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Abstract
This thesis investigates the study of the complexities of the large-scale structures in the Universe, focusing
on the thermal Sunyaev-Zel’dovich effect (tSZ), the cosmic web, and weak lensing peak counts. Under-
standing the evolution of these structures offers crucial insights into various properties of the Universe,
including the amount of dark matter, dark energy, and baryonic matter. After providing an overview of
cosmology and structure formation, I will introduce a few observables and the halo model framework. I
will then describe the methods used to run simulations and present the specific simulations utilized in this
research. Following this, I will present my results on the tSZ effect, particularly a comparison between
tSZ properties measured in simulations and those predicted by a halo model. I will demonstrate that
the halo model tSZ power spectrum shows discrepancies with simulation measurements. Additionally, I
will discuss results on the tSZ effect within the context of the wCDM model, showing that it is indeed
sensitive to the dark energy equation of state w. Next, I will present results on the theoretical prediction
of the abundances of the different cosmic web environments – voids, walls, filaments, and knots – demon-
strating that these theoretical predictions align well with measurements from simulations. Finally, I will
discuss the impact of systematics on weak lensing peak count statistics. I will highlight the importance of
careful consideration of systematics and uncertainties such as shear calibration, baryonic feedback, and
the choice of signal-to-noise ratio in future analyses.

Keywords: large-scale structures of the Universe, cosmology, thermal Sunyaev-Zel’dovich effect,
cosmic web, peak counts, simulations
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Résumé
Cette thèse se concentre sur l’étude des complexités des grandes structures de l’Univers, en utilisant
l’effet Sunyaev-Zel’dovich thermique (tSZ), la toile cosmique et la statistique de comptage de pics sur le
lentillage gravitationnel. Comprendre l’évolution de ces structures fournit des informations sur diverses
propriétés de l’Univers, telles que la quantité de matière noire, d’énergie noire et de matière baryonique.
Après avoir rappelé le contexte cosmologique et la formation des structures, je présenterai quelques
observables et le modèle de halo. Je décrirai ensuite les méthodes utilisées pour générer des simulations
numériques, et présenterai celles que j’utilise dans cette thèse. Je continuerai en présentant mes résultats
sur l’effet tSZ, en particulier une comparaison entre les mesures des propriétés tSZ dans les simulations
et celles préditent par un modèle de halo. Je démontrerai que les spectres de puissance du tSZ prédits
par ce modèle de halo montrent des différences avec ceux mesurés dans les simulations. De plus, je
présenterai des résultats sur l’effet tSZ dans le contexte du modèle wCDM, montrant que celui-ci est en
effet sensible à la valeur de l’équation d’état d’énergie noire w. Ensuite, je présenterai des résultats sur
la prédiction théorique des abondances des différents environnements de la toile cosmique – vides, murs,
filaments, et nœuds – démontrant que les prédictions théoriques sont en bon accord avec les mesures
dans les simulations. Enfin, je discuterai de l’impact des systématiques sur les statistiques de comptage
de pics de l’effet de lentille gravitationnelle, montrant que les systématiques et les incertitudes telles que
la calibration du cisaillement, l’impact baryonique et le choix du rapport signal sur bruit doivent être
soigneusement pris en compte dans les analyses futures.

Mots clés: grandes structures de l’Univers, cosmologie, effect Sunyaev-Zel’dovich thermique, toile
cosmique, comptage de pics, simulations
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Résumé long

Partie I - Contexte

Chapitre 1 - Cosmologie

Dans ce premier chapitre de ma thèse, je présente les bases théoriques de la cosmologie, en commençant
par un aperçu du modèle standard de la cosmologie, le modèle ΛCDM. Ce modèle décrit l’Univers
composé d’une constante cosmologique (Λ) responsable de l’expansion de l’Univers, de matière noire
froide (CDM) et de matière baryonique. Je retrace également l’évolution de l’Univers depuis le Big Bang
pour brièvement décrire ces différentes phases.

J’introduis ensuite la relativité générale, notamment le principe d’équivalence et la courbure de
l’espace-temps. Je développe ensuite les équations qui permettent de décrire l’expansion et la struc-
ture d’un Univers homogène à travers les équations de Friedmann et le paramètre de Hubble. Ce cadre
permet d’introduire les différents paramètres cosmologiques (quantité de matière, de radiation, d’énergie
noire,...) ainsi que les différentes époques cosmologiques.

Ce chapitre poursuit avec plus de détail sur le modèle ΛCDM, notamment son accord avec les ob-
servations cosmologiques, mais aussi ses limitations, notamment sur des petites échelles. J’introduit
brièvement des possibles extensions, telles que le modèle wCDM, qui remplace la constance cosmologique
par une équation d’état d’énergie noire qui peut évoluer dans le temps.

Je présente ensuite deux périodes clés du début de l’Universe : l’inflation cosmique et le fond diffus
cosmologique. L’inflation, une phase d’expansion très rapide de l’Univers, est une solution aux problèmes
du modèle du Big Bang, notamment le problème de l’horizon et de la platitude. L’inflation permet
également d’expliquer les perturbations primordiales qui ont conduit à la formation des structures à
grande échelle que l’ont peut observer aujourd’hui. Ces fluctuations sont observables dans le fond diffus
cosmologique, qui est la première lumière de l’Univers. Je présente également l’impact des différents
paramètres cosmologiques sur ce fond diffus cosmologique pour comprendre comment son étude peut
nous aider à contraindre la cosmologie.

Enfin, je présente l’évolution des structures à grande échelle de l’Univers, en analysant les pertur-
bations de densité et leur croissance sous l’effet de la gravité dans un cadre inhomogène. Les équation
d’Euler et l’approximation de Zel’dovich sont présentées pour modéliser ces structures. On apprend com-
ment les structures évoluent et peuvent être classées en différents environnements : vide, mur, filament et
noeud. Je finis en présentant le modèle d’effondrement sphérique qui est une approximation permettant
de décrire la formation des halos dans le régime linéaire.

En conclusion, ce chapitre fournit une base pour comprendre l’évolution des perturbations de densité
et la formation des structures, ouvrant la voie aux analyses des grandes structures de l’Univers dans les
chapitres suivants.

Chapitre 2 - Grandes structures de l’Univers

Ce deuxième chapitre est consacré à l’étude des structures à grande échelle de l’Univers en mettant en
avant leur rôle fondamental dans la compréhension de l’évolution et de la composition de l’Univers.

Je commence par introduire des outils statistiques qui permettent d’étudier ces structures. Je présente
notamment le spectre de puissance, qui permet de décrire la distribution d’une certaine observable
(matière, pression,...) à différentes échelles spatiales. Cette statistique contient toute l’information
Gaussienne et permet d’analyser les fluctuations de densité. Je présente ensuite des statistiques d’ordre
supérieur, qui sont utilisées pour capturer les non-Gaussianités de la distribution de matière. On peut
par exemple citer les fonctions à trois points ou les comptages de pics dans les cartes de lentillage gravi-
tationnelle.

Je continue en détaillant différentes observables qui peuvent être utilisées pour étudier les grandes
structures. La matière, majoritairement constituée de matière noire, est l’une des observables les plus fon-
damentales. Sa répartition est étudiée par des simulations numériques ou indirectement via des traceurs.
On peut par exemple citer les galaxies, qui tracent la distribution de matière. Cette distribution est
biaisé puisque majoritairement basée sur la matière visible. Le cisaillement gravitationnel faible est une
autre observable, qui résulte de la déviation de la lumière par la matière. Il est donc sensible à la matière
totale, y compris la matière noire, et est un outil complémentaire à d’autres observables. Finallement,
j’introduis l’effet Sunyaev-Zel’dovich thermique (tSZ), qui trouve son origine dans le gaz chaud des amas
de galaxies. Cet effet est donc sensible à la matière baryonique, et nous permet de contraindre à la fois
les paramètres cosmologiques et les processus astrophysiques.
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Dans la suite du chapitre, j’introduis le modèle de halo qui est un outil analytique permettant de
modéliser le spectre de puissance de la distribution de matière et de ses traceurs. Le modèle de halo se
base sur l’hypothèse que toute la matière se trouve dans des halos sphériques et symmétriques. Les trois
principales composantes de ce modèle sont : la fonction de masse des halos qui décrit la distribution des
halos en fonction de la masse et du redshift, le biais de halo qui décrit comment les halos se regrouppent
par rapport à la matière et le profil de halo qui décrit comment le traceur est distribué autour d’un halo.

Le modèle de halo permet ensuite de prédire le spectre de puissance du traceur étudié comme la somme
de deux termes : le terme un-halo et le terme deux-halo. Le terme un-halo correspond à la contribution
de la matière au sein d’un seul halo, et est donc caractéristique des petites échelles. Le terme deux-halos
décrit la corrélation entre différents halos, caractérisant donc les grandes échelles. Ce modèle permet de
prédire rapidement les spectres de puissance de différentes observables, mais il présente des limitations.
Par exemple, il suppose que toute la matière est contenue dans des halos sphériques, ce qui n’est pas
toujours réaliste. Il est aussi dépendant des choix faits pour décrire les différentes composantes du modèle.

Ce chapitre illustre l’importance des structures à grande échelle pour contraindre les paramètres
cosmologiques et comprendre les processus astrophysiques. La combinaison des outils théoriques, des
observations et des simulations numériques constituent une approche essentielle pour raffiner notre con-
naissance de l’Univers et de son évolution.

Partie II - Simulations numériques

Dans ce chapitre (Chapitre 3), j’introduis les simulations cosmologiques utilisées pour étudier les struc-
tures à grande échelle de l’Univers.

Je présente tout d’abord les méthodes permettant de créer une simulation numérique. La pre-
mière étape consiste à créer les conditions initiales d’une simulation. Je cite des méthodes comme
l’approximation de Zel’dovich qui permet de reproduire les modes linéaires ou la théorie des pertur-
bations lagrangiennes du second ordre (2LPT) qui est capable de capturer les modes non linéaires.

Je présente ensuite comment faire évoluer ces conditions initiales à travers l’example du code RAMSES,
qui est un code de simulation basé sur un schéma de raffinement de maillage adaptatif (AMR), per-
mettant une résolution élevée dans les régions denses. Pour faire évoluer une simulation ne contenant
que de la matière noire, le solveur N-corps résout le système de Vlasov-Poisson, pour suivre l’évolution
gravitationnelle des particules. Pour obtenir des simulations plus réalistes, il est nécessaire d’inclure les
processus baryoniques tels que l’impact des noyaux de galaxies actifs (AGN) sur la distribution du gaz
ou la formation stellaire. Dans ce cas, le solveur hydrodynamique résout les équations d’Euler sous forme
conservative. RAMSES permet l’utilisation de critères pour gérer le rafinement et le choix des pas de temps
de la simulation, permettant ainsi de mieux résoudre les régions dynamiques actives.

Je présente ensuite les différentes simulations utilisées dans cette thèse :

• Horizon-AGN : simulation hydrodynamique de 100h−1 Mpc. La physique inclut un refroidissement
du gaz, la formation stellaire, et les rétroactions des AGN et supernova.

• Horizon-noAGN : variante de la simulation précédente, sans AGN. Cette simulation permet d’évaluer
l’impact de ce dernier.

• Horizon-Large : simulation de 896h−1 Mpc avec une physique simplifiée (contient seulement
le chauffage et refroidissement du gaz, et pas de physique galactique). Cette simulation permet
d’étudier des plus grands volumes et donc des halos plus massifs à moindre coûts computationnels.

• L896_wCDM : simulations de 896h−1 Mpc, avec la même physique que la simulation Horizon-Large,
mais avec une cosmologie différente qui explore l’effet d’une énergie noire avec une équation d’état
w variant (-0,8, -1, -1,2).

• Magneticum : simulations de 896h−1 Mpc utilisant le code GADGET, avec une physique similaire à
la simulation Horizon-AGN mais utilisant une méthodologie différente.

• BAHAMAS : simulations hydrodynamiques de 400h−1 Mpc. Ces simulations ne sont pas directement
utilisées dans ma thèse, mais sont utilisées pour calibrer le modèle de halo HMx utilisé dans le
chapitre 4.

Je finis ce chapitre en présentant la fonction de masse des halos des différentes simulations. Cette
fonction traduit l’abondance des halos de différentes masses et dépend des processus physiques intégrés
et du volume simulé. Les simulations Horizon et Magneticum montrent un bon accord global, mais les
limites en résolution et volume influencent les halos accessibles. Pour les simulations L896_wCDM, on voit
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que la fonction de masse est sensible à la valeur de w, encore plus marquée avec les halos plus massifs.
Plus haut est w, plus massifs et plus nombreux sont les halos.

Dans ce chapitre, je souligne donc l’importance des simulations cosmologiques pour étudier les struc-
tures à grande échelle de l’Univers. Je décris leur utilisation et explicite celles étudiées dans cette thèse.

Partie III - Résultats et publications

Chapitre 4 - Propriétés de l’effet Sunyaev-Zel’dovich thermique

Dans ce chapitre, je présente avec plus de détails la modélisation, l’observation et la comparaison des pro-
priétés de l’effet Sunyaev-Zel’dovich thermique (tSZ) avec des mesures issues de simulations numériques.

Je commence en présentant le modèle de halo HMx et les choix faits pour ces différentes composantes.
Je détaille en particulier son utilisation pour prédire le spectre de l’effet tSZ. La composante majeure de ce
spectre est le profil de pression électronique qui dépend de la densité et de la température du gaz, modélisé
notamment par des paramètres ajustables comme l’indice polytropique. Les différents paramètres du
modèle sont ajustés à partir des spectres de puissance des simulations BAHAMAS, et différents modèles
existent en fonction des spectres utilisés. Dans notre cas, nous utilisons le modèle ajusté sur le spectre
matière-pression.

Je présente ensuite quelques observations de l’effet tSZ, notamment la mesure sur des cartes couvrant
de vastes champs, comme celles obtenues par Planck ou SPT et celles faites à l’échelle de halos individuels
comme avec NIKA2.

Je finis cette partie en présentant une méthodologie d’analyse combinant plusieurs observables (tSZ,
lentillage gravitationnel, lentillage gravitational du fond diffus cosmologique et relevé de galaxies). Cette
étude montre une amélioration significative des contraintes sur les paramètres cosmologiques, qui peut
s’améliorer en affinant la modélisation de l’effet tSZ qui incorpore beaucoup de paramètres libres au
modèle.

La suite de ce chapitre est consacrée à la présentation des différents résultats obtenus. J’ai tout d’abord
comparé les prédictions du modèle HMx avec les spectres de puissance mesurés dans plusieurs simulations
(Horizon-AGN, Horizon-noAGN Horizon-Large et Magneticum). Les résultats sur les spectres de l’effet
tSZ montrent des divergences croissantes lorsque le redshift augmente. Pour mieux comprendre ces
différences, je me suis intéressée à différentes propriétés du modèle de halo. La décomposition de HMx en
termes un- et deux-halo montre que le terme deux-halo domine à grande distance, et est majoritairement
à l’origine de l’excès de puissance prédit par la modèle. J’ai également étudié, dans les simulations, la
contribution de la matière se trouvant à l’intérieur ou à l’extérieur d’un rayon du viriel des halos. Les
résultats montrent que plus le redshift augmente, plus la contribution de la matière se trouvant en dehors
des halos augmente, et devient même plus importante que la matière se trouvant dans un rayon du viriel
à z ∼ 3.

Comme le modèle est ajusté au niveau du spectre de puissance, des différences sont attendues et les
propriétés telles que le profil doivent être vues comme des propriétés effectives, mais il est tout de même
intéressant de comparer ces propriétés pour comprendre les dégénerescences. J’ai tout d’abord comparé
les profils de pression électroniques qui montrent en effet des différences, en particulier à faible masse.
J’ai également comparé d’autres propriétés telles que l’indice polytropique, le paramètre qui capture la
déviation à une température du viriel, la fraction de gaz lié et la concentration. Les mesures de ces
paramètres révèlent des différences avec ceux utilisés dans le modèle, mais il est surtout intéressant de
noter que tout ces paramètres dépendent de la masse et du redshift, dépendances qui ne sont pas toujours
prises en compte dans le modèle. Il serait intéressant d’étudier si un profil de pression plus en accord avec
la mesure, ou des paramètres qui dépendent de la masse et du redshift aident à retrouver des spectres
puis proche de ceux mesurés.

Je finis en présentant les résultats sur l’impact de la variation de l’équation d’état de l’énergie noire (w)
à l’aide des simulations L896_wCDM. Les résultats montrent que le spectre de puissance tSZ, et celui de la
matière, sont sensibles à la valeur de w, offrant un potentiel pour contraindre des modèles cosmologiques
alternatifs. On remarque notemmament que plus w est grand, plus l’expansion de l’Univers commence tôt
et donc plus les structures croissent lentement. Ce comportement impose des structures plus développées
plus tôt dans l’histoire de l’Univers, ce qui est observé dans ces simulations.

Pour conclure, ce chapitre se concentre sur l’étude du modèle de halo pour modéliser l’effet tSZ. La
comparaison avec les simulations révèle des écarts importants qu’il est nécessaire de comprendre. L’effet
tSZ reste une observable puissante pour explorer les propriétés baryoniques et cosmologiques, à condition
d’améliorer la modélisation.
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Chapitre 5 - La toile cosmique et la classification T-web

Dans ce chapitre, je m’intéresse à la description des différents environments de la toile cosmique, en
particulier à leurs classifications. J’introduis tout d’abord la théorie des perturbations pour décrire
l’évolution non linéraire des structures, qui en particulier a lieu à bas redshift.

Je présente ensuite comment la toile cosmique est décrite comme un réseau de vides, murs, filaments
et noeuds résultant de l’évolution gravitationnelle et je présente plusieurs méthodes de classification de
ces structures. Je présente notamment la méthode du T-web, qui est la méthode que j’utilise et qui repose
sur les valeurs propres des dérivées secondes du potentiel gravitationnel. Le nombre de valeurs propres
supérieures à un seuil donné détermine le type d’environnement :

• vide : zéro valeur propre supérieure au seuil,

• mur : une valeur propre supérieure au seuil,

• filament : deux valeurs propres supérieures au seuil,

• noeud : trois valeurs propres supérieures au seuil.

La classification des structures avec cette méthode peut être faite dans des simulations numériques et
je me suis intéressée à construire un modèle analytique dérivé de principes fondamentaux pour prédire
l’abondance des environnements. Dans une première étape, je considère un champ de densité Gaussien et
utilise la formule de Doroskevich pour décrire la distribution jointe des valeurs propres. Dans un second
temps, des corrections non Gaussiennes sont introduites via une expansion de Gram-Charlier, qui prend
en compte des termes d’ordre supérieur tel que la skewness. J’ai ensuite comparé les probabilités des
environnements (vides, murs, filaments, noeuds) dans les simulations Quijote pour différents redshifts et
échelles de lissage avec les prédictions analytiques. Les prédictions avec corrections non Gaussiennes mon-
trent un très bon accord (bien meilleur que les prédictions Gaussiennes) avec les mesures des simulations,
même à des échelles non Gaussiennes (petite échelle de lissage et faible redshift).

Ce chapitre présente un cadre théorique robuste pour prédire les abondances des environnements du
réseau cosmique en utilisant le formalisme du T-web. Cette méthode offre une alternative analytique aux
simulations coûteuses et ouvre des nouvelles perspectives.

Chapitre 6 - Statistiques de comptage de pics de l’effet de lentille gravitation-
nelle

Dans ce dernier chapitre, je présente une méthode statistique d’ordre supérieur, le comptage de pics,
appliquée au cisaillement gravitationnel faible, qui est donc sensible aux non-gaussianités.

Dans ce travail, je me suis intéressée à l’impact de différentes incertitudes et systématiques sur les
paramètres cosmologiques dérivés du comptage de pics. Les prédictions sont basées sur les simulations
MassiveNuS et les données proviennent du relevé en cours UNIONS. Les comptages de pics sont obtenus en
identifiant les maxima locaux de cartes de rapport signal/bruit (SNR). Ces maxima sont ensuite utilisés
pour inférer les paramètres cosmologiques.

Un aspect important concerne la calibration du cisaillement, réalisée via la méthode de metacali-
bration. Cette méthode estime la matrice de réponse du cisaillement, qui relie le cisaillement réel au
cisaillement mesuré tout en prenant en compte les biais multiplicatifs et additifs. Je me suis tout d’abord
concentrée sur l’utilisation d’une méthode de calibration locale du cisaillement. Dans ce cas, la calibration
est effectuée sur des sous-échantillons de différentes tailles (0.5 à 4 deg2) pour évaluer l’impact des effets
locaux comme la fonction d’étalement des points (PSF) ou la taille des galaxies.

J’ai ensuite étudié l’impact de cette calibration locale sur les contraintes cosmologiques, ainsi que
l’impact de différentes systématiques : le biais multiplicatif résiduel, l’incertitude sur le redshift, l’impact
des effets baryoniques, l’alignement intrinsèque et facteur de boost.

Les analyses montrent que des calibrations effectuées sur des petits sous-échantillons (≥ 1 deg2) se rap-
prochent des calibrations globales avec des déviations standards faibles. Cela suggère qu’une calibration
locale est utile mais doit être effectuée sur des échelles suffisamment grandes pour être robuste.

Les simulations MassiveNuS permettent de contraindre les paramètres Mν , Ωm, et As et je me suis
intéressée à l’évolution des contraintes quand différentes systématiques sont prises en compte. Les ré-
sultats mettent en avant l’importance d’une calibration précise et d’une prise en compte rigoureuse de
l’alignement intrinsèque et du facteur de boost pour obtenir des contraintes robustes.
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Conclusions et perspectives

Mon travail s’est concentré sur l’étude des structures à grande échelle de l’Univers afin d’améliorer la
capacité des différents observables à contraindre les paramètres cosmologiques et astrophysiques. Les
résultats portent sur trois axes principaux : l’effet Sunyaev-Zel’dovich thermique (tSZ), la toile cosmique
(cosmic web), et les statistiques de comptage de pics.

Concernant l’effet tSZ, mon travail a mis en évidence que le modèle de halo utilisé dans HMx ne
parvient pas à reproduire précisément les propriétés de l’effet tSZ mesurées dans les simulations. Les
écarts augmentent avec le redshift, et des différences de 20 à 50% sont observées dans le spectre de
puissance angulaire du tSZ. Ces écarts pourraient être liés aux hypothèses simplifiées du modèle de halo,
comme l’hypothèse que toute la matière se trouve dans des halos, ou à des paramètres ne capturant pas
toute la complexité physique par exemple.

Par ailleurs, l’effet tSZ est sensible au modèle cosmologique, notamment à l’énergie noire qui influence
la croissance des structures. Dans ce contexte, j’ai exploré les propriétés de l’effet tSZ dans des simulations
wCDM, montrant que l’effet est bien sensible à la valeur de w. Ces résultats encouragent à poursuivre les
efforts pour modéliser l’effet tSZ sous différentes cosmologies afin d’en faire un outil robuste pour sonder
l’énergie noire et la matière baryonique.

Concernant la toile cosmique, j’ai développé un modèle théorique prédisant l’abondance des environ-
nements en fonction du redshift et de l’échelle de lissage, en se basant sur la méthode du T-web. Les
comparaisons avec les mesures des simulations Quijote montrent un excellent accord, y compris aux
échelles non linéaires.

Finalement, concernant les comptages de pics du lentillage gravitationnel, j’ai étudié l’impact de
différentes systématiques sur les contraintes cosmologiques des données du relevé UNIONS. Ces analyses
montrent que les incertitudes et systématiques peuvent décaler les paramètres cosmologiques inférés, en
particulier Ωm. Ce travail souligne l’importance de considérer soigneusement ces effets pour obtenir des
contraintes robustes dans les analyses futures.

Suite à ce travail, je conclue en mentionnant quelques perspectives. Tout d’abord, il serait important
d’améliorer la modélisation de l’effet tSZ. Par exemple, développer un modèle permettant de reproduire
précisément le spectre de puissance tSZ à partir d’un profil de pression donné pourrait être intéressant
pour inférer les spectres de l’effet tSZ à partir de profils de pression mesurés avec NIKA2. Il serait
également intéressant de prendre en compte des aspects plus réalistes, comme des halos non sphériques,
ainsi que des paramètres variant avec la masse et le redshift pour améliorer la précision des prédictions.

Un autre aspect concerne l’étude de la contribution des différents environments de la toile cosmique
au spectre total de l’effet tSZ pour mieux comprendre les environments à prendre en compte dans la
modélisation.

Finalement, il est intéressant d’étendre les analyses à des modèles cosmologiques plus complexes, tels
que des équations d’état d’énergie noire avec évolution temporelle ou des théories de gravité modifiée.

Sur les compatges de pics, il serait intéressant de continuer les efforts pour inclure plus précisement
toutes les systématiques dans le modèle afin d’extraire des informations cosmologiques robustes.

Dans cette thèse, j’ai étudié différentes méthodes pour analyser les propriétés des structures à grande
échelle de l’Univers. Chacune présente des avantages et des limites, rendant chaque approche perti-
nente pour des problématiques spécifiques. En exploitant les non-gaussianités et les statistiques d’ordre
supérieur, ces travaux contribuent à améliorer notre compréhension des structures complexes de l’Univers,
permettant ainsi de contraindre plus solidement les paramètres cosmologiques et astrophysiques.
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INTRODUCTION

The large-scale structures of the Universe offer unique insights into its fundamental properties. Studying
these structures allows us to understand the evolution and composition of the Universe, serving as a
probe for both cosmology and astrophysics.

The Universe began as a Gaussian field, evolving into a non-Gaussian field with inhomogeneities that
served as the seeds of the large-scale structures we observe today. The evolution of these structures is
influenced by various properties of the Universe, such as the amount of dark matter, dark energy, and
baryonic matter. Gravitational instabilities have led to the formation of structures such as galaxies,
galaxy clusters, and voids that trace the cosmic web of the Universe.

Different observables can be used to study the large-scale structures of the Universe. The cosmic
microwave background (CMB) is a snapshot of the Universe at the time of recombination when it became
transparent. The CMB provides extensive information about the early Universe, including its geometry
and composition. Other tracers, such as the distribution of galaxies, weak lensing, thermal Sunyaev-
Zel’dovich (tSZ) effect, and other tracers of matter probe the late-time Universe. These tracers are
sensitive to different components: for example, weak lensing is sensitive to total matter, while the tSZ
effect is sensitive to baryonic matter. By studying and correlating these tracers, we can extract valuable
cosmological information.

Additionally, the large-scale structures are well-modeled using numerical simulations. These simula-
tions are valuable for studying cosmology, astrophysics, and the interplay between the two. They can
be used to test various models and provide predictions for future observations, for instance. Modeling
baryonic physics is more complex than dark matter physic and remains an active field of research.

Currently, the concordant model of cosmology is the ΛCDM model, which includes dark matter,
dark energy, and baryonic matter. The ΛCDM model agrees with a wide range of observations, such
as the CMB or large-scale structures. However, some tensions have been observed between different
observations, such as discrepancies in the Hubble constant measured from the CMB and from supernovae.
These tensions could result from systematic errors in the observations or indicate new physics beyond
the ΛCDM model. Addressing these discrepancies is an active field of research. With the increasing
precision of data, it is crucial to extract maximum information to test different scenarios. This can
be achieved by extracting higher-order information from data, using non-Gaussianities of the field, or
employing higher-order statistics. In this thesis, I focus on extracting higher-order information through
different methodologies.

The first part of this thesis provides general context. In Chapter 1, I present a brief history of the
Universe and introduce equations of evolution of a homogeneous and inhomogeneous Universe. The
ΛCDM model, inflation, and CMB are also discussed. In Chapter 2, I introduce the large-scale structures
of the Universe, explaining the relevant statistics and covering a few observables such as matter, galaxy,
lensing, tSZ, and clusters. I also present the halo model framework.

The second part focuses solely on numerical simulations (Chapter 3). I describe the process of gen-
erating initial conditions for a simulation, the numerical methods used to evolve the simulation, and the
halo properties. I conclude this part with a description of the different simulations employed in this
thesis.

The third part details the results I have obtained. Chapter 4 focuses on the tSZ properties. I begin
by describing the halo model that allows predictions of the power spectrum, followed by a discussion

1



2 –

of the state of the art on tSZ observations. I then present results comparing the tSZ properties (power
spectrum, angular power spectrum, profile) measured in simulations with those predicted by the HMx halo
model. This comparison is extended to some intrinsic properties of the model. Additionally, I present
results on the tSZ effect within the context of the wCDM model. In Chapter 5, I present a theoretical
prediction on the abundances of the different environments within the cosmic web. Finally, in Chapter 6,
I present the impact of systematics on weak lensing peak count statistics for cosmological constraints.

Through these different results, my work has focused on the complexities of large-scale structures.
The tSZ effect is mainly sensitive to high-mass halos, thus probing the densest regions of the Universe.
Its sensitivity to baryonic matter makes it a robust probe of baryonic physics. The cosmic web, by the
identification of different environments, provides a way of extracting higher-order information. Finally,
peak count statistic is a higher-order statistic that probes the non-Gaussianities of a field.
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To describe the Universe, its components, and its evolution, we need a comprehensive model. The
standard model of cosmology is based on the theory of general relativity and the cosmological principle.
The most widely adopted model is the Lambda Cold Dark Matter (ΛCDM) model. In this chapter, I
will introduce the primary concepts of cosmology and general relativity that form the foundation of this
model and describe the evolution of the Universe. I will begin in Sect. 1.1 with a brief history of the
Universe, from the Big Bang to the present day. In Sect. 1.2, I will introduce the concepts of general
relativity necessary for describing the Universe. I will then provide more detailed explanations of various
epochs of the Universe: the homogeneous Universe in Sect. 1.3, the ΛCDM model in Sect. 1.4, inflation
in Sect. 1.5, cosmic microwave background in Sect. 1.6, and the inhomogeneous Universe in Sect. 1.7.
This chapter was written with the help of Peter & Uzan (2013); Bernardeau (2007); Dodelson & Schmidt
(2020); Codis-Decara (2015).

1.1 Concordant model and history of the Universe

Concordant model The concordance model of cosmology is known as the ΛCDM model, which de-
scribes a Universe composed of a cosmological constant (Λ), cold dark matter (CDM), and baryonic
matter. According to this model, the Universe began 13.8 billion years ago with the Big Bang. Since
that moment, the Universe has been expanding. This model will be further discussed in Sect. 1.4.

The Planck era Up to 10−43 seconds after the Big Bang, the Universe existed in an era known as
"the Planck era". This was the very first moment of our Universe when it was extremely hot and
dense. The laws of physics as we know them cannot be applied to this state. During this era, the four
fundamental forces – electromagnetic force, weak nuclear force, strong nuclear force, and gravity – had
similar intensities, and it was impossible to describe them separately.

Grand Unified Theory From 10−43 seconds to 10−36 seconds, the Universe entered the "Grand
Unified Theory" (GUT) era. During this period, the Universe continued to cool, and gravity "froze" out,
becoming a force of distinct intensity and behaving independently of quantum effects. The other three
fundamental forces remained unified.

Electroweak era & inflation The subsequent era, from 10−36 seconds to 10−12 seconds, is known as
the "electroweak era". As the Universe continued to cool, it was now the weak nuclear force that "froze"
out, becoming distinct. It was only at the end of this era that the electromagnetic and weak nuclear
forces also separated. During this era, from 10−36 to 10−32 seconds, the Universe undergoes a period of
exponential expansion known as "inflation". During inflation, the Universe was dominated by a scalar
field called the inflaton. This era is responsible for the homogeneity and isotropy of the Universe and
the origin of the primordial fluctuations that will give rise to the large-scale structures (LSS) we observe
today. More details about inflation will be provided in Sect. 1.5.

Particle era & nucleosynthesis era The electroweak era is followed by the "particle era" which
lasted until 10−3 seconds after the Big Bang and allowed the formation of the first particles. During this
period, the Universe comprises quarks, electrons, neutrinos, photons, and their antiparticles. However,
the temperature was still too high for the formation of atoms. Between 3 and 20 minutes after the Big
Bang, the Universe entered the "nucleosynthesis era". By this time, the Universe had cooled enough
to allow the formation of light elements. Protons and neutrons combine to create simple nuclei, such
as hydrogen, helium, deuterium, and lithium. At this time, the baryonic Universe’s composition was
approximately 75% of hydrogen and 25% of helium, with traces of deuterium and lithium.

Nuclei era & atomic era The Universe then entered the "nuclei era", a period cool enough to allow
the formation of atomic nuclei. Approximately 50, 000 years after the Big Bang, atoms began to form,
marking the "atomic era". During this epoch, matter begins to dominate the content of the Universe.

Recombination era & cosmic microwave background 380, 000 years after the Big Bang, the
Univers entered the "recombination era". Nuclei were able to capture free electrons to form neutral
atoms. Consequently, the Universe is composed of neutral atoms, photons, and neutrinos. Before this
period, electrons rapidly absorbed photons, but photons could now travel freely through the Universe. The
Universe is now transparent, and the photons we observe today originate from this moment, producing
the first observable relic light of the Big Bang known as the cosmic microwave background (CMB). The
CMB manifests as a black-body radiation of 2.725K in today’s Universe due to the redshifting of its
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wavelength by the expansion of the Universe. It is a powerful tool for studying the Universe and will be
discussed further in Sect. 1.6.

First stars & galaxies A possible scenario is that the first stars began to form approximately 180 mil-
lion years after the Big Bang. These early stars, composed of light elements, initiated the process of nu-
clear fusion, creating heavier elements than hydrogen or helium (so-called "metals") in their cores. Upon
exhausting their nuclear fuel, these stars ejected these heavier elements into the interstellar medium,
enriching it. This stage is followed by the creation of the first galaxies around 400 million years after the
Big Bang. The initial metal-free stars (Population III stars) often ended their lives as black holes, and
the first galaxies formed around their remnants. These initial galaxies were small and irregular. Over
time, they merged and grew larger. Gravitational interactions will allow the formation of the complex
structures we observe in the Universe today.

Dark energy era Finally, around 6 billion years after the Big Bang, the Universe entered the "dark
energy era". During this period, an unknown fluid or the cosmological constant Λ began to dominate the
dynamics of the Universe. This dark energy provides the repulsive force that accelerates the expansion
of the Universe.

As discussed and illustrated in Fig. 1.1, the content of the Universe has evolved over time. In the
early Universe, radiation and neutrinos dominated, whereas they are almost negligible today. Currently,
the Universe is composed of ∼ 70% of dark energy, ∼ 25% of dark matter, and ∼ 5% of baryonic matter.
Studying the Universe’s evolution gives us insights into its composition, structure, and history. As we
will see in the following sections, the concordant model of cosmology, the ΛCDM model, provides a
comprehensive framework for understanding the Universe but also has some limitations. For example, we
will discuss the possibility that dark energy may not be a simple cosmological constant but could have
more complex properties.

1.2 Introduction to general relativity

The theory of general relativity describes gravitation as the curvature of space-time, allowing us to
describe astrophysical objects’ motion. Gravitation, which is a long-range force, is the dominant attractive
force at cosmological scales. It is essential to consider it to accurately describe both the expansion of the
Universe and the growth of structures at these scales.

1.2.1 Equivalence principle
The equivalence principle is a fundamental law of physics stating that, locally, the effects of a gravitational
field are indistinguishable from those of an accelerated reference frame. This principle, which is the
foundation of general relativity, applies exclusively to gravity. It implies we can always find a reference
frame where gravity is absent. The equivalence principle is based on three conditions:

• Weak equivalence principle: the trajectory of a body is independent of its internal structure and
composition,

• Local position invariance: all non-gravitational experiments are independent of the position in space
and time,

• Local Lorentz invariance: all non-gravitational experiments are independent of the motion of the
laboratory as long as it is in free fall.

1.2.2 Curvature of space-time
Gravitation is described as the curvature of space-time under the influence of massive objects. The ge-
ometry of this space-time is characterized by a metric. The motion of a free-falling object follows the
geodesic of this metric. Space-time is modeled as a four-dimensional manifold, where space locally resem-
bles a three-dimensional Euclidean space but not necessarily globally. The general metric, representing
the line element ds between two events, is given by:

ds2 = gµνdx
µdxν , (1.1)

also called the proper time, where gµν is the metric tensor, which is symmetric (gµν = gνµ). The Greek
indices can take the value 0, 1, 2, 3, where 0 represents the time coordinate, while 1, 2, 3 are the spatial
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Inflation

3 minutes 
after Big-Bang

400 000 years 
after Big-Bang

2 billion years 
after Big-Bang

Today

In 10 billion 
years

Baryonic matter Dark matter Dark energy

Planck

Inflaton Radiation Neutrinos

Figure 1.1: Figure adapted from public.planck.fr, which uses the results of Planck Collaboration et al.
(2014). It represents the evolution of the content of the Universe (inflaton, radiation, neutrinos, baryonic
matter, dark matter, and dark energy) at different periods.

.

https://public.planck.fr/notre-univers/contenu-univers
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x

ct

Future light cone

Past light cone

Present

Figure 1.2: Representation of the light cone in the Minkowski space-time. The future light cone is in red,
while the past light cone is in blue. Present time is represented by the violet dot.

coordinates. This metric is exprimed using the Einstein summation convention, where repeated indices
are summed over.

To describe special relativity, we use the Minkowski metric. In this framework, the proper-time can
be written as: ds2 = −c2dt2 + dx2 + dy2 + dz2, as g00 = −1, g11 = g22 = g33 = 1 and gµν = 0 for µ ̸= ν.

In this metric, ds2 can be negative, positive, or zero. A positive ds2 indicates that the two events are
spatially disconnected. The set of points ds2 = 0 is called the light cone and is illustrated in Fig. 1.2.
It represents all the points that can receive a light beam emitted today (referred to as the future light
cone, shown by the red cone) or that received one from the past (past light cone, shown by the blue
cone). Since no object in the Universe can travel faster than the speed of light, the light cone defines the
boundary of the causally connected region of the Universe: events outside the light cone are not causally
connected to the event at the origin of the cone.

1.3 Homogeneous Universe

In this section, I will describe and present the tools necessary for understanding the evolution of a
homogeneous and isotropic Universe.

Cosmological principle The cosmological principle is the fundamental assumption that underlies our
understanding of the Universe’s evolution. It postulates that the Universe is homogeneous and isotropic
on sufficiently large scales (cosmological scales). This principle is supported by galaxy surveys, which
show a uniform and isotropic distribution of galaxies on these scales, as well as measurements of the
CMB. This principle implies that we do not occupy a special or unique location in the Universe.

1.3.1 Friedmann-Lemaître-Robertson-Walker metric and Hubble parameter
The Friedmann-Lemaître-Robertson-Walker (FLRW) metric describes the Universe according to the cos-
mological principle. It is given by:

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (1.2)

where a(t) is the scale factor, t is the cosmic time, c the speed of light, and K is a constant (equal to 0,
−1 or +1) that depends on the local curvature of space. If K = 0, the spatial part of the metric is flat.
This metric is expressed in spherical coordinates (r, θ, ϕ), where dΩ2 = dθ2 + sin2 θdϕ2.

The Hubble parameter characterizes the cosmic expansion rate:

H(t) =
ȧ(t)

a(t)
, (1.3)
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where the dot denotes a derivative with respect to cosmic time t. The Hubble law describes the motion of
galaxies, stating that the further a galaxy is, the faster it moves away from us. This law is a consequence
of the expansion of the Universe and leads to observations that galaxies have redshifted spectra. We can
thus define the redshift z as:

1 + z ≡ λobs
λem

=
a(tobs)

a(tem)
, (1.4)

where λobs and λem are the observed and emitted wavelengths of light, respectively, and tobs and tem are
the time of observation and emission, respectively. At small distances, the Hubble law gives z = H0d/c,
where d is the distance to the galaxy, and H0 is the Hubble constant today. The scale factor is normalised
to a(tobs) ≡ a0 = 1 today, thus a = 1/(1 + z).

1.3.2 Friedmann equations
The Friedmann equations are the Einstein equations applied to the FLRW metric, describing the evolution
of the Universe. They are given by:

H2

c2
=

κ

3
ρ− K

a2
+

Λ

3
, (1.5)

ä

a
= −κ

6
(ρ+ 3P ) +

Λ

3
, (1.6)

where κ = 8πG/c4, G is the gravitational constant, ρ is the energy density, P is the pressure, and Λ is
the cosmological constant. The continuity equation is given by:

ρ̇+ 3H(ρ+ P ) = 0 . (1.7)

Equation of state

To solve these equations, we need to introduce an equation of state, P = wρ. Pressureless matter is
characterized by w = 0, while radiation is characterized by w = 1/3. For the cosmological constant, we
have w = −1. The continuity equation defined in Eq. (1.7) can be integrated to give, if w is constant in
time, ρ ∝ a−3(1+w).

Cosmological parameters

To rewrite the first Friedmann equation and its components, it is convenient to define the critical density:

ρc =
3H2

8πG
. (1.8)

Today, the critical density is 1.88 × 10−29 h2 g · cm−3, using H0 = 100h km · s−1. This corresponds to
the density of a flat Universe (K = 0). We can then define the density parameters for matter, radiation,
and cosmological constant as Ωi = ρi

ρc
, in particular, we can obtain ΩΛ = Λ

3H2 , and the cosmological
parameter for the curvature as ΩK = − K

H2a2 . The first Friedmann equation becomes:

Ωm +Ωr +ΩΛ +ΩK = 1 . (1.9)

With this notation, the continuity equation becomes:

E(z) ≡ H(z)

H0
=
√
Ωm0(1 + z)3 +Ωr0(1 + z)4 +ΩΛ0 +ΩK0(1 + z)2 , (1.10)

where indices 0 denote quantities today.

The total content of the Universe, denoted Ω, is the sum of:

• Matter: Ωm, itself the sum of baryonic matter Ωb and cold dark matter Ωc,

• Radiation: Ωr, itself the sum of photons Ωγ and neutrinos Ων ,

• Dark energy: ΩΛ.

Some solutions

For simple cases, solving the first Friedmann equation to obtain the evolution of a(t) is possible. Here
are a few examples of solutions.
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Example 1 When K = 0 and w ̸= −1, the conservation equation reads ρ ∝ a−3(1+w). The first
Friedmann equation thus gives a(t) ∝ t

2
3(1+w) .

Example 2 When K = 0 and w = −1, it implies that the density is dominated by a cosmological
constant. The first Friedmann equation leads to a(t) ∝ eHt. This case is called a de Sitter space and is
characterized by an accelerated expansion. It is representative of the inflation era and the dark energy
era if it is not a constant cosmological constant.

Example 3 When K = 0, w = 0, and Λ ̸= 0, we are in an Euclidean space dominated by a pressureless

fluid and cosmological constant. The first Friedmann equation leads to a(t) ∝
(

1
ΩΛ0

− 1
)1/3

sinh2/3( 3αt2 )

with α = H0

√
ΩΛ0. This solution is relevant for the late-time evolution of a flat ΛCDM Universe.

Example 4 When K = 0, w = 0, and Λ = 0, the first Friedmann equation leads to a(t) ∝ t2/3. This
case is referred to as the Einstein-de Sitter Universe.

Expansion and contraction

Studying the signs of the expansion rate in different configurations is also possible. For a Universe
with non-flat spatial sections, matter, radiation, and a cosmological constant, we have different possible
scenarios:

• K = 0 or K = −1 and Λ = 0: the Universe will expand forever since the Big Bang,

• K = 1 and Λ = 0: the expansion will be followed by a contracting phase, leading to a Big Crunch,

• K = 1 and Universe has spherical spatial sections: the expansion lasts forever but was preceded by
a contracting phase, the Universe thus undergoes a bounce,

• For other scenarios, it is possible to have a series of contraction and expansion phases, leading to
an oscillating Universe.

Current constraints on the cosmological parameters are consistent with a flat Universe. For example,
Planck Collaboration et al. (2020c) reports ΩK = −0.0007 ± 0.0037 at the 95% confidence level, using
Planck temperature, polarisation, lensing, and baryonic acoustic oscillation data.

1.3.3 Hubble radius and epoch of the Universe

Defining sub-Hubble and super-Hubble modes is crucial to describe the behaviour of perturbations in
the Universe. A mode with a wavelength larger than the Hubble radius is a super-Hubble mode. These
modes remain "frozen" until they re-enter the Hubble radius, at which point they evolve again. The
sub-Hubbles modes have wavelengths shorter than the Hubble radius and evolve through various physical
processes. These are the modes that can collapse to form structures in the Universe. As the Hubble
radius changes over time, modes can cross it, transitioning between sub-Hubble and super-Hubble states.

The evolution of the comoving Hubble radius as a function of the scale factor is presented in Fig. 1.3
in green. The blue dashed line illustrates a specific mode that exits and re-enters the Hubble radius at the
associated scale factor ak and ap. Before ak and after ap, this mode is sub-Hubble and thus influenced by
the physical process. We observe that the evolution of the scale factor varies across the different epochs.
We can distinguish several epochs delimited by the brown dashed lines:

• Inflation era: ends at ae, the Hubble radius varies as (aH)−1 ∝ a−1,

• Reheating: extends from ae to are, for a duration of Nre,

• Radiation dominated era: extends from are to aeq, for a duration of NRD, the Hubble radius varies
as (aH)−1 ∝ a. Photons were the dominant component of the Universe during this era,

• Matter dominated era: begins at aeq, marking the scale factor at the equality between radiation
and matter. Radiation and matter have the same energy density at this point, and matter becomes
dominant after,

• Λ-dominated era: begins at ade, not shown here. If the Universe is flat, the scale factor grows
exponentially a(t) ∝ eHt.
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Figure 1.3: Figure adapted from Mishra et al. (2021). Evolution of the comoving Hubble radius as a
function of the scale factor in green. The blue dashed line shows a given mode that exits and re-enters the
Hubble radius, with the associated scale factor ak and ap. The brown dashed line shows the scale factor
that delimits the different epochs: inflation, reheating, radiation domination, and matter domination.
Nre and NRD are the reheating and radiation domination epoch durations, respectively.
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1.4 ΛCDM model

The ΛCDM model is the standard model of cosmology, describing the Universe as composed of a cosmo-
logical constant Λ, cold dark matter (CDM), and baryonic matter. This model assumes that the Universe
is flat and is characterized by a set of cosmological parameters, including the baryon density Ωb, the cold
dark matter density Ωc, and the Hubble constant H0 discussed previously. Additionally, the model in-
cludes other parameters: τ , the optical depth of reionization; As, the amplitude of the primordial power
spectrum; and ns, the primordial spectral index. In this model, all the other parameters are fixed, and
ΩK ≡ 1− Ωm − ΩΛ.

1.4.1 Cosmological constant
The accelerated expansion of the Universe can be driven by any form of matter having an equation of
state with w < −1/3. One still open question is understanding the origin of this accelerated expansion
of the Universe we observe today. It can come from a cosmological constant, which is a particular form
of dark energy having w = −1, or by any other form of dark energy. The ΛCDM model is the one where
the accelerated expansion is described by a cosmological constant having w = −1, thus constant in time.

1.4.2 Cold dark matter
Evidence for dark matter arises from the study of galaxy rotation curves and the dynamics of galaxy
clusters. In spiral galaxies, stars follow circular orbits, and their rotation velocity as a function of distance
from the centre does not match the expected curve based on visible matter alone. This discrepancy can
be explained by the presence of dark matter, which does not emit light and interacts only through gravity.
A similar effect is observed in galaxy clusters, where the gravitational effect cannot be accounted for only
by visible matter.

The most popular dark matter model is the Cold Dark Matter (CDM) model, which assumes that
dark matter particles are massive and non-relativistic at the time of decoupling from the plasma. These
particles are collisionless, cold, and interact with matter only through gravity. Because these particles
were not coupled to radiation, they began to develop potential wells before the matter-radiation equality,
allowing the formation of the first instabilities that attracted baryonic matter. The CDM model is the
most successful model for describing the large-scale structures of the Universe.

1.4.3 Limitations of the ΛCDM model
The ΛCDM model aligns very well with observations on large scales. However, discrepancies emerge on
smaller scales, where baryonic physics becomes significant. One such discrepancy is the "missing satellite
problem", where the model predicts more satellite galaxies around the Milky Way than are observed.
Another issue is the "cusp-core problem", where the model predicts a cusp in the density profile of
dark matter halos while observations indicate a core (a flat density profile). Additionally, different
observational methods yield to inconsistent values for cosmological parameters. One such example is the
"Hubble tension", where the Hubble constant derived from the CMB does not match the value obtained
from local measurements using supernovae. These discrepancies could come from astrophysical effects
but can also suggest that the ΛCDM model might be incomplete and that extensions to the ΛCDM model
may be needed.

