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Développement et évaluation d’algorithmes de personnalisation basés sur l’IA pour
l’entraînement de l’attention.

Résumé : Les Systèmes Tutoriels Intelligents (STI) offrent des solutions éducatives innovantes
proposant des expériences d’apprentissage personnalisées qui s’adaptent à la variabilité indi-
viduelle. L’équipe Flowers (centre inria de l’université de Bordeaux) développe des STI dont
l’originalité est d’être basée sur l’Hypothèse de Progrès d’Apprentissage (HPA). L’HPA postule
que les individus sont intrinsèquement motivés à s’engager dans des activités où ils perçoivent un
progrès d’apprentissage élevé et que l’expérience de ce progrès renforce encore leur motivation.
Le système, nommé Zone of Proximal Development and Empirical Success (ZPDES), utilise
un algorithme d’apprentissage automatique qui personnalise les trajectoires d’apprentissage en
identifiant dynamiquement les activités maximisant les progrès.

L’étude de l’Entraînement Cognitif (EC), une intervention visant à améliorer des fonctions
cognitives telles que la mémoire, l’attention et la résolution de problèmes, révèle que les bénéfices
d’un EC sont fortement soumis aux différences interindividuelles, soulignant la nécessité de la
personnalisation. Dans ce contexte, notre recherche explore le potentiel de l’algorithme ZPDES
utilisé dans le cadre de l’EC pour améliorer les performances cognitives, l’engagement et la
motivation. Nous avons d’abord mené une revue systématique pour identifier les stratégies
actuelles de personnalisation de l’EC. La revue a révélé l’immaturité relative du domaine,
caractérisée par un nombre limité d’études (n=19), des problèmes méthodologiques et une grande
variété d’approches au sein de cet échantillon restreint. Puis, à travers une revue subjective,
nous nous sommes intéressés à la tâche Multi-Object Tracking (MOT), et nous avons documenté
son efficacité comme EC en fonction des paramètres manipulés dans la tâche : sont observés
chez des individus variés en âge et en neurodiversité, des effets de transfert proches, tels que
l’amélioration sur des tâches nécessitant de l’attention (par exemple, la tâche Useful field of
view), des transferts lointains (comme la mémoire de travail ou les fonctions exécutives), et
des transferts écologiques, notamment une perception améliorée des mouvements biologiques et
des performances en football. Sur cette base, nous avons conçu et testé un programme d’EC
individualisé utilisant la tâche MOT. D’abord, nous avons développé une batterie cognitive
complète comprenant sept tâches couvrant l’attention, la mémoire de travail et les fonctions
exécutives. Ensuite, deux expérimentations ont été menées : l’une avec des jeunes adultes
(n=72) et l’autre avec des adultes âgés (n=50), avec à chaque fois un groupe contrôle (EC non
personnalisé) et un groupe experimental (EC personnalisé). Les participants effectuaient trois
heures d’évaluation pré-et post EC, et l’EC durait huit heures (reparties sur 2 semaines), en
gérant leurs horaires de manière autonome via une plateforme en ligne.

Les résultats ont montré que ZPDES pouvait être plus efficace qu’une condition contrôle,
avec des performances améliorées dans les tâches entraînées dans les deux études, soulignant les
avantages des parcours individualisés. Cependant, la motivation et l’engagement étaient plus
faibles dans les groupes utilisant ZPDES, probablement en raison de la charge cognitive et de
facteurs métacognitifs.

En conclusion, la personnalisation de l’EC par des systèmes comme ZPDES représente une
direction prometteuse pour les recherches futures. Elle propose des méthodes automatiques qui
prennent en compte les différences individuelles tout en respectant les standards méthodologiques
d’évaluation de l’efficacité d’un EC. Ce travail enrichit les connaissances dans les domaines
des STI et de l’EC. Il démontre le potentiel des stratégies d’apprentissage individualisées pour
améliorer les résultats d’un EC, tout en soulignant l’importance cruciale de la motivation et de
l’engagement pour optimiser l’efficacité de ces approches en termes d’effets cognitifs et éducatifs.
Mots-clés : Entraînement Cognitif, Personalisation, STI, Attention, MOT



Development and evaluation of AI-based personalization algorithms for attention
training.

Abstract: Intelligent Tutoring Systems (ITS) offer innovative educational solutions by providing
personalized learning experiences that adapt to individual variability. This adaptability is crucial
for tailoring curricula to maximize student engagement and learning outcomes. The Flowers team
(INRIA Bordeaux) has developed an ITS based on the Learning Progress Hypothesis (LP-H).
The LP-H suggests that individuals are intrinsically motivated to engage in learning activities
when they perceive their own progress. This perception of progress acts as an internal motivator,
encouraging them to pursue more activities where they can continue to make significant progress.
The system, named Zone of Proximal Development and Empirical Success (ZPDES), uses a
machine learning algorithm to customize learning trajectories by dynamically identifying and
exploiting activities that yield maximal learning progress, thereby enhancing student motivation.

The study of cognitive Training (CT), which involves structured tasks designed to improve
specific cognitive functions such as memory, attention, and problem-solving, reveals that the
benefits of CT are highly sensitive to inter-individual differences, highlighting the need for CT
personalization. In this context, our research explores the potential of applying the ZPDES
framework to CT to improve cognitive performance, engagement, and motivation.

We first conducted a systematic review to identify current strategies for individualizing
cognitive training. The review revealed the field’s relative immaturity, characterized by a
limited number of studies (n=19), methodological issues, and a wide variety of approaches
within this small sample. Then, through a subjective review, we examined the Multi-Object
Tracking (MOT) task and documented its effectiveness as CT and its dependence on manipulated
task parameters. In individuals varying in age and neurodiversity, we observed near transfer
effects, such as improvements in attention-related tasks (e.g., the Useful Field of View task),
far transfer effects (e.g., working memory and executive functions), and ecological transfers,
including better perception of biological movements and soccer performance. Based on these
insights, we designed and tested an individualized CT program using the MOT task. First, we
developed a comprehensive cognitive battery comprising seven tasks covering attention, working
memory and executive functions. Then, two experiments were carried out: one with young adults
(n=72) and the other with older adults (n=50), each time with a control group (non-personalized
CT) and an experimental group (personalized/ZPDES CT). Participants completed three hours
of pre- and post-assessment, and the CT lasted eight hours (spread over 2 weeks), managing
their schedules autonomously via an online platform.

The results showed that ZPDES could be more effective than a control condition, with
improved performance on trained tasks in both studies, underlining the benefits of individualized
training paths. However, motivation and engagement were lower in the groups using ZPDES,
probably due to cognitive load and metacognitive factors.

Overall, individualizing cognitive training through systems like ZPDES provides a promising
direction for future research by providing automatic methods for taking individual differences
into account in CT programs while respecting methodological standards for evaluating the
effectiveness of CT. As a result, our work contributes to the growing body of knowledge in both
ITS and CT domains while stressing the crucial role of challenges related to motivation and
engagement to optimize the effectiveness of these individualized approaches for cognitive and
educational outcomes.
Keywords: Cognitive Training, Individualized, ITS, Attention, MOT

Unité de recherche
Flowers team, INRIA centre de l’université de Bordeaux.
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Preface

Historical Context

Cognitive Science
The human mind is an extraordinary entity, demonstrating remarkable capabilities in
learning, adaptation, and problem-solving. An illustrative example can be drawn from the
iconic film ”Home Alone” (Figure 1a, ”Maman, j’ai raté l’avion !” for the french readers),
in which the protagonist, Kevin McCallister, devises a series of traps to defend his home
against burglars. This seemingly playful scenario engages a diverse array of cognitive skills,
warranting a closer examination. Firstly, Kevin’s actions necessitate advanced planning
and decision-making, as he must anticipate the burglars’ movements and develop effective
strategies to thwart them. The setup of the traps requires sophisticated spatial reasoning to
ensure correct placement and functionality. Creativity and problem-solving are paramount
in the design of these traps, while managing household items for this purpose showcases
resourcefulness and ingenuity. Furthermore, Kevin must adhere to a strict timeline and
precisely coordinate his actions, demonstrating significant control and attention to detail.
Flexibility is also crucial, as he must adapt to the burglars’ unexpected actions and modify
his plans accordingly. While often regarded as mere entertainment, Kevin’s elaborate
preparations in ”Home Alone” exemplify the impressive cognitive abilities that humans
employ in routine activities. This underscores the sophistication inherent in human
cognitive processes, revealing the complexity of tasks that are frequently underestimated.

(a) Illustrative poster of the
movie Home Alone

(b) Portrait of Salvador Dali1

Fig 1. Illustrations of the examples taken in the general introduction
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Extending this perspective, individuals can acquire a wide array of skills within
just a few years, such as playing musical instruments, mastering complex mathematical
theories, and cooking gourmet meals. Humans navigate a world with intricate social
norms, demonstrating an impressive ability to learn in diverse environments. Moreover,
they are exceptional storytellers, capable of combining various skills in innovative ways
that shape our world. For example, consider the life and work of Salvador Dalí (see
Figure 1b). Known for his surrealist artwork, Dalí was a precursor of personal branding,
a concept where individuals create and manage their public persona to stand out and
be memorable. Dalí merged his artistic talent with a keen understanding of media and
public perception to craft a unique identity that captured global attention (Archipub,
2021; Star Arts, 2016). This strategy helped him become not only a celebrated artist
but also a cultural icon whose influence extended beyond the art world. Furthermore,
Dalí’s distinctive persona and imaginative works continue to inspire and intrigue audiences,
demonstrating humanity’s ability to craft narratives that resonate deeply with others. This
example illustrates not only the human capability for innovation but also our remarkable
ability to learn, adapt, and communicate the value of our ideas. The fusion of technical
skills, social understanding, and storytelling exemplifies the multifaceted nature of human
intelligence.

This thesis primarily examines a fundamental feature of intelligent systems: learning.
Learning is at the core of all previously described achievements, enabling humans to
integrate sensory input, produce fine motor control reactions, adapt to novel situations,
and interact with others. As a key characteristic of intelligent systems, understanding the
mechanisms driving intelligence has been a subject of great interest for many centuries.
This manuscript aims to contribute to this long-standing inquiry by exploring the processes
and principles underlying human learning and intelligence.

Philosophical foundations

Given the capacity for learning and adaptation in humans, it is unsurprising that the nature
and origin of knowledge have been central concerns throughout history. Epistemology, the
branch of philosophy focused on the theory of knowledge, has long sought to understand
the foundations, scope, and validity of human understanding. Long before the advent
of modern platforms like Facebook, this field was already a central concern of ancient
philosophy, as exemplified by the quote from Plato’s Meno in Figure 2.

”And how will you enquire,
Socrates, into that which you do
not know? What will you put
forth as the subject of enquiry?
And if you find what you want,
how will you ever know that this
is the thing which you did not
know?” Socrates, Meno - 402
B.C. Fig 2. Illustration of Socrates and Meno -

generated by gpt4o (05/16/2024)

In this widely studied dialogue, Plato, through the character of Socrates, introduces
1Source: https://www.artworkarchive.com/profile/thelilley/artist/salvador-dali
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the idea of anamnesis, which posits that knowledge is innate and resides within the
soul. According to this theory, learning is essentially a process of recollection, where one
accesses pre-existing knowledge within the soul by engaging in dialectical reasoning and
introspection. While this theory may seem debatable today, it laid the groundwork for a
long tradition of philosophers who have continued to explore this question for centuries.
For instance, the 17th century saw a clear division among philosophers into two camps:
rationalists, like Descartes (Figure 3), who proposed that truths are innate or can be
discovered through logical reasoning, and empiricists, like Locke (Figure 4), who proposed
that knowledge arises from sensory experience.

”I think, therefore I am.”
René Descartes - Dis-
course On The Method,
1637

Fig 3. Portrait from René Descartes, after Frans
Hals. (wikipedia)

Fig 4. Portrait from John Locke,
after Godfrey Kneller. (wikipedia)

”Let us then suppose the mind to be, as we
say, white paper [tabula rasa], void of all
characters without any ideas; how comes it
to be furnished? Whence comes it by that
vast store, which the busy and boundless
fancy of man has painted on it with an
almost endless variety? Whence has it all
the materials of reason and knowledge? To
this I answer, in one word, From experi-
ence: in that all our knowledge is founded,
and from that it ultimately derives itself.”
Johb Locke - Essay Concerning Humand
Understanding, 1689

Building on these foundational debates, Immanuel Kant sought to reconcile the views
of the rationalists and empiricists. In his seminal work, Critique of Pure Reason, Kant
introduced the concept of transcendental idealism. He argued that while all knowledge
begins with experience, not all knowledge arises from experience. According to Kant, the
mind actively shapes experiences through a set of a priori concepts and categories that
structure our understanding of the world. This synthesis implies that while sensory data
provides the content of knowledge, the mind’s inherent structures organize this data into
coherent experiences.

The aim of this introduction is not to provide an exhaustive account of the history
of human understanding of knowledge acquisition. Instead, this historical perspective is
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intended to broadly highlight how this manuscript is grounded in a significant accumulation
of theories, models, and experiments. Notably, the ideas presented thus far originate
predominantly from the field of philosophy. This emphasis is intentional, as philosophy
has opened up a large set of fundamental questions that are now closely investigated by
the scientific community (for an insightful example of the links between modern physics
and philosophy, see Etienne Klein’s book ”Matière à contredire”, Klein, 2018).

The Cognitive Revolution

During the 20th century, a new community of researchers became particularly interested
in the previously mentioned epistemological questions, developing innovative ideas and
methodologies to understand the inner workings of the human mind. This endeavor, known
as the ”Cognitive Revolution,” emerged in the first half of the last century, with numerous
researchers engaging in interdisciplinary work. Once again, while it is not the purpose
of this manuscript to exhaustively present all relevant contributions from this historical
era, it is essential to understand the historical context that directly shaped subsequent
research.

At the start of the 1900s, the field of psychology was dominated by the behaviorist
paradigm. Behaviorists aimed to provide rigorous methods to understand behavior, in stark
opposition to introspection, which was deemed subjective and unscientific. Researchers
like John B. Watson and B.F. Skinner focused on observable behaviors and their responses
to environmental stimuli, largely ignoring internal mental processes (J. Moore, 2011).
However, this approach faced criticism for its limitations in explaining complex cognitive
functions.

A significant example of the early interdisciplinary interest in studying the internal
mechanisms of the mind is the Hixon Symposium of 1948 (Jeffress, 1951). Among the par-
ticipants of this symposium, John von Neumann, a mathematician, presented a comparison
between the brain and the computer, highlighting the potential for computational models
of cognition. Warren McCulloch, a neurophysiologist, delivered a talk titled ”Why is the
brain in the head?” which explored the physiological basis of mental processes. Additionally,
Karl Lashley, a psychologist, presented a critique of behaviorism, arguing that it was
insufficient for studying certain types of behaviors, such as those ”serially ordered” where
steps in a sequence of actions are too rapid to be triggered by the preceding one. These
interdisciplinary exchanges at the Hixon Symposium exemplify the early collaborative
efforts that propelled the cognitive revolution (Gardner, 1985).

The efforts initiated during the first half of the 20th century eventually led to the
establishment of the new field of ”Cognitive Science.” Historians often date the formal
inception of this field to the 1960s, with the Symposium on Information Theory at MIT in
1956 frequently cited as a pivotal moment. George A. Miller, one of the organizers and a
key figure in the development of cognitive science, expressed his vision in the following
quote:

”I went away from the Symposium [on Information Theory at MIT, 1956,] with
a strong conviction, more intuitive than rational, that human experimental
psychology, theoretical linguistics and computer simulation of rational cognitive
processes were all pieces of a larger whole, and that the future would see
progressive elaboration and coordination of their shared concerns.”
Miller, 2003
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According to H. Gardner in ”The Mind’s New Science: A History of the Cognitive
Revolution” (Gardner, 1985), cognitive science aims to address epistemological questions
by studying the processes of the mind. The author identifies several properties shared
by researchers in the field. First, cognitivists are interested in understanding mental
processes at different levels of representation. This means that a certain cognitive ability
can be described using symbols, schemas, or other abstract representations, as long as
these descriptions provide useful insights into how the system functions. The choice of
representation level is often guided by its utility in explaining and predicting cognitive
phenomena. This principle is echoed in David Marr’s tri-level hypothesis (Marr, 2010),
which proposes that an Information Processing System can be understood at three
levels: the computational level (what the system does and why), the algorithmic level
(how the system performs computations and what representations are used), and the
implementational level (how the system is physically realized). By selecting the most
informative level of analysis for a given cognitive process, researchers can effectively bridge
abstract representations with their underlying mechanisms and physical substrates.

Second, cognitive scientists emphasize the importance of computers in their work.
Computers serve both as analogies and models for mental processes and as tools for
designing and analyzing experimental data. Third, cognitive science is inherently interdis-
ciplinary. Researchers recognize the benefits of integrating diverse fields and methodologies.
For example, cognitive psychologist Zenon Pylyshyn described the connection between
Artificial Intelligence (AI) and psychology (Friesen and Feenberg, 2007):

”Both fields are concerned with the same problems and thus must ultimately
be judged by the same criteria of success. I believe that the field of AI is
coextensive with that of cognitive psychology.”
Zenon Pylyshyn, 1981

While subject to discussion, a report by the Sloan Foundation (Gardner, 1985) identified
six core fields involved in cognitive science: psychology, philosophy, AI, neuroscience,
linguistics, and anthropology. These fields are often illustrated by the cognitive hexagon
(Figure 5, Gardner, 1985).
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Fig 5. The cognitive hexagon

Positioning the Dissertation within this Historical Context

Building on the rich historical foundation of cognitive science, this research aims to advance
our understanding of the mind’s capacities and explore methods for their development
or restoration. The proposed approach is deeply interdisciplinary, integrating principles
from cognitive psychology, developmental psychology, Artificial Intelligence (AI), and
educational sciences. As the rest of the manuscript will describe, our focus is on adapting
training to participants’ differences using individualized methodologies. Through this, we
aim to address fundamental questions about human cognition. After this brief introduction
and historical perspective, we can now turn to the details of our investigation and the core
concepts explored throughout the dissertation.
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Part I

Introduction and background
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Chapter 1

Introduction

Aims

The aim of this general introduction is
to provide an overview of the main con-
cepts addressed in this manuscript. The
scope will be intentionally broad, offer-
ing readers insight into the scientific and
industrial context and highlighting the
key questions that will be explored.

Contents
1.1 Non-Invasive Cogni-

tive Enhancement: A
Promising Future? . . . 29

1.2 Educational Technolo-
gies: Where Algorithms
Meet Human Learning . 42

1.3 Objectives, Scientific
and Industrial Context
of the Thesis . . . . . . . 47

Abstract
Following a brief presentation on the connection of this work to the field of Cognitive
Science and its history, this chapter will introduce the core concepts of Cognitive Training,
a field focused on enhancing or restoring cognitive function, and more broadly on cognitive
skills development at all ages. Initially, an overview of the main concepts, methodologies,
and challenges will be presented. This will be followed by a specific example: an attention
task known as MOT. Introducing this task and discussing the challenges faced by current
research will provide context for the scientific and industrial background of this thesis,
particularly how individual differences can be addressed using intelligent, machine learning-
based procedures to tailor interventions. After presenting the main research question, an
outline of the dissertation will be provided.

Collaborators
Adolphe Maxime, Pech Marion, Oudeyer Pierre-Yves, Delmas Alexandra, Maurel Denis,
Sauzéon Hélène 1

1Following Contributor Roles Taxonomy, all collaborators contributed for ”Writing - Review & Editing”.
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1.1 Non-Invasive Cognitive Enhancement: A Promis-
ing Future?

1.1.1 What is a Cognitive Training ?
In “Methods of Mind-Training: Concentrated Attention and Memory”, Catharine Aiken
(Aiken, 1896), an American teacher, describes how she trained her pupils’ concentration
through various exercises. Her teaching philosophy is well encapsulated in this quote from
the book:

“Botany, Natural History, Mineralogy, Geology, and other studies drawn from
the realm of nature, may be successfully taught in a class well trained to listen,
with little need of textbooks except for reference or for reading.” Catharine
Aiken, 1896

As illustrated in Figure 1.1, Aiken asked students to look at a column of numbers and,
after a few seconds of presentation, she reversed the switching blackboard. She began with
a small set of numbers, gradually increasing the set size and assigning more challenging
tasks, such as recalling the numbers in reverse order or performing arithmetic operations
on each number. Through these methods, she aimed to enhance students’ perception,
attention, and memory. In her book, in addition to describing the method, she finally
discusses the positive impact of these exercises on academic performance and includes a
letter from a music instructor who was delighted by the improvement in students’ musical
abilities.

Fig 1.1. Illustration of activities proposed by Catherine Aiken, taken from the book
Methods of Mind-Training: Concentrated Attention and Memory (Aiken, 1896)

Although Aiken’s description lacks scientific evidence and has been widely discussed
(Whipple, 1910), her approach contains several features of what we now refer to as
Cognitive Training (CT). CT is formally defined as the sustained and repetitive engagement
in activities designed to improve or restore cognitive abilities through training or the
acquisition of new cognitive skills. The activities studied in the field of CT are diverse
and can include different cognitive exercises specifically designed to target certain abilities,
referred to as the ”direct route” (F. Joessel, 2022a), such as Working Memory (WM)
(Jaeggi et al., 2008b; Klingberg et al., 2002), Executive Functions (EF) (Karbach and
Kray, 2021), or Perceptual (Romeas et al., 2016a) training. Alternatively, they can involve
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everyday activities, termed the ”indirect route” (F. Joessel, 2022a), such as playing chess,
music training (Sala and Gobet, 2017b), meditation (Taylor et al., 2013), or playing video
games (Boot, 2015, Bediou et al., 2023a). In practice, complex skill training usually offers
a significant advantage over simple behavioral interventions, as research demonstrates that
the former more effectively generalizes to real-life tasks outside the laboratory (Kovbasiuk
et al., 2022). However, when focusing on complex skill training, it becomes more challenging
to discern the specific properties that contribute to this enhancement. Despite the variety
of these activities, all forms of CT share the common goal of understanding how the mind’s
abilities can be acquired, enhanced or restored. To assess the effects of CT, researchers
use a variety of tasks that measure outcomes ranging from very similar to highly different
from the trained task. This range is referred to as near to far transfer, indicating the
distance from the trained activities (Barnett and Ceci, 2002a). By employing this approach,
researchers can determine the extent to which skills or knowledge from the trained task
transfer to other tasks.

Before proceeding further, it is important to clarify what is meant by ”cognitive
abilities” or ”cognitive functions” terms we have used interchangeably and referred to
vaguely since the beginning of this manuscript. As introduced in the historical perspective
(), for some readers, the level of representation we will use might seem incomplete or
open to interpretation. However, this description will generally be sufficient to discuss the
impact and benefits of CT interventions. Cognitive functions can be defined as a wide
range of mental processes that allow us to carry out tasks from the simplest to the most
complex.

Attentional Control Attentional control is described as “the ability to focus on the
task at hand and to ignore sources of distraction or noise while at the same time constantly
monitoring one’s environment for new sources of information” (Bavelier and Green, 2019).
Essentially, it is the ability to direct cognitive processing towards relevant information.
McDowd, 2007 distinguishes different modes of attention based on task context: selective
attention, divided attention, sustained attention, and switching attention. Selective
attention is the ability to focus on a specific object or task while ignoring irrelevant stimuli,
allowing individuals to prioritize essential information. Divided attention refers to the
capacity to attend to and perform multiple tasks or process multiple information sources
simultaneously, crucial for multitasking. Sustained attention, also known as vigilance,
is the ability to maintain focus over prolonged periods, especially during monotonous
tasks. Switching attention involves shifting focus between different tasks or mental
processes, allowing flexibility in responding to changing demands. Common tasks to assess
these modes of attention include visual search tasks for selective attention (Müller and
Krummenacher, 2006), dual-task paradigms such as the Useful Field Of View (UFOV) for
divided attention (Yung et al., 2015a), the Continuous Performance Test for sustained
attention (Shaked et al., 2020), and the Trail Making Test for switching attention (Bowie
and Harvey, 2006).

Working Memory WM, introduced by A. D. Baddeley and Hitch, 1974, is defined
as “a system of components that holds a limited amount of information temporarily in a
heightened state of availability for use in ongoing processing” (Adams et al., 2018). This
system comprises several sub-systems: the visuospatial sketchpad, responsible for storing
visuospatial information; the phonological loop, which manages verbal information; and
the episodic buffer, introduced later (A. Baddeley, 2000), which integrates information
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from long-term memory. These sub-systems are coordinated by the central executive,
which oversees processing and manipulation of information across the components. The
capacity or span limit of WM has been a major research focus. Miller proposed the
well-known “magic number 7 plus or minus 2” (Miller, 1956), indicating the number of
items an individual can hold in WM. However, the embedded-processes model by Cowan,
2001 suggests a more limited span of approximately four slots. In Cowan’s model, WM
is not a separate system but an activated subset of long-term memory, with the central
executive controlling attentional resources. The span limit of four items is attributed to
the restricted capacity of attention. More recently, research by W. J. Ma et al., 2014 has
further refined this understanding by proposing that the span limit could be a function of
the precision needed to encode information. In addition to capacity limits, the temporal
dynamics of WM have also been explored. The Time-Based Resource-Sharing (TBRS)
model by Barrouillet et al., 2007; Logie et al., 2021 posits that cognitive resources are
shared over time between processing and storage. This model predicts that increased
processing demands reduce the time available for maintaining information, leading to
memory decay. Common tasks used to measure WM include the N-back task (Jaeggi et al.,
2010), which assesses the ability to monitor and update information, and complex span
tasks such as the Operation Span (OSPAN) task (Unsworth et al., 2005), which evaluate
the ability to store and manipulate information simultaneously.

Executive Functions Closely related to the construct of WM, EF have been described
as “general-purpose control mechanisms that modulate the operation of various cognitive
subprocesses and thereby regulate the dynamics of human cognition” (Miyake et al., 2000b).
Seminal works by Miyake and colleagues (Miyake et al., 2000b) propose that EF can be
separated into three correlated constructs: updating, which refers to the ability to refresh
the contents of WM; shifting, which involves the ability to switch between different mental
representations; and inhibition, which is the ability to suppress dominant or automatic
responses. Later, Diamond, 2013 expanded this model by including additional components
such as reasoning, problem-solving, and planning, thus providing a more comprehensive
framework for understanding the broad scope of EF. Common tasks used to measure EF
include the Stroop test (MacLeod, 1991; Stroop, 1935), which assesses inhibitory control,
or the Wisconsin Card Sorting Test (WCST), which evaluates cognitive flexibility and
set-shifting abilities (Dehaene and Changeux, 1991; MILNER, 1963).

A broad set of other cognitive functions Learning, long-term memory, processing
speed, language and verbal skills, perceptual speed and accuracy, spatial abilities are
other critical cognitive functions. We will not provide an exhaustive overview of all
cognitive functions but a useful taxonomy can be found in Webb et al., 2018d. Notably,
this taxonomy has been developed using previous works relying on confirmatory factor
analysis from intelligence researchers. For instance, the Cattell-Horn-Carroll (CHC)
model (W. Schneider and McGrew, 2012, Flanagan and McDonough, 2018), one of
the most influential frameworks, categorizes cognitive abilities into broad and narrow
strata. The broad abilities include fluid intelligence (Gf), crystallized intelligence (Gc),
visual processing (Gv), auditory processing (Ga), and processing speed (Gs), among
others. Within these broad categories, narrow abilities represent more specific skills, such
as quantitative reasoning or reading comprehension. The CHC model also illustrates
how general intelligence (g) is an overarching factor that influences performance across
various cognitive domains, highlighting both the interconnectedness and distinctiveness of
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Fig 1.2. Illustration of the integration of the CHC taxonomy into task performance,
inspired by W. J. Schneider and McGrew, 2013

individual cognitive abilities. Inspired by W. J. Schneider and McGrew, 2013, Figure 1.2
aims to demonstrate how this taxonomy can be integrated and used as parameters in an
information processing model. Additionally, it underscores the importance of attention as
a gateway to the cognitive system. Complementary to this, Figure 1.3 seeks to provide an
overarching view of how different models and tasks relate to this taxonomy. It is important
to note that all of these are constructs, and the terminology might sometimes vary across
different studies and theoretical frameworks.

32



Fig 1.3. Overview of different theoretical models of working memory, executive functions, and attention, and how several tasks are used to measure
some of their components. The right-hand side shows how all these tasks are integrated into the broad CHC-M taxonomy proposed in Webb et al.,
2018c
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1.1.2 Cognitive Training: a field in rapid progress
As highlighted in Strobach and Karbach, 2016, the CT research field has gained increasing
importance over the last decades. A search on PubMed for the term “CT” from 1973
to 2016 revealed 2,471 peer-reviewed contributions. Extending this search to the period
from 1973 to May 2024 results in 4,587 peer-reviewed contributions, underscoring the
field’s rapid growth. This growth can be attributed to several factors, including technical
progress (e.g., computerized setups, more sophisticated analysis tools) and theoretical
advances (e.g., findings in cognitive and neuronal plasticity). Moreover, another significant
factor contributing to the increasing number of studies and papers is the ongoing debate
about the impact of CT. While some observations suggest that CT can lead to near to
far transfer, many researchers argue that far transfer does not exist (Melby-Lervåg and
Hulme, 2013a; Melby-Lervåg et al., 2016; Sala and Gobet, 2017b).

This debate is particularly intense due to the influence of commercial programs also
known as ”Brain training”, which often introduce noise into the global assessment of CT’s
effectiveness (Simons et al., 2016a). The promises hold by CT such as improving cognitive
performance, enhance memory or even delay effect of aging on the brain set the stage for
an important market (Simons et al., 2016a). Therefore, in 2014, 70 researchers wrote an
open letter, pointing out the challenge of insufficient compelling evidence in this complex
and multifaceted field2. In response, 111 researchers in 2016 acknowledged the need for
improvement while highlighting the continued promise of various research directions3.

This debate is also notably important because it holds promise in several domains.
First, in the educational context, some cognitive functions have been observed to correlate
with academic performance. For instance, WM has been linked to reading comprehension,
reading efficiency, and mathematical abilities (Titz and Karbach, 2014a). Additionally,
EFs, particularly cognitive flexibility, have been associated with reading and mathematical
abilities. There is promising evidence of the effectiveness of WM training and EF training
in terms of both near and far transfer (i.e., improvement in untrained tasks or academic
performance) for children with cognitive or learning difficulties, such as those using the
Cogmed Training program (Klingberg et al., 2005) or the Jungle Memory program (Alloway
et al., 2013). These interventions have also shown benefits for typically developing children,
as seen with the Braintwister WM training (Karbach et al., 2015). However, like many
areas in CT research, the results are mixed. A meta-analysis (Sala and Gobet, 2017a)
found a significant overall effect size for mathematics and a marginally significant effect size
for literacy/word decoding, yet concluded that WM training is not effective at improving
children’s cognitive or academic abilities. These mixed results highlight the complexity
of the field. Moreover, there are still open questions regarding meta-analysis outcomes
— even when considering several moderators, we might still ask whether the absence of
far-transfer effects is genuinely evidence of no far-transfer effect or a lack of modeling
complex interactions between several moderators (Johann and Karbach, 2020).

Beyond educational contexts, CT could be highly valuable for activities requiring
high-level expertise. This is particularly relevant when training specific skills related to a
specific task at hand, such as in military training (Blacker et al., 2019) or athletic training,
where context-specific CT, especially those relying on perceptual-cognitive elements, might
provide a competitive edge (Harris et al., 2018b).

CT offers non-invasive, non-drug methods to restore cognitive functions. Systematic
reviews and meta-analyses have found evidence of CT effects, showing overall improvement

2https://www.cognitivetrainingdata.org/the-controversy-does-brain-training-work/stanford-letter/
3https://www.cognitivetrainingdata.org/wp-content/uploads/2014/open-letter.pdf
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in cognition (with small to moderate effect sizes) for post-stroke patients (van de Ven
et al., 2016), post-acute traumatic brain injury (Hallock et al., 2016b), multiple sclerosis
(Lampit et al., 2019), and Parkinson’s disease (I. H. Leung et al., 2015b). However, when
looking at specific cognitive domains to assess far transfer, results were mixed, indicating
that further research is needed to fully understand the effects of training.

Finally, in a world where aging is increasingly prevalent, cognitive decline has become
a significant concern. For instance, in France, 20.5% of the population was above 65 in
2020 compared to 15.8% in 2000. Studies have shown that older adults with decreased
cognitive abilities, such as processing speed, response inhibition, or attention, face a higher
risk of falls (Muir et al., 2012) and increased healthcare costs (Pech, 2023). Numerous
systematic reviews have identified small to moderate effect sizes on global cognition and
transfer in older adults, with significant variability in observed outcomes across different
reviews, depending on the specific domains trained and assessed. These observations hold
true for both healthy older adults (Kelly et al., 2014; Kueider et al., 2012b; Lampit et al.,
2014a; Shah et al., 2017b; Shao et al., 2015; Webb et al., 2018c) and older adults with
mild cognitive impairment (MCI)( Butler et al., 2018; da Silva et al., 2022), dementia, or
Alzheimer’s disease (Hill et al., 2017a). However, it remains challenging to gain a clear
understanding of these outcomes, as reviews differ in their inclusion criteria, such as the
type of training (e.g., CT, video games, the addition of physical activities) and differences
in age range.

In sum, while more research is needed, CT offers a promising avenue for populations
with cognitive decline, impairment, or neurodevelopmental disorders. This approach might
also be beneficial for the general neurotypical population, as more and more press articles
highlight a general shrinking attention span4, 5. For instance, in 2021, a survey of 2093
UK adults aged 18+ examined their perception of their own attention spans6. Results
indicated that half (49%) felt their attention span was shorter than it used to be, and 66%
believed that young people have shorter attention spans than those in the past.

Is There a Widespread Attention Decline in Modern Society?

If the public self perceived a shrinking of their attentional span, it needs to be discussed in
light of modern habits. Indeed, in today’s digitally pervasive environment, the prevalence of
screens and the practice of using multiple screens simultaneously—a phenomenon known as
”multiscreening”—raise significant questions about the impacts on human attention. In his
book ”Apocalypse cognitive”, Gerald Bronner describes a deregulated ”cognitive market”
where a an enormous quantity of information is competing to get our attention (Bronner,
2021). As an example, a 2016 survey showed that people checked on their smartphones
more than 221 times a day (once every 6 minutes Bronner, 2021, p71). Moreover, according
to a Nielsen survey, a quarter of tablet or smartphone owners use their devices daily while
watching TV, embedding multiscreening into daily routines (C. M. Segijn et al., 2017).
This increasing integration of digital devices in our lives prompts a critical examination of
how such habits may influence our attentional capacities, both positively and negatively.
This question draws a lot of attention - notably for children development: for instance, in

4https://edition.cnn.com/2023/01/11/health/short-attention-span-wellness/index.html
5https://time.com/6302294/why-you-cant-focus-anymore-and-what-to-do-about-it/
6https://www.kcl.ac.uk/policy-institute/assets/how-people-focus-and-live-in-the-modern-information-environment.

pdf
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april 2024, a commissioned report (”Enfants et écrans: A la recherche du temps perdu” 7)
was submitted to the french government - showing the interest to this potential public
health issue.

Empirical studies present a complex picture of the cognitive consequences of multi-
screening. C. M. Segijn et al., 2017 illustrates that individuals can effectively manage
multiple screens and maintain their ability to recall information under conditions of ade-
quate visual attention. This finding has already been demonstrated in earlier work by Jeong
and Hwang, 2012, yet it contrasts with other studies suggesting potential cognitive costs
associated with frequent screen switching (C. Segijn, 2016). Such contradictory findings
underscore the need for a nuanced understanding of how divided attention, potentially
trained through regular multiscreen usage, affects our ability to sustain focus over longer
periods.

More generally, several systematic reviews (Domingues-Montanari, 2017, Radesky and
Christakis, 2016) have discussed the impact of screens on health and development. First,
studies have linked excessive screen exposure to poorer sleep quality, which in turn affects
cognitive performance. For instance, poor sleep quality is associated with a negative
cognitive bias toward negatively valenced stimuli and diminished performance in sustained
attention tasks (Gobin et al., 2015, Marinelli et al., 2014). Second, prolonged screen time
has shown to induce an impact by substituting with other activities. For example, screen
time has been associated with higher obesity rates among children who watch more than
two hours of TV daily (Twarog et al., 2015) or induce less exposure to natural environment
as highlighted in this scoping review (Oswald et al., 2020).

In terms of cognitive development, results are mixed. It appears in the meta-analysis
from Madigan et al., 2020 that the more the screen time is limited, better are the language
skills. For instance, in this line, Pagani et al., 2013 show that the risk of language delay
increased proportionately with time spent in front of the TV. Other works showed more
nuanced results, for instance Nichols and Walker, 2005 showed that the viewing of ”Dora
the Explorer” resulted in 13.30 more vocabulary words acquired at the age of 30 months
compared with non-viewers, in comparison with the viewing of ”Teletubbies”, which was
negatively related to vocabulary acquisition. Finally, other studies emphasize the necessity
of parental co-viewing to realize these benefits in younger children (Richert et al., 2010).

In terms of the impact of screen specifically on attention, a review by R. M. S. Santos
et al., 2022, showed that screen times - higher than the guidelines - for children under 12
might be associated with a diminished attention. In adult population, some experimental
data tends to show that there is a decreased in sustained attention: a 2004 study found
that in average, workers (analyst, software developers, and managers) switch task every
2 minutes (González and Mark, 2004) while in 2016 a study by Mark et al., 2016 found
that the median time was only 40 second. This findings have to be taken with care, as
methods to calculate these durations were different and are noisy (as taken directly in
the workplace, with small sample sizes). In sum, even though more scientific evidence is
needed to confirm all these findings, it appears that this new way of living and working is
a real concern to consider.

7https://www.elysee.fr/admin/upload/default/0001/16/fbec6abe9d9cc1bff3043d87b9f7951e62779b09.
pdf
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1.1.3 Cognitive Training: many challenges
After reviewing the potential importance of developing effective CT interventions for various
populations in an ultra-connected society, this section aims to identify and understand the
current challenges that need to be addressed.

Methodological considerations

As will be presented later in the manuscript, our work involves developing an intervention
to study a specific CT. Like other researchers in the field, we have strived to ensure
high standards in the methodologies employed. Despite these efforts, there remains a
lack of published studies adhering to these gold standards. For example, as Chapter 2
of this manuscript will demonstrate, and as many systematic reviews and meta-analyses
(Schmiedek, 2016a) in the field show, the quality assessment of experimental designs and
methodologies is still, on average, quite poor. Randomized controlled trials remain the gold
standard for assessing interventions. Unfortunately, many studies still lack randomization,
participant and/or researcher blinding, and even control groups. The choice of a proper
control group, particularly an active one, can be challenging (Au et al., 2020). For instance,
previous works have shown that trained intervention groups showed effects when the
control group practiced crosswords (e.g., J. L. Hardy et al., 2015) or read books (e.g.,
N. T. Y. Leung et al., 2015), but there was no effect if the control group also practiced
video games (e.g., R. E. Mayer et al., 2019).

Additionally, the broader issue of the “replication crisis” is a concern, with a lack of
standardization in training and assessment methods (Schmiedek, 2016a), as well as a lack
of data sharing and other materials useful for replicating studies (such as scripts used
for data pre-processing, cleaning, and analysis). More work needs to be conducted to
measure the impact of interventions accurately. While well-conducted studies use sets
of cognitive tasks—also known as cognitive batteries—different from the trained task to
assess the impact of training, there is still a lack of standardization in how to properly
assess interventions. An insightful example of this issue is the re-analysis of a systematic
review conducted in 2014 (Lampit et al., 2014a), which showed different conclusions when
using a different taxonomy to classify the cognitive tasks used for assessment (Webb
et al., 2018c). More generally, assessing the impact of training is somewhat limited to
computerized laboratory tasks. More work is needed to understand the potential transfer
of training to real-world activities.

The quest for transfer

Transfer is of principal importance in the CT field. Historically, this idea was already
developed in Plato’s Republic or John Locke’s Some Thoughts Concerning Education
(Graves, 1915). Plato emphasized rigorous training in disciplines like mathematics and
philosophy to cultivate critical and abstract thinking, aiming for well-rounded individuals
capable of societal contribution. Locke, on the other hand, viewed the mind as a blank
slate and stressed developing good habits and reasoning through practice and repetition,
believing that training in one area could enhance overall cognitive abilities. In practice,
contemporary schools sometimes promote this idea to students, suggesting that seemingly
useless knowledge today will build and prepare their minds to handle future problems
“Learning “Useless” Things in School Is (Usually) NOT Useless”, 2020.

However, there is currently a significant debate about the possible existence of transfer
from trained to far, untrained tasks. Known as “the curse of specificity,” (Fulvio et al.,
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2013) this phenomenon has been observed in various tasks, including perceptual tasks
(Sowden et al., 2002) or chess (Gobet and Simon, 1996). In a famous experiments by
Ericsson et al., 1980, authors trained a participant to hear random digits at a rate of one
digit per second and recall the sequence. The participant trained on this memory span
task for about an hour a day, 3 to 5 days a week, for over 1.5 years (230 hours of practice).
The result showed an increase from 7 to almost 80 digits recalled, but the participant did
not transfer this ability to a very similar task with letters instead of digits. While several
studies do not show far transfer, others have demonstrated at least near to far transfer
(e.g Jaeggi et al., 2008b). Therefore, the question remains open, as the lack of results
could be due to the type of CT intervention or the way it is assessed (e.g., is the cognitive
battery well-designed to detect a relevant effect?).

Existing theoretical models of transfer In line with the idea of formal education,
CT transfer is often explained through the “muscle analogy” (N. A. Taatgen, 2021).
Cognitive functions are likened to the “muscles of the mind,” suggesting that training
them can enhance performance in other tasks. For instance, a tennis player who trains
their biceps might see improved tennis performance because these muscles are used in the
game. However, this muscle analogy doesn’t hold up due to the mixed results from CT
studies. For instance, if we apply some of the mixed results to the tennis player example,
it would imply that while training their biceps improves their tennis ability, the stronger
biceps do not enhance performance in other tasks, such as climbing or swimming. This
discrepancy highlights the limitations of the muscle analogy for CT transfer. It does not
make sense that increased strength in one area would not benefit other activities requiring
those same muscles, indicating a potential flaw in the aforementioned analogy.

This question relates to the mechanisms involved when inducing training in a participant.
According to Lövdén et al., 2010a, brain plasticity is induced by the mismatch between the
functional capacity of the system and the environmental demands that operate through
experience. While this view is important for accounting for structural changes observed
in imaging studies, it is limited in its ability to fully understand or predict the outcomes
of CT. Although it provides guidelines for challenging participants beyond their current
abilities, it does not describe how to achieve this. To this end, von Bastian et al., 2022a
proposes that transfer could occur through two potential pathways: capacity enhancement
or efficiency enhancement.

To illustrate the capacity-efficiency model, we can use an analogy with physical activity.
An athlete can increase power in a movement by improving both speed and strength, as
power is the product of speed and strength. By increasing muscle mass, a powerlifter
enhances strength and, consequently, performance, representing capacity enhancement.
Alternatively, the powerlifter could refine their technique to increase speed, representing
efficiency enhancement.

Applying this to cognitive training, the first pathway expands cognitive capacity,
allowing improvements to generalize to untrained tasks that rely on the same capacity
limits. Neurobiologically, this increase in capacity is reflected by an increase in grey matter.
The second pathway enhances efficiency in using the available capacity, evidenced by
changes in functional brain connectivity and/or a reduction in the overall energy required
to complete tasks. These two mechanisms are not mutually exclusive; training can provide
broad benefits by enhancing both efficiency and capacity (von Bastian et al., 2022a).

On the capacity-enhancement dimension, a recent study (J. Ericson and Klingberg,
2023) proposed that there is task-specific capacity improvement and that improvements
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manifest with different temporal dynamics. They showed that a two-factor model (task-
specific and general capacity factors) explained the evolution of performance in both
trained and untrained tasks. Their computational model analysis revealed that task-
specific improvements plateaued after the first three days and that the transition time was
participant-dependent. This finding suggests that averaging data can obscure individual
trajectories.

However, in their review, von Bastian et al., 2022a identified that, given the limited
transfer observed, it is possible that transfer mainly occurs through efficiency enhancement.
Several frameworks have proposed that efficiency enhancement is related to the acquisition
of cognitive skills that can be reused in untrained contexts. For instance, Woodworth
and Thorndike, 1901 proposed the ”identical elements theory of transfer,’ suggesting
that shared knowledge components between two skills can lead to transfer. This was
further developed by Singley and Anderson, 1989, who specified that these knowledge
components are production rules (i.e an action triggered by a condition as described in the
Adaptive Control of Thought—Rational (ACT-R) architecture J. R. Anderson et al., 1997;
Ritter et al., 2019). However, these production rules are quite task-specific and explain
limited transfer between tasks. Therefore, N. Taatgen, 2013 introduced an extension of the
ACT-R model, named the primitive information processing element (PRIMS), to explain
far transfer. In this model, learning specific cognitive tasks involves acquiring general
cognitive skills, or patterns of routing information through the cognitive system. This
model proposes categorizing production rules into task-specific and task-general steps,
allowing for zero-shot learning (i.e., the ability to apply learned knowledge to new, unseen
tasks) by combining already mastered skills. This computational model has shown promise,
with N. A. Taatgen, 2021 demonstrating how such models can predict transfer, such as
enhanced proactive cognitive control strategies during multitasking training that translate
into far transfer.

The idea of creating or enhancing reusable cognitive skills has also been proposed by
Gathercole et al., 2019, who suggested that cognitive routines might transfer to other tasks
if the needed cognitive routine is novel and has been created during training. Additionally,
this idea of cognitive routine acquisition can be linked to the triarchic theory of learning
(Chein and Schneider, 2012), which proposes that novice learners of a new cognitive task
initially rely on their metacognitive system to generate and establish new behavioral
routines. These routines may involve strategies such as grouping information or mental
imagery. Once they are formed, the metacognitive system’s role diminishes, and learners
engage their cognitive control network to execute them. With sufficient practice, learners
progress from controlled to automatic task execution (Feltovich et al., 2018).

Another account attempting to explain transfer, not mutually exclusive from efficiency
enhancement through cognitive skill acquisition, is the learning-to-learn hypothesis. Previ-
ous works on Action Video Games (AVG) have shown that these games positively impact
vision and cognitive function (Bavelier, Green, et al., 2012) and lead to faster learning on
various untrained tasks (R.-Y. Zhang et al., 2021b). Rather than positing that trained
tasks enhance task-specific strategies shared with the assessment task, Bavelier, Green,
et al., 2012 suggested an other hypothesis: training leads to learning how to learn. In
practice, quickly learning the assessment task can slightly impact the overall measured
performance, as participants who adapt faster to the evaluation guidelines may perform
better, despite having similar cognitive skills to those who adapt more slowly (Kattner
et al., 2017). Indeed, in most CT intervention designs, performance is assessed through a
cognitive battery where performance is averaged across a block of several trials. If a group
is faster than an other group to learn or to adapt to the task, the average performance
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will be higher. As a result, the final between group difference is not related to the actual
performance but a learning component within the evaluation session. Specifically, Bavelier,
Green, et al., 2012 posits that three computational properties of the learning-to-learn
theory can be enhanced via AVG (or CT): resource allocation (i.e better distribution of
attention for efficient decision making), knowledge acquisition, and improved learning
algorithms. While knowledge acquisition and learning algorithms are properties closer
to cognitive skills acquisition, resource allocation can be improved by enhancing atten-
tionnal control or probabilistic inference (C. S. Green et al., 2010, Kemp et al., 2010,
Greenwood and Parasuraman, 2016). The next section will focus on tasks that foster the
learning-to-learn hypothesis, specifically perceptual-cognitive training and video games.

1.1.4 Perceptual-Cognitive Training and the multi-object track-
ing task

Properties of Action Video Games

Previous sections emphasized that transfer might occurs via different mechanisms (e.g
acquisition of new cognitive routines or learning-to-learn hypothesis). Particularly, a
domain where this transfer appears to be particularly present is AVG training. A recent
metanalysis (Bediou et al., 2023a) show that AVG players included in 105 cross-sectional
studies outperformed non gamers with large effect (g = 0.64, 95% CI [0.53, 0.74]) and
that the causal relationship was confirmed within the 28 intervention studies included
in the study with small effect size (g = 0.30, 95% CI [0.11, 0.50]). More specifically,
the cognitive constructs that seemed to be enhanced by AVG training are perceptual
processing, spatial cognition (Bediou et al., 2018b; Blumberg, 2014; J. Hilgard et al., 2019),
top down attention (C. S. Green and Bavelier, 2003b), verbal cognition or components of
executive functioning such as multitasking or inhibition (Bavelier and Green, 2019). This
was also confirmed by Mark et al., 2016, who systematically reviewed the neuroanatomical
correlates of complex skill acquisition after video game training and found evidence of
increases in both cortical and subcortical areas. In young adults, these included the frontal
cortex (prefrontal cortex, dorsolateral prefrontal cortex, precentral areas), parietal cortex
(precuneus), temporal cortex (middle temporal gyrus), and cerebellum. For older adults,
increases were observed in the frontal cortex (precentral gyrus, frontal gyrus, frontal eye
field), superior parietal gyrus, cerebellum, and hippocampus.

However - as observed in the literature - not all video games are equal (Blumberg,
2014). As such, previous works have started to extract intrinsic properties of AVG that
might be beneficial (C. S. Green et al., 2010). Particularly, F. Joessel, 2022a identified six
features leading to the attentional control enhancements previously observed after AVG
training. These features are:

• Difficulty scaffolding and activities in the Zone of Proximal Development (ZPD), i.e
nor to difficult, nor to easy)

• Variable feedback and a valid reward structure (immediate and clear feedback and a
composition of short term reward and long term rewards)

• High variability

• High pacing (feeling of time pressure)
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• Encourage model-based learning (i.e in addition to enhancing attentional control,
participant must built useful internal representation that would guide on what
ressources should be allocated to)

• Need for switching between divided attention and focused attention

Against this backdrop, a natural hypothesis is that cognitive training based on these
properties should lead to similar progress as those observed in video game training.
Moreover, bridging the gap between video games (i.e., complex and uncontrolled tasks)
and cognitive training tasks (i.e., simpler but controllable exercises) by adding gamified
components to cognitive training interventions would likely enhance adherence. Indeed, as
previous works have demonstrated (Belchior et al., 2019), video games are more engaging
and can be used to leverage intrinsic motivation (<empty citation>). As such, the next
section will present the Multi-Object Tracking (MOT), a perceptual and cognitive task
that might move us in this direction.

The multi-object tracking task

In a subsequent experiment described in F. Joessel, 2022a, several properties were embedded
in a training based on the Multi-Object Tracking (MOT) task. The MOT task is a dynamic
task where participants track several targets on a screen while inhibiting several distractors.
This task (the core subject of Chapter 3 of this dissertation) has been extensively studied
to assess different models of visual attention and tracking (Cavanagh and Alvarez, 2005b;
Oksama and Hyönä, 2004b; Z. W. Pylyshyn and Storm, 1988a) and as a training task
(Romeas et al., 2016a) with observed near to far transfer effects (Corbin-Berrigan et al.,
2018; Legault and Faubert, 2012b). As previous studies have investigated (J. Li et al.,
2019a; Nyquist et al., 2016a), F. Joessel, 2022a proposed updating the MOT task by
integrating either a concurrent detection or discrimination task in addition to tracking.
Four conditions of the dual MOT was studied:

RQ1- Pacing: constant low demand MOT + adaptive8 detection task

RQ2- Divided attention: adaptive MOT + constant low demand detection task

RQ3- Focused attention: constant low demand MOT + adaptive discrimination task

RQ4- Combined: adaptive MOT + adaptive discrimination task

The authors demonstrated that all training groups improved attentional control compared
to a no-contact control group. However, an analysis of the training trajectories revealed
that the combined condition, where the difficulty was managed both in the MOT task
(e.g., staircase adjustments on speed and number of targets) and the discrimination task
(e.g., staircase adjustments on secondary stimulus presentation), showed less progress
in training performance enhancement compared to the other conditions. Notably, the
combined group was the only one without a participant reaching an excellent level of
performance. This observation is intriguing, suggesting that while individual components
work well independently, their combination may introduce complexities that hinder overall
effectiveness.

To address the issue of providing a tailored path for each participant within their
ZPD, F. Joessel, 2022a leveraged a staircase strategy. Staircase methods are common

8Adaptive: difficulty is managed through a staircase algorithm
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Fig 1.4. Illustration of linear vs branched path designs.

adaptive difficulty procedures that increase difficulty after three consecutive successes and
decrease difficulty after one failure. While this strategy is a simple algorithm for scaffolding
learning—a feature identified as crucial for fostering engagement and learning—the results
obtained with the “combined” version revealed several issues. In F. Joessel, 2022a’s
experiments, the difficulty of the combined condition was managed by simultaneously
increasing all difficulty parameters when participants succeeded three times in a row.
Although this strategy allows for evolving activity difficulty, the simultaneous increment
might be too significant when participants approach their maximum skill levels, potentially
hindering learning.

As discussed in Chapter 2 of this manuscript, the staircase procedure likely presents
other drawbacks that can negatively impact learning, such as creating a unique trajectory
and a lack of variability. Although the staircase method has shown promise (Pedullà
et al., 2016b), in practice, the observed issues may relate to a fundamental property of the
procedure: while these algorithms can meet participants’ limits in terms of ability and
skills, they do so along a pre-specified route. This strategy is often described as following a
”linear design”. Fortunately, educational scientists and technologists have long considered
other ways to better handle participant heterogeneity.

1.2 Educational Technologies: Where Algorithms
Meet Human Learning

If linear designs such as staircase methodologies scaffold learning in a straightforward
manner, ”branched-path” designs offer a way for participants to learn on a non-predefined
route. As exemplified in Figure (1.4), educational content based on ”branched-path”
designs allows for learning trajectories tailored to individual learners’ needs. But what
exactly are learners’ needs?

1.2.1 Zone of Proximal Development (ZPD)
We introduced this manuscript with a quote from Plato’s dialogue, Meno, and highlighted
the idea that epistemological questions of interest in cognitive sciences take inspiration
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from long-standing, ancestral interrogations. Reading this dialogue can be seen as an
early example of a concept introduced by Vygotsky in 1978 (Vygotsky, 1978) and already
discussed in previous sections: the ZPD. In Meno, Plato continuously questions a slave (the
learner) with geometric problems, guiding him to realize what he knows and understand
why his initial reasoning led to an incorrect outcome and how to eventually reach the
correct solution. This social interaction exemplifies the idea that learners can exceed
their current knowledge when given appropriate assistance. In chapter 6 of his book
Mind in Society (Vygotsky, 1978), Vygotsky discusses the links between learning and
development, proposing that effective pedagogical content lies in the zone between the
learner’s current developmental stage (i.e what the learner can do independently) and
the potential developmental stage (i.e what the learner can achieve with guidance or
collaboration). This concept has led to the derivation of various theories and continues to
guide the development of educational content (Gredler, 2012, Obukhova and Korepanova,
2009).

1.2.2 Motivation and Optimal difficulty
While the concept of the zone of proximal development (ZPD) underscores the importance
of guided learning, it does not fully explain how individuals learn independently. Many
people acquire knowledge and skills on their own, driven by motivations that have been
extensively discussed. Historically, White, 1959 challenged the behaviorist perspective,
exemplified by Hull, 1943, which posited that motivation stemmed from primary drives
such as hunger, thirst, or sex. For example, Hull’s theory could not adequately explain
a baby’s behavior when it explores a room and examines various objects without any
apparent biological drive behind it. This innate curiosity and drive to understand the
environment suggest a different source of motivation. White argued that such behaviors
are better explained by a drive for competence, where engaging with the environment and
mastering new skills are intrinsically rewarding experiences.

This idea opens the door for several accounts on what kind of activities or stimuli
triggers motivation. For instance, Berlyne, 1960 introduced the concept of intermediate
novelty, suggesting that individuals seek experiences that are optimally novel — not too
familiar, yet not too unfamiliar. Other accounts proposed were optimal incongruity (Deci,
1975, discrepancy between perceived and standard level of a stimulus), knowledge gaps
(Loewenstein, 1994) or the notion of optimal challenges (tasks that are neither too easy
nor too difficult). On this later idea, Csikszentmihalyi, 2000 expanded and developed the
concept of flow, a state where an optimal challenge, clear goals, and immediate feedback
result in intense concentration, loss of self-awareness, a sense of mastery, and a distorted
perception of time. Specifically, Ryan and Deci, 2000 proposed a conceptual framework
in which motivation is categorized into intrinsic and extrinsic types. Intrinsic motivation
involves engaging in activities for their inherent satisfaction, while extrinsic motivation
involves performing tasks for external rewards or to avoid negative consequences. Curiosity,
as more casually used, can be seen as particular form of intrinsic motivation (Oudeyer
et al., 2016a).

As such, these concepts provide valuable insights for educational practices. For instance,
Freeman et al., 2014 demonstrated through a meta-analysis that active learning and
intrinsically motivated students achieve better outcomes in science, technology, engineering,
and mathematics courses. In intervention settings, it was also observed that curiosity foster
learning and memory retention. For instance, Kang et al., 2009 showed that human adults
show greater long-term memory retention for verbal material for which they had expressed
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Fig 1.5. The Region of Proximal Learning, Figure taken from Metcalfe et al., 2020.

high curiosity than for low-curiosity questions. In line with these observations, Metcalfe
et al., 2020 examines how epistemic curiosity (i.e., the desire to seek information) impacts
self-regulated learning, proposing the framework of the Region of Proximal Learning (RPL).
Within this framework, epistemic curiosity is characterized as a metacognitive feeling state
that arises when an individual is on the verge of knowing or understanding (tip-of-the-
tongue feeling). Metcalfe et al., 2020 argues that curiosity is influenced by a metacognitive
appraisal: when too little information is available, individuals are unlikely to invest time
in it, leading to a lack of curiosity (i.e., giving up or mind-wandering). Conversely, if the
information is almost known, placing the individual in the RPL, they enter the left-hand
loop of Figure 1.5, which enhances curiosity.

1.2.3 The Learning Progress (LP) hypothesis
If previously presented concepts and theories are intuitive and useful for explaining
certain behaviors, recent works have questioned their applicability as mechanisms to
actually generate curiosity (Oudeyer et al., 2016a). The concept of intermediate novelty
or challenge can be hard to properly define, as it requires a reference frame for estimation.
Additionally, heuristics based on searching for novelty or complexity can be inefficient in
large environments (Schmidhuber, 1991). This is illustrated by the noisy TV problem
(Oudeyer and Kaplan, 2007), where an intrinsically motivated agent exploring an open-
ended environment, seeking high prediction error or novelty, will be attracted to sources
of noise, such as a TV displaying static.

Therefore, the LP hypothesis has been proposed as an alternative mechanism. This
hypothesis suggests that intrinsically motivated agents are not solely attracted to activities
with high prediction error or uncertain outcomes. Instead, they are drawn to stimuli where
their predictions improve over time. This idea relates to previous work, as activities that
are too easy or too hard yield constant performance levels—either 100% or 0%, resulting
in no LP. Consequently, exploration naturally gravitates toward activities of intermediate

44



difficulty.
Moreover, while several works have suggested that the learning process itself does

not impact curiosity and motivation (Kang et al., 2009; Stahl and Feigenson, 2015), the
LP hypothesis proposes the opposite. It posits that experiencing learning triggers an
intrinsic reward, reinforcing the motivational state. Additionally, as mentioned in the
previous paragraph, learning in a state of motivation will foster retention and learning. In
sum, the LP hypothesis states that there is a closed feedback loop between learning and
curiosity-driven intrinsic motivation (Oudeyer et al., 2016a).

Fig 1.6. The Learning Progress Hypothesis (adapted from Oudeyer et al., 2016a)

1.2.4 Educational Technologies
In addition to developing theories on human learning and development, practical interven-
tions have suggested that technologies can enhance instructional designs. For instance, the
2-sigma problem identified by Bloom, 1984 demonstrated that individually tutored stu-
dents performed two standard deviations (sigma) better than those in conventional group
instruction. Although later discussions reduced this effect size to 0.79-sigma (VanLEHN,
2011a), this reduction still underscores the significant impact of individualized training.

“If, by a miracle of mechanical ingenuity, a book could be so arranged that
only to him who had done what was directed on page one would page two
become visible, and so on, much that now requires personal instruction could
be managed by print.”
Edward Thorndike, 1912

As Thorndike’s quote (1.2.4, Thorndike, 1912) illustrates, the concept of technology-
enhanced learning predates computers. Early 20th-century psychologists and engineers,
such as Sidney Pressey and later B.F. Skinner, proposed mechanical teaching machines
based on the behaviorist principle that reinforcement strengthens associations between
concepts. These machines delivered curricula in small, incremental steps, enabling self-
paced learning with instant reinforcement for correct responses (Watters, 2023).

The advent of computers expanded these approaches. Early methods, inspired by
Skinner, included Computer-Assisted Instruction (CAI) systems that provided feedback
and hints. A notable example is PLATO (Programmed Logic for Automatic Teaching
Operations), which supported 1,000 terminals and allowed teachers to design learning
modules using a programming language. Despite this, most early systems employed a linear
design, setting a predetermined route through the content (Yazdani and Lawler, 1986). The
1980s saw the emergence of Intelligent Tutoring System (ITS) with branched-path designs,
offering individualized learning experiences (Self, 1998). CAI and ITS differ in focus: CAI
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Fig 1.7. Core modules of an ITS.

are interaction-centered and address specific student groups’ needs and tailors programs
accordingly, while ITS are knowledge-centered and embody instructional principles to
cover a range of teaching tasks (Chabay and Sherwood, 1992). More specifically, ITS
models specify what to teach and how to teach it (Vandewaetere et al., 2011c), drawing
from cognitive psychology, computer science, and AI (Chabay and Sherwood, 1992).

Adaptive systems operate within three adaptive loops (V. Aleven et al., 2016; Monterrat
et al., 2017). The design loop uses student data to inform system design. For example, a
mathematics course for third graders might tailor division problems based on previous
performance data. The task loop selects tasks based on learner data, ensuring foundational
skills like addition and multiplication are mastered before advancing to division. The
step loop adapts tasks in real-time based on student responses, such as adjusting the
number of digits in a division problem. For clarity, we will refer to these as macro-adaptive
procedures (design and task loops) and micro-adaptive procedures (step loop) (E. L.-C.
Law, Kickmeier, et al., 2008; Vandewaetere et al., 2011a).

