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Résumé (en Français)

Les origines de la vie sur Terre demeurent l’une des questions de recherche les plus fasci-
nantes, la chimie prébiotique fournissant un aperçu de la manière dont des molécules
organiques simples ont pu se former et évoluer avant l’apparition de la biochimie com-
plexe des organismes vivants. Dans ce domaine, les simulations offrent des informations
précieuses sur les différents scénarios conduisant à une synthèse réussie ou échouée pour
certains composés clés. Cette thèse explore l’étude théorique des réactions de chimie
prébiotique en solution aqueuse.

L’étude des réactions chimiques en solution est un domaine complexe et diverse. En
utilisant la dynamique moléculaire ab initio, nous modélisons avec précision les mouve-
ments des molécules en solution. Cependant, le pas de temps requis pour échantillonner
correctement cette évolution est de nettement plus petit que le temps nécessaire pour que
les réactions chimiques se produisent. Associé à l’utilisation de la mécanique quantique
pour évaluer les forces, cela fait qu’il est impossible d’attendre que jes composé réagisse
spontanément, comme ce serait le cas dans des conditions expérimentales.

Pour surmonter ces limitations, des techniques d’échantillonnage avancées telles que
la métadynamique, le transition path sampling et l’umbrella sampling sont employées
pour explorer de manière approfondie les surfaces d’énergie potentielle et les mécan-
ismes de transition. Ces méthodes permettent l’identification des chemins réactionnels,
l’échantillonnage des chemins de transition les plus probables, la création de coordonnées
réactionnelles basées sur des données, et le calcul des profils d’énergie libre le long de ces
coordonnées.

En complément de ces analyses thermodynamiques, nous étudions la possible applica-
tion d’équations de dynamique stochastique non-Markovienne pour estimer la cinétique
de ses réactions. Cette approche tient compte des effets de mémoire et des corrélations
temporelles complexes dans les mouvements moléculaires, offrant des estimations plus
rigoureuse des taux de réaction par rapport aux méthodes traditionnelles.

Dans un premier temps, nous appliquons notre protocole de travail à une réaction
emblématique SN2 dans de l’eau explicite. Nous présentons des outils pour mesurer effi-
cacement la qualité des coordonnées réactionnelles potentielles au sommet de la barrière
de transition.

Dans un deuxième temps, nous appliquons cette méthode à un mécanisme inédit en
8 étapes pour la synthèse de la glycine, découverte dans notre laboratoire grâce à une
simulation de métadynamique. Nous combinons notre cadre initial avec des potentiels
machine learning pour générer de nouvelle données, réduisant le coût de la simulation par
un facteur 10.

Dans un troisième temps, nous explorons l’utilisation potentielle des modèles non-
Markoviens pour l’inférence cinétique dans les réactions chimiques. Nous abordons les
défis restants pour l’application agnostique de ces outils et démontrons leur fiabilité dans

7



l’inférence des taux cinétiques en utilisant des coordonnées réactionnelles heuristiques.
Dans l’ensemble, cette thèse souligne l’intégration des outils computationnels avancés

dans la chimie prébiotique. En combinant la dynamique moléculaire ab initio, les tech-
niques d’échantillonnage avancées, la dynamique non-Markovienne et les potentiels ma-
chine learning, nous fournissons un cadre complet pour explorer et étudier les réactions
prébiotiques. Les méthodologies et résultats présentés offrent de nouvelles perspectives
sur la première synthèse de molécules organiques simples et ouvrent la voie à de futures
recherches sur les origines de la vie et sur l’inférence de la cinétique des réactions chimiques
en solution.
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Abstract (in English)

The origins of life on Earth remain one of the most fascinating questions in science, with
prebiotic chemistry providing critical insights into how simple organic molecules could
have formed and evolved, and then leading to the appearance of the complex biochem-
istry of living organisms. In this domain, atomistic computer simulations offer valuable
insights into different scenarios that lead to successful or failed synthesis for certain key
compounds. This thesis explores the theoretical study of prebiotic chemical reactions in
aqueous environments.

The study of chemical reactions in solution is a complex and multifaceted field. Using
ab initio molecular dynamics, we accurately model the movements of molecules in solution.
However, the typical simulation time step required to adequately sample this evolution is
many orders of magnitude smaller than the time required for chemical reactions to occur.
Combined with the use of quantum mechanics to evaluate forces, this makes it highly
impractical to wait for reactions to occur spontaneously as they would in experimental
settings.

To address these limitations, enhanced sampling techniques such as metadynamics,
transition path sampling, and umbrella sampling are employed to explore potential energy
surfaces and transition mechanisms extensively. These methods enable the identification
of reaction pathways, the sampling of reactive regions, the definition and training of
data-based reaction coordinates, and the calculation of free energy profiles along these
coordinates.

In addition to these thermodynamic analyses, we apply non-Markovian stochastic
dynamics equations to estimate reaction kinetics. This approach accounts for memory
effects and complex temporal correlations in molecular motions, offering more accurate
estimations of reaction rates compared to traditional methods.

In the first step, we present the results of our agnostic workflow applied to an em-
blematic SN2 reaction in explicit water. We introduce tools for effectively measuring the
quality of potential reaction coordinates at the top of the transition barrier.

In the second step, we apply our method to a novel 8-step mechanism for the synthesis
of glycine, discovered in our group through metadynamics exploration. We combine our
initial framework with machine learning interatomic potentials for training and sampling,
reducing the simulation cost by a factor of 10.

In the third step, we investigate the potential use of non-Markovian models for kinetic
inference in chemical reactions. We address some remaining challenges for the agnostic
application of these tools and demonstrate their reliability in inferring kinetic rates using
heuristic reaction coordinates.

In general, this thesis highlights the integration of advanced computational tools in
prebiotic chemistry, marking a significant advancement in both theoretical and practical
approaches. By combining ab initio molecular dynamics, enhanced sampling techniques,
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non-Markovian stochastic dynamics, and machine learning interatomic potentials, we pro-
vide a comprehensive framework for exploring and understanding prebiotic reactions. The
methodologies and findings presented here offer new perspectives on the synthesis of com-
plex organic molecules and set the stage for future research on the origins of life and the
inference of kinetics for chemical reactions in solution.
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Figure 0.0.1: The Brownian motion as observed in 1916 by Jean Perrin and reported in
his book Atoms [2]

Introduction

This Introduction is voluntarily simplified to be understood by nonspecialists.
If an adjective can best describe the behavior of matter, it should be "stirred". The

matter is agitated. In a gas, a solid, or a liquid, atoms move very fast. The average
quadratic speed of an atom at 0◦ C is 1 km per second, regardless of its environment.
This is a reality hard to imagine when one simply looks at a steady cube of ice.

A common way to "observe" this velocity is during rapid depressurization events, such
as the famous "can crusher" experiment[1]. The process is as follows: An experimenter
boils a small quantity of water in an aluminum can, then, using a pair of tongs, flips it into
a container with cold water, submerging the opening. At that exact moment, two events
occur in sequence and very quickly. First, the temperature in the can drops rapidly as a
result of the cold water and because the aluminum can conducts heat very efficiently. The
water vapor inside then condenses into liquid water, creating a low-pressure zone within
the can. Instantaneously, the can is crushed by the atmospheric pressure outside, which
is no longer balanced by the pressure inside.

To explain the link with the velocity of the atoms, we adopt a nanoscopic point of
view. Due to their agitation, the atoms and molecules in the air hit the borders of the can
with very high velocities, transmitting this velocity (or more rigorously, their momentum)
to the atoms of the can’s borders. As there is no longer compensation for this effect from
the inside of the can, all borders quickly acquire a significant velocity directed toward
the center of the can, causing it to crush. The momentum of this movement is provided
entirely by the agitation of the molecules in the air.

Another way to directly observe the velocity of atoms, although more challenging, is
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by studying the behavior of a pollen grain on the surface of a pot of hot water. The
pollen grain exhibits a movement that appears random. This movement is illustrated in
Figure 0.0.1, a figure drawn by Jean Perrin in 1916[2]. The pollen grain seems to bounce
in all directions, changing its orientation at very short intervals. This is due to collisions
between the pollen grain and the solvent molecules. Both parts of the system exchange
momentum, and at this scale, matter is discrete, so this transfer is also discretized and
occurs through multiple successive bounces. The observation and quantification of this
phenomenon was one of the methods used by Jean Perrin to prove the existence of atoms.

The first question that arises from these observations is why matter is not just a gas.
Given the high level of agitation, how can matter remain "condensed" with atoms hitting
each other at such high speeds? In solids and liquids, the kinetic energy that results from
the movement of the atoms is not sufficient to counteract the electrostatic interactions
between atoms and molecules. They attract and link with each other, creating stable
structures. Solid and liquid materials are stable for the same reason that an elastic band
returns to its original position after being stretched.

The second question is why matter is so complex. With atoms constantly moving,
it should remain homogeneous. If black sand and white sand are shaken together, the
mixture should turn gray. Thermic agitation has a natural tendency to make the mater
mixed. However, atoms are interacting within each other in a really complex manner and
this diversity of interaction is what generates certain forms of organization. At 25°C in
water, agitation is sufficient to constantly break and form bonds between the molecules,
but not sufficient to break the bonds within the molecules at the same rate. This means
that in pure water, the vast majority of atoms are organized into H2O molecules. Addi-
tionally, solvated molecules can remain stable for a long time despite the agitation of the
solvent, allowing them to react with other compounds and diffuse in the liquid. This is
because the covalent bonds that ensure molecular cohesion are more stable than the van
der Waals forces or hydrogen bonds between molecules. In terms of energy, covalent bonds
are between 100 and 500 kJ.mol−1, hydrogen bonds are between 1 to 40 kJ.mol−1 and van
der Waals forces are of the order of magnitude of 1kJ.mol−1. At 25°C, the internal kinetic
energy is around 3kJ.mol−1 which is sufficient to regularly break the intermolecular links
but not the covalent links.

In this complex system with 3 orders of forces, the diversity of possible phenomena
makes it difficult to predict their behavior without a complete simulation.

Although the general principles of complexity emergence in condensed matter are
known [3], the diversity of possible phenomena makes it difficult to predict the behavior
of these systems. Among the phenomena that are still only coarsely understood is the
emergence of life. Life on Earth emerged due to many favorable factors [4]. However, the
most important factor, according to the majority of researchers, is the presence of liquid
water[5]. In liquid water, the first ingredients of life could have organized themselves to
form the first organic compounds.
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Figure 0.0.2: An artist’s representation of different possible scenarios for the synthesis of
the first organic compounds on primordial Earth, taken from [6] and adapted from [7]

As presented in Figure 0.0.2, taken from the thesis of Timothée Devergne [6] and
adapted from[7], it is currently challenging to determine which of these compounds were
synthesized on Earth and which arrived via meteorites, as well as how these processes
occurred. However, what is certain is that at some point in the history of life, complexity
arose from natural phenomena without the biological machinery present in current living
forms. This field of study is known as prebiotic chemistry: the formation of the simplest
building blocks of life in an environment where life does not yet exist.

The first person who proposed the natural emergence of life from non-living matter
was Charles Darwin with his concept of primordial soup[8]. However, it took more than
fifty years before this idea evolved into a subject of experimental investigation. In 1953,
Miller and Urey conducted an experiment in which they generated many amino acids
and other organic molecules using a setup that contained only inorganic materials: H2O,
CH4, NH3 and H2[9]. This experiment opened the door for research into the synthesis
pathways of prebiotic molecules, demonstrating that such synthesis from inorganic matter
was possible in a laboratory setting.

More recently, the use of computer simulations has gained significant importance in
this field, starting with the reproduction of Miller’s work[10]. The advantage of simu-
lations is that they allow the observation of all intermediates in a mechanism, whereas
experiments typically only reveal the most stable compounds. Following this initial simu-
lation, numerous periodic studies have been conducted using computational methods[11],
[12], [13].

In this paper, we make predictions for chemical reactions in a liquid environment to
explore some of the great possibilities for synthesizing these initial building blocks of life.
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This requires tools that enable us to model water and the chemical compounds dissolved
within it. Additionally, we must be able to model the frenetic thermal agitation of wa-
ter while simultaneously studying chemical reactions that occur on completely different
timescales.

To achieve this complex task, we rely on a precise and transferable method for modeling
the behavior of matter: ab initio molecular dynamics. This tool is the foundation of this
work. It uses the laws of physics (especially quantum physics) to generate simulations that
predict the evolution of the studied system over time. From these simulations, further
analyses can be performed to make predictions, with the reliability of the results always
depending on the accuracy of the way we generate the data.

The first part of this work will introduce the tools necessary for studying chemical
reactions in solution, covering both thermodynamics (the energy involved in the studied
transformations) and kinetics (the time it takes for these transformations to occur).

The second part will present three completed works directly in their article forms.
First, we explore the development of new tools for generating reaction coordinates for
chemical reactions in solution. Then, these tools are applied to the study of a new pathway
for glycine synthesis under prebiotic conditions, which is an alternative to the commonly
accepted Strecker pathway[14]. The final chapter will introduce a new framework designed
to efficiently separate the behavior of a reaction coordinate from the other degrees of
freedom in the simulation using a non-Markovian model of stochastic equations. This
stochastic model can be used to obtain important information about the dynamics of the
variable and also to calculate the kinetics efficiently.

14



Part I

Methods: molecular dynamics and
stochastic models for chemical reactions

in solutions
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Chapter 1

Molecular dynamics: from classical to
quantum

Introduction to the idea of ab initio and molecular dy-
namics calculations

Theoretical chemistry is a vast and growing field. It encompasses many concepts, some of
which are very fundamental and close to fundamental physics, while others are very empir-
ical, aiming to directly explain the complexity of observations "made on the bench". We
could roughly categorize these two branches as follows: the branch of atomistic modeling
and the branch of thermochemistry.

Today, the theoretical bridge between these two complementary branches is still not
completely established. The issue is mainly due to the entropy[15, 16, 17]. Today, it is
permissible to hope that the atomistic branch, the more fundamental one, will fully catch
up with empirical observations in the case of chemistry. However, thermochemistry is still
predominantly used in laboratories despite its limitations. This Introduction will touch
on the challenges ahead to cross this point.

Water

A simple glass of 20cl pure water contains about 3 · 1025 atoms. Modeling such a system
atom by atom is unreachable. However, one can see that the water is very well simu-
lated in our laboratories. Every day, engineers and researchers perform very precise fluid
mechanics simulations and thus manage to optimize very complex objects, such as the
hydrodynamic shape of a boat’s hull. Clearly, these two facts are in contradiction. The
solution, however, is relatively simple: we do not model water itself, just an idea of water.

When people model what they call "water" on a large scale, they replicate its emergent
properties: its density, its temperature, its pH, its chemical composition, its heat capacity,
its compressibility, its viscosity, , etc.. We then use a continuous model, for example,
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fluid dynamics[18]. No large-scale model reproduces water itself in all its complexity.
For example, one can imagine adding another material to the system that will react with
water and change its properties; no macroscopic system could make real predictions about
what would happen without manually adding new properties specific to this addition.

Empirical to ab initio

Macroscopic models are "empirical"; they accumulate a lot of data derived from the obser-
vation and measurement of macroscopic phenomena. They are also poorly transferable, as
they are very specific to certain types of problem and cannot solve anything else without
someone manually modifying the type of calculation performed. However, these models
are those that allow us to predict whether planes fly, ships float, and phones call.

In contrast, the ab initio models (in Latin: from the beginning) are more ambitious.
The objective here is to use as few external data as possible and to calculate everything
else from a theoretical base considered reliable. Here, the application domain of the model
is as vast as the validity domain of the underlying physical theory. In the case of chemistry,
this mother theory is quantum mechanics, the only theoretical level capable of explaining
the behavior of matter, and notably the covalent bond, the backbone of chemistry.

Purely ab initio calculations are rare. In all the calculations we will present here,
contrary to what this word implies, many premises come from other sources of knowledge:
atomistic, chemistry, and classical physics. In the field, many researchers still rely on the
"intuition of the chemist", at least partially. These premises, based on observation and
not purely theoretical arguments, are difficult to detect. They are found in our very first
positions of atoms, in the variables we decide to observe, in the way we interpret some
results , etc. In general, they are found mainly when it comes to making a decision.
When these errors are understood and accepted by the research community, it is not
a major problem. Often, they are necessary, extensively verified, or justified by solid
arguments absent from the original theory. Ab initio is therefore more a guideline whose
deviations are the sensitive points of our models that we have to take care of.

Complexity

The complexity of quantum mechanics can be illustrated in several ways. Here, we will
focus on two fundamental aspects.

For a system with more than two particles treated by quantum mechanics, exactly
solving the Schrödinger equation is typically infeasible[19]. As a result, one must make
approximations, which means that one must stress some accuracy of the underlying theory
even before beginning the calculation.

Furthermore, the complexity of the calculation is not proportional to the number of
electrons (Ne) in the system; this complexity evolves as 2Ne in the most expensive cases.
In the case of this thesis, it will be more like Ne

3, which is much more reasonable but still
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limits the calculation to the order of a thousand atoms.
This limitation proves problematic not only because the expected system size is unmet

but also because at the scale of a thousand atoms, macroscopic quantities, such as pH,
density, heat capacity, and molecular concentration, are inadequately defined. These
macroscopic measurements represent averages that exhibit greater stability when derived
from 1 mol (1023) of atoms rather than merely a thousand. For example, when modeling
100 water molecules, a sudden transformation of one molecule into an oxonium-chloride
ion pair results in an abrupt pH transition from 7 (neutral) to 0.15 (very acidic), without
intermediate values. There exists a method to address these discontinuities: if an oxonium
ion is observed to be present "1% of the time" in the modeling box, this can be construed as
an "apparent" intermediate concentration on a macroscopic scale, yielding an intermediate
pH of 2.2. This approach substitutes the necessity for a large atomic count with the
requirement for extensive temporal observations, underscoring the rationale for conducting
dynamics.

1.1 Newton’s law integration and temperature control

Molecular dynamics consists of the study of the behavior of a certain number of atoms
(or molecules) over time. The positions of these atoms can be represented by the N 3D
vectors Ri, with N being the number of atoms. In fact, it is the positions of the nuclei:
the positions of the electrons are not considered yet. These positions can be concatenated
into a vector of dimensions 3N : R, which encloses the entire geometry of the system. The
evolution of this vector is calculated by integrating the equation of motion, which is the
second law of Newton.

For a nucleus i among the N ones:

miRi
¨ = fi(R) (1.1.1)

where mi designates the mass of the atom i, and fi(R) is the force applied on the atom i
for a geometry R.

One can define M a (3N,3N) diagonal matrix containing the mass of each of the N
atoms, three times in a row for the 3 dimensions:

M =

⎛
⎝

m1 .
. m1 .

. m1 .
. m2 .

. ... .
. mN .

. mN

⎞
⎠ (1.1.2)

UsingM , we can redefine our initial Newton equation with all dimensions of the system
in a single matrix equation:

R̈ =M−1F(R) (1.1.3)
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where F designates the full force vector of dimensions 3N . We can also define the
momentum vector, P, which will be used in the latter.

P =MṘ (1.1.4)

This notation with M the mass matrix and R the configuration vector will help us in the
development of dynamics equations at the end of this part.

Equation 1.1.3 is continuous and it is not possible to calculate any analytical solution
for it. The discretization of the integration is the only way to proceed. In this condition,
R is recalculated every ∆t time step, causing a certain amount of error at each step.
There are many ways to discretize the equation of Newton, but the most commonly used
is the Verlet method.

1.1.1 Verlet Algorithm

The Verlet algorithm is based on the following equations [20]:

R(t−∆t) = R(t)− Ṙ(t)∆t+
R̈(t)

2
∆t2 −

...
R(t)

6
∆t3 +O(∆t4) (1.1.5)

R(t+∆t) = R(t) + Ṙ(t)∆t+
R̈(t)

2
∆t2 +

...
R(t)

6
∆t3 +O(∆t4) (1.1.6)

R(t+∆t) = 2R(t)−R(t−∆t) +M−1F(R)(∆t)2 +O(∆t4) (1.1.7)

Equation Eq 1.1.7 is simply the sum of Eq 1.1.5 and Eq 1.1.6. This trick of basing
our integration on the two preceding positions R(t) and R(t−∆t) to calculate R(t+∆t)

allows us to diminish the integrating error toO(∆t4), without the need of a more expensive
calculation than F (R(t)).

The velocity must be calculated a posteriori using the difference between Eq 1.1.5 and
Eq 1.1.6:

Ṙ(t) =
R(t+∆t)−R(t−∆t)

2∆t
+O(∆t2) (1.1.8)

∆t has to be chosen carefully. The cost of the calculation over a fixed time interval t0
evolves linearly with 1/∆t. By halving the time steps, the "walk" on the interval becomes
slower, making it more computationally expensive. However, using a too large time step
can also create problems, especially for phenomena with high velocities in the system,
such as high-frequency oscillations. For them sufficiently small time steps are required for
accurate modeling. Employing excessively large integration steps can lead to nonphysical
phenomena due to integration errors.

The ensemble of all geometries encountered during the process is called a trajectory
and can be denoted as (Rn). We can also define (Pn) as the corresponding momentum
trajectory using the following equation:

∀n,Pn =MṘn (1.1.9)

19



1.1.2 Periodic boundary conditions

To model a liquid phase, we use a cubic box of the lattice a and apply periodic boundary
conditions (Periodic Boundary Conditions (PBC)). This approach allows us to simulate
a liquid phase with fewer than hundreds of molecules. The periodic boundary conditions
are implemented using the following equation:

R(t) = R(t)− a · floor
(︃
R(t)

a

)︃
(1.1.10)

where floor is a function that truncate each number inside the R(t)
a

vector to the closest
lower integer.

With a fixed lattice box, the volume of the system remains constant: V = a3. We
can adjust a with respect to the quantity of compounds in the box to obtain a realistic
density: ρ = mtot

a3
≈ 1kg.L−1.

To improve accuracy and better reflect the manipulation of the bench, we could in-
troduce variations in the lattice of the box, , that is,, add a barostat. This is because
experimentalists often work at constant pressure rather than at constant volume. How-
ever, for chemical reactions in high-dilution contexts, we consider these volume variations
to be negligible.

1.1.3 Thermostat: Nosé-Hoover, single and chain

The Verlet algorithm, as derived from the second law of Newton, models a completely
isolated system, without any exchange with the outside. This is rather unrealistic in
experimental chemistry conditions, where the temperature of the system is often con-
trolled. To model this, we need to intervene in the Verlet propagation equation by adding
an external friction term that will correct the velocities of the system toward a target
temperature: T0.

This friction term can take many forms. In this thesis, we used the Nosé-Hoover
chain thermostat primarily[21]. To explain it step by step, we first explain with the single
Nosé-Hoover case[22, 23].

The instantaneous temperature of a system, T , can be directly linked to Ṙ, the velocity
of the particles in the system.

1

2
NdkBT =

1

2
(Ṙ

T
MṘ)

=
1

2
(PTM−1P)

(1.1.11)

Nd = (3N −Nc) (1.1.12)

Where Nd is the number of degrees of freedom and Nc is the number of constraints
(blocked translations and rotations).
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The idea behind the Nosé-Hoover thermostat is to add an external term to the evolu-
tion equation that interacts by friction with all other atoms in the system to maintain a
fixed temperature T0. This external fictive variable, η, has the dimension of the inverse of
time and is associated with a pseudo-mass Q, which determines the thermostat’s inertia.

Using equation 1.1.11, we can define the single Nosé-Hoover thermostat by modifying
Newton’s equation 1.1.3 as follows:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R̈ =M−1F − ηṘ

η̇ =
1

Q
NdkB(T − T0)

=
1

Q

(︁
PTM−1P−NdkBT0

)︁
(1.1.13)

The mass Q can be fixed using a more intuitive parameter, the characteristic time
scale τ :

Q = NdkBT0τ
2 (1.1.14)

However, it has been shown that for small systems, the Nose-Hoover thermostat does
not guarantee an efficient sampling of the velocities and positions (the notion of ergodicity
involved here will be defined in the next subsection). This comes from the η fluctuations
that are not sufficiently driven toward a Gaussian distribution as should be. To overcome
this problem, we can protect the undriven variable under layers of thermostats. This
is the idea behind the Nose-Hoover Chain (NHC) [21]. The following equation system
presents an n-layered thermostat:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̈ =M−1F − η1Ṙ

η̇1 =
1

Q1

(︁
PTM−1P−NdkBT0

)︁
− η1η2

η̇j =
1

Qj

(Qj−1η
2
j−1 − kBT0)− ηjηj+1 ; (2 ≤ j < n)

ηn =
1

Qn

(Qn−1η
2
n−1 − kBT0)

(1.1.15)

{︄
Q1 = NdkBT0τ

2

Qj = kBT0τ
2 ; (2 ≤ j)

(1.1.16)

Most of the time, n is not greater than 5. In the case of this work, we will systematically
use a 3-layer thermostat. This method has been shown to improve the quality of the
velocity distribution, especially in the case of small systems with sharp forces[21]. The
determinism of the simple Nose-Hoover version is kept, along with the possibility to reverse
time in these equations.
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1.2 Introduction to Statistical Mechanics

Now that we have a method to sample our system, we need to establish a way to con-
nect our findings with macroscopic observations. We took a step in this direction when
we defined the Nose-Hoover thermostat and the instantaneous temperature (see subsec-
tion 1.1.3). All typical physical quantities that can be measured in the laboratory are
defined over an enormous number of particles. These quantities are called observables.
Among them are temperature, pressure, pH, density, , etc.. Since a large number of de-
grees of freedom are involved in each of these quantities, the best way to link them with
nanoscale results is to use statistical tools, following the approach of Boltzmann[24].

1.2.1 Observable: from micro to macro

Let us define a macrosystem (typically with a size larger than the micrometer scale)
called S. It is made up of a large ensemble of microsystems: S = {s}. All microsystems
s are considered equivalent. Each microsystem has an instantaneous state, which is fully
defined by (R,P), the position and momentum of the particles inside it (see section 1.1).
The ensemble of all possible values of the couple (R,P) is called the phase space. At
every instant, the probability density to find one system s in the exact state (R,P) is
designated as ρ(R,P). An observable of the microsystem is a function of the position and
velocities of s: O(R,P). A macroscopic intensive measurement in S associated with this
observable will return a value O, which is typically the average value of O(R,P) across
all microsystems {s}:

O =

∫︂∫︂
ρ(R,P)O(R,P)dRdP (1.2.1)

Using this, we only need to represent one geometry of the full macroscopic system to
obtain the instantaneous probability density ρ(R,P) and calculate O. However, even a
single geometry of the macrosystem is unaffordable due to its size (see introduction of
chapter 1). To overcome this, we must limit our observation to the equilibrium proba-
bility density ρeq(R,P), because this particular case can be estimated using the ergodic
hypothesis.

This hypothesis is central in statistical mechanics. It relates the infinite-time average
of an observable in one microsystem to the equilibrium probability density of all {s}.

lim
τ→∞

1

τ

∫︂ τ

0

O(t) dt =

∫︂∫︂
ρeq(R,P)O(R,P) dR dP = Oeq (1.2.2)

This allows us to study S by modeling only one s. However, the properties of s affect
the accuracy with which S represents a realistic system. The next sections are dedicated
to explaining how the tools we use to model s (see chapter 1) impact our results.
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1.2.2 Extended Hamiltonian and (N,V,T) ensemble

The system is thermostated with the Nose-Hoover Chain (NHC) (see subsection 1.1.3).
The total energy of the system can be described by an extended Hamiltonian [21]:

H′ = H(R,P) +
n∑︂

j=1

1

2
Qjη

2
j +NdkBT0η1 + kBT0

n∑︂

j=2

ηj (1.2.3)

Here, H is the Hamiltonian of the system prior to the addition of the thermostat. It
is composed of a potential part, V , detailed in the next section, and a kinetic part:

H(R,P) = V (R) +
1

2
PTM−1P (1.2.4)

The equations of motion of the NHC system (see Eq 1.1.15) are derived fromH′. In his
1984 paper, Nosé proved that if the behavior of (R,P, {ηj}) is microcanonical (i.e., the
extended Hamiltonian is conserved over time), the phase space (R,P) follows a canonical
distribution at equilibrium [23]. This result has been generalized for the NHC.

Using this, our system can be studied in the (N, V, T ) ensemble formalism. We can
define ρeq(R,P) as follows:

ρeq(R,P) =
1

Z
e−βH(R,P) (1.2.5)

where β = 1
kBT0

, and where Z is the partition function:

Z =

∫︂∫︂
e−βH(R,P)dRdP (1.2.6)

The positions and momenta components of the canonical distribution can be separated:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρeq(R) =
1

ZR

e−βV (R)

ρeq(P) =
1

ZP

e−
1
2
βPTM−1P

Z =

∫︂
e−βV (R)dR

∫︂
e−

1
2
βPTM−1PdP = ZRZP

(1.2.7)

The definition of ρeq(R) leads us to the marginalized free energy (detailed in the next
subsection), while the definition of ρeq(P) leads us to the Maxwell–Boltzmann distribution
of the velocities:

ρeq(viα) =

√︃
βmi

2π
e−

1
2
βmiv

2
iα ; ∀i, α ∈ {x, y, z} (1.2.8)

This is the distribution used to initialize velocities in all of our simulations, ensuring
a realistic initialization with respect to T0. This distribution is independent of how the
forces are calculated.
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1.2.3 Collective variables and free energy

In this manuscript, a Collective Variable (CV) is a differentiable function of the atomic
positions: cv(R), where R is an element of the position part of the phase space: Γ, named
the configuration space. Typically, Collective Variable (CV) can be a scalar value or a
vector. The CVs are usually described by fewer dimensions than the configuration space
which is composed of 3N dimensions. That is why they are often qualified as projectors.
This appellation is rather wrong because CVs can be much larger in dimensions than
the phase space. The interatomic distances are a typical family of CV and the vector
composed of all the interatomic distances which is also a CV by definition is described by
N(N − 1)/2 dimensions which is much larger than 3N for large N .

The probability distribution of a CV at equilibrium can be calculated using the phase
space position distribution and estimated based on the ergodic hypothesis:

ρeq(cv(R)) =

∫︂
ρeq(R

′)δ(cv(R)− cv(R′))dR′

= lim
τ→∞

1

τ

∫︂ τ

0

δ(cv − cv(t))dτ
(1.2.9)

In realistic cases, once we have reached apparent stationarity of the sampling, ρeq(cv)
can be estimated based on the histogram of CV.

By analogy with the phase space distribution function, we can define F (cv), the
marginalized free energy, also named the free energy profile of the CV:

ρeq(cv) =
1

Zcv

e−βF (cv) (1.2.10)

F (cv) = A− 1

β
ln(ρeq(cv)) (1.2.11)

F is often defined up to a constant term, as the full partition function of the CV is
unknown. Usually, the most probable value of the CV is set to 0 in free energy.

1.3 Quantum mechanics

Now that we have introduced how to sample the dynamics of a system and how we link
this to macroscopic measurements, we need to explain how we calculate the forces, which
is the central pillar of our work. To explain the sometimes counterintuitive behavior of
chemical systems, we must use quantum mechanics, the underlying theory that describes,
among others, the behavior of covalent bonds, which ensure the stability of molecules.

However, obtaining an exact solution is infeasible for systems with more than one
electron and one nucleus. This necessity leads to a variety of approximations that enable
us to compute a solution, scarifying a part of the accuracy. The following sections will de-
scribe various approaches, starting from the exact Schrödinger equation and progressively
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incorporating more approximations to develop a practical method. Ultimately, these ap-
proximations allow us to achieve a sufficiently accurate force estimation to perform Ab
Initio Molecular Dynamics (AIMD).

1.3.1 Schrödinger equation of a many-body system

Quantum mechanics is based on the system many-body wavefunction, Ψ. This wave-
function depends on the positions of the nuclei R, but also on the positions of the Ne

electrons of the system, represented by a 3Ne dimension vector re, analogous to R. Since
the calculation of forces in the Schrödinger equation relies on distances between particles,
the electron position vectors {r1, ..., rNe} and the equivalent for nuclei {R1, ...,RN} are
also used in the following equations. For the first time, we also use the atomic numbers
{Z1, ..., ZN}.

The equation that allows us to determine the time evolution of Ψ and calculate the
energies and forces of the system is the time-dependent Schrödinger equation:

iℏ
∂Ψ(re,R)

∂t
= HQΨ(re,R) (1.3.1)

Here HQ is the quantum Hamiltonian, to be considered different from the classical H
(see section 1.2). In this case, HQ can be separated into five terms.

HQ = TN + VN,N + VN,e + Te + Ve,e (1.3.2)

Two of these terms are associated with the nuclei: TN , the kinetic energy of the nuclei,
and VN,N , the potential arising from the Coulombic interaction between the nuclei.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TN = −ℏ2

2

N∑︂

i=1

∇2
Ri

mi

VN,N =
N∑︂

i=1

N∑︂

j=1

j>i

ZiZje
2

|Ri −Rj|
(1.3.3)

Two of these terms are associated in the same way but with electrons: Te and Ve,e.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Te = −
ℏ2

2me

Ne∑︂

i=1

∇2
ri

Ve,e =
Ne∑︂

i=1

Ne∑︂

j=1

j>i

e2

|ri − rj|
(1.3.4)

The remaining term is the potential of the cross-coulombic interaction between nuclei
and electrons:
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VN,e = −
N∑︂

i=1

Ne∑︂

j=1

Zie
2

|Ri − rj|
(1.3.5)

As we target a stationary solution of the system, we can simplify the initial time-
dependent Schrödinger equation (see Eq 1.3.1) to a time-invariant one:

HQΨ(re,R) = EΨ(re,R) (1.3.6)

Here, E designates the energy associated with the state represented by Ψ(re,R). E is
an eigenvalue of this equation, and if Ψ(re,R) is a solution of the above equation, then it
is an eigenvector. The lowest possible eigenvalue E0 is associated with the ground-state
solution of the equation: Ψ0.

The only systems for which this equation can be analytically solved are the hy-
drogenoids, composed of 1 electron and 1 nucleus. As it is not possible to make any
chemistry with it, we are going to start the descent toward reachable but approximated
equations.

The first approximation we can make is the Born-Oppenheimer one[25, 26]. The idea
is to consider that the movement of the electrons is much faster than the movement of
nuclei by several orders of magnitude, , i.e., from the point of view of the electrons, nuclei
are static. This implies that we can separate their behavior and treat them separately.
Here, we consider that nuclei have a classical behavior, and electrons have a quantum one,
in the static "external" potential generated by the nuclei. We have now decoupled these
two calculation parts: nuclei movements are treated classically with Newton’s equation
and the Verlet algorithm, and electrons are treated separately thanks to the electronic
Schrödinger equation; this is the Born-Oppenheimer Molecular Dynamics (BOMD). Now,
the positions of the nuclei are not a variable of the wavefunction. They are an external
parameter of an electronic Hamiltonian. The terms of this new Hamiltonian that only
involve nuclei (see Eq 1.3.3) can be discarded as constants. This approximation is possible
because of the three orders of magnitude that separate electron and nucleon masses.

HQe{R} = Te + Ve,e + Ve,N (1.3.7)

This approximation allows us to determine the solutions of the Schrödinger equation
for systems larger than the hydrogenoids under the condition that it only contains one
electron. In the present case, this also neglects the quantum behavior of the nuclei,
which is not true in realistic systems, especially for hydrogen, which can undergo proton
hopping through the tunneling effect [27, 28, 29, 30]. To partially overcome this problem
and also to increase the numerical stability of the Verlet algorithm (see subsection 1.1.1),
theoreticians often replace hydrogen atoms with deuterium atoms, which are two times
more massive. Within the Born-Oppenheimer scheme, the electronic Hamiltonian, i.e.,
the resulting potential, is not impacted by this change; it only modifies the dynamics of
the system. Again, in realistic systems, we know that this is not fully true as the enthalpy
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of formation of normal water in the gaseous phase (H2O) is not the same as for heavy
water (D2O)[31].

