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Mathémathiques) Examinateur

Josselin Garnier
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CHAPTER 1

General introduction - French

Les premiers examens d’échographie remontent au début des années 1930 [1].
Depuis lors, l’échographie s’est imposée comme un examen des plus courants [2].
Comparée à d’autres méthodes, l’échographie présente de nombreux avantages. En
effet, les appareils et, plus largement, la technique d’imagerie dans sa globalité, est
peu coûteuse et non irradiante. De plus, les appareils sont portatifs et deviennent
maintenant même compatibles avec les téléphones portables [3].
Parmi les nombreuses applications des ultrasons (utilisés dans les échographies), on
retrouve, entre autres, le contrôle du développement du fœtus, l’imagerie du cœur,
celle des cellules sanguines, l’imagerie de l’œil, de la thyroïde, du cerveau, de la
poitrine, des organes abdominaux, de la peau et des muscles [4]. Les images ne sont
plus seulement en 2D, mais désormais en 3D, voire en 4D, correspondant à des films
d’images 3D [5].
Les images sont formées en excitant un transducteur piézoélectrique, qui émet une
onde ultrasonore. Cette onde se diffuse dans le milieu et génère des échos. Ces échos
rétrodiffusés sont ensuite mesurés et enregistrés par le transducteur piézoélectrique.
La connaissance de la vitesse du son dans le milieu que l’on cherche à imager nous
permet, grâce à un algorithme simple, en ajoutant des délais appropriés à chacun
des signaux, de retrouver les zones échogènes du milieu étudié. Cet algorithme,
appelé delay-and-sum algorithm, est aussi connu sous le nom de migration de Kirchhoff
lorsqu’il est calculé à partir de données fréquentielles [6]. L’examen d’imagerie par
ultrasons peut également être interprété comme un examen de retournement temporel
[7], où les échos mesurés sont numériquement rétropropagés dans un milieu fictif où
les ondes se propagent à la vitesse cs.
Grâce aux nombreux progrès dans l’ingénierie des capteurs et l’évolution de la
puissance de calcul, la résolution des images ne cesse de s’améliorer et des techniques
d’échographie quantitative ont vu le jour. Ces techniques ne visent plus seulement à
afficher une image du milieu, mais aussi à obtenir des informations quantitatives sur
celui-ci, telles que l’atténuation ou la vitesse du son à l’intérieur du milieu [8, 9, 10].
En particulier, une estimation de la vitesse du son dans le milieu peut être utilisée
comme biomarqueur pour diagnostiquer la stéatose hépatique ou les cancers du
sein [11, 12, 13, 14, 15, 16]. De plus, la précision de l’estimation de la vitesse du son
détermine la fidélité de la reconstruction tomographique. En effet, lorsque la vitesse de
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rétropropagation ne correspond pas à la vitesse réelle du son dans le milieu, l’image
apparaît floue et déformée. Pour quantifier la vitesse du son à l’intérieur du milieu, la
communauté scientifique travaillant sur l’imagerie a développé plusieurs techniques,
décrites en détail dans [8, 9, 10].
Alexandre Aubry et ses collaborateurs ont développé une nouvelle méthode inspirée
de l’optique adaptative [17]. Physiquement, le processus d’imagerie consiste à focaliser
une onde en un point x à l’intérieur du milieu pour créer un réflecteur virtuel et capter
les échos de ce réflecteur. Cependant, en raison du décalage entre la vitesse de
rétropropagation du son cs et la vitesse réelle du son dans le milieu c0, l’onde n’est pas
réellement focalisée en x, mais la profondeur de focalisation varie. Pour tenir compte
de cet effet, l’idée d’Aubry est de focaliser une onde à la profondeur cst pour un temps
donné t > 0. En maximisant l’amplitude de l’écho renvoyé à partir de la profondeur
cst, tout en modifiant la vitesse de rétropropagation du son cs, on peut retrouver la
vitesse du son c0. Le point cst sert alors de guide star (étoile guide) virtuelle, sur lequel
nous focalisons l’onde pour réviser la vitesse de rétropropagation de l’algorithme et
retrouver la véritable vitesse de propagation des ondes à l’intérieur du milieu c0.
La modélisation mathématique de ces techniques et, plus généralement, des ex-
périences biologiques par ultrasons est une tâche complexe. À première vue, les
tissus peuvent être modélisés comme des milieux homogènes, auquel cas seules les
interfaces devraient être imagées. Cependant, l’image est en fait un motif de speckle
(chatoiement). Il est communément admis que les échos rétrodiffusés par les tissus
proviennent des nombreux diffuseurs à l’intérieur de ces tissus, ce qui donne lieu à
ce motif de chatoiement sur l’image, car ces nombreux diffuseurs ne sont pas résolus.
En effet, leur taille typique est bien inférieure à la résolution du système d’imagerie
ultrasonore (qui caractérise les détails distinguables sur l’image). De plus, nous
n’avons pas accès à la distribution spatiale de ces diffuseurs. Les tissus peuvent donc
être modélisés comme des milieux aléatoires multi-échelles. Ainsi, dans la continuité
des récents travaux d’Alexandre Aubry, on cherche ici à établir un cadre mathématique
et numérique pour mieux modéliser les tissus biologiques et comprendre les limites et
les potentialités des nouvelles méthodes d’imagerie. Pour ce faire, un nouveau modèle
sera introduit pour décrire la propagation des ultrasons dans les tissus mous : un
modèle composite, multi-échelle et aléatoire.

Dans la première partie I du manuscrit, nous dressons un aperçu de l’état actuel de
l’imagerie ultrasonore. Cette étude nous motive à dériver un nouveau modèle qui est
celui établi dans la section 3.3.1. Nous introduisons donc un modèle aléatoire multi-
échelle qui sera étudié tout au long du manuscrit.
Dans la partie II, nous étudions la rétrodiffusion des milieux aléatoires multi-échelles.
Plus précisément, nous étudions le champ diffusé par un milieu composite aléatoire se
trouvant dans l’espace libre dans le but d’obtenir une forme simple du champ rétrod-
iffusé (qui correspond aux mesures ultrasonores). Mathématiquement, nous étudions
l’équation de Helmholtz sous forme de divergence avec des coefficients aléatoires forte-
ment oscillants. Nous réalisons une étude asymptotique en utilisant des techniques
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quantitatives d’homogénéisation stochastique et dérivons un développement d’ordre
élevé dans le Théorème 39.
Dans une troisième partie, nous utilisons ce développement asymptotique pour math-
ématiquement justifier l’utilisation des estimateurs de la vitesse effective du son c0, à
l’intérieur des tissus biologiques introduits par Alexandre Aubry. Dans ce cadre, nous
étudions la migration de Kirchhoff. Plus précisément, nous étudions la dépendance
de la fonctionnelle d’imagerie par rapport à la vitesse de rétropropagation cs dans le
régime paraxial et ce, pour deux situations. Dans un premier temps, nous étudions le
cas simple de l’imagerie d’une cible isolée et petite (par rapport à la longueur d’onde)
dans un milieu homogène. Nous cherchons alors à récupérer la vitesse de propaga-
tion à l’intérieur de ce milieu homogène. Dans un second temps, nous considérons
l’imagerie d’un milieu composite aléatoire correspondant au milieu introduit dans la
partie I avec l’aide du développement asymptotique que l’on a obtenu après l’analyse
faite dans la partie II.

Contenu détaillé du manuscrit

Le manuscrit est organisé comme suit.

Dans la partie I, nous abordons le contexte scientifique de cette thèse. Dans
le chapitre 3, nous passons en revue un bref historique des techniques d’imagerie
par ultrasons. Grâce aux améliorations apportées aux dispositifs d’imagerie et à
la compréhension théorique de la diffusion des ondes, les limites des techniques
d’imagerie par ultrasons peuvent être quantifiées et surmontées. L’objectif des sys-
tèmes d’imagerie par ultrasons est maintenant d’obtenir des estimations quantitatives
des paramètres physiques des tissus à partir des mesures ultrasonores. Ceci est
expliqué dans la section 3.2. Néanmoins, pour obtenir une telle estimation quantita-
tive, il est nécessaire d’avoir un modèle quantitatif qui relie les propriétés physiques
du milieu aux mesures. Les mesures sont modélisées par un champ diffusé qui
correspond à la solution d’une équation de Helmholtz sous forme divergence avec des
propriétés acoustiques (coefficients) variables. La dérivation d’estimateurs quantitatifs
nécessite alors de comprendre mathématiquement les propriétés de la solution d’une
telle équation. Comme mentionné ci-dessus, la propagation des ultrasons dans les
tissus biologiques correspond mathématiquement à un problème multi-échelle par sa
nature. Il existe plusieurs modèles pour la diffusion de tels milieux, qui sont examinés
dans la section section:ScatteredFieldApprox. Ces modèles, bien que raisonnables
pour la modélisation des tissus biologiques, ne tiennent pas compte des effets de la
microstructure sur les propriétés macroscopiques des tissus. C’est ce qui explique
le développement du nouveau modèle présenté à la section 3.3.1. On décidera de
modéliser la position de chacune des hétérogénéités à l’intérieur du milieu par un
processus aléatoire.
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Pour étudier ce modèle, nous décidons d’utiliser des techniques d’homogénéisation
stochastique. En effet, comme expliqué dans le chapitre 4, la discipline mathématique
de l’homogénéisation est développée pour étudier les problèmes multi-échelles et
comprendre leurs propriétés macroscopiques. Ainsi, sous des hypothèses de station-
narité et d’ergodicité qui sont discutées dans la section 4.3 sur le processus qui sert à
décrire les propriétés physiques aléatoires du milieu, il est possible d’approximer la
diffusion par le milieu multi-échelle aléatoire complexe par un milieu aux propriétés
homogènes.
Le but de l’homogénéisation quantitative est alors de quantifier l’erreur entre la
solution calculée avec les propriétés effectives obtenues et la solution calculée dans le
milieu initial. Le domaine de l’homogénéisation quantitative stochastique a connu des
avancées importantes dans les années 2010 que nous présentons dans la section 4.4.
Nous utilisons ces résultats récents pour mener à bien l’étude de notre problème multi-
échelle aléatoire. Malheureusement, le problème de diffusion obtenu en appliquant
l’homogénéisation stochastique habituelle à notre modèle n’est pas satisfaisant. En
effet, en remplaçant le milieu multi-échelle aléatoire par un milieu homogène plus
simple, nous perdons la nature aléatoire du champ diffusé, et l’image résultante ne
ressemble pas au motif de speckle des images traditionnelles. C’est pourquoi nous
développons un développement d’homogénéisation d’ordre élevé dans la partie II.
Plus précisément, nous allons au-delà de la solution effective, homogénéisée donnée
par la théorie de l’homogénéisation et construisons également un terme correctif. Ce
terme correctif contiendra les effets de micro-échelle que nous recherchons. Nous
quantifions également l’erreur entre la solution initiale et l’approximation construite.
Par conséquent, nous établissons d’abord l’expansion asymptotique l’expansion
asymptotique quantitative à deux échelles dans la Proposition 37 qui est suivie par
le développement d’ordre supérieur du Théorème 39. En outre, pour illustrer ces
deux résultats, nous réalisons des expériences numériques au chapitre 8. Les résultats
numériques obtenues sont conformes aux résultats théorique prédit par la Proposi-
tion 36 et par le développement d’ordre supérieur du Théorème 39.

La forme simple du champ rétrodiffusé obtenue dans le Théorème 39 est alors notre
modèle de base pour l’analyse des estimateurs de la vitesse effective (homogénéisée)
du son introduits par Alexandre Aubry. Nous effectuons une analyse asymptotique
de la migration de Kirchhoff dans la partie III. Avant de travailler sur un milieu
complexe qui imitent les propriétés des tissus, nous commençons par une analyse
asymptotique simple de la migration de Kirchhoff d’un réflecteur-point dispersé dans
un milieu homogène. En particulier, nous étudions la dépendance de la fonctionnelle
d’imagerie par rapport la vitesse de rétropropagation du son utilisé dans cet algorithme
d’imagerie et ce, dans le régime paraxial. Ce régime est décrit dans le chapitre 10.
Nous montrons dans le Théorème 54 que le position du point de l’image au centre de
la tache focale dépend de la vitesse de rétropropagation du son, et que l’amplitude
affichée sur l’image diminue lorsque l’erreur dans la vitesse de rétropropagation du
son augmente. Par conséquent, en recherchant le maximum global de l’amplitude de
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la fonction d’imagerie, nous pouvons récupérer la vitesse du son du milieu homogène
environnant.
Cependant, dans les tissus biologiques, il n’y a pas de cible isolée que l’on peut utiliser
pour indentifier un maximum d’amplitude correspondant à l’image d’une cible en par-
ticulier. Ainsi, le maximum d’amplitude sur l’image peut rarement être utilisé comme
critère pour quantifier la vitesse effective du son. Tout de même, dans le chapitre 12,
nous poursuivons l’analyse de la migration de Kirchhoff avec l’expression du champ
diffusé obtenue dans le théorème 39. Nous prouvons que dans le régime paraxial,
l’imagerie à une profondeur z avec une vitesse de rétropropagation c est similaire à
la création d’un réflecteur virtuel à la position z c0

c avec c0 étant la vitesse effective du
son. En particulier, cela justifie l’idée d’Aubry de focaliser à ct pour un temps t donné.
En effet, en procédant ainsi, on arrive à toujours focaliser notre onde à la position
c0t, position qui ne dépend pas de c et qui est notre guide star (étoile guide) virtuelle.
La maximisation de l’amplitude peut alors être utilisée pour retrouver la vitesse
effective du son. En outre, grâce aux propriétés d’érgodicité que nous supposons sur la
distribution aléatoire des diffuseurs, nous montrons qu’un moyennage spatial permet
de récupérer les propriétés statistiques pour un seul ensemble de mesures c.-à-d. une
seule réalisation du milieu aléatoire que l’on cherche à imager. L’étude du chapitre 12
correspond à l’analyse mathématique des estimateurs introduits par Alexandre Aubry
et son équipe [17]. Les résultats du chapitre 12 justifient donc mathématiquement les
nombreux résultats des expériences menées par Alexandre Aubry et son équipe [17].
Dans le chapitre 13, nous réalisons des expériences numériques et retrouvons la vitesse
effective du son dans les milieux simulés. Ces simulations numériques reproduisent
l’expérience des ultrasons réalisée expérimentalement dans [17]. Les courbes affichées
dans le chapitre 13 sont assez similaires aux courbes affichées dans [17, chapitre 6] qui
sont calculées à partir de données expérimentales. Le modèle asymptotique que nous
construisons dans cette thèse semble donc être en parfait accord avec les expériences
pratiques d’échographie.

Contributions principales dans la thèse

Dans la partie II, nous établissons et prouvons un développement
d’homogénéisation quantitative pour un problème de transmission de l’équation
de Helmholtz. Plus précisément, nous prouvons un développement asymptotique du
champ diffusé par un domaine bourné avec une micro-structure fortement oscillante,
caractérisée par des coefficients constants par morceaux, domaine lui-même intégré
dans l’espace libre. Nous prouvons non seulement une convergence d’ordre 1 en
norme L2 de la solution vers la solution homogénéisée et une convergence d’ordre
1/2 en norme H1 pour le développement à deux échelles, mais aussi une convergence
d’ordre (d + 1)/2 en norme L2 en introduisant un nouveau terme de correction que
nous construisons et étudions.
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Le domaine, étant borné, rompt l’hypothèse traditionnelle de stationnarité utilisé pour
l’homogénéisation stochastique. Cela introduit ce que l’on appelle une couche limite qui
doit être quantifié pour obtenir le taux de convergence quantitatif de la Proposition 37
et de la Proposition 36. Son étude est difficile car les correcteurs de frontière satisfont
un problème oscillant similaire au problème du champ initial, avec des termes sources
fortement oscillants à l’interface entre l’espace libre et le milieu borné.
Nous représentons ensuite le terme d’erreur par une représentation intégrale qui peut
être interprétée comme une représentation de Lippmann-Schwinger du champ diffusé.
Le commutateur d’homogénéisation stochastique [18, 19] apparaît dans l’équation. Cette
quantité a été introduite à l’origine pour étudier les fluctuations du développement à
deux échelles. En utilisant des outils mathématiques similaires à ceux de [18, 19] (e.g.
calcul de Malliavin, inégalité de Poincaré dans l’espace des probabilités), nous sommes
capables d’améliorer le développpment à deux échelles dont l’erreur est d’ordre 1 dans
la norme L2 au développement d’ordre supérieur dont l’erreur est d’ordre (d + 1)/2,
comme démontré dans le chapitre 7.
Dans la partie III, nous nous concentrons ensuite sur l’analyse asymptotique de
la migration de Kirchhoff dans le régime paraxial. Il s’agit d’un problème à trois
échelles où la taille des hétérogénéités est petite devant la longueur d’onde, elle-même
petite devant la taille du milieu. Le but de notre étude est de mettre en évidence les
différences entre l’image affichée avec la vraie vitesse du milieu et celle affichée avec
une autre vitesse de rétropropagation. En effet, le maximum d’amplitude sur l’image
diminue. Nous retrouvons la forme typique de l’amplitude décroissante, qui est une
fonction pic dont la largeur est théoriquement caractérisée.
Nous considérons ensuite le milieu aléatoire multi-échelle avec le développement
asymptotique du Théorème 39. Nous montrons que la fonction d’imagerie en un point
donné x est équivalente à la création d’un petit réflecteur virtuel. Nous explicitons
la dépendance de la position du réflecteur virtuel par rapport à la vitesse de rétro-
propagation. De plus, nous montrons que sur une distance de l’ordre de la longueur
d’onde, la fonction d’imagerie est asymptotiquement un processus stationnaire et
ergodique. Cela signifie que les moyennes locales de la fonction d’imagerie permettent
de retrouver des propriétés statistiques. La moyenne spatiale locale de l’amplitude de
l’image correspond à l’estimateur incohérent introduit par Alexandre Aubry [17] et nos
résultats théoriques sont en accord avec les observations expérimentales. Alexandre
Aubry a également introduit un estimateur cohérent. Cet estimateur est obtenu en
considérant le premier vecteur singulier droit dans la décomposition de la matrice
K où Ki,j(x) est la fonction d’imagerie en un point xi « proche » de x (à l’échelle de
la longueur d’onde) pour la vitesse de rétropropagation cj. De manière équivalente,
cela correspond au premier vecteur propre de K∗K, K∗ étant l’adjoint de K. Nous
montrons que sa diagonale est en fait l’estimateur incohérent et nous justifions que
son premier vecteur propre peut être utilisé pour retrouver la vitesse du son. Chaque
résultat théorique est accompagné d’illustrations numériques. En particulier, nous
simulons le problème multi-échelle du problème correspondant au tissus biologiques.
Les solutions numériques sont ensuite utilisées pour calculer les estimateurs incohérent
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et cohérent. Les graphiques des estimateurs sont comparés à la forme asymptotique
théorique. Non seulement les illustrations numériques montrent une grande con-
cordance avec les résultats théoriques, mais elles sont également très similaires aux
estimateurs expérimentaux obtenu expérimentalement dans [17, chapitre 6].
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CHAPTER 2

General introduction

The first ultrasound medical exams can be traced back to the end of the 1930s [1].
Since then, ultrasounds have managed to become one of the most known and common
medical exams [2]. Ultrasounds present several advantages. The method is cheap, non-
ionizing, the devices are now portable and even compatible with cell-phones [3].
Ultrasounds are notably used to monitor the growth and development of the fetus, im-
age the heart, blood vessels, eyes, thyroid, brain, breast, abdominal organs, skin, and
muscles [4]. The images can now be displayed not only in 2D but also in 3D and even
in 4D, which corresponds to 3D movies [5].
The images are formed by exciting a piezoelectric transducer that emits ultrasound
waves which are backscattered by the medium of interest. The ultrasound echoes are
then recorded by the ultrasound transducer. The knowledge of the speed of sound
inside the medium to be imaged allows, by using a delay-and-sum algorithm to re-
construct the position of echogenic structures. The delay-and-sum algorithm is also
known as the Kirchhoff migration when computed in the frequency domain [6]. The
ultrasound exam can also be seen as a time reversal experiment [7] where the measured
echoes are numerically backpropagated at a given speed cs.
With the progress in the engineering of sensors and the computational power, the
resolution of the images keeps improving and quantitative ultrasound techniques
have emerged. These techniques aim at obtaining quantitative information about
the medium to image, such as the attenuation of the speed of sound inside the
medium [8, 9, 10]. In particular, an estimation of the speed of sound inside the
medium can be used as a biomarker to diagnose steatosis of the liver, or breast can-
cers [11, 12, 13, 14, 15, 16]. Furthermore, the accuracy of the speed of sound estimation
drives the fidelity of the tomographic reconstruction. Indeed, when the backpropa-
gation speed does not match the true speed of sound inside the medium, the image
is blurred and distorted. To quantify the speed of sound in a medium, the imaging
community has developed several types of techniques that are addressed in [8, 9, 10].
Alexandre Aubry and his collaborators developed a new method inspired from adap-
tative optics [17]. Physically, the imaging process consists in focusing a wave at a point
x inside the medium to create a virtual reflector and listening the echoes from this re-
flector. However, due to the mismatch between the backpropagation speed of sound cs
and the actual speed of sound inside the medium c0, the wave is not actually focused at
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x but the depth of focusing changes. To take into account this effect, the idea of Aubry
is then to focus a wave at depth cst for a given time t > 0. By maximizing the returned
echo amplitude from the depth cst while changing the backpropation speed of sound
cs, we can recover the speed of sound c0. The point cst then acts as the virtual guide
star at which we focus to revise the backpropagation speed of sound of the algorithm.
The mathematical modeling of these techniques and more generally of biological ultra-
sound experiments is a hard task. At first sight, the tissues can be modeled by homo-
geneous media but then only the interfaces are imaged. However, the image is in fact
a speckle pattern. It is commonly accepted that the echoes backscattered by the tissue
originate from the numerous scatterers inside this tissue which results in this speckle
pattern on the image. The scatterers are unresolved. Indeed, their typical size if way
below the resolution of the ultrasound imaging system (which characterizes the dis-
tinguishable details on the image). Furthermore, we do not have access to the spatial
distribution of these scatterers. The tissues can then be modeled by random multi-scale
media. In the context of Aubry’s work, we aim to provide a mathematical and numeri-
cal framework for modeling and analyzing the modern quantitative ultrasound meth-
ods. We introduce a new model for the acoustic properties of soft tissues: a multi-scale
random composite media.

In the first Part I of the manuscript, we give a brief overview of the current state
of ultrasound imaging. This motivates us to derive a new model that is established in
Section 3.3.1 and that will be studied throughout the entire manuscript. In Part II, we
study the backscattering of random multi-scale media. More precisely, we study the
backscattering of a random composite medium embedded in the free space with the
aim to obtain a simple form of the backscattered field. Mathematically, we study the
divergence form Helmholtz equation with highly oscillating random coefficients. We
perform an asymptotic study by using quantitative stochastic homogenization tech-
niques and derive a high-order expansion in Theorem 39.
In a third Part III, we use this asymptotic to justify the estimators of the effective speed
of sound inside the biological tissue introduced by Aubry. We study the Kirchhoff
migration with respect to the backpropagation speed in the paraxial regime for two
situations. First, the simple case of imaging an isolated small target (with respect to
the wavelength) in a homogeneous medium with the aim to recover the propagation
speed inside the latter. Second, we study the imaging of random composite medium
introduced in Part I with the asymptotic expansion derived in Part II.

Detailed content of the manuscript

The manuscript is organized as follows.

In Part I, we address the scientific context of this thesis. In Chapter 3, we review a
brief history of the ultrasound imaging techniques. With the improvements both in the
imaging devices and in the theoretical comprehension of the wave scattering, the limi-
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tations of the ultrasound imaging techniques can be quantified and overcome. The goal
is now to obtain quantitative estimations of the physical parameters of the tissues from
the ultrasound measurements. This is explained in Section 3.2. Nevertheless, to ob-
tain any quantitative estimation, it is required to have a quantitative model which links
the properties of the medium and the measurements. The measurements are modeled
by the scattered field solution of a divergence form Helmholtz equation with varying
acoustic properties. The derivation of quantitative estimators then requires to math-
ematically understand the properties of the scattering solution. As mentioned above,
the propagation of ultrasounds in biological tissues is a multi-scale problem by nature.
Mathematically, it exists several models for the scattering of media which are discussed
in Section 3.3.3. These models, although reasonable for modeling biological tissues, do
not capture the effects of the micro-structure on the macroscopic properties of the tis-
sues. This explains the development of the new model introduced in Section 3.3.1. We
decide to model the position of the unresolved heterogeneities by a random process.
To study this model, we decide to use stochastic homogenization techniques. Indeed,
as explained in Chapter 4, the mathematical discipline of homogenization is being de-
velop to study multi-scale problems and understand their macroscopic properties. Un-
der ergodic and stationary hypotheses discussed in Section 4.3 on the random physical
properties of the medium, it is possible to approximate the scattering by the complex
random multi-scale medium by a medium with homogeneous properties.
The aim of quantitative homogenization is then to quantify the error between the so-
lution computed with the effective properties and the solution computed in the initial
medium. The field of stochastic quantitative homogenization has known important
breakthroughs in the 2010s that we present in Section 4.4. We use these recent results
to carry out the study our random multi-scale problem. Unfortunately, the scattering
problem obtained by applying the usual stochastic homogenization to our model is not
satisfying. Indeed, by replacing the random multi-scale medium by a simpler homo-
geneous one, we lose the random nature of the scattered field, and the resulting image
does not look like the speckle pattern of traditional images. That is why, we develop
a high-order homogenization expansion of Part II. More precisely, we go beyond the
effective solution given by the homogenization theory and also build a corrective term.
This corrective term will contain the micro-scale effects that we seek for. We also quan-
tify the error between the initial solution and the built approximation. Therefore, we
first establish the quantitative two-scale asymptotic expansion in Proposition 37 which
is followed by the higher-order expansion of Theorem 39. Furthermore, to illustrate
these two results, we perform numerical experiments in Chapter 8. The displayed re-
sults are in accordance with the results of Proposition 36 and with the higher-order
expansion of Theorem 39.
The simple form of the backscattered field obtained in Theorem 39 is then our ground
model for the analysis of the estimators of the effective (homogenized) speed of sound
introduced by Aubry. We perform an asymptotic analysis of the Kirchhoff migration in
Part III. Before working on complex tissue mimicking medium, we start with a simple
asymptotic analysis for the Kirchhoff migration of a point-like scattered in a homoge-
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neous medium. In particular, we study the dependency on the backpropagation speed
of sound of the algorithm in the paraxial regime. This regime is described in Chapter 10.
We show in Theorem 54 that the point on the image at the center of the focal spot de-
pends on the backpropagation speed of sound, and that the displayed amplitude on the
image decreases with the error in the backpropagation speed of sound. Therefore, by
looking for the overall maximum of amplitude of the imaging function, we can recover
the speed of sound of the background medium. In biological tissue, there is no isolated
target to focus on and the maximum of amplitude on the image can rarely be used as
a criteria to quantify the effective speed of sound. In Chapter 12, we pursue the anal-
ysis of the Kirchhoff migration with the expression of the scattered field obtained in
Theorem 39. We prove that in the paraxial regime, imaging at a depth z with backprop-
agation speed c is similar to creating a virtual reflector at z c0

c with c0 being the effective
speed of sound. In particular, this justifies the idea of Aubry to focus at ct for a given
t. Indeed, by doing so, one always focuses at c0t which does not depend on c and is
our virtual guide star. The maximization of the amplitude can then be used to recover
the effective speed of sound. Furthermore by the ergodicity properties that we assume
on the random distribution of the scatterers, we show that a spatial averaging allows
to recover statistical properties for only one set of measurements i.e. one realization of
the random medium. The study of Chapter 12 corresponds to the mathematical analy-
sis of the estimators introduced by Alexandre Aubry and his team [17]. The results of
Chapter 12 thus mathematically justify the many results of the experiments carried out
by Alexandre Aubry and his team [17]. In Chapter 13, we perform numerical experi-
ments and recover the effective speed of sound of simulated media. These numerical
simulations mimic the ultrasound experiment done in [17]. The displayed curves of
Chapter 13 are quite similar to the curves displayed in [17, Chapter 6] which are com-
puted from experimental data. The asymptotic model that we build in this thesis thus
appears to be in great agreement with practical ultrasound experiments.

Main contributions

In Part II, we establish and prove a quantitative homogenization expansion for a
transmission problem for the Helmholtz equation. More precisely, we prove an asymp-
totic expansion of the scattering solution of a bounded domain with highly oscillating
micro-structure characterized by piecewise constant coefficients embedded in the free
space. We not only prove an order 1 L2-convergence of the solution towards the ho-
mogenized solution and an order 1/2, H1-convergence for the two-scale problem, but
also an order (d + 1)/2, L2-convergence by introducing a new correction term that we
build.
The boundness of the domain causes the traditional stationarity assumption of stochas-
tic homogenization to break at the edge of the domain. This introduces so-called bound-
ary layers which must be quantified to obtain the quantitative rate of convergence of
Proposition 37 and Proposition 36. Its study is challenging as the boundary correc-
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tors satisfies a oscillating problem similar to the initial problem, with highly oscillating
source terms at the interface between the free space and the bounded medium.
We then represent the error term with an integral representation which can be inter-
preted as a Lippmann-Schwinger representation of the scattered field. The so-called
commutator of stochastic homogenization [18, 19] appears in the equation. This quan-
tity is originally introduced to study the fluctuations of the two-scale expansion. By
using similar mathematical tools as those of [18, 19] (e.g. Malliavin’s calculus, Poincaré
inequalities in the probability space...), we are able to upgrade the two-scale expansion
whose error is of order 1 in the L2-norm to the higher expansion whose error is of order
(d + 1)/2, as proven in Chapter 7.
In the Part III, we then focus on the asymptotic analysis of the Kirchhoff migration in
the paraxial regime. This is a three scale problem where the size of the heterogeneities
is small in front of the wavelength, itself small in front of size of the medium. The goal
of our study is to highlight the differences between the image displayed with the true
speed of the medium and the one displayed with another backpropagation speed. In
fact, the maximum of amplitude on the image decreases. We recover the typical shape
of the decaying amplitude, which is a peak function whose width is theoretically char-
acterized.
We then consider the random multi-scale medium with the asymptotic expansion of
Theorem 39. We show that the imaging function at a given point x is equivalent to the
creation of a small virtual reflector. We explicit the dependency on backpropagation
speed of the position of the virtual reflector. Furthermore, we show that at the order of
the wavelength, the imaging function is asymptotically a stationary and ergodic pro-
cess. This means that local averages of the imaging function allows to recover statistical
properties. The local spatial average of the image amplitude corresponds to the inco-
herent estimator introduced by Alexandre Aubry [17] and our theoretical results are
in accordance with the experimental observations. Alexandre Aubry also introduced
a coherent estimator. This estimator is obtained by considering the first right singular
vector in the decomposition of the matrix K where Ki,j(x) is the imaging function at a
point xi "close" to x (at the scale of the wavelength) for the backpropagation sped cj.
Equivalently, this corresponds to the first eigenvector of K∗K with K∗ the adjoint of K.
We show that its diagonal is actually the incoherent estimator and we justify that its
first eigenvector can be used to recover the speed of sound. Each theoretical result is
accompanied with numerical illustrations. In particular, we simulate the multi-scale
problem of the tissue mimicking problem. The numerical solutions are then used to
compute the incoherent and coherent estimators. The plots of the estimators are com-
pared with the theoretical asymptotic form. Not only do our numerical illustrations
show great agreement with our theoretical results, but they are also quite similar to the
experimental estimators of [17, Chapter 6].
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CHAPTER 3

Medical ultrasound imaging

3.1 A brief history

3.1.1 Before medical imaging

The beginning of the studies on the use of ultrasounds for imaging is closely related
to the discovery of the piezoelectric effect. Piezoelectricity is the reversible property
exhibited by certain materials whereby they accumulate electric charges in response
to mechanical stress. The piezoelectric effect was first observed by the Curie brothers,
Pierre and Jacques, in 1880 [20]. The first significant application of piezoelectricity can
be traced back to the First World War [21]. The French physicist Paul Langevin [22]
and his colleagues developed the first sonar system of the history, to detect German
submarines. A transducer comprising a thin quartz crystal (a piezoelectric material) is
carefully glued between two steel plates, thereby emitting a sound wave that propa-
gates in the ocean. The wave is scattered by the submarines and the resulting echoes
are measured by a hydrophone, which is a piezoelectric transducer that converts pres-
sure waves into an electric signal. By measuring the time required for the echo to be
recorded, it is possible to calculate the distance to the submarines [23].
During the interwar decades, experimentalists conducted research into the physical,
chemical and biological effects of the exposure to high-intensity ultrasonic waves. In
1918, Langevin realized that he could kill a fish placed under the beam of an ultrasonic
wave, and that a painful sensation could be felt when plunging the hand in this region.
It was concluded in the late 1930s that high-intensity ultrasounds could be used in the
therapy of cancers [24]. The German physicist Reimar Pohlman rejected this idea and
investigated instead the use of ultrasounds at low intensity to stimulate healing [25].
The first clinical trials for ultrasound therapy were carried out in Berlin in 1938 (see
Figure 3.1).

As well as for therapy, numerous attempts were made to utilize ultrasounds for
medical diagnosis. However, it was not until the end of the 1950s that ultrasounds
were established as a revolutionary diagnostic tool for medical imaging. We refer to
the review [24, 26] and the references within for a comprehensive picture of the history
of ultrasounds for medical imaging.



3.1 A brief history 25

Figure 3.1: First clinical ultrasound therapy at Martin Luther Hospital in Berlin
(1938). Figure reproduced from [1]

3.1.2 A-mode and M-mode scanners

In the 1960s, ultrasounds were widely used to compute images which were pro-
duced by simple instruments called A-scanners. An A-scanner consists in a single
transducer that insonifies the medium with a short ultrasound pulse, and then switches
to echo mode to listen to the echo [27]. The raw recorded signal corresponds to an
amplitude A(t) recorded over time t and is then transformed into a 1D image of the
amplitude displayed over position x, via the simple relation x = ct, where c is the
propagation speed inside the medium. However, the desire to display 2D (or 3D) im-
ages and the presence of heterogeneities throughout biological tissues rapidly led to
the rejection of the use of A-scans for ultrasound imaging, in favor of B-scans (see Sec-
tion 3.1.3). A-scanners can still be used for motion imaging, designated as M-mode.
The origin of M-mode can be traced back to the 1950s and is credited to Carl Helmuth
Hertz and Inge Edler [28]. During an exam to assess mitral stenosis (a disease of the
heart) by using A-scans, they remarked that from one acquisition to another, the posi-
tion of the membrane of the heart on the image changed in accordance with the motion
of the heart, allowing to image this motion. This marked the birth of echocardiography.
As the ultrasound wave propagates in the tissues at approximately the speed of sound
in water (1540 m.s−1), "slower" movements such as the motion of the heart or the blood
flow can be detected and imaged (see Figure 3.2).

3.1.3 B-mode scanners

The rapid evolution of transducers and signal processing technologies led to the
improvement of A-scanners to B-scanners in the 1970s. Although the A-scans consist
in plotting the recording amplitude of signal over depth, the B-scans consist in using
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Figure 3.2: Principle of M-scanning. (a) Transducer directed at moving structure
of interest and held fixed, (b) echoes may be observed on an A-scan display but
this does not give a record of motion, (c) echo dots sweep up the screen to provide
a trace of position versus time. Figure reproduced from [27]
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several A-scanners to produce a 1D-swept image i.e. a 2D image. In practice, to enhance
the signal-to-noise ratio, to compute the local reflectivity, that is the variation of acoustic
properties at x, the A-scanners are combined to produce a wave that focuses on x at
t = t0. This can be done by knowing the speed of sound c inside the medium. The
backscattered signals are measured by the ultrasound transducers and are summed
with the right delays [29]. More precisely, the signal originated from x will be heard at
t(z) = t0 +

|z−x|
c for the transducer at z. The image I(x) at x is then computed with

I(x) :=
N

∑
k=0

uk

(
t0 +

|zk − x|
c

)
where N is the number of transducers, uk is the signal recorded by the k-th transducer
and zk is the position of the k-th transducer. Thanks to the fast propagation of the ul-
trasound waves in water, it is possible with this technique to image the medium in real
time with 20 to 100 images per seconds [29].
Further tests have also shown that the air at the interface between transducer and tis-
sues must be excluded for the waves to propagate (and not to be absorbed by the air).
This explains the continued usage of oil or gel [27].

3.2 Ultrasound imaging nowadays

Since the discovery of the piezoelectric effect by the Curie brothers, ultrasounds are
now among the most used techniques in medical imaging. The advancements in both
the ultrasound transducers manufacturing and the signal processing techniques have
enabled the computation of 3D or even 4D ultrasound images (movies) [30].

3.2.1 Clinical use of ultrasound imaging

From January 2023 to January 2024, more than 20% of the imaging exams in Eng-
land were ultrasound exams [2]. They present the advantage of being non-invasive,
non-ionising, real time and cheap exams [31].

When thinking of ultrasound imaging, obstetrics application is the first thing that
comes to mind. But sonography (also named ultrasonography) is used to image many
other organs as well. Ultrasounds can be used for [32]:

• Obstetric ultrasound - to view the fetus in the womb.

• Abdominal ultrasound - to image the organs of the abdomen. It is also used to
detect and monitor breast cancer [33].

• Vascular ultrasound - to view the blood vessels, which is know as Doppler ultra-
sonography.
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• Echocardiography - to view the heart (it also includes the fetal heart).

• Pelvic sonogram - to view the organs of the pelvic region.

• Neurosonography - to view the brain (it also includes the fetal brain).

• Ophthalmology - A-scans provide the length of the eye, while B-scans produce a
cross-sectional view of the eye and the orbit [34].

• Dermatology - to measure the skin thickness.

We also mention that ultrasounds can be used to clean teeth in dental hygiene or to
remove cysts or tumors by focalizing heat on them, and have many other therapeutic
applications which are not detailed here but can be found in [31, 32].
For superficial organs such as muscles, tendons, the breasts and the neonatal brain, the
transducers emit waves at 7 to 18 MHz [32]. However, as the absorption of the waves is
linked to the emission frequency, for deeper organs such as the liver or the kidney, the
frequency is reduced to 1 to 6 MHz. Note that the frequency typically drives the axial
and lateral resolutions [32].

3.2.2 Plane wave and matrix imaging

The huge improvements of ultrasound metrology have led to the development of
new generation of ultrasound probes. With the newer devices, one has a series of N
independent programmable transducers. One or several transducers can insonify the
medium with a pulse. All (or a part of) the transducers switch to the echo mode to
listen to the echoes. Each of them then measures a time series corresponding to the
wavefield backscattered by the medium. The physical effects behind the scattering
of biological tissues can be modeled by the linear law of acoustics [35]. The linearity
of the phenomenon can be exploited, and in particular the data can be recombined
in post-processing. Indeed, the signals are not analogically monitored anymore, but
the signal from each transducer is now numerically stored and can be post-processed
after the data acquisition. This allows more flexibility in the signal processing and in
particular, to consider more complex speed of sound maps c(x) in the computation of
the image.

Ultrafast ultrasound imaging

For historical reasons, the ultrasound images are computed by a sum-and-delay
algorithm applied to the signal recorded by a set of ultrasound transducers, which have
previously sent a short pulse that focalizes at each and every point of the medium.
This corresponds to the pulse-echo mode. However, as the physical phenomena at
stake are mainly linear, in the end of the 1980s, it was envisaged to utilize the linearity,
and insonify the medium all at once. The signals recorded by each transducer are then
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numerically and linearly recombined to generate the response of a focalized wave. This
idea comes from optics and is comprehensively described in [36] to which we refer for
more details on ultrafast imaging.
The medium can be insonified with e.g. plane waves:

pi
θ(ω, x) = exp

(
i
ω

c
θ · x

)
for θ ∈ Sd−1 a direction on the sphere, and x ∈ Rd and c is the speed of sound inside
water.
The whole medium is insonified at once with a series of Nθ plane waves
(pi

θj
(ω, ·))j=1...Nθ

(see Figure 3.4). For a given plane wave θj, the response Sj,k is mea-
sured by all N transducers, placed at xk, k = 1...N. This response is designated as the
scattering matrix. The matrix S encodes all the properties of the medium and is called
the transmission matrix when the scattered field is measured by transducers positioned
on the other side of the medium, or the reflection matrix when it is measured by the
transducers that insonified the medium (this is typically the configuration of imaging).
By using unfocused (plane) waves, it is now possible to produce 350 images per sec-
ond, when it was only possible to produce 25 images per second with focused waves
[36].
Note that spherical waves can also be used instead of plane waves, but plane waves
are preferred due to the signal-to noise-ratio. Indeed, while spherical waves are emit-
ted with one transducer, several transducers need to emit all at once to produce a plane
wave. Then, more energy is sent into the medium and the signal-to-noise ratio is en-
hanced.

Time-reversal and DORT

Historically, this matrix approach was developped in the 1990s via the iterative
time-reversal procedure [7] which consists in iteratively reemitting "in reverse" the time
measurements. When the medium is composed of a single scatterer, it was shown that
the process converges towards the wavefront that perfectly focuses on that scatterer
when it is reemitted in the medium [37]. A further analysis of the scattering matrix
has shown that for a medium with M isolated scatterers (with different contrasts), the
matrix S is of rank M and has M singular values when all the scatterers behave like
monopoles. The i-th singular vector is the wavefront that focuses on the i-th brightest
scatterer. This is the basis of the DORT method (French acronym for Décomposition de
l’opérateur de retournement temporel, which stands for decomposition of the time reversal
operator) which was introduced during the Ph.D. of Claire Prada [37, 38, 39].
These works by Mathias Fink and Claire Prada inspired many works in aberration
correction [40, 41, 42, 43], target detection in a heterogeneous medium [44], flaw
detection in non-destructive testing and many more.
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Matrix imaging

As previously stated, the medium is now insonified in its entirety with unfocused
plane (or spherical) waves and the acquired data are stored numerically. As an input
data set, one then has access to the numerical matrix R(t) ∈ RM×N, where Rj,k(t) is the
time series of the j-th emitted plane wave, measured by the k-th transducer (see Fig-
ure 3.3). This acquisition operation is known as the full matrix capture (FMC) [45]. The
matrix R(t) can then be numerically post-processed. Intuitively, even if no focalized
wave sent at x, it would be possible to recover the local reflectivity at x with a linear
combination of the (unfocalized) plane waves. This idea drives the concept of matrix
imaging and ultrafast imaging [36]. By knowing the speed of sound c > 0 within the
medium, it is possible to transform the time series into an image of the local reflectivity.
If a plane wave is sent at angle θi and measured at xj by the j-th transducer, the echo
measured at t and the echoes coming from the point y can be measured at

t =
θi · y + |y − xj|

c
.

By summing over all the time series, meaning over all the M emission waves and the
received echoes by the N transducers, the ultrasound image is computed. The image I
at a point y is then defined by

I(y) :=
M

∑
i=1

N

∑
j=1

Ri,j

(
θi · y + |y − xj|

c

)
. (3.1)

Usually, c is taken to be constant at the speed of sound in water, but as the matrix R is
numerically stored it is possible to adjust the speed of sound in the imaging algorithm
or even consider more complex backpropagation speed of sound maps.
By a Fourier transform, the imaging process can be rewritten as

I(y) :=
ˆ
B

Ψ(y, ω)T R̂(ω)Φ(y, ω)dω, (3.2)

where Φ(·, ω) ∈ CN is the vector

Φj(y, ω) := exp
(

iω
|xj − y|

c

)
,

Ψ(·, ω) ∈ CNθ is the vector

Ψj(y, ω) := exp
(

i
ω

c
θ · y

)
,

ΨT is the transpose of Ψ, and R̂ is the Fourier transform of R. The properties of the
matrix have been extensively studied by the research group of Alexandre Aubry [46,
47, 48] and the group of Claire Prada [49, 50, 51] at Institut Langevin.
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Figure 3.3: The reflection matrix acquired in ultrafast ultrasound imaging. The
impulse responses are recorded between each emitter at the input and each re-
ceiver at the output, both located on the same side of the medium. All this wealth
of information is stored in the so-called reflection matrix, denoted R. Figure re-
produced from [17]
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3.2.3 A priori assumptions

Ultrasound images are displayed as structural representations of the medium under
investigation. However, in order to accurately represent the medium, the processes of
propagation and of scattering of the ultrasound wave must fulfill several key hypothe-
ses which are described here. When one of the several assumption breaks, so-called
aberrations can arise on the image. Furthermore, due to physical limitations such as
e.g. the finite bandwidth and finite size of the transducer, it is not possible to distin-
guish on the image the presence of two close scatterers. The measurement of "how
close" they must be to be distinguished is called the resolution of the image and can
also be characterized.

Known propagation speed

The image at x corresponds to the local reflectivity of the medium at x. This image
is computed from time measurements. One must translate the acquired time signal
into a map of the reflectivity of the medium. In particular, one needs to know the
speed of sound within the medium. However, in clinical situations the speed of sound
can range from 1400 m.s−1 in fat tissues up to 1650 m.s−1 in the skin or muscles [52].
Images are usually computed by assuming the speed of sound in water (1540 m.s−1).
Errors on the speed of sound have some effects which are the topic of Section 3.2.5.

