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RESUME EN FRANÇAIS 

 

Les microorganismes regroupent les organismes microscopiques uni- ou pluri-cellulaires, 

qu’ils soient eucaryotes ou procaryotes. Ces organismes sont présents dans de nombreux 

écosystèmes où leurs fonctions sont diverses et indispensables au maintient des équilibres 

métaboliques et biogéochimiques de leur environnement. Les microorganismes ont co-

évolués avec les organismes structurellement plus complexes (i.e. les animaux et les végétaux) 

et permettent d’étendre les fonctions de leur hôte, leur offrant une plus grande résilience face 

au aléas environnementaux. Malgré leur prévalence et les intérêts écologiques qu’ils offrent, 

les microorganismes demeurent méconnus en termes de diversité génétique, de fonctions, 

d’interactions et d’évolution. Les bactéries, des organismes procaryotes unicellulaires, 

présentent une grande diversité génétique entre les espèces mais aussi au sein des espèces. 

Leur évolution réside sur l’apparition continuelle de mutants formant des populations et ainsi 

de la diversité intra-spécifique qui permet la sélection des lignées les plus adaptées aux 

changements environnementaux et le maintien de la structure des communautés 

bactériennes. Afin de comprendre les dynamiques évolutives des bactéries il est donc 

nécessaire de capter l’information à l’échelle de leur matériel génétique pour retranscrire leur 

diversité ainsi que les paramètres environnementaux qui régissent les interactions et les 

besoins métaboliques des bactéries. Le choix des outils pour étudier les microorganismes est 

guidé par l’échelle d’étude désirée. La culture de souches bactériennes en laboratoire permet 

d’étudier les métabolismes et interactions dans des milieux simplifiés. A l’inverse, le 

séquençage de l’ADN bactérien environnemental (metagénomique) offre un aperçu de la 

diversité microbienne en milieu naturel. L’utilisation des approches de séquençage de cellules 

unique (ou single-cell omics) a récemment émergé et pourrait permettre d’étudier les 

génomes bactériens individuels dans leur milieu naturel, leur métabolisme et les possibles 

interactions intra- et inter-espèces dans un contexte évolutif, permettant l’accès à l’échelle 

populationnelle et donc à la possible exploration de questionnements en écologie 

microbienne actuellement hypothétiques. L’application de cette technique nécessite 

l’utilisation de matériel dédié à l’isolement des cellules bactériennes, de la lyse de leur paroi 

cellulaire puis de l’amplification de leur génome avant de procéder à des méthodes de 

préparation de librairies de séquençage.  Ces étapes présentent de nombreux biais ainsi qu’un 



    

 

 

coût non négligeable. Cette approche est fortement soumise aux risques de contamination et 

à ce jour permet d’étudier quelques centaines cellules bactériennes dont les génomes 

récupérés demeurent grandement partiels. Ces limites en termes de coût, de biais 

moléculaires, et de manque de représentativité de la réelle diversité des communautés 

bactériennes ne permettent pas une application globale de cette technique au service de 

l’écologie microbienne. Un article détaillant les applications possibles et les limites du 

séquençage de cellules bactériennes uniques a été publié dans le journal Trends in Ecology 

and Evolution durant ce projet de thèse.  

Dans ce contexte, mon travail de thèse vise à i) développer un protocole de préparation de 

librairie sur cellules uniques applicable aux bactéries en limitant au maximum les biais associés 

à cette approche, ii) valider le protocole développé sur des souches bactériennes avec 

génomes complets référencés et proposer une procédure de décontamination des données 

automatisée et iii) appliquer le protocole à un échantillon environnemental afin de tester son 

efficacité à répondre à des questionnements en écologie microbienne et le comparer à des 

approches de métagénomique.   

Le protocole de préparation de librairies de cellules uniques a été développé autour de 

l’instrument d’isolement de cellules cellenONE, permettant une distribution précise des 

bactéries détectées visuellement par la caméra de l’appareil dans le support souhaité. Afin de 

réduire les coûts et les risques de contamination, le protocole a été imaginé pour être utilisé 

dans des volumes réactionnels grandement réduits par rapport aux solutions classiques de 

préparations de librairies (de l’ordre du nanolitre versus microlitre sur le marché). Pour ce 

faire, chaque étape du protocole en amont de l’identification des ADN cellulaire - permettant 

leur regroupement dans de grands volumes et ainsi leur purification – ont été élaborées pour 

être compatibles entre elle sans besoin nécessaire de purification et réalisable en volumes 

réactionnels réduits. Premièrement, la lyse cellulaire utilisée provient d ’une publication de 

Stepanauskas et al., 2017. Sa composition alcaline a permis de décomposer la paroi 

bactérienne sans endommager l’ADN et n’a pas inhibé la réaction moléculaire à suivre : 

l’amplification du génome. Pour cette étape, la Multiple Displacement Amplification (MDA) a 

été utilisée et les volumes réduits à partir du kit REPLI-g advanced DNA single cell kit de 

Qiagen. Cette étape a permis d’obtenir de l’ADN en grande quantité à une taille autour de 

10 000 pb pour chaque cellule isolée. Une fois amplifié, les brins d’ADN ont été fragmentés à 

250 pb grâce au kit QIAseq FX DNA Library Kit de Qiagen. Ensuite, des adaptateurs d’amorces 



    

 

 

de séquençage personnalisés ont été ajoutés à l’extrémité de chaque brin contenant un 

identifiant et résultant en une identification unique de l’ADN par groupe de 96 cellules. Ces 

groupes de 96 cellules ont ensuite été rassemblés afin d’y ajouter les amorces avec index de 

séquençage Illumina Nextera XT résultant en un autre niveau d’identification, cette fois de 

l’échantillon. Les contrôles qualité effectués à chaque étape étant validés (taille des 

fragments, rendement, validation par PCR), le protocole a pu être appliqué à des souches 

bactériennes connues pour évaluer son efficacité.  

Le protocole a été appliqué aux souches Pseudomonas fluorescens et Staphylococcus 

epidermidis. Les données générées ont été comparées aux génomes de référence pour évaluer 

la quantité et la qualité de l’information récupérée. Les résultats montrent qu’une part réduite 

du génome original est conservée, ce biais venant probablement de la méthode 

d’amplification du génome (MDA) produisant une couverture du génome non uniforme. Un 

pipeline de décontamination a été développé et a en revanche démontrer la faible quantité 

de contaminants introduits dans les échantillons. Les contaminants retrouvés provenaient du 

manipulateur ou des kits de préparation des échantillons, ils ont donc été éliminé des données 

finales. Afin de valider ce pipeline de décontamination automatique des données, un jeu de 

données publié de séquençage de cellules uniques provenant d’échantillons marins a été 

utilisé. Sur ces données, des contaminants ont été identifiés par le pipeline et ont permis de 

souligner le manque de considération de ces contaminations dans les outils d’évaluation de la 

qualité des génomes assemblés via séquençage de cellules uniques (e.g. Check M). Cette 

partie a démontré le bon fonctionnement de protocole de préparation des échantillons 

précédemment développé et a souligné l’importance de l’effort nécessaire autour de la 

décontamination universelle de ce type de données afin de limiter des erreurs introduites 

dans les génomes de référence.  

Le protocole de préparation de librairies de cellules uniques a ensuite été appliqué à un 

échantillon environnemental afin d’évaluer sa capacité à retranscrire les informations 

nécessaires à la réflexion autour de questionnements poussés en écologie microbienne tels 

que l’effet de l’acidité du sol sur la structure des communautés microbiennes. Notamment, la 

taille des assemblages, la diversité des communautés bactériennes retrouvées, la présence de 

gènes marqueurs et la possibilité de réaliser une phylogénie à partir des échantillons ont été 

testés. L’échantillon utilisé provenait du site expérimental de Craibstone en Ecosse, où un 

gradient d’acidité contrôlé est appliqué sur des parcelles agricoles. Ici, des échantillons de sol 



    

 

 

provenant du traitement pH 4.5, 6 et 7.5 ont été utilisés. En parallèle du protocole développé, 

les échantillons ont également été traité via des techniques de métagénomique à titre de 

comparaison. La diversité bactérienne retrouvé via les SAGs (Single Amplified Genomes) était 

assez divergente de celle retrouvée via les MAGs (Métagenome Assembled Genomes). La 

diversité via les SAGs était plus importante que les MAGs. De plus, les assemblages SAGs 

présentaient moins de petites séquences que les MAGs, indiquant une importante présence 

de séquences contaminantes dans les MAGs. Les SAGs permettent de différencier l’ADN cible 

de l’ADN contaminant environnemental, permettant l’obtention d’assemblages de séquences 

plus propres. En revanche, ces assemblages demeurent de petite taille et nécessite d’être 

améliorer pour une exploitation optimale de la présence de gènes marqueurs et de la diversité 

intra-spécifique. Le placement de ces assemblages dans un arbre phylogénétique a montré la 

présence de certains individus appartenant à des familles bactériennes sous représentées. La 

plupart des échantillons SAGs et MAGs n’étaient cependant pas affilié à des familles 

bactériennes, témoignant de l’assemblage de trop faible qualité.  

Ce travail a démontré la capacité du séquençage de l’ADN de bactéries uniques à retranscrire 

avec une plus grande précision que la métagénomique la composition des communautés 

bactériennes. Cette approche reste cependant complexe et nécessite des équipements et un 

personnel spécialisé. Afin d’améliorer la qualité des assemblages, il est nécessaire d’optimiser 

les techniques moléculaires, notamment l’amplification du génome, afin de limiter la 

contamination introduite, les erreurs d’amplification et d’uniformiser la représentation du 

génome. Grâce à ces amélioration, l’annotation des génomes sera rendue plus systématique 

et des approches de modélisation de l’interaction et l’évolution des métabolismes pourra être 

envisagée. Le futur de l’écologie microbienne réside dans la combinaison des approches 

techniques, quelles soient axées sur la génomique, la transcriptomique, la cultivation ou la 

modélisation, afin d’obtenir une image complète et précise des processus évolutifs dans 

lesquels les microorganismes sont impliqués.  
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Preamble 

 

All sciences start with curiosity.  

 

From the very beginning, Men have evolved in collaboration with Nature. Their inherent 

willpower to understand their environment has been the source of their evolution. From 

learning to start a fire, to farming, and mastering minerals, great steps in natural sciences have 

always been initiated by curiosity. Through observation of the detailed ecological processes 

around us, forms of life be it big or small, were decrypted, classified, and exploited. Knowledge 

has become the power of humankind, compensating for the lack of physical abilities our bodies 

present compared to other animals. We are not the strongest, we do not run the fastest, nor 

can we hear sound from kilometres away or navigate across the globe using magnetic fields. 

However, what we can do better than any other species is think. We have used our amassed 

knowledge to protect, conserve, and anticipate our fate but also the fate of our ecosystem and 

its inhabitants. Nothing resists Man. In our quest for power, we have often disregarded Nature 

in order to dominate, creating technologies and economic benefits along the way. Along with 

our ideas and thoughts, we have expanded, often believing we could control everything, and 

that life had little to no secrets left for us to uncover. 

That all changed when we discovered microbes.  

 

“Microbes have been here since life began, almost 4 billion years ago. They created the system that we 

live in, and they sustain it.”  

“We may not see them, but they’re running the show.”  

Dan Buckley 
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Opening section 

 Understanding microbes 

 

I- Microbiology through Centuries 
 

1.1- The first big steps 
 

The discovery of microscopic organisms dates back to the 17th century when Antoni 

Leeuwenhoek and Robert Hooke observed bacteria (baptized “animalcules” at the time) and 

fungi under simple microscopes for the first time (Gest, 2004). Two centuries later, the 

cultivation of bacteria on artificial media was initiated by Louis Pasteur’s work (Bonnet et al., 

2020) and largely contributed to the development of microbiology in human health research. 

Fifty years ago, the first DNA sequencing technology was developed by Sanger (Sanger et al., 

1977) giving the opportunity to microbiologists to get a more precise census of microbial 

abundance and diversity in various ecosystems. The genome of Haemophilus influenzae, 

identified as responsible for the flu disease in 1892 by Richard Pfeiffer (Pfeiffer, 1892), was the 

first to be completely sequenced from the bacterial realm in 1995 by Craig Venter’s group 

(Fleischmann et al., 1995). Through the centuries, scientists discovered inconceivable bacterial 

functions such as quorum sensing, bioluminescence, or metal reduction (Myers & Nealson, 

1988; K. H. Nealson & Hastings, 1979; K. H. Nealson et al., 1970). Known for these discoveries, 

Kenneth Nelson experienced rejections from editors with the argument: “Bacteria do not do 

this”, twice. Just like these editors, did Antoni Leeuwenhoek have any idea that the 

“animalcules” he observed would have such abilities? Still today, we might still be very naïve 

concerning the real potential of prokaryotes. 
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1.2- Incorporating microbes in the Tree of Life 
 

To help conceptualize life organization and evolution, scientists attempted to arrange 

organisms around interconnected branches through centuries, with one of the first famous 

trees proposed by Haeckel in 1866 (Figure 1a). The first Tree of Life proposing three main 

domains as we know them today was published a century later (Woese & Fox, 1977) (Figure 

1b). It was built based on molecular data which was a little revolutionary at the time but 

generated some mistrust regarding this study and difficulties to evaluate its veracity.  

 

Figure 1. (A) One of the first trees representing life 

organization and connections between organisms. 

The base represents the common ancestor from 

which all other forms of life would emerge in three 

different domains: plants, protists, and animals. His 

theory was based on abiogenesis (i.e. forms of life 

created from non-living matter) and a common 

ancestor to all organisms with no specific structure 

named monera (Haeckel, 1866). (B) This 

classification was based on molecular data and proposed three groups with distinguished cell 

types: Bacteria, Archaea and Eucarya. Here, life is evolving from all branches and was first 

initiated by an ancestor of prokaryotes (figure from Pace et al., 2012). 

 

Nonetheless, the outcomes of this work raised major questions regarding the origin of life and 

the evolutionary history of all organisms. The origin of life and its evolution were largely 

debated and generated various hypotheses based on morphology where microbes could not 

A B 
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easily be integrated and distinguished. The use of sequencing technology in phylogeny allowed 

the scientific community to measure the immense reservoir of diversity that microorganisms 

represent and is today the main way of incorporating new branches within the clades of Bacteria 

and Archaea (Hug et al., 2016; Tahon et al., 2021; D. Wu et al., 2009), Figure 2. Recent studies 

confirmed that eukaryotes evolved from archaea 2 billion years ago (Guy & Ettema, 2011; Kelly 

et al., 2011; T. A. Williams et al., 2013), putting Bacteria and Archaea realms as the basis of all 

forms of life when they appeared 3.2 billion years ago. The organization of phylogeny is evolving 

every year with our ability to look deeper and broader into the genetic signatures of newly 

discovered organisms (Hug et al., 2016; Parks et al., 2018). Our perception of prokaryotic 

phylogeny is especially concerned with rearrangements due to their complexity in size, 

interactions, diversity, and dependence on advanced molecular tools, which are constantly 

being improved. These microorganisms at the basis of life might still be the most mysterious 

organisms whilst being essential for all other forms of life. For these reasons, microbiology is a  

very dynamic domain, with significant implications in biological and ecological research fields. 
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Figure 2. Recent representation of the Tree of Life by Hug et al. in 2016. The tree was 
revolutionized by using innovative approaches such as single-cell omics. The branches without 
isolated representatives are marked with a red dot and testify of the necessity of molecular 
tools developments for prokaryotes phylogeny construction. 
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1.3- (Micro)biology, not without ecology 
 

We, multicellular eukaryotes, are the result of millions of years of evolution initiated by 

bacteria and archaea (Guy & Ettema, 2011) via successive symbiosis between microbes 

(Douglas, 2014). Our evolutionary history is closely related to microbes and remains this way 

still today. Not only do we carry bacterial genes, but we also are the home for billions of bacteria 

within our tissues (Savage, 2003; Sender et al., 2016) like all plants and animals. In our bodies, 

microbial cells are evaluated to be more abundant than human cells (Savage, 2003). If only a 

few multicellular eukaryotes do not present a microbiota (Hammer et al., 2017, 2019), most of 

them highly rely on their microbial symbionts for multiple aspects of their life. The implication 

of microbes in animal and plant health and resilience is acknowledged to be essential for 

metabolism functioning or stress tolerance (Hoang et al., 2021; Houwenhuyse et al., 2021). This 

association is a partnership, a symbiosis, where the host sees its evolutionary potential 

extended by the presence and functions of its microbiota (Henry et al., 2021). Such 

collaboration questions the individual concept in biology (Gilbert et al., 2012) and testifies to 

the necessity to consider microbiology in light of ecological dynamics. 

 Every host or environment in which bacteria are present can turn either incredibly 

strong and resilient or dramatically ill. Hosts’ fate is so closely related to their microbiota that 

the holobiont concept which has been richly discussed (Moran & Sloan, 2015; Theis et al., 2016) 

is now commonly applied in microbial ecology (Bordenstein & Theis, 2015; Hassani et al., 2018; 

Vandenkoornhuyse et al., 2015). Genes of the host and its microbiota are forming the 

hologenome, the functions provided by both entities will determine the fitness of the holobiont 

and its evolutionary trajectory (Figure 3). Therefore, both hosts and microbes will evolve 

together. Historically, the plant-microbes association coincides with the colonization of 

terrestrial lands by plants, 450 million years ago (Knack et al., 2015; B. Wang et al., 2010), 

suggesting the stability and durability of this partnership.  
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Microorganisms support major functions for their host, for instance in plants, where the 

microbiota is essential for nutrient and water uptake from the soil to increase plant productivity 

(Van Der Heijden et al., 2016), water retention from the leaf (Raddadi et al., 2018), or for 

pathogen protection (Mendes et al., 2011; Ritpitakphong et al., 2016; Vannier et al., 2019). 

There is a rising interest in considering microbes in plant breeding and productivity in 

agriculture (Compant et al., 2019; Gopal & Gupta, 2016). Similar patterns of dependencies are 

observed in animals, particularly detailed in humans, where bacteria enhance food digestion 

and nutrient absorption, protect against external pathogens, and affect the psychological state 

of their host (Fung et al., 2017; Kamada et al., 2013; Nicholson et al., 2012; Sharon et al., 2014). 

These microbes together work in harmony with their host but can easily turn into a heavy 

companion to carry. A destabilization of the microbiota equilibrium is characteristic of some 

diseases or chronic disorders and decreases the resilience capacities of the host (Martinez-

Medina et al., 2014; Rigottier-Gois, 2013). The power of microbes on their host can be such that 

it can control and extend their ecological niche (Hoang et al., 2021; Schönknecht et al., 2013) 

and behavior (Archie & Theis, 2011; Yuval, 2017). 

 

 

Figure 3. The holobiont concept representation, containing the host and its symbionts 
genes (Theis et al., 2016). 
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The absence of individuality is also applicable within microbiota, as each member 

depends on the other, alike or not, for their growth and evolution. A major factor for bacterial 

growth is quorum sensing which allows members of a community to coordinate and 

communicate (Enomoto et al., 2017; Kenneth H. Nealson & Hastings, 2006). A microbiota, as a 

unit, presents its own rules of interactions and organization where gene flows between 

members are very common via Horizontal Gene Transfer (HGT) and vary according to the 

species and environmental conditions (Dagan et al., 2008; Polz et al., 2013). Many 

environmental parameters influence community composition and structure, modifying the 

expressed functions within the microbial community and therefore the types of interactions 

involved. The disruption of the community is buffered by its structure, often involving keystone 

taxa serving as pilar to metabolic networks (Banerjee et al., 2018; Tang et al., 2022). A complex 

system of interdependencies exists and is extremely challenging to characterize within natural 

microbial communities. The observation and characterization of interaction types have been 

induced between strains in lab experiments (Carlström et al., 2019; Mee et al., 2014), enabling 

the elaboration and exploration of novel ecological theories. The organization of the community 

around a common supply of metabolites (commonly called “common goods”) has been 

theorized by the Black Queen Hypothesis after the observation of metabolic dependencies and 

auxotrophies (i.e. the incapacity of an organism to synthesize a compound that is necessary to 

its metabolism) in the marine ecosystem (Morris et al., 2012) and is a concrete example of the 

bonded evolutionary trajectory of microbes (D’Souza et al., 2018; Douglas, 2020; Estrela et al., 

2016). The composition of the common goods is specific to a community and forms niches with 

very stable microbial structures (Pascual-García et al., 2020).The availability of nutrients in 

environments is indeed determining the rise of specific bacterial interactions and 

dependencies, be it cooperation or competition (Mataigne et al., 2022).  

The microbial world is complex and contains very different types of organisms. Bacteria, 

fungi, archaea, and viruses interact and regulate themselves by being in competition on many 

occasions. Viruses infect bacteria, archaea, and micro-eukaryotes and as a consequence 

influence the community composition, interactions, and nutrient cycling in which these 

microorganisms are involved (Weitz & Wilhelm, 2012). This regulation is largely understudied 
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for technical and methodological reasons even though recent improvements in these aspects 

are being made (Cristinelli & Ciuffi, 2018; Smith et al., 2022). Bacteria and fungi also interact in 

the rhizosphere where they compete in nitrogen cycling (Tatsumi et al., 2020), and soil 

colonization (X. Li et al., 2020). Within microbes, we will only focus on bacteria in the rest of this 

thesis work, keeping in mind that these interactions would be also judicious to implement in 

future work.     

At a broader scale, bacteria are essential in biogeochemical cycles such as organic matter 

degradation (Rousk & Bengtson, 2014), depollution, bioremediation (Deng et al., 2019), and 

nitrogen cycling where they support major functions (Prosser et al., 2020). From cell biology to 

community structure, bacteria influence and are influenced by their ecosystem and therefore 

cannot be fully pictured without it. As a result, microbes can only be fully understood in the 

light of their ecological condition, i.e. their direct neighbourhood and environments in which 

they live. Integrating such ecological parameters in microbial studies is essential to upgrade 

their accuracy but is particularly challenging. Efforts in the field are concentrated on associating 

and upgrading tools and methodologies to reach this goal of a higher level of representativity 

of natural ecological processes involving microbes (Ross & Whiteley, 2020).  

II- Methodology in microbial ecology 

 
 

The study of microbes has been evolving with and thanks to technical advances. The 

outputs in data and interpretation are highly dependent on the scale of the study and tools 

employed so one can never detach the observations made from the methodology that led to 

the results. With the complexification and diversification of tools in microbiology, scientists are 

assembling clues from different standpoints and contexts to extend the knowledge of this 

Kingdom. However, this can also lead to a lack of uniformity and representativity of the 

techniques employed and outputs (Abellan-Schneyder et al., 2021), creating vast debates 

among microbiologists questioning whether the chosen procedures are truly adequate in 

microbiology research.  



    

19 

 

2.1- Tools diversification  

 
Cultivation is the oldest and the cheapest way of directly studying microbes. It relies on 

finding the adequate growing parameters (e.g. medium, temperature, agitation, time..) for each 

strain. The growth medium contains nutrients necessary for bacterial growth, which are not 

easily identified for most strains and are not systematically sufficient. Indeed, some bacteria 

grow better in the presence of other strains in co-cultures or with complex chemical 

components, for instance, plant exudates (Dhungana et al., 2023). The limits given to this 

approach are many, the most common being that most bacteria remain uncultured (Lloyd et 

al., 2018). Some known bacteria have not been grown in the lab yet, whether they require 

complex or unknown parameters to grow, but most bacteria cultivability has simply not been 

tested. Recent omics studies testify of the lack of isolate representative for most taxa (Hug et 

al., 2016; Lloyd et al., 2018; Steen et al., 2019) but also of the gap between cultivated and wild 

strains' genomes (Baker & Dick, 2013). Extrapolating to the animal kingdom, this is equivalent 

to raising conclusions on a wild animal's behavior based on a domesticated one’s. Therefore, 

making inferences on wild populations from isolated strains is highly biased. Currently, most of 

the knowledge on Archaea and Bacteria relies on well-studied isolates or reconstructed 

genomes of uncultured cells, which is providing information on phenotypes but not on the 

physiology and metabolic status of the cells. It is essential to achieve the cultivation of more 

strains to understand their cell functioning and biology and increase the catalogue to which 

uncultivated bacteria will be compared. This is why cultivation is still a growing topic with a 

complexification of approaches (Lewis & Ettema, 2019; Lewis et al., 2021). 

In the mid-70s, access to bacterial DNA gave the possibility to study complex 

environmental microbial communities. This culture-independent approach was initiated by the 

sequencing of 16s rRNA gene which is a highly conserved region. This sequence is ubiquitous in 

prokaryotes and presents quantifiable variations allowing the classification of organisms. The 

use of amplicon sequencing has been a huge step forward in taxonomic surveys and phylogeny 

in many ecosystems (Wilson & Blitchington, 1996; Woese & Fox, 1977; Yarza et al., 2014). Cheap 

and easy to prepare, amplicon sequencing is now routine in microbial ecology to appreciate 
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bacterial diversity in various environments. This approach is mainly used for community 

composition description but lacks robustness when trying to access diversity at low 

organizational levels (Ellegaard & Engel, 2016; Van Rossum et al., 2020). 