From this point the potential initially stated as V in the Hamiltonian equation of nuclei
movements (see Eq 1.2.4) can be calculated using the Hellman-Feynman theorem[32].

To build on this electronic Hamiltonian, we have to make approximations of the be-
havior of the electrons.

1.3.2 Hartree-Fock approximation

Initially, the electronic wave function can be any function of re. The next approximation
involves restricting this ensemble of functions on the basis of an external assumption.

One such assumption is that the complete wave function of the system can be decom-
posed into Ne single-electron orbitals, which are multiplied together to form the full wave
function. This approach was proposed by Hartree in 1928 [33].

Ψ(re) =
Ne∏︂

i=1

Φi(ri) (1.3.8)

This decomposition is an ansatz, i.e., an educated hypothesis, that simplifies the
complexity of the problem, making it solvable.

Φ(ri) are called spin orbitals. Here, we consider that the spin of the electron is in-
cluded in the electron coordinate ri. This decomposition of the wavefunction leads to
monoelectronic Hamiltonians:

he{R,rk ̸=i,Φk ̸=i}Φi(ri) = ϵiΦi(ri) (1.3.9)

he{R,rk ̸=i,Φk ̸=i} = −
ℏ2

2me

∇2 −
N∑︂

j=1

Zje
2

|ri −Rj|
+ e2

Ne∑︂

k=1
k ̸=i

∫︂ |Φk(r
′)|2dr′

|ri − rk|
(1.3.10)

This time, the single-particle equations 1.3.9 are coupled. This implies that they have
to be treated simultaneously. To do that, we use a Self-Consistent Field (SCF). A first
(generally atomic) guess is proposed for the single-electron wave-functions {Φi}0, then
a new set of wavefunctions {Φi}1 is recalculated using the equation Eq 1.3.9 but with
{Φi}0 as initial parameters. Subsequently, the new wavefunctions {Φi}1 replace {Φi}0 to
determine {Φi}2. This loop continues until we reach a converged set of single-electron
wave-functions (up to a threshold on resulting energies and forces), i.e., a stable solution
of equation 1.3.9 for every Φi.

Slater [34] and Fock identified that the solutions to equation 1.3.9 were not antisym-
metric with respect to the exchange of two electrons, which contradicts the fermionic
properties of electrons. To overcome this problem, they proposed to use a mathematical
tool that exhibits this antisymmetric behavior upon permutations: the matrix determi-
nant. Here is the so-called ’Slater determinant’, our new wave function trial form:
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Ψ(re) =
1√
N !

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

Φ1(r1) Φ2(r1) Φ3(r1) . . . ΦNe(r1)

Φ1(r2) Φ2(r2) Φ3(r2) . . . ΦNe(r2)

. . . . . . . . . . . . . . . . . . . . .

Φ1(rNe) Φ2(rNe) Φ3(rNe) . . . ΦNe(rNe)

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓

(1.3.11)

Now that we have determined the type of system we are using, we need to find the
ground state, which is the common electronic state of molecules in the absence of light
absorption and emission. To do this, we rely on the variational principle[35].

Variational principle

The ground-state energy is determined using the following minimization process:

E0 = min
Ψ

⟨Ψ|He |Ψ⟩
⟨Ψ|Ψ⟩ (1.3.12)

In our case, Ψ is a Slater determinant, i.e., a determinant function of Φi. To achieve
minimization, as in the case of simple products, we can decompose the problem into
coupled single-electron eigenvalue equations:

hHF iΦi(ri) = ϵiΦiri) (1.3.13)

Where hHF is defined as:

hHF i = −
ℏ2

2me

∇2 −
N∑︂

j=1

Zje
2

|ri −Rj|
+ VHF (ri) (1.3.14)

VHF is the Hartree-Fock potential energy resulting from the interaction of the electron
i with the mean field created by all other electrons. Like the full Hamiltonian, it can be
decomposed into two terms, each of which is a sum over all the other electrons:

VHF (ri) =
Ne∑︂

k=1

Jk(ri)−
Ne∑︂

k=1

Kk(ri) (1.3.15)

The term Jk(ri) represents the Coulomb operator, which accounts for the Coulomb
repulsion experienced by the electron i due to the rest of the electrons. It is defined as:

Jk(ri) = e2
∫︂ |Φk(r

′)|2 dr′
|ri − rk|

(1.3.16)

The other term arises purely from quantum mechanics and is known as the exchange
term. It is given by:

Kk(ri)Φi(ri) = e2
∫︂

Φk(r
′)

1

|ri − r′
Φi(r

′)Φk(ri) dr
′ (1.3.17)
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The eigenvalue equations are then solved self-consistently.
Now that we have defined the Hartree-Fock exchange term and introduced the concepts

of ansatz, variational principle, and SCF, we can proceed to discuss the density functional.

1.3.3 Density Functional Theory

For a long period in the history of quantum mechanics, the density of the electron cloud of
a molecule (i.e., the electronic density) was considered a potential functional for determin-
ing the energy of the ground state for a given geometry [36, 37]. This can be intuitively
understood by recognizing that atomic positions and atomic numbers are encoded in the
spatial distribution of the density. Consequently, one can reconstruct a Slater determi-
nant and determine an energy using SCF. This implies that all the information we need
is encoded within this 3D function:

n(r) = Ne

∫︂
|Ψ(r, r2, r3, . . . rNe)|2dr2dr3 . . . drNe (1.3.18)

Using a 3-dimensional function as a variable, compared to the 3Ne dimensions of
the wavefunction, makes this approach more computationally efficient. However, the
assumption that n(r) could be utilized in this manner had not yet been demonstrated.
This changed when Hohenberg and Kohn introduced their two foundational theorems to
the scientific community in 1964 [38]. This event is considered the true birth of Density
Functional Theory (DFT). We do not present the detailed proofs here but instead discuss
their implications:

Theorem 1: For any system of interacting electrons, there is a bijection between the
Hamiltonian and the electronic ground state density n(r), making the total energy of the
ground state a functional of the electronic density.

Now we can express the total ground-state electronic energy as a functional of the
density:

Ee[n(r)] = Te[n(r)] + Ve,e[n(r)] + Vext[n(r)] (1.3.19)

With Vext the external interaction with the nuclei. The other two terms Te and Ve,e

are the kinetic and Coulombic terms. Their exact expressions are not known, so we will
need to make a new guess.

Vext[n] = −e2
∫︂ N∑︂

j=1

Zj

|r−Rj|
n(r)dr (1.3.20)

Theorem 2: The energy of the ground state is given by the global minimum of the
energy functional E[n].
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According to this second theorem, the minimization of E[n] is sufficient to determine
the density of the ground state and the total energy, in accordance with the variational
principle.

In a first approximation, the Ve,e can be approximated with a continuous "mean field"
expression:

Ve,e[n] = Vc(e,e)[n] + C[n] (1.3.21)

Vc(e,e)[n] =
1

2

∫︂∫︂
n(r)n(r′)

|r− r′| drdr
′ (1.3.22)

Here, C[n] is a correction term due to self-interaction. There is no direct formula for
the kinetic term Te[n(r)] as it is difficult to determine the velocity of individual electrons
at a static density.

The Kohn-Sham equations

In 1965, to approach Te, Kohn and Sham[39] ref proposed to create a correspondence
between the electronic density n(r) and a non-interacting electron system that generates
the same density. We indicate with S this fictitious system:

E[n] = Es[n] + EXC [n] (1.3.23)

Kohn and Sham proceed by linking the density of the ground state n0(r) to a set of
decoupled spinorbitals: {ψi(r)}. These orbitals correspond to the density by a unique
functional of the density thanks to the Hohenberg and Kohn theorems.

n(r) =
Ne∑︂

i=1

⟨ψi|ψi⟩ (1.3.24)

By doing this, we reintroduce orbitals into DFT. We can easily determine the corre-
sponding values of Es[n], using the Hartree-Fock way :

Es[n] = Ts[n] + Vse, e[n]− e2
∫︂ N∑︂

j=1

Zj

|r−Rj|
n(r)dr (1.3.25)

With:

Ts[n] = −
1

2

Ne∑︂

i=1

⟨ψi[n]| ∇2 |ψi[n]⟩ (1.3.26)

Vse, e[n] = Vce, e[n] =
1

2

∫︂∫︂
n(r)n(r′)

|r− r′| drdr
′ (1.3.27)

Since EXC [n] is an undetermined corrective term up to this point, Equation 1.3.23 is
exact. By definition, EXC contains the exchange and correlation term needed to transition
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from the non-interacting to the interacting many-body problem. It also includes the self-
interaction correction of the mean field. We must make an approximation to calculate
this term, which will inevitably introduce some errors.

Using the Kohn-Sham scheme, we can again split the many-body problem into single-
electron Schrödinger equations. These are the Kohn-Sham equations :

[︄
− ℏ2

2me

∇2
r + e2

∫︂
n(r′)

|r− r′|dr
′ − e2

N∑︂

j=1

Zj

|r−Rj|
+ VXC(r)

]︄
ϕi(r) = ϵiϕi(r) (1.3.28)

Where VXC is the undetermined exchange-correlation potential, formally given by:

VXC(r) =
δEXC [n(r)]

δn(r)
(1.3.29)

Once again, this set of equations can be solved using a SCF algorithm, with a new in-
termediate step in which the parameters of the Kohn-Sham equation are determined from
the density. A significant advantage is that we obtain molecular orbitals with associated
energy levels within a framework where they were not originally calculated. However, the
energy levels of these orbitals strongly depend on the exchange-correlation functionals
and are based on the ground state density.

1.3.4 Exchange and correlation functionals

Once we have expressed in detail the main aspects of DFT, we have to present how we deal
with the exchange-correlation functionals. The chosen approximation has a significant
impact on the reliability of the results. They are usually classified by complexity on a
Jacob’s ladder[40, 19] (see Figure 1.3.1).

In this thesis, we will briefly discuss three types of EXC from the surface: Local
Density Approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) functional, and the
hybrid functional PBE0.

LDA: The straightforward approximation assumes that the exchange-correlation func-
tional can be represented as an integral over the entire space of the exchange-correlation
energy per electron in a homogeneous electron gas, ϵhomxc :

ELDA[n(r)] =

∫︂
n(r)ϵhomXC (n(r))dr (1.3.30)

This ϵhomxc is determined using accurate quantum Monte Carlo simulations [41, 42, 43].
This approximation, one of the earliest introduced, is effective in calculating the properties
of solids with electronic densities similar to a homogeneous electron gas, particularly in
systems where the density varies slowly in space, such as crystals, especially metallic ones
[44, 45] . However, it struggles to accurately reproduce properties of isolated molecules or
systems with strongly correlated electrons. It also overestimates hydrogen bonding [46]
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Figure 1.3.1: The Jacob’s ladder proposed by Perdew in 2013[40], with name of the family
of EXC on the left and added tools to calculated them on the right

. LDA is not a good choice to study chemical reactions in water, where electrons are
localized in molecular orbitals and where hydrogen bonding plays a crucial role.

PBE: The second-level approximation also includes the local gradient of the density.
This functional family is known as the Generalized Gradient Approximation (GGA) fam-
ily.

EGGA
XC [n(r)] =

∫︂
dr n(r) ϵGGA

XC (n(r),∇rn(r)) (1.3.31)

This is the case of the PBE functional [47]. For PBE, to accurately take in account
gradient effects, ϵGGA

XC (n(r),∇rn(r)) is fitted on the behavior of a electron gas with a
constant gradient: n(r) = n(r0) + (∇rn(r0))(r− r0).

As PBE has no external parameters other than those defining ϵGGA
XC , which are not fit-

ted to other observations, it is ab initio. This functional is considered useful because most
higher levels of approximation are considered at least semiempirical by some researchers
in the domain[40]. However, in the case of chemical reactions, PBE has a significant
drawback: it underestimates the energy of geometries with delocalized electrons (some-
times by more than 10 kcal/mol [48] ). Often in chemical reactions, these delocalized
geometries correspond to transition states in which electrons are moving to break and/or
form covalent bonds. This means that using PBE will be less accurate for energy barriers
than for reaction gaps, making the treatment of kinetics less reliable. However, since it is
currently one of the few affordable ab initio functionals for molecular dynamics, we will
use it while keeping its intrinsic limitations in mind.
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PBE0: hybrid functionals include a portion of the Hartree-Fock exchange (see Eq 1.3.17).
This makes them non-local but also reduces some of the computational advantages of
DFT. The general idea is to average between the GGA exchange functional (EGGA

X , ob-
tained by separating the exchange and correlation parts of the XC functional) and the
exact Hartree-Fock exchange calculated using the Kohn-Sham orbitals.

Among all commonly used hybrid DFT methods, PBE0 is the one that can most
plausibly be considered ab initio [49], even if this is not the opinion of all researchers.
PBE0, which is based on PBE, does not introduce any external parameters beyond those
of the GGA functional. Furthermore, PBE0 hybridization is achieved through a fixed
coefficient that relies on a marginal approximation of the adiabatic connection formula[50].

EPBE0
XC = EPBE

XC + 1/4(KHF
X − EPBE

X ) (1.3.32)

Despite this simple hybridization, PBE0-DFT demonstrates its reliability to the rest
of the community and "seems to be a good compromise for those who want to obtain fair
accuracy for systems ranging from molecules to solids and at the same time have a direct
connection to physical principles", according to Ernzerhof and Scuseria [51].

However, the software we used for this thesis, CPMD[52], took 20 times longer to
perform PBE0 calculations compared to PBE, even with an educated guess for the ini-
tialization of the wavefunctions (see Appendix C). The use of this hybrid functional is a
step towards accuracy for the ab initio studies of chemical reactions in solution. This issue
would likely be addressed by increasing computational power or using a hybrid trained
Machine Learning Inter-atomic Potential (MLIP). We will present MLIP in more detail
in the following subsection.

The accuracy of how we calculate the forces is not the only challenge in this domain.
In the next chapter, we will define the specificities of studying chemical reactions in
condensed phases and the issues associated with these types of transformations. However,
our discussion on forces estimation is not yet complete; some technical features that have
their own importance need to be added. We also need to briefly introduce MLIPs.

1.3.5 Computational aspects

Atomic and Plane Wave basis sets

When performing calculations on a computer, especially when there are no analytical
solutions, as is the case for quantum mechanics, the use of a discrete decomposition
for functions we want to optimize is mandatory. To perform the optimization of the
wavefunctions correctly, we decompose them into a finite basis set of 3-dimensional scalar
functions and then optimize the parameters of the linear combination they form.

The most widely used basis functions are Gaussian functions, centered on atomic nu-
clei and multiplied by polynomials [19]. One of the significant advantages of Gaussian
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functions is that the Coulomb terms of Hartree–Fock calculations can be computed ana-
lytically, resulting in much faster computations. This advantage also extends to hybrid-
DFT calculations. However, there are two major drawbacks to using Gaussian basis sets.
Firstly, they are not naturally suited for periodic box simulations (see subsection 1.1.2).
Secondly, there is a finite set of possible Gaussian basis sets (even though libraries are reg-
ularly updated). Regardless of the software used, one will eventually reach the maximum
possible decomposition.

Another approach, with its own advantages, is to use plane-wave (PW) basis sets to
decompose the wavefunction into its Fourier components, taking advantage of its period-
icity. Each plane wave in the base is associated with a kinetic energy: E = |G|2ℏ2/2me,
where G is the wave vector of Plane Wave (PW). A cutoff point can be set for this kinetic
energy, beyond which the expansion is terminated. A higher cutoff result in a more accu-
rate decomposition. Thus, while plane waves are less effective for Hartree-Fock exchange,
where Gaussian basis sets excel, they are well suited for PBC and can achieve the desired
precision in the decomposition by increasing the kinetic energy cutoff to an appropriate
value.

From a theoretical point of view, PW basis sets are as accurate as we need, are
easier to manipulate and present good properties with periodic systems like solids. In
the case of liquids the periodic boundary conditions make them primitively periodic even
if it is not the case for real liquids. For these reasons, they are generally preferred by
physicists. However, Gaussian basis sets are often more efficient, particularly for Hartree-
Fock exchange, which is crucial for accurately describing molecules. Typically, chemists
prefer Gaussian basis sets, especially for calculations in the gas phase where PBC are not
required.

More recently, codes such as CP2K [53] proposed a Gaussian Plane Wave (GPW) basis
set: a dual basis of Gaussian orbitals centered on atoms and PW[54].

In this manuscript we only use PWs, as the systems we study are liquids with PBC
conditions and because up to now we do not have to perform hybrid-AIMD, so we do not
need the Gaussian efficiency. However, part of the technical work performed during this
thesis was to pave the way for changing the environment we used from PW basis, using
the CPMD software[52], to the GPW of CP2K, in future works. This transition offers
us a more regularly updated software along with the possibility to calculate Hartree-Fock
exchange.

Pseudo-Potentials

When studying chemical reactions, valence electrons typically have the most significant
impact on the behavior of the system. Core electrons, on the other hand, contribute to
the computational cost of the model without significantly modifying the reaction process.
This cost is all the more important because the core electron wave functions have strong
and short oscillations near the nuclei that make them very difficult to decompose on the
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PWs, demanding unnecessarily high cut-offs.
The idea behind pseudopotentials is to replace all the core electrons and the effect of

the nuclei by a screened effective potential capable of masking the fast oscillations near the
atomic centers and reproducing the true external potential once a cutoff ray is reached. It
is crucial to select the appropriate pseudopotentials for the type of atom and the specific
DFT method that we use. In this thesis, we used the Martins-Troullier pseudopotentials
parameterized by PBE [55].

Van der Waals (VDW) empirical corrections

If the use of pseudopotentials can be considered as ab initio because it is based only on the
full electronic results of the same DFT method, this is not the case for the parameterized
potential introduced here.

Van der Waals (VDW) interactions come from the polarization and / or polarizability
of the electronic clouds. They combine into an attractive potential proportional to −d−6

where d is the interatomic distance. DFT methods struggle to efficiently represent this
interaction because they are local or almost local methods and VDW forces are based on
long-range electronic cohesion effects.

To efficiently represent the true behavior of our systems, especially for the physical
properties of the solvent, an empirical correction of the potential adding the −d−6 term
is usually needed. This adjustment compromises the true abinitio forces, but alternatives
are limited. We can expect that these corrections do not have a strong impact on barrier
heights and reaction energy gaps because they mainly rely on covalent bounding. However,
it is hard to estimate the influence that it has on the kinetics.

In this work, we used the D2 version of the Grimme’s VDW empirical corrections [56].

1.4 Machine Learning Interatomic Potentials (MLIP)

A significant part of the results presented in this work employ machine learning potential
methods. This highlights how these methods have become a cornerstone in the current
landscape of ab initio calculations.

MLIPs encode within their internal parameters the observed behavior of another po-
tential (here DFT). They can overcome two limitations of DFT:

• The computational cost of MLIPs is one to three orders of magnitude lower than
that of DFT. This allows for more accurate sampling using longer calculations or
for calculations of comparable size using reduced computational resources.

• The scaling factor of MLIPs is linear with the size of the system. This allows us
to expect Machine Learned Molecular Dynamics (MLMD) to become increasingly
efficient relative to AIMD as the complexity of the system increases, particularly if
MLMD potentials can be applied to larger systems than those used to train them.
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In this work, MLIPs are generated using a neural network and are referred to as
Neural Network Potentials (NNPs). A neural network is a computational model consisting
of interconnected "neurons" organized in layers. It processes input data, adjusts internal
weights for each neuron’s connections during training, and is used for tasks such as pattern
recognition and classification. In our context, it is used to calculate the energy of a given
geometry.

We can sample the phase space using a combination of an AIMD dataset, generated
on demand, and home trained MLIPs [57]. This approach is referred to as MLMD, in
contrast to full AIMD. Since MLMD is an aspect of this thesis that does not involve
development, the following description focuses on its application.

1.4.1 Training

In 2007, Behler and Parrinello [58] proposed to generate a NNP, using an atomistic
decomposition of the energy.

Etot =
N∑︂

i=1

ϵi (1.4.1)

where the {ϵi} are calculated using the neural network applied on a determined environ-
ment centered on the atoms. Rotation, translation, and permutation invariances of the
potential, necessary to respect the laws of physics, are guaranteed by the use of appropri-
ate descriptors. Technically, descriptors are CVs, but of a high level of complexity. They
are trained or designed to capture the local atomic environment from Cartesian coordi-
nates and to represent it as vectors that are invariant to rotation and permutation. These
descriptors act as filters between the Cartesian coordinates and the neural network.

To train a NNP, we compare its predicted results for a given geometry with the correct
answer from the dataset. Technically, the only output we obtain from the NNP is the
total energy, since the NNP atomic energy decomposition is not necessarily physically
accurate. However, we can still obtain the forces by estimating the gradient of the output
energy with respect to the coordinates. This is feasible because every function within the
network is differentiable.

Once the NNP energies and forces have been calculated for a set of parameters w, we
can define a loss function:

L(R) =
1

Ngeom

Ngeom∑︂

i=1

[︄
(Ei

NN − Ei)
2 +

β

3N

3N∑︂

j=1

(F i
jNN − F i

j )
2

]︄
(1.4.2)

where Ngeom is the number of geometries in the training set, Ei
NN is the energy computed

from the neural network, Ei is the true energy in the dataset, F i
jNN is the j-th atomic

coordinate of the forces vector from the neural network, and F i
j is the reference force.

β is the balance parameter defining the relative importance of energy and forces. Using
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the same property of differentiation previously adopted, we can obtain the gradient of
the loss function with respect to its parameters and then perform a gradient descent to
minimize the loss function. This improves the accuracy of the predictions across the
dataset geometries.

In the following, we will use a loss function similar to the one presented earlier but
weighted to account for the heterogeneity and solvent predominance in the simulation.

L(R) =
1

Ngeom

Ngeom∑︂

i=1

[︄
pE(E

i
NN − Ei)

2 + pf
1

Nelem

Nelem∑︂

j=1

N

ni

(F i
jNN − F i

j )
2

]︄
(1.4.3)

where, ni is the number of atoms of type i, Nelem is the number of element types and N is
the total number of atoms. The weights in the force term ensure that each elements of the
system are equally represented. This loss function has proven its reliability in previously
published work [57].

1.4.2 The NNP committee

To use MLIPs effectively, caution is required. If we encounter geometries for which the
training data lack information or guesses, the predicted energies may become non-physical
or even diverge. During dynamics, we will explore geometries and configurations outside
of the training dataset, and we may lack information about the accuracy of our NNP
for these new geometries. To address this issue, we can train multiple NNPs to form
a committee and use this group to assess the quality of predictions by evaluating the
uncertainty among the committee members, following the approach of Schran et al. in
2020 [59]. This involves training NNPs on the same dataset but with different initial
parameters determined by various random seeds. The final energy and forces can be
obtained as the mean value between the committees. The standard deviation of the
predictions from different committee members can be used as an indicator of prediction
reliability. However, there is no way to ensure the absence of systematic errors in the
extrapolation. To avoid regions of the phase space where the MLIP may be unreliable
and to allow longer sampling, we can use a "mirror reflection" approach, as presented in
the following reference[57].

1.5 Conclusion of this chapter

Throughout this chapter, we have thoroughly introduced the theoretical background nec-
essary to perform AIMD, including the dynamics algorithms, the methods to estimate
forces, and DFT. We have also discussed key concepts from statistical mechanics that
enable us to link the results observed in our simulations to macroscopic phenomena. In
addition, we have introduced the concept of MLMD to address some limitations of AIMD.
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The tools we have covered are theoretically sufficient to sample the complete phase
space of a system and estimate the thermodynamic and kinetic properties of a reaction.
However, in the practical case of chemical reactions in solution, this approach alone is
inadequate. The energy barriers associated with covalent bonding are extremely high.
For a barrier of 30kBT , the time required to observe such events spontaneously would be
approximately one month in real time. In simulations, with a time step of 0.5 fs and a
second of calculation per step, this would equate to approximately 1013 years of continuous
simulation.

In the next chapter, we will focus on the challenges of studying chemical reactions in
solution and present the tools available to overcome these barriers.
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Chapter 2

Chemical reactions: coordinates and
enhanced sampling

Introduction to time and dimensionality curses

The real-time simulation achievable in AIMD simulations is of the order of 1 ns, which
corresponds to approximately 2 million data points. Although MLIPs alleviate this limi-
tation, they are not yet sufficient to overcome reaction barriers, which are often referred
to as "rare events". This issue is commonly described as the curse of time.

To sample these transitions and calculate the associated thermodynamics and kinetics,
a series of protocols have been developed. These protocols generally fall into two main
categories of approaches:

1. Biased Hamiltonian method: This approach generally involves changing the
energetic background by adding a known bias that depends on CV. What was con-
sidered "rare" for an unbiased Hamiltonian could be very common for a modified
one. The primary challenge of this method is to recover reliable information about
the true Hamiltonian.

2. Biased initialization method: This approach is harder to grasp. It involves
modifying the sampling by orienting the selection of initialization points for new
trajectories using external criteria. In this case, the "bias" is more difficult to
quantify as it is a purely statistical bias, in a large sense, due to the selection
process.

These methods are explicitly used to modify the sampling and diverge from the equi-
librium distribution (see subsection 1.2.2). They are referred to as "enhanced sampling
techniques". Typically, when researchers describe a trajectory as "biased", they refer to
the first type of methods. In the following sections, we will adopt this restricted defini-
tion of "biased", while noting that it is an incomplete description. A more comprehensive
discussion will be provided in the results part of this manuscript, particularly when we
will be addressing the application of stochastic dynamics equations.
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Whether for the addition of external forces or the selection process, we rely at least
partially on CVs. The quality of the chosen CVs and their involvement in the reaction
mechanism can drastically affect the quality of the obtained data. The challenge arises
from the vast number of possible CVs. Identifying which CVs accurately describes the
reaction (i.e., is an effective Reaction Coordinate (RC)) is difficult. The main problem is
that determining which coordinate is preferable requires extensive data on the reaction
process, which are limited because of the "curse of time". Consequently, we must introduce
a new ansatz for CV to induce the reaction, study the results, and refine our initial
CV. The definition of our ansatz is crucial for the quality of the obtained results. This
substantial and unleaded reduction of dimensions - from the 3N dimensions of phase
space positions to the few CVs used to apply forces to the system- is referred to as the
curse of dimensionality.

The present chapter describes in detail how we can reconstruct the microscopic mech-
anism of a chemical reaction and estimate its thermodynamic properties while overcoming
these two curses.

2.1 Construction of variables and reaction coordinates

The search for a final process to generate an accurate RC remains ongoing. When we
study chemical reactions, we usually separate our problem into elementary single-step
reactions. To work on these elementary processes, we usually define different kinds of CV
(see subsection 1.2.3 for definition). To present them, we are going to designate with A
the reactants of a given elementary step and with B the products.

From this point on, we shall use the following definitions:

• A CV is a differentiable function of the configuration space.

• An Order Parameter (OP) is a CV that efficiently separates the reactants and the
products of the elementary step, which means that the definition regions of A and
B are clearly separated and identified using this CV. This variable does not contain
systematically information about the mechanism.

• A Reaction Coordinate (RC) is an OP that follows the microscopic mechanism of
the reaction. It helps to distinguish each intermediate geometry of the reaction in
the right order. It is usually a one-dimensional CV. Ideally, it encompasses all
Minimum Free Energy Path (MFEP) and has good dynamic properties (more on
this last point in the next chapter).

In the final workflow presented in this manuscript, the steps for defining CVs and
performing enhanced sampling techniques are interconnected. We use CVs to perform
enhanced sampling simulations and then use the enhanced sampling data to refine CVs.
In the following subsections, we provide a detailed step-by-step process for generating
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a reaction coordinate. The subsequent section will elaborate on the enhanced sampling
methods employed.

2.1.1 Chemical Space of CV

According to the positional component of the equilibrium distribution (see Eq 1.2.7),
in the (N,V,T) ensemble, every position in Γ, the configuration space, has a non-zero
equilibrium probability. This implies that to explore the configuration space via molecular
dynamics, each position within this space should be sampled at least once. In practice,
exploring all 3N dimensions is impractical. Moreover, many of these degrees of freedom
are irrelevant to chemical studies; for example, rotation of a H2O molecule far from the
reactive center is unlikely to significantly impact reactivity. Therefore, we need to focus
on a subset of degrees of freedom deemed relevant for chemical reactions in solution. In
this manuscript, these selected CVs are referred to as the chemical space, here denoted
by ℧. The dimension of the chemical space is denoted by Nchem, and an element inside it
is denoted by X. The definition of ℧ is critical for the subsequent parts of our study.

We will present two example systems: a synthetic two-dimensional potential and a
realistic chemical system.

The Müller-Brown potential:

The Müller-Brown potential [60] is a synthetic 2D potential V defined as:

V (x, y) =
4∑︂

i=1

Diexp[ai(x−Xi)
2 + bi(x−Xi)(y − Yi) + ci(y − Yi)2] (2.1.1)

where D1...4 = [−200,−100,−170, 15], a1...4 = [−1,−1,−6.5, 0.7], b1...4 = [0, 0, 11, 0.6],
c1...4 = [−10,−10,−6.5, 0.7], X1...4 = [1, 0,−0.5,−1], and Y1...4 = [0, 0.5, 1.5, 1].

This potential has been used in the literature as a benchmark for evaluating the
performance of dynamic simulation tools [61, 60, 62].

As illustrated in Figure 2.1.1, this system consists of two nonharmonic wells sepa-
rated by a twisted barrier. This simplified potential serves as an approximation of the
complexity that a true effective potential might exhibit in a multidimensional system.
Here, there are only two degrees of freedom, so the chemical space can be assimilated
into the full configuration space, ℧ = {x, y}. To sample this potential, we will employ an
under-damped Langevin integrator, which is described in the following chapter.

The 5-Methylhydantoin

5-Methylhydantoin (hereafter referred to as hydantoin) is a molecule of significant interest
in the study of the origin of life [11].
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Figure 2.1.1: The Müller-Brown synthetic potential surface with its two main wells: "A"
for the global minimum of the surface and "B" for the second. kBT = 5 kcal.mol−1.

Figure 2.1.2: The hydantoin system, with one hydantoin molecule, one NaCl ion pair, one
NaOH ion pair and 97 water molecules
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Figure 2.1.3: The smooth switching function in reduced units, with n = 8 and m = 14

To study its chemical behavior, we can monitor the environment of selected atoms,
particularly by focusing on the number of covalent bonds that these atoms form. It is
important to understand that the evaluation of the chemical space of a given geometry
should be significantly less computationally expensive than DFT by several orders of mag-
nitude. Otherwise, it would be too expensive to perform enhanced sampling. To keep
calculations at a relatively low cost, covalent bonding is reduced to distance monitoring,
allowing the calculation of the coordination number of a specific atom for a specific ele-
ment. This simplification of electronic behavior is not problematic because the physical
behavior of the system is ensured by the use of DFT to calculate energies and forces.
However, it has important consequences that we will include in our methodology.

The formation of a chemical bond is determined using a smooth switching function
(see figure 2.1.3). The sum of an atom i and a family of elements σ is the coordinate
number of the atom i in the σ element: ci(σ).

ci(σ) =
∑︂

j∈σ

1−
(︂

dij
d0

)︂n

1−
(︂

dij
d0

)︂m (2.1.2)

where d0 depends on the two elements involved in the bonding and is typically chosen
based on the radial distribution function of the pair of elements. The parameters n and
m are selected so that m > n, with typical values of m = 8 and n = 14. The parameter d0
does not correspond to the typical length of the bond but rather to the cleaving distance
or, more precisely, the transition distance where the bond is half-formed. This definition
of a bond does not differentiate between single, double, or triple bonds significantly; Due
to the shorter lengths of double and triple bonds, their contributions are simply closer to
one in the coordination. This can cause issues when monitoring reactions involving these
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types of bonds.
Once we have established the different values d0 for our system, we can follow the

coordination numbers of a set of atoms of interest, {Ai}, for every element σj in the box.
This can be represented as a matrix X of shape (i, j). This matrix defines our chemical
state [63]. The following is the case for hydantoin:

X = (cAi
(σj)) =

⎛
⎜⎜⎝

C O N H
C1 0.9 1.0 1.0 0.0
C2 0.2 1.0 1.7 0.0
C3 1.6 0.1 0.9 0.7
C4 0.8 0.0 0.1 2.1
N1 1.8 0.2 0.1 0.6
N2 1.9 0.1 0.1 0.7

⎞
⎟⎟⎠ (2.1.3)

The number of atoms corresponds to the representation in Figure 2.1.2. It is crucial
to emphasize the selection of nuclei that we follow in this context. As stated in chapter 1,
this selection implies that our approach is not completely agnostic. The choice of nuclei is
primarily based on general chemical knowledge and a trial-and-error process. The latter
case can become computationally expensive.

In practical cases, the number of dimensions, Nchem, typically varies between 4 and
30.

2.1.2 Path Collective Variables

The definition of the chemical space reduces the number of dimensions of the problem
from 3N to Nchem. However, most methods used to sample rare events become unafford-
able when based on CVs greater than 2 dimensions. To perform this final reduction of
dimensionality, we use Path Collective Variables (PCVs).

PCVs are couples of 1 dimensional CVs, denoted s and z. They were introduced by
Branduardi et al in 2007 [64] as a tool to explore complex free energy in an intuitive way:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s(X) =

∑︁Nref

α=1 α× exp(−λD[X,Xα])∑︁Nref

α=1 exp(−λD[X,Xα])

z(X) =
−1
λ

ln
(︂∑︁Nref

α=1 exp(−λD[X,Xα])
)︂

(2.1.4)

whereD is a distance associated with the chemical space, and {Xα} areNref fixed reference
position chosen in the chemical space.

λ is an external parameter defined as:

λ×mean(D[Rα,Rα+1]) = −ln(0.1) ≈ 2.30 (2.1.5)

s and z are complementary. They project the chemical space into a 2D space that
depends on a designated path:

· s can be seen as a weighted average value of the indices α of the reference structures.
The weights, {exp(−λD[X,Xα])}, are designed to emphasize the smallest distances.
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Figure 2.1.4: The behavior of s2 and z2 on the 2D surface of the Müller-Brown set of
variable. "A" denotes the global minimum of the Müller-Brown potential and , "B" is the
second one. (a) the behavior of s2 that discriminate the two minima. (b) the behavior
of z2 that indicate the two references of the path.

Consequently, s approximates the index of the closest reference structure: if X ≈ Xα,
then s ≈ α. This means that if a trajectory in the configuration space, (Rn), is
associated with a trajectory in the chemical space, (Xn), which follows the reference
set from X1 to XNref

, then s progresses from 1 to Nref along the trajectory.

→ If the reference set is chosen to follow the evolution of a chemical reaction,
then s indicates the stage of the reaction. Thus, it is a good candidate for a
reaction coordinate.

· z represents the sum of all distances between X and the set {Xα}. For this reason,
it is often referred to as the distance variable.

→ If the z variable is close to 0, the observed geometry is close to the predicted
path. In contrast, if z increases, it indicates that we are exploring parts of the
chemical space not included in the reference set.

Usually s and z are denoted using the number of references inside the set. For example,
s2 and z2 designate PCVs defined using two references. To concretely represent what a
PCV is, we define a pair (s2, z2) for both of our previously introduced examples.

