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The modernization of the electricity grid (EG) through the implementation of microgrids
offers significant potential for enhancing energy resilience, sustainability, and efficiency. How-
ever, this transition involves navigating a complex web of technical, economic, and environ-
mental challenges. Microgrids require meticulous planning and optimization to balance energy
generation, storage, and consumption while minimizing costs and carbon emissions. Achiev-
ing this balance calls for advanced optimization strategies, which are capable of addressing the
intricacies of system components and operational dynamics.

The objective of this research is to enhance the decision-making capabilities of microgrid
designers by providing a comprehensive approach for microgrid planning. The study offers an
in-depth analysis of the project’s lifetime from technical, economic, and environmental per-
spectives. Implemented in Python and solved using CPLEX, the optimization process aims to
minimize both the levelized cost of energy (LCOE) and the levelized cost of emissions (LCE).
The study utilizes real economic and environmental data considering load growth as well as
actual solar irradiation, ambient temperature, and wind speed data. The load for the university
building is based on data from the Université de Technologie de Compiègne, France with the
electric vehicle (EV) load modeled using probabilistic modeling.

The study introduces a joint multi-objective optimization strategy using Mixed-Integer Lin-
ear Programming (MILP) to ensure globally optimal solutions, thereby that facilitates obtaining
more informed and effective design choices. These choices involve evaluating various pro-
posed solutions to balance cost and carbon emissions while addressing the complexities and
technical constraints of the energy management (EM) problem. A novel aspect of this work is
the integration of EM and component sizing into a unified optimization problem, aiming for
an optimality gap of 0% with reduced computation time compared to existing literature. The
proposed method evaluates the inherent trade-offs among various solutions by identifying the
Pareto front and allowing for an optimal balance between economic and environmental objec-
tives. The results indicate a significant reduction in LCOE and LCE in the GCMG compared
to the IMG. The study reveals that Battery Energy Storage System (BESS) capacity increases
as the LCE decreases, and the number of Photovoltaic (PV) systems is higher when the LCOE
is lower for both operation modes. This occurs because the BESS has a slightly lower LCE
compared to PV, and the LCOE of PV is also lower than that of BESS. Furthermore, as the
limit of the EG increases, the Pareto fronts become lower and steeper.

Additionally, the same MILP algorithm is applied to optimize microgrids from a tertiary
university campus across various cities. The study further integrates wind turbines (WT) and
EV loads into the microgrid. The study provides a comparative analysis of three scenarios
(PV/BESS, WT/BESS, and PV/WT/BESS) across different cities for evaluating the impacts of
seasonal fluctuations on LCOE and LCE, and for assessing how microgrid component tech-
nologies influence LCOE and LCE outcomes. The results indicate that scenarios including
PV/WT/BESS yield the lowest LCOE and LCE values, while the WT/BESS scenario results
in the highest LCOE and LCE. It is also observed that the order of cities based on average
solar irradiation or wind speed does not necessarily correspond to the order of LCOE and LCE.
Monthly and daily fluctuations in solar irradiation and wind speed significantly impact these
results. Regarding the technologies, locally produced PV panels contribute positively to the
overall LCE of the microgrid, with PV panels incorporating phase changing material showing
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higher LCE.

The research also compares two distinct algorithms. Algorithm 1 employs a cascaded
MILP approach to optimize microgrid sizing and EM without EV flexibility over a year, then
focuses on daily EV flexibility. Algorithm 2 integrates APSO with MILP to determine the
sizes of microgrid components and perform daily EM with EV flexibility. It examines battery
degradation and load shedding, excluding critical loads in a university building, while focusing
on the flexibility of EV loads within the microgrid’s EM system. Both algorithms address
battery degradation through a kWh throughput model and aim to minimize the LCOE and
LCE. Loads are segregated between EVs and a university building. The findings reveal that the
Embedded APSO-MILP algorithm (Algorithm 2) ensures no load shedding under all scenarios,
unlike the cascaded MILP approach (Algorithm 1), which exhibits marginal load shedding in
scenarios where load shedding is explicitly prohibited. Moreover, in terms of LCOE and LCE,
no EV flexibility, and no load shedding scenario of Algorithm 2 performs the worst, while the
scenario of incorporating EV flexibility and load shedding of the same algorithm demonstrates
the best outcomes for both metrics.

Overall, this research presents a holistic approach for optimizing microgrid design and
operation by unifying component sizing and EM strategies, integrating advanced optimization
techniques, and addressing both economic and environmental objectives throughout the project
lifespan. Furthermore, the proposed method contributes to the reduction of carbon dioxide
emissions and energy costs by increasing the utilization of renewable energy sources.

Keywords: microgrid, multi-objective optimization, optimal sizing, energy management,
renewable energy integration, electric vehicle.
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La modernisation du réseau électrique (RE) par la mise en œuvre de micro-réseaux offre
un potentiel significatif pour améliorer la résilience énergétique, la durabilité et l’efficacité.
Cependant, cette transition implique de naviguer dans un ensemble complexe de défis tech-
niques, économiques et environnementaux. Les micro-réseaux nécessitent une planification et
une optimisation méticuleuses pour équilibrer la génération, le stockage et la consommation
d’énergie tout en minimisant les coûts et les émissions de carbone. Atteindre cet équilibre
nécessite des stratégies d’optimisation avancées capables de traiter les subtilités des com-
posants du système et des dynamiques opérationnelles.

L’objectif de cette recherche est d’améliorer les capacités de prise de décision des concep-
teurs de micro-réseaux en fournissant une approche globale pour la planification des micro-
réseaux. L’étude offre une analyse approfondie du projet sur toute sa durée de vie, du point
de vue technique, économique et environnemental. Implémenté en Python et résolu à l’aide
de CPLEX, le processus d’optimisation vise à minimiser à la fois le levelized cost of energy
(LCOE) et le life cycle emission (LCE). L’étude utilise des données économiques et environ-
nementales réelles, en tenant compte de la croissance de la charge ainsi que des données réelles
d’irradiation solaire, de température ambiante et de vitesse du vent. La charge pour le bâtiment
universitaire est basée sur des données de l’Université de Technologie de Compiègne, France,
avec la charge des véhicules électriques (VE) modélisée à l’aide d’une modélisation proba-
biliste.

L’étude introduit une stratégie d’optimisation multi-objectifs conjointe utilisant le mixed
integer linear programming (MILP) pour garantir des solutions globalement optimales, facili-
tant ainsi des choix de conception plus informés et efficaces. Ces choix impliquent l’évaluation
de diverses solutions proposées pour équilibrer les coûts et les émissions de carbone tout en
abordant les complexités et les contraintes techniques du problème de gestion de l’énergie.
Un aspect novateur de ce travail est l’intégration de la gestion d’énergie (GE) et du dimension-
nement des composants dans un problème d’optimisation unifié, visant un écart d’optimalité de
0 % avec un temps de calcul réduit par rapport à la littérature existante. La méthode proposée
évalue les compromis inhérents entre diverses solutions, identifiant le front de Pareto et perme-
ttant un équilibre optimal entre les objectifs économiques et environnementaux. Les résultats
indiquent une réduction significative du LCOE et du LCE dans le GCMG par rapport à l’IMG.
L’étude révèle que la capacité du système de stockage d’énergie par batterie (BESS) augmente
à mesure que le LCE diminue, et que le nombre de systèmes photovoltaı̈ques est plus élevé
lorsque le LCOE est plus bas pour les deux modes de fonctionnement. Cela se produit parce
que le BESS a un LCE légèrement inférieur à celui du PV, et que le LCOE du PV est également
inférieur à celui du BESS. De plus, à mesure que la limite du RE augmente, les fronts de Pareto
deviennent plus bas et plus raides.

En outre, le même algorithme MILP est appliqué pour optimiser les micro-réseaux d’un
campus universitaire tertiaire dans diverses villes. L’étude intègre également des éoliennes
(WT) et des charges de VE dans le micro-réseau. L’étude fournit une analyse comparative de
trois scénarios (PV/BESS, WT/BESS et PV/WT/BESS) dans différentes villes, évalue les im-
pacts des fluctuations saisonnières sur le LCOE et le LCE, et évalue comment les technologies
des composants des micro-réseaux influencent les résultats du LCOE et du LCE. Les résultats
indiquent que les scénarios incluant PV/WT/BESS produisent les valeurs de LCOE et de LCE
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les plus basses, tandis que le scénario WT/BESS aboutit aux valeurs de LCOE et de LCE les
plus élevées. Il est également observé que l’ordre des villes en fonction de l’irradiation so-
laire moyenne ou de la vitesse du vent ne correspond pas nécessairement à l’ordre du LCOE
et du LCE. Les fluctuations mensuelles et quotidiennes de l’irradiation solaire et de la vitesse
du vent influencent de manière significative ces résultats. En ce qui concerne les technologies,
les panneaux photovoltaı̈ques produits localement contribuent positivement au LCE global du
micro-réseau, avec des panneaux PV intégrant un matériau à changement de phase montrant un
LCE plus élevé.

La recherche compare également deux algorithmes distincts. L’algorithme 1 utilise une
approche MILP en cascade pour optimiser le dimensionnement des micro-réseaux et la GE
sans flexibilité des VE sur une année, puis se concentre sur la flexibilité quotidienne des VE.
L’algorithme 2 intègre APSO avec MILP pour déterminer les tailles des composants du micro-
réseau et effectuer la GE quotidienne avec flexibilité des VE. Il examine la dégradation des
batteries et la délestage de charge, en excluant les charges critiques dans un bâtiment uni-
versitaire, tout en se concentrant sur la flexibilité des charges VE dans le système de GE du
micro-réseau. Les deux algorithmes abordent la dégradation des batteries par un modèle de
débit en kWh et visent à minimiser le LCOE et le LCE. Les charges sont réparties entre les VE
et un bâtiment universitaire. Les résultats révèlent que l’algorithme APSO-MILP intégré (algo-
rithme 2) garantit qu’il n’y a pas de délestage de charge dans tous les scénarios, contrairement
à l’approche MILP en cascade (algorithme 1), qui présente un délestage de charge marginal
dans les scénarios où le délestage de charge est explicitement interdit. De plus, en termes de
LCOE et de LCE, le scénario sans flexibilité des VE et sans délestage de charge de l’algorithme
2 est le moins performant, tandis que le scénario intégrant la flexibilité des VE et le délestage
de charge du même algorithme montre les meilleurs résultats pour les deux métriques.

Dans l’ensemble, cette recherche présente une approche holistique pour optimiser la con-
ception et l’exploitation des micro-réseaux en unifiant les stratégies de dimensionnement des
composants et de GE, en intégrant des techniques d’optimisation avancées et en abordant à la
fois les objectifs économiques et environnementaux tout au long de la durée de vie du projet.
De plus, la méthode proposée contribue à la réduction des émissions de dioxyde de carbone et
des coûts énergétiques en augmentant l’utilisation des sources d’énergie renouvelables.

Mots-clés : Micro-réseau, optimisation multi-objective, dimensionnement optimal, ges-
tion de l’énergie, intégration des énergies renouvelables, véhicule électrique.
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I.1 Context

Energy is crucial for survival, economic progress, and improving life quality. It powers fac-
tories, moves vehicles, and provides vital services like healthcare and education. Energy also
supports technological advances that connect and update the world. In the past, the reliance on
fossil fuels such as coal, oil, and natural gas was predominant. These resources kickstarted the
Industrial Revolution, boosted economies, and led to the growth of cities and modern infras-
tructure. However, using these fossil fuels has caused major environmental problems like air
pollution and climate change, leading to a reconsideration of energy usage and the selection of
energy sources. As a result, there has been a growing interest in sustainable energy alternatives,
including the development of microgrids.

I.2 Climate Change

Climate change describes significant alterations in global temperature and weather pat-
terns over time [1]. Although natural processes can induce these changes, current trends are
primarily attributed to human-induced factors, such as the emission of greenhouse gases (e.g.
carbon dioxide) [2]. These shifts are evident in several key phenomena: rising temperatures
across global land and oceans , higher sea levels [3], diminishing ice across polar regions and
mountain glaciers. There is also a marked increase in the frequency and intensity of extreme
weather events [4], including hurricanes, heatwaves, wildfires, droughts, and floods, as well as
variations in precipitation. Furthermore, changes in cloud and vegetation cover are occurring,
significantly affecting ecosystems globally.

Human activities have raised Earth’s average global temperature by approximately 1℃
since the pre-industrial era with current rates of increase exceeding 0.2℃ each decade. This
current warming trend, driven by human activity primarily since the 1950s, is occurring at
a rate unprecedented over thousands of years [5]. Climate change indicators such as carbon
dioxide (CO2) levels, global temperatures, sea level, and ocean heat content are evaluated in [5].
Fig. 1(a) presents the atmospheric CO2 concentrations recorded at the Mauna Loa Observatory
in Hawaii since 1958. The data demonstrates noticeable seasonal variations with peaks in
spring and troughs in autumn due largely to plant life cycles. Remarkably, human activities
have increased atmospheric CO2 by 50% within the past two centuries [5]. Fig. 1(b) illustrates
deviations in global surface temperatures from the average recorded between 1951 and 1980,
highlighting that the most recent decade contains the hottest years on record. Fig. 1(c) displays
the increase in sea level, showing a rise of approximately 103.3 mm since 1993. Fig. 1(d)
depicts the warming of the oceans, where 90% of the global warming is absorbed, indicating
an increase in internal heat content in the top 2000 meters of ocean since 1955 with 95% data
confidence represented via the shaded blue area [5].

Over the past two centuries, various industrial revolutions have evolved the sources of
energy supply. However, new production sources have not replaced the old ones; instead, they
have overlapped to keep pace with the growth in consumption, as can be observed in Fig. 2.
Thus, the main sources for energy production remain coal, oil, and natural gas, accounting
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for 81% of global energy production in 2019. These energy sources are called fossil fuels
because they result from the fossilization of organic matter in the soil over millions of years.
This dependency is problematic for three reasons. First, the combustion of fossil fuels emits
CO2, which is a greenhouse gas responsible for climate change. Second, the reserves of fossil
resources are finite and their renewal occurs on a scale far greater than a human lifespan. They
are thus destined to be depleted, raising concerns about a potential shortage in the medium
term. Finally, the reserves are unevenly distributed across the planet. Supply is ensured by
a small number of countries, which creates geopolitical tensions. Thus, diversifying sources
of production would allow for greater territorial autonomy, anticipate the decline of fossil fuel
extraction, and limit climate change [6].

(a) (b)

(c) (d)

Figure 1: Variations over time in (a) CO2, (b) global temperature, (c) sea level, and (d) ocean
warming [5].

I.3 Renewable Energy Integration

The Paris Agreement is committed to maintaining global temperature increases under 2℃
above pre-industrial levels by decreasing dependence on fossil fuels for electricity production
and enhancing the use of renewable energy sources such as solar, wind, hydropower, biomass,
geothermal, ocean energy, and biofuels [8]. According to recent data, renewable electricity
capacity saw a significant boost of approximately 507 GW in 2023, marking an increase of
nearly 50% from 2022 [9]. This represents the most rapid expansion observed in the last two
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Figure 2: World total energy supply by source between 1971 and 2019 [7].

decades. Record highs in renewable capacity were achieved in 2023 across Europe, the United
States, and Brazil. As depicted in Fig. 3, projections indicate that renewable power capacity will
continue to rise over the next five years with solar PV and wind energy expected to contribute an
unprecedented 96% of this growth. The projections forecast that by 2028, the additions for solar
PV and wind energy will be more than double compared to 2022 levels, setting new records
annually and potentially reaching nearly 710 GW. Conversely, hydropower and bioenergy are
anticipated to see reduced growth in the coming years due to slowed development in emerging
markets. By 2028, renewable energy is projected to produce 42% of global electricity with WT
and solar PV combined accounting for 25% of this generation [9].

Figure 3: Renewable electricity capacity additions by technology and segment, 2016-2028 [9].

Renewable energy capacity expansion in Europe is expected to be more than double in
the period from 2023 to 2028 compared to the previous six years with projected additions of
532 GW. Solar PV is set to drive over 70% of this growth, predominantly through distributed
systems, which surpass utility-scale installations by one-third. Wind energy contributes an

24



additional 26%, primarily from onshore projects. In July 2023, the European Union officially
resolved to elevate the proportion of renewable energy in final energy consumption from 32%
to 42.5% by 2030 in order to hasten decarbonisation. Consequently, EU member states are
currently revising their National Energy and Climate Plans (NECPs) to align with the new
EU mandate and establish revised national objectives as required. As of this writing, 21 out
of the 27 member states have submitted draft plans and yet only 14 have explicitly defined
renewable electricity targets. Fig. 4 displays the proportion of renewable electricity production
in Europe for the years 2022 and 2028, alongside the targets from the 2019 and 2023 NECP
drafts [9]. Notably, Denmark and Luxembourg presently boast the highest shares of renewable
electricity. Estonia is projected to witness a significant surge in renewable electricity by 2028,
while Lithuania has set the most ambitious goal in the 2030 NECP draft by aiming for 100%
renewable electricity by 2023.

Figure 4: European Union renewable energy share in electricity generation by country, 2022
and 2028, and NECP targets (2019 and 2023 draft) [9].

In France, renewable energy contributes approximately 26.2% to the total electricity pro-
duction, while the country’s share of global emissions stands at 0.9% [10]. Despite the rela-
tively modest share of renewables in its energy mix, France maintains low emission levels due
to high nuclear power utilisation, which accounts for 36.5% of its energy mix. Nuclear energy
is recognized as one of the low carbon emission sources, which significantly aids France in its
efforts to reduce greenhouse gas emissions.

I.4 Energy Storage System

ESSs play a crucial role in mitigating the inherent variability of power output from renew-
able energy sources. ESSs maintain equilibrium between energy generation and load demands.
Broadly, ESSs are categorized into three types:

1. Chemical ESSs, which include technologies such as batteries, hydrogen storage, and
flow batteries.
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2. Mechanical ESSs, encompassing flywheels, compressed air energy storage, and pumped
hydroelectric storage.

3. Electrical ESSs, notably supercapacitors and superconductors.

These various forms of ESSs exhibit differing characteristics in terms of power density and
energy density, as depicted in Fig. 5.

Figure 5: Power and energy densities of different ESSs [11].

Pumped-storage hydropower remains the most extensively utilized storage technology [12],
but grid-scale batteries are rapidly advancing. As of 2021, the total installed capacity of
pumped-storage hydropower was approximately 160 GW [12]. In 2020, the global capability
was about 8500 GWh, representing over 90% of the world’s total electricity storage capacity.
The United States has the largest capacity worldwide. Most of the currently operating plants are
used for daily balancing purposes. However, grid-scale batteries are quickly gaining ground.
Although their capacity is still significantly smaller than that of pumped-storage hydropower,
grid-scale batteries are expected to lead the majority of future storage capacity growth globally.
By the end of 2022, the total installed capacity of grid-scale batteries was nearly 28 GW, with
most of this capacity being added in the previous six years [12]. In comparison to 2021, in-
stallations saw a substantial increase of over 75% in 2022, with around 11 GW of new storage
capacity added [12].

I.5 Electric Vehicles

EVs are categorized into several types, each with distinct features and benefits. Battery EVs
are fully electric and depend entirely on batteries for power that need to be charged from ex-
ternal sources. Notable examples include the Tesla Model S and Nissan Leaf [13, 14]. PHEVs
combine a battery-powered electric motor with an internal combustion engine. Examples of
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PHEVs include the Chevrolet Volt and Toyota Prius Prime [15, 16]. Hybrid EVs, such as the
Toyota Prius, also use both an electric motor and an internal combustion engine, but they cannot
be plugged in to charge. Instead, they rely on regenerative braking and the engine to recharge
the battery [17]. Extended-range EVs, like the BMW i3 REx, operate primarily as EVs but
include a gasoline generator to extend their range when the battery is low [18]. Lastly, fuel
cell EVs use hydrogen gas to power an electric motor, emitting only water vapor and heat.
The Toyota Mirai and Hyundai Nexo are prominent examples of fuel cell EVs [19, 20]. Each
EV type provides unique advantages tailored to different driving requirements, infrastructure
availability, and environmental impacts.

EVs are pivotal for decarbonizing road transport, which is a sector contributing over 15%
to global energy-related emissions [21]. In 2022, EV sales surpassed 10 million units, and the
number is increased to approximately 14 million by 2023 [21]. The majority of global EV sales
are concentrated in China, Europe, and the United States. Specifically, China represented nearly
60% of all new electric car registrations worldwide. In Europe, EV sales in 2022 increased by
more than 15% compared to 2021, reaching 2.7 million units. While sales growth was more
pronounced in previous years (exceeding 65% in 2021 and averaging 40% between 2017 and
2019), Europe maintained its position as the world’s second-largest EV market after China
in 2022, accounting for 25% of annual sales and 30% of the global EV stock [21]. In the
United States, EV sales grew by 55% in 2022 compared to the previous year, predominantly
driven by battery EVs. The U.S. contributed to 10% of the global increase in sales, with the
total stock of electric cars reaching 3 million, marking a 40% rise from 2021 and representing
10% of the global total. Despite these advances, EV adoption is not yet widespread globally.
In developing and emerging economies, EV uptake remains slow, hindered by the relatively
high cost of EVs and insufficient charging infrastructure availability [22]. To achieve a net-
zero emissions scenario by 2030, it is projected that the number of EVs globally needs to reach
approximately 59.25 million. This amount represents about 67% of the total vehicle worldwide.

I.6 Microgrid

Microgrids are essential for modern power systems due to their ability to enhance energy
reliability, efficiency, and resilience. They represent a cohesive and compact network that inte-
grates various DERs like PV panels, WTs, and ESSs with local energy demands [23]. DERs are
small-scale units of local generation connected to the EG at the distribution level. They are im-
portant because they decentralize power generation, which reduce dependency on centralized
power plants, and increase the use of renewable energy sources. This integration underscores
the pivotal role of microgrids in harmonizing DERs with local ESS resources, thereby enhanc-
ing their utility and compatibility [24]. Additionally, microgrids mitigate the variability of
DER outputs, such as those from solar and wind, by combining them with ESS, demand re-
sponse strategies, and traditional power generation methods. They enable the EG to function
in both GCMG and IMG configurations without compromising system reliability or stability.
Furthermore, microgrids promote the adoption of renewable energy sources [25] and facilitate
cost-effective operations of local electrical networks [26].

27



Microgrids are categorized into three types: AC, DC, and hybrid AC/DC systems. The
architecture of the DC and AC microgrids are illustrated in Fig. 6. AC microgrids readily
integrate a variety of power sources. Hybrid AC/DC microgrids cater to both AC and DC
loads, merging multiple power sources for enhanced flexibility. DC microgrids, particularly
those incorporating PV systems and ESSs, offer distinct benefits over their AC counterparts
by minimizing energy losses associated with DC power generation from these components.
Crucially, these systems require only voltage amplitude regulation, eliminating the need for
synchronization. The absence of reactive power in the DC bus allows for the connection of
AC sources to a common DC bus that operates on active power only, thus it will boost power
efficiency and transfer capacity. Further benefits of this configuration are detailed in [27].

(a) (b)

Figure 6: The architecture of (a) AC and (b) DC microgrid [27] (PCC: point of common
coupling) .

Fig. 7 depicts the progression from traditional EGs to contemporary setups and towards
futuristic configurations, known as microgrids. Traditional EGs rely heavily on fossil fuels,
with energy primarily sourced from utility providers. Power plants are often sited close to
fuel sources, which adds complexity to the transmission infrastructure. This arrangement leads
to considerable transmission losses and has a substantial environmental footprint [28]. Addi-
tionally, these conventional systems feature a unidirectional flow of electricity from utilities to
consumers, limiting interaction and preventing consumers from contributing electricity back to
the EG. Such systems, reliant on centralized sources, are prone to significant disruptions from
faults at generation sites or transmission issues caused by environmental events, technical fail-
ures, or maintenance needs. To mitigate these issues, the current EG incorporates DERs and
EM techniques, allowing for the return of excess generated power to the EG. This approach fo-
cuses on local power consumption to reduce transmission losses and enhance system resilience.
Nonetheless, a notable limitation of this model is the absence of direct interaction among in-
dividual households, restricting the ability to share or trade surplus energy locally if it cannot
be returned to the EG due to technical constraints. Future EG designs are aimed at overcoming
these challenges by introducing local energy utilization capabilities, allowing households to
buy and sell electricity directly from one another. This feature enhances the EG’s flexibility
and supports autonomous operations, particularly useful in IMG scenarios where local energy
solutions become crucial.

In late 2022, the European Commission unveiled the ”Digitalisation of the Energy System”
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Figure 7: Evolution of the EG infrastructure with slight modifications [28] (DSM: Demand
Side Management, P2P, RE: Renewable Energy).

action plan for the EU, with a significant focus on microgrid development. The Commission an-
ticipates investments totaling approximately e 584 billion in the European EG by 2030. Of this
investment, e 170 billion is earmarked specifically for digitalization efforts, including the de-
ployment of smart meters, the automation of EG management, and the integration of advanced
digital technologies to enhance metering and field operations [29]. Moreover, the capacity for
EM in the French market was approximately 2.4 GW in 2022 and grew up by 12% in 2023
[29].

I.7 Research Problematic

In microgrid systems, achieving optimal sizing of components and EM is essential for
maintaining both efficiency and reliability. As discussed in the previous section, microgrids
play a critical role in decentralized power generation and distribution. Optimal component siz-
ing ensures that economic and environmental objectives are balanced over the extended project
lifetime, while effective EM guarantees proper system functioning, preventing issues such as
overcharging or overdischarging of ESS and ensuring power injections into the EG are within
prescribed limits. This contributes to the proper management of energy flows within the micro-
grid.

However, the economic and environmental objectives often conflict; minimizing environ-
mental impacts typically incurs higher costs. For instance, using more eco-friendly but expen-
sive materials or technologies can drive up initial investment and operational costs. This di-
chotomy necessitates the development of solutions that represent compromises between these
conflicting objectives. Optimization algorithms are pivotal in this context, as they are formu-
lated to identify the most effective compromise, achieving the best possible balance between
technical, economic, and environmental factors.

This leads to the central research question of the thesis: ”Can an optimization algorithm
be developed that simultaneously addresses the optimal sizing and EM of a microgrid by
integrating technical, economic, and environmental dimensions over the project’s lifes-
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pan?” This research aims to explore and develop such an algorithm, contributing to more
sustainable and cost-effective microgrid solutions.