Shotgun sequencing gives access to potentially more gene markers to reveal the 

functional potential of microbes. Its use is now common but requires a higher effort of 

sequencing and is, therefore, more expensive than amplicon sequencing. Many bioinformatic 

tools have been developed to cope with the complex datasets generated with this approach 

and aimed at assessing taxonomic and functional diversity within species (Brown, 2015; Crits-

Christoph et al., 2020; Sangwan et al., 2016). In practice, genome assemblies are incomplete 

and sequencing errors are not systematically separated from SNP variations between 

individuals. Reconstruction of genomes via metagenome-assembled genomes (MAGs) presents 

major limitations such as chimer generations and low-quality assemblies (Alneberg et al., 2018; 

Bowers, Kyrpides, et al., 2017; Shaiber & Eren, 2019). Therefore, there is only a small chance to 

describe intra-species diversity with accuracy (See Chapter I). Shotgun and amplicon sequencing 

is mainly applied to bulk genomic DNA extracted from the bacterial matrix, capturing external 

DNA as well as dead and dormant cells. This external DNA represents a consequent amount of 

material compared to the targeted DNA from living microbial cells, even though it does not 

seem to impact the proportions in microbial diversity (Courtois et al., 2001), suggesting the low 

quality of the contaminant DNA captured via direct extraction from samples. Genomes are 

reconstructed from short-read sequencing, even though long-fragment sequencing is more and 

more frequent (e.g. PacBio and Oxford Nanopore sequencing technologies) (Jain et al., 2016; Lu 

et al., 2016), with the risk of mixing sequences from different individuals, populations, or 

species. Moreover, the gap between the subject of the study and the database used as a 

reference greatly influences the results for SNP calling or data interpretation (Breitwieser et al., 

2018; Bush et al., 2020). Molecular techniques enable us to avoid cultivation limitations, but 

bring other inconveniences previously stated mostly related to sample preparation and data 

treatment. Moreover, as most microbes remain unknown, there is no direct way to verify the 

accuracy of the extraction and cell lysis process, the true universality of the used primers, or the 

extent of external microbial contamination of the samples. Moreover, as mentioned earlier, 



    

21 

 

environmental data are interpreted based on a catalogue of cultivated strain references to 

serve as a basis from which to compare sequences. The information contained in databases is 

the limit to which we can identify strains and genes. For microbes, the rate of mutations is fast 

and precautions must be taken when extrapolating in-lab observations and gene expression 

towards wild strains. Despite the major advances in molecular tools, most microbes and their 

coding potential remain unknown and have been referred to as “Microbial Dark Matter” (MDM) 

(Bernard et al., 2018; Marcy et al., 2007). The investigation of the MDM is ongoing and multiple 

genes and strains are discovered each year (Escudeiro et al., 2022; Rinke et al., 2013; T. J. 

Williams et al., 2022).  

 

Figure 4. Principles of 16rRNA gene and whole genome sequencings. The sequencing of 
16rRNA gene only considers this conserved gene for taxonomic identification of Operational 
Taxonomic Units (OTUs). For whole genome sequencing, DNA fragments of different bacteria 
can be assembled to reconstruct the core genomes of the community. 
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How to interpret genomes is a front-of-science question. Modelling is a way to analyse 

microbial networks from genome annotations and offers the possibility to understand complex 

interactions, which is very limited from molecular studies alone and available transcriptomics 

information in databases. Metabolic networks (or genome-scale metabolic models (GEMs)) 

allow the prediction of compounds produced by a corpus of genes, the functions of the microbe, 

and therefore its possibilities in terms of interactions with other members of the community. 

Built with mathematical designs, the use of models enables the study of many levels of 

interactions from simple nutrient exchange to complex networks of a microbial community. The 

more complex the analysed network, the more difficult it is to integrate the concerned metrics 

(Antoniewicz, 2020). The integration of top-down and bottom-up approaches is the best 

practice for microbial network analysis according to specialists (Lawson et al., 2019). As 

microbes live either in structured or well-mixed environments with direct and indirect effects 

on their fitness, the identification of input variables is very challenging (Gorter et al., 2020). 

Modelling is highly dependent on experimentations, that allow the identification of the 

variables which to build the models from, and can be seen as a hypothesis and ecological 

theories generator (Martinez-Rabert et al., 2023). The outcomes are highly dependent on -

omics data annotations and completeness, whose quality is not always satisfying 

(Vandenkoornhuyse et al., 2010). However, modelling remains the most accurate approach 

compared to molecular approaches alone to put light on metabolisms and fine-scale 

interactions of bacterial strains and communities. Piece by piece, the reconstitution of the 

microbial world is evolving through the lens of our methodologies and technical tools with their 

associated limitations and biases (Figure 5). There is a complementarity in all methods used in 

microbiology from which, by combining the results, we should get a well-advanced picture of 

microbial organization and functioning (Stubbendieck et al., 2016). However, the combination 

of knowledge requires elaborating standardized methodologies and vocabulary, from sample 

collection to data treatment (Bokulich et al., 2020; A. Tripathi et al., 2018; Van Rossum et al., 

2020). A combination of methods serving a common purpose started to emerge and scientists 

called for standardized procedures and systematic benchmarking (Meisner et al., 2022; Rainey 

& Quistad, 2020).  
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Figure 5.  Outcomes of different approaches in microbial ecology, from which the results can 

be integrated to obtain a better view of microbes functioning. Re-drawn from Stubbendieck et 

al., 2016. 

2.2- Getting closer to representativity 

 

2.2.1- Hypothesis-driven over descriptive studies? 

  

The microbial world comprehension is still mainly descriptive, first via microscopes and 

cultivation, and kept evolving with sequencing data. Hypothesis-driven studies are less common 

in microbiology even though they aim at causalities and physiological processes understanding 

which are scarce in the field. Descriptive and deductive studies do not serve the same purpose 

in science, and their use does raise questions of methodology: some are concerned about the 

interest and scientific accuracy of employing descriptive procedures. Rather than responding to 

a scientific procedure, descriptive studies would mostly assess technical questions without 

giving clues on the physiological mechanism behind them (Prosser, 2020, 2022; Prosser et al., 

2007). The questions about methodology in microbial ecology are many (Prosser & Martiny, 

2020; A. Tripathi et al., 2018): Do we need a big amount of data prior to testing the hypothesis 



    

24 

 

or raising conclusions on microbial organization and functioning? Is description relevant in 

itself? Is microbiology currently suited for hypothesis-driven studies?  

Testing ecological questions requires precisely determining the subject of study and the 

parameters tested, implying a perfect understanding of which parameters are playing a role in 

the studied ecological process. Omitting important variables might totally change not only the 

results interpretation but also the hypothesis generation via models that require the list of 

elements to integrate for a particular ecological phenomenon. However, the overwhelming 

“unknowns” composing microbes in diversity, abundances, genes, functions, interactions, and 

ecological niches, make it difficult to target specific questions. Most of the ecological and 

environmental parameters involving microbes are still unclear, limiting the ecosystems to which 

the hypothesis can be formulated. Some variables might be missed and not included in 

deductive studies, resulting in biased or incomplete observations (A. Tripathi et al., 2018). 

Microbiology needs aggregated scientific knowledge for hypothesis-driven questions to be 

posed correctly (A. Tripathi et al., 2018). However, the aggregation of data based on 

observations needs to be standardized, which is currently not systematic. The consideration of 

scales is superficial and results in a lack of reproducibility (Ladau & Eloe-Fadrosh, 2019; Prosser 

& Raaijmakers, 2020). Most studies describing bacterial communities do so at very large scales, 

not being identical between different studies and removing the information where community 

structure and interactions happen (e.g. 0.1-1mm for terrestrial habitats) (Cordero & Datta, 

2016; Nunan et al., 2020; Prosser & Raaijmakers, 2020). The temporal scale is also neglected or 

not fitted to the observed process, and dynamic patterns are most often overlooked. Overall, 

giving more importance to these scales is needed to identify which parameters possess a scale-

dependent effect on microbes (Ladau & Eloe-Fadrosh, 2019). Being able to consider short vs 

long-term effects on microbes, their phylogeny, and their habitat structure is fundamental to 

considering well-built hypotheses driven by theories. Therefore, description still has its place in 

microbiology to furnish the basic knowledge of community content and variables to consider, if 

used properly. There are also examples of descriptive studies presenting deductive power. An 

historical example is the work of John Snow who understood how cholera disease was carried 
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by simply making a map of deaths related to the disease locations and revealing that it was 

carried by waters (Paneth et al., 1998).  

Beyond the methodology employed, capturing fine-scale processes in nature is very 

limited due to our technical approaches and tools. To preserve such fine standpoints for 

observations and hypothesis testing procedures, synthetic communities were manipulated in 

laboratories (Ciccarese et al., 2020; Vannier et al., 2019). This strategy is useful to understand 

physiological mechanisms but only with a very limited selected strain. This represents two major 

problems: i) natural communities are far too complex in structure and interactions to fully 

predict their evolution and functioning only based on such experiments and ii) only strains that 

can be grown in vitro can be used, representing a limited fraction of the overall microbial 

diversity, which prevent the extrapolation of results towards most microbes.  

 

2.2.2- Considering populations as units 
 

To address questions of bacterial community evolution in a changing environment, the 

units of selection and as discussed earlier, the scales, must be chosen carefully. One important 

unit in microbiology and all life sciences is populations (i.e. variants of the same species) which 

are more relevant and accurate than the species concept when it comes to microbes (García-

García et al., 2019; Niccum et al., 2020). Species are indeed a blurry concept in microbiology 

and the level of organization should be considered as gradients rather than boxes with a 

constant flow of genes inherited from vertical or horizontal transfers (de la Cruz & Davies, 2000; 

Van Rossum et al., 2020). Van Rossum et al. (2020) proposed a classification of terminology 

based on the proportion of identical nucleotides (Average Nucleotide Identity, ANI) to 

distinguish genomes, strains, subspecies, and species (Figure 6).  
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Figure 6.  Van Rossum et al 2020. Terminology to employ based on SNV of within-species 

diversity. Each strain contains different genomes, subspecies contain different strains and 

species are composed by subspecies.  

Populations (i.e. individuals from the same species living in the same area) represent a 

massive yet barely known reservoir of diversity for bacteria which is primordial to uncover if we 

hope to fully understand evolutionary dynamics within bacterial communities. Accessing the 

population levels of the bacterial realm would refine ecological concepts that are today 

understood in the light of global community scale or via in-vitro experiments focusing on a few 

strains only.  

Recent studies succeeded in highlighting the role of newly theorized “keystone taxa” in 

the community structure and stability (Banerjee et al., 2018; Carlström et al., 2019; Tang et al., 

2022). While there is no universal definition for these keystone entities, Banerjee et al. (2018) 

proposed to consider them as highly connected taxa that strongly influence the structure and 

functioning of the microbiome, shifting when the keystone taxa are removed (Banerjee et al., 
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2018). There are multiple examples of such organizations in the microbial world, mostly 

discovered via network analysis (Banerjee et al., 2018). To understand the causality of strain 

interactions, in-lab testing is necessary to validate the correlations highlighted via network 

analysis. Multiple studies have shown the impact of the absence of single strains on the overall 

community (Carlström et al., 2019; Tang et al., 2022), helping to understand the functioning of 

such structures. The presence and proportions of keystone taxa are dependent on the nutrient 

content composition; therefore we can expect a shift in this community structure in major 

environmental conditions modifications (P. Wang et al., 2022; C. Wu et al., 2023). The 

complexity of such networks in nature is such that their reconstruction in artificial conditions 

cannot be achieved.  

Taxa with relatively less direct impacts on the community structure compared to 

keystone species have been reported and are classified as “rare taxa”, acting in the background 

of cell interactions. Rare taxa are often overlooked in molecular studies, even though the 

correlation between abundance and key role in the community is not systematic (Shade et al., 

2014). They have fundamental functions in the community, such as a buffering role in 

fluctuating environments to prevent other members from perishing. Their presence increases 

the connectivity between cells and strengthens the stability of the community (Jousset et al., 

2017; Shade et al., 2014). Rarity can be driven by local and temporal environmental conditions 

or biotic factors and can testify to the narrow ecological niche of the species or trade-off in 

stressful conditions (Jousset et al., 2017). The rare status of a species might therefore fluctuate 

between communities and habitat conditions. Populations are very prone to this constant 

fluctuation in numbers, as they represent the inner diversity reservoir of species and therefore 

can be at the origin of rare taxa emergence. They ensure lineage continuity via very diverse sets 

of gene versions to increase the success of adaptation. Intra-species diversity can also rise after 

an environmental modification as a response to stress by encouraging mutations and gene flows 

(Figure 7(Davis & Isberg, 2016)). Microbial populations ensure the persistence within a 

microbial community under changing environmental conditions (García-García et al., 2019).  

 



    

28 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Modified from Davis & Isberg 2016. Generation of intra-species diversity via a) bet-

hedging where diversity is altered by environmental stress, only the fittest populations will 

survive and spread and b) driven by environmental change where the rise of intra-species 

diversity rises after environmental stress, resulting in more phenotypes. The colors represent 

the phenotype of each cell and the shape (with or without a flagellum) represents each genome 

or species.  

Populations represent an overlooked reservoir of diversity with fundamental roles in 

community functioning. While most of the interactions are made between species, some can 

be identified below the species scale (Baishya et al., 2021; J. Wang et al., 2021). The Black Queen 

Hypothesis model has been elaborated to explain metabolic dependencies between species 

(Morris et al., 2012), but is perfectly applicable to microbial populations as well (Mas et al., 

2016). The reservoir of rare subspecies is a stock of important functions with potentially 

significant leaky compounds produced for the community. Different phenotypes can be found 

within species, and between strains. This has been particularly studied in the host health 

context, where many species can present pathogenic and commensal strains (e.g. Escherichia 
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coli  (Leimbach et al., 2013) and Bacteroides fragilis (Pierce & Bernstein, 2016)). This phenotype 

variability is also observable in nutrient cycling (Neuenschwander et al., 2017), between seasons 

(Garcia et al., 2018), in drug response (Maier et al., 2018), or nitrogen fixation (Triplett & 

Sadowsky, 2003). Variability can also appear within populations, forming subpopulations, via 

preferential HGT or stochastic events (Davis & Isberg, 2016).  Exploration of species intra-

diversity in genomes and phenotypes is in its infancy and is fundamental for microbial evolution, 

interactions, and community structure comprehension.  

Identifying and studying microbial populations is currently complex and limited by our 

technical methods. The genetic variations between species variants are difficult to highlight for 

most molecular approaches and bioinformatic tools. The few nucleotide variants separating 

populations are not easily distinguished from sequencing errors, it becomes however easier 

with the increase in sequencing depth (Van Rossum et al., 2020). Moreover, considering the 

huge diversity of microbes in ecosystems and the risk of external contamination, identifying 

populations requires sophisticated and robust protocols from DNA extraction to data analysis 

(See Chapter I). To help with this, research groups have developed bioinformatic tools (Arevalo 

et al., 2019; Brown, 2015; Crits-Christoph et al., 2020; Sangwan et al., 2016) to try to identify 

populations from metagenomic data. Traditional Metagenome Assembled Genomes (MAGs) 

are useful for uncultivated strains study but are, by definition, very likely to produce chimeric 

genomes (i.e. variations at the population level cannot be integrated within MAGs up to date 

and see also Chapter I) for complex microbial communities especially. Populations are very 

dynamic and therefore highly dependent on environmental fluctuation. These elements should 

therefore be included when aiming at population scale comprehension. So far, attempts to 

reach the microbial population levels with precision have been made via in vitro experiments in 

very controlled systems and modeling (Mas et al., 2016; Sanchez & Gore, 2013). New methods 

are being developed to solve this issue, notably single-cell omics which are becoming 

increasingly popular in microbiology. Promising to overcome major limitations regarding 

population investigation via metagenomics, this technique has already been applied to multiple 

environmental samples (Berube et al., 2018b; Pachiadaki et al., 2019a; Stepanauskas et al., 
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2017; Zheng et al., 2022) but is still in development and presents limitations related to cost, 

contamination, and low throughput (Gawad et al., 2016a).  

After centuries of discoveries and technological improvements, the study of microbial 

populations is the next challenge in microbial ecology in terms of methodology, molecular 

analyses, and data interpretation.  
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Context and objectives 

The study of bacterial populations and communities from natural habitats has been accelerated 

in recent years with single-cell omics approaches, conducted via various methodologies, suited 

for the type of sample analysed and the goal of the study. There are still many limitations to 

single-cell genomics, notably the low genome coverage, the high cost of materials, and the 

contamination of samples from diverse sources.  

This work aimed to counteract these limitations to broaden the possibilities of single-cell 

genomics application to microbes. This has been done by following four large questions: 

- What is the current state of single-cell omics for microbes, and how can it be improved 

theoretically? 

- In practice, what is the optimum strategy for single-cell genomic application on bacteria 

for limited contamination and high throughput with technical tools currently available?  

- How should the data be handled for the purest and largest genome production?  

- How well can we recover bacterial information from single-amplified genomes (SAGs) 

and what are their advantages compared to traditional metagenomics on environmental 

samples to respond to ecological questions?  

A detailed synthesis of uses of single-cell omics and their possible applications for microbes is 

presented in Chapter One and valorised as a published article in Trends in Ecology and Evolution 

journal. Steps for sample preparation, potential applications in microbial ecology, and 

suggestions for robustness improvements of single-cell omics on microbes are discussed. 

From this inventory, I developed a protocol for single-cell library preparation applied to an 

environmental sample that would be cost-efficient, easy to use, and adapt. I engaged most of 

my time in the development of the protocol after selecting the different approaches to be 

tested for sample preparation. From exciting molecular reagents and published techniques, I 

evaluated the efficiency and compatibility of each step, from cell isolation to library 
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preparation. Each step was first tested individually in bulk, then combined, and an attempt for 

miniaturisation using Cellenion technologies is discussed. The protocol elaboration is detailed 

in chapter two, with most of the tests and quality control procedures. This development 

resulted in experiments to validate the genome recovery on referenced strains. To assess data 

quality and improve SAGs recovered from our samples, we worked on developing an automated 

pipeline to clean single-cell genomic data. The results of this experiment and pipeline 

application are presented in an article in Chapter Two which will soon be submitted to the 

Nature Methods journal. 

Finally, the developed workflow from cell isolation to bioinformatic treatment was applied to 

soil bacteria communities, a fraction of the microbial world with many implications for plant 

health, biogeochemical cycles, and ecosystem functioning but which remains blurry to our 

knowledge. The soil microbiota is very complex and most of its composition and functioning 

remain to be discovered. We chose to focus on the soil acidity parameter which is known to 

greatly influence microbiota composition and structure greatly but with little knowledge about 

the sub-species responses, gene distribution, and phylogenetic diversity. We worked on soil 

samples from the Craibstone experiment that have been well characterized and have been used 

as a model for decades to study the pH effect on soil biotic and abiotic properties. Additional 

steps were incorporated in the protocol for the soil samples treatment to extract the cells from 

the soil matrix. I also used metagenomics and mini-metagenomics on the same samples to 

compare the approaches' outputs and their capacity to describe natural bacterial communities. 

The results of this experiment are detailed in Chapter Three. 

With this work, I aimed to overcome some of the limitations of single-cell omics on microbes to 

propose a less biased and cost-effective approach for future improved applications of this 

method. I discussed ways to improve sample preparation and the implications of this work for 

microbial ecology. More broadly, this work opens up new avenues of research, and questions 

our habits in microbiology for sample sampling, data analysis, and storage which, independently 

of technical limits, solely relies upon proper scientific methodologies that should be 

systematically applied.  
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Chapter I 

 Single-cell omics applied to microbiology 

 

Bacterial cells operate just like a multicellular organism, with metabolic functions, costs, and 

trade-offs. Bacteria are metabolic machinery on their own and will highly respond to 

environmental constraints to keep functioning. For this reason, bacterial evolution involves a 

high rate of mutation and frequent horizontal gene transfers to be able to quickly adapt to 

various environments. Just like herbivores and carnivores regulate each other, bacterial 

populations emerge, decay, and interact to conserve the stability of the community. Any external 

intervention, be it biotic or abiotic, will re-arrange the proportion of each cell type. 

Comprehending populations from the cell's perspective is the major goal of single-cell omics 

and their implication in microbial ecology is potentially immense.  
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Micro-organisms play key roles in various ecosystems, but many of their func- tions and 

interactions remain undefined. To investigate the ecological relevance of microbial 

communities, new molecular tools are being developed. Among them, single-cell omics 

assessing genetic diversity at the population and com- munity levels and linking each 

individual cell to its functions is gaining interest in microbial ecology. By giving access 

to a wider range of ecological scales (from individual to community) than culture-based 

approaches and meta- omics, single-cell omics can contribute not only to micro-
organisms’ genomic and functional identification but also to the testing of concepts in 

ecology. Here, we discuss the contribution of single-cell omics to possible breakthroughs 

in concepts and knowledge on microbial ecosystems and ecoevolutionary processes. 

 

 
Ecological scales 

Interactions between organisms take place at all organizational levels, from molecules to communities 

and within or between species, and shape ecosystem dynamics. Ecological interactions are difficult to 

understand due to the number of biotic and abiotic parameters involved. Assembling knowledge at 

various ecological scales and from different standpoints is therefore crucial in the study of ecological and 

evolutionary processes. This is particularly true in the case of microbes, in which individuals can be seen 

as metabolic units involved in complex metabolic networks at much higher ecological scales (e.g., 

[1,2]). Therefore, accessing genetic and metabolic information of microbes is a necessary step to 

understand ecosystem functioning. In microbial metabolic units, ‘small’ changes in genomes and 

metabolic pathways may have significant impact on the microbial community organization and hence 

on ecosystems. Deciphering processes at large ecological scale therefore requires observation of fine 

ecological scale (i.e., at the individual cell level), which is the biggest challenge of current environmental 

microbiology [3] (Figure 1A). 
 

A fundamental level of organization in ecology is the species. However, due to gene flow between cells 

that increases with ecological overlap and genetic similarity [4], the microbial species con- cept and 

thus also populations (see Glossary) are not clearly defined entities. Interactions and diversity at the 

population level (i.e., between individual cells of the same population) (Box 1) are still obscure because 

they are not often analyzed in environmental microbiology. Given the natural mutation rate in bacteria 

(~10−7 substitutions per nucleotide; e.g., [5]), even a single colony con- tains genetic variations (i.e., 

variants within a cell population). The population has been suggested to be more relevant than the species 

level for microbes [6,7], and species usually contain genetically divergent microorganisms. Considering 

the hierarchical levels of ecology, populations are keys to assessing genetic structure within species 

and, over time, changes therein. They thereby provide insights into ecoevolutionary processes and 

advance our understanding of microbiota composition dynamics (Box 1). 
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Figure 1. Gradient of ecological complexity, study scales, and associated approaches. Although other higher levels of 

ecology can be used, individual–population–community–environment scales describe much of the subject of ecology. 
A) The culture-based approaches aim at studying microbial populations or a very limited number of strains; therefore, 

the outcoming data cannot be fully informative about higher levels of ecology. On the contrary, meta-omics 

approaches cover a range from the community to environmental scales of microbial ecology and do not provide 

finer information on the ecological gradient. In both cases, the individual scale is unattainable while being at the 

basis of ecological processes. B) Single-cell omics cover the scale from the individual microbe to the community 

from the same environmental sample, which allows one to connect the outcoming information of each ecological 

scale. 

 

Our understanding of the microbial world and its ecological roles is still very limited [8]. Understanding 

the functions played by microbial cells in a complex community remains a frontier in microbial ecology. 

Beyond the technical limits that microbiology is facing, the information gathered from culture-based 

studies or from natural ecosystems can be difficult to interpret (Figure 1A). Laboratory experiments 

attempt to reproduce optimal ecological conditions for microbes by selecting from among the many 

biotic and environmental parameters [6] in order to understand specific processes such as trait trade-offs 

[9], interactions between strains [10], the production of metabolites [11], or genome evolution [12]. 

Extrapolating observations obtained in vitro, at restricted scales, to higher ecological scales such as natural 

communities and ecosystems requires particular attention. Conversely, observations made from 

environmental samples, including microbial community composition, diversity, or global functions, are 

less specific and represent an average of the microbial community. Ideally, we want to get the most 

information out of each level of approach (i.e., precise interactions and genetic dynamics from culture-

based studies coupled with global function and diversity of a community with meta-omics). However, 

our 

 

 

Glossary 
Metagenome-assembled genomes 

(MAGs): in silico reconstruction of an artificial 

microbial genome obtained from one or 

multiple binned metagenomes that 

represent the core genome of the population. 

Meta-omics: group of molecular biology 

technologies, extensively used to access 

unculturable organisms, by studying the bulk 

pool of biomolecules from environmental 

samples to reveal genomes 

(metagenomics), transcriptomes 

(metatranscriptomics), proteomes 

(metaproteomics), and metabolites 

(metabolomics). 

Niche complementarity/ partitioning: 

ecological concept describing how species 

differential specialization in different 

combinations of resource uses and functions 

allows them to coexist in the same 

environment. 

Populations: applied to bacteria in natural 

communities for individuals with identical or 

different genomes from the same species 

gathered in a specific environment or 

sample. An isolated micro-organism culture 
also comprises a population. 

Box 1. Microbial population 

In ecology, populations are individuals belonging to the same species living in the same environment, although the definition varies with 

different viewpoints [81]. Microbial populations represent a unit of diversity and selection. Within these populations, diversity can be either 

genetic or phenotypic. The diversity within a population to some extent buffers an environmental stress because existing variants 

are able to survive the stress and/or allow rapid phenotype switching (e.g., Bet-Hedging [31,82]), but positive selection of new 

variants can also be induced by the stress. This organizational level is therefore a key to understanding genetic structure; haplotype 

fitness; and the dynamics of ecological interactions, including associations of microbial species, symbioses, host–pathogen 

interactions, and ecosystem functioning, resilience, and stability. For instance, resistance to antibiotics can vary within populations 

[83], and the virulence pathogens can vary across subpopulations [84]. Genetic diversity and ecological features such as niches can vary 

between lineages [85], so that subpopulations are able to coexist through niche diversity. To capture the total genetic and phenotypic 

diversity and get a holistic view of populations, the scale must thus be tuned down to the individuals that compose the population in a 

given sample [84]. Otherwise, applying the current bacterial species concept to make population-level inferences may lead to false or partial 

interpretation of ecological phenomena. 
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ignorance of intricacies and interactions of ecological scales with one another still jeopardizes the assembly 

of the resulting information to answer specific ecological questions in environmental microbiology. 

Moreover, the uncertainty of community composition and the complexity of microbial interactions [2] make it 

even more difficult to target specific scientific hypotheses on natural communities and to choose the 

appropriate tools. 