Typically, adaptive systems like ITS include four core modules (Figure 1.7, Vande-
waetere et al., 2011a): a learner model (describing the student’s state), a domain model
(representing the instructional content), a pedagogical model (encompassing teaching
strategies), and an interface model (presenting content to learners). These modules en-
able various sources of adaptation, such as knowledge (e.g., Bayesian Knowledge Tracing
(Pelánek, 2017a) or Cognitive Tutor (J. R. Anderson et al., 1995a)), learning strategies
(El-Sabagh, 2021), cognitive profiles (Mampadi et al., 2011), metacognitive strategies (e.g.,
MetaTutor (Azevedo et al., 2010)), gamification (Monterrat et al., 2017), and motivation
(Cordova and Lepper, 1996). These examples are not exhaustive but illustrate some
common techniques.

We have discussed when and what to adapt, but the primary question remains: how
to implement these adaptations effectively. While early CAI systems relied on rule-based
expert systems (If X then Y else Z), modern Intelligent Tutoring System (ITS) utilize
a variety of AI techniques. For instance, production-based systems like ACT-R (J. R.
Anderson et al., 1997) are common for domain models, and Bayesian Knowledge Tracing is
frequently used for student models to track progress and predict mastery levels. Pedagogical
models often employ Reinforcement Learning (RL) (Doroudi et al., 2019), treating the
student as an environment for pedagogical actions. In this framework, actions correspond
to educational activities, and the system observes the outcomes, rewarding effective actions.
These methods are just a few examples to give readers an idea of the important lines of
research, and further details on these and other techniques will be provided in Chapters 2

46



and 4.
Starting from the issue of inter-individual differences in cognitive training and the

existing methods to adapt programs, this section reviewed common techniques used in
educational contexts to individualize training. The next section will integrate these
different lines of work to outline the objectives and scientific context of this thesis.

1.3 Objectives, Scientific and Industrial Context of
the Thesis

1.3.1 Collaboration between Bavelier Lab and the Flowers Team
This broad introduction has contextualized the scientific motivation behind this work. In
this manuscript, two lines of research are proposed to be connected.

First, as previously discussed, there are unresolved questions regarding what constitutes
an efficient CT program. In the Brain and Learning lab at University of Geneva (9), research
has focused on identifying intrinsic features of AVG that could enhance training effects
(F. Joessel, 2022a). However, several limitations were identified, particularly concerning
the management of difficulty levels and tailoring them to participants in activities with
numerous parameters. More generally, this addresses the challenge of accommodating
individual differences and personalizing training trajectories effectively.

Second, educational sciences and technologies have long sought to address the issue of
individualization. At Inria, the Flowers team, through the Kidlearn project, has proposed
innovative ideas and algorithms to tackle this problem. Flowers is an interdisciplinary
team dedicated to studying models of open-ended development and learning. One of
their significant interests is developing educational technologies that personalize learning
experiences. In this context, the Kidlearn project introduced an ITS with a novel algorithm
called Zone of Proximal Development and Empirical Success (ZPDES) (Clement, 2018).
The primary aim of this algorithm was to enhance motivation and learning in children’s
mathematical content by operationalizing the LP hypothesis. This initial objective was
evaluated through several large-scale experiments where 7-8 year old schoolchildren learned
to decompose numbers by manipulating money (Clement, 2018). Results showed that,
compared to control procedures (e.g., predefined expert sequences), ZPDES led to higher
levels of performance, more diverse learning trajectories, and increased motivation levels.
Following these successful outcomes, the algorithm was tested on other populations, such
as individuals with autism spectrum disorder (Mazon et al., 2023), and in different tasks,
such as health education (Delmas et al., 2018). Several benefits were again observed with
the use of the algorithm. It is therefore worth investigating whether the algorithm would
yield similar benefits when transferred to other domains with different constraints.

A quick look at ZPDES

A detailed description of the algorithm is provided in Chapter 5; here, we aim to offer
a quick and high-level overview of the key aspects of ZPDES implementation. First,
ZPDES is based on the RL framework, with an instance of the algorithm created for each
participant. It uses a micro-adaptive loop to provide optimal activities in real time. This
loop works by proposing an activity, receiving feedback, updating the algorithm internal

9https://www.unige.ch/fapse/brainlearning/
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Fig 1.8. A visual representation of the multi-armed bandit problem, illustrating its
application in both a classical casino setting and an educational context.

state, and then proposing a new activity. To operationalize the LP hypothesis, ZPDES
targets activities with high learning progress. Identifying these activities is formulated
as a multi-armed bandit problem. As illustrated in Figure 1.8(a), a multi-armed bandit
scenario is analogous to a casino where multiple slot machines are available, and the
player must determine which machine offers the highest expected gains. This scenario
encapsulates a common situation in RL, known as the exploration/exploitation dilemma.
Here, the choice is between continuing to play on known profitable machines (e.g., Jackpot
1 in Figure 1.8) or exploring potentially more profitable machines (e.g., Jackpot 3 in Figure
1.8). In an educational context, the slot machines represent pedagogical activities, and
the gains represent learning progress. By framing the problem this way, ZPDES employs
a multi-armed bandit algorithm to explore the space of possible activities, giving more
opportunities to those with high learning progress. In addition to this LP-based sampling,
ZPDES implements a model of ZPD to facilitate the exploration of the activity space.
Therefore, as shown in Figure 1.9, the set of proposed activities evolves over time: when
an activity is mastered, it is removed from the ZPD, and when the mean success rate for
the available activities is sufficiently high, a new activity is added to the ZPD. In summary,
the algorithm Zone of Proximal Development and Empirical Success derives its name from
the two mechanisms it implements: restricting possible activities by modeling the ZPD
and sampling activities with high learning progress estimated via Empirical Success
(ES).
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Fig 1.9. A visual representation of the evolution of the model of ZPD through time,
implemented in ZPDES.

To summarize and conclude this section, our aim is to investigate whether
algorithms driven by the search for LP can be connected to a CT program
centered on the MOT task.

Industrial Context: Onepoint Company

In addition to the scientific context, this thesis is situated within an industrial framework
through collaboration with Onepoint, a digital services company with over 3,500 employees.
Onepoint is an innovative company continuously exploring new models. A few years ago,
they established a research and development (R&D) team to contribute to scientific research
in areas such as occupational psychology, cognitive psychology, software engineering, and
AI. Although recent, there is already a wide variety of work, such as the development of a
serious game to raise awareness about quality of life at work Massart et al., 2024, research
on how training in reasoning tasks can enhance reasoning performance Franiatte et al.,
2024, studies on the psychosocial impact of remote work during the COVID-19 context
Massart and Chaumon, 2021, innovations in adaptive learning algorithms Vassoyan et al.,
2023, advancements in explainable AI methods Lemberger and Saillenfest, 2024, or the
use of multi-agent systems to assess maintainability in software development Bertrand
et al., 2021. Building on this diverse body of work, the R&D team aims to establish a
pool of experts to better guide their customers. As such, this thesis benefited from both
the sponsorship and the numerous interactions with the industrial sector, enriching the
research with practical insights and applications.

1.3.2 Main Research Questions
In 1895, Catharine Aiken, the American teacher who advocated for training her students’
attention in the classroom, wrote a sentence that resonates with our current work:

“I found that innate curiosity which is shared in a greater or less degree by all,
ambition, and a desire to excel would serve to stimulate the mental activities
and concentrate the attention. These emotional states and tendencies, together
with association, while none or all of them would create attention, would furnish
the work of directing and holding the attention.”
Catharine Aiken, 1985

Building on Aiken’s insight and the concepts introduced in the previous sections, this
thesis explores the use of individualization algorithms to adapt CT interventions. The
primary research question guiding this investigation is:
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What is the impact of individualized cognitive training on cognitive
performance and subjective experiences?

To further investigate this primary question, several sub-questions are addressed:

• What are the current strategies for personalizing cognitive training?

• How can the MOT task be tailored to participants, and what difficulty parameters
are involved?

• How can the evolution of cognitive performance be assessed?

• Is an ITS based on the Learning Progress hypothesis (ZPDES) effective in the
context of CT?

• How should learning trajectories and the evolution of subjective experiences be
considered in evaluating the system?

1.3.3 Organization of the thesis
To address the research questions, this dissertation follows the format of a thesis by
publication. The work is structured around five articles, progressing from a literature
review to methodological considerations, and then culminating with experimental data
and conclusions:

• In Chapter 2, we will systematically review the existing technologies used for
individualized CT (article in press, preprint available in Adolphe et al., 2023). This
chapter will provide a comprehensive examination of current methods and tools,
setting the stage for our proposed interventions.

• In Chapter 3, we propose a narrative review of the MOT task, focusing on the impact
of various parameters on performance and training outcomes (article in press). It
will highlight key factors that influence effectiveness in CT. Together, Chapters 2
and 3 will provide an overview of existing knowledge and form the foundation for
the empirical studies that follow.

• In Chapter 4, we will present the development and validation of a cognitive battery
(published in Frontiers in Psychology, Adolphe et al., 2022a) designed to support
and measure the effectiveness of the individualized CT interventions proposed in this
thesis. This chapter will detail the methodologies and validation processes involved.

• In Chapter 5, we will present the results of applying our individualized procedures
to a population of young adults (article in prep). We will analyze the data to assess
the effectiveness and impact of the interventions.

• In Chapter 6, we will extend our study to older adults, presenting the outcomes of
the individualized procedures in this demographic (article in prep).

• In Chapter 7, will synthesize the findings, discussing the implications of our research
for the field of CT. It will also provide conclusions and suggestions for future research
directions.
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Part II

Litterature Review
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Chapter 2

Exploring the Potential of Artificial
Intelligence in Individualized Cogni-
tive Training: a Systematic Review
Aims
The aim of this chapter is to provide
an overview of existing individualization
procedures used in CT. This review pri-
marily aims to demonstrate how the AI-
based procedure introduced in chapters
5 and 6 can be positioned in comparison
with existing work.

Contents
2.1 Introduction . . . . . . . 53
2.2 Material and method . . 61
2.3 Results . . . . . . . . . . 79
2.4 Discussion . . . . . . . . 84
2.5 Conclusion . . . . . . . . 87

Abstract
To tackle the challenge of responders heterogeneity, Cognitive Training research currently
leverages AI Techniques for providing individualized curriculum rather than one-size-fits-all
designs of curriculum. Our systematic review explored these new generations of adaptive
methods in computerized CT and analyzed their outcomes in terms of learning mechanics
(intra-training performance) and effectiveness (near, far and everyday life transfer effects
of CT). A search up to June 2023 with multiple databases selected 19 computerized
CT studies using AI techniques for individualized training. After outlining the AI-based
individualization approach, this work analyzed CT setting (content, dose, etc), targeted
population, intra-training performance tracking, and pre-post-CT effects. Half of selected
studies employed a macro-adaptive approach mostly for multiple-cognitive domain training
while the other half used a micro-adaptive approach with various techniques, especially
for single-cognitive domain training. Two studies emphasized the favorable influence on
CT effectiveness, while five underscored its capacity to enhance the training experience by
boosting motivation, engagement, and offering diverse learning pathways. Methodological
differences across studies and weaknesses in their design (no control group, small sample,
etc.) were observed. Despite promising results in this new research avenue, more research
is needed to fully understand and empirically support individualized techniques in cognitive
training.
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2.1 Introduction
The repetitive and prolonged practice of specific cognitive activities, more often called
Cognitive Training, is an umbrella concept with multiple dimensions and multiple issues.
First of all, in the field of aging or neurocognitive rehabilitation, the hope of finding
non-drug and non-invasive interventions is a path to be favored in first-line clinical care.
Indeed, the presence of neurocognitive disorders or declines has a major impact on the
comfort of life of the persons, and can lead to a decrease in autonomy, or even a slide
towards a pathological condition (Depp et al., 2014a). Thus, many researchers have
mobilized their workforce in the design of training or cognitive rehabilitation programs
for older adults, for Mild Cognitive Impairment (MCI) patients (H. Zhang et al., 2019 ;
Coyle et al., 2015; Reijnders et al., 2013; Silva et al., 2022), Alzheimer’s patients (Clare
and Woods, 2003; Hill et al., 2017b; Kallio et al., 2017), Parkinson’s patients (Johansson
et al., 2023; I. H. Leung et al., 2015a), or any patient with Acquired Brain Injury (ABI)
(García-Rudolph and Gibert, 2014; Hallock et al., 2016a). Second, outside of these health
issues, research on CT is growing to meet the needs of performance enhancement in certain
activities: sports performance (Harris et al., 2018a), academic performance (Wollesen
et al., 2022) or even professional performance (Lucia et al., 2021; Vartanian et al., 2016).
Lastly, alongside the difficulties related to the restoration and enhancement of performance,
CT constitutes a fundamental realm of exploration encompassing the study of learning
mechanisms, their evolution, and their neural associations (Turnbull et al., 2022). Given
the expansive nature of CT, which cover a diverse range of cognitive skills, interventions,
as well as social and commercial implications, an open letter written by 70 researchers
in 2014 brought attention to the challenge of inadequate compelling evidence in this
complex and multifaceted field. In 2016, a response from 111 researchers acknowledged
areas needing improvement while emphasizing the continued promise of various research
directions. Subsequently, despite ongoing debate fueled by studies both supporting (Jaeggi
et al., 2011, Lampit et al., 2014a) and challenging (Melby-Lervåg and Hulme, 2013b; Sala,
2017; Simons et al., 2016b) CT, research in this domain has witnessed heightened activity.
Notably, the volume of publications on PubMed in 2016 surpassed the cumulative studies
conducted in preceding years (Harvey et al., 2018), indicating a surge in scholarly interest
and engagement. In the perspective of contributing to the improvement of this field, our
Systematic Review (SR) explores adaptive methods of customizing the training program to
each individual. This addresses the central challenge of managing the diversity in response
to CT, which encompasses both inter-individual and intra-individual variability.

As described in Karbach et al., 2017a, Katz et al., 2016 and Guye, De Simoni, and von
Bastian, 2017, prior cognitive performance, age, and education is a non exhaustive set of
factors that influence the magnitude of the impact of the interventions. The compensation
effect (greater CT-related improvement of participants with lower prior performance
(Jaeggi et al., 2008a, Zinke et al., 2014)) and the magnification effect (greater CT-related
improvement of participants with higher prior performance) are observed in many studies
(Fu et al., 2020; Karbach et al., 2017a; Lövdén et al., 2012a). Thus, in order to maximize
the likelihood of program response, many interventions proposed adapting the difficulty
and content to participants. This adaptation can be implemented manually, before or
during the program, by the designer or the health professional (Kelly et al., 2014). Utilizing
prior knowledge of the participant’s progression and performance during training, these
methods can also be implemented automatically (e.g Pedullà et al., 2016a). Classically,
automatic approaches are based on a staircase procedure where the difficulty increases if
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the participant successfully completes several activities in a row and decreases otherwise
(Klingberg, 2010; von Bastian and Eschen, 2016). Originating in the field of psychophysics
(Dixon and Mood, 1948, Cecala, 2016 and Treutwein, 1995), the use of staircase strategies
for training has the advantage of bringing the participant to his maximum capacity and
pushing him to exceed it. However, even if these so-called ”adaptive” procedures are
easy to deploy in computerized CT systems, they lack flexibility and responsiveness in
their ability to individualize the procedure. First, they do not take account the whole
learning trajectory followed by the participant (only some of the previous activities are
considered for the calculation of the future activity) (Singh et al., 2022, Zini et al., 2022).
This suggests that a participant who has temporarily dropped to a lower level of difficulty
due to factors such as fatigue or inattention, will be presented with the same task as
another participant who has reached their true limit of learning, and will have to invest
an equivalent amount of time to regain their previous maximum level. Secondly, this
strategy poses challenges in managing a substantial number of parameters concurrently
as it becomes complex to infer the progression of difficulty when multiple parameters are
altered simultaneously (Edwards et al., 2005). Thirdly, staircase strategies result in a
limit around which participants oscillate until improvement is observed. As a consequence,
since participants consistently encounter similar stimuli near the threshold, this pattern
can generate a perception of repetition that may be demotivating, discouraging, and
not conducive to effective training. While certain programs (NeuroTracker, n.d.) have
suggested incorporating adaptive steps to update task difficulty, they still exhibit limited
parameter involvement in controlling the difficulty. Consequently, the training activities’
space remains underutilized for the learner, restricting the range of learning opportunities
for progress. Finally, the inflexible structure inherent in the unique trajectory design
dictated by the staircase strategy obstructs the integration of the abundant knowledge and
theories available from diverse fields like education sciences and psychology. For instance,
a notable drawback is its inability to accommodate various signals from learners, such as
physiological measurements (EMG, EEG), posture, or interaction data (like clicks), which
can be valuable for tailoring the choice of educational activities and gaining insights into
how learners react to the curriculum they receive. Considering the limitations outlined
above, this systematic review aims to emphasize novel approaches for tailoring interventions
to individual participants’ needs. Thus, the interventions incorporated into this review
will be labeled as ”Individualized Computerized CT,” contrasting them with the majority
of self-proclaimed ”Adaptive Computerized CT” to support the aspiration of providing
genuine personalization to each participant.

Beneath the inquiry into the variability of CT responses lies the fundamental question
of how to assess the effectiveness of these interventions. Traditionally, CT effectiveness is
evaluated in terms of the extent of impact with a short-term spectrum corresponding to local
effectiveness (improvement in performance on tasks similar to those trained, i.e., near effect)
and a broad spectrum corresponding to global effectiveness (improvement in performance
on tasks not similar to those trained but involving common cognitive mechanisms and
functions, i.e., far effect). This range of impact is expressed in terms of Near and Far
transfer (NFT) (von Bastian et al., 2022b). The NFT effects are generally assessed
using cognitive batteries (Adolphe et al., 2022a, Steyvers and Schafer, 2020a, Gronwall,
1977, Tombaugh, 2006, Willis et al., 2006) and allow the evolution of the participant’s
performance after training to be quantified. Research in this domain frequently concludes
after establishing efficacy, without delving into the ecological transfer of training i.e the
practical influence of training on real-life tasks (Simons et al., 2016b). This gray area can
be attributed by the fact that the ecological validity of CT is difficult to objectify, except
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with the use of assessments with a more ecological content or questionnaires in which
participants are asked to self-report the improvements perceived in real life. These tasks
or questionnaires often have methodological limitations (ecological content validity, and
subjective bias (Schmiedek, 2016b)). In addition to these considerations of effectiveness
measures, many SRs or reviews raise weaknesses in the level of evidence provided by the
studies (e.g., von Bastian et al., 2022b). These weaknesses are related to the study design
(i.e presence of a control group (Boot et al., 2013), randomization of group assignment,
blindness of researchers and participants, sample size, etc.) (von Bastian et al., 2022b) and
the design of the interventions (nature and type of training task, dosage, etc.) (Lampit
et al., 2014a). Echoing the reproducibility crisis of science, it is observed that some
studies showed significant effects of CT, while others are unable to reproduce these results.
Among the salient factors identified, the lack of standardization of the content used is
highlighted by recent SRs (Pergher et al., 2020). Consequently, this review will give
particular attention to the methodological decisions and the resulting conclusions, striving
to provide a thorough depiction of the field’s status.

To the best of our knowledge, no SR has been proposed to identify the new generation
of individualized CT and to analyze their impact in terms of near or far effectiveness. In
compliance with the PRISMA standards, as illustrated in the flow diagram (Figure 2.1)
and the checklist provided in the supporting information, this study aims to concentrate on
interventions that offer more adaptable strategies, facilitating enhanced individualization
of content. We are particularly interested in CT proposing either automatic individual-
ization of multimedia content or of the difficulty of the task. Inclusion criteria for this
review necessitate that strategies facilitate the tailoring of interventions to individuals or
representative groups. Such strategies should enable the generation of individualized and
optimized learning trajectories for each learner. Hence, this criterion for inclusion implies
the utilization of automation strategies spanning different levels of intelligence, notably
those grounded in artificial intelligence.

2.1.1 Research question
The current systematic review of the literature first asked what individualization strategies
exist into computerized CT tools (sections descriptive results, Q1-Q2). Secondly, it
questioned the motivations of researchers to produce this type of strategy, i.e., specific
individualization goals targeted by the strategy (section Q1-Q2). Finally, it examined the
effectiveness of the included studies in light of the quality of the evidence provided, i.e.,
study design and statistical power (sections Q3, Q4, Q5). The ultimate aim was therefore
to establish an inventory of existing flexible adaptive strategies and their level of maturity
to serve the field of CT.

2.1.2 Background
The development of adaptive methods in CT is mainly fed by two main research fields, i.e.,
the field of computerized CT and the field of intelligent tutoring systems (ITS) even if the
contribution of the latter one is larger to those of the former (see for reviews, Vandewaetere
et al., 2011a, Mousavinasab et al., 2021).
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Fig 2.1. PRISMA Flow chart.

Insights from adaptive computerized CT research

This line of research has mainly contributed to exploring staircase methods for CT. Often,
these methods consisted of the execution of graded exercises, whose difficulty increases
gradually according to a set of predefined rules, considering the results the trainees achieve.
Frequently, predefined rules are derived from expert knowledge. For instance, the exercises
are typically structured hierarchically according to difficulty levels, and the progression
between levels is primarily determined by predefined thresholds, often set at 70% of
correct answers for each level of exercises. Hence, the staircase methods consist of a unique
trajectory design of CT program, involving that all trainees follow a single path although at
different speeds or with a different number of attempts. Several computerized CT systems
for various CT purposes are based on this design of program personalization (Neri et al.,
2021), such as Brainer (Brainer, n.d.), Neurotracker®(Vater et al., 2021a), RehaCom®.
(RehaCom, n.d.), CogniPlus®. (CogniPlus, n.d.), HappyNeuron Pro®. (Happyneuron,
n.d.), Erica (Erica, n.d.), the Padua Rehabilitation Tool (PRT) Cardullo, 2017), MS
Rehab (Gaspari et al., 2020), Cogni-Track (Tacchino et al., 2015) and CogniFit Personal
Coach® (CogniFit, n.d.). In the majority of investigations that have contrasted adaptive
strategies of this design with conventional approaches, a consistent finding has been the
enhanced CT outcomes associated with adaptive strategies (as evidenced by studies like
Klingberg, 2010; Pedullà et al., 2016a; Peretz et al., 2011)). Nevertheless, contrasting
results have emerged in certain studies, exemplified by von Bastian and Eschen, 2016,
which did not detect any advantages under adaptive conditions. Notably, this particular
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study implemented adaptive adjustments between sessions rather than within the same
session, which may account for the disparity in outcomes.

From a more distant standpoint, recent SR highlighted the promising findings from
CT studies comparing gamified contents to non-gamified ones as a result of the critical
role of trainee ‘s motivation and engagement in the individualization of CT (Lumsden
et al., 2016b, Vermeir et al., 2020). Taken together, these overall results supported the
added value of personalization of CT for fostering their outcomes. However, as mentioned
above, the staircase methods have some limitations and are not really adaptive due to its
single trajectory design, i.e, the system adapts the CT in the same manner for all trainees
instead to specifically adapt the program to the trainee performance by creating a specific
path into the program. Due to this strong limitation, most of existing computerized CT
systems (e.g., HappyNeuron Pro®, Erica, MS-Rehab®) include a manual calibration for
defining the initial level of exercise at the beginning of the CT and the successive tweaks of
difficulty level across the CT (often done by the clinicians). However, as the trained tasks
involve a significant number of parameters to determine the level of difficulty, manual
calibrations become increasingly complex and numerous.

Insights from ITS research

Educational sciences have widely contributed to demonstrate that factors intrinsic to the
learner (such as prior knowledge, emotional load, mental load or motivation) and extrinsic
factors (such as all the variables related to the instructional design), are mediators of the
efficiency of the learning functions. By nature, the effectiveness of CT is no exception
to this observation and responds to similar factors. Hence, it seems natural to ask how
effective instructional methods from the educational sciences can be transferred to the field
of CT, and more particularly those providing an individualization of learning. Learning
theories indicate that learning requires an appropriately sized “mismatch” – a gap between
the cognitive capacity and the requirements of the external task that the cognitive system
must adapt to in order to improve performance (Lövdén et al., 2010a). As a result, the
evidence-based assets of individualized learning over one-size-fits-all educational approaches
are today well documented (M. I. Deunk et al., 2015, Iterbeke et al., 2021). ITS offers a
framework for the automated creation of curricula tailored to individual students. While
there are multiple methods available to enrich and personalize educational content with ITS
for each learner, the majority of systems are organized around three primary components
(Vandewaetere et al., 2011a). Firstly, there is the aspect of adapting to the instructional
source, which refers to what the system will tailor, including aspects like the learner’s
learning style ((Sun et al., 2007, Bunderson and Martinez, 2000)), existing knowledge
(Koedinger and Corbett, 2006), or preferences (Ray and Belden, 2007). Secondly, there is
the target of adaptive instruction, specifying what aspects will undergo adaptation. This
could involve the content of the instruction (Sun et al., 2007) or the manner of presentation
(Milne et al., 1997). Thirdly, the adaptive component functions as the intermediary,
creating a pathway between the first two components. It dictates how to adapt a target
to a source, which can be achieved through diverse methods. This last component, also
called the tutoring module, is the engine generating a curriculum of training activities
for learners in ITS. Adaptive feedback, hint, and recommendation-generating, navigation
of the learning path, and presenting adaptive educational content constitute the core of
this component (Carter and Blank, 2013). The contents’ adapting to the learner’s needs
is the most relevant tutoring dimension of ITS for the individualization purpose into a
CT program. In order to tailor content to individual learners, numerous ITS draw from
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the concepts of the zone of proximal development (ZPD) (Vygotsky and Cole, 1978b)
and the state of Flow (Csikszentmihalyi, 2000). These concepts are closely tied to the
Goldilocks effect (Seitz, 2018, Jonge et al., 2012), wherein learning is optimal in tasks
that strike a balance between simplicity and excessive challenge. Following them, many
ITS aim to offer the learner pedagogical activities that are neither too difficult nor too
easy with regard to their abilities, so that they can be engaged and progress in their
acquisitions without being anxious or bored during the process. ITS can also suggest
activities that may be challenging for the learner to solve independently, but become
manageable with the assistance of hints or guidance from the teacher. According to this
ZPD principle, the tutoring component classically integrates a performance threshold
principle for exercise difficulty shift (often chosen around 70%) to maintain an average
optimal learning trajectory (Seitz, 2018). Several signals or performance dimensions can
be used to guide the generation of a curriculum: some ITS are interested in using an
optimal emotional level (Khadimallah et al., 2020) or learning progress (Clement et al.,
2013a, W. Ma et al., 2014) or both (Oudeyer et al., 2007).

Sorting Keys of AI techniques for content adapting to learner’s capabilities

On a macroscopic scale, the adaptability of Intelligent Tutoring Systems (ITS) can be
categorized into two primary design approaches for managing learning curricula (Bartolomé
et al., 2018). The first approach, known as the ”linear design” which we prefer to label
as the ”unique trajectory design” within this review, encompasses all learners pursuing a
singular route, albeit at varying paces or with distinct numbers of attempts. Such a design
is similar to the staircase methods used in the field of CT. The second approach, termed the
”branched-paths design” empowers each learner to pursue a unique path tailored to their
individual needs. In this review, we opt to refer to it as the ”Individualized” procedure.
Consequently, this leads to diverse learning trajectories across learners, encompassing linear,
non-linear (leaps and backtracking), or hybrid paths, thereby rendering ”branched-paths
designs” as truly personalized learning environments.

Moving on the mesoscopic scale, as described in Figure 2.2, the adaptability of content
can manifest across various tiers: at the level of selecting activity types within the training
called macro-adaptive learning or by manipulating the parameters of activities presented
at each time step called micro-adaptive learning (E. L.-C. Law, Kickmeier-Rust, et al.,
2008).

Finally at microscopic scale, various AI techniques have been used for the implementa-
tion of the content adapting to the learner’s needs. They can be broadly categorized into
four main families of AI techniques employed individually or in combination (Chang et al.,
2020, Mousavinasab et al., 2021):

• Condition-action rules-based reasoning traditionally refers to rule-based decisions (if
X, then Y) that determined the outcome of adaptive instruction. Rules are set by the
instructor prior to the learning process (e.g., rule-based expert system or semantic
rule-based reasoning). In the context of CT, this category would encompass the
staircase procedure as introduced previously.

• Probabilistic modeling and Bayesian networks refer to a set of techniques that rely
on graphical model to encode probabilistic relationships between variables of interest.
A key advantage of using them is that their structure is ideal for combining prior
knowledge, which is often in causal form, with observed data. Into an ITS, prior
knowledge consists of a stereotyped model based on the learner’s goals, tasks, and
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interests, while observed data is extracted from the interaction between the learner
and the environment. Bayesian techniques can also be used when data is missing, a
common problem in the learning sciences.

• Machine learning techniques involve the use of algorithms and statistical models to
enable computer systems to learn from data and improve their performance on a task
without being explicitly programmed (see Badillo et al., 2020 for an introduction).
In the context of ITS, machine learning techniques can be used to individualize the
learning experience for each student by leveraging data collected during interactions
with the system. The strategies can operate in two different modes: one is an
incremental approach, where the model evolves during direct interactions with users,
and the other is an offline method, which includes data collection, model development
without real-time interaction, and its application to learners thereafter. They can
be divided into several subfields:

– Data mining refer to a set of techniques used to extract insights and knowledge
from large datasets such as student interactions with the system or demographic
data. These techniques involve analyzing the data to identify patterns and
relationships that can be used to personalize the learning experience for each
student. The extracted features can then be combined with decision-making
modules to adapt the learning path and provide targeted support and guidance
to the student. One example of a widely used data mining technique in ITS
is clustering (García-Rudolph and Gibert, 2014). This method enables the
identification of different groups of students based on their learning profile,
needs, and preferences. By clustering students, ITS can create tailored learning
paths that address the specific needs of each group, leading to more effective
and efficient learning outcomes.

– Artificial neural networks and deep learning (DL) techniques are a set of
techniques inspired by the structure and function of the human brain and are
designed to learn from large datasets of student interactions with the system.
In ITS, they can be used to model student behavior and performance, predict
future outcomes, and adapt the learning experience to the individual needs of
each student.

– Reinforcement learning (RL) is a type of machine learning in which an agent
learns to make decisions in an environment by receiving feedback in the form
of rewards or punishments. In the context of ITS, the RL agent can serve as
an instructor and receive a reward based on the effectiveness of its pedagogical
approach towards the student (see Doroudi et al., 2019 for a review). Numerous
algorithms have been developed to tackle this challenge. One common strategy
involves maintaining a tabular record of how effective a specific pedagogical
activity is, quantified by the cumulative rewards it garners, when employed
with a student possessing a particular skill level. Through an iterative process
of proposing various activities, the agent seeks to determine the optimal actions
that maximize its overall reward (see Q-learning algorithm in Zini et al., 2022 for
an example). Another approach to address this challenge draws an analogy to a
casino scenario featuring multiple slot machines. Within this metaphor, critical
questions center on the selection of the most effective ’slot machines,’ their
optimal utilization frequency, and the establishment of a suitable sequence. In
the educational context, these metaphorical ’slot machines’ represent different
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pedagogical activities, and their success is gauged by the extent of knowledge
acquisition by the student. To tackle the ’exploration-exploitation dilemma’
inherent in this context, various techniques are employed such as multi-armed
bandit algorithms (see Clement et al., 2013a for an example).

– Natural language processing focuses on the interaction between computers and
humans through natural language, including tasks such as text classification,
sentiment analysis, and machine translation. ITS can use techniques such as
text classification and sentiment analysis to understand students’ written or
spoken responses, enabling individualized feedback (see Nye et al., 2014 for a
review).

– Evolutionary algorithms are a family of optimization algorithms that are in-
spired by the process of natural selection and evolution to solve complex
problems. By treating the potential solutions as a population of individuals
possessing diverse traits, these algorithms employ a fitness function in conjunc-
tion with an evolutionary process to deduce the optimal solution (see Pillay,
2020 for a review). In the ITS literature, these techniques have been employed
in various ways such as learner performance prediction or design of learning
environments.

Fig 2.2. Illustration of macro and micro-adaptive strategies.
(a): Macro-adaptive strategy exemplified by two trajectories within a CT program
(unique trajectory or individualized design) spanning sessions 1 to 4, each session offering
three potential cognitive tasks (A1 to A3). Arrows depict task order for each session. Non
individualized trajectory always propose same order A1, A2 and A3 while individualized
path adapts the trajectory according to training objectives. (b): Micro-adaptive strategy
demonstrated by two trajectories of task difficulty adjustments specifically for task A3
during session 2. The non-individualized trajectory relies on a staircase approach that
falls short of identifying the optimal zone of progress when contrasted with the
individualized procedure, which proves to be a more suitable fit.
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Evaluation of AI techniques

The evaluation methods of individualized techniques into ITS are of two kinds, either
formal or empirical (for review; see Soofi and Ahmed, 2019). Formal validations consist
essentially in testing the system with simulations using learners’ models for assessing the
ITS behaviors in order to compare two or several AI techniques. Empirical validations are
multiple-ways in terms of expected outcomes or study designs. The judgment criteria can
be qualitative (i.e., experts or learners’ feedback, learner experience questionnaires, etc.) or
quantitative (i.e., learning performance, level of activities performed, etc.), or both. They
can be based only on training phase (interaction data) or include pre- and post-training
measurement, or both. Ensuring the validity of scientific research, whether validated
formally or empirically, hinges upon the accessibility of both the dataset and the employed
model. It is worth noting that a notable factor contributing to the reproducibility crisis
is the limited access to comprehensive research materials. The study design varies from
feasibility or pilot study (e.g. prototype testing with few users) to Randomized Controlled
Trial (large sample of individuals, control group, pre-and post-training measurement). The
gold standard for evidence-based adaptive ITS is to compare it with a control condition
often consisting of unique trajectory design (e.g staircase procedure) on qualitative and
quantitative measurements taking place before, during and after the training and providing
insights on NFT effects of the training.

Operationalized research questions

Pertaining to the central inquiry of this work - ”Do the emerging generations of indi-
vidualized strategies hold promise for computer-based cognitive training?” - five specific
operational research questions were formulated as follows:

Q1. What AI Techniques have been employed in computerized CT, and what are the
underlying research motivations driving their utilization?

Q2. What are the domains of CT for which adaptive techniques have been designed?

Q3. What populations are targeted and what are the characteristics of the CT settings?

Q4. How effective are they in empirical CT studies? What effects are reported (NFT
learning effects)?Are the effects dependent on characteristics of CT settings?

Q5. What Type of validation have been conducted for these new generations of comput-
erized CT?

2.2 Material and method
A pre-established protocol was formulated and officially registered with PROSPERO
(registration number: 2021 CRD42021241515). The checklist of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) was applied to guide the
systematic review process (PRISMA).The COVIDENCE tool was also used to manage
and organize the work.
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2.2.1 Databases and Search query
The initial database searches were conducted between February and April 2023 using
the following electronic databases to conduct the study: PsycInfo, Medline, ETHOS,
EMBASE, IBSS, PubMed, IEEE Xplore, ACM Digital Li-brary, Springer, Taylor Francis,
Scopus, Education Resources Information Center (ERIC), ScienceDirect/Elsevier and
EBSCO. In addition to the database searches, a hand search of relevant journals and
gray literature were also conducted to ensure all relevant works were included in the
review. According to the research question, we used the following query: TITLE-ABS-
KEY (”Cognitive training”) AND ALL (“Machine Learning” OR “reinforcement learning”
OR “personalized*” OR “individualized” OR “intelligent tutoring system”) AND NOT
TITLE-ABS-KEY(“Transcranial direct current stimulation”).

2.2.2 Eligibility criteria
In this SR, we included all computerized CT studying individualized training that allows
for differentiated learning paths in terms of content (type of exercises). No restrictions
were set regarding the publication date, but the included studies had to be in English.
Furthermore, no age or population criterion was used. Table 2.1 presents details of inclusion
and exclusion criteria.

Table 2.1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

The adaptive procedure relies on individual training
performance and/or training experience.

The personalization only consists in satisfying user
preference (e.g visual features, content type, gaming
component) without adapting the learning path (e.g
Quaglini et al., 2009)

The adaptive procedure is being tested on a dataset of
CT, and the strategy is thoroughly described.

The adaptive procedure adheres to a ”unique trajectory
design” (e.g similar to staircase algorithms [Faria et al.,
2019])

Machine learning techniques are used to predict
participants’ behavior (adherence, success, emotional
state, skill level) or to directly compute the optimal
next activity

The adaptive procedure is not detailed (e.g S. Hardy
et al., 2015)

Machine learning techniques are used on training data
from CT results, ECG, EEG, MRI, fMRI, wearable
sensor data, and longitudinal training experience
measures.

The intervention involves a form of neuromodulation
(e.g., tDCS)

Neurofeedback and machine learning techniques are
used for individualized programs

Intelligent techniques are used as tools for a better
outcome analysis (e.g., effect size analysis) (e.g
Vladisauskas et al., 2022)

Individualized techniques encompass both online
strategies (where the participant engages while the
model is developed) and offline strategies (involving
data collection to build the model with no access to
data during interactions)

Not a CT (e.g Kim et al., 2018)

English writing Non-peer-reviewed papers, opinion pieces, or abstract
conference papers
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2.2.3 Screening and selection method
The screening phase was conducted on articles until February 2023. In total, 5073 papers
were found, as presented in Figure 2.1. All duplicates were removed, which reduced the
results to 3574. Papers were selected through an iterative process of filtering. According
to our search strategy (inclusion/exclusion criteria), studies were first filtered on titles and
abstracts resulting in 71 articles to go through to the next stage of full-article review. All
the screening process was carefully evaluated by two authors. When there was uncertainty
or disagreement among the reviewers, consensus was reached through discussion. If no
consensus was found, a third review was designed for the final decision. The full-text review
of the remaining papers results in 17 papers with 19 studies included for the systematic
review. The main reasons for the exclusions are reported in the PRISMA flowchart (Figure
2.1).

2.2.4 Data extraction
To answer our five research questions, four coding sheets were developed for extracting
the searched information.

To address Q1 and Q2, information regarding the AI approach (macro-, micro-adaptive
or both) and the AI techniques used, as well as the targeted cognitive domains of CT were
collected in (Table 2.3). For the AI techniques, 8 families were distinguished : condition-
action rules-based reasoning, probabilistic models or bayesian networks (e.g Kalman
Filters (KF), Hidden Markov Models (HMM)), data mining (e.g Regression, Clustering),
neural networks or deep learning (e.g multi-layered perceptron (MLP), convolutional
neural networks (CNN), Long Short Term Memory (LSTM)), reinforcement learning
(e.g Q-learning, Actor-critic), natural language processing, evolutionary algorithms and
recommendation systems. Regarding cognitive domains, global CTs (multiple cognitive
domains) were distinguished from specific CTs addressing a single cognitive domain.
We used the categorization of cognitive functions traditionally used in psychology, as
follows: perception (visual, auditory, spatial, etc.), attention (selective, sustained, divided
components), learning and memory (working, semantic, episodic, procedural), language
(production and understanding), executive functions (inhibition, updating, and cognitive
flexibility) and reasoning and problem solving (categorization, generalization, deductive
and inductive inference, predictive and evaluative judgment).
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Table 2.3. Overall descriptive results, AI techniques and Cognitive domains of CT for the selected studies.

Study Date Title AI approach and AI
Techniques

Cognitive domain of CT Study design Population
Type

Sample
Size

García-
Rudolph and
Gibert García-
Rudolph and
Gibert, 2014

2014 A data mining approach to
identify cognitive NeuroRe-
habilitation Range in Trau-
matic Brain Injury patients

Macro-adaptive learning
Decision tree objectives:
Prediction of the optimal
neurorehabilitation range

Multiple domains
Attention, memory, lan-
guage, executive functions

Non-randomised
controlled trial

Clinical sam-
ple

n=327

Fermé et al.
Fermé et al.,
2020

2020 AI-Rehab: A Framework
for AI Driven Neurorehabil-
itation Training - The Pro-
filing Challenge

Micro and macro adaptive
Data mining and belief re-
vision engines objectives:
Participant profiling

Multiple domains
Attention, Memory (seman-
tic, episodic), language (un-
derstanding), reasoning (cat-
egorization) and problem-
solving (maze, navigation
task).

Feasibility study
(study protocol)

NA NA

Xu et al. Xu
et al., 2018

2018 Personalized Serious
Games for Cognitive Inter-
vention with Lifelog Visual
Analytics

Macro adaptive
Deep learning and cluster-
ing techniques Personaliza-
tion of game content with
lifelog visual content

Multiple domains
Attention, memory, visuo-
spatial and executive func-
tions

Individual ran-
domized trial
(crossover study)

Non clinical
sample

n=26

Reidy et al.
Reidy et al.,
2020

2020 Facial Electromyography-
based Adaptive Virtual Re-
ality Gaming for Cognitive
Training

Micro adaptive
Data mining and machine
learning EMG data prepro-
cessing and affect classifica-
tion

Multiple domains
Memory (episodic), exec-
utive and problem-solving
functions

Non-randomised
controlled trial
(crossover study)

Non clinical
sample

n=6

Kitakoshi et
al. (a) Ki-
takoshi et al.,
2015

2015 Cognitive Training Sys-
tem for Dementia Preven-
tion Using Memory Game
Based on the Concept of
Human-Agent Interaction

Micro adaptive
Reinforcement learning
(bucket brigade algorithm)
Difficulty level adjustment
and break offering system

Specific domain
Memory (episodic)

Non-randomised
controlled trial
(crossover study)

Non clinical
sample

n=6

Kitakoshi et
al. (b) Ki-
takoshi et al.,
2020a

2020 A Study on Coordination of
Exercise Difficulty in Cog-
nitive Training System for
Older Adults, study-1

Micro adaptive
Reinforcement learning
(bucket brigade algorithm)
Difficulty level adjustment

Specific domain
Memory (episodic)

Non-randomised
controlled trial
(crossover study)

Non clinical
sample

n=5

NA = Not Applicable Continued on next page
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Table 2.3: continued from previous page
Study Date Title AI approach and AI

Techniques
Cognitive domain of CT Study design Population

Type
Sample
Size

Kitakoshi et
al. (b) Ki-
takoshi et al.,
2020a

2020 A Study on Coordination of
Exercise Difficulty in Cog-
nitive Training System for
Older Adults - study-2

Micro adaptive
Reinforcement learning
(bucket brigade algorithm)
Difficulty level adjustment

Specific domain
Memory (episodic)

Non-randomised
controlled trial
(crossover study)

Non clinical
sample

n=5

Rathnayaka
et al. Rath-
nayaka et al.,
2021

2021 Cognitive Rehabilitation
based Personalized Solu-
tion for Dementia PAtients
using Reinforcement
Learning

Micro adaptive
Reinforcement learning (Q-
learning) Difficulty level ad-
justment

Multiple domains
Attention, memory, lan-
guage, executive functions

Non-randomised
controlled trial

Clinical sam-
ple

n=56

Shen and Xu
Shen and Xu,
2021

2020 Research on children’s
cognitive development for
learning disabilities using
recommendation method

Macro adaptive
Recommendation system
(collaborative filtering)
Proposition of a cur-
riculum based on the
similarity between chil-
dren performances and
preferences

Multiple domains
Attention, memory, lan-
guage, executive function
(flexibility), reasoning

Individual ran-
domized con-
trolled trial

Non clinical
sample

n=30

Sandeep et al.
Sandeep et al.,
2020b

2020 Application of Machine
Learning Models for Track-
ing Participant Skills in
Cognitive Training - study-
1

Micro adaptive
Machine learning and
deep learning (Hidden
Markov Model, Kalman
filters, LSTM) Prediction
of performance evolution
through training

Specific domain
(Working) Memory

Feasibility study
(framework
description -
secondary data
analysis)

Non clinical
sample

n=262
(Dataset)

Sandeep et al.
Sandeep et al.,
2020b

2020 Application of Machine
Learning Models for Track-
ing Participant Skills in
Cognitive Training - study-
2

Micro adaptive
Machine learning and
deep learning (Hidden
Markov Model, Kalman
filters, LSTM) Prediction
of performance evolution
through training

(Working) Memory
Feasibility study
(framework
description +
secondary data
analysis)

Non clinical
sample

n=177
(Dataset)

Wilms Wilms,
2011

2011 Using artificial intelligence
to control and adapt level
of difficulty in computed-
based cognitive therapy

Micro adaptive
Reinforcement learning
(Actor-critic method)
Difficulty level adjustment

Specific domain
(Visual) Attention

Non-comparative
Study (case
study)

Clinical sam-
ple

n=1

NA = Not Applicable Continued on next page
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Table 2.3: continued from previous page
Study Date Title AI approach and AI

Techniques
Cognitive domain of CT Study design Population

Type
Sample
Size

Solana et al.
Solana et al.,
2014

2014 Intelligent Therapy Assis-
tant (ITA) for cognitive
rehabilitation in patients
with acquired brain injury

Macro adaptive
Clustering Definition of a
cognitive impairment pro-
file

Multiple domains
Attention, memory, execu-
tive functions

Non-randomized
controlled trial

Clinical sam-
ple

n=582

Zini et al. Zini
et al., 2022

2022 Adaptive cognitive training
with reinforcement learning

Micro adaptive
Reinforcement learning (Q-
learning) Difficulty level ad-
justment

Specific domain
(Working) memory

Individual ran-
domized con-
trolled trial

Non clinical
sample

n=20

Zebda et al.
Zebda et al.,
2022

2022 Towards Adaptation of Hu-
manoid Robot Behaviour
in Serious Game Scenarios
using Reinforcement Learn-
ing

Micro adaptive
Reinforcement learning (Q-
learning) Robot’s behavior
personalization

Specific domain
Attention (visual attention
and working memory)

Non-randomised
controlled trial
(crossover study)

Non clinical
sample

n=3

Eun et al.
Eun et al.,
2022

2022 Development and Evalua-
tion of an Artificial Intelli-
gence–Based Cognitive Ex-
ercise Game: A Pilot Study

Micro adaptive
Deep learning (LSTM) Dif-
ficulty level adjustment

Multi domain : Physical
training and cognitive train-
ing (attention, logic, re-
sponse time, memory)

Non-comparative
Study

Non clinical
sample

n=37

Tsiakas et al.
Tsiakas et al.,
2018

2018 Task Engagement as Per-
sonalization Feedback for
Socially-Assistive Robots
and Cognitive Training

Micro adaptive
Reinforcement learning (Q-
learning) Difficulty level ad-
justment

Specific domain
Working memory and se-
quencing

Feasibility study
(framework
description -
secondary data
analysis)

Non clinical
sample

n=69
(Dataset)

Book et al.
Book et al.,
2022

2022 Individualised comput-
erised cognitive training
for community-dwelling
people with mild cognitive
impairment: study proto-
col of a completely virtual,
randomised, controlled
trial

Micro adaptive
Machine learning (logis-
tic regression) Prediction
of performance evolution
through training

Multiple domains
Information processing speed
Speed memory span Short
term memory Logical reason-
ing

Feasibility study
(study protocol)

Clinical sam-
ple

n=100
(Objec-
tive)

Singh et al.
Singh et al.,
2022

2022 Deep learning-based predic-
tions of older adults’ adher-
ence to cognitive training
to support training efficacy

Micro adaptive
Deep learning (CNN,
LSTM) Adherence predic-
tion

Multiple domains
Memory Attention Spatial
processing, Task-switching,
Reasoning, Problem-solving

Feasibility study
(framework
description, sec-
ondary data
analysis)

Non clinical
sample

n=18
(Dataset)

NA = Not Applicable
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For response to Q3, Table 2.4 aimed to collect descriptive data for each selected
study in terms of population included, sample size, characteristics of CT design (content,
dose, location). In addition, this sheet was also dedicated to Q4 as it relates to the
effectiveness of AI based individualized computerized CTs according to several judgment
criteria (intra-training performance, pre/post training effect, near/far effect, etc) (Table
2.4). In order to address Q4, we also developed a meticulously crafted scale to assess
the presence of significant features that contribute to substantiating the effectiveness of
the intervention. Indeed, as elucidated in (C. S. Green et al., 2019), CT interventions
must incorporate significant supplementary elements to demonstrate their effectiveness.
Therefore, the proposed scale assigns a rating ranging from 0 to 3 for various dimensions,
including information related to dosage and location, intra-training performance measures,
subjective evaluation, pre-post comparisons, quality of the cognitive evaluation employed,
and follow-up assessment. By summing the scores for all items, each study was assigned a
grade ranging from 0 to 11.
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Table 2.4. Sample characteristics and characteristics of CT setup for the selected studies.

CT features Within - CT measurements CT effectiveness assessment Note
Study Population Content Dosage Location and

training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far effect (NFT)
and everyday life
transfer)

Follow-
up

Max
= 11

García-
Rudolph
and
Gibert
García-
Rudolph
and
Gibert,
2014

ABI and TBI
participants

Multi-domain
PREVIRNEC system
: rehabilitation tasks
(attention, memory,
executive functions,
language) - 115 tasks

Duration : ND
Frequency : ND
Location : Home

No No Yes
(+1)

NFT: Standard-
ized NAB (28
tasks covering
language, atten-
tion, memory,
learning and exec-
utive functions) -
source ND (+1)

No 2

Fermé et
al. Fermé
et al.,
2020
(Study
protocol)

NONE Multi-domain
5 modules about
knowledge (memory
of stories, cancella-
tion, questions of
general knowledge,
image pairs), compre-
hension (association,
categorization), ap-
plication (mazes,
navigation); analysis
(visual memory, word
search); evaluation
(comprehension of
contexts..) - no task

Duration : ND
Frequency : ND
Location : Home

NA NA Yes NFT: MoCA
(short-term
memory, exec-
utive functions,
visuospatial abil-
ities, language,
attention, concen-
tration, working
memory, tempo-
ral and spatial
orientation)

NA NA

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery Continued on next page
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Table 2.4: continued from previous page
CT features Within - CT measurements CT effectiveness assessment Note

Study Population Content Dosage Location and
training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far and every-
day life transfer
(NFT))

Follow-
up

Max
= 11

Xu et al.
Xu et al.,
2018

older adults
free of mental
disease / de-
mentia / MCI
(age=63.7)

Multi-domain
Puzzle games (mem-
ory, attention, speed,
visuo-spatial and ex-
ecutive functions) - 8
tasks

Duration : 2 weeks
Frequency : 10 mn
/ per week (with 4
specific games)
Location : Home
(+2)

Yes (user
adherence and
preference)
(+1)

Hand-made
questionnaires -
(elicited enjoy-
ment, content
and gaming
mechanism
preference, per-
ceived difficulty
and attention
level) (+1)

Yes
(+1)

NFT: MoCA
(short-term
memory, exec-
utive functions,
visuospatial abil-
ities, language,
attention, concen-
tration, working
memory, tempo-
ral and spatial
orientation) (+2)

No 7

Reidy et
al. Reidy
et al.,
2020

older adults
free of mental
disease / de-
mentia / MCI
(age=60 to
100)

Multi-domain
Virtual Reality
based tasks: virtual
supermarket (work-
ing memory) and
multi-room museum
(episodic memory)
tasks - 2 tasks

Duration : 30 mn
Frequency : 2 ses-
sions of 15 minutes
per day
Location : labora-
tory (+2)

No Standard-
ized question-
naire - gaming
experience
questionnaire
(immersion, en-
gagement, flow)
(+2)

Yes
(+1)

NFT: Stan-
dardized NAB
(spatial memory,
perception, atten-
tion/orientation,
memory, fluency,
language) - source
ND (+1)

No 6

Kitakoshi
et al. (a)
Kitakoshi
et al.,
2015

older adults Specific domain
Memory game - 1
task

Duration: 6 weeks
Frequency: at least
5 min on partic-
ipants behalf - 2
weeks per condition
Location : Home
(+2)

Yes (learning
path and
self-selected
dosage) (+1)

Hand-made
questionnaires
- (enjoyment,
motivation, per-
ceived difficulty)
(+1)

No No No 4

Kitakoshi
et al. (b)
Kitakoshi
et al.,
2020a

older adults
(age=79.2)

Specific domain
Memory game - 1
task

Duration: 2 weeks
Frequency: 10 min
per day
Location : Home
(+2)

Yes (learning
path) (+1)

Hand-made
questionnaires -
(motivation and
engagement)
(+1)

No No No 4

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery Continued on next page
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Table 2.4: continued from previous page
CT features Within - CT measurements CT effectiveness assessment Note

Study Population Content Dosage Location and
training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far and every-
day life transfer
(NFT))

Follow-
up

Max
= 11

Kitakoshi
et al. (b)
Kitakoshi
et al.,
2020a

older adults
(age=79.2)

Specific domain
Memory game - 1
task

Duration: 2 weeks
Frequency: 10 min
per day
Location : Home
(+2)

Yes (learning
path and
self-selected
dosage) (+1)

Hand-made
questionnaires -
(motivation and
engagement)
(+1)

No No No 4

Rath-
nayaka et
al. Rath-
nayaka
et al.,
2021

adults with de-
mentia

Multi-domain
D-care (attention and
concentration, exec-
utive functions, lan-
guage and memory
skills) - 4 tasks

Duration : 1 month
Frequency : ND
Location : ND

Yes (learning
path) (+1)

No No No No 1

Shen and
Xu Shen
and Xu,
2021

children
(age=10 to
11)

Multi-domain
CogDaily (speed,
memory, attention,
flexibility, logic
training) - 17 tasks

Duration: 2 weeks
Frequency: about
15 min per day
Location: Labora-
tory (+2)

No No Yes
(+1)

NFT: Wechsler
Memory Scale
(processing speed
and memory)
(+2)

No 5

Sandeep
et al.
Sandeep
et al.,
2020b
(Data col-
lection)

Young adults
(age=19.87)

Specific domain
N-back training (
“Tapback”, “Recall”
and “Recollect the
study”) - 3 tasks

Duration : 8-10
days
Frequency: 16 to 20
sessions of 20 min
with 2 sessions per
day including a 10
min break between
sequential sessions
Location: Home

NA NA NA NA NA NA

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery Continued on next page
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Table 2.4: continued from previous page
CT features Within - CT measurements CT effectiveness assessment Note

Study Population Content Dosage Location and
training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far and every-
day life transfer
(NFT))

Follow-
up

Max
= 11

Sandeep
et al.
Sandeep
et al.,
2020b
(Data col-
lection)

Young adults
(age=19.79)

Specific domain
N-back training (
“Tapback”, “Recall”
and “Recollect the
study”) - 3 tasks

Duration : 8-10
days
Frequency : 16 to
20 sessions of 20 min
with 2 sessions per
day including a 10
min break between
sequential sessions
Location: Home

NA NA NA NA NA NA

Wilms
Wilms,
2011

young adult
with ABI
(age=53)

Specific domain
VisATT (letter span
and vision detection
speed) - 1 task

Duration: 3 weeks
Frequency: 30 min
session per day
Location: Home
(+2)

Yes (learning
path) (+1)

No No No No 3

Solana et
al. Solana
et al.,
2014

adults with
cognitive
decline (ABI)

Multi-domain
Guttman Neuro Per-
sonal Trainer (GNPT,
PREVIRNEC 2) (at-
tention, memory, ex-
ecutive functions) - 95
tasks

Duration : 4 to 7
months
Frequency : 2- 3 ses-
sions of 1 hour per
week with a number
of total session of 60
Location: Home
(+2)

Yes (learning
path compari-
son) (+1)

No Yes
(+1)

NFT: Standard-
ized NAB (atten-
tion, memory, ex-
ecutive functions)
- source ND (+1)

No 5

Zini et al.
Zini et al.,
2022

young adults Specific domain
MS-rehab: (alternat-
ing attention and
working memory) - 1
task

Duration : ND
Frequency: 20 types
of exercise per ses-
sion
Location: Home
(+1)

Yes (learning
path) (+1)

No Yes
(+1)

NFT: PASAT
(processing speed,
working mem-
ory, sustained
attention) (+2)

Yes -
only
for
near
effect
(trained
task)

5

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery Continued on next page

71



Table 2.4: continued from previous page
CT features Within - CT measurements CT effectiveness assessment Note

Study Population Content Dosage Location and
training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far and every-
day life transfer
(NFT))

Follow-
up

Max
= 11

Zebda et
al. Zebda
et al.,
2022

young adults Specific domain
cooking game (vi-
sual attention, work-
ing memory) - 1 task

Duration : 1 day
Frequency : 45 min-
utes,
Location : Labora-
tory, (+2)

No Handmade
questionnaires -
user engagement
(semi-structured
interview about
perceived differ-
ences between
conditions, like-
ability, positive
and negative
aspects) (+1)

No No No 3

Eun et al.
Eun et al.,
2022

older adults
(60 to 80 and
over)

Multi-domain
4 modules (attention,
logic, response time
and memory) - 6
tasks

Duration: 8 weeks
Frequency: no limit
and ND
Location : Labora-
tory (+1)

Yes (intra-
training
performance)
(+1)

Hand-made
questionnaires
- satisfaction
(engagement,
fun, subjective
performance)
(+1)

Yes
(+1)

No No 4

Tsiakas
et al.
Tsiakas
et al.,
2018

young (under-
graduate and
graduate stu-
dents)

Specific domain
NIH Toolbox Cog-
nition Battery
(Working Memory
test with socially
assistive robots-based
approaches) - 1 task

Duration: ND
Frequency: Data
collection - 20 min-
utes (including a
post session user
survey)
Location: Labora-
tory

NA NA NA NA NA NA

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery Continued on next page
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Table 2.4: continued from previous page
CT features Within - CT measurements CT effectiveness assessment Note

Study Population Content Dosage Location and
training per-
formance mea-
sures

Post and intra
training subjec-
tive experience

Pre-
post
com-
pari-
son

Cognitive Mea-
surement (near,
far and every-
day life transfer
(NFT))

Follow-
up

Max
= 11

Book et
al. Book
et al.,
2022
(Study
protocol)

Mild Cog-
nitive Im-
pairment
(MCI)

Multi-domain
MAKSCog (at-
tention, executive
function, perceptual-
motor, executive
functions, perceptual
motor, language) - 10
tasks

Study protocol: Du-
ration : 6 months
and open phase in
which participants
can freely continue
to use the CCTs
Frequency : at least
30 min per day, 3
days a week
Location : Home

No Standardized
questionnaire
- User En-
gagement
questionnaire
(attractiveness,
perspicuity,
efficiency, de-
pendability,
stimulation
and novelty
of software),
Hand-made
questionnaire of
usability

No No No NA

Singh et
al. Singh
et al.,
2022

older adults
mean age 72.6

Multi-domain
The Mind Fron-
tiers cognitive
training (Working
memory updating,
switching, dual N
Back, TowerOfLon-
don, PipeMania,
FigureWeights Vi-
sualSpatial) - 7
tasks

Duration : first pe-
riod of 12 weeks (5
days out of 7) and
second period of 6
weeks
Frequency : Data
collection - 45 min-
utes a day for phase
1, no limit for phase
2
Location: Home

Data collec-
tion - Yes
(learning
path)

Data collection
- Hand-made
questionnaires
- (technical
competence,
subjective cogni-
tion, perceived
benefits)

NA NA NA NA

ND = Not Documented ; NA = Not Applicable; NAB = Neuropsychological Assessment Battery
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Finally, Tables 2.5 and 2.6 collected information for a SIGN analysis (Harbour and
Miller, 2001) to assess the quality of study design in the field of individualized computerized
CT. The SIGN ratings estimates the strength of available evidence provided by a study,
based on the methodological design and the evaluation of possible biases. Regarding
study designs, we considered various options as outlined in the SIGN guidelines. We
included experimental studies, both with and without a comparison group. Studies with
comparisons were classified into three possible variations: cluster randomized controlled
trials, where randomization occurs at the group level; individual randomized controlled
trials, where randomization occurs at the individual level; and non-randomized controlled
trials, which involve no randomization. We also considered feasibility studies that proposed
a descriptive framework. Some of these studies were supported by secondary data analysis
and utilize existing datasets to extract valuable information to propose a descriptive
framework. It is important to note that the objective of our SR is to provide an overview
of the current state of the art and the level of maturity of individualized CT. Consequently,
our criteria for study inclusion and exclusion were not restricted to particular research
designs; in other words, we did not constrain the incorporation of studies with lower
maturity, such as those lacking comparative analyses.

For each included controlled trial, we employed the SIGN methodology checklist, which
presents a grading system ranging from 0 (not applicable) to 3 (well covered) for various
items including participant assignment strategy, randomization, measurement types and
validity, among others (see appendix 2.5). This assessment resulted in a final grade that
evaluates the extent to which the study was conducted to minimize bias, with grades of
(++) indicating high quality, (+) indicating acceptable quality, (-) indicating low quality,
and (- -) indicating unacceptable quality. The SIGN methodology proves to be a highly
efficient rating system for assessing the quality of methodologies used in the included
studies. Therefore, to compare the results of the SIGN analysis with the scores on our
specifically designed scale, Table 2.5 displays a comparison between the SIGN risk of bias
assessment, our customized evaluation of intervention quality, and the conclusions made
by the authors.
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Table 2.5. Risks of bias, proof level rating and authors conclusions.

Study How well
was the
study done
to minimize
bias?

Is the over-
all effect
due to the
study inter-
vention?

Note on the
custom scale

Summarise the authors’ conclusions. Add any comments on your own
assessment of the study, and the extent to which it answers your question
and mention any areas of uncertainty raised above.

García-
Rudolph
and Gib-
ert García-
Rudolph
and Gib-
ert, 2014

+ No 2 The authors introduced two methods for identifying neurorehabilitation (NRR) in
patient samples. Both methods prioritize difficulty level and dosage to enhance
rehabilitation effects. Clinical validation on a limited sample (n=10) favors the
sectorized annotated plan strategy for optimal difficulty targeting.

Fermé et
al. Fermé
et al., 2020

- - Not applicable Not applicable The authors proposed a framework to personalize the treatment of a cognitive reha-
bilitation tool. Their framework involves determining participants’ cognitive profiles
and employing a belief revision system for continuous cognitive level updates. This
strategy aims to sustain an ideal difficulty level and motivation, yielding optimal
rehabilitation outcomes.