I.8 Objectives

The primary goal of this research is to enhance the decision-making capabilities of micro-
grid designers by offering a comprehensive methodology for system planning. This study aims
to empower designers to make more informed and effective decisions by:

• Evaluating Various Proposed Solutions: Implementing a systematic approach to assess
different design configurations and technologies for microgrid components, including
RESs, ESSs, and EM strategies.

• Balancing Economic and Environmental Aspects: Creating criteria and metrics to
achieve an equilibrium between cost minimization and environmental impact reduction,
ensuring that both objectives are addressed without compromising the technical viability
of the system.

• Addressing Technical Constraints: Integrating the technical constraints associated with
the EM problem, such as ensuring the reliability, stability, and efficiency of energy flows
within the microgrid.

By tackling the complexities and trade-offs inherent in microgrid design, this research
seeks to provide a robust framework that guides designers toward achieving optimal config-
urations that meet technical, economic, and environmental criteria. The development of this
decision-making tool requires the modeling of DERs and ESSs, formulation of constraints and
objective functions for the optimization problem, and the acquisition of real-world data to con-
struct realistic scenarios. This tool is designed to be driven by data, meaning that variations
in input data can lead to different outcomes. Additionally, it is adaptable to changes in the
configuration of microgrid components, allowing for the addition or removal of components as
needed to suit different scenarios and requirements.

I.9 Thesis Outline

This thesis is organized into five chapters:

• Chapter II ”State of the Art” discusses various approaches to microgrid sizing and en-
ergy EM, the integration of these two aspects, and highlights the existing challenges and
research gaps.

• Chapter III ”Optimal Microgrid Sizing and Energy Management: A Combined MILP Ap-
proach for Reducing Energy Costs and Carbon Emissions” elaborates on combining the
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optimal sizing and EM into a unified multi-objective optimization problem, that aims to
minimize the economic and environmental impacts over the microgrid’s project lifetime.
This chapter presents the system modeling, formulation of the optimization problem, and
includes discussions on IMG and GCMG, Pareto front analysis, peak shaving strategies,
scalability analysis, and an examination of the energy sources utilized in the French EG.

• Chapter IV ”Cost and Emission Minimization in University Building: A Multi-Objective
MILP Study with Renewable Energy and EV Integration including Geographic and Tech-
nology Analysis” provides a comparative analysis between several French and interna-
tional cities while focusing on different as PV, WT, and BESS technologies. This chapter
also includes a section on EVs with their demand modeled through probabilistic ap-
proaches.

• Chapter V ”Comparative Analysis of Cascaded MILP and Embedded APSO-MILP Algo-
rithms for Multi-objective Microgrid Sizing with EV Demand Flexibility” assesses a mi-
crogrid’s performance by minimizing the economic and environmental impacts through-
out the project lifetime. It includes the flexibility of EVs within the optimization frame-
work. The chapter outlines two optimization algorithms: a cascaded MILP approach and
an embedded MILP-APSO algorithm. Detailed equations of both algorithms and results
including LCOE, LCE analyses, microgrid component performance, power profiles, and
comprehensive economic and environmental impacts are discussed.

• Chapter VI ”Conclusions and Future Perspectives” presents the main conclusions of the
thesis and discusses potential future research directions stemming from this work.
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Chapter II

State of the Art
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Optimal sizing is crucial in developing microgrids, serving as a cornerstone for both their
economic, environmental viability and operational success [6]. It involves strategically config-
uring components such as RESs, ESSs, and consumption loads to balance minimizing initial
investments against ongoing operational costs such as maintenance and replacement costs [30].
The importance of accurate sizing stems from its ability to reduce inefficiencies, eliminate un-
necessary financial and spatial investment in infrastructure, and prevent energy shortages that
could compromise the microgrid’s ability to meet energy demands. Additionally, as the use
of variable RESs increases, expert sizing becomes essential for integrating these unpredictable
energy sources into microgrids to ensure a stable and reliable power supply. This balance is
crucial not just for the autonomy of IMGs but also for GCMGs, which must efficiently manage
the exchange of surplus energy and grid-supplied additional power [31]. Beyond operational
considerations, the importance of microgrid sizing extends to its impact on the system’s carbon
footprint, reliability, and economic viability. It marks a key element in designing sustainable
energy infrastructure [32].

The planning of a microgrid encompasses selecting the appropriate optimization sizing
approach, devising an EM strategy, and coordinating both microgrid sizing and EM effectively.
Furthermore, it is crucial to conduct precise load modeling and choose suitable models for the
RES and the BESS including its degradation model. Each component has a significant role in
achieving operational efficiency and sustainability of the microgrid.

This chapter gives a systematic review of relevant literature to microgrid planning. It in-
cludes an elaborate study of planning methodologies, EM strategies, and objective functions
used for microgrids design and operation.

II.1 Microgrid EM Approaches

The integrating of DERs into microgrids is beneficial for sustainability but brings chal-
lenges related to reliability and stability because of the unpredictable nature of renewable en-
ergy. To mitigate these drawbacks in microgrid, the implementation of an efficient EM system
is essential [28]. Numerous studies have explored EM within microgrids by employing diverse
methodologies. Some of these studies have utilized a rule-based approach, which relies on pre-
defined rules for managing RESs and ESSs. On the other hand, various studies have adopted
optimization-based methods, which seek to find the most efficient solution by optimizing spe-
cific objectives, such as minimizing costs or maximizing energy efficiency. The diversity and
application of these optimization-based methods within the context of microgrid EM are illus-
trated in Fig. 8.

II.1.1 Commercial Software

As with microgrid sizing, commercial software is used to plan the EM within the micro-
grid, such as HOMER, DER-CAM, EPLANopt, etc. In [33], the EPLANopt software is utilized
alongside a MOEA to optimize the energy system of Favignana Island for sustainability by the
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Figure 8: Microgrid EM approaches.

year 2050. EPLANopt is used to model and to simulate various energy system configurations
incorporating data such as energy demand and renewable energy potential. The MOEA then
analyzes these configurations, and it evolves a set of solutions through processes like mutation
and selection. While EPLANopt provides detailed simulations, the MOEA identifies the most
efficient and sustainable solutions by balancing objectives such as cost, emissions, and renew-
able energy usage. In [34], the RETScreen Expert software is used to examine a GCMG wind
farm in Ghana, evaluating its technical, financial and environmental benefits. It investigates the
NPC, the Internal Rate of Return, the cost of electricity production, and the emission savings
to gauge the project’s feasibility and its role in sustainable energy progress. RETScreen Ex-
pert software is also used in [35, 36, 37, 38]. In [39], a comprehensive study is presented on
integrating DERs into healthcare systems, focusing on a hospital case study in Azad Jammu
and Kashmir. Utilizing HOMER Pro and RETScreen Expert software for analysis, the study
compares a proposed hybrid renewable energy system against the current energy setup. Main
results indicate that both HOMER Pro and RETScreen Expert predict the increased energy
output with the proposed system, though RETScreen Expert tends to give more optimistic pro-
jections. The study highlights the efficiency and sustainability of integrating renewable energy
into healthcare while demonstrating significant potential for enhancing infrastructure resilience
and reducing costs. HOMER is the most used software in the literature for the EM. In [40],
the research details an optimal microgrid design for Basco Island in the Philippines by em-
ploying HOMER software. It integrates PV, WT, diesel generators, and BESS to boost power
reliability and sustainability. By evaluating technical and economic factors, the study identifies
the most efficient, and cost-effective system setup. HOMER’s simulations, optimizations, and
sensitivity analyses are crucial for balancing energy demand, resource availability, and opera-
tional cost reduction. In [41], the article explores the best configuration for a hybrid microgrid
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at a desalination facility in Sfax, Tunisia by employing HOMER software for simulations, and
FAHP-PROMETHEE for evaluating multiple criteria. Results show a dramatic 50.2% cut in the
cost of energy for producing desalinated water, which illustrates the significant role of hybrid
microgrids that can play in making desalination processes more sustainable and economically
viable, especially in areas with inconsistent conventional energy supplies.

II.1.2 Optimization Based Approach

Fig. 8 illustrates that the optimization-based strategy for EM in microgrids. Two categories
of EM optimization based approach are defined and analyzed in detail.

II.1.2.1 Metaheurstic Approach

Metaheuristic method-based EM used in microgrids is mainly categorized into three ma-
jor groups: evolutionary algorithms, swarm optimization and other metaheuristic algorithms,
such as GA, simulated annealing, etc. Evolutionary algorithms, inspired by biological evolu-
tion processes such as mutation, recombination, selection, and reproduction, which have found
extensive application in computational research. An innovative approach was introduced by
the study in [42], which proposed a Niching Evolutionary Algorithm to optimize the allocation
of RESs and ESS within IMG systems. The research presented in [43] proposed an Enhanced
Memetic Algorithm for demand-side management in microgrids. The research presented in
[43] proposed an Enhanced Memetic Algorithm for EM in microgrids. Another noteworthy
contribution is detailed in [44], where the Water Cycle Algorithm is applied to the EM of mi-
crogrid systems. This approach focuses on minimizing both operational costs and emissions
by efficiently coordinating distributed generation units alongside ESS. Lastly, the study in [45]
explores the use of a GA, the most commonly encountered evolutionary algorithm in literature,
for optimizing day-ahead demand scheduling under uncertainty. This research highlights the al-
gorithm’s robustness in dealing with the stochastic nature of microgrid EM, further underlining
the critical role of evolutionary algorithms in advancing smart city initiatives.

Swarm intelligence draws inspiration from the natural world’s social living creatures, which
exhibit coordinated behaviors in groups without central control. These phenomena, observable
in entities such as ant colonies engaging in foraging, birds moving in unison, animals grouping
together for migration, hawks coordinating in pursuit of prey, and fish swimming in schools,
serve as the foundation for algorithms designed to tackle intricate challenges through collec-
tive effort. Among these, the PSO algorithm stands out for its widespread application. This
algorithm mimics the social behavior of birds and fish to navigate toward optimal solutions in
a multidimensional space, which effectively addresses various computational and optimization
problems. The study in [46] presents a probabilistic approach methodology for the enhance-
ment of EM in microgrids equipped with DERs and ESSs. The study introduces a self-adaptive
modified q-PSO algorithm optimizing the EM process by adapting to changes dynamically,
thus it ensures efficient and reliable microgrid operations under diverse conditions. In [47], the
study introduces an innovative approach for EM in IMGs by employing a multi-layer ant colony
optimization algorithm. This algorithm is designed to minimize electricity production costs by
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optimizing both day-ahead and real-time scheduling. In [48], the Adaptive Modified Firefly
Algorithm is introduced for a scenario-based stochastic optimization framework for a micro-
grid including WT, PV, micro-turbines, fuel cells, and ESS. The GWO, which is considered as
a swarm intelligence algorithm, is considered for optimizing the EM in [49, 50].

Beyond swarm optimization and evolutionary algorithm-based metaheuristic techniques,
several other metaheuristic algorithms have been employed to enhance the EM of the micro-
grid. In [51], The Gravitational Search Algorithm is employed to identify the optimal approach
for managing energy within the MG using a probabilistic method focused on resolving the
challenges related to energy and operational management within the microgrid. The same al-
gorithm is also applied in [52] for achieving optimal EM and design of an IMG. The study in
[53] examines a microgrid located in Oshawa (Ontario, Canada) by employing variable load
models, which utilizes the Interior Search Algorithm to optimize the hour-by-hour scheduling
for day-ahead power scheduling issues. The two-stage Scenario-Based optimization approach
is employed for forecasting within a coordinated scheduling model, as detailed in [54].

II.1.2.2 Conventional Approach

Conventional approaches has six categories as illustrated in Fig. 8. In [55], a bilevel op-
timization model is employed where the Karush-Kuhn-Tucker approach for problem refor-
mulation into a single-level optimization in employed with a combination of binary PSO and
quadratic programming. In [56], a dynamic programming solution was implemented to address
a convex optimization problem aimed at reducing the microgrid’s TOC. An energy cost opti-
mization using MILP is introduced in [57, 58, 59]. In [60], MILP is utilized to manage energy
production and demand, incorporating rolling horizon-based forecasting of load. In the context
of model predictive control, a receding horizon control-based model for the optimal scheduling
of batteries was introduced in [61]. The study in [62] presents a robust counterpart formulation
designed to manage peak demand and smooth out load variations amid uncertainties in energy
generation and demand within a microgrid by employing a robust programming strategy. In
[63], a stochastic energy scheduling system for a microgrid with DERs was assessed, including
a case study on a modified IEEE-37 bus test feeder setup. Findings from this research under-
scored the efficiency and precision of the proposed stochastic programming-based algorithm
for microgrid energy scheduling.

II.1.2.3 Other Optimization Based Approach

In addition to metaheuristic, conventional, and AI approaches, other methods are also dis-
cussed in the literature. Some of these alternative approaches are cited here. In [64], the de-
ployment of an EM strategy within a standalone microgrid is explored. Utilizing a probabilistic
framework grounded in Bayesian networks coupled with Monte Carlo simulations, the study
effectively captures the unpredictable aspects of electricity demand, which enhances system
profitability. Conducting a simulation over the span of a year, the findings reveal that the EM
strategy contributes to a reduction in energy expenses by 11.3% while elevating the utilization
of solar energy to 54%. In [65], the study focuses on enhancing the operation and design of

36



microgrids that incorporate DERs using a holistic strategy that aims minimizing energy costs
and emissions. This is achieved through the commitment and dispatch of distributed devices.
The uncertainties associated with PV generation are captured through a Markovian process,
while a branch-and-cut method is applied to address the optimization challenges. In [66], the
study presents a methodology employing Hong’s Two-Point Estimate method for day-ahead
scheduling taking into account the uncertainties in load consumption and WT generation. The
primary goal is to reduce operational costs while maintaining system reliability.

II.1.3 Other EM Approach

Rule-based, artificial intelligence, fuzzy logic, game theory, and multi-agent approaches
are also utilized for EM in microgrids. Rule-based approaches, characterized by predefined
“if-else” strategies, are extensively explored in the literature for EM within microgrids. These
methodologies often involve establishing a hierarchy among different energy sources and stor-
age systems based on various factors, such as user preference or the availability of energy.
A representative rule-based decision making in microgrid EM is presented in Fig. 9, which is
widely used in the literature [31, 57, 58]. If the solar and wind output are sufficient, the power is
distributed to the load and any excess power is stored in the BESS. If the renewable energy out-
put is insufficient, power is drawn from the BESS if the battery level is adequate. If the BESS
level is low, load shedding is implemented or power is purchased from the EG. Optionally, the
battery discharge can be prioritized to ensure that critical loads are powered during nighttime
or periods without RES generation. In [67], a priority sequence is determined allowing PV sys-
tems, BESS, or biomass to be selected as the primary energy source contingent upon the user’s
selection. Similarly, [68] details a rule-based method wherein surplus energy from PV panels is
initially stored in the BESS before being dispatched to the EG. This illustrates how rule-based
strategies can be adapted to manage diverse configurations of microgrid components including
PV-WT-BESS, PV-Hydrogen, PV-Pumped Hydroelectric, WT-BESS, and PV-BESS systems.
Another exemplary implementation of rule-based EM is showcased in [69], which proposes a
model for an IMG integrating PV panels, WTs, an EG, and a diesel generator.

The study in [70] introduces a multi-objective EM system tailored for microgrids, focus-
ing on minimizing overall operational expenses and carbon emissions. Utilizing a fuzzy logic
approach, this system enhances the BESS management process by managing uncertainties in
microgrid operations. It determines the optimal timing and rate for charging or discharging
the BESS considering variables such as RES production, demand load, and electricity costs.
The method employs input membership functions to steer the inference engine in assessing
the rules. Furthermore, the study in [71] presents an EM system that utilizes a fuzzy logic
controller, which is developed and monitored using LabVIEW, for the regulation of a DC
microgrid system. This EM system employs fuzzy logic to manage the SOC of lithium-ion
batteries, thereby enhancing their life cycle. In [72], a game theory-based multi-objective op-
timization approach for EM is presented. This method effectively balances load demand while
simultaneously minimizing the operational costs and emissions associated with microgrid op-
erations. The game theory approach considers each objective, such as cost and emissions, as a
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Figure 9: Rule-based decision making in microgrid EM (alt: alternative, opt: optional).

player in a game. Each player aims to optimize their own outcome while negotiating to reach
a compromise solution. The study in [73] introduces a strategy for a real-time decentralized
demand-side management system in a GCMG. Within this system, every client linked to the
microgrid predicts their daily load demand. Utilizing these predictions, the EM system partakes
in a mixed-strategy noncooperative game, proceeding until a Nash equilibrium is achieved. At
this equilibrium, consumption forecasts are modified to aim for the lowest possible electricity
cost. In [74], the study proposes a hierarchical control strategy for an IMG based on a multi-
agent system, which focuses on maintaining stable voltage levels while optimizing economic
and environmental aspects of the system. In [75], an EM model is presented for an isolated
hybrid microgrid system. This model utilizes the PSO in combination with Artificial Neural
Networks to enhance EM strategies. In [76], the authors introduce an EM system powered by
Recurrent Neural Networks and complement it with a multi-agent-based weather forecasting
method. In [77], a reinforcement learning algorithm, leveraging a Markov chain model, is in-
troduced for planning ESS scheduling within a microgrid taking into account the anticipated
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wind power production. Additionally, this reinforcement learning approach has been applied
to enhance the coordination among various ESS in a microgrid as discussed in [78].

II.2 Microgrid Sizing Approaches

The sizing of microgrids is a complex optimization problem that is typically addressed
through a variety of methodologies, as illustrated in Fig. 10. These methodologies include com-
mercial software (e.g., HOMER, DER-CAM), heuristic algorithms such as GA, PSO, math-
ematical programming techniques (MILP, Quadratic Programming), and hybrid approaches
combining the strengths of different methods (e.g., JAYA & GWO, Simulated Annealing &
Tabu Search). These methodologies are selected for their efficiency in exploring and exploit-
ing the solution space. They balance the trade-offs between computational time, accuracy, and
the challenges of handling the multi-dimensional and multi-objective aspects of microgrid siz-
ing. The selection of a specific approach over others depends on the specific requirements of
the microgrid project, including but not limited to cost minimization, reliability maximization,
and environmental impact reduction. The advantages and disadvantages of each approach are
presented in Table 1.
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Figure 10: Microgrid sizing approaches.

II.2.1 Commercial Software

Commercial software tools play a crucial role in the optimal sizing of microgrids with the
Optimization Model for Electric Renewables (HOMER) standing out as a particularly promi-
nent example. Developed by the National Renewable Energy Laboratory (NREL) in the United
States, HOMER is distinguished by its comprehensive economic evaluation capabilities [79].
Alongside HOMER, there are several other notable tools, including the Hybrid Power System
Simulation Model (HYBRID2) by the Renewable Energy Research Laboratory (RERL), the
General Algebraic Modeling System (GAMS), and the Optimization of Renewable Intermit-
tent Energies with Hydrogen for Autonomous Electrification (ORIENTE), among others [80].
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These tools offer diverse approaches and functionalities for sizing microgrids, highlighting the
rich landscape of available resources for researchers and practitioners in the field.

HOMER software is essential in both designing and economically evaluating microgrids,
whether or not they are connected to the EG. It operates through a three-phase process of
simulation, optimization, and sensitivity analysis. This process utilizes weather data, demand
forecasting, economic and technical considerations, among other inputs, to help identify the
optimal sizes of DERs for achieving the minimum overall NPC [6]. This optimization strategy
is crucial for the design and evaluation of sustainable and efficient energy systems. A notable
application of HOMER is in the optimization of PV-fuel cell microgrids, as discussed in [81].
The study aimed to enhance system efficiency and sustainability through the optimal integra-
tion of DERs, fuel cells, and ESSs. The results demonstrated the potential of the proposed
microgrid configuration to reduce reliance on conventional energy sources. This configuration
also showcased significant improvements in EM and a reduction in the overall system cost.
Similarly, the study in [82] employs HOMER software to optimize a microgrid configuration
consisting of PV panels, WT, and BESS. The focus of the optimization was to minimize the
microgrid’s NPC. The reliability of the system was also assessed through a sensitivity anal-
ysis on the LPSP for evaluating the impact of variations in the microgrid’s size and cost. In
another study [83], a GCMC comprising PV panels, BESS, fuel cells, microturbines, and WT
was optimally sized using HOMER. The methodology aimed at determining the optimal size
for the microgrid to achieve efficient management of DERs and ESS, with an emphasis on load
satisfaction and minimizing dependency on fossil fuels. Research conducted in [84] explored
the integration and optimization of multi-microgrids utilizing HOMER Grid software in Goma,
DRC. The objective was to minimize the NPC over a 12.5-year horizon considering both tech-
nical and economic aspects. The study highlighted the feasibility of a system configuration
without PV, which achieved nearly the same NPC with a significantly lower initial capital cost,
albeit with higher operational and maintenance costs affecting the LCOE. Furthermore, the
study in [85] utilized HOMER to determine the optimal configurations for PV/Diesel/Pump-
hydro and PV/Diesel/BESS systems. This study emphasized the calculation of payback peri-
ods, while identifying cost-effective solutions for energy systems. The study in [86] developed
a techno-economic methodology for standalone, renewable energy-based EVCS in Qatar by
employing HOMER for optimization. The aim was to minimize installation and lifetime op-
erating costs among all technically feasible configurations that meet the daily EVCS demand.
The optimal configuration’s NPC was found to range between $2.53M to $2.92M, with elec-
tricity costs varying from $0.285 to $0.329 per kWh. In Vietnam, the optimization of EVCS in
major cities was the focus of [87] using HOMER Grid for analysis. The study aimed to reduce
NPC and enhance efficiency by considering local solar conditions and economic factors. It pro-
posed optimal system configurations for Hanoi, Da Nang, and Ho Chi Minh City, highlighting
the impact of solar irradiation on investment and operational performance.

Additionally, the study in [88] optimizes an IMG for rural electrification in India using
GA and HOMER. The study aimed to minimize the NPC and the LCOE by comparing various
hybrid configurations. The GA optimization yielded an optimal solution with the lowest LCOE
at $0.163 per kWh. The potential of DR in off-grid micro-grid optimization was explored in
[89] using MILP and HOMER. The study aimed to minimize the total NPC, while highlighting
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significant cost savings and efficiency improvements from implementing DR. Lastly, HOMER
Pro, an advanced version of HOMER [90], was used in [91] for optimizing hybrid microgrids
for green hydrogen production in Fiji. The study focused on achieving the most cost-effective
configuration for hydrogen production, which is critical for powering fuel cell buses, aiming to
minimize the NPC. The economic viability of microgrids across various geographic locations
and with different DERs combinations has been assessed using the HOMER software. Notably,
analyses have been conducted on a solar-wind hybrid system in Indonesia [92], a comprehen-
sive PV-WT-hydro-biodiesel hybrid system in India [93], a PV-WT-diesel system in Sri Lanka
[94], and a WT-biogas hybrid system in Canada [95].

These studies highlight the adaptability and effectiveness of HOMER in optimizing mi-
crogrid configurations to improve sustainability, cost-efficiency, and energy reliability. The
advantages of HOMER software include:

• User-friendly interface [79]

• Comprehensive financial analysis capabilities, including cash flow analysis and payback
period calculations

• Integration capability with Geographic Information Systems for enhanced project plan-
ning and site selection [96]

• Advanced sensitivity analysis to evaluate the impact of variable parameters on project
outcomes

• The ability to process hourly data for detailed and accurate modeling of energy systems
[79]

However, HOMER also has certain limitations:

• Utilizes a ”black box” approach to its code, which can limit transparency and customiz-
ability [79]

• Lacks the functionality to formulate multi-objective optimization problems, which limits
its applicability in scenarios requiring the balancing of multiple goals

• Does not account for intra-hour variability, which could affect the accuracy of simulations
for systems sensitive to short-term fluctuations

• It omits the consideration of the DOD BESS, potentially overlooking an important factor
in the lifespan and efficiency of ESSs, suggesting a need for a more customized and
detailed battery degradation model.

II.2.2 Heuristic Approaches

In the domain of heuristic optimization for microgrid configurations, several studies have
employed a variety of algorithms to optimize their design and operational efficiencies. For in-
stance, the work in [68] demonstrated the use of GA to size both GCMC and IMG, aiming to
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optimize the LCOE with configurations including PV panels and BESS. In a similar study pre-
sented in [97], GA is applied to optimize a microgrid comprising PV, WTs, BESS, and loads.
The primary objectives of this optimization are to minimize greenhouse gas emissions, reduce
the LCC, and decrease non-renewable energy consumption. Further research [67] explored
multiple microgrid configurations to find a balance between various factors such as greenhouse
gas emissions versus global cost and microgrid autonomy versus global cost. The study in [98]
targeted the sizing of an autonomous AC microgrid to minimize energy and installation costs
while enhancing reliability by reducing the probability of loss of supply. In addition, [99] aimed
at minimizing energy and installation costs and maximizing reliability through GA for deter-
mining the capacity of BESS, PV, and other components. Lastly, the research presented in [100]
discussed integrating life cycle analysis into the hybrid microgrid design process to optimize
design and minimize environmental impact while ensuring the technical and economic feasibil-
ity. The study in [101] critically evaluated a range of metaheuristic algorithms for reducing the
NPC of a microgrid system that incorporates residential, commercial, and EV loads, in addition
to PV panels, WTs, and BESS. Among these algorithms, the Moth-Flame Optimization Algo-
rithm stood out for its superior performance, while the Equilibrium Optimizer was noted for its
relatively lower efficiency. Another research [102] applied the Multi-Objective PSO technique
to size the microgrid with the goal of minimizing both the dependency on non-renewable en-
ergy imports and the system’s annualized cost. The outcomes were illustrated via a Pareto front
by highlighting the trade-offs between the two objectives. Furthermore, in [103], a two-step
methodology was employed for the optimization and analysis of a standalone hybrid system
consisting of PV, WT, BESS, and diesel generator, which is specifically designed to fulfill the
electricity demands of a remote village Fanisau in northern Nigeria. This approach, executed
in the MATLAB environment using a GA solver, aimed to efficiently and economically cater
to the unique energy needs of the region. The optimized hybrid renewable energy system pro-
posed for Fanisau includes 273 PV modules, 148 batteries, and a 100.31-W diesel generator,
capable of producing 200,792 kWh annually at a total annualized cost of $43,807 USD with a
cost of energy $0.25 USD/kWh. In [104], the study applies the Non-Dominated Sorting GA
II (NSGA-II) for microgrid sizing, aiming to minimize annualized costs, emissions, and en-
ergy imports from the EG. The study elucidates optimal configurations via the Pareto Front
and employs the Topsis method for decision analysis. The study in [105] outlines the develop-
ment of a hybrid renewable energy system optimization using the PSO Algorithm-based Monte
Carlo Simulation to minimize total annual costs, accounting for resource and load uncertain-
ties. It focuses on microgrid components such as WTs, PV panels, and BESS. The findings
demonstrate the algorithm’s efficiency in enhancing system reliability and cost-effectiveness
for off-grid energy solutions. The PSO algorithm is praised for its computational simplicity,
swift convergence, ease of implementation, and accuracy [106, 107]. In [108], the GOA is used
to optimize an autonomous microgrid comprising PV panels, WTs, BESS, and a diesel genera-
tor. The objective function aimed at minimizing the LPSP and the LCOE. The main numerical
results demonstrate GOA’s efficiency over PSO and Cuckoo Search algorithms. GOA achieves
a reduction in system capital cost by 14% and 19.3%, respectively. The optimal configuration
includes 26 PV panels, 4 WTs, and a 40 kW BESS. In [109], the article explores microgrid op-
timization using the Fuzzified GWO to minimize costs and maximize renewable energy use. It
covers PV panels, WTs, BESS, and generators, achieving notable cost reductions and efficiency
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gains. This demonstrates significant advancements in sustainable EM through the application
of heuristic algorithms. In the domain of microgrid optimization through meta-heuristic tech-
niques, the review paper [110] revealed that approximately 25% of the research in this field
employs the PSO method. Additionally, GA and GWO are used by nearly 10% and 5% of the
studies analyzed in the paper to enhance the performance of microgrids, respectively.

