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Résumé de la thèse - Summary in French

Depuis plusieurs années, le domaine médical s’intéresse de près au microbiome intesti-
nal humain et aux perspectives qu’il ouvre, car sa composition s’est révélée avoir un large
éventail d’impacts insoupçonnés sur la santé de l’hôte. Initialement, l’intestin humain était
considéré comme un conduit relativement passif pour la digestion et l’absorption des nutri-
ments. Cependant, les progrès de la biologie moléculaire et des technologies de séquençage
ont révélé que le microbiome intestinal est un écosystème complexe et dynamique, qui fait
partie intégrante de divers processus physiologiques. Ce changement de paradigme a mis
en évidence l’influence profonde du microbiome sur les fonctions métaboliques, immuni-
taires et neurologiques, le positionnant comme un acteur clé de la santé générale de son
hôte. Ce constat a conduit à des recherches approfondies sur sa composition et son poten-
tiel en tant que vecteur de compréhension, de traitement et de prévention des maladies.
Au travers de l’application de diverses méthodes séquençage, telles que le séquençage
métagénomique Shotgun (MGS) ou de l’ARNr 16S, il a été possible d’identifier et de
quantifier la composition du microbiome intestinal in silico.

Ces profils, généralement construits au niveau taxonomique, ont été explorés en tant
que base pour la classification supervisée des individus et l’identification de marqueurs
bactériens associés à des états pathologiques spécifiques. En particulier les modèles de
forêts aléatoires (RF), se sont révélées très efficaces pour classifier les données du micro-
biome intestinal et prédire l’état de santé de l’hôte. Bien que les descriptions taxonomiques
aient été plus largement étudiées, il émerge un intérêt croissant à comprendre les aspects
fonctionnels du microbiome intestinal: plutôt que de comprendre qui sont les espèces les
plus influentes dans la communauté, il serait plus pertinent de comprendre ce qu’elles
font. Des outils tels que HUMAnN et PiCRUSt ont été développés pour représenter le
microbiome intestinal à l’échelle fonctionnelle, en déduisant les voies métaboliques et
les molécules exprimées dans un échantillon donné. Ces approches, bien que largement
plébiscitées et utilisées par la communauté, ont toutefois quelques limites. D’une part,
ces approches sont spécifiques à un unique type de séquence (MGS pour HUMAnN, 16S
pour PiCRUSt), ce qui limite leur applicabilité. Ces processus sont aussi particulièrement
lourds, du point de vue de la taille des entrées requises comme du temps de calcul.
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Résumé de la thèse - Summary in French

Une analyse des applications de l’apprentissage automatique au microbiome intestinal
fait ressortir des possibilités d’amélioration du point de vue des performances, de la ro-
bustesse et de l’interprétabilité de ces approches. L’un des freins majeurs à l’application
de méthodes d’apprentissage automatique à la composition du microbiome intestinal est
la dimension de ces données, qui sont défavorables à l’entraînement des classifieurs. Pour
résoudre ce problème, des méthodes de sélection de variables ont été utilisées pour réduire
la dimension des données et améliorer les performances de classification. Ces approches
se sont parfois même basées sur les classifieurs eux-mêmes, en exploitant les classements
d’importance de variables issus des RF. De plus, de nombreuses autres pistes restent pos-
sibles pour améliorer la fiabilité et l’interprétabilité des études sur le microbiome intestinal
par biais de l’apprentissage automatique, par exemple en mettant l’accent sur la robustesse
de l’entraînement et de l’évaluation des modèles, et en approfondissant l’exploration de la
signification biologique des variables sélectionnées. L’intégration d’information fonction-
nelle à ces analyses reste également rare, alors que son exploitation, ainsi possiblement
que sa mise en rapport avec l’information taxonomique, s’inscrirait mieux dans la lignée
des exigences actuelles de la communauté médicale.

C’est dans ce cadre que s’inscrivent les travaux de cette thèse, au cours de laquelle a
été développée une approche d’analyse du microbiote intestinal basée sur l’apprentissage
automatique. Cette approche inclut une nouvelle méthode pour la construction de pro-
fils fonctionnels du microbiote. Cette nouvelle approche requiert uniquement des profils
taxonomiques, ce qui la rend plus légère et rapide que les approches de la littérature
basées sur les séquences brutes. Cela est suivi par une approche analytique incorporant
un entraînement répété de classifieurs RF sur des données taxonomiques et fonctionnelles,
associés à une sélection itérative et automatique de variables, ainsi qu’une reconduction
complète du processus à plusieurs reprises. Il en ressort une optimisation des performances
de classification et une sélection de variables robustes. Les variables obtenues sont ensuite
analysées, d’une part pour évaluer leur pertinence au regard de la bibliographie, mais
aussi en mettant en valeur, par la visualisation des intercorrélations entre les échelles
fonctionnelle et taxonomique, des effets d’accumulation faisant ressortir des signatures
fonctionnelles non dérivables de l’analyse des profils taxonomiques. Enfin, les approches
précédemment décrites ont été implémentées, et rendues disponibles pour permettre une
application plus large de cette méthode.
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Une méthode légère pour le calcul de profils fonctionnels du mi-
crobiome.

Nous présentons d’abord une nouvelle méthode de représentation fonctionnelle du mi-
crobiome intestinal, qui s’appuie uniquement sur une profil taxonomique comprenant une
description taxonomique et une quantification des taxons présents dans le microbiome
séquencé. Contrairement aux méthodes existantes telles que PiCRUSt et HUMAnN, spé-
cifiques à des types de séquençage particuliers, et qui nécessitent des informations sup-
plémentaires ou les séquençages bruts, cette méthode est générique et peut être appliquée
aux profils dérivés du séquençage de l’ARNr 16S ou MGS. Cette approche par référence-
ment s’avère également beaucoup plus rapide que l’analyse de séquences brutes opérée
par HUMAnN3, à laquelle nous nous somme comparés.

La méthode repose sur le pipeline EsMeCaTa, qui associe des annotations fonction-
nelles (FA) aux unités taxonomiques données en entrée via l’interrogation de bases de
données telles qu’UniProt ou eggNOG. En combinant ces informations avec les abon-
dances taxonomiques d’origine, la méthode calcule des scores d’abondance pour les FA
au sein du microbiome intestinal. Une comparaison avec les résultats générés par HU-
MAnN3 sur un jeu de données d’exemple a montré qu’EsMeCaTa extrayait davantage
d’informations, récupérant la majorité des annotations trouvées par HUMAnN3 tout en
découvrant des annotations supplémentaires. De plus, l’analyse a révélé que les profils
fonctionnels et taxonomiques générés par la méthode ne sont pas redondants, ce qui sug-
gère qu’ils offrent des perspectives complémentaires sur la composition et la fonction du
microbiome intestinal.

Une classification robuste et interprétable du microbiome, per-
mise par une correction des dimensions des données.

Nous abordons ensuite les défis posés par la dimension des données du microbiome
en ce qui concerne la classification supervisée, et présentons une nouvelle méthode de
classification et de sélection de variables adaptée pour les jeux de données aux dimensions
déséquilibrées. Les descriptions taxonomiques du microbiome comportent souvent un nom-
bre d’échantillons inférieur au nombre de descripteurs, ce qui, suivant le phénomène de
Hughes, impacte négativement les performances des classifieurs. Ce problème est exacerbé
dans le cas des profils fonctionnels, où le nombre de descripteurs augmente considérable-
ment.
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La méthode proposée utilise des scores d’importance de Gini moyens issus de multi-
ples RFs entraînées pour effectuer une sélection automatique de variables, en relevant les
caractéristiques les plus discriminantes pour faire la distinction entre les patients et les
individus sains. Le processus de sélection opéré se distingue des propositions classiques
par son automatisation complète: la séparation des variables se fait au point d’inflexion
de la courbe des scores d’importance décroissants, ce qui ne requiert aucune intervention
humaine externe et contourne donc les biais associés. Ce processus est répété de manière
itérative, et son application à des jeux de données publics et classiques nous permet de
mettre en valeur que cette sélection de variables a tendance à améliorer les performances
de classification, notamment en ce qui concerne les profils fonctionnels. Nous montrons
également qu’à leurs meilleurs niveaux de sélection respectifs, les profils taxonomiques et
fonctionnels fournissent des performances de classification comparables.

Ce processus de classification et de sélection est répété entièrement plusieurs fois, à
chaque fois avec un jeu de test différent mis de côté. Cela permet d’évaluer la robustesse
des classifications, mais également des sélections de variables. En effet, la variation des
conditions d’entraînement impliquée par le changement de jeu test fait que les sélections
de variables divergent à chaque répétition. Nous proposons ainsi une nouvelle approche
pour évaluer la robustesse d’une sélection de variables opérée dans ces conditions, en
mesurant la fiabilité de chaque variable en fonction du nombre de fois où elles ont été
sélectionnées. Celles qui constituent l’intersection de toutes les sélections sont qualifiées
de ’robustes’, celles qui ont été sélectionnées 75% du temps ou plus sont ’confiantes’, et
celles qui sont sélectionnées au moins une fois sont ’candidates’.

Une évaluation comparative avec limma, un outil statistique couramment utilisé pour
l’analyse d’abondance différentielle, permet de démontrer la robustesse et la fiabilité de la
méthode proposée. La méthode basée sur les RF donne des sélections robustes de variables
dans tous les jeux de données testés, tandis que limma a donné des sélections vides ou
minimes dans plusieurs cas. De plus, la méthode RF s’est avérée capable de sélectionner
des variables non identifiées par limma, ce qui souligne sa capacité à découvrir des signaux
non-linéaires et potentiellement nouveaux au sein des données du microbiome.
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L’interconnexion entre taxons et fonctions met en lumière des
expressions fonctionnelles cumulatives au sein du microbiome in-
testinal.

Par la suite, nous explorons la signification biologique complémentaire des profils tax-
onomiques et fonctionnels dans le contexte de l’étude du microbiome intestinal. Nous
soutenons que si les taxons individuels peuvent fournir des informations précieuses sur
la santé de l’hôte, la compréhension des fonctions métaboliques exprimées par le mi-
crobiome dans son ensemble est essentielle pour comprendre pleinement les interactions
hôte-microbiome.

Nous présentons ainsi une analyse détaillée des sous-listes robustes de variables obtenues
à partir de la méthode décrite à la section précédente, en utilisant un jeu de données
concernant l’IBD (Maladie Inflammatoire Chronique de l’Intestin) comme exemple. Une
recherche bibliographique approfondie des annotations robustes a révélé leur pertinence
pour la maladie, cette sélection étant significativement enrichie en annotations directe-
ment liées à l’IBD selon la littérature.

De plus, cela met en évidence l’importance d’explorer les interconnexions entre les
taxons et les FAs. En examinant les associations entre les taxons et les FAs robustes, nous
démontrons l’existence d’un effet de cumul fonctionnel au sein des profils taxonomiques.
En d’autres termes, plusieurs taxons non significatifs individuellement peuvent avoir un
rôle significatif lorsqu’ils sont regroupés sur le plan fonctionnel, ce qui met en évidence la
nécessité d’étudier le microbiome intestinal à ces deux niveaux. Nous soulignons ainsi le
potentiel de la méthode proposée pour découvrir des signatures métaboliques cumulatives
qui pourraient ne pas être apparentes lors de l’examen des données taxonomiques seules.

Implémentation d’un pipeline informatique pour la mise à dispo-
sition publique de la méthode.

Enfin, nous présentons le logiciel SPARTA (Shifting Paradigms to Annotation Rep-
resentation from Taxonomy to identify Archetypes), un pipeline informatique développé
pour automatiser le processus d’analyse du microbiome intestinal décrit dans les sections
précédentes. Le pipeline intègre les étapes de calcul d’un profil fonctionnel à partir d’un
tableau d’abondance taxonomique, d’exécution d’une classification itérative basée sur les
RF et d’une sélection automatique des variables, et d’évaluation de la robustesse des
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variables sélectionnées.
SPARTA est implémenté de façon modulable, en séparant notamment en deux com-

mandes le profilage fonctionnel et la classification et sélection de variables. Le pipeline
produit en sortie le profil fonctionnel calculé, les performances de classification et les en-
sembles robustes de variables, avec les interassociations taxons-fonctions explicitées. Le
pipeline offre des options permettant aux utilisateurs de personnaliser les paramètres, tels
que le nombre d’exécutions et d’itérations, ainsi que de choisir leurs propres jeux de test.
L’utilisateur peut également faire varier l’algorithme d’apprentissage (RF ou Support Vec-
tor Machines (SVM)), la métrique d’importance des variables (Gini ou SHAP), ou encore
proposer une adaptation des données d’entrée (profils fonctionnels issus d’autres outils,
sélection de variables personnalisée ou application à un seul type de profil, par exem-
ple). Nous démontrons les performances du pipeline sur les cohortes précédement utilisées
comme benchmarks, en fournissant des informations détaillées sur les temps d’exécution
et les considérations relatives à l’utilisation des ressources. La mise en œuvre de SPARTA
vise à améliorer la reproductibilité et l’accessibilité de la méthode proposée, permettant
à la communauté d’effectuer des analyses complètes du microbiome intestinal à l’échelle
taxonomique comme fonctionnelle.

Conclusion et perspectives.

Les travaux de cette thèse apportent plusieurs contributions au domaine de l’analyse
du microbiome intestinal. Nous proposons notamment des innovations autour du calcul de
profils fonctionnels, rendant le processus plus léger et donc plus accessible, de l’approche
analytique du microbiome, en présentant une méthode intégrant une sélection de vari-
ables automatisée et un clacul interne de robustesse, et de l’interprétation biologique des
sélections obtenues, avec une validation exhaustive des signatures fonctionnelles ressorties
et une mise en relation des échelles taxonomique et fonctionnelle permettant de mettre
en valeur des signaux fonctionnels émergents.

Ces résultats restent toutefois préliminaires, et ouvrent plusieurs voies pour de futures
recherches et améliorations. Un affinement de l’approche de sélection, une expansion par
le Web Sémantique des sorties ou un travail sur l’intégration de métadonnées médicales
supplémentaires seraient des exemples de pistes à suivre pour pousser plus loin la perfor-
mance et la compréhension des sorties de l’approche présentée.

Software: Le logiciel développé dans le contexte de cette thèse est ouvert et disponible
publiquement au dépôt suivant: https://github.com/baptisteruiz/SPARTA.
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Publication: Une grande partie du travail présenté dans cette thèse a servi de base
à un article publié dans PLOS Computational Biology [1]. L’article contient notamment
la présentation des méthodes de profilage fonctionnel et de classification ainsi que leurs
résultats, l’analyse biologique des listes robustes obtenues, et une description du pipeline
SPARTA.
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Introduction

The importance and perspectives opened by the human gut microbiota have been at
the forefront of the discussion in the medical field in the past years, as a wide array of
unsuspected impacts on host health have been derived from its composition. Initially,
the human gut was considered a relatively passive conduit for digestion and nutrient
absorption. However, advancements in molecular biology and sequencing technologies have
revealed the gut microbiota as a complex and dynamic ecosystem, integral to various
physiological processes. This paradigm shift has underscored the microbiota’s profound
influence on metabolic, immune, and neurological functions, positioning it as a key player
in both health and disease.

The gut microbiota: a marker of host health, and a
lever for treatment.

The intuition of the gut microbiota’s larger impact dates back to the early 20th century,
with the works of Elie Metchnikoff, who notably first postulated on the health benefits of
lactobacilli, based on the yogurt consumption of healthy rural Bulgarian populations [2].
His postulate was that the gut flora was composed of different sorts of microbes, some
beneficial to the host, and some detrimental, leading to the conclusion that in order to
attain better health, one should strive to replace harmful microbes by useful ones.

Today, advances in this field have been made, and imbalance in the composition of the
gut microbiota (also known as dysbiosis) has been correlated to a wide array of diseases.
Expectedly, diet-related disorders have been found to be impacted by the gut microbiota.
Obesity, for example, can be encouraged by an overabundance of species involved in the
production of Short-Chain Fatty Acids (SCFAs), which provide the host with an over-
abundance of energy [3, 4]. Similarly, the gut microbiota was found to have an impact
on its host environment, and a dysbiosis could encourage local inflammation, favoring
Inflammatory Bowel Disease (IBD) [5] or carcinogenesis in the context of a colorectal
cancer [6]. The influence of the gut microbiota ranges beyond its host organ however, as
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other types of cancer, such as prostate [7] and breast cancer [8], have also been corre-
lated to dysbioses. Most surprisingly, the gut microbiota was also found to have a strong
influence on the host’s brain: the innervation of the gut through the vagus nerve links
both organs together, creating a "gut-brain axis" through which the brain can be affected
by the state of the gut [9]. This, coupled with the gut microbiota’s role in synthesizing
hormonal precursors, has led to the discovery of an influence of the gut microbiota’s com-
position on psychological disorders, such as depression [10] and schizophrenia [11], as well
as neurodegenerative diseases, such as Alzheimer [12] or Parkinson [13].

In line with Metchinkoff’s conclusions, therapeutic strategies involving the implan-
tation of probiotics, bacterial strains known to be beneficial to host health, have been
developed. Comparable practices can be traced further back: in the late 1800’s for exam-
ple, surgeon William B. Coley pioneered a therapy for sarcomas (cancers that develop in
the bones and connective tissue) involving the inoculation of Streptococcus pyogenes and
Serratia marcescens [14]. Nowadays, with a better understanding of the bacterial species
that affect host health, probiotic-based therapies have been applied to the gut micro-
biota. Through an adaptation of diet, the direct ingestion of known benevolent strains,
or fecal transplants through which the microbiota of a healthy individual is transplanted
into the gut of an unhealthy one, the gut microbiota can be modified to positively affect
one’s health status [15]. The efficiency of these approaches varies strongly from case to
case however, proving that in more complex cases, a more targeted approach could be
required.

To do this, understanding the biochemical pathways through which the gut microbiota
influences the host organism is a prerequisite. From the study of bacteria correlated to
diseases, several such pathways have been uncovered. Metabolites of interest synthesized
by the gut microbiota include, among others: bile metabolites, which notably affect energy
metabolism and cell signaling pathways, SCFAs which affect insulin secretion and body
mass maintenance, or a wide array of vitamins which are involved in DNA replication
and repair and enhance immune functions [16]. This knowledge has opened the way for
treatments that directly compensate the deficiencies of the host, through direct intake of
a medication, or by creating targeted probiotics through genetic modification [17].

The gut microbiota can therefore be leveraged as a marker of host health, but also
as a vector for therapy. In order to maximize the efficiency of a treatment, person-
alized approaches, based on an individual’s specific microbiota composition, could be
used to determine the most efficient cures. The complexity of the human and microbial
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metabolisms makes this information difficult to apprehend, however. As such, computa-
tional approaches capable of handling such data and deriving information and decisions
from it could help progress in this domain. Machine Learning (ML) approaches would
therefore be viable candidates to tackle this task.

Machine Learning applications in the health sector: a
tool for medical progress.

ML has emerged as a transformative technology across various sectors, with its impact
profoundly felt in the medical community. ML algorithms enable systems to learn from
data, identify patterns, and make decisions with minimal human intervention. This capa-
bility has ushered in a new era of precision medicine, where patient care is increasingly
informed by vast and complex datasets.

At its core, ML involves the development of algorithms that allow computers to learn
from and make predictions or decisions based on data. This learning process is typically
categorised into three types: supervised learning, unsupervised learning, and reinforce-
ment learning. Supervised learning involves training an algorithm on a labeled dataset,
where the input-output pairs are known, to predict outcomes for new data. Unsupervised
learning, on the other hand, deals with unlabeled data and aims to identify hidden pat-
terns or intrinsic structures within the data. Reinforcement learning involves an agent
that learns to make decisions by receiving rewards or penalties based on its actions in an
environment [18]. The application of ML in healthcare leverages these methodologies to
analyze medical data, predict disease outcomes, optimize treatment plans, and improve
overall patient care. The medical community’s adoption of ML is driven by the increas-
ing availability of health data, advancements in computational power, and the need for
personalized medicine [19].

One of the most significant applications of ML in medicine is in the diagnosis and
prediction of diseases. ML algorithms can analyze medical images with high accuracy, as-
sisting radiologists in detecting conditions such as cancer and neurological disorders [20].
For instance, convolutional neural networks, a type of deep learning algorithm, have been
utilized to interpret radiological images, achieving diagnostic accuracies comparable to hu-
man experts [21]. Furthermore, predictive analytics using ML can identify patterns and
risk factors in patient data, enabling early intervention and personalized treatment plans.
For example, ML algorithms can be used to assist medical staff in prognosis or diagnosis
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of diseases by analyzing Electronic Health Records (EHR) and lifestyle data [22]. Clini-
cal Decision Support Systems (CDSS) enhanced by ML provide healthcare professionals
with data-driven insights to improve decision-making processes. These systems integrate
patient data, clinical guidelines, and ML algorithms to offer evidence-based recommen-
dations. For instance, CDSS can alert physicians to potential drug interactions, suggest
and support diagnoses, and propose treatment options based on the latest research and
patient history [23].

Another area where ML has made substantial contributions is the shift towards person-
alized medicine. Personalized medicine aims to tailor medical treatment to the individual
characteristics of each patient, moving away from the traditional one-size-fits-all approach.
ML algorithms can analyze genetic, environmental, and lifestyle factors to identify opti-
mal treatment strategies for individual patients [24]. A patient’s EHR, immunophenotype
or serum metabolites, for example, can be leveraged to classify the individual into a more
specific subcategory of the disease associated to adapted responses, or can be directly used
to predict response to a therapy. In this regard, the gut microbiota constitutes another
source of information with a lot of potential, due to it being unique for every individual
and being a strong indicator of the host’s health status, as previously discussed.

Exploring the gut microbiota through Machine Learn-
ing: an untapped potential.

The recent advancements in both the understanding of the gut microbiota and in the
development of Machine Learning approaches to process medical data converge towards
the question: could ML be used to enhance the medical potential of gut microbiota data?
This could involve using the gut microbiota as a basis for diagnosis, through the use of an
automatic classifier. It could also imply expanding the interpretability of trained models,
to provide further insights into the role of the gut microbiota in human health [25]. Such
approaches could prove to be opportunities for the medical community to deepen their
understanding of this complex question, and find a basis for novel and adaptable therapies
based on the gut microbiota.

Such applications come with methodological challenges, however. The need to inte-
grate data from several sources makes the problem complex, and increases the dimensions
of the data. This causes issues with classification performance [26], and diminishes the
potential for downstream interpretation, as the amount of information to handle becomes
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overwhelming. As such, it is important to establish methods for integration of knowledge
in ML that take account of classification performance and robustness, as well as inter-
pretability. Variable selection can be leveraged to achieve this, being a known solution for
classifier performance enhancement in these conditions [27] that would also alleviate the
amount of information generated by the model. Issues related to robustness can also be
tackled through methods such as repetition of the training process [28].

During the course of this thesis, we contributed advancements to this subject by de-
veloping and implementing a method for integrating the functional annotation of the gut
microbiota into an automatic classification process and facilitating downstream interpre-
tation of its results. The process takes as input taxonomic composition data, which can
be built from 16S or whole genome sequencing, and links each component to its func-
tional annotations through interrogation of the UniProt database. A functional profile of
the gut microbiota is built from this basis. Both profiles, microbial and functional, are
used to train Random Forest classifiers to discern unhealthy from control samples. Our
method explores the classifiers’ inherent variability by extending state-of-the-art methods
in three dimensions: increased number of trained Random Forests, selection of important
variables with an iterative process, repetition of full selection process from different seeds.
This process shows that the translation of the microbiota into functional profiles gives
non-significantly different performances when compared to microbial profiles on 5 of 6
datasets. Through repetition, it also outputs a robust subset of discriminant variables.
These selections were shown to be more reliable than those obtained by a state-of-the-art
method, and their contents were validated through a manual bibliographic research. The
interconnections between selected taxa and functional annotations were also analyzed and
revealed that important annotations emerge from the cumulated influence of non-selected
taxa.
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Chapter 1

State of the art

1.1 Understanding the gut microbiota by quantifying
its contents.

1.1.1 Describing the gut microbiota: the limits of an ecosystemic
description, and the potential of a metabolic network.

The gut microbiota has been the subject of many recent studies, as its influence on
host health has been found to be much more important and complex than previously en-
visioned. When studying the gut microbiota, the taxonomic scale, which can be accessed
from sequences at a lesser computational cost, has generally been favored. In recent years,
however, some voices in the medical community have called for increased inclusion of the
gut microbiota as a functional system in coming analyses [29]. Specifically, taxonomy-
based approaches do not properly account for functional redundancies between species
and, in turn, might fall short in identifying novel biochemical pathways that should be
targeted by innovative therapies. This observation around taxonomic functional redun-
dancy also raises the question of whether some important functions could be derived from
a cumulative influence of several less detectable taxa, and therefore cannot be correlated
to remarkably differentiating taxonomic units.

"It is what microbes can do, not who they are, that is finally important for ecosystem
functions." (Inkpen et al.) [30]

As such, the transition to the functional paradigm from taxonomic profiles and the
exploration of the links between both levels of description are a central theme of this
thesis. These questions raise stakes around the methods employed for the profiling of the
gut microbiota.
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1.1.2 Different approaches to sequencing the gut: whole genome
or 16S.

Profiling the gut microbiota has been made possible by the development of sequencing
methods over the years [31, 32]. From a sample, generally fecal, an extraction procedure
can isolate the bacterial genetic material, of which the genetic sequences can then be ex-
plicitated through sequencing. This sequencing step can be applied directly to the entirety
of the obtained genetic material, in a process called Shotgun Metagenomic Sequencing
(MGS). Another approach is to focus on targeted sequences that are known to be a signal
for phylogenetic affiliation. The 16S ribosomal rRNA molecule is known to have these
properties, and can therefore be separated from the rest of the genetic material, then
amplified to be sequenced by itself.

Each method has its advantages, with MGS being a more expansive characterization
of the microbiota’s genome and 16S being less demanding in terms of computational
resources. Both are widely applied by clinicians, and can be used as basis to quantify the
contents of the gut microbiota, on the taxonomic or functional level.

Modern sequencing technologies, when applied to stool samples, make it possible
to sequence the gut microbiota’s genetic material, either in its entirety (MGS), or
with a focus on on the 16S rRNA sequences (16S). The former method is more
thorough, but also more costly and computationally demanding. The latter is a
lighter procedure, but does not achieve the same level of precision down the line.

In summary

1.1.3 From sequences to quantifications: methods for the profil-
ing of the gut microbiota, for each sequencing approach.

1.1.3.1 The common approach: building taxonomic profiles.

The gut microbiota can be defined as an ecosystem consisting of several different
microbes that are present in different abundances. Profiles on this level, identifying and
quantifying microbial taxa, can be built from sequences using computerized tools adapted
to each sequencing approach. For sequences obtained through MGS, the tool of reference
is MetaPhlAn [33–35], whereas for 16S data several pipelines are commonly used, such as
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QIIME2 [36], mothur [37], or FROGS [38].
MGS sequences can be directly translated into species, through interrogation of databases.

In the case of MetaPhlAn’s implementation[33–35], the tool interrogates a database of
unique species-specific genetic markers, specifically built for it by means of the ChocoPhlan
tool. Through sequence alignment using bowtie2 [39], these markers are identified within
the input sequences. By quantifying the average robust coverage of each species’ specific
markers over the input sequences, the pipeline can give a measurement of each detected
species’ abundance.

Processing 16S sequences requires a clustering step beforehand, as a same organism
can have several differing 16S rRNA genes. This clustering step can be done in direct
reference to an external database, as implemented by QIIME2 [36] for example, which
clusters 16S sequences together based on similarity to the contents of databases such
as Greengenes [40] or SILVA [41] using VSEARCH [42].Another option is to rely on
unsupervised models, as does the FROGS pipeline which clusters 16S sequences through
the unsupervised classifier SWARM [43], before being affiliated to a taxonomy from one
of the previously mentioned databases through the blastn+ tool [44], or the Ribosomal
Database Project’s naive Bayesian classifier [45]. Depending on the interrogated database,
the specific clusters can be associated to taxa grouped as Operational Taxonomic Units
(OTUs) or Amplicon Sequence Variants (ASVs).

The size and contents of the obtained clusters, crossed with the information from the
referenced databases, allows these tools to give a measurement of the frequency, as well
as representative sequences, of the recognized OTUs and ASVs.

Limitations have however been pointed out for both of these approaches, notably in
relation to the quality of the sequence reference databases which can be prone to mistakes
concerning taxonomic affiliation, sequence errors, or inaccuracies surrounding inclusion
and exclusion criteria for example [46]. As such, it is usually recommended to refer to the
most popular databases, which receive the most feedback and implement corrections with
updates most frequently.

1.1.3.2 Linking taxa to functional annotations: building functional profiles.

The gut microbiota can also be defined as a context for diverse biochemical reactions,
dictated by the microbes’ metabolism and the host environment: the gut lumen, the
contents of which are themselves dictated by the host organism’s metabolism. Profiles
at this scale can be built using tools such as HUMAnN [34, 47, 48] or PiCRUSt2 [49,
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50], specifically adapted for MGS and 16S sequences respectively. Characteristics of these
approaches are resumed in Table 1.1. All of these tools associate functional annotations
(FAs) to taxa via the interrogation of internal or external databases, creating a link
between the taxonomic and functional paradigms.

HUMAnN takes as input MGS sequences, on which it runs MetaPhlAn (see Section
1.1.3.1). Following this, the reads are mapped against an annotated pangenome database,
built specifically for the sample through ChocoPhlan’s interrogation of the NCBI [51]
and UniRef’s [52] resources about the recognized species, at the nucleotidic level, using
bowtie2 [39]. Unmapped reads are directly looked up in UniRef databases (UniRef 50 or
90, depending on the user’s input) using the DIAMOND search binary [53] by default.
From this, an association is built between the strains detected in the sample and reference
genes. This association is quantified by HUMAnN through a count of the maps between
the input reads and the reference sequences, weighted accordingly to the quality of the
mapping, and normalized by the alignable length of the reference sequence, resulting in
an abundance measurement in Reads per Kilobase. The reference genes can then be an-
notated to functional hierarchies such as COGs [54], Pfams [55], the Kyoto Encyclopedia
of Genes and Genomes’ (KEGG) [56] Enzyme Commission (EC) numbers and Orthologs,
or Gene Ontology (GO) terms [57, 58]. Quantification of said annotations can be obtained
by summing the abundances of all reference sequences associated to an annotation. These
abundances can be calculated at the level of a species, or of an entire sample. If anno-
tated with KEGG, this information can then be used to reconstruct metabolic pathways,
referencing MetaCyc [59, 60] for example. For this, the MinPath tool [61] is mobilized to
recover a set of pathways that cover the extracted annotations parsimoniously. For each
of these pathways, the top half most abundant annotations are retained, and the mean of
their abundance scores is calculated to quantify the pathway’s abundance.

The PiCRUSt2 pipeline’s inputs are a table of taxonomic abundances (OTUs or ASVs),
and the representative sequences of each OTU or ASV in question, obtained from 16S
sequences as described in Section 1.1.3.1. The first step is to align the reference sequences,
then place the obtained alignments into a reference tree of full 16S rRNA genes from
the Integrated Microbial Genomes (IMG) [62] database, annotated from the KEGG [56]
Ortholog and EC databases. Sequence alignment is performed using the HMMER model
[63], which exploits profile hidden Markov models to find homologs between the reference
sequences, and group them together. These alignments are then added to the reference
tree, using the EPA-NG [64] or SEPP [65] tool. The resulting tree is exported to the newick
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format. From this tree file, gene family abundances and marker genes for each taxonomic
component are predicted. This is done through a hidden state prediction approach [66],
whereby the ancestral traits on the tree are inferred from the values of the leaves before
being propagated forward to predict or correct the values of the leaves. In this manner,
we obtain a tree on which all OTUs or ASVs are assigned a normalized amount of gene
families and marker genes, predicted from the values of the initial tree. Having predicted
a metagenome for each taxonomic unit, the abundance of annotations per taxon and per
sample is calculated, by multiplying the input taxonomic abundances by the amount of
genes correlated to a given annotation in the associated metagenome. These annotation
abundances can then be transcribed into pathway abundances through the same method
as HUMAnN.

Contents of a sample can be characterized at the taxonomic level, by quantifying
the microbial taxa recognized from the genetic material. This can be achieved using
tools such as MetaPhlAn for MGS, or QIIME / FROGS for 16S for example. It
is also possible to build a functional profile of the microbiota, by measuring the
expression of biochemical pathways by the microbiota. This can be done using tools
such as HUMAnN for MGS, or PiCRUSt2 for 16S.

In summary

1.1.4 Making functional profiling more accessible: a lighter pro-
cess compatible with all sequencing methods.

1.1.4.1 The EsMeCaTa pipeline: a lightweight method to associate functional
annotations to taxa regardless of the sequencing approach.

Working directly from sequenced reads has a cost in terms of computational resources,
as the methods to process these inputs are complex and the sequences themselves can
require an extensive amount of disk space to be stored. For example, the MGS sequences
of the datasets presented in Table 2.1 and exploited in subsequent chapters, takes up
between 303 GB and 1.5 TB, for a total amount of 5.1 TB of disk space required to
host all six. Previous works have, however, made available taxonomic profilings of several
datasets. These files make for a more comfortable entry point for building a functional
representation of the microbiota, as they require less disk space (3.1 MB of disk space
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for all of the datasets presented in Table 2.1), and spare the user the step of building a
taxonomic representation from sequences, which is compulsory for each of the previously
cited tools.

There isn’t an existing tool for calculating a functional profile from a taxonomic pro-
file alone however, as neither HuMANn nor PiCRUSt accept taxonomic profiles as a sole
input. The EsMeCaTa pipeline [67] is an alternative method to associate FAs directly to a
list of input species or OTUs, relying on their taxonomic description to query UniProt [68]
and fetch all proteomes associated to the most precise recognized taxonomy. Downloaded
proteomes are then clustered with the mmseq2 tool [69], and a meta-proteome including
only proteins that are present in at least 50% of all species included in the input tax-
onomic unit by default. The kept proteins are then annotated, either through a second
interrogation of UniProt, or through the eggnog-mapper tool [70, 71]. A list of proteomes
annotated with GO terms [57, 58] and EC numbers [56] is given as output.

As such, though it does not directly calculate an abundance score for each annotation,
EsMeCaTa could be a step toward a quality of life improvement in handling metagenomic
datasets, by allowing a shift towards the direct handling of taxonomic abundance tables. It
taking a taxonomic description as input also means that it is agnostic as to the sequencing
method the data is taken from, unlike HuMANn and PiCRUSt which are respectively
specialized for MGS and 16S data. This feature can also be exploited as a reference point
for comparing functional profilings of 16S and MGS sequencings of a same sample, as
unlike the respective approaches of PiCRUSt and HuMANn, it would ensure that the
profiles are built using the same resources.

1.1.4.2 Contributing a method for the quantification of functional abun-
dances from EsMeCaTa’s associations.

In light of the stakes presented here, one of the contributions of this thesis is a novel
method for building functional abundance profiles directly from taxonomic profilings by
relying on EsMeCaTa, translating the interconnections between taxa and functions into
a quantified measurement of the abundance of expression of these annotations.

The EsMeCaTa approach was favored because it focuses on associating annotations
to a functional profile, which is the aspect of functional profiling at the heart of our
manipulations. When compared to HUMAnN, it also involves a lesser cost in terms of
storage and computation time, allowing us to effectuate benchmarks on all six MGS
datasets presented in Table 2.1, whereas a functional profiling directly from raw sequences
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was not possible for all datasets due to the limits of the resources at our disposal. A
comparison with results obtained from a profiling of the IBD dataset with HUMAnN3
will however be made in Chapters 2 and 3. The explicit linking of taxa and annotations
will also be an important for the uncovering of dynamics of functional cumulation between
taxa, notably explored in Chapter 4.

Functional profiling using the classic approaches has downsides, notably related to
the size of the input they require and their specialization towards either MGS or
16S sequencing. EsMeCaTa circumvents these issues by taking taxonomic affiliations
as input, therefore being compatible with both sequencing approaches. It does not
quantify annotation expression from this basis however; as such, a method to operate
this quantification was put together for this thesis.

