/covid-2020. V and J genomic templates were aligned to TCR nucleotide
sequences from the MIRA database using mixcr 2.1.11. We consider a TCRbeta
from MIRA matched to a TCRbeta from our data, if it had the same V and J and
at most one mismatch in CDR3 amino acid sequence. We consider a TCRbeta se-
quence mapped to an epitope if it has at least two identical or highly similar (same
V, J and up to one mismatch in CDR3 amino acid sequence) TCRbeta clonotypes
reactive for this epitope in the MIRA database.

Computational alpha/beta pairing by clonal trajectories. Computa-
tional alpha/beta pairing was performed as described in Minervina et al. (2020). For
each TCRbeta we determine the TCRalpha with the closest clonal trajectory (Ta-
bles S3 and S5). We observe no stringent pairings between TCRbeta and TCRbeta
motifs with exception of two contracting CD8 TCRbeta clusters: TRBV7-2/TRBJ1-
2 NQKLIANQF-associated clones from donor M paired to TRAV21/TRAJ40 alphas
from the same cluster (CASSLEDTNYGYTF - CAVHSSGTYKYIF and CASSLEDTIY-
GYTF - CAALTSGTYKYIF), and TRBV7-9/TRBJ2-3 beta cluster paired to largest
alpha cluster (CASSPTGRGRTDTQYF - CAYRSGGSEKLVF and CASSPTGRGGT-
DTQYF - CAYRRPGGEKLTF).

Computational prediction of HLA-types. To predict HLA-types from TCR
repertoires of COVID-19 cohort we used sets of HLA-associated TCR sequences from
DeWitt et al. (2018). We use TCRbeta repertoires of 666 donors from cohort from
Emerson et al. (2017), for which HLA-typing information is available in ref. De-
Witt et al. (2018) as a training set to fit logistic regression model, where presence
or absense of given HLA-allele is an outcome, and the number of allele-associated
sequences in repertoire, as well as the total number of unique sequences in the
repertoire, are the predictors. A separate logistic regression model was fitted for

https://clients.adaptivebiotech.com/pub/covid-2020
https://clients.adaptivebiotech.com/pub/covid-2020
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each set of HLA-associated sequences from ref. DeWitt et al. (2018), and then used
to predict the probability p that a donor from the COVID-19 cohort has this allele.
Donors with p < 0.2 were considered negative for a given allele.

7.4.6 Data availability
Raw sequencing data are deposited to the Short Read Archive (SRA) accession:
PRJNA633317. Processed TCRalpha and TCRbeta repertoire datasets, resulting
repertoires of SARS-CoV-2-reactive clones, and raw data preprocessing instructions
can be accessed from: https://github.com/pogorely/Minervina_COVID.

7.4.7 Supplementary figures
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Figure 1 - Figure supplement 1. Both donors developed anti-SARS-CoV-2
IgG and IgM responses by day 15 post infection. a, The relative level of
SARS-CoV-2 S-RBD domain specific IgG (y-axis) is plotted against time. Solid
black line shows the threshold for positive testing. b, Relative IgM levels in donors
M and W are shown over time. Relative IgM levels for pre-pandemic serum samples
from healthy donors are shown on the left (green dots).