The Müller-Brown potential: two-references path

The two main minima in the Müller-Brown potential are located at (−0.58, 1.39) and
(0.55, 0.05) in x and y. To create an initial pair of PCVs, we can use these two positions
as the first reference set. The resulting s2 and z2 are depicted in Figure 2.1.4. The behavior
of the PCVs is consistent with their descriptions: s2 discriminates between states A and
B, and z measures the distance of the position of (x, y) from both A and B.
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X1 =

⎛
⎜⎜⎝

C O N H
C1 0.0 0.1 1.0 0.1
C2 0.0 2.8 0.0 0.0
C3 0.8 1.0 0.0 0.7
C4 0.8 0.1 0.0 2.0
N1 1.0 0.1 0.0 0.0
N2 0.0 0.1 0.0 2.5

⎞
⎟⎟⎠

(b)

X2 =

⎛
⎜⎜⎝

C O N H
C1 0.9 1.0 1.0 0.0
C2 0.2 1.0 1.7 0.0
C3 1.6 0.1 0.9 0.7
C4 0.8 0.0 0.1 2.1
N1 1.8 0.2 0.1 0.6
N2 1.9 0.1 0.1 0.7

⎞
⎟⎟⎠

(c)

Figure 2.1.5: The hydantoin synthesis reaction[65]. (a) the equation of the reaction. (b)
the reference for reactants. (c) the reference for products. The two references are defined
as the mean value of the chemical space when performing unbiased AIMD in the reactants
and products states.

With the exception of the positions we introduce for A and B, no information about
the true landscape is encoded within this pair. This implies that they cannot be used as
a reaction coordinate but rather as an effective order parameter to distinguish between
reactants and products. Using this tool, we can define our reactant and product regions
more rigorously: A = {s2 ∈ [1, 1.2]; z2 < 0.2} and B = {s2 ∈ [1.8, 2]; z2 < 0.2}. This
definition of A and B is decorrelated from the potential, i.e., from the studied system.
This implies that it can be applied to any s2 and z2 provided that the two references
correctly represent the local minima of the potential in the chemical space.

The 5-methylhydantoin: two-reference path

Suppose that we are studying the synthesis of 5-methylhydantoin from ammonium ion,
cyanide ion, carboxylic acid, bicarbonate ion, and acetaldehyde. We can define a pair of
PCVs to discriminate between the two states: reactants and products.

The creation of the two references for this chemical synthesis is illustrated in Fig-
ure 2.1.5. Given that the chemical space in this case has 24 dimensions, a reliable presen-
tation of the full behavior of s2 and z2 cannot be generated. However, by definition, the
combination of these two variables can be used as a precise OP.
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2.1.3 Reaction coordinates, Transition state and Committor

Once we have obtained an OP for the synthesis we wish to study, we need to take further
steps. To understand the chemical mechanisms involved in a reaction, a Reaction Coordi-
nate (RC) is mandatory. This RC encompasses the true behavior of the system during the
transition by correctly discriminating every intermediate stage. This definition of a RC is
very broad, which is why a wide variety of them can be created for the same transition.
Significant work has been done to classify them in terms of "quality" [61, 66, 67].

Among the intermediate stages of the reaction that a RC should help discriminate,
the most important is the Transition State (TS). By definition, the TS is the highest state
of the chemical transformation in terms of free energy. The TS is challenging to identify
perfectly in a 3N -dimensional landscape. To provide a definition of practical use of it,
despite the very large configuration space, we can use the committor.

The committor is defined from an OP and a choice of two regions, A and B, using this
OP. Designated as pB(R), it represents the probability of reaching the product region
B before the reactant region A [68]. By definition, if R is inside B, then pB(R) = 1;
conversely, if R is inside A, then pB(R) = 0. Based on this definition, we can define the
TS region of the reaction from A to B as the ensemble of R for which pB(R) = 0.5 or
within a threshold around 0.5. This intuitively means that a geometry R in that situation
has the same probability of reaching the reactants or products.

The committor is the "perfect" RC because it quantifies the dynamic behavior of the
system for all possible geometries. However, it is also described as "meaningless" [68] in
the sense that there is no clear link between the committor values and the geometries of
the chemical system.

An important drawback of using the committor is the computational expense needed
to accurately determine it. To estimate the committor value of a single geometry R, the
only efficient method is the Committor Analysis (CA). This method involves launching
a large number of trajectories from R with the Maxwell-Boltzmann distribution of ve-
locities and approximating pB(R) by the observed frequency of falling into the B region.
This estimation is significantly more expensive than the molecular dynamics itself. For
classical dynamics, this can be manageable, but for AIMD, estimating the committor
is affordable for only a very limited number of geometries, typically near the TS where
the value stabilizes the fastest. Consequently,CA is never conducted on the fly during
AIMD. Moreover, it cannot be used directly in enhanced sampling simulations. Instead,
a regression of the committor values from other CVs can be used [61, 62, 66].

Committor Analysis on the Müller-Brown potential

To illustrate this, we can use the Müller-Brown potential. We have performed a Langevin
dynamics simulation with a time step of 5 × 10−4 ps, a friction term of 50 ps−1, and a
temperature factor of kBT = 5 ps−2. The masses of the variables x and y are considered
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Figure 2.1.6: Committor Analysis (CA) of the (-0.82, 0.62) point of the Muller-Brown
potential. The trajectories that commit to B are represented in blue, and in red for A.
We can observe an overlapping zone between the two sets of curves near the launching
point. This is the zone where recrossing occurs.

equal to 1. We have launched 1000 dynamics simulations with random velocities from the
point (−0.82, 0.62) in x and y, which is known as the position of the saddle point between
states A and B [60]. The resulting trajectories are presented in Figure 2.1.6.

The final estimation is: pB(−0.82, 0.62) = 0.42 ± 0.03. This implies that the saddle
point identified in the Müller and Brown 1979 paper[60] is not the optimal TS.

2.1.4 Data driven path collective variables

Committor analysis data on a transition state can be used to train new PCVs. The idea is
to increase the number of references following a probable transition path. These references
must be well-chosen and equally spaced in the chemical space. In the literature, there
are some protocols to perform that selection [61, 64, 69]. In this manuscript, we proceed
using an algorithm inspired by the Nudged Elastic Band (NEB) method [70]. Let us
suppose that we want n references in the final PCV. The two limiting references, R1 and
Rn, are fixed as the average of the chemical space in the reactants and products. The
other references are in between.

To clarify the following method, we introduce two notation:

➤ The dataset of geometries on which we will search for a path is designated as Θ.

➤ The ensemble of all possible paths is designated as Θ(N−2) because it corresponds
to (N − 2) intermediate references selected from Θ.

In order to generate an optimized path, we set a fictive potential on Θ(N−2):

E =
N−1∑︂

k=1

(︄
Dk,k+1 −

1

N − 1

N−1∑︂

l=1

Dl,l+1

)︄2

+ β
1

N − 2

N−2∑︂

k=1

[max(θk,k+1,k+2 − θ0, 0)]2 (2.1.6)
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where Dk,k+1 is the distance in the chemical space between two successive references and
θk,k+1,k+2 is the deviation angle between three successive references.

This potential comes from the work of Théo Magrino[14]. By construction, the global
minimum of this potential corresponds to the shortest path with the lowest curvature. To
approach this point, we sample this potential using a Monte Carlo process:

1. Select N-2 points at random from the dataset to form the initial reference set: θN−2.
Calculate the associated fictive potential E0.

2. Pick a new possible reference randomly in the dataset, change with the closest point
of θN−2, and calculate the new potential value E1.

3.IF E1 < E0 Validate the new reference set,E1 becomes the new E0.

ELSE Pick a uniform random number a between 0 and 1. If a < eβ(E0−E1), validate
the new reference set, E1 becomes the new E0.

4. go to 2.

where β is the temperature and is defined as a proportional factor between 0 and 1. The
loop is stopped when the variances of the distances and the angles are both below a
predetermined threshold.

2.1.4.1 Searching for a highly referenced path collective variables in the
Müller-Brown potential

To illustrate the reference search algorithm, we applied it to a dataset composed of the
preceding CA trajectories. The results are presented in Figure 2.1.7. Our algorithm
successfully generated a path that follows the evolution of the reaction. Now, s12 can
be used as an estimate RC and z12 can be used to monitor the quality of this estimate.
Following the same protocol, we can define a RC for any type of chemical reaction, even
without prior knowledge of previous work or experiments on the system.

2.2 Enhanced Sampling

Now that we have defined our working space of collective variables (CV), the chemical
space, we can describe the enhanced sampling techniques used to sample rare events. As
mentioned in the Introduction, these techniques can be categorized into two types: biased
dynamics and oriented initialization. However, instead of introducing these tools based on
this classification, we will present them in the natural order in which they are employed
in the protocol we developed.
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Figure 2.1.7: Results of the research of a PCV with 10 references. (a) the validated
reference dots in blue and the two fixed dots in green that correspond to the reactant and
products. The dataset Θ is represented in grey in the background. The black dots are
supplementary references that correspond to linear extrapolation of the path after and
before the reactants and the products in order to ensure a correct description of the wells.
(b) the resulting s12 evolving from the reactants to the products and following the shape
of the dataset. (c) the resulting z12 marking the location of the referenced region, we can
see it correspond to the dataset location.

2.2.1 Metadynamics

The first tool we employ involves launching a standard molecular dynamics simulation
and, at regular time intervals, modifying the Hamiltonian by incrementally adding an
external bias. This technique is known as metadynamics [71]. The introduced bias is
time dependent and typically takes the form of a sum of Gaussian functions, added every
τmet time interval. This bias is applied to a previously defined set of collective variables
(CVs). An example using s2 and z2 is provided below:

VB(t, s2, z2) = a

t//τmet∑︂

k=1

exp

{︃(︃
−(s2 − s2(kτmet))

2

2σ2
s2

)︃
+

(︃
−(z2 − z2(kτmet))

2

2σ2
z2

)︃}︃
(2.2.1)
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where s2(kτmet) and z2(kτmet) represent the historical values of s2 and z2 during the
dynamics, evaluated every τmet time interval. The parameter a denotes the height of the
introduced bias, while σs2 and σz2 are the widths of the Gaussians associated with each
variable, typically defined based on the observed distribution in the wells.

A common analogy by Alessandro Laio and Francesco Gervasio [72] illustrates meta-
dynamics effectively. This is the one presented here with small modifications: Imagine
a blind person walking randomly on an unknown mountainous terrain. The person can
only perceive the immediate area beneath their feet (his current position and the slope
of the terrain). As the person is lost and blind, he follows the slope. In a steady state,
he wanders around the valley bottom, likely remaining within it. To escape, the blind
person can rely on an infinite bag of sand. At regular intervals, he drops sand on his feet,
gradually filling the valley. Eventually, the lowest point of the valley reaches the pass
level, allowing him to exit. During this process, he has never made any guesses on the
location of the pass.

In molecular dynamics, the number of degrees of freedom that we can address by
metadynamics is relatively small compared to the total dimensions of the system (3N).
Typically, metadynamics is applied to up to three collective variables because it is more
feasible to "fill with bias" a surface, a volume, or even a 4D hypervolume. The required
amount of bias increases exponentially with the number of CVs involved.

Interestingly, if metadynamics is conducted in a sufficiently long simulation time, we
can obtain a situation where all possible metastable states of the used CVs are explored
and compensated for by the added bias. In this scenario, the system of variables no
longer experiences attraction to these local minima and begins to diffuse freely between
the metastable states. This implies that the introduced bias approximates the negative
of the free energy as a footprint:

lim
t→∞

VB(t, s2, z2) ≈ −F (s2, z2) + C (2.2.2)

where C is a constant term.
However, errors can interfere inside this equation:

• The value of the free energy footprint is always defined up to the height a of the
introduced Gaussian functions.

• The accuracy of the free-energy landscape estimation may be compromised if the
frequency of bias increments is too high for the system to reach a new steady state.
Similarly, if the Gaussian functions are too widely spaced, they may overlap sys-
tematically, affecting the results.

These issues highlight that metadynamics represents a trade-off between the quality
of the results and the computational cost of the simulation. Reducing both the size
of the Gaussian functions and the frequency of increments would probably improve the
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estimation of F (s2, z2), but these parameters are linearly related to the cost. For example,
in Eq 2.2.1, halving a, σs2 , σz2 , and the increment frequency simultaneously would result
in a sixteen-fold increase in computational cost.

The acceptable size of the parameters depends mainly on the quality of the employed
CVs [73], which requires prior information about the system. For this reason, in the pro-
tocol described in this manuscript, metadynamics is not used for quantification. Instead,
it serves to provide an initial estimate of the transition between reactants and products
in a chemical system.

Metadynamics on the Müller-Brown potential

This time, we initiate the dynamics in the vicinity of the metastable state B, as shown
in Figure 2.1.1, using the same parameters employed for the committor analysis. In the
absence of bias, the system remains stationary near B. To introduce Gaussian functions,
we use the collective variables x and y (CVs). Each Gaussian is added every 2000 steps
(1 ps) with a height of 1, kBT and a standard deviation of 0.1 for both x and y.

The results of this study are presented in Figure 2.2.1. Although these results, obtained
using a synthetic model, exhibit a high quality compared to real molecular dynamics cases,
they help us to illustrate the metadynamics process. The results presented in Figure 2.2.1
demonstrate that we achieve staticity (and the zero level of potential) after 270 additions.
An initial estimation of this quantity can be made prior to simulation using data from
the wells and a guess of the barrier height from empirical knowledge.

In our routine protocol, metadynamics is terminated after the first transition. Typ-
ically, it is not feasible to capture the full complexity of the chemical process with only
one or two collective variables (CVs) derived from the study of the wells (the only data
available without bias). Under these conditions, reaching the diffusion regime would likely
require an excessive amount of time, and the final quantification would likely be of little
use regarding the quality of the variables.

Having obtained the first transition, we can now refine our results by identifying a
transition state (TS) within this transition. Furthermore, we can improve our initial
transition using Transition Path Sampling (TPS).

2.2.2 Transition Path Sampling

The primary objective of this process is to refine the transition trajectory we initially
obtained by sampling new ones. The goal is to converge towards the MFEP, which
represents the path between reactants and products where the underlying gradient of the
free energy (with respect to the chemical space) is minimal. Several methods are available
to achieve this [13, 74, 75]. An approach involves performing multiple CAs to identify
new potential TSs and progressively decorrelate the new trajectories from the initial one.
However, a more efficient method is to employ an automatic workflow, such as Aimless
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Figure 2.2.1: Results of the metadynamics applied to the Müller-Brown potential. (a)
The trajectory of y during the metadynamics simulation. We observe the exploration of
wells B and A, followed by diffusion after 270 ps. (b) The evolution of the bias introduced
during metadynamics, projected onto y and superimposed on the actual Müller-Brown
potential. This illustrates the "sand" added to the system [72]. The legend indicates the
number of Gaussian functions considered for each curve. (c) The 2D bias footprint after
500 ps (i.e., containing 500 Gaussian functions). This footprint accurately reproduces
the Müller-Brown potential, as shown in Figure 2.1.1. (d) The full trajectory overlaid
on the bias footprint. Many exchanges between the two potential wells at the tail of the
trajectory (highlighted in yellow) suggest that the diffusion regime has been achieved.
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Shooting (AS)[76, 77, 78] or Shooting From the Top (SFT) [79].
To initiate a Transition Path Sampling (TPS), similar to the committor analysis, the

only required CV is an order parameter Order Parameter to define the regions of reactants
and products. Both TPS workflows follow the same algorithm:

1. Take the geometries of an initially obtained transition as a first dataset.

2. Select one candidate transition state geometry from the dataset.

3. Launch 2 trajectories from that candidate with opposed initial speeds drawn from
the Maxwell-Boltzmann distribution.

If One of the trajectories falls into the product region and the other one does the
opposite (i.e., we have generated a new transition)

Then The new transition becomes the new dataset, and the candidate geometry is
validated as a potential transition state.

4. Go to 2.

By repeating this process a predetermined number of times, new transitions are sam-
pled, each of which shares a single common point with the previous one. This ensures
that each newly validated dataset is progressively more distant from the initial dataset.

The main difference between the two workflows lies in the method used to select the
candidate transition states.

For AS, the selected geometry is one of the two geometries located at ±∆t from the
last validated transition state on the trajectory of the dataset. This approach has the
advantage that the "distance" between the two candidates is a time interval, bypassing
geometric considerations. However, since there are only two possible geometries, the
workflow may become locked in a situation with low chances of commitment. This issue
can be mitigated by selecting a smaller ±∆t, although this will slow down the exploration
of the transition state ensemble. A balance must be found between the acceptance ratio
(the number of accepted TSs relative to the number of attempts) and ±∆t to converge
more rapidly towards a new TS.

For SFT, the selected geometry is randomly chosen from all points in the dataset lying
within a guessed transition region, which can be defined using an OP. With this method,
the distance between two successive guesses is not fixed and can be measured using time
intervals or other CVs such as the distance in chemical space. The size and position of
the interval can be optimized to achieve the best compromise. This method relies more
heavily on the quality of the OP compared to AS.

In both methods, the newly guessed geometries converge toward a saddle point, and
the new transition paths converge towards the MFEP associated with this saddle point. If
multiple saddle points exist, the system may converge to one of them and remain trapped,
in the same way that a metastable state would do in AIMD. At the end of the workflow, if
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Figure 2.2.2: The results of SFT on the Müller-Brown potential. (a) The first ten ac-
cepted trajectories. We observe the convergence of the accepted points towards the region
near the saddle point. (b) The second half of the accepted trajectories (the first half is
discarded for convergence). This illustrates the formation of the reaction cone around the
MFEP. Given that no other degrees of freedom are considered in this simulation beyond
those depicted in the figure, and considering that the Müller-Brown potential has only one
primary saddle point between A and B, we infer that the SFT has successfully converged.

the initially validated trajectories are discarded for convergence, the remaining validated
trajectories will form a "reactive cone" that represents the most probable transition states
between reactants and products. This reactive cone effectively represents the intermediate
geometries encountered during the reaction mechanism [6]. This forms a dataset typically
used to generate highly referenced PCV.

Shooting from the top on the Müller-Brown potential

We performed SFT on the Müller-Brown potential using the same sampling parameters
as in the previous two cases. The reactants and products zones are defined as circles
centered at the local minima A and B: (-0.58, 1.39) and (0.55, 0.05), respectively, with a
radius of 0.2 for both. The transition state region is defined as a circle centered at (-0.82,
0.62), the saddle point identified in the literature [60], with a radius of 0.8. To illustrate
the convergence of the process, we initially guessed the transition state at (-0.25, 1.0),
which is far from the saddle point location. The results of this study are presented in
Figure 2.2.2. The transition path successfully reached the true saddle point region after
10 accepted transitions and remained there once achieved. The acceptance ratio for this
study was 0.87%, indicating that the transition region for selection could potentially be
reduced because most selected geometries are rejected.
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2.2.3 Umbrella Sampling

Once a transition pathway has been obtained with metadynamics and refined with tran-
sition path sampling, this information can be used to generate a RC, as described in
subsection 2.1.4. The Umbrella Sampling (US), the final step of our protocol, will allow
us to accurately evaluate the free energy curve along this RC and consequently the free
energy difference between reactants and products [80, 81].

To carry out this procedure, we generate between 15 and 60 copies of our system along
the RC, referred to as "windows." Each window is constrained near a specific value of
CV with a quadratic and static bias. Each window is sampled using AIMD, and once
equilibrium is reached in all windows, the simulation US is concluded. The static bias B
for each window is defined as follows:

Bi(s) =
k

2
(s− si)2 (2.2.3)

where s is the chosen CV, and si is the minimum of the bias introduced in window i.
Each si is equally spaced, with ∆s being the step size between adjacent windows. The
strength of the potential k, is determined to ensure adequate overlap, particularly in the
case of a flat free energy profile. A common approach is to set the bias to 0.5kBT at the
crossing point between two adjacent biases, ensuring that k

2

(︁
∆s
2

)︁2
= kBT

2
.

A critical aspect of the US simulation is that the windows should be contiguous in
the phase space. This means that transitioning from the data obtained with one window
to the others should allow for a progression from the reactants to the products without
discontinuities in phase space. If the windows are truly contiguous, the underlying free
energy potential for each window, once corrected for the bias, should extend continuously
from the potentials obtained with neighboring windows. Consequently, we obtain seg-
ments of the free energy curve, one for each window, which can be aggregated together
to form the complete curve.

The "aggregation" process of these segments is accomplished using a statistical tool
called Weighted Histogram Analysis Method (WHAM). This tool relies on solving the
WHAM equations [82, 83, 84]. For a simulation with Nw windows, the WHAM equations
are expressed as follows:

p(s) =

∑︁Nw

i=1 ni(s)∑︁Nw

i=1Nieβ(Fi−Bi(s))

Fi = −
1

β
ln

(︃∫︂

s

p(s)e−βBi(s)ds

)︃ (2.2.4)

where Ni represents the number of points in window i, and ni(s) denotes the histogram
value of s in simulation i at value s. The variables to be optimized are the Fi, the free
energy shift applied to each window to re-weight them, and p(s), the final equilibrium
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Figure 2.2.3: The results of the US simulation on the Müller-Brown potential. (a) The
x-y coordinates for each window. Exchanges can be observed at the top of the barrier
near y = 0.6. (b) The bias profiles of the umbrellas along y. (c) The reconstructed free
energy curve compared with the original potential.

distribution we seek. These variables are determined self-consistently by iteratively solving
the two equations.

Umbrella Sampling on the Müller-Brown potential

An umbrella sampling test has been performed on the Müller-Brown potential with respect
to the y variable to obtain the underlying free energy curve. This test uses a total of 51
windows, which range from y1 = −0.5 to y51 = 2, with a step size of 0.05 and a spring
constant k of 8000kBT . Each window was sampled during 1µs. The results of this
simulation are presented in Figure 2.2.3. The final free energy curve closely matches the
projected potential along y.

Some words about hysteresis

When a gap in the configuration space occurs between two adjacent windows, this indi-
cates that the geometries of these windows are separated by a barrier perpendicular to
the reaction coordinate used. This separation can result from an overly long equilibration
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of a solvent degree of freedom or from an intermediate step in the chemical process not
taken into account in the RC.

In the first case, the slow solvent reorganization and equilibration can be forced by the
addition of a static bias. For instance, this situation arises when a spectator amine equili-
brates with the water solvent: the characteristic time for protonation is of the same order
of magnitude as the available ab initio length of the trajectory (≈ 15 ps). Consequently,
the reaction may occur randomly in one window but not in others, creating a separation
in the configuration space and altering the bulk composition. The time required for this
process to reach equilibrium exceeds the available simulation time. Therefore, the pre-
ferred solution is to bias the cN(H) coordination in order to keep this degree of freedom
fixed.

The second scenario is termed hysteresis. Here, a portion of the reaction is not cap-
tured by the reaction coordinate (, i.e., the reaction coordinate is imperfect). This part
of the reaction occurs through degrees of freedom not explicitly considered, and this gen-
erally involves a significant barrier. Thus, between these two windows, there exists a
hidden barrier and an unmeasured free energy gap, which is not quantified in the WHAM
results, as the necessary data are absent from the dataset. Typically, the presence of
hysteresis can alter the final results by approximately 10 kcal ·mol−1. This is one of the
main sources of error in US simulations.

2.3 Conclusion of this chapter

We have introduced many tools necessary for the thermodynamic study and characteri-
zation of chemical reactions in solution. Specifically, we have discussed the concepts of
chemical space, committor, and data-based PCV. These elements are fundamental for
understanding the behavior and properties of chemical systems at the molecular level.

In addition, we have provided a quite comprehensive overview of enhanced sampling
techniques. These methods are essential for obtaining an initial transition state and
refining it to achieve a more accurate representation of the system’s behavior. This allows
us to determine the free energy curve of a collective variable, providing insights into the
thermodynamic properties and stability of the chemical system.

Furthermore, we have outlined the datasets available for chemical systems. These data
sets include information generated through AIMD, which provides detailed insight into
the system’s wells, and data obtained from enhanced sampling simulations, which offer a
deeper understanding of the system’s behavior during the transition.

We can now investigate terra incognita of this work by introducing the tools available
for the study of the kinetics of dynamic processes in the next chapter. We will explore how
this valuable data and these CVs can be processed to investigate the kinetics of chemical
reactions.
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Chapter 3

Langevin Dynamics: friction and
memory for kinetics

3.1 Introduction to coarse-graining

A complementary strategy to address the curses of time and dimensionality is coarse-
graining. The idea is to aggregate the behavior of particles into larger sets to work with
a simplified representation. There are two ways to define a coarse-grained model.

. Define pseudoatoms that approximate the behavior of groups of atoms, such as water
molecules or amino acid residues in a protein. The formed pseudoatoms express the
properties of the groups they replace: their mass, their charge, dipole moment, etc.

. Aggregate the behavior of multiple particles into a "mean field" effect on the re-
maining ones. As the positions of the removed particles are no longer estimated,
their influence on the remaining ones becomes random, which reflects our ignorance
of their exact positions and velocities.

The first case is used mainly in the field of classical dynamics. In the context of
chemical reactions, the variety and complexity of the studied potential make this kind
of tool poorly transferable. They are particularly useful in scenarios where there is no
covalent bond formation or cleavage, for example, in protein folding.

The second method has historical significance; it is the method that allowed us to
understand the Brownian motion of molecules, a milestone in atomic theory. This kind of
model allowed us to first estimate the value of the Avogadro constant, thanks to the work
of Jean Perrin [85]. This field has gathered the contributions of Einstein [86], Boltzmann
[87], Langevin [88], and other physicists of the twentieth century.

Langevin, in particular, developed his approach with the objective of explaining Brow-
nian motion using a stochastic differential equation:

mẍ = −6πµaẋ+X (3.1.1)
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where x is the direction of motion, m is the mass of the particle experiencing the motion,
and µ is the viscosity of the solvent from the Navier-Stokes equation [18]. X represents the
effect of solvent fluctuations, "is indifferently positive and negative, and [...] its magnitude
is such that it maintains the agitation of the particle" (translated from French by Lemons
and Gythiel in 1997) [88].

This textbook definition shows that the mathematical tools used for the study of
random variables have not been developed yet. In more modern terms, this implies that
the effects of the solvent can be interpreted as a friction term proportional to the velocity
of the studied particle and a random noise with an amplitude linked to the temperature.
This is a Markovian process; the movement of x is no longer deterministic but depends
on the behavior of a random noise. This kind of stochastic equation of motion is what we
call the Langevin equations.

In the following, we will present the different families of Langevin models and describe
their properties in detail. To do this, we use a single one-dimensional degree of freedom
of the system with a constant mass, stated as x. This choice simplifies the equation and
helps to understand the underlying physics.

3.2 Langevin dynamics

3.2.1 Underdamped model

The underdamped Langevin dynamics is the historical approach. It is based on Newton’s
equation, which means that the position-dependent term of the equation, the mean force,
is applied to the acceleration:

mẍ = f(x)− γmẋ+ ξ (3.2.1)

where m is the mass of x, f is the mean force applied to x, γ is the friction coefficient,
and ξ is the noise.

f is directly linked to the free energy curve associated to x:

f(x) = −∆xF (x) = kBT∆x ln(peq(x)) (3.2.2)

where F (x) is the Helmholtz free energy projected on x (see subsection 1.2.3), and peq is
the equilibrium distribution of x.

The friction coefficient term γ has the dimension of the inverse of time. 1/γ represents
the characteristic response time of the friction term to a perturbation. It is also linked
with the auto-correlation of the velocity Cv:

Cv(τ) =
⟨v(0)v(τ)⟩
⟨v2⟩ (3.2.3)

which has the shape of an oscillating exponential decay with 1/γ as the characteristic
time [89, 90].
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The noise has a mean value of 0 by definition: ⟨ξ⟩ = 0. To respect the fluctuation-
dissipation theorem [91, 92], it is an uncorrelated noise with an amplitude of

√
2γmkBT :

⟨ξ(0)ξ(τ)⟩ = 2γmkBTδ(τ) (3.2.4)

This type of decorrelated noise is designated as "white" noise. In practical cases, ξ is
usually considered as a Gaussian white noise, as it is the consequence of a large number
of particle collisions:

ξ =
√︁
2γmkBTW (3.2.5)

where W is a Gaussian white noise with an amplitude of 1.
The underdamped Langevin equation, although very simple, is based on two assertions:

• The characteristic time of the fluctuation of the solvent is shorter than the timescale
resolution of the model.

• The characteristic time of the friction with the solvent is longer than the timescale
resolution of the model.

This type of model fits well with the case of Brownian motion, where the particles are
still under the effect of the solvent but are sufficiently heavy to favor inertial effects.

When studying stochastic equations, the most powerful tool available is the Fokker–Planck
equation. This equation describes the evolution of the probability distribution of x and p:
P(x, p, t), where p is the momentum of x. It depends on the initial distribution P(x, p, 0).
In particular, if we aim to perform kinetic estimations, the Fokker–Planck equation can
provide the average time it takes to reach a target state from a given initial state, which
is precisely what is needed.

However, in the case of the underdamped regime, only one solution of the Fokker–Planck
equation is known, which corresponds to the scenario where the potential is flat [93]. Be-
cause the potential is crucial for chemical reactions, this solution cannot be used. How-
ever, there is a stochastic regime for which the Fokker–Planck equation has a solution:
the overdamped Langevin dynamics.

3.2.2 Overdamped model

When friction increases, another type of Langevin equation can be established by neglect-
ing the inertial term mẍ. This is the overdamped equation, introduced here as a limit
case of the underdamped:

ẋ =
f(x)

γ ∗m +
1

γ ∗mξ (3.2.6)

ẋ = −βDf(x) +
√
2DW (3.2.7)

where D is the diffusion constant: D = 1
βγm

.

61



In this case, the stochastic equation is first order. In this context, the Fokker-Planck
equation becomes the Smoluchowski diffusion equation and has the following expression
[94, 95]:

∂

∂t
P (x, t|x0, t0) =

∂

∂x
D

(︃
∂

∂x
− βf(x)

)︃
P (x, t|x0, t0) (3.2.8)

where x0 and t0 represent the initial position and the origin of time, respectively. This
expression must be solved for different forces f [95]. In particular, the solutions of the
Smoluchowski equation serve as a theoretical basis for most models used to predict the
kinetics of chemical processes.

3.2.3 Generalized model

When the time scale of resolution of the model goes below the characteristic time of fluc-
tuations of the solvent, the overdamped and underdamped equations become insufficient
in describing the system behavior. In this case, the friction response comes with a decay,
representing the characteristic response time of the solvent fluctuations. To capture this
"decay", we use a history of the velocities. It appears as if the preceding values of the
particle velocity (the degree of freedom followed) are stored in the behavior of the sol-
vent, indicating that the solvent has a temporary memory. The function that translates
this memory is the memory kernel K(τ), the critical component of Generalized Langevin
Equation (GLE):

mẍ(t) = f(x(t))−
∫︂ t

−∞
K(τ)ẋ(t− τ) dτ + ξ(t) (3.2.9)

When integrating this equation, the new value of x(t) depends not only on the last
preceding instants, but on all preceding values of the velocity. Thus, the dynamics be-
comes non-Markovian. It should be noted that when K(τ) is a Dirac delta function, we
revert to the underdamped model.

A discussion of the generalization of the fluctuation-dissipation theorem in this type
of dynamics is still open [91]. However, in this work, we will assume that this theorem
still holds. In the generalized case, it becomes:

⟨ξ(0)ξ(τ)⟩ = β−1K(τ) (3.2.10)

Here, the noise is autocorrelated, meaning each new value of the noise depends on its
history, becoming a "colored noise" [96, 97].

As GLE is an equation from which both the underdamped and overdamped models
can be derived, it can represent a wide variety of processes. However, the associated
Fokker-Planck equation remains unsolved.

The use of models with overdamped, underdamped, or generalized models to study
chemical reactions in solution is still an area of active research [98, 96, 99, 100, 89]. The
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Figure 3.2.1: The diagram of the application domains of the generalized, underdamped,
and overdamped Langevin models. δt is the time resolution of the model, ∆ti = γ−1 is the
time necessary to reach thermal equilibration, and ∆tm is the decay time of the memory
kernel (i.e., the fluctuation time of the solvent).

main question is whether the generalized model is necessary to efficiently represent the
dynamics of a chemical reaction or if the overdamped model is sufficient. The latter would
be tempting to use because it allows for the application of the Smoluchowski equation.
However, the estimated rate with overdamped models is often several orders of magnitude
away from experimental values [101, 102]. A summary of the application domain of these
three models is illustrated in Figure 3.2.1, taken from Girardier’s article [89].

To explain this discrepancy, we will review the available methods for calculating reac-
tion rates from a theoretical perspective.

3.3 Rate estimations

The calculation of the kinetics of a chemical reaction is at the intersection of three fields:
pure mathematics, statistical physics, and theoretical chemistry. To illustrate a first layer
of chemical kinetics, we introduce a fictitious reaction:

A + B C

In this case, the two possible reactions are the forward reaction, indicated as 1, and
the backward reaction, denoted as -1.

The "speed" of each reaction at high dilution, which is the number of occurrences of
the reaction in a certain fixed amount of time, is noted as follows:

63



v1 = k1
[A]

c0

[B]

c0
(3.3.1)

v−1 = k−1
[C]

c0
(3.3.2)

where [A], [B], and [C] are the molar concentrations and c0 is a constant standard concen-
tration, usually 1mol · L−1. k1 and k−1 are the rate constants, which are the parameters
of the system.

The time evolution of the system relies on differential equations:

d[A]/c0
dt

=
d[B]/c0
dt

= v−1 − v1 (3.3.3)

d[C]/c0
dt

= v1 − v−1 (3.3.4)

These equations are first-order differential equations that can be solved in the general
case. From this, the only remaining difficulty is to determine the rate constants.

3.3.1 The Mean First Passage Time (MFPT)

The straightforward way to estimate the rate is to measure the average time it takes
for a dynamic model to cross the barrier, known as Mean First Passage Time (MFPT).
This is the "brute force" estimation of the rate. If we launch a large number of dynamic
simulations at the bottom of the reactant well and for each launch record the time it takes
to reach the bottom of the product well, ti, then:

k−1 = ⟨ti⟩ (3.3.5)

With an infinite amount of time and computational power, this method could be
achieved by sampling a Langevin model or even by performing AIMD long enough. This
method has the advantage of being independent of any RC: the mechanism of the transi-
tion is not taken into account in the estimation.

Of course, the curse of time prevents us from obtaining these results, even with the
cheapest Langevin model, considering the barrier we have to cross. However, in the over-
damped case, this value can be calculated directly owing to the Smoluchowski equation
by integrating the free-energy landscape:

k−1 =

∫︂ b

x0

eβF (x)

D

(︃∫︂ x

a

e−βF (x′) dx′
)︃
dx (3.3.6)

where F (x) is the free energy curve associated with x, x0 is the initial position of the
dynamics, assimilated to the bottom of the reactant well, a is the position of a reflective
boundary located in the opposite direction of the barrier, and b is an absorbing boundary
located at the bottom of the product well.
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An approximation of these rates, also based on the overdamped model, was introduced
by Kramers in 1940 in the case of a diffusive regime [93, 101]:

k =
ωAωTS

2πγ
e−βF ‡

(3.3.7)

where ωA and ωTS are the frequencies of the harmonic approximation of the potential for
the well and the barrier, respectively.

3.3.2 The transition state theory

The transition state theory is based on the assumption that the event of crossing the
barrier is the combination of two independent events: reaching the barrier top and having
the right orientation of velocity at the top. Part form this a straightforward measure of
the rate take the form:

k−1 =
1

βh
e−βF ‡

(3.3.8)

where F ‡ is the activation energy and h is the Planck constant. [103]
This method neglects an important aspect of rate estimation, which is the recrossing

effect: the phenomenon in which trajectories that reach the top of the barrier can recross
back almost immediately due to fluctuations in the solvent that provide the appropriate
momentum. To account for this, we can use the reactive flux method.

3.3.3 The reactive flux

The reactive flux method estimates the rate from transition path sampling data. Recross-
ing effects are represented when some trajectories exceed the barrier and then recross as
a result of the influence of the solvent. This method depends on the time [104, 105, 106]:

k(t) =
⟨ẋ(0)δ[x(0)− x∗]hP (x(t))⟩

⟨hR(x(t))⟩
(3.3.9)

where hR(x) and hP (x) are the indicator functions of the wells of the reactants and
products, respectively, and can be defined using a OP. Here, x∗ is the value of x at the
top of the barrier height, referenced to the separatrix. Since spontaneous transitions are
rare events, k(t) reaches a plateau over a wide range of t values that are higher than the
typical descent time (, that is,, the time required to descend the barrier) but lower than
MFPT.