Single scattering

Even if the speed of sound c is actually known, one assesses that the strength of
the echoes measured at time t > 0 can be matched to the reflectivity of the medium at
the position x on the image via the space-map correspondence induced by the speed
of sound map. However, this correspondence is valid only when the medium is in
the single scattering regime. Indeed, when multiple scattering is no more negligible,
the echoes measured at time t can no longer be associated with the isochrone curves
of the speed of sound map. Intuitively, the number of possible paths increases when
|x| grows, which also explains why the images deteriorate at greater depth. In [53],
Alexandre Aubry and Arnaud Derode established that the ratio of multiple scattering
over the single scattering effect in in-vivo breast imaging reaches 50% at 50 µs. Quanti-
fying multiple scattering is a challenging task and is discussed in Section 3.3.3.

Motionless media and frame rate limitations

The images are computed by assuming that the medium is immobile from the start
to the end of the data acquisition. This assumption is even more crucial with the newer
techniques of matrix imaging (see Section 3.2.2), as the data of several incident waves
are combined together.
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Figure 3.4: Conventional focused and ultrafast ultrasound imaging sequences for
a typical medical imaging setup (4-cm deep region of interest): (a) conventional
focused imaging (128 focused beams and 4 focal depths leading to 25 fps), (b)
plane-wave imaging ( 18 000 fps), (c) plane-wave compounding with 17 angles
(1000 fps), and (d) plane-wave compounding with 40 angles (350 fps). Figure
reproduced from [36]

Ultrasound imaging is a real-time imaging method. However, the insonification pro-
cess is not instantaneous. Indeed, to image at depth z > 0, one must wait for the echoes
originated from z to return to the transducer array i.e. to wait for T = 2 z

c s. Therefore,
if one wants to image of N pixels, it takes a total of NT s, which limits the frame rate
of the imaging system to fr = 1

NT Hz. Typically, N = 300, z = 10 cm and fr = 25 Hz
[29]. With the techniques of ultrasfast imaging, it takes only a few waves to illuminate
the entire medium and image the latter. The frame rate goes up to 1000 Hz [36] (see
Figure 3.4).

Image resolution:

The resolution of an imaging system intuitively corresponds to "how detailed" the
image is. It is characterized by the point spread function (PSF). The point spread func-
tion is the image of a point-like object. This image is a spot called the focal spot (see
Figure 3.5). The knowledge of the typical size of the focal spot allows to characterize
the expected details on the image, and the minimal distance needed between two re-
flectors to distinguish one from the other. The typical expected resolution, when the
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Figure 3.5: Numerical aperture and Point Spread Function (PSF). (A) The aperture
of an imaging system defines the maximum angle of insonification that reaches
the targeted focal point. (B) Flat aperture function in k-space. This space can be
considered as a plane wave basis or a far-field basis. (C) The Fourier transform
of the aperture function defines the Point Spread Function of the system, which
determines the transverse resolution of the imaging system. In other words, it
defines the limit of the system for distinguishing two points. (D) Point Spread
function in 3D imaging. Figure reproduced from [17].

aforementioned hypotheses are satisfied, is [54, 55]:

• ∆z = c
2B where B is the bandwidth of the transducer, in the axial direction. B

corresponds to the inverse of the typical time duration of the incident emitted
signal.

• The transverse resolution depends on many parameters, and especially on the
depth z at which the image is computed. Typically, one can expect a transverse
resolution of ∆x(z) = zc

a f0
where a is the size of the array and f0 the central fre-

quency of the transducer [55]. The most common method of defining the trans-
verse resolution is the Rayleigh criterion, i.e. the full Width at half maximum of
the point spread function in the transverse direction.

Note that this resolution corresponds to the expected resolution when c is the actual
speed of sound inside the medium. When it exists a mismatch between the backprop-
agation speed and the actual speed c, the size and shape of the focal spot are altered.
This phenomenon is mathematically investigated in Chapter 11.

3.2.4 Other ultrasounds based imaging methods

Ultrasounds are a powerful tool to image deep organs thanks to their penetration
depth. However, as the acoustic properties of soft tissues are close to those of water
(see Table 3.1), the images are not very contrasted. For example imaging blood vessels
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Tissue/Material Speed of sound (m.s−1) Density
Breast 1510 1020
Healthy liver 1575–1600 1050
Diseased liver 1525 ≲ 1050

Table 3.1: Ultrasound properties of various human tissues and materials. Values are
extracted from [52, 57]

or distinguish certain types of malign carcinoma from kysts can be difficult. On the
other hand, other physical parameters like absorption of shear modulus can vary sig-
nificantly. For example, a palpable nodule has a shear modulus ranging from 105 to 107

Pa while a the glandular tissue of breast has a shear modulus ranging from 103 to 104

Pa [56]. Using multi-physics coupling such as for instance the thermo-elastic effect, hy-
brid techniques have been developed to image quantities related to those parameters.
Before using sophisticated multi-waves physics, a first idea to increase the range of clin-
ical applications is to assess the movement inside the tissues to estimate blood flow. The
most common ultrasounds based movement imaging technique is the Doppler exam.

Imaging movement

Doppler effect: When the source of the sound wave is moving relative to an
observer, the frequency of the wave changes. This is known as the Doppler effect.
This effect can be witnessed in the frequency shift of the field sccatered by moving
scatterers relative to the incident field. Measuring the frequency shift enables then to
measure the speed of the blood inside the cells with the aim to image the blood cells.
However, due to the low sensitivity of ultrasounds, it was not possible to follow in
real-time the blood flow in small capillaries with the conventional techniques. This is
now possible thanks to the ultrasfast imaging techniques [58] (see Figure 3.6). We refer
to [58] for more information about functional imaging using the Doppler effect.

Ultrasound elastography: Diseased tissues and healthy tissues show similar acous-
tic response [56], but the stiffness of the diseased tissue varies, which explains why
physicians process to palpation. Elastography typically consists in reproducing this
exam and obtaining quantitative information about the stiffness i.e. the Young’s mod-
ulus E of the tissue. Furthermore, as palpation only gives insight about the superficial
stiffness of the tissues, elastography can also give information about the stiffness of
deep organs [59]. Typically two methods exists:

• Quasi-static method: a constant stress σ is applied to the tissues. This generate
a displacement and a strain ϵ. The measurement of the strain is done by cross-
correlating the B-mode images before, and during the application of the stress.
The Young’s modulus E can then estimated by Hooke’s law: σ = Eϵ. This re-
quires to have a precise knowledge of the applied stress which is not the case in
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practice [60]. But this still gives qualitative information about the local stiffness.
When the stress is applied as an external force from the operator, this only gives
information about the superficial organs such as the breast or the thyroid [59] but
it is more challenging to assess elasticity of deeper organs such as the liver [61].
To compensate for these issues, the internal physiologic motion such as cardio-
vascular, respiratory motion can be used as the stress, while the ultrasound probe
is held steady. This allows to access to the strain of deeper organs [60].

• Dynamic method: when applying a time-varying mechanical force (which can be
a transient force or an oscillatory force at fixed frequency), not only a compression
wave is generated (which is used for the B-mode images) but a shear-wave also
propagates. However, due to attenuation, only the low frequency shear-waves
(10-2000 Hz) propagate [60]. By imaging the medium using ultrasounds (ultra-
sonic pressure waves) whose speed of propagation is several orders of magnitude
larger than the one of shear-waves, it is possible to follow the propagation of the
shear-waves. The speed of the shear waves Vs is related with the shear modulus
of the medium µ via the relation µ = ρVs (with ρ the density which is usually
assumed to be the one of water). Tissues are almost incompressible which allows
to compute the Young’s modulus via the relation E = 3µ [60].

We refer to the two reviews [60, 62] for more technical details and for more information
about the clinical applications ultrasound elastography.

Photoacoustic imaging

Other physical effects such as the photoacoustic can also be used to obtain an en-
hanced contrast on the ultrasound images (see Figure 3.6).
Electromagnetic waves are sent within the tissues of interest. These waves are absorbed
by soft tissues, heating them. Due to the thermo-elastic effect, a compression wave is
emitted - this is the photoacoustic effect. The emitted acoustic wave is measured by the
ultrasound transducers. By tracking down the sources of the signal, its is possible to
image the electromagnetic absorption properties of the tissues [63]. In particular, the
light-absorption of hemoglobin is way higher than the surrounding proteins, and thus
photoacoustic techniques allows to image the blood vessels. It is also possible to use
exogenous contrast agents to enhance the quality of the image [64]. We refer to the two
reviews [63, 64] for more details about photoacoustic imaging.

Ultrasound localized microscopy (ULM)

Another way of increasing contrast to image blood vessels is to use microbubbles
contrast agent [65, 66]. Indeed, gas microbubbles in a liquid exhibit resonances in the
ultrasound range, known as Minnaert resonances. They then behave like a highly con-
trasted point-like scatterer for ultrasound waves.
Inspired by the methods developed in optics to localize single emitters with a preci-
sion order of magnitudes below the usual Rayleigh criterion such as PALM-STORM
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Figure 3.6: Amplitude image using Ultrafast Doppler Imaging of the intact spine
of a rat (a) and Ultrasound Localization Microscopy (b) in the same animal. Scale
bar 1 mm for both images. Figure reproduced from [72]

[67, 68, 69], Olivier Couture and his team developed a technique called ultrasound lo-
calized microscopy (ULM) [70]. By localizing each microbubbles at the center of the
point spread function over time, Olivier Couture is able to produce super-resolved im-
ages of blood vessels (see Figure 3.6). Moreover, by tracking the motion of each bubble,
it is also possible to map the blood motion flow with a similar resolution.
This constitutes a major breakthrough in imaging as it is now possible to image the
blood vessels with resolution close to those of optics, but with the penetration depth of
the ultrasounds. These techniques are now being applied pre-clinically and clinically
for the imaging of the microvasculature of the brain, kidney, skin, tumors and lymph
nodes [71].
We refer to [71, 72, 66] for more information about ultrasound localized microscopy
and also mention the work of Siepmann Monica and her team [73] whose tremendous
results are obtained in parallel of those of Olivier Couture and his.
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3.2.5 Quantitative ultrasound and speed of sound mapping
The stupendous results of the functional imaging could only be achieved thanks to

joint improvements in the transducers manufacturing, the data management and the
scattering theory. The digitalization of acquisition data has also opened the doors to
quantitative ultrasound (QUS) imaging techniques.

Quantitative ultrasound

The goal is no longer only to obtain a high fidelity structural image, but is also
to obtain quantitative assessments of the properties of the tissues [8] (see Figure 3.7).
Quantitative ultrasound is a field that has been active for more than 50 years [8] and
was originally described as Ultrasound tissue characterization [74]. This vast topic is
covered in [75] and we also refer to the reviews [10] and [8].
For soft tissues, three parameters are often investigated: the speed of sound, the atten-
uation coefficient and the backscattering coefficient of the tissue [8].

Speed of sound estimation

The variation of speed of sound within the tissues can be used as a biomarker chang-
ing in accordance with the pathological state of the tissue [76] and can thus be used for
the diagnosis e.g. of hepatic steatosis [77, 78, 79]. Furthermore, we recall that clas-
sical imaging algorithm rely on the assumption that the speed of sound throughout
the medium is constant and known. Local variations induce aberrations and mislo-
calization on the image. Moreover an error on the backpropagationspeed of sound in
the algorithm affects the quality of focusing in the medium therefore deteriorating the
signal-to-noise ratio. The estimation of the speed of sound was originally developed to
improve images quality [80, 81, 82, 83].
Among the techniques that have been developed for the speed of sound assessment,
one can consider the focusing methods which consist in adjusting the speed of sound
to maximize a quality indicator of the image. The quality indicator of the image can be
evaluated or estimated by parameters such as the lateral resolution, the echo amplitude
[10] or the coherence factor [77, 79]. The coherence factor C f (see e.g. [84]) is defined
as the ratio of the square of the coherent sum (which is the image) to the incoherent
sum (summing the amplitude of the measured signal). For plane wave imaging it was
introduced in [85] and can is then expressed as

C f (y) =

∣∣∣∣∣ M

∑
i=1

N

∑
j=1

Ri,j

(
θi · y + |y − xj|

c

)∣∣∣∣∣
2

MN
M

∑
i=1

N

∑
j=1

∣∣∣∣Ri,j

(
θi · y + |y − xj|

c

)∣∣∣∣2
. (3.3)

This coefficient ranges from 0 to 1. When the backpropagation speed of sound does
not match the speed of sound of the medium, it induces phase error on the backpropa-



3.2 Ultrasound imaging nowadays 39

Figure 3.7: Classification of ultrasound techniques. From top to bottom, grayscale
imaging modes provide information on organ anatomy. Doppler techniques
assess flow and tissue motions (direction, velocity, and backscatter in power
Doppler mode). Elastography methods provide information on mechanical prop-
erties of tissues. Quantitative ultrasound (QUS) detects sub-resolution acoustic
properties to provide information on tissue microstructure. RF refers to radiofre-
quency data, I/Q to in-phase and quadrature data, whereas compression and
shear waves refer to elastic waves used in ultrasound imaging. Figure repro-
duced from [8]
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gated signals and the numerator decreases. The incoherent sum in the denominator is
less sensitive to these changes and can thus normalize the coherence factor.
Other focusing methods consists in maximizing the strong reflectors brightness (see the
reviews [8, 9, 10]). When there is a strongly contrasted reflector, the idea is to maximize
the echo amplitude returned from the this reflector. Finally, the speed of sound can
be recovered by deconvoluting the image with a given data set of point spread func-
tions build upon several backpropgation speed of sound [86, 87]. The speed of sound
is estimated by minimizing the amplitude of the coefficients of autocorrelation of the
deconvoluted image.
Recently, the group of Alexandre Aubry also developed a new method [88, 47, 17]
that we briefly describe here. In a confocal imaging setting the ultrasound images are
formed by focusing a wave at x in the medium (so-called focusing in emission) and
backpropagating the echoes at the point x (so-called focusing in reflection). The change
of paradigm in Aubry’s work is to decouple those two focusing points. He introduced
the reflection point spread function RPSF which consists for a given x at a given depth
to focus a wave at x − ∆x for ∆x at the same depth and to listen to echoes returned
from x + ∆x and then summing over all 0 ≤ ∆x ≤ ∆xmax. Using the matrix imaging
notations, it reads:

RPSF(x, ∆xmax) :=
ˆ

B(0,∆xmax)

ˆ
B

Ψ(x − ∆x, ω)T R̂(ω)Φ(x + ∆x, ω)dωd∆x. (3.4)

The function RPSF(x, ·) is a peak function whose width is narrower when single scat-
tering dominates and when the backpropagation speed of sound matches the one of
the medium. From this observation, they introduce a new focusing criterium

F(x) :=
FWHM(x)
FWHM0(x)

,

where FWHM(x) is the full width at half maximum of RPSF(x, ·) and where
FWHM0(x) corresponds to the theoretical diffraction limit:

FWHM0(x) :=
ω0

2c sin
(

arctan
(

a
2z(x)

)) ,

where ω0 is the central frequency, a the size of the transducer array and z(x) corre-
sponds to the depth of x. This focusing criterion appears to be more sensitive than the
coherence factor [46, 48]. As pointed out in [17], note that these methods are designed
to give a estimator of the integrated (or averaged) speed of sound at a given depth and
not the actual local speed of the sound at this depth.
Another category of methods is called compounding methods. When the backpropaga-
tion speed matches the true speed of sound of the medium, the images computed by
using different incident steering angles are almost identical. However, an error in the
speed of sound induces spatial errors on the images and the difference between the
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images depends both on the steering angle and on the error on the backpropagation
speed. Therefore, by cross-correlating the images for several steering angles, the dis-
crepancies of speed of sound can be identified, as the images are different. It is then
possible to optimize the backpropagation map of the speed of sound by solving an in-
verse problem as described in [89]. This is the concept of the computed ultrasound
tomography in echo mode (CUTE) method [89].
Some other techniques rely on the measurement of the transmitted field [13] which lim-
its their applicability to the breasts, because other body parts contain bones and air that
obstruct ultrasound propagation, and it also limits their portability as the devices are
much larger.
Lastly, with the improvements in data science, new methods based on neural net-
works have emerged [90]. Nevertheless, these methods require a large training data
set. Numerical simulations to enlarge the data set remain costly. Furthermore, the re-
constructed speed of sound map relies heavily on the numerical modelization of the
tissues and how accurate it describes the actual tissues.

Reflectivity of the medium

A difficult task it to quantify the relation between the image amplitude at a given
point and the local variations of the acoustic properties around this point. In the imag-
ing community, it is accepted that the image amplitude is related to the local acoustic
reflectivity of the medium. However, its definition depends on the physical model for
soft tissue. Several model for the reflectivity exist as a function of the bulk modulus κ
and the density ρ. Though, remark that in the context of ultrasound imaging, as the
measurements are done in reflection, it is quite difficult to distinguish the effect of a
varying density to those of a varying bulk modulus. Indeed, the resulting scattered
field by a small obstacle with contrast in ρ (which acts as a dipole) or with contrast in κ
(which acts as a monopole) is notably similar in the direction of the incident wave as
shown on Figure 3.8. That is why as a first approximation, due to the reflection setup
only variations in the speed of sound c =

√
κ
ρ are considered. Note that the picture

would be different if we had access to data in every directions, or at least if to a wider
range of incident angle.

By assuming that the single scattering regime holds, in [91], the reflectivity is then
defined as γ = κ−κ0

κ0
− ρ−ρ0

ρ0
and it is mentioned that for the case of soft tissues imaging, it is

often assumed that κ−κ0
κ0

predominates over ρ−ρ0
ρ0

in which case, γ ≈ κ−κ0
κ0

. However, to derive
this formula, multiple scattering is neglected, furthermore the polarization tensors (see
[92]) are also neglected.
Alexandre Aubry and his collaborators introduce a new model where the reflectivity
of the medium is the realization of a δ-correlated random process [46]. That is, the
reflectivity γ is a zero-mean process that verifies:

Cov(γ(x), γ(y)) = σ2δ(x − y)
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Figure 3.8: Real part of the scattered field by an inclusion with either contrast in
κ or in ρ for a plane incident wave originating from the top.

with δ the Dirac distribution and σ2 > 0 is the variance of the reflectivity. The idea is
that the echogenic sources in biological tissues have a characteristic size which is one
or two order smaller of magnitude below the wavelength. In this multi-scale context,
it is natural to consider that the reflectivity is a random process with fast (with respect
to the wavelength) decorrelation properties. The displayed image corresponds then to
spatial local averages of the reflectivity.
To quantify the echogenic property, several usual scattering approximation can be used.
These scattering approximations as well as the model that we use in quantitative recon-
structions are presented in the next Section 3.3.

3.3 Wave propagation in random media

We assume that the ultrasound sensors measure the pressure field p. Therefore we
focus on the equation verified by p and want to understand the properties of p.
The pressure field p satisfies a divergence form wave equation with heterogeneous
density ρ and heterogeneous bulk modulus κ inside the domain D ⊂ Rd [35, Chap-
ter 3.3.3]. D is the tissue to image. We assume it to be a bounded subset of Rd with a
regular boundary ∂D. The density ρ and heterogeneous bulk modulus κ could depend
both on space and time. The time-dependency can be neglected as the ultrasound ex-
periment is of the order of the µs while the properties of the medium vary on a longer
time scale. Note that this is a fundamental assumption for the matrix imaging formal-
ism to work.
Mathematically speaking, for a given end time T of acquisition, the problem is now to
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find the pressure field p ∈ L∞([0, T]; H1
loc(R

d)) and ∂t p ∈ L∞([0, T]; L2
loc(R

d)) solution
of [93, Section 2.1]: 

−∇ ·
(

1
ρ
∇p
)
+

1
κ

∂2

∂t2 p = F in [0, T]× Rd,

p(0, x) = p0(x) in Rd,

∂t p(0, x) = p1(x) in Rd,

(3.5)

where 0 < ρ− < ρ ∈ L∞(Rd) and 0 < κ− < κ ∈ L∞(Rd). The functions
p0, p1 ∈ H1

loc(R
d) are given initial conditions and F ∈ L∞([0, T]; H−1(Rd)) is the source

term which models the transducer impulse. The function F is a short time pulse and is
compactly supported in space. In fact F is supported on the transducer array A.
The ultrasound acquisition then consists on the illumination of the medium with a se-
ries of M impulses {Fi}i=1...M sent by the transducers array and the total field is then
measured by the transducer array. Outside of the domain to image D, ρ = ρ0 and
κ = κ0 where ρ0 and κ0 are positive constants.
Equivalently, we can look for the scattered field us ∈ H1

loc(R
d), solution of the

Helmholtz equation:
−∇ ·

(
1
ρ
∇(us + ui)

)
− ω2

κ
(us + ui) = 0 in Rd,

lim
|x|→∞

|x| d−1
2

(
1
ρ0

∂

∂|x|u
s − i

ω

κ0
us
)
(x) = 0

(3.6)

where ω ∈ B is the frequency and B is the bandwidth of the ultrasound sensors. ui ∈
H1

loc(R
d) is the incident field, solution of:

−∇ ·
(

1
ρ0
∇ui

)
− ω2

κ0
ui = f in Rd, (3.7)

with f ∈ H−1(Rd) the Fourier transform in time of the source term F.
The incident field are usually taken to be plane waves in the direction θ ∈ Sd−1, defined
for x ∈ Rd by:

ui
θ(x) := exp

(
iω
√

ρ0

κ0
θ · x

)
, (3.8)

or incident spherical waves in xe, defined for x ∈ Rd \ {xe} by:

ui
xe(x) :=


i
4

H1
0

(
ω

√
ρ0

κ0
|x − xe|

)
if d = 2,

exp
(

iω
√

ρ0
κ0
|x − xe|

)
4π|x − xe|

if d = 3,

(3.9)
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where H(1)
0 is the Hankel function of the first kind [94].

Note that the coefficient 1
ρ could be replaced by a uniformly elliptic matrix.

Biological tissues are complex media with a complicated microstructure and vari-
ations of parameters at different scales. The goal is to accurately model the spatial
distribution of ρ and κ so that the resulting scattered field can effectively reproduce
the type of signal recorded by medical ultrasound transducers. In practice, soft tissues
have acoustic properties that are close to those of water (compressibility and density).
Nevertheless, if a tissue were to be modeled by a water-like homogeneous medium,
the echogenic properties of the tissue will not be captured by the model. It is accepted
that the small micro-scale biological structures (cell nucleus, mitochondria...) are the
sources of the backscattered field. In the next Subsection 3.3.1, we detail the model for
the coefficients.

3.3.1 A model for soft tissues

The backscattered field is due to the numerous unresolved scatterers inside the
medium. We thus assume that the tissue under study is a homogeneous medium (with
the compressibility and the density of the water) in which lies small contrasted scatter-
ers of typical size ε, small in front of the size of the medium and of the wavelength. As
we cannot access the spatial distribution of those small scatterers, we model the distri-
bution process as a random process. We consider the typical setting of Figure 3.9. We
will use stochastic homogenization techniques to describe the scattered field and this is
the topic of Part II. We present here the model that we use throughout the entire thesis.

We consider a bounded acoustic medium D ⊂ Rd, d ∈ [[1, 3]] with a C4- boundary
∂D and we study the scattering of either time-harmonic plane wave ui

θ of (3.8) with
wave number k and direction θ ∈ Sd−1 or spherical incident waves ui

xe of (3.9) with
wave number k and emitted at the point xe ∈ Rd \ D. We assume that a set Sε of
randomly distributed inclusions of characteristic size ε > 0 lies inside the medium D. ε
is small compared to the wavelength of the incoming field 2πk−1.

The outer medium Rd \ D, the background D \ Sε and the scatterers Sε are assumed
to be homogeneous with respective parameters (Id, n0), (aM, nM) and (aS, nS). The
medium parameters are then given by

aε := Id1Rd\D + aM1D\S̄ε + aS1Sε ,

nε := n01Rd\D + nM1D\S̄ε + nS1Sε , (3.10)

where aM and aS are positive definite matrices of Md(R) and n0, nM, nS are positive.
The total field uε is then the unique solution almost sure in H1

loc(R
d) of the following

problem:
−∇ · (aε(x)∇uε(x))− k2nε(x)uε(x) = 0 for x ∈ Rd,

lim
|x|→+∞

|x| d−1
2

(
∂(uε − ui)

∂|x| (x)− ik (uε − ui)(x)
)
= 0.

(3.11)
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ε

Rd \ D

D

inhomogeneities randomly

distributed in D

uinc uε − uinc

Figure 3.9: Scattering by an (multi-scale) obstacle in the stochastic homogeniza-
tion regime

To link with the previous equation (3.11), uε still denotes the pressure. aε and nε relate
to the inverse of the mass density and the bulk modulus of the inner and outer media
[35, Chapter 3.3]. We choose identical parameters for all scatterers. The study can
easily be extended to independent and identically distributed parameters as long as
the assumptions of uniform ellipticity for aε and uniform boundness from below and
above for nε are satisfied. We specify in the following section the different assumptions
that we make on the random distribution of scatterers.

Description of the distribution of scatterers

Let (xi)i∈N be the point process in Rd corresponding to the centers of the scatterers.
A scatterer si, i ∈ N centered at xi consists in an open connected Lipschitz domain Q
of radius r := max

x,y∈Q
|x − y|. We denote by S := ∪

i∈N
si the set of scatterers of radius r = 1

in Rd. Let (Ω,F , P) be a probability space. We make the following assumptions on
(xi)i∈N:

- (xi)i∈N is stationary, i.e. its distribution law is invariant by translation and er-
godic;

- the scatterers lie at a distance at least δ > 0 from one another, i.e. there exists δ > 0
such that

∀i ̸= j, dist(si, sj) > δ a.s.



46 CHAPTER 3. MEDICAL ULTRASOUND IMAGING

Stationarity and ergodicity are described in details in Section 4.3. We introduce the
parameters 

a := aM1Rd\S + aS1S,

n := nM1Rd\S + nS1S. (3.12)

For ε > 0, we define
Nε := {i ∈ N | εxi ∈ D}.

Nε corresponds to the collection of scatterers of size ε that lie in D. We subsequently
denote

Sε := ∪
i∈Nε

εsi ∩ D. (3.13)

Note that we have then

∀x ∈ D, aε(x) = a
(

x
ε

)
and nε(x) = n

(
x
ε

)
.

In this thesis, we chose a Matèrn point process. However, any point process that
satisfies a quantitative ergodic assumption could be used (see Section 4.4).

3.3.2 Wave propagation in random multi-scale media

A random multi-scale framework appears to be well-suited for the analysis of the
wave propagation in biological tissues. Experiments and theoretical results [95, Chap-
ter 5] suggest that 3 characteristic lengths determine the behavior of the wavefield.
These are the correlation length inside the medium l, the wavelength λ and the size of
the medium L. The correlation length is the typical size at which the acoustic properties
of the medium varies. It characterizes the typical size of the heterogeneities within the
medium. Moreover, the contrast σ :=

∥∥∥ 1
κ −

1
κ0

∥∥∥
L∞(D)

of the medium’s properties also

affects the wavefield. We can distinguish three interesting regimes depending on the
respective scaling of each parameter as shown in [95, Chapter 5].

Effective regime

The effective regime corresponds to the regime where

l ≪ λ ∼ L σ ∼ 1 or σ ≪ 1.

Physically, this corresponds to the regimes where the heterogeneities are smaller than
the wavelength. Even if the heterogeneities are small, the contrast is of order 1, at the
limit when the size of the heterogeneities goes to zero, the scattered field cannot be
approximated by the scattered field of the background medium. In fact, the scattered
field is close to the field scattered by a homogeneous medium whose parameters ρ⋆

and κ⋆ are effective parameters which are usually different of ρ0 and κ0. As the size
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of the medium is of the order of the wavelength, the propagation distances are not
sufficient for the randomness to dominate the wavefield. That is why, as the scale of
the wavelength, the wavefield "sees" an effective, homogeneous medium and the wave
propagation can be accurately described with effective properties. This regime corre-
sponds for example to the regime of homogenization [96]. The homogenization process
is detailed in Chapter 4.

Weakly heterogeneous regime

When the size of the heterogeneities is of the order of the wavelength (and the
medium larger), the picture is different. If the contrast were to be of order 1, the phase
of wavefield would be totally random and few "local" information about the scatter-
ing process would be retrievable, as the imaging function relies on phases alignment.
Because the fluctuations are of small amplitude σ ≪ 1, the wavefield must propagate
over large propagation distances to experience a significant scattering by the medium.
This corresponds to the weakly heterogeneous regime (see [95, Chapter 18] for more
details) where

l ∼ λ ≪ L σ ≪ 1.

This regime has been studied for time-reversal imaging. In this case, the goal is to iden-
tify the position of sources [97, 55] or of reflectors [98, 55]. To that aim, in [99], the time-
reversal invariance is used to refocus on targets inside a scattering medium. It is ob-
served that the multiple scattering actually enhances the resolution of the time-reversal
imaging in comparison with the case of targets lying in an homogeneous medium. This
is mathematically studied in [97].
In this weakly scattering regime, the problem can even sometimes simplify to a random
travel time problem under more hypotheses described in example in [100]. Indeed in
this regime, the phase of the scattered field is primarily affected [100], and not the am-
plitude. The goal is then to recover the correct phase or equivalently the correct travel
time, so that the position of the sources of reflector can be recovered.
In [100], two methods compared. The coherent interferometric imaging method intro-
duced in [101, 102, 103] which consists in a backpropagation of the cross correlation of
the signals is opposed to the Kirchhoff migration. The coherent interferometric is more
robust to noise, but loses resolution in comparison to the Kirchhoff migration.
In the book [55], an extensive mathematical analysis of the passive imaging methods
is done. The passive imaging methods were introduced by Campillo [104] consists in
recording the "ambient noise". The recorded "ambient noise" is in fact the scattering
response of the medium under investigation to randomly positioned sources. One can
think of the measurement done by a seismometer which are produced by the move-
ments inside the Earth’s crust. The distribution of the sources is typically a white noise,
and by auto-correlating the signal it is possible to recover deterministic information
about the medium to image, such as the position of a reflector. Note that the Kirchhoff
migration corresponds to (3.2), where the vector Φ(ω) is taken to be the Green function
of the Helmholtz equation at wave number ω

c .



48 CHAPTER 3. MEDICAL ULTRASOUND IMAGING

Strongly heterogeneous regime

The strongly heterogeneous regime corresponds to the regime where the fluctua-
tions of the medium are strong, but the heterogeneities are small in front of every other
characteristic length i.e.

l ≪ λ ≪ L σ ∼ 1.

In this regime, the fluctuations of the medium dominate, both the amplitude and the
phase of the wavefield are impacted. A source or a reflector is then more challenging
to identify in comparison the weakly scattering regime, but it corresponds to regimes
encountered in practice. In exploration seismology, the wavelength is of the order of
100 m, the probed depths are of the order of 10 km, while the correlation length can be
estimated of the order of 1 m [95]. In medical ultrasound imaging, similar observations
can be made: λ ≈ 0.1 − 1 mm; L ≈ 10 cm; and l ≈ 1 µm [17]. This regime is considered
in [95] for the study of layered media and imaging techniques have been proposed in
[105, 106].

In this thesis, we consider the backscattering of strongly heterogeneous media
under a new prism, by using stochastic homogenization techniques to describe the
backscattered field. As the typical size of the medium is large compared to the wave-
length, the traditional effective model fails. However, this difficulty is surpassed by
establishing a higher order expansion which is described in Part II.

3.3.3 Scattered field approximations

We aspire to quantitatively estimate the speed of sound inside the biological tissues.
The first theoretical step is to quantitatively link the acoustic properties of the medium
to the backscattered field. This is often done by the Born approximation as we describe
in this section.
One can always write that the total field u = us + ui is the unique solution in H1(D) of
the Lippman-Schwinger equation [107, Chapter 8.2]:
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Lemma 1: Lippman-Schwinger equation

For any x ∈ D,

u(x) = ui(x) +
ˆ

D

(
1
ρ0

− 1
ρ

)
∇u(y) · ∇G(x, y)

+ ω2
(

1
κ
− 1

κ0

)
u(y)G(x, y)dy, (3.14)

where for any y ∈ Rd, the Green function x 7→ G(x, y) is the solution in D′(Rd)
of: 

−∇ ·
(

1
ρ0
∇G(x, y)

)
− ω2

κ0
G(x, y) = δ(x − y) in Rd \ {y},

lim
|x|→∞

|x| d−1
2

(
∂

∂|x|G − iω
√

ρ0

κ0
G
)
(x, y) = 0.

(3.15)

We have explicit forms for G(x, y) in dimensions 2 and 3 [108, Lemma 2.21]:

G(x, y) =


ρ0

i
4

H(1)
0 (k|x − y|) for d = 2,

ρ0
exp(ik|x − y|

4π|x − y| for d = 3,
(3.16)

where k := ω
√

ρ0
κ0

is the wavenumber and H(1)
0 is the Hankel function of the first kind

[94].
The equation (3.15) is an implicit equation that can be rewritten for x ∈ D as

u(x) = ui(x) + L[u](x),

where L : H1(D) → H1(D) is the Lippmann-Schwinger operator:

L[u](x) :=
ˆ

D

(
1
ρ0

− 1
ρ

)
∇u(y) · ∇G(x, y) + ω2

(
1
κ
− 1

κ0

)
u(y)G(x, y)dy

and
(I −L)[u] = [ui],

where I is the identity function of L2(D). The knowledge of u(x) for x ∈ D allows
to compute u everywhere. Without any assumption on ρ and κ, it is quite hard to
obtain any further information. However, when the contrasts ( 1

ρ0
− 1

ρ ) and ( 1
κ −

1
κ0
) are

"small" in a certain norm, simple forms of the scattered field can be computed.



50 CHAPTER 3. MEDICAL ULTRASOUND IMAGING

Born approximation

When the medium is weakly scattering and in particular when the contrasts are
of small amplitude i.e.

∥∥∥ 1
ρ −

1
ρ0

∥∥∥
L∞(D)

≪ 1 and
∥∥∥ 1

κ −
1
κ0

∥∥∥
L∞(D)

≪ 1, it is clear that

∥L∥ := supv∈H1(D),v ̸=0
∥L[v]∥H1(D)

∥v∥H1(D)
< 1. The Neumann series converges and

u =
∞

∑
j=0

Lj[ui].

By truncation of this series, one can approximate u by

u = (I + L)[ui] +O(∥L∥2).

This is known as the first order Born approximation [54]. The solution u can then be
written as:

u(x) = ui(x) +
ˆ

D

(
1
ρ0

− 1
ρ

)
∇ui(y) · ∇G(x, y)

+ ω2
(

1
κ
− 1

κ0

)
ui(y)G(x, y)dy +O(∥L∥2). (3.17)

This form is much simpler, it allows to fastly compute the scattered field and links the
properties of κ and ρ to those of u via a simple integral relation. The Born approxima-
tion can be enhanced by considering n terms of the series:

u =
n

∑
j=0

Lj[ui] +O(∥L∥n+1).

The Born approximation is also called the single scattering approximation as it corre-
sponds to the field that is scattered only once by the medium. The term of the series
beyond the first one then corresponds to the multiple scattering.
The ultrasound imaging process relies on single scattering approximations i.e. on the
Born approximation. The quantification of the multiple scattering effects is actually
not an easy task. It has been done in the series of work [109, 53, 88, 46, 47, 48, 110] by
Derode and Aubry and their collaborators where they consider the matrix formalism
for imaging. We also refer to [111] for the scattering of heterogeneous obstacles. The
Born series has been extensively studied by Shari Moswkow and John Schotland and
their coauthors [112, 113]. More precisely, they investigated both the convergence of
the Born series for ρ = ρ0 both theoretically and numerically [114, 113], and for κ = κ0
in [115]. These studies are carried out in view to obtain convergence conditions on the
inverse Born series (see [115]), which consists in recovering the function 1

κ − 1
κ0

from
the measurements of us.
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Foldy-Lax model

When the supports supp( 1
ρ −

1
ρ0
) and supp( 1

κ −
1
κ0
) are small, another model can be

used, the so-called Foldy-Lax model or coupled dipole approximation [116].
More precisely, assume that the medium is composed of a set of N heterogeneneities
S := {Sj}j=1...N where Sj is centered in zj, with variable properties ρj > 0, κj > 0
embedded in a homogeneous domain D i.e

ρ(x) =

{
ρ0 if x ∈ D \ S
ρj if x ∈ Sj

and κ(x) =

{
κ0 if x ∈ D \ S
κj if x ∈ Sj,

and that each inhomogeneneity is small in front of the wavelength.
In this case, the Lippmann-Schwinger equation (3.15) rewrites for all x /∈ S:

u(x) ≈ ui(x) +
N

∑
j=1

τj

(
1
ρj

− 1
ρ0

)
∇u(zj) · ∇G(x − zj)

+ ω2

(
1
κj

− 1
κ0

)
u(zj)G(x − zj), (3.18)

where each τj ∈ Md(R) is the polarization tensor of Sj (see [92] for more details) which
depends only on the shape of the j-th inhomogeneity.
To compute u(x) for all x, it is necessary to know u(zj). The Foldy-Lax model of the
coupled dipole approximation consists in approximating u(zj) by:

u(zj) = ui(zj) +
N

∑
k=1,k ̸=j

τk

(
1
ρk

− 1
ρ0

)
∇u(zk) · ∇G(zj − zk)

+ ω2
(

1
κk

− 1
κ0

)
u(zk)G(zj − zk), (3.19)

and for l = 1...d, ∂lu(zj) by:

∂lu(zj) = ∂lui(zj) +
N

∑
k=1,k ̸=j

τk

(
1
ρk

− 1
ρ0

)
∇u(zk) · ∇∂lG(zj − zk)

+ ω2
(

1
κk

− 1
κ0

)
u(zk)∂lG(zj − zk). (3.20)

This model has been studied in [117] when ρ is constant (equal to ρ0) and in [118]
when κ is constant (equal to κ0). As pointed out in [117], when the density of scatterers
increases, the system may not always be invertible. Furthermore, the system becomes
quite large and costly to solve.
Still, this method allows to transfer the resolution of a large problem posed on the
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unknown u ∈ H1(D) to a smaller linear system of size (d + 1)N × (d + 1)N to identify
each coefficients u(zj) and ∇u(zj).
Also note that by taking u(zj) = ui(zj) and ∇u(zj) = ∇ui(zj), a similar expression to
the Born approximation is recovered, modified by the polarization tensors.

Homogenization regime

The Born approximation holds when the L∞ norm of the contrast is small. The cou-
pled dipole approximation holds when the support of the contrast is small. Another
way of defining a "small" contrast is trough weak norms. Typically, when the contrasts
oscillate very fast, the homogenization theory (see [96] for periodic media and [119]
for random media) allows to approximate the scattered field as the solution u0 in a ho-
mogeneous medium with homogenized density and bulk modulus. This is described
in details in Chapter 4. However, this approximation only holds when the size of the
medium is of the order of the wavelength.

Biological tissues modeling

The three previous approximations usually do not hold in biological tissues. The
contrast is small, but the multiple scattering cannot be neglected (and increases with
depth [53]). The support of the contrast is not small, as the biological tissues are typi-
cally composed of numerous unresolved scatterers. Classical homogenization could al-
low to characterize the backscattered field but the wave typically propagates on many
wavelengths, which heavily deteriorates the homogenization error.
Fortunately, the theory of homogenization allows to expand the solution in a series of
corrective terms. Even if the approximation u ≈ u0 does not hold in large domains of
the order of hundred of wavelength, we construct a corrective term u1, which depends
on the realization of the medium, such that

u ≈ u0 + u1

holds in large domains. We see the strongly heterogeneous regime as a homogeniza-
tion process in a large domain. For these reasons, we decide to use stochastic homog-
enization techniques to describe the pressure field u, with the goal of first defining the
reflectivity, and then constructing an estimator of the effective speed of sound.
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CHAPTER 4

Homogenization for linear elliptic
equations

The definition of a "homogeneous material" depends on the scale of observation.
When observed under a microscope, so-called homogeneous materials reveal their het-
erogeneities. For theoretical and computational reasons, these irregularities are not
always taken into account, and their properties are replaced with those of a homoge-
neous material.
This process, which is possible when the spatial variations of the source excitement oc-
cur at a scale much larger than the spatial variations of the properties of the material
under study, is called homogenization.
The objective of homogenization is to comprehend and describe the macroscopic be-
havior of the material via the internal microscale structure.
The study of the homogenization process involves two (or more) scales: the observable
scale, designated as the macroscopic scale, at which we aim to calculate the effective
(or homogenized) properties, and one (or more) underresolved scales designed as the
microscopic scales.
From a numerical point of view, homogenization often presents a significant advan-
tage. Once the effective properties are known, it is possible to compute mechanical
responses at the macroscopic scale reducing the computational costs significantly.
The mathematical discipline of homogenization aims to understand this mechanism
and make it rigorous. This discipline dates back to the 1970s when the first results were
obtained (see [96]).

4.1 G and H convergence

Mathematically, the homogenization discipline started in the 1970s with the follow-
ing problem. First for a bounded compact domain D of Rd and 0 < α < β, let us define
the set of coefficients:

E(α, β, D) := {a : D → Md(R) | a is measurable and is elliptic in the sense of (4.1)},
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where ellipticity is defined as follows: a : D → Md(R) is elliptic if there exists
0 < α < β < ∞ such that for all x ∈ D and for all ξ ∈ Rd,

α|ξ|2 ≤ |a(x)ξ · ξ| and |a(x)ξ| ≤ β|ξ|. (4.1)

Consider a small parameter ε > 0. Given aε ∈ E(α, β, D), the goal is to understand the
convergence as ε → 0 of the unique solution uε ∈ H1

0(D) of{
−∇ · (aε∇uε) = f in D,
uε = 0 on ∂D,

(4.2)

for a given source term f ∈ H−1(D). In what sense does uε converge? Un-
der what conditions? Towards which limit? At the end of the 70’s, Ennio De
Giorgi and Spagnolo gave a first answer for symmetric operators i.e. for the se-
quence aε ∈ Esym(α, β, D) := {a ∈ E(α, β, D), a is symmetric} [120, 121, 122] via the G-
convergence (the G stands for Green as it corresponds to the convergence of the Green
kernel). The theory is soon extended to coefficients that are not symmetric. This is the
H-convergence (where the H stands for homogenization).

Definition 2: H-convergence

As ε → 0, aε ∈ E(α, β, D) H-converges to a⋆ ∈ E(α′, β′, D) if and only if

1. uε
H1

0(D)
−−−⇀ u0

2. aε∇uε
L2(D)−−−⇀ a⋆∇u0.

u0 is the unique solution in H1
0(D) of{
−∇(a⋆∇u0) = f in D,
u0 = 0 on ∂D,

(4.3)

and we write aε
H−→ a⋆.

The above definition of H-convergence makes sense as a consequence of the follow-
ing Theorem:

Theorem 3: Compactness theorem

For any aε ∈ Esym(α, β, D), it exists a subsequence (still indexed by ε) and a ho-
mogenized limit a⋆ ∈ Esym(α, β, D), such that

aε
H−→ a⋆
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Remark 4.1.1. The previous Theorem 3 also holds for aε ∈ E(α, β, D), but the limit a⋆ belongs
to E(α, β2

α , D).

We present here a few properties of the H-convergence.

Proposition 4: Properties of the H-convergence

The H-limit of aε, if it exists,

1. is unique,

2. verifies (4.1) with ellipticity constant 0 < α < β (or 0 < α < β2

α if aε is not
symmetric),

3. is independent of the source term f ,

4. is independent of the boundary condition on ∂D,

5. is local, in the sense that if aε coincides with bε on D′ ⊂ D, then a⋆ = b⋆ on
D′.

Given the previous theorem and the properties of the H-convergence, the homoge-
nization problem seems to be solved at first sight - the solution converges towards the
solution in a homogeneous medium with the properties described by a⋆. However, this
does not explain how to compute the limiting operator. a⋆ exists, but we have no idea
how to compute it. Two regimes in which the limiting operator can be computed have
been identified. Suppose that a ∈ E(α, β, Rd) is either

• Y-periodic, where Y = (0, 1)d is the unit cell

• or the realization of a stationary and ergodic random field.

In the regimes where for x ∈ D,

aε(x) = a(
x
ε
),

it is possible to have a closed form for a⋆. These two regimes will be presented in the
next sections.

4.2 Periodic setting

Let a ∈ E(α, β, Rd) be Y-periodic where Y = (0, 1)d is the unit cell. Define for all
x ∈ D,

aε(x) = a(
x
ε
).
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(a) Reference periodic coefficient (b) aε(x) := a( x
ε ) for ε = 1/2

a(x) = 2 + cos(4πx1) sin(2πx2) in Y

(c) aε(x) for ε = 1/5 (d) aε(x) for ε = 1/10

Figure 4.1: aε for several values of ε

Let uε ∈ H1
0(D) be the unique solution of{

−∇ · (aε∇uε) = f in D,
uε = 0 on ∂D.

(4.4)

By the above Theorem 3, uε converges weakly in H1
0(D) towards u0 the solution in

H1
0(D) of (4.3). When the coefficient aε is periodic, the homogenized coefficient a⋆ can

be computed. A formula for a⋆ can be derived by a formal two-scale expansion on the
solution uε that is described in the following Section 4.2.1. The rigorous proof of the
expansion will be presented in Section 4.2.4 (see also [96, 123, 124]).

4.2.1 Formal expansion

In the following sections, we denote by y := x
ε the microscopic scale while x is the

macroscopic scale. We formally assume that the solution can be expanded for all x ∈ D
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as:
uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + ...,

where all functions ui, i ≥ 0 are periodic with respect to their second variable. By the
chain rule:

∇ui(x,
x
ε
) = (∇x +

1
ε
∇y)ui(x,

x
ε
).

