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Introduction

Bacteria are among the most diverse and widespread life forms on Earth, inhabiting
environmental niches that range from the ocean depths to the human body [1]. Their
motility, or ability to move, is crucial for survival, enabling them to navigate complex
surroundings, locate nutrients, and avoid threats [2]. Understanding bacterial motility is
essential in fields such as microbial ecology, where it influences population dynamics in
diverse environments [3]; medicine, as it plays a role in the spread of infections [4]; or bio-
inspired technologies, enabling the design of microrobots for targeted drug delivery [5].
Over the past fifty years, experimental and theoretical approaches have significantly ad-
vanced knowledge of bacterial motility [6]. Nevertheless, challenges remain, primarily due
to the diversity of bacterial species, the variety of environments they inhabit, and the
complexity of their behaviors.

A major research focus has been predicting transport properties, such as bacterial dis-
persal. Stochastic models of active matter, including run-and-tumble particles and active
Brownian particles, have played a key role in this context, finding broad applications for
both biological and artificial microswimmers [7,8]. Bacterial dispersal in natural environ-
ments, such as soil, sediments, and porous rocks, presents additional challenges [9, 10].
These environments can involve diverse forms of confinement, which result in complex dy-
namics, such as trapping, hopping, or sliding [11–13]. While stochastic models have been
increasingly applied to these systems [14–19], a unified framework capable of addressing
the wide variety of environmental and motion parameters is still lacking. Moreover, an
interest topic in the study of confined motion is the question of optimality: “What is the
best strategy for maximizing exploration within a specific confined environment?”. Ad-
dressing this question is important for understanding biological swimming strategies and
designing artificial systems that require efficient navigation. Although promising trends
have been identified [20–22], many questions remain.

Another aspect of bacterial motility involves driven or guided motion, where exter-
nal fields influence movement of the microorganism, with applications in areas such as
targeted drug delivery and environmental sensing [23]. In this context, magnetotactic
bacteria—microorganisms that change their direction of motion in response to magnetic
fields [24]—are an ideal biological system to study this type of guided motility. Several
potential applications are being explored in relation to this family of bacteria, particularly
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Introduction

in medical fields involving cancer treatment [25]. However, research on their motility is
still limited to a few species [26], and understanding how they move under various con-
ditions, especially near solid interfaces or in confined environments, is a new research
direction that has recently attracted attention [27].

Scope of the Thesis The work presented in the thesis includes theoretical, numerical,
and experimental approaches. First, it combines simulations and theory to investigate
the transport properties of confined bacterial motion, with the primary objective of de-
veloping predictive models for dispersal that can account for a broad range of motion
and environmental parameters. The study also addresses optimality, to determine which
motion strategies can maximise dispersal. On the experimental side instead, the work
addresses the limited knowledge across different species of Magnetotactic Bacteria, by
investigating the motility of a novel strain with promising potential for further studies.

Structure of the Thesis The thesis is organized into four main chapters:

• The first chapter, Background and State of the Art, summarizes foundational studies
on bacterial motility, introducing key concepts from literature and identifying gaps
that will be addressed in the following chapters.

• The second chapter, Optimal Run-and-Tumble in Slit-like Confinement, presents
theoretical and simulation-based studies of run-and-tumble particles moving be-
tween two parallel walls. This chapter develops and validates a model to predict
bacterial dispersion in this simple geometry, while also addressing the question of
optimal motion strategies for exploring slit-like environments.

• The third chapter, Universal Dispersal of Motile Microorganisms in Porous Media,
first explores bacterial motion in porous environments through simulations, identi-
fying a universal dependence of dispersal. Then it rationalises the numerical results
with a model linking dispersal to Cauchy universality. The model accurately pre-
dicts dispersal across a wide range of environments and motion parameters, and
provide insight on previous results in literature.

• The fourth chapter, Motion Under Constraint: Novel Magnetotactic Bacteria, presents
experimental work. It characterizes the magnetic response of a novel strain of Mag-
netotactic Bacteria and presents preliminary findings on its motion near solid inter-
faces, laying the groundwork for future research on this topic.

Overall, the work presented in this thesis advances the understanding of bacterial
motility, with a specific focus on dispersal in confined settings, optimality, and the case
of magnetotactic bacteria.
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CHAPTER 1

Background and State of the Art

Contents of this Chapter
1.1 Bacteria and the Physics of Motility . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Fundamentals of Bacterial Motion . . . . . . . . . . . . . . . . 4
1.1.2 Motility Responses to External Cues . . . . . . . . . . . . . . . . . 6

1.2 Stochastic Active Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Active Brownian Particles . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 The Run-and-Tumble Particle . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Active Transport and Diffusive Regime . . . . . . . . . . . . . . . . 12

1.3 Motion in Complex Environments . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Microswimmer Dynamics at Solid Interfaces . . . . . . . . . . . . . 15
1.3.2 Motion in Confinement: a Vast Parameter Space . . . . . . . . . . . 17

1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Active Particles in Channels . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Active Diffusivity in Porous Environments . . . . . . . . . . . . . . 20

1.5 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

This first chapter will establish the foundation for understanding the physics of bac-
terial motility. It starts with a thorough introduction to bacterial motion, explaining the
essential physical concepts relevant to this thesis. Next, the chapter will review existing
literature, focusing on bacterial behavior in complex and confined environments. By sum-
marizing the state of the art, it aims to identify the key findings and the limitations in
current research. Lastly, it will define the main objectives of the thesis.

1.1 Bacteria and the Physics of Motility
Bacteria are among the most ubiquitous forms of life on Earth, inhabiting diverse environ-
ments such as soil [9], lake and sea sediments [1,28], porous rocks [10], and marshes [29].
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Chapter 1. Background and State of the Art

They are also found in extreme habitats, such as pore waters in gold mines [30], the guts of
deep-sea marine animals [31], and fluid bubbles trapped in ice for thousands of years [32].
The remarkable ability of bacteria to colonize and survive in these environments is the
result of four billion years of evolution, occurring at a faster pace than in multicellular
organisms [33]. This evolution process has resulted in bacterial species with extraordinary
abilities. For example, Acidithiobacillus ferrooxidans thrives in acid lakes contaminated
by mining waste, enduring pH levels ranging from 0 to 12.5 [34]. Deinococcus radiodurans,
initially discovered in spoiled canned meats, is instead tolerant to strong radiation and
vacuum, and it is currently used in astrobiology to test the limits of survival in space [35].
In-between these very extreme examples, lies a vast diversity of largely unknown bacterial
species that occupy all available environmental niches.

Motility is a key characteristic of bacteria, with about 80% of known species capable of
movement [36]. This ability provides numerous evolutionary advantages, such as improved
nutrient acquisition and escape from hostile environments [37]. The mechanisms behind
bacterial motility involve complex interactions between biological and physical elements.
Physics, along with other sciences, has been crucial in unraveling these intricate processes.
From early advances in microscopy and hydrodynamics in the mid-20th century [38, 39],
to the development of mathematical models in the following decades [40], foundational
research has significantly advanced our understanding of bacterial motility. In the past
decades specifically, physics studies on bacterial motility has surged, driven by the ever-
growing field of active matter [7, 41, 42]. The multi-scale and interdisciplinary nature of
these studies creates a vast and diverse field, all aimed at understanding the complexity
of bacterial motion.

1.1.1 The Fundamentals of Bacterial Motion
Foundational studies in the physics of bacterial motility have primarily focused on the
motion of Escherichia coli, a gut bacterium that has played a central role in the history
of bacteriological research [43]. The seminal work initiated by Brown and Berg in the
1970s [40,44], along with all subsequent research up to the present, has made E. coli the
most thoroughly understood example of bacterial motility.

The Paradigmatic Run-and-Tumble of E. coli E. coli cells are rod-shaped, typ-
ically measuring 0.5 − 1 µm in diameter and 2 − 4 µm in length [46]. They move using
flagella: long and thin helical filaments attached to the exterior of the cell body. Flagella
are driven by motor proteins, nano-scale engines embedded in the cell wall, capable of
rotating either clockwise or counterclockwise with nearly perfect energy efficiency [47].
E. coli are peritrichous, meaning they possess multiple flagella and motors, and motion
occurs by alternating motor states. Simultaneous counter-clockwise rotation causes the
flagella to bundle and propel the cell forward in a quasi-straight ballistic trajectory, at
velocities that range between 20 − 50 µm s−1 [45]. A clockwise rotation of one or more
flagella instead disperses the bundle, causing the bacterium to change the orientation of
the cell body. The resulting pattern of motion takes the name of run-and-tumble, and can
be seen in the real tracks of E. coli shown in Fig. 1.1A. The strategy consists of alternat-
ing persistent motion with sudden changes in direction. Despite the complex biological
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1.1. Bacteria and the Physics of Motility

A B

Tumbling

Forward run

Run-and-tumble, peritrichous bacteria (E.coli)

Run-reverse-flick, V.algynolicticus

Run-reverse, monotrichous bacteria

Pushing mode

Pulling mode

Flick

Start

Start Reverse

Reverse

Start
Reverse

C

Figure 1.1: Swimming patterns of bacteria. A) Two-dimensional projection of E. coli
tracks published by Brown and Berg in 1972, showing an alternation of ballistic "runs"
and localised re-orientations [38]. B) 3D tracks of various bacterial species characterised
by persistent ballistic motion and re-orientation events, adapted from Taute et. al [45].
C) Schematics of different bacterial swimming patterns.
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Chapter 1. Background and State of the Art

and hydrodynamic factors influencing its movement, the overall motion of E. coli can
be described by dynamics similar to those seen in various types of random walks. This
observation is, and has been, a central point of research that delves with bacterial trans-
port, as it establishes a link between bacterial movement and purely theoretical stochastic
processes [6].

Repertoire of Swimming Patterns While research on E. coli has successfully con-
nected various aspects of motion at multiple scales, from swimming properties to motility
patterns, such a comprehensive picture is not yet available for most other bacteria. How-
ever, flagella and motor proteins are conserved genetic traits among a vast diversity of
species [48, 49]. This conservation is evident as many motile bacteria exhibit run-and-
turn-like swimming patterns [50–53], as seen in the experimental tracks in Fig. 1.1B.
Additionally, swimming patterns are not limited to run-and-tumble; instead, they can
exhibit different variations. A simple example is the run-stop pattern of Rhodobacter
sphaeroides, a bacterium with a single unidirectional motor that periodically pauses [54].
During each motor stop, the flagellum transitions from a helical to a coiled state, causing
the cell to actively reorient itself [55]. Another instance is the case of marine bacte-
ria which possess only one flagellum. These monotrichous bacteria lack the ability to
tumble, but can still reverse their flagellar motor, which can propel the cell body either
forward or backward [56, 57]. This mechanism results in a swimming pattern known as
run-reverse, which alternates between pushing and pulling modes, featuring sharp re-
versals of the direction of motion [50, 51]. Furthermore, a distinct swimming pattern is
also exhibited by V. alginolyticus, a marine bacteria that employs a dual reorientation
mechanism. This bacterium combines reverse events, similar to those of marine bacteria,
with tumble-like orientation changes, resulting in a bimodal swimming strategy termed
run-reverse-flick [58, 59].

All the presented examples of bacterial motility rely on flagellar propulsion, resulting
in random-walk-like trajectories. Different swimming patterns emerge, each with specific
variations, as summarized schematically in Fig. 1.1C. The central focus of this thesis will
be on these aspects typical of swimming bacteria. However, it is important to acknowledge
the existence of various other kinds of bacterial movement, such as twitching or gliding
on surfaces [2].

1.1.2 Motility Responses to External Cues
The previous section presented bacterial motion in the absence of external interactions.
However, bacteria have evolved various internal mechanisms to alter their movement
patterns in response to their environments. The ability to sense and move in response to
environmental cues is generically known as taxis.

Active and “Biological” Taxis An early example of motility response is chemotaxis,
observed first in the motion of E. coli in the 1970s [38,60]. E. coli that navigate through a
concentration gradient of nutrients can detect if they are moving towards higher concen-
tration zones. In response, the bacteria alter their motility pattern, biasing their random
walk: runs become longer when moving in favorable directions, resulting in a drift up

6



1.1. Bacteria and the Physics of Motility

500 nm

A B C

Figure 1.2: Magnetotactic bacteria and magnetosomes. Transmission electron mi-
croscopy images. A) AMB-1 strain [72]. B) HSMV-1 strain [73]. White arrows indicate
the magnetosome chain, black arrows point at flagella. C) Progressive zoom on a magne-
tosomes chain [72].

the nutrient gradient [61]. The ability to sense and react to environmental signals is
crucial for bacterial survival and adaptation, leading to extensive research in this area.
This research field encompasses aspects such as spatial and temporal sensing [62], signal
transduction pathways [63], and motility pattern modulation [64]. In this line of research,
various forms of taxis have been identified and characterized across bacterial species. In
the case of aerotaxis—a motility response to oxygen concentrations—the response can be
positive, where bacteria move towards higher oxygen concentrations, or negative, where
they move towards lower oxygen concentrations [65]. Furthermore, some bacteria exhibit
microaerotaxis, meaning their motility allows them to seek and accumulate at specific
oxygen levels [66]. Lastly, taxis-like motility adaptations can be observed in response to
other types of signals, such as mechanical stimuli [67], light [68], or pH levels [69].

Physical Drivers of Motility: Gravitaxis and Magnetotaxis The previous exam-
ples of taxis are “biological”, in the sense that they involve an active internal response
that induces a motility skewing upon specific cues. Other forms of taxis are “physical”,
for which the stochastic aspects of swimming are skewed by a physical passive response
to an external “potential”. For instance, bottom-heavy swimmers align and swim against
gravity thanks to localized high-density regions within the cell body, passively performing
gravitaxis [70]. Another example, particularly relevant to this thesis, is magnetotaxis. It is
a motility response characteristic of magnetotactic bacteria (MTB) [71], a diverse family
of motile bacteria known for their unique ability to orient and navigate along geological
magnetic field lines. This ability results from structures within their cell bodies called
magnetosomes: nanometric and ferromagnetic crystals with remarkably precise geome-
tries [72]. Magnetosomes are aligned forming a chain that is fixed within the cell body, as
shown in Fig. 1.2. These structures are responsible for coupling the flagellar propulsion
with a magnetic alignment effect, resulting in a unique type of navigation among bacterial
species. Moreover, most MTB also perform aerotaxis, combining both passive and active
taxis in the same microorganism [24]. The coupling of motility with different types of
responses is a fascinating aspect of their motion, as the evolutionary advantages of the
magnetosomes chain are not fully understood. Additionally, ongoing studies have docu-
mented a remarkable diversity in the family of MTB, encompassing species with radically
different morphologies and ecological niches [26,73].
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Chapter 1. Background and State of the Art

1.2 Stochastic Active Particles

This section transitions from real-world bacteria to the theory of active matter: systems
out of equilibrium that consume energy to move [74]. Specifically, the emphasis is on
active models used in physics to study bacterial motion, particularly Run-and-Tumble
Particles and Active Brownian Particles. The goal is to provide a theoretical foundation
for understanding the physics of self-propelled agents, explore their connection to mi-
croswimmer dynamics, and discuss their fundamental transport properties, which play a
central role for the work presented in this thesis.

Bottom-Up Description of Motion A complete and natural model of bacterial trans-
port should originate from a description of the microscopic underlying mechanisms of
motility. This relies on connecting motion properties to complex features at the cellular
and molecular levels. Along these lines, studies have characterised the hydrodynamical
interactions of rotating flagella with the surrounding fluid [6, 75], progressively building
up to comprehensive models that include the cell body [75], self-propulsion [76], and
biological responses like tumbling events [77]. More coarse-grained approaches have con-
sidered simplified cell structures or effective hydrodynamic interactions [78, 79]. Overall,
these hydrodynamics-based approaches can replicate various levels of real cell behaviors
and have been successfully employed to address issues such as interactions with solid sur-
faces [80,81] or coupling with external flow fields [13]. However, these methods pose signif-
icant challenges due to their highly nonlinear and multiscale complexity. These limitations
generally require computationally intensive numerical solutions, which are not suited for
characterizing properties like long-term transport. Additionally, these approaches rely on
detailed knowledge of biological characteristics, thus quickly becoming specific to the case
under study.

Higher-Level Modelling: Stochastic Approaches Many issues relevant to bacterial
transport can be addressed at a higher-level description, where only the key features of
motion are considered. As suggested by the examples in Section 1.1, bacteria can be seen
as motile objects whose trajectories result from a combination of self-propulsion, stochas-
tic reorientation, and responses to external cues. This perspective has led to modeling
motility using purely stochastic models. These methods can disregard both hydrodynam-
ics and biological processes by employing specific assumptions, simplifying motility into
tailored stochastic processes. Although this approach moves away from the exact dynam-
ics of real agents, it makes the problem mathematically manageable and, in some cases,
fully solvable [82]. The inherently theoretical nature of these methods results in general
models where only quantitative parameters are specific to the system. Consequently, the
resulting models can encompass different bacterial species and find applications beyond
bacterial motility [67, 83–86].

The field of stochastic active matter, in application to bacterial motility, is central to
the work presented in this thesis. The remaining part of this section will introduce the
key frameworks of the domain.
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1.2. Stochastic Active Particles

1.2.1 Active Brownian Particles
Active Brownian Particles (ABPs) are a pivotal model of active matter theory, serving as
a foundational frameworks to describe self-propelled particles, including biological agents
like bacteria [87] or artificial swimmers like Janus particles [88]. ABPs are, in origins, the
active extension of the concept of passive Brownian particles: inert particles that move
solely due to thermal fluctuations. Unlike the passive case, Active Brownian Particles
(ABPs) exhibit self-propulsion and are therefore oriented. A key feature of the model is
that the particle’s orientation changes over time due to diffusion.

Dynamics The dynamics of ABPs are described by Langevin equations, which account
for both deterministic propulsion forces and random thermal fluctuations. In two dimen-
sions, the dynamics of an ABP’s position r(t) and orientation θ(t) can be written as two
coupled equations:

dr(t)
dt

= v0e(t) +
√

2Dtη(t) , dθ(t)
dt

=
√

2Drξ(t) , (1.1)

where vo is the propulsion speed, e(t) = (cos θ(t), sin θ(t)) is an orientation versor, Dt and
Dr the translational and rotational diffusion coefficients, and ξ(t) and η(t) are Gaussian
white noise terms.
These equations of motions contain various implications. First, inertial terms are ne-
glected. This overdamped limit is typical for systems at low Reynolds numbers, such as
microswimmers and bacteria, where viscous forces dominate over inertial forces [39]. Sec-
ond, they assume that self-propulsion results in a constant velocity level, another typical
assumption in applications to bacteria [7]. Third, the rotational diffusion Dr is linked
to complex interaction related to propulsion mechanisms and biological processes, rather
than solely temperature. Nonetheless, the white noise model of fluctuations has been suc-
cesfully applied to microswimmer behaviors via the introduction of effective temperatures
that represent complex sources of noise [87]. Lastly, a relevant quantity to introduce is
the Péclet number: a dimensionless parameter that characterizes the relative importance
of advective to diffusive transports. For ABPs, and all models introduced hereafter, the
Péclet number is defined as:

Pe ≡ voL

Dt
, (1.2)

where L is a characteristic length scale of the system, such as the particle size. A high
Péclet number indicates that advective transport (driven by self-propulsion) dominates
over diffusive transport (thermal motion). The high Pe limit is a typical scenario for
active systems like bacteria, resulting in models that neglect thermal diffusive transport.
This limit will be considered in all following considerations.

1.2.2 The Run-and-Tumble Particle
While pivotal for the physics of active systems, ABPs are characterized by an orientation
randomization that occurs over time through a constant diffusive rotation. This differs
from the features pointed out for many bacteria, where strong re-orientations are localised
and occur at discrete times. To better capture these distinct behaviors, a second active
model is introduced: the Run-and-Tumble Particle (RTP) model.
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Figure 1.3: Run-and-Tumble properties of E. coli. Experimental measures adapted
from Taute et al. [45]. A) Distribution of run and tumble times, with exponential fits
(dotted). B) Distribution of turning angles for different run speeds. C) Mean turning
angle and mean cosine of turning angle (persistence), as a function of different run speeds.

Definition of the Model The basic definition of RTP consists of a point-like active par-
ticle, characterized by constant velocity, persistent motion and stochastic re-orientations.
This model is defined by the following parameter space: the propulsion velocity vo, the
time distribution of run times ψ(t) and tumble duration Ψ(t), and the distribution of
turning angles due to tumbling h(θ). These parameters can be tailored to reproduce
many different types of motion.

An E. coli-based Formulation In applications of RTPs to bacteria, the model has
found extensive use in reproducing the persistent random walks of E. coli. The adaptation
of the RTP framework to the case of E. coli can leverage the many experimental results
for these bacteria available in literature. Specifically, modelling can rely on key statistical
distributions sampled from experimental tracks, which are reported in Fig 1.3. Starting
from the distribution of run and tumble times of real cells, shown in Fig. 1.3A, two con-
siderations can be made. First, both distributions follow an exponential trend, suggesting
we can approximate both ψ(t) and Ψ(t) as Poissonian processes. Second, tumbling times
are much shorter than run times, suggesting that the static tumbling periods can be ne-
glected. These considerations lead to a key assumption that is often adopted in RTP
models: tumbling events can be considered as instantaneous processes, while run-times
are Poisson-distributed. Consequently, a commonly used run-time distribution is:

ψ(t) = e−t/τ

τ
, (1.3)

where τ indicates the mean run time. Notably, this model also assumes that successive
run time are independent from each other.
Focusing instead on the distribution of turning angles, the reference experimental mea-
surements are shown in Fig. 1.3B. The trend is generally more complex than the run time
distribution. A functional form has been proposed for the experimental h(θ) of E. coli,
using a model of strong rotational noise during the tumbling time, but it results in a
non-trivial expression [89]. Nonetheless, it has been been shown that various transport
properties of interest do not depend on the full turning angle distribution, but rather only
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Figure 1.4: Variety of Run-and-tumble motion. A) 3D trajectory of microalgae
Chlamydomonas reinhardtii, showcasing persistent motion (blue) and a localised re-
orientation (red) [83]. B) 2D trajectory of a microglia, alternating slow phases where
orientation is significantly changed and fast persistent stretches [67]. C) Sample trajec-
tory of a motor protein on a cytoskeleton network [86].

on its first moment [82,90], often expressed as the mean cosine of the turning angle:

α ≡ ⟨cosh(θ)⟩ . (1.4)

The parameter α quantifies the directional persistence of tumbling events, and for E. coli
it varies roughly from 0.2 to 0.7 depending on the run speed (see Fig. 1.3C).

Generalisation to Different Swimming Patterns Moving forward from the instruc-
tive case of an E. coli-inspired model, the RTP framework can be extended to other
species, even for cases in which the full picture of experimental distributions is not readily
available. For instance, choosing a h(θ) so that α = −1 allows to reproduce sharp rever-
sals of the direction of motion, typical of the run-reverse swimming pattern [51]. Another
possible approach, which has become the standard version of RTP, is to assume a flat
distribution for h(θ), resulting in isotropic re-orientations [6]. In general, many different
forms of h(θ) and ψ(t) have been proposed and studied. Additionally, the model can also
be further extended, including for instance alternating velocity levels [91], or alternating
re-orientation distributions to reproduce bimodal swimming strategies [82].

Generalisation Beyond Bacteria Over decades of research, RTP models have evolved
from the motion of E. coli into the fundamental stochastic model of random persistent
motion. Statistical mechanics research has characterised many fundamental properties
of RTPs, like probability distributions [92], survival probabilities [93, 94] or first passage
times [95, 96]. Other lines of research focused on thermodynamic quantities, such as en-
tropy production [97], as well as scenarios involving various confining potentials [17, 98].
The model has also found applications in various biological systems beyond bacteria.
For example, eukaryotic cell Chlamydomonas reinhardtii demonstrates run-and-tumble
dynamics (Fig. 1.4A) through alternating synchronous and asynchronous flagellar beat-
ing [83,99]. Similarly, macrophages like Microglia exhibit motion that alternates between
runs and sharp re-orientations (Fig. 1.4B), with exponential tumbling distributions that
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resemble bacterial dynamics [67]. Furthermore, the movement of motor proteins along
cytoskeletal filaments is also characterized by active runs and stationary turns (Fig. 1.4C),
and has been effectively modeled using RTP dynamics [85,86].

Take-home Messages In summary, the RTP framework is a versatile stochastic model
for random persistent motion with broad applications. Various versions and interpreta-
tions have been extensively studied in the literature. This thesis will focus specifically on
RTPs applied to bacteria and microswimmers. In doing so, it will maintain key assump-
tions that were introduced in this section, such as the Poisson distribution for run-times
and instantaneous tumbling.

1.2.3 Active Transport and Diffusive Regime
So far, stochastic active models have been introduced as tools for studying transport,
without detailing the specific transport properties of interest and their relevance. This
section will address these aspects.

Mean-squared Displacement A crucial metric in understanding the transport of par-
ticle motion is the mean-square displacement M(t). This quantity is a measure of the
average distance squared that a particle travels from its initial position over time. For a
particle moving in d-dimensional space, the MSD is defined as:

M(t) ≡ ⟨(r(t) − r(0))2⟩ , (1.5)

where r(t) is the position of the particle at time t, and ⟨·⟩ denotes an ensemble average
over multiple realisation of the system. If we consider motion in the bulk—an idealized
homogeneous environment with no obstacles and no taxis effects—the dynamics of a model
combining both run-and-tumble dynamics and Brownian noise can be fully solved [82].
In the high Pe limit, the analytical solution for the mean-squared displacement, in d-
dimensional space, is given by:

M(t) = 2vo

λeff
(λefft− 1 + e−λefft), λeff ≡ (1 − α)λ+ (d− 1)Dr , (1.6)

where λ is the tumbling rate, i.e., the inverse of the mean run-time τ . λeff is known as
effective tumbling rate, combining the reorientation effects of actual tumbling events and
additional rotational “thermal” noise. As previously noted, the mean-square displacement
in this scenario depends only on the first moment of the turning angle distribution h(θ),
denoted α, rather than the full distribution [82,90]. Some example mean-squared displace-
ment curves are shown in Fig. 1.5, including predictions for run-reverse-flick which can
be obtained via an extended version of Eq. 1.6 to bimodal swimming patterns [91]. Across
all mean-squared displacement curves, two regimes are identifiable: a ballistic regime at
short times, showing a quadratic dependence on time, and a diffusive regime at long times,
showing a linear dependence on time. The onset of the diffusive regime generally occurs
at times greater than the persistence time of motion. This asymptotic diffusive limit is a
characteristic shared across various types of stochastic motion, because, over long enough
timescales, the random nature dominates over the specific dynamics, whether it is active,
passive, or run-and-tumble-like.
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Figure 1.5: Transport properties in bulk of active run-and-tumble particles
subject to rotational noise. A) Re-scaled mean-squared displacement versus time,
rescaled by the mean run time, for different values of rotational noise and swimming
patterns. Continuous lines represent low rotational noise (Dr = 0.1τ−1), while dotted lines
represent high rotational noise (Dr = 10τ−1). B) Re-scaled diffusivity versus tumbling
rate, for the different cases shown in the left plot. tu denotes a generic time unit.

Diffusive Regime The key quantity that describes the diffusive regime is the trasla-
tional diffusion coefficient, defined as the asymptotic limit of the mean-squared displace-
ment over time:

D ≡ 1
2d lim

t→∞

M(t)
t

. (1.7)

This quantity is originally defined to quantify the rate at which a particle diffuses due
to thermal noise. It has since been generalized to stochastic active motion, which often
exhibits larger diffusion coefficients than the thermal case. In the generalisation to active
matter, D is often re-named to effective diffusion coefficient, or in some cases diffusivity. In
this work, these terms will be used interchangeably, all referring to the original definition
of Eq. 1.7. For motion in bulk, analytical solutions can be derived from the previous
mean-squared displacement formula, yielding:

D = vo

dλeff
= vo

λd(1 − α) +Drd(d− 1) , (1.8)

which corresponds to the bulk diffusivity of a particle that is subject to rotational noise,
instantaneous tumbling and Poissonian run-times. Examples of diffusivity as a function
of mean run-time are shown in Fig. 1.5B, for different swimming patterns and levels of
rotational noise. The general trend indicates a monotonic relationship between diffu-
sivity and run-time, highlighting that particles with higher persistence exhibit a greater
dispersion. This consideration also explains why increased rotational noise generally re-
duces diffusivity (comparing solid and dotted lines). Additionally, motility patterns with
higher orientational persistence (run-and-tumble), result in higher diffusivity trends when
compared to the other cases (run-reverse and run-reverse-flick).
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Figure 1.6: Microscopic snapshots of bacterial habitats. A) Typical optical image
of a sand sediment, with solid interfaces outlined in black [100]. B) Microscopic structure
of an alloy foam used in biomedical applications [102]. C) Cross-section of porous rock:
pores in black and grey regions indicating solid obstacles such as clay, rock fragments,
and eroded debris [104]. D) Binary images of thin soil layers, at different scales. Solid
objects in white, pores in black [101].