II.2.3 Mathematical Approaches

Within the realm of mathematical approaches, MILP has a significant role [111]. This
technique is selected for its capacity to secure a globally optimal solution to the optimization
problem. In [112], a convex optimization approach was used to determine the optimal sizing
and EM of an island microgrid while taking into account the battery degradation. In [113],
the study focuses on the optimal sizing, placement, and daily charge/discharge scheduling of
a battery within the distribution network. In [114], the paper focuses on utilizing a two-stage
stochastic programming. The model addresses uncertainties in DERs power and load demand
by ensuring a reliable PV power supply for essential services. In [115], an investigation is con-
ducted on a microgrid system in an island territory, which incorporated multiple technologies
such as PV, WT, biomass, and geothermal sources, among others, with the objective function of
minimizing the overall costs of the system. The authors in [116] conducted a temporal decom-
position using Benders’ algorithm to determine the optimal sizing and operation of a hybrid
railway power substation annually. In [117], the study explores multi-year economic energy
planning optimization in microgrids by employing a MILP method. The authors in [118] uti-
lized linear programming to minimize costs or emissions. They explored the effects of policy
on generation investment choices. Similarly, the study in [119] implements a multi-objective
MILP approach while focusing on renewable energy investment decisions under various cost
and emissions scenarios.

Non-linear approaches play a significant role in optimizing microgrid systems, as seen
in the literature where various complex problem formulations are addressed using advanced
mathematical models. A mixed integer non-linear program (MINLP) is notably applied to
tackle multi-objective optimization problems, such as the one from [120], which focuses on
minimizing both the system cost (related to equipment sizing) and emissions. This highlights
the capability of MINLP to address multiple aspects of microgrid optimization simultaneously.
It provides solutions that balance economic and environmental concerns. In [121], the au-
thors present a non-linear constrained model to identify the optimal mix of microgrid compo-
nents (hydro, WT, PV, diesel, and BESS) through an iterative approach by employing a Quasi-
Newton algorithm. Furthermore, a single objective function is presented in [122] to minimize
the system’s costs through a non-linear problem formulation. This study extends the applica-
tion of non-linear optimization to the management of multiple microgrids with incorporating
probabilistic modeling of energy resources and load demand. By doing so, it accounts for
the inherent uncertainties in energy production and consumption. This enhances the decision-
making process for microgrid operation and planning. These non-linear approaches underline
the complexity and multidimensional nature of optimizing microgrid systems. They reflect the
ongoing advancements in mathematical modeling techniques to achieve more sustainable and
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cost-effective energy solutions.

II.2.4 Hybrid Approaches

Hybrid approaches, which involve the integration of multiple algorithms, are increasingly
utilized to improve various aspects of microgrid efficiency. The research presented in [111] em-
ploys a synergistic application of the JAYA and GWO algorithms to simultaneously minimize
annualized costs, carbon emissions, and improve the microgrid’s reliability. This approach
is recognized for its swift convergence and high accuracy. Conversely, in [123], the authors
explore a hybrid model that merges Simulated Annealing and Tabu Search techniques, aimed
at achieving optimal sizing for autonomous systems, thereby streamlining computational effi-
ciency. Another significant contribution is reported in [124], where a combination of JAYA,
PSO, and Harmony Search algorithms is used in designing hybrid DERs. This configuration,
comprising PV systems, biomass, WT, and ESS, is tailored to meet consumer demand in an ef-
ficient, cost-effective, and reliable manner. Additionally, in [125], a hybrid strategy combining
NSGA-II and MOPSO is implemented to reduce carbon dioxide emissions and the total cost
associated with an IMG configuration simultaneously. Furthermore, [126] shows the applica-
tion of Ant Colony Optimization with Continuous Domain Integer Programming, achieving
remarkable accuracy and rapid convergence.

II.3 Microgrid Sizing vs EM Optimization

Optimal sizing of microgrid components and the EM within the system represent pivotal
areas of focus in current research. The optimization of these two crucial aspects of microgrid
functionality can be undertaken through either a multi-stage or a single-stage methodology.

In the multi-stage optimization paradigm, two primary methodologies are predominantly
discussed in the literature. The foremost strategy entails addressing the component sizing
dilemma in an initial phase, followed by resolving the EM challenge in a subsequent phase.
This sequential methodology leverages optimization-based methods, commercial software so-
lutions, or rule-based strategies for problem formulation. This approach is extensively recog-
nized and prevalent in academic discussions with its general framework depicted in Fig.11.
The second form of multi-stage optimization utilizes decomposition algorithms, notably the
Dantzig-Wolfe decomposition [128]. This method entails an iterative process that includes sev-
eral subproblems and a master problem. In each iteration, a new variable is introduced to the
master problem, facilitating a gradual convergence towards the solution. Another key decom-
position algorithm is the Alternating Direction Method of Multipliers [129], which segments
the optimization challenge into multiple subproblems, without incorporating a master problem.
Here, each subproblem iteratively shares its solution with the others, aiding in convergence
to a global solution. Prominently, Benders’ decomposition [130], proposed by Benders [131],
is designed to solve mixed-variable optimization problems, with Geoffrion later extending the
approach to address nonlinear convex problems [132]. Benders’ decomposition effectively bi-
furcates the target problem into two simpler components: the master problem and one or more
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Approach Advantage Disadvantage
Commercial soft-
ware (HOMER)

User-friendly graphical
interface and updated to the
latest technologies and
improvements

Lacks support for
multi-objective problems, does
not accommodate intra-hour
variability. Additionally, it
exhibits extended
computational times for
intricate problem scenarios

Heuristic Heuristic algorithms efficiently
address complex optimization
problems including sizing
problems within a reduced
computation time. Moreover,
they exhibit the capability to
handle nonlinear equations

It does not guarantee a global
optimum [112] and may get
stuck in a local optimum.
Additionally, each algorithm
has specific parameters that
require expert knowledge to be
adjusted properly, preventing
high computation time and
infeasible solutions

Mathematical An effective technique to ensure
a global optimal solution in the
search space [127]

It cannot solve very complex
optimization problems due to
the substantial computation
time, thereby limiting server
capabilities. Additionally, it has
limitations in handling
stochastic environments and is
not suitable for highly complex
and nonlinear problems

Hybrid It exhibits faster convergence
compared to heuristic
approaches and leverages the
advantages of each employed
algorithm. This approach is
generally used to solve
multi-dimensional optimization
problem

Coordinating the tuning of
parameters for each heuristic
algorithm poses a challenge.
Additionally, there is a risk of
becoming trapped in a local
optimum

Table 1: Advantage and disadvantage of each microgrid sizing approach.

subproblems [133]. The master problem, a simplified model, includes a subset of the original
variables and constraints, representing a relaxed version of the problem [134]. Conversely, the
subproblem(s) mirror the original problem’s complexity, conditioned on the premise that the
variables derived from the master problem are fixed. The general framework of Benders’ de-
composition is illustrated in Fig.12. In the context of an optimization problem involving EM
and component sizing, the master problem involves to the EM within the microgrid, while the
subproblem addresses the sizing of the components. The capacity of each microgrid component
is adjusted according to the EM constraints imposed by the optimization algorithm.

The single-stage optimization approach, addressing both sizing and EM in microgrids,
presents a substantial challenge in the field. This approach is particularly difficult due to the
vast array of constraints and decision variables that must be navigated by optimization solvers.
The complexity increases due to the long-term optimization horizon, which ranges from 1 year
to the project’s lifetime. This period can potentially extend up to 30 years, surpassing the
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Figure 11: General framework of the multi-stage optimization problem.

Figure 12: General framework of the Benders’ decomposition algorithm.

computational capabilities of conventional computing systems [135]. [135]. Nevertheless, the
single-stage methodology is valued for its potential to deliver a global optimal solution because
the optimization problem is solved one time instead of several times. The general framework
of the single-stage optimization problem is illustrated in Fig.13.
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Figure 13: General framework of the single stage problem.

II.3.1 Multi-Stage Co-optimization of Microgrid Sizing and EM

The multi-stage approach illustrated in Fig.11 is widely used in the literature. In [136],
the study contrasts hydrogen and BESS in PV systems by employing a GA for optimal sizing
and a rule-based strategy. It focuses on self-sufficiency, NPC, and the impact on the EG. In
[69], the multi-stage methodology is also applied. The Stochastic Fractal Search (SFS) and the
Symbiotic Organisms Search (SOS) algorithms are used for sizing, while the EM is conducted
using a rule-based strategy. Another example can be found in [68, 97], where GA is used for
sizing and rule-based for EM. The NSGA-II with several rule-based options is presented [67].
The same approach is also presented [102] with the PSO algorithm used for sizing the GCMG.
The PSO algorithm is also used in [137] to size the microgrid components where the EM is
conducted using simple rules.

Shifting from heuristic approaches for sizing and rules based for EM, some studies imple-
mented optimization algorithms for both stages. In [55], the model uses the Karush – Kuhn
– Tucker approach to simplify the bi-level problem into a single-level one. A mix of binary
PSO and quadratic programming finds the optimal BESS size and operation schedule in order
to enhance microgrid design and reliability. In [138], the methodology applies the two-stage
methodology where the first stage focuses on determining the size of the microgrid, while the
second stage addresses the daily EM considerations. This study implements MILP optimiza-
tion techniques in both stages. In [135], the first stage employs an evolutionary algorithm to
handle the sizing task, exploring a vast solution space to identify viable configurations. In the
second stage, MILP fine-tunes these configurations by meticulously scheduling microgrid as-
sets to balance demand fulfillment with the dual objectives of cost minimization and reliability
maximization. A similar approach is found in [139], where the study uses a GA to identify
optimal sizing solutions that concurrently lower the lifecycle CO2 emissions and total costs
of the microgrid. Moreover, An EM strategy is developed, employing a MILP algorithm to
efficiently distribute power flow while also reducing CO2 emissions. In [140], a stochastic two-
stage model is presented for optimizing microgrid design by addressing the uncertainties in
DERs. The initial stage focuses on setting capacities for PV, WT, diesel generation, and ESS,
while the second stage targets operational decisions, such as diesel and ESS usage. The study
in [141] introduces a method for optimizing microgrid components in ’El Espino’ community.
It uses linear programming firstly to minimize costs while meeting energy needs, and secondly
to incorporate operational and reliability constraints. In [142], the paper applies a two-stage
stochastic optimization approach to minimize both capital and operational costs taking into
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account uncertainties in demand.

Benders decomposition algorithm is used in [143], showcases a multi-stage optimization
process for microgrid sizing and EM using the iterative Benders decomposition algorithm. In
[144], the optimization is decomposed into two principal components: the investment decision-
making as a master problem and the EM as a sub-problem. By distinguishing between design
decision variables and EM variables, this strategy enhances the efficiency of solving the plan-
ning problem. It iteratively addresses these interconnected components, thereby optimizing
both the investment and operational phases of microgrid management. In [145], the paper
tackles the intermittency of DERs using Benders’ decomposition, which breaks down the opti-
mization problem into smaller and manageable sub-problems. This approach facilitates sizing
and scheduling by treating PV generation as a stochastic input, showing how Benders’ de-
composition aids in determining the appropriate size and operation schedule for storage and
microturbine units. The study in [146] outlines a two-stage stochastic MILP model for opti-
mizing investments in renewable energy within DERs. Its goal is to lower costs associated with
investments in PV and WT, as well as operational and total substation expenses, which include
energy purchases and losses. The innovative aspect of this study is the use of Benders’ de-
composition, which simplifies the complex problem by separating investment from operational
decisions. In [147], the study presents a parallel multi-period optimal scheduling algorithm for
microgrids incorporating ESSs and addressing the challenges of DERs integration. It optimizes
microgrid operations by decomposing inter-temporal constraints. Utilizing both generalized
Benders’ decomposition and optimality condition decomposition.

II.3.2 Single-stage Co-optimization of Microgrid Sizing and EM

The single-stage optimization approach is rarely utilized in literature due to computational
challenges. Within this approach, MILP is commonly used to solve single-stage optimization
problems to find the optimal configuration for the sizing and EM of the microgrid. In [115],
a MILP framework integrates sizing and EM into one optimization problem by analyzing sce-
narios for Reunion Island’s transition to renewable energy by 2030 and 2050. Another example
can be found in [148], where the optimization problem addresses the optimal sizing and energy
dispatch of a residential microgrid incorporating PV, a WT, EG connection. In [149], the paper
demonstrates a cost optimization approach that incorporates hourly dispatch and load demand
within an IMG. In the study by [150], cost minimization is realized through MILP, comple-
mented by an additional sensitivity analysis conducted over the LPSP. Similarly, in [151], a
multi-objective function is formulated using MILP and a trade off constraint approach, aim-
ing to simultaneously minimize both costs and emissions. Concentrating on minimizing the
LCOE, the research presented in [127] also formulates the optimization problem using MILP.
The results highlight that a microgrid composed of WT, PV, diesel, and BESS exhibits the
lowest LCOE compared to alternative combinations. In [152], MILP is similarly employed
where authors explore scenarios where a PV-fuel cell-BESS system is employed to fulfill res-
idential energy requirements within a GCMG environment. The study in [153] introduces a
multi-objective optimization approach for the planning and operation of GCMGs, incorporating
various energy sources. It focuses on achieving economic efficiency and enhancing customer
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satisfaction by implementing demand side management and employing a fuzzy logic-based
method to maximize satisfaction.

II.3.3 Multi-objective Functions

The objectives of optimization within the framework of sizing and EM can be realized
through various forms. Some studies focus on minimizing the annual costs [154] and the cost
per kilowatt-hour produced (LCOE) [155], or the NPC [101]. Others aim at enhancing the
autonomy of the microgrid [102] or reducing the CO2 emissions [100], among other objectives
(e.g., decreasing the nuclear consumption from the EG). While certain investigations consider
a single objective function, there are studies that address multiple objective functions simulta-
neously. In the context of multi-objective optimization problems, a variety of approaches can
be employed to address these complexities such as the weighted sum approach, hierarchical op-
timization method, trade-off method, global criterion method, and goal programming method
[156].

Weighted Sum Approach

• Advantage: The Weighted Sum Approach is appreciated for its simplicity due to its
straightforward implementation and understanding. It allows the adjustment of weights
according to the significance of each objective, providing a clear way to prioritize among
different goals. By transforming multiple objectives into a single composite objective
using weights, this method simplifies the optimization process. This consolidation ren-
ders the multi-objective problem compatible with traditional optimization techniques and
tools, which makes the solution process more manageable.

• Disadvantage: The effectiveness of the Weighted Sum Approach significantly relies on
the selection of weights for each objective. Consequently, the solution’s quality and
acceptability depend on these chosen weights. With different sets of weights leading
to vastly different solutions, identifying the optimal weights to balance the importance
of each objective is both critical and challenging. Moreover, when objectives are on
substantially different scales, assigning weights that accurately reflect each objective’s
relative importance becomes complicated. This often necessitates the normalization of
objectives to a common scale, which introduces additional complexity to the optimization
process.

Hierarchical Optimization Method

• Advantage: This method’s prioritization strategy guarantees that the most critical objec-
tives are addressed firstly, which is paramount in scenarios where failing to meet primary
objectives could negate the relevance of secondary objectives. In environments where
some objectives cannot be compromised, such as safety-critical systems, environmen-
tal conservation, or healthcare, prioritizing these ensures alignment with the scenario’s
overarching goals and ethical considerations. This ensures that the optimization process
respects the most critical requirements.
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• Disadvantage: There exists a substantial risk that lower-priority objectives might not re-
ceive sufficient consideration if high-priority objectives significantly consume resources.
This situation could yield solutions that, albeit satisfying primary goals, are sub-optimal
in the context of the broader problem. The potential depletion of resources on high-
priority objectives might marginalize secondary goals, undermining the comprehensive
quality of the solution. Furthermore, optimizing objectives sequentially by importance
can introduce challenges when objectives are highly interdependent. Enhancing one ob-
jective might impair another, especially if improvements in one domain lead to regres-
sions in another. This complicates the pursuit of a balanced and globally optimal solution.

Trade-off method

• Advantage: Trade-off analysis aids in identifying Pareto optimal solutions, where im-
proving any objective would lead to the detriment of at least one other objective. This
approach is crucial for ensuring that chosen solutions are efficient from a multi-objective
standpoint.

• Disadvantage: The process of analyzing trade-offs can become increasingly complex as
the number of objectives grows. This complexity necessitates the use of advanced tools
and expertise.

Global Criterion Method

• Advantage: Targets the identification of a solution that optimizes all objectives concur-
rently, potentially yielding more balanced and universally acceptable outcomes. More-
over, concentrating on a singular, global criterion enhances efficiency in discovering a
solution that moderately satisfies all objectives, diminishing the necessity for iterative or
repeated optimization processes.

• Disadvantage: Developing a global criterion that accurately encapsulates the signifi-
cance of all objectives poses a challenge, particularly in scenarios where the objectives
significantly conflict or are difficult to quantify. Furthermore, a singular focus on a global
criterion may result in missing some Pareto optimal solutions, especially those poorly
represented by the selected global criterion.

Goal Programming Method

• Advantage: Goal programming enables the concurrent consideration of various goals,
with the possibility of assigning different priorities to each. This adaptability proves ad-
vantageous in intricate decision-making contexts, where it is essential to navigate trade-
offs among conflicting objectives.

• Disadvantage: This approach depends significantly on the decision-maker’s capacity to
precisely establish and rank goals. Such reliance can inject subjectivity into the process,
potentially skewing the results.
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A core principle in the study of multi-objective optimization is the concept of the Pareto front,
which is alternatively referred to as the Pareto set or Pareto frontier. This concept encapsulates a
collection of dominated and non-dominated solutions within the framework of multi-objective
optimization. It highlights the essential compromises that must be made between conflicting
objectives. The Pareto front serves as a visual representation of these trade-offs.

II.4 Challenges and Research Gaps

The co-optimization of microgrid sizing and EM presents significant challenges due to
complex mathematical equations and extensive computational time, often exceeding the capa-
bilities of standard computers. Additionally, the design and implementation of the EM model,
including factors like time resolution and simulation length, can greatly impact the results.
Therefore, the requirements and capacities of EM are crucial in the sizing process. This is
particularly evident in MILP-formulated optimization problems, where maintaining problem
linearity while managing a vast array of constraints and decision variables is demanding. Tech-
niques such as the ”Big M” method, which introduces a binary decision variable, add further
complexity to the optimization process. Several studies have formulated their sizing and EM
problems using MILP. For instance, the study in [127] established stopping criteria—either a
maximum CPU time of 10,800 seconds or an optimality gap of 5%—to manage computational
complexity. Additionally, a study referenced in [151] employed representative days as a strat-
egy to mitigate computational demands. The study in [150] used MILP for sizing and EM in
IMGs, but their approach lacks formulation for GCMG optimization and overlooks CO2 emis-
sion considerations. Furthermore, comparative analyses of different approaches are scarce in
the literature. In [101], the study compared metaheuristic approaches for EM sizing, and [85]
contrasted heuristic approaches with commercial software solutions. However, comparisons
between heuristic and mathematical approaches or between single-stage and multi-stage opti-
mization processes are notably absent. Additionally, the choice of technologies for microgrid
components, such as PV, WT, and BESS, significantly influences planning results due to vary-
ing costs and CO2 emissions. Research comparing different microgrid components to enhance
decision-making capabilities for planners is rare. Comparing the performance of microgrids un-
der identical conditions across different geographical locations could provide valuable insights
into optimal microgrid placement, both nationally and internationally. Yet, this type of analysis
is uncommon in current literature. Installing GCMG in France presents unique considerations
due to the country’s low CO2 emissions from the EG, which are attributed to its reliance on
nuclear energy. Moreover, the dynamic nature of greenhouse gas emissions is not adequately
addressed in existing studies, potentially affecting EM outcomes if emissions are considered
within the optimization objective. This oversight represents another gap in the literature. Table
2 gives a summary of different studies that treat the sizing and EM of the microgrid.
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Table 2: Literature review on the optimal sizing of microgrids.
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Chapter III

Optimal Microgrid Sizing and Energy
Management: A Combined MILP
Approach for Reducing Energy Costs and
Carbon Emissions
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The objective of this research is to enhance the decision-making capabilities of microgrid
designers by providing them with a comprehensive approach for system planning for both IMG
and GCMG operation modes. This research uses a joint multi-objective optimization strategy
with MILP, ensuring a globally optimal solution [127]. It enables designers to make more
informed and effective design choices. These choices involve evaluating various proposed
solutions and balancing cost and carbon emissions while considering the technical constraints
of the EM problem. This approach addresses the complexities and trade-offs fundamental to
microgrid design.

One of the key novel aspects of this work is the integration of EM and component sizing
into a unified optimization problem while ensuring an optimality gap of 0 % with a decreased
computation time in comparison with the existing literature. Implemented in Python and solved
using CPLEX, the optimization process aims to minimize both the LCOE and the LCE. The
proposed method allows to perform a comprehensive analysis by evaluating the interdepen-
dence among components and their collective influence on the overall system performance in
terms of emission and cost over the project lifetime. Additionally, by identifying the Pareto
front —a set of optimal trade-off solutions— the chapter provides valuable insights by propos-
ing the range of feasible solutions and the associated compromises between economic and
environmental objectives.

The overall structure of the study, as depicted in Fig. 14, encompasses a comprehensive set
of inputs, including electrical load data, ambient temperature data, solar irradiation data, TOU
tariffs with EG subscription costs, and economic and environmental data for each microgrid
component. These inputs form the foundation for the system model, which incorporates the
physical models of PV systems, BESS, EG, and the associated converters. By unifying EM
and component sizing within a single framework, the optimization problem yields the optimal
EM strategy and optimal component sizes for the microgrid system. The main contributions of
this study are:

• integrating the sizing and EM challenges within a DC microgrid framework, with due
consideration to a project lifespan spanning 20 years. The focus extends to achieving
hourly optimal EM within the microgrid;

• encompassing technical, economic, and environmental dimensions in the microgrid con-
text through the formulation of a unified multi-objective MILP algorithm. The algo-
rithm’s primary objective is to find an optimal solution, minimizing both the LCOE and
the LCE of the microgrid, all while optimizing computational efficiency;

• varying the LCE constraint value to analyze and compare the Pareto front and the varia-
tion in BESS and PV capacities of the GCMG and IMG operation modes;

• evaluating the influence of peak shaving on the LCOE and LCE of the microgrid by
calculating the average variation for each EG limit;

• assessing the impact of load increase on the LCOE and LCE for both IMG and GCMG
operation modes;
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• analyzing the energy sources utilized in the French EG under different LCOE and LCE
scenarios where this assessment involves examining the proportional contribution of each
energy source and exploring seasonal trends; and

• maximizing the consumption of renewable energy within the microgrid to enhance sus-
tainability, reduce reliance on non-renewable sources, and improve overall energy effi-
ciency.
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Figure 14: General framework of the proposed multi-objective joint optimization algorithm.

This chapter is organized as follows: Section III.1 presents the system modeling. The formu-
lation of the optimization is detailed in Section III.2. Section III.3 discusses the results and
analysis. A discussion on the findings is provided in Section III.4, while the conclusions are
summarized in Section III.5.

III.1 System Modeling

This chapter analyzes a university campus DC microgrid, which includes a DC bus, PV
system, BESS, a connection to the EG, two DC/DC converters, an AC/DC converter, and a
DC/AC converter. The architecture of the microgrid is shown in Fig. 15, which is designed
to operate with and without the EG connection. Excess power generated from the PV system
is curtailed if the load demand is met, the BESS is fully charged, and the EG has reached its
maximum injection limit (GCMG mode). Each component is formulated prior to determining
the optimal sizing and the EM strategy of the DC microgrid in the rest of this section. The
MPPT mode of the PV system is accomplished through the associated converter. The efficiency
of all converters is assumed to be constant for simplicity in this study.
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Figure 15: The architecture of the studied microgrid.

III.1.1 PV System Modeling

In this study, Eq. (1) is used to calculate the PV output power pMPPT
PV (t) at each time instant

t, which depends on the solar irradiation and ambient temperature data. It is assumed that the
PV system operates in MPPT mode and its power output is determined by [166] :

pMPPT
PV (t) = pPV STC · irr(t)

1000
· (1+ γ · (TPV (t)−25)) ·NPV (1)

with t = {t0, t0 +∆t, ..., t f }

where pPV STC is the PV panel rated power at standard test conditions (STC). The STC stands
for conditions to standardize the performance characteristics of PV panels. It typically refers
to a solar irradiation of 1000 W/m2, solar spectrum of air mass 1.5, and PV cell temperature at
25 ℃ [167]. irr is the measured solar irradiation, γ is the power temperature coefficient of the
PV panel, TPV is the PV cell temperature, NPV is the number of PV panels, and t, t0, ∆t, and
t f are the continuous time, initial time, time step, and simulation time, respectively. In Eq. (2),
the PV cell temperature is calculated as follow [166]:

TPV (t) = Tamb(t)+g(t) · NOCT −20
800

(2)

where Tamb is the ambient temperature, and NOCT is the nominal operating cell temperature.