1.4.4 Basic extensions to ΛCDM

Dark energy

Many models of dark energy exist, but here we focus on a common parametrization of a non-constant
equation of state:

w(z) = w0 + wa(1− a) , (1.11)

where w0 and wa are two constants, and a is the scale factor. This parametrization allows us to describe
a large range of dark energy models and is used in the wCDM model, where the cosmological constant
is replaced by a field having w ̸= −1. It is possible to constrain these parameters using observations
of the expansion rate of the Universe. For example, the Dark Energy Survey1 (DES) is a ground-based
telescope designed to probe the origin of the accelerating expansion of the Universe, by studying the
nature of dark energy. DES gives constraints on the w0 − wa parameters in Abbott et al. (2023) for
example.

1https://www.darkenergysurvey.org/

https://www.darkenergysurvey.org/
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The cosmological constant mentioned previously is a particular case of this parametrization with
w0 = −1 and wa = 0. Another particular case is the quintessence model, where a scalar field describes
the dark energy. For quintessence dark energy, we also have wa = 0, thus a constant equation of state in
time.

Dark energy affects the growth of the matter density contrast through the modification of the evolution
of the Universe and hence H(a). These modifications will depend on the actual dark energy present in
the Universe. It will modify the normalisation of the matter power spectrum and the time when modes
enter the non-linear regime.

Other form of dark matter

Another extension to the ΛCDM model arises from the nature of dark matter. Some models propose
alternative forms of dark matter. For example, Warm Dark Matter (WDM) is composed of relativistic
particles at the time of decoupling. This model suppresses the formation of small-scale structures due
to the initial thermal velocity of its particles. WDM can address some of the issues of the CDM model,
such as the "missing satellite problem" and the "cusp-core problem". However, WDM does not explain
the large-scale structures of the Universe as effectively as CDM.

Other alternatives to the ΛCDM model exist, such as modified gravity, but these are not discussed
here. Despite its limitations, the ΛCDM model remains the most successful model for describing the
Universe on large scales. The investigation of these limitations and the exploration of new models is an
active field of research in cosmology.

1.5 Inflation and primordial fluctuations

At the very beginning of the Universe, it underwent a phase of accelerated expansion known as inflation.
This epoch was crucial in establishing the homogeneity and isotropy observed in the Universe today. It
seeded the primordial fluctuations that will evolve into the large-scale structures we observe. In this
section, I will introduce the motivations, the model, and its consequences.

1.5.1 Motivations

Before inflation was introduced, the standard Big Bang model faced several unresolved issues. Introducing
a period of accelerated expansion helped to address these challenges.

First, the absence of magnetic monopoles in the Universe posed a problem. While their existence was
theoretically predicted, they are not observed. Inflation provided a mechanism for their dilution.

Secondly, the horizon problem arises from the observation that distant regions exhibit remarkable ho-
mogeneity and isotropy despite appearing causally disconnected. Inflation allows for the entire observable
Universe to be in causal contact before inflation because two points in causal contact at the beginning of
inflation can be separated by a distance larger than the Hubble radius at the end of inflation (because
the comoving Hubble radius decreases in time), so they can seem causally disconnected today.

Lastly, the flatness problem concerned the flatness of the Universe, which required that the Universe
was even more flat in the past. One way of explaining why the Universe is so flat today is to have a long
enough inflation.

The duration of inflation is quantified by the number of e-folds, defined as:

N ≡ log

(
af
ai

)
, (1.12)

which measures the growth in the scale factor. af and ai are the scale factors at the end (final) and at
the beginning (initial) of inflation, respectively. To address the flatness and horizon problems, inflation
typically requires N ≳ 60, ensuring a sufficiently prolonged period of accelerated expansion.

1.5.2 Model

The inflation model relies on one or several scalar fields known as inflaton. It relates the existence of a
phase during which the Universe is close to a de Sitter space-time, and a slowly rolling scalar field rules
the expansion.
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Scalar field

The simplest solution is a single scalar field φ, which evolves in a potential V (φ). The energy density
and pressure of the inflation are defined as:

ρφ =
φ̇2

2
+ V (φ) , Pφ =

φ̇2

2
− V (φ) , (1.13)

in conformal time. The Friedmann and Klein-Gordon equations during the inflation phase become:

H2 =
8πG

3

(
1

2
φ̇2 + V

)
− K

a2
, (1.14)

ä

a
=

8πG

3

(
V − φ̇2

)
, (1.15)

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (1.16)

where the prime denotes a derivative with respect to φ. The Universe undergoes an accelerated expansion
when φ̇2 < V (φ). This expansion is quasi-exponential if the scalar field enters a regime of slow-roll. This
concept is defined by certain conditions: we assume K = 0 due to its negligible influence during inflation
and that the scalar field satisfies conditions of slow-roll: φ̇2 ≪ V and φ̈≪ 3Hφ̇. The slow-roll parameters
are defined as:

ϵ = −Ḣ/H2 δ = ϵ− ϵ̇

2Hϵ
ξ =

ϵ̇− δ̇

H
. (1.17)

For inflation to occur, it is necessary to have ä > 0, implying w < −1/3 and ϵ < 1.

End of inflation

The end of inflation can be identified with the end of the slow-roll regime, which is characterized by
max(ϵ, δ) ≈ 1. At this point, classical inhomogeneities have been exponentially diminished. If the
inflaton potential has a minimum, the scalar field will oscillate around this minimum immediately after
inflation. These oscillations can be considered as individual scalar particles. Due to Hubble expansion,
these oscillations are gradually damped, leading to the decay of the scalar field into a multitude of
particles. A significant portion of the matter constituting the Universe today traces its origins back to
this decay process.

Quantum fluctuations

The emergence of LSS in the Universe is related to quantum fluctuations of the inflaton field. These
fluctuations are amplified during inflation and redshifted to macroscopic scales. Their wavelengths grow
exponentially until they exceed the Hubble radius, at which point they become frozen and converge
towards an almost scale-invariant power spectrum. In reality, the Hubble parameter H varies over time
during inflation, leading to a red-tilted power spectrum if the inflation occurs in a slow-roll regime. The
spectral index ns is defined as:

ns − 1 ≡ d logP (k)

d log k
, (1.18)

where P (k) is the power spectrum of the primordial fluctuations. A scale-invariant power spectrum
corresponds to ns = 1, while a red-tilted spectrum indicates ns < 1, and a blue-tilted one indicates
ns > 1. Observational constraints on this parameter give ns ≈ 0.96 (Planck Collaboration et al., 2020b).

The perturbations of the inflation scalar field induce metric perturbations, which in turn lead to
density perturbations. The inflation will also give rise to primordial gravitational waves (GW). The
amplitude of the density perturbations and the GW are defined as:

δρ

ρ
∼ H2

2πφ̇
, h ∼ H

2πMP
, (1.19)

where MP is the Planck mass.

1.5.3 Expectation
Inflation addresses various fundamental aspects of the Universe. First, it elucidates the observed homo-
geneity and isotropy by erasing classical inhomogeneities, rendering the observable Universe describable
within a Friedmann-Lemaître model. Moreover, it accounts for the current flatness of the Universe by
exponentially suppressing the curvature. It also elucidates the generation of scalar perturbations, thus
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Figure 1.4: Temperature anisotropies of the CMB as observed by the Planck satellite.

explaining the origin of the density perturbations that manifest as LSS today. The inflation predicts an
almost scale-invariant spectrum of primordial perturbations and presence of GW.

Observations of the CMB support these predictions, revealing a Gaussian distribution and observing
adiabatic, nearly scale-invariant primordial fluctuations. Although primordial GW has yet to be detected,
their confirmation would be a proof. Moreover, evidence of a non-flat Universe would challenge the
inflation model, as it predicts a flat Universe.

1.6 Cosmic microwave background

The cosmic microwave background (CMB) is a relic radiation from the Big Bang, emitted when the
Universe was 380, 000 years old. It is a powerful tool for studying the Universe, providing insights into
its composition, structure, and history. In this section, I will introduce CMB observations and discuss its
different properties.

1.6.1 Observations

The CMB was first observed accidentally in 1965 by Penzias and Wilson (Penzias & Wilson, 1965), who
discovered a background radiation at ∼ 3.5K, now estimated at 2.725K. This radiation is isotropic, with
temperature fluctuations of less than 10−5 K. Over the following years, several satellites have observed
the CMB. The first satellite to observe the CMB was Cosmic Background Explorer2 (COBE), launched
in 1989. COBE was followed by different satellites, including the Wilkinson Microwave Anisotropy
Probe3 (WMAP), launched in 2001, and Planck4, launched in 2009. The Planck satellite provided the most
comprehensive measurements of the CMB to date. The CMB temperature map obtained by Planck is
shown in Fig. 1.4. In recent years, ground-based experiments have also been conducted to observe the
CMB, such as the South Pole Telescope5 (SPT) and the Atacama Cosmology Telescope6 (ACT). These
experiments are typically conducted at high altitudes or very dry sites to avoid atmospheric fluctuations.
Ground-based experiments are limited to observing half of the sky, while satellites allow for a full-sky
survey.

CMB measurements are a powerful tool for studying cosmology due to the Gaussian nature of its
statistics. From the observations, it is possible to compute the temperature, denoted as T, and the
polarization, denoted as E, of the CMB. To constrain cosmological parameters with these observations,
we use the angular power spectrum of the temperature, polarization, and their correlation. The angular
power spectrum traces the correlation between the different points on the map, providing critical insights

2https://lambda.gsfc.nasa.gov/product/cobe/
3https://map.gsfc.nasa.gov/
4https://www.cosmos.esa.int/web/planck
5https://pole.uchicago.edu/public/Home.html
6https://act.princeton.edu/

https://lambda.gsfc.nasa.gov/product/cobe/
https://map.gsfc.nasa.gov/
https://www.cosmos.esa.int/web/planck
https://pole.uchicago.edu/public/Home.html
https://act.princeton.edu/
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Figure 1.5: Planck 2018 temperature power spectrum from Planck Collaboration et al. (2020b). The red
dots are the measurements with their 1σ errors. The blue line is the best fit of a ΛCDM model.

into the Universe’s properties. More details about the generic computation of an angular power spectrum
will be given in Sect. 2.1.2. Fig. 1.5 shows the angular power spectrum of the temperature measured by
Planck Collaboration et al. (2020b) with the red dots and the best fit in blue. The best fit is realized
using a ΛCDM model and is based on the TT, TE, EE, and lensing measurements. The cosmological
constraints obtained by Planck Collaboration et al. (2020b) remain the most comprehensive to date and
often serve as a reference.

The shape and amplitude of the CMB power spectrum will depend on the cosmological parameters,
and it contains different contributions that will be affected differently. The contribution of three different
components are shown in Fig. 1.6 and are:

• Sachs-Wolfe (SW) (Sachs & Wolfe, 1967): due to the photons that oscillate in potential wells,

• Integrated Sachs-Wolfe (ISW): due to the change in the potential wells caused by dark energy,

• Doppler: due to the motion of the baryons with respect to the photons.

1.6.2 Foregrounds
The CMB is not the only source of radiation in the Universe. Several foregrounds can contaminate the
CMB signal and must be removed to obtain a clean CMB map. The most important foregrounds are:

• Thermal Sunyaev-Zel’dovich effect (tSZ) (Sunyaev & Zeldovich, 1970): extragalactic foreground
due to the scattering of CMB photons by the hot electrons in galaxy clusters, the tSZ effect will be
further discussed in Sect. 2.2.4 and Chapter 4,

• Kinetic Sunyaev-Zel’dovich effect (kSZ) (Sunyaev & Zeldovich, 1980): extragalactic foreground due
to the motion of the gas in galaxy clusters,

• Cosmic Infrared Background (CIB) (Partridge & Peebles, 1967; Puget et al., 1996): extragalactic
foreground due to the emission of dust from faraway background galaxy,

• Radio: extragalactic foreground due to the emission of radio sources,
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Figure 1.6: Different contributions to the rescaled power spectrum of CMB anisotropies Baumann (2018).
The total CMB spectrum is shown in black, while the Sachs-Wolfe (SW), Integrated Sachs-Wolfe (ISW),
and Doppler contributions are shown in red, green, and blue, respectively.

• Galactic synchrotron emission (e.g., Page et al., 2007): polarized galactic foreground due to the
acceleration of electrons in the magnetic field of galaxy,

• Galactic dust emission: galactic foreground, that can be polarized or not, due to the thermal
emission of dust grains,

• µ-distortion: galactic foreground for the temperature due to the Compton scattering of CMB
photons by free electrons (Sunyaev & Zeldovich, 1970),

• free-free emission, also known as thermal bremsstrahlung: galactic foreground for the temperature
due to the bremsstrahlung of electrons in the interstellar medium.

In Fig. 1.7, we see the CMB temperature angular power spectrum from Planck Collaboration et al.
(2020a) at 143 GHz. The black dots are the measurement with the associated model in thick blue. The
sum of the foregrounds is the thick orange line, and all the foregrounds are represented with different
colours: CIB in orange, SZ in purple, point source (which includes radio and the point source of CIB) in
green, and dust in red. The instrumental noise is represented by the grey dashed line. The shape and
amplitude of the CMB power spectrum and the foregrounds will vary with frequency. Foregrounds, in
particular the dust in red, dominate at large scales (small ℓ), while the CMB signal is dominant at large
scales (small ℓ). Removing these foregrounds is a complex process, and it is often necessary to mask some
regions of the sky to obtain a clean CMB map.

1.6.3 Influence of the cosmological parameters

The shape and amplitude of the angular power spectrum depend on the cosmological parameters and
the initial conditions of the perturbations. The power spectrum can thus probe various cosmological
parameters, even though some of them are correlated. Here, I will briefly present the influence of certain
cosmological parameters on the CMB angular power spectrum. In the examples, the mass of the neutrinos
is fixed at

∑
mν = 0.06 eV, the equation of state of dark energy is set to w = −1, and tensor modes are

neglected. The non-varying parameter are fixed to the fiducial value from Planck Collaboration et al.
(2020b) (Ωch

2 = 0.119, Ωbh
2 = 0.022, h = 0.677, ns = 0.967, τ = 0.056, ln(1010As) = 3.047), and the

fiducial case is represented by the black line in the figures.
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Figure 1.7: CMB temperature angular power spectrum (green line) and associated foregrounds (coloured
lines) from Planck Collaboration et al. (2020a), at 143 GHz. The y-axis is Dℓ = ℓ(ℓ + 1)Cℓ/(2π). The
sum of all the foregrounds is in thick orange, the measurement in black dots, and the instrumental noise
in dashed grey. The grey-shaded area is not used for cosmology.
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Figure 1.8: Influence of ΩK on the CMB temperature angular power spectrum (Dodelson & Schmidt,
2020)7. The figure shows the power spectrum for ΩK = 0 (flat Universe) in the black line, for ΩK > 0
(open Universe) in dashed line, and for ΩK < 0 (close Universe) in solid line.

The effect of Ωbh
2 and Ωch

2 (rather than Ωb or Ωc) will be studied, as the Hubble parameter can be
derived from the relation Ωm = 1−ΩK −ΩΛ. The reason for this focus is that CMB is more sensitive to
the physical matter density (and physical baryon density) than to the density parameter Ωm (or Ωb).

Cosmological constant and curvature

The variation of the cosmological constant ΩΛ will alter the matter-radiation equality and modify the
relationship between angular distance and redshift. This variation will be evident in the position of the
CMB angular power spectrum peaks. The variation of ΩΛ will also influence the late ISW effect by
increasing the power at large scales.

The variation in curvature ΩKh
2 will alter the angular diameter distance to the last scattering surface,

resulting in similar effects to those induced by changes in the cosmological constant. The precise effect of
having a close (ΩK < 0), flat (ΩK = 0), or open (ΩK > 0) Universe is shown in Fig. 1.8, represented by
the solid lines, black line, and dashed lines, respectively. The figure shows that an open Universe shifts
the peaks to smaller scales, while a closed Universe shifts the peaks to larger scales.

These two phenomena dominate in the present epoch, explaining why ΩK and ΩΛ constraints are
degenerate if only CMB data are used in the analysis.

Amplitude, spectral index, and optical depth

The variation of the amplitude As will directly affect the CMB angular power spectrum. Specifically,
changing As by a given factor will change the amplitude of the power spectrum by the same factor.

The spectral index ns will alter the shape of the SW plateau observed at large scale and adjust the
relative amplitudes of the acoustic peaks compared to the SW plateau.

Changing the optical depth τ will change the epoch of reionization, resulting in a modulation of the
peak amplitudes.

As the effect of τ is degenerate with As, it is often the parameter As exp(−2τ) which is considered.
ns is also correlated with As because ns is normalised at a given ℓ and thus depends on the amplitude of

7Reprinted from Modern Cosmology, Scott Dodelson & Fabian Schmidt, Chapter 9 - The cosmic microwave background,
Pages No. 231 to 269, Copyright 2021, with permission from Elsevier
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Figure 1.9: Influence of Ωbh
2 (left) and Ωch

2 (right) on the CMB temperature angular power spectrum
(Dodelson & Schmidt, 2020)8. Left: power spectrum for Ωbh

2 = 0.022 in the black line, for Ωbh
2 < 0.022

in dashed line, and for Ωbh
2 > 0.022 in solid line. Right: power spectrum for Ωch

2 = 0.119 in the black
line, for Ωch

2 < 0.119 in dashed line, and for Ωch
2 > 0.119 in solid line. Blue markers are the binned

Planck measurements (Planck Collaboration et al., 2020b).

the power spectrum.

Baryon, CDM, and matter densities

In the following example, when changing Ωbh
2 and Ωch

2, an Euclidian Universe is maintained by adjusting
ΩΛ.

The baryon density Ωbh
2 significantly impacts the CMB power spectrum in several ways. It affects

the frequency of the photon-baryon plasma, leaving an imprint on the position and spacing the peaks in
the CMB spectrum. The specific effects are shown in the left panel of Fig. 1.9. A higher Ωb increases
the relative amplitude of the odd peaks compared to the even peaks. In particular, as Ωb increases, the
second peak becomes smaller relative to the first. Additionally, it influences the Doppler effect, which
affects the contrast between peaks. A higher Ωb results in a greater contrast between the peaks. Finally,
it will influence the Silk damping at small scales: a higher Ωb increases the Silk damping effect, leading to
more pronounced suppression of the small-scale fluctuations. Silk damping results from photon diffusion,
which dissipates the small-scale fluctuations.

Modifying the cold dark matter density Ωch
2 will modify the potential wells. Higher Ωch

2 will lead to
deeper potential wells, which prevents photons from escaping. The specific effects are shown in the right
panel of Fig. 1.9. Increasing Ωch

2 will decrease the amplitude of the peaks and will shift their position
to smaller scales.

Primordial gravitational waves

If primordial gravitational waves were generated, they would dominate the power spectrum on large
scales, decreasing the relative height of the acoustic peaks compared to the SW plateau.

1.7 Inhomogeneous Universe

The Friedmann-Lemaitre solutions described in Sect. 1.3 provide a framework for understanding a homo-
geneous and isotropic Universe. However, the actual Universe exhibits inhomogeneities, as evidenced by
galaxies, clusters, and superclusters. These structures emerged from the evolution of small perturbations
in the matter density. The growth of primordial fluctuations, originating from the quantum fluctuations
created by the inflation (see Sect. 1.5.2), is driven by gravitational instabilities that amplify the density
fluctuations of matter. The observed structures in the Universe result from the interplay between gravi-
tational forces, which amplify local density fluctuations, and cosmic expansion. To explain the structures
we observe today, it is essential to understand the evolution of density perturbations under the influence
of gravity in an expanding Universe. This requires solving the equations for an inhomogeneous Universe.

8Reprinted from Modern Cosmology, Scott Dodelson & Fabian Schmidt, Chapter 9 - The cosmic microwave background,
Pages No. 231 to 269, Copyright 2021, with permission from Elsevier
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1.7.1 Eulerian view of the gravitational instabilities
In this section, I will focus on solving the equations that describe the growth of inhomogeneities in a
fluid of non-relativistic matter. In the linear regime, the density contrast and velocity remain small. The
growth of inhomogeneities due to linear instabilities allows us to describe the emergence of structures
at large scales. To understand the formation of local structures, such as galaxies, we must extend our
analysis to the fully non-linear regime.

Using an Eulerian approach and under the approximation of a single flow (valid during the first phase
of the gravitational instabilities, when there is no shell-crossing), the dynamics can be described by the
Poisson, mass conservation, and Euler equations:

∆Φ(x) = 4πGρ0a
2δ(x) , (1.20)

δ̇ +
1

a
∇x · [(1 + δ(x))u(x)] = 0 , (1.21)

u̇i +
ȧ

a
ui +

1

a
uiuj = −1

a
∇iΦ− 1

aρ
∇iP , (1.22)

where Φ is the gravitational potential, ρ0 is the mean density of the Universe, δ is the density contrast
defined as δ(x) = ρ(x)−ρ0

ρ0
, u is the peculiar velocity, P is the pressure, and a is the scale factor.

At the beginning of the gravitational instabilities, the density is only weakly perturbed compared
to the homogeneous configuration. This allows us to linearize the equations, assuming that the density
contrast and gradient are small: δ << 1, and

(
ut
d

)2
<< δ, where u is the characteristic fluid velocity and

d the coherence length of density perturbations.
For the following equation, we introduce the dimensionless divergence of the peculiar velocity: θ(x) =

1
aH∇x · u(x). At linear order, the evolution of a fluid in the single-flow regime, the equations become:

δ̇ +Hθ = 0 , (1.23)

θ̇ + 2Hθ +
Ḣ

H
θ = −4πGρ0

H
δ , (1.24)

where I have suppressed the x dependence for clarity. The first equation is the mass conservation, and
the second one corresponds to the Euler equation. Consequently, we can obtain the evolution for the
density contrast as:

δ̈ + 2Hδ̇ = 4πGρ0δ . (1.25)

As the previous equation is a second-order differential equation, the evolution of the density perturbations
admits two solutions. By evaluating the sign of the second derivative, we can determine that one solution
is increasing while the other is decreasing. The general solution for the density contrast is:

δ(t) = D+(t)δ+(0) +D−(t)δ−(0) , (1.26)

where D+ is the growing mode, and D− the decaying mode. Both modes depend on the initial conditions
of the density. Here, δ− and δ+ denote the corresponding initial density field.

As the mass conservation can be written as a ∂
∂aδ + θ = 0, the solution for θ(t) reads:

θ(t) =
∂ logD+

∂ log a
D+(t)δ+(0) +

∂ logD−

∂ log a
D−(t)δ−(0) . (1.27)

Certain specific solutions can be derived. However, numerical integration is needed for solutions in
the general case.

1.7.2 Lagrangian view and Zel’dovich approximation
In the previous section, I employed an Eulerian view, but an alternative approach is to adopt a Lagrangian
view. The new coordinates are the initial position q and the displacement field ψ(q, t). Under the
Zel’dovich approximation (Zel’dovich, 1970), the linear solution for the displacement field is given by:

∇qψ̈ + 2H∇qψ̇ =
3

2
ΩH2∇qψ . (1.28)

Similar to the Eulerian view, the solution is the sum of a growing and decaying mode. At linear order, we
can neglect the decaying mode. The Zel’dovich approximation leads to the solution for the displacement
field and density as:

ψZA(q, t) = D+(t)ψ
+(q) , (1.29)

ρZA(q, t) =
ρ̄

|(1−D+(t)λ1)(1−D+(t)λ2)(1−D+(t)λ3)|
, (1.30)
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Figure 1.10: Galaxy distribution by the Sloan Digital Sky Survey. Each point is a galaxy, with higher
density of galaxies represented in red. The cosmic web is clearly visible.

where ρ̄ is the mean density in the Universe, λi are the eigenvalues of the deformation tensor −∂ψ+
i /∂qj :

and are order as: λ1 < λ2 < λ3. The density field is singular when the deformation tensor becomes
singular, marking the occurrence of the first shell crossing. The Zel’dovich approximation is valid until
this point and can be used to describe the evolution of the density field in the linear regime. Following
the Zel’dovich approximation, we can describe the formation of the different structures observed in
the Universe, known as the cosmic web. It is a network of complex structures with different types of
environments that results from the evolution of the density field under gravitational instabilities. When
λ3 > 0, the density compression along one direction initiates the formation of the so-called pancakes, later
called walls. When λ2 > 0, the pancakes collapse along a secondary axis, giving rise to filaments. Finally,
when λ1 > 0, the filaments further collapse into knots. In regions where none of the eigenvalues are
positive, the density is underdense, leading to the formation of voids. The galaxy distribution measured
by the Sloan Digital Sky Survey9 (SDSS), shown in Fig. 1.10, illustrates these structural elements,
with each point representing a galaxy. Denser regions are shown in red. From this picture, we can clearly
see the presence of large voids, filaments, and knots. Over the years, various classifications of these four
structures have emerged, a topic explored in more detail in Chapter 5, particularly in Sect. 5.1.

1.7.3 Structures in the non-linear regime
The linear approximation is valid for small density contrast or if the field is smoothed with a sufficiently
large window function. The earlier a wavelength becomes sub-Hubble, the more it is amplified, causing
small scales to be the first to enter the non-linear regime.

Scale where non-linearities become important

The normalisation of the initial power spectrum is typically performed such that the variance of the
density field within a sphere of radius R8 = 8h−1Mpc is approximately unity:

σ2
8 ≡

〈(
3

4πR3
8

∫

|x|≤Rs

δ(x)d3x

)2〉
∼ 1 , (1.31)

9https://www.sdss4.org/

https://www.sdss4.org/
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where δ is the density contrast and x the spatial position. The scale where non-linearities become
important must be greater than the scale of the non-linearity. The concordant model predicts that
non-linearities are integrated for a length scale of 8h−1Mpc. The length scale R8 is thus taken as
the characteristic scale below which non-linearities cannot be neglected. It is the scale at which the
density contrast becomes too large for the linear approximation to hold, necessitating the application of
perturbation theory. Typically, the linear regime holds for σ ≲ 0.1, and perturbation theory is applicable
for σ ≲ 0.1− 0.5. Perturbation theory will be discussed in Sect. 5.1.1. Here, I present a simple model to
solve the evolution of structures in the non-linear regime.

Spherical collapse model

The spherical collapse model is a simple model for describing the formation of structures in the non-
linear regime, such as halos. This model assumes a spherically symmetric density field, where the density
contrast is significant enough to enter the non-linear regime. It states that the evolution of the radius of
the perturbation depends only on the mass enclosed within the sphere centred on the perturbation, not
on the density profile itself. The equation of motion for the radius R is given by:

R̈ = −GM(< R)

R2
. (1.32)

In an Einstein-de Sitter Universe with a background density ρ0, after a given time, the overdensity of
initial radius R0 can be express as:

R = R0(1 + δ)−1/3 ∼ R0

(
1− δ

3

)
. (1.33)

For an Einstein-de Sitter Universe, it is possible to determine the mean overdensity of a sphere and the
moment when the perturbation collapses. The critical density is δc ≈ 1.69 and represents the threshold
above which the perturbation will collapse. If the density contrast exceeds this value, the perturbation
will undergo gravitational collapse.

The previous equations are only valid before shell-crossing. After spherical collapse, the sphere is
expected to reach hydrostatic equilibrium through virialization. During this process, dissipative mech-
anisms convert kinetic energy into thermal motion, leading to an equipartition of energies. The sphere
reaches a stationary regime and stabilizes its radius.

1.8 Conclusion

This chapter provides an understanding of the theoretical framework of cosmology. We have introduced
the Friedmann-Lemaître models, the ΛCDM model, and the inflationary model. We have also discussed
the CMB, its observations, and its properties. Finally, we presented the evolution of density perturbations
in an expanding Universe from the linear to the non-linear regime using the simple gravitational collapse
model. We have seen how initial perturbations can lead to the formation of large-scale structures, which
will be the focus of the next chapter.
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The previous chapter presented the emergence and evolution of structures and the formation of the
cosmic web. In this chapter, the focus shifts to the observables that enable the study of large-scale
structures of the Universe. I will first present the statistics used to study the LSS, such as the two-
point correlation function and power spectrum, and then discuss higher-order statistics in Sect. 2.1. In
Sect. 2.2, I will discuss several observables used in LSS studies: matter distribution, galaxy clustering,
gravitational lensing, CMB lensing, and the thermal Sunyaev-Zel’dovich effect, along with their inherent
limitations. Finally, in Sect. 2.3, I will present the methodology of modeling observables using a halo
model framework. The two first sections of this chapter (Sects. 2.1 and 2.2) were written with the help
of Bernardeau et al. (2002); Bernardeau (2007); Peter & Uzan (2013); Dodelson & Schmidt (2020), while
the third section (Sect. 2.3) was written with the help of Hill & Pajer (2013); Mead et al. (2020); Asgari
et al. (2023).

2.1 Statistics

To study the statistics of the LSS of the Universe, we assume a fundamental principle known as the
ergodicity principle. This principle states that the time average of a physical quantity over a long period
for a single system is equal to the ensemble average over a large number of identical systems at a single
instant in time. Applied to the LSS, which are, according to the cosmological principle, statistically
homogeneous and isotropic, this principle allows us to relate ensemble averages with spatial averages over
one realisation of a random field.

2.1.1 Two-point correlation function and power spectrum
Two-point statistics, such as the two-point correlation function and power spectrum, are the most common
tools used to study the LSS of the Universe. They describe how points (such as galaxies) are distributed
relative to each other at given distances. Two-point statistics capture all the Gaussian information, as
the statistical properties of a Gaussian random field can be fully described by its two-point statistics,
particularly by the mean and variance.

The two-point correlation function and the power spectrum can be applied to any scalar field. Here,
I will use the density contrast δ(x), which is a random field.

The correlation function between two objects at positions x and x+ r is defined as:

ξ(r) = ⟨δ(x)δ(x+ r)⟩ , (2.1)

and only depends on the norm of r because of statistic homogeneity and isotropy. If ξ(r) > 0, the two
points are more likely to be found at a distance r than in a random distribution. Conversely, if ξ(r) < 0,
the two points are less likely to be found at a distance r than if they were distributed randomly.

The Fourier transform and inverse Fourier transform are defined with the following normalisation:

δ(x) =

∫
d3k

(2π)3/2
δ(k) exp(ik · x) , δ(k) =

∫
d3x

(2π)3/2
δ(x) exp(−ik · x) . (2.2)

If δ(x) is real, then δ(k) = δ⋆(−k). k is the wave number corresponding to a specific scale, with higher
k values representing smaller scales.

It is then possible to apply Fourier transform to the two-point correlation, which becomes:

⟨δ(k)δ(k′)⟩ =

∫
d3x

(2π)3/2
d3r

(2π)3/2
ξ(r) exp[−i(k + k′) · x− ik′ · r] (2.3)

= δD(k + k′)

∫
d3rξ(r) exp(ik · r) (2.4)

≡ δD(k + k′)P (k) , (2.5)

where δD is the Dirac delta function. From these equations, we define P (k) as the power spectrum,
which is directly related to the correlation function. The power spectrum focuses on the distribution of
power across different scales (frequencies) instead of distances. Because the Fourier modes are discrete,
the power spectrum is only accessible at a finite number of modes k. A high value of P (k) at a given
k means that structures of this size are prominent in the distribution. It is also possible to obtain the
inverse relation:

ξ(r) =

∫
d3k

(2π)3
P (k) exp(ik · r) (2.6)

The two-point correlation function and the power spectrum are related, and we can obtain one from
the other. Depending on the problem, one can be more valuable than the other. As observables are
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isotropic, they are invariant under translation, leading to the decorrelation of the modes in Fourier space:
⟨P (k)P (k′)⟩ = 0, which is an advantage of working in Fourier space. For example, when studying galaxy
clustering, the two-point correlation function is generally used as it is easier to measure and to account for
masks in it (e.g., Zhang et al., 2024, which uses a two-point correlation function to study the clustering of
Milky Way-like galaxies, using simulations). On the other hand, analyses of LSS, which include broader
fields, are often done using the power spectrum to decorrelate the modes (e.g., Tegmark et al., 2004,
which computes the power spectrum using SDSS observations).

Cross-correlation

In the previous derivation of the two-point correlation function and power spectrum, we looked at the
correlation of density with itself. It is also possible to look at the correlation between two different
fields. Cross-correlating different fields can improve the constraining power as we gain information.
For example, the cross-correlation between CMB and one probe of LSS can help to break the ΩK-ΩΛ

degeneracy mentioned in Sect. 1.6.3.
Cross-correlation is particularly useful when different observables are sensitive to different aspects of

the underlying cosmological model. For instance, the CMB provides information about the early Universe
and the initial conditions of structure formation, and LSS probes the growth of structures at later times.
Additionally, different observables are more sensitive to different physics (baryonic matter or total matter,
for instance). Combining datasets through cross-correlation leads to more precise constraints (e.g., Van
Waerbeke et al., 2014, which perform the first detection of correlation between tSZ from Planck and
weak lensing from Canada-France-Hawaii Telescope lensing survey (CFHTLens)1, or Fang et al.,
2024, which evaluate the constraining power of combining weak lensing, CMB lensing, galaxy density
and tSZ).

2.1.2 Angular power spectrum

The angular power spectrum Cℓ characterizes the distribution of power of the fluctuations on the celestial
sphere. It is measured in multipole ℓ, corresponding to different angular scales. Smaller ℓ corresponds
to larger angular scales, while larger ℓ represents smaller scales, capturing finer details. Essentially, the
angular power spectrum is a projection of the 3D power spectrum onto the sphere. One example of the
angular power spectrum is the CMB temperature, as illustrated in Fig. 1.5.

The angular power spectrum is defined over the entire sky by integrating the power spectrum on
the line of sight. To obtain its complete expression, the depth correlations must be accounted for. I
will not provide the full equations here, but they can be found, for example, in Gao et al. (2024). A
standard approximation known as the Limber approximation (Limber, 1954; Peebles, 1973) assumes that
these depth correlations are negligible with respect to the spatial correlations because the radial window
functions are broad compared to the scales of interest in the spatial fluctuations. This approximation is
particularly accurate for small scales. To have robust estimation on all scales, different approaches, such
as the one done in Gao et al. (2024), can be used.

In this thesis, I will use the angular power spectrum under the Limber approximation and the flat
sky approximation, which neglects the sky curvature. A comparison between different approximations
can be found in Gao et al. (2024). Under these two approximations, the angular power spectrum Cℓ is
expressed as:

Cℓ =

∫
dr̂

r̂2
W (r̂)W ′(r̂)P (ℓ/r̂; r̂) , (2.7)

where r̂ is the comoving distance, W (r̂) is the window function tailored to the specific observational
characteristics, and P (ℓ/r̂; r̂) is the 3D power spectrum at the scale corresponding to the multipole ℓ at
the comoving distance r̂. A comoving distance is the distance between two points in the Universe at a
given time. The physical distance r is given by r = a(t)× r̂, where a(t) is the scale factor. The comoving
distance is constant in time, while the physical distance evolves with time.

2.1.3 Higher-order statistics

Two-point statistics only capture the Gaussian information of a field. To probe non-Gaussianities, it
is often beneficial to use higher-order statistics. This can be achieved through higher-order correlation
functions and poly-spectra, which extend the concept of the second-order correlation function and power
spectrum. Additionally, other statistics, such as Minkowski functionals, peak counts, etc., can be used.
In the following, I will provide a few examples of higher-order statistics.

1https://www.cfht.hawaii.edu/en/

https://www.cfht.hawaii.edu/en/
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Wick theorem

The Wick theorem allows to compute higher-order statistics of a Gaussian field, such as the four-point
and higher-order correlation functions. It states that the expectation value of the product of a Gaussian
random field is equal to the sum of all possible pairings of the field, with each pairing representing a two-
point correlation function. This allows us to relate higher-order correlation functions to the two-point
correlation function. The theorem is expressed as:

⟨δ(k1)...δ(k2p+1)⟩ = 0 , ⟨δ(k1)...δ(k2p)⟩ =
∑∏

i,j

⟨δ(ki)δ(kj)⟩ . (2.8)

The first equation indicates that for a Gaussian field, the expectation value of an odd number of fields is
zero. This occurs because Gaussian distributions are symmetric about their mean. The second equation
shows that for an even number of fields, the expectation value is the sum of all possible pairings of the
fields.

Higher-order correlation functions and poly-spectra

The correlation function of order N , which quantifies the spatial correlations between N points, is defined
as:

ξN (x1, ...,xN ) = ⟨δ(x1), ..., δ(xN )⟩c , (2.9)

where ⟨...⟩c denotes the connected correlation function. The connected part represents the sum of all
possible pairings of the fields, as specified by the Wick theorem.

From this higher-order correlation function, we can define the poly-spectra Pn:

⟨δ(k1)...δ(kn)⟩c = δD(k1 + ...+ kn)Pn(k1, ...,kn) . (2.10)

When n = 3, the poly-spectra is known as the bispectrum P3(k) ≡ B(k). The bispectrum is widely
used to study non-Gaussianities in the Universe. It can, for example, be applied to galaxy clustering
(Sefusatti et al., 2006), weak lensing (Takada & Jain, 2004), and other observable. It can also be used to
study alternative models of gravity (e.g., Gil-Marín et al., 2011).

Apart from higher-order correlation functions and poly-spectra, other higher-order statistics can be
used to study the LSS of the Universe. I mention a few examples of such statistics here.

Minkowski functionals

The Minkowski functionals are a set of geometric and topological measures used to assess the morphology
and connectivity of structures within a field. In three-dimensional space, these functionals include the
volume, surface area, mean curvature, and Euler characteristic (representing the number of independent
connected regions minus the number of holes in each region). They are valuable tools for analysing the
non-Gaussian characteristics and topological properties of the cosmic web (e.g., Einasto et al., 2014).

Peak counts

Peak count statistics involve the identification and enumeration of the local maxima (peaks) within a
field. The histogram of these peaks can be used to constrain cosmological parameters. For example, peak
counts can apply to various fields such as the distribution of galaxies or the weak lensing convergence
map (e.g., Ayçoberry et al., 2023, article discussed in Chapter 6).

Void statistics

Voids are large and underdense regions in the Universe. Studying their distribution and properties
provides insights into the LSS and the mechanisms driving structure formation in the Universe. Void
statistics include the abundance, size distribution, and shape within galaxy surveys. These statistics
serve as a probe for testing models of dark energy and modified gravity, for example, (e.g., Contarini
et al., 2022).

Density split statistics

Density split statistics involve dividing the density field into distinct regions based on different density
thresholds, allowing for separate analyses of different regimes. This approach allows the study of the
distinct properties associated with each type of region. For example, density split statistics is used to
analyse the clustering properties of galaxies (e.g., Paillas et al., 2024).
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2.2 Observables

The LSS of the Universe are probed through a range of observables, including matter distribution, galaxy
clustering, gravitational lensing, CMB lensing, and the thermal Sunyaev-Zel’dovich effect. These observ-
ables provide valuable insights into the distribution of matter and the underlying cosmological model. In
the following sections, I will present these observables and discuss their inherent limitations.

2.2.1 Matter

The matter distribution is one of the most fundamental observables in studying the LSS of the Universe.
We expect that the contrast of the matter density is fully characterized by its power spectrum because of
the Gaussian initial conditions in the Universe. However, on the underdense and overdense regions, the
evolution of structures imprints non-Gaussian information that is not captured by the power spectrum.
The power spectrum still provides essential information about how matter is distributed across different
scales in the Universe. During the formation of structures, small-scale fluctuations enter the horizon
before matter-radiation equality, suppressing the power spectrum. The turnover of the power spectrum
at keq, which is the scale that enters the horizon at equality, is a key feature. Another critical scale is
kNL, marking where non-linearities become significant. At present epoch kNL(a = 1) ∼ 0.25hMpc−1. In
earlier epochs when structures were less evolved, kNL was larger, indicating that smaller structures could
still be described within the linear theory.

There is no direct way to measure the matter power spectrum. Instead, it can be inferred through
observations such as galaxy clustering and gravitational lensing at the cost of some potential bias. Fig. 2.1
illustrates the matter power spectrum measured from various observational techniques: CMB, SDSS
galaxies, cluster abundance, weak lensing, and Lyman-α forest in green, black, blue, pink, and red,
respectively. The agreement between these observations demonstrates their complementarity, enabling a
robust characterisation of the matter power spectrum across different scales. For instance, CMB probes
primarily large scales, while Lyman-α forest probes small scales.

2.2.2 Galaxy clustering

Galaxy clustering is another essential observable for studying the LSS of the Universe. Galaxies are
tracers of the underlying matter distribution, and their clustering properties provide valuable insights
into this distribution. The galaxy density field can be derived from galaxy redshift surveys, which provide
the 3D positions of each galaxy (such as with the SDSS survey, see Fig. 1.10 and Tegmark et al., 2004).
Two types of surveys are used: photometric and spectroscopic. Photometric surveys use different broad-
band filters to capture images of galaxies at different wavelengths, thus providing images of the integrated
light. The redshift of galaxies is then estimated based on the colour of the galaxies using photometric
redshift techniques. In contrast, spectroscopic surveys employ spectrographs to obtain the spectrum of
each galaxy. By identifying spectral lines and measuring their shifts, a direct and precise measurement
of the redshift can be obtained. In summary, photometric surveys allow for the rapid cover of large
sky areas at the expanse of less precise redshift estimations. On the other hand, spectroscopic surveys
provide more accurate redshift measurements but cover smaller areas of the sky, as obtaining a spectrum
for each galaxy is time-consuming. Typically, photometric surveys are used for wide-field analyses, while
spectroscopic surveys are used for precise measurements and detailed analysis of galaxy properties.

The galaxy distribution differs from the matter distribution due to the effect of stellar formation
and other physical processes, making it a biased tracer of LSS. To quantify the relationship between the
galaxy and matter distributions, a bias factor b is introduced. The linear bias relation is given by:

δg(x) = bδm(x) , (2.11)

which holds only to linear order. Consequently, the galaxy power spectrum Pg(k) is related to the
matter power spectrum P (k) through the bias factor as Pg(k) = b2P (k). The bias factor depends on the
galaxy sample and generally varies with redshift. It can be determined using the peak-background split
formalism, which shows that the bias factor is larger for high-mass halos, as they cluster more strongly
than the overall matter distribution. While it is possible to introduce a non-linear bias (see, for example,
the comparison of using a linear or non-linear bias in Hoffmann et al., 2017), the following will focus on
the linear bias only.

To obtain the true power spectrum of galaxies (and the underlying matter distribution), it is necessary
to account for the redshift-space distortion (RSD) and cosmology. Galaxy clustering is affected by RSD
(Kaiser, 1984), which arises due to the peculiar velocities of galaxies. These velocities cause galaxies to
move away from us, leading to an increase in their observed redshift and thus affecting their inferred
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Figure 2.1: Matter power spectrum from Tegmark et al. (2004). The red line corresponds to the matter
power spectrum for Ωm = 0.28, h = 0.72, Ωb/Ωm = 0.16, and τ = 0.17. The different colours represent
the power spectrum measured from different observable: CMB (green), SDSS galaxies (black), cluster
abundance (blue), weak lensing (pink), and Lyman-α forest (red) with their associated error bars.



30 Large-scale structures – 2.2. Observables

distances. The RSD effect provides a means to quantify the growth rate of structures, denoted by f

(where f ≡ d logD(a)
d log a ). This growth rate is related to the galaxy overdensity in redshift space, and

accurately accounting for RSD is crucial for deriving the true galaxy power spectrum.
In the distant-observer approximation, only RSD is considered when analysing the observed overden-

sity. The redshift-space overdensity in Fourier space can be expressed as:

δg,RSD(k) =
[
b+ fµ2

k

]
δm(k) , (2.12)

where µk is the cosine of the angle between the wavevector and the line of sight. When fµ2
k ≥ 0, the

apparent overdensity in redshift space is larger than in real space. At the level of the power spectrum,
the observed galaxy power spectrum in redshift space can be written as:

Pg,RSD(k, µk, z̄) = Plin(k, z̄)
[
b+ fµ2

]2
+ PN , (2.13)

where Plin is the linear power spectrum, z̄ is the mean redshift, and PN is the noise power spectrum.
The noise is considered as white noise here, implying it is scale-independent. This approximation is valid
if galaxies are Poisson-sampled from an underlying continuous field: PN = 1/n̄g, where n̄g is the mean
number of galaxies. This approximation is generally reasonable for low k but may not hold at higher k.

The other effect that must be accounted for is using an incorrect cosmology when assigning 3D
positions to galaxies based on their redshift, as different cosmologies affect the distance-redshift relation.
This is known as the Alcock-Paczynski effect (Alcock & Paczynski, 1979). In the density contrast and
power spectrum, all the components of k need to be accounted for. This effect is degenerate with RSD,
but this degeneracy can be broken by examining the BAO peak. The BAO peak directly measures the
comoving distance r̂ and the Hubble parameter H.

In observations, the power spectrum at low k (larger scales) exhibits large error bars due to cosmic
variance, as only a finite volume of the Universe is observed. This is evident from the black dots in
Fig. 2.1. On the other hand, at higher k (small scales), non-linearities become significant and must be
accounted for.

2.2.3 Gravitational lensing
Gravitational lensing is a powerful tool for studying the LSS of the Universe. It arises due to the deflection
of light from distant sources by inhomogeneous gravitational fields (lenses), providing a way to map the
matter distribution in the Universe, including dark matter. These inhomogeneities induce distortions
in the observed shapes of galaxies (images). The deflection of light and its impact on the formation of
images are illustrated in Fig. 2.2. Gravitational lensing applies to different systems: a star can be lensed
by another star, a galaxy can be lensed by another galaxy, a cluster or LSS, and the CMB can be lensed
by the LSS. In this section, we will first focus on the lensing of galaxies by cluster and finish with CMB
lensing. In the case of galaxies, since we do not know their intrinsic shape, we assume their shapes are
randomly oriented, attributing any observed shape correlations to the effects of gravitational lensing.

The distortion caused by gravitational lensing arises because the deflection angle varies across the
galaxy image. This distortion is quantified by the distortion matrix A, which describes how the gravita-
tional lens alters the image of a source:

A ≡ dθS
dθ

=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(2.14)

where θS is the position of the source and θ position of the image. κ is the convergence, which describes the
isotropic magnification, and γ = (γ1, γ2) is the shear, describing the anisotropic stretching of the image.
These two effects are illustrated in Fig. 2.3, where the blue area is the source image, the red illustrates the
impact of convergence, and the green the effect of shear. The magnification due to convergence affects
the received flux of the galaxy. By measuring the ellipticities of galaxies, we can estimate the shear field,
which depends on the gravitational potential of the lens structures.

Gravitational lensing can be categorized into two regimes: strong and weak lensing. Strong lensing
results in giant arcs and multiple images of the source. Weak lensing occurs when the convergence and
shear are small (κ ≪ 1 and γ ≪ 1), resulting in subtle distortions of the background images without
creating multiple distinct images of the source. In the intermediate regime between weak and strong
lensing lies the arclet regime, where images can be subject to strong distortions without necessarily
producing multiple images. Fig. 2.4 is a simulation illustrating the effect of different lensing regimes. The
central dot is the lens object, and the black lines represent the strong magnification zone. The coloured
objects represent images of the source. From left to right: the simulation goes from weak to strong lensing
with the apparition of an Einstein ring when the lens and the source alignment are nearly perfect.
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Figure 2.2: Illustration of the lensing effect (Bisnovatyi-Kogan & Tsupko, 2017). The left panel shows
the geometry of the gravitational lensing and the trajectories of light. The right panel shows the position
of the images created, with the position of the potential Einstein ring in dashed black. On both panels,
the lens is represented by the blue object, and the images an observer will see are in orange.

Figure 2.3: Illustration of the lensing effect. The non-lensed image is in blue. The convergence κ, repre-
sented in red, is responsible for the magnification, while the shear γ, represented in green, is responsible
for the distortion of the image.
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Figure 2.4: Five snapshots of a gravitational lensing simulations (Wambsganss, 1998). From left to right:
the simulation goes from weak to strong lensing with an Einstein ring. This is due to the larger alignment
between lens and source on the right.

For example, strong lensing can measure the mass distribution in clusters, such as in Oguri (2010).
Weak lensing can be used to study the properties and evolution of LSS and geometry of the Universe
(Kilbinger, 2015).