We then insert this Ansatz into the main equation (4.4) and identify the different pow-
ers of ε. This leads to a cascade of equations. In particular, the first three equations are
as follows for x ∈ D and y ∈ Y,

(ε−2) −∇y · a(y)∇yu0(x, y) = 0, (4.5)

(ε−1) −∇x · a(y)∇yu0(x, y)−∇y · a(y)(∇xu0(x, y) +∇yu1(x, y)) = 0, (4.6)

(ε0) −∇x · a(y)(∇xu0(x, y) +∇yu1(x, y)) (4.7)
−∇y · a(y)(∇xu1(x, y) +∇yu2(x, y)) = f (x). (4.8)

The study of the cascade of equations requires the study of the existence and unique-
ness of the periodic solution v of the following problem posed in Y:

−∇ · (a∇v) = F. (4.9)

with F ∈ L2(Y). This problem has a unique solution (up to an additive constant solu-
tion) in H1

per(Y) := {v ∈ H1
loc(R

d), v is Y-periodic} if and only if
ˆ

Y
F = 0 (4.10)

For a given and fixed x ∈ D, (4.5) has then a unique solution up to an additive constant
solution in H1

per(Y). This implies that u0 is independent of the slow scale y and we
simply write

u0(x,
x
ε
) = u0(x).

This means that the homogenized solution will not oscillate on the microscopic scale,
which is what we hoped for. Note that only the volume equations are written. The
boundary conditions are a major issue that we will discuss in Section 4.4.3.

4.2.2 Correctors
Since u0 is independent of y, by linearity

u1(x, y) =
d

∑
i=1

∂iu0(x)ϕi(y) (4.11)

where for 1 ≤ i ≤ d, ϕi is the unique solution (up to an additive constant) in H1
per(Y) of

−∇y · (a(y)ei +∇ϕi(y)) = 0. (4.12)
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(a) ϕ1 (b) ϕ2

Figure 4.2: Correctors of periodic homogenization associated with a(x) = 2 +
cos(4πx1) sin(2πx2) in the two directions

ϕi is called the corrector or the cell-problem solution and is a fundamental quantity in
homogenization. We recall that by periodicity,

´
Y ∇y · (a(y)ei)dy = 0, which ensures

the well-posedness of (4.12). Simulations of the correctors are plotted on Figure 4.2 for
a coefficient as chosen on Figure 4.1.

Remark 4.2.1. Usually the constant is fixed by a 0-mean value condition on Y i.e.ˆ
Y

ϕ = 0.

4.2.3 Effective tensor

The last equation (4.8) gives the homogenized equation. For a given x ∈ D, a solu-
tion u2(x, ·) of (4.8) exists if and only if (4.10) is satisfied i.e.ˆ

Y
∇x · a(y)∇xu0(x) +∇y · a(y)∇xu1(x, y) +∇x · a(y)∇yu1(x, y) + f (x)dy = 0. (4.13)

We recall that for periodic functions g,ˆ
Y
∇g(y)dy = 0.

The condition (4.13) of the well-posedness of y 7→ u2(x, y) can thus be rewritten for
x ∈ D as:

−∇ · a⋆∇u0(x) = f (x), (4.14)

where for 1 ≤ i ≤ d,

a⋆ei :=
ˆ

Y
a(y)(ei +∇ϕi(y))dy. (4.15)
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(a) uε with ε = 1/2 and f = 1 (b) uε(x) with ε = 1/5 and f = 1

(c) uε with ε = 1/10 and f = 1 (d) Homogenized solution u0

Figure 4.3: Illustration of the homogenization process - Solutions uε of (4.4) for
several values of ε (with a given in Figure 4.2) and limiting solution u0.

This is the homogenized equation. So far, we have derived a formal equation for u0. The
numerical simulations of Figure 4.3 seems to validate the convergence of uε towards u0
in the particular case of a periodic coefficient chosen as in Figure 4.1. In fact, the formal
expansion can be justified and is the topic of the next Section 4.2.4.

4.2.4 Energy method via oscillating test functions
The justification of the convergence between uε and u0 is more complex. The idea is

to study the convergence of the variational formulation:
ˆ

D
aε∇uε · ∇v =

ˆ
D

f v (4.16)

for v ∈ H1(D). By weak compactness, up to a subsequence, aε∇uε converges weakly
in L2(D) towards some F⋆. By uniqueness of u0, it remains to show that F⋆ = a⋆∇u0
to obtain the convergence of uε to u0. This is done by the method of the oscillating
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test function introduced by Tartar and Murat (see [125, 126]). The idea is to choose
ε-dependent test functions v that converge weakly in H1

0(D) allowing to characterize
F⋆. However, proceeding like this requires to deal with the limit of the product of
two weakly converging functions. Two methods are usually used to deal with this
limit: the two-scale convergence [127] (Allaire) and the compensated compactness [125, 126]
(Tartar and Murat). We recall here the two key theorems to obtain the H1

0(D)-weak
convergence of uε towards u0.

Two-scale convergence

For periodic functions, Gregoire Allaire introduced in [127] the notion of two-scale
convergence that we recall here.

Theorem 5: Two-scale convergence ([127, Theorem 0.1])

Let vε be a bounded sequence in L2(D). There exists a subsequence (still denoted
vε) and a function v0 ∈ L2(D × Y) such that

lim
ε→0

ˆ
D

vε(x)ψ(x,
x
ε
)dx =

ˆ
D

ˆ
Y

v0(x, y)ψ(x, y)dx dy (4.17)

for any smooth ψ periodic in Y. vε is said to two-scale converge to v0(x, y).

Compensated compactness

Another technique is to use the famous div-curl Lemma.

Lemma 6: div-curl Lemma

Let un
L2(D)−−−⇀ u and vn

L2(D)−−−⇀ v. Further assume ∇ · un and ∇× vn compact in
H−1(D), then

unvn
D′(D)−−−→ uv.

Using one of these two methods, it can be shown that:
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Theorem 7: Periodic homogenization theorem

The unique solution uε in H1
0(D) of:{
−∇ · aε∇uε = f in D,
uε = 0 on ∂D

converges weakly in H1
0(D) towards u0 the solution in H1

0(D) of:{
−∇ · a⋆∇u0 = f in D,
u0 = 0 on ∂D

and a⋆ is defined by (4.15).

We will not go deeper into the details of the proof which can be found in [96] for
the method of compensated compactness or in [127], where the two-scale convergence
is used.
Note that the homogenized matrix a⋆ is independent of f , and can be computed by
solving d corrector problems posed on a unit cell. The numerical computation of u only
involves macroscopic quantities, and can be done on the macroscopic scale. Conse-
quently, the limiting quantities are much cheaper to compute than the solution uε at a
given small ε.
The error ∥uε − u∥L2(D) can be quantified by looking at the equation verified by this
error term. This is discussed in Section 4.4. To gain in precision and upgrade the con-
vergence to a strong H1 convergence, one can consider the enriched expansion

wε(x) = u(x) + εu1(x,
x
ε
).

It can be shown, when u0 ∈ H2(D) i.e. for D regular enough, that uε − wε
H1(D)−−−→
ε→0

0

(see e.g [96, 127] for more details). This justifies the formal expansion of Section 4.2.1.
Quantitative error estimates can also be obtained (see Section 4.4) but boundary effects
must be taken in account (see [128, 129]). This phenomenon is discussed in Section 4.4.3.

4.3 Random setting

For the homogenization process to happen, some sort of disorder averaging must
take place. In the periodic setting, this was done by an averaging over the periodicity
cell. In random media, an ensemble average is done. In the late 1970s, it was found by
Papanicolaou and Varadhan [130] and by Kozlov [131] that a stationary coefficient aε

with ergodic properties is the perfect framework for homogenization in random media.
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The medium is characterized by the coefficient field aε modeled as a random process
on a probability space (Ω,F , P). We assume that for x ∈ D, ϖ ∈ Ω and ε > 0,

aε(x, ϖ) := a(
x
ε

, ϖ).

where a is uniformly elliptic i.e. there exists 0 < α < β such that for almost every
ϖ ∈ Ω, for all x ∈ D and for all ξ ∈ Rd,

α|ξ|2 ≤ |a(x, ϖ)ξ · ξ| and |a(x, ϖ)ξ| ≤ β|ξ|. (4.18)

In particular, α, β are independent of the realization ϖ. Furthermore, a is supposed to
be stationary and ergodic. These definitions are recalled here.

Definition 8: Stationarity

Let (τx)x∈Rd be an action of the group (Rd,+) on (Ω,F ) that preserves P, i.e. we
equip (Ω,F ) with (τx)x∈Rd that verifies:

- the map τ :

{
Rd × Ω → Ω

(x, ϖ) 7→ τxϖ
is measurable,

- ∀x, y ∈ Rd, τx+y = τx ◦ τy,

- for all x ∈ Rd, τx preserves P, i.e.

∀A ∈ F , P(τx A) = P(A).

A process f : (Rd × Ω) 7→ Rp is said to be stationary for the action τ if for all
x, y ∈ Rd, and ϖ ∈ Ω

f (x + y, ϖ) = f (x, τyϖ).

Definition 9: Ergodicity

Let (τx)x∈Rd be an action of the group (Rd,+) on (Ω,F ) that preserves P. The
action τ is said to be ergodic if for any τ-invariant event has probability 0 or 1,
that is,

∀A ∈ F , (∀x ∈ Rd, τ−1
x A = A) =⇒ (P(A) ∈ {0, 1}). (4.19)

Remark 4.3.1. The action (τx)x can also be defined on the group (Zd,+). This is the case for
conductivity models, for example.

Intuitively, the stationary assumption ensures a spatial independence of the law of
the coefficient. In particular, the expectation of a stationary coefficient is independent
of the x-variable. Thus, the homogenized coefficient will also be independent of the
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x-variable. Ergodicity is better understood via the ergodic Theorem below, which is a
consequence of Birkhoff’s ergodic Theorem. More information about ergodic theorems
can be found in [132, 133].

Theorem 10: Ergodic theorem

Let f ∈ L1(Ω, L1
loc(R

d)) be a stationary process for the action τ. Assume that τ is
ergodic. Then, almost surely and in L1(Ω), for all x ∈ Rd,

1
|BR|

ˆ
BR

f (x + y)dy −−−→
R→∞

E[ f ] (4.20)

where BR is the ball of radius R > 0 centered in the origin.

Ergodicity is a property that encodes the decorrelation of the process on large do-
mains. In particular, statistical average can be recovered with spatial averages. In a
sense, the ergodic theorem can be seen as a law of large numbers, extending the case of
identically distributed independent (i.i.d.) random variables. As a consequence of the
previous Theorem 10, we have the following lemma:

Lemma 11: Ergodic theorem in L2
loc(R

d)

Let f ∈ L1(Ω, L2
loc(R

d)) be a stationary process for the action τ. Assume that τ is
ergodic. Then, almost surely and in L1(Ω), for all x ∈ Rd and,

f (
·
ε
)

L2
loc(R

d)
−−−−⇀

ε→0
E[ f ]. (4.21)

The weak convergence of f ( ·ε ) also holds in Lp
loc(R

d) for any 1 < p < ∞.

Remark 4.3.2. The periodic framework can be seen as a special case of the stationary and ergodic
framework. A Y-periodic coefficient b is stationary for the translation on Zd, and

1
|YR|

ˆ
RY

b(x + y)dy =
1
|Y|

ˆ
Y

b(y)dy

for R ∈ N∗, which corresponds to the ergodic theorem.

Three typical examples of processes satisfying the stationary and ergodic assump-
tions are presented and illustrated here (see Figure 4.4). First, one can consider an iden-
tically distributed independent Bernoulli distribution on each cell of the checkerboard.
The coefficient a for the checkerboard is given by

a(x) =

{
a0 if x is inside a black cells,
a1 if x is inside a white cells,

(4.22)
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where 0 < a0, a1. The construction of the coefficient can be easily complexified by
choosing another law for each cell, or by correlating the value of the cells with their
neighbors.

Secondly, the coefficient a can also be constructed via a homogeneous Poisson point
process. We first recall here the definition of a homogeneous Poisson point process.

Definition 12: Homogeneous Poisson point process

X is a Poisson point process on K ⊂ Rd with intensity λ if:

• The number of points N(K) sampled with X that falls inside of K are Poisson
distributed with mean λ, where a random variable N follows the Poisson
distribution if

∀n ∈ N, P(N = n) =
λn

n!
exp(−n).

• For k disjoint bounded Borel sets A1, ...Ak of K, the random variables
N(A1), ..., N(Ak) are independent.

Typically, an homogeneous Poisson point process is sampled by drawing first the
number of points N that lie inside the domain K ⊂ Rd from a Poisson distribution
with parameter λ and then by uniformly placing them inside K. This gives a set
S := {xi}i=1...N of points where xi is the i-th point.

We then construct S0 := {x ∈ Rd |dist(x, S) ≤ 1} which corresponds to the union
of the balls of radius 1 centered in S. The coefficient a is then defined as:

a(x) =

{
a0 if x ∈ S0,
a1 if x /∈ S0.

(4.23)

Once more, the process can be complexified by considering balls of random radii or by
considering different values for a in each ball.
In this thesis we will consider a Matèrn point process (see [134, Section 6.5.2]) which
is constructed from a Poisson point process and is also stationary and ergodic. It is a
thinning of the previous Poisson point process whenever two points are too close from
one another. We describe here the thinning process which can also be found in [134].
We are given a intensity λ and a minimal distance r0. Consider a Poisson point process
with intensity λ which engenders the N points S = {xi}i=1....N in a domain K ⊂ Rd.
Assign randomly a score mi ∈ [0, 1] to each of the N balls. Then the point xi is retained
if and only if xi /∈ B(xj, r0) for all j ̸= i such that mj < mi. This condition is fulfilled
whenever no point with a lower score is in the neighborhood of xi. We end up with a
set of M ≤ N points and the corresponding balls SM ⊆ S0 that lie at a distance of r0
from one another.
This construction corresponds to a (type II) Matèrn point process. It can be shown [134,
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Chapter 6.5.2] that the probability to retain the point xi with score m(xi) is:

r(m(xi)) = exp(−λVd(r0)m(xi)),

where Vd(r0) is the volume of the ball of radius r0 in dimension d. The final intensity
of the process is then

λM := pλ

where p is the Palm retention probability,

p :=
ˆ 1

0
r(t)dt =

1 − exp(−λVd(r0))

λVd(r0)
.

The coefficient a is then defined by:

a(x) =

{
a0 if x ∈ SM,
a1 if x /∈ SM.

(4.24)

The process can also be complexified by considering a random minimal distance as-
signed to each on the point x ∈ S or by considering different values for a in each ball.
We illustrate the three processes on Figure 4.4.

4.3.1 Formal expansion

For a given ϖ ∈ Ω, we are looking for the solution uε ∈ H1
0(D) of:{

−∇ · aε(x)∇uε(x) = f (x) in D,
uε = 0 on ∂D.

(4.25)

As in the periodic framework, we define the microscopic scale y = x
ε for x ∈ D. We

assume the formal expansion:

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + ...,

where the functions ui, i ≥ 0 are assumed to be stationary processes for the action
τ with respect to their second variable. The formal expansion will allow to find the
equation on the homogenized solution u0. However, we insist on the fact that this is
only formal. In fact, the terms ui, i ≥ 0 are not always stationary as we explain in the
next Section 4.3.2. We also emphasize that the microscopic variable y lives in the whole
space Rd and that the study cannot be restrained to a bounded domain. This makes
a great difference with the periodic homogenization both in the theoretical and the
numerical studies of the homogenization process.

The cascade of equations (4.5), (4.6) and (4.8) remains unchanged. However, it is
necessary to find the right functional framework to look for the solutions of (4.5) and
for the corrector to conclude on the existence and uniqueness of u0 and the corrector
and the independence of u0 on the microscopic scale y ∈ Rd.
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(a) Coefficient a constructed from a
random checkerboard on the grid
[−L, L]2 with L = 10

(b) Coefficient a constructed from a
random checkerboard on the grid
[−L, L]2 with L = 50

(c) Coefficient a constructed from a
Poisson point process on the grid
[−L, L]2 with L = 50 and λ = 1000

(d) Coefficient a constructed from a
Matèrn process on the grid [−L, L]2

with L = 50 and λ = 1000

Figure 4.4: Example of coefficients constructed from a random checkerboard, a
Poisson point process and a Matèrn process.
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4.3.2 Correctors
Let us assume for now that u0 is independent of the microscopic scale y and we

write u0(x, y) = u0(x). This assumption will be justified at the end of this section.
By linearity, u1 is then defined as

u1(x, y) =
d

∑
i=1

∂iu0ϕi(y)

where for 1 ≤ i ≤ d, ϕi is solution of:

−∇y · (a(·)ei +∇ϕi(·)) = 0 in Rd (4.26)

The existence and uniqueness (up to a random constant) of (ϕi)i=1...d can be proved
via several methods. The existence can be proven via a Weyl’s decomposition [124,
Section 7.2]. We define

Vpot(Ω) := { f ∈ L2(Ω) | E[ f ] = 0, f is potential in the sense of (4.27) },

where a potential process f satisfies for all i, j = 1...d, g ∈ C∞
c (Rd) and a.e. ω ∈ Ω,

ˆ
Rd

(
f̃i

∂g
∂xj

− f̃ j
∂g
∂xi

)
= 0, (4.27)

where f̃ (·) := f (τ·(ω)). Note that f̃ ∈ L2
loc(R

d)d admits an almost sure representation
of the form

f̃ = ∇ϕ

for a ϕ ∈ H1
loc(R

d). The idea is then to prove the existence of the solution Ψi ∈ Vpot(Ω)

(a closed subset of L2(Ω)) of:

E[∇ · a(Ψi + ei)] = 0,

and use the representation
Ψ̃i = ∇ϕi

to define the corrector ϕi.
The existence of the corrector can also be proven by a regularization ap-
proach (see [119] or [135]). The idea is to consider a large parame-
ter T > 0 and consider the regularized corrector ϕi,T unique solution in
H := {a.s. v ∈ H1

loc(R
d)| v stationary, E[|v|2 + |∇v|2] < ∞} of:

−∇ · a∇ϕi,T +
1
T

ϕi,T = ∇ · aei. (4.28)

The corrector ϕi is then constructed as the unique function (up to a random constant)
in H1

loc(R
d) such that

∇ϕi,T
L−−−⇀

T→∞
∇ϕi,
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where L := {a.s. v ∈ L2
loc(R

d), v stationary, E[|v|2] < ∞}.
For a given i = 1...d, the uniqueness is proven by showing that ϕi has sublinear growth
and adding an anchoring condition. The sublinear growth is proven via the following:

Lemma 13: Sublinearity

Let u ∈ L1(Ω, H1
loc(R

d) be a process such that ∇u is stationary and E[∇u] = 0.
Then u has a sublinear growth in the sense that almost surely,

lim sup
R→∞

1
R2 (

1
|BR|

ˆ
BR

|u|2) = 0. (4.29)

The sublinear growth is a "condition at infinity" which eliminates any linear (or
superlinear) solution to (4.26), so that the corrector can be defined up to an additive
constant. In the periodic framework, the sublinear growth is ensured by the Poincaré
inequality on the periodic cell Y.
We recall here the proper definition of the corrector (ϕi)i=1...d given in [136, Lemma 1].

Theorem 14: Existence of the corrector [136, Lemma 1]

There exists a unique process (ϕi)i=1...d (up to a random constant) such that

1. almost surely (ϕi)i=1...d ∈ H1
loc(R

d) is solution in D′(Rd) of:

−∇y · (a(·)ei +∇ϕi(·)) = 0 in Rd. (4.30)

2. ∇ϕi is stationary, has bounded second moments E[|∇ϕ|2] < ∞ and has
vanishing expectation.

Huge differences with the corrector of periodic homogenization can be pointed
out. First of all, the corrector is no longer bounded in L∞. In particular, this has con-
sequences on the derivation of quantitative results (see Section 4.4 for more details).
Secondly, it is shown (see e.g. [119]) that no stationary corrector ϕi (and thus u1) can
be constructed if d < 3, but recall that the gradient of the corrector ∇ϕi is stationary.
Building on this, Yu Gu shows in [137] that the corrector of order n can be constructed
as stationary when d ≥ 2n + 1 and its gradient is stationary when d ≥ 2n − 1 which
severely restricts the order of the two-scale expansion, as the corrector u2 can only
be constructed when d ≥ 3. This is a major difference with periodic homogenization
where the correctors exist at every order (as long as the regularity on the coefficients
allows their well-definition).
Following the proof of the well-definition of the corrector, it can be shown that the
equation (4.5) has a unique solution (up to an additive constant) which justifies that u0
is independent of the fast scale, and the definition of u1.
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4.3.3 Effective tensor
Still formally, for a fixed x ∈ D, to guarantee the potential existence of a solution

u2(x, ·) to (4.8), the source term must satisfy a 0-expectation condition. This leads to

−∇x · a⋆∇u0(x)− E[∇y · a(y)∇xu1(x, y)] = f (x), (4.31)

where the homogenized matrix a⋆ reads for 1 ≤ i ≤ d:

a⋆ei := E[a(ei +∇ϕi)]. (4.32)

As we assumed that u1(x, ·) is stationary,

E[∇y · a(y)∇xu1(x, y)] = 0,

where we used that for g stationary, E[∇ · g] = 0. u0 is then the unique solution in
H1

0(D) of: {
−∇ · (a⋆∇u0(x)) = f (x) in D,
u0 = 0 on ∂D,

(4.33)

The rigorous convergence uε
H1

0(D)
−−−⇀ u0 is proven for example in [124]. The proof relies

on the arguments of Tartar, developed in the periodic setting. The chosen oscillating
test functions and their limit are obtained by adjusting some of the arguments of the
periodic setting and in particular, using the sublinearity and Birkhoff’s ergodic theo-
rem.
As in the periodic case, the computation of a⋆ requires the computation of the correc-
tors ϕi. However, in the random regime, ϕi is the solution in an infinite domain. An
artifical boundary condition must be added to compute the corrector. Numerical exper-
iments [138, 139] have shown that the best approximations are obtained with a periodic
boundary condition posed on a sufficiently large box [140, 141]. For a defined in (4.22),
we simulate and plot on Figure 4.5 the correctors computed with periodic conditions
on a large box and illustrate the homogenization process on Figure 4.6

4.4 Towards quantitative homogenization

So far, we only discussed the qualitative convergence of uε towards u0. However,

by the Rellich theorem, there exists a subsequence such that uε
L2(D)−−−→ u0. This naturally

raises the question of quantifying the error ∥uε − u0∥L2(D). By the formal two scale
expansion, one expects that

∥uε − u0∥L2(D) = O(ε). (4.34)

This can be made rigorous but the proof is complex even in the periodic case and
requires first to estimate the two-scale error ∥uε − u0 − εu1∥H1(D) (see [96, 127, 119] for
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(a) ϕ1 for a defined by (4.22) (b) ϕ2 for a defined by (4.22)
in the x1 direction in the x2 direction

Figure 4.5: Correctors of stochastic homogenization for a defined by (4.22) via a
random checkerboard with periodic boundary conditions computed on the grid
[−L, L]2 with L = 100.

more details). We recall that u1(x, x
ε ) = ∑d

i=1 ∂iu0(x)ϕi(
x
ε ). The H1-regularity of u1 is

achieved by considering a domain D and a source term f sufficiently regular so that
u0 ∈ H2(D). We justify in the following sections the result (4.34).

4.4.1 Error estimates

We start with the study of the problem verified by

zε(·) := uε(·)− u0(·)− εu1(·,
·
ε
). (4.35)

To do so, we consider the flux corrector σ. The flux corrector is a classical quantity in
periodic homogenization (see e.g. [124]) and was introduced for stochastic homoge-
nization in [142]. We recall here its definition in the stochastic homogenization frame-
work.
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(a) uε with ε = 1/5 and f = 1 (b) uε with ε = 1/10 and f = 1

(c) uε with ε = 1/100 and f = 1 (d) Homogenized solution u0

Figure 4.6: Illustration of the homogenization process - Solutions uε of (4.25) for
several values of ε (with a defined by (4.22)) and limiting solution u0.
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Theorem 15: Existence of the flux corrector [136, Lemma 1]

Let σ := (σi,jm)i,j,m∈[[1,d]] be the unique tensor field such that for all i, j, m ∈ [[1, d]],
a.s. σi,jm ∈ H1

loc(R
d) is the solution in D′(Rd) of:

−∆σi,jm(y) = ∂jqim(y)− ∂mqij(y), (4.36)

with
qi := a(ei +∇ϕi)− ahomei, (4.37)

and is anchored with the condition:

1
|Y|

ˆ
Y

σi,jm = 0. (4.38)

Furthermore, σi is skew-symmetric and verifies a.s.

∇ · σi = qi, (4.39)

where for i, j ∈ [[1, d]],

(∇ · σi)j :=
d

∑
m=1

∂mσi,jm. (4.40)

Furthermore, ∇σi,jm is stationary, has finite second moments and vanishing ex-
pectation.

The two scale error zε then satisfies in D′(D),

−∇ · aε∇zε = −
d

∑
i=1

∇ · (aεei − a⋆(ei +∇ϕi)∂iu0 +∇ · aεϕi∇(∂iu0)

= ε
d

∑
i=1

∇ · ((aεϕi − σi)∇(∂iu0)).

(4.41)

We are willingly avoiding the question of the boundary condition as it poses severe
problems in the quantitative estimations.
In the periodic setting, the estimation of the two-scale error amounts to the estimation
of
∥∥ϕ( ·ε )

∥∥
L2(D) and

∥∥σ( ·ε )
∥∥

L2(D). Thanks to the periodicity, the corrector and the flux
corrector are uniformly bounded in L∞(D) which allows to conclude that in view of
(4.41) the bulk zε is typically of order ε.
In the stochastic setting, the previous arguments do not apply and the analysis is more
delicate. The ergodic assumption is a purely qualitative description of the decorrela-
tion of a. Though, the estimation of

∥∥ϕ( ·ε )
∥∥

L2(D) depends on the correlation of the pro-
cess a. Therefore, without any further quantitative ergodic assumptions on the station-
ary process a, the norm of these two correctors cannot be estimated. In the following
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Section 4.4.2, we present different quantitative stochastic homogenization assumptions
and the associated corrector bounds.

4.4.2 Quantitative ergodicity assumptions

We recall that the correlation function of a is defined for x ∈ Rd by

Ca(x) = Cov[a(·), a(·+ x)].

Intuitively, quantifying the decorrelation properties of a amounts to describe "how
fast" Ca decreases. A first common assumption is to consider a strongly linear mixing
hypothesis for a.

Linear mixing assumption

Two typical linear mixing assumptions can be made for a - finite range dependence
or α-mixing. These two assumptions are presented here.
First, for all Borel subsets U ⊂ Rd, we define FU as the σ-algebra generated by a(x)
for x ∈ U . One simple assumption to quantify the decorrelation of a is a finite range of
dependence:

Definition 16: Finite range of dependence

The process a is said to be of l-range of dependence if there exists l > 0 such that
for all U ,V ⊂ Rd, we have:

dist(U ,V) ≥ l =⇒ FU and FV are independent. (4.42)

In this case, the covariance function Ca has a compact support. The random checker-
board with i.i.d. cells typically satisfies the a 1-range of dependence, as the color of two
cells of the board are totally independent.
This assumption is used in [143, 144] and in the book [119] by Scott Armstrong, Tuomo
Kuusi, and Jean-Christope Mourrat to show quantitative results on the correctors and
on the two-scale expansion. Both teams have independently proven optimal results in
this setting.
To describe the correlation properties of some complex processes that exhibit correla-
tion at any finite distance, one can use a α-mixing hypothesis.

Definition 17: α-mixing hypothesis

The process a is said to be α-mixing if there exists C > 0 and α > 0 such that for
all U ,V ⊂ Rd, A ∈ FU and B ∈ FV , we have

|P(A ∩ B)− P(A)P(B)| ≤ C(1 + dist(U ,V))−α (4.43)
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The covariance function Ca(x) is then assumed to decrease like 1
(1+x)α . Several be-

haviors can be observed whether α > d or d ≤ α. Indeed, in the case where α > d,
the covariance function is integrable. The quantification of the limiting distribution of
uε − u0 in a one-dimensional problem was studied for both integrable (short-range cor-
relation) in [145] and non-integrable (long-range correlation) covariance functions in
[146].
There exists other mixing assumptions (β-mixing, γ-mixing) described in [133] to which
we refer for more information about mixing-conditions.

Non-linear mixing assumption - multiscale variance inequality

The corrector depends non-linearly on the coefficient a. The previous α-mixing as-
sumption does not allow to link the properties of the correctors ϕi, i = 1..d to those
of a and to obtain bounds for

∥∥ϕi(
·
ε )
∥∥

L2(D. For correlated processes a, we then rely on
functional inequalities that bound the variance of any F(a) in terms of its functional
derivative with respect to a. We first define the functional derivative ∂fct

a,B(x) which des-
ignates either:

• ∂fct
a,B(x)F(a) :=

´
B(x) |

∂F(a)
∂a | with ∂F(a)

∂a the Malliavin derivative of F (see [147] for
more information on the Malliavin calculus) when the field a is a Gaussian field
with integrable covariance.

or

• ∂fct
a,B(x) := ∂osc

a,B(x), the oscillatory derivative:

∂osc
a,B(x)F(a) := sup ess

{
F(a′)|a′|

Rd\B(x)
= a|

Rd\B(x)

}
− inf ess

{
F(a′)|a′|

Rd\B(x)
= a|

Rd\B(x)

}
.

Here, B(x) denotes the unit ball centered at x. The simplest functional inequality is the
following Poincaré or spectral gap inequality:

Definition 18: Poincaré inequality

We say that a verifies a Poincaré inequality if there exists C > 0 such that for all
σ(a)-measurable square integrable random variable F(a),

Var[F(a)] ≤ CE

[ˆ
Rd

∣∣∣∂fct
a,B(x)F(a)

∣∣∣2 dx
]

. (4.44)

Another common functional inequality is the following logarithmic Sobolev in-
equality which reads as:
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Definition 19: Logarithmic Sobolev inequality

We say that a verifies a logarithmic Sobolev inequality if there exists C > 0 such
that for all σ(a)-measurable square integrable random variable F(a),

Ent[F(a)2] := E

[
F(a)2 log

(
F(a)2

E[F(a)]2

)]
≤ CE

[ˆ
Rd

∣∣∣∂fct
a,B(x)F(a)

∣∣∣2 dx
]

.
(4.45)

The idea behind the functional inequalities is to see how fast the random variable
F(a) oscillates with respect to the randomness. That is, for two realizations a and a′ that
are "close" in the sense they only differ locally around x, to understand how "close" F(a)
and F(a′) are. If they are close, then F is not very sensitive to a at x, and |∂fct

a,B(x)F(a)|
is small. The mathematical theory behind the Malliavin’s calculus requires more ad-
vanced probabilistic tools which are not presented here, but we refer to the books
[148, 147]. Unfortunately, this formalism is only applicable under strong hypothesis
on the structure of a (Gaussian with integrable covariance for the Malliavin’s deriva-
tive, product measure for the oscillatory derivative). That is why in [149], Antoine Glo-
ria and Mitia Duerinckx introduce multiscale functional inequalities, which are weighted
versions of the standard functional inequalities, but hold in a more general setting (see
[149, 150] for more details). Furthermore, in [150], the link between α-mixing properties
and spectral-gap inequalities is proven.
In this thesis, we consider a Matèrn point process to model the distribution of the het-
erogeneities. We recall the weighted multiscale variance inequality (see [149, Section 3])
verified by this process. Note that other common hardcore point processes such as ran-
dom parking also verify Hypothesis 20.

Hypothesis 20: Mixing hypothesis

There exists a non-increasing integrable weight function π : R+ → R+ such that
a verifies for all σ(a)-measurable square integrable random variable F(a),

Var [F(a)] ≤ E

[ˆ +∞

1

ˆ
Rd

(
∂osc

a,Bℓ(x)F(a)
)2

dxℓ−dπ(ℓ− 1)dℓ
]

, (4.46)
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where Bℓ(x) is the ball with radius ℓ ≥ 0 and center x ∈ Rd and the oscillation
∂osc

a,Bℓ(x)F(a) of F(a) with respect to S on Bℓ(x) is defined by:

∂osc
a,Bℓ(x)F(a) := sup ess

{
F(a′)|a′|

Rd\Bℓ(x)
= a|

Rd\Bℓ(x)

}
− inf ess

{
F(a′)|a′|

Rd\Bℓ(x)
= a|

Rd\Bℓ(x)

}
.

Remark 4.4.1. In view of [150, Proposition 1.3], if a verifies Hypothesis 20 then the covariance
function of Ca(x) satisfies

∀x ∈ Rd, |Ca(x)| ≤ C
ˆ ∞

max( 1
2 (|x|−2),0)

π(ℓ)dℓ, (4.47)

for some C > 0.

Proposition 21: [Matèrn process [149, Proposition 3.3]]

The Matèrn point process verifies (4.46) with the weight function π:

π(l) = Ce−
1
C l (4.48)

for some C > 0.

Antoine Gloria, Felix Otto and their collaborators also obtained quantitative results
on the corrector first in a discrete setting in [151, 152], by using a discrete version of the
spectral gap inequality of Definition 18. The results are then extended in the continuum
setting with the spectral gap inequality of Definition 18 [135] and for the weighted
multiscale functional inequalities [142].

Corrector bounds

Using quantitative ergodic assumptions, the L2-norm of the corrector can be esti-
mated. In particular, we recall here the result obtained in [142, Theorem 4] regarding
coefficients that satisfies Hypothesis 20 with a weight π with super-algebraic decay. We
will rely on these results in Part II to derive quantitative homogenization estimates for
our problem.
We define for any integrable function f and any domain D the notation

ffl
D f as

 
D

f :=
1
|D|

ˆ
D

f .
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Proposition 22: Corrector bounds [142, Theorem 4]

Assume that a verifies the mixing Hypothesis 20 with weight π with super-
algebraic decay.

(a) (P − a.s. corrector bound):
There exists an a.s. finite (non-stationary) random field x 7→ C(x) such that
for all x ∈ Rd, ( 

□x

|ϕ|2 + |σ|2
) 1

2

≤ C(x)µd(|x|), (4.49)

where for all y ∈ R+,

µd(y) =


√

y if d = 1,

| log(2 + y)| 1
2 if d = 2,

1 if d = 3.

(4.50)

and □x denotes the unit square centered at x

□x := [−1
2
+ x,

1
2
+ x]d. (4.51)

(b) (Corrector bound in average):
Furthermore, for all y ∈ Rd, C(y) satisfies the following stochastic integra-
bility

E[exp(
1
C
C(y)γ)] ≤ 2 (4.52)

for some constant C > 0 depending on d, α, β and exponent γ > 0 depend-
ing on d and the exponential decay rate of π.

(c) (Mean-value property):
There exists a stationary 1

8 -Lipschitz continuous random field r∗ > 1 (the
so-called minimal radius) satisfying (4.52) such that for all ℓ ≥ 1

ˆ
Bℓ(x)

|∇ϕ|2 ≲ (ℓ+ r∗(x))d. (4.53)

Remark 4.4.2. When a is shows finite range dependence (4.49) also holds [119]. When π(ℓ) ∼
1

(1+ℓ)α , the bounds depends on the exponent α and on the dimension d (see [142, Theorem 2].

Fluctuations

In the random setting, it is also interesting to quantify the fluctuations of the solution
around its limiting process. Typically, fluctuations can be characterized either by the
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stronger norm,
Fs = Var[∥uε − u0∥L2(D)],

or the weaker norm

Fw(g) = Var
[ˆ

D
(uε(x)− u0(x))g(x)dx

]
,

for g ∈ C∞
c (D). One can also be interested in the fluctuations of the gradient or the flux

in a weak norm, as uε converges weakly towards u0 in H1
0(D) and the flux converges

weakly in L2(D). The quantification of Fs has already been presented in Section 4.4.2.
The problem of the quantification of Fw(g) is presented and treated in the series of work
[18, 19, 153]. As expected, the results depend on the quantitative ergodic assumptions
on a. The authors identify in [18] a quantity the so-called homogenization commutator
which allows to recover both the fluctuations of the gradient and the flux. This quantity
is the vector field Ξ defined for i = [[1, N]] as:

Ξi := (a − a⋆)(∇ϕ + ei). (4.54)

In particular, it is shown in [19] that for all g ∈ C∞
c (Rd)d.

Var

[
ε−

d
2

ˆ
Rd
(aε − a⋆)∇uε · g −

d

∑
i=1

Ξi(
·
ε
)∂iu0 · g

] 1
2

≤ Cεµd(
1
ε
), (4.55)

for some C > 0. We will be using this result in Part II to derive a high-order homoge-
nization result for our problem. Note that in [19], results are also obtained for Gaussian
processes a with non-integrable covariance. The characterization of the fluctuations can
also be used to establish the equivalent of a central limit theorem for uε − u0 which is
done in [146] in a 1-dimensional case. In [146] for a α-mixing process a (for α < 1), the
limiting distribution of uε−u0

ε
α
2

is obtained by studying the fluctuations of 1
a −

1
a⋆ . We also

mention the works by Bal and his coauthors [154, 155], where the fluctuations of uε−u0
ε

are characterized when uε is the solution of a linear [154] and semilinear [155] elliptic
equation perturbed by a random potential. In [156], the scaling limit of the commutator
is studied for both weakly and strongly correlated Gaussian coefficients.

Error estimates on the two-scale error in the bulk

We present here quantitative results on the two-scale error in the bulk both for the
periodic and stochastic settings.

It holds in the periodic homogenization framework that
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Theorem 23: [128, Theorem 2.3]

Assume that u0 ∈ W3,∞(D) for any subset K ⊂⊂ D compactly embedded in D,
there exists a constant C, depending on K but not on ε, such that∥∥∥uε(·)− u0(·)− εu1(·,

·
ε
)
∥∥∥

H1(K)
≲ Cε. (4.56)

In the stochastic homogenization framework, consider that D = Rd and that f has
a compact support. In this setting, it is proven under finite range dependency that:

Theorem 24: [119, Theorem 6.3]

Assume that u0 ∈ W2,∞(D), it holds

E

[∥∥∥∇ · aε(·)∇(uε(·)− u0(·)− εu1(·,
·
ε
))
∥∥∥2

H−1(D)

] 1
2

≲ εµd(
1
ε
) ∥u0∥W2,∞(D) .

(4.57)

Remark 4.4.3. When u0 is only in W1+α,p(D) for α > 0 and p > 2, error estimates can still
be obtained but the two-scale error is deteriorated (see [119, Chapter 6.2]).

Remark 4.4.4. The result of Theorem 24 also holds when a is a correlated field that satisfies a
(weighted) spectral gap inequality [142, 157].

We expect zε to converge in H1(D). However, in the bounded domain D, zε does
not satisfy a homogeneous Dirichlet boundary condition.
To compensate for this mismatch, a boundary layer corrector must be added. This
deteriorates the two-scale error and this is the topic of the next Section 4.4.3.

4.4.3 Boundary layers

It can be shown [128] that ∥zε∥H1(D) = O(ε
1
2 ):

Proposition 25: Two-scale error with Dirichlet boundary condition (periodic ho-
mogenization) [128]

Under the previous regularity assumptions on u0, the two-scale error for periodic
homogenization with Dirichlet boundary conditions satisfies:∥∥∥uε(·)− u0(·)− εu1(·,

·
ε
)
∥∥∥

H1(D)
≲ ε1/2 ∥u0∥W2,∞(D) . (4.58)

and
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Proposition 26: Two-scale error with Dirichlet boundary (stochastic homogeniza-
tion) [119, Chapter 6.3]

Under finite range assumptions on a and the previous W2,∞(D) regularity as-
sumption on u0, the two-scale error for stochastic homogenization with Dirichlet
boundary conditions satisfies:

E

[∥∥∥uε(·)− u0(·)− εu1(·,
·
ε
)
∥∥∥2

H1(D)

] 1
2

≲ ε1/2µd(
1
ε
)1/2 ∥u0∥W2,∞(D) . (4.59)

The convergence in O(ε
1
2 ) rather than O(ε) is due to so-called boundary layer tail

(see [128]). Note that this phenomenon also occurs for Neumann or Robin boundary
conditions.
To estimate the H1-norm of the two-scale error ∥zε∥H1(D), a boundary layer corrector
θε is added to zε to study a simpler problem with homogeneous boundary condition.
It was introduced for periodic homogenization by Allaire in [128] to study the two-
scale error for the problem (4.4). This boundary layer corrector θε is then defined as the
unique solution in H1(D) of:−∇ · (aε(·)∇θε(·)) = 0 in D,

θε(·) = u1(·,
·
ε
) on ∂D.

(4.60)

It is shown ([128] for periodic homogenization∥∥∥uε(·)− u0(·)− ε
(

u1(·,
·
ε
)− θε(·)

)∥∥∥
H1(D)

≲ ε ∥u0∥W2,∞(D) . (4.61)

Furthermore,
∥θε∥H1(D) ≲ ε−1/2 ∥u0∥W2,∞(D) , (4.62)

which allows to recover (4.58).

Remark 4.4.5. It was shown in [158] for Dirichlet boundary conditions and [159] for Neumann
boundary conditions that the regularity required on u0 is in fact only H2(D).

For stochastic homogenization and a with finite range dependence [119, Chap-
ter 6.3], it holds that

E

[∥∥∥uε(·)− u0(·)− ε
(

u1(·,
·
ε
)− θε(·)

)∥∥∥2

H1(D)

] 1
2

≲ εµd(
1
ε
) ∥u0∥W2,∞(D) . (4.63)

Furthermore,

E

[∥∥∥uε(·)− u0(·)− ε
(

u1(·,
·
ε
)− θε(·)

)∥∥∥2

H1(D)

] 1
2

≲ εµd(
1
ε
)1/2 ∥u0∥W2,∞(D) , (4.64)
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which allows to recover (4.59).
From a numerical point of view, this boundary layer is a real disaster. To obtain an error
in ε, it is necessary to compute θε which solves an oscillating equation with oscillating
boundary conditions. This problem is as costly as the initial problem. This explains
why there is active research on approximations of the boundary layer corrector.
In the periodic homogenization setting, (4.62) has been established in [128]. The bound-
ary layer must then be taken into account to build higher-order correctors, that approx-
imates uε ∈ H1(D). In particular, it requires to deeply understand the homogenization
of the boundary layer corrector problem, which strongly depends on the boundary of
the domain. The first results were obtain for polygonal domain with rational slopes
[160, 128]. For such problems, the homogenization process depends on the chosen sub-
sequence ε as discussed in [160]. Indeed, in the latter [160], it was noticed by Santosa
and Vogelius that the boundary corrector can have several limits. The phenomenon was
then proven by Moskow and Vogelius and in [158] and they furthermore characterized
the possible limits of the boundary correctors. In [161], Gérard-Varet and Masmoudi
consider the case of polygonal domain with irrational slopes under a diophantine con-
dition on the normals. The diophantine approximation measures how well an irrational
number can be approximated by a rational one. The expected convergence of O(ε) in
the interior of D is recovered. They extend their result in [162] to the case of uniformly
convex domain, although they obtain a deteriorated convergence rate. Finally, in [163],
the convergence for any irrational slope is considered and it is shown that in the very
general case, the homogenization convergence of the boundary layer corrector is arbi-
trarily slow.
The behavior of the limit of the eigenvalues of the homogenization problem (4.4) has
been studied in [158] for Dirichlet boundary conditions and [159] for Neumann bound-
ary conditions. The behavior of these eigenvalues also depends on the interaction
of the micro-structure at the boundary of the domain. In the stochastic homogeniza-
tion framework, homogenization results with boundaries have also been obtained for
Dirichlet or Neumann condition [119] (up to a factor µd(

1
ε )). Moreover in [164], quanti-

tative results for the two-scale expansion for the case of the interface problem between
two heterogeneous media problem are obtained and in [165] quantitative decay esti-
mates for the boundary layer corrector in stochastic homogenization in the case of a
half-space boundary has been obtained.
The boundary corrector has also been studied for wave propagation phenomena. In
particular, in [129], the construction of high order effective boundary conditions is pro-
posed for the Helmholtz equation in the case of a periodic domain with Dirichlet and
Neumann boundary conditions and the conditions are efficiently numerically imple-
mented.
In this thesis, we consider the scattering by a random domain with highly oscillating
acoustic properties, i.e. the solution of (3.11) where the coefficients aε and nε are given
by (3.12). A similar problem but in the periodic setting was studied in the series of
work [166, 167, 168] by Shari Moskow and Fioralba Cakoni, in which they consider a
transmission problem in a highly oscillating periodic medium. More precisely, they the
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study the unique solution uε ∈ H1(D)× H1
loc(R

d \ D) of:

−∇ ·
(
aε(x)∇u+

ε (x)
)
− k2nε(x)u+

ε (x) = 0 for x ∈ D,

− ∆uε(x)− − k2u−
ε (x) = 0 for x ∈ Rd \ D,

aε∇u+
ε · ν −∇u−

ε · ν = f on ∂D,

u+
ε − u−

ε = g on ∂D,

lim
|x|→+∞

|x| d−1
2

(
∂(uε − ui)

∂|x| (x)− ik (u−
ε − ui)(x)

)
= 0

(4.65)

where aε and nε are periodic coefficients satisfying the assumptions of Section 4.2. The
superscript + and − designate the solution in the interior of the exterior of D respec-
tively. f ∈ H− 1

2 (∂D) and g ∈ H
1
2 (∂D) are the sources terms. uε converge weakly in

H1(D)× H1
loc(R

d \ D) towards u0 which is unique the solution of:

−∇ ·
(
a⋆(x)∇+u0(x)

)
− k2n⋆(x)u+

0 (x) = 0 for x ∈ D,

− ∆u−
0 (x)− k2u−

0 (x) = 0 for x ∈ Rd \ D,

a⋆∇u+
0 · ν −∇u−

0 · ν = f on ∂D,

u+
0 − u−

0 = g on ∂D,

lim
|x|→+∞

|x| d−1
2

(
∂(u0 − ui)

∂|x| (x)− ik (u−
0 − ui)(x)

)
= 0

(4.66)

with n⋆ =
´

Y n(y)dy and a⋆ is defined in (4.15). To study the two-scale error, they first
prove (under regularity assumptions on u0) a two-scale expansion with a boundary
layer corrector which reads as:

∥uε − u0 − εu1,ε − εθε∥H1(D) ≤ Cε ∥u0∥W2,∞(D) , (4.67)

where u1,ε(x) :=
d

∑
i=1

ϕi(x)∂iu0(x) with ϕ the corrector of (4.12) and

θε ∈ H1(D)× H1(Rd \ D) is the boundary corrector which satisfies a problem
similar to (4.65), but with oscillating boundary data f and g. The problem then
amounts to the study of θε in order to derive quantitative results on the two-scale
error. They also derive an order 2 asymptotic expansion and study the problem for
polygonal domains so that they can obtain an asymptotic θ⋆ of θε. In this thesis, we
prove a similar result to (4.67) in the random setting and we quantify the two-scale
error on the scattered field in Rd \ D. To that aim, an approach similar to the one of
[167] is considered but with several differences. Indeed, the mathematical tools that
are involved are different in the context of stochastic homogenization, as the corrector
presents several dissimilarities that were discussed in Section 4.3.2.
We also mention the work of [169]. A transmission problem between a homogeneous
half space and a periodic half space is also addressed but the techniques involved are
different, a so-called matched asymptotic expansion is used.
The study of the homogenization of (3.11) is the topic of the following Part II.
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CHAPTER 5

Introduction

Abstract

In the context of providing a mathematical framework for the propagation of
ultrasound waves in a random multiscale medium, we consider the scattering of
classical waves (modeled by a divergence form scalar Helmholtz equation) by a
bounded object with a random composite micro-structure embedded in an unbounded
homogeneous background medium. Using quantitative stochastic homogenization
techniques, we provide asymptotic expansions of the scattered field in the background
medium with respect to a scaling parameter describing the spatial random oscillations
of the micro-structure. Introducing a boundary layer corrector to compensate for the
breakdown of stationarity assumptions at the boundary of the scattering medium, we
prove quantitative L2- and H1- error estimates for the asymptotic first-order expansion.
The theoretical results are supported by numerical experiments.