By sampling N trajectories from the top of the barrier (that is, at x∗), we can numeri-
cally estimate the rate as the product of the time-dependent average over the trajectories
conditioned on hP (x(t)) and an exponential term that depends on the free-energy barrier:

k(t) =

∑︁N
j=1 ẋj(0)hP (xj(t))

N

e−βF ‡

∫︁
ΩR
e−βF (x) dx

(3.3.10)
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where ΩR is the region of the reactants.
This numerical estimation is based on the work of Palacio-Rodriguez [106] and can

be performed using AIMD enhanced sampling simulations: TPS for averaging and US to
determine the free energy curve along x.

3.4 Conclusion of this chapter

In this chapter, we presented the statistical tools that are funded for the kinetics of
chemical processes, specifically the Langevin models and the Fokker-Planck equation.
We also discussed the numerical tools used to estimate kinetics, which are closely linked
with Langevin models, particularly the solvable overdamped model. Despite advances, a
significant portion of the error in kinetic estimations still arises from incorrect estimations
of the barrier height.

In the realm of chemical reactions in solution, a substantial part of the barrier is
crossed during the cleavage and formation of covalent bonds. This indicates that, at this
moment, the impact of the solvent on the dynamics is minimal, the friction is low, and
the inertial term becomes significantly important. Consequently, the use of underdamped
or generalized Langevin models may be appropriate near the top of the barrier.

However, in wells, the behavior of the system is different. For solute compounds in
solution or intramolecular reactions that involve exploring various conformers to achieve
a reactive state, the dynamics is more significantly influenced by friction with the solvent.
This suggests that a suitable model to accurately capture the full dynamics of a chemical
reaction might include a position-dependent friction coefficient or a memory kernel [96].
The inference of this type of model for chemical processes is challenging and is still under
investigation and will be discussed in detail in the results section.

This chapter concludes the methodology part of this thesis in which we introduce
all tools used for studying chemical reactions in solution, from molecular dynamics and
enhanced sampling techniques to kinetic inference.

66



Part II

Applications
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Chapter 4

Application to a SN2 reaction in
solution

4.1 Presentation of the article

This article is the result of work initially performed by a former Ph.D. student of our
research group, Théo Magrino. As he made a significant part of the calculations and
writing, he remains the first author. During my first year, part of my work involved
familiarizing myself with the tools he developed and verifying the reliability of the article.
Some of the proposed results have been reproduced for reliability, and some have been
updated. Since the article had unresolved issues that prevented its publication, we worked
to complete the missing information and reformat a significant portion of the article. We
also changed some of the notation and formulas for better readability.

This article presents a complete workflow for the study of chemical reactions in so-
lution, from unbiased AIMD to the Umbrella Sampling simulation process. The article
emphasizes two main aspects of this protocol: the efficiency of the transition path sam-
pling process to sample the reaction pathway and reach the MFEP and the quality of
the generated data-driven PCV. This article is a milestone as it serves as a first test of
the quality of our protocol and an exploratory article in which we examine the limits and
possibilities of the tools we used and experiment with new ones.

In the initial version, this article was also supposed to test the feasibility of using
replica exchange umbrella sampling, but the results this method produced for our system
led us to include this study in the SI for now and to develop further work focused on this
powerful tool in future studies.

This article has already been published in J. Phys. Chem. A. The supporting infor-
mation associated with it is in Appendix B.

68



Critical Assessment of Data-Driven versus
Heuristic Reaction Coordinates in Solution

Chemistry
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Abstract

Reaction coordinates are an essential ingredient
of theoretical studies of rare events in chemistry
and physics, since they carry information about
reaction mechanism and allow the computation
of free-energy landscapes and kinetic rates. We
present a critical assessment of the merits and
disadvantages of heuristic reaction coordinates,
largely employed today, with respect to coordi-
nates optimized on the basis of reliable transi-
tion path sampling data. We take as test bed
multi-nanosecond ab initio molecular dynam-
ics simulations of chloride SN2 substitution on
methyl chloride in explicit water. The compu-
tational protocol we devise allows the unsuper-
vised optimization of agnostic coordinates able
to account for solute and solvent contributions,
yielding a free energy reconstruction of quality
comparable to the best heuristic coordinates,
without requiring chemical intuition.

Introduction

Molecular dynamics (MD) simulations repre-
sent a powerful tool for the study of chemi-
cal reactions, able to account for temperature,
pressure, entropy and solvent effects. The two
main limitations of this methodology are the
limited accuracy of the computationally afford-

able approximations of quantum-mechanical in-
teratomic forces, and the “rare event problem”,
i.e., the wide gap between computational and
experimental timescales. MD trajectories based
on density functional theory (DFT) reach today
the nanosecond timescale for systems including
up to about one thousand atoms.1

To overcome this second limitation, two main
classes of techniques have been developed,
namely transition path sampling and biased
simulations.2 Especially in the latter class, a
crucial step consists in the identification of
collective variables (CVs), also called reaction
coordinates (RCs), able to track the detailed
mechanism of the transformation: the accuracy
of the predicted barriers and rates strongly de-
pend on the quality of the RC. More generally,
besides the interest in the context of simula-
tions, the RC is an important tool for getting
human insight into the relevant chemical reac-
tion features.
In principle, a single RC is sufficient to de-

scribe (and to accelerating the sampling of)
a chemical reaction connecting two metastable
states via a single mechanism: the optimal
RC is customarily identified with the commit-
tor function ϕ(x), i.e., the probability to reach
products before reactants when evolving from
a given atomic configuration with initial equi-
librium velocities.3–6 In practice, systems com-

1
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prising hundreds of molecules pose a challenge
to the identification of such optimal coordinate:
for instance, experimental evidence indicates
that the solvent is able to play an important role
– nontrivial to rationalize – in defining the reac-
tion mechanisms.7 On the other hand, a large
number of heuristic CVs could be defined based
on chemical intuition.
An interesting class of reactions in the con-

text of the present discussion is represented
by halides nucleophilic substitution on alkyl
halides, in particular the single-act SN2 asso-
ciative bimolecular mechanism, one of the first
reactions receiving detailed attention in modern
chemistry.8,9 In this class, chloride SN2 substi-
tution on methyl chloride, CH3Cl + Cl– −−→←−−
CH3Cl+Cl– has been the object of experimen-
tal work in gas phase and in solution, especially
in water.10–14

In this reaction, reactant and product states
are equivalent, implying a zero free-energy dif-
ference between them. The inability to dis-
tinguish reactants from products poses a prob-
lem to direct kinetic measurements: the activa-
tion free energy in water has been estimated at
300 K via empirical extrapolation of the mea-
sured barriers of similar non-symmetric reac-
tions as 26.5 Kcal/mol in Ref.,15 from Mar-
cus theory16 with a linear formulation in terms
of known thermodynamic constants, and 26.6
kcal/mol in Ref.17 from Swain-Scott equation18

(no error bars reported). We will refer to this
value as ”experimentally-derived”.19 Forward
and backward rate values have been on the
other hand measured for the asymmetric SN2
reaction CH3Br+Cl– −−→←−− CH3Cl+Br– , yield-
ing k1 = 4.13 ± 0.22 and k−1 = 0.93 ± 0.06
(10−7s−1), respectively.20

Considering its relative simplicity, methyl
chloride-chloride SN2 substitution has therefore
been a guinea pig of theoretical chemistry since
early works on frontier orbitals by Kenji Fukui,
Nobel price in chemistry.21 The reaction has
been the object of early application of differ-
ent techniques, from variational transition state
theory22 to Grote-Hynes theory,23–26 as well as
metadynamics more recently.27

Solvent effects can be intuitively expected to
be significant in this reaction, due to the redis-

tribution of electronic charge taking place along
the transition. Indeed, experiments showed
both qualitative and quantitative changes be-
tween gas-phase and solution free energy pro-
files.15,28–30 In solution, the presence of the sol-
vent makes the reactant/product state, rather
than just one meta stable state, but a com-
position of multiple meta-stable states issued
of the different number of intercalated water
molecules, and one stable state that correspond
to the fully screened Cl–/CH3Cl attraction.
Second, the transition state – less polar than
reactants and products – is destabilized in wa-
ter solution, due to weaker solute-solvent bond-
ing,11,12,15,31,32 consistently with the trend of de-
creasing activation barrier with decreasing sol-
vent polarity.15

Notwithstanding their important role, it is
unclear how to include solvent degrees of free-
dom into the RC. As a result, for convenience
reasons most simulation studies traditionally
employed a simple RC excluding altogether
the solvent variables, in the form of the dif-
ference between the two carbon-chlorine dis-
tances (thus capturing the evident symmetry
of the reaction), denoted d1 − d2 in our work.
This heuristic, hence suboptimal RC definition
is a potential source of hysteresis in enhanced
sampling simulations, i.e., of insufficient equi-
libration of the solvent degrees of freedom on
the short timescale of the simulation.33 For in-
stance, in Langevin models of reactions based
on the Grote-Hynes theory,23,24 it has been
shown that the solvent non-instantaneous re-
arrangement to solute transformation leads to
significant memory effects in the friction and
noise forces of the projected dynamics. Clearly,
the assumption of timescale separation between
the solvent and solute degrees of freedom inher-
ent in the choice of d1− d2 as RC is not devoid
of risks.
Reports in the literature indicate two is-

sues that render challenging the computational
study of the methyl chloride-chloride SN2 reac-
tion in water. The first issue concerns the lim-
ited accuracy of interatomic force calculations,
the second issue the limited statistical precision
of free-energy calculations (that rely on the er-
godic behavior of many-body MD trajectories,
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a feature difficult to assess). Clearly, in pres-
ence of unsatisfactory results it can be ardu-
ous to disentangle the contributions of the two
problems.
Since the 1980’s, several computational stud-

ies were able to reproduce with good accuracy
the experimentally-derived free-energy barrier
of 26.6 kcal/mol at 300 K15,17 by adopting
atomistic force fields28 or a combination of
force fields and quantum mechanical calcula-
tions (QM/MM).34–36 However recent studies
pointed out the sensitivity of barrier values to
the chosen QM/MM method,37 ranging from
38 kcal/mol37 to 14-15 kcal/mol,38 respectively.
For instance, Ref.37 emphasizes the strong in-
fluence of the classical charge assignment on the
transition state energy. When computationally
feasible, like in the case of the reaction under
scrutiny, a fully quantum description of the sys-
tem is expected to be more robust, provided
system size-effects are avoided with the use of
sufficiently large simulation boxes.
As stated above, the precision and accuracy

of computational results (mechanisms, free en-
ergies and rates) depends critically also on the
enhanced sampling protocol, which in turn re-
lies upon the choice of RCs for accelerating the
dynamics and analyzing the results.2,39 For in-
stance, an early fully-DFT study pointed out
solvent-induced hysteresis effects (as large as 5
kcal/mol) on the calculation of free-energy pro-
files with thermodynamic integration when us-
ing solvent-less RCs and few-picoseconds tra-
jectories.33 Two approaches to avoid such arti-
facts would be the use of longer simulations (en-
suring proper equilibration), without knowing
how much exceeding time would be necessary,
and the use of optimized RCs,27,40 that should
in principle explicitly include solvent degrees of
freedom. The latter path has been recently ex-
plored via likelihood optimization of RCs start-
ing from transition path sampling data, albeit
only at the level of analysis and without testing
the candidate RC with the application of bias
to accelerate and sample the reaction.38

In the present work, we propose a protocol
aimed at exploring reaction pathways and re-
construct free energy landscapes for chemical
reactions in solution without employing any

educated guess about the mechanism or the
RC. We believe this to be an important task,
since a broad application of MD simulations
to obtain structural, thermodynamic and ki-
netic insight on a wide range of reactions will
remain unreachable until reliable unsupervised
approaches will be demonstrated.
Taking the paradigmatic case of the methyl

chloride-chloride SN2 reaction in water as
benchmark, we show that it is possible to start
from the sole knowledge of reactants and (pu-
tative) products and achieve detailed quantita-
tive insight on the reaction by applying fully
ab initio MD and a battery of state-of-the-art
enhanced sampling methods. A preliminary
agnostic exploration of reaction mechanisms is
performed with metadynamics combined with
flexible CVs. The latter track changes of coor-
dination pattern between reactants and prod-
ucts,41 allowing to discover favorable transition
pathways without making any hypothesis on
them. This kind of CVs can address a wide
variety of chemical reactions in solution on the
same footing, as showed in a recent study of
the Strecker synthesis of glycine,42 a complex
multi-step and multi-component chemical reac-
tion. Next, solid and reliable transition path
sampling techniques allow refining in a fully un-
biased way the mechanism found by metady-
namics. At this stage, the pathways can be con-
fidently analyzed to identify a RC able to track
the detailed structural changes associated with
the transition, and such RC is finally employed
to reconstruct a free energy profile with um-
brella sampling and weighted histogram analy-
sis.
Our approach is data-driven and removes

at the best human subjective biases from the
study of chemical reactions. The pertinence
and effectiveness of the protocol is tested in
a twofold way: by assessing the quality of the
predicted RC via machine learning techniques
(i.e., principal component analysis and likeli-
hood maximization of the committor descrip-
tion4), and by comparing with traditional RC
proposals based on chemist intuition or trial
and error. Merits and disadvantages of the
two philosophies, data-driven versus heuristic-
driven, are critically discussed.
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Theoretical Methods

Our protocol for the study of chemical reactions
employs finite-temperature ab initio molecular
dynamics simulations, and consists of two com-
plementary steps, addressing the exploration of
mechanisms and their statistical sampling:

• Mechanism exploration: transition path-
ways are agnostically explored using
metadynamics (MTD) based on low-
resolution two-state path CVs that re-
quire only specification of reactants and
putative products; the reaction mecha-
nism is further refined with transition
path sampling (TPS), to construct pre-
cise multi-state path CVs.

• Free energy calculation: efficient umbrella
sampling (US) simulations based on the
latter CVs are used to compute precise
free-energy landscapes via weighted his-
togram analysis.

The protocol is schematically represented in
figure 1, the first part with blue blocks and the
second part with green blocks.

Molecular dynamics simulations

All molecular dynamics simulations were per-
formed at the DFT level with the Perdew–
Burke–Ernzerhof functional,43 as implemented
in the CPMD code.44 We employed a period-
ically repeated cubic box of 14.48 Å with an
atomic composition corresponding to CH3Cl +
Cl– + K+ + 98H2O. The resulting density
is 1.034 kg/L, with a concentration of so-
lutes of 0.547 mol/L. We used Martins-Troullier
pseudopotentials,45 a plane-wave expansion of
Kohn-Sham orbitals up to a cutoff of 80 Ry and
an orbital optimization convergence of 10−5.
Born-Oppenheimer molecular dynamics simu-
lations were performed with a time step of 0.48
fs, in the canonical ensemble (NV T ) at 300 K
based on the Nosé-Hoover thermostat for each
ionic degree of freedom with a 3000 cm−1 fre-
quency and chain length equal to 4. Hydrogen
atomic mass was set to 2 a.u. to increase nu-
merical stability.

We generated a total of ∼100 ps MTD
trajectories, ∼1600 ps TPS trajectories and
∼1200 ps US trajectories. All input de-
tails are freely available on PLUMED-NEST
(www.plumed-nest.org), the public repository
of the PLUMED consortium.46

Topology-based path collective
variables

Enhanced sampling simulations were performed
using a modified version of the plugin Plumed
1.3.47 A guide to the use of the CVs em-
ployed in this work, as well as source code
and example input files for Plumed 1.3 and
Plumed 2.x can be freely downloaded from
https://sites.google.com/site/fabiopietrucci
and from PLUMED-NEST (www.plumed-
nest.org,46).
Coordination pattern-based path CVs41,48 are

used as an effective compromise between the
need of a high-dimensional space of coordina-
tion numbers to discriminate structures, and
the need of a low-dimensional projection to
sample efficiently the free-energy profile.49 The
CVs are defined starting from reference atomic
structures Xα, with α ∈ J1, NK, tracking the
progress of a chemical reaction. We employed
N = 2 for low-resolution CVs in the explorative
part and N = 12 for high-resolution CVs in the
quantitative part of the protocol.
Indicating with x(t) the MD configuration at

a given time, path CVs are defined as :





s(t) =

∑N
α=1 α× exp(−λD[x(t),Xα])∑N

α=1 exp(−λD[x(t),Xα])

z(t) =
−1
λ

log
∑N

α=1 exp(−λD[x(t),Xα])

(1)
where D[x(t),Xα] is a distance metric based
on patterns of coordination numbers, as intro-
duced in Ref.:41

The coordination function ciσ approximately
counts the number of atoms of a set σ (here,
each of the available chemical elements) con-
nected to a given atom i (here carbon and chlo-
rine atoms), and is expressed based on inter-
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Figure 1: Schematic algorithm depicting our simulation protocol. Dark green blocks (I, II, III)
indicate initialization of the protocol. Blue blocks (V, VI, VII) indicate agnostic explorative steps.
Light green blocks (IX, X) indicate quantitative sampling steps. Pink blocks (IV, VIII) indicate
pivotal steps were path CVs are defined.

atomic distances dij :

ciσ =
∑

j∈σ

1−
(

dij
d0

)8

1−
(

dij
d0

)14 (2)

i.e., a sum over switching functions monotoni-
cally increasing from 0 to 1 for decreasing dis-
tance dij The parameter d0 was set to 2.2 Å for
Cl-Cl, Cl-C, Cl-O, Cl-K and C-K pairs, 1.8 Å
for C-O and Cl-H pairs and to 1.5 Å for C-H
pairs.
As an illustration, reference coordination ma-

trices ciσ(Xα) corresponding to reactants an
products of two-state path CVs are presented
in figure 2. In the case of locally-stable states,
matrices used as references correspond to av-
erage coordination values over equilibrium MD
trajectories.
For the case N = 12, D[Xα,Xα+1] is approx-

imately equal for each α (see below for the se-
lection of the reference structures). Both for
N = 2 and for N = 12, the parameter λ is
set from the relation exp(−λD[Xα,Xα+1]) ≈
0.1, that ensures relatively smooth free energy
landscapes and a good resolution of different
atomic configurations.48 For comparison, when
λ → ∞, s, z become discontinuous, assum-
ing the value s = α of the closest reference
structure, with z = D[x(t),Xα]; when λ → 0,
the variables become unable to resolve different

structures. Different abbreviations for the most
important CVs in these work are summarized
in table 1.

Table 1: Abbreviations used for CVs in this
work.

di C-Cli distance

c(i, σ) coordination number of atom i with
respect to atoms of set σ

ci c(Cli,C) coordination number

s2, z2 low-resolution two-state path CVs

s12,MCA, z12,MCA high-resolution 12-state path CVs
built from single committor analysis

trajectory issued from MTD

s12,TPS, z12,TPS high-resolution 12-state path CVs
built from TPS trajectories

Metadynamics exploration of re-
action mechanisms

Metadynamics is adopted as an efficient ap-
proach to accelerate the escape from the free-
energy minimum corresponding to reactants
until reaching the products minimum. In this
technique, a history-dependent external bias is
added to the interatomic potential, in the form
of sum of Gaussian functions localized along the
trajectory in CV space.50,51 This allows explor-
ing a putative reaction mechanism and transi-
tion state region, that are expected to be close
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(a) Ref table for reactants CH3Cl1 + Cl−2 (b) Ref table for products CH3Cl2 + Cl−1

Figure 2: Reference coordination matrices of two-state s2 and z2 path CVs employed in meta-
dynamics simulations. Values are averages over reactants equilibration, with Cl1 and Cl2 simply
switched between reactants and products.

to the optimal ones – i.e., those sampled with
high probability in a hypothetical unbiased sim-
ulation of sufficient duration – under the hy-
pothesis of slow bias deposition along the opti-
mal RC.
In practice, the high computational cost of

ab initio MD limits the slowness of bias depo-
sition, while our choice to avoid any educated
guess on the transition mechanism – an output
and not an input of our protocol – excludes the
possibility of knowing the optimal RC before-
hand. As a compromise, we employ a flexible
definition of path CVs that, albeit lacking any
information about the pathway, was proven in
previous works to track efficiently a range of
chemical reactions in water. The identification
of the optimal RC is performed in a later step of
the protocol, after TPS refinement of the mech-
anism.
We adopted low-resolution two-state path

CVs s2 and z2 built from the equilibrated re-
actants and products as reference states (step
IV in figure 1). The flexibility of the second co-
ordinate allows exploration of different transi-
tion states, i.e., different reaction mechanisms,
within the same simulation. We have shown in
ref.41 and42 that this technique can result in the
discovery of intermediate metastable states that
have not been specified in the path CVs defini-
tion. The Gaussian parameters are σs2 = 0.03,
σz2 = 0.05, with a height of 3.14 kcal/mol
(0.005 au) and a deposition interval of 50 MD
steps (24 fs).
To limit the exploration within the relevant

region of configuration space, we applied a semi-
parabolic potential restraining the distance be-
tween the carbon atom and the entering chlo-

rine when exceeding 7.5 Å, with force constant
equal to 1.8 kcal.mol−1.Å−2. This limit corre-
sponds approximately to three solvation shells
(defined as local minima in chlorine-oxygen ra-
dial distribution function), and 59 integrated
water molecules in the corresponding radius
around chlorine.
The MTD simulation is stopped after observ-

ing the first reactive transition, in order to pro-
vide candidate transition state structures with-
out attempting a quantitative estimation of the
free energy landscape.

Committor analysis and transition
path sampling

Starting from the first putative transition path-
ways obtained by MTD, transition state con-
figurations are identified with committor anal-
ysis. A set of 20 atomic configurations are ex-
tracted from the barrier region (i.e., the CV-
space region between the reactants and prod-
ucts minima), and from each configuration 20
to 40 unbiased MD trajectories are generated
with initial velocities randomly drawn from the
Maxwell-Boltzmann distribution at T = 300 K.
The fraction of trajectories relaxing into prod-
ucts is an estimate of the committor function,
and a value close to 0.5 indicates a member of
the transition state ensemble.
Within the latter ensemble, in principle,

structures can have different Boltzmann proba-
bilities: in general, the metadynamics bias ap-
plied along a non-optimal RC does not guar-
antee that the most probable transition state
structures are systematically sampled. How-
ever, for a precise identification of the re-
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action mechanism and of the optimal RC it
is necessary to characterize the most proba-
ble transition state configurations as well as
the most probable reactive pathways passing
through them. For this task, techniques be-
longing to the TPS family are the golden stan-
dard.52,53 Such techniques iteratively sample
members of the transition state ensemble, relax-
ing towards the members that have the highest
Boltzmann probability: starting from an initial
phase-space point, a new point is generated ac-
cording to some procedure, and short unbiased
trajectories are shot forward and backward in
time, inspecting if the resulting path connects
reactants to products.
For TPS initialization we employ two commit-

tor analysis trajectories starting from the same
MTD point, one committed to reactants, the
other committed to products, joined to form
a single reactive path (inverting the time di-
rection in one of them), setting the time ori-
gin at the shooting point. This initial path is
indicated as X ≡ {x(−ti)..x(0)..x(+tf )}. We
tested two different TPS algorithms:
(i) Aimless shooting (AS).54 We employ here

the two-point flexible length version of aimless
shooting, proposed in Refs.55,56 Denoting ∆t
the time step parameter the algorithm proceeds
as follows:

1. Select x(−∆t) or x(+∆t) with probability
1/2 from the last accepted trajectory as
new shooting point.

2. Draw velocities from the Maxwell-
Boltzmann distribution (at 300 K) and
propagate two trajectories, one forward
in time, one backward, until they reach
reactants or products.

3. If one of the trajectories reached reactants
and the other products, accept the shoot-
ing point and the two trajectories, joining
them into a new reactive path X setting
t = 0 at the shooting point and inverting
time for the backward part.

4. Iterate.

(ii) Shooting from the top (SFT).57 After se-
lecting s2 as order parameter and a given inter-

val [sA, sB] as the barrier-top region, the algo-
rithm proceeds in the same way as the previous
one, with only a modification in the first step
of each iteration:

1. Select a point x(t) ∈ X such that
s2(x(t)) ∈ [sA, sB], with uniform proba-
bility, as new shooting point.

In both algorithms, products are defined by
s2 > 1.8, and reactants by s2 < 1.2. In SFT
TPS, we slightly modified the acceptance rule
compared to ref.,57 as critically discussed in
supplementary materials.
We performed AS testing different ∆t=2.5,

10 and 15 fs (denoted AS2.5, AS10 and AS15,
respectively). We note that both too short as
well as too long ∆t are expected to reduce AS
efficiency, due to slow diffusion in configuration
space or to low acceptance of new configura-
tions, respectively (see the Results section).
We performed SFT with different s2 ranges,

respectively [1.30,1.70], [1.35,1.65] and [1.45,
1.55] (denoted SFT1.30−1.70, SFT1.35−1.65 and
SFT1.45−1.55, respectively). SFT1.35−1.65 was re-
tained for further analysis, and has been per-
formed twice, because of large uncertainties in
likelihood estimates (see below).
For each TPS algorithm and each parameter

choice, ∼ 300 shooting steps have been per-
formed, each one of typical duration 2×0.15 ps.
For the two SFT1.35−1.65 simulations, referred to
as set A and B, 520 shootings have been per-
formed. Approximately ∼ 200 shootings were
accepted for each set.

Definition of high-resolution
multi-state path CVs

The choice of the number of reference structures
in the definition of path CVs leaves the flexibil-
ity to specify a reference pathway with lower
or higher resolution. The initial metadynam-
ics exploration (based on two-state path CVs
s2 and z2) as well as the committor analysis
and TPS simulations provide detailed informa-
tion about the reaction mechanism. Before pro-
ceeding to the extensive sampling of free-energy
landscapes (step IX figure 1), this information
is included in the definition of high-resolution
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multi-state path CVs, using 12 references com-
ing from either metadynamics-based committor
analysis (denoted s12,MCA and z12,MCA), or from
TPS SFT1.35−1.65 trajectories (denoted s12,TPS

and z12,TPS). This corresponds to step VIII in
figure 1.
N = 10 reference structures are extracted

from a selected transition pathway, employing
the algorithm and code proposed in Ref.,42 with
a minor modification, as described here. First,
N − 2 structures (k = 2, ..., N − 1) are ran-
domly chosen and ordered according to s2. The
first (k = 1) and last (k = N) points, are cho-
sen as the coordination patterns of reactants
and products, respectively, averaged over equi-
libration trajectories. A fictitious elastic en-
ergy is associated to the N−1 distances among
consecutive references Dk,k+1 (see equation ??,
k ∈ J1,N−1K), with the rest length of each seg-
ment of the elastic band equal to the average
length of all segments, while a second contri-
bution accounts for angles θk formed between
consecutive path segments:

E =
N−1∑

k=1

(
Dk,k+1 −

1

N− 1

N−1∑

l=1

Dl,l+1

)2

+ β
N−1∑

k=2

[max(θk − θthresh, 0)]2
(3)

The first term favors approximately equidistant
points in the space of coordination patterns,
whereas the second term tends to reduce the
length of the chain by favoring a low curvature.
The parameter β governs the relative impor-
tance of the angular part. A Monte-Carlo op-
timization of the energy function is performed,
with moves consisting in selecting a new point
for reference k by choosing a random structure
between references k − 1 and k + 1. The ac-
ceptance criterion was standard Metropolis ac-
ceptance criterion, using a variable temperature
cooling down as the energy decreases, defined
as T = αElast, where Elast is the energy of
the last accepted configuration. For s12,MCA we
used α = 0.45, β = 0.45, and θthresh =0°.
For s12,TPS we used α = 0.5, β = 0.6, and
θthresh =36°. Typically about 500 000 iterations
are sufficient to observe the stabilization of the

reference set. We remark that convergence is
greatly improved, by allowing the random swap
of k, k+1. Compared to the algorithm in Ref.,42

introduction of the parameter θthresh also im-
proved convergence. The algorithm is tolerant
to variations in the parameters α, β and θthresh,
reliably finding a set of references where all side
by side distances are equivalent and all angles
are lower than θthresh.
Eventually, two artificial reference patterns

are added before the first and after the last
reference (leading to N = 12), by linearly ex-
trapolating the first and last chain segments, to
avoid metastable states to appear as spikes in
the free-energy landscape.
Figure 3 represents the selected reference

structures in the (c1,c2) plane.

Figure 3: Representation of reactive trajecto-
ries in the (c1,c2) plan: the red curve represents
a pair of committor trajectories shot from meta-
dynamics, while the green curves represent a
set of transition path sampling trajectories (re-
ferred to as SFT1.35−1.65 in the text). Orange
and violet points represent the reference con-
figurations selected by the algorithm to build
path CVs s/z12,MCA and s/z12,TPS, respectively
(see Methods section). The blue line empha-
sizes that c1 + c2 never falls below 0.65, due to
the concerted nature of the mechanism.
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Transition path sampling-based
optimization of the reaction co-
ordinate

TPS trajectories contain rich and unbiased in-
formation about the mechanism and the kinet-
ics of the reaction: besides being used to de-
fine multi-state path CVs, they were employed
as input data for machine learning techniques
aimed at identifying the optimal RC in a given
subspace of configuration space.
First, we performed principal component

analysis (PCA) of accepted reactive trajectories
harvested from SFT TPS with s2 ∈ [1.35,1.65]
(data sets A and B), using as variables the set of
coordination numbers in figure 2. We employed
the standard python library scikit-learn,58 with
full svd solver. Data were centered but not nor-
malized, as all variables are coordination num-
bers, adimensional and with the same physical
meaning.
Second, we analyzed the same trajecto-

ries (limited to data set A) with the non-
inertial likelihood optimization scheme for
the RC..4,54,55 The likelihood is evaluated for
TPS shooting points: each configuration corre-
sponds to specific values of a given set of CVs
{CV1 .. CVN}, employed to define a reaction
coordinate r(x) = a0+

∑
i aiCVi(x) as a linear

combination with coefficients {ai}. The func-
tional form p = (1+erf(r))/2 for the committor
probability is also assumed, corresponding to
a parabolic approximation of the barrier. The
likelihood function is defined as the probability
of predicting the observed committment results
with the trial RC r:

L =
∏

reac

p(r(xreac))
∏

prod

[1− p(r(xprod))] (4)

In equation (4), xreac and xprod are initial
shooting configurations committed respectively
to reactants and products. The likelihood
L(a0, a1, ...aN) is maximized to best approxi-
mate the true committor function.
Initially we computed the likelihood of sin-

gle CVs to rank their performance as RC (see
the Results section for details). We also opti-

mized combinations of coordination numbers.
In the latter case, 12 independent descriptors
were considered out of 15 in figure 2, since
there is no carbon/carbon coordination and
c(Cl1,Cl)=c(Cl2,Cl), c(C,Cl1)+c(C,Cl2)=c(C,Cl).
In the following we use c1 and c2 as abbrevia-
tions of c(C,Cl1) and c(C,Cl2).
When comparing quantitative results from

likelihood analysis, we consider as score for each
putative RC the ratio between log(L) and the
significant scale (1/2) log(N), N being the num-
ber of observations, called Bayesian information
criterion (BIC): when comparing a trial RC in-
cluding one more CV in the linear combination
than another one, the normalized log-likelihood
variation must increase more than one unit to
be a significant improvement, otherwise the in-
crease is attributed to overfitting.38,54,56,59

We set the zero of the log-likelihood axis as
a fictitious RC formed by associating random
numbers with atomic configurations, hence per-
fectly decorrelated from the progress of the
reaction: we thus define the standard log-
likelihood score (SLLS) as

SLLS =
logL(r)− logLrandom

1
2
logN

(5)

We estimated statistical errors due to finite
TPS sampling by discarding the first half of ac-
cepted TPS shootings (as possibly correlated
to the initial shooting point), dividing the sec-
ond half in two equal parts and analyzing them
separately. Applied to each of the data sets A
and B, this procedure leads to 4 SLLS scores for
each RC tested, and the sampling error is there-
fore estimated as the standard error (standard
deviation divided by

√
3).

Free energy calculations

A series of umbrella sampling60 simulations
were performed, systematically restraining the
high-resolution multi-state s path CV with
parabolic potentials of the form 1

2
k(s − s0)

2,
starting from initial configurations obtained by
either committor analysis or TPS. This corre-
sponds to step VI and VII in figure 1. z is ex-
pected to fluctuate around the reference path-
way (see e.g. Ref.42), however it is important
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to detect possible discontinuities along this di-
rection between adjacent US windows, leading
to incorrect free energy estimation (see below).
An example can be seen in figure 9-(a).
We first adopted 60 US windows equally-

spaced by ∆s in the s direction and spanning
the whole reaction, with k = kBT/(∆s/2.5)

2.
This choice leads to good overlap between prob-
ability distributions in adjacent windows in the
case of a flat free-energy profile. In case of local
gaps between the distributions, typically due to
large variations of the free-energy gradient as
found close to the barrier top, the customary
procedure consists in adding intermediate win-
dows, possibly with stiffer parabolic potentials
(see the Results section for specific cases).
US trajectories are unbiased and combined to-

gether into a free energy profile using weighted
histogram analysis (WHAM).61 In order to ob-
tain two independent free-energy estimations
with different computer codes, we adopted the
codes developed by Alan Grossfield62 and An-
drew L. Ferguson,63 respectively: given a max-
imum discrepancy of only 2 kcal/mol along the
profiles. We employed 150 bins in s-space and
a convergence threshold of 10−7 kcal/mol.
The convergence of US sampling was evalu-

ated in the following way. For each window, we
discarded the first half as equilibration and used
the second half, splitting it again into two equal
parts to compute two free energy profiles with
WHAM. Statistical error bars on free energy are
estimated as the difference between these two
profiles. We aimed to reduce the error bars to
< 1 kcal/mol, resulting in a duration of about
20 ps for each US window.
Since the free-energy profile is the loga-

rithm of a marginal equilibrium probability
density, different free-energy profiles are ob-
tained for a same process when using differ-
ent CVs.6 Thermodynamically-meaningful es-
timates of free-energy differences require there-
fore the integration of the Boltzmann probabil-
ity density over the relevant regions in phase
space:

FB−FA = −β−1 log
PB

PA

= −β−1 log

∫
B
dse−βF (s)

∫
A
ds e−βF (s)

(6)

In practice, numerical integration is per-
formed over a regular grid of resolution δs=0.15
in CV space for s12,TPS and s12,MCA, and δ(d1−
d2)=0.2 Åfor d1 − d2. In the case of the free-
energy change of the reaction ∆rF , regions A
and B correspond to the local minima of reac-
tants and products, respectively (the integrals
converge quickly with increasing F above each
minimum). In the case of barriers ∆F ‡, the
region of the transition state is defined as the
grid bin (of width δs) with the highest F value.
The definition is rather insensitive to reason-
able variations in the value of δs. Results are
reported in Table 2.