1.3 Motion in Complex Environments
In the previous discussion, bacterial motion was first analyzed from real observations of
bacteria, and then in terms of stochastic models that reproduce active motion. In both
scenarios, motion has been considered to take place in a theoretical void, in which the
environment is unobstructed and homogeneous. Moving forward, the aim is to broaden the
focus to motion within more realistic and complex environments, that include obstacles
and confinement. Additionally, the generality of active particle models is leveraged to
shift the focus from bacteria to the broader concept of microswimmers, encompassing
both biological and non-biological agents.

Why Complex Environments? The need to study complex environments arises from
the observation that typical habitats of microorganisms include sand and soil sediments [100,
101], porous rocks [10], or foams [102]. From example shown in Fig. 1.6, it is clear that
these environments present various types of interfaces. Despite the presence of confine-
ment, large numbers of bacteria have colonised these complex spaces. For instance, the
typical number of bacterial cells that can be found in a single gram of soil is around 108,
with an estimated diversity of 104 species [3, 103]. Another striking example comes from
estimates that place approximately 70% of the total bacterial biomass, encompassing an
estimate of 1029 cells, within deep terrestrial and oceanic subsurface sediments [1, 28].
Microorganisms that live in such complex substrates, and that are motile, need to be able
to navigate amid solid interfaces to survive.
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Relevance and Potential Applications Building models for transport in these envi-
ronments is essential for understanding and controlling the dynamics of these processes,
and is relevant for different applications. For instance, bioremediation schemes use bacte-
rial agents for the cleanup of groundwater, and their design relies on effective models for
bacterial transport under various physical, biological, and geochemical conditions [105].
The ability to navigate confined environments can also determine the spread of infec-
tions due to pathogenic bacteria [4, 106]. This issue is pertinent not only to biological
microswimmers but also extends to non-biological systems. For example, it connects to
the advancement of engineered microrobots that mimic bacterial movement patterns, en-
abling them to navigate intricate structures for drug delivery purposes [5,107]. Addition-
ally, this research is relevant to targeted delivery methods, like developing magnetically
driven microrobots that target hard-to-reach tissues [23] and localized drug delivery to
cancer cells [108].

The primary goal of this section is to present how the existing stochastic active particle
models can be extended to study confinement. With this objective in mind, this section
will first explore the experimental results available in literature, to establish an overview
of what are the possible dynamics of bacteria, or microswimmers, in the presence of solid
obstacles and confinement.

1.3.1 Microswimmer Dynamics at Solid Interfaces
A critical aspect of modeling microswimmer transport near solid interfaces is understand-
ing the dynamics of swimming upon collision with solid boundaries. Given the complex
and varied nature of interactions that real microswimmers exhibit with surfaces [109],
there is no universal behavior for different specie and/or different surfaces. In general
terms, the influence of solid boundaries on the dynamics of motile cells involves both
hydrodynamic and steric forces [110], and in some cases it may also involve biological
responses that change cell behaviour as a reaction to mechanical stimuli [111].

Hydrodynamics: Pushers and Pullers A first instructive example of surface behav-
ior is the case of microalga Chlamydomonas reinhardtii, which is classified as a puller [112]
— meaning its propulsion is generated in front of the cell body. These microalgae are
hydrodynamically repelled by flat solid surfaces [113], and exhibit scattering from flat
walls due to the contact of their flagella with the surface, leading to billiard-like mo-
tion within polygonal geometries [114]. Conversely, pusher-type microswimmers, which
generate thrust behind the cell body, display a propensity to approach flat walls, driven
by long-range hydrodynamic interactions. This behavior, documented in species such as
flagellated bacteria, spermatozoa, and Janus particles, results in their entrapment near
planar surfaces, and is due to a combination of hydrodynamic and steric forces [115].

Pushers on Flat Walls For the sake of the work presented later, it is necessary to focus
on pusher-wall interactions, starting with the case of motion in the presence flat walls. In
these scenarios, it has been observed that pusher-type microswimmers, such as bacteria or
chemically-propelled micro-rods, can continue move on the surface for extended periods
after impact [119, 120]. Fig. 1.7A illustrates an example of this motion, showing a 3D
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Figure 1.7: Microswimmer dynamics on solid interfaces. A) 3D track of E. coli
within a planar slit, showing bulk motion (black) and surface persistence (blue). B)
Distribution of tumbling time on the surface (orange) and in bulk (green). Inset: distri-
bution of time delay between surface detachment and tumbling events [11]. C) Sample
trajectories of self-propelled rods orbiting passive spheres [116]. D) Image sequence of
a fluorescent bacterium following a micropillar surface [117]. E) Surface dynamics of
smooth-swimming mutant (∆cheY) and wild-type (wt) E. coli on on pillars of different
radii. Traversed polar angle (left) and detachment angle (right), as a function of impact
parameter. Adapted from Jakuszeit et al. [118].
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track of E. coli in a flat channel alternating between bulk and surface movement. At
the boundary, the motion involves aligning the travel direction parallel to the boundary
after impact. This is typically followed by circular paths, which result from the interplay
of chiral flagellar propulsion and frictional forces between the counterrotating cell body
and the surface [110,121]. Junot et al. [11] have extensively studied the dynamics of this
surface behaviour for the case of E. coli. The study shows that tumbling at the surface
occurs at the same rate as in bulk (see Fig. 1.7B), and that tumbling is the primary
mechanism by which bacteria detach from surfaces (inset of Fig. 1.7B).

Pushers on Circular Obstacles The geometry of the solid interface has been found
to alter surface dynamics. For example, when considering circular obstacles like solid
spheres, active micro-rods can enter short-range orbits that follow the obstacle’s surface,
as illustrated in Fig.1.7C. These orbits occur with minimal change in speed and display
randomized escape patterns [116]. Similarly, E. coli can swim for extended periods along
convex walls with sufficiently low curvature [117], tracing orbits around large enough
pillars, as shown in Fig. 1.7D. The capture of pusher-type microswimmers on circular
boundaries has been explained using models that combine hydrodynamic interactions
and hard-core repulsion [122], with the trapping aspects being the same as the case of
flat boundaries. However, residence times and escape mechanisms appear to differ when
consider circular obstacles rather than flat surfaces, with evidence suggesting that convex
walls decrease trapping duration [123,124]. A recent work by Jakuszeit et al. [118] studied
the surface dynamics of E. coli in the presence of cylindrical pillars. Results show that
surface residence times on convex walls depend on both surface curvature and impact
angles (Fig. 1.7E). Moreover, by replicating the study for wild-type and non-tumbling
mutants, they show that, similarly to flat walls, tumbling plays a significant role in surface
detachment from surfaces.

Take-home Messages Microswimmer transport near solid surfaces involves complex
interactions, including hydrodynamic and steric forces. These interactions vary based
on the swimmer’s propulsion type and surface shape. Pushers are attracted by surfaces,
leading to surface residence and surface motion. On circular obstacles, pushers can orbit
by moving along convex surfaces, resulting in complex dynamics. Although the mecha-
nisms of surface residence is not fully understood, various studies suggest tumbling plays
a crucial role in detachment from the surface.

1.3.2 Motion in Confinement: a Vast Parameter Space
The central topics explored in the thesis involve defining a model for motion in confine-
ment, which extends active particle models to include interactions with solid interfaces.
With this objective, this section provides an overview of the extensive parameter space
that must be considered when modeling motion in confinement. Variability arises from
several sources, including the large diversity of natural environments [1, 28, 100, 101],
the variability in swimming and movement patterns [58, 59, 83], and, as discussed in
the previous section, the lack of universal behavior for microswimmers on solid sur-
faces [11, 117, 119]. Therefore, it is useful to break down each of these variabilities to
have clear picture of the parameter space.
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Variability of Confining Environments The first and most straightforward variable
is the confining environment. That is, the geometry and distribution of solid boundaries
in space. Various studies have focused on simple slit or channel-like structure [19, 125].
More complex environments have also been studied, with the aim of reproducing natural
or artificial porous environments [20–22, 126–131]. Porous media models in literature
generally include solid obstacles that can be distributed in space in diverse ways. Common
approaches include obstacles that vary in placement (ordered on a lattice or randomly
distributed), shape (typically circular geometries like disks, spheres, or pillars) or size
distribution (mono-disperse or poly-disperse).

Variability of Swimmer Models The second source of variability is the wide range
of microswimmer dynamics and movement patterns. Studies in literature have adopted
hydrodynamic models [80, 81, 117], RTPs [22, 129], ABPs [19, 87, 126], or approaches
combining the previous models [21, 128, 132]. For the stochastic cases, there are many
variations stemming from basic RTP and ABP definitions, such as varying swimming
patterns, which could have non-trivial effects on transport properties when coupled with
confinement. Moreover, a defining modeling choice is whether to consider interacting or
non-interacting particles, which results in either a single-body or multi-body problem.
In general, the two cases have different levels of complexity, with the non-interacting
case allowing for easier analytical formulations, while representing the dilute limit of the
interacting model.

Variability of Particle-Surface Interactions The third and possibly most open-
ended source of variability is the particle-surface interactions. Typical behaviors include
residence on walls [11], where agents either become trapped or motionless after a colli-
sion [133], or microswimmers that attach to and slide along walls or obstacles [116, 119].
In models of surface persistence, a crucial aspect is also understanding how particles de-
tach from surfaces. The mechanism of escape is not fully understood [127], and there
might not be a universal behavior valid across different swimmers and/or surface types.
An emerging trend for bacteria is that detachment from surfaces is linked to tumbling
events [11, 127]. Additionally, surface behaviors different than residence could be con-
sidered, such as surface scattering for puller-type swimmers [83], or surface crawling by
twitching [2].

Take-home Messages Various studies in literature have extended active particle mod-
els to include motion in confinement [19–22, 125–132]. These models require defining
stochastic interactions that mimic the complex microswimmer dynamics on solid bound-
aries, for which a comprehensive understanding is currently lacking. Consequently, many
different confining environments and particle-surface interactions have been considered,
resulting in a varied and mostly unexplored parameter space. The different approaches
presented in this section will be useful to better define and compare the models in litera-
ture presented in the next section.
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1.4 State of the Art

This section presents the state of the art for active diffusivity in confinement, particularly
focusing on key analytical and numerical studies. Other than summarizing the main
findings, the aim is also to highlight limitations and gaps in current research. This will
help outline the objectives of this thesis, which intend to address the presented research
gaps. To organize the results presented in the state of the art, the presented studies are
divided into two categories based on the considered environment geometry. First, the
focus is on active particles moving within slit and channel-like environments. Then, the
focus shifts to active diffusivity in porous media.

1.4.1 Active Particles in Channels

Active Accumulation on Flat Interfaces Regarding motion in the presence of flat
solid interfaces, a central topic of research has focused on accumulation: the phenomenon
where particles gather or build up near surfaces or boundaries. This generic behavior
is a result of either the particles’ persistent motion or interactions with the walls. The
general mechanism that leads to accumulation is straightforward: as an active particle
approaches a wall, it needs to reorient to move away, causing it to spend more time near
the wall and leading to an increased concentration of particles at the boundary. This active
accumulation connects to the numerous experimental studies on microswimmer capture on
solid boundaries [11,117,118,120] presented in Section 1.3.1. However, providing an exact
theoretical description of swimmer accumulation near flat walls remains challenging, and
can be further complicated by accounting for specific wall trapping behaviours of pusher-
like swimmers. Various approaches and approximations have been employed to explore
particle distributions near flat interfaces.

Distribution Profiles Within Channels An extensively studied topic in relation to
accumulation processes is the distribution of particles within slit-like structures. These
structures consist of empty channels where particles move between two infinitely long,
parallel walls. For instance, the steady-state distribution of non-interacting ABPs be-
tween two confining walls has been characterized through theoretical and numerical meth-
ods [19]. These results predict accumulation on flat walls and quantify the distribution
profile, including the fraction of particles at the wall as a function of slit width (see
Fig. 1.8A). Related studies focus on the interacting ABP case in similar confinement,
resulting in complex dynamics that also involve accumulation near boundaries [125]. Re-
search has also extended these findings to RTPs. Like ABPs, RTPs exhibit accumulation
near walls, but persistence leads to distinctive features such as sharp peaks in density
profiles adjacent to walls [18]. The one-dimensional case is fully tractable [134–136], and
analytical solutions exist for higher dimensions in some limits [18]. It has been shown
that the fraction of particles at the wall and the steady density profile depend on run-
and-tumble characteristics, such as mean run-time and run-time distribution, as shown
in Fig. 1.8B. Additionally, complementary studies have modeled other phenomena linked
with accumulation, such as pressure exerted on flat interfaces, for both the ABP [137]
and RTP case [138].
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Figure 1.8: Distribution of active particles in slit-like structures. A) Fraction of
particles that accumulates on the wall as a function of channel width, for non-interacting
ABPs in channel confinement [19]. B) Distribution profile within a slit, for RTPs with
different run length distributions, in two or three dimensional channels. [18].

Limitations and Research Gaps Despite extensive research on the distribution
and accumulation of active agents within slit-like structures, much less attention has
been given to transport along boundaries. This process is nonetheless very relevant,
as it determines whether microorganisms or motile cells can invade, escape, or travel
through interstitial spaces. The simple geometry of a planar slit, characterized by
a single length scale, provides also a fundamental understanding to deal with more
complex media. By excluding structural disorder, it allows a focus solely on the ef-
fects of confinement. Additionally, the impact of swimming strategy and rotational
noise on RTP motion has been minimally explored in relation to this type of confine-
ment. Overall, a comprehensive diffusivity model for RTPs in slit-like confinement
is currently lacking in literature, while other properties, such as accumulation and
distribution profiles, have been extensively studied.

1.4.2 Active Diffusivity in Porous Environments

Differently from the case of slit-like structures, there are numerous studies on the disper-
sion of active particles within porous media, reflecting also the larger diversity of possible
porous environments. Transport of generalized RTP models in porous media is typically
predicted to exhibit asymptotic diffusive behavior [139,140], similarly to bulk motion. As
a general trend, if surface behaviours can trap particles, the porous structures is expected
to hinder transport by causing collisions with obstacles, reducing diffusivity in comparison
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to bulk motion [16,133,141]. Conversely, if particles can instead move along surfaces, the
porous structure might instead facilitate dispersion, possibly enhancing diffusivity com-
pared to bulk motion [126,127]. In this section, the objective is to map out key predictions
in literature for diffusivity predictions. Overall, different scenarios are considered, ranging
from ordered to disordered porous media, for ABPs, RTPs, or other comparable active
particle models.

Motion within Ordered Arrays of Obstacles A primary line of research focuses
on rdered porous media, such as solid spheres or pillars placed on a regular lattice. A
key initial study explored the possible transport dynamics in these environments. It
used an ABP model combined with hydrodynamic surface interactions that mimic var-
ious swimming modes, ranging from pushers to pullers [132]. The study predicts that
diffusive motion is observed for both strong and weak pushers, and across a large range
of obstacle densities. However, it did not characterize or predict the actual diffusion coef-
ficients. Indeed, direct analytical approaches for diffusivity are not straightforward, even
for circular obstacles ordered on lattices [7, 142]. Consequently, diffusivity prediction in
porous media often resorts to a combination of numerical approaches and/or simplifying
assumptions [87,126].

Diffusivity Predictions under Simplifying Assumptions An emerging approach
for simplified diffusivity predictions starts from the bulk results (See Eq.1.8), extending
the formula under specific approximations. A first example of this method was introduced
by Licata et al. [20], who developed a simple formula for diffusivity in a generic porous
environment characterized solely by pore size, without specifying a particular geometric
structure. In a similar manner, a more recent study modified the bulk RTP diffusivity to
predict the dispersion of ABPs moving through an ordered array of obstacles [127]. This
study successfully approximates the long-term effects of particle-surface interactions as
if they were effective tumbling events. Lastly, a re-adaptation of the bulk solution was
also applied successfully to experimental tracks, for the case of E. coli moving through
ordered arrays of pillars [118].
Beyond reworking the bulk predictions, there are various attempts in literature to predict
diffusivity through direct theoretical models. These models typically rely on simplifying
assumptions to achieve solutions. For instance, Bertrand et al. [22] studied RTP-like
tracers with motion restricted on a regular lattice, in the presence of fixed or motile
obstacles. Despite this simplifying assumption, the resulting diffusivity predictions are
non-trivial and fully explicit only in the limits of static obstacles at low density [129].

The Emergence of Optimality The development of diffusivity models for confined
environments opens the door to addressing other pertinent questions. A key area of grow-
ing interest is optimality, which involves determining the optimal swimming parameters,
relative to the environment, to maximize diffusivity. From an artificial systems perspec-
tive, this is relevant for developing optimal navigation strategies. On the biological side, it
can offer insights into how bacterial characteristics and environmental properties correlate
and correspond to evolutionary advantages. In regards to optimality, initial trends emerge
from diffusivity models under simplified assumptions. Both Licata et al. and Bertrand et
al. predict a maximum in diffusivity as a function of tumbling rate (See Fig. 1.9 A and B).
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Figure 1.9: Active diffusivity in porous environments A) Diffusivity prediction
map for non-explicit porous geometry, as a function tumbling rate (ω) and pore size
(a) [20]. B) Diffusivity as a function of run-length for stiff RTP-like polymers with different
Peclet numbers, in disordered media [21]. C) Numerical estimates of diffusivity for RTP-
like stiff polymers for different swimming patterns, as a function of pore size [128]. D)
Diffusivity predictions of a simplified RTP model in idealised porous media [22]. E)
Rescaled diffusivity as a function of rescaled tumbling rate, comparing simulations and a
non-explicit geometry model [131].
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These models suggest that optimal run lengths, comparable to the mean pore size, result
in diffusivity maxima. Building on these initial findings, further studies have investigated
this optimality. A significant work by Kurtzhaler et al. numerically assessed the diffu-
sivity of stiff polymers, elongated swimmers of finite size performing RTP-like motion,
navigating through a three-dimensional, disordered porous medium. This research char-
acterized the impact of varying tumbling rates and obstacle densities on diffusivity [21].
The study identifies an optimal tumbling rate for dispersion, explained by a criterion
predicting maximum diffusivity when mean-run lengths are comparable to the porous
structure’s largest free-space chord (See Fig. 1.9C).

Recent and Ongoing Advancements Interest in this topic has grown significantly in
recent years, with notable results emerging throughout the course of the PhD period. A
paper published at the end of 2023 focused on identifying optimal swimming patterns for
dispersion in disordered porous media [128]. This work examined RTP-like stiff polymers
and how diffusivity depends on obstacle density for different swimming strategies. The
findings revealed that certain movement patterns can be more advantageous for diffusivity
(see Fig. 1.9D). While most studies focus on surface residence models, where particles
remain motionless at walls and escape by reorienting, recent works have begun exploring
RTP models that include both residence and sliding behavior along obstacle surfaces.
This trend follows from recent advances in understanding bacterial dynamics on surfaces
(see Section 1.3.1). In this area, a first work published in 2023 considers RTPs that can
slide along circular pillars in a disordered environment, investigating the dependence of
diffusivity on tumbling rate and obstacle density. The study provides explicit solutions
valid in some limits, but did not report any diffusivity maximum [130]. A second study
by H. Mattingly, available as a preprint at the time of writing, presents numerical data
for another RTP model that can slide along circular obstacles. This work proposes an
analytical prediction based on simplified assumptions, which leads to a model valid for
non-explicit porous media [131]. This approach, similar to that of Licata et al., also
predicts a diffusivity maximum as a function of tumbling rate, suggesting that optimal
run lengths can be observed for motion that includes surface sliding (see Fig. 1.9E).

Limitations and Research Gaps Research on active diffusivity in porous envi-
ronments has grown significantly in recent years. Current understanding involves
numerical and theoretical approaches using different swimmer models in both or-
dered and disordered environments, considering different surface behaviors. A key
issue remains whether results obtained for specific conditions are applicable to other
scenarios. Despite some emerging common trends, a unifying picture is lacking. The
reliance on numerical results and models with simplifying assumptions results in a
lack of comprehensive understanding, raising the question: Is it necessary to explore
the vast parameter space, considering all possible combinations, to achieve a general
understanding?
At least four studies [20–22, 131] have reported a maximum in diffusivity for opti-
mal persistence lengths, a relevant finding for applications. However, the generality
of this maximum is not yet understood. Additionally, the issue of optimality has
been minimally addressed concerning other parameters, such as swimming patterns
or rotational noise.
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1.5 Objectives of the Thesis
This final section of the chapter provides an outline for the structure and objectives of
the thesis, linking the discussion to the state of the art and the research gaps identified
earlier.

Second Chapter The second chapter presents a theoretical and numerical study on
effective run-and-tumble models in slit-like confinement. It focuses on transport along
the confining direction, specifically lateral diffusivity. This chapter aims to complement
the extensive research on accumulation within channel-like structures (See Sec. 1.4.1), by
bridging the current research gap for a complete model of diffusivity in slit confinements.
To do so, it will develop a simplified formulation for transport of non-interacting RTPs,
which is extensively checked and extended via simulations. The aim is to develop practical
expressions for diffusivity, able to encompass diverse types of motion. Additionally, the
focus is also on optimality, using the model to identify the swimming parameters that
maximize transport.

Third Chapter The third chapter continues the theoretical and numerical approach,
being a natural continuation of Chapter 2. It moves from the simple setting of a slit-
like environment, to a more generic and disordered porous structure. As highlighted
by Sec. 1.4.2, various studies have already addressed diffusivity in porous environments.
Therefore the aim of the chapter aims to create a comprehensive model, able to encompass
different geometries, swimming strategies, and surface behaviors. It addresses the lack
of a unified picture in the current research, proposing a framework that applies to a
large diversity of scenarios, as demonstrated through the extensive numerical investigation
presented. This chapter also explores the concept of optimality, specifically the existence
of optimal run-lengths that maximize diffusivity. Through modeling and simulations, the
goal is to clarify the mechanisms behind this phenomenon, which has been observed and
reported in the literature but is not yet fully understood.

Fourth Chapter The fourth chapter shifts focus from theory and simulation to ex-
periments. Its aim is to characterize a novel strain of Magnetotactic bacteria, which has
gained significant attention in recent years. The study begins by examining the magnetic
response and basic transport properties of this new strain, for which detailed motion
characterization is still lacking. Additionally, it presents early findings on the interaction
between magnetically driven motion and solid boundaries, revealing complex and unex-
pected behaviors. While this chapter is less directly connected to the previous two and
remains more open-ended, it offers experimental insights that complement the theoretical
work and addresses unresolved issues related to the movement of Magnetotactic bacteria.

Each chapter aims to bridge gaps in current research and provides a clearer under-
standing, from many different points of view, of bacterial motility in complex and confined
environments.
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CHAPTER 2

Optimal Run-and-tumble in Slit-like Confinement
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This work is largely inspired by the published article Pietrangeli et al., Physical Re-
view Research 2024 [143], where the results presented here have been first introduced.

2.1 Introduction
This chapter builds upon the state of the art presented in Chapter 1, specifically addressing
the gaps in predicting dispersal within channel-like structures, as outlined in Sec. 1.4.1.
The study examines motion within a slit, modeled as two infinitely long parallel and
flat boundaries. Particles move confined within the two surfaces, alternating between
bulk motion and residence at the boundary. The focus is on developing a model able to
predict the longitudinal diffusion coefficient, a key indicator of long-time exploration in
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the direction parallel to the confinement. The primary outcome of the work will be a
fully solvable theoretical model, which is then validated and extended through extensive
numerical analysis. These results enable accurate predictions of diffusivity, accounting
for run-and-tumble characteristics, surface interactions, and confinement size. Finally,
the model is then used to identify conditions under which dispersal can be maximized by
optimizing the mean run time. The finding suggests that, for specific scenarios relevant to
both bacteria and cells, long-time exploration is most efficient when the mean run length
matches the confinement size. Given the model’s adaptability, this optimality criterion
could apply to a wide range of microorganisms, broadening the understanding of optimal
diffusivity in confined environments [20–22,131].

Outline of the Chapter This chapter is organized as follows. Section 2.2 formally
defines the problem and introduces a discrete-direction model, from which a simple yet
exact formula for the diffusivity is derived. In Section 2.3, the validity of this diffusivity
predictions is tested and extended through simulations of a “continuous-directions” model,
demonstrating that the analytical results provide a good approximation when effective
parameters are properly defined. Section 2.4 then uses the validated model to explore
optimality, identifying the conditions under which dispersal is maximized. Finally, Section
2.5 provides a summary and offers perspectives for future work.

2.2 Analytical Approach: the Four-direction Model
The objective of this study is to characterize the longitudinal spreading of an run-and-
tumble particle (RTP) confined within a slit i.e. two parallel infinite walls spaced W
(Fig. 2.1a). Throughout, the focus will be exclusively on the single-particle problem,
valid for either a dilute limit or an ensemble of non-interacting particles. A complete
description of the motion within the slit involves tumbling events, rotational diffusion,
and wall-bound motion, the combination of which presents significant analytical chal-
lenges. As discussed in Sec. 1.4.1, even the simpler task of determining the density
profile across the slit is already complex for the case of ABPs, as highlighted in previous
works [19,125,137,138,144–147].

To maintain analytical tractability, a simplified description is first adopted: the “Four-
direction Model” depicted in Fig. 2.1b. As detailed in following sections, this minimal
model is exactly solvable. The relevance of this approximation for realistic more run-and-
tumble dynamics will be then tested in Sec. 2.3.

Model Description Consider an RTP confined to two-dimensional motion, whose mo-
tion is restricted to a discrete set of directions—a simplifying approximation already
employed in various studies [22, 144, 148–150]. As shown in Fig. 2.1b, the particle’s runs
occur along the four cardinal directions: left, right, up, and down (R,L, U,D). Within the
slit of width W , the particle moves with velocity vo and tumbles according to a Poisson
process with rate λ, in a manner that is not necessarily isotropic. Upon reaching the wall,
the particle randomly selects a new direction—left L̄ or right R̄—with equal probability
and proceeds along the surface in a one-dimensional run-and-tumble process with veloc-
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Figure 2.1: Run-and-tumble particle confined in a slit. (a) The basic scenario that
inspires this work: a swimming bacterium moving in a slit-like structure: two flat, infinite,
parallel walls. (b) Schematic description of the four-direction model: a run-and-tumble
particle constrained to four directions. Parameters are described in Sec. 2.2.

ity v̄ and tumbling rate λ̄. Finally, a particle on the surface may escape back into the slit
with rate µ. Motion can be modeled as a combination of Telegraph processes [151–153],
a framework originally introduced to describe signal propagation along a telegraph wire.

2.2.1 Method of Resolution
The model is fully solvable analytically. Before detailing the derivation, the general ap-
proach is outlined. Given the finite number of motion directions, the evolution equation
for particles moving in each direction can be written in a manner similar to the classi-
cal Telegraph process [151–153]. By applying Fourier transforms to the spatial variables
(x → q and z → k) and a Laplace transform to the time variable (t → s), the coupled
equations are converted into a linear system, which can then be solved within the slit’s
inner region. The next step involves determining the appropriate boundary condition that
links the surface distribution to the slit distribution near the walls. The final outcome is
a set of explicit expressions for the probability distributions at the surface and within the
slit, ultimately yielding the diffusion coefficient.

For clarity, the method is initially described in the simplest scenario, where (i) tumbles
are isotropic, and (ii) the particle is motionless at the surface, i.e., v̄ = 0. The calculation
is subsequently extended to more general cases. Readers interested only in the final result
may skip directly to Sec. 2.2.3. For conciseness, quantities are made dimensionless by
using vo as the unit velocity and the slit half-width w ≡ W/2 as the unit length1. The
slit spans the interval [−1, 1]. Even though z = 1 and −1 represent the upper and lower
surfaces, z = ±w is used here to emphasize that these positions correspond to the walls.

Evolution Equation within the Slit Let’s start by introducing R(x, z, t), the distri-
bution of particle located at position (x, z) at time t and moving rightward. A similar
definition applies for distributions L, U and D. In terms of (x, z, t) variables, the four

1Since the unit time is w/vo, rates such as λ are made dimensionless using vo/w.
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distributions evolve according to the governing equations

∂tR = −∂xR − λR + λ′P, (2.1a)
∂tL = +∂xL− λL+ λ′P, (2.1b)
∂tU = −∂zU − λU + λ′P, (2.1c)
∂tD = +∂zD − λD + λ′P, (2.1d)

where P ≡ R+L+U +D is the total density within the slit and λ′ = λ/4 is the tumbling
rate toward motion in a particular direction. Switching to (q, k, s) variables by using
Fourier transforms for x and z, and Laplace transform for t, and denoting as Xin the
initial value of distribution X, one gets


s+ 3λ′ − iq −λ′ −λ′ −λ′

−λ′ s+ 3λ′ + iq −λ′ −λ′

−λ′ −λ′ s+ 3λ′ − ik −λ′

−λ′ −λ′ −λ′ s+ 3λ′ + ik



R(q, k, s)
L(q, k, s)
U(q, k, s)
D(q, k, s)

 =


Rin(q, k)
Lin(q, k)
Uin(q, k)
Din(q, k)

 .
(2.2)

Such a linear system is readily solved. The solution describes the particle distribution
within the slit only, since loss and source terms associated with the surface are not taken
into account at this point. From now on, it is assumed that particles are released at
the origin with isotropically distributed initial direction. This choice of initial condition
is for simplicity and has no influence on the long-time diffusion coefficient. This gives
Rin = Lin = Uin = Din and Rin(x, z) = δ(x)δ(z)/4. Given these initial conditions and the
slit symmetry, the distributions of particle on the upper and lower surfaces are identical
at all time, and denoted as W(x, t).