III.1.2 Battery System Modeling

The battery is utilized as the energy storage system in the microgrid to fulfill the energy
requirements in the absence of enough renewable production using stored excess PV production
at high renewable production times. The energy transfer between the EG and the battery is
prohibited in this study, hence the battery can only be charged by PV production and discharged
for local load.

The battery models can be summarized in three models: the first is the charge model, which
consists of modeling the state of charge (SOC) of the battery [168], the second is the voltage
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model, which focuses on modeling the terminal voltage for more detailed losses calculation
[169], and the third is the lifetime model which assesses the impact of the operations on the
battery lifetime [170]. These models could be independent or interdependent from each other.
In this study, the charge model is considered as follows:

eb(t) = eb(t −1)+(pc
b(t)+ pd

b(t)) ·∆t (3)

where eb(t) is the quantity of energy at each instant; and pc
b(t), and pd

b(t) are the charging
and discharging powers of the battery, respectively. Eq. (3) represents the charge model for
the battery, despite not considering the SOC. The reason for this choice is to maintain the
linearity of the optimization problem, as the calculation of SOC involves dividing two decision
variables (charge/discharge powers and BESS capacity), which makes the problem formulation
nonlinear.

III.2 Formulation of the Joint Multi-Objective Optimization Prob-
lem

The optimization problem considers both economic and environmental objectives and aims
to find a trade-off between them. By balancing the competing objectives, the joint multi-
objective optimization problem enables the design of a microgrid that integrates cost-effective
solutions while reducing CO2 emissions. While the constraints for both IMG and GCMG are
almost similar, the IMG excludes constraints related to the EG. The constraints and objective
functions are discussed in the following sections.

III.2.1 Constraints

In the optimization problem, constraints play a crucial role in defining the feasible solu-
tion space. Firstly, the quantity of BESS energy eb(t) is restricted by the maximum and the
minimum allowed SOC as follows:

SOCmin ·Eb ≤ eb(t)≤ SOCmax ·Eb (4)

where Eb is the installed capacity of the BESS in kWh; and SOCmin and SOCmax are the min-
imum and maximum SOC of BESS, respectively. Ensuring a dependable energy supply for
the subsequent year is of paramount importance, necessitating that the stored energy within the
BESS at the end of the one-year simulation equals or surpasses the initial battery energy (taken
as 50% of the storage capacity in this study). This strategic choice is implemented to guarantee
a sufficiently robust BESS energy reserve capable of meeting the anticipated load demands in
the forthcoming year. Omitting this constraint from the optimization algorithm could result in
the BESS SOC settling at the minimum SOC level, potentially leading to load shedding in the
subsequent year due to inadequate stored energy in the BESS. This constraint is formulated as
follows:

eb(t f )≥ 0.5 ·Eb (5)
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where eb(t f ) is the BESS energy at the end of the one-year simulation.

To specify the power flow of the BESS and the EG powers, the constraints on BESS
charge/discharge powers (pc

b(t)/p
d
b(t)) and the utility supply/inject powers (pin

EG(t)/p
in
EG(t)) are

established as follows:
pc

b(t)≥ 0, pd
b(t)≤ 0 (6)

−pmax
EG ≤ ps

EG(t)≤ 0 (7)

0 ≤ pin
EG(t)≤ pmax

EG (8)

where pmax
EG is the maximum limit that can be supplied/injected by/into the EG. The convention

of representing injection as positive and supply as negative is to reflect the direction of power
flow. The constraints for maximum charge/discharge powers of the BESS are not included into
the formulation due to the conflicting need of determining the optimal capacity of the BESS-
associated converter in the sizing optimization problem. Therefore, to determine converter
capacities, the nominal power value of the associated converters of the PV, BESS, building
load, and EG is considered to be equal or greater than electric power that flows through them
as stated below:

pMPPT
PV (t)≤ MDC/DC

PV (9)

−pd
b(t) ·µd + pc

b(t)/µc/γ
DC/DC
b ≤ MDC/DC

b (10)

−ps
EG(t)+ pin

EG(t)/γ
DC/AC
EG ≤ MAC/DC

EG (11)

pbuil(t)/γ
DC/AC
buil ≤ MDC/AC

buil (12)

where MDC/DC
PV , MDC/DC

b , MAC/DC
EG , and MDC/AC

buil are the nominal power capacity of the PV,

the BESS, the EG, and the building converters, respectively; and γ
DC/DC
b , γ

DC/AC
EG , and γ

DC/AC
buil

are the efficiency of the BESS, EG, and building converters, respectively.

If the load power surpasses the PV power, the BESS should discharge and/or the EG should
provide power. Conversely, the BESS must be charged and/or the surplus power should be
fed into the EG. Therefore, the EM within the microgrid typically requires the use of “if-
else” conditions to control the power flow among each microgrid component. The “if-else”
statements are used in programming to make decisions based on certain conditions; however,
they cannot be expressed as linear equations or inequalities, hence it cannot be used directly
in linear programming (LP). However, some formulations of certain problems may require the
use of binary variables for the “if-else” statement, and in such cases alternative techniques may
be used to model the optimization problem. As a solution in this study, the “Big M” method is
employed that introduces a large constant value M (typically set to 104) and a binary decision
variable xaux(t). The Big M method works by defining constraints that represent the conditions
in “if-else” statements. The binary decision variable takes on either the value of 1 or 0, and
the large constant value is used to penalize the objective function if the conditions are not
met. When xaux(t) = 1, the constraints corresponding to the “if” part of the “if-else” statement
are active, otherwise if xaux(t) = 0 the “else” constraints are active. This allows to consider
the different scenarios represented by the “if-else” conditions, while the optimization problem
remains linear [171].
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Therefore, to determine whether the load power is greater than or less than the PV power,
constraints in Eqs. (13) and (14) are introduced using Big M method as follows:

M · xaux(t)− (pbuil(t)/γ
DC/AC
buil − γ

co
PV · pMPPT

PV (t))≥ 0 (13)

M · (1− xaux(t))− (γco
PV · pMPPT

PV (t)− pbuil(t)/γ
DC/AC
buil )≥ 0 (14)

where γco
PV is the PV converter efficiency, and pbuil(t) is the load demand. In Eqs. (13) and (14),

xaux(t) = 0 when pMPPT
PV (t)− pbuil(t) ≥ 0 and xaux(t) = 1 when pbuil(t)− pMPPT

PV ≥ 0. Once
xaux(t) is determined, the “if-else” conditions are implemented using constraints to control the
BESS and EG powers as follows:

ps
EG(t) · γ

DC/AC
EG , pd

b(t) · γ
DC/DC
b ·µd ≥−M · xaux(t) (15)

pin
EG(t)/γ

DC/AC
EG , pc

b(t)/µc/γ
DC/DC
b ≤ M · (1− xaux(t)) (16)

where γ
DC/DC
b represents the efficiency of the BESS converter, and µc and µd represent the

charging and discharging efficiencies of the battery, respectively. In Eqs. (13) and (14), the
algorithm determines ps

EG(t) = 0, pd
b(t) = 0 when xaux(t) = 0 and pin

EG(t) = 0, pc
b(t) = 0 when

xaux(t) = 1. The control of the battery discharge and the EG supply in order to not exceed the
load power within the system is formulated as follows:

ps
EG(t) · γ

DC/AC
EG + pd

b(t) · γ
DC/DC
b ·µd +M · (1− xaux(t))≥−(pbuil(t)/γ

DC/AC
buil − γ

co
PV · pMPPT

PV (t))
(17)

In the absence of Eq.(17), there is a possibility that the battery can over-discharge beyond the
required load demand. This situation arises due to the conditions described in Eqs. (15) and
(16), when xaux(t) = 1, the optimization algorithm might discharge the BESS more than the
load demand (avoid selling energy to EG). Additionally, it’s important to note that in convex
optimization, multiple optimal solutions can exist, but Eq.(17) serves the critical purpose of
eliminating solutions where the battery is discharged beyond the load demand, ensuring the
appropriate power balance.

Lastly, the DC bus net power pbus(t) of the system is determined by summing the enter-
ing/leaving powers on the DC bus of the microgrid as in Eq. (18):

pbus(t) = pbuil(t)/γ
DC/AC
buil − γ

co
PV · pMPPT

PV (t)+ pc
b(t)/µc/γ

DC/DC
b

+ pd
b(t) · γ

DC/DC
b ·µd + ps

EG(t) · γ
DC/AC
EG + pin

EG(t)/γ
DC/AC
EG ≤ 0 (18)

According to Eq. (18), when pbus(t) < 0, the produced PV power exceeds the total con-
sumption power, battery charging, and grid selling powers, hence the surplus generation should
be curtailed. On the other hand, when pbus(t) = 0, the generation and consumption powers
are equal, thus there is no surplus generation in the DC microgrid. However, it should be
noted that if pbus(t) was chosen to be strictly equal to zero in Eq. (18), the algorithm would
be forced to utilize all the PV power, which means that the excess power should be either in-
jected into the EG or stored in the BESS. Therefore, the algorithm in this case increases the
capacity of the BESS and reduces the capacity of the PV system to obtain pbus(t) = 0 for all
times. However, this will not be the most cost-effective solution (if the cost of the PV system
is lower than BESS), because the algorithm will force increasing the BESS capacity in order to
reduce curtailment. To avoid that situation, PV curtailment is allowed by enabling pbus(t)≤ 0
in Eq. (18).
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III.2.2 Objective Functions

The multi-objective optimization problem is formulated to obtain the system’s minimal
annual LCOE and LCE while ensuring an optimized EM. The LCOE is the average cost per
unit of producing electricity over the lifetime of a power plant, while LCE is the total amount
of CO2 emissions produced over the entire life cycle of a product. The LCOE is calculated as
in [68]:

LCOE =
TC ·CRF

∑
t f
t0 (pbuil(t)/γ

DC/AC
buil ) ·∆t

(19)

where TC is the total cost over the project lifetime, CRF is the capital recovery factor. The
CRF is a financial metric used to determine the annual capital cost from the project lifetime
cost [172]. The TC and the CRF are calculated as follows:

TC =Cinv +Cmtn +Crep +CEG −Csv (20)

CRF =
d · (1+d)Q

(1+d)Q −1
(21)

where d is the discount rate, Q is the project lifetime, and Cinv, Cmtn, Crep, CEG, Csv, are the in-
vestment, maintenance, replacement, grid, and salvage value, respectively, which are calculated
as [68]:

Cinv =
K

∑
k=1

Ck
inv ·Nk +Cdep (22)

Cmtn =
K

∑
k=1

Ck
mtn ·Nk ·

Q

∑
q=1

(
1+ ε

1+d

)q

(23)

Crep =
K

∑
k=1

Ck
rep ·Nk ·

NOR

∑
r=1

(
1+ ε

1+d

)r

(24)

CEG =

(
Csub −∆t ·

(
t f

∑
t0

ps
EG(t) ·λ s(t)+ pin

EG(t) ·λ in

))
·

Q

∑
q=1

(
1+ ε

1+d

)q

(25)

where Nk is the total number of the kth microgrid component (PV, BESS, etc.), K is the total
number of microgrid components, and Ck

inv and Cdep are the kth component investment cost and
the microgrid deployment cost, respectively.

The microgrid deployment cost includes the installation of the microgrid components (such
as wiring, concrete, steel, wood, and electrical connections), as well as labor costs and indirect
costs associated with the microgrid installation. For the kth microgrid component, Ck

mtn is
the operation and maintenance; ε is the escalation rate; Ck

rep is the replacement cost; NOR
is the number of rth component replacement over the project lifetime; q and r are the year
and replacement indices, respectively; and λ s and λ in are the grid tariffs for power supply
(buying from grid) and injection (selling to grid), respectively. Finally, Csub represents the fixed
subscription cost for the EG which is a fixed annual fee imposed by the French EG companies
[173] and is paid by customers to maintain their connection to the grid, covering infrastructure
upkeep and operational expenses. The subscription cost is determined by the utility companies,
and its value is taken differently based on the registered maximum power rating (allowed peak
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consumption) of the grid connection. The salvage value is considered to be 10% of the PV
investment cost and 20% of the battery investment cost [68].

The second objective function is formulated to obtain the system’s minimal annual LCE
given in Eq. (26) as follows:

LCE =
LCEPV +LCEBESS +LCEEG +LCEcables

∑
t f
t0 (pbuil(t)/γ

DC/AC
buil ) ·∆t

(26)

LCEPV =
αPV · pMPPT

PV
Q

(27)

LCEBESS =
αb ·Eb · (NOR+1)

Q
(28)

LCEEG =
t f

∑
t=t0

ps
EG(t) ·αg(t) ·∆t (29)

LCEcables =
αcables · ςcables

Q
(30)

where LCEPV , LCEBESS, LCEEG, and LCEcables are the LCE of the PV system, BESS, the EG,
and the cables respectively; αPV is the equivalent CO2 emissions of the PV system per kWp;
αb is the equivalent CO2 emissions of the BESS per kWh installed; and αg(t) is the dynamic
emissions from the EG per kWh.

The optimization problem aims to minimize two objective functions, which are LCE and
LCOE. Several approaches are used to solve a multi-objective optimization problem such as
weighted-sum, trade-off constraint, hierarchical, goal programming, and global criterion meth-
ods [156]. In this study, the trade-off constraint approach is used as follows:

min{LCOE} (31)

LCE ≤ ε (32)

where ε represents predetermined value that the objective functions are not allowed to surpass.
The trade-off methodology, a widely adopted strategy in multi-objective optimization, involves
the transformation of one of the two objective functions into an inequality constraint with an
upper bound represented by ε . By manipulating the parameter ε , multiple solutions for the
LCOE can be derived. This method effectively converts the original multi-objective optimiza-
tion problem into a mono-objective form. The motivation for adopting this approach arises
from the distinct units of measurement associated with LCOE and LCE. However, this method
eliminates the need to convert the units of the two separate objective functions.

The optimization problem in Eq. (31) is solved by determining the following decision vari-
ables under the constraints in Eq. (4) to Eq. (18) with the Eq.(32): the BESS capacity (Eb),
the number of PV panels (NPV ), the BESS charge/discharge powers (pc

b(t)/p
d
b(t)), the EG sup-

ply/inject powers (ps
EG(t)/p

in
EG(t)), and the auxiliary variables (xaux(t)); and the capacity of PV,

BESS, and the EG associated converters (MDC/DC
PV , MDC/DC

b , MAC/DC
EG ).
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III.3 Results and Analysis

The meteorological data for Compiègne, a city located in northern France (latitude: 49.41°
North, longitude: 2.82° East), serves as the primary case study for conducting simulations.
The solar irradiation and ambient temperature data, presented in Fig 16a, are acquired through
sensors strategically positioned in the study area. The solar irradiation sensor is equipped with
a monocrystalline silicon sensor, featuring a permissible tolerance of ±5%. Functioning within
an extensive temperature range from -40 °C to 85 °C, this sensor ensures reliable operation
across diverse environmental conditions. The ambient temperature sensor can operate within
the temperature range of -40 °C to +180 °C with a nominal tolerance of ±0.8 °C. Together,
these sensors provide indispensable meteorological data, and enhances significantly the predic-
tive accuracy of our model. The electrical load shown in Fig. 16b is derived from empirical
data by capturing the typical energy consumption patterns exhibited by the building of a uni-
versity building, affiliated with the Université de Technologie de Compiègne. The EG’s CO2
emissions, a dynamic factor, are sourced from the French transmission system operator, as de-
picted in Fig.16c [10]. The technical, economic, and environmental data used in this study are
presented in Table 3. The optimization horizon spans one year (8760 hours) with an hourly
time step with the consideration of the economic lifespan of the project, set at 20 years. The

(a) (b)

(c)

Figure 16: Hourly input data: (a) Solar irradiation and ambient temperature, (b) the electrical
load, and (c) EG CO2 emissions.
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Parameter Value Unit Parameter Value Unit
JinkoSolar PV DC/DC & AC/DC & DC/AC Converters

NOCT 40 ◦C Efficiency 95 %
PV module-rated power 335 Wp Lifetime 10 years
Power temperature coefficient -0.328 %/°C Investment cost 80 e /kW
Lifetime 25 years Maintenance cost 2 % of conv inv cost/year
Investment cost 400 e Replacement cost 80 e /kW
Maintenance cost 1 % of PV inv cost/year System
CO2 emissions 1447 kgCO2,eq/kWp Cable CO2 emissions 17680 kgCO2,eq

Li-ion Battery Project Lifetime 20 years
Charging efficiency 90 % Discount rate 7 %
Discharging efficiency 90 % Escalation rate 3 %
Max lifetime 10 years Installation cost 40 % of PV inv cost
Unit capacity 2.55 kWh Electricity grid
SOC initial 0.5 pu Grid power limit 120 kVA
SOC min 0.2 pu Inject tariff 0.07878 e /kWh
SOC max 1 pu Fixed subscription cost 800 e /year
Investment cost 1084 e Peak hour supply tariff 0.2460 e /kWh
Maintenance cost 3 % of BESS inv cost/year Off-Peak hour supply tariff 0.1824 e /kWh
Replacement cost 1084 e
CO2 emissions 102 kgCO2,eq/kWh

Table 3: PV, BESS, EG, DC/DC & AC/DC & DC/AC CVs and system parameters data [174,
102, 175, 173, 176, 171].

optimization problem is structured and solved using Python 3.8 with the CPLEX optimization
solver. Computation tasks are executed on a high-performance supercomputer equipped with
robust hardware specifications including an AMD EPYC 7763 64-Core Processor, 256 cores,
and 1510GB of RAM. The entire system operates on the ”Rocky Linux 9.1” operating system.

III.3.1 Technical, Economic, and Environmental Results

The economic and environmental results for LCE ≤ 0.75 kgCO2,eq/kWh in IMG operating
mode and GCMG operations mode are displayed in Table 4. The system LCE is computed as
the LCE sum of the PV, BESS, and EG. The results in Table 4 show that the system’s LCOE
and LCE are higher in IMG mode compared to GCMG mode. One reason is that the French
EG is heavily dominated by the nuclear power plants which provides cost-efficient and low-
carbon electricity services for the end-users. Therefore, the EG provides already a clean and
cost-efficient solution in GCMG case, where the BESS capacity is mostly determined to pro-
vide electricity when the load demand passes the subscribed grid power limit. Additionally, the
specific characteristics of the PV technology, fabricated in China, Shangrao city, make the PV
system the primary contributor to the overall system’s LCE in both operational modes because
of the emissions that are emitted from the transportation of these PV panels from China. It
should be noted that the CO2 emissions of the chosen PV panel consider the maintenance of
the product over the project lifetime. The microgrid components’ sizes and technical results
under identical conditions (where LCE ≤ 0.75 kgCO2,eq/kWh in IMG operating mode and
GCMG operations mode) are presented in Table 5. The size of BESS and PV for IMG is higher
than that of GCMG, with a percentage difference of 828.57% for the PV and a difference of
571% for the BESS. Larger PV and BESS capacities translate to increased capacities for their
associated converters, as illustrated in Table 5 for the IMG case in comparison with GCMG op-
eration mode. CPLEX computation time for IMG is lower than that of GCMG because the IMG
operation mode is based on LP, requiring fewer decision variables and constraints. In contrast,
the GCMG operation mode is a MILP with the addition of a binary decision variable and deci-
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Parameter IMG GCMG Unit
System LCOE 2.33 0.42 e/kWh
System LCE 0.75 0.10 kgCO2,eq/kWh
PV LCE 0.69 0.074 kgCO2,eq/kWh
BESS LCE 0.062 0.01 kgCO2,eq/kWh
Cables LCE 0.001 0.001 kgCO2,eq/kWh
EG LCE - 0.018 kgCO2,eq/kWh

Table 4: Economic and environmental results in IMG and GCMG operation modes.

Parameter IMG GCMG Unit
Components size
PV system capacity 6.5 0.7 MWp
BESS capacity 4.2 0.7 MWh
PV converter capacity 6.9 0.7 MW
BESS converter capacity 6.7 0.1 MW
EG converter capacity - 0.1 MW
Building converter capacity 0.1 0.1 MW
Technical results
PV output energy 7116 770 MWh/year
PV curtailed energy 5919 87 MWh/year
Battery energy 360 142 MWh/year
EG supplied energy - 327 MWh/year
EG injected energy - 174 MWh/year
BESS complete cycles 103 211 cycles/year
CPLEX computation time 1651 4320 seconds

Table 5: Components size and technical results for IMG and GCMG operation modes.

sion variables related to the EG. The outcomes from Table 4 and Table 5 are comprehensively
analyzed in the following section.

III.3.1.1 Isolated Microgrid

Another reason of high LCOE and LCE in the IMG mode is that load shedding is not al-
lowed, as stated in Eq. (18). This means that the optimization problem must be able to meet the
load demand even during periods of low solar irradiation, such as the winter season. Fig. 17(a)
depicts the energy profiles throughout a year, indicating a significant amount of curtailed power
generated by the PV system, particularly during the summer season. Specifically, the curtailed
PV energy amounts to about 83% of the total PV output energy. Even though the PV curtailed
power is high, the PV contribution to the system still reaches around 60%, with the remaining
contribution coming from the BESS. Fig. 18 shows simulation results for August 19-20 and
November 13-14, which are the dates with the highest and lowest solar irradiation levels, re-
spectively. As solar irradiation is typically high during the summer, the battery is not always
charging during this period as there is an excess PV generation throughout this time. However,
the BESS is configured to maintain its maximum SOC between November 13 and 14 to ensure
a continuous supply of power to meet the load demand. The IMG is sized to match the energy
needs between November 13 and 14, which demands significant capacities for both the PV
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Figure 17: Annual energy profiles for (a) IMG operation mode and (b) GCMG operation
mode.

system and BESS. As a result, there is a high amount of energy from the PV system that is
being curtailed during the period of 19 to 20 August. This high level of energy curtailment (see
Table 5 and Fig. 18(a) also affects the size of the PV associated converter, as it needs to be able
to handle the incoming energy from the PV system. It can be seen in Table 5 that the BESS has
a maximum charging/discharging power that is low in comparison to its capacity, this indicates
that the BESS does not overcharge or discharge as the charging C-rate equals 0.102 and the dis-
charging C-rate equals to 0.033. Avoiding high BESS C-rates is recommended for better safety
and the improved lifespan of the battery [177]. Furthermore, the relatively low number of com-
plete BESS cycles is a result of the BESS’s substantial capacity. In simpler terms, because the
BESS can store a lot of energy, it doesn’t need to cycle through charging and discharging as
frequently as a smaller BESS would. Additionally, this demonstrates that the assumption of
a fixed battery replacement every five years guarantees a well-operating BESS, as 103 BESS
cycles per year won’t exceed the cycles to failure in the fifth year for the chosen battery.

III.3.1.2 Grid Connected Microgrid

The LCOE and LCE have significantly decreased in the GCMG operation mode compared
to the IMG mode (see Table 4). This decrease can be attributed to the lower cost of purchasing
power from the EG as opposed to increasing the capacity of BESS. Fig.17(b) demonstrates
the power profiles over a simulated year, revealing a noteworthy reduction in curtailed power
generated by the PV system compared to the IMG mode. Additionally, the graph highlights the
significance of grid injection and battery charging during the summer season. The load is served
directly from the EG during periods of low solar irradiation (November 13-14, see Fig. 18d),
rather than relying on an increased PV and BESS capacities. This results in a decreased capac-
ity for PV and BESS capacities and their associated converters in the GCMG mode compared
to the IMG mode. Hence, during periods of high solar irradiation (August 19-20), as illustrated
in Fig. 18b, there is a reduction in curtailed power. Overall, the curtailed power decreased to
6710% in this operation mode with a PV contribution of 57 %. During the summer months,
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(c) (d)

Figure 18: Power profiles for August 19-20: (a) IMG operation mode, (b) GCMG operation
mode; and for November 13-14: (c) IMG operation mode, (d) GCMG operation mode.

when solar irradiation is abundant, the SOC of BESS is experiencing complete cycles because
it is guaranteed that the BESS would be recharged the next day. Conversely, the SOC of BESS
is kept at a certain level during the period of 13 to 14 November to maintain a sufficient power
supply for the load. The charging/discharging C-rates of the BESS are approximately 0.14
and 0.11, respectively. Although these rates are higher than those of the IMG operation mode,
they are still considered low, thus it ensures that the battery does not overcharge or overdis-
charge. Similar to the IMG operation mode, the BESS cycles of 211 per year guarantees a
well-operating BESS during the five years considered in this study.

III.3.2 Analysis of Pareto Fronts

A key idea in multi-objective optimization is the Pareto front, sometimes referred to as the
Pareto set or Pareto frontier. It describes a group of solutions to a problem area that cannot
be enhanced for one target without degrading the effectiveness of another objective. In other
words, it symbolizes the trade-offs among multiple competing aims. In this paper, the Pareto
front is determined by manipulating ε (see Eq. (32)) where the trade-off between the objectives
can be altered, which leads to have different solutions on the Pareto front. Fig. 19 illustrates
the Pareto front along with the variations observed in BESS and PV panels for both IMG and
GCMG operation modes. In the instance of the IMG, there’s an approximate 20% difference
in both LCOE and LCE between various solutions. For the GCMG mode, these differences
amount to about 22% for LCOE and 16% for LCE. It can be seen that reducing the LCE would
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necessitate an increase in LCOE and vice versa. This can be explained by the fact that reducing
one objective requires sacrificing some of the other objective. Additionally, reducing the LCE
of the system can be achieved by increasing the proportion of BESS in the overall system and
decreasing the number of PV panels. This finding is consistent with the observation that the
LCE of the PV system is slightly greater than that of the BESS in this study. For the GCMG
operation mode, the Pareto front exhibits a generally downward slope from left to right, indi-
cating that it is typically possible to reduce the LCE without substantially increasing the LCOE.
However, decreasing LCOE often necessitates accepting higher levels of LCE. The variation of
the BESS and PV panels is the same for both operation modes, where the BESS increases and
the PV decreases whenever the LCE decreases. It should be noted that in the Fig. 19 dominated
and non dominated solutions are presented in both IMG and GCMG operations mode as the
non dominated solutions form the Pareto frontier. Fig. 20 shows a radar plot that compares

Dominated solution
Non dominated solution
Pareto frontier

Dominated solution
Non dominated solution
Pareto frontier

Figure 19: Pareto front and the variation of BESS and PV panels for the IMG and GCMG
operation modes.

the economic indicators such as investment, maintenance, replacement, salvage value, and EG
costs (for GCMG operation mode). It can be inferred that when LCOE is the lowest, the in-
vestment cost is the highest for both operation modes. This is because the algorithm suggests a
microgrid that relies on PV panels, which have a larger investment cost than that of BESS. On
the other hand, when LCE is the lowest, the maintenance, replacement, and EG costs are larger
compared to the case where LCOE is the lowest. This is because in this case, the algorithm
suggests a solution that is more reliant on BESS, which is a only replaced component several
times during the project lifetime, in this study.
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(a) (b)

Figure 20: Radar plot for economic analysis for (a) IMG (b) GCMG operation modes.