Results and Discussion

Exploration of the reaction mech-
anism

A first exploration of the reaction mechanism is
obtained using metadynamics with two-states
path CVs s2 and z2. The technique excels at
quickly escaping from deep local minima, and
our choice of CVs – built solely from reactant
and product structures – contains no educated
guess about the transition state and the reac-
tion mechanism, thus allowing the system to
find its own way across the phase space.
The transition happened after about 12 ps

(see figure 4), and the simulation was stopped
at that moment: in the absence of multiple
recrossings producing a stationary probability
distribution, the MTD bias is not a quantitative
estimate of the free-energy landscape. Never-
theless, the maximum level of the bias accumu-
lated until the transition time provides a first
information about the forward barrier of the re-
action, typically an overestimation that is less
severe the slower the bias deposition. In our
case, such maximum level is about 30 kcal/mol,
which is indeed not far from the barrier accu-
rately estimated with US, i.e., 23-24 kcal/mol
(see below).
Starting from the reactive trajectory obtained

with MTD, committor analysis allows to iden-
tify transition states among structures sampled
in the barrier region. In addition, committor
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analysis is based on the generation of unbiased
trajectories, which are presumably closer to the
MFEP than MTD trajectories. Committor tra-
jectories plotted in figure 4-(b) show the the
limitations of s2 as putative RC. Ideally, all
transition state structures should be centered
at s2=1.5, given the symmetric nature of the re-
action. Trajectories starting from a MTD con-
figuration at s2 ∼ 1.5 on figure 4 (green) in-
deed have committor probability of 0.46, how-
ever, it is possible to find a configuration at
s2 = 1.6 with a committor probability of 0.33
(red), whereas a value > 0.5 is ideally expected.
This shows that s2 alone is not a monotonic
function of the committor, hence it is a sub-
optimal RC.
Shooting points sampled from the MTD tra-

jectory, due to the bias applied in the latter,
are not guaranteed to belong to the most likely
transition paths that would be sampled by un-
biased dynamics. This motivates the TPS step
in our protocol: starting from the MTD trajec-
tory, the equilibrium transition state ensemble
is systematically targeted, yielding improved in-
formation about the reaction mechanism. The
results are shown in figure 5: TPS yields a set of
transition state configurations that, compared
with the MTD candidate, are more symmet-
rically distributed with respect to the carbon-
chlorine coordination numbers c1 and c2, as ex-
pected.
In principle, different observables might be

employed to quantify TPS efficiency, as shown
in figure 6. Computing the distance between
the initial transition state and the last accepted
TPS step in the space of coordination numbers
entering the path-CV metric does not allow to
rank the different TPS protocols. Conversely,
the maximal distance (in the same space) con-
sidering all previous TPS steps, as well as the
total cumulative time of accepted trajectories,
indicate that in AS the optimal interval ∆t be-
tween configurations is about 10 fs, while SFT
appears at least as efficient as the optimal AS
and less sensitive to parametrization. We note
that the latter criteria correlate with the radius
of the transition state ensemble and with the
diffusion time therein, respectively.
Observation of plateaus in the distance plots

Figure 4: Representation of metadynamics and
committor analysis steps of the protocol (IV
and V in figure 1), in the (s2,z2) plane. The
unconverged metadynamics bias at the end of
the exploration (12 ps) is represented as a back-
ground: In panel (a), contour lines are traced
at the level of 5 kcal/mol bias at growing time
(1, 4, 11, and 12 ps). In panel (b), only the last
two isocontours are represented, together with
a sample of committor analysis trajectory. Tra-
jectories originated from green trial point com-
mit to reactants and products with ratio 20:17,
indicating a good candidate for transition state,
whereas starting from the red or orange point
the trajectories are committed to reactants or
products, respectively.
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Figure 5: Structural features of transition
state configurations obtained from metadynam-
ics and transition path sampling. (a) Repre-
sentation, in the plane of carbon-chlorine coor-
dination numbers, of metadynamics and com-
mittor analysis trajectories selected for defin-
ing s/z12,MCA, accepted shooting points of two
sets of transition path sampling simulations
(SFT1.35−1.65) and corresponding average coor-
dinations. (b) Transition state configurations
extracted from the committor analysis shooting
point (purple) and from the transition state en-
semble of data set A in the upper panel (blue).
(c) Structural variability of the transition state
ensembles from data sets A and B.

of figure 6-(a)&(b) suggests that TPS might
have reached convergence. To further explore
this issue, we performed PCA (based on coor-
dination numbers) and clustering of TPS ac-
cepted shooting points: no clear cluster struc-
ture could be found, indicating an homoge-
neous transition state ensemble and thus re-
action mechanism (see supplementary informa-
tion for details). Taken together, these results
indicate also that MTD explored transition
states close to the optimal ones. PCA of ac-
cepted shooting points identify 3 or 4 directions
as the most relevant ones: considering maximal
plateau values in figure 6-(b) as the radius of
the volume spanned by the sampled transition
state ensemble, the efficiency ratio between the
best and the worst TPS algorithms lies between
(1.0/0.3)3 ∼ 40 and (1.0/0.3)4 ∼ 120.

Reaction coordinates evaluation

We harvested objective information about op-
timal RCs from the reliable data set formed
by TPS trajectories. We remark that intu-
itive features of the reaction are customarily
included in heuristic RC definitions: in particu-
lar the mirror-like symmetry between reactants-
side and products-side, with the transition state
“in the center”, suggests the symmetric role of
d1, d2 or c1, c2. However, here we do not assume
any knowledge about symmetry and we apply
agnostic data-driven approaches to RC identifi-
cation, to be compared with heuristic RCs (see
for instance Ref.64 for a similar viewpoint in the
context of hydrogen-bond definition).
We performed PCA of reactive trajectories

sampled with SFT1.35−1.65 (data set A), using
coordination numbers as input descriptors, to
obtain basic insights on the configuration space
spanned by the reaction. As shown in figure 7,
the first principal component already explains
72% of the total variance. This component,
very well correlated with c1−c2, could be there-
fore interpreted as a first approximation of the
RC, in agreement with chemical intuition.
The second and third principal components

correspond to c(Cl1,H)-c(Cl2,H) and c(Cl1,H)
+c(Cl2,H), and they represent ∼10% each of
the total variance. These two components, cap-

12

80



Figure 6: Evolution and convergence of transition states sampled with the AS or SFT algorithms
(see Methods). (a) Euclidean distance between the first and the last accepted transition states, in
the space of coordination numbers, and (b) maximal distance between the last accepted transition
state and all the preceding ones, as a function of the number of steps. (c),(d) Cumulative MD
elapsed time between the first and the last accepted transition states as a function of the number
of trial shooting points.
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turing variations of H-bonds between water and
the chloride moiety/ion, indicate that the sol-
vent has varied interactions with the solute and
should be studied with care, again in agreement
with intuition. However, figure 7-(b) shows
also that, due to large fluctuations that over-
lap together reactants, products and transition
states, the solvent-related components might
play little role in tracking the progress of the
reaction. Indeed, our second component is sim-
ilar to the “pinching coordinate” proposed as
solvent coordinate in ref.,38 which was found
therein to be unable to improve the RC defini-
tion.
We also provide a ranking of the set of CV def-

initions employed in this work, using the SLLS
(see equation 5). From figure 8-(a), the best
RCs tested are the traditional CV d1-d2, and
its coordination-equivalent c1-c2. Even though
there is a considerable scatter between scores
obtained from different equivalent parts of the
data set, path-CVs s score slightly lower. This
result is consistent with PCA and with US re-
sults (see below), suggesting that solvent de-
grees of freedom are not an important part of
the RC in the transition path zone. This fea-
ture is probably related to the transition state
weakly interacting with the polar solvent.
The SLLS for s12,TPS and s12,MCA are equiv-

alent (11.4 and 11.1 ± 1.5) and superior to s2
(9.1 ± 1.5), confirming the interest of precisely
defined path CVs based on multiple reference
structures. As expected, bad coordinates have
likelihood close to zero, i.e., close to the score of
decorrelated random numbers: this is the case
of d1+d2, c1+c2, and all z path CVs in figure 8-
(a). It is interesting to note that CVs based on
the a single chlorine atom, such as d1, d2, c1
and c2, share a similar, very high score of 12.5
± 1.5, almost as good as d1-d2 and c1-c2. This
is consistent with PCA results, and denotes a
strong correlation between the positions of the
two chlorine atoms relative to carbon.
Finally, we optimized the score of linear com-

binations of coordination numbers employed in
the path CVs metric, to perform an agnostic
identification of the best RC. SLLS results are
shown in figure 8-(b) and a sample of the most
relevant optimized collective variables is avail-

able in SI.
When a single coordination number is em-

ployed, the best RC is c1, or equivalently c2
(indicated with oc1), consistently with PCA as
well as intuition. This same result is obtained
employing any of the four TPS data sets.
The optimal two-variables combination, oc2,

is formed either as the difference between c1
and c2, or between c(Cl1, Cl2) and c1 (the re-
spective scores having no significant difference).
In the former case, for instance, the relative
weight of c1 in the linear combination with c2 is
0.50± 0.16, indicating that the intuitive differ-
ence c1−c2 is indeed recovered by the automatic
optimization procedure.
Optimized CVs including more than two co-

ordination numbers do not bring a significant
increment in the SLLS score compared to oc2.
This is consistent with PCA results.
The likelihood optimization of the c1 and c2

gives the folowing equation for the commitor :
1.209−5.526c1+3.737c2 which correspond to a
value of the commitor of 0.5 for c1 = c2 ≈ 0.4

Free energy profiles

By symmetry, reactants and products must
have zero free energy difference: any devia-
tion of computed values from this expected re-
sult can be therefore traced back to deficiencies
of the statistical sampling, independently from
QM approximations. On the other hand, de-
viations between the computed and the exper-
imental barrier could result both from system-
atic errors due to QM approximations and from
finite sampling.
We performed US with the two different high

resolution path CVs as RC, s12,MCA and s12,TPS,
and with the heuristic d1 − d2 coordinate. Re-
sults are presented in figure 9. Integrated free
energy values, suitable for experimental com-
parison, are presented in table 2.
Our data-driven RC built from the most ac-

curate transition path information, s12,TPS, re-
sults in an error with respect to experiments of
about 2–3 kcal/mol for both the reaction free
energy ∆rF (expected to be zero) and the bar-
rier ∆F‡ (expected to be about 27 kcal/mol).
After analyzing the distribution of sampled con-
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Figure 7: Principal components analysis of coordination CVs in accepted transition path sampling
trajectories (SFT1.35−1.65 data set A). (a) Relative weight and cumulative weight of principal com-
ponents in terms of variance. (b) Accepted transition states and corresponding paths in the space
of the three most important components. (b), (c) , (d) Transition paths projected along each of
the three most important components versus heuristic intuitive coordinates.

Figure 8: (a) Log-likelihood score (SLLS) of 12 CVs, evaluated on transition path sampling shooting
points (SFT1.35−1.65 data sets A and B). The second half of each data set was cut in two parts,
analyzed separately to allow appreciating the statistical convergence of the score.To set the zero
level of the score we also include a CV defined as a uniform random variable, hence fully decorrelated
from the committor. (b) The same score is traced for optimized linear combinations (ocn) of n
coordination number CVs.
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Figure 9: Umbrella sampling results obtained biasing three selected RCs. Left panels (a),(c),(e)
display sampled points from the second half of simulations (the first half is discarded as equilibra-
tion). Right panels (b),(d),(f) display free energy profiles computed on the second half of the
simulations, divided in two parts to evaluate convergence: discrepancies, indicative of error bars,
are within 1 kcal/mol.
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figurations in the space of the path-CVS (fig-
ure 9-(c)) , as well as in the space of specific
coordination numbers (see supporting figures
S4 and S5), a small gap has been identified at
s ≈ 10: as customarily done in US, further win-
dows were added in this region, leading to a re-
liable free-energy calculation. We remark that
the stochastic selection of reference structures
in the definition of s12 can lead to an asymmet-
ric shape of the free-energy profile despite of the
symmetric nature of the reaction.
The path CV built from metadynamics-based

committor analysis, s12,MCA, results in a sizably
underestimated barrier of 19 kcal/mol. Inspec-
tion of the s, z space sampled with US displays
important gaps, corresponding to large devia-
tions from the putative path (i.e., a significant
increase of z). This situation, contrasting with
the case of the TPS-based RC that provided a
sampling close to its putative path, confirms the
intuitive notion about the importance of per-
forming TPS after the metadynamics step and
before the US one, in order to build a RC as
faithful as possible with respect to spontaneous
unbiased transitions. Furthermore, the gaps in
US configuration space can also contribute to
explain the sizable difference in the barriers es-
timated with WHAM (that requires only over-
lap along the biased coordinate, in this case s)
for the two RCs.
Compared with s12,TPS, the heuristic RC d1−

d2 yields an error of only 1 kcal/mol on ∆rF
but a larger one of about 4 kcal/mol on ∆F‡.
We remark that the error on ∆rF is smaller in
our work than the 5 kcal/mol value from ref.,33

where d1 − d2 was also employed with similar
DFT appproximations and 32 water molecules.
This could be attributed to more extended sam-
pling in our study: 20 ps (with data analysis
after 10 ps of equilibration) for each of 60 um-
brella sampling windows, compared to a maxi-
mum of 6 ps (with data analysis after 1.5-3 ps
of equilibration) for each of 10 values of the re-
action coordinate to calculate mean forces in
ref.33

A recent DFT-MD study38 reported a free-
energy barrier of 15 kcal/mol along d1 − d2 for
the same reaction we studied: the large dis-
crepancy with our own results (as well as with

experiments) could be due, at least in part,
to the adoption of a QM/MM scheme, while
in our opinion it can hardly be attributed to
the use of a different exchange-correlation func-
tional (BLYP in Ref.38 compared with PBE in
the present work).

Table 2: Free energy difference between reac-
tants and products ∆rF, forward activation free
energy ∆F‡, and maximal free energy difference
between points along the profile ∆Fmax. The
results of the present work are compared with
previous experimental and theoretical studies.

RC used or source ∆rF ∆F‡ ∆Fmax
experiments12,15 0 26.5 undefined

theoretical results33 5 N.A. 22.2

d1-d2 1 ± 0.6 22.6 ± 1 23 ± 0.5

s12,TPS 2.2 ± 0.9 23.6 ± 0.7 24.3 ± 0.6

s12,MCA 2.6 ± 1 19 ± 0.8 19.9 ± 1

Inspection of the ensemble of atomic config-
urations in the plane of s, z path coordinates
shows differences in the quality of sampling be-
tween s12,TPS and s12,MCA. We recall that the
US bias is applied along the s direction, along
which dense sampling is a necessary condition
to converge WHAM. On the other hand, the
z direction is – by construction – very useful
to diagnose the deviation of the sampled path-
way from the putative one used in the defini-
tion of the RC, as well as to detect potential
discontinuities able to render unreliable the re-
constructed free-energy profile.
In the case of s12,MCA, US samples a wide

range of z values, pointing to a path used in
RC definition that is sizably different from the
configurations sampled with the help of the
parabolic biases. Moreover, figure 9 clearly
shows a discontinuity of the US ensemble along
the z direction for s slightly above 8. This in-
dicates that the free-energy profile is estimated
adjoining two disconnected regions in configu-
ration space, one for each side of the barrier,
leading to an unreliable WHAM estimate.
This kind of problems represent one of the

main risks of the US technique, and it can only
be detected by analyzing the continuity along
directions different from the one biased, a task
for which the z coordinate is very well suited
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as long as the relevant degrees of freedom are
included in the metric, eq. 1.
The ensemble sampled with s12,TPS is instead

continuous in the s, z plane (figure 9 c), with
small z values all along the pathway, consis-
tently with the expected better quality of the
putative path obtained from extensive TPS
simulations. However, with our initial set of
equally-spaced US windows a small gap in the
s-direction (without z disconnection) was still
observable near s12,TPS = 10, more clearly dis-
played by c1 and c2 (see Figure5 in SI). As
customary done in US, this problem is easily
addressed by adding two intermediate windows
with stiffer bias on s12,TPS in the gap region.
The additional sampling improves ∆rF from 3.6
± 1 kcal/mol to 2.2 ± 0.9 kcal/mol, closer to
the exact value of zero (table 2). We conclude
that the resulting free energy profile is statisti-
cally reliable.

Conclusions

In the present work we addressed the challenge
of defining reaction coordinates for the com-
putational study of chemical reactions in ex-
plicit solvent, using the DFT-level nucleophilic
substitution of chloride ion on methyl chloride
in water as a test case. At the same time,
we propose a practical way out of the follow-
ing chicken-and-egg paradox: knowledge of the
optimal reaction coordinate requires accurate
sampling of reactive transitions in phase space,
while such sampling needs to be accelerated –
to be feasible – by means of techniques that rely
on the optimal choice of a reaction coordinate.
Initial reactive pathways are obtained from

metadynamics simulations relying on general-
purpose path-based collective variables con-
taining information only about reactants and
products. Subsequently, transition path sam-
pling is exploited to harvest the most probable
transition mechanism in an unbiased fashion.
Our results indicate the robustness and cost-
effectiveness of this approach, and we advise
its systematic use for solution chemistry given
the likelihood it gives to sample realistic mecha-
nisms compared to biased sampling of heuristic

variables.
At this point, detailed and accurate reaction

pathways in phase space are available for ex-
tracting an optimal reaction coordinate: on
one side, we adopt an algorithm defining a
multi-reference path collective variable pass-
ing through automatically-selected intermedi-
ate configurations. On the other side, we
identify relevant degrees of freedom by apply-
ing principal component analysis as well as
committor-based likelihood maximization tech-
niques in a wide subspace including solute-
solute and solute-solvent coordination numbers.
Somehow surprisingly, our results indicate

that the solvent does not make an important
contribution to the definition of the optimal re-
action coordinate, despite making, of course, an
important contribution to the energetic of the
reaction (strongly increasing the barrier com-
pared to the gas phase). The agnostic op-
timisation techniques indicate a predominant
role of the chlorine-carbon distances, putting on
solid quantitative bases a customary hypothesis
stemming from chemical intuition.
Careful assessment of different candidate co-

ordinates has been made also via quantita-
tive estimation of free-energy landscapes. To
this aim, we exploited extensive umbrella sam-
pling simulations and weighted histogram anal-
ysis, reducing statistical error bars to within
1 kcal/mol. We provided evidence that these
techniques, despite being widespread, require
careful monitoring beyond the biased coordi-
nate to ensure lack of artefacts and proper con-
vergence.
The computed free-energy barriers and dif-

ferences between reactants and products allow
reaching deviations of 2–3 kcal/mol compared
to experimentally-derived values when using
transition path sampling-based optimal reac-
tion coordinates, not much smaller than using
the heuristic d1 − d2 coordinate.
Even though the present study confirms, to a

large extent, the quality of a widespread heuris-
tic coordinate for the specific reaction at hand,
we emphasize the importance of defining op-
timal reaction coordinates in agnostic, data-
driven ways for the simulation of generic reac-
tions that lack a large body of published lit-

18

86



erature. Our work contributes a flexible tool-
box in this direction, that could be applied to
a wide spectrum of different reactions without
investing extensive work into finding high qual-
ity heuristic coordinates
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edge Andrea Pérez-Villa and Pauline Bacle
for useful discussions and Laura Lupi for
assistance with the committor-based likeli-
hood optimization protocol. We gratefully
acknowledge the Institute of Computing and
Data Sciences (ISCD) from Sorbonne Univer-
sity for funding the PhD thesis of Léon Huet
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4.2 Conclusion in the context of the Thesis

This work was the concluding piece of Théo Magrino’s thesis. For me, it served as an
introduction project to the tools I would use in future research. In the paper, we estab-
lished a comprehensive agnostic protocol that allows us to generate a reaction coordinate
by following a workflow where the only initial inputs are the definitions of the reactants
and products of the reaction.

For the remainder of this thesis, three major outcomes must be emphasized:

• The use of the Transition Path Sampling dataset to generate a PCV is more efficient
than using data from a committor analysis alone. The resulting PCV exhibits a more
symmetric behavior with respect to the studied reaction and the free energy curve.
The final barrier height is also closer to the experimental value and the results with
the heuristic RC.

• The Standard Log-Likelihood Score (SLLS) appears to be a good indicator of the
quality of the CV at the top of the barrier.

• Despite our efforts to generate a reliable PCV the heuristic variable ∆ d behaves
almost perfectly during the umbrella sampling and presents similar results to the
SLLS. Thus, it remains a better reaction coordinate than our database-derived one.

The first statement will influence the next article that I present. In the next article, a
large part of the protocol has been enhanced based on the observations we made in this
critical assessment.

The second and third outcomes have implications for the last article presented in this
work, in which we decided to study the possible inference of kinetics on the same chemical
system. For that, we decided to retain SLLS as a promising quality criterion and center
our study on the ∆d variable, which, despite being a heuristic variable, remains the best
available option for our study.
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Chapter 5

Application to a prebiotic system

5.1 Presentation of the article

During his Ph.D., Theo Magrino conducted a study on the commonly accepted glycine
prebiotic aqueous synthesis: the Strecker mechanism[14]. In parallel, he also performed
metadynamics explorations to sample the full pathway without any prior assumptions
about the intermediates. Among all of his attempts, only one has successfully completed
a full synthesis from the Strecker reactants to glycine in a single trajectory. Interestingly,
this pathway differed from the Strecker mechanism and presented notable features for
prebiotic chemistry. This new pathway is the basis for this article. We conducted a
study to check the observed intermediates, validate the transition states, and calculate
the free-energy curve associated with each step of this new synthesis.

However, an issue arose when the final measured free energy difference between the
Strecker reactants and glycine appeared to be inconsistent between the two studies. The
discrepancy was of 10 kcal.mol−1, which represented one fourth of the total free energy
difference he determined for glycine. The origin of this discrepancy comes from the original
study of the Strecker pathway, as it appeared that the data contained some hysteresis.
Correction of these hysteresis has been submitted in an erratum and is currently under
publication process (see Appendix D).

In the article on the oxyglycolate pathway, the name we gave to the new pathway,
we decided to perform the quantification step using a NNP. This was carried out as a
collaborative effort between a senior Ph.D. student, Timothée Devergne, and me. He
specialized in training and sampling the NNP and also performed a part of the AIMD
calculations. We agreed that the implementation of the NNP should be conducted com-
pletely independently of the AIMD simulation to increase our exigences from his previous
studies[6, 57]. We executed the MLMD protocol for each US step. To verify the presence
of errors in the machine learning results, we recalculated three of the five steps using a
fully AIMD framework.

The article presented here is not in its final version, as it has recently been accepted
with minor revisions by the Journal of Physical Chemistry Letters. The modifications

92



suggested by the referees should be addressed soon. The supporting information for the
article is available in the Appendix C.
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Abstract

In this work, we study the synthesis of glycine, the simplest amino acid, using ab

initio molecular dynamics and enhanced sampling techniques to explore and quantify

novel potential pathways. Our protocol integrates state-of-the-art machine learning ap-

proaches, allowing us to sample relevant chemical spaces more efficiently. We discover

a novel ’oxyglycolate path,’ distinct from the “standard” Strecker mechanism, identify

new intermediates, and provide a full thermodynamic characterization of all reaction

steps. This alternative pathway aligns better with meteoritic and experimental obser-

vations, paving the way for further investigations. Integrating quantum accuracy and

machine learning in prebiotic chemistry represents a methodological milestone advanc-

ing the exploration of life’s prebiotic origins.

In the field of prebiotic chemistry, the synthesis of glycine holds a crucial role. Being the

simplest amino acid and a primary component of proteins, understanding its pre-life synthe-

sis might shed light on the formation pathways of other amino acids. Several studies reveal
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glycine’s presence in meteorites,1–3 yet its existence in the interstellar medium (ISM) remains

unresolved.4 A leading hypothesis suggests that inorganic materials and simple molecules,

whether in icy chondrites, meteorite cores, or primordial Earth’s oceans, might have created

favorable environments for glycine synthesis.5 This idea is central to the Strecker mecha-

nism,5 which involves ”simple”, fundamental molecules6—water, formaldehyde, ammonia,

and hydrogen cyanide— detected in both ISM and meteorites.7,8 It relies on the formation

of glycinonitrile (aminoacetonitrile) as first main intermediate by the successive addition

of amine and cyanide on the formaldehyde molecule, then the nitrile bond is replaced by

a carboxylic group in a two step hydrolysis. Glycinonitrile and glycinamide are generally

considered as the signature intermediates of this pathway. S.L. Miller postulated and tested

this mechanism5 based on his landmark 1950s experiments with Urey.9 These results kick-

started research into amino acids’ origins on Earth and beyond. However, the discovery of

β- and γ-amino acids in meteorites10 introduced alternative synthesis pathways to reconcile

observations the Strecker mechanism alone could not address.11

In challenging observational and experimental contexts, ab initio computational model-

ing based on quantum mechanics becomes indispensable. It provides rigorous insights into

amino acid synthesis mechanisms and complements experimental data, especially in prebi-

otic chemistry/origins of life (PCOL) studies where observational conditions are often elusive.

Theoretical exploration of synthesis pathways helps understand the synthesis conditions of

critical compounds and discover new pathways, enhancing our understanding of early Earth

prebiotic chemistry. Advanced theoretical tools have been developed to ensure reliability

and transferability in such studies.12 Increased computational power has made complex sim-

ulations more accessible, enabling accurate electronic structure estimations using Density

Functional Theory (DFT). Following a detailed examination of the Strecker synthesis,13 we

applied and augmented our computational tools to the Strecker reactants, seeking alterna-

tive pathways. This work led to the identification of a novel synthesis route, designated as

the ’oxyglycolate path’ in this manuscript.

2
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In our previous paper,13 the estimation of potential and free-energy was entirely driven

by DFT, through ab initio Molecular Dynamics (AIMD). Our protocol14 consists of three

main steps:

1. An exploration step that enables the discovery of reactive pathways;

2. A verification step of intermediates and putative transition states;

3. A quantification step that ensures the accurate estimation of the free energy landscape

for all the elementary steps of the reaction. This last step represent the most expensive

part of our work in CPU hours.

This protocol, essential for ensuring thermodynamic and statistical accuracy, is extremely

costly and lengthy, from the computational point of view, for reactions occurring in the con-

densed phase. It has thus far de facto impeded significant progress in PCOL ab initio studies,

particularly in the crucial case in which reactions occur at the water/mineral interfaces.

In the present work in particular we have devised a novel methodology to address

this inherent limitations of AIMD. One major constraint is the computational scalability

of these simulations, limiting their application to systems predominantly at the nanosec-

ond/nanometer scale. In response, we have developed an optimized procedure that combines

the accuracy of AIMD with state-of-the-art in-house enhanced sampling techniques and re-

cent machine learning approaches. This clever combination allows us to extensively map

reaction free energy landscapes during the third step of our protocol, while keeping the same

accuracy as AIMD, as we demonstrated in Ref(15).

We will refer in the following to this as Machine Learned Molecular Dynamics (MLMD),

positioning it as a complement to ”full/traditional” AIMD. All the technical details are

presented in the ”Methods” section at the manuscript conclusion. The effectiveness and

scalability of this tool make it, we believe, indispensable for future research in prebiotic

chemistry. To the best of our knowledge, this study represents one of the first applications,16

and the first fully agnostic one in terms of CV choice, that combines fully validated and

3
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fully autonomous uses of MLMD in PCOL studies. This sets a pioneering standard for

the future development of reliable machine learning potentials in condensed phase/mineral

surface chemistry.

This manuscript thus presents an extensive study integrating two significant advance-

ments: the identification of a previously unreported glycine synthesis pathway, and a first

application of our augmented protocol within the context of PCOL studies. This research

builds upon, and advances beyond, the methodologies established by our previous works.13,15

In the following, we provide a detailed presentation of those results, including our analysis

of the thermodynamic and chemical implications derived from our findings.

The final mechanism from the explorative step is illustrated in Figure 1. Initially, hy-

drogen cyanide R is activated via an acid-base reaction. Next, the cyanide anion (1) adds

to formaldehyde, forming cyanomethanolate (2), which reacts with the solvent to produce

glycolonitrile (2’). Glycolonitrile undergoes a two-step hydration-hydrolysis, forming the un-

stable oxiranimine (3) and then hydroxyacetamide (4). An addition-elimination step yields

glycolic acid (4’), which reacts with the solvent to become glycolate (5). Finally, an SN2 re-

action at the carboxylate group’s α position produces the glycine anion (P). Figure 2 shows

the full trajectory from the initial ”Strecker” precursors to glycine.

Among all the intermediates in the mechanism, two were discovered after the initial

exploration and were subsequently incorporated into the set during the validation step: 2’

and 4’.

• Cyanomethanolate 2 underwent spontaneous reaction with the solvent after 1.5 ps of

unbiased trajectories, leading to the inclusion of 2’, as parasitic intermediate, in the

initial set.

• While sampling the transition state of the initial (4→ 5) step, the trajectories became

trapped in a new intermediate state, 4’, which is the conjugate acid of 5.

The addition of these two intermediates to the initial set highlights the importance of

4
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Figure 1: Mechanism of the oxy-glycolate path, decomposed in elementary acts observed
during the exploration step (metadynamics and transition path sampling). All electron
displacements are schematically represented by red arrows. Three proton transfers, between
(2’) to (3), (3) to (4) and (5) to (P), are not represented for readability but are still followed
by our protocol as part of the elementary acts.

Figure 2: 2D graphics of the metadynamics trajectory that breaks toward glycine. (a)
The footprint of the bias introduced in metadynamics. (b) The full trajectory colored with
the initial set of intermediates out of the molecules observed during the metadynamics, this
initial set is checked and validated by further investigation to avoid human and sample errors.
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caution in conducting biased explorative trajectories. Our method’s reliability is supported

by the meticulous consideration and verification of the quality of our initial landscape ex-

ploration during the subsequent steps of the protocol.

The primary steps of the mechanism were quantified with three different case:

i Three simple proton transfers with the solvent were determined only with AIMD.

ii All other complex steps were elucidate with MLMD.

iii Additionally, the curves for the steps 2’ → 3, 3 → 4, and 5 → P were independently

calculated using AIMD to assess the reliability of MLMD.

The resulting curves from these calculations are presented in Figure 3. Except for oxiran-

imine, which exhibits the highest intermediate free energy, the differences between AIMD and

MLMD curves consistently remain within 0.5 kcal·mol−1 for each intermediate and within 3

kcal·mol−1 for the transition states. Moreover, the shapes of the curves are well-reproduced.

A comprehensive overview of the relative free energy balance is reported in Figure 4.

The pathways using mostly AIMD and mostly MLMD align closely with an overall balance

difference of 0.1 kcal·mol−1, resulting in a value of -21.7 kcal·mol−1 for the free energy of the

glycine anion. This pathway represents, to our knowledge, the first fully ab initio discovered

route for glycine synthesis, combining ab initio DFT and machine learning potentials.

The remarkable agreement between AIMD and MLMD outcomes attests to the efficiency

of the neural network potential. AIMD and MLMD quantitative calculations were con-

ducted independently, sharing only the same variables and initial geometries—a noteworthy

achievement.

Available experimental data are compared to our values in Table 1. All simulations

achieved a convergence error below 0.5 kcal·mol−1 per step. For the first five steps, our

data shows less than a 10 kcal·mol−1 difference from experimental values, within the DFT

method’s standard error (≈10 kcal·mol−1,25 see Methods). For the last three steps, larger

differences may stem from experimental biases, PBE systematic errors, and accumulated

6
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Figure 3: Free energy profiles for our complete mechanism, with AIMD results in red and
MLMD results in green. Energetic gaps were calculated by integrating the free energy over
the minima of reactants and products. Intermediates are numbered according to the mecha-
nism in Figure 1. The s12 variables are data-driven from transition path sampling data (see
methods section). The CX(H) variables represent hydrogen coordination for relevant atoms
during protonation/deprotonation steps. All reaction coordinates, including coordination
variables, were linearly re-scaled from 0 (reactants) to 1 (products) for consistency.

7

100



Table 1: Comparison of the Gibbs free energy from the literature with the Helmholtz free
energy obtained from our NVT calculations. (in kcal.mol−1)

Symbol Species Gaq exp. REF Faq theo. REF ∆

R Strecker reactants 0 (ref. level) 0 0
1 cyanide ion +12.7 17* +7.7 -5.0
2 cyanomethanolate NA -9.3 NA
2’ glycolonitrile -12.2 18 -16.8 -4.7
3 2-oxiranimine (+15.0 only ∆H) 19** +4.2 -10.8
4 hydroxyacetamide -12.9 20,21*** -23.2 -10.3
4’ glycolic acid NA -11.6 NA
5 glycolate NA; (+5.2 wrt 4’) 17* -10.0 NA
P glycine anion -7.7 (+13.3 wrt P’) 22 -21.7 -14.0
P’ Z-glycine -21 23 -35.0 (-13.3 wrt P) 22 -14.0

* ∆G value obtained from the pKa of the acid-base pair.

** Theoretical estimation.

*** This experimental estimation carries an unspecified uncertainty, it is still presented here as
the sole indication of an experimental result to the best of our knowledge. Other theoretical
data, in line with our glycolonitrile value, suggest that hydroxyacetamide should be at -37.1
kcal·mol−1.24 This value remains significantly distant from the experimental result.

The colors represent the last step type: red for AIMD and green for MLMD. We compare
experimental Gibbs free energy with theoretical Helmholtz free energy, leveraging the minimal
volume variation in the isothermal–isobaric ensemble for chemical reactions in the condensed

phase.
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Figure 4: Balance of the Helmholtz free energy for all steps of our ”non-Strecker” mechanism.
Green values refer to MLMD results for complex steps (with s12 as the reaction coordinate)
and AIMD for proton transfers. These values are used throughout the article. Red values
are obtained when prioritizing AIMD, especially where both AIMD and MLMD have been
conducted. This presentation illustrates the concordance between the two methods in the
overall free energy balance of the mechanism.

convergence errors. Our results closely align with other theoretical studies on these com-

pounds.24,26

In the following we provide a critical discussion of our proposed mechanism in comparison

to the Strecker pathway using our previous article as reference.13 This reference initially

exhibited some discrepancies, which have since been rectified through a correction.27 We

adopt the revised general diagram as our reference. The final free energy difference in the

correction aligns very well with the results presented here.

To the very present state The Strecker pathway continues to exhibit lower intermediates

in free energy and lower activation barriers compared to the pathway we are proposing. In

quantitative terms, this translates to -42.1 kcal·mol−1 for the glycine-amide intermediate in

the Strecker pathway, in contrast to -23.2 kcal·mol−1 for the glycol-amide intermediate and

31 kcal·mol−1 for the last and highest barrier in the Strecker pathway, as opposed to 36.6

kcal·mol−1 for the oxiranimine formation barrier in our proposed mechanism.

These two statements suggest that under standard conditions, the Strecker mechanism

is more likely to occur. However, despite numerous attempts, the Strecker pathway does not

manifest during the metadynamics step of our process (refer to the method section), despite

its apparent agnosticism. To our knowledge, this could be attributed to two non-mutually

exclusive factors:

9
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• Our s2 and z2 may struggle to resolve details of a multi-step pathway in a high-

dimensional free-energy landscape, which includes at least two glycine synthesis path-

ways. Enhancements in the metadynamics step, particularly on variable selection and

solvent degrees of freedom, are needed while maintaining the agnostic nature of our

variables.

• The Strecker pathway may be kinetically blocked in our metadynamics simulation due

to long equilibration times involving solvent degrees of freedom, which are challenging

to accelerate with an external bias. This suggests the need for further investigation to

determine if this kinetic blockage can be overcome with alternative variables. If so, this

blockage would likely not imply kinetic effect on the Strecker pathway experimentally.

This statement, along with the associated uncertainty, must be considered in light of the

potential advantages that this new pathway could offer in advancing our understanding of

the prebiotic synthesis of glycine.

The primary distinction from the Strecker mechanism is that this new pathway can be

activated by a basic catalyst. Steps (R) → (1), (3) → (4), (4) → (4′), and (4′) → (5) are

more favorable in a basic environment, involving acid-base equilibria toward basic compounds

or substitution reactions facilitated by HO−. Additionally, step (2)→ (2′) can be seen as a

parasitic reaction less favorable in a basic environment, potentially lowering the barrier for

intermediate (3) to around 30 kcal·mol−1, comparable to the limiting reaction of the Strecker

pathway.13 Given the supposed primitive ocean’s pH in the [8-9] range,28,29 this new pathway

is more consistent with early Earth conditions.