Boundary Conditions The discussion turns to the boundary condition applied at the
surfaces, for z = ±w. Though a solution may be sought for each of the individual R, L,
U and D distribution, it is actually sufficient for our purpose to focus on the group of
vertically-moving particle, whose distribution is V ≡ U +D. Proceeding as in aprevious
work on confined Telegraph process [134], we first combine Eqs. (2.1c) and (2.1d) to get

∂t[U−D](x, z, t) = −∂zV − λ[U−D], (2.3)

an equation that holds anywhere within the slit. Now, for a position approaching the
upper surface (z → w), one has

U(x,w, t) = µW(x, t) + ∂tW(x, t), (2.4a)
D(x,w, t) = µW(x, t). (2.4b)

The first equality is an evolution equation for the surface distribution W(x, t), with a
flux µW of particles leaving the surface and a flux U(x,w, t) coming from the slit. The
second equality requires that in the immediate vicinity of the upper wall, downward-
moving particles originate from the surface. Switching to transformed variables and using
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Win(x) = 0 gives

(s+ µ)W(q, s) = U(q, w, s), (2.5a)
µW(q, s) = D(q, w, s). (2.5b)

Exploiting Eq. (2.3) finally gives for V (q, z, s) the Robin boundary condition [154]

∂zV |z=w = −s(s+ λ)
s+ 2µ V |z=w. (2.6)

The boundary condition at the lower surface z = −w is obtained by symmetry.

Resolution An explicit solution for the distribution of vertically-moving particle V (q, k, s)
can now be found. With f(z) ≡ V (q, z, s) for conciseness, the solution of Eq. (2.2) gives
f(k) = c1/(c2 + k2) and2

c2f(z) − f ′′(z) = c1δ(z), (2.7)

where the positive constants c and c1 are independent of z and read as

c2 = (s+ λ) [q2(2s+ λ) + 2s(s+ λ)2]
2q2 + 2s2 + 3λs+ λ2 , (2.8a)

c1 = (s+ λ) [q2 + (s+ λ)2]
2q2 + 2s2 + 3λs+ λ2 . (2.8b)

Given the boundary conditions, the solution is

V (q, k, s) = c1

2c
cs2µ cosh(cz̃) + ssλ sinh(cz̃)
ssλ cosh(c) + cs2µ sinh(c) , (2.9)

where for brevity the notation sκ ≡ s + κ and z̃ ≡ 1 − |z| is used. The distribution of
horizontally-moving particle H ≡ R + L follows from the solution to Eq. (2.2), giving

H(q, k, s) = k2 + (s+ λ)2

q2 + (s+ λ)2 V (q, k, s), (2.10)

from which H(q, z, s) can be deduced explicitly. Note that H(q, z, s) satisfies a boundary
condition similar to Eq. (2.6), presumably because the only source of horizontally-moving
particle is the population of vertically-moving particle. Finally, the distribution of particle
within the slit, whatever their direction of motion, is P (q, z, s), with P = H + V and the
distribution at the surface W(x, t) derived from Eqs. (2.5a)-(2.5b) is

W(q, s) = V (q, w, s)
s+ 2µ . (2.11)

With P (q, z, s) and W(q, s) known explicitly, one can check the conservation of particle
number ∫ ∞

−∞
dx

∫ w

−w
dz P (x, z, t) + 2

∫ ∞

−∞
dxW(x, t) = 1, (2.12)

or in a equivalent manner limq→0 [P (q, s) + 2W(q, s)] = 1/s, where P (x, t) denotes the
density integrated over the slit height.

2First, a symbolic computation software is used to solve the matricial system with the chosen initial
conditions (Rin(q, k) = 1/4 and a similar result for Lin, Uin and Din). Second, the equation of f(k) is
converted to a differential equation for f(z) by using the properties of the Fourier transform.
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Longitudinal Diffusion Coefficient If the long-time and large scale spreading be-
havior is diffusive, the expansion at small s and q has the form P (q, s) ∼ 1/(s + Dq2).
This is satisfied for P , W and the total distribution T ≡ P + W with the same coeffi-
cient D. An alternative route to the diffusion coefficient is to consider the second moment
M(t) =

∫ ∞
−∞ dx x2T (x, t). Its Laplace transform is M(s) = − limq→0 ∂

2
qqT (q, s) and the

diffusion coefficient is D = lims→0 s
2M(s)/2. Once all calculations are done, the final

result for the longitudinal diffusion coefficient in dimensionless form is D = 2µ/λ(1+4µ).

2.2.2 Extensions of the Model
Anisotropic Tumbling In contrast to the simplest version of RTP, real instances of
motion in micro-organisms and cells exhibit reorientation events that are generally not
anisotropic [45, 51, 56, 58, 59]. Accordingly, an extension of the model is considered, by
introducing λf , λr and λs, the rate of tumbling in respectively forward, reverse and side
direction. As an example, the evolution equation for the distribution of upward-moving
bacteria U(x, z, t) is now

∂tU = −∂zU − λU + λfU + λrD + λs(R + L). (2.13)

Denoting as λ the total rate of tumbling and assuming no chirality in motion, one has
λs = (λ− λf − λr)/2. The steps taken afterwards are similar to those described above for
the isotropic case.

Motion at the Surface It has been assumed thus far that, until a successful escape
occurs, the particle remains stationary at the wall. In this scenario, the surface behaviour
is defined solely by the escape mechanism3, which depends only on the escape rate µ. For
bacteria, as discussed in Sec. 1.3.1, this escape rate may be linked to tumbling [11,155] or
other complex dynamics [117,156,157]. This assumption serves as a basic approximation
for scenarios where microorganism-wall interactions result in residence, including trap-
ping [110, 133], transient adhesion events [119], or surface-bound states [158]. However,
if particles move on the solid boundary rather than being trapped, motion at the sur-
face must be described explicitly to be accounted in the model. Displacement along the
surface may also be relevant to a wide range of observed behaviors that include motion
at solid interfaces [117, 118, 120, 122] (see Sec. 1.3.1). The four-direction model is not
intended to capture the complex physics of these system-specific behaviors, but rather
to account for simpler limiting cases. In this context, a natural and flexible assumption
is that the particle at the wall move along the surface according to a one-dimensional
run-and-tumble process, with parameters that may differ from those inside the slit. The
following paragraph presents an analytical formulation of this surface motion within the
framework of the four-direction model.

Let v̄ and λ̄ represent the velocity and tumbling rate at the surface. The evolution
equations for the left-moving and right-moving surface particle distributions (L̄ and R̄

3In the four-direction model, detachment can only occur if particles move away in the direction normal
to the surface, therefore there is only one possible direction in which particles can be oriented after
detachment.
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respectively) near the upper surface (z = ω) are:

∂tR̄ = −v̄ ∂xR̄ − (λ̄′ + µ)R̄ + λ̄′L̄+ S(x, t), (2.14a)
∂tL̄ = +v̄ ∂xL̄− (λ̄′ + µ)L̄+ λ̄′R̄ + S(x, t), (2.14b)

where λ̄′ = λ̄/2. The source term S(x, t) = U(x,w, t)/2 represents the arrivals to the sur-
face population from particles moving upward near the surface. The factor 1/2 accounts
for the equal probability of a particle choosing to move left or right along the surface upon
impact. Switching to Fourier-Laplace variables, using the initial conditions R̄in = L̄in = 0,
and solving the linear system yield a kernel K(q, s) that relates the surface density to the
incoming flux of particles:

K(q, s) ≡ U(q, w, s)
W(q, s) = s+ µ+ v̄2q2

s+ λ̄+ µ
. (2.15)

Following the steps outlined in Sec. 2.2.1, the generalized boundary condition for the
vertically-moving particle distribution V (q, z, s) is found to be:

∂zV

∣∣∣∣∣
z=w

= (s+ λ− λf + λr)
µ−K(q, s)
µ+K(q, s)V

∣∣∣∣∣
z=w

, (2.16)

while the surface distribution is given by:

W(q, s) = V (q, w, s)
µ+K(q, s) . (2.17)

The resulting longitudinal diffusion coefficient in dimensionless form is:

D = 2µ
λ(1 − α)(1 + 4µ) + v̄2

(1 + 4µ)(µ+ λ̄)
, (2.18)

where α = (λf − λr)/λ is the mean cosine of the turning angle.

Effective Rotational Diffusion The previous description assumes that directional
changes arise solely from tumbling and surface collisions, and that runs in bulk, regard-
less of length, remain perfectly ballistic. However, for bacteria, cells, or artificial micro-
swimmers, the persistence length is always finite due to thermal fluctuations and active
noise from the surrounding medium and propulsion process. This results in a non-zero
rotational diffusion, a feature that must be then incorporated within the model.

Although rotational diffusion is a gradual process, its impact at large length and time
scales can be effectively included in the four-direction model by introducing instantaneous
isotropic reorientation events that occur alongside tumbling events. These isotropic re-
orientations ensure a finite persistence length, even in the absence of tumbles. The rate
of these instantaneous reorientations is given by τ−1

r = Dr, where Dr is an anlogous to
the rotational diffusion coefficient, chosen such that the decay time of the orientational
correlation function is consistent with the classical “continuous” Brownian noise. Since
tumbling and effective rotational diffusion events are independent Poisson processes, they
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can be seamlessly integrated into the four-direction model.
The only modification required is to adjust the rates λf , λr, and λs, which describe
anisotropic tumbling. Specifically, for a run-and-tumble process with parameters λ and
α, the modified values in the presence of effective rotational diffusion with rate τ−1

r are4:

λmod = λ+ τ−1
r , αmod = α

λ

λ+ τ−1
r
. (2.19)

These relations will be useful in Sec. 2.3 and Sec. 2.4.

2.2.3 Main Result: Longitudinal Diffusion Coefficient
By combining the previous calculations, an exact solution for the longitudinal diffusion
coefficient D is obtained, characterizing the long-time asymptotic dispersal along the slit
direction (i.e., parallel to the slit walls). Despite being exact, the result is remarkably
simple and can be expressed as:

D = ϕDb + ϕ̄D̄

1 + µ/λ̄
. (2.20)

Here, Db and D̄ are the diffusivities in the case of bulk-only and surface-only motion,
respectively. Specifically, Db = v2

o/2λ(1 − α) represents the contribution from motion
within the slit, while D̄ = v̄2/λ̄ is the diffusion coefficient for one-dimensional motion at
the surface (see Eq. 1.8). The terms ϕ and ϕ̄ ≡ 1 − ϕ denote the fraction of particles in
the slit and at the surface, respectively, when steady-state values are reached, with:

ϕ = 1
1 + vo/2µW

. (2.21)

Limiting Behaviors Several limiting cases can be checked from Eq. (2.20). For an
infinitely wide slit (W → ∞) or a reflecting surface (µ → ∞), the particle remains mostly
within the slit, and the diffusion coefficient approaches its bulk value Db, as expected.
Conversely, for a quasi-absorbing boundary (µ → 0), the particle predominantly resides at
the wall, andD converges to the surface value D̄. To ultimately validate Eq. (2.20), motion
according to four-direction model was reproduced numerically, as detailed in App. A.2.1.
Diffusivity was measured across a wide range of motion parameter combinations, resulting
in an excellent agreement between numerical data and the prediction of Eq. (2.20), with
relative deviations typically below one percent.

While the focus is primarily on the longitudinal diffusion coefficient D, it is also of
interest to examine the density profile P (z, t) across the slit, disregarding the longitudinal
position x of the particles. From P (q, z, s) derived earlier, the expression P (z, s) =
limq→0 P (q, z, s) can be obtained. In the steady state, this yields:

Pst(z) = lim
t→∞

P (z, t) = lim
s→0

sP (z, s) = 2µ
1 + 4µ, (2.22)

in dimensionless form. Similar to the confined Telegraph process, the density profile is
flat. The fraction of particles in the slit is

∫ w
−w Pst(z)dz = 4µ/(1 + 4µ), which is the

dimensionless form of Eq. (2.21).
4In particular, αmod = (λf,mod − λr,mod)/λmod, with λf,mod = λf + τ−1

r /4 and λr,mod = λr + τ−1
r /4.
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Beyond the Weighted Average Assumption A simple expectation for the diffusion
coefficient of confined RTPs might be a weighted average of the bulk and surface diffu-
sion coefficients, based on the fraction of particles in each region. However, Eq. (2.20)
shows that this is not exactly the case. The discrepancy arises from the correction fac-
tor (1 + µ/λ̄)−1 in the second term of Eq. (2.20). This contrasts with other scenarios,
such as Poissonian bimodal motions with alternating displacement types, where diffusion
coefficients can be additive [159].

The additional factor reduces to unity only in the trivial cases where particles never
leave the wall (µ → 0) or when surface motion becomes negligible due to frequent surface
tumbling (λ̄ → ∞). The deviation between Eq. (2.20) and a simple weighted average can
be understood as a correction arising from the interplay between the escape process and
the persistence of surface motion, particularly in the limit of a narrow slit. Notably, when
W → 0, the diffusion coefficient does not reduce to D̄ but instead becomes v̄2/(λ̄+µ), due
to the influence of the additional factor. In a narrow slit, surface motion dominates, as
particles spend most of their time at the wall. However, when an escape event occurs, it
is effectively equivalent to a surface tumble5, resulting in an effective surface tumble rate
of λ̄ + µ. Thus, the correction factor in Eq. (2.20) can be interpreted as an adjustment
required in the case of extreme confinement.

2.3 Extension to a Continuous-Direction Model
Before exploring the implications of Eq. (2.20), it is essential to first evaluate its broader
applicability. Given the simplifying assumption of constraining motion to only four di-
rections, it is natural to question whether the results of the four-direction model can
effectively describe more realistic RTP motions, which do not impose restrictions on the
direction of motion and reintroduce classical rotational diffusion. This section addresses
the issue by numerically studying the run-and-tumble motion within a slit for particles
with continuous, rather than discretized, directions. The results will demonstrate that
the diffusion coefficient predicted by the discrete model provides a good approximation
for the continuous model, provided that effective parameters are appropriately chosen.

2.3.1 Simulations and Parameters
The “Continuous” Model A model of RTP motion without restrictions on the direc-
tion of movement is considered, referred to as the “continuous model” (see examples in
Fig. 2.2). Its definition and parameters largely mirror those of the four-direction model,
with two key differences. First, particle orientation is now governed by standard rotational
diffusion, so its direction evolves continuously during a run, similar to an ABP. Second,
when a particle escapes from the surface, its initial direction is randomly chosen from
a uniform distribution of directions pointing inside the slit, regardless of the swimming
strategy. Lastly, when a particle hits the wall, its subsequent direction of motion along
the wall is chosen at random. While this behavior is not typically expected for bacteria
on a smooth surface, it remains the simplest assumption for a generic model. These as-

5In the limit W → 0, the particle encounters the opposite wall immediately after escaping. Since the
direction of motion is randomized upon hitting the wall, the effect is equivalent to a surface tumble.
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Figure 2.2: Simulated motion within a slit. (a) Two numerical tracks of “continuous”
run-and-tumble motion occurring at speed vo within a slit of width W , with no motion
at the surface. Dots represent tumbles and escapes from the wall. Tumbling and escape
rates are λ = T−1

s and µ = 0.5T−1
s , respectively, while rotational noise is Dr = 0.1T−1

s .
(b) Two trajectories with surface motion included, where dotted lines indicate movement
occurring at the surface. Same parameters as in (a), with added surface velocity v̄ = vo
and surface tumbling rate λ̄ = 0.5T−1

s . The time unit is Ts = W/vo.

sumption maintains consistency with the four-direction model and serves as the simplest
choice for a generic model.

Simulation Methods To characterize the transport of a continuous RTP in confine-
ment, simulations were performed. The particle’s equation of motion were integrated
numerically using an Euler-Maruyama algorithm with a time step of 10−2 Ts, to produce
trajectories that typically last 105 Ts. Here, Ts ≡ W/vo is defined as the characteristic
time to cross the slit and is used as the unit of time, with the slit width W serving as the
unit of length. No additional units are required as the description is purely kinematic.
Sample trajectories are shown in Fig. 2.2, for cases both with and without surface mo-
tion. The longitudinal diffusion coefficient D (i.e., the diffusion coefficient along the x
direction, parallel to the confining walls) is obtained by fitting the asymptotic slope of
the x-component of the mean-squared displacement, following the procedure outlined in
Annex A.1.3. For each set of parameters, the reported diffusion coefficient is the average
over 10 independent trajectories. A comprehensive error analysis and numerical validation
of the simulation procedure is provided in Appendix A.

Numerical Exploration A systematic exploration of the parameter space was per-
formed. With W , Ts, and vo normalized to one by the choice of units, the model still
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2.3. Extension to a Continuous-Direction Model

Parameter Symbol Unit Min. Max. n

Bulk tumbling rate λ̂ T−1
s 0.05 50 8

Surface tumbling rate ˆ̄λ T−1
s 0.05 50 8

Escape rate µ̂ T−1
s 0.05 50 8

Rotational diffusion coefficient D̂r T−1
s 1/3 3 5

Surface velocity ˆ̄v vo 0 1.5 4
Mean cosine of turning angle α̂ - -1 0.375 3

Table 2.1: Parameters of the continuous model and range explored in simulations. In-
dicated are the minimum and maximum values, as well as the total number n of values
considered. Values for λ̂, ˆ̄λ, µ̂ and D̂r are equally spaced on a logaritmic scale, whereas
values for ˆ̄v are equally spaced in linear scale.

involves six parameters: the tumbling rates in the slit and at the wall (λ̂ and ˆ̄λ), the
escape rate µ̂, the rotational diffusion coefficient D̂r, the velocity at the wall ˆ̄v, and the
swimming pattern, represented by the parameter α̂. For clarity and future reference, all
parameters of the continuous model are indicated with a circumflex symbol. As shown
in Tab. 2.1, each parameter was varied over a wide range, covering up to three orders of
magnitude. The three swimming patterns considered are based on bacterial behavior [62]:
run-reverse, isotropic run-and-tumble, and run-and-tumble with reorientation events that
replicate E. coli’s turning angle distribution6. The corresponding α parameters are −1,
0, and 0.375, respectively.

The simulation data is divided into two subsets. The first subset assumes no motion
at the wall and includes 960 parameter combinations, all of which were simulated. The
second subset incorporates motion at the wall, which adds two additional parameters,
leading to a total of 23,040 possible cases. To maintain computational feasibility, only
1,040 cases were sampled at random from the parameter space. In total, the data set for
diffusion coefficients includes 2,000 parameter combinations.

2.3.2 Effective Parameters
After simulating motion across a wide range of parameter combinations and measuring
diffusivity, the next step is to compare the simulation data with the predictions obtained
using the minimalistic approach of the four-direction model. Initially, when equating the
parameters of the discrete model to those of the continuous model and applying Eq. 2.20,
the agreement is poor, with relative deviations between predictions and simulations typi-
cally around 25% and reaching up to 40% (not shown). However, as will be demonstrated,
a small adjustment in how the parameters are linked between the two models significantly
improves the accuracy of the predictions.

Effective Escape Rate First, consider the fraction of particles moving within the slit.
According to the four-direction model and Eq. (2.21), this quantity depends solely on
the escape rate µ. As shown in Fig. 2.3, the numerical results for ϕ̂ in the continuous

6Specifically, turning angles are sampled for a distribution following Eq. [2] of Ref. [89], with parameters
taken from Fig. 3 of the paper.
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Figure 2.3: Effective escape rate.
Fraction of particles within the slit as
a function of surface escape rate. Dots
show the simulation data for all param-
eter combinations considered. Curves
show the four-direction model predic-
tions of Eq. (2.21), with an escape rate
that is uncorrected (dashed line) or ef-
fective (continuous line). Time unit is
Ts = W/vo.

model, across all parameter considered, are consistent with this prediction: they show a
strong dependence on the escape rate µ̂ and little to no dependence on other parameters.
However, significant deviations between simulation and prediction occur when keeping
the identity µ = µ̂ (dashed line). A quantitative match can be achieved by introducing
a correction, µ = µ̂/a. A fit to the numerical data yields a ≃ 1.4 (solid line), and as
detailed in App. A.2.2, a heuristic argument suggests a =

√
2, a value adopted hereafter.

Effective Rotational Noise Consider now the longitudinal diffusion coefficient. Sim-
ulation results, shown in Fig. 2.4a, present rescaled numerical estimates of diffusivity as
a function of the tumbling rate λ, for fixed values of Dr and µ. Despite the correction to
the escape rate, the agreement between simulations and theoretical predictions remains
unsatisfactory, especially at low tumbling rates (dotted lines). This suggests that the issue
could be rotational noise, which becomes dominant when the tumbling rate is low. Addi-
tionally, given the different models of rotational diffusion in the continuous and discrete
models (one following classical Brownian motion, the other based on effective isotropic
tumbling), the equality of Dr and D̂r is called into question. Consequently, Dr is treated
as a free parameter, and Eq. (2.20) is fitted to all numerical diffusion estimates7. The
fitting results for the effective rotational diffusion coefficient Dr are shown in Fig. 2.4b as
a function of D̂r, across all tested data8. The relationship is remarkably simple, involving
only a constant shift: Dr = D̂r + c, with c ≃ 0.4 in units of T−1

s . This correction results
in accurate agreement, as illustrated in Fig. 2.4a (continuous line), where theoretical pre-
dictions align with numerical data over the entire range of λ. Although shown here only
for two curves, this agreement holds across all the parameters tested.

Why is a Correction Needed? The origin of the additive correction to rotational
diffusion can be qualitatively understood. In the four-direction model, a particle arriving
at or escaping from the wall moves perpendicular to it, retaining perfect memory of

7Specifically, for fixed values of α and µ, the numerical data for D(λ) is fitted with Dr as a free
parameter.

8Here, 960 parameter combinations are considered where the particle is motionless at the wall. The
case with wall motion cannot be similarly treated due to random parameter sampling. However, the
correction applies since it is independent of wall motion.
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μ = ̂μ/ 2, Dr = D̂r + 0.4Ts−1
μ = ̂μ/ 2, Dr = D̂r

Figure 2.4: Effective rotational noise. (a) Numerical estimates of diffusivity (squares)
vs. bulk tumbling rate λ. Here, D̂r = T−1

s and ˆ̄v = 0 are fixed, while µ̂ = 0.1 and 0.5
for the red and blue data, respectively. Continuous and dotted lines represent predictions
of the four-direction model, with and without the correction for rotational noise. (b)
Effective rotational diffusion coefficient Dr as a function of bare coefficient D̂r. Dots
show values of Dr obtained by fitting simulation data of the continuous model with the
analytical prediction of the discrete model. The particle is motionless at the wall. Lines
correspond to linear regression.

its direction of motion, except during reversals. In the continuous model, however, the
direction chosen upon escape is randomized, leading to a loss of directional memory. This
loss acts as a localized source of rotational diffusion, governed by the inverse crossing time
T−1

s = vo/W , and disappears in the case of an infinitely wide slit. The constant c = 0.4
is intriguingly close to 4/π2, a value adopted for convenience, though a clear justification
for this choice remains elusive9.

Effective Parameters In light of the data analysis, it is proposed that the diffusion
coefficient of the continuous model can be described by the discrete model prediction from
Eq. (2.20), combined with the following effective parameters:

µ = µ̂/
√

2, (2.23a)
Dr = D̂r + cvo/W, c ≡ 4/π2. (2.23b)

No corrections are necessary for other parameters. To evaluate the predictive accuracy
of this approximation, it was tested on the entire simulation data set. Figure 2.5 shows
the distribution of relative deviations δ between the prediction and the simulation data.
Across all parameter combinations, the relative deviation never exceeds 10% and remains
below 5% in 95% of cases. This result holds both with and without motion at the wall.
It is concluded that, with the use of effective parameters, the analytical approach of

9The factor 2/π recurs throughout this problem, as discussed in App. A.2.2. For instance, consider a
particle arriving at the wall with angle θ and leaving with angle θ′, as illustrated in Fig. A.5. Assuming
both angles are isotropically distributed, the orientation correlation, given by the average of cos(θ′ − θ),
results in 4/π2.

37



Chapter 2. Optimal Run-and-tumble in Slit-like Confinement

0 2 4 6 8
δ (%)

0.0

0.2

0.4

0.6

0.8

1.0

P (δ)

v > 0

v = 0

v > 0

v = 0

Figure 2.5: Accuracy of predict-
ing the continuous-direction re-
sults. Cumulative distribution
of relative deviation δ between
the diffusion coefficient from pre-
diction (four-direction model) and
simulations (continuous-directions).
Shown are the cases without and
with surface motion (v̄ = 0 and
v̄ > 0 respectively). Predictions are
made including the parameter cor-
rections (Eqs. 2.23a-2.23b).

the four-direction model provides an approximate yet reliable prediction for the diffusion
coefficient of a continuous run-and-tumble particle in confinement.

2.4 Maximizing the Diffusion Coefficient
This section builds on the model developed in Sec. 2.2, which was validated and extended
by the results in Sec. 2.3. Here, the model will be used to identify and understand the
conditions under which long-time exploration is most efficient. For simplicity, the four-
direction model is used to provide analytical insight, and implications for the continuous
model can be deduced by transitioning from bare to effective parameters.

2.4.1 Optimal Mean Run-Time

This section examines whether dispersal along the slit can be maximized through an
appropriate choice of run time τ . This question is relevant for microorganisms whose
run-and-tumble dynamics may be influenced by environmental conditions [160], as well
as for artificial micro-swimmers, or for micro-robots whose navigation strategies have to
be optimized. Throughout Sec. 2.4.1, the mean run time τ is treated as the variable
parameter, while the slit width W and swimming velocity vo remain fixed. For simplicity,
W and vo are taken as the unit of length and unit of velocity, respectively, making the
crossing time Ts ≡ W/vo the unit of time.

Without Surface Motion

The analysis begins with the simplest case, where the particle remains stationary when at
the surface (v̄ = 0). The tumbling rate is λ = τ−1. For the escape rate µ, a value inspired
by the behavior of real microorganisms is selected. A natural assumption is that escape
occurs only through tumbling, leading to µ = (ητ)−1, where the prefactor η ⩾ 1 represents
the average number of tumbles required for a successful escape. The longitudinal diffusion
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Figure 2.6: Diffusivity vs. mean
run-time. Shown for different ro-
tational diffusion times. Particles
are motionless at the wall (v̄ = 0),
η = 2 and α = 0. Unit time is
Ts ≡ W/vo. The dashed lines show
the lowest order limiting behavior
predicted from Eq. (2.25) for small
and large τ .

coefficient in dimensionless form is then given by:

D = τ

α′(ητ + 2) , (2.24)

where α′ ≡ 1 − α is introduced for brevity. The function D(τ) increases monotonically
and reaches a plateau at large τ . This behavior can be understood as follows: as τ → ∞,
the fraction ϕ of particles within the slit decreases as ϕ ∼ τ−1, while the bulk diffusion
coefficient increases as Db ∼ τ , resulting in a limiting constant value for D. There-
fore, transport is most efficient for a vanishing tumbling rate, assuming perfectly ballistic
motion during runs.

Including Rotational Noise However, for any micro-organism, pure ballistic motion
is unrealistic, and as discussed in Sec. 2.2.2, rotational diffusion can be considered in the
model to have a more realistic description. Therefore, unless otherwise stated, a finite
rotational diffusion with characteristic time τr = D−1

r is assumed from this point onward.
Using the modified parameters from Eq. (2.19) in conjunction with Eq. (2.20) results in
the following expression for the diffusion coefficient:

D = ττr

(τ + α′τr)(ητ + 2) . (2.25)

As shown in Fig. 2.6, the diffusion coefficient now exhibits non-monotonic behavior with
respect to the mean run time τ . A maximum Dm is reached at an optimal mean run
time τm, given by:

τm =
√

2α′τr/η, Dm = τr

2 + 2
√

2α′ητr + α′ητr
. (2.26)

Interpretation and Limiting Cases The rationale for this maximum is as follows:
In the limit of frequent tumbling (τ → 0), the particle primarily remains within the slit,
and the diffusion coefficient approaches its bulk value, D ≃ τ/2α′ ∼ τ , which increases
with τ . Conversely, in the limit of rare tumbling (τ → ∞), the particle mostly stays
at the wall, and infrequent excursions into the slit result in limited displacement due to
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rotational diffusion, leading to D ≃ τr/ητ ∼ τ−1, which decreases with τ . These two
limiting behaviors are separated by a maximum in the diffusion coefficient. For the max-
imum value Dm, two regimes emerge, separated by a rotational time τ ∗

r ≡ 2/α′η. When
τr ≪ τ ∗

r , the maximum Dm ≃ τr/2 is controlled by rotational diffusion. When τr ≫ τ ∗
r ,

the maximum Dm ≃ 1/α′η is governed by the escape process at the wall. Finally, in the
limit of high rotational persistence (τr → ∞), the maximum becomes less pronounced and
shifts towards longer run times, approaching the plateau behavior predicted by Eq. (2.25)
for pure ballistic motion.