Xu et al.
Xu et al.,
2018

+ Yes 7 The authors proposed an individualized serious game for cognitive training by em-
ploying a daily life recording strategy and intelligent techniques to incorporate visual
lifelogs into training. The results indicate moderate effects on user adherence (signifi-
cant difference in playing frequency on a Wilocoxon signed-rank test, p=0.049, Hedge
g=0.39) and engagement (significant difference on paired t-test, t(25) = 3.410,p =
0.001) in favor of the personalized strategy. However, cognitive improvements were not
observed (p=0.691) (paired t-test, t(25)=-0.5, p=0.691). While this marks a promising
step towards optimal content individualization, the crossover design prevents efficacy
assessment for cognitive improvement.

Reidy et
al. Reidy
et al., 2020

+ Yes 6 The authors proposed a VR based CT and used intelligent strategies to automatically
extract and classify affects from EMG data. Qualitative feedback analysis suggests
that the individualized condition enhances feelings of competency and appropriate
challenge. However, the study’s limited sample size and crossover design preclude
assessing cognitive improvement efficacy.

Kitakoshi
et al. (a)
Kitakoshi
et al., 2015

+ No 4 The authors assessed the impact of a difficulty adjustment reinforcement learning
algorithm (DA) and a break offering system (DABO). revealed higher enjoyment in
the control condition and greater motivation in the DABO condition. Questionnaires
indicated the DA algorithm offered suitable difficulty for most participants. Learning
path analysis indicated appropriate difficulty levels in the DA condition. Nonetheless,
the study’s small sample size and crossover design hindered efficacy assessment for
cognitive improvement.

Continued on next page
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Table 2.5 – continued from previous page
Study How well

was the
study done
to minimize
bias?

Is the over-
all effect
due to the
study inter-
vention?

Note on the
custom scale

Summarise the authors’ work and conclusions. Add any comments on
your own assessment of the study, and the extent to which it answers your
question and mention any areas of uncertainty raised above.

Kitakoshi
et al. (b)
Kitakoshi
et al.,
2020a

- No 4 The authors proposed a personalized CT of memory through reinforcement learning.
A preliminary study assessing the impact of 2 structures of the activity space (9
difficulty vs 13 difficulty levels) favored a lower number of difficulty levels. Interviews
revealed inter-subject variability in optimal activity space perception, suggesting
further investigation (study 2 below).

Kitakoshi
et al. (b)
Kitakoshi
et al.,
2020a

- No 4 The authors proposed individualized memory CT through reinforcement learning,
comparing low-number (9) and high-number (13) difficulty level activity structures.
Questionnaire analysis indicated that the high-number condition required less effort and
allowed longer play sessions. Learning path and success rate analysis indicated high-
number difficulty levels was better suited for difficulty adjustment algorithms. However,
limited sample size and crossover design impeded assessing cognitive improvement
efficacy.

Rath-
nayaka et
al. Rath-
nayaka et
al., 2021

- - No 1 The authors proposed an individualized cognitive rehabilitation based on a reinforce-
ment learning algorithm (Q-learning). The intervention group exhibited performance
improvement across all proposed cognitive activities. Notably, the study lacks in-
formation about cognitive performance, subjective questionnaires, or inter-group
comparisons.

Shen and
Xu Shen
and Xu,
2021

++ Yes 5 The authors proposed a recommendation algorithm for personalized cognitive training.
Pre-test comparisons in cognitive performance showed no difference between groups
(independent t-test,t(15)=1.4, p>0.05 for processing speed and t(15)=-1.02, p=0.32
for memory quotient). Post-test cognitive performance analysis revealed improvements
only for the intervention group in processing speed (paired sampled t-test, t(15)=-2.62,
p=0.02) and in memory quotient (t(15)=-2.60, p=0.02).

Sandeep
et al.
Sandeep
et al.,
2020b

- - Not applicable Not applicable The authors aimed to compare machine learning algorithms (Hidden Markov Models
(HMM), Kalman filter (KF), and Long Short Term Memory (LSTM)) for predicting
participant skill levels. Using data from a cognitive training intervention with the
Recall game, history-driven HMM demonstrated better fit than HMM with a universal
transition matrix (RMSE=5.6%). Both HMM-based models effectively predicted skill
levels. KF and LSTM estimated performance and skill levels but with weaker accuracy
(RMSE=18.83% and 9.34% respectively).

Continued on next page
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Table 2.5 – continued from previous page
Study How well

was the
study done
to minimize
bias?

Is the over-
all effect
due to the
study inter-
vention?

Note on the
custom scale

Summarise the authors’ work and conclusions. Add any comments on
your own assessment of the study, and the extent to which it answers your
question and mention any areas of uncertainty raised above.

Sandeep
et al.
Sandeep
et al.,
2020b

- - Not applicable Not applicable The authors aimed to compare machine learning algorithms (HMM, KF, and LSTM)
for predicting participant skill levels. The dataset included diverse learning trajectories
from a Recollect cognitive training intervention. HMM with a universal transition
matrix displayed better fit (test RMSE=12.54%) than history-driven HMM. Both
HMM-based models effectively predicted skill levels. Study results differed from Study
1, revealing sensitivity to algorithm choice during initial data generation (difficulty ad-
justment procedure during initial intervention). KF and LSTM estimated performance
and skill levels with less accuracy (RMSE=31.52% and 18.77% respectively).

Wilms
Wilms,
2011

- No 3 The author introduced a difficulty-adjusting reinforcement learning algorithm (actor-
critic) for cognitive training. While the algorithm adapted difficulty levels, the study
design precluded drawing conclusions about the approach’s effectiveness.

Solana et
al. Solana
et al., 2014

+ Yes 5 The authors presented a clustering-recommendation strategy for individualized cogni-
tive rehabilitation sequences. Comparisons of selected tasks and difficulty levels chosen
by the intelligent strategy and the manual planning showed significant differences
(p<0.001). No cognitive improvement disparities were observed between the two
planning methods (p=0.34).

Zini et al.
Zini et al.,
2022

++ Yes 5 A reinforcement learning algorithm (SARSA) was proposed for individualized cognitive
training. Results showed that participants started with homogeneous pre-test scores (2-
tailed T-test, p = 0.42) and both groups improved after training (2-tailed paired T-test,
p = 1.7× 10−5 for group intervention and p = 0.02 for group control). Intervention
participants using the RL algorithm showed greater cognitive improvement than
control group (2-tailed T-test, p = 4 × 10−4). Learning trajectories indicated no
significant success rate differences (2-tailed T-test, p = 0.56). On all trained tasks,
the intervention group completed fewer activities on average than the control group.
Follow-up evaluations demonstrated no between-group performance differences (task 1:
p = 0.33, task 2: p = 0.06). An additional experiment with a modified RL algorithm
(fine-tuned policy) showed no cognitive improvement differences but required fewer
activities.

Zebda et
al. Zebda
et al., 2022

- No 3 The authors proposed individualized cognitive training via robot interactions using
reinforcement learning (Q-learning). Multiple case studies highlighted participants’
successful identification of the adaptive condition, with semi-structured interviews
emphasizing participant enjoyment.

Continued on next page
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Table 2.5 – continued from previous page
Study How well

was the
study done
to minimize
bias?

Is the over-
all effect
due to the
study inter-
vention?

Note on the
custom scale

Summarise the authors’ work and conclusions. Add any comments on
your own assessment of the study, and the extent to which it answers your
question and mention any areas of uncertainty raised above.

Eun et al.
Eun et al.,
2022

- - No 4 This study introduced individualized cognitive training based on participant skill levels,
utilizing a LSTM model for dynamic difficulty adjustment. The intervention group
exhibited improved quality of life, certain geriatric depression test components, and
mini-mental status examination results. Pre-post cognitive performance comparison
showed significant improvement in all cognitive activities (except one) (repeated
measure ANOVA, t=2.76 p=0.006 for memory training, t=5.94, p=0.00 for vision
adaptation, t=10.4, p=0,000 for icon training, t=5.423 p=0.000 for graph training).
The study design did not allow for separating the personalized procedure’s impact
from the training program itself.

Tsiakas et
al. Tsiakas
et al., 2018

- - Not applicable Not applicable The authors introduced socially assistive robots for cognitive training (CT), which
tailor learning by monitoring task engagement and performance. Their approach
involves modeling artificial participants, training reinforcement learning (RL) models,
and assessing them in a virtual environment. Results indicate RL models effectively
generate distinct policies for various user profiles.

Book et
al. Book
et al., 2022

- - Not applicable Not applicable This study suggests an individualized cognitive training design based on performance
prediction through logistic regression. However, no data is provided to support the
proposal (study protocol).

Singh et
al. Singh
et al., 2022

- - Not applicable Not applicable The authors presented data augmentation techniques and deep-learning strategies
(CNN, LSTM, CNN-LSTM) for predicting adherence to cognitive training. Model
fitting showed successful training and prediction on the dataset, with approximately
75% accuracy, AUC, and F-score.
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2.3 Results

2.3.1 Descriptive results
The systematic review processed seventeen papers including nineteen studies (12 in
journals and 7 in proceedings articles) that have been published from 2011 to 2022 (Table
2.3). Almost 70% (n=13) of included papers were published during the last three years
demonstrating the relatively low maturity of the field. Six studies are not empirical in
nature and provide from either a study protocol (n=2, Fermé et al., 2020 and Book et al.,
2022) or a feasibility study (formal validation) evaluating new methods on existing datasets
(n=4, Sandeep et al., 2020b, Singh et al., 2022 and Tsiakas et al., 2018). According to the
SIGN methodology for study design (Harbour and Miller, 2001), eleven used a controlled
trial (n=8 non-randomised controlled trial and n=3 Individual randomized controlled
trial) and two proposed either a case study (Wilms, 2011) or a non-comparative study
(Eun et al., 2022). All the controlled trials included an active control group, either using
a between-subject or within-subject design. During the intervention, the participants
engaged in the same training as the intervention group, but without any adaptive procedure.
It is noteworthy that none of the studies included passive control conditions where no
intervention was implemented. Among the total of nineteen studies, approximately 70%
(n=13) aimed to assess CT with non-clinical samples, while the remaining 30% (n=6) had
a rehabilitative objective and investigated clinical samples. When assessing the research
conducted on actual populations, the average sample size was 85, and the median sample
size was 20. Nevertheless, within the three studies with the largest participant pools,
(García-Rudolph and Gibert, 2014) presented two cohorts consisting of n=123 and n=327
individuals. Notably, the individualized CT was exclusively examined in a subgroup of
n=10 participants within the treatment condition. Factoring in this information, the mean
sample size adjusted to 60, with the median sample size reduced to 10.

2.3.2 Q1 & Q2. What Type of AI Techniques have been used in
the field of computerized CT? What are the Subject/Do-
mains of CT for which adaptive techniques have been
designed?

Lightbulb
Main results:

• A quarter of the included strategies employed a macro-adaptive approach, all
of which were for multi-domain cognitive training.

• The majority of papers presented micro-adaptive procedures, either for pre-
dicting the next optimal learning activity directly or for extracting patterns
to inform optimal pedagogical decisions.

• Half of the micro-adaptive procedures targeted a single, cross-cutting cognitive
function, while the remaining half employed a multi-domain approach.

Among the nineteen papers examined, only 26% of them (n=5) put forth the utilization
of a macro-adaptive procedure to customize the intervention. For example, (García-Rudolph
and Gibert, 2014) aimed to improve the understanding of optimal learning objectives.
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Specifically they used visual annotated plans and decision trees techniques to identify the
range of difficulty known as the ”neurorehabilitation range” (NRR). Other approaches
suggested tailoring the entire curriculum in advance through a recommendation system that
leveraged participant similarities (Xu et al., 2018) or by employing clustering techniques
to identify cognitive profiles (Shen and Xu, 2021). Another proposal involved directly
customizing the visual content of cognitive activities by utilizing automatic extraction of
relevant images from daily visual logs (Xu et al., 2018).

The 74% (n=14) of remaining papers used a micro-adaptive approach with different
strategies. These studies can be broadly categorized into two groups. The first category
encompasses eight studies that primarily concentrated on directly predicting the next
optimal activity by tailoring the difficulty level or the game content. Reinforcement learning
methods were commonly used, with three different algorithms employed: Q-learning (n=4),
Bucket brigade (n=3), and Actor-critic (n=1). Additionally, Eun et al., 2022 proposed
a method utilizing deep learning, particularly Long Short-Term Memory (LSTM). The
second category comprises six intelligent methods designed to extract valuable information
from collected data, facilitating the generation of optimal pedagogical decisions. In all
studies within this category, the choice of the next activity is based on expert hand-designed
heuristics or algorithms. It is worth noting that among the studies in this category, four
of them are feasibility studies without evaluating a real population. One approach aims to
predict participants’ performance on the next activities based on their previous trajectory.
For this purpose, (Sandeep et al., 2020b) proposed Bayesian techniques such as hidden
Markov models and Kalman filters, as well as deep learning utilizing LSTM. Another
strategy involved employing machine learning techniques, specifically logistic regression,
to predict participant performance (Book et al., 2022). In addition, (Singh et al., 2022)
utilized deep learning algorithms (LSTM and CNN) directly to infer the probability of
dropout in the next activities. Finally, (Reidy et al., 2020) suggested using deep learning
techniques to extract useful information from EMG data.

As demonstrated by Figure 2.3, half of the studies (n=10) adopted a multiple cognitive
domain approach for designing the CT. Among the nine studies focusing on single domain;
the targeted functions were attention (Wilms, 2011) or working memory (Sandeep et al.,
2020b, Zini et al., 2022), i.e., cognitive functions that are seen as cross-cutting to many
other cognitive functions or activities, and are therefore expected in a CT to improve a
large number of cognitive domains. It is noteworthy that studies using specific domain
training used mostly a micro-adaptive approach with RL techniques. Consequently, these
observations indicate that micro-adaptive strategies are preferred for the single cognitive
domain CTs while macro-adaptive strategies are preferred for CTs with multiple cognitive
domains.
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Fig 2.3. Distribution of AI techniques depending on type of CT studied (multi or single
domain)

2.3.3 Q3. What populations are targeted and what are the
characteristics of the CT design?

Lightbulb
Main results:

• The majority of studies involved non-clinical adult populations.

• Experimental designs varied widely, with many conducted remotely, and
no clear patterns emerged regarding intervention duration, frequency, or
assessment strategies.

Among the thirteen studies with non clinical samples, twelve of them included adults
(n=7 with older adults and n=5 with young adults) for whom specific domain CTs (n=7)
were performed rather than multiple-domain ones (n=4). The only study including
children performed a multiple-domains CT (Table 2.4). Among the six studies with a
rehabilitative purpose, three of them included young adults with acquired brain injury
(ABI) or traumatic brain injuries (TBI), two of them involved older adults with dementia
or mild cognitive impairement (MCI). For these two types of clinical samples, the multiple-
cognitive domains approach has been widely used (80%, n=4). The remaining study
(Fermé et al., 2020) proposed a general framework that is agnostic to a specific population.
Taken together, the selected studies mirrors well the two distinct literature, where CTs are
often single-domain by targeting a cross-cutting function (attention, working memory) (e.g.,
Harvey et al., 2018), and cognitive rehabilitation programs are rather multiple-domains,
as this intervention design has been shown to be more clinically effective than single
domain interventions (e.g., Cicerone et al., 2019, L. Nguyen et al., 2019). In relation
to the CT settings outlined in Table 2.4, the majority of interventions were carried out
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remotely at participants’ homes (n=9), while others took place in laboratory settings
(n=4), and information was not provided for (n=2) cases. The time duration of the
CT varied significantly, ranging from lengthy periods of seven months to brief sessions
of only thirty minutes. However, the most commonly reported duration was two weeks
(n=4), and in some studies, information regarding the duration was not available (n=4).
Among the studies that documented the CT dose (n=10), there was substantial variation
observed, with session duration ranging from five minutes to one hour per day. Cumulative
sessions encompassed a wide range, from 30 minutes (n=1) to over 600 minutes (n=3),
often with intermediate duration averaging around 140 to 215 minutes or 2 hours and 30
minutes to 3 hours and 30 minutes (n=5). A total of 48% of the studies (n=9) intended
to document the training effect throughout the experiment using objective measures of
performance or participants’ subjective experiences related to the intervention. Regarding
the assessment of participants’ subjective experiences (n=8), the majority of studies (n=6)
relied on manual evaluations (non standardized measurements). The subjective evaluations
were related to several dimensions such as engagement, game preferences, motivation or
perceived difficulty. In (n=6) studies, pre- and post-intervention comparisons of cognitive
performance were conducted.

2.3.4 Q4. How effective are they in empirical CT studies? What
effects are reported (NFT and everyday life transfer ef-
fects)? Are the effects dependent on the CT design (con-
tent, dose, location) and the targeted sample?

Lightbulb
Main results:

• In one study, no distinctions were found between groups in pre-post assess-
ments, highlighting that an automated individualized procedure exhibited
equivalent efficacy to a manual approach.

• Two studies exhibited more substantial cognitive enhancements in post-test
measurements, specifically in near-transfer measures.

• Several studies utilized non-comparative or cross-over designs, making it
challenging to differentiate the training’s impact in pre-post assessments.

• Five studies exhibited varying learning trajectories through intra-training
measures, while six showed subjective differences in motivation, engagement,
and play frequency between individualized and control groups.

Multiple dimensions were considered to present the effectiveness of empirical CT
studies. Firstly, out of the seven studies that aimed to evaluate the progression of cognitive
performance using pre-post assessments, three interventions (Eun et al., 2022; Reidy et al.,
2020; Xu et al., 2018) employed either a crossover or a non comparative design, making
it challenging to distinguish the impact of the control procedure from the individualized
approach on cognitive performance. In the other hand, no significant differences in cognitive
enhancement were found between the intervention and control groups in Solana et al.,
2014, indicating that the automated procedure’s effectiveness matches that of the manual
approach across a comprehensive neuropsychological assessment battery. Futhermore, by
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ensuring group homogeneity during the pre-test, both Shen and Xu, 2021 and Zini et al.,
2022 demonstrated that the personalized approach resulted in more pronounced cognitive
changes concerning measures of near transfer. Zini et al., 2022 also conducted a follow-up
evaluation on the trained task but were not able to see any difference in performance
between groups. Furthermore, García-Rudolph and Gibert, 2014 observed a significant
improvement of performance for a small subset of participants treated with an optimal
difficulty level. It is noteworthy that the 3 interventions showing significant changes were
all using different CT programs (multi and single domain, different dosage, laboratory
and at home based, population of healthy young adults, children and ABI patients…) and
different cognitive evaluations.

Another aspect leveraged to assess the impact of the proposed intervention was to
observe quantitative intra-training measures. First, two studies (Rathnayaka et al., 2021,
Wilms, 2011), presented an increase in the performance on the trained task as a proxy for
cognitive evolution. Then other authors showed how the individualized procedures affected
the learning path proposed. Kitakoshi et al., 2015, 2020a; Solana et al., 2014 performed a
comparative analysis of the learning trajectories of the non-adaptive control group and
the treatment group, revealing notable differences in the patterns of learning. Moreover,
analysis of quantitative intra-training observations revealed differences in the schedule of
activity proposed: Xu et al., 2018 showed a significant increase in the self-management of
playing frequency with the individualized game compared to the non personalized but no
significant difference in intensity (average sessions length). Additionally, Zini et al., 2022
demonstrated a significant disparity in the number of episodes played, indicating that the
individualized procedure facilitated greater cognitive improvement in a shorter period of
time.

To gain insights into the impact of the intervention, subjective measures were also
employed. Firstly, Reidy et al., 2020 utilized the Game Experience Questionnaire (IJssel-
steijn et al., 2013) demonstrating that the individualized procedure positively influenced
the participants’ sense of competence. The intervention also led to a better-suited level of
difficulty, as evidenced by an increase in flow and a decrease in the feeling of challenge.
Then Eun et al., 2022 showcased various positive impacts of individualized CT. Partici-
pants reported an improvement in subjective health condition and overall quality of life.
Moreover, there was a reduction in certain items of the Geriatric Depression Scale Short
Form (GDSSF-K, Lesher and Berryhill, 1994) and a positive change in the Mini-Mental
State Examination (MMSE, Tombaugh and McIntyre, 1992). It is worth noting that these
results were not compared with an active control trial. Additionally, three other studies uti-
lized custom-made questionnaires to assess subjective performance. Xu et al., 2018 found
that participants using the individualized procedure experienced higher enjoyment, which
was further substantiated by qualitative feedback obtained through interviews. Kitakoshi
et al., 2015 revealed that the individualized intervention fostered greater motivation to
use the system and maintained a suitable difficulty level. Furthermore, Zebda et al., 2022
interviews indicated that the individualized procedure was perceived as more stimulating
and engaging.
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2.3.5 Q5. What Type of Validation have been conducted for
these new generations of computerized CT?

Lightbulb
Main results:

• In accordance with SIGN ratings, two studies were rated as (++), five as
(+), four as (-), and eight as (- -).

• The mean score on the customized scale was 4.1 out of 11.

• Increased scores on the customized scale corresponded to higher ratings on
the SIGN rating scale.

Based on the SIGN rating, it was found that out of the nineteen studies examined,
only 2 received the highest score (++) (Shen and Xu, 2021, Zini et al., 2022). Five
studies received an acceptable score (+). Within this group, two randomized controlled
trials (García-Rudolph and Gibert, 2014, Solana et al., 2014) focused on clinical samples,
and the reason for not receiving a (++) grade was due to issues related to participant
randomization and blinding. The remaining three studies (Xu et al., 2018, Reidy et al.,
2020, Kitakoshi et al., 2015) received a (+) grade primarily because of their implementation
of a crossover design.

Among the 19 studies, four studies received a (-) score. Two of these studies (Kitakoshi
et al., 2020a) utilized a crossover design but lacked important information in their reports
(see Appendix 2.5), while the other two studies (Wilms, 2011, Zebda et al., 2022) did
not include any control group. Additionally, eight studies received a (- -) score. Six of
these studies were either proposing a study protocol or conducting a feasibility study. The
remaining two interventions (Rathnayaka et al., 2021, Eun et al., 2022) were assigned a (-
-) score due to the absence of a control group and a lack of important information (see
Appendix 2.5).

Studies that obtained a (++) score achieved an average score of 5 on the customized
scale, while studies with a (+) score had an average score of 4.8. For studies receiving a (-)
score, the average score was 3.5, and for studies with a (- -) score, the average score was
2.5 (whenever applicable). These findings emphasize a noticeable correlation between risk
evaluations and the number of standards fulfilled in CT research. Furthermore, the results
demonstrate that the majority of studies (n=12) did not meet the acceptable criterion of
the SIGN methodology (+), and none of the studies fulfilled all the standards outlined by
the customized scale. The average score across all studies was 4.1.

2.4 Discussion
This SR explored the wide array of AI techniques employed to enhance individualized
CT. To begin with, the deployment of macro-adaptive strategies, which may draw from
participant resemblances or the formation of cognitive profiles, facilitates the utilization of
existing knowledge in the development of individualized schedules for cognitive tasks. These
approaches proves particularly valuable when implementing multi-domain CT, especially
when multiple cognitive processes are involved in numerous activities. As evidenced in
various cognitive rehabilitation studies (García-Rudolph and Gibert, 2014, Fermé et al.,
2020), health professionals often face challenges in selecting the most suitable sequence
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of activities. Consequently, employing macro-adaptive strategies that can leverage data
from large cohorts presents a promising avenue for developing effective interventions.
Furthermore, as suggested by (Singh et al., 2022), these methods offer insights into the
mechanisms underlying improvements and adherence to the interventions. Nevertheless,
macro-adaptive procedures, by their inherent nature, do not entail direct adaptation of
the content and difficulty levels of individual tasks. Instead, they yield more intricate
outcomes that require comprehensive analysis. Consequently, given the still exploratory
state of the field, the majority of studies reviewed here have focused on tailoring single or a
few training tasks using a micro-adaptive approach. Micro-adaptive procedures propose to
use previous interaction with the user to personalize the learning trajectory. Most modern
AI techniques leverage collected data from the training path and thus fits particularly well
with the CT paradigm where many short episodes are played. While this task may appear
less challenging than planning a complete curriculum in advance, it requires data-efficient
strategies to identify and suggest activities with appropriate dynamics for tailoring the
path to each participant’s needs. As a result, many studies employing deep learning or
machine learning techniques are still undergoing formal validation and are currently in the
feasibility study stage, being tested solely on previous data and not yet evaluated on real
participants (Singh et al., 2022). Reinforcement learning paradigm, where the artificial
teacher, or system, proposes activities based on the participant’s previous interactions
looks like a particularly good fit for that purpose but also has its limitations: to enhance
data efficiency, most strategies rely on tabular approaches, which in turn restrict the
number of parameters available for adaptation. Moreover, for several studies of this SR,
a two-stage time consuming strategy is commonly employed where a first teacher policy
is being trained on a group of participants and is then fine-tuned for each participant
(e.g., Zini et al., 2022). Finally, a third family of strategies based on recommendation
algorithms show promise but also require sufficient pre-collected data to achieve efficiency
in personalizing the training experience.

Additionally, it is noteworthy to observe that most micro-adaptive strategies propose a
personalization based on the difficulty of the cognitive tasks. As proposed by Vygotsky and
Cole, 1978b, Csikszentmihalyi, 2000, Ryan and Deci, 2017, the key idea is to propose an
optimal difficulty in order to foster training gains and motivation and is tightly connected
with the optimal cognitive challenge (Lövdén et al., 2010a). For that purpose, while
many studies primarily focus on choosing the correct parameter set, certain approaches
suggest modifying the content according to participants’ visual cues. This alternative
approach to customizing training harmonizes effectively with Mayer’s Cognitive Theory
of Multimedia Learning and his personalization principle (R. Mayer, 2017). Along this
line of customization, the adaptation of interactions through assistive robots (Zebda et al.,
2022), chatbots (Kitakoshi et al., 2015) or virtual reality (Reidy et al., 2020) is likely to be
another key factor for participant engagement. In this direction, it is conceivable that recent
advancements with large language models will enable better dialogic adaptation, potentially
impacting motivation and engagement (Abdelghani, Wang, et al., 2023). However the issue
of reproducibility becomes increasingly significant when incorporating complex data-driven
strategies. Ensuring the transferability of models and reproducibility of experiments raises
a challenge in the absence of provided code or dataset accessibility across the included
papers. This lack of transparency is of growing criticality for research reproducibility.
Consequently, the field of AI frequently encounters a black box scenario, which hampers
reproducibility efforts. In the context of CT and its human stakes, it is important to
understand the methods used to individualize the training path for each trainer, and if
these are not sufficiently transparent, they must at least be traced or documented as
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predictors of targeted intra-training mechanics.
The findings of the present SR highlighted the current state of individualized CT as

a field with relatively low maturity. Following the recommendation put forth by C. S.
Green et al., 2019, there exists an urgent requirement to clarify the objectives of each
study within the CT community. To achieve this, C. S. Green et al., 2019 proposed
a distinction among several categories: feasibility, aimed at ”testing the viability of a
particular paradigm or project”; mechanistic, focused on ”identifying the mechanism(s)
of action of a behavioral intervention for cognitive enhancement”; efficacy, with the goal
of ”validating an intervention as the primary cause of cognitive improvements beyond
any placebo or expectation-related effects”; and effectiveness, concerned with evaluating
whether a given intervention ”achieves the desired and predicted positive impact, often
involving real-world outcomes”. Notably, none of the studies encompassed in this review
employed such terminology, yet it becomes obvious that the majority of interventions are
currently positioned at the feasibility or mechanistic study stages. This observation is
reinforced by the predominant focus of these interventions on non-clinical populations,
specifically targeting young adults. Moreover, it is essential to note that very few studies
adhered to the gold standard of Randomized Controlled Trials (RCTs). While RCTs
have certain limitations, such as the need for stable, long-term interventions spanning
several years to establish robust scientific evidence, they remain a crucial benchmark for
evaluating interventions (Mohr et al., 2015).

Specifically in the context of individualized interventions, mere observation of favorable
and definitive outcomes arising from an individualization algorithm in the context of
pre-post training effects is insufficient. What is imperative is the ability to elucidate
its impact on the active cognitive mechanisms underpinning the training process, and
subsequently, to establish a coherent connection between these mechanisms and the
resultant effectiveness. A deep understanding of the causal relationships existing between
the behaviors governing individualization and the intricate mechanics of training, as well
as their collective impact on training effectiveness, stands as an essential foundation for
the advancement of these emerging computerized cognitive therapies. To attain this level
of understanding, the incorporation of judicious supplementary evaluations holds utmost
significance. These assessments should aim to gain a comprehensive understanding of
algorithm behavior, allowing researchers to gauge the effectiveness and adaptability of
the indivualized interventions. Moreover, the integration of subjective questionnaires can
help evaluate participants’ motivation and engagement levels, providing valuable insights
into their experiences and receptiveness to the intervention. Such subjective metrics also
possess the potential to shed light on how the customization of training can serve as
an efficient mechanism for enhancing participants commitment to the program, thereby
potentially mitigating the unfortunate phenomenon of attrition, which regrettably tends
to manifest, particularly among older adults or clinical cohorts, who nonetheless manifest
a demonstrable necessity for the training regimen (Depp et al., 2014a).

The field of individualized CT, as depicted in this SR, mirrors the broader literature
on CT, which is characterized by methodological and empirical weaknesses in assessing
intervention effectiveness leading to controversy among experts (Allaire et al., 2014).
This review highlights significant heterogeneity in methods, cognitive domains, dosage,
and study populations, aligning with findings from other studies appealing for a greater
compliance with more rigorous methodological standards. Unlike prior meta-analyses that
presented mixed results regarding the dose-dependency of training effects in CT (e.g at least
10 sessions for Kelly et al., 2014 or 3 or fewer sessions in Lampit et al., 2014a), our study
does not provide evidence supporting a particular direction. Additionally, while previous
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studies (e.g., L. Nguyen et al., 2019) have indicated that multi-component training may
exhibit greater efficacy compared to single-component training, half of the investigations
included in this review primarily concentrate on attention or working memory functions.
The emphasis on these functions is justified by their crucial cross-cutting role in everyday
activities and their vulnerability to impairment in various cognitive pathologies (Depp
et al., 2014a). Lastly, as emphasized in several systematic reviews (Harvey et al., 2018;
Lampit et al., 2014a, and the reanalysis of 2018 Webb et al., 2018c), the definition of a
suitable cognitive battery that assesses NFT and ecological transfer significantly influences
the measured outcomes and the conclusions drawn. Notably, improvements in certain
cognitive domains might not manifest when assessed using different cognitive tasks (see
Webb et al., 2018c). Furthermore, it’s essential to keep in mind that enhancements
observed in a specific cognitive domain do not necessarily guarantee true transfer, as
evidenced by the case of verbal memory training and its effects on neuropsychological
tests (Harvey et al., 2018). The studies included in this review underscore the substantial
diversity in assessment methods and the limited availability of approaches to evaluate
broader ecological transfer.

2.5 Conclusion
The present systematic review puts forth a range of potential methodologies to better
address interindividual differences and offers captivating prospects for the future develop-
ment of the field. The hypothesis of heightened engagement and motivation found support
in the limited number of studies that investigated this aspect. Further investigations are
necessary to validate whether AI strategies can truly empower each participant’s cognitive
potential, and then ensure CT benefits for all. Although additional research endeavors
adhering rigorously to methodological standards are still required, the first results appear
promising. In line with this drive for progress, a notable observation emerged during
the course of this systematic review: the number of included papers nearly doubled,
particularly in the year 2022. This indicates a growing interest in individualized cognitive
training and underscores the optimistic outlook for the field’s future.

87



Appendix

Risk of bias
For the evaluation of potential bias within each controlled trial incorporated in this
comprehensive review, we initially employed the Cochrane checklist to ascertain the
underlying study design of each individual study. Subsequently, with regard to each
dimension outlined in Table 2.6, a grading scale ranging from 0 (not applicable) to 3
(adequately addressed) was employed to assign scores. In instances where specific criteria
were not explicitly stated, a grade of 1 was attributed. In situations involving crossover
studies, a score of 2 was designated for the criterion pertaining to participant similarity
between the control and intervention groups. Furthermore, for studies utilizing a crossover
design, a score of 2 was ascribed to the concealment method criterion. In cases where
researchers employed handcrafted questionnaires despite the existence of standardized
alternatives, the assigned grade was automatically reduced by 1. The ultimate assessment
presented in this table is established through the following categorizations: studies scoring
0 criteria as poorly addressed are denoted as (++), while those with 1 to 3 criteria marked
as poorly addressed receive a rating of (+). Conversely, studies where more than 3 criteria
are deemed inadequately addressed are indicated as (-), and non-comparative studies are
indicated with (- -).
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Table 2.6. Grading scale results.

Study Appropri-
ate and
clearly
focused
question

Random-
ized assign-
ment to
treatment
group

Ade-
quate
conceal-
ment
method

Double
blind al-
location

Homogene-
ity between
groups

Only dif-
ference is
treatment

Standard,
valid and
reliable
measures

Percent-
age of
dropouts

Inten-
tion to
treat
analysis

Valid
multi-
sites
compar-
ison

Grade

García-
Rudolph
and
Gibert
García-
Rudolph
and
Gibert,
2014

3 1 2 1 3 3 3 2 3 0 +

Xu et al.
Xu et al.,
2018

3 3 3 1 1 3 2 2 3 0 +

Reidy
et al.
Reidy
et al.,
2020

2 2 3 1 1 3 2 2 3 0 +

Ki-
takoshi
et al.
(a) Ki-
takoshi
et al.,
2020a

2 2 3 1 1 3 2 2 3 0 -

Ki-
takoshi
et al.
(b) Ki-
takoshi
et al.,
2015

2 2 1 1 1 3 2 2 3 0 +

Shen
and Xu
Shen
and Xu,
2021

3 3 3 3 3 2 2 2 3 0 ++

Continued on next page

89



Table 2.6 – continued from previous page
Study Appropri-

ate and
clearly
focused
question

Random-
ized assign-
ment to
treatment
group

Ade-
quate
conceal-
ment
method

Double
blind al-
location

Homogene-
ity between
groups

Only dif-
ference is
treatment

Standard,
valid and
reliable
measures

Percent-
age of
dropouts

Inten-
tion to
treat
analysis

Valid
multi-
sites
compar-
ison

Grade

Solana
et al.
Solana
et al.,
2014

3 1 3 1 3 3 3 2 3 0 +

Zini et
al. Zini
et al.,
2022

3 3 3 3 3 3 2 2 3 0 ++

Zebda
et al.
Zebda
et al.,
2022

3 2 2 1 1 3 1 2 3 0 -
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Chapter 3

Broadening the Lens: A Narrative
Review of Parameters Shaping Multi-
Object Tracking Performance and
Training Efficacy
Aims
After reviewing the existing techniques for in-
dividualizing a CT, we now focus on the spe-
cific task we will use for training: the MOT.
This chapter provides an overview of current
theories and knowledge about this task, par-
ticularly examining the literature through the
lens of the manipulated parameters.
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3.5 Conclusion . . . . . . 117

Abstract
The MOT task, known for its dynamic nature and reliance on controlled attention, serves
as a core activity in computerized CT. Despite its popularity, the cognitive mechanisms
underlying this specific attention-based CT and its outcomes (near and far transfer effects)
are still poorly defined, and lacking comprehensive documentation in literature. To move
forward, our purpose is a focus on the adjustable parameters (number of targets, target’s
speed, etc.) into the MOT task for providing new insights on MOT-based CT across
neurotypical and non-neurotypical trainees. Three aims were delineated : (1) Identifying
the cognitive processes influenced by each adjustable parameter of the MOT task ; (2)
Determining which specific parameters, when progressively modified during repeated
MOT practice (i.e., CT), yield the most significant improvements in MOT performance ;
and (3) Assessing which improvements in MOT performance lead to the most effective
transfer effects (i.e., CT efficacy). This final step included also the MOT outcomes in
real-world settings. This comprehensive approach helps clarify the role of MOT in cognitive
enhancement strategies and its potential for broader cognitive benefits.
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3.1 Introduction
Cognitive Training (CT) interventions have gained popularity as cost-effective and easy-
to-administer options for individuals across all age groups. These non-pharmacological
interventions typically involve the repetitive and extensive practice of computer-based
cognitive tasks, with the assumptions that improvements in trained tasks will transfer to
non-trained tasks that are cognitively similar (near transfer effect) or related (far effects
including real-life activity assumed as tapping on trained cognitive processes). However,
the empirical evidence regarding the CT effectiveness is weak (Lampit et al., 2014c; Simons
et al., 2016c; Webb et al., 2018a). While most CTs induce a large and robust performance
gains in the trained or closely related-tasks (near effect) across various ages (e.g., Von
Bastian & Oberauer, 2013, these training effects often fail to transfer to untrained tasks
(far effect) or to improvements in everyday life functioning (ecological transfer effect)
De Simoni & von Bastian, 2018; Guye & von Bastian, 2017. This discrepancy raises
questions about the underlying mechanism of CT and the conditions necessary for genuine
transfer effects to occur.

Despite of this, some studies have reported positive outcomes of an ecological transfer
to everyday life functioning, particularly when the CT specifically taps on executive
functions such as attentional control or perceptivo-cognitive skills (i.e., processing the
most important information at the right time to make accurate decisions)(Binder et al.,
2016). These positive results have been shown in diverse populations including athletes
(Romeas et al., 2016b), drivers (Bowers, Anastasio, et al., 2011), professional(Vater et al.,
2021b), children(Bertoni et al., 2019a; Peng & Miller, 2016b; Tullo, Bertone, et al., 2018),
older adults(Ballesteros et al., 2020b). Importantly, the inclusion of attentional control
demands, such as divided attention tasks or controlled shifting tasks, has been one key
factor linked to these successful outcomes (e.g.,Bowers, Anastasio, et al., 2011, suggesting
that the nature of the cognitive tasks used in CT is a critical ingredient for achieving
genuine gains.

As exemplified, the Multi-Object Tracking (MOT) task, a complex dynamic task
focusing on attentional control, has been widely attractive in the field of computerized
CT. As illustrated in Figure3.1, in a typical MOT task, observers are initially presented
with several identical objects, a subset of which is then highlighted to indicate their status
as targets. Following this, all objects, once again appearing identical, move independently
and unpredictably around the display. At the end of the movement phase, observers must
identify the original targets(B. J. Scholl, 2009). Figure3.1shows two variants of the MOT
task.

Within MOT, several parameters can be manipulated such as the number of targets,
the number of distractors, the speed of the object’s movements, the spatial
distance between targets and the tracking duration. The attentional control increases
as the value of each parameter increases, especially as parameter combinations include high
values(A. Holcombe, 2023; Vater et al., 2021b). This multidimensional parameterization
of attentional control makes the MOT task an ideal candidate for a progressively refined
training program. As a result, the MOT practice as CT has demonstrated tangible benefits
in daily activities such as driving and gaming, or yielded to cognitive enhancements in areas
like executive function and working memory. Despite its widespread use, the cognitive
underpinnings of such attention-based CT remain unclear and not well documented in
terms of their relationships with transfer effects (Strobach & Karbach, 2021; Vater et al.,
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Fig 3.1. An example of a variant of the Multi-object tracking task (1) Three discs are
briefly colored red to mark them as tracking targets. (2) All items look the same and
move around randomly on the screen. (3) (a) At the end, one item is highlighted and the
participant reports if it was a target or not. (3) (b) At the end of the motion phase, the
participant must recognize the initial discs identified as targets. Animations of many
different variants of this task can be viewed at or downloaded from
https://perception.yale.edu/Brian/demos/MOT.html

2021b) for a critical review on the marketed Neurotracker program). While previous
reviews, such as those by Meyerhoff et al. (2017b) or A. Holcombe (2023), have delved into
the existing body of knowledge on the MOT task, this narrative review aims to examine
the underlying mechanisms of MOT through the prism of task parameter manipulation.
Hence, our goal is three-fold: (1) to map the cognitive processes associated with adjustable
MOT parameters; (2) to identify the associations between the CT variations of MOT
parameter(s) and the best improvements in MOT performance; and (3) to identify which
MOT performance enhancement(s) yields the best transfer effects. For each step, we
will assess how the effects of parameter manipulation in neurotypical populations align
with those in neurodiverse groups, including individuals with attentional and executive
disorders.

As such, our first contribution is fundamental in nature as it synthesizes findings on
classical MOT in neurotypical and non-neurotypical individuals in order to identify the
cognitive mechanisms at work in MOT according to the parameters manipulated and
individual specificities (type of cognitive impairment). The second contribution, with a
more applied focus, compiles evidence on the use of MOT tasks for CT. It examines how
different task parameters and individual cognitive characteristics affect training outcomes,
while also exploring the broader implications of training through the examination of near,
far and ecological transfer effects. Operationaly, we aims to answer to the three following
questions:

• Q1. (a) How do changes in parameters affect performance in MOT tasks, and
what theories explain these effects? (b) Which insights are provided neurodiverse
populations on this question?
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• Q2. (a) How does cognitive training using MOT tasks affect MOT performance
(near transfer effect), and does changing MOT task parameters influence these effects?
(b) How does MOT Practice affect cognitive functioning (near to far transfer)? Do
neurodiverse conditions impact these outcomes?

• Q3. (a) What practices-related changes in MOT performance are linked to real-
world transfer effects in neurotypical individuals? (b) Do neurodiverse conditions
alter these effects?

3.2 Cognitive underpinnings of MOT task according
to adjustable parameters

Two main families of approaches have made complementary contributions to our
understanding of the mechanisms involved in the MOT task. The first is the classical
analytical approach of cognitive psychology, which consists in flushing out the cognitive
mechanisms by manipulating the parameters of the task (e.g., the number of targets).
The second is a global approach, which seeks to uncover mechanisms by studying the
correlation between MOT performances and tests specifically assessing cognitive functions
(e.g., working memory tests).

3.2.1 Q1. (a) How do changes in parameters affect performance
in MOT tasks, and what theories explain these effects?

Analytical approach: MOT parameters manipulations

Many studies have explored the MOT task as a phenomenon by examining parameters that
influence performance and the underlying cognitive processes (Meyerhoff et al., 2017b).
Key parameters identified as either facilitators or barriers to MOT task success include
the number of targets, their speed, the tracking duration and the perceptual
characteristics of targets within the task environment.
A non exhaustive set of studies manipulating MOT parameters as a way to better under-
stand tracking mechanisms is proposed in Figure??.

Numbers of targets. The quantity of targets to be tracked is a pivotal parameter
in MOT task performance. This parameter has been one of the first manipulated by
Z. W. Pylyshyn and Storm (1988b) to assess the FINST theory. The FINST (fingers of
instantiation) model (e.g., Z. Pylyshyn, 1994) suggests that the brain assigns visual spatial
indexes (FINSTs) to a limited number of objects in the visual field. These indexes act as
perceptual ”hands” or ”fingers” attaching to objects and allowing their tracking without
the need for detailed attention or conscious recognition of their features.This theory relies
on low-level early vision processes, enabling tracking to be carried out ”pre-attentively”,
without involving memory representations. If the flash highlighted a tracked target,
subjects were instructed to respond as quickly and accurately as possible by pressing a
key. The foundational study demonstrated that participants could successfully track four
to five targets with approximately 85% accuracy while the increment in targets to
be tracked progressively demands attention. As a result, it was hypothesized that periodic
attentional effort was needed to reactivate index binding. While tracking mechanisms were
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Fig 3.2. A non exhaustive set of studies manipulating MOT parameters as a way to
better understand tracking mechanisms

initially described as preattentive in earlier studies (Z. W. Pylyshyn & Storm, 1988b), this
term was later substituted by “preconceptual” in subsequent research (Z. W. Pylyshyn,
2001b). This change in terminology helps clarify the cognitive mechanisms involved in
the task, especially noting that focused attention may become important as the number
of targets increases (Meyerhoff et al., 2017b; Z. W. Pylyshyn, 2001b). Building on Z. W.
Pylyshyn and Storm (1988b) initial findings, subsequent studies, including those employing
Alvarez’s FLEX model Alvarez and Franconeri (2007a) and Horowitz and Cohen (2010),
have consistently observed the set size effect. Specifically, Oksama and Hyönä (2004a)
found that while keeping tracking time constant, there were linear (explaining 87.6% of
the variance), quadratic (6.6% variance explained), and cubic (5.3% variance explained)
decreases in performance as set size increased. The linear trend suggests that tracking
might not be purely parallel as Z. W. Pylyshyn and Storm (1988b) described, because
performance should remain stable until the limit of visual indices is reached. The nonlinear
trends suggest the possibility of shifting the attentional spotlight from one target to
another, indicating that attention allocation might degrade over time. This supports
the debate on serial versus parallel processing and introduces the concept of multifocal
attention. This concept investigates the potential for multiple attentional beams to be
directed towards different objects simultaneously (Cavanagh & Alvarez, 2005).
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Speed The speed parameter denotes the pace at which targets and distractors move
across the display. As demonstrated by (G. Liu et al., 2005), tracking accuracy declined
systematically with increases in object speed. As such, this observation raises the question
of a size limited tracking capacity, typically limited to - the magical number (Meyerhoff
et al., 2017b) - 4 targets (Z. W. Pylyshyn & Storm, 1988b).Alvarez and Franconeri
(2007a) observed a significant negative correlation between the speed threshold required
for accurate tracking and the number of concurrently tracked objects. Specifically, the
decrement in speed threshold exhibited a logarithmic relationship with the increment in
target quantity. Furthermore, participants were capable of tracking as many as eight
targets, provided the speeds were adjusted to their individual tracking abilities. The
finding that the tracking resource might be more adaptable than previously thought is
evidenced by the decrease in speed thresholds as the number of targets increases, suggesting
a balance between the number of objects and the complexity of tracking them. This
led Alvarez and Franconeri (2007a) to propose the FLEX model of MOT, which posits
that tracking capacity is managed by a flexible, continuous pool of resources that varies
depending on the difficulty of tracking each object individually. Bettencourt and Somers
(2009b) built on this concept but noted that at lower speeds and shorter tracking durations,
objects tend to stay close to their initial positions, implicating visual short-term memory
rather than tracking processes. They tested this by examining a wider range of speeds and
set sizes with prolonged tracking times, and found that performance still deteriorates at
higher speeds, supporting the concept of a flexible tracking resource. In a study exploring
cognitive load, both the number of targets and their movement speeds were found
to be critical factors. Tullo, Faubert, and Bertone (2018a) examined how abilities in
3D Multiple Object Tracking (3D-MOT) correlate with fluid reasoning intelligence, also
considering working memory. Results showed that individuals who performed well in
tracking multiple objects also exhibited superior fluid reasoning abilities, which were not
linked to verbal intelligence. The study suggests using average tracking speed as a measure
to assess 3D-MOT ability and its association with fluid reasoning intelligence, highlighting
the cognitive demands in tasks requiring focused attention.

Tracking duration The tracking duration significantly impacts the difficulty of tracking
in the MOT task. Oksama and Hyönä (2004a) observed that the greatest decline in
performance occurred between 5 and 9 seconds (error percentage from 9.0 to 19.5%),
whereas performance plateaus from 9 to 13 seconds (error percentage from 19.5 to 21.6%).
The tracking performance seems susceptible to the duration effects. This observation did
not fit with the pre-attentive view of Z. W. Pylyshyn and Storm (1988b), where tracking
duration is expected as having no effect on MOT performance. Temporal dynamics in
MOT have been manipulated through different methods of target presentation. Liang et al.
(2022) utilized a simultaneous-sequential paradigm, originally proposed by Eriksen and
Spencer (1969), to study MOT performance. This method involves tracking all targets
at once (simultaneous condition) or focusing on a subset while the others remain static
(sequential condition). The study found that with two target objects, tracking accuracy was
significantly higher and reaction times were shorter in the sequential condition compared
to the simultaneous condition. However, with four targets, performance improved in the
simultaneous condition, suggesting the involvement of multi-focus attention mechanisms.
When the number of targets increased to six, the sequential condition showed better
performance than the simultaneous condition. These findings indicate that the optimal
tracking strategy varies with the number of targets. With two targets, the task might
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be managed within a single focus of attention, while four targets likely necessitate the
distribution of attention across multiple foci. At six targets, the resource demands may
exceed what can be efficiently managed by multiple foci, causing a shift back to reliance
on single-focus attention. These results highlight the complex mechanisms of attentional
tracking and suggest a strong link between the flexible functions related to working
memory and dynamic spatial visual attention. By controlling the working memory load in
the sequential condition, it was observed that tracking more targets requires high-level,
non-automatic processes associated with executive functions. Thus, manipulating these
parameters could potentially enhance cognitive functions such as shifting, updating, and
inhibition, which are crucial for successful task completion.

Perceptual characteristics in terms of spatial configurations Yantis (1992b)
introduced a theory suggesting that the visual system groups individual target objects
into a higher-order visual representation, which aids in tracking multiple moving objects.
This process involves two key stages: pre-attentive group formation, driven by the
characteristics of stimuli, and intentional group maintenance, which requires focused
attention. The group formation is governed by Gestalt laws, which help simplify complex
scenes into more manageable shapes, whereas group maintenance involves continuous
updates to the representation of moving elements, demanding higher cognitive processes
like mental rotation and controlled attention. Studies by H. M. Fehd (2010) support this
by showing that observers tend to focus on the invisible centroid of objects, a strategy
that improves tracking efficiency by reducing the need to attend to individual objects.
The theory also emphasizes the role of perceptual grouping factors such as adherence to
the Gestalt law of common fate and the initial configuration of objects, which significantly
influence tracking capabilities. Complex configurations that require more demanding
mental transformations can hinder tracking performance. Moreover, it’s observed that
tracking is more effective when objects that disappear reappear at their last known
position rather than at a new location predicted from their trajectory. An extension of
this research by Suganuma and Yokosawa (2006) explored how synchronized trajectories
between targets and distractors affect MOT performance. They found that performance
improved significantly in conditions where the objects lacked a defined spatiotemporal
relationship (random condition), compared to scenarios where target-distractor pairs
moved together in close proximity (chasing condition) or exhibited coordinated movements
with offsets (trail condition).

Another spatial feature affecting MOT is the consideration of depth, such as by
varying the freedom of movement of objects across different depth planes. Initially deemed
cognitively demanding (Faubert & Sidebottom, 2012), tracking 3D objects across various
depth planes has been shown to be easier than tracking on a single depth plane in 2D (Cooke
et al., 2017; Dünser & Mancero, 2009; Viswanathan & Mingolla, 2002). The additional
depth information in 3D may facilitate object discrimination, thereby enhancing tracking
performance. However, the advantage of 3D over 2D in MOT accuracy is influenced by
the shape of the reference frame, especially at high object speeds (G. Liu et al., 2005).
These findings underscore how spatial features and movement dynamics collectively impact
MOT performance.

In MOT tasks where objects repel each other, the term ”spacing between objects”
denotes the minimal distance maintained between them. Tracking becomes more difficult
when targets and distractors are in close proximity due to the challenge of isolating
individual elements in crowded conditions. This phenomenon, known as ”crowding,”
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hinders the ability to distinguish a target among nearby objects. According to Bouma’s
Law, crowding issues are mitigated if objects are spaced more than half their distance
from the center of vision (Bouma, 1970). However, this guideline adjusts near the edges
of our visual field and serves more as a general rule than an absolute (Gurnsey et al.,
2011). Several factors contribute to this issue. First, the limits of attentional spatial
resolution play a pivotal role. While our eyes can discern fine details, our attentional
system perceives closely situated similar objects as a group or texture rather than as
distinct items. This perceptual grouping makes it challenging to select an individual
target from a cluster of distractors, even if they are visually distinguishable (He et al.,
1997). Secondly, in densely populated visual fields, there is a tendency to generalize or
average features, which complicates distinguishing between targets and distractors (Parkes
et al., 2001; Pelli et al., 2004). The debate continues on whether tracking near distractors
relies solely on enhancing targets without attending to distractors (”push-only” models)
or involves active suppression of distractors (”push-pull” models) (Bettencourt & Somers,
2009b). Evidence has shown that crowding negatively affects MOT performance.
Based on these insights, Franconeri et al. (2010) proposed the ”spatial interference theory,”
suggesting that MOT utilizes parallel processing with potentially unlimited trackers, where
performance degrades due to object spacing rather than changes in speed, duration, or
number of targets. Their findings indicated that tracking abilities remain consistent with
stable object spacing, regardless of variations in other parameters. Conversely, A. O.
Holcombe and Chen (2013) refined this view by showing that within the same visual
hemifield, both increasing speed and adding more targets can impair performance, even
with significant object separation. These findings suggest a finite nature of tracking
resources and challenge the hypothesis of unlimited trackers, indicating a limited capacity
to monitor distinct entities, thereby highlighting the significant impact of crowding and
spacing on MOT performance.

Attentional resolution varies across different parts of the visual field, with studies
suggesting it is finer (able to discern smaller details) in the lower visual field compared to the
upper (He et al., 1997). In the context of MOT, Alvarez and Cavanagh (2005) demonstrated
that MOT performance is influenced by how targets are distributed across the visual
hemifields. Their study found that when targets are confined within a single hemifield,
increasing their number from two to four significantly reduces tracking accuracy. However,
when the increase in targets is evenly distributed across both hemifields-
either one in each or two per hemifield-tracking performance does not suffer,
suggesting a level of hemifield independence in MOT tasks (Alvarez & Cavanagh, 2005;
Delvenne, 2005). Alvarez and Cavanagh (2005)’s findings underscore the notion of hemifield
independence in attentional tracking. They propose that each visual hemifield (left and
right) has an independent capacity for attentional processing, indicating that the left
hemisphere of the brain can track objects in the right hemifield and vice versa, with
each hemisphere managing attention for its respective hemifield independently. This
model challenges the traditional view of a unified global attentional capacity for object
tracking. Instead, it suggests that attention is dynamically and flexibly distributed across
the visual field, not anchored to fixed points but able to expand, contract, and shift
to encompass moving objects effectively. This concept emphasizes the adaptability and
spatial variation of attentional resources in the visual field, pivotal for understanding and
improving strategies in MOT tasks.
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Perceptual characteristics in terms of visual features Specific visual characteristics
of targets, such as color or shape, significantly influence the success of MOT tasks,
particularly if these features change during task execution (Bahrami, 2003; T. Liu et al.,
2009). The retention of feature values is generally less robust than location information,
which can negatively impact tracking performance. For instance, targets that move
like fluid substances, changing texture or appearance, pose additional challenges by
complicating the determination of their precise location (vanMarle & Scholl, 2003). This
complexity highlights the sensitivity of attentive tracking processes to dynamic visual
information. In studies of target enhancement or distractor suppression mechanisms, it has
been observed that tracking performance decreases as the size of the objects being tracked
reduces (Bettencourt & Somers, 2009b). The Multiple Identity Tracking (MIT) task, as
explored by Oksama and Hyönä (2004a), requires participants to track two types of stimuli:
drawings of familiar objects (e.g., a coat, lobster, rocking chair) representing different
semantic categories and pseudo-objects, which are object-like items without a known
identity. This approach suggests that individuals track the identity-location bindings of
multiple objects in a serial manner, with attentional focus closely linked to eye movements
(Corbetta & Shulman, 1998; Deubel & Schneider, 1996). Currently, there is a lack of studies
that examine the impact of various object attributes (e.g., semantic content like faces
versus simple color attributes) on MOT performance. The Object-File Theory proposed
by Kahneman et al. (1992a), which posits that in a dynamically changing visual scene,
temporary memory representations- metaphorically termed ”object files”- are essential.
These ”object files” compile different types of information (location, feature, semantic)
about objects, although they are primarily identified by the spatiotemporal properties
of the objects, not by their featural or semantic attributes. The theory also suggests
that there is a limited capacity to maintain multiple ”object files” open simultaneously,
emphasizing the challenges associated with managing multiple dynamic objects in visual
tracking tasks.

Summary The variety of factors influencing performance in MOT tasks underscores
the complexity of such a task and highlights the ongoing questions about the mechanisms
behind tracking (see in Figure ??). Since the initial conceptualization of MOT by
Z. W. Pylyshyn and Storm (1988b), which introduced the idea of tracking driven by
pre-attentive stimuli, numerous studies have adjusted parameters. A central debate in
the field concerns the nature of the tracking resources used: whether tracking involves a
limited number of discrete slots or a flexible, continuous pool of resources allocated per
target. Research often utilizes manipulations of speed, number of objects, and tracking
duration to explore these theories. Performance generally declines with increases in
speed, number of targets, or tracking duration, with notable discontinuities in these
declines. These findings lend support the theory of a more non-continuous resource pool.
Additionally, studies focusing on the spacing between objects and their trajectories have
indicated that crowding negatively impacts tracking performance. These findings led
Franconeri et al. (2010) to propose the spatial interference theory, which suggests that
tracking uses a limited discrete set of trackers and that performance declines are due to
either noise from closely spaced targets or attentional capture by nearby distractors. Yet,
further experiments by A. O. Holcombe and Chen (2013), which extended the range of
crowding scenarios, demonstrated that performance still suffers from additional targets
or increased speed even without spatial interference, suggesting limitations in tracking
resources. Other investigations have examined the retinotopic location of objects, showing
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decreased performance when additional targets are added within the same hemifield,
which points to independent tracking mechanisms within each hemifield (Alvarez &
Cavanagh, 2005; Liang et al., 2022). The debate over whether tracking is performed in
parallel or serially continues as well. While some theories suggest that a single attentional
spotlight may shift among targets serially, the proposition of multifocal attention
implies that several foci can simultaneously track multiple targets. Research, including
studies by Liang et al. (2022) and the MIT tasks by Oksama and Hyönä (2004a), indicates
that factors like the number of targets and the level of attentional detail required can
influence whether tracking in MOT tasks is done serially or through multiple focus points.
This active debate highlights the evolving nature of MOT research, which explores various
theories on whether tracking resources are limited and discrete or flexible and continuous,
and whether tracking occurs in parallel or in series. This complexity shows the depth
of understanding needed to fully comprehend the cognitive processes involved in MOT.
What we see is that these tracking mechanisms are part of a larger system that connects
to various brain functions like attention (in its various forms), short-term/working
memory, and possibly even more complex functions like executive control (like inhibiting
or switching tasks)(cf. Table 3.1)

Global approach: MOT relationships with others cognitive functions

Few researchers have investigated how different attentional paradigms interrelate within
the context of the MOT task (Adolphe et al., 2022b; Eayrs & Lavie, 2018c; Huang
et al., 2012a; Skogsberg et al., 2015b; Treviño, Zhu, Lu, et al., 2021). Huang et al.
(2012a) tested a large sample of 257 individuals, on both MOT and other tasks that
engage attention (Meyerhoff et al., 2017b; Vater et al., 2021b). They found a strong
correlation between MOT performance and various tasks involving quick judgments of
static visual stimuli. Correlations ranged from moderate to strong (between 0.5 and 0.7)
with MOT performance for tasks assessing selective attention, such as conjunction visual
search, spatial configuration search, span of enumeration, rapid color identification post-
masking, symmetry detection, reaction time to color stimuli, short-term visual memory,
and change detection. Weaker correlations were noted between MOT performance and
Raven’s intelligence test and tasks measuring suppression or avoidance of interference,
like the Stroop task, attentional capture, and inhibition of return. The findings suggest
that while some attention-related tasks are closely related to individual differences in
MOT performance, the overall pattern remains complex. Treviño, Zhu, Lu, et al. (2021)
expanded on earlier work by Huang et al. (2012a) to see if commonly used attention tests
align with current cognitive psychology and neuroscience paradigms. They examined
the concept of the ”general attention factor” with a study involving 636 participants
who completed an online battery of tests on TestMyBrain.org, including six experimental
tests (MOT, Flanker Interference, Visual Working Memory, Approximate Number Sense,
Spatial Configuration Visual Search, and Gradual Onset Continuous Performance Task)
and eight neuropsychological tests (Trail Making Test versions (TMT), Digit Symbol
Coding, Forward and Backward Digit Span, Letter Cancellation, Spatial Span, and
Arithmetic). An exploratory factor analysis conducted on a subset of 357 participants
revealed a five-factor structure: (1) attentional capacity, (2) Search, (3) Digit Span, (4)
Arithmetic, and (5) Sustained Attention. Specifically, The first factor (1) comprised three
experimental paradigms: MOT, Visual Working Memory, and Approximate Number Sense
and two neuropsychological tests (Digit Symbol Coding and Spatial Span) as measure
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of speed processing and spatial working memory, respectively. Interesting, the findings
suggest that Digit Span and Arithmetic tests should be classified as attention tests. Five
tests were identified as assessing attention: Digit Symbol Coding and Spatial Span evaluate
attentional capacity, while TMT-A, TMT-B, and Letter Cancellation assess search or
attention-shifting ability (Treviño, Zhu, Lu, et al., 2021). Converging with these results,
Eayrs and Lavie (2018c) explored visual capacity by increasing perceptual load to induce
”inattentional blindness” phenomena. They hypothesized that visual capacity is linked
to our ability to count a limited number of items quickly (subitizing skill). To test this,
they assessed visual perception using four tasks: change blindness, load-induced blindness,
MOT, and subitizing capacity, measured as the number of items that could be reported in
parallel in an enumeration task. Moreover, working memory was evaluated using several
scales (OSPAN for operational span, RSPAN for reading span, and SSPAN for symmetry
span) with over 200 participants aged 18 to 64 years. The findings confirm a common
limit in perceptual capacity for visual detection across the four tasks. Specifically, they
found that individuals who could quickly count more items also showed greater accuracy
in detecting changes and peripheral stimuli while focused on another task. Confirmatory
factor analysis suggests a moderate correlation between the MOT task and the working
memory factor (0.40), and high correlation with the perception factor (0.61). These results
demonstrate that perceptual capacity consistently affects tasks involving perceptual load,
emphasizing its crucial role in attentional processing across various task demands. Another
study (Adolphe et al., 2022b) developed an open-source cognitive test battery to assess
attention and memory. This battery includes seven tasks: MOT, enumeration, go/no-go,
load-induced blindness, task-switching, working memory, and memorability. Their findings
showed a relationship between working memory performance and MOT, aligning with
previous studies by (J. Allen, 2006) and (Lapierre, Cropper, & Howe, 2017). The results
indicate that specific, underlying cognitive abilities can be detected within broad cognitive
test batteries and that these abilities are relevant across various visual tasks. In particular,
underlying factors were linked to the connection between MOT and enumeration (as noted
by C. S. Green & Bavelier, 2006c, between MOT and load-induced blindness Eayrs &
Lavie, 2018c, and between MOT and working memory J. Allen, 2006; Lapierre, Cropper,
& Howe, 2017.