The first major intermediate in this new pathway is glycolonitrile. In the literature,

the formation of glycolonitrile is typically considered only as a parasitic reaction in the

synthesis of glycine.28 Notably, the formation of glycolonitrile is frequently seen as competing

with the formation of glycinonitrile (aminoacetonitrile), one of the principal intermediates

in the Strecker synthesis. Our calculations indicate that the pathway to glycolonitrile is

highly favorable (∆F = −16.8kcal ·mol−1), though slightly less so than glycinonitrile (-22.3
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kcal · mol−1 13). Glycolonitrile requires fewer steps, has lower barriers, and is more stable

than the intermediates towards glycinonitrile, suggesting it is a favorable kinetic product

in water. An accelerated hydrolysis step thanks to environmental factors could make the

”oxy-glycolate” path even more competitive with the Strecker one.

In our calculations, the hydration-hydrolysis of glycolonitrile begins with the formation

of 2-oxiranimine, an exceedingly unstable intermediate, suggesting the possibility of more

efficient pathways. However, In Jammot’s experimental papers,20,21 the reaction is cat-

alyzed by a borate buffer, likely creating a cycle involving glycolonitrile’s carbons in an

intramolecular activation step, similar to our proposed pathway. Despite uncertainties in

the oxyglycolate path, the free energy balance between glycolonitrile and hydroxyacetamide

remains thermodynamically correct. While oxiranimine could react with a solvated amine

to form aminoacetamide (a Strecker pathway intermediate), this would require a high amine

concentration, making the production of hydroxyacetamide and glycolic acid more probable.

Glycolic acid has been detected in meteorites30,31 and is of ongoing theoretical and ex-

perimental interest.32,33 Hydroxyacetamide, synthesized in prebiotic experiments by UV ir-

radiation of interstellar ice analogs alongside glycolic acid,34 has been theoretically proposed

to have a synthesis pathway similar to ours,35 with a half-life of 52 years at 25°C. Their

presence in this new pathway toward glycine could explain their relative abundance with

glycine in meteorites,1–3 making the thermodynamic data of this study valuable for fur-

ther investigations. Additionally, glycolic acid is a known product of glycine’s hydrothermal

decomposition.36–38

The transition to glycolate before progressing towards glycine could be contradictory

with respect to chemical intuition. To gain further insights into this important step, we

chose to specifically investigate whether this final step could be more favorable without the

glycolate intermediate. Our findings indicate that, in our simulations, the basic form yields

to a more stable transition state compared to the acidic form (See in supporting information

S-4).
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Studies on the decomposition of glycolonitrile suggest that this molecule could have

been synthesized in the ISM39 and incorporated into chondrites, where the remainder of the

mechanism might have taken place. This implies an environment much more complex than

the one we simulate, calling for further investigations.

Conclusions

In this work, we conducted the first fully-agnostic one-pot in silico study of the aqueous

synthesis of glycine, the simplest amino acid. Using the same precursors as the Strecker

reaction, our accelerated exploration revealed a novel pathway, discovering new intermediates

and providing a comprehensive thermodynamic characterization. This new pathway appears

as a realistic alternative to the Strecker mechanism, in agreement with meteoritic sample

observations. Our study brings insightful data on the thermodynamics of its intermediates.

We used a machine-learning-driven potential to accurately calculate free-energy profiles,

reducing the computational cost by nearly an order of magnitude. This study, combining ab

initio accuracy with advanced sampling and machine learning in PCOL, aims to open new

research perspectives, scaling up system sizes and timescales to better match experimental

conditions and model complex prebiotic synthesis processes.

Methods

Our computational protocol needs only as input the definition of reactants and products

of the full mechanism. It combines state of the art enhanced sampling techniques and data

based Collective Variables (CV). All AIMD calculations have been conducted with CPMD.4.3

software.40 The enhanced sampling methods were performed using a modified version of the

Plumed1.3 plugin of CPMD,41 the modified source code is freely available on demand, or

online at this page: https://sites.google.com/site/fabiopietrucci/. The protocol is composed

of three major step:
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N1

H
H H

+ C1

H

O

H
+ N2 C2H H2C

1

N1H2

C2

O

OH

+ N2

H
H H

Elements σ
C O N H

C1 0.0 1.2 0.0 2.0
C2 0.0 0.2 1.0 1.1
N1 0.0 0.3 0.0 3.4
N2 1.0 0.2 0.0 0.5

(a) Reactants formulas and reference table R1

Elements σ
C O N H

C1 0.8 0.5 0.9 2.3
C2 0.8 2.0 0.1 0.6
N1 1.0 0.3 0.0 2.6
N2 0.0 0.3 0.0 3.4

(b) Products formulas and reference table R2

Figure 5: Reactants and products with reference coordination matrices used to define s2 and
z2 for metadynamics. The choice of atoms’ numeral is mapped on the Strecker pathway (See
supporting information S-1-2).

1. Metadynamics is used to explore the possible intermediates for the reaction, and find

a continuous pathway from reactants to products.42

2. Transition Path Sampling (TPS) methods are used to characterize every transition of

every elementary steps,43–45 and build appropriate CVs.

3. Umbrella Sampling (US) is then used to estimate the Free Energy Profile (FEP) of

every steps.46

This procedure organisation ensure the agnosticism of this protocol making it reliable and

autonomous regarding potentially biased choices, leaving to the researcher the control of the

quality of the results.

The ab initio calculations are performed by the mean of density functional theory (DFT),

using the PBE exchange and correlation functionals47 and D2 Grimme’s van der Waals

empirical corrections48 along with Martins-Troullier pseudopotentials,49 and a plane wave
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basis set with a cutoff of 80 Ry. The convergence cutoff for orbital optimization has been

fixed to 10−5. This setup has been shown to describe satisfactorily the electronic structure

in our previous works.12,13,50 We checked the quality of DFT-PBE predictions by carrying

out single point potential energy calculations with the hybrid PBE0 functional. Details and

an initial evaluation are in the Supplementary Information (S-5). We estimate a potential

energy difference between PBE and PBE0 of about 5-7 kcal/mol for transition states and

2-3 kcal/mol for intermediates.

All simulations were performed at 300K in the NVT ensemble, using Nose-Hoover chained

thermostats51,52 and a time step of 20 a.u. (≈0.48 fs). The system consists in a periodically

repeated cubic unit cell of 13.36Å. The reacting molecules of the synthesis are one formalde-

hyde, one hydrogen cyanide and two ammonia. They are solvated with 80 explicit water

molecules. The total represents 251 atoms (designed as ’N’ in the following). The size of the

box has been fixed as to correspond to a density of 1.058 kg/L. The concentration of solvated

compounds is therefore ≈0.7 mol/L. The temperature at 300K and density at 1.058 kg.L−1

have been set this way in order to compare the results with preceding literature.5,22,24,39

Our CPMD input template for AIMD simulations can be found in supporting informa-

tion (See S-1-1). All input details are freely available on PLUMED-NEST (www.plumed-

nest.org), the public repository of the PLUMED consortium.41 All the essential parameters

of the protocol steps can be found at the end of the supporting information (See S-6).

The 3·N dimensional atomic position space, also known as configurational space, poses

enormous challenges in terms of efficient sampling, or even for visualization. To address this

issue, it is crucial to reduce the number of variables to a very limited set. This reduction

must enable an effective monitoring of transformations in this highly-dimensional space, and

a robust understanding of the essential degrees of freedom involved in those transformations.

These condensed variables are referred to as Collective Variables (CVs).

In particular, Path Collective Variables consist of two variables, denoted as s, z, as in-

troduced by Branduardi et al 53 in 2007. In our chemical system we derive them from an
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ensemble of reference coordination matrices, represented as Ri, as in F. Pietrucci and A. M.

Saitta paper54 in 2015.

In particular, a coordination matrix is constructed using a specific set of atoms within the

system, corresponding to a particular geometry. This matrix contains the coordination num-

bers of each atom in the set (rows) for every element present in the periodic table (columns).

The initial ensemble of reference coordination matrices for our protocol, illustrating the

reactants and products of the complete mechanism, is shown in Figure 5.

Typically, the variables s, z are assigned indices of the closest reference matrix, exhibiting

complementary behaviors:

⇒ The variable s indicates the index of the closest reference matrix. In our initial set

(Figure 5), if the system nears the reactive reference matrix, s2 approaches 1, and if

closer to the products, it nears 2. Throughout the protocol, s serves as the presumed

reaction coordinate.

⇒ The variable z indicates the topological distance from the complete reference set. A

z value over 1 indicates the sampling of geometries not covered by the references. z

provides critical information about system behavior during simulations, especially in

quantitative analyses.

The s, z set has proven to be a powerful tool for tracking reaction mechanisms in solution

using enhanced sampling techniques.13,14,53,54

Metadynamics

To address the slow reactivity of chemical systems within the limits of typical simulation

times, we adopt metadynamics. This approach involves forcing the system to progress from

reactants to products by systematically incrementing an external potential, added to the

DFT potential, during the dynamics.42,55 This potential takes the form of a sum of Gaussian

functions, acting on both s(t) and z(t), facilitating a large exploration of reaction pathways.
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For this step, we employ only two reference matrices presented in Figure 5). The functions

s and z are then denoted as s2 and z2, respectively. Following the metadynamics, if stable

intermediate geometries are identified, they are incorporated into the reaction mechanism.

Ultimately, the pathway is composed only of successive elementary steps.

Committor Analysis (CA)

Committor Analysis (CA)56 estimates the probability of transitioning into reactants rather

than products when starting a molecular dynamics simulation from a given geometry with

initial velocities drawn randomly from the Maxwell-Boltzmann distribution. The committor

value helps identify transition states, when its value is 0.5.

To identify transition states from metadynamics trajectories, we sample geometries at

intervals of 10 steps (approximately 5 fs) and perform CA. 20 trajectories are generated

from each geometry, and the one with an estimated committor value closest to 0.5 is chosen.

These trajectories form a dataset spanning 10 ps (around 20,000 points), which is used to

derive data-driven reaction coordinates.

For the final elementary step, CA alone did not yield satisfactory transitions for subse-

quent protocol stages. Hence, we employ the Shooting From the Top (SFT) approach,57 a

transition path sampling method aiming to capture a reactive trajectory close to the Mini-

mum Free Energy Path (MFEP) specifically for this step. This refined trajectory undergoes

CA again to generate a higher-quality dataset. Details of the SFT process are provided in

Supplementary Information (See S-1-5).

Highly referenced PCV

In order to catch the fine details of the mechanism in the final quantitative step, we generated

two new PCVs for each step. These PCVs were constructed using 12 internal references

denoted as Ri. To obtain these references, we carried out an exhaustive search across all

potential matrices within our dataset derived from CA, using the reference space exploration
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algorithm described in our previous publication.14 Additional technical details can be found

in the Supplementary Information (See S-1-6).

For chemical steps more complex than deprotonation, we used highly referenced PCVs in

umbrella sampling (US). However, since deprotonation is a relatively straightforward process,

we opted to use the proton coordination of the relevant atom as the Reaction Coordinate

(RC).

Umbrella Sampling (US)

Umbrella Sampling46,58 constitutes the quantification step in the protocol designed to de-

rive the Free Energy Profile (FEP) associated with each reaction step. A more detailed

description of this process is available in the Supplementary Information (See S-1-4).

This phase of the protocol is the most resource-intensive, demanding a combined 0.9

ns of trajectories, equivalent to 360,000 CPU hours, for a single full ab initio calculation.

Additionally, it involve a meticulous verification of result quality due to the sensitivity of the

process. To calculate the FEP we use the Weighted Histogram Analysis Method (WHAM),

using the code developed by A. Grossfield.59

To overcome the intrinsic computational limitations of AIMD, we use Machine Learning

Interatomic Potentials (MLIPs), trained on a select set of umbrella sampling windows, then

allowing the use of ab initio-quality Machine Learning Molecular Dynamics (MLMD). The

identification of specific simulations for training, as well as the construction of the training

set, follows the methodology described in reference.15

For each elementary step in the mechanism, four MLIPs are trained using the DeePMD-

kit smooth edition60,61 with distinct random seeds. This ensemble of MLIPs functions as

a committee, and the assessment of the maximum deviation in force predictions among

committee members allows for continuous monitoring of prediction quality.

More details for the MLIP procedure, including a table with a comparison of relative

computational costs can be found in the Supplementary Information (See subsection S-1-7).
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Using MLMD results in a sixfold cost reduction of Umbrella Sampling (US), the most

expensive step of the protocol. A typical cost evaluation is provided in the supporting

information (see Table S-4). This efficiency gain is expected to be even more pronounced

for larger and more complex systems, making quantum-accuracy free-energy calculations

more accessible. This advancement enables the exploration of systems closer to experimental

conditions, including additional solvent molecules or surface-activated reactions.
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5.2 Conclusion in the context of the Thesis

In this paper, we proved the robustness of our method, as a thorough review of the
two measures of the glycine synthesis free energy gaps finally showed good agreement
considering our statistical error bars.

The results presented in this paper now need to be shared with the scientific commu-
nity. For other theoretical researchers, it represents a new step towards the use of machine
learning interatomic potentials for chemical reactions in solution and in prebiotic chem-
istry. From an experimental point of view, it provides thermodynamic results to support
experimentation along with new proposed intermediates to investigate the synthesis of
glycine.
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Chapter 6

Exploration of the dynamics of a SN2

6.1 Presentation of the article

The flowing article is about to be submitted for publication. Despite the calculations
being finished, it is only in the pre-print stage and still needs a proofreading. The main
idea was to incorporate an ultimate step in our protocol to infer the kinetics of our
studied pathway. To do so, we wanted to use insights from advanced stochastic equations
developed in recent years [107, 96, 98]. However, the possibility of applying these tools in
the concrete case of chemical reaction in solution was still to be proven.

In this article, we give a description of the challenges ahead and point out the critical
points of our methodologies that remain to be addressed to apply these tools in a fully
agnostic framework. We performed a critical reading of the methodologies and test various
methods for inference of the kinetics in order to identify the most reliable and affordable
ones.

The supporting information for this article is available in the Appendix E.
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Abstract

We present a comprehensive analysis of the dynamic behavior of reaction coordi-

nates using the generalized Langevin equation framework. Our investigation focuses on

identifying quality criteria for collective variables to accurately describe the chemical

reactions, with particular emphasis on their dynamic properties and memory effects.

Using the SN2 reaction of methyl chloride with a chloride ion as a model system, we

demonstrate that traditional methods, which primarily focus on static properties such

as free energy barriers, are insufficient for dynamic studies. We systematically examine

the correlation between memory kernels, friction coefficients, transmission coefficients,

and the committor, revealing that criteria obtained from the friction in the well en-

semble are not correlated with the behavior of the CVs at the top of the barrier.
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Moreover, our findings highlight the necessity of a smooth and deterministic effec-

tive mass curve for CVs, which is crucial for reliable dynamic inference. The study

further underscores the limitations of data-driven CVs, which often involve complex

dependencies on multiple degrees of freedom, complicating their use in dynamic model-

ing. This approach emphasizes the importance of considering both static and dynamic

properties in the development of effective collective variable for the accurate inference

of reaction kinetics.

Using a heuristic reliable reaction coordinate, and by combining Umbrella Sampling

results for free energy estimation with well equilibrium data for friction estimation, we

have constructed a GLE model that yields reaction rates in reasonable agreement with

experimental data, after rescaling the barrier heights.

Introduction

In the theoretical field of chemical reactions in solution, the developed tools offer results with

errors of up to two orders of magnitude concerning the kinetics.1,2 This is mainly due to two

factors: the kinetic rate evolves exponentially with the activation barrier of the mechanism,3

and the high barriers prevent a true understanding of the dynamics of these systems, making

it difficult to sample the reaction process correctly. These factors make the development of

accurate tools for inferring the kinetics of chemical reactions a complex issue.

Chemical reactions, particularly those involving covalent bonding and cleaving, require

overcoming highly energetic transition states.4 A typical barrier height is around 20 kcal/mol

(33.5 kBT units at 300 K), corresponding to a transition timescale on the order of minutes,

making it impractical to wait for spontaneous transitions, especially as ab initio level force

estimation is required. Even with affordable simulation times, the disparity and comple-

mentarity of the methods used for rate estimation make it difficult to determine which one

provides the best results,1 particularly when an accurate mean first passage time (MFPT)

estimation is not feasible.
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Additionally, choosing an appropriate collective variable (CV) is essential for kinetic

inference for two reasons. It influences the quality of barrier height and friction estima-

tion—two crucial factors in the dynamics of the chemical process in solution. It may also

correctly separate the irrelevant degrees of freedom of the solvent from those mandatory for

the reaction4,5 which helps us to understand the mechanism.

Historically, the tools used to estimate the kinetics of chemical processes are the stochastic

differential equations.6,7 Their use separates the solvent degrees of freedom into a noise and

serves as a theoretical basis for developing analytical tools for rate estimation.1,3

In this paper, we model the effective dynamics of CVs. This method is challenging as it

differs significantly from the direct estimation of the dynamics of a particle in suspension,

especially concerning the mass of the studied phenomena, which becomes an effective mass.

We turn to Langevin models of the dynamics. Several variants of Langevin equations are

available, and in this work, we focus on the Generalized Langevin Equation (GLE) and

Underdamped Langevin Equation (ULE).7–9 Using these tools, we study the kinetic behavior

of a paradigmatic chemical reaction in explicit solution and explore various methods to

calculate its rate.1,10

We perform a complete ab initio Molecular Dynamics (AIMD) study of the reaction to

obtain DFT-PBE level data of the well and the transition path and to estimate the barrier

of the transition. With the collected data, we conduct a comprehensive analysis of different

indicators of the dynamic properties of the system, such as memory effects and friction

associated with a CV, as well as the correlation between the CVs and the committor.4,11

We also discuss the possibility of inferring a non-Markovian dynamic model based on the

GLE from these types of systems and using it to estimate their kinetics.
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Methods

The system: Methyl-chloride and chloride ion

Our studied system contains 98 water molecules, one chloride ion, one methyl chloride

molecule, and one potassium counter-ion. It is labeled MCCI, for Methyl Chloride and

Chloride Ion, and consists of a cubic box of 14.4807 Å, employing periodic boundary con-

ditions. The studied reaction is the SN2 reaction, which involves the chloride ion as the

nucleophile and the carbon of the methyl chloride as the electrophile. This reaction has been

studied in many experimental and theoretical papers.12–17 Due to the permutation invariance

of the two chlorides, this reaction has equivalent reactants and products. This guarantees

that the reaction free energy, internal energy, and specific entropy are all zero. This implies

that the only relevant feature of this reaction is its kinetics.

The Born-Oppenheimer molecular dynamics of the full system are conducted using the

CPMD software.18 All atoms are treated at the same theoretical level with DFT. The chosen

exchange-correlation functional is PBE19 with D2 Grimme empirical correction.20 The wave-

functions are expanded using a plane wave basis set with a cutoff of 80 Ry. Core electrons

are represented using Martins-Troullier pseudopotentials.21 The temperature is fixed with a

Nose-Hoover chain thermostat22–24 at 300 K. Our CPMD input template can be found in

the Supplementary Information (See S-1).

Due to the high transition barrier associated with chemical systems, AIMD permits a

sampling of the configuration space that is limited in quantity and quality. These limita-

tions result in different datasets with distinct properties, corresponding to various sampling

methods. In this paper, we generate three kinds of data:

1. AIMD data without bias (or with a static bias assimilated as the background potential)

in the reactant and product wells of the reaction. Since the reaction barrier is high,

AIMD within these wells will not cross it within a reasonable simulation time. This

allows for obtaining unbiased data of the system that reaches equilibrium, but only in
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the vicinity of reactants or products.

2. Transition Path Sampling (TPS) data, which can be obtained using various methods.25

In this study, our TPS dataset consists of 600 short trajectories (1.5 ps) initiated from

the top of the barrier with a Maxwell-Boltzmann distribution of velocities, without ad-

ditional external forces compared to the AIMD dataset. The protocol used to generate

this dataset is presented in our previous article.4

3. Umbrella Sampling (US) data, comprising biased trajectories confined to specific re-

gions of a reaction coordinate (RC) by an external harmonic bias.26 Each trajectory

in the US dataset overlaps with adjacent trajectories to cover all possible values of the

RC. This is achieved by placing the harmonic bias at regular intervals along the RC for

each trajectory. This dataset is composed exclusively of trajectories that have reached

a static state thanks to this external constraint. Specifically, US data can be employ to

determine the Helmholtz free energy profile of the RC using the WHAM algorithm.27

Model

The two models used in this paper are derived from the GLE. This generic model has proven

to be exact in the case of position-dependent memory for any CVs within the configuration

space Γ, which denotes the phase space positions {q}.9,28 Since the dataset required to infer

the position-dependent memory kernel for a reaction in solution remains unattainable, we

focus on the position-independent version of the memory. A discussion regarding this choice

is provided in the discussion section. In this context, the GLE is expressed as:

∀x a CV ; ẋ = v

v̇ = f(x(t))−
∫ ∞

0

K(τ)v(t− τ) dτ + ξ(t)
(1)

In Equation 1, f designates the effective mean force, ξ denotes the noise, which will be
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detailed subsequently.

In the case we consider, the phase space evolution follows a Hamiltonian in the (N,V,T)

ensemble. We define the marginal Helmholtz free energy F associated with x as:

F (x) = −kBT ln(ρx,eq(x)) (2)

Additionally, we estimate the effective mass of the variable x, denoted meff, using two dif-

ferent methods. These methods are connected through the Maxwell-Boltzmann distribution

of velocities at equilibrium:

meff (x)
−1 =

1

kBT
⟨v2|x⟩ (3)

= ⟨∇{q}(x)M
−1∇{q}(x)|x⟩ (4)

where M is the diagonal matrix containing the masses of the elementary particles in the

system. The use of Equation 3 to infer the effective mass is applicable only to data where

stationarity has been achieved.

From F and meff, we can detail the composition of f and K in Equation 1, assuming

that the effective mass is also independent of the position x:

f(x) = −m−1
eff∇xF (x) (5)

K(τ) = K(τ)m−1
eff (6)

A crucial step in estimating a GLE model is the reconstruction of the memory kernel.

Several approaches have been proposed in the past; however, they are limited to cases where

ergodic MD trajectories serve as input data, i.e., repeatedly sampling transitions between
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all the meta-stable states.2,9,29–31

A straightforward approach involves the numerical solution of the Volterra equation:

〈
v(0)

(
v̇(τ)− f(x(τ))

)〉
= −

∫ 0

−∞
dt′K(−t′)⟨v(0)v(τ + t′)⟩ (7)

To invert this equation, we use the method implemented in an open-source code,32 which

is based on the trapezoidal method developed by P. Linz in 1969.33

GLE models are expected to faithfully reproduce the average behavior of the real system

down to the femtosecond time resolution ∆t. However, it is possible,in principle, to estimate

an underdamped model when considering a time resolution coarser than the decay time of

the memory kernel:

v̇(t) = f(x(t))− γv(t) + ξ(t) (8)

A first estimation of the friction coefficient γ can be obtained employing the integral of

the memory kernel. We denote the friction coefficient derived from this definition as γ0:

γ0 =

∫ ∞

0

K(τ) (9)

The reliability of γ0 in Equation 9 is compromised by a potentially long memory kernel,

which may be comparable to or exceed the characteristic decorrelation time of the velocity.

An alternative method for inferring the underdamped friction coefficient from the GLE

memory kernel involves calculating the linear correlation coefficient between the instanta-

neous velocity v(t) and the GLE instantaneous friction term, as discussed in the work of D.

Girardier.34 This coefficient estimation, using the linear model, is denoted as γ1:

γ1 = ⟨
∫ t0
0
K(τ)v(t− τ)dτ

v(t)
⟩ (10)

where t0 represents the upper limit of integration of the memory kernel.
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We can also introduce R2
1, the coefficient of determination resulting from the estimation

of γ1, as a criterion for assessing the degree of Markovian behavior in the dynamics of x.

Another estimation method, as discussed in the same reference, involves using the auto-

correlation of the velocity Cv(τ) to calculate the resulting friction coefficient γ2, as defined

in Equation 11. γ2 is determined by fitting the exponential decay of Cv(τ) according to the

following equation:

Cv(τ) =
⟨v(0)v(τ)⟩
⟨v2⟩ ≡ e−

γ2τ
2 Ω(τ) (11)

where Ω(τ) is a periodic function. This approach depends on the accuracy of the fit, which

becomes increasingly challenging in non-harmonic potentials typical of chemical systems.

A final approach is to solve the Markovian version of the Volterra equation 7, where

the memory kernel takes the form of a Dirac delta function, known as the Kramers-Moyal

equation.

γ3 =
⟨v(0) (v̇(τ)− f(x(τ)))⟩

⟨v(0)v(τ)⟩ (12)

We will evaluate these three last definitions of the friction coefficient to determine which

is the most suitable for constructing an underdamped dynamic model of the reaction.

Collective variables

Heuristic Variable

The standard heuristic RC used for the MCCI system is ∆d, defined as the difference in

distance between d1 and d2, the distances from the carbon of the methyl group to the two

chloride nuclei. In our previous study, we demonstrated that this variable serves as an

effective RC.4

To estimate the kinetics of a reaction, a crucial component is the free energy curve
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associated with the selected RC. Given that the US simulation is both necessary and resource-

intensive for this measurement, we applied it to the most promising candidate. Consequently,

this study focuses on efficient sampling of the configuration space with respect to ∆d.

The ∆d region examined was confined to the interval [−4, 4] Bohr, with two additional

quadratic walls incorporated into the background potential to facilitate rapid stabilization

within the well ensemble. While these additional walls affect the system’s kinetics, crossing

the barrier remains the primary limiting process, and thus, the impact of these walls should

be minimal. Further investigation into the solvation of the anion using a classical potential

could complement this study.

From the definition of ∆d and equation 4, we can derive a purely analytical formula for

the effective mass of this variable:

1

m∆d

= ⟨ 2

mCl

+
2

mC

(1− cos(θ))⟩ (13)

where θ is the angle ̂Cl1, C, Cl2.

As observed, even for a simple linear combination of two distances, the definition of the

instantaneous mass of this CV depends on other degrees of freedom, specifically the angle θ.

We estimate the mass using two different formulas: one from equation 3, which is appli-

cable to all variables, and the other from equation 13. Our initial estimation of the mass

for the system in the reactant well is provided in the Supplementary Information (See S-2).

This initial analysis revealed that the variable θ required a significant amount of time to

stabilize within the well ensemble. Even after an unbiased trajectory of 100 ps, stabilization

was incomplete. This slow stabilization is attributed to numerous solvation metastable states

that correspond to various values of θ but remain within the [−4, 4] Bohr interval of ∆d.

To address this issue, we repeated our initial dynamics simulation by adding a new external

upper wall to the background potential specifically for the cos(θ) CV at −0.7.

The final working intervals for this study are thus [−4, 4] for ∆d (in Bohr) and [−1,−0.7]
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Figure 1: Impact of the added wall on cos(θ) on the free energy profile and the behavior of
the AIMD dataset. a) Free energy profile of the reaction with restrictive walls applied only
to ∆d. b) Same as panel a), but with an additional wall on cos(θ). The lower barrier results
from restricted exploration within the well ensemble. c) 2D histogram of the (∆d, cos(θ))
pair without a wall on cos(θ). The slow diffusion of cos(θ) values indicates non-stationarity
of the histogram. d) Same as panel c), but with the additional wall on cos(θ). In this case,
stationarity of both variables is achieved.
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for cos(θ). The transition state ensemble is close to 0 for ∆d and -1 for cos(θ), which are

far from these walls. Consequently, the behavior of the system at the top of the barrier

remains unchanged. The resulting (cos(θ), ∆d) histograms in the reactant well, along with

the free energies from the umbrella sampling analysis, are presented in Figure 1, both with

and without the wall on cos(θ). The very slow stabilization of the degrees of freedom of the

mass proves impractical at the ab initio level in the absence of walls.
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Figure 2: The effective mass estimated from all datasets with the wall on cos(θ). For each
system, the mass is estimated using Equation 4 with the values of cos(θ) depicted in blue, or
using the Maxwell-Boltzmann distribution shown in orange. Error bars are estimated using
block averaging. For the US dataset, shown in sub-figure a), the agreement between the
two curves indicates the validity of Equation 13. The TPS dataset, with results presented
in sub-figure b), does not permit the use of the Maxwell-Boltzmann method as it does not
follow the equilibrium velocity distribution. In the well ensemble, shown in sub-figure c),
the histogram of the trajectory is included and the agreement between the two curves is
valid only in regions with a high density of points. It is observed that the velocity method
requires significantly more time to converge, suggesting that the geometric method is more
efficient for accurately quantifying the effective mass with feasible datasets.

The final effective mass, as a function of ∆d, is presented in Figure 2 for all datasets,

including the AIMD reactant well sampling. With the addition of the wall on cos(θ), the

effective mass of the system remains nearly constant with respect to ∆d across all datasets.

Data-driven variables

In general, no suitable heuristic variable is known. To address this limitation, our previous

study4 on the same reaction introduced Path Collective Variables (PCV) derived from the

TPS dataset.35 This variable has been shown to accurately determine the barrier height.4

However, since it is data-based, its performance is strongly dependent on the quality of the
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dataset. In the present case, it loses the symmetry aspect of the reaction. The PCV pair is

denoted as (s12, z12).

s12 and z12 exhibit complementary behaviors. s12 serves as the proposed reaction co-

ordinate, varying from 1 to 12, where 2 corresponds to the reactant state and 11 to the

product state. z12 is a distance coordinate that measures how far the system deviates from

the reference set that defines s12. Since this reference set is selected to represent the complete

reaction mechanism, z12 remains close to 0 throughout the reaction, which may render it a

less effective reaction coordinate.

This pair is trained using the element-wise coordination numbers of the carbon atom (C)

and the two chlorine atoms (Cl1, Cl2), denoted as cA(σ), where A represents the selected

atom and σ indicates the chosen element. The 12 reference frames used to define the PCV

are available in the Supplementary Information (see S-3), comprising matrices of cA(σ) at

various stages of the reaction, established from the shooting-from-the-top dataset using the

protocol described in our previous paper.4

To compare with the heuristic variable ∆d, we will examine the (s12, z12) pair, along with

some of the coordination numbers used for their training. The final set of study variables is

as follows:

• ∆d

• s12

• z12

• d1

• cC(K), the coordination number of the central carbon with the counter-ion K. This

collective variable, which remains consistently close to 0, is likely uncorrelated with

the transition.
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• cC(H), the coordination number of the central carbon with hydrogen. This collective

variable exhibits strong memory and is also likely uncorrelated with the transition.

After analyzing these six variables, we conduct similar measurements on all coordination

numbers used to generate s12 and z12 to calculate correlations with these parameters using

a larger dataset.

Measured criteria

To compare these variables and assess their quality in relation to their dynamic behavior,

we estimate the transmission coefficients (TC)36,37 for each variable, using the TPS dataset.

Additionally, we evaluate a quality criterion based on the committor, as derived from our

previous study.4 This criterion, referred to as the Standard Log-Likelihood Score (SLLS),

is estimated through regression on committor values at the top of the barrier.38 We present

the variables derived from the models inferred from the reactant well ensemble:

• t1/2 (fs): The numerical half-life of the memory kernel, estimated by integrating the

memory kernel until it reaches half of its total integral.

• γ1 (ps−1): The friction coefficient obtained from linear regression of the friction.

• R2
1 (-): The determination coefficient for γ1.

• γ2 (ps−1): The friction coefficient derived from fitting the velocity auto-correlation.

• γ3 (ps−1): The friction coefficient obtained from the Kramer-Moyal equation.

Model Integration and Kinetic estimation

To extrapolate our results once a GLE or ULE model is established, we integrate it using

a modified version of the freely available code by Jan Daldrop.39 This code has been incor-

porated into a custom program for kinetics estimation, as detailed in the SI (see S-5). The
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modification includes the addition of temperature as an external parameter. A study on

the reproduction of dynamical data in the well to assess method stability is also described

in the SI (see S-6). For underdamped integration, we use an internally developed code40

employing the GJF integrator.41

In this paper, kinetics are estimated using two different methods: reactive flux3,42 and

T-boost.43

Reactive Flux is estimated from unbiased trajectories relaxing from the barrier top.10

It accounts for the transmission coefficient at the top of the barrier as well as the barrier

height itself, as described in Equation 14. In this study, reactive flux is applied directly to

AIMD Transition Path Sampling data and also to data generated by GLE or underdamped

integration that simulates transition path sampling. The reaction rate is estimated using

the following equation:

τ−1 = lim
tr≤t≪tfp

k(t)

= lim
tr≤t≪tfp

⟨v(0)hB(t)⟩
e−βF ‡

∫
A
e−βF (x)dx

(14)

where hB(t) denotes the indicator function for the product state. The prefactor of the

exponential term is estimated using the mean value of the velocity at the top of the barrier,

conditioned by hB(t). This velocity is considered the initial velocity of the trajectory since

we perform shooting from the top. For values of t between the relaxation time from the

top of the barrier, tr (approximately 0.2 ps), and the MFPT, tfp (approximately 1 minute),

this mean value reaches a plateau where no new crossings occur, and it equals the prefactor.

Since the MFPT for chemical reactions exceeds our computational capabilities at 300K

during transition path sampling, tfp remains significantly longer than our MD trajectories.

In the final expression, converging the estimate of the correlation function may require

up to 105 unbiased trajectories initiated at the top of the barrier, depending on the system.
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Particle velocities in molecular dynamics (MD) simulations are drawn from the Maxwell-

Boltzmann distribution. Similarly, in Langevin dynamics simulations, the velocity of the CV

is initialized from the Maxwell-Boltzmann distribution using the effective mass. A discussion

on reactive flux in high-barrier phenomena can be found in Ghysbrecht’s 2023 article.1

T-boost is a more direct method for estimating the reaction rate by using the first transi-

tion time of the system at elevated temperatures. This method determines the exponential

and pre-exponential components of the rate via linear regression, as described by equations

15 and 16. It can be applied only with GLE or ULE integration, as the effect of temperature

is constrained within these models.

τ−1 = Ae−βFa

= Ae
− Fa

kBT

(15)

=⇒ ln(τ−1) = ln(A)− F a

kB
T−1 (16)

Since friction cannot be directly measured at the top of the barrier, we estimate the

kinetics of the transition via the integration of a reconstructed GLE model.

v̇(t) = f(x(t))−
∫ 0

−∞
K(−τ)v(t− τ) dτ + ξ(t) (17)

where f(x(t)) is derived from the free energy landscape obtained through the WHAM applied

on the US data, as shown in Equations 5 and 4. K(τ) denotes the memory kernel of the

reactant well, which we truncated at 0.3 ps where the memory can be considered negligible

according to our measurements. ξ(t) represents colored Gaussian noise, determined from the

memory kernel using the fluctuation-dissipation theorem.44–46

For underdamped integration, we use γ1 as the friction coefficient, as it appears to be

the best available approximation:
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v̇(t) = f(x(t))− γ1v(t) + ξ(t) (18)

where ξ(t) is Gaussian white noise with an amplitude of
√
2γ1kBTm−1.

Results and discussion

GLE with stationary data

In order to assess the feasibility of modeling the behavior of a CV from a DFT calculation,

we first applied our GLE inference algorithm to 50 ps of converged data from the reactant

well (the first 50 ps were discarded to obtain the convergence). We selected a set of six CVs

(see the Methods section) and plotted the corresponding memory kernels, as shown in Figure

3.

For each case, we estimated γ1 (the linear correlation coefficient between
∫
Kv dt and

v), γ2 by fitting the memory kernel using the SciPy toolkit in Python, and γ3 using the

Kramer-Moyal method. We compiled these values into a table along with the Standard

Log-Likelihood Score (SLLS) and the transmission coefficient (TC), as shown in Table 1.

Table 1: Dynamics and quality features across a range of CVs with varying qualities. The
SLLS quantifies how likely a variable is to be linearly transformed into the committor at
the top of the barrier. The TC measures the recrossing effect during the transition. The
subsequent parameters are derived from the GLE models and the data of the well. The
friction coefficient and memory decay times are known to be inversely proportional to the
quality of the variable to mimic the behavior of the committor. Error bars are estimated
using block averages.