In summary

Method Technology Compulsory Required Consulted Sequence Output

MGS 16S inputs pre-treatment databases alignment Annotations
per taxon

Functional
abundances

HUMAnN x Raw sequences UniRef,
NCBI x x x

PiCRUSt2 x

Taxonomic
profile,

representative
sequences

x IMG x x

EsMeCaTa
(UniProt) x x Taxonomic

affiliations x UniProt x

EsMeCaTa
(eggNOG) x x Taxonomic

affiliations x UniProt,
eggNOG x x

Table 1.1 – Comparison of the existing tools for functional profiling of the gut microbiota.
HUMAnN and PiCRUSt2 can quantify the functional annotations linked to a profile, whereas EsMeCaTa
can only list them. The latter tool is the only one that can work directly from a taxonomic profile, and
can be applied to 16S or MGS data indiscriminately. HUMAnN can only work from MGS raw sequences,
and PiCRUSt2 requires both taxonomic abundances and representative sequences, obtainable through a
pre-processing of 16S sequences by a tool such as FROGS or QIIME (see Section 1.1.3.1)
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1.2 Classifying the gut microbiota with Machine Learn-
ing: promises and levers for improvement.

1.2.1 The gut microbiota’s potential as input for prediction.

The development of Machine Learning (ML) methods, referring to methods that learn
automatically from data, and notably supervised classification approaches, has opened up
many possibilities in how to approach the question of using microbiota data to predict a
host status. A first application of ML to sequenced microbiota data came in a 2011 study
by Knights et al. [72], which provided an exploration of the applicability and efficiency
of such approaches when applied to the composition of the microbiota. This work showed
that supervised classification of the microbiota was possible using several already well-
known approaches. Classic ML-driven feature selection methods, notably elastic net [73],
are also shown to be applicable. The tests consisted in five benchmarks on taxonomic
abundance datasets from Costello et al. (2009) [74] and Fierer et al. (2010) [75]. From
this, the study established benchmarks on classification tasks predicting the body habitat
(ear, gut, hair, nose, mouth or skin), skin site (forearm, foot, forehead, palm. . . ), and
identity of the subject that the samples were taken from.

This work was built on by Statnikov et al. in 2013 [27], which conducted a thor-
ough evaluation of classification methods on the Knights et al. datasets, but also on
other datasets exploiting microbiota from the skin (Alekseyenko et al., 2013 [76]) and
diverse regions of the digestive track (Nossa et al., 2010 [77]) to predict body sites and
diagnose Psoriasis and Esophagitis. The tested classifying methods were Support Vec-
tor Machines (SVM) [78], Kernel Ridge Regression [79], Regularized Logistic Regression,
Bayesian Logistic Regression, Random Forests (RF) [80], K-nearest Neighbors [81] and
Probabilistic Neural Networks [82]. Each method’s parameters were selected by a nested
cross-validation.

Overall, both studies converge however in highlighting RFs, which most consistently
yielded top results in both articles’ benchmarks, singling itself out as an especially efficient
method for the classification of microbiota data.
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1.2.2 Random Forests: a classifier that adapts well to microbiota
data.

1.2.2.1 Principle of the algorithm.

RFs are an ensemble learning method, consisting of a collection of decision trees trained
individually on a subset of the input data and making collegial classification decisions.

Decision trees are classifiers that hierarchically split the initial dataset based on suc-
cessive splitting rules applied to the data’s features, namely comparing a feature’s value to
a learned threshold. This results in a tree-like structure, the leaves of which are assigned
a label inherited from the input data. A tree will classify new data by applying the rules
inherent to its successive nodes, until the data is assigned to a subset defined by a leaf.

When training a decision tree, each node’s splitting criterion is learned through the
Gini Impurity metric [83], which evaluates the probability of misclassifying a sample
chosen at random based on a given criterion. Over all variables from the node’s subset,
the threshold criterion that minimizes this index is retained to split the dataset. After
training, this metric can then be used to measure how influential a variable is within a
tree’s decision path, by summing the impurity decreases generated by each node where
said variable is leveraged (Gini importance [80, 84]). This variable importance can also
be measured through other metrics, such as SHAP importance [85] which calculates each
variable’s contribution to a decision from the basis of a trained classifier.

RFs are generated by training an ensemble of decision trees, each on a representative
subset of the original data [80]. Once all trees are trained, they will classify new data by
popular vote.

1.2.2.2 Insights on Random Forests’ performance and robustness.

A classifier’s performance can be measured through different metrics. One of the most
commonly used is the area under the Receiving Operator Characteristic curve (ROC
AUC), which plots the true positive rate as a function of false positive rate, at increasing
classification thresholds [86]. This metric notably has the advantage of being less influ-
enced by the proportions of each class within the test dataset compared, notably, to model
accuracy.

Beyond its performance, a model must also be evaluated on its robustness, meaning its
ability to maintain its classification performance in varying contexts. RFs are reputed to be
overall robust models, notably due to their resistance to overfitting [80]. This characteristic
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can be estimated by repeating the training and testing process on different subsets of the
input dataset.

Applications of ML approaches to microbiota data have highlighted Random Forests
(RF) as the best adapted models for this type of data. RFs are a robust model,
with good potential for interpretability thanks to their intrinsic metric for variable
importance (Gini importance score).

In summary

1.2.3 The methodological stakes of gut microbiota classification
with Random Forests.

With RF models proving to be the most effective approach to apply to gut microbiota
data, several studies have explored its specific usage as a predictor of host health from
the composition of the gut microbiota. These approaches are resumed in Table 1.2. These
works each have their own strengths and limitations, highlighting the potential of the
current approaches as well as giving insights on how to improve classification on gut
microbiota.

1.2.3.1 Repetition and resampling for enhanced robustness.

The prediction of host health on the basis of the gut microbiota’s composition, which
is at the heart of this thesis’ subject, was first notably explored by Pasolli et al. (2016)
[87].

This paper tackled the question of using the gut microbiota as a predictor for diseases.
As such, they developed a prediction tool, MetAML, which automatizes the training of
predictive models to differentiate different categories of individuals based on the composi-
tion of their gut microbiota. Their method was tested on several datasets: Colorectal [88],
Cirrhosis [89], Obesity [90], Inflammatory Bowel Disease (IBD) [91], and Type 2 Diabetes
in the context of Chinese (T2D) [92] and European (WT2D) [93] cohorts. Benchmarks
were conducted to discern an individual’s health status (healthy control, or unhealthy)
on the basis of these cohorts’ taxonomic abundance profiles, but also of the presence
of strain-specific microbial features, both generated using the MetaPhlan2 tool [33]. RF
models were trained with the following fixed parameters: 500 trees, a number of features
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to consider when splitting the training data set to the root of the number of features in
the dataset, and the quality of splits was measured using the Gini criterion. Classification
performances were evaluated over 20 independent runs, with 10-fold cross-validation with
no external test data subset. This approach has been criticized due to the risk of a data
leak, meaning that measured performances could overestimate the models’ true capacities
due to being interrogated on data subsets that have played a part in training it.

This limitation has notably been identified in a study by Oh & Zhang in 2020 [94],
which introduced another tool for classification on the basis of the gut microbiota named
DeepMicro. Aiming to correct the previously mentioned faults with MetAML’s training
method, DeepMicro’s performance results were measured on a separated test set, and
optimizes the parameters of the models through a grid search [95] involving 5-fold cross-
validation processes. This approach corrects the risk of a data leak, and improves overall
performance through parameter optimization. However, these additions combined with the
Representation Learning aspect of the approach made the training process more costly
in time and resources, leading to models being evaluated over over 5 runs compared to
MetAML’s 20. The lesser amount of repetitions of the evaluation process reduces the
robustness of DeepMicro’s results when compared to its predecessor.

These approaches illustrate a first level on which gut microbiota classification can be
improved: the robustness of the results. This can be tackled by augmenting the amount
of repetitions of the training process [28], with a resampling involving sanctuarized test
datasets to avoid data leaks.

1.2.3.2 Reducing the dimensions of the data for better performances.

A characteristic of the gut microbiota that makes it difficult to use for classification
are its dimensions. Indeed, datasets usually have few samples, each of which contains a
lot of information. This characteristic impedes automated classification performances, as
per the Hughes phenomenon, also known as curse of dimensionality [26], which postulates
that there is an optimal amount of features for a set amount of observations, and that
augmenting data dimensionality past this point decreases classifier performance.

DeepMicro is notable for circumventing the curse of dimensionality by applying pro-
jection methods to the input data in order to enhance performance. The tool added an
element of Representation Learning, prefacing the ML training with a reduction of the
data’s dimension through diverse methods such as Principal Component Analysis (PCA)
[96] or autoencoders [97]. When tested on the same abundance profiles as MetAML, this
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transformation did not yield significant improvement in classification. This dimensional-
ity reduction proved to be very efficient however when applied to profilings based on the
presence or absence of strain markers, which contained 200 times as much information per
patient as their taxonomic counterparts. In this case, AI-based dimensionality reduction
consistently improved classification performances, whereas classical PCA and Gaussian
Random Projection based representations decreased performances in a majority of cases.

In MetAML’s case, it was found that the taxonomic profiles were best discerned by
RFs when coupled with a feature selection. The selection in question was performed on
the basis of the feature ranking performed following the RF’s classification (see Section
1.2.2.1), where the top k features are selected and used as basis for re-training a RF model,
for k in 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200. The top performing
set is retained as the optimal number.

As such, correcting the dimension of the data is another major stake when it comes to
improving classification performance. While DeepMicro’s Representation Learning-based
approach to this issue has shown a lot of promise, the solution of variable selection has the
added advantage of keeping the data’s readability, boosting the results’ interpretability.

1.2.3.3 Expanding on interpretability: the advantages of the functional paradigm.

Classification based on Random Forests opens possibilities when it comes to under-
standing the impact of each variable on model performance, through its capacity to gen-
erate a ranking of variable importances (see Section 1.2.2.1). In the case of MetAML for
example, after training, the authors include a discussion around model interpretability,
notably illustrating and commenting the top 25 species by Gini importance score averaged
over 20 runs for the Cirrhosis and Colorectal datasets. The biological coherence of certain
top features from the Cirrhosis dataset is also explored, highlighting known pathogens of
this disease such as Veillonelle and Streptococcus strains within this list. Some taxonomic
units are also identified as generic markers of an unhealthy gut microbiota. The interpre-
tation stops shy of covering the biological significance of all highlighted species however.
The fact that it conducts an evaluation on the taxonomic scale means that it also does not
align with the more recent demands of the medical community, which sees more potential
in the exploration of the gut microbiota at the functional scale (see Section 1.1.1).

In studying health status classification from functional profilings of the gut microbiota,
two studies stand out. First to mention is Jones et al.’s publication in 2020 [98]. This study
explored RF classification of Crohn’s disease severity using both 16S and MGS sequences,
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the former converted to taxonomic profiles with QIIME2 [36], and the latter functionally
profiled with HUMAnN2 [48]. The results showed that the functional profiles performed
worse than their taxonomic counterparts when it came to classification, but remained
significant classifiers. This was followed by an interpretation of the top 30 pathways and
taxa by feature importance, which established their coherence notably with previously
identified taxa, such as Ruminococcus gnavus.

The earlier works realized in 2018 by Douglas et al. [99] are perhaps more closely
related to this thesis’ subject. This study once again focused on Crohn’s disease, and once
again retained the RF classifier, but this time aimed to predict disease state and treat-
ment response via RF classifiers. An originality of this approach was that it exploited and
compared both 16S and MGS profiles, with integration of the taxa’s metabolic functions
using PICRUSt [49] for the former, and HUMAnN2 [48] for the latter. The overall con-
clusions, for disease state classification, were that for both methods, functional profiles
could significantly classify patients, but couldn’t match the best performances obtained
by taxonomic information. This classification was further exploited by extracting the vari-
ables’ importance scores, in terms of mean decrease in accuracy, in order to rank them
by decreasing importance. This allowed to highlight important taxa, like Akkermansia
muciniphila, and pathways, such as the biosynthesis of amino-acids. A joint analysis of
the top 3 features from each profile showed that 16S OTUs were the most informative
class of features.

These studies showed the limitations of exploiting FAs to augment microbiota datasets
in the context of ML, as the translation negatively impacts classification performance in
both cases. This can however be explained by the augmentation in data dimensionality
that is induced by this shift. For example, in Douglas et al.’s study, the 16S functional
profile contained 200 times as many variables as the taxonomic abundance table. Previ-
ously established dimensionality reduction techniques could be a viable response to this
issue. It should also be noted that these results were obtained on a single instance of
model training with a fixed amount of 1001 trees and other parameters left at default,
using Leave One Out Cross-Validation (LOOCV) [100, 101], meaning that performance
and robustness were not the primary focus of these works.

These studies were however efficient in highlighting an advantage of this new repre-
sentation: the subsequent analyses based on RF feature importance scores, taken from
the best classifiers, singled out impactful metabolic functions, which is an important gain
in terms of the models’ interpretability. These results are in line with demands raised
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by the voices in the medical community mentioned in Section 1.1.1 [29], in that they
provide insights on the more directly exploitable metabolic scale. The issue of functional
redundancy, however, remains unexplored here. These observations combined lead us to
believe that by pushing Douglas et al. and Jones et al.’s interpretations further, with rig-
orous model fitting and feature selection and a heightened awareness of the correlations
between the highlighted taxa and functions, we could expect to uncover some biologically
relevant features from ranking and filtering markers based on how informative they are.

Applications of RF models to various profilings of gut microbiota samples have es-
tablished benchmarks for classification, and highlighted levers for improvement in
terms of robustness through repetition, classification performance through variable
selection, and interpretability through the exploration of top features, notably func-
tional.

In summary

1.2.4 Contributing a novel approach: enhanced robustness with
an expansion of state of the art methods in three dimen-
sions, and integration of the taxonomic and functional
scales.

In light of these observations, we developed an approach during the course of this
thesis that incorporates the strengths of all of the previously mentioned approaches. This
method, called Shifting Paradigms to Annotation Representation from Taxonomy to iden-
tify Archetypes (SPARTA), applies RF-based approaches to both taxonomic and func-
tional profiles. The method is introduced in Chapter 3, and an implementation in the
form of a computational pipeline is described in Chapter 5.

The models are trained over several runs (10 by default) with dedicated test subsets,
each involving 20 instances of model training with separate validation subsets. This is
done to avoid issues related to potential data leaks, in the same vein as DeepMicro, while
striving for better robustness through an amount of repetitions of the training method
more comparable to MetAML’s. Inspiration was also taken from MetAML’s approach to
performance enhancement in the form of a variable selection based on variable rankings
and iterated to reach peak classification performance, and which can then be expanded
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into biological interpretation. As such, this approach enhances robustness and performance
by extending the MetAML and DeepMicro [87, 94] procedures in three dimensions, with
an increased number of trained RFs, selection of important variables with an iterative
process, and repetition of the full process from different seeds, to allow exploration of the
inherent variability in performances due to changes in training hyperparameters.

Obtaining a set of discriminant functions is one of the major aspects when turning to
FAs instead of taxa descriptors. As such, the interpretability aspect is also pushed further,
through a thorough exploration of both taxonomic and functional signatures, in the vein
of Douglas et al. [99] and Jones et al.’s [98] works, but also taking in account the inter-
correlations between both profiles so as to highlight variables issued from a cumulation
effect. These results are presented in Chapter 4.

This thesis contributed a method for ML-driven analysis of microbiota data with
enhanced focus on robustness, achieved through an extension of the method in three
dimensions: increased number of trained classifiers, selection of important variables
with an iterative process, and repetition of the process several times. This new
method also integrates both the functional and taxonomic paradigms to the analysis.
This allows for a more expansive downstream biological interpretation, which takes
account of the impact of both paradigms as well as their intercorrelations.

In summary

1.3 Leveraging Machine Learning for variable selec-
tion: performance and interpretability.

In dealing with the biological interpretability of a classifier’s results, the capacity to
evaluate a variable’s importance and operate a selection of significant information based
on this criterion facilitate the process immensely. In the case of microbiota data, this is
especially true for functional profiles, the dimensions of which are not easily tractable. This
was previously illustrated by the data used by Douglas et al. [99] (see Section 1.2.3.3), but
also in the presentation of the HUMAnN3 tool [34], which was applied to an illustrative
example consisting of a meta-analysis of Colorectal Cancer cohorts containing 121 species,
from which the tool derived 2,895 EC numbers [56]. This approach has also improved the
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Studied profile Datasets Tested models Performance enhancement
approach Robustness Interpretability

MetAML
[87] Taxonomic (MGS)

Various studies:
Cirrhosis [89],
Colorectal [88],
Obesity [90],
IBD [91], T2D
[92], WT2D [93]

RF, SVM
Variable selection: top k
features ranked by Gini

importance metric.

20 independent runs, with
10-fold cross-validation. Issue:
absence of an external test set,
so parameters may be selected

based on a model which has seen
the test set.

The top 25 species by Gini
importance score are given and

commented: the biological
significance of certain species in
the context of the Cirrhosis
dataset notably, and the

signaling of certain taxa as
general markers of an unhealthy

microbiome.

DeepMicro
[94] Taxonomic (MGS)

Various studies:
Cirrhosis [89],
Colorectal [88],
Obesity [90],
IBD [91], T2D
[92], WT2D [93]

RF, SVM, MLP

Representation Learning:
projecting the data
(autoencoders, PCA,

Gaussian).
Parameter optimization
through Grid Search.

5-fold cross-validation on a
training set, then evaluated on a
separated test set over 5 runs.
This corrects the issue of a
potential data leak, but is

arguably insufficiently robust.

The study is fully
performance-focused, and does

not comment on variable
importance or biological
significance of the results.

Douglas et
al. [99]

Taxonomic (16S,
MGS), Functional

(16S, MGS)

Crohn cohort
(BISCUIT
cohort [102])

RF - LOOCV evaluation.

The top 3 ranking taxa and
pathways are singled out and
commented by the paper,
including in regard to their

biological significance.
Taxonomic and functional

profiles are also compared to one
another in terms of significance,
by commenting on the variable
importances of models trained on
a combination of both profiles.

Jones et
al. [98]

Taxonomic (16S),
Functional (MGS)

Crohn cohort
(MAREEN [98]) RF - LOOCV evaluation.

The top 30 features of the top
performing trained models are
given, and the significance of
some of the top taxa is briefly

discussed.

SPARTA
(Work

from this
thesis)

Taxonomic (MGS),
Functional (MGS),
Taxonomic and

functional
associations

Various studies:
Cirrhosis [89],
Colorectal [88],
Obesity [90],
IBD [91], T2D
[92], WT2D [93]

RF

Variable selection:
automated iterative

selection based on features’
Gini importance scores (by

default). Parameter
optimization through

GridSearch.

10 independent runs, each with a
dedicated test subset. Each run
consists of 20 instances of model

training with 5-fold
cross-validation, each evaluated
on separate validation sets.

The robustness of the selected
variables is evaluated over 10

runs. The most robust variables
were bibliographically validated

in full on an example. The
interconnections between robust
taxa and functional annotations

are explored and discussed.

Table 1.2 – Comparison of notable applications of RF classification to gut microbiota data.
MetAML and DeepMicro explored different ML applications to predict patient health state based on
the taxonomic composition of the gut microbiota, with a primary focus on performance. Douglas et al.
and Jones et al. put more focus on interpretability, by exploring the functional scale in parallel. The
SPARTA pipeline, which was developed in the context of this thesis, integrated the strengths of the cited
approaches, in terms of performance, robustness and intepretability.

performances of classifiers dealing with high-dimension data [27, 87]. Several approaches
can be leveraged to evaluate variable importance and perform selection (see Table 1.3).

1.3.1 Linear approaches to variable selection.

When faced with the problem of identifying markers of a person’s health state using
the microbiome, one’s first instinct would be to statistically compare the composition
of microbiotas sampled from healthy and unhealthy individuals, and highlight markers
that are differentially expressed between both profiles, to be used as reference for future
diagnostics. This approach, akin to a linear regression, is usually applied by default to
datasets [88–90, 92, 93] and has permitted the identification of several disease markers,
both taxonomic and functional. By selecting the variables with the most significant differ-
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ential expression, this approach can also be used for variable selection. This can be done,
for example, as implemented for the DESeq2 [103] tool, which is best adapted for RNA-
seq data, or limma [104], which has broader applicability. These tools fit a Generalized
Linear Model over the data before testing whether each variable’s regression coefficient is
significantly different from zero through a Wald test applied to shrunken logarithmic fold
change estimates. The p-values of the test in question, after adjustment by the Benjamini-
Hochberg method for multiple testing, can be used as basis for selection [105–107].

1.3.2 Random Forests: a basis for variable selection in non-linear
problems.

RF models, notably through the calculation of variable importance scores (Gini or
SHAP for example, see Section 1.2.2.1), are also a potent tool for evaluating variable
importance and operating selection. This approach differs from DESeq2 or limma’s in
the sense that profiles are evaluated in a non-linear fashion, which allows RF importance
rankings to take account of more complex distinctive criteria. In terms of classification
performance, they also notably outperform the classic regression-based approaches [27],
which limma is based on, marking it as a comparatively innovative approach. RFs are
also becoming more prevalent for variable selection as well, notably in the domain of
bioinformatics [108].

Several approaches exist to perform variable selection based on RF importance rank-
ings. This has been explored in the previously cited MetAML approach [87], which searches
for the optimal top-k features that maximize classification performance, but also by Stat-
nikov et al. [27], where RF models were found to be more precise when coupled to a
variable selection based on RF-based backward elimination procedure (RFVS), as de-
scribed by Svetnik et al. [109], wherein a set fraction of the dataset’s variables, chosen
at the bottom of the Gini Importance Score’s ranking, is iteratively removed until the
model reaches peak performance. In Statnikov et al.’s case, 20% of the variables would be
eliminated at each iteration. This approach, coupled with MetAML’s variable selection
(see 1.2.3.2) illustrate the possibilities offered by Gini importance rankings when it comes
to selecting variables. Its capacities in comparison to the classic statistical approaches are
seldom mentioned however. As a basis for variable selection, RF-based approaches have
also rarely been directly compared to linear approaches such as limma [104].
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Variable selection is a potent and effective approach to enhance ML models’ per-
formance and interpretability when applied to the gut microbiota. This issue can
be tackled linearly, through approaches such as DESeq2 or limma. It can also be
approached through the prism of RF models’ variable importance rankings.

In summary

1.3.3 Human bias, robustness and exploitability: challenges sur-
rounding variable selection.

One could however regret that the previously presented variable selection methods
require to choose discrete parameters: limma [104] requires a p-value threshold to be de-
fined, RFVS iteratively selects a predetermined percentage of the dataset, and MetAML’s
approach covers an empirically chosen set of top k values. A fully automated selection
process could be preferable, as it would remove user-induced bias altogether.

Another aspect of these selection processes to take into account is that of the variable
selection methods’ robustness, which can be measured through the coherence of repeated
selection tasks for example. On this aspect, DESeq2 and limma have already been evalu-
ated as having good reliability [110, 111], though an application to RNA-sequencing data
[112] has also shown that non-parametric variable selection methods could prove more
robust. RF models have also been proven to be coherent in the right conditions, but their
robustness is also highly dependent on the data and chosen approach [113]. As such, an
internal measurement of the RF selections’ robustness should be envisaged to add trans-
parency if we are to exploit these selections for downstream biological interpretation. This
aspect of the method is evaluated by neither Statnikov et al. [27] or MetAML [87].

Finally, improving the exploitability of a selection of variables is also important, to
make their downstream handling by biological experts more comfortable. This can be
achieved through visualization. In the case of functional annotations, tools such as RE-
VIGO for GO terms [114] or KEGG-mapper for EC numbers [115] provide options to
represent shortlists of annotations. However, it is much more challenging to concurrently
represent different ontologies. The measurement of the selections’ robustness could pro-
vide advances in this department as well, as they would give the user the possibility to
prioritize the most reliable elements of the shortlist.
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1.3.4 Contributing a fully automated Random Forest-based se-
lection approach for variable selection and associated ro-
bustness measurement.

A novel approach that covers these issues is integrated to the SPARTA pipeline, pre-
sented in Chapter 3, which we also implement in Chapter 5. This method fully automates
the selection process by relying on a cutoff at the inflection point of the curve of decreas-
ing variable importances, rather than selecting a set amount of features. It also repeats
the training and selection process to establish a measurement of the robustness of the
selected variables, while keeping account of the evolution of classification performance.
Our approach makes use of the RF’s capacity to handle non-linear problems, which is
an advantage over DESeq2 and limma. We will however compare results obtained with
our method with those of limma during the course of our manipulations. By default, the
process will be based on Gini importance scores, though benchmarks made with SHAP as
a basis for variable importance will also be established. The method’s accent on robust-
ness also facilitates downstream biological exploration. Being applicable to interlinked
taxa and annotations, the output’s format, when represented as a table or as a bipartite
graph, also facilitates the detection of cumulation effects within the microbial community,
as illustrated in Chapter 4.

During this thesis, we contributed a variable selection method based on RF variable
importance, which can handle non-linear distinctive criteria. The novelty of this
approach is that it is fully automated, as it does not require any discrete parameters
to be specified by the user. It also provides an internal evaluation of the selection’s
robustness, based on a repetition of the selection process.

In summary

1.4 Conclusion
The importance and perspectives opened by the human gut microbiota have been

at the forefront of the discussion in the medical field in the past years, as a wide array
of unsuspected impacts on host health have been derived from its composition. When
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studying the gut microbiota, the taxonomic scale has generally been favored, to identify
biomarkers for various conditions [3, 5, 6]. In recent years, however, some voices in the
medical community have called for increased inclusion of the gut microbiota’s functional
paradigm in coming analyses. Specifically, taxonomy-based approaches do not properly
account for functional redundancies between species and, in turn, might fall short in
identifying novel biochemical pathways that should be targeted by innovative therapies
[29].

Functional profilings can be built with several approaches, depending on the upstream
sequencing method. For raw MGS reads, various tools have been developed for functional
analysis, notably including the HUMAnN pipeline [34, 47, 48] which can quantify FAs in
a sample based on sequence alignments. For processed 16S sequencing data, PiCRUSt2
[49, 50] stands as one of the most popular tools for functional profiling. Other tools can be
agnostic in regard to the sequencing method, such as the EsMeCaTa pipeline [67], which
functionally annotates an input list of taxonomic affiliations according to the content
of the UniProt database. All of these tools associate FAs to taxa via the interrogation
of internal or external databases, creating a link between the taxonomic and functional
paradigms.

The resulting functional profiles constitute a basis for uncovering functional markers
within the gut microbiota, provided these markers can be ranked or filtered based on
how informative they are. Such a ranking can be handled through a linear approach, for
example using the DESeq2 [103] or limma tools [104], which fit a Generalized Linear Model
over the data before testing whether each variable’s regression coefficient is significantly
different from zero [105–107]. Previous studies in clinical predictive modeling have also
highlighted the potential for tree-based methods to perform such a variable selection,
such as RFs [116] thanks to their inherent aptitude for variable ranking through the Gini
feature importance metric [80]. RFs are also particularly relevant in this regard, due to
their proven efficiency in classifying microbiota data [27], outperforming other classic
techniques, such as SVMs [27, 87, 94].

In terms of performance, the biggest hurdle to be cleared pertains to the microbiota
data’s dimensions, which do not favor classifier training. Many previously cited approaches
(see Section 1.3) have explored methods to diminish the input data’s dimensions, with
variable selection standing out as one of the most effective. This approach is compatible
with the RF’s intrinsic evaluation of variable importance, however none of the cited studies
have tried a fully automated selection process based on this metric.
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The works cited in 1.2.3 also put a differing amount of focus on the robustness of their
results, with varying approaches to performance measurement and different amounts of
repetitions of the training process. This concept of robustness can also be extrapolated
to the notion of variable importance and selection, where little has been done in the
cited works to allow for transparency around the selectors’ internal coherence. It would
be important to define a framework to evaluate the robustness of a feature’s importance,
so as to have a stronger basis for interpretation of these results.

In terms of interpretability finally, obtaining a set of discriminant functions is one of
the major aspects when turning to FAs instead of taxonomic descriptors. Though some
studies developed the biological implications of their outputs, these interpretations re-
mained restrained to a subset of important variables, and no exhaustive examination of
the obtained lists of important variables’ biological pertinence was made. These observa-
tions are also generally restrained to the taxonomic scale, though the works of Douglas
et al. and Jones et al. offer a first glimpse into the potential of applying this protocol
to functional profiles. While the shift to functional profiles leads to a decrease in clas-
sification performance, the subsequent analyses based on RF feature importance scores
singled out impactful metabolic functions. However, the usual number of FAs identified
in biological samples (2895 ECs derived from 121 species with HUMAnN3 in context of a
meta-analysis of Colorectal Cancer cohorts for example [34]) is not easily tractable. The
potential implications surrounding the links between taxa and their expressed biological
functions also remain underexplored.

During the course of this thesis, we will put together an approach that makes it possi-
ble to exploit the RF as an automated variable selector to improve its performances, but
also to internally evaluate a variable’s robustness as a predictor, for better interpretability
of the model. To achieve that goal, this approach extends the MetAML and DeepMicro
[87, 94] procedures in three dimensions (increased number of trained RFs, selection of
important variables with an iterative process, repetition of full selection process from
different seeds) to ensure full reproducibility and exploration of inherent variability in
performances due to changes in training hyperparameters. We will also show that cumu-
lative phenomena can be identified by leveraging the relationships between taxa and their
expressed FAs. Finally, we will show that this analysis can be done even without access
to raw sequence data. These contributions are made through the implementation of the
Shifting Paradigms to Annotation Representation from Taxonomy to identify Archetypes
(SPARTA) pipeline.
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In a first chapter, we will describe how this approach will integrate a novel method
for building a functional profiling of the gut microbiota directly from an input taxo-
nomic abundance table, based on the EsMeCaTa pipeline and therefore compatible with
all upstream sequencing methods. Through a comparison of the outputs with those of
HUMAnN3, we will show that the information gathered by this new approach is more
thorough, while covering the majority of the annotations gathered by HUMAnN. This
new method will allow us to work on six MGS databases, making the process sufficiently
light to be compatible with our computing resources through its exploitation of taxonomic
tables as input instead of raw sequences. This approach’s compatibility with MGS and
16S profiles alike make it a more versatile approach than other classic tools for functional
profiling.

In a second chapter, we will introduce a method to conduct a RF-based classification
and analysis of the microbiota data, both on the taxonomic and functional scale, while ac-
counting for the interconnections between taxa and functions. This method will be based
on the re-training of multiple classifiers, iterated in the context of a succession of classifica-
tion and variable selection applications, itself repeated several times for better robustness
of the results. Through a post-processing method designed to accentuate genericity and
robustness, it will also output a curated list of important variables, selected through a
fully automated and non-parametric RF-based approach, alongside an internal metric for
evaluation of a variable’s robustness in terms of its importance based on repetition of the
selection process. This will be done while ensuring consistent classification performances
when switching from taxa to FAs as a basis for classification. These operations will be
tested on six datasets, used for benchmarking by several previous studies in this domain.
The approach’s performance in terms of classification will be compared with a reproduc-
tion of DeepMicro’s results, and its robustness as a variable selector will be compared to
limma’s.

In a third chapter, the notable functional variables identified in this manner will be
bibliographically explored in detail on an example, and discussed in regard of their rela-
tionship with notable taxa. This will allow us to confirm the biological viability of our
selection, but also show how the visualization of the interconnections between taxa and
annotations can highlight functional variables that gain in importance through the cumu-
lated influence of non-discriminant taxonomic counterparts.

Finally, we will describe a publicly available implementation of the SPARTA pipeline,
making the approach developed during the course of this thesis reproducible and accessible
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for future applications to other data.

Publication

The majority of the work presented in this thesis is also the basis of a scientific article,
published at PLOS Computational Biology [1]. The article notably covers the presenta-
tion of the method and results presented in Chapter 3, the functional profiling approach
described in Chapter 2, the biological interpretations of Chapter 4 and a presentation of
the implementation described in Chapter 5.

Software

The software developed in the context of this thesis is open-source, and available on
the GitHub website. This notably concerns the implementation of the SPARTA pipeline,
described in Chapter 5, which can be found with accompanying README instructions,
a testing suite and material for result reproduction at the repository hosted at https:
//github.com/baptisteruiz/SPARTA.
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Robustness Interpretability Parameterization
DESeq2 [103] / limma [104] Usually applied to RNA-seq data,

DESeq2 and limma have been
evaluated as an approach with
good within-method consistency
and robustness [110, 111]. How-
ever, they have also been found
to be less robust than non-
parametric approaches by some
studies [112].

DESeq2 and
limma give a
ranking and
an evaluation
(adjusted p-
value) of each
variable’s impor-
tance in linearly
differentiating
profiles.

Requires a hu-
man input for
variable selec-
tion (p-value
threshold)

RF
RFVS (i.e:
Statnikov
et al. [27])

This aspect of the approach is
not evaluated in the referred
articles. Self-consistency of
Random-Forest-based variable
selection is shown by Kursa et
al. to be highly dependent on the
data and on the selection
approach, but is capable of
having high retention rates in
the right circumstances [113].

Variable
importance
scores (usually
Gini) give a
ranking of each
variable’s
non-linear
importance in
the trained
model’s
reasoning.

Requires a hu-
man input for
variable selec-
tion (fraction
of the data to
be dropped
iteratively)

Optimal
top k fea-
tures (i.e:
MetAML
[87])

Requires a
human input
for variable
selection (list
of empirical
top feature
thresholds to be
tested)

Iterative
automatic
thresh-
old (i.e:
SPARTA)

The self-consistency of the
method is evaluated internally,
and is an area of focus

Fully auto-
mated variable
selection

Table 1.3 – Comparison of notable approaches for variable ranking and selection in the
context of the gut microbiota composition. The question of ranking variables by importance can
be approached with linear methods, as implemented with limma and DESeq2, or non-linearly through RF
variable importance metrics. Several approaches can then be applied to use these rankings for variable
selection, with the method developed for SPARTA in the context of this thesis being the only one to
include full automation.



Chapter 2

A novel method for computing functional
profiles.

The gut microbiota can be described on several different levels. On a first basis, it can
be defined as a community of micro-organisms that populate the gut. As such, it is most
commonly described on the taxonomic scale, with measurements of the abundances of the
different taxonomic units that constitute the population. This sort of description has been
made available with technological advancements in gene sequencing [31, 32], and in the
tools for subsequent in silico analysis of the data, such as the QIIME [36], mothur [37],
and FROGS [38] pipelines for 16S rRNA sequences, or MetaPhlAn [33–35] for Shotgun
Metagenomic Sequencing (MGS) data. These taxonomic profiles have also been widely
explored as a basis for supervised classification of individuals [27, 72, 87, 94].

Beyond this conception of the gut microbiota as an ecological community, one could
also view it from a mechanistic point of view: as a stage for exchange, consumption
and transformation of metabolites in accordance with the micro-organisms’ metabolism,
and in interaction with the host environment. Thus, another paradigm through which
the gut microbiota can be described is the quantification of the biochemical reactions
that take place in its context. These mechanics are decomposed, described and made
available in databases such as the Gene Ontology (GO) terms [57, 58] or the Kyoto
Encyclopedia of Genes and Genomes’ (KEGG) Enzyme Commission (EC) numbers [56,
117], among others. Methods to build such functional profiles from sequenced reads have
been implemented, notably PiCRUSt [49, 50] and HUMAnN [34, 47, 48], respectively
designed for treatment of 16S and MGS reads.

In the medical community, discussion has emerged in the past years around the poten-
tial benefits of shifting from taxonomic analysis to understanding the functional aspects
of the gut microbiota [29]. Many consider that host-microbiota interactions can only truly
be understood on the functional level, and that comprehension of the microbiome on this
scale is essential to envision strategies to improve host health via the gut microbiota. In
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this regard, taxonomic profiles on their own provide insufficient information, as a taxo-
nomic unit can be functionally redundant and therefore have more relevance in regard to
their cumulated influence on the community’s metabolome. Stakes are therefore emerg-
ing around the implementation of methods to translate taxonomic descriptions of the
microbiota into functional ones. Indeed, with an abundance of previous works on taxo-
nomic profilings of the gut microbiota, many such profiles have been made available and,
if transformed into functional profiles, could be a resource for further exploration of the
issue at hand. PiCRUSt and HUMAnN can operate such conversions, but with caveats,
as both of these processes require extra information (a phylogenetic table for PiCRUSt,
and access to the original reads for HUMAnN) and are specialised to profiles derived from
one method: 16S rRNA sequencing for PiCRUSt, and MGS for HUMAnN.

