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Abstract

In the Big Data era, thanks to the ubiquity of geolocation sensors in particular, massive
datasets exhibiting a possibly complex spatial dependence structure are becoming
increasingly available. In this thesis, we aim at developing approaches to efficiently
exploit the dependence structure of spatial (and spatio-temporal) data.

We first analyze the simple Kriging task, the flagship problem in Geostatistics, from
a statistical learning perspective, i.e. by carrying out a non-parametric finite-sample
predictive analysis. In this context, the standard probabilistic theory of statistical
learning does not apply directly and theoretical guarantees of the generalization ca-
pacity of the Kriging predictive rule learned from spatial data are left to be estab-
lished. Given d ≥ 1 values taken by a realization of a square integrable random field
X = {Xs}s∈S , S ⊂ R

2, with unknown covariance structure, at sites s1, . . . , sd in S , the
goal is to predict the unknown values that X takes at any other location s ∈ S with
minimum quadratic risk. The prediction rule is derived from a training spatial data-
set: a single realization X′ of X, independent from those to be predicted, observed at
n ≥ 1 locations σ1, . . . , σn in S . Despite the connection of this minimization problem
with kernel ridge regression, establishing the generalization capacity of empirical risk
minimizer is far from straightforward, due to the non independent and identically dis-
tributed nature of the training data X′σ1

, . . . , X′σn involved in the learning procedure.
In the first part of this thesis, non-asymptotic bounds of order O

P
(1/
√
n) are proved

for the excess risk of a plug-in predictive rule mimicking the true minimizer in the
case of isotropic stationary Gaussian processes, observed at locations forming a regu-
lar grid in the learning stage. These theoretical results, as well as the role played by
the technical conditions required to establish them, are illustrated by various numer-
ical experiments, on simulated data and on real-world datasets, and may hopefully
pave the way for further developments in statistical learning based on spatial data.

In the second part of this thesis, we focus on space-time Hawkes processes. Many
modern spatio-temporal data sets, in sociology, epidemiology or seismology, for ex-
ample, exhibit self-exciting characteristics, with simultaneous triggering and cluster-
ing behaviors, that a suitable spatio-temporal Hawkes process can accurately capture.
However, dealing efficiently with the high volumes of data now available is challen-
ging. We aim at developing a fast and flexible parametric inference technique to re-
cover the parameters of the kernel functions involved in the intensity function of a
spatio-temporal Hawkes process based on such data. Our statistical approach com-
bines three key ingredients: (1) kernels with finite support are considered, (2) the
space-time domain is appropriately discretized, and (3) (approximate) precomputa-
tions are used. The inference technique we propose consists of a ℓ2 gradient-based
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solver that is fast and statistically accurate. In addition to describing the algorithmic
aspects, numerical experiments have been carried out on synthetic and real spatio-
temporal data, providing solid empirical evidence of the relevance of the proposed
methodology.



Résumé

À l’époque des grandes données, et en particulier avec la prolifération des capteurs de
géolocalisation, l’accès à des ensembles de données massives, présentant une structure
de dépendance spatiale possiblement complexe, augmente de plus en plus. Dans cette
thèse, notre objectif est de surmonter les enjeux liés à la structure de dépendance des
données spatiales (et spatio-temporelles).

En un premier temps, nous analysons le Krigeage simple, problème clé en Géostat-
istique, en adoptant le point de vue de l’apprentissage statistique, i.e. en effectuant
une analyse prédictive non paramétrique à partir d’un échantillon fini. Dans ce con-
texte, la théorie probabiliste standard de l’apprentissage statistique ne s’applique pas
directement. De nouvelles garanties sur la capacité de généralisation du prédicteur
par Krigeage doivent être établies. Étant donné une réalisation d’un champ aléatoire
de carré intégrable X = {Xs}s∈S , S ⊂ R

2 de covariance inconnue, observé en d ≥ 1
sites s1, · · · , sd du domaine spatial S , l’objectif est de prédire les valeurs inconnues de
Xs à n’importe quel point s ∈ S , tout en minimisant le risque quadratique. La règle
de prédiction est dérivée d’un ensemble de données spatiales d’apprentissage : une
unique réalisation X′ de X, indépendante de celles à prédire, observée en n ≥ 1 points
σ1, · · · , σn dans S . Malgré le lien avec la régression ridge à noyau, déterminer la
capacité de généralisation des minimiseurs de risque empiriques reste un défi com-
plexe, en raison du caractère non indépendant et non identiquement distribué des
données d’apprentissage X′σ1

, · · · , X′σn impliquées dans la procédure. Dans la première
partie de cette thèse, nous présentons des bornes non asymptotiques d’ordre O

P
(1/
√
n)

pour l’excès de risque d’une règle prédictive plug-in imitant le vrai minimiseur. Ces
bornes sont établies pour des processus gaussiens stationnaires avec une fonction de
covariance isotrope, observés lors de la phase d’apprentissage à des emplacements
formant une grille régulière. Nos résultats théoriques, ainsi que le rôle joué par les
conditions techniques requises pour les définir, sont illustrés par diverses expéri-
ences numériques, sur des données simulées ainsi que sur des données réelles, et
ouvrent, nous l’espérons, la voie à de nouveaux développements dans l’apprentissage
statistique basé sur des données spatiales.

En un second temps, nous nous concentrons sur les processus de Hawkes spatio-
temporels. De nombreux ensembles de données spatio-temporelles, en sociologie,
épidémiologie ou sismologie, par exemple, présentent des caractéristiques d’auto-
excitation: les événements ont tendance à se regrouper ou à déclencher une série
d’événements successifs, ou encore les deux à la fois. Dans ce contexte, les processus
de Hawkes spatio-temporels se révèlent être un outil puissant grâce à leur capacité à
capturer ces comportements avec précision. Cependant, traiter efficacement le grand
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volume de données actuellement disponible s’avère difficile. La deuxième partie de
cette thèse vise à développer une technique d’inférence paramétrique rapide et flex-
ible pour obtenir les paramètres des fonctions noyaux impliquées dans la fonction
d’intensité d’un processus de Hawkes spatio-temporel. Notre approche statistique
combine trois ingrédients clés : (1) nous considérons des fonctions noyaux à support,
(2) le domaine spatio-temporel est discrétisé de manière appropriée, et (3) des calculs
préalables (approximatifs) sont utilisés. La technique d’inférence que nous propo-
sons consiste en un solveur basé sur le gradient ℓ2 qui est rapide et statistiquement
précis. En complément de la description des aspects algorithmiques, des expériences
numériques ont été menées sur des données spatio-temporelles, tant synthétiques que
réelles, apportant des preuves empiriques solides de la pertinence de la méthodologie
proposée.



Notation

:= Equal by definition

N
∗ Set of strictly positive integers

R Set of real numbers

R
d Set of d-dimensional real-valued vectors

∥ · ∥ Euclidean norm in R
d , for any d ∈N∗

⟨·, ·⟩ Corresponding inner product

∥ · ∥∞ Maximum norm

||| · ||| Operator norm of any d × d matrix M, such that |||M ||| =
sup{||Mv|| : v ∈Rd , ||v|| = 1}

I{E} Indicator function of any event E

|E| Cardinality of any finite set E

δx Dirac mass at any point x

Id Identity matrix of size d × d

M⊤ Transpose of any matrix M

Rank(M) Rank of any matrix M

T r(M) Trace of any matrix M

(Ω,F ,P) Probability space

P(·) Probability of an event

E[Z] Expectation of any square-integrable real-valued random
variable Z

Cov(Z1, Z2) Covariance of any pair (Z1,Z2) of square-integrable real-
valued random variables defined on a same probability space

V ar(Z) Covariance matrix of any square-integrable random vector Z

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ
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S Spatial set S ⊂R
d

s Location in S

sd = (s1, . . . , sd) Set of d observed locations in S

X Random field on S with R

X(sd) = (Xs1
, . . . , Xsd ) Set of d observations of X on S

Σ(sd) = V ar(X(sd)) Covariance matrix of the observations

cd(s) = (Cov(Xs,Xsi ))1≤i≤d Covariance vector of the observations

γ(·) Semi-variogram function of any (second-order or intrinsic)
stationary random field
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1.1 Spatial Statistics

In Machine Learning, the theory generally relies on independent and identically dis-
tributed (i.i.d.) characteristics of data. In other words, observations of a phenomenon
are assumed to be collected under uniform conditions, with each observation being
independent of the others. This allows employing standard statistical methods to
construct an accurate and robust model and predicting new phenomena from it. Ma-
chine Learning techniques are supported by a very sound probabilistic theory (Dev-
roye et al., 1996; Boucheron et al., 2013) guaranteeing the generalization capacity of
empirically learned predictive rules under mild assumptions.

The independent assumption is very convenient. It makes Machine Learning flexible,
easily implementable, and hence a successful tool with efficient algorithms. In re-
cent years, a variety of statistical learning techniques – including boosting methods,
support vector machines, neural networks among others – have been successfully de-
veloped for performing various tasks such as classification, regression or clustering. It
can be applied to a wide variety of applications, such as image recognition, healthcare
diagnostics, and natural language processing.

Example 1.1. (Image recognition) Image recognition, a branch of computer vision, focuses
on developing algorithms and models that interpret and categorize visual data from images.
It involves extracting meaningful features, patterns, and relationships within images to
recognize objects, scenes, or actions. Image recognition may have various scopes, such as:

• Image classification: to classify images into categories, for example into images of
dogs or cats. Each image can be considered as an independent observation, assuming
images are from different instances and the features extracted from these images are
identically distributed across the dataset.
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• Object detection: the focus here is on detecting and localizing objects within an image.
If the desired goal is to localize multiple instances of the same object (for example
cars), each task for a specific object can be treated as i.i.d., assuming the features of
different instances of the same object as identically distributed.

Still, in image recognition tasks such as object detection, understanding the context and re-
lationships between objects or regions within an image is crucial. Objects may have complex
interactions that cannot be modeled effectively under the i.i.d. assumption.

The validity of statistical learning remains mainly confined to the case of i.i.d. train-
ing data. At the same time, spectacular progress has been made in the collection,
management and warehousing of massive datasets for scientific, engineering, medical
or commercial purposes, relying on modern technologies, such as satellite imagery or
geophysical tomography. These data tend to exhibit complex dependence structures,
resulting in the violation of the i.i.d. assumption.

Moreover, we are facing more and more situations where data are of spatial nature and
exhibit a strong dependence structure. In the context of spatial data, dependencies
exist in all directions. Specifically, data points that are spatially close to each other
are likely to exhibit correlation and the dependence becomes weaker as data locations
become more distant.

Example 1.2. (Meteorology) In meteorology, one’s goal is typically to understand and pre-
dict weather patterns, climate trends, and atmospheric phenomena. Meteorology plays a
crucial role in various sectors, such as agriculture, transportation, energy, and disaster man-
agement. One of the defining characteristics of meteorological data is of course its spatial
nature. Spatial variability in meteorological data is influenced by factors such as geography,
topography, or proximity to water bodies. Therefore, meteorological data present a strong
dependence structure, which is essential for both observation and modeling tasks. The spa-
tial dependencies are quite obvious in certain cases: nearby locations tend to have similar
meteorological conditions (e.g. rainfall, Goovaerts, 2000), and show gradual changes over
geographical regions.

The first models adapted to dependent data appeared in temporal studies (or time
series) (Box and Jenkins, 1970; Steinwart and Christmann, 2008; Steinwart et al., 2009;
Kuznetsov and Mohri, 2014; Hanneke, 2017; Clémençon et al., 2019). These mod-
els assumed that the observations, identically distributed and occurring at regularly
spaced time intervals, exhibit dependence and that this dependence is based on the
natural unidirectional flow of time. This implies that the modeling in temporal stud-
ies is causal.

Whereas the case of time series, which can rely on concentration results for ergodic
processes, is receiving increasing attention (Steinwart and Christmann, 2009; Kuznet-
sov and Mohri, 2014), that of spatial data is in contrast less intensively studied in the
statistical learning literature. As in the case of temporal data, spatial statistics differ
from classical statistics by the dependence characteristics of the observations. How-
ever, spatial models differ from temporal models in two main respects: they must
possess greater flexibility, as there are no equivalences to the concepts of past, present,
and future in spatial contexts; and, they must take into account the spatial position of
the collected data, as it is crucial information.
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Let us now introduce the general spatial model. Let s ∈ Rp be a data location, where
p ∈N∗. Suppose that Xs is a random quantity. Let s varies over an index set S ⊂R

p, so
as to generate the random process:

X =
{
Xs, s ∈ S

}
. (1.1)

Note that we distinguish X the variable under study, also called the regionalized vari-
able by Matheron (1965), and X, the modeling of X by a random field. With this
notation, X is a realization of X.

Assumptions on S can vary from it being a fixed (non-random) subset of Rp to it being
a random set (which implies that S may vary from one realization to another). Spatial
statistics studies can be divided into three categories based on the nature of the index
set S (Cressie, 1993, Chapter 1):

1. Geostatistical data: S is a fixed subset of Rp (S is continuous) and {Xs, s ∈ S} is
a random vector at location s ∈ S . We assume that the random field is observed
at n fixed points {s1, s2, · · · , sn}. The observations can be either randomly sampled
over S or selected over a regular grid. Geostatistics deals with tasks like mod-
eling, prediction (called Kriging) on an unobserved site s, and constructing a
complete map of the random field over the entire domain S .

Example 1.3. (Mining) Geostatistics emerged as an interdisciplinary study that in-
volves both mining engineering and statistics. Previous methods adopted in mining
usually employed histograms of ore grade observations, focusing only on the rate of
these samples and thus neglecting the spatial position of the observations. Still, the
spatial location, as well as the possible patterns (like clustering) over the ore body, are
valuable information in mining operations. Matheron (1963) proposed geostatistics
as a new approach to estimate the ore grades and ore reserves for mining operations.
Based on a set of observations over the mineral deposit, he developed a prediction
method that takes into account the spatial position of the samples, as well as the de-
pendence structure of the ore grades. See Example 2.1 in Chapter 2 for further details
on geostatistics methodology and scopes for mining issues.

2. Lattice data: S is a fixed collection of countably many points of Rp (S is discrete)
and Xs is a random vector at location s ∈ S . The data is linked to spatial units
or regions, thus forming a network. In lattice data, one may be interested in
the study of spatial correlation, prediction, or for example in image analysis and
image restoration.

Example 1.4. (Image analysis) In the context of image analysis and image restora-
tion, lattice data methodology applies since images can be viewed as a grid of pixels,
each representing a spatial unit. Lattice data methods can help understand the spa-
tial structure and dependencies within the image, and measure the spatial correlation
(which is informative as to how pixel value in an image is correlated with its neigh-
bors). See for example Cressie, 1993, Section 7.4 and Besag (1974); Ripley (2005)
for more details.

3. Point patterns: S is a point process in R
p (S is random) and Xs is a random

vector at location s ∈ S . Here, the data locations of observations {s1, s2, · · · , sn} and
the number of observations n are random. In this case, the data locations carry
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the desired information, and the observation points are considered as events of
a point process. The statistician will be interested in capturing a pattern in the
data, such as clustering, triggering, regularity, or complete randomness.

Example 1.5. (Seismology) In seismology, clustering patterns typically appear: some
regions are particularly affected by earthquake occurrences, whereas other regions
may never suffer from it. Ogata (1988) introduced point processes to study the occur-
rences of an earthquake in a given region. The events have also a triggering pattern:
an earthquake may trigger following earthquakes, called aftershocks. Therefore, for
safety reasons, it is essential to identify clustering patterns to determine the most
affected regions and to understand triggering relationships to prevent further dam-
age. It is also possible to use a marked process, where the mark may represent the
magnitude of the earthquake. See subsections 5.1 and 5.2 for further details on seis-
mological studies in spatial statistics.

In this thesis, we choose to focus on two categories of spatial data: geostatistical data
and point patterns data.

1.2 Motivations

In this section, we present the research questions that motivated this thesis and the
challenges stemming from it.

The main goal of this thesis is to develop methods to take into account the strong de-
pendence structure of spatial data, based on an observation of the phenomenon at a
finite number of spatial locations, in order to model, predict and learn from spatial
data. The thesis is divided into two main parts: the first one concerns a Geostatist-
ics method and aims at providing theoretical guarantees for this prediction method,
while the second part focuses on designing a new approach for a specific category of
spatio-temporal processes. Even if Geostatistics and point processes are two different
categories of spatial statistics, differing by their assumption on the spatial domain,
they partially share motivations and difficulties.

Domains of Application. Most elements around us possess a spatial dimension. This
includes natural phenomena, like weather and natural disasters, as well as human-
made infrastructures, such as water wells and urban planning. All of these are heavily
influenced by spatial factors. For instance, on a small scale, geographically close cities
tend to experience similar weather conditions. Similarly, the proper organization of
streets and traffic, which is crucial for the effective functioning of a city, requires that
interdependencies in traffic among different city areas be properly taken into account.

Consider the example in Figure 1.1 which shows the average daily temperature in
France (expressed in Kelvin). On the right, we see a color map of the temperatures
observed at each point within the sampled square on the left. There is a yellow area
indicating slightly lower temperature values and some red areas indicating higher
temperatures (the difference between these temperatures is relatively small). What
stands out is the smooth gradient of temperatures (i.e. gradual changes) across the
entire spatial domain and the presence of zones with similar values. Properly mod-
eling these temperature interdependencies is crucial for improving weather forecasts,
which are essential as they may help to anticipate extreme situations such as storms,
cyclones, or periods of severe drought. Let’s now take the example in Figure 1.5. This
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Figure 1.1: Map of France with a sampled square grid (left); color map of the temper-
atures (in Kelvin) of the sampled square grid, 2nd June 2005 (right).
Source: DRIAS (https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/).

map depicts all earthquakes recorded in the volcanic region of the Phlegraean Fields
(west of Naples, Italy) from January to July 2024. It is evident that there is a signific-
ant concentration of seismic activity in this area, mainly clustered along the coastline
near the dormant volcano of Agnano. The occurrence of potential tremors is associ-
ated with a cyclic volcanic phenomenon that causes periodic lifting and subsidence of
the ground. It is precisely during the lifting phases that an increase in seismic activity
can be observed. While the majority of these earthquakes are of low magnitude (in
comparison to the earthquake that occurred in Turkey and Syria in February 2023,
see Figure 1.4), the high concentration in this region might indicate the possibility of
an upcoming eruption or stronger earthquakes. Therefore, it is crucial to accurately
predict future seismic events by considering both historical data and spatial distribu-
tion.

We have mentioned only two examples of spatial data (weather forecasting and earth-
quakes prediction). There are undoubtedly numerous other application areas, several
of which are briefly covered in this thesis, including mining, hydrology, ecology, epi-
demiology, finance, and criminology studies.

Violation of the i.i.d. Assumption. Classical statistical techniques generally assume
that observations of a phenomenon are independent and identically distributed. How-
ever, due to the presence of a dependency structure in the spatial data framework, the
assumption of i.i.d. observations of a phenomenon is not satisfied. Thus, new meth-
ods and theoretical results must be established in this context. The main difficulty in
learning from spatial data is to obtain information about the underlying dependency
structure, so that it can be taken into account when modeling and predicting from
these data.

This leads to our first research questions and corresponding challenge, which are the
overarching goals of this thesis.

https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
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Research Questions 1: How to learn from spatial data that presents a strong
dependence structure? How does the dependence structure of the observed

phenomenon affect the performance of the algorithms?

Challenge 1: Provide statistical guarantees for methods used to predict spatial
data. Develop new, efficient, and accurate methods to predict from spatial

data.

As previously mentioned, the first part of this thesis concerns geostatistical data, and
aims at contributing to address the first challenge for spatial data by providing stat-
istical guarantees for spatial prediction methods.

Geostatistical Data with a Singular Phenomenon Realization. Learning from geo-
statistical data implies two main challenges. The first one, already mentioned, is the
presence of a strong dependence structure within the data. The second one is the fact
that typically only a single realization of the phenomenon is available. For example,
a specific natural event, such as a storm, happens only once and no other independ-
ent realization of it can be observed. Other instances are the high economic cost of
the data collection and the possible deterioration of the environment. This is the case
in the hydrogeological dataset presented in Figure 1.2. Hydrogeology aims at assess-
ing groundwater quality (see Example 2.2 in Chapter 2 for further details) based on
characteristics of the water, such as pH level, water conductivity and temperature. To
do so, observations are collected over a spatial region, here in the department of La
Guajira in Colombia, and special measurements are made. However, this procedure
involves a significant economic cost.

Figure 1.2: Hydrogeological map of the department of La Guajira (Colombia) in 2016.
Each point on this map represents a water body. On the right, the color map of a
sampled square grid representing the pH values at each spatial point.
Source: Servicio Geológico Colombiano (https://datos.sgc.gov.co/). Map created
in 2016 by the Groundwater Group of the Colombian Geological Service.

https://datos.sgc.gov.co/
https://datos.sgc.gov.co/
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In Geostatistics, a phenomenon is modeled by a random field, assumed to be observed
at a finite number of locations on the spatial domain S ⊂ R

p. The dependence char-
acteristics of the data are modeled by the covariance function of the random field.
Our setting is the following: we are interested in predicting the values at all spatial
locations s ∈ S of a random field X, observed at a fixed set of locations {s1, . . . , sd}. The
random field is assumed to be a second-order stationary Gaussian random process
with isotropic covariance function. These assumptions are often formulated in Geos-
tatistics as they ensure a successful frequentist approach. The resulting interpolation
method is called Kriging (Matheron, 1962) and aims at building a predictor X̂s of Xs,
defined as a linear combination of the observations. The Kriging weights depend on
the covariance function of the random field.

Non-Parametric Covariance Estimation. When dealing with real data, the covariance
function is unknown. Based on a training dataset, defined as a single realization X′ of
X observed at n locations {σ1, . . . ,σn}, the covariance function can be estimated. Previ-
ous results for the estimation of the covariance function have been investigated, either
in an asymptotic perspective (Stein, 1999), or by means of a parametric approach (Zi-
mmerman, 1989; Zimmerman and Cressie, 1992). In contrast, we are interested by
the finite sample behavior of the non-parametric covariance estimator, under an in-
fill asymptotic setting (i.e. assuming that new observations occur within the same
fixed spatial domain, which becomes denser and denser).

This brings us to our second research question and challenge, aiming at defining the
accuracy of the non-parametric covariance estimation.

Research Question 2: How accurate is the empirical covariance estimator,
based on a finite number of observations on a regular grid and with one

unique realization?

Challenge 2: Derive non-asymptotic bounds for the non-parametric
covariance estimator, under the in-fill asymptotic.

Challenge 2 can be seen as an intermediary challenge to answer our Research Question
3 (see below), namely deriving non-asymptotic guarantees for the Kriging method. In-
deed, as explained below, the prediction Kriging method depends on the accuracy of
the covariance estimator. Thus, computing an accurate estimation of the covariance
function and identifying the possible uncertainty effects of this estimation on the Kri-
ging predictor is of prime importance.

Non-asymptotic Guarantees for the Empirical Kriging Method. When the depend-
ence structure of the random field is known, the Kriging method is optimal (we refer
to it as theoretical Kriging). Yet, in the case of unknown covariance function, the gen-
eralization capacity of the resulting method (we refer to it as empirical Kriging) is left
to be established. The objective is to develop a novel theoretical framework offering
non-asymptotic guarantees for empirical simple Kriging predictions. The generaliza-
tion guarantees of the empirical predictor are given by means of a bound on the global
excess risk. This risk is defined as the global gap between the prediction errors of the
theoretical and the empirical Kriging predictors.
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Research Questions 3: What is the non-asymptotic behavior of the Kriging
predictor when the dependence structure is unknown and with a finite

number of observations? To what extent the Kriging weights depend on the
accuracy of the covariance function estimation and on the location of samples?

Challenge 3: Derive non-asymptotic bounds for the global excess risk of the
Kriging method. These theoretical results must depend on the covariance

estimation and on the choice of the sampling setting.

The second part of this thesis concerns point patterns data, and more precisely spatio-
temporal Hawkes processes. In this context, the observations are considered as events
of a process. Hawkes processes find applications in various domains, such as the study
of natural disasters, as explained below.

Figure 1.3: Number of deaths by disaster type: a comparison between the number in
2023 and the annual average number from 2003 to 2022.
Source: EM-DAT (https://www.emdat.be/), CRED annual report, 2023 Disasters in
numbers.

Earthquake Prediction and Risk Assessment. In 2023, the total number of deaths
due to earthquakes rose to 62451, according to the CRED (Center for Research on
the Epidemiology of Disasters) annual report, almost double the average over the past
20 years (see Figure 1.3). This number was particularly high that year because of the
earthquake in Turkey and Syria in February 2023 which was, as written by CRED,
‘the most catastrophic event of the year regarding mortality and economic damage, count-
ing for two-thirds of the total deaths’. On 6 February 2023, a sequence of earthquakes
occurred in south-eastern Turkey, at the border with Syria. A first major earthquake
of magnitude 7.8 struck near the city of Gaziantep, followed by aftershocks of lower
magnitude, spreading in all the surrounding areas (see Figure 1.4). This region fre-
quently experiences seismic events. Therefore, there is an urgent need of robust and
accurate models for predicting seismic activity and improving risk assessment in re-
gions highly impacted by earthquakes. Another region of this kind is the Phlegraean
Fields, whose seismic activity in 2024 is depicted in Figure 1.5 (where the dimension
of a point gives the magnitude of the event, and the color indicates the period of time
at which it occurred).

https://www.emdat.be/
https://www.emdat.be/
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Figure 1.4: The earthquake in Turkey and Syria, 6 February 2023. The epicenters are
in red, and the scale of colours shows the shake intensity of the first earthquake in the
area.
Source: USGS (https://www.usgs.gov/), United States Geological Survey, LandScan.

Observing Figures 1.4 and 1.5, one can clearly see a clustering behavior of the events.
Indeed, in Figure 1.5, the events are clustered both in the temporal and spatial di-
mensions: points of the same color are gathered together in the spatial region. This
observation reveals the triggering characteristics of earthquakes. Indeed, a first ma-
jor earthquake of high magnitude (called a mainshock) can trigger a new occurrence,
generally of lower magnitude (called an aftershock). This triggering effect mainly hap-
pens with a clustering pattern, i.e. the appearance of new occurrences takes place in a
specific time window and within the neighborhood of the first epicenter. The trigger-
ing and clustering behaviors of a seismic phenomenon are thus crucial to understand
the underlying seismic activity and improving the prediction of future events.

Space-Time Hawkes Processes. Among point processes, Hawkes models (Hawkes,
1971) have recently received a great deal of attention, as they take into account the
self-exciting nature of observed events, space-time interaction, and spatial anisotropy
in a very flexible way. For well-chosen intensity functions, the probability of future
events occurring over a given period increases with these point processes (Reinhart,
2018). Vere-Jones (1970) and Ogata (1988) introduced these processes to seismology
because of the triggering behavior of earthquakes. Indeed, Epidemic-Type Aftershock
Sequence (ETAS) models are well-suited for modeling seismic activities since they im-
ply that each earthquake can initiate aftershocks, which in turn can cause additional
aftershocks, resulting in a chain reaction of seismic activity. Thus, Hawkes processes
turn out to be powerful tools with data presenting a self-exciting nature. However,
the first Hawkes models were purely temporal (Ogata, 1988), thus neglecting the spa-
tial dimension of the phenomena. Indeed, as observed in Figure 1.5, the complex
dynamics of earthquakes show both spatial and temporal clustering. In this thesis,
we investigate Space-Time Hawkes Processes (STHPs) to take into account the spatio-
temporal dependencies between the events.

https://www.usgs.gov/
https://www.usgs.gov/
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The self-exciting properties of space-time Hawkes processes are the reason why they
are being increasingly exploited in many fields requiring spatio-temporal analysis,
such as epidemiology (Holbrook et al., 2022; Kresin et al., 2022; Rambhatla et al.,
2022; Dong et al., 2023), criminology (Mohler et al., 2011; Mohler, 2014; D’Angelo
et al., 2022; Zhu and Xie, 2022), and seismology (Ogata, 1998; Musmeci and Vere-
Jones, 1992; Kwon et al., 2023) for instance. The main methodological challenge is
then to design efficient inference techniques to fit Hawkes models to spatio-temporal
datasets.

Research Question 4: How to learn from a multivariate spatio-temporal
Hawkes process, despite the modeling and numerical challenges posed by

parametric STHP’s complexity?

Challenge 4: Develop a new efficient and flexible method for parametric
inference for spatio-temporal Hawkes processes, consisting of a fast ℓ2

gradient-based solver.

For computational and simplicity reasons, most of previous methods are restricted to
space-time separable kernels, where the temporal kernel is often chosen as exponen-
tial and the spatial influence is modeled by a Gaussian kernel (Mohler, 2014; Yuan
et al., 2019; Ilhan and Kozat, 2020).

General Parametric Kernels. The generally assumed exponential temporal kernel,
even if it brings computational efficiency, implies major limitations in real-world situ-
ations, as it assumes that an event immediately trigger a future event. However, in the
case of earthquakes, this assumption is generally not valid. For instance, in the case of
the seismic activity that affected Turkey and Syria in 2023, a first mainshock (of mag-
nitude 7.8) occurred around 4 AM. A second mainshock (of magnitude 7.5) arrived 9
hours later, around 1 PM. The epicenters of these two earthquakes are spatially close,
as shown in Figure 1.4. In this case, the exponential kernel is not suitable, since a
latency is observed between the two major earthquakes. On the contrary, on 20 May
2024, several earthquakes hit the region of the Phlegraean Fields, between 7:51 PM
and 9:55 PM (of magnitudes between 3.1 and 4.4), implying a more immediate in-
fluence. Thus, depending on several factors (such as the underlying tectonic plates
of the region, the presence of a volcano, etc), the triggering and clustering temporal
behaviors of earthquakes may vary from a region to another. Furthermore, for the
spatial dimension, the spread of the aftershocks in Figure 1.5 does not seem to follow
a Gaussian distribution.

Space-Time Interactions. Space-time separability for the kernel of a Hawkes process
is a common assumption (see e.g. Mohler, 2014; Yuan et al., 2019; Ilhan and Kozat,
2020). Indeed, it brings simplicity, since it implies that the kernel is a product of spa-
tial and temporal influences that can be modeled separately. However, when dealing
with natural phenomena such as earthquakes, a space-time interaction can generally
be observed.

These two limits of previous approaches motivate the need of a new efficient and
flexible method for modeling spatio-temporal Hawkes processes. This new method
must be suitable for both general parametric kernels and space-time non-separable
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Figure 1.5: Earthquakes occurrences in 2024, in Phlegraean Fields, west of Naples
(Italy). The scale of colors represents the time of each event, and the size of the point,
its magnitude.
Source: INGV (https://terremoti.ov.ingv.it/gossip/flegrei/2024/), National
Institute of Geophysics and Volcanology.

kernels, allowing a better prediction based on the characteristics of the spatial domain
or of the phenomenon under study.

Research Question 5: How to accurately model real-world situations, where
space-time interactions occur and where a latency between aftershocks may

be observed, by means of Hawkes processes?

Challenge 5: Adapt the parametric method in such a way that it allows for any
kind of kernels and enables the estimation of parameters of a space-time

non-separable Hawkes process, thus providing flexibility and accuracy in
modeling complex dependencies in real-world datasets.

Flexible and Efficient Parametric Method. We develop a fast parametric method
that allows for any kind of kernels and for space-time non-separable kernels. The
method derived is inspired by the work of Staerman et al. (2023) for temporal Hawkes
processes, extending the method to capture space-time interactions.

1.3 Contributions

To overcome the challenges just described and answer our research questions, our
contributions are the following (see Table 1.1 for a summary of these contributions).

Part I. The first part of this thesis aims at contributing to the design and the study
of statistical learning methods applied to spatial data, by investigating the Kriging
problem. The objective of Kriging is to predict the values of a random field X = {Xs}s∈S ,

https://terremoti.ov.ingv.it/gossip/flegrei/2024/
https://terremoti.ov.ingv.it/gossip/flegrei/2024/
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S ⊂R
2, at all unobserved locations in S , based on a finite number d ≥ 1 of observations

X(sd) := (Xs1
, . . . , Xsd ), with sd = (s1, . . . , sd). For this set of observations, let Σ(sd) =

V ar(X(sd)) be the covariance matrix and cd(s) = (Cov(Xs,Xs1
), . . . , Cov(Xs,Xsd )) the

covariance vector. The goal is to build a predictive map f (s) = fΛd
(s, X(sd)) = λ1(s)Xs1

+
. . .+λd(s)Xsd that is linear in X(sd) and minimizes the integrated mean squared error

LS (fΛd
) = EX

∫
s∈S

(
fΛd

(s, X(sd))−Xs

)2
ds

 ,
where Λd : s ∈ S 7→ (λ1(s), . . . , λd(s)) is a measurable function valued in R

d . When
the true covariance function c(·) of X is known and when the matrix Σ(sd) is posit-
ive definite, the Kriging predictor fΛ∗d (s,X(sd)) = X(sd)⊤Σ(sd)−1cd(s) achieves optimal
performance. Let’s denote the minimum global error as L∗S := LS (fΛ∗d ) and the optimal
Kriging weights Λ∗d(s) = Σ(sd)−1cd(s). However, this optimality does not always hold
in practice because the true covariance structure of real data remains unknown. Thus,
based on a training dataset X′, defined as a single realization of X, observed at n ≥ 1
spatial locations σ1, . . . , σn forming a regular dyadic grid, an empirical estimation ĉ(·)
of the covariance function can be obtained. From ĉ(·), the empirical estimators Σ̂(sd)
and ĉd(s) of Σ(sd) and cd(s) respectively can be computed. Now, replacing Σ(sd)−1 and
cd(s) by their estimators, a natural empirical counterpart of Λ∗d is built by means of
the plug-in method and an empirical version of the Kriging predictor is

f
Λ̂d

(s,X(sd)) = X(sd)⊤Σ̂(sd)−1 ĉd(s).

Viewing Dual Kriging as a Kernel Ridge Regression Problem. We show that the
optimal predictor fΛd

has the same form as a kernel ridge regressor, once the Gram
matrix of the selected kernel for the regression is replaced with the true covariance
matrix of X(sd) (cf Chapter 4).

The goal now is to provide theoretical guarantees for the empirical Kriging predictor
by means of non-asymptotic bounds on the global excess risk LS (f

Λ̂d
) − L∗S . Since the

empirical predictor f
Λ̂d

depends on the the covariance function estimation ĉ(·), our
first goal is to assess the accuracy of this estimation.

Non-asymptotic Bounds for the Covariance Function Estimation. In Geostatistics,
when the random field is (second-order) stationary, one uses the semi-variogram γ(·)
to characterize the spatial dependence structure of the observations. The relationship
between the isotropic covariance and semi-variogram functions is given by the follow-
ing equation γ(h) = c(0)−c(h). We extend this relationship to their estimators based on
the observations X′σ1

, · · · ,X′σn : γ̂(h) = ĉh(0) − ĉ(h). In Chapter 3, under the assumption
that X is a second-order stationary Gaussian random field with isotropic covariance
function, we first identify the distribution of the non-parametric estimators γ̂(h) and
ĉh(0), which is given by a weighted sum of χ2 random variables. Under appropriate
conditions, we derive Poisson tail bounds for these estimators, based on new concen-
tration results for Gamma and χ2 variables (Bercu et al., 2015; Wang and Ma, 2020).
These bounds are derived only for the observed lags h of the sampled regular grid
σ1, · · · ,σn. Thanks to the relationship between the estimators, corresponding bounds
can be derived also for the covariance function estimation. Finally, assuming that c(·)
is of class C1 with gradient bounded by a constant Q < +∞, we extend the previous
bounds for all lags of the supposedly bounded spatial domain. These contributions
allow us to answer to our Research Question 2.
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Then, thanks to the above contributions, we analyze the impact of the covariance
function estimation accuracy on the performance of the empirical Kriging predictor.

Statistical Guarantees for the Kriging Method. First, we provide non-asymptotic
bounds for the accuracy of the covariance matrix and precision matrix estimations
(Σ̂(sd) and Σ̂(sd)−1 respectively) in Chapter 4. These bounds stem from the previous
results for the covariance function estimation ĉ(·), under an additional assumption on
the eigenvalues of Σ(sd). Then, in Chapter 4, we assess the generalization capacity
of the empirical Kriging predictor at all unobserved sites of the spatial domain, by
deriving non-asymptotic tail bounds for the global excess risk of the Kriging method.
The final result is provided by Theorem 4.8, where learning rate bounds of order
O

P
(1/
√
n) are established for the empirical predictor, under appropriate conditions.

Our main result is the following:

For any δ ∈ (0,1), we have with probability at least 1− δ:

LS (f
Λ̂d

)−L∗S ≤ C6d
2
√

log(4n/δ)/n+C′6d
2Q/(

√
n− 1),

as soon as n ≥ C′′6 log(4n/δ), where C6, C′6 and C′′6 are positive constants.

This result allow us to answer to our Research Question 3.

Numerical Experiments. The theoretical results, as well as the role played by the
technical conditions required to establish them, are illustrated in Chapter 4 by vari-
ous numerical experiments on simulated data. We compute the experiments for dif-
ferent covariance models, some of which satisfy all the required conditions for our
results while others do not. We repeat the experiments for different sizes of the ob-
servations grids. Our numerical experiments fully corroborate our theoretical results
for all covariance models that satisfy the assumptions. Furthermore, we investigate
other possible future extensions of our work by providing additional experiments that
tackle the following cases: (1) the d observation points are taken from different con-
figurations than the random uniform procedure, (2) the case of anisotropic covariance
models, (3) the setting of irregular grids for the training sample. The results of our
experiments show that the prediction method is robust in case of slight violations of
the above assumptions.

Applications to Real Data. We illustrate the strength and advantages of the empirical
Kriging predictor by numerical experiments on real meteorological data in Chapter 4.
The DRIAS dataset gives the daily averaged temperature in France, observed over a
regular grid (see Figure 1.1). A parametric Kriging predictor, constructed by means of
a parametric covariance function, as well as the non-parametric Kriging predictor of
interest, are applied to these data. Our results corroborate the established theoretical
guarantees and demonstrate that a straightforward application of the empirical Kri-
ging prediction method can yield strong performance and better flexibility compared
to a parametric method.

Code. Our experiments are fully reproducible and can be replicated with the codes
available on GitHub1.

Part II. The second part of this thesis aims at designing a new inference method for
multivariate spatio-temporal Hawkes processes. The main characteristic of a Hawkes
process is that it takes into account the self-exciting nature of the underlying phe-

1https://github.com/EmiliaSiv/Simple-Kriging-Code

https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
https://github.com/EmiliaSiv/Simple-Kriging-Code
https://github.com/EmiliaSiv/Simple-Kriging-Code
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nomenon. Let T ∈R+ be a stopping time, and consider [0,T ] as the resulting observa-
tion period. Additionally, let S = X ×Y ⊂ R

2 be a compact set within the spatial do-
main that contains the locations of the observed events up to time T . Let D ∈N∗ be the
dimension of the multivariate spatio-temporal Hawkes process. Then, a realization

consists of D sets of distinct events: Hi
T =

{
ui
n = (xin, y

i
n, t

i
n), (xin, y

i
n) ∈ S , tin ∈ [0,T ]

}
, ∀i ∈

{1, . . . ,D} occurring in continuous space-time, with an associated time tin and a location
(xin, y

i
n). The behavior of the process is entirely described by its D intensity functions,

which depend on the times and locations of past events. The conditional intensity
function for the i-th process is:

λi(x,y, t|Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
n, y − y

j
n, t − t

j
n),

where µi > 0 is the baseline parameter, αij > 0 is the excitation scaling parameter, and
gij : S × [0,T ] 7→ R+ is the spatio-temporal kernel with parameters ηij . Note that we
use the same notation as for the weights of the Kriging predictor in Part I to respect
the usual notations of these domains.

The goal of our method is to be able to infer the parameters of (1) any parametric ker-
nels, including (2) space-time non-separable kernels. Our work is inspired from the
approach proposed in Staerman et al. (2023) for temporal Hawkes processes, which
procedure relies on three key ideas that we extend to spatio-temporal data. The first
concept is that the spatio-temporal domain of observations is discretized into a three-
dimensional regular grid and the observations are projected on it. Next, we assume
that the kernel functions are of finite length. Combining these first two ideas, the
triggering function in the conditional intensity λi can be replaced by a discretized
version, thus replacing the sum over past events by a sum over a finite number of grid
elements. Then, we focus on the least squares loss and derive a discretized version

LG(θ,H̃T ) =
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

(
λ̃i[vx,vy ,vt]

)2
− 2

∑
ũi
n∈H̃i

T

λ̃i

 x̃in∆X , ỹ
i
n

∆Y
,
t̃in
∆T


 ,

where (∆X ,∆Y ,∆T ) are the step sizes of the discretization, (GX ,GY ,GT ) are the size
of the discretized grids, and H̃i

T are the projected space-time stamps of Hi
T . This

takes us to the third key component of our approach, which is the identification of
precomputation terms (that do not depend on the parameter θ = {µi ,αij ,ηij}i,j ) in
the discretized loss function. Thanks to these precomputation terms, our approach is
efficient and allows fast inference.

Combining all three key ideas, we design a method answering our Research Ques-
tions 4 and 5, defined in Section 1.2. We also provide theoretical guarantees on the
bias induced by the discretization, which show its low impact on parameter estimation
accuracy.

Efficient and Flexible Method for Parametric Inference in Space-Time Hawkes Mod-
els. In Chapter 6, we develop a fast method for inferring kernel parameters in spatio-
temporal Hawkes models. The method we design enables the incorporation of any
parametric kernels for the triggering function, extending beyond the traditional Gaus-
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sian and exponential forms. Furthermore, to better fit real data, the approach ac-
counts also for space-time interactions, as it extends to the case of space-time non-
separable kernels. These two innovations improve the accuracy and flexibility in mod-
eling complex dependencies in real-world datasets.

Numerical Experiments. We show the advantages of our approach with various ex-
periments on simulated data in Chapter 6. First, we study the impact of the discret-
ization step on the accuracy of the method by repeating the experiments for different
values of (∆X ,∆Y ,∆T ). Our results show that the estimation error goes towards zero as
the steps simultaneously decrease, supporting our theoretical results on the discretiz-
ation. Next, our experiments computed for various ending time T and spatial bounds
S prove the accuracy of the method. The computational time with respect to the dis-
cretization step and with respect to (S ,T ) is also investigated, proving the efficiency
of our method. Finally, all the experiments are computed with varying spatial and
temporal kernels, thus showing the flexibility of our approach.

Applications to Real Data. The advantages of our inference method are also proved
by applying it to two real-world datasets in Chapter 6: (1) real earthquake data, based
on the Northern California Earthquake Data Center 2 dataset (NCEDC; nce, 2014) and
(2) burglary data from the Chicago Crime Dataset 3. Indeed, both real-world datasets
violate the two conditions assumed by the majority of previous approaches. Gen-
erally, an earthquake does not immediately trigger aftershocks (so the exponential
temporal kernel is not well suited) and the triggering effects may vary for different
spatial directions (which implies that the Gaussian spatial kernel does not reflect the
underlying process). Furthermore, burglary events present space-time dependencies,
due to the ‘near-repeat victimization’ pattern (Johnson, 2008): burglars often target
the same neighborhood repeatedly within a short time frame.

Code. The implementation of our approach is available on GitHub4.

1.4 Outline of the Thesis

Part I focuses on a statistical learning view of simple Kriging and develops a novel
theoretical framework offering non-asymptotic guarantees for empirical simple Kri-
ging rules. The main goal in this first part is to overcome the challenges posed by the
characteristics of spatial data, mainly the presence of a strong dependence structure
and the observation of one single realization of the phenomenon under study.

• Chapter 2 provides the necessary background to study spatial data with geo-
statistical tools, and presents the basics of statistical learning, focusing on the
empirical risk minimization principle.

• In Chapter 3 we propose tail bounds for the non-parametric covariance estima-
tion of a random field based on a finite and unique sample of observations.

• The final results are provided in Chapter 4 where learning rate bounds are re-
trieved for the empirical simple Kriging predictor.

2https://ncedc.org/
3https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
4
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes

https://ncedc.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
https://ncedc.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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Table 1.1: Summary of the contributions.

Chapters Contributions

• Theoretical guarantees for the non-parametric covariance
Chapter 3 function estimation, under appropriate conditions.

• Numerical experiments on simulated data that validates
the use of the technical assumptions.

• Statistical Garantees for the Kriging method.

• Numerical experiments on simulated data that verify
Chapter 4 our theoretical results.

• Application to real meteorological data.

• New, efficient, and flexible method for inference of
spatio-temporal Hawkes models.

Chapter 6 • Numerical experiments on simulated data proving
the accuracy and flebility of our method.

• Application to real earthquake and burglary data.

Part II is devoted to Hawkes processes and to the study of space-time data from real-
world datasets that present heterogeneity. The aim of this part is to develop an effi-
cient and flexible method for parametric inference in space-time Hawkes models.

• Chapter 5 gives the background on point processes useful for our approach and
highlights the advantages of developing such a method by investigating real-
world examples where heterogeneity and space-time interactions are observed.

• Chapter 6 introduces a novel, flexible, and efficient approach to infer any para-
metric kernels in the context of space-time Hawkes processes.

Chapter 7 provides a global conclusion and offers an overview of future lines of re-
search and perspectives stemming from the work developed in this thesis.

1.5 Publications

The contributions presented here have resulted in the following publication and pre-
print:

• (Siviero et al., 2024a) Emilia Siviero, Emilie Chautru, Stephan Clémençon. A
Statistical Learning View of Simple Kriging. In TEST, vol. 33, no 1, pages 271-
296, 2024. Reproduced in Chapters 3 and 4.

• (Siviero et al., 2024b) Emilia Siviero, Guillaume Staerman, Stephan Clémençon,
Thomas Moreau. Flexible Parametric Inference for Space-time Hawkes Pro-
cesses. arXiv preprint arXiv:2406.06849, 2024. Reproduced in Chapter 6.
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The publication was presented in the following conferences and seminars:

• July 2022: Poster presentation of the paper ‘A Statistical Learning View of Simple
Kriging’, at the French conference on Machine Learning (CAp 2022), Vannes
(France).

• August 2022: Oral presentation of the paper ‘A Statistical Learning View of
Simple Kriging’, at the International Conference on Computational Statistics
(COMPSTAT 2022), Bologna (Italy).

• March 2023: Oral presentation of the paper ‘A Statistical Learning View of
Simple Kriging’, at the MIND team Seminar, Inria, Palaiseau (France).

• August 2024: Oral presentation of the paper ‘Flexible Parametric Inference for
Space-time Hawkes Processes’, at the International Conference on Computa-
tional Statistics (COMPSTAT 2024), Giessen (Germany).
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In this chapter, we provide the necessary background to study spatial data. We first
adopt a geostatistical point of view, and then a statistical learning one. In Section 2.1
we introduce the motivations and some examples of real-world spatial data, the key
definitions and properties, the main challenges encountered when studying such data,
and finally the Kriging method, which is studied in details in the next chapters. In
Section 2.2, we present the empirical risk minimization principle, for both the classi-
fication and regression problems, and give some results of concentration inequalities.
We discuss in detail the strengths and advantages of the definitions, assumptions, and
concepts useful for our study, which is the subject of Chapters 3 and 4, focusing on
their role in the following chapters.

2.1 Geostatistics

Geostatistics includes powerful tools to study, define, predict, and simulate spatial
data. In this section, we first motivate the importance of developing tools to study
spatial data and illustrate the discussion by means of real-world examples (subsection
2.1.1). In subsection 2.1.2, we give the key definitions useful for the study of spatial
data, with particular attention to the properties of the associated covariance (or semi-
variogram) function, such as stationarity and isotropy. Next, in subsection 2.1.3, we
present and discuss the main challenges encountered with spatial data, which are
the dependence structure that typically characterizes such data and the uniqueness
of the observed phenomenon. Then, in subsection 2.1.4, we give a short review of the
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estimation of the dependence structure, both in a parametric and non-parametric way.
Afterward, we present the main methodologies to simulate spatial data in subsection
2.1.5. Finally, in subsection 2.1.6 we present the key method in geostatistics: the
Kriging method, for which we provide the necessary information used in the following
chapters.

2.1.1 Motivations – Spatial Data

In this first part of the thesis, we confine our study to geostatistical data. In this case,
data are sampled (regularly or irregularly) over the spatial set S and can be measured
on each location of a continuous domain: usually, the data is a (partial) realization of
a random process.

Originally, Geostatistics emerged to face the problem of ore grade prediction in a min-
ing block from observed samples. Georges Matheron laid down the theoretical bases
for Geostatistics in Matheron (1962) while working on practical problems in mining.
About a decade earlier, Danie G. Krige, a mining engineer, had developed practical
methods for estimating ore reserves in mining operations (Krige, 1951). His work
focused on improving the accuracy of mineral resource estimates, which led to the
development of Kriging, a statistical interpolation method named in his honor.

Matheron aimed to give a theoretical and methodological framework to address two
issues:

1. Defining a statistical framework for the study of one unique realization of a
phenomenon, and

2. Taking into account the spatial correlations of the data.

The study of spatial data thus differs from the classic theory of statistical learning,
where the observed data are assumed to be independent and identically distributed,
and for which a large number of repetitions of the phenomenon are available.

Example 2.1. (Mining) As previously seen in Example 1.3 in Chapter 1, an ore grade
within a deposit violates the i.i.d. assumptions of classic statistical learning. Firstly,
each ore body is unique, and thus a repetition of the observation is practically impossible.
Secondly, mining data has a strong dependence structure, due to natural geological processes
that form mineral deposits. A consequence of these natural processes is that ore samples that
are spatially close together are more similar to one another than those that are further apart,
so that clustering patterns (like high-grade mineral zones) are generally observed.

In mining, geostatistical methods help to determine the quantity and quality of minerals
in the ground, optimizing the extraction process, and reducing financial risk (Matheron,
1963). For example, in the estimation step, Kriging is used to create detailed maps of
mineral concentration within the deposit. Using such efficient and accurate estimation
methods helps estimate the total ore reserves with greater accuracy and minimize waste
extraction.

Example 2.2. (Hydrology) Hydrology plays a crucial role in managing water resources
and assessing groundwater quality. A key characteristic of hydrological data is its spatial
dependence. For example, the groundwater levels within an aquifer present spatial depend-
ence induced by the geological characteristics of the area. Understanding and modeling this
dependence structure is essential for accurate predictions, effective management of water
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resources, and contamination risk assessment. Geostatistical methods like Kriging, can in-
terpolate the concentration of contaminants to predict the extent of pollution across a given
area.

The central goal of Kriging is to compute predicted complete maps of the random
process over all the spatial domain S , using a finite number of observations. Before
applying this prediction method, some essential steps when dealing with spatial data
must be carried out.