Measurement of the cosmic shear

The measurement of cosmic shear relies on analysing the shapes of background galaxies and their ellip-
ticities. This measure is based on the assumption that the intrinsic ellipticities of source galaxies are
random and uncorrelated. Any deviations from this random distribution and correlation observed in the
ellipticities are attributed to gravitational lensing effects. However, this assumption is not always valid,
as the environment can influence the shape of galaxies. Galaxies often reside in groups or clusters where
external gravitational distortions can alter their shapes by a few percent. Additionally, alignments of
galaxies shapes can occur when galaxies reside in filaments, for instance.

Limitations

When measuring the cosmic shear, several limitations or uncertainties can arise:

• Mass-sheet degeneracy: the addition of a uniform mass sheet to the lens can produce the same
observed lensing effects while changing the inferred mass distribution,

• Redshift distribution of the sources: imperfect knowledge of the redshift distribution of the sources
introduces uncertainties in the inferred mass distribution and resulting analyses,

• Intrinsic alignment: the intrinsic alignment of galaxies can influence the measured shear, potentially
introducing biases into the analyses,

• Survey systematics: various systematics effects can impact measurements, including atmospheric
turbulence, optical aberrations, or other instrumental artefacts.

CMB lensing

The CMB lensing occurs when photons from the CMB are deflected by the LSS of the Universe. While
the mean temperature of the CMB remains unchanged, the directions of arrival of the photons are shifted
due to gravitational lensing. This effect distorts the observed CMB temperature map. For instance, CMB
lensing can be used to measure cluster mass (Huchet & Melin, 2024).

The CMB lensing is reconstructed by measuring the non-Gaussinities created by the lens on the CMB
observables, which are supposed to be Gaussian. In Fig. 2.5, the angular power spectrum of the CMB
temperature is shown for both the lensed (red) and unlensed (dotted black) cases. The figure illustrates
how lensing smooths out the peaks and enhances power on very small scales.

2Reprinted from Modern Cosmology, Scott Dodelson & Fabian Schmidt, Chapter 13 - Probes of structure: lensing, Pages
No. 373 to 399, Copyright 2021, with permission from Elsevier
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Figure 2.5: Effect of lensing on the CMB temperature angular power spectrum from Dodelson & Schmidt
(2020)2. Top: temperature angular power spectrum before (black dotted line) and after lensing (red line).
Bottom: fractional difference between the two.

2.2.4 Thermal Sunyaev-Zel’dovich

The thermal Sunyaev-Zel’dovich (tSZ) effect Sunyaev & Zeldovich (1970) occurs when CMB photons
interact with hot electrons in galaxy clusters through inverse Compton scattering. This interaction
results in an energy shift of the CMB photons, as illustrated in Fig. 2.6. Since the tSZ effect depends on
the electron pressure, it is a powerful probe of baryonic matter within these clusters.

The tSZ effect manifests as a distortion of the CMB black body spectrum, which varies with frequency
as illustrated in Fig. 2.7. The undistorted CMB spectrum is shown in dashed line, while the distorted
spectrum, resulting from a hypothetical cluster with a mass 1000 times greater than usual cluster, is shown
in solid line. At frequencies below ∼ 217GHz, the tSZ effect decreases the CMB temperature, whereas,
at higher frequencies, it causes an increment. The tSZ effect is primarily driven by contributions from
galaxy clusters, where hot and free electrons reside. Additionally, since the effect only weakly depends
on the distance to the cluster, it is particularly useful for cross-correlation with other observables.

By measuring this distortion, it is possible to infer the astrophysical properties of the hot gas in
galaxy clusters, particularly their pressure, on which the tSZ signals scale, and also recover cosmological
information. The tSZ effect is characterized by the Compton-y parameter, which quantifies the integrated
pressure of the hot gas along the line of sight. The Compton-y parameter in a given direction n̂ is defined
as:

y(n̂) =
σT
mec2

∫
Peds , (2.15)

where σT is the Thomson cross-section, me is the electron mass, c is the speed of light, Pe is the electron
pressure, and ds the distance along the line of sight. The Compton-y parameter is related to the tem-
perature of the electrons (Te) and the gas density (ne) through the relation Pe = neTe. The number of
free electrons in a halo scales with M , and the temperature scales as M2/3. Consequently, the shape and
amplitude of the spectra are influenced more by massive halos (as the Fourier transform of the pressure
thus scales as M5/3) than matter or galaxies, whose profiles scale as ∼ M . The amplitude of the tSZ is
thus extremely sensitive to σ8, as σ8 influences the formation and evolution of structures, in particular
the abundance and mass of clusters (e.g., Komatsu & Kitayama, 1999; Refregier et al., 2000; Seljak et al.,
2001; McCarthy et al., 2014).

The temperature shift of the CMB photons due to the tSZ depends on the frequency ν and is given
by:

∆T

TCMB
= g(ν)y , (2.16)

where g(ν) = x coth(x/2) − 4 if relativistic corrections are neglected, x = hν/(kBTCMB), kB is the
Boltzmann constant, and h is the Planck constant. g(ν) is positive (negative) for frequencies above
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Figure 2.6: Illustration of the thermal Sunyaev-Zel’dovich effect. CMB photons (in red) interact with
energetic electrons (in blue) through inverse Compton scattering, leading to a shift in the energy of the
observed photon.

(below) ν ∼ 217Ghz. Examples of conversion factors between the CMB temperature and the Compton-y
parameters can be found in Planck Collaboration et al. (2016b).

The tSZ is a foreground of the CMB and also a probe of the distribution of baryonic matter, which
can help us obtain better astrophysical and cosmological constraints. These two aspects emphasize the
need for having robust modeling of the tSZ effect. For instance, the tSZ effect can be used to study
early dark energy models (e.g., Sadeh et al., 2007; Waizmann & Bartelmann, 2009). Additionally, the
tSZ effect is sensitive to astrophysics phenomena such as AGN feedback, which redistributes mass and
modifies the pressure of the hot plasma in massive halos (e.g., McCarthy et al., 2014, 2023; Le Brun et al.,
2015; Spacek et al., 2018; Lee et al., 2022; Moser et al., 2022; Pandey et al., 2023)

The tSZ effect will be further discussed in Chapter 4, where I will introduce observations both on the
full sky and within individual clusters. I will also present a comparison between the predictions from an
analytical model and measurements in simulations. This comparison includes (angular) power spectrum,
pressure profile, and a few parameters of the model.

2.2.5 Galaxy clusters

The tSZ effect and photometric surveys mentioned previously can also be used to study the properties
and evolution of galaxy clusters. In addition, X-ray observations, which we did not discuss here, are also
a powerful tool for studying galaxy clusters. Each method of observation has its own advantages and
limitations. For instance, optical and X-ray observations rely on direct detection of light from the cluster,
making measurement challenging at large distances, whereas the tSZ effect can more easily probe higher
redshifts. At low redshifts, however, X-ray identification has a lower mass threshold than the tSZ effect,
with the opposite trend at high redshifts (e.g., Bleem et al., 2015), highlighting the complementarity of
these methods.

The main challenge in studying galaxy clusters is estimating their mass. The mass can be inferred
using different observables, including the Sunyaev-Zel’dovich effect, X-ray emission, and weak lensing,
again demonstrating the complementarity of different observational techniques. The mass function of
clusters can be used to constrain cosmological parameters, such as σ8.
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Figure 2.7: Illustration of the thermal Sunyaev-Zel’dovich effect on the CMB spectrum (Carlstrom et al.,
2002). The dashed line represents the undistorted CMB spectrum, while the solid line represents the
distorted spectrum.
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Figure 2.8: Schematic visualisation of the process of the halo model (Asgari et al., 2023). Left: matter den-
sity field in a 253 h−1Mpc region of an N-body simulation, centred on the massive halo of ∼ 1014.5 h−1M⊙
at z = 0. Centre: same region where all the identified halos are isolated and replaced with idealized spher-
ical halos of the same mass. Right: result of populating these halos with galaxies according to a simple
galaxy-occupation prescription.

2.3 Halo model to model the power spectrum

In the previous sections, I have described the (angular) power spectrum statistics and some of the different
observables that can be used to probe the LSS of the Universe. In this section, I will present the halo
model, a powerful tool for modeling the power spectrum of the matter distribution and its tracers. For
instance, the matter and tSZ power spectrum predicted by a halo model will be discussed and compared
with measurements from simulations in Chapter 4.

2.3.1 Basic principle

The halo model is a framework that proposes a simplified description of the distribution of matter in
the Universe and allows for constructing a model for the non-linear matter density and its tracers. It
assumes that the cosmic web can be a superposition of all its individual components: dark matter, gas,
and galaxies. The halo model assumes that all matter resides in halos, which are spherically symmetric
structures with a range of masses, and that each particle belongs to one single halo. Halos are distributed
where the initial perturbations allow gravity to create overdensities, following the linear matter power
spectrum. To understand how a halo model works, a schematic visualisation of how the halo model
behaves in a simulation is shown in Fig. 2.8. Starting with a simulation and its matter density (left
panel), the halos are identified, isolated, and replaced with idealized spherical halos of the same mass
(centre panel). The halo model is then based on how these halos are populated with galaxies using a
galaxy-halo occupation prescription (right panel). In Sect. 4.3.5, I will discuss the consequences of the
halo model assumptions and the limitations of the halo model in the context of the tSZ effect.

The halo model is based on three main properties that characterize halos and encapsulate the com-
plexity of the cosmic web: the halo mass function, the halo bias, and the halo profile. The halo mass
function represents the number of halos of a given mass at a given redshift. The halo bias describes how
halos cluster relative to matter. The halo profile, assumed to be spherically symmetric and only mass-
dependent, details how tracers are distributed within a halo. These properties are typically obtained from
numerical simulations. The halo bias is usually considered linear. To probe tracers other than matter,
their connection with matter must be understood, and the signal from the tracers must originate from
the halos. For instance, the halo model can be applied to the tSZ signal, which is sourced by the electron
pressure, which is most intense within halos. The halo model framework is analytical. An alternative
framework, known as the simulation-based approach, uses dark matter-only simulations, identifies halos,
and populates them with tracers.

With the properties and distribution of halos, the halo model can estimate statistical properties such
as the power spectrum. The power spectrum for matter and its tracers is the sum of the one-halo and two-
halo terms, as illustrated in Fig. 2.9, where halos are represented in blue. The one-halo term corresponds
to the correlation of two points within the same halo (shown in purple in the figure). The two-halo term
corresponds to the correlation of two points in two different halos (shown in red in the figure). Fig. 2.10
shows the matter power spectrum in grey, with the contribution of the one-halo and two-halo terms in
dotted purple and dashed red, respectively. The one-halo term dominates at small scales, probing the
interiors of halos, while the two-halo term dominates at large scales, probing the large-scale clustering of
halos and their spatial distribution.
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Figure 2.9: Illustration of the one- and two-halo term that appears in the power spectrum prediction
done by a halo model. Blue circles are halos that are spherically symmetric. Examples of the one-halo
term are represented by the purple lines and represent the correlation between two points that are in
the same halo. Examples of the two-halo term are represented in red and correspond to the correlation
between two points in two halos. The power spectrum is the sum of these two terms, with the one-halo
term dominating at small scales and the two-halo term dominating at large scales.
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Figure 2.10: Matter power spectrum at z = 0 predicted by the HMx (Mead et al., 2020) halo model. The
grey line represents the total power spectrum, the purple dotted line represents the one-halo term, and
the red dashed line represents the two-halo term.
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2.3.2 Power spectrum computation
Now that the principles of a halo model are understood, we can delve deeper into the computation and
associated equations. The power spectrum between two fields u and v is the sum of the one-halo and
two-halo term: Puv(k) = P1h,uv(k) + P2h,uv(k), defined as:

P1h,uv(k) =

∫ ∞

0

Wu(M,k)Wv(M,k)n(M)dM , (2.17)

P2h,uv(k) = Plin(k)

v∏

i=u

[∫ ∞

0

b(M)Wi(M,k)n(M)dM

]
, (2.18)

where we have the Fourier transform of the field u, given by:

Wu(M,k) =

∫ ∞

0

4πr̂2
sin(kr̂)

kr
θu(M, r̂)dr̂, (2.19)

with θu(M, r̂) the averaged radial profile for the field u, which is function of mass M and comoving radius
r̂. In this last equation, the integration over angular coordinates is possible due to the assumption of
the halo model: spherical symmetry of halos and the dependence of each halo’s properties only on its
mass. The equations of the one-halo and two-halo terms assume linear halo bias. The two-halo term is
proportional to the linear power spectrum times a normalisation that depends on the halo properties.

2.3.3 Application to matter
To apply this formalism to the matter density, the halo mass function n(M) and linear bias b(M) must
satisfy two conditions:

∫ ∞

0

Mn(M)dM = ρ̄ , (2.20)
∫ ∞

0

Mb(M)n(M)dM = ρ̄ , (2.21)

where ρ̄ is the mean density of the Universe. These conditions ensure that all matter is contained in
halos, and on average, the matter is unbiased with respect to itself.

2.3.4 Halo properties
The halo model relies on selecting the appropriate halo mass function, halo bias, and halo profile. These
components are typically calibrated using simulations or observational data. Different choices lead to
distinct implementations and results. The choice of these properties can impact the accuracy of the
model, and it is essential to calibrate them to improve the model’s predictive capabilities. Examples
of halo model are proposed by, for instance, Hill & Pajer (2013); Mead et al. (2020); Maniyar et al.
(2021); Bolliet et al. (2023). In the halo model, halos are considered as discrete quantities, whereas their
boundaries are not clearly defined in observations. A fundamental choice in simulations is how to identify
halo masses, which can be done using different methods, including the friends-of-friends (FoF), spherical
overdensity (SO), or Bryan & Norman (1998) definition, for example. The Bryan & Norman (1998)
definition is the one I used in this thesis and will be further described in Sect. 3.4.

It is often standard practice to parametrize the halo mass function in terms of the peak height
parameter ν or variance σ and to adopt a linear halo bias. The use of ν or σ instead of M comes from
the fact that the halo mass function (and associated bias) demonstrates nearly universal behaviour across
different cosmologies and redshifts when expressed in terms of these variables (e.g., Press & Schechter,
1974; Bond et al., 1991; Sheth & Tormen, 1999; Tinker et al., 2008).

Peak height ν

To determine the peak height ν, we start with the variance of the linear matter overdensity smoothed on
a comoving scale R̂:

σ2(R̂) =

∫ ∞

0

4π

(
k

2π

)3

Plin(k)T
2(kR̂)d ln k , (2.22)

where T (kR̂) is the Fourier transform of the filter window function. Typically, in real space, T (kR̂) is
represented by a top hat function, with its Fourier transform given by:

T (kR̂) =
3

(kR̂)3

(
sin(kR̂)− kR̂ cos(kR̂)

)
. (2.23)
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Figure 2.11: Peak height ν as a function of mass.

The comoving scale R̂ corresponds to the comoving radius of a sphere in a homogeneous Universe which
contains a given mass M :

M =
4

3
πR̂3ρ̄ . (2.24)

The previous equations allow us to express σ(R̂) in terms of the mass. We can now define the peak height
ν as:

ν(M) = δc/σ(M) , (2.25)

where δc ≈ 1.686/D(z) is the critical overdensity for collapse at redshfit z (discussed in Sect. 1.7.3), and
D+(z) is the linear growth factor normalised to 1 at z = 0. This change of coordinates is represented in
Fig. 2.11 and can differ with the chosen mass definition. The peak height increases monotonically with
M .

Halo mass function

The halo mass function n(M) describes the number density of halos with mass M at a given redshift. It
can be derived using different analytical approaches and fitting processes. In terms of peak height, the
halo mass function is expressed as:

f(ν)dν =
M

ρ̄
n(M)dM . (2.26)

The integral of f(ν) over all peak heights ν must satisfy the condition
∫∞
0
f(ν)dν = 1, ensuring that

all matter is accounted for within halos. A few standard halo mass functions are the one of Press &
Schechter (1974); Sheth & Tormen (1999); Tinker et al. (2008), for example.

Linear halo bias

On sufficiently large scales, overdensities of halos can be approximated using the halo mass function
derived from the peak-background split formalism (Cole & Kaiser, 1989; Mo & White, 1996; Sheth et al.,
2001). According to this formalism, the density field consists of large-scale and small-scale components,
with halos forming at the peaks of the large-scale density fluctuations. Using the peak-background split
formalism, the linear halo bias can be approximated from any mass function f(ν) through:

b(ν) = 1− 1

δc

[
1 +

d ln f(ν)

d ln ν

]
. (2.27)

If f(ν) satisfies the mass normalisation condition in Eq. (2.20), then this automatically satisfies the bias
normalisation condition condition in Eq. (2.21).

Other alternative approaches can be used to obtain the halo bias (Sheth et al., 2001; Tinker et al.,
2010). It is also possible to use simulation-calibrated bias relations or non-linear halo bias models.
Adopting a non-linear halo bias can enhance the accuracy of the model, particularly in the transition
between the one-halo and two-halo terms (Mead & Verde, 2021).
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Dark matter halo profile

To compute the matter power spectrum within the halo model framework, the dark matter halo profile
is needed. For other tracers, this profile can also serve as a starting point. A commonly adopted profile
for collisionless matter is the Navarro–Frenk–White (NFW) profile (Navarro et al., 1997a):

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (2.28)

where rs is the scale radius and ρs the scale density. Both of these parameters depend on the halo mass. In
a halo model context, the profile is usually truncated at the halo radius rh. This radius is not necessarily
the virial radius but is defined more generally such that:

M =
4

3
πr3h∆hρ̄ , (2.29)

where ∆h is the halo overdensity, it can be taken as 200, as often used in simulations or based on other
definitions.

The scale radius rs is related to rh through the concentration-mass relation cM = rh/rs. This rela-
tion and the scale density are calibrated against simulations and depend on the specific halo and mass
definitions employed.

Baryonic feedback

In the Universe, baryonic feedback processes can alter the halo properties. By comparing simulations
with observations, it has been identified that baryonic processes inject energy into the system, leading
to a regulation of the mass function. AGN feedback, for example, can expel gas from the centres of
halo. The NFW profile is a reasonable choice to match to gravity-only simulated data. However, when
accounting for baryonic feedback, the halo profile can be significantly altered.

Studies like those by Rudd et al. (2008) and Zentner et al. (2008) have shown that AGN activity can
decrease small-scale power. The authors have demonstrated that this effect could be captured by chang-
ing the concentration-mass relation in the NFW profile used in the halo-model matter power spectrum
calculation. The exact impact of baryonic feedback on the halo profile remains uncertain and will likely
vary depending on the tracers of interest.

Tracers

This framework applies to any diffuse tracer of the LSS tracers as long as the halo profile can be defined.
Examples of tracers include galaxies, intrinsic alignments of galaxies, X-rays, cosmic infrared background
(CIB), neutral hydrogen, gamma rays, tSZ, kSZ, CIB,... For tracers that are too diffuse and not explicitly
tied to halos, applying the halo model framework becomes more challenging.

Generally, the spectrum has a linear shape on large scales, with its amplitude determined by the
statistics of how tracers populate halos. On smaller scales, the shape of the one-halo is governed by the
tracer profiles.

2.3.5 Angular power spectrum
The power spectrum obtained from the halo model framework has a redshift dependence, and integrating
them over comoving distance r̂ (or equivalently redshift) gives the angular power spectrum:

Cuv(ℓ) =

∫ r̂H

0

Xu(r̂)Xv(r̂)

f2k (r̂)
Puv(k(r̂), z(r̂))dr, (2.30)

where ℓ is the multipole moment, r̂H the Hubble radius, z(r̂) is the redshift at comoving distance r̂, the
functions Xu(r̂) and Xv(r̂) are the window functions for the fields u and v, respectively, and k(r̂) =
(ℓ+ 1/2)/fk(r̂), with fk(r̂) the comoving angular-diameter distance:

fk(r̂) =





sin(H0

√
|ΩK|/r̂)/(H0

√
|ΩK|) ΩK < 0 ,

r̂ ΩK = 0 ,

sinh(H0

√
|ΩK|/r̂)/(H0

√
|ΩK|) ΩK > 0 .

(2.31)

The angular power spectrum can also be expressed in terms of the sum of the one-halo and two-halo
terms: Cuv(ℓ) = C1h,uv(ℓ) + C2h,uv(ℓ).

In Chapter 4, I used the HMx (Mead et al., 2020) halo model to predict the pressure and matter auto-
and cross-power spectrum. In this chapter, I will introduce the choice done by HMx for the different
ingredients of the halo model and compare the predictions with measurements from simulations.
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2.4 Conclusions

In this chapter, I have introduced the large-scale structures of the Universe and the observables that can
be used to probe it. I discussed different statistical measures, including the angular power spectrum and
higher-order statistics applicable to these observations. Finally, I presented the halo model as a robust
framework for modeling the power spectrum of the matter distribution and its tracers.

While observations contain some inherent limitations and uncertainties, understanding how to model
them effectively and selecting optimal statistics is crucial. Addressing these challenges can help to mitigate
degeneracies in cosmological or astrophysical parameters, enhancing our understanding of the Universe.
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As discussed in Chapter 1, fully understanding the formation and evolution of structures in the
Universe requires moving beyond linear approximations to account for the non-linear evolution. This
can be achieved using perturbation theory, which will be described in Sect. 5.1.1 or through simulations,
which is the focus of this chapter. Since perturbation theory is only valid before shell-crossing, simulations
are a more robust method for studying the non-linear regime. However, they are more time-consuming
and demand significant computational resources.

In this chapter, I will begin by describing how to obtain the initial conditions for running a simulation
in Sect. 3.1. In Sect. 3.2, I will present the numerical methods used in N-body and hydrodynamical
simulations, focusing on the RAMSES code. In Sect. 3.3, I will present the simulations used in this work:
Horizon-AGN, Horizon-noAGN, Horizon-Large, L896_wCDM, Magneticum, and BAHAMAS. Finally, I will
present the halo mass function in Sect. 3.4.

Most of my work focuses on the study and run of the Horizon suite of simulations, which are conducted
using the RAMSES code. This is why I focus on the RAMSES description. While other codes exist, such as
GADGET (used for Magneticum), I will not detail them.

The methods sections of this chapter (Sects. 3.1 and 3.2) were written with the help of Dodelson &
Schmidt (2020) and Teyssier (2002) for RAMSES.

3.1 Initial conditions

The first step to run a cosmological simulation is to generate the initial conditions. Two main methods
exist for this purpose: the Zel’dovich approximation, and the second-order perturbation theory (2LPT).

The Zel’dovich approximation (Zel’dovich, 1970) is a first-order solution of the Lagrangian perturba-
tion theory. It allows for generating a Gaussian density field in Fourier space from the desired matter
power spectrum. The Lagrangian potential and its gradient can be computed for every particle position,
which leads to the displacement field. The particles are located on a grid and assigned with an initial
velocity that follows the Zel’dovich approximation (see Sect. 1.7.2).

The Zel’dovich approximation solution reproduces accurately the linear growing mode of density and
velocity perturbations. However, it is less accurate for non-linear growth. Therefore, simulations using
this method must start at a higher redshift, where the non-linear growth is less significant.

The 2LPT method (Jenkins, 2010) solves the displacement field using a second-order Lagrangian
perturbation theory. This approach is more accurate in reproducing the growing modes, including non-
linearities, and allows to start the simulations at a lower redshift.

3.2 Numerical overview of RAMSES

Once the initial conditions are created, the next step is to evolve the system. Cosmological simulations
can be N-body simulations (containing only dark matter) or hydrodynamical simulations. I will describe
the methods used in RAMSES (Teyssier, 2002). If a simulation requires high masses, it can be achieved
by increasing the number of particles or wavelengths in the computational volume. Additionally, a good
spatial resolution will depend on the numerical methods employed.

The RAMSES code allows the production of both N-body and hydrodynamical simulations, enabling
the study of structure formation with high spatial resolution, for example. The code can also produce
zoom-in simulations of a single object, for example, but I am only usinxg the production of large volumes
to simulate the cosmic web. The code employs a tree-based Adaptive Mesh Refinement (AMR) hydro-
dynamical scheme using the "Fully Threaded Tree" data structure described by Khokhlov (1998). This
structure allows for recursive grid refinement on a cell-by-cell basis. The N-body solver is similar to the
one of the ART code (Kravtsov et al., 1997). The hydrodynamical solver uses a finite volume method with
a second-order Godunov scheme. In the following sections, I will describe the AMR method in Sect. 3.2.1,
the N-body solver in Sect. 3.2.2, and the hydrodynamical solver in Sect. 3.2.3. Additionally, I will discuss
the time step control in Sect. 3.2.4 and the refinement strategy in Sect. 3.2.5. Finally, I will present the
baryonic processes implemented in RAMSES in Sect. 3.2.6.

In RAMSES, all the solvers are implemented using conformal time as time variable. This approach
enables the computation of comoving coordinates with only a few changes of variables (see Martel &
Shapiro, 1998 and references therein).

3.2.1 AMR scheme

To follow the components of the simulations, different methods can be employed. Lagrangian or quasi-
Lagrangian schemes (Gnedin, 1995; Pen, 1995) utilize a moving mesh that follows the flow geometry while
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maintaining a constant number of grid points. Eulerian schemes, on the other hand, are based on a static
mesh. Smooth Particles Hydrodynamical (SPH) is an intermediate solution that follows the Lagrangian
evolution of the flow, with resolution elements defined as average.

The method used in RAMSES (Teyssier, 2002) is the Adaptive Mesh Refinement (AMR), initially
described in Berger & Oliger (1984) and Berger & Colella (1989). AMR is an Eulerian hydrodynamic
scheme, with a hierarchy of grids to locally increase spatial resolution. The resolution is proportional to
the local cell size of the grid, making it space-dependent. The grid is continuously refined and coarsened
during the simulation to follow the evolution of the system, maintaining a roughly constant mean number
of particles per cell.

The data structure in RAMSES follows the "Fully Threaded Tree" of Khokhlov (1998). The basic
elements are octs, group of 2dim sibling cells. Each oct belongs to a level of refinement l. At the coarse
level (l = 1, the least refined level), the grid is Cartesian and serves as the base of the tree structure.

Time integration is performed at each level independently, with two possible approaches. First, a
single-step algorithm can be used, where the same time step is applied to all levels. Second, an adaptative
time step can be used, where each level evolves with its own time step based on a stability condition,
which will be discussed in more detail in Sect. 3.2.4.

To build the refinement map, cells are marked for refinement according to the user-defined criteria.
To ensure a smooth transition in spatial resolution, an oct that will be refined must be surrounded by
3dim−1 neighbouring parent cells. The modification of the tree structure involves splitting and destroying
children cells according to the refinement map, a process that will be discussed further in Sect. 3.2.5.

3.2.2 N-body solver

N-body simulations are the simplest simulations, containing only dark matter particles. These simulations
solve the Vlasov-Poisson system, which only includes gravitational interactions, to track the evolution of
the system over time.

The N-body solver in RAMSES (Teyssier, 2002) is similar to that in the ART code (Kravtsov et al., 1997).
It solves the Vlasov-Poisson system of equations for a collisionless N-body system in reduced units. For
each particle p, the system is:

∆Φ(x) = 4πGρ ,
dxp

dt
= vp ,

dvp

dt
= −∇xΦ , (3.1)

where x is the position of the particle, and v its velocity.
The grid-based scheme used to solve the equations follows these steps:

1. The mass density ρ is computed on the mesh, using a Cloud-In-Cell (CIC) interpolation (Hockney
& Eastwood, 1981),

2. The Poisson equation is solved, and the potential Φ is obtained by a conjugate gradient,

3. The acceleration on the mesh is computed using a standard finite-difference approximation of the
gradient,

4. The acceleration of each particle is computed using an inverse CIC interpolation,

5. The velocity of each particle is updated on a half-time step, according to its acceleration (often
called the "kick" step),

6. The position of each particle is updated according to its velocity (often called the "drift" step),

7. The velocity of each particle is updated on the other half-time step, according to its acceleration
at the new position ("kick" step). The succession of steps 5, 6, and 7 is called "leapfrog". This
method allows for a symplectic integrator, which conserves volume in space-phase and thus energy,
maintaining the stability of the orbit over time.

3.2.3 Hydrodynamical solver

To obtain more realistic simulations, it is necessary to include baryonic processes and solve the hy-
drodynamics. In RAMSES (Teyssier, 2002), hydrodynamics are solved using the Euler equation in their
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conservative form:
∂ρ

∂t
+∇ · (ρu) = 0 , (3.2)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇P = −ρ∇Φ , (3.3)

∂

∂t
(ρe) +∇ ·

[
ρu

(
e+

P

ρ

)]
= −ρu · ∇Φ , (3.4)

where ρ is the mass density, u the fluid velocity, e the specific total energy, Φ the gravitational potential,
and P the thermal pressure defined by:

P = (γ − 1)

(
e− 1

2
u2
)
, (3.5)

where γ is the adiabatic index. The energy equation defined in Eq. (3.4) conserves total fluid energy
perfectly in the absence of gravity, ensuring no energy loss due to numerical errors. However, when gravity
is included, the system is not strictly conservative, and the total energy conservation is maintained at the
percent level. The equations are solved using a second-order Godunov scheme with a Riemann solver.

3.2.4 Time step control
As previously discussed, the time step for each level can be determined independently in RAMSES (Teyssier,
2002). Here, I will present the different stability criteria used to define the time step. In practice, the
time step at each level is determined as the minimum of the following four constraints:

The first constraint comes from the gravitational evolution of the coupled N-body and hydrodynamical
system. The time step difference ∆tl must be smaller than a fraction of the minimum free-fall time of
the system.

The second constraint comes from the particle dynamics. Particles within the AMR grid should only
move a fraction of the cell size during each time step.

The third constraint specifies that the expansion factor should not change by more than 10% over
one-time step. This constraint is only applied during the early stages when gravitational clustering is
linear.

The fourth constraint is imposed by the Courant Friedrichs Levy stability condition, which states that
the time step should be less than:

∆tlCFL = cfl × ∆xl

max(|ux|+ cs, |uy|+ cs, |uz|+ cs)
, (3.6)

where cfl < 1 is the Courant factor, ∆xl is the cell size at level l and |ux|, |uy|, |uz| are the velocity
components in each direction, with cs representing the speed of sound.

This procedure implies that the time step can be small in regions of high density or high velocity to
capture the dynamics of the system accurately. However, this will also increase the computational cost of
the simulation. In practice, we only save some time steps by specifying the scale factor we want to save.

3.2.5 Refinement strategy
The refinement strategy differs slightly between the N-body and hydrodynamic solvers in RAMSES (Teyssier,
2002), but they are functionally equivalent and based on a quasi-Lagrangian approach.

For the N-body solver, the refinement criterion ensures a constant number of particles per cell to
control Poisson noise. Cells at refinement level l are refined if the dark matter density exceeds a level-
dependent density threshold defined as:

ρl =Mc × (∆xl)dim , (3.7)

where Mc is the maximum mass (or number of particles) imposed per cell.
For the gas component, the density level-dependent threshold is:

ρl =Mb × (∆xl)dim . (3.8)

To ensure consistent Lagrangian evolution for both dark matter and gas, the typical baryonic mass per
cell Mb is set as:

Mb =Mc
Ωb

Ωm − Ωb
. (3.9)

Additionally, other refinement criteria based on gradients of the flow variables (such as pressure,
density,...) or geometrical arguments are implemented in RAMSES. In practice, we define the maximum
level of refinement we want to reach.
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3.2.6 Baryonic processes
In the RAMSES code, different baryonic processes have been implemented and can be employed in the
simulations. These processes include:

• Cooling (Sutherland & Dopita, 1993),

• Star formation (Rasera & Teyssier, 2006),

• Supernovae (Dubois & Teyssier, 2008b; Kimm & Cen, 2014),

• AGN (Dubois et al., 2012; Pfister et al., 2019; Massonneau et al., 2023),

• Magneto-hydrodynamics (MHD) (Teyssier et al., 2006; Fromang et al., 2006),

• Radiative transfer (Rosdahl et al., 2013),

• Cosmic rays (Dubois & Commerçon, 2016; Dubois et al., 2019),

• Thermal conduction (Dubois & Commerçon, 2016),

• Dust (Dubois et al., 2024),

• Tracer particles for baryon (Cadiou et al., 2019).

These processes can be used individually or in combination, depending on the spectific requirements
of the simulation. Additionally, users have the flexibily to modify or add modules to explore different
physical scenarios.

To simulate the large-scale structures, the inclusion of cooling, star formation, AGN, and supernova
feedback is the most important. These processes allow the formation of galaxies with properties that
agree with observations. Supernovae contribute to the mass regulation of low-mass halos, whereas AGN
feedback is crucial for regulating gas reservoirs within galaxies, thereby influencing the distribution of gas
and affecting the properties of halos, especially at high masses. MHD is necessary for the study of the
magnetic field. Radiative transfer affects the feedback of dwarf galaxies and reionization, for example.
Cosmic rays also impact the feedback of galaxies. Thermal conduction is important for studying galactic
disks. Dust is used to model spectral energy distribution. Finally, tracer particles are used to follow the
baryonic component of the simulation.

3.3 Description of simulations

My work involves different simulations, which are described in the following. The simulations are the
Horizon suite, which includes Horizon-AGN, Horizon-noAGN, Horizon-Large, and L896_wCDM, as well
as the Magneticum simulations. Additionally, I describe briefly the BAHAMAS simulations, which are used
to calibrate the HMx halo model.

The Horizon-AGN and Horizon-noAGN simulations were already completed, and I have analysed them.
The Horizon-Large simulation was conducted by Yohan Dubois specifically for our work, and I have
analysed its results. I slightly modified the RAMSES code to run the L896_wCDM simulations with the
help of Yann Rasera and Yohan Dubois to modify the evolution of time, and I have analysed them.
The Magneticum simulations were analysed by Pranjal Rajendra Singh, and I use the results to compare
with the Horizon simulations. My thesis was a collaboration between the Institut d’Astrophysique de
Paris and the University of Arizona. In this context, I collaborated with Pranjal Rajendra Singh, a PhD
student at the University of Arizona for the collaboration.

3.3.1 The Horizon suite of simulations
In the following section, I will describe the Horizon-AGN, Horizon-noAGN, Horizon-Large, and L896_wCDM
simulations. I will provide more detailed information on the Horizon-AGN simulation, as the other simu-
lations are variants of this one.

The Horizon-AGN simulation

The Horizon-AGN simulation (Dubois et al., 2014) is a cosmological hydrodynamical simulation of
100h−1 Mpc comoving volume, with 10243 dark matter particles, resulting in a resolution of MDM,res =
8.3×107M⊙. The simulation uses the AMR code RAMSES (Teyssier, 2002) (see Sect. 3.2 for a description
of the code), which can refine up to a minimum cell size of ∆x ≃ 1 kpc.
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Initial conditions and refinement The initial conditions are generated with the mpgrafic software
(Prunet et al., 2008), using the Zel’dovich approximation described in Sect. 3.1. The simulation contains
7 levels of refinement with a quasi-Lagrangian criterion based on the number of dark matter particles or
density of baryonic mass. A new refinement level is created if there are more than 8 dark matter particles
or if the total baryonic mass is 8 times the initial dark matter resolution.

Cosmology The cosmology is a standard ΛCDM cosmology compatible with WMAP-7 (Komatsu et al.,
2011) with {Ωm,ΩΛ, σ8,Ωb, ns} = {0.272, 0.728, 0.81, 0.045, 0.967} and H0 = 70.4 km s−1 Mpc−1. Multi-
ple redshifts between z = 0.018 and z = 38.3 are available, allowing us to perform redshift space analysis.
Below, I summarise the main aspects of the physics included in the simulation.

Cooling and heating The simulation incorporates gas cooling via hydrogen and helium cooling, with
a contribution from metals (Sutherland & Dopita, 1993), and a uniform UV background (Haardt &
Madau, 1996) with redshift of reionization zr = 10. Metallicity is treated as a passive variable for the
gas, and its amount is modified by the injection of gas ejecta during supernova explosions and stellar
winds. The release of various chemical elements (O, Fe, C, N, Mg, Si) synthesized in stars and released
by stellar winds, and supernova are also accounted for. The gas follows an equation of state for an ideal
monoatomic gas with an adiabatic index γ = 5/3.

Star formation and stellar feedback Star formation follows a Schmidt law with 2% star forma-
tion efficiency, and the associated feedback from stellar winds, type II and type Ia supernovae (Dubois
& Teyssier, 2008a). Star formation occurs in regions where the gas hydrogen number density exceeds
n0 = 0.1Hcm−3, following a Poissonian random process (Rasera & Teyssier, 2006; Shandarin & Zel-
dovich, 1989). To prevent excessive gas fragmentation and mimic the effect of stellar heating on the
mean temperature of the interstellar medium, gas pressure is artificially enhanced above a threshold n0,
assuming a polytropic equation of state T = T0(n/n0)

Γ−1 with a polytropic index Γ = 4/3. (Springel &
Hernquist, 2003).

AGN feedback The simulation includes feedback from active galactic nuclei (AGN) powered by Bondi-
Hoyle-Lyttleton accretion limited at Eddington with jet/radio or heating/quasar mode depending on the
accretion rate relative to Eddington (Dubois et al., 2012). Black holes are created where the gas mass
density exceeds ρ0, with an initial seed mass of 105M⊙. To prevent the formation of multiple black holes
in the same galaxy, black holes cannot form at distances less than 50 kpc.

Projected maps The left panel of Fig. 3.1 shows the logarithm of the pressure, with the densest
regions in red and less dense in blue. The right panel shows the logarithm of the matter, with the densest
regions in yellow and less dense in blue. The maps represent one slice of 100h−1Mpc in height and width
and 10h−1Mpc in thickness of the Horizon-AGN simulation. From these projection maps, we clearly see
the cosmic web structure. We also see that the pressure is a tracer of matter, even if it is more diffuse
than the matter.

The Horizon-noAGN simulation

The Horizon-noAGN simulation (Dubois et al., 2016) shares the same initial conditions, sub-grid modeling,
and cosmology as the Horizon-AGN simulation, only the physics is different. This simulation contains
no black hole formation and, therefore, no AGN feedback. This leads to a significant overshoot of the
baryonic mass content in galaxy groups and clusters, and in particular of their gas fraction, at the high-
mass end (Beckmann et al., 2017; Chisari et al., 2018). This simulation can be used to study the impact
of AGN feedback on different observables.

The Horizon-Large simulation

The Horizon-Large simulation is a cosmological hydrodynamical simulations of 896h−1 Mpc comoving
volume, with 10243 dark matter particles, leading to a resolution of MDM,res = 6 × 1010M⊙. The grid
is allow to refine up to a spatial resolution of 10 kpc. The cosmology is the same as the Horizon-AGN
and Horizon-noAGN simulations, but the initial conditions are different. The physics is simpler than the
two other simulations, it only contains gas cooling and UV background heating below zr and no galactic
physics. We run this simulation to have a similar box size to the Magneticum simulation described below.
Removing metals, supernova feedback, and star formation with respect to the Horizon-noAGN simulation
implies less cooling.
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Figure 3.1: Left: logarithm of the pressure, with the densest regions in red and less dense in blue. Right:
logarithm of the matter, with the densest regions in yellow and less dense in blue. Maps show one slice
of 100h−1Mpc in height and width and 10h−1Mpc in thickness of the Horizon-AGN simulation.

The L896_wCDM simulations

The L896_wCDM simulations are a suite of three cosmological hydrodynamical simulations of 896h−1 Mpc
comoving volume, with 10243 dark matter particles, leading to a resolution of MDM,res = 6 × 1010M⊙.
These simulations adopt the same sub-grid modeling as the Horizon-Large simulations, but differ in
their initial conditions, which are generated using 2LPT, described in Sect. 3.1, instead of the Zel’dovich
approximation. The simulations contain 7 levels of refinement with the same refinement condition as the
one of the Horizon-AGN simulation.

Cosmology The cosmology of these simulations follow a wCDM cosmology with {Ωm,ΩΛ, σ8,Ωb, ns}
= {0.272, 0.728, 0.81, 0.045, 0.967} and H0 = 70.4 km s−1 Mpc−1. The simulations explore three different
constant equations of state of dark energy: w = −0.8, w = −1 (compatible with ΛCDM), and w = −1.2.
They are normalised such that σ8 is the same for the three simulations.

Motivation These simulations were specifically run to start an investigation into the influence of dark
energy on the tSZ effect. While cosmological constraints generally favour values of w closer to −1 (Planck
Collaboration et al., 2020b), I chose these distinct w values to emphasize their impact. The constant
equation of state of dark energy alters the evolution of the scale factor a(t), which affects the passage of
time in the simulations. The evolution of the scale factor as a function of the lookback time used in these
simulations is shown in Fig. 3.2. The evolution for w = −0.8, w = −1, and w = −1.2 are shown in blue,
black, and red, respectively. Using different values of w alters the age of the Universe and the slope of
the scale factor, mainly in the past. For a given scale factor, the lookback time is higher for w = −1.2
than for w = −1 and lower for w = −0.8.

3.3.2 The Magneticum simulations

The Magneticum suite of simulations (Dolag et al., 2016) are cosmological hydrodynamical simulations
with different box sizes and cosmologies. In this work we use the medium resolution Box1a simulation
of 896h−1 Mpc comoving volume, with 15123 dark matter and (initial) gas particle masses of 1.3 ×
1010 h−1M⊙ and 2.6 × 109 h−1M⊙, respectively. For analysing the properties of lower mass halos (see
Sect. 4.3.5), we use Box2 which has a smaller volume of 352h−1 Mpc comoving volume but a better
mass resolution of 6.9×108 h−1M⊙ and 1.4×108 h−1M⊙ for dark matter and gas particles, respectively.
The simulations were performed using the higher order SPH kernels (Dehnen & Aly, 2012) within the
P-GADGET3 code (Springel et al., 2005). The boxes that we are using also follow a WMAP-7 cosmology
(Komatsu et al., 2011) with {Ωm,Ωb, σ8, h, ns} = {0.272, 0.0456, 0.809, 0.704, 0.963}. We also have access
to the redshifts between 0 and 5. We summarise here the main physical aspects. The simulation includes
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Figure 3.2: Evolution of the scale factor a as a function of the lookback time (in Gyr) used in the
L896_wCDM simulations. The evolution for w = −0.8, w = −1, and w = −1.2 are shown in blue, black,
and red, respectively.

gas cooling, star formation, and winds (Springel & Hernquist, 2003). The metals, stellar population,
and chemical enrichment, SN-Ia, SN-II, AGB follow Tornatore et al. (2003, 2006) with the new cooling
tables of Wiersma et al. (2009). The thermal conduction follows Dolag et al. (2004), and the low viscosity
scheme follows Dolag et al. (2005) and Beck et al. (2016). Magnetic fields are present as passive variables
following Dolag & Stasyszyn (2009). There are also black holes and AGN feedback (Hirschmann et al.,
2014). I use these simulations to compare with the Horizon simulations. As the implementation of the
physics and the solver are different, we cannot predict the difference between the simulations.

3.3.3 The BAHAMAS simulations

The BAHAMAS simulations are a suite of hydrodynamical simulations of 400h−1 Mpc with the WMAP-9
(Hinshaw et al., 2013) and Planck 2013 (Planck Collaboration et al., 2014) cosmology. The simulations
contain 2 × 10243 particles leading to a resolution of Mbaryon,res = 3.85 × 109 h−1M⊙ (Mbaryon,res =
4.45 × 109 h−1M⊙) and MDM,res = 7.66 × 108 h−1M⊙ (MDM,res = 8.12 × 108 h−1M⊙), respectively for
a WMAP-9 (Planck) cosmology. The hydrodynamic code and subgrid physics are the same as the ones in
the OWLS (Schaye et al., 2010) and cosmo-OWLS (Le Brun et al., 2014; McCarthy et al., 2014) projects.
The simulations include radiative cooling and heating, with a reionization that occurs at zr = 9, a star
formation rate, and a stellar evolution and chemical enrichment. It also contains a black hole and AGN
feedback with three strengths of AGN feedback, from the smaller to the bigger: 107.6 K, 107.8 K, and
108.0 K. More details about the physics are available in Schaye et al. (2010). I do not directly work with
these simulations, but they are used to calibrate the HMx halo model, described in Sect. 4.1, that I am
using. As the implementation of the physics and the solver are different, we cannot predict the difference
between the simulations.

3.4 Halo mass function of the simulations

An important statistical property of the halos is their abundance, that is the number density of halos
dN/d ln(M) within a logarithmic mass bin. The mass of the highest-mass halo will depend on the size
of the simulations, while the lower-mass halos will be affected by the physics included in the simulations
and by their merging history and local environment.

The abundance of massive clusters is highly sensitive to cosmology, particularly to the amplitude of
the matter power spectrum, and can thus serve as a valuable cosmological probe.

In Fig. 3.3, I present the halo mass function of the different simulations I have worked with (Horizon-AGN,
Horizon-noAGN, Horizon-Large, and Magneticum) in different colours (red, purple, green and blue) with
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Figure 3.3: Halo mass function at z = 0 for the Horizon-AGN, Horizon-noAGN, Horizon-Large, and
Magneticum simulations in red, purple, green, and blue, respectively, with their associated Poisson noise as
error bar. Each mass function is computed up to the maximal halo mass in the corresponding simulation.
The analytical mass function from Sheth & Tormen (1999) is shown in black for comparison. Vertical
lines indicate the minimum halo mass accessible in each simulation, defined as 100 times the dark matter
mass resolution. The lower limits for Horizon-AGN and Horizon-noAGN are identical.

their associated Poisson noise as error bar compared with the theoretical halo mass function from Sheth
& Tormen (1999) (in black), which is the one used in the HMx halo model. For the Horizon simulations,
the halos are identified with the adaptaHOP halo finder (Aubert et al., 2004), and we only keep the halos
(and subhalos) with at least 100 particles. adaptaHOP find the structures using the peaks in the 3D den-
sity field and compute the virial mass and radius using only dark matter particles. For Magneticum, the
halos are identified with a standard Friends-of-Friends algorithm and subhalos with the subfind module
(Springel et al., 2001; Dolag & Stasyszyn, 2009). The virial mass definition used is:

Mv =
4π

3
r3v∆vρc(z) , (3.10)

where ρc(z) = 3H(z)2/(8πG) is the critical density of the Universe at redshift z, G is the gravitational
constant, H(z) is the Hubble expansion factor, and where ∆v comes from the ΛCDM fitting function of
Bryan & Norman (1998):

∆v = 18π2 + 82x− 39x2 , (3.11)

where x = Ω(z)− 1, with Ω(z) = Ωm0(1+ z)3/E(z)2 = Ωm0(1+ z)3/(Ωm0(1+ z)3 +ΩK0(1+ z)2 +ΩΛ) if
Ωr0 = 0 (see Eq. (1.10) for the definition of E(z)). This is the same definition of virial mass as in Mead
et al. (2020).

We see a relatively good agreement between the different simulations, nevertheless, they all have
different maximal and minimal masses because of the difference in volume and mass resolution. We
observe a lack of high-mass halos in the bigger simulations (Horizon-Large and Magneticum) and of
low-mass halos in all the simulations.

Additionally, in Fig. 3.4, I present the halo mass function at z = 0.02 (left) and z = 2.72 (right) of
the L896_wCDM simulations for w = −0.8, w = −1, and w = −1.2 in blue, black, and red, respectively.
The fractional difference is computed with respect to the w = −1 simulation. The comparison between
the three L896_wCDM simulations shows that the mass function is sensitive to the equation of state of
dark energy. The w = −0.8 simulation has more halos of every mass, including massive halos, compared
to the w = −1 simulation, which in turn has more halos than the w = −1.2 simulation. At z = 0.02,
the difference increases with the mass of the halos. For halos below ∼ 1015h−1M⊙, there is less than 5%
differences between the w ̸= −1 simulations and w = −1 simulation, but for halos above ∼ 1015h−1M⊙,
the difference can reach up to 10%. At z = 2.72, the differences are more important, with between ∼ 20%
and more than a 100% difference. It seems that the difference increases with the mass, but the trend is
less clear as it starts to decrease at the highest masses. This can be due to the low number of massive
halos. For both redshifts, there is an asymmetry in the difference: the fractional difference between the
w = −0.8 and w = −1 simulations is larger than between the w = −1.2 and w = −1 simulations.
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Figure 3.4: Halo mass function at z = 0.02 (left) and z = 2.72 (right) of the L896_wCDM simulations.
The simulation with w = −0.8 is represented in blue, with w = −1 in black and with w = −1.2 in
red. The fractional difference is computed with respect to the w = −1 simulation. Note: the y-axis for
the fractional difference does not show the same range for the two redshifts to emphasize the differences
present at each redshift. Note: these halo mass functions are computed with a version of the simulations
which contain 4 levels of refinement.