In conclusion, this analysis shows that long-time dispersal in a slit, without surface
motion, is maximized by selecting a finite mean run time that depends not only on the
slit crossing time but also on the rotational diffusion, the swimming pattern, and the wall
escape efficiency.

With Surface Motion

When the particle remains mobile at the slit boundary, the maximum in diffusion coeffi-
cient reached at a finite τm may disappear. Keeping λ and µ as above, we fix λ̄ = λ− µ.
With such a choice, reorientation events occur at surfaces with the same frequency as in
the slit and may result in escape, with rate µ, or in surface tumble, with rate λ̄. The
diffusion coefficient in dimensionless form is

D = ττr [τ + τr + ηv̄2τ(τ + α′τr)]
(τ + τr)(τ + α′τr)(ητ + 2) . (2.27)

It turns out that there is a critical velocity v̄c which separates two regimes, illustrated
in Fig. 2.7. For v̄ < v̄c, there is a maximum at finite τm whereas for v̄ > v̄c, the highest
value is reached for an infinite run time10. In other words, for slow wall motion, optimal
transport requires a finite run time whereas for fast wall motion, it is advantageous to
eliminate tumbling entirely.

Evolution of the Maximum The dependence of τm near the critical velocity v̄c may
follow two distinct scenarios. In the first scenario, visible in Fig. 2.7(a), there is an absolute
maximum whose location continuously shifts to higher τm, leading to a function τm(v̄) that
diverges at v̄c. In the second scenario, illustrated in Fig. 2.7(b), there is at the critical
velocity a local maximum whose height equates the plateau reached for τm → ∞. In this
case, τm(v̄) remains finite for v̄ < v̄c, before jumping discontinuously at v̄c to an infinite
value. Note that if one defines τ−1

m as an order parameter, the first and second scenarii are
reminiscent of second and first-order transition respectively. Because the optimal mean
run time τm obeys a fourth-order equation, it can not be written explicitly in the general
case. Appendix A.2.3 presents a few cases where approximations are possible.

2.4.2 Monotonous Dependence on Slit Width
This section examines how exploration in a confined environment is affected by the slit
width for a particle with a fixed motility strategy. Unlike the mean run time, the diffusion

10In the limit τm = ∞, the diffusion coefficient is D = τrv̄
2, a value controlled by the rotational diffusion

and surface velocity.
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(a) (b)

Figure 2.7: Diffusivity vs. mean run-time, including surface motion. In both
panels, black dots indicate the position of the maximum (the dot on the right edge signifies
that the maximum occurs at infinity). (a) First scenario: The critical value at which the
maximum disappears is v̄c = vo/2, as given by Eq. (A.10). Parameters are η = 2, τr = 1,
and α = 0. (b) Second scenario: For v̄ < v̄c ≃ 0.24 vo, the maximum is reached at a finite
τ . For v̄ > v̄c, the highest value is attained in the limit τ → ∞. Parameters are η = 2,
τr = 10, and α = 1/2.

coefficient’s dependence on slit width is always monotonous, ruling out the possibility of
a maximum. However, the slope of the D(W ) function can change sign at a critical value
v̄∗, given by:

v̄∗

vo
≡

√
τ + τr

2(τ + α′τr)
. (2.28)

When v̄ = v̄∗, the slit width has no effect on the longitudinal diffusion. For v̄ < v̄∗,
diffusion reaches its maximum when W → ∞, with D = Db. Conversely, for v̄ > v̄∗, the
highest diffusion occurs when W → 0, with D = v̄2/(τ−1 + τ−1

r ). These two regimes are
illustrated in Fig. 2.8. Somewhat counterintuitively, even though surface displacement is
slower than in the interstitial space, spreading may be enhanced in a narrow slit. This is
because motion along the surface is one-dimensional, leading to more efficient exploration
along the slit.

2.4.3 Optimal Transport for Real Microswimmers

This section focuses on how the previous results can be applied to develop an optimality
criterion, relevant for real-world scenarios. To examine the conditions required for max-
imal transport, it is assumed that there is no motion at the wall, a choice justified by
several factors. First, the maximum diffusion is known explicitly in this case, simplifying
the analysis. More importantly, while perfectly flat and smooth walls are often used in
laboratory experiments, such surfaces may be less common in natural settings. As ex-
plained in earlier sections (See for instance Fig. 1.6), natural porous environments often
have irregular, rough, or fuzzy boundaries, which are likely to impede surface motion.
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Figure 2.8: Diffusivity vs. con-
finement size. Diffusivity curves
are shown for several surface veloc-
ities. The particular velocity where
diffusion is independent of width is
v̄∗/vo = 1/

√
2. Parameters are α =

0, τr = 1 and η = 2.

Given these assumptions, the optimal mean run time τm in a slit of width W is:

τ 2
m =

√
2(1 − α)
η

[
1 + c

τrvo

W

]−1 τrW

vo
, (2.29)

which is derived from Eq. (2.26) and the effective parameters from Eqs. (2.23a)-(2.23b).
Depending on the ratio between τr and the crossing time Ts ≡ W/vo, two limiting cases
arise. For τr ≪ Ts, where orientation is lost before the particle can cross the slit, τm ∼√
τrTs is the geometric average of the rotational and crossing times. For τr ≫ Ts, indicating

quasi-ballistic motion at the slit scale, τm is proportional to the crossing time, and the
optimal mean run length lm ≡ voτm is given by:

lm
W

=

√√√√√
2(1 − α)
cη

. (2.30)

Unless escape by tumbling is highly inefficient and η very large, the lm/W ratio is typically
of order unity. When rotational diffusion is negligible, the optimal longitudinal transport
occurs when the mean run length is comparable to the confinement size. Intuitively, runs
should be long enough to efficiently explore the slit but short enough to avoid excessive
time spent near the wall.

Though the four-direction model captures only general features, its predictions are
interesting to evaluate in real systems. Since the motility strategies of microorganisms
are typically fixed, the question becomes: in what confined environment would these
motions be optimal for bacteria and cells?

Bacteria For E. coli, typical parameters are τm = 1 s, τr = 2.5 s11, α = 1/3, vo =
30 µm s−1, and η = 3, giving lm/W ≃ 0.5. More generally, a range of values representative
of bacterial motion can be considered: τm = 0.3−1 s, η = 2−4 [11,82], vo = 20−40 µm s−1,
and α between −1 and 1/2. The lm/W ratio spans a range of 0.3 − 1.7, remaining on the

11Here, τr = 1/2Dr for three-dimensional systems, with Dr = 0.2 s−1 [82].
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order of unity, consistent with the prediction from Eq. (2.30). The corresponding slit size
ranges from W = 3 − 120 µm, which is relevant to several bacterial habitats. Micropores
in mature biofilms [161], fibronectin and collagen gels [133,162], and sandstone, sand, and
soil aggregates [100] often fall within the 1 − 100 µm range.

Cells Though less commonly used, the RTP model offers a general framework to de-
scribe cell movement. A common motility strategy among eukaryotic cells is amoeboid
crawling, where cells extend pseudopodia, which can be modeled as effective tumble
events [8, 163, 164]. Although more challenging to characterize than bacterial motion,
the τm/τr ratio for cells appears to be higher, and for simplicity, is set to unity here. With
η = 2 − 4, α = 0, a velocity of vo = 1 − 5 µm mn−1, and τm = 5 − 20 min [165, 166], the
lm/W ratio is below unity, falling in the range 0.3 − 0.6. The optimal confinement size
for such motion is 8 − 300 µm, relevant to bodily environments such as interstitial spaces
and ducts.

Comparison with Earlier Results in Literature

The optimal transport criterion can also be compared with earlier findings in related
contexts. Kurzthaler et al. [21], discussed in Sec. 1.4.2, examined the diffusivity of ac-
tive polymers moving in disordered porous media made of randomly placed overlapping
spheres. The study found that the diffusion coefficient is maximized when the mean
run length satisfies lm = O(1)Lc,max, where Lc,max is the maximum chord length of free
space, typically six times the average pore size (see Fig. 1.9b). Unlike the prediction in
Eq. (2.30), the optimal mean run length is several times larger than the characteristic pore
size. This difference could be expected, given the distinct systems considered. Kurzthaler
et al. examined active polymers with sizes comparable to the pores, moving through
highly disordered media. In contrast, the current study focuses on point particles in a
simpler geometry.

Beyond bacteria-inspired motility, a recent study introduced the "reverse-when-stuck"
strategy [128], where reversal occurs when movement is blocked by an obstacle, requiring
the ability to sense velocity. Simulations suggest that this strategy outperforms others
(see Fig. 1.4.2c). Is the reverse-when-stuck strategy also effective in a slit? The answer
is yes, as shown by analytical considerations. Up until now, the escape rate µ has been
governed by the tumbling rate, but within this framework, it can be treated as a free
parameter. Focusing again on the case without surface motion, Eq. (2.20) indicates that
the diffusion coefficient increases with µ, reaching its maximum when µ → ∞. This
conclusion holds for the continuous model as well12. Physically, this limit corresponds
to a particle escaping the wall immediately after contact, striking an optimal balance by
avoiding tumbles while minimizing time spent at the wall.

12In our model, the escape direction is isotropically distributed, which differs from the specific reversal
event considered in Ref. [128].
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2.5 Conclusion and Perspectives
Summary In summary, this chapter presented a coarse but generic model capable of
capturing the long-time diffusive spreading of run-and-tumble motion confined within a
two-dimensional planar slit. By first simplifying the motion to discrete directions, an
exact solution for the diffusion coefficient was derived. This prediction was then tested
and shown to be relevant even for motions without directional constraints when effective
parameters were used. This result was confirmed through simulations across a wide range
of conditions. Furthermore, the validated model was used to identify optimal motion
properties that maximize transport. When surface motion is negligible, the optimal mean
run time is often comparable to the confinement size, suggesting that the motility patterns
of bacteria and cells may be particularly efficient in some natural porous environments.

Perspectives

The proposed optimality criterion was derived under several simplifying assumptions.
However, the model has broader applicability and could yield different criteria under
other conditions. For example, parameters such as wall velocity [167] could depend on
channel width. Additionally, it was assumed throughout most of the discussion that
wall escape occurs via tumbling, a reasonable assumption for idealized bacterial motion.
However, certain bacteria and other microorganisms or cells may employ distinct escape
mechanisms. Given the generic nature of the model, the effects of these mechanisms can
still be explored by appropriately adjusting the escape rate.

Several aspects of confined run-and-tumble motion were excluded from this descrip-
tion but warrant further investigation. First, both tumbling and escape events were
modeled as Poissonian processes. As shown by power-law distributions in run and trap-
ping times [12], non-Poissonian processes are also relevant, though they generally make
theoretical treatment more complex [90]. Second, specific surface behaviors, such as
hydrodynamics-induced circling trajectories, might also need to be considered. Including
these effects would make the model more realistic, though applicable to a narrower class
of systems. Finally, in contrast to the simple geometry considered here, many natural
porous environments are disordered. The influence of disorder on the optimality criterion
remains to be fully characterized, but this issue will be a main point of investigation in
the following Chapter of the thesis.

From a broader perspective, run-and-tumble motion in confined media belongs to
the class of coupled bulk-surface transports. Even in purely diffusive systems [168],
such phenomena can exhibit unexpected properties [169] and offer significant opportu-
nities for optimization, such as minimizing reaction time [170]. Unlike Brownian motion,
which is characterized by a single quantity—the diffusion coefficient—motility strategies
of microorganisms involve many parameters and exhibit a wide range of behaviors. Un-
derstanding how this flexibility can be leveraged to ensure optimal transport in various
environments remains an open question.
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Universal Dispersal of Motile Microorganisms in Porous Media
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review. The research results from a collaboration supported by the European Training
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of Environmental Engineering of ETH Zurich.

3.1 Introduction
Motivation and Scope In Chapter 2, the focus has been on the dispersal of mi-
croswimmers within slit-like microstructures, modeled as run-and-tumble motion within
two parallel infinite walls. As previously discussed, the slit is arguably the simplest
form of confinement, defined only by a single parameter: the distance between the walls.
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Nevertheless, Chapter 2 demonstrated that even this relatively simplified scenario poses
significant analytical complexity, requiring the introduction of discretized motion direc-
tions to be fully solvable. In contrast, Sec. 1.3 explored real bacterial habitats, where
confinement is rarely as simple as a planar slit. Instead, these environments typically
involve heterogeneous and disordered obstacles (see, for instance, Fig. 1.6). These con-
siderations motivate the present work. The results of Chapter 2 underscored the value of
a model capable of accurately predicting diffusivity, as it allowed for the rationalization
of the relationship between diffusivity, motion, and environmental parameters, thereby
identifying optimality criteria for motion. The primary goal of this chapter is to replicate
and extend the results of Chapter 2 to porous media, i.e., environments where obstacles
of arbitrary shapes are distributed in space.

A Vast Parameter Space This extension presents a significant challenge: the vast
diversity in natural microstructures implies a potentially infinite variety of confining ge-
ometries that should be considered. This diversity makes it challenging to define a uni-
versal “porous medium” model that accurately represents the broad spectrum of natural
habitats, where pore morphologies can be very diverse, with sizes that range from mi-
crometers to millimeters [171]. This complexity is further compounded by the variety
of motions typically exhibited by microorganisms (see Sec. 1.1.1) and the wide range of
behaviors they display when interacting with solid boundaries (see Sec. 1.3.1).

Linking to Existing Research and Knowledge Gaps These challenges align with
the current research landscape outlined in Sec. 1.4.2. Despite a recent increase in studies
on both non-tumbling [127,139,172,173] and tumbling microorganisms [12,20,21,118,128–
130,143,174] within confined settings, the uncertainty regarding whether the insights from
idealized porous media can be applied to the diversity of natural microstructures remains
a critical challenge. Furthermore, few general principles have emerged, as most studies
rely on system-specific assumptions or simplified formulations. One notable exception is
the observation across different systems of an optimal persistence time at which dispersal
is maximized [20–22,128,131], a result that also aligns with the findings of Chapter 2 [143].
However, no overarching theory exists to predict this maximum across different systems.

In this context, an interesting hypothesis has been put forward in a pre-print by Mat-
tingly [131], which suggests that the specific details of the porous microstructure can be
“largely forgotten”, suggesting that only a small set of environmental features significantly
influences dispersal. However, the generality and applicability of this claim remains un-
clear, as it was derived from a specific microstructure and swimmer model1.

Summary and Main Findings The work presented in this chapter investigates the
dispersal of motile microorganisms in porous media. Similar to Chapter 2, the focus is
on run-and-tumble microorganisms, which stop moving upon encountering a solid surface

1Point-like run-and-tumble particles moving within a two-dimensional porous medium consisting of
overlapping randomly placed disks
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but can escape through tumbling. However, unlike Chapter 2, which began with theory
that is later tested by simulations, this chapter begins with a purely numerical explo-
ration across different combinations of microstructures and swimming strategies. The
results of the numerical exploration suggest that dispersal may universally depend on the
mean run time, regardless of both the specifics of the microstructure or the swimming
strategy. This finding is then explained by a simple theoretical framework, which is able
to predict diffusivity across all cases tested. The model also rationalises the key insight
from Mattingly [131] that much of the microstructure’s complexity can be “forgotten”,
the key being the invariance of the mean free path [175, 176], also known as Cauchy
universality [177].

Outline of the Chapter The chapter is organized as follows: Sec. 3.2 begins with a
numerical investigation of dispersal across diverse microstructures and swimming strate-
gies, identifying a universal relationship between dispersal and mean run time. Sec. 3.3
introduces an analytical model that combines the RT analytical framework for bulk dif-
fusivity with Cauchy universality, and then compares it to both the numerical data and
previous results from the literature. Finally, Sec. 3.4 expands the analytical framework
to include microorganisms capable of sliding along surfaces, then it validates these new
findings through simulations.

3.2 Numerical Exploration
This section presents a numerical exploration of diffusivity across a wide range of parame-
ter combinations, including various porous microstructures. Sec. 3.2.1 details the specific
model used, while Sec. 3.2.2 describes the simulation methods. The results of this explo-
ration, covering a broad variety of swimming parameters and confinement morphologies,
are presented in Sec. 3.2.3.

3.2.1 Swimmer Model and Porous Media
Swimming Strategies A run-and-tumble (RT) microorganism moving through a porous
medium is considered (Fig. 3.1). The microorganism moves with velocity vo, undergoes
rotational diffusion with coefficient Dr, and tumbles following a Poisson process at a rate
of τ−1, with reorientation angles following a non-chiral, arbitrary distribution. In the nu-
merical results, three specific swimming strategies are examined: run-reverse (RR), where
reorientation results in a complete reversal of direction; run-and-tumble with isotropic re-
orientations (RTi); and run-reverse-flick (RRF), which alternates between reversals and
random ±90◦ turns. Figure 1.1c shows examples of the three strategies considered here.

Surface Behavior Upon encountering a surface, the microorganism comes to a stop
and remains at the solid boundary. Each tumble event while at the surface results in
escape with a probability of η−1, where η is the average number of tumbles required to
escape. The escape direction is uniformly distributed in the available half-space (Fig. 3.1,
inset). This assumption simplifies the complexity of real cell dynamics cells [11,118] (see
Sec. 1.3.1), while remaining a generic approach, consistent also with the framework used
in the previous chapter for motion within the slit (see Sec. 2.2.2).
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Figure 3.1: Model of a run-and-tumble microorganism in a porous medium. The
microorganism moves with velocity vo, undergoes rotational diffusion with coefficient Dr,
and tumbles at rate τ−1, where τ is the mean run time. After colliding with a surface, the
microorganism can escape only by tumbling, with the new direction randomly sampled
from the available half-space (orange rays in the inset).

Porous Environments To address the challenge of defining a general porous medium,
different models of porous environments are considered, featuring solid obstacles of var-
ious shapes, sizes, and orientations. Specifically, the following configurations are exam-
ined: monodisperse disks on a square lattice (Fig. 3.2a), ordered rectangles with centers
placed on a square lattice (Fig. 3.2b), randomly placed, non-overlapping polydisperse disks
(Fig. 3.2c), and randomly placed, non-overlapping rods (Fig. 3.2d). For the polydisperse
disks, radii are distributed according to a uniform distribution in the range [0.1R, 1.9R],
where R is the mean obstacle radius. This ensemble of geometries captures a wide range
of possible environments, including both ordered and disordered structures, circular and
linear boundaries, as well as mono- and polydisperse configurations.

3.2.2 Numerical Methods
Agent-based simulations were performed to determine diffusivity as a function of the
mean run time τ across various porous environments and swimming parameters. The
simulations were based on a custom Julia code, utilizing the MicrobeAgents.jl library.
Detailed informations on the simulation model are provided in Appendix A.1.2.

Simulation Units In all simulations, the swimming speed vo is set to one, defining the
time unit as tu = lu/vo, where lu is the unit of length. The choice of lu depends on the
environment. For ordered geometries (Fig. 3.2a-b), the lattice constant W is chosen as
the unit length. For disordered polydisperse disks, lu = R, the average disk radius, is
used. For disordered rods, lu = ℓ2, the longest side of a rod, is selected.

Diffusivity Measurements For each diffusivity measure, 2000 independent trajecto-
ries were simulated, each lasting 500 to 2000 times the mean run time τ of the microor-
ganism. The mean-squared displacement M(t) exhibits a diffusive regime at time scales
typically 5-10 times larger than the mean run time. The microorganism’s diffusivity is
then calculated as D = limt→∞ M(t)/2dt, where M(t) is the mean-square displacement
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Figure 3.2: Model porous media. Solid regions are shown in grey, and bulk liquid in
blue. (a) Monodisperse disks of radius R centered on a square lattice with constant W
(in red). (b) Monodisperse rectangles with side lengths ℓ1 and ℓ2, centered on a square
lattice. (c) Polydisperse, disordered, non-overlapping disks, with mean radius R. (d)
Monodisperse, disordered, non-overlapping rods.

at time t, and d is the spatial dimension. Numerical estimates of diffusivity are obtained
using the same protocol as in Chapter 2, detailed in Appendix A.1.3. Displacements along
the x and y directions are considered independently, yielding Dx and Dy, which are then
averaged to obtain the overall diffusivity: D = (Dx +Dy)/2.

3.2.3 Diffusivity Maxima and Optimal Run-Times
This section presents the results of a numerical exploration of diffusivity across different
environments, considering various morphologies, porosities, and swimming strategies.

Diffusivity as a function of Mean Run-Time Each case is defined by a combination
of a microstructure morphology (one among the four shown in Fig. 3.2), a porosity2 φ,
a swimming pattern, and a value of rotational noise Dr. For each case, diffusivity is
numerically measured as a function of the mean run-time, with at least nτ ⩾ 10 values
obtained by sampling run-times spaced logarithmically over more than two orders of
magnitude. The result is a D(τ) numerical curve for each case, shown in Fig. 3.3 for four
different examples. Despite the variety of microstructure morphologies, solid fractions
(φ̄ = 1 − φ), and swimming strategies considered, all four curves exhibit a similar trend:
diffusivity reaches a maximum as a function of mean run-time. However, both the position
τ ∗ and the peak diffusivity D∗ vary from case to case.

Universal Behavior To test this maximum, D(τ) curves were measured numerically
across 38 different cases, which are detailed in Table 3.1. Across all microstructures,
porosities, swimming patterns, and values of rotational noise, an optimal run time τ ∗ has
been observed, at which diffusivity reached a maximum D∗. To quantify this behavior,
each D(τ) curve was fitted with a parabola over 5-7 points3, providing numerical estimates
for the position τ ∗

sim and peak diffusivity D∗
sim (see Fig. 3.4a). Additionally, Fig. 3.4b shows

that when D(τ) curves are rescaled by their respective maximum values, they collapse
2Porosity is the ratio of accessible liquid volume to total volume.
3The number of points is chosen manually for each case to ensure a proper fit around the maximum,

depending on how many mean run times were sampled and the position of the peak.
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onto a common trend. This suggests a universal dependency of diffusivity on mean run
time across the diversity of all cases considered.

Ordered Disks:
Units: lu = W , tu = W/vo

Case φ̄ R Dr Strategy nτ

A1 0.03 0.1 0.1 RTi 15
A2 0.03 0.1 0.1 RR 15
A3 0.07 0.15 0.1 RTi 15
A4 0.07 0.15 0.1 RR 15
A5 0.13 0.2 0.1 RTi 15
A6 0.13 0.2 0.1 RR 15
A7 0.20 0.25 0.1 RTi 15
A8 0.20 0.25 0.1 RR 15
A9 0.03 0.1 0.1 RRF 15
A10 0.07 0.15 0.1 RRF 15
A11 0.13 0.2 0.1 RRF 15
A12 0.20 0.25 0.1 RRF 15
A13 0.03 0.1 1 RTi 10
A14 0.03 0.1 2 RTi 10
A15 0.13 0.2 0.1 RTi 10
A16 0.13 0.2 0.5 RTi 10
A17 0.13 0.2 1 RTi 10
A18 0.13 0.2 2 RTi 10
A19 0.28 0.3 0.1 RTi 10
A20 0.28 0.3 0.5 RTi 10
A21 0.28 0.3 1 RTi 10
A22 0.28 0.3 2 RTi 10
A23 0.50 0.4 0.1 RTi 10
A24 0.50 0.4 0.5 RTi 10
A25 0.50 0.4 1 RTi 10
A26 0.50 0.4 2 RTi 10

Ordered Rectangles:
Units: lu = W , tu = W/vo

Case φ̄ ℓ2/ℓ1 Dr Strategy nτ

B1 0.08 1 0.1 RTi 10
B2 0.08 1 0.1 RR 10
B3 0.16 2 0.1 RTi 10
B4 0.16 2 0.1 RR 10
B5 0.24 3 0.1 RTi 10
B6 0.24 3 0.1 RR 10

Polydisperse Disordered Disks:
Units: lu = R, tu = R/vo

Case φ̄ Dr Strategy nτ

C1 0.15 0.1 RTi 10
C2 0.3 0.1 RTi 10
C3 0.3 0.1 RR 10
C4 0.4 0.1 RTi 10

Disordered Rods:
Units: lu = ℓ2, tu = ℓ2/vo

Case φ̄ ℓ2/ℓ1 Dr Strategy nτ

D1 0.03 10 0.1 RTi 10
D2 0.13 10 0.1 RTi 10

Table 3.1: Overview of simulated parameter combinations. nτ is the number of
mean run time values considered. Geometric parameters W , R̄, and ℓ1 are defined in
Fig. 3.2, while Dr and swimming strategies are described in Sec. 3.2.1. All diffusivity
estimates across the 38 scenarios follow a common trend, shown in Fig. 3.4.
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Figure 3.3: Diffusivity vs. mean run-time across different microstructures and
swimming strategies. (a) Simulated motion within the four porous geometries detailed
in Fig. 3.2. Symbols correspond to the data shown in (b): numerical estimates of diffusiv-
ity D across different microstructures at varying solid fractions φ̄ = 1 − φ, as a function
of mean run time τ . A fixed value of Dr = 0.1t−1

u is considered, with three possible swim-
ming strategies: run-reverse (RR), isotropic run-and-tumble (RTi), and run-reverse-flick
(RRF). All four scenarios exhibit diffusivity maxima as a function of mean run time.
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Figure 3.4: Universal dependence of diffusivity on mean run time. (a) Each
numerical diffusivity curve (points) is fitted with a parabola (dotted line) over 5-7 points
around the maximum (blue points). The fit is done in logarithmic x-scale. The fit provides
a numerical estimate of the maximum location: (τ ∗

sim, D
∗
sim). (b) Diffusivity curves rescaled

by their maximum value and time. The legend refers to cases defined in Table 3.1.
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3.3 Diffusivity Model and Cauchy Universality
As suggested in Sec. 3.2.3, diffusivity appears to follow a universal relationship with the
mean run time, applicable across many different combinations of microstructures and
motion patterns. This section develops a model to explain this behavior and provide
diffusivity predictions for the different cases. Section 3.3.1 introduces a simple analytical
framework, extending bulk diffusivity predictions to account for motion interruptions
caused by obstacle interactions. Readers primarily interested in the results may proceed
to Sec. 3.3.2, where the conclusions are summarized and the formalism is applied to the
current study.

3.3.1 Analytical Framework
Unimodal Motion To develop a model for dispersal, an analytical framework to handle
unimodal and multimodal motions at constant speed is first considered. This simple case
of unimodal motion serves to introduce the method that will be applied throughout the
chapter. For simplicity, two-dimensional motion (d = 2) is considered.

Diffusivity and Correlation Function Consider a particle moving at constant speed vo,
with its orientation at time t specified by the unit vector e(t) or angle θ(t). The orientation
correlation function is defined as

C(t− t′) ≡ ⟨e(t) · e(t′)⟩, (3.1)

where ⟨.⟩ represents the ensemble average. The probability distribution p(θ, t) for the ori-
entation θ at time t, given the initial value pin(θ) = δ(θ), is used to express the correlation
function as follows:

C(t) =
∫ π

−π
dθ p(θ, t) cos θ. (3.2)

Applying Fourier series for the angle (θ → l) and Laplace transforms for time (t → s), as
defined in Appendix. A.3.1, yields:

C(s) = π
∑

l=±1
p(l, s) . (3.3)

The variable dependence of C and p are explicitly written to distinguish between the
function and its transform. The diffusion coefficient D of the swimmer (defined as Eq. 1.7)
is connected to the orientation correlation function4 by:

dD = v2
o

∫ ∞

0
dt C(t), (3.4)

and using Eq. (3.3), the reduced diffusivity is defined as:

D ≡ dD

v2
o

= π
∑

l=±1
p(l, s = 0). (3.5)

Thus, knowledge of p(l, s), the Fourier and Laplace transform of the probability distribu-
tion of orientation θ at time t, provides access to the swimmer’s diffusivity.