Var SLLS TC (%) γ1 (ps−1) R2
1 (-) γ2 (ps−1) t1/2 (fs) γ3 (ps−1)

∆d 17.2 ± 2.9 50.5 ± 2.2 76.3 ± 2.0 0.180 ± 0.001 20.3 ± 4.6 30.5 ± 3.4 15.4 ± 0.3
s12 16.0 ± 2.5 41.0 ± 6.5 144.0 ± 3.2 0.094 ± 0.002 41.4 ± 0.1 35.6 ± 2.2 57.7 ± 1.0
z12 5.81 ± 5.4 7.5 ± 1.6 160.0 ± 3.1 0.099 ± 0.013 60.5 ± 15.6 31.9 ± 2.4 70.4 ± 3.2
d1 14.5± 2.7 50.8 ± 3.3 51.8 ± 1.2 0.43 ± 0.02 22.8 ± 12.9 76.7 ± 16.7 8.2 ± 0.2

cC(K) 1.6 ± 1.6 0.6 ± 3.8 89.7 ± 3.3 0.175 ± 0.007 11.1 ± 9.1 71.1 ± 3.4 19.0 ± 1.1
cC(H) 1.0 ± 0.2 4.5 ± 5.1 6.5 ± 1.3 0.001 ± 0.001 14.2 ± 0.1 348.6± 69.9 39.7 ± 5.7

The linear correlation coefficients derived from this study are presented in the following
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Figure 3: Memory kernels for the SN2 reaction in the reactant well using s12, z12, ∆d, d1, cC-
K, and cC-H. The fits are represented by dashed green lines. The memory kernel half-life is
shown in gray, and the auto-correlation of the velocity half-life is shown in orange. Most cases
show that the memory kernel half-time is larger than or comparable to the auto-correlation
half-time, justifying that the friction coefficient cannot be estimated by a straightforward
integration of the memory. Error bars are estimated using block average.
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Figure 4: Graphs of the data from Table 1 and additional variables detailed in the SI (see
S-4) with linear regression analysis. These graphs illustrate that the SLLS is decorrelated
from the friction coefficients (γ1, γ2, and γ3), the half-life (t1/2) of the memory kernel, and
the determination coefficient (R2

1) of the friction coefficient γ1. However, SLLS is correlated
with the TC.
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matrix: 


SLLS γ1 R2
1 γ2 t1/2 γ3 TC

SLLS 1.00 0.36 −0.34 −0.22 −0.29 0.18 0.95

γ1 1.00 −0.28 −0.01 −0.55 0.70 0.17

R2
1 1.00 0.13 −0.04 −0.64 −0.21

γ2 1.00 −0.11 0.03 −0.24

t1/2 1.00 −0.03 −0.16

γ3 1.00 −0.02

TC 1.00




The correlation matrix indicates that the SLLS is not correlated with any of the friction

coefficients. Similarly, there is no significant correlation with the decay time of memory the

kernel (t1/2) in the well. This suggests that friction and memory time in the well may not

be reliable criteria for optimizing variables to achieve a good regression of the committor.

However, as expected, SLLS does show a correlation with the TC, reflecting their mutual

dependence on the behavior of the CV at the top of the barrier.

To improve the evaluation, another criterion is needed that considers not only the be-

havior of the variable at the top of the barrier but also its behavior throughout the entire

transition.

Kinetic energies of the CVs

To gain deeper insights into the behavior of our CV during the reaction, we can perform a

complementary analysis on the shooting-from-top dataset. In the literature, an optimal CV

is often defined as one that effectively captures and dissipates the kinetic energy released

during barrier crossing. This phenomenon can be interpreted as a ”warming-up” effect of the

variable. The term 1
2
meff⟨v2⟩ estimates the kinetic energy for each variable. At equilibrium,

this quantity remains constant according to the Maxwell-Boltzmann distribution. However,

during barrier descent, this value may change if the variable significantly influences the

19

140



reaction mechanism.

If N shots are performed from the top, and assuming that the masses of the studied CVs

remain constant near the top of the barrier region, we can plot the time evolution of this

”warming-up” effect for each CV in our set. This is achieved by calculating the ensemble

mean value of all shots and rescaling it by the mean value at t = 0 to account for initial

mass effects. The calculation is performed as follows:

Ekincv(t) =
⟨v2cv(t)⟩
⟨v2cv(0)⟩

(19)
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Figure 5: Kinetic study of the variables during shooting from the top. a) Rescaled ⟨v2⟩(t) for
each CV relative to the initial distribution, as described in Equation 19. It can be observed
that the heuristic variable ∆d absorbs the most heat during the descent. The pronounced
oscillations in the s12 curve likely indicate significant fluctuations in the effective mass of this
data-driven variable during the descent, which is undesirable for dynamic studies. The high
time asymptotes of the curves that are not equal to one suggest variations in the effective
mass between the top of the barrier and the wells. b) Estimation of the total reduced energy
transferred to the ∆d variable using the free energy curve from US data and the effective
mass at the top of the barrier. It is evident that, despite the velocity distribution having a
non-zero mean value during the descent, this variable efficiently dissipates most of the energy
injected by the potential.

In Figure 5, we reaffirm our previous findings that optimizing only the memory aspect of

a variable (that is only available in the well) is insufficient to ensure its quality. A significant

aspect of this study is its analysis of the behavior of the variables throughout the entire

reaction, rather than focusing solely on the barrier top (e.g., SLLS, reactive flux) or the

well ensemble (e.g., memory kernels, R2
1, γ1). A notable distinction emerges between the
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variables s12 and ∆d: the s12 curve exhibits pronounced oscillations, while the ∆d curve

remains smoother. These oscillations likely reflect variations in the effective mass of s12 as

the system transitions between different reference frames. This observation suggests that

data-driven variables like s12 may require refinement to achieve smoother behavior in their

associated effective mass curves, which is crucial for their use in future dynamic studies. This

underscores the need for ongoing improvements in the development of data-driven collective

variables (CVs) for chemical reaction kinetics.

Given its favorable properties observed thus far, we proceed to use ∆d for rate estimation.

Kinetic estimation
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Figure 6: Kinetics estimation using the T-boost method: a) Results from the underdamped
model and b) Results from the generalized model. The two models exhibit good agreement
regarding the final kinetic estimation. The statistical deviations of the data points are too
small to be visible and are accounted for in the linear regression. Error bars for the 300 K
value of the MFPT are estimated based on the standard deviation of the coefficients a and
b in the model.

Table 2 presents the results of our rate estimation for the reaction using our methods.

We employed the reconstructed model described in the Methods section, incorporating a free

energy profile derived from Umbrella Sampling (US) analysis and a constant memory kernel

based on data from the well. Using these parameters, we estimated the rate using both the

reactive flux and T-boost methods. Our estimated rate is 2.5 · 10−2 s−1, compared to the
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Table 2: Estimation of the transition rate using all our protocols and models. The error bars
are determined using block averaging for reactive flux and standard deviation for T-boost.
All measurements agree on the order of magnitude of the rate: approximately 1 · 10−2 s−1.
* with initialization of the memory set to zero

method rate transmission
GLE T-boost (2.5± 1.1)e-2 (s−1) NA

underdamped T-boost (2.7± 0.4)e-2 (s−1) NA
GLE Reactivflux* (1.5± 0.1)e-2 (s−1) 0.20± 0.01

underdamped Reactivflux (2.2± 0.1)e-2 (s−1) 0.29± 0.01

DFT Reactivflux (3.7± 1)e-2 (s−1) 0.49± 0.2
Experimental ≈5e-7 (s−1)47 NA

experimental estimate of 2.5 · 10−7 s−1. Given that our free-energy barrier is underestimated

(21.4 kcal/mol as opposed to 26 kcal/mol reported in the literature14), the obtained rate

is reasonable. A simple estimation using kBT
h
e−β∆F yields approximately 10−3 s−1 with our

measured barrier height, while using ∆F = 26 kcal/mol gives approximately 10−6 s−1. This

indicates an overall agreement between the reactive flux and T-boost results in terms of

orders of magnitude.

In the case of the SN2 reaction and ∆d, the generalization of the friction from the well

to the top of the barrier warrants discussion. We conducted a study suggesting that friction

and the memory kernel are lower at the top of the barrier; details are provided in the SI

(see S-9). However, accurately inferring the true memory kernel in these regions remains

challenging. To achieve static conditions, biases would need to be introduced in these regions,

and we currently lack a method to precisely calculate their impact on the memory kernel.

Moreover, we do not have a sufficiently high-quality ab initio dataset suitable for training

a position-dependent memory kernel,9 as might be achievable with some classical molecular

dynamics approaches.48,49

Conclusion

For dynamic behavior inference, the requirements for a ”good” collective variable (CV) are

more stringent than those for static barrier height determination, as in Umbrella Sampling
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(US). It is insufficient for a CV merely to describe the intermediate stages of a reaction

and determine the true height of the barrier. Additional properties are essential. One

such property identified in this work is a smooth effective mass curve during the transition.

However, constructing such variables is considerably more challenging with data-driven CVs,

which encompass many degrees of freedom in the bath and tend to aggregate numerous

contributions from the solvent degrees of freedom in their effective mass.

Using the SN2 standard reaction and the MCCI system, we conducted a comprehensive

evaluation of different variable types, highlighting two significant observations:

1. The memory characteristic time and the friction coefficient (estimated through regres-

sion of the friction against the velocity) in the well ensemble are not correlated with

the SLLS quality criteria or the transmission coefficient at the top of the barrier. This

suggests that optimizing the memory kernel based on well data alone should not be

the sole criterion for identifying a good CV.

2. Data-driven variables, such as s12, which demonstrate a good SLLS score and a fa-

vorable barrier height in Umbrella Sampling, can still exhibit substantial variations in

their effective mass. These variations are challenging to stabilize due to the multiple

degrees of freedom involved, rendering such variables unsuitable for dynamic infer-

ence. Thus, a good barrier height alone is not a sufficient criterion for optimization in

dynamic studies.

For ∆d, even with a single ”solvent” degree of freedom (θ) in the mass estimation, it

was necessary to introduce a wall to achieve mass convergence. This addition allowed us

to treat the system’s mass as quasi-constant, thereby reducing errors when generalizing the

friction and noise measurements from the well to the rest of the reaction. In more complex

systems where no heuristic reaction coordinate is known, determining a data-driven reaction

coordinate with a deterministic or quickly converging effective mass could be intricate. In

such cases, the use of external walls, as implemented in our study, helps identify all relevant
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degrees of freedom of the mass. However, this addition can significantly alter the system’s

behavior, potentially rendering kinetic results unreliable.

By combining Umbrella Sampling for free energy and well equilibrium data for friction

estimation, we developed GLE and ULE models that produced reasonable rate estimates

based on the measured barrier. Scaling the barrier height with experimental data brought

us closer to experimental results.
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6.2 Conclusion in the context of the Thesis

This final article concludes the results presented in this work. We succeeded in producing
a study in which these tools are discussed, confronted, and used for the inference of
the kinetics of a chemical reaction in solution. From an external perspective, this article
serves as a valuable entry point to encourage discussions between theoretical chemists and
stochastic physicists, aiming to develop these promising tools for accurate and agnostic
estimation of the kinetics for chemical reactions in solution, or within a broader framework
for high-barrier transformations in condensed matter physics.

Another key feature highlighted in this article is that the main source of error in the
rate estimation remains due to an inaccurate determination of the barrier height, which
is based on the method we use to calculate the forces in AIMD. Future studies in this
area should also focus on developing new methods to enhance the level of theory in force
calculation, thereby achieving realistic values for kinetics.
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Part III

Conclusion
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Conclusion

During this thesis, we followed the path of an ab initio framework for the study of chemical
reactions in solution, both for thermodynamics and kinetics. For the thermodynamic
aspect, we demonstrate that the use of a collective variable driven by data, combined
with a neural network potential, allows efficient determination of the thermodynamic
constants of a chemical pathway completely discovered in silico. The robustness of the
final workflow was validated by performing two coherent estimations of the same free
energy difference for the same synthesis via two different pathways. Both syntheses were
complex, involving 6 to 7 elementary steps, each treated individually.

The results of this study provide new insights into the broad field of prebiotic chemistry
by detailing new intermediates of an unexplored pathway for amino acid synthesis. In
addition, it offers valuable and reliable data on the thermodynamics of these processes.
These results can be compared with experimental measurements, ensuring the refutability
of the findings, in line with good scientific practice.

With regard to kinetics, our study demonstrates that GLE is a promising tool for
establishing a reliable stochastic dynamics of a reaction in solution. It is feasible to derive
kinetics from this model using various methods whose results are in good agreement.
However, the application of these tools in a perfectly agnostic framework, which accounts
for the variations of the friction along the reaction and the effective mass, remains an
open challenge.
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Perspectives

Concerning the data-driven path collective variables, the use of a low-angle criterion to
optimize the path is a feature that could be discussed. This choice often leads to selecting
data points at the borders of the "reactive cone," especially if the MFEP presents large
angles in the chemical space. It could be potentially replaced by other criteria that would
still encourage low distances between the references that form the path to efficiently target
the MFEP. One possible idea to develop in the future could be a "property-oriented" PCV,
optimized with two criteria: homogeneous distances, always a mandatory criterion in the
field, and the lowest possible value of z12 across the dataset. Optimizing these two criteria
would take advantage of an important property of PVC, where z12 measures the distance
to the path. Reducing z12 for the entire dataset would, by definition, lead to a path close
to the center of the "reactive cone".

To test this hypothesis, a new protocol should be developed that uses the same op-
timization process as the one used in this thesis, based on a Monte Carlo algorithm, or
maybe a more recent version of optimization based on machine learning. This new es-
timation of a Pathcv could be compared with the actual one using the same dataset as
that used in the GLE article. This could also be tested first with synthetic data in order
to have a first insight of the challenge and feasibility of this new type of PCVs.

Concerning GLE, I see two different solutions for the issues we have to deal with.
For the variation of friction with respect to position, we have no choices but to change
the dataset we work with. The problem with the Umbrella Sampling dataset is that
it comprises biased trajectories with unknown effects on memory. The issue with the
Transition Path Sampling dataset is that it consists of unequilibrated trajectories from
the top. These trajectories can not be used to infer memory because they are not ergodic.
A rescaling factor of the weights of each trajectories in the dataset could allow for use to
recover the ergodic distribution even for trajectories that cross the barrier. This can be
obtained by using a different kind of dataset, such as the reweighted path ensemble[66].
However, the quantity of data that compose these datasets would be significantly larger
than the ones we have used so far, which may be challenging in a fully AIMD framework.
We can try to obtain it using MLMD.

If this kind of reweighted dataset can be generated for a chemical reaction, then
the different weights of each trajectory can be used inside the estimation of the GLE
parameters that are the mean forces and the memory kernel, especially to weight all the
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estimated averages. By doing that, we can recover a full GLE model of the reaction. If
the preceding assertion are revealed to be possible then it could open the door to many
remaining questions. Among them, the importance of the usage of a position-dependent
memory kernel and on how it could be implemented and integrated. Obtaining a reliable
model will also help us demonstrate the utility of these tools by calculating the kinetics of
a chemical reaction from an unbalanced dataset and comparing these results with those
from smaller models such as Underdamped Langevin Equation (ULE).

An other issue has to be addressed in parallel to the establishment of a complete gle
model of a chemical reaction, it is the mass variation during the reaction, especially the
one of data-driven PCVs.

To avoid pics in the mass of PCV we could return to the fundamentals and revisit
the continuous formulation of PCV[64]. This approach could ensure smooth behavior
without jumping in mass between reference points. In order to do that, we can use a
continuous model like the Lagrangian polynôme to make the path of matrices continuous.
This could be tested with some coding efforts on the shooting form the top dataset that
has been used to discover the pics. It could also be projected on an easily integrable basis
of function in order to permit "on the fly" estimation during molecular dynamics.

Furthermore, to project the remaining variation to a constant mass we could modify
the index function (the one that initially counts the references)[64] to rescale the mass of
s12 and maintain its consistency along the path. This index function could be renamed the
reference density function, as it deals with the quantity of progression in the reference path
when s evolves. Making this abrupte local will diminish the mass of the corresponding
region of s12. The establishment of the continuous PCV and reference density function
would also benefit from using the reweighted path set as a database.

These perspectives call for larger collaborations between the fields of molecular dynam-
ics and stochastic dynamics to develop accurate tools for inferring kinetics in condensed
phases. In particular, the issues encountered in the last study pave the way to finally
generate a database CV that could be a transferable and reliable tool for kinetic inference
of chemical reactions in solution.
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Glossary

AIMD Ab Initio Molecular Dynamics. 25, 34, 35, 36, 37, 46, 47, 54, 56, 58, 64, 66, 92,
151, 154

AS Aimless Shooting. 52, 54

BOMD Born-Oppenheimer Molecular Dynamics. 26

CA Committor Analysis. 47, 48, 49, 52

CV Collective Variable. 24, 36, 39, 40, 41, 44, 47, 49, 50, 51, 52, 54, 56, 58

DFT Density Functional Theory. 29, 31, 33, 34, 35, 37, 43

GGA Generalized Gradient Approximation. 32

GLE Generalized Langevin Equation. 62, 153, 154

GPW Gaussian Plane Wave. 34

LDA Local Density Approximation. 31, 32

MFEP Minimum Free Energy Path. 40, 52, 54, 55, 68, 154

MFPT Mean First Passage Time. 64, 65

MLIP Machine Learning Inter-atomic Potential. 33, 35, 36, 37, 39

MLMD Machine Learned Molecular Dynamics. 35, 36, 37, 92, 154

NEB Nudged Elastic Band. 48

NHC Nose-Hoover Chain. 23

NNP Neural Network Potential. 36, 37, 92

OP Order Parameter. 40, 46, 47, 54, 65

PBC Periodic Boundary Conditions. 20, 34
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PBE Perdew-Burke-Ernzerhof. 31, 32, 33

PCV Path Collective Variable. 44, 45, 46, 48, 50, 55, 58, 91, 155

PW Plane Wave. 34, 35

RC Reaction Coordinate. 40, 47, 49, 56, 58, 64, 91

SCF Self-Consistent Field. 27, 29, 31

SFT Shooting From the Top. 54, 55

SLLS Standard Log-Likelihood Score. 91

TPS Transition Path Sampling. 52, 54, 66

TS Transition State. 47, 48, 52, 54

ULE Underdamped Langevin Equation. 155

US Umbrella Sampling. 56, 57, 58, 66, 92

VDW van der Waals. 35

WHAM Weighted Histogram Analysis Method. 56, 58
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• T. Magrino, L. Huet, A. M. Saitta, and F. Pietrucci, "Critical Assessment of Data-
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tio and machine learning molecular dynamics, AbSciCon, 05/05/2024-10/05/2024,
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dynamics method, BEACON, 04/05/2023-14/05/2023, La Palma Island, Canary
Islands, Spain
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Modified shooting-from-the-top algorithm

The algorithm employed to perform shooting from the top was very close to the one originally

proposed in ref.,1 however, to generate a maximum number of trajectories for the definition

of path CVs we set the acceptance probability to 1. The following analysis shows that this

modification does not lead, in our specific system, to a sizable difference in relevant physical

properties with respect to the original algorithm.

Following ref.,1 we denoteX the last accepted pathway andX ′ the new proposed pathway.

Probability of pathways X and X’ are p[X] and p[X ′] and they contain respectively n and n′

points in the CV range used for shooting from the top (i.e. s2 ∈ [1.35, 1.65] for SFT1.35 −

1.65).

Denoting pgen[X → X ′] and pacc[X → X ′] the probabilities of generating and accepting

pathway X ′ from X, the following condition must be satisfied to obtain unbiased sampling:

p[X]

p[X ′]
=
pgen[X → X ′]× pacc[X → X ′]

pgen[X ′ → X]× pacc[X ′ → X]
(1)

(see expression (3) in ref.1). Equations (6), (7) and (8) from ref.1 show that:

pacc[X → X ′]

pacc[X ′ → X]
=
n

n′ (2)

However, in the present work, we used a simpler approach, corresponding to biased

acceptances pBacc = 1 independent from the path length in the the CV range. The resulting

biased probabilities pB[X] and pB[X ′] therefore obey a similar equation as equation (1) with

acceptance ratio equal to 1:

pB[X]

pB[X ′]
=
pgen[X → X ′]

pgen[X ′ → X]
× 1 (3)
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Combining (4), (1) and (2) :
p[X]/n

p[X ′]/n′ =
pB[X]

pB[X ′]
(4)

we therefore disfavor pathways spending longer time in the CV shooting range.

We performed a comparison of the original and modified path probabilities p[X] and

pB[X] by comparing the latter with the former, obtained via reweighting pB[X]→ pB[X] · n

(followed by normalization), that increases the relative weight of "long" reactive paths.

The average length of sampled paths is 62 fs (standard deviation 27 fs), while after

reweighting the average length is 74 fs (standard deviation 32 fs), thus the two distributions

have a sizable overlap. We also checked the effect of the modified algorithm by performeing

the same PCA analysis of CVs directly on the sampled data and after reweighting. Results

are presented in fig. S1, showing the lack of sizable differences.

These results could be anticipated, since the n/n′ acceptance ratio shows non-trivial

behavior mostly for diffusive barriers that can feature a wide range of crossing times, as

in protein conformational changes. In the case of chemical reactions, narrow barriers and

lower-friction dynamics is expected to lead to narrower crossing-times distribution.
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Figure S1: Evaluation of the effect of reweighting shooting-from-the-top path probabilities
on PCA results. (a) Variance ratio for PCA components and cumulative variance ratio. (b)
Coefficients in terms of the data (coordination numbers) of the first PCA component (∼
72% of the total variance). (c), (d), (e) and (f): representations of data in terms of PCA
component 1 and, respectively, PCA components 2, 3, 4, 5 (explaining 99% of the variance).

S4

175



PCA and clustering of the transition state ensemble

We analyzed the ensemble of accepted shooting points from SFT1.35−1.65 data set A in the

space of coordination number CVs.

PCA results are presented in figure S2, after the projecting the space of coordination

numbers on the four principal components.

Cluster analysis in the TS ensemble was performed to check whether the latter contains

a significant structural diversity, with possible multiple mechanistic channels. To this aim,

we employed the k -means and Gaussian mixture model algorithms as implemented in scikit-

learn.2 All parameters were set to default except the number of initializations n_init, that we

increased to 50 (default value 1). We considered a number of clusters (respectively, Gaussian

components) varying from 2 to 30. We estimated the statistical dispersion of results from

30 repetitions of the clustering. We then evaluated results with:

(i) Cluster inertia for k-means algorithm (fig. S3 (a)/(d)).

(ii) Silhouette scores for both k-means and Gaussian mixture algorithms (fig. S3 (b)/(e)).

(iii) For Gaussian mixture algorithm, we computed the Bayesian Information Criterion

(BIC) and Akaike Information Criterion (AIC) (fig. S3 (c)/(f)).

To evaluate the optimal number of clusters, one may seek (i) an elbow in inertia plots

(a) and (d), (ii) a maximal value of silhouette score or (iii) a minimal value for AIC and

BIC. Such features cannot be identified before PCA (panels (a), (b) and (c)). After PCA

the same conclusion holds for k -means clustering (panel (d)). Assuming a maximal value

for Gaussian mixture after PCA silhouette score for 8 Gaussian components (panel (e)), this

would not be consistent with the small AIC minimum for 4 Gaussian components (panel

(f)). We therefore conclude that no significant cluster structure could be deduced for the

SFT1.35−1.65 TS ensemble, pointing to a structurally homogeneous ensemble and to a single

reaction mechanism.
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Figure S2: PCA of accepted shooting points from SFT1.35−1.65 data set A. (a): fraction of
variance explained and cumulative variance for successive components. (b,c,d,e): coefficient
of the first to fourth component as a function of coordination number CVs.
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Figure S3: SFT1.35−1.65 clustering information. (a): Clusters inertia as a function of the
number of k -means cluster before PCA. (b): Silhouette scores for k -means clusters and
Gaussian mixture components before PCA. (c) Akaike and Bayesian information criteria
before PCA. (d): Clusters inertia as a function of the number of k -means cluster after PCA.
(e): Silhouette scores for k -means clusters and Gaussian mixture components after PCA. (f)
Akaike and Bayesian information criteria after PCA. Background colors represent maximal
and minimal value for each of the 30 replicas done for each algorithm version. They are
clearly visible only on panels (b) and (e).
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Optimized coordinates based on SLLS

Table S1: Intervals of sampled values for the CVs used for PCA and SLLS.

CV min max ∆

c1 0.0975 0.871 0.774
c2 0.117 0.902 0.785

c(Cl1,H) 0.928 1.66 0.727
c(Cl2,H) 0.928 1.77 0.84
c(C,O) 0.136 0.185 0.0488
c(C,K) 3.83 · 10−5 7.68 · 10−5 3.85 · 10−5

c(C,H) 2.89 3.04 0.153
c(Cl1,Cl2) 0.00578 0.0142 0.00841
c(Cl1,O) 0.544 0.716 0.172
c(Cl1,K) 4.19 · 10−5 6.59 · 10−5 2.41· 10−5

c(Cl2,O) 0.538 0.812 0.273
c(Cl2,K) 1.41 · 10−4 2.08· 10−4 6.76· 10−5

rand 1.10 · 10−4 0.999 0.999
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Table S2: Complete table of the optimized coordinates. We stop at oc7: the presence of the
random CV in the linear combination suggests that no more information is needed as rand
is completely decorrelated form the reaction by definition. All the coefficients are from the
first set of data.

ocx Colvars Formula
oc1 c1 4.9− 9.6c1
oc2 c1 ; c(Cl1,Cl2) 2.2− 1.0 · 10c1 + 2.0 · 102c(Cl1,Cl2)

occ1,c2 c1 ; c2 0.6− 5.3c1 + 4.7c2
oc3 c1 ; c2 ; c(Cl1,O) −9.4− 3.3c1 + 1.0 · 10c2 + 1.1 · 10c(Cl1,O)
oc4 c2 ; c(Cl2,H) ; c(Cl,Cl) ;

c(Cl1,O)
−9.7 + 1.4 · 10c2 − 1.4c(Cl2,H)−1.2 · 102c(Cl1,Cl2)

+1.1 · 10c(Cl1,O)
oc5 c2; c(C,H); c(Cl1,Cl2); c(Cl1,O);

c(Cl2,K)
2.2 · 10 + 1.0 · 10c2 − 7.1c(C,H)−2.2 · 102c(Cl1,Cl2) +

8.6c(Cl1,O)−4.5 · 104c(Cl2,K)
oc6 c2; c(Cl2H); c(C,O); c(C,H);

c(Cl1,Cl2); c(Cl1,O)
1.4 · 10 + 1.3 · 10c2 − 3.0c(Cl2,H)+2.2 ·

10c(C,O)−7.2c(C,H)−2.5 · 102c(Cl1,Cl2) + 7.5c(Cl1,O)
oc7 c2; c(Cl2,H); c(C,H); c(Cl1,Cl2);

c(Cl1,O); c(Cl2,K); rand
−6.8 + 1.4 · 10c2 − 1.4c(Cl2,H)−9.8 · 10−2c(C,H)−1.8 ·

102c(Cl1,Cl2) + 1.1 · 10c(Cl1,O)−1.1 · 104c(Cl2,K)
−3.5 · 10−1rand

Umbrella sampling configuration space projected on non-

biased CVs
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Figure S4: US trajectories obtained biasing s12,MCA (no additional restraints) projected
along different CVs. Only the second half of simulations is represented (from 9 to 18 ps for
each US window).

Figure S5: US trajectories obtained biasing s12,TPS (no additional restraints) projected
along different CVs. Only the second half of simulations is represented (from 9 to 19 ps for
each US window).
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Figure S6: US trajectories obtained biasing d1 − d2 (no additional restraints) projected
along different CVs. Only the second half of simulations is represented (from 10 to 21 ps for
each US window).
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Complementary information on US

Figure S7: Effect of a sampling gap in the (c1,c2) plane (panel (a)), absent in the
(s12,TPS,z12,TPS) plane, on the US free-energy landscape reconstructed with WHAM ((panel
(b)). The orange landscape includes additional configurations sampled close to the gap (or-
ange points in (a)). Statistical uncertainties are indicated in pale blue.
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Figure S8: Comparison of free-energy landscapes reconstructed from US simulations using
two different WHAM codes, from refs.3 and,4 respectively.
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Computational protocol details

In this section we explore further details about the protocol that are not mentioned in the

paper.

Input template

Here is our CPMD input template:

&CPMD

MOLECULAR DYNAMICS BO

1
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CONVERGENCE ORBITALS

1.e-5

reSTART COORDINATES WAVEFUNCTION LATEST VELOCITIES

VDW CORRECTION

STORE WAVEFUNCTIONS

100

EXTRAPOLATE WFN

4

TIMESTEP

20.

TEMPERATURE

300.

NOSE IONS MASSIVE

300. 3000.

TRAJECTORY XYZ SAMPLE FORCES

1

MAXSTEP

100000

MAXRUNTIME

3500

COMPRESS WRITE32

MIRROR

RESTFILE

2

MEMORY BIG

REAL SPACE WFN KEEP

INITIALIZE WAVEFUNCTION RANDOM

ALLTOALL SINGLE

CP_GROUPS

2
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1

&END

&DFT

FUNCTIONAL PBE

GC-CUTOFF

1.E-05

&END

&VDW

EMPIRICAL CORRECTION

VDW PARAMETERS

ALL DFT-D2

S6GRIM

PBE

END EMPIRICAL CORRECTION

&END

&SYSTEM

ANGSTROM

SYMMETRY

1

CELL

13.36074 1 1 0 0 0

CUTOFF

80

&END

&ATOMS

3

189



*C_MT_PBE KLEINMAN-BYLANDER

LMAX=P

CCC

*O_MT_PBE KLEINMAN-BYLANDER

LMAX=P

OOO

*N_MT_PBE KLEINMAN-BYLANDER

LMAX=P

NNN

*H_MT_PBE KLEINMAN-BYLANDER

LMAX=S

HHH

ISOTOPES

12.0107

15.9994

14.0067

2.0

&END

To increase the stability of the model the mass of H elements has been set to 2 a.u., modeling

heavy water. This diminish the O-H covalent bond oscillation frequency,1,2 and increase also the

reliability of the Born Oppenheimer approximation,2 ensuring numerical stability.

”CCC”, ”OOO”, ”NNN” and ”HHH” denote places where the number of each element

in the box are inserted followed by the xyz coordinates of the initial geometry.

Path Collective Variables: A more Mathematic point of view

PCVs have been established in 2007 by Branduardi et al .3 The idea is to start from a set of

reference vectors composed of collective variables: {Ri}, sorted to pin a path of configurations

between reactants and products. The collective variables inside each Ri are selected to grasp

4
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the essential degrees of freedom of the reaction. Then the two PCVs, s and z, can be defined

as in the equation 1, where s represents the progress along the pined reference path and z

the general distance with all the references:





s(t) =

∑N
α=1 α× exp(−λD[Rx(t),R

α])
∑N

α=1 exp(−λD[Rx(t),Rα])

z(t) =
−1
λ

ln
(∑N

α=1 exp(−λD[Rx(t),R
α])
)

(1)

In equation 1, D represented a distance metric in the vector space of our chosen set of

collective variables, making of it a metric space. Rα is the αth reference vector and Rx(t)

is the collective variable vector of the geometry x(t). λ is an external parameter that we

define using the equation 2, in order to guarantee a smooth behaviour of s and z, as in our

references.4–6 Too large values of λ can lead a discontinuous behaviour of s and z whereas

too small values blur the separation between references making intermediate geometries

undistinguished.

λ×mean(D[Rα,Rα+1]) = −ln(0.1) ≈ 2.30 (2)

The distance metric used in this work is taken from the same previous works:.4–6 It is

defined as the square of the euclidean distance:

D[Rx(t),R
α] =

∑

i∈A

∑

σ∈E
[ciσ(x(t))− cαiσ]2 (3)

Where:

• A is a set of atom, that we chose to follow

• E is the set of different periodic elements in the system

• ciσ(x(t)) is the coordinance, in element σ, of the atom i, for the geometry x(t)

5
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• cαiσ the iσ component of reference vector Rα corresponding to the targeted coordinance.

The s(t) variable of the PCVs behaves in a very intuitive way as a reaction coordinate,

with a two times in a raw reduction of the dimensionality of the problem. The first one

consists of passing from the 3N phase-space geometry to a reference vector of roughly 10

to 20 dimensions, which should condense the definition of the chemical states associated

with each geometry. Our choice to use the coordinance of a set of atoms to reduce the

dimensionality of the problem proved its reliability in our previous works, specifically in the

case of covalent cleaving and bonding in solution.4,5,7–10 The second reduction of dimension

is the calculation of the one-dimensional s and z variables.

To permit comparison between the different steps of the mechanism and the different

steps of the protocol, each s variable has been normalised to evolve in the [0, 1] interval

(0 for reactants, 1 for products), instead of the [1, N ] interval of its definition, by a linear

rescaling.

Atomic permutations in PCVs

The reference Matrices that are used to define PCVs are not specific to a chemical state.

Among these differences a chemical state is the same if there are permutations between

atomic positions of the same element. For example, if the two carbons of the glycine are

inverted, then the molecule is still the same from a chemical and physical point of view.

That is not a dilemma if we know the mechanism that is going to occur in the simulation

box, but in the case of an explorative metadynamics we do not know which carbon of the

reactants will correspond to which one in the products. We have to make a choice. As with

any human choice in our protocol, we want to point this out as it is a possible source of

errors. In the case of glycine synthesis, as there is already one well known synthesis pathway,

the Strecker one, we decided to sort the products lines to match with it. In general case,

we propose to choose among all the possible permutations of the products’ reference matrix

the one that is the closest to reactants in matrix distance, (i-e the one that should imply

6
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fewer modifications). This reference could be named the Least Variation Permuted Reference

(LVPR). If chemical arguments are used against the LVPR, like in our case with the streaker

mechanism, then man can use another permutation.

Elements σ
C O N H

C1 0.0 1.2 0.0 2.0
C2 0.0 0.2 1.0 1.1
N1 0.0 0.3 0.0 3.4
N2 1.0 0.2 0.0 0.5

(a) Reactants reference table for
every mechanism

Elements σ
C O N H

C1 0.8 0.5 0.9 2.3
C2 0.8 2.0 0.1 0.6
N1 1.0 0.3 0.0 2.6
N2 0.0 0.3 0.0 3.4

(b) Products reference table
from Strecker mechanism

Elements σ
C O N H

C2 0.8 2.0 0.1 0.6
C1 0.8 0.5 0.9 2.3
N2 0.0 0.3 0.0 3.4
N1 1.0 0.3 0.0 2.6

(c) Products LVM

Figure S-1: Least variation permuted reference, compared with Strecker reference for prod-
ucts.

For the oxyglycolate pass toward glycine, the final geometry we obtain is glycine, but is

not corresponding exactly to the reference matrix R2 we used. At the final state position of

N1 and N2 are permuted, leading to the same chemical system but to another coordination

matrix. It is observable in the metadynamic bias footprint figure in the article where the

position of the reactants and products wells are not symmetric.

Bonding distance

ci(σ) =
∑

j∈σ

1−
(

dij
d0

)8

1−
(

dij
d0

)14 (4)

The smooth switching function, see figure S-2, is used to calculate the coordination of an

atom for one atomic element using the equation 4 The d0 in the equation is a cutoff distance

of bonding specific to the studied couple. In our calculation we used the value stated in table

S-1.
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Figure S-2: Graph of the smooth switching function in units of d0. Every atom at d0 distance
will be counted with a coordinate of +0.6 for the concerned element. The total coordination
of an atom for an element is the sum of all the smooth switching functions for all the species
of this element in the simulation simulation box.