 

Specific tools for specific ecological questions 

Like in any new field of exploration, ecological patterns within microbial communities are first observed 

and described but poorly understood [13], testifying to the enormous lack of knowledge concerning 

microbes [14]. The use of DNA- and RNA-based methods to study natural microbial communities has 

demonstrated the existence of a prodigious wealth of micro-organisms that remained unsuspected some 

years ago (e.g., [15]). Among meta-omics techniques, metagenomics and metatranscriptomics are the 

most widely used methods to explore microbiota. These techniques enabled a breakthrough in our 

understanding of microbial phylogenetic relationships [16], species diversity and abundance [17], 

metabolic abilities [18], and functional diversification [19]. The development and use of 

metagenome-assembled genomes (MAGs) led to discoveries that advanced our understanding of 

bacterial life and modified our perception of the tree of life [15,19]. Some studies attempted to 

reconstitute population-level genomes from metagenomes. For example, Crits-Christoph et al. [20] 

investigated genetic variation within populations of highly abundant soil bacteria by studying MAGs 

and observed spatial differentiation of alleles. However, inferring population features from meta-

omics data remains limited, especially when genomes are inaccurately or incompletely reconstructed 

from short sequence fragments (Figure 2, Key figure). The use of MAGs becomes challenging when 

microbial richness and diversity within a community are high and taxa are phylogenetically close [21]. 

During genome assembly, stitching of fragments from different individual genomes and/or contaminant 

DNA can occur, creating chimeras that are irrelevant for the study of populations. In this case, the 

approach would necessarily conceal a considerable proportion of molecular diversity [22]. In addition, the 

molecular biology and bioinformatics methods used in meta-omics approaches are varied and based on 

different criteria and as- sumptions in the absence of a consensus, leading to contrasting results and 

interpretations [23,24]. Overall, it might be difficult to directly link the detected functions to their original 

microbial cell from meta-omics data, thereby limiting the identification of signaling pathways and trade-offs in 

gene regulation. Meta-omics approaches proved useful in describing communities using large-scale sam- 

pling and have made it possible to answer questions related to community composition and its associated 

global functions but not to fully understand the mechanisms underlying these patterns. Nevertheless, 

bioinformatics research has developed algorithms aiming to identify genetic variations in microbial populations: 

Vertically and horizontally inherited genes can be differentiated, and, from population-specific sweeps, SNPs 

can be detected (e.g., DiscoSNP, PopCOGenT) [4,25]. 

 

To complement meta-omics data, modeling approaches are used to explore microbial interactions and 

fluxes of metabolites and to reconstruct ecological networks in complex microbiomes [26–29]. These 

approaches provide a possible explanation and scenarios of interactions in natural communities, but they 

sometimes end in contradictions with culture-based experiments [1]. Indeed, models can predict a 

certain kind of interaction (e.g., cross-feeding) that is not verified or proven wrong in an experimental 

setup due to the oversight of key parameters such as growing conditions, space, and (very often) time 

[1]. They also rely on the co-occurrence of phenomena, which is more associated with correlations 

than cause–consequences relationships. Culture-dependent approaches may help reach the 

population level in simple community compositions through controlled and simplified laboratory-scale 

experiments [30] and can be effective for testing patterns observed in meta-omics studies and 

deconstructing mechanistic hypotheses (e.g., interactions, metabolism) (e.g., [31]). 
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Key figure 

Microbial communities observed through meta-omics versus single-cell omics 
 

 

Trends in Ecology & Evolution 
 

Figure 2. The key steps of meta-omics (left) and single-cell omics (right) approaches are shown, resulting in contrasting representat ions of a natural microbial 

community. Different genomes are represented by different colors: Red, orange, and yellow show genomes of close relatives (i.e., intrapopulation genomic 

variants). Dead cells are shown in gray and extracellular or host DNA in brown. Different functions are represented by different symbols (triangles, squares, 

diamonds, or ovals). (A) After meta- omics sampling, the cell proportions are maintained, but transient DNA and dead cells are not filtered. (B) In single-cell 

omics, a smaller proportion of the community is sampled, and dead cells can be excluded. (C) In meta-omics, the unit sequenced is the complete extracted 

sample. Metagenome-assembled genomes (MAGs) are partial and include chimeras (i.e., unreal collages of closely related genomes, dead cells, and 

extracellular material). Meta-transcriptomic analysis yields averaged relative abundances (represented by the size of the symbol) of functions within the 

sample. (D) By contrast, in single-cell omics, each cell is a sequenced unit and can be associated with its genome and/or transcriptome. (E) The community 

observed through meta-omics is representative of the composition of the whole community but not of the associated genes and functions. (F) With genome 

and transcriptome information from single cells, the observed community is undersampled but is closer to the natural community: If the sampling scale is 

appropriate, rare populations and functions are more likely to be detected. 
 

 

 

The lack of information on individual cells and mostly on populations (i.e., both functions and 

phylogeny) using existing methods limits our understanding of observed processes. Many studies 

aim at unraveling microbiotic diversity, primarily in plants, soil, water, and animal bodies, but few 

explain associated community assembly and evolutionary mechanisms [32–34]. In this context, 

microbiolo- gists and ecologists are searching for other technical possibilities or approaches, such as 

single-cell omics, to complete the knowledge provided by current methods. 

 

The alternative scope of single-cell omics 
Single-cell whole-genome sequencing (scWGS) and single-cell transcriptomics [single-cell RNA 

sequencing (scRNAseq)] were first developed for eukaryotic cells and used in cancer research, 
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revealing both intrapopulation genetic diversity and heterogeneous genome expression. As in cancer 

research, where differentiation in space of the genome expression among cells has been observed 

[35], a pioneer paper on Pseudomonas aeruginosa biofilm using a fluorescence- based approach (i.e., 

parallel sequential fluorescence in situ hybridization) revealed a differentiation in space and time of cell 

expression [36]. Because spatial single-cell microbial approaches could allow the understanding of 

the drivers and mechanisms leading to the self-organization of these microbial structures, new 

developments are expected to expand in health science and many other fields of microbial ecology 

research. Single-cell approaches are promising candidates for microbial studies because they provide 

a complementary view to metagenomics and metatranscriptomics that have different strengths but 

also weaknesses (Figure 2). 

 

Single-cell omics technologies require additional steps to prepare a sample for sequencing as compared 

with meta-omics techniques, especially with regard to cell isolation, for which different technical options are 

available [37,38]. Once the cells are lysed, DNA and RNA content from a sin- gle cell is in the femtogram scale 

for bacteria (i.e., 1000-fold less than in animal cells). Preparing the sequencing library, which typically 

requires nanogram ranges of material, will need an ultraefficient prior amplification step [e.g., multiple 

displacement amplification (MDA), the most widely used approach for bacteria] [39]. 

 

Single-cell approaches enable accurate access to genomic and transcriptomic information for each cell, 

so that the assembled cell information is highly representative of the original population (Figure 2). This 

enables the identification of heterogeneity in gene assemblage, gene expression, and metabolic 

pathways between cells. Single-cell transcriptomic and genomic information provides a link between 

phylogeny and functional traits and reveals the physiological status of an individual cell at the time of 

sampling. This is particularly important, considering that the individual gene expression profiles of 

genetically close cells may differ. What is more, some cell isolation tools, such as automated image-

based isolation devices (cellenONE, Cellenion; and ICELL8, Takara Bio), make it possible to select cells 

on the basis of their integrity, their physiology, and/or their functional markers and to minimize contamination 

by the host or extracellular DNA. This is very promising for microbiology to, for instance, select active cells 

in the studied sample at the time of sampling and reveal which of them are taking part in the community 

productivity. 

 

A seminal paper on single-cell microbial genome analysis was published in 2005 [40] and paved the way 

for further improvement of single-cell omics, notably on the amplification method (here MDA) and lysis 

buffer. Recent studies using single-cell omics have improved our understanding of intraspecific 

diversification and metabolic capacities at a limited scale [41,42]. Assessing the true individual cell gene 

assemblage and expression using single-cell omics will make it possible to study the hitherto unexplored 

microbial population level and the functioning of a given microbiome by linking the different ecological 

scales (Figure 1B). Indeed, single-cell omics enable access to information additional to that in culture-based 

and meta-omics studies (the single indi- vidual ecological scale) while also, from the environmental 

sample, giving information on the population and community interactions. To a broader extent, this will 

enable better access to ecoevolutionary pressures and evolutionary processes within microbial 

communities. 

 

Applications of single-cell omics in microbial ecology 
Single-cell omics provide information at the cell level by changing the camera angle when studying 

environmental communities and can contribute to microbiology and ecology at many levels by exploring 

microbial diversity or microbial interactions. 

 

 

The tremendous diversity of single-microbe genomes 

Observations of microbiota can complement/validate the diversity observed by meta-omics on fungi [43], 

human samples [8], and marine viruses [44] and can resolve cryptic bacterial species, which currently mainly 

rely on cultivable strains [45–47]. Single-microbe omics therefore contrib- ute to the microbial inventory,  
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which is still in its infancy in many ecosystems [48]. The use of single-cell–based approaches could 

demonstrate the existence of the discovered sequence-based lineages and discover possible new 

branches. Isolating cells from environmental samples can also cast light on rare organisms that might be 

obscured in millions of genome fragments using meta-omics. These rare organisms are considered to play 

key roles in community dynamics because they overproportionally contribute to the functions of the microbial 

community in fluctuating environments [49,50]. Although most studies that apply this approach use a limited 

number of cells, a recent survey of the marine microbiome recovered no less than 12 000 genomes from 

single cells [51], revealing a high degree of uniqueness and limited clonality in the analyzed samples of 

seawater and providing evidence for the ecological roles of uncultured microbial groups. Single-cell 

genomics, by looking at individual genomes instead of core genomes from meta-omics, from natural 

microbial communities represent an unprecedented opportunity to complete the identification and 

classification of microbes. This is a key step sometimes missing in environmental microbiology [52]: 

knowing what to look at and why to formulate hypotheses in ecology and better understanding processes 

involving microbes. 

 

Ecological and evolutionary hypothesis testing using single-cell omics 

Single-cell genomics and transcriptomics approaches therefore help to answer the questions ‘What are 

these microbes?’ and ‘What are they doing (or capable of doing)?’. They also help to understand why and 

how observed patterns happen. Linking environmental and community parameters to individual gene 

expression and bacterial interactions enables a mechanistic understanding of underlying biotic and abiotic 

conditions to patterns. This represents an opportunity to explore multiple ecological theories and 

hypotheses, notably on interactions of microbes at many levels: within the community, with external 

microbes (i.e., viruses), and with their host. One of the hottest topics in microbial ecology is the link between 

diversity and function, including the productivity of the ecosystem that relies on the niche partitioning theory. 

This hypothesis states that species co-existence is enabled by species specialization in different available 

resources (or combinations of resources), thereby reducing interspecific competition [53] but likely modifying 

the microbial population structure [54]. Specialization in specific resources raises many questions concerning 

microbial interactions through the exchange of metabolites [55], loss of traits [56], and genome reduction [57]. 

The Black Queen Hypothesis (BQH), one of the ecological theories that conceptualized this phenomenon, 

states that microbial community assembly and complexity are at least partially determined by functional 

dependencies resulting from gene loss(es). Testing this hypothesis requires using environmental samples 

to evaluate functional redundancy within communities, the expression and distribution of the functions 

between interacting (micro-)organisms, and the impact of genotypic interactions on these functions. At the 

community level, it is impossible to access this information through meta-omics because BQH evolution is 

supposed to also occur at the population level [53,54], which is undetectable by most of the meta-

omics tools used so far. Ecoevolutionary processes can so far be explicitly assessed only through 

ecological models [58] or from dedicated in vitro experiments [42] that require deciding which gene and 

which organisms to look at. Single-cell approaches can help to investigate such hypotheses and other 

theories in ecology and highlight patterns of interactions that shape microbial communities. 

 
A breach to viral host ecology 

The diversity of microbial communities is also influenced by the viral infections to which they are exposed, 

which is particularly difficult to evaluate in nature [59]. A recent study assessed viral infections in the ocean 

thanks to single-cell genomics by identifying virus sequences in uncultured protist cells [44]. Such interactions 

are widespread but generally missing in current microbial ecology analyses. Among other roles, viruses are 

known to (i) control microbial community dynamics and drive microbial host evolution [60,61] and (ii) impact 

ecosystem changes and biogeochemical  cycles [59,62]. Single- cell omics can help us understand the roles 

played by viruses in microbial populations by making it possible to assess both the prevalence of prophage 

sequences and possible lateral gene transfers [63,64], which would reveal preferential association of specific 

viruses with specific bacteria. 
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Single-cell insights into bigger-scale interactions 

Generally speaking, single-cell omics can highlight diverse levels of interaction in natural habitats either 

between the microbes that compose a microbiota or between the microbes/microbiota and their host. 

Despite the great number of studies on the composition of human microbiota, very little is known about 

interactions between the microbes and with their host [65]. The single- cell study of host–pathogen 

interactions paves the way for understanding infectious processes through microbiota dynamics, 

metabolic capacities, and host resistance [66]. Dysbiosis is often shown to display a higher β-diversity 

interpreted as a higher stochasticity in the microbiota assembly [67]. Among other explanations, this apparent 

higher stochasticity may be the result of drastic pathogen-induced changes in the habitat (i.e., transitory 

state in the microbiota dynamics), modification of a component of the microbiota caused by genetic 

change(s), and/or a functional modification expressing a modified phenotype that leads to disequilibrium 

in the microbiota community. With the aim of understanding how a disorder of the microbiota leads to disease 

or the reverse (i.e., how a disease can modify the composition of a microbiota), single-cell microbiota 

analyses of genomes and transcriptomes would help better define the characteristics of dysbiosis (i.e., 

dysbiosis mechanisms). Using single-cell genomics makes it possible to address hypotheses related to 

changes in bacterial populations, whereas microbial single-cell transcriptomics may be more appropriate to 

decrypt the functions of microbes, metabolic abilities, and cellular states [68]. These two strategies are 

necessary to understand how microbial interactions occur within communities as well as their possible 

impact on the ecosystem [51,69]. 

 

Microbial single-cell omics are expected to improve understanding of not solely functional interactions but 

also the underlying evolutionary processes. Microbial single-cell omics should also promote a shift in 

standpoint from observation to interpretation and also offer new opportunities to test macroecological 

theories on microbes. The development of microbial single-cell omics will have high impacts on our 

understanding of microbial communities in many environments, such as (i) in freshwater and marine 

ecosystems, to define the interaction of bacteria and phytoplankton through the exchange of metabolites and 

to test links to blooms [70]; (ii) in soils, to better assess the provision of services by plant microbiota, 

including nutrient and water uptake and protection against pathogens [71]; and (iii) in plant, human, 

and animal health, to better decipher how dysbiosis could be a cause or consequence of a disease. 

However, it cannot be ignored that the wide development of single-cell omics applied to micro-organisms 

is subject to technical limits. 

 

Limits of single-cell omics on microbes 

The current limited number of cells studied in the published papers questions the representativeness of the 

analyses. Considering the number of microbial cells contained in a given environmental sample, one can 

wonder how many cells need to be isolated to cover the diversity of a sample, from hundreds [41] to 

thousands [51]. The limited number of analyzed cells is mostly due to technical problems and the cost of 

such experiments. It has to be emphasized that the current use of single-cell omics for microbes must solve 

many technical obstacles (Box 2), reviewed in [72,73], such as cell isolation, lysis, and a biased 

amplification step. The structure of the microbial cell wall is complex, and, unlike animal cells, they do 

not break easily. The diversity of cell wall composition across phylogeny and physiological status (e.g., 

peptidoglycan layers, spores, capsules) makes it challenging to find a universal lysis method able to breach 

each cell without dam- aging its content or inhibiting enzymatic reactions downstream. Different protocols 

have been used in recent microbial single-cell–based studies, using either heat, temperature shocks, sonica- 

tion, enzymes, detergents, or combinations of these [74,75]. 
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Box 2. Single microbial cell omics approaches are technically challenging 

Crucial but solvable issues (Table I) should be addressed at each step of single-microbe approaches (Figure I). First, 

micro

 directly impact the following applications, whether it concerns culturomics (2) or molecular analyses. 

The latter demands a prior lysis of microbial cells once isolated (3), which might appear simple but was and is still a 

major padlock in microbiology. Once the molecular material is available, whole-genome (4) and whole-transcriptome 

(5) sequencing can be performed, which both require particular attention to aspects listed in Table I. For each of 

these five steps, solutions are proposed in Table I to solve the associated challenges. However, the combination of 

the solutions represents an additional complication 

 

 reduction. Overall, single-cell omics applied to 

microbes need to focus on three guidelines: representativeness from molecules to samples, compatibility between 

the steps of sample preparation, and care throughout the process. 

aⓋ, 
nanovolume 

RNA polyadenylation tailing, random priming, 
ribosomal RNA targeted depletion 

No polyadenylation tail on prokaryotic mRNA 

Unique molecular identifier Amplification bias 

Ⓥ, Molecular crowding Same as WGS (up to 100 f. RNA per prokaryotic cell) 

5. Single-microbe RNA sequencing 

Dedicated tools for cell demultiplexing, monoclonality 

test, and so forth 

Bioinformatics 

Cell barcoding for multiplexing + Ⓥ Cost reduction 

Minimum reagent amount + Ⓥ Minimum contamination from reagents 

Minimum number of PCR cycles and/or primary 
     

Even/broad coverage, high fidelity, and no chimera 
creation 

        
transcription) 

Superefficient (100 000– to 1 million–fold) amplification 

(1–10 f. DNA per prokaryotic cell) 

4. Single-microbe WGS 

Physical rather than biological/chemical + Ⓥ Minimum contamination from reagents and 

prevention of subsequent steps 

Gentle procedure, avoid purification Preservation of DNA/RNA quality and quantity 

(Ultra-)sonication, thermal shock, heat, enzymolysis, 
detergents, among others 

Efficiency across phylogeny 

3. Microbial cell lysis/permeabilization 

Microscopy, targeted sequencing Assessment of monoclonality (culture purity) 

High-throughput media screening + Ⓥ Choice of culture conditions 

Gentle cell handling, liquid dispensing Maximum viability/cultivability 

2. Culturomics experiments 

       Maintenance of axenic conditions 

Fluorescence, antibodies Exhaustive/targeted labeling/detection 

     Cell isolation from complex matrices, such as soil, 

sediments, host tissue, feces, mucus, among others 

High throughput Community representative sampling 

      

Possible solution Challenge 
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In addition to technical issues, one can wonder how to be certain that cells are isolated and lysed equally and 

not preferentially, depending on their physical/physiological status. The amplification step, usually made via 

MDA, has been reported to be imprecise concerning the genome amplification uniformity, even though it 

presents a better genome coverage than other approaches [i.e ., multiple annealing and looping–based ampli- 

fication cycles (MALBAC) [39]]. This amplification step is highly relevant as it was suggested to be the cause of 

incomplete reconstruction of single amplified genomes [76], although solutions are being developed [77]. 

As the price of library preparation represents most of the cost of these new single-cell omics for micro-

organisms, reduction of reaction volumes in ‘nanolibraries’ should be very cost-effective (Box 2). The 

probability of contamination decreases with the miniaturization of the reagent volumes [78] and associated 

robotics. Working in nanovolumes seems to be a convenient solution to solve multiple problems; however, 

this introduces new volume-related challenges such as pipetting or sample purification. 

 

For these reasons, single-cell omics have sometimes been used in combination with meta-omics to 

combine the possibility of fine-scale analysis with high throughput [76,79]. It also represents a good 

opportunity to validate multiple aspects of single-cell omics: (i) the isolation and lysis universality, (ii) 

the sample preparation (genome amplification and library preparation for sequencing), (iii) the lack of 

contamination, and (iv) the representativeness of the sample covered by single-cell omics (see Outstanding 

questions). 

 

 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

 
 
 
Figure I. Typical steps of single microbial cell omics approaches. 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

Outstanding questions 

To what extent can a single 

technical approach realistically 

reflect complex natural processes? 

 
How many cells need to be isolated 

from a natural environment to 

accurately represent the 

population and/or community 

from which they originate? And 

how can this be assessed? 

 
What criteria should be used to 

determine the scale of sampling in 

natural environments? 

 
How can we use information 

obtained by single-cell omics to gain a 

better un- derstanding of ecosystem 

functioning? 

 
How can we make the application 

of proteomics, metabolomics, and 

multi- omics approaches to single 

microbes more realistic? 
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Concluding remarks 

Soon, single-cell omics applied to micro-organisms could become a gold standard in microbial ecology 

thanks to the knowledge produced by focusing on individual genomes and transcriptomes and, possibly, 

individual proteomes and metabolomes. Today, technical problems prevent the testing of broad 

ecological hypotheses. Generalizing ecological single-cell studies on microbes requires the development of 

robust high-throughput techniques with a high cost-effectiveness ratio (see Outstanding questions). A 

knowledge upshot is expected in microbial interactions and ecoevolutionary boundaries through the 

enabling of mechanistic characterization of deterministic populations and community assembly processes. 

Currently, the use of metagenomics and single-cell genomics in the same study appears to be the best 

solution, combining the strengths of the two approaches: (i) high throughput and α/β diversity and (ii) 

fine-scale analysis by scWGS and/or scRNAseq [76,80]. Ideally, one would not overinterpret meta-

omics data and rather would use those data to build hypotheses based on mechanisms, which can be 

tested using single-cell approaches. Approaches that will allow more accurate assessment of microbial 

genome diversity and genome functioning within complex microbiota are impatiently awaited. Still, the future 

of microbial single-cell omics will likely fuel a new perception of the world of micro-organisms. 
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Chapter II 

Elaboration and validation of the single-cell 

workflow protocol 

Unlike most molecular approaches, there is no universal solution on the market for single-

cell genomics sample preparation for microbes because of the existence of major technical 

padlocks to be broken such as costs, contamination, genome amplification, and single-cell 

isolation(Mauger et al., 2022). From cell isolation to sequencing, the possibilities for technical 

designs are many, with their own limitations and biases. The best approach is the one that 

covers the study requirements, whilst optimizing the extent of data interpretation and being 

suited to the single-cell isolation device. 

I- The procedure to elaborate the protocol 

 
To elaborate the workflow, research of available procedures was made to gather different 

sample preparation approaches. A list of pros and cons for each method was made based on 

literature and in collaboration with molecular biologists from Cellenion, from which the 

approaches were then selected. The different chosen steps were individually tested to set the 

adequate parameters and their compatibility with the other molecular reactions, from cell lysis 

to library preparation for Whole Genome Sequencing.  

1.1- Current state of single-cell genomic technique for bacteria 

 

While some single-cell studies focus on the 16s rRNA gene fraction to identify 

community members (Nishikawa et al., 2022), most of them attempt to recover whole genomes 

from bacteria to respond to more populational-oriented questions (Arikawa et al., 2021; Garcia 

et al., 2018; Ghylin et al., 2014; Hosokawa et al., 2022; López-Escardó et al., 2017; Zheng et al., 

2022) . As the choice of strategies for sample preparation is determined by the scientific 
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question and biological model, the following argumentation on preferable techniques will be 

led by representativity and costs independently of specific study requirements other questions 

might bring. There is however a general pattern to follow for such an experiment detailed in 

Figure 1, each step is detailed in the next paragraphs. Here, we aimed at recovering genomes 

from environmental bacteria, therefore our methodological research has been oriented to 

respond to this purpose. 

 

Figure 1. Main steps for single-cell whole genome sequencing (scWGS) sample 
preparation on bacteria. 

 

1.1.1- Cell isolation 

 

The success of single-cell omics first relies on our ability to isolate cells from other 

members of the community. For this purpose, diverse techniques are available such as image-

based isolation tools, microfluidics, flow cytometry, and optical tweezers (Woyke et al., 2017). 

Isolation of single bacteria is challenging due to their small size (0.2 to 8 µm), diversity in shape, 

and the tendency for specific taxa to aggregate (e.g. Coccus and Bacillus genera). Fluorescent-

activated cell sorting (FACS) based on fluorescence and cell morphometry detection using flow 

cytometry is the most frequently used for cell isolation (Figure 2). This technique presents high 

throughput and requires the labelling of the cells with fluorescent reagents such as DNA dyes 

(e.g. SYTO dyes). FACS however does not handle well changes in particle morphologies, applies 

a high stress on the cells, and does not offer image validation of cell isolation. Other approaches 

such as microfluidics allow the performance of molecular reactions following the encapsulation 

of cells, then its lysis, in circulating nano- or pico-litre volume droplets(Liu et al., 2019; Yu et al., 

2017)(Figure 2). This effectively reduces the reagent cost and the contamination risk of FACS 
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approaches. Hence, these droplet-based methods (X. Zhang et al., 2019) have proven their 

efficiency in high single-cell throughput with very complex technologies(Lan et al., 2017). They 

however do not offer high flexibility for customized miniaturized library preparation (Woyke et 

al., 2017) or cell visual observation. Furthermore, whether a droplet contains only one cell relies 

on chances ruled by Poisson law, so that the vast majority of droplets are empty, and doublets 

also are generated without the possibility of assessing single-cell accuracy. To avoid such 

technical limitations, we have chosen an image-based isolation approach, the cellenONE 

(Cellenion, France) (presented in detail in paragraph 1.2). The cellenONE gives the opportunity 

to personalize the isolation parameters precisely: with or without fluorescence, isolation of cells 

with specific size and elongation range, isolation of one or multiple cells, but also to handle 

liquids in nanoliters for molecular reactions miniaturization. Its piezo-acoustic capillary 

technology for drop generation is also very gentle and offers a high rate of cell integrity (Busley 

et al., 2023; Coker et al., 2022). Fluorescent live/dead labelling of the bacterial cell was 

developed in parallel with the library preparation workflow and is presented in Box 1. 