III.3.3 Peak Shaving Strategy Impact

Peak shaving is achieved by varying the maximum subscription limit from 140kVA to
lower limits of 120kVA, 100kVA, 80kVA, 60kVA, and 40kVA by updating the subscription
cost Csub for each power level [173]. Fig. 21 displays the Pareto fronts for the peak shaving
strategy with varying EG limits and for IMG operation mode. The onset of observable varia-
tions in the solution occurs when the LCE for the IMG and GCMG operation modes are less
than or equal to 0.5kgCO2eq/kWh. The results indicate that increasing the EG limits results in
a reduction in both LCE and LCOE, as observed by the upward trend of the Pareto fronts.

The average variation between each Pareto curve is assessed by observing changes in the
EG limits. A decrease in the EG limit from 140kVA to 120kVA results in an approximate 11%
increase in LCOE and 21% in LCE. Further lowering the limit to 100kVA increases the varia-
tion to 22% for LCOE and 18% for LCE. When the limit is reduced to 80kVA, the increases in
LCOE and LCE are 21% and 17%, respectively. The transition from 80kVA to 60kVA shows
a significant jump, with LCOE surging by 70% and LCE by 40%. The subsequent reduction
to 40kVA results in a 74% rise in LCOE and an 70% increase in LCE. The final shift from
a 40kVA EG limit to an isolated microgrid leads to increases of 80% in LCOE and 82% in
LCE. From these variations, it is evident that the average variation of LCOE and LCE between
different Pareto curves is non-linear, and reductions in the EG limit significantly impact these
metrics. These results underscore that the French EG provides cost-efficient and CO2-efficient
electricity services to end-users. This efficiency is largely due to the dominance of nuclear
power plants within the French energy mix.

The optimization algorithm tends to decrease the required BESS capacity as the EG limit
increases. These findings suggest that it is both economically and environmentally (in terms
of CO2 emissions) more favorable to rely on the EG rather than integrating a local BESS.
As the EG limit is raised, the Pareto fronts become lower and steeper. This steeper Pareto
front indicates that by depending more on the EG, it is possible to reduce the LCE without
significantly increasing the LCOE However, reducing LCOE often requires accepting higher
levels of LCE.
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Figure 21: The trend of Pareto fronts for peak shaving strategy based on various EG limit.

III.3.4 Scalability Analysis

A scalability analysis is conducted for both IMG and GCMG operation modes for the 120
kVA EG limit. The load is increased from 0% to 30% in 5% increments. Results for both
operation modes are presented in Fig. 22. For the IMG operation mode (Fig. 22a), the Pareto
curves are so close that there are no significant differences between the solutions. However, as
shown in the zoomed figure in Fig. 22a, increasing the load leads to a slight decrease in LCE
and LCOE. This occurs because the percentage increase in load is higher than the percentage
increase in the capacities of the microgrid components. The average difference between the two
extreme solutions (from a 0% to a 30% load increase) is less than 1%. Shifting to the GCMG
operation mode (Fig. 22b), an increase in load leads to an increase in both LCOE and LCE, as
indicated by the upward trend of the Pareto curves. The primary reason for this increase is the
EG limit set at 120kVA. As the load exceeds this limit, the optimization tends to increase the
capacities of microgrid components to satisfy the increased load. This increase in microgrid
component capacities surpasses the load increase, which results having higher LCOE and LCE.
The average difference between each Pareto curve is about 8% with the average difference
between the two extreme solutions being approximately 46%.

III.3.5 Analysis of Utilized Energy Sources in French Electricity Grid

The French energy mix has undergone significant decarbonization, primarily attributed
to the extensive integration of nuclear power in energy mix, which emits low levels of CO2
[178]. This investigation illustrates the proportionate contribution of various energy sources
to the EG of France, as demonstrated in Fig. 23 for several EG limits for scenarios where
LCE ≤ 0.75kgCO2eq/kWh. It can be observed that increasing the EG limit leads to a decrease
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(a) (b)

Figure 22: Scalability analysis results for the (a) IMG (b) GCMG operation modes.

in local renewable energy consumption within the microgrid, and an increase in the portion of
the EG supply, primarily the nuclear consumption. Increasing the EG limit from 40kVA to
140kVA results in a reduction of local renewable consumption by about 62%, and an increase
in nuclear consumption by about 44%, the EG renewable consumption by about 12%, and the
EG non-renewable consumption by about 4%. These results emphasize the country’s substan-
tial dependence on local renewable energy consumption, accounting for at least 35% of the
local renewable and 13% of the EG renewable consumption in the worst-case scenario. These
findings align with the French government’s ambitious goals to boost the use of renewable en-
ergy sources in electricity generation. Moreover, the electricity consumption derived from the
nuclear EG remains the highest, highlighting the high reliance on nuclear power for electricity
production in France. Additionally, connecting an IMG or maintaining a low EG limit remains
costly in terms of LCOE and LCE. An ultimate solution could be by integrating more renew-
able production into the French energy mix, because although the case of 40kVA has 97% local
renewable consumption, the LCE of this case is higher than that of all other cases as seen in
Fig. 21.

Fig. 24 presents the distribution of energy sources used over the year with a temporal
resolution of one day for the scenario where LCE ≤ 0.75 and for several EG limits. The results
indicate a high reliance on local renewable consumption, specifically PV and BESS, followed
by nuclear power production. The proportion of nuclear power increases in the winter season
due to lower solar irradiation. As the EG limit increases, the EG supply in the winter season
also increases, which increases the proportion of nuclear power consumption in the total energy
consumption.

III.3.6 Maximisation of the Renewable Energy Consumption in the Microgrid

The case study reveals increasing the EG limit results in higher EG nuclear and non-
renewable energy consumption, as illustrated in Fig. 23. However, when the main objective is
considered to be enhancing renewable energy share consumed from the EG, the objective func-
tion modification should be required to minimize EG supply during periods of low renewable
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Figure 23: The percentage of energy sources utilized over the year for the case of lowest LCOE
for the EG limit of (a) 40 kVA, (b) 60 kVA, (c) 80 kVA, (d) 100 kVA, (e) 120 kVA, (f) 140 kVA.
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Figure 24: The distribution of energy sources utilized over the year for the case of lowest
LCOE for the EG limit of (a) 40 kVA, (b) 60 kVA, (c) 80 kVA, (d) 100 kVA, (e) 120 kVA, (f)
140 kVA.

energy production. The new optimization problem is formulated as follows:

min{ps
EG(t) ·κ(t)} , (33)

LCOE ≤ τ (34)

Here, κ(t) represents the percentage share of EG nuclear and non-renewable energy at each
time step t, while τ denotes the upper bound of the LCOE. The new optimization problem with
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the objective function in Eq. (33) is solved by determining the following decision variables un-
der the constraints in Eq. (4) to Eq. (18), along with Eq. (32) and Eq. (34): the BESS capacity
(Eb), the number of PV panels (NPV ), the BESS charge/discharge powers (pc

b(t)/p
d
b(t)), the EG

supply/inject powers (ps
EG(t)/p

in
EG(t)), and the auxiliary variables (xaux(t)). Additionally, the

capacities of the associated converters for PV, BESS, and EG (MDC/DC
PV , MDC/DC

b , MAC/DC
EG ) are

determined.

This optimization is tested for EG limits of 100 kVA, 120 kVA, and 140 kVA. The results
are presented as Pareto fronts between LCOE/LCE, EG nuclear and non-renewable energy
consumption (MWh) in Fig. 25. The analysis indicates that decreasing LCOE/LCE leads to
increased EG non-renewable and nuclear energy consumption. This occurs because the EG’s
intervention is lower when LCOE/LCE is high, resulting in reduced non-renewable and nuclear
energy consumption.

In all three scenarios, nuclear and non-renewable consumption is non-zero when LCOE is
below 2 e/kWh and carbon emissions are below 0.6 kgCO2,eq/kWh. The primary difference
among the 100 kVA, 120 kVA, and 140 kVA limits is that increasing the EG limit correlates
with higher nuclear and non-renewable consumption rates. This analysis demonstrates that in
the French EG context, increasing renewable energy consumption while decreasing LCOE and
LCE is contradictory. Therefore, additional efforts are necessary to boost renewable energy
production in the French energy mix.

(a) (b) (c)

(d) (e) (f)

Figure 25: LCOE and LCE results of the EG limit of (a)(d) 100 kVA, (b)(e) 120 kVA, and
(c)(f) 140 kVA.
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III.4 Discussion

In this chapter, the battery degradation is not formulated in the optimization problem since
the battery complete cycles are determined low in both operation modes. The energy capacity of
the battery is obtained significantly higher compared to required charge and discharge powers
in BESS converter, hence battery cycle is not performing high number of complete cycles.

The proposed methodology can be adjusted to accommodate a wide range of data types
including costs, emissions, solar irradiation, and other variables. This flexibility makes it a
useful tool for helping with decision-making in the field of microgrid planning. Moreover, it
should be noted that the presented results are not generic which can vary based on the chosen
PV and BESS models, and according to EG characteristics. Therefore, the proposed methodol-
ogy can be used for testing the impact of the various equipment models in different EG which
has different emission and price profiles.

For instance, when one of the main components, either PV or BESS, has lower costs and
emissions in a microgrid with PV systems, BESS, load, and their converters, the solutions and
the Pareto front show no variations. In the presented results the PV emissions are comparatively
higher due to specific technology characteristics, but its cost remains lower.

III.5 Conclusions

In this chapter, an MILP optimization algorithm is presented to co-optimize equipment siz-
ing and EM problems of a DC microgrid with the objectives of cost and emissions reduction.
The analysis and results lead to several conclusions. In the IMG operation mode, the microgrid
exhibits larger component capacities compared to GCMG. This difference is due to the neces-
sity of coping with more challenging conditions, such as the absence of the EG during periods
of low solar irradiation. The study reveals that BESS capacity increases as the LCE decreases,
and the number of PV systems is higher when the LCOE is lower for both operation modes.
This occurs because the BESS has a slightly lower LCE compared to the PV, and the LCOE
of PV is also lower than that of BESS. Economically, the solution with a lower LCOE incurs
the highest investment cost, whereas the solution with the lower LCE incurs the highest re-
placement cost, mainly due to BESS, which is the only component replaced over the project’s
lifetime. As the limit of the EG increases, the Pareto fronts for both peak shaving strategy
become lower and steeper. In the IMG operation mode, increasing the load does not lead to
higher LCOE and LCE; rather, it results in a reduction of both metrics. Conversely, in the
GCMG operation mode, an increase in load corresponds to higher Pareto curves, which in turn
leads to increased LCOE and LCE. From an environmental perspective, the findings indicate
that in worst case 35% of the total production comes from local sources, with the remainder
primarily reliant on the EG, which predominantly utilizes nuclear power in the French energy
mix. It is also proven in the French case study that decreasing LCOE/LCE leads to increased
non-renewable and nuclear energy consumption. Furthermore, it is shown that minimizing
nuclear and non-renewable energy consumption will result in an increase in LCOE and LCE.
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Chapter IV

Cost and Emission Minimization in
University Building: A Multi-Objective
MILP Study with Renewable Energy and
EV Integration including Geographic and
Technology Analysis
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This chapter builds upon the work presented in Chapter III, which introduced a MILP algo-
rithm to achieve global optimal solutions for optimizing both the sizing and EM of a microgrid.
The optimization considered annual solar irradiation and the yearly load demand of a tertiary
building on a university campus. This study extends the previous work by integrating a WT into
the microgrid and incorporating the modeling and consideration of EV loads. The microgrid is
evaluated in various cities across France, utilizing different technologies for PV systems, BESS,
and WT. Consequently, this chapter presents a comprehensive geographical and technological
analysis. The primary contributions of this chapter are as follows:

• a comparative analysis of three scenarios (PV/BESS, WT/BESS, and PV/WT/BESS)
across the different studied cities;

• evaluation of the impact of seasonal fluctuations on the LCOE and LCE; and

• assessment of the influence of the choice of microgrid component technologies on the
LCOE and LCE outcomes.

This chapter is organized as follows: Section IV.1 presents the system modeling, Section IV.2
details the modifications in the formulation of the joint multi-objective optimization problem,
Section IV.3 provides the results and analysis, and finally, Section IV.4 concludes the chapter.

IV.1 System Modeling

In this chapter, two main microgrid components have been added: the WT and the EV load.
The modeling of these two components is presented in this chapter, while the models of other
components are detailed in Section III.1. The structure of the studied microgrid in this chapter
is illustrated in Fig. 26.

DC/DC
Converter

DC/DC
Converter

DC bus

AC/DC
Converter

PV Array

Utility Grid

Electric Vehicles

University Campus
Wind turbine

AC/DC
Converter

DC/AC
Converter

DC/AC
Converter

Battery

Figure 26: Architecture of the studied microgrid.
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IV.1.1 Wind Turbine

The wind speed data, initially recorded at an altitude of Hre f , undergoes adjustment to
match the wind conditions at the hub height h considering the difference in elevation. The
adjusted wind speed (vh) is calculated as follows [161]:

vh(t) =Vref ·
(

h
Href

)r

(1)

where Vre f is the wind speed measured at the altitude of Hre f , and the value of the roughness
coefficient (r) is selected as 0.3 urban environment. The power output of the WT is determined
as outlined in [161]:

pWT (t) = NWT ·


0 if vh(t)< vcin or vh(t)> vcout

Pr ·
(

vh(t)3−v3
cin

v3
r−v3

cin

)
if vcin ≤ vh(t)< vr

Pr if vr ≤ vh(t)< vcout

(2)

where NWT is the number of WTs, pWT (t) denotes the power output of the WT (kW), Pr

represents the turbine’s rated power (kW). vcin corresponds to the cut-in wind speed (m/s),
vcout corresponds to the cut-out wind speed (m/s), and vr is the rated wind speed (m/s). The
output power of a chosen WT (Schachner05 - SW05[179]) is shown in Fig. 27.
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Figure 27: WT (Schachner05 - SW05[179]) output power.

IV.1.2 Electric Vehicle Load

It is imperative to develop advanced models that consider critical factors such as the plug-in
time (tpin) of EVs and the initial SOC (SOCEVinit). In [159], data from a university campus is
gathered to illustrate the PDFs of tpin and SOCEVinit for private EVs. The analysis reveals that
the GEV closely matches the collected data. The equation for the GEV is derived as follows:
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f (x; µ,σ ,ξ ) =


1
σ

[
1+ξ

(
x−µ

σ

)]− 1
ξ
−1

· exp
{
−
[
1+ξ

(
x−µ

σ

)]− 1
ξ

}
, if ξ ̸= 0

1
σ

exp
{
−x−µ

σ

}
, if ξ = 0

(3)

where f (x; µ,σ ,ξ ) represents the GEV, where x is the random variable, µ is the location pa-
rameter, σ is the scale parameter, and ξ is the shape parameter, respectively. SOCEVinit , the
parameters of GEV are taken as ξ = 0.0629, σ = 0.5493, µ = 8.9068. For tp, the GEV param-
eters are: ξ = 0.0474, σ = 7.9015, µ = 12.8820. The duration required for charging the EV
varies based on the connection time, and the period needed to attain the maximum SOC for the
EV SOCEV max, is computed as follows:

Tchar,a =
(SOCEV max,a −SOCEVinit,a) ·EVcap,a

Pcs
(4)

where Tchar,a, SOCEV max,a, and EVcap,a are the charging duration, maximum SOC, and battery
capacity of the EV a, respectively; and Pcs is the EVCS power rating. The plug-out time for
EV is determined using a uniform distribution that ranges from zero to three hours after the
EV charging time needed to reach the maximum SOC. This consideration is incorporated into
the optimization problem to introduce a margin of flexibility, enabling the scheduling of EV
charging. Without this margin, if the unplugging time coincides exactly with the EV charg-
ing duration, scheduling EV charging sessions would be unfeasible. The EV charging power
demand is calculated as follows:

pEV,a(t) =

{
(SOCEV max,a−SOCEVinit,a)·EVcap,a

⌊Tchar,a⌉ , if t ≥ tpin

0, otherwise
(5)

Equation (10) calculates the EV a charging demand, denoted as pEV,a, after the plug-in
time tp. In this equation, the energy needed to charge the EV is divided by the rounded-up
charging duration ⌊Tchar,a⌉ to calculate the actual EV power. This method is chosen, because
the study operates on an hourly time scale, and charging the EV at a steady power rate might
risk pushing the battery’s SOC in the simulation beyond its permitted maximum level which
physically not possible.

IV.2 Formulation of the Joint Multi-Objective Optimization Prob-
lem

In this chapter, the formulated optimization problem is similar from the one presented
in Chapter III, Section III.2. However, the algorithm introduced in this chapter takes into
account the WT and EV demand additionally compared to previous one. For that, this chapter
introduces the equations that are modified, and the rest can be seen in Chapter III, Section III.2.

As other converters in the microgrid, the nominal power value of the associated converters
of the WT and the EV load is considered to be equal or greater than electric power that flows
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through them as stated below:
pWT (t)≤ MAC/DC

WT (6)

pEV (t)/γ
DC/AC
EV ≤ MDC/AC

EV (7)

where pEV (t) corresponds to the EV load demand. The big M method is used by adding WT
and EV powers as follows:

M · xaux(t)−
(

pbuil(t)/γ
DC/AC
buil + pEV (t)/γ

DC/AC
EV − γ

DC/DC
PV · pMPPT

PV (t)− γ
AC/DC
WT · pWT (t)

)
≥ 0

(8)
M ·(1−xaux(t))−

(
γ

DC/DC
PV · pMPPT

PV (t)+ γ
AC/DC
WT · pWT (t)− pbuil(t)/γ

DC/AC
buil − pEV (t)/γ

DC/AC
EV

)
≥ 0

(9)
The management of BESS discharge and EG supply to prevent the system load power from
being exceeded is formulated as:

ps
EG(t) · γ

AC/DC
EG + pd

b(t) · γ
DC/DC
b ·µd +M · (1− xaux(t))≥

−
(

pbuil(t)/γ
DC/AC
buil + pEV (t)/γ

DC/AC
EV − γ

DC/DC
PV · pMPPT

PV (t)− γ
AC/DC
WT · pWT (t)

) (10)

The net power at the bus, pbus(t), of the microgrid system is calculated by summing the powers
entering and leaving the bus, as expressed in Equation (11).

pbus(t) = pbuil(t)/γ
DC/AC
buil + pEV (t)/γ

DC/AC
EV −

γ
DC/DC
PV · pMPPT

PV (t)− γ
AC/DC
WT · pWT (t)+ pc

b(t)/µc/γ
DC/DC
b + pd

b(t) · γ
DC/DC
b ·µd+

ps
EG(t) · γ

AC/DC
EG + pin

EG(t)/γ
DC/AC
EG

(11)

The objective function aims to minimize the LCOE and the LCE calculated as follows:

LCOE =
TC ·CRF

∑
t f
t0

(
(pbuil(t)/γ

DC/AC
buil )+(pEV (t)/γ

DC/AC
EV )

)
·∆t

(12)

LCE =
LCEPV +LCEWT +LCEBESS +LCEEG +LCEcables

∑
t f
t0

(
(pbuil(t)/γ

DC/AC
buil )+(pEV (t)/γ

DC/AC
EV )

)
·∆t

(13)

LCEWT =
αWT ·NWT ·Pr

Q
(14)

The detailed calculation of the LCOE and LCE are presented in Section III.2.2. It should be
noted that the WT costs and CO2 emissions (Eq. (14)) are added in the LCOE and LCE cal-
culations. The optimization problem is addressed by determining the following decision vari-
ables: BESS capacity (Eb), the number of PV panels (NPV ), the number of WTs (NWT ), BESS
charge/discharge powers (pc

b(t)/p
d
b(t)), EG supply/inject powers (ps

EG(t)/p
in
EG(t)), and auxil-

iary variables (xaux(t)). Additionally, the capacities of PV, WT, BESS, EG, EV, and building-
associated CVs (MDC/DC

PV , MAC/DC
WT , MDC/DC

b , MAC/DC
EG , MDC/AC

EV , MDC/AC
buil ) are also determined.
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Parameter Value Unit Parameter Value Unit
DualSun PV DC/DC & AC/DC & DC/AC CVs

NOCT 40 ◦C Efficiency 95 %
PV module-rated power 400 Wp Lifetime 10 years
Power temperature coefficient -0.27 %/°C Investment cost 80 e /kW
Lifetime 25 years Maintenance cost 2 % of conv inv cost/year
Investment cost 612 e Replacement cost 80 e /kW
Maintenance cost 1 % of PV inv cost/year System
CO2 emissions 507.5 kgCO2,eq/kWp Cable CO2 emissions 17680 kgCO2,eq

Li-ion BESS Project Lifetime 20 years
Charging efficiency 90 % Discount rate 7 %
Discharging efficiency 90 % Escalation rate 3 %
Max lifetime 10 years Installation cost 40 % of PV inv cost
Unit capacity 2.55 kWh
SOC initial 0.5 pu
SOC min 0.2 pu EG
SOC max 1 pu Grid power limit 140 kVA
Investment cost 1084 e Inject tariff 0.07878 e /kWh
Maintenance cost 3 % of BESS inv cost/year Fixed subscription cost 1000 e /year
Replacement cost 1084 e Peak hour supply tariff 0.2460 e /kWh
CO2 emissions 102 kgCO2,eq/kWh Off-Peak hour supply tariff 0.1824 e /kWh

Schachner05 WT EV
Rated power 5 kW EV battery capacity 50 kWh
Investment cost 7250 e EV max SOC 100 %
Maintenance cost 3 % of wind inv cost/year EV min SOC 20 %
Cut in speed 2.5 m/s EV charging station
Rated wind speed 11 m/s Charging station power 7 kW
Lifetime 20 years
CO2 emissions 1715 kgCO2,eq/kW

Table 6: Input parameters data of the microgrid system [174, 179, 102, 175, 173, 176, 171].

IV.3 Results and Analysis

In the studied microgrid, the load distribution encompasses the EVs and the university
building. The infrastructure for EVs comprises five charging stations, each outfitted with dual
7 kW chargers that enables concurrent charging for up to 10 EVs. The arrival pattern of EVs
follows a uniform distribution. On weekdays, the influx ranges from seven to 10 EVs, while
weekends typically see one to two arrivals. During the vacation period on August, EVs arrivals
may vary between one to four EVs due to summer vacation. The reduced range of one to four
EV arrivals during the vacation period in August reflects the decrease in regular commuting and
the shift towards more varied and less predictable travel patterns associated with the summer
vacation season. The load profile of the university building is sourced from empirical data
collected at a specific building within Université de Technologie de Compiègne in 2023. Both
the EVs and university building’s load characteristics are visually represented in Fig. 28 and
Fig. 16b, respectively. The EG CO2 emissions are considered dynamic as it is provided by
the French transmission system operator (see Fig. 16c). In this study, a load growth of 1% is
considered to anticipate potential future increases in demand and to ensure the resilience of the
microgrid, while the EG tariffs remain the same as those used in III for all cities. The technical,
economic, and environmental data utilized for this analysis are presented in Table 6.

The optimization problem is formulated using Python 3.8 and CPLEX optimization solver.
The computations are carried out on a supercomputer equipped with an AMD EPYC 7763
64-Core Processor, 256 cores, and 1510GB of RAM, all running on the “Rocky Linux 9.1”
operating system.
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Figure 28: the (a) EV load with a detailed views for specific periods: (b) winter and (c) summer
vacation

IV.3.1 Geographical Analysis

Several cities in France, representative of the entire country, were included in this study.
These cities exhibit fluctuations between high wind speed and high solar irradiation. Addition-
ally, cities from various regions including Europe, Africa, East Asia, America, the Middle East,
and Australia were considered. Table 7 presents the solar irradiation, ambient temperature, and
wind speed data for the considered regions over the course of one year, as retrieved from [180].
Descriptive statistics for this data are provided and detailed in Table 7. These statistics offer a
summary of the dataset using several key measures. The mean, or average, signifies the typical
value within the dataset. It is calculated as:

Mean =
1
n

n

∑
i=1

xi (15)

where n is the number of observations and xi represents each individual value. The median,
the middle value when data is ordered, offers a robust measure of central tendency. Standard
deviation indicates the extent of variation in the dataset and is calculated as:

Standard Deviation =

√
1

n−1

n

∑
i=1

(xi − x̄)2 (16)

where x̄ is the mean of the dataset. Variance, the square of the standard deviation, quantifies
the overall spread of data points around the mean and is given by:

Variance =
1

n−1

n

∑
i=1

(xi − x̄)2 (17)

80



The range, the difference between maximum and minimum values, gives a quick sense of the
total spread and is calculated as:

Range = Max−Min (18)

The interquartile range (IQR) measures the spread of the middle 50% of the data, emphasizing
the central portion’s concentration without the influence of outliers, and is calculated as:

IQR = Q3−Q1 (19)

where Q1 is the 25th percentile and Q3 is the 75th percentile. The minimum and maximum
values represent the dataset’s lowest and highest points, respectively, which set its bounds. The
25th percentile (Q1) is the value below which 25% of data points fall, and the 75th percentile
(Q3) is the value below which 75% of data points fall, that provides insight into the distribu-
tion’s lower and upper ends.