The lack of understanding of the cognitive processes impacting the success of this task
can contribute to the scarcity of research integrating the MOT task into CT programs,
despite the promising results reported for such CT (Vater et al., 2021b). Finally, although
the involvement of various cognitive processes in the MOT task has been evident in
neurotypical individuals, we propose to explore in the following section whether variations
in performance among non-neurotypical individuals can offer additional insights into the
cognitive processes engaged by the MOT task.
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Box 1: Takeaway messages on MOT

Numerous studies in visual and attentional research have employed the cognitively
multi-determined MOT task:

• The FINST Model’s pioneering concept (Z. Pylyshyn, 1994) identified MOT as
a process potentially guided by pre-attentive stimuli, using a mechanism that
tracks multiple objects without detailed attention or conscious recognition. The
brain assigns visual spatial indexes to a limited number of objects in the visual
field.

• The Grouping Theory (Yantis, 1992b)shed light on the visual system’s capacity
to simplify tracking by unitizing individual targets into a cohesive visual
entity.

• The FLEX Model (Alvarez & Franconeri, 2007a)introduced the idea of a mal-
leable pool of attentional resources that adjusts dynamically to the
demands of tracking complexity.

• The Spatial Interference Theory (Franconeri et al., 2010) brought attention
to how performance could wane when targets are too close, due to noise and
attentional disruption.

• A. O. Holcombe and Chen (2013)’s work underscored the limitations of tracking
resources, countering the notion that spatial interference alone affects tracking
accuracy.

• The Multifocal Attention Theory (Cavanagh & Alvarez, 2005) explored the
possibility that multiple attentional beams can be directed towards different
objects simultaneously, enhancing the understanding of how attention is
distributed in MOT tasks.

• The correlation-based studies (global approach) revealed a strong to moderate
bond with the visual processing, selective, sustainable and divided attention, as
well as with working memory.

Taken together the findings from analytical and global approaches stresses that MOT
does not tap on a monolithic cognitive function but a complex dynamic interplay of
visual processing, attentional resources, and and working memory, shaped by both
the intrinsic properties of the objects being tracked and the overarching conditions of
the task.
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3.2.2 Q1. (b) Does the performance of neurodiverse populations
offer clues about the fundamental processes of MOT task
performance?

The MOT task has also been applied in conditions where attention might be impaired or
deficient shedding light on the cognitive mechanisms involved in the task.

Number of targets and tracking duration In clinical populations, a study by
Alnawmasi and Khuu (2022) investigated how mild Traumatic Brain Injury (TBI) affects the
controlled ability to allocate and maintain visual attention on multiple moving targets.This
study measured sensitivity- the rate of correct target detection considering both correct
hits and false alarms—and reaction time under various conditions involving different
numbers of targets, tracking durations, and distractor dots. Adult participants included
individuals with mild TBI and control subjects matched by age, gender, and IQ. Findings
revealed that as the number of targets increased, both groups experienced a decrease in
target identification accuracy, with a significantly steeper decline for the TBI group. The
increase of distractor dots also reduced task accuracy more drastically in the TBI group
than in the controls, likely due to an increased sensitivity to crowding, indicating possibly
lower spatial resolution or limited attentional resources in the TBI group. Moreover, the
TBI group showed poorer detection performance as tracking duration increased, suggesting
that prolonged tracking demands more sustained attention. The reduced spacing required
a more focused attentional spotlight, demanding additional cognitive resources, which
were presumably scarcer in TBI participants. Consequently, the study demonstrated that
individuals with mild TBI face greater challenges in maintaining attention on multiple
moving objects, especially under conditions of increased tracking load and distraction.

Perceptual characteristics and speed Research involving young, non-neurotypical
populations with Attention Deficit Hyperactivity Disorder (ADHD) has identified diffi-
culties in both dividing and sustaining attention during tasks. For instance, Peng and
Miller (2016b) showed in a meta-analysis that computerized attention training signifi-
cantly enhances attention more than traditional interventions by researchers or teachers.
Stubbert (2016) used the MOT task to examine cognitive processes impacted by ADHD,
leveraging the task’s dynamic nature to better mimic real-world attention demands. Past
research suggested that ADHD-related behavioral difficulties originate from issues with
sustaining, selecting, and dividing attention (Peng & Miller, 2016b). However, traditional
attention tasks have only modestly correlated with behavioral patterns noted by parents
and teachers, as highlighted in studies by Barkley (1991) and Nigg et al. (2005), and
Jonsdottir et al. (2006). In response, Stubbert (2016)’s study implemented the MOT task,
which closely resembles real-world scenarios. The specific variant used was the “Catch
the Spies” game (Stubbert et al., 2023), which includes immediate and delayed report
conditions. The study involved children with ADHD and typically developing children,
matching them in a task where they had to follow three target spheres out of eight within
a virtual 3D cube.The task also incorporated a 3D biological motion perception test,
where participants were asked to discern the direction of point-light walkers depicted as
moving left or right. Adjustments were made to the speed of the spheres using a staircase
procedure to vary difficulty levels. The session, lasting 1.5 hours, began with an assessment
of cognitive function using the WASI-II and established baseline attention through the
Conners CPT. Participants then completed both the 3D MOT and 3D biological motion
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tasks, with the order counterbalanced among participants. Results suggested that MOT
tasks are developmentally suitable for children with ADHD, as task accuracy was similar
between the groups. Moreover, MOT task performance did not correlate with attention
problem ratings from clinical measures, indicating that the behavioral symptoms critical
for diagnosing ADHD might not be linked with difficulties in tracking moving objects.
This suggests a potential reevaluation of how MOT task duration could be adjusted to
better address challenges in sustained attention, rather than only monitoring moving ob-
jects. When considering dyslexic individuals, manipulating the perceptual characteristics
in MOT tasks is crucial due to their reading difficulties. These issues underscore the
importance of spatial layout parameters, which require visuospatial skills and updating
capabilities linked to executive functions. This adjustment can influence selective attention
and potentially alleviate crowding effects. In populations known to have attentional
deficits, studies often employ the MOT task alongside other cognitive tasks to provide
a more holistic understanding of the cognitive mechanisms involved. Bowers, Anastasio,
et al. (2011) focused on the cognitive demands essential in dynamic settings, such as
driving, where attention is critical. They used the MOT task not only to measure basic
attentional capacity but also to explore its association with higher cognitive functions like
fluid intelligence and executive functions among both young and older adults, including
those with Mild Cognitive Impairment (MCI). By adjusting the tracking speed according
to participant performance, the study leveraged the dynamic nature of the MOT task,
requiring participants to continually adapt and engage a wide array of cognitive processes.
The findings suggest that MOT task performance is linked to driving ability, demonstrating
that tracking multiple objects at varying speeds taps into cognitive areas essential for
safe driving. Additionally, the moderate correlation between MOT and UFOV scores
underscores the importance of divided attention in both tasks. However, the unique
demands of the MOT task, such as tracking moving objects at adjustable speeds, seem
to activate additional cognitive functions not as directly measured by the UFOV task.
This indicates that the MOT task, especially in its brief format developed for this study,
may provide a more detailed assessment of dynamic attentional capabilities and executive
function than traditional divided attention tasks. For older adults and those with MCI, the
MOT task proved effective in predicting driving performance, highlighting its sensitivity to
subtle cognitive deficits that may affect driving safety. Skogsberg et al. (2015b) explored
whether there is a singular attention faculty or distinct processes that govern this faculty
by examining individual differences in voluntary visual attention capabilities across a series
of 11 representative tasks. Among 222 randomly selected participants, 129 completed
eight visual attention tasks, including central and peripheral focusing, global attention,
spatial and object-based shifting, MOT, rapid reengagement, and object vigilance. An
additional 93 participants and 35 individuals with high ADHD traits completed three more
tasks—attentional grouping, controlling motion, and spatial vigilance—bringing the total
to 11 tasks. The results showed four clusters organized into two functional dimensions:
one contrasting spatiotemporal attention (such as multiple-object tracking, spatial
shifting, and controlling motion) against global attention (such as global attention,
object-based shifting, and attentional grouping), and the other contrasting transient
attention (such as rapid reengagement) against sustained attention (such as spatial
and object vigilance). These findings indicate that attention capabilities can be divided
into two main dimensions, suggesting that these different types of attention may rely on
separate and loosely connected mechanisms. The results also imply that mechanisms of
voluntary visual attention may be selectively enhanced or diminished due to genetic, expe-
riential, or pathological factors. To deepen our understanding of how the brain manages
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MOT, we suggest looking at it through a different lens: by examining the performance
changes on MOT related to its practice within the context of CT.
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Table 3.1. Overview of MOT task parameters and their implications.

Parameter
manipulated

Values Observed performances Cognitive function Theoretical model

Object number 8 objects (3 or 4 targets) (Z. W.
Pylyshyn, 2001b; Z. W. Pylyshyn
& Storm, 1988b),
2,4,6 objects (Oksama & Hyönä,
2008)
1 to 8 targets (Alvarez & Franconeri,
2007a)

Performance decreases as the number
of objects increases

Attention Dynamics: Constraint of
available resources with periodic at-
tentional effort. Focused attention
Selective attention

FINST Visual spatial indexes (Z. W.
Pylyshyn & Storm, 1988b): limited
number of objects in the visual field
FLEX Model (Alvarez & Franconeri,
2007a)

Objects speed 0°/s to 42°/s (Alvarez & Franconeri,
2007a),
0.06 cm/s to 544 cm/s (Tullo,
Bertone, et al., 2018)

Speed and Performance Relationship:
Performance decreases as speed in-
creases and increases as speed decreases.
Tracking accuracy declines systemati-
cally with increases in object speed

Visual short term memory Focused
attention

Results converge towards FLEX model
(Alvarez & Franconeri, 2007a). Track-
ing capacity governed by a continu-
ous pool of resources (Bettencourt &
Somers, 2009b)

Tracking duration 5, 9, 13 s (Oksama & Hyönä, 2008) Tracking Performance Over Time: Per-
formance declines from 5 to 9 seconds
(error percentage increases from 9.0%
to 19.5%). Same performance (plateau
effect) from 9 to 13 seconds (error per-
centage ranges from 19.5% to 21.6%).
Difficulty maintaining attention on mul-
tiple objects over extended periods.

Flexible functions of working mem-
ory and dynamic spatial visual at-
tention (< 5 s). As the number of
targets increases, reliance on high-
level, non-automatic processes tied
to executive functions grows (> 5 s):
shifting, updating and inhibition

MOT Theory Comparison: (Oksama
& Hyönä, 2008) findings contradict
(Z. W. Pylyshyn & Storm, 1988b)’s
pre-attentive view, which posits that
tracking duration does not affect MOT
performance

Perceptual charac-
teristics

Spacing between objects Circle: 0
cd/m2; diameter = 8 pixels
Cumulative distance: 1° ≈ 18 pixels
Configuration: 4 pairs on corners
of an imaginary 300-pixel square 2
pairs centered 60 pixels above and
below the fixation point (Franconeri
et al., 2010)
Task Duration: From 1.5 to 6 s
Direction Changes: random direc-
tion changes (clockwise or counter-
clockwise)
Timing of changes randomly deter-
mined from a rectangular distribu-
tion

Impact of Object Proximity: The close-
ness of objects has a deleterious impact,
known as crowding

Flexibility, Cognitive load, Execu-
tive function such as updating

Spatial Interference Theory (Fran-
coneri et al., 2010): parallel processing
with a potentially unlimited number
of trackers. Tracking capabilities re-
main stable with consistent spacing,
despite variations in speed or duration
Contrasting Views (A. Holcombe,
2023): within the same hemifield, both
speed augmentation and target addi-
tion impair performance, even with
substantial separation.
Highlights the finite nature of tracking
resources, challenging the unlimited
trackers hypothesis.

Continued on next page
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Table 3.1: continued from previous page

Parameter
manipulated

Values Observed performances Cognitive Process Theoretical model

Trajectory (H. Fehd & Seiffert, 2008)
Dot Positions: Randomized to pre-
vent overlap with each other or
frame
Dot Movement: Set number of pix-
els per frame
Speeds tested: 0.5 (3 pixels/s), 1
(6 pixels/s), 2 (12 pixels/s), 3 (18
pixels/s), 4 (24 pixels/s)

Trajectory Modifications and Tracking
Performance: Alterations in tracking
ability when target and distractors pur-
sue each other or move uniformly. Bet-
ter performances when objects reappear
at their last known position rather than
a new location based on prior move-
ment
Highlighting the importance of main-
taining consistent trajectories

Group Maintenance in Dynamic En-
vironments: Continuous updating of
representations of moving elements
Mental rotation, working memory
and controlled attention for track-
ing

Grouping Theory (Yantis, 1992b):
Common movements serve as cues for
forming global object representations
(Suganuma & Yokosawa, 2006) to em-
phasize the role of motion cues in en-
hancing group perception

Movement retinotopic (Suganuma
& Yokosawa, 2006) Motion: Percep-
tually smooth. Speed Range: 0.5 to
4.5 deg/s, varied randomly except
during critical phases
Velocity Change: Between -1 and
+1 deg/s
Direction Change: Random, up to
90°, with each item maintaining a
constant velocity or direction for 400
ms to 2 s
Trajectory: Boundary Interaction

Tracking accuracy decrease when in-
creasing target numbers from 2 to 4
within a single hemifield
Tracking performance stable: increasing
number of targets across both hemifields
Performance declines depending on the
movement and distribution of targets
across hemifields

Dynamic Distribution of Attention:
Attention is not anchored to spe-
cific points but is dynamically and
flexibly distributed across the visual
scene. Continuous resource that can
expand, contract, and shift to cover
moving objects

Hemifield Theory (Alvarez & Ca-
vanagh, 2005): each visual hemifield
(left and right) has an independent ca-
pacity for attentional processing

Objects features Appearance of objects Color, shape (Bahrami, 2003; T. Liu
et al., 2009)
fluid-like texture (vanMarle & Scholl,
2003) impact MOT success

Memory Types for Familiar Objects:
Semantic memory: general knowl-
edge about familiar objects
Episodic memory: Recollects spe-
cific events, experiences with famil-
iar objects

Multi-focal Attention (Alvarez & Ca-
vanagh, 2005): Simultaneous alloca-
tion of attention to multiple locations
or objects within the visual field
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3.3 Performance Changes in MOT related to its re-
peated practice

3.3.1 Q2.(a) How does cognitive training using MOT tasks affect
MOT performance (near transfer effect), and does changing
MOT task parameters influence these effects?

In a neurotypical sample, a study by Parsons et al. (2016a) proposed a training based on
the Neurotracker protocol presented in Box 2 3.3. Specifically, training consisted of 10
sessions of 45 min to 1 hour spanning over 5 weeks.

As outlined in Box 23.3, a final speed threshold score is assigned at the end of each
block (set of 20 trials). The session’s overall performance is then calculated as the average
across all such blocks. Significant enhancements on MOT performance were observed
from the initial to the final session in both the intervention group. The performances
of the 3D-MOT training group significantly surpasses that of the non-active control
group (p < .01). Authors assumed that success in the transfer of training was feasible
through two mechanisms involved in the MOT task, which are isolation and overloading
(Parsons et al., 2016a). Isolation refers to the number of functions called upon for the
task which should be limited and consistent (Parsons et al., 2016a), and overloading is
a function that involves engaging it beyond its current capacity. The authors claimed
that an effective training of any function requires an overloading necessary to induce
adaptation (in the brain: neuroplasticity). In this study, and subsequent others using the
Neurotracker tool, this is accomplished by adjusting the speed parameter of each trial
to ensure the task remains sufficiently challenging (Parsons et al., 2016a). Consistent with
these findings, Harris, Wilson, Crowe, and Vine (2020) observed similar improvements in
MOT performance, albeit with slight modifications to the training protocol. In a study
involving 84 young adults, participants were divided into four groups: an untrained control
group, a standard NeuroTracker training group as outlined in Box 2 3.3, an abbreviated
NeuroTracker training group with shorter training sessions, and a portable NeuroTracker
group using computer-based training. A 2 (first session, last session) x 4 (groups) ANOVA
revealed a significant main effect of time (p<0.001), indicating that practice led to enhanced
performance. These findings were replicated in a study involving older adults both with
and without subjective cognitive decline (Musteata et al., 2019a). Participants underwent
14 sessions of 25-30 min spanning over seven weeks of 3D-MOT training (following protocol
in Box 1). The results showed an improvement on average speed thresholds scores through
the training sessions. Details regarding the performance progression within the control
group were not reported.

Same results were observed with non neurotypical populations. By varying the protocol
in Box 2 3.3, with 3 targets to track instead of 4,Tullo, Faubert, and Bertone (2018a) were
able to show that students with neurodevelopmental disorders (e.g., with Autistic Spectrum
Disordes- ASD or ADHD) improved their speed thresholds with training. Results have
shown a 41% improvement in the trained group (3D MOT) (p < .001) (Tullo, Faubert,
& Bertone, 2018a). A trajectory analysis of performance improvement showed that if all
trained groups were able to improve in the task, reduced progress rate were observed with
the active or passive control group. In another context of developmental disorders such as
dyslexia, the MOT task has shed light on certain cognitive processes involved in reading,
such as selective attention (Bertoni et al., 2019a). Reading difficulties are thought to
originate in capacities related to visual crowding and spatial attention(Bosse et al., 2007;
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Facoetti & Molteni, 2001; Franceschini et al., 2013; Zorzi et al., 2012). Indeed, difficulties
in visual crowding, which can limit our ability to identify individual stimuli when multiple
objects are displayed in close proximity (see Gori & Facoetti, 2015; Pelli et al., 2004;
Whitney & Levi, 2011, and selective attention deficits were observed. To investigate this
phenomenon, Bertoni et al., 2019a conducted several experiments by offering variants of the
MOT task to young children with dyslexia and compared the results with children without
reading difficulties. The results highlighted that dyslexic children exhibited excessive
crowding and a deficit in selective attention but showed a reduction in crowding and an
increase in reading speed, improving selective attention capabilities after a training phase
(Bertoni et al., 2019a) In the same study (first experiment), the spatial layout of targets
(with four different orientations) was manipulated according to 4 different orientations :
upward, downward, rightward, or leftward (chance level = 25% ). The target-to-distractor
spacing was measured as the center-to-center distance and was equal to 2.2°, 2.5°, or 2.8°.
Also, targets and distractors were letters, and in another experiment, used versions of the
MOT in the form of video games. The main results highlighted that dyslexic children
had excessive crowding and a deficit in selective attention, but after a training phase, a
reduction in crowding was observed Bertoni et al., 2019a.

Improvements in MOT performance, as evidenced by the increase in speed threshold for
a constant number of targets or by the expansion of tracking capacity (the highest number
of targets that can be accurately tracked), are consistently reported across various studies.
Also, such enhancements are observable in both neurotypical and neurodiverse groups.
Nevertheless, these outcomes merely demonstrate that training influences performance
on the specific task trained. Considering that the ultimate aim of cognitive training is to
achieve transfer effects to untrained tasks, ranging from closely related to more distant
ones, the following section will delve into this issue.

3.3.2 Q2.(b) How does MOT Practice affect cognitive functioning
(near to far transfer)?

To evaluate the advantages of CT, researchers typically use a variety of neuropsychological
tests (Musteata et al., 2019a). These tests are designed to measure the subtle effects of the
training. The scope of these assessments ranges from near transfer, indicating progress in
tasks that are similar but different from the training activities, to far transfer, which shows
improvements in a wider array of cognitive tasks. Although this classification is useful for
examining learning outcomes, it is crucial to acknowledge its multidimensional aspect in
practical settings, as emphasized by A. O. Holcombe and Chen (2013), and to carefully
implement this framework. Parsons et al. (2016a) were pioneers in examining the impact
of CT based on MOT tasks on attention, working memory, and visual processing speed.
They utilized functional brain imaging to study these effects in a neurotypical population,
specifically twenty university-aged students divided into either a training group or a
non-active control group. Neuropsychological tests and brain function correlations were
measured using quantitative electroencephalography (qEEG). The researchers anticipated
observable quantitative changes in brain function that would align with the cognitive
functions being tested. Specifically, they expected an increase in beta waves, related to
attention processes, and gamma waves in the occipital cortex. Their results confirmed these
hypotheses, showing enhanced attention and associated decreases in 2 to 11 Hz slow-wave
activity along with increases in beta waves. Changes in the gamma band were also noted
in the occipital cortex, indicating that ten sessions of 3D-MOT training could improve
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attention, visual information processing speed, and working memory. Musteata et al.
(2019a) found that integrating the 3D-MOT task into CT could enhance memory, processing
speed, and attention in older adults, both with and without subjective cognitive decline.
The study, conducted over 14 sessions, showed that the experimental group performed
better in episodic memory tasks (retrieving the previous encoded abstract wordlist, recall
words) and cognitive flexibility tasks (generating words) compared to the control group.
Although no lasting effects were observed on working memory and executive functions at
a 5-week follow-up but episodic memory improvements were noted. These results must be
interpreted with caution due to unknown activities of participants post-intervention. Harris,
Wilson, Crowe, and Vine (2020) aimed to evaluate the effects of 3D-MOT training on a
2D-MOT task (near transfer), N-back task (mid-transfer), and tasks involving route recall
and audio monitoring (far transfer). Their findings were mixed and somewhat contrasted
with those of Parsons et al. (2016a) and Musteata et al. (2019a). In the near-transfer task,
they observed learning effects over time but no significant group differences, suggesting
no strong transfer effects from training with NeuroTracker (3D-MOT) to 2D-MOT tasks.
However, in the N-back task (mid-transfer), a significant interaction between group and
time indicated that the training group showed greater improvements than the control
group. No improvement was found in the far-transfer tasks, highlighting challenges in
achieving transfer effects to significantly different tasks. This aligns with earlier research
by Strong and Alvarez (2017a), who found no transfer effects when varying either the
motion type (i.e translational or rotational trajectory) for the retinotopic location (upper
or visual field) of MOT tasks, raising questions about the effectiveness of such training.
In a study by Tullo, Bertone, et al. (2018), significant attentional improvements were
observed in participants with neurodevelopmental disorders (e.g., ASD or ADHD) following
MOT training. The study included participants aged 6-18, divided into three groups: a
Neurotracker intervention group (3D-MOT), a control group engaged in a math-based
game, and a usual treatment group. Over five weeks, they underwent 15 training sessions.
The CPT-3, a measure of attention, was administered before and after the training along
with other general intelligence measures to assess the effects of training. The results
indicated that only the 3D-MOT group showed significant improvements in attention,
with a marked enhancement in post-training CPT-3 scores compared to baseline. This
improvement demonstrates the efficacy of the task in boosting attention in this population.
The Neurotracker group’s results also showed a significant enhancement compared to the
control group in both Neurotracker and CPT-3 performance, suggesting a near transfer to
far (executive) functions. These findings align with other studies indicating possible near
transfers to attentional functions and far transfers to executive functions following MOT
training (Tullo, Bertone, et al., 2018). However, the issue of transfer remains underexplored
due to the infrequent use of comprehensive neuropsychological evaluations in cognitive
training programs and the significant heterogeneity in the assessments used to evaluate
the effects of MOT training (Vater et al., 2021b). Another research approach involves
designing cognitive training that combines MOT with other tasks. This method is often
used in recreational video games, as noted by C. S. Green and Bavelier (2008) and Boot
et al. (2008). C. S. Green and Bavelier (2008) reviewed evidence showing that playing
action video games (AVGs) leads to improvements in perceptual, attentional, and cognitive
skills. Specifically, AVGs have been demonstrated to enhance functions ranging from
perceptual skills to cognitive flexibility, including significant improvements in attentional
abilities. A. Joessel (2022) conducted a study to explore how the unique features of
AVGs, such as high pacing and significant demands on both divided and focused attention,
contribute to cognitive enhancements. This study reviewed previous research on the impact
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of video game play on cognition and suggested that the distinctive combination of these
demands in AVGs facilitates cognitive improvements. It emphasized the MOT task as
critical for adjusting these cognitive demands and highlighted its potential integration
into AVGs for developing effective CT interventions. In this context, A. Joessel (2022)
investigated the cognitive benefits of AVGs through a feasibility study with 263 online
participants. Before and after a 12-hour training session on one of four game variants
incorporating dual-task MOT to target different cognitive demands were evaluated. The
Pacing Condition (1) used low-demand MOT training with constant speed and targets,
paired with an adaptive banner detection task. The Focused Attention Condition (2)
combined low-demand MOT training with an adaptive banner discrimination task. The
Divided Attention Condition (3) paired adaptive MOT training with a low-demand banner
detection task, gradually increasing object speed. The Combined Condition (4) integrated
adaptive MOT, adaptive banner discrimination, and adaptive timing to challenge both
focused and divided attention. The cognitive assessment battery included tasks to assess
attentional control: an MOT task (near transfer), (1) UFOV task for spatial attentional
control (far transfer), and (2) an Attentional Blink task for temporal attentional control
(far transfer). (3) Short-term memory task similar to those developed by Luck and Vogel
(1997a) and Vogel et al. (2001) (far transfer). (4) The N-back task was administered
only at post-test. The study found that these game variants led to cognitive transfer to
another MOT task, showing significant improvement over a control group with no game
interaction.

In another context, such as the sports field, CT based on the MOT task has also shown
positive results. This is particularly evident when training programs, which often involve
dual-task exercises, include dual-task MOT tasks. For example, a study by Jeunet et al.
(2020) developed an attentional training program to improve the skills of soccer goalkeepers,
combining neurofeedback with tasks such as Covert Visual Spatial Attention (CVSA)
and MOT to simulate dynamic visual attention. The study found that enhancements in
CVSA performance correlated with better outcomes in the MOT task, thus supporting the
effectiveness of CVSA training in strengthening cognitive abilities relevant to MOT tasks.

3.3.3 What about a non neurotypical population ?
Research has highlighted that Low Vision (LV) often correlates with a significant reduction
in attention towards peripheral visual fields, despite no diagnosed impairments in these
areas (Ludt & Goodrich, 2002; Tadin et al., 2012). This could indicate higher-level
attentional deficits in individuals with LV Tadin et al. (2012). To mitigate these deficits,
some studies have utilized training based on MOT principles, focusing on dynamic attention
to objects in both peripheral and central visual fields. One such study, conducted by
Nyquist et al. (2016a), employed a Dual-Task MOT paradigm to assess the effects of
perceptual training on children with low vision. This study compared three different
training regimens: a conventional AVG, a novel modified Multi-Attentional Tracking
(MAT) task, and a control non-action video game (NAVG). Participants, divided into three
groups, underwent ten training sessions before retesting their performance. The MAT task
incorporated standard MOT tasks but added a motion discrimination task that required
detecting and discriminating unpredictable peripheral motion stimuli. The task parameters
started with a variable number of objects (4 to 6), with 2 to 5 designated as targets.
Two independent QUEST staircase procedures adjusted the velocity of objects and the
duration of the dual tasks, with set size adjustments based on velocity thresholds. Training
impact was evaluated through pre- and post-training psychophysical assessments focused
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on both central and peripheral visual fields. Motion perception was measured across
various visual field locations before and after training, supplemented by a natural visual
search task. The training effects were re-evaluated after 12 months. The study’s findings
indicated significant improvements in the MAT task after training, enhancing both tracking
capacity and discrimination skills. Comparisons from pre- to post-tests showed that the
Dual-Task MAT and AVG groups achieved more substantial gains in visual attention
than the control group, with the dual-Task MOT group’s performance mirroring that of
the AVG group. Notable far-transfer effects were observed in tasks requiring attention
to peripherally presented stimuli. These included improvements in single-target motion
direction discrimination, multi-target direction comparison, and spatial crowding tolerance,
areas where both AVG and MAT training boosted performance. Significant advancements
were also seen in the visual search task. Overall, the improvements from MAT training were
comparable to, or in some instances better than, those from AVG training, especially in
tasks where enhancements were noted. This study underscores the potential of perceptual
training to impact peripheral vision significantly. While incorporating the MOT task into
CT programs shows promise, it is still uncommon. Research does point to significant
benefits from this training, including near transfers (improvements in tasks similar to the
training) and far transfers (improvements in tasks that are not directly trained).

In pathological contexts such as MCI, some studies (Bowers, Anastasio, et al., 2011;
Musteata et al., 2019a) suggest that manipulating parameters related to dynamic attention
and processing speed could be beneficial. It is plausible that for conditions like frontotem-
poral dementia, which primarily affects attention and inhibition systems, integrating MOT
training with inhibition tasks could improve performance by requiring updates in dynamic
attention—a capability often diminished in these patients. Similarly, for early-stage latent
Cerebrovascular Disease, characterized by deficits in fronto-subcortical circuitry affecting
attention, memory, and executive functions, tailored MOT training programs designed
to address these specific deficits could prove advantageous. This nuanced understanding
of cognitive dynamics enables the development of customized MOT training strategies
for the elderly, aimed not just at preserving cognitive flexibility but also at strengthening
areas vulnerable to age-related decline. Implementing strategic MOT tasks that challenge
and subsequently enhance the cognitive functions most affected by aging offers a practical
approach for sustaining cognitive health and ensuring functional independence in later
years.

Summary As we have seen, several methods exist for assessing performance evolution
and managing training difficulty in MOT training. In relation to the analytical approach
to the MOT task, speed appears to be the most frequently used parameter, particularly
for evaluating near transfer effects such as attentional function, visual processing, and
short-term memory. To this end, most studies identify the maximum speed at which a
participant can track a predefined number of targets with a minimum level of accuracy, or
they assess both the highest speed and the greatest number of targets a participant can
simultaneously track. Most study results seem to converge on an improvement in MOT
task performance over time (Bertoni et al., 2019a; Harris, Wilson, Crowe, & Vine, 2020;
Parsons et al., 2016a; Thompson et al., 2010; Tullo, Bertone, et al., 2018).When the global
approach is adopted (see Q1), the expected effects are more related to far transfer, often
involving neuropsychological tasks that target working memory and executive functions.
However, the current question is to explore transfer effects in real-life situations.
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Box 2: Common experimental design with NeuroTracker task training

3D-MOT or NeuroTracker:

Focusing on MOT as a training task, this review examines multiple studies utiliz-
ing either the commercial NeuroTracker tool or a variant of the 3D-MOT. To give
readers an overview of usual experimental designs, we selected four articles that
were prominently featured on the NeuroTracker website (https://www.neurotrack-
erx.com/scientific-studies) to illustrate typical experimental protocol (Faubert, 2013b,
Parsons et al., 2016a, Musteata et al., 2019a, Romeas et al., 2016b).

Apparatus

Participants either stands or sits inside or in front of an augmented reality environment
with a virtual scene projected on the frontal and sometimes lateral walls (for instance
the EON IcubeTM, a 7x10x10 feet room Romeas et al., 2016b or a CAVE a 8x8x8
feet room Legault and Faubert, 2012c). The task is practiced between 1 and 2 meters
from the frontal display Legault and Faubert, 2012c with stereoscopy generated by
the use of active shutter glasses (for instance the CrytalEyes 4s (RealD) Romeas et al.,
2016b).

Task

In the CORE mode of Neurotracker, participants usually have to track 4 targets
(colored in red) among 4 distractors (in yellow). After an initial presentation of object
(typically around 2s) (a), an indexing phase lasts around 1 second where targets are
highlighted with a halo (b). Then, objects move linearly in the 3D space without
occlusion for 8s (c). Objects are indexed with numbers and participants have to
verbally recall the number of targets initially presented (d). Training sessions are
typically structured in several blocks of 20 trials Parsons et al., 2016a or 8 minutes.
Complete training last around 15 sessions separated by break days Faubert, 2013b.

Difficulty adjustment and performance estimation

Difficulty is adjusted through a 1up-1down procedure on speed. Staircase steps are
usually set to 0.05log. After each block, staircases are reset and performance on the
session is computed as the mean of the final state of all staircases.

Neurotracker protocol, image taken from Romeas et al., 2016b
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3.4 Outcomes from MOT practices in Real-Life

3.4.1 Q3.(a) What practices-related changes in MOT perfor-
mance are linked to real-world transfer effects in neurotyp-
ical individuals?

To start with, in the sports domain, studies focusing on the ecological effects of MOT-based
training have extensively examined perceptual-cognitive skills using two main approaches:
the expert performance approach and the cognitive component skill approach (Fleddermann
et al., 2019). The expert performance approach assesses athletes’ perceptual-cognitive
expertise using sport-specific stimuli and contexts, such as decision-making, attention,
and memory skills in simulated or authentic sport settings. For example, elite athletes
performed faster and more accurately than non-athletes or semi-athletes in these real-
life settings (Mann et al., 2007). Conversely, the cognitive component skill approach
investigates basic perceptual-cognitive skills in a non-sport-specific context, exploring
how these fundamental skills correlate with sports expertise. For instance, elite athletes
outperform non-athletes in basic cognitive tests, such as processing speed and various
attention paradigms (Voss et al., 2010). These methodologies are crucial for elucidating
the link between sports expertise and enhanced perceptual-cognitive skills. Given the
recognized importance of perceptual-cognitive expertise (Furley & Wood, 2016) and its
correlation with sports expertise, there is an increasing emphasis on developing and
training these skills. However, relatively few studies, only 16 according to (Zentgraf
et al., 2017a), have investigated the development of perceptual-cognitive expertise through
Perceptual-Cognitive Training (PCT) interventions in this field. One notable example is
the study by Faubert and Sidebottom (2012), which demonstrated task-specific practice
effects among athletes in team sports such as soccer, rugby, and ice hockey following
15 sessions of 3D-MOT. The results suggested that professional athletes have a greater
capacity to learn complex, dynamic tasks compared to novices. Additionally, the study by
Romeas et al. (2016b) investigated the impact of MOT-based training on decision-making
skills in soccer. This study assessed three fundamental skills—passing, dribbling, and
shooting—before and after a training protocol involving 3D-MOT or 3D soccer videos. The
experimental and active control groups underwent 10 training sessions, while the passive
control group received no specific training. Post-training results showed improved decision-
making accuracy in passing for the 3D-MOT trained group, a finding supported by players’
self-assessments using a visual analogue scale. Lastly, Fleddermann et al. (2019) explored
the effectiveness of generic PCT for elite volleyball players, incorporating MOT with
physical activities. This eight-week program included twice-weekly sessions of 3D-MOT
training combined with volleyball-specific motor tasks conducted in a laboratory setting.
Post-training assessments involved tests on the 3D-MOT, four near-transfer cognitive
tests- sustained attention (d2-R), memory span (KAI-N), working speed (KAI-N), and
processing speed (Zahlenverbindungstest, ZVT)- and a far-transfer, lab-based volleyball-
specific blocking test. The results indicated significant improvements in processing speed
and sustained attention (near transfer effects) among volleyball experts, but no significant
improvements in working memory or far transfer effects. Interestingly, the study also
highlighted potential drawbacks of limited resources in dual-task scenarios, such as reduced
performance in activities like jumping. This suggests that optimizing the interference
between cognitive demands and motor execution might enhance overall performance. This
idea aligns with Wickens’ multiple resource model (2002) (Wickens, 2002), which attributes

114



performance enhancements more to increased processing speed of critical task information
than to direct improvements in decision-making. Moreover, performance improvements
observed in Romeas et al. (2016b) could be due to the automatization of procedural tasks,
such as dribbling, which reduces cognitive load and allows for more efficient processing
of complex scenes. This potentially improves decision-making compared to a control
group without training. Although these improvements may seem small, they represent a
significant shift in how athletes manage cognitive tasks by reducing cognitive load and
enhancing information processing efficiency. However, the efficacy of ecological transfer
effects from training remains uncertain. Fleddermann et al. (2019) noted that current
training methods often lack the variability and unpredictability seen in real sports settings.
A potential solution could involve introducing more unpredictability into MOT training
by varying task parameters such as speed, orientation, and number of targets. Despite the
practical implications, no studies have yet adopted this specific approach. Furthermore,
Fleddermann et al. (2019) discussed but did not delve into how different athletes respond
to such training, noting that elite athletes might have a smaller margin for improvement
compared to novices, and current training programs generally do not offer varied difficulty
levels tailored to different athlete groups, often only adjusting the speed parameter of
MOT tasks.

In the area of aging research, Legault and Faubert (2012c) investigated whether training
older individuals on the 3D-MOT speed task could improve their perception of Biological
Motion (BM), a socially significant task. This study included three groups: an experimental
group, an untrained group, and a visual perceptual training group. Participants received
training on the 3D-MOT task weekly, with the BM task introduced during the fifth week,
over five consecutive weeks. The training modified the virtual size and speed of the
spheres, while maintaining a constant target number of three for recall in each trial. The
stimuli involved a walker and a mask. The findings showed that effective training transfer
occurred only in the experimental group, whereas the control group (no training) and
the training control group (spatial contrast) showed no difference. The study suggests
that this type of training could help older adults process socially relevant stimuli, such as
human movements in crowded or sporting environments. Two key factors for the ecological
transfer of perceptual skills in older adults are the size of the visual field and the speed
thresholds. Subsequent research by Legault and Faubert (2012c) indicated that training
on the UFOV, which includes aspects of both visual field and speed, has a positive effect
on the retrospective driving abilities of older individuals. However, these findings are
based on a correlational study, as highlighted by Legault and Faubert (2012c).

Summary These findings underscore the potential of attentional training via MOT to
not only enhance specific attentional skills but also to generalize these improvements to
various cognitive areas (Peng & Miller, 2016b). MOT practice indeed leads to transfers
in complex ecological tasks such as dual tasks involving body-cognition coordination,
whether in sports Fleddermann et al. (2019) or driving Legault and Faubert (2012c).
Indeed, the transfer effect, where training in one cognitive domain positively influences
performance in unrelated tasks, is a primary focus of current research. Hence, the benefits
of attentional training can extend beyond the tasks initially targeted, thereby offering a
broad enhancement of cognitive functions. Additionally, variations in training protocols
often focus mainly on the speed parameter in the MOT tasks. However, these studies
face limitations, such as the complexity involved in creating an ecological task that is
both specific to the target domain and sufficiently variable to reflect real-world conditions.
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Another issue is the lack of standardized measures before and after interventions across
different studies in this area. Furthermore, despite recognition of interindividual variability
in responses in the scientific literature, it is not consistently accounted for in cognitive
training protocols. This neglect could result in either underestimating or overestimating
the effects of interventions, or in the deployment of training programs that are not tailored
to diverse participant profiles.

3.4.2 Q3.(b) Do neurodiverse conditions alter these effects?
While post-training improvements on tasks are often restricted to immediate effects,
adjusting the parameters of MOT can induce significant changes in the mode of information
processing, which may shift between automatic and controlled modes (B. A. Anderson,
2018). This variation is particularly evident between neurotypical populations and those
with distinct characteristics. A study by Pothier et al. (2015) involving three age groups
(young adults, young-old, and old-old) demonstrated the adverse effects of performing an
MOT task while walking. The findings indicate that certain procedural and automatic
processes deteriorate with age, leading to reduced flexibility and lower performance in dual-
task situations. Additionally, in a different study by Meyer (2019a) on reading acquisition,
it was found that some processes, which are automatic for neurotypical children, require
conscious effort for those with learning difficulties. B. A. Anderson (2018) notes that
in neurotypical individuals, processes that are initially voluntary (activated during early
learning stages) can become less conscious over time. This transition facilitates achieving
task goals and reduces the need for explicit control in certain situations, a shift that does
not consistently occur in non-neurotypical populations. Bertoni et al. (2019a) conducted a
study on children with developmental dyslexia (DD) that involved manipulating the speed
of targets and spatial conditions during MOT training. This training used action video
games (AVGs) that share characteristics with MOT tasks, emphasizing: (1) high speeds
of moving objects; (2) significant perceptual, cognitive, and motor demands necessary for
accurate motor planning; (3) unpredictability in timing and spatial arrangements; (4) a
focus on peripheral processing. Children with DD were randomly assigned to either AVG
training or NAVG training (Franceschini et al., 2013, 2017; Gori & Facoetti, 2015). These
training conditions specifically enhanced peripheral processing, the speed of processing
multiple transient events, and perceptual load, thereby improving visual-spatial attention
mechanisms and their neural networks (see Bavelier, Achtman, et al., 2012; Bediou et al.,
2018c; Föcker et al., 2018. The results showed that just 12 hours of AVG training could
reduce visual confusion and enhance reading speed in children with DD, significantly
impacting clinical practices. Improvements in reading were noted particularly in speed,
without compromising accuracy. These findings align with selective enhancements in
processing speed for grapheme-to-phoneme conversion, previously observed in some AVG
training studies (e.g., Franceschini et al., 2017; Gori et al., 2016. Another experiment
confirmed that reductions in visual confusion and improvements in reading speed occurred
only in DD children who effectively engaged in AVG training, as evidenced by improved
game scores Bertoni et al., 2019a; Franceschini & Bertoni, 2019. These outcomes suggest
that improvements in visual confusion and reading speed are contingent upon enhanced
visual-spatial attention mechanisms, as indicated by AVG scores during the training
Bertoni et al., 2019a. These observations indicate that the parameters manipulated in
MOT have varied effects depending on the groups being studied. This is particularly
relevant for individuals with specific disorders such as reading difficulties, where a controlled
approach is preferable due to the lack of automatic processes usually strengthened through
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repetition, as highlighted by B. A. Anderson, 2018. Considering the complex interaction
between cognitive functions and the attentional system, incorporating MOT training
within cognitive enhancement programs for both aging and pathological contexts shows
promise.

3.5 Conclusion
The research on MOT task engages a broad spectrum of individuals, from youth (Bertoni
et al., 2019a) to the elderly (Legault & Faubert, 2012c), and those with various health
conditions, proving relevant in fields like sports (Fleddermann et al., 2019), academia,
and healthcare (Nyquist et al., 2016a). Its adaptable parameters (i.e., modulable task
features) facilitate the study of cognitive mechanisms and their links with clinical profiles,
especially in attentional and executive disorders. For instance, adjusting the number of
distractors can modulate the cognitive load for individuals with dyslexia, enhancing our
understanding of their visual and attentional processes. However, the broader application
of these insights, particularly in CT programs, is limited by the infrequent exploration
beyond basic parameter adjustments (such as the speed and the number of targets).
Despite its potential, the integration of MOT into CT is still in its initial stages. Studies
often focus on dual tasks (e.g., MOT combined UFOV), motor activities, or game-based
tasks) to closely match the real-life activity with the trained task. However, these
studies generally lack a large set of neuropsychological assessments to fully understand
the cognitive outcomes (Bowers, Anastasio, et al., 2011; Fleddermann et al., 2019). This
underscores the need for a more robust methodological approach to effectively connect
MOT with cognitive improvements. Attentional paradigms incorporating MOT have
shown promising correlations with attentional and executive functions, as well as memory
capacities (Adolphe et al., 2022b; Eayrs & Lavie, 2018c; Huang et al., 2012a; Skogsberg
et al., 2015b; Treviño, Zhu, Lu, et al., 2021), supporting the argument for including
MOT in CT programs. This aligns with findings by Shanon (2018), demonstrating the
efficacy of CT in enhancing attentional skills. However, the diversity in assessment tests
raises questions about the consistency and validity of skill transfer, an issue highlighted
by Vater et al. (2021b) and further elaborated by Von Bastian and Oberauer (2013)
due to varied training outcomes. Adding to this diversity in cognitive evaluations are
psychometric issues, such as studies claiming to assess working memory with tests that
actually evaluate short-term memory functions (Scharfen & Memmert, 2021a). Another
significant limitation is the prevailing use of linear training models like the staircase method
in many CT programs (Adolphe et al.; 2022 in press), highlighting a critical shortfall:
the lack of personalized training approaches and consistent cognitive function measures
across studies. This one-size-fits-all strategy, although manageable for minor adjustments,
falls short in accommodating individual learning trajectories or the variability noted in
studies by A. Joessel (2022) and Nyquist et al. (2016a). Moreover, not accounting for
individual differences and the adaptability of task difficulty can lead to either magnifying
effects (suggesting that individuals already performing at a high level will benefit most
from CT) or compensatory effects in certain subjects (where those with lower performance
may benefit more from CT due to their larger room for improvement). The outcome of
CT remains ambiguous. Specifically, it is not always clear whether the training serves to
automate attentional processes (such as processing speed and grouping) or to enhance
executive strategies (such as shifting and body-cognition coordination), or potentially
both (Karbach & Unger, 2014). Consequently, this raises questions about the relevance of
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the training depending on the sample of individuals it is intended for. An overlooked yet
critical aspect in the narrative review of MOT’s application across education and health
sectors is the role of participant engagement and motivation. Engagement is paramount
in areas where personal progress heavily depends on the individual’s active participation.
Future research should explore how varying MOT parameters not only affect cognitive
outcomes but also influence engagement levels. Understanding this relationship is vital
for designing MOT-based interventions that not only target cognitive improvements but
also ensure sustained participation through intrinsic motivation and engagement. This
focus on engagement could significantly enhance the efficacy and applicability of MOT in
real-world settings, particularly in educational and healthcare contexts where motivation
plays a crucial role in success (Moen et al., 2018a). Looking ahead, research must pinpoint
which MOT enhancements facilitate the most meaningful skill transfers, especially in
contexts of attentional and executive challenges. Emphasizing intra-training learning paths
and MOT’s real-world applicability will be key. The quest for MOT’s ecological validity,
crucial for ensuring its real-life relevance, requires a deep dive into how environmental
complexities influence task performance, advocating for scenarios that mirror actual life
situations as proposed by J. M. Ericson and Beck (2013), Stubbert (2016), and Lochner
and Trick (2014). This exploration is vital for MOT’s future application in daily activities
and broader CT paradigms.
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Part III

Experimental work
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Chapter 4

An Open-Source Cognitive Test Bat-
tery to Assess Human Attention and
Memory
Aims
After reviewing existing works on indi-
vidualized cognitive training and the lit-
erature on the MOT task, this chapter
aims to introduce a cognitive battery de-
signed to assess the impact of the MOT
training presented in chapters 5 and 6.
Consequently, the cognitive battery dis-
cussed in this chapter forms a cornerstone
of the subsequent evaluation.
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Abstract
Cognitive test batteries are widely used in diverse research fields, such as cognitive training,
cognitive disorder assessment, or brain mechanism understanding. Although they need
flexibility according to their usage objectives, most test batteries are not available as
open-source software and are not be tuned by researchers in detail. The present study
introduces an open-source cognitive test battery to assess attention and memory, using
a javascript library, p5.js. Because of the ubiquitous nature of dynamic attention in our
daily lives, it is crucial to have tools for its assessment or training. For that purpose,
our test battery includes seven cognitive tasks (multiple-objects tracking, enumeration,
go/no-go, load-induced blindness, task-switching, working memory, and memorability),
common in cognitive science literature. By using the test battery, we conducted an
online experiment to collect the benchmark data. Results conducted on two separate
days showed the high cross-day reliability. Specifically, the task performance did not
largely change with the different days. Besides, our test battery captures diverse individual
differences and can evaluate them based on the cognitive factors extracted from latent
factor analysis. Since we share our source code as open-source software, users can expand
and manipulate experimental conditions flexibly. Our test battery is also flexible in terms
of the experimental environment, i.e., it is possible to experiment either online or in a
laboratory environment.

Collaborators
Adolphe Maxime (AM), Sawayama Masataka (SM), Delmas Alexandra (DM), Maurel
Denis (MD), Sauzéon Hélène (SH), Oudeyer Pierre-Yves (OPY). 1This work has been
published in Frontiers in Psychology (Adolphe et al., 2022a).
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(AM, SM, SH); Investigation (AM, SM, SH); Methodology (AM, SM, DM, MD, OPY, SH); Funding
Acquisition (DM, MD, OPY, SH); Project Administration (DM, MD, OPY, SH).
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4.1 Introduction
Cognitive abilities such as attention or memory are essential for our daily life. Researchers
have measured these abilities for many years to elucidate human cognitive mechanisms,
diagnose various mental disorders, and evaluate cognitive training effects. Previous studies
in cognitive science have generally investigated a specific task using various stimulus
parameters to understand the underlying mechanisms in detail Baldauf and Desimone,
2014; Luck and Vogel, 1997b; Maunsell, 2015. On the other hand, works in the cognitive
diagnosis and training literature utilize test batteries, including various cognitive tasks, to
evaluate the individual’s diverse cognitive state C. S. Green and Bavelier, 2003a; Hosokawa
et al., 2019; Kueider et al., 2012a; Lampit et al., 2014b; Steyvers and Schafer, 2020b.
For instance, researchers in cognitive training studies leverage a cognitive test battery
before and after training to estimate how their intervention affects the cognitive state.
Since the purpose of cognitive test batteries generally needs to cover a variety of cognitive
abilities, such as vision, memory, auditory, or logical reasoning Folstein et al., 1975b;
Nasreddine et al., 2005, each task includes a small number of stimulus parameters to keep
the experimental time short. However, if researchers focus on specific cognitive abilities in
cognitive training investigations, e.g., visual attention or memory, such limited parameters
can be insufficient to evaluate cognitive states because complicated cognitive processes
mediate each ability, as explored in the cognitive mechanism investigations.

The present study aims to develop an online open-source test battery to leverage
the two research directions, i.e., cognitive mechanism understanding and test battery
assessment. Specifically, while investigating various parameters for each task, as in the
investigation of cognitive mechanisms, we have explored the relationship across diverse
cognitive tasks, as in the studies of test batteries. We consider that one of the difficulties
in developing such extension in the previous literature is mainly related to the proprietary
nature of existing cognitive assessment software. Indeed, either classic or computerized,
most cognitive batteries are commercial Conners et al., 2000; Hosokawa et al., 2019; Kraus
and Breznitz, 2009; Mielke et al., 2015; Preiss et al., 2013 and the researchers do not
have flexible control over the parameters of the program. While this constraint allows
researchers to share a common standard framework, it does not easily allow the work to
be extended to new goals. Since the trend of experimental environments quickly changes
depending on the technology development, flexibility and openness of the software are
essential to ensure that the test battery is used over a long period. For instance, there has
recently been a great demand to investigate online experiments. Some recent cognitive
training studies also utilize online training. To evaluate the effect of such training, one
needs to evaluate the cognitive ability using an online test battery. Since our test battery
uses a browser-based platform, using a javascript library, p5.js, experimenters can flexibly
launch the experiment under various environments referring to its source code.

Our test battery includes seven cognitive tasks: multiple object tracking, enumeration,
load-induced blindness, go/no-go, task switching, working memory, and memorization.
Our purpose is to create a test battery for cognitive training studies that focuses on the
specific capacity of visual attention and memory rather than multiple cognitive domains
such as auditory, linguistic, and logical reasoning tasks, as in previous work Soreq et al.,
2021; Steyvers and Schafer, 2020b. In particular, we selected tasks related to a multiple
object tracking (MOT) task measuring dynamic attention Cavanagh and Alvarez, 2005a;
Culham et al., 1998. MOT is a cognitive task in which participants are required to track
multiple moving objects simultaneously in a cluttered scene. Because such tracking abilities
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are essential in daily situations, many cognitive training works utilize MOT as a training
task (cf. Vater et al., 2021c) for various participant populations, such as young adults
Harris, Wilson, Smith, et al., 2020; Legault and Faubert, 2012a, older adults Legault and
Faubert, 2012a; Legault et al., 2013b, professional athletes Faubert, 2013a, and video
game players Benoit et al., 2020. For instance, Legault et al., 2013b used a 3D MOT task
for training and showed that the training efficiency for healthy older adults was similar to
younger adults. Based on a task related to object tracking abilities, we used the taxonomy
of Barnett and Ceci, 2002b to build the assessment tool. On the content dimension,
we chose the enumeration and load-induced blindness tasks for the near transfer tasks
related to MOT, as some previous work has shown their performance correlation Eayrs
and Lavie, 2018b; C. S. Green and Bavelier, 2006b. For the far transfer tasks, we used
other attention tasks, i.e., go/no-go and task switching tasks. On the memory dimension,
as some have shown, the contribution of working memory abilities to MOT performance
R. Allen et al., 2006; Lapierre, Cropper, and Howe, 2017, we used spatial working memory
and memorability tasks as near and far transfer tasks, respectively. The choice of these
tasks also allows for the evaluation of a transfer on the dimensions of the type of outcomes
(e.g., accuracy, reaction time) as well as on the specificity (e.g., single and dual tasks)
of the tasks. Because cognitive training studies can use our test battery as a pre/post
evaluation, we consider that each participant can complete all tasks within an hour and a
half.

The tasks have been intensively investigated in visual attention and memory literature.
The multiple-object tracking task measures participants’ tracking ability (Figure 2.1b)
Bettencourt and Somers, 2009a; Cavanagh and Alvarez, 2005a; Z. W. Pylyshyn and Storm,
1988c; Vul, Frank, et al., 2009; Zhong et al., 2014. The task difficulty depends on multiple
factors such as the number of targets, the number of distractors, or the object speed. The
enumeration task measures human counting ability (Figure 2.2a)C. S. Green and Bavelier,
2003a, 2006b; Trick and Pylyshyn, 1993. This task asks participants to count flashed
multiple objects. Depending on the counting number, it has been known that observers
show different cognitive performances. Specifically, for smaller numbers of items (e.g., 2-4),
participants can count them effortlessly and quickly, as called “subitizing.” In contrast, it
has been considered that the counting efficiency decreases for larger numbers of items (e.g.,
more than 5), which we used in our experiments. The load-induced blindness task measures
the divided attention and the useful field of view (Figure 2.2b)Dye and Bavelier, 2010;
Eayrs and Lavie, 2018b; Macdonald and Lavie, 2008. This task asks participants to perform
a dual-attention task, both foveal and peripheral detection tasks. Since this task requires
peripheral target detection, it is related to the works of the useful field of view (UFOV)
Edwards et al., 2018. The UFOV is generally hard to measure using online experiments
because it needs a large visual angle. However, using a dual-task that needs divided
attention can narrow the field. The go/no-go task measures the ability to distinguish
between relevant and irrelevant information (Figure 2.3a)Bokura et al., 2001; Conners et al.,
2000; T. M. Mani et al., 2005; Nash et al., 2013. This task requires participants to attend
a cue and to answer if the following stimulus is the target or not. This task is also known
as a standard cognitive test, called the cued continuous performance test (CPT)Conners
et al., 2000.The task-switching task measures the flexibility of selective attention (Figure
2.3b)Meiran, 1996; Monsell, 2003; Monsell et al., 2003a. This task requires participants to
shift their attention between different goals. A lot of paradigms have been suggested to
measure flexibility Monsell, 2003. We chose the task-cueing paradigm in the task-switching
paradigms, where the task was unpredictable, and a task cue appeared before and with
the stimulus Monsell et al., 2003a because it is easier to present to online participants.
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The working memory task here indicates the spatial span task (the Corsi Block Tapping
Task) and is to measure spatial short-term memory capacity (Figure ??a)Berch et al.,
1998a; Soreq et al., 2021.

Another advantage of our test battery is that we compare a recent cognitive task,
the memorability task, with traditional ones used in the test battery literature. The
memorability task measures the ability to memorize natural scene images (Figure ??b)
Bylinskii et al., 2015a, 2021; Isola et al., 2011b; Khosla et al., 2015. This task was initially
proposed in the computer vision community to explore what intrinsic image features are
memorable for human participants. However, not only the intrinsic image factors but
also human cognitive factors mediate this task performance. Specifically, even if an image
has identical intrinsic factors, memorability can change with how observers pay attention
to it Bylinskii et al., 2015a; Mancas and Le Meur, 2013. Although some studies show
the contribution of cognitive factors to memorability, it is still unclear how it relates to
diverse human cognitive abilities. Thus, the inclusion of the memorability task to our
test battery can contribute to either cognitive mechanism understanding or diverse test
battery development. For the cognitive mechanism understanding, our investigation can
clarify what kind of underlying cognitive abilities mediate memorability performance by
comparing other cognitive task performances. Moreover, for the test battery development,
including a cognitive task using natural scene images is needed to assess the ecological
validity of cognitive training because most tests use artificial stimuli. The difficulty of
using natural scene images is how to control the task difficulty as it has to be controlled
constantly using different natural images. An advantage of the memorability datasets is
that the previous works of the memorability share the experimental data Bylinskii et al.,
2015a, 2021; Isola et al., 2011b; Khosla et al., 2015, and we can extract constant difficulty
images from the datasets.

In the following Materials and Methods section, we describe each task in detail and how
to collect the benchmark data. After discussing our benchmark data in the Results and
Discussion section, we show the data availability. In summary, our investigation includes
the following features:

RQ1- We suggest an online open-source cognitive test battery including a wide variety of
attention and memory tasks with various stimulus parameters.

RQ2- Experimenters can flexibly run it in various environments (online or in the laboratory)
using a web browser.

RQ3- Our test battery captures diverse individual differences and can evaluate them based
on the latent cognitive factors.

RQ4- It is flexible in expanding stimulus conditions and adding new tasks because all
source codes and data are available. Besides, we prepare a playground to test our
cognitive tasks to support users’ understanding of the task procedure in the following
link (https://github.com/mswym/cog_testbattery).

123

https://github.com/mswym/cog_testbattery


4.2 Materials and Methods

4.2.1 Participants
Fifty naïve participants, aged from 21 to 71 (median=25, mean=29.0, standard devia-
tion=11.6) years old, engaged in the experiments. All gave informed consent approved by
the Operational Committee for the Evaluation of Legal and Ethical Risks (OCELER).

4.2.2 Apparatus
The benchmark data acquisition was conducted online using a web browser with a javascript
library, p5.js (https://p5js.org/). Each participant accessed the web server hosted in our
laboratory and engaged in the tasks. The platform in our experiment was organized
by a python web framework, Django (https://www.djangoproject.com/). The informed
consent and the schedule management of the two-days experiment were controlled using
the platform. Our test battery, including instructions and practice trials for each task,
was implemented with the javascript library p5.js. Users can run our test battery either
with our Django platform or separately using a shared webserver. All codes and data are
available from the following link: https://github.com/mswym/cog_testbattery.

4.2.3 General procedure
Our experiment has been conducted over two days (median time between pre and post
assessment: 1 day and 16 hours). Participants registered for the experiment on the first
day and reported the monitor size in cm or inch. We asked them to use the same monitor
across days and to see the monitor from a distance of 50 cm. We extracted the monitor
pixel size they used and defined the visual angle based on the information, as common in
online experiments Q. Li et al., 2020. During the experiment, a virtual character provided
the guidelines on how to use the experimental platform (Figure 4.1a). Including the
character, the platform was implemented as a gamified interface to keep participants’
motivation high. Clement et al., 2013b; Hosokawa et al., 2019; Lumsden et al., 2016a.

4.2.4 Stimuli and procedure of each task
This subsection describes the stimuli and procedure of each task. We decided the stimulus
parameters of each task based on previous cognitive science works and our preliminary
investigation on a browser-based investigation.

Multiple-object tracking task (Figure 4.1b)

Our task procedure followed Bettencourt and Somers, 2009a because it fits to conduct
online experiments efficiently while exploring the tracking ability for the numbers of targets
and the target speed conditions. In our experiment, either the target or distractor number
was five. We controlled the task difficulty by changing the target speed in 1, 4, and 8
degrees/s. The diameter of each disk was 1.2 degrees. On each trial, five of the ten discs
were briefly highlighted in red for one second to show they were the targets to track. After
that, ten objects started to move for eight seconds. The moving direction was determined
randomly at first and bounced at the corner of the square canvas of 12 x 12 degrees. We
allowed the occlusion between the objects. Participants’ task was to remember the target
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discs and track these positions until they stopped. They answered the target position by
clicking the buttons placed on the final object positions.

Enumeration task (Figure 4.2a)

This task procedure followed C. S. Green and Bavelier, 2006b in which the authors
compared an enumeration task with the ability of MOT. Each trial began with the
presentation of a fixation pattern in the center of a middle gray background. After 1000
ms, a set of white circles was presented for 50 ms. The number of circles was selected
from 5, 6, 7, 8, or 9 in a pseudo-random order. The diameter of each circle was 0.5 x 0.5
degrees, and its color was white. The circles were presented within a diameter of 5 degrees
in the background. The position of the circles was not overlapped in the region. The
participants were asked to count these circles and answer how many circles were presented
using a slider bar. Each stimulus condition was tested 20 times for each observer.

Load-induced blindness task (Figure 4.2b)

The load-induced blindness procedure followed Eayrs and Lavie, 2018b, in which the
load-induced blindness ability was compared with MOT. On each trial, after presenting
the fixation pattern of 1000 ms, participants viewed a 50 ms presentation of a cross target
with four Gabor stimuli. After 950 ms, they were asked to answer which of the lines was
longer using mouse clicking. Then, they were asked to answer which of the four Gabor
stimuli had the enhanced contrast by clicking one of the four buttons. They were asked to
correctly answer at least the foveal task. If not, their response to the peripheral task was
not recorded. The length of each cross pattern was 0.5 or 1.0 degrees, and the vertical or
horizontal line was randomly selected for the longer one. The color of the cross was black.
For the Gabor stimuli, the standard deviation of the Gaussian envelope was 0.7 degrees.
The spatial frequency and the orientation of the grating were 2.2 cycles/degree and 0.0
degrees, respectively. The mean luminance was set to the background color (i.e., middle
gray). The enhanced contrast of the target was 0.8, and the others were 0.4. The Gabor
stimuli were presented at a distance of 3 (near condition) or 6 (far condition) degrees from
the center position on the screen. Each stimulus condition was tested 20 times for each
observer.

Go/no-go task (Figure 4.3a)

The ten single digits (from 0 to 9) were used as the stimuli. We decided the stimulus
presentation time based on T. M. Mani et al., 2005, though we cannot strictly control the
presentation time due to browser-based experiments. Each trial began with the 1000 ms
presentation of the fixation point. Then, each digit was presented one by one for 50 ms
with the interstimulus interval (ISI) of 950 ms. The digit stimuli were presented within
an area of 1.5 degrees squares. Participants were asked to focus on the number ”7” and
answer whether the number after the ”7” was the ”3” or not. If the number after ”7” was
”3” (Go trial), they had to press the key ”J” as soon as possible. If not (No-go trial), they
were asked to keep not responding. The probability of Go/No-go trials was 50/50 %. Each
stimulus condition was tested 18 times for each observer.
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Task-switching task (Figure 4.3b)

We used the task-cueing paradigm in the task-switching paradigms, where the task was
unpredictable, and a task cue appeared before and with the stimulus Monsell et al.,
2003a. We designed our original stimulus patterns to make the cues and tasks clearer
for online participants. A digit from the set 1– 4, 6–9 was used for the target stimuli.
Participants’ tasks changed with the task cue. When the task cue was the blue diamond-
shaped background, participants had to answer whether the target digit was odd/even by
using the key ”F”/”J,” respectively. In contrast, when the task cue was the red square
background, they had to answer whether the target digit was higher/lower than five by
using the key ”F”/”J,” respectively. Each trial began with the presentation of the task
cue. After the cue presentation of 650 ms, a target digit was displayed. The size of the
background rectangle was 4.9 degrees on each side. The target digit was shown in the
center of the background within an area of 1.5 degrees squares. After the participant’s
response, a blank screen of 1000 ms was presented. We used the first 20 trials as practice
ones. Each stimulus condition was tested 30 times for each observer.