A first contribution of this thesis was to implement a novel method for translating
taxonomic descriptions of the gut microbiota into functional profiles, with a larger focus
on genericity and traceability. Genericity of the method implies that it can be applied to
a profile derived from 16S rRNA sequencing or MGS indiscriminately, and without the
need for additional information. Traceability refers to the conservation of the information
linking together taxa and annotations, to expand upon later on. To do so, we relied on the
EsMeCaTa pipeline [67], which correlates taxonomic units to annotations, and calculated
functional abundance scores based on these outputs.

2.1 From taxonomic profiles to functional descrip-
tions of the microbiota: a new methodology for
functional quantification on the basis of a reference-
based approach.

The method described in this chapter, and illustrated by Figure 2.1, only requires
as input a table describing a microbiota sample as relative or absolute abundances of
taxonomic units, of which the taxonomic affiliation is detailed. This process involves
two main steps: the first is to associate functional annotations (FAs) to the taxonomic
units, and measure the importance of its expression by said taxonomic units. This is
achieved through the EsMeCaTa pipeline, as described in 2.1.1. The second is to combine
this information with the original taxonomic abundances to generate a score measuring
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the total expression of each gathered annotation within the community. This step is
explained in 2.1.2. After the scores are calculated, they can be normalized to better
highlight discriminant features using the TF-IGM method [118], which is explained in
2.1.3.

Figure 2.1 – Method and processes for the calculation of a functional representation of
the gut microbiota from taxonomic affiliations and abundances. The method’s only input is a
taxonomic description of the gut microbiota, in the form of a table of taxonomic abundances (abundance
of taxa or taxonomic units). For each taxonomic unit, the EsMeCaTa pipeline will recover the proteomes
associated to the most precise recognized taxonomic description of the taxon in the UniProt database.
The proteins that are representative of the taxonomic unit are then annotated, either through another
interrogation of UniProt, or through the eggnog-mapper tool. From this information, we can estimate
the importance of the expression of an annotation by a taxonomic unit. By combining this with the
taxa’ original abundances, we can calculate an abundance score for functional annotations within the gut
microbiota.
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2.1.1 Associating functional annotations to taxonomic affilia-
tions: the EsMeCaTa pipeline.

The EsMeCaTa pipeline follows three steps. The first step, ’proteomes’, takes as input a
tabular that associates a given name for all the studied bacteria to their exact taxonomy.
From this, EsMeCaTa interrogates the UniProt database [68] for proteomes associated
with the taxon in question. If none can be found, the step is re-iterated with the superior
taxonomic rank, until at least one proteome can be associated with the unit. In the event
that more than 99 proteomes are associated with a taxon, a random selection of around 99
proteomes will be made, with respect to the taxonomic diveristy of the initial proteomes
set. The selected proteomes are then downloaded from UniProt.

The second step, ’clustering’, selects protein clusters that are representative of the
taxonomic unit within the downloaded proteomes. To do so, the MMseqs2 tools [69] is
used to create clusters of similar proteins from the proteomes. If a protein cluster contains
similar proteins from 95% of the proteomes attributed to the taxonomic unit, it will be
retained as part of its meta-proteome.

The final step, ’annotation’, fetches the FAs (GO terms and EC numbers) of the
retained protein clusters. It can do so by interrogating the UniProt databases, or by using
the eggnog-mapper tool [70, 71]. The former option simply queries UniProt and fetches
the information relative to the annotation of the proteins retained in the cluster. The
latter is more demanding in terms of computation, as it involves an alignment step to
match the retained proteic sequences to the contents of the eggNOG database [71] during
a search step, before proceeding to protein annotation in the context of orthologs inferred
by the tool in a scope defined by the user [70]. The final output is an ensemble of tabulars,
one per taxonomic affiliation in the input, that contains all of the protein clusters kept in
the taxon’s meta-proteome and their FAs.

2.1.2 Calculating a functional representation of the patient’s mi-
crobiota from taxon-annotation pairings.

EsMeCaTa, being reference-based, does not provide a quantification of the functional
annotations within the sample itself. As such, in order to compute a representation of
the gut microbiota on the scale of the FAs, mixing information concerning its specific
composition with the associated metabolic mechanisms, we give each annotation (F) a
score, labeled as a Score of FA (SoFA), within a subject sample (i), similarly to PiCRUSt
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[49], according to the following formula:
SoFAF,i = ∑

t nt,i × xF,t

where nt,i is the abundance value of taxon t within sample i, and xF,t is the number
of proteins within taxon t’s proteome that are linked to the function F.

As such, each annotation’s SoFA is equal to the sum of the abundances of all taxa
that express it, weighted by the strength of said expressions as measured by EsMeCaTa.

This thesis’ first contribution is a new method for building a functional description
of the gut microbiota directly from a quantified taxonomic profile. This method
involves running the EsMeCaTa pipeline on the input taxa’s affiliations to generate
weighted associations between them and functional annotations. The second step is
to measure the total expression of each gathered annotation as the weighted sum of
the abundances of the taxa that express them.

In summary

2.1.3 Normalizing and scaling data based on expected relevance
with TF-IGM.

The TF-IGM method [118] is used to normalize the results presented in this article. It
was originally exploited in Natural Language Processing, as a method to highlight terms
in a corpus of texts that are significantly present within a text while penalizing those that
are too widespread. The formula had to be re-adapted to fit our data and circumstances,
and in our pipeline it is calculated based on the following two components:

— TF (Term Frequency): equivalent to the frequence of an annotation within the
totality of a sample i:
tff,i = SoF Af,i∑

j∈J SoF Aj,i

where SoFAf,i is annotation f’s score within sample i, and J is the ensemble of the
annotations recorded within sample i.

— IGM (Inverse Gravity Moment): for each annotation f, the calculated values for
tff,i are ranked in decreasing order and noted as T (f)1,...,T (f)n, so that T (f)1 >

T (f)2 > ... > T (f)n, n being the total number of samples. We then have:
igm(f) = T (f)1∑n

r=1 T (f)r×r

where r is the rank of the T(f) score in the previously defined order.
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The total TF-IGM score of an annotation f within a sample i will then be:
tf_igm(f, i) =

√
tff,i × (1 + λ× igm(f))

where λ is a value between 5 and 9. As per Chin et al.’s [118] recommendation, its
value was set to 7 by default.

2.1.4 Presentation of the test datasets.

This method for functional profiling was tested using publicly available species-level
abundance profile datasets from the MetAML repository [87] and post-processed for Deep-
Micro [94], concerning subjects diagnosed with a variety of diseases: Cirrhosis [89], Col-
orectal Cancer [88], Inflammatory Bowel Disease (IBD) [91], Obesity [90], and Type 2
Diabetes on a Chinese [92] (T2D) and an European [93] cohort (WT2D). Each subject in
these datasets had their gut microbiota sampled and sequenced with whole-genome shot-
gun and Illumina paired-end sequencing. The results were processed as per the standard
procedure described by the Human Microbiome Project[119], then converted to species-
level relative abundance profiles via the MetaPhlAn2 tool [33] with default parameters.
Sub-species level features were then filtered using the MetAML tool [87].

Each cohort includes a portion of healthy control individuals, in addition to those
who suffer from the disease in question. The proportions of each group in our cohorts are
detailed in Table 2.1. These cohorts were also used to test and benchmark the methods
presented in subsequent chapters.

Disease Dataset Total
samples

Control
samples

Patient
samples

Raw se-
quences
file size

Liver Cirrhosis Cirrhosis 232 114 118 1.1 TB
Colorectal Can-
cer Colorectal 121 73 48 985 GB

Inflammatory
Bowel Disease IBD 110 85 25 442 GB

Obesity Obesity 253 89 164 1.5 TB

Type 2 Diabetes

WT2D (Euro-
pean Women
Cohort)

96 43 53 303 GB

T2D (Chinese
Cohort) 344 174 170 796 GB

Table 2.1 – Distribution of samples within the datasets of reference.

56



2.2. Comparison with sequence-based approaches.

2.2 Comparison with sequence-based approaches.

2.2.1 EsMeCaTa is a faster and lighter approach to functional
assignation.

In order to position our method with the state of the art, we compared the outputs
of our functional profiling method applied to the IBD dataset with a profile obtained
through the application of the HUMAnN3 tool [34], applied directly to the MGS reads of
the IBD dataset. This process involved MetaPhlan4 [35] for initial taxonomic profiling,
used with default parameters, with reference to the ChocoPhlan database [34] (version
mpa_vJan21_CHOCOPhlAnSGB_202103), and the UniRef90 database [52]. Some reads
from sample V1_UC-19 were corrupted, blocking HUMAnN3’s application to this specific
sample. As such, it was also removed from the functional profiles fed to EsMeCaTa in the
context of a comparison between both approaches.

Functional profiling tool Duration
HUMAnN3 27d 22:06:00
EsMeCaTa (UniProt) 2d 04:12:45
EsMeCaTa (EggNOG) 6d 16:03:51

Table 2.2 – Running time of the functional profiling tools. Benchmarks were made on the IBD
dataset, using the raw MGS reads as input for HUMAnN3, and taxonomic profiles obtained from Pasoli
et al. [87] for EsMeCaTa. All jobs were launched on a calculation cluster, with 10 CPUs and 150 GB of
memory at their disposal.

Of all the tested processes, HUMAnN stands out as the heaviest one to run in terms
of input size, which consisted of 442 GB of reads in the case of the IBD dataset (see Table
2.1), but also in terms of run time, as illustrated by Table 2.2. Indeed, EsMeCaTa runs
from a 301.5 kB input, in the form of a taxonomic abundance table, and is shorter by a
factor of around 4 in the case of EsMeCaTa with eggnog-mapper [70, 71], and 13 in the
case of EsMeCaTa with UniProt [68]. This can partially be explained by the fact that
EsMeCaTa’s input has already been processed by MetaPhlan, itself run by HUMAnN3 in
its first half [34]. However, it also clearly illustrates the benefit in terms of computational
workload of relying on EsMeCaTa instead of working directly from raw reads when a
processed taxonomic profile is already available, as is the case for the datasets presented
in Table 2.1. Within EsMeCaTa, a difference can also be observed between the runtimes of
the UniProt and EggNOG versions of the pipeline, the latter taking 3 times as long to run
as its counterpart. This difference is entirely due to the ’annotation’ step of EsMeCaTa (see
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Section 2.1.1), seeing as the first two steps of the pipeline are common to both versions.
This stems from the extra processing required by eggnog-mapper, notably concerning the
alignment of the proteic sequences to the contents of the referred database (see Section
2.1.1). It should be noted however that, though it is a less complex process, the speed and
reliability of the interrogation of the UniProt database is most susceptible to fluctuate as
it is dependent on the quality and stability of the connection with the online resource.
Some applications of this process during the course of this thesis have failed altogether
due to issues in the interrogation of the online client.

2.2.2 EsMeCaTa and HUMAnN recover similar information.

EsMeCaTa recovers more information than HUMAnN, both when interrogating UniProt
or using EggNOG for annotation retrieval. As shown by Figure 2.2, the EggNOG version
of EsMeCaTa recovers the most information, with a total 16,340 annotations associated
to the dataset. This is over twice as much information as HUMAnN3, with 7,973 an-
notations, was able to retrieve. These lists have a total consensus of 6,385 annotations,
meaning that 80.1% of the annotations gathered by HUMAnN are also found by EsMe-
CaTa using EggNOG. This consensus is smaller with the UniProt version of EsMeCaTa,
covering 5,903 total annotations, which accounts for 74% of the list gathered by HU-
MAnN. This shows however that EsMeCaTa is capable of finding the majority of the FAs
that HUMAnN3 does, along with extra new information, without needing access to the
original sequence files.

The list of annotations gathered by EsMeCaTa includes a higher proportion of GO
terms than HUMAnN, accounting for 81.5% and 82.9% of the UniProt and EggNOG
retrieved lists respectively against 71.7% for HUMAnN. They are also the main source
of novelty within the annotation lists: 44.9% of the UniProt-gathered GO terms and
66.7% of those obtained through EggNOG were not found by HUMAnN, against mirroring
proportions of 29.8% and 33.0% for EC numbers.

Figure 2.3 illustrates the amount of GO terms from each namespace (Molecular Func-
tion, Biological Process or Cellular Component) recovered by each method. We can see
that the increased amount of GO terms retrieved by EsMeCaTa in comparison to HU-
MAnN3 is mostly explained by an increase in the amount of cellular components and
biological processes within the recovered lists. The former category is 2.7 times as present
in the output obtained from EggNOG compared to HUMAnN, and 1.8 times as present
in the one obtained from UniProt, while the latter category shows respective increase
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Figure 2.2 – Size and overlap of the functional annotation lists retrieved from taxonomic
profiles using EsMeCaTa, both using UniProt or EggNOG for the annotations step, and
from MGS sequences using HUMAnN3 . The numbers represented on the graphs give the absolute
amount of annotations in the overlap. The total amount of annotation included in each category is
indicated by its label, as n. A) Representation of all annotations retrieved by each method. B) Same
representation, focusing on the GO terms retrieved by each method. C) Identical to B), but focusing on
the retrieved EC numbers.

ratios of 4.0 and 1.8, making it the most represented category in both of EsMeCaTa’s
associations. The Molecular Function namespace remains constant throughout the lists,
increasing by a factor of 1.2 in both of EsMeCaTa’s outputs when compared to HU-
MAnN. This increase in information could have several implications: on the one hand, an
increase in information increases the precision of the community’s functional description.
On the other, it makes the resulting functional descriptions less understandable, as the
quantity of information becomes overwhelming. While the EsMeCaTa-based functional
profiles have the potential to be more thorough as descriptors, a complementary variable
selection would be necessary to make it viable as a resource for biological interpretation.
These questions will be addressed in the subsequent Chapter 3.
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We compared EsMeCaTa to HUMAnN3 in terms of performance and on the nature
of the information gathered by both methods. EsMeCaTa uncovers more functional
information than HUMAnN3, notably more GO terms of the "biological process"
category. At the same time, the large majority of the information gathered by
HUMAnN3 (∼75% of the annotations) is also found by EsMeCaTa, at a much
lesser cost in terms of input size and computation time.

EsMeCaTa’s performances are however dependent on the annotation approach that
it leverages. With eggnog-mapper, it will gather more information, but at a higher
computational cost. With UniProt, the process is lighter and quicker, but is less
stable and gathers less information.

In summary

Figure 2.3 – Amount of GO terms from each namespace obtained from taxonomic profiles
using EsMeCaTa, both using UniProt or EggNOG for the annotation step, and from MGS
sequences using HUMAnN3.
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2.3 A first exploration of the taxa’s functional ex-
pression.

2.3.1 Exploring the associations between taxa and annotations
exposes their non-redundancy.

The availability of both the taxonomic and functional scales as support for analysis
brings the question of the redundancy between both paradigms. In other words, there is
limited novelty to be derived from functional annotations that are exclusively associated
to a taxon, as this functional signature could be derived from the taxonomic signal without
need for an exploration of the functional paradigm.

We evaluated this prospect by looking into the taxa-function associations obtained
with EsMeCaTa UniProt applied to the IBD dataset, which yields 10,196 annotations
from 443 taxa. On average, annotations are associated to 47.8 taxa. One annotation is
associated with the most taxa (437 taxa out of 443): GO:0016021, which is attached to
the cellular membrane component, and is therefore expected to be extremely widespread.
Unique associations account for 37.5% of all annotations, thus a majority of annotations
are associated to more than one taxon. Overall, no function is perfectly ubiquitous, and
the majority of functions are linked to several different taxa, and are therefore not directly
redundant with the taxonomic information. Furthermore, the fact that most functions are
expressed by several different taxa illustrates the functional redundancy evoked previously
[29], and therefore confirms the possibility that functional signatures could be derived from
a cumulation of several taxa’s influences

2.3.2 Evaluating the functional proximity of taxa highlights the
prevalence of unique functional profiles.

Another aspect of the functional profile that could limit its independence from the tax-
onomic scale is the prevalence of taxa with the same metabolic profiles. If the annotations
that are expressed by several taxa are only ever expressed by species that have the exact
same metabolism, this would amount to having a functional profile that is redundant with
the taxonomic scale if it was clustered based on ecological roles. To quantify functional
redundancy among taxa, we used Jaccard proximity [120] to measure the similarity of
their functional associations based on the associations obtained with EsMeCaTa UniProt
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applied to the IBD dataset. An excerpt of the calculated distances are illustrated in Figure
2.4. The full heatmap was separated in four parts, available in Appendix A.

Taxa with a Jaccard distance of 5% or less were considered functionally identical.
For example, on Figure 2.4, this is shown to be the case for Bacteroides gallinarum and
Bacteroides sp 1 1 30, as well as Clostridiales Family XIII Incertae Sedis unclassified and
Clostridiales bacterium 1 7 47FAA. As such, these taxa would be grouped together and
considered functionally redundant.

Figure 2.5 illustrates all of the groups of functionally redundant taxa obtained in this
manner on the whole dataset. There are a total of 32 groups, represented in red, containing
between 2 and 7 taxa each. In total, 101 taxa have at least one functionally redundant
taxon in the dataset, which amounts to 22.8% of all taxa. A closer look at these groups
shows that they largely englobe taxa that are phylogenetiacally close, as all but two of
the groups only contain taxa of the same genus. This is coherent with what we would
expect from EsMeCaTa, which conducts a taxonomy-based approach to annotation.

The remaining 342 taxa, accounting for 77.2% of the total, do not have such close
neighbors however, meaning that there is a majority of functionally singular taxa in this
dataset. This further cements the idea that the information contained in the functional set
could not be easily derived from the taxonomic data, marking it as potentially innovative.
It is interesting to note that if the taxa maintain distinct functional profiles, it is in spite of
sharing many annotations with each other, as previously mentioned in Section 2.3.1. This
means that functional cumulation could happen between species that occupy otherwise
entirely different ecological niches within the microbiota.

The majority of functional annotations are expressed by more than one taxon, yet in
spite of this, 77.2% of taxa have a unique functional profile within the community.
This illustrates that the functional information does not align with the taxonomic
scale, and that the eventual importance of most functional annotations couldn’t be
attributed to the influence of only one taxon or group of taxa per se.

In summary
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Figure 2.4 – Jaccard distances calculated between the functional profiles of a sample of
taxa from the IBD dataset, annotated by EsMeCaTa with UniProt. The details of the distances
calculated on all taxa are available in Appendix A.
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Figure 2.5 – Representation of the functional redundancy between taxa of the IBD dataset.
Taxa are considered to be functionally redundant if they have a Jaccard distance of 5 % or less in terms
of the functional annotations that are assigned to them. Taxa in red have at least one taxon that is
functionally redundant with them, and are grouped with them in the representation. The others, in blue,
have no other redundant taxon. The blue group accounts for 77.2% of all taxa, while the red contains
the remaining 22.8%.
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2.4 Conclusion and discussion.

We have established a new method for functional representation of the gut microbiota,
which requires only a descriptive quantification of taxonomic units to be calculated. This
feature differentiates our approach from the state of the art methods, notably PiCRUSt
and HUMAnN, which cannot make this conversion from the taxonomic profiles alone.
This approach is based on the EsMeCaTa pipeline, which explicitates and quantifies the
links between taxa and their FAs through the retrieval of the annotations associated with
a given taxon in the UniProt or eggNOG database. This contributes to the approach’s
genericity, making it applicable to profiles derived from 16S rRNA and MGS sequenc-
ing alike, whereas the other cited tools are specialized in only one of these profiles. A
comparison with the outputs generated by HUMAnN shows that the EsMeCaTa pipeline
retrieves more information than its counterpart, and recovers the majority of the infor-
mation gathered by HUMAnN. Further investigation into the specifics of the calculated
profiles has allowed us to determine that functional and taxonomic profiles generated by
our method were not redundant.

The limits of reference-based annotation approaches.
It should be noted that EsMeCaTa’s exploitation comes with caveats, that also need

to be addressed. The pipeline’s reliance on UniProt for at least the association of pro-
teomes to the taxonomic units means that any bias in the remote database would impact
the tool as well, such as the inclusion of proteomes not adapted to the samples’ environ-
ment of origin. Any information missing from UniProt concerning the taxa can also only
be inferred, through the referral to the consensus proteins of the upper echelon of the
taxonomy. As such, imprecisions in the annotation should be expected. This setback can
however be mitigated in light of the comparison made in this chapter with HUMAnN3’s
results, which show that a significant portion of the information gathered by EsMeCaTa
is also validated by other sources. This referral to external databases is also a feature of
HUMAnN with UniRef and NCBI resources, and PiCRUSt with IMG, and is therefore a
limitation that can be applied to functional profiling approaches in general.

Dependency of the functional score calculation on taxonomic abundances.
Another limitation to account for with our approach is inherent to the use of taxo-

nomic profiles as an input. Though this approach makes the process lighter in terms of
computational resources, it also make the tool reliant on the quality of the preprocessing
steps applied to the profile, as there is no referral to the original reads. The taxonomic
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abundances given in the input are a central component of the functional scores’ calcula-
tion, therefore any biases introduced during the taxonomic profiling would have an impact
on the scores calculated for the functional annotations. Knowledge of the data’s origin
therefore remains important when applying the method presented here. Generally speak-
ing, it should be noted that there is an inherent bias to the exploitation of metagenomic
data, notably concerning the taxa of lower abundance which are susceptible to be false
positives.

Taxonomic and functional paradigms for the exploration of the gut micro-
biota.

The development of a lightweight approach for functional profiling opens up many
possibilities for the exploration of gut microbiota data, as it makes functional descriptions,
which are more in line with the demands of the medical community, more widely accessible.
On this basis, we can better explore the functional intricacies of the microbiota, but also
evaluate the comparative pros and cons of each paradigm in analytic tasks. The following
chapter will cover one aspect of this question, by comparatively using both profiles to
classify host disease state.
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Chapter 3

A method for robust classification in
situations of unbalanced dimensionality.

Several studies have evaluated the gut microbiota’s potential as a basis for predicting
an individual’s health status [87, 94]. Among the potential strategies for improving clas-
sification performance, the perspective of correcting the data’s dimensionality has a lot
of potential. Indeed, the dimensions of taxonomic descriptions of the microbiota do not
favor classification, as the amount of samples available for training in the dataset is on
average half as high as the number of descriptors (around 200 samples for 400 taxa, see
Tables 2.1 and 3.2). As such, previous studies have consistently found that variable selec-
tion enhances classifiers’ performances: both Statnikov et al. [27] and Passoli et al. [87]
enhanced classification performances by selecting taxa based on their importance within
trained RF classifiers. These results confirm that the gut microbiota, as an input, is im-
peded by a Hughes phenomenon [26], also known as "curse of dimensionality". This issue is
even more prevalent when tackling functional profiles, as for a similar amount of training
samples, the number of descriptors augments in scale from around 400 taxa to around
10,000 functional annotations (see Table 3.2), though the effect of variable selection on
functional profiles has not been explored as thoroughly.

Different approaches for variable selection have been employed in the context of super-
vised classification from microbiota samples, often based on RF importance rankings [80],
seeing as these models have proven to be among the best adapted for these tasks, notably
outperforming SVMs (see 1.2.1). The previously mentioned works of Statnikov et al. [27]
and Passoli et al. [87] operated a selection of taxonomic units from this basis: removing a
fixed percentage of the least informative variables for the former, and retaining the top k
features, with k the amount in a set list of values that maximizes model accuracy, for the
latter. Among other notable studies, Jones et al. [98] explored the top 30 features obtained
from RF classifiers, trained on both taxonomic and functional profiles, and Douglas et
al. [99] looked up the top features of a model trained on a profile combining both types
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of features. However, these results were not used for variable selection, but rather as a
basis for discussion over the relative influence of taxonomic and functional profiles. There
is therefore a lack of concrete results in the literature concerning the effects of variable
selection on the classification performance of models trained on functional profiles of the
gut microbiota. We can also note that the presented methods relied on fixed thresholds,
be they an absolute amount of variables or a percentage of the total list. No method akin
to a fully automatic selection was explored.

From this observation, we developed a method to train classifiers on microbiota data,
both taxonomic and functional, which integrates an adaptation to the data’s dimension-
ality through an automated variable selection process, but also with an enhanced focus on
robustness, both in terms of the classification performances, but also of the selected vari-
ables list’s contents. To achieve that goal, we extended the MetAML [87] and DeepMicro
[94] procedures in three dimensions, with an increased number of trained RFs, selection of
important variables with an iterative process and repetition of the full selection process
for the exploration of the inherent variability in performances due to changes in training
conditions.

3.1 Methodology for robust classification.

This section details this thesis’ second contribution: a methodology for classification
and variable selection which is adaptable to datasets of unbalanced dimensions, and is
therefore suited for using descriptions of microbial communities as an input. In the same
vein as our previously mentioned references [27, 87], a variable selection on the basis
of RF importance scores was used to tackle issues related to the dimensionality of the
data, with the introduction of a novel method for automatically computing a selection
threshold, which is then iterated to obtain an optimal level of selection. The process is
described by Algorithm 1 and Figure 3.1.

The method’s robustness was another area of focus. In order to evaluate this charac-
teristic, several repetitions of the training process are required. Aggregating the results of
several classifiers is also a known approach to enhance the robustness of RFs as a means
for variable selection [28]. Our approach is based upon the MetAML [87] and DeepMicro
[94] procedures which describe the average results of, respectively, 20 and 5 RFs trained
from a predefined seed. To gain in robustness, we train 20 independent RFs to predict the
patient’s status, and extract the average classifier performances and variable importance
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rankings from this re-training procedure. Our approach then automatically extracts a
shortlist of important features from variable importance, and trains 20 new RFs on the
selected features. A run of the method consists of 5 iterations of this selection procedure.
These runs are repeated 10 times, each time with a different test set put aside for perfor-
mance measurement. After this, the selection level that gives the best overall classification
performance is retained as the optimal iteration. This extension of MetAML’s procedure
in 3 dimensions (re-training of 20 RFs, iteration of the variable selection process, and rep-
etition of the entire procedure over 10 runs with a different test set for each) is a guarantee
for robustness, and allows for the exploration of inherent variability in performances due
to changes in training hyperparameters (see Figure 3.2).

3.1.1 Random Forests for reliable classification.

For ML classification, we used RF models [80]. These classifiers are known from the
literature to be one of the best performing models in tasks related to microbiota classifi-
cation [27, 87, 94]. Unlike other models with notable performances in these studies, such
as SVMs [78], RFs can also be used for feature selection and model interpretation through
measurement of feature importances [80].

In our method, RF classifiers are trained to sort individuals in two classes (patients
or controls, for example), based on the relative abundance profiles of their microbiota or
on their calculated mechanistic representation. Before any training, a subsample of 20%
the size of the full dataset is set aside as a test set. During training, the remaining data
is randomly split into a training set and a validation set, with a respective 80% / 20%
distribution. In order to account for the disparity in representation between the different
categories of individuals within the datasets, both classes were given weights proportional
to their frequency, as implemented by scikit-learn’s ’balanced’ class weight parameter
[121]. When measuring the performance of our classification algorithms, the metric used
was the median Area Under the Receiver Operating Characteristic Curve (AUC) [86] over
20 re-trainings of the models, measured on the test set initially set aside.

Though RFs are the basis of our classification approach, our method involves the
integration of a re-training process with a resampling of the training subsets, in order to
assess robustness (see Section 3.1.3).
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Algorithm 1 Methodology for iterative classification and variable selection
Require: DataT able . Abundance table of taxa/FAs in gut microbiota samples
Require: DataLabels . Label associated to each sequenced sample
Require: n(runs) ≥ 1 . Default Value: 10
Require: n(iterations) ≥ 1 . Default Value: 5
Require: n(classifiers) ≥ 1 . Default Value: 20

Phase 1 – Train n(classifiers) RF classifiers n(runs) times, each time with a variable selection iterated
n(iterations) times

Repetition:
run← 1
while run ≤ n(runs) do

T rainingSamples(run), T estSamples(run), T rainingLabels(run), T estLabels(run) ← SetAsideT estIndividuals(
DataT able, DataLabels ) . See 3.1.1

Iteration:
iteration← 1
while iteration ≤ n(iterations) do

Re-training:
classifier ← 1
while classifier ≤ n(classifiers) do

if iteration = 1 then V alidationSamples(classifier) ← SetAsideV alidationIndividuals(
T rainingSamples(run), T rainingLabels(run) ) . Validation sets are defined on the first iteration for each classifier,
and are re-used for all iterations of the same run (see Figure 3.2)

end if
T rainingSamples(run, classifier), V alidationSamples(run, classifier), T rainingLabels(run, classifier),

V alidationLabels(run, classifier) ← SetAsideV alidationIndividuals( T rainingSamples(run), T rainingLabels(run),
V alidationSamples(classifier) )

T rainedClassifier, V ariableImportances[classifier] ← RandomF orestT raining( T rainingSamples(run,
classifier), T rainingLabels(run, classifier) ) . See 3.1.1

AUC[classifier] ← T estingClassifier( T estSamples(run), T estLabels(run) ) . See 3.1.1
classifier ← classifier + 1

end while
MedianAUC[run, iteration]←Median(AUC[1 : n(classifiers)])
SelectedV ariables[run, iteration] ← V ariableSelection(V ariableImportances[1 : n(classifiers)] ) . See 3.1.2
T rainingSamples(run), T estSamples(run), T rainingLabels(run), T estLabels(run) ← KeepSelectedV ariables(

T rainingSamples(run), T estSamples(run), T rainingLabels(run), T estLabels(run), SelectedV ariables[run, iteration]
) . See 3.1.2

iteration← iteration + 1
end while
run← run + 1

end while

Phase 2 – Post-processing: aggregating the results of the multiple training instances, by iteration level

for i← [2 : n(iterations)] do . The optimal iteration must have effectuated at least 1 selection
IterationMedianAUC[i] ← Median(MedianAUC[1 : n(runs), i])

end for
MaxRunAUC, MaxIteration ← Max(IterationMedianAUC)
RobustV ars, ConfidentV ars, CandidateV ars← IntersectShortlists( SelectedV ariables[1 : n(runs),MaxIteration ]) .
See 3.1.3

return MedianAUC[1 : n(runs), MaxIteration], RobustV ars, ConfidentV ars, CandidateV ars
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Figure 3.1 – A schematic representation of a pipeline for iterative and selective classification
and variable selection. From taxonomic abundance tables and their associated labels as inputs, the
pipeline produces functional descriptions of the microbiota samples via the EsMeCaTa pipeline. Both
of these profiles are then used as basis for the training of RF models to discern Control from Patient
profiles. The average importance scores (Gini by default) of these variables over all trained forests is then
used as basis for a selection of discriminating variables, which can then be processed again iteratively,
or passed as an output. For robustness, the process is repeated 10 times, leading to 10 different lists of
discriminating taxa and FAs. These lists can be compiled into different categories, which group variables
by level of robustness based on the frequency of their appearance in the significant lists. Thus, unanimous
variables are considered to be "robust" discriminators, those agreed on by 75% or more of the classifiers are
considered "confident", and those that are selected at least once are considered "candidates". Internally to
the pipeline implementation, robust features are labeled "Core", and the others are labeled as "Meta-X",
X being the percentage of discriminating variable lists that include them.
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Figure 3.2 – Classification algorithm as implemented for our approach: For a given run k, a
test subset is randomly selected within the initial dataset and set aside. A given iteration j consists in
training X random forests (20 by default), each having a dedicated validation subset. These 20 forests
are used to compute a median classification performance P (j, k) and a shortlist of important features.
This list is used to train the X random forests of iteration j + 1. By default, 10 runs and 5 iterations are
launched.
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3.1.2 Automatically extracting discriminating information from
trained classifiers.

Following the classifier’s training, the resulting feature importances are extracted. By
default, we used the Gini Importance metric, calculating the mean accumulation of the
impurity decrease within each tree, as implemented in the Scikit-learn Python library
[121]. The feature importances of all 20 trained models are averaged, and features are
then ranked based on this metric in decreasing order. These scores, when ordered from
highest to lowest, display a kink-like shape.

Once ordered, we aim to distinguish a separation between the features that were
essential to the clasifier’s functionality, and those with a lesser impact. We place this
threshold at the inflection point of the curve representing the decreasing importance
scores, determined via an implementation of the Kneebow method [122], with all features
above this point being labeled as "Significant", and those below as "Non-Significant". Only
Significant features are retained for the following selective iteration.

An example of this process is illustrated by Figure 3.3. In this example, all annotations
are given a rank X based on their position in the decreasing order of Gini importance
scores, averaged over 20 trained RFs. The resulting curve displays an obvious inflection,
which is placed by the Kneebow method at the level of the variable ranked at position
541. As such, the annotations between rank 0 and 541 are considered to be "Significant"
and are therefore selected, and those ranked at 542 onward are removed, reducing the
subset to 5% of its initial size.

3.1.3 Iteration and repetition of the process.

This selection process is iterated 5 times, and the full process is repeated over 10
runs. Each repetition involves the selection of a new test subset, as per the procedure
described in Section 3.1.1, and each iteration involves the re-training of 20 classifiers with
the setting aside of the same validation subsets as those defined during the first iteration
(see Algorithm 1 and Figure 3.2). Following this, the optimal level of selection that is
retained is the one that yields the best classification metric after at least one variable
selection over 10 repetitions.

This process generates shortlists of discriminating features that can be combined for a
robust consensus. With 10 applications, each time with different test subsets, variations in
the contents of these shortlists consistently occur. To address this, variables are categorized
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Figure 3.3 – Illustration of the automatic variable selection process. The IBD dataset’s anno-
tations are given a rank (X) based on their average Gini importance score. The cutoff is operated at the
inflection point of the curve, according to the Kneebow method. Annotations above the inflection point
are labeled as "Discriminating", and are selected. Those below are labeled as "Non-Discriminating", and
are removed.

as follows: (i) "Robust" if unanimously deemed discriminating in all runs (above the
variable selection threshold). This category contains the variables that are most essential
to the discernment of both patient profiles. (ii) "Confident" for the variables that were
considered discriminating by at least 75% of the different runs (in our case, by 8 or more
runs out of 10). This category contains variables that are likely to be important for profile
discrimination, and could be a complement to the robust shortlist for interpretation. (iii)
"Candidate" for variables shortlisted in at least one run. These are variables that should
not be fully excluded from consideration when it comes to interpretation, but that are
unlikely to be influential. More generally, across all of these categories, the robustness of
a selected variable can be evaluated in the light of the number of different runs that list
it as discriminting.
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This thesis’ second contribution is a novel approach for ML-driven classification and
variable selection suited for the gut microbiota. This approach involves:

— Re-training several RF classifiers, and extracting their median classification
performance as well as the average importance scores of all variables,

— Iterating the re-training process after an automatic variable selection, made
with a novel strategy based on importance scores,

— Repeating the entire procedure, each time introducing variablility through
the setting aside of a new test set.

This method gives a robust classification of the input data, but also outputs several
selections of important variables, the most relevant of which is defined as the selec-
tion on which the best classification performances are obtained. Variations in the
training conditions, with different test subsets selected for each repetition result in
several different shortlists of discriminating features. We label as ’robust’ the fea-
tures that constitute the intersection of these shortlists, as ’confident’ those that
are present in 75% or more of them, and as ’candidate’ those that are present in
at least one of them. The amount of times a variable is labeled as discriminating by
the optimal level of selection is an indicator of how reliable it is for the distinction
of the differentiated profiles.

In summary

3.2 Application of the method to publicly available
datasets.

The method described in the previous section was applied to the previously presented
publicly available datasets (see Table 2.1), which were notably also explored as supports
for disease state classification by Passoli et al. [87] and Oh & Zhang [94]. Classification
was done on the basis of the taxonomic profiles, but also on functional profiles derived
from them through EsMeCaTa [67], as described in 2.1.2. This was done using an im-
plementation of the process in Python (SPARTA pipeline, see Chapter 5). The following
section will present the results of these applications.
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3.2.1 Classification performances and impact of the variable se-
lection.