Selecting the Optimal Sampling and the Asymptotic Setting. Firstly, one needs to
design an optimal sampling plan and decide where to collect the observation data.
Two questions arise in this context: How many samples are needed to ensure an ef-
ficient statistical study? And how do they need to be distributed over the spatial
domain? In order to have a robust estimation, it is preferable that the samples are
collected over a regular grid. But, in some real-world applications, this assumption
is not satisfied and the samples are randomly distributed over the spatial domain.
Furthermore, when determining a sampling plan, one needs to choose the asymp-
totic setting, based on the nature of the data. Two main asymptotic designs arise,
with two different behaviors when the number of observations tends to infinity. The
in-fill asymptotic stipulates that new observations are made in the same fixed spa-
tial domain. Thus, the spatial domain becomes denser and denser as the number of
observations grows. By increasing the density of sampling points, one can capture
small-scale spatial variability and improve the precision of spatial predictions. The
in-fill setting is appropriate for real-world situations where the domain of interest is
fixed and where high-resolution spatial data are needed. For example, this setting is
used in meteorology to study localized weather phenomena or weather forecasts in a
country or in a specific region, thanks to its ability to capture small-scale variations in
temperature. The in-fill setting is also preferred in other domains, such as mining and
hydrology, since the area of interest is often thought of as bounded. See for example
Stein (1988); Yakowitz and Szidarovszky (1985); Stein (1995) for a theoretical study
of geostatistical methods under the in-fill asymptotic. On the contrary, the increasing
domain (or out-fill) asymptotic assumes that new samples are taken outside the cur-
rent spatial domain of observations. In this case, the spatial domain becomes wider
and wider as new observations are collected while the spatial density remains fixed. A
minimum distance between neighboring sampling locations is assumed (Mardia and
Marshall, 1984; Sherman and Carlstein, 1994). This is particularly useful in situations
where large-scale spatial patterns and trends are of interest. By expanding the spatial
domain while maintaining a consistent sampling density, one can gain insights into
the wider spatial dependencies and variations in the data. In epidemiology, increasing
domain asymptotics are useful to study the spread of a disease across large geograph-
ical regions. Finally, some researchers considered a hybrid approach (see e.g. Hall and
Patil, 1994; Lahiri, 1999; Lahiri et al., 1999; Putter and Young, 2001), where a com-
bination of in-fill and increasing domain asymptotics is assumed. Often one assumes
that both the size of the spatial domain of the observations and the number of obser-
vations in each of its subsets grow with the number of observations. This approach
makes it possible to capture both large-scale patterns and small-scale variability, and
thus gives a comprehensive spatial understanding at multiple scales. For example, in
the case of urban planning, one needs to understand both the overall growth patterns
of metropolitan areas and the detailed dynamics within neighborhoods. The statist-
ical properties of the estimators may largely vary depending on the chosen asymptotic
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(Cheng et al., 2020; Cressie, 1993). Still, if one is interested in obtaining an efficient
and accurate interpolation, the in-fill asymptotic is preferable (Stein, 1999; Chang and
Stein, 2013).

Asymptotic Setting: Since our focus in this thesis is on the accuracy
of the Kriging interpolation method, we opt for the in-fill asymptotic setting
(see Section 3.2): the number of observations inside the fixed and bounded

spatial domain S increases. This setting is adapted for empirical semi-variogram
estimation, since the maximum distance hmax is fixed. More observations will

induce more pairs of points that are at a distance h from one another
(for all h < hmax), thus providing more elements for the computation of the

empirical semi-variogram γ̂(h) defined in Equation (2.3).

In our study

Assessing the Stationarity of the Data. In order to address the difficulties posed by
the fact that spatial phenomena typically consist of a single and irreproducible obser-
vation, one may formulate the assumption of stationarity (Hall and Patil, 1994; Hall
et al., 1994). This assumption is an alternative to the hypothesis on i.i.d. repetitions
of the phenomenon in the classic statistical learning setting, and makes it possible
to rely on a successful frequentist approach (Cressie, 1993; Gaetan and Guyon, 2009;
Kanevski et al., 2009). Still, in cases where the data does not fit the stationarity as-
sumption, one may prefer to assume spatial non-stationarity (or only local station-
arity) and try to detect it (see e.g. Bel (2004) for non-stationary random fields and
Donoho et al. (1996) for locally stationary processes). See subsection 2.1.2 for fur-
ther details on the stationarity assumption, together with other key assumptions in
Geostatistics (such as isotropy and ergodicity).

Estimating the Spatial Correlation within the Data. Since the main characteristic of
spatial data is the presence of correlation within the data, an important step in Geos-
tatistics is to understand the dependence structure of the data. This process involves
quantifying how data points are related to each other based on their spatial proxim-
ity. The key tools for this purpose are the covariance and semi-variogram functions,
which describe how the spatial correlation between data points changes with distance.
However, in practice, the semi-variogram (and the covariance) of a random field is un-
known and thus needs to be estimated. The experimental semi-variogram modeling
(see subsection 2.1.3 for further details) is the first stage to understand the depend-
ence structure. It allows one to identify the main characteristics of the dependencies
within the data and construct a first experimental version of the semi-variogram. A
detailed discussion on the key tools to define the dependence structure of the data can
be found in subsection 2.1.3. Based on the information collected during the experi-
mental modeling, the next stage is to estimate the semi-variogram function accurately.
A review of both parametric and non-parametric dependence structure estimations is
given in subsection 2.1.4.

Interpolation and Complete Maps. The final goal of Kriging is the estimation of
the random process at the unobserved locations of the spatial domain, based on a
finite number of observations. The predictor is constructed as a linear combination
of the observations. By applying the Kriging method to all unobserved points of the
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domain, one may draw a complete map of the random field. We refer the reader
to subsection 2.1.6 for further details on the Kriging prediction method. When the
semi-variogram function is known, the Kriging predictor is optimal. In practice the
dependence structure of the data is unknown and the true semi-variogram values are
replaced in the Kriging equations by their estimated counterparts. In subsection 2.1.6
we provide a quick review of previous results concerning the robustness of the Kriging
method to the uncertainty effects of the semi-variogram estimation. In the case of an
unknown semi-variogram function, there are no theoretical guarantees of optimality.
It is then necessary to establish rate bounds that assess the generalization capacity of
the resulting empirical predictive map. The main motivation of the first part of this
thesis is to develop a framework for Kriging based on a non-asymptotic study of the
performances of a non-parametric semi-variogram estimator. The methodology and
results are given in Chapters 3 and 4.

2.1.2 Definitions – Geostatistical Tools

In this subsection, we recall the main definitions and properties useful for the study
of geostatistical data. The results presented here are drawn from Chapter 2 in Cressie
(1993) and Chapter 1 in Gaetan and Guyon (2009).

Let S ⊂ R
p be a spatial set and X be a random field on S with R as state space, i.e. a

collection X = {Xs : s ∈ S} of real-valued random variables (r.v.’s) defined on the same
probability space, (Ω,F ,P) say, indexed by s ∈ S . Suppose that we observe X at n
spatial locations (si)1≤i≤n ∈ S ⊂ R

p. The random field X is fully characterized by its
distribution function:

F
(
s1, · · · , sn;x1, · · · ,xn

)
= P

(
Xs1
≤ x1, · · · ,Xsn ≤ xn

)
,

∀n ∈N∗, ∀(si)1≤i≤n ∈ Sn, ∀(xi)1≤i≤n.

Strict Stationarity. In spatial statistics, one unique realization of the phenomenon is
generally available. In order to realize statistical inference for one unique event, one
must somehow replace the hypothesis on independent repetitions of the phenomenon
with a hypothesis on the random field: it is the role of the stationarity assumption.
Intuitively, a random process can be considered stationary if its characteristics do not
vary along the spatial domain: thus, thanks to multiple observations of the process in
distinct locations, we effectively have access to multiple instances of a single random
process, enabling statistical analysis.

Definition 2.3. (Strict Stationarity) A random field is strictly stationary if its spatial dis-
tribution is invariant by translation:

P

(
Xs1
≤ x1, · · · ,Xsn ≤ xn

)
= P

(
Xs1+h ≤ x1, · · · ,Xsn+h ≤ xn

)
,

∀(si)1≤i≤n ∈ Sn, ∀(xi)1≤i≤n and ∀h ∈Rp.

The notion of stationarity implies that the phenomenon is sufficiently homogeneous
(its characteristics are identical from one point to another) within the spatial domain
so that we can replace a repetition of the random field with a repetition in the space.

However, in practice, this assumption is often not feasible since the finite number of
observations provides insufficient information about the mean and variance.
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We present a practicable relaxation of the strict stationarity. To do so, let’s first define
the class of second-order random fields and their associated covariance functions.

Definition 2.4. (Second-order Random Field) A random field is of second-order if ∀s ∈
S , E

[
X2
s

]
<∞.

Thus, the mean of the process X exists and is denoted µ(s) = E[Xs], ∀s ∈ S .

Covariance Function. The covariance function for a second-order random process
can be defined as follows.

Definition 2.5. (Covariance Function) The covariance function of a second-order random
field is defined as

∀(s, s′) ∈ S2, Cov
(
Xs,Xs′

)
= E

[(
Xs −µ(s)

)(
Xs′ −µ(s′)

)]
.

Let C be the covariance function:

∀(s, s′) ∈ S2, C(s, s′) = Cov
(
Xs,Xs′

)
.

Proposition 2.6. A covariance function C of a second-order random field has the following
properties:

1. the covariance function is symmetric: ∀(s, s′) ∈ S2, C(s, s′) = C(s′ , s).

2. ∀s ∈ S , C(s, s) = V ar(Xs).

3. the covariance function is positive semi-definite: ∀λ ∈Rn,
n∑
i=1

n∑
j=1

λiλjC(si , sj ) ≥ 0.

Notice that the third property is a necessary condition for covariance functions since

it results from V ar

 n∑
i=1

λiXsi

 =
n∑
i=1

n∑
j=1

λiλjC(si , sj ) and that the variance is always non-

negative.

Second-order Stationarity. Finally, we are able to define second-order (or weak) sta-
tionarity, a relaxed and more practicable version of strict stationarity.

Definition 2.7. (Second-order Stationarity) A random field is second-order (or weak) sta-
tionary if its two first moments exist and are invariant:

1. the mean is finite and invariant by translation (constant): ∀s ∈ S , E[Xs] = µ ∈ R,
and

2. the covariance is invariant by translation: ∀s, s′ ∈ S , C(s, s′) = C
(
s+h, s′ +h

)
, for all

translation h ∈Rp.

Note that the covariance depends only on the vector of distance h. With a slight abuse
of notation, we let C the function such that: C(h) = Cov

(
Xs,Xs+h

)
. The function C

satisfies the following properties, similar to those of Proposition 2.6:
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Proposition 2.8. The covariance function C of a second-order stationary random field has
the following properties:

1. the covariance is an even function: C(−h) = C(h).

2. the covariance in h = 0 is equal to the variance of the random field: C(0) = V ar(Xs) >
0.

3. the covariance function is positive semi-definite: ∀λ ∈Rn,
n∑
i=1

n∑
j=1

λiλjC(si − sj ) ≥ 0.

Thanks to the second-order stationarity assumption, we can define a covariance func-
tion depending only on the difference h = s − s′ between two data locations.

Isotropy. In the next definition, we add another definition for the case when the
covariance depends only on the (Euclidean) distance h = ∥s − s′∥:

Definition 2.9. (Isotropy) The covariance is said to be isotropic if it depends only on the
(Euclidean) distance between the spatial points: it exists a function c : R+ → R such that
Cov

(
Xs,Xs′

)
= C(s − s′) = c(∥s − s′∥).

On the contrary, when the direction of the difference h = s − s′ between two data loca-
tions matters, the covariance is said to be anisotropic.

Stationarity and Isotropy: In Chapters 3 and 4, we assume that we have
access to one unique realization of the phenomenon under study, that
presents a strong dependence structure. To ensure an accurate estima-

tion of the dependence structure, and thus an efficient prediction through
Kriging, we must assume the following: the random field is second-order

stationary and its covariance function is isotropic (see Section 3.2
and Assumption 3.2).

In our study

Intrinsic Stationarity. In order to relax even more the stationary assumption, we
consider the increment process

{
Xs+h −Xs, s ∈ S

}
.

Definition 2.10. (Intrinsic Stationarity) A random process X is intrinsically stationary if
its increments Xs+h −Xs are second-order stationary:

1. ∀s ∈ S , ∀h ∈Rp, E
[
Xs+h −Xs

]
= 0, and

2. ∀s ∈ S , ∀h ∈ Rp,V ar
(
Xs+h −Xs

)
= 2γ(h), where γ(h) is the semi-variogram of the

random field.

Semi-variogram Function. The intrinsic stationarity assumption introduces the semi-
variogram function of a random field. Notice that the semi-variogram function exists
for all second-order and intrinsic stationary functions. We present its definition and
give its main properties below.
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Definition 2.11. (Semi-variogram) The semi-variogram of a second-order (or intrinsic)
stationary r.v. is defined as:

γ(h) =
1
2
E

[(
Xs+h −Xs

)2
]

=
1
2
V ar

(
Xs+h −Xs

)
.

The term variogram refers to the quantity 2γ(h).

In Geostatistics, the use of the semi-variogram is often preferred to the covariance
function for several reasons. More information about the semi-variogram function
and a discussion about its advantages over the covariance function can be found in
subsection 2.1.3, dedicated to the dependence structure of the random field. Still,
one can easily go from the semi-variogram to the covariance function thanks to the
following equation.

Proposition 2.12. (Relationship between covariance and semi-variogram) Let X be a second-
order or intrinsic stationary random field, and define by C (respectively γ) its covariance
function (resp. its semi-variogram function). Then, if the semi-variogram γ is bounded, for
all h ∈Rp,

γ(h) = C(0)−C(h). (2.1)

Proposition 2.13. The semi-variogram function γ of a second-order (or intrinsic) station-
ary random field has the following properties:

1. the semi-variogram is an even function: γ(−h) = γ(h).

2. the semi-variogram in h = 0 is null: γ(0) = 0.

The proofs are easily derived from Definition 2.11 and Proposition 2.8.

Note that every stationary process is intrinsic. The reciprocal is generally false. The
following property states one case where an intrinsic stationary process X is second-
order stationary, if its semi-variogram function satisfies a condition.

Proposition 2.14. If the semi-variogram γ(h) of an intrinsic random field X satisfies
lim
∥h∥→∞

γ(h) <∞, then X is a second-order stationary random field.

Proposition 2.15. The semi-variogram γ of an intrinsic random field X is conditionally

negative definite, i.e. it satisfies: ∀(λi)i≤n such that
n∑
i=1

λi = 0 (called authorized linear

combinations), E

 n∑
i=1

λiXsi

 = 0 and V ar

 n∑
i=1

λiXsi

 = −
n∑
i=1

n∑
j=1

λiλjγ(si − sj ) ≥ 0.

Ergodicity. A complementary assumption to enable statistical inference for spatial
data is the ergodic condition, stated below. Ergodicity allows for an accurate estima-
tion of the statistical properties of a random field, from a single realization of it. Let
X(S) = 1

|S|
∫
S Xsds.
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Definition 2.16. (Ergodicity) A second-order (or intrinsic) stationary random field X, with

constant mean µ, is said to be ergodic if lim
|S|→∞

E

[(
X(S)−µ

)2
]

= 0.

This means that the spatial averages taken over a large enough spatial domain will
almost surely converge to the expected values over all possible realizations. Still, this
unique realization must be large enough for the estimation of the parameters to be
accurate (Lantuéjoul, 1991).

Ergodicity: In Chapters 3 and 4, we make the widely used assumption
of ergodicity to ensure an efficient prediction of the random field X.

In our study

Non- and Local Stationarity. Notice that other categories of random processes have
been getting more and more attention in the last few years. It is the case of non-
stationary and locally stationary random processes. Non-stationarity refers to a ran-
dom process in which distribution varies in the spatial domain (the mean and the
variance may change from one point to another). Indeed, in some real-world situ-
ations, non-stationary assumptions are well-adapted and allow more flexible models,
for example in the case of the spread of diseases (Dong et al., 2023) and in the study
of air pollution (Sampson and Guttorp, 1992; Bel, 2004). Locally stationary variables
exhibit the stationary property within small regions of the spatial domain. Thus, the
statistical properties, such as mean and variance, gradually change over space. This
means that within these local regions, traditional statistical techniques for stationary
processes may be applied locally. In Kurisu (2022), locally stationary random fields
are expressed as non-stationary random fields that can be locally approximated by
stationary ones.

Gaussian Process. We now briefly present Gaussian processes, a powerful tool for
modeling complex data in Geostatistics (Cressie, 1993).

Definition 2.17. A random field X is Gaussian if each finite linear combination follows a
Gaussian distribution: ∀A ⊂ S , ∀a = {as, s ∈ A},

∑
s∈A

asXs is a Gaussian distribution.

Let XA = {Xs, s ∈ A} a Gaussian process of mean µA = E[XA] and covariance ΣA. Then,

the density is: fA(xA) = 1
(2π)−|A|/2

√
Det(ΣA)

exp
(
−1

2 (xA −µA)⊤Σ−1
A (xA −µA)

)
.

Since a Gaussian process is fully characterized by its mean and its covariance function,
second-order stationarity is equivalent to strict stationarity (Cressie, 1993, Chapter
2). Furthermore, a sufficient condition for ergodicity is lim

∥h∥→∞
C(h) = 0 (Cressie, 1993,

Chapter 2).
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Gaussian Process: In Chapters 3 and 4, we assume that the random field X
is Gaussian (see Assumption 3.5). This assumption allows us to obtain strict

stationarity of the random field and is a key argument to develop non-
asymptotic bounds for the accuracy of the Kriging predictor. Indeed, under

the Gaussian assumption, the empirical semi-variogram can be seen as a
sum of independent χ2 variables (Proposition 3.7). We refer the reader to

Section 3.2 for further details.

In our study

Spectral Representation. The spectral representation is a key concept in Geostatist-
ics. The main result comes from Bochner’s theorem (see e.g. Stein, 1999, Chapter
2). It states a sufficient and necessary condition for a function C to be the covariance
function of a second-order stationary random field.

Theorem 2.18. (Bochner’s Theorem, (Stein, 1999, Section 2.5)) A function C is the cov-
ariance function of a second-order stationary random field if and only if it satisfies

C(h) =
∫
R

p
exp

(
iu⊤h

)
F(du),

where F is a positive measure on R
p such that

∫
R

p F(du) = C(0) <∞.

When F has a density with respect to the Lebesgue measure on R
p, we denote it Φ .

The function Φ is called the spectral density of X and can be expressed in terms of the
covariance function C thanks to the inverse Fourier transform (see e.g. Stein, 1999,
Chapter 2; Yaglom, 1987)

Φ(u) = (2π)−p
∫
R

p
exp

(
−iu⊤h

)
C(h)dh.

Furthermore, if X is a second-order random field with isotropic covariance function c,
then the spectral density Φ is also isotropic and defined by

Φ(u) = (2π)−p
∫
R

p
exp

(
−iu⊤h

)
c(||h||)dh = φ(||u||). (2.2)

As stated in subsection 2.1.5, the notion of the spectral representation is also used for
the simulation of second-order stationary random fields.

Spectral Representation: The spectral representation and Bochner’s theorem
come into play in Section 3.2 to define an additional assumption necessary

for our theoretical results (see Assumption 3.8 in Chapter 3).

In our study

To summarize, the key concepts and assumptions on the statistical properties of a
random function are the following:
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• The covariance and semi-variogram functions of a second-order or intrinsic sta-
tionary random process depend only on the distance between the data locations:
the spatial coordinates of the data points do not have an influence on the statist-
ical properties of the random process, and there are no spatial trends.

• The stationarity and ergodicity assumptions allow sound statistical inference:
the observations at different regions of the spatial domain can be seen as inde-
pendent repetitions of the process, and statistical averaging over the repetitions
of the random field can be replaced by averaging over the repetitions of the spa-
tial domain.

From now on, unless the contrary is mentioned, we assume that the random field X is
ergodic, second-order stationary, and isotropic.

2.1.3 Dependence Structure within Spatial Data

The main characteristic of spatial data is that it presents a strong dependence struc-
ture, which reflects the fact that close data (i.e. their locations are close in the spatial
domain) are correlated, while, as data locations get more distant, the correlation de-
creases. This spatial dependence is central in many fields, where understanding how
a process varies across a spatial domain informs predictions.

Example 2.19. (Weather Forecasting) For example, in temperature forecasting, weather
stations located close to each other often record similar temperatures because they are both
affected by local weather conditions, like mountains or bodies of water. This spatial coher-
ence means that knowing the temperature at one location can provide valuable information
about nearby areas. Understanding the dependence structure of spatial data allows bet-
ter anticipating local variations in weather phenomena, aiding in more precise and reliable
predictions for various applications. Meteorologists use techniques like spatial interpolation
and Geostatistics to model and predict these spatial dependencies, helping to improve the
accuracy of weather forecasts over larger regions.

The dependence structure must be taken into account when predicting spatial data.
The spatial dependence structure can be quantified and modeled using statistical
tools, primarily the covariance function and the semi-variogram function of the pro-
cess (both described in the previous subsection).

While the covariance function is useful, the semi-variogram function is often pre-
ferred in practice for several reasons (Robinson, 1990; Cressie and Zimmerman, 1992);
(Cressie, 1993, Chapter 2). First, unlike the covariance function, the computation
of the semi-variogram does not require the knowledge of the (supposedly constant)
mean. The semi-variogram empirical estimation is unbiased (see subsection 2.1.4),
while the mean of the random field in the covariance empirical estimation introduces
a bias. Second, the class of variogram functions is broader (implying less restrictive
assumptions). Third, it is well-known that the sum of the square of dependent ran-
dom variables of normal laws gives a χ2 random variable. Thus, all the distributions
in the empirical semi-variogram function are known (see Proposition 3.7 in Chapter
3). However, the product of dependent random variables (for the covariance estima-
tion, see Equation (3.2) in Chapter 3) gives a much more complicated distribution (see
the result in Nadarajah and Pogány (2015) on the distribution of the product of cor-
related normal r.v.’s). Furthermore, other advantages of the semi-variogram function
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are: a more intuitive understanding of the spatial variability since it is equal to the
average squared difference based on the distance; and, the semi-variogram explicitly
accounts for the nugget effect (see below for a definition), observed as a discontinuity
at the origin of the semi-variogram.

Semi-variogram Function: In Chapter 3, we move from the semi-variogram
to the covariance function thanks to the relationship (2.1) between them, for
the following reasons: under the Gaussian assumption, the empirical semi-
variogram can be written as a sum of independent χ2 variables (see Propo-

sition 3.7), thus tail bounds can be derived for the semi-variogram; then,
tail bounds stem from for the covariance matrix.

In our study

Before estimating the dependence structure of the process, it is essential to identify
its main characteristics. Indeed, each phenomenon has its spatial variability charac-
teristics, that are valuable information. In the following, we consider an isotropic
semi-variogram function (refer to subsection 2.1.2 for a definition of isotropy). To
do so, one can use experimental semi-variogram modeling (Gaetan and Guyon, 2009,
Chapter 5) by plotting the differences between values at pairs of locations given by
(Xs+h−Xs)2

2 against the distance h separating them. The resulting graphic is called the
variogram cloud (see Figure 2.1a for an example). Then, one can add the class of dis-
tances, and obtain a plot similar to a histogram (see Figure 2.1b): the distances are
divided into intervals (or lags), and the average value of the differences between pairs
contained in the intervals is plotted. Finally, this allows one to obtain a theoretical
model (see Figure 2.1c) by plotting a function adapted to the obtained values for each
class of distances. One can observe the correlation principle: pairs of locations that
are spatially closed together should have similar values. Indeed, points on the left side
of the variogram cloud (that represent points separated by a small distance h), have
small values, while as the distance h becomes larger, the values become higher.

Studying precisely the form of the variogram allows a better understanding of the
spatial correlation between the data and of the underlying process. Three components
become visible on the plot of the empirical semi-variogram (see Figure 2.2): the nugget
effect, the range, and the sill. These parameters are critical for interpreting the spatial
structure of the data and building models that accurately reflect this structure.

Nugget effect. As seen in the previous subsection, the value of the semi-variogram at
the origin h = 0 is equal to 0. However, for very small distances, the empirical semi-
variogram generally exhibits an abrupt change, which is called the nugget effect (Math-
eron, 1962; Cressie, 1993). In Figure 2.2, the nugget effect on the semi-variogram can
be seen at the origin (in orange): the value of the empirical semi-variogram is not
equal to 0. In Geostatistics, the term ’nugget effect’ is used to describe the behavior
of the semi-variogram near the origin. Indeed, it refers to the variability observed at
very short distances within the data. Since no information from the data is generally
available for infinitely small distances, the nugget effect is attributed to measurement
errors or sources of spatial variation at distances smaller than the minimum spacing
between sampling points. The nugget effect represents the variability in data that is
not explained by spatial correlation. For example, in environmental studies, measure-
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(a) The variogram cloud. (b) The class of distances h.

(c) The experimental semi-variogram.

Figure 2.1: The three steps of the empirical semi-variogram modeling. The red dots

represent the values of (Xs+h−Xs)2

2 for each pair of data samples (Xs+h,Xs), the dotted
blue lines define classes of distances, and the fitted experimental semi-variogram is in
black.

ments of soil contamination at spatially closed locations may exhibit a nugget effect
due to small-scale contamination levels that contribute to local variations.

Range. In Figure 2.2, it is possible to observe that the semi-variogram function sta-
bilizes after a certain distance h. This distance is the range of the semi-variogram
(represented in blue in the graphic). It represents the distance at which the correla-
tion between spatial locations becomes negligible. The knowledge of the range gives
valuable information on the dependence structure of the data: locations separated by
a distance less than the range are spatially correlated, whereas locations separated
by a distance greater than the range become statistically independent. For example,
in geological surveys, the range defines the distance scale at which rock properties
such as mineral grades are correlated, influencing resource exploration and extrac-
tion strategies. As it is pointed out in Chapter 3, the range is an important tool in
Kriging prediction since it determines the spatial distance range within which values
at unobserved locations can be accurately estimated using available data.

Sill. The value at which the semi-variogram reaches the range is the sill (represented
in green in Figure 2.2). The sill appears as the asymptotic value of the variogram at
large distances. It is essential in spatial modeling since it provides insights into how
much spatial variability is present.
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Figure 2.2: Parameters of the semi-variogram: the nugget effect (in orange), the range
(in blue), and the sill (in green).

2.1.4 Covariance and Semi-variogram Estimation

Now that the basis for the dependence structure has been laid, we discuss the different
procedures for the dependence structure estimation, separating them into two main
categories: the non-parametric approach and the parametric models.

The estimation of the dependence structure of a random field is a delicate phase, for
several reasons. In spatial prediction such as Kriging, its accuracy heavily depends
on the accurate estimation of the covariance (or semi-variogram) function. Indeed,
in Kriging, the covariance (or semi-variogram) function defines the weights given to
each sample value in the prediction of unobserved locations.

The first step of the semi-variogram estimation of a random field is, as stated in sub-
section 2.1.3, the experimental semi-variogram modeling. This allows one to obtain
a variogram cloud, calculated directly from the data, and to analyze graphically the
dependence structure of the process. Then, one can either opt for a non-parametric
approach or for a parametric point of view. The non-parametric approach consists of
using the derived experimental semi-variogram on the observations without assum-
ing any specific model. In parametric modeling, one should choose a semi-variogram
model to fit the observed variogram cloud: the experimental semi-variogram is used
as a preliminary step to understand the spatial structure before fitting a more complex
model.

In the following, we assume that the random field X is observed at n spatial locations
{s1, · · · , sn} of the domain S .

Non-Parametric Estimation. The most common non-parametric approach is the Math-
eron (1962) empirical semi-variogram estimator, based on the method of moments,
under the assumption that the mean of the process is constant. It is defined by the
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following equation:

γ̂(h) =
1

2nh

∑
(si ,sj )∈N (h)

(
Xsi −Xsj

)2
, (2.3)

where N (h) =
{
(si , sj ) ∈ S2, ∥si − sj∥ = h, (i, j) ∈ ⟦1,n⟧2

}
is the set of pairs of sites that

are at a distance h from one another (also called the set of neighbors) and nh = |N (h)|
denotes its cardinality. This estimator is unbiased when the random field is intrinsic
or second-order stationary (Cressie, 1993, Section2).

The first property for the theoretical semi-variogram function in Proposition 2.13 is
satisfied by the empirical semi-variogram estimator: γ̂ is an even function such that
γ̂(h) = γ̂(−h). Note that this estimator can be defined for second-order stationary
fields that do not necessarily have an isotropic covariance function. Still, since in
the following we make the isotropic assumption, the focus here is on the isotropic
definition only.

This estimator is well-suited when one assumes that the observations are on a regular
grid. Most importantly, one must have access to a large number of observations that
are at a distance h from one another to ensure an accurate and stable estimator (see
Section 3.2 and Lemma 3.6 for further details). For the irregular case, one may slightly
modify the empirical estimator by introducing a tolerance term in the definition of the
neighboring sets. For example, define the set of pairs that are at a distance more or less

h with error ε > 0 as Nε(h) =
{
(si , sj ), h− ε ≤ ∥si − sj∥ ≤ h+ ε, (i, j) ∈ ⟦1,n⟧2

}
. Still, the

introduction of a tolerance term ε may induce a bias in the semi-variogram estimation.

However, this empirical estimator may be very affected by the presence of outliers.

Cressie and Hawkins (1980) proposed an alternative estimator that is more robust
against outliers in the case of normal-like distributions:

γ̂(h) =
1
Ch

 1
2nh

∑
(si ,sj )∈N (h)

∣∣∣∣Xsi −Xsj

∣∣∣∣1/2


4

,

where Ch =
(
0.457 + 0.494

nh
+ 0.045

n2
h

)
is a correction factor for bias. This estimator is ro-

bust against non-normality for distributions that are normal in the central region and
heavier in the tails.

Another robust alternative is the estimator proposed in Rousseeuw and Croux (1992),
based on a highly robust estimator of scale V (h) = Xs+h −Xs (see also Genton, 1998).

One can also define the Median estimator (see e.g. Cressie, 1993) by:

γ̂(h) =
1

2Bh

med

{∣∣∣∣Xsi −Xsj

∣∣∣∣1/2 , (si , sj ) ∈N (h)
}4

,

where Bh is a correction factor for bias.

A comparison of these estimators is given in Mingoti and Rosa (2008). The results
are that the best estimators for contaminated data are the Genton (1998) and Median
estimators, while in the absence of outliers, the Matheron (1962) estimator gives the
best results.
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Further non-parametric estimators have been developed in Hall et al. (1994); Elogne
et al. (2008) for the covariance function of a stationary stochastic process (temporal
process) and in Hall and Patil (1994) in the case of a stationary random field (spatial
process). The common motivation behind these works is the fact that non-parametric
approaches usually have difficulties in imposing the positive definition property of the
covariance estimator. Indeed, this property is a fundamental assumption since it en-
sures that the prediction variances are non-negative for the optimal Kriging predictor.
Furthermore, if the resulting estimator is positive definite, then it is itself a covariance
function. Hall and Patil (1994) use Fourier characterization and Bochner’s theorem to
obtain a positive definite kernel type estimator. It is proven that the derived estimator
is consistent, under some assumptions.

Empirical estimators are data-driven methods (since they rely solely on the obser-
vations of the phenomenon) that present several advantages over parametric estim-
ators. First of all, the non-parametric estimation provides flexibility, since it does
not assume any specific model for the semi-variogram. This flexibility allows non-
parametric methods to capture a wide range of spatial dependencies directly from the
data. Secondly, non-parametric approaches provide adaptability, which is a valuable
advantage when dealing with complex and heterogeneous spatial data. The complex-
ity of the data may be encountered in several forms, like anisotropy or non-stationarity
of the random field. Indeed, since non-parametric methods do not assume a structure
of dependence, they may adapt more easily to complex spatial data, whereas this com-
plexity may not be well-represented by classical parametric models.

Non-parametric Estimation: The massive character of spatial datasets now
available suggests resorting to more flexible, non-parametric, approaches to
analyze spatial observations. In Chapter 3, the empirical Matheron (1962)
semi-variogram estimator is chosen and its accuracy is analyzed by means

of tail bounds.

In our study

However, one must be careful when applying non-parametric methods for the follow-
ing two reasons. First, the empirical estimation should be done on a finite number
of distances h, for which a large enough number of observations is available in the

sampled data. In Section 3.2, we define Hn =
{
||si − sj || : (i, j) ∈ ⟦1,n⟧2

}
the set of ob-

served lags and we state a lemma ensuring that the number of terms averaged in
the empirical semi-variogram is large enough to obtain accurate estimations for these
lags (see Lemma 3.6). Second, for unobserved distances, the empirical estimation
can be extrapolated by means of various non-parametric procedures. In Section 3.2,
we choose the 1-NN piecewise constant estimator. As it is shown in the subsequent
Chapter 3, we are able to give a bound on the estimation error at all distances (both
observed lags from Hn and unobserved ones), assuming a smoothness condition for
the covariance function.
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Accurate Empirical Estimation: In Chapter 3, we assume that
the observations forms a regular grid. To obtain an accurate empirical

estimation, we derive a result ensuring that the number of terms averaged
in the empirical semi-variogram estimation is large enough (see Lemma 3.6).

In our study

Estimation at Unobserved Lags: In Chapter 3, we introduce a smoothness
condition on the covariance function of the random field (see Assumption 3.10)
and define a piecewise constant estimator to compute the empirical estimation

at unobserved lags. This assumption allows us to obtain a bound on the
estimation error at all lags.

In our study

Parametric Estimation, Model Fitting. Once the experimental variogram is com-
puted as in subsection 2.1.3, the next step is to fit a valid model to the experimental
semi-variogram values for all lags. To achieve accurate interpolation, the values of the
semi-variogram must be known for all distances, including unobserved lags.

Furthermore, we desire the semi-variogram estimation to verify the conditionally neg-
ative definite property (as in Proposition 2.15). We must define a parametric family of
functions that verify this condition. The set of valid semi-variogram models is defined
as follows: {

γ(·) = γ(·; θ), θ ∈Θ
}
. (2.4)

This family of models depends on a parameter θ ∈ Θ ⊂ R
q generally unknown. The

focus of model fitting is on estimating the values of the parameter θ.

Some examples of isotropic semi-variogram models are given below. Figure 2.3 shows
the graphical representation of these models. We refer the reader to Chiles and Delfiner
(1999); Yaglom (1987); Armstrong (1998) for additional models.

Exponential model:

γ(h; θ) =


0, h = 0

c0 + cs

(
1− exp

(
− h
α

))
, h > 0,

where θ = (c0, cs,α), with c0 ≥ 0, cs ≥ 0, and α > 0.

Gaussian model:

γ(h; θ) =


0, h = 0

c0 + cs

(
1− exp

(
− h2

α2

))
, h > 0,

where θ = (c0, cs,α), with c0 ≥ 0, cs ≥ 0, and α > 0.

Spherical model: This model is valid in R
p only for p ≤ 3.

γ(h; θ) =


0, h = 0

c0 + cs

(
3
2
h
α −

1
2
h3

α3

)
, 0 < h ≤ α

c0 + cs, h > α,
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where θ = (c0, cs,α), with c0 ≥ 0, cs ≥ 0, and α > 0.

Cubic model:

γ(h; θ) =


0, h = 0

c0 + cs

(
7 h2

α2 − 35
4

h3

α3 + 7
2
h5

α5 − 3
4
h7

α7

)
, 0 < h ≤ α

c0 + cs, h > α,

where θ = (c0, cs,α), with c0 ≥ 0, cs ≥ 0 and α > 0.

As observed in Figure 2.3, the exponential and Gaussian semi-variograms reach their
sill only asymptotically (when h → ∞), while the spherical and cubic models reach
their sill at h = α. Simulated Gaussian random fields using these different semi-
variogram models are depicted in Figure 2.4.

Figure 2.3: Semi-variogram models: exponential (top left), Gaussian (top right), spher-
ical (bottom left), and cubic (bottom right), where c0 = 0 (no nugget effect).

Matheron (1962) stressed the fact that modeling is a matter of choice. The paramet-
ric estimation consists of choosing a valid model. This choice must be based on the
empirical knowledge given by the observations and on the shape of the experimental
semi-variogram. We present two estimation methods for the parameter θ of a chosen
semi-variogram model: the least squares and the maximum likelihood.

Least Squares. The ordinary least squares estimator is given by

θ̂ = argmin
θ∈Θ

K∑
k=1

(
γ̂(hk)−γ(hk ; θ)

)2
,

where K is the number of classes of distances defined during the experimental semi-
variogram modeling (see subsection 2.1.3 and Figure 2.1b).
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(a) Exponential (b) Gaussian

(c) Spherical (d) Cubic

Figure 2.4: Simulated Gaussian random fields with different semi-variogram models:
exponential (top left), Gaussian (top right), spherical (bottom left), and cubic (bottom
right).

However, ordinary least squares estimation is generally not accurate since it does not
take into account the number of terms N (h) for each distance. Notice that this value
may largely vary from one class of distances to another. The method of weighted least
squares overcomes this issue by incorporating the value N (h) for each class:

θ̂ = argmin
θ∈Θ

K∑
k=1

N (hk)
γ2(hk ; θ)

(
γ̂(hk)−γ(hk ; θ)

)2
.

We refer the reader to Gaetan and Guyon, 2009, Chapter 5 for consistent and asymp-
totic results of the least squares estimators.

Maximum Likelihood. We assume that the vector of observations X(sn) =
{
Xs1

, · · · ,Xsn

}
is a Gaussian vector with mean µ and covariance matrix Σ(θ) = V ar(X). Let γ(h; θ) the
semi-variogram function with parameter θ. Then, the negative loglikelihood is given
by

l(µ,θ) = −1
2

(
log

(
Det

(
Σ(θ)

))
+ (X−µ)⊤Σ(θ)−1(X−µ)

)
.

We denote µ̂ and θ̂ (called the maximum likelihood estimators), the quantities that
satisfy: l(µ̂, θ̂) = argmin

{
l(µ,θ) : µ ∈Rn,θ ∈Θ

}
. Thus, the semi-variogram estimator

by maximum likelihood is the resulting semi-variogram function γ(h; θ̂).
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For asymptotic properties of the maximum likelihood estimator, we refer to Gaetan
and Guyon, 2009, Chapter 5 and Cressie, 1993, Chapter 7. See also Chiles and Delfiner,
1999, Section 2.6 for further details.

Once the parameter θ is estimated, one needs to validate this estimation. The two
most widely used methods are the (leave-one-out) cross-validation and the bootstrap.
The idea of the cross-validation method is to iteratively remove each observation
and predict its value using the remaining observations via Kriging. Then, one may
choose to validate the model by analyzing the prediction error distributions (Cressie,
1993). Bootstrap methods, by resampling the data and repeatedly estimating the
semi-variogram parameters, provide a robust way to validate the parametric estim-
ation (Cressie, 1993; Pardo-Igúzquiza and Olea, 2012).

Parametric estimation offers several advantages. By fitting a continuous function to
the data, it provides a smooth representation of spatial dependence. Furthermore,
parametric estimation provides interpretable parameters that allow valuable insights
into the spatial behavior of the studied phenomenon. For instance, in a spherical co-
variance model, the range parameter α represents the distance beyond which spatial
correlation becomes negligible (see Figure 2.3). Finally, as already mentioned, model
fitting gives semi-variogram estimators that are valid models (i.e. that satisfy the con-
ditionally negative definite property).

However, parametric models risk misspecifying the true dependence structure if the
selected model does not accurately reflect the underlying process. On the contrary,
non-parametric methods avoid this risk by not assuming a predefined model.

Semi-parametric. Semi-parametric methods may offer great flexibility by combin-
ing parametric and non-parametric components. These methods do not fully specify
the semi-variogram model, allowing for a more accurate representation of the spa-
tial dependence structure. In Im et al. (2007) a semi-parametric estimation of the
spectral density of a Gaussian random field is given. Desassis et al. (2015) proposed
a semi-parametric method based on pairwise likelihood estimation for the empirical
semi-variogram function, under the Gaussianity assumption of the random field. The
approach is the following: the variogram at a given lag is viewed as a parameter of
the model; then, the pairs of data locations separated (approximately) by this lag are
grouped, following the same idea as for the non-parametric Matheron (1962) estim-
ator; and thus, the pairwise likelihood is maximized on these groups.

2.1.5 Simulation of Gaussian Processes

Simulation methods are used to generate multiple realizations of spatial variables.
Undoubtedly, it is impossible to recover the true underlying spatial process. There-
fore, the goal of a simulation is to construct a representation of the phenomenon while
maintaining the spatial structure of the observed data.

One may be interested in simulations for several reasons: quantifying prediction un-
certainty, evaluating risks associated with spatial decisions, and finding the optimal
sampling design.

The classical simulation methods are the following. See Chiles and Delfiner, 1999,
Chapter 7, for further details about (conditional) simulation methods.
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Sequential Gaussian Simulation. Sequential Gaussian is one of the most widely used
methods for simulating continuous Gaussian random fields. It generates realizations
by sequentially drawing values from a multivariate normal distribution conditioned
on previously simulated values and observed data. This sequential approach based on
previous simulations ensures spatial coherence. However, the Gaussian assumption
of the data may be restrictive.

Turning Bands Method. The turning bands method simulates an isotropic random field
on R

p, based on a stationary process in R. The general idea is to first generate one-
dimensional simulations independently and then combine them along multiple dir-
ections (called bands). This method is efficient for large-scale simulations.

Spectral Methods. As previously announced in subsection 2.1.2, the notion of the spec-
tral representation can be used to develop simulation methods. It’s the case of spectral
methods, that use the Fourier transform to generate random fields in the frequency
domain, and then transform them back to the spatial domain by means of inverse
Fourier transform. Spectral methods are efficient for large grids.

Spectral Methods: The experiments in Sections 3.4 and 4.4
are implemented using the gstools library. This simulation method

belongs to the family of the spectral methods (Müller and Schüler, 2020).

In our study

2.1.6 Kriging Interpolation Method

In this subsection, we present the Kriging method, a principal problem in Geostatist-
ics. The goal here is interpolation, which aims at predicting the value of a random
process at an unobserved spatial location, based on one single realization of the phe-
nomenon observed at a finite number of sites. We discuss the optimality of the Kriging
method when the dependence structure of the random field is known. Finally, we dis-
cuss previous results on the robustness of the Kriging method and the importance of
selecting an efficient procedure for estimating the dependence structure, highlighting
the effects of the uncertainty arising from this estimation on the Kriging prediction
weights.

Let S ⊂ R
p be a spatial set and X be a second-order random field on S with R as

state space, i.e. a collection X = {Xs : s ∈ S} of real-valued square-integrable r.v.’s
defined on the same probability space, (Ω,F ,P) say, indexed by s ∈ S . We denote by
µ : s ∈ S 7→ E[Xs] its mean and by C : (s, t) ∈ S2 7→ C(s, t) = Cov(Xs, Xt) its covariance
functions. Assume that the spatial process is observed at a finite number of points
s1, . . . , sd in the spatial set S .

As formulated in the seminal contribution of Matheron (1962), the Kriging method
can be described as follows. Given a set of observations, the goal pursued is to build a
predictor X̂s of Xs at a given unobserved site s ∈ S . The accuracy of the prediction can
be measured by the Mean Squared Error (MSE)

L
(
s, X̂s

)
= EX

(X̂s −Xs

)2
 . (2.5)
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The Kriging method assumes that the predictor X̂s is of the form of a linear combina-
tion of the Xsi ’s

X̂s,Λd (s) = λ1(s)Xs1
+ . . .+λd(s)Xsd , (2.6)

where Λd(s) = (λ1(s), . . . , λd(s)) ∈Rd is the vector of weights to be determined.

The goal is to find the vector of weights Λ∗d(s) that minimizes the MSE, such that the
predictor is unbiased.

We present two interpolation methods: Simple Kriging and Ordinary Kriging. No-
tice that other methods have been proposed for random fields: we refer the reader
to Chiles and Delfiner, 1999, Section 3, and Gaetan and Guyon, 2009, Section 1, for
a presentation of the Universal Kriging approach, which is useful in the presence of
drift, and to Cressie, 1993, Section 3, for the Cokriging method, which enables mul-
tivariate interpolation.

Simple Kriging. In Kriging in its simplest form, the mean µ(·) is supposed to be
known. Rather than recentering it, it is assumed that the random field X is centered:
µ := 0.

The optimal predictor of this form regarding the expected prediction error can be
deduced from a basic variance computation, it is described below.

Lemma 2.20. For d ≥ 1, let sd = (s1, . . . , sd), X(sd) = (Xs1
, . . . , Xsd ), Σ(sd) = V ar(X(sd))

and define cd(s) = (Cov(Xs,Xs1
), . . . , Cov(Xs,Xsd )). Suppose that the matrix Σ(sd) is posit-

ive definite. Then, the solution of the minimization problem

min
Λd (s)∈Rd

L
(
s, X̂s,Λd (s)

)
is unique and given by

Λ∗d(s) = Σ(sd)−1cd(s). (2.7)

In addition, the minimum is equal to

L
(
s, X̂s,Λ∗d (s)

)
= V ar(Xs)− cd(s)⊤Σ(sd)−1cd(s).

Proof. The optimality derives from the basic properties of orthogonal projection in
the L2 space and the closed analytical form for the minimizer of

L
(
s, X̂s,Λd (s)

)
= V ar

(
Λd(s)⊤X(sd)−Xs

)
= V ar(Xs) +Λd(s)⊤Σ(sd)Λd(s)− 2cd(s)⊤Λd(s), (2.8)

is obtained by solving a linear system: Λ∗d(s) = Σ(sd)−1cd(s). The minimal mean
squared error is then:

L
(
s, X̂s,Λ∗d (s)

)
= V ar(Xs) + cd(s)⊤Σ(sd)−1Σ(sd)

(
Σ(sd)−1

)⊤
cd(s)

− 2cd(s)⊤Σ(sd)−1cd(s) = V ar(Xs)− cd(s)⊤Σ(sd)−1cd(s).
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Remark 2.21. (Gaussian random fields) Notice that, when the random field X is Gaus-
sian, we have: X̂s,Λ∗d (s) = E[Xs | X(sd)]. Hence X̂s,Λ∗d (s) is the minimizer of the quadratic

error L
(
s, X̂s

)
over the set of all predictors X̂s.

Remark 2.22. (Exact interpolation) The solution of the simple Kriging problem is an
exact interpolator, in the sense that X̂si ,Λ

∗
d (si ) = Xsi for all i ∈ {1, . . . , d} (Cressie, 1993, p.

129).

Ordinary Kriging. In most practical situations, the mean is unknown. Thus, simple
Kriging cannot be applied. An obvious approach is to estimate the mean and subtract
it from the data (in order to go back to the zero mean case). In this case, however, the
estimated residuals are not the same as the true residuals and the statistical procedure
properties are difficult to analyze. An optimal solution is Ordinary Kriging, which
does not require any knowledge of the mean.

Chiles and Delfiner (1999) proposed a version of Ordinary Kriging using the semi-
variogram. The Kriging system to estimate the random process at a location s in a
matrix version (Gratton, 2002) is:

Λ∗OK (s) = Γ (sd)−1bd(s), (2.9)

where

Γ (sd) =


γ(h1,1) · · · γ(h1,d) 1

...
...

...
γ(hd,1) · · · γ(hd,d) 1

1 · · · 1 0

 ,
bd(s) =


γ(h1,0)

...
γ(hd,0)

1

 , λ =


λ1(s)
...

λd(s)
β

 ,

with hi,j = ∥si − sj∥ being the distance between two observed locations (si , sj ) ∈ S2 and
hi,0 = ∥si − s∥ is the distance between the point of interest s and each observed location
(si)1≤i≤d .

The parameter β is introduced in order to obtain an unbiased estimator: it induces
that the weights λ1(s), · · · ,λd(s) sum up to 1.

Notice that Remarks 2.21 and 2.22 also apply to the Ordinary Kriging approach.

Optimality / BLUP. When the covariance function (respectively the semi-variogram
function) is known, the simple Kriging predictor (resp. Ordinary Kriging predictor)
is optimal. In the literature, the Kriging predictor is said to be BLUP, for Best Linear
Unbiased Predictor. In the following chapters, we refer to this predictor as the theoret-
ical Kriging predictor. For further details, we refer the reader to (Stein, 1999, Section
1) and (Cressie, 1993, Section 3).

In practice, the covariance (or semi-variogram) function is unknown and needs to be
estimated. See subsection 2.1.4 for a discussion on the estimation of the dependence
structure. Once the covariance (respectively the semi-variogram) estimation is ob-
tained one can construct the empirical counterpart of Σ(sd) and cd(s) (resp. Γ (sd) and
bd(s)). Finally, replacing Σ(sd) and cd(s) in Equation (2.7) (resp. Γ (sd) and bd(s) in
Equation (2.9)) by their estimators, an empirical version of the Kriging predictor can
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be obtained employing the plug-in rule. In the following chapters, we refer to this
predictor as the empirical Kriging predictor.

Both Kriging methods depend on the dependence structure of the data: the simple
Kriging’s optimal vector of weights depends on the covariance function, while the Or-
dinary Kriging’s weights depend on the semi-variogram function. Furthermore, both
linear predictors depend also on the point location of interest s. This implies that
the Kriging method takes advantage of the spatial dependence structure of the data:
point locations that are close to some observations will get more weight in the predic-
tion function, and the weights are determined by the degree of similarity between the
data points.

Uncertainty effects of the dependence structure estimation on Kriging prediction.
The semi-variogram plays a crucial role in Kriging, as the prediction weights are de-
termined based on the semi-variogram values. Thus, it is important to be able to
quantify the variogram estimation uncertainty to ensure that the estimator is suffi-
ciently accurate for Kriging prediction. As in Cressie and Zimmerman (1992), we
say that a method is stable when model misspecification or parameter estimation has
little effect on its accuracy. Cressie and Zimmerman (1992) distinguish two broad
categories of approaches: the mathematical stability approach and the statistical sta-
bility method. For the first approach, one may consider the effects on the Kriging
prediction weights due to the use of a perturbed semi-variogram instead of the true
function. The second approach investigates the sensitivity of the results to estimates
of the semi-variogram’s parameter θ.

Matheron (1965) warned about the variability of the semi-variogram estimator when
computed for large distances h. Stein (1999) and Putter and Young (2001) suppor-
ted this idea and stressed the necessity to take into account the effects of the uncer-
tainty about the dependence structure estimation for classical Geostatistics methods.
However, ignoring these effects may lead to an inappropriate model choice, as it may
induce a bias for the Kriging predictor, and thus result in larger prediction errors
(Todini, 2001).

Various approaches have been proposed to quantify the effects stemming from un-
certainty in the estimation. For example, Diamond and Armstrong (1984) and Arm-
strong (1984) introduced the definition of neighborhoods of semi-variograms: a semi-
variogram g lies in the σ -neighborhood (with σ ∈]0,1[) of a semi-variogram γ , if for
all distances h > 0, 1− σ < g(h)

γ(h) < 1 + σ . The σ -neighborhood is then noted Nσ (γ). The
idea is that similar-looking variograms may lead to similar results for Kriging inter-
polation. They identified two categories of causes that imply a change in the Kriging
weights between two semi-variogram models that belong to the same σ -neighborhood:
changes due to a slight perturbation in the semi-variogram estimation, and changes
that result from a different sampling of the observations locations. Bardossy (1988)
discussed two drawbacks of this approach. First, these bounds are limited to semi-
variogram models belonging to the same σ -neighborhood. Second, the bounds de-
pend mostly on the observations locations and on the semi-variogram, neglecting the
information carried by the spatial position of the point of interest on which Kriging
is applied. Other studies focused on the estimation variance. Brooker (1986) studied
the effect of parameter changes on estimation variance for spherical semi-variogram,
later extended by Bardossy (1988) for a modified nugget effect.
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Bardossy (1988) warned about the lack of results for the implication of the sampling
configuration in these effects. To ensure robust Kriging predictions, one must select
an optimal sampling setting. Indeed, the empirical estimation of the semi-variogram
is unavoidably affected by the spatial configuration of the observations. The issue of
selecting an optimal sampling recovers: (i) the number of observations needed, and
(ii) their distribution over the spatial domain (see subsection 2.1.1). Russo (1984)
developed a method to define an optimal design, based on a criterion that tries to
minimize the repartition of lags within each class of the empirical semi-variogram.
McBratney and Webster (1981) and Yfantis et al. (1987) compared three sampling
schemes: the triangular, the rectangular, and the hexagonal grids. They found that
the equilateral triangular design gives more reliable estimate of the semi-variogram.
However, the rectangular design usually gives similar results, and is often preferred
in real-data applications since it fits real-world situations well. Wang et al. (2020)
showed that an optimal sampling design must minimize the fill distance, which is the
maximum distance from any site in the domain to the nearest sample point location. It
measures how well the set of observations covers the spatial domain: the more the fill
distance is small, the more the sample points are well-distributed and provide better
coverage. Wang et al. (2020) also discussed the link between prediction robustness
and smoothness of the covariance function: a less smooth function is more robust.