The differences observed in the mass function can impact the predicted spectrum of the tSZ effect, as
the tSZ effect is sensitive to the number of halos and their properties. The dependence of the spectrum
on the cosmology will be studied in Sect. 4.5.
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As previously discussed, the thermal Sunyaev-Zel’dovich (tSZ) effect serves as a probe of baryonic
physics and can play a crucial role in resolving degeneracies among cosmological parameters. Thus,
achieving an accurate modelisation of the tSZ is needed for its effective utilisation. This will be explored
with the discussion in Sect. 4.2.2 about cross-correlation with different probes, in particular, the 10x2pt
analysis done in Fang et al. (2024), which is an article to which I contributed. In the following chapter,
I will present a comparative analysis between the analytical modelisation of the tSZ effect and mea-
surements obtained from various simulation suites. Sects. 4.1 and 4.3 are largely inspired by Ayçoberry
et al. (2024b), and some parts of the paper are reproduced here, with the addition of details and other
computations. The analysis of the Magneticum simulations has been done by Pranjal R.S., while the
analyses of the Horizon-AGN, Horizon-noAGN, Horizon-Large, and L896_wCDM simulations have been
done by myself.

First, I will present the analytical modelisation of the tSZ effect as done by HMx in Sect. 4.1. Then,
I will present the cosmological and astrophysical constraints that can be derived from tSZ observations
in Sect. 4.2. I will continue in Sect. 4.3 by comparing the tSZ properties measured in simulations and
those predicted by HMx, encompassing aspects such as the power spectrum and profile. In Sect. 4.4, I will
compare different components of HMx with measurements from simulations. In Sect. 4.5, I will explore
the impact of changing the equation of state of dark energy using the L896_wCDM simulations. Finally, in
Sect. 4.6, I will present a summary and conclusion of this chapter.

4.1 The HMx halo model

In Sect. 2.3, I presented the general description of a halo model. In this section, I will focus on the
HMx halo model (Mead et al., 2020), a specific halo model implementation that allows to predict the tSZ
power spectrum. The first implementation of the tSZ power spectrum was developed using the Press-
Schechter formalism (e.g., Komatsu & Kitayama, 1999; Refregier et al., 2000; Seljak et al., 2001), which
only accounts for the one-halo term. The two-halo term was first introduced by Komatsu & Kitayama
(1999). These early models evolved into halo model more aligned with the generic framework presented
in Sect. 2.3. For instance, Refregier & Teyssier (2002) conducted the first comparison between such a
model and measurements from simulations.

Over the past years, different halo models for the tSZ power spectrum have been implemented to
improve the agreement between models and simulations. One widely used halo model (e.g., Tröster et al.,
2022) is the HMx halo model, which I will use for my analysis. The initial version of HMx, called hmcode,
(Mead, 2015) was developed to predict the matter power spectrum. This model was improved, and I am
using the version from Mead et al. (2020) that can predict power spectrum for different tracers, including
matter, pressure, CIB,...

I will compare the prediction and components of the HMx halo model with measurements in simulations
(Horizon-AGN, Horizon-noAGN, Horizon-Large and Magneticum). I recall here the principal components
and behaviours inherent to the model. Furthermore, I will detail how to derive the angular power spectrum
by integrating the power spectrum over redshift.

4.1.1 Theoretical modelisation

Halo mass function and linear bias

The mass definition used in HMx is the one described in Sect. 3.4, and I remind it here for clarity:

Mv =
4π

3
r3v∆vρc(z) , (4.1)

where ρc(z) = 3H(z)2/(8πG) is the critical density of the Universe at redshift z, G is the gravitational
constant, H(z) is the Hubble expansion factor, and where ∆v comes from the ΛCDM fitting function of
Bryan & Norman (1998):

∆v = 18π2 + 82x− 39x2 , (4.2)

where x = Ω(z)− 1, with Ω(z) = Ωm0(1 + z)3/E(z)2 = Ωm0(1 + z)3/(Ωm0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ)
if Ωr0 = 0 (see Eq. (1.10) for the definition of E(z)).

The halo model then translates mass to peak height ν following the procedure described in Sect. 2.3.4.
The mass function g(ν)dν adopted in HMx is the one from Sheth & Tormen (1999):

g(ν)dν = A

[
1 +

1

(qν2)p

]
exp(−qν2/2)dν , (4.3)

with p = 0.3, q = 0.707, and A ≈ 0.216.
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The linear halo bias function b(ν) is derived from the mass function using the peak-background split
formalism (Mo & White, 1996; Sheth et al., 2001):

b(ν) = 1 +
1

δc

[
qν2 − 1 +

2p

1 + (qν2)p

]
. (4.4)

Electron pressure profile

For the tSZ power spectrum, the field u appearing in Eq. (2.19) is the electron pressure. For tSZ in
general, the electron pressure profiles are derived from theoretical arguments (e.g., Komatsu & Seljak,
2001) or fitting to observational data and simulations (e.g., Arnaud et al., 2010). In the HMx framework,
the electron pressure is defined as

Pe(M, r) =
ρbnd(M, r)

mpµe
kBTg(M, r) , (4.5)

where ρbnd denotes the halo bound gas density, representing the gas contained within the radius rv (the
virial radius encapsulating a mean gas density ∆v times the critical density), mp is the proton mass,
µe is the mean gas-particle mass per electron divided by the proton mass (HMx uses µe = 1.17), and
kB is the Boltzmann constant. The gas initially associated with the initial density of the corresponding
halo underwent some feedback processes that can redistribute the gas. Part of this gas stays within the
virial radius and is the bound gas, and part of this gas is now located outside rv. The more important
is the feedback, the more gas will be ejected. This ejected gas is incorporated into the two-halo term
only, assuming it does not contribute to the one-halo term, consistent with the approach taken by Fedeli
(2014) and Debackere et al. (2020).

The halo bound gas density ρbnd is defined according to the density profile of Komatsu & Seljak
(2001):

ρbnd ∝
[
ln(1 + r/rs)

r/rs

]1/(Γ−1)

, (4.6)

where Γ is the polytropic index. Each components of the model are described by a spherical density
profile ρ(M, r) and is normalised. Applied to the bound gas, we have

fbnd(M)M =

∫ rv

0

4πr2ρbnd(M, r)dr , (4.7)

which can be inverted to obtain the normalisation factor of Eq. (4.6). The fraction of bound gas is
required and can be obtained from Schneider & Teyssier (2015):

fbnd(M) =
Ωb

Ωm

(M/M0)
β

1 + (M/M0)β
, (4.8)

where M0 allows the transition from the universal baryon fraction in high-mass halos to zero in lower-mass
halos, while β governs the transition rate.

The model assumes that all the gas is ionized, with the gas temperature Tg determined by the Komatsu
& Seljak (2001) profile:

Tg(M, r) = Tv(M)
ln(1 + r/rs)

1 + r/rs
, (4.9)

which assumes hydrostatic equilibrium, where Tv denotes the virial temperature:

3

2
kBTv(M) = α

GMmpµp

rv
, (4.10)

where µp is the mean gas-particle mass divided by the proton mass (HMx uses µp = 0.61), α encapsulates
deviations from a virial relation and thus serves as a hydrostatic bias and rs is the halo scale radius
parameter, determined via the concentration relation cM = rv/rs.

The dark-matter concentration used in HMx is the Duffy et al. (2008) concentration:

cD(M) = 7.85

(
M

2× 1012h−1M⊙

)−0.081

(1 + z)−0.71 . (4.11)

Based on the discussion in Sect. 2.3.4 about the impact of baryons on the concentration, the HMx imple-
mentation modifies the Duffy concentration by introducing two parameters ϵ1 and ϵ2 to account for the
influence of baryons on the concentration. The concentration-mass relation employed becomes:

cM(M) = cD(M)

[
1 + ϵ1 + (ϵ2 − ϵ1)

fbnd(M)

Ωb/Ωm

]
, (4.12)
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where ϵ1 and ϵ2 allow to capture the influence of baryons, specifically caused by the ejection of gas. In
this modified concentration, we recognize Ωb/Ωm, which is the quantity of baryons, which allows us to
rescale the dark-matter concentration to a baryonic one. It is also rescaled by the fraction of bound gas
to account for the fact that within one virial radius, only the bound gas needs to be accounted for. This
normalisation fbnd(M)

Ωb/Ωm
is greater than one, as we expect the baryon to be more concentrated than the

dark matter. A halo that has lost all its gas will be multiplied by (1 + ϵ1), while a halo that has kept
all its gas will be multiplied by (1 + ϵ2). Adding ϵ1 and ϵ2 allows the interpolation between dark matter
and baryonic concentration and introduces an additional degree of freedom. As seen from Fig. 3.1, the
pressure is more diffuse than the matter, and these parameters can allow us to capture that.

From the model, we discern that high-mass halos contribute the most, as low-mass halos are deficient
in gas (as indicated by fbnd in Eq. (4.8)). Additionally, the amplitudes of the one- and two-halo terms
are more sensitive to high-mass halos. It can be explained by the fact that the electron pressure follows
the gas density but originates primarily from the highest gas-density peaks, where elevated temperatures
lead to enhanced electron pressure.

Power spectrum and angular power spectrum

Using the halo mass function, halo bias, and electron pressure profile defined previously, the equations
(2.17) and (2.18) can be applied to obtain the pressure power spectrum.

To obtain the angular power spectrum, for the Compton-y parameter, the weight function appearing
in Eq. (2.30) is:

Xy(r̂) =
σT
mec2

1

a2(r̂)
, (4.13)

where a represents the expansion factor as a function of the comoving radius r̂, σT is the Thompson
scattering cross-section, me is the electron mass, and c is the speed of light. It is noteworthy that this
weight function does not depend on redshift, unlike, for instance, weak lensing, which has a weight function
that decreases quickly after z = 1. This characteristic of the tSZ effect is particularly advantageous as it
enables to probe high redshifts.

Fitted parameters & different models

The model is characterized by different parameters, such as Γ, M0, β, α, ϵ1, and ϵ2 encouter in Eqs. (4.6),
(4.8), (4.10) and (4.12). With the addition of other parameters that appear in the model but not on
the electron pressure implementation, these parameters are summarised in Table 4.1, with their default
values on the second column. To improve the accuracy of the model, these parameters are fitted against
the BAHAMAS simulations (McCarthy et al., 2017), briefly described in Sect. 3.3.

In detail, the fits are performed on the BAHAMAS simulation 3D power spectrum response. The param-
eters are fitted simultaneously for z between 0 and 1, with a linear weighting, and for k between 0.015
and 7h−1 Mpc, with a logarithm weighting. Four different models are fitted:

• Stars: allow to fit M⋆, A⋆ and η,

• Matter: the parameters fitted for the star (M⋆, A⋆, η) are maintained fixed, and the parameters
ϵ1, Γ, and M0 are fitted,

• Matter & electron pressure: the parameters fitted for the stars (M⋆, A⋆, η) are maintained fixed,
and the parameters ϵ1, Γ, M0, α, and Tw are fitted on matter and electron pressure jointly,

• Matter, CDM, gas & stars jointly: allow to fit M⋆, A⋆, η, ϵ1, Γ, and M0.

The fits have been done for the three strengths of feedback present in the BAHAMAS simulations. For the
tSZ modelisation, I will use the value of the parameters fitted on the matter-electron pressure cross-power
spectrum only, with the intermediate feedback strength. The value of the parameters is the third column
of Table 4.1 and should not be taken as intrinsic properties of halos, as fits are done at the level of the
response power spectrum. We see how the fitted values (including redshift dependencies in some cases)
differ from their physics-inspired priors. In Mead et al. (2020), the authors argue that this approach
provides the lowest error on the pressure auto-power spectrum, as it is difficult to obtain a robust fit on
the pressure auto-power spectrum.

Using this model, the relative difference between the BAHAMAS simulation and prediction, averaged
linearly over z between 0 and 1 and logarithmically over k between 0.015 and 7hMpc−1, is of 2%
for the matter auto-power spectrum, 15% for the matter-pressure, 25% for the pressure auto-power
spectrum. As can be seen, the prediction has a relatively low fidelity for the pressure auto-spectrum.
Several reasons can explain this fact. The halo model makes several strong hypotheses, such as halos
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Table 4.1: Halo model parameters adapted from Table 1 and Table 2 of Mead et al. (2020). The fitted
values are the ones fitted with the matter-electron pressure model against the BAHAMAS simulations with
an AGN heating temperature of 107.8 K.

Parameter Default value Fitted value Physical meaning
ϵ1 0 −0.1065− 0.1073z Halo concentration modification for gas-poor

halos
ϵ2 0 N/A Halo concentration modification for gas-rich

halos
M0 1014h−1M⊙ 1013.5937h−1M⊙ Halo mass below which halos have lost more

than half of their initial gas content
β 0.6 N/A Low-mass power-law slope of halo bound gas

fraction
Γ 1.17 1.1770 Polytropic index for the equation of state of

gas that is bound in halos
A⋆ 0.03 0.0330− 0.0088z Peak fraction of halo mass that is in stars
M⋆ 1012.5h−1M⊙ 1012.4479 exp(−0.3521z) Halo mass of peak star-formation efficiency
σ⋆ 1.2 N/A Logarithmic width of star-formation efficiency

distribution
η −0.3 −0.3556 Power-law index for central–satellite galaxy

split
α 1 0.8471 Ratio of halo temperature to that of virial equi-

librium
Tw 106.5K 106.6545 exp(−0.3652z) Temperature of the warm-hot intergalactic

medium

trace the underlying linear matter distribution with a linear halo bias, halo profiles are perfectly spherical
with no substructure and no scatter at fixed mass, and nothing prevents halos from overlapping. While
these hypotheses provide a reasonable approximation of the physics at play in the case of the matter
distribution, explaining the good precision in the case of the matter power spectrum and fair in the
case of the cross-spectrum, they are not necessarily correct for the electron pressure distribution. It is
still interesting to compare HMx with the simulation measurements as a first step to understanding and
characterizing the key components of the model.

4.1.2 Angular power spectrum prediction

The angular power spectrum corresponds to an integration over redshift, and it is not useful to discuss
differences occurring at redshifts that do not contribute significantly to the angular power spectra. For
example, Komatsu & Seljak (2002) showed that the contribution of clusters at z > 10 is negligible to
the pressure angular power spectrum. We can use the predictions from HMx to address this question.
The pressure angular power spectrum obtained using different redshift ranges of integration is shown on
the left panel of Fig. 4.1, where we look at the angular power spectrum when integrating up to different
redshifts. Integration up to z = 3 or z = 4 captures more than 97% of the power for ℓ between 10 and
104. Limiting ourselves to z = 2 will only lead to a dramatic loss of ∼ 17% of validity after ℓ = 4× 103.
We have also looked at the contribution coming from the one-halo term when integrating up to a given
z for different ℓ. Except when z is sufficiently small and ℓ large, corresponding to the interior of halos,
more than 90% of the angular power spectrum comes from the one-halo term. This behaviour can be
due to the change of slope in the pressure profiles of halos or to the fact that the contrast of pressure
is smaller on the inner part of halos. These two conclusions imply that the modelisation of the electron
pressure profiles up to z = 4 will impact our results and need to be well understood.

As discussed previously, the power spectra are dominated by high-mass clusters. However, depending
on the simulation characteristics, the number of such high-mass objects in our simulations will be limited,
which we need to take into account when comparing the model predictions with the simulations. As a
first step in investigating the impact of high-mass objects, we show in the right panel of Fig. 4.1 the
contribution of the different halo masses to the power spectra, as we vary the maximum mass considered
in HMx (see also e.g., Refregier et al., 2000; Battaglia et al., 2012). Our reference here is the default
maximum mass used in HMx: Mmax = 1017 h−1M⊙. We can note that the different ℓ are not affected in
the same way; this choice of maximal mass impacts the most the values of ℓ = 50− 60. We can see that
integrating up to Mmax = 1016 h−1M⊙ makes almost no differences. Using Gumbel statistics, Davis et al.
(2011) found that it is very unlikely to have dark matter halos with M > 1016 h−1M⊙ within a volume
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Figure 4.1: Predicted pressure angular power spectrum when integrating up to different redshifts in
different colours (on the left) or between z = 0.02 and z = 10 for different maximal mass in different
colours (on the right) as a function of the angular scale ℓ.

of 1h−1 Gpc, we can extrapolate that it is also the case within the observable Universe. The prediction
still changes a bit because the halo mass function predicts that it is possible to have such halos, but for
analysis with real data, we will probably never use this maximal mass (Holz & Perlmutter, 2012). If we
are integrating up to Mmax = 2 × 1015 h−1M⊙ instead of Mmax = 4 × 1015 h−1M⊙ we loose maximum
20% of the signal instead of a few percent. This implies that the masses of a few 1015h−1M⊙ must be
well-modelled in our prescription.

4.2 Thermal Sunyaev-Zel’dovich effect observations

I describe the tSZ observable in Sect. 2.2.4. In this section, I will give more details about how the tSZ
observations can be utilized to constrain cosmology or astrophysic.

4.2.1 Angular power spectrum on wide fields

The tSZ effect can be observed across the entire sky, allowing for the creation of tSZ maps using data from
missions such as Planck (Planck Collaboration et al., 2016b; Chandran et al., 2023) or SPT (Bleem et al.,
2022). Fig. 4.2 show the tSZ map and angular power spectrum as measured by Planck Collaboration
et al. (2016b). Notably, the amplitude of the Compton-y parameter is remarkably small, approximately
∼ 10−6, and the error bars on the angular power spectrum at low ℓ are rather large. With such observable,
it is then possible to explore higher-order statistics, such as bispectrum or one-dimension probability
distribution function analysis, enabling constraints on cosmological parameters, as discussed in Planck
Collaboration et al. (2016b). It is also possible to study the possible constraints obtained on cosmological
and astrophysical parameters with the tSZ power spectrum from the full-sky CMB observations, such as
those on primordial non-gaussianities fNL and mass of the neutrinos Mν (Hill & Pajer, 2013).

A robust modelisation of the tSZ is crucial for conducting component separation analyses such as the
one conducted in Planck Collaboration et al. (2016a). Indeed, the tSZ is one of the foreground contami-
nants in the observation of the CMB. Other notable foregrounds include the cosmic infrared background
(CIB), spinning dust, and others. Having robust modelisations for all the foreground components can
allow the generation of cleaner CMB and foreground maps, which can then be employed for cosmological
analyses. Using a halo model for the tSZ can be interesting, as it allows to employ similar framework to
modelise other foregrounds such as the CIB or the kinetic SZ effect (kSZ). This unified approach allows
cross-correlation analyses with a unique and coherent modelisation of the various effects.

4.2.2 Cross-correlation with other observables

To extract even more information, the tSZ effect is used in correlation with other probes. Numerous
3x2pt analyses have been conducted, which involve examining the auto- and cross-correlation between
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Figure 4.2: Figure adapted from Figs. 2 and 11 of Planck Collaboration et al. (2016b). Left: Re-
constructed Planck all-sky Compton-y parameter maps for NILC in orthographic projections. Right:
Angular cross-power spectra of the Planck NILC F/L reconstructed Compton-y parameter maps for dif-
ferent galactic masks.

the power spectra of two different fields. For example, the correlation between the tSZ signal and the
gravitational weak lensing (WL) signal has been widely used to constrain both cosmological parameters
and nuisance parameters. A few examples of such analyses include the one of Van Waerbeke et al. (2014)
who were the first to report a cross-correlation between gravitational lensing and tSZ, highlighting the
presence of a warm baryonic gas tracing the large-scale structure; Ma et al. (2015) who used the tSZ-WL
correlation to constrain the diffuse baryonic distribution; Osato et al. (2020) who were able to constrain
the hydrostatic mass bias of high redsfhit clusters and Tröster et al. (2022) who developed a pipeline using
HMx to constrain cosmology and assess the impact of baryon for the first time with the KiDS-1000 and
Planck and ACT surveys. Furthermore, the tSZ signal can also be correlated with other fields, such as in
the study by Maniyar et al. (2021), which correlates the tSZ with the CIB. This correlation is significant
as it is a foreground for kSZ analysis using the CMB power spectrum. Many other examples exist and
are being studied, as the tSZ is a valuable probe of baryonic physics.

10x2pt analysis

In Fang et al. (2024), we conducted the first 10x2pt analysis to forecast outcomes for the joint Simons
Observatory1 and Vera Rubin Observatory Legacy Survey of Space and Time2 using a coherent
halo model. The 10x2pt analysis combines two-point functions (auto- and cross-power spectra) between
fields of tSZ, weak lensing, CMB lensing, and galaxy clustering, resulting in an analysis with ten combi-
nations. Our central objective was to evaluate the potential gains in cosmological constraints achievable
by transitioning from 3x2pt (which includes only weak lensing and galaxy clustering) to 10x2pt analysis
while employing a coherent and unified halo model.

In this analysis, we extend the existing 6x2pt modelling of cosmolike (Eifler et al., 2014; Krause
& Eifler, 2017) to include the tSZ auto- and cross-correlation. We employ a halo model framework for
all observables to maintain a coherent model for all the 10x2pt statistics. For the tSZ, the halo model
closely follows the HMx model of Mead et al. (2020) presented in Sect. 4.1.1. This model serves as a toy
model to qualitatively explore information content. We performed a parameter inference on simulated
data assuming a Gaussian likelihood and marginalized over the photo-z and shear calibration parameters.

Our objective was to assess the improvement in the constraining power when using different probes.
In Fig. 4.3, we compare the constraints in the S8 − Ωm plane when using 3x2pt (containing only WL
and clustering), 6x2pt (adding the CMB lensing) or 10x2pt statistics. By employing a 10x2pt analysis,
the constraints improved by ∼70% in the figure of merit (FoM) compared to 3x2pt and by ∼30% (in the
FoM) compared to 6x2pt. We also observed that the constraining power when using an 8x2pt (excluding
the tSZ-clustering and tSZ-CMB lensing probes) is very similar to that of 10x2pt statistics. However,
maintaining the 10x2pt pipeline is still beneficial as these probes can help to self-calibrate the systematic
parameters. To further improve the constraints, small-scale modelling must be improved to reduce halo
model uncertainties. We found that most of the uncertainty comes from the ϵ1, ϵ2 (arising from the
concentration defined in Eq. (4.12)), and Γ parameters (the polytropic index defined in Eq. (4.6)), which
are added to the halo model due to the incorporation of the tSZ probe. On the other hand, the tSZ

1https://simonsobservatory.org/
2https://rubinobservatory.org/

https://simonsobservatory.org/
https://rubinobservatory.org/
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Figure 4.3: Increase in LSST Y6 + SO Y5 constraining power as the data vector increases from 3x2pt
(black dashed) to 6x2pt (red dashed) to 10x2pt (blue shaded), for galaxy shear scale cuts ℓshearmax = 3000
(Fang et al., 2024).

allows for a better self-calibration of the model, reducing uncertainties in the small-scale matter power
spectrum.

More generally, the gain in the constraining power arises from the increased signal-to-noise ratio
(SNR) and the self-calibration of the various nuisance parameters. The main conclusion of the paper is
presented in Fig. 4.4 where we evaluate the improvement in the FoM in the Ωm-S8 plane and the required
sky fraction needed to maintain a consistent SNR. Notably, we observed that when transitioning from a
3x2pt to a 10x2pt analysis (rescaling the sky fraction to maintain a similar SNR), we can gain a factor of
two in the FoM. Additionally, adopting a 10x2pt analysis significantly reduces the required sky fraction
by a factor of three, reaching 0.4. A sky fraction of 0.4 means that we need to observe ≈ 16, 500 deg2, or
≈ 1.15 times the area observed by the Euclid survey (the Euclid footprint covers ≈ 14, 000 deg2, which
corresponds to a sky fraction of ≈ 0.35).

Digging deeper into the details, we found that most of the gain in constraining power comes from
transitioning from 3x2pt to 6x2pt analysis, which involves adding the CMB lensing correlations (steps
1 and 2). Adding the auto tSZ power spectrum reduces the constraining power as additional nuisance
parameters are required, and these parameters exhibit partial degeneracy with other cosmological pa-
rameters (step 3). Going from 6x2pt to 10x2pt analysis, we gain a bit of sky fraction at constant FoM
because it enables self-calibration (step 4). Further improvement in the FoM, up to a factor of ∼1.5,
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2024).

can be achieved by adding stronger priors on the halo model (step 5). The top of the blue vertical line
represents the constraining power achievable if all the halo parameters are fixed.

In the context of this study, we found that refining priors and enhancing the modelling of the tSZ power
spectrum is both important and timely. This effort holds the promise of tightening the constraints on
cosmological parameters, potentially addressing issues such as theH0 or S8 tensions (e.g., McCarthy et al.,
2023). Moreover, the implications of this investigation extend into the domain of baryonic feedback. By
comparing the halo model with simulations, we aim to refine our understanding of the baryonic modelling
within halos. This refinement is crucial for capturing the underlying physics of the model and improving
its fidelity to observational data.

4.2.3 Pressure profile

I have discussed that tSZ observations can be conducted on wide fields, but it is also possible to observe
individual halos. It enables the study of the evolution of clusters and their properties. For instance, Planck
Collaboration et al. (2013) took benefit of the all-sky survey to study 62 nearby halos and reconstruct
their pressure profiles. Analysis of these profiles enabled, for the first time, the study of the intracluster
medium and provided constraints on the thermal pressure support in clusters. Such analyses can be
utilized to better characterize the pressure profile of observed clusters to improve modelisation and can
also help in studying astrophysical parameters such as gas mass fraction.

More recently, with the dedicated ground-based telescope New IRAM Kids Arrays3 (NIKA2), the tSZ
surface brightness of halos is measured and compared with the X-ray surface brightness or the y-map
from, for example, Planck (Ruppin et al., 2018). Ruppin et al. (2018) analysed, for the first time with

3https://nika2.osug.fr/

https://nika2.osug.fr/
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NIKA2, a galaxy cluster (PSZ2G144.82+25.11) and demonstrated that the impact of the ICM can be
characterized through the study of the tSZ-mass scaling relation and the pressure profile. NIKA2 is
currently measuring the pressure profiles of 38 halos to extract a mean pressure profile and the tSZ-mass
scaling relation (Hanser et al., 2023) and to study the thermodynamics of these halos (Perotto et al.,
2023). Having robust measurements of halos pressure profiles can also be an interesting and challenging
avenue for predicting the angular power spectrum.

4.3 Comparison with measurement in simulations

In this section, I will present my results regarding the comparison of the tSZ properties predicted by
HMx and those measured in the different simulations. Despite the expected differences, it is interesting
to understand their origin and the underlying degeneracies. It can allow to think about improved tSZ
modelisation so it can be used more in future cosmological analyses such as 10x2pt analysis.

4.3.1 Methodology
To obtain the different power spectra from the simulations, we follow different procedures for the Horizon
and Magneticum suite of simulations.

Power spectrum computation in the Horizon suite of simulations

To compute the power spectra in the Horizon suite of simulations, we first need to project the component
of interest onto a uniform three-dimensional grid. The matter component is the sum of the dark matter
(DM), stars, and gas. DM and stars are projected with a cloud-in-cell interpolation on the grid. Gas
quantities are already on the regular Cartesian grid, and we directly use the values of mass or pressure
from the corresponding level of refinement. The simulations provide the total gas pressure, which we can
be easily modified to obtain the electron pressure, assuming local thermodynamical equilibrium between
ions and electrons for a fully ionized gas. Using the ideal gas law, the total gas pressure can be expressed
as:

P = Pi + Pe =
ρkBTi
µimp

+
ρkBTe
µemp

, (4.14)

where index i is for ions and index e for electrons. Because we assume local equilibrium, therefore
temperature equilibrium, we have Ti = Te = T , resulting in:

P =
ρkBT

mp

(
1

µi
+

1

µe

)
=
ρkBT

mp

(
1

µ

)
, (4.15)

thus leading to
Pe

P
=

µ

µe
≃ 0.492 , (4.16)

where P is the total gas pressure, µi is the mean molecular weight for ions particles (µi = 1.136), µe is
the mean molecular weight for electron particles (µe = 1.219), and µ is the mean molecular weight for
gas particles (µ = 0.6 for a fully ionized gas).

We project our quantity into a 5123 grid, allowing us to reach a Nyquist frequency (kNy = π ×
Nmesh/Lbox) of kNy ∼ 16hMpc−1 for Horizon-AGN and Horizon-noAGN and up to kNy ∼ 1.8hMpc−1

for Horizon-Large. To obtain the angular power spectrum, it will be beneficial to project Horizon-Large
into a 10243 grid to achieve kNy ∼ 3.6hMpc−1.

Once the quantity is projected, we use the Pylians python package (Villaescusa-Navarro, 2018) to
compute the 3D auto- and cross-power spectra deconvolved by the CIC mass-assignment scheme.

Power spectrum computation in Magneticum

For the Magneticum simulation, we assign each gas particle (labelled by i) an electron pressure Pe,i

according to the ideal gas law

Pe,i =
Ne,ikBTi
Vcell

, (4.17)

Ne,i =
mi

mpµe,i
, (4.18)

where Ti is the particle temperature, Vcell is the cell volume, Ne,i is the number of free electrons, mi is
the particle mass, µe,i(= 2/(2− Yi)) is the mean mass per electron and Yi is the Helium fraction.

We use Pylians to project the electron pressure onto a 10243 mesh based on the CIC assignment
scheme and then measure the power spectrum. We thus achieve kNy ∼ 3.6hMpc−1.
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Figure 4.5: Matter auto-power spectrum as a function of redshift. The left panel shows the results for
simulations with a box size of 100h−1 Mpc, thus Horizon-AGN in dashed line compared to HMx in solid line,
and Horizon-noAGN at z = 0 in dotted line. The right panel shows the results for simulations with a box
size of 896h−1 Mpc, thus Magneticum in dashed line compared to HMx in solid line, and Horizon-Large
at z = 0 in dotted line. The power spectra go from z = 0 in dark blue to z = 4.25 in yellow.

4.3.2 Mass cut

The maximal mass chosen in HMx will significantly change the prediction on the pressure auto-power
spectrum, as seen in Sect. 4.1.2. It is thus important to consider them when comparing the results
from HMx and the one measured in the simulations. From the halo mass function of the simulations
presented in Fig. 3.3, we see that the maximal masses of the 100h−1Mpc simulations (Horizon-AGN and
Horizon-noAGN) is different than one in the 896h−1Mpc simulations (Horizon-Large and Magneticum).
In the following of the analysis, I will thus use a different maximal mass to distinguish these two cases.

For the Horizon-AGN and Horizon-noAGN simulations, I will useMmax = 6.4×1014 h−1M⊙ (maximum
mass of Horizon-AGN). For the Horizon-Large and Magneticum simulations, I will use Mmax = 2.6 ×
1015 h−1M⊙ (maxium mass of Magneticum). I have checked that the prediction using the maximal mass
of Horizon-noAGN instead of the Horizon-AGN one (or Horizon-Large instead of the Magneticum one)
makes almost no difference.

4.3.3 Power spectrum comparison

Matter auto-power spectrum

As an initial validation, we compared the matter auto-power spectrum of all simulations at different
redshifts with the prediction by HMx, as illustrated in Fig. 4.5. The results obtained from Horizon-AGN
and Magneticum are in dashed lines, while the predictions by HMx are in solid lines, varying from z ∼ 0
in dark blue to z ∼ 4.25 in yellow. The left panel shows the results for a box size of 100h−1Mpc and the
right one for a box size of 896h−1Mpc. Additionally, the results for Horizon-noAGN and Horizon-Large
at z ∼ 0 are included as dotted lines to emphasize the impact of different physics. However, we do
not show their evolution with redshift since the trend is similar to the other simulations (as shown in
Fig. B.1). For all the simulations and redshifts, we observe a good agreement. At low k, there is less
power than predicted, which can be explained by the cosmic variance and the size of the simulated box,
whereas at high k, the differences can be explained by the resolution. This test confirms the reliability
of our pipeline before proceeding to analyse pressure auto- or cross-power spectra.
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Figure 4.6: Pressure auto-power spectrum as a function of redshift. The left panel shows the results for
simulations with a box size of 100h−1 Mpc, thus Horizon-AGN in dashed line compared to HMx in solid line,
and Horizon-noAGN at z = 0 in dotted line. The right panel shows the results for simulations with a box
size of 896h−1 Mpc, thus Magneticum in dashed line compared to HMx in solid line, and Horizon-Large
at z = 0 in dotted line. The power spectra go from z = 0 in dark blue to z = 4.25 in yellow.

Pressure auto-power spectrum

We then compare the pressure auto-power spectrum in Fig. 4.6. The results obtained from the Horizon-AGN
and Magneticum simulations are shown in dashed lines and the one predicted by HMx in solid lines, vary-
ing from z ∼ 0 in dark blue to z ∼ 4.25 in yellow. The left panel shows the results for a box size of
100h−1 Mpc and the right one for a box size of 896h−1 Mpc. Additionally, the result of Horizon-noAGN
and Horizon-Large at z ∼ 0 are included as dotted lines to emphasize the impact of different physics.
However, we do not show their evolution with redshift since the trend is similar to the other simulations
(as shown in Fig. B.2). At z ∼ 0 (thus the darker blue lines), both Horizon-AGN and Horizon-noAGN
predict an excess of power, even more important in Horizon-AGN. On the other hand, Horizon-Large
shows a deficit in power. Finally, Magneticum is in relatively good agreement with the prediction at
every scale. We also observe more power in the larger simulations, which is expected as they contain
more massive halos (see also Sect. 4.1.2).

Then, we can examine the evolution with redshift. For all the simulations, we observe a relatively good
agreement at low redshift with the predictions from HMx (up to z ∼ 1 for Horizon-AGN and Magneticum).
However, as the redshift increases, discrepancies become more evident. HMx predicts an excess of power at
high redshift, indicating that the model’s physics fails to capture the nuances present in the simulations.
We also notice that the measured power spectra are flatter than the predictions. Further investigations
into these differences will be studied and discussed in Sect. 4.3.5.

Matter-pressure power spectrum

As we are using the matter-electron pressure model, we extend our analysis to examine the matter-
pressure power spectrum to explore the agreement across different redshifts. Moreover, these spectra
offer avenues for studying the correlation between lensing and pressure (that we are not doing here). In
Fig. 4.7, we show the results obtained from the Horizon-AGN and Magneticum simulations in dashed lines
and the one predicted by HMx in solid lines, varying from z ∼ 0 in dark blue to z ∼ 4.25 in yellow. The
left panel shows the results for a box size of 100h−1 Mpc and the right one for a box size of 896h−1 Mpc.
Additionally, the result of Horizon-noAGN and Horizon-Large at z ∼ 0 are included as dotted lines to
emphasize the impact of different physics. However, we do not show their evolution with redshift since
the trend is similar to the other simulations (as shown in Fig. B.3). At z ∼ 0 (thus the darker blue lines),
as for the pressure auto-power spectrum, Horizon-AGN demonstrates an excess of power, Horizon-Large
a lack of power, while Magneticum agrees well with the prediction. We now observe a good agreement
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Figure 4.7: Matter-pressure power spectrum as a function of redshift. The left panel shows the results
for simulations with a box size of 100h−1 Mpc, thus Horizon-AGN in dashed line compared to HMx in
solid line, and Horizon-noAGN at z = 0 in dotted line. The right panel shows the results for simulations
with a box size of 896h−1 Mpc, thus Magneticum in dashed line compared to HMx in solid line, and
Horizon-Large at z = 0 in dotted line. The power spectra go from z = 0 in dark blue to z = 4.25 in
yellow.

between Horizon-noAGN and HMx.
Then, we can examine the evolution with redshift. We observe a better agreement up to a comparable

redshift (z ∼ 1.18 for both simulations) than for the pressure auto-power spectrum. This outcome is
expected as HMx has been calibrated on the matter-pressure power spectrum up to z = 1. Moreover, the
matter auto-power spectrum agrees well across all redshifts, mitigating the discrepancies in the pressure
auto-power spectrum. At higher redshifts, the discrepancies caused by the pressure auto-power spectra
persist. Given the sensitivity of pressure to baryonic physics, such cross-correlations can serve as valuable
tools for constraining astrophysical parameters (e.g., with the cosmic shear-tSZ cross-correlation with the
flamingo simulations in McCarthy et al., 2023 or with the lensing-tSZ cross-correlation from KiDS-1000
(lensing), Planck and ACT (tSZ) in Tröster et al., 2022). Depending on the probes we are working with,
it is crucial to adequately model different redshift ranges. With future surveys, we expect to be sensitive
up to redshift two for probes such as the distribution of galaxies, tomographic studies, or weak lensing
(e.g., with Euclid4, Laureijs et al., 2011 or Nancy Grace Roman Space Telescope5, Eifler et al., 2024),
our prediction thus needs to be trustable up to this redshift, which is qualitatively the case for the
matter-pressure power spectrum.

4.3.4 Angular power spectrum comparison
The observable accessed through surveys is the angular power spectrum, and its accurate prediction is
crucial. Using the power spectra computed on the simulations or predicted by HMx, we can use Eqs. (2.30)
and (4.13) to obtain the pressure angular power spectrum. We integrate these spectra over the redshift
range z = 0.02 to z = 4 and limit our analysis to the Nyquist frequency k = kNy. Thus, we are going
up to k ∼ 16h−1 Mpc for Horizon-AGN and Horizon-noAGN, while going up to k ∼ 3.6h−1 Mpc for
Magneticum and Horizon-Large (using a projection on 10243 to achieve a comparable kNy to that of
Magneticum). At each z, the multipole ℓ range accessible with the simulations varies, depending on the
available k range (which is influenced by the size of the simulations). Choosing an ℓ range accessible to
all the simulations across all z between 0.02 and 4 would be quite narrow. To avoid this limitation and
extract maximum information from the simulations, we opted for an interesting range of ℓ, filling the
angular power spectrum with 0 for any inaccessible ℓ. We ensure to maintain the same behaviour in the

4https://cnes.fr/projets/euclid
5https://science.nasa.gov/mission/roman-space-telescope/

https://cnes.fr/projets/euclid
https://science.nasa.gov/mission/roman-space-telescope/
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Figure 4.8: Pressure angular power spectrum integrated between z = 0.02 and z = 4 for the different
simulations in different colours and HMx in dark grey. The left panel shows the results for simulation with
a box size of 100h−1 Mpc, thus Horizon-AGN in red and Horizon-noAGN in purple. The right panel shows
the results for simulation with a box size of 896h−1 Mpc, thus Horizon-Large in green and Magneticum
in blue.

angular power spectrum computed with the power spectrum of HMx by cutting out at the same locations.
We computed the angular power spectrum for ℓ between 103 and 104 to encompass a range where the tSZ
becomes an important foreground but remains accessible with future surveys. This pipeline limits our
predictive power and is not realistic but allows us to infer the properties and behaviour of the different
simulations and HMx on the maximum modes possible.

The angular power spectra obtained are shown in Fig. 4.8. Results for the different simulations
are illustrated with various colours: Horizon-AGN in red, Horizon-noAGN in purple, Horizon-Large in
green, and Magneticum in blue, and for HMx in grey. The top left panel shows the result for a box size of
100h−1 Mpc and the top right one for a box size of 896h−1 Mpc. The bottom panels show, with the same
colour scheme, the fractional difference between the simulation and the result from HMx. The agreement
between Horizon-AGN and HMx improves at higher ℓ with differences reaching less than 10% between
ℓ = 3 × 103 and ℓ = 104. The power spectrum of Horizon-AGN (see Fig. 4.6) exhibits more power at
low redshifts and less power at high redshifts compared to the prediction, and these discrepancies seem
to compensate each other, resulting in a small difference in the angular power spectrum. In contrast,
Magneticum, shows an opposite trend, with better agreement at low ℓ where differences are less than 10%
difference between ℓ = 103 and ℓ = 2 − 3 × 103. For Horizon-noAGN and Horizon-Large, the general
behaviour is quite similar, the simulations always have between 20% and 50% less power than HMx.

4.3.5 Halo model consequences

As mentioned previously, a halo model framework contains some inherent limitations that can affect its
predictive power. In this section, I am trying to understand these limitations and explore how they might
bias or restrict our predictive power.

One- and two-halo terms decomposition

To understand better the differences observed in the predicted and measured pressure auto-power spec-
trum (see Fig. 4.6 and related text), we can explore the evolution of the one- and two-halo term contri-
butions to the total power spectrum as a function of redshift. In Fig. 4.9, we can see this decomposition
for different redshifts in the different panels: z = 0.02, z = 1.16, and z = 3.01 by focusing on the coloured
lines and ignoring the grey lines, which will be addressed in the next subsection. For each redshift, we
compare the Horizon-AGN power spectrum in coloured dashed lines, the one predicted by HMx in coloured
solid lines, the one- and the two-halo term predicted by HMx in coloured thin and coloured dotted-dashed
lines, respectively. As we increase the redshift, the contribution from the two-halo term becomes increas-
ingly significant compared to the one-halo term at a given k. The increasing importance of the two-halo
term is related to the scale at which the one- and two-halo terms intersect, which shifts towards higher



68 Thermal Sunyaev-Zel’dovich properties – 4.3. Comparison with measurement in simulations

10 1 100 101

k [h Mpc 1]

10 11

10 9

10 7

10 5

10 3

P(
k)

 [(
eV

.cm
3 )

2 .h
3 .M

pc
3 ]

z = 0.02

Within 1Rv

Without 1Rv  1h + 2h
1h
2h

10 1 100 101

k [h Mpc 1]

10 11

10 9

10 7

10 5

10 3
z = 1.16

10 1 100 101

k [h Mpc 1]

10 11

10 9

10 7

10 5

10 3
z = 3.01

Figure 4.9: Pressure auto-power spectrum as a function of redshift in the different panels. For every
redshift, we show the power spectrum of Horizon-AGN in a coloured dashed line, the HMx prediction in a
coloured solid line, the predicted one-halo term in a coloured thin line, and the predicted two-halo term in
a coloured dotted-dashed line. We superimpose the pressure auto-power spectrum within (without) one
virial radius in a solid grey line (grey dotted-dashed line). On the left, we show the result for z = 0.02,
on the middle for z = 1.16, and on the right for z = 3.01.

k values. We observe that the excess of power in the HMx power spectrum at higher redshifts is thus
dominated by the two-halo term at low k and by the one-halo term at high k. The excess of power in
HMx suggests potential discrepancies in the distribution between the one- and two-halo terms, including
the amplitude of each term at a given k scale as a function of redshift. At higher redshifts, there are only
a few halos, the observable thus resembles the matter distribution, whereas at lower redshifts, more, and
more massive, halos have formed. Thus, at low redshifts, the hypothesis that all the matter is within the
halos is more accurate and the halos contribute more to the total power. Also, the contribution from the
halos increases more rapidly than that from the diffuse gas. Finally, differences can suggest an inaccurate
representation of the intergalactic medium effects by the two-halo term, in particular its amplitude.

Validity of the halo model

The halo model contains some intrinsic limitations, as it assumes that all the matter is within spherical
halos and that the one-halo term —which is the dominant contribution to the power spectra at low
redshift (as shown by the coloured lines in Fig. 4.9 and discussed in the previous subsection)— only
contains bound gas, which is the gas inside the virial radius. To better understand the validity of
the halo model, we can investigate how the power spectrum differs when considering pressure inside or
outside one virial radius of halos, compared to the prediction from HMx. These spectra are obtained by
selectively masking gas pressure by masking either inside or outside one virial radius of halos. We have
performed this study for the different simulations (Horizon-AGN, Horizon-noAGN, Horizon-Large, and
Magneticum) and they all show similar behaviour, thus, we are showing the results for Horizon-AGN in
Fig. 4.9 where we can now focus on the grey lines. We can compare the electron pressure auto-power
spectra of Horizon-AGN (coloured dashed line) to the one coming from inside (outside) one virial radius
in solid grey lines (grey dotted-dashed lines) for different redshifts: z = 0.02 on the left, z = 1.16 on
the middle and z = 3.01 on the right. We observe that, at low redshift, most of the power comes
from within one virial radius of halos. However, this assumption loses validity with increasing redshifts.
Notably, at z = 3.01, there is more power coming from outside one virial radius of halos than inside.
This implies the diminishing applicability of the halo model prescription at higher redshifts. Moreover,
comparing the one-halo term (coloured thin lines) to the power spectrum coming from inside one virial
radius (solid grey lines) reveals that at z = 0.02, the shape is consistent even if HMx lacks power. However,
as redshift increases, discrepancies in shape emerge, contrary to the expectation that the one-halo term
should represent the power spectrum within one virial radius of the halos. These observations can partially
explain the discrepancies observed in Fig. 4.6 with increasing redshift. Given these limitations, it becomes
imperative to consider them when evaluating the cross-correlation with other probes.
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Figure 4.10: Pressure auto-power spectrum of the total Horizon-AGN simulation in red compared to the
signal coming from within one virial radius of the different mass. The highest mass bin is in dark brown,
and the lowest mass bin is in yellow.

Importance of the halo mass

To go one step further in our understanding of the halo model, we investigate the contribution of each
mass bin to the overall power spectrum measured in a simulation. We have performed this study for
the different simulations (Horizon-AGN, Horizon-noAGN, Horizon-Large and Magneticum), and they all
show a similar trend, thus, we are only presenting the results for Horizon-AGN in Fig. 4.10. We are
comparing the electron pressure auto-power spectra (red line) with the one coming from inside one virial
radius of the halos in different mass bins, ranging from dark brown for the highest mass bin to yellow for
the lowest mass bin at z = 0.02. We can clearly see that most of the power emanates from the highest
mass bin, despite its relatively low population (for Horizon-AGN, the highest mass bin contains only
0.006% of the total number of halos). The lower the mass bin, the lesser its contribution to the total
power spectrum. A reduction of approximately one order of magnitude is observed with each logarithmic
decrease in mass bin. This shows the importance of ensuring that the halo model, particularly the electron
pressure profile, accurately reflects the characteristics of the highest mass halos. However, given that the
higher mass halos are less common occurrences, it may be worth masking them to mitigate the connected
non-Gaussian covariance and tighten cosmological or astrophysical constraints, as explored in Osato &
Takada (2021).

4.3.6 Halo pressure profiles

The main component of the model is the electron pressure profile, defined in Eq. (4.5). This profile not
only represents a major aspect of the model but also constitutes the primary component of the one-halo
term. As demonstrated in Fig. 4.9, the one-halo term is the predominant contribution to the power
spectrum at low redshifts, further influencing the angular power spectrum. Consequently, in Fig. 4.11 we
present the electron pressure profile measured in the simulations in different colours: Horizon-AGN in red,
Horizon-noAGN in purple, Horizon-Large in green and Magneticum in blue, compared to the prediction
from HMx in dark grey. We show these profiles at z = 0 (top) and z = 1.18 (bottom) across three mass
bins: 12 < log(Mv/M⊙h

−1) < 12.5, 13 < log(Mv/M⊙h
−1) < 13.5 and 14 < log(Mv/M⊙h

−1) < 14.5
from left to right. The consistency in trends between the two redshifts aligns with expectations, given
that the measured profiles scale as (1 + z)4, as the predicted one. For all the Horizon simulations at
both redshifts, as well as Magneticum at z = 1.18, discrepancies are noticeable, particularly in the low-
and intermediate-mass bins, where the inner regions exhibit closer agreement, while deviations escalate
towards outer regions. The Magneticum profiles at z = 0 have different behaviour, characterized by
elevated inner pressures and convergence towards other simulations in the outer regions. For the high-
mass bin, we see that the Horizon simulations have more power than the predictions at both redshifts,
whereas the Magnetiucm profiles surpass the prediction at z = 0 and undershoot them at z = 1.18.
Nevertheless, the overall shape remains reasonably consistent across all distances from the centre. As
HMx should represent the mean behaviour of halos, we have added error bars that indicate the error on
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Figure 4.11: Pressure profile as a function of the distance to the centre of the halos compared with the
one predicted by HMx in dark grey at z = 0 (first row) and z = 1.18 (second row). Each panel represents
a different mass bin, and each colour is a different simulation: Horizon-AGN in red, Horizon-noAGN in
purple, Horizon-Large in green, and Magneticum in blue. The error bars represent the error on the
mean and are, most of the time, too small to be visible.

the mean and are often too small to be discernible. This observation suggests that while our mean is well
estimated, it is not entirely compatible with the HMx prescription.