4This relationship is detailed in Appendix A.1.3, see Eqs. A.3-A.4-A.5.
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Run-and-Tumble with Interruptions

Consider now the specific case of run-and-tumble motion: the particle undergoes rota-
tional diffusion with coefficient Dr and experiences tumbles at a rate τ−1 = λ, character-
ized by a distribution of turning angles h(θt). Throughout this discussion, it is assumed
that the tumbles are symmetric, meaning h(θt) is an even function. As noted in Sec. 1.2.2,
the only aspect of h needed here is the first circular moment α = ⟨cos θt⟩h, representing
the mean cosine of the turning angle. This quantity appears frequently and is referred
to as the “correlation” of the turning angle distribution h. The correlation α takes val-
ues in [−1, 1], where α = 1 indicates no directional change, α = −1 corresponds to full
reversals, and α = 0 represents either isotropic reorientation or a 90-degree random turn5.

The Fokker-Planck equation governing p(θ, t) is:

∂tp(θ, t) = Lp(θ, t) = Dr∂
2
θθp(θ, t) − λp(θ, t) + λh⊗ p(θ, t) , (3.6)

where L is A Liouvillian operator, and ⊗ denotes convolution with respect to θ, as defined
in Eq. (A.13). Using a Fourier series on the angles (θ → l) yields:

∂tp(l, t) = L(l)p(l, t) =
[
−Drl

2 − λ+ 2πλh(l)
]
p(l, t) . (3.7)

Taking the Laplace transform with respect to time (t → s) and solving gives p(l, s) =
pin(l)/(s − L(l)), with pin(l) = 1/2π. Using Eq. (3.5), the classical expression for the
bulk diffusivity of run-and-tumble motion, initially introduced in Eq. 1.8 [82], is now
re-expressed in terms of the Liouvillian L:

DRT = 1
2

∑
l=±1

1
−L(l) = 1

Dr + λ(1 − α) . (3.8)

Two important remarks follow from Eq. (3.8). First, the left equality holds whenever the
Liouvillian L is diagonal, meaning L(l) acts as a multiplication operator on p(l, ·). Second,
extending this result to three-dimensional motion (d = 3) is done by using spherical
harmonics instead of Fourier series. In the spherical harmonics basis Y m

l , the angular
Laplacian ∆a ≡ (1/ sin θ) ∂θ sin θ ∂θ + (1/ sin2 θ) ∂2

ϕϕ can be rewritten6 as ∆a = −l(l + 1).
The result is that Eq. (3.8) still applies when d = 3, if Dr is replaced by 2Dr.

Interrupted Motion A modified process termed interrupted motion is now introduced
for any diagonal Liouvillian L. In this process, in addition to the evolution governed by
L, reorientation events occur also according to a Poisson process with rate Λ and an even
distribution of turning angles characterized by the correlation β. Interruptions are treated
as a second type of tumbling event, though they serve a distinct role, and thus a separate
term is used to avoid confusion. The diffusivity of run-and-tumble motion with added
interrupted motion at rate Λ and correlation β can be computed straightforwardly:

D(Λ, β) = 1
2

∑
l=±1

1
−L(l) + Λβ̄

= 1
Dr + λᾱ + Λβ̄

, (3.9)

5Whether the reorientation angles are sampled from a uniform distribution or correspond to random
±90◦ turns, the average cosine of turning angles is zero.

6See Ref. [90] for further details.
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with ᾱ ≡ 1−α and β̄ ≡ 1−β. Since the three decorrelation processes—rotational diffusion,
tumbling, and interruptions—are memoryless and independent, their rates simply add
together. Equation (3.9) will be used throughout the subsequent sections. Specifically,
Sec. 3.3.2 will use it to develop a diffusivity model.

3.3.2 Minimal Model of Diffusivity
A simple model of microbial dispersal in a porous medium is proposed, where the primary
approximation is to neglect the complex correlations between the microorganism’s trajec-
tory and the microstructure. Specifically, encounters with solid surfaces are assumed to
occur along the trajectory as a Poisson process with rate T −1 and are treated as a second
type of tumble [118, 127], in addition to the inherent tumbling behavior of the microor-
ganisms. Starting from Eq. 3.9, the proposed model of diffusivity for a microorganism
moving with in the porous medium is:

D = T
T + τs

v2
o/d

D′
r + ᾱτ−1 + β̄T −1

K(φ̄). (3.10)

Here, τs = ητ is the mean time spent at the surface after an encounter, D′
r ≡ (d − 1)Dr,

ᾱ = 1 − α, β̄ = 1 − β, and φ̄ = 1 − φ. The parameter α is the mean cosine of the
reorientation angle θt, or "correlation" in short, induced by a tumble, while β represents
the correlation of reorientation induced by a surface encounter. The factor K(φ̄) is a
correction term dependent on the porosity φ = 1 − φ̄ and on the morphology of the mi-
crostructure.

The physical interpretation of Eq. (3.10) is simple. Each of the three terms in the
equation encapsulates one physical effect governing dispersal. The first term represents
the fraction of time spent moving through the bulk fluid. The second term captures
the three independent processes—-rotational diffusion, tumbling, and surface encoun-
ters—that drive orientational decorrelation, with their rates simply adding together in
the denominator. Finally, the third term accounts for the excluded volume and correla-
tions imposed by the porous microstructure.

Completing the Model: T , β, and K(φ)

To finalize the model, three additional elements must be specified: the mean time T
between surface encounters, the correlation β associated with interruptions, and the ex-
cluded volume term K(φ). Each quantity is now addressed one by one.

Encounter Rate T and Cauchy Universality The surface encounter time T follows
a surprisingly simple and universal expression, a result [175, 176] whose connection to
microbial dispersal seems to have gone mostly unnoticed, with some exceptions [118,127,
177,178]. Given that the swimming speed is constant, voT corresponds to the mean free
path ⟨L⟩, which is defined as the trajectory length between successive contacts with the
surface. This mean free path exhibits an invariance property, commonly referred to as
Cauchy universality, which states that the mean free path is equal to the mean chord
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3.3. Diffusivity Model and Cauchy Universality

length lc of the medium. The mean chord length is known generically in dimension d,
giving:

voT = ⟨L⟩ = lc = σd
Ω
∂Ω = σd

φ

S
, (3.11)

where σd equals π for d = 2 and 4 for d = 3; Ω represents the volume of the porous
space, ∂Ω is the solid interface area, and S is the specific surface7 of the microstructure.
Originally derived for ballistic motion [179–181], Eq. (3.11) applies under more general
conditions [177, 178], including random motion with reorientation events that may be
anisotropic, inhomogeneous, or non-Poissonian [175, 176, 182]. Thus, it is applicable to
the generic run-and-tumble model considered in the simulations.

Correlation β The correlation β, which characterizes the reorientation induced by an
encounter with the surface, must now be specified. This requires the distributions of
the in-going angle ϕin and out-going angle ϕout, defined relative to the surface normal
(Fig. 3.5). In this regard, the simplest assumptions are considered. The angle ϕin is taken
to be proportional to cosϕin, accounting for the directional dependence of the flux against
the wall. Assuming that tumbles completely randomize the direction of escape, the angle
ϕout is chosen to be uniformly distributed within the free half-space outside the surface
tangent. These assumptions lead to the following probability distributions:

P (ϕin) = I[− π
2 , π

2 ](ϕin) cosϕin

2 , P (ϕout) = I[− π
2 , π

2 ](ϕout)
1
π
, (3.12)

where I[a,b](u) = 1 for a ⩽ u ⩽ b and 0 otherwise. The distribution of the turning angle
induced by an encounter with the surface is then:

h(θ) =
∫∫ π

−π
dϕin dϕout δ[v.p.(θ − (ϕout + π − ϕin))]P (ϕin)P (ϕout) = 1 − cos θ

2π I[−π,π],

(3.13)

where δ is the Dirac function, v.p.(θ) ≡ arg[eiθ] takes values in the [−π, π] interval, and the
+π term accounts for the reversal of direction at the wall. The correlation characterizing
wall encounters is therefore β = ⟨cos θ⟩h = −1/2.

7The term "specific surface" refers to the ratio of surface area to total volume in three dimensions, or
to total boundary length over total area in two dimensions

Figure 3.5: Reorientation induced by a stay
at the wall. The particle’s direction is described
by the in-going angle ϕin before contact and the
out-going angle ϕout upon escaping, taken with
respect to the surface normal.
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Chapter 3. Universal Dispersal of Motile Microorganisms in Porous Media

Factor K(φ) Equation (3.10) without the factor K(φ) was found to overestimate the
numerical estimates of diffusivity (not shown), likely due to neglecting the excluded vol-
ume and fixed positions of solid domains. To reintroduce these effects in a simple way, the
prediction is adjusted to be exact in the limit of passive Brownian motion8, by incorporat-
ing an ad hoc prefactorK(φ̄) that depends solely on the solid fraction φ̄. This modification
yields the final form of Eq. 3.10. For a given microstructure, K(φ̄) ≡ DBM/DBM

o is de-
fined as the ratio between the effective diffusivity DBM of a passive Brownian tracer in a
porous structure with solid fraction φ̄, and its free-space diffusion coefficient DBM

o . This
factor K(φ̄) is known for several cases. For a square array of disks, Ref. [183] provides
an analytical approximation covering the full range of porosities. Specifically, at low solid
fractions, a rigorous expansion yields:

K(φ̄) = 1
1 + φ̄

+ O(φ̄5). (3.14)

For randomly placed overlapping obstacles, such as spheres and cylinders, Refs. [184,185]
propose the approximation K(φ̄) = (1 − φ̄/φ̄c)µ/1 − φ̄, where the critical fraction φ̄c and
exponent µ are determined numerically.

A more general relation that applies for arbitrary microstructures in any dimension is
the low-φ̄ expansion [181]:

K(φ̄) = 1 − φ̄

d− 1 + O(φ̄2), (3.15)

valid for small solid fractions. Throughout this work, Eq. (3.14) is used for square arrays
of disks, while Eq. (3.15) is applied in all other cases.

3.3.3 Assessing the Model: Diffusivity Master Curve
The predictions of the model are now assessed. Based on the observation that numerical
results collapse when rescaled by their maxima (see Fig. 3.4), Equation (3.10) is first
rewritten as:

D

D∗ = (2 + c)ξ
1 + cξ + ξ2 , ξ ≡ τ

τ ∗ , (3.16)

where ξ is the mean run time rescaled by the optimal value. This formula indicates that
diffusivity reaches a maximum D∗ at the mean run time τ ∗, given by:

D∗ =
√
abK(φ̄)/(2 + c)ᾱd, τ ∗ =

√
ab, (3.17)

with a ≡ T /η, b ≡ ᾱ/(Dr + β̄/T ), and c ≡ (a + b)/
√
ab. Although Eq. (3.16) is not

strictly universal, due to its dependence on the parameter c, this dependence can be
entirely accounted for by introducing the modified diffusivity ratio:

R ≡ 4
[
2 − c+ (2 + c)D

∗

D

]−1
= 4ξ

(1 + ξ)2 , (3.18)

8This limit can be approached by taking Dr = 0, α = 0, and τ → 0, while keeping v2
oτ/d ≡ Do fixed.
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Figure 3.6: Diffusivity predictions and master curve. (a) The modified diffusivity
ratio R for various solid fractions, microstructures, and swimming strategies collapses onto
the master curve (black line), as predicted by Eq. (3.18). The colored legend refers to cases
in Table 3.1, while symbols correspond to data from the literature (see text for references).
(b-c) Comparison between simulation results (y-axis) and theoretical predictions (x-axis)
for (b) maximum diffusivity D∗ and (c) optimal run time τ ∗. The black line represents
the 1:1 correspondence between theory and simulation.

which depends only on ξ and is independent of both motion parameters and microstruc-
ture. Fig. 3.6a shows that for the 38 parameter combinations tested—varying swimming
strategy, rotational diffusion, porosity, and microstructure—the diffusivity values from
simulations collapse onto the master curve R(ξ), as predicted by Eq. (3.18). The de-
pendence on c in Eq. (3.16) is relatively weak, as c varies over a limited range across
simulations. This explains the approximate collapse seen for D/D∗ in Fig. 3.4. Addition-
ally, the simulation results for maximum diffusivity D∗ and optimal run time τ ∗ closely
match the theoretical predictions from Eq. (3.17) (Figs. 3.6b-c). The comprehensive nu-
merical exploration thus supports the proposed generic diffusivity model.

Data from literature In addition to the simulations from Table 3.1, results from
several prior studies were incorporated to further test the model9. In the preprint by
Mattingly [131], run-and-tumble point particles move in a porous medium composed of
overlapping disks. Kurtzhaler et al. [21] and Lohrmann et al. [128] study three-dimensional
motion through overlapping spheres, with finite-sized RT polymers. Bertrand et al. [22]
examine motion where both particles and obstacles are constrained on a lattice, using

9Specifically, data from Ref. [131] was extracted from Fig. 3, inset D, focusing on three curves where
diffusivity maxima are shown. Data from Ref. [21] was taken from the three numerical curves in Fig. 3,
inset a. Data from Ref. [128] was obtained from Fig. 8, specifically for RT, RR, and RRF motion with
rp = 4 µm. Data from Ref. [22] corresponds to the three curves in Fig. 2 (“Fixed obstacle” inset).
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Chapter 3. Universal Dispersal of Motile Microorganisms in Porous Media

discrete directions. Each of these studies reports diffusivity maxima as a function of
run-time. For each study, diffusivity data was first rescaled by their estimated maximum.
Then, a fit to Eq. (3.16) was used to estimate the c parameter10, which in turn was used to
compute the ratio R from Eq. (3.18). The resulting curves aligned well with the model’s
master curve (Fig. 3.6a), suggesting that the theoretical framework is applicable across
these cases, including three-dimensional motion, overlapping obstacles, surface motion,
and discrete directions.

Prediction for Run-reverse-flick On a last note, the model described by Eq. 3.10
does not yet account for bimodal swimming patterns like RRF, but offers a foundation
for a simple approximation. Neglecting the strict alternation between reversals (α =
−1) and flicks (α = 0), the two event types are treated as independent processes, each
occurring at a rate of (2τ)−1. With this simplifying assumption, Eq. 3.10 still holds, but
with the correlation set to the average of reverse and flick events, yielding α = −1/2.
This approximation successfully rescaled the data onto the master curve and accurately
predicted the diffusivity maximum (RRF data included in Fig. 3.6).

Physical Interpretation of the Maximum The existence of the diffusivity maximum
can be anticipated, as diffusivity scales as D ∼ τ for short runs but decreases as D ∼
(ητ)−1 for long runs, since most time is spent at the surface waiting to escape. A similar
argument was already given for the case of motion within slit confinement, as discussed
earlier in Sec. 2.4.1. From Eq. (3.17), the explicit expression for the optimal mean run
time is:

τ ∗ =
√
ᾱT /(η(Dr + β̄/T )). (3.19)

When rotational diffusion is strong (DrT ≫ 1), τ ∗ =
√
ᾱT /Drη is the harmonic mean

between the surface encounter time and the rotational diffusion time, balancing the
two processes driving orientation decorrelation. When rotational diffusion is negligible
(DrT ≪ 1), τ ∗ = T

√
ᾱ/ηβ̄ is primarily controlled by the surface encounter time, with a

prefactor typically less than one. In this case, the optimal mean run length voτ is dictated
by the mean free path lc, as it represents the best compromise between efficient transport
through the porous space and the drawback of becoming trapped at the surface.

3.4 Multimodal Motion and Surface Sliding
Re-tracing the steps of Chapter 2, the focus now shifts to cases that include motion
occurring at the surface. This reflects the already well-discussed importance of microor-
ganisms that move along obstacle boundaries (see Secs. 1.3.1 or 2.2.2). To address this,
the formalism from Sec. 3.3.1 is first extended to handle bimodal and trimodal motion.
Readers interested only in results may proceed to Sec. 3.4.2, where surface motion model
is introduced, and the analytical approach is concluded. Finally, in Sec. 3.4.3 results are
tested and discusses on new numerical data that includes motion at the boundary.

10Due to additional effects not modeled in this work and incomplete descriptions of specific cases, c
was fitted rather than computed from system parameters.
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3.4. Multimodal Motion and Surface Sliding

Figure 3.7: Bimodal process. (a) The microorganism alternates between two modes,
each with different properties. hm→m′(ϑ) represents the turning angle distribution when
switching from mode m to m′. (b) Initial angle θi and final angle θf involved in the
effective correlation βe

1.

3.4.1 Diffusivity for Bimodal Motion
Consider now bimodal motion, where the particle, or microorganism, alternates between
two distinct modes of motion. Each mode, labeled m = 1, 2, is governed by a Liouvillian
Lm, assumed diagonal and even in l in Fourier space. Transitions between modes occur
with rate µ1 or µ2 and involve a distribution of turning angles h1→2 with correlation β1 for
transitions from mode 1 to mode 2. Similar notations apply for transitions from mode 2
to mode 1. The goal is to obtain the diffusivity of this bimodal motion and its relationship
to the diffusivities of unimodal motions.

Diffusivity Equation Let pm(θ, t) denote the probability distribution in mode m. The
Fokker-Planck equations are:

∂tp1(θ, t) = L1p1 − µ1p1 + µ2p2 ⊗ h2→1, (3.20a)
∂tp2(θ, t) = L2p2 − µ2p2 + µ1p1 ⊗ h1→2. (3.20b)

In Fourier-Laplace space, this system becomes:[
s+ µ1 − L1(l) −2πµ2h2→1(l)
−2πµ1h1→2(l) s+ µ2 − L2(l)

] [
p1(l, s)
p2(l, s)

]
=

[
p1in(l)
p2in(l)

]
. (3.21)

Here, pmin(l) are the initial conditions, and νm denotes the fraction of time spent in
mode m, with:

ν1 = 1 − ν2 = µ2

µ1 + µ2
. (3.22)

Solving Eq. (3.21) yields the total probability p = p1 + p2 and the diffusivity. Introducing
the effective correlation βe

1 induced by the transition from mode 1 to mode 2 (derivation
shown at the end):

βe
1 = β1β2

2
∑

l=±1

µ2

µ2 − L2(l)
, (3.23)

the diffusivity for bimodal motion is given by:

D = ν1D1(µ1, β
e
1) + ν2D2(µ2, β

e
2) + C ′, C ′ = (β1 + β2)/(µ1 + µ2)

[µ1µ2D1(0)D2(0)]−1 − β1β2
, (3.24)

where Dm(µ, β) follows the same definition as in Eq. (3.9), and Dm(0) is the diffusivity
of uninterrupted motion in mode m.
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Discussion and Limiting Behaviours The first two terms in Eq. (3.24) can be in-
tuitively expected: the diffusivity involves a weighted average of interrupted unimodal
diffusivities because each mode m is interrupted with rate µm by the other, and these
interruptions induce a reorientation with effective correlation βe

m. Yet, Eq. (3.24) also
indicates that the diffusivity includes an additional contribution, which involve the tran-
sitions between modes. Whenever some degree of correlation is retained, on average, when
switching mode (β1 + β2 ̸= 0), the correction is needed.

In special cases, such as isotropic reorientations (β1 = β2 = 0), Eq. (3.24) recovers pre-
vious results from the literature. Similarly, if both modes only involve rotational diffusion
and share the same switching rate, it reduces to expressions from prior studies [82]. As a
final remark, Eq. (3.24) can be used to recover the minimal model presented earlier. Mode
1 corresponds to run-and-tumble motion in porous space, while mode 2 corresponds to a
motionless state. This leads back to Eq. (3.9) and, after including the correction factor
K(φ̄), Eq. 3.10.

Derivation of effective correlation βe Consider the situation depicted in Fig. 3.7b,
where the microorganism experiences a sojourn in mode 2, surrounded by two periods
in mode 1. The objective is to determine the effective correlation induced by such a
passage through mode 2, denoted as βe

1 ≡ ⟨cos(θf − θi)⟩, where θi (resp. θf) represents
the orientation immediately before exiting (resp. after re-entering) mode 1. To derive
the probability distribution P (θ = θf − θi) at the final time, the evolution of θ is broken
down into three steps. First, upon the interruption of mode 1, the new distribution is
given by PI(θ) = pin ⊗ h1→2, resulting in PI(l) = h1→2(l). Second, during the sojourn in
mode 2, the evolution follows the equation ∂tPII(θ, t) = (L2 −µ2)PII, leading to PII(l, s) =
h1→2(l)/(s + µ2 − L2(l)). The probability density for leaving mode 2 at any time with
orientation θ is then PIII(l) = µ2PII(l, s = 0). Finally, when mode 2 is interrupted,
the distribution becomes P = PIII ⊗ h2→1. Combining all steps, the final probability
distribution is:

P (l) = 2πh1→2(l)
µ2

µ2 − L2(l)
h2→1(l). (3.25)

The effective correlation βe ≡ ⟨cos θ⟩ is obtained by π(P (l = 1)+P (l = −1)), which yields
back Eq. (3.23). This result shows that the effective correlation is simply the product of
the correlations involved in each individual step.

3.4.2 Surface Sliding and Trimodal Motion
When a microorganism encounters a solid surface and slides along it, rather than stopping,
the motion becomes multimodal. In this section, a microswimmer model incorporating
surface motion is introduced, and the formalism initially developed in Sec. 3.4 is further
extended to model its diffusivity.

Microswimmer Model with Surface Motion The porous medium considered is a
square lattice of disks (Fig. 3.2a). Upon encountering an obstacle, the microswimmer
aligns its direction parallel to the surface and swims either clockwise or counterclockwise,
following the circular boundary with a tangential velocity equal to its bulk speed (Fig. 3.8).
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W

Figure 3.8: Run-and-tumble with surface
motion. Porous media consist of mono-
disperse disks, with radius R, arranged on a
lattice with constant W . The microorganism
can move through the porous space (mode 1)
or along the obstacle surface in either a clock-
wise (mode 2) or counterclockwise (mode 3)
direction. Upon collision, the microorganism
aligns with the surface, while each tumble (◦)
at the surface results can result in an escape
or a reversal.

While sliding along the surface, tumbling events can lead to one of three outcomes: an
escape from the surface, a reversal along the surface, or continuation in the same direction.
Assuming surface tumbling is isotropic, as was done for surface motion within a slit in
Chapter 2, these events occur with probabilities of 1/2, 1/4, and 1/4, respectively11.

Trimodal Motion: Model and Diffusivity

To explore the implications of multimodal motion, Sec. 3.4 introduced an analytical for-
malism for bimodal processes, where modes m = 1 and 2 alternate. However, in this
case, the motion is trimodal because displacement along the obstacle surface can be ei-
ther clockwise or counterclockwise (Fig. 3.9a). Mode 1 represents run-and-tumble motion
in the porous space, governed by the Liouvillian L1, and is exited with rate µ1. Mode 2
(clockwise motion) and mode 3 (counterclockwise motion) describe surface sliding, with
angular velocities of −ω and ω, respectively. Upon leaving mode 1, there is an equal
probability (1/2) of entering mode 2 or mode 3. While on the surface (in mode 2 or 3),
the particle can reverse direction with rate κ or escape with rate µ. The distribution of
turning angles between modes is denoted by hm→m′ , with hr(θ) = δ(θ − π) representing
the reversal angle distribution between modes 2 and 3. The transition rates between the
different states are summarized in Fig. 3.9.

The governing equations for pm(θ, t) are now

∂tp1(θ, t) = L1p1 − µ1p1 + µ [p2 ⊗ h2→1 + p3 ⊗ h3→1] , (3.26a)

∂tp2(θ, t) = L2p2 − (µ+ κ)p2 + µ1

2 p1 ⊗ h1→2 + κp3 ⊗ hr, (3.26b)

∂tp3(θ, t) = L3p3 − (µ+ κ)p3 + µ1

2 p1 ⊗ h1→3 + κp2 ⊗ hr. (3.26c)

It is assumed that particles moving clockwise and counterclockwise are subject to the
same dynamics, which results in the following symmetry relations linking mode 2 and 3:

h1→2(θ) = h1→3(−θ), h2→1(θ) = h3→1(−θ). (3.27)
11At the boundary, if the new direction after tumbling is chosen isotropically, there is a 1/2 probability

of pointing outward into the free half-space and a 1/2 probability of pointing inward, back toward the
surface. When pointing inward, there is a 1/4 probability of being aligned with either the original
direction or its opposite.
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Figure 3.9: Trimodal Motion. (a) Mode transition diagram showing rates between
the three motion modes (defined in Fig. 3.8). (b) Reorientation of the particle when
encountering or leaving the surface.

Though the Liouvillians take a specific form in our model, the diffusivity derived below
is in fact valid in more general conditions: Liouvillians are all diagonal, L1(l) is even,
L2 = −L3 and Eq. (3.27) holds.

Diffusivity Equation The method to address the trimodal motion is entirely similar
to that used for bimodal case. The end result is

D = ν1D1(βe
1) [1 + C] + νsDs(βe

s ), (3.28)

where νs = 1 − ν1 is the fraction of time spent in surface mode. To specify each term of
Eq. (3.28), let us introduce the short-hand notations

Z ≡ µ− L(l), γ ≡ [h1→2(l)h2→1(l)]|l=1 , (3.29a)
Z⋆ ≡ µ+ L(l), γ′ ≡ [h1→2(l) + h2→1(l)]|l=1 , (3.29b)

⟨z1, z2⟩ ≡ Re[z∗
1z2], γ′′ ≡ −1/4[h1→2(l) − h1→2(−l)][h2→1(l) − h2→1(−l)]|l=1 . (3.29c)

where Re denotes the real part and ∗ the complex conjugate. The diffusivity D1 and
effective correlation βe

1 associated to mode 1 are

D1(β) = 1
−L1(l) + µ1β̄

∣∣∣∣∣
l=1

, βe
1 = µ

⟨γ, Z⟩ − 2κγ′′

ZZ⋆ + 2κµ

∣∣∣∣∣
l=1

. (3.30)

The diffusion coefficient Ds and effective correlation βe
s associated to surface mode are:

Ds(β) = µ(1 + βγ′′)
ZZ⋆ − β⟨γ, Z⟩ + 2κµ(1 + βγ′′)

∣∣∣∣∣
l=1

, βe
s = µ1

µ1 − L1(l)

∣∣∣∣∣
l=1

. (3.31)

Finally, the correction term is

C = µ1⟨γ′, Z⟩
ZZ⋆ + 2κµ

∣∣∣∣∣
l=1

. (3.32)

3.4.3 Predictions and Simulations
This section presents the explicit predictions for the model introduced in Sec. 3.4.2 and
tests the formalism using numerical estimates of diffusivity for the surface sliding model.
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Run-and-Tumble and Surface Sliding within an Array of Disks

To apply the diffusivity formula for specific trimodal motion (Eq. 3.28) to the surface
motion model (Fig. 3.8), the Liouvillians for the three modes are given by:

L1 = Dr∂
2
θθ − λ+ λh⊗, L2 = −L3 = −ω∂θ. (3.33)

Regarding the distribution hm→m′ (Fig. 3.9b), it is assumed that upon contacting the
surface, the particle immediately aligns with the surface tangent, selecting the direction
closest to its initial orientation. As before, a particle leaving the surface chooses a random
direction uniformly distributed in the available half-space. The corresponding turning
angle distributions for transitions between modes are:

h1→2(θ) = h1→3(−θ) = I[0,π/2](θ) × sin θ, h2→1(θ) = h3→1(−θ) = I[0,π](θ)
π

, (3.34)

which results in γ = −1/2 − i/π, γ′ = 1/2 − i(2/π + π/4), and γ′′ = 1/2. Applying
Eq. (3.28), the diffusivity is explicitly given by:

D = µ

µ + µ1

2
(
2κµ + µ2 + ω2)

+ 2µ1 (Dr − ωIm [γ′] + λᾱ + µRe [γ′] + µ1 + µ1γ′′)
2 (2κµ + µ2 + ω2) (Dr + λᾱ) + 2µ1 (2κµ + µ2 + ω2 + µωIm[γ] − µ2Re[γ] + 2κµγ′′)

(3.35)

Here, the angular velocity is ω = vo/R, where R is the disk radius, while µ1 = T −1 and
λ = τ−1

r . Finally, a particle tumbling at the surface has a probability η−1 of leaving. If
it remains at the wall, the particle has an equal probability of continuing in the same
direction or reversing, which gives the rates:

µ = λη−1, κ = λ
1 − η−1

2 , (3.36)

where η = 2 is the value used in all numerical results presented below.

Comparison with Numerical Data To test Eq. 3.35, the system under study is
simulated. Results are presented in Fig. 3.10 for two swimming strategies (RTi and RR)
at varying solid fractions φ̄. The predicted diffusivities (solid lines) agree well with the
simulation data (Fig. 3.10a-b). In comparison to cases corresponding cases without surface
motion (dotted lines), surface motion has a net effect of increasing diffusivity, especially
at low and intermediate run-times.