In some studies, the accuracy of the dependence structure estimation was discussed
when independent copies of the random process were available. The focus is on
defining the optimal number of independent copies, referred to as the sample size.
Adamczak et al. (2010) and Rudelson (1999) proposed an optimal sample size for spe-
cific distributions, such as sub-exponential or sub-Gaussian distributions. Vershynin
(2012) extended the study for all distributions with finite fourth moment. Loukas
(2017) gave non-asymptotic bounds for the concentration of inner products involving
eigenvectors of the estimated and the true covariance matrices. The result is that few
independent copies can be sufficient. Marchant and Lark (2004) gave a comparison
between uncertainty effects when the semi-variogram is computed over one single
simulation and when it is averaged over several simulations. The uncertainty effects
have different origins depending on the setting. For the one single simulation case,
the errors may be induced by the sampling design only. When several simulations
are available, errors may appear due to the variation of the random field over each
realization.

These last approaches violate our main assumption, since they assume independent
copies of the random process. In Chapters 3 and 4, the focus is on the accuracy of
the semi-variogram estimation and of the Kriging predictor when the phenomenon
is assumed to be observed from one single realization. This setting is closer to real-
world situations but involves deeper technical difficulties, which are discussed in the
following chapters.

2.2 Statistical Learning Theory

Statistical Learning Theory provides the mathematical and theoretical foundations
for understanding and developing Machine Learning algorithms. The main goal is to
build models that can make accurate predictions based on data, and identify underly-
ing patterns and structures within the data.

The different kinds of learning are:
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• Supervised Learning: The goal is to train a function to associate inputs with
outputs by leveraging observations of pairs of inputs and their corresponding
labels.

• Unsupervised Learning: In contrast to Supervised Learning, the data lack labels.
The goal in this context is to deduce patterns or structures in the data based on
the observations (only inputs).

• Semi-supervised Learning: Combining both previous learning methods, the idea
is to improve the learning accuracy using both labeled and unlabeled data.

• Reinforcement Learning: The learning evolves through feedbacks (in the form
of rewards or penalties) from an environment.

We restrict ourselves to the Supervised Learning setting. In Supervised Learning, the
output nature can vary: an output can be either a quantitative value or a qualitative
value (also called a categorical variable). For each type of output, there is the corres-
ponding prediction method: for a quantitative output, we apply a regression method,
while for a categorical variable, the prediction method is called classification. Both
methods share a similar setup, which is the following. Let Z = (Z1, · · · ,Zd) a random
d−dimensional vector (with R

d as input space) and Y a square integrable random out-
put (the label) that takes its values in an output space Y . Let DN = (Zi ,Yi)1≤i≤N be a
training sample, consisting of independent copies of the random pair (Z,Y ), distrib-
uted according to a distribution P . The goal here is to estimate a function g : Rd →Y
(a predictor) which predicts Y from Z. The two settings will differ from the definition
of the output space Y .

This section is structured as follows. In subsection 2.2.1, the principle of Empirical
Risk Minimization (ERM) is discussed. In the next two subsections, we present the
two prediction methods of classification (subsection 2.2.2) and regression (subsection
2.2.3). Finally, subsection 2.2.4 provides a short summary about the main concentra-
tion inequality results in Statistical Learning Theory.

The results presented in this section are drawn from Lugosi (2002) and (Boucheron
et al., 2005). For further details on Statistical Learning Theory, we refer the reader
to Bousquet et al. (2003), and to Kanevski et al. (2009) for an overview of Machine
Learning for spatial data, with a comparison between the Geostatistical and the Ma-
chine Learning point of views.

2.2.1 Empirical Risk Minimization

Under the setting stated above, the objective of this subsection is to evaluate the ac-
curacy of the predictor g. To this purpose, we first define a loss function ℓ : Y ×Y →R,
whose definition depends on the nature of the problem under consideration. The loss
function ℓ(y,y′), given two variables y and y′, gives information about their similarity:
the more the loss value is small, the more the two variables have close values. Since
our focus is on the accuracy of the prediction of a label YN+1 for an unobserved input
ZN+1 by the classifier F, the quantity of interest is ℓ

(
g(ZN+1),YN+1

)
: the more this

quantity is small, the more the prediction is good. We define the risk of a predictor g
as:

R(F) = E

[
ℓ
(
g(Z),Y

)]
. (2.10)
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Thus, a good predictor is such that it minimizes the risk over all measurable functions.
The problem becomes

inf
g
R(g). (2.11)

When the distibution P is known, we define the Bayes riskR∗ = inf
g
R(g) as the smallest

possible risk value, and the Bayes rule g∗ = argmin
g
R(g) as the optimal predictive func-

tion. However, the distribution P is unknown in practice. The Empirical Risk Min-
imization principle consists in replacing the unknown risk (2.10) in the optimization
problem (2.11) by a statistical version computed from the training sample available:

R̂N (g) =
1
N

N∑
i=1

ℓ
(
g(Zi),Yi

)
, (2.12)

and restricting minimization to a class G of predictors of controlled complexity, see e.g.
Györfi et al. (2002). The quantity R̂N (g) is called the empirical error of the classifier g,
and depicts the mean prediction error of g over all the training sample DN .

In the two following subsections, we present the particular cases of classification and
regression for ERM.

2.2.2 Classification Problem

Classification aims at defining a rule that assigns a class for an observation. For
simplicity, we restrict ourselves to binary classification, i.e. Y = {0,1}. A mapping
g : Rd → {0,1} is called a classifier.

We introduce the 0 – 1 loss function, given by ℓ(y,y′) = I{y , y′}. Thus, the risk of a
classifier g is defined as the probability of error of g

R(g) = P(g(Z) , Y ).

Define η(Z) = P(Y = 1|Z) = E[Y |Z]. Then, the Bayes classifier (i.e. the Bayes rule
function for classification) is

g∗(Z) =

1 if η(Z) > 1/2,

0 otherwise.

Indeed, it minimizes the risk and we have P

(
g∗(Z) , Y

)
≤ P

(
g(Z) , Y

)
(Lugosi, 2002,

Theorem 1.1).

The empirical error for the classification problem is

R̂N (F) =
1
N

N∑
i=1

I{g(Zi) , Yi}.

For further details on classification, we refer the reader to Devroye et al. (1996);
Boucheron et al. (2005).
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2.2.3 Regression Problem

In the basic and usual regression setup, the label is assumed to be a continuous output,
i.e. Y = R. One of the most widely used loss functions in the simple regression setting
is the quadratic loss ℓ(y,y′) = (y − y′)2.

Based on a training sample {(Z1,Y1), . . . , (ZN ,YN )} composed of independent copies of
the random pair (Z,Y ), the goal pursued is to build a predictor g that minimizes the
MSE

R(g) = E

[(
Y − g(Z)

)2
]

(2.13)

over the ensemble of all possible measurable mappings g : Rd → R that are square
integrable with respect to the distribution of Z. The Bayes rule is given by g∗(Z) =
E[Y | Z]. Based on the Empirical Risk Minimization principle, the empirical error is

R̂N (g) =
1
N

N∑
i=1

(
Yi − g(Zi)

)2
.

Under the assumption that the random variables Y and {g(Z) : g ∈ G} have sub-
Gaussian tails, the order of magnitude of the fluctuations of the maximal deviations
supg∈G |̂LN (g) − L(g)| can be estimated and generalization bounds for the MSE of em-
pirical risk minimizers can be established (Lecué and Mendelson, 2013).

Linear Ridge Regression. In linear regression, the class considered is that composed
of all linear functionals on R

d , namely G = {⟨ζ, ·⟩ : ζ ∈ R
d}, where ⟨·, ·⟩ denotes the

usual inner product on R
d . In Linear Ridge Regression (LRR), one thus minimizes the

empirical error plus a quadratic penalty term to avoid overfitting

N∑
i=1

(
Yi − ζ⊤Zi

)2
+α||ζ||2,

where α ≥ 0 is a tuning parameter that rules the trade-off between complexity pen-
alization and goodness-of-fit (generally selected via cross-validation in practice). It
yields

ζ̂α = Y⊤NZN
(
αId +ZN Z⊤N

)−1
, (2.14)

where Id is the d×d identity matrix, YN = (Y1, . . . , YN ) and ZN is the d×N matrix with
Z1, . . . , ZN as column vectors, as well as the predictive mapping ĝN (z) = ζ̂⊤α z, z ∈ Rd .
The regularization term ensures that the matrix inversion involved in (2.14) is always
well-defined.

Kernel Ridge Regression. However, LRR is limited to linear problems. To over-
come this boundary, we introduce the kernel trick. The idea is to transform the data
space into a space of larger dimension, namely the Reproducing Kernel Hilbert Space
(RKHS), thanks to the use of a kernel function.

In Kernel Ridge Regression (KRR), one applies LRR in the feature space, i.e. to the data
(Y1,Φ(Z1)), . . . , (YN ,Φ(ZN )), where Φ : Rd →H is a feature map taking its values in a
RKHS (H, ⟨·, ·⟩H) associated to a (positive definite) kernel K such that ∀(z,z′) ∈Rd×Rd ,
K(z,z′) = ⟨Φ(z),Φ(z′)⟩H. By means of the kernel trick, the predictive mapping, linear
in the feature space, can be written as

g̃N (z) = Y⊤N (αIN +KN )−1κN (z), (2.15)
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where IN is the N ×N identity matrix, KN is the Gram matrix with entries K(Zi ,Zj ) =
⟨Φ(Zi),Φ(Zj )⟩H for 1 ≤ i, j ≤ N and κN (z) = (K(Z1, z), . . . , K(ZN , z)) ∈ RN . One may
refer to Steinwart and Christmann, 2008, Chapter 9, for more details on support vec-
tor machines for regression, and to Györfi et al. (2002) for additional details on re-
gression.

2.2.4 Concentration Inequalities – Theoretical Guarantees

Excess of Risk. Recall the general empirical error R̂N (g) definition in Equation (2.12)
(for both classification and regression problems). Denote g∗N the classifier such that
g∗N ∈ argmin

g∈G
R̂N (g). The excess of risk of g∗N is given byR(g∗N )−R∗. We can decompose

the excess of risk into two errors:

R(g∗N )−R∗ = inf
g∈G
R(g)−R∗︸          ︷︷          ︸

approximation error

+R(g∗N )− inf
g∈G
R(g)︸               ︷︷               ︸

estimation error

.

The estimation error can be bounded by the following inequality (Lugosi, 2002, Lemma
1.1)

R(g∗N )− inf
g∈G
R(g) ≤ 2 sup

g∈G

∣∣∣∣R̂N (g)−R(g)
∣∣∣∣ . (2.16)

Basic Concentration Inequalities. Notice that R̂N (g) −R(g) = 1
N

N∑
i=1

Xi −E[X], with

X = ℓ(g(Z),Y ). Concentration inequalities provide bounds on the probability of devi-
ation of a random variable from some value (generally, its expected value). We give
hereafter some of the most widely used results. We refer the reader to Devroye et al.
(1996); Boucheron et al. (2013) for a complete review of concentration inequalities,
together with the proofs of the following results.

Markov’s Inequality. Let X be a non-negative random variable. Then, for any t > 0,

P

(
X ≥ t

)
≤ E[X]

t
.

Chebyshev’s Inequality. Let X be an arbitrary random variable. Then, for any t > 0,

P

(
|X −E[X]| ≥ t

)
≤ V ar(X)

t2 .

Hoeffding’s Inequality. Let X1, · · · ,XN be independent bounded random variables, where

Xi is in [ai ,bi] with probability 1 and let S =
N∑
i=1

(
Xi −E[Xi]

)
. Then, for any t > 0,

P

(
S ≥ t

)
≤ exp

(
− 2t2∑N

i=1(bi − ai)2

)
,

and

P

(
S ≤ −t

)
≤ exp

(
− 2t2∑N

i=1(bi − ai)2

)
.

Combining Hoeffding’s inequality and the bound in Equation (2.16), the following
bound on the estimation error of the ERM is obtained.
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Theorem 2.23. (Lugosi, 2002, Theorem 1.3) Let F be a class of predictors with cardinality
bounded by M. Then, for any t > 0,

P

sup
g∈G

∣∣∣∣R̂N (g)−R(g)
∣∣∣∣ > t

 ≤ 2M exp(−2Nt2).

Concentration Inequalities for Sum of Independent Gamma Variables. We now
present two concentration inequalities on the sum of independent Gamma variables,
from Bercu et al. (2015) and Wang and Ma (2020), that we use in Chapter 3 to derive
tail bounds for the empirical semi-variogram estimator. We refer the reader to the
corresponding references for a proof of these results.

Let X ∼ Γ (α,β) be a Gamma random variable with shape parameter α ∈ R+ and rate
parameter β ∈R+, such that E[X] = α

β (see subsection A.1 on Gamma r.v.’s).

Theorem 2.24. (Bercu et al., 2015, Theorem 2.57) Let X1, · · · ,XN be a finite sequence
of independent r.v.’s such that, for all 1 ≤ i ≤ N , Xi ∼ Γ (αi ,βi), with αi ,βi ∈ R+ and let
SN = X1 + · · ·+XN . Then, for any t ∈]0,1[,

P

(
SN ≤ µ− tµ

)
≤ exp

−µ2

σ2
t2

2

 ,
where µ = E[SN ] and σ2 = V ar(SN ).

Theorem 2.25. (Wang and Ma, 2020, Theorem 4.1) Let X1, · · · ,XN be a finite sequence
of independent r.v.’s such that, for all 1 ≤ i ≤ N , Xi ∼ Γ (αi ,βi), with αi ,βi ∈ R+ and let
SN = X1 + · · ·+XN . Then, for any t ≥ 1,

P

(
SN ≥ tµ

)
≤ exp

(
−β∗µ(t − 1− log(t)

)
,

where µ = E[SN ] and β∗ = mini βi .

We propose the following result obtained thanks to a slight modification of Theorem
2.25:

Corollary 2.26. Let X1, · · · ,XN be a finite sequence of independent r.v.’s such that, for all

1 ≤ i ≤ N , Xi ∼ Γ (αi ,βi), with αi ,βi ∈ R+ and let SN =
N∑
i=1

(
Xi −E[Xi]

)
. Then, for any

t ≥ 1,

P

(
1
N
SN ≥ tµ

)
≤ exp

(
−β∗µ(tN − log(1 + tN )

)
,

where µ =
N∑
i=1

E[Xi] and β∗ = mini βi .
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Concentration Inequalities for the sum of Independent Gamma Variables:
Assuming a Gaussian distribution, the empirical semi-variogram

function can be regarded as the sum of independent χ2 random variables
(see Proposition 3.7 in Chapter 3), and thanks to the relationship between

Gamma and χ2 random variables (see Proposition .14 in Appendix A),
as the sum of independent Gamma random variables. Thus, combining

this with the above results, we obtain concentration inequalities for
the empirical semi-variogram (see Section 3.2 for all the details).

In our study

2.3 Conclusion

The purpose of Kriging can be more ambitious than the construction of a pointwise
prediction for the random field X at an unobserved site s ∈ S . The goal pursued may
consist of building a decision function f : S ×Rd → R in order to predict X over all S
based on the observation of the spatial process at a finite number of points s1, . . . , sd
in the spatial set S . Thus, one can obtain a complete map, which gives the predicted
values of the random field at each site of the spatial domain. This point of view is the
one adopted in Chapter 4.

When the dependence structure of the phenomenon is known, the Kriging predictor
is optimal. But, in practice, there are no knowledge about this structure, which thus
needs to be estimated. In the case of an unknown dependence structure, there are no
theoretical guarantees of optimality.

The nature of currently available spatial datasets calls for flexible, non-parametric
approaches to analyze spatial phenomenon. Nevertheless, the inherent dependence
structure within the data prevents significant theoretical advancements in spatial in-
terpolation using finite samples. Thus, the theory available in spatial statistics is
mainly asymptotic (see e.g. Stein, 1999).

New (non-asymptotic) results must be developed, in order to establish generalization
guarantees. The first part of this thesis aims at establishing non-asymptotic bounds
that assess the generalization capacity of the empirical Kriging predictive map. This
research could provide valuable insights and tools for geostatistical modeling. De-
riving robust non-asymptotic bounds for the Kriging predictor when the covariance
function is unknown could lead to more reliable and interpretable spatial predictions.
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1: Key points of this Chapter.

Definitions and Assumptions used in this thesis

• In-fill asymptotic: the spatial domain becomes denser and denser as the
number of observations grows −→ allows efficient semi-variogram estim-
ation for all distances (subsection 2.1.1).

• Second-order stationarity and isotropy: ensure that the process is suf-
ficiently homogeneous −→ allows accurate estimation of the dependence
structure (definitions 2.7 and 2.9).

• Ergodicity: ensures efficient prediction of the random field from a single
realization (definition 2.16).

• Gaussian process: the empirical semi-variogram estimator can be seen as
the sum of independent χ2 variables (definition 2.17 and Proposition 3.7
in Chapter 3).

Concepts and Methodologies used in this thesis

• Non-parametric estimation: Matheron (1962) empirical semi-variogram
estimator −→more flexible approach (subsection 2.1.4).

• Simple Kriging: interpolation method to predict the value of a random
process at unobserved spatial location, taking into account the depend-
ence structure of the data −→ predictor of the form of a linear combina-
tion of the (finite number of) observations, based on one unique realiza-
tion of the phenomenon (subsection 2.1.6).

• Non-asymptotic results: tail bounds for the global excess risk of the Kri-
ging method −→ lead to more reliable and interpretable spatial predic-
tions.

• Kernel ridge regression: similarities between the Kriging and the KRR
methods −→ viewing Kriging as a KRR problem (subsection 2.2.3).

• Statistical theory: concentration inequalities for the sum of independ-
ent Gamma variables −→ non-asymptotic bounds on the accuracy of the
empirical semi-variogram estimation for Gaussian processes (subsection
2.2.4).
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3.1 Introduction

In this chapter, we focus on the non-parametric covariance function estimation of an
isotropic stationary Gaussian process X, based on a single realization X′ observed at
spatial locations σ1, . . . , σn forming a regular grid. We place ourselves in the in-fill
asymptotic setting, assuming that the observed sites σ1, . . . , σn form a denser and
denser grid of S as n grows. We provide non-asymptotic bounds for the covariance
estimation, thanks to recent concentration results for sums of Gamma random vari-
ables (Bercu et al., 2015; Wang and Ma, 2020). To the best of our knowledge, our
non-asymptotic bounds for a non-parametric covariance estimation in the in-fill set-
ting are the first results of this nature. These theoretical results, as well as the role
played by the technical conditions required to establish them, are illustrated by vari-
ous numerical experiments on simulated data.

This contribution answers to our Research Question 2:

How accurate is the empirical covariance estimator, based on a finite number of
observations on a regular grid and with one unique realization? (see Section 1.2 in

Chapter 1).

The theoretical results obtained in this chapter are fundamental for deriving the non-
asymptotic bounds to establish generalization guarantees of the simple Kriging pre-
dictor, that are presented and discussed in Chapter 4, thus answering to our Research
Question 3.

This chapter is organized as follows. The general setup, together with the main as-
sumptions and concepts to ensure an efficient and flexible estimation of the spatial
dependence structure are stated in Section 3.2. The main results of the chapter are
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given in Section 3.3, where a non-asymptotic bound for a non-parametric estimator
of the covariance function is established. Illustrative experiments are presented in
Section 3.4. Finally, Section 3.5 gathers concluding remarks. The proofs of the main
results are provided in Appendix A.

Contributions. Our goal is to overcome the challenges posed by the spatial depend-
ency within the data. For that purpose, under appropriate conditions, we assess
the accuracy of the non-parametric covariance estimator for second-order stationary
Gaussian processes whose covariance function, unknown in practice, is assumed to
be isotropic. The code for the numerical experiments on simulated data (which allow
assessing the role of each assumption) are available on GitHub.

Context and Motivation. The goal of Kriging is interpolating, i.e. predicting the
values of a square integrable random process X = {Xs}s∈S , S ⊂ R

2, at all unobserved
locations in S , based on one unique realization observed at a finite number d ≥ 1
of sites s1, . . . , sd . When the covariance function is known, the Kriging predictor is
optimal (or BLUP, for Best Linear Unbiased Predictor, see e.g. Stein, 1999, Section 1,
and Cressie, 1993, Section 3). However, in practice, the covariance structure of X is
unknown. Thus, the prediction rule is derived from a (generally non i.i.d.) training
spatial dataset: a single realization X′ of X, independent from those to be predicted,
observed at n ≥ 1 locations σ1, . . . , σn in S . From a non-parametric statistical per-
spective, an empirical version of the simple Kriging predictor can be built, based on
the spatial observations X′σ1

, . . . , X′σn involved in the learning procedure, by means of a
plug-in strategy, where the (unknown) covariance is replaced with its estimator. Thus,
the covariance function estimation is of crucial importance, since the simple Kriging
problem heavily depends on it.

Notation. Let S ⊂ R
2 be a (Borel measurable) spatial set and X be a second-order

random field on S with R as state space. We denote by µ : s ∈ S 7→ E[Xs] its mean and
by C : (s, t) ∈ S2 7→ C(s, t) = Cov(Xs, Xt) its covariance functions. The main definitions
and methodologies are presented in Chapter 2.

3.2 Non-parametric Estimation

The estimation of the covariance function, which the plug-in predictive approach con-
sidered in Chapter 4 fully relies on, is based on a ‘large‘ number n ≥ 1 of observations
X′(σn) := (X′σ1

, . . . , X′σn) exhibiting a certain dependence structure and cannot rely
on independent realizations of the random field X, in contrast to the usual statist-
ical learning setup. In this section, we first give the main setting about the sampling
scheme and the asymptotic regime (refer to subsection 2.1.1 and the corresponding
paragraph in subsection 2.1.6 for a discussion about optimal sampling). Then, we
present the covariance estimation and the main assumptions made to ensure a suc-
cessful approach. Finally, we consider the semi-variogram estimation, which is gener-
ally used in Geostatistics since it has several advantages compared to the covariance
estimation.

https://github.com/EmiliaSiv/Simple-Kriging-Code
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3.2.1 Sampling Setting – Regular Grids and In-fill Asymptotic

Before computing the spatial dependence structure estimation, two crucial questions
are: What is the necessary number of samples for an efficient statistical study, and how
should they be distributed across the spatial domain? Indeed, the empirical estima-
tion of the dependence structure is inevitably influenced by the spatial arrangement of
the observations (see subsection 2.1.6). The question of an optimal sampling scheme
has been the center of interest in various studies, see e.g. Russo, 1984; McBratney and
Webster, 1981; Wang et al., 2020.

Regular grids. In this thesis, the observed sites are supposed to be equispaced, form-
ing a regular grid. Since the goal of this chapter is to explain the main ideas rather
than dealing with the problem in full generality, we assume for simplicity that the
spatial set S is equal to the unit square [0,1]2 and the observed sites are the points of
the dyadic grid at scale J ≥ 1 (see Figure 3.1):

GJ =
{
(k2−J , l2−J ) : 0 ≤ k, l ≤ 2J

}
. (3.1)

In this case, we have n = (1 + 2J )2. The gridpoints are indexed using the lexicographic
order on R

2 by assigning index i = k(1 + 2J ) + (l + 1) to point (k2−J , l2−J ), which is
denoted by σi . We point out that the regularity of the grid formed by the observed
sites is key to the present analysis, to control the spectrum of the covariance matrix of
the sampled points in a non-asymptotic fashion namely (see also Assumption 3.8 be-
low), so as to define an unbiased semi-variogram estimator at the observed lags with
provable accuracy (cf Proposition 3.9). Proving that such a control still holds true
for irregular grids (under specific assumptions unavoidably, remaining to be formu-
lated precisely) is a great mathematical challenge (even in the 1-d time series case, see
e.g. Brockwell and Davis, 1987). Extending the present theoretical study to observa-
tions on irregular grids is of importance undeniably, insofar that it may cover various
situations in practice, but will be the subject of further research. However, beyond
technical barriers, one should pay attention to the fact that measurements at equis-
paced spatial sites are extremely common and of great interest in practice, since they
are precisely those produced by numerous image-producing systems, in Geophysics
for instance. For this reason, the geostatistical literature (see e.g. Cressie, 1993, Sec-
tion 2.4) has mainly focused on the regular case, while the irregular case is in contrast
poorly documented and no dedicated statistical study of the (even non-asymptotic)
behavior of the variogram/covariance estimator has been carried out yet.

Asymptotic Setting. Here, we place ourselves in the in-fill asymptotic: the number
of observations inside the fixed and bounded domain S increases, the latter forming
a denser and denser grid as n→ +∞. Indeed, the in-fill asymptotic is well-suited for
interpolation problems (Stein, 1999; Chang and Stein, 2013). Furthermore, the in-
fill asymptotic is obviously preferred in real-world applications where the domain of
interest is fixed, for example in the case of temperature prediction in a given country
(cf Section 4.5 in Chapter 4).

3.2.2 Covariance Estimator

The strong dependence structure in spatial data explains the relationships between
data points influenced by their spatial proximity. Understanding this structure is of
prime importance before incorporating it into modeling. In Geostatistics, the spatial
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Figure 3.1: Dyadic grid at scale J = 3 (n = 81). Depicted lags: h1 = 2−J (in red),
h2 = 2/2J (in blue) and h3 =

√
2/2J (in green).

dependence is generally modeled using either the covariance function or the semi-
variogram function of the process. However, in practice, the dependence structure of
an observed phenomenon is unknown and must be estimated.

Recall that in our study, we have access to a single realization of the random field X to
compute the estimation of the covariance function. Therefore, to achieve an accurate
estimation, we need to make several assumptions about the random field, as listed
below.

Gaussianity, stationarity and isotropy. The assumption of (second-order) stationarity
is required so that a frequentist approach can be successful in such a non-parametric
framework (see subsection 2.1.2 for further details and the definitions of stationar-
ity, isotropy, and Gaussian processes). Furthermore, since the final objective is the
study of the simple Kriging method, the mean of the random field is supposed to be
known and equal to zero. In the subsequent analysis, we suppose that the following
hypotheses are fulfilled.

Assumption 3.1. The random field X is centered: µ := 0.

Assumption 3.2. The centered random field X is stationary in the second-order sense and
its covariance function C is isotropic w.r.t. the Euclidean norm, i.e. there exists c : R+→R

s.t. c(||t − s||) = C(s, t) for all (s, t) ∈ S2.

Assumption 3.3. There exists a known integer j1 ≥ 1 s.t. c(h) = 0 as soon as h ≥
√

2−2−j1 .

Remark 3.4. (On Assumption 3.3) We point out that many popular covariance models
fulfill Assumption 3.3. This is the case of the truncated power law, the cubic and the spher-
ical covariance models, used to generate the datasets analyzed in the experiments presented
in Section 3.4. On the contrary, the Gaussian, the exponential and the Matern covariance
models do not satisfy this hypothesis. However, as shown in Section 4.4 in Chapter 4, the
Kriging prediction methodology still performs satisfactorily in these situations, provided
that the decorrelation rate is fast enough.

Assumption 3.5. The random field X is Gaussian with positive definite covariance func-
tion (see Definition 2.17).
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Under Assumption 3.5, the weak stationarity guaranteed by Assumption 3.2 is of
course equivalent to strong stationarity (i.e. shift-invariance of the finite dimensional
marginals) insofar as Gaussian laws are fully characterized by the mean and covari-
ance functions. Under Assumptions 3.1-3.2, we have C(s, t) = E[XtXs] = c(h) for all
(s, t) ∈ S2 s.t. h = ||s − t||. Supposing in addition that Assumption 3.3 is fulfilled (the
function c can be then extended to R

2 by setting c(h) = 0 for all h >
√

2), a natural
estimator ĉ of the covariance function is then defined by ĉ(h) = 0 if h ≥

√
2 − 2−j1 and

otherwise by

ĉ(h) =
1
nh

∑
(σi ,σj )∈N (h)

X′σiX
′
σj , (3.2)

where N (h) =
{
(σi ,σj ), ∥σi − σj∥ = h, (i, j) ∈ ⟦1,n⟧2

}
is the set of pairs of sites that are at

distance h from one another and nh = |N (h)| denotes its cardinality (notice that n0 = n).
Equipped with these notations, notice that a pair of sites (σi ,σj ) ∈ N (h) at distance h
from one another is taken into account twice in the set N (h), since ∥σi−σj∥ = ∥σj−σi∥ =
h and so (σj ,σi) ∈N (h). Define Hn = {||σi − σj || : (i, j) ∈ ⟦1,n⟧2} the set of observed lags,
which are all less than

√
2. The lemma stated below shows that nh is of order n for

observed lags h <
√

2− 2−j1 as soon as n > (
√

2− 2−j1)2, thus ensuring that the number
of terms averaged in (3.2) is large enough, of order n namely. Refer to Appendix A for
the technical proof.

Lemma 3.6. Suppose that Assumption 3.3 is fulfilled and let n > (
√

2− 2−j1)2. Then, there
exists a constant 0 < ν ≤ 1 depending on j1 only such that: ∀h ∈ Hn, s.t. h <

√
2 − 2−j1 ,

nh > νn.

Figure 3.2a depicts the case of a dyadic grid at scale J = 2 for illustration purpose. For
small values of h (see Figure 3.2b), the number nh is large, so that a sufficient num-
ber of pairs of sites can be involved in the computation of ĉ(h) in Equation (3.2). As
h grows, the number nh decreases (Figure 3.2c). In the extreme situation, i.e. when
h =
√

2, the number of pairs is reduced to 4, see Figure 3.2d. Hence, Assumption
3.3, stipulating that the covariance function vanishes for lags exceeding the threshold√

2 − 2−j1 , guarantees that a sufficient number of pairs of observations can be used
to estimate the non zero values taken by c(·) on the set of lags formed by the grid-
points. Of course, this hypothesis can be relaxed, by assuming a specific decay rate
for c(h) as h tends to

√
2 (or equivalently for c(

√
2 − 2−j1) as j1 tends to ∞). For the

sake of simplicity, in order to avoid an excessive number of parameters involved in
the problem statement, the inference and statistical learning results are established
under Assumption 3.3. As shown below, beyond the number of pairs over which one
averages to compute the statistic (3.2), the Gaussian hypothesis, Assumption 3.5, plays
a crucial role in describing (the concentration properties of) its distribution.

3.2.3 Semi-variogram Estimator

In Geostatistics, rather than the covariance, one uses the semi-variogram to character-
ize the second-order dependence structure of the observations (Cressie and Zimmer-
man, 1992; Cressie, 1993), namely

γ(h) =
1
2
V ar(Xs+h −Xs) =

1
2
E[(Xs+h −Xs)

2]. (3.3)
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(a) Grid at scale J = 2. (b) h = 2−J and nh = 80.

(c) h = 1 and nh = 20. (d) h =
√

2 and nh = 4.

Figure 3.2: Changes in the value of the number nh of pairs of sites that are at distance
h from one another, for different values of the lag h, on a dyadic grid at scale J = 2
(n = 25).

Its main advantage lies in the fact that its computation does not require the know-
ledge of the (supposedly constant) mean. We refer the reader to subsection 2.1.3 for
a discussion about the advantages of the semi-variogram function. We recall that it is
linked to the covariance by the equation γ(h) = c(0) − c(h). Observe that, for any lag
h ∈ Hn, unbiased estimators of γ(h) based on the n observations are:

∀h <
√

2− 2−j1 , γ̂(h) =
1

2nh

∑
(σi ,σj )∈N (h)

(X′σi −X′σj )
2, (3.4)

and γ̂(h) = 0 otherwise. This estimator is referred to as the Matheron (1962) semi-
variogram estimator. Observe also that

∀h <
√

2− 2−j1 , ĉh(0) := γ̂(h) + ĉ(h) =
1
nh

n∑
i=1

X
′2
σinh(i), (3.5)

and ĉh(0) = 0 otherwise, where nh(i) = |{j ∈ {1, . . . , n} : (σi ,σj ) ∈N (h)}| for i ∈ {1, . . . , n}.
Indeed, one may write: ∀h ≥ 0,

γ̂(h) =
1

2nh

∑
(σi ,σj )∈N (h)

(X
′2
σi + X

′2
σj )−

1
nh

∑
(σi ,σj )∈N (h)

X′σiX
′
σj

=
1

2nh

∑
(σi ,σj )∈N (h)

(X
′2
σi + X

′2
σj )− ĉ(h),
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and

1
2nh

∑
(σi ,σj )∈N (h)

(X
′2
σi + X

′2
σj ) =

1
2nh

n∑
i=1

X
′2
σi

n∑
j=1

I{(σi ,σj ) ∈N (h)}

+
1

2nh

n∑
j=1

X
′2
σj

n∑
i=1

I{(σi ,σj ) ∈N (h)} = 1
nh

n∑
i=1

X
′2
σinh(i).

Under Assumption 3.5, the distributions of the estimators (3.4)-(3.5) can be classically
made explicit, as revealed by the result stated below, see e.g. Gaetan and Guyon, 2009;
Cressie, 1993.

Proposition 3.7. Suppose that Assumption 3.5 is fulfilled. Let h ∈ Hn. Denote by L(n,h)
the symmetric positive semi-definite (Laplacian) matrix with entries Li,j(n,h) = −I{(σi ,σj ) ∈
N (h)} if i , j and Li,i(n,h) = nh(i) and by ℓi(h)’s the nh eigenvalues of the symmetric positive
semi-definite matrix L(n,h)Σn, where Σn = Σ(σ1, . . . , σn). Denote also by D(n,h) the diag-
onal matrix with entries Di,i(n,h) = nh(i) and by ρi(h)’s the nh eigenvalues of the symmetric
positive semi-definite matrix D(n,h)Σn. The following assertions hold true.

(i) The estimators (3.4)-(3.5) are distributed as follows:

γ̂(h) ∼ 1
nh

nh∑
i=1

ℓi(h)χ2
i and ĉh(0) ∼ 1

nh

nh∑
i=1

ρi(h)χ2
i , (3.6)

where the χ2
i ’s are independent χ2 random variables with one degree of freedom.

(ii) The ℓi(h)’s and the ρi(h)’s are strictly positive, i.e. the matrices L(n,h)Σn and D(n,h)Σn

are positive definite.

Refer to Appendix A for the technical argument. This result shows one of the great
advantages of the semi-variogram estimator: since the average squared difference of
dependent normal random variables gives a χ2 r.v., all the distributions are known.
On the contrary, the product of dependent random variables appearing in the covari-
ance function estimation in Equation (3.2) are much more complicated to control (see
e.g. Nadarajah and Pogány, 2015).

3.3 Tail Bounds Inequalities on Estimation – Main Results

Thanks to the knowledge of the distributions of the estimators (3.4)-(3.5) obtained in
Proposition 3.7, we are able to define tail bounds for these estimators, based on recent
results in Bercu et al. (2015); Wang and Ma (2020). Recall that, under Assumptions
3.2-3.3, the spatial process X has an isotropic spectral density (see Equation (2.2) and
subsection 2.1.2 for further details) Φ(u) = (2π)−2

∫
s∈R2 exp(−i s⊤u)c(||s||)ds = φ(||u||).

The additional hypothesis below is required in the subsequent analysis. It classic-
ally guarantees that the eigenvalues of the covariance matrix of the spatial process
sampled on the regular grid GJ are bounded and bounded away from 0, see e.g. Brock-
well and Davis, 1987.

Assumption 3.8. There exist 0 < m ≤M < +∞ such that: ∀u ∈R2,

m ≤
∑
k∈Z2

Φ(u + 2πk) ≤M.
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Combining then Lemma 3.6 with Proposition 3.7 and classic bounds for the largest ei-
genvalues of Laplacian matrices (see the auxiliary results in Appendix A), one may de-
duce Poisson tail bounds for the deviations between the unbiased estimators and their
expectations, from the exponential inequalities established for Gamma r.v.’s in Bercu
et al. (2015); Wang and Ma (2020) (see subsection 2.2.4 in Chapter 2 for a presenta-
tion of these results). The proof is detailed in Appendix A, together with intermediary
results involved in its argument.

Proposition 3.9. Suppose that Assumptions 3.1–3.8 are fulfilled. Let h ∈ Hn. For all t > 0,
we have:

P

(∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ t

)
≤ e−C1nt + e−C

′
1nt

2
,

P

(∣∣∣̂ch(0)− c(0)
∣∣∣ ≥ t

)
≤ e−C2nt + e−C

′
2nt

2
,

where Ci and C′i , i ∈ {1, 2}, are positive constants depending on j1, m and M solely.

Estimation of the covariance function for all lags. The empirical covariance function
ĉ(h) can be extrapolated at unobserved lags h ∈ [0,

√
2− 2−j1] \Hn by means of various

non-parametric procedures, such as local averaging methods. For simplicity, one may
consider a piecewise constant estimator, for instance the 1-NN estimator ĉ(h) = ĉ(lh),
where lh = argminl∈Hn

||h − l|| (breaking ties in an arbitrary fashion). As ||h − lh|| ≤
2−J = 1/(

√
n− 1), the (weak) smoothness hypothesis below then permits to control the

covariance estimation error at unobserved lags.

Assumption 3.10. The mapping h ∈ [0,
√

2 − 2−j1] 7→ c(h) is of class C1 with gradient
bounded by Q < +∞ and there exists 0 < B < +∞, such that sup

h≥0
|c(h)| ≤ B.

Of course, under more restrictive regularity assumptions, the accuracy of other classic
non-parametric estimation techniques (e.g. splines of degree larger than 2) can be
established, and can be the subject of further research. The result below is proved at
length in Appendix A. Under Assumption 3.10, it simply follows from Proposition 3.9
combined with the union bound and the finite increment inequality.

Corollary 3.11. Suppose that Assumptions 3.1–3.10 are satisfied. Then, for any δ ∈ (0,1),
we have with probability at least 1− δ:

sup
h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ ≤ C3

√
log(4n/δ)/n+Q/(

√
n− 1),

as soon as n ≥ C′3 log(4n/δ), where C3 and C′3 are positive constants depending on j1, m
and M solely.

To the best of our knowledge, this non-asymptotic bound for a non-parametric estim-
ator of the covariance function in the in-fill setup is the first result of this kind, the
vast majority of the results documented in the literature being either of asymptotic
nature and/or related to parametric inference. One may refer to Hall et al. (1994) for
limit results related to kernel smoothing methods applied to covariance estimation.

Simple Kriging. As the main objective of the first part of this thesis is to provide
statistical guarantees to the simple Kriging method, Chapter 4 aims at establishing
generalization bounds for the performance of the predicting function constructed by
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means of the plug-in approach. Thus, based on the estimator ĉ of the covariance func-
tion, one may derive empirical counterparts of the quantities involved in the simple
Kriging predictor (see Equation (4.4) for its definition), namely Σ(sd) and cd(s) and
form an empirical version of the optimal Kriging rule. Therefore, these bounds can be
established from the non-asymptotic guarantees stated in the corollary above.

3.4 Illustrative Experiments

We now illustrate the theoretical analysis carried out above by numerical results, illu-
minating the impact of the assumptions made to get finite sample guarantees.

The (fully reproducible) experiments, available on GitHub, were implemented in Py-
thon 3.6, using the library gstools (Müller and Schüler, 2020). Below, two covariance
models of a Gaussian random field X are considered. First, an isotropic truncated
power law (TPL) covariance function is considered:

c : h ∈ [0,+∞) 7→
(
1− h/θ

) 3
2
I

{
h ≤ θ

}
, (3.7)

where θ ∈R∗+ is the correlation length. It satisfies all the stated assumptions (Golubov,
1981). Next, covariance estimation is applied to a Gaussian field X with Gaussian
covariance function:

c : h ∈ [0,+∞) 7→ exp
(
−h2/θ2

)
, (3.8)

which does not satisfy Assumption 3.3 but vanishes very quickly.

Given the spatial domain S = [0,1]2, an independent realization of X was simulated,
serving for the non-parametric covariance estimation and referred to as the training
spatial dataset X′. In accordance with the statistical framework considered in Section
3.2, this realization is observed at n sites (σ1, · · · ,σn) supposed to form a dyadic grid
at scale J ≥ 1, with n = (1 + 2J )2. The estimation of the covariance function of the
random field is then computed using Equation (3.2) from the n observations. In order
to illustrate its accuracy, the estimator is computed for 100 independent simulations
of X observed at the same fixed sites.

The corresponding results for the two covariance functions are depicted in Figure 3.3
(for a dyadic grid at scale J = 3 and with correlation length fixed at θ = 5), where, for
each model, the true covariance function appears in red and the mean of the estimated
one in green, together with the corresponding mean standard deviation over the 100
replications. Observe in Figure 3.3a, for the truncated power law function, that the
estimation is close to the true value and equal to zero beyond a certain threshold. For
the Gaussian model, Figure 3.3b shows that the estimation method is less accurate
than for the previous covariance model. In particular, it unsuccessfully detects the
true correlation parameter θ.

Additional Covariance Models. Based on several covariance models, fulfilling or not
our assumptions, extra numerical experiments were performed.

Besides the covariance functions depicted above, the following covariance functions
are considered (where θ ∈R∗+ is the correlation length):

https://github.com/EmiliaSiv/Simple-Kriging-Code
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(a) TPL (b) Gaussian

Figure 3.3: Estimation of the truncated power law (left) and the Gaussian (right) co-
variance functions, on a dyadic grid at scale J = 3 (n = 81), with θ = 5. For each
model, the red line corresponds to the true covariance function and the green line to
the mean of the estimated one, together with the corresponding mean standard devi-
ation (in green shaded bands), over 100 replications.

• the cubic covariance function:

c : h ∈ [0,+∞) 7→

1−

7
h2

θ2 −
35
4

h3

θ3 +
7
2
h5

θ5 −
3
4
h7

θ7


 I {h ≤ θ

}
. (3.9)

• the spherical covariance function:

c : h ∈ [0,+∞) 7→

1−

3
2
h
θ
− 1

2
h3

θ3


 I {h ≤ θ

}
. (3.10)

• the exponential covariance function:

c : h ∈ [0,+∞) 7→ exp
(
−h/θ

)
. (3.11)

• the Matern covariance function with smoothness parameter νm:

c : h ∈ [0,+∞) 7→ 21−νm

Γ (νm)

√2νm
h
θ

νm Kνm

√2νm
h
θ

 , (3.12)

where Γ is the gamma function and Kνm is the modified Bessel function of the
second kind.

Remark 3.12. (Matern model) When νm = p + 1
2 where p is an integer, the Matern cov-

ariance function is a product of an exponential function and a polynomial function of order
p.

Following this remark, we select the two following smoothness parameter values for
the Matern model:

• when νm = 3
2 : c(h) =

(
1 +
√

3 h
θ

)
exp

(
−
√

3 h
θ

)
, ∀h ∈ [0,+∞), and
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(a) Cubic (b) Spherical

(c) Exponential

(d) Matern (νm = 3/2) (e) Matern (νm = 5/2)

Figure 3.4: Estimation of the cubic (top left), the spherical (top right), the exponential
(center), the Matern with νm = 3/2 (bottom left) and νm = 5/2 (bottom right) covari-
ance functions, on a dyadic grid at scale J = 3 (n = 81), with θ = 5.

• when νm = 5
2 : ∀h ∈ [0,+∞), c(h) =

1 +
√

5 h
θ + 5

3

(
h
θ

)2
exp

(
−
√

5 h
θ

)
.

Note that the cubic and spherical covariance models satisfy all the assumptions stated
in this chapter, whereas the exponential and Matern covariance functions do not
verify Assumption 3.3. We apply the same procedure as before for the five addi-
tional covariance models, with the same setting: the training dataset is composed
of observations sampled on a dyadic grid at scale J = 3 (n = 81). As an illustration
of the covariance estimation, Figure 3.4 shows, for each model, the true covariance
function in red and the mean of the estimated covariance function in green (with the
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corresponding mean standard deviation), on 100 independent simulations. Observe
that, for both the cubic (top left) and the spherical (top right) covariance functions,
that satisfy Assumption 3.3, the estimation is accurate and it successfully estimates
the threshold after which the covariance is equal to zero. For the covariance functions
that do not satisfy Assumption 3.3, the exponential function is quite accurate but does
not detect the correlation length, whereas for the Matern function, when νm = 5/2, the
estimation is less accurate than for the smaller value of the smoothness parameter.
In particular, for these three covariance models, when the true covariance function
tends to zero, the estimation is still considerably different from zero for an important
number of lags and the mean standard deviation is large.

3.5 Conclusion

In this chapter, we have derived tail bounds for the non-parametric covariance es-
timator, overcoming our Challenge 2 (Section 1.2 in Chapter 1). In the first part of
this thesis, the main objective is to develop a novel theoretical framework offering
non-asymptotic guarantees for the empirical simple Kriging predictor. The simple
Kriging problem heavily depends on the spatial dependence structure of the observed
phenomenon, unknown in practice. Thus, computing an accurate estimation of the
covariance function is of prime importance. Furthermore, the massive character of
spatial datasets now available suggests resorting to more flexible, non-parametric, ap-
proaches to analyze spatial observations.
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2: Key points of this Chapter.

Technical Assumptions involved in this Chapter and their role

• Regular grid of observations and in-fill asymptotic −→ the number of
terms averaged in (3.2) and (3.4) is large enough.

• Assumption 3.1: in simple Kriging, the mean is supposed to be known,
and for simplicity X is assumed to be centered.

• Assumption 3.2: the phenomenon is sufficiently homogeneous within S
−→ ensures a successful frequentist approach (see subsec. 2.1.2, Chap. 2).

• Assumption 3.3: guarantees that a sufficient number of pairs of observa-
tions can be used to estimate (3.3) for the observed lags.

• Assumption 3.5: the second-order stationarity is equivalent to strong sta-
tionarity (see subsec. 2.1.2, Chap. 2), and the distribution of the semi-
variogram estimator can be made explicit in Proposition 3.7.

• Assumption 3.8: combined with the previous assumptions, allows to de-
duce non-asymptotic bounds for the estimators (3.4) and (3.5) −→ Pro-
position 3.9 for observed lags on the regular grid.

• Assumption 3.10: allows to extend the results in Proposition 3.9 to all
lags.

Main results of this Chapter

• Lemma 3.6: ensures that the number of terms averaged in (3.2) and (3.4)
is large enough −→ accurate and stable estimator.

• Proposition 3.7: derives the distributions of the estimators (3.4) and (3.5)
−→ the estimators can be seen as a weighted sum of χ2 random variables.

• Proposition 3.9: gives Poisson tail bounds for the deviations between the
unbiased estimators (3.4) and (3.5) and their expectations, for all observed
lags on the regular dyadic grid.

• Corollary 3.11: extends the previous result to unobserved lags −→
provides a non-asymptotic bound for a non-parametric estimation of the
covariance function.

=⇒ OBJECTIVE: These results allow us to establish statistical guaran-
tees for the simple Kriging method (Research Question 3, Section 1.2):
see Chapter 4 for generalization bounds for the performance of the em-
pirical Kriging predictor.
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4.1 Introduction

This chapter, which is in continuity of Chapter 3, aims at contributing to our Research
Questions 3 (see Section 1.2 in Chapter 1):

What is the non-asymptotic behavior of the Kriging predictor when the
dependence structure is unknown and with a finite number of observations? To

what extent the Kriging weights depend on the accuracy of the covariance
function estimation and on the location of samples?

In this chapter, we investigate Kriging, the flagship problem in Geostatistics, intro-
duced by Krige (1951) and later in the work of Matheron (1962). In the standard Kri-
ging setup, the spatial process X is observed at d ≥ 1 sites s1, . . . , sd in the domain S .
Based on a (generally non i.i.d.) training dataset, a single realization X′ of X observed
at n ≥ 1 locations σ1, . . . , σn in S , the goal is to build a map f : S ×Rd → R in order
to predict X at all unobserved sites s ∈ S with minimum Mean Squared Error (MSE).
In simple Kriging, the mean of X is supposed to be known and the goal is to search for
a predictive map f (s) = f (s, (Xs1

, . . . , Xsd )) that is linear in X(sd) := (Xs1
, . . . , Xsd ). In

this chapter, we start with recalling that the optimal predictor of this type (which can
be derived by ordinary least squares) has the same form as a Kernel Ridge Regressor
(KRR), once the Gram matrix is replaced with the true covariance matrix of the ran-
dom vector X(sd). Then, using a non-parametric estimation of the covariance function,
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an empirical version of the optimal linear predictor is obtained by means of a plug-
in approach, i.e. by replacing the (unknown) covariance with the estimator in the
KRR type formula. This strategy can also be viewed as Empirical Risk Minimization
(ERM), under the hypothesis of stationarity (combined with appropriate conditions on
the decorrelation rate). Based on the non-asymptotic results for the non-parametric
covariance function of a Gaussian process derived in Chapter 3, under in-fill and reg-
ular grid assumptions for the observations, we establish non-asymptotic bounds for
the excess risk of the predictive function thus constructed. To the best of our know-
ledge, this is the only theoretical analysis of this nature documented in the statistical
and machine learning literature. In order to illustrate the generalization capacity of
the non-parametric predictive approach analyzed in this chapter and the impact of
the conditions stipulated to guarantee it, a number of numerical experiments, on both
simulated and real data, are carried out.

This chapter is structured as follows. As a first go, in Section 4.2, we highlight the sim-
ilarity between KRR and the dual Kriging problem. In Section 4.3, excess risk bounds
for the empirical version of the simple Kriging rule are established under appropriate
assumptions, which are discussed at length. Numerical results on simulated data are
presented in Section 4.4 for illustration purposes, while experimental results on met-
eorological real data are presented in Section 4.5. Section 4.6 shows additional numer-
ical experiments concerning the possible extension of our study. Finally, concluding
remarks are collected in Section 4.7. The proofs of the main results are provided in
Appendix B.

Contributions. Our aim is to develop a new theoretical framework for the simple
Kriging problem, adopting a statistical learning view of the well-known geostatist-
ical method. A major question here is the following: To what extent the accuracy of
the covariance function estimation of a random field and the locations of the samples
can influence the Kriging predictor? Based on the theoretical and experimental res-
ults obtained in Chapter 3, we aim at defining the accuracy of the empirical Kriging
predictor. To do so, our contributions are:

• We provide non-asymptotic bounds for the accuracy of the covariance matrix
and precision matrix estimations.

• We assess the generalization capacity of the empirical simple Kriging predictor,
at all unobserved sites of the spatial domain. This accuracy is determined by the
values of the global excess risk, defined as the global gap between the predic-
tion errors obtained when the covariance function is known and when the true
covariance function is replaced by its empirical counterpart.

• The implementation of the numerical experiments on both simulated and real
data presented here are available on GitHub.

Setting and Notations. We place ourselves in the same setting as the one adopted in
Chapter 3: the observations for the training spatial dataset are assumed to be taken
on a regular grid, under the in-fill asymptotic setting (see subsection 3.2.1). When
mentioned, we also make the same assumptions stated before: Assumptions 3.1, 3.2,
3.3 and 3.5, introduced in subsection 3.2.2, and Assumptions 3.8 and 3.10, formu-
lated in Section 3.3. We refer the reader to Chapter 2, where the main notations are

https://github.com/EmiliaSiv/Simple-Kriging-Code
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introduced and the basic concepts pertaining to the theory of Kriging in Geostatistics
– involved in the subsequent analysis – are briefly recalled, together with some key
results related to kernel ridge regression.