A boxplot, also known as a box-and-whisker plot, provides a graphical summary of a
dataset’s distribution, emphasizing its central tendency, variability, and outliers. The plot fea-

City Solar irradiation (kWh/m2) Ambient temperature (◦C) Wind speed (km/h)
Adelaide, AU 1758 14.98 11.8
Ajaccio, FR 1769 12.36 4.6
Bamako, ML 2300 27.89 9

Bern, CH 1658 9.12 4.8
Brest, FR 810 12.81 21.68
Cairo, EG 2624 22.18 13

Compiègne, FR 838 12.74 13.2
Dijon, FR 987 12.5 10.5
Doha, QA 2323 27.7 15.6

Le Havre, FR 873 12.17 17.02
Lille, FR 820 12.16 13.03

Lisboa, PT 1983 16.9 15.5
Lyon, FR 1124 13.31 8.44

Madrid, ES 1991 14.94 7.4
Marseille, FR 1375 16.59 19
Nagoya, JP 1775 15.57 9.4

New Delhi, IN 2027 27.17 9
Poitiers, FR 968 13.81 11.3
Rabat, MA 2259 18.72 8.06

Strasbourg, FR 964 12.44 8.12
Toronto, CA 1634 8 16.22
Toulouse, FR 1697 14.86 11.11
Tripoli, LB 2165 19.37 8.4
Twente, NL 1313 11.58 12.3

Washington, US 1868 11.5 7.7
Descriptive statistics

Mean 1596.12 15.65 11.45
Median 1697.00 13.81 11.11

Standard Deviation 553.29 5.45 4.27
Variance 306132.03 29.72 18.24

Q1 (25th percentile) 987.00 12.36 8.40
Q3 (75th percentile) 1991.00 16.90 13.20

IQR 1004.00 4.54 4.80
Max 2624.00 27.89 21.68
Min 810.00 8.00 4.60

Range 1814.00 19.89 17.08

Table 7: Average solar irradiation, ambient temperature, and wind speed over one year in
different cities
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tures a box that represents the IQR, encapsulating the middle 50% of the data. Within this box,
a line signifies the median (or midpoint) of the dataset, while a dashed line typically denotes
the mean. The whiskers extend to the smallest and largest values within 1.5 times the IQR from
the lower and upper quartiles, respectively. Values beyond this range are identified as outliers
and are often marked with dots or asterisks. Boxplots are valuable for quickly discerning the
dataset’s skewness, spread, and anomalies, making them essential for exploratory data analy-
sis. The boxplots for solar irradiation, ambient temperature, and wind speed are depicted in
Fig. 29. The solar irradiation data exhibits a broad range with a mean of 1596.12 kWh/m2 and
considerable variability, evidenced by a standard deviation of 553.29 kWh/m2. This indicates
substantial differences in solar energy potential across the cities. The ambient temperature data
shows a mean of 15.65 ℃, with most values falling between 12.36 ℃ and 16.90 ℃, and a few
higher temperature outliers. Wind speed data reveals moderate variability, with a mean of 11.45
km/h, and most cities experiencing speeds between 8.40 km/h and 13.20 km/h. The outliers in
both temperature and wind speed data suggest that some cities encounter more extreme climatic
conditions. Overall, the data underscores significant geographical and climatic diversity, which
is critical for renewable energy planning and environmental assessments.
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Figure 29: Box plot for the (a) solar irradiation, (b) ambient temperature, and (c) wind speed.

The optimization encompasses all cities specified in Table 7 for three different scenarios
with the optimization includes results for scenarios where the LCE is less than or equal to 1.7
kgCO2,eq/kWh, where the same load (EV and building) is used for each city:

1. Scenario 1 (S1): PV panels, BESS.

2. Scenario 2 (S2): WTs, BESS.

3. Scenario 3 (S3): PV panels, WTs, BESS.

The capacity analysis of the microgrid components and the detailed energy dispatch for some
cities with high solar irradiation and those with high wind speed are presented in Tables 8 and
9, respectively. Additionally, the power profiles of these cities for one week in July are depicted
in Fig. 30 and Fig. 31. Rabat, Tripoli, and Lisboa are identified as the cities with a high solar
irradiation among the selected cities, whereas Brest, Marseille, and Le Havre are recognized as
the cities with a high rate wind speed (see Table 7).
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Parameter/City Rabat Tripoli Lisboa
S1 S2 S3 S1 S2 S3 S1 S2 S3

Microgrid components capacities
PV capacity (kWp) 381 - 381 303 - 303 389 - 295
WT capacity (kW) - 3887 0 - 5812 0 - 1271 145
BESS capacity (kWh) 226 6327 226 461 7994 461 270 4688 169
PV CV capacity (kW) 410 - 410 302 - 302 413 - 310
WT CV capacity (kW) - 1641 0 - 2937 0 - 1271 145
BESS CV capacity (kW) 57 205 57 94 344 94 67 206 49
EG CV capacity (kW) 147 140 147 140 147 140 147 147 147
EV CV capacity (kW) 66 66 66 66 66 66 66 66 66
Building CV capacity (kW) 164 164 164 164 164 164 164 164 164

Energy dispatch
PV output energy (MWh/year) 824 - 824 623 - 623 602 - 562
WT output energy (MWh/year) - 374 0 - 835 0 - 1105 126
Curtailed energy (MWh/year) 18.5 32.5 18.5 0.4 189 0.4 0 130 3
BESS energy (MWh/year) 63 80 63 101 193 101 116 157 43
EG supplied energy (MWh/year) 362 577 362 375 425 375 368 235 357
EG injected energy (MWh/year) 257 27 257 94 122 94 63 261 151
System losses energy (MWh/year) 93 74 93 87 130 87 88 130 74

Table 8: The microgrid components capacities and energy of Rabat, Tripoli, and Lisboa cities

IV.3.1.1 Cities with High Solar Irradiation Levels

Rabat and Tripoli are characterized by high solar irradiation levels but low wind speed.
Consequently, the S1 and S3 for these cities yield the same results in terms of component
capacities and energy dispatch. This occurs because integrating WT in S3 does not reduce
the LCOE and LCE of the system. However, this is not the case for Lisboa, where relatively
higher wind speed average is present. This means that integrating WT would decrease the
LCOE and LCE. As shown in Table 8, the WT and BESS capacities are much higher in S2
compared to S1 and S3. This is primarily because when the EG reaches its limit, the load must
be satisfied by WT and BESS. If the wind speed does not exceed the cut-in speed of the chosen
WT, the optimization problem increases the BESS capacity to discharge and fully satisfy the
load during these times of the year. The CVs reflect the components’ capacities, showing high
WT and BESS CV capacities in S2, which corresponds to their high capacities in this scenario.
Since the load (EV and building) is fixed, the EV and building capacities remain constant.

Regarding energy dispatch, in all scenarios, the curtailed energy from the WT and PV is
relatively small compared to the PV and wind output energy. This observation indicates that the
BESS capacity and EG power limits are sufficient to absorb most of the surplus PV and wind
energy. Additionally, the EG supply is always higher than the EG injection rate, highlighting
the reliance on the EG. This suggests that the EG in France offers a more cost-effective solution
compared to BESS, primarily due to the high investment cost of batteries. Furthermore, the EG
limit is close to the maximum load peak, which explains the increased EG contribution in
the microgrid. It should be noted that system losses include converters for PV, WT, BESS,
electrical grid, EV load, and building load.

Fig. 30 represents one week (the first week of July) of the one-year simulation for S1,
S2, and S3 for Rabat, Tripoli, and Lisboa. For S1 and S3 in Rabat and Tripoli (Fig. 30(a),
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Fig. 30(b), Fig. 30(h), Fig.30(i)), it can be seen that the load is primarily covered by PV dur-
ing the daytime and by BESS and EG supply during nighttime. In S2 for Rabat and Tripoli
(Fig. 30(d), Fig. 30(e)), the load is mainly met by EG supply during this period with minor
contributions from WT and BESS. For Lisboa, the S1 (Fig. 30(c)) is similar to those of Ra-
bat and Tripoli. However, the S2 (Fig. 30(f)) shows a significant difference, where the load is
mainly provided by WT. In the S3 (Fig. 30(j)), during periods without solar irradiation, WT
energy contributes to load satisfaction along with EG and/or BESS.
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Figure 30: One week (1st of July’s week) of the one-year simulation for S1 (a) Rabat (b)
Tripoli (c) Lisboa, S2 (d) Rabat (e) Tripoli (f) Lisboa, S3 (h) Rabat (i) Tripoli (j) Lisboa.
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IV.3.1.2 Cities with High Wind Speed Levels

Shifting to cities with relatively high wind speed rates, it is evident from Table 9 that
the WT capacity has been reduced compared to cities with relatively low wind speed data as
presented in Table 8. The BESS capacities have been reduced in S2, while they increase in
S1. This is because in S2, the WT power is more abundant than in cities with low wind speed
levels, and in S1, the solar irradiation levels are insufficient to fully cover the load. In this case,
the BESS serves as a backup supply when the EG reaches its limit and there is an absence of
EG supply. Unlike the results for high solar irradiation data, S1 and S3 of the same city do not
have the same outcome. This is because PV has a lower cost compared to the chosen urban
WT and BESS. Therefore, the optimization will choose to integrate PV if conditions permit,
resulting in a reduced BESS capacity. However, in S3, the capacity of WT is higher than that
of PV. As mentioned earlier, the CV capacities reflect their component capacities. Therefore,
the PV capacity in S1 is higher than in S3, whereas the BESS CV is higher in S1 and S2 than
in S3, because the reliance on BESS in these two scenarios is greater.

The energy dispatch analysis in Brest, Marseille, and Le Havre shows that the curtailed
energy is generally higher than that in Rabat, Tripoli, and Lisboa. This leads to the conclusion
that a city with high wind speed and low solar irradiation will result in higher curtailed energy
rates due to the greater WT capacity for producing energy per unit in comparison with that of
the PV panel. For the same reason, it can be seen that the EG injected energy is also higher in
these cities compared to cities with low wind speed and high solar irradiation rates. A higher
WT capacity will result in higher curtailed energy and greater system energy losses, as shown in
Table 9. Considering S2 and S3 for Brest and Marseille, the EG supply energy is lower than that
for Rabat and Tripoli, leading to the conclusion that Brest and Marseille have higher autonomy
than Rabat and Tripoli. For example, the autonomy of Brest for S2 and S3 is 65% and 70%,
respectively, while the autonomy of Rabat for S2 and S3 is 42% and 51%, respectively.

Fig. 31 represents one week (the first week of July) of the one-year simulation for S1, S2,
and S3 for Brest, Marseille, and Le Havre. In the S1 case, it can be seen that the load is met
by PV, EG, and BESS. However, in S2 and S3, the load is mainly covered by WT with minor
contributions from EG, BESS, and PV (in the S3 case). This visual representation explains why
the S2 and S3 in these cities have high autonomy.

IV.3.1.3 LCOE and LCE results

The heat maps depicted in Fig. 32 and Fig. 33 represent the LCOE and LCE values, re-
spectively, for various cities under three distinct scenarios (S1, S2, and S3). These visual
aids demonstrate considerable variability in both energy costs and carbon emissions across dif-
ferent locations and scenarios. In the case of LCOE, S2 consistently exhibits higher values,
particularly for cities such as Bern, CH (5.5 e /kWh), Ajaccio, FR (4.5 e /kWh), and Wash-
ington, US (4.5 e /kWh). These increased costs in S2 suggest higher expenses due to specific
local environmental factors that influence the costs of energy production. Conversely, most
cities under S1 and S3 show lower and more stable LCOE values, indicating more predictable
and affordable energy costs under these conditions. For instance, cities like Cairo, EG (0.22
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Parameter/City Brest Marseille Le Havre
S1 S2 S3 S1 S2 S3 S1 S2 S3

Microgrid components capacities
PV capacity (kWp) 1146 - 43 457 - 217 1060 - 308
WT capacity (kW) - 630 686 - 543 395 - 1131 693
BESS capacity (kWh) 2732 1892 1102 1160 1457 630 1611 1462 656
PV CV capacity (kW) 1130 - 42 460 - 217 1052 - 303
WT CV capacity (kW) - 630 686 - 543 195 - 1131 693
BESS CV capacity (kW) 425 117 90 181 108 98 351 99 100
EG CV capacity (kW) 147 147 147 140 147 147 147 147 147
EV CV capacity (kW) 66 66 66 66 66 66 66 66 66
Building CV capacity (kW) 164 164 164 164 164 164 164 164 164

Energy dispatch
PV output energy (MWh/year) 920 - 34 614 - 289 915 - 265
WT output energy (MWh/year) - 1512 1648 - 1137 809 - 1425 873
Curtailed energy (MWh/year) 133 400 513 0.07 222 135 138 425 200
BESS energy (MWh/year) 280 78 57 189 88 62 247 70 65
EG supplied energy (MWh/year) 327 243 226 350 353 257 352 290 238
EG injected energy (MWh/year) 139 403 440 37 308 300 160 345 256
System losses energy (MWh/year) 158 134 136 110 118 103 150 126 102

Table 9: The microgrid components capacities and energy of Brest, Marseille, and Le Havre
cities.

e /kWh), Doha, QA (0.28 e /kWh), and Lisboa, PT (0.27 e /kWh) maintain relatively low
LCOE values across all scenarios, suggesting more efficient energy production. Similarly, S2
generally presents higher LCE values compared to S1 and S3. This trend is particularly ev-
ident in cities such as Bern, CH (1.62 kgCO2,eq/kWh), Ajaccio, FR (1.37 kgCO2,eq/kWh),
and Bamako, ML (0.66 kgCO2,eq/kWh), indicating a higher carbon footprint associated with
energy production in these locations. In contrast, most cities exhibit lower and relatively con-
sistent LCE values under S1 and S3. Cities like Cairo, EG (0.03 kgCO2,eq/kWh), Lisboa,
PT (0.035 kgCO2,eq/kWh), and Toulouse, FR (0.038 kgCO2,eq/kWh) demonstrate low emis-
sions across all scenarios, suggesting more sustainable and environmentally friendly energy
production practices. The heat maps effectively highlight cities and scenarios that may pose
significant cost and environmental challenges. S2 stands out as particularly problematic for
both LCOE and LCE, indicating potential uncertainties or higher risk factors associated with
this scenario. The color gradients facilitate quick visual assessments, identifying areas where
strategic interventions might be necessary to mitigate costs and reduce carbon emissions. This
information is crucial for informed decision-making in energy investments and policy-making
aimed at carbon reduction initiatives.

These results are consistent with the data presented in Table 7, which indicates that Cairo
has the highest average solar irradiation. However, the ranking based on average solar irradia-
tion does not consistently match the order of cities based on LCOE and LCE. This discrepancy
is primarily due to the variations in solar irradiation across different months and seasons, rather
than solely depending on the annual average solar irradiation. For example, although Dijon
has a higher average solar irradiation than Poitiers, Poitiers achieves a lower LCOE and LCE.
Fig. 34 illustrates this phenomenon by presenting the monthly solar irradiation data for both
Dijon and Poitiers. It is noteworthy that during the summer and spring seasons, Dijon expe-
riences higher levels of solar irradiation compared to Poitiers. However, during the autumn
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Figure 31: One week (1st of July’s week) of the one-year simulation for S1 (a) Brest (b)
Marseille (c) Le Havre, S2 (d) Brest (e) Marseille (f) Le Havre, S3 (h) Brest (i) Marseille (j) Le
Havre.

and winter seasons, Dijon’s solar irradiation is lower than that of Poitiers. As a result, to meet
the load demand during the autumn and winter months in Dijon, the optimization algorithm
increases the PV capacity. In contrast, while Poitiers’ solar irradiation in summer and spring is
not as high as that of Dijon, it is still sufficient to cover the load requirements. Moreover, the
significantly higher solar irradiation in Poitiers during the autumn and winter seasons allows
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for a lower PV capacity compared to Dijon. Thus, the LCOE and LCE can vary significantly
between different cities even when the load remains the same, highlighting the importance of
seasonal and monthly variations in solar irradiation in determining the optimal energy strategy.
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Figure 32: Heat map for the LCOE values of different studied cities.

The descriptive statistics are presented in Table 10, and the box plots for the LCOE and
LCE results across the three scenarios are illustrated in Fig. 35. The LCOE and LCE reveal
notable variability across the three analyzed scenarios (S1, S2, and S3), with S2 exhibiting the
highest mean LCOE at 1.57 C/kWh and significant variability, as demonstrated by its standard
deviation and variance. This suggests a wide range of cost outcomes for S2, further substanti-
ated by a broad range and a high IQR. In contrast, S1 and S3 present lower mean values and
considerably less variability, indicating more consistent cost outcomes. The median values for
S1 and S3 closely approximate their means by pointing to symmetric distributions. However,
the median for S2 is significantly lower than its mean, indicating a right-skewed distribution.
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Figure 33: Heat map for the LCE values of different studied cities.

Similarly, S2 shows the highest mean LCE and the highest variability. The high range and IQR
further underscore the substantial dispersion in carbon emissions for S2. Conversely, S1 and
S3 exhibit lower mean values and minimal variability, as evidenced by their low standard devi-
ations and variances. The median values for S1 and S3 closely match their means, suggesting
symmetric distributions. In contrast, the median for S2 is markedly lower than its mean, indi-
cating a right-skewed distribution. These analyses highlight S2 as the most variable and costly
in terms of both LCOE and LCE, indicating higher uncertainty or risk factors associated with
this scenario. Conversely, S1 and S3 appear to be more stable and cost-effective, suggesting
they might be more reliable for cost and emission projections.
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Figure 34: The monthly solar irradiation data for both Dijon and Poitiers.

Parameter/Variable LCOE (e /kWh) LCE (kgCO2,eq/kWh)
S1 S2 S3 S1 S2 S3

Mean 0.42 1.57 0.36 0.05 0.42 0.05
Median 0.39 1 0.36 0.046 0.25 0.045
Standard Deviation 0.15 1.37 0.10 0.01 0.39 0.02
Variance 0.02 1.89 0.01 0.0003 0.15 0.0005
Q1 (25th Percentile) 0.28 0.75 0.28 0.035 0.179 0.04
Q3 (75th Percentile) 0.49 1.99 0.46 0.058 0.53 0.07
IQR 0.21 1.24 0.18 0.023 0.351 0.03
Max 0.79 5.5 0.58 0.09 1.62 0.1
Min 0.22 0.41 0.22 0.03 0.09 0.03
Range 0.57 5.09 0.36 0.06 1.53 0.07

Table 10: Descriptive statistics for LCOE and LCE values

IV.3.2 Analysis of Different PV, BESS and WT typologies

The technology analysis involves testing the optimization algorithm across various PV,
BESS, and WT technologies. These technologies differ in cost and emissions profiles, encom-
passing five PV panels, two BESSs, and two WTs. The PV panels evaluated in this study
include JinkoSolar, DualSun, JASolar, Systovi, and a PCM PV [181]. The WT models inves-
tigated are Schachner05 and Piggott2F16P [179]. Two types of BESSs, namely Li-ion and
Lead acid, are analyzed. The parameters for the JinkoSolar PV have been previously detailed
in Table 3, while the parameters for the DualSun PV and the Schachner05 WT are presented
in Table 6. The technical, economic, and environmental parameters for the remaining tech-
nologies are compiled in Table 11. In the Compiègne case study, various configurations of PV
panels, BESSs, and WTs were analyzed. These configurations, as detailed in Table 7, were
evaluated using a specific load profile. The LCOE and LCE for each configuration are sum-
marized in Fig. 36. The LCOE optimization was conducted under the constraint that the LCE
should be less than or equal to 0.3 kgCO2,eq/kWh. Among the configurations, the highest
LCOE was observed in the Systovi/Li-ion/Piggott2F16P combination, while the highest LCE
was recorded for the PCM/Li-ion/Schachner05 combination. Conversely, the lowest LCOE was
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Figure 35: Box plot for the LCOE (a) S1, (b) S2, (c) S3, and for the LCE (d) S1, (e) S2, (f) S3.

found in the PCM/Lead acid/Schachner05 combination, and the lowest LCE was achieved with
the Systovi/Li-ion/Piggott2F16P combination. Analyzing the mean LCOE values, the Systovi
configuration had the highest mean LCOE at 0.67 e /kWh, whereas the PCM configuration
had the lowest mean LCOE at 0.39 e /kWh. This discrepancy highlights the Systovi and PCM
configurations as representing the extremes in terms of LCOE. In terms of LCE, the Systovi
combination exhibited the lowest mean value of 0.11 kgCO2,eq/kWh, while the PCM config-
uration showed the highest mean LCE at 0.27 kgCO2,eq/kWh. This indicates that the Systovi
and PCM configurations also represent the extremes in terms of LCE. The high LCE of the
PCM PV panels can be attributed to the material used in them [181], whereas the low LCE
of the Systovi PV panels is due to their local production in France, reducing transportation-
related emissions [174]. When examining the BESS and WT combinations, the highest mean
LCOE was found in the Li-ion/Piggott2F16P combination at 0.61 e /kWh, while the lowest
mean LCOE was associated with the Lead acid/Schachner05 combination at 0.42 e /kWh. Re-
garding LCE, the Lead acid/Piggott2F16P combination had the highest mean value of 0.17
kgCO2,eq/kWh, and the Li-ion/Piggott2F16P combination had the lowest mean value of 0.13
kgCO2,eq/kWh.These results indicate that the impact of the BESS on LCE is more significant
than that of the WT. Configurations with lower BESS LCE consistently correspond to lower
overall LCE means, and vice versa. Thus, the BESS LCE plays a dominant role in determining
the total LCE of the configurations.
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Parameter Value Unit Parameter Value Unit
JASolar PV Lead acid BESS

NOCT 45 ◦C Charging efficiency 90 %
PV module-rated power 310 Wp Discharging efficiency 90 %
Power temperature coefficient -0.37 %/°C Max lifetime 5 years
Lifetime 25 years Unit capacity 1.8 kWh
Investment cost 450 e SOC initial 0.5 pu
Maintenance cost 1 % of PV inv cost/year SOC min 0.2 pu
CO2 emissions 1349 kgCO2,eq/kWp SOC max 1 pu

PCM PV Investment cost 200 e
NOCT 45 ◦C Maintenance cost 3 % of BESS inv cost/year
PV module-rated power 200 Wp Replacement cost 200 e
Power temperature coefficient -45 %/°C CO2 emissions 146 kgCO2,eq/kWh
Lifetime 25 years Piggott2F16P WT
Investment cost 90 e Rated power 0.4 kW
Maintenance cost 1 % of PV inv cost/year Investment cost 2000 e
CO2 emissions 2625 kgCO2,eq/kWp Maintenance cost 3 % of wind inv cost/year

Systovi PV Cut in speed 2.5 m/s
NOCT 42 ◦C Rated wind speed 11 m/s
PV module-rated power 300 Wp Lifetime 20 years
Power temperature coefficient -0.26 %/°C CO2 emissions 1235 kgCO2,eq/kW
Lifetime 25 years
Investment cost 1000 e
Maintenance cost 1 % of PV inv cost/year
CO2 emissions 227 kgCO2,eq/kWp

Table 11: Different PV, WT and BESS parameters data [174, 179, 102]
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Figure 36: The heat map values of (a) LCOE and (b) LCE for different combinations of PV
panels, BESS, and WT models.

IV.4 Conclusions

In this study, a MILP algorithm is developed for optimizing the size and EM of microgrids
across various cities and technologies. The test case is based on the energy load of a university
building including the consumption by EVs. The optimization problem considers the economic
horizon over the project’s lifetime with the objective of minimizing both the LCOE and LCE.
Three scenarios were defined based on the inclusion of renewable energy sources: S1 excludes
WTs, S2 excludes PV panels, and S3 includes both PV panels and WTs. The results indicate
that cities with high solar irradiation exhibit the same LCOE and LCE in scenarios involving
PV/BESS and PV/WT/BESS. This outcome is due to the optimization algorithm favoring PV
integration over WT, as incorporating WTs does not reduce LCOE and LCE in these cities.
Furthermore, scenarios including PV/WT/BESS yield the lowest LCOE and LCE values, while
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the WT/BESS scenario results in the highest LCOE and LCE. It is also observed that the or-
der of cities based on average solar irradiation or wind speed does not necessarily correspond
to the order of LCOE and LCE. Monthly and daily fluctuations in solar irradiation and wind
speed significantly impact these results. The study emphasizes the importance of a well-sized
combination of renewable resources to optimize the economic and environmental performance
of energy systems in different cities. There is no universal solution; hence, a thorough assess-
ment of local conditions and available resources is crucial for making decisions tailored to each
specific city. Regarding the technologies, locally produced PV panels contribute positively to
the overall LCE of the microgrid, with PV panels incorporating PCM showing higher LCE.
Additionally, the LCE associated with BESS plays a dominant role in determining the total
LCE of the configurations.
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Chapter V

Comparative Analysis of Cascaded MILP
and Embedded APSO-MILP Algorithms
for Multi-objective Microgrid Sizing with
EV Demand Flexibility
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This chapter encompasses an analysis of the project’s lifetime from technical, economic,
and environmental perspectives. It also takes into account battery degradation and allows for
load shedding according to the VoLL except for critical loads in the university building. Ad-
ditionally, a significant focus of the study is the flexibility of EV loads within the microgrid’s
EM system. This builds upon the foundation set by the previous chapter III, which focused
on a MILP approach for minimizing energy costs and carbon emissions. The current chap-
ter introduces two algorithms: Algorithm 1 employs a cascaded MILP approach, where the
initial phase optimizes microgrid sizing and EM without EV flexibility over an 8760-hour hori-
zon considering the project’s lifetime. The subsequent phase focuses on daily EV flexibility
alongside microgrid EM. Algorithm 2 integrates APSO with MILP for determining the sizes
of microgrid components (PV panels, WTs, and BESS) through APSO, and for performing
daily EM including EV flexibility with MILP. Notably, both algorithms incorporate a kWh
throughput model for the BESS, addressing the degradation model not present in chapter III
due to its non-linearity in a unified MILP approach. A significant improvement compared to
the previous work is the inclusion of EV flexibility and urban WTs in the microgrid system.
The optimization problems within both algorithms are implemented in Python and solved using
CPLEX in order to minimize both the LCOE and the LCE. Loads are segregated between the
EV and a university building with the latter’s data derived from a research and teaching facility
at the Université de Technologie de Compiègne. This data incorporates probabilistic modeling
for EV load. The study utilizes real economic and environmental data while considering load
growth and employing actual solar irradiation, ambient temperature, and wind speed data for
realistic microgrid planning. The main contributions of this study are:

– addressing the challenges of sizing and EM of the microgrid taking into account the
project lifetime. The emphasis is on attaining hourly energy optimization within the
microgrid;

– incorporating technical, economic, and environmental aspects, the study develops an in-
tegrated multi-objective MILP algorithm for the microgrid domain. Two specific algo-
rithms are designed to identify the optimal solution, aiming to reduce both the LCOE and
the LCE of the microgrid;

– providing a comprehensive comparison between two different algorithms, with the first
based on a mathematical approach and the second on an embedded approach (APSO &
MILP);

– integrating EV flexibility in microgrid planning and EM within a MILP algorithm while
maintaining a time horizon of 8760 hours with a one-hour time step;

– conducting a comparison between EV flexibility and non-EV flexibility scenarios con-
sidering both load shedding and non-load shedding conditions for each algorithm;

– consideration of the battery degradation and load shedding scenario for both EV and non
critical loads of the university building.