Keywords: Helmholtz equation, quantitative stochastic homogenization, transmis-
sion problem, boundary layer

French abstract

Afin de fournir un cadre mathématique pour l’étude de la propagation d’ondes
ultrasonores dans un milieu aléatoire à plusieurs échelles, nous considérons, clas-
siquement, la diffusion d’ondes (modélisées par une équation de Helmholtz scalaire
de forme divergente) par un objet limité avec une micro-structure composite aléatoire
incorporée dans un milieu de fond homogène non limité. En utilisant des techniques
d’homogénéisation stochastique quantitative, nous fournissons des développements
asymptotiques du champ diffusé dans le milieu environnant par rapport à un
paramètre d’échelle décrivant les oscillations spatiales aléatoires de la micro-structure.
En introduisant un correcteur de couche limite pour compenser la rupture des hy-
pothèses de stationnarité à la limite du milieu diffusant, nous prouvons des estimations
quantitatives de l’erreur en norme L2- et H1- pour le développement asymptotique
jusqu’au premier ordre. Les résultats théoriques sont étayés par des expériences
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numériques.

Mots-clés: équation de Helmholtz, homogénéisation stochastique quantitative,
problème de transmission, couche limite

Introduction

The emergence of quantitative medical imaging techniques that can map the nu-
merical value of a physical parameter in a biological tissue constitutes a major shift of
paradigm for the theory of inverse problems. Imaging modalities are now expected
not only to produce images that are anatomically accurate (structural images) but also
stably and quantitatively reconstruct parameters of interest that can help discriminate
pathological states.

Medical ultrasound imaging is a powerful, safe, portable and cheap imaging modal-
ity that is used in countless physical exams. Ultrasonic pulses (in the MHz range) are
transmitted into the region of interest and the images are obtained by numerically back-
propagating the echoes generated by the tissues and recorded on a receiver array. Each
tissue and its pathological state will be characterized by a distinct type of speckle on
the image.

The technique relies on the fact that most soft tissues have a mass density and com-
pressibility close to those of water (and ultrasonic waves travel in these tissues almost
as in water) yet have echogenic properties that can be explained by the presence of
acoustic heterogeneities of characteristic size much smaller than the wavelength, see
[170].

The quantification of these echogenic properties (known in the literature as backscat-
tering coefficient estimation [171]) relied until now on the introduction of an ultrasonic
reflectivity [91] and approximations of the scattered field derived under a set of restric-
tive hypotheses that do not hold in many practical situations (usually assumptions of
the low scatterer concentration, single scattering regime, strictly homogeneous mass
density in the medium, uniformity of the excitation beam . . . [75]). Recently, using a
formal approach based on a separation of scale in the scattering process, Aubry & al.
have recently obtained spectacular results in quantitative speed of sound imaging on
experimental data [46].

In this Part II, we aim at providing a mathematical framework for the propagation
of ultrasound waves in random multiscale media. Using the tools of stochastic homog-
enization, we provide a mathematical model for the acoustic properties of a soft tissue
as well as quantitative asymptotic expansions of the scattered field with respect to the
scale of the acoustic heterogeneities in the medium.
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5.1 Main contribution

We are interested in the scattering of classical waves by a bounded object with
a random composite micro-structure embedded in an unbounded homogeneous
background medium. The problem considered is modeled by a divergence form scalar
Helmholtz equation with discontinuous rapidly oscillating (at some scale ε much
smaller than the wavelength) stochastic coefficients.

Building on the methods developed in [136, 142] we establish a first-order (with
respect to the parameter ε) asymptotic expansion of the scattered field inside the ob-
ject (proposition 28). Introducing a boundary layer corrector to enforce transmission
conditions at the boundary of the object we prove L2- and H1-norm convergence rates
(Proposition 35). Using the Lippman-Schwinger equation and results on fluctuations
of the commutator [19], we derive a quantitative first-order expansion of the scattered
wave outside the object. We also present numerical illustrations of the solution of the
multiscale problem as well as the correctors, and the first-order expansion of the solu-
tion. Numerical convergence rates are computed to support the theoretical claims.

The Part II is organized as follows:

• In Chapter 5.2 we present the model for the propagation medium and the stochas-
tic framework required to prove stochastic homogenization results.

• Chapter 6 is devoted to proving L2- and H1- quantitative estimates of the error be-
tween the solution of the original problem and the first-order two-scale expansion
(Proposition 36).

• Using the expansions of the solution and its gradient inside the composite
medium established in the previous Chapter 6 in conjonction with (7.2), the
Lippman-Schwinger equation satisfied by the scattered field, we derive in Chap-
ter 7 an explicit integral representation formula for an H1- approximation of the
scattered field outside the composite medium of order (d + 1)/2 (Theorem 39),
where d is the dimension. This theorem along with Corollary 40 is the main re-
sult of the Part II. It makes it possible to relate the small-scale fluctuations of the
composite medium and the scattered wavefield that can be measured outside the
medium. This paves the way towards the resolution of quantitative inverse prob-
lems that aim at characterizing the statistics of the composite medium from the
statistics of the scattered field.

• In Chapter 8, we show numerical results on the original problem, the effective
coefficients and the homogenized problem, as well as the different correctors. We
compute the different norm errors between the solution of the original problem
and its various approximations to confirm the claims of Proposition 37 and Theo-
rem 39.
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ε

Rd \ D

D

inhomogeneities randomly

distributed in D

uinc uε − uinc

Figure 5.1: Scattering by an obstacle in the stochastic homogenization regime

5.2 Presentation of the model

We quickly recall the model that was presented in Section 3.3.1. We consider here a
bounded acoustic medium D ⊂ Rd, d ∈ [[1, 3]] with a C4- boundary ∂D and we study
the scattering of a time-harmonic plane wave

ui(x) := exp(ikθ · x) for x ∈ Rd (5.1)

with wave number k and direction θ ∈ Sd−1. We assume that a set Sε of randomly
distributed inclusions of characteristic size ε > 0 lies inside the medium D. ε is small
compared to the wavelength of the incoming field 2πk−1.

The outer medium Rd \ D, the background D \ Sε and the scatterers Sε are assumed
to be homogeneous. The medium parameters are then given (3.10). The total field uε is
then the unique solution almost sure in H1

loc(R
d) of the following problem:

−∇ · (aε(x)∇uε(x))− k2nε(x)uε(x) = 0 for x ∈ Rd,

lim
|x|→+∞

|x| d−1
2

(
∂(uε − ui)

∂|x| (x)− ik (uε − ui)(x)
)
= 0.

(5.2)

We will derive an asymptotic expansion of uε(x) with respect to ε for x ∈ Rd \ D
using quantitative stochastic homogenization techniques. The random distribution of
the scatterers satisfies the assumptions of Section 3.3.1. In particular, we recall that aε

and nε are stationary ergodic process and that we have,

∀x ∈ D, aε(x) = a
(

x
ε

)
and nε(x) = n

(
x
ε

)
.

for the coefficient a and n defined in (3.12). In Figure 8.1b, we illustrate an example of
a realization of aε in D, sampled by a Matèrn point process.
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The stationary assumption has been defined in Definition 8. As it is customary in
stochastic homogenization, stationarity and ergodicity are defined through an action
(τx)x∈Rd of the group (Rd,+) on (Ω,F ).
We thus equip (Ω,F ) with (τx)x∈Rd that verifies:

- the map τ :

{
Rd × Ω → Ω

(x, ω) 7→ τxω
is measurable,

- ∀x, y ∈ Rd, τx+y = τx ◦ τy,

- For all x ∈ Rd, τx preserves P, i.e.

∀A ∈ F , P(τx A) = P(A).

The stationarity has been defined in Definition 8. Moreover, we assume that the action
(τx)x∈Rd is ergodic in the sense of Definition 9.
We can now write in terms of τ the stationary and ergodic assumption on

{
xω

i
}

i∈N
the

centers of the scatterers for the realization ω ∈ Ω.

∀ω ∈ Ω, ∀y ∈ Rd, {xω
i + y}i∈N =

{
xτyω

i

}
i∈N

. (5.3)

These two assumptions are the minimal and classical assumptions on the distribution
of scatterers (xi)i∈N that we require for qualitative stochastic homogenization. In the
rest of Part II, the dependency on randomness ω ∈ Ω is not mentioned explicitly.

We also assume that the process (xi)i∈N or equivalently S verifies a quantitative
mixing condition. We choose to express this condition as a multiscale variance inequal-
ity as introduced in [149] and as discussed in Chapter 4. S verifies the Hypothesis 20
that we rewrite here in the form of Hypothesis 27.

Hypothesis 27: Mixing hypothesis

There exists a non-increasing weight function π : R+ → R+ with exponential de-
cay such that S verifies for all σ(S)-measurable square integrable random variable
F(S),

Var [F(S)] ≤ E

[ˆ +∞

1

ˆ
Rd

(
∂osc

S,Bℓ(x)F(S)
)2

dxℓ−dπ(ℓ− 1)dℓ
]

, (5.4)

where Bℓ(x) is the ball with radius ℓ ≥ 0 and center x ∈ Rd and the oscillation
∂osc

S,Bℓ(x)F(S) of F(S) with respect to S on Bℓ(x) is defined by:

∂osc
S,Bℓ(x)F(S) := sup ess

{
F(S′)|S′ ∩ (Rd \ Bℓ(x)) = S ∩ (Rd \ Bℓ(x))

}
− inf ess

{
F(S′)|S′ ∩ (Rd \ Bℓ(x)) = S ∩ (Rd \ Bℓ(x))

}
.
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Remark 5.2.1. We recall that the Hypothesis 27 implies that the covariance function of S :
CS(x) := Cov(S(0), S(x)) satisfies [150, Proposition 1.3]

∀x ∈ Rd, |CS(x)| ≲
ˆ ∞

max( 1
2 (|x|−2),0)

π(ℓ)dℓ. (5.5)

where the notation ≲ stands for "inferior up to a multiplicative constant dependent only on the
dimension and possibly other controlled quantities" and will be used throughout the Part II. For
a Matèrn process, we recall that CS has an exponential decay [150, Proposition 1.3].
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CHAPTER 6

Two-scale asymptotic expansion of the
field

6.1 Homogenized problem

We restrict our domain of study to BR the ball of radius R > 0 centered at 0,
via the Dirichlet-to-Neumann operator Λ : H

1
2 (∂BR) → H− 1

2 (∂BR). This operator
takes a Dirichlet data g ∈ H

1
2 (BR) and maps it to the Neumann trace of u on ∂BR

i.e. Λg = ∇u · ν ∈ H− 1
2 (∂BR) where u is the outgoing the solution of

−∆u − k2n0u = 0 in Rd \ BR, satisfying u|∂BR = g.

Λ is continuous, self-adjoint and non-positive and its expansion in terms of Hankel
functions can be found for example in [172], [173, Section 2.6.3] and [174].
We thus consider uε the almost sure unique solution in H1(BR) to

{
−∇ · (aε∇uε)− k2nεuε = 0 in BR,

∇(uε − ui) · ν = Λ(uε − ui) on ∂BR.
(6.1)

The well-posedness of (6.1) for non-smooth coefficients is a difficult problem in 3d. We
refer to [175] for the proof in the L∞ case. However, the proof relies on Fredholm the-
ory and unique continuation principle and therefore does not yield a uniform explicit
control with respect to ε and ω. To obtain this type of uniform control that will be nec-
essary for the homogenization process, we have to add some additional assumptions
on the coefficients. For kR sufficiently small or ℑk > 0 the sesquilinear form associ-
ated to (6.1) can be proved to be coercive and the uniform bound in ε and ω of uε can
be achieved [176]. We also point out that some other methods were developed in [176]
and [177] to obtain uniform control of the solution, but they do not apply to our specific
problem. Here, we assume that the sesquilinear form associated to (6.1) is coercive so
that Proposition 43 holds. The following homogenization theorem follows directly.
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Proposition 28: Qualitative homogenization theorem

Almost surely the unique solution uε ∈ H1(BR) of (6.1) converges weakly in
H1(BR) towards u0, the unique solution in H1(BR) of the following problem

− ∆u0 − k2n0u0 = 0 in BR \ D,

−∇ · (a⋆∇u0)− k2n⋆u0 = 0 in D,

u−
0 − u+

0 = 0 on ∂D,

∇u−
0 · ν − a⋆∇u+

0 · ν = 0 on ∂D,

∇(u0 − ui) · ν = Λ(u0 − ui) on ∂BR,

(6.2)

where the superscripts − and + denote the traces outside and inside D.
The homogenized coefficients a⋆ ∈ Md(R) and nhom ∈ (0,+∞) are defined as
follows {

a⋆i,j = E[ej · a(ei +∇ϕi)],

n⋆ = E[n],
(6.3)

and for i ∈ [[1, d]] the corrector ϕi is defined in the Theorem 14.

Once the uniform bound on uε is established, the proof of Proposition 28 follows
from the classical steps of stochastic homogenization using Tartar’s method [178] of
oscillating test functions. For the sake of completeness, we detail it in Appendix B. a⋆

is definite positive ensuring the well-posedness of the homogenized problem (6.2).

6.2 Two-scale expansion error and boundary layer

The qualitative homogenization theory implies that almost surely uε converges to
u0 strongly in L2(BR) and weakly in H1(BR). As mentioned in Chapter 4, in order
to upgrade this result to strong convergence in H1(BR) and get a quantitative rate
of convergence, one needs to consider the contribution of the first-order corrector
u1,ε ∈ H1(BR \ D)× H1(D) whose definition is recalled here.

Definition 29: First order corrector

Let u1,ε ∈ H1(BR \ D)× H1(D) be the first-order corrector defined by:

u1,ε(x) := 1D(x)
d

∑
i=1

ϕi

(
x
ε

)
∂iu0(x) for x ∈ BR. (6.4)

This definition of u1,ε corresponds to the usual definition inside D. Since there is no
micro-structure outside of D, we extend it to u1,ε = 0 in BR \ D.
Since ui ∈ C∞(Rd) and ∂D is C4, u0|D is in H2(D) (see Appendix A, Propo-



92 CHAPTER 6. TWO-SCALE ASYMPTOTIC EXPANSION OF THE FIELD

sition 44). Therefore, u1,ε|D is indeed in H1(D). Similarly, we introduce
wε ∈ H1(BR \ D)× H1(D), the two-scale expansion defined as follows :

Definition 30: Two-scale expansion

wε(x) := u0(x) + εu1,ε(x) for x ∈ BR. (6.5)

6.3 Two-scale error - boundary corrector

We want to quantify the error Zε := uε − wε between the solution of (6.1) and its
two-scale expansion (6.5) in H1(BR \ D)× H1(D).
In a bounded Lipschitz domain U, it has been shown [119, Chapter 6] in dimension 3
that for the Poisson equation, both with Dirichlet and Neumann boundary conditions,
the following holds

E[∥∇uε −∇wε∥2
L2(U)]

1
2 ≲ ε1/2 ∥u0∥W2,∞(U) .

The order 1/2 of the error is due to the fact that u1,ε and thus wε do not satisfy the
Dirichlet or Neumann boundary conditions on ∂U. To obtain an error of order ε, one
needs to take into account what happens at the boundary and add the correct boundary
corrector [119]. We establish a similar result for the Helmholtz transmission problem.
Let us define two extended correctors which appear naturally while deriving the prob-
lem verified by Zε.

Definition 31: Extended corrector

Let β := (βi)i∈[[1,d]] be the unique vector field and let σ := (σi,jm)i,j,m∈[[1,d]] be the
unique tensor field such that for all i, j, m ∈ [[1, d]],

(a) Almost surely βi ∈ H1
loc(R

d) and σi,jm ∈ H1
loc(R

d) are the solutions in
D′(Rd) of: {

−∆βi(y) = ∂i(n(y)− n⋆),
−∆σi,jm(y) = ∂jqim(y)− ∂mqij(y),

(6.6)

with
qi := a(ei +∇ϕi)− a⋆ei

and are anchored with the condition: 
□0

σi,jm =

 
□0

βi = 0. (6.7)
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Furthermore, σi is skew-symmetric and verifies almost surely

∇ · σi = qi (6.8)

where for i, j ∈ [[1, d]],

(∇ · σi)j :=
d

∑
m=1

∂mσi,jm (6.9)

and β verifies almost surely

∇ · β = n − n⋆. (6.10)

(b) ∇βi and ∇σi,jm are stationary, have finite second moments and vanishing
expectation.

σ is the classical extended corrector in stochastic homogenization of the operator
−∇ · a∇ and can be found for example in [136, Lemma 1]. The well-posedness of β is
proven in the exact same manner.

We can now write the problem verified by Zε.

Lemma 32: Two-scale error

Zε := uε − wε is almost surely the unique solution in H1(BR \ D) × H1(D) of:

− ∆Zε − k2n0Zε = 0 in BR \ D̄,

−∇ · aε∇Zε − k2nεZε = ∇ · Fε + k2Gε in D,

Z−
ε − Z+

ε = εu1,ε on ∂D,

∇Z−
ε · ν − aε∇Z+

ε · ν

= Fε · ν + ε
d

∑
i=1

(
∇ · (σε

i ∂iu0)
+
)
· ν − k2ε(βεu0)

+ · ν on ∂D,

∇Zε · ν = Λ(Zε) on ∂BR,

(6.11)

where Fε ∈ H1(D), Gε ∈ H1(D) are defined as follows

Fε := ε
d

∑
i=1

(aεϕ
ε
i − σε

i )∇(∂iu0) + εk2βεu0, (6.12)

Gε := ε
d

∑
i=1

(nεϕ
ε
i − βε

i )∂iu0. (6.13)
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Here, ϕε denotes ϕε(·) := ϕ( ·ε ). βε
i and σε

i are defined similarly from βi and σi and
for the rest of the Part II. Note that we have then

∇ϕε(·) = 1
ε
(∇ϕ)(

·
ε
).

Proof. Let us first derive the problem satisfied by Zε before proving well-posedness.
In BR \ D and on ∂BR, uε and wε verify the same equation and so does Zε. Using the
equation (6.1) for uε and equation (6.2) for u0, we have moreover

−∇·(aε∇Zε)− k2nεZε

= −∇ · (a⋆∇u0)− k2n⋆u0 +∇ · (aε(∇u0 + ε∇u1,ε)) + k2nε(u0 + εu1,ε) in D.
(6.14)

By the definition of the extended corrector of Definition 31,

−k2n⋆u0 + k2nε(u0 + εu1,ε)

= k2(nε − n⋆)u0 + εk2nε

d

∑
i=1

ϕε
i ∂iu0

= k2(∇ · β)(
·
ε
)u0 + εk2nε

d

∑
i=1

ϕε
i ∂iu0

= k2ε∇ · (βεu0) + εk2
d

∑
i=1

−βε
i ∂iu0 + nεϕ

ε
i ∂iu0

= k2Gε + εk2∇ · (βεu0).

(6.15)

By the skew-symmetry of σi, i ∈ [[1, d]], for all x ∈ D,

∇ ·
(

d

∑
i=1

(∇ · σi)(
x
ε
)∂iu0(x)

)
= ∇ · (ε

d

∑
i=1

(∇ · σε
i (x))∂iu0(x))

= ε
d

∑
i,j,m=1

∂j((∂mσε
i,jm(x))∂iu0(x))

= ε
d

∑
i,j,m=1

∂jm(σ
ε
i,jm(x)∂iu0(x))− ∂j(σ

ε
i,jm(x)(∂imu0(x)))

= −ε
d

∑
i,j,m=1

∂j(σ
ε
i,jm(x)(∂imu0(x)))

= −ε∇ ·
(

d

∑
i=1

σε
i (x)∇∂iu0(x)

)
.

(6.16)
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Therefore, we obtain

−∇·(a⋆∇u0) +∇ · (aε(∇u0 + ε∇u1,ε))

=
d

∑
i=1

∇ ·
((

(a(ei +∇ϕi)− a⋆ei

)
(
·
ε
)∂iu0

)
+ ε∇ · (aεϕ

ε
i∇(∂iu0))

=
d

∑
i=1

∇ ·
(
(∇ · σi)(

·
ε
)∂iu0

)
+ ε∇ · (aεϕ

ε
i∇(∂iu0))

= ∇ ·
(

ε
d

∑
i=1

((aεϕ
ε
i − σε

i )∇∂iu0)

)
= ∇ · Fε − εk2∇ · (βεu0).

(6.17)

By combining (6.15) and (6.17), we obtain the error satisfied inside D.
Using the jump conditions of uε and u0 across ∂D, one gets:

Z−
ε − Z+

ε = εu1,ε, (6.18)

and the flux jump:

∇Z−
ε · ν − aε∇Z+

ε · ν

=
d

∑
i=1

((aε(ei +∇ϕε
i )− a⋆ei)∂iu0)

+ · ν + ε(aεϕ
ε
i∇(∂iu0))

+ · ν

=
d

∑
i=1

(ε(∇ · σε
i )∂iu0)

+ · ν + ε(aεϕ
ε
i∇∂iu0)

+ · ν

= ε
d

∑
i=1

((aεϕ
ε
i − σε

i )∇(∂iu0))
+ · ν +∇ · (σε

i ∂iu0)
+ · ν

= Fε · ν + ε
d

∑
i=1

∇ · (σε
i ∂iu0)

+ · ν − k2ε(βεu0)
+ · ν.

(6.19)

The well-posedness of (6.11) is a direct consequence of Proposition 43. Since almost
surely for i, j, k ∈ [[1, d]], ϕi, βi, σi,jk ∈ H1

loc(R
d) then ϕi, βi, σi,jk ∈ H1(D). Moreover,

u0 ∈ H2(D) and u1,ε ∈ H1(D). Therefore, Fε, Gε ∈ H1(D), u1,ε|∂D ∈ H
1
2 (∂D) and

Fε · ν + ε ∑d
i=1 ∇ · (σε

i ∂iu0)
+ · ν − k2ε(βεu0)

+ · ν ∈ H− 1
2 (∂D), and we can apply Proposi-

tion 43.

As it is customary in homogenization in the presence of boundary (see e.g. [160,
128]), we introduce the boundary corrector vε also called boundary layer, that ensures
that Zε − vε verifies the transmission conditions on ∂D.
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Definition 33: Boundary corrector

Let vε be the almost sure unique solution in H1(BR \ D)× H1(D) of

− ∆vε − k2n0vε = 0 in BR \ D,

−∇ · aε∇vε − k2nεvε = 0 in D,

v−ε − v+ε = εu1,ε on ∂D,

∇v−ε · ν − aε∇v+ε · ν = ε
d

∑
i=1

(
∇ · (σε

i ∂iu0)
+
)
· ν − k2ε(βεu0)

+ · ν on ∂D,

∇vε · ν = Λ(vε) on ∂BR.
(6.20)

The well-posedness is once again a consequence of Proposition 43.

Remark 6.3.1. The definition of this corrector is very similar to the boundary layer introduced
in [166] which deals with the periodic case.
However, all the analysis done in [166] cannot be applied here as it uses the L∞(Rd)-
boundedness of the corrector which does not hold here.

Proposition 34: Two-scale error with the boundary layer

Almost surely Zε − vε is the unique solution in H1(BR) of{
−∇ · aε∇(Zε − vε)− k2nε(Zε − vε) = ∇ · Fε + k2Gε in BR,
∇(Zε − vε) · ν = Λ(Zε − vε) on ∂BR.

(6.21)

Moreover, Zε − vε verifies almost surely

∥Zε − vε∥H1(BR)
≲ ∥Fε∥L2(D) + ∥Gε∥L2(D) . (6.22)

Once again, we apply the Proposition 43 for the well-posedness of (6.21).
In order to quantify the convergence of uε towards u0 + εu1,ε + vε, we are now left
with estimating the right hand side of (6.22). This is easily done with the almost sure
corrector estimates established in [142, Theorem 2] for coefficients verifying the mixing
Hypothesis 20 as we show in the next section.

6.4 Convergence rate of the two-scale expansion

In this section we estimate the convergence of the two-scale expansion error with
and without the boundary layer vε both in H1- and L2-norms.
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As mentioned above, the proof relies on the corrector bounds established in [142, The-
orem 4] for correlated fields satisfying the Hypothesis 20. We recalled these results in
Chapter 4 in Proposition 22. We also mention that by construction β also verifies the
results of Proposition 22.

For any bounded domain B ⊂ Rd, we consider the covering of B with squares of
size ε and define Pε(B) as the set of centers of those squares, i.e.

Pε(B) := {x ∈ Zd, ε□x ∩ B ̸= ∅}. (6.23)

We prove the following estimate for the two-scale expansion error with the boundary
layer in H1(BR).

Proposition 35: H1- convergence of the two-scale expansion with the boundary
corrector

Let uε ∈ H1(BR) be the almost sure solution of (6.1) and u0 ∈ H1(BR) such that
u0|D ∈ W2,∞(D) be the solution of (6.2). Let u1,ε be the corrector defined by (6.4)
and vε be the boundary corrector solution of (6.20).
Then almost surely

∥uε − u0 − εu1,ε − vε∥H1(BR)
≲ εµd(

1
ε
)χε ∥u0∥W2,∞(D) , (6.24)

where µd is defined in Proposition 22 and χε is the random variable defined as:

χε :=

εd ∑
z∈Pε(D)

C(z)2

 1
2

, (6.25)

with C also defined in Proposition 22. In particular, χε satisfies the stochastic
integrability (4.52) and it holds

E
[
∥uε − u0 − εu1,ε − vε∥2

H1(BR)

] 1
2
≲ εµd(

1
ε
) ∥u0∥W2,∞(D) . (6.26)

Remark 6.4.1. This result is an equivalent of the result obtained in [119, Chapter 6], both for
Dirichlet and Neumann boundary conditions on ∂D. The proof of Proposition 35 follows simi-
lar steps as the proofs in [119], that dealt with the case u0|D ∈ W2,∞(D).
In Appendix C, Proposition 48, we extend the result of the proposition to the case where
u0|D ∈ W1+α,p(D) for α ∈ (0, 1] and p ∈ (2, ∞]. It will be needed in the proof of Proposi-
tion 37. However, for the sake of simplicity, we choose to display here the proof in the more
regular setting as it relies on the same ideas but requires less technicity.
Note that u0|D is indeed in W2,∞(D). By Proposition 44, since D has a C4- boundary,
and ui ∈ C∞(BR), u0|D is in H4(D). By [179, Corollary 9.15], one has the embedding
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H4(D) = W4,2(D) ↪→ C2(D). Note that this embedding is true for d ≤ 3 which is the frame-
work that we consider here.

Proof. By (6.22), one only needs to show that almost surely

∥Fε∥L2(D) + ∥Gε∥L2(D) ≲ εµd(
1
ε
)χε ∥u0∥W2,∞(D) .

The definition of Fε by (6.12) and Gε by (6.13) implies that almost surely

∥Fε∥L2(D) + ∥Gε∥L2(D) ≲ ε
(
∥ϕε∥L2(D) + ∥σε∥L2(D) + ∥βε∥L2(D)

)
∥u0∥W2,∞(D) . (6.27)

It then suffices to bound almost surely the norm of each corrector on the right hand side
by µd(

1
ε ) (up to a constant) to obtain the desired estimate.

We prove the bound for ∥ϕε∥L2(D). The two other estimates for ∥βε∥L2(D) and ∥σε∥L2(D)

are established in a similar manner.
We pave D with squares of size ε, change of variable and use the almost sure corrector
bounds (4.49) to obtain

∥ϕε∥2
L2(D) ≲ ∑

z∈Pε(D)

∥ϕε∥2
L2(ε□z)

= ∑
z∈Pε(D)

ˆ
ε□z

|ϕ( ·
ε
)|2

≲ εd ∑
z∈Pε(D)

 
□z

|ϕ|2

≲ µd(
1
ε
)2

εd ∑
z∈Pε(D)

C(z)2


≲ µd(

1
ε
)2χ2

ε .

(6.28)

By [119, Lemma A4], χε satisfies (4.52) which concludes our proof.

The boundary corrector vε, defined by (6.20) solves an almost sure comparable prob-
lem as the one verified by uε in D, with an oscillatory boundary data on ∂D. The result-
ing complexity drives us to derive convergence rates of the two-scale expansion error
without vε. We start with the estimate in the H1-norm.
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Proposition 36: H1- convergence rate of the two-scale expansion

Let uε ∈ H1(BR) be the solution of (6.1), u0 ∈ H1(BR) such that u0|D ∈ W2,∞(D)
be the solution of (6.2) and u1,ε be defined by (6.4).
Then, it holds almost surely

∥uε − u0∥H1(BR\D) + ∥uε − u0 − εu1,ε∥H1(D) ≲ ε
1
2 µd(

1
ε
)

1
2 χ̂ε ∥u0∥W2,∞(D) , (6.29)

where χ̂ε is a random variable that satisfies the stochastic integrability (4.52). In
particular

E
[
∥uε − u0∥2

H1(BR\D)

] 1
2
+ E

[
∥uε − u0 − εu1,ε∥2

H1(D)

] 1
2
≲ ε

1
2 µd(

1
ε
)

1
2 ∥u0∥W2,∞(D) .

(6.30)

In the rest of the article χ̂ε denotes a random variable satisfying the stochastic in-
tegrability (4.52). Its expression in the specific estimate (6.29) is made explicit in the
proof.

Proof. Thanks to Proposition 35, we only need to estimate the norm of vε in
H1(BR \ D) × H1(D), and the conclusion follows by the triangle inequality.
We lift the trace jump of vε across ∂D by considering ṽε := vε − εηεu1,ε where ηε is a
smooth cutoff satisfying for all x ∈ BR

0 ≤ ηε(x) ≤ 1, ηε = 0 in D2εµd(
1
ε )

, ηε = 1 in BR \ Dεµd(
1
ε )

, |∇ηε(x)| ≲ 1
εµd(

1
ε )

,

where Dr = {x ∈ BR | dist(x, ∂D) > r} for r > 0.
By Proposition 43, since ηεu1,ε ∈ H1(D), ṽε is almost sure the unique solution in H1(BR)
to 

− ∆ṽε − k2n0ṽε = 0 in BR \ D,

−∇ · aε∇ṽε − k2nεṽε = ε∇ · aε∇(ηεu1,ε) + εk2nε(ηεu1,ε) in D,

∇ṽ−ε · ν − aε∇ṽ+ε · ν = aε∇(ηεu1,ε) · ν

+ ε
d

∑
i=1

(
∇ · (σε

i ∂iu0)
+
)
· ν − k2ε(βεu0)

+ · ν on ∂D,

∇ṽε · ν = Λ(ṽε) on ∂BR.

(6.31)

On the boundary it holds that

d

∑
i=1

∇· (σε
i ∂iu0)

+) · ν− k2ε(βεu0)
+ · ν =

d

∑
i=1

∇· (σε
i ∂iu0ηε)

+) · ν− k2ε(βεu0ηε)
+ · ν. (6.32)
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Furthermore, for all i ∈ [[1, d]],

∇ · (∇ · (σε
i ∂iu0ηε)) =

d

∑
j,m=1

∂jm(σ
ε
i,jm∂iu0ηε)) = 0.

Thus, ṽε verifies for all w ∈ H1(BR)

ˆ
BR

aε∇ṽε · ∇w − k2nεṽεw − ⟨Λ(ṽε), w⟩
H− 1

2 (∂BR),H
1
2 (∂BR)

=

ˆ
D
−εaε∇(ηεu1,ε) · ∇w + εk2nε(ηεu1,ε)w − ε

d

∑
i=1

∇ · (σε
i ∂iu0ηε) · ∇w

− k2ε∇ · (βεu0ηε)w + k2εβεu0ηε · ∇w,

(6.33)

where w denotes the conjugate of w and ⟨·, ·⟩
H− 1

2 (∂BR),H
1
2 (∂BR)

denotes the duality prod-

uct H− 1
2 (∂BR), H

1
2 (∂BR). By the coercivity of the sesquilinear form, we then obtain

∥ṽε∥H1(BR)
≲ ε ∥ηεu1,ε∥H1(D) + ε

∥∥∥∥∥ d

∑
i=1

∇ · (σε
i ∂iu0ηε)

∥∥∥∥∥
L2(D)

+ ε ∥∇ · (βεu0ηε)∥L2(D) + ε ∥βεu0ηε∥L2(D) .

(6.34)

Let Sηε := supp(ηε) denote the support of ηε. By definition of ṽε, it holds

∥vε∥H1(BR\D) + ∥vε∥H1(D)

≲ ε ∥ηεu1,ε∥H1(D) + ε

∥∥∥∥∥ d

∑
i=1

∇ · (σε
i ∂iu0ηε)

∥∥∥∥∥
L2(D)

+ ε ∥∇ · (βεu0ηε)∥L2(D) + ε ∥βεu0ηε∥L2(D)

≲

(
ε ∥∇ϕε∥L2(Sηε )

+ ε ∥ϕε∥L2(Sηε )
+

1
µd(

1
ε )

∥ϕε∥L2(Sηε )

+ ε ∥∇σε∥L2(Sηε )
+ ε ∥σε∥L2(Sηε )

+
1

µd(
1
ε )

∥σε∥L2(Sηε )

+ε ∥∇βε∥L2(Sηε )
+ ε ∥βε∥L2(Sηε )

+
1

µd(
1
ε )

∥βε∥L2(Sηε )

)
∥u0∥W2,∞(D) .

(6.35)

We prove the bounds on the corrector ϕ, the two other estimates are established in a
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similar manner. Let χ̃1
ε and χ̃2

ε be the random variables defined by

χ̃1
ε :=

 εd

εµd(
1
ε )

∑
z∈Pε(Sηε )

C(z)2

 1
2

,

χ̃2
ε :=

 εd

εµd(
1
ε )

∑
z∈Pε(Sηε )

(1 + r∗(z))2d

 1
2

.

(6.36)

These two random variables satisfy the stochastic integrability (4.52) since the prefactor
εd

εµd(
1
ε )

≈ 1
|Pε(Sηε )|

is the appropriate renormalization.

By following the proof of Proposition 35, it holds almost surely

ε ∥ϕε∥L2(Sηε )
≲ ε

3
2 µd(

1
ε
)

3
2 χ̃1

ε . (6.37)

It remains to estimate ε ∥∇ϕε∥L2(Sηε )
. Using the mean value property of Proposition 22,

we get almost surely

ε ∥∇ϕε∥L2(Sηε )
≲ ε

1
2 µd(

1
ε
)

1
2 χ̃2

ε . (6.38)

By combining (6.37) and (6.38), we obtain

ε ∥∇ϕε∥L2(Sηε )
+ ε ∥ϕε∥L2(Sηε )

+
1

µd(
1
ε )

∥ϕε∥L2(Sηε )

≲ ε
1
2 µd(

1
ε
)

1
2 χ̃2

ε + ε
3
2 µd(

1
ε
)

3
2 χ̃1

ε + ε
1
2 µd(

1
ε
)

1
2 χ̃1

ε

≲ ε
1
2 µd(

1
ε
)

1
2 χ̃3

ε ,

(6.39)

where we define χ̃3
ε as

χ̃3
ε := χ̃2

ε + (εµd(
1
ε
) + 1)χ̃1

ε . (6.40)

As χ̃1
ε and χ̃2

ε satisfy the stochastic integrability (4.52) , χ̃3
ε also satisfies (4.52).

This gives us the following estimate for vε in H1(BR \ D)× H1(D),

∥vε∥H1(BR\D) + ∥vε∥H1(D) ≲ ε
1
2 µd(

1
ε
)

1
2 χ̃3

ε ∥u0∥W2,∞(D) . (6.41)

Therefore, we conclude by the triangle inequality

∥uε − u0∥H1(BR\D) + ∥uε − u0 − εu1,ε∥H1(D)

≲ ∥uε − u0 − εu1,ε − vε∥H1(BR)
+ ∥vε∥H1(D) + ∥vε∥H1(BR\D)

≲ ε
1
2 µd(

1
ε
)

1
2

(
ε

1
2 µd(

1
ε
)

1
2 χε + χ̃3

ε

)
∥u0∥W2,∞(D)

≲ ε
1
2 µd(

1
ε
)

1
2 χ̂ε ∥u0∥W2,∞(D) ,

(6.42)



102 CHAPTER 6. TWO-SCALE ASYMPTOTIC EXPANSION OF THE FIELD

where the random variable χ̂ε defined as

χ̂ε := ε
1
2 µd(

1
ε
)

1
2 χε + χ̃2

ε + (εµd(
1
ε
) + 1)χ̃1

ε , (6.43)

satisfies the stochastic integrability (4.52).

We expect the homogenization error uε − u0 to be of order O(ε) in L2(BR) as u0
verifies the proper transmission conditions on ∂D. This is the subject of the next propo-
sition.

Proposition 37: L2- rate of convergence of the homogenization error

Let uε ∈ H1(BR) be the almost sure solution of (6.1) and u0 ∈ H1(BR) such that
u0|D ∈ W2,∞(D) be the solution of (6.2).
Then, it holds almost surely

∥uε − u0∥L2(BR)
≲ εµd(

1
ε
)χ̂ε ∥u0∥W2,∞(D) , (6.44)

where χ̂ε is a random variable satisfying the stochastic integrability (4.52). In
particular

E
[
∥uε − u0∥2

L2(BR)

] 1
2
≲ εµd(

1
ε
) ∥u0∥W2,∞(D) . (6.45)

Remark 6.4.2. A similar result has been shown in the periodic case in [166]. Though, we cannot
adapt the proof, since it uses the L∞-bound of the corrector, that does not hold in the stochastic
setting. In [119, Theorem 6.14], the result is shown for Poisson equation in the Dirichlet case.
Our proof is an adaptation of the latter result.

Proof. To prove (6.44), we use Proposition 35 and the bounds on the correctors, which
imply that almost surely

∥uε − u0∥L2(BR)
≲ ∥uε − u0 − εu1,ε − vε∥L2(BR)

+ ε ∥u1,ε∥L2(D) + ∥vε∥L2(BR)

≲ εµd(
1
ε
)χε ∥u0∥W2,∞(D) + ε ∥ϕε∥L2(D) ∥u0∥W2,∞(D) + ∥vε∥L2(BR)

≲ εµd(
1
ε
)χε ∥u0∥W2,∞(D) + ∥vε∥L2(BR)

.

(6.46)

It remains to estimate the L2-norm of the boundary corrector, which we do by using a
duality argument as in [166].
Let h ∈ L2(BR). We wish to estimate ∣∣∣∣ˆ

BR

vεh
∣∣∣∣ .
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To do so, we introduce the auxiliary function Wε ∈ H1(BR) solution of{
−∇ · a∗ε∇Wε − k2nεWε = h in BR,
∇Wε · ν = Λ(Wε) on ∂BR.

(6.47)

Here a∗ε denote the transpose of aε.
We write the variational formulation verified by Wε in H1(BR) and choose ṽε as a test
function. Recall that ṽε := vε − εηεu1,ε is the unique solution in H1(BR) to (6.31). We
obtainˆ

BR

ṽεh =

ˆ
BR

a∗ε∇Wε · ∇ṽε − k2nεWεṽε −
〈
Λ(ṽε), Wε

〉
H− 1

2 (∂BR),H
1
2 (∂BR)

. (6.48)

We choose in the variational formulation of ṽε (6.33), Wε as a test function and subtract
the two expressions to obtain

ˆ
BR

ṽεh =

ˆ
D
−εaε∇(ηεu1,ε) · ∇Wε + εk2nε(ηεu1,ε)Wε − ε

(
d

∑
i=1

∇ · (σε
i ∂iu0ηε)

)
· ∇Wε

− k2ε∇ · (βεu0ηε)Wε + k2εβεu0ηε · ∇Wε.
(6.49)

We use the estimate (6.39) and get∣∣∣∣ˆ
BR

vεh
∣∣∣∣ ≲ ε

∣∣∣∣ˆ
D

ηεu1,εh
∣∣∣∣+ ε

1
2 µd(

1
ε
)

1
2 χ̃3

ε ∥Wε∥H1(Sε)
∥u0∥W2,∞(D)

≲ ε
3
2 µd(

1
ε
)

3
2 χ̃1

ε ∥h∥L2(D) + ε
1
2 µd(

1
ε
)

1
2 χ̃3

ε ∥Wε∥H1(Sε)
∥u0∥W2,∞(D) .

(6.50)

It remains to show that

∥Wε∥H1(Sηε )
≲ ε

1
2 µd(

1
ε
)

1
2 χ̃4

ε ∥h∥L2(BR)
,

for a random variable χ̃4
ε satisfying the correct stochastic integrability. Following [166],

we apply homogenization results to Wε to obtain the desired estimate.
We thus introduce W0 ∈ H2(BR \ D)× H2(D) solution of

− ∆W0 − k2n0W0 = h in BR \ D,

−∇ · a⋆∇W0 − k2n⋆W0 = h in D,

∇W−
0 · ν − a⋆∇W+

0 · ν = 0 on ∂D,
∇W0 · ν = Λ(W0) on ∂BR.

(6.51)

The regularity of W0 comes from Proposition 44. Moreover the following estimate holds

∥W0∥H2(D) ≲ ∥h∥L2(BR)
. (6.52)
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However, we have no guarantee that W0|D is in W2,∞(D), since h is only in L2(BR).
Therefore we cannot apply the result of Proposition 36. Note that even if we could, this
would yield a control with the W2,∞(D) norm of W0, that we cannot directly link to
∥h∥L2(BR)

. Instead, Proposition 47 gives a W
3
2 ,2+s(D)-control, for s > 0, of the two-scale

expansion error.
By the fractional Sobolev embedding (cf. [180, Theorem 7.58]), there exists an exponent
s(d) > 0 such that we have the embedding:

W2,2(D) ↪→ W
3
2 ,2+s(D).

In particular, this yields

∥W0∥
W

3
2 ,2+s(D)

≲ ∥W0∥H2(D) ≲ ∥h∥L2(BR)
. (6.53)

For α = 1
2 , p = 2 + s > 2, Proposition 47 implies then

∥Wε∥H1(Sηε )
≲ ∥Wε − W0 − εW1,ε∥H1(Sηε )

+ ∥W0 + εW1,ε∥H1(Sηε )

≲ ε
1
2 µd(

1
ε
)

1
2 χ̂ε,p ∥W0∥

W
3
2 ,p(D)

+ ∥W0 + εW1,ε∥H1(Sηε )
,

(6.54)

where

W1,ε :=
d

∑
i=1

ϕε
i ∂iŴ0 ∗ ξε,

and χ̂ε,p verifies (4.52). The mollifier ξε is defined by (C.2) and Ŵ0 is the Sobolev
extension in H1(Rd) of W0|D (cf Lemma 46).
Using Lemma 51, with f = ∇W0, r = εµd(

1
ε ), p = 2 + s, α = 1

2 , q = 2, β = 1
q = 1

2 , we
obtain

∥∇W0∥L2(Sηε )
≲ ε

1
2 µd(

1
ε
)

1
2 ∥W0∥

W
3
2 ,p(D)

. (6.55)

It also holds by the combination of (C.24) and (C.28) that

ε ∥∇W1,ε∥L2(Sηε )
≲ ε

1
2 µd(

1
ε
)

1
2 χ̂ε,p ∥W0∥

W
3
2 ,p(D)

. (6.56)

with
χ̂ε,p := χ̃2

ε,p + ε
1
2−

1
p µd(

1
ε
)

1− 1
p χ̃1

ε,p,

and χ̃1
ε,p, χ̃2

ε,p are defined in (C.25) and satisfy (4.52). With the same arguments, similar
estimates can be derived for ∥W0∥L2(Sηε )

and ε ∥W1,ε∥L2(Sηε )
. This yields that

∥Wε∥H1(Sηε )
≲ ε

1
2 µd(

1
ε
)

1
2 χ̃4

ε,p ∥h∥L2(D) , (6.57)
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where χ̃4
ε,p := 1 + χ̂ε,p + χ̃1

ε,p satisfies (4.52).
We combine (6.50) and (6.57) to obtain

∥vε∥L2(BR)
≲ εµd(

1
ε
)

(
ε

1
2 µd(

1
ε
)

1
2 χ̃1

ε + χ̃3
ε χ̃4

ε,p

)
∥u0∥W2,∞(D) . (6.58)

Therefore, by (6.46) we get

∥uε − u0∥L2(BR)
≲ εµd(

1
ε
)χ̂ε ∥u0∥W2,∞(D) , (6.59)

where χ̂ε defined by

χ̂ε := χε + ε
1
2 µd(

1
ε
)

1
2 χ̃1

ε + χ̃3
ε χ̃4

ε,2+δ,

satisfies the desired stochastic integrability thanks to the following version of Hölder’s
inequality [19].