Since the model’s free parameters are tailored to fit the response power spectrum, achieving a perfect
agreement on pressure profiles is not guaranteed. Moreover, the influence of high masses, which contribute
the most, can alter even more the profiles of low-mass halos. It is still worth comparing the predicted
and measured profiles to understand power spectrum disparities. Let us describe more the high-mass
bin, which is the dominant part of the power spectrum. The difference observed in this bin could explain
power spectrum differences. For example, at z = 0, all simulations (Horizon-AGN, Horizon-noAGN,
Horizon-Large and Magneticum) have qualitatively similar pressure profiles (with more pronounced
differences on the outer regions), containing more pressure than HMx. At z = 1.18, the Horizon-Large
remains above the prediction, while Magneticum is under. On the left panel of Fig. 4.6, both Horizon-AGN
and Horizon-noAGN power spectra also contain more power than HMx. However, on the right panel
of Fig. 4.6, Horizon-Large power spectrum lies below HMx (with Magneticum showing relatively good
agreement). These diverse behaviours suggest that profile differences alone cannot entirely account for
observed power spectrum discrepancies. Additionally, we note that the lower-mass halos exhibit greater
discrepancies, as anticipated.

To improve our analysis, it can be interesting to focus even more on high-mass halos. Future studies
with larger volume simulations could provide a more comprehensive probe of these halos. Because of the
current computational constraints, the resolution of such simulations cannot be as good as the one in
Horizon-AGN, for example, which can potentially introduce additional biases. Building large simulations
with zoom-in capabilities targeting big halos to assess the fidelity of baryonic physics can be an avenue.
This approach could offer a new perspective for such analysis, which is currently limited by the noise on
the number of these halos.

4.3.7 Difference of the simulations

The simulations that we are analysing are different: they are run with different computational codes,
different physics models, different resolutions, and different box sizes. Different choices in terms of the
included physics and their modelisation methodology are made and can influence the obtained results.
For example, in Mead et al. (2020), models were fitted against three BAHAMAS simulations, each contain-
ing different strengths of AGN feedback, yielding to different values for the fitted parameters. In our
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Figure 4.12: Pressure auto-power spectrum in Horizon-noAGN in purple compared to HMx in dark grey
and the mean over 363 boxes of 100h−1Mpc from the Horizon-Large in blue. The purple error bars
contain 68% around the mean of the 363 boxes of the Horizon-Large (see the text for more information).
They are applied to the Horizon-noAGN simulations to represent its variance.

simulations, with the different choices, the strength of feedback is also different, but other choices can
lead to many other differences that are challenging to precisely identify and define.

Another critical aspect that can be evaluated is the cosmic variance of the simulation. To quantity this
variance, we took 500 non-overlapping boxes extracted from the Horizon-Large simulation, each with
a dimension of 100h−1 Mpc. As the power spectrum depends a lot on the high-mass halos, we applied
selection criteria to retain only those boxes with maximal mass similar to the one in the Horizon-AGN
and Horizon-noAGN simulations. This refinement yielded 363 non-overlapping boxes, from which we
computed the pressure auto-power spectrum. We have noticed a strong correlation in k among these
363 pressure auto-power spectra, explained by both the multitude of bins in our power spectrum and
the observed scatter in the power spectra themselves. Thus, direct computation of error bars would be
artificially large because of this correlation and will not really emphasize the true cosmic variance. To
mitigate this issue, we employed a constant binning in log space of k for our power spectrum, checking that
the level of correlation between the bins is low. We then calculated a cumulative probability distribution
function at each k to extract the values encompassing 68% of the signal. This approach allows us to
derive the lower and upper bounds of our error bars.

In Fig. 4.12, we show the binned mean power spectrum of these boxes in blue, of the Horizon-noAGN
simulation in purple, and of the HMx prediction in grey. The variance derived using the method described
above is overlaid on the Horizon-noAGN simulation to represent the cosmic variance of such a simulation.
We see that the error bars are non-Gaussian and of the same order of magnitude across different k ranges.
They emphasize a tendency for a higher power spectrum than the one predicted by HMx.

Trying to build a halo model that more faithfully captures the physics embedded in the simulation
(with the value of the parameters measured from the simulation, for example) can be an avenue for
increasing the robustness of predictions. Such a procedure can pose inherent challenges, such as the
parameter measurement methodologies. Another possibility could be to focus on refining pressure profiles
to better match simulation data. However, it remains unclear whether such improvements would directly
propagate into enhanced agreement in the power spectrum and angular power spectrum. We let the
exploration of such analysis for future work.
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4.4 Measurement of some properties

As discussed in the presentation of the HMx halo model in Sect. 4.1.1, the parameters of the model have
been jointly fitted at the level of the response power spectrum. We thus expect the model to have
differences when looking at other components, as explored in this section. As the parameters are linked
to physical processes, learning them at the level of the power spectrum can lead to overfitting for this
observable and not allow to reproduce the physics of each component. Even if the HMx framework assumes
that these fitted parameters are not intrinsic properties of halos, it is interesting to compare the value used
in the model with measurements from simulations to investigate the impact of varying these parameters
on the predicted power spectrum. Moreover, the assumption of parameters constancy with mass and, to
a large extent, with redshift can introduce biases. In this section, I undertake the comparison between
the measured parameters in the Horizon-AGN simulation and those employed in HMx. Subsequently, I
investigate the impact of varying these parameters in the predicted pressure auto-power spectrum and
pressure profiles.

4.4.1 Properties in the simulations

Polytropic index Γ

The first studied parameter is the polytropic index Γ, which appears in the bound gas density profile,
defined in Eq. (4.6). By default, Γ = 1.17, but after fitting, the model employs a value of 1.1770. It is
assumed to remain constant across mass and redshift. To assess its agreement with the one measured in
the Horizon-AGN simulation, I can derive it from Eqs. (4.5) and (4.6). This yields:

d logP (M, r)

d log ρ(M, r)
= Γ(M, r) . (4.19)

To derive Γ, I examine the pressure-density relationship within the simulation for different mass bins.
In Fig. 4.13, I show this pressure-density relation for two different mass bins in the two panels. The red
line is the measurement from the Horizon-AGN simulation at z = 0.02, while the dark red line shows
the relation at z = 1.16. The thick grey line is the relation used in HMx with a slope of 1.1770. Upon
inspection, there is a change in slope within the curves at a certain density. This transition occurs between
the inner of halos (low pressure and density, left of the vertical lines) and the intracluster medium (high
pressure and density, right of the vertical lines). This transition occurs within a specific range of densities,
typically around 10−1 H/cm2. However, there are variations in the density threshold for this transition
across different mass bins and redshifts. As I am interested in the relation within halos, I apply a manual
cutoff represented by the vertical lines in the plot, and I only fit the relation that is on the left of these
vertical lines. With this restricted dataset, I fit the slope Γ.

The results of the Γ parameter estimation across different mass bins and redshifts are shown in
Fig. 4.14. We compare the constant value used in the HMx (Γ = 1.1770) in thick grey line with the
measurements obtained at z = 0.02 in red and z = 1.16 in dark red. The error bars are computed
using the covariance provided by the fitting process. Their magnitude is determined by the square root
of the associated coefficient of the covariance matrix. Assuming a constant over mass and redshift is
not representative of the behaviour observed in the simulation. As the high-mass and low redshift are
the dominant contributions to the angular power spectrum, I consider using a value of Γ = 1.2847,
corresponding to the mean Γ from the four highest mass bins at z = 0.02, to refine our predictions.

Deviation from a virial relation in the temperature α

The parameter α is also taken as a constant with mass and redshift and should encapsulate the deviation
from a virial relation in Eq. (4.10), it thus acts as a hydrostatic bias. By default, α = 1, but after
fitting, the model employs a value of 0.8471. To determine the value of α in the simulation, the measured
gas temperature can be compared with the gas temperature predicted by Eq. (4.9), assuming α = 1.
I can then fit the slope α. Fig. 4.15 shows the α value used in HMx (0.8471) in thick grey line, the
measurement in Horizon-AGN at z = 0.02 in red, and the measurement at z = 1.16 in dark red. The
error bars are computed using the covariance provided by the fit. Their magnitude is determined by the
square root of the associated coefficient of the covariance matrix. There is a clear trend where α increases
with the mass of the halo, indicating higher temperature. At z = 0.02, around Mv = 1013.3M⊙h

−1, α
becomes bigger than one, suggesting that halos above this mass are hotter than the virial temperature.
As the concentration enters in the gas temperature equation, the discrepancies can indicate that the
concentration is not well modelised or a non-virialized state of the halos. As the high-mass and low redshift
are the dominant contributions to the angular power spectrum, I consider using a value of α = 0.9972,
corresponding to the mean of the four highest mass bins at z = 0.02, to refine our predictions.
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Figure 4.13: Electron pressure as a function of the density for two different mass bins in the different
panels to study the slope Γ. Thick grey lines are the relation used in HMx with Γ = 1.1770. Red and
dark red lines correspond to the measurement of the relation in Horizon-AGN at z = 0.02 and z = 1.16,
respectively. The vertical lines correspond to the limit between what is considered as the inner of halos
(left of the lines) and the ICM (right of the lines).

Figure 4.14: Slope Γ measured from the pressure-density relation in different mass bin in the Horizon-AGN
simulation at z = 0.02 in red and z = 1.16 in dark red. Error bars are computed as the square root of
the associated value in the covariance matrix given by the fit. The grey line represent the value used in
HMx Γ = 1.1770.
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Figure 4.15: Measurement of α in the Horizon-AGN simulation at z = 0.02 in red and z = 1.16 in dark
red compared to the value used in HMx in thick grey line. Error bars are computed as the square root of
the associated value in the covariance matrix given by the fit.

β and M0 in the fraction of bound gas

The parameters β and M0 appear in the fraction of bound gas in Eq. (4.8) and govern its slope. The
default value of M0 is 1014 h−1M⊙ but after fitting, the model employs a value of 1013.5937 h−1M⊙ (which
is equivalent to 3.92× 1013 h−1M⊙). The default value of β is 0.6 and remains unchanged in the model
as it was not subject to fitting. To measure the fraction of bound gas in the simulations, I evaluate the
masses of the different components within one virial radius at z = 0.02 and z = 1.16:

fbnd =
Mgas

Mgas +Mstars +MDM
. (4.20)

The results are shown in Fig. 4.16, where the fraction of bound gas of halos measured in Horizon-AGN is
represented by blue dots, for z = 0.02 on the left panel and z = 1.16 on the right panel. The red dots (and
dark red dots) and error bars are the mean and standard deviation of the individual halos in different mass
bins. On the left panel, the red line represents the best fit obtained from the binned fraction of bound
gas (red dots), while the HMx function is shown with the thick grey line. On the right panel, the dark red
line represents the best fit obtained from the binned fraction of bound gas (dark red dots), while the HMx
function is shown with the thick grey line. The dashed red line is the best fit obtained at z = 0.02 for
comparison. The fraction of bound gas used in HMx is notably lower than that in the simulation, meaning
that halos contain more gas than assumed by the model. This trend is accentuated at higher redshift.
The best fit at z = 0.02 gives M0 = 1.07 × 1013 ± 1.67 × 1012 h−1M⊙ and β = 0.6 ± 0.06. To obtain a
good fit, β is similar to the value employed in HMx, while M0 is approximately one order of magnitude
smaller. The best fit at z = 1.16 gives M0 = 5.03 × 1012 ± 0.55 × 1012 h−1M⊙ and β = 0.45 ± 0.04. To
obtain a good fit, both M0 and β are lower than the value employed in HMx. As the low redshifts are the
dominant contribution to the angular power spectrum, I retain the M0 = 1.07× 1013 h−1M⊙ to evaluate
its impact on the prediction.

Concentration

The concentration assumed in HMx follows a modified Duffy et al. (2008) formulation to incorporate the
impact of baryonic feedback, defined in Eq. (4.12). Although I do not intend to modify it, comparing
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Figure 4.16: Measurement of the fraction of bound gas of individual halos of the Horizon-AGN simulation
in blue, at z = 0.02 (left panel) and z = 1.16 (right panel). The red dots (left) and dark red dots (right)
are the binning of the blue points, where the error bars are the standard deviation. The thick grey line
shows the equation used in HMx. Left: the red line shows the best fit obtained from the red dots for our
simulation for z = 0.02. Right: the dark red line shows the best fit obtained for the dark red dots for our
simulation at z = 1.16 and the dashed red line is the best fit obtained at z = 0.02 for comparison. Note:
the mass definition of this plot is different and is computed using the virial equilibrium. In practice, it
shifts the mass by 0.1 dex.

measurements in the simulations with the prediction is still interesting. Fig. 4.17 shows a comparison
between the concentration used in HMx at z = 0.02 and z = 1.16. First, at z = 0.02, the HMx concentration
is in a thick grey line, and the measurements obtained from Horizon-AGN are the red dots. At z = 1.16,
the HMx concentration is in a thick black line, and the measurements obtained from Horizon-AGN are the
dark red dots. The error bars are computed by propagating the covariance of rs given by the fit. The
error bars on rs (noted σrs) are the square root of the associated coefficient of the covariance matrix,
and then the error bars on cM are computed as σcM = cM × σrs

rs
. To obtain the concentration in the

simulations, I measure the dark matter profiles in different mass bins, then fit a NFW profile Navarro
et al. (1997b):

ρ(r) =
ρ0

r
rs

(
1 + r

rs

)2 , (4.21)

to obtain ρ0 and rs in every mass bin. Finally, as cM = rv/rs and the virial radius is known, I derive the
cM value for each mass bin. At both redshifts, the concentration decreases as the mass increases, at a
faster rate in the simulations compared to the prediction. When increasing the redshift, the concentration
decreases in the simulations and in the HMx prediction, leaving the measured simulation higher than the
one used in the model.

4.4.2 Implication for the power spectrum and pressure profile
Impact on the pressure power spectrum Now that we have measured and compared the value of
various parameters in the Horizon-AGN simulation, it is interesting to examine their impact on the pres-
sure auto-power spectrum. First, I assess the influence of each parameter by adjusting their values to the
best fit, followed by analysing the collective impact of changing all parameters simultaneously. Fig. 4.18
shows the impact of changing different parameters to the predicted pressure auto-power spectrum. The
Horizon-AGN power spectrum is in red line, and the default HMx prediction used in the above analysis is
in thick grey line. The different black lines show the predictions when changing different parameters. The
best fit for Γ is represented in dashed line, for α in dotted-dashed line, for M0, and β in dotted line and the
prediction when changing all parameters simultaneously with the solid line. From the measurements and
best fits, we see that changing α and M0 primarily drives the differences. Modifying α and M0 enables
the prediction to have more power, thereby bringing it closer to the Horizon-AGN simulations, while Γ
reduces the prediction even more at high k values. When combining the value of all the parameters,
we observe an improvement in the prediction up to k ∼ 3 − 4hMpc−1, beyond which the performance
deteriorates. Improving the prediction through this procedure is still insufficient for robust modelling of
the tSZ for future, for instance, 10x2pt analyses. Nevertheless, it provides valuable insights into the role
of different parameters and possible degeneracies.
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Figure 4.17: Measurement of the concentration in the Horizon-AGN simulation compared to the equation
used in HMx. Measurements at z = 0.02 in different mass bins are in red and must be compared to the
equation used in HMx in a thick grey line. Measurements at z = 1.16 in the different mass bins are in dark
red and must be compared to the equation used in HMx in a thick black line. Error bars are propagated
from the error bars on rs given by the square root of the associated value in the covariance matrix given
by the fit.
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Figure 4.18: Pressure auto-power spectrum at z = 0.02 with different predictions. The red line shows
the measured power spectrum in the Horizon-AGN simulation. The thick grey line shows the default HMx
prediction used in the above analysis. The different black lines show the power spectrum predicted by
HMx when changing the value of different parameters. We put our best fit for Γ in dashed line, for α in
dotted-dashed line, for M0 and β in dotted line and the prediction when changing all of them with the
solid line.



Thermal Sunyaev-Zel’dovich properties – 4.4. Measurement of some properties 77

10 1 100

R/Rv

10 2

10 1

100

101
P e

 [e
V/

cm
3 ]

12 < log(Mv/M h 1) < 12.5

10 1 100

R/Rv

10 2

10 1

100

101

P e
 [e

V/
cm

3 ]

13 < log(Mv/M h 1) < 13.5

10 1 100

R/Rv

10 2

10 1

100

101

P e
 [e

V/
cm

3 ]

14 < log(Mv/M h 1) < 14.5

HMx
HMx, = 1.2847
HMx, = 0.9972
HMx, (M0, ) = (1.07e13, 0.6)
HMx, all params
Horizon AGN

Figure 4.19: Pressure profile at z = 0.02 with different predictions. The red line shows the measured
power spectrum in the Horizon-AGN simulation with its associated error bars. The thick grey line shows
the default HMx prediction used in the above analysis. The different black lines show the power spectrum
predicted by HMx when changing the value of different parameters. We put our best fit for Γ in dashed
line, for α in dotted-dashed line, for M0 and β in dotted line and the prediction when changing all of
them with the solid line.

Impact on the pressure profiles As the profiles in HMx are not expected to match perfectly due to the
parameters being fitted at the level of the power spectrum, it is interesting to examine how they change
when using the value obtained from our best fit at z = 0.02 to see behaviour and potential degeneracies.
Fig. 4.19 shows the impact of changing different parameters to the induced pressure profile in HMx. The
Horizon-AGN pressure profile is in red line, and the default HMx profile used in the above analysis is in
thick grey line. The different black lines show the profiles when changing different parameters. The best
fit for Γ is represented in dashed line, for α in dotted-dashed line, for M0 and β in dotted line, and the
prediction when changing all parameters simultaneously with the solid line. As for the power spectrum
analysis, modifying the value of α and M0 tends to give more power, while Γ lowers the profiles across
most of the radius range examined. The profiles obtained when changing all parameters demonstrate
better agreement than the default one, but the agreement is still not compelling. These modifications
are insufficient to fully capture all the physics present in the simulation, highlighting the importance of
continued efforts to achieve a profile that completely matches the simulation and see if it leads to a better
match in the power spectrum. Moreover, given the observed mass dependence on Γ and α, it can be
beneficial to incorporate it. I did not correct the concentration used in HMx to align with the measured
one, which could also help improve the agreement between the profiles. Nevertheless, it is noteworthy to
observe the extent to which these parameters can influence the profile.

In the effort to build a halo model more closely aligned with the intrinsic physical properties of halos,
I have worked on an initial investigation by measuring parameters in the Horizon-AGN simulation to
update the values used in HMx. I found that using the best fit from the highest mass at z = 0.02 improves
the predictions on some scales, but it is insufficient to fully reproduce the simulation’s measurements.
To pursue this analysis, it would be interesting to incorporate the mass and redshift dependence of the
parameters to determine whether perfect alignment of these parameters leads to a better agreement in
the power spectrum and pressure profiles. Additionally, exploring if a perfect match between predicted
and measured pressure profiles can result in a sufficiently good agreement in the power spectrum would
be of interest. If this is the case, obtaining a power spectrum from profile observations, for example, can
be beneficial.

Finally, following the procedure described in HMx by fitting at the power spectrum level and comparing



78 Thermal Sunyaev-Zel’dovich properties – 4.5. Beyond standard cosmology

the parameters’ values with those measured directly, as done in this section, could provide insights. It
could enhance our understanding of the correlation between the parameters and the impact of the different
physics included in the simulations.

4.5 Beyond standard cosmology

The tSZ effect is expected to be sensitive to the dark energy due to its influence on the growth of
structures. Before attempting to constrain w using the tSZ effect, it is crucial to understand how this
effect, thus the electron pressure, is affected and to establish a robust model. To initiate this investigation,
my focus is on a scenario where the dark energy equation of state is constant, parametrized solely by w.
In Eq. (1.11), we adopt wa = 0 and w0 = w.

To explore the impact of dark energy, I ran and used the L896_wCDM simulations, described in
Sect. 3.3.1. For this initial exploration, I chose values of w = −1.2, w = −1, and w = −0.8. It is
noteworthy that current constraints typically favour w values close to −1 Planck Collaboration et al.
(2020b). In particular, values of w < −1 would necessitate more complex models to be explained,
such as the phantom dark energy (e.g., Nojiri et al., 2005) model, which is not favoured by the current
observations. Such a model is physically more complex as it requires negative mass.

4.5.1 Results on the power spectrum
I start the investigation by studying the matter and pressure power spectra within these three simulations.
It is interesting to evaluate the impact in both tracers, discerning the direction and the magnitude of the
effect.

Matter power spectrum

I have first examined the matter power spectrum in the L896_wCDM simulations. The left part of Fig. 4.20
shows the matter power spectrum as a function of redshift. The top panel shows the power spectrum
for the different values of w, while the bottom panel shows the fractional difference with respect to the
w = −1 simulations. The power spectra go from z = 0.02 in dark blue to z = 5.87 in yellow. The w = −1
results are represented with the solid line, w = −0.8 by the dashed line, and w = −1.2 by the dotted line.

We observe that the power spectrum has more power when w = −0.8 and less power when w = −1.2
compared to the w = −1 simulation. The difference amplifies with increasing redshift, particularly at
higher k values. At the highest redshift considered (z = 5.87), the w = −0.8 simulation shows between
15% to 30% more power than the w = −1 simulation, while the w = −1.2 simulation shows between
10% to 20% less power. There is an asymmetry between simulations with w < −1 and w > −1, with
w > −1 simulations showing roughly twice the difference observed between the w < −1 simulation and
the w = −1 baseline.

Pressure power spectrum

I pursue the analysis with the pressure power spectrum in the L896_wCDM simulations. The right panel
of Fig. 4.20 shows the pressure power spectrum as a function of redshift. The top panel shows the power
spectrum for the different values of w, while the bottom panel shows the fractional difference with respect
to the w = −1 simulations. The power spectra go from z = 0.02 in dark blue to z = 5.87 in yellow. The
w = −1 results are represented with the solid line, for w = −0.8 by the dashed line, and for w = −1.2 by
the dotted line.

Similarly to the matter power spectrum, the pressure power spectrum has more power when w = −0.8
and less power when w = −1.2 compared to the w = −1 simulation. This trend also increases with redshift
but demonstrates a more consistent pattern across the k values. At the highest redshift considered
(z = 5.87), the w = −0.8 simulation shows over 100% more power than the w = −1 simulation, while
the w = −1.2 simulations show between 20% to 50% less power. The same asymmetry as in the matter
spectrum is observed: the w > −1 simulations show approximately twice the difference observed between
the w < −1 simulation and the w = −1 simulation.

4.5.2 Result on the pressure angular power spectrum
Following the computation of the power spectrum, I computed the pressure angular power spectrum
to assess the impact of the wCDM simulations on the tSZ effect. The top panel of Fig. 4.21 shows the
pressure angular power spectrum integrated between z = 0.02 and z = 4 as a function of multipole ℓ. The
bottom panel shows the fractional difference relative to the w = −1 simulation. Results for w = −1 are
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Figure 4.20: Top left (right): Matter (Pressure) auto-power spectrum in the L896_wCDM simulations as a
function of redshift. We compare the result of simulations with different values of w. Bottom: fractional
difference for the w ̸= −1 with respect to the w = −1 simulations. Results for w = −0.8 are in dashed
line, for w = −1 are in solid line, and for w = −1.2 in dotted line. The power spectra go from z = 0.02
in dark blue to z = 5.87 in yellow. Note: The range of the y-axis is different for the matter and pressure
power spectrum and fractional difference, to better distinguish the trends and differences.

represented in black, w = −0.8 in blue, and w = −1.2 in red. The w = −0.8 simulation shows between
20% and 80% more power than the w = −1 simulation in the pressure angular spectrum. Conversely,
the w = −1.2 simulation shows between 15% and 40% less power compared to the w = −1 simulation.
In both cases, these differences increase with increasing ℓ, with the most significant differences at higher
ℓ values.

4.5.3 Discussion

To understand the trends observed in the matter and pressure power spectra, we can investigate the
contributions of the different components of the Universe across the various w scenarios. This is illustrated
in Fig. 4.22, where the density as a function of the scale factor is qualitatively represented for different w
values, excluding the radiation dominated era. The matter density is represented by the dashed line, the
density of the cosmological constant w = −1 with the solid black line, and the density of the cosmological
constant for w = −0.8 and w = −1.2 by the blue and red lines, respectively. The normalisation is set
z = 0, corresponding to a = 1, as in the simulations. The matter dominated era and the cosmological
constant dominated era are represented with respect to the case w = −1. To understand the impact
of these different cosmologies on the spectra, we can consider the growth of structures in the different
scenarios through the investigation of the dominant component of the Universe.

In the ΛCDM scenario (w = −1), during the matter dominated era, the expansion of the Universe
goes at a rate comparable to the structure formation. However, for w ̸= −1, this is no longer true. For
w > −1 (e.g., w = −0.8), the expansion of the Universe starts earlier because the density of dark energy
becomes more important than matter earlier. Consequently, the growth of structures is slower than the
expansion of the Universe, causing structures to move away from each other.

Conversely, for w < −1 (e.g., w = −1.2), the dominance of expansion occurs later, and the growth of
structures is faster compared to the expansion of the Universe.

If we impose the same σ8 at present time, the w = −0.8 scenario implies slower structure growth.
This is illustrated in Fig. 4.23, where the evolution of the growth factor as a function of the scale factor is
represented for the three L896_wCDM simulations. The evolution for w = −0.8, w = −1, and w = −1.2 are
shown in blue, black, and red, respectively. The larger the scale factor, the more differences appear in the
growth factor. For larger w values (w = −0.8), the growth factor is smaller. However, to maintain the
same structure density today, structures were more developed earlier to compensate, spending more time
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Figure 4.21: Top: Pressure angular power spectrum integrated between z = 0.02 and z = 4 in the
L896_wCDM simulations as a function of ℓ. We compare the result of simulations with different values of
w. Bottom: fractional difference for the w ̸= −1 with respect to the w = −1 simulations. Results for
w = −1 are in black, for w = −0.8 in blue, and for w = −1.2 in red.
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Figure 4.22: Schematic representation of the density as a function of scale factor for different w, assuming
a normalisation at z = 0, equivalently a = 1. The matter density is represented in dashed line (ρ ∝ a−4),
and the cosmological constant in solid black line (ρ ∼ constant, and w = −1). The blue and red lines
represent the density for a cosmological constant with w = −0.8 and w = −1.2, respectively. The matter
dominated era and cosmological constant dominated era are represented with respect to the case w = −1.
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Figure 4.23: Evolution of the growth factor D+ as a function of the scale factor a used in the L896_wCDM
simulations. The evolution for w = −0.8, w = −1, and w = −1.2 are shown in blue, black, and red,
respectively.

in the non-linear regime. This trend is reflected in the power spectrum, where the w = −0.8 simulation
exhibits greater power, with differences increasing as redshift increases. The opposite trend is observed
for w = −1.2: faster structure growth means structures were less developed at earlier times, resulting in
a lower power spectrum.

In Fig. 4.24, I show the fractional difference at z = 1.156 of different quantities between the w = −0.8
and w = −1 simulations in blue and between the w = −1.2 and w = −1 simulations in red. The solid
line is the ratio of the growth factor D+ normalised at z = 0, the dashed line is the ratio of the matter
power spectrum, and the dotted line is the ratio of the pressure power spectrum. As already seen in
Fig. 4.20 and emphasized here with the dashed and dotted lines, the matter power spectrum reveals a
trend with k, while the pressure power spectrum ratio is more flat. The comparison between the growth
factor and the pressure power spectrum confirms that the effect of dark energy cannot be explained only
by the growth factor; more complex effects are at play. Further investigations on the impact of the halo
mass function, shown in Fig. 3.4, could provide additional insights into understanding and characterizing
the impact of dark energy on the tSZ effect.

This study is the first investigation into the influence of dark energy on the tSZ effect. Results
encourage further analysis with more complex dark energy models. As a next step, developing a robust
model to predict these effects can be used to constrain dark energy models with observational data. It
will also be interesting to explore if a combination of some simple quantities, such as the growth factor
and halo mass function, can fully describe the impact of dark energy on the spectrum.

4.6 Summary

In this chapter, I explored how the tSZ effect can serve as a tool for constraining both cosmological
and astrophysical parameters. To improve its constraining power, it is interesting to examine its cross-
correlation with various observables. However, due to imperfect modelling of the tSZ effect and the
introduction of numerous parameters into the pipeline, it is crucial to reduce the priors on these parame-
ters to enhance the constraining power (Fang et al., 2024). Therefore, continued efforts to refine the tSZ
modelisation are essential. With this objective, I conducted an analysis of the tSZ properties within the
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Horizon and Magneticum suite of simulations and compared the results with the HMx predictions.
The first main result compares the power spectrum and angular power spectrum. The angular power

spectrum measured in the simulations differs between 20 to 50% compared to the predictions provided
by HMx. This discrepancy is attributed to variations in the pressure auto-power spectrum, which become
more pronounced with increasing redshifts. Specifically, the predicted power spectrum shows higher
power levels compared to the observed values in the simulations.

To understand the origin of these discrepancies, I explored different parameters and limitations in-
herent to the halo model. First, I have studied the one- and two-halo decomposition and observed an
overestimation of the two-halo term at higher redshifts, which can be a problem in modelling the ICM.
This contributes significantly to the excess power observed in the predictions. Second, I investigated the
contribution of power from within or outside one virial radius of halos in the simulations at different
redshifts. While at lower redshifts, the majority of power comes from within halos, indicating compati-
bility with the halo model assumption, at higher redshift (e.g., z ∼ 3), a substantial portion of the power
comes from regions outside one virial radius of halos, highlighting a failure of the halo model to capture
this phenomenon. Then, I studied the importance of each mass bin to the total power spectrum in the
simulations. Remarkably, almost all power comes from the highest mass bin (14 < log(Mv/M⊙h

−1) < 15)
despite this bin containing only 0.006% of the total number of halos. Finally, I compared the pressure
profiles for different mass bins and redshifts. While differences were anticipated due to the halo model
being fitted at the level of the response power spectrum, it was still interesting to observe the behaviour
and degeneracies. Across most mass and redshift ranges, the simulations have higher power levels and
distinct profile shapes compared to the prediction. Future studies could focus on refining predicted pro-
files to better match those of the simulations, potentially addressing some of the observed discrepancies
in the (angular) power spectrum.

Continuing the investigation into the parameters of the halo model, I compared the values of Γ, M0,
β, and α measured in the Horizon-AGN simulation with those used in HMx. An important observation
is that in HMx, these parameters do not depend on redshift and mass, whereas we clearly see a mass
and redshift trend in the simulations. To assess the impact of these parameters on the predicted power
spectrum and pressure profile, we use the best fit values for M0 and β, and the average values from the
four highest mass bins at redshift z = 0 for Γ and α. Updating the model with these values resulted
in an improved agreement between the predictions and measurements. However, this adjustment alone
is insufficient to remove all discrepancies. Understanding which parameters exert the greatest influence
represents a crucial step towards developing a more robust and physically motivated tSZ model.

Finally, I investigated the influence of dark energy on the tSZ effect with the L896_wCDM simulations.
Matter and pressure (angular) power spectra are affected by the value of w. Specifically, the w = −0.8
simulation shows enhanced power, while the w = −1.2 simulation shows reduced power compared to the
w = −1 simulation. This is attributed to the impact of w on the growth of structure, considering our
normalisation with respect to σ8 today. This study represents an initial step in understanding the impact
of dark energy on the tSZ effect and opens the door to future investigations with more complex dark
energy models.
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To describe the Universe, it becomes crucial to consider non-linearities, especially at smaller scales
and lower redshifts. One intriguing aspect of cosmic structures lies in their distribution throughout
the Universe. The cosmic web, a network of structures arising from the gravitational collapse of the
initial density fluctuations, is composed of four distinct environments: voids, walls, filaments, and knots.
Identifying these environments can be useful to study various aspects, such as galaxy properties as a
function of their environments. Learning more about galaxy properties can provide insights into their
formation and evolution, which is a crucial aspect of cosmology. Galaxies are not uniformly distributed
throughout the Universe, and studying the cosmic web can help to extract higher-order information
compared to using two-point statistics such as the power spectrum. Additionally, the cosmic web can help
us understand the impact of the environment on galaxy properties, such as morphology, star formation,
spin, etc.

In this chapter, I will start in Sect. 5.1 with an overview of perturbation theory and a description
of different methods applicable for classifying the cosmic web. In Sect. 5.2, I will describe and copy the
article, of which I am the primary author, elucidating a theoretical prediction of environmental abundance
using the T-web classifier.

5.1 Overview

In this section, I will provide an overview of the main equations of perturbation theory, serving as a
foundational basis for the article presented in Sect. 5.2. I will then describe various approaches applicable
for classifying the four cosmic web environments, with a particular focus on the T-web classifier, which
is the one used in the article. I will finish the overview with a brief motivation for the article.

5.1.1 Towards the non-linear regime
In Sect. 1.3, I outlined the formation and evolution of structures within a homogeneous Universe, and
I discuss the Zel’dovich approximation and spherical collapse model in Sect. 1.7 as an approximation
to solve the evolution of structures in an inhomogeneous Universe. To go one step further and address
the non-linearities, we can use perturbation theory. Non-linearities become significant as the redshift
decreases because the matter distribution becomes increasingly asymmetric between regions of positive
and negative density contrast. Non-Gaussianities in the density field grow in significance, rendering the
linear approximation invalid. The scale where non-linearities become significant is presented in Sect. 1.7.3.
Perturbation theory applies when the density contrast δ is small compared to unity (δ ≪ 1), thus σ ≲ σ8.
Perturbation theory is generally used for σ ≲ 0.1− 0.5.

Perturbation theory

This section was written with the help of Bernardeau et al. (2002); Bernardeau (2007); Peter & Uzan
(2013); Codis-Decara (2015); Dodelson & Schmidt (2020). All equations provided hereafter are derived
for an Einstein de Sitter universe. Beginning with the Poisson equation, mass conservation, and Euler
equation (Sect. 1.7.1) and assuming no shell-crossing, we can neglect the rotational part of the velocity
field and compute the divergence of the Euler equation. In Fourier space, we thus obtain:

a
∂δ(k, a)

∂a
+ θ(k, a) =

−1

(2π)3/2

∫
d3k1d

3k2δD(k − k1 − k2)α(k1,k2)θ(k1, a)δ(k2, a) , (5.1)

a
∂θ(k, a)

∂a
+

1

2
θ(k, a) +

3

2
δ(k, a) =

−1

(2π)3/2

∫
d3k1d

3k2δD(k − k1 − k2)β(k1,k2)θ(k1, a)θ(k2, a) , (5.2)

where:

α(k1,k2) = 1 +
k1 · k2

k21
, (5.3)

β(k1,k2) =
k1 · k2

2k21
+

k1 · k2

2k22
+

(k1 · k2)
2

k21k
2
2
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and where we recall that δ is the density contrast and θ the dimensionless velocity divergence. These
equations encapsulate all the non-linearities inherent in the equation of motion as long as there is no
shell-crossing (implying as long as the rotational part of the velocity is zero). They illustrate that the
evolution relies on the coupling between different modes k.

In perturbation theory, fields can be developed perturbatively at each order as a function of the initial
field, both for density and velocity divergence:

δ(x, t) =
∑

n

δ(n)(x, t) , θ(x, t) =
∑

n

θ(n)(x, t) , (5.5)
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where n is the order of the perturbation. The initial conditions are determined by the linear theory, and
the evolution of the perturbation is governed by the equations derived earlier (Eqs. 5.1 to 5.4).

The time dependence of the growing mode of each term of order n follows an. Therefore, for each
order n, perturbation theory yields:

δ(n)(x) =

∫
d3k1

(2π)3/2
δ(k1)...

d3kn

(2π)3/2
δ(kn)a

nFn(k1, ...kn) , (5.6)

θ(n)(x) =

∫
d3k1

(2π)3/2
δ(k1)...

d3kn

(2π)3/2
δ(kn)a

nGn(k1, ...kn) (5.7)

where Fn and Gn are two kernels of order n. The kernels satisfy the property F1 = −G1 = 1, and for
n > 2, can be expressed as:

Fn(k1, ...,kn) =

n−1∑
i=1

Gi(k1, ...,ki)

(2n+ 3)(n− 1)
[−(2n+ 1)α(p1,p2)Fn−i(ki+1, ...,kn) + 2β(p1,p2)Gn−i(ki+1, ...,kn)] , (5.8)

Gn(k1, ...,kn) =

n−1∑
i=1

Gi(k1, ...,ki)

(2n+ 3)(n− 1)
[3α(p1,p2)Fn−i(ki+1, ...,kn)− 2nβ(p1,p2)Gn−i(ki+1, ...,kn)] ,(5.9)

with p1 = k1 + ...+ ki and p2 = ki+1 + ...+ kn.

Skewness

One famous example of a non-linear effect is the skewness of the density field. It has been widely
investigated in various works, including the one of Peebles (1980); Juszkiewicz et al. (1993); Lokas et al.
(1995); Colombi et al. (2000), and I will summarise its main properties here.

The skewness arises from the third-order moment of the density field, which can be expressed as:
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where the terms have been reorganised in increasing powers of the local linear density in the last expres-
sion, and the following terms are of higher order. For Gaussian initial conditions, the first term is equal
to zero, and the second term is thus the leading order.

At order n = 3, under the assumption of Gaussian initial conditions and after applying a few sim-
plifications, including the application of the Wick theorem mentioned in Eq. (2.8), the expression then
becomes:

⟨δ3⟩ ≈ 3

〈(
δ(1)
)2
δ(2)
〉

(5.11)

= 6a4
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where F2 can be obtained from Eq. (5.8). Further details about the computation can be found in
Appendix A of the article presented in the following section.

After integration, we obtain
〈
δ3
〉
= 34/7

〈
δ2
〉2. The third moment can be rescaled to obtain the

skewness, which is constant in time at tree-order (Peebles, 1980):

S3 ≡
〈
δ3
〉

⟨δ2⟩2
=

34

7
+O(σ2) . (5.13)

The skewness quantifies the asymmetry between underdense and overdense regions, which becomes
evident in the high-density tail of the probability distribution function of the density. To compare the
skewness with observations, it is necessary to incorporate a smoothing filter, which is what is done in the
article.

5.1.2 Cosmic web
Initial fluctuations in the Universe evolve through gravitational collapse, sculpting a complex network of
structures known as the cosmic web. Pioneering work by Zel’dovich (1970) laid the groundwork for its
description (also see Sect. 1.7.2). The Zel’dovich approximation describes the first-order ballistic trajec-
tories of particles with a Lagrangian framework. It predicts that matter steams along ’pancakes’ that are
elongated structures, often called walls, as the gravitational collapse takes effect. Over time, these walls
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intersect and form filaments, which emerge as the largest cosmic structures. Matter continues to converge
along these filaments, eventually coalescing into dense knots at their intersections. Voids represent the
underdense regions of space and are surrounded by walls, filaments, and knots. Consequently, the cosmic
web comprises four environments, ranging from the least dense to the densest: voids, walls, filaments,
and knots (also referred to as clusters). The probability distribution function of the environments ex-
hibits some overlap, as some regions can be classified as multiple environments. Extensive literature has
explored the formation and evolution of these structures (see references in the introduction of the article
presented in the next section). Studying the properties of galaxies or dark matter halos within these
environments offers valuable cosmological and astrophysical insights and is still an active field. Various
classification schemes have been developed to study the cosmic web and its impact on galaxies or dark
matter halos. These classifiers can be categorized into different groups, and I will describe them, largely
following the groups defined in Libeskind et al. (2017). I will first describe the Hessian methods including
the T-web classification used in the article. Then, I will provide a brief overview, cite a few examples of
other classifiers, and compare the various classifiers.

Hessian-based methods

Pioneering efforts to classify cosmic web structures using the Hessian of the gravitational potential were
undertaken by Doroshkevich (1970), using the properties of the tidal field. This work laid the foundation
for subsequent research, including the contribution by Hahn et al. (2007a), which opened the door to two
classifications that are now widely used: the V-web and T-web.

In their work, Hahn et al. (2007a) implement a method based on the eigenvalues of a deformation
tensor, which characterizes the geometrical nature of each point in space. The approach is based on
the local stability criterion for the orbits of test particles and is closely connected to the Zel’dovich
approximation. In this method, the deformation tensor is the tidal field, defined as:

Tij ≡ ∂i∂jΦ , (5.14)

where Φ is the gravitational potential and i, j = 1, 2, 3 are the coordinates.
The eigenvalues of the tidal field are denoted as λ1,2,3 with λ1 < λ2 < λ3. The classification is

based on the number of positive eigenvalues: a positive (negative) eigenvalue represents gravitational
contraction (expansion). This criterion is also equivalent to the dimension of the stable manifold at the
point. Therefore, analogous to Zel’dovich, we have the following criteria:

• void: λ1 < λ2 < λ3 < 0, equivalent to unstable orbits,

• wall: λ1 < λ2 < 0 < λ3, equivalent to 1D stable manifold,

• filament: λ1 < 0 < λ2 < λ3, equivalent to 2D stable manifold,

• knot: 0 < λ1 < λ2 < λ3, equivalent to an attractive fixed points..

In this method, the only free parameter is the smoothing scale Rs. Hahn et al. (2007a) applied
this approach to dark matter simulations and confirmed that when the smoothing scale is sufficiently
large (Rs >> 10h−1Mpc), the density field approaches a Gaussian distribution, and the results converge
towards the analytical predictions of Doroshkevich (1970). With increasing smoothing scale, several
changes are observed: the number of halos in voids increases at the expense of the surrounding sheets,
the size of massive clusters at the intersection of filaments increases at the expense of the ending points,
and the clusters themselves become filamentary structures. This method can be used to investigate the
formation history of galaxies and their properties as a function of their environments, as demonstrated
by Hahn et al. (2007b), studying dark matter halos at z = 1.

Using these principles, Forero-Romero et al. (2009) developed a dynamical classification known as
the T-web. This classification is based on the tidal shear tensor T , which is the tensor of the second
derivatives of the gravitational potential:

Tij =
∂2Φ

∂rirj
, (5.15)

where Φ is the gravitational potential and ri with i = 1, 2, 3 are the spatial coordinates.
The previous equation assumes that the matter density field is known and smoothed using a finite

kernel to enable finite derivatives. This approach enhances the method proposed by Hahn et al. (2007a),
addressing concerns such as insufficient void volume and a lack of satisfactory visual agreement between
the classified structures and the density field. The discrepancies are related to the choice of considering
the number of positive eigenvalues instead of those above a given threshold. An infinitesimally positive
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eigenvalue suggests collapse, but it may not occur immediately, thus, it does not provide the classification
at present time. To rectify this, Forero-Romero et al. (2009) advocates for evaluating the number of
eigenvalues above a threshold that needs to be chosen. Consequently, this model has two free parameters:
the smoothing scale Rs (as in Hahn et al., 2007a) and the threshold λth. To date, no theoretical framework
exists for selecting the threshold, which is typically chosen to achieve a good visual agreement.

In their study, Forero-Romero et al. (2009) apply this method to dark matter simulations and investi-
gate the impact of different choices of threshold and smoothing scale. When λth = 0 and high smoothing
scale are employed, once again, the analytical results from Doroshkevich (1970) are found.

In terms of volume and mass filling fraction (VFF and MFF), voids show significant sensitivity to
the chosen threshold, unlike other environments that demonstrate consistent behaviour across varying
values of λth and Rs. As λth increases, voids expand, at the expense of sheets and filaments, and become
more connected. To fix a volume filling fraction for the different environments, the choice of a threshold
becomes more critical than the choice of a smoothing scale. Through their analysis of VFF and MFF,
Forero-Romero et al. (2009) suggests that λth ≲ 0.2 appears to be a relevant threshold value.

In the same analysis, the size and percolation of voids were also studied. The percolation is quantified
by the fraction of the volume of the largest void to the total volume occupied by all the voids. Once
again, a significant dependency on the threshold parameter was observed. For threshold values λth
ranging between 0 and 0.3, the number of voids decays roughly exponentially. Regarding percolation, a
notable transition occurred within the range 0.1 ≲ λth ≲ 0.2, wherein the ratio abruptly shifted from
≤ 0.1 to ≥ 0.9.

Additionally, the study explored the fragmentation of filaments, which began to fragment as the
threshold increased, creating additional void space. Consequently, there exists a threshold range (0.2 ≲
λth ≲ 0.4) where two distinct environments coexist: percolating voids with a network of interconnected
filaments. This dual characteristics is expected to be discernable in the classification of the cosmic
web. This study thus concludes that a threshold λth = 0.1 appeared to provide a satisfactory visual
impression. For other simulations, the best choice of threshold may differ, and the choice of λth is still
an open question.

Building upon the principles established by Hahn et al. (2007a) and Forero-Romero et al. (2009),
Hoffman et al. (2012) introduced a method called the V-web. This method relies on the velocity shear
tensor Σ:

Σij = −1

2

(
∂vi
∂rj

+
∂vj
∂ri

)
/H0, (5.16)

where H0 is the Hubble constant and v the velocity.
In their examination of this method using dark matter simulations, Hoffman et al. (2012) observed

that, once again, the two free parameters are the smoothing scale Rs and the threshold λth. The V-
web method demonstrates greater sensitivity to the choice of threshold compared to the T-web and is
capable of discerning finer structures. Specifically, The choice of the threshold influences the width of the
filaments and their visual appearance: monolithic or fragmented. While there is a correlation between
the V-web classification and local density, there is no direct one-to-one correspondence between the type
of cosmic web and the density level. This implies that each environment can be encountered at various
density levels.

These methods offer a valuable approach to investigate the properties of galaxies or dark matter halos
within the different cosmic web environments. For instance, Codis et al. (2012) explored the spin of dark
matter halos relative to their environment, Nuza et al. (2014) studied galaxy morphology, and Metuki
et al. (2015) investigated the halo mass function and stellar mass function across various environments.
Additionally, these classifications can serve as a probe of cosmology. For example, Biswas et al. (2010)
and Lee & Park (2009) used voids to probe dark energy, as the signature of dark energy can manifest
in the shape of voids. Moreover, they can help to understand the missing baryon problem by working
on filaments, as done by Fard et al. (2019). Cosmological insights can also be extracted from the power
spectrum of the environments and their combinations, as shown by Bonnaire et al. (2022). Their findings
suggest that more information is encoded in the environment compared to the matter power spectrum,
offering a potential avenue to break degeneracies in cosmological parameters.

An improved set of techniques to classify the cosmic web utilizes a scale-space multiscale approach
based on Hessian methods. For instance, Aragón-Calvo et al. (2007a) introduced the Multiscale Mor-
phology Filter (MMF) for classifying the cosmic web. This method, based on visualisation and feature
extraction techniques, involves smoothing the density field at various scales and applying a morphology
response filter to measure the blobness, filamentariness, or wallness of the structures. The morphology
having the maximum response is the one identified. This approach can be applied to study properties of
dark matter halos, such as their spin and shape, as demonstrated by Aragón-Calvo et al. (2007b), and to
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explore morphological properties, such as the density profile of filament or the correlation a cluster’s mass
and the number of connected filaments, as demonstrated by Aragón-Calvo et al. (2010a). Subsequently,
Cautun et al. (2013) extended this method with the NEXUS formalism, which can be applied not only
to density field but also to tidal, velocity divergence, or velocity shear fields.

Graph and percolation methods

To quantify the filamentary structure of the cosmic web, researchers have developed a method based on
the minimum spanning tree (MST) of galaxies, one of the oldest methods in the field. MST, a concept
of graph theory, represents the tree connecting all points in a set with the minimum total edge length.
It serves to characterize the filaments of the cosmic web and examine properties such as their length,
width, orientation, or density profile. This approach has been employed by, for example, Alpaslan et al.
(2014b,a) in their Adapted Minimal Spanning Tree method.

Stochastic methods

A method based on the statistical evaluation of stochastic geometric concepts has also been used for
filament detection. For instance, algorithms employing Bayesian sampling of stochastic spatial point
processes have been developed for this purpose. Tempel et al. (2014) introduced the Bisous model,
which allows the detection of filaments in galaxy surveys. This approach can be directly applied to
galaxy catalogue without the need to compute the density field. For example, this Bisous algorithm was
employed by Poudel et al. (2017) on the SDSS DR10 to investigate the properties of groups and their
central galaxies as a function of the luminosity density field and the cosmic web filaments.