 

Figure 2. Single-cell isolation tools. Microfluidics and flow cytometers such as FACS are 
the most common on the market, despite their price and limitations. The cellenONE offers an 
image-based detection of the cells as well as liquid handling for personalized sample 
preparation.  
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1.1.2- Cell lysis and DNA preparation 

 

There are a few different bacterial membrane lysis solutions available on the market for 

genomics DNA extraction, but they cannot be used for single-cell omics applications because of 

strong constraints in the lysis protocol adaptation. The challenge is to efficiently and equally 

break the cell wall and membrane of various types of bacteria of different compositions (Figure 

3) without purifying the sample before subsequent molecular biology reactions, which would 

remove the few femtograms of DNA released from a single cell. Therefore, the lysis reagent mix 

nature and volume must be compatible with subsequent reactions. There is also no certainty 

that all taxa will be sensitive to the lysis and no direct way of measuring its efficiency at breaking 

the wall of all bacteria, as most of them remain unknown. However, the efficiency of each lysis 

strategy can be compared. There are a few references using lysis buffers for specific microbial 

cells (e.g. Cyanobacteria (Hall et al., 2013) or soil bacteria (Stepanauskas et al., 2017)), and 

frequently, the use of a combination of alkaline and temperature treatment is used (He et al., 

2016; Liu et al., 2018; Stepanauskas et al., 2017). Precaution must be kept regarding DNA 

integrity that can be affected by some lysis strategies such as sonication (Fykse et al., 2003). 

 

Figure 3. Cell wall of gram-positive and gram-negative bacteria as classical examples of 
differences in composition and structure.   

With only femtograms of DNA per bacterial cell, a step of genome amplification is 

virtually mandatory. The traditional Polymerase Chain Reaction (PCR) is generally avoided here 
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to limit the intrusion of amplification errors. Specific amplification procedures are employed for 

this purpose, linear, semi-linear, or exponential genomic amplifications (Gawad et al., 2016). 

Commonly, this amplification is done by Multiple Displacement Amplification (MDA) (Figure 4) 

which can be used via commercialized kits and enzymes. This isothermal and exponential 

genome amplification with random primers is extremely efficient but lacks coverage uniformity 

and can over-represent some parts of the genome (Gawad et al., 2016; Woyke et al., 2017). 

MDA can also introduce errors, and exponentially amplify 

these errors, although at a lower rate than PCR. Alternatives 

based on this method have emerged to limit its bias such as X-

WGA (Stepanauskas et al., 2017) or Primary Template-directed 

Amplification (PTA) (Gonzalez-Pena et al., 2021).  Very 

different approaches are also used such as transposon 

tagmentation and in vitro transcription (IVT) strategies (Chen 

et al., 2017; Yin et al., 2019), offering linear amplification, and 

using transposons. Nevertheless, MDA remains the most 

efficient workflow in terms of yield, genome coverage, low 

chimera generation rates, and hands-on time, for single-cell 

DNA amplification (Estévez-Gómez et al., 2018) and its 

coverage uniformity can be improved by working in lower 

volumes (Fu et al., 2015; Nishikawa et al., 2015). After this 

amplification step, the samples contain enough DNA for library 

preparation (i.e. nanograms per microliter). 

 

 

 

Figure 4. Multiple Displacement Amplification (MDA) using random primers and 
isothermal exponential amplification with a Phi29 high fidelity polymerase (Figure from Gawad 
et al 2016). 



 

53 

 

1.1.3- Sequencing and cost 

 

Sequencing technologies have evolved and propose various possibilities that can be 

chosen from simple or double indexing, short or long fragments, with different sequencing 

depths. The goal of single-cell omics is to uncover the understudied diversity of bacteria at both 

inter- and infra-species levels; one would want to increase the sequencing depth to maximize 

both SNP detection and genome reconstruction. Increasing the sequencing depth also increases 

the cost and/or limits the number of samples (i.e. the number of cells here) that can be 

sequenced. To maximize the number of samples, the use of indexes identifying cells and 

samples must also be adapted. On the market, library preparation kits generally propose to tag 

96 samples (e.g. QIAseq FX DNA Library CDI Kit, QIAGEN), up to 384 (NEBNext® Multiplex Oligos, 

NEB). 

1.1.4- The problematics  

 

Traditional library preparation procedures must be modified for single-cell omics 

application on microbes to increase the number of cells to be sequenced and get closer to 

bacterial diversity representativity. Three main actions can be taken to lead this adaptation: 1-

Lower the reaction volumes to i) lower the contamination risk, ii) lower the costs, and iii) include 

more cells into the study. 2-Tag cells and samples in a way that would not limit the study to 384 

cells per sequencing and 3- Increase the universality of all steps, mainly those of cell isolation 

and lysis which are highly dependent on the matrix from which the sample is taken, with specific 

cell types.  

The first objective of this project was to elaborate a single-cell genomic protocol from 

cell isolation to library preparation applicable to environmental samples, and more specifically, 

to soil samples.  No such complete solution is available on the market, therefore we combined 

and adapted existing techniques after a complete prospection of available options at the time, 

presented below.  
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1.2- The cellenONE and cellenCHIPs 
 

Our protocol was built around two technical solutions proposed by Cellenion: the cellenONE 

and the cellenCHIP. The cellenONE is an automated isolation and dispensing platform for cells 

and liquid handling, initially developed and mainly used for eukaryotic cells (Funnel et al 2022, 

Salehi et al 2021). The particles are detected via automatic visual analysis with a magnifying 

camera. The samples are handled by a glass capillary (Piezo Dispense Capillary – PDC) able to 

produce drops with high precision from 150 to 600 pL and are compatible with particles of wide-

range sizes (0.5 to 80 µm). The PDC positioning is also highly accurate with a precision of 25 µm 

in space on the x-, y-, and z-axis.  One of the strengths of the cellenONE is the shooting of images 

of each drop generated, that can be saved (all of them or only those of isolation events). The 

cell characteristics (size, circularity, fluorescence intensity) are also saved within a table. 

Fluorescent channels can be activated, and the isolation parameters are customizable as well 

as the plate in which the distribution is done. The cellenONE does not rely on the Poisson 

distribution for single-cell isolation and distinguishes between events of isolation and events of 

drop recycling. There are two areas along the PDC, the ejection zone that corresponds to the 

next dispensed drop and the sedimentation zone that represents the safety zone which can be 

manually set (Figure 2). Isolation events will occur only in the situation where one single particle 

is detected in the ejection zone, and none is present in the sedimentation zone. In any other 

case, the drop is discarded or may be recovered in a recovery vial if the sample is precious 

(Figure 2). Pictures of isolation events can be stored for further manual verification of the 

isolation accuracy.  

The cellenCHIP (Figure 5) is a consumable from Cellenion developed for miniaturized 

omics applications giving the possibility to drastically lower the cost of single-cell sample 

preparation. The miniaturisation procedure is explained in Box 2. The chip contains 384 wells 

with working volumes from 50 to 500 nL. Its size is equivalent to a microscope slide and is made 

of optically clear polypropylene. Up to eight cellenCHIPs can be placed in the cellenONE at the 

same time for sample processing, for a total of 3072 wells. The use of the cellenCHIP offered a 

possibility for miniaturized sample preparation for single-cell genomics on microbes but no such 
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experiments on microbes were previously tested in this chip. Therefore, requirements 

regarding the cellenONE and the cellenCHIP were considered for the protocol elaboration.  

 

 

 

Figure 5. The cellenCHIP design. Image from Cellenion. 

 

These products offer many possibilities but also some restrictions. The requirements for 

PDCs and cellenCHIP uses are listed in Table 1. Despite its advantages, each reaction happening 

in the cellenCHIP implies the addition of reagents in each of its wells, followed by sealing and 

centrifugation to ensure liquid disposal at the bottom of the wells. Therefore, each step 

represents a long handling time and risk of contamination. The cellenCHIP usage should be as 

short as possible, and samples should be pooled early in the workflow thus early single-cell 

barcoding. The barcodes are known and unique sequences of nucleic acids present on primer 

adapters. Ideally, the barcodes should be present in the wells of the cellenCHIP prior to the 

sample preparation to avoid washes of the PDC between the distribution of different barcodes. 

Therefore, these barcodes should not be used as a template before necessary by other enzymes 

and should also not be degraded. Because the diameter of the cellenCHIP wells is smaller than 

that of the PDC, no sample uptake can be performed. The design of the cellenCHIP and 

miniaturized volumes do not allow purification of the samples, demanding high compatibility of 

each step as well as no sensitivity of enzymes to molecular reaction residues that would 

generate its inhibition. The protocol should not contain any PCRs within the cellenCHIP but only 

isothermal reactions due to the limited thermal conductivity of the chip which was still in 

development at this stage. Lastly, the reagents necessary for molecular reactions or cell lysis 

should be usable by the PDC, with a limited viscosity.  
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Table 1. List of major requirements to consider for the PDC and cellenCHIP usage. 

 

 

 

1.3- Combining the most efficient approaches.  

 

1.3.1- Scenarios 

 

The protocol was built to offer efficient and universal lysis and genome amplification 

while keeping the contamination of external DNA to a minimum. To limit these contaminant 

DNA as well as costs while increasing the possible number of cells studied, we decided to aim 

toward a miniaturized library preparation (Box 2), therefore the technical and molecular choices 

of the protocol were made to answer miniaturisation requirements. Enzymatic and chemical 

reaction compatibility was a crucial issue, given the impossibility of undertaking purification 

steps in the cellenCHIP. The number of steps should be reduced as much as possible to limit the 

risk of contamination from reagents but also from manipulation. All potential cross-

compatibilities must be tested beforehand: these tests were conducted in regular volumes 

(microliters) in tubes and on multiple cells or gDNA (later referred to as “bulk” tests)  before 

miniaturisation to compare the robustness of molecular reactions in different volumes.  

We identified strategies for library preparation involving either transposons and in vitro 

transcription (Chen et al., 2017) or MDA (e.g., Stepanauskas et al., 2017) for genome 

amplification. For both, details of possible reagents/kit were listed as well as possible steps for 

barcode addition. We placed the MDA approaches in priority for multiple reasons: (i) we had a 

possibility to adapt existing kits from QIAGEN, and (ii) MDA is the most efficient way known of 

amplifying bacterial genomes with relatively robust enzymes that might be less damaged by the 

remaining lysis buffer than IVT strategies using transposons. The MDA strategies also required 

fewer reactions in the cellenCHIP and overall quicker sample preparation.  



 

57 

 

In a second time, we identified the possible moments for barcode additions (Figure 6). 

As developed above, the barcodes should be added as early as possible to allow sample 

gathering early in the workflow, giving the possibility to purify between the next steps and 

manipulate fewer samples. For adapter addition in the cellenCHIP prior to the workflow 

execution, their design should forbid any other enzyme to use them before the adapter ligation 

step. We imagined multiple solutions such as using blocking bases by modifying the 3’ end of 

the oligos but only tested a design with hybrid adapters that would be composed of one DNA 

and one RNA strand, which would prevent the polymerase from using them as templates (Figure 

7). However, the tests in bulk were not conclusive (not shown here) and we later focused only 

on DNA-DNA adapter designs. 

 

Figure 6. Workflow to be tested with the possible implementations of the barcodes to 
tag each cell individually. 

Another theoretical possibility explored was the addition of the barcodes during the 

MDA by using transformed random primers containing the barcodes (Figure 6, Option 1). This 

would have required 3’ end modification of the designed oligomers, to prevent the 3—>5’ 

exonuclease activity of the Phi29 polymerase, the enzyme that catalyzes the MDA reaction. We 

quickly realized that we would obtain very long fragments (up to 30 Kbp after the MDA) with 

barcodes that would very likely be fragmented during the next steps, therefore losing the 

barcode information for many fragments. The Cellenion team later explored this approach 

unsuccessfully with many different barcoded hexamers designs but any personalization of the 

hexamers seemed to stop the MDA from working. We therefore chose to work on adding the 
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barcodes during the PCR adapters ligation step (Figure 6, Option 2). The option 3 was not tested 

due to the incapacity of performing PCRs in the cellenCHIP as previously explained.  

 

 

 

 

 

 

Figure 7. Design of DNA-RNA hybrid adapters. The hybris part would be pre-spotted in 
the cellenCHIP by Cellenion prior to sample preparation and the DNA-DNA part during the 
ligation step. The unique cell barcode would have been contained on the hybrid part and the 
unique sample barcode on the DNA-DNA part. 

     

1.3.2- The lysis  

 

There are multiple options for bacterial cell lysis detailed in the literature: heat, heat 

shock, alkaline treatment, chemical lysis, enzymatic digestion, or a combination of these (Islam 

et al. 2017). The use of specific compounds enables to break down the different layers of the 

bacterial wall (Islam et al. 2017). The validation of the lysis strategy was done by a 16srRNA 

gene qPCR using QuantiFast SYBR® Green PCR Kit with the 341F (5’-CCTACGGGAGGCAGCAG-3’) 

and 534R (5’-ATTACCGCGGCTGCTGGCA-3’) primers used at a final concentration of 1 µM. The 

qPCR cycle was set as follows: 95°C-5min, (95°C-10s, 60°C-30s, 72°C-30s) x40, with a final 

melting curve (95°C-5s, 65°C-1min, 97°C-continuous). To prevent cells from breaking with the 

PCR temperatures, the samples were centrifuged at 10 000 g for 10 minutes and only the 

supernatant was used to quantify the DNA released by the lysis. Prior to these tests, for each of 

the three strains tested (Escherichia coli, Bacillus subtilis, and Micrococcus luteus), the bacterial 

cell count corresponding to the OD600 was estimated by flow cytometry (BD Accuri C6) 

quantification allowing the control of the number of cells in input for the lysis tests directly by 

OD600 measurements.   
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 For our application, we first hoped to achieve universal lysis with the least reagents in 

input as possible to avoid downstream reaction inhibition and limit external contamination. I 

started to test some temperature treatments in bulk on gram-negative and -positive strains: 

E.coli, B.subtilis, and M.luteus, with either stable temperatures or heat shocks (Table 2). None 

of these treatments solely based on temperature increased the available DNA in the suspension 

compared to the control.  

Table 2. Temperatures and incubation times of different lysis tests on gram-positive 
and -negative bacteria strains. 

 

From this point we decided to work on lysis buffers, either directly taken from published 

papers or with some variations to obtain eleven different combinations (Table 3). The first 

buffer was found in Liu et al. (2018), Buffer 9 in Stepanauskas et al. (2017), and Buffer 11 in 

Kang et al. (2015). The compatibility of the lysis buffer with the 16s qPCR was first tested as a 

control so that it would not be disturbed by the different reagents and therefore could be kept 

as a lysis efficiency validation. The qPCR was run with or without the buffers presented in Table 

3 with different concentrations of DNA or water (Negative control).  However, by looking at the 

average cycle threshold of each sample (Table 4), the lysis buffer components disturbed or fully 

inhibited the 16s qPCR except B7 and B8, preventing the validation of the lysis efficiency via 

qPCR for the lysis tests with these buffers. 

 

 

 

 

Control 70°C 90°C 
Heat-shock 

1 
Heat-shock 

2 
Heat-shock 

3 
Heat-shock 

4 

Room 

temperature 5 
min 

10s/30s/1mi
n/5min 

2s/5s/10s/30
s/1min 

 -80°C 4min  
+ 65°C 2min  

 -20°C 2 min  
+65°C 2 min  

 -20°C 2 

min  
+65°C 2 min  
X3 cycles  

Ice 2min  
+65°C 2min  
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Table 3. Lysis buffers to be tested on multiple strains. 

 

Table 4. Average cycle threshold (Ct) of triplicates from which the qPCR amplifies 
exponentially and validates the amplification efficiency. If not disturbed by the lysis buffers, the 
Ct should be similar to the control's Ct without any buffers. 

 

 Therefore, we decided to test these buffers directly in the conditions of the wished 

protocol, that is just before the genome amplification, without purification. The REPLI-g Single 

Cell Kit (QIAGEN) was used for MDA validation following the cell lysis.  I selected five buffers to 

be tested, this time on cells of E.coli, B.subtilis, and M.luteus. The commercialized lysis buffer in 

the REPLI-g Single Cell Kit (QIAGEN) was used as a positive control, Buffers 2,7, 9, and 10 were 

chosen to make a prior selection of the type of lysis buffer: with or without enzyme (Lysozyme), 

detergent (Triton), alkaline treatment (KOH) or a combination of some of these elements. 

Optimal working temperatures were applied for each buffer (Table 4).  Sample preparation was 

made in volumes respecting the initial protocol of the REPLI-g Single Cell Kit (see paragraph 

1.3.3). All genome amplification worked except with buffer 2 (Figure 8), where no DNA 

amplification has been measured except for one late sample.  
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Figure 8. Real-time MDA on DNA (i.e. positive control) on the left and on cells lysed with 
buffer 2 on the right. The cycles represent the number of minutes, one picture of the 
fluorescence was taken per minute. 

Additional tests revealed that the MDA polymerase was systematically inhibited by 

enzymes including Lysozyme, Mutanolysin, and Achromopeptidase. Negative controls (no cells 

nor gDNA) of the MDA were also positive (i.e. presence of DNA measured by Qubit (Invitrogen) 

and long fragments measured with a Fragment Analyzer or TapeStation (Agilent)).  As warned 

by the manufacturer, the MDA can result in up to 40ng/µL yield in negative controls due to the 

concatemerization of random hexamers primers. Therefore, to differentiate bacterial DNA from 

random primer yields, the qPCR previously used for thermal lysis quality control was performed 

on purified MDA products. The qPCR on the positive MDAs (with buffers 7, 9, 10 and from the 

REPLI-g kit) demonstrated good efficiency of each lysis buffer on E.coli and B.subtilis, but only 

the buffer with alkaline treatment (Buffer 9) also seemed to break the cell wall of M.luteus 

(Figure 9).  At this stage, buffer 9 from the Stepanauskas publication (Stepanauskas et al., 2017) 

was selected for further tests regarding its compatibility with the library preparation reagents. 

Beyond its broad efficiency demonstrated on soil samples (Stepanauskas et al., 2017) and on 

the strains we have tested, the choice of this lysis buffer was also adequate for the adaptation 

of the miniaturised protocol: it is fast and easy to prepare, the incubation is quick and can easily 

be done on ice or within the cellenONE platform and none of its compounds is viscous. For its 

usage in our protocol, we mixed the Stepanauskas buffer with saline solutions (Storage buffer), 

following the requirements of the MDA kits of QIAGEN. The final settings for bacterial cell lysis 

in bulk were: 2 µL of storage buffer (+ cells), 1,5 µL of Stepanauskas buffer (100mM DTT, 10mM 
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EDTA, 0,4M KOH), incubation 10 minutes at 4°C and final addition of 1,5 µL of stop solution (Tris 

HCL 1M, pH4). 

 

Figure 9. Validation via 16s qPCR of the MDA amplified gDNA extracted from bacterial 
cells after their lysis using different lysis buffers. The M.luteus was amplified after the cellular 
lysis with buffer 9 (green line circled in yellow). 

 

1.3.3- The genome amplification 

 

Besides, we tested two MDA kits to limit the development requirements in molecular 

biology. The kit from QIAGEN “REPLI-g Advanced DNA Single cell kit” is presented to be adapted 

for microbial application after some lysis adjustments by the manufacturer and to be more 

efficient than the previous REPLI-g Single Cell Kit. A kit from Bioskryb (ResolveDNA kit) proposing 

a PTA-MDA (Primary Template Amplification) was also tested and presents advantages 

regarding the control of amplification errors, as the generation of fragments occurs only via the 

synthesis from the initial fragment. However, the Bioskryb kit did not offer solutions for 
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bacterial cell lysis at the time. The genome amplification efficiency of both kits was tested 

following the cell lysis with either the QIAGEN or Stepanauskas lysis buffers. The Bioskryb kit 

was less efficient (i.e. lower amplification factor)  than QIAGEN when used with the QIAGEN 

lysis buffer or its own. 

 The QIAGEN kit was therefore kept for further development. The genome amplification 

efficiency was quantified with fluorescence on nucleic acids, just like a qPCR, by adding 0.5 uL 

of Syto13 100 uM in the mix of the reactions and taking a picture every minute. For all bulk tests 

(i.e., MDA on gDNA or multiple cells in volumes respecting the kit recommendations), the total 

reaction volume was divided by two and composed as follows:  4.5 µL NFW, 14.5 µL reaction 

buffer, 1µL polymerase, 0.5 µL Syto 13 100 µM, for a total volume of 20 µL + 5 µL of the template 

(lyzed cells or gDNA). A stock of amplified samples was made using the Stepanauskas lysis buffer 

and the REPLI-g Advanced DNA Single cell kit, with and without final purification to serve as a 

template for library preparation tests (Figure 10).  

 

Figure 10. Fragment Analyzer profile of a MDA-amplified genome, with typical fragment size 
distribution between 6000 and 30000bp.  

 

1.3.4- The fragmentation 

 

For commercial and practical convenience, we tested two commercialized kits for library 

preparation: the QIAGEN® QIAseq FX DNA Library Kit and NEBNext® Ultra™ II FS DNA Library 
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Prep Kit from Illumina. The fragmentation step was done using a fragmentase enzyme, working 

at an optimal temperature of 32°C for QIAGEN and 37°C for NEB.  

 

 

 

 

 

 

 

Figure 11. 3 in 1 reaction of fragmentation, end-repair and a-tailing with the QIAGEN® 
QIAseq FX DNA Library Kit. 

The size of the fragments can be modulated by changing the concentration of DNA in 

input and the time of the incubation. Following the recommendations of both NEB and QIAGEN, 

we first evaluated the adequate parameters to obtain a satisfying fragment size. With the NEB 

kit and various parameters tested (i.e. DNA concentrations from 1 to 20 ng/µL and incubation 

time from 2 to 20 minutes), we failed to obtain a fragment size higher than 100 bp (Figure 13B) 

while we aimed at a minimum size of 200 bp. The results were also identical with or without 

prior purification of MDA-amplified DNA and w/o the Stepanauskas lysis. The same tests were 

done with the QIAGEN kit. While the fragmentation was not affected by the lack of prior 

purification of the samples and the lysis buffer, the fragment size changed with the sample 

concentration and incubation time (Figure 12). Final consistent settings were found after many 

tests and chosen for the final protocol: a final sample concentration of 2 ng/uL incubated 12 

min at 32°C resulted in fragment sizes with a pic between 200 and 260 bp (Figure 13A). This 

reaction, besides fragmenting the DNA, also executed the end-repair and A-tailing (addition of 

a single adenine base in 3’ position) of the fragments (Figure 11), allowing the l igation of PCR 

adapters with a thymine base overhang. 
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Figure 12. Shift in fragment sizes with incubation time of QIAGEN fragmentation, on a 
non-purified MDA sample with a final concentration of 1ng/µL. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Fragment sizes obtained with (A) the QIAGEN® QIAseq FX DNA Library Kit with 

average pic at 256 bp and (B) the NEBNext® Ultra™ II FS DNA Library Prep Kit from Illumina with 

a pic at 77 bp. 

A 

B 
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1.3.5- The ligation of PCR primer binding site with cell barcodes and library amplification 

 

The QIAseq FX DNA Library Kit was validated for fragmentation and therefore kept for 

the ligation of PCR adapters. The kit proposed up to 96 different barcodes to identify the 

samples. The sequences of these adapters were unknown to us, as well as the design of the PCR 

primers provided in the kit. To increase the number of unique barcodes and thus the 

multiplexing possibilities, we designed barcoded PCR adapters that should be i) able to bind to 

the end-repaired fragments after the fragmentation, without purification following the lysis and 

MDA steps, ii) containing unique barcodes, and iii) containing the binding sites for the primers 

of the final library amplification PCR. We worked with the primers from Nextera XT Index Kit v2 

(Illumina), offering many possible combinations for indexing during the final PCR. The design of 

the final adapter was validated with a phosphorylation treatment in the 5’ position (Figure 14 

A). A combination of 12 barcodes in columns and 8 barcodes in rows allowed the unique 

identification of 96 different cells. Each of these cells can be gathered to receive other indexes 

contained on the Nextera primers (i5 and i7, Figure 14 B) identifying each pool of 96 cells (Figure 

15).  The success of the ligation tests in bulk was evaluated in multiple ways: i) the size of the 

fragments should increase by the size of the primer adapter (i.e. 80 bp). ii) a qPCR with 

QuantiFast SYBR® Green PCR Kit and temperature cycle and custom primers to bind to the 

adapters and quantify the number of fragments with adapters and iii) the final indexing PCR 

should be successful (i.e. increase in the size of the fragments, and in DNA concentration 

quantified by KAPA Library Quantification Kit).  

The library preparation protocol was validated once all the compatibility tests were validated 

(Table 5). 
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Table 5. Compatibility tests verified in bulk of each step of the workflow. 

 

 

 

 

 

 

 

 

Figure 14. (A) Adapters design; each contains a barcode (BC), a mosaic end (ME), and an 
index PCR binding site (S5 or S7). The adapters are phosphorylated in 5' to enable their adhesion 
to the A-tailed fragment. (B) Library construction after adapters ligation. Each strand is 
amplified with the indexing PCR with primers containing the i5 and i7 indexes.  
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Figure 15. Sample multiplexing strategy. The cell IDs were added during the ligation step 
with barcoded adapters in dual indexing to tag the DNA of 96 samples. Each array of 96 samples 

was pooled for the indexing PCR step where specific combinations of PCR primer indexes 
allowed another layer of identification for each pool. When identified, the samples were pooled 
to compose the final library in one single tube.  