Lemma 38: Hölder’s inequality

For all random variables Y1, Y2, given κ1, κ2 > 0,

if E[exp(Yκ1
1 )] ≤ 2 and E[exp(Yκ2

2 )] ≤ 2,

then there exists C > 0, such that E

[
exp

(
1
C
(Y1Y2)

κ1κ2
κ1+κ2

)]
< ∞.

(6.60)
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CHAPTER 7

Asymptotic expansion of the scattered
field

7.1 Main result

The convergence estimates that we established in the previous section provide an
asymptotic expansion of the field at order ε. Outside D, uε is approximated at first-
order by u0 according to Proposition 36. Physically, u0 corresponds to the wave that
interacts with the effective medium of parameters a⋆ and n⋆. It depends on the distri-
bution of the scatterers as a⋆ does but it is deterministic and thus is not characteristic of
one realization in a given medium. In the context of ultrasounds the measurements are
usually done using the same sensor array that transmits the plane wave excitation (ul-
trasonic transducers can be used as transmitters and as receivers). So u0 contains only
the contribution from the boundary ∂D while we would like to characterize the speckle
field generated by the small heterogeneities. We are then interested in this section in
obtaining the next order term in the expansion of the field outside of D.
We introduce G0 the Green function associated to the homogenized problem (6.2) i.e.
G0 verifies in D′(BR) for all y ∈ BR,

− ∆G0(·, y)− k2n0G0(·, y) = δ(· − y) in BR \ D,

−∇ · (a⋆∇G0(·, y))− k2n⋆G0(·, y) = δ(· − y) in D,

G0(·, y)− = G0(·, y)+ on ∂D,

∇G0(·, y)− · ν − a⋆∇G0(·, y)+ · ν = 0 on ∂D,
∇G0 · ν = Λ(G0) on ∂BR.

(7.1)

For all α > 0, we define Dα := {x ∈ BR | dist(x, D) < α}. For z ∈ BR \ Dα, uε verifies
the following Lippman-Schwinger equation

uε(z) = u0(z) +
ˆ

D
(a⋆ − aε(x))∇uε(x) · ∇G0(x, z)dx

− k2
ˆ

D
(n⋆ − nε(x))uε(x)G0(x, z)dx. (7.2)
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We make use of the asymptotic expansion of uε in H1(D) and obtain for all z ∈ BR \ Dα

uε(z) = u0(z) +
ˆ

D

d

∑
i=1

(
a⋆ − aε(x)(ei + ε∇ϕε

i (x)
)

∂iu0(x) · ∇G0(x, z)dx

− k2
ˆ

D
(n⋆ − nε(x))u0(x)G0(x, z)dx + Jε(z),

(7.3)

where

Jε(z) :=
ˆ

D
(a⋆ − aε(x)

(
∇uε(x)−

d

∑
i=1

(ei + ε∇ϕε
i (x))∂iu0(x)

)
· ∇G0(x, z)dx

− k2
ˆ

D
(n⋆ − nε(x))(uε(x)− u0(x))G0(x, z)dx.

(7.4)

Using the strong convergence estimates established in Proposition 36 and Proposi-
tion 37 leads to

E[∥Jε(z)∥L2(BR\Dα)] ≲ ε
1
2 µd(

1
ε
)

1
2 ,

which is not sufficient since uε − u0 is of order ε in L2(BR \ D). We thus
need to estimate more sharply the weak convergence of the two quantities
(a⋆ − aε(x))

(
∇uε − ∑d

i=1(ei + ε∇ϕε
i )∂iu0

)
and (n⋆ − nε)(uε − u0).

In [18] and [19], the authors study the fluctuations of ∇uε in the context of the Poisson
equation in Rd. They prove that the fluctuations of ∇uε and aε∇uε can be recovered
from the fluctuations of the commutator Ξ ∈ L2

loc(R
d)d defined by:

∀i ∈ [[1, d]], Ξi := (a − a⋆)(ei +∇ϕi). (7.5)

This leads to estimate

J ε :=
ˆ

Rd
(aε − a⋆)∇uε · g −

d

∑
i=1

Ξi(
·
ε
)∂iu0 · g (7.6)

for all g ∈ C∞
c (Rd)d. They show that, for all g ∈ C∞

c (Rd)d

Var[J ε]
1
2 ≲ ε

d
2+1µd(

1
ε
). (7.7)

We extend this result to our situation where the Poisson equation is replaced by the
Helmholtz equation leading to a second term in Jε and where we have to take into ac-
count the boundary of D as the support of G0 is not compactly supported in D. We deal
with this last point in a similar manner as in Section 6 by introducing the appropriate
boundary layer. However the rate of convergence is now 1/2 order smaller.
Our main result is stated in the following theorem.
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Theorem 39: Pointwise convergence of Jε

Let uε ∈ H1(BR) be the almost sure solution of (6.1), u0 ∈ H1(BR) such
that u0|D ∈ W2,∞(D) be the solution of (6.2) and for y ∈ BR \ Dα, let
G0(·, y) ∈ H1(BR \ {y}) such that G0(·, y)D ∈ W2,∞(D) be the solution of (7.1).
Define U1 ∈ H1(BR \ {y}) as:

U1 := E[uε − u0] +
d

∑
i=1

ˆ
D
(a⋆ − aε(x))(ei + ε∇ϕε

i (x))∂iu0(x) · ∇G0(x, ·)dx

− k2
ˆ

D
(n⋆ − nε(x))u0(x)G0(x, ·)dx.

(7.8)

Then

E
[
|uε(y)− u0(y)−U1(y)|2

] 1
2

≲ ε
d+1

2 µd(
1
ε
)

1
2 ∥u0∥W2,∞(D) ∥G0(·, y)∥W2,∞(D) ,

(7.9)

and if we further assume that x 7→ G(x, y) is in W3,∞(D) for y ∈ BR \ Dα, then

E
[
|∇uε(y)−∇u0(y)−∇U1(y)|2

] 1
2

≲ ε
d+1

2 µd(
1
ε
)

1
2 ∥u0∥W2,∞(D) ∥G0(·, y)∥W3,∞(D) .

(7.10)

Remark 7.1.1. Note that for y ∈ BR \ Dα, G0(·, y)|D belongs to W2,∞(D) in view of Proposi-
tion 44. The regularity G0(·, y)|D ∈ W3,∞(D) can be obtained by assuming that the boundary
of D is C5 by the Sobolev embeddings [179, Corollary 9.15].

Corollary 40: L2- and H1convergence of Jε

For all y ∈ BR \ Dα,

E
[
∥uε − u0 −U1∥2

L2(BR\Dα)

] 1
2

≲α ε
d+1

2 µd(
1
ε
)

1
2 ∥u0∥W2,∞(D)

(ˆ
BR\Dα

∥G0(·, y)∥2
W2,∞(D) dy

) 1
2

,

(7.11)
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and if we further assume that G0(·, y)|D is in W3,∞(D) for y ∈ BR \ Dα, then

E
[
∥uε − u0 −U1∥2

H1(BR\Dα)

] 1
2

≲α ε
d+1

2 µd(
1
ε
)

1
2 ∥u0∥W2,∞(D)

(ˆ
BR\Dα

∥G0(·, y)∥2
W3,∞(D) dy

) 1
2

.

(7.12)

Moreover we denote by a∗ the transpose of a and ϕ∗, σ∗ the adjoint correctors that
solves respectively (4.30) and (6.6) with a∗ instead of a. Finally, we write ϕε,∗ := ϕ∗( ·ε )
and σε,∗ := σ∗( ·ε ).
Note that, from (7.3), for all y ∈ BR \ Dα,

uε(y)− u0(y)−U1(y) =ˆ
D
(a⋆ − aε(x))(∇uε(x)−

d

∑
i=1

(ei + ε∇ϕε
i (x)∂iu0(x)) · ∇G0(x, y)dx

− k2
ˆ

D
(n⋆ − nε(x))(uε(x)− u0(x))G0(x, y)dx − E[uε − u0]

= Jε(y)− E[Jε(y)].
(7.13)

We follow the strategy of [19], to show that

Var
[

Jε(y)
]
≲ εd+1µd(

1
ε
) ∥u0∥2

W2,∞(D) ∥G0(·, y)∥2
W2,∞(D) , (7.14)

which will yield the desired result by integrating over y.
In [19], three main tools are used to show (7.7):

• the multiscale functional inequality Hypothesis 20 that also holds here.

• the bounds on the corrector (Proposition 22) and the convergence of the two-scale
expansion (without the boundary corrector) that we showed in Proposition 36

• the large-scale (weighted) Calderón-Zygmund estimates stated in [136].

In our configuration, we can use the two first tools. However the large-scale Calderón-
Zygmund estimates were developed for the Poisson equation, not for the Helmholtz
equation. Instead of deriving similar estimates for Helmholtz equation, we take ad-
vantage of the boundness of the our domain D to establish the following Lemma 41.
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Lemma 41

(a) There exists a constant C depending only on d such that, for any U ∈ L1(D)
and t > 0, ˆ

Rd

(ˆ
Bt(x)∩D

|U|
)

dx ≤ Ctd
ˆ

D
|U|. (7.15)

(b) For T > 0, let ρT(x) be the radial weight, for all x ∈ Rd:

ρT(x) :=
|x|
T

+ 1.

Then, for U ∈ L1(D) and α > 0,

ˆ
Rd

ρT(x)α

(ˆ
Bt(x)∩D

|U|
)2

dx ≤ C sup
y∈D

(
t + |y|

T
+ 1
)α

td
(ˆ

D
|U|
)2

.

(7.16)

The proof can be found in Appendix D.

The first step of the proof of Theorem 39 consists in applying the mixing condition
Hypothesis 20 to Jε(z) for z ∈ BR \ Dα. To simplify notations, we introduce

P(S) :=
ˆ

D
(a⋆ − aε(x))

(
∇uε(x)− (ei +∇ϕi(

x
ε
))∂iu0(x)

)
· ∇g(x)dx

− k2
ˆ

D
(n⋆ − nε(x))(uε(x)− u0(x))g(x)dx.

(7.17)

where aε := aM + (aS − aM)1Sε , nε := nM + (nS − nM)1Sε and g ∈ W3,∞(D).
By definition, we have then P(S) = Jε(z) if g(·) = G0(·, z), and P(S) = ∂i Jε(z) if
g(·) = ∂iG0(·, z), if ∂iG0(·, z)|D ∈ W3,∞(D) where the derivative applies to the second
variable.
We introduce some additional notations before considering ∂oscP(S). Let ℓ ≥ 1
and x ∈ Rd. Let S be a given realization of the scatterer process. We
consider another distribution of scatterers S′ satisfying the assumptions of Sec-
tion 5.2 and such that S ∩ (Rd \ Bℓ(x)) = S′ ∩ (Rd \ Bℓ(x)). We name
Aℓ(x) := {S′ |S ∩ (Rd \ Bℓ(x)) = S′ ∩ (Rd \ Bℓ(x))}.
For any S-dependent measurable random variable F, we denote by F′ and δF the ran-
dom variables:

F′ := F(S′), (7.18)

δF := F(S′)− F(S) := F′ − F. (7.19)
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By definition,

|∂osc
S,Bℓ(x)P(S)| ≲ sup

S′∈Aℓ(x)
|δP| (7.20)

Here, the notation ϕε,′ stands for ϕ′( ·ε ).
The proof is split into two. We start by deriving a representation formula for δP . We
then bound each term of the representation formula to get our estimate.

7.2 Representation formula for δP

We recall that P is defined in (7.17) and δP is defined in (7.19). Then, δP admit the
following form:

Lemma 42: Representation formula for δP

For g ∈ W3,∞(D),

δP = −
d

∑
j=1

ˆ
D

∂jg(ε∇ϕε,∗
j + ej) · δaε(∇u′

ε −
d

∑
i=1

(ei + ε∇ϕε,′
i )∂iu0)

+
d

∑
j=1

ˆ
D
−(εϕε,∗

j ∇∂jg +∇rj) · δaε∇u′
ε + k2δnεu′

ε(rj + εϕε,∗
j ∂jg)

+
d

∑
i,j=1

ˆ
Rd
(εϕε,∗

j ∇∂jg∂iu01D − ε∇ · (ηεϕ
ε,∗
j ∂jg∂iu0)1D +∇Rij) · δaε(ε∇ϕε,′

i + ei)

+

ˆ
D

k2δnε(u′
ε − u0)g − εk2βεδuε · ∇g

(7.21)

where for j ∈ [[1, d]], rj := −ε∂jgϕε,∗
j 1D + r̃j and r̃j is the almost sure unique

solution in H1(BR) of:

− ∆r̃j − k2n0r̃j = 0 in BR \ D,

−∇ ·
(
a∗ε∇r̃j

)
− k2nεr̃j = −ε∇ · ((a∗ε ϕε,∗

j − σε,∗
j )∇∂jg)

+ εk2∇ · (βεg) in D,

∇r̃−j · ν − a∗ε∇r̃+j · ν = −εa∗ε ϕε,∗
j ∇∂jg · ν + ε(∇ · σε,∗

j )∂jg+ · ν on ∂D,

∇r̃j · ν = Λ(r̃j) on ∂BR,

(7.22)
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and for i, j ∈ [[1, d]], Rij is the almost sure unique solution in Ḣ(Rd) := {v ∈
H1

loc(R
d) | ∇v ∈ L2(Rd)}/R of:

−∇ · a(
·
ε
)∗∇Rij = 0 in Rd \ D,

−∇ · a∗ε∇Rij = −ε∇ · (a∗ε ϕε,∗
j − σε,∗

j )∇(∂jg∂iu0)

+∇ · a∗ε∇(ηεϕ
ε,∗
j ∂jg∂iu0) in D,

a∗ε∇R−
ij · ν − a∗ε∇R+

ij · ν = −ε(a∗ε ϕε,∗
j − σε,∗

j )∇(∂jg∂iu0) · ν

+ ε∇ · (σε,∗
j ∂jg∂iu0) · ν

+ εa∗ε∇(ϕε,∗
j ∂jg∂iu0) · ν on ∂D.

(7.23)

Remark 7.2.1. Note that by the divergence theorem [181, theorem 3.24], since ∇ · (∇ · σj) = 0
for all j ∈ [[1, d]], we have that the normal trace (∇ · σj) · ν ∈ H−1/2(∂D).

Proof of the Lemma. By direct computation,

δP = −
ˆ

D
δaε

(
∇u′

ε −
d

∑
i=1

(ei + ε∇ϕε,′
i )∂iu0

)
· ∇g

+

ˆ
D
(a⋆ − aε)δ

(
∇uε −

d

∑
i=1

(ei + ε∇ϕε
i )∂iu0

)
· ∇g

+

ˆ
D

k2δnε(u′
ε − u0)− k2(n⋆ − nε)δuεg

(7.24)

First notice that for j ∈ [[1, d]], (a⋆ − aε)ei can be rewritten as:

(a⋆ − aε)
∗ej = εaε∇ϕε,∗

j − ε∇ · σε,∗
j .

Moreover δϕi verifies in Rd

−∇ · a∇δϕi = ∇ · δa(∇ϕ′
i + ei)

and δuε is almost sure the unique solution in H1(BR) of:
− ∆δuε − k2n0δuε = 0 in Rd \ D,

−∇ · (aε∇δuε)− k2nεδuε = ∇ · (δaε∇u′
ε) + k2δnεu′

ε in D,

∇δu−
ε · ν − aε∇δu+

ε · ν = δaε∇u′
ε
+ · ν on ∂D,

∇δuε · ν = Λ(δuε) on ∂BR.

(7.25)



7.2 Representation formula for δP 113

We thus get for i, j ∈ [[1, d]]

∇ϕε,∗
j · aε(∇δuε −∇δϕε

i )

= ∇ · (ϕε,∗
j aε(∇δuε −∇δϕε

i ))− ϕε,∗
j ∇ · (aε(∇δuε −∇δϕε

i ))

= ∇ · (ϕε,∗
j aε(∇δuε −∇δϕε

i ))

+ ϕε,∗
j (∇ · (δaε∇u′

ε) + k2δnεu′
ε + k2nεδuε)

− ϕε,∗
j ∇ · (δaε(∇ϕε,′

i + ei))

= ∇ · (ϕε,∗
j aε(∇δuε −∇δϕε

i ))

+∇ · (ϕε,∗
j δaε∇u′

ε)−∇ϕε,∗
j · δaε∇u′

ε + k2δnεu′
εϕ

ε,∗
j + k2nεδuεϕ

ε,∗
j

−∇ · (ϕε,∗
j δaε(∇ϕε,′

i + ei)) +∇ϕε,∗
j · δaε(∇ϕε,′

i + ei).

(7.26)

By skew-symmetry, it also holds for i, j ∈ [[1, d]]

(∇ · σε,∗
j ) · ∇(δuε −∇δϕε

i ) = −∇ ·
(

σε,∗
j (∇δuε −∇δϕε

i )
)

.

Similarly n⋆ − nε = −ε∇ · βε and thus,

(n⋆ − nε)δuε = −ε∇ · (βεδuε) + εβε · ∇δuε.

Therefore we obtain

δP =
d

∑
j=1

−
ˆ

D
(ε∇ϕε,∗

j + ej)∂jg · δaε(∇u′
ε −

d

∑
i=1

(ε∇ϕε,′
i + ei)∂iu0)

− ε

ˆ
D

ϕε,∗
j ∇∂jg · δaε∇u′

ε + ε

ˆ
∂D

ϕε,∗
j ∂jg · δaε∇u′

ε · ν

+ ε

ˆ
D

k2δnεu′
εϕ

ε,∗
j ∂jg + k2

ˆ
D

δnε(u′
ε − u0)g

+
d

∑
i=1

ε

ˆ
D

ϕε,∗
j ∇(∂jg∂iu0) · δaε(ε∇ϕε,′

i + ei)

− ε

ˆ
∂D

ϕε,∗
j ∂jg∂iu0δaε(∇ϕε,′

i + ei) · ν

+ ε2
ˆ

D
∇(∂jg∂iu0) · (ϕε,∗

j aε + σε,∗
j )∇δϕε

i

− ε2
ˆ

∂D
∂jg∂iu0(ϕ

ε,∗
j aε + σε,∗

j )∇δϕε
i · ν

− ε

ˆ
D
∇∂jg · (aεϕ

ε,∗
j + σε,∗

j )∇δuε + ε

ˆ
∂D

∂jg(aεϕ
ε,∗
j + σε,∗

j )∇δuε · ν

+ ε

ˆ
D

k2nεδuεϕ
ε,∗
j ∂jg − ε

ˆ
D

k2βε · ∇δuεg

− ε

ˆ
D

k2βεδuε · ∇g + ε

ˆ
∂D

k2gβεδuε · ν.

(7.27)
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We simplify the terms depending on δuε by introducing the adjoint problem (7.22). By
Proposition 43, since ϕε,∗

j , σε,∗
j , βε ∈ H1

loc(R
d) and g ∈ H2(D), there exists a unique

solution r̃j to (7.22).
For h ∈ H1(BR), r̃j verifies:

ˆ
BR\D

∇r̃j · ∇h − k2n0r̃jh −
〈
Λ(r̃j), h

〉
H− 1

2 (∂BR),H
1
2 (∂BR)

+

ˆ
D

a∗ε∇r̃j · ∇h − k2nεr̃jh

= ε

ˆ
D
(a∗ε ϕε,∗

j − σε,∗
j )∇∂jg · ∇h − k2βεg · ∇h

+ ε

ˆ
∂D

σε,∗
j ∂jg∇h · ν + k2βεg · νh.

(7.28)

Note that we used the skew-symmetry of σj to get the integration by parts〈
σε,∗

j ,∇(∂jgh)
〉
− 1

2 , 1
2

= −
〈
(∇ · σε,∗

j ) · ν, ∂jgh
〉
− 1

2 , 1
2

(7.29)

Moreover δuε verifies for h ∈ H1(BR)

ˆ
BR\D

∇δuε · ∇h − k2n0δuεh − ⟨Λ(δuε), h⟩
H− 1

2 (∂BR),H
1
2 (∂BR)

+

ˆ
D

aε∇δuε · ∇h − k2nεδuεh =

ˆ
D
−δaε∇u′

ε · ∇h + k2δnεu′
εh,

(7.30)

and

−
ˆ

D
aε∇δuε · ∇(ϕε,∗

j ∂jg) +
ˆ

D
k2nεδuεϕ

ε,∗
j ∂jg

= −
ˆ

∂D
aεϕ

ε,∗
j ∂jg∇δuε · ν +

ˆ
D

δaε∇u′
ε · ∇(ϕε,∗

j ∂jg)

−
ˆ

D
k2δnεu′

εϕ
ε,∗
j ∂jg −

ˆ
∂D

δaε∇u′
ε · νϕε,∗

j ∂jg.

(7.31)

Therefore δuε satisfies
ˆ

BR\D
∇δuε · ∇rj − k2n0δuεrj −

〈
Λ(δuε), rj

〉
H− 1

2 (∂BR),H
1
2 (∂BR)

+

ˆ
D

aε∇δuε · ∇rj − k2nεδuεrj =

ˆ
D
−δaε∇u′

ε · ∇rj + k2δnεu′
εrj

−
ˆ

∂D
aεϕ

ε,∗
j ∂jg∇δuε · ν −

ˆ
∂D

δaε∇u′
ε · νϕε,∗

j ∂jg.

(7.32)
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We combine (7.28) for h = δuε and (7.32) to get

−
ˆ

D
δaε∇u′

ε · ∇rj + k2δnεu′
εrj = ε

ˆ
∂D

ϕε,∗
j ∂jg+δaε∇u′

ε · ν

− ε

ˆ
D
∇∂jg · (aε∇ϕε,∗

j + σε,∗
j )∇δuε + ε

ˆ
∂D

∂jg(aε∇ϕε,∗
j + σε,∗

j )∇uε · ν

+ ε

ˆ
D

k2δuεϕ
ε,∗
j ∂jg − ε

ˆ
D

k2βε · ∇δuεg + ε

ˆ
∂D

k2gβεδuε · ν.

(7.33)

We deal now with the terms depending on δϕi. Rij satisfies for all h ∈ Ḣ(Rd),ˆ
Rd

a(
·
ε
)∗∇Rij · ∇h

= ε

ˆ
D
(a∗ε ϕε,∗

j − σε,∗
j )∇(∂jg∂iu0) · ∇h − (∇ · (ηεσ

ε,∗
j ∂jg∂iu0)) · ∇h

− ε

ˆ
D

a∗ε∇(ηεϕ
ε,∗
j ∂jg∂iu0) · ∇h

(7.34)

where we used that ∇ ·
(
∇ · (ηεσ

ε,∗
j ∂jg∂iu0)

)
= 0 by the skew-symmetry of σj. Subse-

quently the sesquilinear and linear form associated to (7.23) are respectively coercive
and continuous in Ḣ(Rd) equipped with the semi-norm ∥·∥Ḣ(Rd) = ∥∇·∥L2(Rd) (cf [173,
Chapter 2.5] for more details). Moreover,

−
ˆ

∂D
ϕε,∗

j ∂jg∂iu0δaε(∇ϕε,′
i + ei) · ν −

ˆ
∂D

∂jg∂iu0ϕε,∗
j aε∇δϕε

i · ν

= −
ˆ

D
δaε(∇ϕε,′

i + ei) · ∇(ηεϕ
ε,∗
j ∂jg∂iu0)−∇δϕε

i · a∗ε∇(ηεϕ
ε
j ∂jg∂iu0)

(7.35)

and by the skew-symmetry of σj,ˆ
D
(∇ · (ηεσ

ε,∗
j ∂jg∂iu0)) · ∇δϕε

i =

ˆ
∂D

(∇ · (σε,∗
j ∂jg∂iu0)) · νδϕε

i

= −
ˆ

∂D
∂jg∂iu0σε,∗

j ∇δϕε
i · ν.

(7.36)

We combine (7.34) for h = εδϕε
i (which is a suitable test function), (7.35) and (7.36) to

get the desired result.

7.3 Proof of Theorem 39

Proof of Theorem 39. Let

∥I∥2
ℓ :=

ˆ
Rd

ℓ−d sup
S′∈Aℓ(x)

∣∣∣∣ d

∑
j=1

ˆ
D∩Bεℓ(x)

∂jg(ε∇ϕε,∗
j + ej) · δaε(∇u′

ε −
d

∑
i=1

(ei + ε∇ϕε,′
i )∂iu0)

∣∣∣∣2dx.



116 CHAPTER 7. ASYMPTOTIC EXPANSION OF THE SCATTERED FIELD

By Cauchy-Schwarz inequality we obtain

∥I∥2
ℓ ≲

ˆ
Rd

ℓ−d
( d

∑
j=1

ˆ
D∩Bεℓ(x)

|∂jg(ε∇ϕε,∗
j + ej)|2

)

sup
S′∈Aℓ(x)

(ˆ
D
|∇u′

ε −
d

∑
i=1

(ei + ε∇ϕ′
i(
·
ε
))∂iu0|2

)
dx

≲
ˆ

Rd
ℓ−d
( d

∑
j=1

ˆ
D∩Bεℓ(x)

|∂jg(ε∇ϕε,∗
j + ej)|2

)

sup
S′∈Aℓ(x)

(∥∥∥∥∥u′
ε − u0 −

d

∑
i=1

εϕε,′
i ∂iu0

∥∥∥∥∥
2

H1(D)

)
dx.

(7.37)

Using Proposition 36, we have moreover

sup
S′∈Aℓ(x)

∥∥∥∥∥u′
ε − u0 −

d

∑
i=1

εϕε,′
i ∂iu0

∥∥∥∥∥
2

H1(D)

≲ εµd(
1
ε
) sup

S′∈Aℓ(x)
(χ′

ε)
2 ∥u0∥2

W2,∞(D) .

As mentioned in [19, Remark 2.1], by following the proof of [142, Theorem 4], one has
that

C ′(z) ≲ C(z). (7.38)

where C is defined in Proposition 22. It particular, this implies that supS′∈Aℓ(x)(χ
′
ε)

2

can be bounded by χ2
ε , which is a random variable independent of S′, that satisfies the

integrability (4.52). Combining this with Lemma 41 applied to |∂jg(ε∇ϕε
j ) + ej|2 with

t = εℓ and the bounds on the gradient of the corrector yields

∥I∥2
ℓ ≲

(ˆ
Rd

ℓ−d
( d

∑
j=1

ˆ
D∩Bεℓ(x)

|∂jg(ε∇ϕε
j + ej)|2

)
dx

)(
εµd(

1
ε
)(χε)

2 ∥u0∥2
W2,∞(D)

)

≲
(

εd
d

∑
j=1

ˆ
D
|∂jg(ε∇ϕε

j + ej)|2
)(

εµd(
1
ε
)(χε)

2 ∥u0∥2
W2,∞(D)

)
≲ εd+1µd(

1
ε
)χ̃4

ε

2
(χε)

2 ∥u0∥2
W2,∞(D) ∥g∥2

W2,∞(D) ,

(7.39)

with χ̃4
ε defined as:

χ̃4
ε :=

εd ∑
z∈Pε(D)

(1 + r∗(z))2d

 1
2

.

In view of Lemma 38, χ̃4
ε

2
(χε)2 satisfies the expected stochastic integrability.
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Let

∥I I∥2
ℓ :=

ˆ
Rd

ℓ−d sup
S′∈Aℓ(x)

∣∣∣∣∣ d

∑
j=1

ˆ
D
−(εϕε,∗

j ∇∂jg +∇rj) · δaε∇u′
ε + k2δnεu′

ε(rj + εϕε,∗
j ∂jg)

∣∣∣∣∣
2

dx.

Similarly to the analysis done with vε in the proof of Proposition 36, one has that rj
satisfies a similar decay rate:∥∥rj

∥∥
H1(D)

≲ ε
1
2 µd(

1
ε
)

1
2 χ̃5

ε ∥g∥W2,∞(D) , (7.40)

for some random variable χ̃5
ε satisfying (4.52).

To get rid of the dependency with respect to S′, note that δuε also satisfies
− ∆δuε − k2δuε = 0 in BR \ D,

−∇ ·
(
a′ε∇δuε

)
− k2δuε = −∇ · (δaε∇uε)− k2δnεuε in D,

∇δu−
ε · ν − a′ε∇δu+

ε · ν = −δaε∇u+
ε · ν on ∂D,

∇δuε · ν = Λ(δuε) on ∂BR.

(7.41)

In particular, by Proposition 43

∥δuε∥H1(D) ≲ ∥uε∥H1(Bεℓ(x)∩D) . (7.42)

This gives

sup
S′∈Aℓ(x)

∥∥u′
ε

∥∥
H1(Bεℓ(x)∩D) ≲ sup

S′∈Aℓ(x)
∥δuε∥H1(D) + ∥uε∥H1(Bεℓ(x)∩D)

≲ ∥uε∥H1(Bεℓ(x)∩D) .
(7.43)

We can finally compute ∥I I∥2
ℓ using the Lemma 41 on uε and the bounds on the correc-

tors which yields

∥I I∥2
ℓ ≲

( d

∑
j=1

ˆ
D
|∇rj|2 + ε2|ϕε,∗

j ∇∂jg|2 + |rj|2 + ε2|ϕε,∗
j ∂jg|2

)
×
ˆ

Rd
ℓ−d
(

sup
S′∈Aℓ(x)

∥∥u′
ε

∥∥2
H1(Bεℓ(x)∩D)

)
dx

≲ εd+1µd(
1
ε
)χ̃6

ε

2
∥u0∥2

W2,∞(D) ∥g∥2
W2,∞(D) ,

(7.44)

for a random variable χ̃6
ε satisfying the desired integrability.

Let

∥I I I∥2
ℓ =

ˆ
Rd

ℓ−d sup
S′∈Aℓ(x)∣∣∣∣∣ d

∑
i,j=1

ˆ
D
(εϕε,∗

j ∇∂jg∂iu0 − ε∇ · (ηεϕ
ε,∗
j ∂jg∂iu0) +∇Rij) · δaε(ε∇ϕε,′

i + ei)

∣∣∣∣∣
2

dx.

(7.45)
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To estimate ∥I I I∥2
ℓ , we follow the steps of the proof of [19, Proposition 2.6]. By a change

of variable y 7→ y
ε in the integral in D and by [19, Lemma 2.9], we obtain

∥I I I∥2
ℓ ≲ ε2d

ˆ
Rd

d

∑
i,j=1

 
Br∗(x)(x)

ε2
[
|ϕε,∗

j ∇∂jg∂iu01D|2(ε·)

+ ε2|∇ · (ηεϕ
ε,∗
j ∂jg∂iu01D|2(ε·) + |∇Rij|2(ε·)

]
sup

S′∈Aℓ(x)

ˆ
B2ℓ+r∗(x)(x)

|∇ϕ′
i + ei|2dx.

(7.46)

Moreover from [136, Proof of Theorem 4], we obtain for i ∈ [[1, d]],

sup
S′

ˆ
B2ℓ+r∗(x)(x)

|∇ϕ′
i + ei|2dx ≲

ˆ
B2ℓ+r∗(x)(x)

|∇ϕi + ei|2 ≲ 2d(ℓ+ r∗(x))ddx.

Thus, since for all x ∈ Rd, (ℓ+ r∗(x))d ≲ ℓdr∗(x)d, we have

∥I I I∥2
ℓ ≲ ε2dℓd

d

∑
i,j=1

ˆ
Rd

r∗(x)×( 
Br∗(x)(x)

ε2|ϕε,∗
j ∇∂jg∂iu01D|2(ε·) + ε2|∇ · (ηεϕ

ε,∗
j ∂jg∂iu01D|2(ε·) + |∇Rij|2(ε·)

)
dx.

(7.47)

We recall the following estimate [19, (3.8)] in the form: If v is the solution in Ḣ(Rd) of
−∇ · a∇v = ∇ · h, with h ∈ L2(D), then for all α such that d < α < 3d and for all T > 1

ˆ
Rd

r∗(x)d
( 

Br∗(x)(x)
|h|2 + |∇v|2

)

≲α r∗(0)
α
2

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2
(ˆ

Rd
ρα

T

(ˆ
B(x)

|h|2
)2) 1

2

,

(7.48)

with ρT defined in Lemma 41. Note that Rij verifies:

−∇ · (a∇Rij(ε·))

= −ε∇ ·
(((

(a∗ε ϕε,∗
j − σε,∗

j )∇(∂jg∂iu0)

− (∇ · (ηεσ
ε,∗
j ∂jg∂iu0))− a∗ε∇(ηεϕ

ε,∗
j ∂jg∂iu0)

)
1D

)
(ε·)
)

:= −∇(·Hij1D(ε·)).

(7.49)
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Thus we can apply (7.48) to Rij which yields for any α such that d < α < 3d and T > 1

d

∑
i,j=1

ˆ
Rd

r∗(x)
 

Br∗(x)(x)
|∇Rij|2(ε·)

≲α

d

∑
i,j=1

r∗(0)
α
2

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2
(ˆ

Rd
ρα

T

(ˆ
B(x)

|Hij1D|2(ε·)
)2) 1

2

.

(7.50)

By denoting:

|(Fij1D)(ε·)|2 := ε2|ϕε,∗
j ∇∂jg∂iu01D|2(ε·) + ε2|∇ · (ηεϕ

ε,∗
j ∂jg∂iu01D|2(ε·),

we also have

d

∑
i,j=1

ˆ
Rd

r∗(x)
 

Br∗(x)(x)
|Fij1D|2(ε·)

≲α

d

∑
i,j=1

r∗(0)
α
2

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2
(ˆ

Rd
ρα

T

(ˆ
B(x)

|Fij1D|2(ε·)
)2) 1

2

.

(7.51)

Similarly to the analysis done in the proof of Proposition 36, one has that

∥∥Fij
∥∥

L2(D)
+
∥∥Hij

∥∥
L2(D)

≲ ε
1
2 µd(

1
ε
)

1
2 χ̃7

ε ∥u0∥2
W2,∞(D) ∥g∥2

W2,∞(D) , (7.52)

for a random variable χ̃7
ε satisfying the desired integrability.

After changing variables to x 7→ εx in the inner and outer integral and applying (7.16)
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from Lemma 41 (with U := Fij + Hij) we obtain

∥I I I∥2
ℓ ≲α εdℓdr∗(0)

α
2

d

∑
i,j=1

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2

(ˆ
Rd

ρα
T

(ˆ
Bε(εx)

|Fij1D|2 + |Hij1D|2
)2) 1

2

≲α εd/2ℓdr∗(0)
α
2

d

∑
i,j=1

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2

(ˆ
Rd

ρα
εT

(ˆ
Bε(x)

|Fij1D|2 + |Hij1D|2
)2) 1

2

≲α εdℓdr∗(0)
α
2

d

∑
i,j=1

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2

sup
y∈D

(
ε + y

εT
+ 1
) α

2

(ˆ
D
|Fij1D|2 + |Hij1D|2

)
≲α εd+1µd(

1
ε
)χ̃7

ε

2
ℓdr∗(0)

α
2

(ˆ
Rd

r2d
∗ ρ−α

T

) 1
2

sup
y∈D

(
ε + y

εT
+ 1
) α

2

.

(7.53)

Choosing T = 1
ε yields the desired result. Indeed, the random variables at stake r∗ and

χ̃7
ε verify the desired stochastic integrability.

Let

∥IV∥2
ℓ := ℓ−d

ˆ
Rd

sup
S′∈Aℓ(x)

∣∣∣∣ˆ
D

k2δnε(u′
ε − u0)g − εk2βεδuε · ∇g

∣∣∣∣2.

Proposition 37 combined with the estimate (7.38) yields

sup
S′∈Aℓ(x)

∥∥u′
ε − u0

∥∥
L2(D) ≲ εµd(

1
ε
)χ̂ε ∥u0∥W2,∞(D) .

Therefore, using (7.42) and Lemma 41 we get

∥IV∥2
ℓ ≲ ℓ−d

ˆ
Rd

sup
S′∈Aℓ(x)

∥∥u′
ε − u0

∥∥2
L2(D)

(ˆ
D∩Bεℓ(x))

|g|2
)

+ ε2ℓ−d
ˆ

Rd

(ˆ
D∩Bεℓ(x))

|uε|2 + |∇uε|2
)
∥βε · ∇g∥2

L2(D)

≲ εd+2µd(
1
ε
)2
(

χ̂ε
2 ∥u0∥2

W2,∞(D) ∥g∥2
L2(D) + χ2

ε ∥g∥2
W1,∞(D) ∥uε∥2

H1(D)

)
≲ εd+2µd(

1
ε
)2χ̃9

ε

2
∥u0∥2

W2,∞(D) ∥g∥2
W2,∞(D) ,

(7.54)
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with χ̃9
ε

2
:= χ̂ε

2 + χ2
ε .
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CHAPTER 8

Numerical illustrations

In this section, we illustrate numerically the different asymptotic expansion of uε,
i.e. the results of Proposition 37 and Corollary 40. Especially, we recover the predicted
convergence rates.

8.1 Geometry and choice of parameters

We choose D as the two-dimensional square (−LD/2, LD/2)2, with LD = 5. All the
inclusions are disks of equal radius. The centers of the inclusions of size 1 are sampled
according to a Matèrn point process [134, Section 6.5.2] in a domain QL := (− L

2 , L
2 )

d

with L ≫ 1. To compute the correctors and the associated homogenized coefficients,
we will use periodization [141] and thus the Matèrn process is periodized in QL. The
different parameters chosen for the simulation are summarized in Table 8.1. Note in

Parameter Value
Angle of the incident wave ui 0 (From left to right)

h 0.07
k 5

(aM, aS) (2.0, 3.5)
(nM, nS) (1.5, 0.5)

ε Between 0.18 and 0.09
Volumic fraction of inclusions ≈ 22.6%

Table 8.1: Parameters of the simulation

particular that LD is of the order of a few wavelengths.
The solutions are computed with XLiFE + + [182], an open source FEM, BEM, and
FEM-BEM solver. In order to avoid significant discretization errors and distinguish
them from the homogenization error, the mesh step h is taken sufficiently small, i.e.
much smaller than ε. We choose a P1 mesh. All the equations defined in BR are im-
plemented with a classical FEM-BEM coupling to avoid numerically computing the
corresponding Dirichlet-to-Neumann operators on ∂BR. We choose P2 elements both
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for the FEM and the BEM unknown. For a single realization, with the set of param-
eters of Table 8.1, the problems uε, u0 and U1 could be simulated in a few minutes
on a personal laptop. All the following simulations were obtained using a server
with bi-processors, AMD EPYC Processor 7452 2.35 GHz with 128 threads, 2 chips,
32 cores/chip, 2 threads/core with RAM of 256 Go.

8.2 Computation of the reference solution

We describe here the procedure to simulate uε. The computation of u0 and U1 will
be done similarly. We solve simultaneously u+

ε ∈ H1(D), the solution of the equation
for uε inside D and the flux p+ε ∈ H− 1

2 (∂D),

p+ε := aε∇u+
ε · ν.

Since the outside domain is homogeneous, by knowing only u+
ε and p+ε , we can com-

pute uε(y) for y ∈ BR \ D using the Green function G of the free space:

G(x, y) :=


i
4

H(1)
0 (k|x − y|) if d = 2,

exp(ik|x − y|)
4π|x − y| if d = 3,

(8.1)

where H(1)
0 is the first Hankel function of the first kind [108]. uε satisfies for y ∈ BR \ D

uε(y) = ui(y) +
ˆ

∂D
∇G(·, y) · νu−

ε −∇u−
ε · νG(·, y),

i.e.

uε(y) = ui(y) +
ˆ

∂D
∇G(·, y) · νu+

ε − p+ε G(·, y). (8.2)

Then u+
ε is the solution in H1(D) of:{

−∇ ·
(
aε∇u+

ε

)
− k2nεu+

ε = 0 in D,

aε∇u+
ε · ν = p+ε on ∂D.

(8.3)

The equation for the flux p+ε on ∂D is obtained by taking the normal trace of (8.2). Using
the classical jump formula for the single layer potential [108, (2.64)], we have

u+
ε (y)
2

= ui(y) +
ˆ

∂D
∇G(·, y) · νu+

ε − p+ε G(·, y). (8.4)
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By coupling (8.3) and (8.4), this yields the following variational formulation:
find (u+

ε , p+ε ) ∈ H1(D)× H− 1
2 (D) such that for all (v, q) ∈ H1(D)× H

1
2 (D),

ˆ
D

aε∇u+
ε · ∇v − k2n⋆u+

ε v −
ˆ

∂D
p+ε v +

u+
ε (y)
2

q

+

¨
∂D×∂D

(
−u+

ε (x)∇G(x, y) · ν(x)q(y) + p+ε (x)G(x, y)q(y)
)

dσ(x)dσ(y)

=

ˆ
∂D

uiq.

(8.5)

The simulation of u0 is done similarly by replacing the coefficient fields aε and nε with
a⋆ and n⋆.

8.3 Computation of the correctors and effective parame-
ters

As it is customary in stochastic homogenization, we choose to compute ϕ with pe-
riodic boundary condition and a regularization term. We compute the periodized cor-
rectors ϕT,L

i solutions in

H1
per(QL) := {ϕ ∈ H1

loc(R
d) | ϕ QL-periodic}

of
1
T

ϕT,L
i −∇ · a(∇ϕT,L

i + ei) = 0.

The massive term ensures
´
QL

ϕT,L
i = 0. If one computes ã⋆ as

[ã⋆]i,j := E

[ 
(− L

2 , L
2 )

d
a(ei +∇ϕT,L

i ) · (ej +∇ϕT,L
j )

]
,

then one has that limT,L−→∞
[
ã⋆
]

i,j = [a⋆]i,j.

Furthermore, from [135, Proposition 2], we know that the corrector ϕT posed in the
entire space Rd without periodic condition satisfies for T ≫ 1,

E[|∇ϕT −∇ϕ|2] ≲
{

T−1 if d = 2,

T− 3
2 if d = 3.

(8.6)

Therefore, for T and L sufficiently large, ϕT,L
i is a good approximation of ϕi [138].

To compute the numerical approximations of a⋆ and n⋆ that we call a⋆num and n⋆
num, we
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use a Monte-Carlo algorithm. For a fixed number N of distinct periodic realizations we
compute

[a⋆num]ij :=
1
N

N

∑
m=1

ˆ
(− L

2 , L
2 )

d
am(ei +∇ϕT,L,m

i ) · (ej +∇ϕT,L,m
j ),

and

n⋆
num :=

1
N

N

∑
m=1

ˆ
(− L

2 , L
2 )

d
nm,

where ak, nk and ϕT,L,k
i are respectively the coefficients for the k-th realization and the

solution of the periodized corrector equation for the k-th realization.

We choose T = 107, L = 50 and N = 20. For the set of parameters described in
Table 8.1, we find the following homogenized coefficients:

a⋆num :=
[

2.27054991565 0.000164757342405
0.000164757342405 2.27054991565

]
,

and
n⋆

num := 1.2735108046.

To simulate U1, we remark that U1 is the solution in H1(BR) of

− ∆U1 − k2U1 = 0 in BR \ D,

−∇ · (a⋆∇U1)− k2n⋆U1 = −∇ · Hε − k2(n⋆ − nε)u0 in D,

U−
1 −U+

1 = 0 on ∂D,

∇U−
1 · ν − a⋆∇U+

1 · ν = −Hε · ν on ∂D,
∇U1 · ν = Λ(U1) on ∂BR,

(8.7)

with Hε defined as
Hε := (a⋆ − aε)(ei +∇ϕε

i )∂iu0,

so that U1 can be simulated just as u0 with the correct source term.

8.4 Numerical results

We show here the results of the computations of uε, u0 and U1 on Figure 8.1 and
Figure 8.2. We plot the mesh and the solutions associated with one realization. We also
plot and compare the error terms and the correction U1 to illustrate both Proposition 36
and Theorem 39.

The Monte-Carlo process to compute the average error is done with 30 realizations
on Figure 8.3.
One can see on Figure 8.3, that the expected error decay of order
ε

d+1
2 µd(

1
ε )

1
2 = ε

3
2 | log(ε)| 1

2 in Theorem 39 is obtained. For values of ε of order 0.1,
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(a) Mesh with domains (b) Realization of aε with ε = 0.09 in D

(c) Solution uε with ε = 0.09 (d) Solution u0

Figure 8.1: (a) Mesh, (b) aε for a realization of S with ε = 0.09, (c) corresponding
uε and (d) homogenized solution u0 for an incident plane wave along (1, 0).

the asymptotic expansion u0 + εU1 is already a very good approximation of the field
uε.
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(a) uε − u0 for the realization of S in Fig-
ure 8.1b (ε = 0.09)

(b) U1 for the realization of S in Figure 8.1b
(ε = 0.09)

(c) uε − u0 − U1 for the realization of S in
Figure 8.1b (ε = 0.09)

Figure 8.2: For the realization S shown in Figure 8.1b, (a) error term uε − u0, (b)
correction term U1, (c) error term term uε − u0 −U1.
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0.180.160.140.120.100.09

0.24
0.20
0.16

0.12

0.08

0.04

0.02

slope: 1.094 (R2 = 0.994)

slope: 1.966 (R2 = 0.982)

ε

E
[ ∥

·∥
2 L2

(B
R
\D

)] 1/2

E
[
∥uε − u0∥2

L2(BR\D)

] 1
2

E
[
∥uε − u0 −U1∥2

L2(BR\D)

] 1
2

Figure 8.3: Error decay and linear regression.
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APPENDIX A

Well-posedness of the scattering
problem and Hs-regularity

We show in this appendix that the scattering problems are well-posed in
H1(BR \ D)× H1(D) with a control of uε that is independent on ε and the randomness.
To do so, we suppose that the bilinear form associated to (6.1) is coercive. Finally, we
prove that u0 can be more regular than H1 under regularity assumptions on the bound-
ary of D and the source terms. The coercivity of the bilinear form is not a restrictive
hypothesis. It can be shown for example under either one of the following sufficient
conditions [183]

1. ℑk > 0

2. kR is small enough (low frequency).