Influence of Surface Motion on the Maximum The influence of surface behavior
on the diffusivity maximum can also be examined (Fig. 3.10c-d). At high solid fraction φ̄,
the maximum D∗ vanishes in the case of wall trapping, whereas for sliding, it reaches a
plateau where displacement is dominated by surface motion. Interestingly, the optimal
run times τ ∗ for both sliding and trapping remain comparable up to a high solid fraction
(φ̄ ≃ 0.4), suggesting that environments with different surface properties can lead to
similar optimal strategies. Whether this conclusion holds beyond disk-shaped obstacles
remains an open question, though the framework used here can be extended to other
microstructures.
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Figure 3.10: Diffusivities with Surface Motion. (a-b) Diffusivity as a function of
mean run time, comparing numerical data (points) with model predictions (solid line) for
two swimming patterns: RTi (a) and isotropic RR (b). Dashed lines show corresponding
diffusivity without sliding (Eq. 3.10). (c-d) Maximum diffusivity D∗ and optimal run
time τ ∗ for RTi, as a function of solid fraction, with and without surface motion (solid
and dashed lines, respectively). The time unit is tu = W/vo.

Comparison with Surface Motion in a Slit It is noteworthy that all diffusivity
curves still exhibit a maximum and decay to zero as τ → ∞ when surface motion is
considered. This contrasts with what was observed in the slit, where surface motion
introduced a plateau at large τ . Beyond a critical surface velocity, the plateau overtook the
maximum, causing diffusivity’s dependence on τ to become monotonous (See Figs. 2.7).
The key difference lies in the effect of surface motion within the two different geometries:
in the slit, moving on the flat walls allows for unobstructed linear motion parallel to
the confinement, significantly enhancing long-time dispersal. In porous media, however,
surface motion contributes primarily to orientational correlation, which has a smaller
impact on diffusivity. This distinction is especially clear in the limit τ → ∞: in the slit,
diffusivity converges toward one-dimensional ballistic motion, whereas in porous media,
particles remain mostly localized, orbiting a single obstacle for long periods, causing
diffusivity to approach zero as in the case without motion at the surface.

3.5 Conclusions: Final Remarks and Perspectives
This work presented in this chapter demonstrates that the long-time dispersal of motile
microorganisms in porous media is governed by a generic law, which is rooted in the
invariance of the mean free path (Eq. 3.11). The concept of Cauchy universality has
been known in contexts such as wave propagation through scattering media [186, 187]
and the residence time of bacteria in microstructures [188]. This work shows that despite
the diversity of swimming strategies and porous environments, microbial dispersal can be
understood within a common and unified framework.

Extension to ABP-only Case Although the model in this work has been applied
to run-and-tumble motion, it is also applicable to non-tumbling cases, such as active
Brownian particles. In this case, it is assumed that the ABP has zero velocity at the
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surface and that escape is governed by rotational diffusion12. This process has been
studied in detail [146], and the mean time spent at the wall is given by τs = ζτp, where ζ
is a known prefactor. Replacing τ with τp, ξ ≡ τp/τ

∗
p , a = T /ζ, and b = T /β̄, Eq. 3.10

remains valid, indicating that the diffusivity D(τp) still follows the same generic curve.
The maximum diffusivity is achieved at:

τ ∗
p = T√

ζβ̄
, D∗ =

τ ∗
p

2 + c
K(φ̄), c =

√
ζ/β̄ +

√
β̄/ζ. (3.37)

The optimal persistence time remains proportional to the mean chord length of the
medium, with the prefactor depending on the specific escape behavior.

Significance and Insight In natural porous environments where surface trapping [12,
133] is a good approximation—such as in the rough or irregular boundaries found in rocks,
soils, gels, and tissues (see Fig. 1.6)—the expression for diffusivity in Eqs. (3.16)-(3.18)
proves to be remarkably generic. This means that materials with very different microstruc-
tures may lead to similar long-time dispersal characteristics, as most microstructural prop-
erties are irrelevant, with the mean chord length of the material being the dominant factor
in determining long-time dispersal. Furthermore, the mean chord length is not only the
dominant factor but also a simpler quantity to access experimentally, possibly offering a
practical means to estimate long-time dispersal without requiring detailed knowledge of
the porous medium’s full morphology [181].

Comparison with Previous Literature The connection between dispersal and the
invariance of the mean-free path provides new insights into previous findings in the lit-
erature. Mattingly [131] developped a model for diffusivity in porous media, focusing on
ballistic runs and isotropic tumbles in randomly placed overlapping disks. The resulting
diffusivity prediction, derived through homogenization methods and explicit at low solid
fractions, can be recovered as a specific case of Eq. (3.10). The minimal model presented
here also explains why Mattingly’s claim that “one can forget almost everything about
the medium when measuring diffusivity” is a broadly applicable result. Furthermore, it
offers a way to revisit earlier conclusions, such as the observation in Ref. [21] that “the size
of the pores, not their shape, matters” for RT polymers in disordered media. Similarly, a
study on active Brownian particles in periodic media [173] emphasized that “the effective
mean free path is the critical length scale governing cell transport”. Both insights are
consistent with the Cauchy universality described by Eq. (3.11).

Finally, it was shown numerically in Ref. [128] that a “reverse-when-stuck” swimming
strategy outperforms other strategies. The current model generalizes this conclusion by
predicting that the optimal strategy for maximizing diffusivity in organisms with surface-
sensing abilities would involve immediate escape after surface contact, and reorientation
parallel, not normal, to the surface13. This conclusion is not specific to any particular
porous medium, making it broadly applicable.

12The particle escapes when its direction points into the free space.
13Setting τs = 0 in Eq. (1) maximizes the first term, while the second term is maximized for ballistic

motion and small β̄.
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Future Directions Several avenues for future research emerge from this work. First,
the impact of non-Poissonian processes on tumbling and trapping [12,159] needs to be ex-
plored further. Additionally, anisotropic dispersal induced by external fields or symmetry-
breaking microstructures should be characterized, as well as the effects of chemotaxis or
fluid flows [189]. Second, more understanding is required to delineate the conditions under
which Cauchy invariance holds [177].
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This last results chapter of the thesis transitions from the theoretical approach of the
two previous chapter to a mostly experimental focus. Moreover, it reintroduces the role of
taxis, a crucial factor in bacterial motility that was not considered in the earlier chapters.
The emphasis here is on Magnetotactic Bacteria (MTB), which had been introduced in
the introduction of the manuscript, in Sec. 1.1.2.

Outline of the Chapter The chapter starts by clearly defining the background and
motivation behind the study in Sec. 4.1. Then, Sec. 4.2 and 4.3 are two results sections.
The first investigates the magnetic response and basic motility features of a novel MTB
strain, for which only rough estimates are currently available in literature. The second
focuses on early findings concerning a newly observed phenomenon involving motion under
magnetic constraints and in the presence of solid interfaces. This latter section remains
largely open-ended, but it offers a foundation for future research.
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4.1 Background and Motivation
This section reintroduces key topics initially covered in Sec.1.1.2, which were only mini-
mally addressed in Chapters 2-3. Specifically, it delves deeper into magnetotactic bacteria
and the role of motility responses to external signals. The primary focus is on the SS-5
strain, a novel MTB specie discovered ten years ago [190], which has garnered significant
interest in recent years.

4.1.1 Biological Swimmers with a Magnet
MTB are a diverse group of motile microorganisms that navigate along magnetic field lines
using intracellular structures known as magnetosomes. These are nanometric, ferromag-
netic crystals stored within linear intra-cellular membranes, which enable the bacterium
to respond to external magnetic fields. This unique ability forms a navigation system that
merges micro-scale motility with nanometric magnets, alongside other internal motility
responses such as aerotaxis. Unsurprisingly, this combination gives rise to a biological
swimmer that exhibits a complex and fascinating pattern of motion [24,25].

Reasons to Study MTB In recent years, a multi-disciplinary research has grown
around MTB. From a physicist’s perspective, magnetotaxis introduces a clear physical
element to the complex biological problem of bacterial movement, as the interaction be-
tween a magnetic field and a ferromagnetic agent is a well-established problem of classical
physics. In terms of applications, MTB’s unique properties have been employed and
are currently being tested in innovative techniques. In medical applications, Magnetic
Hyperthermia is a developing cancer treatment that uses heat generated by magneto-
somes subjected to an alternating magnetic field, to target and selectively destroy tumor
cells [191]. In ecological applications, MTB strain BW-1 has been found to biomineralize
copper sulfide nanoparticles, opening new possibilities for biological metal recovery [192].
Moreover, different studies have looked into MTB for drug delivery systems [25, 193] or
as possible replacements of contrast agents [194, 195]. All of these applications require a
comprehensive predictive framework for their motion, which remains incomplete. Gain-
ing deeper insight into their motility in response to applied fields could enable “remote
control” of their movement at the micro-scale through the application of appropriate ex-
ternal fields. This issue is also closely related to broader topics such as active transport
and magnetic alignment, contributing to the development of magnetically driven micro-
agents. [196,197].

MSR-1 Strain: What is Known? The understanding of MTB motility comes primar-
ily from studies done on the MSR-1 strain, one of the most studied species of the family.
Key features include its helical cell morphology and movement mechanisms. MSR-1 has a
linear magnetosome chain and is propelled by two flagella on each side of its cell body (See
Fig.4.1). Its motion characteristics, such as propulsion velocities and swimming patterns,
are well documented. Like most MTB, MSR-1 exhibits a run-reverse swimming pattern
through motor switching1 [24]. Magnetic responses in MSR-1 have been modeled by de-

1Earlier chapters introduced run-reverse as a motility of bacteria with a single flagellum, which can
either propel the cell forwards or backwards. This pattern also applies to MSR-1, which has instead two

68



4.1. Background and Motivation

First Flagellum

FeSO4 Magnetosome Chain

Cell Membrane

Second Flagellum

(a) (b)

Intra-cellular Membrane

Figure 4.1: Magnetotactic bacteria MSR-1 strain. (a) Electron microscopy image
of one MSR-1 cell (flagella not visible). (b) Schematic representation of cell features: cell
morphology, position of flagella and magnetosomes chain. Adapted from [199].

scribing the bacterium as an ABP with an added magnetic dipole aligned with its motion,
leading to various methods and estimates of its characteristic magnetic moment [198–201].
Although models of aerotaxis have attempted to capture motility responses to oxygen gra-
dients, detailed studies on “magneto-aerotaxis”—the combined response to oxygen and
magnetic fields—are still needed [99, 199]. Other motility-related research includes inter-
actions with flow fields and collective behavior, such as the destabilization into mobile
clusters under certain conditions, when dense suspensions are exposed to external fields
and opposing flows [200]. Recent and ongoing studies continue to explore MSR-1 motility,
investigating swarming behaviors in high-density suspensions [202] and directed motion
within flows [203] and confined environments [204].

4.1.2 Novel SS-5 Strain
This section introduces the specific bacterial strain that will be used in the experiments
presented in Sec. 4.2-4.3.

SS-5 Strain: What is Known? The strain of interest is named SS-5, originally found
in what remains of Salton Sea, a saline lake turned toxic and inhospitable to life by unregu-
lated agriculture [205]. Although discovered ten years ago, only recent developments have
established stable and reproducible methods to culture this strain in the lab, therefore
not much is known about the specie. The currently available estimates of SS-5’s charac-
teristics include its rod-shaped cell morphology (See Fig. 4.2), with an average length of
2.5 µm and an average width of 1.2 µm; its propulsion velocity estimated at approximately
55 µm/s; it’s magnetic response due to an average of 20 iron-oxide magnetosomes, each
with an average size of about 80 nm [190]. Lastly, SS-5 is known to perform microaero-
taxis, leading to accumulation at particularly low oxygen, at least 21 times lower than

flagella at each end of its elongated cell body.
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Figure 4.2: Magnetotactic bacteria SS-5 strain. (a) Electron microscopy image of
one SS-5 cell. Schematic representation of cell motility features: cell morphology, position
of flagellum and magnetosomes chain. Adapted from [24].

atmospheric levels [24].

Why a New Strain? It’s natural to ask why one would choose a novel strain over
MSR-1, for which many basic aspects of motility are already well documented. The
reason why SS-5 has attracted interest for physical studies is due to its simple rod-shaped
cell body, resembling that of E. coli, and its propulsion via a single flagellum. This
straightforward shape offers clear advantages in modeling, particularly when compared
to the more complex helix-shaped, biflagellated MSR-1. This simplicity is especially
important, for instance, if the aim is to model interactions between the bacterium and
solid obstacles. With SS-5, simplifying assumptions and comparisons with existing results
for E. coli are feasible, whereas the complex two-motor system of MSR-1 may introduce
unique dynamics that require new approaches. Additionally, the biological properties
of SS-5 have attracted attention in related fields, leading to its complete genome being
recently sequenced [206], making it a strong candidate for future studies and applications
that may require characterization of its motility.

4.2 Magnetic Response of the SS-5 Strain
This section investigates the motility response of the SS-5 strain to magnetic fields in bulk
fluid. Sec. 4.2.1 discusses the experimental setup used, while Secs. 4.2.2-4.2.3 focus on
results and modeling. The work in this section results from a collaboration with Valentin
Poncet, who worked on this part of the project during his M2 internship, and has since
become a PhD student, currently working with SS-5 at Institut Lumière Matière.

4.2.1 Experimental Setup
Growing SS-5 in the Lab The SS-5 strain is cultured following the protocol detailed
in Appendix B. The growth process is complex and lengthy, relying on semi-solid cul-
tures for micro-aerophilic bacteria that enable controlled anoxia. Additionally, SS-5 uses
inorganic carbon sources (sodium bicarbonate) for growth, resulting in slow duplication
times, estimated to be around 24 hours—nearly two orders of magnitude longer than
that of E. coli. Typically, cultures reach optimal growth conditions about 7 days after
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Z-Coils

Y-Coils

X-Coils
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Objective

(a) (b) (c)Helmholtz Configuration

Figure 4.3: Experimental Setup. (a) Helmholtz coils configuration: two parallel coils
of radius R, spaced R, carrying an equal electric current in the same direction. (b)
Observation setup: an inverted microscope with custom sample holder, allowing for three
Helmotz pairs to be placed around the sample. (c) Schematics: the three coils are placed
on three orthogonal (x,y,z) axis, without obstructing the field of view.

refresh, at which point the bacteria can be transferred from the semi-solid medium to a
swimming medium, following the protocol in Appendix B.2. Samples are then prepared
and observed using a custom microscope setup, as detailed below.

3-Axis Control of Applied Fields To characterize bacterial movement under pre-
cisely applied magnetic fields, an inverted microscope was modified with a custom sample
holder designed to accommodate coils. The setup and schematics are illustrated in Fig.4.3.
Specifically, a pair of Helmholtz coils (See Fig.4.3a) is centered around the sample for each
axis. This configuration generates uniform and constant magnetic fields within the central
region of the coils. To achieve three-dimensional control over the applied field, three pairs
of Helmholtz coils, totaling six coils, are arranged in a three-axis setup (See Fig. 4.3b-c).
Given the geometric constraints of the Helmholtz configuration and the following require-
ments: 1) the coils must not impede the objective’s field of view, 2) the sample holder
must be precisely centered to maintain uniformity of the applied field, and 3) the applied
fields needed to reach a maximum of 2 mT; a lot of trial and error was necessary to de-
velop a successful holding system for the three pairs of intertwined coils surrounding the
sample holder. In the final setup, each set of coils is connected to an independent power
supply, and calibration measurements with a Gauss-meter were conducted to measure the
strengths of the applied fields, and to determine the intensity-to-field relationship for each
set2.

2The intensity of field in the center of Helmotz coils can be derived from the Biot-Savart Law: B =
(4/5)3/2µ0nI/R, where n is the number of turns in each coil and µ0 = 4π × 10−7T m A−1. Calibration
measures were made to ensure linearity and to better estimate the linear coefficient of each set of coils.
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B = 0 μT B = 2000 μT

Figure 4.4: Bacterial Tracks with and without Applied Field. Examples of experi-
mental tracks of SS-5 without applied field (left) and with applied field in the x-direction
(right). Coloured points shows the recorded instantaneous velocity

Contribution of Earth’s Magnetic Field In the upcoming analyses, it is crucial to
consider the total magnetic field affecting the bacteria3, not just the one applied by the
coils. To do so, the microscope is oriented with the y-axis pointing North. Then, according
to measurements done within the area of Lyon, the main contribution of the Earth’s field
is primarily in the z-axis (approximately 50 µT) and in the y-axis (approximately 20 µT).
The field in z is consistently cancelled out in all observations, by imposing an equal and
opposed field. This guarantees that bacteria are subject to fields that are parallel to
the plane of observation of the microscope. The y-axis contribution is included in the
estimates of imposed magnetic fields reported hereafter.

4.2.2 Transport under Magnetic Fields
This section investigates the motion of SS-5 in response to magnetic fields. Bacterial
motion is recorded using samples prepared according to the methods described in Ap-
pendix B.2. Recordings are performed at a low-to-intermediate cell density within the
field of view, typically between 10−4 and 10−3 cells/µm2. This density range provides suf-
ficient statistics while minimizing particle-particle interactions. As a result, subsequent
analyses assume the dilute limit, ignoring the effects of bacterial collisions.

Bacterial Tracks Experimental trajectories are obtained using a tracking algorithm
based on Python library trackPy, as detailed in Appendix B.2.2. Sample trajectories,
depicted in Fig. 4.4, demonstrate the bacteria’s motion with and without an external
magnetic field. The trajectories reveal a significant alignment effect on the bacteria’s
orientation due to the magnetic field, in contrast to the seemingly random motion observed
in the zero-field scenario. Notably, since the applied field is parallel to the field of view,
strong fields also result in longer recorded trajectories, as bacteria constrained by the field
remain within the field of view for longer periods.

3In nature, it is likely that the bacteria can sense the Earth’s geomagnetic field and use it for navigation,
therefore it is expected that its contribution will not be negligible in our observations.
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Figure 4.5: Velocity distribution of
SS-5. Normalized distributions of in-
stantaneous velocities recorded in bulk
fluid under different applied magnetic
fields. The measured velocities are the
projections of the actual cell velocities
onto the (x, y) observation plane.

Instantaneous Velocity A first natural question is whether the magnetic field influ-
ences only the orientation of the bacteria or also alters their swimming dynamics, such
as by increasing their velocity. The curves in Fig. 4.5 shows the distribution of measured
instantaneous velocities under varying field strengths. Data indicates a constant peak at
around 60 µm s−1 for all fields considered, a value is consistent with the only available esti-
mates in literature for SS-5 [24,190]. The spread of the distributions around the maximum
remains consistent across different field strengths, except for the velocity distribution at
8 µT. At near-zero field, the distribution shows a flat tail extending toward zero, likely
due to bacteria moving in and out of the 2D observation plane. In contrast, when a field
constrains motion within the observation plane, these 3D effects are minimized.

Orientation Further analysis focuses on the orientation of the bacteria relative to the
magnetic field. Figure 4.6a displays a histogram of particle orientations with respect to the
field direction, for different field strength. A clear trend emerges: stronger fields result
in a more pronounced alignment, with distributions increasingly peaked around zero.
Conversely, in the absence of a field, the distribution is flat, indicating no directional bias.

What about Reverse Events? Assuming that the interaction with the field only
involves alignment, the run-reverse motion of SS-5 raises questions. In earlier chapters,
run-reverse motion was understood as stochastic inversions of the direction of motion
which occur at a fixed rate. If this were the case, an orienting field would restrict movement
along its direction, but the back-and-forth dynamics would not cause the bacteria to
drift either towards, or against, the field orientation (See Fig 4.7a). However, what is
observed for SS-5 is that, while reverse events occasionally occur, all cells drift towards
the orientation of the field. This can be qualitatively explained by two factors: 1) bacteria
move primarily in the direction of the field, while cells are considered to be in pusher-
mode4. When a reversal induces the transition from pushing to pulling, SS-5 move against
the field direction only for brief periods (typically less than 1 second), before a second
reverse occurs to switch back to pushing (See Fig 4.7b). 2) Such “double reversals”—a

4Since the cell body must remain aligned with the field, the two motor states can be directly “seen”
as whether the particle is moving with the field, or against it. The convention used here is that pusher
state corresponds to motion in the direction of the field, while those moving against it are in a pulling
state. However, this assumption should be verified through direct observation of SS-5 flagellar propulsion,
which are currently unavailable.
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(a) (b)

Figure 4.6: Alignment under different applied fields. (a) Normalized distribution of
instantaneous orientation relative to the field direction for various applied field strengths.
Experimental data (points) are fitted using the model (dotted lines) described in Section
4.2.3. (b) Values of B̃ obtained by fitting curves at different applied fields B, along with
a linear regression (dotted line) which gives an estimate of Bc = B̃/B.
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Figure 4.7: Run-reverse of SS-5 at air oxygen levels. (a) Example of run-reverse
motion at a constant reverse rate λ under an orienting field Bx: bacteria go back-and-
forth, switching from pusher to puller, without drifting in the direction of the field. This
behaviour is not consistent with observations. (b) Example of run-reverse motion consis-
tent with observations of SS-5: motion predominantly occurs in the direction of the field
(pushing mode), while reversals are more frequent in the pulling mode (λ2 > λ1). Time
spent in uninterrupted pushing mode TRR is estimated to be 5-10 seconds, while typical
times spent pulling are below 1 second.
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switch from pusher to puller, followed quickly by a second switch back to pusher—are
relatively rare, occurring once every 5-10 seconds. As a result, motion predominantly
occurs in “pusher-mode”, with reversals having a minimal impact on the dynamics5.
Notably, these considerations apply only to experiments conducted at air oxygen levels.
Since the aerotactic response of SS-5 targets low oxygen levels (typically 21 times below
atmospheric levels [24]), the influence and dynamics of reversals are expected to change
under lower oxygen conditions.

4.2.3 Modeling Motion and Magnetic Alignment
In this section, a simplified physical model is discussed which characterizes a bacterium
swimming under the influence of an imposed magnetic field. This basic model, consisting
of an ABP with a magnetic dipole, allows to understand the underlying physical principles
of motion and deduce quantitative estimates. Based on earlier discussions, reverse events
are neglected in the model and the dilute limit is considered.

Model A bacterium is modeled as an active spherical particle of radius R, with a
magnetic moment m0, moving at constant velocity v0 in a fluid with viscosity η. It is
assumed that the direction of the magnetic moment aligns with the direction of motion,
represented by the vector v. The following analysis is done in a reference frame where the
x-axis aligns with the direction of the total external magnetic field, hereinafter referred
to as B. Initially, movement is considered to occur on a two-dimensional plane, an
assumption which could be justified in experiments with high field strengths, where motion
is strongly confined to the plane of observation by the magnetic field.

Dynamics The orientation of the particle within this reference frame, denoted θ, results
from the equilibrium of different torques. These include the viscous torque, θ̇γr, where
γr = 8πηR3 is the rotational friction coefficient; the torque exerted by the magnetic field,
m0 × B; and a stochastic torque representing rotational diffusion, given by

√
2Drγrξ(t),

with ξ being delta-correlated white noise. At low Reynolds numbers, the torque balance
equation can be expressed as an over-damped Langevin equation (See Sec. 1.2.1), yielding:

θ̇ = −m0B sin(θ)
γr

+
√

2Drζ(t) . (4.1)

Correspondingly, the associated Fokker-Planck equation (derivation not shown) is:

∂p(θ)
∂t

= m0B

γr

∂ sin(θ)p(θ)
∂θ

+Dr
∂2p(θ)
∂θ2 . (4.2)

Where p(θ) is the probability distribution of particle orientation with respect to the field
direction. The stationary solution to this problem is known [200], and expressed as:

p2D(θ) = eB̃ cos(θ)

2πI0(B̃)
, (4.3)

5In terms of run-reverse dynamics, this leads to assume that reversals can’t be characterised by a
single reverse rate, but rather involves two reverse rates each associated to its own motor-state.
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where B̃ = B/Bc, with Bc = γrDr/m0, and Ik denotes the k-th order modified Bessel
function.

The two-dimensional assumption may not be accurate for the comparison with exper-
imental data, as from observations at low and intermediate fields it is clear that bacteria
can swim in three dimensions within the depth of field. To address this, the model con-
siders the observed projection of θ, termed Θ, on the observation plane. The probability
density function for Θ can be obtained following an analogous three-dimensional formu-
lation [200], which only involves more complex calculations (not shown), yielding:

p3D(Θ) = I1(B̃ cos(Θ)) + L−1(B̃ cos(Θ))
4 sinh(B̃)

, (4.4)

where Lk is the k-th order of the modified Struve function.

Comparison with Experimental Data Despite the model’s simplicity, Eq. 4.4 effec-
tively fits experimental data across a range of magnetic field strengths, as illustrated in
Fig.4.6a. For each fit on experimental curves, an estimate for B̃ is derived and plotted as
a function of the imposed magnetic field B in Fig.4.6b. The observed linearity across all
tested fields suggests that the magnetic response is governed by a roughly constant coeffi-
cient Bc = γrDr/m0. With γr and Dr assumed to be independent of the applied field, this
result would indicate that motion is described by a constant magnetic dipole. This find-
ing supports the initial hypothesis that the magnetosome chain acts as a magnetic dipole
for the cell body, and its role “motility-wise” is to passively orient the cell body along
magnetic field lines. In conclusion, at air oxygen levels, SS-5’s motion resembles that of
an ABP with an added constant magnetic dipole aligned in the direction of motion.

Estimate of the Magnetic Moment From the linear regression of Fig. 4.6b, a fit of
Bc ≃ 7.6µT is obtained. Starting from this value, a rough estimate of the magnetic mo-
ment of SS-5 can be derived by employing a simplifying assumption: rotational diffusion
is treated as thermal noise 6. Thus, it is assumed that γrDr = kBT [208], where T is the
temperature during observation and kB is the Boltzmann constant. At room temperature,
this yields an estimate of m0 on the order of 10−17 A · m2. The value is roughly one order
of magnitude lower than what has been reported for MSR-1, for which similar trajectory
analyses yielded estimates in the range of 1 to 5·10−16 A·m2 [209]. Finally, bulk magnetite
is known to have a saturation magnetization of 450 kA/m [198], which, given the typical
sizes of magnetite crystals in bacteria, sets an upper limit of 10−16 A · m2. This upper
bound is consistent with the magnetic moment estimate for SS-5.

4.3 Magnetic Forcing at Solid Boundaries
Driven by curiosity, one might wonder: what happens when an SS-5 is forced against
a solid boundary by an applied field? Earlier results on bulk motion suggest that the

6As explained in Sec. 1.1, thermal rotational noise is typically not accurate for bacteria, which rather
require active noises with effective temperatures generally higher than the thermal case. For instance,
similar analyses on MTB AMB-1 strain estimate Teff ≃ 2.3T [207]. However, here the thermal assumption
is kept, allowing comparison with studies on MSR-1 that employed the same of thermal approximation.
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Figure 4.8: SS-5 motion at the water/glass interface. (a) SS-5 are forced on the
glass surface by a vertically aligned field. (b,c,d) Superimposed images in the (x,y) plane,
showing SS-5 trajectories at the surface under varying vertical fields. Images are treated
with a binary filter and then superimposed over a 1.5-second recording period.

bacterium, constrained by the field’s orientation, will collide with the wall and may remain
pinned on it, due to the magnetic torque keeping the bacterium perpendicular to the wall.
However, Sec. 1.3.1 had presented a wide spectrum of possible dynamics for bacteria at
interfaces. Generally, pushers are hydrodynamically attracted to solid walls, leading to
surface residency and, in some cases, motion on the boundary. For SS-5, this could imply
that, when in pushing mode, it may be hydrodynamically inclined to move along the
surface, potentially overcoming the magnetic field’s constraints. In contrast, pullers are
hydrodynamically repelled by surfaces. This is also relevant for SS-5, as the bacterium
transitions to a puller following reverse events, potentially altering its surface dynamics.
Overall, these observations indicate that the interplay between magnetic forces and solid
obstacles could lead to complex behaviors, and that the initial question might be more
intricate than it appears. The aim of this final chapter is to give insight on this issue.

Why Study this Topic? Besides sheer curiosity, this topic holds practical significance
for various applications. As detailed in the thesis introduction, common bacterial habitats
are far from homogeneous, often containing obstacles and areas of confinement. It is
natural to ask whether the magnetic response of MTB could aid their navigation in such
environments. Additionally, research such as those cited earlier for drug delivery [25,193]
or contrast agents [194, 195] are likely to benefit from an understanding of magnetically
driven motion in the presence of obstacles. Indeed, this topic is garnering significant
attention with the last years, highlighted by the recent publication of papers that explore
MTB motion within porous structures and confinement [173,203].

4.3.1 Surface Motion under Vertical Alignment
Consider the scenario where an SS-5 bacterium is directed towards a glass surface by
imposing a vertical field Bz (See Fig. 4.8a). This can be easily reproduced using the
experimental setup of Sec. 4.2.1. By recording the motion in (x, y), with the focal plane
positioned near the bottom glass surface, bacterial motion on the surface is recorded
under different strengths of Bz. Figs. 4.8 b,c,d show superimposed image sequences that
illustrate recorded trajectories of bacteria swimming on the surface.
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Figure 4.9: Circular motion and pinning.
Mean radius of circular motion in the (x, y)
plane as a function of the vertical magnetic
field Bz. For Bz >1 mT, radii tend to zero, in-
dicating that bacteria stop performing circular
motion and are instead pinned in place by the
field. Each average radius is calculated from
100 measurements of circular trajectory radii.