Working memory task (Figure 4.4a)

We used a typical procedure of computerized Corsi Block Tapping tasks (e.g., Soreq et al.,
2021). On each trial, sixteen light gray squares were displayed in a four-by-four grid. One
of these squares was sequentially flashed with a reddish color for 900 ms. The order of
the flashes was randomized for each trial. After the flash presentation, participants were
asked to repeat the sequence by clicking on the squares in the same forward order. The
size of each square was 2.0 degrees on each side. The number of flashes was selected from
the set of {4,5,6,7,8} in a pseudo-randomized order. Each stimulus condition was tested
12 times for each observer.

Memorability task (Figure 4.4b)

The memorability task measures human memory performance for natural scene images
(Figure 4.4b)Bylinskii et al., 2015a, 2021; Isola et al., 2011b; Khosla et al., 2015. Our
experiment extracted images with intermediate memorability scores from the FIne-GRained
ImageMemorability (FIGRIM) dataset Bylinskii et al., 2015a because it has been shown that
cognitive factors are more effective for these images. Each trial began with the presentation
of a natural scene photograph for 1000 ms. During the presentation, participants were
asked to remember each photograph and answer whether the photograph is presented twice
or not, by pressing the key ”J” as soon as possible. After each presentation, participants
received feedback if the response was correct or not for 1400 ms. There were two blocks
for the memorability task. On each block, participants viewed a set of 120 images within
a specific natural scene category, ”bedroom” or ”kitchen,” in the dataset. We chose the
image of hit rates on the interval [0.60,0.70]. Forty images were the targets and displayed
twice for each block. Forty images were the fillers and displayed once. Eight of the targets
were presented with a long distance of 100–109 images between an image and its repeat.
Thirty-two of the targets were presented with a short distance of 2-5 images.
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Fig 4.1. (a) interface example of the test battery. (b) Stimuli and tasks in the
multiple-object tracking (MOT) task. After presenting the fixation point, five of the ten
discs were briefly highlighted in red to show they are the targets to track. Then, ten
objects started to move for eight seconds. Participants answered which are the target
objects by clicking black boxes after the moving scene ended.

127



Fig 4.2. (a) Stimuli and tasks in the enumeration task. After presenting the fixation
point, a brief flash of multiple white circles was presented. Participants answered how
many circles were shown by using a slider. (b) Stimuli and tasks in the load-induced
blindness task. Participants were asked to perform a dual-task, answering the length of
the gazing point and the contrast of the images presented in the surroundings. After
showing the fixation dot, a cross target with four Gabor stimuli was briefly presented.
Participants first answered which of the lines was longer using mouse clicking. Then they
answered which of the four Gabor stimuli had the enhanced contrast by clicking one of
the four buttons.
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Fig 4.3. (a) Stimuli and tasks in the go/no-go task. On each trial, a digit was briefly
presented one by one. Participants were asked to focus on the number ”7” and answer
whether the number after the ”7” was the ”3” or not. If the number after ”7” was ”3,”
they had to press the key ”J” as soon as possible. (b) Stimuli and tasks in the
task-switching task. Participants’ tasks changed with the task cue. When the task cue
was the blue diamond-shaped background, participants had to answer whether the target
digit was odd/even. In contrast, when the task cue was the red square background, they
had to answer whether the target digit was higher/lower than five.
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Fig 4.4. (a) Stimuli and tasks in the working memory task. On each trial, one of sixteen
squares was sequentially flashed with a reddish color briefly. After the presentation,
participants answered the sequence by clicking on the squares in the same order. (b)
Stimuli and tasks in the memorability task. On each trial, a natural scene photograph
was presented one by one. Participants were asked to remember each photograph and
answer whether the photograph is presented twice or not.
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4.3 Results
Our test battery includes multiple parameters in each task, and each participant engages
in all tasks. This experimental design enables us to evaluate cognitive tasks either within
each task in detail or across different diverse tasks. In terms of cognitive test batteries, the
evaluation contributes to understanding the effect of parameters on each task, as multiple
cognitive abilities can mediate each task. In terms of cognitive mechanism understanding,
it contributes to connecting the understanding of each task with other tasks’ performances.

This section first describes the basic performance of our cognitive test battery to
confirm whether our stimulus manipulation can capture diverse individual differences and
how parameter differences affect the performance. Then, as in other cognitive test batteries,
we summarize the reliability and validity on the tasks. We evaluate the reliability of our
test battery by analyzing the cross-day performance consistency. In the third section, we
analyze the latent cognitive factor and evaluate the validity of our tasks to measure human
attention and memory. We discuss our latent factors compared with the previous works in
cognitive test batteries and cognitive sciences in Section 4 to clarify the position of our
test battery.

4.3.1 Basic performance
Figure 4.5 shows the results of basic performances for each task. Different panels show
different tasks. Blue circles of each panel indicate the individual performance of the
response probability or reaction time for each task condition. The thin green line connects
each individual performance across different stimulus parameters. We analyzed the data
using Bayesian statistical methods to estimate the mean parameters (accuracy and reaction
time) and their 95% credible intervals, shown in the red squares and error bars in Figure 4.5
Andrews and Baguley, 2013; Makowski et al., 2019. Our main motivations to use bayesian
inference were the access to credible intervals and to the a posteriori distribution (not only
to a point estimate) Kruschke, 2021a. We performed the model inference by Hamiltonian
Monte Carlo with the NUTS sampler using PyStan. The simulation parameters of the chain
and the iteration were 4 and 10,000, respectively. We estimated the accuracy parameter
per task and per condition for each participant by using the binomial distribution as
the likelihood and with the uniform distribution on the interval [0,1] as prior for the
probability of success per trial. The estimated accuracy was averaged across observers
for each sampling and calculated the 2.5% and 97.5% percentiles of the distribution (i.e.,
95% credible interval). For the reaction time estimation, we estimated the parameter
per task and per condition for each participant by using the the normal distribution as
the likelihood and the uniform distribution on the interval [0,1000] as a prior. As in
the accuracy estimation, we estimated the averaged mean reaction times and their 95%
credible intervals.

We calculated the correct response probability (accuracy) of each stimulus condition
for the enumeration, the load-induced blindness, the multiple-object tracking, and the
working memory tasks. The accuracy for the multiple-object tracking corresponds to how
many objects participants could track, as for the ordinate of the multiple-object tracking
tasks in Figure 4.5. For the memorability and go/no-go tasks, we defined the hit rate
(HR) and the false alarm rate (FAR) according to the previous works. The HR for the
memorability indicated the correct response probability for the images presented for the
second time. The HR for the go/no-go task indicated the correct response probability
for the go trials. The FAR for the memorability and go/no-go tasks meant the wrong
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response probability for the images presented for the first time and the wrong response
probability for the no-go trials, respectively. We also evaluated the reaction time (RT) for
the trial on which observers correctly responded. For the task-switching task, we used the
switching cost metric in addition to the accuracy of the switch and non-switch trials. The
switching cost refers to the reaction time difference between the switch and non-switch
trials. The positive switching cost indicates that participants took more cognitive load for
the switching condition. We evaluated this either the odd/even or large/small condition.

Since a cognitive test battery aims to measure personalized cognitive state, it needs to
cover diverse individual differences. Our results showed the large individual difference in the
accuracy on the enumeration, the multiple-object-tracking, the load-induced blindness, the
working memory, and the memorability tasks (blue circles in Figure 4.5). In addition, the
relative individual performance was not consistent across different stimulus conditions for
some tasks. For instance, the individual trends for the enumeration and working memory
tasks, depicted by the green lines in Figure 4.5, show complex interactions depending on
the stimulus parameters.

For the go/no-go and the task-switching tasks, the response probability of HR/FAR
and the response accuracy were saturated on most participants, but the reaction time and
the switching cost time showed large individual differences, respectively.

Although our results showed large individual differences, the overall performance across
participants, shown in the red squares and error bars in Figure 4.5, changed with the
stimulus condition on each task, consistent with previous works. The task performance on
the enumeration task decreased as the target number increased Trick and Pylyshyn, 1993.
For the multiple-object-tracking, the task accuracy and the averaged tracking number
decreased as the object speed increased Bettencourt and Somers, 2009a. For the load-
induced blindness task, regardless of the condition (near or far) most participants showed
misdetection Eayrs and Lavie, 2018b. The switching cost was positive for large/small or
odd/even task type Monsell et al., 2003a. The working memory task performance was
also decreased with the target number participants remembered Berch et al., 1998a. For
the memorability task, the HR was decreased when the target interval was long (> 100)
compared to when the target interval was short Khosla et al., 2015.

4.3.2 Reliability across days
We calculated the reliability across two experiment days. The purpose of the analysis is to
understand how repeating the set of tasks affects the performance as if the test battery
is used as the pre/post assessments of cognitive training. For this purpose, we need to
understand the reference performance of repeating the tasks without training to evaluate
how much the training improves cognitive ability.

Each participant engaged in the same tasks for two days in our experiment. We
evaluated the test-retest reliability across the days with two traditional metrics in the
cognitive test battery literature and one analysis based on Bayesian statistics. First,
we calculated the performance correlation between the days. The Pearson’s correlation
coefficients (r) of the accuracy for each task were as follows: (1) multiple-object tracking;
0.89, (2) enumeration; 0.81, (3) load-induced blindness; 0.52, (4) go/no-go; 0.95, (5)
task-switching; 0.56, (6) working memory; 0.89, and (7) memorability; 0.66. Second, we
conducted the Bland-Altman analysis across days Bland and Altman, 1986 (Figure 4.6).
The Bland-Altman plot visualizes the performance differences across the days as a function
of the mean performance. Each plot indicates each participant colored with age. We
averaged each participant’s accuracy across different conditions in each task. Results
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Fig 4.5. Results of all tasks. The response probability or reaction time is shown for each
task. The horizontal axis of each panel indicates the stimulus conditions. The small blue
circle depicts the individual performance. The thin green line connects each individual
performance across different stimulus parameters. The red square and error bars show the
mean probability and 95 % credible intervals calculated from Bayesian statistical
simulation.
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Fig 4.6. Bland-Altman plot for the accuracy data. Each participant’s performance
difference was plotted as a function of the mean performance of the two days. Different
colors indicate different participant ages. The accuracy data is converted to the inverse
normal cumulative distribution function, as in the latent factor analysis. The positive
difference means that the second day performance is better than the first day. The solid
red line indicates the mean difference across participants, while the dashed red line
indicates the ±1.96 SD of the differences.

showed that some participants showed performance improvement (the positive value in the
test-retest difference), but we could not observe a clear trend of age on the improvement.

Next, to evaluate these test-retest effects statistically, we analyzed the posterior
distribution differences of test-retest performances using the Bayesian analysis. Figure 4.7
shows the posterior distribution differences between the first and second-day performance.
We first estimated the posterior distributions of 10,000 samples of each day by Bayesian
statistical methods described above and took the difference of the two days. We subtracted
Day 1 from Day 2 for the accuracy distribution and Day 2 from Day 1 for the reaction
time distribution to make the training effect positive. We focused on how much the mean
difference of each distribution and the 95% credible interval (i.e., highest density interval)
deviated from the zero of each difference distribution. The more the distribution deviates
to the positive direction, the better the second-day performance is than the first-day one.
Results showed that the 95% credible intervals included the no difference point for 32
out of 39 conditions. The credible interval deviated from the point for the long interval
and one short-interval condition in the memorability task, the small number conditions in
the enumeration task, and the near and far conditions in the load-induced blindness task.
Even for these conditions, the mean distribution difference, indicating the effect size of
repeating the task, was relatively small (less than 0.1 probability e.g., less than 2 trials
per session for load-induced and enumeration task). These findings suggest that the task
performance does not improve simply by repeating the tasks twice, and therefore, the test
battery is appropriate for the pre/post assessment for cognitive training to evaluate how
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Fig 4.7. Cross-day performance difference. Each panel shows the probability density of
the posterior distribution difference between the first and second-day performance (Day 1
-Day 2 for the RT difference and Day 2 - Day 1 for the accuracy difference). The positive
value means the better performance in Day2 for either RT or accuracy differences. The
vertical red solid and dotted lines indicate the mean and 95% credible intervals,
respectively. The condition names put on the left-top for each panel with blue color
correspond to the ones shown as the abscissa in Figure 4.5. We show here cross-day
performance for the parameters used in the latent factor analysis.

much the training was effective for participants’ cognitive ability.

4.3.3 Latent factor analysis
Our cognitive tasks captured the large individual difference, but there remains a question
about what internal cognitive factors mediate these differences. To explore the factors,
we conducted the latent factor analysis, as in cognitive test battery validation Vermeent
et al., 2020. We first transformed the probability data using the inverse normal cumulative
distribution function to deal with it for continuous decompositions. We converted the
zero and one probability according to the total trial number (i.e., corrected the zero value
to 1/2N and the one value to 1-(1/2N), where N is the total trial number) to avoid the
infinity value of the transformation Macmillan and Kaplan, 1985. After data normalization,
subtracting variable means from each observation and scaling it using variable standard
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deviations, we applied principal component analysis (PCA) to the data. We used 23
variables extracted from the task conditions, shown in Figure 4.7, and 100 participants’
data of the first and second days for observations.

Fig 4.8. Scree plot of the latent factor analysis.

Figure 4.8 shows the explained variances in PCA as a function of the number of com-
ponents. Based on the plot, we extracted the six components because the cut point shows
an ”elbow” point L. H. Nguyen and Holmes, 2019. When including the six components,
the total explained variance was over 70 %, and each point after six only explains the
variance of less than 4%. By using the six factors, Figure 4.10 visualizes the loading
of each component and the hierarchical clustering based on the latent factor similarity
between different task conditions. The first component showed negative for reaction data
of the go/no-go and task-switching tasks and positive for the accuracy data for the other
tasks. While the smaller value in the reaction time means a fast (better) response, the
larger value in the accuracy means better performance. Therefore, the first component
can be associated with a general ability factor, the shared ability across different cognitive
tasks to solve them Steyvers and Schafer, 2020b.

The latent factors after the first one in PCA are constrained by the orthogonality
of the input parameters. To interpret the factors conservatively, we also conducted the
independent component analysis (ICA), where the latent factor orthogonality is not
constrained by the input parameters. We used the FastICA implemented in the python
scikit-learn library with the six parameters. The results showed that the hierarchical
clusterings of the ICA were similar to PCA (Figure 4.10). It is noteworthy that the
different conditions within the same task were not always clustered in near categories. For
instance, these hierarchical clustering analyses showed that the larger target numbers in
the enumeration tasks (8 and 9) were separated from the smaller numbers. Similar trends
to this separation were observed in the MOT task.

For either PCA or ICA, the loading results showed the factors to which the memorability
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tasks contributed, correlated with the load-induced blindness tasks and the large numbers
of the enumeration task. For instance, components 1 and 2 in PCA have the loading of
the same sign from the memorability tasks and the load-induced blindness tasks, and
similar trends can be found in component 2 in ICA (Figure 4.10). Besides, component
3 in PCA and component 3 in ICA shows the correlated loading from the long-interval
memorability task and the large numbers of the enumeration task (Figure 4.10). Besides,
the loading results for ICA showed the factors to which the MOT contributed, correlated
with the enumeration, the load-induced blindness, and the working memory tasks. For
example, the MOT, the enumeration, the load-induced blindness, and the working memory
tasks contributed to component 1 (Figure 4.10b). Also, the MOT, the enumeration, the
working memory, the go/no-go, and the memorability tasks contributed to component 3
(Figure 4.10b). Figure 4.9 showed the individual participant distribution of the first and
second PCA latent components. Each plot is colored according to each participant’s age.
All participants’ data and their basic attributes (i.e., age) are shared in our repository for
users to review their future works.

Fig 4.9. Individual data for PCA components 1 and 2. Different colors indicate different
participant ages
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Fig 4.10. The hierarchical clustering and the loading in (a) PCA and (b) ICA. The
components in PCA are numbered in order of the magnitude of the explained variance, as
in the legend. The component order in ICA is arbitrary because the analysis does not
have the priority of the order.
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4.4 Discussion
The objective of the study is to create and evaluate the cognitive test battery to measure
diverse human attention and memory. The test battery includes seven cognitive tasks:
multiple-object tracking, enumeration, load-induced blindness, go/no-go, task-switching,
working memory, and memorability. The results of the basic performance show systematic
shifts according to the task difficulty and suggest that our test battery covers diverse
individual differences. The reliability analysis shows that the task performance across
different days is highly similar to each other. Cross-day reliability is essential to use this
test battery for cognitive training because learners engage in the cognitive assessment
before/after their training, and thus the assessment is optimal if the task performance
without training is not affected. In addition, the latent factor analysis showed what internal
cognitive factors mediate the individual differences. Specifically, the results suggest that a
general ability across all tasks and some task-specific ability underlie the cognitive test
battery performance.

These latent factors are consistent with the previous behavioral and neurological
findings in cognitive science literature. Many works with a large-scale cognitive task have
also reported the shared ability across the visual attention and memory tasks Panichello and
Buschman, 2021; Steyvers and Schafer, 2020b. For instance, Steyvers and Schafer, 2020b
investigated the behavioral performance with a large-scale cognitive test and analyzed the
latent factors using probabilistic PCA. They found that a general ability factor mediates
across all tasks, including visual tasks like ours. Panichello and Buschman, 2021 recently
suggest from their neurological investigation that the prefrontal cortex works as a domain-
general controller for attention and memory tasks. In addition to the general ability,
the domain-specific components are also discussed in previous findings Friedman et al.,
2008; Larrabee, 2015; Miyake et al., 2000a; Nakai and Nishimoto, 2020; Panichello and
Buschman, 2021; Vermeent et al., 2020. For instance, Friedman et al., 2008 investigated
latent factor analysis of executive function and suggested that updating and shifting
function mediates the task performance in addition to a common cognitive factor. The
working memory and the visual-spatial processing are separate but related factors Larrabee,
2015, and the tasks related to these factors could be separately represented in the brain,
in addition to overlapped common representation LaBar et al., 1999.

In the cognitive test battery context, the domain-specific latent components are tightly
connected to specific tasks. For instance, the working memory factor loads to only span
tasks in the validation study of a computerized cognitive test battery Vermeent et al.,
2020. In contrast, most of our latent factors were not task-specific, e.g., we did not see
the factor only affecting our spatial span task and we found the multiple factors affecting
the same task. In addition, it is noteworthy that our results are consistent with previous
cognitive science works. For instance, some studies have shown that the working memory
performance is related to the MOT R. Allen et al., 2006; Lapierre, Cropper, and Howe,
2017, consistent with our results about the components 1 and 3 of the ICA analysis (Figure
??b). These findings suggest that our latent factors capture more focused cognitive abilities
than general cognitive test batteries, overlapped across multiple visual tasks.

MOT tasks are common in the cognitive training literature Harris, Wilson, Smith,
et al., 2020; Legault and Faubert, 2012a; Vater et al., 2021c, as we are also conducting such
a training project, and it is important to understand to what extent MOT training effects
propagate to various cognitive abilities. Evaluating how various task performance is related
to MOT abilities in our cognitive test battery contributes to understanding such training

139



transfer in cognitive training works. Our latent factor analysis showed that the general
cognitive ability meditates the MOT performance, including other tasks. Furthermore,
consistent with previous works, we found the latent factors contributing to the MOT and
the enumeration (Figure ??b, components 1 and 3) C. S. Green and Bavelier, 2006b, the
MOT and the load-induced blindness (Figure ??b, component 1) Eayrs and Lavie, 2018b,
and the MOT and the working memory (Figure ??b, components 1 and 3) R. Allen et al.,
2006; Lapierre, Cropper, and Howe, 2017.

The memorability task has been originally suggested in the computer vision literature,
and it is not clear about the relationship with classic cognitive tasks. Previous studies
have mainly investigated the task in terms of intrinsic image factors driving humans’
image memorizing. However, it has also been shown that cognitive factors mediate the
task, especially for the intermediate difficulty we used in our memorability test. Some
brain imaging and neurophysiological studies also suggested the neural basis of cognitive
contributions Bainbridge and Rissman, 2018; Jaegle et al., 2019; Mohsenzadeh et al., 2019.
Specifically, Mohsenzadeh et al., 2019 used a high-resolution-spatiotemporal brain imaging
technique with combining fMRI and MEG measurements and recorded the brain activity
during the memorability task. They compared brain responses between high and low
memorability images and showed that both early visual processing and later cognitive
processing mediates the difference between high and low memorability. The present finding
can contribute to understanding these processing. Our latent factor analysis showed that
the factors including the memorability task are mainly related to the accuracy of the
enumeration task with higher difficulty and load-induced blindness task. It has been
suggested that the target misdetection in the load-induced blindness and enumeration
is due to inattentional blindness over perceptual capacity and can be a different process
from the working memory ability Bredemeier and Simons, 2012; Eayrs and Lavie, 2018b.
Our finding suggests that the cognitive processing mediating the memorability task is
misdetection of the intrinsic image factors in an image due to the inattentional blindness,
rather than failure of keeping image contents using working memory ability. This finding
is also consistent with the previous result that the memorability performance depends on
the eye-gaze position.

Unlike conventional cognitive test batteries, we did not extract a single threshold or
slope of a psychometric function for each task but used multiple stimulus parameters’
performance for the latent factor analysis. When researchers measure a single threshold
for a specific stimulus direction, they implicitly assume that a single cognitive mechanism
mediates the task along with the stimulus parameters they controlled. In other words, they
assume that participants with the threshold of better performance are superior in a specific
cognitive ability. However, this is not always the case if multiple visual mechanisms mediate
the task dimension. Consistent with the notion, our latent factor analysis showed that
the identical stimulus parameter is not always categorized in the same cluster (Figure ??).
Also, the basic performance results showed that the individual trend is highly complex on
each task (green lines in Figure ??). The finding suggests that complex interaction lies
on the cognitive mechanisms depending on stimulus parameters even in the same task.

We determined the stimuli and procedure of our cognitive tasks by following previous
works about cognitive mechanisms of attention and memory. These works tend to overlook
individual differences presumably due to small numbers of participant sampling, but our
study showed diverse performance differences across individuals for all tasks. For instance,
in the task-switching task, the switching cost largely depends on individuals. For some
participants, the difference between switching and non-switching trials is more than 200
ms on average, but there are few differences for other participants. When researchers

140



investigate cognitive ability using one specific task, large individual differences are unknown
factors making interpretation difficult. However, as in our latent factor analysis, when the
same participants engage in multiple tasks, the large individual difference in one task can
be a clue for understanding cognitive mechanisms for another task. This notion suggests
that our test battery can also be used for the investigation of cognitive mechanisms as
a benchmark evaluation of each participant. Some experiments for cognitive mechanism
understanding are hard to collect many participants, e.g., brain imaging experiments. If
researchers conduct a new investigation with our test battery, the individual differences in
the new experiment can be more understandable.

One limitation of our investigation is that we do not strictly control the observer
attributes when recruiting participants. One typical attribute affecting cognitive perfor-
mance is the age of participants. Aging affects various aspects of cognitive abilities. For
instance, it has been shown that the capacity of tracking objects in MOT tasks decreases
for older participants Legault et al., 2013b; Sekuler et al., 2008; Trick and Pylyshyn, 1993.
Legault et al., 2013b used a 3D MOT task, called the Cave Automatic Virtual Environment
(CAVE), and showed that healthy older adults have lower tracking ability than younger
adults, but that training with a 3D MOT task improves the tracking ability of healthy
older adults in a similar learning function to younger adults. In addition to MOT, other
cognitive tasks such as visuospatial attention T. Curran et al., 2001; Greenwood et al.,
1993 or working memory Salthouse, 1994 depend on the age of participants. Furthermore,
it has been known that other observer attributes such as the level of expertise in sports
Faubert, 2013a or gaming Benoit et al., 2020; C. S. Green and Bavelier, 2006a affect
cognitive abilities. One needs to separate the participant group according to the targeting
attribute to investigate the effect of each attribute on cognitive performance. Although
our investigation does not control the population, we analyzed how the performance of
different age participants is distributed in our cognitive tasks (Figures ?? and ??). Further
investigation is needed to elucidate the effect of observer attributes.

Another limitation is that our online experiment is not strictly controlled in stimulus
presentation and response collection compared to laboratory experiments. For instance,
the reaction time can be potentially inaccurate due to participants’ environment setting
because the accuracy depends on the response input device. However, recent studies have
suggested that the reaction time measured in web experiments can be comparable with lab
experiments Armitage and Eerola, 2020; de Leeuw and Motz, 2016; Hilbig, 2016. In our
experiment, we only measured the reaction time by the keyboard input device, not by the
mouse clicking (or touch clicking), and restricting the device contributes to decreasing the
measurement distortion Armitage and Eerola, 2020. Besides, our reaction time data was
comparable with previous findings in lab environments. For instance, the reaction time
of the memorability task with intermediate memorability scores in a lab experiment is
around 900 ms, which is consistent with our current results Võ et al., 2017. Based on these
findings, we believe that using reaction time as a metric for our test battery is acceptable.

In addition, we did not apply the gamma correction according to each monitor’s
characteristics during our online experiment. One needs a photometer to conduct the
gamma correction strictly for each monitor, which cannot be available in online experiments.
A way for online experiments is to correct the nonlinearity based on participants’ responses
using a grating chart, but it could be affected by the quality of participants’ responses.
We did not apply such user-based correction and presented stimuli without the gamma
correction. Previous studies in visual perception and cognition literature have shown that
the performance in online experiments can be comparable to that in strictly controlled
laboratory experiments for some visual tasks Bylinskii et al., 2015a; Sasaki and Yamada,
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2019; Sawayama et al., 2022. For example, the memorability task is conducted both in
online and laboratory experiments Bylinskii et al., 2015a. Some studies have suggested that
the contrast sensitivity performance could be comparable under sufficient repetition for
each condition between online and laboratory experimentsSasaki and Yamada, 2019 and
that suprathreshold contrast discrimination with large contrast differences could be stable
across online and laboratory experiments compared to blur discrimination tasks for natural
object stimuli Sawayama et al., 2022. However, the optimal presentation, especially for
the Gabor stimuli in the load-induced blindness task, is to use a linearly corrected monitor.
The way of presentation can be critical when users conduct our test battery for some
populations that have reduced contrast abilities, e.g., older adults. It has been known that
contrast sensitivity is worse for older adults than younger adults because aging changes the
optical properties of the eyes Owsley, 2016. When one does not strictly control the stimulus
presentation, the effect of such front-end properties can not be evaluated appropriately.
Therefore, if users conduct our test battery for such populations in a non-controlled online
experiment, they should be extra careful when interpreting the results of the load-induced
blindness task to understand whether the obtained performance is due to cognitive abilities
or the front-end properties. One additional control for the load-induced blindness in an
online experiment might be to conduct a contrast discrimination task without the attention
load of the foveal length judgment to confirm whether participants could discriminate the
contrast differences without divided attention.

It is noteworthy that we share all source codes and data to conduct the cognitive
assessment experiment from our repository (https://github.com/mswym/cog_testbattery).
Not only can users conduct our experiment as we did on their own server, but also they can
do it more flexibly. One use-case is to conduct our test battery on a shared server. Another
case is to conduct it in the laboratory environment. In this case, users can strictly control
the monitor size and viewing distance and run the experiment using a web browser.

4.5 Conclusions
In summary, we suggest an online open-source cognitive test battery including the seven
cognitive tasks: multiple-object tracking, enumeration, load-induced blindness, go/no-go,
task-switching, working memory, and memorability. Our test battery can flexibly be used
either online or in laboratory experiments with a web browser. Our benchmark test shows
that it captures diverse individual differences and can evaluate them based on latent
cognitive factors. Besides, our results suggest a novel finding that the cognitive factor
mediating the memorability task is the ability related to inattentional blindness rather
than working memory.
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Chapter 5

AI-Enhanced Multi-Object Track-
ing: Toward Individualized Cognitive
Training
Aims
The previous chapters have reviewed existing lit-
erature on strategies to adapt CT and highlighted
the specificities and advantages of MOT. Addi-
tionally, we introduced a cognitive battery de-
signed to reliably assess cognitive performance.
This chapter aims to integrate all these compo-
nents and present the data collected during the
evaluation of a new AI-based individualized MOT-
based training.
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Abstract
This study evaluates the effectiveness of an AI-based individualized adjustment procedure
versus a traditional staircase method in modulating task difficulty for cognitive training
using the Multi-Object Tracking (MOT) task. Conducted as a randomized controlled
trial with 72 healthy young adults, it examines the impact of these methodologies on
learning trajectories, task performance progression, and participants’ subjective experiences,
including cognitive load, engagement, and motivation. The AI-based method, which
employs a multi-armed bandit algorithm informed by learning progress and a zone of
proximal development model, facilitated engagement with a broader spectrum of tasks,
enhancing the variety of learning experiences. Performance assessments both within the
training context and across a comprehensive cognitive battery of seven tasks revealed
improvements in all participants for both the trained task and related tasks, with the
AI group demonstrating broader cognitive enhancements not seen in the control group.
Subjective assessments reported a decrease in cognitive load over time, indicating efficient
learning; however, the AI-based training was perceived as more demanding, leading to lower
engagement and motivation scores. Although further investigation is needed to understand
these observations, these results highlight the capabilities of AI-driven individualized
training methods to enhance cognitive training effectiveness and suggest that they can
offer significant advantages over traditional methods.
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5.1 Introduction
Cognitive tasks aimed at exploring the complexities of human cognition have long been
instrumental in shedding light on the intricate workings of the mind. Among these, the
Multi-Object Tracking (MOT) task stands as a critical paradigm in cognitive science for
probing the mechanisms of visual attention and cognitive processing (Z. W. Pylyshyn and
Storm, 1988a). This task, which requires the simultaneous tracking of multiple moving
targets amid distractors in a dynamic way, serves as a pivotal tool for understanding how
attentional resources are allocated and managed in scenarios that mirror the intricacies of
real-world environments (B. Scholl, 2009).

Previous work have demonstrated that MOT performance correlates with outcomes
in tasks that demand high perceptual load, focused attention, and working memory
capabilities (Eayrs and Lavie, 2018a; Huang et al., 2012b; Skogsberg et al., 2015a; Treviño,
Zhu, Lu, et al., 2021). Furthermore, this correlation extends to practical performance
metrics in everyday activities, such as driving (Bowers, Anastasio, et al., 2011), video
gaming proficiency (C. Green and Bavelier, 2006; Trick et al., 2005), performance of
elite athletes (Wierzbicki et al., 2023), or for academic skills among children (Peng and
Miller, 2016a, Bertoni et al., 2019b, Tullo, Faubert, and Bertone, 2018b), highlighting
the task’s broad applicability and relevance across various contexts. Therefore, there is a
growing interest in discerning whether these connections are more accurately described as
causal relationships rather than mere correlations. This involves reevaluating the task as
a proactive intervention strategy, rather than solely a means of diagnostic or evaluation.

This idea suggests examining the MOT task as a viable cognitive training (CT) tool
designed to improve a broad array of skills. Some lines of evidence have already highlighted
the possibility to enhance biological motion perception (Legault and Faubert, 2012b)
or more specialized abilities such as improving passing precision in elite soccer athletes
(Romeas et al., 2016c). However, as echoed in the broader literature of cognitive training
(Melby-Lervåg and Hulme, 2013b, Webb et al., 2018b, Luis-Ruiz et al., 2020), there
are today mixed evidences in the effectiveness of MOT training and the possibility of
transfer toward untrained or daily activities (Vater et al., 2021d). Several prior works
have demonstrated that when transfer occurred it was limited to a narrow range of tasks
(Strong and Alvarez, 2017b, Harris, Wilson, Smith, et al., 2020, Scharfen and Memmert,
2021b).

One plausible explanation for these disparate outcomes is the significant variation
in individual responses to such interventions. While some participants exhibit marked
improvements, others derive minimal or no benefit, highlighting the challenge of high
inter- and intra-individual variability (Katz et al., 2021, van der Donk et al., 2017, Könen
and Karbach, 2015). In this work, we posit that, particularly in the context of the MOT
task, tailoring the level of difficulty to the individual’s specific characteristics is crucial
for effective training outcomes. While prior studies have demonstrated that adaptive
cognitive training yields greater learning benefits compared to non-adaptive methods
(Pedullà et al., 2016a; Plass et al., 2019a), the majority have depended on a staircase
algorithm to adjust difficulty across various cognitive tasks. Although staircase methods
are effective for gradually increasing challenges to match the learner’s level, they typically
prescribe a singular developmental path, offering limited customization, and struggle to
manage multiple parameters simultaneously (as discussed in Adolphe et al., 2023 for a
comprehensive analysis of this issue). However, the rich body of literature indicates that
MOT performance is influenced by multiple factors, including the number of targets (Z. W.
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Pylyshyn, 2001a), speed (A. O. Holcombe and Chen, 2012), tracking duration (Oksama
and Hyönä, 2004b), and motion trajectory types (B. J. Scholl et al., 2001; Suganuma
and Yokosawa, 2006). Despite this, much of the existing research has predominantly
concentrated on a singular aspect: stabilizing the number of targets while employing speed
adjustments through staircase procedures to tailor task difficulty. Therefore, it is pertinent
to recognize the MOT task as a complex activity capable of engaging diverse cognitive
processes or routines, contingent upon the specific parameters employed. Acknowledging
this perspective, the abundant evidence demonstrating MOT performance variation across
these parameters presents a valuable opportunity for deeper exploration and application.

Against this backdrop, this study address the issue of inter-individual differences by
proposing a new individualized MOT training manipulating a larger set of parameters
than previously studied. This tailored approach aims to adapt the difficulty of the task to
align with the unique cognitive profiles of individuals, offering a solution to the limitations
observed in standard training programs. By adopting a personalized approach to training
difficulty, based on individual learning progress, we also aim to provide a more effective
and engaging training experience (Clement et al., 2015, B. Clément et al., 2024). This
work assessed 74 healthy young adults in a randomized controlled trial, contrasting MOT
training employing our individualized approach with traditional training using a staircase
method. Thus, in addition to showcasing the efficacy of an agnostic difficulty adjustment
procedure that dynamically adapts to each participant’s evolving capabilities, this study
aims to enhance the applicability of MOT in fostering attentional improvements and
cognitive gains. Focusing on personalized training paradigms, we aim to maximize the
potential of MOT tasks, contributing to a more effective and engaging cognitive training
landscape. This work will be articulated around the 3 following questions:

RQ1- Training differences: How do learning trajectories differ when using our in-
dividualized AI-based adjustment procedure compared to a traditional staircase
method?

RQ2- Impact on cognitive performance: How does the individualized AI-based
procedure affect the progression of task performance in the training activity and in
overall cognitive performance as assessed by a broader set of cognitive tasks?

RQ3- Impact on subjective feeling: How does our individualized AI-based procedure
affect participants’ self-reported experiences, including cognitive load, engagement,
and motivation?

5.1.1 Background
Cognitive training effect and the MOT task Over the past four decades, the Multi-
Object Tracking (MOT) task has been a focal point for an expanding array of research
inquiries, each delving into its intricate mechanisms and contributing to a burgeoning debate
on cognitive attentional processes. As outlined by Meyerhoff et al., 2017a, the evolution
of MOT research is marked by a proliferation of theoretical frameworks, each providing
unique insights into the task’s underlying complexity. Initially, Z. W. Pylyshyn and Storm,
1988a and Z. W. Pylyshyn, 2001a posited that tracking is governed by a pre-attentive
mechanism facilitated by a visual indexing system (FINST), capable of engaging with a
limited number of targets—typically around four in the neurotypical population. However,
this perspective was soon contested by studies manipulating trajectory patterns; notably,
Yantis, 1992a demonstrated that performance could be enhanced through perceptual
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grouping, such as when objects form virtual polygons or share a common fate, challenging
the simplicity of the initial model. The intricacies of the MOT task were further unraveled
through varied manipulations of object speed and target quantity. While Z. W. Pylyshyn
and Storm, 1988a, Yantis, 1992a, and Kahneman et al., 1992b supported a model of
parallel processing within a unique attentional focus, Cavanagh and Alvarez, 2005b argued
for a model of simultaneous monitoring through multiple, distinct foci of attention. The
debate was further enriched by the introduction of the multi-identity tracking paradigm,
which suggested either a parallel or a sequential shifting of attention among targets
depending on the spatial resolution needed to track and identify the targets (Oksama and
Hyönä, 2004b, J. Li et al., 2019b). Finally, manipulations of inter-object spacing, tracking
duration and the frequency of object interactions highlighted the elasticity of tracking
capabilities, moving the conversation beyond fixed limits (”the magical number 4”) to a
more adaptive, contextually influenced framework as suggested by the Flex model (Alvarez
and Franconeri, 2007b), the spatial interference theory (Franconeri et al., 2010) or some
Bayesian computational models (W. J. Ma and Huang, 2009; Vul, Alvarez, et al., 2009).

On top of the theoretical debates around the mechanisms underlying MOT’s perfor-
mance, additional research has adopted a more holistic approach, aiming to position the
MOT task within a wider cognitive context. This approach elucidates the task’s relation-
ship with diverse cognitive and perceptual capabilities by employing cognitive assessments.
Initially, MOT was found to correlate with tasks linked to attention, as shown in the study
by Skogsberg et al., 2015a, where performance in MOT was associated with tasks that
require the rapid shifting of attention across space (spatial shifting task) and the ability
to bias attention towards motion perception (motion control task). Furthermore, Bowers,
Anastasio, et al., 2011 identified significant correlations between MOT performance and the
Useful Field Of View task (UFOV), a task that assesses visual attention Woutersen et al.,
2017. Subsequently, an analysis by Eayrs and Lavie, 2018a of performance across various
cognitive and perceptual tasks, such as enumeration and change blindness, showed strong
correlations between MOT skills and tasks reliant on perceptual abilities like subitizing.
Additionally, their exploratory factor analysis suggested that the MOT task not only
requires perceptual skills but also taps into working memory components. This finding
is consistent with the results from Huang et al., 2012b, Treviño, Zhu, Lu, et al., 2021,
and Adolphe et al., 2022a, who also observed correlations between MOT performance
and tasks related to spatial span and visual working memory, further illuminating the
multidimensional nature of the MOT task within cognitive processing.

Building upon the recognition of MOT’s reliance on a spectrum of cognitive and
perceptual skills and its dynamic alignment with real-world scenarios, a number of studies
have ventured into exploring the correlation between MOT proficiency and practical
performance in everyday tasks. First, Bowers, Anastasio, et al., 2011 demonstrated that
MOT could predict driving abilities in an older adult population (above 50 years old).
Then, delving into expert groups, research showed that athletes, with handball players
(Wierzbicki et al., 2023) as an example, outperformed their non-athlete counterparts
in MOT tasks. This trend extends to the realm of digital gaming, where action video
game players, both adults and children (C. Green and Bavelier, 2006; Trick et al., 2005),
exhibit enhanced MOT performance compared to non-players. The study by C. Green and
Bavelier, 2006 is particularly significant as it establishes a causal link between the routine
practice of action video games and marked improvements in MOT capabilities. While this
study illustrates how video game practice can enhance MOT performance, the question
remains open as to whether training in MOT tasks could reciprocally improve video game
performance, or more broadly, if such practice could translate into improvements in daily
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activities and tasks.
The application of the MOT task in cognitive training has garnered significant attention

following its introduction, particularly with the advent of commercial platforms like
NeuroTracker (Vater et al., 2021d). A first consistent finding across the literature is the
systematic enhancement in MOT performance after training - mostly always measured
by enhanced speed threshold - in healthy young adults (Parsons et al., 2016b, Parsons
and Faubert, 2021) and elder adults (Legault et al., 2013a) and across diverse populations
including those with multiple sclerosis (Harenberg et al., 2021), mild traumatic brain
injury (Corbin-Berrigan et al., 2018), visual impairments (Nyquist et al., 2016b), as well as
in and neurodiverse groups encompassing individuals with learning disabilities and ADHD
(Tullo, Faubert, and Bertone, 2018b), each showing notable improvements in MOT tasks
albeit with varying baselines and progression rates. However, comprehensive analyses,
including systematic reviews, depict a varied landscape concerning the effectiveness of
training programs based on MOT (Vater et al., 2021d, Zentgraf et al., 2017b).

Enhancements in performance at near tasks following MOT training have been noted
in several studies. For instance, Parsons et al., 2016b reported improvements in healthy
young adults on tasks that test sustained and selective attention (such as the integrated
visual auditory continuous performance test) and working memory (using the Wechsler
Adult Intelligence Scale WAIS-III). Similar ’near transfer’ effects, where training benefits
transfer to closely related tasks, were identified by Harris, Wilson, Smith, et al., 2020 in a
n-back task, by Michaels et al., 2022 in the UFOV task, and among elite soccer players
by Scharfen and Memmert, 2021b in a go-nogo task. This effect was also observable in
older adults, as demonstrated by Musteata et al., 2019b, who found improvements in
episodic memory, working memory, cognitive flexibility, and processing speed immediately
after training and at a 1-month follow-up. However, while these findings suggest the
potential for near transfer effects from MOT training, the evidence remains mixed. For
example, Strong and Alvarez, 2017b explored performance after training on tasks that
were close variations of the trained task, altering aspects such as motion type or retinotopic
location. Their findings revealed limited transfer, particularly when both motion type and
retinotopic location were modified, indicating that further research is necessary to fully
understand the extent and conditions of transfer effects from MOT training.

The debate intensifies when considering the far or ecological transfer effects of MOT
training, which concerns the application of training outcomes to broader, real-world tasks.
Advocates for MOT training highlight its benefits, demonstrated by improvements in
specific skill sets, particularly in sports. For instance, studies have shown enhanced
passing accuracy in soccer players (Romeas et al., 2016c) and better detection of biological
motion (Legault and Faubert, 2012b), suggesting that MOT training can have broad and
meaningful impacts. However, this optimistic view is met with caution due to findings from
other research indicating more modest results. For example, Moen et al., 2018b reported
no significant enhancements in executive functions among athletes from diverse sports
disciplines, Harris, Wilson, Smith, et al., 2020 found an absence of far transfer effects in
tasks like route recall among healthy young adults, and Komarudin et al., 2021 observed
limited transfer effects in elite basketball players. These mixed outcomes contribute to
paint a complex picture of the efficacy of MOT training in real-world applications.

Intelligent Tutoring Systems Evidence from developmental and educational psychol-
ogy suggests that development and learning can be enhanced. One key approach is to align
the complexity of training with the learner’s current level of mastery and cognitive state.
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Lev Vygotsky’s early research highlighted instances where students could accomplish tasks
typically beyond their reach with just minimal assistance, suggesting the existence of a
potential developmental stage beyond their current one (Vygotsky and Cole, 1978a). From
this observation, he proposed the concept of zone of proximal development (ZPD), which
encompasses tasks that are challenging yet achievable, slightly surpassing the learner’s
present capabilities. Selecting tasks from this zone ensures an optimal level of difficulty.
These foundational idea have influenced various educational learning models, such as
Cognitive Load Theory (Sweller et al., 2019), and is linked to the Goldilocks effect from
cognitive training research (Seitz, 2018), which posits that learning is most effective when
tasks provide just the right level of challenge, neither too simple nor too difficult.

Derived from these theoretical frameworks, numerous educational strategies have been
explored. Research in education has revealed that the learning process is significantly
influenced by both intrinsic elements (such as prior knowledge, emotional state, cognitive
workload, and motivation) and extrinsic elements (including various instructional design
aspects). Tailoring the learning curriculum to individual needs has been identified as a
crucial component of an effective training strategy (BLOOM, 1984, M. Deunk et al., 2015).
Nonetheless, the application of individualized training, especially in classroom settings,
presents practical challenges. Educational technologies have emerged as a potential solution
to this obstacle. Intelligent Tutoring Systems (ITS) aim to facilitate student learning by
offering a customized sequence of educational activities. These systems typically consist of
three interconnected modules: the domain model, which outlines the learning activities;
the learner model, which characterizes the student’s emotional and cognitive states; and
the instructional model, which combines the domain and learner models to establish
pedagogical guidelines for selecting appropriate activities for a student in a specific state
(Vandewaetere et al., 2011b).

Since Skinner’s introduction of teaching machines in 1961 (Skinner, 1961), a variety
of systems have been developed (J. R. Anderson et al., 1995b; Conati et al., 2002;
Graesser et al., 1999). Studies have shown that with sufficiently detailed customization,
Intelligent Tutoring Systems (ITS) can match the effectiveness of one-on-one human
tutoring (VanLEHN, 2011b). According to Bartolomé et al., 2018, there are two primary
design approaches for structuring learning curricula. The first, known as ”linear design,”
dictates a single, unified path for all learners, albeit allowing for variations in pace
and the number of attempts. This approach often employs staircase algorithms and is
praised for its scaffolding capabilities, aiding in gradually increasing learning complexity
(Sampayo-Vargas et al., 2013, Kalyuga and Sweller, 2005, F. Joessel et al., 2023, Choi
et al., 2008, Verniani et al., 2024). While effective in navigating learners towards an
ideal level of challenge, these methods typically depend on basic heuristics to evaluate
student performance. Consequently, numerous studies have explored more sophisticated
techniques for modeling student performance, such as Knowledge Tracing methods Corbett
and Anderson, 1994, and its variations (Diard et al., 2010, Meyer, 2019b), to better align
challenges with the learner’s current abilities.

The second approach, known as ”branched-paths design,” allows learners to embark
on individualized learning trajectories tailored to their specific needs. This methodology
has seen various implementations, with many researchers drawing inspiration from the
learning progress (LP) hypothesis (Oudeyer et al., 2016b). This hypothesis is a modern
reward-learning framework that integrates the concepts of ZPD and flow, establishing
a link between intrinsic motivation and learning progress. It posits a beneficial cycle
where students are more engaged and learn effectively in areas of personal interest and
intrinsic motivation, and the subsequent learning progress provides an internal reward,
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further fueling the motivation to learn for its own sake. This concept also intersects
with Self-Determination Theory (Ryan and Deci, 2017). While these ideas have been
explored in the machine learning field, the Zone of Proximal Development and Empirical
Success (ZPDES) algorithm introduced by Clement et al., 2015 leverages a multi-armed
bandit algorithm driven by learning progress to navigate through activities within a
ZPD framework. Since its introduction, the ZPDES algorithm has been advantageous
in teaching mathematical concepts to neurotypical children (Clement, 2018), children
with ASD (Mazon et al., 2023), and has been applied in various contexts such as motor
learning (Sungeelee et al., 2024), korean language learning (Mu et al., 2021), health
literacy (Delmas et al., 2018), or even managing the difficulty level in a VR car driving
experience (Ropelato et al., 2017). Building upon the foundational work by Clement et al.,
2015, numerous algorithmic enhancements have been introduced. These improvements
largely maintain the LP-driven multi-armed bandit mechanism for activity selection but
innovate on the dynamics of ZPD evolution. For example, Shabana et al., 2022 in their
ITS named Curriculum Tutor, introduced a change point algorithm to better ascertain
activity mastery. Further developments include the automatic design of the activity space
to reduce dependence on expert knowledge (Annabi and Nguyen, 2023 Ropelato et al.,
2017), and proposals by Mu et al., 2017, Mu et al., 2018, Mu et al., 2021 for identifying
the initial ZPD, incorporating forgetting mechanisms for learned activities to suggest
re-engagement with potentially forgotten tasks. Azeiteiro and Lopes, 2019 also proposed
to leverage similarities between students to better evaluate learning dynamics. Lastly,
B. Clément et al., 2024 suggested incorporating learner choice into the exploration of the
activity space.

Individualized cognitive training Wider research has underscored the importance of
adaptive content in CT. For instance, variables such as age and baseline performance levels
are predictors of CT outcomes (Karbach et al., 2017a, Katz et al., 2016, Guye, De Simoni,
and von Bastian, 2017). Commonly observed in CT interventions are magnification and
compensation effects, where respectively, those with initially higher or lower performance
levels show greater benefits (Bürki et al., 2014b; Traut et al., 2021b). Consequently,
numerous studies have shown that adaptive training methods result in more significant
improvements compared to non-adaptive approaches (Neri et al., 2021; Pedullà et al.,
2016a). While many studies have implemented adaptive training using staircase techniques,
a recent systematic review (Adolphe et al., 2023) highlighted 19 studies that introduced
a variety of alternative methods. These strategies can generally be classified into single-
domain or multi-domain CT—that is, training that concentrates on either one task or
several tasks, respectively—and they incorporate either micro or macro adaptive training,
meaning they personalize parameters at the task level (micro) or select activities throughout
the training program (macro). According to the review by Adolphe et al., 2023, about
half of the studies utilized multi-domain CT combined with macro-adaptive strategies,
whereas the other half primarily adopted micro-adaptive training, usually focusing on
single-domain tasks. Additionally, a crucial insight from this review is the nascent stage of
these methodologies, with the majority of the referenced studies being in preliminary or
feasibility phases and characterized by small sample sizes.

The present study falls into the category of offering a single-domain CT with a micro-
adaptive approach. In other words, our aim is to offer a personalized trajectory based on
a MOT training by adapting the content on a trial basis. As proposed in Adolphe et al.,
2023, micro-adaptive methodologies employed can broadly be divided based on two main
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goals. The first goal encompasses methods designed to forecast performance or engagement
without directly determining the subsequent activity to be introduced. Examples include
performance prediction by Sandeep et al., 2020a, deep learning applications by Eun et al.,
2022 and Singh et al., 2022, and logistic regression analysis by Book et al., 2022. With
theses strategies, the method does not yield the next activity but rather infer information
leverage to make a choice. In the other hand, the second goal encompass strategies
that direclty predict the next activity to propose. Notably, most approaches rely on
Reinforcement Learning (RL) techniques, a framework particularly well-suited for this
kind of task, as noted by Doroudi et al., 2019. Specific examples include the use of the
Bucket Brigade algorithm by Kitakoshi et al., 2015, 2020b, Q-learning by Rathnayaka
et al., 2021, Tsiakas et al., 2018 and Zini et al., 2022, Actor-Critic methods by Wilms,
2011 or the algorithms presented in this work.

5.2 Material and method

5.2.1 Schedule
As illustrated in Figure 5.1, all participants conducted the online experiment during 12
days (two blocks of five consecutive days with two days off at mid experiment). A cognitive
assessment was completed on the first and on the last day. Following previous results in
Bediou et al., 2018a, 2023b; Lampit et al., 2014a on training dosage, participants practiced
the MOT task for a total of 8 hours with a maximum training duration of one hour per
day. To better fit with participants schedule, it was possible to divide by two sessions of
30 minutes per day and freely choose time of the day to perform the training. After or
between training sessions participants were also tasked to answer questionnaires about
their feeling in practices.

5.2.2 Participants
Participants were recruited with Prolific2 with the only filter to be aged between 18 and
65. Everyday, participants engaged in the experiment were positioned in a new Prolific
session. Payments increased throughout the week as a bonus for completing the sessions
till the end. Participants not participating within schedule were alerted by message. After
the first session of evaluation, participants were pseudo-randomly assigned to 2 possible
groups: control or intervention (named ZPDES group in the rest of the manuscript). Age
and attention deficit were controlled in order to get homogeneous groups.

5.2.3 The training task: Multi-Object Tracking
Following the design in (F. Joessel, 2022b), the objective of each training trial was to
track multiple targets, while simultaneously ignoring irrelevant distractors. Initially, the
targets were shown moving for a set duration (1000 milliseconds). This was followed by a
period of immobility for all objects (1000 milliseconds), ensuring the participant identified
all the targets to be tracked. After the brief pause the targets altered to resemble the
distractors in both shape and color. Subsequently, after a variable duration of few seconds
of tracking, all objects ceased movement. Participants were then tasked with identifying

2www.prolific.com
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the original positions of the targets by clicking on them. Prior to each training session, a
detailed step-by-step tutorial was provided for guidance.

Fig 5.1. (a) The MOT task. (b) Several visual snapshots of our intervention. (c)
Schedule proposed to participants

As illustrated in Figure 5.1, the visual characteristics varied daily, depending on the
session. The shapes, colors of objects and background, determined during a preliminary
study, were carefully chosen to ensure that contrast did not affect performance. As task
variability appears to be a key element to foster participant motivation and long term
learning (Raviv et al., 2022), the gamified elements were introduced in a random manner
throughout the week (see section 5.2.6 for details). The objects were animated within
a circular area, maintaining a distance ranging from a minimum of 2° to a maximum of
8° of visual angle, to facilitate peripheral vision engagement. At the center of this area,
a fixation cross was consistently displayed. The size of each object was standardized to
1° of visual angle (F. Joessel, 2022b). Participants were instructed to keep a distance
of 50 cm from the screen, and the physical size of their screen was collected before the
experiment. Using these parameters, visual angles were adjusted for each participant to
ensure uniformity.

As outlined in following sections, the task’s complexity is dynamically regulated by
an AI algorithm, adjusting it on a per-task basis. Five key parameters are manipulated:
the number of objects to track or targets, the speed of all objects, the tracking duration,
the spacing between objects, and the answer duration. The selection of these parameters
was informed by their demonstrated impact on performance, as cited in (chapter 3). The
number of targets is chosen to range between 2 to 7. To ensure at least 2 more distractors
than targets, the total count of objects is fixed to 16. The initial positions of the objects
are randomly assigned. Their movement paths are linear, incorporating a Gaussian random
deviation relative to the current motion vector. Speed variations range from 2°/s to 5°/s.
To prevent overlap, a variable repulsion zone, ranging from 1° to 0.3°, is maintained around
each object. The duration for tracking these objects can vary between 3 and 10 seconds.
Participants are required to identify the initially presented targets by clicking on them.
The duration allotted for responding varies between 6 and 12 seconds.
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5.2.4 AI-based individualization procedure
To tailor the learning path to the specific needs of each participant, an AI-based virtual
instructor dynamically selects the most suitable sequence of activities over time. Selecting
an activity should be understood as choosing parameter values impacting the type of
activity, the task dynamics or the task difficulty. This study utilizes five such parameters
for the MOT task (number of targets, speed, spacing between objects, tracking duration
and answer duration).

The ”Zone of Proximal Development and Empirical Success” (ZPDES) algorithm
- our virtual instructor - is interacting with the participant through a reinforcement
learning framework augmented by human feedback (Clement et al., 2015). Reinforcement
learning (Subramanian et al., 2022) is a method in which an agent observes the state of an
environment, in this case, the previous responses of a human participant and acts upon it,
here by suggesting a new activity. This decision alters the environment’s state, specifically
the skill level of the participant, and the agent then receives feedback, or a reward, that
gauges how effective the action was in that particular state. In our context, the reward is
the participant’s learning progress, and the agent’s goal is to maximize this progress.

ZPDES approaches the identification of an optimal teaching sequence as a multi-armed
bandit problem. Analogous to a gambler at a casino facing multiple slot machines, the
challenge is to identify which machines yield the highest gains. Then, in our teaching
scenario, the key task is to ascertain which MOT activities (comparable to the slot machines
in the casino analogy) are most beneficial. To achieve this, a balance must be struck
between exploration, which involves experimenting with new activities, and exploitation,
which focuses on utilizing activities already known to improve learning. To address this
optimization challenge, the ZPDES algorithms assumes that an activity with high learning
progress should be presented more often. Then, as described in next paragraph, the
algorithm also proposes a model of the ZPD as a way to limit the exploration of the
activity space.

Note: To provide a general sense of the algorithm main ideas, a simplified version is
presented in the following sections. The detailed and exact description is provided in
Appendix 5.5.

For a given participant, let’s consider an expert able to track the history of answers
for any activity in the finite and discrete set of all possible activities. By updating the
history after each presentation of an activity, the expert is able to update its learning
benefits, known as the quality of the given activity a. If all activities have a uniform non
zero quality at start, the quality of an activity - denoted by q(a) - is updated through the
update rule:

q(a)t ← βq(a)t−1 + (1− β)r(a)t (5.1)

Where β is an hyperparameter in [0, 1] that weight the previous quality estimates
relative to the most recent reward signal. Here r(a)t corresponds to the reward associated
with the current activity. As highlighted in Oudeyer et al., 2016b, the learning progress
can be used as an efficient signal toward interesting pedagogical activities as feeling of
learning progress has been proven to foster learning, memory retention and motivation. As
such, the reward associated is an estimation of the learning progress for the last activity
sampled:
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r(a)t = |
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−
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k=t−D

ha,k

D/2
| (5.2)

Here, ha,k corresponds to the results of activity a in history at time k. Thus, r(a)t
quantifies the reward associated with engaging in activity a at time t, calculated as the
absolute difference between the average success rate of the most recent D/2 time steps and
the preceding D/2 time steps within a defined window of size D. Importantly, the absolute
learning progress is utilized here as it enables the promotion of activities showing both
increasing and decreasing progress, the latter potentially indicating instances of forgetting.
For our MOT task, the result of an activity is computed as the F1-score, that is the
harmonic mean of precision and recall (see equation 5.3). Precision in our scenario is a
metric sensitive to the number of distractors as it corresponds to the number of target
retrieved over the total number of objects clicked. Recall in our scenario corresponds to
number of targets retrieved over the number of targets to retrieved. In our settings, the
F1-score is more relevant than traditional metrics like ENOT (B. J. Scholl et al., 2001)
because participants can click on all scene objects, necessitating consideration of distractor
clicks.

F1-score =
2

1
precision + 1

recall
(5.3)

Finally, in order to sample a new activity, qualities of all activities are transformed into
probabilities by following a 2 steps procedure. First, to encourage exploration, a randomly
drawn exploration term is added:

q(a)′ = (1− γ)q(a) + γξu (5.4)

Where ξu is randomly sampled from a uniform distribution in [0,1] and γ is an hyperpa-
rameter in [0,1].

Second, qualities are normalized and utilized for sampling:

p(a) =
q(a)′∑
ak
q(ak)′

(5.5)

On top of the multi-armed bandit algorithm, to mitigate the explosion of possible
combination of parameter values, prior knowledge of the training task is leveraged to
streamline the exploration of the activity space. Drawing on the concept of the ZPD, the
range of possible activities is narrowed to a subset containing only optimally pedagogical
activities. In modeling this ZPD, only a select group of activities are ’activated’ — meaning
they are available for proposal and monitored by the expert. When the average success
rate, computed as the mean F1-score over last trials, of these activated values surpasses
a predefined threshold (typicaly 70% in this study), the ZPD expands, activating a new
value for more challenging activities. Conversely, a value is deactivated once its success
rate exceeds a different predetermined threshold (90% in this study). These rules ensure
that the ZPD consistently aligns with an optimal challenge level.

It is noteworthy that the ZPDES algorithm facilitates a more adaptable exploration of
the activity space. Unlike the staircase method, which provides a single predetermined
route toward the activity space, the ZPDES algorithm can generate a unique trajectory
for each participant. Another perspective on this difference is that the staircase algorithm
offers a single degree of freedom in difficulty management (increasing or decreasing along a
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predetermined path), whereas ZPDES offers a much larger set of options. Further details
are provided in the related Appendix (5.5).

Staircase procedure To compare the individualized procedure with a traditional
method, we employed a staircase algorithm as a control mechanism to regulate the difficulty
level of the training. Specifically, we used a 2up/1down algorithm, which escalates in
difficulty after two successes and decreases after one failure. In contrast to the previous
method (F. Joessel, 2022b) that used a 3up/1down approach, we opted for this less
restrictive configuration to facilitate quicker progression in the staircase. Additionally, to
maintain a comparable activity space between the two procedures, a hierarchical structure
was implemented. The four parameters (speed, spacing, tracking duration, and answer
duration) were managed using a first staircase named S1. To avoid large variation in
difficulty, steps in S1 were managed one parameter at a time (in a circular manner). As
such, it required 8 consecutive successes for all S1 parameters to advance by one step. Once
all parameters reached either their minimum or maximum threshold on S1, the staircase
algorithm pertaining to the number of targets, named S2, was updated. Subsequently, all
values of S1 were reset to their highest or lowest possible settings.

5.2.5 Cognitive battery
A cognitive evaluation was conducted before and after the MOT training. Seven cognitive
tasks from Adolphe et al., 2022c were proposed. In order to be able to detect near to far
transfer effect, the choice of the tasks was conducted to evaluate on tasks that showed
a correlation in performance and tap on similar cognitive dimension as the MOT (near
effect) but also on different control tasks (far effects). We employed a comprehensive set
of tests to broadly assess cognitive functions as follows: measures of selective and divided
attention (UFOV, Loadblindness, Enumeration), cognitive flexibility (task switching),
inhibition (Go/NoGo), working memory (Corsi), and episodic memory (memorability).
Duration of the evaluation was planned to last 1 hour and 30 minutes. All tasks are freely
accessible for tests3 and open-sourced4. For each task, performance metrics were calculated
separately for each difficulty condition and also averaged across all conditions.

Multi-Object Tracking - Near-Transfer Evaluation Task For the evaluation, MOT
task was inspired by Bettencourt and Somers, 2009c and differed from the training phase
on some settings. The decision to use a similar yet slightly varied MOT task was influenced
by Strong and Alvarez, 2017b, which demonstrated that the transfer of training to a
similar task was reduced when the MOT test involved only changes in both motion types
and retinotopic locations. Participants task was to remember a set of targets discs moving
around a set of distractors objects. Targets and distractors were respectively presented as
red and white discs of 1.2° radius. Presentation of the targets lasted 1s and the tracking
phase 8s. The available scene was a square canvas of 12x12° where objects followed linear
trajectories and bounced on borders. Occlusion was allowed between objects. Participants
had to click on objects to recall targets. Task difficulty was controlled by changing speed
(1, 4, and 8 degrees/s) and the number of targets (3, 5). All combinations of speed and
the number of targets resulted in six difficulty conditions, each presented nine times in a
random order, leading to a total of 54 trials. The dependent variable employed to evaluate

3https://flowers-ol.bordeaux.inria.fr/flowers_demo
4https://github.com/flowersteam/cognitive-testbattery
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performance was accuracy, defined as the ratio of correct trials (where all targets were
retrieved) to the total number of trials.