 

 

The developments in nanovolumes were not satisfying and required additional 

work (Box 2). Further tests are needed with cellenCHIPs made of other materials (treated 

plastics, aluminium…). Therefore, the decision was taken to conserve the workflow which was 

validated in bulk, and decrease the reaction volumes to a minimum of what could be handled 

by hand pipetting to obtain volumes between bulk and miniaturisation tests. The protocol was 

executed in 384 well plates or 96 well plates depending on the step. The figure 16 summarizes 

the workflow setup as it was used for final experiments.   
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     Figure 16. Final total workflow for single-bacteria whole genome sequencing 

 

This workflow was applied to referenced strains to evaluate the genome recovery quality and 

to develop a bioinformatics pipeline for single-bacteria genomic data decontamination, 

presented in the next paragraphs of this section. I closely followed the development of this 

pipeline which was elaborated by two bioinformaticians of our research group. The application 

of this single-cell sample preparation was done on environmental samples, the results of this 

experiment are detailed in the next chapter of the thesis.  
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     Box 1: Towards live/dead staining of bacterial cells using the cellenONE 
For the cellenONE to isolate bacterial cells, fluorescent channels were used. Two elements 

constrained the choice of the fluorescent reagents: we aimed at combining labelling to discriminate live 

from dead cells and both labellings had to be detectable by the fluorescence channels present in the 

cellenONE (Figure 1.1), without overlapping. The four fluorescent channels proposed by the cellenONE 

gave the opportunity to test many reagents (Figure 1S, Supplementary). To summarize, all nucleic acid 

dyes in the green channel were perfectly adapted for bacterial isolation using the cellenONE (Syto 9, 13, 

and 24 for all cells and Sytox green for dead cells). However, every attempt to add a complementary dye 

in another channel failed: either the particles were not visible with the cellenONE (DiBAC4(3), Propidium 

iodide, CTC) or inconsistently labelled (Cell Tracker Deep Red, Figure 1.2). When detected, it was because 

the cells received a very high dye concentration. Other kits such as ViaGram Red and Sytox Red reagents 

were tested at Cellenion with the same outcome, possibly highlighting an incompatibility between the 

intensity of these red dyes emissions and the 

sensitivity threshold of the cellenONE red channel 

for those wavelengths. 

Figure 1.1. Excitation and emission channels of the 

4 LEDs contained in the cellenONE.  

 

 

 

 

 

 

 

 

Figure 1.2. View of the PDC containing a bacterial suspension, stained with Sytox green (top image) and 

Cell Tracker Deep Red (bottom image). Except for one bacterium circled in yellow, no bacteria were 
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detected without fluorescence. While three bacteria are detected in the green channel, and supposedly 

dead, only one is detected in red which should contain all bacteria, dead or alive.   

When testing double staining, we attempted to validate the status of the cells (alive or dead) of the 

fluorescence by individually growing them on pre-filled wells with a solid growth medium but did not 

observe better viability (with cultivability as a proxy) from cells stained as “live” or “active” than cells 

stained as “dead” or “inactive”. This indicated (i) toxicity of fluorescent dyes at the concentrations 

required by cellenONE detection, and (ii) inefficiency of the tested live/dead staining or incompatibility 

with the cellenONE. For my thesis work, I decided to keep only the staining with Syto 9 or 13 dyes which 

were the only unbiased labelling tested. The application of live/dead staining for bacteria requires more 

sensitive fluorescence detection by the cellenONE. Recent research at Cellenion led to the development 

of a new software dedicated to bacteria isolation, that enables >92% single-cell accuracy even in bright 

field, removing the need for a fluorescent staining step if not desired. 
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Box 2: Towards miniaturisation 
 

Three steps of the protocol needed to be performed in the cellenCHIP prior to adapters 

ligation and cell barcoding: the lysis, the gDNA amplification, and the fragmentation, (Figure 2.1).  

Figure 2.1. Library preparation protocol from isolated bacteria. The steps from the lysis to the 

PCR adapter ligation containing the cell barcodes are performed in the cellenCHIP. 

For the miniaturisation of the sample preparation, the concentrations of the enzymes and 

buffers previously validated in bulk were conserved as a hypothetic way to avoid any possible 

dysfunction of molecular reactions. Moreover, some solutions were viscous, especially the ligation 

buffer which therefore needed to be diluted to allow the distribution with the PDC while keeping the 

right final concentrations. After calculations and dispensing tests, the proportions of each mix were used 

as follows: 21 nL of lysis buffer + 9 nL of stop solution, 120 nL of MDA mix, 90 nL of fragmentation mix, 

5 nL of adapters, and 355 nL of ligation mix for a total of 600 nL. For the PDC to dispense properly, the 

mixes and buffers had to be free of air bubbles by spinning at 6000 rpm for approximately 20 minutes 

for gas removal without enzyme damage in a Labnet C1301-B centrifuge. The complete workflow 

demanded many manipulations and required alternations of different workstations between the 

cellenONE, thermal cyclers, and centrifuges. Because of the differences between the temperature set 

on the thermal cycler and the temperature within the cellenCHIP, each temperature was modified to 

reach the adequate temperature within the wells. This measure was done with thermal probes placed 

in the wells on the cellenCHIP during thermal cycles, with a closed lid.  

 

 

 

 

Figure  SEQ Figure \* ARABIC 15x: Different steps of the workflow with the four first ones miniaturized in the cellenCHIP 
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Table 2.1. combinations of in-chip or in-tube steps of the workflow and the corresponding validation 
(green) or failure (red) of the workflow via indexing PCR. 

 

 

 

 

In the same way as bulk validations, each step was individually validated in the chip before 

processing the total workflow, with the same quality controls. All steps resulted in similar results to bulk 

ones, despite the high variability of the MDA success in these low volumes (i.e. from 1 to 300 ng/µL of 

yield with identical settings). The steps were then combined one by one to control their compatibility 

(Table 5). The total workflow success was approved when the final indexing PCR was validated. The table 

2.1 summarizes the results of these tests; the PCR was not working when the fragmentation was done 

in the cellenCHIP indicating that the library preparation was not successful. Despite the validation of 

fragment size, we suspect the end-repair or A-tailing step, supposedly done simultaneously with the 

fragmentation, to have failed in nanovolumes, which could not be spotted with the Fragment Analyzer 

for quality control.  
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Supplementary  

Table S1.    Summary of the staining reagents tested for bacterial cells detection with the 

cellenONE 
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II- Wet-lab preparation and automatized decontaminating 

procedure for single-bacteria genomics 

 
Article in preparation for submission to Nature Methods journal 

Authors: S. Mauger, Y. Sevellec, L. Carret, N. Robert, C. Monard, C. Thion, J. Bagnoli, F. 

Monjaret, P. Vandenkoornhuyse.  

 

2.1- Introduction  

 

Single-cell omics applications in microbiology started almost two decades ago (Raghunathan 

et al. 2005) and broadened access to bacterial interactions, population diversification, and 

evolutionary dynamics understanding within natural bacterial communities (Bawn et al. 2022; 

Davis and Isberg 2016; Kashtan et al. 2014; Labonté et al. 2015). The cell-level observations 

refine the microbiology theories and complement the interpretation of the observations from 

metagenomics approaches. Each step of single-cell omics sample preparation can be 

customized: cell extraction, lysis, genome amplification, library preparation, and 

bioinformatic treatments. The choice of the approach depends on the matrix (e.g. soil, water, 

tissue, pure cultures), the study's goal (whole genome sequencing or specific targeted genes) 

but also, and mainly, the cost. While keeping an important sequencing depth seems 

primordial for single-nucleotide variants (SNV) detection between genomes and should not 

be neglected for single-cell omics (Van Rossum et al. 2020), the decrease in cost has been 

concentrated on limiting the reaction volumes, which limits the contamination risks 

simultaneously (Blainey 2013; Mauger et al. 2022). The technologies for single-cell omics 

applications evolve yearly and have branched into diverse tools for cells and liquid handling 

(Chen, Chen, and Zhang 2017; Woyke, Doud, and Schulz 2017). Technical requirements for 

handling single cells and nano-volumes demand very complex and costly installations and in 

the case of microfluidics do not offer much flexibility for custom sample preparation(Woyke, 

Doud, and Schulz 2017). Flow cytometry such as fluorescence-activated cell sorting (FACS) 

does provide higher throughput than other cell isolation tools, but its inability to visually 

isolate the cells, to isolate without prior staining, to cope with diverse cell morphologies, and 
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to give the opportunity to work in nano-volumes leaves many padlocks for single-microbes 

sample preparation. Moreover, the chosen procedure for single-cell sample preparation will 

inevitably influence the resulting sequencing data handling. 

Regardless of the chosen isolation technique, single-cell omics are still subject to 

contamination, they generally present very partial genome reconstruction (López-Escardó et 

al. 2017; Zheng et al. 2022),  and low sample throughput compared to metagenomics. The 

sources of contamination are diverse; from biological, technical, or bioinformatic sources. The 

biggest argument for single-cell omics application compared to meta-omics approaches is to 

avoid chimera reconstruction and distinguish between similar populations of bacterial strains. 

The distinction of contaminant DNA from the target is, therefore, a priority to obtain the 

purest genomes possible. Just like sample preparation, no universal procedure is applied to 

single-cell omics data treatment (Alneberg et al. 2018; Anstett et al. 2023; Berube et al. 2018a; 

Bowers et al. 2017; Chijiiwa et al. 2020; López-Escardó et al. 2017; Nishikawa et al. 2022; 

Pachiadaki et al. 2019). This general lack of standardization, decontamination, and 

benchmarking makes it difficult to compare single-cell omics data and evaluate their 

robustness. The exploration of the quality of Single Amplified Genomes (SAGs) is superficial, 

and only a few papers are attempting to decontaminate SAGs in depth (Anstett et al. 2023; 

Bowers, Doud, and Woyke 2017; López-Escardó et al. 2017). The most common 

decontamination procedure is based on the taxonomic assignation of contigs, selected and 

removed from the final assembly with different tools (Anvio’s (Eren et al. 2015), ProDeGe 

(Tennessen et al. 2015), acdc (Lux et al. 2016), MDMcleaner (Vollmers et al. 2022)). Few tools 

exist for contigs contamination evaluation (Cornet and Baurain 2022), but no pipeline 

proposes to remove it prior to reads assembly to avoid misassemblies, mostly because each 

dataset presents its specific challenges and contaminants related to the sample and its 

preparation.  

Here we developed a full microbial single-cell genomic pipeline including both the single-cell 

genomic library preparation workflow and an innovative automated sequence 

decontamination pipeline. The cellenONE instrument used optically detects bacterial cel ls 

without staining needed and produces drops in the picoliter range. Its versatility allows the 

personalization of isolation parameters to fit the sample requirements, and objectives of the 

experiment, which makes it highly reliable and accurate. We modified and optimized existing 
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library preparation procedures from published or commercialized approaches to lower the 

reaction volumes and applied this protocol to referenced strains of bacteria to evaluate the 

quality of the genomes recovered. We developed an automatized pipeline called SINCERE 

DATA (SINgle-CEll REads Decontamination through Automatic Taxonomic Assignation) for 

single-cell genomics data treatment able to identify and delete reads classified as 

contaminated based both on contig coverage and their associated taxonomic affiliation. The 

pipeline can distinguish between coverage differences of the target DNA and contaminant 

DNA, present in small quantities in many samples with abnormal coverage profiles. We also 

applied this pipeline as an example to previously published datasets(Berube et al. 2018b) 

highlighting the necessity of SAGs decontamination prior to the assembly stage. We point out 

the precautions in sample handling for single bacteria genome sequence data production and 

emphasize the necessity of chasing in silico contaminants for data robustness and accuracy.  

 

2.2- Materials & methods 

 

2.2.1- Cell preparation 

Two strains of bacteria (Pseudomonas fluorescens ATCC® 13525 and Staphylococcus 

epidermidis ATCC® 12228) were grown in nutrient broth (Merck) at 28°C for P. fluorescens 

and 37°C for S. epidermidis. The genomic DNA of Bacillus subtilis and Micrococcus luteus were 

extracted with GenElute™ Bacterial Genomic DNA Kit (Merck) and used as positive controls. 

For single-cell isolation, the equivalent of 10^7 cells of exponential phase bacterial cultures 

were pelleted for 3 minutes at 9000 rcf to remove the supernatant and resuspended in sterile 

PBS in equal volumes. This step was repeated once. Cell suspensions were diluted to reach an 

approximative final concentration of 10^5 cells per mL, diluting the cell suspension in 

degassed PBS beforehand by 15-min vacuum sonication in sciPURATOR (Scienion).  

2.2.2- Single-bacteria isolation and lysis 

The protocol was built with the inclusion of an innovative cell isolation tool, the cellenONE, 

allowing the isolation of bacteria based on particle automatic optical detections. Its glass 

Piezo Dispense Capillary (PDC) can handle liquids in small volumes (i.e. 250-800 pL per drop, 

with <0.25% variance) which limits the external DNA contamination risks and gives the 

possibility of working in nanovolumes. The cellenONE X1 BSC model is placed in a Class II 
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Biosafety Cabinet (BSC) to protect experimental staff from biohazards and prevent external 

contamination of samples. The temperature of the platform holding the samples was 

controlled and set at 4°C for better reagent stability. The PDC used for cell suspension 

handling and cell isolation was systematically sterilized between the manipulation of different 

strains, by successive aspiration and immersions in chlorine 0.5%, hydrogen peroxide 3% and 

ethanol 70% for 2 minutes each and ultrasonication (cellenONE Sterilization task). The 

detection and isolation parameters were based on size and elongation measured on 

brightfield images, thanks to the microLIFE package of the cellenONE software, dedicated to 

the isolation of small particles. Quality control analysis of isolation runs was performed using 

microLIFE viewer and single-cell accuracy (i.e., proportion of the positions where one and only 

one cell was dispensed) was 89 %. Positions with isolation errors (doublets or empty droplets 

due to false detection) were recorded for further confrontation with sequencing results.  

Single cells were isolated in wells of a 384-well plate where the lysis buffer was previously 

distributed by hand, under a PCR flow hood. Out of 274 used wells, 123 received no cells to 

serve as a negative control of the sample preparation, 22 contained genomic DNA for positive 

controls, and 129 received single cells. The lysis buffer was chosen based on the lack of 

subsequent molecular reaction inhibition and its efficiency in breaking the membranes of 

various bacteria. The core of the buffer was taken from Stepanauskas et al. (2017) who 

applied an alkaline treatment to soil bacteria to break their cell membrane. The lysis buffer 

was composed as follows: DTT 100 mM, EDTA 10 mM, KOH 0.4 M and diluted in water prior 

to the distribution of 1.05 µL (0.45 µL of buffer, 0.6 µL of nuclease-free water (NFW)) in each 

well. Genomic DNA from B. subtilis and M. luteus was also distributed by hand as a positive 

control, for a final 100 pg input of gDNA in the reaction (0.2 µL in each well at 0.5 ng/µL). After 

the distribution, the plate was briefly centrifuged to ensure cell deposition in lysis buffer and 

placed for 10 min at 4°C. To stop the lysis and re-adjust the pH of this alkaline buffer, 0.5 µL 

of 1 M Tris HCL pH4 was added to each well, by hand. After being centrifuged, the plates were 

placed at -20°C overnight. 

2.2.3- gDNA amplification  

The next day, the plate was thawed on ice, centrifuged, and manipulated under the BSC. For 

the genome amplification, either the REPLI-g Advanced DNA Single-cell kit (QIAGEN) or a mix 

of NEB Phi 29 enzyme and reaction buffer was used. We used reagents from these two 
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suppliers to evaluate the potential contamination sources and viability of these approaches. 

For both, 6 µL of mix were added in each well consisting of 4.35 µL of reaction buffer, 1.35 µL 

of NFW and 0.3 µL of enzyme for the QIAGEN Kit and 0.75 µL of reaction buffer, 2.53 µL of 

NFW, 0.75 µL dNTP at 10 mM, 1.89 µL of random primers at 200 µM and 0.08 µL of enzyme 

for the NEB reagents. The MDA was performed for 4 hours (QIAGEN products) or 8 hours (NEB 

products) at 30°C with a final step at 65°C for 3 min in a Bio-Rad C1000 Touch Thermal Cycler. 

Each amplification was quantified using Picogreen (Invitrogen) reading green fluorescence 

with qPCR cycler (BioRad CFX96), then amplified DNA was normalized at 5 ng/µL in NFW and 

stored at -20°C until further use. 

2.2.4- Enzymatic fragmentation 
The libraries were prepared using the QIAseq FX DNA Library kit from QIAGEN or NEBNext 

Ultra II FS DNA Library Prep Kit from NEB. 2 µL of normalized MDA product were placed in 

wells of a new 384 well plate, and 3 µL of fragmentation mix were added, consisting of 1.5 µL 

of water, 0.5 µL of fragmentation buffer, and 1 µL of enzyme for the QIAGEN kit and 1 µL of 

nuclease-free water, 1 µL of fragmentation buffer and 1 µL of the enzyme (Diluted 11.6 times) 

for NEB reactions. The tubes and plates were kept on ice during manipulation to hold the 

enzyme activity. The plate was placed in a thermocycler previously set at 4°C and the 

fragmentation cycle started for 12 min at 32°C followed by 30 min at 65°C.   

2.2.5-  Adapter ligation 
For this study, we designed 20 adapters (12 in columns and 8 in rows) with specific barcodes 

to tag and differentiate 96 cells with combinatorial barcoding. The pairs of barcodes were 

attributed 4 times to cover the 384 wells. Each adapter was added by hand in each well of 

new 96 well plates, 0.5 µL for QIAGEN and 0.2 µL for NEB wells, at 10 µM. The ligation mix 

(4.5 µL for QIAGEN and 5.1 µL for NEB) was added on top of the 5 µL of fragmented DNA. For 

QIAGEN, the mix composition was 2 µL of buffer, 1 µL of enzyme, and 1.5 µL of NFW. For NEB, 

the mix contained 4.6 µL of ligation mastermix, 0.2 µL of enhancer, and 0.3 µL of NFW. The 

plate was incubated at 20°C for 15 minutes. The ligations of each set of 96 pairs of barcodes 

were pooled in one single tube to be immediately purified with magnetic SPRI beads (Bagnoli 

et al. 2018) at 0.8x first and 1x in a second time. The samples were kept at 4°C until further 

use. 
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2.2.6- Indexing PCR and sequencing 

The final PCR was made with the NEBNext® Ultra™ II Q5® Master Mix and standard Illumina 

index primers with double indexing (IDT-DNA). Per sample, 1.25 µL of each primer was used, 

5 µL of the sample, 5 µL of NFW, and 12.5 µL of Master mix. The libraries were sequenced on 

a Nextseq 2000 sequencer with a P2 600 cycles flow cell (Illumina), offering an average Q30 

of 88.18% and 374.47M total reads.  

2.2.7- Sequence data treatment  

The demultiplexing of the dual indexes was performed with cutadapt (V. 4.1) with an error 

rate of 15% (Martin 2011). The adapter and quality trimming were also performed using 

cutadapt (V. 4.1) with a minimal quality set to 15 and a minimal length set to 30 bp. The quality 

of the trimmed reads was evaluated with fastqc (V. 0.11.5, Andrews (2010)). From the total 

dataset, 30 samples were selected based on their a priori higher quality of assembly prior to 

decontamination measured by QUAST (V.502, Gurevich et al., 2013) and CheckM (V.1.2.0, 

Parks et al., 2015). The first step of contaminants detection was performed via taxonomic 

affiliation of reads with Kraken2 (V. 2.1.2, Wood et al., 2019) on the PlusPFP precompiled 

database (downloaded the 31/01/23). Sequence-reads decontamination was manually 

performed based on Kraken taxonomy, and the reads affiliated to Eukaryotes, 

Enterobacteriaceae, Salasvirus, and Bacilliceae were removed. The Enterobacteriaceae are 

suspected to be carried by the MDA reagents as well as the Salasvirus from which the Phi29 

polymerase is extracted. We also suspected a cross-contamination with Bacillus genomic DNA 

in some wells that were used as a positive control, the reads and contigs of Bacilliaceae were 

therefore removed for all the samples. These decontamination outputs were used as a 

comparison for the pipeline decontamination efficiency explained below.  

At the same time, an automated pipeline, SINCERE DATA (Figure 2), was developed to identify 

and remove contaminants based both on contigs coverage and the taxonomic affiliation of 

associated reads. Trimmed reads were first assembled with spades (V. 3.15.5,  Bankevich et 

al., 2012) using the careful and single-cell option (--careful –sc). The contigs shorter than 

500bp were then removed using reformat.sh from the bbtools suite (V. 39.0.0,  Bushnell et 

al., 2017). From each assembly, the most abundant taxa were determined with Kraken2. If a 

given taxon was identified as the main taxon in more than 70% of the sample, it was reported 

by the pipeline as a potential contamination and advised to be removed from the reads prior 
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to the automatic decontamination. In our dataset, we detected contamination from the 

Bacillaceae positive control wells in some neighbour wells of other samples. These taxa reads 

were also removed. Potential contaminant regions in the assemblages could be detected from 

abnormally high coverages. The detection of these outlier regions from the mean genome 

coverage was made using a succession of tools: i) alignments of the reads on the assembly 

with bowtie2 (V. 2.5.1, Langmead & Salzberg, 2012), ii) sorting and indexing of the alignments 

using SAMtools (V. 1.1.7,  Danecek et al., 2021) iii) evaluating the coverage with bedtools (V. 

2.27.1, Quinlan & Hall, 2010). The z-score is a statistical measurement that calculates how 

much the standard deviation of a given value diverges from the mean of a group of values. 

The z-score was calculated for each nucleotide position and the regions that exceeded a z-

score of 2 for more than 30bp were selected as outliers. The outliers distant from less than 

100bp from each other were merged to reduce the computational burden. The outliers were 

extracted using SAMtools and received a taxonomic assignment. Reads from outlier regions 

with main taxonomic affiliation identical to the main taxonomy of this sample assembly were 

conserved. However, if the taxon found was different, the outlier reads affiliation was 

identified as a potential contaminant. The potential contaminants of each sample were 

collected and compared to the total collection. If a given potential contaminant was present 

in more than 20% of the samples and was not the dominant taxon in more than 20% of the 

samples then its contaminant status was validated, resulting in the suppression of all reads 

assigned to this taxon as well as its “children” taxa using krakentools 

(https://github.com/jenniferlu717/KrakenTools).  

Final assemblies were performed for each decontamination strategy without the 

contaminated reads with spades (V. 3.15.5, Bankevich et al., 2012) using the careful and 

single-cell option (--careful –sc) and contigs smaller than 500 bp were also removed. To 

suppress the potential remaining contaminants, contigs from presumed contaminants 

(Eukaryota, Enterobacteriaceae, Bacilliaceae, and Salsavirus) were removed for the manual 

decontamination. The contaminants detected by the pipeline for the automatic 

decontamination had their contigs removed as well. The quality of the final assembly was 

estimated with QUAST (V.502,  Gurevich et al., 2013) and CheckM (V.1.2.0, Parks et al., 2015), 

and quality reports were aggregated using multiqc (V.1.14, Ewels et al., 2016). Finally, Kraken2 

was used to determine the main taxonomic assignment of the final SAGs, and .biom files were 

https://github.com/jenniferlu717/KrakenTools
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generated using Kraken biom (V. 1.2.0, Dabdoub, 2016) for visualization of the taxonomy and 

data treatment. The Pavian application (Breitwieser and Salzberg 2020) was used for Kraken 

reports visualisation and Sankey diagram execution. 

The SINCERE DATA pipeline was applied to a published dataset (Berube et al 2018), aiming at 

referencing uncultivated genomes of marine microbes to increase the content of the 

databases for these organisms. Briefly, the cell isolation was performed with FACS technology 

and MDA was performed in 384 wells as previously described as well as sequencing data 

handling (Stepanauskas et al. 2017). From the trimmed reads, assemblies were done 

identically to our samples. We then randomly chose samples from the published dataset 

within each quality category following the Genomic Standards Consortium (GSC) (Bowers et 

al., 2017): 8 SAGs of low quality, 17 of medium quality and 5 of high quality. We measured 

putative completeness and contamination rates with CheckM and used Anvi’o (Eren et al. 

2015) to detect ribosomal gene presence necessary for the GSC (Bowers et al., 2017). The 

automated decontamination pipeline was then applied to these samples, using the trimmed 

reads as entry data.  
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Figure 1. Main steps for sample preparation for single-cell library sequencing. The isolation of 
the cleaned cells was made in a 384 well-plate with the cellenONE technology (Cellenion), 
generating droplets of 250-600pL. The cell lysis was performed prior to the genome 
amplification with miniaturized Multiple Displacement Amplification (MDA). Fragments were 
shortened with the fragmentation step and immediately barcoded per group of 96 samples 
to uniquely identify each cell with designed adapters during the ligation. These 96 samples 

were then pooled to be PCR-amplified as one sample and received unique indexes for library 
multiplexing.  
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Figure 2. Functioning of the automatic decontamination pipeline SINCERE DATA. From 
trimmed reads, the main taxa of each sample were determined in parallel to being assembled. 
Reads that were affiliated to outlier regions (i.e. abnormally high coverage) on the assembly 
were selected for each sample and affiliated to a main taxonomy. If this taxonomy was 
different from the taxonomy of the total sample, this outlier was considered a “Candidate-
contaminant”. The candidate-contaminants of each sample were compared to the total 
collection of the candidate-contaminants: if they were present in more than 20% of the 
samples and their taxonomic affiliation corresponded to less than 20% of the main affiliation 
of all the samples, they were considered as definitive contaminants. The reads affiliated to 
these contaminants were removed from the dataset, the assembly was performed and the 

contigs with the same taxonomy as the previously detected contaminants were also removed. 
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2.3- Results 

 

2.3.1- Decontaminations of referenced strains genomes 

 

The comparison of sequence quality between the NEB and QIAGEN library preparation on 

positive and negative controls did not show any notable differences (Supplementary Figure 

S1) and can be used as possible alternatives.  