Figure 3.4 and Table 3.1 illustrate the classification performances of RF classifiers [80]
trained to distinguish between patients and healthy individuals, per profile and dataset.
For each trained RF, the AUC is calculated. Seeing as 20 RFs are trained within an it-
eration, the median of these 20 AUCs is retained to represent the performances of the
iteration as a whole. The full iterative process is repeated 10 times, giving 10 median
performance metrics per level of iterative selection (see Fig 3.2). Classification on the tax-
onomic datasets prior to selection is analogous to the classification without representation
learning method implemented in DeepMicro [94], with 20 RFs instead of 5 and dedicated
test sets.

Figure 3.4 represents the performances obtained without any selection alongside the
optimal selection, defined as the non-zero selection level that maximizes the median of this
metric over 10 repetitions. For the latter profiles, the number of corresponding iterated
selections are given in the ‘Optimal Selection’ column. For each dataset, a Mann-Whitney
U-test was conducted comparing the performances based on the taxonomic and functional
profiles at respective optimal selection levels. For example, the Colorectal dataset’s func-
tional (purple) and taxonomic (green) profiles have been tested over 10 runs. These tests
have allowed us to detect the level of variable selection that yields the best median clas-
sification scores for each profile, which were then chosen for this representation. In this
case, as shown in the ’Optimal selection’ column, the functional dataset gives its best
performance after 2 iterations of variable selection, whereas the taxonomic dataset gives
its best performance after just one. The performances of RFs trained on taxonomic and
functional profiles without selection are also represented, in red and blue respectively.
Each of the 10 runs yields an average classification performance score, corresponding to
the plotted dots. The boxplots represent the associated distribution and notably show
that the functional profile has a median AUC of 0.85, against 0.86 for the taxonomic
profile. The difference between both distributions was not found to be significant by a
Mann-Whitney U-test, as shown by the absence of an asterisk symbol on this row.

Overall, we can see that taxonomic profiles yield better median classification perfor-
mances than their functional counterparts, with the T2D dataset being the only exception.
However, the difference in performance between both profiles is only significant in the case
of the WT2D dataset, showing that though converting our data to the functional level
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comes at the cost of some performance, both profiles perform comparably as basis for
classification.

Table 3.1 gives the details of the impact of the iterative selection process on classifica-
tion performances. By showing the performances obtained on the validation subsets, this
table also illustrates the consequences of a data leak after variable selection. Indeed, seeing
as the validation set changes for every RF trained during an iteration of our process, the
following variable selection is based on variable importance scores derived in part from
forests that have been trained on samples included in the validation sets. As such, once
at least one level of selection has been conducted, we can see that performances on the
validation test become increasingly superior relatively to those obtained on the test sets.

This table, along with Figure 3.4, also illustrates the asymmetrical benefit of variable
selection. Functional profiles systematically benefit from a reduction of dimensionality,
as their median performances after iterative selection (purple on Figure 3.4) are always
superior to those obtained without variable selection (blue on Figure 3.4). For taxonomic
profiles however, variable selection leads to a decrease in median results for three of the
six datasets (Cirrhosis, WT2D, and IBD).

These results confirm the efficiency of variable selection as a way to improve classifi-
cation performances in cases where the input dataset’s dimensions are unbalanced, as is
notably shown by how this approach consistently benefits the functional profiles, which
are most unbalanced. The varying effects on taxonomic profiles on the other hand illus-
trate the importance of having an adaptive approach to the selection process, as different
datasets can benefit most from different degrees of selection.

An application of our method to the datasets of the MetAML study has shown that
translating taxonomic profiles into functional profiles usually comes at a cost in
terms of classification performance, though the difference in performance between
both profiles is rarely significant. The application of variable selection enhances
performance on most of the taxonomic profiles, and on all of the functional profiles.

In summary
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Figure 3.4 – Classification performances of RF models trained on taxonomic and functional
profiles, and impact of the variable selection on performance.Median classification performances
(AUC) for all types of profiles and each dataset, on the original datasets as well as at the optimal level
of selection over 10 full runs of the pipeline. Each of these runs involved a different randomly selected
test set of individuals, which was used for both profiles. Performances and importance scores for each run
were computed and averaged over 20 distinctly trained RF models. The amount of selection iterations
required to obtain the best average among these median AUCs are represented beside each plot. Instances
when the difference in performance between functional and taxonomic profiles after variable selection is
significant for a same dataset (based on a Mann-Whitney U-test) are signaled by a * symbol.
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Dataset Cirrhosis
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.88675 0.91985 0.91985 0.952675 0.890175 0.93345 0.9137 0.951775 0.893775 0.9366 0.91075 0.93975 0.89445 0.932975 0.901075 0.90985 0.88135 0.91395 0.8995 0.903325

Dataset Colorectal
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.826675 0.814975 0.856675 0.86 0.840825 0.87 0.864175 0.886675 0.84835 0.906675 0.838325 0.89665 0.83 0.92165 0.8083 0.85335 0.7567 0.8825 0.713325 0.829975

Dataset Obesity
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.577875 0.566925 0.6355 0.626475 0.59955 0.6435 0.630475 0.6292 0.58525 0.74285 0.637625 0.717175 0.5602 0.76135 0.6191 0.677625 0.529475 0.6673 0.5724 0.643125

Dataset WT2D
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.58385 0.568225 0.761525 0.746225 0.6018 0.7336 0.7411 0.7879 0.57925 0.8207 0.733325 0.82325 0.54865 0.81945 0.6479 0.7677 0.461875 0.798 0.583375 0.724775

Dataset T2D
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.7304 0.69835 0.734675 0.720575 0.749375 0.75985 0.74005 0.72605 0.742575 0.777325 0.711325 0.756 0.689925 0.73885 0.608225 0.697875 0.681075 0.717025 0.5854 0.663875

Dataset IBD
Iteration 0 1 2 3 4
Profile Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic Functional Taxonomic

Measurement Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test Validation
AUC 0.807325 0.836775 0.87325 0.88825 0.8164 0.9412 0.86805 0.94705 0.7882 0.94705 0.8073 0.94705 0.79295 0.954375 0.756 0.885325 0.7888 0.92645 0.7208 0.833825

Average ratio:
validation /

test
0.99501 1.0005 1.0904 1.0335 1.1752 1.0975 1.2134 1.1106 1.2364 1.1374

Table 3.1 – Evolution of the average median AUC scores per dataset, on the validation and
test sets, at increasing levels of variable selection, for taxonomic and functional profiles.
Column 0 shows performances obtained before variable selection for each profile. The top-performing
selection levels on the test sets are highlighted in bold. The bottom row records the average ratio between
performances obtained on the test and validation subsets.

3.2.2 Variable selection for a more tractable amount of infor-
mation to explore.

The datasets used in the previous section contained on average 484 taxa. Through
EsMeCaTa’s [67] pipeline and its interrogation of UniProt [68], these taxa were linked
to a total average of 10,510 FAs per dataset, resulting in a 22-fold mean increase in
the amount of information, as shown in Table 3.2. For example: in total, the sequenced
samples of the Cirrhosis dataset covered 542 taxa, which were associated by EsMeCaTa
to a total of 10,434 FAs. Following the application of our method, 72 of these taxa and 33
of these annotations were included in the candidate sublists. Among these, 32 taxa and
7 annotations were in the confident subset, and 23 taxa and 4 annotations were in the
robust subset.

This dimensional increase is counterbalanced by a selection of variables based on RF
importance scores. These scores, when ordered from highest to lowest, display a kink-like
shape. Selection is done by automatically operating a cut-off at the inflection point of the
kink and probing whether classification performances are improved (see Section 3.1.2).
This selection aims to correct the redundancies and the dimensionality of the original
dataset for better classification. It also generates one of the pipeline’s main outputs: a
list of ranked features (either taxa or FAs) based on their average importance scores,
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Dataset Features
Initial

number of
taxa

Predicted
Functions

Robust
subset

Confident
subset

Candidate
subset

Cirrhosis Taxa 542 - 23 32 72
FAs - 10,434 4 7 33

Colorectal Taxa 503 - 24 37 109
FAs - 10,635 1 17 355

Obesity Taxa 465 - 136 154 188
FAs - 11,341 26 169 3,199

WT2D Taxa 381 - 27 51 136
FAs - 10,180 8 69 3,150

T2D Taxa 572 - 117 136 202
FAs - 10,275 139 307 1,575

IBD Taxa 443 - 22 29 100
FAs - 10,196 59 167 1,883

Table 3.2 – Application of the presented selection process to identify signature taxa and
functions on 6 reference datasets. Total amount of features (taxa and FAs) in the original dataset
("Initial Number" column) and in the robust, confident, and candidate selections at the optimal selection
threshold (Calculated over 10 runs of the pipeline).

and including an automatically computed cutoff that distinguishes discriminating and
non-discriminating information.

The amount of information retained per run for all functional datasets is illustrated in
Figure 3.11 (in purple). The figure shows that the average amount of information to retain
for optimal classification performance varies depending on the dataset. For instance, the
IBD dataset approximates our approach with the top 500 annotations ranked by average
Gini importance, whereas the Obesity dataset requires the top 1,000 annotations for
a comparable selection. This underscores the advantage of an adaptive method over a
fixed threshold, as it adjusts to problem complexity. Additionally, our method’s selection
thresholds diverge from traditional thresholds, such as the top 30 features explored in
Jones et al. [98], offering insights into optimal information consideration for discerning
microbiota profiles.
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3.2. Application of the method to publicly available datasets.

The variable selection included in our approach also highlights robust markers of
each of the tested diseases in the gut microbiota. The size of these marker lists adapts
automatically to fit the problem instead of relying on a pre-established threshold,
and is much more manageable than the initial profiles as an entry point for biological
interpretation.

In summary

3.2.3 Timed benchmarks of the repeated and iterated classifi-
cation and selection process.

Table 3.3 records the time taken to execute the process on each dataset. Overall,
excluding EsMeCaTa which is variable because it is dependent on the quality of the
available network (see separate benchmarks in Section 2.2), the pipeline takes between
25.7 hours (92,549.7 s, Colorectal dataset) and 45.8 hours (16,4972.2 s, WT2D dataset) to
complete on a calculation cluster, with 10 CPUs and 100 GB of RAM at disposal, when
using the default Gini metric for the calculation of importance scores.

Cirrhosis Colorectal Obesity T2D WT2D IBD
Total amount of samples 232 121 253 344 96 110
Total amount of taxa 542 503 465 572 381 443
Functional score calculation time (s) 598.445459 385.065978 536.508328 970.565677 249.550255 334.447807
Average time per run (s) 9489.6373645 9216.4661335 9865.6487073 10333.1304005 16472.2608586 9383.6936185
Total 95494.819104 92549.727313 99192.995401 104301.869682 164972.158841 94171.383992

Table 3.3 – Runtime of the application of our method to all datasets. The total
run times include data formatting, functional score calculation, 10 runs of iterative clas-
sification (5 iterations, 20 forests per iteration), and post-processing. The runtime of the
EsMeCaTa pipeline is not included.

The time taken to calculate the functional scores scales with the dimension of the
information given as input. That is however not the case of the average time per run,
with the WT2D dataset in particular standing out as having the longest run time in spite
of being the dataset with the least amount of information (381 taxa over 96 samples). This
could indicate that SPARTA does not perform as well when the amount of information
is under a certain threshold, or it could be indicative that the WT2D classification is a
particularly complex case. Further studies on low-dimension datasets should be envisaged
to answer this.
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3.2.4 Impact of the iteration and repetition of the method.

Our results highlight the need to perform at least one iteration and several repeated
runs to reduce the dimensionality of the functional datasets, while maintaining the classifi-
cation performance, and derive a list of robust variables. The number of required iterations
depends on both the dataset and the user needs in terms of classification performance
and interpretability. Figures 3.5 and 3.8a illustrate the impact that a variation of these
parameters can have on the results. When it comes to iterative selection, Figure 3.8a
showcases that the first selection is always by far the most important, and there is little
variation in selection sizes past the second selection. Therefore, 2 selections could also be
perceived as an upper limit, though some of our datasets have shown better classification
performance beyond this level of selection. Figure 3.5 illustrates, in the case of the IBD
dataset, that the sizes of both the functional and taxonomic robust selections stabilize
and hit a plateau after only a few runs. In both cases, 10 runs is sufficient to attain a
stable content for the robust selection. As such, we presented results obtained over 10
runs, comprising 5 iterative selections each. These values were chosen as a compromise
between execution time and robustness of the results. This conclusion could however only
be attained a posteriori, once the results had been obtained. Someone aiming to apply the
same method to their data may want to reduce the amount of operated runs, but should
bear in mind that these results may vary depending on the dataset.

3.3 Exploring alternative approaches.

3.3.1 Impact of the TF-IGM scaling.

The functional scores on which the previous results were based were processed with
the TF-IGM normalization, presented in Section 2.1.3. This manipulation exacerbates the
scores of the most differentially expressed annotations, heightening their highest scores,
and lowering their lowest, to facilitate classification. A caveat of this approach however is
that, as a cost for making the profiles more discriminating, it can enhance biases inherited
from the database or from the taxonomic profiling. In order to measure the impact of
this process on our classification results, we trained RFs on functional profiles both non-
transformed, and normalized with TF-IGM. Figure 3.6 shows the performances of all
profiles in this context, for all levels of selection, over 5 runs. On this plot, we can see that
the profiles normalized with TF-IGM are consistently marked as the better performing
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3.3. Exploring alternative approaches.

(a) Functional profile.

(b) Taxonomic profile.

Figure 3.5 – Sizes of the robust selections obtained at each iteration level on the IBD
dataset (functional and taxonomic).
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functional profiles on average, yielding better top performances in all of the datasets aside
from Obesity. Though none of these differences were significant according to a Mann-
Whitney U-test, the top TF-IGM results are also shown to be more consistent, with
smaller standard deviations in all datasets except for Colorectal. The combination of
these factors has led to the adoption of TF-IGM normalization by default in all subsequent
manipulations of the functional profiles in this context.

3.3.2 Impact of the variable importance measuring approach.

In our method, the variables’ importances hold a central place, as they are the basis for
the iterative variable selection. As such, though we relied on Gini importances by default,
other such metrics could be considered for this calculation. One such other option is the
SHAP importance [85], which calculates each variable’s contribution to a decision from
the basis of a trained classifier.

A reproduction of the previous results was obtained with a substitution of Gini by
SHAP as implemented by the SHAP Python package [85], the results of which are pre-
sented in Figures 3.7, 3.8 and 3.9. Figure 3.7 shows that neither metric allows for better
classification performance than the other, as both give very similar results. Comparison of
the performances’ distribution with a Mann-Whitney U-test confirmed this observation,
as none of the results obtained with SHAP (in red) were found to be significantly different
from those obtained with Gini (in green for taxonomic and purple for functional), as pic-
tured on Figure 3.7 by the absence of an asterisk over all of the SHAP results. The sizes
of the individual selections obtained with Gini and SHAP are consistently comparable, as
shown by Figure 3.8a, with a few exceptions notably from the taxonomic profiles: the tax-
onomic Gini-based selections of Obesity and T2D’s first selections are notably larger than
their SHAP counterparts. In spite of this, Figure 3.8b shows that the contents of the lists
tend to differ: the IBD dataset’s first selections with SHAP and Gini were the most similar
on average, with a mean similarity percentage of 60%. Of the two options, the contents
of the Gini-based selections proved to be the most robust, consistently providing larger
robust selections than the SHAP-based version of the approach, be it on the functional or
taxonomic data, as shown by Figure 3.9. SHAP’s robust selections are particularly small,
only exceeding 10 features in the case of IBD and Cirrhosis’ first functional selections. In
both these cases, between 80 and 100% of the selected annotations, and between 50 and
100% of the selected taxons (the 50% case only accounting for 2 selected taxons) were also
found in Gini’s robust selection. Considering all of these results, Gini importance was kept
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3.3. Exploring alternative approaches.

Figure 3.6 – Classification performances of Random Forest models trained on functional
profiles with and without TF-IGM scaling. Similarly to Figure 3.4, the average classification perfor-
mances (AUC) for all types of profiles and each dataset are represented, for all levels of variable selection,
and over 5 full runs of the pipeline. For each run, 20 RF classifiers were trained, and the median AUC
was retained. Both profiles were tested with identical test and validation sets. The top performance for
each profile, meaning the one with the highest average, is plotted in yellow. Of both distributions drawn
in yellow, the one with the highest average is marked with an asterisk.
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as the default metric for our approach, as it proved to be more robust experimentally.

3.3.3 Impact of the classification algorithm.

Though RFs were consistently highlighted in the literature as one of the best adapted
models for classification on the basis of the microbiota, SVMs have also shown good
performance in such tasks [27, 87, 94]. As such, we compared the performances of SVM
models applied to our data to those obtained with our RF-based approach, both on
the full datasets and on the optimal selections derived from the iterative selections of
our approach, using the same amount of iterations for each of which the same number
of models were trained with the same test and validation sets as previously used to
measure the performances of our approach. The results, plotted in Figure 3.7, show that
SVMs always perform below our RF-based approach on average, for both taxonomic and
functional profiles on all datasets. These differences are significant on all datasets aside
from T2D when it comes to functional profiles, but are less pronounced in the case of
functional profiles, where both SVM classifications perform significantly below their RF
counterpart in the case of the Obesity dataset alone. However, the Colorectal and IBD
datasets are also the only ones on which neither of the SVM functional classification tasks
performed significantly below the RF-based method. Based on these results, RFs were
considered to be the best adapted classification approach for our method, and were kept
as the default for all of the results obtained afterwards.

3.3.4 Comparison with sequence-based approaches: the impact
on classification.

Throughout Section 2.2, the functional profiling of the IBD dataset by EsMeCaTa,
which our previous results are based on, were compared to those obtained with HU-
MAnN3. This allowed us to highlight the benefits of the former, reference-based, approach
over the latter, which is sequence-based, in terms of computation time and resources, for
little deviation in terms of the outputs’ informative contents. However, the question of
whether one approach made for a better basis for classification compared to the other
hadn’t been explored then. One could expect HUMAnN, which consistently refers to the
original sequences, to provide a more precise characterization of the functional microbiota,
and therefore to be a more reliable basis for classification.

To answer this question, a comparative classification was made based on the functional
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3.3. Exploring alternative approaches.

(a) Performances obtained on the taxonomic profiles.

(b) Performances obtained on on functional profiles obtained via EsMeCaTa.

Figure 3.7 – Classification performances obtained with RFs and automatic variable selection
on all datasets (SPARTA), using RF-based selections based on Gini and SHAP, and using
SVM classifiers on the full dataset and the best-performing selection in terms of classifica-
tion for Gini-based RFs. Similarly to Figure 3.4, the represented performances for the SPARTA (Gini,
green for taxonomic and purple for functional, and SHAP, red) classifications are the median classification
performances (AUC) for all types of profiles and each dataset, at the optimal level of selection over 10 full
runs of the pipeline. SVM performances were obtained over a single run and were applied to the entire
dataset (orange) or to the variable selections that correspond to the best performances for SPARTA Gini
(blue). Performances obtained with SPARTA SHAP and SVMs were compared to those obtained with
SPARTA Gini with a Mann-Whitney U-test. Those marked with a * showed a significant difference in
distribution (p-value < 0.05). Consistent test and validation sets were used between all profiles for the
classification tasks.
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(a) Sizes of the functional and taxonomic selections obtained with Gini and SHAP over 10 runs with 5
selective iterations, for all datasets.

(b) Similarity percentage between the individual Gini and SHAP selections, for functional and taxonomic
profiles.

Figure 3.8 – Sizes and similarity of the individual Gini-based and SHAP-based selections.
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3.3. Exploring alternative approaches.

(a) Functional selections with Gini. (b) Functional selections with SHAP.

(c) Taxonomic selections with Gini. (d) taxonomic selections with SHAP.

Figure 3.9 – Sizes of the robust, confident, and candidate selections obtained on each dataset
over 5 iterations of our variable selection method, using Gini and SHAP.
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profile built from the raw reads of the IBD dataset with HUMAnN3 [34] which was
previously described in Section 2.2, using the same parameters. During the process, sample
V1.UC-19 could not be processed properly, resulting in a functional table devoid of this
sample. As such, the performances obtained on this profile were compared to classification
performances obtained on an IBD functional profile built by EsMeCaTa UniProt without
the sample in question. The obtained results are presented in Figure 3.10 and show that
median classification based on functional profiles built directly from the reads are on par
with those obtained using EsMeCaTa, as the differences in performance are not significant
based on a Mann-Whitney U-test (p-value = 0.45). Both functional profiles’ performances
are also non significantly different from the performance obtained on the IBD taxonomic
dataset (p-value = 0.73 for HUMAnN and 0.36 for EsMeCaTa).

As such, in spite of our initial instincts, we found that EsMeCaTa and HUMAnN
perform comparably as a basis for classification performance. However, processing patients
samples with HUMAnN3 resulted in an over thirteen-fold increase in terms of computation
time, and required handling inputs of 442 GB, compared to EsMeCaTa’s 302 kB entry
(see 2.1.4). Due to limitations in resources, we could only process one of the datasets’
raw reads, namely IBD. In order to solidify these conclusions, this comparison should be
applied to other datasets. However, these first results further illustrate how a reference-
based method like EsMeCaTa is capable of performing on par with a state-of-the-art
sequence-based approach like HUMAnN3. On the basis of these results, EsMeCaTa was
chosen to be the default method of annotation for our next manipulations, as it was the
fastest and lightest approach available when we already had taxonomic profiles at our
disposal without compromising performance.

Alternatives to the scaling method (TF-IGM scaling or no), variable importance
metric (Gini or SHAP) and classification algorithm (RF or SVM) were also tested.
Results illustrated the benefits of the parameters chosen for our approach, in terms
of performance and/or robustness.

Surprisingly, exploration of an alternative to our functional profiling method,
namely HUMAnN3, also showed that the sequence-based approach performed on
par with the functional profiles built from the reference-based EsMeCaTa approach.

In summary
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3.3. Exploring alternative approaches.

Figure 3.10 – Classification performances obtained on the IBD dataset (minus sample
V1.UC-19), annotated with EsMeCaTa (orange) and HUMAnN3 (blue), as well as on the
taxonomic dataset (green). Consistent test and validation sets were used for between all profiles for
the classification tasks.
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3.4 Exploring the advantages of a non-linear approach
to variable selection.

3.4.1 Our non-linear approach is a more consistent selector of
variables than limma.

To explore whether our approach to variable selection differs from classic linear ap-
proaches, we compared our approach with a standard method designed for continuous
data [104] rather than for count data [103]. Specifically, selections obtained from direct
pairwise comparison of the profiles using the limma tool [104] were used as basis for
comparison. Variables were selected using a p-value threshold of 0.05, a classic threshold
value exploited in several other studies that applied limma to metagenomic data [105–
107]. Similarly to our previous manipulations, the selection process was iterated 10 times
with variation induced from setting aside a subset of the samples, and variables were com-
piled into ’robust’, ’confident’, and ’candidate’ categories depending on how often they
were selected. The test sets put aside for limma were the same as those used to obtain
the results of Section 3.2. Comparative results of this process are presented in Figure
3.11 and Table 3.4. For example, Figure 3.11 shows that, when applied 10 times to the
Cirrhosis dataset, our approach selects a minimum of 6 annotations, and a maximum of
21, with a median of 11. In the same conditions, limma selects between 1,032 and 2,149
annotations, for a median of 1,642. These distributions are plotted, respectively, in purple
and gray. Table 3.4 shows that with our selections, the Cirrhosis dataset outputs 4 robust
annotations, 7 confidents, and 33 candidates, against a respective 878, 1,165 and 2,668
with limma. With these parameters, limma is the most stringent selector on all datasets
aside from Cirrhosis. For the Colorectal, WT2D and Obesity datasets in particular, all
selections are empty, leading to an empty candidate subset as described in Table 3.4. The
IBD dataset also proves to be unsuitable for this approach, yielding empty robust and
candidate subsets. Only the T2D and Cirrhosis datasets allow limma to yield a non-empty
robust subset. On the other hand, our approach consistently yields non-empty robust and
confident selections, both of which are reasonably sized for interpretation when compared
to the candidate subsets, being close to 50 times smaller in the case of the WT2D dataset’s
confident and candidate subsets.

Among these datasets, Cirrhosis stands out as an outlier. Indeed, it is by far the
dataset on which limma selects the most information: in Figure 3.11, we can see that
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3.4. Exploring the advantages of a non-linear approach to variable selection.

Figure 3.11 – Number of important selected FAs for each run at best iteration for the
six datasets Amount of FAs selected by our approach (SPARTA) and limma, for all datasets. Limma
selections were effectuated with an adjusted p-value threshold of 0.05. Both selection methods were
repeated 10 times, with a common test subset set aside each time.
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Total size of the robust subset Total size of the confident subset Total size of the candidate subset
Iterative
Gini-based
selection

Limma
Iterative
Gini-based
selection

Limma
Iterative
Gini-based
selection

Limma

Cirrhosis 4 878 7 1,165 33 2,668
Colorectal 1 0 17 0 355 0
Obesity 26 0 169 0 3,199 0
WT2D 8 0 69 0 3,150 0
T2D 139 2 307 4 1,575 103
IBD 59 0 167 0 1,883 111

Table 3.4 – Sizes of the selections obtained using limma and our iterative approach based
on variable importance. Limma was applied with an adjusted p-value threshold of 0.05. From left to
right, the columns present, for each approach, the size of the robust, confident, and candidate subsets
issued by the concerned selection method iterated 10 times with identical test subsets.

it selects 1550 annotations on average over 10 iterations, whereas the second highest
amount, obtained with the T2D dataset, is only 26.1 on average. This also makes it the
only case in which our variable selection approach proves to be the most stringent of
the two, with an average of 12 selections per run, for a robust selection of size 4 against
limma’s 878 (see Table 3.4). The four annotations in question are: GO:0016984 (ribulose-
bisphosphate carboxylase activity), GO:0003779 (actin binding), GO:0004081 (bis(5’-
nucleosyl)-tetraphosphatase (asymmetrical) activity) and GO:0018112 (proline racemase
activity). Actin binding (GO:0003779) signals the participation of the gut in the main-
tenance of the intestinal epithelia, which plays a role in the prevention of liver diseases
such as Cirrhosis [123]. The activity of proline racemase (GO:0018112) is also indica-
tive of proline metabolism in the gut, which has also been shown to be upregulated in
cases of Cirrhosis [124]. The activity of the bis(5’-nucleosyl)-tetraphosphatase enzyme
(GO:0004081) is involved in the metabolism of both purine and pyrimidine according to
KEGG [56], which are disturbed in mice gut during the development of Cirrhosis [125].
Finally, ribulose-bisphosphate carboxylase (GO:0016984), though it is mostly known for
its role in photosynthesis, can also be involved in the salvage of methionine [126], itself
key in the development of liver disease [127].

As such, in the case of Cirrhosis, our approach robustly highlights a small subsection of
biologically relevant annotations, themselves consistently highlighted by limma as linear
indicators of the prevalence of the disease. This could illustrate a case in which the dataset
is "too easy" to predict, due to an abundance of features that linearly differentiate the
profiles, and a small sample of which is sufficient to be efficient in classification. This could
lead to an over-selection from our performance-regulated approach, as even when relevant
features are removed by the iterated selection, the remaining variables still allow for good
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3.4. Exploring the advantages of a non-linear approach to variable selection.

classification performance. In this case, it could be interesting to look at the selections
from iterations before the optimum.

3.4.2 Non-linear approaches select linear factors, and more.

We then focused on the T2D dataset, which is the only other dataset on which limma
i) extracts a non-empty robust selection with an adjusted p-value threshold of 0.05 (see
Table 3.4) and ii) consistently provides non-empty FA selections. Figure 3.12a illustrates
the overlap between the robust and candidate annotations selected by both approaches.
T2D’s limma selection is smaller than the one obtained through our method, englobing a
total of 103 annotations in its candidate subset against 1,575 for the latter approach, as
shown in Table 3.4. As shown by Figure 3.12a, all of these annotations aside from one are
included in our approach’s candidate selection. Similarly, limma’s robust subset is entirely
included in our approach’s robust selection.

To put these results in perspective, there is no guarantee that a 0.05 p-value threshold
yields an ’optimal’ selection for this dataset when applying limma. This choice of threshold
is, however, a required external input for the method, that is not required by our approach
as it automates the choice of the selection’s size. As such, the chosen threshold could
arguably be too restrictive for the T2D dataset. As an illustration, a p-value threshold
of 0.255, obtained to generate a limma candidate selection as close as possible to that
of our approach’s selection, was applied, as illustrated by Figure 3.12b. This much less
restrictive threshold yields a limma selection that still largely overlaps its counterpart, as
74% of limma’s annotations are included among those selected by our approach.

3.4.3 Linear selection is less effective as an enhancer of classifi-
cation.

Finally, in cases where the limma functional selections were non-empty, they were com-
pared to the functional selections obtained by our approach as basis for RF classification.
Performances obtained on both selections are presented in Figure 3.13, and show that
limma’s selections perform beneath our approach’s as basis for classification, as neither of
the recorded performances obtained on limma’s selections surpass their counterparts. The
difference is only significant in the case of T2D (Mann-Whitney U-test p-value: 0.045),
however these results show that the linear approach, in addition to being less consistent
and less thorough as a selector, also never surpasses its RF-based counterpart as a means
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(a) Limma alpha = 0.05 (b) Limma alpha = 0.255

Figure 3.12 – Comparison between robust and candidate FAs for the T2D dataset obtained
with limma and our approach (SPARTA). The limma subsets were obtained using the classic
threshold of 0.05, and an adjusted p-value threshold of 0.255, chosen to obtain comparably sized candidate
sublists between both selections. Values indicate the number of annotations in each intersection and do
not represent the size of a category as a whole. The white circle includes all annotations from the full
dataset.

to enhance classification performance.

An application of limma, a linear approach for variable importance ranking, did
not yield exploitable selections with a classic p-value threshold on four of our six
datasets. The examination of the remaining two datasets allowed us to illustrate
how our selection and limma behave comparatively in different situations. In T2D’s
situation, the limma selection was smaller and largely overlapped the one obtained
through our approach, with limma’s robust subset notably being entirely included in
our approach’s robust selection. For the Cirrhosis dataset, our approach’s selection
was the smallest of the two, however, it remained coherent with what limma selected,
and yielded information that is coherent with the biological question at hand. RF
classification performances obtained on both selections also showed that limma’s
selections performed beneath our approach’s as basis for classification.

In summary
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3.5. Conclusion and discussion.

Figure 3.13 – Classification performances obtained on the functional T2D and Cirrhosis
datasets, based on our approach’s best performing selection (SPARTA) and on a selection
by limma (alpha = 0.05). Performances per dataset were compared with a Mann-Whitney U-test.
Those marked with a * showed a significant difference in distribution (p-value < 0.05).

3.5 Conclusion and discussion.

Through a novel method, we have explored the classification of individuals from their
gut microbiota, described by both taxonomic and functional features. This approach dif-
fers from MetAML [87] and DeepMicro [94] by introducing repetitions of the training
process, itself involving an iterated variable selection process on the basis of re-trained
classifiers. The method introduces a test set to evaluate the final performance of the model
for each run, and validation sets to induce variability in the training conditions of the RFs
and derive a more robust variable ranking for selection.

Application of the method in question has allowed us to evaluate that the translation of
the microbiota into functional profiles gives non-significantly different performances when
compared to microbial profiles on 5 of 6 datasets. It has also shown that by adapting
the dimensionality of the problem through an automated variable selection method, both
types of profiles had similar potential as descriptors of an individual’s health status,
yielding comparable classification performances when used as basis for model training. In
this context, variable selection as applied in the method was shown to boost performances,
especially in the case of functional profiles. The method we developed also focused on
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robustness and interpretability, with one of its main outputs being a shortlist of robustly
discriminating variables per dataset. These results were found to be more reliable and
robust than those obtained with state of the art tools such as limma, giving a measurable
insight on the impact of a feature on solving a complex problem.

Optimal selection: looking beyond performance.
Our approach to identify the best level of variable selection was to use the performances

of the classifiers as reference to judge the informative contents of the sublist. Though this
constitutes a strong basis for a first approach, performance alone as a criterion has been
shown to be potentially deceptive [113]. As such, the literature recommends investigating
the significance of the evolution in performance, however an evaluation of the informative
contents of the selected sublists, leveraging Semantic Web for example, could also be
envisioned to complement the performance criterion when it comes to selecting an optimal
selection of variables.

Limits of the approach as a basis for diagnosis.
Classification performances in the context of FAs have been reported to be on par or

slightly inferior to classification performances based on taxa [98, 99]. This is also consistent
with our observations. As a result, current FA-based approaches might not be best used
for direct diagnostic prediction. The conditions in which a sample has been obtained,
sequenced and processed most likely impacts classification performances, even for the
same disease (see the differences in performance obtained on T2D and WT2D in Figure
3.4). The main advantage of current FA-based pipelines, including our approach, lie in
the extraction of a robust list of important FAs related to a dataset of interest, rather
than the production of a generic, directly reusable ML model.

Exploring performance based on other sequencing methods.
The results presented here were all obtained on MGS data, which was publicly available

and allowed us to position ourselves in comparison with previous studies which had also
used them for benchmarks. A transition to 16S data could, however, potentially have
an impact on performances: a comparison of disease state classification based on MGS
and 16S sequences from the same samples have shown 16S data to be an overall more
efficient support for classification performance [99]. This was,however, done without the
model re-training, variable selection iteration and process repetition that we implemented
in our approach. Seeing as EsMeCaTa is compatible with both MGS and 16S entries,
further exploration of applications of our approach to outputs of the latter technology
could make for a strong complement to our results.
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3.5. Conclusion and discussion.

A robust shortlist of selected variables as a support for downstream bio-
logical interpretation.

This approach’s main strength arguably resides in its capacity to strip down a mas-
sive amount of information to highlight variables that robustly characterize the issue at
hand. As such, the obtained shortlists open up opportunities for biological interpretation
and exploitation down the line. The example of the Cirrhosis dataset’s robust selection,
discussed in 3.4.1, constitutes a first illustration of this, but a more thorough biological
discussion should be possible from this basis.
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Chapter 4

An exploration of taxonomic and functional
profiles’ complementary biological

significance.

The gut microbiota and its influence on host health has been a major subject for
medical research in recent years, as the interactions between the microbial ecosystem of
the gut and its host were found to play a significant role in several disorders and diseases,
ranging from colorectal cancer to anxiety and depression [16, 128, 129]. These diseases
can often be characterized by a dysbiosis, meaning an abnormality in the balance of the
gut microbiota’s composition. For example, a decreased diversity in the gut microbiota
of IBD patients has been observed, due notably to a lack of bacteria from the Firmicutes
group, and an overabundance of taxa from the Bifidobacterium group [16, 130]. From these
observations, several taxa have been proven to be influential on host health, opening up
perspectives for treatment or prevention through levers such as diet or probiotics [17].

As previously mentioned, voices within the medical community in recent years have
called for a shift in paradigm when it comes to the analysis of the gut microbiota, arguing
that knowledge of the microbiome on the functional scale is a prerequisite in order for
more advanced therapeutic options to be developed [29]. Some metabolic pathways were
discovered as vectors for the microbiota’s influence on host health, mostly through the
involvement of known important taxa. These pathways notably include the synthesis of
short-chain fatty acids, bile acid metabolites, lipopolysaccharides or indoles and indole
derivatives [16, 17]. These components, through interaction with epithelial receptors or
transport by the bloodstream, are involved in biochemical pathways that regulate biolog-
ical functions both locally and in other organs, such as inflammation, energy harvest and
storage, or hormonal balance. As such, the functional expression of the gut microbiota
has repercussions on general host health, and knowledge of potential deficiencies on this
scale could open possibilities for therapies based on direct compensation through targeted
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interventions, involving bio-engineered commensal bacteria or targeted drugs for example
[17].

However, deriving metabolic pathways from influential taxa has its limits. Notably,
as is mentioned by Heintz-Buschart and Wilmes [29], because there is a lot of functional
redundancy within the gut microbiota. As such, taxa that are hardly noticed because they
are interchangeably present within the gut populations of individuals that exhibit similar
characteristics, could have an unsuspected cumulated influence through a metabolic trait
that they have in common. As such, there is a need to study archetypes derived directly
from functional descriptions of the microbiota.