Useful Field of View (UFOV) The UFOV test (Ball et al., 1988, L. Hoffman et al.,
2005) is used to assess selective and divided visual attention. This task has shown significant
correlation with the MOT task in Bowers, Anastasio, et al., 2011. The experimental
design used in this study is an implementation of the description provided in Yung et al.,
2015b. Participants were tasked to discriminate a central target stimulus and to detect the
radial location of a peripheral stimulus. Central target stimuli were 1° smiley flashing in
center of the screen with either long or short hair. Peripheral stimulus was 1° stars taking
possible 8 radial directions at 7° eccentricity. On all available other radial direction squared
distractors were positionned at 7°, 5° and 3° eccentricity. Position of peripheral stimulus
and choice of smiley hair type was randomized across trials. Stimuli time presentation was
controlled with a 3-down, 1-up staircase procedure where stimuli presentation time was
decreased after 3 correct (i.e., both central and peripheral tasks were correctly completed)
consecutive trials and increased after 1 failure. Staircase step size was set to 2 frames
before the 3 first reversals in the staircase and decreased to 1 frame after. Conditions
to end the task were: if participant reached the ceiling (99 frames) or floor duration (1
frame) for 10 consecutive trials, if participant completed 8 reversals in staircase, or if
participant reached a maximum of 72 trials, whichever occurred first. The dependant
variable employed to evaluate performance was the the average display duration proposed
over the last 5 attempts of the staircase.

Load-Induced Blindness The Load-Induced Blindness (LIB) task assesses an individ-
ual’s attention system’s ability to manage visual stimuli under varying perceptual loads,
investigating the boundaries and resource allocation of visual attention. Latent factor
analysis in Eayrs and Lavie, 2018a demonstrated that MOT and LIB tasks are correlated
and tap into a common perceptual capacity component. Participants were asked to engage
in a dual task: a discrimination task on central vision and a detection on peripheral
vision. Initially, each trial began with a fixation pattern for one second, followed by a
central cross displaying four Gabor patterns for 50 milliseconds. The central vision task
required identifying the longer line in the cross, either vertical or horizontal. For peripheral
vision, the task involved spotting the Gabor pattern with increased contrast. Participants
were instructed to primarily complete the central vision task accurately; if they failed,
their responses to the peripheral task were disregarded. The lengths of the cross patterns
were set at either 0.5° or 1.0°, and the orientation of the longer line within each cross
was determined randomly, being either vertical or horizontal. The Gabor patterns were
presented at distances of either 3 degrees (representing a nearer condition) or 6 degrees
(indicating a farther condition) from the center of the screen, thus creating two levels
of task difficulty. Each participant experienced twenty trials in each of these stimulus
condition. The dependent variable employed to evaluate performance was accuracy, defined
as the ratio of correct trials (where both discrimination tasks are correct) to the total
number of trials.

Enumeration In the enumeration task, participants were tasked with counting a set
of circles presented for a brief duration. This task primarily assesses subitizing capacity,
which has been identified to correlate with MOT performance in Eayrs and Lavie, 2018a.
Each trial began with a fixation pattern against a middle gray background, lasting for
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1,000 milliseconds. Following this, a set of white circles, each 0.5 × 0.5° in diameter,
appeared for a short span of 50 ms. These circles were distributed across a 5° diameter
area on the screen, arranged to avoid any overlap. The participants’ objective was to count
the number of circles and record their count using a slider bar. The level of difficulty
in the task was modulated by altering the count of circles, which varied from 5 to 9 in
a pseudo-random sequence. Each level of difficulty was presented 20 times, cumulating
in a total of 100 trials. The dependent variable employed to evaluate performance was
accuracy, defined as the ratio of correct trials (where the dot count is correct) to the total
number of trials.

Corsi Block Tapping In the Corsi Block Tapping task Berch et al., 1998b, participants
were required to memorize and replicate a sequence of squares displayed on a 4x4 grid.
This task primarily assesses spatial working memory. Previous works indicated that the
MOT task not only loaded on perceptual components but also on constructs related to
working memory C. Green and Bavelier, 2006, Eayrs and Lavie, 2018a. Each square in
the sequence flashed in red for 900 ms. The sequence was randomly determined for every
trial. Following the sequence presentation, we used the forward version of the task where
participants were required to reproduce the sequence by clicking on the squares in the
same order as they appeared. The dimensions of each square were 2.0° on each side. The
task’s difficulty varied, with the sequence length ranging from 4 to 8 flashes, chosen in a
pseudo-random manner. Each sequence length was tested 12 times per participant, totaling
60 trials for each observer. The dependent variable employed to evaluate performance was
accuracy, defined as the ratio of correct trials (where the sequence is correctly retrieved)
to the total number of trials.

Task-Switching The task-switching activity employed in this study draws inspiration
from the task-cueing framework as described in Monsell et al., 2003b. This task primarily
assess cognitive flexibility. Participants were presented with digits ranging from 1-4 or
6-9 and were required to perform two different tasks based on the cue provided. If a blue
diamond-shaped background was displayed, they needed to identify the target digit as odd
or even, using the ”F” or ”J” keys respectively. Alternatively, if the task cue was a red
square background, the task was to determine whether the target digit was greater or less
than five, again utilizing the ”F” or ”J” keys. The procedure for each trial started with the
display of the task cue for 650 milliseconds, followed by the appearance of a target digit.
The rectangle serving as the background for the cue measured 4.9° on each side, with the
target digit centrally placed within a 1.5° square area. A blank screen of 1,000 milliseconds
succeeded the participant’s response. The first 20 trials were designated for practice. The
evaluation phase consisted of 96 trials, with 48 switch and 48 non-switch trials presented
in a pseudo-randomized order. For each trial, the digit displayed was randomized from 1
to 9, excluding 5. The dependent variables used to assess performance included accuracy,
defined as the ratio of correct trials (where the response aligns with the objective) to the
total number of trials, and the switching cost, which refers to the reaction times for trials
involving objective task reconfiguration or where two consecutive task cues differ.

Go-NoGo The Go-NoGo task, inspired by the work of T. Mani et al., 2005, is a
specialized variant of the Continuous Performance Test and primarly assess inhibition. In
this task, participants were required to observe a sequence of digits that were presented
rapidly and to respond specifically when the digit ’3’ followed the digit ’7’. In instances
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where ’3’ succeeded ’7’ (referred to as Go trials), participants needed to press the ”J” key
promptly. Conversely, if a different number followed ’7’ (termed NoGo trials), participants
were instructed to refrain from responding. Each trial commenced with a fixation point
displayed for 1,000 milliseconds. Subsequently, each digit appeared individually for a
duration of 50 milliseconds, separated by an interstimulus interval (ISI) of 950 milliseconds.
The digits were shown within a 1.5-degree square area. The number of Go and NoGo
trials was equal, with 25 of each. The dependent variables used to evaluate performance
included accuracy for GO trials, false alarm rate (hits on NoGo trials), and reaction times
on GO trials.

Memorability The memorability task measures human memory performance for nat-
ural scene images (Isola et al., 2011a; Bylinskii et al., 2022). Stimuli are images with
intermediate memorability scores from the FIne-GRained ImageMemorability (FIGRIM)
dataset (Bylinskii et al., 2015b). This task was used as a secondary task to assess visual
memory. Participants were assigned the task of observing a series of natural scene pho-
tographs and identifying any picture that appeared twice by promptly pressing the ”J” key.
Each photograph was shown for 1000 milliseconds, followed by a feedback period of 1400
milliseconds indicating whether the response was correct (a blue circle) or incorrect (a red
cross). Photographs, falling under the category “bedroom” or “kitchen,” were selectively
chosen from the dataset based on their hit rates, which fell within the range of 0.6 to
0.7. The task was randomly presented twice to each participant during the evaluation
phase, each time with two different versions of the same task. Each version contained 120
images in total. In each version, 40 images were displayed twice. The task’s difficulty was
adjusted based on the interval between the two presentations of the same image. The
two versions differed in the range of images used to manage the gap. In the short-range
difficulty version, the gap between two identical stimuli varied between 2 to 5 images. In
the long-range difficulty version, this interval ranged from 100 to 109 images. The order of
stimuli presentation was randomized across participants. The dependent variables used to
assess performance included accuracy and reaction times for hit trials (second presentation
of a stimulus), and the false alarm rate (first presentation of a stimulus).

5.2.6 Online experiment management tool and Gamification
The whole intervention was conducted online through a newly open-sourced web ap-
plication5. Participants autonomously created their account and connected on the plan
schedule. Following the experimental plan, when an activity was available - for participants
consenting to provide an email address - a message was sent to warn the participant to
practice.

To enhance motivation and engagement, participants were guided through the interven-
tion by a character representing the experimenter (Figure 5.1). Additionally, participants
followed mini-stories throughout the experiments. Mini-stories order was randomly set for
each participant. The visual content changed depending on the progress in each mini-story.
Each session of training started with a map explaining the mission of the day and the
progress in the experiment. The incorporation of mini-stories was driven by the intent
to engage participants and to introduce more variability in the training, while ensuring
coherence across sessions. After each trial, a feedback was provided telling how many
targets and distractors were retrieved. Participants were also able to access a progress

5https://github.com/madolphe/Flowers-OL
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panel summarizing the number of success for different level of difficulties. Within this
feedback interface, difficulty levels were only represented by the number of targets. This
was done to avoid confusion with combination of parameters and because the number of
targets was the most explicit parameter to communicate to participants. Additionally, to
help participants better estimating their learning progress, a progress bar was added for
each level of difficulty. This bar was described to participant as a ”skill level”. For the
control group, the skill level for each difficulty (i.e., each number of targets) was computed
as the maximum level achieved within the S1 staircase (i.e., speed, spacing, tracking
duration, and answer duration). For the ZPDES group, the skill level for each difficulty
was computed as the maximum activity level opened in the ZPD. All visual contents were
either originally created or generated with a text-to-image generative model6.

5.2.7 MOT Intra-training evaluation
Several hidden evaluations through the intervention were used to assess and compare
performance between groups. Four sessions of evaluation were proposed to the participants
at the beginning of sessions 1, 4, 5 and 9. While participants were unaware of the evaluation,
it provides reliable and comparable performance assessment between groups throughout
the intervention on the trained task. The evaluation set was composed of 12 activities from
all possible combinations of number of targets (2,4,6), speed (low or high) and spacing
(low or high) randomly proposed 4 times each.

5.2.8 Subjective questionnaire
As highlighted in Adolphe et al., 2023, subjective assessments are a complementary useful
tool to understand impact of training especially in the context of disentangling the effect
of individualization. Questionnaires found in Table 5.1 were proposed throughout the week
(following schedule in Figure 5.1) in order to assess the evolution of the participant feeling.

5.2.9 Data analysis procedure
The data analysis procedure was structured around our three research questions. Initially,
to address RQ1, we focused on visualization and metrics concerning learning trajectories.
Next, RQ2 was evaluated using a three-level analysis of the cognitive battery. Lastly, RQ3
was examined using mixed-effects models on questionnaire responses. All the scripts used
for the analysis are publicly available at https://github.com/flowersteam/zpdes_mot_
results_analysis.

Demographic data

The demographic information, including age, gender, and prior experience, was automati-
cally collected and sourced from the Prolific platform. To analyze continuous demographic
variables, Bayesian t-tests were implemented using the Python Pingouin library (Val-
lat, 2018). For categorical variables, Chi-squared tests were conducted to assess the
distributional differences among the discrete demographic factors.

6https://www.craiyon.com/
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Table 5.1. Summary of Questionnaires used. Details of all questionnaires can be retrieve
in Annexe 5.5.1

Questionnaire name Objectives
Demographic data Control for usual demographic informa-

tion (age, gender, study duration...).
Video-Game Questionnaire Control for video game player pro-

file. https://www.unige.ch/fapse/
brainlearning/vgq

Self-assessment of attention capabilities Control for attention deficits. https:
//add.org/wp-content/uploads/2015/03/
adhd-questionnaire-ASRS111.pdf

NASA-TLX Study cognitive load evolution. Hart,
2006

User Engagement Scale (UES) Study engagement evolution. O’Brien et
al., 2018

Technology based experience of need sat-
isfaction interface (TENS)

Study competence, autonomy and relat-
edness evolution. Peters et al., 2018

Situational Motivation Scale (SIMS) Study type of motivation through week.
Guay, Vallerand, and Blanchard, 2000

Learning Progress Study the estimated learning progress
through the week.

Pre-post cognitive performance analysis

As previously described, cognitive performance was assessed using a cognitive battery
comprising seven tasks, each with multiple difficulty levels. To explore the impact of our
training on cognitive performance (Research question 2), we segmented our analysis into
three levels of granularity. First, we examined the performance evolution in the observed
variable space; in other words, we assessed the metrics’ evolution for each task. While
this initial analysis level is crucial for understanding the training’s impact on various
metrics, it is challenging to comprehend the collective evolution of participants across
different metrics. Second, we assessed performance evolution in a non-observed latent
space. Through Principal Component Analysis (PCA), we aimed to explore performance
evolution in a lower-dimensional space representing the cognitive skills necessary to perform
the tasks in the battery. Third, we examined an aggregate score by averaging all metrics
to derive a broad cognitive ability score. Overall, our objective is to provide multiple levels
of analysis that offer different insights into the impact of our training.

Level 1: Observed Performance Analysis For the observed variables, performance
metrics primarily included accuracy and reaction time, with some tasks incorporating
additional metrics specific to their requirements, such as switching cost in task switching
or false alarm rates in Go/NoGo or memorability tasks. We applied Bayesian estimation to
analyze all metrics of interest, utilizing its ability to integrate prior knowledge of the task
and tailor the model accordingly. Following the procedure described in Kruschke, 2013,
we implemented this approach separately for each group (control and ZPDES) and for
each testing session (pre-intervention and post-intervention). Consequently, we obtained
the posterior distributions of the metrics of interest for each task, group, and session.
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As detailed in Kruschke, 2013, these posterior distributions were used to compute the
differences between groups (control and ZPDES) both before and after the intervention,
and to evaluate changes within each group from pre- to post-intervention. All distributions
(within-group changes, between-group differences at pre- or post-intervention, and between-
group change differences) were then utilized to assess performance evolution.

From these distributions, two metrics were explored: the probability of effect and the
Savage-Dickey Density Ratio (SDDR). The probability of effect is assessed by finding the
maximum between P (Param > 0 | Data), which evaluates the probability that the posterior
distribution of the parameter shifts to the right (above zero), and P (Param < 0 | Data),
which evaluates it shifting to the left (below zero). This calculation thus identifies the
probability of detecting any significant effect, regardless of its direction. The SDDR is
employed to compare the estimated distribution with a null distribution, which signifies
the absence of an effect. This method is highlighted by Wagenmakers et al., 2010 as
being directly equivalent to computing the Bayes factor (BF) when the models being
compared are nested and involve a scalar parameter of interest. For instance, in this work,
when analyzing the posterior distribution of the difference between pre- and post-test
scores for a specific group, the SDDR is used to compare the null hypothesis (i.e., no
difference) against an alternative hypothesis (i.e., difference is not null). The use of BF,
as delineated by Jeffreys, 1998, provides a graded scale of evidence: BFs between 1 and 3
indicate moderate evidence, BFs between 3 and 10 represent substantial evidence, and BFs
exceeding 10 signify strong evidence in favor of the alternative hypothesis. For consistency
in terminology, all references to SDDR results in the remainder of this paper will be
designated as BF.

The two selected metrics offer complementary features. The decision to utilize the
probability of effect was motivated by its independence from underlying assumptions and
its ability to convey our confidence in observing an effect after collecting data, although it
is insufficient for hypothesis testing. In contrast, the BF facilitates a comparison between
the posterior distribution and a reference distribution representing the null effect. This
method, however, relies on a subjective criterion to define the null effect. For better clarity,
Box 1 provides an overview of the key concepts of Bayesian analysis.

Details of the models used for each task can be found in Appendix ??. All simulations
were conducted using the Markov Chain Monte Carlo (MCMC) method, specifically
employing the No-U-Turn Sampler (NUTS M. D. Hoffman and Gelman, 2011) implemented
in the python library PyMC4 (Abril-Pla et al., 2023). We ran 4 chains of 10,000 iterations
for each simulation, including 1000 burn-in iterations. As recommended in Kruschke,
2021b, convergence was systematically checked (observation of both sampled MCMC traces
and metrics such as autocorrelation).

Level 2: Latent Space Analysis To evaluate the performance evolution at the latent
factor level, we employed Principal Component Analysis (PCA) as a way to examine
performance in a latent, low-dimensional space. In our data processing steps, we handled
missing data by replacing any missing values with the average value of the corresponding
variable. Additionally, we standardized the data by converting each data point into a
z-score, which involves scaling the data so that it has a mean of 0 and a standard deviation
of 1, ensuring comparability across different variables. PCA was conducted on 24 features,
consistent with the prior work of Adolphe et al., 2022c (including a metric for the UFOV
task), using a combined dataset of pre- and post-test results. Finally we adhered to the
Kaiser criterion, retaining principal components (PC) with an eigenvalue greater than 1
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and investigate differences between groups at pre-test and evolution within groups from
pre to post test using respectively bayesian unpaired and bayesian paired sampled t-tests
from the python library pingouin (Vallat, 2018).

Level 3: Aggregate Cognitive Scoring To evaluate performance on a single general
performance score, we computed an aggregate of all observed metrics (same set of metrics
used for the PCA). To make features evolve in the same direction we first took the inverse of
reaction times metrics. Then, all metrics were converted to z-score and average. Difference
of performance at pre-test and evolution from pre to post test was tested with bayesian
unpaired and bayesian paired sampled t-tests.

Subjective questionnaire analysis For all questionnaires, due to the session count
surpassing two, linear mixed models were employed to process the responses. These models
included fixed effects for both groups and time, as well as a random baseline effect to
account for individual participant variances. After evaluating various models, we selected
one that achieves parsimony while still accommodating the random differences among
participants. PyMC4 was utilized to fit these models, and comprehensive details regarding
the model specifications can be found in the appendix, specifically in Section 5.5.1.
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Box 1: Key Concepts of our Bayesian Analysis
Bayesian key ideas The Bayesian perspective seeks to shift the traditional emphasis from the likelihood of the observed data under a given model
p(data | model) — a cornerstone of the frequentist approach—to the probability of the model given the observed data p(model | data). This paradigm enables
a probabilistic understanding of model parameters that integrates prior knowledge with the empirical data. In the context of hypothesis testing, Bayesian
analysis doesn’t evaluate the likelihood of the data given fixed parameters, but instead focuses on the parameters of interest themselves.

Model example Consider, for example, the parameter of accuracy - designated as p - of the load blindness cognitive task. Accuracy, in this scenario, is
quantified as the ratio of correct responses to the total number of trials. Within a Bayesian framework, p can be modeled as the probability parameter of
a binomial distribution — the distribution that represents the number of successes in a sequence of independent experiments. The goal here is not merely
to estimate a single point value of p but to calculate the posterior distribution of p. The posterior distribution reflects all potential values for p, where the
probability density of each value is determined by how well it aligns with the observed data, updated according to our initial understanding as expressed in the
prior distribution. In this scenario, prior information is incorporated by defining that without collecting observation, p follows a beta distribution with specific
parameters. This prior choice is informed by the beta distribution’s natural suitability for modeling probabilities (confined between 0 and 1). This prior choice
allows for the incorporation of knowledge about the modeling situation and should be considered independently for each variable to be modeled. Parameter
estimation occurs individually for each group at each time point, with each group having its distinct beta distribution for drawing p parameters during testing
times. Figure 5.2 displays the fitted model. In the diagram, elliptical nodes represent random variables: shaded nodes indicate directly observed variables in our
dataset, such as trial number of trials (n) or group (g), while unshaded nodes are parameters estimated through Bayesian inference, such as beta parameters.

Fig 5.2. Illustration of the beta-binomial
model

Fig 5.3. Illustration of the methodology used to derive the posterior post-pre evolution
difference and the computation of the SDDR

Fitting model and use While the posterior distribution of this scenario can be analytically determined (cf “Front Matter”, 2015), most models require
approximation methods like the Monte Carlo Markov Chain (MCMC). MCMC samples iteratively to approximate posterior distributions, as demonstrated in
Figure 5.3 (left top row), for each group’s distribution. Figure 5.3 (right top row), visualizes these distributions, comparing the ZPDES and control groups
before and after intervention. Differences between estimated parameters are analyzed, with Figure 5.3 (bottom row) showing the delta between pre and
post-test results in the ZPDES group. Two inferential heuristics can then be used: the probability of effect and the Savage-Dickey density ratio (SDDR), which
evaluate the likelihood and size of significant changes, respectively, assessing the cognitive intervention’s impact.
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5.3 Results

5.3.1 Participants
A total of 72 participants were recruited via Prolific and assigned to either the control group
(n=35) or the ZPDES group (n=37) through a pseudo-random process. Age comparisons
between the groups showed no significant differences (t(70.98) = 1.08, p = 0.28, BF =
0.39). Similarly, a chi-square test indicated no significant variation in gender distribution
across the groups (χ2(1) = 0.36, p = 0.55). Additionally, the proportion of ADHD profiles
did not show significant differences between the groups (χ2(1) = 2.29, p = 0.12). Finally,
an analysis of online study expertise, based on the number of prior Prolific experiments
participants had engaged in, also found no significant group differences (t(55.17) = -0.4, p
= 0.66, BF = 0.26).

5.3.2 RQ1- How do learning trajectories differ when using our
individualized AI-based adjustment procedure compared
to a traditional staircase method?

To examine the comparison of learning trajectories, we suggest segmenting the analysis to
concentrate on three properties of a curriculum. The first attribute, denoted as activity
space exploitation, concerns the strategy’s capability to fully utilize the entire activity
space effectively, meaning choosing activities across the entire space while steering clear
of infeasible areas. The second characteristic, referred to as the sequential coherence
feature, examines the logical consistency of the suggested sequence. Lastly, the third
characteristic assesses the diversity of the trajectory, questioning the variability within
the proposed curricula. For the remainder of the manuscript, we refer to ”activities” as
the choice of a value for all five parameters (number of targets, speed, spacing between
objects, tracking duration, and answer duration), which corresponds to a position in a
five-dimensional space named the activity space.

RQ1.1, RQ1.2 - Activity space exploitation and sequential coherence Qualitative
analysis of handpicked participants trajectories was a first step toward understanding
differences between the AI based procedure and the staircase algorithm. Figure 5.4 depicts
the relative time allocation across different types of activities and the activity transitions
for the two best performing participants from each group. It is noteworthy that the
participants experienced varying lengths of trajectory during the training sessions. This
is because the sessions were time-bound (rather than being defined by a predetermined
number of trials), enabling participants to engage at their own pace. Additionally, the
duration of tracking was intentionally varied as one of the parameters to adjust the task’s
difficulty level.

As expected, the trajectory of the control participant tended to cluster around particular
regions of the activity space, a pattern also observed in additional trajectories presented
in the Appendix. In contrast, the participant in ZPDES group experienced a more diverse
set of different activities, notably progressing to more targets at a quicker pace during
training. The pattern of transitions also varied markedly among participants. Governed
by the staircase algorithm, control participants were required to achieve success at higher
difficulty levels for all 4 parameters in S1 before advancing from n targets to n+1 (in
S2), often resulting in a plateau in the variety of activities presented. In contrast, the
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ZPDES algorithm navigated more rapidly through the number of targets and was adept at
identifying niches of challenge and progress—as evidenced by the large dots at the 2-target
level in Figure 5.4 (b), which are situated at particularly challenging values for speed,
spacing, and other parameters.

In addition to visualizing trajectories, we conducted a quantitative analysis. Firstly,
concerning RQ1.1, the increased exploration by the ZPDES group was further substantiated
through a comparison between groups regarding the total number of distinct activities
engaged in throughout the intervention. The findings indicated that participants in
the ZPDES group engaged in a significantly wider variety of activities (mean=875.82)
compared to the control group (mean=88.76, independant ttest difference between groups:
t(38.12)=17.19, p<0.001, BF»1000). This outcome was expected, as the staircase method
is more restricted, whereas the ZPDES algorithm can follow a more flexible predefined
route of difficulty evolution. To control for different trajectory length explaining this, we
looked at that the number of activity played and at idle time. Unpaired t-test revealed no
significant difference between groups (trajectory length: t(72.98)=0.92, p=0.36, BF=0.35
and idle time: t(69.54)=-0.9, p=0.36, BF=0.34) revealing a similar duration of exposure
for each group. Secondly, in relation to RQ2.2, we examined the coherence of the sequences
of activities by analyzing the diversity of activities within a sliding window of 50 activities.
Zpdes group showed again a larger number of different activities on this sliding window
(mean=20.06) compared to control group (mean=10.38, with difference t(38.12)=17.19,
p<0.001, BF»1000).

RQ1.3 Diversity In addition to participant-specific visualization, group-wide trajectory
features were extracted. Figure 5.5, (a), compares the evolution through time of the
proportion of participant practicing in each of the number of targets level. In line
with the participant-specific analysis, it can be observed that the ZPDES group was
able to practice on higher levels of number of targets and with higher variability in the
activities being proposed. Chord diagrams of Figure 5.5, (b) further confirmed that ZPDES
group experienced diverse transition. Additionally, It is noteworthy that most important
transition in both ZPDES and control groups are within the same activity level. If this
feature is natural for the staircase algorithm, it has been set up for the ZPDES algorithm
to avoid to random trajectories and to make learning path more coherent.

RQ1- Summary To summarize our findings related to RQ1, the investigation into
participants’ learning trajectories, from both quantitative and qualitative perspectives,
revealed significant differences in three key characteristics evaluated. Regarding activity
space exploitation, evidence showed that the ZPDES participants explored a larger portion
of the activity space, indicating a more extensive investigation of potential activities. As a
byproduct, in terms of trajectory variability, the ZPDES group experienced a wider variety
of activities, highlighting a greater diversity in their learning journey. Finally, in terms of
sequential coherence, both the ZPDES and staircase methods facilitated the development
of logically structured trajectories, progressing from simpler to more complex activities.
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Fig 5.4. Two handpicked participant from ZPDES (a) and control (b). For each
participant, the activity space is segmented into six discrete levels based on the number of
targets, ranging from two to seven. For a given level of number of targets, each other
parameter — speed, tracking duration, response time, and spacing — is symbolized by
dots of varying sizes; the size correlates with the parameter’s relative frequency of
proposition to participants. Larger dots indicate more frequent selection of that parameter
value for practice. Transitions between different target difficulty levels are depicted by
lines of varying thickness, where the thickness reflects the frequency with which
participants experienced changes between levels. A thicker line denotes a more common
transition. Color coding is utilized to indicate the sequence of the parameters’ first
occurrence or the initial transition between levels; each color corresponds to a different
index in the sequence of presentation or transition experienced by the participant.

5.3.3 RQ2- How does the individualized AI-based procedure
affect the progression of task performance in the training
activity and in overall cognitive performance as assessed
by a broader set of cognitive tasks?

Evolution of performance in the training task Figure 5.6 illustrates the evolution
of performance through the training for each of the 12 activities in the evaluation set.
Significant performance improvement through time was detectable in 3/12 activities with
BF»1 and trends of improvements was found in 5 other activities (posterior probability
of seeing an effect above 90% but with BF<1). Ceiling and floor effect was present for
respectively easiest and hardest activity. On all activities of the evaluation, no significant
main effect of group was detected. Only one activity (four targets, high speed and low
spacing i.e activity index 6 in the figure) presented a significant interaction effect with
ZPDES improving at higher rate through time (HDI=[0.00, 0.04], BF=1.75). Overall
analysis showed an improvement of both groups on the trained task.
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Fig 5.5. (a) Proportion of the population on each different number of targets (2 to 7
targets) through time. The total number of participants diminished over time as
individuals experienced varying numbers of trials throughout their training.

(b) Number of transition between activities in each group.

Evolution of performance in the cognitive battery: focus on tasks

Both groups showed improvements in accuracy measure for MOT, loadblindness
and UFOV tasks Figure 5.7 illustrates the Bayesian analysis outcomes, highlighting
differences in pre- and post-intervention performance for each group. In terms of accuracy
metrics (a), an enhancement in cognitive abilities was noted in the MOT task for both
groups, with ZPDES showing a notable increase (within group difference P(effect)=0.99,
BF=63.54) alongside the control group (within group difference P(effect)=0.97, BF=6.13).
Similar progress was detected in load blindness for both ZPDES (within group difference
P(effect)=0.95, BF=3.36) and the control group (within group difference P(effect)=0.91,
BF=2.58). The UFOV task (threshold metric) also showed a small improvement for both
groups (ZPDES within group difference P(effect)=0.58, BF=1.28 and control within group
difference P(effect)=0.50, BF=1.21)

Both groups showed no improvements in accuracy for enumeration, working
memory and taskswitch tasks No credible post-pre within-group changes were
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Fig 5.6. Performance evolution across the four evaluation sessions for each of the 12
activities in the testing set is organized such that rows correspond to a fixed number of
targets (easy, medium, and hard, with 2, 4, and 6 targets respectively), and columns
correspond to fixed pairs of speed and spacing.

observed in both groups for enumeration and working memory tasks. However, pre-tests
between-groups differences revealed that the ZPDES group marginally outperformed
the control group in the two tasks (enumeration between-group initial difference HDI=[-
0.02,0.12], BF=1.71 and working memory between-group initial difference HDI=[-0.06,0.11],
BF=1.05). These differences persisted in post-test (enumeration between-group final
difference HDI=[-0.03,0.12], BF=1.47 and working memory post-test difference HDI=[-
0.05,0.11], BF=1.20).

A notable pre-test difference was also observed in task switching (between-group initial
difference HDI=[0.03,0.10], BF=1080), with only the control group exhibiting a weakly
credible trend of progress (control within-group difference P(effect)=0.90, BF=0.98).
However, a ceiling effect noted in the pre-test for the ZPDES group (initial performance
HDI=[0.96, 0.98]) may account for the lack of progression.

Only the ZPDES group showed improvements in accuracy for memorability
and Go/No-go tasks Regarding memorability and go/no-go tasks, only the ZPDES
group demonstrated significant enhancements. For memorability tasks, the ZPDES group
improved (ZPDES within-group evolution P(effect)=0.94, BF=2.75), unlike the control
group, without any initial disparity between groups. In go/no-go accuracy, an initial
pre-test difference was identified between groups (between-group initial difference=[0.01,
0.16], BF=9.36), which remained consistent at post-test (between-group final difference
HDI=[0.05,0.18], BF=327.09), yet only the ZPDES group showed significant evolution
(P(effect)=0.98, BF=3.63) compared to a modest change in the control group (P(effect)=0.6,
BF=0.99).
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Fig 5.7. Pre-post evolution for accuracy (left) and RT (right) metrics. Probability in
each bar represents the probability of effect. Corresponding BF is displayed right to the
bars.

Mixed results in RT depending on tasks Regarding the reaction time (RT) metrics,
enhancements were observed in both groups for the switching cost of Taskswitch (ZPDES
within group difference P(effect)=0.90, BF=2.26 and baseline within group difference
P(effect)=0.89, BF=2.03). As with the accuracy metric, in the memorability, only
the ZPDES group demonstrated a significant performance enhancement (within-group
difference P(effect)=0.94, BF=2.43). For the Go/No-Go task, although a pre-test difference
in reaction time performance was noted (RT Go difference=[-54.99, -0.55], BF=4.12), this
difference persisted at post-test (difference=[-49.68, 3.89], BF=2.71) without significant
evolution, indicating that the initial disparities remained stable over time.

In sum, the training impacted both groups in MOT, loadblindness, UFOV and switching
cost. It only enhanced performance of ZPDES group in memorability (accuracy and RT)
and go/nogo (accuracy). It did not reveal any strong evidence in enhancing performance
in enumeration, working_memory.

Evolution of performance in the cognitive battery: focus on latent skills
Following Kaiser Criterion, 7 principal components were kept for latent factor analysis
explaining 69.10% of variance as illustrated by Figure 5.8. Underlying constructs hold by
each factor is further discussed in section 5.4. For all principal components, no difference
were found between groups at pre-test with all BF being smaller than 0.5 (Table 5.3).
Regarding pre-post evolution, differences between groups were observed. First, both groups
showed an highly probable improvement from pre to post test on PC3 with BF01=73.58
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Fig 5.8. PCA results: scree plots (left) and Principal Components contribution (right)

and BF01=17.11 for ZPDES and control respectively. Then, improvements were observed
only in the ZPDES group across two principal components namely PC0 (BF01=7.26)
and PC4 (BF01=3.97), with no corresponding changes in the control condition. In sum,
ZPDES group improved performance on more latent principal component than the baseline
group (3 vs 1).

Component Group Pre-test Difference Post-Pre Evolution
d BF01 t-stats p-value d BF01 t-stats p-value

PC1 ZPDES 0.18 0.317 -0.793 0.43 0.34 7.265 2.970 0.005
baseline 0.14 0.42 1.368 0.180

PC2 ZPDES 0.152 0.29 0.650 0.51 0.066 0.189 -0.370 0.714
baseline 0.41 0.84 -1.857 0.072

PC3 ZPDES 0.266 0.42 -1.136 0.260 0.045 0.185 0.311 0.758
baseline 0.083 0.23 0.734 0.468

PC4 ZPDES 0.123 0.273 0.526 0.600 0.50 73.582 3.917 0.000
baseline 0.43 17.11 3.341 0.002

PC5 ZPDES 0.254 0.40 1.088 0.280 0.487 3.97 2.694 0.011
baseline 0.329 0.856 1.870 0.070

PC6 ZPDES 0.221 0.353 -0.945 0.348 0.155 0.236 -0.790 0.434
baseline 0.232 0.366 1.249 0.220

Global
Score

ZPDES 0.32 0.56 1.404 0.164 0.381 20.50 3.41 0.001
baseline 0.19 1.12 2.034 0.049

Table 5.3. Corrected summary of pre-test differences and post-pre evolution for each
principal component and group, with significant p-values in bold for improved readability.

Evolution of performance in the cognitive battery: focus on global score No
significant difference between groups was observed at pre-test (BF01=0.56). However,
both groups showed improvement from pre-test to post-test (ZPDES group: BF=20.50;
control group: BF=1.12). While, at post-test, the difference between the groups was
not significant (BF=0.332, t=0.8, p=0.39), the effect size of evolution was greater in the
ZPDES group (d=0.381 vs d=0.19).
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RQ2- Summary To summarize our findings related to RQ2; the training enhanced
cognitive performance for both groups, as evidenced at multiple levels: our global score,
dimension PC3 of PCA, and at the task level for MOT, loadblindness, and switching cost.
Additionally, it specifically improved performance in the ZPDES group, as observed in
the latent level analysis with dimensions PC1 and PC6, and at the task level for task
memorability and gonogo.

5.3.4 RQ3- How does our individualized AI-based procedure
affect participants’ self-reported experiences?

NASA-tlx Most components of the NASA-TLX, except for physical demand, displayed
a slight but consistent decrease over time, indicating a general reduction in cognitive load
(Mental Demand: HDI=[-0.38, -0.15], BF=333; Temporal Demand: HDI=[-0.28, 0.03],
BF=0.26; Performance: HDI=[-0.35, -0.03], BF=50; Effort: HDI=[-0.33, -0.08], BF=2.27;
Frustration: HDI=[-0.333, -0.023], BF=0.86).

A clear group effect was evident particularly in Mental Demand and Effort, where
the ZPDES group showed higher ratings compared to the control group, as indicated by
positively skewed posterior distributions (HDI=[-0.112, 1.945], BF=2.22 and HDI=[-0.11,
1.97], BF=2.27, respectively). In contrast, Physical Demand was lower in the ZPDES
group (HDI=[-2.11, -0.07], BF=4.14).

Furthermore, a significant Group*Time interaction was observed within the Perfor-
mance component (HDI=[0.10, 0.53], BF=6.67). This reflects a distinct pattern where
the ZPDES group, starting with lower self-ratings, demonstrated more pronounced im-
provements over time. Although an interaction was noted in the Performance component,
indicating a possible Group*Time interaction across the broader Load Index, the evidence
for such an interaction remains weak (HDI=[-0.070, 1.025], BF=1.02). This suggests that
any potential interaction effect in the general load index might primarily stem from the
interaction found in the Performance component.

SIMS Regarding the type of motivation throughout intervention, a significant group
effect was present across all components, with the ZPDES group scoring lower in In-
trinsic Motivation (HDI=[-1.15, -0.27], BF=18.41), Identified Regulation (HDI=[-1.27,
-0.38], BF=107.76), External Regulation (HDI=[-1.242, -0.361], BF=138.69). The Self-
determination index as described in Annex ??; was consistent with this observation with
ZPDES group scoring lower than the control (HDI=[-3.42, -0.37], BF=11.82).

Additionally, there was a significant decrease over time for both groups in Amotivation
(HDI=[-0.136, -0.028], BF=1.48), and a notable reduction in External Regulation as well
(HDI=[-0.129, -0.026], BF=1.24). Intrinsic motivation and internal regulation showed no
significant time effect. No significant interaction Group × Time was reported.

UES Across all metrics of the user engagement scale, a significant group effect was
consistently observed, with the ZPDES group scoring lower across all dimensions of the
questionnaire. The group effects showed a notable lower level in Focused Attention (HDI=[-
0.69, -0.01], BF=1.25), Perceived Usability (HDI=[-0.84, -0.19], BF=14.11), Aesthetic
(HDI=[-1.07, -0.32], BF=53.76), and Reward (HDI=[-0.697, -0.061], BF=2.45). The overall
engagement score also reflected a significant lower level for the ZPDES group (HDI=[-0.70,
-0.20], BF=19.75). All components showed strong evidence with Bayes Factor ranging
from 1.25 to 100. Aesthetic was the only component to exhibit a negative trend over
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time, though with a Bayes Factor below 1 (HDI=[-0.11, -0.01], BF=0.7), suggesting weak
evidence for this trend. No interaction effects were reported.

TENS For the TENS questionnaire, a significant group effect was found for the Autonomy
component where ZPDES group experienced a lower sense of autonomy (HDI=[-0.67,
-0.07], BF=2.41). There were no substantial group effects for Competence or Relatedness.
In evaluating the effects over time, a discernible decrease in perceived Competence was
observed (HDI=[-0.08, -0.02], BF=1.48). No significant time effects were noted for
Autonomy or Relatedness. No interaction Group × Time were reported.

Feeling of Learning Progress For the learning progress questionnaire, a main effect
of the group was observed for the ”Hard Feasible Zone” component (HDI=[-1.084, -0.136],
BF=4.34), suggesting that participants in the ZPDES group self-reported that the number
of targets they could track with difficulty was lower than that of the control group.
Regarding a main effect of time, all components posterior distributions showed a possible
slight positive shift (difficulty expectation: mean=0.046, easy feasible zone: mean=0.046,
hard feasible zone: mean=0.02). However, the HDIs for these effects all contained 0 and
the Bayes Factors were low (difficulty expectation: BF=0.09, easy feasible zone: BF=0.13,
hard feasible zone: BF=0.04), indicating that while there is a suggestion of a possible
increase over time, the evidence is not strong and there is substantial variability not
accounted for by the time effect alone. No significant interaction Group × Time was
reported.

RQ3 - summary To summarize the findings related to RQ3; initially, both groups
exhibited similar responses across various components of the questionnaires. There was a
reduction in cognitive load (Nasa-TLX), amotivation, and external regulation (SIMS), as
well as perceived competence (TENS). Subsequently, a main effect of group was observed,
with the ZPDES group experiencing higher levels of effort and mental demand, and
lower scores in self-determination index (SIMS), engagement (UES), initial competence
(LP), and autonomy (TENS). Finally, a group*time interaction was found in perceived
performance, where the ZPDES group demonstrated greater self-perceived improvements
than the control group.

5.4 Discussion
In this study, we compared the effectiveness of an AI-based individualized procedure with
the traditional staircase method in managing task difficulty within a cognitive training
utilizing the MOT task. Our initial research question focused on identifying differences
in the curricula of each group. Through the exploration and visualization of learning
trajectories, we observed notable differences between the two strategies. Participants in
the ZPDES group engaged with a wider range of the activity space, encountering a greater
variety of tasks. This was evident from multiple visualizations that also confirmed both
methods effectively escalated task difficulty from simpler to more challenging levels. Our
second research question investigated whether differences in trajectories resulted in varying
impacts on performance. Initially, we assessed the training’s impact on performance within
the training context itself and noted improvements in MOT performance for both groups,
with no significant differences between them. Subsequently, we evaluated the training’s
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impact on a cognitive battery comprising seven tasks that varied in their proximity
to the MOT task. While both groups showed improvement in MOT, load blindness,
UFOV, and switching costs only the ZPDES group showed enhancements in tasks such as
memorability and go/no-go. This broader improvement was further substantiated in a
latent space derived through PCA, where the ZPDES group improved on more cognitive
components than the control group (3 PC for ZPDES vs. 1 for the control). Finally, our
last research question explored the impact of training on subjective measures assessed
through questionnaires. We found evidence that cognitive load decreased through time, an
indicator of learning efficiency. However, differences emerged between groups: the ZPDES
training was perceived as more effortful than that in the control group. Additionally,
engagement, sense of autonomy, and motivation scores were lower in the ZPDES group.
Notably, despite generally lower self-assessed competence (e.g., tracking fewer targets with
difficulty), the ZPDES group reported a greater sense of performance improvement over
time (Group × Time interaction) than the control group. This overview sets the stage for
a detailed examination of each research question, analyzing the specific impacts of our
training methodologies on cognitive performance and subjective experiences.

RQ1 - Training trajectories The staircase algorithm is an easy-to-implement procedure
to determine threshold such as performance level in a learning context. Originally used
in psychophysics (Dixon and Mood, 1948; Treutwein, 1995), it offers an efficient way to
gradually move a learner from easy to hard task. By construction, the staircase algorithm
generates a predefined learning path where there can be a unique route of progress. By
contrast, the ZPDES algorithm makes less assumptions about the learning path and
generate very different trajectories personalized to participants (as highlighted in Figure
5.5). Given that, while the 2 groups encountered different learning paths, both progressed
on the intra-training evaluations or on the cognitive battery pre-post assessment. As such,
we showed in this work that a variety of learning paths is available to enhance cognitive
performance of trained or related tasks.

Additionally, while the staircase method effectively scaffolds learning F. Joessel, 2022b,
it is limited by focusing on a singular learning objective at any given time (i.e., mastering
the highest step of the staircase with 75%) which results in limited variability in the
learning curriculum. In contrast, participants in the ZPDES were offered activities across
various progress niches (5.4), engaging in a wider array of tasks. Previous studies have
indicated that variability in training is crucial for enduring learning in motor control
training (Sungeelee et al., 2024, Shea and Morgan, 1979), to enhance attention and
engagement (Raviv et al., 2022), and to regularize training to prevent overfitting in
machine learning scenarios (C. F. G. D. Santos and Papa, 2022). Therefore, it is likely that
the broader improvement observed in the ZPDES group is attributable to the increased
diversity and variability in the learning trajectory.

Another key observation from the analysis of learning trajectories is the significant
presence of plateaus in the learning paths of the control group participants. These plateaus
indicate that participants in the control group faced extended periods where the tasks
were excessively challenging, resulting in prolonged duration without learning progress.
This mismatch between task difficulty and participant capacity is a desirable property
(Lövdén et al., 2010b). However, this behavior presents two disadvantages: firstly, the
plateaus result in a limited range of tasks, as participants spend extended periods on
the same challenging activities (oscillation between achievable and unfeasible activities);
secondly, the swift progress observed immediately following these hard zones implies that
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the increase in task difficulty is not always gradual. Notably, after participants overcame
these difficult phases, the subsequent activities were found to be less challenging, enabling
rapid advancement through the staircase. This last observation illustrates the challenge of
defining an adequate prior performance space (as proposed in previous work Diard et al.,
2010) for this type of activity. Moreover, our results confirmed that the performance was
impacted by the mutual evolution of the difficulty parameters used (as in Alvarez and
Franconeri, 2007b or A. O. Holcombe and Chen, 2012).

Conversely, the ZPDES algorithm, while facing similar issues was more flexible in
the way it handled multiple parameters at the same time. The use of a model of ZPD
with the objective to find learning progress is an alternative to linear staircase procedure
that provides more variability and avoid roadblocks in learning objectives. Here, the
multi-armed bandit algorithm also offers a more data efficient strategy in comparison with
other RL-based strategies that usually consider relatively small activity spaces (Zini et al.,
2022, Wilms, 2011, Rathnayaka et al., 2021, Tsiakas et al., 2018).

Several difficulty MOT parameters In the context of MOT task training, the ability
to simultaneously manage multiple parameters is critically important, as the task can be
adapted to engage various perceptual and cognitive processes. Highlighted by Alvarez
and Franconeri, 2007b, multiple parameters can collectively affect key performance-related
properties. For instance, the number of objects, their speed, and the tracking duration all
impact the number of interactions (i.e., or repulsion) between object, points of heightened
attention load during the tracking. Therefore, manipulating multiple parameters could be
crucial for enhancing training outcomes (chapter 3).

Previous studies, such as Eayrs and Lavie, 2018a, have established a correlation
between MOT task performance and perceptual capacity. This suggests that adjusting
various parameters such as object spacing, speed, or visual features—essentially controlling
the perceptual load during MOT training—could maximize learning gains and enhance
perceptual capacity. This concept extends beyond merely boosting perceptual capacities to
potentially improving other cognitive factors (as identified in additional works like Eayrs
and Lavie, 2018a; Legault et al., 2013a; Parsons and Faubert, 2021; Romeas et al., 2016c;
Skogsberg et al., 2015a; Tullo, Guy, et al., 2018) through the manipulation of different
sets of parameters.

Thus, regardless of the underlying mechanisms driving performance changes, manipu-
lating several parameters simultaneously appears to be a promising strategy for achieving
broader learning gains in cognitive training generally and MOT training specifically. Cur-
rently, most MOT-based training focuses solely on manipulating objects speed (Legault
and Faubert, 2012b; Parsons and Faubert, 2021; Parsons et al., 2016b; Tullo, Guy, et al.,
2018). This work represents a preliminary step toward integrating more parameters into
experimental designs, and it is hoped that future research will continue in this direction.

RQ2 - Impact of training on objective performance Our results demonstrated
that both groups improved over time on the MOT evaluations conducted during training.
Improvement in MOT performance through training was anticipated, as observed in several
previous studies (Parsons et al., 2016b, Romeas et al., 2016c). Broadly considering all
intra-training evaluation tasks, both groups exhibited similar improvements, except for
one evaluation task (with four targets, high speed, and high spacing) where the ZPDES
group showed greater performance enhancement. Given the between-group differences
observed in the pre-post cognitive battery, the small difference between groups in the
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intra-training MOT evaluation was unexpected. However, the small number of activities
in the testing set (12), coupled with the limited number of repetitions (4 for each), might
account for the negligible difference between the groups.

The performance improvement measured in the pre-post battery of this study aligns
with previous research on MOT training impact with diverse perceptual, attentional and
memory tasks (Parsons and Faubert, 2021, Legault and Faubert, 2012b, Corbin-Berrigan
et al., 2018). First, the aggregate performance score showed an improvement from pre to
post tests for both groups. Second, this study provides evidence that both groups were
able to enhance their performance on related but untrained tasks such as loadblindness,
UFOV and taskswitch tasks. However, unlike previous findings, this study did not find
evidence of performance enhancement in enumeration or working memory tasks (Parsons
et al., 2016b).

Latent factor analysis indicated that both groups improved on a single latent factor
(PC3). Detailed examination of the loadings of this component revealed strong negative
contributions from enumeration tasks and the memorability task, as well as positive
contributions from MOT, load blindness, and working memory tasks. Given these positive
and negative contributions, this PC might represent a cognitive factor related to dynamic
visual information processing and attentional resource allocation. Indeed, the positive
contributors (MOT, workingmemory tasks, and loadblindness) all involve managing and
manipulating information in a dynamic and often spatially complex environment, requiring
sustained attention and working memory. Conversely, the negative contribution from tasks
like memorability and enumeration suggests that this PC is less associated with static
visual memory and the rapid, effortless perception of quantities, which are more automatic,
less resource-intensive aspects of cognition. As highlighted in the previous section, this
enhancement in a specific ”skill” or cognitive dimension can be discussed concerning
participants’ training trajectories. For control participants, most of their training focused
on activities with a low number of targets but with very high speed, low spacing, and
extended tracking duration. This focus helps explain the performance enhancement,
particularly in resource-consuming and long-lasting visual dynamic processing tasks.

Our study also found that only participants in the ZPDES group showed improvements
in the memorability task (both accuracy and reaction times) and the go/nogo (hit accuracy)
task. Once again, this outcome may be considered in the context of the specific training
trajectories provided to these participants. For instance, enhancements in memorability
might stem from exposure to a larger number of targets at very low speeds and varied
tracking durations. Indeed, extended tracking durations could place higher demands
on memory capabilities or necessitate strategies that involve longer retention periods.
A potential explanation for the lower effect in the control group is that high tracking
duration was always coupled with a high load on other parameters, such as high speed or
low spacing between objects. Furthermore, the go/nogo tasks, which demand inhibition,
might be enhanced by trials featuring high speeds and minimal spacing between objects.
Once again, even though participants were confronted with high-speed activities, the load
was never concentrated on this single parameter. Several theories or model of transfer
could potentially explain these results. First, as suggested by Gathercole et al., 2019,
specific trial conditions might challenge participants with tasks that require new cognitive
routines, routines that could be reused and potentially explain the transfer of skills to other
tasks (a phenomenon less observed in the control group in this study). Another possible
explanation is derived from the ”learning to learn” hypothesis, suggesting that training
enhances the ability to learn faster in new situations (Bavelier, Green, et al., 2012). A
key computational aspect of this hypothesis is the enhancement of probabilistic inference,

174



meaning an improved consideration of previously collected data. This enhancement has
been particularly observed in contexts such as action video games or attentional and
perceptual training (Bejjanki et al., 2014; Gozli et al., 2014; von Bastian et al., 2022a;
R.-Y. Zhang et al., 2021a). Consequently, although further research is required to confirm
this, it can be posited that the diverse exposure inherent in the ZPDES group’s trajectories
may have amplified this feature. As such, these hypotheses highlight the significance of the
difficulty adjustment procedure, where multiple difficulty parameters significantly influence
training outcomes.

Improvements in PC1 and PC6, exclusive to the ZPDES group, with no comparable
effects seen in the control group were also observed. PC1 is interpreted as a general factor
influencing overall performance in our battery. It is noteworthy that, when using an
aggregate score (a linear combination with equal weight for each task), both groups showed
enhancements from pre- to post-test. The exclusive enhancement in PC1 for the ZPDES
group (a linear combination with varying weights maximizing projected variance) suggests
that the ZPDES group experienced more comprehensive improvements than the control
group. Upon closer examination of PC6, which is heavily influenced by MOT tasks under
high perceptual load and cognitive flexibility from task-switching tasks, this component may
be interpreted as reflecting ’dynamic divided attention’. The specific training trajectories
followed by the ZPDES group could, again, account for these enhancements. For example,
tasks with a high perceptual load (i.e., a large number of targets) at various speeds (often
at very low speeds) necessitate increased divided attention, potentially facilitating transfer
to tasks that also demand this type of attention.

RQ3 - Self-reported subjective feeling As noted in Adolphe et al., 2023, incorporating
questionnaires is an effective method for assessing the impact of training. For instance,
this approach is particularly beneficial for evaluating metacognitive experiences, which
are known to influence the regulatory functions of cognitive processes involved in training
activities (Efklides, 2006b). Metacognitive experiences, such as individuals’ perceptions
of their own learning and cognitive efforts, provide valuable insights into how learners
monitor and adjust their strategies based on their subjective assessments of cognitive load
and task difficulty. In this study, we corroborated the “objective” learning progress by
probing every week different meta-cognitive dimensions and documented a decrease in
self-reported cognitive load over time.

Significant differences were also evident between the groups. The mental demand and
effort were consistently higher in the ZPDES group, which suggests that the participants
experienced more challenging learning paths, indicating that this type of training may
result in more effortful trajectories. Since the learning benefits appeared to be greater
in the ZPDES group, as measured by cognitive battery tests, this raises questions about
the staircase algorithm’s ability to appropriately adjust the difficulty level and what that
optimal difficulty level might be. Moreover, this observation can be connected to Cognitive
Load Theory (CLT) (Paas et al., 2004, Tricot, 1998), which distinguishes between intrinsic
cognitive load—related to the inherent complexity of the training task regardless of its
presentation—and extraneous cognitive load (Sweller, 2011), which concerns the manner
in which the task is presented (instructional designs). CLT suggests that an optimal
cognitive load (maximization of intrinsic part associated to a minimization of extrinsic
part) promotes learning and that appropriate variability in training increases intrinsic
load, which can enhance learning (provided that sufficient working memory resources are
available Paas and Van Merrienboer, 1994).
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In addition to cognitive load, differences in engagement and motivation were particularly
noteworthy, with the ZPDES group showing lower levels compared to the control group.
These results were unexpected and contradict the premises of the ZPDES algorithm.
According to the learning progress hypothesis (Oudeyer et al., 2016b), it was anticipated
that exploration guided by learning progress would enhance intrinsic motivation. Thus,
these findings prompt questions about the effect of cognitive load on motivation levels. It
is possible that higher cognitive loads could adversely affect intrinsic motivation levels.
Initial discussions in CLT considered motivation primarily as a precursor of engaging in
training, suggesting that sufficient motivation is necessary to engage in an effortful training.
As such, learners would make anticipatory judgments about the perceived attributes
of the instructional design and would invest mental effort accordingly (Salomon, 1983).
However, this perspective has been challenged in previous research (cf Poupard et al.,
2022 or Feldon et al., 2019 for a review). For example, Feldon et al., 2018 explored
the effects of manipulating extraneous cognitive load on self-efficacy (i.e., motivation)
and found that a group with well-designed instructions (i.e., lower extraneous cognitive
load) exhibited higher self-efficacy in post-tests. While these results are intriguing, the
nature of the relationship between motivation and cognitive load remains unclear. It is
conceivable that the relationship is bidirectional: mental effort is invested when there is
sufficient motivational belief, but if results are inadequate, this mental effort could decrease
motivation. Further research is necessary to understand how these observations might be
integrated into ITS. For instance, prior research Ten et al., 2021a has suggested considering
success rate, a proxy for cognitive load, as a complementary objective in activity selection.

Furthermore, despite participants in the ZPDES group experiencing higher objective
learning benefits after training, their subjective perception of learning progress was lower
or similar as of the control group. This discrepancy may align with the significantly lower
ratings observed in the ZPDES group for the competence component, or with the question
related to tracking the maximum number of targets with difficulty in the LP questionnaire.
These lower ratings are particularly noteworthy given that a comparison of objective
performance between groups in the intra-evaluation did not reveal any differences. It is
important to note that MOT’s activity space is characterized by significant nonlinearities in
difficulty evolution. For instance, performance has been observed to decrease quadratically
and cubically with increases in either the number of targets or the tracking duration
(Oksama and Hyönä, 2004c). Therefore, it is plausible that ZPDES exploration occasionally
proposed unfeasible activities or open certain activities too quickly, which might have led
ZPDES participants to poorer subjective estimations of their learning progress.

Additionally, it is important to note that although the ZPDES group self-rated their
competence lower, an interaction effect on the performance component was observed where
ZPDES participants self-reported an increase in performance throughout the training, which
was not observed in the control group. This implies that although ZPDES participants may
have underestimated their competence (i.e., their general abilities independent of recent
tasks), they were nonetheless able to recognize a genuine improvement in performance (i.e.,
their success in specific sessions) over time. This finding highlights a potential mismatch
between self-perceived competence and actual performance gains. This discrepancy can
be linked to the previously unobserved connection between motivation and objective
progress, particularly evident in the ZPDES group. It is conceivable that much of the
progress achieved in MOT tasks involves the automatization of processes used in these
tasks, progress that may not be accessible to participants’ metacognition. Therefore, even
when objective progress is evident, subjective recognition of this progress may be lacking.
An alternative explanation would be that the adaptive procedure - by always proposing
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challenging activities - limits the number of positive feedbacks received by participants
which hinder a correct estimation of competence (as suggested in Sansone, 1986, Deci
et al., 1999, Hung and Seitz, 2014a). Additional research is necessary to disentangle the
various influences of all dimensions, but this could be a crucial aspect to consider in the
development of future difficulty adjustment algorithms.

Limitations and perspectives This work is currently in its feasibility stage, and
there are several areas that could be enhanced in future research. As indicated in the
previous section, efforts can be made to boost motivation and engagement. For example,
all participants in our study began at the same initial ZPD. Drawing on research such
as that by van der Velde et al., 2021 and Pliakos et al., 2019, which addresses this ’cold
start problem,’ could help more swiftly place participants within an optimal initial ZPD.
Additionally, to better manage cognitive load levels, we might incorporate strategies from
earlier studies that suggest methods to better recognize mastery (Diard et al., 2010, Watson,
2017, Shabana et al., 2022) or address the forgetting of mastered activities (Mu et al.,
2018). Moreover, given that subjective estimation of learning progress was a potential issue,
involving participants more directly in the activity selection process, as demonstrated
by B. Clément et al., 2024, could be beneficial. Lastly, while individualized training
primarily focuses on adjusting task difficulty, other methods such as adaptive storytelling
and feedback could also be utilized to enhance motivation (Conati and Manske, 2009).

The training and its assessment could also be improved. For instance, incorporating
audio feedback into the MOT task has been shown to positively influence motivation
and engagement. Furthermore, to alleviate the monotony associated with repetitive task
engagement, the introduction of dual tasks during tracking or the integration of various
cognitive training tasks could be a viable approach. The Multiple Identity Task (J. Li et al.,
2019b; Oksama and Hyönä, 2004b), the Multiple Object Avoidance Task (Mackenzie et al.,
2022) or other variants of the MOT introducing a dual task (F. Joessel, 2022b; Nyquist
et al., 2016b), might also serve as effective training tasks when used in conjunction with
the ZPDES algorithm, which is able to handle high dimensional activity space. In terms
of methodological settings, future studies should include follow up assessments to study
potential long term impact. Additionally, ecological transfer could be further assessed
with daily life questionnaires (Saba et al., 2021). Finally, considering the results obtained
on a healthy young adult population; it would be intriguing to propose such interventions
in older populations, as it has been demonstrated that the extent of near transfer varies
significantly across age groups (Von Bastian et al., 2013).

5.5 Conclusion
In this study, we compared a multi-armed bandit-based procedure with a traditional
staircase procedure to evaluate their efficacy in adjusting the difficulty of cognitive training
using the multi-object tracking task. This research, pioneering the simultaneous assess-
ment of five parameters to develop personalized training curricula for each participant,
demonstrated that both experimental groups benefited, as evidenced by performance
improvements on the training task and cognitive assessments. Furthermore, our procedure,
which was guided by learning progress and a model of ZPD, offered a wider variety of
tasks, identified multiple areas of progress, and consequently, yielded larger learning gains
than the control group at the post-test. This feasibility study lays the foundation for
future research involving different tasks or participant demographics.
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Appendix

ZPDES - details and hyperparameters

Formalism

As mentionned in the high level description of ZPDES in 5.2; the algorithm learns about
the student needs through an interactive learning loop. After proposition of a new activity,
the algorithm updates the estimated pedagogical benefit of that activity and update the
model of the zone of proximal development. The interactive loop is described in 7. To fit
with the classical taxonomy of Intelligent Tutoring Systems, main features of the algorithm
are described as our domain, pegagogical and student models in the following sections.

Algorithm 1 Interactive learning loop
Require: : A, a discrete finite set of all possible activities
Require: : RZPD, a set of ZPD rules

1: Initialize Ge a set of experts according to RZPD

2: while learning: do
3: a← sample_activity(Ge) . Generate an activity
4: s← answer from learner . Propose it to the participant
5: Ge ← update_quality(Ge, a) . Update experts involved in last activity
6: Ge ← update_ZPD(Ge, RZPD) . Update ZPD
7: end while

Domain model: An activity a is a I-dimensional vector where ai is a parameter. In the
MOT training, ai can be the number of target, the speed, etc.. For each parameter ai,
there are Ji possible values ai,j (continuous parameters are discretized). The cardinal of
the set of all activities is therefore equals to

∏I
j=i Ji.

Pedagogical model: Add this: As such the expert ei is a J-dimensional vector that
represents the quality of all tracked values. In the high level explanation of the algorithm
in ??, we presented a simpler version by restricting to a single pedagogical expert. In
practice, each parameter is associated with at least one pedagogical expert ei. The main
objectives of a pedagogical expert are to 1) track the learning progress of each parameter
value ai,j and 2) to randomly sample the value with highest learning benefits. At any time
t, if a value ai,j is proposed to a participant, the pedagogical expert stores the results of
that activity in an history vector hi,j and updates the quality of the associated value with
the update rule:

eti,j ← βet−1
i,j + (1− β)rti,j (5.6)

The associated reward ri,j used in the update rule can take many forms and is further
explained in the section ”student model”. Then the pedagogical expert updates the quality
of all values by adding an exploration term:

e′i,j = (1− γ)ei,j + γξu (5.7)

Where ξu is randomly sampled from a uniform distribution in [0,1]. However, in practice, to
ensure avoid time consuming hyperparameter tuning (to keep the same order of magnitude)
of γ, equation 5.7 is computed as:

e′i,j = ei,j + γ
∑
j

ei,j (5.8)
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This quality update is further described in 2.

Algorithm 2 Update experts quality estimations
Require: Ge, a graph of pedagogical experts
Require: a, the last activity proposed
Require: S, the result of last activity

1: procedure sample_activity(Ge, a, S)
2: for each parameter value ai,j in a do
3: ei,j, hi,j ← FindExpert(Ge, ai,j) . Retrieve quality and history of ai,j
4: Add S to history hi,j

5: ri,j ← |
∑t

k=t−d/2
hi,j,k

D/2
−

∑t−D/2
k=t−D

hi,j,k

D/2
| . Compute new reward knowing S

6: ei,j ← βei,j + (1− β)ri,j
7: end for
8: end procedure

Finally, a parameter value is sampled by normalizing all qualities according to:

pi,j =
ei,j∗∑
j ei,j∗

(5.9)

In order to sample an activity ai, I pedagogical experts can be used to independently
draw a new activity vector. However, some pedagogical context require to define depen-
dency between parameters. For instance, we can imagine a meta parameter that defines
the type of activity proposed. In the context of a cognitive training, this could be choosing
the cognitive task being used such as either a MOT or a gonogo task. This parameters
would condition the choice of other parameters as the task are parametrized by very
different parameters.