Out of the 30 SAGs selected, 23 were assigned to Staphylococcus epidermidis and 7 to 

Pseudomonas fluorescens. Based on the Genomic Standards Consortium (GSC) (Bowers et al., 

2017), all our SAGs were considered as low quality before and after the decontamination 

process (i.e. Genome completeness below 50%) (Figure 3C). By removing contaminated 

contigs, the assembly length inevitably dropped from a median of 172.62 Kb for the assembly 

with trimmed reads to 54.05 Kb with manual decontamination and 38.6 Kb with automatic 

decontamination (Figure 3B). The same dynamic was observed for the number of assigned 

contigs (Figure 3E). The measured N50 slightly increased with the two decontamination 

procedures (Figure 3A). The completeness of the assemblies was similar for the trimmed and 

automatically decontaminated samples (i.e. ~2%), and on average at 0 % for the manually 

decontaminated samples (Figure 3C). The contamination measured for the three conditions 

was however similar, close to 0 % (Figure 3D). Overall, we observed similar measured qualities 

between the manual and automatic decontamination except for the completeness which was 

at its lowest with the manual decontamination. 
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Figure 3. Sequence statistics of the 30 selected SAGs from our pure strains dataset with only 
trimmed reads (blue), manual decontamination (green), or automatic decontamination (red). 

For the manual decontamination, reads and contigs of Eukaryota, Enterobacteriaceae, 
Bacilliaceae, and Salsavirus taxa were removed. The median is indicated for each boxplot (A) 
N50 measurements in Kb correspond to the size of the smallest contig at 50% of the total 
length of the assembly (B) length of assemblies in Kb (C) completeness of the assembly 
estimated by CheckM (D) putative contamination estimates with CheckM and (E) number of 
taxonomically identified contigs by Kraken2 for each assembly. 
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Table 1. List of putative contaminants detected by the automatic decontamination pipeline 
SINCERE DATA in both pure strains and published (Berube et al., 2018) datasets. Their 

identification is based on the listing of overly covered regions along the genome of each 
sample (i) above a z-score (i.e. standard deviations from the mean coverage of the region) of 
2 for more than 30bp and (ii) with a taxonomic identification different than the main taxa 
found in the sample by Kraken2. The green taxa represent the potential contaminants 
validated as contaminants based on the outlier ratio of a minimum of 0.2 and sample ratio of 
a maximum of 0.2. The total candidate contaminants list from the published dataset used 
(Berube et al., 2018) to test the automated SINCERE DATA contained 181 taxa. 
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For the manual decontamination of the pure strains dataset, the Eukaryotes, 

Enterobacteriaceae, Salasvirus, and Bacilliceae reads and contigs were removed. The 

Enterobacterales were also detected as a contaminant by the pipeline prior to its full 

execution because of their high proportion in the samples (i.e. main taxon in more than 70 % 

of the samples) and their reads were therefore removed for the total pipeline execution. We 

also manually removed the Bacilliaceae reads and contigs because of cross-contamination 

from these wells to their neighbours, not visible in this selection of 30 samples by the pipeline 

but detected in the total collection (data not shown). These four taxa were similarly detected 

with SINCERE DATA as potential contaminants (Table 1). A total of 16 potential contaminants 

(i.e. coverage pics above the z-score with different taxonomic identification than the sample 

from which it is extracted) were identified by the pipeline in the outliers regions, but only the 

Homindeae and Salasvirus taxa were confirmed as contaminants as they were present in more 

than 20% of the outlier regions and less than 20% of the samples.  

 

Figure 4. Sankey diagram obtained with Pavian of Kraken taxonomic assignment of contigs 
from one sample of the pure strains dataset before and after the automatic decontamination 
with the SINCERE DATA pipeline. This sample before decontamination, with trimmed reads 
only (A), was 140.4 Kbp long, with an N50 of 0.8 Kb, putative completeness, and a 
contamination rate of 1.72 % and 0 % respectively. After the automatic decontamination (B), 
the assembly length was 95.6 Kb, N50 was 1.2 Kp and putative-completeness and 
contamination were at 1.7 % and 0 %.  
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Despite the low putative contamination estimates by CheckM (Figure 3D), the visualisation of 

the sample's taxonomic taxa showed no unique affiliation of the contigs (Figure 4A). The 

assembly of this example sample from trimmed reads shows various taxonomy, half of them 

corresponding to the target DNA of Staphylococcus epidermidis (76 contigs out of 150), but 

some to the Bacillus genus (42 contigs), the Enterobacterales order (25 contigs), the Salavirus 

phi29 (2 contigs) and Actinobacteria (2 contigs). The automated decontamination allowed the 

identification of the Bacillus genus, Enterobacterales order and the Salasvirus phi29 as 

contaminants and were therefore removed from the dataset to obtain a cleaner assembly 

with a total of 82 contigs (Figure 4B).  

 

2.3.2- Application to SAGs dataset from environmental samples 

 

The decontamination pipeline was tested on a dataset from Berube et al. (2018), who 

recovered the SAGs from marine samples, with in theory more contaminants (i.e. from 

environmental DNA that could be co-isolated with the cell) than our samples from pure 

cultures. Here we evaluated the capacity of the pipeline to work on a reads dataset from 

environmental samples to improve the purity of these genomes for a more accurate 

representativity of uncultivated organisms.  
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Figure 5. Sequence statistics of the 30 selected SAGs (Berube et al., 2018) without (blue), and 
with automatic decontamination with the SINCERE DATA pipeline (red). The median values 
are indicated for each boxplot. (A) The N50 measurements in Kb correspond to the size of the 
smallest contig at 50% of the total length of the assembly. (B) The lengths of assemblies in Kb. 
(C) The putative completeness of the assembly measured by CheckM. (D) putative 
contamination estimates  determined by Check M and (E) the number of assigned contigs for 
each assembly. 

 

The 30 randomly selected SAGs from a published dataset (Berube et al., 2018) presented 

lower N50 measures after the automatic decontamination (Figure 5A). The SINCERE DATA 

decontamination leads to a decrease of the median assembly length ((Figure 5B), the number 

of assigned contigs (Figure 5E), and the estimated contamination with CheckM (Figure 5D).  
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Figure 6. Sankey diagram obtained with Pavian of Kraken taxonomic assignment of contigs 
from the sample AG-402-K10 of the published dataset (Berube et al., 2018) before and after 
the automatic decontamination with the SINCERE DATA pipeline. This sample before 
decontamination (A) was 1644.7 Kbp long, with an N50 of 36.3 Kbp, completeness and a 
contamination rate of 92.45 % and 6.93 % respectively. After the automatic decontamination 
(B), the assembly length was 1549.2 Kbp, N50 was 29.5 Kbp and completeness and 
contamination were at 94.25 % and 3.17 %.  

 

The measured completeness of this sample before the decontamination was lower than after 

the automatic decontamination: 92.45 % versus 94.25%. Despite this high completeness 

before decontamination, contaminants were detectable in the sample (Figure 6A), including 

15 contigs belonging to various Eukaryota. After the removal of these contigs, the final 

assembly was 1.55 Mb long and contained 234 contigs from which 203 contigs were identified 

as Prochlorococcus marinus (Figure 6B).  

A total of 181 potential contaminants were detected within the 30 selected SAGs (Table 1). 

After filtration, 22 taxa were considered as contaminants because they were present in more 

than 20 % of the outlier regions of all samples but their identification was identical to less 

than 20 % of the identity of the samples.  Among them, bacteria but also eukaryotes were 

found, mainly plant taxa (12 out of the 22 taxa removed). 
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Figure 7. Evaluation of the putative completeness and contamination (measured by CheckM) 
correlation with the assembly length for each SAGs randomly chosen from the published 

dataset (Berube et al., 2018). The colours correspond to the assembly quality evaluation 
based on the GSC (Bowers et al., 2017): low-quality SAGs present completeness and 
contamination below 50 % and 10 %, medium-quality SAGs a completeness between 50 and 
90% with 10% contamination maximum and high-quality SAGs have a completeness superior 
to 90% and contamination below 5%. Dash lines represent these thresholds. (A) Correlation 
between the genome completeness measured on the original assembly without 
decontamination and its length. (B) Correlation between the completeness measured after 
the automatic decontamination and the proportion of the assembly that was removed based 
on contamination identification with SINCERE DATA (Table 1). The regression line is indicated 
in black. (C) Correlation between the measured contamination (CheckM) of the original 
assembly and the proportion of the assembly that was removed based on contamination 
identification with SINCERE DATA. The one SAG in green with a completeness above 90 % in 
figure A was classified as medium quality because of its contamination rate that was higher 
than 5% (Figure C).  

 

The completeness measurements were correlated to the assembly length of the original 

assembly made from the published dataset, without decontamination (Berube et al., 2018), 

where the biggest assemblies had the highest completeness measurements (Figure 7A). The 

genome completeness after the decontamination with the SINCERE DATA pipeline was not 

correlated to the portion of the assembly that was identified as a contaminant and removed, 

but above 15% of the assembly removal, the completeness of a few samples (dashed circle, 
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Figure 7B) changed quality categories: 5 medium quality and 1 high-quality SAGs became of 

low quality. These samples were highly contaminated with Eukaryota and 

Gammaproteobacteria taxa. The proportion of the assemblies that were removed was not 

correlated to the measured contamination by CheckM of the original samples (Figure 7C). 

 

2.4- Discussion 

 
Our protocol for single-cell genomics library preparation allowed the recovery of 30 SAGs 

from pure strains and highlighted the necessity for decontamination procedures of single-cell 

datasets. The contaminants and protocol efficiency were easier to evaluate on pure strains 

with referenced genomes and demonstrated the precautions that should be taken when 

preparing single-cell libraries for sequencing. Improvements of this protocol to limit the 

sample contamination should be focused on lowering the reaction volumes (Sobol 2023) and 

improving the quality of the genome amplification step (Stepanauskas et al., 2017).  The 

detection of contamination from isolated cells questions the amount of external DNA present 

in metagenomics which are processed as targeted DNA. The use of single-cell genomics shows 

its capacity to distinguish between targeted and environmental and contaminant DNA for 

future improvements in genomic data interpretation.  

Despite the various contamination sources and profiles, the SINCERE DATA pipeline was able 

to identify and remove contaminants while preserving the integrity of the targeted assembly. 

The thresholds used for the presence of the candidate contaminant sequences in the outliers 

and in the sample are adjustable depending on the study design. Here, both datasets aimed 

at specific microbial taxa with in theory little diversity in the dataset. Therefore, the threshold 

for the presence of taxa in outlier regions was very strict (20 %) but could be raised to 60 % in 

a bigger and more diverse sample. We would also expect these potential contaminants to be 

the dominant taxa in fewer samples from bigger datasets, the threshold could therefore be 

set at 10 % instead of 20 %. 

The sequence statistics before the decontamination of both pure strains and published 

datasets (Berube et al., 2018) were very different, and qualities assessed by the GSC (Bowers 

et al., 2017) with Check M were lower for the assemblies from single cell of pure bacterial 
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cultures (Figures 3 and 5). This can be explained by multiple factors: i) The genome size of 

Procholococcus targeted by the published study is relatively small (i.e. 1.6-2.7 Mbp, Berube et 

al., 2018) compared to one of the two strains used in our study (P. fluorescens genome size is 

6.7 Mbp, (Rainey, Bailey, and Thompson 1994) and 2.5 Mb for S. epidermidis (Galac et al. 

2019)) and therefore will be measured as more complete with the same sequencing effort 

(Zheng et al 2022) and ii) The cyanobacterial SAGs were selected for sequencing based on the 

kinetic of the genome amplification (MDA or WGA-X) which was proved to be positively 

correlated with good genome recoveries (Stepanauskas et al., 2017). On the contrary, a 

random selection of MDA-amplified genomes can show very poor genome recovery rates 

even on well-referenced strains such as E.coli (Stepanauskas et al., 2017). 

We have developed an automated decontamination pipeline for single-cell genomics data to 

clean up SAGs with at least as much precision as manual decontamination. On pure strains, 

the pipeline detected the same contaminant taxa that we manually removed with similar final 

assembly quality metrics. Moreover, no sequences from the targeted strains (i.e. 

Pseudomonas fluorescens and Staphylococcus epiderminis) were automatically removed, 

showing the ability of the procedure to detect DNA of interest despite the initial 

contamination detected with Kraken (Figure 4). The pipeline warned us about important 

proportions of Enterobacteriaceae in the samples that should be deleted, this step can be 

ignored if desired depending on the experimental design.  

We then applied this approved automatic decontamination procedure to a published dataset, 

obtained from environmental samples, to validate its ubiquity. We detected potential 

contaminating sequences (Table 1) including for instance plants interpreted as free 

environmental DNA having contaminated the single cell sequence data and highlighted either 

the potential contaminants from sample manipulations or the taxonomic affiliation 

limitations of Kraken which attempts to identify sequences with the closest match, even 

distant (Wood et al., 2019). These sequences were most likely originating from free bacterial 

and eukaryotic DNA (i.e. environmental DNA) isolated together with the isolated cells. This 

environmental DNA sequenced simultaneously with the targeted cell was detectable and 

removable at both the reads level and contig level on the final assembly allowing to improve 

the SAGs purity. For some SAGs, this was beneficial regarding the estimated completeness 

and contamination measurements (Figure 6). However, the general dynamics for the 
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completeness decreased after the decontamination, putting into question the computed 

estimators of completeness and contamination by the CheckM tool for SAGs quality 

measurements (Bowers et al., 2017). CheckM detects broad sets of genes across bacterial and 

archaeal genomes and therefore is necessarily influenced by both the length of the assembly 

and the reference data content (Parks et al., 2015). We would, based on this evaluation, have 

expected to find more contaminated sequences with our pipeline in low-quality assemblies, 

which was not what we observed (Figure 7B). Instead, some samples classified as ‘high’ and 

‘medium’ quality by CheckM before the decontamination dropped into the ‘low’ quality 

category after the decontamination with a high proportion of removed sequences (Figure 7B). 

This underlines that the estimated completeness with CheckM is a good quality metric under 

the assumption that assemblies are not chimeric. The putative contamination metric 

measured by CheckM is used for chimera detection, also based on marker gene detection. 

We found no correlation of this measured contamination with the portion of sequenced 

removed with our decontamination procedure (Figure 7C). The incapacity of CheckM to 

detect eukaryotic sequences was limiting for putative contamination assessment by this tool, 

as many contaminants were eukaryotic in both datasets (Figure 4, Figure 6, Table 1). The 

“quality” of SAGs should therefore contain a length (i.e. completeness, genome coverage…) 

and purity evaluation of the assemblies based on other criteria than marker genes. Other 

tools exist for the evaluation of genome completeness and contamination (i.e. Anvi’o (Eren 

et al., 2015), ProDeGe (Tennessen et al., 2016) and acdc (Lux et al., 2016)) but CheckM 

remains the most widely used for SAGs quality evaluation (Anstett et al. 2023; Chijiiwa et al. 

2020; Nishikawa et al. 2022). 

 

2.5- Conclusion 

 
This work shows the necessity of deep decontamination prior to and after genome 

assemblies, especially on uncultivated taxa, to avoid the referencing of biased genomic 

information on which bioinformatic tools functioning are based. Various types of single-cell 

omics data are increasingly produced, with diverging strategies to handle them. Here we 

propose this pipeline as an additional attempt to unify and improve the quality and 

comparison of the single-cell datasets (Hugenholtz et al. 2021; Vollmers et al. 2022)  that will 
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allow standardised data contamination exploration and provide cleaner genomes from the 

uncultivated majority. This automated decontamination, based on taxonomy and coverage of 

genome regions, will keep evolving with the increasing number of bacterial genome 

explorations in microbiology (Jiao et al. 2021; Rinke et al. 2013; Zamkovaya et al. 2021). 

However, bioinformatic procedures such as the one developed here should be coupled with 

a general improvement of single-cell omics data production to limit contamination sources.  

Perspectives 
A benchmarking study will be done to compare the SINCERE DATA decontamination pipeline 

efficiency to other decontamination procedures in the literature which are based on the 

manual selection of the contaminants to remove. 

 

 

2.6- Supplementary 

 

Figure S1. Sequence statistics on experimental controls: empty drop, gDNA and no drop 
with QIAGEN or NEB library preparation.  
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III- Conclusion of the chapter 
 

We elaborated and optimized a protocol for single-cell genomics library preparation on 

bacteria. This development demanded many accessory controls, that themselves needed to 

be developed for proper evaluation of the molecular steps efficiencies. Preparing customised 

protocols from kits that did not provide confidential information regarding the enzyme used 

or buffer composition was also a challenge for the compatibility of each step of the workflow. 

This most likely prevents the application of single-cell genomics at reasonable prices and 

encourages the rise of homemade sample preparation, especially for the genome 

amplification step (Stepanauskas et al., 2017; Zheng et al., 2022). This step is responsible for 

most of the single-cell genomics limitations (i.e. contamination amplification and low genome 

coverage) and therefore the main focus for SAGs generation improvement (Gonzalez-Pena et 

al., 2021; Stepanauskas et al., 2017; Woyke et al., 2011). An additional way of improvement 

is the miniaturisation of the molecular reactions, for reduced cost, contaminants, and biases 

(Nishikawa et al., 2015). This has been tested, and, while being blind to the content and exact 

functioning of the molecular steps of the used kits, it was difficult and it did not simply require 

a reduction of the volumes. Indeed, at such low volumes, liquid evaporation is emphasised, 

enzymatic activities can be affected, and reaction times and temperatures must be reviewed. 

From my experience, options to optimize genome amplification remain notably library 

preparation based on the kinetic of the reaction as done in the literature (Stepanauskas et al., 

2017). Also, coupled information on the SAGs generated could be added by performing a 16s 

rRNA gene PCR on the amplified genomes, for the comparison of the taxonomic results as 

well as easier visualisation of unreferenced genome information (Nishikawa et al., 2022).  

We succeeded in generating SAGs with this protocol from referenced strains but had 

difficulties evaluating the quality of our genome assemblies compared to similar studies in 

the literature (see Chapter II notably). We have looked into the sequences datasets in depth 

but no ‘gold-standard’ strategies existed in the literature. This is how the automatic 

decontamination pipeline idea emerged, after noticing contaminations in SAGs generated 

from the sequence data of environmental samples (data presented in Chapter III, which to 

this date have not been decontaminated with the developed decontamination pipeline). This 

pipeline was validated on both referenced and environmental bacteria and fills a gap in the 



 

105  

bioinformatic treatment of such datasets. We expect this pipeline to be very useful for other 

research groups but also to evolve with SAGs library preparation, just like metagenomics data 

handling keeps evolving even after years of application in microbiology (Marotz et al., 2018; 

McArdle & Kaforou, 2020; Olson et al., 2018). Ideally, we would appreciate acknowledging 

the rise of more genomic tools adapted to single-cell data treatment for completeness and 

contamination evaluations as well as taxonomic assignation. With adapted tools, the 

decontamination pipeline functioning and output as the one developed here could only be 

improved.   
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Chapter III 

 Single-cell, meta-genomics, and mini-

metagenomics: complementarities and 

limits for soil bacteria community 

exploration 

 

The very first objective of this chapter, and of this thesis, was to explore ecological theories 

via the lens of single-cell omics. We have had hopes to explore the Black Queen Hypothesis 

at first, but finally chose a more descriptive approach to the soil bacterial communities which 

are very vast and largely unknown. The application of the developed library preparation 

protocol presented in Chapter II demonstrated the effort and time necessary to recover a few 

dozen SAGs. This questioned the feasibility of a broad-scale ecological experiment and raised 

more technical questions we hoped to address first regarding the technical padlock and 

difficulties we would encounter with environmental samples. Therefore, as a first step prior 

to ecological question testing, I explore in this chapter the suitability of SAGs recovered with 

the library preparation protocol for ecological testing and compare them to traditional 

metagenomics and newly employed mini-metagenomics. The possibilities for SAGs quality 

investigations are many, and to this date still ongoing. This chapter gathers the first results of 

this exploration and will keep evolving into an article in the near future. 
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I- Introduction 

Molecular-based studies have revolutionized the microbiology field with technologies that do 

not cease to evolve. Single-cell genomics (SCG) has been used for a few years in microbial 

ecology and has broadened our view on fine-scale cell organizations and microbial diversity 

(Engel et al., 2014; Kashtan et al., 2014; Pachiadaki et al., 2019b). The use of SCG allows the 

discovery of unreferenced genomes and highlights populational variants more efficiently than 

traditional metagenomics (Neuenschwander et al., 2017; Van Rossum et al., 2020). Beyond 

the description of microbial community diversity, the strengths of SCG have also led to major 

advances in microbial ecology dynamics understanding. Single-cell omics applied to microbes 

are providing missing pieces in microbial ecology studies such as host-symbiont evolution 

(Chijiiwa et al., 2020; Labonté et al., 2015), bacterial community evolutionary and interactions 

potential in various ecosystems (Bawn et al., 2022; Garcia et al., 2018; Roux, Hawley, Torres 

Beltran, et al., 2014). Rare or abundant cells with specific features can be equally studied once 

isolated to get rid of abundance-dependent representation of diversity. This is of great 

interest in microbiology, where the total bacterial diversity is estimated to range from eight 

hundred thousand to beyond trillions (Id et al., 2019; Locey & Lennon, 2016) but with an 

estimation of only 2% of this diversity possessing a reference in databases (Z. Zhang et al., 

2020). Mini-metagenomics has been positioned between single-cell and meta-genomics for 

fine-scale observation and consists of isolating multiple cells into the same sample to be 

processed just like single-cell samples, but with higher throughput. This approach has enabled 

the discovery of novel bacterial lineages in Yellowstone National Park hot springs (Yu et al., 

2017), but is also not commonly used and our ability to recover pure populational information 

from such datasets still needs to be verified. The current microbial investigation is not equal 

between taxa and biomes: some remain primarily understudied (e.g. free-living organisms) 

while others are routinely cultured or sequenced (e.g. endosymbionts) (Zhang et al., 2020). 

This results in biased reference databases towards specific taxa, which influence 

bioinformatic treatments that rely on these databases to decrypt the unknown. This technical 

padlock does not totally prevent discoveries of unreferenced bacterial strains. Yearly, the 

Microbial Dark Matter (MDM) is being uncovered a little bit more with - among other 

approaches - the help of single-cell omics technologies to furnish additional information on 

bacterial diversity (J. Y. Jiao et al., 2021). These undescribed organisms play a central role in 
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microbial network connections and along with their identification modify our perception of 

ecosystem functioning (Zamkovaya et al., 2021). This MDM is today mainly investigated 

through the lens of metagenomics which produces large datasets from environmental DNA 

(Wooley et al., 2010). The reconstitution of potential genomes from environmental genetic 

material has been developed into Metagenome Assembled Genomes (MAGs) (Tyson et al., 

2004) which greatly nourished the reconstitution of bacterial phylogeny (Hug et al., 2016; 

Parks et al., 2018) and the incorporation of uncultivated strain genomes in databases 

(Escudeiro et al., 2022). 

A largely studied yet still mysterious portion of the microbial biomes is the soil ecosystem. 

The abundance of bacteria is estimated to vary between millions and billions of cells per gram 

of soil (Knudsen, 2010) with as many interaction possibilities. Soil bacteria have critical roles 

in biogeochemical cycles (Rütting et al., 2021; Swan et al., 2011) and plant health (Hassani et 

al., 2018). Understanding the ecological processes in soil is complex due to the large part of 

unknown bacterial diversity and functions but also of the various biotic and abiotic 

parameters influencing bacterial communities (Isobe et al., 2020; Wilpiszeski et al., 2020). The 

soil pH has been identified as a major driver for microbial community structure and 

composition (S. Jiao & Lu, 2020; Daniel R. Lammel et al., 2018; Y. Li et al., 2018; Rousk et al., 

2010; A. Tripathi et al., 2018; Wan et al., 2020; Zhalnina et al., 2015) and indirectly influences 

microbiota by modifying bioavailability of nutrients and plants requirements, which, in return, 

modulates their interactions with their microbiota (Daniel R. Lammel et al., 2018; Wan et al., 

2020). Many biogeochemical processes are closely correlated with pH (Malik et al., 2018; 

Neina, 2019), making it difficult to find a consistent effect of pH solely on bacterial 

communities, and to identify taxa acidity preferences across locations (Daniel Renato Lammel 

et al., 2015). The majority of the studies assessing pH influence on bacterial community 

structures are based on the Operational Taxonomy Units (OTU) diversity investigation 

generated by 16rRNA gene sequencing (Barnett et al., 2020; Bartram et al., 2014; S. Jiao & Lu, 

2020; Daniel R. Lammel et al., 2018; Schlatter et al., 2020; B. M. Tripathi et al., 2018; Wan et 

al., 2020; Q. Xu et al., 2021; Yavitt et al., 2021). Different pH preference patterns have been 

identified for bacterial taxa, with variations depending on the study and its location (Daniel R. 

Lammel et al., 2018), showing that the effect of pH on bacteria might occur at more precise 

levels of organization than what can be observed from OTUs. Indeed, the pH preferences of 
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prokaryotes seem to be phylogenetically conserved (S. Jiao & Lu, 2020; Daniel R. Lammel et 

al., 2018; B. M. Tripathi et al., 2018), with specific sets of genes associated with acidity niches 

(Gubry-Rangin et al., 2015; Ramoneda et al., 2023). This highlights the necessity of whole 

genome gene sets investigation to understand bacterial preferences and future adaptation to 

environmental changes.  

Few recent studies have started to look at environmental drivers involving pH for microbial 

dynamics with MAGs (Garner et al., 2023; Lee et al., 2022; R. Xu et al., 2022), with the 

limitation that MAGs present: no access to the population levels of these communities and 

possible production of chimeric genomes. Because intra-species and intra-populations 

variations are fundamental for bacterial communities functioning, interaction and evolution 

(Davis & Isberg, 2016; García-García et al., 2019), the exploration of gene content to answer 

such ecological questions should be set at the cell level. To this date, no broad use of SAG for 

this purpose has been tested on environmental samples but shows to be encouraging 

according to tests done on a few samples (López-Escardó et al., 2017).  

Here, we aimed to recover genomes from soil bacterial communities by using single-cell, mini-

meta-genomics and meta-genomics as complementary and comparative approaches to 

evaluate their differences in genome qualities and content. We evaluated the potential of 

reconstituted and partial genomes to be used for ecological applications such as pH 

preferences among bacteria and explored if single-cell whole genome sequencing is ready for 

such broad applications. We sampled soil from three pH treatments of the Craibstone field 

experiment in Aberdeen which has been extensively studied and characterized (Aigle et al., 

2020; Bartram et al., 2014; Kemp et al., 1992), from which we recovered SAGs, mini-MAGs 

and MAGs each from aliquots of the same prepared cells. The qualities of these assemblies 

were assessed, as well as their capacity to provide input regarding bacterial community 

patterns from a diversity, phylogenetic and gene content perspective. 