The chapter is organized as follows: Section V.1 presents the battery degradation model.
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The formulation of the optimization problem is discussed in Section V.2. Results are analyzed
in Section V.3, and conclusions are drawn in Section V.4.

V.1 Battery Degradation Model

The microgrid studied in this chapter is the same one presented in Chapter IV, with the PV,
BESS, and WT models being identical to those in Chapter III, Section III.1, and Chapter IV,
Section IV.1. The battery degradation model is presented in this section.

The lifetime of BESS is influenced by various operating conditions, including charge fac-
tor, ampere-hour (Ah) throughput, highest discharge rate, time between full charges, time at
low SOC, and partial cycling [182]. In this research, the Ah throughput method is transformed
into the kWh throughput method as detailed in [183, 184]. This conversion involves multiply-
ing the BESS terminal voltage by Ah with the assumption that the BESS terminal voltage is
equivalent to the nominal voltage. The kWh throughput method involves quantifying the en-
ergy exchange of the BESS under the assumption that a fixed amount of energy can be cycled
through the system before it is expected to degrade. This method does not take into account
individual cycle depths or other specific parameters that consider the direction of power flow
in or out of the BESS. The estimated kWh throughput is determined by factors (i.e. the DOD,
cycles to failure, and BESS capacity in kWh) which are provided by the manufacturer. The
calculation of the kWh lifetime throughput (Ln) for each DOD n can be carried out, as outlined
in [185]:

Ln = Eb ·gn · fn (1)

In the equation provided, Eb represents the BESS capacity in kWh, gn represents the nth DOD
in percentage, and fn represents the number of cycles to failure for the nth DOD. The BESS
degradation cost per kWh delivered (e /kWh) (Bdeg) is formulated as in [185]:

Bdeg =
Crep

b ·Nb

Ln ·E
(2)

where Crep
b is the BESS replacement cost, Nb is the BESS number, E is the square root of the

round-trip efficiency of BESS.

V.2 Formulation of the Optimization Problem

The formulation of the optimization problem encompasses both an objective function and
a set of constraints, laying the groundwork for achieving a balanced solution. In this context,
the specific optimization problem formulations for Algorithm 1 and Algorithm 2 are detailed in
this section. Algorithm 1 employs a cascaded MILP methodology, where each stage is defined
by unique constraints and an objective function. On the other hand, Algorithm 2 distinguishes
itself through a hybrid framework that integrates APSO and MILP by blending heuristic strate-
gies with rigorous mathematical optimization. This combination allows Algorithm 2 to lever-
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age the strengths of both approaches that facilitates a more dynamic and potentially efficient
search for optimal solutions.

V.2.1 Algorithm 1: Cascaded MILP

The overall structure of the cascaded MILP algorithm is shown in Fig. 37. In the first stage,
the sizing and EM are unified into a single optimization problem with an optimization horizon
of 8760 while taking into account the 20-year project lifespan. However, the flexibility of EVs
charging power is not considered within the first stage. This omission is driven by concerns
regarding computational complexity. Explicitly incorporating detailed EV power flexibility
within the MILP framework will significantly extend the computation time because of the high
number of constraints and decision variables. The potential increase in computational com-
plexity could strain the computer’s capacity to handle a large number of linear equations. The
first stage microgrid sizing output serves as an input for the second stage. Moreover, the daily
EM of microgrid components is carried out, explicitly incorporating the flexibility of EVs. The
computation of the LCOE and LCE is performed after the EM results for each microgrid com-
ponent are obtained for all 365 days of the year. The LCOE and LCE calculations takes well
into account the project lifespan. The detailed equations of each phase of the MILP cascade
algorithm are presented in the following sections.
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Figure 37: Cascaded MILP algorithm structure.

V.2.1.1 First Stage Constraints & Objective Functions

The first stage of the cascaded MILP algorithm is the combination of constraints presented
in chapter III and chapter IV. However, the load shedding scenario is included in the analysis
of the algorithm. Regulating bus power pbus(t) is crucial within the optimization algorithm’s
framework, directly influencing its strategic decisions. When pbus(t) ≤ 0, it indicates a re-
striction against load shedding with any excess energy from PV and WT resulting in negative
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power. Conversely, enforcing pbus(t) = 0 denotes a precise balance between energy produc-
tion and consumption, which might not always align with economic efficiency. This scenario
can prompt the algorithm to prefer scenarios that incorporate a larger capacity for the BESS
to accommodate the surplus energy from PV and WT sources. Permitting pbus(t) to adopt
positive values allows for the possibility of load shedding, although this should incur a cost
to prevent the algorithm from opting to shed the entire load indiscriminately. It is essential to
implement a constraint such as pbus(t)≤ pshed

buil (t)+ pshed
EV (t), underscoring a critical limit where

pshed
buil and pshed

EV serve as the decision variables for shedding loads related to buildings and EV,
respectively, which are limited between as follows:

0 ≤ pshed
bui (t)≤ LPSP · pbuil(t) (3)

0 ≤ pshed
EV (t)≤ pEV (t) (4)

The optimization problem involves the minimization of LCOE and LCE. The LCOE is cal-
culated as [68, 186] with the TC calculated by adding the building and EV shedding costs as
follows:

TC =Cinv +Cmtn +Crep +CEG +Cpen
bui +Cpen

EV −Csv (5)

Cpen
bui =

t f

∑
t=t0

pshed
bui (t) ·VoLL ·∆t (6)

Cpen
EV =

t f

∑
t=t0

pshed
EV (t) ·VoLL ·∆t (7)

The EV and the building penalization costs (Cpen
bui , Cpen

EV ) are considered as a VoLL, which
represents the willingness to pay to avoid a kWh of a power outage (e /kWh) [187]. The
weighted sum approach is employed to address the multi-objective optimization problem. To
enable the optimization solver to find a suitable solution, it is necessary to normalize the two
objectives. This normalization process [156], is achieved through min-max scaling, and it is
expressed as follows:

LCOEnorm =
LCOE −LCOEmin

LCOEmax −LCOEmin
(8)

LCEnorm =
LCE −LCEmin

LCEmax −LCEmin
(9)

The normalized LCOE and LCE are denoted as LCOEnorm and LCEnorm, respectively. Conduct-
ing optimization solely for LCE minimization yields LCOEmin and LCEmax values. Conversely,
optimizing without LCOE minimization results in LCEmin and LCOEmax values. The weighted
sum technique involves multiplying each objective function by a respective weight, denoted
as w. This weight signify the priority assigned to each objective function, and the process is
outlined as follows:

min{w ·LCOEnorm +(1−w) ·LCEnorm} (10)

In this study, the focus is on the two extreme strategies: LCOE and LCE minimizations. This
is achieved by setting w = 1 for LCOE minimization and w = 0 for LCE minimization. The
optimization problem expressed in Eq. (10) is addressed by determining the following decision
variables: BESS capacity (Eb), the number of PV panels (NPV ), the number of WTs (NWT ),
BESS charge/discharge powers (pc

b(t)/p
d
b(t)), EG supply/inject powers (ps

EG(t)/p
in
EG(t)), and
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auxiliary variables (xaux(t)). Additionally, the capacities of PV, WT, BESS, EG, EV, and
building-associated CVs (MDC/DC

PV , MAC/DC
WT , MDC/DC

b , MAC/DC
EG , MDC/AC

EV , MDC/AC
buil ) are also de-

termined.

V.2.1.2 Second Stage Constraints & Objective Functions

In the second stage, constraints from Section V.2.1.1 are retained with some modifications
and the incorporation of additional constraints. The optimization in this stage is performed
day by day (24 hours), hence the optimization is repeated 365 time. The primary distinction
between the first and second stage lies in the flexibility of EV power. Flexibility of EVs implies
that the charging process does not necessarily start immediately upon plugging in the EV. In-
stead, the EV could charge at times when DERs production is high or when grid supply tariffs
are at their lowest. The contrast between EV flexibility and non-flexibility is depicted in Fig. 38
[101]. EV flexibility in the context of optimization requires the addition of EV charging power

Finish time Unplug time

Vehicle charging time

Plug-in time

(a)

Plug-in time Finish time Unplug time

Vehicle charging time

Start time

(b)

Figure 38: The difference between EV flexibility and non-flexibility [101]

as a decision variable. In this study, this decision variable is psche
EV . The constraints added to this

stage are formulated as follows:

psche
EV,a(t,d) =

{
0 ≤ psche

EV,a(t,d)≤ Pcs if tpin ≤ t ≤ tpout

0, otherwise
(11)

eEV,a(tpout)≤ SOCdes
EV,a ·EVcap,a (12)

eEV,a(t) = eEV,a(t −1)+ psche
EV,a(t) ·∆t (13)

pbus(t)≤ pshed
bui (t) (14)

where d is the day index and tpout is the unplug time. In Eq. (11), psche
EV,a is equal to zero if the EV

is not connected to the charging station. Otherwise, psche
EV,a can go up to the maximum charger

power limit (Pcs) to charge EV. In Eq. (12), EV battery state of energy (eEV,a) could be less
than or equal to the desired SOC (SOCdes

EV,a) at tpout with the EV state of energy is calculated
in Eq. (13). The permission of building load shedding is set by pbus(t) as in Eq. (14). It is
noteworthy to mention that allowing building load and EV shedding is necessary in the second
stage, because the optimization may not find a solution on days when PV/WT production,
BESS discharge, and EG supply are not sufficient to meet the load. The objective function of
the second stage, which is a single-objective of TOC minimization, is calculated as follows:

min{TOC =Cop
EG +Cop

b +Cpen
bui +Cpen

EV } (15)
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Cop
EG =

t f

∑
t0

(
−ps

EG(t) ·λ s(t)− pin
EG(t) ·λ in) ·∆t (16)

Cop
b =

t f

∑
t=t0

−pd
b(t) ·Bdeg ·∆t (17)

Cpen
EV,a =

(
SOCdes

EV,a ·EVcap,a − eEV,a(tpout)
)
·VoLL (18)

where Cop
EG and Cop

b are the total operation cost of the EG and BESS, respectively. Cpen
EV is the

penalty cost of all connected EVs if the EV state of energy does not reach the desired state of en-
ergy. Cpen

bui is calculated as in Eq. (6). The objective function expressed in Eq. (15) is addressed
by determining the following decision variables: BESS charge/discharge powers pc

b(t)/p
d
b(t),

EG supply/inject powers ps
EG(t)/p

in
EG(t), and auxiliary variables xaux(t). Additionally, the EV

scheduled power psche
EV,a(t) and the building shedded power pshed

bui (t) are considered.

V.2.2 Algorithm 2: Embedded APSO & MILP

The structure of the embedded APSO & MILP algorithm is illustrated in Fig. 39. This
microgrid sizing and EM are integrated into a single optimization platform by incorporating
both APSO and MILP algorithms. Initially, the APSO algorithm generates a random popula-
tion, which includes varied capacities of PV, WT, and BESS. This population is then evaluated
through a day-by-day optimization process using MILP, which also incorporates EV flexibility.
The optimization is carried out for each day of the year, totaling 365 days. After this annual
cycle, the capacities of the converters are determined based on the peak powers that exceed
their current capacities. Additionally, the energy delivered by the BESS is calculated to assess
the need for any potential BESS replacements. The energy supplied or injected by the EG is
also determined. These three sets of information, along with the capacities of the microgrid
components, provide the necessary data to compute the LCOE and the LCE. This data is then
fed back into the APSO to update the particles and evaluate their performance. This iterative
process repeats until the difference between two consecutive iterations (LCOE and LCE re-
sults) is less than 10−6. It should be noted that the MILP stage in this algorithm is the same as
the second stage of the cascaded MILP algorithm presented in Section V.2.1.2 while the APSO
algorithm is presented in the following section.

Heuristic optimization algorithms can find the near optimal solution of the non-convex,
non-linear, and multi-modal problems by randomly exploring the search space of the objective
function [188].The major advantage of the heuristic optimization over the deterministic algo-
rithms is its ability to locate the near-global optimum without the dependence on the gradients.
In this research, we propose the variant of the conventional Particle Swarm Optimization (PSO)
method namely Accelerated PSO to solve the suggested platform [189]. This part of the section
provides the brief introduction for PSO and APSO techniques.
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Figure 39: Embedded APSO & MILP algorithm structure.

V.2.2.1 Particle Swarm Optimization

The major components of the PSO are the exploitation and exploration of the objective
function. Each particle which presents the possible solution of the objective function has a
velocity VP and position XP components associated with it [190]. The particle’s dimensions
correspond to the decision variables of the objective function. The total number of particles
constitute the population matrix of the optimization problem. At each iteration K, the XP and
VP components are updated as follows:
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V K+1
P =V K

P +η1β1 ⊙ (GB −XK
P )+η2β2 ⊙ (Xbest −XK

P ) (19)

where, η1,η2 represent the acceleration coefficients which control the movement of the velocity
component VP towards the global best GB and local best Xbest respectively. β1,β2 represent the
uniform random numbers in the range [0,1]. The position component XP can then be updated
based on VP as follows [191]:

XK+1
P = XK

P +V K+1
P (20)

At each iteration K, both the VP and XP components are updated using the criteria de-
fined above till all the particles converge to the single point or the set termination criterion is
achieved.

V.2.2.2 Accelerated Particle Swarm Optimization

APSO is the variant of the PSO which uses a single update equation using the global best
position of the particles to update the position component. The advantage of using the APSO
is its simple update criterion with minimal number of tuning parameters [192]. The update
equation in the case of the APSO can be written as follows:

XK+1
P = (1−δ )XK

P +δGB +α(C− 1
2
) (21)

where, δ controls the movement of the component XP towards the global best position GB. α

controls the random movement of the particles [193]. C represents the randomly generated
vector in the range of [0,1]. Fig. 40 shows the vector diagrams for the PSO and APSO algo-
rithms. This completes the brief introduction of the heuristic methods for solving the suggested
platform.
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Figure 40: Vector diagrams for PSO and APSO methods.
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V.3 Results and Analysis

In the studied microgrid, the demand power (includes EVs and the university building) is
modeled as described in Chapter IV (see Fig.28). The solar irradiation and ambient temperature
used in this chapter are the same used in Chapter III (see Fig. 16a) while the wind speed for
Compiègne is presented in Fig. 41. Additionally, the EG’s CO2 emissions are modeled as in
Chapter III (see Fig.16c). The technical, economic, and environmental data used in this study
are the same as those presented in the previous chapter, in Table 6. The VoLL is 8.28 e /kWh
for the case study in France [194], and the LPSP is 0.7.
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Figure 41: Wind speed data for Compiègne city [180].

The optimization covers a period of one year with hourly time steps, totaling 8760 hours,
and takes into account the microgrid’s 20-year lifespan. The optimization resolution signifi-
cantly impacts computation time. This is evident from Algorithm 1, which relies exclusively
on MILP and takes more than twice as long to compute as Algorithm 2 [171]. In contrast,
Algorithm 2 utilizes parallel processing techniques, effectively reducing its computation time.
By distributing the computational load across multiple processors, Algorithm 2 can perform si-
multaneous calculations, thereby enhancing efficiency and accelerating the overall optimization
process. Comparisons are made by conducting simulations with the two algorithms presented
across four different scenarios that vary based on the inclusion of EV flexibility and load shed-
ding. The scenarios studied are listed as follows:

1. Scenario 1 (S1): No EV flexibility, without load shedding.

2. Scenario 2 (S2): No EV flexibility, with load shedding.

3. Scenario 3 (S3): EV flexibility, without load shedding.

4. Scenario 4 (S4): EV flexibility, with load shedding.

The optimization problem is structured and solved using Python 3.8 in conjunction with the
CPLEX optimization solver. Computation tasks are executed on a high-performance super-
computer with operating system ”Rocky Linux 9.1” and equipped with robust hardware speci-
fications, including an AMD EPYC 7763 64-Core Processor, 256 cores, and 1510GB of RAM.
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Additionally, Algorithm 2 employs parallelization techniques utilizing the multiprocessing

library in Python. Each core is assigned to handle an independent particle, contributing to a
total of 150 particles.

V.3.1 LCOE and LCE Analysis

In this section, LCOE and LCE results are presented under three weighting strategies:
LCOE prioritization (w = 1), equality strategy (w = 0.5), and LCE prioritization (w = 0). Re-
sults for S1, S2, S3, and S4 using both algorithms are shown in Fig. 42. Analyses are conducted
comparing outcomes between algorithms and among different scenarios.

Under the LCOE prioritization strategy (w = 1), it is observed that S1 exhibits the highest
LCOE, while S4 shows the lowest. This discrepancy is attributed to the increased flexibility,
such as load shedding and EV flexibility, which is provided in S4. The difference between
the two cases is about 194% for LCOE and 520% for LCE. When S2 and S3 are compared,
it is found that S2 has a lower LCOE than S3, indicating that load shedding has a more sig-
nificant effect on minimizing the LCOE than EV flexibility. Shifting to the equality strategy
(Fig. 42(b)), an increase in the LCOE for all scenarios in both algorithms is noted due to the
decreased emphasis on LCOE. This trend is further accentuated under the LCE prioritization
strategy (Fig. 42(c)), where the rise in LCOE for all scenarios is even more marked. Regarding
LCE, as illustrated in Fig. 42(d)(e)(f), the outcomes generally mirror those of the LCOE, except
for S2 in the Algorithm 1 for both the equality and LCE prioritization strategies. It is noted that
S2 ranks lower in LCE outcomes compared to LCOE, a reflection of the higher load shedding
levels in these strategies, which increase LCOE without impacting LCE. It is also noted that
the strategy prioritizing LCE achieves the lowest LCE compared to the other strategies.

Comparing the performance across both algorithms, the S1 values in the Algorithm 2 are
significantly higher than those of the Algorithm 1 for all prioritization strategies. This discrep-
ancy can be attributed to two main reasons. Firstly, the minor load shedding observed in the
second stage of the cascaded MILP algorithm plays a critical role. As demonstrated in Table
12, there is minor load shedding (involving EVs and buildings) for S1, despite load shedding
being theoretically prohibited. This occurs due to separate stages of the cascaded MILP algo-
rithm, which leads to potential insufficiency in the sizing of the microgrid components. The
first stage, with an EM horizon of 8760 hours, may not fully satisfy the load requirements
throughout the year in the second stage, which operates over 24 hours repeated 365 times. This
discrepancy affects the SOC of the BESS throughout the year, especially under unpredictable
weather conditions and occasionally results in a fully discharged BESS. Consequently, load
shedding is implemented when the combined output of DERs and the EG fails to meet the de-
mand. Secondly, the optimization problem horizon in the first stage of Algorithm 1 spans one
year, whereas it is over 24 hours in Algorithm 2. To ascertain the accuracy of these approaches,
Fig. 43 illustrates the results of the first and second stages of Algorithm 1. Since the first stage
does not require load shedding, it offers a fair comparison with Algorithm 2. It is evident that
the LCOE and LCE in S1 for all prioritization strategies are even lower than those in the sec-
ond stage, that indicates that optimization over an 8760-hour horizon yields a more accurate
solution than a 24-hour optimization horizon. This holds true for S2 and S3 but not for S4, as
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Parameter/Algorithm Algorithm 1 Algorithm 2
S1 S2 S3 S4 S1 S2 S3 S4

Microgrid components capacities
PV (kWp) 516 329 516 329 1188 289 767 311
WT (kW) 190 160 190 160 1945 320 760 82
BESS (kWh) 405 55 405 55 414 57 219 17
PV DC/DC CV (kW) 553 352 553 553 553 434 370 332
WT AC/DC CV (kW) 190 165 190 165 361 321 336 82
BESS DC/DC CV (kW) 88.6 42 88.6 42 233 38 84 4
EG AC/DC CV (kW) 148 148 148 148 148 148 148 148
EV DC/AC CV (kW) 67 67 67 67 67 67 8 8
Building DC/AC CV (kW) 135 135 135 135 135 135 135 135

Energy dispatch
PV energy (MWh) 561 358 561 358 1290 314 584 337
WT energy (MWh) 113 195 113 195 1157 190 346 48
BESS charge/discharge energy (MWh) 0.6 0.1 0.51 0.1 0.41 0.17 0.4 0.02
EG supply energy (MWh) 362 410 359 405 178 378 243 444
EG inject energy (MWh) 205 111 205 105 581 123 389 79
Curtailed energy (MWh) 63 1.5 63 3 1239 0 249 0.52
EV shedding energy (%) 0.07 0.23 0.22 0.21 0 1.13 0 0.46
Building shedding energy (%) 0.07 1 0 0 0 0.15 0 0

Table 12: LCOE, LCE, microgrid capacities, and energy results for the LCOE prioritization
strategy

S4 in Algorithm 2 demonstrates better results in terms of LCOE and LCE for all prioritization
strategies. So, allowing for the flexibility of load shedding and EV flexibility on the 24 hours
optimization horizon prove to be more efficient than an 8760-hour horizon. Additionally, the
comparison between both stages of Algorithm 1 reveals that S2 and S4 exhibit much higher
LCOE in the first stage for cases where w = 0.5 and w = 0, a consequence of significant load
shedding in the first stage, which is greatly reduced in the second stage by flexibility the EV.
Regarding the comparison of LCE between the two stages of Algorithm 1, it is observed that
the LCE mirrors the LCOE. S1, S2, and S3 in the first stage exhibit lower LCE values compared
to their counterparts in the second stage. Conversely, scenario S4 in the first stage demonstrates
a higher LCE value. This pattern holds across all three prioritization strategies employed.

V.3.2 Microgrid Components Capacities and Energy Analysis

The microgrid components capacities and energy production/consumption for both LCE
and LCOE prioritization strategies are shown in Table 12 and Table 13, respectively. For both
prioritization strategies, the predominant share of PV capacity compared to other microgrid
components highlights its key role in energy supply, where it demonstrates the most substan-
tial contribution to the microgrid’s energy output. The selected PV panel exhibits lower cost
and CO2 emissions compared to other components of the microgrid, thereby that makes its
implementation advantageous over the expansion of other component sizes.

Comparing S2 & S4 to S1 & S3 for both prioritization strategies, it can be seen that the
adoption of load shedding has a notable impact on the sizing of the BESS by reducing its re-
quired capacity due to its higher LCE and LCOE in comparison to PV panels. This strategy is
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Figure 42: The LCOE and LCE results for both algorithms of: (a)(d)w = 1, (b)(e) w = 0.5,
and (c)(f) w = 0.
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Figure 43: The LCOE and LCE results for both stages of the cascaded MILP algorithm of:
(a)(d)w = 1, (b)(e) w = 0.5, and (c)(f) w = 0.
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Parameter/Algorithm Algorithm 1 Algorithm 2
S1 S2 S3 S4 S1 S2 S3 S4

Microgrid components capacities
PV (kWp) 635 38 635 38 2789 156 1096 199
WT (kW) 5 6 5 6 295 39 285 44
BESS (kWh) 509 0 509 0 255 138 406 4
PV DC/DC CV (kW) 680 42 680 42 361 167 510 213
WT AC/DC CV (kW) 5 5 5 5 295 39 285 44
BESS DC/DC CV (kW) 477 0 477 0 235 38 148 1.17
EG AC/DC CV (kW) 148 49 148 49 148 148 148 148
EV DC/AC CV (kW) 67 67 67 67 67 67 8 8
Building DC/AC CV (kW) 135 135 135 135 135 135 135 135

Energy dispatch
PV energy (MWh) 690 42 690 42 3028 170 1190 216
WT energy (MWh) 3 6 3 6 175 23 170 26
BESS charge/discharge energy (MWh) 0.35 0 0.56 0 0.20 0.20 0.28 0.01
EG supply energy (MWh) 470 680 406 680 238 552 285 519
EG inject energy (MWh) 219 0 220 0 473 9.5 353 20
Curtailed energy (MWh) 113 17 111 0 2175 0 510 0
EV shedding energy (%) 0.15 6.13 0.38 6.3 0 3.7 0 1.31
Building shedding energy (%) 0.10 1.86 0 0 0 0.47 0 0

Table 13: LCOE, LCE, microgrid capacities, and energy results for the LCE prioritization
strategy

economically driven, as the high cost metrics of the BESS make it less favorable for scaling. In
every scenario, the battery is consistently replaced following its predetermined lifetime, which
is set at 10 years for this study. This practice stems primarily from the fact that the BESS is de-
signed with excess capacity, eliminating the necessity for battery replacement prior to reaching
its established lifetime. Nonetheless, including the battery’s replacement cost within the objec-
tive function leads the optimization algorithm to minimize battery discharge. This approach,
evident in both prioritization strategies, aims to avoid the need for battery replacement.