https://github.com/pogorely/Minervina_COVID
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Figure 1 - Figure supplement 2. a, Memory subpopulation gating strategy.
Three populations of memory T cells: EM, CM and EMRA are defined by CCR7
and CD45RA markers, SCM are distinguished from naive CCR7+ CD45RA+ T cells
by CD95 expression. b, HLA-A*02:01-YLQPRTFLL subpopulation gating
strategy. On day 25 post-infection donor M participated in study by Shomuradova
et. al Shomuradova et al. (2020) (as donor p1434), where his T cells were in vitro
expanded and stained with HLA-A*02:01-YLQPRTFLL tetramer, TCRalpha and
TCRbeta repertoires were sequenced and resulting sequences deposited to VDJdb.
See Shomuradova et al. (2020) for experimental details.
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Figure 1 - Figure supplement 3. Longitudinal tracking of T cell clones af-
ter mild COVID-19 with TCRalpha repertoire sequencing. a,b, PCA of
clonal temporal trajectories identifies three groups of clones with distinc-
tive behaviours. Left: first two principal components of the 1000 most abundant
TCRalpha clonotype frequencies normalized by maximum value for each clonotype
in PBMC at post-infection timepoints. Color indicates hierarchical clustering results
of principal components; symbol indicates if clonotype was called as significantly
contracted from day 15 to day 85 (triangles), or expanded from day 15 to day 37
(circles) by both edgeR and NoisET (Fig. 1 suppl. 5 shows overlap between clonal
trajectory clusters and edgeR/NoisET hits). Right: each curve shows the average ±
2.96 SE of normalized clonal frequencies from each cluster. Contracting (c) and
expanding (d) clones include both CD4+ and CD8+ T cells, and are less
abundant in pre-infection repertoires. T cell clones significantly contracted
from day 15 to day 85 (c) and significantly expanded from day 15 to day 37 (d)
were identified in both donors. The fraction of contracting (c) and expanding (d)
TCRalpha clonotypes in the total repertoire (calculated as the sum of frequencies
of these clonotypes in the second PBMC replicate at a given timepoint and cor-
responding to the fraction of responding cells of all T cells) is plotted in log-scale
for all reactive clones (left), reactive clones with the CD4 (middle) and CD8 (right)
phenotypes.
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Figure 1 - Figure supplement 4. Comparison of edgeR and NoisET clonal
expansion detection procedures. The fraction (plotted in the log-scale) of con-
tracting (a) and expanding (d) TCRbeta clonotypes in the total repertoire was
estimated using subsets of expanded and contracted clones called by edgeR (green)
and NoisET (purple) models. Overlaps for contracted clones (b,c) and expanded
clones (e,f) identified by both models are shown on the right.
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Figure 1 - Figure supplement 5. The overlap between clusters of clonal tra-
jectories identified by PCA and groups of expanding/contracting clones
identified with edgeR/NoisET. For each cluster of clonal trajectories identified
on Fig. 1bc. and Fig. 1 suppl. 3ab we show overlap with groups of significantly
(called by edgeR and NoisET simultaneously) expanding clonotypes from day 15 to
day 37 in yellow, significantly contracting clonotypes from day 15 to day 85 in green,
other clonotypes are shown in purple ("stable" clonotypes which were not called
significant by edgeR and NoisET simultaneously). Bar heights show fraction of
abundant clonotypes in PCA cluster overlapping with expanding/contracting/non-
significant groups called by edgeR/NoisET, raw number of overlapping clonotypes
is shown inside bars.
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Figure 2 - Figure supplement 1. Memory phenotypes of responding clono-
types expanding from day 15 to day 37. a, A fraction of expanding
clonotypes is identified in T cell memory subsets after infection. Bars
show the fraction of expanding CD4+ and CD8+ TCRbeta clonotypes present in
2-year; 1-year pre-infection PBMC; and in at least one of memory subpopulation
sampled on day 30 and day 37 post infection. b, Responding clones are found in
different memory subsets. For both W (b) and M (c) donors, CD4+ clonotypes
were found predominantly in Central Memory (CM) and Effector Memory (EM),
while CD8+ T cells were also present in EMRA.
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Figure 2 - Figure supplement 2. Dynamics of pre-existing SARS-CoV-2 re-
sponding clones. The fraction of pre-existing (identified in -1 yr and/or -2 yr
timepoint pre-infection) contracting (a) and expanding (b) TCRbeta clonotypes in
the total repertoire (corresponding to the fraction of responding cells of all T cells)
is plotted in log-scale for all reactive clones (left), reactive clones with the CD4
(middle) and the CD8 phenotype (right).
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Figure 3 - Figure supplement 1. HLA-A*02:01-YLQPRTFLL-specific TCRs
are independently identified by clonal contraction. Each dot corresponds to
the frequency of HLA-A*02:01-YLQPRTFLL-tetramer specific TCRalpha in bulk
repertoire from donor M (donor p1434 from Shomuradova et al. (2020)) at given
timepoint (an estimate of fraction of tetramer+ cells of all CD3+ cells). Green dots
correspond to clonotypes independently identified as contracting in our longitudi-
nal dataset. Blue line shows cumulative frequency of HLA-A*02:01-YLQPRTFLL-
tetramer specific TCRalpha clonotypes.
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Figure 3 - Figure supplement 2. ALICE algorithm output for TCRalpha
PBMC repertoire of donor M on day 15. Similarity network shows ALICE
hits (clones in repertoire with more neighbours than expected by chance), which
differ by 2 mismatches or less in TCRalpha amino acid sequence. Darker colors
indicate larger frequency of clone in the repertoire, vertex size indicates degree. The
majority (54%, 99/183) of hits identified by the algorithm correspond to a single
large TRAV35/TRAJ42 cluster of CD4+ contracting clones also seen on Fig. 4a.
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Figure 4 - Figure supplement 1. a, Expanding CD4+ (but not CD8+) clono-
types show unexpected TCRalpha and TCRbeta sequence convergence.
For each set of CD4alpha, CD4beta, CD8alpha and CD8beta expanded clonotypes,
we constructed separate similarity networks. Each vertex in the similarity network
corresponds to an expanding clonotype. An edge indicates 2 or less amino acid mis-
matches in the CDR3 region, and identical V and J segments. The number of edges
in each group is shown by pink dots and is compared to the distribution of that
number in 1000 random samples of the same size from the relevant repertoires at
day 37 (blue boxplots). b, c, d, e Analysis of TCR amino acid sequences of
expanding clones reveal distinctive motifs. Networks are plotted separately
for CD8alpha (b) and CD8beta (c) CD4alpha (d) and CD4beta (e) expanding
clonotypes. Clonotypes without neighbours are not shown. Sequence logos corre-
sponding to the largest clusters are shown under the corresponding network plots.
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Figure 4 - Figure supplement 2. Identification of COVID-19 patients by fre-
quency of TCR motifs from contracting CD4+ clones from donors M
(a) and W (b). Receiver Operating Characteristic (ROC) curves for classifying
TCRbeta repertoires from COVID cohort vs control by cumulative frequency of
clones from CD4beta motifs. Blue curve shows ROC curve (area under the ROC or
AUROC=0.8) for the classification of control and COVID donors predicted to be
DRB1*03:01-DQB1*02:01 haplotype-positive with motif from donor M. Red curve
show ROC curve (AUROC=0.79) for classification of control and COVID donors
predicted to be DRB1*07:01-positive using motif from donor W. Grey ROC curves
show classifier performance on all donors, irrespective of HLA allele matching (AU-
ROC=0.53 for (a), AUROC=0.57 for (b)).
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8
CONCLUSION