The results of the methods described in the previous chapters allowed us to build
traceable functional profilings of the gut microbiota from taxonomic abundances (Chapter
2), and build reduced lists of significant descriptors from each profile (Chapter 3). In this
chapter, we will rely on this information to explore the validity and potential for novelty
that can be extracted from these results, by exploring their implications in regard to the
biological literature and interlinking both profiles.

4.1 Presenting the detailed robust shortlists of the
IBD dataset.

In this section, we will describe and explore the biological coherence of the robust
sublists obtained on the IBD dataset using the method described in Chapter 3, applied
to the taxonomic profile as well as the functional profile annotated with EsMeCaTa an-
notation through UniProt. These results come from the pipeline’s first iteration, which
are the best performing selective iterations for both profiles (see Figure 3.4). The IBD
dataset was chosen as an illustrative representative of our results, as it is an outlier in
neither classification performance, being the third best performing dataset out of six, nor
in the selection of variables by limma (see Section 3.4.1).

An important output of the pipeline is the shortlist of robust variables that are selected
by the method, allowing for downstream interpretability. This comes in the form of tables
of robustly significant annotations and taxa, as previously described. The annotation
shortlist for the IBD dataset is given in Table 4.1. It contains 59 FAs, alongside extra
information describing the annotations and their status in the analysis. For example,
annotation GO:0006520, corresponding to the amino acid metabolic process, is first in
the table because it has the highest average Gini importance score over all 200 forests
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trained at this selection level, over 10 runs. It is on average 1.05 times as present in the
diseased profiles as it is in the controls, the negative value of the ’Ponderated average
ratio’ meaning that the annotation is predominantly found in unhealthy samples. It is
expressed by a total of 358 taxa over all samples, of which 20 were found to be robust.
The subsequent bibliographic analysis of this list (see 4.2) graded its relevance to the
disease as a 1, meaning that there is a known direct link between the annotation and IBD
[131].

A similar selection of robustly discriminant taxa is also available as an output of the
pipeline, with the IBD output given as an example in Table 4.2. 22 taxa are presented,
along with the same information as the previous table aside from the bibliographic cate-
gories. For instance, Alistipes finegoldii, identified in our process as Organism 73, similarly
ranks first because it has the highest Gini importance score on average over all trained
RFs. Its differential expression shows that it is expressed on average 16 times as much in
control profiles as it is in the unhealthy samples. As previously, we can establish which
annotations are attached to each taxon, with A.finegoldii expressing a total 1,220 FAs,
15 of which are robustly significant.

By applying Chapter 3’s method to the IBD dataset, we extracted two lists of robust
important variables: one taxonomic, and one gunctional. The differential expression
of these variables between unhealthy and control profiles gives a first insight on
their influence on microbiota health. Thanks to the explicitation of the links between
taxa and annotations by EsMeCaTa, the relationships between these taxonomic and
functional signatures can be explored.

In summary

4.2 Methodology for the evaluation of a feature’s bi-
ological relevance.

Having extracted robust significant information from the IBD dataset, the question
that arises is whether this selection is coherent with what is already known of the dis-
ease’s signatures at the level of the gut microbiota. In order to explore this question
exhaustively, we conducted a thorough bibliographic exploration of the obtained robust
functional selection.
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ID Names Average RF
importance

Ponderated average ratio
(Control/Unhealthy)

Number of linked taxa
Total Robust

GO:0006520 amino acid metabolic process 4.37E-03 -1.04801771712759 358 20
4.1.2.- Aldehyde Lyases 4.01E-03 -1.83063815612961 28 2

GO:0102545 phosphatidyl phospholipase B activity 3.53E-03 -4.59984365662854 15 1
GO:0004122 cystathionine beta-synthase activity 3.42E-03 -3.75076174596704 8 1
GO:0008744 L-xylulokinase activity 3.24E-03 -5.44424049313829 4 1
GO:0047419 N-acetylgalactosamine-6-phosphate deacetylase activity 2.57E-03 -1.19907351364782 78 4
GO:0008788 alpha,alpha-phosphotrehalase activity 2.44E-03 -2.30364417355582 19 1
GO:0032440 2-alkenal reductase [NAD(P)+] activity 2.43E-03 3.17446593793351 5 1
GO:0001510 RNA methylation 2.40E-03 1.05457228463169 249 17
GO:0015444 P-type magnesium transporter activity 2.34E-03 -1.65841492481138 66 2
GO:0016832 aldehyde-lyase activity 2.24E-03 -1.12570888096648 200 12
GO:0047605 acetolactate decarboxylase activity 2.23E-03 -1.56525594318597 48 1
GO:1901135 carbohydrate derivative metabolic process 2.18E-03 -1.10067892552244 271 14
GO:0017065 single-strand selective uracil DNA N-glycosylase activity 2.14E-03 3.15494616303483 4 1
GO:0009346 ATP-independent citrate lyase complex 2.10E-03 -1.6037562809426 52 1
GO:0016811 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides 2.05E-03 -1.25265006865793 162 4
GO:0008815 citrate (pro-3S)-lyase activity 2.03E-03 -1.63749881151623 53 1
GO:0042121 alginic acid biosynthetic process 1.94E-03 1.14990181028563 127 12

4.1.3.6 citrate (pro-3S)-lyase. 1.94E-03 -1.60221767316624 52 1
GO:0047395 glycerophosphoinositol glycerophosphodiesterase activity 1.93E-03 -5.70423027266411 2 1
GO:0008092 cytoskeletal protein binding 1.90E-03 3.03923451098608 3 1
GO:0045151 acetoin biosynthetic process 1.90E-03 -1.56525594318597 48 1

4.1.1.5 acetolactate decarboxylase. 1.85E-03 -1.56525594318597 48 1
GO:0033711 4-phosphoerythronate dehydrogenase activity 1.79E-03 1.21622800529026 99 6
GO:0043130 ubiquitin binding 1.79E-03 2.84452978123873 6 1

2.8.3.10 citrate CoA-transferase. 1.78E-03 -1.57616213702899 52 1
GO:0008910 kanamycin kinase activity 1.78E-03 -1.58851951224173 11 1
GO:0046537 2,3-bisphosphoglycerate-independent phosphoglycerate mutase activity 1.78E-03 1.07286170037927 185 17
GO:0047356 CDP-ribitol ribitolphosphotransferase activity 1.72E-03 -6.7139421245469 1 1
GO:0000310 xanthine phosphoribosyltransferase activity 1.69E-03 -1.08340423243633 201 10
GO:0008814 citrate CoA-transferase activity 1.68E-03 -1.57775123389852 52 1
GO:0005727 extrachromosomal circular DNA 1.68E-03 -1.83727037420844 13 0
GO:0004792 thiosulfate sulfurtransferase activity 1.67E-03 -1.17227801781067 82 2
GO:0008707 4-phytase activity 1.67E-03 3.14255076857911 1 1
GO:0019677 NAD catabolic process 1.64E-03 1.30706123906711 32 1
GO:0008610 lipid biosynthetic process 1.64E-03 -1.47728727133267 87 2

2.4.2.22 xanthine phosphoribosyltransferase. 1.64E-03 -1.08534297116337 199 10
GO:0047330 polyphosphate-glucose phosphotransferase activity 1.59E-03 -3.53503053492603 5 1

2.7.1.23 NAD(+) kinase. 1.56E-03 -1.04348206094609 325 16
GO:0016746 acyltransferase activity 1.54E-03 1.10289112410377 347 18
GO:0071702 obsolete organic substance transport 1.54E-03 -1.20335282764238 103 4
GO:0006741 NADP biosynthetic process 1.53E-03 -1.04692108483062 329 16

4.2.1.- Hydro-Lyases 1.52E-03 -1.90522797851666 19 1
GO:0006144 purine nucleobase metabolic process 1.45E-03 -2.26707747018229 21 0
GO:0004135 amylo-alpha-1,6-glucosidase activity 1.45E-03 1.16316684039 73 7
GO:0032265 XMP salvage 1.40E-03 -1.08523959035346 199 10
GO:0008760 UDP-N-acetylglucosamine 1-carboxyvinyltransferase activity 1.40E-03 -1.06687124783542 361 17
2.1.1.195 cobalt-precorrin-5B (C(1))-methyltransferase. 1.33E-03 -1.11006222435079 89 5
3.5.3.6 arginine deiminase. 1.32E-03 -1.3947618868725 58 2

GO:0003953 NAD+ nucleosidase activity 1.31E-03 1.31930434489008 29 1
1.1.1.22 UDP-glucose 6-dehydrogenase. 1.30E-03 1.14909369105086 142 10

GO:0097056 obsolete selenocysteinyl-tRNA(Sec) biosynthetic process 1.29E-03 -1.23940120402784 214 5
GO:0016297 fatty acyl-[ACP] hydrolase activity 1.28E-03 1.09879874319015 122 11
GO:0006522 alanine metabolic process 1.24E-03 -2.03436740514923 17 1
GO:0008808 cardiolipin synthase activity 1.18E-03 1.0806848147406 239 15
GO:0009409 response to cold 1.13E-03 -1.9117942663824 35 0
GO:0008899 homoserine O-succinyltransferase activity 9.43E-04 -1.07852816252639 194 11
GO:0008276 protein methyltransferase activity 8.62E-04 -1.0433934172264 283 16

1.1.1.88 hydroxymethylglutaryl-CoA reductase. 6.52E-04 -1.48308851426957 50 0

Table 4.1 – Robust subset of annotations from the IBD dataset. Robust FAs of the IBD dataset,
identified by their GO term or EC number, as well as their current name. Annotations are classified by
decreasing average Gini importance score, over all 200 RFs trained at the optimal selection level (20 per
run, 10 runs). Extra information include: the ratio between the average scores of the annotation in control
and unhealthy profiles, ponderated by -1 if the annotation is most present in the unhealthy profiles, the
amount of taxa attached to each FA, and the number of robust taxa within them.
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ID Names Average RF
importance

Ponderated average ratio
(Control/Unhealthy)

Number of linked annotations
Total Robust

Organism_73 Alistipes finegoldii 2.84E-02 16.3964097691144 1220 15
Organism_224 Akkermansia muciniphila 2.12E-02 3.23501956449667 1452 18
Organism_12 Bifidobacterium bifidum 2.03E-02 -11.3214966525224 1307 28
Organism_144 Lachnospiraceae bacterium 2 1 58FAA 1.91E-02 -18.4267002012075 355 5
Organism_169 Ruminococcus lactaris 1.90E-02 3.04069705100761 431 5
Organism_127 Beubacterium ventriosum 1.51E-02 2.6429359268965 1388 20
Organism_156 Oscillibacter unclassified 1.42E-02 -1.89778568117644 724 16
Organism_134 Butyrivibrio unclassified 1.39E-02 -1.65319948992604 916 10
Organism_54 Odoribacter splanchnicus 1.33E-02 1.85573337062113 1595 19
Organism_75 Alistipes onderdonkii 1.33E-02 2.48594496944176 1391 15
Organism_78 Alistipes shahii 1.30E-02 1.65146163415684 935 8
Organism_171 Subdoligranulum unclassified 1.27E-02 1.5560202207333 627 5
Organism_152 Roseburia hominis 1.18E-02 1.7903389716571 1500 20
Organism_138 Coprococcus sp ART55 1 1.16E-02 2.2748823646463 701 8
Organism_163 Ruminococcaceae bacterium D16 1.12E-02 -4.30319855302151 1390 30
Organism_162 Faecalibacterium prausnitzii 9.80E-03 -1.57257090414346 1220 18
Organism_53 Coprobacter fastidiosus 9.67E-03 6.06805781620637 1503 19
Organism_40 Bacteroides massiliensis 9.49E-03 1.53976594131914 1602 20
Organism_136 Coprococcus comes 9.19E-03 -1.68577511310286 116 1
Organism_74 Alistipes indistinctus 8.46E-03 1.2651644466561 1447 19
Organism_20 Collinsella aerofaciens 8.42E-03 -1.82725111812987 1349 20
Organism_123 Eubacterium hallii 7.81E-03 1.07627573371101 144 3

Table 4.2 – Robust subset of taxa from the IBD dataset. Robust taxa of the IBD dataset,
identified by their internal identifier, as well as their current name. Taxa are classified by decreasing
average Gini importance score, over all 200 Random Forests trained at the optimal selection level (20
per run, 10 runs). Extra information include: the ratio between the average abundances of the taxon in
control and unhealthy profiles, ponderated by -1 if the taxon is most present in the unhealthy profiles,
the amount of FAs attached to each taxon, and the amount of robust annotations within them.

4.2.1 Bibliographic exploration of an output shortlist.

The bibliographic examination was conducted on all of the robust annotations from
the IBD dataset, as well as samples of 20 annotations that were present in 50% of the
significant sublists obtained from the pipeline’s runs, and 20 non-candidate annotations.
The methodology was to research the name of the annotation alongside the name of
the disease on Google Scholar(https://scholar.google.com/). If none of the research
results provided conclusive information linking this annotation to IBD, be it in a host
model or in the microbiota, the chemical products and eventual alternative names of the
annotation were similarly tested, followed by related (parent or child) annotations, and
finally the linked pathways listed in the BRENDA database [132]. From this exploration,
the annotations were given a bibliographic relevance grade of 1 (most relevant to the
disease) to 4 (least relevant to the disease) based on the following criteria:

Category 1: A direct link was established between the annotation, or a direct product
metabolite, and IBD. This can come in the form of an explicitation of the metabolic
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mechanisms involved, or simply in the form of measured differential presence be-
tween unhealthy and control individuals. To note: conclusions derived from other
ML-based approaches were not considered to be sufficient evidence, as they could
suffer from biases similar to our own approach.

Category 2: A direct link was established between a similar metabolic function and the
disease. Were considered as similar: proteins or enzymes from the same family as the
one involved in the annotation (i.e: ATP-dependent and ATP-independent citrate
lyases), and parent and child annotations, signaling notably that the annotation is
indeed relevant, but at the wrong scale.

Category 3: An indirect correlation was established between the annotation and the
disease. This can mean that the annotation was not directly linked to IBD, but
that it is involved in a larger pathway or expressed by a taxon that has significance.

Category 4: No leads were found, or the annotation was proven to be irrelevant.
The resulting bibliographic scores affiliated to the robust functional selection of the

IBD dataset are detailed in Table 4.3. For exhaustive details on sourcing and grade jus-
tification, refer to Appendix B.

4.2.2 Our approach to variable selection is coherent with known
expressions of the gut microbiota in context of the disease.

Among the robust annotations, several were found through bibliography to be relevant
to the disease when expressed in the host organism as opposed to the microbiota. We
considered both cases as a link found between the annotation and the disease, following
the idea of permeability and interactions between the microbiota and its host [133].

When available, we also retrieved the group, namely unhealthy or control, most likely
to express these annotations according to the bibliography. At the same time, we can
measure which group most expresses each of these robust FAs on average. We confirmed
these associations between FA and group with limma [104] as well, for better robustness.
We found that bibliography predictions and prevalence in the IBD dataset patients were in
agreement in 47% of cases. Functional annotations where disagreement exists between the
bibliography and measured average differential expression might point towards a rescue
of important functions in the host by the microbiota [134].

A complementary comparative analysis was conducted by the means of a Chi2 contin-
gency test [135] with a 5% p-value threshold between the prevalences of each bibliographic
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ID Name Bibliographic category
GO:0006520 amino acid metabolic process 1

4.1.2.- Aldehyde Lyases 2
GO:0102545 phosphatidyl phospholipase B activity 1
GO:0004122 cystathionine beta-synthase activity 1
GO:0008744 L-xylulokinase activity 3
GO:0047419 N-acetylgalactosamine-6-phosphate deacetylase activity 1
GO:0008788 alpha,alpha-phosphotrehalase activity 3
GO:0032440 2-alkenal reductase [NAD(P)+] activity 3
GO:0001510 RNA methylation 1
GO:0015444 P-type magnesium transporter activity 2
GO:0016832 aldehyde-lyase activity 2
GO:0047605 acetolactate decarboxylase activity 3
GO:1901135 carbohydrate derivative metabolic process 1
GO:0017065 single-strand selective uracil DNA N-glycosylase activity 1
GO:0009346 ATP-independent citrate lyase complex 2
GO:0016811 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides 1
GO:0008815 citrate (pro-3S)-lyase activity 1
GO:0042121 alginic acid biosynthetic process 1

4.1.3.6 citrate (pro-3S)-lyase. 1
GO:0047395 glycerophosphoinositol glycerophosphodiesterase activity 1
GO:0008092 cytoskeletal protein binding 1
GO:0045151 acetoin biosynthetic process 3

4.1.1.5 acetolactate decarboxylase. 3
GO:0033711 4-phosphoerythronate dehydrogenase activity 3
GO:0043130 ubiquitin binding 1

2.8.3.10 citrate CoA-transferase. 1
GO:0008910 kanamycin kinase activity 1
GO:0046537 2,3-bisphosphoglycerate-independent phosphoglycerate mutase activity 3
GO:0047356 CDP-ribitol ribitolphosphotransferase activity 2
GO:0000310 xanthine phosphoribosyltransferase activity 3
GO:0008814 citrate CoA-transferase activity 1
GO:0005727 extrachromosomal circular DNA 1
GO:0004792 thiosulfate sulfurtransferase activity 1
GO:0008707 4-phytase activity 3
GO:0019677 NAD catabolic process 1
GO:0008610 lipid biosynthetic process 1

2.4.2.22 xanthine phosphoribosyltransferase. 3
GO:0047330 polyphosphate-glucose phosphotransferase activity 1

2.7.1.23 NAD(+) kinase. 1
GO:0016746 acyltransferase activity 2
GO:0071702 obsolete organic substance transport 3
GO:0006741 NADP biosynthetic process 1

4.2.1.- Hydro-Lyases 2
GO:0006144 purine nucleobase metabolic process 1
GO:0004135 amylo-alpha-1,6-glucosidase activity 3
GO:0032265 XMP salvage 2
GO:0008760 UDP-N-acetylglucosamine 1-carboxyvinyltransferase activity 3
2.1.1.195 cobalt-precorrin-5B (C(1))-methyltransferase. 4
3.5.3.6 arginine deiminase. 1

GO:0003953 NAD+ nucleosidase activity 1
1.1.1.22 UDP-glucose 6-dehydrogenase. 1

GO:0097056 obsolete selenocysteinyl-tRNA(Sec) biosynthetic process 1
GO:0016297 fatty acyl-[ACP] hydrolase activity 3
GO:0006522 alanine metabolic process 1
GO:0008808 cardiolipin synthase activity 3
GO:0009409 response to cold 1
GO:0008899 homoserine O-succinyltransferase activity 3
GO:0008276 protein methyltransferase activity 2

1.1.1.88 hydroxymethylglutaryl-CoA reductase. 1

Table 4.3 – Bibliographic scores of the robust subset of annotations from the IBD dataset.
Robust FAs of the IBD dataset, identified by their GO term or EC number, as well as their current name,
and the bibliographic category assigned to each of them.
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categories in the robust selection and those of randomly selected non-candidate annota-
tions. Results are described in Table 4.4. This test established that the robust group
significantly diverged from the non-candidate group. This significant difference is notably
driven, as seen in Table 4.4, by a comparative increased proportion of Category 1, and
decreased proportion of Category 4 annotations in the robust subset compared to the
non-candidate selection.

These results support the notion that our pipeline allows for a relevant selector of
information. Beyond this first observation, the question of this selection’s potential for
innovation arises, as we should explore whether it includes relevant factors beyond what
is already well known.

Category 1 Category 2 Category 3 Category 4 Total sample size Chi2 contigency test p-value (vs robust)
Robust 32 9 17 1 59 -

50% Candidates 5 4 10 1 20 0.13645
Non candidate 5 3 9 3 20 0.027509

Table 4.4 – Counts of the different bibliographic categories per researched selection, and
p-values of a Chi2 contigency test compared to the robust subset.

An in-depth exploration of the biological significance of all of the robust functional
annotations derived from the IBD dataset was conducted, materialized by a grading
of each annotation’s relevance in regard to the disease according to existing research.
A downstream analysis of these results revealed that the most relevant category of
annotations was significantly more represented in our robust selection when com-
pared to an excerpt of the list of non-selected annotations.

In summary

4.3 The interconnections between taxa and annota-
tions expose cumulative metabolic signatures.

4.3.1 Exposing different types of dynamics between significant
taxa and annotations from their interconnections.

The observed disparities and the non-redundancy between taxonomic and functional
profilings (see Section 2.3) prompt the question of whether these profiles equally provide
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valid descriptions of a subject’s microbiota. A potential drawback of the taxonomic scale is
the cumulation effect, wherein individual taxa may have little significance but contribute
significantly to an essential metabolic process when grouped together. As a result, this
collective impact might go unnoticed when focusing solely on individual taxa. The dy-
namics in terms of specificity between annotations and taxa are illustrated in Figure 4.1,
which plots the amount of robust taxa associated to each annotation as a function of the
total amount of associated taxa. For illustration purposes, the represented annotations
were assigned into four profiles based on their number of associated taxa. We labeled the
top 10% as "Ubiquitous" (5 annotations, top right in Figure 4.1), the bottom 10% as ’Spe-
cific’ (18 annotations, bottom left of Figure 4.1), and all others were labeled ’In-Between’
(32 annotations). Finally, a fourth category was drawn up, independently of the previous
criteria, containing 4 annotations that have no link to robust taxa, which we labeled as
’Cumulative’. This representation shows that important annotations have differing rela-
tionships to their taxonomic counterparts, and that an annotation’s importance can stem
from the influence of several taxa, as is notably illustrated by the ’Cumulative’ class.

4.3.2 Detailing the relationships between taxa and their func-
tional annotations highlights the cumulative expression of
functional signatures.

A detailed illustration of pairings between select robust annotations and taxa is pro-
posed in Figure 4.2. The strength of the links is also represented, defined as the amount
of proteins within a taxon’s proteome that express a given annotation for Figure 4.2a,
and following the following formula for Figure 4.2b:

n̄t,i×xF,t∑
t∈T n̄t,i×xF,t

where xF,t is the number of proteins within taxon t’s proteome that are linked to the
function F, n̄t,i is the average of the abundances of a taxonomic affiliation within the
dataset and T is the ensemble of all taxa associated with the annotation.

The represented annotations in Figure 4.2a were picked from each of the categories
illustrated in Figure 4.1: GO:0006520 as representative of the ’Ubiquitous’ class, 1.1.1.22
for the ’In-between’ class, GO:0043130 for the ’Specific’ class, and GO:0006144 as a ’Cu-
mulative’ example. From top to bottom, the first annotation (GO:0043130) is a case in
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Figure 4.1 – Number of taxa associated to each robust annotation, as a function of the
number of associated robust taxa for the IBD dataset. Four groups of annotations are represented,
three of which were determined based on the total amount of taxa attached to the annotation: those
within the top 10% of these values’ scale were labeled ’Ubiquitous’, those in the bottom 10% were
labeled ’Specific’, and the others were labeled ’In-between’. The final category corresponds to the robust
significant annotations with no relationship to the robust significant taxa (’Cumulative’). The highlighted
annotations are those used as illustrative examples in Figure 4.2.
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4.3. The interconnections between taxa and annotations expose cumulative metabolic
signatures.

(a) Associations between robust func-
tions and robust taxonomic counterparts,
for the best iteration on the IBD dataset.

(b) Associations between robust taxa and
robust functional counterparts, for the
best iteration on the IBD dataset.

Figure 4.2 – Interassociations between robust annotations and taxa, from the IBD dataset.
(a) Depicted annotations were selected to be representative examples of the different categories high-
lighted in Figure 4.1, and are presented with the same color scheme. (b) Represented taxa were chosen
to showcase control and healthy representatives with high and low numbers of connections to robust
annotations. Relationships to non-robust annotations were not represented here for reasons pertaining to
readability of the figure.
Taxa are colored on the basis of their normalized average differential expression between Control (red)
and Unhealthy (blue) profiles. The width of the connections is proportional to the importance of the asso-
ciation. The arrow between a given function and the generic ’Non robust’ node represents the contribution
of non-robust taxa to the considered function.
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which the feature’s significance appears to be due to a strong association to a single ro-
bust significant taxon, namely Akkermansia muciniphilia. This taxon has an established
impact on IBD remission, and is researched as a potential probiotic treatment of the dis-
ease [136]. This is also in accordance with the annotation’s differential expression between
profiles, as seen in Table 4.2, where the annotation is shown to be expressed in the control
samples almost 3 times as frequently on average as it is in the sick samples. This kind of
relationship could either indicate that this ’Specific’ annotation derives its importance in
our predictions from its strong and specific attachment to an important taxon, or that
its impact on the disease is an important factor to explain this taxon’s benefactory in-
fluence. GO:0043130 corresponds to ubiquitin binding, a mechanism which is known to
regulate the inflammation process of intestines via different signalling pathways [137], and
is categorized as a Category 1 annotation by our bibliographic research, showing that in
the case of our example, the effects of the annotation and of its specifically associated
robust taxon align. It should be noted that, as mentioned in our earlier discussion around
our bibliographic work, the differential expression of a feature can be contradictory with
its known effects, and should therefore be treated with caution. The second and third
annotations (1.1.1.22 and GO:0006520), respectively from the ’In-between and ’Ubiqui-
tous’ groups, are very widespread among robust taxa, without any particularly strong link
to any of them. In cases such as these, meaning metabolic functionalities commonly ex-
pressed within taxa, the issue of significance is shown to not be a purely binary question
of expression or absence, as both annotations are consistently present in both profiles.
Finally, the last annotation (GO:0006144) is exclusively linked to non robust taxa. All
such annotations, from the ’Cumulative’ group, are associated to several taxa (13 mini-
mum), meaning that their importance results from the cumulated influence of multiple,
individually non-significant taxa, that have a significant role when grouped functionally.

The reverse associations, plotted in Figure 4.2b, show that this form of cumulation is
specific to FAs: the robust taxon with the least associations to robust annotations, Copro-
coccus comes, is represented and shown to still have a non-zero amount of correlations to
robust annotations. As such, these results illustrate the notion that, while taxa will usu-
ally have a remarkable impact on host health through at least one important metabolic
functionality, impactful functions can go unnoticed if we try to derive them from their
taxonomic counterparts.

This further supports the importance of exploiting microbiota information at the func-
tional level rather than at the taxonomic level. Annotation GO:0006144, which corre-
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sponds to the purine metabolic process and is represented in orange in Figure 4.1, is a
good illustration of this approach’s advantages. This annotation was not correlated to
any robust taxon, and therefore would be difficult to derive from an taxonomic approach.
Indeed, the bibliography shows that this annotation was linked to IBD through oriented
research following a first mechanistic study [138], whereas our approach was capable of
identifying it efficiently and without any pre-orientation.

Looking at the details of the associations between robust taxa and annotations
uncovers that the importance of functional signatures can be derived from:

— Being expressed by many taxa, of which many are robustly significant
(Ubiquitous),

— Being expressed specifically by a few robustly significant taxa (Specific),
— Being expressed only by non-robustly significant taxa (Cumulative).

The existence of cumulative functional signatures in the gut microbiota confirms
the benefits of using functional profiles for microbiota analysis instead of taxonomic
abundances.

In summary

4.4 Conclusion and discussion.
Through bibliographic research, we have validated the relevance of our method’s au-

tomatic selections on an example. However, it was through the exploitation of the interas-
sociations between taxa and functional annotations, traced from building our functional
profiles, that we arrived to this thesis’ third contribution: confirmation of the existence
of a functional cumulation effect within taxonomic profiles. While this effect was shown
on only one example, meant primarily as proof of concept, it confirms the intuition that
all relevant functional information in the gut microbiota cannot be derived from taxo-
nomic signatures alone, and that there is knowledge to be gained from studying the gut
microbiota directly at the functional scale.

Performance and selection sizes are indicators of a selection’s quality.
The conclusions presented here were reached through the exploration of the contents

of robust selections from the functional and taxonomic profiles of the IBD dataset. This
was possible because in the case of this dataset, both selections were of a size that was
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compatible with a deepened research, without being too small either. In the case of the
Cirrhosis, Colorectal or WT2D datasets for example, the size of the robust functional
selections could be deemed insufficient in size to contain relevant information. The ex-
ploration of the confident subset or the exploitation of a lower level of selection than
the proposed optimum could be envisioned by a user if the content included in the rec-
ommended robust output is deemed insufficient. It should also be noted that the IBD
dataset’s good performances during classification (see Figure 3.4) are another element
that support the relevance of the contents of its selection, which all datasets do not share.
Users of this method should be mindful that the output list may not be as relevant if the
classification performances are low.

Implementing the method for wider application.
Applied in succession, the manipulations described in Chapter 2, Chapter 3, and this

chapter make up a method for functional analysis of the gut microbiota. In order to
make this method available, and to make the reproduction of our results easier, we have
implemented them as a pipeline software, meant for public use.
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Chapter 5

Implementing the SPARTA pipeline.

The results presented in Chapter 4 were obtained through the application of the meth-
ods described in the previous sections: a computation of functional profiles from a taxo-
nomic description of the gut microbiota, with the establishment of a traceable connection
between taxa and their FAs, as described in Chapter 2, followed by a robust selection
of variables derived from repeatedly iterating an interpretable classification and an au-
tomatic variable selection method, as described in Chapter 3. Our results highlight the
need to perform at least one iteration and several repeated runs in order to reduce the
dimensionality of notably the functional datasets, while maintaining the classification per-
formance, and derive a list of robust variables. In order to facilitate the chaining of these
manipulations and to make them reproducible, they were implemented in the form of a
pipeline software: Shifting Paradigms to Annotation Representation from Taxonomy to
identify Archetypes (SPARTA).

Said implementation is available on GitHub, at the following URL: https://github.
com/baptisteruiz/SPARTA. An initial version was made using bash and Python, but
for performance and stability purposes, a later version coded entirely in Python was
developed.

5.1 SPARTA overview: a Machine Learning-driven
method for paired analysis of taxonomic assigna-
tions and functional annotations.

SPARTA (see Fig 5.1) requires two compulsory inputs. The first is a table describing
the microbial relative abundances (i.e: taxonomic abundance tables) for each microbiota
sample within the dataset, from which functional profiles will be computed. This profile
can be computed on the basis of 16S or MGS sequences, as both can be handled by the
pipeline. The other is a vector file indicating the groups according to which each sample
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within the dataset should be classified, represented as green and red colors in Figure 5.1.
Optionally, the pipeline can be run in two separate steps: sparta esmecata and sparta
classification. The sparta esmecata step covers the formatting of the inputs and
builds a functional profile based on EsMeCaTa. The sparta classification step runs
the iterative classification and selection process, as well as the post-processing of the
results. For further details, see Section 5.2. Complementary inputs and commands can
also be used in certain circumstances, as described in Section 5.3.

SPARTA computes three major outputs. The first is a functional profile: by using the
EsMeCaTa tool [67] to query the UniProt [68] database, we associate a representative
proteome to each taxon from the original profiles, and link them to FAs (GO terms [58],
EC numbers [117]) through UniProt once more [68] or using eggnog-mapper [70, 71]. The
prevalence of each of the obtained annotations within the individual samples are then
calculated as scores of FAs, as described in Chapter 2.

The second consists of classification performances: SPARTA trains RF [80] classifiers
on the obtained functional profiles, and measures their performance in categorizing the
samples. Classification performances for the best performing iterations are highlighted,
however detailed results are also given for all iterations. This section of the code is based
on a modified version of DeepMicro’s [94] implementation.

Finally, SPARTA generates a list of features, both taxa and FAs, which are identi-
fied as significantly discriminating between the given sample groups on the basis of an
automatically calculated selection threshold applied to their average importance scores
(see Chapter 3). SPARTA provides the user with the list of important taxa and FAs for
each iteration, with a focus on the best iteration after the first level of selection. The
associations between taxa and annotations are also explicitated, allowing each feature to
be linked notably to its significant counterparts.

Details of the output files are given in Section 5.3.
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5.1. SPARTA overview: a Machine Learning-driven method for paired analysis of taxonomic
assignations and functional annotations.

Figure 5.1 – Visual representation of SPARTA’s implementation. The inputs (red block) in-
clude a taxonomic abundance table (tab delimited, txt format) and a vector of sample labels (csv file).
SPARTA’s implementation has three main blocks. The first block (green) formats the input abundance
table and transforms it into a functional profile using the EsMeCaTa pipeline (see Sections 5.2.1, 5.2.2,
5.2.3). This functional abundance profile is given as output. The second block (orange) uses both func-
tional and taxonomic profiles for repeated classification and variable selection, setting aside a test set for
each run and training 20 Random Forest models per profile. Performance on test sets and automated
variable selection results are given as output (see Section 5.2.4). The final block (blue) compiles selections
from all runs to measure the robustness of each variable’s importance at each iteration level. The list of
robust variables is given as output for the best iteration level and all other levels in a separate folder (see
Section 5.2.5). Zooms on each section are available in Appendix C. The first block can be run on its own
through the sparta esmecata command, and the two following blocks can also be run directly using
the sparta classification command. Otherwise, the entire process can be launched with the sparta
pipeline command.
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The SPARTA pipeline is implemented so as to be compute functional profiles, RF
classification performances from taxonomic and functional profiles, and aggregated
taxonomic and functional variable selections (robust, confident and candidates, see
Section 3.1.3) from a taxonomic table and associated sample labels. The pipeline
can be launched in full (sparta pipeline), but the steps for functional profil-
ing (sparta esmecata) and ML-driven classification and variable selection (sparta
classification) can also be decoupled from each other.

In summary

5.2 SPARTA’s main functions.

The pipeline is executed in several steps, in order. The first, which can be called us-
ing the sparta esmecata command, is a formatting of the inputs for the creation and
formalization of EsMeCaTa’s input from the given data, followed by a run of the EsMe-
CaTa pipeline [67]. The functional profiles are then calculated, and a first review of the
variables’ information is operated. The two following steps are effectuated by the sparta
classification command. This firstly involves the operation of the iterative classifica-
tion and variable selection process, and repeated as many times as requested by the user.
Once this step is over, the classification performances are plotted, and the robust, con-
fident and candidate sub-lists are established. Figure 5.1 illustrates the implementation.
The following sections will detail how each of these steps were executed.

5.2.1 Formatting the inputs and running EsMeCaTa (sparta es-
mecata command).

Before any operation is conducted on them, the pipeline’s inputs are shaped into
a form that is compatible with the next steps of the pipeline, notably those based on
external tools (EsMeCaTa [67] and DeepMicro [94]), and removes eventual metadata
from the input. Importation and handling of the data is made through the pandas [139]
library. This step notably takes as input the full original abundance table, and outputs a
metadata-less version of it, in the original format and transposed so as to be compatible
with DeepMicro, and formatted as demanded by the user if applicable (conversion to

118



5.2. SPARTA’s main functions.

relative abundances, for example). A taxonomic description of all taxons, formatted so as
to be compatible with the EsMeCaTa pipeline, is also created at this step.

This latter output is used to launch EsMeCaTa, which recovers the functional an-
notation of the taxonomic units given as input as described in Section 2.1.1.This step
can be skipped entirely if results for a dataset with the same name are found, unless the
"–esmecata_relaunch" flag is raised, to avoid redundant calculation.

Each of EsMeCaTa’s steps is called individually, and checks are operated the outputs
after the proteome and annotations step, during which issues with an HTTPS connexion
error are most likely to occur.

The ’proteome’ step, which downloads annotations associated to each taxonomic unit
from the UniProt database [68], uses the Bioservices request option, as it has proven more
stable. Other parameters are set to default. Following this operation, we check whether
for each taxon given as input, we have a downloaded fasta file. If the verification fails,
this step can be relaunched up to 20 times. If the amount of retries exceeds this number,
the operation is aborted and an exception is raised.

The ’clustering’ operation groups the obtained proteins into clusters based on identity
using the Mmseqs2 package [69], and selects those that are representative of 80% or
more of the species contained in the taxonomic unit. This step is called with EsMeCaTa’s
default parameters. Re-running this step over previous results can cause crashes, therefore
if an existing incomplete output directory is found, it will be deleted and rewritten from
scratch.