Further analysis shows that prioritizing the LCE strategy leads to a reduced capacity allo-
cation for WT due to their higher LCE values compared to other microgrid components. The
higher LCE associated with the small urban WT model used in this study needs careful inter-
pretation. Although it may seem unusual compared to typical emissions numbers, it’s essential
to consider the unique characteristics of the WT in question. The urban WT model, as de-
scribed in [179], has a higher emissions profile compared to larger WTs, like the 2 MW model
in [195], which has emissions of about 832 kg CO2 equivalent per kW capacity. In S3 and S4
of Algorithm 2, the capacity of EV CVs decreases due to the implementation of EV flexibility,
which successfully reduces peak demand from EV charging. This flexibility reduces stress on
the microgrid infrastructure, lowering the need for CV capacities to meet demand. This phe-
nomenon is not seen in Algorithm 1 because the sizing is done in the algorithm’s first stage,
where EV flexibility does not occur.
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V.3.3 Economic & Environmental analysis

The economic and environmental aspects of the microgrid, considering both algorithms
and prioritization strategies for the four scenarios, are illustrated in Fig. 44 and Fig. 45. In the
economic analysis of Algorithm 1 (Fig.44(a) and Fig.44(b)), it is evident that in both prioritiza-
tion strategy, the EG cost is a dominant cost in the planning of the microgrid. This observation
suggests that the size of the components in the first stage of Algorithm 1 is insufficient to
completely meet the load requirements. This insufficiency prompts the algorithm to increase
the EG supply in the second stage to ensure load satisfaction, consequently raising the cost
associated with EG. This scenario underscores the primary rationale for optimizing over a 24-
hour horizon. Moreover, the load shedding cost displays higher rates with LCE prioritization,
which reaches almost to 31% in S2. This phenomenon is linked to the explanations provided
in the previous section V.3.1 by highlighting occurrences of load shedding during periods of
inadequate local production and when the EG reaches its supply limit. While load shedding
is not prevented in S4, its associated load shedding cost is not as elevated as in S2 due to the
flexibility of the EV load. Additionally, in both prioritization strategies, the EG cost consis-
tently surpasses in S2 and S4, while the PV cost is highest in S1 and S3. The costs related to
PV, WT, BESS, converters, and deployment remain consistent in S1 & S3 and S2 & S4. This
consistency arises from the identical conditions in S1 & S3 and S2 & S4 during the first stage,
where the sizes of the components are determined. In the economic analysis of Algorithm 2
(Fig.44(c) and Fig.44(d)), it can be seen that scenarios of load shedding (S2 & S4) shows higher
reliance on the EG and scenarios of load shedding prohibition (S1 & S3) shows higher reliance
on DERs. Moreover, in S1 & S3 there is a reduction in the proportion of EG cost compared
to Algorithm 1. In S1 of LCOE prioritization strategy it is even negative, that implies that the
injection into the EG is higher than the EG supply. This suggests that Algorithm 2 favors local
energy consumption as APSO with MILP operates concurrently to adjust the microgrid com-
ponent sizes as explained in section V.3.2. Moreover, the WT participates more than 50% of
the total amount in S1, indicating that the WT has a lower cost compared to the rest of the mi-
crogrid components. The PV cost in S1 for the LCE prioritization strategy contributes in more
than 60 % of the total cost which shows that the PV has a lower CO2 emissions compared to
the rest of the microgrid components. In contrast to Algorithm 1, the costs for PV, WT, BESS,
converters, and deployment are not identical between S1 & S3 and S2 & S4. This difference
arises because EV flexibility is implemented in each scenario within an embedded optimization
structure.

Focusing on the environmental analysis, in each of the four scenarios of the LCOE prior-
itization strategy of Algorithm 1 (Fig. 45(a)), it can be observed that PV, WT, and EG exhibit
approximately equal emissions. However, the BESS emissions contribution in S1 & S3 is
higher than that in S2 & S4. This is due to the necessity of avoiding load shedding in these
scenarios, requiring BESS with higher discharge capacities. For Algorithm 1 LCE prioritiza-
tion strategy (Fig. 45(b)), the emissions mainly come from EG and PV. This indicates that the
LCE of the French EG is low, as concluded in [186]. In the Algorithm 2 LCOE prioritization
strategy (Fig. 45(c)), the WT emissions constitute a large part of the overall emissions. While
in the LCE prioritization strategy (Fig. 45(d)), the WT contribution decreases considerably, and
the PV contribution doubles. This suggests that the WT LCE is much higher than that of PV. In
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S2 & S4, emissions from the EG play the most significant role, whereas in scenarios S1 & S3,
emissions from DERs are more influential. This reflects the findings presented in Fig. 44(d),
where local production significantly impacts scenarios S2 & S4, while the cost associated with
the EG is more critical in scenarios S1 & S3.

(a) (b)

(c) (d)

Figure 44: Economic analysis for the cascaded MILP algorithm for the (a) LCOE prioritization
strategy and (b) LCE strategy, and for the Embedded APSO & MILP algorithm for the (c)
LCOE prioritization strategy and (d) LCE strategy.

V.3.4 Power Profile Analysis

The power profiles corresponding to the LCOE minimization strategy for algorithms 1
and 2 are depicted in Fig. 46 and Fig. 47, respectively. Each figure displays situations across
three days, which are chosen to highlight varied EM circumstances within the microgrid. Both
algorithms demonstrate a significant rise in EG injection during the summer season (1-2 July)
and a considerable EG supply during the autumn/winter season (2-3 January, 6-7 December).
BESS intervention is predominantly observed during the autumn/winter season, notably when
DERs output is at a low level.

Focusing on Fig. 46, S1 shows a substantial contribution from the WT capacity during the
first 24 hours of the period from 2nd to 3rd January and satisfies most of the load. In the sum-
mer season (1st to 2nd July), increased injection into the EG is observed due to elevated solar
irradiation and wind speeds levels. During the period from 6th to 7th December, the load is
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Figure 45: Environmental analysis for the cascaded MILP algorithm for the LCOE prioritiza-
tion strategy (a) and LCE strategy (b), and for the Embedded APSO & MILP algorithm for the
LCOE prioritization strategy (c) and LCE strategy (d).

primarily supplied by the EG and PV panels. S2 exhibits a higher contribution from the EG
during the initial 24 hours of the period from 2nd to 3rd January compared to S1 due to the
significantly lower shares of WT and PV in this scenario. Consequently, the EG injection is re-
duced from the 1st to 2nd July period. Moreover, S2 experiences minimal load shedding during
periods of low solar irradiation and wind speeds, notably from 2nd to 3rd January and from 6th
to 7th December. Rather than discharging the BESS when DERs generation is low, load shed-
ding occurs during these times. In contrast, S3 maintains higher outputs from DERs and EG
injections from 2nd to 3rd January than S2, and load shedding is avoided. This improvement
is not achieved by increasing the size of the microgrid components but through implementing
EV flexibility strategies. These strategies are particularly effective in January and December,
aligning load demands with peak periods of solar irradiation and high wind speeds. In S4,
load shedding is less frequent compared to S2; however, load shedding still occurs when load
flexibility alone is insufficient to compensate during periods of exceptionally low solar DERs
output.

In Fig. 47, the EM in Algorithm 2 shows no substantial differences from Algorithm 1,
except for a few exceptions. First, the EG supply is predominant in all scenarios during January
and December. Second, as previously discussed in Section V.3.1, load shedding occurs in all
scenarios.
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V.4 Conclusions

[h] This chapter offers an in-depth evaluation of two algorithms developed for optimizing
microgrids with EV integration by focusing on reducing the LCOE and LCE over a long-term
period. Algorithm 1 employs a cascaded MILP strategy, initially establishing the capacities of
microgrid components and managing energy over an optimization period of 8760 hours with-
out considering EV flexibility. The subsequent stage, applied daily over the course of a year,
aims to manage energy with the inclusion of EV flexibility and BESS degradation modeling,
where each optimization cycle lasts 24 hours. On the other hand, Algorithm 2 employs an em-
bedded approach that merges APSO with MILP by incorporating both EV flexibility and BESS
degradation into a single-stage optimization process that unfolds over 24-hour cycles through-
out the 365 days of the year. This multi-objective optimization problem is addressed using the
weighted sum method. Furthermore, the cost of load shedding is managed by employing the
VoLL alongside the LPSP to establish the threshold for the level of load shedding.

The findings from this study lead to several conclusions. First, the Embedded APSO-MILP
algorithm (Algorithm 2) ensures no load shedding under all scenarios, unlike the cascaded
MILP approach (Algorithm 1), which exhibits marginal load shedding in scenarios where load
shedding is explicitly prohibited. This discrepancy is attributed to the differing time horizons of
the cascaded approach (8760 hours versus 365 days × 24 hours), which impacts the SOC of the
BESS. Second, in terms of LCOE and LCE, no EV flexibility and no load shedding scenario of
Algorithm 2 performs the worst, while scenario of incorporating EV control and load shedding
of the same algorithm demonstrates the best outcomes for both metrics. This difference can be
explained by the greater flexibility offered in scenario including options for load shedding and
flexibility of electric vehicles, as compared to scenario where they are prohibited. Third, EV
flexibility significantly reduces LCOE and LCE, thereby enhancing EM within the system by
leveraging real-time solar irradiation. Fourth, prioritizing LCE leads to a reduction in the size
of an urban WT, indicating a strategic compromise to meet environmental and cost objectives.
Fifth, Algorithm 1 relies more on the EG for energy supply compared to Algorithm 2, which
favors enhanced local energy production. This is because Algorithm 1 sets the sizes of com-
ponents in its initial stage. If the sizes determined in advance turn out to be inadequate in the
second stage, Algorithm 1 often addresses demand by relying on energy supplied from the EG.
Conversely, due to its single-stage design, Algorithm 2 possesses the flexibility to adjust the
sizes of DERs to match load requirements. Sixth, both algorithms exhibit a rise in EG injec-
tions during the summer months and a significant dependency on the EG during the autumn and
winter seasons. The intervention of BESS becomes particularly crucial in these cooler months,
primarily because the output from DERs tends to decrease due to shorter daylight hours and
less favorable weather conditions, necessitating alternative sources to meet the demand. Across
both prioritization strategies and algorithms, EG costs and emissions are notably higher in sce-
narios including load shedding (S2 & S4), while the costs associated with PV systems peak
in scenarios prohibiting the load shedding (S1 & S3). This is because allowing for load shed-
ding significantly reduces the capacity required from DERs, thus it increases the microgrid’s
reliance on the EG supply.
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Figure 46: Power profiles for the Embedded APSO & MILP of the LCOE prioritization strat-
egy for (a)(e)(i) S1, (b)(f)(j) S2, (c)(g)(k) S3 and (d)(h)(l) S4.
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Figure 47: Power profiles for the cascaded MILP of the LCOE prioritization strategy for
(a)(e)(i) S1, (b)(f)(j) S2, (c)(g)(k) S3 and (d)(h)(l) S4.
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Chapter VI

Conclusions and Future Perspectives
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As demonstrated in the previous chapters, optimization-based approaches —whether uni-
fied MILP, cascaded MILP, or embedded MILP combined with APSO— serve as effective
decision-making tools for the planning (sizing and EM) of microgrids over the project lifetime.
These methods ensure minimal costs and carbon emissions. This chapter reviews the contri-
butions of this dissertation, discusses the results, and suggests several possible directions for
future research.

VI.1 Contributions

This dissertation has focused on optimizing the sizing of microgrid components (RES,
BESS, converters) and EM to minimize the LCOE and LCE over the project’s lifetime. The
main contributions are summarized as follows:

• A detailed review of recent research has been done, offering a clear analysis of the latest
advancements in the field. The studies are organized based on their specific methods,
including heuristic, mathematical, hybrid approaches, etc. Each method is carefully ex-
amined, pointing out both its strengths and weaknesses.

• The integration of sizing and EM challenges within the microgrid framework has been
addressed, considering a project lifespan of 20 years and focusing on achieving optimal
hourly EM. This includes incorporating technical, economic, and environmental aspects
through the development of a unified multi-objective MILP algorithm. The primary goal
of this algorithm is to find an optimal solution that minimizes both the LCOE and the
LCE of the microgrid while optimizing computational efficiency.

• The LCE constraint value has been varied to analyze and compare the Pareto front and
the variations in BESS and PV capacities for GCMG and IMG operation modes. Addi-
tionally, the influence of peak shaving on the LCOE and LCE of the microgrid has been
evaluated by calculating the average variation for each EG limit. Furthermore, the impact
of load increase on the LCOE and LCE for both IMG and GCMG operation modes has
been assessed.

• An analysis of the energy sources utilized in the French electricity grid under different
LCOE and LCE scenarios has been conducted. This assessment involves examining the
proportional contribution of each energy source and exploring seasonal trends. Addi-
tionally, the maximization of renewable energy consumption within the microgrid has
been pursued to enhance sustainability, reduce reliance on non-renewable sources, and
improve overall energy efficiency.

• A comparative analysis of three scenarios (PV/BESS, WT/BESS, and PV/WT/BESS)
across different cities has been performed with the impact of seasonal fluctuations on the
LCOE and LCE has been evaluated. Moreover, the influence of the choice of microgrid
component technologies on the LCOE and LCE outcomes has been assessed.
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• A comprehensive comparison between two different algorithms has been provided. The
first algorithm is based on a mathematical approach, while the second utilizes an embed-
ded approach (APSO & MILP). Both algorithms aim for optimal sizing and EM over a
project lifetime of 20 years, with a multi-objective function to minimize the LCOE and
LCE. The optimization algorithm includes a battery degradation model that tracks the
kWh delivered from the battery. Additionally, the integration of EV charging flexibil-
ity in microgrid planning and EM has been addressed within a MILP algorithm, using a
time horizon of 8760 hours with a one-hour time step. For both algorithms, four scenarios
were addressed: No EV flexibility, without load shedding; No EV flexibility, with load
shedding; EV flexibility, without load shedding; and EV flexibility, with load shedding.
An economic and environmental analysis, along with LCOE, LCE, and profile analysis,
has been conducted for each scenario.

VI.2 Summary of Works

In this thesis, several outcomes can be derived. At first, a comprehensive review of the
state-of-the-art methods in microgrid sizing and EM approaches is presented. Microgrid siz-
ing approaches encompass commercial software, heuristic methods, mathematical models,
and hybrid techniques. Commercial software solutions offer user-friendly interfaces and pre-
configured models, making them accessible for practitioners. Heuristic methods, such as ge-
netic algorithms and particle swarm optimization, provide flexible, near-optimal solutions,
while mathematical models including linear and nonlinear programming, that ensure precision
but can be computationally intensive. Hybrid approaches combine the strengths of both heuris-
tic and mathematical methods to enhance accuracy and efficiency. In terms of EM, rule-based
strategies offer simplicity and ease of implementation but may lack adaptability. Optimization-
based approaches including metaheuristics, conventional optimization, and AI techniques, pro-
vide robust solutions for minimizing costs and maximizing performance. Metaheuristics excel
in large, complex search spaces, while conventional methods offer exact solutions through well-
defined formulations. AI approaches leverage machine learning to predict trends and adapt
dynamically. Commercial software solutions also play a role in EM, providing tools for real-
time monitoring and control. The review also highlights the distinction between multi-stage
and single-stage optimization for microgrid sizing and EM, where multi-stage optimization
integrates decisions for a cohesive system design, and single-stage optimization focuses on
each aspect independently, potentially missing synergies. This state-of-the-art review offers a
foundation for selecting appropriate methodologies and identifies areas for future research in
microgrid sizing and EM.

In the second phase, the optimal sizing and EM of the microgrid are addressed using a
MILP approach. This algorithm considers hourly EM along with the project’s environmental
and economic horizons throughout its lifetime. It specifically takes into account the dynamic
emissions of the EG, the energy load of a university building, and meteorological data from
Compiègne. The analysis yields several key conclusions. In IMG operation mode, the mi-
crogrid shows larger component capacities compared to GCMG mode due to the necessity of
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managing more challenging conditions, such as the absence of EG during periods of low solar
irradiation. The study reveals that as the LCE decreases, the capacity of the BESS increases.
Additionally, the number of PV systems is higher when the LCOE is lower in both operation
modes. This is because BESS has a slightly lower LCE compared to PV, and the LCOE of
PV is also lower than that of BESS. Economically, the solution with the lowest LCOE incurs
the highest initial investment cost, whereas the solution with the lowest LCE incurs the highest
replacement cost, primarily due to BESS being the only component needing replacement over
the project’s lifetime. As the EG limit increases, the Pareto fronts for both peak shaving strate-
gies become lower and steeper. In IMG operation mode, increasing the load does not lead to
higher LCOE and LCE; instead, it results in a reduction of both metrics. Conversely, in GCMG
operation mode, an increase in load results in higher Pareto curves, leading to increased LCOE
and LCE. It is also demonstrated that in the French context, decreasing LCOE/LCE leads to
increased non-renewable and nuclear energy consumption. Furthermore, minimizing nuclear
and non-renewable energy consumption results in an increase in LCOE and LCE.

In the third phase, the same algorithm from the second step is applied to multiple cities
worldwide, each varying in solar irradiation, wind speed, and ambient temperature. The study
integrates EV demand into the university load using a probabilistic model. Additionally, WTs
are included among the microgrid components. The optimization problem considers the eco-
nomic horizon over the project’s lifetime, aiming to minimize both the LCOE and LCE. Three
scenarios were defined based on the inclusion of renewable energy sources: S1 excludes WTs,
S2 excludes PV panels, and S3 includes both PV panels and WTs.The findings reveal that cities
with high solar irradiation show similar LCOE and LCE in scenarios involving PV/BESS and
PV/WT/BESS. This outcome occurs because the optimization algorithm favors PV integration
over WTs, as incorporating WTs does not reduce LCOE and LCE in these cities. Moreover, sce-
narios including PV/WT/BESS achieve the lowest LCOE and LCE values, while the WT/BESS
scenario results in the highest LCOE and LCE. It is also noted that the ranking of cities based
on average solar irradiation or wind speed does not necessarily correspond to their ranking
based on LCOE and LCE. Monthly and daily variations in solar irradiation and wind speed
significantly influence these results. The study emphasizes the importance of a well-sized com-
bination of renewable resources to optimize the economic and environmental performance of
energy systems in different cities. There is no universal solution; thus, a thorough assessment
of local conditions and available resources is essential for making tailored decisions for each
specific city. Furthermore, the study highlights the role of technologies in these configurations.
The results indicate that locally produced PV panels positively impact the overall LCE of the
microgrid, with PV panels incorporating PCM showing higher LCE. Additionally, the LCE as-
sociated with BESS plays a dominant role in determining the total LCE of the configurations.
Readers are referred to [186] for publication details concerning this chapter.

In the last phase, a comprehensive analysis of two algorithms designed to optimize mi-
crogrids with EV integration is presented, focusing on minimizing the LCOE and LCE over a
long-term period. Algorithm 1 employs a two-step MILP approach: initially, it establishes the
capacities of microgrid components and manages energy without considering EV flexibility,
spanning an optimization period of 8760 hours. In the subsequent stage, applied daily over a
year, it manages energy with the inclusion of EV flexibility and BESS degradation modeling,
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each optimization cycle lasting 24 hours. In contrast, Algorithm 2 uses an integrated approach
combining APSO with MILP, incorporating both EV flexibility and BESS degradation into a
single-stage optimization process that runs in 24-hour cycles throughout the year. This multi-
objective optimization problem is tackled using the weighted sum method. Additionally, the
cost of load shedding is managed by employing the VoLL alongside the LPSP to establish
the load shedding threshold. Several conclusions arise from this study. Firstly, the Embedded
APSO-MILP algorithm (Algorithm 2) ensures no load shedding under all scenarios, unlike the
cascaded MILP approach (Algorithm 1), which shows minor load shedding in scenarios where
it is explicitly prohibited. This discrepancy is due to the different time horizons of the cascaded
approach (8760 hours versus 365 days of 24 hours), affecting the SOC of the BESS. Secondly,
in terms of LCOE and LCE, Algorithm 2 performs the worst in scenarios with no EV flexibility
and no load shedding, while it achieves the best results when EV control and load shedding are
incorporated. This difference is due to the greater flexibility offered by allowing load shedding
and EV flexibility compared to prohibiting these options. Thirdly, EV flexibility significantly
reduces LCOE and LCE, thereby improving EM within the system by leveraging real-time
solar irradiation. Fourthly, prioritizing LCE leads to a reduction in the size of an urban WT, in-
dicating a strategic compromise to meet environmental and cost objectives. Fifthly, Algorithm
1 relies more on the EG for energy supply compared to Algorithm 2, which favors enhanced
local energy production. This is because Algorithm 1 sets the sizes of components in its initial
stage, and if these sizes are inadequate in the second stage, it often relies on the EG to meet de-
mand. Conversely, Algorithm 2, due to its single-stage design, can adjust the sizes of DERs to
match load requirements. Lastly, both algorithms show an increase in EG injections during the
summer months and significant reliance on the EG during the autumn and winter seasons. The
intervention of BESS becomes crucial in these cooler months, primarily due to the decreased
output from DERs because of shorter daylight hours and less favorable weather conditions,
necessitating alternative sources to meet demand. Across both prioritization strategies and al-
gorithms, EG costs and emissions are notably higher in scenarios including load shedding (S2
& S4), while the costs associated with PV systems peak in scenarios prohibiting load shedding
(S1 & S3). This is because allowing load shedding significantly reduces the required capacity
from DERs, increasing the microgrid’s reliance on the EG supply. The work in this chapter is
submitted to the Applied Energy journal, which is published by Elsevier.

VI.3 Future Perspectives

Despite the significant contributions of this thesis, there remain several areas for future
research that could further enhance the outcomes and applicability of the targeted research
perspective. The following suggestions outline potential directions for continued investigation
and improvement:

• Payback Time of Investments: Conducting detailed analyses on the payback period of mi-
crogrid investments is crucial for providing a clearer financial perspective to stakehold-
ers. Such studies would help in assessing the financial viability and long-term benefits of
these investments, thereby facilitating more informed decision-making.
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• Incorporation of an Advanced Battery Degradation Model: Integrating a more sophisti-
cated model for battery degradation could significantly improve the accuracy of energy
storage predictions. This advancement would enable better planning and management of
battery life cycles, leading to more reliable and efficient energy systems.

• Application of Artificial Intelligence for LCOE and LCE Prediction: Employing artificial
intelligence to predict the LCOE and LCE could greatly reduce computation time com-
pared to traditional optimization algorithms. This approach could streamline the analysis
process and enhance predictive accuracy.

• Integration of Vehicle-to-Grid (V2G) Technology: Investigating the integration of V2G
technology could provide additional flexibility and efficiency in energy systems. V2G
enables electric vehicles to supply energy back to the grid, assisting in balancing supply
and demand and potentially lowering overall energy costs.

• Exploration of Hydrogen Storage Solutions: Examining the role of hydrogen as a storage
medium for renewable energy could unveil new possibilities for long-term energy stor-
age. Hydrogen storage can effectively address the intermittency issues associated with
renewable energy sources, offering a clean and efficient solution for energy storage.

• Comprehensive Uncertainty Analysis: Performing thorough uncertainty analyses is es-
sential for understanding the risks and variability inherent in renewable energy projects.
This understanding can aid in developing robust strategies to mitigate potential risks,
thereby improving decision-making processes and project outcomes.

Exploring these future research directions can significantly broaden the scope and impact of
optimization-based approaches in microgrid planning. Focusing on these areas enhances the
resilience, efficiency, and sustainability of microgrids, advancing toward a cleaner and more
reliable energy future.
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VII.1 Publications

Most of the works presented in this thesis have been published in various international
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[128] Thomas Schütz, Xiaolin Hu, Marcus Fuchs, and Dirk Müller. Optimal design of decen-
tralized energy conversion systems for smart microgrids using decomposition methods.
Energy, 156:250–263, 2018.

[129] Yun Liu, Hoay Beng Gooi, and Huanhai Xin. Distributed energy management for the
multi-microgrid system based on admm. In 2017 IEEE Power & Energy Society General
Meeting, pages 1–5, 2017.

[130] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The
benders decomposition algorithm: A literature review. European Journal of Operational
Research, 259(3):801–817, 2017.

[131] JF Benders. Partitioning procedures for solving mixed-variables programming problems.
Numer. Math., 4:238–252, 1962.

[132] A.M. Geoffrion. Generalized benders decomposition. J. Optim. Theory Appl., 10:237–
260, 1972.

[133] Ahmed Ibrahim, Octavia A. Dobre, Telex M. N. Ngatched, and Ana Garcia Armada.
Bender’s decomposition for optimization design problems in communication networks.
IEEE Network, 34(3):232–239, 2020.

[134] R. Rahmaniani, S. Ahmed, T.G. Crainic, M. Gendreau, and W. Rei. The benders dual
decomposition method. Oper. Res., 68(3):878–889, 2020.

[135] Bei Li, Robin Roche, and Abdellatif Miraoui. Microgrid sizing with combined evolu-
tionary algorithm and milp unit commitment. Applied Energy, 188:547–562, 2017.

[136] Yang Zhang, Pietro Elia Campana, Anders Lundblad, and Jinyue Yan. Comparative
study of hydrogen storage and battery storage in grid connected photovoltaic system:
Storage sizing and rule-based operation. Applied Energy, 201:397–411, 2017.

[137] M. Bashir and J. Sadeh. Size optimization of new hybrid stand-alone renewable en-
ergy system considering a reliability index. In 2012 11th International Conference on
Environment and Electrical Engineering, pages 989–994, 2012.

[138] Gurkan Soykan, Gulfem Er, and Ethem Canakoglu. Optimal sizing of an isolated mi-
crogrid with electric vehicles using stochastic programming. Sustainable Energy, Grids
and Networks, 32:100850, 2022.

134



[139] Fouad Boutros, Moustapha Doumiati, Jean-Christophe Olivier, Imad Mougharbel, and
Hadi Kanaan. New modelling approach for the optimal sizing of an islanded microgrid
considering economic and environmental challenges. Energy Conversion and Manage-
ment, 277:116636, 2023.

[140] Apurva Narayan and Kumaraswamy Ponnambalam. Risk-averse stochastic program-
ming approach for microgrid planning under uncertainty. Renewable Energy, 101:399–
408, 2017.

[141] Sergio Balderrama, Francesco Lombardi, Fabio Riva, Walter Canedo, Emanuela
Colombo, and Sylvain Quoilin. A two-stage linear programming optimization frame-
work for isolated hybrid microgrids in a rural context: The case study of the “el espino”
community. Energy, 188:116073, 2019.

[142] Nicolo’ Stevanato, Francesco Lombardi, Emanuela Colmbo, Sergio Balderrama, and
Sylvain Quoilin. Two-stage stochastic sizing of a rural micro-grid based on stochastic
load generation. In 2019 IEEE Milan PowerTech, pages 1–6, 2019.
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[173] Comparateur Electricité / Comparateur Gaz, 2020. Available online at: https://

selectra.info/energie.

137

https://selectra.info/energie
https://selectra.info/energie


[174] Les données environnementales et sanitaires de référence pour le bâtiment, 2024.
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