4.2 Viewing Dual Kriging as a KRR Problem

In spite of the major difference regarding the statistical setup, the Kriging and re-
gression problems (introduced in Chapter 2) share similarities in the optimization
approach considered to solve them. See also Kanagawa et al., 2018; Kanevski et al.,
2009 for a detailed discussion about the connections between Gaussian processes and
kernel methods.

As discussed in Section 2.3 in Chapter 2, the aim of simple Kriging may be to develop
a decision function f : S ×Rd →R to predict X across the entire spatial set S based on
observations of the spatial process at a finite number of points s1, . . . , sd within S . The
global accuracy of the predictive map f over the entire set S can be measured by the
Integrated Mean Squared Error (IMSE)

LS (f ) =
∫
s∈S

L(s, f (s))ds = EX

∫
s∈S

(
f (s, X(sd))−Xs

)2
ds

 . (4.1)

Remark 4.1. (Alternative to ERM) We point out that, in order to avoid the restrictions
stemming from the sub-Gaussianity assumptions, an alternative to ERM in regression, rely-
ing on a tournament method combined with the Median-of-Means (MoM) estimation pro-
cedure, has recently received much attention in the statistical learning literature, see Lugosi
and Mendelson (2016) for further details. Extension of the MoM approach to Kriging will
be the subject of future work.

Hence, the objective is to predict an infinite number of output variables Xs, with s ∈ S ,
based on the input variables Xs1

, . . . , Xsd . It can be viewed as a multitask predictive
problem with an infinite number of tasks. In the ordinary formulation, the prediction
f (s) at any point s ∈ S is assumed to be a linear combination of the Xsi ’s

fΛd
(·, X(sd)) = λ1(·)Xs1

+ . . .+λd(·)Xsd , (4.2)

where Λd : s ∈ S 7→ (λ1(s), . . . , λd(s)) is a measurable function valued in R
d . In this

case, we have:

LS (fΛd
) =

∫
s∈S

(
V ar(Xs) + Λd(s)⊤Σ(sd)Λd(s)− 2 cd(s)⊤Λd(s)

)
ds. (4.3)

The optimal predictive rule of this form regarding the expected prediction error can
be straightforwardly deduced from Lemma 2.20 in Chapter 2. It is described in the
result stated below, the proof of which is omitted.

Lemma 4.2. Suppose that the hypotheses of Lemma 2.20 are fulfilled. Define the predictive
mapping: ∀s ∈ S ,

fΛ∗d (s,X(sd)) = ⟨Λ∗d(s),X(sd)⟩ = X(sd)⊤Σ(sd)−1cd(s). (4.4)

We have
fΛ∗d = argmin

f
LS (f ). (4.5)
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In addition, the minimum global error is

LS (fΛ∗d ) =
∫
s∈S

(
V ar(Xs)− cd(s)⊤Σ(sd)−1cd(s)

)
ds.

Observe that the mapping (4.4) at s ∈ S has the same form as that of the kernel ridge
regressor at z ∈ Rd in Equation (2.15) in Chapter 2, except that the regularized Gram
matrix αIN +KN is replaced by Σ(sd), the vector YN by X(sd) and κN (z) by cd(s).

The major difference between the two frameworks is of statistical nature. If one tries to
predict Xs by a linear combination of the components of the observed random vector
X(sd) in simple Kriging, statistical fitting does not rely on the observation of n ≥ 1
independent copies of the pair output-input (Xs,X(sd)) but on the observation of a
single realization X′ of the random field X at certain sites σ1, . . . , σn solely and some
appropriate structural (possibly parametric) assumptions regarding the second-order
structure of the random field X, see e.g. Chiles and Delfiner (1999). Before analyzing
simple Kriging from a statistical learning perspective, a few remarks are in order.

Remark 4.3. (Gaussian random fields, bis) We point out that, in the case where the
random field X is Gaussian, the mapping fΛ∗d is a minimizer of the global error LS over the
set of all predictive rules f (s, X(sd)) such that the IMSE (4.3) is well-defined.

Remark 4.4. (Worst case error vs integrated error) Rather than integrating the
pointwise MSE over the spatial domain S to define the global accuracy of a predictive
map f (see (4.1)), one may naturally consider the supremum of the MSE over S , namely
sups∈S L(s, f (s)). Notice that, under the assumptions stipulated, the rate-bound results ob-
tained in the subsequent analysis obviously remain valid when substituting the IMSE with
it.

Remark 4.5. (Alternative framework) The spatial prediction problem has been invest-
igated in a different statistical framework, much more restrictive regarding practical ap-
plications, assuming the observation of N ≥ 1 independent copies of X(sd), in Qiao et al.
(2018), where a non-asymptotic analysis is carried out as N increases. We also point out
that, instead of the classic in-fill setting considered here (stipulating that the grid σ1, . . . , σn
formed by the observed sites in S in the learning/estimation stage is denser and denser, while
S is fixed), the out-fill framework can be considered alternatively (the prediction accuracy
is then analyzed as the spatial domain S becomes wider and wider) or combined with the
in-fill model in a hybrid fashion, see e.g. Hall and Patil (1994) and the references mentioned
in subsection 2.1.1 in Chapter 2.

Plug-in predictive rules. The quantities Σ(sd) and cd(s) are unknown in practice just
like the risk (4.3) and must be replaced by estimators in order to form an estimator
Λ̂d of Λ∗d (or an empirical version of (4.3)). For this reason, establishing rate bounds
that assess the generalization capacity of the resulting predictive map f

Λ̂d
is far from

straightforward. It is the aim of the subsequent analysis to develop a non-asymptotic
and non-parametric framework for simple Kriging with statistical guarantees, based
on the preliminary finite-sample study of the performance of a covariance estimator
ĉ(·) developed in Chapter 3. The angle embraced here is thus different from that usu-
ally adopted in the traditional Kriging literature, often calling forth the use of MLE
methods (see e.g. Section 5.3.3 in Gaetan and Guyon, 2009). In contrast, it is akin to
that of statistical learning, particularly relevant when the availability of large train-
ing datasets permits to consider flexible techniques, avoiding the specification of a
parametric class of probability laws.
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4.3 Excess Risk Bounds in Simple Kriging – Main Results

In this section, we explain how a solution to Kriging with statistical guarantees in
the form of non-asymptotic learning rate bounds can be derived from an accurate
estimator of the covariance under appropriate conditions.

Equipped with the non-asymptotic results established in Section 3.3 in Chapter 3, we
now address the simple Kriging problem from a predictive learning perspective. Let
d ≥ 1 and consider arbitrary pairwise distinct sites s1, . . . , sd in S = [0,1]2. The goal
is to predict the value Xs taken by X at any site s ∈ S based on (Xs1

, . . . , Xsd ), nearly
as accurately as the optimal Kriging rule (4.4) would do it. For this purpose, one uses
a training dataset, composed of observations X′σ1

, . . . , X′σn of X′, an independent copy
of X, at sites σ1, . . . , σn forming a regular dyadic grid (see subsection 3.2.1 in Chapter
3). Consider ĉ(·), the estimator of the covariance function studied in Sections 3.2 and
3.3 in Chapter 3, based on the X′σi ’s. From ĉ(·), the covariance matrix Σ(sd) and the
covariance vector cd(s) can be naturally estimated as follows:

ĉd(s) =
(̂
c(||s − s1||, . . . , ĉ(||s − sd ||

)
for s ∈ S , (4.6)

Σ̂(sd) =
(̂
c(||si − sj ||)

)
1≤i, j≤d

. (4.7)

Assumption 4.6. Let 0 < m ≤M < +∞ and assume that the eigenvalues of the covariance
matrix Σ(sd) are upper bounded by M, lower bounded by m.

4.3.1 Estimation of the Precision Matrix

Under Assumption 3.5, the matrix Σ(sd) is always invertible for any pairwise distinct
sites s1, . . . , sd , which permits to define the Kriging rule (4.4), involving the precision
matrix Σ(sd)−1. The simplest way of building an estimate of the precision matrix is to
invert (4.7), when it is positive definite. This theoretically happens with overwhelm-
ing probability, as shown by the result stated below, and turned out to be true in all
the numerical experiments presented in Section 4.4. Hence, the estimator of the pre-
cision matrix we consider here in order to build an empirical version of the predicting
function (4.4) is the inverse of (4.7), when the latter is definite positive, and that of any
definite positive regularized version (e.g. Tikhonov, 1943) of the latter otherwise. It
is (possibly abusively) denoted by Σ̂(sd)−1 in both situations. Its accuracy is described
in a non-asymptotic fashion by the bound stated in the result below.

Proposition 4.7. Suppose that Assumptions 3.1–4.6 are satisfied. The following assertions
hold true.

(i) For any δ ∈ (0,1), we have with probability at least 1− δ:

|||Σ̂(sd)−Σ(sd)||| ≤ C3d
√

log(4n/δ)/n+ dQ/(
√
n− 1),

as soon as n ≥ C′3 log(4n/δ), where C3 and C′3 are positive constants depending on j1,
m and M solely (see Corollary 3.11).

(ii) For any δ ∈ (0,1), we have with probability at least 1− δ:

|||Σ̂(sd)−1 −Σ(sd)−1||| ≤ C4d
√

log(4n/δ)/n+C′4dQ/(
√
n− 1),

as soon as n ≥ C′′4 log(4n/δ), where C4, C′4 and C′′4 are positive constants depending
on j1, m, M, m and M solely.
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Assertion (i) simply follows from Corollary 3.11 in Chapter 3, the operator norm and
the max norm being equivalent in finite dimension. The proof of the second asser-
tion uses a classic inequality for inverse matrices as in Wedin (1973) combined with
Assertion (i). Refer to Appendix B for further technical details.

4.3.2 Empirical Risk Minimization and Generalization Capacity

Now, replacing Σ(sd)−1 and cd(s) by the estimators introduced above, a natural empir-
ical counterpart of Λ∗d is built by means of the plug-in method:

Λ̂d(s) = Σ̂(sd)−1̂cd(s). (4.8)

We point out that it actually corresponds to an empirical risk minimizer. Indeed, (4.8)
is the minimizer of

Λd(s)⊤Σ̂(sd)Λd(s)− 2 ĉd(s)⊤Λd(s)

over Λd(s) in R
d , which functional can be viewed as an empirical version of L(s, fΛd

(s))−
c(0) = Λd(s)⊤Σ(sd)Λd(s)− 2cd(s)⊤Λd(s), the pointwise risk at s up to an additive term
independent from Λd(s) under the assumptions introduced in Section 3.2. Define thus
the empirical predictive mapping f

Λ̂d
by:

f
Λ̂d

(s,x(sd)) = ⟨Λ̂d(s),x(sd)⟩ = x(sd)⊤Σ̂(sd)−1̂cd(s), (4.9)

for all s ∈ S and any x(sd) = (xs1
, . . . , xsd ) ∈ Rd . The (random) predictive function (4.9)

can be used to predict the values taken by X, any independent copy of the random field
X′ partially observed in the learning/estimation phase, over the whole spatial domain
S based on the input observations X(sd) = (Xs1

, . . . , Xsd ). Conditioned upon the X′σi ’s,
it is of course a linear prediction rule which minimizes the empirical counterpart of
LS(fΛd

) based on the X′σi ’s, namely

L̂S (fΛd
) :=

∫
s∈S

(̂
c(0) +Λd(s)⊤Σ̂(sd)Λd(s)− 2̂cd(s)⊤Λd(s)

)
ds, (4.10)

over all Borel measurable functions Λd : S → R
d such that (4.10) is well-defined (as

previously noticed, the quantity integrated over S then reaches its minimum at all s
in S). Hence, the plug-in predictive rule (4.9) can also be derived from empirical risk
minimization, the main paradigm of statistical learning, see e.g. Devroye et al. (1996).

The predictive performance of the function f
Λ̂d

constructed on the basis of the X′σi ’s
is then measured by the conditional expectation, obtained by replacing Λd(s) by its
empirical counterpart Λ̂d(s) in (4.1) :

LS (f
Λ̂d

) = EX

∫
s∈S

(
f
Λ̂d

(s,X(sd))−Xs

)2
ds | X′σ1

, . . . ,X′σn


=

∫
s∈S

(
c(0) + Λ̂d(s)⊤Σ(sd)Λ̂d(s)− 2 cd(s)⊤Λ̂d(s)

)
ds.

It is a random quantity since it depends upon the training data, that is larger than
L∗S := LS (fΛ∗d ) with probability one, see Lemma 4.2. The theorem below shows that,
with large probability, the prediction error of the empirical simple Kriging rule f

Λ̂d
is close to the minimal prediction error L∗S , assessing its generalization capacity at
unobserved sites.
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Theorem 4.8. Suppose that Assumptions 3.1–4.6 are satisfied. The following assertions
hold true.

(i) For any δ ∈ (0,1), we have with probability at least 1− δ:

sup
s∈S
∥Λ̂d(s)−Λ∗d(s)∥ ≤ C5d

√
d log(4n/δ)/n+C′5d

√
dQ/(

√
n− 1),

as soon as n ≥ C′′5 log(4n/δ), where C5, C′5 and C′′5 are positive constants depending
on j1, m, M, m, M, and B solely.

(ii) For any δ ∈ (0,1), we have with probability at least 1− δ:

LS (f
Λ̂d

)−L∗S ≤ C6d
2
√

log(4n/δ)/n+C′6d
2Q/(

√
n− 1),

as soon as n ≥ C′′6 log(4n/δ), where C6, C′6 and C′′6 are positive constants depending
on j1, m, M, m, M, and B solely.

Assertion (i) can be proved by exploiting the bounds obtained in Section 3.3 in Chapter
3 combined with Proposition 4.7, while the upper confidence bound for the excess of
risk stated in Assertion (ii) can be deduced from the latter by noticing that, with prob-
ability one, the excess of integrated quadratic risk can be written as follows:

LS (f
Λ̂d

)−L∗S =∫
s∈S

(
Λ̂d(s)⊤Σ(sd)Λ̂d(s)−Λ∗d(s)⊤Σ(sd)Λ∗d(s)− 2 cd(s)⊤

(
Λ̂d(s)−Λ∗d(s)

))
ds. (4.11)

Shedding light onto the role of the technical assumptions made, we give a brief idea
of the proof’s approach.

Sketch of Proof. The proof of Assertion (i) essentially relies on the following bound

where

• For term N1: Assumption 3.5 (all eigenvalues of Σ(sd) are strictly positives) in
Chapter 3 and Assumption 4.6 (spectrum of Σ(sd) is lower bounded by m), imply
that one has |||Σ(sd)−1||| ≤m−1.

• A bound for term N2 can be deduced from the link between the max norm and
the Euclidean norm, and the upper bound in Corollary 3.11 (Chapter 3).
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• Refer to Proposition 4.7 Assertion (ii) for a bound with high probability of term
N3.

• Term N4: From Corollary 3.11 and Assumption 3.10, we deduce that sup
h≥0
|̂c(h)| <

B, with high probability.

Using Equation (4.11) and since the domain S is bounded, the remaining terms to
study are

• As a consequence of Proposition 4.7 Assertion (i), with probability at least 1−δ,
∀δ ∈ (0,1), the eigenvalues of Σ̂(sd) are close to the eigenvalues of Σ(sd). Thus,
one can deduce the upper bound |||Σ̂(sd)−1||| ≤m−1, with high probability.

• A bound for sup
s∈S
||cd(s)|| is deduced from the link between the max norm and the

Euclidean norm, together with Assumption 3.10: sup
s∈S
||cd(s)|| ≤

√
dB.

The detailed proof is given in Appendix B. These theoretical guarantees are illustrated
by numerical results based on simulated/real spatial data in Sections 4.4 and 4.5.
They clearly show that the prediction errors of the non-parametric empirical kriging
method analyzed above get closer and closer to those of the theoretical one (based
on the true covariance function) for a variety of spatial models, as the training size n
increases. In Section 4.6, we investigate possible ways of extending these results to a
more general framework by computing additional illustrative experiments.

Summary

Figure 4.1 shows a graphic summary of the proof. It points out how the theorem needs
all the previous results presented in Chapter 3 (depicted in blue) to be established, as
well as the role of each technical assumption (in green).
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Figure 4.1: Summary of the contributions and technical assumptions.
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4.4 Illustrative Experiments

The illustrative experiments of the theoretical analysis carried out in the previous
section fits into the continuity of Section 3.4 in Chapter 3. Again, the experiments are
available on GitHub.

We consider the two covariance models as in Section 3.4: an isotropic truncated power
law covariance function defined as in (3.7), that satisfies all the assumptions involved
in Theorem 4.8, and a Gaussian covariance function (3.8), which does not satisfy As-
sumption 3.3 but still vanishes quickly.

Table 4.1: Mean and standard deviation of the AMSE over 100 independent simu-
lations of a Gaussian process with truncated power law (left) and Gaussian (right)
covariance functions for theoretical and empirical Kriging with different values of θ
(with J = 3, N = 1681 and d = 10).

TPL Theoretical Empirical

θ mean std mean std

2.5 0.961 0.086 0.971 0.088

5 0.911 0.145 0.930 0.159

7.5 0.850 0.218 0.864 0.215

10 0.800 0.249 0.839 0.257

GAUSS Theoretical Empirical

θ mean std mean std

2.5 0.891 0.196 0.899 0.208

5 0.635 0.269 0.686 0.340

7.5 0.421 0.257 0.703 1.498

10 0.247 0.202 0.536 1.048

Based on the covariance estimates obtained in Section 3.4 in Chapter 3 from observa-
tions of a regular grid of size n = (1+2J )2, we now consider the simple Kriging problem
from a predictive point of view, and simulate a new independent realization of X. The
latter is observed at d sites (s1, · · · , sd), randomly selected over the spatial domain S .
As formulated in Section 4.2, the goal is to predict the value Xs taken by X at any
site s ∈ S based on the d observations. Regarding the empirical evaluation of the pre-
dictive accuracy, the spatial domain S is (regularly) discretized: the goal is to predict
the value taken by X at the corresponding N ≥ 1 sites s′1, . . . , s

′
N in S . In compliance

with the methodology analyzed in Section 4.3, the predictive mapping is construc-
ted by means of the plug-in technique from the covariance vector and the covariance
matrix estimators defined in (4.6) and (4.7), see (4.8). The prediction error being the
expected squared difference between the predicted random field and the true random
field integrated (respectively, averaged) over (respectively, the discretized version of)
the spatial domain S , we performed 100 replications of the experiment, each one in-
volving one simulation X′ for the training step and one simulation X for the prediction
test, the locations (σ1, · · · ,σn), (s1, · · · , sd) and (s′1, . . . , s

′
N ) remaining fixed. In order to

compare empirically the empirical Kriging method analyzed in the previous section
to the ’Oracle’ method based on the true covariance function (theoretical Kriging), the
prediction techniques have been thus applied 100 times, so that 2 × 100 prediction
maps have been obtained. For each replication (X′ ,X) of the experiment, the (spatial)
average over the discretized version of S of the MSE (2.5) (see Chapter 2) has been
evaluated,

AMSE =
1
N

N∑
t=1

(f (s′t)−Xs′t )
2, (4.12)

https://github.com/EmiliaSiv/Simple-Kriging-Code
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.2: MSE maps over 100 realizations of a Gaussian process with truncated
power law covariance function for the empirical Kriging predictor with different val-
ues of θ (J = 3, N = 1681, and d = 10).

for f = fΛ∗d (theoretical Kriging) and f = f
Λ̂d

(empirical Kriging). The mean and stand-
ard deviation of (4.12) have been computed over the 100 replications. To observe
the effects of several parameters on the performance of the Kriging method, the ex-
perience was carried out for different sizes of the dyadic grid and different values
of the correlation length θ ({2.5,5,7.5,10}), the parameter used in the definition of
the instrumental covariance functions. Note that, for the truncated power law co-
variance function, the parameter θ is linked to the parameter j1 in Assumption 3.3:
j1 = − log(

√
2−θ/

√
n)/ log(2). The corresponding bound h ≥

√
2−2−j1 of Assumption 3.3

for the different values of θ are {0.061,0.122,0.183,0.244} respectively. The training
dataset was drawn on a dyadic grid at scale J = 3 (with n = 81 observations), whereas
the number of input observations for the prediction is equal to d = 10. The results
for the two spatial models are displayed in Table 4.1: the mean and the standard de-
viation (std) of the AMSE, over the 100 replications, are given for different values of
θ.

For the truncated power law covariance function, observe that the mean of the AMSE
decreases slowly with the correlation length θ (and, by definition, with j1), whereas
the standard deviation increases slowly, for both the theoretical and empirical Kriging.
Furthermore, in keeping with our theoretical results, the difference between the two
AMSE (i.e. the excess of pointwise risk (4.11)) is small for all values of θ. The same
observations can be made for the Gaussian covariance function, where the standard
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.3: MSE maps of over 100 realizations of a Gaussian process with Gaussian
covariance function for the empirical Kriging predictor with different values of θ (J =
3, N = 1681, and d = 10).

Table 4.2: Mean and standard deviation of the AMSE over 100 independent simu-
lations of a Gaussian process with truncated power law (left) and Gaussian (right)
covariance functions for theoretical and empirical Kriging with different values of θ
(with J = 4, N = 2401 and d = 10).

TPL Theoretical Empirical

θ mean std mean std

2.5 0.975 0.079 0.976 0.079

5 0.927 0.131 0.928 0.131

7.5 0.861 0.156 0.874 0.150

10 0.815 0.210 0.841 0.220

GAUSS Theoretical Empirical

θ mean std mean std

2.5 0.913 0.167 0.890 0.167

5 0.708 0.272 0.745 0.306

7.5 0.529 0.263 0.582 0.288

10 0.312 0.188 1.675 12.085

deviation is larger than for the other covariance model, the mean is slightly smaller
however.

To better understand the spatial structure of these errors, the maps of the mean
squared errors for the empirical Kriging predictors are depicted in Figures 4.2 and
4.3. The observed sites (s1, · · · , sd) are represented in red. Observe first that, as un-
derlined in Remark 2.22, Kriging is an exact interpolator (the error is null at the ob-
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.4: MSE maps over 100 realizations of a Gaussian process with cubic covari-
ance function for the empirical Kriging predictor with different values of θ (J = 3 and
d = 10).

servation sites (s1, · · · , sd)). For the truncated power law model, the complete maps of
the MSE for different values of θ are comparable, with the same order of magnitude
for the errors and similar location of the smallest errors. In the case of the Gaussian
model, the results in Fig. 4.3c and 4.3d exhibit some border effects, where a higher
AMSE can be observed near the boundaries of the spatial domain. This difference can
be easily explained. For the truncated power law model, there is an absence of cor-
relation between locations that are distant enough and, as can be seen in Figure 3.3a,
the threshold is reached quickly. In contrast, for the Gaussian model, the covariance
function vanishes only for large distances, especially for the empirical version, which
fails to capture the correlation length value as noticed in the previous subsection. The
predictive performance of the empirical Kriging method has been also evaluated for
a larger number n of training observations, i.e. for a denser dyadic grid of scale J = 4
(n = 289). Table 4.2 (left) shows that the results for the truncated power law model are
comparable to those in the case J = 3. This is also the case for the Gaussian model ex-
cept that, when the covariance function is unknown, the mean and standard deviation
of the AMSE become larger for θ = 10 (see Table 4.2, right).

The numerical results for the Gaussian covariance function, which does not satisfy
Assumption 3.3 but quickly vanishes, suggest that the validity framework of the em-
pirical Kriging method can be extended.



94 CHAPTER 4. STATISTICAL LEARNING GUARANTEES

(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.5: MSE maps over 100 realizations of a Gaussian process with spherical co-
variance function for the empirical Kriging predictor with different values of θ (J = 3
and d = 10).

Additional Covariance Models. We recall the additional covariance models con-
sidered in Section 3.4 in Chapter 3: the cubic (3.9) and spherical (3.10) covariance
functions that satisfy all the assumptions; and the exponential (3.11) and Matern
(3.12) (with varying smoothness parameter νm) covariance functions, that do not sat-
isfy Assumption 3.3.

As for the previous covariance models, the maps of all mean squared errors for the
empirical Kriging predictor were computed over 100 realizations of a Gaussian pro-
cess, and the results are depicted in Figures 4.4 to 4.8, with varying values for the
correlation length θ ∈ {2.5,5,7.5,10}. For the cubic covariance model, it can be no-
ticed in Figure 4.4 that the MSE map seems to become smoother when θ increases.
Still, as in the case of the spherical covariance model (see Figure 4.5), the complete
maps are similar for all values of θ regarding the error scale and the allocation of the
local area with small errors.

For the three covariance functions that do not satisfy Assumption 3.3, the same obser-
vations can be made: as θ grows, some border effects can be seen on the boundaries of
the window of observation, and the error scale becomes larger. This lines up with the
results obtained for the Gaussian covariance model.
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.6: MSE maps over 100 realizations of a Gaussian process with exponential
covariance function for the empirical Kriging predictor with different values of θ (J =
3 and d = 10).

Finally, the AMSE for both theoretical and empirical predictive mappings for all the
covariance functions was calculated. The results (the mean and the standard devi-
ation for the 100 independent simulations for different values of θ) are presented in
Table 4.3. For the cubic and spherical models, we observe the same trend as for the
truncated power law model: as the correlation length θ increases, for both the the-
oretical and empirical Kriging, the mean of the AMSE decreases while the standard
deviation increases slowly, and the excess risk is small for all values of θ. For the expo-
nential covariance model, the mean and the standard deviation do not have a constant
trend: first, the mean decreases while the standard deviation increases slightly, then
they both increase more significantly, with a large standard deviation when θ = 10. A
significant increase of both the mean and standard deviation of the AMSE can also be
observed for the Matern model, especially when νm = 5/2: the mean and the standard
deviation become large when θ = 7.5 (see Table 4.3).

The results on additional covariance functions lead to the same conclusions about the
truncated power law and the Gaussian covariance functions: the predictive method
may perform well, even if Assumption 3.3 is slightly violated.
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.7: MSE maps over 100 realizations of a Gaussian process with Matern cov-
ariance (νm = 3/2) for the empirical Kriging predictor with different values of θ (J = 3
and d = 10).

4.5 Application to Real Data – Mean Daily Temperature in
France

For the sake of completeness, prediction via simple empirical Kriging has also been
examined on real spatial observations, on datasets available on the web portal DRIAS,
which provides the mean daily temperature in France (in Kelvin), observed on a reg-
ular grid, from 1951 to 2005.

The position (latitude and longitude) of the grid points are in decimal degrees (WGS84).
The datasets that are used in this study are square grids of a total of 2401 point loca-
tions (referred to as the spatial domain S), during the three months of summer (June,
July, and August, for a total of 92 days) of the years 2004 and 2005 (refer to Figure
1.1 in the Introduction (Chapter 1) for the sampled square grid). The square grid is
obtained directly on the web portal by selecting the desired points on the grid, in such
a way that the complete grid is of the wanted dimension 49×49. Notice that the tem-
poral dimension of the data is ignored here, it is assumed that the daily observations
are independent from one year to the next. Under this simplifying hypothesis, we
consider that a number of realizations of the phenomenon are available, large enough
for computing significant AMSE’s. The dataset of the year 2004 is used as training
samples: for each day, n = 289 sites are observed, forming a dyadic grid at scale J = 4.
These observations are used in order to estimate the (supposedly isotropic) covariance

https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/index.jsp
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(a) θ = 2.5 (b) θ = 5

(c) θ = 7.5 (d) θ = 10

Figure 4.8: MSE maps over 100 realizations of a Gaussian process with Matern cov-
ariance (νm = 5/2) for the empirical Kriging predictor with different values of θ (J = 3
and d = 10).

function of the random field by means of the non-parametric statistics (3.2) studied in
Chapter 3. Then, respectively on the same days of the year 2005, d = 10 sites are ran-
domly selected over the spatial domain. The goal is to predict the value Xs taken by X
at any unobserved site s ∈ S (i.e. predict the mean temperature on the same day for all
unobserved locations) based on the d input observations and the estimated covariance
function. The experiment has been performed 92 times (training samples from 2004
and data from 2005 for the prediction step).

We point out that, since the mean is unknown, we opted for the Ordinary Kriging
variant: using the semi-variogram function rather than the covariance (see Chiles and
Delfiner, 1999, Section 3, and Cressie, 1993, subsection 3.2, for a presentation of the
estimator and of the method), Ordinary Kriging allows us to perform the prediction
without any information about the mean of the random process (see subsection 2.1.6
in Chapter 2). The theoretical results of Section 4.3 easily extends to the case of Or-
dinary Kriging: indeed, Propositions 3.7 and 3.9 in Chapter 3 are based on the semi-
variogram estimation and the following results up to Theorem 4.8 can be straightfor-
wardly extended to the Ordinary Kriging predictor.

For the parametric Kriging method, the truncated power law model (see Equation
(3.7)) has been selected, among several covariance models. Here we set θ = j1 (the
parameter from Assumption 3.3): we fixed the value of θ high enough, so that a large
number of correlations are taken into account. This means that the covariances for
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Table 4.3: Mean and standard deviation of the AMSE over 100 independent simu-
lations of a Gaussian process with cubic (top left), spherical (top right), exponential
(center), Matern with νm = 3/2 (bottom left) and νm = 5/2 (bottom right) covariance
functions for theoretical and empirical Kriging with different values of θ (with J = 3,
N = 1681 and d = 10).

CUB Theoretical Empirical

θ mean std mean std

2.5 0.979 0.091 0.983 0.088

5 0.920 0.147 0.934 0.150

7.5 0.847 0.232 0.869 0.241

10 0.748 0.294 0.778 0.294

SPH Theoretical Empirical

θ mean std mean std

2.5 0.984 0.079 0.997 0.081

5 0.927 0.121 0.941 0.122

7.5 0.870 0.188 0.890 0.195

10 0.809 0.183 0.846 0.199

EXP Theoretical Empirical

θ mean std mean std

2.5 0.890 0.178 0.923 0.184

5 0.679 0.180 0.781 0.230

7.5 0.548 0.158 0.922 1.976

10 0.439 0.150 1.481 5.393

3/2 Theoretical Empirical

θ mean std mean std

2.5 0.791 0.308 0.769 0.281

5 0.464 0.266 1.167 5.841

7.5 0.260 0.174 0.548 0.793

10 0.163 0.130 1.017 3.105

5/2 Theoretical Empirical

θ mean std mean std

2.5 0.791 0.269 0.756 0.249

5 0.471 0.277 0.800 1.842

7.5 0.236 0.191 20.945 179.206

10 0.129 0.106 2.455 18.476

almost all lags h ∈ Hn are involved in the computation of the parametric Kriging pre-
dictor. Yet, it is not surprising, in the case of temperature data, to obtain a better
accuracy using almost all covariances, since the correlation is strong between all pairs
of locations. The results are displayed in Table 4.4. For the non-parametric Kriging
method, the parameter ν introduced in Lemma 3.6 (see Chapter 3) is set to 0.35 in
order to use most of the observed distances h ∈ Hn for the covariance function estim-
ation. Notice that the mean error, and the standard deviation as well, are low (see
Table 4.4). The results are encouraging and corroborate the theoretical guarantees
established.

Table 4.4: Mean and standard deviation (std) of all AMSE for parametric and non-
parametric Kriging on Real Data (with J = 4, N = 2401, and d = 10).

Parametric Non-parametric

mean std mean std

J = 4 2.581 0.564 2.944 1.931
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The maps of all mean squared errors for parametric and non-parametric Kriging pre-
dictors are depicted in Figure 4.9.

(a) Parametric (b) Non-parametric

Figure 4.9: Complete maps of all MSE on Real Data on a dyadic grid of observations
at scale J = 4 (with N = 2401 and d = 10).

As for Kriging applied to simulated data, the exact interpolator property (Remark 2.22
in Chapter 2) is verified. Notice that, for parametric Kriging, some border effects can
be observed ; while, for non-parametric Kriging, there is a presence of local area with
higher error in form of circles at a certain distance of the observed locations, where
the mean error is higher and seems null everywhere else on the spatial domain. Still,
the results on real data are encouraging to extend our theoretical results to a more
general framework. Indeed, recall that these real data are irregular and violate some
of the made assumptions in Chapter 3: Assumption 3.1 is not verified since the mean
of the temperatures over several locations in France is not null; Assumption 3.3 is not
satisfied, as discussed in the choice of the value of the parameter θ.

Though it is beyond the scope of this work, the statistical modeling and predictive
analysis of such real data could be naturally refined in many ways, taking into ac-
count anisotropy and/or the temporal structure in particular. However, the only goal
pursued here is to show that a simplistic application of the non-parametric empirical
Kriging prediction method may perform well and can be competitive compared to
a more rigid method based on a preliminary parametric modeling of the covariance
structure.

4.6 Illustrative Experiments of Possible Extensions

In this section, we present additional illustrative experiments. The role of these ex-
periments is to investigate possible future extensions of the present work. First, we
present the case where the d observation points are taken from different configura-
tions than the random uniform procedure used so far. Next, we discuss the use of
anisotropic covariance models (thus relaxing Assumption 3.2). And finally, we invest-
igate the setting of irregular grids for the training sample.
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4.6.1 Extension to Different Configurations of the Observations’
Locations

One may be interested in the influence of the configuration of the observation points
s1, · · · , sd on the performance of the Kriging predictor. The results are presented here
for two extreme situations: the first, called Corner (C), happens when the major num-
ber of observations are taken randomly in a small sub-region of the spatial domain S ,
defined as one of the corners of the domain; for the second one, called Ring (R), the
major number of observations are sampled randomly in a circle of center equal to the
middle of the spatial domain S .

Table 4.5: Mean and standard deviation (std) of the AMSE on 100 independent sim-
ulations of a Gaussian process with truncated power law (left) and Gaussian (right)
covariance functions for theoretical and empirical Kriging with different configura-
tions of the observations’ locations (where U: Uniform ; C: Corner ; R: Ring) (with J = 4,
N = 1681, d = 60 and θ = 5).

TPL Theoretical Empirical

mean std mean std

U 0.747 0.113 0.797 0.120

C 0.850 0.126 1.596 6.899

R 0.866 0.126 0.917 0.140

GAU Theoretical Empirical

mean std mean std

U 0.186 0.107 67.814 476.812

C 0.598 0.270 3.676 18.225

R 0.517 0.182 84.840 815.206

(a) Uniform (b) Corner (c) Ring

(d) Uniform (e) Corner (f) Ring

Figure 4.10: Complete maps of all MSE on 100 realizations of a Gaussian process with
truncated power law covariance (top) and Gaussian (bottom) covariance functions for
the empirical Kriging predictor with different configurations of the observations’ loc-
ations s1, · · · , sd (with J = 4, N = 1681, d = 60 and θ = 5).
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The same procedure as in Sections 3.4 and 4.4 is then applied for the truncated power
law (3.7) and the Gaussian (3.8) covariance models, with the following setting: the
number of training observations is equal to n = 289 (dyadic scale J = 4); the total
number of sampled locations for the prediction is fixed to d = 60, where 50 are taken
in the sub-region of interest and the others 10 in the remaining area of the domain;
and the correlation length is fixed at θ = 5. The mean and the standard deviation of
all AMSE are presented in Table 4.5 and the complete maps of all MSE are displayed
in Figure 4.10, where Uniform (U) stands for the selection of the observations’ loca-
tions as before, using a random uniform procedure over the spatial domain S. For
the truncated power law model, the results in Table 4.5 (left) are similar when using
the Uniform procedure or the Ring procedure and the errors are close for the theoret-
ical and the empirical methods. In the Corner case, the mean AMSE for the empirical
Kriging is larger, and especially its standard deviation increases. Looking at the cor-
responding complete map in Figure 4.10b, it can be seen that the predictor seems to
succeed for the point locations near the observations but fails at some locations far
from any observed sample (with a large error, going up to 18, as shown by the large
error scale). This is a direct consequence of the fact that couples of point locations that
are at a large distance from one another are under-represented in this setting. When
looking at the Gaussian model results in Table 4.5 (right), it’s obvious that this model
is strongly linked to the configuration of the observations: the mean and the standard
deviation for empirical Kriging are significantly larger than when the true covariance
function is known. Indeed, let us observe that for the theoretical Kriging method, the
mean and the standard deviation are more or less the same for the three configura-
tions, whereas, for the empirical Kriging method, these two values rise abruptly when
the observations are taken mainly in a circle. Thanks to Figure 4.10f, one can notice
that the point locations that make the mean error explodes are located in the bound-
aries of the spatial domain, far from any observed sample (the maximum error value
is more than 1400). Other observations that can be made with these results are on the
influence of the number d of observed samples for the prediction step. When using
the truncated power law model, the results for the Uniform configuration in Table 4.5
(left) are similar to the mean and standard deviation in Table 4.2 (left) when θ = 5. So,
the size d of observations does not seem to have an impact on the performance of the
Kriging estimator. In contrast, for the Gaussian model, when the empirical version is
used, the results significantly change between Table 4.5 (right) when the configuration
is Uniform and Table 4.2 (right) when θ = 5, with a strong increase for both the mean
and the standard deviation in the case where d = 60.

Therefore, it can be of interest to explore how the performance of Kriging can be
affected by a variation in the observations’ locations.

4.6.2 Anisotropic Covariance Function

In this section, we study the role of the isotropy assumption for the covariance func-
tion (Assumption 3.2). Based on the truncated power law (3.7) and the Gaussian (3.8)
covariance models, we apply the same procedure as in Sections 3.4 and 4.4 to the
case where anisotropic covariance functions are selected. The gstools library allows
one to simulate an anisotropic covariance function with varying anisotropic ratios α,
where α = 1 corresponds to the isotropy situation.
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Table 4.6: Mean and standard deviation of the AMSE over 100 independent simu-
lations of a Gaussian process with truncated power law (left) and Gaussian (right)
covariance functions for theoretical and empirical Kriging with different values of the
anisotropic ratio α (with J = 3, N = 1681, d = 10 and θ = 5).

TPL Theoretical Empirical

α mean std mean std

0.9 0.901 0.141 0.934 0.142

0.8 0.925 0.139 0.951 0.135

0.7 0.919 0.119 0.949 0.121

GAUSS Theoretical Empirical

α mean std mean std

0.9 0.428 0.173 0.722 0.354

0.8 0.486 0.186 0.750 0.315

0.7 0.579 0.216 0.784 0.294

The same setting is used in order to compare the results with those in Section 4.4:
the covariance estimation is done thanks to a training dataset, observed at n = 81
sites (J = 3) and the prediction over the whole spatial domain is computed based on
d = 10 observations. We fix the value of the correlation length at θ = 5, and repeat the
experiments for different degrees of anisotropy α ∈ {0.9,0.8,0.7}.

(a) α = 0.9 (b) α = 0.8 (c) α = 0.7

Figure 4.11: MSE maps of over 100 realizations of a Gaussian process with truncated
power law covariance function for the empirical Kriging predictor with different val-
ues of the anisotropic ratio α (J = 3, N = 1681, d = 10 and θ = 5).

The mean and standard deviation of the AMSE computed over the 100 independent
simulations of a Gaussian process, for both covariance models, are shown in Table 4.6.
We observe that for both models, for the empirical Kriging prediction, the mean in-
creases slightly when α decreases (so when the covariance function becomes more
anisotropic), while the standard deviation decreases (see Table 4.1, when θ = 5 for a
comparison with the isotropic case).

Figures 4.11 and 4.12 (for the truncated power law and the Gaussian model, respect-
ively), show the complete MSE maps over 100 realizations. It can be observed that
the structure of the errors for both covariance models is similar to the maps obtained
using an isotropic covariance function, with the same scale error and the same local
area with small errors (see Figures 4.2b and 4.3b, respectively).

These results, which show that the prediction methodology is robust with respect to
slight departures from isotropy, encourage us to relax also the isotropic assumption,
in some future work.
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(a) α = 0.9 (b) α = 0.8 (c) α = 0.7

Figure 4.12: MSE maps of over 100 realizations of a Gaussian process with Gaussian
covariance function for the empirical Kriging predictor with different values of the
anisotropic ratio α (J = 3, N = 1681, d = 10 and θ = 5).

4.6.3 Irregular Grids

With the purpose of extending the theoretical results to a more general framework, we
present the numerical results within a different setting: we consider the case where
the simulations are done over an irregular grid. In this new setting, the realization
of the random field used for the non-parametric covariance estimation (the training
spatial dataset) is no longer observed at n sites forming a dyadic grid. Instead of as-
suming that the training observations are made on a regular dyadic grid, we make the
hypothesis that we have access only to a restricted number of these observations. The
irregular grids are generated from regular grids using Bernoulli sampling, with vary-
ing probability p ({0.8,0.6,0.4}) of observing a spatial site. The number of observed
locations is {65,50,35} (respectively).

Table 4.7: Mean and standard deviation of the AMSE over 100 independent simula-
tions of a Gaussian process with truncated power law (left) and Gaussian (right) cov-
ariance functions for empirical Kriging with different probabilities p for the Bernoulli
sampling (with N = 1681, d = 10 and θ = 5).

TPL Empirical

p mean std

0.8 0.932 0.159

0.6 0.934 0.156

0.4 0.936 0.154

GAUSS Empirical

p mean std

0.8 0.686 0.320

0.6 0.663 0.267

0.4 0.687 0.370

The estimation of the covariance function is computed as before, using Equation (3.2).
Since this framework could imply (likely but not surely) situations where for some h
previously observed on the complete dyadic grid, are not present anymore, we handle
these cases by skipping the estimation of the covariance function for these values and
simply applying the 1-NN estimator in the prediction step (as stated in Section 3.2).
For the simple Kriging prediction, we use the same independent realization of X ob-
served at d = 10 sites. We present the results only for the truncated power law and the
Gaussian covariance models, for θ = 5: the mean and the standard deviation of the
AMSE are displayed in Table 4.7. Note that, the sampled locations over the irregular
grid are fixed for the 100 replications of the experiment, as well as the d locations
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for the prediction test. For both covariance models, we observe that, as fewer and
fewer observations are selected, the AMSE and the standard deviation do not vary
much from the regular grid situation. This shows that both models are robust against
irregular sampling for the covariance estimation.

(a) p = 0.8 (b) p = 0.6 (c) p = 0.4

Figure 4.13: MSE maps of over 100 realizations of a Gaussian process with truncated
power law covariance function for the empirical Kriging predictor with different prob-
abilities p for the Bernoulli sampling (N = 1681, d = 10 and θ = 5).

(a) p = 0.8 (b) p = 0.6 (c) p = 0.4

Figure 4.14: MSE maps of over 100 realizations of a Gaussian process with Gaussian
covariance function for the empirical Kriging predictor with different probabilities p
for the Bernoulli sampling (N = 1681, d = 10 and θ = 5).

Regarding the structure of these errors for the truncated power law covariance model,
as it can be seen in the maps of the mean squared errors in Figure 4.13, for all the
values of p, the results are quite similar to the case where the observations are taken on
a regular dyadic grid (see Figure 4.2b). For the Gaussian model, for p = 0.8 and p = 0.6,
we recognize the same errors’ structure as in Figure 4.3b with some border effects.
Still, when p decreases, the errors seem to be expanded over the spatial domain.

As all previous results, the ones on the irregular sampling setup may be a motivation
to extend the theoretical study to a more general framework, including new grid of
observations.

4.7 Conclusion

In this chapter, we have proposed a statistical learning view of simple Kriging, which
in the literature is usually addressed using a parametric and asymptotic approach.
The major difficulty in analyzing this predictive problem lies in the complex depend-
ence structure generally exhibited by spatial data. As explained at length, an empir-



4.7. CONCLUSION 105

ical version of the optimal simple Kriging rule (minimizing the MSE integrated over
the spatial domain) can be constructed by means of a nonparametric estimator of the
covariance function in a plug-in fashion. It is also shown that the predictive rule thus
built can be viewed as a minimizer of the empirical counterpart of the risk, based on
the covariance function estimator. We have developed a novel theoretical framework
offering non-asymptotic guarantees for empirical simple Kriging rules in the form of
non-asymptotic bounds for the integrated MSE in a classic in-fill setup, stipulating
that the n ≥ 1 sites at which the stationary isotropic Gaussian field under study is
observed form a denser and denser regular grid. The learning rate bounds are of or-
der O

P
(1/
√
n). To the best of our knowledge, these are the first results of this nature.

These results allow us to overcome our Challenge 3 (stated in Section 1.2 in Chapter
1).

Since the aim of this chapter is to elucidate the key concepts for achieving gener-
alization guarantees in the spatial context, we employ several simplifying technical
assumptions. However, some of the assumptions made to obtain our results may seem
restrictive. Indeed, the regular grid assumption for the training data prevents the
application of our theoretical results in some real situations. Assumption 3.3, stipu-
lating that the covariance function is equal to zero after a given threshold, also limits
the use of our results to a specific category of covariance models. Still, our additional
numerical experiments on alternative settings motivate the extension of our results to
more general frameworks, which will be the subject of future work.
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3: Key points of this Chapter.

Technical Assumptions involved in this Chapter and their role

• Assumptions 3.1–3.10: see Chapter 3 for a discussion.

• Assumption 4.6: allows us to obtain non-asymptotic results for the pre-
cision matrix Σ(sd)−1 (see Proposition 4.7, Assertion (ii)).

• See Figure 4.1 for a summary of the role of each assumption.

Main results of this Chapter

• Similarities between Kriging and KRR (Section 4.2).

• Proposition 4.7: we compute non-asymptotic bounds for the accuracy of
the covariance matrix and precision matrix estimations.

• Theorem 4.8: we assess the generalization capacity at unobserved sites of
the empirical simple Kriging predictor.

=⇒MAIN RESULT: learning rate bounds of order O
P

(1/
√
n)

See Figure 4.1 for a graphic summary of all the contributions of Chapters
3 and 4 leading to this main result.

Publication

• Emilia Siviero, Emilie Chautru, Stephan Clémençon. A Statistical Learn-
ing View of Simple Kriging. In TEST, vol. 33, no 1, pages 271-296, 2024.
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In this chapter, we present the third type of spatial data discussed in Chapter 1, Sec-
tion 1.1 – point process data – and give the necessary tools to study space-time data
from real-world datasets that present heterogeneity. In Section 5.1, we present the
background of point processes, together with some motivations and real-world ex-
amples. In Section 5.2, we introduce the Hawkes process, a particular type of point
process that has both triggering and clustering behaviors, together with the main chal-
lenges encountered when studying such data. Then, we give the necessary tools for
studying Hawkes processes: the simulation methods in Section 5.3 and the estimation
procedures in Section 5.4. In Section 5.5, we give more details about some real-world
examples and a list of some available datasets for Hawkes process applications. Fi-
nally, in Section 5.6 we discuss the previous work presented in Staerman et al. (2023)
that aims at inferring temporal Hawkes processes in an efficient and flexible way. In
the next chapter, Chapter 6, we aim at extending the previous approach in Staerman
et al. (2023) to spatio-temporal data.

We refer the reader to Daley and Vere-Jones (2003) for more details and insights about
point processes and to Vere-Jones (2009); Diggle (2013); Reinhart (2018); Worrall et al.
(2022) about Hawkes processes.
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5.1 Point Processes

A Point Process (PP) is a stochastic process that describes the occurrence of events
randomly distributed over time or space. It is defined as a collection of points in
a one-dimensional (such as time) or multi-dimensional space (such as a geographical
area). Point processes are binary-valued processes, indicating whether an event occurs
at a specific time or location. Figure 5.1 depicts some examples of PPs. Figure 5.1a
shows a multivariate temporal point process, formed by two processes: for each of
them, the value at a time location in [0,T ] is equal to 1 if there is an event at this time
and 0 otherwise. In Figure 5.1b, one can observe a univariate spatial point process,
where each point is the location of an observed event. Finally, Figure 5.1c illustrates
a univariate spatio-temporal point process where each point in the spatial domain
indicates an event, and the color of this point gives the time stamp of the event. Note
that, in these examples, the phenomenon occurring can be modeled to represent the
time of the events, their location, or both.

One can think of many real-world situations where a phenomenon occurring can be
described by a point process. In the following, we give three examples of application
domains where point processes are used to describe the observed phenomenon.

Example 5.1. (Seismology) In seismology, point processes have been introduced by Vere-
Jones (1970), driven by the need to better understand and predict earthquake occurrences.
PPs are a powerful tool to model, analyze, and describe the random occurrence of earth-
quakes over time and space. PPs can also be used to provide insight into a possible cluster-
ing and triggering pattern. Indeed, an earthquake can trigger a new occurrence, called an
aftershock, in a specific time window and spatial neighborhood. Thus, it is necessary to use
models that can capture both clustering and triggering behaviors. The study on clustered
and self-exciting point processes is still focused on seismological data, with the need to im-
prove the accuracy and reliability of earthquake prediction and risk assessment. We refer
the reader to Ogata (1988, 1999); Daley and Vere-Jones (2003) for more details on point
processes for seismology.

Example 5.2. (Epidemiology) In epidemiology, point processes are essential for under-
standing and predicting the spread of infectious diseases, identifying patterns in disease
occurrence, and implementing effective control measures. See for example Meyer and Held
(2014) for more details on the modeling of an infectious disease spread, or Kresin et al.
(2022) for a study on the spread of COVID-19.

Example 5.3. (Finance) In the context of finance, point processes help in modeling the
timing and frequency of discrete events like trades, and transactions. These models are
essential for understanding the dynamics of financial markets and for developing strategies
to manage risk and optimize trading. We refer the reader to Bacry et al. (2015) for a review
on the applications of point processes in finance.

Point processes often exhibit clustering behavior, where points tend to cluster together
rather than being randomly distributed. This clustering behavior can arise due to vari-
ous factors such as spatial interactions, temporal dependencies, or underlying envir-
onmental conditions. Understanding and analyzing the clustering behavior of point
processes is crucial in various fields, like ecology and epidemiology, as it provides
insights into the underlying mechanisms driving the observed point patterns.
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(a) Multivariate temporal point process (b) Univariate spatial point process

(c) Univariate spatio-temporal point process

Figure 5.1: Several examples of point processes: realization of a multivariate temporal
PP with two processes (top left); realization of a univariate spatial PP (top right);
realization of a univariate spatio-temporal PP where the colors of the point locations
give the time of the events (bottom).

In point process theory, the behavior of the phenomenon under study is characterized
by its intensity function, which describes the expected rate of events occurrences at
different points. The intensity function may rely on time, on past events, or be con-
stant. Various forms of point processes exist, distinguished primarily by the structure
of their intensity functions and the factors upon which these functions depend. Here
are the main categories of point processes:

• Homogeneous Poisson process: The simplest and most widely used point process.
It assumes events occur independently and uniformly over time or space: the oc-
currences of events are unrelated and do not influence others. As a consequence,
the Poisson process does not exhibit clustering behavior. It exhibits stationarity,
meaning that the phenomenon is sufficiently homogeneous (its characteristics
remain consistent) within the domain. It is characterized by a constant intens-
ity, indicating the average number of events per unit of time or space. The time
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between events (interarrival time) follows an exponential distribution.

• Renewal process: Generalizes the Poisson process by allowing the interarrival
time to follow an i.i.d. distribution other than the exponential distribution. Still,
the renewal process lacks triggering behavior, since the occurrence of the next
event is independent of past events.

• Inhomogeneous Poisson process: It is more flexible than the homogeneous Poisson
process since it allows the event rate to vary over time or space. The number
of events in any interval is assumed to follow a Poisson distribution, and the
intensity function may depend on time or space.

• Cox process: Also known as a doubly stochastic Poisson process, it introduces
randomness into the intensity function, making it a useful model for scenarios
where the event rate varies over time or space.