8.1. Main contributions of this thesis
High-throughput sequencing experiments have shown that in all repertoire sequenc-
ing data sets, clonotype sizes follow a power-law distribution with an exponent close
to −1 (chapter 1, chapter 3), with low variability between individuals. This result
motivated the study of a universal population dynamic process for T-cell receptor
repertoires dynamics for healthy individuals (Bensouda Koraichi et al. (2022)).

In a first-order Markov model, we have demonstrated that the logarithms of the
abundances of different TCR clones follow geometric Brownian motion trajectories
(whose stationary distribution is a power law). I extracted characteristic time scales
of cell renewal and clonal renewal of different T-cell receptor repertoires from this
model. New RepSeq data allow us to confront the model with reality. It is essential
to understand data to extract information when working with it. It is, therefore,
necessary to be aware of biotechnological progress and the different stages of the
protocols leading to data generation.

The major challenge I had to tackle was considering the complex experimen-
tal and biological noise. Using Bayesian inference methods, I could infer the noise
distribution parameters robustly. I then used all available data of healthy longitu-
dinal repertoires (from 2011 to 2020) created by different laboratories with different
experimental techniques to learn TCR population dynamics parameters. Inference
of the dynamic with data of other individuals from other studies, ages, and sexes
leads us to learn parameters following the stationary well-known power-law clonal
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distribution. I was also able to learn characteristic time scales of T-cell immune
repertoires and predict turnover rates of the T-cells repertoire. These turnover rates
are highly dependent on the age of the analyzed individual and can give us insights
into the diversity maintenance of the ecosystem with implications for immunose-
nescence questions. These results are giving us a powerful tool to quantify, for the
first time, neutral dynamics of the TCR repertoire of healthy individuals. Under-
standing the dynamics of TCR clones when people are healthy can help us develop
biomarkers of TCR repertoire deficiency and develop tools to improve the detection
of efficient TCR against viruses, chronic diseases, and cancers, for which precise
tools are needed.

The previously mentioned dynamic model describing T cell repertoires led me
to pursue the Imprint project, published in PLoS Genetics Dupic et al. (2021), for
which we show that a drop of blood combined with sequencing of the immune reper-
toire is sufficient to identify any person, even monozygous twins. We have proposed
to use the repertoires as a versatile and innovative fingerprinting and identification
tool that opens the debate on data collection, confidentiality, and ethics in this field.

Following the Sars-Cov2 pandemic, I developed the NoisET python software
Bensouda Koraichi et al. (2021). This software allows for the use of experimental
noise analysis methods of longitudinal samples of T cell repertoires to detect as
precisely as possible the clonal families that have expanded between two given dates.
It also offers valuable ways to facilitate the work of everyone who wants to analyze
TCR clone dynamics from longitudinal RepSeq data. I have studied with this tool
the Sars-Cov2 data, whose results have been published in eLife, Minervina et al.
(2021). We have shown that hosts develop an active immune memory to the virus by
identifying the families of clones involved and that the pre-existing immune memory
existed in these people. A large community of scientists can use NoisET software to
detect T-cell immune responses to vaccination. It could greatly help to study the
heterogeneity of reactions to the SARS-Cov2 vaccine.