Finally, the ’annotation’ step recovers the FAs associated with each cluster of proteins.
The option is given here to use the eggnog-mapper tool [70, 71] to perform the annota-
tion, otherwise it will default to interrogating UniProt again. The used parameters are
EsMeCaTa’s defaults. After this step, a check is operated to see if all taxa for which a
non-empty protein consensus was found have a final output. Similarly to the ’proteomes’
step, this process can be iterated up to 20 times.

The resulting annotations are resumed in a table of functional occurrences, which
contains the amount of proteins that express each of the retrieved annotations in each
taxon’s proteome.
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5.2.2 Calculation of functional scores (sparta esmecata com-
mand).

The second step is the calculation of the scores of the FAs obtained through the
previous step, following the method described in Section 2.1.2 and using the table of
functional occurrences, as well as the original microbial abundances. This ensures that the
reference-based method EsMeCaTa provides a quantitative annotation-based description
of the gut microbiota. Once the functional profile is obtained, its values can also be
scaled using the TF-IGM normalization method, as described in Section 2.1.3. As with
the profile given as input, the calculated profile is passed on in two formats: a table in
the same format as the input, to be exported and written as an output, and a transposed
version compatible as a DeepMicro input.

The sparta esmecata command runs the EsMeCaTa pipeline on all of the taxa
contained in the input taxonomic table, to associate them with FAs from either
the UniProt database, or using eggnog-mapper. Scores are then calculated for each
gathered FA on the basis of these associations as well as the initial taxonomic abun-
dances, following the method described in Section 2.1.2. The calculated functional
profile serves as this step’s main output.

In summary

5.2.3 Creating an informative database for the variables (sparta
classification command).

Having all of the processed microbiota profiles at our disposal, descriptive tables are
created for each variable in our profiles, both taxa and FAs. These descriptions notably
measure the average presence of a feature in each labeled category as well as over the
whole profile, and explicitates the category that expresses it the most on average. For
taxa, the detailed taxonomy and the annotations it expresses are fetched from EsMe-
CaTa’s inputs and outputs, in the form of a table of functional occurences for the lat-
ter. For each FA, the name of the annotation is fetched from a database (OBO PURLs
for GO terms, hosted at http://purl.obolibrary.org/obo/go/go-basic.obo, and the
ExPASy database for EC numbers, hosted at https://ftp.expasy.org/databases/
enzyme/enzyme.dat), and a list of all taxa that express it is gathered. The datasets in
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question are queried locally, and are downloaded by default the first time the pipeline is
used. Interrogation of the databases is conducted using Biopython’s [140] ExPASy.Enzyme
module 1 for ExPASy, and goatools’ [141] obo_parser function for GO terms 2.

5.2.4 Iterated classification and selection (sparta classification
command).

The following steps are repeated for as many runs as demanded by the user through the
"-r" argument of the command. The procedures for the selection of the test, validation and
training set are seeded for reproducibility purposes. All of the seeds used in this process
are generated using a master seed, which can be set by the user. The test sets for each
run can also be directly specified by the user. Figure 3.2 illustrates this implementation.
By default, SPARTA uses the same master seed as the one used to obtain the results
presented in Chapter 3. For each run, the user may request that only a specified subset
of the input profiles’ variables be taken in account through the "–preselected-organisms"
and "–preselected-annotations" arguments.

5.2.4.1 Setting aside a test set.

Individuals are selected to be set aside as a test set for the entirety of the current run.
Selection is conducted using the scikit-learn library’s [121] train_test_split function 3,
with a test size parameter of 0.2, meaning that the test sample will be 20% the size
of the full dataset. Selected individuals are removed from the functional and taxonomic
profiles, and kept in a separate table, to be only used for measuring trained classifiers’
performance.

This step is only effectuated once per run, whereas the following two are iterated in
succession.

5.2.4.2 Training classifiers.

This step involves the training of several successive ML classifiers to sort individuals
according to their associated labels, based on the relative abundance profiles of their

1. https://biopython.org/docs/1.75/api/Bio.ExPASy.html
2. https://github.com/tanghaibao/goatools
3. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_

test_split.html
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microbiota or on their calculated functional representation. The implementation of this
step is taken and adapted from the DeepMicro tool [94], and is repeated as many times
within an iteration as demanded by the ’-c’ argument. The user can choose, through the
’-m’ argument to train RF or SVM classifiers. In both cases, the models will be trained
using their implementation by the scikit-learn library [121].

During training, the data not set aside as a test subset is randomly split into a training
set and a validation set, with a respective 80% / 20% distribution. For the first iteration,
this split is seeded to ensure reproducibility. For the following iterations of the same
run, the obtained training and validation sets will be used again, as illustrated by Figure
3.2. In order to account for the disparity in representation between the unhealthy and
control individuals within the datasets, both classes were given weights proportional to
their frequency, as implemented by scikit-learn’s ’balanced’ class weight parameter [121].
The training involves a Grid Search, as implemented by scikit-learn [121], to optimize the
estimator’s parameters. For RFs, the optimized parameters are the number of estimators
per forest, the number of leaves per estimator, and the amount of information to which
each tree has access, and the split quality criterion is measured via the Gini Impurity
metric. For SVMs, the optimized parameters are the regularization parameter, which
tunes the impact of the loss function during training, and the classifier’s kernel, which
can be linear or Gaussian with Radial Basis, with a tuning of the gamma parameter
(radius of each sample’s area of influence) in the latter case.

Each time a model is trained, its performance metrics (ROC AUC score [86], accuracy,
recall, precision and F1 score) on training, validation and test sets are recorded. The
model with the highest AUC on the validation set during the iteration is exported using
the joblib library [142]. If the user chose to train RF classifiers, the importance metrics
of each variable for the trained model are also exported. These importances can be based
on one of two metrics, depending on the user’s input. The first option is based on the
Gini Importance metric [80], calculating the mean accumulation of the impurity decrease
within each tree, as implemented in the scikit-learn Python library [121]. The other option
is the SHAP importance [85], which calculates each variable’s contribution to a decision
from the basis of a trained classifier. In our case, dealing with RFs, we relied on the
SHAP package’s [85] implementation of the TreeExplainer [143], which is an algorithm
for calculation of SHAP values optimized for RF models. If multiple iterations of the
classifier’s training are made, the feature importances are averaged over all iterations.
Features are then ranked based on this metric in decreasing order. In SHAP’s case, this
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ranking is made based on the absolute value of the importance scores. Predictions are
made through the application of an optimal classification threshold, determined through
the maximization of the Youden statistic [144], to probabilistic predictions by the model.
The optimal thresholds found for each model are exported, alongside their performance
metrics.

5.2.4.3 Variable selection.

This section is only applicable if the user chose to train RF classifiers. From the
variables’ importance scores averaged over all repetitions of the RF training process,
an automatic variable selection is operated as described in Section 3.1.2. This consists
in ranking the variables by decreasing importance score, then calculating the inflection
point of the curve of decreasing importance scores, using kneebow’s [122] Rotor and
get_elbow_index methods 4, before cutting off all variables below the obtained index. A
selection of the retained variables can then be operated on the taxonomic and functional
profiles, to be used as input for the previous step as many times as required by the
command’s "-i" argument.

The first step of the sparta classification command involves the iteration of
model training and variable selection, and its repetition with different test sets. The
amount of re-trained classifiers, of variable selection iterations and of repetitions of
the full process are the same as those used in our previous manipulations by default,
but can also be changed by the user. The selection of test and validation sets, as
well as the training of the classifiers, are fully seeded to ensure full reproducibility.
Users can also specify their own test sets. This step’s main outputs are the model
classification performances.

In summary

5.2.5 Post-processing and establishment of robust variable sub-
sets (sparta classification command).

After the previous iterative process has been repeated as many times as dictated by
the "-r" argument, the classification performances obtained through the previous iterative

4. https://github.com/georg-un/kneebow/tree/master
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steps are processed: for each run, the median AUC of each iteration is calculated. The
median of these values is then calculated per iteration level over all runs, and the iteration
level that maximizes this value is retained as optimal. If there was more than one iteration
of variable selection, the first iteration, on which no variable selection was operated, is
excluded. For each processed profile (taxonomic and functional), the best iteration’s per-
formances are plotted using the matplotlib [145] and seaborn [146] libraries. A statistical
comparison of the median performances per run at optimal iteration for each profile is
also made at this point, using scipy’s [147] implementation of the Mann-Whitney U-test 5.
The test’s p-value is indicated on the plot. The optimal selection levels found in this step
are passed onward.

Finally, we compare the sublists obtained at each level of iteration for each run of
the pipeline, and count the common occurrences. Unanimously selected variables are
labeled as ’robust’ (or ’core’), and those that appear at least once are labeled ’meta’,
which itself can be separated in: ’confident’ if they are selected in 75% of the runs or
more, or ’candidate’ otherwise. The obtained lists are enriched with information, gathered
previously in step 5.2.3 notably. A sublist of significant linked counterparts is established
for each variable, referencing the linked counterparts (taxa that express an annotation, or
annotations expressed by a taxon) that are listed as ’robust’ at the same level of iteration.

The ’core’ and ’meta’ lists for all iterations, as well as all of the individual selections
they are based on, are given as output, however the sublists obtained on the optimal
iterations for taxonomic and functional profiles are saved in a separate folder, and reference
each other when establishing significant linked counterparts. This means for example that
the significant annotations linked to a taxon in the optimal sublist are deemed ’robust’
based on the optimal iteration for the functional profile, rather than at the iteration level
that is identical to the functional optimum, and vice-versa. If the best obtained median
RF AUC is inferior to 0.6, a message warning that the selection may be unreliable will be
passed to the user.

5. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.
html
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5.3. Usage of the pipeline.

The second step of the sparta classification command involves the post-
processing of the results from the repeated classification and variable selection pro-
cesses. This involves the identification of the optimal level of variable selection, and
the calculation of the robust, confident and candidate selection subsets as defined in
Section 3.1.3. These selection subsets are this step’s main output; those of the opti-
mal selection level are highlighted, but all of the obtained lists are made available.

In summary

5.3 Usage of the pipeline.
At time of submission of this thesis, the latest version of SPARTA is coded in Python,

and requires the following Python packages to function: pandas [139], numpy [148], scikit-
learn [121], scipy [147], matplotlib [145], joblib [142], seaborn [146], tqdm [149], goatools
[141], Biopython [140], requests [150], shap [85] and kneebow [122]. An installation of
the EsMeCaTa pipeline [67], along with its dependencies, is also required. The pipeline
will also depend on an internet connection, in order to query and download from various
databases.

The pipeline can be installed using pip, then launched from the command line. Three
commands can be used to run SPARTA: sparta esmecata, sparta classification and
sparta pipeline. Each command has optional arguments, with default values aligned
with the parameters used in our previous manipulations. These options allow the user
to adapt the parameters of the pipeline to their preference, facilitate the prospect of a
reproduction of previous results, or allow them to adapt to specific use cases such as the
application of the pipeline to a functional profile alone instead of a taxonomic input.

5.3.1 sparta esmecata

The sparta esmecata command requires the following arguments:
— "-p" (taxonomic abundance): a file indicating the abundance of the organisms, de-

scribed according to their taxonomic affiliations, in the samples. This abundance
profile should be in the form of a .txt file with tabular separation, describing the mi-
crobiota’s composition per sample identificator. Metadata can be included in the ta-
ble if the input is a taxonomic abundance file, it will not be taken account of. Taxon
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names should be in the format: "k__kingdom|p__phylum|c__class|o__order|
f__family|g__genus|s__species", a format derived from MetaPhlan’s [33] output
presentation, but that can also easily be built from QIIME [36] or FROGS [38]
outputs, for example.

— "-o" (output): the name or path to the desired output folder.

The following optional arguments are also available:
— "-t", "–treatment": Data treatment for the functional table. Can be: ’tf_igm’ (see

2.1.3), defaults to no treatment.
— "-s", "–scaling": Scaling method to apply to the taxonomic table. Can be: ’relative’,

default: no scaling.
— "–eggnog": Path to the eggnog database to be used by the EsMeCaTa pipeline. If

not given, the pipeline will be launched with the ’UniProt’ workflow by default.
— "–keep_temp": This option allows the user to keep temporary files at the end of

the run.
— "–update_ncbi": This option allows the user to force an update of the local NCBI

database. It is particularly recommended when running EsMeCaTa for the first
time.

— "–esmecata_results": If a run of EsMeCaTa on the dataset has already been per-
formed, it is possible to give the corresponding ’annotation_reference’ folder with
this option to avoid launching EsMeCaTa and directly compute the functional
profile.

— "–esmecata_relaunch": This is a flag that allows the user to force a re-run of the
EsMeCaTa pipeline over an already existing output. This is notably intended for
cases where a previous run of the pipeline was botched at this step.

sparta esmecata will give the following main output:
— Calculated functional profile: The scores of functional annotations, calculated

during the process, are made available with the other outputs.

It will also output the following files and folders, which can be used as input for the
sparta classification command:

— functional_occurrence.tsv: a tsv file indicating the occurrence of functions in or-
ganisms.

— otu_table_stripped.tsv: a tsv file indicating the abundance of organisms in sam-
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ples, after filtering of the input metadata.
— taxonomic_affiliations.tsv: a tsv file indicating the taxonomic affiliations of the

organisms.
— EsMeCaTa_outputs: outputs of the EsMeCaTa pipeline, only the results of the

’annotation’ step are kept for storage efficiency.

5.3.2 sparta classification

The sparta classification command works with the following compulsory inputs:
— "-l" (label): a csv file indicating the label of each sample to make the classification.

Headers should indicate the name of each sample, and the associated label should
be given underneath.

— "-o" (output): the name or path to the desired output folder.

In complement, at least one of the following inputs must also be given:
— "-fp" (functional profile): a csv file indicating the abundance of functions in samples.

This can be built using the sparta esmecata command, or on the basis of another
functional profiling approach (i.e. HUMAnN or PiCRUSt, for example).

— "-tp" (taxonomic profile): a csv file indicating the abundance of organisms in sam-
ples. This profile must not include metadata. The ’otu_table_stripped.tsv’ output
of the sparta esmecata command can be used for this purpose.

It is possible to apply this command only to a taxonomic or functional profile. In
this case, post-processing steps that involve correlating these two profiles to each other
(listing associated counterparts, calculating the strength of associations between taxa and
annotations) will be skipped. Functional profiles can be built using sparta esmecata, but
can also be formatted on the basis of functional profilings built by other tools. Depending
on the inputs given at this stage, the following files can also be required:

— "-fo" (functional occurence): a tsv file measuring the expression of functions by
an organisms. Using EsMeCaTa, this can be the number of proteins within an
organism’s proteome that express a given function. Using HUMAnN, this can be
the intermediary functional scores of each annotation per species. This input is
required if both taxonomic and functional profiles are given as input. The ’func-
tional_occurrence.tsv’ output of the sparta esmecata command can be used here.

— "-ta" (taxonomic affiliations): a tsv file indicating the taxonomic affiliations of the
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organisms. The ’taxonomic_affiliations.tsv’ output of the sparta esmecata com-
mand can be used for this purpose. This input is required if a taxonomic profile is
given as input.

The following optional arguments are also available:
— "-r", "–runs": amount of pipeline runs. Defaults to 10 runs.
— "-i", "–iterations": number of iterations of the method. Defaults to 5 iterations.
— "-c", "–classifiers": amount of trained classifiers per iteration of the command. De-

faults to 20 classifiers.
— "-m", "–method": classifying method to be run. Default to RF (’rf’ value), but can

also handle SVMs (’svm’ value)
— "-v", "–variable_ranking": if the value of "-m" is "rf", this indicates the method for

RF variable importance ranking. The default is Gini importance (’gini’ value), but
it can also handle SHAP (’shap’ value)

— "–reference_test_sets": path to reference test sets (csv file) allowing the user to
give their own test sets to be used during classification.

— "–preselected-organisms": if a taxonomic profile was given, the user can use this
argument to specify organisms to be preselected at each run (should link to a csv
file containing this information).

— "–preselected-annotations": if a functional profile was given, the user can use this
argument to specify annotations to be preselected at each run (should link to a csv
file containing this information).

— "–seed": the classification process is seeded, as explained in Section 5.2.4. The
master seed to define the randomness of these steps, for reproducibility, can be
defined here. Default value: 42.

sparta classification will give the following main outputs:
— Classification performances: The performances of the functional and taxonomic

profiles at their respective best selective iteration are plotted. Detailed performance
metrics of each RF model trained during each run and iteration on the training,
validation and test subsets of the taxonomic and functional data, and their optimal
found parameters are also made available.

— Selected variables: All variables selected at each iteration of each run of the
pipeline are listed and available as output. A compilation of the robust, confident
and candidate variables are also available for all iteration levels, with the results of
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each profile’s optimal iteration set aside in a separate folder. Information concerning
each variable (name, expression per label, associated counterparts) are also given.

The following files and folders are also given, for purposes of visualization and trans-
parency of the results:

— median_OTU_vs_SoFA_(best_vs_best).png: graphical representation of the clas-
sification performances (median ROC AUC per run) at the optimal selective iter-
ation for both taxonomic and functional profiles. Both performance distributions
are compared statistically by a Mann-Whitney U-test, the p-value of which is given
in the figure’s title. The optimal selection levels for both profiles are also given.

— Test_sets.csv: sample IDs used as test sets for each run of the pipeline. This file
can be re-used as such on a later run of SPARTA on the same dataset to ensure
that the same test sets are used.

5.3.3 sparta pipeline

The sparta pipeline command runs sparta esmecata and sparta classification
in succession. It takes in the compulsory inputs of each of these commands, and gives all of
their outputs. It can be tuned with the optional arguments of both commands. It will run
the sparta classification command with both a taxonomic and a functional profile,
using the outputs of sparta esmecata directly.

5.4 Conclusion and discussion.
In order to make this thesis’ works reproducible and accessible, we have implemented

a software that automates the entire process. This implementation covers the calculation
of a functional profile from a taxonomic table, a repeated process of iterative RF-based
classification and automatic selection, and a post-processing step to measure the robust-
ness of the selected variables. The required inputs are a taxonomic abundance table and
labels associated to each sample, and the outputs include the calculated functional pro-
filing, classification performances and the robust, confident and candidate variables from
the dataset, complemented by information about their nomenclature, presence in each
profile, and associations to their robust counterparts. Parameters such as the amount of
runs and iterations to be performed, or the amount of forests trained per iteration, can be
modified to the user’s convenience. Quality of life options have also been implemented, to
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allow the user to choose their own test subsets or run the pipeline directly and exclusively
on an input functional profile. The process is fully seeded, to ensure reproducibility both
at the level of classifier training, and of the selection of test and validation sets.

This implementation makes it possible to run a complete analysis of the gut microbiota
on the taxonomic and functional scale, and retains information concerning the intercon-
nections between the two, which allows us to make the manipulations shown in Chapters
2, 3 and 4 fully reproducible. More generally, SPARTA automatizes and makes accessible
a novel method for gut microbiota analysis, that requires a minimal amount of computing
resources and time to be effectuated compared to other state of the art methods. Gener-
ally, it remains an open question to choose the right trade-off between computation time,
classification performance and interpretability when handling microbiota data. The mod-
ular implementation of SPARTA, allowing the user to directly specify functional profiles,
aims at providing the corresponding flexibility to adjust the pipeline to the type of raw
data (MGS or 16S data) or the phenotype of interest.

Pipeline availability, and material for result reproduction.
A full implementation of SPARTA is available at https://github.com/baptisteruiz/

SPARTA. The repository also includes inputs and instructions for the reproduction of
the results of Chapter 3 (’article_data’ folder). This is made possible by the sharing
of the intermediary results obtained during our manipulations. Indeed, a full relaunch of
the SPARTA pipeline could potentially give different results, as updates to the UniProt
database notably could result in different functional profilings. As such, the adaptability
of SPARTA’s implementation, which allows it to refer to previous intermediary results,
makes it possible to perpetrate the reproduction of any previous results, while still giving
the opportunity to refer to the latest versions of the external resources if the user desires.
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Chapter 6

Conclusion

6.1 Conclusion.
During the course of this thesis, we have presented several significant contributions

to the field of gut microbiota analysis, aiming to expand upon previous explorations to
propose an accessible method for robust ML-based classification and interpretation both
on the taxonomic and functional scale. Overall, we have offered advances in the method-
ologies for gut microbiota functional representation and classification, offering robust,
interpretable, and comprehensive tools for health-related research.

This methodological development led to the implementation of an open-source soft-
ware: the SPARTA pipeline. Special attention was put into the seeding of the process,
to make our results fully reproducible. Broader options, allowing for the compatibility
of the software with other functional profiling tools for example, were also implemented.
This implementation facilitates the broader application and verification of our findings,
but also provides opportunity for future research and development in the field of gut mi-
crobiota analysis, as it requires little in terms of computing resources and only takes a
few days to complete the entirety of its process. SPARTA groups all of this thesis’ other
contributions.

This analysis remains accessible, both in terms of the software being open and of its
requirements for functionality, and, if applied to a wider array of data, could open new
perspectives in understanding how the microbiota expresses its most impactful metabolic
signatures.

6.1.1 Functional profiles of the gut microbiota from taxonomic
profilings.

The gut microbiota has most commonly been explored at the taxonomic level, in
accordance with the initial intuition that gut health is conditioned by the balance of the
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microbial species that compose it. While this approach has allowed the characterization
of several taxa of interest in the context of gut health, and has contributed largely to
the development of probiotic-based therapies, the stakes are now shifting towards the
understanding of the gut microbiota on a functional scale. Indeed, in order to progress
our understanding of the gut microbiota further, we need to better understand what gut
microbes do, more so than who they are.

As such, tools for the functional profiling of microbial communities are at the center of
important methodological stakes, as they are the entry point to this new paradigm. Several
processes exist to build functional profiles from genome sequencing data, but these existing
tools are also very demanding in terms of computational resources. Previous studies have,
however, made available taxonomic profiles, built from sequences. These profiles could
make for a lighter entry point for functional exploration of the gut microbiota, as they
would spare downstream users the need to process heavy sequence data.

As a first contribution for this thesis, we have developed a novel method for functional
representation of the gut microbiota, which distinguishes itself from existing approaches
such as PiCRUSt and HUMAnN by enabling conversion solely from taxonomic profiles.
This method is versatile, applicable to profiles derived from both 16S rRNA and MGS
sequencing. Our comparative analysis demonstrated that the EsMeCaTa pipeline, upon
which our method is based, extracts more comprehensive information than HUMAnN
and avoids redundancy between functional and taxonomic profiles. All of this is also done
at a lesser computational cost, as this new process takes a much lighter input and runs
much faster than its sequence-based counterpart. EsMeCaTa only generates associations
between taxa and FAs; as such, a novel approach was proposed to translate these associ-
ations into a quantification of each annotation’s expression within the gut microbiota.

Thanks to its reliance on a reference-based approach like EsMeCaTa instead of a
sequence-based approach, this new method makes gut microbiota analysis more efficient,
and therefore more accessible. The required input in the form of a taxonomic table is
much lighter than the MGS sequences that are required to run HUMAnN. The difference
in run time between both methods, to retrieve comparable functional information, also
contributes to making this new approach more practical, in cases where a taxonomic
profile is already available for the studied dataset.
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6.1.2 Classification through automated variable selection.

The gut microbiota has been largely explored as a basis for ML classification, which
has allowed for the identification of approaches best suited for this task. Among these,
RFs have shown particular potential, for both classification performance, as well as their
inherent capacity for variable ranking. This property of the classifier has been exploited by
previous works to conduct variable selection, in order to allow for biological interpretation
of the results, as well as improving classification performances through the correction of
the data’s initially unfavorable dimensionality.

Though these approaches for variable selection have shown their benefits, they still had
limitations. The first was the bias induced by user-defined parameters, which introduced
empirical decisions into the process and, as such, limited the adaptability of the approach
when compared to a fully automated method. The second was the lack of insight into
the robustness of the selections, with little regard into how a variation of the training
conditions could impact its results.

As a second contribution for this thesis, we introduced a new method for classify-
ing individuals based on their gut microbiota profiles, incorporating both taxonomic and
functional features. This approach adapts the problem’s dimensionality through a novel
method for automated variable selection based on RF variable importance, showing that
both profile types have comparable potential for describing an individual’s health sta-
tus. Our method notably enhances performance, especially for functional profiles, and
prioritizes robustness and interpretability through an extension of the state-of-the-art
approaches in three dimensions, involving re-training of the classifiers, iteration of the
variable selection, and repetition of the entire training and selection process.

This approach’s efficiency and innovation are based on two factors: the novel approach
to variable selection that it applies, and its repetition which allows us to evaluate the
robustness of the obtained variable selections, ranking each selected feature based on how
resilient it is to the variation of the training context. The resulting shortlist of robustly
significant variables offers deeper insights than traditional tools like limma, paving the
way for further biological interpretation and application, notably taking account of the
intercorrelations between taxa and the metabolic functions they express, which is a seldom
explored aspect of the data.
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6.1.3 The functional scale for interpretability.

Previous forays into the interpretation of the biological signal at the top of RF variable
importance rankings had been made in the context of the gut microbiota. This usually
amounted to presenting a list of the classifier’s top features, the dimensions of which were
empirically chosen, and identifying a few variables that are coherent with the problem at
hand among them. These analyses were usually a point of discussion for these studies,
and therefore weren’t exhaustive because they were not meant to be their main focus.
Also, even in cases where both the taxonomic and functional scales of the gut microbiota
were studied, the relationships between taxa and their FAs were never explored, despite
there being an important incentive to understanding these dynamics.

We addressed these interrogations through our third contribution: a validation of our
method’s robust functional selection by means of a thorough bibliographic research, which
confirmed the relevance of the robust selection in regard to the state-of-the-art biological
knowledge. We also pushed this further by explicitating the links between selected taxons
and annotations, allowing us to confirm the presence of a functional cumulation effect
within taxonomic profiles.

Although demonstrated on a single example as proof of concept, this finding under-
scores the importance of studying the gut microbiota at the functional level, beyond
taxonomic signatures alone. Thanks to its reliance on the reference-based EsMeCaTa ap-
proach, linking both descriptions to one another was also made easier, which allowed us
to illustrate the gains in insight that can be generated from exploring the taxonomic and
functional profiles in conjunction.

6.2 Hints to guide perspectives : preliminary studies
on a real case study.

In context of this thesis, explorations were conducted surrounding the application of
SPARTA to a dataset of gut microbiota samples gathered from Crohn’s disease patients
by our partners in CHU Rennes, and the interpretation of its conclusions in light of their
expertise. The cohort in question consists of 567 samples, taken from 383 individuals
diagnosed with Crohn’s disease. Each individual’s microbiota was sampled at CHU Rennes
between 1 and 6 times, and descriptions of the patient’s heath status and records were
taken in complement (age, sex, body mass index, surgical and antibiotic antecedents,
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disease severity). Samples were sequenced using the 16S rRNA approach.
This work was not presented in this manuscript because definitive results could not be

obtained in time for submission. The explorations that could be conducted did however
clarify some practical aspects of SPARTA’s application to data outside of our bench-
mark datasets, and put forward methodological challenges that, though they could not
be tackled in the time frame of this thesis, should be addressed in its continuity.

6.2.1 A confirmation of SPARTA’s compatibility with 16S data.

A first application of SPARTA to an earlier version of the dataset on which some of
the samples were yet to be added, differentiated patients in the ’remission’ category from
the others, with moderate success (AUC around 0.65 for both taxonomic and functional
profiles). This initial manipulation did however confirm that SPARTA was applicable to
16S data, as EsMeCaTa was capable of functionally profiling the inputs without issues.

This first approach also opened the door for a test of SPARTA’s adaptability in light
of the medical staff’s demands and expertise, as the question onward became not to
differentiate remission patients from others, but rather to analyze whether a functional
annotation could explain the betterment or worsening of an individual’s condition.

6.2.2 A first test of SPARTA’s compatibility with problems in-
tegrating temporality.

Further explorations were made with the final version of the data, with an adaptation
of the problem to more precise medical questions. Notably, in order to evaluate the impact
of all variables on the progression of the disease, we focused on individuals who had given
more than one sample, and only looked at the second sample onward. Each sample was
graded depending on the evolution of the patient’s health status in comparison to their
previous visit: 0 if the health state did not change, 1 if an aggravation of the disease was
observed, or 2 if it had receded. This selection reduced the analyzed sample pool to 184
from the initial 567.

The ensuing application to this data confirmed SPARTA’s compatibility with multi-
label problems. Classification performances remained underwhelming however (AUC around
0.6 for both functional and taxonomic profiles), and the application did not produce any
robust annotations from the 8,410 FAs that were recovered by EsMeCaTa. A confident se-
lection, containing 30 annotations, was however obtained, and the analysis of its contents
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revealed interesting and coherent functional information, as validated by our partners’
expertise.

These disappointing results could be due to the problem at hand being too complex.
Notably, we believe that using a static information (the composition of a patient’s mi-
crobiota at a moment t) to predict a dynamic label (the evolution of the disease state
between t-1 and t) may not have been the correct approach. Due to the more nuanced
definitions of the new labels, which describe a dynamic rather than a control/unhealthy
split, we could also expect the difference between individuals to be more subtle or variable,
which could explain both the under-performance of the model and its lack of a robust
subset. Redundancy among the annotations obtained in the functional profile may also
be a hindering factor. As such, further tuning of the inputs was envisioned to adapt their
relevance to the problem.

6.2.3 Lessons and unexplored ideas.

From these experiments, more manipulations had been envisaged to correct the limi-
tations that were still observable in our results. Notably, a better integration of the prob-
lem’s temporal aspect was looked into. An idea was to look at the difference in expression
between samples, in an effort to represent the evolution of the microbiota, which was
to be correlated with that of the patient’s health state. The integration of the available
metadata, notably surrounding treatment history, was also looked into.

These leads, though they could not be applied to completion in context of this thesis,
remain natural extensions to the work presented in this manuscript. The applications
described in the previous paragraphs have allowed us to confirm SPARTA’s adaptability
when it comes to the input data (compatibility with 16S), and its compatibility with multi-
label classification. Their pursuit would allow for a more complete showcase of SPARTA’s
potential for analysis in context of a real medical situation.

6.3 Perspectives

The presented contributions constitute a first step towards a better integration of
functional data into the analysis of gut microbiota data. The resulting approach remains,
however, perfectible in several ways, and opens many perspectives for further work.
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6.3.1 A compromise to be found between performance and in-
formation.

SPARTA’s criterion for optimal variable selection is to retain the subset which gen-
erates the best classification metric. Though this constitutes a strong basis for a first
approach, previous works have also warned of it being potentially deceptive, and encour-
aged to investigate the significance of the evolution in performance measurements [113].
As such, a more nuanced vision of our selection approach should be envisioned. As is, we
would recommend that, in cases where the information contained in the ’robust’ shortlists
appears insufficient to a SPARTA user, they also look at the ’confident’ and potentially
’candidate’ selections. For future work, a fine-tuning of our selection approach could be
implemented, with the establishment of a new criterion to identify the optimal iterative
selection level of our approach. Said criterion should take account of model performance,
but also combine it with a measurement the output annotation lists’ redundancy and
informative content. Metrics akin to Semantic Similarity and Information Content [151]
could be leveraged to approach these latter issues.

6.3.2 Expanding the functional information through the seman-
tic web.

The FAs produced by our method are derived from various levels within their respective
ontologies. While the structure of EC numbers explicitates their hierarchy, the relation-
ships between GO terms are much less obvious. As such, the combination of SPARTA’s
outputs with a visualization method adapted for both of the employed nomenclatures
would be a complement to our outputs, allowing for a more intuitive exploration of their
biological ramifications. However, this dual hierarchy can also lead to redundancy within
the functional profiles, as information about a particular GO term may overlap with its
child terms. To address this, leveraging ontologies to group related annotations (those
sharing a common ancestor or within the same pathway) could enhance our process in
several ways.

Firstly, by representing all levels of annotation ancestry within a dataset and then
performing variable selection based on importance, we could gain insights into which level
of description most effectively characterizes the gut microbiota. While our current method
focuses on the annotations identified by EsMeCaTa, it is plausible that higher-level de-
scriptions could be more efficient. Grouping annotations at a higher level might reduce
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the dimensionality of the input data, thereby improving classification performance. Addi-
tionally, higher-level descriptions could enhance interpretability. Currently, the specificity
of SPARTA’s outputs necessitates recontextualization to fully understand their impact.
More generalized annotations might provide clearer insights and facilitate a more straight-
forward interpretation of the data.

Secondly, just as we demonstrated that taxons might cumulatively influence the mi-
crobiota’s metabolism by occupying the same functional niche, overly specific descriptions
could dilute significant signals. For instance, several annotations within the same category
may individually have little influence, but collectively they might represent a strong sig-
nal. An approach that utilizes ontologies could identify whether such dynamics are present
and significant. Grouping related annotations could reveal hidden patterns and interac-
tions within the data, leading to a more robust understanding of the gut microbiota’s
functional landscape.

As such, integrating ontological information to consolidate related annotations offers
a promising avenue for improving both the accuracy and interpretability of our functional
profiles. This approach could streamline the input data, enhance classification perfor-
mance, and provide deeper insights into the functional dynamics of the gut microbiota.
Future research should explore this potential, aiming to refine our methods and broaden
our understanding of the microbiota’s role in health and disease.

6.3.3 Integration of further medical metadata.

Beyond FAs, there are numerous additional data sources that can be integrated when
exploiting a taxonomic table to enhance the understanding and classification of gut micro-
biota profiles. For instance, the phylogenetic relationships among taxa present in a sample
can provide supplementary information at the taxonomic level. Integrating phylogenetic
data with information about taxa’s metabolic activity has been explored in several stud-
ies, generally employing neural network approaches. This work has demonstrated that
such integration can significantly improve classification performance [152]. Given these
promising results, developing a method to incorporate phylogenetic relationships into a
RF framework could similarly enhance the performance of these classifiers. This approach
could provide a more comprehensive view of the evolutionary and functional context of
the taxa, leading to more accurate and robust predictions.

Furthermore, clinical datasets often come with a wealth of medical metadata, which
includes detailed information about each individual’s characteristics, such as age, weight,
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and medication history. Leveraging this clinical metadata can offer substantial bene-
fits.The integration of this information could help classification, especially when they lead
to a rapid and significant change in microbiota composition. For instance, the menstrual
cycle [153], diet [154], or antibiotic treatments [155] could be recognized and accounted
for by the models. More importantly, this integration can help in identifying signals that
are highly relevant to specific biological questions. For example, understanding whether
a medical treatment positively impacts a patient’s health through its effects on the gut
microbiota could be significantly enhanced by incorporating such metadata. This could
lead to more personalized and effective treatment strategies based on individual patient
profiles.

To fully realize the potential of these additional data sources, future research should
focus on developing robust methods for their integration. The integration of heterogeneous
biological data for ML is a complex field of research itself, and several approaches have
been explored in this context [156–158]. For the question at hand, approaches based on
Multi-Kernel Learning [159], through which each description of the micriobiota is used to
compute distance matrices which can then be combined through a weighted sum, appear
as one of the most promising leads.