Topological methods

Several methods based on the connectivity and topological properties of the fields have also been devel-
oped. Using criteria based on Morse theory, which describes the spatial connectivity of the density field
from its singularities, Novikov et al. (2006); Sousbie et al. (2008); Pogosyan et al. (2009) introduced the
local skeleton as a set of critical lines that connect the density field’s maxima through saddle points. Also
using Morse theory, the SpineWeb was introduced by Aragón-Calvo et al. (2010b). This method relies
on the watershed segmentation of the cosmic density field and examines the properties of the boundaries
between the watershed regions.

An extension of such a method is the DisPerSE algorithm developed by Sousbie (2011), which enables
a coherent multiscale identification of environments, particularly filaments. This approach is entirely
scale-free and parameter-free and relies on the discrete Morse theory and persistence theory. It identifies
environments from the discrete distribution of particles. The algorithm returns a set of critical points,
lines, surfaces, and volumes corresponding to the knots, filaments, walls, and voids, respectively. This
method has been used to study filaments, such as in Hasan et al. (2023), which investigate galaxy
quenching within environments and the impact of the distance to the nearest filament and node. One
advantage of this method is its applicability to discrete data. For example, it has been applied to the
Galaxy And Mass Assembly1 (GAMA) spectroscopic survey by Kraljic et al. (2018), which analyses galaxy
properties (such as stellar mass or specific star formation rate) in the various environments and as a
function of their distances to structure.

Lagrangian-based methods

While all the previous methods are Eulerian-based, another set of techniques leverages on the phase-
space structure of the evolving mass distribution. These Lagrangian approaches monitor the trajectories
of mass streams within the flow field, offering insights into the formation of non-linear structures. One
such method is the ORIGAMI algorithm, introduced by Falck et al. (2012). This technique classifies
structures in phase-space by counting the number of orthogonal axes along which a Lagrangian patch
undergoes a shell-crossing event, occurring when Lagrangian cells collapse or invert.

Finally, another Lagrangian-based approach was introduced by Lavaux & Wandelt (2010) in their
DIVA algorithm. This method relies on studying the eigenvalues of the shear of the displacement field.
It is quite similar to the T-web, with a key distinction: T-web is an Eulerian method, whereas DIVA is
a Lagrangian one. DIVA was subsequently refined by Leclercq et al. (2017) with the LICH algorithm,
which incorporates both potential and vortical flows.

1https://www.gama-survey.org/

https://www.gama-survey.org/
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Comparison of the classifiers

In the study conducted by Libeskind et al. (2017), the comparison of various classifiers revealed a nuanced
landscape where the optimal choice depends on the targeted cosmological inquiry. Originally, each method
was crafted to address specific questions, and divergent results may arise when employing alternative
techniques.

We thus summarise here the main observations of Libeskind et al. (2017) on a comparison between
different classifiers (some that we mentioned previously, and others one). In terms of visual representation
of structures, Hessian methods tend to give voids that dominate the underdense volume. Some classifiers
do not identify knots (SpineWeb) or focus solely on identifying filaments (MST, Bisous). When analysing
the density probability distribution function, a relative consensus emerges for voids, while a wide variety
for the walls, sheets, and knots are observed. Regarding volume and mass filling fraction, there exists
notable diversity across all environments. Finally, examining the halo assignment and mass functions, it
was found that while classifiers generate halo mass functions that agree, the level of agreement in halo
assignment depends on the spatial distribution of the halos, with denser regions having greater agreement.

In their investigation, Leclercq et al. (2016) also compared different classifiers based on information
theory. The authors study which classifiers should be used when doing parameter inference (such as the
morphology of the cosmic web), model selection (such as studying dark energy), or prediction for new
observations (such as galaxy colours). A comparison between the T-web (with a threshold λth = 0),
ORIGAMI, and DIVA classifications of SDSS maps (Jasche et al., 2015) is performed. For cosmic web
inference, the T-web surpasses DIVA, which, in turn, outperforms ORIGAMI. The superiority of the T-
web comes from the high level of information contained in clusters. Conversely, DIVA can be more robust
as it is less sensitive to artefacts. For model selection, Lagrangian methods like DIVA will outperform
the T-web. This advantage comes from the ability of Lagrangian methods to retain memory of the initial
conditions. Finally, for galaxy colours, all classifiers have a broad agreement in the trend. T-web and
ORIGAMI notably outperformed DIVA, primarily attributed to DIVA’s diminished sensitivity to the
local density.

As highlighted by these two analyses, the selection of a classifier will depend on the specific inquiry
and the nature of the available data. In the following section, I will describe the motivation of the article,
which centres on the analysis of the abundance of the different environments.

5.1.3 Motivation of my work

The exploration of the cosmic web offers a window into the formation and evolution of structures in the
Universe. For example, it is interesting to explore how the properties of galaxies or dark matter halos
vary across diverse environments. Consequently, it becomes important to classify environment.

In their investigation, Cui et al. (2017) worked on various cosmological simulations to probe the
influence of different baryonic processes on the cosmic web, in particular in the abundance of the four
different environments. The authors used the V-web, with a threshold λth = 0.1 (following Hoffman
et al., 2012; Carlesi et al., 2014) and the T-web, with a threshold λth = 0.01 (to ensure visual good
agreement with the V-web) classifiers and compared the results at z = 0. Their findings revealed that the
baryonic processes have almost no impact on the large-scale structure, with the gas component tracing
the filamentary structure. The study is pursued to higher redshift (up to z = 2) solely using the V-web
in Cui et al. (2019), which leads to analogous conclusions.

Given the absence of a theoretical framework derived from fundamental principles to forecast the abun-
dance of the four environments, the objective of the presented article is to construct such a framework.
It is an interesting avenue as it can allow the use of analytical prediction instead of costly simulations for
cosmological analyses.

5.2 "A theoretical view of the T-web statistical description of the
cosmic web" (article)

In this section, I will briefly describe the method and main result of the article (Ayçoberry et al., 2024a)
and attach it at the end of the section.

Method In this article, we present a theoretical framework to predict the abundance of the four cosmic
web environments: voids, walls, filaments, and knots. Our approach uses the T-web classification, which
is based on the eigenvalues of the tidal shear tensor (see Eq. (5.15) and related text). We compare
our theoretical predictions with measurements from the Quijote simulations (Villaescusa-Navarro et al.,
2020). The four environments are identified by the number of eigenvalues above a threshold Λth = 0.01,
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according to the value used in Cui et al. (2017). To obtain the theoretical predictions, we work with the
density contrast and normalise the variables with the variance, resulting in a threshold of λth = Λth/σ(z),
where σ(z) is the variance of the density field measured in the Quijote simulations.

We obtain the probability of the different environments by integrating the probability distribution
function (PDF) under various criteria on the eigenvalues. For instance, the probability of the void is
given by:

Pvoid =

∫
dλ1dλ2dλ3 P(λ1, λ2, λ3)Boole(λ1 < λ2 < λ3 < λth) , (5.17)

where P(λ1, λ2, λ3) is the PDF of the eigenvalues of the tidal shear tensor. For the other environments,
only the Boole function changes, to reflect the criteria on the number of eigenvalues above the threshold.

Our initial investigation focuses on determining abundances in the linear regime. In this case, the
density field is Gaussian, and so its associated gravitational potential and its successive derivatives are also
Gaussian-distributed. It allows us to use the PDF from the Doroskevich formula Doroshkevich (1970)
or derive it by transforming variables in terms of rotational invariants to obtain minimally correlated
variables (Pogosyan et al., 2009), that will be useful for the rest of the analysis. We will consider J1, J2,
and J3, which are the rotational invariants of the tidal shear tensor. Following Pogosyan et al. (2009)
and Gay et al. (2012), we derive the PDF of interest with these variables. An analytical integration over
J1 and J3 is feasible, leaving a numerical integration over J2 to be completed.

To extend our analysis, we consider mild non-Gaussian corrections to the abundances. The PDF is
no longer Gaussian but includes non-linearities in a perturbative manner. To obtain it, we use a Gram-
Charlier expansion, following Pogosyan et al. (2009); Gay et al. (2012); Codis et al. (2013). In terms of
our variables, the Gram-Charlier expansion leads to:

P(J1, J2, J3) = PG(J1, J2, J3)

[
1 +

1

6
⟨J3

1 ⟩(J3
1 − 3J1) +

5

2
⟨J1J2⟩J1(J2 − 1) +

25

21
⟨J3⟩J3

]
+ o(σ2

0) , (5.18)

where PG(J1, J2, J3) is the Gaussian PDF, and σ0 is the linear variance of the density field. The addi-
tional terms represent the correction arising from the expansion. From this expression, we define three
cumulants: ⟨J3

1 ⟩/σ0, which is the well known skewness discussed in Sect. 5.1.1, ⟨J1J2⟩/σ0, and ⟨J3⟩/σ0.
These three cumulants are constant at tree order.

Once the cumulants are determined, the expression of the PDF in Eq. (5.18) can be substituted into
Eq. (5.17) (and its equivalent for the other environments). Finally, an analytical integration over J1 and
J3 is possible, with a numerical integration over J2 to complete the process.
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Result The results of the PDF integration lead to the probabilities of the different cosmic web en-
vironments, constituting our main result presented in Fig. 2 of the article. This figure illustrates the
probabilities of voids, walls, filaments, and knots as a function of redshift and smoothing scale. A portion
of this figure is reproduced in Fig. 5.1. We compare the results obtained using a Gaussian field (dashed
lines), non-Gaussian field utilizing a Gram-Charlier expansion (solid lines), and the measurements in
the Quijote simulations (dots). The probabilities of void, wall, filaments, and knots are represented in
blue, green, yellow, and red, respectively. At z = 0, with a smoothing scale of 5Mpc/h, we examine the
most non-linear scale in our study, whereas, at z = 3 and a smoothing scale of 45Mpc/h, we explore the
most linear scale in our study. Lower redshifts and smaller smoothing scales indicated a more non-linear
regime, as structures are more evolved and smaller structures are probed.

We find that for scales as small as ∼ 5Mpc/h and down to redshifts ∼ 0 (the most non-linear scale
studied), our prediction using a Gram-Charlier expansion shows good agreement with the measurements
from the simulations. Across all smoothing scales and redshifts, the non-Gaussian field prediction con-
sistently outperforms the Gaussian field prediction, which quickly loses accuracy with decreasing redshift
or smoothing scale.
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Figure 5.1: Probabilities of voids, walls, filaments, and knots as a function of the redshift. These prob-
abilities are shown in blue, green, yellow, and red, respectively. Left panel is obtained for a smoothing
scale of 5Mpc/h, and the right one for a smoothing scale of 45Mpc/h. Dots are measurements from the
simulation, dashed lines are the Gaussian prediction, and solid lines are the prediction obtained with the
Gram-Charlier formalism at next-to-leading order. The error bars are errors on the mean but are too
small to be distinguished.

Our theoretical framework offers a new perspective on the statistical description of the cosmic web
and opens up new avenues for future research. It provides a robust method for predicting the abundance
of the four cosmic web environments, which can be used in cosmological analyses.
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ABSTRACT

Context. The objective classification of the cosmic web into different environments is an important aspect of large-scale structure
studies, as it can be used as a tool to study the formation of structures (halos and galaxies) in mode detail, and it forms a link between
their properties and the large-scale environment; these different environments also offer another class of objects whose statistics
contain cosmological information.
Aims. In this paper, we present an analytical framework to compute the probability of the different environments in the cosmic web
based on the so-called T-web formalism, which classifies structures into four different classes (voids, walls, filaments, and knots)
based on the eigenvalues of the Hessian of the gravitational potential, often called the tidal tensor.
Methods. Our classification method relies on studying whether the eigenvalues of this Hessian matrix are above or below a given
threshold and thus requires knowledge of the joint probability distribution of those eigenvalues. We performed a change of variables
in terms of rotational invariants, which are polynomials of the field variables and minimally correlated. We studied the distribution
of those variables in the linear and quasi-linear regimes with the help of a so-called Gram-Charlier expansion, using tree-order
Eulerian perturbation theory to compute the Gram-Charlier coefficients. This expansion then allowed us to predict the probability
of the four different environments as a function of the chosen threshold and at a given smoothing scale and redshift for the density
field. We checked the validity regime of our predictions by comparing those predictions to measurements made in the N-body Quijote
simulations.
Results. Working with fields normalised by their linear variance, we find that scaling the threshold value with the non-linear amplitude
of fluctuations allows us to capture almost the entire redshift evolution of the probabilities of the four environments, even if we
assume that the density field is Gaussian (corresponding to the linear regime of structure formation). We also show that adding mild
non-Gaussian corrections with the help of a Gram-Charlier expansion – hence introducing corrections that depend on third-order
cumulants of the field – provides even greater accuracy, allowing us to obtain very precise predictions for cosmic web abundances up
to scales of as small as ∼5 Mpc h−1 and redshifts down to z ∼ 0.

Key words. methods: analytical – methods: numerical – cosmology: theory – large-scale structure of Universe

1. Introduction

We have long since known that the large-scale distribution of matter throughout the Universe is well-approximated by a filamen-
tary structure dubbed the cosmic web (de Lapparent et al. 1986). From a theoretical point of view, the first building blocks for a
description of the cosmic web date back to the seminal work of Zel’dovich (1970) and many others that followed (e.g., Arnold et al.
1982; Klypin & Shandarin 1983). Indeed, the so-called Zeldovich approximation, which describes the first-order ballistic trajecto-
ries of particles in a Lagrangian description – predicts the existence of ‘pancakes’ (i.e., sheet-like tenuous walls), filaments, and
clusters due to the collapse of anisotropic primordial fluctuations through gravitational instabilities in our expanding Universe. In
the 90s, Bond et al. (1996) and Klypin & Shandarin (1983) showed that this ensemble of objects forms a connected network called
the cosmic web based on the correlations imprinted in the primordial fluctuations. Initial peaks led to the formation of clusters at the
nodes of the web while initial correlation bridges in between later form filaments that lie within walls, which themselves surround
nearly empty void regions. Such a web classification can be achieved through the eigenvalues of the linear deformation tensor,
which states that if all eigenvalues are negative (or below a threshold that is taken here to be zero) then the region is expanding
in 3D, thus describing a void region; if all values are positive then the region is contracting, thus describing a knot, with the other
two configurations of eigenvalues leading to either walls or filaments. It is possible to classify the cosmic web by means of its tidal
field (Hessian of the gravitational potential). Pioneering work in this direction was presented by Doroshkevich (1970), and later by
van de Weygaert & Bertschinger (1996), Rossi (2012), Desjacques et al. (2018), Castorina et al. (2016), Feldbrugge et al. (2018).

Another classification method was later introduced by Hahn et al. (2007a), Aragón-Calvo et al. (2007a) and Forero-Romero et al.
(2009) using tidal fields, whereby either the Hessian of the gravitational potential is evaluated theoretically in the linear regime, or
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the non-linear potential is estimated in dark-matter-only numerical simulations. In subsequent years, several authors developed dif-
ferent classification schemes, to improve the detection of these cosmic web structures in various types of data (continuous fields,
simulated datasets, point-like galaxy surveys, etc). For instance, Aragón-Calvo et al. (2010a) used the SpineWeb topological frame-
work to segment the density field, Shandarin (2011), Falck et al. (2012) and Abel et al. (2012) showed how to classify morphological
structures using the Lagrangian phase space sheet to count for shell crossings, and various authors have applied techniques from
(continuous and then discrete) Morse theory (Colombi et al. 2000) to identify topological structures in the cosmological density field
(Sousbie et al. 2008; Aragón-Calvo et al. 2007a; Sousbie et al. 2009; Sousbie 2011). Alternatively, Hoffman et al. (2012) introduced
the V-web classification scheme, this time based on the shear of the velocity field, showing that it is able to better resolve smaller
structures, which in turn allows for the study of finer dark-matter halo properties. An extension of this idea to Lagrangian settings
was later proposed by Fisher et al. (2016). We note that the velocity divergence and density fields are closely related (e.g. through the
mass-conservation equation in the Vlasov-Poisson system) and their statistics are virtually equivalent in the linear regime of struc-
ture formation. We refer readers to Wang et al. (2014) and Wang & Szalay (2014) for a thorough investigation of the differences
between the dynamical and kinematical classifications.

Beyond the strict motivation of wanting to describe the cosmic web from a mathematical point of view, the classification
schemes allow us to explore many different environmental effects on the properties of dark-matter halos (Hahn et al. 2007a,b;
Aragón-Calvo et al. 2007b, 2010b; Codis et al. 2012; Libeskind et al. 2013; Hellwing et al. 2021) and galaxies within them
(Nuza et al. 2014; Metuki et al. 2015; Poudel et al. 2017; Kraljic et al. 2018; Codis et al. 2018a; Hasan et al. 2023). Cosmic web
classification can also be used to discriminate between cosmological models, as shown for instance by Lee & Park (2009) or
Biswas et al. (2010) using voids; Codis et al. (2013) with counts of cosmic web critical points; Feldbrugge et al. (2019) with Betti
numbers; Codis et al. (2018b) using the connectivity of the filaments; Bonnaire et al. (2022) relying on the power spectrum of
the various cosmic web environments; and Dome et al. (2023) with cosmic web abundances. Understanding how this cosmic web
evolves with time and scale is therefore paramount for both cosmology and studies of the galaxy formation that takes place within
this large-scale environment. This evolution has been studied theoretically in some contexts (e.g., the local skeleton; Pogosyan et al.
2009b) with semi-analytical approaches (e.g., Fard et al. 2019) and in various numerical works. One example of the latter is the
recent work by Cui et al. (2017, 2019), who used simulations to investigate the abundances of the various environments and their
time evolution, relying on the T- and V-web decompositions. However, to the best of our knowledge, no theoretical model in the
quasi-linear regime, and based on first principles, has been explicitly derived so far for these cosmic web abundances. This objective
is nevertheless within the reach of standard techniques used in large-scale structure theoretical studies.

In the present paper, we therefore propose to derive theoretical predictions for web classifications based on the T-web definition.
We first focus on a Gaussian description of the cosmic density field before turning to mild non-Gaussian corrections.

To assess the validity regime of our theoretical formalism and predictions for the one-point statistics of all four cosmic environ-
ments, we compare our results with measurements made in a dark-matter-only N-body numerical simulation, the Quijote simulation
(Villaescusa-Navarro et al. 2020). The simulated box used by these latter authors has a size of 1 Gpc h−1, with 10243 dark matter
particles. We are using their high-resolution fiducial cosmology snapshots at five different redshifts: z = 0, 0.5, 1, 2, and 3. Their
fiducial cosmology is {Ωm, Ωb, h, ns, σ8} = {0.3175, 0.049, 0.6711, 0.9624, 0.834}. Finally, in order to maximise the statistical
relevance of our analysis, we typically average our measurements over 11 realisations of the Quijote suite and use those realisations
to estimate error bars.

The outline of the paper is as follows. We first describe the T-web and V-web classifications in Sect. 2. In Sect. 3, we then
present the theoretical formalism and the predictions obtained for the abundance of the different environments (as a function of
threshold, redshift, and smoothing scale) in the linear regime of structure formation, that is assuming a Gaussian matter density
field. Section 4 introduces a Gram-Charlier expansion to include non-Gaussian (i.e., non-linear) corrections to the joint probability
distribution function (joint-PDF) of the elements of the Hessian of the gravitational potential, and we finally discuss our results and
draw conclusions in Sect. 5. In the remainder of this paper, we will use ‘abundance’ or ‘probability’ equivalently.

2. T-web classification of the cosmic web

Among many possibilities (Libeskind et al. 2017; Leclercq et al. 2016), one commonly used mathematical way to classify the differ-
ent cosmological environments is based on the number of eigenvalues of a deformation tensor above a threshold. Several definitions
can be used for this deformation tensor (strain tensor, mass tensor, etc.) but the classification can always follow the outline below:

– 0 eigenvalue above the threshold: void,
– 1 eigenvalue above the threshold: wall,
– 2 eigenvalues above the threshold: filament,
– 3 eigenvalues above the threshold: knot.

Notably, the T-web classification developed by Forero-Romero et al. (2009) is based on the tidal shear tensor T , which is the
tensor of the second derivative of the gravitational potential

Ti j =
∂2Φ

∂rir j
, (1)

where Φ is the gravitational potential and ri with i = 1, 2, 3 are the spatial coordinates. Alternatively, the V-web classification
developed by Hoffman et al. (2012) is based on the velocity shear tensor Σ:

Σi j = −1
2

(
∂vi

∂r j
+
∂v j

∂ri

)
/H0, (2)
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Fig. 1. Logarithm of the density contrast of one slice of 1 Gpc h−1 in height and width and 2 Mpc h−1 in thickness of the Quijote simulation (first
and third column) compared with the classification obtained using the T-web (second and fourth column) at different redshifts and smoothing
scales. For the T-web classification, the colour bar is the number of eigenvalues above our chosen threshold Λth = 0.01 chosen specifically for
good visual agreement.

where H0 is the Hubble constant and v the velocity. We note that both of the above classifications are similar to the one used by
Hahn et al. (2007a). Given those definitions, in practice, one can start from field maps, compute the deformation tensor, diagonalise
it, and obtain the number of eigenvalues above a given threshold Λth at each spatial position, thus dividing the cosmic web into four
characteristic classes.

Usually, the value of this threshold is not fixed a priori in the literature and is often chosen in order to obtain satisfactory
visual agreement between the log density field and the classification. Originally, Hahn et al. (2007a) took Λth = 0 to distinguish
structures with inner or outer flows. Follow-up studies demonstrated that having a non-zero threshold leads to a better visual
match (for example, Forero-Romero et al. 2009; Libeskind et al. 2017; Suárez-Pérez et al. 2021; Cui et al. 2017; Hoffman et al.
2012; Carlesi et al. 2014). The threshold is generally taken as a positive constant of between 0 and 1, and usually does not depend
on the redshift or smoothing scale, but we note that a positive threshold will tend to underline the most extreme knots and filaments
(which is usually what is meant by good visual agreement) while a negative threshold will then underline the most empty voids.

In the remainder of this paper, we focus on the T-web formalism, although we emphasise that the V-web description would
yield identical results at first perturbative order in a Lagrangian framework (the so-called 1LPT or Zeldovitch approximation). This
is indeed due to the usual expression for these ballistic trajectories where the velocity is given by the gradient of the gravitational
potential up to a uniform time-dependent factor (Zel’dovich 1970). As an example of the accuracy of this classification scheme,
Fig. 1 presents a comparison of the density contrast (first and third columns, with a continuous colour bar) at different redshifts and
smoothing scales, with the classification obtained using the T-web (second and fourth column, with a discrete color bar) at the same
redshifts and smoothing scales. In the second and fourth columns, voids are shown in dark blue, walls in blue, filaments in green,
and nodes in red. As expected from the T-web classification, we obtain the environments of the simulation by computing the second
derivative of the potential and looking at the number of eigenvalues above our chosen threshold. Here, we are using a threshold of
Λth = 0.01 for every redshift and smoothing scale based on the value used in Cui et al. (2017), which was chosen in order to have
good visual agreement. For instance, the knots and voids (respectively in red and dark blue) can easily be identified by eye in both
visualisations and are at the same position as rare maxima and minima in the density contrast maps.

To build a theoretical description of the cosmic web as defined by the T-web description, let us first define the variance of the
contrast of the density field, δ = (ρ − 〈ρ〉)/〈ρ〉,
σ2

0 = 〈δ2〉. (3)

Following Pogosyan et al. (2009a), we choose to normalise the derivatives of the gravitational potential by their variance, such that

ν =
1
σ0
δ, φi j =

1
σ0
∇i∇ jΦ. (4)

Formally, given our classification method, the probability of each cosmic environment then depends on the joint probability distri-
bution P of the eigenvalues of the tidal tensor. Given our normalisation choice in Eq. (4), here we use the eigenvalues normalised
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by their variance (or equivalently the eigenvalues of the normalised tidal tensor), which we denote λ1 ≤ λ2 ≤ λ3. The probabilities
of the four environments can then be written as

Pvoid =

∫
dλ1dλ2dλ3 P(λ1, λ2, λ3)Boole(λ1 < λ2 < λ3 < λth) (5)

Pwall =

∫
dλ1dλ2dλ3 P(λ1, λ2, λ3)Boole(λ1 < λ2 < λth < λ3), (6)

Pfilament =

∫
dλ1dλ2dλ3 P(λ1, λ2, λ3)Boole(λ1 < λth < λ2 < λ3), (7)

Pknot =

∫
dλ1dλ2dλ3 P(λ1, λ2, λ3)Boole(λth < λ1 < λ2 < λ3), (8)

where {λi}i=1,2,3 are the orderly eigenvalues of the (φi j)1≤i, j≤3 matrix and Boole is a Boolean equal to 1 if the condition is satisfied,
and 0 otherwise.

As we are now working with normalised eigenvalues, and keeping our earlier choice of a Λth = 0.01 value, our threshold will
be given by λth = (Λth = 0.01)/σ(z), with

σ2(z) = 4π
∫

dk k2P(k, z)W(kR)2, (9)

where W(kR) is the applied smoothing, which in this paper is Gaussian with a smoothing scale R such that

WG(kR) = exp
(
−1

2
k2R2

)
, (10)

and P(k, z) is the matter density power spectrum. We denote the linear variance σ2
0 when using the linear power spectrum, which is

computed using the Boltzmann code Camb (Lewis et al. 2000), and σ2
NL the non-linear variance (e.g., measured in the simulation

or predicted with emulators for example).

3. Cosmic web abundances in the linear regime

To obtain some theoretical information about the abundance of the different cosmic environments in the density field and their
redshift evolution, let us first consider the density field at linear order in Eulerian perturbation theory, this is, let us assume that
it is Gaussian. For a Gaussian density field, the associated gravitational potential and its successive derivatives are also Gaussian-
distributed, which means that we can use the Doroshkevich formula (Doroshkevich 1970), which gives the joint probability distri-
bution of eigenvalues of a Gaussian symmetric matrix:

PD(λ1, λ2, λ3) =
675
√

5e
3
4 (λ1+λ2+λ3)2− 15

4 (λ2
1+λ3

2+λ2
3)

8π
(λ3 − λ2)(λ2 − λ1)(λ3 − λ1). (11)

We note that the general expression for the multi-dimensional PDF of the tidal tensor in Cartesian coordinates X = {φi j} in the
Gaussian case reads

PG(X) = (2π)−N/2|C|−1/2 exp
(
−1

2
XC−1X

)
, (12)

where C is its covariance matrix.
From Eq. (11), we can then numerically integrate Eqs. (5)–(8) to obtain the probabilities of the various environments. In practice,

those 3D integrals can be reduced to 1D as two degrees of freedom can be analytically integrated out. For that purpose, one needs
to express the three degrees of freedom of the tidal tensor that are rotationally invariant as polynomials of its Cartesian coordinates
φi j (in contrast to eigenvalues, which are not rotationally invariant). Following for instance Pogosyan et al. (2009a), a natural option
can be the three coefficients of its characteristic polynomial:

I1 = Tr(φi j) = φ11 + φ22 + φ33 = λ1 + λ2 + λ3 = ν, (13)

I2 = φ11φ22 + φ22φ33 + φ11φ33 − φ2
12 − φ2

23 − φ2
13 = λ1λ2 + λ2λ3 + λ1λ3, (14)

I3 = det|φi j| = φ11φ22φ33 + 2φ12φ23φ13 − φ11φ
2
23 − φ22φ

2
13 − φ33φ

2
12 = λ1λ2λ3. (15)

To get variables that are as uncorrelated as possible, a simplification proposed by Pogosyan et al. (2009a) is to use combinations
of the {Ik}1≥k≥3 – denoted {Jk}1≥k≥3 – such that the first variable is again the trace of the tidal tensor but higher-order variables only
depend on the traceless part of that tensor and are thus uncorrelated with the trace in the Gaussian case. After some algebra, one can
easily find

J1 = I1, J2 = I2
1 − 3I2, J3 = I3

1 −
9
2

I1I2 +
27
2

I3. (16)
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For a Gaussian random field, one can easily show that the probability distribution function of the above-defined variables reads
(Pogosyan et al. 2009a)

PG(J1, J2, J3) =
25
√

5
12π

exp
[
−1

2
J2

1 −
5
2

J2

]
. (17)

where J2 ≥ 0 and J3 is uniformly distributed between its boundaries such that −J3/2
2 ≤ J3 ≤ J3/2

2 . Let us note that the probability
distribution of Js can be easily mapped to the Doroskevitch formula for the distribution of the eigenvalues after taking into account
the usual Vandermonde determinant.

To get the abundances for the different environments, we use a criterion on the number of eigenvalues superior to the threshold.
As we are now working with variables (J1, J2, J3), we have to translate the criterion on eigenvalues into this new set of variables.
Following Pogosyan et al. (2009a) and Gay et al. (2012), we can obtain the integration limits for the four different environments as
follows:

Pvoid =

∫ ∞

0
dJ2

∫ −2
√

J2+3λth

−∞
dJ1

∫ J3/2
2

−J3/2
2

dJ3 PG(J1, J2, J3) +

∫ ∞

0
dJ2

∫ −√J2+3λth

−2
√

J2+3λth

dJ1

∫ − 1
2 (J1−3λth)3+ 3

2 (J1−3λth)J2

−J3/2
2

dJ3PG(J1, J2, J3), (18)

Pwall =

∫ ∞

0
dJ2

∫ √
J2+3λth

−2
√

J2+3λth

dJ1

∫ J3/2
2

− 1
2 (J1−3λth)3+ 3

2 (J1−3λth)J2

dJ3PG(J1, J2, J3), (19)

Pfilament =

∫ ∞

0
dJ2

∫ 2
√

J2+3λth

−√J2+3λth

dJ1

∫ − 1
2 (J1−3λth)3+ 3

2 (J1−3λth)J2

−J3/2
2

dJ3PG(J1, J2, J3), (20)

Pknot =

∫ ∞

0
dJ2

∫ 2
√

J2+3λth

√
J2+3λth

dJ1

∫ J3/2
2

− 1
2 (J1−3λth)3+ 3

2 (J1−3λth)J2

dJ3PG(J1, J2, J3) +

∫ ∞

0
dJ2

∫ ∞

2
√

J2+3λth

dJ1

∫ J3/2
2

−J3/2
2

dJ3PG(J1, J2, J3). (21)

The analytical integration over J1 and J3 can now be performed and we thus obtain the following probabilities of the four environ-
ments (written in terms of 1D integrals over J2):

Pvoid =

∫ ∞

0

25
√

5
48π

e−
5J2

2

[
−
√

2π
(
2J3/2

2 − 9J2λth + 9
(
3λth

3 + λth
))

erf
(

3λth − 2
√

J2√
2

)
+
√

2π
(
2J3/2

2 − 9J2λth + 9
(
3λth

3 + λth
))

erf
(

3λth −
√

J2√
2

)

+ 4
√

2πJ3/2
2 erfc

(
2
√

J2 − 3λth√
2

)
− 2e−

1
2 (2
√

J2−3λth)2 (
6
√

J2λth + J2 + 9λth
2 + 2

)
+ e−

1
2 (√J2−3λth)2 (

6
√

J2λth − 4J2 + 18λth
2 + 4

)]
dJ2, (22)

Pwall =

∫ ∞

0

25
√

5
48π

e−
5J2

2

[
−
√

2π(2J3/2
2 + 9J2λth − 9

(
3λth

3 + λth
)
)erf

(
3λth − 2

√
J2√

2

)
+
√

2π
(
2J3/2

2 + 9J2λth − 9
(
3λth

3 + λth
))

erf
( √

J2 + 3λth√
2

)

+ 2e−
1
2 (2
√

J2−3λth)2 (
6
√

J2λth + J2 + 9λth
2 + 2

)
+ 2e−

1
2 (√J2+3λth)2 (

3
√

J2λth + 2J2 − 9λth
2 − 2

)]
dJ2, (23)

Pfilament =

∫ ∞

0
−25

√
5

48π
e−

5J2
2

[
−
√

2π(2J3/2
2 − 9J2λth + 9

(
3λth

3 + λth
)
)erf

(
2
√

J2 + 3λth√
2

)
+
√

2π
(
2J3/2

2 − 9J2λth + 9
(
3λth

3 + λth
))

erf
(

3λth −
√

J2√
2

)

− 2e−
1
2 (2
√

J2+3λth)2 (
−6

√
J2λth + J2 + 9λth

2 + 2
)

+ e−
1
2 (√J2−3λth)2 (

6
√

J2λth − 4J2 + 18λth
2 + 4

)]
dJ2, (24)

Pknot =

∫ ∞

0

25
√

5
48π

e−
5J2

2

[
−
√

2π(2J3/2
2 + 9J2λth − 9

(
3λth

3 + λth
)
)erf

( √
J2 + 3λth√

2

)
+
√

2π
(
2J3/2

2 + 9J2λth − 9
(
3λth

3 + λth
))

erf
(

2
√

J2 + 3λth√
2

)

+ 4
√

2πJ3/2
2 erfc

(
2
√

J2 + 3λth√
2

)
− 2e−

1
2 (2
√

J2+3λth)2 (
−6

√
J2λth + J2 + 9λth

2 + 2
)

+ e−
1
2 (√J2+3λth)2 (

−6
√

J2λth − 4J2 + 18λth
2 + 4

)]
dJ2, (25)

where erf(z) is the error function erf(z) = 2
∫ z

0 e−t2
dt/
√
π and erfc(z) is the complementary error function erfc(z) = 1 − erf(z).

It is then possible to perform numerical integrations and obtain the abundance of each environment. This is illustrated in Fig. 2,
where the probabilities of the different environments are shown as a function of redshift. Each panel corresponds to a different
Gaussian smoothing scale and displays the probability of voids, walls, filaments, and knots in blue, green, yellow, and red, respec-
tively. The dots are the measurements obtained from the simulation, the dashed lines represent the Gaussian prediction obtained
with the formalism described in this section, and the solid lines – which can be ignored for now – are the predictions at next-
to-leading order obtained with a Gram-Charlier expansion, which is described in Sect. 4, below. As expected, we observe that
the higher the redshift and/or the larger the smoothing scale – and thus the closer the simulation gets to the linear regime –,
the closer the Gaussian prediction to the measurements. At lower redshift and smaller smoothing scales, non-Gaussianities are
more important and departures from the Gaussian prediction thus appear. Here, all probabilities are computed using a threshold
λth = 0.01/σNL inspired from the literature (using simulations) for which the evolution of σ with redshift and smoothing scale is
given in Table 1. We note that the variance used solely in the normalisation of the threshold is the non-linear variance measured
from the simulation. This allows us to have a meaningful threshold – in terms of rarity – even though we describe the cosmic
structures in linear theory. Given the good agreement with the simulation already, that is, simply with Gaussian theory for suffi-
ciently large scale and redshift, this states that the probabilities of the different environments are roughly captured by the statistics

A276, page 5 of 15



Ayçoberry, E., et al.: A&A, 686, A276 (2024)

Fig. 2. Probabilities of voids, walls, filaments, and knots as a function of the redshift. These probabilities are shown in blue, green, orange, and
red, respectively. Each panel is obtained at a given smoothing scale. Dots are measurements from the simulation, dashed lines are the Gaussian
prediction, and solid lines are the prediction obtained with the Gram-Charlier formalism at next-to-leading order. The error bars are errors on the
mean but are too small to be distinguished.

of a Gaussian field, at least for redshifts and scales that typically correspond to typical variances of σ . 0.1. Consequently, the
redshift evolutions seen in previous works (Cui et al. 2017, 2019) with a fixed threshold can be roughly understood simply as the
non-linear evolution of the amplitude of fluctuations for that threshold. This is because a fixed threshold in non-linear densities
does not correspond to a fixed ‘rarity’ or ‘abundance’ threshold for which the cosmic evolution would be much less important.
This interpretation is notably valid at sufficiently large scale and redshift. Beyond σ ∼ 0.1, such a Gaussian field approximation
starts to break down. In the following section, we show how the accuracy of the theoretical model with the help of Gram-Charlier
corrections.

Before turning to the case of non-Gaussian corrections, let us emphasise that our Gaussian theoretical formalism allows us to
obtain the probability of voids, walls, filaments, and knots as a function of the threshold itself, as illustrated in Fig. 3 for redshift z = 0
and Gaussian smoothing R = 15 Mpc h−1. The threshold used in the above analysis (Λth = 0.01) is the vertical black dashed line.
For this choice of smoothing and redshift – which corresponds to a mildly non-linear regime – and for all the environments, we can
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Table 1. Standard deviation at different redshifts and (Gaussian) smoothing scales.

z/R (Mpc h−1) 5 15 25 35 45 55 65

0 0.71 (0.68) 0.26 (0.26) 0.15 (0.15) 0.10 (0.10) 0.074 (0.072) 0.057 (0.055) 0.045 (0.043)
0.5 0.54 (0.52) 0.20 (0.20) 0.12 (0.12) 0.078 (0.077) 0.57 (0.056) 0.044 (0.042) 0.34 (0.033)
1 0.42 (0.41) 0.16 (0.16) 0.091 (0.091) 0.061 (0.061) 0.045 (0.044) 0.034 (0.033) 0.027 (0.026)
2 0.29 (0.28) 0.11 (0.11) 0.063 (0.062) 0.042 (0.042) 0.031 (0.030) 0.024 (0.023) 0.019 (0.018)
3 0.21 (0.22) 0.082 (0.082) 0.047 (0.047) 0.032 (0.031) 0.023 (0.023) 0.018 (0.017) 0.014 (0.014)

Notes. The first value is the measurement from the Quijote simulation σNL, while the second column in parenthesis is the linear prediction σ0.

draw the same conclusion as before: the qualitative picture is correctly captured but non-linear corrections are nonetheless necessary
to improve the predictive power of our model. This figure could be helpful to guide the choice of threshold based on theoretical
arguments. We note that an alternative approach could be to renounce defining a global threshold and choose it according to the
studied environment(s). For example, one could determine the threshold that gives the 20% rarest knots and use the same threshold
for the filaments, and obtain a threshold for the voids and walls in a similar fashion (which would be the opposite of the one used for
knots and filaments in the simple Gaussian case). In this case, some spatial position may be in none of the environments and this will
mean that this position is a transition between two environments. Another possibility would be to use the filling factor approach to
fix a threshold in abundance (i.e., we fix the volume fraction occupied by the excursion above ν, Gott et al. 1987; Matsubara 2003):
this would lead to a remapping of our environments.

Hereafter, we adhere to the standard global-threshold strategy. The description and inclusion of the above-mentioned non-linear
theoretical corrections are now the goals of the remainder of this paper.

4. Mild non-Gaussian corrections to cosmic web abundances

Relying on Gaussian random fields is valid only in the linear regime of structure formation. However, at low redshift and small
scales, increasing numbers of non-Gaussianities appear in the density field and corrections to the Gaussian predictions need to be
accounted for. To improve our previous Gaussian predictions, we now propose to work with a probability distribution function
P(X) that is no more Gaussian but includes non-linearities in a perturbative manner. In practice, we use a Gram-Charlier expansion
following previous works in the literature including Pogosyan et al. (2009a), Gay et al. (2012) and Codis et al. (2013).

4.1. Gram-Charlier expansion of the joint distribution

For a set X of random fields, the Gram-Charlier expansion of the joint PDF reads

P(X) = PG(X)

1 +

∞∑

n=3

1
n!

Tr[〈Xn〉GC.hn(X)]

 , (26)

where PG(X) is a Gaussian kernel as defined in Eq. (12), hn(x) are the Hermite tensors hn(X) = (−1)nP−1
G (X)∂nPG(X)/∂Xn and

〈Xn〉GC = 〈hn(X)〉 are the Gram Charlier coefficients.
For our rotation-invariant variables J1, J2, J3, this translates into the following expression

P(J1, J2, J3) = PG(J1, J2, J3)
[
1 +

∞∑

n=3

k+2l=n∑

k,l

(−1)l5l × 3
k!(3 + 2l)!!

〈Jk
1 Jl

2〉GCHk(J1)L(3/2)
l

(
5
2

J2

)

+

∞∑

n=3

k+3=n∑

k

25
k! × 21

〈Jk
1 J3〉GCHk(J1)J3 +

∞∑

n=5

k+2l+3m=n∑

k,l,m=1

clm

k!
〈Jk

1 Jl
2Jm

3 〉GCHk(J1)Flm(J2, J3)
]
, (27)

where PG(J1, J2, J3) is the Gaussian case given by Eq. (17), Hn are the successive Hermite polynomials, L(α)
l (x) are the gener-

alised Laguerre polynomials, clm are the normalisation coefficients that we leave undetermined and the orthogonal polynomials Flm
associated with J2 and J3 are such that

∫ ∞

0
dJ2

∫ J3/2
2

−J3/2
2

dJ3PG(J1, J2, J3)Flm(J2, J3)Fl′m′ (J2, J3) = δl′
l δ

m′
m .

We have, for example, these special cases: Fl0 =
√

3 × 2l × l!/(3 + 2l)!! × L3/2
l (5J2/2) and F01 = 5J3/

√
21.

Here, we focus on the first corrective term, n = 3, such that

P(J1, J2, J3) = PG(J1, J2, J3)
[
1 +

1
6
〈J3

1〉GCH3(J1) − 〈J1J2〉GCH1(J1)L(3/2)
1

(
5
2

J2

)
+

25
21
〈J3〉GCJ3

]
+ o(σ2

0). (28)
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Fig. 3. Probability of the environment as a function of the threshold for a Gaussian random field (dashed lines), Gram-Charlier (solid lines), and
measurement in the simulations (dots) at R = 15 Mpc h−1 and z = 0. The vertical black line is the threshold Λth = 0.01 (thus λth = Λth/σNL) used
in this study.

The Gram-Charlier cumulants read

〈J3
1〉GC = 〈H3(J1)〉, 〈J1 J2〉GC = −2

5

〈
H1(J1)L(3/2)

1

(
5
2

J2

)〉
, 〈J3〉GC = 〈J3〉, (29)

such that we finally obtain the Gram-Charlier expression at first non-linear order (NLO):

P(J1, J2, J3) = PG(J1, J2, J3)
[
1 +

1
6
〈J3

1〉(J3
1 − 3J1) +

5
2
〈J1 J2〉J1(J2 − 1) +

25
21
〈J3〉J3

]
+ o(σ2

0). (30)

Three cumulants appear in the next-to-leading-order Gram-Charlier probability distribution function (Eq. (30)): 〈J3
1〉, 〈J1J2〉 and

〈J3〉. In Eulerian perturbation theory, those cumulants are linear in σ0 at tree order1 and we therefore introduce the reduced cumu-
lants S 3 = 〈J3

1〉/σ0, U3 = 〈J1J2〉/σ0 and V3 = 〈J3〉/σ0, which are constant in time at tree order. For example, S 3 is the usual
cosmological skewness, whose analytical prediction at tree order is well known (for example, Peebles 1980; Juszkiewicz et al.
1993; Lokas et al. 1995; Colombi et al. 2000). The other two reduced cumulants can be computed in a similar manner, described in
Appendix A. Figure 4 shows the resulting tree-order cumulants as a function of the smoothing scale in dashed black, compared to
the measurements in the simulation at different redshifts (as shown with different colours). We see a good agreement at almost all
smoothing scales and redshifts as the prediction is almost always within the error bars. For large smoothing scales, the error bars
increase due to the finite volume of the Quijote simulation which thus misses large wave modes. As expected, at low redshift and
small smoothing scales, departures from tree-order predictions are seen as the non-linearities increase. In this work, we focus on
mildly non-linear scales (about 10 Mpc h−1 and above) where a perturbative treatment is accurate, as illustrated by the values of the
cumulants depicted in this figure.

4.2. Cosmic web abundances at next-to-leading order

We now turn to the explicit computation of the probability of different cosmic environments at next-to-leading order in the Gram-
Charlier formalism. Let us first rewrite the Gram-Charlier expansion of the joint distribution of the rotational invariants of the tidal

1 We remind the reader that we are working with fields renormalised by their variance, so that 〈J3
1〉 = 〈δ3〉/σ3

0.
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Fig. 4. Cumulants S 3, U3, and V3 as a function of the smoothing scale R. The dashed black line is the analytical prediction. The coloured lines are
the measurements from the simulations at different redshifts.

tensor as

P(J1, J2, J3) = PG(J1, J2, J3) + σ0P(3)(J1, J2, J3) + O(σ2
0), (31)

where PG is the Gaussian part and P(3) is the first non-Gaussian corrective term

P(3)(J1, J2, J3) =
25
√

5
12π

exp
−

J2
1

2
− 5J2

2


(

1
6

(
J3

1 − 3J1

)
S 3 +

5
2

J1(J2 − 1)U3 +
25
21

J3V3

)
. (32)

Integrating this distribution function over the constraints given in Eqs. (18)–(21) will give us the expression of the probability of a
given environment (E) as

P(E)(λth) = PG,(E)(λth) + σ0P(3)
(E)(λth)

= PG,(E)(λth) + σ0
[
s(E)(λth)S 3 + u(E)(λth,)U3 + v(E)(λth)V3

]
, (33)

where s, u and v are threshold-dependent functions and where the Gaussian probability of the environments was derived in Eqs. (22)–
(25).

Again, two degrees of freedom can be integrated out and one remains to be integrated numerically. The resulting expressions
for s(λth), u(λth), and v(λth) in each environment are given below (written in terms of 1D integrals over J2).

4.2.1. Void

For voids, we get

svoid(λth) =

∫ ∞

0

25
√

5
144π

e
1
2 (−9)

(
J2+λ2

th

)[
−3
√

2πe2J2+
9λ2

th
2 erf

(
2
√

J2 − 3λth√
2

)
+ 3
√

2πe2J2+
9λ2

th
2 erf


√

J2 − 3λth√
2



+
√

J2e3
√

J2λth
[
e3
√

J2λth (−48J3/2
2 λth + 16J2

2 + 36J2λ
2
th − 27

√
J2λth

+ 14J2 + 12) − 6e
3J2

2
]]

+
25
√

5
36π

J3/2
2 e6

√
J2λth− 9J2

2 −
9λ2

th
2

(
1 −

(
2
√

J2 − 3λth
)2)

dJ2, (34)

uvoid(λth) =

∫ ∞

0
−125

√
5

96π
(J2 − 1)e

1
2 (−9)

(
J2+λ2

th

)[
−3
√

2πe2J2+
9λ2

th
2

(
J2 − 9λ2

th − 1
)
× erf

(
2
√

J2 − 3λth√
2

)
+ 3
√

2πe2J2+
9λ2

th
2

(
J2 − 9λ2

th − 1
)

erf
( √

J2 − 3λth√
2

)

− 2e6
√

J2λth
(
4J3/2

2 + 6
√

J2 + 9λth
)

+ 6e3
√

J2λth+
3J2

2
( √

J2 + 3λth
)]
− 125

√
5

12π
(J2 − 1)J3/2

2 e6
√

J2λth− 9J2
2 −

9λ2
th

2 dJ2, (35)

vvoid(λth) =

∫ ∞

0

625
√

5
4032π

e−
5J2

2

[
−
√

2π
[
−4J3

2 + 9J2
2 + 243(5 − 2J2)λ4

th + 81((J2 − 4)J2 + 5)λ2
th − 18J2 + 729λ6

th + 15
]

× erf
(

3λth − 2
√

J2√
2

)
+
√

2π
[
−4J3

2 + 9J2
2 + 243(5 − 2J2)λ4

th + 81((J2 − 4)J2 + 5)λ2
th − 18J2 + 729λ6

th + 15
]
erf

(
3λth −

√
J2√

2

)

+ 2e−
1
2 (√J2−3λth)2 [

J3/2
2

(
−

(
45λ2

th + 13
))

+ 12J2
2λth + 4J5/2

2 − 9J2λth
(
15λ2

th + 7
)

+ 3
√

J2
(
27λ4

th + 36λ2
th + 5

)

+ 9λth
(
27λ4

th + 42λ2
th + 11

)]
− 2e−

1
2 (2
√

J2−3λth)2 [
J3/2

2

(
4 − 36λ2

th

)
+ 3J2

2λth + 2J5/2
2 + J2

(
18λth − 54λ3

th

)

+ 6
√

J2
(
27λ4

th + 36λ2
th + 5

)
+ 9λth

(
27λ4

th + 42λ2
th + 11

)]]
dJ2, (36)

where erf(z) is, again, the error function. Once that analytical expression is obtained, we can perform the numerical integration over
J2. We display s(λth), u(λth), and v(λth) as a function of the threshold in Fig. B.1.