Proposition 43: Uniform stability under coercivity assumption

Let D ⊂ Rd be a non-empty, open, and bounded set having C2- boundary ∂D such
that the exterior domain Rd \ D is connected. Let A : D 7→ Cd×d and n : D 7→ C.
We suppose that A(x), x ∈ D, is a definite positive matrix that satisfies, ξ · Aξ ≥
Λ−

A |ξ|2 and |Aξ| ≤ Λ+
A |ξ| for all ξ ∈ C3 and x ∈ D, and that Λ+

n ≥ n ≥ Λ−
n > 0

where Λ+
A , Λ−

A , Λ+
n , Λ−

n are positive constants.
Let f ∈ L2(D), g ∈ H

1
2 (∂D) and h ∈ H− 1

2 (∂D). Then, there exists a unique
u ∈ H1(BR \ D)× H1(D) solution of the transmission problem
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HS-REGULARITY



− ∆u− − k2n0u− = 0 in BR \ D,

−∇ ·
(

A∇u+
)
− k2nu+ = f in D,

u− − u+ = g on ∂D,

∇u− · ν − A∇u+ · ν = h on ∂D,
∇u · ν = Λ(u) on ∂BR,

(A.1)

which satisfies the uniform control:

∥u∥H1(BR\D) + ∥u∥H1(D) ≲ ∥ f ∥L2(D) + ∥g∥
H

1
2 (∂D)

+ ∥h∥
H− 1

2 (∂D)
. (A.2)

We also need a regularity result on the homogenized solution u0 that we recall here.

Proposition 44: Hs- regularity for the transmission problem

Let s ≥ 2. Let D be a bounded domain of class Cs. If A, n ∈ Cs−2(D),
f ∈ Hs−2(D) g ∈ Hs− 1

2 (∂D) and h ∈ Hs− 3
2 (∂D), then the unique solution

u ∈ H1(D) × H1(BR \ D) of (A.1) belongs to Hs(D) × Hs(BR \ D). Moreover
the following estimate holds:

∥u∥Hs(BR\D) + ∥u∥Hs(D) ≲ ∥ f ∥Hs−2(D) + ∥g∥
Hs− 1

2 (∂D)
+ ∥h∥

Hs− 3
2 (∂D)

. (A.3)

Proof. We rely on elliptic regularity results proved in [184] to establish our result. We
first prove that u belongs to H2(D). Since u ∈ H1(D), its trace on ∂D belongs to
H

1
2 (∂D). Let ũ ∈ H1(D) be the unique solution of{

−∇ · (A∇ũ)− k2nũ = 0 in D,
ũ = u on ∂D.

(A.4)

Then ũ satisfies the hypotheses of [184, Theorem 3.4.1] and therefore ũ is in H2(D).
By uniqueness of the solution of (A.4), we also have:

ũ = u in D.

Therefore u ∈ H2(D). Using the same reasoning in BR \ D with a Dirichlet-to-
Neumann operator on the boundary of BR, one concludes that u ∈ H2(BR \ D).
Similarly we can now apply [184, Theorem 2.3.2 (ii)] to show that u belongs in fact to
Hs(D)× Hs(BR \ D) and get the estimate.
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APPENDIX B

Qualitative homogenization

We detail here the proof of the convergence of uε towards u0 strongly in L2(BR) and
weakly in H1(BR) by the method of oscillating test functions.

Proposition 45: Homogenization of the scattering problem in H1(BR)

Let uε be the almost sure unique solution in H1(BR) of (6.1) and u0 ∈ H1(BR) be
the solution of (6.2). Then we have the following convergence results as ε goes to
0 

uε
L2(BR)−−−→ u0,

∇uε
L2(BR)−−−⇀ ∇u0,

aε∇uε
L2(BR)−−−⇀ a⋆∇u0.

(B.1)

Here, we extend a⋆ by I in BR \ D.

Proof. Since almost surely uε is uniformly bounded in H1(BR) independently of ε, by
Rellich-Kondrachov theorem, we can extract a subsequence, still denoted uε such that

uε
H1(BR)−−−−⇀ u, (B.2)

for a certain u ∈ H1(BR). By Rellich’s theorem we have then uε
L2(BR)−−−→ u. Similarly

thanks to the uniform ellipticity of a, we have:

∥aε∇uε∥L2(BR)
≤ Λa ∥∇uε∥L2(BR)

≲
∥∥∥ui
∥∥∥

H1(BR)
.

Therefore we can also extract a subsequence of aε∇uε such that

aε∇uε
L2(BR)−−−⇀ F⋆

for some F⋆ ∈ L2(BR).
We show that u = u0 and F⋆ = a⋆∇u0.
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By Birkhoff’s ergodic theorem and the strong convergence of uε to u in L2(D), we have
that

nεuε
L2(BR)−−−⇀ E[n]u = n⋆u.

Furthermore, the DtN operator is continuous from H
1
2 (∂BR) to H− 1

2 (∂BR) and the trace
operator is continuous from H1(BR) to H

1
2 (∂BR). Thus

Λ(uε)
H− 1

2 (∂BR)−−−−−−⇀ Λ(u).

By passing to the limit inside the variational formulation of (6.1) for uε, one finds that,
for all v ∈ H1(BR),

ˆ
D

F⋆ · ∇v−k2n⋆uv +

ˆ
BR\D

F⋆ · ∇v − k2n0uv

− ⟨Λ(u), v⟩
H− 1

2 (∂BR),H
1
2 (∂BR)

=
〈

Λ(ui), v
〉

H− 1
2 (∂BR),H

1
2 (∂BR)

.
(B.3)

For i ∈ [[1, d]], let ψi ∈ H1
loc(R

d) be the adjoint corrector satisfying

−∇ · a∗(∇ψi + ei) = 0 in D′(Rd), (B.4)

with the anchoring condition 1
|□0|

´
□0

ψi = 0.
Moreover, ∇ψi is stationary, verifies E[∇ψi] = 0 and admits finite second order mo-
ment. Now for all x ∈ Rd, let

αi(x) := xi + ψi(x),

and
αε

i (x) := εαi(
x
ε
) = xi + εψi(

x
ε
).

Thanks to the sublinearity of ψi, αε
i

L2(BR)−−−→ xi. Moreover by Birkhoff’s theorem

∇αε
i

L2(BR)−−−⇀ ei. Thus

αε
i

H1(BR)−−−−⇀ xi.

Similarly by Birkhoff’s theorem, a∗ε∇αε
i

L2(BR)−−−⇀ E[a∗∇αi] = E[a∗(ei +∇ψi)].
Moreover, since E[∇ϕj · a∗(ei +∇ψi)] = E[∇ψi · a(ej +∇ϕj)] = 0 for i, j ∈ [[1, d]],

E[ej · a∗∇αi] = E[(ej +∇ϕj) · a∗(ei +∇ψi)

= E[a(ej +∇ϕj) · ei

= a⋆ji = ei · a⋆ej.
(B.5)
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For ζ ∈ C∞
c (BR) consider the variational formulation of the problem solved by uε with

the test function ζαε
i ,

0 =

ˆ
BR

aε∇uε · ∇(ζαε
i )− k2nεuεζαε

i

=

ˆ
BR

aε∇uε · (∇ζ)αε
i − (∇ζ)uε · a∗ε∇αε

i − k2nεuεζαε
i .

(B.6)

Then, by passing to the limit

ˆ
D

F⋆ · (∇ζ)xi − (∇ζ)u · (a⋆)∗ei − k2n⋆uζxi

+

ˆ
BR\D

F⋆ · (∇ζ)xi − a⋆(∇ζ)u · ei − k2n0uζxi = 0.

(B.7)

Moreover by (B.3)

ˆ
BR

F⋆ · (∇ζ)xi =

ˆ
BR

F⋆ · ∇(ζxi)− F · ζei

=

ˆ
BR\D

k2n0uζxi +

ˆ
D

k2n⋆uζxi −
ˆ

BR

F⋆ · ζei. (B.8)

Since ζu ∈ H1
0(BR), an integration by parts yields

ˆ
BR

a⋆(∇ζ)u · ei =

ˆ
BR

−a⋆∇u · ζei (B.9)

from which we obtain that for any ζ ∈ C∞
c (BR) and for any i ∈ [[1, d]],

ˆ
BR

ζei · (a⋆∇u − F⋆) = 0. (B.10)

This implies that almost surely F⋆ = a⋆∇u in D′(BR), thus in L2(BR).
Finally, (B.3) can then be rewritten as

ˆ
BR

a⋆∇u · ∇v − k2n⋆uv − ⟨Λ(u), v⟩
H− 1

2 (∂BR),H
1
2 (∂BR)

=〈
Λ(ui), v

〉
H− 1

2 (∂BR),H
1
2 (∂BR)

. (B.11)

We get u = u0. Moreover by uniqueness of the limit, we proved convergence of uε and
aε∇uε and not just of a subsequence.
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APPENDIX C

Homogenization with a less regular
solution

In Section 6 Proposition 36, we proved an error estimate for the two-scale expansion
when u0|D ∈ W2,∞(D). This result still holds for less regular u0 as stated in Proposi-
tion 47.
As done in [119], we consider an extension of u0|D that we denote û0 ∈ W1+α,p(Rd). û0
is defined through the Sobolev extension theorem stated below.

Lemma 46: Sobolev extension theorem [119, Proposition B.14]

Let D be a bounded Lipschitz domain, α ∈ (0, ∞) and p ∈ (1, ∞). The restriction
operator Wα,p(Rd) → Wα,p(D) has a bounded linear right inverse. That is, there
exists a linear operator

Ext : Wα,p(D) → Wα,p(Rd),

such that, for every u ∈ Wα,p(D),

Ext(u) = u a.e. in D,

and
∥Ext(u)∥Wα,p(Rd) ≲ ∥u∥Wα,p(D) .

We derive a convergence rate of uε towards the two-scale expansion when
u0|D ∈ W1+α,p(D).
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Proposition 47: H1- convergence of the two-scale expansion for u0|D ∈ W1+α,p(D)

For p ∈ (2, ∞], α ∈ ( 1
p , 1], suppose that u0 ∈ H1(BR) such that u0|D ∈ W1+α,p(D)

then

∥uε− u0∥H1(BR\D) + ∥uε − u0 − û1,ε∥H1(D) ≲ ε
1
2 µd(

1
ε
)

1
2 χ̂ε,p ∥u0∥W1+α,p(D) , (C.1)

where û1,ε is defined by

û1,ε(x) := 1D(x)
d

∑
i=1

ϕi

(
x
ε

)
∂iû0 ∗ ξε(x) for x ∈ BR,

with the standard mollifier ξε defined by

ξε(x) := ε−d


cd exp(− 1

1 − | x
ε |2

) for | x
ε | < 1,

0 for | x
ε | ≥ 1,

(C.2)

and cd is such that ˆ
Rd

ξε(x)dx = 1.

Here χ̂ε,p denotes a random variable satisfying the stochastic integrability (4.52).

In order to prove the previous theorem, we introduce the boundary corrector and
start by proving the result with the boundary corrector.

Proposition 48: H1- convergence of the two-scale expansion with the boundary
corrector for u0|D ∈ W1+α,p(D)

For p ∈ (2, ∞], α ∈ (0, 1], suppose that u0 ∈ H1(BR) such that u0|D ∈ W1+α,p(D)
then

∥uε − u0 − û1,ε − v̂ε∥H1(BR)
≲ εαµd(

1
ε
)χε,p ∥u0∥W1+α,p(D) , (C.3)

where the boundary corrector v̂ε ∈ H1(BR \ D)× H1(D) is the solution of
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

− ∆v̂ε − k2v̂ε = 0 in BR \ D,

−∇ · aε∇v̂ε − k2nεv̂ε = 0 in D,

v̂ε
− − v̂ε

+ = εû1,ε on ∂D,

∇v̂ε
− · ν − aε∇v̂ε

+ · ν = ε
(
∇ · (σε

i ∂iû0 ∗ ξε)
+
)
· ν

− k2ε(βεû0 ∗ ξε)
+ · ν on ∂D,

∇v̂ε · ν = Λ(v̂ε) on ∂BR.

(C.4)

χε,p is a random variable defined as

χε,p :=

εd ∑
z∈Pε(D)

C(z)
2p

p−2


p−2
2p

, (C.5)

with C denoting the constant in Proposition 22. Moreover χε,p satisfies the
stochastic integrability (4.52).

Both results of Proposition 47 and Proposition 48 were established for the Poisson
equation in a bounded domain with Dirichlet or Neumann condition in [119, Chap-
ter 6]. The proofs below use similar arguments as the ones developed in [119].

Proof of Proposition 48. We denote Ẑε := uε − u0 − εû1,ε.
As in Proposition 35, the boundary layer v̂ε solution of (C.4) is constructed such that
Ẑε − v̂ε is the unique solution in H1(BR) of{

−∇ · aε∇(Ẑε − v̂ε)− k2nε(Ẑε − v̂ε) = ∇ · F̂ε + k2Ĝε in BR,

∇(Ẑε − v̂ε) · ν = Λ(Ẑε − v̂ε) on ∂BR,
(C.6)

where F̂ε and Ĝε are defined by

F̂ε := ε(aεϕ
ε
i − σε

i )∇(∂iû0 ∗ ξε) + (aε − a⋆)∇(û0 ∗ ξε − u0) + εk2βεû0 ∗ ξε, (C.7)

and
Ĝε := ε ((nεϕ

ε
i − βε

i )∂iû0 ∗ ξε) + (nε − n⋆)(u0 − û0 ∗ ξε). (C.8)

Moreover, Ẑε − v̂ε verifies almost surely∥∥∥Ẑε − v̂ε

∥∥∥
H1(BR)

≲
∥∥∥F̂ε

∥∥∥
L2(D)

+
∥∥∥Ĝε

∥∥∥
L2(D)

. (C.9)

To prove (C.1), we hence need to prove that∥∥∥F̂ε

∥∥∥
L2(D)

+
∥∥∥Ĝε

∥∥∥
L2(D)

≲ εαµd(
1
ε
)χε,p ∥u0∥W1+α,p(D) .
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By the triangle inequality, we immediately get∥∥∥F̂ε

∥∥∥
L2(D)

+
∥∥∥Ĝε

∥∥∥
L2(D)

≲ ε ∥|ϕε − σε||∇∇û0 ∗ ξε|∥L2(D) + ε ∥|βε||û0 ∗ ξε|∥L2(D)

+ ε ∥|ϕε − βε|∇û0 ∗ ξε∥L2(D) + ∥∇(û0 ∗ ξε − u0)∥L2(D) + ∥û0 ∗ ξε − u0∥L2(D) .

(C.10)

It remains to estimate these five terms.
We recall a useful Lemma, proved in [119], which allows us to estimate the three first
terms of (C.10).

Lemma 49: [119, Lemma 6.8]

Fix α ∈ (0, 1] and p ∈ (2, ∞). Let f ∈ L2(D + 2ε□0), g ∈ Lp(D + 2ε□0) and its
Sobolev extension ĝ ∈ Lp(Rd). Then

∥ f |ĝ ∗ ξε|∥L2(D) ≲

εd ∑
z∈Pε(D)

∥ f ∥
2p

p−2

L2(z+2ε□0)


p−2
2p

∥g∥Lp(D+2ε□0)
, (C.11)

where ∥ f ∥L2(z+2ε□0)
:= ∥ f ∥L2(z+2ε□0)

:=
(ffl

z+2ε□0
| f |2

) 1
2 .

Moreover, if g ∈ Wα,p(D + 2ε□0), then

∥ f |∇(ĝ ∗ ξε)|∥L2(D) ≲ εα−1

εd ∑
z∈Pε(D)

∥ f ∥
2p

p−2

L2(z+2ε□0)


p−2
2p

∥g∥Wα,p(D+2ε□0)
.

(C.12)

Now, using (C.12), with f = ϕε and g = ∇û0 and the corrector estimate of Proposi-
tion 22, we obtain

∥|ϕε| |∇(∇û0 ∗ ξε)|∥L2(D)

≲ εα−1

εd ∑
z∈Pε(D)

∥ϕε∥
2p

p−2

L2(z+2ε□0))


p−2
2p

∥∇û0∥Wα,p(D+2ε□0)

≲ εα−1

εd ∑
z∈Pε(D)

∥ϕ∥
2p

p−2

L2(2□0)


p−2
2p

∥∇u0∥Wα,p(D)

≲ εα−1µd(
1
ε
)

εd ∑
z∈Pε(D)

C(z)
2p

p−2


p−2
2p

∥∇u0∥Wα,p(D) .

(C.13)
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Similarly, with f = ϕε − βε and g = û0,

∥|ϕε − βε||∇û0 ∗ ξε|∥L2(D) ≲ εα−1µd(
1
ε
)

εd ∑
z∈Pε(D)

C(z)
2p

p−2


p−2
2p

∥u0∥Wα,p(D) . (C.14)

Now, using (C.11) with f = βε and g = u0, we get

∥|βε||u0 ∗ ξε|∥L2(D) ≲ µd(
1
ε
)

εd ∑
z∈Pε(D)

C(z)
2p

p−2


p−2
2p

∥u0∥Lp(D) . (C.15)

To estimate the last two terms of (C.10), we recall another useful lemma.

Lemma 50: [119, Lemma 6.7]

Fix 1 ≤ q ≤ p < ∞ and 0 < α ≤ 1. Let g ∈ Wα,p(D + 2ε□0) and its Sobolev
extension ĝ ∈ Wα,p(Rd). Then

∥g − (ĝ ∗ ξε)∥Lq(D) ≲ |D|
1
q−

1
p εα ∥g∥Wα,p(D+2ε□0)

. (C.16)

Using this Lemma, with g = ∇u0, q = 2, and p > 2, we have

∥∇u0 − (∇û0) ∗ ξε∥L2(D) ≲ εα ∥∇û0∥Wα,p(D+2ε□0)
≲ εα ∥u0∥W1+α,p(D) (C.17)

and with g = u0 we obtain similarly

∥u0 − û0 ∗ ξε∥L2(D) ≲ εα ∥û0∥Wα,p(D+2ε□0)
≲ εα ∥u0∥Wα,p(D) . (C.18)

Inserting (C.13), (C.14), (C.15), (C.17), (C.18) into (C.10) gives us (C.1), concluding the
proof of Proposition 35.

By estimating the H1-norm of the boundary corrector v̂ε, we can now prove Propo-
sition 47.

Proof of Proposition 47. We consider V̂ε := v̂ε − εηεû1,ε the almost sure unique solution
in H1(BR) of

− ∆V̂ε − k2V̂ε = 0 in BR \ D,

−∇ · aε∇V̂ε − k2nεV̂ε = −ε∇ · aε∇(ηεû1,ε) + εk2nεηεû1,ε in D,

∇V̂ε
− · ν − aε∇V̂ε

+ · ν = εaε∇(ηεû1,ε) · ν + ε
(
∇ · (σε

i ∂iû0 ∗ ξε)
+
)
· ν

− k2ε(βεû0 ∗ ξε)
+ · ν on ∂D,

∇V̂ε · ν = Λ(V̂ε) on ∂BR.
(C.19)
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As in the proof of Proposition 36, we estimate
∥∥∥V̂ε

∥∥∥
H1(BR)

by writing the variational

formulation. For w ∈ H1(BR),ˆ
BR

aε∇V̂ε · ∇w − k2nεV̂εw −
〈

Λ(V̂ε), w
〉

H− 1
2 (∂BR),H

1
2 (∂BR)

=

ˆ
D
−εaε∇(ηεû1,ε) · ∇w + εk2nε(ηεû1,ε)− ε∇ · (σε

i ηε∂iû0 ∗ ξε) · ∇w

− k2ε∇ · (βεû0 ∗ ξεηε)w + k2εβεû0 ∗ ξεηε · ∇w.

(C.20)

In particular, by the coercivity of the sesquilinear form, we get

∥v̂ε∥H1(D) + ∥v̂ε∥H1(BR\D) ≲ ε ∥ηεû1,ε∥H1(D) + ε

∥∥∥∥∥ d

∑
i=1

∇ · (σε
i ∂iû0 ∗ ξεηε)

∥∥∥∥∥
L2(D)

+

ε ∥∇ · (βεû0 ∗ ξεηε)∥L2(D) + ε ∥βεû0 ∗ ξεηε∥L2(D) .

(C.21)

Let us now estimate ∥ηεû1,ε∥H1(D) =
∥∥ηεϕ

ε
i ∂iû0 ∗ ξε

∥∥
H1(D). The three other terms can

then be estimated using similar arguments. First

∥∇(ηεϕ
ε
i ∂iû0 ∗ ξε)∥L2(D) ≲ ∥(∇ηε)ϕ

ε
i ∂iû0 ∗ ξε + ηε∇(ϕε

i ∂iû0 ∗ ξε)∥L2(D)

≲

∥∥∥∥∥
(

1
µd(

1
ε )
|∇û0 ∗ ξε|+ ε|∇(∇û0 ∗ ξε)|

)
|ϕε|+ |∇ϕ||∇û0 ∗ ξε|

∥∥∥∥∥
L2(Sηε )

.

(C.22)

Eq (C.11) combined with the bounds on the corrector implies∥∥∥∥∥ 1
µd(

1
ε )
|∇û0 ∗ ξε||ϕε|

∥∥∥∥∥
L2(Sηε )

≲ ε
p−2
2p µd(

1
ε
)

p−2
2p −1

χ̃1
ε,p ∥∇û0∥Lp(Sηε+2ε□0) (C.23)

and ∥∥∥∥|∇û0 ∗ ξε||∇ϕε|
∥∥∥∥

L2(Sηε )

≲ ε
p−2
2p µd(

1
ε
)

p−2
2p χ̃2

ε,p ∥∇û0∥Lp(Sηε+2ε□0) (C.24)

where the random variables χ̃1
ε,p and χ̃2

ε,p are defined as

χ̃1
ε,p :=

 εd

εµd(
1
ε )

∑
z∈Pε(Sηε )

C(z)
2p

p−2


p−2
2p

,

χ̃2
ε,p :=

 εd

εµd(
1
ε )

∑
z∈Pε(Sηε )

(1 + r∗(z))
d 2p

p−2


p−2
2p

.

(C.25)
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We use the following Lemma to estimate ∥∇û0∥Lp(Sηε+2ε□0)
.

Lemma 51: [119, Lemma 6.12]

Fix p ∈ (1, ∞), α > 1
p , q ∈ [1, p] and β ∈

(
0, 1

q

]
. For every f ∈ Wα,p(Rd) and

r ∈ (0, 1],
∥ f ∥Lq(∂D+Br)

≲ rβ ∥ f ∥Wα,p(Rd) . (C.26)

Applying (C.26) with f = ∇û0, r = 4εµd(
1
ε ), q = p, α > 1

p , β = 1
q = 1

p yields

∥∇û0∥Lp(Sηε+2ε□0)
≲ ε

1
p µd(

1
ε
)

1
p ∥∇u0∥Wα,p(D) . (C.27)

Furthermore, using (C.12), we get∥∥∥∥ε|∇(∇û0 ∗ ξε)||ϕε|
∥∥∥∥

L2(Sηε )

≲ εαµd(
1
ε
)ε

p−2
2p µd(

1
ε
)

p−2
2p χ̃1

ε,p ∥∇u0∥Wα,p(Sηε+2ε□0)

≲ ε
1
2 µd(

1
ε
)

1
2 ε

α− 1
p µd(

1
ε
)

1− 1
p χ̃1

ε,p ∥∇u0∥Wα,p(D) .

(C.28)

Combining the last estimates (C.23), (C.24), (C.27) and (C.28), and the fact that α > 1
p ,

one has that

∥∇(ηεϕ
ε
i ∂iû0 ∗ ξε)∥L2(D)

≲ ε
1
2 µd(

1
ε
)

1
2

(
µd(

1
ε
)−1χ1

ε,p + χ2
ε,p + ε

α− 1
p µd(

1
ε
)

1− 1
p χ1

ε,p

)
∥∇u0∥Wα,p(D)

≲ ε
1
2 µd(

1
ε
)

1
2 χ̃3

ε,p ∥u0∥W1+α,p(D) ,

(C.29)

where the random variable χ̃3
ε,p is defined as

χ̃3
ε,p := µd(

1
ε
)−1χ̃1

ε,p + χ̃2
ε,p + ε

α− 1
p µd(

1
ε
)

1− 1
p χ̃1

ε,p,

and satisfies the stochastic integrability (4.52).
We finally proved that

∥ṽ1∥H1(D) + ∥ṽ1∥H1(BR\D) ≲ ε
1
2 µd(

1
ε
)

1
2 χ̃3

ε,p ∥u0∥W1+α,p(D) . (C.30)
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APPENDIX D

Proof of Lemma 41

Proof of Lemma 41. (a) First note that for y ∈ Rd,
ˆ

Rd
1Bt(x)(y)dx =

ˆ
Rd
1Bt(y)(x)dx = Ctd,

where C depends only on d.
We have also for y, z ∈ Rd,

ˆ
Rd
1Bt(x)(y)1Bt(x)(z)dx ≤

ˆ
Rd
1Bt(x)(y)dx = Ctd.

Let U ∈ L1(D) and t > 0. By Fubini’s theorem,

ˆ
Rd

(ˆ
Bt(x)∩D

|U|
)

dx =

ˆ
Rd

ˆ
D
|U(y)|1Bt(x)(y)dydx

=

ˆ
D
|U(y)|

(ˆ
Rd
1Bt(x)(y)dx

)
dy

≤ Ctd
ˆ

D
|U(y)|dy

≤ Ctd
(ˆ

D
|U|
)

.

(D.1)

(b) Similarly,

ˆ
Rd

ρT(x)α

(ˆ
Bt(x)∩D

|U|
)2

dx

=

ˆ
Rd

ρT(x)α

(ˆ
D
|U(y)|1Bt(x)(y)dy

)(ˆ
D
|U(z)|1Bt(x)(z)dz

)
dx

=

ˆ
D
|U(y)|

ˆ
D
|U(z)|

(ˆ
Rd

ρT(x)α
1Bt(x)(y)1Bt(x)(z)dx

)
dydz.

(D.2)
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Since 1Bt(x)(y)1Bt(x)(z) = 0 if |x − y| > t or |x − z| > t, one can bound ρT(x)α in the

third integral by supy∈D

(
t+y

T + 1
)α

yielding the result.
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CHAPTER 9

Introduction

Abstract

The medical ultrasound images are now expected not only to provide structural
accurate representations of the imaged medium but also to quantitatively assess the
quality of the reconstructed images or estimate relevant physical parameters. In this
context, we design an estimator of the effective speed of sound inside a random
multi-scale medium with acoustic properties modeling those of a biological tissue. We
consider the Kirchhoff migration and study the influence on the image of a mismatch
between the backpropagation speed of sound and the actual speed. We first study the
effect on the point spread function (image of a point-like scatterer) in a homogeneous
medium. The position of the focal spot on the image moves when we change the
backpropagation speed, and the overall displayed amplitude decreases when the
speed of sound is not the actual speed of sound inside the medium. Therefore by
tracking the maximum of amplitude on the image, we can recover the true speed of
sound. The position of the reflector on the image acts as a guide star at which we
adapt our focusing to recover the speed of sound. We then consider the image of the
random multi-scale medium. In this medium, there is no guide star, as the image is
a random speckle pattern. However, as we exhibit the dependency of the position of
the focal spot with respect to the backpropagation speed, we can always focus on the
same point whatever the backpropagation speed and thus create a virtual guide star.
By focusing on this virtual guide star and maximizing the amplitude on the image, we
can recover the effective speed of sound.

Keywords: Inverse problem, quantitative ultrasound imaging, asymptotic analysis

French abstract

Les techniques d’imagerie ultrasonores médicales sont désormais censées non
seulement fournir des représentations structurelles précises du milieu imagé, mais
aussi évaluer quantitativement la qualité des images reconstruites ou estimer des
paramètres physiques pertinents. Dans ce contexte, nous concevons un estimateur
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de la vitesse effective du son à l’intérieur d’un milieu multi-échelle aléatoire dont
les propriétés acoustiques modélisent celles d’un tissu biologique. Nous considérons
la migration de Kirchhoff et étudions l’influence sur l’image d’un décalage entre la
vitesse du son par rétropropagation et la vitesse réelle à l’intérieur du milieu. Nous
étudions d’abord l’effet sur la point spread function (image d’un diffuseur ponctuel)
dans un milieu homogène. La position de la tâche focale sur l’image se déplace lorsque
nous modifions la vitesse de rétropropagation, et l’amplitude globale affichée diminue
lorsque la vitesse du son n’est pas la vitesse réelle du son à l’intérieur du milieu. Par
conséquent, en suivant le maximum d’amplitude sur l’image, nous pouvons récupérer
la vitesse réelle du son. La position du réflecteur sur l’image sert d’étoile guide à
laquelle nous adaptons notre mise au point pour retrouver la vitesse du son. Nous
considérons ensuite l’image d’un milieu aléatoire à plusieurs échelles. Dans ce milieu,
il n’y a pas d’étoile guide, car l’image est un motif de speckle aléatoire. Cependant,
comme nous arrivons à exhbiber la dépendance de la position de la tâche focale par
rapport à la vitesse de rétropropagation, nous pouvons toujours nous focaliser sur le
même point, quelle que soit la vitesse de rétropropagation, et créer ainsi une étoile guide
virtuelle. En se concentrant sur cette étoile guide virtuelle et en maximisant l’amplitude
sur l’image, nous pouvons récupérer la vitesse effective du son.

Mots-clés: Problème inverse, imagerie ultrasonore quantitative, analyse asympto-
tique

Introduction

The ultrasound images are computed by delay and sum beamforming or Kirchhoff
migration, assuming a known speed of sound inside the medium under investigation.
However, discrepancies between the speed of sound of the actual medium and the
backpropagation speed of sound results in nonphysical artifacts and aberrations on the
image. Furthermore, the effective properties of the medium can be used as biomarkers
for the diagnosis of breast cancers or steatosis of the liver.
In this context, Alexandre Aubry and Mathias Fink have carried out experimental
works [17, 46] to establish a quantitative estimator of the actual speed of sound inside
the medium. Driven by their results, we try to theoreticaly understand the dependency
of the reconstruction algorithm with respect to the input backpropagation speed of
sound. This requires a precise modeling of the propagation of ultrasounds inside the
biological tissues, which was the topic of Part II. Building on these results, in this
Part III, we study the estimator of the effective speed of sound introduced by Aubry
for the model of tissue mimicking medium described in Section 3.3.1.
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Main contribution

We are interested in recovering the underlying speed of sound of acoustic waves in
soft biological tissues by using ultrasound measurements.
To construct this estimator, we perform an asymptotic analysis of the Kirchhoff mi-
gration imaging functional in the paraxial regime of Figure 10.1 (also see e.g. [55]).
Before considering tissue-mimicking media, the asymptotic analysis is carried in the
Chapter 11, on a simpler model of a homogeneous medium in which lies a single iso-
lated point-like scatterer. This allows to compute the point spread function (PSF) of
the imaging system, and to show its dependence on the backpropagation speed of
sound. The point spread function of an imaging system is the pattern produced on
the image by a point-like object. When the theoretical point spread function of a given
system is known, the comparison with the pattern of a given image allows for an as-
sessment of the quality of the image (blurring, aberration, presence of artifacts). The
point spread function for ultrasound imaging system is well-known when the back-
propagation speed is the speed of sound inside the medium [55].
In this simple setting, we show that the point-like object can be used to calibrate the
speed of sound inside the medium. Indeed, the position of the focal spot on the im-
age depends on the backpropagation speed and the returned echo amplitude decreases
whenever the backpropagation speed is not the true speed of the tissue. Therefore, by
following the amplitude at the center of the focal spot, we can recover the speed of
sound.
However, in biological tissues, the backscattered field is not produced by isolated tar-
gets but by numerous unresolved randomly distributed scatterers. In Part II, we ob-
tained a simple form of the scattered field by using quantitative stochastic homoge-
nization techniques. Using this expansion, in Chapter 12, we show that for a given
backpropagation speed, the imaging function is in fact asymptotically locally a station-
ary and ergodic random field (with respect to the spatial variable). Therefore, by locally
spatially averaging the imaging function, we can extract coherent data from the mea-
surements and recover the effective speed of sound.
The Part III is organized as follows:

• In Chapter 10 we briefly recall the model that we use and introduce the asymp-
totic framework.

• In Chapter 11, we analyze the dependency of point spread function in a homoge-
neous medium with respect to the backpropagation speed of sound and establish
an estimator of the actual speed of sound of the homogeneous medium.

• In Chapter 12, we use the asymptotic expansion of Theorem 39 to describe the
scattered field. Using this expansion, we establish in Theorem 57 the asymptotic
form of the imaging function in tissue mimicking media. Based on this result, we
show in Lemma 58 that the imaging function is locally stationary. The speed of
sound is then recovered by local spatial averages of the amplitude the imaging



149

function. In fact, the speed of sound can be also recovered by a singular values
decomposition of the matrix Kξ̃,t described in Section 12.3.

• In Chapter 13, we perform numerical simulations to illustrate the theoretical re-
sults developed in the two previous Chapter 11 and Chapter 12.
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CHAPTER 10

Presentation of the model

In this section, we present a mathematical model for medical ultrasound imaging
experiments. We first describe how the set of measurements is done in practice. We
then detail the geometry of the problem and the governing equation. In a last subsec-
tion, we introduce the asymptotic regime in which the computations are done.

10.1 Physical experiment

We recall that the acoustic properties of a medium can be described by its density
(denoted ρ) and its bulk modulus (denoted κ) as described in Section 3.3. A soft
biological tissue can be modeled by an incompressible homogeneous medium in
which lie numerous underresolved contrasted heterogeneities. The image is then
done as follows. A set of ultrasound transducers generates a wave that propagates
throughout the medium. The contrasted heterogeneities produce a backscattered wave
that is recorded by the transducers. Assuming a constant speed for the propagation of
ultrasounds, the image is then computed by applying proper time delays to the time
data of the different sensors and summing them (see (3.2)).

10.2 Mathematical model

We describe here the mathematical model that we use. We assume that the propa-
gation medium presents a constant density, so that its acoustic properties are charac-
terized by the propagation speed of ultrasonic waves c :=

√
κ
ρ . We suppose that the

propagation medium is infinite and that the speed of sound is a constant c0 > 0 outside
of a compact domain D ⊂ Rd, for d = 2 or d = 3. D is the medium of interest to be im-
aged. The transducer array denoted by A := [−a, a]d−1 × {0}, a > 0 lies outside of D.
The bandwidth of each transducer is denoted by B ⊂ R+

∗ . Without loss of generality,
we will assume that the medium is illuminated with spherical incident waves ui with
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D

c0

A
∼ √

η
x⊥

xq
ui

us

∼ η

ε ≪ λ

∼ 1

Figure 10.1: Schema of an ultrasound experiment

angular frequency ω, i.e.:

ui(xe,x, ω) := G
ω
c0 (x− xe), for xe ∈ A,x ∈ Rd \ {xe}, ω ∈ B. (10.1)

where Gk is the Green function associated to the Helmholtz equation at wavenumber k
i.e. the outgoing solution in D′(Rd) of

−∆Gk − k2Gk = δ. (10.2)

We recall [108, Lemma 2.21]:

Gk(z) =


i
4

H1
0(k|z|) if d = 2,

exp(ik|z|)
4π|z| if d = 3,

(10.3)

where H(1)
0 is the Hankel function of the first kind. The scattered field us(xe, ·, ω) is the

unique solution in H1
loc(R

d) of:
− ∆(us + ui)(xe, ·, ω)− ω2

c2
0
(1 + n(·))(us + ui)(xe, ·, ω) = 0 in Rd

lim
|x|→∞

|x| d−1
2

(
∂

∂|x|u
s(xe,x, ω)− i

ω

c0
us(xe,x, ω)

)
= 0

(10.4)

where n ∈ L∞, and supp(n) ⊂ D and 1 + n > 0. n models the variations of the sound
velocity inside the medium. The well-posedness of (10.4) is addressed for example in
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[185] in dimension d = 2 and in [186] in dimension d = 3. A review of the well-
posedness results for the Helmholtz equation in heterogenous media is presented in
[187].
The scattered field us is then measured at every xr ∈ A. We thus have access to the
measurement map

M ∈ L2((A×A), L2(B))
defined by

M(xe,xr, ω) := u(xe,xr, ω). (10.5)

10.3 Imaging functional

The ultrasound images are then computed by a sum and delay algorithm or equiv-
alently a Kirchhoff migration algorithm [6, 188]. Usually, the speed of sound c0 is
known. The imaging function depends then only on the point at which the image is
computed. Here we study the dependency on the back propagation speed used as
an input. For a given back propagation speed cs ∈ [cmin, cmax], the imaging function
I ∈ L2(D × [cmin, cmax]) at a given point xs ∈ Rd, is given by

I(xs, cs) :=
ˆ
(A×A×B)

M(xe,xr, ω)G
ω
cs (xe − xs)G

ω
cs (xs − xr)dxedxrdω. (10.6)

This imaging function is the usual definition of the Kirchhoff migration, where the
measurements M are backpropagated at the speed cs inside the medium. In a medium
where single scattering dominates, the intensity |I(xs, c0)| is then an indicator of the
presence (or absence) of contrasted scatterers at xs. When cs ̸= c0, the image is deteri-
orated. In this section, we study this effect.

10.4 Asymptotic assumptions

The problem of medical ultrasound imaging is a multi-scale problem in which the
size of the domain is larger than wavelength, itself larger than the typical size of the
heterogeneities. In clinical situations, the typical central frequency of the transducer is
of the order of 1 − 10 Mhz, the speed of sound varies from c ∼ 1400 − 1600 m.s−1, and
thus the wavelength is λ ∼ 0.8 − 1 mm while diam(D) ∼ 8 − 10 cm. Finally the size of
the transducer array is of order diam(A) ≈ 40 mm (see [17, Table 2.2]).
Therefore, in order to obtain simple and explicit formulas, we will carry out an asymp-
totic analysis. The particular geometry of ultrasound imaging is well-described by
paraxial regime [55].
We introduce a small dimensionless parameter η ≪ 1. We consider that λ

diam(D)
is of the

order η. Thus we scale the bandwidth as B := B0
η where B0 := [ω0 − B/2, ω0 + B/2],

where ω0 is the normalized central frequency and B is the effective bandwidth.
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∼ √
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Figure 10.2: Asymptotic regime and point like reflector

The size of the transducer array is typically inbetween the size of D and the
wavelength. As in [55], we consider that diam(A)

diam(D)
is of the order η

1
2 . We write

A := η
1
2 a0A0 := η

1
2 [−a0, a0]

d−1 × {0} where a0 = η
1
2 a is the normalized size of the

transducer array and A0 := [−1, 1]d−1 × {0} is the normalized shape of A. The asymp-
totic regime is illustrated on Figure 10.2. In this regime, the following holds, for z ∈ D
and ω ∈ B (see [94, (9.2.3)]

H1
0

(
ω

c0
|z|
)
∼
(

2
π ω

c0
|z|

) 1
2

exp
(

i
ω

c0
|z| − i

π

4

)
, (10.7)

as ω
c0
|z| ≫ 1.

In order to distinguish the rescaled variables from the the physical variables, we use
the notation ·̃ for the rescaled variables. In the paraxial regime, the axial propagation
distances are way larger than the transverse distances and the points x ∈ Rd will be
denoted as

x = (η
1
2 x̃⊥, xq).

where x̃⊥ ∈ Rd−1 is the normalized transverse coordinate and xq ∈ R+ is the axial
coordinate. Thus, x̃ ∈ Rd designates the point

x̃ = (x̃⊥, xq).

This setting is illustrated on Figure 10.2.
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PARAXIAL REGIME

CHAPTER 11

Analysis of the point spread function in
the paraxial regime

The point spread function (PSF) is the response of an imaging system to an isolated
point-like object. This point like object will usually appear as a spot on the image, called
the focal spot. The typical size of the focal spot gives the resolution that one can expect
from the imaging system. The point spread function of ultrasound imaging systems
has been widely studied when the propagation speed c0 is constant and known (see for
example [55, Chapter 6]). However, if an incorrect propagation speed is used to com-
pute the image, the image will appear as a distorted focal spot. In this section, we carry
out an analysis of the point spread function with respect to the backpropagation speed
used in the imaging function.
We show that for a small point-like target centered at x0 the focal spot is shifted, dis-
torted and that the value of I at the point in the center of the focal spot (which is not
x0) exhibits a phase shift around the correct speed of sound. This allows to build an es-
timator of the speed of sound inside the medium (see Theorem 54). To understand and
analyze these effects, we consider a toy model with one isolated point-like reflector.
We thus consider a homogeneous medium with one small (with respect to the wave-
length) scatterer at x0 = (η

1
2 x̃0

⊥, xq0). We then assume

n(x) := (nS − 1)1B(x0,ε)(x)

where nS > 0, ε ≪ λ, and x0 ∈ D. In this regime, as we consider a point-like object,
we assume that there exists α > 1, such that ε = ηαr0 for some normalized radius r0.
In this configuration, the monopole approximation holds [189, 107] and we have
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Lemma 52: Monopole approximation of the scattered field

For all ω ∈ B, and xe,xr ∈ A,

us(xe,xr, ω) = εdnS

(
ω

c0

)2

G
ω
c0 (xr − x0)G

ω
c0 (xe − x0)

+O
(

εd+1
(

ω

c0

)d
|xe − x0|−

d−1
2 |xr − x0|−

d−1
2

)
. (11.1)

The proof is done in Appendix E. This simple formula for u will be used to carry
out an asymptotic analysis of the imaging function and to obtain explicit formulas for
the point spread function.

11.1 Asymptotic analysis of I
This section is devoted to the asymptotic analysis of I in the paraxial regime for a

given backpropagation cs which is not necessary the speed of sound inside the medium
c0. In particular, in Theorem 54, we obtain a simple formula for the point spread func-
tion which we will use to analyze an estimator of the speed of sound inside the medium
(see Theorem 54).
We introduce F defined by

F (x,y, c0, cs, ω) :=
〈

G
ω
cs (· − y), G

ω
c0 (· − x)

〉
A

(11.2)

for x,y ∈ Rd and where the notation

⟨ f , g⟩A :=
ˆ
A

f (x)g(x)dσ(x)

stands for the standard L2(A)-product. By Lemma 52, the imaging function I can be
approximated by

I(xs, cs) = εdnS

ˆ
B

ω2

c2
0

F (x0,xs, c0, cs, ω)2 dω

+

ˆ
A×A×B

Rη,ε(xe,xr, ω)G
ω
cs (xe − y)G

ω
cs (xr − y)dσ(xe)dσ(xr)dω (11.3)

for some function Rη,ε that satisfies

Rη,ε(xe,xr, ω) = O
(

εd+1
(

ω

c0

)d
|xe − x0|−

d−1
2 |xr − x0|−

d−1
2

)
.
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We recall that
|A| = η

d−1
2 ad−1

0 |A0|,
and that ∥∥∥G

ω
cs (· − xs)

∥∥∥2

L∞(A)
≤


Rd(xs, cs)

ω
if d = 2

Rd(xs, cs) if d = 3,
(11.4)

for some function Rd ∈ L∞(D × [cmin, cmax]) and independent on ω. Therefore, with
the scaling of the paraxial regime, where ω ∈ B0

η , the imaging function can thus be
approximated as

I(xs, cs) = εdnS

ˆ
B

ω2

c2
0

F (x0,xs, c0, cs, ω)2 dω + R1
ε,η(xs, cs), (11.5)

with R1
ε,η(xs, cs) = O

(
εd+1η2−d).

The analysis of I can be then carried out by studying, for a search point
xs = (η

1
2 x̃⊥

s , xqs) ∈ D and for ω ∈ B, the function F(x0,xs, c0, cs, ω).
In the following computations, to simplify the expression we use the variable

υ :=
c0

cs
.

We first derive an asymptotic expression for F.

Lemma 53: Asymptotic expression of F

Let x = (η
1
2 x̃⊥, xq),y = (η

1
2 ỹ⊥, yq) ∈ Rd, cs =

c0
υ ∈ [cmin, cmax] and ω = ω̃

η ∈ B,
then,

F
(
x,y, c0, cs =

c0

υ
, ω

)
=

η
5−d

2 c3−d
0 ad−1

0

4πd−1ω̃3−dυ
3−d

2 (xqyq)
d−1

2
exp

(
iω̃
c0η

(
υyq − xq + η

υ|ỹ⊥|2
2yq

− η
|x̃⊥|2

2xq

))
× G

(
ω̃a0

c0

(
υỹ⊥

yq
− x̃⊥

xq

)
,

ω̃a0

c0

(
υ

yq
− 1

xq

))
+ η

d+1
2 R(x,y, ω̃), (11.6)

where G : (Rd−1 × R) → C is defined by

G(ξ1, ξ2) :=
1

|A0|

ˆ
A0

exp
(
−ix̃e

⊥ · ξ1 + i
|x̃e

⊥|2
2

ξ2

)
dσ(x̃e) (11.7)

and for some remainder R ∈ L1
loc(R

d × Rd, L1(B0)).
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Proof. The proof is done for d = 3. In dimension d = 2, the amplitude must be modified
and in particular the dependency on ω must be taken into account to obtain the result
(11.6).
By the definition of the Green function,

F(x,y, c0, cs =
c0

υ
, ω) =

1
16π2

ˆ
A

exp
(

iω
c0
(υ|xe − y| − |xe − x|)

)
|xe − x||xe − y| dσ(xe).