II- Materials and methods 

 

2.1- Soil samples 
The soil was taken from the experimental farm of Craibstone (Aberdeen,UK), where a gradient 

of pH has been maintained for over 65 years (Bartram et al., 2014). Soil samples coming from 
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the pH 4.5; 6 and 7.5 treatments were sampled in March 2022, sieved at 2 mm and stored at 

4°C for 3 months. Seven days prior to cell extraction, 500 g of soil samples were placed in a 

1.5 L sterile closed glass jar at 25°C in the dark for reactivation. Every two days, the jar was 

shortly opened to renew the air. The soil humidity was assessed by weighing approximately 

10g of soil before and after being dried at 105°C for 48 h. The humidity of soil pH 4.5 was 21.5 

% and 25 % for soils from pH 6 and 7.5. 

Besides, the sample pH was measured after a 4-day desiccation in the oven at 38°C. To 

measure the carbon and nitrogen content of each sample, 15 g of soil was dried at 55°C for a 

week. The dry samples were then milled at maximum speed (30 Hz) for one minute in RETSCH 

Mixer Mill MM 400 with 20 mm zirconium beads. Lastly, 40 mg of milled soil was wrapped in 

tin paper for carbon and nitrogen measurements in Vario Pyrocube ELEMENTAR analyzer. 

2.2- Cell extraction  

The cell extraction procedure was largely inspired by the protocol of Ouyang et al. (2021): 40 

g of soil was added to 80 mL of 0.5 % Tween 20 (Thermo Scientific) in sterile PBS (Thermo 

Scientific) in a blender (HENDI 230718 Blender) and blended at 22,000 rpm for 3 min at 1-

minute intervals, with 1-minute incubation on ice to cool the mixture down. Between each 

soil, the blender was carefully rinsed with pure water and 70 % ethanol as previously 

described (Ouyang et al., 2021). 

A 20 mL subsample of the soil extract was used for cell extraction and divided into eight 

aliquots of 2.5 mL that were added on top of 2 mL sterile 80 % Nycodenz in sterile 5 ml tubes 

using a 2 mL pipet. The tubes were centrifuged at 4°C, 15,000 g for 40 minutes with slow 

acceleration and deceleration. The cell layers from the tubes were pooled two by two using a 

pipette and filtered through a 30 µM MACS® SmartStrainers filter (Miltenyi Biotec) before 

being centrifuged for 15 minutes with the same previous parameters. Finally, the supernatant 

from the four tubes was discarded, and the cells were resuspended in 100 µL of sterile PBS in 

two tubes for DNA extraction or in 250 µL of sterile PBS for cell sorting in the two other tubes.  

2.3- gDNA extraction for metagenomics 
The genomic DNA (gDNA) extraction protocol was adapted from Nicolaisen et al (2008). Cells 

previously resuspended in 100 µL of PBS were mixed with 250 µL of 10% CTAB - 0,7 M NaCl 

buffer, 250 µL of 240 mM K2HPO4/KH2PO4 pH 8.0 buffer, and 500 µL of phenol-chloroform-

isoamyl alcohol (25:24:1) pH 8 in 2 mL lysis matrix tubes (MP Biomedicals). The tubes were 
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then quickly vortexed and shaken during 3 minutes of fast bead beating using a TissueLyser 

(QIAGEN). After a 10-min centrifugation at 16,000 g and 4° C, the aqueous phase was 

transferred to a new 2 mL tube and completed with an equivalent volume of chloroform-

isoamyl alcohol (24:1). The centrifugation was repeated, and the aqueous phase was mixed 

with two volumes of 30% PEG 6000 - 1.6 M NaCl buffer in a new 2 mL tube. The gDNA was 

precipitated by the addition of 4 µL of glycogen (20 mg/mL). The solution was homogenized 

by inverting the tubes and placed at -20°C overnight. The next day, the samples were thawed 

and centrifuged at 18000 g, at 4°C for 30 minutes. The supernatant was discarded and 

replaced by 500 µL of ethanol 70%. A second centrifugation was performed at 18,000 g, at 

4°C for 10 minutes, the supernatant was discarded, and the tubes were left open to dry for 2 

min under a PCR flow hood. The gDNA was finally resuspended in 50 µL of nuclease-free water 

(NFW). The quality and quantity of the gDNA were assessed with a Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific), and the size of the fragments was controlled 

with a Fragment Analyzer (Agilent). 

2.4- Single-cell staining, isolation, and lysis 
The 250 µL solution containing the extracted cells was mixed with 1 µL of SYTO™ 13 Green 

Fluorescent Nucleic Acid Stain (ThermoFisher), vortexed, and kept in the dark for 30 minutes. 

The stained cells were washed three times following these steps: centrifugation (9000 g, 3 

min); removal of the supernatant, and resuspension of the cell pellet in 250 µL PBS. Prior to 

cell isolation, 1.05 µl of lysis buffer was added by hand in each well of a 384-well plate (Roche) 

under a flow hood. The stock of lysis buffer was composed of DTT 100 mM, EDTA 10 mM, and 

KOH 0.4 M with a final addition of Tris HCl 1M pH 4 (Stepanauskas et al., 2017). The lysis buffer 

was diluted prior to the distribution of 1.05 µL (0.45 µL of buffer, 0.6 µL of NFW). The 

instrument cellenONE (Cellenion) was used for cell isolation purposes. The green fluorescence 

channel was used to optically detect the Syto 13 fluorescence and automatically sort the cells 

in wells of one 384-well plate per soil, which was maintained below 5°C during cell isolation 

by the cellenONE temperature-control system. 380 wells were dedicated to receive one cell 

and 4 wells were kept empty as negative controls for the library preparation. For mini-

metagenomics, not 1 cell per well but 10 cells from the soil pH 4.5 only were isolated in 48 

wells of a 384-well plate. After cell isolation, the plates were centrifuged for 2 minutes at 2000 

g and kept at 4°C for 10 minutes. To stop the lysis, 0.5 µL of Stop solution (TrisHCl 1M pH 4) 
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was added to each well. After being centrifuged, the plates were sealed and placed at -20°C 

overnight. 

2.5- Single-cell and mini-metagenomics genome amplification 
The plates were thawed on ice and opened under a PCR flow hood. The genome amplification 

was performed using the REPLI-g Advanced DNA Single Cell Kit (QIAGEN). The volumes were 

lowered to a minimum for cost optimization and contamination limitation: 6 µL of mix 

consisting of 1.35 µL of NFW, 4.35 µL of reaction buffer and 0.3 µl of Phi29 polymerase were 

added to each well. The MDA was performed for 4 hours at 30°C, with a final step at 65°C for 

3 min in a Roche LightCycler 380. Each amplification was quantified using Picogreen 

(Invitrogen) and the green fluorescence was read using a SAFAS Xenius spectrophotometer. 

From these measured MDA product concentrations, DNA concentrations of the samples were 

normalized to 5 ng/µL in NFW for further steps using a Biomek robot (Beckman Coulter).  

2.6- Library preparation and sequencing 
For the single-cell and mini-metagenomics, the libraries were prepared using the QIAseq FX 

DNA Library Kit (QIAGEN) and the volumes were also revised. On top of 2 µL of normalized 

MDA-amplified DNA, 3 µL of fragmentation mix was added, consisting of 1.5 µL of NFW, 0.5 

µL of fragmentation buffer and 1 µL of enzyme. The total reaction, tubes, and plates were 

carefully kept cold during the manipulation. The plates were placed in a pre-cooled cycler 

(4°C) and the fragmentation was run for 12 min at 32°C, followed by 30 min inactivation at 

65°C. The ligation of primer adapters was directly done on top of the fragmentation reaction 

by adding 2 µL of ligation buffer, 1.5 µL of water and 1 µL of enzyme. Custom adapters were 

designed for maximizing sample multiplexing and used in combinatorial pairs to identify 96 

cells by crossing 20 unique barcodes. In each well, 0.5 µL of each adapter (i.e. 5’ and 3’ sides) 

at 10 µM was added. After the incubation of the plate at 20°C for 15 minutes, the samples 

were directly purified with AmPure beads (Beckman Coulter) at 0.8x and 1x with automated 

liquid handler Biomek (Beckman Coulter). Purified samples with unique identification were 

pooled per set of 96 combinatorial barcodes. The final indexing PCR was performed with the 

QIAseq FX DNA Library Kit buffers and settings but with the Nextera XT Index Kit v2 primers. 

Per group of 96 samples, a unique set of primers was used as an additional multiplexing level. 

The same protocol, i.e. library preparation kit, custom ligation adapters and final PCR primers 
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was used for the metagenomics library preparation but with the conservation of the QIAseq 

FX DNA Library Kit (QIAGEN) reaction volumes. 

Final quality controls of the amplified libraries were performed after a final purification with 

1X AmPure beads: quantification using QuBit 4 (Thermo Fisher Scientific), fragment size using 

the FragmentAnalyzer (Agilent), and library quantification using KAPA Library Quantification 

Kit (Illumina) in a ROCHE Lightcycler 480. The sequencing of libraries was done in two rounds: 

the single-cell, mini-metagenomics and metagenomic libraries of pH 4.5 were sequenced on 

a NextSeq 2000 using a P1 150 cycles flow cell. Samples from pH 6 and 7,5 were 

simultaneously sequenced on a NovaSeq 6000 with an S1 300 cycles flow cell.  

 

2.7- Data treatment and analysis  

 

2.7.1- SAGs , mini-MAGs and MAGs generation 

Reads from single-cell samples were demultiplexed based on the dual indexing with cutadapt 

(V. 4.1, Martin, 2011) with an error rate of 15%. Cutadapt was also used for the adapter and 

quality trimming with a length set to 30 bp and minimal quality set to 15. The quality of the 

trimmed reads was measured with fastqc (V 0.11.5, Andrews, 2010) and the contaminants 

detection was performed with Kraken2 (V. 2.1.2, Wood et al., 2019) via taxonomic affiliation 

of reads on the PlusPFP precompiled database (downloaded the 31/01/23). Based on Kraken 

taxonomy, the reads were manually decontaminated by removing Eukaryotes, 

Enterobacteriaceae and Salasvirus reads. The Enterobacteriaceae were largely present in the 

datasets and are suspected to be carried by the MDA reagents as well as the Salasvirus from 

which the Phi29 polymerase is extracted. Many reads remained unassigned by Kraken, but 

were kept for the genome assemblies. The assembly was performed with Spades (V. 3.15.5, 

Bankevich et al., 2012) using the careful and single-cell option (--careful –sc) and contigs 

smaller than 500 bp were removed and assemblies below 50 kbp were not studied further. 

The taxonomy of the remaining unassigned contigs was assessed with BLAST (Altschul et al., 

1997), and were either identified as eukaryotes or gave no hits, they were therefore removed. 

The quality and contamination of the SAG were evaluated with QUAST (Gurevich et al., 2013) 

and CheckM (Parks et al., 2015).  
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Metagenomic and mini-metagenomic reads data were processed with Anvi’o for 

metagenome-assembled genomes ((mini-)MAGs) generation and quality assessment 

(https://astrobiomike.github.io/metagenomics/metagen_anvio). (mini-)MAGs were 

manually refined to lower the detected contamination when possible by inspecting contigs 

with different coverage and QC content than the total MAG and verifying the Blast assignment 

and gene annotation, if available. The taxonomy of the assembled genomes was determined 

using Mash (V. 2.3, Ondov et al., 2016). The SAGs with identical identification were merged 

with Anvi’o to produce co-assembled genomes (CAGs) (Eren et al., 2015). Anvi’o was also used 

to detect the presence of ribosomal genes 5S, 16S, 18S, 23S, and 28S in each assembly. 

2.7.2- Phylogenetic tree 
Mash (V. 2.3, Ondov et al., 2016) was used to detect the closest reference for each assembly 

using mash distance against a collection of prokaryotic representative genomes from the NCBI 

refseq collection (downloaded the 11/01/23, O’Leary et al., 2016). In addition, eukaryotes 

references were added based on Hug et al. (2016), for a final collection of 17,556 reference 

genomes. This reference collection was used in mashtree (V. 1.2.0, Katz et al., 2019) to 

position our SAGs and MAGs into the Tree of Life. To construct the distance matrix, 21 bp-

sized kmer and a sketch size of 100,000 were used. The minimum depth was fixed to one 

given the low coverage (<2x) in some contigs. The phylogenetic prediction was performed 

using the Neighbor-Joining (NJ) algorithm. From the closest reference information for each 

strain, a metadata table was created including taxonomic identifiers (taxids)  of the reference 

strain extracted from NCBI using entrez-direct (v.16.2, Kans, 2023). Those taxids were used to 

extract detailed taxonomy using taxonkit (V. 0.15.0, Shen & Ren, 2021) based on NCBI 

taxonomic data (downloaded the 07/09/2023). The tree data were visualized and annotated 

using Itol (https://itol.embl.de/, Letunic & Bork 2021). 

https://itol.embl.de/
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III- Results  

 

3.1-  Sequencing reads taxonomy 

Figure 1. Relative abundance of reads per sample in single-cell, mini-metagenomics and 
metagenomics samples at the phylum level without or with unassigned reads. The taxonomy 
was determined by Kraken2. Phylum represented by less than 10,000 reads per sample were 
gathered in the “Other” group and contained 48 phylum in the metagenomic samples and 58 

in the single-cell samples. The number of represented reads for each metagenomic sample 
were: 0.8 M (pH 4.5), 16.6 M (pH 6), and 14.9 M (pH7.5) whereas the single-cell samples had 
40.3 M (pH 4.5), 327 M (pH 6) and 465 M (pH 7.5) and 395 M for the mini-metagenomics. 

The exploration of the taxonomy assigned to the sequencing reads by Kraken2 showed a large 

proportion of unassigned reads for metagenomic (between 53 and 73%), mini-metagenomic 

(89%) and single-cell samples (between 78 and 90%), (Figure 1). The majority of assigned 

metagenomic reads were grouped in the “Other” phylum category, containing the phylum 

represented by less than 10,000 reads, but these phyla represented less than 25 % of the 

reads for the single-cell and mini-metagenomic samples. The second most represented phyla 

for the metagenomic samples were the Actinomycetota, Pseudomonadota and 

Acidobacteriota. These phyla were also present in the mini-metagenomic and single-cell 

samples but in different proportions. The mini-metagenomic and single-cell samples 
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presented phyla not represented in high proportions in the metagenomic samples: the 

Bacillota, Bacteroidota, Cyanobacteriota and some Archaea (i.e. Euryarchaeota). These 

proportions have however to be considered in the light of the disparities in sequencing depths 

(Figure 1), as well as the following results of this section. 

3.2- Assembled genome qualities 
After the assembly, manual reads decontamination and quality filtering, a total of 210 SAGs, 

42 MAGs and 7 Mini-MAGs were recovered from the sequencing data (Table 1, 

Supplementary Table S1). Within MAGs, 24 presented similar contigs binning profiles and 

were considered common to the soil pH 6 and pH 7.5. 

 Table 1. Number of assembled genomes from single-cell (SAGs), metagenomic (MAGs) and 
mini-metagenomic (Mini_MAGs) samples. The SAGs were assembled with Spades (V. 3.15.5, 
Bankevich et al., 2012) and the mini(MAGs) with Anvi’o (Eren et al., 2015). The common MAGs 
count of MAGs between pH 6 and pH 7.5 (n=24) represents the number of MAGs presented 
very similar contigs profile based on Anvi’o clustering (i.e. similar coverage and GC content). 

 

 

 

The measured qualities of SAGs, Mini-MAGs and MAGs are presented in Figure 2. Disparities 

between the approaches were observed for all quality measurements: the SAGs had highly 

divergent values of N50 (from 2 to 95.3 Kb) with a median of 7.7 Kb (Figure 2A). The MAGs 

had a median N50 value of 1.76 Kb which was lower than the Mini-MAGs with a median of 19 

Kb. The median length of SAGs (100 Kb) was 30 times lower than for the Mini-MAGs (3,298 

Kb) and MAGs (2,577 Kb) (Figure 2B). The putative completeness of the assemblies measured 

by CheckM was ~ 50% for both MAGs and Mini-MAGs but close to 0 for the SAGs (Figure 2C), 

estimates to take into account with caution (See Chapter II). The estimated putative 

contamination was close to 0 % for SAGs, 1.4 % for mini-MAGs and 2.8 % for MAGs (Figure 

2D). The number of contigs per assembly was largely superior in MAGs (1,305) compared to 

Mini-MAGs (440) and SAGs (33) (Figure 2E). It can be emphasized (Table 2) that the number 

of bacterial ribosomal gene (16S and 23S) hits found in the assemblies of SAGs is higher than 

in Mini-MAGs and MAGs. 
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Figure 2. Sequence statistics of the recovered SAGs (blue), Mini-MAGs (green), and MAGs 
(red). The median is indicated for each boxplot (A) N50 measurements in Kb correspond to 

the size of the smallest contig needed to cover 50% of the total length of the assembly (B) 
sizes of assemblies in Kb (C) putative completeness estimates of the assembly by CheckM (D) 
putative contamination estimates by CheckM and (E) number of contigs for each assembly.  

Data corresponding to all samples are represented: 210 SAGs, 7 Mini_MAGs and 42 MAGs. 

Table 2. Hits for bacterial (5S, 16S, 23S) and eukaryotic (18S, 28s) ribosomal gene in SAGs, 
Mini-MAGs, MAGs and Co-assembled Genomes from SAGs (CAGs) estimated with Anvi’o. 
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Figure 3. Co-assembly of 18 SAGs identified as Mycobacterium genus merged with Anvi’o. The 
four external layers represent hits for 16s, 18s, 23s and 28s ribosomal RNAs. The bins contain 

groups of contigs automatically gathered based on similar estimated QC content presented 
in the internal green layer and coverage shown by black signals in each sample layer. The total 
reads conserved, the total reads mapped, and the number of indels (i.e. insertion-deletion 
mutations) and SNV (Single Nucleotide Variants) for each SAGs are shown in the four 
histograms.  

The co-assembly of 18 SAGs identified as Mycobacterium genus was done with Anvi’o and 

resulted in a 5.7 Mb assembly, containing 6958 contigs with an N50 of 2,714 b (Figure 3). The 

estimated putative completeness and contamination of this assembly were 56 % and 11.3 %. 

The bins contained collections of contigs with similar QC content and coverage, mainly from 
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single SAGs. Two hits were identified for 16S rRNA, 1 for 18s rRNA, 5 for 23S rRNA and 2 for 

28S rRNA genes (Table 2). Another co-assembly was done on 17 Methylobacterium SAGs (data 

not shown) and resulted in a 5.2 Mb assembly with an estimated putative completeness of 45 

% and 10.6 % of contamination. The assembly contained 6,471 contigs, an N50 of 2259 b, 2 

hits for 16s rRNA and 2 for 23s rRNA genes. As a comparison, the SAGs with the highest 

completeness used for these co-assemblies were at 12.1 % for Methylobactrium and 13.8 % 

for Mycobacterium. 

 

3.3- Representation of bacterial taxonomy through assembled genomes 

 

Figure 4.  MAGs, SAGs and Mini_MAGs taxonomy at the phylum level, assigned with Mash. 

All soil samples confounded, the community compositions represented by the three 

approaches were different at the phylum level (Figure 4). Only the Pseudomonadota phylum 

was common to all approaches, but present in different proportions, being the only phylum 

detected in the mini-MAGs (n=7)  and representing, 71 % of the MAGS (n=47) and only 38 % 

of the SAGs (n=79). Actinomycetota were represented by 64 SAGs and 12 MAGs. Only a few 

Acidobacteriota assembled genomes were recovered, 2 SAGs and 4 MAGs. Two phyla were 

present only in MAGs with one representative each; the Nitrosphaerota and the 

Myxococcota. The phyla represented exclusively in SAGs were, by decreasing order: 

Bacteroidota, Bacillota, Planctomycetota, Cyanobacteria, and Mycoplasmatota. 
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Figure 5. Taxonomic distribution of the 
assembled genomes (MAGs, mini-MAGs and 
SAGs) in the three soil samples (pH 4.5, 6 and 
7.5) at (A) the phylum level and the order 
levels of (B) Pseudomonadota and (C) 

Actinomycetota. The taxonomy was 
determined using Mash. The number of 
assembled genomes is indicated for each 

taxon. 

 

 

 

Table 3. Taxonomic richness measured per assembly method (SAGs, MAGs, and Mini-MAGs) 
and per soil sample at the phylum, class and order levels. 
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For all soil samples, the taxonomic richness represented by the SAGs was higher than the one 

from the MAGS at the phylum, class and order levels (Table 3). The Pseudomonadota was the 

main common phylum between SAGs, MAGs, and Mini-MAGs but presented different 

taxonomic compositions and proportions at the order level (Figure 5B). These differences 

were observable for each soil sample: all samples in SAGs presented higher or equal richness 

than those in MAGs or Mini-MAGs (Table 3) and the taxonomic composition of each sample 

differed depending on the assembly method (Figure 5). The same observations were made 

for the Actinomycetota orders between SAGs and MAGs (Figure 5C).  

3.4- Phylogeny 

A first version of the phylogenetic tree positioning the SAGs and MAGs into the Tree of Life is 

proposed in Figure 6. The major outcome of this phylogenetic tree was the clustering of many 

SAGs and MAGs, not systematically affiliated to identical referenced families (clades in grey, 

Figure 6). Additionally, the SAGs and MAGs from these clades were segregated: most of the 

SAGs were apart from the MAGs and SAGs from pH 4.5 samples were grouped away from 

SAGs from pH 6 and 7.5 samples (Figure 7). Surprisingly, 3 SAGs from soil pH 4.5 were grouped 

within fungi taxa. This area of the Tree contained Fungi, Archaea, some bacteria, and many 

unclassified samples. A few samples (7 SAGs and 1 MAG) were however individually 

positioned next to bacterial and archaeal families, known or under-described (i.e. named 

“Unclassified family”), in the Bacillota, Nitrososphaerota, Acidobacteriota, Planctomycetota, 

and Pseudomonadoa phylum.  

 

Figure 6. Phylogenetic tree with position of SAGs and MAGs assemblies. The positioning of 
the samples was made by calculating their mash distances with 17,556 reference genomes. 
The collection of reference genomes and samples was positioned into the Tree using 
Mashtree and Mash distances (i.e. estimates of mutation rate from k-mer count and Poisson 
model of mutation) (V. 1.2.0,  Katz et al., 2019). The phylogenetic clustering was performed 
by the Neighbor-Joining (NJ) algorithm. The colours on the nodes represent the Phylum. The 
abundance of SAGs and MAGs is indicated at the tips of the clades. To root the tree, the 
Bacillota phylum was used.  
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Figure 7. Branches extracted from the phylogenetic tree (Figure 6) from the three main grey 

clades containing most of the SAGs and MAGs assemblies recovered from soil samples pH 4.5 

(yellow), pH 6 (green) and pH 7.5 (blue). The purple nodes represent the MAGs, and the black 

ones represent the SAGs.  

IV- Discussion 

We have evaluated the potential of single-cell, mini-metagenomics and metagenomics-

assembled genomes to provide clean and complete genomes from soil samples and discuss 

their relevance in ecological applications involving microbes. We chose soil samples from a 

well-studied experimental field with different pH treatments, not aiming for an ecological 

conclusion, but to evaluate the potential of these approaches to specifically process such 

samples and to imagine potential further applications. 

Metagenomics is traditionally used to study environmental microbes from DNA extracted 

from the matrix. Here, we first extracted the cells from the soil samples before DNA extraction 

to limit the presence of external DNA and start the sample preparation from the same 

material as used for single-cell and mini-metagenomics. Therefore, except for the cell 

isolation, genome amplification and lower reaction volumes, single-cell and mini-

metagenomic samples received the same library preparation as metagenomic samples. Prior 

to the putative genome assemblies, the taxonomy of the sequencing reads was examined to 

observe from which material the genomes would be recovered. We have detected with the 

Kraken2 tool a vast majority of unassigned reads (Figure 1), up to 75 % in metagenomic and 

up to 90% in single-cell and mini-metagenomic samples. This can be explained by i) the lack 

of referenced sequences in the databases (Z. Zhang et al., 2020), ii) the incorporation of 

residual reads during sample preparation with molecular reactions and iii) the remaining 

environmental DNA in the samples (López-Escardó et al., 2017). To avoid deleting relevant 

prokaryote information if not conserved, these reads were kept for putative genome 

assemblies. The following results have to be considered carefully, as the total sequencing 

reads for single-cell and mini-metagenomics samples were higher than metagenomics 

samples (i.e. 832 M and 395 M total reads for single-cell and mini-metagenomic samples 

versus 32 M for metagenomics). Therefore, we cannot totally exclude that the differences 

observed are not coming from this difference in sequencing depth. The majority (up to 80%) 
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of assigned metagenomic reads were grouped in the “Other” phylum category, containing the 

phylum represented by less than 10,000 total reads per sample (Figure 1). This category 

represented a maximum of 25% of the assigned reads in the single-cell and mini-metagenome 

samples. This shows that metagenomics might capture information about many taxa but in 

smaller quantities than cell-centred approaches. In these latter, the reads were distributed in 

more major phyla, with therefore more probability to see their genome reconstituted. This 

assumption was verified with the taxonomy assignation of assembled genomes for each 

approach, as we recovered 42 MAGs from millions of cells as a starting material, 210 SAGs 

from 1140 cells and 7 mini-MAGs from 48 times 10 cells with similar taxonomy proportions 

than the assigned reads taxonomy (Figure 4, Figure 1). Like the sequence reads taxonomy, the 

assembled genome taxonomy presented more richness in SAGs compared to MAGs at 

different taxonomic levels (Table 3). This higher richness in SAGs was true for all the samples 

(Figure 5). The soil sample taxonomy composition was different from one approach to 

another, showing that the microbial community composition interpretation might vary with 

our technical approaches.  