6.3.4 Exploring applications beyond the gut microbiota.

Though it was developed and tested on gut microbiota data, SPARTA’s genericity is
such that it can be applied to any data describing a microbial community. Health subjects
related to other microbiotas, of the skin, mouth or nasal cavity for example, could also be
explored through this approach. Beyond human health, SPARTA could also contribute
insights in the domain of plant biology, with applications to the algae microbiome for
instance, or in bioengineering, for example to better understand the functional intricacies
within the microbial community of a methanizer. The stakes of integrating functional
information when exploring microbial communities range beyond the applications pre-
sented in this thesis, and further contributions to this approach could prove useful in
fields beyond ours.
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ASV: Amplicon Sequence Variant
AUC: Area Under the Receiver Operating Characteristic Curve
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EHR: Electronic Health Records
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KEGG: Kyoto Encyclopedia of Genes and Genomes
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SPARTA: Shifting Paradigms to Annotation Representation from Taxonomy to iden-

tify Archetypes
SVM: Support Vector Machines
T2D: Type 2 Diabetes (Chinese cohort)
WT2D: Type 2 Diabetes (European women cohort)
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Appendix A

This appendix contains the full details of the Jaccard similarity heatmap presented in
Chapter 2 (see Section 2.3.2 and Figure 2.4).
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Appendices

Figure S1 – Jaccard distances calculated between the functional profiles of all
taxa from the IBD dataset, annotated by EsMeCaTa with UniProt: upper left
quarter of the heatmap. This figure is complementary with Supplementary Figures
S2, S3 and S4
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Appendices

Figure S2 – Jaccard distances calculated between the functional profiles of all
taxa from the IBD dataset, annotated by EsMeCaTa with UniProt: lower left
quarter of the heatmap. This figure is complementary with Supplementary Figures
S1, S3 and S4
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Appendices

Figure S3 – Jaccard distances calculated between the functional profiles of all
taxa from the IBD dataset, annotated by EsMeCaTa with UniProt: upper
right quarter of the heatmap. This figure is complementary with Supplementary
Figures S1, S2 and S4
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Appendices

Figure S4 – Jaccard distances calculated between the functional profiles of all
taxa from the IBD dataset, annotated by EsMeCaTa with UniProt: liwer right
quarter of the heatmap. This figure is complementary with Supplementary Figures S1,
S2 and S3
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Appendix B

This appendix contains the full details of the bibliographic exploration conducted in
Chapter 4 (see Section 4.2).
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A
ppendices

Table S1 – Bibliographic research on the IBD dataset’s Robust (Core-significant) functional annotations.
ID Names Family Bibliogra-

phy
category

Bibliography Quotes Bibliographic grade justification Impacted or-
ganism

Family ac-
cording to
bibliography

GO:0102545 phosphatidyl
phospho-
lipase B
activity

1 1 https://doi.org/10.1016/j.
bbrc.2008.03.087

’We have shown that LPC can in-
duce recruitment of monocytes and pro-
inflammatory cytokine production at
nM concentrations.’

Lysophosphatidylcholine (LPC) is a
product of the hydrolysis that Phosholi-
pase B catalyses. It is also known as
a pro-inflammatry agent, making it di-
rectly relevant to IBD (category 1).

Human
(macrophages)

1

GO:0008744 L-
xylulokinase
activity

1 3 https://doi.org/10.3390/
microorganisms10010167 (1),
https://doi.org/10.1371/
journal.pone.0178426 (2)

’various artificial sweeteners such as ace-
sulfame potassium and aspartame can
exacerbate the impairment of the in-
testinal mucus layer observed in CD’ (ref
1) + ‘L-xylulokinase, D-xylonolactonase
and alpha-amylase, were also decreased
in female animals administered Ace-K
(acesulfame potassium).’ (ref 2)

L-xyluokinase is known to be under-
expressed in the gut microbiome of
organisms that consume Acesulfame-
potassium (Ace-K or ACK), an artifi-
cial sweetener, as shown by the second
linked study. The other study reviews
the effect of sweeteners in the diet on
host health in the case of IBD, and flags
Ace-K as an exacerbator of Crohn’s and
Colitis. As such, L-xyluokinase in the
microbiota can be correlated to the pres-
ence of a known factor, but has no direct
impact on the disease itself (category 3).

Microbiota 0

4.1.2.- Not Found
(Aldehyde
Lyases)

1 2 https://doi.org/10.
1155/2017/7685142 (1),
https://doi.org/10.1007/
s00535-016-1220-2 (2),
https://doi.org/10.1096/
fj.201800076RR (3)

’SPL (sphinganine-1-phosphate lyase,
EC 4.1.2.27) deficiency in gut epithe-
lial cells promotes colitis and colitis-
associated carcinogenesis (CAC)’ (ref
1) , indole synthase (EC 4.1.2.8): ‘In
other words, different approaches, such
as the intake of foods that favor indole-
inducing bacteria, microbiota that pro-
duce indoles from tryptophan, and in-
dole compounds themselves, should be
attempted for the prevention of dis-
ease as well as its maintenance and
remission.’ (ref 2), propioin synthase
(EC 4.1.2.35): ‘Decreased bacterial di-
versity characterizes the altered gut mi-
crobiome present in IBD [...] One po-
tential biomarker is propanal (N.B: from
propioin synthase) . It was markedly in-
creased in abundance in samples from
both acute and chronic colitis’ (ref 3)

Though the annotation itself proved too
generic to be correlated to the disease it-
self, several of its children (see citations)
were found to be relevant to IBD (cate-
gory 2). NOTE: some of these enzymes
are benefic, and others are markers of
the disease.

Microbiota
(+fecal mat-
ter) + Human
(epithelial
cells)

N.A168

https://doi.org/10.1016/j.bbrc.2008.03.087
https://doi.org/10.1016/j.bbrc.2008.03.087
https://doi.org/10.3390/microorganisms10010167
https://doi.org/10.3390/microorganisms10010167
https://doi.org/10.1371/journal.pone.0178426
https://doi.org/10.1371/journal.pone.0178426
https://doi.org/10.1155/2017/7685142
https://doi.org/10.1155/2017/7685142
https://doi.org/10.1007/s00535-016-1220-2
https://doi.org/10.1007/s00535-016-1220-2
https://doi.org/10.1096/fj.201800076RR
https://doi.org/10.1096/fj.201800076RR


A
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GO:0006520 amino acid
metabolic
process

1 1 https://doi.org/10.3389/
fimmu.2018.03183

’Intestinal inflammation affects several
metabolic pathways and disturbances
in amino acid metabolism are observed
in IBD patients.’, ‘Metagenomic studies
have revealed that amino acid biosyn-
thesis genes are downregulated and
amino acid transporter genes are upreg-
ulated in the gut microbiome of IBD
patients, indicating that the gut micro-
biota lessens the production of amino
acids and increases the rate of their uti-
lization ‘

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Microbiota 1

GO:0001510 RNA methy-
lation

0 1 https://doi.org/10.3390/
epigenomes4030016

’Our analysis resulted in five candidate
genes corresponding to two of the major
IBD subtypes: UBE2L3 and SLC22A4
for Crohn’s Disease and TCF19, C6orf47
and SNAPC4 for Ulcerative Colitis. Fur-
ther analysis using in silico predictions
and co-expression analyses in combi-
nation with in vitro functional studies
showed that our candidate genes seem to
be regulated by m6A-dependent mecha-
nisms. These findings provide the first
indication of the implication of RNA
methylation events in IBD pathogene-
sis.’

A direct bibliographic link between the
annotation and IBD was established
(category 1) NOTE: colitis involves
more methylation on some genes, and
less on others, therefore it is difficult to
establish a direct link between methy-
lation itself and the control/unhealthy
status

Human (im-
mune re-
sponse)

N.A

GO:0008092 cytoskeletal
protein
binding

0 1 https://doi.org/10.1016/
S0002-9440(10)63308-1

’Another important protein associated
with enterocytic differentiation state is
villin, an actin-binding cytoskeletal pro-
tein located within the microvilli of in-
testinal epithelial cells. It is well es-
tablished that the expression of villin
along the crypt-villus axis increases as
cells migrate from the crypt to the villus
surface concomitant with an increased
rate of synthesis during enterocytic dif-
ferentiation and considerable posttrans-
lational stability. Decreased villin lev-
els in CD and UC relative to HCs with
the lowest concentration in RACE cells
our data point to a disturbance of dif-
ferentiation and maturation processes
in RACE cells. This could also explain
why antigen uptake is increased in these
cells, because immature enterocytes are
known to be more susceptible to antigen
uptake than fully differentiated cells.’

A direct bibliographic link between the
annotation and IBD was established
(category 1) NOTE: (This is a little
surprising to me: Do the actin-binding
molecules of the bacteriae impact our
own epithelial cells?)

Human (ep-
ithelial cells)

0
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GO:0016746 acyltransferase
activity

0 2 https://doi.org/10.1002/
cbin.11362 (1), https://doi.
org/10.1096/fj.14-255208
(2)

’GOAT (Ghrelin-O-acyltransferase)
overexpression significantly enhanced
the induction of colitis’ (ref 1), ‘N-
acylethanolamines (NAEs) [...]are
produced on demand from membrane
phospholipids by the sequential ac-
tions of an N-acyltransferase and an
NAPE-preferring phospholipase D
(NAPE-PLD). [...][Results] would sug-
gest a dysregulation in the production
of NAEs during colon inflammation,
with potentially reduced production.’
(ref 2)

Though the annotation itself proved too
generic to be correlated to the disease it-
self, several of its children (see citations)
were found to be relevant to IBD (cate-
gory 2). NOTE: some of these enzymes
are benefic, and others are markers of
the disease.

Human (in-
testinal mu-
cosa, colon)

N.A

GO:0017065 single-strand
selective
uracil
DNA N-
glycosylase
activity

0 1 https://doi.org/10.1172/
JCI63338

Definition of Goterm: ‘Single-strand se-
lective monofunctional uracil DNA gly-
cosylase (SMUG1) recognizes breaks
in the genome and initiates repair.’
+ ’Increased levels of DNA base le-
sions have been documented in patients
with chronic inflammatory conditions,
including IBD ‘ (ref)

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human
(genome)

0

GO:0003953 NAD+ nucle-
osidase activ-
ity

0 1 https://doi.org/10.3390/
antiox12061230

’In the case of IBD, the maintenance of
intestinal homeostasis relies on a del-
icate balance between NAD+ biosyn-
thesis and consumption. Consequently,
therapeutics designed to target the
NAD+ pathway are promising for the
management of IBD.’+’NAD+ depletion
in UC may result from increased NAD+
catabolism ’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (in-
testines)

1

GO:0016832 aldehyde-
lyase activity

1 2 https://doi.org/10.
1155/2017/7685142 (1),
https://doi.org/10.1007/
s00535-016-1220-2 (2),
https://doi.org/10.1096/
fj.201800076RR (3)

’SPL (sphinganine-1-phosphate lyase,
EC 4.1.2.27) deficiency in gut epithe-
lial cells promotes colitis and colitis-
associated carcinogenesis (CAC)’ (ref
1) , indole synthase (EC 4.1.2.8): ‘In
other words, different approaches, such
as the intake of foods that favor indole-
inducing bacteria, microbiota that pro-
duce indoles from tryptophan, and in-
dole compounds themselves, should be
attempted for the prevention of dis-
ease as well as its maintenance and
remission.’ (ref 2), propioin synthase
(EC 4.1.2.35): ‘Decreased bacterial di-
versity characterizes the altered gut mi-
crobiome present in IBD [...] One po-
tential biomarker is propanal (N.B: from
propioin synthase) . It was markedly in-
creased in abundance in samples from
both acute and chronic colitis’ (ref 3)

Though the annotation itself proved too
generic to be correlated to the disease it-
self, several of its children (see citations)
were found to be relevant to IBD (cate-
gory 2). NOTE: some of these enzymes
are benefic, and others are markers of
the disease.

Microbiota
(+fecal mat-
ter) + Human
(epithelial
cells)

N.A
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GO:0019677 NAD
catabolic
process

0 1 https://doi.org/10.3390/
antiox12061230

’In the case of IBD, the maintenance of
intestinal homeostasis relies on a del-
icate balance between NAD+ biosyn-
thesis and consumption. Consequently,
therapeutics designed to target the
NAD+ pathway are promising for the
management of IBD.’+’NAD+ depletion
in UC may result from increased NAD+
catabolism ’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (in-
testines)

1

GO:0005727 extrachromosomal
circular DNA

1 1 https://doi.org/10.3390/
cells12151953

’These studies suggest that self-derived
circulating DNA (both non-circular
cfDNA in nucleosomes or naked, and
eccDNA (Extrachromosomal circular
DNA)) are able to induce and sustain
the inflammation machinery’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (ep-
ithelial cells)

1

GO:0000310 xanthine
phospho-
ribosyl-
transferase
activity

1 3 https://doi.org/10.1186/
s12866-023-02932-8 (1),
https://doi.org/10.1016/j.
isci.2020.101226 (2)

’Hypoxanthine phosphoribosyltrans-
ferase (Hpt), Adenine phosphoribo-
syltransferase (apt), and xanthine
phosphoribosyltransferase (xpt) are the
enzymes crucial to the purine salvage
pathway.’ (1st citation) + ‘Microbiota-
sourced purines (MSPs) are salvaged by
the gut mucosa for nucleotide genesis.
MSPs support energy balance, prolif-
eration, and mucous barrier function’
(2nd citation)

The annotation itself doesn’t have a di-
rect link to IBD in the bibliography. It is
however involved in the purine pathway,
which is a known factor in intestinal mu-
cosa repair. The annotation is therefore
involved in a larger relevant mechanism
(category 3)

Human (ep-
ithelial cells)

0

GO:0016297 acyl-[acyl-
carrier-
protein]
hydrolase
activity

0 3 https://doi.org/10.1111/
1541-4337.12926

GO term synonym: acyl-ACP
thioesterase activity (https://www.
ebi.ac.uk/QuickGO/term/GO:0016297).
’Genes associated with both fatty
acid profile determination and assem-
bly of triglycerides were identified
successfully as CnDGAT1, CnPDAT,
CnFATB3 which code for the enzymes
diacylglycerol acyltransferase, phos-
pholipid:diacylglycerol acyltransferase,
and acyl-ACP thioesterase class B,
respectively, and these can further
be utilized for producing crops with
high MCT yield.’ + ‘MCTs were first
introduced in 1950, especially for the
treatment of malabsorption disorders.
They have been beneficial in treating
disorders, such as Crohn’s and coeliac
diseases, which are majorly associated
with the inflammatory response of the
intestines.’

When expressed in crops, acyl-ACP hy-
drolases are a precursor for Medium
chain triglycerides (MCTs), which them-
selves are used as treatment for Crohn’s
disease. As such, an indirect link can be
found between this annotation and the
disease (category 3)

Human 0
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GO:0004122 cystathionine
beta-
synthase
activity

1 1 https://doi.org/10.1093/
ecco-jcc/jjz027

’Decreased expression of CBS (cys-
tathionine beta-synthase) propagates
the pathogenesis of UC by exacerbating
inflammation-induced intestinal barrier
injury.’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (ep-
ithelial cells)

0

GO:0008788 alpha,alpha-
phosphotrehalase
activity

1 3 https://doi.org/10.1080/
19490976.2020.1750273

’Clinical manifestations of CD
(Clostridioides difficile) infection
include diarrhea, pseudomembranous
colitis, and in extreme cases, death.’ +
‘Mechanisms by which these variants
utilize trehalose include hypersensitive
de-repression of the phosphotrehalase,
TreA gene, and more efficient trehalose
transport from the extracellular space
via the PtsT transporter.’

This annotation does not directly link
to IBD, however it is known to be ex-
pressed by taxon Clostridioides difficile,
which is a known aggressive pathogen
responsible for colitis symptoms (cate-
gory 3)

Microbiota 1

GO:0047605 acetolactate
decarboxy-
lase activity

1 3 PMID: 32509162 (1),
https://doi.org/10.1002/
mnfr.202300337 (2)

’Lactobacillus reuteri is a normal res-
ident species of the healthy gut mi-
croflora that can prevent IBD by al-
tering the intestinal micro-environment
and the immune system’ (ref 1), ‘This
study identifies the coding gene (aldB)
of acetolactate decarboxylase (ALDC)
as an important regulatory gene of the
intracellular pH in Lactobacillus reuteri
(L. reuteri)’ (ref 2)

Though it does not appear to be directly
linked to the disease in metabolic terms,
this annotation is expressed by a taxon
known to be beneficial, and used as a
probiotic tratment for IBD, Lactobacil-
lus reuteri (category 3)

Microbiota 0

GO:0043130 ubiquitin
binding

0 1 https://doi.org/10.1016/j.
imbio.2020.152026

’In the past few years, accumulative
evidence illustrated that six E3 ubiq-
uitin ligases, namely, ring finger pro-
tein (RNF) 183, RNF 20, A20, Pellino
3, TRIM62 and Itch, exhibited clear
mechanisms in the development of IBD.
They regulate the intestinal inflamma-
tion by facilitating the ubiquitination of
targeted proteins which participate in
different inflammatory signaling path-
ways.’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (sig-
nalling path-
ways)

0

GO:0047419 N-
acetylgalactosamine-
6-phosphate
deacetylase
activity

1 1 https://doi.org/10.3748/
wjg.v13.i20.2826

This enzyme catalyzes the produc-
tion of acetate (https://www.ebi.ac.uk/
QuickGO/term/GO:0047419). ’Our findings
suggest that propionate and acetate, in
addition to butyrate, could be useful
in the treatment of inflammatory disor-
ders, including IBD.’, ‘it is also clearly
demonstrated that acetate and propi-
onate ameliorate an ongoing inflamma-
tory response at the cellular level’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0
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1.1.1.22 UDP-
glucose 6-
dehydrogenase.

0 1 https://doi.org/10.1136/
gutjnl-2015-310705

’Energy metabolism was also identi-
fied herein to be altered in IBD,
which includes the candidate biomark-
ers inorganic pyro-phosphatase, visfatin
and UDP-glucose 6-dehydrogenase.’; Ta-
ble 2 does not mark UDP-glucose 6-
dehydrogenase as ‘elevated in patients
with IBD’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human
(colon)

0

GO:0004135 amylo-
alpha-1,6-
glucosidase
activity

0 3 https://doi.org/10.3390/
ijms22094381

’[GSDIII] diagnosis is made by iden-
tifying biallelic pathogenic variants
in glycogen debranching enzyme,
amylo-alpha-1,6-glucosidase, or 4-
alpha-glucanotransferase (AGL)’ +
‘Populations with GSDI suffer from
Crohn’s-like inflammatory bowel dis-
ease (C-IBD)’

Amylo-alpha-1,6-glucosidase deficiency
is known to cause GSDIII, a form
of glycogen storage deficiency. Another
form of the same pathology, GSDI, has
shown to be a cause of IBD. Though it
is far from direct, a potential link to the
disease can be traced (category 3)

Human 0

GO:0008707 4-phytase ac-
tivity

0 3 https://doi.org/10.3390/
molecules26010031

4-phytase participates in the in-
ositol phosphate metabolism
(https://www.brenda-enzymes.org/enzyme.
php?ecno=3.1.3.26) ’Inositol and its
derivatives, as natural compounds, have
shown a significant effect on inhibiting
inflammation and carcinogenesis’

The annotation is implicated in a
metabolic pathway, of which the prod-
uct is an inflammation inhibitor (cate-
gory 3)

Human (sig-
nalling path-
ways)

0

GO:0046537 2,3-
bisphosphoglycerate-
independent
phosphoglyc-
erate mutase
activity

0 3 https://doi.org/10.1016/j.
ygeno.2018.05.022

’Disease preventing property of different
strains of B. coagulans demonstrated in
separate studies include [...] reduction of
symptoms associated with Clostridium
difficile-induced colitis in mice’ + Table
2: the enzyme is part of the genes de-
tected in the probiotic

Though it does not appear to be directly
linked to the disease in metabolic terms,
this annotation is expressed by a taxon
known to be beneficial against colitis, B.
coagulans (category 3)

Microbiota 0

GO:0008610 lipid biosyn-
thetic pro-
cess

1 1 https://doi.org/10.1097/
MIB.0000000000000394

’We demonstrate that a number of ether
lipids (alkylphospholipid and plasmalo-
gens) are significantly and negatively as-
sociated with CD. These alterations of
lipid profiles particularly plasmalogens
may contribute to the pathogenesis of
IBD.’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human
(plasma)

0

GO:0042121 alginic acid
biosynthetic
process

0 1 https://doi.org/10.1111/j.
1365-3083.2005.01571.x

’Our data suggest that LVA (low-
viscosity sodium alginate, a salt of
alginic acid) could potentially be a
novel therapeutic option for inflamma-
tory bowel disease.’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0
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2.4.2.22 xanthine
phosphori-
bosyltrans-
ferase.

1 3 https://doi.org/10.1186/
s12866-023-02932-8 (1),
https://doi.org/10.1016/j.
isci.2020.101226 (2)

’Hypoxanthine phosphoribosyltrans-
ferase (Hpt), Adenine phosphoribo-
syltransferase (apt), and xanthine
phosphoribosyltransferase (xpt) are
the enzymes crucial to the purine
salvage pathway.’ (1st citation) +
‘Microbiota-sourced purines (MSPs)
are salvaged by the gut mucosa for
nucleotide genesis.MSPs support energy
balance, proliferation, and mucous
barrier function’ (2nd citation)

The annotation itself doesn’t have a di-
rect link to IBD in the bibliography. It is
however involved in the purine pathway,
which is a known factor in intestinal mu-
cosa repair. The annotation is therefore
involved in a larger relevant mechanism
(category 3)

Human (ep-
ithelial cells)

0

GO:0071702 organic sub-
stance trans-
port

1 3 https://doi.org/10.1016/j.
crohns.2011.08.003

’The IBD5 locus on the 5th chromosome
was identified as conferring a 2 to 6 fold
risk to develop CD. This region codes
for two genes (SLC22A4 and SLC22A5)
encoding the organic cation/carnitine
transporters (OCTN) 1 and 2.’

A direct correlation between the annota-
tion and the disease wasn’t established,
but the overexpression of genes cod-
ing for transporters in this family were
found to be a risk factor for Crohn’s
(category 3)

Human (ge-
netic)

1

GO:0032440 2-alkenal
reductase
[NAD(P)+]
activity

0 3 https://doi.org/10.1016/j.
freeradbiomed.2016.11.033

GO term synonym: NAD(P)H-
dependent alkenal/one oxidoreductase
activity (https://www.ebi.ac.uk/QuickGO/
term/GO:0032440). ’Another route for
the metabolic detoxification of HNE
(4-hydroxy-2-nonenal) involves the
reduction of the C2-C3 double bond
by NAD(P)H-dependent alkenal/one
oxidoreductase’+’HNE is converted to
the epoxynonanal, which reacts with
the amino groups of guanosine, adeno-
sine and cytidine, and after cyclization,
forms the etheno-DNA adducts 1,N2-
etheno-2’-deoxyguanosine (?dG) 1,N6-
etheno-2’-eoxyadenosine (?dA), and
3,N4-etheno-2’-deoxycytidine (?dC).’ +
‘Elevated etheno-DNA adduct levels
have been found in the injured tissues
of subjects with chronic pancreatitis,
ulcerative colitis, and Crohn’s disease’

This enzyme is involved in the detoxi-
fication of HNE (4-hydroxy-2-nonenal)
which, at an elevated level in the cell,
interacts with DNA coding sequences in
a way that generates etheno-DNA, the
presence of which has been correlated
with IBD (category 3)

Human (cellu-
lar)

0
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GO:0047356 CDP-ribitol
ribitolphos-
photrans-
ferase activ-
ity

1 2 https://doi.org/10.1073/
pnas.0504084102

GO term synonym: teichoic-acid syn-
thase activity (https://www.ebi.ac.uk/
QuickGO/term/GO:0047356). ’Teichoic acids
(TAs), and especially lipoteichoic acids
(LTAs), are one of the main immunos-
timulatory components of pathogenic
Gram-positive bacteria.’ + ’Taken to-
gether, these results emphasize the im-
portance of LTA composition in the
proinflammatory or antiinflammatory
properties of Lactobacillus cells, but
also point to the potential for use of spe-
cific Lactobacillus cell wall mutants for
treatment of IBD.’

The expression of this specific molecule
in Lactobacillus plantarum has been
proven to affect the host immunore-
sponse, making it capable of enhanc-
ing or downregulating inflammatory re-
sponses depending on their form (most
notably, it has been shown to reduce in-
flammation when it is in a shape that
inclused less d-Ala). (category 2)

Microbiota N.A

GO:0008910 kanamycin
kinase activ-
ity

1 1 https://doi.org/10.1016/
S0016-5085(85)80015-9

“More recently, it has been demon-
strated that a variety of antibiotic com-
pounds can depress intestinal neuroef-
fector transmission in vitro and that
those best able to accomplish this
are those most often associated with
antibiotic-associated colitis. Included in
this category are [...] kanamycin”

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1) (when given as an
antibiotic, kanamycin appears to favor
IBD)

Human (in-
testinal
neuroeffector)

1

2.8.3.10 citrate CoA-
transferase.

1 1 https://doi.org/10.3748/
wjg.v13.i20.2826

This enzyme catalyzes the production of
acetate (https://enzyme.expasy.org/EC/2.
8.3.10). ’Our findings suggest that pro-
pionate and acetate, in addition to bu-
tyrate, could be useful in the treat-
ment of inflammatory disorders, includ-
ing IBD.’, ‘it is also clearly demon-
strated that acetate and propionate
ameliorate an ongoing inflammatory re-
sponse at the cellular level’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0
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4.2.1.- Not Found
(Hydro-
Lyases)

1 2 https://doi.org/10.
1002/mnfr.202000461 (1),
https://doi.org/10.1093/
ecco-jcc/jjz027 (2),
https://doi.org/10.1038/
nrgastro.2017.104 (3)

Tryptophan synthase (4.2.1.20):
‘Chronic colitis is accompanied by
a decrease in the serum Trp level.’
+ ‘Trp supplementation ameliorated
DSS-induced colitis through AhR’ (ci-
tation 1), cystathionine beta-synthase
(4.2.1.22): ‘’Decreased expression of
CBS (cystathionine beta-synthase)
propagates the pathogenesis of UC
by exacerbating inflammation-induced
intestinal barrier injury.’ (citation 2),
pseudouridylate synthase (4.2.1.70)
: ‘Heterogeneity in the phenotype of
Crohn’s disease, including development
of perianal disease, has fostered the
study of genetic predispositions. The
gene PUS10 (coding for pseudouridylate
synthase 10) has a substantial protec-
tive effect against the development of
perianal disease’

Though the annotation itself proved too
generic to be correlated to the disease it-
self, several of its children (see citations)
were found to be relevant to IBD (cate-
gory 2).

Human (sig-
naling path-
ways)

0

GO:0006741 NADP
biosynthetic
process

1 1 https://doi.org/10.1002/
1873-3468.14528

’In dextran sulphate sodium salt (DSS)-
induced colitis, activated NADK pro-
duces NADP from NAD to mount an ox-
idative burst and increased infiltration
of neutrophils, resulting in increased in-
flammation and immune dysregulation’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human
(biosynthetic
pathways)

1

4.1.1.5 acetolactate
decarboxy-
lase.

1 3 PMID: 32509162 (1),
https://doi.org/10.1002/
mnfr.202300337 (2)

’Lactobacillus reuteri is a normal res-
ident species of the healthy gut mi-
croflora that can prevent IBD by al-
tering the intestinal micro-environment
and the immune system’ (ref 1), ‘This
study identifies the coding gene (aldB)
of acetolactate decarboxylase (ALDC)
as an important regulatory gene of the
intracellular pH in Lactobacillus reuteri
(L. reuteri)’ (ref 2)

Though it does not appear to be directly
linked to the disease in metabolic terms,
this annotation is expressed by a taxon
known to be beneficial, and used as a
probiotic tratment for IBD, Lactobacil-
lus reuteri (category 3)

Microbiota 0

GO:0032265 XMP salvage 1 2 https://doi.org/10.1016/j.
isci.2020.101226

GO:0032261 - purine nucleotide salvage
is a parent class of this GO term
(https://www.ebi.ac.uk/QuickGO/term/GO:
0032265); ‘Microbiota-sourced purines
(MSPs) are salvaged by the gut mucosa
for nucleotide genesis.MSPs support en-
ergy balance, proliferation, and mucous
barrier function’

A direct bibliographic link between the
annotation’s prarent and IBD was estab-
lished (category 2)

Human (ep-
ithelial cells)

0
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GO:0045151 acetoin
biosynthetic
process

1 3 https://doi.org/10.1111/j.
1365-2036.2011.04799.x

“This supports our previous hypothesis
that the mechanism causing diarrhoea
involves cell signalling, analogous to the
diarrhoea in severe gut infections, and
is not simply an osmotic effect of the
lactose, as has been previously thought.
Important metabolic toxins are methyl-
glyoxal, acetoin, diacetyl, butan 2,3 diol
and related aldehydes and ketones.”

Link is not quite established, but this
function is implicated in aspects of lac-
tose sensitivity that are analogous to
IBD. Could be a simple correlation, as
“Sensitivity to lactose has been reported
in Crohn’s disease, but its true role in
inflammatory bowel disease (IBD) is un-
clear.” (category 3)

Human (sig-
nalling path-
ways)

1

3.5.3.6 arginine
deiminase.

1 1 https://doi.org/10.1016/j.
intimp.2020.106583

“The results showed enhanced expres-
sion of [. . . ] PAD4 (Protein Arginine
Deiminase-4) in TNBS-induced colitis
mice”

A direct bibliographic link between the
annotation and IBD was established
(category 1) (the expression of this pro-
tein increases the production of Neu-
trophin Extracellular Traps, which in-
duce inflammation)

Human (neu-
trophils)

1

GO:0009346 ATP-
independent
citrate lyase
complex

1 2 https://doi.org/10.1016/j.
mucimm.2022.11.001

“An increase in glucose uptake through
GLUT3 supported the generation of
acetyl-CoA and increased levels of cit-
rate—pharmacological and genetic sup-
pression of ATP-citrate lyase-dependent
(ACLY) acetyl-CoA generation pre-
vented histone acetylation at inflamma-
tory gene loci and reduced cytokine re-
sponses”

We astablished that the expression of a
similar protein, the ATP dependent cit-
rate lyase, was correlated to inflamma-
tion (category 2)

Human (sig-
nalling path-
ways)

1

4.1.3.6 citrate (pro-
3S)-lyase.

1 1 doi:10.3748/wjg.v13.i20.
2826

This enzyme catalyzes the prouction of
acetate (https://enzyme.expasy.org/EC/4.
1.3.6). ’Our findings suggest that pro-
pionate and acetate, in addition to bu-
tyrate, could be useful in the treat-
ment of inflammatory disorders, includ-
ing IBD.’, ‘it is also clearly demon-
strated that acetate and propionate
ameliorate an ongoing inflammatory re-
sponse at the cellular level’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0

GO:0008760 UDP-N-
acetylglucosamine
1-
carboxyvinyltransferase
activity

1 3 https://doi.org/10.1136/
gut.2010.232918

This enzyme is involved in the
biosynthesis of peptidoglycan
(https://www.brenda-enzymes.org/enzyme.
php?ecno=2.5.1.7) ’PGN (peptidogly-
can) purified from Ls33 rescued mice
from colitis in an IL-10-dependent
manner and favoured the development
of CD103+ DCs and CD4+ Foxp3 +
regulatory T cells.’

This annotation is involved in a path-
way, the product of which is known to
be beneficial in IBD when expressed in
certain taxa

Microbiota
(membrane)

0

GO:0006144 purine nu-
cleobase
metabolic
process

1 1 https://doi.org/10.1111/
imcb.12167

“The purine metabolic pathway is in-
volved in various inflammatory pro-
cesses including IBD.”

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (sig-
nalling path-
ways)

1
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GO:0016811 hydrolase ac-
tivity, acting
on carbon-
nitrogen (but
not peptide)
bonds, in
linear amides

1 1 https://doi.org/10.2527/
jas.54010

“We conclude that decreases in the small
intestinal apical activities of these ex-
amined hydrolases likely contribute to
overgrowth of pathogenic bacterial pop-
ulations in the distal small intestine and
the colon, leading to the pathogenesis of
IBD.”

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human + Mi-
crobiota

1

GO:0009409 response to
cold

1 1 https://doi.org/10.1016/
S0140-6736(03)15024-6

“All findings point to refrigeration as
a potential risk factor for Crohn’s dis-
ease.”

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human +
microbiota
(environmen-
tal variable)

1

GO:1901135 carbohydrate
derivative
metabolic
process

1 1 https://doi.org/10.
3390/ijms23031105 (1),
https://doi.org/10.1097/
MIB.0000000000000116 (2)

“Short chain fatty acids (SCFAs) are
among the important class of gut mi-
crobiota bio-products, produced mainly
from fermentation of non-digestible car-
bohydrates, including dietary fiber, that
become available to the gut microbiota”
(citation 1), “In sum, increased intake
of fermentable dietary fiber, or SCFAs,
protects against colonic inflammation
and therefore seems to be clinically ben-
eficial in the treatment of GI disorders,
such as colitis.” (citation 2)

Human (sig-
nalling path-
ways)

0

GO:0008814 citrate CoA-
transferase
activity

1 1 https://doi.org/10.3748/
wjg.v13.i20.2826

This enzyme catalyzes the prouction of
acetate (https://enzyme.expasy.org/EC/2.
8.3.10). ’Our findings suggest that pro-
pionate and acetate, in addition to bu-
tyrate, could be useful in the treat-
ment of inflammatory disorders, includ-
ing IBD.’, ‘it is also clearly demon-
strated that acetate and propionate
ameliorate an ongoing inflammatory re-
sponse at the cellular level’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0

GO:0047330 polyphosphate-
glucose
phospho-
transferase
activity

1 1 https://doi.org/10.1186/
1750-1172-6-27

Product of catalyzed reaction: glucose-
6-phosphate (https://www.ebi.ac.uk/
QuickGO/term/GO:0047330). “Glucose-6-
phosphatase deficiency (G6P deficiency)
[is] responsible for tendency towards
infections, relapsing aphtous gingivos-
tomatitis, and inflammatory bowel
disease.”

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human 0

GO:0015444 P-type
magnesium
transporter
activity

1 2 doi:10.3390/nu13124188 “Nutritional deficiencies are common in
inflammatory bowel diseases (IBD). In
patients, magnesium (Mg) deficiency is
associated with disease severity, while in
murine models, dietary Mg supplemen-
tation contributes to restoring mucosal
function.”

Though the transporters themselves are
not directly referenced, a lack of Mag-
nesium in the diet is correlated to IBD
severity, creating a direct link to a rele-
vant molecule (category 2)

Human 0
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2.7.1.23 NAD(+) ki-
nase.

1 1 https://doi.org/10.1002/
1873-3468.14528

’In dextran sulphate sodium salt (DSS)-
induced colitis, activated NADK (NAD
kinase) produces NADP from NAD
to mount an oxidative burst and in-
creased infiltration of neutrophils, re-
sulting in increased inflammation and
immune dysregulation’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human
(biosynthetic
pathways)

1

GO:0008808 cardiolipin
synthase
activity

0 3 https://doi.org/10.3389/
fimmu.2022.1028953 (1),
https://doi.org/10.1023/A:
1026646816672 (2)

“NLRP3 inflammasome can also be ac-
tivated by direct interaction with mi-
tochondrial cardiolipin, in a mtROS-
independent manner. Cardiolipin is a
phospholipid located exclusively in the
inner mitochondrial membrane (IMM).
It can translocate to the outer mito-
chondrial membrane (OMM) by mtROS
production, PAMPs (e.g., LPS), or pro-
apoptotic stimuli, thus promoting mi-
tophagy. This suggests that cardiolipin
could have a role in IBD pathogenesis.
However, there are still no studies link-
ing cardiolipin to IBD.” (ref 2) + anti-
cardiolipin antibodies are known to be
more prevalent in IBD patients and are
a risk factor for thrombosis (ref 2)

No direct link is established in the
litterature. However, correlations be-
tween cardiolipin antibodies and IBD
are known, and the molecule itself is
cited as a promising lead (cat 3)

Human (mito-
chondria)

1

GO:0097056 selenocysteinyl-
tRNA(Sec)
biosynthetic
process

1 1 https://doi.org/10.2147/
JIR.S288412

Goterm synonym: selenocysteine
biosynthesis; “Selenocysteine and se-
lenocystine significantly attenuated
IBD-related symptoms, including
preventing weight loss, decreasing
disease activity index (DAI) scores, and
increasing colon length.”