(11.8)

With the scaling of the paraxial regime, we write ω := ω̃
η , xe = (η

1
2 x̃e

⊥, 0). As

x = (η
1
2 x̃⊥, xq) by a Taylor expansion, we have that

|xe − x| = xq + η
|x̃e

⊥ − x̃⊥|2
2xq

+ η2R0(x), (11.9)

for some R0 ∈ L1
loc(R

d). Therefore,

F(x,y, c0, cs =
c0

υ
, ω)

=
η

4π2|x||y|

(
exp

(
iω̃
c0η

(
υyq − xq + η

υ|ỹ⊥|2
2yq

− η
|x̃⊥|2

2xq

))
× 1

4

ˆ
a0A0

exp
(

i
ω̃

c0

(
x̃e

⊥ ·
(

υỹ⊥

yq
− x⊥

xq

)
+

|x̃e
⊥|2
2

(
1
xq

− υ

yq

)))
dσ(x̃e)

+ η2R(x,y, ω̃),
(11.10)

for some R ∈ L1
loc(R

d × Rd, L1(B0)). The result (11.6) is then obtained by the change of
variable z̃e := x̃e

a0
.

We can now resume the study of I . We show in the next proposition that an error in
the backpropagation speed of sound has two effects on the image. First, the focal spot
is not centered at x0. In the paraxial regime it is located at

x f (x0, υ) := (η
1
2
x̃0

⊥

υ2 ,
xq0
υ
).

Secondly, the shape of the focal spot is altered as we can see on Figure 13.3.
To study these effects, we use a Taylor expansion around the center of the focal spot.
We consider for a point rs(υ) = (η

1
2 r̃s

⊥

υ2 , η rqs
υ ) ∈ Rd, the following parametrization for

the search point:

xs = x f (x0, υ) + rs(υ) =

(
η

1
2
x̃0

⊥ + r̃s
⊥

υ2 ,
xq0 + ηrqs

υ

)
.
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The dependency in υ on rs allows to obtain a simple asymptotic form. The scaling
η

1
2 in the transverse direction and η in the axial direction are the expected scaling and

corresponds to the scaling of the focal spot when cs = c0 [55, Proposition 6.4]. We
establish a formula for the point spread function:

Theorem 54: Asymptotic expression of I with an isolated target

Let x f (x0, υ) := (η
1
2 x̃0

⊥

υ2 , xq0
υ ) and rs(υ) = (η

1
2 r̃s

⊥

υ2 , η rqs
υ ) ∈ Rd and cs ∈ [cmin, cmax].

We then parametrize the search point as

xs = xf (υ) + rs(υ) ∈ Rd.

Then the imaging function of (10.6) has the simple form:

I
(
xs, cs =

c0

υ

)
= εdη2−dCanSP0

(
x̃0, r̃s, υ

)
+O(εdη3−d), (11.11)

with P0 : (Rd × Rd × R+
∗ ) → C the point spread function defined by:

P0

(
x̃0, r̃s, υ

)
:=

ˆ
B0

(
υ2ω̃2

(xq0)2c2
0

)d−2 1
(xq0)2

× exp
(

2iω̃
c0

(
rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2υ2xq0

))
× G

(
a0ω̃

xq0c0
r̃s

⊥,
a2

0ω̃

xq0c0
(υ2 − 1)

)2

dω̃ (11.12)

and the amplitude

Ca :=
a2(d−1)

0
16π2(d − 1)

. (11.13)

The function G is defined in (11.7).

The formula can be even simplified in the narrowband case, when the central fre-
quency is larger than the bandwidth, i.e. B

ω0
≪ 1. This yields the following:
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Corollary 55: Point spread function for narrowband signal

(Narrowband signal) Assume that B ≪ ω0, P0 is approximated by:

P0(x̃0, r̃s, υ)

=

(
υ2ω2

0

(xq0)2c2
0

)d−2 B
(xq0)2

exp
(

2iω0

c0

(
rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2υ2xq0

))
× sinc

(
B
c0

rqs

)
× G

(
a0ω0

xq0c0
r̃s

⊥,
a2

0ω0

xq0c0

(
υ2 − 1

))2(
1 +O

(
B

ω0

))
. (11.14)

Remark 11.1.1. This result is an extension of the point spread function found e.g. in [55,
Proposition 6.4], for c0 ̸= cs. We show an image of the point spread function for several
backpropagation speeds of sound on Figure 13.3.
In this analysis, we considered, without loss of generality that the Fourier transform of the
source is Ŝ(xe,x, ω) := δ(x− xe)1B(ω). The result of Corollary 55 remains true for any
source with a more realistic frequency content, that is a real measurable signal with a Fourier
transform of the form for ω ∈ B,

Ŝ(xe,x, ω) = δ(x− xe) f̂0

(
ω0 − εω

B

)
for some f̂0 ∈ L2(B). As we consider In the formula (11.14), one must then replace

sinc
(

B
c0

υxqs
)

with f0

(
B
c0

υxqs
)

.

Proof of Theorem 54. By (11.5), and the change of variable ω := ω̃
η , it holds that

I(xs, cs) = εdnSη−3
ˆ
B0

ω̃2

c2
0

F(x0,xs, c0, cs,
ω̃

η
)2dω̃ +O(εd+1η2−d). (11.15)

We use the asymptotic expression (11.6) of Lemma 53 with x = x0 and y = xs, which
yields:

I
(
xs, cs =

c0

υ

)
= εdη2−d a2d−2

0
16π2d−2

1
(xq0)d−1(xq0 + ηrqs)d−1

×
ˆ
B0

(
υ2ω̃2

c2
0

)d−2

exp
(

2iω̃
c0

(
rqs −

|x̃0
⊥|2

2xq0
+

|x̃0
⊥ + r̃s

⊥|2

2υ2(xq0 + ηrqs)

))
× G

(
ω̃a0

c0

(
x̃0

⊥ + r̃s
⊥

xq0 + ηrqs
− x̃0

⊥

xq0

)
,

a2
0ω̃

c0

(
υ2

xq0 + ηrqs
− 1

xq0

))2

dω̃

+O(εd+1η2−d) +O(εdη3−d). (11.16)
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We want to compare O(εd+1η2−d) and O(εdη3−d). We recall that η = λ
diam(D) is a

dimensionless parameter while ε ≪ λ corresponds to the typical radius size of the
reflector. However, by assuming that ε = ηαr0, we have that, εd+1η2−d ≤ r0εdη3−d. The
result (11.11) is then obtained from a Taylor expansion with respect to η in (11.16).

Proof of Corollary 55. We prove (11.14). We use the change of variable ζ := ω̃−ω0
B , so

that:

P0

(
x̃0, r̃s, υ

)
=

(
υ2

(xq0)2c2
0

)d−2 B
(xq0)2

exp
(

2iω0

c0

(
rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2υ2xq0

))
×
ˆ
[− 1

2 , 1
2 ]
(Bζ + ω0)

2(d−2) exp
(

2iBζ

c0

(
rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2υ2xq0

))
× G

(
a0(Bζ + ω0)

xq0c0
r̃s

⊥,
a2

0(Bζ + ω0)

xq0c0
(υ2 − 1)

)2

dζ.

(11.17)

A Taylor expansion in B
ω0

then gives:

P0

(
x̃0, r̃s, υ

)
=

(
υ2ω2

0

(xq0)2c2
0

)d−2 B
(xq0)2

exp
(

2iω0

c0

(
rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2υ2xq0

))
× sinc

(
B
c0
(rqs −

υ2|x̃0
⊥|2 − |x̃0

⊥ + r̃s
⊥|2

2xq0
)

)
× G

(
a0ω0

xq0c0
r̃s

⊥,
a2

0ω0

xq0c0
(υ2 − 1)

)2(
1 +O

(
B

ω0

))
. (11.18)

Furthermore, with the change of variable χ̃s
⊥ = ω0r̃s

⊥,

sinc

 B
c0

rqs −
υ2|x̃0

⊥|2 − | χ̃s
⊥

ω0
+ x̃0

⊥|2

2υ2xq0

× G
(

a0

xq0c0
χ̃s

⊥,
a2

0ω0

xq0c0
(υ2 − 1)

)2

= sinc

(
B
c0

(
rqs −

|x̃0
⊥|2

2υ2xq0
(υ2 − 1)

))
× G

(
a0ω0

xq0c0
r̃s

⊥,
a2

0ω0

xq0c0
(υ2 − 1)

)2

×
(

1 +O
(

B
ω0

))
. (11.19)



11.2 Estimator of the speed of sound 161

Finally, with the change of variable p = ω0(υ
2 − 1) i.e. υ2 = p

ω0
+ 1,

sinc
(

B
c0

rqs −
B

ω0

|x̃0
⊥|2

2c0xq0

p
p

ω0
+ 1

)
× G

(
a0ω0

xq0c0
r̃s

⊥,
a2

0

xq0c0
p
)2

= sinc
(

B
c0

xqs

)
× G

(
a0ω0

xq0c0
r̃s

⊥,
a2

0

xq0c0
(υ2 − 1)

)2(
1 +O

(
B

ω0

))
. (11.20)

Inserting the approximations (11.19) and (11.20) into (11.18) gives the desired result.

The results of Theorem 54 indicate that the overall intensity |I| is lowered when
cs ̸= c0. Indeed, the function G is peak function centered at the origin (see [55, Chap-
ter 6] for an analysis of G). The loss of amplitude on the image can be used to design an
estimator of the speed of sound inside the medium. This is the topic of the next section.

11.2 Estimator of the speed of sound

The spatial resolution of an imaging system is defined as its ability to differentiate
between two close points. It can be characterized by the typical size of the focal spot of
the point spread function. In Theorem 54, we recover the well-known resolutions [55]
in axial and transverse directions:

• The axial resolution is c0
B .

• The transverse resolution is c0xq0
a0ω0

.

We also have that the point spread function is centered at xf (x0, υ), and its amplitude
maximum at this point. At this particular point, the point spread function has the form,

I
(
xf (x0,

c0

cs
), cs

)
:= Pc

(
cs =

c0

υ

)
:= υ2(d−2) exp

(
2iω0|x⊥

0 |2

2xq0c0

(
υ2 − 1

υ2

))
G
(

0,
a2

0ω0

xq0c0
(υ2 − 1)

)2

.

(11.21)

Therefore, the behavior of the point spread function with respect to the backpropaga-
tion speed is mainly driven by the behavior of

G(0, β)2 =
2d+1

β2(d−1)

(
C + iS

)2(d−1)
(√

β√
2

)
,

where C and S are the Fresnel integrals,

C(u) :=
ˆ u

0
cos(t2)dt S(u) :=

ˆ u

0
sin(t2)dt.
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We plot in dimension for d = 2, the functions |G(0, β)2| and Im(G(0, β)2) on Fig-
ure 11.1. |G(0, β)2| is a peak function which is maximum a β = 0. Furthermore,
Im(G(0, β)2) has its steepest slope at β = 0. This allows to establish two estimators
of c0 that we denote ĉ1 and ĉ2. They are defined by:

ĉ1 := argmax
cs

max
xs

|I(xs, cs)|, (11.22)

and

ĉ2 := argmax
cs

∂Im(I)
∂cs

(x⋆(cs), cs) for x⋆(cs) = argmax
xs

|I(xs, cs)|. (11.23)

ĉ1 corresponds to the speed of sound that give the highest intensity on the image while
ĉ2 allows to recover the speed at which occurs shift of the imaginary part of the function
in the center of the focal spot. Both estimators allows to recover the true speed of sound
c0. These two estimators are plotted on Figure 13.5 and are commented in Section 13.
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Figure 11.1: Plots of |G(0, β)2| and Im(G(0, β)2).
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CHAPTER 12

Estimation of the speed of sound in
tissue mimicking media

In medical ultrasound imaging, the measured backscattered field does not come
from isolated target but from a large collection of unresolved scatterers. In this configu-
ration, it is not possible to use the previous estimators to recover the speed of sound c0.
In this section, we study the imaging functional for the model of Section 3.3.1 model-
ing the biological tissues. We then study the estimators of the effective speed of sound
introduced by Aubry in [17]. The main results of this chapter are then Theorem 57,
Proposition 59 and Proposition 61. It is well-known in physics that the imaging process
consists in focusing a wave at x and imaging a local (virtual) reflector at x. If this is
true when the backpropagation speed of sound cs = c0, it is also known that a mismatch
cs ̸= c0 induces spatial errors on the image. We recover mathematically these results
in Theorem 57 for the model of Section 12.1. Building on the result of Theorem 57, we
show in Lemma 58 that the imaging function is locally (at the order of the wavelength)
a stationary process. Therefore spatial averages on the image allows to recover statisti-
cal data. Proposition 59 and Proposition 61 are asymptotic formulas for respectively the
incoherent and coherent operator introduced by Aubry. The incoherent estimator consists
in maximizing the (local) spatial average of the amplitude of the imaging function with
respect to several speeds of sound. The coherent estimator is built upon the first right
singular vector in the decomposition of the matrix whose lines are the imaging func-
tion of point in a small area of interest and the columns are the several backpropagation
speeds to compute these images.

12.1 Model of the medium

We consider the model described in Section 3.3.1 that we quickly recall here. As,
the acoustic properties of the medium oscillate rapidly compared to the wavelength
we introduce ε which denotes the typical radius of the small heterogeneities inside the
medium. In this regime, it holds that

ε ≪ λ ≪ 1.
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We assume that ε = rα
0 for some normalized radius r0 and exponent α which will

be discussed in the end of this section. We recall that λ is of typical order ηdiam(D).
The position of the centers of the heterogeneities is random. We introduce the proba-
bility space (Ω,F , P). We emphasize that the realizations of the random medium are
denoted ϖ ∈ Ω while the notation ω ∈ B is kept for the angular frequency.
In this Part III, we will only consider fluctuations of the speed of sound around a homo-
geneous speed c0. More precisely, we will use the framework of the stochastic homoge-
nization already used in Part II, which is a standard and non-restrictive framework. We
thus assume, that nε is the realization of a stationary ergodic process (see Section 4.3 for
a full definition). We write:

nε(x) := ψ
(x

ε

)
, for x ∈ D (12.1)

where ψ ∈ L2(Ω, L∞(Rd)), is a zero-mean, measurable, stationary and mixing random
field, with covariance function given for all x ∈ Rd by

Σ(x) := Cov(ψ(x), ψ(0)). (12.2)

We specified in Section 4.4.2, the exact mixing assumption, Hypothesis 20, that we con-
sider. We recall that these assumptions imply in particular that Σ ∈ L1(Rd) and has ex-
ponential decay. The coefficient nε ∈ L2(Ω, L∞(Rd)) models the presence of unresolved
scatterers. As the physical parameters υ and κ stay positive and finite in biological tis-
sues, it is natural to assume that −1 < n− < n < n+ < ∞ for some constant n−, n+.
Moreover, as we consider a bounded zone of interest, we assume supp(n) ⊂ D. For
almost every ϖ ∈ Ω, the scattered field us

ε(xe, ·, ω) ∈ H1
loc(R

d) for an incident wave
ui(xe, ·, ω) is then the almost sure unique solution of

− ∆(us
ε + ui)(xe, ·, ω)− ω2

c2
0
(1 + nε(·))(us

ε + ui)(xe, ·, ω) = 0 in Rd \ {xe},

lim
|x|→∞

|x| d−1
2

(
∂

∂|x|u
s
ε(xe,x, ω)− i

ω

c0
us

ε(xe,x, ω)

)
= 0,

(12.3)

where c0 > 0 is the unknown background speed of sound. We wish to apply the ho-
mogenization results developped in Part II to characterize the total field uε := us

ε + ui.
The analysis of the well-posedness of (12.3) is done in Part II with ω ∈ C such that
Im(ω) > 0, and the radiation condition is replaced with a Dirichlet-to-Neumann oper-
ator on the ball BR of radius R > 0 that contains D.
For a given ε > 0 and a given ϖ ∈ Ω, the problem (12.3) is well-posed. However, the
difficulty lies in finding a uniform control in ε and ϖ, which is the first step to apply
any homogenization techniques. Im(ω) > 0 ensures the coercivity of the problem, so
that the desired uniform bound can be obtained.
We recall the definition of the homogenized total field u0 = ui + us

0 with us
0(xe, ·, ω) ∈
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H1
loc(R

d) is the solution of
− ∆(us

0 + ui)(xe, ·, ω)− ω2

c2
0
(1 + E[ψ])(us

0 + ui)(xe, ·, ω) = 0 in Rd \ {xe},

lim
|x|→∞

|x| d−1
2

(
∂

∂|x|u
s
0(xe,x, ω)− i

ω

c0
us

0(xe,x, ω)

)
= 0.

(12.4)

With the assumption of zero-mean on ψ, we have in our case that the homogenized
field can be written as

u0(xe,x, ω) = G
ω
c0 (x− xe).

This hypothesis of zero-mean allows to have explicit results and is non restrictive.

We use the results of Theorem 39 to describe our measurement data. As we assume
the coefficient aε of (3.11) to be constant equal to 1, the problem simplifies and it holds
the following version of Theorem 39:

Proposition 56: Expression of the scattered field in the homogenization regime

For xe,xr ∈ A and ω ∈ B, let

Us
ε (xe,xr, ω) :=

ω2

c2
0

ˆ
D

ψε(x)G
ω
c0 (xe − x)G

ω
c0 (x− xr)dx. (12.5)

Under the assumption that ∂D is regular enough and Im(ω) > 0, for all xe,xr ∈
A, ω := ω̃

η ∈ B,

∥us
ε(xe,xr, ω)− Us

ε (xe,xr, ω)∥L2(Ω)

≤ Cω2ε
d+1

2 µd

(
1
ε

) 1
2 ∥∥∥G

ω
c0 (· − xe)

∥∥∥
W1,∞(D)

∥∥∥G
ω
c0 (· − xr)

∥∥∥
W1,∞(D)

, (12.6)

where µd is defined in (4.50) and for some C > 0.

Remark 12.1.1. We recall that the error term us
ε − Us

ε verifies, in view of (7.2):

(us
ε − us

0)(xe,xr, ω) = −ω2

c2
0

ˆ
D

ψε(x)uε(xe,x, ω)G
ω
c0 (x− xr)dx. (12.7)

We make three observations.

• The derivative of Gk is not involved in this representation which allows to improve the
W2,∞(D)-norm of Gk(· − xe) in Theorem 39 to a W1,∞(D)-norm.

• It is clear that the rest (us
ε − Us

ε )(xe,xr, ω) is proportional to ω2

c2
0

.
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• With the result of Theorem 39, we obtain an estimate of
Var [|us

ε(xe,xr, ω)− Us
ε (xe,xr, ω)|]

1
2 . However, in view of Lemma 65, the re-

sult also holds in the L2(Ω)-norm, as E[uε − u0] = O(εdk6) which is negligible in front
of the right hand side of (12.6).

We recall that by (11.4), for x ∈ D,
∥∥∥G

ω
c0 (· − x)

∥∥∥2

L∞(A)
= O

(
η3−d). It also holds that

for xe ∈ A,
∥∥∥G

ω
c0 (· − xe)

∥∥∥2

W1,∞(D)
= O

(
η1−d).

The measurement map is now random variable

M ∈ L2(Ω, L2((A×A), L2(B)))

which is then approximated with (12.5) by

M(xe,xr, ω) = Us
ε (xe,xr, ω) + η−1−dε

d+1
2 µd

(
1
ε

) 1
2

Rε(xe,xr, ω). (12.8)

where the remainder Rε(xe,xr, ω) ∈ L2(Ω) is a random that verifies
∥Rε(xe,xr, ω)∥L2(Ω) ≤ C, for some C > 0 independent of xe,xr, ω and ε.

In view of Lemma 64,

∥Us
ε∥L2(Ω) = η1−dε

d
2 ,

Therefore, for the model (12.8) to be accurate, it requires to have

r
1
2
0 η1−dε

d
2 ≥ η−1−dε

d+1
2 µd

(
1
ε

) 1
2

,

which is verified when α > 4 in dimension d = 2 and α ≥ 4 in dimension d = 3.

We have now a description of the measured data. To study the estimators of the
effective speed of sound, we derive an expression of the imaging function when the
medium verifies the hypotheses of Section 12.1. This is the subject of the next section.

12.2 Asymptotic analysis of I

We first derive asymptotic results for I , similar to Theorem 54 but which holds for
the tissue mimicking medium. We show the following:
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Theorem 57: Asymptotic of I

Let xs = (η
1
2 x̃⊥

s , xqs) ∈ D, cs ∈ [cmin, cmax]. Then the imaging function of (10.6) is
approximated almost surely by:

I
(
xs, cs =

c0

υ

)
= ηd−2CaIM

0

(
xs, cs =

c0

υ

)
+ ηd−2ε

d
2 Rε(xs, cs, M). (12.9)

The function IM
0 is defined by:

IM
0

(
xs, cs =

c0

υ

)
:= η

d+1
2

ˆ
B(0,M)

ψε

(
xf

(
xs,

1
υ

)
+ s(r̃, υ)

)
×P1(x̃s, r̃, υ)dr̃,

(12.10)

with xf

(
xs, 1

υ

)
= (η

1
2 υ2x̃s

⊥, ηυxqs) and s(r̃, υ) =
(

η
1
2 υ2r̃⊥, ηυrq

)
∈ Rd.

P1 : (Rd × Rd × R∗
+) → C is the point spread function given by

P1

(
x̃s, r̃, υ

)
:=

ˆ
B0

(
ω̃2

(xqs)2c2
0

)d−2 1
υ2(xqs)2

× exp
(

2iω̃
c0

(
−υrq +

υ2|x̃s
⊥|2 − υ4|x̃s

⊥ + r̃⊥|2

2υxqs

))
× G

(
− a0ω̃

υxqsc0
r̃⊥,

a2
0ω̃

υxqsc0
(υ2 − 1)

)2

dω̃.

(12.11)

The remainder Rε(xs, cs, M) ∈ L2(Ω) is a random variable that verifies,
∥Rε(xs, cs, M)∥L2(Ω) ≤ C(M) with C(M) → 0.

Remark 12.2.1. In view of Lemma 64 for all xs, cs,∣∣∣IM
0

(
xs, cs =

c0

υ

)∣∣∣ = O(ε
d
2 )

and is bounded in η, which is due to the η-dependency in the oscillations of the coefficient ψε so
that the second term of (12.9) is indeed smaller than the first one.

In practice, the number M introduced in the proof corresponds to the full width at
half maximum of P1 and is of the typical order max

(
c0xqs
a0ω0

, c0
B

)
which are the expected

resolution of the imaging system as discussed in Section 11.2.
To image the medium x, a wave is focused at x assuming a propagation speed of sound
cs. The point x then scatters the wave and the scattered field allows to compute the im-
age. When the speed of sound is not the actual propagation speed, spatial error can
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be seen on the image. Theorem 57 is just a mathematical transcription of this idea. In
Theorem 57, we also explicitly obtain the dependency on the error in the backpropaga-
tion speed for the medium of Section 12.1 which will be used in Section 12.3 to build an
estimator of the effective speed of sound inside the medium. We begin with the proof
of Theorem 57

Proof of Theorem 57. Using (12.8), we have for all xs ∈ D,

I(xs, cs) =

ˆ
B

ω2

c2
0

ˆ
D

ψε(x)

(〈
G

ω
cs (· − xs), G

ω
c0 (· − x)

〉
A

)2

dxdω

+ η−1−dε
d+1

2 µd

(
1
ε

) 1
2
ˆ
A×A×B

Rε(xe,xr, ω)G
ω
cs (xe − xs)

× G
ω
cs (xr − xs)dσ(xe)dσ(xr)dω. (12.12)

We recall that |A|2 = ηd−1a2(d−1)
0 |A0|2 and |B| = Bη−1. Furthermore, by (11.4),∥∥∥G

ω
cs (· − xs)

∥∥∥2

L∞(A)
= O

(
η3−d

)
.

Therefore, by the the uniform bounds on ∥Rε∥L2(Ω) in xe, xr, ω,∥∥∥∥ˆ
A×A×B

Rε(xe,xr, ω)G
ω
cs (xe − xs)G

ω
cs (xr − xs)dσ(xe)dσ(xr)dω

∥∥∥∥
L2(Ω)

= O (η) .

By the change of variable ω = ω̃
η ,

I(xs, cs) = η−3
ˆ
B0

ω̃2

c2
0

ˆ
D

ψε(x)F
(
x,xs, c0, cs,

ω̃

η

)2

dxdω̃

+ η−dε
d+1

2 µd

(
1
ε

) 1
2

R1
ε (xs, cs), (12.13)

for some random variable R1
ε (xs, cs) ∈ L2(Ω) uniformly bounded in xs, cs and ε in

L2(Ω), and where F is defined in (11.2). Note that in view of the above estimations and
(11.2), and Lemma 64,∥∥∥∥∥

ˆ
B0

ω̃2

c2
0

ˆ
D

ψε(x)F
(
x,xs, c0, cs,

ω̃

η

)2

dxdω̃

∥∥∥∥∥
L2(Ω)

= O(ε
d
2 η2−d).

We want to use Lemma 53. However the points in D are not all in the paraxial regime.
That is why we will use the result of Lemma 63 (in appendix G), which is an exten-
sion Lemma 53 when the points are not in the paraxial regime. We use the asymptotic
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expression of F given in Lemma 63 to obtain:

I
(
xs, cs =

c0

υ

)
= η2−d

ˆ
D

ψε(x)

(|x||xs|)d−1

ˆ
B0

ω̃2d−4Ca

c2d−4
0 υ3−d

(
exp

(
2iω̃
c0η

(υ|xs| − |x|)
)

× G
(

ω̃a0

η
1
2 c0

(
υx⊥

s

|xs|
− x⊥

|x|

)
,

ω̃a0

c0

(
υ(xqs)2

|xs|3
− (xq)2

|x|3

)))2

×
(

1 + η
1
2O
(

ω̃(xq)2|x⊥|
c0|x|3

+
ω̃υ(xqs)2|x⊥

s |
c0|xs|5

))
dω̃dx+ η−dε

d+1
2 µd

(
1
ε

) 1
2

R1
ε (xs, cs).

(12.14)

We recall that xs is in the paraxial regime and thus,

I(xs, cs =
c0

υ
) = η2−d

ˆ
D

ψε(x)

(|x|xqs)d−1

ˆ
B0

exp
(

2iω̃
c0η

(
υxqs + ηυ

(x̃⊥
s )

2

2xqs
− |x|

))
× ω̃2d−4Ca

c2d−4
0 υ3−d

G
(

ω̃a0

η
1
2 c0

(
η

1
2 υx̃⊥

s

xqs
− x⊥

|x|

)
,

ω̃a0

c0

(
υ

xqs
− (xq)2

|x|3

))2

×
(

1 + η
1
2O
(
(xq)2|x⊥|

|x|5

))
dω̃dx+ η3−dε

d
2 R2

ε (xs, cs) + η−dε
d+1

2 µd

(
1
ε

) 1
2

R1
ε (xs, cs),

(12.15)

with R2
ε (xs, cs) ∈ L2(Ω) with

∥∥R2
ε (xs, cs)

∥∥
L2(Ω) ≤ C for some C > 0.

Even if the main term of (12.15) in an integral which is on the whole domain D, in
reality only a small region around the point

xf

(
xs,

1
υ

)
:=
(

υ2η
1
2 x̃⊥

s , υxqs
)

actually contributes to the integral. Indeed, if the point |x| is too far away from the
search point x f (υ), i.e. does not verify

|υxqs − |x|| = O(ηυxqs),∣∣∣∣∣η
1
2 υx̃⊥

s

xqs
− x⊥

|x|

∣∣∣∣∣ = O
(

η
1
2

)
,

then the phase terms

2iω̃
c0η

(
υxqs + ηυ

(x̃⊥
s )

2

2xqs
− |x|

)
and

ω̃a0

η
1
2 c0

(
η

1
2 υ|x̃⊥

s |
xqs

− |x⊥|
|x|

)
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are arbitrary large and the integral becomes negligible. More precisely, for M > 0, we
define the domain

Dη(xs, M) :=
{
x ∈ D, |υxqs − |x|| < Mη

}
∩
{
x ∈ D, |η 1

2 υ2|x̃⊥
s | − |x⊥|| < Mη

1
2

}
then as G is peak function centered in 0, I can be approximated by:

I(xs, cs =
c0

υ
) = η2−d

ˆ
Dη(xs,M)

ψε(x)

(|x|xqs)d−1

ˆ
B0

exp
(

2iω̃
c0η

(υxqs + ηυ
(x̃⊥

s )
2

2xqs
− |x|)

)

× ω̃2d−4Ca

c2d−4
0 υ3−d

G
(

ω̃a0

η
1
2 c0

(
η

1
2 υ|x̃⊥

s |
xqs

− |x⊥|
|x|

)
,

ω̃a0

c0

(
υ

xqs
− (xq)2

|x|3

))2

dω̃dx

+ ε2−dRε(xs, cs, M),
(12.16)

where the random variable Rε verifies the desired properties. We almost recognize the
point spread function from equation (11.12) with the roles of the variables exchanged:
xs now plays the role of the position of the reflector x0, and the point x the role of the
search point xs. Just as before, we expand the imaging functional around the center of
the focal spot xf (xs, 1

υ ) by setting

x = xf

(
xs,

1
υ

)
+ s(r, υ) ∈ Rd

with s(r̃, υ) = (η
1
2 υ2r̃⊥, ηυrq) for r̃ ∈ Rd. By integrating with respect to the variable

r̃ :=
(
r̃⊥s , rqs

)
, and a last Taylor expansion with respect to η, we obtain the result (12.9).

An ultrasound image is a map of the reflectivity of a medium. Here the reflectiv-
ity is modeled by nε. To compute the imaging function at xs, we focus a wave at xs

and listen to the returning echoes from which we expect to compute nε(xs) or a spa-
tial average of nε in a small ball around xs. However, Theorem 54 indicates that this
is not exactly the case. If υ ̸= 1, due to the mismatch between the speed of sound of
the medium c0 and the backpropagation speed cs, we are not focusing the wave at xs,
but at xf

(
xs, 1

υ

)
and therefore not listening to the echoes returning from xs. Still, the

listened echoes come not only from xf

(
xs, 1

υ

)
but in fact from a small area around it,

of typical size η
1
2 .

In other words, it means that the focusing of the wave at xs can be seen as the creation
of a (small) virtual reflector centered at xf

(
xs, 1

υ

)
which radiates. The echoes are mea-

sured and the averaged reflectivity is computed.
From these observations, our goal is now to identify the speed of sound of the medium.
We are able to use the maximum of intensity on the image when we have a real target



172
CHAPTER 12. ESTIMATION OF THE SPEED OF SOUND IN TISSUE

MIMICKING MEDIA

inside the medium. However, in this configuration, the image is a random speckle pat-
tern and it is not possible to follow a bright pixel from one image computed with one
speed of sound cs to another. Nevertheless, we show in the next section that following
Aubry’s work [17], we can extract, via a local spatial averaging and a singular value
expansion, coherent signal that allows this virtual reflector to be used as a guide star.

12.3 From spatial averaging to ensemble averaging

By Theorem 57, when we compute the image at xs with backpropagation speed cs,

we are actually focusing on a virtual reflector at xf

(
xs, 1

υ

)
= (υ2η

1
2 x̃⊥

s , υxqs). To al-

ways focus on one particular chosen point, it is natural to parametrize the points by
x̄s(cs) = (η

1
2 c2

s ξ̃, cst) for t > 0 and ξ̃ ∈ Rd−1. By doing so, for a given ξ̃ ∈ Rd−1 and
t > 0, the focal spot is always localized at xξ̃,t := (η

1
2 c2

0ξ̃, c0t). In particular, we always
recreate at virtual reflector at the point xξ̃,t for every backpropagation speed of sound
cs, and this point is going to be our guide star.
To obtain an estimator of the effective sound speed that does not depend of the random
fluctuations, we want to average over several realizations of the medium. However,
in practice we only have access to one realization ϖ of the medium. By Theorem 57,
the computation of the imaging function at x corresponds to the computation of the
local reflectivity in a neighborhood of xf

(
x, 1

υ

)
. Intuitively, for two points less than a

wavelength apart i.e. at scale η, we expect the average reflectivity to not have changed
by a lot. However, the displayed images is a speckle pattern due to the random oscil-
lations of the reflectivity which occurs at the typical scale ε. The random oscillations
are modeled by a stationary process (which means that the distribution law of the scat-
terers is invariant by translation). The idea is then to show that the reflectivity map
around a point y can be interpreted as the reflectivity map around the point x for a
new realization ϖ′ i.e. Iϖ(y, cs) ≈ Iϖ′

(x, cs). We show that this is true at first order in
η in Lemma 58. Then, when we are focusing on a series of points y in a small region of
interest, it is as if we had access to several realizations of the disorder. Indeed, under
the mixing assumption the spatial average of a stationary process over a domain, which
is much larger than the typical scale at which the random process oscillates i.e. ε, is an
approximation of its expectation. It means that we can compute spatial averages of I
to recover averaged quantities. In particular, we show that we can recover the effective
speed of sound c0.
This idea was developed by the team of Alexandre Aubry [17] and is the topic of this
section. We define the function Kξ̃,t by:

Kξ̃,t(∆̃ξ, ∆̃t, cs) := I
(

c2
s (η

1
2 ξ̃+ η∆̃ξ), cs(t + η∆̃t), cs

)
, (12.17)
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for ∆̃ξ ∈ Iξ̃ := [ξ̃−, ξ̃+]d−1 and ∆̃t ∈ It := [−t̃−, t̃+]. Kξ̃,t corresponds to the imag-
ing function on a small area of size η Iξ̃ × η It around x

ξ̃,t. We show in this section, in
Lemma 58, that at first order in η, Kξ̃,t(·, ·, cs) is stationary in the sense of Definition 8.
Thanks to its ergodic properties, spatially averaging on a large domain is equivalent to
an ensemble average. In particular we show in Proposition 59, that the spatial average
of the intensity of the imaging function contains the deterministic information about
the homogenized speed of sound that we can use to establish an estimator of the latter.

Lemma 58: Local stationarity of Kξ̃,t

For M > 0, Kξ̃,t defined in (12.17) can be approximated by:

Kξ̃,t(∆̃ξ, ∆̃t, cs) = η2−dCaKM
ξ̃,t
(∆̃ξ, ∆̃t, cs) + η2−dε

d
2 Rε,ξ̃,t(∆̃ξ, ∆̃t, cs, M). (12.18)

The function KM is defined by,

KM
ξ̃,t
(∆̃ξ, ∆̃t, cs) := η

d+1
2

ˆ
B(0,M)

ψε(xξ̃,t + s(r̃, υ) + p(∆̃ξ, ∆̃t))

×P1(x̃ξ̃,t, r̃, υ)dr̃, (12.19)

with xξ̃,t := (η
1
2 c2

0ξ̃, c0t), s(r̃, υ) =
(

η
1
2 υ2r̃⊥, ηυrq

)
∈ Rd and

p(∆̃ξ, ∆̃t) := (ηc2
0∆̃ξ, ηc0∆̃t) and the remainder Rε,ξ̃,t(∆̃ξ, ∆̃t, cs, M) ∈ L2(Ω)

is a random variable that verifies
∥∥∥Rε,ξ̃,t

∥∥∥
L2(Ω)

≤ C(M) with C(M) −−−→
M→∞

0.

In particular, KM
ξ̃,t
(·, ·, cs) is stationary in the sense of Definition 8.

Proof. By definition (12.17) and the asymptotic formula of Theorem 57,

Kξ̃,t(∆̃ξ, ∆̃t, cs) = η
5−d

2 Ca

ˆ
B(0,M)

ψε(xξ̃,t + s(r̃, υ) + p(∆̃ξ, ∆̃t))

×P1

(
x̃ξ̃,t + (η

1
2 ∆̃ξ, η∆̃t), r̃, υ

)
dr̃+ η2−dε

d
2 Rε,ξ̃,t(∆̃ξ, ∆̃t, cs, M), (12.20)

for a random variable Rξ̃,t(∆̃ξ, ∆̃t, cs, M, ε) with the desired properties. A Taylor ex-
pansion in η inside P1 yields the result and the remainder is estimated by applying
Lemma 64.

Therefore, building on the result of Lemma 58, we can use the ergodicity property
of KM

ξ̃,t
(·, ·, cs) via the Birkhoff ergodic Theorem 10 and the mixing Hypothesis 20. In

particular, we can spatially average KM
ξ̃,t
(·, ·, cs) to average in the probability space. We

recall that we aim to recover the effective speed of sound.
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The first idea to recover the speed of sound, using the ergodicity property is then to
sum the amplitude of the imaging function over several close points. This corresponds
to the incoherent estimator introduced by Aubry [17].
We thus introduce C(ξ, t, cs)2 the local average of the intensity of the imaging function
defined by

C(ξ̃, t, cs)
2 :=

ˆ
I
ξ̃
×It

|Kξ̃,t(∆̃ξ, ∆̃t, cs)|2d∆̃ξd∆̃t. (12.21)

In the following Proposition 59, we prove an asymptotic form of this local average.
We show the following:

Proposition 59: Local average of the intensity of I

For M > 0, cs ∈ [cmin, cmax], ξ̃ ∈ Rd and t > 0,

C(ξ̃, t, cs)
2 = η4−2dεdC2

aCM(ξ̃, t, cs)
2 + η4−2dεdRε(ξ̃, t, cs, M) (12.22)

with

CM(ξ̃, t, cs)
2 :=

(ˆ
Rd

Σ(z)dz
)
×
ˆ

B(0,M)

∣∣∣∣υ−2d+1P1(xξ̃,t, r, υ)

∣∣∣∣2dr. (12.23)

Σ is the covariance function of ψ defined in (12.2), and the remain-
der Rε(ξ̃, t, cs, M) ∈ L1(Ω) verifies,

∥∥∥Rε(ξ̃, t, cs, M)
∥∥∥

L1(Ω)
≤ C(M) with

C(M) −−−→
M→∞

0.

In the narrowband case, the expression of CM is explicit:

Corollary 60: Narrowband approximation of C

(Narrowband signal) Assume that B ≪ ω0,

CM(ξ̃, t, cs)
2 =

(ˆ
Rd

Σ(z)dz
)
HM

(
xξ̃,t, υ)

)2

+
B

ω0
R(ξ̃, t, cs, M). (12.24)
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HM is the peak function defined by,

HM(xξ̃,t, υ)2 :=
(

ω4
0

c8
0t4

)d−2 1
υ2c4

0t4

ˆ
B(0,M)

∣∣∣∣sinc
(

B
c0

υrq
)∣∣∣∣2

×
∣∣∣∣G(− a0ω0

c2
0t

r̃⊥,
a2

0ω0

c2
0t

(υ2 − 1)
)∣∣∣∣4dr, (12.25)

and the (deterministic) remainder R(ξ̃, t, cs, M) is uniformly bounded in ξ̃, t and
cs.

Remark 12.3.1. Corollary 60 is written to keep a local estimator in the sense that we work at a
given ξ ∈ Rd−1 and t > 0 and recover the local speed of sound at xξ̃,t. However, in our study,
the random distribution of the reflectivity is spatially invariant everywhere. We can get explicit
formulas, by approximating in the definition the peak function HM the integral on B(0, M) by

the integral over Rd to get the following CHH
(

a2
0ω0

c2
0xqs

(υ2 − 1)
)

, where H is the normalized peak

function defined by:

H(β)2 :=
(

2
3π

)d−1 ˆ
Rd−1

∣∣∣∣G(z̃⊥, β

)∣∣∣∣4dz̃⊥, (12.26)

and

CH :=
π

υBc3
0t4

(
υ4ω4

0

c8
0t4

)d−2( c2
0t

a0ω0

3π

2

)d−1

.

The result (12.26) is obtained by Lebesgue’s dominated convergence theorem applied to the
integral on rq of the right hand side of (12.25), analytically integrating this integral over rq ∈ R,
and by the change of variable z̃⊥ = a0ω0

c2
0t

r̃⊥.

Proof of Proposition 59. We have by Lemma 58,

C(ξ̃, t, cs)
2 = η4−2d

ˆ
I
ξ̃
×It

∣∣∣∣CaKM
ξ̃,t
(∆̃ξ, ∆̃t, cs) + ε

d
2 Rε,ξ̃,t(∆̃ξ, ∆̃t, cs, M)

∣∣∣∣2d∆̃ξd∆̃t

Note that P1(x̃ξ̃,t, ·, υ) ∈ C1(Rd), so that we obtain by Lemma 64:

E

[
|KM

ξ̃,t(0, 0, cs)|2
]
= υ−2d+1

(ˆ
Rd

εdΣ(z)dz
)
×
ˆ

B(0,M)

∣∣∣∣P1(x̃ξ̃,t, r̃, υ)

∣∣∣∣2dr̃

+
εd+1

η
R(ξ̃, t, cs, M), (12.27)
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for some (deterministic) remainder R(ξ̃, t, cs, M) uniformly bounded in ξ̃, t, and cs.
Therefore, we have for fixed ξ̃ and t by Theorem 10 and the quantitative mixing hy-
pothesis Hypothesis 20,

C(ξ̃, t, cs)
2 = η4−2dC2

a |Iξ̃||It|E
[
|KM

ξ̃,t(0, 0, cs)|2
]
+ η4−2dεdR1

ε (ξ̃, t, cs, M) (12.28)

for some remainder random variable R1
ε (ξ̃, t, cs, M) ∈ L1(Ω) that verifies the required

properties.

Proof of Corollary 60. Following the proof of Corollary 55, we have in the narrowband
case that,

P1(x̃ξ̃,t, r̃, υ) =

(
ω2

0υ2

t2c4
0

)d−2 1
c2

0t2
exp

(
2iω0

c0

(
−υrq +

|c2
0ξ̃|2 − υ2|c2

0ξ̃+ υ2r̃⊥|2
2υ2c0t

))
× sinc

(
B
c0

υrq
)
× G

(
a0ω0

c2
0t

r̃⊥,
a2

0ω0

c2
0t

(
υ2 − 1

))2

+
B

ω0
R1
ξ̃,t(r),

(12.29)

for some (deterministic) remainder R1
ξ̃,t
(r) ∈ L2(B(0, M)). Equation (12.24) is then

obtained by integrating the square of (12.29).

As υ 7→ P1(·, ·, υ) defined by (12.11) is a peak function (maximum for υ = 1), we
have that C(ξ̃, t, cs) is maximum for cs = c0 by Proposition 59. We can then recover c0
by the following estimator:

ĉ3(xξ̃,t) = argmax
cs

C(ξ̃, t, cs). (12.30)

We plot C(ξ̃, t, cs) on Figure 13.8a.
In the narrowband setup, the behavior of C is driven by HM(xξ̃,t). This peak function
is very similar to |G(0, β)|4.
However, as we considered the average of the amplitude of the function, we have
lost all the information about the imaginary part of G(0, β) that we previously used
in (11.23) and which displays a better resolution as the width of peak is narrower
(see Figure 13.5). This explains why the incoherent estimator ĉ3 established in [17] by
Alexandre Aubry and his team was improved to a coherent estimator by applying a
singular value decomposition (SVD) to the kernel operator with kernel Kξ̃,t. This is the
subject of the next section.
We also point out that for technical reasons, we considered a medium in which the
underlying homogenized speed of sound is constant and does not depend on the
position x

ξ̃,t. However, we explicit the dependency to x
ξ̃,t as we could extend the

theoretical results to a more complex speed of sound map.
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12.4 Singular value expansion of K

When we have a medium with a target, we can use the maximum of the derivative
of the imaginary part at the brightest pixel to recover the speed of sound. By focusing
at xs(cs) = (c2

s η
1
2 ξ̃, cst) for some ξ̃ ∈ Rd−1 and t > 0, we create a virtual target at xξ̃,t

and the position of this target does not depend on the input backpropagting speed of
sound as proven in Theorem 57. By spatially averaging the imaging function in a small
area, we obtain deterministic information about the medium as proven in Lemma 58.
We show in this section that we are able to recover the coherent and deterministic in-
formation about the imaginary part of G by considering another type of average of Kξ̃,t
defined by (12.17) via a singular value decomposition.
This heuristic was put in practice by Alexandre Aubry and his team and he experi-
mentally showed in [17] that the first right singular vector V of the kernel operator
Rξ̃,t : L2([cmin, cmax] → L2(Iξ̃ × It̃) with kernel Kξ̃,t, is such that ∂Im(V)

∂cs
(cs) is maximal

when cs = c0. The operator Rξ̃,t is defined by:

Rξ̃,t :


L2([cmin, cmax]) −→ L2(Iξ̃ × It)

f 7−→ (Rξ̃,t f )(∆̃ξ, ∆̃t) =
ˆ
[cmin,cmax]

Kξ̃,t(∆̃ξ, ∆̃t, c) f (c)dc.

(12.31)
We propose here to theoretically prove the result of Aubry. First, note that Rξ̃,t is

a Hilbert-Schmidt integral operator as Kξ̃,t(∆̃ξ, ∆̃t, c) ∈ L2((Iξ̃ × It̃) × [cmin, cmax]).