• Gibbs process: Gibbs point processes are stochastic models used to describe the
spatial distribution of points in a region of interest. These processes incorporate
both random and deterministic components to model the spatial arrangement of
points. The intensity function depends only on the location and configuration
of neighboring points. Gibbs point processes are defined in terms of an interac-
tion potential or energy function, which quantifies the strength of interactions
between points. This potential function often depends on the distances between
points and may incorporate other spatial attributes.

• Hawkes process: A Hawkes (or self-exciting) process (HP; Hawkes, 1971) presents
both clustering and triggering behavior. In such a process, each event increases
the likelihood of future events in its neighborhood. In a Hawkes process, events
arrive randomly over time, and the rate of event arrivals is influenced by the
history of past events.

Referring to the Examples 5.1, 5.2 and 5.3, we show the motivation behind the differ-
ent types of point processes, their advantages and limitations.

Example 5.4. (Seismology) Following a significant earthquake (called a mainshock), a
series of smaller aftershocks typically occurs over the subsequent days. In the case of earth-
quake prediction, since the seismic data presents a strong cluster structure, the Poisson
process often fails to capture the clustering of earthquakes and is not suitable in these situ-
ations. Clustered processes are already a better option since these models account for the
tendency of earthquakes to cluster in time and space. The most notable among these is the
Epidemic-Type Aftershock Sequence (ETAS) model. The ETAS model, introduced first by
Ogata (1988) for purely temporal processes, suggests that each earthquake can trigger af-
tershocks, which themselves can trigger further aftershocks, creating a cascade of seismic
activity. More precisely, self-exciting (or Hawkes) processes are particularly well suited for
seismic data, since they stipulate that the occurrence of an event increases the likelihood
of future events. Hawkes processes allow capturing both the triggering (immediate after-
shocks) and clustering (subsequent aftershocks over time) behaviors observed in seismic
data. Although predicting the exact time and location of an earthquake remains challen-
ging, Hawkes processes improve the understanding of earthquake patterns and of potential
future seismic activity.
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Example 5.5. (Epidemiology) In the context of diseases’ spread, Hawkes processes are used
to represent self-exciting events where each case can potentially trigger further cases. This
is particularly useful in diseases that exhibit secondary transmission, such as influenza or
COVID-19. It captures the clustering behavior typical in infectious diseases. Following
ETAS literature, Meyer et al. (2012) introduce self-exciting spatio-temporal point process
adapted for predicting the incidence of invasive meningococcal disease, in which cases of
infections can be divided into two categories (background and triggered events). On the
contrary, in the case of a disease where all transmissions are from infected individuals to
susceptible individuals, there are not background events producing new cases without hav-
ing been exposed to an infected individual. Schoenberg et al. (2019) propose a recursive
epidemic model, where the expected number of offspring of an event varies as a function
of the conditional intensity. It accounts for the natural behavior of epidemics: as a dis-
ease becomes more prevalent, more people have already been exposed and active prevention
measures slow the spread of the infection.

Example 5.6. (Finance) The Cox process allows for modeling time-varying and state-
dependent event rates. The Hawkes process captures the clustering of trades and the conta-
gion of financial shocks.

We now give the main definitions and properties of Temporal Point Processes (TPPs).

Let T ∈ R+ be a stopping time and [0,T ] the resulting observation period. A tem-
poral point process is a stochastic process whose realization consists of a set of dis-
tinct timestamps: HT = {tn, tn ∈ [0,T ]} occurring in continuous time. The behavior
of a TPP is fully characterized by its intensity function, which represents the infin-
itesimal probability of an event occurring at time t. The conditional intensity function
∀t ∈ [0,T ] is

λ(t|Ht) = lim
dt→0

P(Nt+dt −Nt = 1|Ht)
dt

, (5.1)

where Nt =
∑
n≥1

1tn≤t is the counting process associated with the TPP. The counting

process is a non-decreasing and right-continuous process that counts the number of
events up to time t.

The factors upon which the conditional intensity depends can vary for different types
of processes. As previously said, in the case of homogeneous Poisson processes, the
conditional intensity λ is constant and does not depend either on the past history or on
the current time t. In the case of inhomogeneous Poisson processes, the conditional
intensity function depends on the current time t and its value may vary over time.
For Hawkes processes, the conditional intensity function depends on past history Ht

(incorporating information up to but not including time t).

An important definition often used for statistical analysis of point processes is the
compensator (or integrated intensity) function defined as follows.

Definition 5.7. (Compensator function) The compensator or integrated intensity function
Λ(t) is the cumulative intensity over time and is defined as:

Λ(t) =
∫ t

0
λ(τ)dτ .

The main properties of point processes are given below.
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Proposition 5.8. (Stationarity) A point process is stationary if its statistical characteristics
do not change over time.

Proposition 5.9. (Ergodicity) A point process is said to be ergodic if the time averages
converge to ensemble averages. This allows long-term observations to be representative of
the entire process.

5.2 Hawkes Processes

In this subsection, we focus on self-exciting processes, motivating the choice of these
models by seismology study. We first give the main definition of temporal Hawkes
processes, together with a central result on the existence and unicity of self-exciting
processes. Then, we present the particular case of spatio-temporal Hawkes processes.

5.2.1 Temporal Hawkes processes

Historically, the Poisson process was among the first statistical models used in seis-
mology. It assumes that earthquakes occur randomly over time with a constant av-
erage rate. Because of its simplicity, the Poisson process fails to account for the ob-
served clustering of earthquakes, particularly the aftershock sequences that follow
major seismic events. Introduced in Hawkes (1971), the temporal Hawkes process
was a significant advancement in modeling self-exciting phenomena. In seismology,
Ogata (1988) applied this model to earthquakes, demonstrating its ability to capture
the temporal clustering of seismic events. The temporal Hawkes process models the
conditional intensity function, which represents the rate at which earthquakes occur,
incorporating the effect of past events. See for example Lewis and Mohler (2011);
Laub et al. (2015); Bompaire (2019) for an exhaustive overview of temporal Hawkes
processes.

Univariate temporal Hawkes process. The conditional intensity function of a uni-
variate Hawkes process can be expressed by the cluster representation:

∀t ∈ [0,T ], λ(t|Ht) = µ+
∫ t

0
αg(t − τ)dNτ (5.2)

= µ+
∑
tn∈Ht

αg(t − tn), (5.3)

where µ > 0 is the constant baseline parameter (also referred to as the background of
the process), α is the excitation scaling parameter, and g : [0,T ] 7→ R+ is the non-
negative excitation function (called kernel) that represents the influence of past events
onto future events.

Another point of view to define Hawkes processes is the Immigration-Birth represent-
ation (Hawkes and Oakes, 1974). This representation supposes that the events can be
divided into two categories: first, the immigrant events that follow a Poisson process
with rate µ and define the cluster centers; then, the offspring events that are induced
by the clusters. The clusters are independent and present different branching struc-
tures.

In the following proposition, we recall the result from Hawkes and Oakes (1974) about
the existence and unicity of a Hawkes process.
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Proposition 5.10. (Existence and unicity) Let N be a Hawkes process characterized by the
intensity function in Equation (5.3), with a positive constant background µ > 0. N is stable
if

∫∞
0 g(τ)dτ < 1. If N is stable, then it exists a unique stationary process that satisfies

Equation (5.3).

Multivariate temporal Hawkes process. Multivariate Hawkes processes model the
interactions of D ∈ N∗ self-exciting TPPs. Given D sets of timestamps Hi

T = {tin, tin ∈

[0,T ]}N
i
T

n=1, i = 1, . . . ,D, where N i
T =

∑
n≥1

1tin≤T , each process i is described by the follow-

ing intensity function:

∀t ∈ [0,T ], λi(t|Hi
t) = µi +

D∑
j=1

∫ t

0
αij gij(t − τ)dN j

τ

= µi +
D∑
j=1

∑
t
j
n∈H

j
t

αij gij(t − t
j
n),

where the kernel function gij represents the influence of jth process’ past events onto
the ith process future events.

A multivariate Hawkes model composed of two processes is presented in Figure 5.2.
On the left, the counting process values N i

t with respect to time t are depicted for
both processes i ∈ {1,2}. It’s possible to observe the non-decreasing and the right-
continuous properties of the counting processes. On the right, the respective condi-
tional intensity values λi(t|Hi

t) are shown for each process i ∈ {1,2}, with respect to
the time values t. The dotted green lines give the constant background values µi . We
observe that the probability increases after an event occurrence, and then slowly de-
creases towards µi . The way the probability decreases depends on the chosen kernel
for each couple of processes. The dotted orange arrow shows how an event from pro-
cess 1 can influence either a future event of the same process or a future event of the
other process 2. Note that the influence is ordered in time: only earlier events can
influence the occurrence of subsequent events.

5.2.2 Spatio-temporal Hawkes processes

As previously seen, temporal Hawkes processes were introduced in seismology in the
80’s by Ogata (1988), called the ETAS models. Compared to simpler point process
models like Poisson processes, using temporal Hawkes processes offered a way to
model the self-exciting nature of earthquakes in a purely temporal framework. How-
ever, the complex dynamics of seismic activity are not just confined to the temporal
dimension. Earthquakes exhibit both spatial and temporal clustering, meaning that
aftershocks are likely to occur near the location of the mainshock as well as shortly
after it. To capture this spatio-temporal dependency, it is necessary to develop Spatio-
Temporal Hawkes Processes (STHPs). These models extend the temporal Hawkes pro-
cess by incorporating spatial dimensions, thereby providing a more comprehensive
and realistic framework for modeling seismic activity. For further details on STHPs,
please refer to Daley and Vere-Jones (2003); Reinhart (2018).

Univariate spatio-temporal Hawkes process. In the case where the spatial location of
an event also gives information on the process, and in the case where the occurrence
of an event is influenced by the location of previous events, one can model the phe-
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Figure 5.2: A multivariate temporal Hawkes process with two processes: the counting
processes N1

t and N2
t with respect to time t (left), and the conditional intensity values

with respect to time t (right). In blue are the events of process 1 (top) and in red are
the events of process 2 (bottom). In the conditional intensity figure (right), the green
dotted line represents the value of the constant backgrounds µ1 and µ2.

nomenon by a spatio-temporal point process. Let S ⊂R
2 be a compact set of the space

domain containing the locations of the observed events until time T . A STHP realiz-
ation consists of a set of distinct events: HT =

{
un = (xn, yn, tn), (xn, yn) ∈ S , tn ∈ [0,T ]

}
occurring in continuous space-time, with an associated time tn and a location (xn, yn).
The process’s behavior is fully characterized by its intensity function, which relies
on the time and location of past events. Denote by N the random counting measure
defined on S × [0,T ], such that N(dx,dy,dt) =

∑∞
n=1 δ(xn,yn,tn)(dx,dy,dt), where (x,y)

and t respectively denote the location and time of the events. The conditional in-
tensity function of such a process is defined as the map from R

3 to R+ such that:
∀t ∈ [0,T ], (x,y) ∈ S ,

λ(x,y, t|Ht) = lim
dx,dy,dt→0

E

[
N

(
[x,x+ dx]× [y,y + dy]× [t, t + dt]

)
|Ht

]
dxdydt

.

The conditional intensity function of an STHP can also be expressed by the cluster
representation as:

λ(x,y, t|Ht) = µ+
∫ t

0

∫
S
αg(x −u,v − y, t − τ)dNudNvdNτ

= µ+
∑
un∈Ht

αg(x − xn, y − yn, t − tn),

where g is a spatio-temporal kernel function.
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Marked Hawkes process. An important feature in earthquake data is the magnitude
of an earthquake. Indeed, a mainshock with high magnitude may have more probabil-
ity to trigger a subsequent earthquake, compared to a mainshock with low magnitude.
Thus, the magnitude of an earthquake can be a valuable information to include in the
Hawkes models. A marked Hawkes process is a type of Hawkes process where each
event is associated with an additional mark or attribute (Reinhart, 2018, Section 2).
Marked Hawkes processes have been developed in various application domains, such
as seismology (Ogata, 1988), ecology (Schoenberg, 2004), criminology (Mohler, 2014;
Zhu and Xie, 2022), and social science (Yuan et al., 2019, 2021).

Finally, we present Multivariate Spatio-Temporal Hawkes Processes (MSTHPs), that
are used in Chapter 6. See also Bompaire (2019) and Section 8 in Daley and Vere-
Jones (2003) for further details on MSTHPs.

1: Multivariate spatio-temporal Hakwes process.

Given D ≥ 1 type of events, for each i ∈ ⟦1,D⟧, the conditional intensity func-
tion of the i-th process has the following form:

λi(x,y, t|Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
n, y − y

j
n, t − t

j
n), (5.4)

where the strictly positive µi ’s are the baseline parameters, controlling the
spontaneous event apparition rate, the positive αij are the excitation scaling
parameters, and the gij : S × [0,T ] 7→ R+ are the spatio-temporal kernel, also
referred as excitation functions. The parameters αij and gij describe the ex-
citation behavior between events. Here we assume that 0 ≤ αij < 1 and∫ T

0

∫
S gij(x,y, t)dxdydt = 1, ensuring the stability of the generated process.

From now on, we may simplify the notation of the conditional intensity function by
λi(x,y, t) for the sake of clarity.

Baseline. Notice that the baseline µ can either be defined as a function of the time t
or of the spatial location (x,y), or either chosen as constant. The definition of the form
of the baseline depends on the physical properties of the phenomenon under study.
For example, for seismological data, the background sometimes depends on the spa-
tial dimension (for instance, it may represents the tectonic plates), see e.g. Musmeci
and Vere-Jones (1992); Ilhan and Kozat (2020); Kwon et al. (2023). However, in the
first ETAS models, the baseline µ was assumed to be constant, and it represented the
background seismic activity rate in a region of interest (see e.g. Marsan and Lengline,
2008). In epidemiology, the background is often chosen as constant, in particular, if
the phenomenon of interest is an infectious disease (see e.g. Embrechts et al., 2011;
Dong et al., 2023). In Mohler et al. (2011), where the variable under study is the oc-
currences of burglaries in a city, the background rate is defined as a function of the
spatial location of the events, multiplied by a function depending on the temporal
dimension. Indeed, the crime risk may depend on temporal and spatial fluctuations
such as holiday seasons, population densities in some regions of the city, etc (see also
Zhuang and Mateu, 2019; D’Angelo et al., 2022).
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Constant Baseline: For simplicity reasons, in our study in Chapter 6,
the background rate is supposed to be constant.

In our study

5.3 Simulation of Hawkes Processes

The simulation of Hawkes processes requires generating event sequences, based on
the conditional intensity function of such processes. The main challenge is to preserve
the temporal dependencies in the data, and the spatial dependence structure in the
case of STHP. The simulation of Hawkes processes is a crucial step in the study of
self-exciting processes, since it allows better understanding their behavior, validating
theoretical models, and developing accurate predictions.

Several methods have been developed for this purpose, each with its advantages and
challenges. We present two main approaches: the Ogata’s thinning algorithm and the
clustering algorithm.

5.3.1 Ogata’s Thinning Simulation Algorithm

Ogata’s thinning algorithm, introduced in Ogata (1998), is a widely used method for
simulating inhomogeneous Poisson processes and self-exciting point processes. The
key idea of this approach is the ‘thinning’ procedure: several events (called candid-
ate events) are first generated, and then selectively accepted or rejected (i.e. thinned),
based on the conditional intensity function. From a temporal point of view only, the
thinning step is applied to the first generated event and then on the subsequent events
(following the unidirectional flow of time, from present to future), such that the his-
torical dependence of the process is preserved. Lewis and Shedler (1979) introduced
this approach for inhomogeneous Poisson processes. Then, Ogata (1998) extended this
procedure to allow the simulation of self-exciting point processes. Ogata’s algorithm
relies on the definition of an upper bound λ∗(t|Ht) for the intensity function λ(t′ |Ht),
for all t′ ≥ t. One can easily adapt this method to spatio-temporal Hawkes process
simulations by introducing the spatial dimension: the spatial location of each events
are simulated during the first phase of the algorithm, just after having simulated the
time of the candidate events. The two main steps of the algorithm are the following
(for a univariate spatio-temporal Hawkes process):

1. First, it draws the time t′ of a new candidate event, sampled from a homogeneous
Poisson process, based on λ∗ (defined as the upper bound of λ(x,y, t|Ht), where
t is the current time). After defining the time of the new event, it generates a
candidate spatial location (x′ , y′) uniformly over the spatial domain S .

2. Then, it accepts or rejects the candidate event, based on the actual intensity
function. For this purpose, it evaluates the actual intensity function at the can-
didate event (x′ , y′ , t′) by λ(x′ , y′ , t′ |Ht) = µ+

∑
un∈Ht

g(x′ − xn, y′ − yn, t′ − tn). For the

acceptance-rejection step, the candidate event (x′ , y′ , t′) is accepted with probab-
ility λ(x′ , y′ , t′ |Ht)/λ∗.

We present the algorithm for univariate STHPs in Algorithm 5.1. Notice that for sim-
plicity λ(x′ , y′ , t′ |Ht) is written λ(x′ , y′ , t′).
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Algorithm 5.1 Ogata’s thinning algorithm for a univariate spatio-temporal Hawkes
process

Require: ending time T , spatial set S ⊂R
2

Set the initial time t = 0

while t < T do
Define an upper bound λ∗, such that λ∗ ≥ λ(x′ , y′ , t′), ∀(x′ , y′) ∈ S , ∀t′ ≥ t

Draw the candidate event time t′ from an exponential distribution with rate λ∗

Draw the candidate event location (x′ , y′) uniformly on S
Sample u ∼ U[0,1]

if u < λ(x′ , y′ , t′)/λ∗ then
Accept the candidate event (x′ , y′ , t′) and add it to the list of events

end if
t = t′

end while

Refer to Section 3 in Reinhart (2018) for a presentation of the Ogata’s thinning pro-
cedure applied to spatio-temporal Hawkes processes. See also Ilhan and Kozat (2020)
for a thinning procedure for marked STHPs, with a slight modification in order to
generate data with multiple event types (the marks of the process).

However, this procedure is computationally expensive, since the intensity function
must be evaluated for each new event.

5.3.2 Clustering Simulation Algorithm

The clustering method (also called the Immigration-Birth algorithm, see subsection
5.2 on the Immigration-Birth representation from Hawkes and Oakes, 1974) was ini-
tially proposed for earthquake simulation by Zhuang et al. (2004) and then improved
by Møller and Rasmussen (2005). It alleviates the computational cost of Ogata’s al-
gorithm since it does not require the thinning step and the evaluation of the intensity
function for each new event. The idea is that it directly exploits the cluster structure of
the data: it first generates a sequence of immigrant events from the baseline and then
simulates offspring events. Recall that the immigrant events are drawn from a Pois-
son process with rate µ and are used to define the cluster centers, while the offspring
events are events induced by the clusters. The algorithm for univariate STHPs with
space-time separable kernels is summarized in Algorithm 5.2 (see also Yuan et al.,
2019, Algorithm 3, and Kwon et al., 2023 for similar cluster algorithms). Notice that it
easily extends to the space-time non-separable case (see subsection 5.4.3) by generat-
ing offspring inter arrivals according to the space-time non-separable kernel directly.

For further details and other simulation algorithms, we refer the reader to Daley and
Vere-Jones (2003) for TPPs and to Reinhart (2018) for a review of STHP’s simulation
methods.
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Algorithm 5.2 Clustering algorithm for a spatio-temporal Hawkes process

Require: ending time T , spatial set S ⊂R
2 of area AS

Initialize an empty stack L
Define the number of immigrant events NI from a Poisson distribution with para-
meter λI = µ× T ×AS
Draw NI immigrant samples defined by (xi , yi , ti), ∀i ∈ [1,NI ], where (xi , yi) is
sampled uniformly on S and ti uniformly on [0,T ]

Add each immigrant event to the stack L
while L is not empty do

Remove the most recently added element to L denoted (xi , yi , ti)

Generate the number ni of offspring events from a Poisson distribution with rate
α (the excitation scaling parameter)

Generate the offspring inter arrivals (uk ,vk , sk), ∀k ∈ {1, . . . ,ni} according to the
spatial and temporal kernels

Define the offspring events as
{
(xi +u1, yi + v1, ti + t1), . . . , (xi +uni , yi + vni , ti + tni )

}
Remove the offspring events that are outside the spatial domain S or outside the
temporal window [0,T ]

Add the immigrant (xi , yi , ti) to the set of valid offspring events

Add the offspring events to the set L
end while

Clustering Simulation: We simulate events according to the clustering algorithm
presented above, with a slight modification to account for finite support kernels

(see Chapter 6 and the corresponding GitHub).

In our study

5.4 Estimation and Inference

Suppose that we have observed a realization of an MSTHP at n observations composed
of event locations

{
(x1, y1), . . . , (xn, yn)

}
∈ S and times {t1, . . . , tn} ∈ [0,T ]. The goal of this

subsection is to give a short review of available methods to estimate the parameters of
a Hawkes process, based on a finite set of observations.

The statistical inference of a MSTHP defined as in (5.4) concerns, for all i ∈ {1, . . . ,D},
the parameters µi , αij and the triggering kernels ηij that can be parametric (Yuan
et al., 2019; Reinhart, 2018) or non-parametric (Lewis and Mohler, 2011; Choi and
Hall, 1999; Diggle et al., 1995; Kwon et al., 2023). Define the set of parameters to
estimate as θ = {µi ,αij ,ηij}i,j , ∀i, j.

We present here two inference approaches: the maximum log-likelihood, and the min-
imum least squares.

https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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5.4.1 Maximum Log-likelihood

The log-likelihood of a MSTHP is given in Daley and Vere-Jones, 2003, Section 7.3:

L(θ,HT ) =
D∑
i=1


∑

ui
n∈Hi

T

log
(
λi(x

i
n, y

i
n, t

i
n)
)
−
∫ T

0

∫
S
λi(x,y, t)dxdydt

 . (5.5)

Notice that the log-likelihood function is composed of two parts: the first reflects
the triggering behavior, while the second one is the compensator function (defined as
the cumulative intensity over time and space, extending Definition 5.7 to the spatio-
temporal case). However, performing maximum log-likelihood is generally impossible
in practice. Indeed, it requires the computation of a sum over all the events of the in-
tensity function. A solution is to consider Expectation Maximization (EM) algorithms
(Veen and Schoenberg, 2008). The idea is to introduce a cluster representation of the
events, labeling each event if it either comes from the background rate or if a pre-
vious event triggers it. Then, the two steps of the EM algorithm are the following:
(E-step) the triggering probabilities (defined as the probability that an event does not
arise directly from the background rate) are estimated based on the current paramet-
ers and the expected log-likelihood function can be computed, (M-step) the expected
log-likelihood is maximized with respect to each parameter, and the parameters can
be updated (then, return to the E-step). See e.g. subsection 3.1 in Reinhart (2018) for
further details. However, this approach may introduce an estimation bias induced
by boundary effects. A solution is the stochastic declustering approach in Zhuang
et al. (2002), where the same cluster (or branching) structure of the events is com-
puted. The idea is to fit in a non-parametric manner the background rate, based only
on the background-labeled events. The iterative procedure is composed of the fol-
lowing main steps: starting from a constant background assumption, (1) it fits the
parameters using the maximum log-likelihood principle; (2) then, it computes the
triggering probabilities; (3) finally, it updates the estimated of the background rate
(and returns to step 1). When the algorithm stops, a thinning (or stochastic declus-
tering) procedure is applied to retrieve the background events. These two EM-based
methods from Zhuang et al. (2002); Veen and Schoenberg (2008) assume a parametric
form for the kernel. Marsan and Lengline (2008) proposed a non-parametric approach
for piecewise constant kernel functions (called model-independent stochastic decluster-
ing) by estimating the shape of the kernel function directly from the observations,
while Lewis and Mohler (2011) presented another non-parametric algorithm (called
maximum penalized likelihood estimation) assuming that the kernel function exhibits
at least a needed degree of regularity. Still, Marsan and Lengline (2008) assumed
that the triggering function is space-time separable (see below for a discussion about
space-time separability). In Kwon et al. (2023), a more flexible non-parametric ap-
proach is proposed, where the space-time interactions are taken into account.

5.4.2 Least Squares Minimization

The ERM-inspired least squares loss of a MSTHP (Reynaud-Bouret and Rivoirard,
2010; Reynaud-Bouret et al., 2014; Bacry et al., 2020) is:

L(θ,HT ) =
D∑
i=1


∫ T

0

∫
S
λi(x,y, t)

2dxdydt − 2
∑
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λi(x
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i
n)

 . (5.6)
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Notice that the triggering part does not require the logarithmic function, compared
to the above log-likelihood in Equation 5.5. In Staerman et al. (2023), an efficient
and flexible inference method is proposed, based on a discretized version of the least
squares loss (see Section 5.6 for a complete presentation of this method). Furthermore,
this method takes advantage of the absence of the logarithm in the triggering part of
the loss, thus allowing for precomputations and leveraging the computational burden.
However, this method is suited only for temporal Hawkes processes, and its extension
to spatio-temporal processes has yet to be developed.

ERM-inspired least squares loss: In Section 6.3,
the least squares minimization approach is preferred and the objective

is to extend the method in Staerman et al. (2023) for MSTHPs.

In our study

5.4.3 Space-time Separability

A key aspect of modeling with Hawkes processes is the concept of separability. For
example, for marked Hawkes processes, it is generally assumed that the mark of an
event does not depend either on the temporal dimension nor on the past events (see
e.g. the ETAS models Ogata (1988, 1998) in seismology). Schoenberg (2004) and Díaz-
Avalos et al. (2014) investigated non-parametric Monte-Carlo tests for the separability
of a spatio-temporal marked point process and show how the separability assumption
can be prohibitive. Another separability assumption can be made between the spatial
and the temporal dimensions. In the literature (see e.g. Mohler, 2014; Yuan et al.,
2019; Ilhan and Kozat, 2020), the kernel gij(·) is generally supposed to be first-order
space-time separable, which means that the kernel is a product of spatial and tem-
poral influences (see González et al., 2016, Section 4.2, and Reinhart, 2018, Section
2.2). This assumption is made for simplicity reasons since it implies that the tem-
poral and spatial components can be modeled and estimated separately. Under the
space-time separability assumption, the locations of the events are assumed to be in-
dependent of the time of the events, preventing any kind of space-time interaction.
However, in practice, this is not always the case and the separability assumption can
be restrictive when dealing with real-world situations. For instance, in criminology,
burglars often revisit the same area to commit several burglaries consecutively within
a short period of time (Johnson, 2008). Cressie and Huang (1999) proposed a class of
kernel functions that do not satisfy the space-time separable assumption and Gneiting
(2002) extended it to a more general class of space-time non-separable functions. In
both works, an implementation of these approaches for various non-separable func-
tions on real-world applications shows the accuracy of their proposed methods. In the
context of earthquakes prediction, Kwon et al. (2023) used a space-time non-separable
model and proves the flexibility induced by non-separable kernels.

5.4.4 Constrained Kernel Models

For computational purposes, the temporal kernel is often chosen as exponential, while
the spatial kernel is chosen as Gaussian (see e.g. Mohler, 2014; Yuan et al., 2019; Ilhan
and Kozat, 2020). However, there are various reasons to consider alternative kernels
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for some datasets. An exponential temporal kernel assumes that the influence of past
events decays exponentially, which may not accurately represent real-world situations
with long-term memory or varying rates of decay. A spatial Gaussian kernel assumes
that spatial correlations are symmetric around a point, which may not be realistic in
all contexts, especially when directional dependencies are observed. Thus, restricting
the modeling to these two kernels may be prohibitive. Indeed, selecting kernels that
better reflect the underlying data characteristics and dependencies can significantly
enhance the flexibility, adaptability, and accuracy of models. The choice of kernel
should be guided by the specific nature of the data and by the goals of the analysis.

These specific choices – separability and constrained kernels– both limit the modeling
flexibility between the temporality and spatiality of events, reducing the applicability
of STHP models to real-world data.

Space-time Non-separable Kernels and General Parametric Form of Kernels:
The objective of Chapter 6 is to extend the method developed

in Staerman et al. (2023) to MSTHPs. Thus, the first goal is to develop
an efficient inference method that allows the estimation of

any parametric kernel. Furthermore, in order to take into account
space-time interactions, the second goal is to allow
estimating from space-time non-separable kernels.

In our study

5.5 Real-world Examples and Datasets

In this section, we present some of the main domains of application of Hawkes pro-
cesses and we give some links to real-world datasets presenting self-exciting features.
The aim of this section is to show the importance to develop flexible and accurate
STHP models, demanded by various real-world situations.

Seismology. It is widely known that after a large earthquake (for example an earth-
quake of large magnitude, or an earthquake with a consequent spatial spread), a se-
quence of smaller earthquakes is typically observed. The first earthquake is referred
to as the mainshock, whereas the subsequent ones are called the aftershocks. The after-
shocks occur in the following days and in a spatial neighborhood of the mainshock.
Thus, earthquakes exhibit a strong spatio-temporal clustering behavior (see Examples
5.1 and 5.4, and the discussion on seismology in Section 5.2). This clustering structure
suggests to resort to spatio-temporal self-exciting models, such as Hawkes processes
(see e.g. Musmeci and Vere-Jones, 1992; Ogata, 1998).

Dataset. The National Earthquake Information Center 1 provides earthquakes with a
magnitude of 2.5 or higher since 1966. An earthquake record includes the date, the
time, the location and the magnitude of the earthquake. The Northern California Earth-
quake Data Center 2 (nce, 2014) also provides an earthquake datasets, only for seismic
events in California.

1https://earthquake.usgs.gov/earthquakes/search/
2https://ncedc.org/

https://earthquake.usgs.gov/earthquakes/search/
https://ncedc.org/
https://ncedc.org/
https://earthquake.usgs.gov/earthquakes/search/
https://ncedc.org/
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Criminology. For various crimes (for example burglary, shootings, etc), a spatio-
temporal clustering behavior can be observed. Indeed, a ‘near-repeat victimization’
(as described in Mohler et al., 2011) is commonly observed. For example, in the case
of burglaries, Johnson (2008) noticed that burglars often steal repeatedly from a same
neighborhood (or even a same street) in a short period of time. Another example
of near-repeat victimization is the case of gang violence: a shooting may causes fur-
ther vengeance shootings in the days after and in the same area (see e.g. Ratcliffe
and Rengert, 2008). Therefore, a same pattern of mainshocks and aftershocks to-
gether with a spatial correlation can be observed in crime data, and thus crimes can
be modeled by STHPs (Mohler et al., 2011; Mohler, 2014; D’Angelo et al., 2022; Zhu
and Xie, 2022). The application of Hawkes processes to criminology began in the early
2000s as researchers recognized the parallels between the clustering of earthquakes
and crime incidents. Mohler et al. (2011) were among the pioneers to apply Hawkes
processes to crime data. They assume that the model is divided into the background
(usually defined as spatial dependent, for factors such as the socioeconomical back-
ground of the neighborhood, the police activity in the sector, etc) and a self-exciting
function that accounts for near-repeats events. Mohler (2014) introduced the use of
marked Hawkes processes to identify hotspots of homicide (described as areas within
a city where crime rates are significantly elevated). Furthermore, Mohler (2014) pur-
pose was to see if other less violent crimes (such as burglary, criminal damage, etc)
have an impact on more serious gun crimes. Thus, these other types of crimes, di-
vided into marks, are incorporated into the conditional intensity by adding weights
for each class. Later, D’Angelo et al. (2022) introduced a STHP model based on the
underlying network structure of a region. This allows for a better understanding of
the process behavior and leads to better predictions. In Zhu and Xie (2022), another
marked STHP model was proposed, where the marks are defined as the textual de-
scriptions of crimes.

Datasets. The Chicago Crime Dataset 3 gives the reported incidents in the City of
Chicago from 2001 until now. An incident is defined by its location, time, and type
(theft, burglary, assault, etc).

Epidemiology. The spread of a disease can be divided in two parts: the outbreak of
a disease (that can be viewed as a mainshock) and the transmission of this disease
in the neighboring areas (where the new infected cases are viewed as aftershocks).
Spatio-temporal Hawkes processes offer a robust and flexible approach for the model-
ing of the spread of infectious diseases. For example, Holbrook et al. (2022) proposed
a Hawkes process for the modeling of the Ebola outbreak in West Africa in the 2010s.
With the COVID-19 pandemic, several studies (e.g. Rambhatla et al., 2022; Kresin
et al., 2022; Dong et al., 2023) applied Hawkes processes to understand the spatio-
temporal dynamics of the spread of this disease. By capturing the complex dynamics
of disease transmission in both time and space, these models provide valuable in-
sights for epidemiological research and public health interventions. As data availab-
ility continues to increase, spatio-temporal Hawkes processes play an important role
in epidemiology.

3https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2


126 CHAPTER 5. BACKGROUND

Datasets. See for example subsection 3.2 in Holbrook et al. (2022), for a presentation
and the corresponding links to real-data concerning the Ebola outbreak in West Africa
(from 2014 to 2016). The New York Times website 4 provides the cumulative numbers
of COVID-19 cases in the United States (it is used for example in Chiang et al., 2022
for the modeling of COVID-19 with Hawkes processes).

Climatology. In climatology, spatial variability is largely observed: meteorological
data is influenced by geographical factors such as the presence of mountains, the
latitude of the spatial observation domain, and the climate zone. Furthermore, the
mainshock-aftershock pattern can also be observed in some situations: for example, a
major hurricane may have a significant and immediate impact on the affected region,
characterized by strong winds and heavy rainfall, thus conducting to subsequent cli-
mate events, such as tornadoes and landslides.

Datasets. Gneiting (2002) used the wind data from Ireland available on the StatLib
website 5 in order to propose stationary covariance functions for spatio-temporal pro-
cesses.

5.6 Fast and Flexible Inference for Temporal Hawkes
Processes

In this section, we present the previous work in Staerman et al. (2023) aiming at in-
ferring efficiently and flexibly temporal Hawkes processes with general parametric
kernels.

A classical flexible approach for the inference of temporal Hawkes processes is the use
of non-parametric kernels. Still, even if this approach brings flexibility to the model-
ing of Hawkes processes, it often comes with poor estimation when the data is limited.
The increasing availability of large temporal datasets presenting a clustering and trig-
gering behavior thus suggests resorting to more efficient approaches. On the other
hand, parametric kernels reduce the computational burden and can be more efficient
in estimation. However, they may introduce a bias if the assumed kernel shape does
not fit the data well. The main motivation behind Staerman et al. (2023)’s work is to
step outside of the classical setting where an exponential form is assumed for the tem-
poral kernel. Indeed, the exponential kernel is often preferred since it is data-efficient
and allows a simpler estimation than with other kernels. Yet, by its definition, the
exponential kernel is adapted only for datasets where the events immediately trigger
successive events. In practice, real-world situations do not fit this specific assumption:
often, a latency between events is observed (for example, in the case of seismic data,
an earthquake may not trigger aftershocks shortly after, but in the following days or
weeks instead).

Thus, a more flexible and efficient parametric modeling of Hawkes processes is needed,
allowing the estimation of any parametric kernel. Staerman et al. (2023) propose a
new method, called FaDIn consisting of a fast ℓ2 gradient based-solver. The method’s
goal is to find the parameters µ,α and the kernels’ parameters η that minimize the
ERM-inspired least squares loss. Let θ = (µ,α,η) be the set of parameters to estimate.

4https://www.nytimes.com/interactive/2021/us/covid-cases.html
5https://lib.stat.cmu.edu/

https://www.nytimes.com/interactive/2021/us/covid-cases.html
https://lib.stat.cmu.edu/
https://lib.stat.cmu.edu/
https://www.nytimes.com/interactive/2021/us/covid-cases.html
https://lib.stat.cmu.edu/
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Furthermore, the method’s efficiency and flexibility result from the three following
key points.

Finite Support Kernels. Generally, it is assumed that the impact of a past event
decreases over time. Restricting the class of parametric kernels to those with finite
support implies that the influence of a past event is limited in time. Thus, not only
does the influence diminish but it becomes null after a fixed window of time. Indeed,
this assumption allows computing the conditional intensity function for all events,
even for long-time-length processes, where previous parametric estimations generally
failed because of the computational burden.

Finite Support Kernels: In subsection 6.2.2, we extend the notion of finite support
temporal kernels to spatio-temporal ones: we consider spatio-temporal kernels

to be of finite length and we assume that the influence of a past event
is limited both in time and in space (for all directions).

In our study

Discretization of the Temporal Window. Inspired by the discretization method for
non-parametric kernels, Staerman et al. (2023) propose to use a discretized version
of the temporal Hawkes process: the events are projected on a regular temporal grid
with finite elements. Combining the discretization step with the finite support kernels
assumption, the triggering part in the conditional intensity function can be rewritten
in a discretized version: the sum over the past events is replaced by a lighter sum over
only a finite number L of grid elements, where L denotes the number of points on the
discretized support.

Furthermore, the discretization has a low impact on the statistical performance of the
estimator (see subsection 3.2 in Staerman et al., 2023).

Spatio-temporal Discretization: In subsection 6.2.3, we apply the same discreti-
zation procedure to the spatio-temporal dimension: we define a three-

dimensional regular grid and project the observed events on these grids. Under
the finite support kernels assumption, the triggering part in the intensity can

be rewritten as a sum of kernels over a finite number LS ×LS ×LT of grid
elements, where LS (respectively LT ) denotes the number of points on the

discretized spatial (resp. temporal) support. As for the temporal case, we show
that the bias induced by the discretization is negligible compared to the

statistical error (see Section 6.4 in Chapter 6).

In our study

Precomputations. Combining the finite support kernels and the discretization grid,
Staerman et al. (2023) obtain a discretized version of ℓ2 loss, by approximating the
integral appearing in the ℓ2 loss with a sum on the elements of the discretized grid.
Furthermore, the sum over all the events in the ℓ2 loss is replaced by a sum over the
projected events on the grid. Developing and rearranging the terms in the discret-
ized loss, some constants that do not depend on θ appear. These constants can be
precomputed, thus reducing the complexity of the optimization step.
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Precomputations: By developing the resulting discretized least squares
loss for spatio-temporal processes, precomputation terms also

appear (see subsection 6.3.2), thus significantly reducing
the computational cost.

In our study

The flexibility and efficiency of this method are shown by numerical experiments
on both simulated and neuroscience real-data in Sections 3 and 4 in Staerman et al.
(2023).

5.7 Conclusion

Spatio-temporal Hawkes processes are well adapted to model natural phenomena
presenting a self-exciting behavior both in the space and the time dimensions. Such
data can be observed in a wide variety of domains, such as seismology, epidemiology,
and climatology, and thus gaining more and more attention. Hawkes processes handle
the self-exciting nature of a phenomenon by capturing its clustering and triggering
behaviors. A temporal Hawkes process describes an occurrence of events where fu-
ture events are influenced by the history of the process, composed of its past events.
Generally, the impact of an event on future possible events decreases over time. In
the case of spatio-temporal Hawkes processes, the occurrence of an event is affected
by both the time and the location of previous events. However, in the spatial dimen-
sion, there is no notion of past, present, and future, since the flow is multi-directional.
Thus, usually, an event can be triggered (or influenced) only by its spatial neighboring
events that happened previously. An STHP is characterized by its intensity function
(5.4), generally composed of two elements: a baseline, which controls the occurrence
rate of spontaneous events, and a triggering kernel sum over the past history, which
describes the excitation behavior between events. The events can be divided into two
main categories: the background events (also called immigrants), which define the
cluster centers; and the triggered events (also called the offsprings), whose occurrence
was influenced by a previous event.
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4: Key points of this Chapter.

Definitions used and Assumptions overcome in this thesis

• Point Processes: describe the occurrence of events, which behavior is
characterized by the conditional intensity function −→ application to a
wide variety of domains (Section 5.1 and examples within).

• Self-exciting Processes: clustering and triggering behavior −→ cluster
representation (Section 5.2):

λ(x,y, t|Ht) = µ︸︷︷︸
background

+

based on history︷︸︸︷∑
un∈Ht

g(x − xn, y − yn, t − tn)︸                     ︷︷                     ︸
triggering kernel: influence of
past events onto future events

.

• Spatio-Temporal Hawkes Processes: the occurrence of an event is in-
fluenced by the time and location of previous events −→ better under-
stand the spatial dependence structure of the data (subsection 5.2.2 and
eq. (5.4)).

• Space-time Separability: for simplicity reasons, the kernel is often as-
sumed to be a product of spatial and temporal kernels −→ need to develop
a method to learn from space-time interactions (subsection 5.4.3).

• General Kernels: the temporal kernel is often chosen as exponential
while the spatial as Gaussian, but not realistic in all contexts −→ need
to develop a parametric method allowing any kind of kernel, to enhance
flexibility, adaptability, and accuracy (subsection 5.4.4).

Concepts and Methodologies used in this thesis

• Simulation: clustering simulation algorithm −→ directly exploits the
cluster structure of the data (subsection 5.3.2).

• Estimation and Inference: ERM-inspired least squares loss approach
(subsection 5.4.2).

• FaDIn: Staerman et al. (2023) inference method for temporal Hawkes
processes, based on three key points: (i) finite-support kernels, (ii) dis-
cretization of time, (iii) precomputations −→ flexible, efficient and accur-
ate parametric estimation (Section 5.6).

Real-world Applications and Datasets used in this thesis.

• Applications: seismological and criminal data: clustering and triggering
patterns −→MSTHP well-suited (Section 5.5).

• Datasets: seismic activity in California (nce, 2014) and reported burglar-
ies in Chicago.
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6.1 Introduction

In this chapter we develop a new methodology for general parametric inference for
space-time Hawkes processes. This contribution answers to our Research Questions
4 and 5 (see Section 1.2 in Chapter 1):

How to learn from a multivariate spatio-temporal Hawkes process, despite the
modeling and numerical challenges posed by parametric STHP’s complexity?
How to accurately model real-world situations, where space-time interactions
occur and where a latency between aftershocks may be observed, by means of

Hawkes processes?
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Our algorithm is based on key concepts similar to the ones used by Staerman et al.
(2023) in the context of temporal events, which we extend to spatio-temporal events.
Our algorithm solves the modeling and numerical challenges posed by parametric
STHP’s complexity, and makes it possible to account for space-time interactions/het-
erogeneity. The method consists of a fast ℓ2 gradient-based solver, which provides
flexibility in the choice of kernels, and is made computationally efficient based on the
following three ideas:

1. First, we model the intensity function with bounded support parametric kernels.
We show that this choice offers significant advantages regarding computational
complexity, allowing the use of discrete convolution and fast Fourier transform.

2. Second, our method leverages a discretization of the space-time domain, which
can be seen as a hyperparameter to tune, whose selection depends on the un-
derlying sampling precision of the data and data availability. Combined with
the first key component, it allows any choice of temporal and spatial kernels,
providing flexibility in the modeling.

3. Third, our approach resorts to extensive use of precomputations, allowing for
efficient implementation of the gradient-based inference procedure, with op-
timization steps independent of the number of events.

In this work, we show that the discretization has a low impact on the statistical per-
formance of our estimator, and demonstrate the flexibility and efficiency of the pro-
posed method on simulated and real-world datasets.

The chapter is organized as follows. In Section 6.2 we detail the key components of our
approach. Next, in Section 6.3 we present the inference approach for STHPs, which
consists of a fast ℓ2 gradient-based solver, and discuss its numerical advantages. Sec-
tion 6.4 provides theoretical guarantees on the bias induced by discretization. In Sec-
tion 6.5 we investigate the performance of the methodology promoted on simulated
data from an empirical point of view, while in Section 6.6 we present the experimental
results obtained using our method based on two real data, earthquake and burglary,
for illustration purposes. Finally, some concluding remarks are collected in Section
6.7. The proofs of the main results are provided in Appendix C.

Contributions. The main motivations for this work are the limitations of existing
space-time Hawkes models, due to simplifying assumptions that heavily limit the pos-
sibility of applying them to real data. Our contributions to overcome these limitations
are:

• We develop a fast method to infer kernel parameters for space-time Hawkes
models. The method allows incorporating any parametric kernels for the trig-
gering function.

• We show the accuracy of our approach on simulated data.

• Finally, the advantages of our inference method are proved on real earthquake
and burglary data. The fully reproducible experiments are available on GitHub.

https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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6.2 Key Components

In this section, we outline the statistical approach promoted in this chapter. Build-
ing upon recent work by Staerman et al. (2023), we develop a parametric inference
framework that allows the estimation of any spatio-temporal kernel to reflect the un-
derlying excitation of the process. In particular, our approach shows linear scalability
as a function of the number of events, greatly improving current methodologies. Our
inference procedure relies on three fundamental principles: (i) discretization, (ii) fi-
nite support kernels for both spatial and temporal components of our processes, and
(iii) precomputation terms.

Recall the usual setting presented in Section 5.2 in Chapter 5. Let T ∈R+ be a stopping
time and [0,T ] the resulting observation period, and let S ⊂R

2 be a compact set of the
space domain containing the locations of the observed events until time T . Let D ∈N∗
be the number of different types of events of the MSTHP. Then, an MSTHP realization

consists of D sets of distinct events: Hi
T =

{
ui
n = (xin, y

i
n, t

i
n), (xin, y

i
n) ∈ S , tin ∈ [0,T ]

}
, ∀i ∈

{1, . . . ,D} occurring in continuous space-time, with an associated time tin and a loca-
tion (xin, y

i
n). The process’s behavior is fully characterized by its D intensity functions,

which rely on the time and location of past events. The conditional intensity function
of the i-th process has the following form:

λi(x,y, t|Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
n, y − y

j
n, t − t

j
n), (6.1)

where µi > 0 is the baseline (or background) parameter, αij > 0 is the excitation scaling
parameter, and gij : S×[0,T ] 7→R+ is the spatio-temporal kernel (or excitation/trigger-
ing function). We refer the reader to subsection 5.2.2 in Chapter 5 for further details
on MSTHPs.

For simplicity, we assume that the spatial domain is a rectangle, i.e., of the form S =
X ×Y with X = [−SX ,SX ] and Y = [−SY ,SY ]. Our approach does not require the upper
and lower limits to be identical or symmetrical with respect to zero for it to work.

6.2.1 Convolutional Writing

For all u = ((x,y), t) ∈ S×[0,T ] and for all s ∈ [0,T ], let zis(u) =
∑

ui
n∈Hi

s

δui
n
(u) be the sum of

Dirac functions of event occurrences ui
n, such that zis(u) = 1 if u ∈ Hi

s and 0 otherwise.
The intensity function in Equation (6.1) can be reformulated as a convolution between
the kernel gij and z

j
t :

∀u ∈ S × [0,T ], λi(u) = µi +
D∑
j=1

αij (gij ∗ z
j
t )(u). (6.2)

6.2.2 Finite Support Kernels

We consider the spatio-temporal kernels to be of finite length. Let WX ,WY and WT be
the length of spatial and temporal supports. We assume that ∀(x,y, t) < [−WX ,WX ] ×
[−WY ,WY ] × [0,WT ], gij(x,y, t) = 0. Thus, any event ui

n = (xin, y
i
n, t

i
n) may induce a new
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event only in

[xin −WX ,xin +WX ]× [yin −WY , yin +WY ]× [tin, t
i
n +WT ] .

In combination with Equation (6.2), the main advantage of this assumption is to make
it possible to leverage discrete convolution and fast Fourier transform for efficient
intensity computation. Indeed, unlike previous parametric methods, this approach
enables the computation of the conditional intensity function even for long-duration
processes, thus reducing the computational burden.

6.2.3 Discretization

Discretization has been successfully used in Hawkes processes (Kirchner, 2017) and
recently in spatio-temporal processes (Sheen et al., 2022). Given the spatial support
as a compact set [−SX ,SX ]× [−SY ,SY ] ⊂ R

2, we propose to define a three-dimensional
regular grid G = GX × GY × GT such that GX = {−SX ,−SX + ∆X , · · · ,−SX + GX∆X }, GY =
{−SY ,−SY +∆Y , · · · ,−SY +GY∆Y } and GT = {0,∆T , · · · ,GT∆T } with GT∆T = T , GX∆X =
2SX , GY∆Y = 2SY , and ∆X ,∆Y ,∆T > 0 are the stepsizes of the spatial and temporal
grids. Further, we project the observed events on these grids and define H̃i

T as the
projected space-time stamps of Hi

T . Given v = (vx,vy ,vt) ∈ ⟦0,GX ⟧× ⟦0,GY⟧× ⟦0,GT ⟧,
we define the vector versions g∆ij [v] = gij(v∆) of the kernels, and the sparse vector of
events:

z
j
t [v] = #{(xjn, y

j
n, t

j
n) : |xjn − (−SX + vx∆X )| ≤ ∆X

2
, |yjn − (−SY + vy∆Y )| ≤

∆Y
2

, |tjn − vt∆T | ≤
∆T

2
},

that reflects the number of events projected at the position v on the grid G. With
these notations, we can rewrite the intensity function of the ith process of our discret-
ized STHP relying on discrete convolution such that for any v = (vx,vy ,vt) ∈ ⟦0,GX ⟧×
⟦0,GY⟧× ⟦0,GT ⟧, we have:

λ̃i[v] = µi +
D∑
j=1

αij (g∆ij ∗ z
j
vt∆T

)[v] = µi +
D∑
j=1

LX∑
τx=1

LY∑
τy=1

LT∑
τt=1

αij g
∆
ij [τ]zjvt∆T

[v −κ] ,

where τ = (τx, τy , τt), κ =
(
τx − lX , τy − lY , τt

)
, with lX =

⌊
LX /2

⌋
+ 1, lY =

⌊
LY /2

⌋
+ 1.

Define LT =
⌊
WT /∆T

⌋
+ 1 the number of points on the discretized temporal support,

and LX =
⌊
2WX /∆X

⌋
+ 1, LY =

⌊
2WY /∆Y

⌋
+ 1 the number of points on each component

of the discretized spatial support.

Thus, by combining the discretization step with the finite support kernels assumption,
the triggering component in the conditional intensity function can be reformulated in
a discretized manner. This means that instead of summing over all past events, we
now sum over a finite number LX ×LY ×LT of grid elements.

Furthermore, in Section 6.4, we provide theoretical guarantees concerning the influ-
ence of discretization on parameter estimation.
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6.3 Efficient Inference with Empirical Risk Minimization

In contrast to existing spatio-temporal literature, we leverage the overlooked ERM-
inspired ℓ2 loss, which we extend to the spatial domain. Although this loss benefits
from advantageous precomputation terms, we propose an approximation for compu-
tationally intensive terms to accelerate the inference.

6.3.1 ERM-inspired Least Squares Loss

While the spatio-temporal literature focuses on the negative log-likelihood minim-
ization to infer Hawkes parameters, we decide to focus on the ERM-inspired least
squares loss (Reynaud-Bouret and Rivoirard, 2010; Reynaud-Bouret et al., 2014; Bacry
et al., 2020) only used in classical temporal Hawkes process so far. In contrast to the
log-likelihood, the least squares loss disentangles the computation dependency in the
number of events from the optimization procedure. Indeed, it involves precomputa-
tion terms, that summarize the offset information of events thanks to the absence of
logarithm in the right part of the loss. Let HT = {Hi

T }
D
i=1 be a set of observed spatio-

temporal events. Assuming a class of spatio-temporal parametric kernels paramet-
rized by ηij , the objective is to find θ = {µi ,αij ,ηij}i,j that minimizes:

L(θ,HT ) =
D∑
i=1


∫ T

0

∫
S
λi(x,y, t)

2 dxdydt − 2
∑

ui
n∈Hi

T

λi(x
i
n, y

i
n, t

i
n)

 . (6.3)

Given the core components of our method described in Section 6.2, the objective is
then to minimize the discretized ℓ2 loss defined by:

LG(θ,H̃T ) =
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

(
λ̃i[vx,vy ,vt]

)2
− 2

∑
ũi
n∈H̃i

T

λ̃i

 x̃in∆X , ỹ
i
n

∆Y
,
t̃in
∆T


 .