Table S-1: Switching function separation distance

Atom Element d0 comments

X W 1.80Å X ̸=H, W ̸=H
C H 1.20Å
N H 1.10Å
O H 1.10Å

As switching functions are not directly used to make physical measurements out of our
work, the value of d0 has not to be precisely equal to the covalent bonding distance but has
to be set to separate correctly bonded interactions (near 1) to non-bonded interaction (less
than 0.5). This is done by mapping the histogram of distance of atom with an element in

the bulk. The value of 1.1Åfor O-H and N-H is set to correctly discriminate between
covalent bonds and H-bonds

8
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Umbrella sampling: standard errors and check protocol

Umbrella Sampling consists in sampling the system at a regular interval of a CV by adding

a confining quadratic bias along this CV. 60 copies (called windows) of the system are used

for that, each bias of each window has to be adjacent to neighbour ones. The standard CV

used for this step is a s12 (i-e 12-referenced PCVs) defined from the CA data, the process to

obtain it is detailed in the next subsection.

Once 15ps of trajectories has been sampled into each window (which represents 900ps

of data), a systematic check is performed to avoid hidden errors, such as hysteresis. These

errors take the form of separations in the coordination space between adjacent windows. In

that case that indicates that a part of the chemical process is missed a part of the reaction is

not sampled. Most of the time this separation appeared directly in the plot of the umbrella

sampling data with s12 and z12 as coordinates. Yet in our verification process, we checked

every pair of coordination that is used in the reference tables, with s12 and z12 as well, for

each step. Two types of separation can be observed :

▷ When the gradient of the free energy is very important between two references, then

a separation along s12, visible in the data points, could occur. To correctly fill this

hole into the dataset we insert new windows between the two separated ones with a

stronger spring constant in order to counter the landscape gradient. But the strength

of the quadratic bias you add into the system is limited by the timestep of 0.5fs.

▷ When some external degrees of freedom can evolve and change the position of an

entire windows apart from one of its two adjacent windows in the phase space we call

that an hysteresis. If no separation between adjacent windows is observed then the

data-set is validated for quantification. In the other case then two possibilities can be

distinguished :

– The separation is on a degree of freedom that does not concern the reaction (i-e

the NH3⇄ [NH4]
+ long equilibrium in water). Then we can avoid it by forcing the

9
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system to stay in the first state with an external potential wall. It is a situation

better to avoid but that does not threaten the quality of the results if the few

points that are modified by the external bias are taken out of the data set before

quantification.

– The separation is on a degree of freedom that concerns the reaction. This means

it is a normal evolution of the system toward relaxation and our s12 does not

succeed into following. In that case, for the unique time it occurs, we decided to

redefine s12 on a more reliable data-set using shooting from top, and relaunch a

new US. We discuss more about this peculiar process in the next subsection.

Most of the time a projection of the dataset on s12 and z12 variables is sufficient to

observe the undesirable hysteresis.

Shooting from top

Shooting from top is an algorithm that generates new trajectories of transition using a first

existing one and an order parameter. We applied this algorithm for the last SN2 process of

the synthesis. The algorithm :

1. Extract geometries from the actual transition trajectory that are inside a [A,B] interval

of the order parameter

2. Pick a geometry in that set (uniform distribution)

3. Initiate random velocities with Boltzmann distribution

4. Launch 2 trajectories one forward, one backward (inverse velocities)

5. Wait it falls into reactants or products

6. Merge them

7. • IF a new transition is obtained and IF a metropolis criteria is respected11 :

10
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• THEN new transition became the actual transition

• ELSE go to 2.

Following this process, we generate 600 runs with a rate of success of 1/3. The [A,B]

interval was [1.35,1.55] on s2, including the supposed values for the transition state. We took

out of this the last accepted trajectory and launched a new committor analysis from it.

Reference Space Exploration Algorithm

This protocol creates a reference list for s12 and z12 with two main constraints :

• Reference R2 and R11 are fixed to correspond to the average among reactants and

products ensembles. This implies that local minima in the free energy landscape are

situated at values of s12 equal to 1 and 11. These values approximately correspond to

≈0.1 and ≈0.9, when rescaled.

• The list [R3 : R10] of references between those to fixed pattern is optimised in order to

obtain equivalent distances for each possible segment [Ri, Ri+1], and equivalent angles

for each possible set {Ri, Ri+1, Ri+2}

The two side references (respectively R1 and R12) are non-physical linear extensions of the

pattern in the reactant and products ensembles in order to characterise the stable states

(at R2 and R11) by true local minimums of the free energy curve. All technical details,

about this algorithm and its usage, are detailed in our preceding paper.8 Highly referenced

PCVs has been used in US for steps with a level of complexity higher than a deprotonation.

As deprotonation is straightforward, we preferred to use the proton coordination of the

concerned atom as RC.

Machine Learning Interatomic Potential (MLIP) training

The aim of such techniques is to learn the potential energy surface from positions, energies

and forces generated during ab initio simulations. It has been successfully used to improve

11
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the study of equilibrium systems, but it is however a tremendously harder task to train a

MLIP for reactive systems.9,12,13 Indeed, the MLIP needs to be accurate on the whole config-

uration space of the chemical system, and therefore, the training set must be representative

of the transition mechanism. Nonetheless, the training points must be carefully chosen in

order to save computational time: if all the US simulations are placed in the training set,

the MLIP will most certainly have good performance all along the RC-space, but it will have

no use, since all the information we want is already included in the training set.

We train our MLIP into decomposing the energetic and forces associated with a position

into atomic contributions of all the species in the bulk. In order to take into account the

strong heterogeneity of the simulation box, we introduce the following loss:

L(w) =
1

|B|
∑

l∈B

[
pE |El − Ew

l |2 + pf
1

Nelem

N∑

i=1

1

ni
|Fl,i − Fw

l,i|2
]

(5)

where ni is the number of atoms of the same element as atom i in the system, Nelem is

the number of different elements in the system, El and Fl,i denote the DFT energies and

forces of the training set, while Ew
l and Fw

l are the forces and energies computed by the

MLIP, and B is the batch size (i.e., the number of geometries in the training set). w denotes

the set of parameters of the neural networks. By weighting with n−1
i the force-related terms,

we ensure that each atomic species has the same weight in the training process. Using this

loss, several neural network potential (NNPs) are trained using the DeePMD-kit smooth

edition,14,15 together, they form a committee. During a simulation, the maximum deviation

on the prediction of the forces expressed in equation 6 is used as a metric to control the

accuracy of the prediction during a simulation.

σmax(t) = max
i∈[1,Natoms]

√√√√
4∑

k=1

|F(k)
i,t − Fi,t|2 (6)

where 4 is the committee size, F
(k)
i,t is the force predicted for atom i by committee member

k, Fi,t is the average prediction of the committee.
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Using this, a maximum simulation lifetime τ can be defined as the time σmax stays below a

given threshold. With this definition, simulations can be performed with the NNP committee

and identify the zones of the RC-space where τ is too low. An AIMD US simulation is

performed in the window at the center of these zones and put in the training set to train a

new NNP. This is done until τ is the same in every US window.

Once convergence in terms of τ is achieved, we start the production runs simulations. In

every window, from the same starting configuration as for the AIMD runs, we start NNP

driven US simulations. In order, to control the behaviour of the system and to ensure the

NNP stays within the region in which the forces are evaluated accurately, we perform the

”mirror reflection” trick presented in ref.9 By reflecting the velocities of the system on the

surface where the deviation of the forces is the highest we are able to sample long stable

trajectories.

Table S-2: Cost of one US step. Each line corresponds to a different perspective on the
cost. The first is the time consumption on the calculation center, the second one is related
to energetic consumption, and the last one to the environmental impact.

AIMD MLMD Diff

Resources (kCPUh) 360 64 -296
Consumption∗ (kWh) 3600 640 -2960

CO∗∗
2 (kg) 122 22 -100

* Consumption of the jean-zay CPU partition is of 10Wh.CPUh−1.

** The average CO2 per kWh in France in 2021 was 34g.kWh−1 according to RTE..16

Table S-2 provides a preliminary estimate of the cost for our calculations for a single

FEP.

Full protocol flowchart

The figure S-3 represent our full protocol in a schematic way. A detailed technical discussion

about this protocol is available in (See section S-1). The initial geometries of the reactants

and products have been generated, optimized and equilibrated to the targeted temperature
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Selection
of reactants A

and products B

I
Preparation
of initial sol-

vated structures

II

Equilibration
of A and B

III

Definition
of s2, z2 with two reference

structures for step reac-
tants and step products

IV and VII

Equilibration
of new intermediates

VI
Metadynamics

to observe a mecha-
nism between A and B

V

1

1

1

Committor analysis
to obtain unbiased
reactive trajectories

VIII
Shooting from the top

to refine initial re-
active trajectories.

IX

2

2

Definition
of highly refer-

enced PCVs: s12, z12

X

2

Umbrella Sampling
using machine learning potential

to sample the full process

XI
WHAM

to compute the free en-
ergy profile from US.

XII

Figure S-3: Schematic algorithm depicting our simulation protocol. Green blocks (I, II, XII)
indicate pre- and post-processing blocks of the protocol. Blue blocks (III, VI, VIII and IX)
indicate ab initio agnostic explorative steps. Red blocks (IV/VII and X) indicate pivotal
steps where new CVs are defined. The elementary acts that have been discovered during
metadynamics (block V) pass one by one in the steps that follow: blocks VI to XII.
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using the Gromacs software17 with the AMBER force field18 for solutes compounds, and the

TIP3P model for water.19

Umbrella Sampling check process

Here we show a set of the couple of variables we plot after an Umbrella sampling process in

order to check the quality of the results. For that we choose the (2’) → (3) step. The plots

are in figure S-4. This check process is the most time consuming of the protocol and could

be accelerated or automatised by an algorithm in future works.

Free energy curves: WHAM algorithms

This method permits to obtain free energy curve out of independent molecular dynamic

trajectories with static bias. Therefore it is adapted to umbrella sampling FES extraction.

It has been performed separately with two different software in order to increase external

codes independence of the results. The first one comes from Alan Grossfield,20 and the

second one from Andrew L. Ferguson.21 To estimate the error due to convergence, which is

always much higher than WHAM resolution error, each data set of 15ps of US is separated in

four time intervals of 3.75ps each. The first two intervals are discarded for convergence. The

difference between the two last obtained curves, divided by
√
2 according to block average

method, gives an upper bound of the convergence error and the mean value of the two last

curves gives the final FES. An example of Grossfield/Ferguson results is presented in figure

S-5.

Non-agnostic check of the last transtition state

To test the counter-intuitive last transition state we decided to lock in in at the top of the

barrier. To performed that we relied on a fully euristic CV: the difference of distance between
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Figure S-4: Projections of the full (2’) → (3) US Dataset for some couple of variables: s12,
z12, cC2(O), cN2(H), cO1(H). The full number of variable tested in our process is 28 for this
step.
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Figure S-5: Free energy curves for (2’)→ (3) reaction with Grossfield and Ferguson WHAM
codes
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cCOO(H)
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Figure S-6: The free energy curve we obtained by trying to sample protonated geometries of
the last transition stated, locked in the reactive region by a quadratic bias. The study of the
curve reveal that in our case there isn’t any stable configuration of the protonated structure.
The TS evolves spontaneously toward basic forme.
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the nucleophile (nytrogen) and the living groupe (oxygen). This CV had been shown to be

very efficient in the case of SN2 like reactions. We locked this CV on the value of 0 with a

harmonic bias with a strength of 0.4Ha (251 kcal.mol−1.bohr−1), the same order of magnitude

of the bias we add during US.

As shown in figure S-6, the new US analysis we performed on the protonation of the acid

group shows that there is no stable protonated form. This could be due to the size of the

system, the protonation of the living hydroxide can be favoured by the releases of one proton

in the solvent making passing the pH form 7 to ≈ 0.7 without intermediate values.

Hybride DFT study for dataset

The dataset we use for neural network potentials training are roughly of 0.1 ns lenght with

a time step of 0.5fs. that represents 200k geometries. By calculating thees geometries via

PBE and re-estimate the energy of a part of them thanks to PBE0 we can hope to be able

to create a sufficient dataset of PBE0 energies and forces especially if we try to select wisely

the recalculated geometries. That would allow use to train a ”PBE0-trained” NNP and to

obtain hybrid accuracy without any further calculations than the ”few” PBE0 estimations.

This section presente a first rought estimation of the cost of this training set generation for

CPMD22 and CP2K23 softwares.

Table S-3: Time before SCF convergence for our 253 atoms system on a TS geometry.

xc CPMD CP2K
PBE 49 306
PBE0 1568 606
ratio 32 2

CP2K and CPMD sofwares do not use the same basis sets (Planewaves and Hybrides) and
it is very hard to make them equivalent but we can still compare the time ratio of this two
softwares when passing from PBExc to PBE0xc. The PBE SCF wavefunctions are initialise
on atomic first guess. For PBE0, a first wavefunction optimisation with PBE (counted in

the full time) is firstly performed to generate an initial wfc restart file.

As shown in table S-3, the usage of PBE0 with CPMD is highly non-recommended as
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multiplying the calculation time by factor of 40, even with a wise wavefunction initialisation

with PBE. On the contrary the usage of PBE0 with CP2K again with a ”wise” wave functions

initialisation only multiply it by 2. Stated on this preliminaries we recommend to used

CP2K. The time of CP2K PBE0 calculation can still be improved by optimising it (exemple

by chosoing an adapted basis set) so we can hope to reach a relatively affordable dataset

if we succeed to divide its size by at least 10. This could be achieved by wisely choose the

geometries for the training in a PBE generated dataset of geometries.

Table S-4: PBE0 relative error for randomly taken geometries of the reactants transition
state and products of the last step toward glycine

PBE PBE0 %Err
∆E‡ +11.04 +18.25 40%
∆Er −14.38 −17.01 15%

In order to estimate what would this change made on the potential energy of our model

we made, a short and rough estimation of the difference of behaviour of PBE and PBE0

on our system by selecting randomly one reactant geometry one transition state geometry

and on product geometry of the last step calculate PBE and PBE0 energies for all of thees

geometries and estimate the energy gap involved, see table S-4. This energy gaps are far

from the free energy ones of the paper because they are not taking in account entropy effect

nor solvent fluctuation effects as with AIMD. We measured ≈7 kcal.mol−1 of difference on

the transition states energy and ≈3 kcal.mol−1 on reaction energy.

Protocol Step Parameters

AIMD

The parameters for unbiased trajectories are all in the input template in subsection S-1-1.

For these calculations the PLUMED plugin is only used to monitor the values of several

important CVs. For each exploration of each intermediate, the trajectories are 15ps length

(≈30 000 steps).
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Metadynamics

The gaussian bias sum in metadynamics is incremented every 50 steps (≈ 25fs). Each

gaussian 2D function is 0.005au height (≈ 3.1kcal·mol−1), 0.03 wide for s2 and 0.2 wide for

z2. The metadynamics trajectory is 60ps length.

Committor Analysis

Committor analysis are run around probable transition region every 10 step of the initial

trajectory. 3 launches of new trajectories for each geometries are initially performed. The

geometries that do not commit in both reactant and products are ignored, the other are

completed up to 20 launches. The wells are identified via s2 and z2 PCVs specifically pa-

rameterised for each step. The Committor Analysis trajectories are roughly of 1.6ps length

each which is voluntarily much higher than the normal commit time (≈ 100fs).

Shooting From the Top

The interval to launch Shooting From Top has been chosen to be the 1.35 to 1.5 region of the

corresponding s2 for the last and unique step for which it has been used: the 6→ 7 one. We

chose this interval as the one of possible commit toward both wells observed in the preceding

Committor Analysis. We launched 600 successive transition attempts both forward and

backward. The acceptance ratio was 1/3, which means that 200 new probable transition

state geometries have been identified during the process, each one more independent from

the original metadynamic one.

Umbrella Sampling

For complex transitions, 60 umbrella windows are launched on the s12 corresponding with

the transition, with a strength constant k = 0.18au (≈110kcal·mol−1). The bias is then

calculated using equation 7, were s0 designate the center of each window. They are equally
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spread into the 1 to 12 interval of the s12.

Bias(s12) = k/2(s12 − s0)2 (7)

For deprotonation steps, we launched 15 umbrella windows on the proton coordination

of the deprotonated atom, with a strength constant k = 1.8au (≈1000kcal·mol−1). Windows

are equally spread from the 0 to 1 values of the proton coordination.
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Van der Waals empirical cor-

rection

In the cited work,1 Grimme’s van der Waals
(vdW) corrections2 were accidentally over-
looked and not included in the potential cal-
culations. Our goal is to address this oversight
to prevent its recurrence in future studies. The
oversight was originated from the vdW section
of the CPMD software input file, with no warn-
ing in version 4.1 of the CPMD software.3

Former version :

...

& VDW

VDW PARAMETERS

ALL DFT-D2

S6GRIM

PBE

&END

...

Corrected Version :

...

& VDW

EMPIRICAL CORRECTION

VDW PARAMETERS

ALL DFT-D2

S6GRIM

PBE

END EMPIRICAL CORRECTION

&END

...

The keywords ”EMPIRICAL CORREC-
TION” and ”END EMPIRICAL CORREC-
TION” are missing in the description of the
vdW section of the CPMD manual.
To evaluate how this oversight initially im-

pacted the article’s conclusions, we performed
a new umbrella sampling (US) simulation for
the transition from step (3) to (4) using the
corrected input file. We chose this step for two
reasons: it depends on a long-range interaction
between two reactive molecules that could be
influenced by the omission of vdW corrections,
and it has been used as a reliable benchmark
reaction for additional simulations.4

The protocol for the revised (3)→(4) US sim-
ulation remained the same as in the reference:1

in each window we generated 14 ps of trajectory,
divided into 7 ps for equilibration and 7 ps for
free-energy sampling. The results, shown in fig-
ure E.1, indicate consistency between the two
calculations, with ∆rF = −23± 0.5 kcal.mol−1

for both. As anticipated for condensed phase
chemical reactions, empirical vdW corrections
have minimal impact on the results. Addition-
ally, we confirmed that the corrected input file
accurately implements Grimme’s van der Waals
D2 corrections and that these are properly in-
cluded in the force estimates. We expect that
incorporating vdW corrections in other steps of
the mechanism will still yield results within the
error margins of the initial study.1

Van der Waals corrections are consistently ac-
counted for also in the simulations described in
the following sections.
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Figure E.1: Results of the new US simulation
with Grimme’s D2 correction. The new free-
energy curve is depicted in green, while the
the original one, as presented in the article, is
presented in blue. The reactant position for
the step s(3)→(4) is located at 0.4 on the s12
axis. The error bars are indicated for both with
shaded areas.

Correction concerning a

strong free-energy gradient

in the (2)→(3) step

An issue was identified during the sampling of
the (2)→(3) step in the Strecker mechanism, as
described in ref,1 which involves the formation
of a cation through the elimination of a water
molecule. A pronounced gradient was noted in
a specific region of the free-energy curve. After
incorporating additional US windows in this re-
gion, the free-energy landscape was impacted,
increasing the final free-energy difference be-
tween reactants and products by 4 kcal.mol−1,
as shown in figure E.2. The s12 coordinate ini-
tially designed for this step seems inadequate
to capture this chemical transformation, thus
requiring a further determination of the free-
energy curve. Consequently, we defined a new
set of coordinates, s12 and z12, based on new
committor analysis and proceeded to repeat the
entire US simulation for this step to verify the
accuracy of the results.

0.0 0.2 0.4 0.6 0.8 1.0

s12

0.0

2.5

5.0

7.5

10.0

12.5

Free Energy
(kcal.mol−1)

(2)

+3.2

+7.5

(3)

Step (2) → (3): gradient test

original

corrected

Figure E.2: Effect of the addition of an US win-
dow on the (2)→(3) step. The blue curve, as
presented in the article, represents the original
data, while the red curve includes the effect of
an additional window.

Corrections to hysteresis

effects in the (1)→(2’),

(2)→(3), (4)→(5’) and (5’)→(5)

steps

After carrying out a detailed analysis of the US
data, we spotted hysteresis effects that were ini-
tially overlooked, as shown in figure E.3. These
effects were evidenced through the determina-
tion of new collective variables and a continuity
check, as described in our protocol paper.5 For
each step, we established new pairs of s12 and
z12 variables and repeated the US simulations.
Notably, Step (1)→(2’) was subdivided into
two distinct processes: the HCN deprotonation
(1)→(1’), and the amine addition (1’)→(2’).
The deprotonation reaction coordinate was de-
fined by the coordination of the carbon with hy-
drogen, which underlines the relative simplicity
of the reaction.
The new, revised free-energy curves for this

process are reported in figure E.4. The updated
diagram is presented in figure E.5. We have not
identified additional errors of this nature in the
other steps.
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a) b)

c) d)

Figure E.3: Hysteresis has been observed in previous US simulations at several steps: a) In
step (1)→(2’), hysteresis was detected in the protonation of the cyanide’s carbon, cC2(H). b)
In step (2)→(3), the critical variable is the protonation of the leaving oxygen, cO66(H). c) For step
(4)→(5’), the critical variable involves the protonation of the leaving nitrogen, cN85(H). d) In step
(5’)→(5), the critical variable is again the protonation of the leaving nitrogen, cN85(H). The s12
coordinate is used as the horizontal axis for each graph.
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Supplementary Information for: Insight on

chemical reaction dynamics and reaction

coordinates from non-Markovian models
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¶PASTEUR, Département de Chimie, Ecole Normale Supérieur, PSL University, Sorbonne

Université, CNRS, 75005 Paris, France

E-mail: fabio.pietrucci@sorbonne-universite.fr

S-1 CPMD input template

&CPMD
MOLECULAR DYNAMICS BO
CONVERGENCE ORBITALS
1.e-5
RESTART GEOFILE VELOCITIES
VDW CORRECTION
STORE WAVEFUNCTIONS
100
EXTRAPOLATE WFN
4
TIMESTEP
20.
TEMPERATURE
300.

1
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NOSE IONS MASSIVE
300. 3000.
TRAJECTORY XYZ SAMPLE FORCES
1
stress tensor
20
MAXSTEP
1500000
MAXRUNTIME
3000
COMPRESS WRITE32
MIRROR
RESTFILE
2
MEMORY BIG
REAL SPACE WFN KEEP
INITIALIZE WAVEFUNCTION RANDOM
ALLTOALL SINGLE
CP_GROUPS

1
PRNGSEED
XXX

&END

&DFT
FUNCTIONAL PBE
GC-CUTOFF
1.E-05

&END

&VDW
EMPIRICAL CORRECTION
VDW PARAMETERS
ALL DFT-D2
S6GRIMME
PBE
END EMPIRICAL CORRECTION
&END

&SYSTEM
ANGSTROM
SYMMETRY
1
CELL
14.4807 1 1 0 0 0
CUTOFF
80

&END

&ATOMS
*C_MT_PBE KLEINMAN-BYLANDER

LMAX=P
CCC
*Cl_MT_PBE.psp KLEINMAN-BYLANDER

LMAX=D
ClClCl
*H_MT_PBE KLEINMAN-BYLANDER

2
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LMAX=S
HHH
*K_MT_PBE_SEMI.psp KLEINMAN-BYLANDER

LMAX=D
KKK
*O_MT_PBE KLEINMAN-BYLANDER

LMAX=P
OOO
ISOTOPES
12.0107
35.9768
2.0
38.9637
15.9994

&END

S-2 Mass in the well without wall on cos(θ)
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Figure S-1: Estimation of the mass of the variable in the reactant well in the absence of all
on cos(theta)

The Figure S-1 shows the behavior of the mass of the variable in the absence of wall on

the cosinus. We can observe that the error bars are still important after 100ps of unbiased

sampling, which justify the usage of an additional wall to limit the exploration.
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S-3 Reference frames of s12 and z12

The following lines are presenting the 12 references use to defined our data-driven variables.

They are taken out of our preceding work on this system.1 Lines are representing the atoms

C, Cl1 and Cl2 and columns are representing the elements C, Cl, O,K and H. Each numerical

value represents the coordinance of one of the three atoms in one of five elements.

NAT 3 FRAMES 12
1
1 1 0.0000 0.8141 0.1336 0.0011 2.9176
2 2 0.0829 0.0050 0.7436 0.0010 1.4340
3 2 0.7312 0.0050 0.5988 0.0007 1.0591

2
1 1 0.0000 0.8905 0.1327 0.0011 2.9233
2 2 0.0906 0.0061 0.7274 0.0010 1.4188
3 2 0.7999 0.0061 0.6015 0.0007 1.2040

3
1 1 0.0000 0.9602 0.1572 0.0009 2.9254
2 2 0.1634 0.0092 0.6924 0.0007 1.4212
3 2 0.7968 0.0092 0.6404 0.0008 1.3503

4
1 1 0.0000 1.0235 0.1667 0.0009 2.9751
2 2 0.2069 0.0112 0.6426 0.0009 1.3007
3 2 0.8166 0.0112 0.7178 0.0006 1.4023

5
1 1 0.0000 1.0156 0.1486 0.0008 2.9459
2 2 0.2665 0.0116 0.5688 0.0007 1.2175
3 2 0.7491 0.0116 0.6954 0.0006 1.5018

6
1 1 0.0000 0.9786 0.1818 0.0012 2.9417
2 2 0.3596 0.0115 0.5981 0.0010 1.1912
3 2 0.6190 0.0115 0.7144 0.0007 1.4740

7
1 1 0.0000 1.0089 0.1594 0.0009 2.9360
2 2 0.4891 0.0124 0.5882 0.0009 1.2141
3 2 0.5198 0.0124 0.6729 0.0006 1.4508

8
1 1 0.0000 0.9355 0.1503 0.0010 2.9715
2 2 0.5232 0.0109 0.5788 0.0010 1.1887
3 2 0.4123 0.0109 0.7059 0.0006 1.5428

9
1 1 0.0000 0.8236 0.1515 0.0009 2.9703
2 2 0.5295 0.0088 0.5792 0.0009 1.2277
3 2 0.2941 0.0088 0.7454 0.0005 1.5164

10
1 1 0.0000 0.8100 0.1520 0.0009 2.9887
2 2 0.6426 0.0070 0.6134 0.0008 1.2507
3 2 0.1675 0.0070 0.7593 0.0005 1.4876

11
1 1 0.0000 0.9121 0.1496 0.0006 2.9362
2 2 0.7758 0.0083 0.5969 0.0008 1.2332

4
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3 2 0.1362 0.0083 0.7620 0.0005 1.5268
12
1 1 0.0000 1.0056 0.1502 0.0006 2.9401
2 2 0.8758 0.0094 0.5940 0.0008 1.3485
3 2 0.1298 0.0094 0.7613 0.0005 1.5316

S-4 Results of the study for additional variables

As 6 CVs was a too short sample to perform correlations on them we decided to add most of

the CVs used to reference the s12 and z12. Some CVs that are links with ∆d had also been

added into the set: d2 the other C-Cl distance and c1-c2 the coordinance equivalent of ∆d.

Table S-1: Dynamics and quality features for supplementary CVs with varying qualities.
The measured criteria are the same as for the 6 initial ones. The SLLS quantifies how
likely a variable is to be linearly transformed into the committor at the top of the barrier.
The transmission coefficient (TC) measures the recrossing effect during the transition. The
subsequent parameters are derived from stochastic models. The friction coefficient and
memory decay times are known to be inversely proportional to the quality of the variable to
mimic the behavior of the committor. Error bars are estimated using block averages.

Var SLLS TC (%) γ1 (ps−1) R2
1 (-) γ2 (ps−1) t1/2 (fs) γ3 (ps−1)

c1-c2 17.2 ± 2.9 54.7 ± 3.3 51.6 ± 0.6 0.34 ± 0.01 22.7 ± 11.4 49.6 ± 7.5 10.0 ± 0.05
d2 15.7± 5.2 48.3 ± 4.2 102.5 ± 4.0 0.30 ± 0.0001 13.1 ± 2.7 36.8 ± 6.3 17.2 ± 0.8

cC(Cl) 0.0 ± 0.0 0.0 ± 8.9 53.6 ± 0.1 0.246 ± 0.006 23.7 ± 14.2 31.0 ± 1.9 11.4 ± 0.06
cC(O) 1.9 ± 0.4 0.0 ± 7.6 88.0 ± 2.4 0.37 ± 0.038 44.1 ± 25.8 27.3 ± 2.2 16.3 ± 0.9

cCl1(Cl2) 1.16 ± 1.2 0.90 ± 0.2 47.8 ± 2.0 0.50 ± 0.05 23.5 ± 9.0 17.7 ± 5.1 5.1 ± 0.1
cCl1(O) 0. ± 0.4 9.2 ± 5.1 64.2 ± 1.4 0.46 ± 0.02 32.1 ± 15.3 30.2 ± 5.1 11.5 ± 0.01
cCl1(K) 0.2 ± 1.0 6.1 ± 6.2 27.2 ± 1.3 0.4 ± 0.1 150.1 ± 29.3 125.3±117.6 3.8 ± 0.2
cCl2(O) 0.0 ± 0.8 9.3 ± 1.0 71.7 ± 0.5 0.23 ± 0.02 38.9 ± 0.3 29.3 ± 0.2 16.2 ± 0.3
cCl2(K) 0.8 ± 0.4 16.3 ± 1.5 38.3 ± 5.1 0.48 ± 0.03 9.2 ± 8.6 354.8±331.1 4.4 ± 0.3

S-5 modification of the Jan Daldrop code

To add the effect of temperature in the Jan Daldrop code2 in a intuitive way we modified

the code directly in the python script we used. For transparency the new class we used are

presented here:

import numpy as np

import bgle

5
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from scipy.interpolate import CubicSpline

class ColoredNoiseGenerator_TEMP (bgle.ColoredNoiseGenerator):

def generate(self, size, kBT):

white_noise = self.rng(size=size)

colored_noise = np.convolve(

white_noise, self.sqk,

mode=’same’) * np.sqrt(self.t[1] - self.t[0])

return colored_noise * np.sqrt(kBT)

class BGLEIntegrator_TEMP(bgle.BGLEIntegrator):

def __init__(self,

kernel,
t,

m=1.,

dU=lambda x: 0.,

add_zeros=0,

verbose=True):
self.kernel = kernel
self.t = t
self.m = m
self.dt = self.t[1] - self.t[0]
self.verbose = verbose
self.dU = dU

if self.verbose:
print("Found dt =", self.dt)

self.noise_generator = ColoredNoiseGenerator_TEMP(

self.kernel, self.t, add_zeros=add_zeros)

def integrate(self,

n_steps,

kBT,

x0=0.,

v0=0.,

set_noise_to_zero=False,

_custom_noise_array=None,

_predef_x=None,

_predef_v=None,

_n_0=0):

if set_noise_to_zero:

noise = np.zeros(n_steps)

else:
if _custom_noise_array is None:

noise = self.noise_generator.generate(n_steps, kBT)

else:
assert (len(_custom_noise_array) == n_steps) # type: ignore

x, v = x0, v0

if _predef_v is None:

6
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self.v_trj = np.zeros(n_steps)

else:
assert (len(_predef_v) == n_steps) # type: ignore

assert (_predef_v[_n_0 - 1] == v)

self.v_trj = _predef_v

if _predef_x is None:

self.x_trj = np.zeros(n_steps)

else:
assert (len(_predef_x) == n_steps) # type: ignore

assert (_predef_x[_n_0 - 1] == x)

self.x_trj = _predef_x

self.t_trj = np.arange(0., n_steps * self.dt, self.dt)

rmi = 0.
for ind in range(_n_0, n_steps): # type: ignore

last_rmi = rmi

if ind > 1:
rmi = self.mem_int_red(self.v_trj[:ind])

last_v = self.v_trj[ind - 1]

else:
rmi = 0.
last_rmi = 0.

last_v = 0.

x, v = self.rk_step(x, v, rmi, noise[ind], last_v, last_rmi)

self.v_trj[ind] = v

self.x_trj[ind] = x

return self.x_trj, self.v_trj, self.t_trj

The difficulty is then to generate a trajectory with coherent units for the forces, the

friction, the time step, the mass, and kBT.

S-6 Reproduction of the well data

In order to extrapolate our GLE model, we first needed to test whether it could efficiently

reproduce the dynamics of the variable, at least within the well ensemble. For this purpose,

we performed sampling of the GLE model in the well with different time steps and temper-

atures. The results of this study are presented in Figure S-2. This study shows that the use

of a linear rescale of the time step with respect to the temperature was sufficient to ensure

correct integration at high temperatures. Theoretically, a rescale by 1√
T
should have been

7
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Figure S-2: Study of the effect of time step and temperature on the observed memory kernels
and speed auto-correlation in the well ensemble for our GLE integration program. a) The
effect of the sampling time step on the memory at 300K. A small decay is observable at
short timescales and appears to be a regular error that the time step does not change. b)
The effect of the sampling time step on the velocity autocorrelation. The observation is the
same, showing a decay at short timescales that is unaffected by the time step. This could be
due to the small mass difference between the top of the barrier and the well. c) The effect of
temperature on the memory kernel. The friction is not affected. The use of a linearly rescaled
time step seems to ensure correct sampling of the noise. d) The effect of temperature on
the autocorrelation of the velocity. As expected, the autocorrelation intensity of the velocity
evolves linearly with temperature. The sampling presents no artifacts with a linear rescale
of the time step.
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sufficient, but we decided to continue with the linear rescale as it was effective affordable.

S-7 MCCI datasets

As short representation of the TPS and US datasets is proposed from the point of view of

∆d. The resulting graphs are presented in Figure S-3 and S-4.
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Figure S-3: Representation of the TPS dataset for the MCCI system. a) Distribution
of the velocity conditioned on the value of Delta-d. We can see the ”warm-up” of the
variable due to the gradient descent from the top of the barrier (at Delta-d = 0). This
behavior opposed to the Maxwell-Boltzmann distribution of the velocities is a characteristic
of transition path sampling datasets. Outside of the [-2,2] interval in bohr, the velocity
distribution is thermalysed, this means that we are in the well region. b) Time evolution of
the shootings from the top trajectory. We can observe that the descent from the top takes
roughly 0.2ps.

S-8 Effect of the wall on cos(θ) on the friction

We estimated the effect of the addition of the cos(θ) on the friction in the well data. We also

compared γ0 and γ1. The results of this study is that the addition of bias diminished the

friction. We also show that the value of γ0 as an integral of the memory is not in ad-equation

with the observed values of the friction in the dataset. This is why we decided to ignore it

for the rest of the study. The results of this measure are presented in Figure S-5.
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the time evolution of all the simulation windows. We can observe that the behavior of every
windows remain stationary. b) The introduced bias with respect to ∆d. In the reactants
and products regions we can observe the effect of the additional external walls on cos(θ) and
∆d.
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Figure S-5: Impact of the wall added on the cosine on the dynamics of the system. e)
Estimation of γ1 in the well ensemble with restrictive walls on ∆d only. f) Same as panel
e), with the additional wall on cos(θ).
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S-9 Effect of the position on the memory
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Figure S-6: Comparison of the memory kernel of the well with the one at the top of the
barrier obtained with a bias to counter the barrier wall. The memory Kernel at the top
present a long tail that could be an artifact generated by the bias.

In order to study the effect of the position on the memory kernel, we measured this at

the top of the barrier by setting a quadratic bias that exactly compensates for the barrier,

thereby sampling data at the top with the lowest possible amount of bias. The results of

this study are presented in Figure S-6. The system’s behavior at the top of the barrier is

peculiar: the peak of the memory kernel at short times is lower and shorter than that for

well data, but the remainder of the kernel exhibits a long tail that gradually approaches

zero.

The presence of this long tail could be an artifact resulting from the bias, which introduces

strong oscillatory behavior in the system that couples with other degrees of freedom. It is

challenging to disentangle the effects of the bias from the effects of the position. It is possible

that the long tail is entirely due to the bias, implying that the memory (and friction) is indeed

lower at the top of the barrier than in the wells, which aligns with our intuition.
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