Indeed, Kξ̃,t depends on ∆̃ξ, ∆̃t and c only via the Green function which is uni-
formly bounded. A singular value decomposition (SVD) can thus be performed
(see e.g. [190]). The right singular vectors of Rξ̃,t are the eigenvectors of
Sξ̃,t : L2([cmin, cmax]) → L2([cmin, cmax]) defined by

Sξ̃,t := R∗
ξ̃,tRξ̃,t,

where R∗
ξ̃,t

is the adjoint of Rξ̃,t. We show in this section, that Sξ̃,t at first order in η is
the kernel operator with kernel

E[Kξ̃,t(0, 0, c1)Kξ̃,t(0, 0, c2)]

for c1, c2 ∈ [cmin, cmax]. For a given ξ̃ ∈ Rd−1 and t > 0, C(ξ̃, t, ·) introduced in (12.21)
corresponds to the diagonal of Sξ̃,t. We show that the eigenvectors of Sξ̃,t can be used
to estimate c0. To that aim, we first carry an asymptotic analysis of Sξ̃,t:
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Proposition 61: Asymptotic of Sξ̃,t

For M > 0, Sξ̃,t : L2([cmin, cmax]) → L2([cmin, cmax]) can be approximated by

|||Sξ̃,t − η4−2dεdSM
ξ̃,t||| ≤ η4−2dεdRε(ξ̃, t, M) (12.32)

with SM
ξ,t : L2([cmin, cmax]) → L2([cmin, cmax]) defined for f ∈ L2([cmin, cmax]) by

(SM
ξ̃,t

f )(cs) := C2
a

(ˆ
Rd

Σ(z)dz
) ˆ

[cmin,cmax]
f (c)

× c2d−1c2d−1
s

c4d−2
0

ˆ
B(0, c0

cs M)∩B(0, c0
c M)

P1

(
x̃ξ̃,t, s

(
r̃,

c0

cs

)
,

c0

cs

)
×P1

(
x̃ξ̃,t, s

(
r̃,

c0

c

)
,

c0

c

)
dr̃dc

(12.33)

with s(r̃, υ) = (υ2r̃⊥, υrq) and the remainder Rε(ξ̃, t, M) ∈ L1(Ω) is a random
variable that verifies,

∥∥∥Rε(ξ̃, t, M)
∥∥∥

L1(Ω)
≤ C(M) with C(M) −−−→

M→∞
0.

When the source term has a narrow bandwidth, SM
ξ̃,t

has a form:

Corollary 62: Narrowband asymptotic of Sξ̃,t

(Narrowband signal) Assume that B ≪ ω0, then it holds

|||SM
ξ̃,t − S̃M

ξ̃,t||| ≤
B

ω0
R(ξ̃, t, M) (12.34)

where

(S̃M
ξ̃,t f )(cs) = C2

a

(ˆ
Rd

Σ(z)dz
)
×
ˆ
[cmin,cmax]

f (c)LM
(
x̃ξ̃,t,

c0

c
,

c0

cs

)
dc. (12.35)

LM is the kernel defined by,
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LM(x̃ξ̃,t, υ1, υ2) :=
(

ω4
0

c8
0t4

)d−2 1
υ1υ2c4

0t4

×
ˆ

B(0, c0
cs M)∩B(0, c0

c M)
exp

(
2iω0

c0

( |c4
0ξ̃+ r̃⊥|2 − |c4

0ξ̃+ r̃⊥|2
2c0t

))

× sinc
(

B
c0

rq
)2

× G
(
− a0ω0

c2
0t

υ2
1r̃

⊥,
a2

0ω0

c2
0t

(υ2
1 − 1)

)2

G
(
− a0ω0

c2
0t

υ2
2r̃

⊥,
a2

0ω0

c2
0t

(υ2
2 − 1)

)2

dr̃, (12.36)

and the (deterministic) remainder R(ξ̃, t, M) is uniformly bounded in ξ̃ and t.

Rξ̃,t corresponds a matrix whose rows are the imaging function for points in a
neighborhood (of the order of the wavelength) of xξ̃,t and whose columns are the back-
propagation speeds of sound cs at which the imaging functional is computed. The
coherent estimator of Aubry is built upon the first right singular of this matrix Rξ̃,t. In
Proposition 61, we obtain an asymptotic form of for Sξ̃,t = R∗

ξ̃,t
Rξ̃,t. The coherent esti-

mator is then the maximum of amplitude of the first eigenvector of Sξ̃,t. The asymptotic
form of Proposition 61 is numerically computed and we numerically show in Section 13
that its first eigenvector can indeed be used to recover the effective speed of sound.

Proof of Proposition 61. We first show that the adjoint
R∗

ξ̃,t
: L2(Iξ̃ × It) → L2([cmin, cmax]) is defined by

(R∗
ξ̃,tg)(cs) :=

ˆ
I
ξ̃
×It

Kξ̃,t(∆̃ξ, ∆̃t, cs)g(∆̃ξ, ∆̃t)d∆̃ξd∆̃t. (12.37)

Indeed, we have for f ∈ L2([cmin, cmax]), g ∈ L2(Iξ̃ × It),

〈
Rξ̃,t f , g

〉
L2(I

ξ̃
×It)

=

ˆ
[cmin,cmax]

f (c)
(ˆ

I
ξ̃
×It

Kξ̃,t(∆̃ξ, ∆̃t, c)g(∆̃ξ, ∆̃t)d∆̃ξd∆̃t
)

dc

=
〈

f ,R∗
ξ̃,tg
〉

L2([cmin,cmax])
.

Sξ̃,t : L2([cmin, cmax]) → L2([cmin, cmax]) is then defined by

(Sξ̃,t f )(cs) :=
ˆ
[cmin,cmax]

(ˆ
I
∆̃ξ

×I∆̃t

Kξ̃,t(∆̃ξ, ∆̃t, cs)Kξ̃,t(∆̃ξ, ∆̃t, c)d∆̃ξd∆̃t
)

f (c)dc. (12.38)
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We proceed as in the proof of Proposition 59. First, by Lemma 58,

Kξ̃,t(∆̃ξ, ∆̃t, c) = η4−2d
(

CaKM
ξ̃,t(∆̃ξ, ∆̃t, c) + ε

d
2 Rε,ξ̃,t(∆̃ξ, ∆̃t, cs, M)

)
. (12.39)

Moreover, by Lemma 64,

E

[
KM

ξ̃,t(0, 0, cs)KM
ξ̃,t
(0, 0, c)

]
=

c2d−1c2d−1
s

c4d−2
0

εd
(ˆ

Rd
Σ(z)dz

)
×
ˆ

B(0, c0
cs M)∩B(0, c0

c M)
P1

(
x̃ξ̃,t, s

(
r̃,

cs

c0

)
,

c0

cs

)
P1

(
x̃ξ̃,t, s

(
r̃,

c
c0

)
,

c0

c

)
dr̃

+ η−1εd+1R1(ξ̃, t, cs, M), (12.40)

for some (deterministic) remainder R1(ξ̃, t, cs, M) uniformly bounded with respect to ξ̃,
t, cs and ε. Then using Theorem 10 and the mixing Hypothesis 20, it holds,

(Sξ̃,t f )(cs) := η4−2d
ˆ
[cmin,cmax]

C2
a |Iξ̃||It̃|E

[
KM

ξ̃,t(0, 0, cs)KM
ξ̃,t(0, 0, c)

]
+ η4−2dεd

ˆ
[cmin,cmax]

R2
ε (ξ̃, t, c, M) f (c)dc, (12.41)

for some remainder R2
ε (ξ̃, t, c, M) ∈ L1(Ω) that satisfies the required properties i.e.∥∥∥R2

ε (ξ̃, t, M)
∥∥∥

L1(Ω)
≤ C(M) with C(M) −−−→

M→∞
0. In particular, using the uniform bound

in c, it holds∥∥∥(Sξ̃,t f )
∥∥∥

L2([cmin,cmax])

≤ η4−2dεdC2
a |Iξ̃||It̃|

(ˆ
[cmin,cmax]

E

[
KM

ξ̃,t(0, 0, cs)KM
ξ̃,t(0, 0, c)

]
f (c)

)2

dc

+ η4−2dεdR3
ε (ξ̃, t, M) ∥ f ∥2

L2([cmin,cmax])
, (12.42)

for some remainder R3
ε (ξ̃, t, M) ∈ L1(Ω) that verifies

∥∥∥R3
ε (ξ̃, t, M)

∥∥∥
L1(Ω)

≤ C(M) with

C(M) −−−→
M→∞

0. This yields the desired result by inserting (12.40) into (12.42).

Proof of Corollary 62. We proceed as in the proof of Corollary 60, by a Taylor expansion
B

ω0
inside the equation of P1

(
x̃ξ̃,t, s

(
r̃, c0

cs

)
, c0

cs

)
to an equivalent of (12.29). We then

insert this equivalent into the definition of (12.33) to obtain (12.35).

When we compute the operator Sξ̃,t, we compute in fact the ensemble average of

E[Kξ̃,t(0, 0, c1)Kξ̃,t(0, 0, c2)] for different c1 ̸= c2. When we compute function C(ξ̃, t, ·)
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defined by (12.21), we only compute the ensemble average E[|Kξ̃,t(0, 0, c1)|2.
In that sense, Sξ̃,t contains more exploitable information to recover the speed of sound.
We can for example compute the eigenvectors of Sξ̃,t. Numerically, we observe that the
first eigenvector Vξ̃,t of Sξ̃,t can be used to recover the sound speed c0. Vξ̃,t is maximal

for cs = c0 (see Figure 13.8b). Furthermore,
∂Im(V

ξ̃,t)

∂cs
is maximal when cs = c0 (see

Figure 13.8c). V shows the properties of Pc defined by (11.21), that we used to recover
the speed of sound in a homogeneous medium. We thus define the two estimators:

ĉ4(xξ̃,t) = argmax
cs

∣∣∣Vξ̃,t(cs)
∣∣∣ , (12.43)

and

ĉ5(xξ̃,t) = argmax
cs

∣∣∣∣∣∂Im(Vξ̃,t)

∂cs
(cs)

∣∣∣∣∣ . (12.44)

These two estimators are plotted on Figure 13.4. Even if the effective speed of sound
is here constant in the entire medium, we still keep the xξ̃,t-dependency on ĉ4 and ĉ5

as they are local estimators, in the sense that we could estimate c0 in a series of points
(xξ̃,t)(ξ̃∈Rd−1, t>0) to compute a local map of speed of sound.
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CHAPTER 13

Numerical illustrations

In this section, we illustrate the results of Theorem 54 and Theorem 57 and the esti-
mators of the speed of sound in the two regimes described in Section 11 and Section 12.
The simulations are done in dimension d = 2.

13.1 Simulation of the direct problem

In practice, the measurements are done in the time domain and we have access to
F−1(M(xe,xr, ·))(t) where F is the Fourier transform. We thus decide to perform nu-
merical simulations in the time domain by using the K-Wave library [191]. For a given
xe ∈ Rd, and a given end time T > 0, we simulate U(xe, x, t) := F−1(u(xe, x, ·))(t),
the solution in L2([0, T], H1(Rd \ {xe})) of:− ∆U(xe,x, t) +

n(x)
c2

0
∂2

ttU(xe,x, t) = δ(x− xe) f (t), for x ∈ Rd \ {xe}, t ∈ [0, T]

U(xe,x, 0) = ∂tU(xe,x, 0) = 0,
(13.1)

with f (t) ∈ C0([0, T]) (see Figure 13.1). The signal U(xe,xr, t) is then recorded on the
transducers at xr.
By considering Ne = 15 incident waves emitted at {xi

e}i=1...Ne and Nr = 64 recording
sensors placed at {xj

r}j=1...Nr , we have access to the matrix of data M(ωk) ∈ CNe×Nr

where
Mi,j(ωk) = F−1(U(xi

e,xj
r, ·))(ωk)

and {ωk}k=1...Nω
are the sampling frequencies that are sampled from 100 to ×108

rad (which is the frequency content of the source f ). Here Nω = 1000. The sen-
sors {xi

e}i=1...Ne and {xj
r}j=1...Nr are equally spaced on the segment [−a0, a0]× {0} with

a0 = 1.5 × 10−2 m.
As the problem is a multi-scale problem, the simulation of M can hardly be done on a
personal laptop. Indeed, it requires to mesh the small inclusions to capture their effects.
By the CFL condition (taken here to be 0.4), the computations can become quite long.
However, for i = 1...Ne, the simulations of U(xi

e, ·, ·) can be done in parallel, and are
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Figure 13.1: Source term used in the simulation. f (t) is chosen as the derivative

of g(t) = sin(ω0(t− t0)) exp(−ω2
0(t−t0)

2

τ2 ), centered in ω0 ≈ 3.14× 107 rad, τ = 0.8
and t0 = 1.2.

then computed on Nvidia Tesla V100 GPUs. For the choice of parameters, it takes ∼ 10
hours per problem.
The inverse problem is done by computing the integral of the matrix M. The number
Ne × Nr × Nω drives its size. The parameters Ne, Nr and Nω are chosen such that the
matrix M can be processed on a personal laptop.

For the imaging problem, we consider two media. One homogeneous medium with
one small target, which illustrate the work of Section 11. We recover the point spread
function of Theorem 54. We then consider a medium with tens of thousands unresolved
scatterers, which corresponds to the regime described in Section 12. In the two cases,
we estimate the underlying speed of sound with our estimators.

13.2 Point spread function in a homogeneous medium

We first consider a medium with one circular point like reflector at x0 = (0, 61 ×
10−3) m inside a homogeneous medium with speed of sound c0 = 1500 m.s−1. For a
given emission point xe, we first plot the time series recorded by several sensors on
Figure 13.2.

We compute the imaging function given by (10.6). This illustrate to the situation
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Figure 13.2: Solution U(xe,xr, t) for a given emission point xe on 4 sensors on a
given time interval. The solution is 0 out of the interval.
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of Section 11. We plot the resulting image for several backpropagation speeds on
Figure 13.3. The resulting image corresponds to the point spread function described
by(11.12) with the expected resolution.
As predicted by Theorem 54, the shape of the point spread function differs alongside

the backpropagation speed and the center of the focal spot is at xf (x0, υ) :=
(
x⊥
0

υ2 , xq0
υ

)
.

Moreover, the intensity is lowered when υ ̸= 1. The results are shown on Figure 13.3.
We then compute the theoretical and the simulated function I(xf (x0, υ = c0

cs
), cs) from

which we compute the estimators of c0 described in (11.22) and (11.23). To numerically
access I(xf (x0, υ = c0

cs
), cs) for a given cs, we take the maximum of amplitude on the

image. We then plot on Figure 13.4a and Figure 13.4b the theoretical and numerical
estimators defined (11.22) and (11.23). The derivation of the imaginary part is done by
first order finite differences.
One can see on Figure 13.5a that the peak function obtained by the derivation of the
imaginary part of I is narrower, more sensitive to an error in the backpropagating

speed. Note that in the physical experimental setups, the typical value of a2
0ω0

xq0c0
is of

the order 102-103 (see for example the transducers described in [17, Table 2.2]). Due to

computational limitations, we restrain the simulation to xq0c2
0

a2
0ω0

≈ 70. It means that the

displayed peaks computed with real (and perfect) experimental data should be even
narrower.
We also investigate the numerical stability of the estimator with respect to measure-
ment noise. We add a Gaussian white noise to our data with increasing amplitude and
plot the results on Figure 13.5. The measurement noise has only a small impact on the
recovery of the speed of sound.

13.3 Simulation in the tissue mimicking medium

We now consider the medium of Figure 13.6 which is composed on many unre-
solved scatterers. We set the density of scatterers but the number and the position of
the scatterers is random and given by a Matèrn point process (see [134, Section 6.5.2]).
In Figure 13.6, there are 22710 scatterers with up to 30% contrast in the speed of sound
and a typical radius ε = 7.5 × 10−5 m. This corresponds to a density of 15%. We
consider the three estimators described in Section 12 and given by (12.30), (12.43) and
(12.44).

We want to recover the (local) speed of sound. Here, we only describe the comput-
ing process that allows to recover the speed of sound in one point, but this could be
done for any point in D. We set the coordinates ξ̃ ∈ Rd−1, t > 0 and we want to recover
the speed of sound at xξ̃,t. For the numerical example, we choose ξ̃ = 0 m−2.s2 and
t = 3 × 10−5 s. As c0 = 1500 m.s−1, this corresponds to xξ̃,t = (0, 45) mm.
As a first step, we compute the matrix Kξ̃,t given by (12.17). To this matter, we consider
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Figure 13.3: Point spread function for several backpropagation speeds. The in-
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Figure 13.4: Estimators of the speed of sound in the homogeneous medium.
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Figure 13.5: Comparison of the two peak functions used to estimate c0 with sev-
eral levels of noise.
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Figure 13.6: Tissue mimicking medium.

a set of points in a neighborhood V(xs(cs)) of xs(cs) = (c2
s ξ̃, cst) and compute the

imaging function in these points. These points denoted ys(cs) ∈ V(xs(cs)) are chosen
to be at most 4 wavelengths away from λ(cs) = cs

ω0
of xs. We then compute both the

local average of |Kξ̃,t|
2 given by C(ξ̃, t, cs) in (12.21) and the first right singular vector

of the matrix Kξ̃,t. In fact, the singular vectors of Kξ̃,t are defined up to a constant phase
p0 ∈ [−π, π]. By a singular value decomposition, we do not have access to the vector
Vξ̃,t but in fact to Wξ̃,t := Vξ̃,t exp(ip0). In particular, we cannot use the imaginary part
of Wξ̃,t to recover c0. We first need to estimate p0. To that aim, we remark that the
theoretical singular vector Vξ̃,t(c0) plotted on Figure 13.7 satisfies:

∂Re(Vξ̃,t(c0))

∂cs

= 0 (13.2)

whilst
∂Im(Vξ̃,t(c0))

∂cs

is maximum. (13.3)

as shown on Figure By using these two conditions (13.2) and (13.3), we can estimate
both p0 and c0. We recover p0 by the following procedure. For ps ∈ [−π, π], we com-
pute

ĉ(ps) := argmax
cs

∣∣∣∣∣∂Im(Wξ̃,t exp(−ips))

∂cs

∣∣∣∣∣ .
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Figure 13.7: Real and imaginary of the first eigenvector of Sξ̃,t.

From that estimation ĉ(ps) we compute

Q(ps) :=

∣∣∣∣∣∂Re(Wξ̃,t(ĉ(ps)) exp(−ips))

∂cs

∣∣∣∣∣ .

Then, we estimate p0 by:
p̂0 := argmin

ps

Q(ps).

This procedure ensures that (13.2) and (13.3) are satisfied. The singular vector V̂ξ̃,t(cs)

is then recovered by:
V̂ξ̃,t(cs) := Wξ̃,t(cs) exp(−i p̂0),

and the estimator of c0 is then given by:

ĉ0 := argmax
cs

∂Im(V̂ξ̃,t(cs))

∂cs
.

The three functions C(ξ̃, t, cs), |V̂ξ̃,t| and
∂V̂

ξ̃,t
∂cs

are plotted on Figure 13.8a, Fig-
ure 13.8b and Figure 13.8c respectively. We also plot the asymptotic theoretical shape of
these three objects given by the results of Corollary 60 and Corollary 62 in the narrow-
band case. As already mentioned in the previous section, the peak function obtained

by looking at
∂V

ξ̃,t
∂cs

is narrower than the two other peaks, more sensitive to an error in
the backpropagation speed.
The matrix Kξ̃,t is displayed on Figure 13.10 and is a random speckle pattern. When we
compute the matrix

Tξ̃,t := K∗
ξ̃,tKξ̃,t

which corresponds to the kernel of Sξ̃,t, we see a spot centered in υ = 1 displayed on

Figure 13.11. C(ξ̃, t, cs) is in fact the diagonal of Tξ̃,t.
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APPENDIX E

Proof of the monopole approximation

Proof of Lemma 52. The proof follows from [107, Chapter 8]. It states that for all x ∈ Rd,
the total field u = us + ui can be represented by ([107, (8.13)]),

u(xe,x, ω) = ui(xe,x, ω) + nS

(
ω

c0

)2 ˆ
B(x0,ε)

G
ω
c0 (x− y)u(xe,y, ω)dy. (E.1)

Let vs = us
|B(x0,ε), then

us(xe,x, ω) =


vs(xe,x, ω) if x ∈ B(x0, ε),

nS(
ω

c0
)2
ˆ

B(x0,ε)
G

ω
c0 (x− y)vs(xe,y, ω)dy. if x ∈ Rd \ B(x0, ε),

(E.2)
where vs ∈ L2(B(x0, ε)) satisfies:

vs(xe,x, ω) = (I − Tω
ε )−1ui(xe,x, ω) (E.3)

and the Lippmann-Schwinger operator Tω
ε ∈ L2(B(x0, ε)) → L2(B(x0, ε)) is defined

by

Tω
ε [ f ](x) := ns(

ω

c0
)2
ˆ

B(x0,ε)
G

ω
c0 (x− y) f (y)dy. (E.4)

We show that in this configuration the Neumann series N(Tω
ε ) of Tω

ε defined by

N(Tω
ε ) =

∞

∑
k=0

(Tω
ε )k

converges. The convergence of this series is a consequence of the control on |||Tω
ε |||.

We thus estimate |||Tω
ε |||. By the change of variable y := x0 + εỹ, for

Tω
ε f (x) = εdns(

ω

c0
)2
ˆ

B(0,1)
G

ω
c0 (x− x0 − εỹ) f (x0 + εỹ)dỹ. (E.5)

Therefore, we have that

∥Tω
ε f ∥L2(B(x0,ε)) = ε2d

ˆ
B(0,1)×B(0,1)

G
ω
c0 (ε(x̃− ỹ)) f (x0 + εỹ)dỹdx̃. (E.6)
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This yields that
|||Tω

ε ||| ≤ εd
∥∥∥G

ω
c0 (ε(· − ·))

∥∥∥
L2(B(0,1)×B(0,1))

. (E.7)

We recall [108, Lemma 2.21]:

∀z ∈ Rd, Gk(z) =


i
4

H(1)
0 (k|z|) if d = 2,

exp(ik|z|)
4π|z| if d = 3,

(E.8)

where H(1)
0 is the Hankel function of the first kind. In particular,

|||Tω
ε ||| ≤ ε2(

ω

c0
)2



∥∥∥∥ i
4

H(1)
0 (

εω

c0
| · − · |)

∥∥∥∥
L2(B(0,1)×B(0,1))

if d = 2.∥∥∥∥∥exp(i εω
c0
| · − · |)

4π| · − · |

∥∥∥∥∥
L2(B(0,1)×B(0,1))

if d = 3,
(E.9)

At the origin, |z| → 0, H(1)
0 (|z|) ∼ 2i

π log(|z|) (see e.g. [108, Chapter 2.2.1]). Therefore,

|||Tω
ε ||| ≤ C


ε2(

ω

c0
)2 log(ε(

ω

c0
)) if d = 2.

ε2(
ω

c0
)2 if d = 3.

(E.10)

In particular, for ε(ω
c0
) sufficiently small, the series N(Tω

ε ) converges and:

vs(xe,x, ω) = ui(xe,x, ω) +


O
(

ε4(
ω

c0
)4 log(ε(

ω

c0
))2
)

if d = 2.

O(ε4(
ω

c0
)4) if d = 3.

(E.11)

We can now use (E.11) inside (E.2) and the change of variable y = x0 + εỹ to get for all
x /∈ D,

us(xe,x, ω) = nSεd
(

ω

c0

)2 ˆ
B(0,1)

G
ω
c0 (x− x0 − εỹ)ui(xe,x0 + εỹ, ω)dỹ

+


O(ε4(

ω

c0
)4 log(ε(

ω

c0
))2) if d = 2.

O(ε4(
ω

c0
)4) if d = 3.

(E.12)

We have that

G
ω
c0 (x− x0 − εỹ) = G

ω
c0 (x− x0)

(
1 +O

(
εỹ

|x− x0|

)
+O

(
εω

c0|x− x0|

))
. (E.13)
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Moreover, for ω
c0
|x− x0| ≫ 1, we have by (10.7) for dimension 2 and by (10.3) that

|G
ω
c0 (x− x0)| =

O
(
(

c0

ω
|x− x0|)

1
2

)
if d = 2

O(1) if d = 3
. (E.14)

Recalling that
ui(xe,x, ω) = G

ω
c0 (x− x0),

the result follows by inserting (E.13) and (E.14) in (E.12).
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APPENDIX F

Homogenization result in large domains

Proof of Proposition 56. The homogenization result of Theorem 39 has been obtained in
a domain D of typical size 1 and a wavelength λ of order 1. We prove that this holds in
the setting where λ

diam(D)
= η. First we rewrite the problem. To that aim, for x′,y′ ∈ Rd

and ω̃ ∈ B0, we introduce

vs
ε,η(x

′,y′, ω̃) := us
ε

(
ηx′, ηy′,

ω̃

η

)
,

and

vi
η(x

′,y′, ω̃) := ui
(

ηx′, ηy′,
ω̃

η

)
.

Then, for x′
e ∈ A

η , the scattered field vs
ε,η(x

′
e, ỹ, ω̃) ∈ H1

loc(R
d) is then the solution of

− ∆(vs
ε,η + vi

η)(x
′
e, ·, ω̃)− ω̃2

c2
0
(1 + nε(η·))(vs

ε,η + vi
η)(x

′
e, ·, ω̃) = 0 in Rd \ {x′

e}

lim
|x|→∞

|x| d−1
2

(
∂

∂|x|v
s
ε,η(x

′
e,x, ω̃)− i

ω̃

c0
vs

ε,η(x
′
e,x, ω̃)

)
= 0

(F.1)
For this problem, it has been shown in Theorem 39 under the Hypothesis 20 that for all
x′
e,x′

r ∈ A
η :

E

[
|vs

ε,η(x
′
e,x′

r, ω̃)− Vs
ε,η(x

′
e,x′

r, ω̃)|2
] 1

2

≤ C(ω̃, η)ε
d+1

2 µd

(
1
ε

) 1
2
∥∥∥∥G

ω̃
c0 (· − x′

e)

∥∥∥∥
W2,∞(D

η )

∥∥∥∥G
ω̃
c0 (· − x′

r)

∥∥∥∥
W2,∞(D

η )

(F.2)

with

Vs
ε,η(x

′
e,x′

r, ω̃) :=
ω̃2

c2
0

ˆ
D
η

ψε(ηx)G
ω̃
c0 (x′

e − x)G
ω̃
c0 (x− x′

r)dx. (F.3)
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We show here that Cη grows with η−d i.e. with the volume of D
η . In Part II, the result

of (F.2) is obtained by the estimation of the L2-norm of the correctors (6.28). In the
setting of Part III, we only consider contrasts in the index n. Therefore, we only need to
estimate

∥∥β( η·
ε )
∥∥

L2(D
η )

with respect to η and ε. We recall that the corrector β ∈ H1
loc(R

d)d

is the almost sure unique solution in D′(Rd) of (see Definition 31):

−∆βi = ∂in (F.4)

It holds (see (6.28)):

∥βε(η·)∥2
L2(D

η )
= η−d ∥βε∥2

L2(D)

≤ Cη−dµd

(
1
ε

)2(
εd ∑

z∈Pε(D)

C(z)2
)

,
(F.5)

where Pε(D) defined in (6.23) is the set of the centers of the covering of D with squares
of size ε. Thus, by following the proof of Theorem 39, we obtain that for all xe,xr ∈ A,
ω = ω̃

η ∈ B,

E

[
|us

ε(xe,xr, ω)− Vs
ε,η(xe,xr, ω̃)|2

] 1
2

≤ Cη−dε
d+1

2 µd

(
1
ε

) 1
2
∥∥∥∥G

ω̃
c0 (· − xe

η
)

∥∥∥∥
W2,∞(D

η )

∥∥∥∥G
ω̃
c0 (· − xr

η
)

∥∥∥∥
W2,∞(D

η )

.

(F.6)

By the change of variable z = ηx,

Vs
ε,η(xe,xr, ω̃) = η−d

ˆ
D

ψε(z)G
ω̃
c0 (

1
η
(xe − z))G

ω̃
c0

(
1
η
(xr − z)

)
dz

= Us
ε,η(xe,xr, ω)

(F.7)

where we used that,

G
ω̃
c0

(
1
η
(xe − y)

)
= ηd−2G

ω
c0 (xe − y)

which ends the proof.
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APPENDIX G

Lemma 53 in a more general case

When the points x and y are not in the paraxial case, an approximation of F can still
be found:

Lemma 63: Asymptotic expression of F when the points are not in the paraxial
regime

Let x = (x⊥, xq),y = (y⊥, yq) ∈ Rd, cs =
c0
υ ∈ [cmin, cmax] and ω = ω̃

η ∈ B, then,

F
(
x,y, c0, cs =

c0

υ
, ω

)
=

η
5−d

2 c3−d
0 ad−1

0

4πd−1ω̃3−dυ
3−d

2 (|x||y|) d−1
2

(
exp

(
iω̃
c0η

(υ|y| − |x|)
)

× G
(

ω̃a0

η
1
2 c0

(
υỹ⊥

|y| − x̃⊥

|x|

)
,

ω̃a0

c0

(
υ(yq)2

|y|3 − (xq)2

|x|3

))
×
(

1 + η
1
2O
(

ω̃(xq)2|x⊥|
c0|x|3

+
ω̃υ(yq)2|y⊥|

c0|y|3

)))
,

(G.1)

where G is defined by (11.7).

Proof. As in the proof of Lemma 53, the computation of the proof is done in d = 3. In
dimension d = 2, the amplitude is different and must be tracked to obtain the result
(G.1).
Doing a change of variable x̃e = η− 1

2xe in (11.2),

F(x,y, c0, cs, ω) =
η

16π2

ˆ
A0

exp
(

iω̃
c0η (υ|η

1
2 x̃e − y| − |η 1

2 x̃e − x|)
)

|η 1
2 x̃e − x||η 1

2 x̃e − y|
dσ(x̃e).

(G.2)

Then, by a Taylor expansion,∣∣∣η 1
2 x̃e − x

∣∣∣ = |x| − η
1
2 x̃e

⊥ · x
⊥

|x| + η
|x̃e

⊥|2
2

(xq)2

|x|3 + Cη
3
2
(xq)2|x⊥|

|x|3 . (G.3)
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Thus,

F(x,y, c0, cs, ω) =
η

16π2|x||y|

(
exp

(
iω̃
c0η

(υ|y| − |x|)
)

×
ˆ

a0A0

exp
(

ix̃e
⊥ · ω̃

η
1
2 c0

(
x⊥

|x| −
υy⊥

|y|

)
+ i

|x̃e
⊥|2
2

ω̃

c0

(
υ(yq)2

|y|3 − (xq)2

|x|3

))
dσ(x̃e)

×
(

1 + η
1
2O
(

ω̃(xq)2|x⊥|
c0|x|3

+
ω̃υ(yq)2|y⊥|

c0|y|3

))
(G.4)

which yields the result by the change of variable x̃e = z̃e
a0

.
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APPENDIX H

Important lemmas

To carry out the asymptotic analysis, we need to the study of the behavior of the
weak limit of Cov(nε(x), nε(y)). This is the topic of the following lemma:

Lemma 64: Covariance approximation

For any deterministic function f ∈ C1(D), g ∈ C0(D),
ˆ

D×D
Cov(nε(x), nε(y)) f (x)g(y)dxdy =

(ˆ
Rd

εdΣ(z)dz
) ˆ

D
f (x)g(x)dx

+O(εd+1)
(H.1)

Proof. By definition and by a change of variableˆ
D×D

Cov(nε(x), nε(y)) f (x)g(y)dxdy =

ˆ
D×D

Σ(
x− y

ε
) f (x)g(y)dxdy

= εd
ˆ

D

(ˆ
D
ε

Σ(z) f (εz + y)dz
)

g(y)dy.

Therefore,∣∣∣∣ˆ
D×D

Cov(nε(x), nε(y)) f (x)g(y)dxdy −
(

εd
ˆ

D
ε

Σ(z)dz
) ˆ

D
f (x)g(x)dx

∣∣∣∣
≲ εd

ˆ
D
ε

(ˆ
D
|g(y)|

∣∣∣∣ f (εz + y)− f (y)
∣∣∣∣dy)|Σ(z)|dz

≲ εd+1
(ˆ

D
ε

|Σ(z)||z|dz
)(ˆ

D
|∇ f (y)||g(y)|

∣∣∣∣dy)
Finally, ˆ

D
ε

Σ(z)dz =

ˆ
Rd

Σ(z)dz +O(ε)

as Σ has exponential decay. This yields the result.
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We also prove that the term E[uε − u0] is small.

Lemma 65: Estimation of E[uε − u0]

Let uε ∈ H1
loc(R

d) be the solution of (12.3) and u0 ∈ H1
loc(R

d) be the associated
homogenized solution that solved (12.4). For all xe,xr ∈ A, ω ∈ B, it holds

E [(uε − u0)(xe,xr, ω)] ≲ Cεd
(

ω

c0

)6

(H.2)

for some C > 0 independent on xe, xr, ω and ε.

Proof. Our starting point is (7.2) which reads here as:

uε(y) = u0(y) +
ˆ

D
k2ψεGk(·, y)uε,

where k2 = ω2

c2
0

, and y ∈ Rd. By iterating in the previous equation, it holds that:

uε(y) = u0(y) +
ˆ

D
k2ψε(x)Gk(x, y)u0(x)dx

+ k4
ˆ

D

ˆ
D

ψε(x1)ψε(x2)Gk(x2, x1)Gk(x1, y)u0(x2)dx1dx2

+ k6
ˆ

D

(ˆ
D

ˆ
D

ψε(x1)ψε(x2)Gk(x3, x2)Gk(x2, x1)Gk(x1, y)dx1dx2

)
ψε(x3)uε(x3)dx3

:= u0(y) +
ˆ

D
k2ψεGk(x, y)u0(x)dx + k4 I + k6 I I.

(H.3)

Since ψ has zero-mean, we have that

E[

ˆ
D

k2ψεGk(x, y)u0(x)dx] = 0.

We treat both terms I and I I independently. It holds that,

E[I] =
ˆ

D

ˆ
D

Cov [ψε(x1)ψε(x2)] u0(x2)Gk(x2, x1)Gk(x1, y)dx1dx2.

By Lemma 64, E[I] = O
(

εd
∥∥Gk

∥∥2
L∞(D) ∥u0∥L∞(D)

)
.

To estimate E[I I], we use [154, Lemma 2.1] which states that for random variable
with covariance Σ such that Σ

1
2 ∈ L1(Ω) then,

|E[ψ(x1)ψ(x2)ψ(x3)ψ(x4)]| ≤ C sup
{yk}1≤k≤4={xk}1≤k≤4

Σ(y1 − y3)
1
2 Σ(y2 − y4)

1
2 .
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Then, by the uniform boundness of uε ∈ L2(D).

E
[

I I2
]
= E

[∣∣∣∣ˆ
D

(¨
D2

ψε(x1)ψε(x2)Gk(x3, x2)Gk(x2, x1)Gk(x1, y)dx1dx2

)
ψε(x3)uε(x3)dx3

∣∣∣∣2
]

≤ E

[ˆ
D

∣∣∣∣¨
D2

ψε(x1)ψε(x2)Gk(x3, x2)Gk(x2, x1)Gk(x1, y)dx1dx2

∣∣∣∣2
×
ˆ

D
ψε(x3)

2|uε(x3)|2dx3
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≤ C

∥∥∥ui
∥∥∥

H1(D)

ˆ
D
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D4

E [ψε(x1)ψε(x2)ψε(x3)ψε(x4)]

× Gk(z, x2)Gk(x2, x1)Gk(x1, y)Gk(z, x4)Gk(x4, x3)Gk(x3, y)dx1dx2dx3dx4dz

≤ C
∥∥∥ui
∥∥∥

H1(D)
ε2d
∥∥∥Gk

∥∥∥6

L2(D)
.

(H.4)

Therefore, we conclude that

|E [uε(y)− u0(y)]| ≤ k4E[I] + k6E[I I]

≤ Cεd
(

k4
∥∥∥Gk

∥∥∥2

L2(D)
∥u0∥L∞(D) +

∥∥∥ui
∥∥∥

H1(D)

∥∥∥Gk
∥∥∥3

L2(D)

)
.

(H.5)
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CHAPTER 14

Conclusion and perspectives

The main goal of the thesis was to establish a mathematical framework for un-
derstanding and analyzing the experiment of Aubry to establish an estimator of the
effective speed of sound inside the soft biological tissues by using ultrasound measure-
ments. In order to design a quantitative estimator, the first step was to quantitatively
link the parameters of interest with the ultrasound measurements corresponding to
the scattered field. As the backscattered field originates form the small heterogeneities
of the tissues, we modeled the tissues by micro-structured heterogeneous bounded
media in which lie numerous unresolved and randomly distributed scatterers. This
model was used throughout the entire thesis.
While the Born approximation is commonly used to describe the backscattered field,
we decided to use quantitative stochastic homogenization. A high-order asymptotic
expansion was derived, from which we were able to define the effective speed of
sound inside the tissue. The derivation of this expansion required to use state of the
art techniques such as the multiscale variance inequality that was introduced only
recently. Furthermore, we had to introduce and characterize boundary layer correctors
for a transmission problem in the stochastic homogenization framework. The for-
malism that we propose could be extended to more complex transmission problems,
for example between several domains, each having their own random distribution
of unresolved scatterers. The model considered in this thesis allows to recover a
constant homogenized speed of sound but could be extended to take into account
the interfaces between the different layers of the tissues (fat, muscle...). Moreover,
the effective speed of sound is actually not constant in each layer, and one could
also want to model these variations on the effective speed of sound. This could be
possible by adding a dependency on the slow variable x ∈ D in the coefficients n and
a of (3.11). However, this would require the introduction of local correctors for each
fixed x ∈ D. The study of the boundary corrector problem might also be more complex.

The homogenization model that we developed was then used to establish an esti-
mator of the speed of sound. Before using the newly derived model, we carried out an
asymptotic analysis in the paraxial regime of the point spread function with respect to
the backpropagation speed of sound cs. This allowed to point out the effect of a mis-
match between cs and the actual speed of sound c0 on the focal spot. In particular, its
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position and shape of the focal spot on the image are altered and the global displayed
amplitude diminishes. By maximizing this amplitude, one recovers the speed of sound
c0 inside the medium. In the complex heterogeneous medium, the picture is different,
as there is no isolated target resulting in a focal spot on the image. The image is in
fact a speckle pattern. However, by an asymptotic analysis of the imaging function,
we are able to identify that the displayed amplitude at xs is similar to the amplitude

that would be produced by a virtual reflector at x f (xs, cs
c0
) = (x̃s

⊥ c2
0

c2
s
, xqs

c0
cs
). A further

study using the stationary and ergodic assumptions allows to build an estimator of the
effective speed of sound.
In this entire study, we assumed the density or equivalently a to be constant and
worked only on the variation of the speed of sound or equivalently the variation of
n. The theory that we developed could be extended to the cases where both coeffi-
cients vary. Several differences must be pointed out. First, it would not only require to
characterize F introduced by (11.2) but also

Fa
i (x,y, c0, cs, ω) :=

〈
ei · ∇G

ω
cs (· − y), G

ω
c0 (· − x)

〉
A

, (14.1)

for i = 1...d, as the gradient of Gk is involved in the approximation of Theorem 39.
Moreover, it requires to prove an equivalent of Lemma 64 when both coefficients a and
n are varying, and in particular to characterize the limit of the covariance function of

Iε(F) :=
ˆ

D
F(x) · (a⋆ − a)(ei +∇ϕi)(

x
ε
)dx,

for F ∈ L2(D). This was the topic of [156] for Gaussian correlated fields in unbounded
domains and for F ∈ C∞

c (Rd).
Nevertheless, by adding a x dependency on a or n, the study of the inverse problem
of Part III would remain substantially identical. Though, the recovered speed of sound
ĉ0(z) would surely not be an estimation of the local speed of sound at depth z but
under certain geometries and hypotheses, it would be the integrated speed of sound
satisfying [17]:

z
ĉ0(z)

=

ˆ z

0

dz̃
c(z̃)

, (14.2)

where c is the true speed of sound.

Finally, the model that we derived is very flexible and allows to model complex
micro-layered media such as the biological tissues. We are able to capture the micro-
scale effects on the macroscopic behavior of the effective properties of the medium. In
particular, the resulting homogenized medium that we obtain in Part II is not always
an isotropic medium. Our model could be used for the wave propagation in mus-
cles which are anisotropic structures composed of elongated fibers. The mathematical
framework that we developed could be also used to study other wave propagation
problems (linear elasticity, Maxwell equations) and be used in other case studies such
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as the wave propagation inside the earth crust or for industrial non-destructive testing
applications.
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Titre : Propagation des ultrasons dans des milieux aléatoires multi-échelles et estimation de vitesses effectives.

Mots clés : problèmes inverses, imagerie à ultrasons quantitative, équations aux dérivées partielles, homogénéisation
stochastique quantitative

Résumé : L’échographie est une méthode d’imagerie
médicale très répandue. Son objectif principal est de four-
nir des images structurelles précises des tissus biologiques.
Ces dernières années, un changement de paradigme s’est
opéré, et le but de l’imagerie par ultrasons est maintenant
aussi d’obtenir des informations quantitatives sur les pa-
ramètres physiques des tissus, qui peuvent ensuite être uti-
lisées pour le diagnostic.
La vitesse de propagation des ondes acoustiques dans
les tissus mous joue un double rôle, puisque sa bonne
estimation peut être utilisée pour le diagnostic de cancer
du sein ou de la stéatose hépatique, mais elle détermine
aussi la qualité de la reconstruction structurelle. En ef-
fet, l’image est traditionnellement produite en repropageant
numériquement les échos mesurés, à la vitesse du son
dans l’eau. Cependant, lorsque la vitesse du son à l’intérieur
des tissus n’est pas exactement celle dans l’eau, des
artéfacts non physiques apparaissent sur les images.
Afin d’établir un estimateur quantitatif de cette vitesse de
propagation, il est important de comprendre théoriquement
la propagation des ondes acoustiques dans les tissus. Il est
admis que les échos sont générés par les petites et nom-
breuses hétérogénéités à l’intérieur des tissus (noyaux de
cellules, mitochondries...). Bien que le modèle de Born soit
couramment utilisé, il ne prend pas en compte les effets
des variations de vitesses effectives dues à la présence

d’hétérogénéités sous-résolues. L’objectif de cette thèse est
donc d’établir un modèle de propagation d’onde plus so-
phistiqué, capable de représenter les variations de vitesses
effectives dans les différents tissus. Dans un second temps,
on s’attachera à étudier des estimateurs de la vitesse du
son introduits précédemment par Alexandre Aubry dans ses
travaux.
Nous considérons donc un milieu homogène dans lequel
se trouvent de nombreuses hétérogénéités microscopiques.
Les hétérogénéités étant sous-résolues et leur distribu-
tion inconnue et inaccessible, on modélisera leur nombre
et leur position de manière aléatoire. Afin d’obtenir une
représentation simple du champ diffusé par le milieu, le
formalisme et les techniques d’homogénéisation stochas-
tique quantitative sont employés. En particulier, une asymp-
totique d’ordre élevé est obtenue.
Nous poursuivons ensuite une analyse asymptotique de la
fonctionnelle d’imagerie à partir du modèle d’ordre élevé
précédemment obtenu. De plus, l’étude théorique des es-
timateurs introduits par Alexandre Aubry et de son équipe
permet de confirmer et de retrouver une partie des résultats
expérimentaux. En particulier, il est possible de retrouver
la vitesse effective des tissus à partir d’une moyenne spa-
tiale locale de la fonctionnelle d’imagerie. Des simulations
numériques attestent de chacun des résultats théoriques
majeurs prouvés dans cette thèse.
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Abstract : Ultrasounds are widely used in medical imaging
modalities. Originally, the ultrasound devices were built to
image the internal structure of the tissues. In recent years,
a change of paradigm operated and the goal is now also
to assess physical parameters that can be used for medical
diagnosis.
The speed of acoustic waves inside soft tissues can be
used for diagnosis of breast cancers or hepatic steatosis.
Moreover, it determines the quality of the tomographic re-
construction of the tissues. Indeed, the images are usually
computed by backpropagating the measured echoes at the
speed of sound in water. However, the discrepancy bet-
ween the speed of sound in water and the actual speed of
sound inside the tissues results in nonphysical artifacts on
the image.
In order to establish a quantitative estimator of the propaga-
tion speed of sound inside the soft tissues, it is necessary to
deeply understand the scattering of the medium. It is com-
monly admitted that the backscattered echoes are produ-
ced by numerous unresolved scatterers inside the medium
(cell nuclei, mitochondria...). The scattered field is then writ-
ten using the Born approximation. However, this model does

not capture the variation of the effective speed of sound in-
side the tissue due to the unresolved scatterers. The goal
of this thesis is thus to establish a propagation model that
takes into account the variations of the effective speed of
sound inside the tissues. Then, we will theoretically study
the estimators previously introduced by Alexandre Aubry in
his work.
The tissue is here modeled as a bounded homogeneous
medium in which lie unresolved scatterers. As their distribu-
tion is unknown and inaccessible, their number and position
is modeled as a random process. To obtain a simple form of
the backscattered field, the techniques and tools developed
for the quantitative stochastic homogenization theory will be
used and a high-order asymptotic expansion will be proven.
An asymptotic analysis of the imaging functional is carried
out by using the high-order asymptotic expansion. Further-
more, the theoretical study of the estimators introduced by
Alexandre Aubry and his team confirms and justifies some
of the experimental results. In particular, it is possible to re-
cover the effective speed of sound by a local spatial average
of the imaging function. Numerical simulation supports each
and every major result proven in this thesis.
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