This approximates the integral in Equation (6.3) by a sum on the grid G after project-
ing the space-time stamps of HT on it.



136
CHAPTER 6. A FAST METHOD FOR PARAMETRIC INFERENCE IN SPACE-TIME

HAWKES MODELS

6.3.2 Precomputations

By developing and rearranging the terms in the discretized loss above, one can see
some constants that do not depend on θ and thus can be precomputed:

LG(θ,H̃T ) =(T +∆T )(2SX +∆X )(2SY +∆Y )
D∑
i=1

µ2
i

+ 2∆X∆Y∆T

D∑
i=1

µi

D∑
j=1

LX∑
τx=1

LY∑
τy=1

LT∑
τt=1

αij g
∆
ij [τ]Φj(τ ;G)

+∆X∆Y∆T

D∑
i,j,k=1

LX∑
τx ,τ ′x=1

LY∑
τy ,τ ′y=1

LT∑
τt ,τ

′
t=1

αij αik g
∆
ij [τ]g∆ik

[
τ ′

]
Ψj,k(τ,τ ′;G)

− 2
D∑
i=1

N i
Tµi +

D∑
j=1

LX∑
τx=1

LY∑
τy=1

LT∑
τt=1

αij g
∆
ij [τ]Φj(τ ;H̃i

T )

 ,
where the following terms can be precomputed:

• Φj(τ ;G) =
GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

z
j
vt∆T

[v −κ], • Φj(τ ;H̃i
T ) =

∑
ũi
n∈H̃i

T

z
j

t̃in

[
ũi
n
∆
−κ

]
,

• Ψj,k(τ,τ ′;G) =
GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

z
j
vt∆T

[v −κ]zkvt∆T

[
v −κ′

]
,

with κ =
(
τx − lX , τy − lY , τt

)
and G = (GX ,GX ,GT ). Φj(τ ;G) defines the total number of

events of the j-th process by removing a part of the grid of size κ. Ψj,k(τ,τ ′;G) denotes
how many events of the j-th process with a lag κ are matching the events of the k-th
process with a lag κ′. Φj(τ ;H̃i

T ) assess how many events in the j-th process are at the
same position than events of the i-th process with a lag κ. As these three terms do not
depend on the set of parameters, they can be precomputed at initialization and used
at each step of the optimization procedure. Let G = GXGYGT be the total number of
element on the grid G and L = LXLYLT be the total number of discretization points of
the kernels gij . The term Ψj,k(τ,τ ′;G) is the bottleneck of these precomputations and
requires O(G) for each tuples (τ,τ ′) and (j,k). Thus, it leads to a total computational

complexity of O(D2L
2
G). This may be limiting in the choices of the discretization

steps ∆X ,∆Y and ∆T , driving the user to take them not too small and then inducing
discretization bias in the results of the solver.

6.3.3 Approximation of Ψ

The precomputation terms are computed only once, but in the spatio-temporal set-
ting, they may suffer from a computational burden. The bottleneck is the L

2
presence

in the computational complexity of Ψi,j(· ; ·). Here, we provide an approximation of
Ψi,j , denoted by Ψ̃i,j , to alleviate this computation challenge. Precisely, we propose
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Ψ̃j,k(τ ;G) =
GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

z
j
vt∆T

[
vx,vy ,vt

]
zkvt∆T

[
vx − τx,vy − τy ,vt − τt

]
.

The Ψ̃j,k(τ ;G) is the number of events in the discretized j-th process that have events
with a lag τ in the discretized k-th process. Thus, it is evaluated in τ − τ ′ in the third
term of the loss LG. The quadratic complexity in L is then removed and makes the
computation of Ψ̃j,k of order O(LG), which is linear with the grid discretization and
the kernel grids and comparable to the computation complexity of Φj(·; ·). The loss of
information in this approximation lies in the boarding effects of the grid, which are
small if the domain size is large in front of the kernel support.

6.3.4 Gradient-based Optimization

The inference procedure employs gradient descent to minimize the ℓ2 loss function
LG. Our approach design enables the utilization of flexible parametric kernels for
both temporal and spatial patterns. It efficiently computes exact gradients for each
kernel parameter, assuming the kernel is both differentiable and possesses finite sup-
port. Consequently, gradient-based optimization methods can be applied without
constraints, in stark contrast to the EM algorithm, widely used in the literature, ne-
cessitating a closed-form solution to nullify the gradient – a challenge with numerous
kernels. It’s worth noting that this problem typically entails non-convexity, poten-
tially leading to convergence towards local minima.

The gradients of the proposed loss w.r.t. each set of parameters are given below. Let
τ = (τx, τy , τt) be a vector on the grid G.

Baselines. The gradient of the loss with respect to the constant background for all
m ∈

�
1 ,D

�
is

∂LG(θ,H̃T )
∂µm

= 2(T +∆T )(2SX +∆X )(2SY +∆Y )µm − 2Nm
T

+ 2∆X∆Y∆T

D∑
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LX∑
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LY∑
τy=1

LT∑
τt=1

αmk g
∆
mk [τ]Φk(τ ;G).

Excitation scaling parameters. The gradient of the loss with respect to αm,l for all (m,l) ∈�
1 ,D

�2
is

∂LG(θ,H̃T )
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= 2∆X∆Y∆T µm
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LT∑
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g∆ml [τ]Φl(τ ;G)− 2
LX∑
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LY∑
τy=1

LT∑
τt=1

g∆ml [τ]Φl(τ ;H̃m
T )

+ 2∆X∆Y∆T

D∑
k=1

LX∑
τx ,τ

′
x=1

LY∑
τy ,τ

′
y=1

LT∑
τt ,τ

′
t=1

αmk g
∆
ml [τ]g∆mk

[
τ ′

]
Ψl,k(τ,τ ′ ;G).

Kernel parameters. The gradient of the loss with respect to the parameter of the kernel

for all (m,l) ∈
�
1 ,D

�2
is
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∂LG(θ,H̃T )
∂ηm,l

= 2∆X∆Y∆T µm
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LT∑
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αml
∂g∆ml [τ]
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6.4 On the Bias of Spatio-temporal Discretization –
Theoretical Guarantees

Discretization introduces a perturbation in the loss value. In this section, we assess
the impact of this perturbation on parameter estimation as ∆X ,∆Y and ∆T approach
0. Throughout this section, we consider a set of events HT stemming from a spatio-
temporal Hawkes process with intensity functions expressed in the parametric form
λi(·;θ∗), with θ∗ = {µ∗i ,α

∗
ij ,η

∗
ij}i,j . It is important to note that if the intensity of the

process HT does not belong to the parametric family λi(·;θ), then θ∗ is defined as
the best approximation of its intensity function in the ℓ2 sense. The objective of the
inference process is to estimate the parameters θ∗.

When working with the projected set of events H̃T , the original tuple (xin, y
i
n, t

i
n) is

replaced with its projection on the grid G, denoted as x̃in = xin + δix,n, ỹ
i
n = yin + δiy,n, t̃

i
n =

tin + δit,n. Here, δix,n is uniformly distributed over the interval [−∆X /2,∆X /2], δiy,n over

[−∆Y /2,∆Y /2] and δit,n over [−∆T /2,∆T /2]. We define the discrete estimator θ̂∆ as
θ̂∆ = argminθLG(θ,H̃T ), the set of parameters minimizing the discrete loss. The error
induced by θ̂∆ can be upper-bounded as follows:

∥θ̂∆ −θ∗∥ ≤ ∥θ̂c −θ∗∥︸    ︷︷    ︸
(1)

+∥θ̂∆ − θ̂c∥︸     ︷︷     ︸
(2)

, (6.4)

where θ̂c = argminθ L
(
θ,HT

)
is the reference estimator for θ∗ based on the standard

ℓ2 estimator for continuous spatio-temporal Hawkes processes. This decomposition
involves the statistical error (1) and the bias error induced by the discretization (2).
The statistical term (1) measures the deviation of the parameters obtained by minim-
izing the ℓ2 continuous loss from the true parameters, given a finite amount of data.
In contrast, the term (2) represents the discretization bias induced by minimizing the
discrete loss instead of the continuous one.

In the following proposition, we focus on the discretization error (2), which relates to
the computational trade-off offered by our method. Before stating our proposition, we
need further assumption on the discretized grid, implying that no event collapses on
the same grid element.

Assumption 6.1. Suppose for any i, j ∈
�
1 ,D

�
, we have ∆X < min

xin,x
j
m∈HT

|xin − x
j
m|, ∆Y <

min
yin,y

j
m∈HT

|yin − y
j
m| and ∆T < min

tin,t
j
m∈HT

|tin − t
j
m|.
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We now study the perturbation of the loss due to discretization.

Proposition 6.2. Let HT and H̃T be respectively a set of events (drawn from a spatio-
temporal Hawkes process) and its discretized version on the grid G with stepsize ∆ = (∆X ,∆Y ,∆T ).
Suppose Assumption 6.1 to be satisfied. Thus, for any v = (vx,vy ,vt), it holds:

λ̃i[v] = λi(v∆)−
p∑

j=1

∑
u
j
m∈H

j
v∆

δ
j
m.∇ugij(v∆−u

j
m) +O

(
∥∆∥2

)
,

and

L(θ,H̃T )≤L(θ,HT )+∥∆∥
∑
i=1

C(λi)+2
∑
i,j

∑
ui
n∈Hi

T

u
j
m∈H

j
T

(
δ
j
m − δin

)
.∇ugij

(
ui
n −u

j
m

)
+O

(
∥∆∥2

)
,

where C(λi) is a constant depending only on the regularity of λi .

The technical proof is provided in Appendix C, Section C.1. The first result follows
directly from the Taylor expansion of the intensity for the kernels. For the loss, the
initial perturbation term, ∥∆∥

∑
i=1C(λi), arises from approximating the integral with

a finite Euler sum by the generalization of the Koksma-Hlawka inequality for piece-
wise smooth functions (Brandolini et al., 2013), while the second term stems from the
perturbation of the intensity. This proposition demonstrates that, as the norm of the
discretization steps ∥∆∥ approaches 0, the perturbed intensity and the ℓ2 loss serve as
accurate estimates of their continuous counterparts. We now proceed to quantify the
discretization error (2) as ∥∆∥ goes to 0.

Proposition 6.3. Suppose the assumption in Proposition 6.2 is satisfied. Then, if the es-
timators θ̂c = argminθL(θ,HT ) and θ̂∆ = argminθLG(θ,H̃T ) are uniquely defined, θ̂∆

converges to θ̂c as ∥∆∥ → 0. Moreover, if L is C2 and its hessian ∇2L
(
θ̂c

)
is positive def-

inite with ε > 0 its smallest eigenvalue, then
∥∥∥∥θ̂∆ − θ̂c

∥∥∥∥ ≤ max{∥∆∥,∥∆∥∞}
ε

ω
(
θ̂∆

)
, with

ω
(
θ̂∆

)
= O(1).

The technical proof is provided in Appendix C, Section C.2. In contrast to the bound
in Staerman et al. (2023) that does not consider the spatial components, the asymp-
totic rates we obtained depend on ∆X ,∆Y and ∆T . It shows that they all must go
towards zero to have θ∆ converging to the continuous estimates. When ∆X ,∆Y and
∆T go to zero, the provided rate is linear w.r.t. the stepsize grid parameters, allowing
fast convergence. However, it also shows that if one of the grids is not refined enough,
it may deteriorate the performance of the discretized estimator. Another important
remark is that the rate only depends on the sum of the discretization stepsize, and
does involve their product. This means that we can use discretization of the same or-
der for each dimension without having incurring a large degradation of the statistical
efficiency of the estimator.
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6.5 Numerical Experiments

In this section, we present several numerical experiments on synthetic data. First,
we analyze the influence of the discretization bias on the accuracy of the method as
well as the computation time of the proposed approach. Then, we assess its statist-
ical accuracy with various values for the stopping time T and the set of locations S .
Finally, we investigate the accuracy and the computation time of the developed pre-
computation approximation. The codes used for this study are publicly available on
GitHub.

6.5.1 On the Bias of Spatio-temporal Discretization – Numerical
Assessment

To study the estimation error induced by the discretization step, we consider a one-
dimensional STHP with intensity function described as in Equation (6.1). We simulate
events according to the Immigration-Birth algorithm (Møller and Rasmussen, 2005)
with a stopping time T and a square spatial support with bound S . The excitation ker-
nel g is defined as a time-space separated kernel such that g(x,y, t) = h(x,y)f (t). We
set the baseline parameter µ = 0.5 and the scaling excitation factor α = 0.6. To illus-
trate the flexibility of our proposed method, we run several experiments with varying
temporal and spatial kernel functions. The considered spatial kernel functions, with
finite support [−1,1]2, are the following:

• The truncated Gaussian kernel:

h(x,y ;m,σ ) ∝ exp

− (x −m1)2 + (y −m2)2

2σ2

I{(x,y) ∈ [−1,1]2}, (6.5)

where the mean is m = (m1,m2).

• The truncated Inverse Power Law kernel:

h(x,y ;m,d) =

1 +
(x −m1)2 + (y −m2)2

d

−3/2

I{(x,y) ∈ [−1,1]2}, (6.6)

where m = (m1,m2).

For the temporal kernel function, we run the experiments with the following func-
tions, with finite support [0,1]:

• The Kumaraswamy density function:

f (t ;a,b) = abta−1(1− ta)b−1
I{0 ≤ t ≤ 1}. (6.7)

• The truncated Gaussian kernel:

f (t ;mT ,σT ) ∝ exp

− (t −mT )2

2σ2
T

I{0 ≤ t ≤WT }. (6.8)

• The truncated Exponential kernel:

f (t ;λ) ∝ λexp
(
−λt

)
I{0 ≤ t ≤WT }. (6.9)

https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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We run four experiments and report their results in Figures 6.1, 6.2, and 6.3.

Experiment 1. For the first experiment, the spatial kernel is defined as a truncated
Gaussian (6.5) with mean m = (0,0) and standard deviation σ = 0.1, and the temporal
triggering function is chosen as the Kumaraswamy (6.7) with a = 2 and b = 2. Hence,
the set of parameters to estimate is θ∗ = (µ,α,m,σ ,a,b). We compute the estimates
of θ∗ for varying stepsizes ∆ = (∆X ,∆Y ,∆T ) of the spatial and temporal grids. To
highlight Proposition 6.3, we set equal refinement of the grid w.r.t. each modality, i.e.,
∆T = ∆X = ∆Y ∈ [0.5,0.05]. The experiments are computed for multiple ending time
T ∈ {10,100} and spatial bounds S ∈ {10,20}. Our estimates θ̂, obtained by applying
our approach, are compared to θ∗. Precisely, the median (over 100 runs) and the 25%-
75% quantiles of the ℓ2 estimation error ∥θ̂−θ∗∥ are displayed in Figure 6.1 (left). The
associated computation time is depicted in Figure 6.1 (right).

One can observe that the estimation error goes towards zero as ∆ decreases and sup-
ports the theoretical rates obtained in Proposition 6.3. In addition, when T and S
increases, i.e. the number of events increases, the error diminishes. The computa-
tion time is efficient according to the setting size and grows as T and S increase. As
expected, the spatial bound adds more computation than the temporal one.

Figure 6.1: Median and 25%-75% quantiles of the ℓ2-norm between true and estim-
ated parameters (left), and computational time (right) with respect to ∆, for various T
and S (with truncated Gaussian spatial kernel and Kumaraswamy temporal kernel).

Experiment 2. We now select the truncated Inverse Power Law function (6.6) for the
spatial kernel and the Kumaraswamy temporal kernel function (6.7). The set of para-
meters to estimate is θ∗ = (µ,α,m,σ ,a,b). In Figure 6.2, we show the median (over 10
runs) and the 25%-75% quantiles of the ℓ2 estimation error, for various values of T , S
and ∆ (with the same values as above).

One can observe that the ℓ2 error tends toward zero as ∆ decreases, as for the Gaussian
spatial kernel result in Figure 6.1.

Experiment 3. Furthermore, we investigate the popular case of the truncated Expo-
nential kernel (6.9) for the triggering temporal function, with decay λ = 1. The spatial
kernel is the truncated Gaussian kernel (6.5). Hence, the parameters to estimate are
θ∗ = (µ,α,m,σ ,λ).

Experiment 4. Finally, we select a truncated Gaussian spatial (6.5) and temporal (6.8)
kernels, with m = (0,0), σ = 0.1, mT = 0.5, and σT = 0.1. The set of parameters is
θ∗ = (µ,α,m,σ ,mT ,σT ).
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Figure 6.2: Median and 25%-75% quantiles of the ℓ2-norm between true and estim-
ated parameters with respect to ∆, for various T and S (with truncated Inverse Power
Law spatial kernel and Kumaraswamy temporal kernel).

For the last two experiments, we apply the same procedures as above, and display the
results in Figure 6.3: the median (over 100 runs) and the 25%-75% quantiles of the ℓ2
estimation error ∥θ̂ −θ∗∥ are given for Experiment 3 (left) and Experiment 4 (right).

Figure 6.3: Median and 25%-75% quantiles of the ℓ2-norm between true and estim-
ated parameters, with respect to ∆, for various T and S (with truncated Gaussian
spatial kernel and truncated Exponential (left), and truncated Gaussian (right) tem-
poral kernels).

We observe that, for both settings, the error decreases as the stepsizes increase. Fur-
thermore, the error also decreases with respect to the values of T and S .

We notice that the ℓ2 error is smaller in the case of a truncated Gaussian temporal
kernel. This remark and the observations made for Figure 6.2 support our claims: the
method is efficient and flexible. Thus, our approach can be well-suited for applica-
tions to real-world data, where the events do not immediately trigger more events and
where the triggering structure does not necessarily follow a Gaussian function for the
spatial domain.

For the last two experiments, we give some details about each parameter estimation
separately.
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Details about parameter estimation. In addition, we display the ℓ2 error for each para-
meter separately in Figure 6.4 for the Kumaraswamy (Experiment 1) and in Figure 6.5
for the truncated Exponential (Experiment 3) temporal kernels.

(µ̂−µ)2 (α̂ −α)2

(m̂−m)2 (σ̂ − σ )2

(â− a)2 (b̂ − b)2

Figure 6.4: Square error on parameters for the Kumaraswamy temporal kernel, as a
function of T , S and ∆.

6.5.2 On the Statistical Error

The statistical error of a STHP is challenging to assess theoretically. To that end, we in-
vestigate the statistical error returned by the parameters estimations of our approach
based on the values of the ending time T and of the spatial bounds S , assuming a
square spatial support.

We simulate a one dimensional STHP with a truncated Gaussian spatial kernel defined
as in (6.5), with m = (0,0) and σ = 0.1, and a truncated Gaussian temporal kernel (6.8)
with mean mT = 0.5, standard deviation σT = 0.1 and finite support length WT = 1.
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(µ̂−µ)2 (α̂ −α)2

(m̂−m)2 (σ̂ − σ )2

(λ̂−λ)2

Figure 6.5: Square error on parameters for the truncated Exponential temporal kernel,
as a function of T , S and ∆.

The set of parameters to estimate is θ∗ = (µ,α,m,σ ,mT ,σT ). Events are simulated with
varying end time and spatial bounds, i.e., T ∈ [10,1000] and S ∈ {10,20}. We compute
our proposed approach by fixing ∆ = (0.1,0.1,0.1) since we are no longer interested
in the discretization bias. We report the median (over 100 runs) and the 25%-75%
quantiles of the ℓ2 estimation error ∥θ̂ − θ∗∥ in Figure 6.6 (left), alongside with the
computation time with respect to T and S (right).

We observe that the ℓ2-norm goes towards zero as T increases. We can see that the
spatial bound value has influence on the variance of the error but the convergence is
identical w.r.t. the median.
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Figure 6.6: Median and 25%-75% quantiles of the ℓ2-norm between true and estim-
ated parameters (left), and computational time with respect to T (right), for various S
(with truncated Gaussian spatial and temporal kernels).

6.5.3 Approximation of the Bottleneck Precomputation Term

The experiment in this part supports the choice of the approximation of Ψ discussed
in subsection 6.3.3. We simulate data with the same setting than in subsection 6.5.2.
In order to show the relevance of the chosen approximation, we computed the true
precomputation, denoted by Ψ ∗, and the approximated one Ψ̃ for various sizes of T
and S . Note that, due to the computational burden from Ψ , the values of T and S are
small. Here, we assess the relative approximation error between Ψ ∗ and Ψ̃ with two
metrics: the 1-norm ∥ · ∥1 and the Frobenius norm ∥ · ∥F between tensors. The results
are reported in Table 6.1 together with their computation time.

Table 6.1: 1-norm and Frobenius norm (upper) of the difference between the true Ψ ∗

and approximated Ψ̃ , and their computation time in seconds (lower), for various T
and S .

(T ,S) (5,5) (10,10) (50,10)

∥Ψ ∗ − Ψ̃ ∥1 0.118 0.039 0.022

∥Ψ ∗ − Ψ̃ ∥F 0.162 0.062 0.041

Time Ψ ∗ (s.) 582 4952 25343

Time Ψ̃ (s.) 0.18 7.5 45.7

The results validate the approximation choice for Ψ : as T and S grow, the norms tend
to 0 with a linear rate. As expected, the computational time for the true Ψ explodes,
while it remains feasible for the approximated version.

6.6 Applications to Real Data

To show the flexibility of the approach we propose, we introduce three space-time
non-separable kernels, with finite support [−1,1]2 × [0,1]:
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• A function from the class of non-separable spatio-temporal functions proposed
in Cressie and Huang (1999):

g(x,y, t; a,b,c,σ ) = σ2 exp
(
−at − b2(x2 + y2)− ct(x2 + y2)

)
I{(x,y, t) ∈ [−1,1]2×[0,1]},

(6.10)
where a and b are non-negative scaling parameters of time and space (respect-
ively), c > 0 is a space-time interaction parameter, and σ2 > 0.

• A spatio-temporal function from the Gneiting (2002) class:

g(x,y, t; b,r) =
1

1 + bt
exp

−r(x2 + y2)
1 + bt

I{(x,y, t) ∈ [−1,1]2 × [0,1]}, (6.11)

where b and r are non-negative scaling parameters of time and space (respect-
ively).

• The space-time non-separable kernel proposed in Zhu et al. (2021):

g(x,y, t; β,m,σ ) =
exp(−βt)

t
exp

− (x −m)2 + (y −m)2

2σ2t

I{(x,y, t) ∈ [−1,1]2 × [0,1]},

(6.12)
where β > 0 controls the temporal decay rate and m and σ2 are the mean and
variance parameters.

In this section, we present experiments on two real-world datasets: (1) seismic activity
in California and (2) burglaries in Chicago.

6.6.1 Seismic Activity in California

The Northern California Earthquake Data Center 1 (NCEDC; nce, 2014) provides time
series datasets, collecting information such as location and timing of seismic events
in California (see Figure 6.7). Time series data for seismic regions reveal highly com-
plex dependence structures, which can be found between events and between neigh-
boring regions (Ogata, 1999, 1998; Vere-Jones, 1995). The first proposed method to
study earthquake occurrences is the Epidemic Type Aftershock Sequence (ETAS; Ogata,
1988) model, which only relies on the timing of seismic events and their magnitude,
ignoring the spatial dimension. Hawkes processes are well-suited to model earth-
quake occurrences (Musmeci and Vere-Jones, 1992) due to their self-exciting nature
in space and time: an earthquake can trigger further replica in a given period and
spatial neighborhood. These triggered events, often referenced as ‘aftershocks’, can
in turn trigger other events. A space-time clustering form is generally observed when
studying seismic datasets. We refer the reader to Sections 5.1, 5.2, and 5.5 in Chapter
5 and the examples within for more details about Hawkes processes modeling for seis-
mic data. Actual models usually assume space-time separated kernels with Gaussian
density for the space dimension and an exponential density for the time dimension,
and thus limit the modeling power of such processes (Schoenberg, 2003; Veen and
Schoenberg, 2008; Zhuang, 2011; Fox et al., 2016).

1https://ncedc.org/

https://ncedc.org/
https://ncedc.org/
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Figure 6.7: Earthquake occurrences from 13 July to the 20 July 2024, in California
(USA). The yellow dots represent events occurred from 13/07/2024 to 19/07/2024,
the blue dots depict events occurred on 20/07/2024, and the size of each dot gives
information about the earthquake’s magnitude.
Source: Berkeley Seismology Lab (https://earthquakes.berkeley.edu/seismo.
real.time.map.html).

We carry out experiments on three different datasets extracted from NCEDC database,
each with a different clustering structure and behavior, and different time lags. The
first dataset ‘1987-1989’ contains 605 events, the second dataset ‘2003-2014’ in-
cludes 2439 events, and the third dataset ‘1967-2003’ counts 14644 events, defined
as seismic records with a magnitude larger than 3.0. Each event is defined by its time
and location (no other information is used in our experiments).

We apply the following non-separable and separable kernels:

• Non-separable kernels: the Cressie and Huang (1999) defined in Equation (6.10)
and noted NS1, and the Gneiting (2002) defined in Equation (6.11) and noted
NS2.

• Separable kernels with various spatial and temporal components: the truncated
Gaussian (TG) defined in (6.5) and inverse Power-Law (POW) see (6.6) as spatial
kernels and TG, exponential (EXP) and Kumaraswamy (KUM) as temporal ones
(defined in Equations (6.8), (6.9) and (6.7), respectively). We denote the overall
triggering kernel as SPACE + TIME.

We set ∆ = (0.05,0.05,0.05), WX = 1, WY = 1 and WT = 1, and apply our solver with
varying kernel types on the three datasets. For each dataset, we use 80% of the events
for training and 20% for testing. We use a discretized version of the Negative Log-
Likelihood (NLL) metric, a standard tool to compare models in the point process lit-

https://earthquakes.berkeley.edu/seismo.real.time.map.html
https://earthquakes.berkeley.edu/seismo.real.time.map.html
https://earthquakes.berkeley.edu/seismo.real.time.map.html
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erature (Shchur et al., 2021), defined as:

NLLG(θ,H̃T ) =
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

λ̃i[vx,vy ,vt]−
∑

ũi
n∈H̃i

T

log

λ̃i

 x̃in∆X , ỹ
i
n

∆Y
,
t̃in
∆T



 .

(6.13)

Table 6.2: NLL values on test sets of various extracted earthquake datasets with sev-
eral triggering (separable and non-separable) kernels. The best NLL is in bold and the
second best is underlined.

Setting 1987 - 1989 2003 - 2014 1967 - 2003

TG + TG 2.77 1.76 0.72

TG + EXP 3.25 2.14 0.65

TG + KUM 2.98 2.66 0.57

POW + TG 2.11 1.04 0.18

POW + EXP 1.72 1.57 0.20

POW + KUM 2.06 1.50 0.29

NS1 3.77 2.68 0.88

NS2 3.77 2.67 0.87

We first apply our solver to the training set in order to estimate the parameters of each
model and then compute the NLL on the testing set using the estimated parameters.
In Table 6.2, we report the NLL values for different kernels: the best NLL value is in
bold while the second best is underlined. The best performance is achieved with the
POW + TG model for two datasets, and with the POW + EXP model for one dataset.
Furthermore, all three models using the POW spatial function outperform the stand-
ard TG + EXP model (as well as the other two models with TG spatial function) for
all three datasets. Thus, we achieve better performance when going beyond the tradi-
tional exponential and Gaussian kernels. Therefore, our results confirm the limiting
modeling power of the models used so far and the advantages of our approach.

We also notice that the two models with a non-separable kernel function (NS1 from
Cressie and Huang, 1999 and NS2 from Gneiting, 2002) have a lower performance
compared to all other models. A possible reason for this result is that, since the time
window is large and the timing of the events are generally far from one another, the
space-time interaction may be more difficult to capture.

6.6.2 Burglary in Chicago

The Chicago Crime Dataset 2 comprises reported crimes in the City of Chicago from
2001 to the present. The dataset gathers different type of incidents: theft, criminal
damage, robbery, burglary, etc. Here, we focus on burglaries (see Figure 6.8).

2https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
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Studies on urban burglaries have shown that it is generally possible to observe a clus-
tering structure in such data. This is related to the concept of ’near-repeat victimiza-
tion’ (Mohler et al., 2011), where following a burglary in a neighborhood, the probab-
ility of another occurring in the same vicinity within the following days increases. The
first Hawkes models to study crimes such as burglaries were motivated by the simil-
arity between the observed self-exciting patterns of crimes and earthquakes (Mohler
et al., 2011), see Section 5.5 for further details. However, the models that are cur-
rently used in criminology suffer from the same limitations as in seismology, namely
the restriction to space-time separable kernels and the traditional Gaussian/exponen-
tial form assumption for the spatial/temporal kernels (Mohler et al., 2011; Mohler,
2014; Zhu and Xie, 2022; D’Angelo et al., 2022).

Figure 6.8: Burglary occurrences from 6 July to 13 July 2024, in Chicago (USA). The
orange dots represent one crime, while the white dots two or more crimes.
Source: Chicago Data Portal (https://data.cityofchicago.org/stories/s/
Crimes-2001-to-present-Dashboard/5cd6-ry5g).

We conduct experiments using three distinct datasets from the Chicago Crime data-
base, each with a different clustering structure and time lag. The first dataset, labeled
‘2008’, includes 4233 events, the second dataset ‘2002-2004’ contains 23167 events,
while the third dataset ‘2002-2006’ counts 43822 events. We focus on burglaries oc-
curring in apartments or residences and we collect only the time and location of each
event.

We apply the same non-separable and separable kernels as in the previous experi-
ments in subsection 6.6.1, with the addition of the space-time non-separable kernel in
Equation (6.12), noted NS3. We set ∆ = (0.05,0.05,0.05), WX = 1, WY = 1 and WT = 1.
We use 80% of the data to train our solver and 20% for testing, using the same dis-
cretized version of the NLL in (6.13). The NLL values on the test sets for each model
are shown in Table 6.3. The best performance is achieved by the non-separable mod-
els NS1 and NS2 across all three datasets, closely followed by the non-separable NS3

https://data.cityofchicago.org/stories/s/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://data.cityofchicago.org/stories/s/Crimes-2001-to-present-Dashboard/5cd6-ry5g
https://data.cityofchicago.org/stories/s/Crimes-2001-to-present-Dashboard/5cd6-ry5g
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model. These results prove the strength of our proposed approach in the presence
of space-time interactions within the data. Additionally, separable kernels also yield
good results, particularly with the TG spatial function.

A possible reason behind the difference between the performance of space-time non-
separable kernels in the earthquake and in the burglary applications is the following.
For the crime dataset, we have access to a large number of observations across the city
and new events are generally observed for each day included in the sample. Indeed, as
shown in Figure 6.8, the number of burglaries in a week is particularly high and events
tend to concentrate in some neighborhoods (particularly in the areas with white dots,
representing two or more events). Thus, with a large number of events that occur
closely to one another both in time and space, it is possible to identify a potential
spatio-temporal dependence pattern. On the other hand, in the earthquake dataset,
there are less observations for a same period of time: in 2 years, from 1987 to 1989, 605
earthquakes were reported, while 23167 burglaries occurred in the city of Chicago
from 2002 to 2004. Furthermore, Figure 6.7 shows that the number of seismic events
in one week is lower than the number of burglaries that occur over the same period of
time, and the spatial domain of interest is considerably larger (a state, v.s. a city). This
means that, for this specific earthquake dataset, no observation is recorded for many
time periods and many locations, which arguably makes space-time interactions less
relevant for this dataset.

Table 6.3: NLL values on test sets of various extracted burglary datasets with several
triggering (separable and non-separable) kernels. The best NLL is in bold and the
second best is underlined.

Setting 2008 2002 - 2004 2002 - 2006

TG + TG -0.24 0.26 0.51

TG + EXP -0.24 0.38 0.60

TG + KUM -0.23 0.35 0.54

POW + TG 0.54 1.04 1.10

POW + EXP 1.27 1.03 1.08

POW + KUM 0.83 0.86 0.91

NS1 -0.37 -0.43 -0.28

NS2 -0.95 -0.49 -0.31

NS3 -0.95 -0.49 -0.31

Our numerical experiments with two real-world datasets show the advantages of our
method’s flexibility. For various applications and types of observed data, our approach
achieves accurate estimations due to its ability to infer general parametric kernels and
capture space-time interactions.
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6.7 Conclusion

Motivated by the growing demand for spatio-temporal data modeling in various fields,
we introduce a novel, flexible and efficient approach to infer any parametric kernels
in the context of space-time Hawkes processes that are not necessarily independent
of space-time. This new approach allows us to overcome our Challenges 4 and 5 (see
Section 1.2 in Chapter 1). Based on ERM-inspired least squares loss for point pro-
cesses, our framework overcomes the significant computational difficulties inherent
in fitting such complex models. It relies on the use of finite support kernels, a discret-
ization scheme and precomputations. After formally proving that the discretization
error is minimal, we empirically investigate the statistical efficiency of our approach.
As the precomputation terms are expansive, we propose a computationally efficient
approximation and show that the error is negligible. Finally, we demonstrate the value
of using different kernels to model both earthquake aftershocks and near-repeat vic-
timization patterns (for burglaries), which is possible thanks to the numerical and
statistical advantages of our method.

However, our numerical experiments on synthetic data show that the choice of the
discretization steps ∆ is limited. Indeed, lower values will result in excessively long
computational times and may cause memory issues. Therefore, it could be of interest
to explore further approximations for the precomputation terms (like in subsection
6.3.3 for Ψ ) in order to allow sampling a more precised refinement of the discretiza-
tion grid, resulting in more accurate predictions.



152
CHAPTER 6. A FAST METHOD FOR PARAMETRIC INFERENCE IN SPACE-TIME

HAWKES MODELS

5: Key points of this Chapter.

Key Components of our method developed in this Chapter

• Finite Support Kernels: the spatio-temporal kernels are assumed of fi-
nite length (subsection 6.2.2) −→ allows efficient intensity computations.

• Discretization: we propose a three-dimensional regular grid, with pro-
jected events (subsection 6.2.3) −→ reduces the computational burden.

• ERM-inspired Least Squares Loss: see subsec. 5.4.2, Chap. 5 for a
presentation −→ involves precomputation terms (subsection 6.3.1).

• Precomputations: constants independent of the parameters appear in the
discretized loss (subsec. 6.3.2) −→ greatly reduces the computational cost
and allows efficient gradient-based optimization (subsec. 6.3.4).

Accuracy and Efficiency of our method developed in this Chapter

• Theoretical guarantees and Numerical assessment on the discretization
bias (Prop. 6.3 and subsec. 6.5.1) −→ efficient and flexible method.

• Numerical assessment of the statistical error (subsec. 6.5.2) −→ accurate
method.

Challenges overcome in this Chapter

• General Parametric Model: our approach provides flexibility in the
choice of the kernels: the results of our numerical experiments for vari-
ous spatial and temporal kernels (Section 6.5) show this advantage.

• Space-time Non-separability: our method enables accounting for space-
time interactions/heterogeneity −→ adapted for real-world situations.

• Efficiency: based on the key concepts explained in Section 6.2, our
method solves the modeling and numerical challenges posed by para-
metric models’ complexity.

• Applications to Real Data: applications to seismic activity in California
and to reported burglaries in Chicago −→ the results in Section 6.6 prove
the advantages of our proposed approach.

Publication

• Emilia Siviero, Guillaume Staerman, Stephan Clémençon, Thomas Mor-
eau. Flexible Parametric Inference for Space-time Hawkes Processes.
arXiv preprint arXiv:2406.06849, 2024.
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Conclusion and Perspectives

In this thesis, we investigate different methods to learn from spatial data, taking into
account their strong dependence structure. The two main difficulties encountered
when dealing with spatial data are: (1) how to account for the strong spatial (or spatio-
temporal) dependence structure of the underlying phenomenon of interest, (2) how
to develop approaches that can allow one to make accurate inference when a single
realization of the phenomenon is observed at a finite number of spatial (or spatio-
temporal) points.

The general goal of our work is to answer Research Questions 1 (see Section 1.2 in
Chapter 1) by providing statistical guarantees for prediction methods and developing
new, efficient and accurate methods to learn, model, and predict from spatial data:

How to learn from spatial data that presents a strong dependence structure? How
does the dependence structure of the observed phenomenon affect the

performance of the algorithms?

Our work is divided into two parts. The first part concerns geostatistical data, where a
random field is observed at n spatial locations, and the goal is to predict the values of
the random field at each unobserved spatial locations. This case is covered in Chapters
3 and 4. The second part deals with point patterns data, where the observation points
are considered as events of a point process of interest. In Chapter 6, we present a
method for the inference of spatio-temporal point processes.

In the following, we first recall our contributions, present the main limitations of our
work, and discuss future lines of research.

Part I: Statistical Learning for Spatial Data

The first part of this thesis, Chapters 3 and 4, aimed at providing theoretical guaran-
tees for the simple Kriging problem, an interpolation method of Geostatistics, answer-
ing our Research Questions 2 and 3

How accurate is the empirical covariance estimator, based on a finite number of
observations on a regular grid and with one unique realization? What is the

non-asymptotic behavior of the Kriging predictor when the dependence structure
is unknown and with a finite number of observations? To what extent the Kriging
weights depend on the accuracy of the covariance function estimation and on the

location of samples?

Contributions. Let us recall the main contributions presented in Chapters 3 and 4:
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• We derive, under appropriate assumptions, non-asymptotic bounds for the ac-
curacy of the non-parametric covariance estimator for second-order stationary
Gaussian processes which covariance function, unknown in practice, is assumed
to be isotropic.

• We evaluate the generalization capacity of the empirical Kriging predictor at
all unobserved locations within the spatial domain by deriving non-asymptotic
tail bounds for the global excess risk associated with the Kriging method, under
appropriate conditions.

• We conduct numerous numerical experiments on simulated data using various
covariance models, some of which meet the assumptions above, while others do
not. Our numerical experiments support our theoretical results for the valid
covariance models.

• We show the efficiency of the empirical Kriging predictor through numerical
experiments on real meteorological data. Our findings validate the theoret-
ical guarantees and indicate that applying the non-parametric empirical Kriging
prediction method can result in robust performance and flexibility.

• The code to reproduce the results is available on GitHub.

Limitations and Future Works. Since our goal is to give a general theoretical
framework of the simple Kriging method, simplifying assumptions are employed. As
highlighted in the proofs of the main results and in the numerical experiments (see
Sections 3.4 and 4.4), even in the simplest framework, the analysis is far from straight-
forward. In the sketch of proof in subsection 4.3.2 (and in the more detailed proofs
in Appendix B), the importance of certain hypotheses is underlined by showing how
some hypotheses are necessary for completing the steps of the proofs (see also Figure
4.1 in Chapter 4). In a near future, our objective is to find which assumptions can be
relaxed and with which consequences on the learning bounds. We present alternative
statistical frameworks for the Kriging problem and discuss possible avenues to relax
some of the assumptions involved in our analysis in order to extend our main results
to a more general framework.

Alternative Kriging Frameworks:

Let us recall that in our work, we observe a centered Gaussian random field X at d spa-
tial locations s1, · · · , sd and the goal is to predict its values at all unobserved locations
s ∈ S in order to compute a complete map. To do so, since the dependence structure
of X is unknown in practice, we estimate the covariance function c(·) by means of a
non-parametric estimator ĉ(·), based on a training dataset X′ (a single realization of
X) observed at n ≥ 1 spatial locations σ1, · · · ,σn of S . To ensure a successful empirical
estimation, we assume that the random field is second-order stationary with isotropic
covariance function (Assumption 3.2).

The assumptions that the mean of the random field is known and the second-order
stationarity assumptions, may not always hold in real situations. Thus, these limita-
tions could be subject of further work aiming at extending our results to an even more
general framework.

https://github.com/EmiliaSiv/Simple-Kriging-Code
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However, in most practical situations, the mean is unknown. Ordinary Kriging is an
interpolation method that does not require any knowledge of the mean and is suit-
able for these cases (see e.g. Section 3 in Chiles and Delfiner, 1999). Furthermore,
one can relax the second-order stationarity assumption that is classically made and
formulate instead a weaker stationarity assumption in such a way that only the vari-
ance is assumed to be constant over the spatial domain, while the mean can differ in a
deterministic way and so present a spatial trend: this alternative framework is called
Universal Kriging. Another framework is Cokriging, an interpolation method that uses
additional observed variables, often correlated with each other and with the variable
of interest, to improve the precision of the interpolation.

Irregular Grids:

The non-parametric covariance function estimator is the following

ĉ(h) =
1
nh

∑
(σi ,σj )∈N (h)

X′σiX
′
σj ,

where N (h) =
{
(σi ,σj ), ∥σi − σj∥ = h, (i, j) ∈ ⟦1,n⟧2

}
is the set of pairs of sites that are at

distance h from one another and nh = |N (h)| denotes its cardinality. In order to obtain
an unbiased estimator, we assume that the observations σ1, · · · ,σn form a regular grid
of S .

However, in some practical applications, this assumption does not hold. Thus, extend-
ing our results to observations on irregular grids is important and will be the subject
of further research.

Unavoidably, the covariance estimation is affected by the spatial configuration of the
observations. Therefore, the study of uncertainty effects, on the Kriging predictor,
induced by the sampling setting are of major interest (Bardossy, 1988; Müller and
Zimmerman, 1999; Wang et al., 2020). In future research, we may consider other types
of observation grids, like irregular ones, implying additional technical difficulties,
for example when controlling the spectrum of the covariance matrix (see the proof
of Proposition 3.9 in Chapter 3). This may also result in an estimation bias for the
covariance or may lead to defining different sets Nε(h) of neighbors like the set of
pairs that are at a distance more or less h (with error ε > 0), see the corresponding
paragraph in subsection 2.1.4 in Chapter 2. For a first look at the results that one can
obtain within this alternative framework, please refer to subsection 4.6.3 in Chapter
4, where we considered irregular locations under preferential sampling.

Alternative Asymptotic Settings:

Furthermore, in order to have a robust estimation, we make two additional assump-
tions. First, we assume that new observations are collected in the same fixed spatial
domain S , thus adopting an in-fill asymptotic setting. Then, we assume that the true
covariance function of X is equal to zero after a given lag, as stated in Assumption
3.3. Indeed, these two assumptions allows us to ensure that enough elements for the
computation of the empirical covariance function ĉ(·) are available (i.e. that for each
lag h on which the covariance is estimated, nh is large enough).

As mentioned in subsection 2.1.1 (Chapter 2) and in Remark 4.5 (Chapter 4), other
statistical frameworks for Kriging have already been studied. For example, existing
studies (Mardia and Marshall, 1984; Sherman and Carlstein, 1994) have proposed
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adopting the ’increasing domain’ asymptotic (also referred to as the out-fill setting),
where the spatial domain S under study becomes wider and wider as the number of
observations n grows and a minimum distance between neighboring sampling loca-
tions is assumed. A possible avenue for future work includes the consideration of the
out-fill setup for investigating the generalization capacity of Kriging predictors over
a wider and wider spatial domain. Other researchers (Hall and Patil, 1994; Lahiri,
1999; Lahiri et al., 1999; Putter and Young, 2001) have also considered a hybrid set-
ting, where a combination of in-fill and increasing domain asymptotics point of view
is taken, often assuming that both the size of the spatial domain of the observations
and the number of observations in each of its subsets grow with n.

Relaxation of Assumption 3.3:

We made Assumption 3.3 as it greatly simplifies our argument, making it more under-
standable. To relax it would require handling the decay rate of the covariance func-
tion. Furthermore, as highlighted in the numerical experiments, even if the Gaussian
kernel fails to satisfy Assumption 3.3, the empirical results encourage us to generalize
our theoretical analysis to a more general framework, by relaxing this assumption.
This also holds for the two additional covariance models that do not satisfy Assump-
tion 3.3, and even tend to zero less quickly than the Gaussian model, namely the
exponential and the Matern (when νm = 3/2) models.

Relaxation of Assumption 3.10:

Under the aforementioned assumptions, in Chapter 3 we derive Poisson tail bounds
for the empirical covariance function for all observed lags h of the sampled regular
grid σ1, · · · ,σn. However, since the objective is to predict the values of X at all unob-
served spatial location, we need to extend the covariance function estimation for all
lags h. Based on a piecewise constant estimator, the empirical covariance function is
extrapolated at unobserved lags. Therefore, to extend the previous theoretical results
for unobserved lags, we assume that the covariance function is of class C1 with gradi-
ent bounded by Q < +∞, as stipulated by Assumption 3.10. Thus, non-asymptotic
bounds for the covariance function estimation at all lags are obtained in Corollary
3.11, with a term depending on Q.

Another possible extension of our work is to replace Assumption 3.10 by more re-
strictive regularity assumptions (e.g. the mapping h ∈ [0, 1 − 2−j1] 7→ c(h) can be as-
sumed of class C2). Thus, under alternative smoothness hypotheses, the accuracy of
other non-parametric estimation techniques can be established, inducing a possibly
different bias term in Corollary 3.11, and thus in the excess risk bound in Theorem
4.8.

Part II: Heterogeneity in Space-Time Data – Hawkes models

Contributions. In the second part of this thesis, we develop a new method for the
inference of space-time Hawkes processes, establishing the following contributions:

• In Chapter 6, we develop a fast method for estimating kernel parameters in
spatio-temporal Hawkes models. Our method supports the integration of vari-
ous parametric kernels for the triggering function: (1) for space-time separable
kernel, it allows for various spatial and temporal kernels, going beyond conven-
tional Gaussian and exponential forms, (2) it makes it possible to use space-time
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non-separable kernels, offering a diverse range of options for kernels that cap-
ture the space-time interactions present in the data. Thus, our method enhances
the precision and adaptability when dealing with complex dependencies in real
data.

• We conduct various numerical experiments on simulated data. Our results show
the flexibility of our approach: our method accurately performs with differ-
ent kernels for the spatial and the temporal triggering functions. Furthermore,
the numerical experiments show that our method overcomes the computational
time challenges posed by parametric STHPs.

• Finally, the advantages of our inference method are proved on both earthquake
and crime data. By allowing any parametric kernel for the (space-time separ-
able) triggering function, our approach provides better insights into seismolo-
gical datasets. Furthermore, criminal data, such as burglaries, tend to exhibit
a space-time dependence structure due to the near-repeat victimization pat-
tern observed within such data. The possibility of relying on space-time non-
separable kernels thus proves valuable in real-world cases.

• The implementation of our approach is available on GitHub.

These contributions provide answers to the Research Questions 4 and 5 (see Section
1.2 in Chapter 1):

How to learn from a multivariate spatio-temporal Hawkes process, despite the
modeling and numerical challenges posed by parametric STHP’s complexity?
How to accurately model real-world situations, where space-time interactions
occur and where a latency between aftershocks may be observed, by means of

Hawkes processes?

Limitations and Future Works. We recall the key concepts of our approach and
give new perspectives to investigate in future work. Let S × [0,T ] be the observation
set, with T ∈ R+ a stopping time and S = X × Y ⊂ R

2 a compact set that contains
the locations of the observed events up to time T . We consider a multivariate spatio-
temporal Hawkes process, which behavior is entirely characterized by its intensity
functions ∀i ∈ {1, · · · ,D}

λi(x,y, t|Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
n, y − y

j
n, t − t

j
n),

where D ∈N∗ is the dimension of the process and Hi
T is the set of (space-time) events

for the i-th process. The conditional intensity is composed of a baseline parameter
µi > 0, an excitation scaling parameter αij > 0, and the spatio-temporal kernel gij :
S × [0,T ] 7→R+ with parameters ηij .

Non-constant Baseline:

We assume that the baseline parameter is constant for each process i ∈ {1, · · · ,D},
which implies that the background rate of events is uniform across all spatial loca-
tions and times. However, in some real-world applications, such as criminology, the

https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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background rate may depend on the spatial location or the time of each event (Zhuang
and Mateu, 2019; D’Angelo et al., 2022).

In future work, it may be valuable to include baselines that vary based on spatial
or temporal dimensions, or both. For burglary predictions, the baseline could vary
spatially according to neighborhood characteristics (such as residential, industrial,
etc.), and temporally because of seasonal factors. For instance, burglaries are more
common in residential areas and during holiday seasons. Therefore, incorporating a
non-constant baseline may improve the accuracy of burglary predictions within a city.

Marked Spatio-temporal Hawkes Processes:

Spatio-temporal Hawkes models provide powerful tools to deal with data that exhibit
self-exciting and clustering behavior, such as earthquake data. Another important
feature of earthquakes is their magnitude: generally, a mainshock of high magnitude
is more likely to trigger subsequent earthquakes than a mainshock of low magnitude.
Therefore, taking the magnitude of each event into account could provide additional
valuable information for accurate modeling and prediction. Marked processes allow
the incorporation of such information by associating each event with a mark.

An interesting avenue for future work is to extend our approach to marked spatio-
temporal Hawkes processes. For example, we could define the following conditional
intensity for marked spatio-temporal Hawkes processes (Mohler, 2014):

λi(x,y, t,M |Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
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j
n,M −M

j
n),

where M
j
n is the mark of the event uj

n = (xjn, y
j
n, t

j
n,M

j
n) of the j-th process. Usually, the

kernel is supposed to be marked-separable (Mohler, 2014), so that it can be written as
gij(x−x

j
n, y−y

j
n, t−t

j
n,M−M

j
n) = g(1)(x−xjn, y−y

j
n, t−t

j
n)g(2)(M−Mj

n). Another promising
avenue is to extend the work in Mohler (2014), where marks are used to describe the
type of crime for each observed event. This could be done by combining our flexible
approach with their marked model. Our method could easily be extended to the case
of separable marks, since it will imply only an additional parameter.

Irregular Grid Discretization:

Our work, inspired from the approach proposed in Staerman et al. (2023) for temporal
Hawkes processes, relies on three key ingredients. The first ingredient consists of dis-
cretizing the spatio-temporal domain of observations into a three-dimensional regular
grid. Next, we assume that the kernel functions are of finite length. By incorporating
these initial two aspects, the conditional intensity λi can be rewritten by replacing the
triggering function with its discretized version. This implies that the sum over past
events is replaced by a sum over a finite number of grid elements, which depends on
the stepsizes of the grids and the size of the finite support of the kernels. By deriving
a discretized version of the least squares loss, we identify some constants that do not
depend on the model parameters. This leads us to the third key component, which is
the precomputation of these terms, reducing the computational cost and allowing our
approach to be efficient.

Instead of defining a three-dimensional regular grid, another option could be to define
irregular discretization grids, designed according to the particular phenomenon un-
der study or to the prior knowledge of the spatial domain. The definition of the ir-
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regular grid must inevitably adhere to specific assumptions that need to be precisely
formulated. This will inevitably increase the computational burden: since the irregu-
lar grid will not be characterized by a regular stepsize, the sum over past events could
not be replaced by a sum over a simple finite number of grid elements. We will need
to control the number of grid elements within the finite support of the kernels, which
is not straightforward.

Non-separability in Marked Processes:

As shown by the numerical experiments, a major advantage of our method is that it
makes it feasible to use any parametric kernel for the triggering function, including
the class of space-time non-separable kernels. Another interesting future line of re-
search is to consider marked spatio-temporal Hawkes processes described above and
design a method that could handle non-separable marked kernels.

The non-separability characteristic of kernels can be explored also for marked non-
separability, thus accounting for space-time and marks interactions (see e.g. Schoen-
berg, 2004; Díaz-Avalos et al., 2014 and other references in subsection 5.4.3 in Chapter
5). Indeed, in the case of earthquakes, the epicenters (i.e. the spatial locations of the
mainshocks with high magnitude) are generally spatially close from one another, im-
plying a possible dependence between the mark and the spatial location of the events.
Therefore, new kernels must be designed to incorporate space-time and mark interac-
tions.
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6: Possible avenues for Future Work.