A276, page 9 of 15



Ayçoberry, E., et al.: A&A, 686, A276 (2024)

4.2.2. Wall

For walls, the same procedure gives

swall(λth) =

∫ ∞

0

25
√

5
48π

e−
9J2

2

[
−
√

2πe2J2 erf
(

3λth − 2
√

J2√
2

)
+
√

2πe2J2 erf
( √

J2 + 3λth√
2

)
+

√
J2

(
−e

1
2 (−3)λth(2

√
J2+3λth)

)

×
(
e9
√

J2λth
(
−9

√
J2λth + 6J2 + 4

)
+ 2e

3J2
2

)]
dJ2, (37)

uwall(λth) =

∫ ∞

0

125
√

5
32π

e−
9J2

2 (J2 − 1)
[
−
√

2πe2J2
(
J2 − 9λ2

th − 1
)

erf
( √

J2 + 3λth√
2

)
+
√

2πe2J2
(
J2 − 9λ2

th − 1
)

erf
(

3λth − 2
√

J2√
2

)

− 2e
1
2 (−3)λth(2

√
J2+3λth)

[
e9
√

J2λth
(
2
√

J2 + 3λth
)

+ e
3J2

2
( √

J2 − 3λth
)]]

dJ2, (38)

vwall(λth) =

∫ ∞

0
−625

√
5

4032π
e−

5J2
2

[
−
√

2π
[
−4J3

2 + 9J2
2 + 243(5 − 2J2)λ4

th + 81((J2 − 4)J2 + 5)λ2
th − 18J2 + 729λ6

th + 15
]
erf

(
3λth − 2

√
J2√

2

)

+
√

2π
[
−4J3

2 + 9J2
2 + 243(5 − 2J2)λ4

th + 81((J2 − 4)J2 + 5)λ2
th − 18J2 + 729λ6

th + 15
]
erf

( √
J2 + 3λth√

2

)

− 2e−
1
2 (2
√

J2−3λth)2 [
J3/2

2

(
4 − 36λ2

th

)
+ 3J2

2λth + 2J5/2
2 + J2

(
18λth − 54λ3

th

)
+ 6

√
J2

(
27λ4

th + 36λ2
th + 5

)
+ 9λth

(
27λ4

th + 42λ2
th + 11

)]

+ 2e−
1
2 (√J2+3λth)2 [
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dJ2. (39)

4.2.3. Filament

For filaments, we get

sfilament(λth) =

∫ ∞
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dJ2, (40)

ufilament(λth) =
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vfilament(λth) =

∫ ∞
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4.2.4. Knots

Finally, for knots:

sknot(λth) =
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(43)

uknot(λth) =
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vknot(λth) =
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+ 6J2
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√
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dJ2. (45)

Plugging the previous expressions for the s, u, v functions into Eq. (33) finally allows us to compute the next-to-leading-order
correction to the (threshold-dependent) probability of the different cosmic environments in the T-web classification.

As for the Gaussian case, we choose to measure a rarity threshold in the simulations, and therefore we plug in the non-linear
variance measured in the simulation as the normalisation factor appearing in the threshold λth. An alternative option to try and keep
a meaningful threshold selection in terms of abundance or rarity could be to work with a filling factor, as mentioned at the end of
Sect. 3.

The probabilities of the different environments as functions of redshift are displayed in Fig. 2; these were already partially
described in Sect. 3 for the Gaussian case. We now focus on the solid lines, which represent the Gram-Charlier correction described
in this section. For every environment, redshift, and smoothing scale, the results obtained with the Gram-Charlier always improve
the prediction over the Gaussian case. The agreement between the simulation and our non-linear model is almost perfect; only at
the most non-linear scales (very low redshift and small smoothing scale) do the predictions start to become slightly different from
the measurements, although the NLO correction always improves upon the Gaussian case. We can also look at the abundance of
voids, walls, filaments, and knots as a function of the threshold in Fig. 3, which was also already partially described in Sect. 3. We
see that the Gram-Charlier correction not only improves the prediction over the Gaussian case but provides us with an extremely
accurate prediction at all the relevant thresholds and for almost the whole spectrum of field values. Let us look at the contribution
of each function that appears in our Gram-Charlier expansion: s(E)(λth), u(E)(λth), and v(E)(λth) in Eq. (33) as shown in Fig. B.1. We
note that S 3 is always larger than U3 and V3, implying that s(λth) is typically the dominant correction to the Gaussian case (and is
actually related to the non-linear evolution of the threshold). This is the reason why our Gaussian model for the evolution of the
cosmic web abundances already gives a fairly accurate prescription. The higher-order non-linear corrections are then modulated by
the functions s, u, v depending on the chosen threshold.

5. Discussion and conclusion

Above, using the T-web classification with a rarity threshold λth = (Λth = 0.01)/σNL (a commonly Λth value used in the literature),
we describe a theoretical framework to accurately model the probabilities of voids, walls, filaments, and knots in the cosmic web.
More precisely, as this computation requires knowledge of the joint probability distribution of the eigenvalues of the Hessian of the
gravitational potential, we model an analogous object, which is the joint distribution between maximally decorrelated, rotational
invariants that are polynomial in the Cartesian matrix components.

We first focused on the linear regime of structure formation where the density field is Gaussian (assuming Gaussian initial
conditions) and where the distribution of the eigenvalues of the Hessian of the gravitational potential – and then a Gaussian field
– are known. We find in that case that normalising the rarity threshold λth by the non-linear variance is surprisingly accurate with
respect to measurements of the environment probabilities in the Quijote simulation in regimes where σ . 0.1 and captures most of
the redshift and scale dependence (see Fig. 2).

To probe the mildly non-linear regime, we then accounted for corrections to the Gaussian case in a perturbative manner relying
on a Gram-Charlier expansion at first non-linear order (Eq. (30)) for the joint distribution of our rotational invariants, and tree-
order Eulerian perturbation theory to compute the Gram-Charlier coefficients. We showed that this correction to the Gaussian case
increases the accuracy of predictions for the probability of cosmic environments at all considered redshifts and smoothing scales
with threshold λth = 0.01/σNL (see Fig. 2), but also when varying the threshold at fixed redshift and smoothing scale (see Fig. 3 for
a reference case at z = 0 and R = 15 Mpc h−1).

In conclusion, all redshift- and scale-dependent evolution of T-web cosmic abundances previously observed in numerical simu-
lations are shown to be predictable from first principles. In addition, having a precise theoretical model not only allows us to bench-
mark simulations but also to understand how these features depend on choices of threshold or background cosmological model for
example. This information can be readily extracted from the predictions we provide here (without the need to run simulations or
post-process them, etc.). This is notably important when one wants to use these cosmic web elements as a cosmological probe (to
go typically beyond the power spectrum), which requires a cost-effective inference pipeline. We leave investigations along this line
for future works. Let us also emphasise that we assume Gaussian initial conditions in this work, but primordial non-Gaussianities
could easily be added to the formalism (following e.g., Codis et al. 2013), in which case a careful study could be performed of the
extent to which cosmic web abundance depends on the physics of the primordial Universe.

Looking at Fig. 3 for the direct result of the threshold-dependent modulation of the non-Gaussian cumulants appearing in the
Gram-Charlier expansion of Fig. B.1, we observe that the different probabilities can fluctuate significantly when changing the
threshold, as was pointed out for instance by Forero-Romero et al. (2009), who studied the impact of the choice of the threshold on
the percolation and fragmentation of the cosmic web. With the present formalism, all this information can be described from first
principles, which can be very useful in defining a physically motivated threshold rather than relying on visual inspection. Working
with the abundance or rarity of an environment or with a filling factor could definitely help in that direction.

Another possible extension of this work could be to perform a multi-scale analysis in order to study the properties of halos
depending on their environment. The T-web description developed here would provide the constrained environment (as often used
in simulations) while the fields on a smaller scale would characterise the halo. However, let us note that the T-web classification is
a rather rough description of the cosmic web (being sensitive not only to the mass distribution but also its larger-scale environment)
and more sophisticated frameworks have already been developed in the literature. Interestingly though, most analyses studying
environmental effects have shown that the precise definition of the environment has typically (and maybe surprisingly) little effect on

A276, page 11 of 15



Ayçoberry, E., et al.: A&A, 686, A276 (2024)

the result (Libeskind et al. 2017) which is additional motivation for the development of theoretical predictions for even rudimentary
cosmic web estimators such as that described here. In essence, the physical effects at play in this context are mostly tidal effects,
which are naturally captured in the T-web description (Regaldo-Saint Blancard et al. 2021).
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Appendix A: Computation of cumulants

As discussed in section 4.1 and shown in equation (30), three cumulants are needed to predict cosmic web abundances at NLO. To
obtain the value of these three cumulants, we use tree-order Eulerian perturbation theory.

Given the scaling of the tree-order cumulants with the linear variance, and as we are working with normalised variables, there is
no redshift dependence of the reduced cumulants, that is the normalised cumulants appearing in equation (30) divided by the linear
standard deviation σ0 (Bernardeau et al. 2002). In this Appendix, we propose to derive the required cumulants at tree-order starting
from the well-known skewness, before extending this result to the other cumulants that are needed.

A.1. S 3 = 〈J3
1〉/σ0

We note that J1 = ν = δ/σ0, meaning that 〈J3
1〉 = 〈δ3〉/σ3

0 = S 3σ0, where S 3 is the usual redshift-independent reduced skewness
parameter characterising the asymmetry of the probability distribution function. Its computation is a well-established result of
Eulerian perturbation theory (Peebles 1980; Juszkiewicz et al. 1993) and we repeat its derivation here, on which we then base the
extension to other cumulants.

The core hypothesis of the Eulerian perturbation scheme is to assume that the density field can be expanded at every order as a
function of the initial (linear) density so that it can be written as a series of the form δ(x, t) =

∑
n δ

(n)(x, t). At leading order, we thus
obtain 〈δ3〉 ≈ 3〈(δ(1))2δ(2)〉 and where

δ(2)(x, t) =

∫
d3 k1

(2π)3/2

d3 k2

(2π)3/2 δ
(1)(k2, t) δ(1)(k2, t) F2(k1, k2) ei(k1+k2)·x (A.1)

with

F2(k1, k2) =
5
7

+
1
2

k1 · k2

k1k2
(
k1

k2
+

k2

k1
) +

2
7

(k1 · k2)2

k2
1k2

2

. (A.2)

The computation of 〈δ3〉 therefore leads to the appearance of ensemble averages of the form 〈δ(1)(k1) δ(1)(k2) δ(1)(k3) δ(1)(k4)〉,
which for Gaussian initial conditions can be estimated using Wick’s theorem only considering pairs of wave vectors. Taking into
account a smoothing window function W(kR) and after some algebra, we obtain

〈δ3〉 = 6
∫

d3 k1

∫
d3 k2P(k1)P(k2)F2(k1, k2)W(k1R)W(k2R)W(|k1 + k2|R), (A.3)

with P(k) being the linear power spectrum.
In this paper, we chose to work with Gaussian smoothing so that

W(kR) = exp
(
−1

2
k2R2

)
, (A.4)

W(|k1 + k2|R) = exp
(
−1

2
(k2

1 + k2
2)R2

) ∞∑

l=0

(−1)l(2l + 1)Pl

(
k1.k2

k1k2

)
Il+1/2(k1k2R2)

√
π

2k1k2R2 , (A.5)

and R is our smoothing scale, Pl are the Legendre polynomials, and Iα are the modified Bessel functions of the first kind. The
angular integration of (A.3) is then performed, also decomposing F2 on the basis of Legendre polynomials,

F2 =
17
21

P0 +
1
2

(
k1

k2
+

k2

k1

)
P1 +

4
21

P2, (A.6)

and using the Legendre polynomial orthogonality relation,

∫ 1

−1
Pm(x)Pn(x)dx =

2
2m + 1

δDirac
m,n . (A.7)

Noting that the angular part of (A.3) only depends on the angle between k1 and k2, we obtain

〈δ3〉 =

∫
24√

R

√
2π5/2k3/2

1 k3/2
2 P(k1)P(k2)eR(−k2

1−k2
2)

×



4
√

2
π

((
6

k2
1k2

2R2 + 2
)

sinh(k1k2R) − 6 cosh(k1k2R)
k1k2R

)

21
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34
√

2
π

sinh(k1k2R)

21
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−

(
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k2

+ k2
k1

) (
2 cosh(k1k2R) − 2 sinh(k1k2R)

k1k2R

)

√
2π
√

k1k2R


dk1dk2 . (A.8)
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The final 2D integrations over k1 and k2 are then usually obtained numerically for a general power spectrum. However, this step
can be performed analytically in the special case of a power-law linear power spectrum P(k) ∝ kn, where n is the spectral index. In
such a case, it yields
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, (A.9)

where 2F1 is the hypergeometric function and Γ the gamma function. This result is equivalent to the result obtained originally by
Lokas et al. (1995) (see their equation (38)).

For the more general case of a generic linear matter power spectrum, we resort to numerical integration of equation (A.8).
For the results shown in this paper (e.g. in figure 4), we compute the linear power spectrum with camb and for the cosmological
parameters used in the Quijote simulation.

A.2. U3 = 〈J1J2〉/σ0

We now compute U3 = 〈J1J2〉/σ0. With the previous notations, we notice that 〈J1J2〉 = 〈ν(ν2 − 3I2)〉 = 〈ν3〉 − 3〈νI2〉, where the
first term is the previously computed skewness. This leaves only 〈νI2〉 = 〈I1I2〉 to be computed. Thanks to isotropy, this latter can
be written as

〈I1I2〉 = 3〈δφ11φ22〉 − 3〈δφ2
12〉

= 3〈(φ11 + φ22 + φ33)φ11φ22〉 − 3〈(φ11 + φ22 + φ33)φ2
12〉

= 3(2〈φ2
11φ22〉 + 〈φ11φ22φ33〉 − 2〈φ11φ

2
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2
12〉). (A.10)

At leading order in standard perturbation theory (SPT), this reads
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The computation of each of the above ensemble averages can be performed in a similar manner to the case of the skewness.
Indeed, using a Fourier representation, the Poisson equation, and Wick’s theorem, one has to integrate terms of the generic form

2
∫

d3 k1

∫
d3 k2P(k1)P(k2)F2(k1, k2)

K
(k1 + k2)2 W(k1R1)W(k2R1)W(|k1 + k2|R2), (A.12)

where (i) the easiest way to proceed is to distinguish between two scales R1 and R2 as an intermediate step while in the end they will
both be taken equal to our smoothing scale R and (ii) K is a polynomial in k1 and k2, which depends on which second derivatives
of the gravitational potential are considered.

The term 1/(k1 + k2)2 unfortunately prevents direct analytical integration of the angular part of the previous form but differen-
tiation by R2

2 under the integral sign (sometimes referred to as Feynman’s trick) turns out to be a viable solution. Applied to the first
term of equation (A.11), for example, we obtain
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where ki( j) is the j-th Cartesian component of ki for i ∈ {1, 2}. This form is much more suited to integration. Using the same
decomposition of the Gaussian filter and the perturbation theory kernel into the basis of Legendre polynomials as in the skewness
computation, we perform integration on the angle between k1 and k2, and a final integration on R2

2. We finally obtain
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where Ei is the exponential integral function Ei(z) = −
∫ ∞

z e−t/tdt.
Finally, we perform a numerical integration of equation (A.14) with the Quijote linear power spectrum as for the skewness. Our

results are displayed in figure 4.
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A.3. V3 = 〈J3〉/σ0

We now compute V3 = 〈J3〉/σ0. With the previous notations we note that 〈J3〉 = 〈ν3〉 − 9〈I1I2〉/2 + 27〈I3〉/2, where the first two
terms are computed as part of S 3 and U3 in the above subsections. The third term can then be written as

〈I3〉 = 〈φ11φ22φ33〉 + 2〈φ12φ23φ13〉 − 3〈φ11φ
2
23〉, (A.15)

which, using isotropy and at leading order in SPT, can be rewritten as
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The exact same steps as in the computation of 〈I1I2〉 are then performed to evaluate every ensemble average appearing in the
previous equation (A.16), most notably the differentiation under the integral sign and the decomposition in Legendre polynomials
of the Gaussian and perturbation theory kernels. We obtain

〈I3〉 =
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where Ei is the exponential integral function Ei(z) = −
∫ ∞

z e−t/tdt.
Again, we perform a numerical integration of equation (A.17) with the Quijote linear power spectrum as for the skewness and

〈I1I2〉. Our results are displayed in figure 4.

Appendix B: Behaviour of the Gram-Charlier

The NLO prediction for the cosmic web abundances are derived in equation (33), which involves three functions of the threshold
per environment:

P(E)(J1, J2, J3) = PG,(E)(J1, J2, J3) + σ0
[
s(E)(λth)S 3 + u(E)(λth,)U3 + v(E)(λth)V3

]
. (B.1)

For the sake of completeness, in figure B.1 we show the behaviour of these functions for the voids, walls, filaments, and knots in
blue, green, yellow, and red, respectively, and as a function of the chosen threshold. The threshold chosen in our main analysis
is the dashed black vertical line. We note that for a threshold of between −2 and 2, the s, u, and v functions fluctuate a lot, thus
potentially strongly modulating the environment probabilities depending on the values of the cumulants —that is depending on how
non-Gaussian the field is— and most importantly on the value of the chosen threshold. This emphasises the importance of the choice
of the threshold value.

Fig. B.1. s(E)(λth), u(E)(λth), and v(E)(λth) as a function of threshold predicted by the Gram-Charlier development. Results are shown for the four
different environments: voids in blue, walls in green, filaments in orange, and knots in red. The vertical black line is the threshold used in the paper.
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110 Peak counts statistics in weak lensing – 6.1. Overview

In Chapters 4 and 5, we have explored how the tSZ effect and the cosmic web provide insights into
the large-scale structures of the Universe. The tSZ effect, sensitive primarily to highest-mass halos, and
the study of the cosmic web allow to investigate non-linearities in the Universe. In this chapter, I will
investigate another method to probe these non-linearities: peak count statistics in weak lensing. I will
begin with an overview in Sect. 6.1, then I will describe and copy the article, of which I am the primary
author, focusing on the impact of systematics on cosmological parameters when using peak count statistics
in Sect. 6.2.

6.1 Overview

Gravitational lensing, particularly weak lensing, was discussed in Sect. 2.2.3. It is a powerful tool for
probing the large-scale structures of the Universe, as it is sensitive to the total matter content, including
dark matter. In this regard, weak lensing is complementary to the tSZ effect, which is only sensitive
to baryonic matter. This complementarity is why cross-correlation between weak-lensing and tSZ is a
powerful method for investigating the large-scale structures of the Universe (e.g., Tröster et al., 2022;
Van Waerbeke et al., 2014).

While weak-lensing has been widely used in cosmological analyses through methods such as the two-
point correlation function and power spectrum, I specifically focus on its application in higher-order
statistics, such as peak counts. Peak counts involve identifying local maxima in a field and are sensitive
to non-Gaussianities within that field. For example, studies have demonstrated that weak lensing peak
counts can be employed to constrain parameters like neutrino masses (e.g., Ajani et al., 2020) or modified
gravity theories (e.g., Davies et al., 2024). It has also been shown that it can constrain cosmological
parameters more robustly than traditional two-point statistics (e.g., Euclid Collaboration et al., 2023).

6.2 "UNIONS: The impact of systematic errors on weak-lensing
peak counts" (article)

In this section, I will briefly describe the method and main result of the article (Ayçoberry et al., 2023)
and attach it at the end of the section.

Method In this article, we present a study on the impact of different uncertainties and systematics
on cosmological parameters when using peak count statistics in weak lensing. We perform a qualitative
analysis to assess the influence of different systematics and identify the dominant ones.

To perform our analysis, we use the weak-lensing data from the ongoing UNIONS1 survey. Our pre-
dictions are derived using the MassiveNuS simulations (Liu et al., 2018), with peak counts computed
following the methodology of Ajani et al. (2020). The peak counts are determined on signal-to-noise ratio
(SNR) maps, defined as the noisy convergence map smoothed with a Gaussian filter over the standard
deviation of the noise. The peak count distribution is then obtained by counting the number of pixels
with values higher than their neighbouring pixels, and the counts are used in our parameter inference.

Another important aspect of our work is the calibration of the shear. Our calibration approach is based
on the "metacalibration" method (Huff & Mandelbaum, 2017), which involves measuring the response
matrix R of a shape measurement algorithm. The relation between the true and estimated shear (gtrue

j

and gobs
i ) is:

gobs
i =

2∑

j=1

Rijg
true
j + ci , (6.1)

where i and j are the components of the shear, and ci is the additive bias. The response matrix Rij can be
described as Rij = ∂gobs

i /∂gtrue
i , and tr(R) = 2(1 +m) where m is the multiplicative bias. The response

matrix is composed of the shear response matrix and selection response matrix (R = Rshear+Rselection).
Calibration is typically performed at the catalogue level, but we will investigate the impact of a local
calibration.

We consider various systematics in our analysis:

• Local shear calibration: we perform a local calibration by applying the metacalibration method on
subsamples of the catalogue of a few degrees (ranging from 0.5 deg2 to 4 deg2). We investigate the
impact on the response matrix and additive bias. This method can account for local effects of the
point spread function, galaxy size, etc.

1https://www.skysurvey.cc/

https://www.skysurvey.cc/
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Figure 6.1: ⟨Rdiag⟩ depending on the size of the local calibration. From top to bottom, calibration is
done on 0.25, 0.5, 1, 2, 4 deg2. The four columns are ⟨Rshear

diag ⟩, its standard deviation, ⟨Rselection
diag ⟩ and its

standard deviation.

• Residual multiplicative shear bias: as the shear calibration is not perfect, we account for a residual
bias. We employ a residual bias ∆m = 0.007 as reported by Guinot et al. (2022).

• Redshift uncertainties: the mean redshift of the survey (z̄ = 0.65) has a level of uncertainty. We
investigate the impact of a redshift uncertainty of ∆z = 0.03.

• Baryonic feedback: the MassiveNuS simulations are dark matter only simulations, while baryonic
feedback affects the large-scale structures probed by the UNIONS survey. To mitigate this effect,
we use the results of Coulton et al. (2020) to correct our predictions, applying three strengths of
feedback.

• Intrinsic alignment and boost factor: these two effects can bias the weak-lensing signal. According
to Harnois-Déraps et al. (2021), the effect is small for peaks with SNR < 3 (< 4) for intrinsic
alignment (boost factor). We thus employ a restrictive cut on SNR < 3 (instead of going up to
SNR = 6) to mitigate these biases.

Results The first main result focuses on the local shear calibration. We performed a local calibration
on sub-patches of 0.5, 1, 2, 4 deg2, allowing us to obtain the shear matrix, response matrix, and additive
bias on these sizes. In Fig. 6.1, we present the spatial variation of the average of the diagonal of the
response matrix ⟨Rshear

diag ⟩ and its standard deviation, as well as the average of the diagonal of the selection
response matrix ⟨Rselection

diag ⟩ and its standard deviation. From top to bottom, the quantities are computed
on sub-patches of 0.25, 0.5, 1, 2, 4 deg2. The 0.25 deg2 sub-patches are only used to produce the standard
deviation of the 0.5 deg2 calibration.

We observe that the larger sub-patches result in a calibration closer to the global one, with reduced
variations. The standard deviation of the shear matrix remains small, and the standard deviation of the
selection matrix is small for a calibration performed on sub-patches of at least 1 deg2. From this analysis,
we conclude that local calibration can capture local effects and improve the calibration, but it should not
be done at too small scale.
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Ideal model

∑
Mν[eV ] Ωm As

0.5° calibration

1° calibration

1° calibration, ∆m = 0.007
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4° calibration

z = 0.68
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Figure 6.2: Marginalised distributions for the 68% confidence interval for the three cosmological param-
eters for the different cases, including uncertainties and systematic effects.

We then focus on the impact of the different uncertainties and systematics on the constraining power
of cosmological parameters. The MassiveNuS simulations allow us to probe Mν , Ωm, and As. This study
aims to identify trends and obtain qualitative results on the uncertainties, rather than focusing on the
precise values of the parameters.

The results for the different uncertainties and systematics are summarised in Fig. 6.2, where we show
the marginalized distribution for the 68% confidence interval. The "ideal case" represents an unrealistic
best-case scenario where the data are perfectly known, with no uncertainties or systematics considered.
The "conservative model" includes different mitigation schemes: no redshift uncertainty, local calibration
on 1 deg2, a residual multiplicative shear bias ∆m = 0.007, correction of the simulation predictions with
a fiducial baryonic correction, and a cut on the SNR < 3 to mitigate intrinsic alignment and boost factor.

The mass of the neutrino is not well constrained, and the lower bound of As reaches the prior in
most cases. We thus focus on the constraining power and shift of Ωm. Local calibration and the addition
of the multiplicative shear bias can shift Ωm by −0.5σ. Baryonic correction results in a shift of +0.5σ.
Reducing the SNR range leads to larger constraints, reducing the constraining power. Finally, the redshift
uncertainty has a small impact on the constraining power, shifting Ωm by only +0.02σ.

This analysis emphasizes the need for careful shear calibration and the importance of accounting for
the different systematics to obtain robust constraints. For future analyses, it will be crucial to determine
the smallest calibration size that can be trusted. Additionally, it will be necessary to use hydrodynamical
simulations and properly account for intrinsic alignment and boost factor to avoid losing constraining
power.
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ABSTRACT

Context. The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is an ongoing deep photometric multiband survey of the
northern sky. As part of UNIONS, the Canada-France Imaging Survey (CFIS) provides r-band data, which we use to study weak-
lensing peak counts for cosmological inference.
Aims. We assess systematic effects for weak-lensing peak counts and their impact on cosmological parameters for the UNIONS
survey. In particular, we present results on local calibration, metacalibration shear bias, baryonic feedback, the source galaxy redshift
estimate, intrinsic alignment, and cluster member dilution.
Methods. For each uncertainty and systematic effect, we describe our mitigation scheme and the impact on cosmological parameter
constraints. We obtain constraints on cosmological parameters from Monte Carlo Markov chains using CFIS data and MassiveNuS
N-body simulations as a model for peak counts statistics.
Results. Depending on the calibration (local versus global, and the inclusion or not of the residual multiplicative shear bias), the mean
matter density parameter, Ωm, can shift by up to −0.024 (−0.5σ). We also see that including baryonic corrections can shift Ωm by
+0.027 (+0.5σ) with respect to the dark-matter-only simulations. Reducing the impact of the intrinsic alignment and cluster member
dilution through signal-to-noise cuts leads to larger constraints. Finally, with a mean redshift uncertainty of ∆z̄ = 0.03, we see that the
shift in Ωm (+0.001, which corresponds to +0.02σ) is not significant.
Conclusions. This paper investigates, for the first time with UNIONS weak-lensing data and peak counts, the impact of systematic
effects. The value of Ωm is the most impacted and can shift by up to ∼0.03, which corresponds to 0.5σ depending on the choices for
each systematics. We expect constraints to become more reliable with future (larger) data catalogs, for which the current pipeline will
provide a starting point. The code used to obtain the results is available on GitHub.

Key words. large-scale structure of Universe – gravitational lensing: weak – methods: data analysis

1. Introduction

Weak gravitational lensing has been used as a cosmological
probe in recent years with great success, for example with Dark
Energy Survey1(DES), Kilo-Degree Survey2 (KiDS), Hyper
Suprime-Cam3 (HSC), and Canada France Hawaii Lensing Sur-
vey4 (CFHTLens). It corresponds to the small distortions we
observe in the images of background sources (such as high-
redshift galaxies) due to the deflection of photons as they pass

? https://github.com/CosmoStat/shear-pipe-peaks.git
1 https://www.darkenergysurvey.org/
2 https://kids.strw.leidenuniv.nl/
3 https://www.naoj.org/Projects/HSC/
4 https://www.cfhtlens.org/

through tidal fields in the large-scale structure (LSS) in the Uni-
verse (Bartelmann & Schneider 2001).

Second-order statistics of weak lensing, such as the
two-point correlation function or the power spectrum, only
capture the Gaussian part of the LSS (Weinberg et al. 2013).
Its non-Gaussian part, which is induced by the nonlinear
evolution of structure on small scales and low redshifts, con-
tains, however, a wealth of information about cosmology.
Several higher-order statistics, such as Minkowski function-
als (Kratochvil et al. 2012; Parroni et al. 2020), higher-order
moments (for example, Petri et al. 2016; Gatti et al. 2020), the
bispectrum (Takada & Jain 2004; Coulton et al. 2019), peak
counts (Kruse & Schneider 1999; Dietrich & Hartlap 2010;
Liu et al. 2015b; Lin & Kilbinger 2015; Peel et al. 2017;
Martinet et al. 2017; Li et al. 2019; Ajani et al. 2020, and
references therein), the starlet `1 norm (Ajani et al. 2021), the

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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scattering transform (Cheng et al. 2020), wavelet phase har-
monic statistics (Allys et al. 2020), and machine learning-based
methods (Fluri et al. 2018, 2022; Shirasaki et al. 2021, among
others), have been introduced to account for non-Gaussian
information.

In this work we choose to focus on peak counts extracted
from real data, using the pipeline developed to perform the study
presented in Ajani et al. (2020), which had previously only been
tested on simulations. Peaks in weak-lensing convergence maps
are tracers of overdense regions. They are the local maxima
defined as a pixel that is larger than all eight of its neighbors.
The peak function – that is, the number of peaks as a func-
tion of peak height (in a convergence map) or signal-to-noise
ratio (S/N) – depends on the nonlinear and non-Gaussian part of
the LSS. This higher-order weak-lensing statistic can be used to
constrain cosmological parameters. Peak counts are complemen-
tary to second-order shear statistics (Jain & Waerbeke 2000),
and by combining both parameters degeneracies can be removed
(Dietrich & Hartlap 2010).

Weak-lensing peaks are an indirect tracer of dark-matter
halos: large peaks are strongly correlated with massive halos,
whereas lower-amplitude peaks are generally created by multi-
ple smaller halos along the line of sight (Yang et al. 2011). Low-
amplitude peaks can also be caused by mass outside dark-matter
halos, or by galaxy shape noise (Liu & Haiman 2016; Yang et al.
2011).

Explicit expressions or complete theoretical predictions of
peak counts are still an active area of research. It is, however,
possible to generate weak-lensing simulations densely sampled
in cosmological parameter space in order to interpolate them and
use the interpolation as a prediction. The advantage of simu-
lations is the possibility to incorporate the exact survey mask
and shape noise. For example, Dietrich & Hartlap (2010) cre-
ated a set of N-body simulations in the (Ωm, σ8) plane for 158
cosmologies, and Liu et al. (2015b) and Kacprzak et al. (2016)
used ray-tracing N-body simulations in the (Ωm, σ8, w) plane for
91 cosmologies. Here we use the MassiveNuS simulations
(Liu et al. 2018) to predict peak counts as in Li et al. (2019) and
Ajani et al. (2020). These simulations are described in more detail
in Sect. 3.

The first cosmological constraints from peak counts were
obtained on real data by Liu et al. (2015a) using the Canada-
France-Hawaii Telescope (CFHT) Stripe 82 Survey, and by
Liu et al. (2015b), using CFHTLenS data. DES Science Ver-
ification data have been analyzed by Kacprzak et al. (2016).
KiDS 450 deg2 data have been studied by Shan et al. (2017) and
Martinet et al. (2017). The first tomographic analysis was per-
formed by Harnois-Déraps et al. (2021b) for the DES-Y1 data
release. Recently, Zürcher et al. (2022) analyzed the DES-Y3
data release using an emulator approach. These analyses all use
peak counts and complement second-order statistics analyses,
constraining cosmological parameters.

Weak-lensing observables have to be corrected for system-
atic effects, which can have an observational and astrophysical
origin and can induce biases into the cosmological constraints if
not properly taken into account. These artifacts can easily be cre-
ated by the atmosphere, the telescope, and the detector, and dur-
ing the data analysis. Astrophysical correlations such as intrinsic
galaxy alignments add to the lensing correlations in a nontrivial
way. Furthermore, to be able to interpret weak-lensing observ-
ables in a cosmological context, the physics of small scales needs
to be reliably estimated.

Extensive studies of many of these systematics for second-
order statistics exist, for example Massey et al. (2012),

Troxel & Ishak (2015), Hildebrandt et al. (2016), and
Mandelbaum (2018). For current and future surveys, pre-
cise requirements on the instrument and data processing are
routinely derived for those statistics. However, how to prop-
erly include systematic effects in the context of higher-order
statistics is an ongoing research topic (Kacprzak et al. 2016;
Coulton et al. 2020; Zürcher et al. 2021; Harnois-Déraps et al.
2021a; Pyne & Joachimi 2021).

This paper is the first to study several weak-lensing system-
atics and uncertainty, their effect on peak counts, and the result-
ing constraints on cosmological parameters from the Ultravio-
let Near-Infrared Optical Northern Survey (UNIONS)/Canada-
France Imaging Survey (CFIS) galaxy survey. In addition, we
develop a novel method for locally calibrating the measured
shear, including shear and selection biases. We investigate mit-
igation schemes for these effects and quantify biases in cosmo-
logical parameters.

This paper is organized as follows: In Sects. 2 and 3 we
describe the data and simulations used in this work, respectively.
In Sect. 4 we describe the measurement of weak-lensing peak
counts. In Sect. 5 we introduce local shear calibration and com-
pare it to the standard global calibration. In Sect. 6 we present
results for each of the studied biases and uncertainties and dis-
cuss mitigation methods. Finally, we draw our conclusions in
Sect. 7.

2. Data

2.1. Image processing

We used weak-lensing data from UNIONS5. This ongoing sur-
vey will provide 4800 deg2 of multiband photometric images
in the Northern Hemisphere. Founded in 2018, UNIONS is
a collaboration of several groups and surveys, each providing
data in different bands. These participating surveys are CFIS,
the Panoramic Survey Telescope And Rapid Response System
(Pan-STARRS), Wide Imaging with Subaru HSC of the Euclid
Sky (WISHES), and the Waterloo Hawai’i IfA G-band Survey
(WHIGS).

For the CFIS part of the survey r- and u-band images are
taken at the CFHT with MegaCAM, a wide-field optical imag-
ing facility. The CFIS r-band images have a median seeing of
0.65 arcsec reflecting the extremely stable atmosphere at Manua
Kea together with the excellent CFHT optical system. Each
observed sky location is covered by at least three single expo-
sures, which are dithered by one-third of the focal plane, or
0.33◦. The exposure time varies between 100 and 300 s, where
smaller exposure times are chosen in better observing condi-
tions. This survey strategy provides images of a very homoge-
neous depth. In this work, we only use r-band data from CFIS
for our weak-lensing peak count study. In particular, the weak-
lensing data from P3, a patch of size 34.7×17.7 deg2 is analyzed.
This patch overlaps with CFHTLenS, which is used to infer the
redshift distribution (see Sect. 2.3). These data have been pro-
cessed and validated (see Guinot et al. 2022 for details). The pre-
processing of the CFHT data consists of a calibration step with
the MegaPipe pipeline (Gwyn 2008). The single exposures are
first calibrated before they are combined with SWARP6 to build
stacked images. MegaPipe provides an astrometric calibration of
the survey using Gaia Data Release 2 (Gaia Collaboration 2018),
and photometric calibration of the r-band data relative to the
Pan-STARRS1 survey (Chambers et al. 2016). Both astrometric
5 https://www.skysurvey.cc/
6 https://github.com/astromatic/swarp
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Table 1. P3-CFIS survey specifications.

Number density of galaxies ngal 7 arcmin−2

Pixel size Apix 0.42 arcmin2 px−2

Global ellipticity dispersion σe 0.44
Size of the field 34.7 × 17.7 deg2

and photometric calibration are excellent so we do not expect
calibration errors to significantly impact weak-lensing measure-
ments (Guinot et al. 2022).

2.2. The weak-lensing catalog

Since the stacks have a larger S/N than the single-exposure
images, we use the former to detect galaxy candidates. Due
to the large dithers, the point-spread function (PSF) on the
stacks is very inhomogeneous and discontinuous. For this rea-
son, we detect stars and construct the PSF model on single
exposures. Galaxy shapes are then obtained using the multi-
epoch model-fitting method ngmix (Sheldon & Huff 2017)7.
Those measurements are calibrated with metacalibration
(Huff & Mandelbaum 2017) to provide shear estimates. The cre-
ation and validation of the shear catalog are fully described
in Guinot et al. (2022). We note that this is a preliminary ver-
sion, called “version 0”, of the catalog where the source density
is conservative and does not reflect future versions of the CFIS
shear data. Specifics of the shear catalog are presented in Table 1.

2.3. Redshift distribution of source galaxies

Multiband data of UNIONS are still sparse, and photometric red-
shifts have not been obtained yet. Using the r-band data only,
redshifts have been obtained for a population of galaxies with
two different methods, as follows.

For both methods, CFIS galaxies were matched to the
deeper CFHTLenS on the 50 deg2 W3 field. First, Guinot et al.
(2022) approximated the CFIS redshift distribution as the his-
togram of the best-fit photometric redshifts from CFHTLenS
of that matched subsample. Photo-z’s for CFHTLenS had been
obtained in Hildebrandt et al. (2012) from u, g, i, r, z multiband
data, calibrated with various spectroscopic deep data sets. Sec-
ond, employing the direct calibration technique, Spitzer et al.
(in prep.) re-weighted the Deep Extragalactic Evolutionary
Probe 2 (DEEP2) spectroscopic sample (Newman et al. 2013)
in a 5D space spanned by the u, g, i, r, z photometric bands, to
match the density of the matched subsample in that space. The
re-weighted DEEP2 spectroscopic redshift distribution is an esti-
mate of the CFIS n(z). This distribution was fit in Spitzer et al.
(in prep.) by an analytical function with two components. The
first, exponential, component accounts for the bulk of the distri-
bution, whereas the second, Gaussian, term, models the tail at
z > 2. However, the addition of this second term somewhat over-
estimates the re-weighted DEEP2 redshift distribution between
z = 1.5 and 2.

The mean redshift is obtained as z̄ =
∫ zmax

0 dz z n(z), where the
integral over the normalized redshift distribution n(z) is carried
out nominally up to the limiting redshift of the survey, zmax. Both
redshift distributions have a significantly non-vanishing proba-
bility at high redshifts z & 2. This is most likely not a physical

7 https://github.com/esheldon/ngmix

Table 2. Mean redshift, z̄, of CFIS weak-lensing galaxies for different
redshift distributions, n(z), and maximum redshifts, zmax.

n(z) zmax z̄ Comment

Guinot et al. (2022) 2 0.65 Fiducial
Guinot et al. (2022) ∞ 0.68
Spitzer et al. (in prep.) one term 2 0.68
Spitzer et al. (in prep.) both terms 2 0.68
Spitzer et al. (in prep.) both terms ∞ 0.73 Likely biased

feature, since we do not expect a large number of galaxies in the
CFIS sample at those redshifts.

Our best estimate of z̄ is obtained by integrating over the
CFHTLenS-matched n(z) with a limit of zmax = 2, resulting in
z̄ = 0.65. Table 2 presents alternative estimates with varying n(z)
and zmax. Three further, reasonable combinations yield a slightly
higher z̄ of 0.68. We use this alternative value in Sect. 6.3 to test
the impact of the estimated redshift uncertainty.

3. Simulations

To get the predictions for the summary statistics that we use to
perform cosmological inference, we employed the MassiveNuS
simulations, a suite of cosmological dark-matter-only N-body
simulations that explore different cosmologies including mas-
sive neutrinos in the range

∑
mν = 0−0.62 eV. The simula-

tions have a 512 Mpc h−1 box size with 10243 cold dark matter
particles. The pixel size is 0.4 arcmin. The implementation is
performed using a modified version of the public tree-Particle
Mesh (tree-PM) code Gadget28 with a neutrino patch, describing
the effect of massive neutrinos on the growth of structures up to
k = 10h Mpc−1. A complete description of the implementation
and the products is provided in Liu et al. (2018). The cosmo-
logical parameters vary across the simulations within the range
Mν ∈ [0, 0.62], Ωm ∈ [0.18, 0.42], and As ∈ [1.29, 2.91] × 10−9.
We thus worked on the constraints on these three cosmological
parameters, which are well sampled by the simulations. They
include the effects of radiation on the background expansion
and the impact of massive neutrinos is included with a linear-
responds method: neutrinos are evolved perturbatively, while
their clustering is caused by the nonlinear dark-matter evolution.

The simulations assume a flat universe with Hubble constant
H0 = 70 km s−1 Mpc−1. The primordial power-spectrum scalar
index is ns = 0.97, the baryon density Ωb = 0.046, and the dark-
energy equation of state w = −1. A fiducial cosmology is set to
[Mν,Ωm, 109×As] = [0.1, 0.3, 2.1]. Simulations are available for
101 cosmologies, with 10 000 realizations for each cosmology,
obtained by randomly rotating and shifting the lensing potential
planes.

Following Ajani et al. (2020), the peak counts were com-
puted for each of the MassiveNuS cosmologies from the sim-
ulated convergence maps, averaged over the 10 000 realizations
for each model. A model with massless neutrinos corresponding
to [Mν,Ωm, 109 × As] = [0.0, 0.3, 2.1] is also provided, and we
used it to compute the covariance matrix.

3.1. Effective redshift distribution

For each of the 101 cosmological models, five source redshifts,
zs = {0.5, 1.0, 1.5, 2.0, 2.5}, are present. To match the simulations

8 https://wwwmpa.mpa-garching.mpg.de/gadget/
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Fig. 1. Convergence map of the CFIS-P3 patch. The squares indicate the regions free of large masks, which were used to compute the peak count.
The total peak count is the mean of the peaks over the 13 patches.

to the observed redshift distribution of CFIS, we made the fol-
lowing approximations. We matched the mean redshift between
MassiveNuS and CFIS (Sect. 2.3) and neglected the shape of
the redshift distribution. For that, we interpolated the two conver-
gence maps closest in redshift to z̄ and obtained the new effective
map as

κz̄ = κz=0.5λ + κz=1(1 − λ). (1)

This effectively defines the new redshift distribution by a
weighted sum of two Dirac delta distributions,

n(z) = λδD(z − 0.5) + (1 − λ)δD(z − 1). (2)

To match our best estimate, z̄ = 0.65, we set λ = 0.7. As antic-
ipated in Sect. 2.3, we also employed z̄ = 0.68 in order to esti-
mate the uncertainty related to the redshift estimation. To do so,
we used the relation in Eq. (1) to the new effective maps at κz̄=0.65
and κz=1 and imposed z̄ = 0.68. This results in an interpolation
parameter λ′ = 0.91.

3.2. Noise

To include the CFIS shape noise in the simulations that we
employ to perform inference, we add Gaussian noise. First, we
compute the global ellipticity dispersion σ2

e . The ellipticity noise
per smoothed pixel is then

σ2
pix =

σ2
e

2ngalApix
, (3)

where ngal is the galaxy number density and Apix is the pixel size.
For CFIS data, we used the value listed in Table 1. We applied
the Gaussian noise to the convergence maps because we do not
have direct access to the simulated shear.

4. Weak-lensing peak counts

We employed weak-lensing peak counts as summary statistics
for our analysis, measured from the weak-lensing convergence
maps.

4.1. Convergence maps

The reduced shear g is the main observable in weak gravitational
lensing by galaxies, it is estimated from galaxy ellipticities. We
can define it as

g =
γ

1 − κ , (4)

where γ is the shear and κ the convergence. For the data, the E-
and B-mode convergence maps are built through Kaiser-Squires
inversion (Kaiser & Squires 1993) from the reduced shear pro-
vided by the weak-lensing catalog. The CFIS-P3 map is quite
large for a projection but peaks are local, and any distortion will
rather affect large scales. In our analysis we worked with the
E-mode of the convergence map as the B-mode contain mostly
noise (Guinot et al. 2022). Hereafter, when we speak about con-
vergence, we mean the E-mode of the convergence map. The
CFIS-P3 convergence map is shown in Fig. 1. Every pixel has a
size of 0.4 arcmin, as in the simulations. The 13 black squares
are boxes of 512 × 512 pixels, which correspond to the size of
the simulation convergence maps. These boxes are placed such
that they do not overlap with larger masked or missing areas.

For the simulations, we employed the already existing maps
from the MassiveNus9 suite, obtained with the LensTools10

(Petri 2016) ray-tracing package. We mimicked the CFIS shape
noise by adding the noise introduced in Sect. 3.2 to the maps

9 http://columbialensing.org/#massivenus
10 https://github.com/apetri/LensTools/blob/master/
docs/source/index.rst
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Fig. 2. S/N map and peak counts histogram. The left plot is the S/N map
of a part of the 512 × 512 pixels of CFIS-UNIONS data. The right plot
is the peak counts computed on that S/N map.

coming from the simulations, and we smoothed them with a
Gaussian kernel of width σ = 2 arcmin. Li et al. (2019) find
that for the same simulations, using peak counts, the optimal
smoothing to get tighter constraints is 2 arcmin. As a first work,
we chose this smoothing scale to be consistent with the simula-
tions. Moreover, Hildebrandt et al. (2016) find that a smoothing
scale of 2 arcmin is a good choice for KiDS data, which have
the same number of galaxies per pixel as us. For future work, it
can be interesting to adapt simulations to the data to determine
the optimal smoothing scale for future releases. We thus com-
puted signal-to-noise ratio (S/N) maps, where the S/N is defined
as the noisy convergence map, smoothed with a Gaussian filter
over the standard deviation of the noise defined in Eq. (3). Then
we computed the peak counts with the lenspack11 python pack-
age on the S/N maps collecting the local maxima, namely com-
puting the pixels with higher values with respect to their neigh-
boring pixels. In our analysis, we consider linearly spaced bins
in the range S/N = [−2, 6]. The peak counts distribution used
for parameter inference (Sect. 6) corresponds to the mean of the
peak counts from the 13 patches. This corresponds to an area of
13 × 12.25 deg2 ≈ 160 deg2. Figure 2 presents the S/N map and
the peak counts histogram from one patch of the CFIS-P3 data.

4.2. Modeling and parameter inference

We modeled the peak function with the MassiveNuS N-body
and ray-tracing simulations (Liu et al. 2018). In these simula-
tions the matter density parameter, Ωm, the primordial power-
spectrum normalization amplitude, As, and the total mass of
neutrinos, Mν =

∑
mν, were varied (see Sect. 3 for more details).

We constructed a likelihood function as follows. First, the theo-
retical model was obtained by numerically computing the peak
function for each simulated parameter combination. These func-
tions were then interpolated to arbitrary parameters within the
parameter boundaries using a Gaussian process. The error of pre-
diction was always below the CFIS statistical error and on the
order of a few per cent. The covariance matrix was computed
from the variations of realizations at the fiducial model and is thus
assumed to be parameter-independent. As explained in the previ-
ous section, for the data, the peaks were computed as the mean
of the peaks on 13 mask-free patches; thus, the re-scaling fac-
tor of the covariance when we infer parameters from the data is
1/13. The likelihood was taken as a multivariate Gaussian as a
function of the data vector. As prior on the parameters, we used
a flat prior for the three parameters: Mν ∈ [0.06, 0.62], Ωm ∈
[0.18, 0.42] and As ∈ [1.29, 2.91] × 109. The prior of Ωm and As

11 https://github.com/CosmoStat/lenspack

are the bounds of the simulation. For Mν, 0.06 is the minimum
from oscillation experiments (Particle Data Group 2016) and 0.62
is the upper bound of the simulations. We explored the poste-
rior distribution with Monte Carlo Markov chain (MCMC) sam-
pling using the python packageemcee. Specifically, we employed
250 walkers initialized in a tiny Gaussian ball of radius 10−3

around the fiducial cosmology [Mν,Ωm, 109×As] = [0.1, 0.3, 2.1]
and estimated the posteriors using 6500 sampling steps and
200 burn-in steps.

5. Local shear calibration

In this section, we describe and measure a spatially varying
calibration of the estimated shear. For the multiplicative shear
bias, including both shear and selection biases, we use the tech-
nique of “metacalibration” (Huff & Mandelbaum 2017), which
we briefly describe in the following subsection.

5.1. Metacalibration

This method consists in measuring the response matrix R of a
shape measurement algorithm to a shear artificially applied to an
image. The ith component of the observed ellipticity of a galaxy,
εi, is an estimator of the galaxy shear, 〈εi〉 = gobs

i , however, not
an unbiased estimator in general. The linearized relation between
true and estimated shear for a given galaxy can be written as

gobs
i =

2∑

j=1

Ri jg
true
j + ci, (5)

where the response matrix can be described as Ri j = ∂gobs
i /∂gtrue

i
and ci is the additive bias. The trace of the shear response matrix
is also parameterized as tr (R) = 2(1 + m) where m is the multi-
plicative shear bias.