To tackle this issue, a graph of pedagogical experts is defined by gathering experts
in groups and by creating a hierarchy between groups. The position of the group in the
hierarchy defines a sequence of experts used for sampling. Sampling an activity always
starts with experts in the top hierarchical group and then follow the hierarchical structure
by sampling subsequent groups of experts. The hierarchical dependency is defined by
creating a link between a value ai,j with a subsequent group of experts. Getting back to
the previous example, we would have in our graph of experts a top hierarchical group
containing the parameter ”type of activity” that would take 2 possible values: ”MOT or
gonogo”. Then the MOT value would be associated with a set of parameters (e.g number of
targets, speed...) different from the set associated with the ”gonogo” value (e.g frequency
of stimulus presentation). Moreover, in addition to enable the use of different sets of
parameters, this graph permits to create dependencies between parameters. For example,
in the MOT training, the top hierarchical group of expert only contains 1 expert tracking
the parameter number of targets. Then for each value of the number of target, a group
of 4 experts (for the parameters speed, tracking duration, answer duration and spacing
between object) is created. This means that it exists several experts of the parameter
speed, one for each group, and that they are only consulted after a specific value of number
of targets is drawn. The algorithm describing the sampling procedure with the hierarchical
structure is described in 3.

Student model: The algorithm assumes very few hypothesis about the student. The
first important idea is that the reward associated with the last sampled value ai,j is the
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Algorithm 3 Generation of a new activity
Require: Ge, a graph of pedagogical experts

1: procedure sample_activity(Ge)
2: currentGroup ← top hierarchical group in Ge

3: a← an empty list . Initialize a list to store sampled values for one activity
4: while currentGroup is not empty do
5: for each expert ei in currentGroup do
6: pi ← an empty list . Initialize list for ei’s probability distribution
7: for each qualityValue ei,j in ei do
8: ei,j ← ei,j + γ ·

∑
j ei,j

9: ProbaV aluei,j ← ei,j∑
j ei,j

10: Append ProbaV aluei,j to pi
11: end for
12: ParamV alue← sample(pi) . Sample a value according to distribution pi
13: Append ParamV alue to a
14: end for
15: if there is a ChildGroup of currentGroup then
16: CurrentGroup ← ChildGroup
17: else
18: Break from the loop . No more groups to process
19: end if
20: end while
21: return a . Return the list of sampled activities
22: end procedure

learning progress of the participant for that particular value:

ri,j = |
t∑

k=t−D/2

hi,j,k

D/2
−

t−D/2∑
k=t−D

hi,j,k

D/2
| (5.10)

The choice of this particular reward is line with the learning progress hypothesis (cf
section ref). Taking the absolute learning progress allows to not only targets activities
with increasing success rate (meaning learning) but also to track actitivies with drop of
performance (meaning potential fatigue or forget).

In addition to the learning progress hypothesis, we model a zone of proximal develop-
ment for each participant by restricting and evolving the activity space to a smaller subset
of possible activities. In addition to limit the exploration and to avoid combinatorial ex-
plosion, this idea allows to induce human knowledge of a prototypical skill development in
the activity space and a general sense of difficulty evolution. Initially, pedagogical experts
only track a subset of easy parameter values. Untracked values are defined deactivated
and can’t be sampled. To activate a new value, two possible mechanisms are implemented.
The general procedure for ZPD management is described in ??.

The first mechanism for ZPD expansion activates a new value if the average success
rate of all open values is above a certain hyperparameter threshold λ1. The success rate of
a particular value that has been presented Ti,j times can be defined as:

sri,j =

{
0 if m < 2
1
m

∑Ti,j

t=Ti,j−m sti,j else where m = min(Ti,j, d) (5.11)
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It is noteworthy to observe that only a window of minimum 2 and maximum D last
activities are considered for success rate calculation. Then, if Oi corresponds to the set of
open values for an expert ei, the mean success rate is computed as:

SR(Oi) =
1

|Oi|
∑
j∈Oi

sri,j (5.12)

As observed in eq 5.12, this mechanism is conducted independently of the success of other
experts and is called ”independant” update. The implemented algorithm is described in 4.

Algorithm 4 Update expert from its own history alone
Require: Ge, a graph of pedagogical experts

1: procedure update_independant_expert(Ge)
2: Oi ← getActivatedValues(ei)
3: openValuesSR ← an empty list
4: for j in Oi do
5: if length of hi,j > 2 then
6: Add 1

m

∑Ti,j

t=Ti,j−m hi,j,k to openValuesSR
7: end if
8: end for
9: currentExpertSR ← sumOf(openValuesSR) / length(Oi)

10: if currentExpertSR > λ1 then
11: j′ ← getNextValueToOpen(ei)
12: ei,j′ ← max(ei) . Initialize new value with highest quality
13: end if
14: end procedure

The second mechanism for ZPD expansion only concerns experts in top hierarchical
groups (especially for values possessing subsequent children expert groups). By defining a
set of requirements Ri composed of parameter values in subsequent hierarchical group, a
new value is activated if all requirements are fulfilled i.e if all values in Ri have a success
rate (calculated with eq 5.11 above a certain hyperparameter threshold λ2). Different from
the previous mechanism, this ZPD update rule is named as a dependant update as it relies
on other experts. The implemented algorithm is described in 5.

Finally, the ZPD is also manipulated by deactivating activies with an high success
rate. If a parameter value has a success rate above a certain hyperparameter threshold λ3,
this value is withdrawn from the ZPD and will never be proposed again. This mecanism
allows to avoid proposing activites that completely mastered.

Hyperparameters

Several pilot studies were conducted prior to the data presented in this manuscript. The
main objective of these different pilots were to validate the hyperparameters presented in
Table 5.4.
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Algorithm 5 Update expert from history of other experts
Require: ei, an expert to update

1: procedure update_ZPD(ei)
2: Ri ← getOtherExpertsValues(ei)
3: updateBool ← True
4: for each h′

i,j in Ri do
5: if length of h′

i,j > 2 then
6: currentExpertValueSR ← 1

m

∑Ti,j

t=Ti,j−m hi,j,k

7: if currentExpertValueSR < λ2 then
8: updateBool ← False
9: end if

10: else
11: updateBool ← False
12: end if
13: end for
14: if updateBool is True then
15: ei,j′ ← max(ei)
16: end if
17: end procedure

Table 5.4. All hyperparameters used in our ZPDES version.

Name Value Objective Used in

β 0.2
balance between previous quality

estimation and new reward
eq 5.6

γ 0.1
manage exploration/exploitation

tradeoff
eq 5.8

D 10 full window size for LP computation eq 5.10
d 5 window size for SR computation eq 5.11

λ1 0.7 threshold on SR for new value
activation within an expert SR comparison

λ2 0.75 threshold on SR for new value
activation across experts SR comparison

λ3 0.9 threshold on SR for value deactivation
within an expert SR comparison
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Learning trajectories

Fig 5.9. Different trajectories from the control group.
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Fig 5.10. Different trajectories from the zpdes group.
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Statistical analysis
To compute the Savage-Dickey density ratio (SDDR) of the different posterior of the
cognitive battery analysis, Table 5.5 summarize the different null hypothesis we used:

Table 5.5. Null Hypothesis Models for Different Parameters. N stands for Normal
distribution.

Parameter Null hypothesis model
Accuracy N(0, 0.05)
Reaction Time N(0, 20)
Threshold UFOV N(0, 18)
Switching cost N(0, 20)
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Questionnaires

5.5.1 Questionnaires
Learning Progress Questionnaire

Possible answers were from 2 to 7.

• For the next training activity, how many targets would you like to have?

• How many targets do you think you can track without difficulty?

• How many targets do you think you can track with difficulty?
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For the next training activity, how many targets would you like to have?

How many targets do you think you can track with difficulty?

How many targets do you think you can track without difficulty?

Learning Progress Questionnaire

Fig 5.11. LP Questionnaires interaction and distribution.
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Nasa-tlx

The question asked is ”Reflect on your experience using the game and rate your agreement
with the following statements”. From ”Very Low Very High” on a 20 points scale.

• Mental Demand: How mentally demanding was the task?

• Physical Demand: How physically demanding was the task?

• Temporal Demand: How hurried or rushed was the pace of the task?

• Performance: How successful were you in accomplishing what you were asked to
do?

• Effort: How hard did you have to work to accomplish your level of performance?

• Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

Physical DemandMental DemandPerformance
NASA-TLX Questionnaire

Temportal Demand Effort Frustration

Load Index

Fig 5.12. NASA-tlx Questionnaires interaction and distribution.
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TENS

The question asked is ”Reflect on your experience using the game and rate your agreement
with the following statements”. From ”Do not agree Strongly Agree” on a 5 points scale.

• Competence: I feel very capable and effective at using the game.

• Competence: I feel confident in my ability to use the game.

• Competence: Learning how to use the game was difficult. (-)

• Competence: I found the interface and controls confusing. (-)

• Competence: It wasn’t easy to use this game. (-)

• Autonomy: The game provides me with useful options and choices

• Autonomy: I can get the game to do the things I want it to.

• Autonomy: I feel pressured by the game. (-)

• Autonomy: The game feels intrusive (-)

• Autonomy: The game feels controlling. (-)

• Relatedness: The technology helps me to form or sustain relationships that are
fulfilling.

• Relatedness: The technology helps me to feel part of a larger community.

• Relatedness: The technology makes me feel connected to other people.

• Relatedness: I don’t feel close to other users of the technology. (-)

• Relatedness: The technology doesn’t support meaningful connections to others.
(-)

CompetenceAutonomy Relatedness
TENS Questionnaire

Fig 5.13. TENS Questionnaires interaction and distribution.
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User engagement scale

Question was ”Reflect on your experience using the game and rate your agreement with
the following statements:”. Possible answers were: ”Strongly disagree Disagree Neither
agree nor disagree Agree Strongly agree”.

• Focused Attention: I lost myself in this experience.

• Focused Attention: The time I spent using the game just slipped away.

• Focused Attention: I was absorbed in this experience.

• Perceived Usability: I felt frustrated while using this game.

• Perceived Usability: I found this game confusing to use.

• Perceived Usability: Using this game was taxing.

• Aesthetics: This game was attractive.

• Aesthetics: This game was aesthetically appealing.

• Aesthetics: This game appealed to my senses.

• Reward: Using the game was worthwhile.

• Reward: My experience was rewarding.

• Reward: I felt interested in this experience.
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Perceived Usability

Aesthetics

Engagement Score
UES Questionnaire

Reward

Focused Attention

Fig 5.14. UES Questionnaires interaction and distribution.
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Situational Intrinsic Motivation Scale

The question asked is: Why do you keep practicing the game? Possible answers are form
of a likert scale: Not at all Very little A little Somewhat A lot Exactly

• Intrinsic motivation: Because I think that this game is interesting

• Intrinsic motivation: Because I think that this activity is pleasant

• Intrinsic motivation: Because this game is fun

• Intrinsic motivation: Because I feel good when playing this game

• Identified regulation: Because I feel like playing this game

• Identified regulation: Because I think that this activity is good for me

• Identified regulation: It is for my own good

• Identified regulation: Because I believe that this game is important for me

• External regulation: Because it is something that I have to do

• External regulation: Because I don’t have any choice

• External regulation: Because I am supposed to do it

• External regulation: Because I feel that I have to do it

• Amotivation: I keep practicing, but I am not sure I should continue

• Amotivation: There may be good reasons for practicing this game, but personally
I don’t see any

• Amotivation: I don’t know; I don’t see what this game brings me

• Amotivation: I do this activity but I am not sure if it is worth it

192



Identified Regulation

External Regulation

Amotivation

SIMS Questionnaire

Intrinsic Motivation

Fig 5.15. SIMS Questionnaires interaction and distribution.
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Chapter 6

Benefits of Individualized Comput-
erized Cognitive Training on older
adults
Aims
After evaluating our procedure on a pop-
ulation of young adults, this chapter aims
to apply our approach to a population of
Older Adults (OA). While the main design
principles remain consistent with the pre-
vious chapter, the goal is to determine if
the benefits observed in young adults are
replicated in a population with different
characteristics.
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Abstract
This randomized controlled trial included 50 healthy older adults, divided into AI-based
individualized adjustment (ZPDES) and traditional staircase (control) groups. We assessed
task performance progression, cognitive transfer across seven tasks, interindividual differ-
ences, and subjective experiences via questionnaires. Pre-post comparisons revealed greater
training benefits in the MOT task for the ZPDES group. Specific task improvements were
noted only in the control group, but no differences were observed at a latent level. Both
groups exhibited non-linear intra-training progress: control participants improved initially
and then plateaued, while ZPDES participants showed consistent progress throughout
the two weeks of training. For both conditions, interindividual differences in prior MOT
performance significantly influenced baseline performance in the first training session,
but no significant differences were found in performance changes. Differences in training
trajectories led to varied subjective experiences: cognitive load decreased more over time
for the control group, indicating ZPDES was more demanding. Participants in the ZPDES
group reported lower intrinsic and extrinsic motivation but a higher sense of competence.
In sum, the ZPDES condition demonstrated greater post-training MOT performance,
consistent intra-training progress, and higher competence, despite being more demanding.
Consequently, this paper discusses the implications of our approach on training benefits,
experience, and engagement, and proposes improvements to the ZPDES algorithm to
better address interindividual differences in cognitive aging.

Collaborators
Adolphe Maxime (AM), Pech Marion (PM), Sawayama Masataka (SM), Clement Benjamin
(CB), Joessel Freya (JF), Bavelier Daphné (BD), Delmas Alexandra (DA), Maurel Denis
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(AM, PM); Investigation (AM, PM); Writing - Review & Editing (all).
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6.1 Introduction
Thanks to scientific advances in the neurobiology of typical aging, cognitive aging is
now understood as a complex phenomenon including declines, maintenance, and even
improvement of cognitive functions or skills that are explained through the neuroplasticity
operating throughout life (Angel and Isingrini, 2015; Reuter-Lorenz and Park, 2010). As a
result of neuroplasticity, aging is crucially characterized by a high degree of intra- and
inter-individual variability that are dependent on complex interactions between intrinsic
factors (e.g., genetic, physiological, metabolic) and extrinsic factors (e.g., social stimulation,
education, life style) when studying cognitive aging (Marioni et al., 2011). A new way to
consolidate cognitive skills and maintain cognitive reserve is to develop non-pharmacological
interventions that stimulate the brain to compensate for or maintain cognitive functions
despite age-related losses and changes (Valenzuela and Sachdev, 2009). Great age-related
changes can constitute a risk for the older adults (OA) because they are linked to many
disorders, including neurodegenerative diseases, threatening autonomy and quality of life.
These interventions are mostly based on cognitive training (von Bastian et al., 2022b)
aiming at stimulating one or more cognitive domains that decline with aging, including
functions such as decision-making (Fechner et al., 2019; Hartshorne and Germine, 2015),
mental flexibility—i.e., the ability to form, change, and update representations processed
in working memory (Fechner et al., 2019)—attention (Geerligs et al., 2014), and inhibitory
processes related to executive functioning (Collette and Salmon, 2014; Turner and Spreng,
2012). Our present study aims to evaluate attention training, by examining whether AI-
automated adaptation of training difficulties to individual abilities improves the benefits
of such an intervention compared to a control condition without taking into account initial
inter-individual variability on the trained task, and over the course of training.

6.1.1 CT for typical older adults : impact of interindividual
differences

Several cognitive interventions or CT for typical OA have been created aiming either
domain-specific or multi-domains (I. H. Leung et al., 2015a). Specifically, domain-specific
CT focuses on strengthening a particular cognitive domain, such as working memory,
throughout the program, whereas multi-domain CT simultaneously addresses multiple
cognitive domains through a variety of targeted activities (Gates et al., 2011). The latter
approach offers more diverse cognitive challenges, potentially promoting greater brain
neuroplasticity and more durable results in the aging population (Ballesteros et al., 2020a;
Gates et al., 2011; von Bastian et al., 2022b). Indeed, some of these CT have demonstrated
effectiveness in improving various aspects of cognitive functioning, including memory
performance, executive functioning, processing speed, attention, and fluid intelligence
(I. H. Leung et al., 2015a; Reijnders et al., 2013; von Bastian et al., 2022b). For instance, to
enhance attentional flexibility (Belleville et al., 2014), computerized CT involving working
memory tasks (e.g., n-back tasks) (Lilienthal et al., 2013) or tasks requiring prioritization
and alternation between stimuli (Belleville et al., 2014) has shown positive results among
the aging population.

In the CT area, several criteria can be used to assess the efficacy of such interven-
tions. First, improvements in performance on cognitive tasks targeted can be considered,
maintenance of improved performance over time, transfer of training effects to different
tasks within the same cognitive domain (near transfer) or other domains (far transfer),
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and generalization of effects to everyday functioning (Kelly et al., 2014). Nowadays, the
challenge of CT lies in achieving far transfer, which aims to trigger improvements in
everyday life activities by training specific cognitive processes such as visual attention or
working memory (Kelly et al., 2014). Several outcomes have shown near transfer but have
not assessed cognitive domains that predict real-world functioning (i.e.ecological measures
probing far transfer) in OA even fewer demonstrate generalization to improvements in
everyday life activities (Guye, De Simoni, and von Bastian, 2017; Shah et al., 2017a).
Thus, the potential transfer of effects to untrained cognitive domains remains unproven.
This means no genuine evidence of cognitive training efficacy is today reached.

A key explanation of the challenge of transferring training effects to other tasks is
the interindividual differences in CT responsiveness. For this reason, interventions should
be tailored to each individual so that the activities remain continuously challenging and
not monotonous for maintaining trainee engagement (Reijnders et al., 2013). In this
vein, a recent meta-analysis of Z. Li et al., 2024a revealed that engagement, persistence
(engagement or persistence rates over �60% are required) and adherence (adherence rates
are �80%) are critical determinants influencing the efficacy of cognitive training, especially
for memory and visuospatial skills and this, more particularly for healthy OA compared
to those with cognitive impairment. This last point raises the question of who benefits
from such interventions. It is now well established that some individuals benefit greatly
from the intervention (high responders), while others do not (low responders). This
phenomenon mirrors the high aging-related heterogeneity, highlighting the limitations
of a one-size-fits-all approach for CT design. In a related-way, age-comparative studies
have shown larger training effects in younger adults compared to OA (e.g., (Brehmer
et al., 2012; Bürki et al., 2014a; Schmiedek et al., 2010; von Bastian et al., 2013)), and
in young-old adults compared to old-old adults (Borella et al., 2014; Zinke et al., 2014).
These results fit the concept of a magnification effect (Lövdén et al., 2012a), where younger
individuals benefit more from cognitive training because they have more cognitive resources
available to complete the training tasks successfully (Guye, De Simoni, and von Bastian,
2017). Contrarily, a compensation effect is assumed when children and OA benefited more
from training than young adults (Bherer et al., 2008; Karbach and Kray, 2009). This
effect can occur because participants with lower prior cognitive functioning have more
room for improvement, i.e., a compensation effect (Titz and Karbach, 2014b) as predicted
by the Cognitive Compensation theory of aging (Park and Reuter-Lorenz, 2009; Traut
et al., 2021b). Yet, recent meta-analyses reflect mixed findings, with some showing age
as a moderator of training outcomes (Melby-Lervåg and Hulme, 2013b) and others not
(Schwaighofer et al., 2015). General measures of cognitive functioning (such as personality,
motivation, cognitive ability) has been identified as factors that likely contribute to the
effects of training magnitude and transfer (von Bastian and Oberauer, 2014). Nevertheless,
few studies have directly assessed the effect of prior (baseline) cognitive performance on
training outcomes (Traut et al., 2021b), with some suggesting that individuals with initially
low performance benefited more from training (e.g., (Jaeggi et al., 2008a; Zinke et al.,
2014), while others reported the opposite (e.g., (Bürki et al., 2014a). Today, measuring
the effectiveness of interventions raises debated issues, partly due to methodological
shortcomings in studies on this topic, such as sample size, study design, and cognitive
tests used (Simons et al., 2016b; Vater et al., 2021a).
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6.1.2 Computerized Cognitive Training for typical older adults :
a new promise for healthy aging?

Recently, many computerized CT have been developed both by research and private
companies. These interventions and applications can take various forms (such as serious
games such as Brainer. (Brainer, s. d.), Neurotracker®. (Vater et al., 2021a), RehaCom®.
(RehaCom, s. d.), CogniPlus®.(CogniPlus, s. d.), HappyNeuron Pro®. (Happyneuron,
s. d.), the Padua, Rehabilitation Tool (PRT) (Cardullo, 2017), MS Rehab (Gaspari et
al., 2020), Cogni-Track (Tacchino et al., 2015) and CogniFit Personal Coach® (CogniFit,
s. d.). Among the various levers employed by computerized CT, such as task diversity
and game content, attention is recognized as a particularly crucial cognitive function.
Attentional processing is ubiquitous and vital for daily activities, and serves as a key
indicator of overall cognitive health (Depp et al., 2014b). Consequently, many CT focus
specifically on enhancing attention, as it acts as a gateway to other cognitive functions.
Impairments in attention can significantly impact everyday activities, such as driving, and
then social participation. On this topic, the development of Cogniplus software was based
on the Zomeren and Brouwer, 1994 attention model, distinguishing between the intensity
and selectivity components of attention and their subcomponents (alertness, selective and
divided attention) (Zomeren and Brouwer, 1994). Casutt et al., 2014 found that active
training sessions with Cogniplus® improved cognitive and on-road driving performance
among OA.

Also focusing on attentional training, Neurotracker offers exercises based on a complex
dynamic attentional task called Multi-Object Tracking, which involves selective, sustained
and controlled attention. In a typical MOT task, observers are initially presented with
several identical objects, a subset of which is then highlighted to indicate their status as
targets. Following this, all objects, once again appearing identical, move independently
and unpredictably around the display. At the end of the movement phase, observers
must identify the original targets (B. Scholl, 2009). Within the MOT task, several
parameters can be manipulated such as the number of targets, distractors, the speed of
the object’s movements, the spatial distance between targets and the tracking duration.
These elements make the MOT task a powerful multi-cognitive dimension, as adjusting
one of these parameters can affect various cognitive functions (see chapter 3 for a review).

Over the years, the MOT task has garnered attention in cognitive and vision science
research, with numerous publications exploring its implications for understanding cognitive
functions and object tracking processes (A. O. Holcombe, 2023; Vater et al., 2021a). Its
application has extended beyond laboratory settings, demonstrating tangible benefits in
daily activities such as driving, gaming, and contributing to cognitive enhancements in
executive function and working memory (Vater et al., 2021a; von Bastian and Oberauer,
2014). Neurotracker offers a 3D version of the MOT task, which has been integrated into
numerous studies (Vater et al., 2021a) and various contexts (educational, sports, cognitive
health). Most of these studies suggest benefits from the practice, with positive results
observed in OA (Legault and Faubert, 2012b; Musteata et al., 2019b). However, the
results are often inconclusive regarding the evidence of effectiveness of such CT due to
the limited standardization of evaluation methods (Simons et al., 2016b). Nevertheless,
a common theme is the development of adaptive and tailored solutions to tackle the
challenge of the aging population’s heterogeneity, with evidence increasingly supporting
the individualization of learning paths to address this issue. For instance, in the research
field, a randomized double-blind study conducted by Peretz et al., 2011 investigated whether
personalized computerized cognitive training provided greater benefits than conventional
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computer games for healthy OA. Cognitive performance was assessed at baseline and after
3 months. Both groups improved, but the personalized cognitive training group showed
significant improvement in 8 cognitive domains, while the computer games group improved
in 6. Personalized training was significantly more effective in improving visuospatial
working memory, visuospatial learning, and focused attention. Personalized computerized
cognitive training seems to be more effective than computer games in improving cognitive
performance in different populations such as younger adults (Plass et al., 2019b) and
healthy OA (Bahar-Fuchs et al., 2017; Pedullà et al., 2016a; Peretz et al., 2011).

Regarding the issue of personalization, it is important to consider individualization
related to the types of learning paths to assess the effects of such interventions. Most
CT programs rely on staircases algorithm to regulate task difficulty (Cornsweet, 1962).
This kind of algorithm guides participants towards a predefined optimal difficulty zone
by considering parameters that influence task difficulty and the desired success rate
can be tailored by specifying the number of successes or failures required to adjust the
difficulty level. For instance, numerous studies have employed the 2 up-1 down procedure,
i.e., increasing the difficulty after two consecutive successes and decreasing it after two
consecutive failures. This approach has limitations such as the linear learning (i.e., the
algorithm restricts participants to a fixed trajectory), the challenge of proposing tasks that
meet specific participant needs (i.e. tasks being not too easy or impossible to achieve), the
need for a variety of tasks (i.e., to promote the learning, motivation and engagement), and
the difficulty of addressing these issues in heterogeneous populations (especially in OA).

To address this issue, we have recently conducted a randomized controlled trial with 72
healthy young adults to compare an AI-based individualized adjustment procedure with
a traditional staircase method for modulating task difficulty in cognitive training using
the MOT task (chapter 5). The study evaluated the impact of these methods on learning
trajectories, task performance, and participants’ subjective experiences, including cognitive
load, engagement, and motivation. The Zone of Proximal Development and Empirical
Success (ZPDES) algorithm employs an AI-based method that uses a multi-armed bandit
approach informed by Learning Progress and a zone of proximal development (ZPD) model.
This algorithm engaged participants with a broader range of tasks, enhancing learning
variety to optimize training within the ZPD framework. Performance showed improvements
in both the trained task and related tasks for all participants. The AI group demonstrated
broader cognitive enhancements not seen in the control group. Subjective assessments
indicated a decrease in cognitive load over time, suggesting efficient learning, although the
AI-based training was perceived as more demanding, leading to lower engagement and
motivation scores. These findings suggest that AI-driven individualized training methods
could enhance CT effectiveness and offer significant advantages over traditional methods,
though further investigation is needed.

From the overall data, the present study aimed to evaluate the impact of an individu-
alized procedure guided by participant learning progress compared to a classical staircase
procedure (one-size-fits-all or linear design) in healthy OA. Specifically, we aimed to
investigate if the results of OA are comparable to those of younger adults by replicating
the previously employed method. Hence, we investigated three main research questions:

RQ1- What is the impact of training conditions (ZPDES group [individualized] vs. control
group [Staircase]) on observed pre-post assessment ?

RQ2- What is the impact of training conditions (ZPDES group [individualized] vs. control
group [Staircase]) on the MOT intra-training performance? How do individual
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differences impact MOT performance evolution, and do training conditions deal with
them?

RQ3- What is the impact of training conditions on training experience self-reported in
terms of engagement, cognitive load, and motivation?

6.2 Design and Methods

6.2.1 Participants
Participants were recruited through multiple calls to several “Universités du Temps
Libre,” French associations that promote cultural and knowledge exchange by organizing
workshops and seminars on various topics thanks academic collaborations. To reach our
target demographic, we conducted a mailing campaign specifically aimed at individuals
over the age of 65, with an explicit goal of enhancing their brain functioning. Following
the initial recruitment, we organized an initial meeting either via video call or telephone.
During this meeting, we assessed participants to ensure they did not exhibit symptoms of
cognitive decline (using the Mini-Mental State Exam (MMSE) score > 27) (Folstein et al.,
1975a) or depression (using the 4 items geriatric depression scale (GDS), (J. P. Clément
et al., 1997). Only those who met these criteria were included in the study.

6.2.2 Procedure and Materials
The following procedure follows a previous study procedure described in chapter 5. Addi-
tionally, all materials used are open-sourced and available at https://github.com/madolphe/
Flowers-OL.

6.2.3 Schedule
After the initial screening meeting, participants who met the inclusion criteria were invited
to a second videoconference. The aim of this session was to guide the participants through
the online platform used for the training, assist them in setting up an account, and
resolve any technical issues. Once the experimenters ensured that the participants were
comfortable with the platform, the remainder of the session consisted of a cognitive
evaluation (see section “Cognitive Battery”). Following this first evaluation, the training
comprised 16 sessions of approximately 30 minutes each, spanning 8 days (2 sessions per
day with a break of 2 days after the first 4 days). During these sessions, participants
engaged in the MOT task and completed questionnaires to self-assess various aspects of
their experience (see section “Subjective Assessment”). The complete schedule is provided
in chapter 5, Figure 5.1.

6.2.4 Pseudo-randomization procedure
After the first session of cognitive evaluation, participants were pseudo-randomly assigned
to one of two possible groups: control or intervention (referred to as the ZPDES group
in the remainder of the manuscript). Age and attention deficit were controlled to ensure
homogeneous groups. As participants began at different initial dates, they were randomly
assigned in an online manner, ensuring that age and attention deficit were proportionally
balanced between the groups.
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6.2.5 Training procedure
The Multi-object tracking task.

The training consisted of practicing the MOT task, a dynamic task where participants
are asked to track several targets moving among distractors that share the same visual
features. Initially, the targets and distractors were shown moving for a duration of 1000
milliseconds. This was followed by a period of immobility for all objects, also lasting
1000 milliseconds, to ensure the participants identified all the targets to be tracked. After
this brief pause, the targets were altered to resemble the distractors in both shape and
color. Subsequently, after a variable duration of a few seconds of tracking, all objects
ceased movement. Difficulty was adjusted either by a staircase algorithm (control) or a
multi-armed bandit algorithm (ZPDES) by manipulating 5 parameters: number of targets,
speed, spacing between objects, tracking duration and answer duration.

Additionally, as gamification components have been highlighted as moderators of
training effectiveness in both young and older populations (Lumsden et al., 2016b), the
training was presented as a series of mini-games embedded in various mini-stories (see
chapter 5, for details). Feedback and learning performance were also presented and
accessible between trials to help participants better understand their progress (see chapter
5, Figure 5.1).

Difficulty adjustment in the control group

In the control group, the difficulty was manipulated by adjusting five parameters using
a 2-up-1-down algorithm (two successes to increase difficulty, one failure to decrease
difficulty). While previous studies have used a 3-up-1-down version (F. Joessel, 2022b), we
opted for this slightly faster version to avoid large plateaus in progress since we manipulate
five parameters concurrently. Additionally, a hierarchical structure was implemented: four
parameters (speed, spacing, tracking duration, and answer duration) were managed using
a first staircase named S1. To avoid large variations in difficulty, steps in S1 were managed
one parameter at a time in a circular manner. Consequently, it required eight consecutive
successes for all S1 parameters to advance by one step. Once all parameters reached
either their minimum or maximum threshold on S1, the staircase algorithm pertaining
to the number of targets, named S2, was updated. Subsequently, all values of S1 were
reset to their highest or lowest possible settings. The choice of this control procedure was
motivated by its established use as a classical adaptive strategy (F. Joessel, 2022b), and
the hierarchical structure allows for better comparability with the ZPDES intervention.

Difficulty adjustment in the ZPDES group

The ZPDES algorithm, initialized and updated independently for each participant, provides
a method to balance exploiting known profitable learning activities and exploring new
activities that might be beneficial. According to the learning progress hypothesis (Oudeyer
et al., 2016b), the feeling of LP leads to higher intrinsic motivation levels, which in turn
fosters more learning progress, creating a positive feedback loop. As such, the ZPDES
algorithm selects the next activity randomly, giving preference to activities with higher
learning progress. To ensure efficient sampling, this mechanism is coupled with a model of
the ZPD, which describes the most pedagogically optimal activities for learning that are
neither too easy nor too difficult. In practice, the ZPD is defined by an initial subset of
interesting activities that evolves over time according to rules that allow for the addition
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or deletion of activities within the zone. In sum, the ZPDES algorithm aims to propose
activities with the highest learning progress by randomly exploring activities within a
model of ZPD. This strategy avoids creating a single route in the activity space and allows
for the creation of individualized trajectories for each participant.

6.2.6 Assessments
Cognitive Battery

Seven cognitive tasks from Adolphe et al., 2022a were proposed. To detect near to
far transfer effects, the selection of tasks was designed to evaluate tasks that showed a
correlation in performance and tapped into similar cognitive dimensions as the MOT
(near effect), as well as different control tasks (far effects). We employed a comprehensive
set of tests to broadly assess cognitive functions, as follows: measures of selective and
divided attention (UFOV (Ball et al., 1988; L. Hoffman et al., 2005)), Loadblindness
(Eayrs and Lavie, 2018a), Enumeration (Eayrs and Lavie, 2018a), attentional control (task
switching (Monsell et al., 2003b)), Go/NoGo (T. Mani et al., 2005), working memory
(Corsi (Berch et al., 1998b)), and episodic memory (memorability (Isola et al., 2011a)).
The evaluation was planned to last 1 hour and 30 minutes. All tasks are freely accessible
for demonstration: (https://flowers-ol.bordeaux.inria.fr/flowers_demo) and open-source
software (https://github.com/flowersteam/cognitive-testbattery).

For each task, we used several difficulty conditions and randomly shuffled the order
of presentation for each participant. The UFOV task was the only task using a staircase
method following (Yung et al., 2015b). Performance metrics were calculated for each
difficulty condition and then averaged over all trials. Depending on the task, metrics
included accuracy (MOT, Loadblindness, Enumeration, Go/NoGo, working memory,
memorability), reaction times (memorability), switching costs (task switching), and the
last staircase threshold (UFOV).

Intra-training evaluation

Several hidden evaluations throughout the intervention were used to assess and compare
performance between groups. Four evaluation sessions were conducted at the beginning of
sessions 1, 4, 5, and 9 (chapter 5). While participants were unaware of these evaluations,
they provided reliable and comparable performance assessments between groups throughout
the intervention on the trained tasks. The evaluation set consisted of 12 activities,
representing all possible combinations of the number of targets (2, 4, 6), speed (low or
high), and spacing (low or high), each randomly presented four times.

Subjective Assessment

To investigate the training experience, several questionnaires were administered throughout
the intervention (Figure ??). First, some single-use questionnaires were employed to
better understand participants’ profiles, such as demographic questionnaires, video game
questionnaires2, and self-assessments of attention deficits3. Additionally, other standardized
questionnaires were administered multiple times during the training to assess the impact
of the intervention on cognitive load (NASA-TL , (Hart, 2006), engagement (with the

2https://www.unige.ch/fapse/brainlearning/vgq
3https://add.org/wp-content/uploads/2015/03/adhd-questionnaire-ASRS111.pdf
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User Engagement Scale - UES, (O’Brien et al., 2018)), self-determination feelings (with
the Technology-based Experience of Need Satisfaction–Interface, TENS, (Peters et al.,
2018), and self-perceived intrinsic motivations (Situational motivation scale, SIMS, (Guay,
Vallerand, and Blanchard, 2000). A non-standardized, homemade questionnaire was also
used to collect participants’ self-rating of their progress (i.e., Feeling of learning/progress),
asking questions about the difficulty levels they were able to handle or would like to train
on (Appendix chapter 5). Complementary, we asked for free comments from participants
as feedback from the training.

6.2.7 Analyses
Framework

The data analysis was organized to address our three research questions. First, to evaluate
the impact of the intervention on cognitive performance, we examined performance
evolution through intra-training evaluations and the cognitive battery. Second, to explore
the impact of individual variability, we used latent growth models, focusing on individual
trajectories and the influence of individual factors. Finally, to assess subjective performance
evolution, we analyzed questionnaire responses and conducted a qualitative analysis of the
collected verbal feedback.

Q1.1. MOT Cognitive battery

To investigate the efficiency of AI-based training pre-post intervention differences are
studied on MOT task. Bayesian mixed models were used to assess potential main effects of
time, group, or an interaction between group and time on average performance measured
in each session of MOT evaluation. Estimated values (mean and High Density Interval) for
main and interaction effects were reported. Bayes Factor (BF) were used to assess whether
the parameters were credibly non-null. To estimate BF, we used the Savage-Dickey density
ratio (SDDR) as described in (Wagenmakers et al., 2010). SDDR is an efficient way to
compute BF when two nested models are being compared. For example, to estimate the
credibility of a model using a main effect of time, we compare a model with the main
effect of time (alternative model) to a model without it (null model). If the resulting BF
H1 = 5 , it means the data are five times more likely under the alternative model. Note
that BF H0 = 1/5 , so in this scenario, the data are 0.2 times more likely under the null
hypothesis. BF values between 1 and 3 correspond to ambiguous evidence, between 3 and
10 to substantial evidence, between 10 and 30 to strong evidence, between 30 and 100
to very strong evidence, and above 100 to decisive evidence. Similar analyses have been
performed for the six others tests of cognitive battery (see Appendix 6.5).

Q1.2. Cognitive battery

A Latent Factor Analysis (PCA, details in chapter 5) is used to investigate the global
impact of condition training on the seven tasks probing attention, short-term memory,
working memory and long-term memory.

Q2.1. Intra training evaluation

Intra training evaluation is performed with descriptive data as well as Latent Growth Curve
Models (LGCM). Latent score models are powerful tools for studying performance changes
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over time with multiple measurements, helping identify who benefits from cognitive training.
To estimate training trajectories, we used LGCM on our data. LGCM employs structural
equation modeling (SEM) to examine interindividual differences in intraindividual changes
over time, addressing common research issues like missing data, non-normal data, and
non-linear changes (P. Curran et al., 2010).

LGCM account for measurement error and provide separate estimates for baseline
cognitive performance (intercept) and changes in training performance (slope), allowing
us to understand how baseline performance relates to changes: a positive relationship
indicates magnification effects, while a negative relationship indicates compensation effects.
LGCM uses two latent factors: baseline performance and change in performance, predicted
by repeated observed measures (sessions). Loadings between the baseline and observed
variables are set to 1, and loadings between change and observed variables start at 0 and
can either reflect the time between sessions or be freely estimated. Error variances and
covariances between latent factors or manifest variables can also be included.

Following Guye, De Simoni, and von Bastian, 2017, we fitted LGCM to investigate
performance changes in the MOT task during training sessions. For each group, we tested
three models: no growth, linear, and non-linear. The no-growth model includes only
baseline performance. The linear model constrains the change loadings to the temporal
spacing between observations. The non-linear model allows for the free estimation of
change loadings.

Model fits were assessed and compared using standard metrics: the chi-square statistic
(χ2), with good fits indicated by values between 0 and 2 times the number of degrees
of freedom (DF); the standardized root-mean-square residual (SRMR), with good fits
indicated by values smaller than 0.08; and the comparative fit index (CFI), with good fits
indicated by values greater than 0.95. For each group, the best-fitting model was retained,
and changes over time were investigated by examining the mean baseline performance
(µi), mean change (µs), and the type of evolution (if nonlinear, λ3, λ4). Additionally,
the variances of initial performance, slope, and the covariance between the two latent
variables were reported. These estimates allow us to assess the heterogeneity within each
group and detect magnification effects (significantly negative covariance between latents)
or compensation effects (significantly positive covariance between latents).

For the variances of latent factors and the covariance between latent factors, we reported
the p-value associated with the Wald test (assessing the null hypothesis that the estimated
parameter is zero) and the BF associated with both the null and alternative hypotheses.
We used the Bayesian Information Criterion (BIC) to estimate BF (Wagenmakers, 2007):

BFH1 = exp(0.5× (BIC2 −BIC1))

where BIC2 represents the BIC for the null model (without the predictor) and BIC1
represents the BIC for the alternative model (free estimation of the predictor of interest).
BF evaluates the evidence in favor of the alternative hypothesis over the null hypothesis.
For example, to assess the credibility of the hypothesis that the covariance between the
initial and change parameters is non-zero, we compared a model with the covariance
constrained to 0 (null model) with a model freely estimating this parameter.

We also investigated the impact of individual differences on performance evolution by
adding six predictors to the best-fitting model: pre-test cognitive battery performance,
education level, engagement, cognitive load, and self-determination index. These predictors
were regressed on both the baseline and change factors, with estimated values, p-values,
and BF reported for each predictor. For the LGCM the analyses were conducted in R
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(version 3.2.3; R Core Team 2015) using the “lavaan” package (version 0.5.23; Rosseel,
2012). We use Python and R for all others analyses.

Q3.1. Subjective Assessment

To investigate the impact of training on subjective experience, several questionnaires were
administered throughout the intervention (Figure 5.1). First, learning progress is evaluated
by asking three questions about target tracking in training activities (see Appendix chapter
5), focusing on the number of targets participants desire versus those they estimate they
can track easily or with difficulty. This approach helps calculate the ratio between feasible
and challenging targets. The Nasa-TLX (Hart, 2006) uses a ’load index’ to represent
overall cognitive load. The Situational Intrinsic Motivation Scale (SIMS, Guay, Vallerand,
and Blanchard, 2000) measures motivations in specific situations, encompassing intrinsic
motivation and identified regulation. The User Engagement Scale (UES, O’Brien et al.,
2018) assesses engagement through four dimensions: focused attention (the sensation of
attentional capture), intrinsic reward (a sense of satisfaction from learning and success),
perceived usability, and the visual appeal of the software device. Lastly, the TENS
(Peters et al., 2018) analyzes how technology interfaces meet essential user needs, including
autonomy, competence, and social relatedness according to the Self-determination theory
(Ryan and Deci, 2017).

Q3.2. Qualitative analysis

Following the training phase, participants are invited to provide open-ended feedback on
their training experience, perceptions, and potential areas for improvement.

6.3 Results

6.3.1 Descriptive statistics
There were 66 participants who initiated the experiment, 2 participants dropped out
immediately after the initial platform orientation session (1 participant for the control
group and 1 for the ZPDES group). Among the 64 participants who finished the first
session corresponding to the pre cognitive battery evaluation, 14 participants discontinued
their participation during the training, with 6 belonging to the ZPDES condition (attrition
rate of 9%) and 8 to the control condition (Attrition rate of 12%). In total, 50 participants
completed the entire experiment, with 24 in the control condition and 26 in the ZPDES
condition (see Figure 6.1). Thus, the participation rate was 84%. This rate suggests good
participant engagement according to the meta-analysis by Z. Li et al., 2024a.

6.3.2 Q1. What is the impact of training conditions (ZPDES
group [individualized] vs. control group [Staircase]) on
observed pre-post assessment?

Q1.1. Pre-and post-measures of MOT from cognitive battery

Evolution from pre to post-test was observed for both groups for moteval (ZPDES group
strong evidence: mean=0.08, HDI=[0.01, 0.14], BF=7.87; control group weak evidence:
mean=0.04, HDI=[-0.01, 0.10], BF=1.88)
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Fig 6.1. Flowchart of the study

In addition to detection of credible evolution within groups, we compare the magnitude
of change between groups. For metrics where change was detected for both groups, only
the moteval task revealed evidence in favor of greater magnitude for the ZPDES group
(mean between-group difference in change=0.03, HDI=[-0.05, 0.12]) (Figure. 6.2). All
other results for the 6 other tests of cognitive battery are available in the Appendix 6.5.
They are not presented as the main results in order to focus on the overall effects from the
latent factor analysis.

Q1.2. Multi domain task: a focus on a latent factor analysis related to the
pre-post cognitive performance

Following Kaiser Criterion, 7 principal components were kept for latent factor analysis
explaining 73.61% of variance (Figure 6.3). For all principal components (PC), no difference
was found between groups at pre-test with all BF being smaller than 0.7 (Appendix Table
6.3). Regarding pre-post evolution, very strong evidence in favor of evolution from pre-
to post-test was observed on PC1 with BF01=404.07 and BF01=2175 for ZPDES and
control respectively. All other PCs did not show any credible effect.

6.3.3 Q2. What is the impact of training conditions (ZPDES
group [individualized] vs. control group [Staircase]) on
the MOT intra-training performance? How do individual
differences impact MOT performance changes, and do
training conditions influence them?

Q2.1. Impact of training condition in terms of path difference

The descriptive data of intra-training performance showed that the ZPDES condition
resulted in various training paths among the OA while the control condition produced a
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Fig 6.2. Pre-post evolution for MOT task accuracy (left) metric. Horizontal bars
represent the 94% HDI of the posterior distribution for each parameter. Inside these bars,
the probability of the parameter being either greater than zero (P(param > 0)) or less
than zero (P(param < 0)) is shown, depending on which probability is higher.

Fig 6.3. Scree plot of the PCA (left) and Matrix loadings of the PCA (right).
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Fig 6.4. Proportion of the population on each different number of targets (2 to 7 targets)
through time.

unique and uniform path for all participants (Figures 6.4, 6.5).
Related to the training performances, linear mixed models fitted on the average

performance of each evaluation session revealed a main effect of group, with the ZPDES
group showing overall lower performance (from the beginning) (mean=-0.04, HDI=[-0.1,
0.00], BF=2.17). Both groups improved through training, as indicated by a main effect of
time (mean=0.03, HDI=[0.02, 0.04], BF » 1000). No credible group*time interaction was
detected (mean=0.01, HDI=[-0.01, 0.02], BF=0.18).

Q2.2. How does inter-individual differences impact the MOT intra-training
performance? Do training conditions (ZPDES vs. control) affect these changes?

Latent Growth Curve models The comparisons of 3 models (no growth, linear growth,
non linear growth) first allowed us to investigate the type of performance evolution. Models
performances and comparisons are summarized in Table 6.1. For the ZPDES group, the
non-linear model fitted best the data with χ2(3) = 2.58, p=0.46, SRMR=0.05 and CFI=1.
For the control group, the non-linear model fitted best the data with χ2(3) = 5.95, p=0.114,
SRMR=0.13 and CFI=0.95.

Estimates and heterogeneity All following results are summarize in Figure 6.7.
For the ZPDES group, results indicate that individuals started on session 1 with a
mean performance score of µi=2.48 and significantly increased their performance by
µs=0.28 leading to training performance across the 4 sessions of 2.48 (session 1), 2.76
(session 2), 2.76 (session 3, estimated coefficient λ3=1.01) and 2.82 (session 4, estimated
coefficient λ4=1.22). We found a significant negative association between intercept and
slope but with weak evidence in favor the alternative hypothesis (σi,s=-0.07, SE=0.03,
p=0.044, BFH1=1.23). However there was substantial evidence for individual differences
in the variance of baseline performance (σ2

i=0.18, SE=0.06, p=0.002, BFH1=3.95) and
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Fig 6.5. Number of transitions between activities in each group for the two studied
populations.

significant but ambiguous evidence in the variance of change (σ2
s=0.08, SE=0.04, p=0.031,

BFH1=1.20). For the control group, results indicate that individuals started on session 1
with a mean performance score of µi=2.65 and significantly increased their performance
by µs=0.32 leading to training performance across the 4 sessions of 2.65 (session 1), 2.97
(session 2), 2.94 (session 3, estimated coefficient λ3=0.92) and 2.90 (session 4, estimated
coefficient λ4=0.81). We found no significant association between intercept and slope
(σi,s=-0.06, SE=0.06, p=0.268, BFH1=1.17). However there was substantial evidence for
individual differences in the variance of baseline performance (σ2

i=0.11, SE=0.04, p=0.006,
BFH1=2.21) but ambiguous evidence in change (σ2

s=0.09, SE=0.1, p=0.398, BFH1=1.00).
In sum, the two conditions exhibited a trend toward different performance trajectories:
the ZPDES group showed a consistent, monotonic increase in performance over the two
weeks, whereas the control group began to plateau at the start of the second week. To
illustrate this, Figure 6.6 shows the changes in performance scores across the sessions.

Impact of individual differences We investigated the impact of individual differences
to both the initial performance and change through training. Pre-test performance had
a significant impact on baseline performance for both the ZPDES group and the control
group. Engagement and SDI had a significant impact on baseline performance in the
control group. Engagement was the only significant predictor for change in the ZPDES
group. No predictor was found significant for change in the control group. Overall,
regarding the impact of adding these variables to the model, no credible impact can be
reported for any of the predictors (BF < 3). All findings are summarized in Table 6.2.
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Table 6.1. Models fit indices and comparisons. Significant χ2 and ∆χ2 are in bold
(p<0.05).

Model χ2 df BIC Comparison ∆χ2 ∆df
ZPDES

No growth 40.69 8 69.30 _ _ _

Linear Growth 14.63 5 52.89 No Growth vs. Linear 26.06 3

Non linear Growth 2.58 3 47.28 Linear vs Non Linear 12.05 2
Control

No growth 37.33 8 29.62 _ _ _

Linear Growth 16.49 5 40.93 No Growth vs. Linear 20.84 3

Non Linear Growth 5.95 3 25.43 Linear vs Non Linear 10.54 2

Table 6.2. Impact of individual differences variables on baseline and change performance.
Notes: b are estimated parameters, and p are their respective p-values (assessing null).
Predictors are regressed on both change and baseline, therefore model comparison
between null (no predictor) and alternative (free estimation of association between
individual differences variables and both slopes and initial performance) are provided in
the same column.

Individual Differences
Impact on baseline Impact on change Model comparison
ZPDES Control ZPDES Control ZPDES Control
b p b p b p b p BFH1 BFH0 BFH1 BFH0

Pre-test 0.5 0.00 0.41 0.04 0.03 0.90 -0.20 0.49 1.33 0.75 0.80 1.25

Education level -0.12 0.58 0.31 0.11 -0.1 0.68 -0.22 0.29 0.77 1.29 0.72 1.39

Engagement -0.22 0.30 -0.42 0.03 0.9 0.04 0.49 0.19 0.96 1.04 0.75 1.32

Cognitive Load 0.15 0.46 -0.26 0.27 -0.08 0.73 0.01 0.98 0.74 1.21 0.71 1.41

SDI -0.1 0.65 -0.48 0.01 0.38 0.15 0.66 0.07 0.82 1.34 0.77 1.30

6.3.4 Q3. What is the impact of training conditions on trainee
experience in terms of engagement, reported cognitive load
and motivation ?

NASA-tlx The load index suggests a significant main effect of time with a slight
decrease over time (HDI=[-1.180, -0.20] ; BF=8.77). Most components of the NASA-TLX,
displayed a slight but consistent decrease over time, indicating a general reduction in
cognitive load (Mental Demand: HDI=[-0.747,-0.439], BF=8.06e+139;Temporal Demand:
HDI=[-0.588, -0.229], BF=2918.582; Effort: HDI= [-0.455, -0.151], BF=76.143). A
Significant group effect was found for performance dimension, where the ZPDES group
showed lowest ratings compared to the control group (HDI=[-2.563, -0.318], BF= 10.652).
Furthermore, a significant interaction between the conditions over the time was observed
for effort perception (HDI=[0.170,0.579], BF= 35.206), mental demand (HDI=[0.214,
0.630], BF=6.85e+01) and load index (HDI=[0.154, 1.445], BF=4.32).
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Fig 6.6. Change of performance score across the sessions

SIMS Regarding the type of motivation throughout intervention there were a main
effect of the time for the SDI (HDI=[-1.940,-1.100], BF=3.574e+108), intrinsic motiva-
tion (HDI=[-0.260,-0.120], BF=3.88e+12) and identified regulation (HDI=[-0.285,-0.133],
BF=6.29e+23). There was a group effect, ZPDES group scoring lower External Regula-
tion (HDI=[-1.841-0.534], BF=78.506) and for the SDI (HDI=[-3.0, 0.21], BF=3.53). No
significant interaction was found between the two groups over time.

UES No significant effect of the time and of training condition was observed for the
total score of the trainee engagement scale. By contrast, one group effect for the perceived
usability of software device (HDI=[-1.004, -0.166], BF=6.846), the ZPDES group scoring
lower than the control group. No interaction effects were reported for the engagement
scores.

TENS A group effect was found for the competence where the ZPDES group has higher
level (HDI=[0.162,0.963], BF=7.324) than control group. No significant time effects and
interaction between the group over the time were noted.

Feeling of Leaning Progress There is no significant effect of time, group or time*group
for the feeling of learning progress. All subjective dimensions are detailed in Appendix ??.

Thematic analysis : feedback of user experience According to content analysis,
four main themes emerged from the participants’ feedback. The first theme highlighted
difficulties with the cognitive test battery, particularly in understanding certain exercises.
One participant expressed that they found the tests ”destabilizing.” The second theme
focused on perceptions of attention training. A participant remarked, ”I found it very
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Fig 6.7. on linear latent growth model of performance in intra-training evaluations for
both groups. Estimated coefficients are provided for both control (c) and ZPDES (z).
Non-null significant (p<0.05) values are displayed in bold.

Fig 6.8. Subjective questionnaires with a) load Index related to the NASA-TLX; b) SDI
related to the SIMS; d) feeling of competence related to the TENS.

interesting despite being repetitive.” Another participant conveyed frustration with the
repetitive nature of the attention task, stating, ”Very interesting but frustrating.” (as
probed by the subscale “perceived usability” from Engagement scale). The third theme
encompassed feedback related to the overall trainee experience during the intervention.
One example was a participant who said, ”I found the experience interesting and the
environment friendly. Thank you for allowing me to participate.” Finally, a fourth theme
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emerged concerning participants’ difficulties with computer use. An example of this
feedback included: ”Some technical problems due to my screen’s incorrect configuration
(my error), but overall it went well”. Thematic differences between the two groups seem
to emerge. Participants from the ZPDES group expressed more difficulties in performing
the cognitive battery exercises and greater frustrations with the tasks. However, they
also provided more positive feedback regarding their overall training experience. It is
noteworthy that participants in both groups reported experiencing performance anxiety.
One participant stated, ”At the beginning of the experiment, I was confident and relaxed,
but as I made more mistakes, I became a bit stressed.”

6.4 Discussion
Based on previous results in young adults, our aim was to study the impact of an
individualized procedure, guided by participant learning progress, compared to a classical
staircase procedure, on a sample of healthy OA.

6.4.1 Q1. Impact of training (ZPDES vs. Control) conditions
on cognitive gains (pre- vs. post-measures)

The first objective was to evaluate how different training conditions (individualized vs.
staircase) affect cognitive enhancement, specifically through performance in the MOT
task. Both groups demonstrated improvements from pre- to post-test in MOT evaluation.
Importantly, the ZPDES group exhibited a greater increase in MOT evaluation. This
indicates that both groups enhanced their divided dynamic attention in the MOT task,
with the ZPDES group achieving slightly higher gains, aligning with their greater learning
gains over eight sessions. This supports that ZPDES worked well for enhanced specific
attentional processes involved in MOT tasks. In terms of other extra-MOT outcomes,
both training conditions led to similar enhancements, with far-reaching effects on working
memory (enumeration and Corsi tasks) and memory (immediate and delayed memorability
tests). These improvements were evidenced by gains in both latent factors in PCA and
observed variables (see Appendix 6.5 for detailed results for each task of the cognitive
battery). However, no improvement was noted in other components, indicating variability
in developmental trajectories. The near and far effects obtained for both conditions
fitted with previous studies using MOT or related-tasks as Neurotracker where far effects,
although real, fall short of the near effects observed (Vater et al., 2021a).

Taken together, these results indicated that ZPDES is enough to promote near effects
in OA, but not for eliciting far effects. In other words, compared to previous findings
in young participants, OA’s ZPDES progress was primarily observed in the specifically
trained task, while younger individuals exhibited both near and far effects, including
improvements in working memory and various memory dimensions (chapter 5). Therefore,
the results in OA are mixed in succeeding increased near effects while failing to increase
the far effects.

6.4.2 Q2. Impact of Training Conditions (ZPDES vs. Control)
on MOT training Performance

The descriptive analysis of intra-training performance revealed that the ZPDES condition
actually led to varied training paths among OA, whereas the control condition resulted
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in a uniform training path, as expected. Additionally, ZPDES condition led to higher
levels of MOT task difficulty for some OAs than the control condition, revealing that
ZPDES is more cognitively challenging and demanding through the exercise adaptation
to individual success and capabilities. Taken together, this means that ZPDES behaved
as we had expected and already observed in the young adults. Moreover, the bayesian
analysis of MOT intra-training performance according to 2 factors-design (Time * group)
revealed that both groups demonstrated similar intra-training improvements cross time
(time effect) although OAs in the ZPDES group had lower prior performance compared to
the control group. Thus, within intra-training performance, no magnification (i.e control
group with higher performance change) or compensation (i.e ZPDES group with higher
performance change) effect was actually observed across the two groups of OAs.

Regarding the progress trajectory, the intra-training data described a nonlinear pro-
gression for both groups across training sessions, but with different trajectories in terms
of magnitude of progress from one session to another. As noted in the introduction,
the literature acknowledges the heterogeneity of training effects due to age, along with
magnification and compensation effects (Guye, De Simoni, and von Bastian, 2017). Our
study found nonlinear intra-training progress for both groups, with differing trajectories.
In the control condition, participants showed improvement in the first week, which then
plateaued throughout the second week. Conversely, participants in the ZPDES group
exhibited a monotonic increase in progress over both weeks. Furthermore, a closed eye
put on interindividual differences revealed that baseline performance in the first training
session for both conditions (ZPDES and control) was influenced by prior MOT performance
(pre-test), confirming initial interindividual differences where the participants with the
best initial performance were those who performed best at the start of training, regardless
of the personalization conditions provided by our two training conditions. Such result
supported the cognitive heterogeneity amongst OAs (Guye, De Simoni, and von Bastian,
2017).

Interestingly, engagement was the only factor in the ZPDES condition to show significant
inter-individual differences for performance changes (albeit baseline and change models
were not significant). This suggests that the ZPDES tutoring strategy, involving random
exploration guided by LP, induces a closed link between learning gains and subject’s
engagement, which is not observed in the control condition. It is important to bear in
mind that our measure of engagement is the TENS scale, which comprises 4 dimensions,
two of which (Focused attention and Intrinsic reward) directly relate to the motivation and
volition involved in self-regulated learning (K. McGrew, 2022). Thus, during training, in
the ZPDES condition, and only in this condition, a synergy is created between changes in
performance and engagement, as predicted in the Learning Progress hypothesis (Oudeyer
et al., 2016b) on which the design of the ZPDES algorithm is based. Consequently, it is
possible that some participants might engage more significantly in the training, resulting
in substantial change, while others may not, leading to little or no change, as recently
pinpointed by the meta-analysis of Z. Li et al., 2024a. In the same vein, another argument
to this assumption is the links demonstrated between the perceived need to train one’s
brain and the power of engagement on training effects (Traut et al., 2021b). Individuals
who feel this need are likely to be more motivated to continue the training over the long
term compared to those who do not feel the need, with the results of greater training
benefits. It is also noteworthy for both training conditions that factors such as education
level, and cognitive load, known to impact training in the literature, did not emerge as
individual source of differences in our study for any of the groups, replicating similar
analyses by Guye, De Simoni, and von Bastian, 2017. These findings should be interpreted
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with caution, as the analysis is based on small sample sizes, potentially resulting in low
statistical power.

In summary, the ZPDES approach seems to yield no quantitative over-time change
in intra-training performance, but to produce qualitative changes with more incremental
progress across time compared to those in control condition. The trainee’s engagement
could play a greater role in qualitative training-related performance changes in ZPDES
condition compared to control condition. These latter results deserve deep examination
and could insighted from the analysis of subjective data from the trainees’ experience over
time.

6.4.3 Q.3. The impact of cognitive load on performance, engage-
ment, competence and motivation during trained tasks.

Cognitive load across time

Several trends were highlighted, including an overall reduction in cognitive load (Nasa-
TLX). More specifically, the ZPDES group showed higher levels in dimensions such as
mental demand, temporal demand, and effort, which have been identified as proxies in
typical learning situations (Efklides, 2006a). The ZPDES group scored lower on the
performance dimension than the control group. The participants seem to experience more
challenging learning paths, indicating that this type of training can result in perceived
more effortful trajectories for the ZPDES group. The lower performance in the ZPDES
group may also be related to the variety of difficulty levels presented in the MOT training,
which can give participants the impression of increased task difficulty, even if the task
is not actually harder. We can ask whether the variability of activities might impact
metacognitive predictions and, more specifically, if it led participants to encounter more
situations/activities where they experienced difficulties compared to the control group (Ten
et al., 2021a). In this way, variability might help individuals gain a better understanding
of their objective performance because they were exposed to a greater number of activities
and faced more challenges, leading to more frequent failures. In sum, the results appear
relatively similar to those of the young adults (chapter 5).

Engagement across time

Paradoxically, participants’ engagement in the ZPDES condition remained unchanged
despite their increased cognitive load. Such a result in OAs differed from observation
in younger individuals, where the trainee engagement decreased with the increasing of
cognitive load in ZPDES condition, as predicted by the economic metacognitive view of
self-regulated learning by Feldon et al., 2019. As previously assumed, it may be that, as
people age, other factors influence the maintenance of engagement, including metacognitive
considerations or beliefs about the merits of attentional training for one’s own cognitive
health (Traut et al., 2021b), as promoted in the recent health policies regarding active
aging (WHO, 2014).

Motivation and Self-Determination feelings across time.

Our results suggest trends related to motivation and the feeling of competence. Specifically,
there was a decrease in self-determination index and intrinsic motivation (SIMS) for both
groups, but a higher level of feeling of self-determined competence among the ZPDES group
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(TENS). Furthermore, the ZPDES group experienced a significant decrease in external
regulation. Despite the effortful nature of the training task, participants in the ZPDES
group could perceive themselves as more competent with a decrease of external regulation,
but the demanding nature of ZPDES training may have led to a decrease in intrinsic
motivation. These results can be contextualized with metacognitive defaults associated to
aging that impact how OA perceive and regulate their cognitive functioning, especially in
cognitively demanding situations or tasks where OAs exhibits metacognitive failures for
accurately monitoring and assessing their memory, as well as learning performance (e.g.,
Hertzog et al., 2008). Systematic reviews and meta-analyses have highlighted the benefits
of addressing metacognitive dimensions during training, leading to more adaptive cognitive
functioning (Sella et al., 2023). In our case, It is difficult to argue that this empowered
feeling of competence is linked to performance improvements that are better perceived in
the ZPDES condition than in the control condition. Indeed, the subjective measures of
learning progress during training did not change as a function of time or training condition,
as testimony of aging-related metacognitive defaults, especially in the context of small
training-related performance changes. Beside of this, studies have shown that OA who
follow a training program at home can increase their self-efficacy (Bailey et al., 2009;
West et al., 2008) as they feel more competent through the use of technological tools. In
a similar way, ZPDES can lead to a virtuous cycle, where challenging activities make
individuals feel more empowered in their MOT- related competency as training progresses.

Overall, the studied aspects of learning experience (cognitive load, motivation, en-
gagement) revealed significant complexity in metacognitive feelings elicited by a CCT,
warranting further exploration as it is likely essential for sustained engagement in training
(Nahum-Shani et al., 2022).