Part I – Statistical Learning for Spatial Data

• Alternative asymptotic settings: out-fill (the spatial domain becomes
wider and wider) or hybrid (combining in-fill and out-fill) asymptotic set-
tings.

• Alternative Kriging frameworks: ordinary Kriging, universal Kriging.

• Relaxation of Assumptions: relax Assumptions 3.3 and 3.10.

• Irregular grids: the regular grid of observations could be relaxed to more
general ones, which may result in an estimation bias or lead to defining
different sets of neighbors.

Part II – Heterogeneity in Space-Time Data – Hawkes Models

• Spatially or temporally varying baseline: incorporate baseline depend-
ing on spatial or temporal dimensions into our approach.

• Marked STHP: extend the efficient approach to marked space-time
Hawkes processes, which may deliver valuable additional information for
earthquake and burglary predictions.

• Irregular grid for the discretization: the discretization grid could be de-
signed according to the specificities of the phenomenon or of the spatial
domain.

• Space-time and mark interactions: design and incorporation of space-
time and mark non-separable kernels.
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8.1 Statistiques Spatiales

En apprentissage automatique, la théorie repose généralement sur le caractère in-
dépendant et identiquement distribué (i.i.d.) des données. En d’autres termes, on
suppose que les observations d’un phénomène sont recueillies de manière uniforme,
chaque observation étant indépendante des autres. Cela permet d’utiliser des métho-
des statistiques classiques pour construire un modèle précis et robuste et de prédire
de nouveaux phénomènes à partir de ces observations. Sous des hypothèses faibles,
une solide théorie probabiliste (Devroye et al., 1996; Boucheron et al., 2013), garan-
tissant la capacité de généralisation des règles prédictives apprises empiriquement,
renforce ces techniques d’apprentissage automatique.

L’hypothèse d’indépendance s’avère particulièrement pratique. Elle rend l’apprentis-
sage automatique flexible, facilement implémentable, et donc un outil performant
avec des algorithmes efficaces. Ces dernières années, une variété de techniques d’ap-
prentissage statistique – y compris les méthodes de boosting, les machines à vecteurs
de support, les réseaux de neurones, entre autres – ont été développées avec succès
pour effectuer diverses tâches telles que la classification, la régression ou le clustering.

Example 8.1. (Reconnaissance d’images) La reconnaissance d’images, une branche de la
vision par ordinateur, se concentre sur le développement d’algorithmes et de modèles cap-
ables d’interpréter et de catégoriser des données visuelles issues d’images. Elle consiste à
extraire des caractéristiques et des motifs au sein des images pour reconnaître des objets ou
des scènes. La reconnaissance d’images peut englober plusieurs domaines :

• Classification d’images : classifier les images en catégories, par exemple en images
de chiens ou de chats. Chaque image peut être considérée comme une observation
indépendante, en supposant que les images proviennent d’instances différentes et
que les caractéristiques extraites de ces images sont identiquement distribuées dans
l’ensemble des données.
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• Détection d’objets : l’objectif est de détecter et localiser des objets dans une image. Si
le but est de localiser plusieurs instances du même objet (par exemple des voitures),
chaque tâche pour un objet spécifique peut être traitée comme i.i.d., en supposant
que les caractéristiques des différentes instances du même objet sont identiquement
distribuées.

Cependant, dans les tâches de reconnaissance d’images telles que la détection d’objets, com-
prendre le contexte et les relations entre des objets ou des régions dans une image devient
crucial. Les objets peuvent avoir des interactions complexes qui ne peuvent pas être modél-
isées efficacement sous l’hypothèse i.i.d.

La validité de l’apprentissage statistique reste principalement limitée au cas de don-
nées d’entraînement i.i.d. Parallèlement, des progrès spectaculaires ont été réalisés
dans la collecte, la gestion et le stockage de larges ensembles de données pour des
applications scientifiques, médicales ou commerciales, reposant sur des technologies
modernes telles que l’imagerie satellitaire ou la tomographie géophysique. Ces don-
nées ont tendance à présenter des structures de dépendance complexes, remettant en
question l’hypothèse i.i.d.

Nous sommes de plus en plus confrontés à des situations où les données sont de nature
spatiale et présentent une forte structure de dépendance. Dans le contexte des don-
nées spatiales, des dépendances existent dans toutes les directions. En particulier, les
points de données qui sont spatialement proches les uns des autres ont tendance à
présenter une corrélation, et la dépendance s’affaiblit à mesure que la distance entre
les données augmente.

Example 8.2. (Météorologie) En météorologie, le but est généralement de comprendre et
prédire les phénomènes météorologiques, les tendances climatiques, et les phénomènes atmo-
sphériques. La météorologie joue un rôle crucial dans divers secteurs tels que l’agriculture, le
transport et l’énergie. Une des caractéristiques principales des données météorologiques est,
bien évidemment, leur nature spatiale. La variabilité spatiale des données météorologiques
est influencée par des facteurs comme la géographie, la topographie, ou la proximité des
masses d’eau. Les données météorologiques présentent donc une forte structure de dépend-
ance, essentielle tant pour les tâches d’observation que de modélisation. Les dépendances
spatiales sont évidentes dans certains cas : les lieux proches ont tendance à avoir des con-
ditions météorologiques similaires (par exemple dans le cas des précipitations, Goovaerts,
2000) et montrent des variations progressives le long des régions géographiques.

Les premiers modèles adaptés aux données dépendantes sont apparus dans le cas des
séries temporelles (Box and Jenkins, 1970; Steinwart and Christmann, 2008; Steinwart
et al., 2009; Kuznetsov and Mohri, 2014; Hanneke, 2017; Clémençon et al., 2019). Ces
modèles supposent que les observations, identiquement distribuées et se produisant
à intervalles de temps réguliers, présentent une dépendance, et que cette dépendance
repose sur le flux unidirectionnel du temps. Cela implique que la modélisation dans
les études temporelles est causale.

Contrairement au cas des séries temporelles qui reçoit une attention croissante (Stein-
wart and Christmann, 2009; Kuznetsov and Mohri, 2014), celui des données spatiales
est en revanche moins étudié dans la littérature de l’apprentissage statistique. Comme
dans le cas des données temporelles, les statistiques spatiales diffèrent des statistiques
classiques par les caractéristiques de dépendance des observations. Cependant, les
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modèles spatiaux se détachent des modèles temporels de deux façons principales :
ils doivent être plus flexibles, car il n’y a pas d’équivalence au concept de passé,
présent et futur dans les contextes spatiaux ; et, ils doivent tenir compte de la pos-
ition spatiale des données recueillies, une information cruciale pour comprendre le
phénomène étudié.

Introduisons maintenant le modèle spatial général. Soit s ∈ R
p une localisation des

données, où p ∈ N∗. Supposons que Xs soit une quantité aléatoire. Supposons aussi
que s varie sur un ensemble d’indices S ⊂ R

p, de manière à générer le processus
aléatoire :

X =
{
Xs, s ∈ S

}
. (8.1)

Nous distinguons X la variable étudiée, également appelée variable régionalisée par
Matheron (1965), et X la modélisation de X par un champ aléatoire. Avec cette nota-
tion, X est une réalisation de X.

Les hypothèses sur S peuvent varier : il peut s’agir d’un sous-ensemble fixe (non
aléatoire) de R

p, ou d’un ensemble aléatoire (ce qui implique que S peut varier d’une
réalisation à l’autre). Les études en statistiques spatiales peuvent être divisées en trois
catégories, selon la nature de l’ensemble d’indices S (Cressie, 1993, Chapitre 1) :

1. Données géostatistiques : S est un sous-ensemble fixe de R
p (S est continu)

et {Xs, s ∈ S} est un vecteur aléatoire à la localisation s ∈ S . On suppose que
le champ aléatoire est observé en n points fixes {s1, s2, · · · , sn}. Les observations
peuvent être soit échantillonnées aléatoirement sur S , soit sélectionnées sur une
grille régulière. La géostatistique traite des tâches telles que la modélisation, la
prédiction (appelée krigeage) sur un site non observé s, et la construction d’une
carte complète du champ aléatoire sur l’ensemble du domaine S .

Example 8.3. (Exploitation minière) La géostatistique a émergé comme une étude
interdisciplinaire impliquant à la fois l’ingénierie minière et les statistiques. Les
méthodes précédentes employées dans les mines utilisaient souvent des histogrammes
des teneurs en minerai, en se concentrant uniquement sur le taux de ces échantil-
lons, négligeant ainsi la position spatiale des observations. Pourtant, la localisation
spatiale ainsi que les schémas possibles (comme le regroupement) dans le gisement
sont des informations précieuses dans les opérations minières. Matheron (1963) a
proposé la géostatistique comme une nouvelle approche pour estimer les teneurs en
minerai et les réserves de minerai dans les opérations minières. Basé sur un ensemble
d’observations sur le gisement minier, il a développé une méthode de prédiction qui
prend en compte la position spatiale des échantillons, ainsi que la structure de dépend-
ance des teneurs en minerai. Voir l’Exemple 2.1 dans le Chapitre 2 pour plus de détails
sur la méthodologie de la géostatistique et ses applications dans les mines.

2. Données latticielles : S est une collection fixe de points dénombrables de R
p (S

est discret) et Xs est un vecteur aléatoire à la localisation s ∈ S . Les données sont
liées à des unités ou régions spatiales, formant ainsi un réseau. Dans les données
en réseau, on peut s’intéresser à l’étude de la corrélation spatiale, la prédiction,
ou par exemple l’analyse et la restauration d’images.

Example 8.4. (Analyse d’images) Dans le contexte de l’analyse d’images et de la res-
tauration d’images, la méthodologie des données en réseau s’applique, car les images
peuvent être vues comme une grille de pixels, chaque pixel représentant une unité



166 CHAPTER 8. INTRODUCTION EN FANÇAIS

spatiale. Les méthodes de données en réseau peuvent aider à comprendre la structure
spatiale et les dépendances au sein de l’image, et à mesurer la corrélation spatiale
(ce qui est informatif pour comprendre comment la valeur du pixel dans une image
est corrélée avec ses voisins). Voir par exemple Cressie, 1993, Section 7.4 et Besag
(1974); Ripley (2005) pour plus de détails.

3. Données ponctuelles : S est un processus ponctuel dans R
p (S est aléatoire) et

Xs est un vecteur aléatoire à la localisation s ∈ S . Ici, les emplacements de don-
nées des observations {s1, s2, · · · , sn} et le nombre d’observations n sont aléatoires.
Dans ce cas, les emplacements de données contiennent l’information désirée, et
les points d’observation sont considérés comme des événements d’un processus
ponctuel. Le statisticien cherchera à capturer un schéma dans les données, tel
qu’un regroupement, un déclenchement, une régularité, ou de l’aléatoire com-
plet.

Example 8.5. (Sismologie) En sismologie, des schémas de regroupement apparaissent
typiquement : certaines régions sont particulièrement affectées par les tremblements
de terre, tandis que d’autres peuvent ne jamais en subir. Ogata (1988) a introduit les
processus ponctuels pour étudier les occurrences d’un tremblement de terre dans une
région donnée. Les événements présentent aussi un schéma de déclenchement : un
tremblement de terre peut en déclencher d’autres, appelés répliques. Par conséquent,
pour des raisons de sécurité, il est essentiel d’identifier les schémas de regroupement
pour déterminer les régions les plus touchées et de comprendre les relations de déclen-
chement pour prévenir les dégâts futurs. Il est également possible d’utiliser un pro-
cessus marqué, où la marque peut représenter la magnitude du tremblement de terre.
Voir les sous-sections 5.1 et 5.2 pour plus de détails sur les études sismologiques en
statistiques spatiales.

Dans cette thèse, nous choisissons de nous concentrer sur deux catégories de données
spatiales : les données géostatistiques et les données ponctuelles.

8.2 Motivations

Dans cette section, nous présentons les questions de recherche qui ont motivé cette
thèse ainsi que les défis qui en découlent.

Le principal objectif de cette thèse est de développer des méthodes permettant de
prendre en compte la forte structure de dépendance des données spatiales, en se
basant sur une observation du phénomène en un nombre fini de localisations spa-
tiales, afin de modéliser, prédire et apprendre des données spatiales. La thèse se
divise en deux grandes parties : la première concerne une méthode géostatistique
et vise à fournir des garanties théoriques pour cette méthode de prédiction, tandis
que la seconde partie se concentre sur la conception d’une nouvelle approche pour
une catégorie spécifique de processus spatio-temporels. Bien que la géostatistique
et les processus ponctuels soient deux catégories distinctes de statistiques spatiales,
différant par leur hypothèse sur le domaine spatial, elles partagent en partie des mo-
tivations et des difficultés communes.

Domaines d’application. La plupart des éléments qui nous entourent possèdent une
dimension spatiale. Cela inclut les phénomènes naturels, comme le climat et les cata-
strophes naturelles, ainsi que les infrastructures humaines, telles que les puits d’eau
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et la planification urbaine. Tous sont fortement influencés par des facteurs spatiaux.
Par exemple, à petite échelle, les villes géographiquement proches tendent à connaître
des conditions climatiques similaires. De même, l’organisation optimale des rues et de
la circulation, cruciale pour le bon fonctionnement d’une ville, nécessite de prendre
en compte les interdépendances du trafic entre différents quartiers de la ville.

Figure 8.1: Carte de la France avec une grille carrée échantillonnée (à gauche) ; carte
des températures (en Kelvin) de la grille carrée échantillonnée, 2 juin 2005 (à droite).
Source : DRIAS (https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/).

Prenons l’exemple de la Figure 8.1 qui montre la température moyenne journalière en
France (exprimée en Kelvin). À droite, nous voyons une carte colorée des températ-
ures observées en chaque point dans la grille échantillonnée de gauche. Une zone
jaune indique des valeurs de température légèrement plus basses, tandis que des zones
rouges indiquent des températures plus élevées (la différence entre ces températures
est relativement faible). On remarque des changements progressifs de la température
sur tout le domaine spatial ainsi que la présence de zones avec des valeurs simil-
aires. Modéliser correctement ces interdépendances de température est essentiel pour
améliorer les prévisions météorologiques, qui sont cruciales pour anticiper des situ-
ations extrêmes telles que des tempêtes, des cyclones ou des périodes de sécheresse
sévère. Prenons maintenant l’exemple de la Figure 8.5. Cette carte montre tous les
séismes enregistrés dans la région volcanique des Champs Phlégréens (à l’ouest de
Naples, Italie) de janvier à juillet 2024. On constate une concentration importante de
l’activité sismique dans cette zone, principalement le long de la côte près du volcan
dormant d’Agnano. L’occurrence de potentiels tremblements de terre est associée à un
phénomène volcanique cyclique causant des phases de soulèvement et de subsidence
du sol. C’est précisément durant les phases de soulèvement qu’une augmentation de
l’activité sismique est observable. Bien que la majorité de ces séismes soient de faible
magnitude (en comparaison avec le séisme qui a eu lieu en Turquie et en Syrie en
février 2023, voir Figure 8.4), leur forte concentration dans cette région pourrait in-
diquer une possibilité d’éruption imminente ou de séismes plus puissants. Il est donc
crucial de prédire avec précision les futurs événements sismiques en tenant compte
des données historiques et de la distribution spatiale.

https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
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Nous n’avons mentionné que deux exemples de données spatiales (prévisions météoro-
logiques et prédiction des tremblements de terre). Il existe de nombreux autres do-
maines d’application, dont certains sont (brièvement) abordés dans cette thèse, comme
les mines, l’hydrologie, l’écologie, l’épidémiologie, la finance et la criminologie.

Violation de l’hypothèse d’indépendance i.i.d. Les techniques statistiques classiques
supposent généralement que les observations d’un phénomène sont indépendantes et
identiquement distribuées. Cependant, en raison de la présence d’une structure de
dépendance dans le cadre des données spatiales, l’hypothèse d’observations i.i.d. n’est
pas satisfaite. De nouvelles méthodes et des résultats théoriques doivent donc être
établis dans ce contexte. La principale difficulté pour apprendre à partir de données
spatiales est d’obtenir des informations sur la structure de dépendance sous-jacente,
afin qu’elle puisse être prise en compte lors de la modélisation et de la prédiction à
partir de ces données.

Cela nous mène à notre première question de recherche et au défi correspondant, qui
constituent les objectifs généraux de cette thèse.

Questions de Recherche 1 : Comment apprendre à partir de données spatiales
présentant une forte structure de dépendance ? Comment la structure de

dépendance du phénomène observé affecte-t-elle la performance des
algorithmes ?

Défi 1 : Fournir des garanties statistiques pour les méthodes utilisées pour
prédire les données spatiales. Développer des méthodes nouvelles, efficaces et

précises pour prédire à partir de données spatiales.

Comme mentionné précédemment, la première partie de cette thèse concerne les don-
nées géostatistiques et vise à contribuer à relever le premier défi des données spatiales
en fournissant des garanties statistiques pour les méthodes de prédiction spatiale.

Données géostatistiques avec une unique réalisation du phénomène. Apprendre à
partir de données géostatistiques implique deux principaux défis. Le premier, déjà
mentionné, est la présence d’une forte structure de dépendance dans les données. Le
second est le fait que, généralement, une seule réalisation du phénomène est dispon-
ible. Par exemple, un événement naturel spécifique, tel qu’une tempête, ne se produit
qu’une seule fois, et aucune autre réalisation indépendante de celui-ci ne peut être
observée. D’autres exemples incluent le coût économique élevé de la collecte de don-
nées et la possible dégradation de l’environnement. C’est le cas dans le jeu de données
hydrogéologiques présenté à la Figure 8.2. L’hydrogéologie vise à évaluer la qualité
des eaux souterraines (voir l’Exemple 2.2 dans le Chapitre 2 pour plus de détails) en
fonction des caractéristiques de l’eau, telles que le niveau de pH, la conductivité de
l’eau et la température. Pour cela, des observations sont collectées sur une région spa-
tiale, ici dans le département de La Guajira en Colombie, et des mesures spécifiques
sont effectuées. Cependant, cette procédure implique un coût économique significatif.

En géostatistique, un phénomène est modélisé par un champ aléatoire, supposé ob-
servé en un nombre fini de localisations sur le domaine spatial S ⊂ R

p. Les cara-
ctéristiques de dépendance des données sont modélisées par la fonction de covariance
du champ aléatoire. Notre cadre est le suivant : nous sommes intéressés par la pré-
diction des valeurs aux emplacements spatiaux s ∈ S d’un champ aléatoire X, observé
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Figure 8.2: Carte hydrogéologique du département de La Guajira (Colombie) en 2016.
Chaque point sur cette carte représente un plan d’eau. À droite, la carte des échantil-
lons représentant les valeurs de pH à chaque point spatial.
Source : Servicio Geológico Colombiano (https://datos.sgc.gov.co/). Carte créée
en 2016 par le Groupe des Eaux Souterraines du Service Géologique Colombien.

sur un ensemble de localisations fixes {s1, . . . , sd}. Le champ aléatoire est supposé être
un processus aléatoire gaussien stationnaire d’ordre deux avec une fonction de cov-
ariance isotrope. Ces hypothèses sont souvent formulées en géostatistique car elles
assurent une bonne approche fréquentiste. La méthode d’interpolation résultante est
appelée Kriging, ou Krigeage (Matheron, 1962), et vise à construire un prédicteur X̂s

de Xs, défini comme une combinaison linéaire des observations. Les poids du Krigeage
dépendent de la fonction de covariance du champ aléatoire.

Estimation non-paramétrique de la covariance. Lorsqu’on travaille avec des données
réelles, la fonction de covariance est inconnue. À partir d’un ensemble d’entraînement,
défini comme une unique réalisation X′ de X observée en n localisations {σ1, . . . ,σn},
la fonction de covariance peut être estimée. Des résultats précédants concernant
l’estimation de la fonction de covariance ont été développés, soit dans une perspect-
ive asymptotique (Stein, 1999), soit par une approche paramétrique (Zimmerman,
1989; Zimmerman and Cressie, 1992). En revanche, nous sommes intéressés par le
comportement pour un échantillon fini de l’estimateur non-paramétrique de la cov-
ariance, dans un cadre asymptotique dit in-fill (c’est-à-dire en supposant que de nou-
velles observations apparaissent dans le même domaine spatial fixe, qui devient de
plus en plus dense).

Cela nous amène à notre deuxième question de recherche et au défi qui lui est associé,
visant à définir la précision de l’estimation non-paramétrique de la covariance.

https://datos.sgc.gov.co/
https://datos.sgc.gov.co/
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Question de Recherche 2 : Quelle est la précision de l’estimateur empirique
de la covariance, basé sur un nombre fini d’observations sur une grille

régulière et une unique réalisation ?

Défi 2 : Obtenir des bornes non asymptotiques pour l’estimateur
non-paramétrique de la fonction de covariance, dans le cadre asymptotique

in-fill.

Le Défi 2 peut être considéré comme un défi intermédiaire pour répondre à notre
Question de Recherche 3 (voir ci-dessous), à savoir établir des garanties non asymp-
totiques pour la méthode de Krigeage. En effet, comme expliqué ci-dessous, la pré-
cision de la méthode de Krigeage de prédiction dépend de la qualité de l’estimation de
la covariance. Ainsi, il est primordial de calculer une estimation précise de la fonction
de covariance et d’identifier les potentiels effets d’incertitude de cette estimation sur
le prédicteur de Krigeage.

Garanties non asymptotiques pour la méthode de Krigeage empirique. Lorsque
la structure de dépendance du champ aléatoire est connue, la méthode de Krigeage
est optimale (nous l’appelons Krigeage théorique). Cependant, dans le cas d’une fonc-
tion de covariance inconnue, la capacité de généralisation de la méthode résultante
(nous l’appelons Krigeage empirique) reste à établir. L’objectif est de développer un
nouveau cadre théorique offrant des garanties non asymptotiques pour les prédic-
tions par Krigeage simple empirique. Les garanties de généralisation du prédicteur
empirique sont fournies sous la forme d’une borne sur l’excès de risque global. Ce
risque est défini comme l’écart global entre les erreurs de prédiction des prédicteurs
de Krigeage théorique et empirique.

Questions de Recherche 3 : Quel est le comportement non asymptotique du
prédicteur de Krigeage lorsque la structure de dépendance est inconnue et

avec un nombre fini d’observations ? Dans quelle mesure les poids de Krigeage
dépendent-ils de la précision de l’estimation de la fonction de covariance et de

la localisation des échantillons ?

Défi 3 : Établir des bornes non asymptotiques pour l’excès de risque global
de la méthode de Krigeage. Ces résultats théoriques doivent dépendre de

l’estimation de la fonction de covariance et du choix du cadre
d’échantillonnage.

La seconde partie de cette thèse concerne les données ponctuelles, et plus précisé-
ment les processus de Hawkes spatio-temporels. Dans ce contexte, les observations
sont considérées comme des événements d’un processus. Les processus de Hawkes
trouvent des applications dans divers domaines, tels que l’étude des catastrophes
naturelles, comme expliqué ci-dessous.

Prédiction de séismes et évaluation des risques. En 2023, le nombre total de décès
dus aux séismes s’élevait à 62451, selon le rapport annuel du CRED (Centre de recher-
che sur l’épidémiologie des catastrophes), soit presque le double de la moyenne des
vingt dernières années (voir Figure 8.3). Ce nombre était particulièrement élevé cette
année-là en raison du séisme survenu en Turquie et en Syrie en février 2023, qui a
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Figure 8.3: Nombre de décès par type de catastrophe : comparaison entre le nombre
en 2023 et la moyenne annuelle de 2003 à 2022.
Source : EM-DAT (https://www.emdat.be/), rapport annuel du CRED, 2023 Disasters
in numbers.

été, comme l’écrit le CRED, « l’événement le plus catastrophique de l’année en termes de
mortalité et de dommages économiques, représentant les deux tiers des décès totaux ». Le 6
février 2023, une séquence de séismes a frappé le sud-est de la Turquie, à la frontière
avec la Syrie. Un premier séisme majeur de magnitude 7,8 a frappé près de la ville de
Gaziantep, suivi de répliques de moindre magnitude, touchant toutes les régions en-
vironnantes (voir Figure 8.4). Cette région est fréquemment sujette à des événements
sismiques. Il est donc urgent de disposer de modèles robustes et précis pour prédire
l’activité sismique et améliorer l’évaluation des risques dans les régions fortement im-
pactées par les séismes. Une autre région de ce type est les Champs Phlégréens, dont
l’activité sismique en 2024 est représentée dans la Figure 8.5 (où la taille d’un point
représente la magnitude de l’événement et la couleur indique la période de temps à
laquelle il s’est produit).

En observant les Figures 8.4 et 8.5, on constate clairement un comportement de re-
groupement des événements. En effet, dans la Figure 8.5, les événements sont re-
groupés dans les dimensions temporelle et spatiale : les points de même couleur
sont rassemblés dans une même région spatiale. Cette observation révèle les ca-
ractéristiques de déclenchement des séismes. En effet, un premier séisme majeur
de forte magnitude (appelé séisme principal) peut déclencher une nouvelle occur-
rence, généralement de moindre magnitude (appelée réplique). Cet effet de déclen-
chement se manifeste principalement par un motif de regroupement, c’est-à-dire que
l’apparition de nouvelles occurrences se produit dans une fenêtre temporelle spéci-
fique et dans un certain voisinage spatial de l’épicentre initial. Les comportements
de déclenchement et de regroupement d’un phénomène sismique sont donc cruci-
aux pour comprendre l’activité sismique sous-jacente et améliorer la prédiction des
événements futurs.

Processus de Hawkes spatio-temporels. Parmi les processus ponctuels, les mod-
èles de Hawkes (Hawkes, 1971) ont récemment suscité beaucoup d’attention, car ils
prennent en compte de manière très flexible la nature auto-excitante des événements

https://www.emdat.be/
https://www.emdat.be/
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Figure 8.4: Le séisme en Turquie et en Syrie, le 6 février 2023. Les épicentres sont
en rouge, et l’échelle de couleurs montre l’intensité de la secousse du premier séisme
dans la région.
Source : USGS (https://www.usgs.gov/), United States Geological Survey, LandScan.

observés, l’interaction spatio-temporelle et l’anisotropie spatiale. Avec des fonctions
d’intensité bien choisies, la probabilité d’occurrence d’événements futurs sur une péri-
ode donnée augmente avec ces processus ponctuels (Reinhart, 2018). Vere-Jones (1970)
et Ogata (1988) ont introduit ces processus en sismologie en raison du comportement
de déclenchement des séismes. En effet, les modèles de Séquence de Répliques de Type
Épidémique (ETAS, Epidemic-Type Aftershock Sequence) sont bien adaptés à la mod-
élisation des activités sismiques, car ils impliquent que chaque séisme peut initier des
répliques, lesquelles peuvent à leur tour engendrer d’autres répliques, aboutissant à
une réaction en chaîne d’activité sismique. Ainsi, les processus de Hawkes s’avèrent
être des outils puissants pour les données présentant une nature auto-excitante. Ce-
pendant, les premiers modèles de Hawkes étaient purement temporels (Ogata, 1988),
négligeant ainsi la dimension spatiale du phénomène. En effet, comme observé dans
la Figure 8.5, les dynamiques complexes des séismes montrent des regroupements à la
fois spatiaux et temporels. Dans cette thèse, nous explorons les processus de Hawkes
spatio-temporels (STHPs, Space-Time Hawkes Processes) pour prendre en compte les
dépendances spatio-temporelles entre les événements.

Les propriétés auto-excitatrices des processus de Hawkes spatio-temporels expliquent
pourquoi ils sont de plus en plus utilisés dans de nombreux domaines nécessitant
une analyse spatio-temporelle, tels que l’épidémiologie (Holbrook et al., 2022; Kresin
et al., 2022; Rambhatla et al., 2022; Dong et al., 2023), la criminologie (Mohler et al.,
2011; Mohler, 2014; D’Angelo et al., 2022; Zhu and Xie, 2022) et la sismologie (Ogata,
1998; Musmeci and Vere-Jones, 1992; Kwon et al., 2023), par exemple. Le principal
défi méthodologique consiste alors à concevoir des techniques d’inférence efficaces
pour ajuster les modèles de Hawkes à des ensembles de données spatio-temporels.

https://www.usgs.gov/
https://www.usgs.gov/
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Question de Recherche 4 : Comment apprendre d’un processus de Hawkes
spatio-temporel multivarié, malgré les défis de modélisation et les défis

numériques posés par la complexité des STHP paramétriques ?

Défi 4 : Développer une nouvelle méthode efficace et flexible pour
l’inférence paramétrique pour les processus de Hawkes spatio-temporels,

consistant en un solveur rapide basé sur le gradient ℓ2.

Pour des raisons de simplicité et de calcul, la plupart des méthodes précédentes sont
limitées aux noyaux séparables dans le temps et l’espace, où le noyau temporel est
souvent choisi comme exponentiel et l’influence spatiale est modélisée par un noyau
Gaussien (Mohler, 2014; Yuan et al., 2019; Ilhan and Kozat, 2020).

Noyaux paramétriques généraux. Le noyau temporel exponentiel généralement as-
sumé, bien qu’il apporte une efficacité de calcul, implique des limitations majeures
dans les situations réelles, car il suppose qu’un événement déclenche immédiatement
un événement futur. Cependant, dans le cas des séismes, cette hypothèse est générale-
ment invalide. Par exemple, lors de l’activité sismique ayant touché la Turquie et la
Syrie en 2023, un premier séisme principal (de magnitude 7,8) a eu lieu vers 4 h
du matin. Un deuxième séisme principal (de magnitude 7,5) est survenu 9 heures
plus tard, vers 13 h. Les épicentres de ces deux séismes sont spatialement proches,
comme le montre la Figure 8.4. Dans ce cas, le noyau exponentiel ne convient pas, car
une latence est observée entre les deux séismes majeurs. À l’inverse, le 20 mai 2024,
plusieurs séismes ont frappé la région des Champs Phlégréens entre 19 h 51 et 21 h 55
(de magnitudes comprises entre 3,1 et 4,4), impliquant une influence plus immédiate.
Ainsi, selon plusieurs facteurs (tels que les plaques tectoniques sous-jacentes de la ré-
gion, la présence d’un volcan, etc.), les comportements temporels de déclenchement
et de regroupement des séismes peuvent varier d’une région à l’autre. De plus, pour
la dimension spatiale, la dispersion des répliques dans la Figure 8.5 ne semble pas
suivre une distribution Gaussienne.

Interactions spatio-temporelles. La séparabilité spatio-temporelle du noyau d’un
processus de Hawkes est une hypothèse courante (voir par exemple Mohler, 2014;
Yuan et al., 2019; Ilhan and Kozat, 2020). En effet, elle apporte de la simplicité, car elle
implique que le noyau est un produit d’influences spatiales et temporelles qui peuvent
être modélisées séparément. Cependant, lorsqu’on traite de phénomènes naturels tels
que les séismes, une interaction spatio-temporelle peut généralement être observée.

Ces deux limites des approches précédentes motivent la nécessité d’une nouvelle
méthode efficace et flexible pour modéliser les processus de Hawkes spatio-temporels.
Cette nouvelle méthode doit être adaptée à des noyaux paramétriques généraux et à
des noyaux non séparables spatio-temporellement, permettant une meilleure prédic-
tion basée sur les caractéristiques du domaine spatial ou du phénomène étudié.
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Figure 8.5: Occurrences de séismes en 2024, dans les Champs Phlégréens, à l’ouest de
Naples (Italie). L’échelle de couleurs représente le moment de chaque événement et la
taille du point, sa magnitude.
Source : INGV (https://terremoti.ov.ingv.it/gossip/flegrei/2024/), Institut
National de Géophysique et de Volcanologie.

Question de Recherche 5 : Comment modéliser avec précision des situations
réelles, où des interactions spatio-temporelles se produisent et où une
latence entre les répliques peut être observée, à l’aide des processus de

Hawkes?

Défi 5 : Adapter la méthode paramétrique de manière à permettre tout type
de noyaux et à estimer les paramètres d’un processus de Hawkes non

séparable spatio-temporellement, offrant ainsi flexibilité et précision dans la
modélisation des dépendances complexes dans des ensembles de données

réels.

Méthode paramétrique flexible et efficace. Nous développons une méthode para-
métrique rapide qui permet l’utilisation de tout type de noyaux et de noyaux non
séparables spatio-temporellement. La méthode dérivée s’inspire des travaux de Staer-
man et al. (2023) pour les processus de Hawkes temporels, en étendant la méthode
pour capturer les interactions spatio-temporelles.

8.3 Contributions

Pour surmonter les défis décrits ci-dessus et répondre à nos questions de recherche,
nos contributions sont les suivantes (voir le tableau 8.1 pour un résumé de ces contri-
butions).

Partie I. La première partie de cette thèse vise à contribuer à la conception et à l’étude
de méthodes d’apprentissage statistique appliquées aux données spatiales, en explor-
ant le problème de Krigeage. L’objectif du Krigeage est de prédire les valeurs d’un

https://terremoti.ov.ingv.it/gossip/flegrei/2024/
https://terremoti.ov.ingv.it/gossip/flegrei/2024/
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champ aléatoire X = {Xs, s ∈ S}, S ⊂ R
2, en toutes localisations non observées dans S ,

en se basant sur un nombre fini d ≥ 1 d’observations X(sd) := (Xs1
, . . . , Xsd ), avec sd =

(s1, . . . , sd). Pour cet ensemble d’observations, on pose Σ(sd) = V ar(X(sd)) la matrice
de covariance et cd(s) = (Cov(Xs,Xs1

), . . . , Cov(Xs,Xsd )) le vecteur de covariance. Le
but est de construire une carte prédictive f (s) = fΛd

(s, X(sd)) = λ1(s)Xs1
+ . . .+λd(s)Xsd

linéaire en X(sd) qui minimise l’erreur quadratique moyenne intégrée

LS (fΛd
) = EX

∫
s∈S

(
fΛd

(s, X(sd))−Xs

)2
ds

 ,
où Λd : s ∈ S 7→ (λ1(s), . . . , λd(s)) est une fonction mesurable à valeurs dans R

d . Lor-
sque la vraie fonction de covariance c(·) de X est connue et que la matrice Σ(sd) est
définie positive, le prédicteur de Krigeage fΛ∗d (s,X(sd)) = X(sd)⊤Σ(sd)−1cd(s) atteint
une performance optimale. Désignons l’erreur minimale globale par L∗S := LS (fΛ∗d )
et les poids de Krigeage optimaux Λ∗d(s) = Σ(sd)−1cd(s). Cependant, cette optim-
alité n’est pas toujours réalisable en pratique, car la vraie structure de covariance
des données réelles reste inconnue. Ainsi, sur la base d’un ensemble de données
d’entraînement X′, défini comme une unique réalisation de X observée à n ≥ 1 loc-
alisations spatiales σ1, . . . , σn formant une grille dyadique régulière, une estimation
empirique ĉ(·) de la fonction de covariance peut être obtenue. À partir de ĉ(·), on peut
calculer les estimateurs empiriques Σ̂(sd) et ĉd(s), de Σ(sd) et cd(s) respectivement. En
remplaçant Σ(sd)−1 et cd(s) par leurs estimateurs, un contrepartie empirique naturelle
de Λ∗d est construite par la méthode du plug-in et une version empirique du prédicteur
de Krigeage est

f
Λ̂d

(s,X(sd)) = X(sd)⊤Σ̂(sd)−1 ĉd(s).

Considérant le Krigeage dual comme un problème de régression ridge à noyau.
Nous montrons que le prédicteur optimal fΛd

a la même forme qu’un régresseur ridge
à noyau (Kernel Ridge Regression), où on remplace la matrice de Gram pour la régres-
sion par la vraie matrice de covariance de X(sd) (voir Chapitre 4).

Notre objectif est maintenant de fournir des garanties théoriques pour le prédicteur de
Krigeage empirique sous la forme de bornes non asymptotiques pour l’excès de risque
global LS (f

Λ̂d
)− L∗S . Comme le prédicteur empirique f

Λ̂d
dépend de l’estimation de la

fonction de covariance ĉ(·), notre premier objectif est d’évaluer la précision de cette
estimation.

Bornes non asymptotiques pour l’estimation de la fonction de covariance. En géos-
tatistique, lorsque le champ aléatoire est stationnaire (d’ordre deux), on utilise le semi-
variogramme γ(·) pour caractériser la structure de dépendance spatiale des observa-
tions. La relation entre la fonction de covariance isotrope et le semi-variogramme
est donnée par l’équation suivante : γ(h) = c(0) − c(h). Nous étendons cette relation
à leurs estimateurs basés sur les observations X′σ1

, · · · ,X′σn : γ̂(h) = ĉh(0) − ĉ(h). Dans
le Chapitre 3, sous l’hypothèse que X est un champ aléatoire gaussien d’ordre deux
stationnaire avec une fonction de covariance isotrope, nous identifions d’abord la dis-
tribution des estimateurs non paramétriques γ̂(h) et ĉh(0), qui est donnée par une
somme pondérée de variables aléatoires χ2. Sous des conditions appropriées, nous ét-
ablissons des bornes de queues de type Poisson pour ces estimateurs, en nous basant
sur de nouveaux résultats de concentration pour les variables Gamma et χ2 (Bercu
et al., 2015; Wang and Ma, 2020). Ces bornes sont établies uniquement pour les dis-
tances observées h de la grille régulière échantillonnée σ1, · · · ,σn. Grâce à la relation
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entre les estimateurs, des bornes correspondantes peuvent également être dérivées
pour l’estimation de la fonction de covariance. Enfin, en supposant que c(·) est de
classe C1 avec un gradient borné par une constante Q < +∞, nous étendons les bornes
précédentes à toutes les distances du domaine spatial supposé borné. Ces contribu-
tions nous permettent de répondre à notre Question de Recherche 2.

Ensuite, grâce aux contributions ci-dessus, nous analysons l’impact de la précision de
l’estimation de la fonction de covariance sur la performance du prédicteur empirique
de Krigeage.

Garanties statistiques pour la méthode de Krigeage. Nous fournissons d’abord des
bornes non asymptotiques pour la précision de l’estimation de la matrice de covari-
ance et de la matrice de précision (Σ̂(sd) et Σ̂(sd)−1 respectivement) dans le Chapitre
4. Ces bornes découlent des résultats précédents pour l’estimation de la fonction de
covariance ĉ(·), sous une hypothèse supplémentaire sur les valeurs propres de Σ(sd).
Ensuite, dans le Chapitre 4, nous évaluons la capacité de généralisation du prédicteur
empirique de Krigeage sur tous les sites non observés du domaine spatial, en dérivant
des bornes non asymptotiques pour l’excès de risque global de la méthode de Kri-
geage. Le résultat final est fourni par le Théorème 4.8, où des bornes sur la vitesse
d’apprentissage d’ordre O

P
(1/
√
n) sont établies pour le prédicteur empirique, sous

des conditions appropriées. Notre résultat principal est le suivant :

Pour tout δ ∈ (0,1), nous avons avec une probabilité d’au moins 1− δ :

LS (f
Λ̂d

)−L∗S ≤ C6d
2
√

log(4n/δ)/n+C′6d
2Q/(

√
n− 1),

dès que n ≥ C′′6 log(4n/δ), où C6, C′6 et C′′6 sont des constantes positives.

Ce résultat nous permet de répondre à notre Question de Recherche 3.

Expériences numériques. Les résultats théoriques, ainsi que le rôle joué par les con-
ditions techniques requises pour les établir, sont illustrés dans le Chapitre 4 par di-
verses expériences numériques sur des données simulées. Nous réalisons les expéri-
ences pour différents modèles de covariance, dont certains satisfont toutes les con-
ditions requises pour nos résultats tandis que d’autres ne les respectent pas. Nous
répétons les expériences pour différentes tailles de grilles d’observations. Nos ex-
périences numériques corroborent pleinement nos résultats théoriques pour tous les
modèles de covariance satisfaisant les hypothèses. En outre, nous explorons d’autres
extensions possibles de notre travail en fournissant des expériences supplémentaires
abordant les cas suivants : (1) les d points d’observation sont extraits de configurations
différentes de la procédure uniforme aléatoire, (2) le cas des modèles de covariance
anisotropes, (3) le cas des grilles irrégulières pour l’échantillon d’apprentissage. Les
résultats de nos expériences montrent que la méthode de prédiction est robuste en cas
de légères violations des hypothèses ci-dessus.

Applications aux données réelles. Nous illustrons la force et les avantages du pré-
dicteur de Krigeage empirique par des expériences numériques sur des données mé-
téorologiques réelles dans le Chapitre 4. Le jeu de données DRIAS fournit la tem-
pérature moyenne quotidienne en France, observée sur une grille régulière (voir Fig-
ure 8.1). Un prédicteur de Krigeage paramétrique, construit à l’aide d’une fonction de
covariance paramétrique, ainsi que le prédicteur de Krigeage non paramétrique, sont
appliqués à ces données. Nos résultats corroborent les garanties théoriques établies et
démontrent qu’une application directe de la méthode de prédiction de Krigeage em-

https://drias-prod.meteo.fr/okapi/accueil/okapiWebDrias/
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pirique peut donner des performances solides et une meilleure flexibilité par rapport
à une méthode paramétrique.

Code. Nos expériences sont entièrement reproductibles et peuvent être répliquées
avec les codes disponibles sur GitHub1.

Partie II. La deuxième partie de cette thèse vise à concevoir une nouvelle méthode
d’inférence pour les processus de Hawkes spatio-temporels multivariés. La cara-
ctéristique principale d’un processus de Hawkes est qu’il prend en compte la nature
auto-excitante du phénomène sous-jacent. Soit T ∈ R+ un temps d’arrêt, et con-
sidérons [0,T ] la période d’observation résultante. De plus, soit S = X ×Y ⊂R

2 un en-
semble compact au sein du domaine spatial qui contient les emplacements des événe-
ments observés jusqu’au temps T . Soit D ∈N∗ la dimension du processus de Hawkes
spatio-temporel multivarié. Une réalisation consiste en D ensembles d’événements

distincts : Hi
T =

{
ui
n = (xin, y

i
n, t

i
n), (xin, y

i
n) ∈ S , tin ∈ [0,T ]

}
, ∀i ∈ {1, . . . ,D} se produisant

dans un espace-temps continu, avec un temps associé tin et une localisation (xin, y
i
n).

Le comportement du processus est entièrement décrit par ses D fonctions d’intensité,
qui dépendent des temps et des emplacements des événements passés. La fonction
d’intensité conditionnelle pour le i-ème processus est :

λi(x,y, t|Ht) = µi +
D∑
j=1

∑
u
j
n∈H

j
t

αij gij(x − x
j
n, y − y

j
n, t − t

j
n),

où µi > 0 est le paramètre de base, αij > 0 est le paramètre de mise à l’échelle de
l’excitation, et gij : S × [0,T ] 7→ R+ est le noyau spatio-temporel avec des paramètres
ηij . Notez que nous utilisons la même notation que pour les poids du prédicteur de
Krigeage dans la Partie I pour respecter les notations habituelles de ces domaines.

L’objectif de notre méthode est de pouvoir inférer les paramètres pour : (1) tous les
noyaux paramétriques, y compris (2) les noyaux non séparables en espace-temps.
Notre travail s’inspire de l’approche proposée par Staerman et al. (2023) pour les pro-
cessus de Hawkes temporels, dont la procédure repose sur trois idées clés que nous
étendons aux données spatio-temporelles. Le premier concept est que le domaine
spatio-temporel des observations est discrétisé en une grille régulière tridimension-
nelle et les observations sont projetées dessus. Ensuite, nous supposons que les fonc-
tions de noyau sont à support fini. En combinant ces deux premières idées, le noyau
dans l’intensité conditionnelle λi peut être remplacé par une version discrétisée, re-
mplaçant ainsi la somme sur les événements passés par une somme sur un nombre
fini d’éléments de la grille. Ensuite, nous nous concentrons sur la perte des moindres
carrés et en dérivons une version discrétisée

LG(θ,H̃T ) =
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

(
λ̃i[vx,vy ,vt]

)2
− 2

∑
ũi
n∈H̃i

T

λ̃i

 x̃in∆X , ỹ
i
n

∆Y
,
t̃in
∆T


 ,

où (∆X ,∆Y ,∆T ) sont les pas de discrétisation de la grille tridimensionnelle, (GX ,GY ,GT )
sont les tailles des grilles discrétisées, et H̃i

T est l’ensemble des évènements projetés
de Hi

T . Cela nous amène à la troisième composante clé de notre approche, qui est

1https://github.com/EmiliaSiv/Simple-Kriging-Code

https://github.com/EmiliaSiv/Simple-Kriging-Code
https://github.com/EmiliaSiv/Simple-Kriging-Code
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l’identification de termes de pré-calculs (qui ne dépendent pas du paramètre θ =
{µi ,αij ,ηij}i,j ) dans la fonction de perte discrétisée. Grâce à ces termes de pré-calculs,
notre approche est efficace et permet une inférence rapide.

En combinant ces trois idées clés, nous concevons une méthode répondant à nos Ques-
tions de Recherche 4 et 5, définies dans la Section 8.2. Nous fournissons également
des garanties théoriques sur le biais induit par la discrétisation, montrant son faible
impact sur la précision de l’estimation des paramètres.

Méthode efficace et flexible pour l’inférence paramétrique dans les modèles de
Hawkes spatio-temporels. Dans le Chapitre 6, nous développons une méthode rapide
pour inférer les paramètres des noyaux dans les modèles de Hawkes spatio-temporels.
La méthode que nous concevons permet d’incorporer n’importe quel noyau para-
métrique pour la fonction de déclenchement, s’étendant au-delà des formes tradi-
tionnelles gaussiennes et exponentielles. De plus, pour mieux s’adapter aux données
réelles, l’approche prend également en compte les interactions spatio-temporelles, en
s’étendant au cas de noyaux non séparables en espace-temps. Ces deux innovations
améliorent la précision et la flexibilité dans la modélisation des dépendances com-
plexes dans les ensembles de données du monde réel.

Expériences numériques. Nous montrons les avantages de notre approche par diffé-
rentes expériences sur des données simulées dans le Chapitre 6. Tout d’abord, nous
étudions l’impact du pas de discrétisation sur la précision de la méthode en répétant
les expériences pour différentes valeurs de (∆X ,∆Y ,∆T ). Nos résultats montrent que
l’erreur d’estimation tend vers zéro à mesure que les pas diminuent simultanément,
soutenant nos résultats théoriques sur la discrétisation. Ensuite, nos expériences, réal-
isées pour différents temps de fin T et limites spatiales S , prouvent l’exactitude de
la méthode. Le temps de calcul par rapport au pas de discrétisation et par rapport
à (S ,T ) est également étudié, prouvant l’efficacité de notre méthode. Enfin, toutes
les expériences sont réalisées avec des noyaux spatiaux et temporels variés, montrant
ainsi la flexibilité de notre approche.

Applications aux données réelles. Les avantages de notre méthode d’inférence sont
également prouvés en l’appliquant à deux ensembles de données du monde réel dans
le Chapitre 6 : (1) des données réelles sur les tremblements de terre, basées sur le jeu
de données Northern California Earthquake Data Center 2 (NCEDC; nce, 2014) et (2) des
données de cambriolages provenant du Chicago Crime Dataset 3. En effet, les deux en-
sembles de données réelles enfreignent les deux conditions supposées par la majorité
des approches précédentes. En général, un tremblement de terre ne déclenche pas im-
médiatement des répliques (donc le noyau temporel exponentiel n’est pas adapté) et
les effets de déclenchement peuvent varier selon les différentes directions spatiales (ce
qui implique que le noyau spatial gaussien ne reflète pas le processus sous-jacent). De
plus, les événements de cambriolage présentent des dépendances spatio-temporelles,
en raison du motif de "victimisation proche répétée" (Johnson, 2008) : les cambrioleurs
ciblent souvent le même quartier à plusieurs reprises dans un court laps de temps.

Code. L’implémentation de notre approche est disponible sur GitHub4.

2https://ncedc.org/
3https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
4
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes

https://ncedc.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
https://ncedc.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://github.com/EmiliaSiv/Flexible-Parametric-Inference-for-Space-Time-Hawkes-Processes
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Table 8.1: Résumé des contributions.

Chapitres Contributions

• Garanties théoriques pour l’estimation non paramétrique
Chapitre 3 de la fonction de covariance, sous des conditions appropriées.

• Expériences numériques sur des données simulées qui valident
l’utilisation des hypothèses.

• Garanties statistiques pour la méthode de Krigeage.

• Expériences numériques sur des données simulées qui vérifient
Chapitre 4 nos résultats théoriques.

• Applications sur des données météorologiques réelles.

• Nouvelle méthode efficace et flexible pour l’inférence de
processus de Hawkes spatio-temporels.

Chapitre 6 • Expériences numériques sur des données simulées qui prouvent
la performance et la flexibilité de notre méthode.

• Applications sur des données réelles de tremblements de terre
et de cambriolages.

8.4 Plan de la thèse

La Partie I se concentre sur une approche d’apprentissage statistique du Krigeage
simple et développe un nouveau cadre théorique offrant des garanties non asymp-
totiques pour les règles empiriques de Krigeage simple. L’objectif principal de cette
première partie est de surmonter les défis posés par les caractéristiques des don-
nées spatiales, principalement la présence d’une forte structure de dépendance et
l’observation d’une unique réalisation du phénomène étudié.

• Le Chapitre 2 fournit les bases nécessaires pour étudier les données spatiales à
l’aide d’outils géostatistiques et présente les résultats fondamentaux de l’appren-
tissage statistique, en mettant l’accent sur le principe de minimisation du risque
empirique.

• Dans le Chapitre 3, nous proposons des bornes non asymptotiques pour l’estimation
non paramétrique de la fonction de covariance d’un champ aléatoire basée sur
un échantillon fini d’observations et une unique réalisation du phénomène.

• Les résultats finaux sont présentés dans le Chapitre 4, où des bornes sur les taux
d’apprentissage sont obtenues pour le prédicteur empirique de Krigeage simple.

La Partie II est consacrée aux processus de Hawkes et à l’étude des données spatio-
temporelles issues de jeux de données réels présentant de l’hétérogénéité. L’objectif
de cette partie est de développer une méthode efficace et flexible pour l’inférence
paramétrique dans les modèles spatio-temporels de Hawkes.
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• Le Chapitre 5 expose les bases sur les processus ponctuels utiles pour notre ap-
proche et met en lumière les avantages de développer une telle méthode en
investiguant des exemples réels où l’hétérogénéité et les interactions spatio-
temporelles sont observés.

• Le Chapitre 6 introduit une nouvelle approche, flexible et efficace, pour in-
férer tout noyau paramétrique dans le contexte des processus de Hawkes spatio-
temporels.

Le Chapitre 7 fournit une conclusion globale et propose une vue d’ensemble des per-
spectives et des futures pistes de recherche découlant des travaux développés dans
cette thèse.

8.5 Publications

Les contributions présentées ici ont donné lieu à la publication et au préprint suivants:

• (Siviero et al., 2024a) Emilia Siviero, Emilie Chautru, Stephan Clémençon. A
Statistical Learning View of Simple Kriging. In TEST, vol. 33, no 1, pages 271-
296, 2024. Reproduit dans les Chapitres 3 et 4.

• (Siviero et al., 2024b) Emilia Siviero, Guillaume Staerman, Stephan Clémençon,
Thomas Moreau. Flexible Parametric Inference for Space-time Hawkes Pro-
cesses. arXiv preprint arXiv:2406.06849, 2024. Reproduit dans le Chapitre 6.