8.2. Future research directions
Antigen-induced clonal expansion is the main characteristic of an adaptive immune
response, and measuring clonotype size is often a critical component of diagnosis.
However, it is not accessible to precisely assess this number because of the already
mentioned power-law clonal distributions that make evaluating count observations
in the data and the biological noise challenging. Also, it can be helpful in longi-
tudinal studies to evaluate neutral population dynamics to detect significant clonal
expansions or contractions. My expertise in these tasks motivates me to integrate
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Figure S1: Use the knowledge learnt from this thesis about the experimental and
biological noise monitoring the experimental counts of TCR to improve existing
methods of TCR-epitope recognition thanks to RepSeq data.

this modeling to properly analyze correlations between properties encoded in TCR
amino-acid sequences (where the biochemistry is hidden) that would have expanded
because of the presence of a specific antigen.

Recently, it has become possible to simultaneously assay T-cell specificity con-
cerning large sets of antigens (10x Genomics, 2019) and the T-cell receptor (TCR)
sequence in high-throughput single-cell experiments. Recent advances in single-cell
RNA-seq technologies allow for the detection of rare subpopulations that play im-
portant roles in host-pathogen interactions. Therefore, it would be great to gather
all the TCR sequence information, T-cell specificity, gene expression in single-cell ex-
periments, and T-cell abundances in a longitudinal data set to predict TCR-antigen
pairing. Information contained in single-cell experiments reported on single-cell in-
vestigations is very rich and can give us clues about the functioning of a responsive
T-cell. Taking advantage of new upcoming data, I want to learn distributions of
TCR sequences that would be responsive to a specific antigen using single-cell data,
sequence counts, and the usage of advanced generative protein models. This task
is one of the most challenging ones in modern immunology. An outcome can sig-
nificantly progress in finding more effective new treatments using protein design
and drug discovery. The ability to accurately predict T-cell activation upon antigen
recognition is still unsuccessful because of the lack of training data and adequate
statistical models.
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RÉSUMÉ

Le système immunitaire adaptatif comprend une diversité de lymphocytes T capables de reconnaître un large éventail
d’antigènes. La spécificité de chaque cellule T pour les antigènes est déterminée par ses récepteurs (TCR), qui forment
un répertoire de milliards de récepteurs uniques chez chaque individu. Les cellules T possèdent un récepteur capable
de reconnaître l’agent pathogène ou la cellule maligne que l’organisme veut éliminer et se multiplient suite à cette re-
connaissance. Ces événements se produisent non seulement après un stimulus aigu, mais aussi en permanence, car le
système immunitaire interagit constamment avec l’environnement extérieur. En utilisant la dynamique stochastique des
populations pour faire correspondre le répertoire de lymphocytes T à un système écologique, et des outils issus de la
théorie de l’inférence bayésienne, nous construisons et confrontons des modèles biophysiques à des données réelles.
Nous tirons parti de la disponibilité de nouvelles données dû aux progrès majeurs du séquençage à haut débit et donc,
de la génération de données sur le répertoire de lymphocytes T qui contient beaucoup d’informations à déchiffrer. Grâce
à ces méthodes, le résultat est multiple, nous sommes capables d’interpréter les données et le bruit qui les sous-tend, de
comprendre la dynamique du répertoire de lymphocytes T en présence ou en l’absence d’un stimulus fort sur une échelle
de temps courte ou longue, de caractériser la spécificité de chaque répertoire TCR avec le temps et de développer des
outils qui peuvent être utilisés par tout immunologiste quantitatif intéressé par l’étude de la dynamique du répertoire de
lymphotcytes T.

ABSTRACT

The adaptive immune system includes a diversity of T cells capable of recognizing a wide range of antigens. The speci-
ficity of each T cell for antigens is determined by its T cell receptors (TCRs), which together form a repertoire of billions
of unique receptors in each individual. The T cells have a receptor capable of recognizing the pathogen or malignant cell
the body wants to eliminate. T-cells multiply following this recognition. These events happen after an acute stimulus and
continuously as the immune system interacts permanently with the external environment. Using stochastic population
dynamics to match the TCR repertoire system to an ecological system and tools from Bayesian inference theory, we
build and confront biophysical models to actual data. We take advantage of the availability of new data due to significant
advances in high-throughput sequencing. Thanks to these methods, we can interpret data and the noise behind it, un-
derstand the TCR repertoire dynamics of people in the presence or absence of a strong stimulus on a short or long time
scale, characterize the specificity of each TCR repertoire with time and develop tools that can be used by any quantitative
immunologist interested in studying TCR repertoire dynamics.
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immunology, Statistical biophysics, Inference, Population dynamics
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