The information recovered from these assemblies have to be put into the perspective of their 

quality estimations. We obtained more SAGs than MAGs and mini-MAGs, but are their 

exploitability equivalent? The assemblies from single-cell samples were smaller than mini-

MAGs and MAGs (Figure 2B), as it is common (Alneberg et al., 2018). However, the bigger size 

of MAGs is not a guarantee of quality and purity and is likely chimeric (Alneberg et al., 2018, 

see Chapter II). The size of Mini-MAGs and MAGs were equivalent, but not the other 

measurements: the N50 value was superior for Mini-MAGs testifying of their longer contigs 

which were fewer in Mini-MAGs than MAGs (Figure 5). This suggests that MAGs are largely 

fragmented with small contigs compared to a cell-centered approach. Regarding the SAGs, 

the number of contigs was lower than those obtained with the two other approaches, which 

is coherent with their smaller size, but the N50 value was higher than MAGs as well. We put 

into question the legitimacy of CheckM in Chapter II to assess assembly qualities and expose 

its positive correlation with assembly size. Here, the patterns between assembly size and 

measured completeness were identical: high values for MAGs and mini-MAGs and low values 

for SAGs for both metrics (Figure 5), despite the a priori more fragmented composition of 

MAGs with very few ribosomal genes detected (Table 2). The mini-metagenomic approach 
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seems to allow a better assembly quality than MAGs and SAGs while processing very few cells. 

However, just like metagenomics, multiple cells are analysed per sample and there is no 

certainty that the recovered assemblies are non-chimeric. These SAGs, MAGs and Mini-MAGs 

were manually decontaminated only. We aim to compare these results with the automatic 

decontamination pipeline developed in Chapter II in order to identify contaminant taxa 

possibly not removed here for an improvement of the measured quality metrics. To improve 

the evaluation of the exploitability of the assemblies and for metabolic pathways visualisation 

we also plan to examine annotated genomes.    

We have tested the co-assembly (CAGs) of single-cell samples with identical genus assignment 

(i.e. Mycobacterium or Methylobacterium) to construct larger putative genomes from purer 

assemblies than mini-MAGs. The CAGs lengths were of 5.6 Mb and 5.2 Mb, which are in the 

range of these genus genome sizes (Leducq et al., 2022; Wee et al., 2017). The completeness 

of the CAGs was similar to the (Mini-)MAGs, but with higher measured contamination and 2 

hits for the 16S rRNA gene. This suggests a potential redundancy in the sequences used for 

the CAGs and would explain that the measured completeness does not reach 100 % despite 

the long length of the assemblies. Moreover, the presence of 18S and 28S rRNA genes 

suggested a potential eukaryote contamination (Table 2). The content in bacteria ribosomal 

genes in Mini-MAGs was inferior to the CAGs and SAGs (Table 2), suggesting that CAGs allow 

the regrouping of the SAGs information. They indeed have been shown to improve the protein 

recovery of SAGs (Mangot et al., 2017). These co-assembly results are very promising for 

improving assemblies of low-quality single-amplified genomes which are known to be partial 

and require multiple SAGs from the identical strain to reach higher genome coverage (Zheng 

et al., 2022). Higher quality SAGs or co-assembled genomes can be of use to evaluate the 

purity of MAGs and improve the contigs binning (Arikawa et al., 2021). However, these CAGs 

do not allow us to draw ecological conclusions on individual bacterial entities like SAGs, as 

they were constructed from different species, and might not be as straightforward as we 

expected.  

The phylogenetic tree construction (Figure 6) purposes were to (i) position the SAGs and 

MAGs in the tree of life, (ii) detect the potential of these approaches to point out under-

described bacteria and (iii) evaluate if the MAGs and SAGs quality was sufficient to be 
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exploited in phylogeny. The tree reconstituted with the incorporation of our samples 

presented part of the SAGs and MAGs with no logical taxonomic clustering measured by 

Mash. The phylogenetic clustering was made with mash distance calculations on marker 

genes, therefore the taxonomy measured and the phylogenetic results should correspond. 

This likely reflects the unreferenced content of our assembled genomes as previously 

highlighted (Nishikawa et al., 2022) and/or the low quality of the assemblages. The SAGs and 

MAGs were not phylogenetically mixed and were rather organized in groups (Figure 7) which 

supports previous findings showing that the representation of taxa is preferably done by SAGs 

or MAGs (Woyke et al., 2017). Despite some samples being positioned in under-described 

bacterial families, some were placed within fungi (Figure 6). These results potentially highlight 

the remaining contamination present in our samples, which would require to be automatically 

decontaminated with the SINCERE data protocol explained in Chapter II. The fungi clade 

reference genomes might have been problematic for the tree reconstruction, and will be re-

calculated without any eukaryote reference to observe whether the sample's clustering was 

due to their unknown sequence compositions or to calculation issues of the Mash distances. 

Overall, cell-centred approaches seem to present purer assemblies than MAGs. In this study, 

it can however be emphasized that the sizes of the SAGs were not as high as expected. 

Similarly, as in Chapter 2, the single-cell reads contained a diversity of sequenced DNA within 

each sample. This was interpreted as free environmental DNA present within the cell 

suspension as well as incorporated contamination during our manipulations, which 

necessarily limited the number of sequences allocated to the targeted DNA and reduced the 

assembly lengths. This environmental DNA detected in SAGs is delicate to measure and 

remove from metagenomic data which by definition re-create putative genomes from various 

sequence origins, including external cellular DNA. Therefore, this might lead to 

misinterpretations of diversity and functions. The fact that the metagenomic assemblies were 

very fragmented in this study could also be explained by the presence of this environmental 

DNA.  
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V- Conclusion 

The bacterial community was taxonomically richer in the lens of SAGs. With technical 

improvements, single-cell genomics is suited for assessing ecological questions under some 

conditions: i) improve the recovered genome length by optimising the genome amplification 

strategy (Stepanauskas et al., 2017), ii) enhance gene databases and genome completeness 

for easier annotation to evolve from a descriptive to a deductive demarch iii) combine 

genomic with transcriptomic data to extract the expressed functions of each cell and iv) use 

metabolic modelling to comprehend potential interaction, niches, and dependencies within 

bacteria populations and communities. This, in the near future, will be accessible with more 

standardised and universal single-cell omics approaches and might become the preferred 

genomic approach of microbiologists.  
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VI- Supplementary  
Table S1.  List of all SAGs, MAGs and Mini-MAGs recovered from the soil samples with 
corresponding measured quality metrics and taxonomic identification. 
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General discussion and perspectives 

 

The interest in single-cell omics application in microbial ecology has grown in the last few years 

and since 2010 has slowly developed to decipher ecological processes (Bowers, Kyrpides, et 

al., 2017). In the last decade, different methodologies emerged for sample preparation and 

data handling, mostly customized to suit the sample requirements (e.g. soil samples will not 

present the same extraction procedure that human intestinal microbiota and both datasets 

will contain different kinds of contamination sources). The use of single-cell genomics 

procedures applied to prokaryotes has however highlighted some similarities between the 

studies often cited as limitations of this approach: the required equipment can be very costly 

(Woyke et al., 2017), the cost for whole genome sequencing of a consequent number of cells 

- while still not being close to the amount of information processed by metagenomics - is still 

very high (Blainey, 2013; Kashima et al., 2020; Kaster & Sobol, 2020), the genomes recovered 

are partial (Alneberg et al., 2018; Bowers, Doud, et al., 2017; Landry et al., 2017; Zheng et al., 

2022), the risk of contamination is high (López-Escardó et al., 2017), and the molecular 

reactions used for genome amplification such as MDA have biases and could introduce errors 

(Kaster & Sobol, 2020; Raghunathan et al., 2005; Sobol, 2023; Woyke et al., 2017). Are these 

limitations all responsible for the scarce use of single-cell omics in microbial ecology? 

Interestingly, metagenomics presents some of these limitations as well (i.e. amplification bias 

for amplicons approaches, contamination, partial genomes), and others not shared with 

single-cell omics (i.e. chimera genomes generation, no access to within-species diversity, 

systematic consideration of free environmental DNA). This does not prevent this method from 

being the current norm for studying uncultivated microorganisms. It is thus most likely that 

induced costs are the reason for low single-cell omics usage as well as handling time. In 

practice, library preparation of single cells demands a longer preparation time than 

metagenomics. With the developed protocol, starting with the Nycodenz cell extractions, the 

metagenomic procedure per sample was done in 3.5 days counting the quality controls while 

it required a minimum of 7.5 days for the single-cell protocol for 380 cells. The equipment for 

cell isolation is also not commonly adapted for other usage, while metagenomics only requires 

a thermal cycler.  
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In this last section, I will first discuss the main outcomes of this work, followed by its technical 

and biological limitations. In the third paragraph, I will propose improvement possibilities for 

single-cell omics in laboratory equipment, reaction volumes and database handling. The 

future single-cell genomics applications with recent studies as examples will then be discussed 

as well as the technical future of single-cell omics. 

I- Main outcomes of the developed strategies 

 
During my thesis, I aimed to improve the robustness of single-cell whole sequencing (scWGS) 

at the library preparation, and data handling steps to lower the cost to a minimum and 

broaden its possible applications. To test and choose each step of the protocol, multiple 

quality controls had first to be developed and will be used for future improvements of the 

workflow.  

The application of the library preparation protocol for scWGS on environmental samples 

showed the efficiency of the protocol in recovering SAGs from unknown or under-described 

bacterial groups. The comparison with MAGs showed that SAGs were fit to be used for 

community composition description and were less prone to contain external gDNA from the 

soil sample. The two approaches seem to provide different information reflecting their 

genomic strategies: MAGs are the mirror of core genomes from a global sequence dataset 

whereas SAGs have a narrower but more direct approach since it is cell-centred. The utilization 

of metagenomics can lead to assemblies with better completeness than SAGs (within my 

work) but also to genomes that can be chimeric, with only a few marker genes and contain 

external DNA despite improvements in cleanup procedures (Lou et al., 2023; McArdle & 

Kaforou, 2020; Vollmers et al., 2022). Furthermore, there is no possible information provided 

from a population perspective with MAGs despite that many ecological processes occur within 

species or require the consideration of populational variants (Van Rossum et al., 2020).  

We faced the lack of a universal strategy for single-cell data cleanup in the literature: data 

treatments are often customized resulting in difficulties in comparing the quality of the results 

between similar studies. The development of the automated decontamination pipeline 

SINCERE DATA, was shown to be more efficient than manual decontamination of the reads 

and to handle datasets with various contaminant types and origins. We have tested this 
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pipeline on two different single-cell genomics datasets with success and have demonstrated 

that it will greatly simplify and unify the procedure for future research on microbial single-cell 

data analyses.  

II- Encountered limitations of the library preparation protocol 

 
During the protocol execution and the data treatment, I encountered some limitations of the 

procedures that should be assessed for further improvements. The contamination estimated 

based on the diversity of sequences identified per sample was varying between the 

experiments. On pure strains (Chapter II), the Enterobacteriaceae and Bacillaceae families 

were dominant in the sequences. The Enterobacteriaceae were also present in sequences 

recovered from environmental samples. This family is suspected to originate from the MDA 

kit reagents and Bacillaceae from cross-contamination between wells containing gDNA and 

the wells containing single cells. The contamination induced by commercialized MDA kits has 

been identified and discussed in a few studies (Blainey & Quake, 2011; Woyke et al., 2010). If 

not deleted, the remaining contaminant sequences might alter the recovery and 

interpretation of unknown genomes. The elaboration of negative controls to subtract 

background noise with such an experiment is also very limited, as any trace of DNA will be 

amplified with the high-fidelity polymerase used for the MDA, be it from the kit, from the air, 

from the manipulator or from cross-contamination of the wells and therefore the negative 

replicates could present different taxonomic profiles.  

I initially aimed at preparing one 380-well plate with single cells per soil sample (Chapter III), 

hoping we would recover at least 300 SAGs for each sample. In reality, few SAGs passed the 

quality filters (i.e. length of the assembly and identification of dominant taxa) as we obtained 

210 SAGs out of the 1140 isolated cells. These numbers are however coherent with studies 

with similar sample preparation on single prokaryotic cell genomes (López-Escardó et al., 

2017; Roux, Hawley, Beltran, et al., 2014), and the number of isolated cells is not 

systematically compared to the number of SAGs recovered (Martinez-Garcia et al., 2012; Swan 

et al., 2013), especially with recently developed microfluidics which presents many recovered 

SAGs out on an unknown high number of generated droplets (Kogawa et al., 2018; Nishikawa 

et al., 2022; Zheng et al., 2022). 
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The application of the developed protocol confirmed the difficulty of recovering single 

amplified genomes (SAGs) with high completeness, even from known and referenced bacterial 

strains (Zheng et al., 2022). The SAGs we recovered from pure cultures (Chapter II) and soil 

samples (Chapter III), all had a measured completeness that averaged at 2.6 % and did not 

exceed 37 %. Even though we argued in Chapter II that completeness alone is not a guarantee 

of assembly quality, some studies succeeded at improving the completeness rate (Berube et 

al., 2018b; Nishikawa et al., 2022). The major purpose of the single-cell approach is to decipher 

the populational scale of microbes; however, with only genome fragments, it is still early for 

proper exploitation of this potential. Therefore, there is room for improvements regarding the 

DNA preparation to increase genome recovery, but also to limit the contamination we 

identified as induced by our manipulations.  

III- Improvement strategies 

 

3.1- Laboratory equipment 

The deep search for contamination in our samples was very complex and highlighted the 

extent to which single-cell library preparation was sensitive to either manipulation steps or 

free eDNA contained in the samples. Single-cell omics are exposed to many sources of 

contamination: external cellular liquid (Blainey, 2013), room air flows, or bacterial origin of 

some kit compounds (Woyke et al., 2011). To limit the risks of contamination by manipulation, 

single-cell library preparation should be executed in a dedicated laboratory space with air 

filtration (cleanroom), with dedicated tools and instruments in cleanrooms. From our 

experience with gDNA contamination origin, I highly recommend avoiding manipulating gDNA 

at the same time as single-cell samples which present low genetic material concentrations and 

will be underrepresented in the contaminated sample. The room dedicated to single-bacteria 

isolation and library preparation should not be used for other amplification procedures such 

as PCRs nor for applications to other samples than bacteria. The pipettes, and isolation device 

(for us, the celleONE interior) can also be systematically UV-treated. Just like any sensitive 

DNA or RNA sample preparation, the water, tubes, and plates must be highly clean and again 

dedicated to the single-cell sample preparation clean room.  
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3.2- Miniaturization 
Improvements could be implemented in our protocol, which also started to be tested in the 

literature, and involved miniaturisation of DNA preparation. The lack of MDA coverage 

uniformity has been theorized as responsible for the low genome coverage of SAGs (Kaster & 

Sobol, 2020), as well as biased GC or chimera productions during the genome amplification 

(Lasken, 2007). Therefore, it seems that this step modification can engender significant 

improvements in scWGS. The replacement or modifications of the enzyme and amplification 

strategy (Berube et al., 2018b; Gonzalez-Pena et al., 2021; Stepanauskas et al., 2017) have 

been tested as well as lowering the reaction volumes with encouraging results (Hosokawa et 

al., 2017; Sobol, 2023). The work of Sobol (Sobol, 2023) shows the improvements in genome 

coverage and uniformity of amplified genomes in 1.25 µL reaction volume while still working 

in 384 well plates, and questions the efficiency of further miniaturization such as what is done 

in microfluidics (Nishikawa et al., 2022). This is consistent with other experiments run at 

Cellenion (data not shown) which showed an improvement of the MDA in 1uL reaction 

volume, but not below. This can explain the issues we observed in the MDA efficiency 

variability in the cellenCHIP, with a reaction volume of 150 nL. The miniaturisation would also 

decrease the amount of contaminant sequences in the samples, as well as costs which would 

enable more sample processing.  

3.3- Quality control and databases 
The amount of unreferenced data we obtained in our dataset testified to the limited 

annotated references in the databases (Z. Zhang et al., 2020). Completing these databases will 

decrease the biases they contain towards cultivated strains and possible misidentification of 

closely related uncultured bacteria to improve genomic data interpretation. Complete 

genome referencing is necessary for the quality assessment of recovered SAGs and MAGs, as 

the bioinformatic tools rely on either the percentage of genome coverage by the assembly 

(QUAST) or the detection of marker genes (CheckM). The outcome of these metrics is 

therefore highly dependent on the information stored on the found taxa. Today, only 105,953 

genomes are referred to as complete on NCBI (Federhen, 2012), which represents at best 0.13 

% of the total bacterial diversity, and 0.0001% at worst (Id et al., 2019; Locey & Lennon, 2016). 

To improve these numbers, the massive sequencing of single environmental bacterial cells is 

necessary to combine the similarities of populations but also their variabilities in gene content. 

The task can be eased by targeting specific taxa with 16srRNA gene (i.e. if we suppose an a 
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priori knowledge of the target in databses) PCRs following the genome amplification step on 

individual cells (Berube et al., 2018),  or by selective isolation with fluorescent probes (Dam et 

al., 2020). This greatly helps the study of rare and underrepresented taxa that would 

otherwise be difficult to spot (Dam et al., 2020). With growing bacterial strain discoveries, the 

question of consistent nomenclature and data storage has been raised and some proposed a 

consortium to solve these growing issues (Bowers, Kyrpides, et al., 2017; Konstantinidis et al., 

2017; Murray et al., 2020). The consistency in single-cell data generation (i.e. sampling, cell 

isolation, library preparation, SAG quality filtering) is essential for the efficient validation of 

newly discovered genomes with the least contamination and biases possible across different 

studies. 

IV- The future of microbial ecology through the lens of single-

cell genomics 

 
An optimized single-cell sample preparation procedure as proposed above could generate 

many major advances in microbial ecology research. Theoretically, scWGS is a proxy for the 

evaluation of environmental DNA present in metagenomics data. Used at high scales and 

throughput, scWGS can become the alternative to metagenomics for a finer-scale evaluation 

of genome content and unbiased community composition and population structure. The more 

complete and purer the assembled genomes become, the more we will be able to identify and 

measure the diversity of unknown microbes and correct the genetic content of referenced 

genomes based on metagenomics only. The possibility to isolate cells based on cell features 

(i.e. live, dead/ in dormancy, respiratory activity, protein content…) offers infinite possibilities 

for fine-scale ecological hypothesis testing with access to the population scale of bacteria. 

Annotated genomes could be used for the evaluation of community structure and interactions 

and their evolutionary capacities with the modelling of metabolism networks to make a 

putative link between microbial diversity and richness and functions. This (r-)evolution in 

microbial ecology can be measured every year. Since the beginning of my thesis, I have noticed 

and read multiple single-cell-based studies participating in bacterial communities 

understanding improvement. Following is a short and non-exhaustive list of recent research 

on the topic. 
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The usage of single-cell omics has been done for diverse ecological purposes, with a focus on 

unveiling the unknown portion of bacteria, from genetic and functional standpoints. The 

exploration of bacterial populations has provided insights into preferable symbiont 

associations (Boscaro et al., 2022) or evolutionary gene polymorphisms in sub-populations of 

well-studied strains of Salmonella (Bawn et al., 2022). Large scale inventory of bacterial 

genomes in multiple ecosystems has been described, from the human body (Zheng et al., 

2022), soil (Aoki et al., 2022; Nishikawa et al., 2022), and ocean (Anstett et al., 2023). These 

inventories will participate in the expansion of the microbial tree of life (Ahrendt et al., 2018). 

Among these studies, the majority used microfluidics for sample preparation with gel-based 

bacterial cell encapsulation (Aoki et al., 2022; Nishikawa et al., 2022; Zheng et al., 2022). Some 

still use the FACS technology for cell isolation (Anstett et al., 2023), and just like gel-based 

approaches are able to recover hundreds to thousands of SAGs. Most of these applications 

are still mainly descriptive of the bacterial diversity, but may help in the elaboration of testable 

ecological hypotheses (Prosser & Martiny, 2020; A. Tripathi et al., 2018).  

V- The future of single-cell omics 

 
Beyond genomic information of bacteria cells that provide a metabolic potential, single-cell 

RNA sequencing (scRNA seq) is necessary to evaluate the expressed functions of an individual 

in different environmental conditions. The phenotype of bacteria can vary very quickly 

depending on its direct neighbours (Scanlan & Buckling, 2012), environmental parameters 

(Beaumont et al., 2009), and host condition (Reese & Kearney, 2019) and therefore would be 

necessary to implement to understand the bacteria population and community functioning. 

This would allow us to answer the key question “Who does what, and how do they do it?” in 

a changing environment to understand the evolutionary dynamics of bacteria communities.  

To magnify the extent of single-cell data interpretation, the combination of genomic, 

transcriptomics, proteomic, and epigenomic information from the same cell is an emerging 

topic but has never been applied to prokaryotes and has only been theorized for eukaryotic 

cell (Bock et al., 2016; Chappell et al., 2018; Kashima et al., 2020; Song et al., 2019). The 

possibility of linking each genome to its expressed genes and proteins would allow us to 
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answer many additional questions in ecology and health research, but we do not expect this 

application to be executed in the near future. 

This work raised many questions, still unresolved, and are listed below. 

 

VI- Outstanding questions 

 
- How to deal with clustered microorganisms, treated as one object by the single-cell 

isolation instruments?  

- How can we be certain that a lysis buffer will equally break the cell walls of all bacterial 

taxa?  

- How can we be certain that the sequences in our samples are not contaminated?  

- How to make the distinction within unassigned reads between what is unreferenced 

target DNA and artefactual reads?  
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Final thoughts 

New technologies are emerging each year for single-cell omics applications, which is 

fundamental for this approach to evolve. The complexity in the elaboration of our protocol 

and its outputs raised many questions, technical and biological as discussed above, but also 

methodological. Mostly, I noticed that the race for technical improvements makes us put aside 

other approaches, sometimes less impressive and new than single-cell omics but with simple 

and efficient functioning. As our experimental possibilities grow, we should keep considering 

fundamental microbiology practices: time and local scales of sampling, hypothesis testing, 

cultivation, replicates, and negative controls (i.e. there are almost no negative controls in 

genomic sequencing). The oldest way of studying bacteria, culturing, can afford relevant 

information and has made big advances since Pasteur’s first bacteria cultivation (Lewis & 

Ettema, 2019; Lewis et al., 2021). The race for technological improvement is worth nothing 

(scientifically) if not used for proper scientific testing. The focus must be set on finding the 

adequate technology to test hypotheses, not the other way around (Prosser, 2015). There will 

always be biases for any molecular strategy employed: PCRs, MDAs, single-cell omics, or 

metagenomics, but we have the tools and knowledge to combine these approaches to get the 

most out of what genomic information can provide (Alneberg et al., 2018; Hedlund et al., 

2014; Mende et al., 2016), always with relevant and appropriate questions and hypothesis.  
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Titre : Développement d'une approche innovante de génomique sur cellules uniques 

 et application aux communautés bactériennes du sol 
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Résumé : Le séquençage du génome entier d'une 
seule cellule (scWGS) pour étudier les bactéries s'est 
développé ces dernières années. Les microbiologistes 
sont particulièrement intéressés par cette approche 
pour accéder à l'échelle de la population de 
l'organisation des bactéries et évaluer le potentiel 
d'évolution et d'interaction de ces structures 
bactériennes. Le scWGS devrait également accélérer la 
découverte de bactéries inconnues et fournir un contenu 
génomique plus précis que la métagénomique 
traditionnellement utilisée, qui n'est pas adaptée à la 
description des communautés bactériennes à des 
échelles organisationnelles fines. Dans la pratique, les 
scWGS sont peu utilisés en raison de leurs limites en 
termes de coût, d'équipement nécessaire, de temps de 
manipulation long et de génomes récupérés  

partiels et contaminés. J’ai développé une 
préparation de librairies génomique unicellulaire afin 
de proposer une approche facile à utiliser avec un 
coût limité et discute ses possibles améliorations 
futures. Pour compenser le manque de procédures 
de décontamination universelles pour de tels jeux de 
données, un pipeline de décontamination 
automatisé a été développé et permet l'unification du 
traitement des données unicellulaires. Je démontre, 
sur des souches bactériennes pures et 
environnementales, la nécessité d'une procédure de 
décontamination systématique et souligne les 
avantages du scWGS par rapport à la 
métagénomique. Enfin, je discute des perspectives 
techniques et écologiques que cette approche a à 
offrir à la microbiologie. 
 

 

Title: Elaboration of an innovative single-cell genomics approach and application to soil 

 bacterial communities 

Keywords: Microbial ecology, genomics, single-cell 

 

Abstract: The development of single-cell 

whole genome sequencing (scWGS) to study 
bacteria has grown in recent years. 
Microbiologists are particularly interested in 

this approach to access the population scale 
of bacteria organisation and evaluate the 
potential of these bacterial structures to evolve 
and interact. scWGS is also expected to 

accelerate the discovery of unknown bacteria 
and to provide more accurate genome content 
than the traditionally used metagenomics 

which is not suited for bacterial community 
description at fine organisational scales. In 
practice, scWGS are timidly used for their 

limitations regarding their cost, equipment 
requirements, long handling time, and partial 
and contaminated recovered genomes.   

Here, I developed an improved single-cell 

genomic library preparation to propose an easy-
to-use approach with limited cost and discuss its 
possible future improvements. To compensate 

for the lack of universal decontamination 
procedures for such datasets, an automated 
decontamination pipeline was developed and 
allows the unification of single-cell data 

handling. I demonstrate, on pure and 
environmental bacterial strains, the necessity for 
systematic decontamination procedure and 

highlight the advantages of scWGS compared to 
metagenomics. Finally, I discuss the technical 
and ecological perspectives that single-cell 

omics have to offer to microbiology. 
 