Les publications ont été présentées dans les conférences et séminaires suivants :

• Juillet 2022 : Présentation poster de l’article ‘A Statistical Learning View of
Simple Kriging’, lors de la conférence française sur l’apprentissage automatique
(CAp 2022), Vannes (France).

• Août 2022 : Présentation orale de l’article ‘A Statistical Learning View of Simple
Kriging’, lors de la conférence internationale sur les statistiques computation-
nelles (COMPSTAT 2022), Bologne (Italie).

• Mars 2023 : Présentation orale de l’article ‘A Statistical Learning View of Simple
Kriging’, au séminaire de l’équipe MIND, Inria, Palaiseau (France).

• Août 2024 : Présentation orale de l’article ‘Flexible Parametric Inference for
Space-time Hawkes Processes’, lors de la conférence internationale sur les stat-
istiques computationnelles (COMPSTAT 2024), Giessen (Allemagne).
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A Appendices for Chapter 3

The Appendix is organized as follows: first, we present the auxiliary results used in
the technical proofs, then the proofs of the main results of Chapter 3 are detailed at
length.

A.1 Auxiliary Results

Here and throughout, given a Hermitian matrix A of size n × n, denote ξn(A) ≤ · · · ≤
ξ1(A) its eigenvalues (arranged in decreasing order) and Rank(A) its rank.

Auxiliary Result for the Proof of Proposition 3.7

The following lemma is used in the proof of Proposition 3.7 and allows us to gen-
eralize the proof for the distributions of both the semi-variogram and the variance
estimators.

Lemma .6. Let X ∼ N (0,Σ) be a centered Gaussian random field with positive definite
covariance function and R a symmetric and positive semi-definite matrix of size n×n, such
that Rank(R) ≤ r (where r is a strictly positive integer). Then, we have:

tXRX ∼
r∑

i=1

ξi(RΣ)χ2
i ,

where the χ2
i ’s are independent χ2 random variables with one degree of freedom and the

ξi(RΣ)’s are the r (strictly positive) eigenvalues of RΣ.

Proof. Thanks to the assumptions, the covariance matrix Σ is symmetric and positive
definite. Thus, using a well-known result of matrix algebra (see e.g. Chapter 21 in
Harville, 1998), define the square root of Σ, a symmetric and positive definite matrix
by Σ1/2 such that Σ = Σ1/2Σ1/2. The square root matrix is invertible and its inverse
Σ−1/2 is symmetric and positive definite. Let Y = Σ−1/2X ∼ N (0,In), where In is the
n×n identity matrix. Then

tXRX =t Xt(Σ1/2Σ−1/2)R(Σ1/2Σ−1/2)X

=t (Σ−1/2X)tΣ1/2RΣ1/2(Σ−1/2X) =t YT Y ,

where T =t Σ1/2RΣ1/2. Since R is symmetric and positive semi-definite, T is also sym-
metric and positive semi-definite. Furthermore,

RΣ = Σ−1/2Σ1/2RΣ1/2Σ1/2 = Σ−1/2TΣ1/2,

which implies that the matrices T and RΣ are similar and have the same eigenvalues
(Harville, 1998, Chapter 21). Thanks to the spectral decomposition, there exists an
orthogonal matrix P and a diagonal matrix D = Diag((ti)i∈{1,··· ,n}) of the eigenvalues of
T , such that T =t PDP . The eigenvalues ti ’s are positive as T is positive semi-definite.
Recall that the rank of the matrix R is upper bounded by a positive integer r and this
implies that the rank of RΣ is upper bounded by r too. Thus, denote ξi(RΣ) the r
positive eigenvalues of RΣ. Furthermore

tXRX =t Y tPDP Y =t ZDZ =
n∑
i=1

n∑
j=1

ZiZjDi,j =
r∑

i=1

Z2
i ξi(RΣ),
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where Zi ∼ N (0,In) are independent Gaussian random variables. Finally, notice that
Z2
i are r χ2 random variables with one degree of freedom, which concludes the proof.

Bounds on Largest Eigenvalues

Here, we present several results useful for Proposition 3.9. These results are used for
bounding the eigenvalues that appear in the weighted sums of χ2 random variables in
the distributions of both the semi-variogram and the variance estimators.

Eigenvalues of the Product of Positive Semi-definite Hermitian Matrices. We first present
inequalities for the eigenvalues of the product of positive semi-definite Hermitian
matrices (the proof can be found in Wang and Zhang, 1992; Xi and Zhang, 2019).

Proposition .7. Let A and B two positive semi-definite n× n Hermitian matrices. Denote
ξn(A) ≤ · · · ≤ ξ1(A) and ξn(B) ≤ · · · ≤ ξ1(B) the eigenvalues of A and B respectively. Let
k > 1. Then, for 1 ≤ i1 < · · · < ik ≤ n,

k∑
t=1

ξit (A)ξn−t+1(B) ≤
k∑

t=1

ξit (AB) ≤
k∑

t=1

ξit (A)ξt(B). (2)

Bounds on the Largest Eigenvalue of Laplacian Matrices. We give a bound on the largest
eigenvalue ξ1(L) of the Laplacian matrix L of a graph in terms of the maximum degree
of its vertices.

Proposition .8. Let G = (V ,E) a graph with maximum degree dmax = max
v∈V

deg(v) and L

the Laplacian matrix of G. Then ξ1(L) ≤ 2dmax.

The proof essentially relies on the following propositions.

Proposition .9. (Spielman, 2012, Lemma 3.4.1) Let G = (V ,E) a graph with maximum
degree dmax = max

v∈V
deg(v). Let D the degree matrix of G (defined as the diagonal matrix

with entries Dii = deg(vi), ∀i ∈ {1, . . . , |V |}) and A the adjacency matrix of G (with entries
Aij = I{(vi ,vj ) ∈ E}, ∀i, j ∈ {1, . . . , |V |}). Then ξ1(D) = dmax and ξ1(A) ≤ dmax.

The next proposition is a well-known result, often called Weyl’s inequality (see e.g.
Horn and Johnson, 2012, Theorem 4.3.1, for a proof of the result).

Proposition .10. Let A and B be two Hermitian matrices. Then

ξ1(A−B) ≤ ξ1(A) + ξ1(B).

Combining these results with the definition of the Laplacian matrix as L = D − A,
where D is the degree matrix and A the adjacency matrix of a graph, we have the
wanted result in Proposition .8.

Bounds on the Largest Eigenvalue of the Covariance Matrix of a Stationary Random Field.
Now, we present a result on the bounded eigenvalues of the covariance matrix for a
stationary random field. This result derives from the application of Bochner’s The-
orem (Stein, 1999, Chapter 2), combined with the assumed bounds on the spectral
density.
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Lemma .11. Let (Xs)s∈R2 be a stationary (in the second-order sense) process with spectral
density Φ and covariance matrix Σ. Suppose that Assumption 3.8 is fulfilled. Thus, the
eigenvalues ξ(Σ) of the covariance matrix are bounded as follows:

∃c > 0, c′ > 0, cm ≤ ξ(Σ) ≤ c′M,

where m and M are given in Assumption 3.8.

Upper Bound on the Variances of the Semi-Variogram and Variance Estimators

We present a well-known result from Cressie (1993) for the variance of the semi-
variogram estimator.

Proposition .12. (Cressie, 1993, Section 2.4) Variances of the semi-variogram estimator
γ̂(h) for a fixed h are O(1/n).

Proof. Notice that, under the Gaussian and the intrinsic assumptions, we have V ar((Xs+h−
Xs)2) = 2(2γ(h))2. Then

V ar(γ̂(h)) =

 1
2nh

2 ∑
(si ,sj )∈N (h)

V ar((Xsi −Xsj )
2)

=

 1
2nh

2 ∑
(si ,sj )∈N (h)

2(2γ(h))2 =
2γ(h)2

nh
,

which gives the desired result.

Furthermore, it’s easy to see that the variance of the covariance estimator ĉ(h) for a
fixed h is O(1/n). This implies, thanks to the relationship between the semi-variogram
estimator and the covariance estimator in Equation (3.5) in Chapter 3, that the vari-
ance of ĉh(0) is also O(1/n). Thus, we obtain

∃c > 0, V ar
(
γ̂(h)

)
≤ c

n
(3)

and

∃c′ > 0, V ar
(̂
ch(0)

)
≤ c′

n
. (4)

Gamma Random Variables

To avoid any ambiguity, we give the definition of a Gamma random variable and a
proposition on the relationship between Gamma and χ2 random variables.

Definition .13. The density function of Z ∼ Γ (α,β) a Gamma random variable with shape
parameter α ∈R+ and rate parameter β ∈R+ is

fZ(z) =
βα

Γ (α)
zα−1e−zβ , ∀z > 0,

where Γ is the Gamma function. The mean of a Gamma random variable is: E[Z] = α
β .

Proposition .14. If Z ∼ χ2
k and c > 0 then cZ ∼ Γ

(
k
2 ,

1
2c

)
.
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Extension of Tail Bound Inequalities for the Semi-Variogram and Variance
Estimators

As a first preliminary result, we give an upper bound on the total number of distinct
observable distances h ∈ Hn on the regular grid of size n. The idea is the following.
Let nx be the number of columns/rows, such that n = nx × nx. Then, we have n2

x
possible combinations between all pairs of points location, at which we may withdraw
nx values (the locations that are on the diagonal of the grid). Since the process is
assumed to be isotropic, we may divide this value by 2. Finally, we add nx for the
diagonal and have the following result: |Hn| =

nx(nx+1)
2 . Then, we obtain the following

upper bound, since n = n2
x:

|Hn| ≤ n. (5)

Then, we present a corollary to Proposition 3.9, that extends the results on tail bound
inequalities for the semi-variogram estimator and the variance estimator.

Corollary .15. Suppose that Assumptions 3.1–3.8 are fulfilled. Let k > 0,

P

max
h∈Hn

∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ k

 ≤ 2ne−C
′
1nk

2
, whenever k ≤ C1

C′1
,

and

P

max
h∈Hn

∣∣∣̂ch(0)− c(0)
∣∣∣ ≥ k

 ≤ 2ne−C
′
2nk

2
, whenever k ≤ C2

C′2
,

where Ci and C′i , i ∈ {1, 2}, are positive constants depending on j1, m and M solely (given
in Proposition 3.9).

Proof. We give the proof for the semi-variogram estimator. The proof for the variance
estimator follows the same steps, replacing the constants C1 and C′1 by C2 and C′2.
Notice that

∀k > 0, P

max
h∈Hn

∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ k

 = P

 ⋃
h∈Hn

{∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ k

} .
Thanks to the Union Bound (or Boole’s Inequality) and then applying the result in
Proposition 3.9, we have

P

 ⋃
h∈Hn

{∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ k

} ≤ ∑
h∈Hn

P

(∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ k

)
≤

∑
h∈Hn

(
e−C1nk + e−C

′
1nk

2
)

≤ |Hn|2max
{
e−C1nk , e−C

′
1nk

2
}
.

Then, if we take k ≤ C1
C′1

, the maximum is obtained for e−C
′
1nk

2
and, combining this with

the result on the cardinality of Hn in (5), one gets

|Hn|2max
{
e−C1nk , e−C

′
1nk

2
}
≤ 2ne−C

′
1nk

2
,

which concludes the proof.
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A.2 Technical Proofs

Proof of Lemma 3.6

For any strictly positive h ∈ Hn, ∃(d,q) ∈ N
∗ ×N∗ s.t. h =

(√
d2 + q2

)
2−J . Since the

random field X is isotropic (Assumption 3.2), we have the following bound nh ≥ 4(nx−
d)(nx−q), where n = n2

x (nx represents the number of columns/rows of the square grid).
Then, let h′ = h2J =

√
d2 + q2 > 0. Since d ≤ h′ and q ≤ h′, we have nh ≥ 4(nx − h′)2 ≥

4(n2
x−2nxh′) = 4(n−2nxh′). Furthermore, under Assumption 3.3, we are only interested

in distances s.t. h <
√

2 − 2−j1 . This implies that, for n large enough (condition given
by n > (

√
2− 2−j1)2), we finally obtain:

∀h ∈ Hn, nh > νn, (6)

where ν is a positive constant depending on j1 only.

Proof of Proposition 3.7

The proof of Proposition 3.7 essentially relies on Lemma .6, simultaneously applied to
the estimators γ̂(h) and ĉh(0). Refer to Appendix A.1 for its presentation and proof. We
first study the semi-variogram estimator γ̂(h) and then the variance estimator ĉh(0).
The goal is to define a matrix L(n,h) such that

γ̂(h) =t X′(σn)
1
nh

L(n,h)X′(σn).

Notice that: ∀h > 0,

γ̂(h) =
1

2nh

n∑
i=1

n∑
j=1

(
X
′2
σi + X

′2
σj − 2X′σiX

′
σj

)
I{(σi ,σj ) ∈N (h)}

=
1
nh

n∑
i=1

X
′2
σinh(i)− 1

nh

n∑
i=1

n∑
j=1

X′σiX
′
σjI{(σi ,σj ) ∈N (h)}

=
1
nh

n∑
i=1

X
′2
σinh(i)− 1

nh

n∑
i=1

X
′2
σiI{(σi ,σi) ∈N (h)}

− 1
nh

n∑
i=1

n∑
j=1,j,i

X′σiX
′
σjI{(σi ,σj ) ∈N (h)}

=
1
nh


n∑
i=1

X
′2
σinh(i)−

n∑
i=1

n∑
j=1,j,i

X′σiX
′
σjI{(σi ,σj ) ∈N (h)}

 ,
where I{(σi ,σi) ∈ N (h)} = 0 (since h > 0). Then, let L(n,h) the matrix with entries
Li,j(n,h) = −I{(σi ,σj ) ∈N (h)} if i , j and Li,i(n,h) = nh(i).

Remark .16. For a fixed h ∈ Hn, define Gh = (Vh,Eh) the graph described by the regular
grid, where the set of vertices Vh is the set of the n observations’ locations and Eh is the set
of the nh edges that are defined by the pairs of locations that are at distance h. Then, L(n,h)
is the Laplacian matrix of Gh, equal to D(n,h)−A(n,h) where D(n,h) is the diagonal matrix
of the degrees of the vertices of the graph and A(n,h) is the adjacency matrix. Thanks to
the Gershgorin Circle Theorem (Shi, 2007), the Laplacian matrix is positive semi-definite,
which implies that all its eigenvalues are nonnegative.
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Thanks to the remark above and the isotropy assumption (Assumption 3.2), the matrix
L(n,h) is symmetric and positive semi-definite. Based on Cressie (1993), it is possible
to rewrite the matrix as L(n,h) = 1

2
t
Q(n,h)Q(n,h), where Q(n,h) ∈ R

nh×n is a matrix
whose entries are only −1,0 and 1. The idea is to let (ul)l≤nh the elements of N (h), such
that ∀l ∈ ⟦1,nh⟧, ∃(i, j) ∈ ⟦1,nh⟧2, ul = (u1

l ,u
2
l ) = (σi ,σj ), where ∥σi − σj∥ = ∥h∥. Thus,

u1
l = σi is equivalent to the fact that there exists j ∈ ⟦1,nh⟧ such that (σi ,σj ) ∈ N (h).

Furthermore, I{(σi ,σj ) ∈ N (h)} = 1 is equivalent to the fact that there exists l ∈ ⟦1,nh⟧
such that ul = (σi ,σj ). Then, let

∀l ∈ ⟦1,nh⟧, ∀i ∈ {1, . . . ,n}, qli = Q,i(n,h) =


1, if u1

l = σi and u2
l , σi

−1, if u2
l = σi and u1

l , σi
0, otherwise

Then, Rank(Q(n,h)) ≤ nh, which implies Rank(L(n,h)) ≤ nh. Hence, it is possible to
apply Lemma .6 to γ̂(h) with the matrix L(n,h) and the random field X with positive
definite covariance matrix Σn

γ̂(h) ∼ 1
nh

nh∑
i=1

ℓi(h)χ2
i ,

where the χ2
i ’s are independent χ2 random variables with one degree of freedom and

the ℓi(h)’s are the nh (strictly positive) eigenvalues of L(n,h)Σn.

For the variance estimator ĉh(0), the proof follows the same idea. Let D(n,h) the diag-
onal matrix with entries Di,i(n,h) = nh(i). We notice that D(n,h) is the degree matrix of
the graph Gh described by the regular grid for a fixed h ∈ Hn (see Remark .16). Then,
it’s clear that

ĉh(0) =t X(σn)
1
nh

D(n,h)X(σn),

and that the matrix D(n,h) is symmetric and positive semi-definite. Furthermore, one
may see that Rank(D(n,h)) ≤ nh. Indeed, the diagonal elements are nh(i), that is, for
a fixed location point σi , the number of points that are at distance h from σi . The
total sum of these nh(i) over all the grid locations σi is equal to nh. Thus, the extreme
case is when all the nh(i)’s are equal to 1, which implies that exactly nh elements on the
diagonal are non zero and in this case the rank of D(n,h) is equal to nh. It is possible to
apply Lemma .6 to ĉh(0) with the matrix D(n,h) and the random field X with positive
definite covariance matrix Σn

ĉh(0) ∼ 1
nh

nh∑
i=1

ρi(h)χ2
i ,

where the χ2
i ’s are independent χ2 random variables with one degree of freedom and

the ρi(h)’s are the nh (strictly positive) eigenvalues of D(n,h)Σn.

Proof of Proposition 3.9

Since we are interested only on which variables the constants in the final results de-
pend on, we let, in the proof and in the corresponding preliminary results, c and c′

as positive constants that are not always the same, but that depend on variables such
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as j1, m and M. The proofs of the Poisson tail bounds for the deviations for both the
semi-variogram and the variance estimators are structured as follows: firstly, thanks
to Proposition 3.7, the distributions of both estimators are known and these can be
seen as the sum of independent Gamma random variables; secondly, we deduce ex-
ponential inequalities for these tail bounds (from Bercu et al., 2015 and Wang and
Ma, 2020); then, using the previous preliminary results, we can bound the largest ei-
genvalues involved in the distributions of the estimators, and finally, using the lower
bound on nh given in Lemma 3.6, we conclude the proof.

In the first part of the proof, we deal with the semi-variogram estimator γ̂(h). Let

t > 0 and h ∈ Hn, P

(∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ t

)
= P

(
γ̂(h) ≥ γ(h) + t

)
+ P

(
γ̂(h) ≤ γ(h)− t

)
. Let

µ1 = E[γ̂(h)] = γ(h) (since γ̂(h) is unbiased). Recall that, thanks to Proposition 3.7:

γ̂(h) ∼ 1
nh

nh∑
i=1

ℓi(h)χ2
i . Since the eigenvalues ℓi(h), ∀i ∈ {1, . . . ,nh} of L(n,h)Σn are non neg-

atives, from the relationship between Gamma and χ2 random variables (see Proposi-

tion .14), 1
nh
ℓi(h)χ2

i ∼ Γ

(
1
2 ,

nh
2ℓi (h)

)
. This implies that γ̂(h) can be seen as the sum of nh

independent Gamma variables with parameters αi = 1
2 and βi(h) = nh

2ℓi (h) , ∀i ∈ {1, . . . ,n}.
Let β∗(h) = min

i≤nh

{
βi(h)

}
= nh

2ℓmax(h) , where ℓmax(h) = max
i≤nh

ℓi(h). We first study the term

P

(
γ̂(h) ≤ µ1 − t

)
. Using the result from Bercu et al. (2015) (see Theorem 2.24 in sub-

section 2.2.4, Chapter 2), with x = t
µ1
∈]0,1[, since µ1 − t ≥ 0, as Gamma variables are

positive random variables:

P

(
γ̂(h) ≤ µ1 − t

)
≤ exp

− t2

2V 2
1

 ,
where V 2

1 = V ar(γ̂(h)) is the variance of the semi-variogram estimator. Furthermore,
from the upper bound on the variance of the semi-variogram estimator given above
(see Equation (3)), we have

∀t > 0, P

(
γ̂(h) ≤ γ(h)− t

)
≤ exp

(
−C′1nt

2
)
, (7)

where C′1 is a positive constant depending on j1 only.

Now, we study the term P

(
γ̂(h) ≥ µ1 + t

)
. Thanks to a slight modification of the result

in Wang and Ma (2020) (see Corollary 2.26 in subsection 2.2.4, Chapter 2, for more

details) for k independent variables Zi ∼ Γ (ui ,vi), let µZ =
k∑

i=1
E[Zi] and v∗ = minvi

∀z ≥ 1, P

1
k

k∑
i=1

(
Zi −E[Zi]

)
≥ zµZ

 ≤ exp
(
−v∗µZ (kz − log(1 + kz))

)
.

Thus,

P

(
γ̂(h) ≥ µ1 + t

)
≤ exp

−β∗(h)µ1

 t
µ1
− log

1 +
t
µ1



 .

We need an upper bound on the largest eigenvalue of the matrix L(n,h)Σn. First, we
use the result presented in Proposition .7, which is derived from some previous works
on inequalities for the eigenvalues of the product of positive semi-definite Hermitian
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matrices (see e.g. Wang and Zhang, 1992; Xi and Zhang, 2019). This result allows us
to split the study of the upper bound in two: on one hand the largest eigenvalue of the
matrix L(n,h), on the other hand the largest eigenvalue of the covariance matrix Σn.
Using Proposition .7

ξ1(L(n,h))ξn(Σn) ≤ ℓmax(h) ≤ ξ1(L(n,h))ξ1(Σn).

As defined, L(n,h) is the Laplacian matrix of the graph described by the regular grid,
for a fixed h ∈ Hn (see Remark .16). Thus, we refer to Proposition .8 above for the result
on the bound of the largest eigenvalue of a Laplacian matrix. Furthermore, since the
number n of observations is finite and for h ∈ Hn the number nh of pairs at distance h
in the regular grid is also finite, the maximum degree dmax of the corresponding graph
Gh is also always finite and we have

∃c > 0, ξ1(L(n,h)) ≤ c. (8)

Now, we deal with the largest eigenvalue of the covariance matrix. Lemma .11, under
Assumption 3.8, gives the following bound:

∃c′ > 0, ξ1(Σn) ≤ c′M (9)

Thus, let c1 a positive constant, such that we have the upper bound on the largest
eigenvalue

ℓmax(h) ≤ c1M. (10)

This implies the bound on the minimum value of the parameters βi(h)

∃C > 0, β∗(h) ≥ Cnh,

where C depends on M. Combining this result with the lower bound on nh in Lemma
3.6, we have

∀t > 0, P

(
γ̂(h) ≥ γ(h) + t

)
≤ exp

(
−C1nt

)
, (11)

where C1 is a positive constant depending on j1 and M only, which concludes the
proof for the semi-variogram estimator tail bounds.

In the second part of the proof, we study the variance estimator ĉh(0), with similar
steps as for the previous result on the semi-variogram estimator. Let t > 0 and h ∈ Hn,

P

(∣∣∣̂ch(0)− c(0)
∣∣∣ ≥ t

)
= P

(̂
ch(0) ≥ c(0) + t

)
+ P

(̂
ch(0) ≤ c(0)− t

)
. Let µ2 = E[̂ch(0)] = c(0)

(since ĉh(0) is unbiased). Recall that, thanks to Proposition 3.7: ĉh(0) ∼ 1
nh

nh∑
i=1

ρi(h)χ2
i .

Since the eigenvalues ρi(h), ∀i ∈ {1, . . . ,nh} of D(n,h)Σn are non negatives, from the

relationship between Gamma and χ2 random variables, 1
nh
ρi(h)χ2

i ∼ Γ

(
1
2 ,

nh
2ρi (h)

)
. This

implies that ĉh(0) can be seen as the sum of nh independent Gamma random variables
with parameters ai = 1

2 and bi(h) = nh
2ρi (h) , ∀i ∈ {1, . . . ,n}. Let b∗(h) = min

i≤nh

{
bi(h)

}
= nh

2ρmax(h) ,

where ρmax(h) = max
i≤nh

ρi(h). We first study the term P

(̂
ch(0) ≤ µ2 − t

)
. Using the result

from Bercu et al. (2015) in Theorem 2.24, Chapter 2, with x = t
µ2
∈]0,1[:

P

(̂
ch(0) ≤ µ2 − t

)
≤ exp

− t2

2V 2
2

 ,
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where V 2
2 = V ar (̂ch(0)). From the result given above (see Equation (4)), we have

∀t > 0, P

(̂
ch(0) ≤ c(0)− t

)
≤ exp

(
−C′2nt

2
)
, (12)

where C′2 is a positive constant depending on j1 only.

Now, we study the term P

(̂
ch(0) ≥ µ2 + t

)
. Combining the bound for the product of

matrices given in Proposition .7, the bound on the largest eigenvalue of the matrix of
the degrees of a graph (see Proposition .9) and the bound on the largest eigenvalue of
a covariance matrix in Equation (9), we have an upper bound on the largest eigenvalue
of the matrix D(n,h)Σn:

ρmax(h) ≤ c2M. (13)

Thus, using the same argumentation as for the semi-variogram estimator

∀t > 0, P

(̂
ch(0) ≥ c(0) + t

)
≤ exp

(
−C2nt

)
, (14)

where C2 is a positive constant depending on j1 and M only, which concludes the
proof.

Proof of Corollary 3.11

For the proof, we shall use both preliminary results in Appendix A.1: an upper bound
on the total number of distinct observable distances and Corollary .15, which proof,
that simply follows from Proposition 3.9, is given in Appendix A.1. In a first place,
we study

∣∣∣̂c(h)− c(h)
∣∣∣ for all h ≥ 0. Thanks to the definition of the covariance function

estimation at unobserved lags by mean of the 1-NN estimator (see Section 3.2), for
any distance h, let ho ∈ Hn the observable distance that is the 1-NN of h and such that:
ĉ(h) = ĉ(ho). Then,∣∣∣̂c(h)− c(h)

∣∣∣ =
∣∣∣̂c(h)− c(h) + c(ho)− c(ho)

∣∣∣ ≤ ∣∣∣̂c(ho)− c(ho)
∣∣∣+

∣∣∣c(ho)− c(h)
∣∣∣

Applying the mean value (or finite increment) inequality, combined with Assumption
3.10, we have

∣∣∣c(ho)− c(h)
∣∣∣ ≤Q||h− ho|| ≤

Q
√
n− 1

,

since ∀h ≥ 0, ||h−ho|| ≤ 1/(
√
n−1) (see Section 3.2). From the relationship between the

covariance and the semi-variogram functions and the relationship for their estimators
in (3.5), we have ∣∣∣̂c(ho)− c(ho)

∣∣∣ ≤ ∣∣∣∣̂cho(0)− c(0)
∣∣∣∣+

∣∣∣γ̂(ho)−γ(ho)
∣∣∣ .

Then, we have:

sup
h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ ≤max

h∈Hn

∣∣∣̂ch(0)− c(0)
∣∣∣+ max

h∈Hn

∣∣∣γ̂(h)−γ(h)
∣∣∣+

Q
√
n− 1

.
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This yields: ∀t > 0,

P

sup
h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ ≥ t


≤ P

max
h∈Hn

∣∣∣̂ch(0)− c(0)
∣∣∣+ max

h∈Hn

∣∣∣γ̂(h)−γ(h)
∣∣∣+Q/(

√
n− 1) ≥ t


≤ P

max
h∈Hn

∣∣∣̂ch(0)− c(0)
∣∣∣ ≥ 1

2

(
t −Q/(

√
n− 1)

)
+P

max
h∈Hn

∣∣∣γ̂(h)−γ(h)
∣∣∣ ≥ 1

2

(
t −Q/(

√
n− 1)

) .
Then, we can apply the result in Corollary .15 for both estimators with k =

(
t −Q/(

√
n− 1)

)
/2

and we obtain

∀t > 0, P

sup
h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ ≥ t

 ≤ 2ne−C
′
2nk

2
+ 2ne−C

′
1nk

2
,

as soon as k ≤min
{
C1/C

′
1, C2/C

′
2

}
= C′min. Furthermore, we have

2ne−C
′
2nk

2
+ 2ne−C

′
1nk

2
≤ 4nmax

{
e−C

′
2nk

2
, e−C

′
1nk

2
}

= 4ne−Cminnk
2
,

where Cmin = min{C′1,C
′
2}. Finally, let δ ∈ (0,1), such that δ = 4ne−Cminnk

2
with k =

1
2

(
t −Q/(

√
n− 1)

)
. Thus, by a simple calculation, this implies that there exists a posit-

ive constant C3 = 2/
√
Cmin depending on j1, m and M solely such that t = C3

√
log

(
4n/δ

)
/n+

Q/(
√
n− 1). Furthermore, going back to the condition on the variable k, by a straight-

forward computation, we have

k =
1
2

t − Q
√
n− 1

 ≤ C′min⇐⇒ n ≥ C′3 log
(

4n
δ

)
,

where C′3 is a positive constant depending on j1, m and M solely. Thus,

P

sup
h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ ≤ C3

√
log

(
4n/δ

)
/n+Q/(

√
n− 1)

 ≥ 1− δ,

as soon as n ≥ C′3 log
(

4n
δ

)
.
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B Appendices for Chapter 4

In this Appendix are gathered all the technical proofs of the results stated in Chapter
4.

B.1 Auxiliary Result for the Proof of Proposition 4.7

We present an auxiliary result from Wedin, 1973, Theorem 4.1 (see also Staerman
et al., 2021, Lemma 5) used in the proof of Proposition 4.7.

Theorem .17. Let A and B be two invertible matrices of size d × d. Then it holds:

|||A−1 −B−1||| ≤ |||A−1||| |||B−1||| |||A−B|||. (15)

B.2 Proof of Proposition 4.7

Proof of Assertion (i)

First, recall that the max norm and the operator norm are equivalent (since any norms
in a given finite-dimensional vector space are equivalent and that the space of the
squared matrices of size d is a finite-dimensional vector space):

|||Σ̂(sd)−Σ(sd)||| ≤ d ||Σ̂(sd)−Σ(sd)||∞, (16)

where ||A||∞ = max
i,j∈{1,··· ,d}

|Aij | is the max norm for any squared matrix A of size d. By the

definition of the estimated and the true covariance matrices, notice that

||Σ̂(sd)−Σ(sd)||∞ = max
i,j∈{1,··· ,d}

∣∣∣∣̂c(||si − sj ||)− c(||si − sj ||)∣∣∣∣
≤ sup

h≥0

∣∣∣̂c(h)− c(h)
∣∣∣ .

Then, applying the non-asymptotic bound in Corollary 3.11, we have the wanted res-
ult.

Proof of Assertion (ii)

Thanks to the result in the previous assertion, where the operator norm of the differ-
ence Σ̂(sd)−Σ(sd) is bounded with high probability, we can deduce that the eigenval-
ues of Σ̂(sd) have near values to the eigenvalues of Σ(sd). Recall that the eigenvalues of
Σ(sd) are assumed to be bounded by m and M, two positive constants (see Assumption
4.6). Thus, with high probability, the spectrum of Σ̂(sd) is also bounded by m > 0 and
M > 0. Finally, we can deduce that Σ̂(sd) is invertible with high probability. The first
step of the proof is to apply the result from Theorem .17. Indeed

|||Σ̂(sd)−1 −Σ(sd)−1||| ≤ |||Σ(sd)−1||| |||Σ̂(sd)−1||| |||Σ̂(sd)−Σ(sd)|||. (17)

First notice that under Assumption 3.5, Σ(sd) is always positive definite and invertible,
so all its eigenvalues are strictly positive. Furthermore, we know that the operator
norm of a symmetric positive definite matrix is equal to the largest eigenvalue of the

matrix: |||Σ(sd)−1||| = max
i∈{1,··· ,d}

ξi
(
Σ(sd)−1

)
= ξd

(
Σ(sd)

)−1
. Finally, one has:

|||Σ(sd)−1||| ≤m−1, (18)
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where m > 0 is the lower bound of the spectrum of Σ(sd). As a consequence of As-
sertion (i), the eigenvalues of Σ̂(sd) are also bounded and bounded away from 0, with
high probability. Using the same argumentation as above, one has, with high probab-
ility:

∀δ ∈ (0,1), P
(
|||Σ̂(sd)−1||| ≤m−1

)
≥ 1− δ. (19)

Thus, going back to the inequality (17)

∀δ ∈ (0,1), P
(
|||Σ̂(sd)−1 −Σ(sd)−1||| ≤ (m−1)2 |||Σ̂(sd)−Σ(sd)|||

)
≥ 1− δ.

Combining all the previous results and the accuracy |||Σ̂(sd) − Σ(sd)||| of the covari-
ance matrix estimator (described in a non-asymptotic fashion by the bound given in
Assertion (i)), one can deduce the result in Assertion (ii).

B.3 Proof of Theorem 4.8

Proof of Assertion (i)

First, notice that

||Λ̂d(s)−Λ∗d(s)|| = ||Σ̂(sd)−1̂cd(s)−Σ(sd)−1cd(s)||

= ||Σ(sd)−1
(̂
cd(s)− cd(s)

)
+
(
Σ̂(sd)−1 −Σ(sd)−1

)
ĉd(s)||

≤ |||Σ(sd)−1||| ||̂cd(s)− cd(s)||+ |||Σ̂(sd)−1 −Σ(sd)−1||| ||̂cd(s)||,

and taking the supremum over the domain S

sup
s∈S
||Λ̂d(s)−Λ∗d(s)|| ≤ |||Σ(sd)−1||| sup

s∈S
||̂cd(s)− cd(s)||

+ |||Σ̂(sd)−1 −Σ(sd)−1||| sup
s∈S
||̂cd(s)||,

Firstly, for the accuracy of the covariance vector estimator, since the max norm and
the Euclidean norm are equivalent, one has

sup
s∈S
||̂cd(s)− cd(s)|| ≤

√
d sup

s∈S
||̂cd(s)− cd(s)||∞

=
√
d sup

s∈S
max

i∈{1,··· ,d}
|̂c(||s − si ||)− c(||s − si ||)| ≤

√
d sup

h≥0
|̂c(h)− c(h)|,

which allows using Corollary 3.11 to control in a non-asymptotic fashion the su-
premum over all positive lags of the error estimation of the covariance function. Thus,
one obtains the following bound for any δ ∈ (0,1), with probability at least 1− δ

sup
s∈S
||̂cd(s)− cd(s)|| ≤ C3

√
d
√

log(4n/δ)/n+
√
dQ/(

√
n− 1), (20)

as soon as n ≥ C′3 log(4n/δ). As above, from the link between the max norm and the
Euclidean norm, one has

sup
s∈S
||̂cd(s)|| ≤

√
d sup

s∈S
||̂cd(s)||∞ ≤

√
d sup

h≥0
|̂c(h)|.
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Furthermore, as a consequence of the result in Corollary 3.11, we can deduce that ĉ(h)
is close to c(h) for any lag h ≥ 0, with high probability. Thus, under Assumption 3.10,
one has the bound

∀δ ∈ (0,1), P

sup
s∈S
||̂cd(s)|| ≤

√
dB

 ≥ 1− δ. (21)

Lastly, notice that the last two terms have been studied in previous proofs: |||Σ(sd)−1|||
is upper bounded by m−1 (see Equation (18) in the proof of Proposition 4.7 Assertion
(ii)) ; and |||Σ̂(sd)−1 −Σ(sd)−1||| is bounded in a non-asymptotic fashion in Proposition
4.7 Assertion (ii). Thus, combining all the previous results, one can deduce the wanted
non-asymptotic bound.

Proof of Assertion (ii)

As announced in subsection 4.3.2, with probability one, the excess of integrated quad-
ratic risk can be written as follows:

LS (f
Λ̂d

)−L∗S =∫
s∈S

(
tΛ̂d(s)Σ(sd)Λ̂d(s)−t Λ∗d(s)Σ(sd)Λ∗d(s)− 2 tcd(s)

(
Λ̂d(s)−Λ∗d(s)

))
ds

=
∫
s∈S

t
(
Λ̂d(s)−Λ∗d(s)

)
Σ(sd)Λ̂d(s) +t Λ∗d(s)Σ(sd)

(
Λ̂d(s)−Λ∗d(s)

)
+ 2 tcd(s)

(
Λ∗d(s)− Λ̂d(s)

)
ds

Notice that
t
(
Λ̂d(s)−Λ∗d(s)

)
Σ(sd)Λ̂d(s) = ⟨Λ̂d(s)−Λ∗d(s),Σ(sd)Λ̂d(s)⟩

≤ ||Λ̂d(s)−Λ∗d(s)|| ||Σ(sd)Λ̂d(s)||

≤ ||Λ̂d(s)−Λ∗d(s)|| |||Σ(sd)||| |||Σ̂(sd)−1||| ||̂cd(s)||.

Following the same idea, we have

tΛ∗d(s)Σ(sd)
(
Λ̂d(s)−Λ∗d(s)

)
≤ |||Σ(sd)−1||| ||cd(s)|| |||Σ(sd)||| ||Λ̂d(s)−Λ∗d(s)||,

and
tcd(s)

(
Λ∗d(s)− Λ̂d(s)

)
≤ ||cd(s)|| ||Λ∗d(s)− Λ̂d(s)||.

Thus, taking the supremum over the domain S , the term under study has now become

sup
s∈S
||Λ̂d(s)−Λ∗d(s)|| |||Σ(sd)||| |||Σ̂(sd)−1||| sup

s∈S
||̂cd(s)||

+ sup
s∈S
||Λ̂d(s)−Λ∗d(s)|| |||Σ(sd)||| |||Σ(sd)−1||| sup

s∈S
||cd(s)||

+ 2sup
s∈S
||Λ̂d(s)−Λ∗d(s)|| sup

s∈S
||cd(s)||.
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Notice that some of the terms have already been studied in previous results and their
proofs: a non-asymptotic bound for sup

s∈S
||Λ̂d(s) −Λ∗d(s)|| is given by Theorem 4.8 As-

sertion (i) ; the operator norm of the precision matrix estimator is upper bounded by
m−1, with high probability, in Equation (19) (see the proof of Proposition 4.7 Assertion
(ii)) ; the supremum over all domain S of the Euclidean norm of the covariance vector
estimator is upper bounded with high probability by

√
dB (see Equation (21), in the

proof of Assertion (i)) ; and |||Σ(sd)−1||| is upper bounded by m−1 (see Equation (18)
in the proof of Proposition 4.7 Assertion (ii)). Furthermore, from Assumption 4.6,
|||Σ(sd)||| ≤M. Finally, for the last term defined as the supremum over the domain S
of the Euclidean norm of the covariance vector, using the link between the max norm
and the Euclidean norm, and Assumption 3.10

sup
s∈S
||cd(s)|| ≤

√
d sup

s∈S
||cd(s)||∞ ≤

√
d sup

h≥0
|c(h)| ≤

√
dB.

Since the domain S is bounded, combining all these results allows us to conclude.
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C Appendices for Chapter 6

C.1 Proof of Proposition 6.2

Denote by δix,n,δ
i
y,n,δ

i
t,n the spread between the original events and the n-th projected

event of the i-th process, i.e. x̃in = xin + δix,n, ỹin = yin + δiy,n, t̃in = tin + δit,n with δix,n ∈
[−∆X /2,∆X /2],δiy,n ∈ [−∆Y /2,∆Y /2] and δit,n ∈ [−∆T /2,∆T /2]. Recall that for any v =

(vx,vy ,vt) ∈
�
0 ,GX

�
×

�
0 ,GY

�
×

�
0 ,GT

�
, we have

λi(vx∆X ,vy∆Y ,vt∆T ) = µi +
p∑

j=1

∑
u
j
m∈H

j
T

gij(vx∆X − x
j
m,vy∆Y − y

j
m,vt∆T − t

j
m).

By defining ∆ = (∆X ,∆Y ,∆T ), δin = (δix,n,δ
i
y,n,δ

i
t,n), ∀ i ∈ ⟦1,D⟧ and ∀ 1 ≤ n ≤ N i

T , the
vector of the intensity function on the grid is given by

λ̃i[v] = µi +
D∑
j=1

∑
ũ
j
m∈H̃

j
v∆

gij(v∆− ũ
j
m)

= µi +
D∑
j=1

∑
u
j
m∈H

j
v∆

gij(v∆−u
j
m − δ

j
m) (22)

where 22 holds because ∆X < min
xin,x

j
m∈HT

|xin−x
j
m|, ∆Y < min

yin,y
j
m∈HT

|yin−y
j
m|, and ∆T < min

tin,t
j
m∈HT

|tin−

t
j
m|, which ensures that no event collapses on the same bin of the grid and that |H̃j

v∆| =
|Hj

v∆|, where |·| denotes the cardinal of a set. Note that this hypothesis also implies that
the intensity function is smooth for all points on the grid G. Applying the first-order
Taylor expansion to the kernels gij in v∆−uj

m and bounding the perturbation δ
j
m by ∆

yields the first result of the proposition.

For the perturbation of the discrete loss, we have

LG(θ,H̃T ) =
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

(
λ̃i[v]

)2
− 2

∑
ũi
n∈H̃i

T

λ̃i

 ũi
n

∆




= L(θ,HT ) +
D∑
i=1

∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

λ̃i[v]2 −
∫ T

0

∫
S
λi(x,y, t)

2dxdydt

︸                                                                   ︷︷                                                                   ︸
(∗)

− 2
∑

ui
n∈Hi

T

λ̃i

 ũi
n

∆

−λi

(
ui
n

)
︸                       ︷︷                       ︸

(∗∗)


,
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where ũi
n
∆

is the division term by term of these three-dimensional vectors. The first
term (∗) is the error of a Riemann approximation of the integral. We can use the
generalization of the Koksma-Hlawka inequality (Brandolini et al., 2013) for piece-
wise smooth functions on compact set of Rd :∣∣∣∣∣∣∣∣∆X∆Y∆T

GX∑
vx=0

GY∑
vy=0

GT∑
vt=0

λ̃i[v]2 −
∫ T

0

∫
S
λi(x,y, t)

2dxdydt

∣∣∣∣∣∣∣∣ ≤ C(λi)∥∆∥, (23)

where ∥∆∥ comes from the maximal distance on the uniform spatio-temporal grid and
C(λi) is a constant that depends on the regularity of λi , see Theorem 1 in Brandolini
et al. (2013).

For the second term (∗∗), we re-use the expression from (22) but use a Taylor expansion
in ui

n −u
j
m. The perturbation becomes δjm − δin,∑

ui
n∈Hi

T

λ̃i

 ũi
n

∆

−λi

(
ui
n

) =
D∑
j=1

∑
ui
n∈Hi

T

u
j
m∈H

j
T

(
δin − δ

j
m

)
∇ugij

(
ui
n −u

j
m

)
+O

(
∥∆∥2

)
. (24)

Summing (23) and (24) concludes the proof.

C.2 Proof of Proposition 6.3

We consider the two estimators θ̂∆ = argminθ LG(θ,H̃T ) and θ̂c = argminθ L(θ,HT ).
With the loss approximation from Proposition 6.2, we have a point-wise convergence
ofLG(θ,H̃T ) towardsL(θ,HT ) for all θ ∈Θ as ∥∆∥ goes to 0. By continuity ofLG(θ,H̃T ),
we have that the limit of θ̂∆ when ∥∆∥ goes to 0 exists and is equal to θ̂c. This proves
that the discretized estimator converges to the continuous one as ∥∆∥ decreases.

The Karush-Kuhn-Tucker conditions imply that:

∇θLG
(
θ̂∆,H̃T

)
= 0 and ∇θL

(
θ̂c,HT

)
= 0. (25)

Using the approximation from (23) and (24), one gets in the limit of small ∥∆∥:

∇θLG(θ̂∆,H̃T ) ≥∇θL(θ̂∆,HT )− ∥∆∥
∑
i

∇θC(λi)

+ 2
∑
i,j

∑
ui
n∈Hi

T

u
j
m∈H

j
T

(
δ
j
m − δin

)
.∇θ∇ugij

(
ui
n −u

j
m

)
+O

(
∥∆∥2

)
.

Combining this with Equation (25), we get:

∇θL(θ̂∆,HT ) ≤∥∆∥
∑
i

∇θC(λi)

+ 2
∑
i,j

∑
ui
n∈Hi

T

u
j
m∈H

j
T

(
δin − δ

j
m

)
.∇θ∇ugij

(
ui
n −u

j
m

)
+O

(
∥∆∥2

)
.
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Thus, we have

∥∥∥∥∥∥∇θL(θ̂∆,HT )−∇θL
(
θ̂c,HT

)∥∥∥∥∥∥ ≤
∣∣∣∣∣∣
∣∣∣∣∣∣2∑

i,j

∑
ui
n∈Hi

T

u
j
m∈H

j
T

(
δin − δ

j
m

)
.∇θ∇ugij

(
ui
n −u

j
m

)

+ ∥∆∥
∑
i

∇θC(λi)

∣∣∣∣∣∣
∣∣∣∣∣∣+O

(
∥∆∥2

)
≤max{∥∆∥,∥∆∥∞} ω(θ̂∆),

where ω(θ) =

∣∣∣∣∣∣
∣∣∣∣∣∣2∑

i,j
∑

ui
n∈Hi

T

u
j
m∈H

j
T

⟨1,∇θ∇ugij
(
ui
n −u

j
m

)
⟩+

∑
i∇θC(λi)

∣∣∣∣∣∣
∣∣∣∣∣∣ with 1 a three-dimensional

vector of one. This function is a O(1). Using the hypothesis that the hessian∇2
θL(θ̂c,HT )

exists and is positive definite with smallest eigenvalue ε, we have:

ε
∥∥∥∥θ̂∆ − θ̂c

∥∥∥∥2
≤

∥∥∥∥∥∥∇θL(
θ̂∆,HT

)
−∇θL

(
θ̂c,HT

)∥∥∥∥∥∥2

i.e. ε
∥∥∥∥θ̂∆ − θ̂c

∥∥∥∥2
≤ max{∥∆∥,∥∆∥∞}

ε
ω

(
θ̂∆

)
.

This concludes the proof.
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Titre : Apprentissage Statistique pour les données Spatiales: théorie et algorithmes

Mots clés : apprentissage statistique, données spatiales, structure de dépendance, krigeage, fonction de covariance

Résumé : À l’époque des grandes données, l’accès à des
ensembles de données massives, présentant une structure de
dépendance spatiale possiblement complexe, augmente de plus en
plus. Dans cette thèse, notre objectif est de surmonter les enjeux
liés à la structure de dépendance des données spatiales (et spatio-
temporelles).
En un premier temps, nous analysons le Krigeage simple, problème
clé en Géostatistique, en adoptant le point de vue de l’appren-
tissage statistique, i.e. en effectuant une analyse prédictive non
paramétrique à partir d’un échantillon fini. Dans ce contexte, la
théorie probabiliste standard de l’apprentissage statistique ne s’ap-
plique pas directement. De nouvelles garanties sur la capacité de
généralisation du prédicteur par Krigeage doivent être établies.
Étant donné une réalisation d’un champ aléatoire de covariance
inconnue, observé en un nombre fini de sites du domaine spatial,
l’objectif est de prédire les valeurs inconnues du champ aléatoire
à n’importe quel point du domaine, tout en minimisant le risque
quadratique. En raison du caractère non indépendant et non iden-
tiquement distribué des données d’apprentissage, déterminer la
capacité de généralisation des minimiseurs de risque empiriques
est un défi complexe. Dans la première partie de cette thèse,
nous présentons des bornes non asymptotiques pour l’excès de
risque d’une règle prédictive plug-in imitant le vrai minimiseur. Ces
bornes sont établies pour des processus gaussiens stationnaires
avec une fonction de covariance isotrope, observés lors de la phase
d’apprentissage à des emplacements formant une grille régulière.
Nos résultats théoriques, ainsi que le rôle joué par les conditions
techniques requises pour les définir, sont illustrés par diverses
expériences numériques, sur des données simulées ainsi que sur

des données réelles, et ouvrent, nous l’espérons, la voie à de nou-
veaux développements dans l’apprentissage statistique basé sur
des données spatiales.
En un second temps, nous nous concentrons sur les processus
de Hawkes spatio-temporels. De nombreux ensembles de données
spatio-temporelles, en sociologie, épidémiologie ou sismologie,
par exemple, présentent des caractéristiques d’auto-excitation: les
événements ont tendance à se regrouper ou à déclencher une série
d’événements successifs, ou encore les deux à la fois. Dans ce
contexte, les processus de Hawkes spatio-temporels se révèlent
être un outil puissant grâce à leur capacité à capturer ces compor-
tements avec précision. Cependant, traiter efficacement le grand
volume de données actuellement disponible s’avère difficile. La
deuxième partie de cette thèse vise à développer une technique
d’inférence paramétrique rapide et flexible pour obtenir les pa-
ramètres des fonctions noyaux impliquées dans la fonction d’inten-
sité d’un processus de Hawkes spatio-temporel. Notre approche
statistique combine trois ingrédients clés : (1) nous considérons
des fonctions noyaux à support, (2) le domaine spatio-temporel est
discrétisé de manière appropriée, et (3) des calculs préalables (ap-
proximatifs) sont utilisés. La technique d’inférence que nous pro-
posons consiste en un solveur rapide et statistiquement précis.
En complément de la description des aspects algorithmiques, des
expériences numériques ont été menées sur des données spatio-
temporelles, tant synthétiques que réelles, apportant des preuves
empiriques solides de la pertinence de la méthodologie proposée.

Title : Statistical Learning for Spatial data: theory and algorithms

Keywords : statistical learning, spatial data, dependence structure, kriging, covariance function

Abstract : In the Big Data era, massive datasets exhibiting
a possibly complex spatial dependence structure are becoming
increasingly available. In this thesis, we aim at developing ap-
proaches to efficiently exploit the dependence structure of spatial
(and spatio-temporal) data.
We first analyze the simple Kriging task, the flagship problem in
Geostatistics, from a statistical learning perspective, i.e. by car-
rying out a non-parametric finite-sample predictive analysis. In this
context, the standard probabilistic theory of statistical learning does
not apply directly and theoretical guarantees of the generalization
capacity of the Kriging predictive rule learned from spatial data are
left to be established. Given a finite number of values taken by a
realization of a square integrable random field, with unknown cova-
riance structure, the goal is to predict the unknown values that the
random field takes at any other location in the spatial domain with
minimum quadratic risk. Establishing the generalization capacity of
empirical risk minimizer is far from straightforward, due to the non
independent and identically distributed nature of the training data
involved in the learning procedure. In the first part of this thesis,
non-asymptotic bounds are proved for the excess risk of a plug-in
predictive rule mimicking the true minimizer in the case of isotropic
stationary Gaussian processes, observed at locations forming a re-
gular grid in the learning stage. These theoretical results, as well
as the role played by the technical conditions required to establish
them, are illustrated by various numerical experiments, on simula-

ted data and on real-world datasets, and may hopefully pave the
way for further developments in statistical learning based on spatial
data.
In the second part of this thesis, we focus on space-time Hawkes
processes. Many modern spatio-temporal data sets, in sociology,
epidemiology or seismology, for example, exhibit self-exciting cha-
racteristics, with simultaneous triggering and clustering behaviors,
that a suitable spatio-temporal Hawkes process can accurately cap-
ture. However, dealing efficiently with the high volumes of data now
available is challenging. We aim at developing a fast and flexible pa-
rametric inference technique to recover the parameters of the ker-
nel functions involved in the intensity function of a spatio-temporal
Hawkes process based on such data. Our statistical approach com-
bines three key ingredients: (1) kernels with finite support are consi-
dered, (2) the space-time domain is appropriately discretized, and
(3) (approximate) precomputations are used. The inference tech-
nique we propose consists of a fast and statistically accurate solver.
In addition to describing the algorithmic aspects, numerical experi-
ments have been carried out on synthetic and real spatio-temporal
data, providing solid empirical evidence of the relevance of the pro-
posed methodology.
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