Without Field Figure 4.8a specifically shows the SS-5 trajectories near a glass bound-
ary in the absence of magnetic field. Similar to E. coli, SS-5 move along the surface
boundary as typically occurs for pusher-like swimmers. However, unlike what is typically
observed for E. coli (See Sec. 1.3.1), SS-5 does not follow circular trajectories when mov-
ing along the surface. Instead, its motion at the surface resembles that of its movement
in bulk: random and with no clear orientational bias.

With Vertical Field In contrast, when a vertical field is forcing the bacteria to orient
towards the surface, SS-5 exhibit clock-wise circular motion at the water-glass interface.
Comparing Fig. 4.8b-c, the typical radius of these circular trajectories appears to shrink
as the strength of the vertical field increases. To give a rough estimate of this radius,
an average was measured from different image sequences recorded under varying vertical
field strengths. Results are shown in Fig. 4.9, confirming that the typical radius of motion
decreases when higher vertical fields are considered. At sufficiently strong fields, typically
above 1 mT, SS-5’s circular motion ceases, and the bacterium becomes stationary on the
surface, unable to move in the (x, y) plane when the field is applied.

4.3.2 Discussion: Physical Interpretation
This section discusses the circular motion and pinning behaviour observed under vertical
alignment. To understand SS-5’s behavior at the glass boundary, it is useful to begin with
what is known about the well-studied problem of bacteria moving near solid surfaces.

Surface Motion and Other Species It is known that E. coli traces circular trajecto-
ries at interfaces, exhibiting clockwise (CW) motion at no-slip boundaries like water/glass
interfaces [210] and counterclockwise (CCW) motion at free boundaries like water/air in-
terfaces [211]. As shown in Fig. 4.10a, the radii of these trajectories typically range from
10 to 50 µm, and decrease with increasing temperature [212]. Similarly, monoflagellated
bacteria such as V. alginolyticus can exhibit alternating CW and CCW circular tracks
corresponding to either forward or backwards movement (see Fig. 4.10b) [213]. Finally,
the radius of curvature is also observed to increase with the length of the cell body [110].

Pushers and Pullers on Flat Interfaces Far-field hydrodynamics models, which
reduce swimming bacteria to flow singularities, can account for interactions with both
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(b)(a) (c) H < Hc H > Hc

Figure 4.10: Circular motion at interfaces, across bacterial species (a) E. coli
tracks at a glass/water interface show a reduction in motion radius with increasing tem-
peratures. (b) V. alginolyticus tracks on glass surfaces exhibit circular motion that alter-
nates between clockwise and counter-clockwise, depending on whether the bacterium is
moving forwards or backwards. (c) MSR-1 tracks at a water/glass interface under a ver-
tical magnetic field H. Motion switches from circular when H is below the critical value
Hc to diffusive when H > Hc, due to competing magnetic LM and hydrodynamic LH

torques, which respectively orient the bacteria perpendicular and parallel to the surface.
From Refs. [201,212,213].

no-slip and free boundaries, using mirror hydrodynamic images similarly to what’s clas-
sically done in electromagnetism. These models show that pushers are subject to wall-
induced hydrodynamic re-orientations, which tend to rotate pushers to remain parallel
to the boundary, whereas pullers are aligned perpendicularly. Furthermore, these models
attribute circular trajectories at boundaries to hydrodynamic interactions from torque
exerted by the swimmer on the surrounding fluid while near the surface. The predicted
rotation rate scales with the strength of the torque and exhibits a non-trivial dependence
on the swimmer’s elongation, with the effect diminishing rapidly as the swimmer moves
away from the wall [210].

The Case of MSR-1 The magnetotactic specie MSR-1 has been also observed per-
forming circular motion at the water/glass interface under low vertical magnetic fields,
transitioning instead to random diffusive motion under higher fields (see Fig. 4.10) [201].
This behavior was explained as the interplay of a magnetic torque and a surface-induced
hydrodynamic torque. Consequently, motion is characterized by two states: a circular
motion state dominated by the hydrodynamic torque, where the bacterium aligns parallel
to the surface, and a diffusive state dominated by the magnetic torque, where the bac-
terium aligns perpendicular to the surface. The transition between these states occurs
when the applied magnetic field exceeds a critical value Bc, predicted as

Bc = γrv

m0L
, (4.5)

79



Chapter 4. Motion under Constraints: Novel Magnetotactic Bacteria

where γr is the rotational drag coefficient, m0 is the magnetic moment of the species, and
v and L are the speed and size of the bacterium, respectively. For MSR-1, the critical
field Bc is estimated to be around 2300 µT, though this varies with cell size and speed.

The Case of SS-5 The behavior of SS-5 under magnetic fields is comparable to that
observed for MSR-1, with two predominant torques likely influencing motion on the sur-
face. In fact, the estimate of Bc for SS-5, based on Eq. 4.5 and the parameters derived
in Sec. 4.2.3, falls between 300 and 500 µT, which aligns with the observed transition to
circular motion characterized by very small radii 7 (Fig. 4.9).
However, clear differences in behavior are also observed. Unlike MSR-1 and most pusher
bacteria, SS-5 exhibits bulk-like random motion on the surface when no vertical field is
applied. Secondly, for B < Bc, the radii of SS-5’s circular paths decrease progressively
with increasing field strength, unlike the abrupt transition from circular to diffusive mo-
tion seen in MSR-1. Finally, when B > Bc, SS-5 remains stationary on the (x, y) plane,
in contrast to the diffusive behavior of MSR-1. These differences could be attributable to
morphological differences between the mono-flagellated SS-5 and the bi-flagellated MSR-1
(see Figs. 4.1 and 4.2). The observed shrinking of radii in SS-5’s motion resembles dy-
namics seen in E. coli under increasing temperatures (Fig. 4.10a), yet thermal/stochastic
fluctuations are not incorporated in the model used for MSR-1, which may instead play a
role in SS-5’s case. Furthermore, reverse dynamics are minimally addressed, however the
transition from pusher to puller likely alters hydrodynamics interaction, and may result
in surface behaviours similar to those of V. Algynolycticus (Fig. 4.10b). Overall, these
considerations suggest that a full picture of SS-5’s behavior is still missing, highlighting
the need for more in-depth studies to understand its unique surface interactions.

4.3.3 Perspectives: 3-Axial Digital Holography
Section 4.3.1 showed that SS-5 can performs either circular motion or is pinned at the
boundary when forced on a glass surface by a vertical field. Section 4.3.2 concluded that
a full understanding of this surface behaviour is not yet achieved. However, the exper-
imental setup used so far is limited to two-dimensional recordings, whereas a thorough
understanding of this phenomenon may require precise information on 3D information on
the orientation of SS-5’s cell body as it moves along the surface. This has led to a collabo-
ration with Di Leonardo Lab at “La Sapienza” University, supported by ETN “Phymot”.
The goal is to reproduce the earlier work by Bianchi et al. [214] by using SS-5 rather
than E. coli. This would enable single-cell 3D visualization as cells approach and move
along the surface, achieved using an existing setup for three-axial digital holographic mi-
croscopy [215]. In this final perspective section, this new setup is introduced, along with
the initial steps taken to apply it to the study of SS-5.

Classic and 3-Axial DHM Digital Holographic Microscopy (DHM) is a technique
that allows for 3D imaging by capturing a 2D snapshot of the interference pattern (or
hologram) generated by the interaction between a reference beam and light scattered by

7Since SS-5 is pinned to the surface at high fields, rather than exhibiting diffusive motion, it is
reasonable to assume that circular motion at small radii indicates the dominance of the magnetic torque
over the hydrodynamic one.
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an object. This 2D hologram contains information about the 3D structure of the object,
which can be reconstructed using computational techniques. The major advantage of
DHM is that it does not require mechanical scanning, enabling fast acquisition rates for
dynamic imaging. One significant limitation of traditional DHM is poor axial resolution.
This happens because the back-propagation method struggles to resolve depth information
with high precision. Three-axial digital holographic microscopy improves upon standard
DHM by using three tilted beams of different wavelengths (red, green, and blue) (See
Fig. 4.11a). The reconstruction from each beam provides depth information, and their
overlap gives a more accurate volumetric image.

Challenges for 3-Axial DHM with SS-5 Several factors had to be adressed before
the use of 3-axial DHM to study SS-5 motion:

1. Optical compatibility: bacteria must be optically compatible with DHM8. A priori,
this is a particularly relevant inquiry for MTB, as magnetite has a refractive index
of around 2.42, a much larger value than typical refractive indexes of cells.

2. Aspect ratio and image distortion: 3-axis DHM is suited for rod-shaped bacteria
like E. coli (aspect ratio ∼4), where the orientation of the cell body can be resolved.
Each of the color channels produces its own volumetric image, but the focal region
of each channel is elongated along the respective illumination axis. This elongation
can lead to axially stretched images even when the product of the three different
reconstruction is considered. Consequently, reconstructed cells appear dilated along
the z-axis. If the observed cell is sufficiently elongated, this stretching artifact can
still allow for the long axis to dominate in the reconstruction. For less elongated
bacteria like SS-5 (aspect ratio ∼2), this elongation could mask the orientation
signal, leading to inaccurate measurements of the cell’s true orientation.

3. Stabilization for motion capture: In previous experiments with E. coli, optical tweez-
ers were necesary to to localise and center the bacteria in the field of view, which
were then recorded after being released after the optical trap. This is a practi-
cal necessity to record fast-moving objects at high magnification (between 60 and
100X) and frame rates (>100 fps). However, optical tweezers for SS-5 have not been
developed yet.

4. Magnetic field: The project aims to study bacterial motion under vertically applied
magnetic fields, ideally requiring Helmholtz coils around the sample. However,
integrating these coils into the 3-axis DHM setup is challenging, as the existing
arrangement already requires precise alignment of the three tilted beams, leaving
little room for additional equipment.

8DHM relies on the refractive index difference between the bacterium and the surrounding medium
to generate a clear hologram. If the refractive index contrast is too low, scattering will be insufficient for
proper reconstruction. If too high, excessive or multiple scattering could distort the image.
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3-color Illumination

Helmholtz Coils
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Figure 4.11: 3-Axis Holographic Microscopy. (a) Working principle of the method:
samples are illuminated by three partially coherent beams having different colors and di-
rections; the resulting holograms from the interference between scattered and unscattered
light are acquired by a RGB camera; A volumetric image of the sample is obtained as
the overlap of three independent reconstructions [214, 215]. (b) Modified setup with the
addition of a Helmholtz coil around the sample holder. (c) Raw image of the hologram of
an SS-5 cell. (d) Re-constructed SS-5 cell body from different view-points in one frame.
The (x, y) view (middle inset) shows that elongation can be resolved outside of the z-axis.

Ongoing Developments Several attempts have been made to record, reconstruct, and
analyze SS-5 motion using the 3-axis DHM setup. Initial results confirm that the bacte-
ria are optically compatible with the technique. Multiple configurations were tested to
integrate Helmholtz coils into the DHM setup, and a recent solution incorporates large
Helmholtz coils around the illumination stage, enabling the generation of vertical mag-
netic fields during observations (Fig. 4.11b). Interestingly, this addition also addressed
the lack of optical tweezers, as the magnetic response can now be used to immobilize the
bacteria with strong vertical fields, effectively replacing tweezers. Several reconstructions
have been performed (Fig. 4.11c-d), but it’s still under review whether the low aspect
ratio of SS-5 significantly affects the accuracy of orientation measurements. Early results
show promising reconstructions, where the cell body appears clear and elongated on the
focal plane, but quantifying the accuracy of the 3D reconstructions remains challenging.
Methods are currently being explored to assess, and possibly correct, the z-axis elongation,
including potential post-processing algorithms to mitigate the reconstruction artifact.
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Current State While significant progress has been made in adapting the 3-axis DHM
setup to study SS-5, the current protocols require further refining and testing to make
actual data that can be used and studied. For now, these preliminary results provide a
solid foundation for continued exploration.

4.4 Conclusions
The final results chapter has shifted focus from the theoretical groundwork laid in earlier
chapters to an experimental investigation, emphasizing bacterial motility under external
stimuli. The reintroduction of magnetotaxis provides a new dimension to the study, with
SS-5, a novel MTB strain, taking center stage. The chapter outlines both the background
and the motivation for studying this strain, highlighting the significance of magnetotaxis
as a model for understanding physical interactions in bacterial movement. A comparison
was drawn between the well-studied MSR-1 strain and the novel SS-5, emphasizing the
advantages of SS-5’s simpler morphology for modeling motility in complex environments.

A basic characterisation of SS-5’s magnetic response under controlled experimental
conditions was presented, providing key insights into its motility. This required the devel-
opment of a custom microscope setup, using Helmholtz coils enabled precise field control.
Additionally, a simplified physical model was presented and able to describe SS-5 motion
as the one of an ABP with an added magnetic dipole. The model fits the experimental
data, and allows for a rough estimate of the specie’s magnetic moment. This analysis
provides a necessary foundational understanding of the motion of the novel strain, setting
the stage for future experiments.

The last section of the chapter examined SS-5’s behavior under vertical magnetic fields
near solid boundaries. A new behaviour was observed: without a field, SS-5 moves ran-
domly along surfaces, but under a vertical field, it exhibits either circular motion or is
pinned in place, depending on the strength of the applied field. This behaviour highlights
complex interplay between magnetic forces and hydrodynamic interactions at boundaries,
which can’t be fully understood by the existing frameworks in literature. Early results
using 3-axis digital holography offer a new promising path to better understanding SS-5’s
surface motion. Although initial findings are promising, the study remains largely open-
ended, with further investigation and data needed to draw meaningful conclusions.

In terms of perspectives, this work was envisioned as a foundation for future projects,
and that vision has already come to fruition—not only through a collaboration with
Rome, but more significantly through the work of another standalone PhD project. This
endeavor is now led by former M2 intern, fellow PhD student, and dear friend Valentin
Poncet. Over the past two years, it has evolved into a comprehensive study of SS-5’s
aerotaxis and has already produced promising new results. For this reason, despite the
modest scope and unfinished nature of the results presented here, I personally consider
this work a success. It has sparked new collaborations, inspired further research, and set
in motion projects that will hopefully continue to evolve well beyond the timeline of this
thesis.
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Conclusions and Future Directions

“You don’t have to decide now, but you
have to start prospecting your future.”

Cécile

This thesis has explored bacterial motion in confinement with a specific focus on dis-
persal, optimality and universal behaviours. The study presented theoretical and experi-
mental results, characterising motion across diverse environments, species and dynamics.
This conclusion section summarizes the key insights drawn from each chapter, highlighting
the progress made and the questions that remain open. Lastly, it will explore perspectives
and avenues for future research.

The first chapter lays the foundation for understanding bacterial motility and mi-
croswimmer behavior. While progress has been made in describing bacterial transport
near surfaces and in porous environments, gaps remain in generalizing models, especially
regarding surface interactions and confined motion. These gaps define the scope of the
thesis and motivates the development of more comprehensive frameworks. In this context,
the second chapter develops a model for diffusivity within slit-like confinement, whereas
previous studies have primarily focused on accumulation and distribution profiles near
walls. This work introduces a fully solvable discrete-direction model for run-and-tumble
motion within a two-dimensional planar slit. The main outcome is a prediction for the
diffusion coefficient, which is validated through simulations, demonstrating the robustness
of the model even when the directional constraints are relaxed. Additionally, the model
reveals that optimal transport occurs when the mean run time matches the confinement
size, a finding with important implications for motility in confined environments. Lastly,
the model is also extended to account for surface motion, and the chapter discusses its
impact on long-time dispersal.

Building on the exploration of confined motion, the third chapter aimed instead to
understand dispersal in porous media, originally motivated by the potential for driven
motion through external fields. However, the study revealed richer, unexpected behaviors
in the absence of such fields. This chapter introduces a unifying framework for under-
standing the long-time dispersal of motile microorganisms in porous media, based on
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the invariance of the mean free path, also referred to as Cauchy Universality. Dispersal
follows a generic law, with the mean chord length of the medium emerging as the key
material property in predicting dispersal, a result that is confirmed numerically through
simulations that cover a wide range of swimming strategies and microstructures. The
proposed model is also consistent with previous findings and offers a generic framework
to understand dispersal.

One of the original motivations for this PhD was to investigate dynamics under driven
motion through external fields. However, theoretical and numerical investigations un-
covered richer results than initially anticipated, leading to a shift in focus. While the
initial plans for studying driven motion are discussed in the next section on perspectives,
this original objective triggered the experimental chapter of the PhD. The experimental
work focuses on SS-5, a novel magnetotactic strain with a simple cell morphology and a
single flagellum, which make it an ideal candidate for physical studies on motility. Initial
objectives included characterizing its driven motion under external fields, which led to
the development of a custom microscope setup and provided an estimate of the magnetic
moment of this new species. The experiments also revealed novel surface behaviors under
vertical magnetic fields, opening new perspectives on SS-5’s motility in the presence of
solid boundaries.

Overall, the work presented in this thesis advances the understanding of bacterial
motion in confinement, offering new insights and paving the way for future research.

Future Directions

The model developed for run-and-tumble motion in a slit offers valuable insights into a
simplified version of confinement but leaves room for further exploration, particularly re-
garding disorder and more complex media. Moreover, the slit model assumes the simplest
form of surface motion, but more specific surface behaviors observed in microswimmers,
such as hydrodynamics-induced circling trajectories [110], billiard-like scattering [113], or
twitching [2], could be incorporated into the existing framework. This would allow to
investigate the impact of these surface behaviors on dispersal within the slit and provide
insight on the advantages of various surface dynamics, though doing so may restrict the
model’s applicability to a narrower class of systems.

Looking ahead at the generic model proposed for dispersal in porous media, several
directions for future work are possible. Cauchy universality is expected to hold in a va-
riety of cases [177] that have yet to be tested in the context of dispersal. For instance,
the model’s applicability could extend to non-Poissonian processes for both tumbling and
trapping [12, 159], and it would be valuable to explore the model’s validity in environ-
ments featuring anisotropy. Symmetry-breaking microstructures, for example, can have
far-reaching implications beyond dispersal. Asymmetric obstacles may induce phenom-
ena such as active wetting, where particles accumulate near structures like half-disks,
leading to segregation based on particle speed or characteristics [216]. Furthermore, such
structures can create rectification currents, causing particles to exhibit directed motion
as a result of environmental asymmetry [217]. Connecting Cauchy universality to envi-
ronments with these symmetry-breaking microstructures could provide new insights into
these broader phenomena. This line of inquiry also applies to other potential directions
related to anisotropy, for instance in cases in which it is induced by external fields rather
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than the environment geometry. For example, future work could investigate chemotactic
drift driven by chemical gradients within a porous structure [189], fluid flows in confine-
ment [123], light-driven motion as seen in microalgae [172], or magnetically-driven motion
as in the case of magnetotactic bacteria [204]. Furthermore, this work has only consid-
ered stationary environments, where obstacles remain fixed over time. Future studies
could consider extending the model to incorporate motile obstacles and dynamic envi-
ronments [22]. Moreover, the current analysis has focused exclusively on single bacteria.
While the case of an ensemble of interacting particles presents more complexity [6], future
research could look into possible implications of the framework presented here on collec-
tive behaviours. Finally, the broader implications of the model could be explored beyond
microorganisms. For instance, given the analogy between the random walks of motile
microorganisms and polymer chains, Cauchy invariance may have potential applications
for polymers in porous media and could inform the design of nano-composites [218–220].

There are multiple perspectives for the experimental chapter that warrant further
exploration. One topic, briefly mentioned but not deeply examined in this thesis, is
the aerotaxis of SS-5 [190], which refers to the motility response to oxygen gradients.
A standalone PhD project has branched from the initial work presented here, and over
the past two years, it has focused on studying this phenomenon. This has already led
to the development of experimental setups that allow for controlled oxygen levels and
gradients at significantly low concentrations, with the aim of providing a microscopic
characterization of reverse dynamics arising from magneto-aerotaxis—motility resulting
from the interplay between oxygen gradients and magnetic fields. Regarding SS-5 motion
near solid boundaries, early results from the application of 3-axis digital holography [215]
suggest that preparations for using this technique on SS-5 are nearing completion, paving
the way for further analysis and concrete findings. This study will offer valuable insights
into how SS-5 cells orient under varying levels of magnetic alignment when in the presence
of a solid boundary, and how these dynamics are influenced by effects like reversals.

Additionally, merging experimental and theoretical approaches presented in this thesis
offers several promising avenues. For example, magnetotactic alignment due to external
fields could be considered as a source of directed transport and tested within the con-
text of the dispersal model with Cauchy universality. This could be done through nu-
merical studies, for instance looking at run-reverse particle that incorporate a magnetic
alignment and move within idealised porous media, replicating the dynamics of magneto-
tactic bacteria. Alternatively, the approach could involve experimental work, replicating
porous structures within microfluidic devices and investigating the dispersal of magne-
totactic bacteria under different applied fields. Overall, coupling magnetotaxis—or even
magneto-aerotaxis—with confinement presents a new research direction that is gaining
interest [27], and the work presented here, both experimentally and theoretically, opens
up further opportunities to pursue this path.

Et voilà !
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Résumé en Français

Mouvement de Bactéries en Environnements Confinés
Présentation Générale. Les bactéries présentent une diversité de comportements de
motilité, essentielle à leur survie au sein des environnements complexes et variés qu’elles
habitent dans la nature. Comprendre ces mécanismes de motilité, en particulier dans des
espaces confinés, est un sujet central dans la physique de la motilité bactérienne, mais
aussi crucial pour l’écologie microbienne et le développement de technologies bio-inspirées.
Cette thèse explore le transport bactérien dans des environnements confinés en s’appuyant
sur des modèles théoriques, numériques et expérimentaux. Plus précisément, elle vise à
caractériser le mouvement bactérien dans des canaux à parois parallèles ou dans des
milieux poreux en développant de nouveaux modèles capables de prévoir la dispersion.
Ces modèles sont ensuite utilisés pour comprendre comment la dispersion dépend des
caractéristiques du mouvement et pour identifier des stratégies optimales qui maximisent
l’exploration de l’espace. De plus, l’étude propose une première caractérisation d’une
nouvelle souche de bactéries magnétotactiques, une famille unique de bactéries capables
de se déplacer en suivant les champs magnétiques.

Organisation de la Thèse. La thèse est organisée en quatre chapitres. Le premier
chapitre passe en revue l’état de l’art sur la recherche en motilité bactérienne, avec une
attention particulière aux limites et lacunes qui motivent le reste du travail. Le deuxième
chapitre développe un nouveau cadre permettant de prédire la dispersion des particules
de type "Run-and-Tumble" dans des canaux à parois parallèles, et permet d’identifier la
stratégie de nage optimale. Le troisième chapitre se concentre sur les milieux poreux
et présente un nouveau modèle capable de prédire la diffusivité bactérienne à travers
une large variété de stratégie de déplacement et de conditions environnementales. Le
quatrième chapitre présente des études expérimentales sur une nouvelle souche de bactéries
magnétotactiques, en examinant leur réponse magnétique et leurs interactions avec des
interfaces solides.

Bilan et Perspectives. Cette thèse présente des contributions aux domaines de la
motilité bactérienne et de la matière active. Les résultats présentés dans les chapitres 2 et
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3 proposent deux cadres généraux avec une large applicabilité. De plus, ils fournissent un
cadre unifié pour comprendre l’existence de temps de persistance optimaux maximisant la
dispersion. De plus, ils fournissent un cadre unifié pour comprendre l’existence de temps
de persistance optimaux maximisant la dispersion. De manière plus large, les résultats
pourront être utiles pour potentielles dans des domaines allant du génie biologique à la
recherche microbienne. Dans ce cadre, le chapitre 4 décrit la caractérisation physique
d’une nouvelle espèce de bactéries magnétotactiques, qui présente un fort potentiel pour
la recherche future et a déjà donné naissance à deux projets en cours qui se poursuivront
au-delà de cette thèse.

90



APPENDIX A

Supplementary Results and Analyses

A.1 Numerical Methods

This section first presents a details the simulation model for motion within the slit and
porous structures. Then, it presents an analysis aimed at identifying the optimal method
to estimate diffusivity numerically.

A.1.1 Run-and-tumble in a Slit: Implementation

Simulation Setup The simulation of a run-and-tumble particle confined within a slit
begins by integrating the equation of motion using the Euler method, using a custom
Python code. One trajectory is generated by setting a simulation time-step ∆tsim and
total simulation time Tsim. The motion is restricted to two dimensions within a planar slit,
where the flat parallel walls are positioned at y = ±W/2. Initially, the particle is placed
at the origin with a random starting orientation and then its position and orientation are
updated at each time-step, until the total simulation time has elapsed.

Bulk Motion and Swimming strategies. In the bulk region within the slit, the parti-
cle moves at a constant velocity vo and undergoes two re-orientation processes. The first is
rotational noise, which is modeled as standard Brownian motion. This is incorporated by
integrating the angular dynamics, as described in Sec. 1.2.1, using the discretized form of
Eq. 1.1 in the high Péclet number limit. The second re-orientation process is governed by
tumbling events, modeled as Poisson processes occurring at rate λ. The tumbling process
involves re-orientation angles that follow different distributions based on the swimming
patterns. The simulation considers three specific distributions: isotropic run-and-tumble,
run-reverse, and a realistic run-and-tumble case mimicking E. coli. These cases result in
mean cosine values of the turning angles as 0, -1, and 0.375, respectively, as defined in
Sec. 1.2.2.
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Wall Collisions and Surface Motion. To simulate interactions with the walls, the
particle’s position is checked at each time step. If the y-coordinate crosses ±W/2, a
collision is detected. The precise collision point is calculated, and the particle’s position
is updated accordingly. If surface motion is included in the model, the particle chooses a
random orientation parallel to the wall (either left or right) and initiates one-dimensional
run-and-tumble motion along the surface. This motion excludes rotational noise and
involves only tumbling events, as described in the bulk motion.

Escape from the Wall. The particle’s escape from the wall is modeled as a Poissonian
process with escape rate µ. When an escape event occurs, the particle detaches from the
wall and re-enters the bulk fluid within the slit. The new direction of motion is chosen
randomly from the half-space that points away from the surface, ensuring the particle
moves back into the interior of the slit.

A.1.2 Run-and-tumble in a Porous Media: Implementation
Simulation Setup. Numerical simulations were performed using a custom Julia code
based on the MicrobeAgents.jl library. Microorganisms are represented as non-interacting
point particles moving at a constant speed vo, with their trajectories integrated using
Euler’s method. Tumbles are modeled as instantaneous reorientation events, occurring
according to a Poisson process with a rate of 1/τ . The simulation timestep is chosen as
∆t = τ/200 where τ is the average run time of the microorganism. At each timestep, ro-
tational diffusion affects the microorganism’s orientation by inducing a reorientation, the
magnitude of which is sampled from a Gaussian distribution with zero mean and variance
2Dr∆t. Three different swimming strategies are considered: run-reverse (RR), isotropic
run-and-tumble (RTi) and run-reverse-flick (RRF)

Wall Collisions and Surface Motion. At each timestep, after the new position x(t+
∆t) of the microorganism is calculated, the algorithm checks if the segment between the
previous position x(t) and the new position x(t + ∆t) intersects with the boundary of
any object. If no intersection occurs, the new position was accepted. In cases where an
intersection is detected, the intersection point is set as the microorganism’s new position.
Surface motion is implemented only for circular obstacles (see Sec. 3.4). In these cases,
after a collision, particles move along the circular boundary, performing orbits with a
tangential velocity equal to their bulk velocity. During surface motion, tumbling events
could result in one of three outcomes: escape from the boundary into free space with a
random orientation (probability 1/2), reversal of motion along the surface (probability
1/4), or continued motion in the same direction.

Boundary Conditions. For ordered environments, a unit cell containing a single solid
object is defined, and periodic boundary conditions are applied to mimic an infinite space.
For disordered environments, the geometry of a unit cell was generated using a brute-force
approach, where objects are randomly positioned in space, and any overlap with previously
placed objects is rejected. This process continues until the desired solid fraction φ̄ is
achieved. The unit cell is generated once, using a specific seed, and reused across all
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simulations. To simulate infinite space, periodic boundary conditions are applied, and
unit cells were made large enough to ensure that finite-size effects are negligible.

A.1.3 An Optimised Guide to Measuring Diffusivity
In Chapter 2 and 3, extensive numerical data was used to validate and extend the ap-
plicability of new theoretical models. Simulations were specifically designed to measure
long-time diffusivity of run-and-tumble motion across a wide range of conditions, requiring
both accuracy and computational efficiency. A preliminary analysis using the developed
simulation code was conducted to identify the fastest method for obtaining diffusivity
estimates with relative errors below one percent. This section focuses on optimising the
protocol by which diffusivity is measured.