6.4.4 Lessons learned from the participants’ feedback
. Among the participants contacted (a posteriori) to ask for their opinions on their experi-
ences and who agreed to participate, it appeared that the thematic analysis corroborates
with the previous findings according to the subjective questionnaires. Several participants
met difficulties with the cognitive test battery that was perceived somewhat complex
and sometimes without meaningfulness for everyday life. Emotions such as cognitive
frustration and anxiety were reported, as measured by the Nasa-TLX (Hart, 2006). These
emotions are often exacerbated among OA when using digital tools (Czaja et al., 2019;
Quillion-Dupré et al., 2016). Despite these emotional challenges, most participants ex-
pressed satisfaction with the training experience in both conditions, which is encouraging
for future experiments with CCT.

6.4.5 How can we increase, boost objectify transfer effects?
In light of the differences in progress trajectory into intra-training performance, proposing
additional training sessions could elucidate the extent of changes observed in the ZPDES
condition compared to the control group. More sessions with ZPDES may yield more
incremental progress, and in turn, more opportunities of far and ecological transfers.
This strategy may enhance transfer, but also reinforce both LP and metacognition (i.e.,
awareness of one’s learning) with, at the end, perhaps improved feelings of learning and then
improved intrinsic motivation, or at least maintained as engagement for a better synergy
between immediate motivational states and self-regulated volitional strategies (K. McGrew,
2022). Adding sessions for MOT-based training is also demonstrated as beneficial (Hung
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and Seitz, 2014b). Complementary, incorporating breaks for incubation/consolidation of
learning, akin to distributed versus massed learning, may be advantageous (see the review,
(Son and Simon, 2012)), especially for older adults (Kornell et al., 2010).

To further objectify transfer effects, functional measures such as neurofeedback, specifi-
cally EEG, can be employed to mark cerebral changes induced by CT (Park and Reuter-
Lorenz, 2009). This method applied to ZPDES condition of MOT-based CCT could
enhance perceptual-cognitive processing and could provide objective neurofunctional
support of improvements in processing, such as increased processing speed or better man-
agement of attentional resources. EEG data analysis could reveal specific brain activation
patterns during training, highlighting either compensatory processes (activation of new
neural circuits for task performance) or optimization processes, such as improving cognitive
performance through more intense activation of task-relevant areas (Salthouse, 1994, see
the recent review by (Baykara et al., 2021). The brain connectome approach can provide
additional valuable biomarkers for facilitating learners’ learning processes (see (Taya et al.,
2015) for review). Additionally, providing higher quality feedback on participants’ progress,
specifically more explicit information about the functional dimensions they are improving,
could encourage participants in their learning progress and metacognition. For example,
personalized messages such as “You have improved in processing speed” could motivate
participants. This strategy might help observe effects on the feeling of progress (balance
between easy and hard zones) that did not emerge in our study.

6.4.6 Limitations and perspectives
Despite several strengths of the present study, there are some limitations. In addition to
the small sample size discussed in the previous paragraph, it is noteworthy that while
averaging across several training sessions improved the robustness of our performance
indicators, it inevitably introduced some shortcomings. Although our group sizes were
considerably larger than the median group size in the cognitive training literature (n = 22;
Lampit et al., 2014), they are still fairly small when using SEM. In the presence of small
sample sizes, the likelihood of type 2 errors increases (Guye, De Simoni, and von Bastian,
2017). To overcome this limitation, we also evaluated the evidence for and against the
existence of links between the individual differences variables and changes in training
performance using BFs, as they vary less when power is low (Dienes, 2014). The size of
the BFs indicates that our sample sizes were not sufficient to provide strong conclusive
evidence. Also, the recruitment bias should be noted, as the participants who underwent
attention training were retired individuals enrolled in the Université du Temps Libre
(lecture-based courses). These participants are likely aware of the benefits of continuous
cognitive stimulation throughout life. This awareness likely contributed to the fact that,
despite the perceived time-consuming nature of the MOT training, participants completed
the program, resulting in a very low dropout rate. However, we did not evaluate the
long-term effects of the training to observe ecological transfer effects in daily life activities.
Nonetheless, some qualitative feedback indicated that a few participants felt improvements
in attentional activities, such as practicing music.

6.5 Conclusion
Taken together, the ZPDES method represents a new avenue for enhancing training
efficacy, providing more tailored individualization for a population with highly varied
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needs. Future studies based on similar AI-based training should focus on fine-tuning the
ZPDES algorithm, adjusting the training dosage, and improving intra-training assessments
using metacognitive scales. This will help better understand the relationships between
learning progress and intrinsic motivation among the aging population, as emphasized by
recent investigations (e.g., for review, Sakaki et al., 2018). To our knowledge, this is the
first time a truly individualized approach based on the LP algorithm has been integrated
into a CT study focusing on older adults. Finally, we aim to offer a turnkey training
solution for both patients and practitioners.
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Appendix

Initial differences and evolution for other tasks
Initial differences were observed with the control group showing likely higher performance
at pre-test for the loadblindness (mean difference=-0.1, HDI=[-0.2, 0.0], BF=5.88). Am-
biguous evidence of group difference in favor the control participants was observed for
three task as followed : moteval (mean difference=-0.05, HDI=[-0.10, 0.01], BF=2.32),
enumeration (mean difference=-0.05, HDI=[-0.11, 0.01], BF=2.58), and for reaction times
(RT) metric: gonogo (mean difference=-23.40, HDI=[-52.5, 4.37], BF=2.37).

Evolution from pre to post-test was observed for both groups for moteval (ZPDES
group strong evidence: mean=0.08, HDI=[0.01, 0.14], BF=7.87; control group weak
evidence: mean=0.04, HDI=[-0.01, 0.10], BF=1.88) and memorability (strong evidence
for both groups: ZPDES, mean=0.08, HDI=[-0.00, 0.16], BF=4.21; control, mean=0.08,
HDI=[0.02, 0.14], BF=12.36).

Evolution from pre to post-test was only observed for the control group with strong
evidence for gonogo RT (mean=-36.49, HDI=[-65.58, -8.45], BF=12.97).

Latent Factor Analysis
All results for each principal component of the pre-post difference in the latent space:

Table 6.3. Pre-test Difference and Post-Pre Evolution for Each Component

Component Group Pre-test Difference Post-Pre Evolution
d BF01 t-stats p-value d BF01 t-stats p-value

PC1 ZPDES 0.44 0.77 1.57 0.12 0.45 404.01 4.79 6.310e-05
Control 0.65 2175.91 5.62 9.976e-06

PC2 ZPDES 0.47 0.89 -1.68 0.09 0.13 0.28 0.82 0.41
Control 0.19 0.42 1.24 0.22

PC3 ZPDES 0.11 0.30 0.40 0.68 0.25 0.70 -1.67 0.10
Control 0.10 0.24 -0.52 0.60

PC4 ZPDES 0.17 0.33 0.61 0.54 0.30 0.56 -1.5 0.14
Control 0.40 0.48 -1.35 0.18

PC5 ZPDES 0.35 0.53 -1.24 0.22 0.06 0.22 -0.41 0.68
Control 0.01 0.21 0.08 0.93

PC6 ZPDES 0.07 0.29 -0.25 0.79 0.18 0.28 -0.81 0.42
Control 0.17 0.31 0.94 0.35

PC7 ZPDES 0.09 0.295 0.32 0.74 0.13 0.23 -0.55 0.58
Control 0.18 0.24 0.46 0.57

Global Score ZPDES 0.77 5.96 -2.78 0.007 0.36 9.42 3.12 0.004
Control 0.61 319.3 4.76 8.316e-05
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Questionnaires

Fig 6.9. Feeling of learning across the training.
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Part IV

Discussions and conclusion
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Chapter 7

Conclusion and discussion
Aims
After reviewing the literature and evalu-
ating a new individualization procedure
in MOT-based training, it is time to con-
clude this work by reflecting on the vari-
ous observations we collected.

Contents
7.1 Main Takeaway of the

Results from Chapters 6
and 7 . . . . . . . . . . . 222

7.2 General summary of the
work . . . . . . . . . . . . 226

7.3 Looking at the LP hy-
pothesis . . . . . . . . . . 231

7.4 Perspectives of the work 234
7.5 Limits of the work . . . 240
7.6 Conclusions . . . . . . . . 243

Abstract
First, a review of the main results collected in Chapters 5 and 6 is presented. Four takeaway
posters summarize the primary directions of our analysis: training trajectories, intra-
training performance evolution, pre-post cognitive evolution, and questionnaire responses.
Next, all results are discussed to provide a comprehensive overview of the key insights
derived from the collected data. This leads to a discussion of more fundamental questions
regarding the nature of the LP hypothesis and the integration of other components such as
cognitive load, metacognition, and personality traits into the model. With these theoretical
perspectives, practical recommendations are proposed, including several enhancements
to address the limitations of the ZPDES algorithm. Finally, taking a broader view, we
outline future projects that stem from this PhD thesis.

Collaborators
Adolphe Maxime, Pech Marion, Oudeyer Pierre-Yves, Delmas Alexandra, Maurel Denis,
Sauzéon Hélène 1

1Following Contributor Roles Taxonomy, all collaborators contributed for ”Writing - Review & Editing”.
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7.1 Main Takeaway of the Results from Chapters 6 and 7

7.1.1 Training Performance
Summary of the analysis aims and main metrics

The primary dimension of our analysis investigates the distinct training trajectories proposed to participants in each group (ZPDES or control). We
utilized exploratory visualizations, as shown in Figures 7.1 and 7.2, and computed differences between groups using heuristics that characterize several
aspects such as success rates, variability, or trajectory coherence.

Fig 7.1. Proportion of the population on each different number of
targets (2 to 7 targets) through time. More details on this figures
can be found in chapter 6.

Types of activity proposed through time:

• Training trajectories exhibit greater variability in the ZPDES
groups compared to the control group;

• Both young and older adults in the ZPDES groups are pre-
sented with a higher number of targets compared to their
respective control groups.

Fig 7.2. Number of transitions between activities in each
group for the two studied populations. More details on this
figures can be found in chapter 6

Diversity of transition through time:

• Transitions between activities are more diverse in the
ZPDES group for both older and younger adults;

• The increased variability of activities in the ZPDES
group is also evidenced by the higher number of differ-
ent transitions.

Other general observations on trajectories:

• ZPDES participants showed a generally lower success rate than the control groups;

• ZPDES participants succeeded with a higher number of targets (max=7 for young adults and 5 for older adults) while simultaneously failing at a
low number of targets but at very high values of speed, tracking duration, or low spacing between stimuli;

• There was no significant difference between groups in terms of total training duration.
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7.1.2 Intra-training evaluation
Summary of the analysis aims and main metrics

The secondary dimension of our analysis examines the evolution of performance using an evaluation of the MOT task, which was not disclosed to
participants. This evaluation was conducted four times during training (sessions 1, 4, 5, and 9). We computed the mean success rate across groups and
sessions (Figure 7.3) and fitted a LGCM (Figure 7.4)to identify the type of learning curve, as well as to investigate the impact of individual differences,
including potential magnification or compensation effects.

Fig 7.3. Descriptive graph of the success rates for both groups in
both studies across the four sessions of intra-training evaluation.
Scatter plots represent individual performances.

Fig 7.4. Latent Growth Curve Model parameter estimates. Variables from the
older adult studies are suffixed with “_o,” while variables from the young adult
studies are suffixed with “_y.” Significant non-zero values are bolded. More details
on this figure can be found in Chapter 6.

Intra-training performance evolution:

• A general increase in performance is observed for all groups across all studies, though this improvement is not linear over time;

• For older adults in the control group, performance appears to plateau during week 2, while it continues to improve for the ZPDES group;

• A credible, though weak, covariance has been identified in the older adult population, with negative signs indicating a potential compensation
effect. This was not observed in the younger population.
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7.1.3 Pre-post cognitive evolution
Summary of the analysis aims and main metrics

The third dimension of our analysis evaluates performance evolution using a cognitive battery of seven tasks introduced in Chapter 3, administered
before and after training. For each task, we computed the posterior distribution of performance at pre-test, post-test, and the change from pre- to
post-test. From these posterior distributions (Figures 7.5 and 7.6), we derived credible intervals to detect significant performance evolution within
groups and differences between groups.

Fig 7.5. Forest plots of posterior distribution of the pre-test performance
(white bars) and post-pre evolution (colored bars) for the young population.
More details can be found in chapter 5.

Fig 7.6. Forest plots of the posterior distribution of pre-test performance
(white bars) and post-pre evolution (colored bars) for the older population.
More details can be found in Chapter 6.

Pre-post evolution main outcomes:
• Initial differences were noted at pre-test: young adults in the ZPDES group scored higher on 3 metrics compared to the control group, while

older adults in the ZPDES group scored lower on 4 metrics compared to the control group;

• Training improved performance in all groups across all studies for the MOT task;

• In the young sample, the ZPDES group showed broader performance improvement (6 metrics vs. 3 in the control group);

• In the older sample, the control group showed broader performance improvement (4 metrics vs. 2 in the ZPDES group).
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7.1.4 Questionnaires
Summary of the analysis aims and main metrics

The fourth dimension of our analysis evaluates self-reported subjective dimensions such as cognitive load, motivation, engagement, and feeling of
competence. Questionnaires were administered throughout the week to track changes over the course of the training. We used mixed models to
investigate within-group evolution throughout the intervention and differences between groups.

Outcomes from the different questionnaires (rounded numbers in the
main text correspond to specific rows in Figure 7.7):.

1© Cognitive load decreased over time for both groups in both young and
older populations, particularly in terms of mental demand and effort;

2© The use of ZPDES algortihm impacted mental demand and effort.
In the young population, there was a main effect of time, while in
the older population, there was an interaction effect (group × time).
This suggests that for participants using ZPDES, the intervention was
generally more demanding or effortful;

3© For the performance component, ZPDES participants reported lower
levels overall. While the impact of time was absent for older adults,
young adults in the ZPDES group reported a stronger increase in
performance over time compared to the control group;

4© Intrinsic motivation was lower for ZPDES groups in both young and
older populations. In the young adult study, ZPDES participants
showed lower levels on several components linked to intrinsic motiva-
tion (SDI, engagement, perceived usability, focused attention, reward);

5© Intrinsic motivation decreased over time only in the older adults study;

6© Competence was higher in the older adults ZPDES group compared
to the control group. No group effect was observed in the young study
on this dimension. However, the young ZPDES group reported lower
levels in the “hard feasible zone,” a proxy for competence.

Fig 7.7. Table summarizing the questionnaire results. Bayes Factors were
used to assess the null hypothesis for each parameter estimate of the linear
mixed model (see Chapter 5 for details). A credible non-null estimate is
defined by a criterion of BF > 1.5.
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7.2 General summary of the work
The two experimental studies presented in this dissertation provide an initial understanding
of the impact of new individualized procedures on CT based on the MOT task. Previous
sections (sections 7.1.2, 7.1.1, 7.1.3, 7.1.4) offer a preliminary overview of the main outcomes
from the two experimental chapters. This section aims to summarize and discuss the work
more comprehensively. As outlined in chapters 5 and 6, the discussion can be categorized
into three main dimensions: (1) analysis of training trajectories and the evolution of task
performance, (2) analysis of cognitive performance changes within the pre-post cognitive
battery, and (3) the impact on self-reported subjective measures.

7.2.1 Training trajectories
The ZPDES algorithm is distinguished by its ability to create unique, tailored paths for
each participant. This “branched-path” design, which contrasts with the linear design of
the staircase algorithm (used as a control procedure), results in diverse training trajectories.
This diversity is demonstrated by the variety of activities proposed, the proportion of
participants engaged in each activity type (categorized by the number of targets), and the
number of transitions between activity types.

Furthermore, the ZPDES algorithm generally proposed activities with a higher number
of targets compared to the control procedure. This behavior, governed by the rules
managing ZPD evolution, contrasts with the control group patterns. The staircase
algorithm, by design, can only adjust along a single predefined degree of freedom, leading
to significant performance plateaus in the control group. Fine-grained analysis of individual
trajectories revealed that participants stuck at certain levels of number of targets progressed
once they overcame these steps, indicating that the difficulty did not always increase as
expected in the staircase algorithm.

Additionally, our observations replicated previous findings (Alvarez and Franconeri,
2007b) showing that ZPDES participants could reach and succeed at high target levels (up
to seven targets) when other parameters were set to easier values. This was particularly
evident in our sample of older adults, some of whom achieved the five-target level, which
was unattainable for the control group.

This difference in activity proposition warrants further discussion. In chapter 3, we
demonstrated that the MOT task’s performance could be unpredictable when multiple
parameters are manipulated simultaneously. This complexity was also noted by F. Joessel,
2022a, whose experiments used a staircase procedure to manage the difficulty of a dual
MOT task. Their procedure did not show as much learning as other conditions that
manipulated fewer parameters.

Moreover, the systematic review in chapter 2 identified several strategies for imple-
menting a branched-path design, primarily relying on reinforcement learning algorithms.
The algorithms included in the review managed a very small set of parameters to maintain
sample efficiency. For instance, interventions using tabular methods such as Q-learning
(Zini et al., 2022) exemplify this approach. By employing a hybrid method that combines
expert rules (the model of ZPD) and a hierarchy of multi-armed bandit algorithms, ZPDES
represents a first step toward managing larger activity spaces.

Observations of activity space exploration alone are insufficient to conclude the ap-
proach’s effectiveness. Our initial attempt to investigate the average success rate of
participants during training revealed an interesting trend: the average success rate of
ZPDES groups in both samples was lower than that of the control group (approximately
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50% versus 66%). However, this lower success rate must be interpreted cautiously, as
the trajectories differed between groups and the ZPDES algorithm focuses on learning
progress rather than success rate.

Most interventions assessing MOT training impact use intra-training performance as a
comparative measure (e.g., Romeas et al., 2016c, Vater et al., 2021d). In our experimental
design, direct comparisons are not possible. The staircase algorithm provides an estimate of
the maximum difficulty a participant can reach (highest step achieved), but this is not the
case for the ZPDES group. To address this issue, previous research (Clement et al., 2015)
suggested mapping the activity space to a difficulty space where activities are ordered by
difficulty levels. However, our context does not allow for easy prediction of such mappings
(e.g., is high-speed/large-spacing more challenging than low-speed/small-spacing?).

Thus, following practices in educational contexts (e.g., Rosenbaum, 1994) and machine
learning benchmarks (e.g., Bellemare et al., 2013; Portelas, Colas, Hofmann, and Oudeyer,
2020), we designed a common, blind evaluation for participants. This evaluation consists
of 12 activities of varying difficulties (small to large number of targets, low to high speed,
small to large spacing) to provide a reference frame for evaluating and comparing mastery
between groups.

Is ZPDES a better procedure to enhance intra-training MOT performance?

Results from the intra-training evaluations indicated that all groups improved during
training. However, no significant differences in progress were observed between the groups
in either study. Weak evidence from LGCM analysis suggested that ZPDES participants,
both young and old, continued to improve during the second week of training, unlike
the control group. However, this should be considered a trend rather than a definitive
conclusion (small sample sizes). Although no notable differences were detected in this
evaluation, the methodology holds promise for identifying dynamics within learning
trajectories (Byrne and Crombie, 2003). To our knowledge, this approach is not widely
used but should be considered by future researchers, particularly in pilot studies, to gain
clearer insights into the impact of training.

In practice, the absence of performance differences — despite differences in training
trajectories — might be attributed to several features of the evaluation. First, as the
evaluation consists of 12 different activities, the general performance score might obscure
progress in specific activity types. Investigations for each activity type revealed some
progress, but the limited number of trials per activity type (four each) may result in noisy
estimates of participants’ actual mastery levels. Additionally, visual parameters varied
between participants during the same evaluation session due to the gamified intervention’s
randomized visual skins. This variation might have influenced some evaluations, introducing
further noise into the measures. These limitations should be considered, especially given
the different training trajectories and performance evolution observed during the pre-post
evaluation discussed in the next section.

7.2.2 Cognitive Performance
The MOT evaluation task

Previous studies using MOT as a training task have consistently observed performance
increases in the trained task (Harenberg et al., 2021; Legault and Faubert, 2012b; Moen
et al., 2018b; Musteata et al., 2019b; Parsons and Faubert, 2021; Parsons et al., 2016b;
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Tullo, Faubert, and Bertone, 2018b). In our studies (chapters 5, 6), the MOT task used
for evaluation within the cognitive battery differed slightly from the training procedure.
For example, it included occlusions, and objects followed linear trajectories, whereas
training trajectories deviated randomly. The performance increase on this version, which
differs slightly from the MOT version used in training, is noteworthy. Previous research
Strong and Alvarez, 2017b has shown that variations in trajectory type or retinotopic
locations during evaluation typically result in lower performance improvements compared
to evaluations conducted under identical settings to the training.

Moreover, for both studies, the ZPDES group showed a slightly stronger performance
increase compared to the control groups, as indicated by the HDI of accuracy post-pre
evolution. While this observation requires replication and larger sample sizes for validation,
it suggests a potentially more suitable curriculum and greater task progress for the ZPDES
group. Although all participants exhibited similar progress patterns on the MOT evaluation
task, notable differences in other tasks within the battery highlight the nuanced effects of
the interventions and the differences between the studied populations.

Transfer effects and impacts of MOT parameters

Investigating other tasks within the cognitive battery revealed differences between groups
and studies. For the young sample, both groups improved in the loadblindness and task-
switch tasks, whereas no improvements were observed for these tasks in the older sample.
This difference is notable, as these tasks require attention abilities (e.g., dividing resources
for the dual task in loadblindness or sustained attention for task-switching to ensure
objective reconfiguration), cognitive flexibility, and high processing speed. This disparity
in training benefits illustrates the complexity of assessing and understanding transfer
effects. One possible explanation is the magnification effect, where individuals who already
possess some required skills show greater improvements from training. Young adults, who
typically have more efficient attention abilities, cognitive flexibility, and processing speeds,
are more likely to benefit from such training. In contrast, older adults may lack these
foundational skills to the same extent, limiting their capacity to improve through similar
training programs (Traut et al., 2021a).

Following an opposite pattern, a difference was found in the memorability accuracy
metric, which improved for both groups in the older sample but only for the ZPDES group
in the young sample. In Chapter 3, we demonstrated that memorability is correlated with
tasks requiring attention, as attention is critical for sustaining focus through blocks and
accurately capturing the intrinsic features of images for recall upon second presentation.
This suggests a compensation effect, where participants with lower initial performance
benefit more from training (Traut et al., 2021a). While young participants in the control
group may have begun with higher attention abilities, the potential improvement was too
small to show a significant change. However, adding to this complex picture, young adults
using ZPDES did benefit from the training. This could indicate that the ZPDES training
focuses on specific activities relying on different cognitive components thereby enhancing
their performance.

A difference was observed, with performance enhancements noted only for the ZPDES
group in the young sample and, conversely, only for the control group in the older
sample. Specifically, the older control group showed performance improvements in the
enumeration and Go/No-Go (reaction times) tasks. These enhancements may be attributed
to improvements in fast and automatic processes. This was not observed in the older
ZPDES group, possibly due to the proposed staircase trajectory.
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In the control group, plateauing on specific tasks characterized by high speeds, low
spacing, long tracking duration, but a low number of targets, could have allowed participants
to fine-tune certain automatic processes, increasing efficiency in quick decision-making
situations such as enumeration or Go/No-Go tasks. In contrast, ZPDES participants
encountered higher variability and might have spent less time fine-tuning these particular
processes.

Additionally, the hypothesis of enhancing automatic processes — referred to as “skills”
within the Prism model (N. A. Taatgen, 2013) — could be further explored through
cognitive modeling. As demonstrated with the Attentional Blindness task in Hoekstra
et al., 2022, computational assessments of the operators and skills used to perform a
task can clarify the characteristics of the trained components. This would help delineate
the concepts and constructs under discussion. Consequently, this idea presents new
perspectives and necessitates further research to fully explain our collected data.

While these discussions are interesting, they rely on numerous hypotheses and unob-
served concepts without a clear description of the “process” and “cognitive components”
(Traut et al., 2021a). Factually, in the study on young adults, ZPDES participants pro-
gressed more, while in the older study, the control group showed greater improvement.
This observation was further confirmed using PCA to assess performance evolution within
each Principal Component, viewed as cognitive constructs. For instance, in the young
population, the ZPDES group exhibited broader enhancement across three Principal
Components compared to the control group, which improved in only one of the three.

By observing the different impacts of the ZPDES algorithm in young and old samples,
it is worth questioning the quality and effectiveness of the individualization provided by
ZPDES. We hypothesized that a larger training impact indicates a more adapted training
path, suggesting ZPDES’s efficiency in proposing a tailored curriculum. However, it is
possible that the greater learning effect in the young ZPDES group was primarily due
to the larger variability in the learning trajectory (Raviv et al., 2022). Conversely, this
variability might have been counterproductive for the older sample (Lampit et al., 2014d).

The next sections will explore these questions using other strategies. The first strategy
involves directly examining the impact of individual differences on learning outcomes, and
the second involves studying self-reported measures.

7.2.3 Is ZPDES really providing an individualized path?
To investigate whether ZPDES provides a trajectory tailored to participants’ needs, we
can hypothesize that if the trajectories were adapted, initial individual differences should
not predict changes in performance. In practice, this statement holds if we consider
the objective of individualization as bringing all participants to a minimum amount of
performance enhancement, meaning progress is observed for all participants regardless
of initial differences. In contrast, other conceptions of individualization might aim to
maximize each participant’s potential progress, where initial differences would still predict
progress, but all participants would improve to their highest potential. Even though
ZPDES assumptions do not imply one or the other conception, we employed a LGCM, a
classical strategy for studying performance change when multiple measures are available
(Karbach et al., 2017b, Guye, De Simoni, and von Bastian, 2017) to test this hypothesis. In
our context, performance was measured by the results of the MOT evaluation through the
intervention (four sessions). We observed that the covariance between initial performance
and progress (i.e., change over time) was weakly credible only for the older population
in both ZPDES and control groups, but not for any group in the young sample study.
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These observations indicate larger variability in the older adult groups and suggest a
potential magnification effect (of the MOT performance), where covariance was negatively
correlated with initial performance, a phenomenon observed in several previous studies
(Lövdén et al., 2012b).

Replicating a strategy introduced in Guye, De Simoni, and von Bastian, 2017, we
employed an additional method: besides a baseline model fitting only on two latent factors
(intercept and slope), we added different covariates such age, motivation or engagement
and compared model fits with and without it, investigating estimated coefficient values.
Some observations aligned with prior assumptions; for instance, pre-test performance in
the cognitive battery significantly predicted baseline performance across all groups (i.e
high performers at the cognitive battery show high performance in the first session of the
MOT evaluation). However, the addition of single covariates did not significantly enhance
the models, suggesting that individual differences, as considered with our strategy, did
not causally impact performance changes. This finding raises questions about the initial
inquiry posited at the beginning of the manuscript, where we stated that individualization
was needed because initial differences between participants were an important cause of
small effects or lack of effects in CT studies.

However, our LGCM analysis should be interpreted with caution. First, some individual
difference metrics are aggregate scores that mask the inherent complexity of variables such
as pre-test performance and subjective metrics. Second, the small sample size in our study
may increase the risk of type II errors. Various rules of thumb for determining the minimal
sample size required for robust conclusions include having at least 100 to 200 participants
(Boomsma, 1982) or 5 to 10 observations per estimated parameter (Bollen, 2014). In our
context, these rules can lead to different guidelines, ranging from 100-200 participants to
70-140 participants, depending on the rule applied. Therefore, power calculations should
be tailored to our specific model and require a detailed analysis, which we plan to conduct
in future work. As suggested by Wolf et al., 2013, we will use Monte Carlo simulations to
gain a clearer understanding of the reliability of our conclusions.

7.2.4 Questionnaires
Although some questionnaires can be criticized for their lack of internal validity and
reliability (Taherdoost, 2016), they provide insightful information on the impact on trainee
experiences and their related metacognitive states. As illustrated in 7.1.4, both groups
in both studies showed a significant decrease in load index. This decrease aligns with
the objective performance increases observed in training trajectories and the cognitive
battery. Additionally, consistent with objective observations such as lower success rates
and higher variability, the ZPDES group in both young and older adults showed a superior
cognitive load, indicated by higher senses of effort, mental demand, and physical demand.
Notably, this cognitive load decreased less over time for the older ZPDES group revealing
the greater cognitive demand of ZPDES condition.

On the motivation and engagement scales, the studies showed slight differences. In
the young sample, the ZPDES group, in addition to experiencing higher cognitive load,
exhibited generally lower intrinsic motivation (as indicated by SDI or autonomy) and
engagement (as reflected in all components of the User Engagement Scale (UES)). In the
older sample, the ZPDES group also showed lower intrinsic motivation (SDI or autonomy),
but engagement was less impacted (albeit affecting the Perceived Usability component)
compared to the young sample. These different results in young and older adults might
provide evidence of the evolving role and impact of intrinsic motivation and engagement
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with age. As discussed in section 7.3.2, it is possible that beliefs or expectations played a
role in the engagement of older participants. For instance, despite the training not being
inherently motivating, older adults may have engaged more because they believed the
training was beneficial for their health or cognition. In contrast, this was likely less the
case for the younger participants.

Feeling of performance (NASA-tlx) and competence (TENS) showed varied behaviors
between the studies. In the young adult sample, the feeling of performance increased over
the week for the ZPDES group, while it decreased for the control group. This change was
not observed in the older sample, where the sense of performance remained stationary.
However, the older ZPDES group reported a general lower level of performance than the
control group. This feeling of lower performance is consistent with the lower average
success rate in training and the differences observed in the pre-post battery. Interestingly,
competence was reported higher in the older ZPDES group compared to the control,
whereas no difference between groups was found in the young sample.

Given these diverse results in both objective and subjective performances across
studies, the next sections will discuss these findings in the context of the learning progress
hypothesis, the limitations of our work, and the perspectives they offer.

7.3 Looking at the LP hypothesis

7.3.1 Cognitive Load and Metacognition
The LP hypothesis suggests that curiosity is driven by the need to engage in learnable/em-
powering activities and that the experience of making learning progress is intrinsically
rewarding, thereby reinforcing curiosity and intrinsic motivation to continue the task
(Oudeyer et al., 2016b). In our intervention, the ZPDES algorithm operationalizes this
idea by employing a multi-armed bandit algorithm guided by an estimation of LP. Our
results indicate that the LP hypothesis is influenced by certain factors that are not directly
accounted for by our individualized procedure.

The first factor is cognitive load. Our results indicate that the load, effort, and demands
(both physical and temporal) were higher in the ZPDES groups. Concurrently, we observed
lower motivation and engagement in these groups. Given the lower success rates and higher
variability in proposed activities, it is unsurprising that the ZPDES paths were reported
as more demanding and effortful. According to the LP hypothesis, ZPDES participants,
experiencing higher objective LP, should be more motivated. This pattern suggests that
cognitive load potentially moderates the actual LP experience, indirectly affecting the
positive feedback loop between progress experience and intrinsic motivation. In cognitive
load theory (Sweller, 2011), motivation has traditionally been viewed as a precursor to
learning, necessary for engaging in effortful training (Salomon, 1983). However, recent
research (see Poupard et al., 2022; Feldon et al., 2019 for reviews) has suggested that
levels of cognitive load can impact motivation. This implies that the relationship between
motivation and cognitive load may be bidirectional: mental effort is invested when there
is sufficient motivational belief, but inadequate results can decrease motivation. We
attempted to represent this perspective in Figure 7.8. The arrow from intrinsic motivation
to objective learning progress suggests that optimal cognitive load is required to experience
learning progress (the historical view of cognitive load as in Salomon, 1983). Indirectly, the
arrow from objective learning progress to motivation (via the feedback loop) suggests that
cognitive load also moderates motivation levels (the more recent view of the relationship
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Fig 7.8. A new perspective on the LP hypothesis: Integrating cognitive load and
metacognition

between cognitive load and motivation as in Feldon et al., 2019).
The second factor is metacognition. Figure 7.8 introduces another distinction in the

model: separating LP into an “objective” component (actual performance evolution in
a task) and an “experienced” LP moderated by metacognitive processes. Our results
suggest that the higher variability induced by the individualized procedure may have made
it more difficult for participants to monitor and estimate their own LP. Practically, we
acknowledge that the collected data and experimental design were not sufficient to fully
develop a new model, and these components were likely already included in the existing
model. For instance, metacognition is often assessed by examining the association between
participants’ accuracy in a task and their confidence levels, which are typically evaluated
through self-reports (Fleming and Lau, 2014). This method was not utilized in our study.
However, Figure 7.8 provides new objectives for operationalizing the concepts into an
algorithm. As such, section 7.4 will discuss how these findings might offer new perspectives
on enhancing ZPDES or other individualized procedures.

7.3.2 Inter-individual differences
While we have previously explored the connections between cognitive performance, cognitive
load, and metacognition, the role of affect and personality traits remains underexamined.
This dimension, though not addressed in our work thus far, holds significant potential for
further investigation. Indeed, Sakaki et al., 2018 found that curiosity, despite declining
with age, predicts healthy aging and correlates with better learning abilities and cognitive
functioning in older adults. For instance, curiosity trait encourages individuals to seek
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out novel experiences, triggering the production of dopamine and norepinephrine. These
neurotransmitters enhance learning by modulating hippocampal activity, which is crucial
as the hippocampus is particularly vulnerable to age-related deterioration. In this regard,
Sakaki et al., 2018 highlights that such stimulation could prevent the impact of aging
on memory. Consequently, in our CT scenario, this dimension could be explored; for
instance, curious older adults might exemplify magnification effects. It is thus important
to discuss the interplay between cognition, conation (motivation and volition), and affect
(emotions, temperament and personality) in our context. This triptych, introduced as the
classic trilogy-of-the-mind model by E. R. Hilgard, 1980, can be further examined within
a learning context using the Cognitive-Affective-Motivation Model of Learning (CAMML)
model introduced by K. S. McGrew, 2022.

The CAMML model integrates several existing frameworks. Firstly, cognition is de-
scribed according to the CHC taxonomy (see chapter 1, section 1.1.1 for an overview).
Secondly, conation, defined as “the proactive (as opposed to habitual) part of motivation
that connects knowledge, affect, drives, desires, and instincts to behavior” (from APA
dictionnary of Psychology), encompasses both motivation and volition constructs. Moti-
vational constructs can be seen as the drivers of behavior, providing the spark and fuel
that propel one forward. In the model, these constructs include achievement orientations
(e.g., “Do I want to do this activity? Why? What are my goals?”) and self-beliefs (e.g.,
“Can I be successful? Am I capable of doing this activity?”). Volition, on the other hand,
is the post-decisional, action or performance phase of motivated learning, referred to in
contemporary literature as self-regulated learning or action control (K. S. McGrew, 2022).
It consists of strategies or mechanisms to self-regulate learning (e.g., “What do I need to
do to succeed? How am I doing?”). In sum, conation comprises motivational constructs
that initiate the commitment pathway to learning, followed by volition (or self-regulated
learning strategies) that direct the course of action to achieve the goal. Finally, affect is
described through the Big Five personality traits (Roccas et al., 2002), enhanced with
socio-emotional constructs, which assess individuals based on five major dimensions of
personality: openness, conscientiousness, extraversion, agreeableness, and neuroticism.

Figure 7.9, taken from K. S. McGrew, 2022, illustrates how these three components
connect. There is a first mediating link between affective constructs and conative constructs.
This link can be further refined by considering that construct such as open-mindedness
(related to curiosity to learn, creativity...) mainly impacts the motivation part of conation
(i.e the drivers of motivated learning) whereas conscientiousness (i.e determination, focus,
persistence...) mainly impacts the volition part of conation (related to self-regulated
learning). As such, the different affective constructs can also be seen as mediating different
temporal dynamics of a self-regulated learning. The second link, illustrated in Figure
7.9, involves conation and cognition. Within the cognitive component, following Cattell’s
Investment theory (Cattell, 1987), the investment in different cognitive abilities is mediated
by motivational constructs, as depicted in the “Personal Investment” section of Figure 7.9.

This model provides insights into the results we collected. For instance, an interesting
pattern emerged in the ZPDES groups: young adults exhibited higher cognitive load,
lower motivation, and engagement but a stronger sense of performance compared to the
control group. In contrast, older adults showed similar trends in motivation and cognitive
load; however, they maintained stable engagement (which decreased for young adults) and
reported higher competence (which remained stable for young adults) than their control
group.

This pattern could be explained by the different impacts of motivational and volitional
constructs between age groups. In the young sample, the larger objective impact of ZPDES
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Fig 7.9. The CAMML model, taken from K. S. McGrew, 2022

might be linked to the higher sense of performance and less related to engagement or
self-beliefs. Conversely, for older adults in ZPDES, motivational constructs were less
important. Previous work has shown that open-mindedness, which mediates motivation in
the CAMML model, decreases with age (Sakaki et al., 2018). Consequently, in the older
adults group, volition and regulation processes may have played a more significant role
in maintaining engagement. This aligns with our LGCM results, where engagement was
a weak but significant predictor of change in the ZPDES group. It can then be posited
that this causally impacted the lower learning benefit in the older adult ZPDES group.
This would be in line with Z. Li et al., 2024b who highlighted in their meta-analysis that
engagement is a critical determinant of training efficacy in older adults.

These discussions are theoretical, and no strong evidence allows us to conclude defini-
tively on these observations. However, this preliminary insight suggests that future research
could further assess these findings by evaluating affective traits, expectancies, and training
efficacy-related beliefs before the intervention. Additionally, as highlighted in the previous
section, this discussion underscores how the LP hypothesis is a foundational step toward
understanding intrinsically motivated learning and exploration, while also revealing many
other dimensions that could be incorporated into the model.

7.4 Perspectives of the work

7.4.1 ZPDES algorithm
Estimation of student’s level

An important inquiry for future research on ZPDES is how learner mastery levels are
estimated and considered. As discussed in the previous section, high cognitive load nega-
tively impacts motivation and engagement. Therefore, in addition to targeting progressive
activities, the algorithm should also consider actual mastery levels or performance in the
online generation of the curriculum. In our intervention, mastery level is only indirectly
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considered. The multi-armed bandit algorithm sampling allows for the automatic detec-
tion of several learning situations related to mastery levels, such as unfeasible activities,
mastered choices (i.e., null or low learning progress), or drops in performance due to
forgetting or fatigue (i.e., non-null learning progress). However, this mechanism alone
does not provide a clear boundary between mastered and unmastered activities and does
not directly predict participants’ actual performance. Therefore, we employed a second
mechanism—a model of ZPD—to eliminate activities that reach a certain success rate
threshold, defining them as “mastered.” Even with the deletion of mastered activities,
we could consider performance directly as an additional objective in the multi-armed
bandit setting. This idea was tested in Ten, 2022; Ten et al., 2021b by fitting several
computational models on a free-choice exploration task. The authors showed that the
best-fitting model was a bivariate one defined by both a learning progress component and
a Percent Correct component. This suggests that in exploratory tasks, participants are
sensitive to both learning progress and their actual performance.

As such, adding a second component to the objective of ZPDES exploration, such
as ensuring an overall minimal success rate, might be an avenue to explore. This idea
connects the LP-based procedure with other adaptive learning approaches that set a
criterion for minimal success rate, also known as the 85% optimal rule for learning. This
85% objective—tightly related to the concepts of optimal difficulty and flow (i.e the
”Goldilocks zone” (Kidd et al., 2012)) — has been demonstrated to be the optimal training
accuracy in binary classification tasks with gradient-based learning algorithms and other
neural network-based strategies (Wilson et al., 2019).

This objective could be added as a general component describing a sense of overall
performance (i.e., not computed independently for each activity but over all activities
proposed within a block of several trials) that ensures a minimal level of performance or
self-efficacy, defined as an individual’s belief in their ability to successfully execute tasks.
In other words, in this proposition, the LP component—computed for each activity—would
ensure micro-adaptation (driven by high LP activities), while the performance component
would ensure longer-term and macro-adaptation (typically at the scale of a block of
activities).

Additionally, the model of ZPD is useful for restricting the exploration of the activity
space, but deletion in ZPD can be sample inefficient. Activities nearing their threshold
are proposed less frequently because their learning progress decreases, reducing their
probability of being selected. A classical approach to estimate learner mastery is Bayesian
Knowledge Tracing (BKT) (Pelánek, 2017b), a hidden Markov model that models a binary
state of mastery (often denoted as θ) for an activity. In BKT, an activity can initially be
mastered with probability Pi and, if not already mastered, can transition to a mastered
state with probability Pl. In an unmastered state, the learner has a probability Pg to
correctly answer, whereas in a mastered state, the learner has a probability Ps to fail
the activity. After the learner practices the activity, Bayes’ rule is applied to update
the state of mastery for that activity (Corbett and Anderson, 1994). Similarly, Shabana
et al., 2022 proposed using ZPDES with a change point detection algorithm to establish
clear boundaries between mastered and unmastered states. This approach can potentially
improve the efficiency of mastery estimation in the ZPDES framework.

An additional perspective to explore in ZPD management is the integration of expert
knowledge into the temporal dynamics of the generated sequence. Participants may
struggle to accurately assess their mastery levels when faced with highly variable sequences
of difficult and easy activities. Currently, ZPDES does not impose constraints on the
pedagogical sequence, except for enforcing the same number of targets for three consecutive
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trials to reduce variability. However, adding other mechanisms to overly stabilize the
sequence might negate the benefits of variability. Thus, mechanisms to better control
the presentation dynamics of already mastered activities could be beneficial. Presenting
these activities periodically can reinforce participants’ mastery and LP self-assessment
while providing less intensive tasks, which has been shown to be advantageous for learning
(Hung and Seitz, 2014a). Currently, the algorithm randomly selects activities with low
learning progress (including mastered ones) without controlled timing. To address this,
Mu et al., 2018 proposed a forgetting mechanism that suggests activities outside the ZPD
when their memory trace falls below a certain threshold.

Efficient description of the activity space

Staircase strategies are limited by the number of parameters managed concurrently. The
ZPDES approach, with its two-level hierarchical graph structure, allows for more flexible
exploration of the activity space. However, this representation has limitations because it
assumes that parameters in the lower hierarchical levels (speed, spacing, tracking duration,
and probe duration) are independent. This independence assumption is problematic as it
introduces noise into the learning progress estimations computed by each bandit associated
with the different parameters.

An interesting perspective to tackle this issue comes from Automatic Curriculum
Learning strategies (Bengio et al., 2009; Portelas, Colas, Weng, et al., 2020, that is to say
machine learning methods used to automatically find learning trajectories for artificial
agents by challenging them with tasks adapted to their capacities. Specifically, Portelas,
Colas, Hofmann, and Oudeyer, 2020 proposed ALP-GMM (Absolute Learning Progress
with Gaussian Mixture Model) an algorithm able to select high learning progress tasks
in continuous multidimensional activity spaces. After an initialization phase of random
sampling uniformly across the activity space, a gaussian mixture model is fitted on the
observed proposed tasks concatenated to their respective ALP measure. In their scenario,
ALP is computed as the reward difference between the last sampled activity and the
closest (in space) previously sampled activity. GMM allows to detect different niches of
progress: fitted Gaussians are randomly chosen following a bandit scheme where mean
absolute progress is used as the utility of each arm. An activity is finally sampled with
the chosen Gaussian. After a certain period of time, GMM are fitted again to adjust
with agents non stationary mastery level. While this algorithm showed to be efficient
with Deep-Reinforcement Learning agents, several aspects would need to be resolved to
be used within human time scales. However, easy adjustments could be thought such as
discretization of activity spaces (several parameters are discrete by nature or assumptions
of continuity can be hold knowing limits of human perceptions) or even the use of a
model of ZPD (as done in ZPDES) to restrict exploration to only a subsets of interesting
activities.

7.4.2 Perspectives on future individualized training
Metacognitive consideration

Our results highlight a situation where cognitive load was high and intrinsic motivation and
engagement were low, despite high objective LP—contrasting with predictions of the LP
hypothesis. We discussed various aspects that might moderate these outcomes, focusing
on the impact of metacognition as a crucial element to monitor or feel objective LP. Thus,
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it is worth asking whether tailoring learning should occur at both the “cognitive” level
and the “metacognitive” level for a given learning context. Several interventions have
previously shown that metacognition is trainable Abdelghani, Law, et al., 2023; Callender
et al., 2016; de Boer et al., 2018. For instance, in Abdelghani, Law, et al., 2023, the
authors proposed a series of 8 sessions to 8-10-year-old children. These sessions included
animated videos presenting declarative knowledge about curiosity and metacognitive skills,
as well as practice sessions to apply these skills during a reading-comprehension task. The
results showed a positive impact on children’s metacognitive efficiency and their ability to
express curiosity through question-asking behaviors.

Additionally, as metacognition enhancement has been shown to improve task perfor-
mance (Callender et al., 2016), it could be an additional pedagogical objective of training
interventions. To implement this idea, several strategies would need to be developed to
estimate metacognitive efficiency (Fleming and Lau, 2014) before, during, and after a given
learning activity (Ozturk, 2015). For instance, B. Clément et al., 2024 proposed enhancing
the existing interaction loop (i.e activity proposition - answer - ZPDES update - activity
proposition) with a direct query to the learner to collect a declarative statement of their
needs. This strategy could be extended to include measures of confidence as proxies for
metacognitive sensitivity (Fleming and Lau, 2014) and to use this signal in the sampling
decision.

To construct a curriculum that also trains metacognitive processes, scaffolding and
individualization should be considered. Indeed, it is not always evident a priori if a
specific activity will be useful for developing metacognition. For instance, an unfeasible
activity that is far above the student’s current level may be useless for mastery. However,
encountering such activities can enhance the student’s ability to detect unfeasible tasks,
which is a valuable metacognitive skill. Therefore, when developing metacognitive skills
training, an optimal zone for metacognitive development should be considered. Previous
works have proposed that optimal activities for metacognitive development overlap with
the ZPD (Baker, 1994; Metcalfe, 2009). This idea is examplified in 7.10 where the ZPD
overlaps with a zone where metacognitive development is also optimal. However, recent
work by (Abdelghani, Law, et al., 2023), has shown that certain metacognitive training can
lead to progress in metacognitive efficiency without impacting learning performance. This
raises the question of the actual overlap between the ZPD and an optimal metacognitive
developmental zone, as proposed in Figure 7.10. More research is needed to understand
how to integrate components of metacognitive training into classical training. In this vein,
some previous ITS have attempted to incorporate these dimensions to adapt training (V. A.
Aleven and Koedinger, 2002; Mathan and Koedinger, 2005). These procedures often rely
heavily on language, as they require learners to self-explain their progress and experience.
As such, language-based strategies enabled by Generative Artificial Intelligence (GAI)
offer new avenues in this direction. The next section will discuss these possibilities.

Generative AI context

Recent advances in deep learning that can convincingly generate text (OpenAI et al.,
2024; Zhao et al., 2023), images (Betker et al., n.d.; Rombach et al., 2022), or videos (Ho
et al., 2022; Singer et al., 2022), known as Generative Artificial Intelligence (GAI) tools,
are promising for the future of educational technologies (Chan, 2023). Particularly, the
use of Large Language Models (Large Language Model (LLM))—autoregressive models
trained to predict the next word in a sequence given the previous words (Brown et al.,
2020; Vaswani et al., 2023)—has gained significant interest for their capacity to provide
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Fig 7.10. An illustration of two possible hypotheses: a ZPD matching an optimal
metacognitive development zone (solid white borders) and an overlapping but larger
metacognitive development zone (dashed white borders).

learners with natural language interfaces (Andreu and Palmeira, 2024; Baskara et al., 2023;
Firaina and Sulisworo, 2023; Kiryakova and Angelova, 2023; T. Wang et al., 2023). For
instance, EdTech companies are already selling LLM-based products such as Khanmigo,
an AI virtual teacher at Khan Academy (https://www.khanmigo.ai/), and a RolePlay
feature in Duolingo (https://blog.duolingo.com/duolingo-max/), which engages learners
in everyday situations to practice real-world conversations.

In early ITS, the development ratio, that is, the number of hours required to author
one hour of instructional content, was estimated to vary between 200 and 300 hours
for one intervention (Schmucker et al., 2023). Therefore, tools that help teachers build
curriculum and exercises can be incredibly beneficial. For instance, Hwang et al., n.d.
propose using GPT-3.5 to generate multiple-choice questions and a strategy to validate
the generated material following Bloom’s taxonomy. Similarly, H. A. Nguyen et al., 2022
provide heuristics and methods for human validation, while Pourcel et al., 2024 offer an
LLM-based strategy to generate diverse and qualitative programming puzzles in Python.

In addition to curriculum building, tools that help teachers test pedagogical approaches
or new methods are also promising. For example, Markel et al., 2023 propose generating
several GPT-simulated students to train teaching assistants, allowing them to practice
without the pressure of affecting real students. Another strategy facilitated by LLM is
the learning-by-teaching framework, where learners act as teachers. Previous systems
relied on predefined text sequences to facilitate dialogs between the learner and the system
(E. Law et al., 2020). Enhancing this framework, Schmucker et al., 2023 provide both
an LLM-based teacher and student, asking the learner to teach the virtual student while
receiving hints or feedback from a virtual teacher.

Moreover, tools for automatically correcting exercises are also in development (e.g
Creutz, 2024, S. Moore et al., 2022). For instance, Lee et al., 2022 propose an interface that
supports children and parents in rewriting stories together with the help of AI techniques.
Furthermore, automatic feedback on tasks with plausible human-like interaction is another
valuable application. Roest et al., 2023 use an LLM (GPT-3.5 turbo) to generate next-step
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hints for an introductory Python programming course. The generated feedback was often
perceived as personalized, useful, and clear by both students and experts. However, some
feedback contained misleading information, highlighting the challenge of controlling the
accuracy of information provided by these stochastic models.

Finally, predicting student performance from background distal factors, such as aca-
demic trajectory or socioeconomic status, and proximal cognitive and non-cognitive features,
like student motivation and engagement, is another potential use of GAI. Hayat and
Hasan, 2023 propose using a transformer-based architecture (FLAN-T5) for this purpose.

In sum, these new tools are part of major changes in today’s education. A case
study involving 20 stakeholders in higher education Zhou et al., 2024 already showed
that participants valued how LLMs, particularly ChatGPT, provide “autonomy and
control” over other AI tools and appreciated the experience being “personalized” and
“general-purpose”. However, they also expressed ethical concerns regarding “inaccuracies
of responses, hallucinations, bias, or privacy”.

Moreover, while these tools offer opportunities, they raise questions about their impact
on student learning dynamics. For instance, T. Wang et al., 2023 interviewed computer
science instructors who expressed concern that first-year students often trust and use
LLM-generated code with little consideration. Instructors worried that “students with
underdeveloped mental models may experience shallow learning when using AI assistants.”
Therefore, it remains to be determined how Generative AI can provide a personalized,
interactive, and empowering educational environment while avoiding passiveness, loss of
curiosity, overestimation of one’s competencies, and lack of critical thinking Abdelghani,
Wang, et al., 2023.

7.4.3 Enhancing the psychologist’ toolbox with AI
I am a researcher specialized in cognitive science with a
passion for AI, psychology, mathematics, and educational sciences.
My role is to revise the PhD manuscript of one of my students,
ensuring that the English is corrected and the text is formal.
First, I will give a mark to the corresponding paragraph (from
1: very bad to 5: very good), and I will also comment with
1 sentence on the most important thing to change to make it
perfect. Then, while I will stay close to the original input,
I will make necessary corrections to the English. I won't
hesitate to rewrite some parts to ensure the tone fits with
top scientific journals like Nature or Science (and to overcome
the issue I raised in my comment). The text should be always
clear for readers and I will make sure transition are always
very efficient: the reading should always feel very natural. If
I spot that a paragraph misses transition or is not logical, I
will provide a comment after generating the rephrased paragraph.
I will avoid using words such as 'to delve', 'unravel', and
'intricates'. When providing LaTeX references such as \cite{} or
\ac{}, the output will remain unchanged.

Pre-promt used to make manuscript correction with GPT-4.

GAI has and will continue to have a broader impact beyond the educational setting.
Indeed, LLMs provide tools to enhance researchers’ work, such as scientific writing. For
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instance, the prompt included above was used to ensure correct and clear English while
writing this dissertation. Using the ‘myGPT’ feature offered by OpenAI2, this prompt
allowed for configuring an agent to provide feedback and reformulations of the manuscript
content. In addition to this use, LLMs were employed as experts to explore diverse ideas
or statistical methods.

Many common routines will be profoundly transformed by the use of GAI. For instance,
in chapter 6, we experimented with using GPT-4 as an additional annotator in a qualitative
analysis of verbatims collected post-training. This idea has been previously tested (Xiao
et al., 2023) and we are currently developing a tutorial to demonstrate how researchers
conducting qualitative analyses could benefit from these techniques. As shown in R. E.
Wang et al., 2023, such tools could help accelerate repetitive tasks when datasets scale.
Similarly, these tools can be leveraged for systematic reviews or meta-analyses. For
instance, LLMs can assist in the inclusion/exclusion phase, with humans judging a subset
of the collected articles and using inter-rater reliability metrics to assess the approach.

Image generation capabilities will also provide additional tools for researchers. In this
work, we used image generators to create several illustrations to gamify our intervention.
Additionally, we used models to create various illustrations included in this dissertation.

While these strategies will empower researchers and accelerate repetitive and time-
consuming processes, some aspects of the scientific process will face new challenges. For
example, during the submission of our systematic review to a journal (cf chapter 2),
we encountered LLM-generated reviews. Although we advocate for the common use of
GPT for reformulation, all authors agreed on the lack of value in the generated content.
Therefore, it is crucial to develop new gatekeeping mechanisms.

7.5 Limits of the work

7.5.1 Ecological validity
Our study faced several limitations regarding ecological validity. Firstly, the relatively
small sample size constrained the broad applicability of our findings. Additionally, we could
have investigated the reasons behind participant dropouts to gain more comprehensive
insights into the studyies dynamics (for instance following the method proposed in F.
Joessel, 2022a).

The computerized and online nature of our intervention raised questions about control-
ling screen parameters. Some calibrations, such as those detailed in Adolphe et al., 2022a,
were not ensured.

We also faced issues with participant pseudo-randomization. Pseudo-randomization
led to unexpected pre-test differences in the older population, likely due to between-group
differences in the study’s duration. This factor should have been accounted for to enhance
the study’s validity.

For a more robust qualitative analysis, incorporating open-ended questions more
systematically could have been beneficial. Indeed, this method allows for gathering
finer-grained feedback on what participants engaged with and could help identify ways
to enhance the interventions or better detect the main barriers to our intervention. As
discussed in previous sections, leveraging AI to process these responses would have provided
deeper insights into participant experiences and perceptions.

2https://help.openai.com/en/articles/8554397-creating-a-gpt
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The cognitive battery used for assessment posed subjectivity challenges, as we primarily
selected activities correlating with the training task. This raises questions about the notion
of generalization. Furthermore, the lack of follow-up and absence of real-world assessments,
such as daily life questionnaires, limited our ability to evaluate the long-term impacts
and practical applicability of the training. Additionally, we did not pre-register our study,
which is considered a good practice to enhance transparency and reproducibility in research
(P. Simmons et al., 2021). Pre-registration could have provided a clearer framework for
our hypotheses, methodology, and analysis plan, reducing potential biases such as selective
reporting and data-driven hypothesis adjustments.

In future studies, addressing these limitations by expanding sample sizes, improving
randomization techniques, incorporating more comprehensive assessment tools, both
qualitative and quantitative, and adopting pre-registration practices will be crucial for
enhancing ecological validity and the overall robustness of our research.

7.5.2 Bayesian vs Frequentist view
A significant aspect of our study was the use of Bayesian inference as the main framework
for statistical analysis. Unlike the frequentist approach, which relies on long-run frequencies
and p-values, Bayesian inference provides a probabilistic framework that incorporates
prior knowledge and updates beliefs with new data. Historically, the adoption of Bayesian
methods was limited due to the computational intensity of running Markov Chain Monte
Carlo (MCMC) simulations (Kruschke, 2010). However, with modern advancements in
computing power, these techniques have become more accessible and feasible for extensive
analysis.

Despite these advancements, Bayesian methods still face several challenges. One major
issue is the general lack of knowledge and understanding around these methodologies.
Additionally, there is a notable absence of standardized practices. While some journals
are beginning to accept Bayesian analyses (e.g Kruschke, 2021c), the appropriate methods
and standards for conducting such analyses are not always clear. For example, calculating
a Bayes factor can be complex and varies significantly depending on the method used,
such as methods relying on the difference in Bayesian Information Criterion (BIC) or the
Savage-Dickey density ratio. These approaches require a strong foundation in probability
and mathematics, posing a barrier to their widespread adoption.

Looking ahead, we anticipate that the increased availability of high-quality learning
materials and user-friendly statistical software will facilitate broader adoption and un-
derstanding of Bayesian methods. Resources such as JASP and various R libraries are
making these techniques more accessible to researchers. As the field continues to evolve,
the integration of Bayesian inference into mainstream research practices will likely become
more standardized and widely accepted.

7.5.3 Future directions
Starting scientific project

The material developed in Chapter 4 will be re-used for cognitive assessment in a new cohort
led by researchers from Bordeaux Population Health. This cohort will include 2,500 children
from CP-CE1-CE2 and 2,500 children from 6ème and 5ème grades, aiming to understand
the causes and mechanisms leading to the increasing prevalence of myopia and its possible
links with the increased use of digital screens. Several longitudinal measures will be
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conducted, such as ophthalmological exams, measurements of optical correction (if wearing
glasses), visual acuity without correction, and biometric assessments (including axial
length measurement). Additionally, demographic questionnaires will gather information
on socio-demographic characteristics, places of residence, lifestyle, screen habits, academic
achievement, and neurodevelopment. In this context, the cognitive battery will be adapted
to meet the needs of these children and serve as a neuropsychological assessment.

Another direction for future research involves applying our design to a population with
cerebral small vessel disease (cSVD). In France, cSVD affects over 4 million people over the
age of 60 and is strongly associated with dementia, often manifesting as decreased attention
and working memory. Currently, there is no effective treatment for these cognitive deficits.
However, previous studies, such as (Pantoni et al., 2017), have shown that attention
training can benefit attention and working memory and may increase activity in brain
circuits involved in cognitive processes. This project is currently led within the new
Vascular Brain Health Institute, created in 2024 at Bordeaux. It gathers three research
units : (1) Bordeaux Population Health Lab (Inserm and Univ. of Bordeaux), (2) Institute
of Neurodegenerative diseases (Neuromodulation and Neuroprosthetics Team) and (3) Inria
centre of University of Bordeaux (Flowers and Titan teams). This new research program
aims to assess the efficacy of non-invasive brain stimulation (NIBS) with and without MOT-
based cognitive training for this population. It is a significant advancement for the ideas
presented in this dissertation as it involves studying a clinical population, incorporating
additional measures such as EEG recordings (i.e., neurofunctional changes as guide for
assessing CT effeciveness), and exploring the potential synergy between individualized
training and neuromodulation techniques like transcranial alternating current stimulation.

Using the Work in an Industrial Context: Onepoint

Onepoint, by assembling a dedicated R&D team, aims to propose evidence-based solutions
and offer high-standard expertise and counsel to its customers. In addition to its Corporate
Social Responsibility research projects, the company has focused on developing enhanced
learning programs in various domains such as software development, cloud computing,
data management, low code, and even soft skills development (e.g public speaking, stress
management...)3. As part of these efforts, a platform featuring various serious games4 has
been developed. Initially, our research project, which focuses on individualized learning
procedures, was seen as a potential enhancement to existing training programs. However,
serious games typically follow a specific narrative path in their learning material, which
has limited the integration of our approach. Despite this, the expertise gained in ITS
and educational technologies has facilitated valuable discussions with potential customers,
particularly during bid responses and dissemination talks.

Moreover, this work has laid the foundation for future projects inspired by the developed
ideas. For instance, an upcoming project will explore the benefits of using LLM to
automatically generate flashcards for a spaced repetition study technique (Lu et al., 2021),
aimed at helping learners efficiently memorize information. Key research questions include:
Can LLM generate diverse and high-quality flashcards? How can instructional design
theories be used to control the generation of these flashcards? How can spaced-repetition
instructional design be enhanced by considering learner performance signals?

In addition to these scientific inquiries, several industrial perspectives could be leveraged
by the company. On the learning side, these strategies could enhance the current training

3https://www.groupeonepoint.com/fr/ecole-onepoint/
4https://www.gamabu.com/en/
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offerings by proposing new evidence-based methods to customers. This is particularly
relevant as many calls for tenders demand micro-learning strategies, where learners engage
in brief, focused sessions (maximum 5 minutes). On the AI side, the methodologies used
to assess and develop the tool could be extended to other contexts, such as the automatic
generation of presentation slides, or applied to various domains, given the extensive range
of training offerings.

7.6 Conclusions
In this dissertation, we embarked on a comprehensive exploration of individualized cognitive
training enhanced with AI techniques. Initially, we conducted a literature review on
existing individualized cognitive training methods, highlighting the integration of AI to
enhance personalization. Subsequently, we focused on the MOT task literature, specifically
examining parameter manipulation to understand how different factors can be adjusted for
effective training. These first two chapters provided a foundation for understanding the
current landscape of personalized CT and identified the key parameters to manipulate in
the MOT task. In Chapter 3, we developed and validated a cognitive test battery, which
was subsequently used in the following two studies.

We then conducted two studies with similar experimental designs: a pre-post cognitive
battery assessment and an eight-hour training program over two weeks. The first study
involved young adults, while the second focused on older adults. The main findings
revealed general improvements in both groups on the trained tasks and some near transfer
effects that varied between the young and old samples. Additionally, we observed that
motivation and engagement were lower for participants using the individualized procedure.

These results were further discussed in the discussion section, identifying several areas
for improvement in such procedures. This interdisciplinary work underscores how the
interconnected fields of AI and cognitive psychology can mutually benefit each other. Our
research highlights the importance of considering individual differences in future studies,
emphasizing that personalized approaches can enhance the effectiveness of cognitive
training. This dissertation serves as a step forward in integrating AI techniques with
cognitive psychology, aiming to improve personalized cognitive training methodologies for
diverse populations.

By bridging these fields, we have opened new avenues for research and application,
striving to create more adaptive and effective training programs. Ultimately, this work
not only advances our understanding of cognitive training but also sets a foundation for
future innovations that honor the uniqueness of each learner.
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