We numerically compute the shear response matrix by
replacing the derivative with finite differences. For this, we cre-
ate four new images for each detected galaxy. These images are
deconvolved with the model PSF at that position, then sheared in
two directions for both shear components, and re-convolved with
a circularized PSF that is slightly larger than the original one. We
note that a fifth image is created, which is unsheared but has the
same re-convolved PSF. This image is used to measure shapes
that are consistent with the metacalibration correction.

The response matrix has two additive components, the shear
response matrix and the selection response matrix, both of which
can be computed via metacalibration, as follows. First, the
shear response matrix is computed for each galaxy individually.
Denoting with g

obs,±, j
i the observed shear of the galaxy image

sheared by ±∆g in the j direction, we get

Rshear
i j =

g
obs,+, j
i − gobs,−, j

i

2∆g
. (6)

We used ∆g = 0.01. Since this is a very noisy measurement,
often resulting in singular matrices, we compute the mean value
over all galaxies,

〈
Rshear

i j

〉
=

〈
g

obs,+, j
i − gobs,−, j

i

2∆g

〉
. (7)

Second, the selection response matrix quantifies selection
biases originating from correlations between shear and selection-
dependent image properties. For example, if a cut is applied on
the S/N of the galaxy sample and the S/N varies with shear, the
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effective sample shear after the cut is modified, and no longer
representative of the underlying population shear, which intro-
duces a bias.

The selection matrix cannot be obtained for a single galaxy,
but only for a sample of galaxies. For that, we first apply our
selection S to the four samples of sheared galaxies. This pro-
vides us with a selection mask S ±, j for each of the four cases.
These four masks are now in turn applied to the fifth sample
without added shear. We compute the mean observed shear for
each of the four masked samples, denoted as 〈gobs

i 〉S ±, j . Any dif-
ference in these mean values is due to shear-dependent selection
criteria, and can be used to define the selection response matrix
as

〈Rselection
i j 〉 =

〈gobs
i 〉S +, j − 〈gobs

i 〉S −, j
2∆g

. (8)

The total mean response matrix is

R = 〈Rshear〉 + 〈Rselection〉. (9)

The estimated shears are calibrated by matrix multiplication with
R−1, to obtain gtrue

i for all i following Eq. (5).
In the following sections of the paper, we will need the use

the diagonal and off-diagonal terms of the Rshear and Rselection

matrix. They are defined as

Rdiag = (R11 + R22)/2 (10)
Roff−diag = (R12 + R21)/2. (11)

5.2. Global values of the multiplicative shear bias and
additive bias

Usually, the metacalibration method is applied to the entire cat-
alog, providing us with global values for the shear calibration
quantities. We reproduce those results for CFIS-P3 here. The
response matrices for CFIS-P3 are

Rshear =

(
0.74397 0.00001
−0.00049 0.74122

)
±

(
0.00020 0.00014
0.00022 0.00024

)
;

Rselection =

(−0.10872 −0.00105
−0.00001 −0.11154

)
±

(
0.00050 0.00046
0.00046 0.00048

)
.

(12)

The additive shear bias components are

c =

(−0.00104
0.00043

)
±

(
0.00011
0.00011

)
. (13)

The errors are computed via jackknife resampling of all galaxies.

5.3. Local calibration

The multiplicative shear bias depends on quantities that vary
spatially, such as the PSF properties (Paulin-Henriksson et al.
2008), galaxy size (for example Spindler 2018; Kuchner et al.
2017) and magnitude (Miller et al. 2013), or the local galaxy
density (Hoekstra et al. 2017). These spatial variations may be
correlated with shear: in some cases, they both vary with the
LSS environment, such as galaxy density and shear. In other
cases, residual errors may create cross-correlations, for exam-
ple, an imperfect PSF calibration influences both calibration and
shear.

The understanding and mitigation of spatial patterns in
shear calibration is an active field of research for future weak-
lensing surveys (Kitching et al. 2021; Cragg et al. 2022). Here,

we investigate local shear calibration, the dependence of cali-
bration on observed quantities, and the impact on cosmological
parameters.

In the context of weak-lensing mass maps as tracers of the
LSS, Van Waerbeke et al. (2013) carry out a local calibration in
pixels of 1 arcmin size. Their multiplicative shear bias is com-
puted as a smooth, two-parameter fitting function from image
simulations. This is in contrast to our case of metacalibration,
which provides very noisy calibration estimates for individual
galaxies. These estimates need to be averaged over substan-
tially larger areas to reduce the uncertainty such that the cor-
responding response matrices are numerically stable enough for
inversion.

In this work, we employed a series of square patches with a
size of ds = 4, 2, 1, 0.5, and 0.25 degrees over which the shear
calibration estimates are averaged in turn. To easily divide the
observed sky area into an integer number of square-sized sub-
patches, we first projected the data into a Cartesian plane. Next,
we extended this area via zero padding to size Nx × Ny deg2,
such that Nx and Ny are multiples of the largest sub-patch size
ds,max = 4 deg.

We computed local versions of Rshear (7) and Rselection (8) by
carrying out the averages per sub-patch. If the number of galax-
ies in a sub-patch was smaller than a threshold ngal,0, we replaced
the local response matrices in that sub-patch by their global
mean, to avoid numerical instabilities. We chose ngal,0 = n̄gal/2.
This occurs mainly at the edges of the field where sub-patches
overlap with the area of zero padding. We calibrated the esti-
mated shear of each galaxy in a given sub-patch by the total local
response matrix, in analogy to (9). Similarly, we computed the
local shear bias c as the average per sub-patch.

We computed the error of the local response matrices by
creating jackknife resamples from the smallest sub-patch size
ds,min = 0.25 deg. Each sub-patch of size ds > ds,min was thus
split into (ds/ds,min)2 jackknife subsamples; for the smallest sub-
patch size, we could not compute the error. The additive bias is
easily obtained locally by computing jackknife errors over galax-
ies per sub-patch.

5.4. Results of the local calibration

5.4.1. Variation of the shear and selection response

We show the spatial variation of Rshear and Rselection in sub-
patches of different size in Fig. 3. From top to bottom the
shear and selection responses are computed on sub-patches with
increasing size of ds = 0.25, 0.5, 1, 2 and 4 degrees. The smaller
the sub-patch size, the more the response shows variations cor-
responding to the local spatial environment. The larger the sub-
patch size, the more the calibration approximates the global
calibration. The errors of the shear response are small, even in
the case of the 0.5 degree sub-patch size. Concerning the selec-
tion matrix, we can see that on 0.5 deg2, the errors have the
same order of magnitude as Rselection. On 1 deg2, the errors are
smaller than Rselection indicating that the computation of the local
selection calibration is precise when done on 1 deg2 or more. To
emphasize these conclusions, the 1D distributions of Rshear and
Rselection are plotted in Fig. A.1.

5.4.2. Variation of the additive bias

The additive bias and its standard deviation are shown in Fig. 4.
The standard deviation is as large as the value itself for local cal-
ibration on small scales. Except for the largest sub-patch sizes,
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Fig. 3. 〈Rdiag〉 depending on the size of the local calibration. From top to bottom, calibration is done on 0.25, 0.5, 1, 2, 4 deg2. The four columns
are 〈Rshear

diag 〉, its standard deviation, 〈Rselection
diag 〉, and its standard deviation.

the values of c1 and c2 per pixel are consistent with zero. This
reflects the large fluctuations and randomness of the additive bias
on small scales. To emphasize these conclusions, the 1D distri-
butions of c1 and c2 are plotted in Fig. A.2.

5.4.3. Relative errors

We computed the errors of the response matrices at different sub-
patch sizes, averaged over all sub-patches (blue lines), compared
to the relative errors of the global calibration (black lines). The
results are shown in Fig. 5.

The relative error of the shear matrix is below 1% in all
cases but always above the relative error of the global cali-
bration, meaning that there are fluctuations at all the studied
scales, but these are small. The fractional error of the selec-
tion matrix is higher. It reaches 17% at small sub-patch sizes
but decreases up to 3% at 4 deg2. For the shear and selection
matrix, we see that when we go on a smaller calibration size,
the relative errors asymptotically approach the one of the global
calibration.

5.5. Parameter correlation matrix

The calculation of the local shear bias allows us to further
explore possible origins of shear bias, and their influence on
other quantities obtained from the galaxy sample. To that end, we
computed the correlation matrix between different quantities, for
which we used patches of size ds = 1 deg. We also considered
correlations between quantities other than shear bias. The cor-
relation matrix is calculated using the pandas DataFrame.corr

function12; it uses the Pearson method, which computes the stan-
dard correlation coefficient. The correlation matrix between the
different quantities listed in Table 3 is shown in Fig. 6. To better
see the correlation terms by terms, another correlation matrix is
shown in Fig. B.1.

First, we see that the E- and B-mode smoothed convergence,
κE,sm and κB,sm, are not strongly correlated. This indicates that
there is no significant systematic effect that mixes both modes.
Neither mode is strongly correlated to other quantities. Also, the
number of peaks npeak is not correlated to observational effects.

Further, there is no visible correlation between the PSF size
and the additive bias. This is evidence for the correct estima-
tion of PSF size since a bias in the PSF size typically leads to
an additive shear bias. We also note the absence of a correlation
between the PSF ellipticity and the shear selection matrix. This
gives us confidence that the PSF deconvolution in the metacali-
bration process works well. There is, however, a 20–30% nega-
tive correlation between the selection response elements and the
size of the PSF. A plausible explanation is that in areas with
larger seeing, fewer small and faint galaxies make it into the
weak-lensing sample. This leads to a stronger (more negative)
selection bias, which is reflected in the anticorrelation.

A negative correlation can be seen between the number of
epochs, nepoch, and the PSF ellipticity modulus |ePSF|. Since the
former is the mean over all contributing epochs, a reason for this
anticorrelation might be the PSF ellipticity gets more circular
when averaged over more independent observations.

12 https://pandas.pydata.org/docs/reference/api/pandas.
DataFrame.corr.html
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Fig. 4. c1 and c2 depending on the size of the local calibration. From top to bottom, calibration is done on 0.25, 0.5, 1, 2, 4 deg2. The four columns
are c1, its standard deviation, c2, and its standard deviation.

Fig. 5. Relative errors of shear matrix (left panel) and selection matrix (right panel). In both cases, the blue line is the relative error of the diagonal
terms of the matrix depending on the calibration size. The black line is the relative error of the diagonal terms of the matrix computed with the
value obtained on the global calibration case.

There is a negative correlation of the r-band magnitude with
galaxy weight w, S/N, and size Tgal, as well as a positive correla-
tion with nepoch. This reflects the expectation that faint galaxies
have a lower weight and S/N, and are easier observed with more
exposures.

6. Impact of uncertainty and systematic effects on
cosmological parameters

This section explores different systematic effects and uncertain-
ties, and their impact on cosmological parameter constraints. We
quantify the potential biases on cosmology from the spatially
varying shear calibration (Sect. 6.1), the redshift uncertainty
(Sect. 6.3), a residual shear bias (Sect. 6.2), baryonic feedback

(Sect. 6.4), intrinsic galaxy alignment and cluster member dilu-
tion (Sect. 6.5). All these effects are studied jointly in Sect. 6.6.

For each effect, we will show constraints on cosmological
parameters as compared to those obtained with the “ideal” case.
This case, which is represented in blue in all the following fig-
ures represents the constraints obtained when we use the data
calibrated globally without residual shear bias, a mean redshift
of z̄ = 0.65, without baryonic correction, cluster member dilu-
tion or intrinsic alignment. This assumes an unrealistic best-
case scenario of vanishing spatial variation of shear calibration
and residual shear bias, and no biases from baryons, intrinsic
alignment or cluster members. When the parameters are well-
constrained, we specify the shift compared to the ideal case,
which is the case for Ωm. The parameters Mν and the lower
bound for As are in most cases not well constrained within the
prior.
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Table 3. Symbols and description of quantities used in the cross-
correlation matrix (Fig. 6).

Symbol Description

κE,sm, κB,sm Smoothed E- and B-mode convergence, respectively
ngal Number of galaxies per pixel
npeak Number of peaks
|epsf | Modulus of the point spread function
Tgal Galaxy size
nepoch Number of single-exposure epochs
r r-band galaxy magnitude
SNRgal Galaxy signal-to-noise ratio
Tpsf psf size
w Galaxy weight

R
shear
diag , R

shear
off−diag Average of the diagonal and off-diagonal shear

response matrix element, respectively, Eq. (7)

R
selection
diag , R

selection
off−diag Average of the diagonal and off-diagonal selection

response matrix element, respectively, Eq. (8)
c Average of the additive bias element

6.1. Local calibration

To study the impact on cosmology of spatially varying shear
biases, we performed a local shear calibration using different
scales, following the method explained in Sect. 5.3 for the mul-
tiplicative shear bias. For the additive bias, we used the value
obtained with the global calibration because the local calibra-
tion value is very noisy. The result is shown in Fig. 7. We see
that a local calibration will always shift Ωm to a lower value
except for the calibration on 0.5 deg2. These variations are all
within the statistical error bars. There is no systematic variation
that becomes evident when going to smaller calibration sizes.
For As and

∑
Mν, the trend is not clear. Ωm shifts by −0.015,

which corresponds to −0.3σ (i.e., 0.3 times the statistical uncer-
tainty) when the calibration goes from global to local on 4 deg2

for example.
From this work, it is not clear which calibration size is the

best one because, depending on the size of the calibration, we
will capture more or less the local effect. Future work has to be
done to determine the criteria to choose the size of the calibra-
tion. In this work, when we need a local calibration, we use the
one done on 1 deg2 because the relative error of the selection
matrix (which is the limiting one) is below 10%.

6.2. Residual multiplicative shear bias

The shear bias m computed earlier with metacalibration is not
perfect. A residual bias ∆m = mmetacal − mtrue remains and gen-
erally has to be quantified with image simulations. We used
the value ∆m = 0.007 based on the results from Guinot et al.
(2022), who found ∆m = 0.007 ± 0.03, estimated using CFIS-
like image simulations of isolated galaxies and ignoring the
effect of blending. In comparison, other surveys also find resid-
ual biases at around the per cent level or below; for example,
MacCrann et al. (2021) and Gatti et al. (2021) state a value of
∆m = −0.0208 ± 0.0012 for DES-Y3.

We modeled the effect of the residual multiplicative shear
bias by adding the residual bias ∆m to the response matrix in the
local case. This corresponds to a conservative, worst-case sce-
nario where the residual bias is constant in space. Thus, Eq. (9)
is modified to

R = 〈Rshear〉 + I × ∆m + 〈Rselection〉, (14)

where I is the identity matrix. The impact of this bias on the
cosmological constraints is shown in Fig. 8. In blue, the cal-
ibration is global whereas it is done on 1 deg2 for the green
and red cases. Moreover, the red case includes the multiplicative
shear bias. Including the residual shear bias changes the values
of the parameters in the same direction as the local calibration
compared to the global calibration. Ωm shifts by −0.024, which
corresponds to −0.5σ with respect to the global calibration. A
positive ∆m effectively reduces the estimated shear, resulting on
average in a smaller number of peaks, and thus smaller clus-
tering parameters. The 1D marginalized contours for As shift to
the right, contrary to what we would expect. However, the joint
Ωm – As 2D contours clearly reflect the smaller calibrated shear
and shift toward smaller clustering amplitudes.

6.3. Redshift uncertainty

As discussed in Sect. 2.3, z̄ = 0.65 is our best estimate of the
redshift of the data observed from CFIS. This estimate has how-
ever a level of uncertainty. To quantify the impact of this uncer-
tainty on our results, we compared cosmological constraints
using the simulated convergence maps interpolated to z̄ = 0.65
and z̄ = 0.68, which corresponds to the two mean redshift esti-
mates discussed in Sect. 2.3. The result is shown in Fig. 9. Fit-
ting the data with the model at a higher mean redshift only
slightly shifts the posterior: Ωm shifts by +0.001, which cor-
responds to +0.02σ when the redshift goes from 0.65 to 0.68.
These shifts are well within the statistical uncertainties of the
two parameters. Such a shift is, however, expected to have a sig-
nificant influence on analyses using a larger survey area and/or
redshift tomography. We also performed a test using only sim-
ulations, where the data vector was the mean of the fiducial
simulation at z = 0.65 or at z = 0.68. The result is presented
in Appendix C. We note, however, that when using simulations
only, the shift appears to be larger, this may indicate some resid-
ual systematics that impacts the results on the data shown in this
section.

6.4. Baryonic feedback

The impact of baryons on the LSS is important for cosmologi-
cal analyses with weak-lensing peak counts (Osato et al. 2015;
Harnois-Déraps et al. 2021b; Coulton et al. 2020). The redistri-
bution of matter due to baryonic processes tends to reduce the
number of high S/N peaks and augment that of smaller S/N
values.

We used the results from Coulton et al. (2020) who
model the fractional difference of the number of peaks,
∆Npeaks/Npeaks, for three different baryon physics scenarios based
on the BAHAMAS hydrodynamical simulations (McCarthy et al.
2016) compared to MassiveNuS dark-matter-only simulations
(Liu et al. 2018). This assumes that baryonic processes are
independent of the underlying cosmology. The three scenarios
are denoted as LowAGN, Fiducial, and HighAGN, where the
amount of baryonic feedback increases in that order. The fidu-
cial baryonic correction comes from the BAHAMAS simulations
with a feedback model designed to best match the observations.
The LowAGN and HighAGN corrections are simulations where
the active galactic nucleus (AGN) heating is lowered or raised
by 0.2 dex, respectively, and thus the simulations skirt the lower
and upper bounds of the observed gas fraction.

We modified the model predictions of peak counts by multi-
plying the number of peaks from the MassiveNuS (dark-matter-
only) simulations by Npeaks/Npeaks,DM, shown in Fig. 10.
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Fig. 6. Correlation matrix of the quanti-
ties listed in Table 3. The colors indicate
the amplitude of the correlation, rang-
ing between −1 and 1. All quantities are
mean values.

We can see how the constraints evolve when we use real
CFIS-P3 data and corrected simulations. To see the effect of the
baryonic correction only, we use the global calibration, simu-
lations at z = 0.65, no intrinsic alignment or cluster member
dilution correction. We do not know how the baryonic feedback
influences the observed data thus we correct the MassiveNuS
simulations with the three different baryonic feedback correc-
tions. In Fig. 11 we show the results of these corrections
(LowAGN in green, Fiducial in red, and HighAGN in pink) com-
pare to the case of the dark-matter-only simulation (blue).

Baryonic feedback has a significant impact on the best-fit
parameters. Ωm and As are shifted to higher values with increas-
ing baryonic modifications. For example, Ωm shifts by +0.027,
which corresponds to +0.5σ when the fiducial goes from dark-
matter-only to LowAGN correction. Li et al. (2019) found that it
is the high S/N peaks that dominate the constraints and in Fig. 10
we see that the number of high peaks is suppressed by the bary-
onic feedback. This results in a shift toward higher values in Ωm,
compensating for the suppression of peaks for S/N > 3. We also
see that the strength of the feedback is not as important as just
taking it into account.

6.5. Further systematic effects

At least two further effects can affect constraints: intrinsic align-
ment and cluster member dilution. As we briefly explain below,

both effects can be suppressed, in first approximation, following
Harnois-Déraps et al. (2021a), with a cut in S/N.

6.5.1. Intrinsic alignment

Due to the radial alignment of satellite galaxies within dark-
matter halos, galaxies are not randomly oriented. Thus, their
shape and alignments are affected by their environment and tidal
fields. The intrinsic alignment has two components: the intrinsic-
intrinsic correlations caused by the alignment of galaxies that are
physically linked together and the gravitational-intrinsic correla-
tions, which is the alignment of halo galaxies.

6.5.2. Cluster member dilution

The source density is not homogeneous and increases around
foreground clusters. Around a cluster at a given redshift, there
are more galaxies but, as we do not know their redshift, they are
included in the signal but may not lensed. This effect leads to
a coupling between the peak positions and the amplitude of the
measured shear relative to the expected shear (Kacprzak et al.
2016). Moreover, these regions of clusters have a larger blend-
ing rate, and thus galaxies behind clusters are more likely to be
missed. These effects can result in a miscalibration between data
and simulations and lead to a reduction in the mean shear sig-
nal (as we count more galaxies for the signal). An analysis of
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Fig. 7. 1D and 2D marginal posteriors for CFIS-P3 using different cal-
ibration sizes in the metacalibration. The 2D inner and outer contours
show the 68% and 95.5% credible region, respectively. The case when
the calibration is done globally (blue) is compared to the case where
the calibration is done on 0.5 (black), 1 (green), 2 (red), and 4 deg2

(pink). Ωm shifts by −0.015, which corresponds to −0.3σ when the
calibration goes from global to local on 4 deg2.

cluster member dilution in Subaru HSC weak-lensing mass maps
is available, for example, in Oguri et al. (2021).

6.5.3. Reducing intrinsic alignment and cluster member
dilution with a cut on S/N

Harnois-Déraps et al. (2021a) find that the effect of intrinsic
alignment is small for peaks with S/N < 3 and that the effect
of the cluster member dilution is small for S/N < 4. The local
calibration might capture part of the cluster dilution effect, but as
we have no way of knowing it without simulations, we chose to
cut the S/N range to be conservative. Thus, as a first approxima-
tion of how these effects impact the cosmological parameters, we
computed the constraints using only the range for peak counts of
S/N < 3. This selection should minimize the impact of both sys-
tematic contaminations. We tested both cases (−2 < S/N < 3
and −2 < S/N < 6) on mock peaks from MassiveNuS and find
consistent results.

The comparison of the resulting constraints obtained with
S/N < 3 (red) or S/N < 6 (blue) is shown in Fig. 12. Constraints
are slightly larger when we cut the S/N range, which is expected.
For both Mν and As parameters, the change is small.

The high-S/N peaks are affected by intrinsic alignment and
cluster member dilution, which leads to a reduction in peak S/N
(Harnois-Déraps et al. 2021a). When using the full S/N range
and not accounting for those two effects, the reduction in peak
S/N results in a lower inferred clustering amplitude and a lower
Ωm. This can be seen in the Ωm – As 2D posterior distribution.
We also perform a test using simulations only, with the range for
peak counts of S/N < 3. As in previous tests, the data vector is
the mean of the fiducial simulation at z = 0.65 and the result is
presented in Appendix C.

Fig. 8. 1D and 2D marginal posteriors for CFIS-P3, with the residual
multiplicative shear bias added. The 2D inner and outer contours show
the 68% and 95.5% credible region, respectively. Ωm shifts by −0.01,
which corresponds to −0.2σ when the calibration goes from global
(blue contour) to local on 1 deg2 (green contour). When ∆m is added
(red contour), Ωm shifts by −0.024, which corresponds to −0.5σ with
respect to the global calibration.

6.6. Parameter constraints that combine all systematic
effects

Our conservative model, which is the most suitable to represent
the data, combines different mitigation schemes, and uses the
following parameters and settings: The mean redshift is set to
z̄ = 0.65. We calibrate the shear locally at a scale of 1 deg2. This
accounts for spatial variations of shear bias and is the smallest
scale for which the estimate of the selection is not dominated by
noise. The residual shear bias is set to the value estimated from
image simulations, ∆m = 0.007. Baryonic feedback is accounted
for by using the “fiducial baryon” case of Coulton et al. (2020).
The data vector is composed of peak counts with −2 < S/N < 3
to minimize the systematic errors from intrinsic alignment and
cluster member dilution.

In Fig. 13 we show constraints using this conservative model,
and compare those to the ones obtained under the ideal (opti-
mistic) case described at the beginning of this section. Ωm shifts
by +0.008, which corresponds to +0.2σ when we go from the
ideal to the conservative model. As expected, the conservative
model results in wider constraints. In Fig. 14, we can see the
marginalized distributions for the 68% confidence interval of the
different parameters depending on the different cases we have
tested.

7. Conclusions

This study highlights the importance of properly accounting for
systematics, such as the local calibration, residual multiplicative
shear bias, intrinsic alignment and cluster member dilution, red-
shift uncertainties, and baryonic corrections, in the context of a
peak-count cosmological analysis with CFIS data. We performed
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Fig. 9. 1D and 2D marginal posteriors using simulations at different
redshift. The 2D inner and outer contours show the 68% and 95.5%
credible region, respectively. The shear calibration is global. Ωm shifts
by +0.001, which corresponds to +0.02σ when the redshift goes from
0.65 (blue) to 0.68 (red).

Fig. 10. Fractional difference in peak count obtained with Coulton et al.
(2020) data. The difference between simulations with LowAGN, Fidu-
cial, or HighAGN and dark-matter-only simulations is presented in
green, red, and pink, respectively.

a likelihood analysis on the sum of neutrino masses,
∑

Mν, the
matter density parameter, Ωm, and the amplitude of the primor-
dial power spectrum, As. For this purpose, we used the CFIS-P3
catalog and the MassiveNuS N-body simulations because they
have the advantage of providing us with a large set of cosmolog-
ical models and different tomographic bins. First, we obtained
constraints with simulations only to validate the methodology
used to model the redshift uncertainty, baryonic feedback, intrin-
sic alignment, and cluster member dilution. We then used the
CFIS-P3 data to quantify the effect of systematics on cosmo-
logical constraints. We remark that Ωm is the parameter that is
constrained the most and is the most impacted by the systemat-
ics. As a summary plot, Fig. 14, which shows the marginalized

Fig. 11. 1D and 2D marginal posteriors for CFIS-P3, with the peak
count predictions corrected with different baryonic feedback. The 2D
inner and outer contours show the 68% and 95.5% credible region,
respectively. The case without baryonic correction (blue) is compared
to the three baryonic scenarios: LowAGN (green), Fiducial (red), and
HighAGN (pink). Ωm shifts by +0.027, which corresponds to +0.5σ
when the fiducial goes from dark-matter-only to LowAGN correction.

distributions for the 68% confidence interval of the parameters
per studied case. On the one hand, the baryonic corrections, the
intrinsic alignment, and the cluster member dilution shift this
parameter to higher values. On the other hand, a local calibration
and a multiplicative shear bias ∆m = 0.007 shift Ωm to smaller
values. Concerning As, the baryonic correction and the addition
of ∆m shifts this parameter to higher values, whereas cutting the
high S/N peaks shifts As to a lower value. For

∑
Mν, the param-

eter is not constrained enough to allow for any conclusions to
be drawn. More specifically, concerning the shear calibration, it
is probable that a local one is preferred over a global one, as
long as the error and standard deviation are small, because it
accounts for the local effects of the catalog. Nevertheless, some
work has to be done to determine which calibration size is the
better one. We notice that using a calibration on 1 deg2 with a
value of the residual multiplicative shear bias ∆m = 0.007 shifts
Ωm by −0.024 (−0.5σ) compared to the case in which a global
calibration is applied. Choosing a reasonable calibration size and
having a robust estimate of ∆m is important for having a better
estimate of the constraints. We note that the residual bias used
here computed from image simulations neglected effects such as
galaxy image blending. A more realistic estimate of ∆m is nec-
essary for future analyses of CFIS weak-lensing data.

Concerning the uncertainty on the mean redshift estimate, for
a bias of ∆z̄ = 0.03, as considered in this study, the impact on the
constraints is small enough to not be considered: the shift in Ωm
is only +0.001 (+0.02σ). Nevertheless, we are aware that fur-
ther work is needed to have a more complete description of the
redshift distribution and obtain more accurate constraints. Using
simulations only, the shift in Ωm is larger, 0.7σ. This indicates
that other effects in the data might lead to an underestimation of
the actual shift.
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Fig. 12. 1D and 2D marginal posteriors for CFIS-P3 using different
ranges in S/N. The 2D inner and outer contours show the 68% and
95.5% credible region, respectively. The shear calibration is global. The
case with the full S/N range (blue) is compared to the case where we use
−2 < S/N < 3 to minimize the effect of residual bias (red). Ωm shifts by
+0.027, which corresponds to +0.5σ when we cut the high S/N peaks.

To account for baryonic corrections, we considered three
different flavors of baryonic feedback, labeled in this study as
HighAGN, Fiducial, and LowAGN correction. We conclude that
the specific flavor of baryonic feedback is less important than
the difference between baryonic feedback and pure dark-matter
models. Applying the LowAGN baryonic correction shifts Ωm
by +0.027 (+0.5σ), showing the importance of modeling the
baryonic feedback. Using a prediction of peak counts based on
hydrodynamical simulations to model the baryonic feedback can
help in getting more accurate constraints.

Then, we see that when we minimize the effect of the clus-
ter member dilution and intrinsic alignment by only considering
peaks with S/N < 3, the posterior on Ωm is subject to an offset of
0.027 (0.5σ) toward higher values. Using simulations that model
these effects will significantly improve the constraints since a cut
in the S/N range will no longer be necessary.

Finally, we computed a conservative model where we used
the parameters and settings that are most representative of the
data. This gives larger constraints on Mν, Ωm, and As.

We noticed that the value of Ωm in particular can shift a lot
due to different systematics. Our aim in this paper is not to esti-
mate the final reference cosmological parameters, but rather to
investigate, for the first time with UNIONS and peak counts,
the impact of some of the different systematics at play for this
survey. Among all the systematics considered in this paper, we
have shown that the one with the highest impact on Ωm is
related to how baryonic corrections are implemented (Fig. 11);
the choice of cut on the S/N (Fig. 12) also causes a substantial
shift. Other systematics not considered here may further shift the
final parameters. It is necessary to further pursue this effort to
include other systematic effects, as well as to extend the way
we incorporate the baryonic feedback in the analysis and the
choice of the calibration size. The constraints will be more accu-

Fig. 13. 1D and 2D marginal posteriors for CFIS-P3 using the ideal
or conservative model. The 2D inner and outer contours show the 68%
and 95.5% credible region, respectively. The ideal one (blue) is obtained
with global calibration, no baryonic correction, no intrinsic alignment,
no boost factor, and on −2 < S/N < 6. The conservative model (red)
is obtained with local calibration on 1 deg2, with residual bias, mod-
eled under the fiducial baryonic correction, and on −2 < S/N < 3.
Both models are computed at z̄ = 0.65. The 2D contours show the
95.5%, and the 1D filled area corresponds to the constraints within the
1 sigma confidence level. Ωm shifts by +0.008, which corresponds to
+0.2σ between the reference (blue) and the fiducial model (red).

rate when simulations are able to also model intrinsic alignment
and cluster member dilution; hydrodynamical simulations that
include baryonic feedback could further improve the robustness
of the results. In the future, having access to simulations built
for UNIONS will allow us to make more precise investigations
of various sources of bias. We also expect constraints to become
more reliable with future (larger) data catalogs, such as the full
UNIONS data set, for which the current pipeline will provide a
starting point.
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Fig. 14. Marginalized distributions for the 68% confidence interval for the three cosmological parameters for the different cases that include
uncertainties and systematic effects.
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Appendix A: Variation of the response matrix and
the additive bias

Fig. A.1. Histogram of R11,shear (top) and R11,selection (bottom) depending
on the size of the local calibration.

To have a better visualization of the variation of the response
matrix and the additive bias, we compute the histogram of their
distribution in Figs. A.1 and A.2, respectively. In every his-

Fig. A.2. Histogram of c1 (top) and c2 (bottom) depending on the size
of the local calibration.

togram, we add as a black line the value found by the global cali-
bration. From those histograms, we can clearly see that when the
pixels are smaller the dispersion is larger, which is because the
number of galaxies in one patch is lower and therefore there is
more noise. In all cases, we see that the values are spread around
the mean one.

We confirm that the values are spread around the mean one,
with larger dispersion at smaller scale of calibration.

A17, page 15 of 17



Ayçoberry, E., et al.: A&A 671, A17 (2023)

Appendix B: Correlation matrix

The correlation matrix presented in Fig. B.1 is presented to see
the correlation between the individual elements of the matrices.

We can observe a strong correlation ( 60 - 80%) between
Rshear

11 and Rshear
22 , which is expected because if the shear com-

ports a bias, both component will be impacted. A correlation of
20 - 40% between Rselection

11 and Rselection
22 is seen for the same rea-

son as the correlation between Rshear
11 and Rshear

22 . The Rselection
11 and

Rselection
22 are anticorrelated ( 20 - 40%) with the size of the psf

Tpsf because if the psf is larger, we will miss more objects. Thus,
the correlation effect is stronger.

Fig. B.1. Correlation matrix of the quantities described in Sect. 5.1 or listed in Table 3. The colors indicate the amplitude of the correlation, ranging
between −1 and 1.
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Appendix C: Impact of the systematics using only
simulations

Fig. C.1. 1D and 2D marginal posteriors using as data the mean fiducial
from the simulations at different redshifts. The 2D inner and outer con-
tours show the 68% and 95.5% credible region, respectively. Ωm shifts
by +0.026, which corresponds to +0.7σ when the redshift goes from
0.65 (blue) to 0.68 (red).

As the data contain different systematics that are sometimes hard
to model precisely, we perform some tests, using simulations
only. The data vector is the mean of peak counts at the fidu-
cial cosmology, which we modified to include systematics. The
model used in the MCMC is the simulations at z = 0.65 without
any modification. For every test, we compare the result to a data
vector without any modification (blue of every figure).

C.1. Redshift uncertainty

The impact of the redshift uncertainty is shown in Fig. C.1,
where we compute the data vector at z = 0.65 (blue) or z = 0.68

Fig. C.2. 1D and 2D marginal posteriors using as data the mean fiducial
from the simulations and different ranges in S/N. The 2D inner and
outer contours show the 68% and 95.5% credible region, respectively.
The shear calibration is global. The case with the full S/N range (blue)
is compared to the case where we use −2 < S/N < 3 to minimize the
effect of residual bias (red). The constraints are larger when we cut the
high S/N peaks.

(red), whereas the model is kept at z = 0.65 in both cases. Mod-
eling with lower redshift shifts Ωm by +0.7σ.

C.2. Intrinsic alignment and cluster member dilution

The method used here to decrease the impact of intrinsic
alignment and cluster member dilution is to cut the high S/N
range. In Fig. C.2, we show the constraints when we use a
S/N range between −2 and 6 (blue) or a reduced S/N range
between −2 and 3 (red). When the reduced range is used, the
constraints are larger, which is expected because there is less
information.
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CONCLUSIONS AND PERSPECTIVES

My work has focused on studying the complexities of large-scale structures to enhance the constraining
power of the different observables. In this final chapter, I summarise the main results obtained on the
tSZ effect, the cosmic web, and peak count statistics. I then discuss the perspectives of this work and
potential future directions2.

Thermal Sunyaev-Zel’dovich effect The tSZ effect is a sensitive probe of baryonic matter in the
Universe. Cross-correlating it with other probes, as demonstrated in Fang et al. (2024), can improve the
constraining power on cosmological and astrophysical parameters. However, robust modelling of the tSZ
effect is essential, and my work contributes to this objective. I have undertaken a comparison between the
HMx halo model and measurements from simulations (Horizon-AGN, Horizon-noAGN, Horizon-Large and
Magneticum) at different levels: angular power spectrum, power spectrum, profile, and intrinsic properties
such as the polytropic index. This study highlights that the HMx halo model, while predicting the matter
power spectrum correctly, fails to accurately reproduce the tSZ effect, with discrepancies increasing with
redshift. This may be due to the assumptions of a halo model, such as all the matter being within
symmetric spherical halos or from parameters that do not fully capture the physics. Adjusting the
parameter’s value in HMx based on fits from simulations also does not allow for recovery of the measured
power spectrum. The challenge arises from the degeneracies between parameters and the contribution of
the intracluster medium at higher redshift. Additionally, the tSZ effect is sensitive to the cosmological
model, particularly the dark energy, which affects the growth of structures. I have thus pursued an
analysis of the tSZ properties within simulations run under a wCDM model. The first results indicate
that the tSZ is indeed sensitive to the value of w. These results encourage continuing efforts to model
the tSZ effect within different cosmologies, as it can serve as a robust probe of dark energy and baryonic
matter in the Universe.

Cosmic web The distribution of matter in the Universe has evolved to form different environments:
voids, walls, filaments, and knots, constituting the cosmic web structures. These structures can be
classified using different methods, such as the T-web formalism employed in my work. This method relies
on the number of eigenvalues of the tidal shear tensor, which is the second derivative of the gravitational
potential. Using perturbation theory and Gram-Charlier expansion to account for a non-Gaussian density
field, I developed a theoretical model that predicts the abundances of these different environments as
a function of redshift and smoothing scale. By comparing these results with measurements from the
Quijote simulations, I find a remarkable level of agreement, even at the most non-linear scale studied.

Peak counts Another method for extracting non-Gaussian information is through higher-order statis-
tics. I focused on the peak counts statistics applied to weak lensing surveys, in particular, the UNIONS
survey. I investigated the impact of different systematics and uncertainties on the constraining power
of the weak lensing peak count statistics. My study revealed that several factors could influence the
constraints on cosmological parameters, particularly Ωm. These factors include the method of shear
calibration, the baryonic correction applied, and the signal-to-noise ratio. These systematics and un-
certainties can shift the inferred value of Ωm in different directions. This study is a preliminary step
towards understanding the impact of systematics on peak count statistics. It shows the necessity for
careful calibration and consideration of systematics in future analyses.

2This chapter was expanded after the defense, following the jury’s comments.
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Perspectives
From this work, different perspectives can be identified for future research. Specifically, regarding the
tSZ effect, continued efforts to achieve a robust modelisation are of great interest.

One promising avenue involves developing a model capable of accurately reproducing the expected
tSZ power spectrum from a given pressure profile, with or without incorporating the intrinsic properties
of halos. Extending the approach of Mead et al. (2020) to jointly fit the pressure profile and specific
properties on the power spectrum is particularly interesting. Additionally, exploring the impact of adopt-
ing other pressure profiles, such as the one proposed by Battaglia et al. (2012), could provide valuable
insights. The overall objective is to identify optimal parameters for predicting the power spectrum while
maintaining the physical coherence of the model. This procedure could also serve as a tool to investigate
the correlations between different model parameters. Given that simulations include different properties,
such a model could be adapted to fit a broad range of simulations and might also be useful for inferring
the power spectrum from observational data. For instance, using the pressure profile of NIKA2 or those
reconstructed from X-ray observations to estimate the tSZ power spectrum could offer significant bene-
fits for cosmological analyses. Such tests could be implemented using the python package pyhalomodel,
which allows to generate a power spectrum from a given profile.

Incorporating more realistic features, such as non-spherical halos, environmental effects, and parame-
ters that vary with mass and redshift, could significantly improve prediction accuracy. Adding mass and
redshift dependence to the parameters is a relatively straightforwards extension of the model and may
address some observed discrepancies. However, including environmental impacts and non-spherical halos
poses greater challenges and requires more complex modelling approaches.

Another promising avenue involves incorporating the effects of the intracluster medium into the model.
Developing a new framework based on cosmic web analysis, but applied to the pressure field rather than
solely the density field, could be an option. Such improvements may help to reduce the discrepancies
observed at higher redshifts, where the contribution of the intracluster medium becomes more significant.
As an initial step, it is important to investigate the contribution of the different cosmic web environments
to the total power spectrum across different redshifts. For instance, while filaments consitute a large
portion of the Universe’s content, the pressure scales with mass, and filaments are inherently less massive
than cluster. Understanding these contributions would help prioritize efforts to enhance the model’s
accuracy.

Further investigation into the tSZ effect under different cosmologies, such as the wCDM model stud-
ied here, as well as more complex dark energy equations of state or modified gravity models, is also
worthwhile. Analysing the key quantities that describe the modifications observed in the power spectrum
is an interesting avenue. Additionallyn studying the constraining power of the tSZ effect on these dif-
ferent cosmological parameters will be beneficial. This includes probing protential degeneracies between
cosmological and astrophysical parameters, which could refine our understanding of their interplay and
imrpove the accuracy of parameter inference in cosmological analyses.

Globally, predicting the tSZ power spectrum from the basic properties of halos remains challenging
but crucial. Exploring machine learning techniques could provide significant advancements in this area.
For example, training models to learn halo properties and establish mappings mappings between dark
matter-only and hydrodynamic simulations could enable faster and more accurate predictions of tSZ
properties.

Enchancing the constraining power of the tSZ effect through cross-correlating with other probes, as
demonstrated by the 10x2pt analysis in Fang et al. (2024), presents a promising avenue. Refining models
with improved priors on halo parameters could further strengthen these constraints. Applying such a
framework to upcoming or existing observational data would valuable, for instance, this approach could
be used with datasets from Euclid and Planck or SPT.

Finally, to refine our modeling efforts, it would be interesting to run large-scale simulations with
zoom-in capabilities. Such simulations would provide access to both a large volume, enabling the study
of massiva halos, and high resolution zoom-in regions, allowing for a more detailed analysis of the ther-
modynamical state of halos.

In conclusion, a comprehensive understanding of the tSZ effect is crucial for using it as a powerful
cosmological and astrophysical probe, enabling the extraction of maximum information from observations.
In particular, further investigation into its sensitivity to baryonic matter is crucial, as the tSZ effect
provides valuable insights into the impact of baryons on large-scale structures.

Concerning the cosmic web analysis, as mentionned earlier, it would be valuable to use this framework
to classify the Universe into distinct environments and study their specific properties, such as the pressure.
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To further advance this work, a multi-scale analysis could be conducted to examine the properties of halos
in relation to their surrounding environment.

Finally, peak count statistics represents an interesting higher-order statistics with significant potential
for extracting cosmological information. Continued efforts to accurately model all relevant systematics
are essential for effectively constraining cosmological parameters with observational data. However, given
the lack of a theoretical framework, this approach remains computationally expensive, in particual is using
hydrodynamical simulations.

Through this thesis, I have investigated different methods to study the properties of the large-scale
structures of the Universe. Each method has its own advantages and limitations, making it particularly
suited to addressing specific problems. In all cases, my work focused on utilizing the complexities of
the large-scale structures by exploring the non-Gaussianities of the Universe and employing higher-order
statistics. Understanding better these complexities is crucial for obtaining more robust cosmological and
astrophysical constrains, ultimately leading to a more accurate description of the Universe’s content and
evolution.



APPENDIX A
PHYSICAL CONSTANTS & CONVENTIONS

Physical constant
Table A.1 lists all the physical constants used in this thesis.

Table A.1: Physical constants used in this thesis.

Quantity Notation Value Unit
Speed of light c 2.99792458× 108 m · s−1

Proton mass mp 1.6726× 10−27 kg
Electron mass me 9.1094× 10−31 kg
Boltzmann constant kB 1.380649× 10−23 J ·K−1

Planck constant h 6.62607× 10−34 m2 · kg · s−1

Gravitational constant G 6.6743× 10−11 m3 · kg−1 · s−2

Solar mass M⊙ 1.9884× 1030 kg
Parsec pc 3.0856× 1016 m

Conventions

ḟ(x, t) ≡ ∂f(x, t)/∂t: derivative with respect to cosmic time t.
x: vector x.
R: matrix R.
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APPENDIX B
POWER SPECTRUM IN THE HORIZON-NOAGN AND HORIZON-LARGE

SIMULATIONS

In Sect. 4.3.3, I compared the matter, pressure, and matter-pressure power spectra measured in the
simulations to the HMx predictions. For these three power spectra, we presented the results for the
Horizon-AGN and Magneticum simulations as a function of redshift. Additionally, we included the results
of the Horizon-noAGN and Horizon-Large simulations at z = 0 to highlight the differences of physics
while noting that the trend with redshift is similar. In this appendix, I present the results for the mat-
ter, pressure, and matter-pressure power spectra in the Horizon-noAGN and Horizon-Large simulations
compared to the HMx prediction as a function of redshift. I also include the results of the Horizon-AGN
and Magneticum simulations at z = 0 to support our conclusions.

In Fig. B.1, I show the matter auto-power spectrum as a function of redshift. The left panel shows
the results for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted line compared
to HMx in solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the results for
simulations with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to HMx in solid
line, and Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark blue to z = 4.25
in yellow. Similarly to Fig. 4.5, all simulations and redshifts show a good agreement with the prediction.
At low k, there is less power than predicted, which can be explained by the cosmic variance and the size
of the simulated box, whereas at high k, the differences can be explained by the resolution.

I then compare the pressure auto-power spectrum as a function of redshift in Fig. B.2. The left panel
shows the results for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted line
compared to HMx in solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the
results for simulations with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to
HMx in solid line, and Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark blue
to z = 4.25 in yellow. Similarly to Fig. 4.6, all the simulations show a relatively good agreement at low
redshift with the predictions from HMx (up to z ∼ 1 for Horizon-noAGN and Horizon-Large). However,
as the redshift increases, discrepancies become more evident. HMx predicts an excess of power at high
redshift, indicating that the model’s physics fails to capture the nuances present in the simulations. We
also notice that the measured power spectra are flatter than the predictions.

Finally, Fig. B.3 represents the matter-pressure power spectrum as a function of redshift. The left
panel shows the results for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted
line compared to HMx in solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the
results for simulations with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to
HMx in solid line, and Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark
blue to z = 4.25 in yellow. Similarly to Fig. 4.7, we observe a better agreement up to a comparable
redshift (z = 1.18 for both simulations) than for the pressure auto-power spectrum. This outcome is
expected as HMx has been calibrated on the matter-pressure power spectrum up to z = 1. Moreover, the
matter auto-power spectrum agrees well across all redshifts, mitigating the discrepancies in the pressure
auto-power spectrum. At higher redshifts, the discrepancies caused by the pressure auto-power spectra
persist.
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Figure B.1: Matter auto-power spectrum as a function of redshift. The left panel shows the results
for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted line compared to HMx in
solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the results for simulations
with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to HMx in solid line, and
Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark blue to z = 4.25 in yellow.

10 2 10 1 100 101

k [h Mpc 1]

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

P(
k)

 [(
eV

.cm
3 )

2 .h
3 .M

pc
3 ]

Box size = 100 Mpc/h

10 2 10 1 100 101

k [h Mpc 1]

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Box size = 896 Mpc/h

0 1 2 3 4 5
redshift

Figure B.2: Pressure auto-power spectrum as a function of redshift. The left panel shows the results
for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted line compared to HMx in
solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the results for simulations
with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to HMx in solid line, and
Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark blue to z = 4.25 in yellow.
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Figure B.3: Matter-pressure power spectrum as a function of redshift. The left panel shows the results
for simulations with a box size of 100h−1 Mpc, thus Horizon-noAGN in dotted line compared to HMx in
solid line, and Horizon-AGN at z = 0 in dashed line. The right panel shows the results for simulations
with a box size of 896h−1 Mpc, thus Horizon-Large in dotted line compared to HMx in solid line, and
Magneticum at z = 0 in dashed line. The power spectra go from z = 0 in dark blue to z = 4.25 in yellow.



ABBREVIATIONS

ΛCDM Lambda Cold Dark Matter
2LPT Second-order Lagrangian Perturbation Theory
ACT Atacama Cosmology Telescope
AGN Active Galactic Nuclei
AMR Adaptive Mesh Refinement
BAO Baryon Acoustic Oscillations
CDM Cold Dark Matter
CFHTLens Canada-France-Hawaii Telescope Lensing Survey
CIB Cosmic Infrared Background
CIC Cloud-In-Cell
CMB Cosmic Microwave Background
COBE Cosmic Background Explorer
DM Dark Matter
DR Data Release
GUT Grand Unified Theory
FLRW Friedmann-Lemaitre-Robertson-Walker
FoF Friends-of-Friends
FoM Figure of Merit
GAMA Galaxy And Mass Assembly
GW Gravitational Wave
ISW Integrated Sachs-Wolfe
kSZ Kinetic Sunyaev-Zel’dovich
LSS Large Scale Structures
MFF Mass Filling Fraction
MHD Magneto-hydrodynamics
MMF Multiscale Morphology Filter
MST Minimum Spanning Tree
NFW Navarro–Frenk–White
NIKA2 New IRAM Kids Arrays
PDF Probability Distribution Function
RSD Redshift Space Distortion
SDSS Sloan Digital Sky Survey
SNR Signal-to-Noise Ratio
SO Spherical Overdensity
SPT South Pole Telescope
SPH Smooth Particle Hydrodynamic
SW Sachs-Wolfe
SZ Sunyaev-Zel’dovich
tSZ Thermal Sunyaev-Zel’dovich
VFF Volume Filling Fraction
WDM Warm Dark Matter
WL Weak Lensing
WMAP Wilkinson Microwave Anisotropy Probe
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