Different Ways to Measure Diffusivity

The simulation process begins with generating tracks by integrating numerically the equa-
tions of motion (see Sec. A.1.1 or Sec. A.1.2). The next step involves measuring the dif-
fusion coefficient from the numerical trajectories. This measurement can be performed
in different ways, each potentially leading to different relative errors depending on the
simulation parameters: the total simulation time Ttot and the integration time-step ∆tsim.
Consequently, the initial focus of this analysis is to define different methods for measuring
diffusivity, test them through simulations, and conduct error analysis to determine the
optimal approach. Although these are not the only ways, the present analysis focuses on
the two most commonly used ways to measure diffusivity, one that goes through the mean-
squared and the other via the directional correlation function. Let’s start by defining the
two methods.

Via the Mean-squared Displacement The primary method follows the definitions
of Sec. 1.2.3. It starts by measuring the mean-squared displacement from the simulated
trajectories, and then extracts the diffusivity from a linear fit on the diffusive region of
the curve. Specifically, the fitting function is

M(t) = 2dDft
ν , (A.1)

where d is the space dimension, Df the fitted diffusivity and ν a second fitting parameter
that needs to be close to unity to ensure that the fit is performed in the diffusive regime.

Additionally, a consideration regarding the definition of mean-squared displacement
(See Eq. 1.5) can be made to improve efficiency of the numerical approach. For a station-
ary system, transport properties are independent of initial conditions. Consequently, the
average of M(t) can be performed not only over the ensemble of independent realisations
of the system, but also over all possible time delays within the simulation time. This is
equivalent to averaging over all initial times t0, giving:

M(t) =
〈

1
Tsim − t

∫ Tsim−t

0
[r(t′ + t) − r(t′)]2dt′

〉
Nsim

, (A.2)

where r(t) is the position at time t, t′ is the time delay, Tsim is the total observation
time and the ensemble average is over Nsim realization of the system. This re-formulation
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of the M(t) significantly increases sampling, especially at intermediate time intervals,
which are the regions of interest for diffusivity measures. Indeed, according to the orig-
inal definition of Eq. 1.5, the statistical fluctuations while measuring the mean-squared
displacement measures would scale as 1/

√
Nsim. Following instead Eq. A.2, errors scale

instead as 1/
√
Nsim(Tsim − t). Within this second approach, fluctuations scale with time,

reaching larger deviations as t approaches Tsim. Since diffusivity measures are on long-
time quantities, to ensure the long-time deviations do not influence results, the slope of
M(t) curve is always fitted on intermediate intervals in which sampling is highest. These
intervals are chosen between the onset of the diffusive regime up to a maximum of Tsim/3.

Via the Directional Correlation Function The directional correlation function is
defined as:

C(t) = ⟨e(t) · e(t′)⟩ , (A.3)

where e(t) denotes the orientation of the particle at time t. Using the Taylor-Kubo
formula [82], we can rewrite the definition of mean-squared displacement (See Eq. 1.5) in
terms of the velocity correlation function1, as follows:

M(t) = 2
∫ t

0
dt′

∫ t′

0
dt′′⟨v(t′) · v(t′′)⟩ = 2v2

0

∫ t

0
dt′

∫ t′

0
dt′′⟨e(t′) · e(t′′)⟩ , (A.4)

where v(t) is the velocity vector and the second equality is valid for a particle that moves
with constant velocity modulus v0. By subsequent insertion of Eq. (A.4) in the definition
of diffusivity (See Eq. (1.7)), the diffusion coefficient can be re-written in terms of the
directional correlation function:

D = v2
0
d

∫ ∞

0
dtC(t) . (A.5)

The directional correlation function is easily measured from simulated trajectories, and
offers an alternative for determining diffusivity. It involves integrating a numerical quan-
tity rather than fitting a long-time limit, thus allowing for diffusivity measurements from
short times behaviour, due to the correlation function generally decaying to zero rapidly.

Computationally Efficient Measurements, with Errors Below 1%

As a case study, consider bulk motion with parameters vo = 1, τ = 1 and Dr = 1 (in
arbitrary simulation units). The aim is to asses the most computationally efficient choice
of the simulation time-step, while ensuring relative errors2 below 1% for the estimates
of diffusivity. This analysis involves reproducing bulk motion, where exact diffusivity
solutions are known (see Eq. 1.8), and these findings are considered good approximations
for measurements in confined settings.

1This relation is simply obtained by integration of dr(t) = v(t)dt and by using the symmetry of the
velocity correlation function to permutations of the times t’ and t”.

2Errors are measured by comparison with the exact solution for bulk motion (See Eq. 1.8).
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Assessing Errors and Efficiency To focus solely on the impact of ∆tsim, let’s begin
by assuming an excessively large total sampling time3, ensuring that any errors in the
measurements primarily arise from the choice of time-step. Figure A.1a shows the relative
errors obtained using the two methods previously discussed for measuring diffusivity. The
data clearly indicate that a 1% error can be achieved with ∆tsim ∼ 0.1τ when calculating
D from M(t), whereas a smaller time-step of ∆tsim ∼ 0.01τ is required when measuring
D from C(t)4. This order-of-magnitude difference becomes particularly significant when
considering simulation times, as shown in Fig. A.1b. Given that computation times are
inversely proportional to the chosen simulation time-step, the mean-squared displacement
method is the most efficient choice for measuring diffusivity with regards to the choice of
∆t.
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Figure A.1: Influence of simulation time-step on errors and efficiency. (a) Relative
error on diffusivity estimates as a function of the ratio between simulation time-step and
mean run time. Results compare two methods of measuring diffusion coefficients. (b)
Average computation times, in seconds, as a function of simulation time-step, with linear
fit. Results are obtained by sampling a total of 107 mean-run times.

Assessing the Necessary Statistics Another important aspect to consider is deter-
mining the total sampling time (Ttot) required to ensure that the statistical fluctuations
in diffusivity measurements remain below the 1% threshold. Based on previous results, a
fixed simulation time-step of ∆t = 0.01τ is used. To estimate statistical errors, various
values of Ttot are selected. For each value, 40 independent simulations with identical pa-
rameters are conducted. The normalized standard deviation is then calculated from the
40 independent diffusivity measurements under the same conditions5. Results are shown
in Fig.A.2a: the diffusivity measured via the correlation function (blue) exhibits fewer

3The value used was Ttot = 107τ , meaning that each diffusivity estimate is derived from simulated
trajectories that include, on average, ten million tumbling events.

4This difference can be attributed to the fact that short-time effects, from which the C(t) measure is
derived, may be more sensitive to the simulation time-step, while long-time transport, from which M(t)
is calculated, may be less affected by larger time-steps.

5Mathematically, the normalized standard deviation is expressed as
√

⟨(D − ⟨D⟩)2⟩/⟨D⟩, where ⟨..⟩
represents the average over 40 independent measurements of the same system.
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fluctuations compared to the mean-squared displacement approach (green), reaching the
1% threshold at a nearly an order of magnitude smaller Ttot

6. However, if the fitting
method is performed with only one fitting parameter (orange), the fluctuations can be
significantly reduced. Specifically, by fixing ν = 1 in Eq. A.1 and allowing diffusivity to
be the sole fitting parameter, the fluctuations in the results decrease by a factor of 4. As
expected, computation times are directly proportional to the total simulation time (See
Fig. A.2b). Therefore, these results suggest that the short-time integral method generally
converges faster than the M(t) fitting approach, even though using a one-parameter fit
can significantly improve the accuracy of the M(t) results.
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Figure A.2: Influence of total simulation time on errors and efficiency. (a)
Normalised standard deviation of diffusivity measures as a function of the ratio between
total sampling time over mean run time. Results compare different methods of measuring
diffusion coefficients. In each scenario, fluctuations follow the expected 1/

√
t dependency.

(b) Average computation times, in seconds, as a function of total simulation times. Results
are obtained using a simulation time-step that is 1% the mean-run time.

Optimal Method for Measuring Diffusivity

Based on the previous analysis, the method used to measure diffusivity across all results
shown in Chapter 2 and Chapter 3 is explained. Diffusivity is measured through a one-
parameter linear fit, in log-log scale7, within the linear interval of the M(t), selected in the
range [100τ , 500τ ]. To ensure the linearity of this fit, first a two-parameter fit is performed
to verify that ν is close to unity. For all numerical data presented in Chapter 2,the fit
exponent ν is consistently close to one, with deviations around 1.7%, as shown from the
histogram of Fig. A.3. The numerical parameters used in this analysis are ∆tsim/τ = 10−2

and Ttot/τ = 106. This selection comfortably meets the required accuracy and each

6This is likely due to statistical fluctuations diminishing rapidly at short times, where the C(t) mea-
surement is taken, whereas the intermediate-time MSD fitted region requires more extensive sampling to
achieve convergence.

7To perform linear regression on the log-log data of the mean-squared displacement as a function of
time, Eq. A.1 is rewritten as log M(t) = log(2dD) + ν log t.
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Figure A.3: Fit exponent for all
simulation data in Chapter 2
Histogram of the fitted linearity co-
efficients for the 2000 diffusivity
estimates presented in Chapter 2.
The coefficient follows a normal dis-
tribution centered around one, with
a fitted standard deviation of ap-
proximately 1 − 2%. Results are
consistent across cases with and
without surface motion (v̄o > 0 and
v̄o = 0, respectively).

numerical estimate is completed within approximately one hour of computation time8.

A.2 Additional Analyses of the Four-direction Model
This section contains additional results and analyses linked to the discrete-direction model
presented in Chapter 2.

A.2.1 Numerical Check of the Model
The numerical method used in Sec. 2.3 can be adapted to simulate run-and-tumble motion
within a slit for the four-direction model. Shown in Fig. A.4 is the diffusion coefficient
obtained for a variety of parameter combinations. The relative error between numerical
and analytical results does not exceed 1% and is 0.4% on average. A similar agreement
holds for other parameter combinations tested.

A.2.2 Effective Escape Rate
The correction factor in the effective escape rate of Eq. (2.23a) might be interpreted from
a purely geometric argument. Consider the flux of particle leaving the wall and imposing
that it has to remain unchanged when matching the continuous and discrete models. For
a unit length of wall occupied with a particle density ρ, the flux of particle crossing a line
infinitely close to the wall is ρµ̂⟨v⊥⟩, where the average velocity perpendicular to the wall
is given by

⟨v⊥⟩
vo

= 1
π

∫ π/2

−π/2
cos θ dθ = 2

π
, (A.6)

because in the continuous model, the direction of escape is uniformly distributed. To
establish a correspondence from the continuous model to the four-direction model, a

8This computation time is based on each simulation running on a single CPU thread. The choice to
run in a single thread, rather than multi-threading, simplifies the management of running a large number
of simulations in parallel.
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Figure A.4: Numerical check of diffusivity solutions in the four-direction model.
The diffusion coefficient obtained from numerical simulations (points) is compared to the
theoretical expression (lines) given by Eq. (2.27). Surface-motion cases are on the right,
and those without are on the left.

Figure A.5: Escape rate matching
between models. Matching the escape
rate between the continuous and four-
direction model. In the former, a parti-
cle leaves the wall with a random angle θ
which is uniformly distributed. In the
latter, a particle escapes perpendicular
to the wall.

natural matching procedure is to define angular sectors as in Fig. A.5 and require that
only particles with |θ| < π/4 are ascribed the up-direction and actually leaving the surface.
With those assumptions, we have now

⟨v⊥⟩
vo

= 2
π

∫ π/4

−π/4
cos θ dθ = 2

√
2

π
. (A.7)

Compared to Eq. (A.6), the average velocity perpendicular to the wall is increased by a
factor of

√
2. Because physically, we ask for a similar flux in the continuous and four-

direction models, one needs to lower the rate in the latter, suggesting

µ = µ̂√
2
. (A.8)

Such a correction is perfectly consistent with the data.

A.2.3 Approximations for Optimal Mean Run Time
When the particle remains mobile at the wall, some approximations are required to write
the optimal mean run time in explicit form. A first case to consider is when the surface
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Figure A.6: Optimal mean run time
comparison. Exact optimal mean run
time τm computed numerically (contin-
uous line) and approximations (dashed
lines) from Eqs. (A.9a) and (A.11). Pa-
rameters are η = 2, τr = 1 and α = 0, as
in Fig. 2.7.

velocity is small. With ϵ denoting a small parameter, one finds a quadratic departure

v̄ = ϵ, τm = τm,0 + Aϵ2, (A.9a)

A ≡ τm,0(τm,0 + α′τr)2 [α′(ητr + 2) + 2ητm,0]
2α′(τm,0 + τr)2 , (A.9b)

where τm,0 ≡
√

2α′τr/η and units of Sec. 2.4.1 are used. A second case amenable to exact
results is when 2α′ − αητr > 0, a condition that is satisfied in particular for all motion
patterns with α ⩽ 0 or for strong rotational diffusion. Then, the first scenario applies
and τm diverges continuously, which allows to obtain the critical velocity

v̄c = 1√
2 + ητr

. (A.10)

Close to the critical value v̄c, the divergence of the optimal run time can be characterized
as

v̄ = v̄c − ϵ, τm = B

ϵ
, B ≡ τrv̄

3
c (2α′ − αητr). (A.11)

As illustrated in Fig. A.6, the approximations of τm at low and high surface velocity may
give a reasonable estimate in most of the velocity range.

A.3 Additional Notes - Chapter 3
This appendix contains additional calculations and definitions used in Chapter 3.

A.3.1 Appendix: Laplace and Fourier transforms
The definition, inverse and convolution for Laplace transform are given by

f(s) =
∫ ∞

0
dt e−stf(t), [f ∗ g] (t) =

∫ t

0
dt′ f(t− t′)g(t′), (A.12a)

f(t) = 1
2πi

∫ c+i∞

c−i∞
ds etsf(s), [f ∗ g] (s) =f(s)g(s). (A.12b)
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As regards the Fourier series used for orientation angle θ, we have

f(l) = 1
2π

∫ π

−π
dθ e−ilθf(θ), [f ⊗ g] (θ) =

∫ π

−π
dθ′ f

(
v.p.(θ − θ′)

)
g(θ′), (A.13a)

f(θ) =
∞∑

l=−∞
f(l) eilθ, [f ⊗ g] (l) = 2πf(l)g(l), (A.13b)

where v.p.(θ) = arg
(
eiθ

)
with values taken in [−π, π[.
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APPENDIX B

Experiments: Material and Methods

B.1 SS-5 Growth Protocol
This appendix details the laboratory methods for cultivating the Magnetotactic Bacteria
SS-5 strain. It includes comprehensive protocols and lists of materials required for estab-
lishing and maintaining bacterial cultures, as well as preparing all necessary solutions.

B.1.1 Bacterial Culture
The SS-5 strain, having been discovered only ten years ago, the protocol to culture is still
an active topic of research. Currently, the only stable protocol for their growth involves
semi-solid cultures. The resulting colonies grow with a rather slow duplication rate of
roughly one day, so from the time in which cultures are refreshed to the moment where
they reach optimal growing condition, roughly a week must pass by.

Culture in the Lab SS-5 grows in a semisolid, enriched oxygen gradient medium, as
described by Lefèvre et al. [190]. This medium is based on a modified artificial seawater
solution, which mimics the typical salt concentrations found in the bacteria’s natural envi-
ronment (a mixture of calcium, potassium, magnesium, and sodium chlorides, along with
sodium sulfate; see Sec. B.2.4). The medium is further enriched with minerals, vitamins,
iron (to allow for synthesis of magnetosomes), and is reduced in oxygen and solidified
with agar. The preparation of the medium follows a specific procedure (see Sec. B.2.3)
that establishes a vertical oxygen gradient within the solution, indicated by an oxygen-
sensitive pink dye (Resazurin) added to the solution (see Fig.B.1a). Optimal bacterial
growth occurs when cells are inoculated in the oxic-anoxic zone (OAZ), identifiable as
the interface between the pink and transparent regions of the medium. Within one day,
the inoculated bacteria migrate within the solution, forming a flat culture at the OAZ
(see Fig.B.1b), which can continue growing for up to four weeks1. The culture process

1After four weeks, the oxygen gradient gradually dissipates, and bacterial growth diminishes as the
nutrients in the solution become depleted.
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Figure B.1: Experiments Preparation. (a)-(b) SS-5 colonies at different stages. (a) at
the time of inoculation; the pink Resazurin dye shows oxygen gradient (green), with the
bacterial inoculum placed at the end of the pink gradient (red).(b) 7 days after inoculation.
A thin grey band (green) represents a dense bacterial colony at the OAZ. (c) Schematics
for the "Funnel Chip" used for transfer and observation (not to scale).

is delicate; bacterial growth can be compromised if the cells are displaced from the OAZ
interface, which may occur if the culture bottle is tilted or displaced too quickly.

B.2 Methods: Transfer, Observation and Tracking
This section of the Appendix outlines key procedures required for the experimental results.
It details the steps necessary to go from bacterial cultures to proper samples suitable for
observation and recording. Additionally, it explains how tracks are extracted from image
sequences, which are then used for the results discussed in Chapter 4.

B.2.1 Transfer from Agar to a Swimming Medium
To observe bacteria under the microscope, samples are typically collected from colonies
5-10 days after being refreshed. The first step involves transferring bacteria from the
agar-rich, semi-solid growth medium to an agar-free liquid. This is crucial since the study
in this thesis aims to characterize bacterial motion within bulk fluid, and not within
complex semi-solid media. For MTB, the transfer to a liquid phase can be done by taking
advantage of their magnetic response. A common method is to place a drop of agar
containing bacteria onto a hydrophobic surface, like parafilm, and then position a liquid
drop next to it. A magnet is used to move the bacteria from the agar to the liquid. While
this approach is quick and effective, it has several limitations: it does not allow for the
collection of large quantities of bacteria, offers limited control over the process, and often
leads to agar contamination in the liquid, reducing observation quality. To address these
issues, a simple chip was developed to perform our experiments.

The Funnel Chip The method used allows for the extraction of bacteria from agar and
their observation within the same device. The device itself is simple, shown in Fig. B.1c.
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It consists of a 100 µm-thick double-sided tape placed between a slide and a coverslip,
enabling observation through the cut region. The tape is cut using a plotter to form a
funnel-shaped opening followed by a long, wide channel. To load bacteria into the chip,
the channel is first filled from the open end with the liquid phase2. An agar drop taken
directly from the bacterial colony is then placed on the funnel side. Bacteria are extracted
using magnetic fields generated by the coils (see Sec. 4.2.1), and the transfer process can
be observed under a microscope.

The channel structure effectively prevents agar from entering the liquid during the
experiment, as the bacteria rapidly reach the end of the channel thanks to directed motion,
while agar diffusion takes much longer to reach the inner part of the channel. All data
in Chapter 4 were obtained using these configurations. It is worth mentioning that this
extraction method necessarily selecting only motile bacteria, biasing measurements to the
swimming population. It is also a “magnetic sorting”, selecting for a specific response to
magnetic fields.

B.2.2 Recording and Tracking
Recording After the bacteria are transferred into the liquid phase, recordings of their
motion are made under different applied fields. These recordings are taken at approx-
imately 50 µm from the glass layer, roughly at the middle height of the channel. This
positioning is intended to observe motion away from the solid glass boundary, which could
influence swimming dynamics. The recordings are captured at 10× magnification, at 51
frames per second, typically for a total recording time of 1 minute for each measurement.
To ensure minimal changes in the bacterial populations throughout the experiments, mag-
netic fields are frequently inverted between measurements. This allows bacteria from the
same population to cross the field of view multiple times and be observed across different
measurements.

Tracking The bacterial tracks are reconstructed from experimental images using the
Python library Trackpy, which implements the Crocker-Grier algorithm. The reconstruc-
tion process consists of two main steps: first, identifying objects to track in each image,
and second, linking the detected positions from one image to the next. The first step uses
a simple peak detection algorithm, while the second determines the most probable set of
displacements. Although the tracking algorithm is straightforward, it comes with typical
limitations of trajectory reconstruction, such mismatched trajectories and the inability
to follow particles over reasonably long times. However, these issues were not significant
in the presented data. The results focus on dilute bacterial suspensions, where particle
crossings are rare and negligible. Moreover, most recordings made under applied fields
show that bacteria remain in the focal plane for extended periods, enabling long-term
tracking.
Two post-tracking filters are applied to prevent tracking artifacts. First, tracks shorter
than 150 milliseconds are removed. Then, a second filter eliminates particles with exces-
sively slow mean velocities (lower than 5 µm s−1), likely corresponding to diffusive motion
of either dead cells or agar droplets.

2The agar-free liquid phase used as the swimming medium is obtained by centrifuging the growth
medium at 13,000 rpm for 10 min, followed by extraction of the supernatant.
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B.2.3 Preparation of SS-5 Agar/Agarose Medium
Protocol The required chemicals are listed in Table B.5. Recipes and protocols for
solutions No. (1), (3), (7), (8), (9) are reported in Sec. B.2.4. To prepare the SS-5
Agar/Agarose medium, proceed as follows:

Step Procedure

1 Prepare sterile tubes and gather all required chemicals as listed in Table B.5,
and equipment including beakers, a magnetic bar, a spatula, and cuvettes for
weighing.

2 Into a beaker, add solutions No. (1), (2), and (3).
3 Weigh components No. (4), (5), and (6). Accurately transfer them into the

beaker using ultra-pure water to rinse the cuvettes.
4 Ensure thorough mixing with a magnetic stirrer. Check and adjust the pH to

6.2 using 1% HCl.
5 Pour the prepared medium into a graduated cylinder and adjust the volume

with ultra-pure water until the desired Vf is reached.
6 Autoclave the medium.
7 Work under sterile conditions. Once the solution has cooled down to approxi-

mately 40 degrees Celsius, add solutions No. (7), (8), (9), and (10).
8 Weigh 0.4 g of material No. (11) and dissolve into 10 mL of filtered water, then

add the volume indicated in the table to the medium solution. Note that this
solution should not be prepared in advance but rather prepared and added to
the medium at the time of preparation.

9 Check and adjust the pH to 7 using 1% HCl. Since the main solution is sterile,
this procedure must be done by subsequent extractions of aliquots from the
medium, not by direct measurement.

10 Once pH is regulated, distribute the medium solution into smaller sterile con-
tainers, depending on the use.

11 After approximately one hour, a gradient should become visible within the
bottle thanks to the Resazurin dye. The gradient allows for identification of
the OAZ and indicates the samples are ready for inoculation.

B.2.4 Additional Solutions and Protocols
Artificial Sea Water (ASW) 3X Concentrated Follow these steps to prepare the
3X concentrated ASW solution:

Step Procedure

1 Weigh the different components in Table B.6.
2 Initially, add approximately 500 mL of ultra-pure water to the beaker to facil-

itate the solubilization of the components.
3 Add all powders to the beaker, in order from No. (1) to (5), washing the

cuvettes with ultra-pure water to transfer all residues into the beaker.
4 Place a magnetic stirrer in the beaker and allow the solubilization to occur,

for at least 15 minutes.

104



B.2. Methods: Transfer, Observation and Tracking

5 Transfer the solubilized solution into the graduated cylinder and make up the
volume to the desired final volume, adding ultra-pure water.

6 Pass the solution through a 0.22 µm filtration unit and store in the fridge 4°C.

Wolfe’s Mineral Solution Chemicals and quantities are listed in Table B.7. The
procedure to make Wolfe’s Mineral solution is listed below.

Step Procedure

1 Add No. (1) to 500 mL of distilled water in a volumetric flask.
2 Adjust the pH to 6.5 using saturated KOH while stirring constantly. (1.45

g/ml is the saturation concentration of KOH in water)
3 The NTA will dissolve as the pH increases. Once the NTA is completely

dissolved and the pH is at 6.5, add each mineral salt in the order given No. (2)
through No. (13), allowing each to dissolve fully before adding the next.

4 After all the ingredients are dissolved, bring the total volume up to 1 L with
distilled water.

5 Autoclave the solution to sterilize it. Store the solution at 4°C.

Wolfe’s Vitamins Chemicals and quantities are listed in Table B.8. The procedure to
make Wolfe’s Vitamins solution is listed below.

Step Procedure

1 Add No. (1) and No. (2) to approximately 50 mL of distilled deionized water
in a volumetric flask.

2 Add the remaining stock vitamins No. (3) through No. (9) to the solution.
3 Bring the total volume up to 100 mL using distilled deionized water in the

volumetric flask.
4 Note: The No. (8) stock will need to be warmed to about 50°C to dissolve

properly.
5 Note: The No. (9) stock is more like a suspension than a solution. Ensure it is

well-mixed before taking an aliquot out. It will dissolve in the final solution.
6 For preparing an anaerobic stock solution of vitamins: Prepare sterile (auto-

claved) serum bottles filled with O2-free N2 and crimp-sealed.
7 Inject the vitamin solution into the serum bottles using a syringe and a sterile

needle through a 0.22 µm filter directly through the stopper.
8 Ensure that a sterile outlet needle is placed through the stopper to prevent

excess pressure buildup. Bending the needle sideways will help prevent aerosol
contaminants from entering the bottle.

9 Inject 50 mL of the vitamin solution per bottle, remove the needles, and allow
the solution to equilibrate for about 30 minutes.

10 Purge the headspace of the bottle with O2-free N2 for 30 minutes and leave a
positive pressure of at least 8 lbs/in2.

11 Store the anaerobic stock solution at 4°C.
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PO4 Buffer (0.5M, pH7) The buffer is prepared using dipotassium phosphate (K2HPO4)
and monopotassium phosphate (KH2PO4). Dissolve 17.4 g of dibasic into 200 mL of ultra-
pure water, and 6.8 g of monobasic into 100 mL of ultra-pure water. Add the dibasic
solution into a flask and then add the monobasic until pH7 is reached. Store in the fridge
at 4°C.

FeSO4 solution (0.01mM) Dissolve 0.675 g of FeSO4·7H2O in 250 mL of ultrapure
water. Transfer the solution to a flask with a septum cap and autoclave it. After autoclav-
ing, flush the vial with N2 through the septum. Ensure that the incoming needle passes
first through a filter before entering the solution, and insert a secondary sterile needle
into the septum as an outlet to prevent pressure buildup during the flushing process.

Table B.5: Components and quantities for SS-5 Agar/Agarose growth medium. Quantities
are reported for three final volumes Vf .

No. Component Vf =1000 mL Vf =500 mL Vf =250 mL

1 ASW solution 333.2 mL 166.6 mL 83.3 mL
2 Resazurin 200 µL 100 µL 50 µL
3 Wolfe’s Mineral solution 5 mL 2.5 mL 1.25 mL
4 NH4Cl 0.3 g 0.15 g 0.075 g
5 NaHCO3 1.26 g 0.63 g 0.315 g
6 Agar/Agarose 1.2 g 0.6 g 0.3 g
7 Wolfe’s Vitamins 500 µL 250 µL 125 µL
8 PO4 buffer (0.5 M, pH7) 1.8 mL 0.9 mL 0.45 mL
9 FeSO4 (0.01mM) 3 mL 1.5 mL 0.75 mL
10 Thiosulphate (40%) 3 mL 1.5 mL 0.75 mL
11 L-Cysteine (pH7) 7.5 mL 5 mL 2.5 mL

Table B.6: Components and quantities for Artificial Sea Water (ASW) 3X Concentrated.
Quantities are reported for final volumes Vf of 1L and 3L.

No. Component Vf =1L Vf =3L

1 NaCl 113.4 g 340.2 g
2 MgCl2 (6H2O) 16.2 g 48.6 g
3 Na2SO4 (2H2O) 16.2 g 48.6 g
4 KCl 2.7 g 8.1 g
5 CaCl2 1.5 g 4.5 g
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Table B.7: Ingredients and quantities for the Wolfe’s Mineral solution (Vf =1L).

No. Ingredient Amount

1 Nitrilotriacetic acid (NTA) 1.5 g
2 MgCl2·7H2O 3.0 g
3 MnSO4·H2O 0.5 g
4 NaCl 1.0 g
5 FeSO4·7H2O 0.1 g
6 CoCl2·6H2O or CoSO4·7H2O 0.1 g
7 CaCl2·2H2O 0.1 g
8 ZnSO4·7H2O 0.1 g
9 CuSO4·5H2O 0.025 g
10 AlK(SO4)2·12H2O 0.01 g
11 H3BO3 0.01 g
12 Na2MoO4·2H2O 0.4 g
13 NiCl2·6H2O 0.01 g

Table B.8: Components and quantities for the Wolfe’s Vitamin mixture (Vf = 100mL).

No. Component Amount

1 Thiamin 90 mg
2 Inositol 40 mg
3 D-, L-Ca2+ pantothenate 4 mL
4 Para amino benzoic acid (PABA) 2.5 mL
5 Vitamin B 5 mL
6 Pyridoxine (Vitamin B6) 4 mL
7 Niacin (Nicotinic acid) 4 mL
8 Biotin* 1 mL
9 Folic acid** 0.4 mL
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