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human
(colon)

0

GO:0008815 citrate (pro-
3S)-lyase ac-
tivity

1 1 https://doi.org/10.3748/
wjg.v13.i20.2826

This enzyme catalyzes the prouction of
acetate (https://enzyme.expasy.org/EC/4.
1.3.6). ’Our findings suggest that pro-
pionate and acetate, in addition to bu-
tyrate, could be useful in the treat-
ment of inflammatory disorders, includ-
ing IBD.’, ‘it is also clearly demon-
strated that acetate and propionate
ameliorate an ongoing inflammatory re-
sponse at the cellular level’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0

GO:0047395 glycerophosphoinositol
glycerophos-
phodi-
esterase
activity

1 1 https://doi.org/10.3748/
wjg.v23.i28.5115

This enzyme catalyzes the prouction of
myo-inositol: ’In mice, pβ-cateninS552
staining faithfully reported the effects
of myo-inositol in reducing inflammation
and intestinal stem cell activation.’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human (sig-
nalling path-
ways)

0
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GO:0033711 4-
phosphoerythronate
dehydroge-
nase activity

0 3 https://doi.org/10.1016/
S0002-9270(02)05828-8

This enzyme is involved in
the metabolism of Vitamin B6
(https://www.brenda-enzymes.org/enzyme.
php?ecno=1.1.1.290), ’Median vitamin
B6 levels were significantly lower in
IBD patients (22.0 pmol/L, range
3.6–231.0) than in controls (31.1
pmol/L, 3.7–363.4; p < 0.01). ‘

The annotation itself hasn’t been corre-
lated to IBD. It is however involved in
the metabolism of Vitamin B6, which is
known to be deficient in IBD patients
(category 3)

Human
(biosynthetic
pathways)

0

GO:0004792 thiosulfate
sulfur-
transferase
activity

1 1 https://doi.org/10.1016/j.
bbadis.2020.165716

’Expression of TST (thiosulfate sulfur-
transferase) in colon mucosa is often
markedly reduced in patients with ul-
cerative colitis and colon cancer when
compared to normal mucosa, although
the evidence is not completely consis-
tent [72]. This decrease in TST activ-
ity corresponds with the development of
colitis, and is followed by an elevation of
TST activity in erythrocytes [[71], [72],
[73]].’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (sig-
nalling path-
ways)

0

2.1.1.195 cobalt-
precorrin-5B
(C(1))-
methyltransferase.

1 4 https://doi.org/10.3389/
fimmu.2023.1139799

This enzyme is involved in
the metabolism of vitamin B12
(https://www.brenda-enzymes.org/enzyme.
php?ecno=2.1.1.195) ’Further studies are
warranted to elucidate the possible
association between vitamin B12 and
risk of IBD.’

The most relevant aspect of this an-
notation here is its implication in the
metabolism of vitamin B12, which is
heavily researched in the context of IBD.
However, recent studies on the subject
are still not conclusive in linking vita-
min B12 levels to the disease. There-
fore, though this promising lead has to
be noted, there is no established corre-
lation between this annotation and IBD
(cat 4)

N.A N.A

GO:0006522 alanine
metabolic
process

1 1 https://doi.org/10.3390/
ph14111190

’Using 1H-NMR spectroscopy, Balasub-
ramanian et al. studied the metabolism
of the colonic mucosa of CD and
UC patients with active and quies-
cent disease, as well as control sub-
jects. During active phase, significantly
lower concentrations of amino acids
(isoleucine, leucine, valine, alanine, glu-
tamate, and glutamine), membrane
components (choline, glycerophospho-
rylcholine (GPC), and myo-inositol),
lactate, and succinate were observed
compared to control subjects, whereas,
in remission, their concentrations were
similar.’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human (mu-
cosa)

0
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GO:0008899 homoserine
O-
succinyltransferase
activity

1 3 https://doi.org/10.3390/
nu9090920

This enzyme is involved in
the metabolism of methionine
(https://www.brenda-enzymes.org/
enzyme.php?ecno=2.3.1.46):’rats fed
with methionine-restricted diet were
found to have higher transepithelial
electrical resistance and claudin-3 pro-
tein expression, and decreased severity
of epithelial injury in an ulcerative
colitis model induced by DSS’

The annotation itself hasn’t been corre-
lated to IBD. It is however involved in
the metabolism of methionine, the over-
abundance of which has been correlated
to colitis in mice models (category 3)

Human 1

GO:0008276 protein
methyl-
transferase
activity

1 2 https://doi.org/10.3390/
life11080817

’Rare missense variants of SETDB1
(SET Domain Bifurcated Histone Lysine
Methyltransferase 1, related to annota-
tion) have been identified in Inflamma-
tory Bowel Disease (IBD) patients and
are associated with its pathogenesis.’

A protein related to the annotation was
found to be relevant to the pathogenesis
of IBD (cat 2)

Human (ep-
ithelial cells)

1

1.1.1.88 hydroxymethylglutaryl-
CoA reduc-
tase.

1 1 https://doi.org/10.1016/j.
ejim.2020.02.017

’Hydroxymethylglutaryl-CoA reductase
inhibitors (statins) are the most com-
monly prescribed drugs worldwide’,
‘Some evidence suggests that statins
may have an impact on IBD activity’

A direct bibliographic link between the
annotation and IBD was established
(category 1)

Human 1

Table S2 – Bibliographic research on a subset of the IBD dataset’s Meta-50 functional annotations.
ID Names Family Bibliogra-

phy
category

Bibliography Quotes Bibliographic grade justification Impacted or-
ganism

Family ac-
cording to
bibliography

GO:0007165 signal trans-
duction

0 1 https://doi.org/10.3390/
cancers14153821

’Here, we show that pattern recognition
receptors not only recognize pathogens
and initiate inflammatory signal trans-
duction to induce immune responses,
but also influence the composition of in-
testinal microorganisms, thus affecting
the development of intestinal inflamma-
tion and cancer through various mecha-
nisms.’

A direct link is established between the
annotation and the disease (cat 1)

Human + Mi-
crobiota

1

4.2.1.10 3-
dehydroquinate
dehydratase.

1 3 https://doi.org/10.1002/
mnfr.202000461

This annotation is involved in
the biosynthesis of tryptophan
(https://www.brenda-enzymes.org/enzyme.
php?ecno=4.2.1.10) ‘Chronic colitis is
accompanied by a decrease in the serum
Trp level.’ + ‘Trp supplementation ame-
liorated DSS-induced colitis through
AhR’

This annotation is included in a biolog-
ical pathway relevant to IBD (cat 3)

Human (sig-
naling path-
ways)

0
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GO:0030254 protein se-
cretion by
the type III
secretion
system

1 3 https://doi.org/10.
1128/cmr.00013-07 (1),
https://doi.org/10.3389/
fcimb.2018.00336 (2)

’Infections with many Gram-negative
pathogens, including Escherichia coli,
Salmonella, Shigella, and Yersinia, rely
on the injection of effectors via type
III secretion systems (T3SSs)’ (1)
, ‘Yersinia have been implicated in
Crohn’s Disease (CD, an inflammatory
bowel disease)’ (2)

This annotation does not directly link
to IBD, however it is known to be ex-
pressed by bacteria such as the Yersinia
strain, which is a known pathogen of
IBD (category 3)

Microbiota 1

GO:0016226 iron-sulfur
cluster as-
sembly

1 3 https://doi.org/10.1016/j.
jinorgbio.2017.02.005 (1),
https://doi.org/10.1097/
mog.0000000000000949 (2)

’The human pathogen Clostridium diffi-
cile infection (CDI) is one of the most
important healthcare-associated infec-
tions. The Wood-Ljungdahl pathway,
which is responsible for Acetyl-CoA
biosynthesis, is essential for the survival
of the pathogen and is absent in humans.
The key proteins and enzymes involved
in the pathway are attractive targets for
the treatment of CDI. Corrinoid iron-
sulfur protein (CoFeSP) is a key protein
and acts as a methyl transformer in the
Wood-Ljungdahl pathway.’ (1) + ‘’ CDI
remains common in IBD with complica-
tions including flares in disease activity,
recurrent CDI episodes, and prolonged
hospital stays. .’ (2)

This annotation does not directly link
to IBD, however it is known to be ex-
pressed by Clostridia Dificile, which is a
known pathogen of IBD (category 3)

Microbiota 1

4.2.1.119 enoyl-CoA
hydratase 2.

1 2 https://doi.org/10.1155/
2019/1426954

’Principal component analysis (PCA)
grouped noninflamed samples separately
from the inflamed samples suggesting a
distinctive proteomic signature of the
colon mucosa in acute UC. A total of 43
individual protein spots were identified
corresponding to 33 individual proteins.
These proteins included those involved
in energy metabolism (triosephosphate
isomerase, glycerol-3-phosphate dehy-
drogenase, alpha enolase and L-lactate
dehydrogenase B-chain, isocitrate dehy-
drogenase, inorganic pyrophosphatase,
and enoyl-CoA hydratase)’

A direct link is established between the
annotation’s wider class and the disease
(cat 2)

Human (mu-
cosa)

1

GO:0004077 biotin-
[acetyl-CoA-
carboxylase]
ligase activ-
ity

0 1 https://doi.org/10.1038/
ncomms7592

’Here we identify a virulence-regulating
pathway in which the biotin protein lig-
ase BirA signals to the global regulator
Fur, which in turn activates LEE (lo-
cus of enterocyte effacement) genes to
promote EHEC adherence in the low-
biotin large intestine.’, ‘HEC induces
much severer symptoms, producing diar-
rhoea complicated by haemorrhagic col-
itis’

A direct link is established between the
annotation and the disease (cat 1)

Microbiota 0
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1.3.98.1 dihydroorotate
oxidase (fu-
marate).

1 1 https://doi.org/10.3748/
wjg.v20.i1.163

This enzyme catalyzes succinate pro-
duction (https://www.brenda-enzymes.org/
enzyme.php?ecno=1.3.98.1): “The most
significant differences in urine were
found between the group of patients
with active IBD and the group with IBD
in remission, and between the group of
patients with active IBD and healthy
control subjects. In the first case a
lower concentration of acetoacetate and
a higher concentration of glycine were
detected, while in the second case cit-
rate, hippurate, trigonelline, taurine,
succinate, 2-hydroxyisobutyrate (down-
regulated) and an unknown metabolite
with 4-hydroxyphenyl group and signal
at δ 6.85 ppm (up-regulated) were found
to be the strongest biomarker candi-
dates (Table 5).”

This enzyme is involved in the genera-
tion within bacteriae of citrate and suc-
cinate, both of which are negatively cor-
related to IBD (category 3)

Microbiota 0

4.2.1.70 pseudouridylate
synthase.

1 2 https://doi.org/10.1038/
nrgastro.2017.104

’Heterogeneity in the phenotype of
Crohn’s disease, including development
of perianal disease, has fostered the
study of genetic predispositions. The
gene PUS10 (coding for pseudouridylate
synthase 10) has a substantial protec-
tive effect against the development of
perianal disease, and a C allele at the
CDKAL1 rs6908425 variant and the ab-
sence of NOD2 variants have also been
independently associated with perianal
fistulas.’

A direct link has been established be-
tween a child of the annotation and IBD
complications (cat 2)

Human (ge-
netic)

0

GO:0070395 lipoteichoic
acid biosyn-
thetic pro-
cess

1 2 https://doi.org/10.1073/
pnas.0504084102

’Teichoic acids (TAs), and especially
lipoteichoic acids (LTAs), are one of the
main immunostimulatory components of
pathogenic Gram-positive bacteria.’ +
’Taken together, these results empha-
size the importance of LTA composition
in the proinflammatory or antiinflam-
matory properties of Lactobacillus cells,
but also point to the potential for use of
specific Lactobacillus cell wall mutants
for treatment of IBD.’

The expression of this specific molecule
in Lactobacillus plantarum has been
proven to affect the host immunore-
sponse, making it capable of enhanc-
ing or downregulating inflammatory re-
sponses depending on their form (most
notably, it has been shown to reduce in-
flammation when it is in a shape that
inclused less d-Ala). (category 2)

Microbiota N.A

2.4.1.109 dolichyl-
phosphate-
mannose–
protein
mannosyl-
transferase.

1 3 https://doi.org/10.2147/
JIR.S327609

This annotation is involved in
O-glycan biosynthesis (https:
//www.brenda-enzymes.org/enzyme.php?
ecno=2.4.1.109): ’Several studies have
shown that O-glycan is involved in the
pathogenesis and development of IBD.’

This annotation is included in a biolog-
ical pathway relevant to IBD (cat 3)

Human (mu-
cosa)

1
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GO:0046026 precorrin-
4 C11-
methyltransferase
activity

1 4 https://doi.org/10.3389/
fimmu.2023.1139799

This enzyme is involved in
the metabolism of vitamin B12
(https://www.brenda-enzymes.org/enzyme.
php?ecno=2.7.7.62) ’Further studies are
warranted to elucidate the possible
association between vitamin B12 and
risk of IBD.’

The most relevant aspect of this an-
notation here is its implication in the
metabolism of vitamin B12, which is
heavily researched in the context of IBD.
However, recent studies on the subject
are still not conclusive in linking vita-
min B12 levels to the disease. There-
fore, though this promising lead has to
be noted, there is no established corre-
lation between this annotation and IBD
(cat 4)

N.A N.A

GO:0050560 aspartate-
tRNA(Asn)
ligase activ-
ity

1 3 https://doi.org/10.3390/
nu9090920

This enzyme is involved in aspar-
tate and asparagine metabolism
(https://www.brenda-enzymes.org/enzyme.
php?ecno=6.1.1.23): ‘Aspartate, as-
paragine and proline also participate
in immune responses [129] that may
maintain intestinal health and protect
against animal and human diseases.’

This annotation can be correlated to a
biological pathway linkable to the gut’s
general health, but no direct link to IBD
was found (cat 3)

Human (gut) 0

GO:0004139 deoxyribose-
phosphate
aldolase
activity

0 3 https://doi.org/10.1186/
s12866-023-02932-8 (1),
https://doi.org/10.1016/j.
isci.2020.101226 (2)

This enzyme is involved in
purine metabolism (https://www.
brenda-enzymes.org/enzyme.php?ecno=
4.1.2.4): ’Hypoxanthine phospho-
ribosyltransferase (Hpt), Adenine
phosphoribosyltransferase (apt), and
xanthine phosphoribosyltransferase
(xpt) are the enzymes crucial to the
purine salvage pathway.’ (1st citation)
+ ‘Microbiota-sourced purines (MSPs)
are salvaged by the gut mucosa for
nucleotide genesis. MSPs support en-
ergy balance, proliferation, and mucous
barrier function’ (2nd citation)

The annotation itself doesn’t have a di-
rect link to IBD in the bibliography. It is
however involved in the purine pathway,
which is a known factor in intestinal mu-
cosa repair. The annotation is therefore
involved in a larger relevant mechanism
(category 3)

Human (ep-
ithelial cells)

0
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GO:0046555 acetylxylan
esterase
activity

1 3 https://doi.org/10.3390/
ph15091151

’Degradation of xylan into xylo oligosac-
charides (Figure 1e) and into free
xylose requires the combined action
of degradative enzymes such as α-L-
arabinofuranosidase (EC 3.2.1.55), α-D-
glucuronidase (EC 3.2.1.139), acetylxy-
lan esterase (EC 3.1.1.72) and ferulic
acid esterases (EC 3.1.1.73), which re-
lease the side chains from the xy-
lan backbone. Endo-β-1,4-xylanase (EC
3.2.1.8) acts synergistically with β-
xylosidase (EC 3.2.1.37) to degrade
the xylan backbone with the former
hydrolysing the internal β-(1,4) link-
ages of the xylan backbone to pro-
duce short xylo-oligosaccharides, and β-
xylosidase then removes xylose units
from the non-reducing termini of these
xylo-oligosaccharides (Figure 1e).’, ’The
use of engineered B. ovatus for focal de-
livery of KGF-2 and TGF-β has consid-
erable potential in the treatment of in-
flammatory bowel disease. Bacteroides
spp. are prominent commensal anaer-
obes found in the mucin layer coat-
ing the colonic mucosa and thus ideally
placed for therapeutic protein delivery
to the injured epithelium. The ability of
B. ovatus to utilise xylan as its sole car-
bon source contributes to its predomi-
nance as a representative of the colon
microbiota.’

The annotation itself doesn’t have a di-
rect link to IBD in the bibliography. It is
however expressed by xylan-consuming
bacteria, several of which are researched
as probiotics for IBD (category 3)

Microbiota 0

4.1.2.4 deoxyribose-
phosphate
aldolase.

0 3 https://doi.org/10.1186/
s12866-023-02932-8 (1),
https://doi.org/10.1016/j.
isci.2020.101226 (2)

This enzyme is involved in
purine metabolism (https://www.
brenda-enzymes.org/enzyme.php?ecno=
4.1.2.4): ’Hypoxanthine phospho-
ribosyltransferase (Hpt), Adenine
phosphoribosyltransferase (apt), and
xanthine phosphoribosyltransferase
(xpt) are the enzymes crucial to the
purine salvage pathway.’ (1st citation)
+ ‘Microbiota-sourced purines (MSPs)
are salvaged by the gut mucosa for
nucleotide genesis. MSPs support en-
ergy balance, proliferation, and mucous
barrier function’ (2nd citation)

The annotation itself doesn’t have a di-
rect link to IBD in the bibliography. It is
however involved in the purine pathway,
which is a known factor in intestinal mu-
cosa repair. The annotation is therefore
involved in a larger relevant mechanism
(category 3)

Human (ep-
ithelial cells)

0
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GO:0008124 4-alpha-
hydroxytetrahydrobiopterin
dehydratase
activity

1 3 https://doi.org/10.3390/
microorganisms4020020

This enzyme is involved in pheny-
lalanine metabolism (https:
//www.brenda-enzymes.org/enzyme.php?
ecno=4.2.1.96): ’In a human study
published in 2014 [137], the metabolites
that allowed to distinguish between
the group of patients with active IBD
and the group with IBD in remission
were: N-acetylated compounds and
phenylalanine which were up-regulated
in serum’

This annotation is included in a biolog-
ical pathway which was measured with
higher prevalence in IBD (cat 3)

Human 1

GO:0015846 polyamine
transport

1 1 https://doi.org/10.1080/
10408360701250016

’In inflamed mucosal specimens of pa-
tients with inflammatory bowel disease,
ODC activity and polyamine concentra-
tions are increased.’

A direct link is established between the
annotation and the disease (cat 1)

Human (mu-
cosa)

1

GO:0046113 nucleobase
catabolic
process

1 2 https://doi.org/10.
1111/imcb.12167 (1),
https://doi.org/10.1016/j.
biopha.2023.114620 (2)

A child term of this GO term
is purine nucleobase catabolism
(https://www.ebi.ac.uk/QuickGO/term/GO:
0046113): “The purine metabolic path-
way is involved in various inflammatory
processes including IBD.” (2)

A direct bibliographic link between a
child of the annotation and IBD was es-
tablished (category 2)

Human (sig-
nalling path-
ways)

1

GO:0004365 glyceraldehyde-
3-phosphate
dehydro-
genase
(NAD+)
(phospho-
rylating)
activity

1 3 https://doi.org/10.1016/
j.mucimm.2022.11.001 (1)
https://doi.org/10.1016/j.
biopha.2023.114620 (2)

This enzyme is involved in the
metabolism of short chain fatty
acids (SFCAs) (1), ’SCFAs have various
functions in order to improve the in-
flammatory conditions of the digestive
system in IBD and celiac diseases’ (2)

This annotation is included in a biolog-
ical pathway relevant to IBD (cat 3)

Human (sig-
nalling path-
ways)

0

GO:0015606 spermidine
transmem-
brane trans-
porter activ-
ity

1 1 https://doi.org/10.1080/
10408360701250016

’Putrescine, spermidine, and spermine
are representatives of a group of
aliphatic biogenic amines that is known
by the designation “polyamines.”, ”In
inflamed mucosal specimens of patients
with inflammatory bowel disease, ODC
activity and polyamine concentrations
are increased.’

A direct link is established between the
annotation and the disease (cat 1)

Human (mu-
cosa)

1

Table S3 – Bibliographic research on a subset of the IBD dataset’s non-candidate functional annotations.
ID Name Family Bibliogra-

phy
category

Bibliography Quotes Bibliographic grade justification Impacted or-
ganism

Family ac-
cording to
bibliography
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GO:0051266 sirohydrochlorin
fer-
rochelatase
activity

1 3 https://doi.org/10.3389/
fmicb.2017.01809

This enzyme is involved in
heme metabolism (https://www.
brenda-enzymes.org/enzyme.php?ecno=
4.99.1.4) ’In conclusion, our data sug-
gest that luminal heme, originating
from dietary components or gastroin-
testinal bleeding in IBD and, to lesser
extent in CRC, directly contributes to
microbiota dysbiosis.’

There is no direct link between this an-
notation and IBD, however it is part of
the heme metabolism pathway, which is
a factor of disbyosis in the context of
IBD (cat 3)

Microbiota 1

2.3.1.179 beta-
ketoacyl-
[acyl-carrier-
protein]
synthase II.

1 3 https://doi.org/10.1097/
MIB.0000000000000394

This annotation is involved in lipid
metabolism (https://www.brenda-
enzymes.org/enzyme.php?ecno=2.3.1.179)
’We demonstrate that a number of ether
lipids (alkylphospholipid and plasmalo-
gens) are significantly and negatively
associated with CD. These alterations
of lipid profiles particularly plasmalo-
gens may contribute to the pathogenesis
of IBD.’

A direct bibliographic link between the
annotation’s product and IBD was es-
tablished (category 1)

Human
(plasma)

0

1.4.4.2 glycine de-
hydrogenase
(aminomethyl-
transferring).

0 3 https://doi.org/10.1016/j.
compbiomed.2022.105865 (1),
https://doi.org/10.2174/
187221310791163071 (2)

’S. typhi amino methyl-transferring
glycine dehydrogenase protein is simi-
lar to the human Glycine dehydrogenase
protein, implicated in the Toll-Like Re-
ceptor Pathway and TLR signaling.’ (ref
1), ‘Studies have revealed that intestinal
microorganisms play a key role in the
initiation and maintenance of disease,
and some signaling pathways including
TLR, NF-_x0002_B can act on the in-
testinal barrier, and may be associated
with the intes- tinal environment disor-
der, and affect the disease [i.e: IBD]’ (ref
2)

This protein is involved in the micro-
biota’s Toll-Like Receptor (TLR) sig-
nalling pathway, which is a known factor
of IBD (cat 3)

Microbiota
(signalling
pathways)

1
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GO:0009061 anaerobic
respiration

1 1 https://doi.org/10.1111/j.
1365-2036.2008.03612.x (1),
https://doi.org/10.3389/
fimmu.2019.00277 (2),

’ Anaerobic nitrate respiration yields ni-
trite, nitric oxide (NO) and nitrous ox-
ide. Colonic bacteria produce NO and
UC (Ulcerative Colitis) in remission has
a higher lumenal NO level than con-
trol cases. [. . . ] The prolonged produc-
tion of bacterial NO with sulphide can
explain the initiation and barrier break-
down, which is central to the pathogen-
esis of UC.’ (ref 1) + ‘SCFAs are car-
boxylic acids with aliphatic tails of 1–6
carbons of which acetate (C2), propi-
onate (C3), and butyrate (C4) are the
most abundant produced by anaerobic
fermentation of dietary fibers (DF) in
the intestine.’ (ref 2) + ‘ The metabolic
welfare in health primarily depends on
n-butyrate, a SCFA produced by fer-
mentation of complex carbohydrates. In
early UC, there is failure to utilize n-
butyrate for oxidative and synthetic pro-
cesses (mucus, lipids and proteins) with
parallel enhancement of glucose oxida-
tion.’ (ref 1)

Anaerobiotic mechanisms are directly
relevant to IBD (category 1). However,
it is difficult to link anaerobiosis itself
to the disease, as it appears to be the
balance of different anaerobiotic path-
ways that determine the risk, as some of
these pathways are beneficial (i.e: SFCA
via fermentation) and others detrimen-
tal (I.e: nitrate respiration).

Microbiota N.A

GO:0018759 methenyltetrahydromethanopterin
cyclohydro-
lase activity

1 3 https://doi.org/10.1007/
s00253-018-8871-2

This annotation is involved in methano-
genesis (https://www.brenda-enzymes.org/
enzyme.php?ecno=3.5.4.27) ’Initial studies
found that there is a correlation between
methane excretion and IBD. In UC and
CD patients, a mere 10 to 30% were
methane producers, compared to 50% in
control groups.’

Though no direct link was found be-
tween this enzyme or its products and
IBD, it participates in methanogenesis,
which is less prevalent in IBD microbio-
tas (cat 3)

Microbiota 0

GO:0004042 acetyl-
CoA:L-
glutamate N-
acetyltransferase
activity

1 1 https://doi.org/10.1038/
s41467-023-42788-0

Goterm synonym: N-acetylglutamate
synthase (https://www.ebi.ac.uk/QuickGO/
term/GO:0004042) ’The K22477 (argO, N-
acetylglutamate synthase) is responsible
for producing N-acetylglutamate (NAG)
from glutamate and acetyl-CoA. Our
study revealed that IBD patients have
reduced levels of K22477, leading to an
excess of L-glutamate.’

A direct link was established between
the annotation and IBD (cat 1)

Human 0

GO:1904823 purine nucle-
obase trans-
membrane
transport

1 1 https://doi.org/10.1016/j.
isci.2020.101226

‘Microbiota-sourced purines (MSPs) are
salvaged by the gut mucosa for nu-
cleotide genesis. MSPs support energy
balance, proliferation, and mucous bar-
rier function’

A direct link was established between
the annotation and IBD (cat 1)

Human (ep-
ithelial cells)

0
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GO:0004018 N6-(1,2-
dicarboxyethyl)AMP
AMP-lyase
(fumarate-
forming)
activity

1 1 https://doi.org/10.1080/
00365520510023198

Fumarate is a product of the reaction
catalyzed by this enzyme (https://www.
ebi.ac.uk/QuickGO/term/GO:0004018) ’Oral
ferrous fumarate [. . . ] increased clinical
disease activity in IBD patients. ’

A direct link was established between
the annotation’s product and IBD (cat
1)

Microbiota 1

GO:0004309 exopolyphosphatase
activity

0 3 https://doi.org/10.1111/
imcb.12167

This enzyme is involved in
purine metabolism (https://www.
brenda-enzymes.org/enzyme.php?ecno=
3.6.1.11) “The purine metabolic path-
way is involved in various inflammatory
processes including IBD.”

Though no direct link was found be-
tween this enzyme or its products and
IBD, it is involved in purine metabolism,
which is involved in IBD (cat 3)

Human (sig-
nalling path-
ways)

1

GO:0098800 inner mi-
tochondrial
membrane
protein
complex

0 3 https://doi.org/10.3390/
microorganisms10101910

This annotation is characteristic of the
presence of eukaryotes in the micro-
biota, as bacteria and archaea do not
possess mitochondiae. ‘The individuals
with IBD had a higher prevalence of
fungi, particularly Saccharomyces cere-
visiae, and a lower prevalence of pro-
tozoa, particularly Blastocystis species
(subtypes 1, 2, 3, and 4).’ + Fig 1: higher
proportion of eukaryotes in control sam-
ples compared to IBD

Though no direct link was found be-
tween this component and IBD, it is ex-
pressed exclusively by eukaryotes, which
tend to be more prevalent in IBD (cat 3)

Microbiota 1

GO:0008655 pyrimidine-
containing
compound
salvage

0 4 NA The purine salvage pathway is con-
nected to IBD, but no solid references
were found for the role of the pyrimidine
salvage pathway

No link was found (cat 4) NA NA

GO:0061595 6-deoxy-6-
sulfofructose-
1-phosphate
aldolase
activity

1 3 https://doi.org/10.1039/
C8NP00074C

Enzyme products: 3-sulfolactaldehyde
+ dihydroxyacetone phosphate
(https://www.ebi.ac.uk/QuickGO/term/GO:
0061595). ’Interestingly, the genomes of
∼20% of the human population encode
for a non-functional fucosyltransferase
(Fut2) that normally adds terminal
L-fucose molecules to glycans,84 and
this genotype has been associated with
decreased microbiota diversity and
a higher risk for Crohn’s disease.’ +
‘The L-fucose sugars released from
polysaccharides can have multiple fates
depending on the degrading organism
and the environmental conditions.
One of the pathways, termed the “fu-
cose utilization” (fuc) pathway, starts
with steps similar to those of glycol-
ysis, involving aldol cleavage to yield
lactaldehyde and dihydroxyacetone
phosphate.’

Though no direct link was found be-
tween this enzyme and IBD, its products
appear to be involved in the metabolism
of L-Fucose, which can be correlated to
Crohn’s (cat 3)

Human
(metabolism)

0
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GO:0097157 pre-mRNA
intronic
binding

0 3 https://doi.org/10.1016/
j.ejcb.2010.11.010 (1),
https://doi.org/10.1002/
ctm2.1479 (2)

’Alternative pre-mRNA splicing is re-
garded as a pivotal mechanism for gen-
erating proteome diversity and complex-
ity from a limited inventory of mam-
malian genes.’(1), ‘Available evidence
suggests that some abnormal splicing
RNAs can lead to multiple intestinal dis-
orders during the onset of IBD’ (2)

This enzyme is involved in m-RNA splic-
ing, which can be involved IBD (cat 3)

Human (ge-
netic)

N.A

GO:0071597 cellular birth
scar

0 4 NA NA No link was found (cat 4) NA NA

GO:0071001 U4/U6
snRNP

0 3 https://doi.org/10.1002/
ctm2.1479

’Compared with the constitutive splice,
AS (Alternative Splicing) is far more
complex. The process is performed by
the spliceosome, which is a big com-
plex consisting of 5 ribonucleoproteins
(RNPs) involving the small nuclear
RNA U1, U2, U4, U5, U6 and mul-
tiple auxiliary proteins cooperating to
precisely recognise the splicing sites
and catalyse the two splicing reaction
steps.18, 19 First of all, the splicing pro-
cess starts with the identification of the
5’ splicing site by the snRNP U1 and
the combination of the splicing factor 1
(SF1) with the branch point 3 and of the
U2 auxiliary factor (U2AF) heterodimer
with the 3’ terminal AG and polypyrim-
idine tract. This assembly contributes
to the E complex formation, which can
be transformed to an ATP-reliant, pre-
spliceosome A complex after replacing
SF1 with the U2 snRNP at the branch
site. Subsequently, the recruitment of
U4/U6–U5 tri-snRNP complex causes
the B complex formation.’ + “Available
evidence suggests that some abnormal
splicing RNAs can lead to multiple in-
testinal disorders during the onset of
IBD’

This enzyme is involved in m-RNA splic-
ing, which can be involved IBD (cat 3)

Human (ge-
netic)

N.A

GO:0008252 nucleotidase
activity

0 2 https://doi.org/10.3389/
fphar.2020.619458

’Ectonucleotidases are extracellular en-
zymes with a pivotal role in inflamma-
tion that hydrolyse extracellular purine
and pyrimidine nucleotides, e.g., ATP,
UTP, ADP, UDP, AMP and NAD+.’

A type of nucleotidase was found to be
relevant to IBD (cat 2)

Human (sig-
nalling path-
ways)

1
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4.1.1.65 phosphatidylserine
decarboxy-
lase

0 4 https://doi.org/10.3390/
ijms222111682

Enzyme product: Phos-
phatidylethanolamine (https:
//www.brenda-enzymes.org/enzyme.php?
ecno=4.1.1.65): ’However, thus far there
is no in vivo evidence on the positive
role of PE (Phosphatidylethanolamine)
in IBD, either in mouse models or in
clinical data.’

There is currently no evidence to link
this enzyme to IBD (cat 4)

NA NA

GO:0032447 protein
urmylation

0 2 https://doi.org/10.1016/j.
imbio.2020.152026

GO term definition: ‘Covalent attach-
ment of the ubiquitin-like protein URM1
to another protein. ’; ’In the past few
years, accumulative evidence illustrated
that six E3 ubiquitin ligases, namely,
ring finger protein (RNF) 183, RNF
20, A20, Pellino 3, TRIM62 and Itch,
exhibited clear mechanisms in the de-
velopment of IBD. They regulate the
intestinal inflammation by facilitating
the ubiquitination of targeted proteins
which participate in different inflamma-
tory signaling pathways.’

A direct bibliographic link between a
comparable process and IBD was estab-
lished (category 2)

Human (sig-
nalling path-
ways)

0

GO:0060702 negative
regulation
of endori-
bonuclease
activity

1 1 https://doi.org/10.1073/
pnas.1809575115

’We show that specific deletion of the
endoribonuclease Regnase-1 in intestinal
epithelial cells relieves the symptoms of
experimental colitis during acute inflam-
mation.’

A direct link was established between
the annotation and IBD (cat 1)

Human (ep-
ithelium)

0

GO:0031126 sno(s)RNA
3’-end pro-
cessing

0 2 https://doi.org/10.1093/
ibd/izaa009

’Noncoding RNAs can be divided ac-
cording to their function into 2 groups:
housekeeping ncRNAs (e.g., tRNAs,
rRNAs, snRNAs, snoRNAs). . . ’, ’Spe-
cific deregulation patterns of ncRNAs
have been linked to pathogenesis of var-
ious diseases, including pediatric IBD.’

This annotation is attached to a larger
family of molecules that has an impact
on IBD (category 2)

Microbiota N.A
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Appendix C

This appendix contains detailed zooms on the different parts of Figure 5.1, in Section
5.1. They are made available to improve the readability of the figure.
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Appendices

Figure S5 – Visual representation of the implementation of SPARTA’s first step
(formatting and functional profiling). This is a zoom on a part of Figure 5.1.
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Appendices

Figure S6 – Visual representation of the implementation of SPARTA’s second
step (iterative classification and selection). This is a zoom on a part of Figure 5.1.
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Appendices

Figure S7 – Visual representation of the implementation of SPARTA’s third
step (post-processing and establishment of robust variable subsets). This is a
zoom on a part of Figure 5.1. 195







Titre : Algorithmes d’apprentissage automatique dans le secteur de la santé : intégration des
connaissances fonctionnelles pour améliorer l’analyse des données sur le microbiote intestinal

Mot clés : Microbiote intestinal, métagénomique, intégration de connaissances, Apprentissage
Automatique

Résumé : La composition du microbiote intes-
tinal influence diverses maladies et peut être
utilisée pour la classification automatique de
l’état de santé. Cette thèse propose une mé-
thode intégrant l’annotation fonctionnelle du
microbiote intestinal dans un processus de
classification automatique pour améliorer l’in-
terprétation des résultats. En utilisant les don-
nées taxonomiques et les annotations fonc-
tionnelles via le pipeline EsMeCaTa, un profil
fonctionnel du microbiote est établi. Ces pro-
fils, microbien et fonctionnel, servent à entraî-
ner des Forêts Aléatoires pour différencier les
échantillons malades des témoins. Une sé-
lection automatique des variables basée sur

leur importance est itérée jusqu’à la diminu-
tion des performances de classification. Les
résultats montrent que les profils fonctionnels
offrent des performances comparables aux
profils microbiens et permettent d’identifier un
sous-ensemble robuste de variables discrimi-
nantes. Ces variables se sont révélées plus
fiables que celles obtenues par des méthodes
de référence et ont été validées par une re-
cherche bibliographique. L’analyse des inter-
connexions entre taxons et annotations fonc-
tionnelles a révélé que cartaines annotations
importantes sont issues de l’influence cumu-
lative de taxons non sélectionnés.

Title: Machine Learning Algorithms in the health sector : integration of functional knowledge to
enhance the analysis of gut microbiota data

Keywords: Gut microbiota, metagenomics, knowledge integration, Machine Learning

Abstract: The gut microbiota composition is
a recognized factor in various diseases and
serves as a robust basis for automatic dis-
ease state classification. A deeper functional
understanding of this community is needed to
enhance the biological interpretability of these
approaches. This thesis presents a method for
integrating functional annotation of the gut mi-
crobiota into an automatic classification pro-
cess, facilitating downstream result interpre-
tation. The process utilizes taxonomic com-
position data and links each component to
its functional annotations via the EsMeCaTa
pipeline, creating a functional profile of the gut
microbiota. Both microbial and functional pro-
files are used to train Random Forest clas-

sifiers to distinguish between unhealthy and
control samples. An automatic variable selec-
tion, based on variable importance, is iterated
until classification performance declines. The
results demonstrate that functional profiles
provide comparable performance to microbial
profiles and yield a robust subset of discrim-
inant variables through repetition. These se-
lections proved more reliable than those from
state-of-the-art methods and were validated
through manual literature review. Analysis of
the interconnections between selected taxa
and functional annotations revealed that sig-
nificant annotations arise from the cumulative
influence of non-selected taxa.
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